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Abstract 

The concepts involved with the experimental techniques of Electric Field 

Induced Second Harmonic generation (EFISH), dipole moment measurement, and 

solvatochromism, are introduced with particular application to the properties of 

organic molecules. A number of organic chromophores are introduced, but emphasis 

is applied to the study of tetracyanoquinodimethane (TCNQ) derivatives which are 

expected to possess large dipole moments (ju) and large hyperpolarisabilities (/3). 

Furthermore, the behaviour of // and /? with respect to the local environment of the 

molecule is discussed where a novel evolution is predicted from theoretical 

calculations. The measurement of ju, is discussed with particular reference to the 

geometry of the local field factor and the size of the molecule. Consequently, the 

choice of local field is found to be critical when dipole moments are large, as is the 

case with the TCNQ derivatives. 

The EFISH experimental technique is introduced where the calibration of the 

experiment is discussed. The measurement of the molecular figure of merit, ///? at 

1.064 um and 1.907 um in chloroform and dichloromethane is presented for the 

TCNQ derivatives, again paying attention to the geometry of the local field factor, /ufi 

is found to be moderate for most of the compounds, but J3 is found to be unexpectedly 

small. This is partly due to the fact that // is large. 

A novel evolution of the transition frequency with solvent polarity is found for 

three of the chromophores under study, where the solvatochromic shift reverses. 

Solvatochromism experiments are conducted with binary solvent mixtures to ascertain 

the position of the cyanine limit (J3 = 0) with respect to reaction field. It is found that 

the materials reside close to the cyanine limit in chloroform and dichloromethane. This 

is attributed as a reason for the low measurements. Comparisons of ju and /? are also 

made with Sum-Over-State calculations. A better correlation is found for ellipsoidal 

local field factors. 
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Non-Linear Optics and the Application to Organic Materials. 

Chapter 1 

Non-Linear Optics and the Application to 

Organic Materials. 

§1.1 Introduction. 

To study non-linear optics (NLO) is to study the extension of linear optics 

where the interaction of light with a medium in which it propagates induces a change in 

the properties of the medium, or a change in the properties of the incident radiation. 

Such studies, which are dependent on the production of intense pulses of electro

magnetic radiation, have only been largely attainable with the advent of the laser [1], 

which as a result has allowed the demonstration of second harmonic generation (SHG) 

[2] and a number of other non-linear optical phenomina [3,4]. 

Non-linear optical devices which are made principally from inorganic materials, 

such as gallium arsenide (GaAs), lithium niobate (LiNb0 3 ), and potassium dihydrogen 

phosphate (KDP), are now evident in a number of industrial and research 

environments. Crystals are used to double, triple, and combine the frequencies of light 

so that previously unattainable frequencies using lasers may be now be achieved in 

optical experiments or systems [5, 6]. Phase conjugation and optical bistability have 

been demonstrated in a number of applications [7,8], and electro-optic modulators are 

commonly used in fibre optical systems applicable for today's telecommunication 

industry [9]. However, future requirements for the telecommunication industry include 

the need for high speed and high capacity systems, long system life times, and more 

efficient active devices [9, 10]. NLO polymers and organic materials have potential 

advantages over inorganic materials. Lower dielectric loss at microwave frequencies is 
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Chapter 1. 

an inherent advantage of organic materials, as is a potential greater mechanical 

robustness, and ability to "tune" the non-linear response of an active device in a 

polymeric system, so that a more efficient device is possible [6, 11, 12, 13, 14]. 

Indeed, relatively simple chromophores, as will be subsequently seen, possess a non-

linearity greater than 45 times than that of LiNb0 3 [11, 15, 16]. Organic materials 

have already had an increasing role in conventional semiconductor electronics, and 

have aided in the advancement of such technologies [17]. Examples of organic 

applications that are used today are photoresistive masks [17], multi-chip dielectrics 

[17], polymer optical fibres (POFs) [12,17], and thermo-optic switches [18], and there 

are non-linear optical organic devices which are well on their way to becoming 

applicable to a number of systems [19,20,21,22]. 

Even though a number of active chromophores have been incorporated into 

polymer structures, there is still a need develop chromophores that possess higher non-

linearities, but are equally as robust and stable in a working environment [15, 23, 24, 

25]. To do this, the molecular properties of an NLO chromophore in a working 

environment must be well understood. The effect of varying the composition, length 

or the extent of conjugation of the chromophore, and the involvement of 

intermolecular interactions on the linear and non-linear properties of a molecule have 

been well documented, both theoretically [26, 27, 28, 29, 30] and experimentally, 

where large molecules with high non-linear coefficients have been developed [11, 12, 

15, 31, 32, 33, 34]. However, as the dielectric properties, non-linear optical 

properties, and size of a molecule increase, conceptual difficulties arise in the 

measurement and interpretation of the linear and non-linear properties of NLO 

chromophores. The validity of standard local field approximations is brought into 

question [35, 36, 37], and static electric fields for the purpose of poling are 

increasingly difficult to apply reliably to highly polar molecules [12]. The variation of 

molecular properties with the local environment is a process which is yet to be fully 

understood, even though there have been a number of investigations on the subject 

[28, 36,38,39]. 
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The aim of this thesis is therefore to aid in the understanding of the behaviour 
of a particular class of organic materials, where the molecular linear and non-linear 
properties of the materials are expected to be large. Theoretical calculations on these 
and similar classes of material have predicted, not only large linear and non-linear 
responses, but also a novel evolution of such properties with the environment in which 
the molecule resides [40], This study attempts to ascertain i f the behaviour and size of 
the NLO properties of the materials are close to that predicted, by determining the 
dipole moment, first hyperpolarisability, and the transition energy of the materials as a 
function of the electric field experienced by them in solution. 

In the next few sections an introduction to the basic concepts of non-linear 

optics will be given, before moving onto Chapter 2 where the theoretical aspects of the 

experiments discussed in this thesis are presented. This includes an analysis of the 

choice of local field involved with such calculations. Chapter 3 presents the materials 

under study with an overview of the work that has previously been conducted. Such 

work will be useful as a comparison to the results presented in this thesis. The results 

of experiments to measure the molecular dipole moment are presented in Chapter 4, 

where it is hoped to ascertain whether an ellipsoidal or spherical local field provides a 

better estimate of the dipole moment. Chapter 5 presents the method and results used 

to obtain the molecular hyperpolarisability using both spherical and ellipsoidal local 

fields in accordance with Chapter 4. In Chapter 6, the evolution of the energies of the 

optical absorption bands for the materials with the molecular environment are 

presented, where such behaviour is a convenient manifestation of changes to the linear 

and non-linear optical properties with environment. This leads finally to Chapter 7 

where a comparison will be made between the experimental data obtained in this study 

and theoretical data obtained elsewhere. 

§1.2 Non-Linear Optics. 

It is stated in §1.1 that non-linear optics is the extension of linear optics under 

the application of intense pulses of light, where light interacts with or induces a change 

in the media in which light propagates. In the linear regime, the time dependent 
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induced polarisation of a material, P(f) is proportional to the applied electric field, E(f), 

such that [5,6,41] 

r(') = * ( 1 ) E(') , 

(1.2-1) 

where is the linear susceptibility. For a lossless, dispersionless medium, the non

linear regime may be included by the expansion of ( 1.2-1) to a Taylor power series of 

electric field strength, [5,6,11,42,43] 

P ( 0 = ^ ( , ) E W + ^ ( 2 ) E 2 ( 0 + ^ ( 3 ) E 3 ( 0 + , 

(1.2-2) 

where %® and % ^ are the quadratic and cubic non-linear susceptibilities respectively. 

The electric field may be expressed in terms of sinusoidal components such that 

E(r) = E 0 cos(fi>r), where co is the angular frequency, and E 0 is the amplitude at / = 0. 

Applying this to ( 1.2-2) yields the expression 

P(f) = ^ ( , ) E 0 cos(arf) + x{2)K cos2 (cot) + %

{ 3 ) K cos3(<ar)+ 

(1.2-3) 

which can be re-written as 

P(f) = ^ ( 1 )E 0cos(tar) + ^ ( 2 ) E ^ { l + cos(2arf)j + ^ ( 3 ) E ^ { 3 c o s ( o f ) + cos(3fi)r)}+ 

(1.2-4) 

The inclusion of the non-linear terms in the description of the polarisation has given 

rise to components of the fundamental frequency at 2co and 3 a, the processes of which 

are thus defined as second and third harmonic generation, respectively. A number of 

other effects, such as sum and difference frequency generation, and Pockel's effect 

may be realised by developing (1.2-2) in a similar manner to that above. 

I f anisotropic media are to be considered, then the application of an electric 

field in a particular direction will result in polarisations in other directions as well as the 
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principal direction of the applied field. The polarisation, electric fields and 
susceptibilities are therefore described by tensorial relationships (dropping the time 
dependency (f) for neatness) 

p _ y 0 ) p . y ( 2 ) r r i y (3 ) r p p 
r i Xij ^ Xijk^j-^k ^ Xijkl^j^k^l 

(1.2-5) 

where k, and / are the tensorial indices for the crystal directions x, y, and z. It is 

also necessary to consider the frequency of each electric field applied to the medium. 

I f the second order polarisation, for example under the application of sum frequency 

generation, is expressed considering the fundamental and resulting frequencies such 

that 

i > ( 2 ) ( f i > 3 = a>, +o)2)= z${a3 = <»i +o)2)EJ(eo,)Elc((o2) 

(1.2-6) 

it is possible to see, by permutation of all the frequencies and tensorial indices, that a 

large number of complex numbers are needed to describe any one interaction for x^ • 

However, a number of permutation symmetries and conditions may be applied to 

( 1.2-5) so that these combinations are reduced, x, y and z are often represented by the 

numbers 1, 2, and 3 respectively, and a common shorthand notation is given for 

combinations of j and k in the form of yz, xz, and xy, which are represented by the 

numbers 4, 5, and 6 respectively. For these relations to be valid, intrinsic permutation 

symmetry must be applicable, i.e. x^k - x*} = Xk)l e t c > where it can be shown that 

X^ remains unchanged under such permutations [6, 44, 45]. The susceptibility may 

then be expressed as x% = # w f ° r example. 

Since the polarisation is a physical and measurable quantity, it is therefore real. 

Furthermore, since the electric field is described by a complex number, it can be shown 

for second harmonic generation that x^ m u s t dso be real, as similarly for third 

harmonic generation, it may be shown that x^ i S complex. Full permutation 

symmetry may be applied to ( 1.2-5) for a lossless medium where the components of 
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(i.e. the frequencies) are real, and the indices of the frequencies are permuted with 
respect to the tensorial indices [6]. In addition, Kleinman's [46] symmetry may be 
invoked under the conditions where the fundamental and resulting frequencies are far 

from resonance, thus x^ 15 essentially independent of the frequency of interaction and 

all indices may be permuted independently [6,46]. 

Analysis of the tensorial nature of the polarisation also gives rise to the 

conclusion that second order effects (i.e. those dependent on x ^ ) are only present in 

anisotropic or non-centrosymmetric media. In centrosymmetric media, inversion 

symmetry must be evident, i.e. upon inversion the polarisation, P-^-P, and the 

electric field, E ->-E. Equating the second order polarisation only, upon inversion 

-I?)=X$(rE$rE>)=X($EjEk. 

(1.2-7) 

This condition is only possible i f Xyt - 0, therefore in centrosymmetric media, in 

addition to linear effects (x^)> o n ^ y °dd order non-linear effects (i.e. x^\ &c ) 

will be observed. 

The application of these conditions to ( 1.2-5) for second harmonic generation 

may reduce the number of independent elements of x® to 10 [5, 6, 11]. Any 

additional, crystalline or molecular symmetries may reduce this number further so that 

in many cases only one or two independent coefficients remain. 

§1.3 The Anharmonic Oscillator Model. 

An atom or collection of atoms under the influence of a low intensity 

alternating electric field will oscillate in a manner which can be described in the linear 

regime by the harmonic oscillator model [5, 6, 41]. To consider NLO effects, the 

potential energy, V{x) and restoring force, F(x) of an electron may be written as a 

Taylor expansion of the co-ordinate of the electron, xe. For the inclusion of x^ 

effects however, the anharmonic oscillator model should be considered where the 
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potential energy of an electron should fulfill the condition V(x) * V(-x) for moderate 

electric field strengths in non-centrosymmetric media [5, 6]. This condition is fulfilled 

by the inclusion of the second term for the potential in equation (1.3-1), where 

—y- = -(mea)lxe +meB,x] +meB2x3

e+ ) F = -

V(x) = 2&x] + ^ Bxx\ + ^B2x<e + 
w 2 e 3 1 * 4 2 e 

(1.3-1) 

Here, B{ and B2 are constants of proportionality, me is the mass of an electron and 6% 

is the natural frequency of the resonator. Allowing for an asymmetric potential results 

in a larger restoring force in one polarisation direction than the other, and the 

asymmetry of the polarisation gives rise to the production of harmonic frequencies, as 

previously discussed in § 1.1. 

To relate the non-linear polarisation to the applied field, the equation of motion 

for an electron is solved with the inclusion of the restoring force 

—T + 2rd^- + o)lxe+ Bxx] + B2x] = 5L2 

(1.3-2) 

where e is the charge of an electron, and yd is the damping constant. In the linear 

regime, the solution of ( 1.3-2) results in the displacement amplitude, xw(aj) which is 

found to be [5, 6, 41] 

me (a)l-2iyd<a-(02)' 

(1.3-3) 

Since the polarisation may be expressed as P = -Nex , where N is the electron density, 

and since both the electron co-ordinate and electric field are sinusoidal, this suggests 

that the polarisation is also sinusoidal and increases in magnitude as the frequency 
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approaches resonance, at % In addition, since an expression 

for the linear susceptibility may be found 

0 We2 1 

». (a»5-2/> r f <»-a> J 

f 7.5-4 

which also increases as the interaction frequency approaches resonance. 

For the second order non-linear case, solutions for ( 1.3-2) may be found for 

specific frequencies, providing the anharmonic term is much smaller than the linear 

term which is usually the case with NLO coefficients. Considering second harmonic 

generation at frequency 2a, the harmonic displacement amplitude, x[2\2<a) is found 

to be [5, 6] 

As with ( 1 3-4), an expression for the second order susceptibility may be found. With 

the addition of (1.3-4) to ( 1.3-5) this is found to be 

and thus the second order susceptibility at 2©is related to the linear susceptibility at 

both (o and la. Furthermore, the dispersion of x^ I S adequately demonstrated with 

( 1.3-6) which suggests that x^ increases in magnitude when either frequency 

(©or 2co) approaches the resonance frequency. Similar, more complicated expressions 

may be developed for higher order susceptibilities where the NLO coefficients become 

increasingly dependent upon the interaction frequencies. 

*<2>(2a>) = -
By(e/me)2E2(a>) 

(a>l -Aiyda-Aa)2\(ol-2iyd(o-aA 

(1.3-5) 

(1.3-6) 
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Though this model works well in a few real systems, such as with 

semiconductors, and it provides an insight into the basic physical processes involved, 

the main inadequacy of the model is that it cannot describe the complete resonance 

nature of complex systems, such as organic molecules, since it uses only one natural 

frequency. Other models therefore need to be employed. 

§1.4 Propagation of Second Harmonic Light. 

Before considering further the non-linear properties of a single molecule, it is 

necessary to consider the propagation of a harmonic wave through a medium which 

consists of a series of oscillating dipoles. For this, Maxwell's equations are utilised to 

develop the non-linear wave equation. For a medium that is non-magnetic, and 

contains no free charges (p) and no free currents (J), the Maxwellian and associated 

equations, expressed in Gaussian units1 are [5,6,11] 

V - D = 4;rp, V - B = 0, 

V x E = , V x H = + — J, 
c dt c dt c 

p = 0, B = H , J = 0, D = E + 4*P, 

(1.4-1) 

where c is the speed of light, D is the displacement, and B is the magnetic flux. The 

wave equation is thus developed by taking the curl of the curl of E in the usual manner, 

where for a dispersive and non-dissipative medium the following equation is derived 

[6] 

c 2 a2 c 2 " 

(1.4-2) 

There is often confusion over units. In this study, most molecular properties are presented in electrostatic units 
(esu) or the cgs system. Conversion factors to the MKS system can be found in Appendix LT 
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where con is the specific angular frequency, d l ) is the frequency dependent linear 
dielectric tensor, and P j * is the non-linear part of the polarisation given by ( 1.2-5). 
For simplicity the direction of propagation is taken to be the z-direction, thus the 
second derivatives with respect to x and y associated with V 2 reduce to zero. 

With the specific case of second harmonic generation, an analysis of 

requires the analysis of the interaction of three travelling waves, two for the 

fundamental frequency and one for the harmonic. These are of the form 

El(z,t) = E](z)ei{a>'-k>*)+c.c. 

E2(z,t) = E2(zy^'-kl!) +c.c. 

E3(z,t) = E3(z)ei{a"'-k>l)+c.c. 

(1.4-3) 

where kn =nncon/c (subscript n = 1, 2, 3), nn =^ ( 1 ) (o )„ ) J , c.c. stands for the 

complex conjugate of the first terms in ( 1.4-3), and a>3 = co2 +col = 2a>. Thus, E! 

and E 2 are identical, and the total electric field at any point is the sum of these waves. 

The non-linear polarisation, according to (1.2-5), for each wave is [5,6,11,42,47] 

p,{z,t) = 2Z

{2)E;(Z)E3 (2yl("^)'-(^M 

P2(z,t) = 2X

{2)E, (z)E;(z)A{°>-°>)'-(k>-k^ 

P3(z,t) = 2X

(2)E2 (z)EX ( r J e « - « ^ M ^ H 

(1.4-4) 

where, again Pi and P 2 are in effect identical for second harmonic generation. 

Providing the fundamental is not depleted while generating the second harmonic and 

is treated as a slowly varying function of z, then the three equations may be 

reduced to one for the second harmonic and substituted into ( 1.4-1) to obtain the 

following equation [6, 11, 15,47,48] 
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£ 2 f l , ( z ) = £ 2 V t j « * — - %nca1 

d-4-5) 

where k2(B = 2« 2 < B o)/c, ka = 2 w a ) « / c . E2w is often defined as the second harmonic 

free wave amplitude which is generated at the surface of a non-linear medium. The 

second term of ( 1.4-5) represents the second harmonic bound wave which is, as 

subsequently shown, coupled to the fundamental wave. A more detailed derivation of 

( 1.4-5) is given in Appendix EL 

Squaring the field amplitudes yields second harmonic intensity, [5] 

which is proportional to the fundamental intensity, f , the interaction length squared 

(Z2), and a sine2 ^(sin(x)/x) 2 j function of the phase mismatch between the fundamental 

and second harmonic waves, Ak = k2a - km. As the harmonic wave propagates 

through a non-linear medium, light is coupled from the fundamental wave to the 

second harmonic wave, resulting in a build up of second harmonic intensity. This 

coupled wave is often known as the second harmonic bound wave. The coherence 

length may be defined as lc = n\Ak which is the length over which the fields at g> and 

2co dephase by %. Thus, a well phase matched material system possesses a large 

coherence length. When Ak = 0, i.e. ka = k2m and a material is completely phase 

matched, the sine2 function approaches unity, and the intensity is only dependent upon 

[ x ^ m & t n e squares of the fundamental intensity and propagation distance. At this 

point the coherence length is infinite. Furthermore, by eliminating the phase matching 

conditions, it is possible to obtain an unknown value of by comparison to a 

material of known x^ This is the basic premise of many second order non-linear 

optical experiments. 

2 (A*//2) 2<y sin (r)V7/2 la 

(Akl/lY < c 

(J. 4-6) 
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§1.5 Quantum Mechanical Approach. 

Quantum mechanics can be used to calculate explicitly the expressions for the 

non-linear optical susceptibilities. Furthermore, such expressions can show the 

dependence of the susceptibility on the numerous transition moments and natural 

frequencies of material systems. 

The calculation of the first, second and third susceptibilities involves the 

perturbation solution to Schrodinger's equation where a similar power series to that of 

( 1.2-5) is involved. In the case of sum frequency generation, the second order 

susceptibility may be approximated, for the non-resonant case, to [6] 

where <oa =o)p+o)q, i,j, and k are the usual tensorial indices, n is the transition 

dipole for transitions between the ground state, g and the excited states, n and m, and 

pF is the full permutation operator which is defined so that the expression is summed 

over all permutations of the frequencies, -co^ o)p and coq, and all permutations of 

tensorial indices. The expression allows for the summation over all excitation states, 

thus allowing for more than one resonant frequency. The negative sign for coa refers to 

N gnr-mtr- mg 

6) nm "8 Kg P 

(1.5-1) 

\n> 

ha 2ha> 
\m> 

Tim 

-3—\Z> 

Figure 1.5-1: Quantum-level picture describing 
second harmonic generation. 
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the fact that a photon is emitted rather than absorbed. 

Considering purely the two state case, the summation sign can be removed and 

the process involved with second harmonic generation investigated (Figure 1.5-1). 

Two photons of fundamental frequency to are absorbed, exciting a molecule in the 

ground state first to a virtual level, \m) then to a second virtual level, \n). Since the 

lifetime of these virtual energy levels is extremely short, the molecule then relaxes back 

to the ground state quickly, emitting a photon of twice the energy of the fundamental 

photons. Thus, the frequency of the fundamental beam has been doubled. The 

resonant case is obtained when the virtual levels lie close to a natural energy level of a 

material system, \e), with a transition energy heo^. Since full permutation symmetry 

is no longer valid under such situations, the expression for m u s t be replaced by a 

function which allows for the ordering of the frequencies and states involved with such 

interactions [6J. 

§1.6 Microscopic Approach. 

To describe the polarisation of individual molecules in solution, the dipole 

approximation is often used in an analogous manner to that of the macroscopic 

description of the polarisation. It is possible to see by comparison to the general form 

of the Taylor series, that the total polarisation, p of a molecule is given as [11, 49, SO, 

51] 

E=0 
1 2! dEjCEk 

EjEk + 1 dMiw 

E=0 
3! ffi^cE, 

EjEkE,+. 
E=0 

= fif" +aijEj +BvkEjEk +yiJklEjEkEl+. 

(1.6-1) 

where i,j, k, and / are the usual tensorial indices, and E is the local or microscopic field 

applied to the molecule, i?* is the molecular dipole moment under the influence of no 

internal field, defined by ju = qdq [35], where q is the charge and dq is the charge-

separation, a is the polarisability, defined by the rate of change of the dipole moment 
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with respect to applied field, and similarly, ft and y are the second and third 
polarisabilities, defined by the second and third differentials with respect to the internal 
field, multiplied by numerical factors. Using the definition for the polarisability and 
ignoring the tensor properties of each parameter, it is possible to show that 

0 1 da . 1 dla 1 dB 
B = , and y = = ——. 

2 3E 6cE2 3 cE 

(1.6-2) 
It is also possible to relate the polarisability to the linear susceptibility, via the 

equation [35] 

(1.6-3) 

where/" is the local field factor relating the macroscopic or external electric field to 

the microscopic electric field. B and y may be related to the second and third 

susceptibilities in a similar manner, depending on the process involved. For example, 

with second and third harmonic generation respectively [6,11], 

x S ^ N / ^ i f J y ^ y 

(1.6-4) 
where the local field factors are included for all fundamental and harmonic fields. A 

description of the local field factors involved with these equations will be provided in 

Chapter 2. 

§1.7 The Two-Level Model. 

It has already been shown that a quantum mechanical description may be 

applied to a macroscopic system. In a similar manner, the first hyperpolarisability may 

be described as [6,11] 
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Pljk{-2w-a,<o) = — p F ^ - «" ™ mg r 
2h nm{a>„g-2(o\(omg-co) 

(1.7-1) 

where n is the molecular transition dipole for transitions between the ground state, g 

and the excited states « and m, and e is the charge on an electron. By considering the 

specific case where only transitions involving two levels are involved, and that the 

transition dipole moments lie parallel to each other, of which only a single diagonal 

matrix element dominates the contribution to (3 (in the zzz direction for example), /? 

may then be approximated to [6,11,52,53,] 

2m « - ^ X < - 4 « 2 ) 
(1.7-2) 

where co is the angular frequency of an energy transition and A/i is the difference 

between the ground and excited state dipole moments of the molecule { j f - /*°) • The 

oscillator strength, fosc is related to the transition dipole, pieg via the equation [52,54] 

%n2 me(ot 
= Z 1 1 e_eg_ 2 

Jose 3 ^ 2 A*«, 

and is found by estimating the area under the absorption band, such that 

(1.7-3) 

J / w ^ r 4m,lnl0s 0 c * 

where £(©) is the extinction coefficient as a function of angular frequency. 

(1.7-4) 

The expression for /?, given by (1.7-2), may be divided into two parts with the 

aid of ( 1.7-3); a frequency independent term, f}(0) which is directly related to the 

properties of the molecule, and a dispersion term, F(eo) which is dependent on the 

15 



Chapter 1. 

fundamental and second harmonic frequencies in relation to the transition 
frequency, aeg 

(1.7-5) 

Often equation ( 1.7-5) is used account for the frequency used to measure /?, where the 

extrapolation of the measurement of fi{a) to the zero frequency component, /?(0) 

allows for relatively easy comparisons between different molecules. 

By assuming two levels, a similar problem arises to that of the anharmonic 

oscillator model when more than one transition is evident, and it is often desirable to 

invoke a number of excited states. However, the two-level approximation has been 

proven on a number of occasions to be a good enough approximation for a number of 

applications [11], though one must be aware that for new and novel compounds this is 

not always the case. 

§1.8 Applications to Molecular Systems. 

The general form of an organic molecule consists of a number of carbon and 

hydrogen atoms that are bonded to each other in various ways by the covalent 

"sharing" of electrons in the upper electronic orbitals of the atoms. Other elements, 

such as nitrogen, sulphur and phosphorous, may also be included. The types of 

bonding and subsequent arrangement of atoms depends upon the degree of orbital 

overlap between them. With carbon - carbon bonds, three types of bond are possible 

of which two are discussed here, o-bonds (denoted by a single bond (see 

Figure 1.8-1)) are formed by "sharing" one electron in the outer shell of each atom. 

These are highly localised thus only slightly perturb under the application of an electric 

field, but nonetheless contribute significantly to the properties of a molecule. 7t-bonds 

(represented by double bonds), are formed in addition to o-bonds by "sharing" an 

additional electron from each carbon atom. rc-electrons are highly delocalised and 

perturb a great deal under the influence of an electric field. Molecules that possess 

16 
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Figure 1.8-1: Examples of a donor - acceptor molecules. 

combinations of double and single bonds are often defined as conjugated molecules 

(see Figure 1.8-1). The delocalisation of 7t-electrons allows charge to "move" along 

the conjugated structure under the influence of an electric field, allowing larger dipole 

moments, polarisabilities, and hyperpolarisabilities to be obtained than is usual with 

purely a-bonded molecules. The polarisability of such molecules can be further 

enhanced by the addition of electron donors and acceptors bonded to either end of the 

molecule. This also allows for a degree of non-centrosymmetry to be introduced to the 

molecule, which is necessary for second order non-linear optics. With a number of 

molecules, the combination of a conjugated system with strong electron donating and 

withdrawing groups allows a large amount of charge (in comparison to most 

molecules) to transfer from one end of the molecule to the other. These can be classed 

in various ways, but they are often termed charge-transfer (CT) molecules and 

occasionally as zwitterionions (i.e. partially-ionic). As mentioned earlier, it is usual for 

these to posses large dipole moments, polarisabilities, and hyperpolarisabilities. 

The properties of a molecule in any one direction can be considered as the 

vectorial sum of the properties of the individual bonds of the molecule. Furthermore, 

the contibution to the dipole moment, polarisability, and hyperpolarisability due to 

a-bonds and rc-bonds are often considered seperately. So for example, a-contributions 

to the dipole moment and hyperpolarisability are thus termed as juadd and BaddL 

respectively where they are summed over all contributing a-bonds. In addition, 

^-contributions for CT molecules are often defined as ^ and but this time, such 

contributions are usually only along the direction of the conjugation since this is the 

most polarisable direction. The total dipole moment and hyperpolarisability in the 

direction of the conjugation is thus defined as 
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M = Mart. + McT> ^ P = Part. + PCT 

(1.8-1) 

where nadd and J3add are in the direction of charge-transfer only. Since CT 

contributions to the total dipole moment, polarisability, and hyperpolarisability are 

large, HQT and pCT are usually dominant over /iadd and Padd. Thus, the total dipole 

moment and hyperpolarisability can be considered sometimes as resulting purely from 

CT contributions. 

Since in most experimental situations the macroscopic non-linearity is probed, 

conceptual difficulties arise when attempting to obtain molecular properties. Due to 

symmetry conditions, the non-centrosymmetric molecules must lie in a non-

centrosymmetric envorinment to obtain a macroscopic non-linearity. I f for example, 

two molecules lie anti-parallel to each other, the second harmonic contribution from 

each molecule would cancel and no second harmonic signal would be observed. 

Unfortunately, many molecular crystals tend to be centrosymmetric structures 

rendering such crystals useless for second order NLO applications. The random 

orientation of molecules doped into polymers or in solution allows the formation of 

centrosymmetric systems also. However with these situations, the centrosymmetry of 

the macroscopic system can be broken by utilisng the polar nature of individual 

molecules and applying static electric fields such that the molecules lie in the same 

direction. The technique of Electric Field Induced Second Harmonic generation 

(EFISH) is a process that does precisely this, and this is utilised in this study to 

measure the hyperpolarisability of various molecules. 

In Chapter 2, some of the theoretical aspects with respect to the measurement 

of the transition frequency, the dipole moment, and the hyperpolarisability of a 

molecule, will be discussed bearing in mind the above considerations. 
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Chapter 2. 

Chapter 2 

Theoretical Considerations for EFISH and 

Dipole Moment Characterisation. 

§2.1 Obtaining the First Hyper polar isability from 

Measurements of Macroscopic Non-Linearities using 

EFISH. 

It has already been indicated in Chapter 1, that the orientation of a molecule in 

solution will be in a random direction with respect to the electric field at any moment 

in time. A number of molecules will have a distribution of orientations with respect to 

any direction, which will fluctuate as time progresses. As a result, the macroscopic 

properties of a material system will be averaged with respect to these fluctuations. 

With the case of non-linear optics, such averaging reduces %^ to zero since the 

average of any random fluctuations is inherently centrosymmetric. Thus with non-

centrosymmetric molecules, a degree of alignment is required to break the 

centrosymmetry of the macroscopic medium. One way of doing this is to apply a static 

electric field to the macroscopic system, which allows the molecules to align. This 

process is conducted with the experimental technique of electric field induced second 

harmonic generation (EFISH). The use of a static electric field, in addition to the two 

optical fields, means that m u s t D e considered rather than;^2', since three electric 

fields are acting upon the system. Equating the third term of the polarisation given by 

( 1.2-5) as 
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1 1 — A. IJKL^J K L ~ IJKL J K L — d«E"E UK K ' 
a> 

(2.1-1) 

it is possible to see that the inclusion of the static field produces an effective second 

harmonic coefficient, d^K which can be used to describe second harmonic generation. 

The tensorial indices, /, J , K, and L are capitalised so as to represent the 

macroscopic laboratory frame with axes, X, Y, and Z. Assuming the direction of 

propagation is in the X direction and that the optical and static electric fields are 

polarised in the Z direction, only one component of T is available, namely T z z z z (= TL). 

This, now has to be related to the molecular frame of axes to obtain the 

hyperpolarisability. 

The second harmonic microscopic polarisation, p2m of a molecule under the 

influence of static and optical electric fields is given by (1.6-1) in Chapter 1 as 

where k, and / refer to the indices for the molecular axes x, y and z, and /? and ^are 

the second and third polarisabilities of a molecule, respectively. The second order 

polarisability is non-zero for non-centrosymmetric molecules and thus contributes to 

the final polarisation, in addition to the third order polarisability. 

The transformation of the molecular frame to the laboratory frame involves a 

projection cosine for each tensorial component due to the presence of an electric field 

[55]. For example, to find the component of fiijk along the 2 laboratory axis, 

2a> n2<D j?a> zpm , 2m r"» J?a> E*0 r ijk , la, r o r m r O 
^ / ijkl 1 1 1 j ^k = P i j k ^ j ^ k ^ 7 i j k , ^ j ^ k ^ i = -=o 

J 

(2.1-2) 

Pz = Zcos0z, cos0zy cos$Zkpl 

yk 

(2.1-3) 
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Z X - zsin#cos^ 
Y = zsin#sin^ 
Z = zcos# 

z 

zzz 0 

+ Y 

X 

Figure 2.1-1: Transformations of Cartesian co
ordinates. 

as is visualised in Figure 2.1-1. Thus, for the component of (3 in the z direction, 

i.e. p^, pz becomes pz = p^ cos3 9 

The magnitude of the vectorial components of // and P are found to be [55] 

If the conjugation axis of a CT molecule lies in the z-direction, it is often the case that 

the largest component of ju and p also lies in the z-direction, since contributions to fi 

and P are dominated by CT interactions (see Chapter 1). If this is the case, it is also 

usual that the contributions to ju and P in the x and j-directions are small compared to 

the z-direction, so that ^ and Pvec lie in the z-direction parallel to each other. As 

will be shown subsequently, the application of the static electric field in EFISH 

experiments, orients dipoles so that an average macroscopic dipole moment lies in the 

direction of the external field. If juvec and Pvec lie parallel to each other and lie in the 

z-direction, an average component of Pvec is thus measured through EFISH 

1/2 

vec. 

(2.1-4) 

and 

^^(PL+Plyy+Pl 
1/2 2 

zzz I 

(2.1-5) 
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experiments. Experiments and calculations have often shown that and /? in the 
direction of the dipole moment ( f i d i p ) are similar for a number of CT molecules [55], 
though it should be remembered this is not necessarily the case for all situations. 

§2.2 Molecular Orientation. 

With a large number of molecules, a molecular property measured in any 

macroscopic direction, will be the microscopic properties of all the molecules, 

averaged over all directions of the molecules. Thus, n and /? need to be averaged over 

all molecular orientations before any relation to the macroscopic non-linearity can be 

made. The energy of a dipole, p. in an external, low intensity directing field, Ed is 

found to be [56, 57] 

W = -n Ed - -/JECOSB 

(2.2-1) 

where 6 is the angle between the directing field and dipole moment at any moment in 

time. 

First considering the case when no directing field is applied, W = 0 and all 

directions of the dipole are equally probable. The probability, p(O)d0 of a dipole 

9 

Figure 2.2-1: Schematic of the orientation of a dipole under the influence of a 
directing field. 
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occupying an angle between 0and dOto the Z-axis (see Figure 2.2-1) is such that 

4m1 2 

(2.2-2) 

where r is the radius the sphere prescribed by the dipole. When a directing field is 

applied, the probability of a dipole lying in a particular direction is balanced by the 

Boltzman factor, e~w,k"T = e

f l E d e o s 9 / k l T , where kB is Boltzman's constant and T is the 

temperature. To determine the extent to which the directing field orients a dipole, the 

average value cos# is used where cos# =0 for a random distribution of dipoles, and 

cos# =1 for a completely aligned system. Introducing the normalised distribution, 

cos0 = ^-
f c o s & ^ c o s * / v - s i n 6 t f 0 

J 2 

3 2 

(2.2-3) 

uE. cos 0 . uEA -t^A a n c } a = ^ ± 

kBT kBT and using the abbreviations x - —f—^— and a = , the average orientation is 

thus found to be 

\exxdx r x xi 
-a 

(2.2-4) 

or 

ea+e~a 1 , 1 T . v 
cosy = — — — = cotha — = L, (a) 

a a 

(2.2-5) 
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where Lx(a) is the first order Langevin function, first developed for magnetic moments 

in a magnetic directing field [58, 59]. Lx(a) may be developed as a power series of a 

[56], so that for small values of a 

1 A cos<? = —a = 
3 3k BT 

(2.2-6) 

and the average dipolar orientation of an assembly of molecules can be determined. 

As indicated in §2.1, to obtain the average value of Pz, cos3 9 must be 

considered. Thus, (2.2-3) becomes 

cos 30 = ^ 
fcos3 9e/jE"cme/k'7-sm9d9 

J 2 

jef*<cose/k°T -sm9d9 

(2.2-7) 

Equation ( 2.2-7) may be solved by using x and a as defined above and by using the 

relationship x2 = a 3 cos3 9 so that, through integration by parts, 

a 
{exx3dx 

61 . 3 6 
c o s ' ° = - - a

 = l 1 + ^J C O t h a -7-^ =^W-
a r \ a / a a 

J e dx 

(2.2-8) 

where L3(a) is the third order Langevin function. This equation may be expanded in a 

similar manner to that of (2.2-5) so that for small values of a, [55] 

1 A cos B--a-
5 5k J 

(2.2-9) 
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Substituting / ? z = fimcos3 0 into ( 2.1-2) we see that the second harmonic 

polarisation becomes [55,60, 61, 62,63] 

where y z is the average component of y'm the Z-direction, and it is now possible to 

relate the microscopic polarisation to the macroscopic polarisation. In a similar 

manner to equations ( 1.6-2) and ( 1.6-3), the third order susceptibility, TL can be 

related to the microscopic polarisation. This is found to be [55, 60, 61, 62, 63, 64] 

where /"and / 2 < ° are the local field factors at frequency coand 2corespectively, f° is 

the local static field factor, and N is the number density. Usually, in accordance with 

other experiments [60, 61, 62, 63, 64, 65], yz is assumed to be far smaller than 

jufi/5kBT, and is approximated to zero, but it may be developed in a similar manner to 

0Z to obtain y^. Thus, measurements of /? can now be made by measuring the third 

order susceptibility of a liquid, TL, and the dipole moment, fj, of the molecule assuming 

y z is small. 

§2.3 Determination of the Dipole Moment and Local 

Field Factors. 

The dipole moment may be determined by using linear continuum theory [56, 

57]. As described by ( 1.2-2) and ( 1.6-1) in Chapter 1, for low intensity electric fields 

the induced macroscopic polarisation may be split into contributions from the 

2m 0 €0 zzz 

5k„T B 

(2.2-10) 

= r m = Nf2°(r)2f°y' = N f 2 a , ( r ) 2 f o zzr + y 
5k „T J B 

(2.2-11) 

orientation of the permanent dipole moment, P p and the polarisability, P ,̂ such that 

(shown here in Gaussian units) 
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— E = P +P a 

An " * 

(2.3-1) 

where E is the external electric field, and e is the low frequency dielectric constant. P p 

and Ta may be written in terms of the molecular dipole moment and polarisability, such 

that 

it 

k 

(2.3-2) 

where the polarisations are summed over the total number of dipoles, Nk for each 

species k, ]ik is the orientation averaged dipole moment under the influence of a 

directing field, Ed, and 1̂  is the internal field experienced by the molecule. The 

influence of a directing field on the average value of the dipole moment has already 

been demonstrated in §2.2. Therefore, substituting | i = u.cos# and using ( 2.2-6), 

equation (2.3-1) becomes 

g-1 
An 3kJ 

(2.3-3) 

Debye [66, 67] assumed that the internal and directing fields were equal and 

related to the external field via the Lorentz local field factor, E = [(e + 2)/3]l = f L \ 

[68], which results in the well known Debye equation [56, 66, 67, 69]. Guggenheim 

extended Debye's work by developing a method of measuring the dipole moment by 

measuring the dielectric constant of a solution for a number of solute concentrations, C 

and relating the gradient defdC to the dipole moment, such that [70] 

1036 9kBT de 
An (* + 2)(w 2+2) dC 

(2.3-4) 
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where pis is the solution state dipole moment, expressed in Debyes, Na is Avogadro's 

number, and n is the refractive index of the solvent. Onsager soon realised that to 

obtain a gas phase dipole moment from measurements in solution, the directing and 

internal fields for a molecule must be treated separately [56, 69]. Thus in the next few 

sections, Onsager local field formalisms will be developed so that gas phase dipole 

moments are attainable. Consequently, it is also possible to obtain the local field 

factors used to relate the macroscopic polarisation to the microscopic polarisation. 

§2.3.1 Spherical Local Fields. 

The case of non-polar dielectrics shall first be considered, where the 

contribution from any permanent dipole is zero and only induced dipole moments are 

considered. Onsager showed that in this case the internal field is equal to the Lorentz 

local field by assuming that the internal field, I is split into two parts, the cavity field, 

E c and the reaction field, R, i.e. [56,69] 

I = E C + R 

(2.3-5) 

The reaction field is essentially the electric field experienced by a dipole due to the 

presence of itself. Thus, R is always in the direction of the dipole moment, and is 

defined for non-polar dielectrics as 

R = fc& = / g ( E c + R ) - » R = E e / x 

(2.3-6) 

where/is the reaction field factor. Thus, the internal field becomes 

1 
I = E , 

( I - f a ) 

(2.3-7) 

For the calculation of the reaction and cavity fields, it is necessary to consider a 

dipole surrounded by an arbitrary shaped cavity. Assuming Onsager's model of a 
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spherical vacuum cavity of radius r, surrounded by a dielectric, e, where a dipole is 

situated at the centre of the cavity and is aligned in the z-direction (see Figure 2.3-1), 

the potentials, <p, and <j>2, outside and inside the cavity respectively, may be found with 

the aid of the solutions to Laplace's equation (see Appendix VI) [56, 57]. The 

resulting equations for the reaction field factor and cavity field are thus [56, 69] 

1 2(^-1) 

r 3 2* + l 

E C = ^ E 
c 2e + \ 

(2.3-8) 

which may be substituted into ( 2.3-7) to obtain an expression for the internal field. 

Further substitution of the internal field into P c yields the well known Clausius-

Mossotti equation [56,57, 71,72] 

s - \ An 
= —Na 

s + 2 3 

(2.3-9) 

or 

Pa = ^-Na = N f L a . 

(2.3-10) 

Figure 2.3-1: Onsager's spherical cavity surrounding a dipole in a 
dielectric continuum. 
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For the case of optical fields, the Lorentz local field factor, f L may then be applied 

under the assumption, s * n2 in the low frequency limit, and the Lorentz-Lorenz local 

field factor, f „ at a frequency <o is thus obtained [73] 

The presence of a permanent dipole however changes the value of the internal 

field. Onsager recognised that the reaction field of a permanent dipole, R will not 

contribute to the directing field since R is, for a spherical cavity, always in the same 

direction as the dipole moment [56, 69]. However, the reaction field does contribute 

to the internal field. Therefore, the difference between the internal field and the 

directing field is given by an average of the reaction field over all directions of 

permanent dipoles, i.e. 

The directing field is calculated by assuming the case where the permanent dipole 

moment is removed (since the contribution from the reaction field is removed). Thus, 

the situation is similar to the case of a non-polar dielectric, except that this time 

equation (2.3-5) becomes 

f L = 
J a> 3 

(2.3-11) 

I - E , = R . 

(2.3-12) 

Ed=Ec+faEd = 
I - f a 

1 3g 
( l - /a ) (2 f f + l) 

(2.3-13) 

where/is given by (2.3-8). Using (2.3-12) and 

R = 
\ - f a 

(2.3-14) 
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where \i - [icosd, Onsager's equation for the polarisation of a polar dielectric is 

found, by substituting these into ( 2.3-3), to be [69] 

An ^ k(2£ + \ ) ( \ - f k a k ) ak + {\-fkak)3kBT 

(2.3-15) 

for a k* species. Assuming the Onsager approximation (AnNrk /3 = l)and using the 

Clausius-Mossotti equation given by (2.3-9), equation (2.3-15) therefore becomes 

s ~ l

= y 4**+2) 
An k 2s + n2

k 

ak + 
(r72

k+2){2e + \) ' 

3(2e + n2

k) 3kBT 

(2.3-16) 

where nk is the refractive index of the solute which is measured at infinite frequency. 

It is interesting to note that the pre-factor of ( 2.3-16) represents the often used 

and so called "Onsager local field factor", i.e. [55, 60, 61, 62, 63, 64, 65] 

o _ ^ 2 + 2 ) 
2e + ni 

(2.3-17) 

for a species, k. With optical fields, the relation e » n2 may again be applied to the 

dielectric constant of the solvent, and if n2 *n2

k, the Lorentz-Lorenz local field 

formula, given by equation ( 2.3-11) is found. This has often been used in place of 

equation ( 2.3-17), where an error of less than 5 % has been found between the two 

local field formulas [55, 61, 63,65]. 
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§2.3.2 Ellipsoidal Local Fields. 

Onsager's equation may be developed in a similar manner to that above for the 

case of an ellipsoidal cavity [56, 74, 75, 76, 77, 78]. This is done by splitting the 

polarisation into contributions due to oriented permanent dipoles and the polarisability 

of the molecules under the influence of an internal field, as is given by ( 2.3-1) [56]. 

However, there are some very important differences in the derivation of the ellipsoidal 

Onsager equation. The calculation of the reaction field, by finding the solution to 

Laplace's equation, is much more intricate than with the spherical case [56, 79, 80, 81, 

82, 83]. In addition, the principal components of the polarisability tensor are not 

equal, thus a uniform dipole density does not form within the cavity [56, 74, 84]. 

Reproducing Figure 2.3-1 for an ellipsoidal cavity, the principal axis of the cavity may 

be defined in Figure 2.3-2 such that the polarisability tensor and direction of the dipole 

moment coincide. The dipole moment and cavity then resides at an angle 6 with the 

applied field, E . Under these conditions, the average reaction field over all dipolar 

orientations is given by [56], 

z. a zz 

9 

y, a x, a yy XX 

Figure 2.3-2: Definition of an ellipsoidal cavity and 
polarisability tensor components under the influence of 
a directing field in a dielectric continuum. 
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R = ^ 
i - 7 X 

(2.3-18) 

where az is the polarisability in the z-direction, fz is the reaction field factor for the 

z-direction given by 

3 ^ ( 1 - ^ ) ^ - 1 ) ^ 
2 abc s + (l-e)A, 

(2.3-19) 

and Az is the ellipsoidal shape factor for the z-direction which is calculated by means of 

the equation 

abc r ds 
A a»cr 

9 J / -> o (s+a2y/2 +b2y 2{s+c2y2 

(2.3-20) 

where a, b and c are the ellipsoidal principal semi-axes [56, 57, 76, 77, 78, 86]. Here, 

the average radius of an ellipsoid is given by r3 = abc. It should be noted that if 

a = b = c, then Az = 1/3 and all ellipsoidal equations revert to their spherical 

counterparts. The cavity field in the z-direction, (E c ) . may be related to the external 

field in the z-direction, E z via the equation [56] 

( E c ) = - £ — — E . = , g v Ecosc? . 

(2.3-21) 

By using an equation analogous to ( 2.3-13), the directing field in the z-direction, (Ed)z 

is found to be [56, 57] 

/ s fEcosf? 
1 d ) - = { \ - f : a : l e + {\-e)A,y 

(2.3-22) 
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The directing field may then be used in conjunction with ( 2.2-1) to obtain the energy 
of an oriented dipole and the average dipole moment in the direction of the external 
field, where a similar relationship to ( 2.2-6) is found. The polarisation due to a 
permanent dipole is, thus, 

^ B T { l - ( f : ) k ( a X } { e H l s U ) k } ' 

(2.3-23) 

To obtain P a , the internal field is developed using (2.3-12) which defines the 

internal field as the sum of the directing and reaction fields. The contributions to the 

polarisation due purely to the directing and reaction fields, pd and p R respectively, are 

considered separately, , averaged over all directions, is found to be [56, 57] 

(2.3-24) 

where ]I is the average dipole moment in the direction of the external field. p d along 

any principal axis, X, is defined partly by (2.3-22) such that [56, 85] 

(2.3-25) 

The component in the direction of the external field utilises a further cos 6 term which 

must be averaged for all molecular orientations. The average of cos2#is 1/3, and the 

average of the prefactor of ( 2.3-25), for not too eccentric ellipsoids, differs only 

slightly from the spherical case. Thus, the spherical equivalent for p d is used. Using 

the average of ( 2.3-25) and ( 2.3-24), ( 2.3-23) and ( 2.3-3), the ellipsoidal Onsager 

equation is thus defined as [56, 57, 78, 85] 
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£ - 1 
An 

3s 
• + 

Mk 
(2s +1) (1 - fk ak) [s + (1 - s\A: \ ) 3kB T{\-(f, \ (a. )f 

(2.3-26) 

where a, is the average polarisability. 

Once again it is of interest to introduce the Clausius-Mossotti formula for 

spherical cavities, given by ( 2.3-9), and for ellipsoidal cavities, given by [56, 57, 86] 

a, = 
n2-l 

z " 3 { l + (* 2-l)4 
abc. 

(2.3-27) 

where the density of ellipsoidal particles are such that AnNabc/3 = 1. Equation 

( 2.3-26) may then be written with the aid of ( 2.3-19) and (2.3-16) so that [56, 57] 

g - 1 
4x 2s + »; 

a, + 
Hi 

2 

(s + ( n l - s p X ) 
3kBT 

(2.3-28) 

and an equation analogous to ( 2.3-16) is obtained. 

For optical fields in the linear regime, the first term of ( 2.3-28) is identical to 

( 2.3-17), thus only spherical formalisms need to be used for calculations of the 

polarisabilities. For the spherical case, the local field factors for are also identical to 

( 2.3-17) [55]. However for ellipsoidal cavities, the static local field factor becomes 

[87] 

f o A l + ( n 2 - ] ) A * ) 
Jell ~ [s + {n'-s)A2) 

(2.3-29) 

When s « n\, for optical fields, and n0« nh 
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/ * = ( i + ( » i - i K ) 

(2.3-30) 

which may be approximated to ( 2.3-11) with only a small error for values of Az 

greater than 0.1. 

Ellipsoidal local field factors associated with the measurement of the dipole 

moment have been used previously with some success [56, 76, 77, 78, 82, 85, 86, 88, 

89, 90, 91]. However, one must be aware that a number of other geometrical shapes 

are applicable since the cavity is defined purely as an arbitrary shape [56, 92]. One 

must also be aware of the uncertainty involved with the estimate of the cavity radius 

[56, 56, 69, 85, 86, 92]. Since the cavity is an arbitrary shape, it is possible to choose 

a radius which reflects the experimental conditions and the choice of cavity shape. 

However, the error on such a choice is large and, as will be seen in Chapter 4, this can 

result in large changes in the estimated dipole moment. As a result, a careful 

consideration of the cavity radius is presented in Chapter 4. 

Additional cavity corrections may be applied for dipoles not at the centre of the 

cavity [56, 57, 93], non ideal dipoles [93], and dipolar solute-solute and solute-solvent 

interactions for polar solutes in polar solvents, [56, 57, 93, 94, 95]. Also, the very 

nature of the Onsager cavity, in that it represents a discontinuous step function 

between the vacuum and the dielectric, may be brought into question [96]. Reaction 

fields have been calculated and applied to experimental results for the case where the 

function between the dielectric and the vacuum is an exponential, dependent on the 

distance, r from the centre of the cavity [97, 97, 98, 99, 100]. Such a modification is, 

indeed applicable to ellipsoidal reaction fields [99], but in view of the uncertainty 

involved with the estimate of the cavity radius, it would be difficult to apply such 

modifications. 

With the above considerations in mind, it is now possible to estimate ju and p 

utilising the two sets of local field factors which have just been derived (see equations 
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(2.2-11), ( 2.3-16), and (2.3-28)). These equations may now be developed further for 

the case of a solution of polar molecules in a moderately polar solvent. 

§2.4 Concentration Dependent Measurements of fi 

and p. 

The static dielectric constant for a two component system, consisting of a 

solvent (1) and a solute (2), using (2.3-16) or (2.3-28), may be written as [56, 62] 

izl = N i a J o + M l L + N 2 a 2 f o ^NM; 
An 3k J 3kBT 

(2.4-1) 

where / t ° is given by equation ( 2.3-17) for spherical local fields and 

/* = f t /(}~fkak)- Letting w represent the solute weight fraction, v the specific 

volume, and Mk the molecular weight of species k, in the infinite dilution limit equation 

(2.4-1) may be re-written as 

+ 
g - 1 

V v . J o V 

s-n ft 4TTN„ 

0 M 2 V X 

2 xm ' 

3kBT , 

(2.4-2) 

where e and n are the dielectric constant and refractive index of the solvent 

respectively, and NA is Avogadro's number. Assuming, at low concentrations, that 

changes in local field, specific volume, and refractive index with respect to weight 

fraction are small compared to changes in dielectric constant, equation ( 2.4-2) thus 

becomes 

M2v] ds 1 de 
a2f2° + 

2 
^2/2 
3kBT j 

(2.4-3) 
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where C is the concentration of the solute (2). This may be rearranged to obtain the 
solution state dipole moment [101], 

M, = 
1 ds 

\4nNa cC 
•f'a 

f° 

(2.4-4) 

The gas phase dipole moment may then be obtained via the equation 

M* = I - f a 

(2.4-5) 

for spherical local fields. Similar equations may also be reproduced using ellipsoidal 

local fields. 

Similarly with the non-linear polarisation, for a two component solution 

consisting of a solvent (1) and a solute (2), the non-linear susceptibility of the liquid, 

[62,102] 

r, = N J ? ( f t f f ? y \ + tf2/2°(/-)2 / 2

2 y 2 

(2.4-6) 

where y'k = {nfi^/5kBT + yz) for material k. In the infinite dilution limit 

v, dv +r,-
[ / . ] a* 

(2.4-7) 

where [ /* ] = A 0 ( / t " ) ft* • Assuming Lorentz-Lorenz field factors for optical fields 

and Onsager spherical field factors for the static field, i f na «n2a> & n, equation 

( 2.4-7) becomes upon rearrangement [62, 63] 
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27M 2 (w 2 +2s) 

Nae(n2+2) {n\+l) 3a> 
+r, + vX, -

1 n U 2e + n2Jdv 
+ • 

3 dn1 

n +2 dw 

(2.4-8) 

where n2 is the refractive index of the solute measured at infinite frequency. This is 

often found by using the approximate relationship «1.05« D where nD is the 

refractive index measured at the sodium-D line. I f ellipsoidal local fields are used for 

the solute and spherical local fields for the solvent, then (2.4-7) becomes 

r = 
M2{e + {nl~s)A0} 

Na4\ + {n2 -\)Aa)\\ + (nl-\)Aa) 

s 2s + n~)dw 
+ • 

v — 

3 dn1 

+r,— + v , r , -

rr +2 dw 

(2.4-9) 

Once again, it is sometimes preferable to assume that changes on volume and refractive 

index with respect to volume fraction are minimal when compared to changes in 

dielectric constant and T. In cases where n2 is unavailable, the refractive index of the 

solvent at 2a may be used with only a small error on the final result. 

Using these equations and ( 2.4-4), it is now possible to obtain fx and J3 for a 

number of materials. This will be discussed in chapters 4 and 5. 

§2.5 The Effect of the Local Environment on the 

Molecular Properties of a Molecule. 

The effect of the environment on molecular properties, such as ju, a and /?, has 

already been intuitively exhibited through the calculation of the local fields and their 

dependence on the dielectric constant and refractive index of a medium. Increases in 

the dielectric constant of a medium enhances the dipole moment, and as is shown by 
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inspection of (1.6-1), also affects the values of a and /? which are the first and second 

derivatives of // with respect to the local field. The behaviour of //, a, and /? will be 

discussed in Chapter 3 for the materials under study. In much the same manner, the 

transition energy of a molecule is dependent upon the dielectric constant and refractive 

index of the environment, resulting in an effect known as solvatochromism which is 

commonly observed with many materials [103,104]. 

Theoretical considerations of the degree of shift of the transition frequency of a 

chromophore with respect to changes in the molecular environment have long been a 

subject of discussion [104, 105, 105, 106, 107, 108, 109, 110]. Generally, assuming 

two levels, the difference between the transition frequencies of a molecule in the 

solution state, v™J and the gas phase, v°eg is defined by the relationship (in units of 

cm 1 ) [105,104, 109, 111] 

(2.5-1) 

where Aju is the difference between the excited state and ground state dipole moments, 

jue - f t 0 , a is the polarisability in the ground (g) and excited (e) states, h is Planck's 

constant, and c is the speed of light. It is easy to see, by comparing ( 2.3-14) with 

( 2.5-1), that the terms involving/and / ' are related to the reaction field of a dipole, 

where, for spherical cavities,/is defined by ( 2.3-8) and / ' is defined by the same 

equation using the relationship e * rr. The first and second terms on the right hand 

side of ( 2.5-1) represent the differences in energy of a dipole in the excited state 

compared to the ground state, and the last term represents changes of energy due to 

the polarisability [104]. Additional terms may be included for higher orders of the 

polarisation, dispersion interactions, and the difference in the energy of formation of 

the cavities in the ground and excited states [105,108,109, 110]. 
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Substituting ( 2.3-8) into ( 2.5-1), to a second approximation, the frequency 
shift between the gas phase and solution phase may be written as [111] 

(2.5-2) 

I f the degree of shift is known with respect to the functions in the curly brackets, then 

it is possible to obtain a value of the excited state dipole moment, jue, provided the 

ground state dipole moment, / / and cavity radius have been determined. Furthermore, 

i f the oscillator strength is estimated (see ( 1.7-3)) then it is possible to estimate a value 

of B by means of ( 1.7-2) in Chapter 1. Comparisons can then be made to that of 

EFISH experiments. Measurements of this kind will be discussed in Chapter 6. 
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Chapter 3 

Material Systems. 

§3.1 Introduction. 

The materials studied in this thesis are presented in Figure 3.1-1 where two 

main classes of organic molecule are shown. Firstly, there are those based upon the 

reaction of secondary and tertiary amine derivatives with tetracyanoquinodimethane 

(TCNQ) [112, 113]. The first three, DEMI, DCH, and ULTRA, are able to form 

zwitterionic structures in environments where the electric field experienced by them is 

large. The absorption spectra of these (which will be discussed at greater length in 

Chapter 6) consists of large absorption bands positioned around 700 nm and an optical 

"window" in the region between 400 and 500 nm (concentration « 10'5 mol l"1) 

allowing a blue colouration in solution. This previously prompted the description "blue 

window materials" [114]. DED however exhibits a yellow colouration in solution 

which is due to the presence of a single absorption band with residing around 490 

nm. 

The second class of materials presented are betaine and phosphonium 

derivatives, developed at Sheffield Hallam University [115, 116, 117], which are also 

zwitterionic compounds. These materials exhibit a high degree of solvatochromism 

and are also expected to have high dipole moments [117,118]. 

Finally, NPP is also presented in Figure 3 .1-1. This material is well known and 

has been documented many times with respect to its non-linear optical properties (see 

for example reference [119]). As a result it seems appropriate to use this molecule for 

the purpose of comparing the molecular properties to those of unknown materials. 
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Chapter 3. 

In the following passages a review of work previously conducted on these 
materials is given, with indications how the present work can be related to such 
studies. 

§3.2 NPP. 

N-(4-nitrophenyl)-(L)-prolinol, more commonly known as NPP, was initially 

synthesised in 1984 exhibiting remarkably high powder SHG signals, up to 3,500 times 

the strength of urea at 1.064 [xm [120]. NPP is moderately polarisable since it is a 

D-7t-A molecule which is conjugated and possesses moderate strength donor and 

acceptor moieties [119,121]. The presence of the chiral centre on the pyrolidine ring 

allows the formation of a non-centrosymmetric crystal structure, thus SHG in the 

crystal phase is possible [119, 120, 126]. Furthermore, the similar refractive indices of 

the crystal at a and 2co allow the enhancement of the second harmonic intensity 

through a degree of phase matching. Therefore, the extremely high non-linear optical 

response was attributed to the summation of phase matched components of the 

hyperpolarisability [119,120]. The d21 coefficient for an NPP crystal was found to be 

200 x 10"9 esu [119], nearly 200 times that of quartz and 45 times that of KDP. A 

plethora of non-linear optical experiments, measurements and demonstrations have 

since been conducted on NPP [119, 122,123,124]. Most notably and most applicable 

to the present studies, are the estimates of the molecular hyperpolarisability and dipole 

moment by various means. 

EFISH experiments have been conducted on solutions of NPP in acetone, 

where 6(0) was found to be 42 x 10'3 0 esu [121]. This agrees well with the results of 

finite field calculations to obtain 6(0), presented in the same study and also found to be 

42 x 10'3 0 esu . Additional EFISH measurements have been conducted where 6(0) 

was found to be 12 x 10"30 esu in 1,4-dioxane [125]. The lower value found in 

1,4-dioxane can possibly be attributed to the effect of the lower reaction field on the 

hyperpolarisability of NPP. In addition, the same study estimates the dipole moment to 
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be 6.7 D in 1,4-dioxane which agrees well with theoretical MOP AC calculations 

(7.5 D) [121, 126, 127]. 

More recently, jc-ray and neutron1 diffraction techniques have been utilised to 

estimate the dipole moment and hyperpolarisability of NPP in the crystal phase [126, 

127]. The dipole moment is shown in Table 3.2-2 alongside the density of the crystal. 

This value also agrees well with theoretical calculations presented in the same study 

[126, 127]. Two values of 0(0) are also estimated from this study. Firstly, the 

magnitude of the hyperpolarisability vector, pvec is found to be 42.9 x 10"30 esu which 

is once again in agreement with theoretical calculations obtained in the literature. 

More applicable to EFISH however, is the value of the hyperpolarisability along the 

molecular dipole moment, fidip . This was found to be slightly smaller, 39.2 x 10"30 esu 

in the crystal phase [126, 127]. 

In addition, this study utilises MOP AC calculations [128,129,130] which have 

been conducted on NPP by the author of this thesis. Geometries are optimised and 

dipole moments are calculated in the gas phase using either A M I or PM3 Hamiltonians 

to the Self Consistent Field (SCF) level, and the polarisabilities, a and /?, are 

calculated, using the two level Sum Over States (SOS) model [131, 132]. It is 

acknowledged that the two level SOS model is somewhat inadequate for large polar 

molecules. However, surprisingly accurate results have been obtained in the literature 

for NPP [126]. The usefulness of such calculations is justified in the fact that 

parameters such as //, a, and /? can be obtained relatively easily. The results of the 

MOP AC calculations on NPP are presented in Table 3.2-2 for both methodologies. 

The dipole moments and polarisabilities obtained for NPP using the PM3 methodology 

are slightly lower than the A M I calculations, though it is noticed that a and /? do not 

vary by more than 10 %. Finally, it is noted that the PM3 dipole moment agrees well 

1 Both x-ray and neutron scattering techniques must be utilised to obtain an accurate analysis of the charge 
density and distribution of a molecule, and ultimately the dipole moment. This has found to be especially 
critical if analysis extends to the inclusion of higher order moments and the calculation of a, p, and y. For 
more information on the technique, please refer to references [126,161]. 
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Material 

N P P a 1.41 8.1 

DED b 1.17 26.4 

DEMI 1.252 — 

DCH 1.195 — 

U L T R A 1.294 — 

Table 3.2-1: Densities and dipole moments estimated through x-ray crystallographic 
analysis, a: References [126,127]. b: Reference [161]. 

AMI Methodology PM3 Methodology 

Material a A * a Pdip. 

D A 3 
x 10 3 0 esu D A 3 x 10 3 0 esu 

NPP 9.2 19.1 10.8 7.9 17.2 9.0 

DED 10.9 37.3 13.7 9.7 35.5 19.2 

DEMI 10.1 45.4 77.2 8.6 43.4 71.0 

DCH 10.5 56.4 97 7.6 51.4 74.2 

U L T R A 9.0 46.4 54.5 7.9 44.3 35.4 

Table 3.2-2: Dipole moments and polarisabilities for molecules presented in this 
thesis calculated using MOP AC. 

52 



Material Systems. 

with literature estimates and furthermore, the EFISH results conducted in 1,4-dioxane 

are in good agreement with the MOP AC calculations. 

These calculations and the estimates presented above will be used as 

comparisons to the results obtained in Chapters 4 -6. 

§3.3 The Tertiary Amino TCNQ Adducts. 

As already stated, the three materials, DEMI, DCH and ULTRA, classed here 

as tertiary amino TCNQ adducts, arise thus from the reaction of TCNQ with various 

tertiary amines [112, 113]. They all have similar structures and are expected to be 

highly polarisable due to the presence of the conjugated system. Furthermore, the 

strong electron donating and withdrawing moieties introduce a high degree of 

asymmetry to conjugated system which allows positive charge to stabilise on the amino 

moieties and negative charge to stabilise on the dicyanomethanide groups. The tertiary 

amino TCNQ adducts are thus expected to possess high dipole moments and 

hyperpolarisabilities. 

D-7T.-A conjugated polyenes have been studied extensively, both theoretically 

and experimentally [133, 134, 135, 136]. Under the influence of an electric field, the 

evolution of the geometry of the molecules is such that they may be described by two 

limiting canonical resonance forms [137] where the state of the molecule is determined 

by the polarisation of the environment and the molecular reaction field [138,139] (see 

Figure 3.3-1). The molecule resides in a predominately quinoidal form close to the gas 

r r, 8+ N 

N N N 

l 

I 

N CN N 

Figure 3.3-1: Structural representations of DEMI showing possible 
resonance forms. 
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phase, and a predominately aromatic form in a polar environment, such as the crystal 

phase. An intermediate of the two resonance structures is usually found in solution. 

The geometrical state of a molecule can be defined in terms of the Bond Length 

Alternation (BLA) or Bond Order Alternation (BOA) parameters, where the BLA is 

defined as the differences in the total lengths of the double and single bonds in a 

conjugated system [137]. The evolution of the BLA and the resulting linear and non

linear properties of ideal polyenes [133,137] and numerous other materials [139, 140, 

141, 142, 143] under the influence of an arbitrary electric field has been modelled. 

When such a field is applied to a polar polyene structure, the geometry of the molecule 

undergoes a "cross-over" from a neutral state to a charge-separated, zwitterionic 

structure [137]. Similar calculations have been applied to the tertiary amino TCNQ 

adducts, though the majority of the work has concentrated on DEMI [113]. We can 

thus follow the evolution of the molecular parameters of the tertiary amino TCNQ 

adducts and similar D-7t-A molecules with respect to applied field, by considering the 

evolution of the properties of DEMI. Molecular geometries in the presence of an 

electric field were optimised at the SCF level and calculations of the polarisabilities, a 

and B were performed by means of the SOS formalism (40 states) on the basis of state 

energies, state dipole moments and transition moments computed with a Single 

excitation Configuration Interaction (SCI) calculation [113, 144]. The electric fields 

ranged between 107 and 108 V cm"1 which are typical fields experienced by molecules 

in an organic liquid, such as a solvent. 

The molecular dipole moment increases in a near linear fashion with applied 

field (and BLA [137]), as would be expected due to the linear dependence of the 

dipole moment on the reaction field (see Chapter 2, §2.3). Thus increasing the electric 

field strength transforms the geometry of DEMI from an initial charge-separated 

structure with a dipole moment of 14 D to a highly charge-separated zwitterionic form, 

as is shown in Figure 3.3-2 (top graph). One should note that the dipole moment is 

predicted to be extremely large in this state, close to 50 D. This is massive in 

comparison to the typical dipole moments possessed by small organic asymmetric 

molecules (0.5-4 D). 
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Figure 3.3-2: Three graphs showing the theoretical evolution of the linear 
and non-linear properties of DEMI. Top graph: evolution of the dipole 
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(triangles) and middle graph: evolution of the transition energy (circles) 
and transition dipole computed using a 40-state, SOS, SCI formalism. 
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The polarisabilities, a and J3 undergo a more complicated evolution which is 

essentially due to the first and second derivatives of the evolution of the dipole 

moment, respectively (see Chapter 1, §1.6, and see Figure 3.3-2). The linear 

polarisability, a initially increases until the cyanine limit is reached (the point where the 

rc-electron delocalisation is maximised and the BLA falls to zero), where it is 

maximum. This then decreases as the molecule evolves to a more charge-separated 

state. The value of a for DEMI in the gas phase, calculated by the SCI-SOS method is 

found to be 45 A 3 . The maximum occurs when an electric field of 0.07 au2 is applied, 

and this is predicted to be around 51 A 3 . The polarisability is then predicted to 

decrease to around 30 A 3 when DEMI is highly aromatic. 

Furthermore, the evolution of a (and, for that matter JJ) results also from the 

evolution of the electronic transition energy and transition moment of the lowest 

energy state. The transition moment exhibits a similar evolution with BLA to the 

polarisability, since the two parameters are related [137], and the transition energy 

exhibits an inverse relationship where the energy first decreases to a minimum at the 

cyanine limit and then increases. At this point it is worth noting that the behaviour of 

the transition energy is not unlike the solvatochromic behaviour of merocyanine dyes 

where a reversal in the shift of the transition energy with solvent polarity is observed in 

low polarity solvents [145,146,147,148,149]. In fact the above SOS theory is partly 

based upon such experimental results. 

Figure 3.3-2 also shows the theoretical evolution of the transition energy and 

oscillator strength for DEMI with applied field (middle graph). Here, the oscillator 

strength decreases as the molecule moves to a zwitterionic state. However, the 

transition energy initially decreases until a minimum is reached, then increases as the 

molecule becomes zwitterionic. The minimum transition energy is predicted to occur 

when a reaction field of 0.007 au is applied to DEMI which coincides with the maxima 

for the polarisability. The solvatochromic behaviour of DEMI, DCH and ULTRA will 

2 1 au (atomic unit) = 5.14192 V m'1. Please see Appendix HI for further definitions of atomic units. 
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be discussed in conjunction with these results in Chapter 6 to ascertain whether they 
exhibit such behaviour. 

The evolution of the transition energy is a manifestation of the evolution of the 

difference between the ground and excited state dipole moments, A// (see Chapter 2, 

§2.6) [137, 142]. The initial decrease in energy therefore suggests that the ground 

state dipole moment is less than the excited state dipole moment. However, the 

ground state dipole moment increases faster with an applied field than the excited state 

dipole moment, due to a difference of the polarisabilities in the ground and excited 

state. Therefore, A// soon reaches zero, at the point of minimum transition energy, and 

also at the cyanine limit. After this point the ground state dipole moment becomes 

larger than the excited state dipole moment and Aju is thus negative. Since the first 

hyperpolarisability, f3 is related to A/u, j3 follows its evolution closely (see 

Figure 3.3-2). First, a maximum is reached quickly, followed by a reduction in /?, 

which falls to zero at the cyanine limit. This is due to the dependence of /? upon A/i 

(see Chapter 1,(1.7-2)). Since A// becomes negative, /? also reduces further, changing 

sign from positive to negative until a minimum is reached when the molecule is in the 

zwitterionic state. 

For DEMI in the gas phase as calculated by the SCI-SOS method, the first 

maximum of /? has been passed and the geometry lies close to the cyanine limit 

(Figure 3.3-2, top graph). The value of P in gas phase, calculated by this method is 

found to be 150 x 10'3 0 esu. The point where /? falls to zero is reached when a field of 

0.003 au is applied and the molecule possesses a dipole moment and polarisability of 

20.5 D and 49 A 3 respectively. However it is noted that this point does not coincide 

with the polarisability maxima or the transition energy minima estimated from the same 

calculations. The largest negative value of (5 for DEMI is -550 x 10"30 esu, which is 

reached when a field of 0.008 au is applied, and the corresponding values of the dipole 

moment and polarisability are 35.2 D and 47.7 A 3 respectively. 

More recently, additional calculations have been conducted which take into 

account the effect of Single and Double Configuration Interactions (SD-CI, see 
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Figure 3.3-2, bottom graph) [150]. With these calculations the magnitude of the 
dipole moment remains approximately the same as with the SCI calculations. 
However, the magnitude of the polarisability is lower as a result, and larger fields have 
to be applied to the molecule to obtain the maximum value (38 A 3 ) which occurs at 
0.007 au. Similarly, this is the point where /? falls to zero. Fields of this strength yield 
a dipole moment of 28.9 D. To obtain the largest negative value of p 
(-360 x 10'3 0 esu), a field of 0.011 au is this time required, corresponding to a dipole 
moment of 40.1 D and a polarisability of 30.5 A 3 . The gas phase values for ju, a and 0 
are 13.4 D, 25.0 A 3 , and 153 x 10"30 esu respectively. 

It is beyond the scope of this thesis to attempt to evaluate the relative merits of 

the two sets of calculations described above. However, a degree of inconsistency is 

noted between the two sets of calculations. Since, with the SD-CI calculations, the 

polarisability is lower than the SCI polarisability, the evolution of the dipole moment is 

expected to be less sensitive to the applied field (as will be shown in Chapter 7, and see 

equation ( 2.3-6), Chapter 2), thus the gradient of the curve with respect to reaction 

field should be less. This is evidently not the case. Furthermore, additional 

inconsistencies are noted with the SCI calculations since the point where /? = 0 does 

not coincide with the transition energy minima. A number of comparisons can be made 

between these calculations and the experimental results, which are obtained in the 

following chapters, to ascertain which model gives results closest to experimental 

values. This will be discussed fully in the Chapter 7. 

Two level calculations have also been conducted (by the author of this thesis) 

on the tertiary amino TCNQ adducts using MOPAC, which are presented in 

Table 3.2-2. The usefulness of such calculations is justified in the fact that parameters 

such as //, a, and J3 can be obtained relatively easily. As a result, these can be used for 

interpreting data on molecules where the 40-state calculations have not been 

conducted, as is the case with DCH and ULTRA. In comparison to the 40-state 

calculations, the dipole moment for DEMI in the gas phase is slightly lower. However, 

the average polarisabilities calculated using both methodologies are comparable to that 
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calculated via the SCI method. Since MOP AC uses the two-level model however, it 

might be expected that there would be a disagreement between the polarisabilities 

estimated using MOP AC and the 40-state calculations. This is clearly the case with ft. 

Nonetheless, as already indicated these estimates are useful for comparisons to 

experimental results. 

Comparisons can be made between the MOP AC values of the tertiary amino 

TCNQ adducts to facilitate general trends between them. Similar trends are exhibited 

with both methodologies. The dipole moment of DCH is similar to that of DEMI since 

there is relatively little change in the donor acceptor strengths. With the A M I 

methodology, the dipole moment for ULTRA is lower than the others, which might be 

attributed to a reduction in planarity of the molecule induced by the addition of the 

piperidyl ring and results in a loss in aromaticity in the gas phase. Similar trends are 

exhibited with a and /?. Once again, these results will be used with, and compared to, 

experimental results in future chapters. 

Although the non-linear and linear properties calculated for DEMI are 

favourable in view of applications, there are several significant difficulties which have 

to be overcome in order to make such materials viable options for use in non-linear 

optical devices. The planarity and high dipole moment encourages aggregation, thus 

the solubility is often low. The presence of ethylenic bonds and a strong optical 

transition allows photo-oxidation to occur [151], and the presence of water in many 

polar solvents allows hydration of some TCNQ derivatives, resulting in a change in 

solution colour from blue to purple. However, the addition of the piperidyl ring on 

ULTRA appears to remove this problem while enhancing the solubility of the material 

by reducing the planarity. The presence of the diethylether terminal groups is 

considered to be a significant factor contributing to the observed enhanced solubility of 

ULTRA. A slight improvement in solubility is also obtained with DCH, probably due 
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Material acetonitrile chlorobenzene 

DEMI 2 x 10-4 5 x 10-5 

DCH 9 x ice4 2 x l f j 4 

U L T R A 9 x 10"3 2 x 10"3 

Table 3.3-1: Limiting solubilities (mol t1) determined by adherence to Beer - Lambert 
Law behaviour for the tertiary amino TCNO adducts. 

to the addition of the cyclohexyl terminal groups. This is adequately demonstrated by 

the solubilities shown in Table 3.3-1 [113). 

A large amount of experimental data on the tertiary amino TCNQ adducts is 

now being collected, most of which has been conducted on DEMI. The materials form 

centrosymmetric crystals in the form of anti-parallel stacks of dimer pairs, rendering 

them useless for crystal non-linear optics [113, 152]. However, the charge-separated 

ground state of secondary and tertiary amino TCNQ adducts in the crystal phase has 

been confirmed through crystallographic analysis [1521. Though the aromatic ring 

system for DEMI was found to possess a predominately quinoidal character, charge 

could be assigned to the dicyanomethanide and tertiary amino moieties, thus 

confirming the charge-separated state of DEMI. More recently, studies have 

confirmed the reduction of planarity of ULTRA due to the addition of the piperidyl 

ring which confirms the conclusion made with the MOP AC calculations [153]. The 

densities of the tertiary amino TCNQ adducts in the crystal phase have also been 

estimated and are presented in Table 3.2-1 [154]. These are slightly lower than that of 

NPP. Unfortunately the dipole moments in the crystal phase for the tertiary amino 

TCNQ adducts are as yet unobtainable. 

Dipole moment measurements have been conducted on DEMI. The dipole 

moment was found to be 45 D (calculated using Guggenheim's equation [155]) in 

dimethylformamide (DMF) [125], and 34 D (calculated using spherical local fields 

[156]) when measured in a polymethylmethacrylate (PMMA), DEMI (1 %) doped thin 

film [157, 158]. 
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Various non-linear optical experiments have also been conducted. Among 

those, \nfl(0)\ for DEMI has been measured through EFISH experiments in DMF and 

found to be 3,825 x 10"48 esu (using mixed Lorentz and Onsager spherical local field 

factors) [125]. This corresponds to a \fi(0)\ around 85 x 10"30 esu, using a dipole 

moment of 45 D. I f the dipole moment is compared to Figure 3.3-2, we see for the 

SCI calculations that 45 D corresponds to a field of 0.0126 au and correspondingly 

p(0) is -340 x 10'3 0 esu. With the SD-CI calculations, a dipole moment of 45 D 

corresponds to a field of 0.0133 au and thus fi(0) is -275 x 10"30 esu. Assuming that ft 

in DMF is negative, the EFISH results are far smaller than the predicted values. \fi(0)\ 

has also been measured for DEMI (1 %) doped in a PMMA thin film [157]. This was 

found to be 150 x 10"30 esu, which is a significantly larger value than the one found in 

solution. Once again using the measured dipole moment (34 D) we see from the SCI 

calculations that this represents a field of 0.0076 au and fi(0) is thus -519 x 10"30 esu. 

Similarly with the SD-CI calculations we obtain a field of 0.0086 au and 

P(0) = -246 x 10"30 esu. Clearly the experimental results neither agree with each other 

nor with the theoretical results. The solution state measurements produce a higher 

dipole than the corresponding solid solution measurements, yet the measured {5(0) 

values are vice-versa. There may be many reasons for this, such as differences in local 

field approximations, dimerisation in solution, reduced alignment of the chromophore 

etc. It is hoped that the experimental results obtained in Chapters 4, 5 and 6 will help 

resolve these matters to some extent. 

Finally, the hyperpolarisability of DEMI has been measured in chloroform by 

means of hyper-Rayleigh scattering experiments [113, 159]. The magnitude of the 

hyperpolarisability, |/?(0)| was found to be 350 x 10"j0 esu. Once again looking at the 

theoretical results and assuming that J3(0) is negative, there are two possible values of 

reaction field which will reproduce the experimental value. With the SCI calculations 

these are 0.0062 au and 0.0125 which correspond to dipole moments around 29 D and 

45 D respectively. With the SD-CI calculations, the fields are 0.0098 au and 

0.0113 au, and the dipole moments are 36 D and 41 D. Note that with these 

calculations, this nearly corresponds to the largest value of |/?(0)|. Once again, the 
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estimates presented here will be compared to the experimental values obtained in 

Chapters 4 - 6 . 

§3.4 DED. 

More recently, as a result of similar reactions with TCNQ, a range of "yellow" 

materials have been synthesised [160]. Like the tertiary amino TCNQ adducts, DED 

possesses an aromatic ring system with a dicyanomethanide acceptor group, but this 

time two diethylamine donor moieties are situated para to the dicyanomethanide unit. 

A limited amount of experimental or theoretical information is available on DED and 

no high level SOS calculations have been conducted. The results of MOP AC 

calculations however are presented in Table 3.2-2. This predicts dipole moments and 

average polarisabilities which are similar to that of the tertiary amino TCNQ adducts, 

but Bdip is estimated to be smaller. The crystal structure of DED has been determined, 

indicating that the molecule resides in a highly aromatic charge-separated state. The 

resulting density and dipole moment estimated from x-ray and neutron diffraction 

experiments (26.4 D) are presented in Table 3.2-1 [161, 162]. As would be expected 

for a molecule in the crystal phase, the dipole moment is greater than the gas phase 

dipole moment predicted by MOP AC calculations. These will be compared to the 

experimental results obtained in Chapter 4. 

§3.5 The "Sheffield" Materials. 

As stated earlier, results of dipole moment measurements will only be presented 

for the "Sheffield" materials. All of the materials are zwitterionic and are thus 

expected to possess high dipole moments. Previous dipole measurements and 

calculations have been conducted on similar molecules where the dipole moments were 

found to lie between 7 and 10 D in the gas phase [118, 163]. With the first two 

materials, negative charge is stabilised on the amino-heterocyclic moiety and positive 

charge on the pyridinium terminating groups. With SHEF C, negative charge is 

assigned to the oxygen and positive charge to the phosphorous, and as a result these 

are all expected to possess similar dipole moments since there are similar degrees of 
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charge-separation. The charge-separation for SHEF D however, only extends between 

the oxygen and phosphorous double bond. Thus the lower charge-separation distance 

implies that the dipole moment for this material should be lower. 

Unfortunately these molecules are too large to conduct MOP AC calculations 

on. Small modifications have to be made to the molecular structure, such as the 

removal of long alkyl chains and phenol rings, so that calculations can be conducted. 

As a result, such calculations are generally confusing. The molecular dipole moments 

were found to be anomalously large (>20 D) using either A M I or PM3 methodologies, 

so these will not be presented here. However, despite varying the structure several 

times, it was found, once again, that the average polarisabilities did not vary more than 

10 %. Estimates of the polarisability calculated by MOP AC for the "Sheffield" 

materials and are presented in Table 3.5-1. It was found that similar polarisabilities to 

that of the tertiary amino TCNQ adducts are obtained for SHEF A, B, and C, the 

largest pertaining to SHEF C. SHEF D as expected, has a far lower polarisability. 

AMI Methodology PM3 Methodology 

Material a / A 3 a / A 3 

S H E F A a 32.9 31.9 

S H E F B b 37.1 36.1 

S H E F C c 43.8 43.7 

S H E F D 21.0 20.9 

Table 3.5-1: The average polarisabilities for the "Sheffield" materials calculated by 
MOP AC using AMI and PM3 methodologies. The molecules are too large for 
MOP AC to calculate the polarisabilities of the full structures. Therefore the 
polarisabilities have been calculated by:-
a: Exchanging the C,Ji33 chain with CJi5, 
b: Exchanging the three C4HN chains with CTHS, 

c: Exchanging the three phenol groups with CJi5. 
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Chapter 4 

Dipole Moments of Highly Dipolar, 

Anisotropic, Non-Linear Optical 

Chromophores. 

§4.1 Introduction. 

As already indicated in Chapter 2, to extract the first hyperpolarisability, from 

EFISH measurements it is necessary to evaluate the dipole moment, // of a molecule. 

One of the simplest methods used to measure the dipole moment is to measure the 

dielectric constant of a solution containing the unknown material. The equations 

needed to extract the dipole moment from an analysis of the dielectric constant were 

discussed in Chapter 2, and will be re-iterated in §4.4 for the analysis of experimental 

results. 

Presented in this chapter are the results obtained from the measurement of the 

dielectric constant of solutions of the materials discussed in Chapter 3. The 

experimental apparatus and procedure used with such experiments are described, 

followed by a detailed analysis of the calculation of the dipole moment for these 

molecules. In addition, a comparison is made between the various local field 

formalisms used in such calculations (as discussed in Chapter 2), where attention is 

paid to the anisotropy of such molecules. 
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§4.2 Experimental Apparatus and Procedure. 

There are numerous methods which can be utilised to measure the dielectric 

constant of a solution [164, 165, 166,167]. Invariably, these involve the measurement 

of the capacitance of a solution filled cell. Variations on this theme may be adopted 

[164, 166, 167, 168] however, with the following experiments one of the simplest 

types of cell has been designed and used. 

The three terminal, solution capacitor used for experimentation is shown in 

Figure 4.2-1 with its associated circuit diagram. It consists of a rod of stainless steel 

placed in the centre of a stainless steel tube, such that a concentric cylindrical capacitor 

is formed. The centre rod forms the high potential electrode and the outer tube, the 

low potential electrode. The electrode separation is 3 mm and the total diameter of the 

cell is approximately 65 mm, thus, the large electrode area and small electrode 

separation yields a large capacitance for the cell. This allowed fairly accurate 

determination of the dielectric constant. On top of the centre electrode is a guard ring 

which is earthed. The purpose of the guard ring is to remove any fringing of the 

electric field that may occur at the edge of the centre electrode. Thus, the field remains 

perpendicular to the surface of the electrodes along the entire electrode surface. The 

guard ring also ensures that the same volume of solution is measured each time. The 

distance between the guard ring and the centre electrode is also 3 mm. Finally, the 

entire arrangement is encased in a PTFE case so that the apparatus is electrically 

isolated. The electrodes are connected to the LCR meter via four BNC coaxial cable 

sockets, two for the centre electrode and two for the outer electrode. As is shown in 

the circuit diagram, the outer conductors for the sockets are connected to earth, and 

the centre conductors are connected to the high or low potential and current circuits of 

the LCR meter, respectively for the centre and outer electrodes. 

The LCR meter (Hewlett Packard, HP4278a) used to measure the capacitance 

of the cell was operated at 1 MHz which is well away from any resonance points. To 

confirm this, in addition to the measurement of the capacitance, the 
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Outer polypropalene 
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H » High. 
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p = potential, 
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Figure 4.2-1: The capacitor and electronic circuit used in the measurement of the 
dielectric constant of solutions. 
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dielectric loss was also measured for each material in solution. The loss was found to 

be very low for all of the materials. 

A typical experiment was conducted as follows. Firstly, the capacitance of the 

empty cell was measured. This was found to be approximately 14.43 ± 0.05 pF. 

Accuracy could be obtained to the fourth decimal place, but this was dependent on the 

temperature, humidity and conditions of the experiment at the time of measurement. 

Thus, measurements of the capacitance of the empty cell were conducted immediately 

before an experiment. 

The dielectric constant, e for each solution was calculated via the equation 

C 

(4.2-1) 

where Cs and CA are the capacitances of the solution filled and empty cell respectively. 

To ensure that the cell provided accurate and sensible results, the dielectric constant of 

several solvents was measured and compared to that reported in the literature [169]. It 

was found that, for solvents that have a dielectric constant between 2 and 45, the 

measured dielectric constants of the solvents were within 10% of the literature values. 

This is an acceptable error when temperature and composition variations are 

considered. However, more accurate results could be obtained for solutions by 

measuring the variation in dielectric constant with concentration. It was found that 

repeated measurements of the same solvent resulted in an accuracy of 1 %, and for 

strongly concentrated solutions, the error on de/SC could be as small as 5 %. 

A stock solution of a material of concentration around 10"4 - 10"3 mol l ' \ was 

dissolved in the appropriate solvent, to a volume of 50 ml (using a 50 ml volumetric 

flask). The solution was then successively diluted (also using 50 ml volumetric flasks), 

such that two orders of magnitude in concentration were traversed during the 

experiment. The cell was then filled with each solution, the capacitance measured, and 

the solution returned to its flask. The order in which the experiment was conducted is 
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important as the temperature of each solution may vary and thus effect the value of the 
dielectric constant measured. Therefore, experiments were conducted from low to 
high and high to low concentrations in an attempt to eliminate any variation in 
temperature during the process of the experiment. A graph of the dielectric constant 
of each solution was then plotted versus the concentration of the solution, and an 
average gradient of the two experimental curves was taken. Experiments for each 
material were conducted three or four times to ensure that the experiment was 
repeatable and to obtain an average dsjdC. All solvents used were HPLC grade 

(Aldrich - Sigma Co.) and the solutions were filtered using a 0.5 u.m disposable filter 

before use. 

§4.3 Experimental Results. 

Experiments were conducted on NPP, DED and the "Sheffield" materials in 

chloroform. Chloroform was initially chosen as a solvent because its dielectric 

constant is low, allowing for more accurate readings of the dielectric increment. In 

addition, it was found that the solubility of NPP and the "Sheffield" materials was 

relatively high in chloroform, thus enabling experiments to be easily conducted. 

However, the solubility of DED in chloroform was fairly low and measurements were 

found to be difficult at low concentrations. Similar problems arose with the tertiary 

amino TCNQ adducts and as a result of this, experiments on the tertiary amino TCNQ 

adducts were conducted in dichloromethane (DCM). This has a higher dielectric 

constant, thus experiments may be less accurate. However, the solubility of the 

tertiary amino TCNQ adducts was found to be slightly better in DCM, thus allowing 

the gradient to be obtained at stronger concentrations. Despite this, it was found that 

due to the general low concentration of the solutions, the error on the experimental 

gradient for the tertiary amino TCNQ adducts and DED remained large, « 30 %. The 

experiment gradients for the other materials have smaller errors. 

The graphs obtained from the experiments described in §4.2 are presented in 

Figure 4.3-1 and Figure 4.3-2. The error bars show the possible deviation of the 

dielectric constant due to fluctuations in the temperature of the solutions. This was 
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Figure 4.3-1: Typical graphs showing the dielectric constant obtained 
for solutions of increasing concentration of NPP (top) and DED 
(bottom). The straight lines are fits to the data. 
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Figure 4.3-2: Typical graphs showing the dielectric constant obtained 
for solutions of increasing concentration. Top graph: For DEMI 
(crosses and solid line), DCH (crosses and dashed line), and ULTRA 
(squares and solid line). Bottom graph: For SHEF A (crosses and solid 
line), SHEF B (crosses and dashed line), SHEF C (squares and solid 
line), and SHEF D (squares and dashed line). The straight lines are fits 
to the data. 
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found to be a problem, thus the experimental cell may have to be modified for future 
experiments. All of the experiments yield a linear increase in dielectric constant with 
increasing concentration. This is best demonstrated with the results for NPP which are 
obtained using concentrations up to 100 times that used for DEMI and DED. 

The data points are fitted to a straight line using a least squares fitting program, 

and the average gradients, obtained from analysis of several experiments for each 

material, are presented in Table 4.4-1. As is clearly evident, the gradients obtained for 

the tertiary amino TCNQ adducts, DED, and the first three "Sheffield" materials are 

large when compared to NPP or SHEF D as might be expected for these materials. 

With the tertiary amino TCNQ adducts, DEMI produces the largest gradient followed 

by DCH, and ULTRA respectively. With the "Sheffield" materials, SHEF C produces 

the largest gradient. Further analysis of these trends will be conducted in §4.5. 

§4.4 The Interpretation of the Analysis used for the 

Determination of Dipole Moments. 

We recall from Chapter 2, that there are many equations which can be used to 

measure the dipole moment, depending on the local field factors required for the 

analysis. Debye local field factors have already been found to be inadequate for 

measuring the gas phase dipole moment from solution measurements [166, 170]. 

However, Guggenheim's equation, as given previously by equation ( 2.3-4), may be 

used to calculate the dipole moment in the solution of measurement [166, 171, 172, 

173] 

1036 9kBT 3 de_ 
Na ' An '(e + 2)(n2+2)'dC0 

(4.4-1) 

where Na is Avogadro's number, e and n are the dielectric constant and refractive 

index of the solvent respectively, dsjdQ^ is the experimental gradient at zero 

concentration, 
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Material dejaZ 11 mor1 a / A3 

NPP3 7.010.4 19.1 30.5 

DED a 64.1 ± 19.2 37.3 70.4 

DEMI b 145.0 ±43.5 45.4 99.0 

DCH b 67.6120.3 56.4 112.5 

ULTRA b 33.7110.1 46.4 65.0 

SHEF A a 20.814.2 32.9° 71.7C 

SHEF B a 39.217.8 37.1c 70.5° 

SHEF C 3 71.0114.2 43.8C 88.7C 

SHEF D a 5.1 1 1.0 21.0 23 

Table 4.4-1: Average gradients obtained from the measurement of the dielectric 
constant of solutions of the materials mentioned in the text, with increasing 
concentration. In addition, the average polarisability, a and the polarisability along 
the principal axis, a, are presented. These are obtained through MOP AC 
calculations using an AMI Hamiltonian and SCF methodology, 
a: Conducted in chloroform, 
b: Conducted in DCM 
c: See Table 3.5-1 for additional information. 
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kB is Boltzman's constant and T\s the temperature. hB and dejdC\Q are in cgs units, 

and the dipole moment, ns has units of Debyes. 

As discussed in Chapter 2, the presence of a reaction field results in the 

enhancement of the dipole moment in solution, thus to obtain the gas phase dipole 

moment, Onsager's equation may be utilised [170]. The dipole moment in the solution 

of measurement, f j , is calculated through equation (2.4-4), 

f 1 ds 
\4nNa dC ) f t 

(4.4-2) 

where / 2 ° arises from an analysis of the local field (see Chapter 2, §2.3). We recall, for 

Onsager's spherical local field factors [166, 170], / 2 ° is found to be 

3e 
{l-fa)(2e + \y 

(4.4-3) 

where a is the average polarisability of the molecule, and / is the reaction field factor 

and is defined by (2.3-8) in Chapter 2. 

Since highly anisotropic molecules are considered, it may be inappropriate to 

use spherical local field factors. Once again we recall from Chapter 2 that ellipsoidal 

local field factors may be used for anisotropic molecules [166, 174, 175, 176]. In 

conjunction with (4.4-2), / 2 ° becomes 

if'T = 1 
{e + {\-e)A:){\-f,ay 

(4.4-4) 

where az is the polarisability along the z-axis of the cavity and the parameters f z and Az 

are given by ( 2.3-19) and ( 2.3-20) respectively. The gas phase dipole moment may 
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be calculated through equation ( 2.4-5), replacing/and a with fz and a, respectively 
when using ellipsoidal local fields. 

The above equations are used to calculate the dipole moments of the materials 

discussed in Chapter 3 from the experimental gradients and polarisabilities presented in 

Table 4.4-1. As is evident from the analysis, several additional parameters are needed 

to calculate the dipole moment. For ( 4.4-1) this is simply the dielectric constant and 

refractive index of the solvent which is obtained either from experiment or the 

literature [169]. With the other equations, the polarisabilities, cavity radii, and shape 

factor need to be determined. 

The polarisabilities may be obtained through various experimental methods 

[166, 177], and may be related to the refractive index and cavity radius via the 

Clausius-Mossotti equation (see equation ( 2.3-9)) [166] 

I I 2 -1-3 ~ 
-= r = a 
n2 +2 

(4.4-5) 

where n is the internal refractive index of the solute evaluated at infinite frequency and 

may be approximated to the refractive index at the sodium-D line (A = 589 nm) by the 

relationship nl « 1.05/72,. Insertion of ( 4.4-5) into ( 4.4-2) results in a simple 

calculation provided the cavity radius is known. However, the low solubility of the 

materials coupled with an appreciable absorption of the tertiary amino TCNQ adducts 

at the sodium-D line, inhibits considerably the measurement of the polarisability. 

Therefore, theoretical calculations of the polarisability have to be relied upon. a. and 

a are calculated using MOP AC [178] which is discussed in Chapter 3, and are, in 

addition, presented in Table 4.4-1. It is possible that the theoretical calculation of the 

polarisability may induce an error into the calculations especially where the structure of 

the molecule has been modified. As mentioned earlier, several molecular geometries 

were tried and the method of calculation (i.e. AMI or PM3 Hamiltonians) also varied 

when calculating the polarisabilities, but it was found that the magnitudes of and a 

did not vary by more than 10%. 
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The cavity radius may be estimated by several methods [166, 179, 180]. It has 

been found that a valid approximation of the cavity radius is the volume available to a 

solute molecule in a particular medium, i.e. the average radius of a molecule plus any 

unoccupied "space" [166]. The density of a solute, d is often used to obtain the radius 

via the equation [166, 170] 

r -
r 3M ^ A 

AndN' A j 

(4.4-6) 

where Mis the molecular weight, and NA is Avogadro's number. The density may be 

obtained either by experimentally determining the density of solutions of varying 

concentration, or by using x-ray crystallography and using the density of the unit cell. 

The low solubility of the materials studied here means that the former method is 

impossible, as solution concentrations are too weak. The density has been estimated 

from the crystal structure, as is reported in Chapter 3 and the cavity radii calculated via 

the crystal densities for the first five materials are presented in Table 4.4-2. 

A different method can be used [181, 182] which enables the average radius, f 

and the shape factor, Az to be estimated. Commercial molecular modelling software 

[183] is used to calculate the solvent accessible surface (SAS) around a molecule, 

using a solvent probe of radius 3 A based on the radius of chloroform or DCM. The 

SAS is then approximated to an ellipsoid with the semi-axes z, y, and x collinear with 

the length, width and breadth of the molecule respectively. An example of this is 

shown in Figure 4.2-1 for DED. The systematic errors involved with the measurement 

of a, b, and c can be as large as ± 0.5 A which means that an error of ± 25 % is 

possible on Az and ± 15 % is possible on r . However, in addition a refinement can be 

made to the estimate of r and A. by introducing a degree of self consistency to the 

calculations. The polarisability along the z-axis of the molecule, ou may be related to 

the average polarisability, a by [166, 175] 
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a(abc) 
<x — — 

' abc + (3A2 -\)a ' 

(4.4-7) 

Equation ( 4.4-7) is used to ensure that the theoretical value of a? calculated in 

MOP AC can be obtained from a and the estimated values of the shape factor and 

average radius. I f this is not the case, then the values of a, b, and c are adjusted within 

the estimation error so that a? is returned. Though this does not reduce the systematic 

errors on Az and r significantly, it does ensure that there is at least a degree of 

consistency between the estimated shape of the cavity calculated by this method and 

the polarisability tensor estimated by MOP AC calculations. 

In the following passages the calculation of the cavity radius is discussed in a 

little more detail for each molecule. The lengths of the cavity semi-axes, average radii 

and cavity shape factor are presented in Table 4.4-2. The molecular axes are defined 

generally such that the axes, z, y and x reside along the length, width and breadth of the 

molecules respectively. This is shown in Figure 4.4-1 for DED. (Please also refer to 

Figure 3.1-1 in Chapter 3.) 

NPP is approximately twice as long as it is wide. The length (a) is essentially 

defined as the distance between the oxygens pertaining to the nitro-group and the 

terminal part of the pyrrole ring plus the van-der-waals radii of the nitrogen and 

oxygen on each terminal group, respectively. Similarly, the width (b) is defined by the 

distance between the hydrogens on the aromatic ring plus two van-der-waals radii. In 

addition, since NPP is quite planar, the breadth (c) is defined purely by the van-der-

waals surface of the carbon atoms. 

The cavity for DED is a little harder to define due to the presence of the 

diethylamine groups which enlarge one side of the SAS. The cavity is usually chosen 

to reside around the centre of the molecule, with the lengths of the axes defined as an 

average of the SAS, as shown in Figure 4.4-1. Consequently it is possible that the 

cavity radius can be under or over-estimated by a significant margin, and as a result, 
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Figure 4.4-1: Two projections of DED with corresponding representations of the 
Solvent Accessible Surface surrounding the molecule. The ellipse surrounding each 
projection shows the approximation of the cavity from the SAS. 

80 



Dipole Moments of Highly Dipolar. 

we see the origin of the estimation error. The width of the molecule is now dominated 

by the dicyanomethanide acceptor group, resulting in a significant increase in the cavity 

width with respect to NPP. However, it is estimated here that the length and breadth 

of DED are similar to that of NPP. 

Like NPP and DED, DEMI is planar, thus the breadth of the cavity (c) is 

estimated to be approximately the same. The conjugated chain, para to the 

dicyanomethanide acceptor group on the aromatic ring-system, not only increases the 

length of the molecule and the cavity, but also brings the dipole moment slightly off 

axis. To circumvent this problem, the cavity axes are re-defined so that the z-axis lies 

along the dipole moment vector as is required by the above analysis (see Chapter 2, 

[166]). The average width of the cavity is consequently slightly smaller than that 

estimated for DED. 

DCH is very similar to DEMI, in that it is planar and has approximately the 

same width and breadth. The presence of the large cyclohexyl groups on the amino 

end of the molecule results in a slight increase in the length of the cavity. 

With ULTRA, the length of the molecule is larger than DCH or DEMI due to 

the addition of the diethylether groups to the amino end. There has also been the 

addition of a piperidyl ring to the conjugated chain which twists the molecule out of its 

planar configuration. As a result, the cavity becomes increasingly hard to define 

logically. The average length of the cavity (a) is only slightly larger than that of DCH 

or DEMI due to the lack of planarity in ULTRA. The average width is also estimated 

to be slightly larger. However, the breadth of the cavity is chosen to remain the same 

as DCH. This a somewhat arbitrary choice admittedly and c could be as much as 1.5 A 

larger. However the refinement to the analysis using ( 4.4-7) allows at least consistent 

values to be used. 
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Material a/A b /A c/A F Ik 4 F Ik 
x-ray 

NPP 5.7 2.9 1.9 3.2 0.1377 3.96 

DED 5.9 4.0 2.0 3.6 0.1592 4.64 

DEMI 8.0 3.6 1.9 3.8 0.1027 4.44 

DCH 8.4 3.6 2.3 4.1 0.1105 5.03 

ULTRA 8.5 3.8 2.3 4.2 0.1121 4.86 

SHEF A 8.0(+) 3.2 1.9 3.7 0.0965(-) — 

SHEF B 8.0(+) 3.2 1.9 3.6 0.1010(-) — 

SHEF C 7.0 3.6(±) 2.0 3.7 0.1249 — 

SHEFD 2.8 2.8(+) 2.8 2.8 0.3333(-) — 

Table 4.4-2: Table showing the lengths of the cavity semi-axes, a, b, and c, and the 
average radii and shape factor obtained from those estimates. Data with a (+) 
indicates that this value may be larger. Similarly, data with a (-) indicates the shape 
factor may reduce. 
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Problems in analysing the cavity through this method arise further when 

considering the "Sheffield" materials. Like the tertiary amino TCNQ adducts and 

DED, SHEF A is a planar molecule, where the width and breadth of the cavity may be 

easily defined. However, the addition of the alkyl chain at one end of the molecule 

gives rise to the question; what is the length of the cavity? The length could 

conceivably be up to 15 A. Since the polarisabilities and dipole moments of long alkyl 

chains are usually low and that the dipole moment of SHEF A extends mainly between 

the positively charged pyridinium group and the negatively charged heterocyclic moiety 

(see Figure 3.1-1, Chapter 3), the alkyl chain on SHEF A could be treated in effect as 

"part of the solvent". The difference in dipole moments between similar molecules 

with and without such alkyl chains would only be small. Consequently the alkyl chains 

can be excluded from the cavity. Then for SHEF A, the distance between the 

pyridinium group and the negatively charged heterocyclic moiety, plus two van-der-

waals radii can be defined as the length of the cavity. However one acknowledges that 

the cavity length could be considerably larger than estimated in Table 4.4-2. 

With SHEF B, essentially the same problem arises with the length of the cavity 

as with SHEF A, except this time the three butyl groups are the cause. As a result 

there is a slight enlargement of the SAS at the appropriate end of the molecule. 

However, the same arguments applied to SHEF A can be applied here, thus for the 

moment the cavity axes are the same. 

With SHEF C, there is considerable difficulty defining the cavity radius and it is 

increasingly difficult to approximate the SAS to a sphere or and ellipsoid. The 

presence of the three phenyl rings introduce large SAS lobes that stick out of the plane 

of the molecule. These can be treated as "part of the solvent" as with SHEF A and 

SHEF B, however it is unclear whether the exclusion of the phenol rings affects the 

dipole moment of SHEF C to a large extent. The length and breadth shown in 

Table 4.4-2 for SHEF C are those estimated when the phenyl rings are removed. 

Furthermore the dipole moment, which extends from the positively charged 

phosphorous to the negatively charged oxygen moiety, does not lie along the length of 

the molecule. The cavity axes may be re-defined so that the dipole moment lies along 
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the z-axis, but the molecule subsequently lies off axis and so that the dipole moment is 

not in the centre of the cavity. As a result it is extremely difficult to define the width of 

the cavity for SHEF C, nonetheless it is taken as an average of the SAS either side of 

the dipole moment vector. Once again, this means that the cavity radius and shape 

factor could be over or under-estimated. 

Finally with SHEF D, it is noticed that, contrary to the previous molecules, the 

dipole moment is perpendicular to the length of the molecule. Thus the dipole does 

not lie along the z-axis, but this time the j-axis, from the positively charged phosphorus 

to the negatively charged oxygen, nearly parallel to the double bond. Since the charge 

separation distance is small, the dipole moment is expected to be additionally small. 

Again the axes can be transformed so that the dipole lies along the z-axis. The 

situation for SHEF D is then similar to that of an oblate spheroid where the j>-axis may 

vary considerably due to the presence of the alkyl chain and phenol rings. Once again 

these may be excluded from the estimate of the cavity. The resultant SAS is thus the 

van-der-waals surface surrounding the oxygen and phosphorous atoms which is close 

to a sphere. The shape factor, Az is then close to 1/3 and all ellipsoidal equations 

revert to the spherical counterparts. Furthermore, the estimated polarisability along 

the dipole moment, as calculated by MOPAC, is very close to the average 

polarisability, further suggesting that the molecule resides in a uniformly polarisable 

sphere and not an ellipsoid. Thus the values of a, b, and c presented in Table 4.4-2 are 

identical. 

It is interesting to note the value of refractive index that is obtained using the 

Clausius-Mossotti equations for spherical and ellipsoidal local fields (see equations 

(2.3-9) and ( 2.3-26)), when inserting the polarisabilities, cavity radii, and shape factor 

estimated above. These are shown in Table 4.4-3. From the definition of the two 

equations [166,175], the refractive indices obtained from either equation should be the 

same, providing consistent values of the radius, polarisability and shape factor are 

used. As a degree of self consistency is introduced through ( 4.4-7), this should be the 

case. Inspection of Table 4.4-3 shows this to be true within the error of measurement. 

It is noted, however that the refractive indices of all of the materials are quite high and 
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appear to be over-estimates in comparison to the refractive indices of crystals for 
example [184]. This indicates through inspection of the Clausius-Mossotti equations 
that the estimate of the cavity radius is too low. The Clausius-Mossotti equations are 
extremely sensitive to the value of the cavity radius, such that changes of the radius 
within the error of measurement may change the refractive index by as much as 40%. 
Thus, only small increases in cavity radius are needed to produce reasonable values of 
the refractive index. This is clearly evident when the refractive indices are re
calculated using the crystal structure cavity radius, as present in Table 4.4-4. 

The dependence of the spherical and ellipsoidal gas phase dipole moments on 

the cavity radius (while the shape factor remains constant) is shown for DEMI in 

Figure 4.4-1. The radius increases between two limiting values; the cube root of the 

average polarisability, \/cl and approximately half the length of the molecule. We see 

that the gas phase dipole moment which is obtained from the experimental gradient, 

increases dramatically with r so if the SAS radius is an under-estimate of the cavity 

radius as is indicated by the refractive index estimates, the dipole moment will increase 

accordingly. Of course the over-estimation of the refractive indices could also mean 

that the polarisability is over-estimated. This only highlights the necessity of measuring 

refractive indices in conjunction with dipole moment measurements, especially for 

highly polar molecules such as those under study. Nonetheless, as stated earlier this is 

extremely difficult with the TCNQ materials, so theoretical estimates of the 

polarisability have to be relied upon. 

The dipole moments for the materials discussed in this thesis are calculated 

utilising the estimates of the cavity radii and polarisabilities in combination with the 

experimental data, using a computer program which has been developed in 

Mathematica [185]. This is shown in Appendix I . The results are discussed in the 

following section. 
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Material n "ell rlk 

NPP 2.4 2.4 3.2 

DED 3.5 4.1 3.6 

DEMI 3.9 3.7 3.9 

DCH 3.7 3.4 4.1 

ULTRA 2.5 2.2 4.2 

Table 4.4-3: Refractive indices for NPP and TCNO derivatives obtained using 
spherical and ellipsoidal Clausius-Mossotti equations, estimated by using SAS cavity 
radii. 

Material n "ell rlk 

NPP 1.5 1.7 4.0 

DED 1.7 2.0 4.6 

DEMI 2.1 2.6 4.4 

DCH 1.8 2.2 4.9 

ULTRA 1.7 1.8 5.0 

Table 4.4-4: The refractive index of NPP and various TCNO derivatives calculated 
using spherical and ellipsoidal Clausius-Mossotti equations, utilising crystal structure 
cavity radii. 
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Figure 4.4-1: Evolution of the gas phase dipole moment, calculated 
using the spherical (squares) and ellipsoidal (circles) local field 
formalisms for DEMI with cavity radius. The solid and dotted lines 
represent the SAS and crystal structure radii, respectively. 

§4.5 Discussion of Results. 

The results of the dipole moment calculations are presented in Table 4.5-1. 

The percentage error on the dipole moments is half the percentage error on the 

gradients presented in Table 4.4-1, since the dipole moment is proportional to the 

square root of the gradient. It is estimated that and additional 5 % error on the dipole 

moment is incurred due to the uncertainty of the cavity radius, shape factor and 

polarisabilities. 

The trends observed with the experimental gradients {dejdC) are reflected 

directly by the dipole moments for the materials. The calculated solution state and gas 

phase dipole moments are extremely large for the tertiary amino TCNQ adducts and 

the first three "Sheffield" materials. In comparison to NPP (which still has a high 

dipole moment in comparison to a solvent molecule) the dipole moment for DEMI is 
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about three to four times larger, which is a particularly large value and serves to 
demonstrate that a high degree of charge-transfer is possible with the TCNQ materials. 

Of the tertiary amino TCNQ adducts, DEMI has a larger dipole moment than 

DCH or ULTRA. The lower dipole moments can be attributed as a result of the loss 

of planarity in the molecules, resulting in shorter charge-separation distances, and 

slightly weaker electron donating moieties. 

DED also has an extremely large dipole moment. One must be careful when 

comparing dipole moments of DED to the tertiary amino TCNQ adducts as 

experiments were conducted in different solvents. However, it is noted that though the 

charge-separation distance across DED is smaller, the dipole moment is comparable to 

that of the tertiary amino TCNQ adducts. This may indicate a considerable increase in 

the donor - acceptor strengths and an increase in the aromaticity of the DED. This is 

possibly confirmed by similar observations of DED in the crystal phase [186, 187]. 

One must be aware however, that the high dipole moment may also be due to an over

estimate of the cavity radius or an under-estimate of the polarisability for DED. 

Of the "Sheffield" materials, SHEF C has the largest dipole moment. It is 

noted, once again, that the charge-separation for SHEF C is slightly smaller than that 

of SHEF A or SHEF B, but SHEF A and SHEF B possess smaller dipole moments 

than SHEF C. Such differences can be attributed to differing donor and acceptor 

strengths, and it also may indicate that SHEF C resides in a more zwitterionic state 

than SHEF A or SHEF B. Possible confirmation lies with solvatochromic evidence 

[188, 189] where an extremely large hypsochromic (negative) shift is exhibited for 

SHEF C in comparison to SHEF A or SHEF B. This indicates that the ground state 

dipole moment is significantly larger than the excited state dipole moment near the gas 

phase, and the molecule thus resides in a predominately zwitterionic state. Since lower 

negative shifts are observed for SHEF A and B [188, 190], it is possible that they are 

less aromatic near the gas phase than SHEF C and this appears to agree with the dipole 

moment results. SHEF D has a small dipole moment in comparison (smaller than 

NPP) as might be expected since the charge-separation is quite small. However, in 
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Material / D M f / T > nf 1D „ - / D 

NPP 6.1 ±0 .3 6.9 ±0.6 3.9 ±0 .3 8.3 ±0 .8 5.8 ±0.5 

DED 18.4 + 2.8 18.2 ±3 .6 7.9 ± 1.6 20.3 ±4 .1 9.3 ± 1.9 

DEMI 21.9 + 3.3 22.4 ±4.5 6.8 ±0 .9 33.0 ±6 .6 15.2 ±3 .4 

DCH 15.0 ±2 .3 15.6 ± 3.1 5.0 ± 1.0 22.8 ±4 .6 13.1 ±2 .6 

U L T R A 10.6 ± 1.6 13.5 ±2.7 6.4 ± 1.3 19.0 ±3 .8 14.1 ±2 .8 

S H E F A 10.5 ± 1.1 11.3 ± 1.7 5.8 ±0 .9 14.4 ±2 .2 9.6 ± 1.4 

S H E F B 14.4 ± 1.4 14.2 ±2.1 6.3 ±0 .9 19.4 ±2 .9 12.5 ± 1.9 

S H E F C 19.3 ± 1.9 17.9 ±2 .7 6.8 ± 1.0 22.5 ±3 .4 11.1 ± 1.7 

S H E F D 5.2 ±0 .5 4.4 ±0 .7 1.4 ±0 .2 4.4 ±0 .7 1.4 ±0 .2 

Table 4.5-1: Table showing the dipole moments obtained from experiment using 
Guggenheim's equation (superscript: Gugg.J, and the spherical (superscript: Sph.) 
and ellipsoidal (superscript: ell.) local fieldformalisms. The subscripts s and g stand 
for the dipole moment in the solution and gas phases respectively. 
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comparison to the dipole moments of solvents (1.01 D for chloroform [166]) it is 

quite large. Considering the charge-separation distance for SHEF D is similar to that 

of solvents, the comparatively large dipole moment adequately demonstrates the 

zwitterionic nature of the molecule. 

In comparison to the other estimates of the dipole moment, discussed in 

Chapter 3, we see for NPP that the spherical solution phase dipole moments presented 

in Table 4.5-1 agrees well with literature values obtained in the crystal phase (8.1 D 

[191, 192]) and solution phase (6.7 D [167]). Furthermore it may appear that the 

solution phase ellipsoidal dipole moments are over-estimated. However one must also 

consider the local fields used with the literature dipole moments which are all spherical, 

so it is likely that a disagreement is found here. Both ellipsoidal and spherical gas 

phase dipole moments for NPP, estimated here, do not agree with the MOP AC 

calculations conducted upon NPP which are discussed in Chapter 3 (9.2 D and 7.9 D 

for A M I and PM3 methodologies respectively). It is possible that the MOPAC 

calculations over-estimate the value of the dipole moment for NPP, since it is unlikely 

that similar dipole moments are found in the gas phase as well as the crystal phase, as 

is evident from comparisons to literature values [191,192]. Over-estimation of the gas 

phase dipole moment for large molecules is often a problem associated with MOPAC 

calculations, especially the A M I methodology [193, 194]. Again this is evident 

through comparisons of A M I dipole moments to PM3 dipole moments. 

The gas phase dipole moment, estimated this time for DED, is also lower than 

that calculated via MOPAC. However, both spherical and ellipsoidal estimates fall just 

within experimental error of either dipole moment estimated using the A M I 

(10.9 D) or PM3 (9.7 D) methodologies. The results are encouraging when the dipole 

moment for DED is compared to the dipole moment measured in the crystal phase 

(26.4 D [186]). The crystal phase dipole moment is larger than that measured here 

since it can be postulated that the molecule resides in a higher polarity environment in 

the crystal phase than the solution phase. The electric field experienced by DED in the 

crystal phase is therefore larger and the dipole moment is also larger than that in the 

solution phase. 
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Poor correlations are again found with the dipole moments of the tertiary 

amino TCNQ adducts and that calculated by MOP AC. The spherical gas phase dipole 

moments estimated here are generally lower than the MOP AC dipole moments and the 

ellipsoidal moments higher. Since MOPAC often erroneously estimates dipole 

moments for large molecules [193, 194] as explained above, emphasis will be placed 

on comparisons with 40-state calculations rather than these. There is also a strong 

disagreement between the solution phase dipole moment of DEMI and that previously 

measured (45 D in DMF [167]). This is to be expected, since the two measurements 

are conducted in different solvents. The neglect of specific solvent interactions and the 

use of different measurement techniques, hampers the comparison between the two 

results. Nonetheless, it is observed from the present study that the dipole moment of 

DEMI in DCM is extremely large and that a larger dipole moment of DEMI in DMF is 

not unlikely, since DMF possesses a higher dielectric constant. Thus the dipole 

moments obtained in this study appear to be consistent with those obtained in previous 

studies. 

Dipole moments for the "Sheffield" materials estimated in this study cannot be 

compared to the MOPAC calculations, discussed in Chapter 3, since modifications to 

the structure of the molecules for the purpose of MOPAC calculations results in 

erroneous estimates of the dipole moment. In comparison to literature values 

however, similar compounds to SHEF A and SHEF B possess gas phase dipole 

moments around 7 - 10 D [188, 189]. The spherical gas phase dipole moments for the 

first three "Sheffield" materials are all slightly lower than this range. It is possible to 

perform MOPAC calculations on SHEF D and the dipole moment is estimated to be 

4.3 D. This is in excellent agreement with the solution phase dipole moment for 

SHEF D presented in Table 4.5-1, though the estimated gas phase dipole moment is a 

little lower. It is possible that the cavity radius is slightly under-estimated, nonetheless 

the dipole moments generally agree well. 

We have seen in §4.4 that larger dipole moments are possible i f the crystal 

structure radius is used. Using the crystal structure radii (but maintaining the same 

shape factor), the spherical and ellipsoidal solution and gas phase dipole moments for 
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NPP, DED and the tertiary amino TCNQ adducts are re-calculated and presented in 

Table 4.5-2. With NPP, there is a better agreement with the MOP AC calculations and 

the spherical gas phase dipole moment and a very good agreement between the 

spherical solution phase dipole moment and that obtained in the crystal phase (8.1 D). 

Here, the ellipsoidal dipole moments are possibly over-estimated, but once again we 

can only compare dipole moments that have been estimated using similar local field 

formalisms. With the TCNQ materials the resulting dipole moments, both in the gas 

phase and solution phase estimated using the spherical and ellipsoidal equations, are 

extremely large. One must also be aware that the reaction field reduces as the cavity 

radius increases, thus there will be less change in dipole moment with changes in 

dielectric constant. This may have consequences with the evolution of the dipole 

moment and other molecular properties as will be seen in Chapter 7. It might be 

assumed that with these results, the cavity radius is over-estimated. However, it is 

only possible to say that the cavity radius will lie somewhere between the SAS radius 

and the crystal structure radius. Such a conclusion only emphasises the need to 

estimate the refractive index and polarisability through solution state measurements. 

Material NPP DED DEMI D C H U L T R A 

nf / D 8.0 ±0 .4 23.7 ±4 .8 30.6 ±6.1 22.2 ±4 .4 15.9 ±3 .2 

nf / D 6.3 ±0 .3 17.3 ±3.4 17.3 ±3 .4 13.8 ±2 .8 10.5 ±2.1 

H'l' / D 9.2 ±0.5 25.9 ±5.2 38.1 ±7 .4 27.0 ±5 .4 20.1 ±4 .0 

„ - / D 7.8 ±0.4 19.3 ±3 .8 26.0 ±5 .2 20.1 ±4 .0 16.8 ±3 .4 

r Ik 4.0 4.6 4.4 4.9 5.0 

Table 4.5-2: Dipole moments of NPP, and TCNO derivatives, estimated using crystal 
structure cavity radii. 
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When comparing the spherical and ellipsoidal local field formalisms, it is easy to 
see that the dipole moments obtained using the ellipsoidal equations are generally 
higher. This results from the increase in reaction field due to the anisotropy of the 
molecule. For materials with moderate or low polarisabilities as with NPP and 
SHEF D, there is only a small difference between the estimated spherical and 
ellipsoidal dipole moments. Indeed, given the uncertainty surrounding the cavity radius 
and polarisability it could be said that the spherical and ellipsoidal dipole moments lie 
within experimental error of each other. For such molecules, whose dipole moments 
are small, there is no real advantage in using the ellipsoidal equation. This is a 
conclusion that has been re-iterated many times [165, 166, 174, 176, 195]. However, 
with highly anisotropic molecules that have large dipole moments such as the TCNQ 
materials discussed here, the difference is now significant. In Chapter 7, a comparison 
of dipole moments estimated for DEMI in this chapter to that of 40-state SOS 
calculations will be made. It is hoped to ascertain from this, which local field 
formalism provides a better correlation with theoretical calculations. 

§4.6 Conclusions. 

The dielectric constants of solutions of highly anisotropic materials have been 

measured and plotted as a function of the solute concentration. The gradients obtained 

from these graphs have been used to calculate the dipole moments of these materials 

using equations that incorporate different local field factors. Also required for these 

calculations are estimates of the cavity radii and local fields, where the parameters 

chosen and method of calculation used has been described in detail for each molecule. 

The dipole moments for all of the molecules (with the exception of NPP and SHEF D) 

are high, reflecting the zwitterionic nature of the materials. Detailed analysis of the 

cavity radius highlights the many problems associated with its calculation. A 

comparison of the equations used to calculate the dipole moments and refractive 

indices reveals that the estimates of the polarisabilities and cavity radii appear to be 

fairly good, and there is an indication that the "real" value of the cavity radius lies 

somewhere between estimates obtained using SAS methods and crystal structure 

densities. In addition, estimates of the dipole moment appear to agree reasonably well 
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with similar estimates obtained elsewhere. Furthermore, the dipole moments obtained 

using the ellipsoidal local field factors produce higher dipole moments than that of the 

spherical local field equations. It is further postulated that for highly polar molecules, 

the use of an ellipsoidal cavity in the calculation of dipole moment becomes critical. 

The results presented in this chapter will now be used in conjunction with the 

results obtained in Chapter 5 to extract a value of 0(0) for these materials. 
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Chapter 5 

First Hyperpolarisabilities from EFISH 

Measurements. 

§5.1 Introduction. 

The theoretical basis needed for determining the first hyperpolarisability, /? is 

described in Chapter 2. In this chapter, the equipment used with the experimental 

technique of electric field induced second harmonic generation (EFISH) is described, 

and the results of calibration measurements on the experimental system are provided 

which are used as a basis for measurements on unknown materials. 

Results of EFISH experiments and the corresponding first hyperpolarisabilities 

of the four TCNQ derivatives and NPP are also presented in this chapter. These 

experiments have been conducted at 1.064 um and 1.907 urn. Experiments are also 

conducted in two different solvent systems to determine the effect of the solvent on the 

value of /?. 

§5.2 Experimental Set-up. 

EFISH, as explained in Chapter 2, utilises a static electric field to break the 

symmetry of a homogeneous, isotropic medium and induce a macroscopic, third order 

non-linearity, TL of a solution. The method used to measure TL when subjected to 

such an electric field, is the Maker fringe technique [196, 197, 198, 199, 200], This 

technique utilises the difference in phase velocities of the bound and free second 

harmonic waves, so that when a wedge of material is translated normal to the incident 
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optical radiation, an interference pattern arises due to the differing optical path lengths 
of these waves. For the case of solutions, glass windows are placed between two 
electrodes such that a wedge shaped cavity is formed for the liquid to fill. Previous 
EFISH experiments [201] have incurred experimental difficulties such as accidental 
movement of the wedge and solution leakage from the cell. Thus, a considerable 
amount of effort was required to refine the design of the experimental cell so that such 
experimental difficulties are removed. The experimental technique and set-up are 
described here in detail. 

The solution wedge is defined by two BK7, 20 * 8 x 2 mm glass windows 

(supplied by Multilab Ltd., Newcastle Upon Tyne.) which are polished along the long 

faces and placed between two electrodes, such that a cavity for the solution is formed. 

The angle of the wedge is chosen such that an acceptable amount of fringes are 

observed over a translation distance of 2 - 5 mm. This angle is typically about 2 - 5°, 

as shown in Figure 5.2-1. To ensure that the electric field is zero at one face of each 

window [200, 202], the windows occupy the majority of the cell, allowing the solution 

cavity to be approximately 2 mm wide. These are held in place between the electrodes 

by a PTFE spacer which also serves to separate the top and bottom of the cell. Two 

holes are left either side of the cell to allow the solution to flow in and out. The 

electrodes are approximately 10 x 15 mm and the positive electrode at the top of the 

cell is encased in PTFE for isolation purposes, as are the two clamping rods at either 

end of the cell. The bottom of the cell, which serves as the negative electrode, is made 

from stainless steel and has two positioning holes drilled in the underside. This ensures 

that the inner cell does not move when placed in the outer cell which is shown in 

Figure 5.2-2. 

The outer cell or "pot" is also made from stainless steel and has approximate 

dimensions of 50 mm * 50 mm * 30 mm. Optical windows (24 mm diameter), made 

from BK7 glass (also supplied by Multilab Ltd.) are clamped to the front and back of 

the cell to allow incident radiation to pass through. These windows are large so that 

the translation distance along the inner cell is maximised, and are sealed so that the pot 

will not leak. A total translation distance of about 10 mm is allowed using this set-up. 
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The cavity of the outer cell is designed so that a minimal amount of solution is needed 

for each experiment. It was found that a minimum of 6 ml of liquid was required to 

sufficiently immerse the inner windows and cell, and the pot is capable of holding 

21 ml of liquid when the inner cell is inside. In addition, the optical path length 

between the outer and inner glass windows is minimised. I f the solution absorbs at the 

fundamental or second harmonic wavelengths then it is possible that the signal may not 

be detected over long path lengths. The distance between these windows is typically 

about 3 mm either side of the cell which is small enough to be able to conduct 

experiments when a small absorptive loss is involved. The positive electrode is 

connected to the positive high voltage (HV) supply via an isolated stainless steel rod. 

This also serves to help position the inner cell in the pot by being held in place by an 

electrically isolated clamped lid. The negative electrode of the inner cell is in contact 

with the entire body of the outer cell and this forms the negative electrode contact. 

The whole arrangement is then placed on an electrically isolated translation stage 

(Ealing Electro-Optics), which is capable of translating in 1 |im steps, and clamped into 

place. 

The source of the experiment employs an Nd-YAG, Q - switched laser 

(Spectra-Physics Inc., DCR - 11) to provide ~80 mJ, 7 ns, 1.064 um pulses at a 

repetition rate of 3 - 10 Hz. This can either be used as a fundamental wavelength 

source, producing second harmonic light at 532 nm, or to pump a Raman shifter as 

shown in Figure 5.2-3, producing a fundamental of 1.907 um and second harmonic of 

954 nm. The incident radiation is polarised vertically with respect to the electrodes 

("s-polarised") with the aid of a BK7 glass cube polariser (Ealing Electro-Optics). A 

similar polariser is used to provide control of the beam intensity which typically 

reduces the incident energy to around 30 mJ when the polarisers are uncrossed and 

~0.1 mJ when crossed. 

Fluctuations in the energy of the fundamental beam are removed by normalising 

the signal with respect to a fundamental beam reference. A plate beam splitter is 

placed just after the polarisers to provide a reference arm which remains at a shallow 
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Figure 5.2-1: The inner EFISH cell. 
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angle such that the reflectance of the two orthogonal polarisation's are the same [203]; 

around 5°. 

A computer controls the majority of the experiment including the translation 

stage via a standard IEEE 488 interface and stage controller (Ealing Electro-Optics). 

Connected to the computer by the interface is a gated integrator and boxcar averager 

(Stanford Research Systems Ltd.) which provides two electronic detection gates each 

centred over the reference and signal. This eliminates unwanted noise which may 

occur in a different temporal position to that of the signal and sends the data, 

integrated over the gate width, to the computer. Further to this, shot-to-shot 

averaging is conducted and the data is stored on computer. An internally clocked 

digital delay generator is used to control the timing of the laser pulse, applied electric 

field and detection electronics. A schematic of the timing sequence is shown in Figure 

5.2-4. The delay generator initiates a trigger at T 0 which starts the laser flash lamp 

current and allows lasing to occur. About 200 - 250 us after T 0 , the generator initiates 

Lamp Trigger. 

Lamp Current. 

1 HV Trigger. 

A 
HV Supply. 

Q - Switch Trigger. 

11 
Laser Pulse. 

Electronics Trigger. 

KpfWf»nr.p Oatp 

n Signal Gate. 

Figure 5.2-4: A schematic of the timing of the EFISH experiment. 
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the HV supply trigger (via output A) which also turns on the HV. The d.c. supply 
(Hartley Measurements Ltd.) provides a 6 us pulse ranging between 0.4 and 10 kV. 
The trigger is timed such that the laser pulse is in the centre of the electric field pulse 
when the beam passes through the cell. This ensures an essentially static electric field 
for the duration of the laser pulse. The Q-switch is controlled by the internal delay 
generator of the laser which is in turn triggered at T0. This also pre-triggers the boxcar 

electronics such that the signal and reference may be detected by adjusting the 

appropriate delays on the box car. 

The optical set-up for each wavelength is slightly different, thus each shall be 

treated separately. 

§5.2.1 Experiments Utilising 1.064 |im Radiation. 

The incident radiation is focused at the centre of the cell ensuring that the 

solution cavity resides within the confocal region of the beam [202]. A 100 cm focal 

length lens is used for this purpose at 1.064 \xm. 

The second harmonic radiation is detected using an SI response 

photomultiplier tube (PMT) (Thorn EMI) which is pre-filtered using a 532 nm 

bandpass filter and a KG3 near infra-red blocking filter. The PMT is powered using a 

HV power supply (Thorn EMI, Electron Tubes Division, PM28B) and operates in a 

linear regime when 1.1 - 1.3 kV is applied, though usually 1.1 kV is sufficient to detect 

the second harmonic. Another polariser is placed between the cell and the detector so 

that only "s-polarised" light is detected. Appropriate neutral density (ND) filters are 

used to reduce the intensity of the detected signal if necessary. 

The reference beam is detected by a fast SI response silicon photodiode 

(Instrument Technology Ltd. (UK), x « 500 ps) which is pre-filtered by appropriate 

value ND filters (ND = 0.0 - 1.0) and a diffusion screen such that the detector operates 

in a linear regime. This is also operated by a standard HV supply, operating at 3.0 kV 

(Thorn EMI, PM28A). The reference is detected, averaged by the boxcar and 

collected by the computer which also collects the corresponding second harmonic 
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signal. This is then normalised by dividing the second harmonic by the square of the 
reference. 

§5.2.2 Experiments Utilising 1.907 jim Radiation. 

For experiments using 1.907 u,m radiation, as previously mentioned, the 

1.064 um laser beam can be used to pump a Raman shifter. The laser beam is focused 

using a 350 cm focal length lens into a 1.5 m long tube, filled with hydrogen gas (H2) 

to a pressure of 15 lb./ in2 (250 Bar). The majority of incident radiation is then 

removed with a dielectric mirror which only reflects 1.064 \xm radiation and directs the 

reflected beam into a beam dump. Any residual radiation and the emitted Stokes and 

anti-Stokes Raman lines, are then directed through a dispersing prism and removed 

through a series of small apertures along the table, until the first Stokes line at 

1.907 um remains. This resulting fundamental beam provides approximately 5 mJ of 

radiation over 4 ns pulses. The polarisation of the beam is horizontal or "p-polarised" 

which is orthogonal to the required polarisation for the experiment. Thus, a quartz 

multiple order (Melles Griot) half waveplate is used to rotate the plane of polarisation 

by 90° to the "s-polarised" state. A 954 nm dielectric filter is used to remove any 

second harmonic which may be produced by the Raman tube or the quartz waveplate. 

In addition, a visible blocking filter (RG850) removes some visible light which is 

produced by the Raman tube. The beam is then directed back along the same 

experimental line as the 1.064 u,m beam. A polariser oriented for "s-polarised" light is 

used to ensure any residual "p-polarised" light is removed. 

The incident radiation is focused at the centre of the cell this time using a 

20 cm focal length lens. The second harmonic is detected using an extended range 

Sl-PMT, pre-filtered using only a 954 nm band pass filter. Since the incident and 

second harmonic intensity is less, it is usual for the PMT to be operated at 1.3 kV. 

An appropriate detector for 1.907 um is unavailable, therefore the reference 

beam is detected by placing a powder sample of NPP in the reference arm at 45° to the 

incident radiation. The light is focused onto the sample using a 10 cm focal length lens 
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and the second harmonic generated by the sample is collected by another extended 
range SI response PMT, pre-filtered with a 954 nm band pass filter. Again 
appropriate ND filters are employed to obtain a usable signal (typically ND = 0.0 -
1.0). Since the light detected in the reference arm is now the second harmonic, the 
signal is thus normalised directly to the reference power and not the square of the 
reference as with 1.064 urn. A separate computer program is utilised to collect the 
normalised signal data at 1.907 u,m. 

To allow for a quantitative analysis of the resulting fringes produced at either 

wavelength, the entire experiment is referenced to quartz [197, 198, 199, 202]. A 

crystal of a-quartz is cut to an angle of 1° along the (011) plane [197], such that the 

du tensorial component is accessed when the incident light upon the crystal is 

polarised along this direction. Maker fringes are produced when the crystal is 

translated horizontally and irradiated with "p-polarised" light. The second harmonic, 

which is also "p-polarised" is detected in the usual manner for each experiment. 

Typically, the signal strength for quartz is 104 - 10s times larger than the EFISH signal, 

thus appropriate ND filters are employed to obtain a usable signal. 

§5.3 Analysis of Signal. 

The experimental set-up described in § 5.2 differs slightly to that described by 

Oudar [200] and others [201, 207, 211, 212], in that the EFISH cell resides in a 

solution filled pot. Consequently, the equations describing the propagation of the 

fundamental and second harmonic waves through the cell need to be revised. The 

second harmonic is analysed by following Oudar's method [200] allowing for the extra 

boundaries involved with the pot and any absorption due to the liquid. This involves 

the solution of the non-linear wave equation in each homogeneous medium and the 

calculation of the amplitudes of the fundamental and second harmonic waves with the 

aid of boundary conditions. The additional effect of each boundary shall be considered 

only in this section. The derivations of equations ( 5.3-6), ( 5.3-7), and ( 5.3-8) can 

subsequently be found in Appendix II . 
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Consider a fundamental beam with electric field, Em(z) propagating in the 

z-direction, normal to each interface as shown in Figure 5.3-1. The addition of the first 

two boundaries have the effect of reducing the initial electric field strength by the 

Fresnel transmission coefficients for normal incidence [203], such that 

Ea{2) = t°tm

AEto(0), 

where 

/ = 
1 +«„ 

and 

(5.3-1) 

(5.3-2) 

2« 
/ = 

G O 

(5.3-3) 

where n° and nL

a are the refractive indices at angular frequency a for BK7 glass, G 

and the liquid, L. E°(2) represents the optical field strength just after the position 2 in 

Figure 5.3-1, E°(0) represents it immediately before the interface. 

The situation where the solution absorbs the fundamental radiation must also be 

considered. The field strength is reduced by a factor induced by the absorption 

coefficient of the liquid medium at frequency co, and then again reduced by the 

1 
Direction | | | 
of laser. 

L 

*2 X, 

0 1 6 7 

Figure 5.3-1: A schematic diagram showing the boundaries and 
static electric field variation in the EFISH cell. 
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transmission factor for the liquid-glass interface at position 3. The field strength thus 
becomes 

E-{2) = rLt^rAe-a^l2E0,{o), 
(5.3-4) 

where 

,» _ 2"L 
L a . L 

(5.3-5) 

and x t is the distance travelled between the two interfaces at positions 2 and 3. 

From this point the analysis is exactly that of Oudar's with the fundamental 

field amplitude represented by ( 5 .3-4) [200]. Approximately half way through the first 

glass wedge the static electric field turns on and so does the quadratic non-linearity. 

This is assumed to be slowly spatially varying (as described in Appendix II) due to the 

fringing effects of the electrodes and thus only contributes to the second harmonic 

bound wave at interface 4, where the static electric field is now constant. Equation 

( 5.3-6) describes the relationship between the bound wave, E^(z) produced and the 

fundamental field strength, Em(z): 

(5.3-6) 

where deff (z) is the effective quadratic non-linearity and nm and n2m are the refractive 

indices of a medium at frequencies ty and 2 on respectively. 

By considering the boundary conditions for the second harmonic electric and 

magnetic field amplitudes, E2m and H2(0 (see Appendix II), the transmitted free wave 

amplitude may be calculated between two media with an interface at z0: 

Efe«> = t^Efe"' + \t^\z,) - T2E*\z0)]e«>, 

(5.3-7) 

where 
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( ia ^ 
k ' 2°> + • 

v 2 J 

* 2 . = 
2« (0 

2<B 

> 4 2 + » £ ' 
w 0 ) + „ ( • ) 

(2) (1) * 

(5.3-8) 
The superscripts (1) and (2) represent the medium in which each parameter is 

measured. The first term in ( 5.3-7) represents the transmitted free wave and the 

second represents the mismatch between the two bound waves in their respective 

media. Thus, ( 5.3-7) may be successively applied in combination with ( 5.3-4) and 

( 5.3-6) to obtain the final field strengths. 

At position 5 in Figure 5.3-1 the transmitted free wave amplitude is 

T7 2o> 2̂a> 
L f = t G TLEL

b 

(5.3-9) 
where 

f2a> _ Ar,2a> 
O ~ G . L 

E? = 4x 
2 r G 

E0[E*(3)]2 = ( t T ) 2 f e ) 2 

and 

(5.3-10) 

where E° and El are the bound wave electric field amplitudes described by Oudar's 

method [204], 

The free wave is then transmitted through two additional boundaries and 

another liquid medium which have the effect of reducing the second harmonic in much 

108 



First Hyperpolarisabilities from EFISH Measurements. 

the same way as with the fundamental. The final transmitted free wave amplitude is 
thus 

(5.3-11) 

where 

f2a> _ "l2a> 

l + n 2m 

(5.3-12) 

i1™ and tL

2m are the transmission coefficients at frequency 2o), described by ( 5.3-2) 

and ( 5.3-3) respectively (replacing co with 2<y), a2eo is the second harmonic absorption 

coefficient, and x 3 is the propagation distance between positions 5 and 6 in 

Figure 5.3-1. In comparison to the expression obtained by Oudar [205], five extra 

terms are involved which are given by the prefactor of (5.3-11). A simplification can 

be made to this term since the product of the transmission factors tLtG at either 

frequency is close to unity. Therefore, these terms can be removed with a negligible 

error (<0.05%) and, thus only the extra absorption term remains. 

It follows that the expression for the intensity of the second harmonic, I2m 

which is obtained by squaring the field amplitudes is [198] 

(5.3-13) 

where 

/ ( / ) = 2e cosh a 2m 

2 ; 
-cos 

- ( 2 a « , x , + a j „ X 3 ) 

(5.3-14) 
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(5.3-15) 

T = t 2a, 

n2a>+n2a> 

(5.3-16) 

with t 2 / , t / , tG

m, TG and TL given by ( 5.3-12), ( 5.3-2), ( 5.3-3), and ( 5.3-10) 

respectively. E0 is the applied electric field, f is the fundamental intensity, c is the 

speed of light, T is the third order non-linearity of the liquid and glass media, lc is the 

coherence length, and / is the path length in the wedge. 

Taking the average path length over the translation distance to be x2, equation 

( 5.3-13) may be used to obtain an expression for the average second harmonic 

intensity, Am

L when the wedge is translated over several Maker fringes [198]. A 

similar expression to (5.3-13) may be used for the average second harmonic intensity 

produced by a quartz wedge, A J3 which may be used as a reference for the entire 

experiment. The final expression is thus: 

where 

(5.3-17) 

'2a> 
-i2 

l + « * 

Q2 = 
l + « 

(5.3-18) 

(5.3-19) 
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and lc

Q and dn are the coherence length and effective quadratic non-linear optic 
coefficient (11 direction) of quartz, respectively. Thus upon rearranging ( 5.3-17), Tl 
may be obtained from the average intensity of a set of experimental fringes when 
compared to that of quartz, provided that r G , lc°, / / , hQ, the appropriate refractive 
indices, and any absorption parameters are known. 

A computer program has been developed using Mathematica [206] to calculate 

FL. This can be found in Appendix I . 

§5.4 Calibration Measurements. 

As is indicated in §5.3, before measurements of unknown materials can be 

made, various optical and electrical constants must be measured or obtained from the 

literature. Table 5.4-1 shows the refractive index values for quartz, BK7 glass, and the 

solvents used in the following experiments [197, 198, 200, 207, 208, 209, 210]. These 

are used in conjunction with the following calibration measurements to calculate TL for 

solutions of unknown materials. 

§5.4.1 Quartz Referencing. 

In §5.2 the experimental set-up to obtain a quartz reference signal is described. 

Typical sets of fringes produced by this wedge at 1.064 um and 1.907 urn are shown in 

Figure 5.4-1. A translation distance of 3 - 5 mm is sufficient to produce enough 

fringes for accurate analysis. The experimental data is fitted using a non-linear 

regressional analysis program (see Appendix I) to the function [198] 

y=A, sin2 [ f j , +<*>] + A2, 

(5.4-1) 

where A x is the fringe amplitude, A2 is the amplitude offset, <f> is the phase offset, and /, 

is the translation distance. fm is the spatial frequency of the Maker fringes and can be 

related to the coherence length by the relation 
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Wavelength 1.064 um 1.907 um 

Material n* n2<o 

BK7 Glass3 1.507 1.519 1.496 1.508 

Quartz5 1.53413 1.54702 1.5224 1.5358 

Chloroform 1.435* 1.447c 1.4278 1.432d 

Dichloromethane 1.409g 1.42f 1.408g 1.4123e 

Table 5.4-1: Refractive indices for the materials used in EFISH. 
a: Reference [208], 
b: References [197,200,208], 
c: Reference [200, 212]; 
d: Reference [207], 
e: Reference [209]; 
/• Reference [210]. 
g: Calculated through measurements of the coherence length, error »± 0.005. 
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Figure 5.4-1: Graph showing the Maker fringes obtainedfor quartz using 

1.907 fun (top) and 1.064 fjm (bottom) radiation. The squares are data 

points and the solid lines are fits to the data using the function described 

by (5.4-1). 
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= xt&n[0w] 
m 2lc 

( 5.4-2) 

where 9W is the angle of the wedge. The average height of the fringes is calculated 

using the following expression: 

m K2 2J 

(5.4-3) 

where ND is the value of the neutral density filters placed before the signal detector 

and Rs is the ratio of signal sensitivities on the boxcar averager between a solution 

experiment and a quartz experiment. 

Average values of the coherence length obtained from several quartz 

experiments were found to be 20.9 ± 0.5 um at 1.064 um and 35.7 ± 0.5 um at 

1.907 um, which agree well with literature values [197, 198, 200]. AQ

m varies from 

experiment to experiment as it is dependent on the specific experimental set-up. Thus, 

a quartz reference is conducted after each individual experimental run to allow for 

changes in set-up and any slow fluctuations in beam intensity. 

The du value for quartz was obtained from the literature and found to be 

1.2 x 10"9 esu for both 1.064 um and 1.907 um radiation [197]. 

§5.4.2 Electric Field Calibration. 

To enable measurements of TL and TG to be made, the size of the static electric 

field applied across the wedge must be known. The d.c. high voltage supply allows the 

measurement of the voltage across the electrodes via an output circuit which reduces 

the signal by 10. A 1 MQ voltage probe is connected to this output, and in turn, to an 

oscilloscope (Tektronix 2467B (400 MHz)). Thus, the actual electric field across the 

electrodes can be measured and related to the front dial readings through a calibration 
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graph, as shown in Figure 5.4-2. A linear relationship is exhibited between 1 and 

10 kV on the front dial. The slight deviation from linearity for small voltages is due to 

the HV supply possessing a turn-on voltage of 400V. Voltages of 6 - 8 kV on the 

front dial may be applied while the cell is filled with solution without risk of electrical 

breakdown. This corresponds to 2.5 - 3.4 kV applied across the electrodes. The 

electrode separation was found to be approximately 2 mm, thus electric fields ranging 

between 1.25 -1.7 MV m"1 are typical. 

For the measurement of TG, a single glass wedge, cut to an angle of 2° 

(supplied by Multilab inc.) is placed between the electrodes such that the electrodes 

completely overlap the edges of the wedge. A small voltage (about 5 kV on the dial) is 

applied so that a non-linearity is induced, being careful not to cause breakdown across 

the electrodes. The resulting Maker fringes, upon translation of the wedge are shown 

in Figure 5.4-3 for 1.064 um radiation. 

T G may be calculated by modifying ( 5.3-17) for air - glass interfaces only, such 

that 

where G} and G2 are similar to that 0, and Q2 given by ( 5.3-18) except that the 

refractive index for BK7 glass is to be used. From the average height of the Maker 

fringes obtained, TG was found to be 3.8 ± 0.4 * 10'14 esu at 1.064 u,m which agrees 

well with literature values [200, 211], The average coherence length, measured by 

analysis of several sets of fringes was found to be 20.5 ± 0.5 urn. Again, this agrees 

well with literature values. 

§5.4.3 BK7 Glass. 

El{Gl + Gl)rXi°)2 

m 

m 

(5.4-4) 
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Figure 5.4-2: The electric field calibration graph. Stars are 
data points and the solid line is a straight line fit to the data 
above the 1 kVmark on the x axis. 
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Figure 5.4-3: The Maker fringes obtained from BK7 glass 
using J. 064 jam radiation. Circles are data points and the 
solid line is a fit to the data. 
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Unfortunately at 1.907 |im the incident radiation was not sufficiently intense to 

observe any non-linearity from the glass wedge. Thus, we are reliant on values 

obtained from the literature which are found to be 3.45 * 10'14 esu [198]. 

§ 5 . 4 . 4 Solvent Measurements. 

As previously indicated, experiments were conducted in two solvents; 

chloroform and dichloromethane (DCM). These were chosen principally for the 

reason that the TCNQ derivatives are fairly soluble in these solvents, and that they 

were the solvents used for dipole moment measurements allowing for easy 

comparisons of molecular properties. 

Measurements were conducted on chloroform and DCM to obtain Tl and lc at 

both 1.064 urn and 1.907 \xm. Figure 5.4-4 and Figure 5.4-5 show the typical Maker 

fringes that are obtained using both wavelengths. Analysis of the fringes yields the 

magnitude of the non-linearity, | r , | for the solvent and the sign is either obtained from 

the literature [200] or from additional experiments using a known standard. By 

analysing several sets of results, | r , | for chloroform was found to be 

6.0 ± 1.4 x 10"14 esu at 1.604 urn and 7.5 ± 1.6 x 10 - 1 4 esu at 1.907 urn. For DCM, 

| r , | was found to be 6.2 ± 1.2 x 10'14 esu at 1.604 urn and 5.5 ± 1.0 x 10"14 esu at 

1.907 um. 

In addition, the solution wedge angle is required to obtain the coherence 

length. The angle is measured by shining a helium neon (HeNe) laser beam through a 

pinhole onto the front face of the glass windows which are at a distance lw from the 

pinhole, as shown in Figure 5.4-6. The reflected rays are separated by a distance, dw 

defined by the wedge angle, 0W such that 

#w = - tan 
2 IJ 

(5.4-5) 

117 



Chapter 5. 

0.4 

0.2 
03 

0.1 

0 
0 1 2 3 4 

Translation Distance (mm) 

0.3 

0.2 C3 

00 
C/j 

in 
03 

0.1 

0 
0 1 2 3 4 

Translation Distance (mm) 

Figure 5.4-4: The Maker fringes obtained for chloroform at 1.064 fjm 
(top, 0W = 1.76°) and 1.907 um (bottom, 0W = 8.8°). The squares are 
data points and the solid lines are fits to the data. 
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(top, 0W = 2.72°) and 1.907/jm (bottom, 0W = 4.55% The squares 
are data points and the solid lines are fits to the data. 
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Figure 5.4-6: The set-up used to determine the solution wedge angle. 

This method enables the measurement of the wedge angle to two decimal places for 

angles less than 3° and one decimal place for angles between 3° and 10°. The 

coherence lengths for the solvents were obtained by averaging over several sets of 

data. A fairly large variation in lc is found between data sets due to errors in the 

measurement of 0^ small movement of the solution wedge during experimentation, 

and errors incurred by the fitting program. However, the average coherence lengths 

for chloroform were found to be 22.8 ± 1.0 um at 1.064 urn and 105 ± 5 u,m at 

1.907 um which agree well with literature values [200, 207, 212]. For DCM, the 

average coherence lengths were found to be 24.0 ± 1.0 u.m at 1.064 u.m and 

121 + 12 umat 1.907 um. 

Various values of T for chloroform are provided in the literature. Oudar's 

measurements [200], at 1.064 pirn are slightly higher than the above results but are 

within experimental error. According to Oudar the sign of the non-linearity is positive 

which shall be taken to be correct. This also agrees with the measurements conducted 

by Kajzar et al [212]. At 1.907 u.m the measurements conducted by Flipse et al [207] 
appear to be far lower than the above results, circa 1.5 x 10"14 esu [213]. There may 

be several reasons for this disagreement: Firstly, as with both experiments the absolute 

numbers rely on accurate referencing to quartz and either experiment may be 

erroneous. Thus, this may account for the slight increase observed at 1.907 um, where 

a small decrease might be expected. Secondly, it is unlikely that the dispersion of 

chloroform will reduce the third order non-linearity by so much, unless either the 

fundamental and second harmonic frequencies for both experiments are close to 
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resonance. From the absorption spectrum of chloroform at 1.907 um, this looks 
unlikely. Therefore for future calculations, the experimental results presented in this 
chapter will be used. In addition, it will be assumed that the sign of the non-linearity 
remains positive for both experiments. 

For DCM, an extensive literature search revealed no previous experimental 

observations of either Tj or lc. Therefore, the sign of the non-linearity for DCM must 

be determined before measurements of unknown compounds in this solvent can be 

made. This is done by comparing the response of a known material in DCM (in this 

case NPP) to its response in chloroform. 

§5.4.5 The Experimental Procedure to Determine the 

Gradient c^jdw and Subsequent Determination of the 

Sign ofl^for DCM. 

The experimental procedure to obtain YL versus weight fraction for NPP is as 

follows and was used with all EFISH experiments. The cell and pot were cleaned 

thoroughly and the glass windows inserted into the cell such that the appropriate 

solution wedge angle was made. The cell was then clamped tightly such that the 

windows did not move, placed in the pot, and the lid clamped into place. Precisely 

6 ml of solvent was filtered and added to the pot such that the cell windows were 

covered completely by the solvent. Care was taken to ensure that any trapped air was 

removed from the solution wedge. The entire apparatus was then clamped onto the 

translation stage and an experimental run conducted with the appropriate static electric 

field applied. In the meantime, a solution of material of weight fraction 10"3 - 10"2 was 

made using a 10 ml volumetric flask. The solution was treated in an ultra-sonic bath 

for 15 minutes and i f necessary heated. This was usually sufficient to dissolve the 

solute completely, after which the solution was subsequently filtered. When the 

experimental run for the solvent was completed, a small volume of solution, of size 

depending on the stock concentration, was added to the pot. The solution was then 
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allowed to mix, by gently shaking the pot, and the experimental run repeated. The 
weight fraction, w for each run was calculated using the equation 

w = , 
ms + VTd 

(5.4-6) 

where ms is the mass of the solute, VT is the total volume of solution in the cell and d is 

the density of the solution which is usually approximated to the density of the solvent 

for small weight fractions. The experiment was repeated for increasing concentrations 

such that approximately two orders of magnitude in w are traversed. Typically, the 

entire experiment was also repeated two to four times to obtain an average gradient 

and an indication of the errors involved with the procedure. 

The graphs obtained for NPP in chloroform and DCM at both wavelengths are 

shown in Figure 5.5-1 and Figure 5.5-2. As is shown, TL increases linearly with weight 

fraction in all four cases. The positive slope measured in DCM indicates that the 

macroscopic non-linearity of NPP in DCM is of the same sign to that of NPP in 

chloroform. Since the sign of T for chloroform is taken positive and the sign of ft for 

NPP is known also to be positive, then DCM must also possess a positive T, and the 

sign of T for DCM has been determined. 

The gradients obtained from these graphs are shown in Table 5.5-1. Two 

points to note about these results are that firstly, in either solvent the gradients are 

lower at 1.907 um than at 1.064 um. This is to be expected since at 1.907 [xm both 

the fundamental and second harmonic frequencies are further away from resonance 

than at 1.064 (im. Secondly, the gradients measured in DCM are lower than the 

gradients observed in chloroform. This is surprising since the absorption band for NPP 

in DCM (/ l m £ t t . = 396 nm) is closer to the second harmonic than that in chloroform 

(Amax = 393 nm). Thus it would be logical for the measured gradient in DCM to 

higher than that in chloroform. Further analysis of these results will be undertaken in 

§5.5 and §5.6. 
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§5.4.6 The Experimental Procedure used to Measure 
the Absorption Coefficient. 

Occasionally it is necessary to measure the absorption coefficient, a(cy) of a 

material at co or 2co. A double beam, ultra-violet (UV) / visible spectrometer (Perkin-

Elmer, Lambdal9) is used for this purpose. A solution of material, typically of a 

concentration around 10"6 to 10"5 mol l ' 1 is placed in a 2 mm or 1 cm glass cell and the 

absorption spectrum is then recorded, referenced to the pure solvent. From this, the 

absorption coefficient, a(co) at the concentration of measurement, and the extinction 

coefficient, %((o) may be found using the equation 

a 

(5.4-7) 

where Ia(a) is the absorbance measured by the spectrometer, C is the solute 

concentration and la is the path length in the solution cell. Upon calculating the 

concentration for each EFISH run, a(<y) is subsequently known, through multiplication 

of the extinction coefficient at the appropriate wavelength. This may then be used in 

the analysis of the experimental data using equation (5.3-17). 

§5.5 Measurements of NLO Chromophores. 

As explained in §5.4, EFISH measurements have been conducted on NPP 

which shall be compared to the results obtained for unknown materials. The graphs of 

TL versus weight fraction, w in Figure 5.5-1 and Figure 5.5-2 produce positive slopes 

in both DCM and chloroform, suggesting a positive /? which agrees with other 

measurements of NPP [201,214, 215]. 
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Figure 5.5-1: Typical graphs ofTLasa function of solute weight fraction 
for NPP in chloroform at 1.064 jum (top) and 1.907 jum (bottom). 
Circles are data points and the solid lines are straight line fits to the 
data. 
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Figure 5.5-3: Typical variation of the coherence length, lc with 
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In addition to this data, the variation in coherence length with weight fraction 
can be used to study the variation of the difference in refractive index at co and 2co, An. 
The two can be related in the infinite dilution limit, via the relationship 

dtsn 

(5.5-1) 

where / / is the coherence length of the pure solvent and cljdw\0 is the gradient of the 

lc versus w graphs shown in Figure 5.5-3. The gradients of these graphs and the 

corresponding values of dAn/3v\Q are shown in Table 5.5-1. As would be expected, 

the inclusion of a more dispersive element, i.e. the solute in the solution increases the 

difference between the refractive indices at co and 2<y, resulting in a decrease of 

coherence length. In most cases, the change in coherence length over the 

concentration range is quite small. It should be noted that the gradients, dAn/dv\Q for 

NPP are larger at both wavelengths in chloroform than in DCM. Also the respective 

gradients at 1.907 urn are smaller than at 1.064 um, demonstrating the dispersion of 

the refractive indices of the solution. 

The following sections provide comments on the results obtained for the 

unknown materials. 

§5.5.1 DED. 

The position of the longest wavelength electronic absorption band, Xmax for 

DED was found to be 474 nm in chloroform and 458 nm in DCM. In both cases this 

band extended to around 530 nm. Therefore, for 1.064 |»im experiments there is 

negligible or no absorption at either co or 2ca, but such experiments may benefit from 

the electronic resonance enhancement of /? at 532 nm. Thus it was for this reason that 

experiments on DED were only conducted at 1.064 \xm. 
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The graphs of TL and lc versus weight fraction are shown in Figure 5.5-4, and 

there are several points to note. Firstly, the non-linearity of the DED is opposite in 

sign to that of the solvents. This is demonstrated by a reduction in signal strength at 

weak solute concentrations followed by an increase in signal strength at strong 

concentrations, occurring when the macroscopic non-linearity of the solute is greater 

than the macroscopic non-linearity of the solvent, as is shown in DCM. Unfortunately, 

the low solubility of DED in chloroform inhibits the measurement of such an increase 

at larger weight fractions. 

Secondly, at higher concentrations of DED in DCM, there is a deviation from 

linearity and a reduction in the gradient, t%*/3v. There may be several reason for this, 

such as dimerisation of the solute at higher concentrations, drift in the power of the 

laser which is not accounted for by referencing, an increase of the conductivity of the 

solutions, or an increase in the absorption at 532 nm not accounted for. It is likely that 

the latter is the case. Closer inspection of the absorption spectrum of DED in DCM 

reveals that there may be a significant absorption at strong concentrations. The 

presence of an absorption at 532 nm will be a significant problem at the concentrations 

needed for EFISH which are typically about 100 times that needed for an absorption 

spectrum. Thus it may be that the gradient, dT/3v is larger than indicated in 

Table 5.5-1. There are indications however that the gradient obtained in chloroform is 

larger than that in DCM. 

Finally, An increases as expected, but the gradient, dAn/cfo\0 is larger than that 

of NPP. This indicates that the wavelengths used in the experiment are closer to 

resonance as is clearly evident from the position of Xmax., thus there is a larger 

difference between n2w and nm. In addition to this, the respective gradient in 

chloroform is significantly higher than that in DCM which is in agreement with the 

general trend exhibited by the other materials. This is expected, since A^^, is closer to 

the second harmonic in chloroform than in DCM. One should be aware however that 

it is difficult to facilitate a definite trend with the coherence length since the 

concentration of the solute is extremely weak and that T passes through zero, i.e. 
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Figure 5.5-4: Typical variation of rL (top) and lc (bottom) with 
weight fraction of DED at 1.064 jjan. Squares represent data taken 
in DCM and crosses represent data taken in chloroform. The solid 
lines are straight line fits to the data. 
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lc —» oo for several points on the graph. In addition, there is a large error associated 

with the coherence lengths of the pure solvent due to temperature and compositional 

variations of the solvent, movement of the solution wedge angle, and errors induced by 

the fitting procedure. For this reason it is difficult to come to any definite conclusions 

about the coherence length. 

§5.5.2 ULTRA. 

The position of the absorption band for ULTRA was found to be 721 nm in 

chloroform and 719 nm in DCM. The band extends from approximately 500 nm to 

850 nm. For ULTRA, as with the other tertiary amino TCNQ adducts, experiments 

were conducted at 1.064 urn in DCM only, and at 1.907 um in chloroform and DCM. 

At 532 nm there is an appreciable absorption, though this is fairly small in comparison 

to the maximum intensity. However, this means that for the 1.064 um experiments, 

the absorption coefficient, a(m) at 532 nm must be measured. This was done by 

transferring 1 ml of the stock solution which is added to the EFISH pot (see §5.4.5) to 

a 25 ml volumetric flask and diluting. A small proportion of the resulting solution was 

then transferred to a 2 mm path length spectroscopic cell, and the absorption spectrum, 

which is referenced to the solvent, measured. The 1.907 um experiments were 

conducted in the usual manner as there is no absorption at either a> or 2co. 

The graphs of TL and lc versus w are shown in Figure 5.5-5. Like DED, the 

sign of the non-linearity is opposite to that of the solvent, suggesting a negative fi. At 

1.907 jam the gradient is steeper in chloroform than in DCM. At 1.064 urn, the 

gradient in DCM is again steeper than the corresponding 1.907 um curve which might 

be expected due to resonance enhancement of /3. However, care must be taken with 

the interpretation of the 1.064 um experiment as 2<y is resonant and lies after the main 

electronic absorption band. This means that the sign of the zero frequency 

hyperpolarisability, p(0) will be opposite to that of P(a>) for the 1.064 urn experiments. 

For the 1.907 um experiments, the sign of fi(0) will remain negative as both co and 2a 

130 



First Hyperpolarisabilities front EFISH Measurements. 

are non-resonant. Thus, there is a disagreement between the two experiments which 
shall be discussed later. 

The variation of Aw at 1.064 um is large and opposite to that at 1.907 urn 

experiments, i.e. Aw decreases with increasing w, instead of increasing as is normally 

the case. Careful consideration of the position of the absorption band with respect to 

0) and 2o) suggest that this is likely, since the second harmonic frequency is at a point 

where anomalous dispersion of the refractive index occurs. Anomalous dispersion 

phase matching with respect to solute concentration is entirely expected [216] and 

observed through the measurement of lc. It would thus be possible by increasing the 

concentration accordingly, to obtain a perfectly phase matched solution, providing the 

solubility and NLO response of the chromophore is large enough to observe such an 

effect. 

§5.5.3 DCH. 

The A w c c c for DCH was found to be similar to that of ULTRA, 726 nm in 

chloroform and 725 nm in DCM. This time the absorption band extends from around 

500 nm to only 800 nm (concentration « 10'5 mol l"1), however there is still an 

absorption at 532 nm. Thus, as with ULTRA, experiments are conducted in DCM at 

1.064 um and in both solvents at 1.907 um. 

The graphs of TL and lc versus w are shown in Figure 5.5-6. At 1.907 um, the 

non-linear response in DCM is negative, however in chloroform the response is 

positive. However, the magnitude of the gradient is similar to that of ULTRA in either 

solvent. There may be several reasons for this which will be discussed later. The other 

behavioural properties of the DCH are similar to that of ULTRA. At 1.064 um there 

is a sharp decrease in the signal at weak concentrations. Correspondingly, dAn/dv\Q 

decreases again exhibiting anomalous dispersion phase matching. At 1.907 um, 

dAn/cfo\0 increases as usual, however this time the gradient is larger in DCM than in 

chloroform which is opposite to the behaviour we have seen so far. 
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Figure 5.5-5: Typical variation of rL (top) and lc (bottom) with 
weight fraction of ULTRA at 1.064 jum and 1.907 pm. Circles 
represent data taken in DCM at 1.064 pm, squares represent 
data taken in chloroform at 1.907 pm and triangles represent 
the data taken in DCM at 1.907 pm. The solid lines are 
straight line fits to the data. 
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Figure 5.5-6: Typical variation of rL (top) and lc (bottom) 
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Material Solvent Wavelength 

(Hm) (x 10 1 1 esu) (Hin) 

NPPd Chloroform 1.064 +4.5 -357 0.183 

DED Chloroform 1.064 -38a -4591 2.12 

NPPd DCM 1.064 +3.5 -230 0.106 

DED DCM 1.064 -9.0 -1254 0.689 

ULTRA DCM 1.064 -19 +1300 -0.600 

D C H b DCM 1.064 -33 +12,000 -5.5 

D E M I 0 DCM 1.064 -75 +25,000 -11.5 

NPPd Chloroform 1.907 +1.7 -627 0.027 

ULTRA Chloroform 1.907 -9.0 -10,000 0.432 

D C H b Chloroform 1.907 +2.1 -8,000 0.346 

D E M I 0 Chloroform 1.907 +8.4 -9,300 0.402 

NPPd DCM 1.907 +0.67 -589 0.019 

ULTRA DCM 1.907 -2.1 -7,800 0.254 

DCH DCM 1.907 -5.7 -12,500 0.407 

D E M I 0 DCM 1.907 +2.7 -15,000 0.488 

Table 5.5-J: The gradients obtainedfrom EFISH experiments on NLO chromophores 
at 1. 064 fjm and 1.907 fjm in DCM and chloroform. Errors are ±10% unless 
otherwise stated, a: ±20 %, b: ± 15 %, c: ±25 %, d: ±5%. 
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§5.5.4 DEMI. 

The tertiary amino TCNQ adducts are all sparingly soluble in DCM and 

chloroform of which DEMI is the least soluble. Thus, the experimental uncertainty for 

DEMI is larger than that of the previous materials. Xmax for DEMI was found to be 

717 nm in chloroform and 720 nm in DCM. Once again the absorption band extends 

from around 500 nm to 800 nm (concentration « 10'5 mol l ' 1 ) , imposing the same 

conditions as with the previous two materials. 

The graphs of TL and lc versus w are shown in Figure 5.5-7. This time, at 

1.907 um a positive non-linear response is shown for both solvents, the larger gradient 

being obtained in chloroform. However, this is contrary to the trends found with 

d&nldw\0 where the gradient measured in DCM is marginally larger than that 

measured in chloroform. At 1.064 |im, once again a large negative non-linear response 

and a negative change in An with weight fraction is found. 

The results obtained in §5.5 and presented in Table 5.5-1 can now be used to 

calculate the product jufi(a>), as described in Chapter 2. We recall that in the infinite 

dilution limit for a two component solution, several equations may be used to obtain 

pip(co), depending on the local field model used. In an attempt to compare results 

using spherical and ellipsoidal local fields, two equations, given previously by 

equations (2.4-8) and (2.4-9) in Chapter 2, shall be used 

§5.6 Calculations of jiP{cS) and ///2(0). 

2 7 M 2 ( n 2 + 2s) ft 

Nae(n2+2) ( « 2

2 +2) 

de 3 ch 1 
+ s 2s+ n J dv nl +2 dw 

(5.6-1) 
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r = 
M2{s + (nl-e)Aa) 

Na4\ + {n2 -\)Aa)\\ + (nl-\)Aa) 

vJA\l- 2 ^ 
e 2s + n J 

1 ... 

3 dn2 

+r, + v , r , -

« +2 dw 

(5.6-2) 

where is given by equation (2.2-11) in Chapter 2. 

Several parameters are needed in addition to dfjdw for the calculation of 

Hf3(0). The gradients dejd^\^ dejdw\^ and dn2jdw can all be obtained 

experimentally, of which de/dv\0 is obtained in Chapter 4. With d\>ldw\ and 

di2/&v, the low solubility of the materials (with perhaps the exception of NPP) 

inhibits their direct measurement. Thus, these will be set to zero. Closer inspection of 

( 5.6-1) and ( 5.6-2) reveals that the neglect of dn2 jdw and di>/ck>\0 incurs no more 

than a 5 % error on nP(co) [202]. In addition to this, since the refractive index of the 

solute is not known, n2 is approximated to n2ta, resulting in a possible 10 % error. 

We recall from Chapter 2, that the product at zero frequency, f*fi(0) may be 

calculated using the two level model [217, 218] 

1 -
0) eg J 

1 -
4<a2 

0) eg J 

(5.6-3) 

where aeg is the frequency of the longest wavelength absorption band. Thus, to 

remove dispersion effects for each material, /uf3(0) is presented in Table 5.6-1 for the 

different local field models described by equations (5.6-1) and ( 5.6-2). 

Finally, using the dipole moments which were calculated from experimental 

measurements in Chapter 4, f}(0) values may be calculated and are presented in 

Table 5.6-2 for the two local field variants. Here, the results obtained using equation 

(5.6-1) have been divided by the appropriate spherical model dipole moments, and the 
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results obtained using equation ( 5.6-2) are divided by the corresponding ellipsoidal 

model dipole moments. As is indicated in Chapter 4, measurements of the dipole 

moment were conducted in DCM for ULTRA, DCH, and DEMI. Therefore, the 

dipole moments in chloroform must be calculated from the gas phase dipole moments 

(obtained from the experiments in DCM) using only the dielectric constant as an 

indication of the reaction field on the solute. With NPP and DED, dipole moment 

experiments were conducted in chloroform so, conversely the dipole moment in DCM 

must be calculated in the same manner. 

Due to the enhanced reaction field associated with the ellipsoidal equation, the 

values of nfi(0) are higher than that of the spherical. The ellipsoidal (5(0) is also 

slightly higher than the spherical fi(0), despite dividing by a higher dipole moment, but 

in most cases only within experimental error. Thus, at first glance it appears there is 

little benefit from the use of ellipsoidal field factors in the calculation of /?. 

Comparing the data for NPP with that obtained earlier and discussed in 

Chapter 3, we see that the spherical values of P(0) presented in Table 5.6-2 in all cases 

are lower than the EFISH values obtained in the literature (42 x 10'3 0 esu in acetone 

[215]). However, they are higher than that obtained in 1,4-dioxane (12 x 10*30 esu 

[201]). This perhaps demonstrates the effect of the solvent on the hyperpolarisability 

of a molecule. Since 1,4-dioxane is less polar than chloroform/DCM which in turn are 

less polar than acetone, it is possible that the hyperpolarisability increases with higher 

solvent dielectric constant. Discrepancies may also be due to wrong estimates of the 

dipole moment, wrong evaluation of the electric field applied to solutions, or erroneous 

referencing to quartz. These may also account for the differences in fi(0) for NPP 

which are measured in the same solvent but at different wavelengths. The same values 

of np(0) and P(0) for a solute in a particular solvent should be obtained regardless of 

the wavelength used. However for NPP, the values of ///? obtained at 1.907 um are 

smaller than the corresponding 1.064 um experiments. Often, the two level model has 
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Material Solvent XI \im /4/3(0) 1 x 10"48 esu 

(5.6-1) (5.6-2) 

NPPd Chloroform 1.064 209 375 

DED a Chloroform 1.064 -1017 -1861 

NPPd DCM 1.064 182 342 

DED DCM 1.064 -343 -642 

ULTRA DCM 1.064 1947 3625 

D C H b DCM 1.064 3544 6600 

D E M I 0 DCM 1.064 5684 10556 

NPPd Chloroform 1.907 167 300 

ULTRA Chloroform 1.907 -698 -1255 

D C H b Chloroform 1.907 158 278 

D E M I 0 Chloroform 1.907 467 827 

NPPd DCM 1.907 73 135 

ULTRA DCM 1.907 -175 -325 

DCH DCM 1.907 -485 -895 

D E M I 0 DCM 1.907 166 306 

Table 5.6-1: Values of /uj3(0) calculated from results presented in Table 5.5-1 using 
equations (5.6-1) and (5.6-2). Errors are ±20 % unless otherwise stated, a: 30 %, 
b: 25 %, c: 40 %, d: ± 15 %. 
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Material Solvent XI um / W D Men/® (3(0) 1 x 10-30 esu 

(5.6-1) ( 5.6-2) 

NPP11 Chloroform 1.064 6.9 8.3 30.3 45.2 

DED a Chloroform 1.064 18.2 20.3 -55.9 -93.0 

NPPd DCM 1.064 7.6 8.9 23.9 38.4 

DED DCM 1.064 21.9 24.8 -15.7 -25.9 

ULTRA DCM 1.064 13.5 19.0 144.2 190.8 

D C H b DCM 1.064 15.6 22.8 227.2 289.5 

D E M I 0 DCM 1.064 22.4 33.0 253.8 319.9 

NPPd Chloroform 1.907 6.9 8.3 24.2 36.1 

ULTRA Chloroform 1.907 11.6 18.2 -60.2 -69.0 

D C H b Chloroform 1.907 10.7 22.4 14.8 12.4 

D E M I 0 Chloroform 1.907 15.7 29.6 29.9 27.9 

NPPd DCM 1.907 7.6 8.9 9.6 15.1 

ULTRA DCM 1.907 113.5 19.0 -13.0 -17.1 

DCH DCM 1.907 15.6 22.8 -31.0 -39.3 

D E M I 0 DCM 1.907 22.4 33.0 7.7 9.3 

Table 5.6-2: Values of fi(0) obtained from EFISH experiments. Errors on (3 are ± 40 
% unless otherwise stated, a: 50 %, b: 45 %, c: 55 %, d: + 35 %. Errors on dipole 
moments are + 20 %. 
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been demonstrated to be inadequate in modelling the dispersion of ft for novel 
materials [198, 217, 218, 219], thus care must be taken with the interpretation of the 
zero frequency results. However, it is unlikely that this can account for such large 
discrepancies between the values of ft(0) measured in this study and the literature 
values. Since the signals obtained at 1.907 \xm are weak and given the above possible 
errors, there is, thus a suggestion that the gradients may be underestimated slightly. 

DED is found to possess a moderate ft(0) in chloroform, but this is 

considerably smaller in DCM. One must be cautious with the latter result, however as 

a deviation in linearity between T and w was observed which was attributed to an 

increase in absorption at 532 nm only at strong concentrations. Since the measured 

gradient was an average gradient, then it is possible that this is underestimated. For 

weak concentrations, the gradient (and therefore ft) is similar to that in chloroform. In 

comparison to the MOPAC calculations of ft(0) presented in Chapter 3 

(«10 x 10"30 esu), we see that the magnitude of ft(0) in chloroform is larger than that 

predicted, and it is also of opposite sign. Assuming that the evolution of ft(0) for DED 

is similar to that predicted with the tertiary amino TCNQ adducts, the measurement of 

a negative ft indicates that the molecule resides in an aromatic state and not the 

quinoidal state which is assumed with MOPAC calculations. The aromaticity of DED 

in the solution phase can be confirmed by considering the dipole moment. We recall 

that in the crystal phase DED exhibits a highly aromatic geometry where the dipole 

moment is only slightly larger than that obtained in chloroform, and thus the geometry 

must be similar. I f a molecule was to posses a high dipole moment in the ground state, 

it is likely that the excited state geometry would be such that the dipole moment will be 

lower. Hence, a negative ft would be observed as ft is proportional to the difference 

between the ground and excited state dipole moments. 

The values of nft(0) and ft(0) obtained for the tertiary amino TCNQ adducts in 

DCM at 1.064 UJTI possess the opposite sign to some of those obtained at 1.907 um, 

and the magnitudes are considerably larger. The reason for this is not clear, but there 

are two possible reason for the discrepancies. Firstly the two level model close to 

resonance is unlikely to be valid. The presence of several absorption peaks across the 
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absorption band means that it is necessary to include several more excited states to 

obtain a true resonant description of p. It is also likely, despite the correction for the 

absorption being included in the signal analysis, that the absorption at 532 nm is too 

large to observe any non-linearity in the system. I f the non-linearity of these materials 

is small, as is indicated by the experiments at 1.907 urn, the absorption at the 

concentrations used will be dominant. Closer inspection of Figure 5.5-5 shows that the 

largest weight fraction is circa 5 x 10"4. At this weight fraction the absorption 

coefficient at 532 nm is already around 2 cm"1. Thus, the non-linearity due to the 

solute is swamped by the solvent contribution and a signal reduction is seen with 

increasing weight fraction. The low solubility of the materials in DCM however, 

prevents measurements at strong enough concentrations to confirm this hypothesis. 

The magnitudes of P(0) for the tertiary amino TCNQ adducts at 1.907 u,m are 

small (with the exception of ULTRA) or of a similar magnitude to that of NPP. This is 

contrary to that of the previous experiments discussed in Chapter 3 [201, 220]. There 

may be several reasons for this. The previous experiments have been conducted in 

different media. For NPP, we have already seen a marked dependence of the 

hyperpolarisability on the solvent in which it is dissolved. The tertiary amino TCNQ 

adducts are predicted to have an even larger solvent dependency through the SOS 

calculations. Thus a low value of p\0) might indicate that the molecular geometries of 

the molecules are such that they reside close to the cyanine limit (J3 = 0). A 

comparison of the results in this chapter with such calculations will be made in 

Chapters 6 and 7. 

There is a major disagreement, however with the results obtained here and 

those of the hyper-Rayleigh scattering experiments, conducted in chloroform at 1.064 

um and also discussed in Chapter 3 (|/?(0)| = 320 x 10'30 esu). Once again there may 

be several reasons for this. Firstly, at strong or limiting concentrations dimerisation 

may occur. All of the TCNQ materials have a tendency to dimerise which is 

adequately demonstrated through the crystallographic structures. [221, 221, 222]. A 

possible further indication that this occurs in DCM and chloroform is that the TCNQ 
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materials are all sparingly soluble in these solvents. Secondly, it might be possible that 
the conductivity of the solution increases upon the addition of the solute, resulting in a 
decrease of the static electric field and, thus a reduction in the alignment of the 
molecular dipoles. However, this would result in a non-linear relationship between TL 

and w which is not seen with the tertiary amino TCNQ adducts. It is possible that the 

electric field has been erroneously estimated, but this would result in wrong estimates 

of Tj which again has not been observed. This disagreement is obviously puzzling, 

therefore some attention will be paid to this in Chapters 6 and 7 where comparisons 

will be made to theoretical calculations and solvatochromism data. 

Finally, one must note that the magnitudes of nfi products for the TCNQ 

materials are larger than NPP, up to five times larger for the case of DED in 

chloroform at 1.064 um. However, the TCNQ materials have unusually large dipole 

moments, so the value of 0(0) is consequently small. 

§5.7 Conclusions. 

In this chapter the experimental technique and set-up associated with Electric 

Field Induced Second Harmonic generation (EFISH) has been described. The 

calibration measurements conducted on quartz, BK7 glass and chloroform have 

produced coherence lengths and F s close to those of literature values. As a result, 

further measurements of T and lc for DCM are presented where the sign of the non-

linearity was determined by conducting experiments on NPP in both chloroform and 

DCM. The results indicate that the sign of the non-linearity was the same as that of 

NPP and chloroform, and this was taken to be positive. 

The results of experiments conducted at 1.064 um and 1.907 um on NPP and 

on four other materials in chloroform and DCM are also presented. It was found that 

generally the magnitude of /? was smaller in DCM than in chloroform though results 

are at times difficult to interpret. The results for the tertiary amino TCNQ adducts are 

small which is possibly contrary to theoretical predictions, and contrary to those 
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obtained from hyper-Raleigh scattering measurements. In Chapter 6 solvatochromism 

experiments conducted on all of the materials to ascertain the position of the cyanine 

limit as a function of reaction field will be presented. This is followed by a discussion 

as to why the above results are small in DCM and chloroform, in Chapter 7. 

Finally, the use of ellipsoidal local field factors has brought little or no change 

to the value of B. However, values of B are small, so it is difficult to distinguish 

between the two formalisms. There is a significant enhancement of the fxB product 

when using the ellipsoidal local field formalism however, since this includes an 

orientational component of the dipole moment. In addition, it is noted that ju/3 for the 

TCNQ derivatives is about three to five times that of NPP. 

References to Chapter 5. 

[196] P. D. Maker, R. W. Terhune, M . Nisenoff, C. M . Savage, Phys. Rev. Lett., 8, 
21,(1961). 

[197] J. Jerphagnon, S. K. Kurtz, J. Appl. Phys., 41 (4), 1667, (1970). 

[198] C. C. Teng, A. F. Garito, Phys. Rev. B., 28 (12), 6766, (1983). 

[199] B. F. Levine, C. G. Bethea, J. Chem. Phys., 63 (6), 2666, (1975). 

[200] J. L. Oudar, J. Chem. Phys., 67 (2), 446, (1977). 

[201] D. Gray, Ph.D. Thesis, University of Durham; Molecular Organic Photonics., 
(1994). 

[2021 K. D. Singer, Ph.D. Thesis, University of Pennsylvania; Experimental Studies 
of Second Order Non-Linear Optical Susceptibilities in Organic Systems., (1981). 

[203] E. Hecht, Optics, 2nd ed., Addison - Wesley Publishing, Wokingham, England, 
(1987). 

[204] J. L. Oudar, J. Chem. Phys., 67 (2), 446, (1977); Equation A9. 

[205] J. L. Oudar, J. Chem. Phys., 67 (2), 446, (1977): Appendix A, Equation A14. 

[206] Mathematica, Version 2.2, Wolfram Research Inc., (1993). 

[207] M . C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van 
Walree, L. W. Jenneskens., Chem. Phys. Lett., 245, 297, (1995). 

[208] Schott Glass, Optical Glass Data Catalogue., (1987). 

144 



First Hyperpolarisabilities from EFISH Measurements. 

[209] J. E. Bertie, Z. Lan, R. N. Jones, Y. Apleblat, Appl. Spectroscopy., 49 (6), 840, 
(1995). 

[210] A. J. Riddick, W. B. Bunger, T. K. Sakano, Organic Solvents., Physical 
Properties and Methods of Purification., 4th ed., John Wiley and Son Inc., New 
York, (1986). 

[211] B. F. Levine, C. G. Bethea, J. Chem. Phys., 63 (6), 2666, (1975). 

[212] F. Kajzar, I . Ledoux, J. Zyss, Phys. Rev. A, 36 (5), 2210, (1987). 

[213]M. C. Flipse, R. de Jonge, R. H. Woudenberg, A. W. Marsman, C. A. van 
Walree, L. W. Jenneskens., Chem. Phys. Lett., 245, 297, (1995): Figure 2: EFISH 
Liquid Non-Linearities Versus Concentration in CHCl3 for Various NLO 
Cnromophores. 

[214] A. Fkyerat, A. Guelzim, F. Baert, J. Zyss, A Perigaud, Phys. Rev. B, 53 (24), 
16236, (1996). 

[215] M . Barzoukas, D. Josse, P. Fremaux, J. Zyss, J.-F. Nicoud, J. O. Morley, J. Opt. 
Soc. Am. B, 4 (6), 977, (1987). 

[216] P. A. Cahill, K. D. Singer, Chemistry of Anomalous Dispersion Phase-Matched 
Second Harmonic Generation, Chapter 4, ACS Symposium Series, S. R. Marder, J. 
E. Sohn, G. D. Stucky, Materials of NLO, Chemical Perspectives, Washington DC, 
(1991) . 

[217] D. S. Chemla, J. Zyss, Non-Linear Optical properties of Organic Molecules and 
Crystals., Volume 1, Academic Press Ltd., London, (1987). 

[218] R. W. Boyd, Non-Linear Optics., Academic Press Inc., London, (1992). 

[219] Ch. Bosshard, G. Knopfle, P. Pretre, P. Gunter, J. Appl. Phys., 71 (4), 1594, 
(1992) . 

[220] M . Szablewski, P. R. Thomas, A. Thornton, D. Bloor, G. H. Cross, J. M . Cole, 
J. A. K. Howard, M . Malagoli, F. Meyers, J.-L. Bredas, W. Wenseleers, E. 
Goovaerts,/. Am. Chem. Soc, 119 (13), 3144, (1997). 

[221] J. C. Cole, J. A. K. Howard, G. H. Cross, M . Szablewski, Acta Cryst. C, C51, 
715, (1995). 

[222] J. C. Cole, J. M . Cole, G. H. Cross, M . Farsari, J. A. K. Howard, M . 
Szablewski, Acta Cryst B., B53, 812, (1997). 

145 



Chapter 6. 

Chapter 6. 

Solvatochromism of NLO Chromophores. 

§6.1 Introduction. 

It has been shown in Chapter 2 that the transition frequency of a molecule will 

change from a value in the gas phase to a new value in the solution phase. The degree 

of shift depends on the polarity of the solvent environment, i.e. the extent of the 

reaction field experienced by a molecule. However, the use of the reaction field for the 

purpose of a scale of solvent polarity, has its limitations in that it cannot describe 

adequately specific molecular interactions such as hydrogen bonding, and dipole-dipole 

interactions [223]. Therefore, it is often difficult to relate the transition frequency of a 

molecule to the reaction field it experiences in a particular solvent. 

Molecules that exhibit large solvatochromic shifts have been used as probes in 

an attempt to develop a linear solvent polarity scale, thus eliminating the effect of these 

specific interactions on the position of the absorption band. Since their initial use [224, 

225, 226, 227], one of the most widely used scales has been the £^(30) scale 

developed by Reichardt [226, 228, 229]. This scale is based on the absorption of the 

dye pyridinium-N-phenoxide (Figure 6.1-1) which shows one of the largest 

hypsochromic shifts (shift to higher frequencies) of the absorption band over a range of 

solvents of varying polarity. An improvement in estimating the polarity of a solvent 

was obtained using this scale, but it is based only on one indicator and thus anomalies 

with other materials were found to be common. Other polarity scales have since been 

developed, such as the 7u*-scale [226, 227, 230, 231] and similar scales [232, 233] 

which are based on the solvatochromism of several dyes. However, such scales 
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6 s 

Figure 6.1-1: The pyridinium-N-phenoxide dye used as a 
reference for the (30) solvent polarity scale. 

involve a more complicated analysis with only a limited benefit in accuracy. The 

simplicity of the Reichardt scale, coupled with the large amount of collected data, 

allows us thus to study the solvatochromism of the materials relatively easily, where 

the use of the reaction field as a polarity scale inhibits quantitative analysis. However, 

the a-scale (representing hydrogen bond donor acidities (HBD) [226, 230, 231]) and 

{3-scale (representing hydrogen bond acceptor basicities (HBA) [226, 230, 231]) which 

are associated with Kamlet and Taft's 7t*-scale [230,231] can be used to account for a 

number of solute-solvent effects observed through the measurement of the transition 

frequency. Thus, these will also be referred to on occasion. 

In this chapter, the absorption spectra of NPP, DED and the tertiary amino 

TCNQ adducts will be described. The positions of the longest wavelength absorption 

band for these materials have been measured in various solvents and are compared to 

Reichardt's polarity scale. In addition, the extinction coefficient of ULTRA has also 

been measured in a number of solvents and compared to this scale. Furthermore, a 

quantitative analysis of the solvatochromic shift is conducted in an attempt to estimate 

and compare values of the first hyperpolarisability in the gas phase. 

In an attempt to eliminate the majority solute-solvent interactions which are 

observed through the measurement of the transition frequency of a chromophore 

dissolved in a number of solvents, solvatochromism experiments are also conducted in 

binary mixtures of toluene and acetonitrile. Any solute-solvent interactions which 

subsequently change the transition energy of the chromophore are therefore only due 
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to toluene or acetonitrile, thus allowing a more accurate determination of the transition 

energy with respect to solvent polarity. A quantitative analysis of the shift observed 

for the TCNQ materials obtained from these experiments is also conducted. 

§6.2 Experimental. 

The absorption spectra of NPP, DED and the three tertiary amino TCNQ 

adducts have been measured in seventeen different solvents using a double beam UV / 

visible spectrometer (Lambdal9, Perkin-Elmer). Each spectrum was referenced to the 

solvent using two, 1 cm path length, quartz cuvettes, each filled with the solvent and 

placed in each beam of the spectrometer. When this was complete, the sample cuvette 

was filled with a solution of chromophore of concentration, typically 10"6 - 10"5 mol l " 1 . 

The spectrum recorded usually ranged between 300 nm and 1000 nm. All solvents 

used were HPLC grade (Aldrich - Sigma Co.) but were not dried before use. As a 

result, an error in the estimate of the polarity of the solvent may be induced due to 

water absorption. The values for the El (30) scale have been obtained from reference 

[226]. a, P and 7t*-scale values are obtained from references [226] and [231]. These 

may also be found in Appendix IV. 

The Beer-Lambert law is utilised to measure the extinction coefficient of the 

materials [234]. A stock solution of the chromophore of concentration around 10"6 to 

10"5 mol l " 1 is made in a 50 ml volumetric flask and successively diluted (also using 

50 ml volumetric flasks) such that at least one order of magnitude in concentration is 

traversed during the experiment. The maximum absorption intensity of the longest 

wavelength absorption band is measured for each concentration. The extinction 

coefficient at frequency &, %(co) may then be related to the absorbance, IJco) via the 

equation 

Ia(o>)=4(co)Cl 

(6.2-1) 
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where C is the concentration of the solution and / is the absorption path length. Thus a 
graph of Ia over the path length versus concentration yields a straight line graph where 

the gradient is equal to ^ ( / l m a x ) . 

Binary mixture experiments were conducted on the three tertiary amino TCNQ 

adducts using toluene and acetonitrile mixtures which were found to be suitably 

miscible. A stock solution was initially made with a mass of material dissolved in a 

known volume of toluene and the absorption spectrum measured. An equal volume of 

toluene was also prepared for referencing purposes. Using a 50 ml burette, aliquots of 

acetonitrile were added to both the test and background samples, and the referenced 

absorption spectrum measured each time. The volume fraction, V f of acetonitrile in 

each of the samples was found to be 

'to! +^MeCN 

(6.2-2) 

where VMeCN and Vtol are the volume of acetonitrile and toluene respectively. The 

concentration of the solute is found by using the equation 

(6.2-3) 

where ms is the mass of the solute and M is the molecular weight. The absorption 

spectra are then normalised to their respective concentrations. Experiments were 

conducted from 0 - 50% and 100 - 50% acetonitrile. The second experiment, 

therefore starts with an initial volume of acetonitrile and toluene is subsequently added 

to the samples. In addition to the absorption spectra, the dielectric constant, refractive 

index, and density of the pure solvent mixtures were also measured. The experimental 

set-up used to measure the dielectric constant is described in Chapter 4, and the 

refractive indices of the mixtures were measured using an Abbe refractometer at the 

sodium-D line. The density was obtained by measuring the mass of a known volume of 
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liquid placed in a volumetric flask to four decimal places, accounting for the mass of 

the flask. All parameters were measured at room temperature. 

§6.3 Solvatochromic Behaviour Compared to the 

The absorption spectra for NPP and DED consist of a single absorption peak 

centred approximately around 390 nm and 460 nm respectively. As mentioned in 

Chapter 3, the band for NPP is fairly narrow and extends from around 320 nm to 

450 nm (concentration of measurement « 10"5 mol l"1). Similarly, the band for DED is 

approximately the same width and extends between 380 nm and 530 nm (concentration 

of measurement « 10"5 mol l"1). The position of these bands ( v m a x ) for NPP and DED 

in various solvents are presented in Figure 6.3-1 using the £^(30) scale as an 

indicator of the polarity of the solvent. 

With NPP there is a reduction in the frequency of the transition with increasing 

solvent polarity, i.e. a bathochromic shift is exhibited. As is evident from equation 

( 2.5-1), this indicates that A^i and f}(0) are positive. The shift is quite small (no more 

than 25 nm over the entire range of solvents) and the fit to a straight line is not 

particularly good (r 2 « 0.78 for the straight line shown for NPP in Figure 6.3-1). 

Large deviations from the straight line are shown with 4 (diethylether), 12 (ethanol), 

and 13 (methanol). Even without the inclusion of these solvents in the data fit, 

deviations become larger as the polarity of the solvent increases. We can however, 

rationalise the largest errors, i.e. that of 12 and 13, by referring to the K* and 

associated scales of polarity (Appendix IV). We see that the majority of solvents used 

in this set are HBA solvents where the value of P increases with the polarity of the 

£#(30) Polarity Scale. 

§6.3.1 NPP and DED. 
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Figure 6.3-1: The position of the longest wavelength absorption band for NPP (top) 
and DED (bottom) in seventeen different solvents. The solid line is a straight line fit 
to the data, with the exception of 12 and 13. 1: 1,4-dioxane, 2: benzene, 3: toluene, 
4: diethylether, 5: chloroform, 6: chlorobenzene, 7: tetrahydrofuran (THF), 8: 
dichloromethane (DCM), 9: cyclohexanone, 10: acetone, 11: tetramethylurea (TMU), 
12: ethanol, 13: methanol, 14: nitromethane, 15: dimethylformamide (DMF), 16: 
acetonitrile, 17: dimethylsulfoxide (DMSO). 
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solvent. Ethanol and methanol have high HBD tendencies as well as high HBA 

tendencies, thus it is possible that ethanol may seem highly polar with one solute but 

only moderately polar with another solute. Since the £^(30) scale is based on the 

properties of just one dye, the value of (30) could be over or under-estimated for 

these solutions and this is clearly shown with the solvatochromism graph for NPP. 

Similar rationales may be applied to any of the other solvents in the data set. 

With DED, an opposite solvatochromic shift, i.e. hypsochromic shift is 

observed. This indicates that fi(0) is negative for DED. The shift is larger over the 

range of solvents (around 70 nm), and this time, with the exception, again of 12 and 

13, an extremely good linear relationship is observed with £^ (30 ) ( r 2 « 0.96 for the 

straight line shown for DED in Figure 6.3-1). 

Further analysis of the solvatochromic data for DED and NPP will be 

conducted in §6.4. Nonetheless, it can be said that the solvatochromic data predicts a 

positive and negative J3(0) for NPP and DED, respectively, which is in agreement with 

the measurements obtained in Chapter 5. 

Finally, one should also note for future reference, that the positions of DCM 

and chloroform on the Ejj(30) scale are close, indicating that the polarity of the 

respective solute in either solvent is similar, as expected. However, one would expect 

from this observation that 0(0) for NPP or DED would be larger in DCM than that in 

chloroform. This is contrary to the observed behaviour, and it is perhaps an indication 

that the EFISH result in DCM are under-estimated slightly. 

§6.3.2 The Tertiary Amino TCNQ Adducts. 

As indicated in Chapter 3 and subsequently shown in Figure 6.5-1, the 

absorption spectra for the tertiary amino TCNQ adducts are more complicated. They 

consist of multiple absorption bands between 500 and 800 nm which are dominated by 

two absorption peaks centred approximately around 700 nm (A) and 650 nm (B) 

(concentration « 10'5 mol l"1). The two bands merge in higher polarity solvents, and in 
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some cases, merge completely into one. Band A has been attributed to intra-molecular 

charge-transfer transitions [235] but the origin of band B is as yet unknown, despite 

various attempts to account for the additional band [236, 237]. The presence of this 

band complicates the issue of solvatochromism, since it may induce an apparent shift 

upon A due to the addition of the absorption intensities of the two bands. 

Furthermore, in polar solvents where the two bands merge, additional errors may also 

be incurred. Nevertheless, the position of band A is plotted for DEMI, DCH and 

ULTRA in Figure 6.3-2 and Figure 6.3-3 versus the El (30) scale. 

It is obvious from Figure 6.3-2 and Figure 6.3-3 that a linear relationship is not 

observed with the tertiary amino TCNQ adducts. The data is fitted to two straight 

lines, but in view of the errors involved with such a process, they are intended only as a 

guide to the eye. There are two regions of interest: In very low polar solvents a 

bathochromic shift is observed and which is around 10 nm or less. This is followed by 

a switch to a hypsochromic shift around the point where £^(30) « 0.25. Once again 

with extremely polar solvents the ability of the £^(30) polarity scale to estimate the 

polarity of the solvent begins to break down, where we see that 12 and 13 deviate from 

the general trend with all of the molecules. As already indicated, other deviations may 

be due to errors in the measurement of the position of the absorption band or due to 

the specific effects of the solvent. Even so, the hypsochromic shift for all of the 

materials is either similar, or larger than the bathochromic shift. 

The solvatochromic behaviour of the tertiary amino TCNQ adducts is not 

unlike that of merocyanine dyes [238, 239, 240, 241, 242, 243, 244] where a reversal 

in the transition energy shift is observed in very low polarity solvents. A literature 

search has revealed that there are only a few other materials in addition to merocyanine 

dyes that exhibit this behaviour [245,246,247, 248]. It is interesting to note however, 

that the position of the reversal point for the tertiary amino TCNQ adducts is observed 

in higher polarity solvents ( £ ^ ( 3 0 ) « 2.0 - 2.5) that that associated with merocyanine 

dyes ( £ £ ( 3 0 ) * 0.5-1.0 [238]). 
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Figure 6.3-2: The position of the longest wavelength absorption band 
for DEMI (top) and DCH (bottom) in various solvents. For DEMI, the 
negative slope is produced by fitting I - 4, 6, and 7 to a straight line 
and the positive slope is produced by fitting 5, 9 - 11, and 14 - 16 to a 
straight line. Similarly for DCH, the negative line is produced by 
fitting 1, and 3-7, where as the positive line is produced by fitting 5, 8 
-11, and 14-17. The solvents are the same as with Figure 6.3-1. 
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Figure 6.3-3: The position of the longest wavelength absorption band 
for ULTRA (top) in various solvents. In addition the extinction 
coefficient for ULTRA measured also in various solvents (bottom). 
With the top graph the negative line is produced by fitting 1-4, and 6 
to a straight line and the positive slope is produced by fitting 5, 7 -
11, and 14 - 17. With the bottom graph the positive and negative 
slope are fitted to 1, 3 - 6 and 5, 8, 10, 11, 15, and 17 respectively. 
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The solvatochromic behaviour of DEMI is also in excellent agreement with the 

40-state SOS calculations discussed in Chapter 3, where a reversal in shift of the 

transition frequency is predicted. This serves to indicate that the geometry of DEMI 

will evolve such that it exhibits quinoidal characteristics in low reaction field media 

(i.e. in low polarity solvents), and aromatic tendencies in high reaction field media. 

Thus it is highly likely that the dipole moment, polarisability, and hyperpolarisability 

will evolve with solvent polarity in a similar manner to that predicted by the SOS 

calculations. The solvatochromic evidence therefore intuitively shows that the sign of 

P(0) for charge-transfer molecules, such as those discussed here, reverses as the 

polarity of the environment increases. 

The position of the cyanine limit for the materials relative to each other is 

unclear due to the large errors associated with the data fitting. The magnitudes of the 

gradients for DEMI are similar on both sides of the cyanine limit whereas DCH and 

ULTRA both exhibit smaller bathochromic shifts compared to the hypsochromic shifts. 

This might indicate a slight increase in the aromaticity with DCH and ULTRA but this 

is difficult to confirm. 

Also presented in Figure 6.3-3 is the measured extinction coefficient, ^max.) 

for ULTRA in a number of the solvents, which is also plotted versus El ( 3 0 ) . Again 

there are large deviations from the general trend, so the straight lines are only intended 

as a guide to the eye. It appears that the extinction coefficient increases in lower 

polarity solvents, then decreases in higher polarity solvents. The maximum point is 

once again around 2 ^ ( 3 0 ) « 0.25. The extinction coefficient, as subsequently shown, 

can be related to the transition dipole moment, which in turn can be related to the 

polarisability. It has also been shown that the polarisability exhibits exactly this kind of 

relationship where the peak of the polarisability coincides with the minimum in 

transition energy (see Chapter 3). Obviously, theoretical calculations on ULTRA 

would need to be conducted for any comparisons to be made, and in view of the errors 

involved with this graph, a more accurate determination of the extinction coefficient 
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with respect to solvent polarity is also needed. As will be seen this has been attempted 
with the results obtained from binary mixture experiments. 

Again it is interesting to note the positions of chloroform (5) and DCM (8) on 

the graphs. With DEMI they are very close to the reversal point, both slightly to the 

right, but we note that DEMI in DCM has a lower transition frequency than in 

chloroform. Referring to Table 5.6-2 and the values of /2(0) obtained at 1.907 u.m for 

DEMI, we see that DEMI in DCM is +8 x 10"30 esu which is lower than that in 

chloroform, +30 x 10*30 esu. From the lower observed transition energy, this is to be 

expected since it would indicate DEMI is closer to the cyanine limit in DCM and that 

the value of P is closer to zero. However, it would also appear from the positions of 

chloroform and DCM on the solvatochromism graph with respect to ET

N(30) that the 

value of P in these solvents should be negative, which is clearly not the case. Such 

differences can only be attributed to the error in the estimate of £ ^ ( 3 0 ) . With DCH, 

chloroform appears to be very close to the cyanine limit, and DCM is again just to the 

right, though the transition frequency of DCH in DCM is higher than that in 

chloroform. Again referring to Table 5.6-2, we find that (3(0) for DCH in DCM is 

-31 x 10"30 esu, and in chloroform, /3(0) is +15 x 10"30 esu. The higher observed 

transition frequency for DCH in DCM, serves to indicate again that DCH possesses a 

more negative J3 in DCM than that in chloroform. In fact /? for DCH undergoes a 

reversal in sign between the two solvents. With ULTRA, both DCM and chloroform 

are to the right of the cyanine limit, and the transition frequencies relative to each other 

are similar to that of DCH. From Table 5.6-2, /?(0) for ULTRA in chloroform is 

-60 x 10'3 0 esu, and in DCM, (3(0) is -13 x 10'30 esu. This appears to be contrary to 

that predicted by the solvatochromism data. It is likely that this is due to erroneous 

measurement of u,, ft or vma^. Nonetheless, in general there appears to be a good 

agreement between the solvatochromism data and the measured EFISH values of /?(0) 

in that p is expected to be close to zero due to the fact that the tertiary amino TCNQ 

adducts possess geometries that are close to the cyanine limit in chloroform and DCM. 
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It is worth noting at this stage, since the EFISH measurements are in agreement 

with the solvatochromism data, the order of aromaticity for the tertiary amino TCNQ 

adducts. The aromaticity may be defined as the degree to which the chromophores 

tend to an aromatic state, where the BLA of a molecule is negative1. From the EFISH 

data in chloroform it appears that ULTRA is the most aromatic, followed by DCH then 

DEMI. This is nearly the conclusion made from measurements of the average BLA of 

the chromophores in the crystal phase, where the order of increasing aromaticity is 

DCH<DEMKULTRA [249]. 

In addition, the necessity of the third cyano-group to retain the quinoidal nature 

of the TCNQ derivative [249, 250] is further confirmed in view of the fact that DED, 

which lacks this cyano-group, exhibits purely a hypsochromic shift compared to the 

tertiary amino TCNQ adducts. This therefore indicates that DED is in a predominately 

aromatic state near the gas phase, whereas the tertiary amino TCNQ adducts near the 

gas phase reside in a predominately quinoidal state. 

§6.4 An Attempt to obtain /? from Solvatochromism. 

Analysis of the extent of the solvatochromic shift has often been used to 

estimate the sign and magnitude of the hyperpolarisability, fi(0) [251, 252], where 

comparisons between solvatochromic results and that of EFISH experiments are made 

in two prominent papers [253, 254]. In this study, we follow the method used by 

Bosshard et al [253] with a few modifications to account for the use of the El (30) 

scale to estimate the hyperpolarisability of NPP and DED. 

Referring to §2.5 and utilising equation ( 2.5-2), the shift in frequency between 

the gas and solution phases may be described as 

Note: This should not be confused with the polarity of a molecule, i.e. the dipole moment of a 
molecule. This will vary with respect to aromaticity due to differing donor and acceptor strengths 
and differing charge-separation distances. 
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(6.4-1) 

where $ and / / are the dipole moments in the ground and excited state respectively, 

measured in the gas phase, e and n are the dielectric constant and refractive index of 

the solvent respectively, and r is the average Onsager cavity radius. The additional 

effect to the evolution of the transition frequency due to the second term of ( 6.4-1) 

will be small for small or moderate changes in the ground and excited state dipole 

moments since the variation of the term involving n is small. Therefore the second 

term is sometimes excluded from the calculations. This then makes the estimate of the 

excited state dipole moment far easier. I f //° and r are known, it is possible to plot the 

position of the absorption band in various solvents versus the first term in ( 6.4-1), i.e. 

the terms involving s and n2. This will yield a straight line graph where the gradient 

can be used to find the excited state dipole moment in the gas phase. Thus ( 6.4-1) 

becomes 

dx 4nhc£0Fi 

(6.4-2) 

where 

s - \ n2-1 
X = - . 

e + 2 rr +2 

(6.4-3) 

To relate the El(30) polarity scale to ( 6.4-2), values of £^(30) have been 

plotted versus x (Figure 6.4-1). A near linear variation is exhibited and a gradient 

obtained by fitting a straight line to the data can be used to obtain the following 

equation 

»'{<-<)=• - 3 4ns0r 
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<3E£(30) 8x 4nhce0r: 

(6.4-4) 

Considering the two-level model again (see §1.7, ( 1.7-5)), J3 may be obtained 

at zero frequency by using the following expression [253] 

2e0nia>'v 

(6.4-5) 

where / / e g is the transition dipole moment between the ground and excited state. /ieg is 

obtained by estimating the oscillator strength (see equation ( 1.7-3)). The oscillator 

strength is calculated using the following expression [234,253] 

J Band ' 4/w„lnl0£ 0c' 

o 
CO 
W 

y = +0.462x +0.0819, max dev:0.107 

x 10 

0.2 0.4 0.6 

(E-l)/(e+2)-(n2-l)/(n2+2) 

0.8 

Figure 6.4-1: £^(30) plotted versus functions of the dielectric 
constant and refractive index of solvents. The solid line is a straight 
line fit to the data. 
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where /J" is the Lorentz-Lorenz local field given by equation ( 2.3-11) in Chapter 2 
then utilising equation ( 1.7-3) to obtain fieg. Here Bosshard et al [253] are explicitly 
followed where they include the term f L j n which accounts for local field variations 

on the electronic absorption band. It should also be noted that equation ( 6.4-6) 

estimates the absolute value of the transition dipole, but equation ( 6.4-5) requires only 

the component of the transition dipole in the z-direction. Thus, the use of these 

equations provide an upper limit to the value of p^ [253] 

The area of the absorption band has been obtained for NPP and DED which are 

presented in Table 6.4-1 alongside the estimates o f f o s c (see equation ( 1.7-4)), / / , n 

and p. Also presented are the cavity radius and ground state dipole moments for the 

two materials as calculated in Chapter 4 using SAS cavity radii. The estimates of the 

oscillator strength and transition dipole for NPP agree with estimates made elsewhere 

for NPP and similar materials [253, 254, 255], in that NPP possesses a moderately 

strong optical transition. The optical transition for DED is slightly stronger which is 

indicative of a larger polarisability due to the conjugated part of the molecule. 

However, J3 for NPP and DED appears to be severely under-estimated in 

comparison to the EFISH values presented in this study and the corresponding values 

of P obtained from the literature, discussed in Chapter 3. Comparing values of P for 

NPP to that of the MOP AC calculations, also discussed in Chapter 3, we see that the 

above value is about ten times less than that predicted. The value of P for DED 

calculated here is also extremely low, and in comparison to the MOP AC value, it is 

also of opposite sign. Furthermore, it is far lower than the value of p measured in 

chloroform though there is at least an agreement as to the sign of p, which is to be 

expected. There are several reasons for these low estimated values. Firstly the neglect 

of the second term in equation (6.4-1) incurs a considerable error for molecules which 
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Material f ./osc. ft r P 

(x 101 8 m 2 mor 1 s 1) (D) (D) (D) (A 3) (x 10'3 0 esu) 

NPP a 0.86 3.62 0.46 3.9 5.3 3.2 1.0 

DED a 1.09 4.38 0.59 7.9 5.4 3.6 -3.9 

Table 6.4-1: Molecular parameters of NPP and DED obtainedfrom solvatochromism 
experiments. Calculated using a: SAS radii, b: Crystal structure radii. 

possess high dipole moments. Since DED has an extremely large dipole moment, the 

neglect of the second term may not be valid. However, the gas phase dipole moment 

for NPP is only moderate and it is surprising to see such a small value of P estimated 

for this molecule. Thus, a second reason for the low values might be attributed to the 

estimate of the cavity radius involved with the above calculations. It is noted that 

Bosshard et al [253] use typical cavity radii around 6 - 7 A for molecules which are 

approximately the same size as NPP and DED. Furthermore, the same procedure is 

employed in the study conducted by Paley et al [254] where they use radii which are 

0.7 times the length of the molecule under study and acknowledge that the choice of 

cavity radius is purely arbitrary. Suffice to say these radii are extremely large in 

comparison to the estimates used in this study and it is possibly the under-estimation of 

the cavity radius which causes an under-estimate of /?. 

In general this method of estimating (3 used here is poor since large errors are 

associated with the measurement of r, the estimate of the gradient, dvjdc, and the 

theoretical approach to the calculation. Suffice to say however, that though it is 

difficult to estimate a magnitude of j3, solvatochromism experiments are still extremely 

useful for determining the sign of /?, since there is a very good agreement between the 

sign predicted from solvatochromism experiments and that obtained from EFISH 

measurements. In addition, and in view of the nature of the £^(30) scale in that 

specific solvent effects can mask considerably the trends exhibited by the solute, a 

quantitative analysis of the graphs for the tertiary amino TCNQ adducts would be 

futile. Indeed, the straight lines fitted to the data are intended only as a guide to the 
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eye. Obviously, a great error would be associated with any curve fitting to these 
graphs and the gradients would change depending of the selective nature of the data 
analysis. Furthermore, the validity of the two-level model when applied to the 
transition energy is also brought into question since it cannot fully account for a 
reversal in the ground and excited state dipole moments. In an attempt to obtain a 
more accurate evolution of the solvatochromism of the tertiary amino TCNQ adducts, 
our attention thus turns to the following binary mixture experiments. 

§6.5 The Solvatochromism of Tertiary Amino TCNQ 

Adducts in Binary Mixtures of Toluene and 

Acetonitrile. 

The experimental procedure for measuring the position of the absorption band 

in binary mixtures has been described in §6.2. Initially, several experiments were 

conducted in 1,4-dioxane - acetonitrile mixtures, but the polarity of 1,4-dioxane was 

high enough so that the cyanine limit was almost missed. Therefore, experiments were 

conducted in toluene - acetonitrile mixtures. Referring to Figure 6.3-2 and 

Figure 6.3-3, toluene (3) is the furthest solvent to the left of the graphs. Acetonitrile 

(16) on the other hand, is positioned to the far right of the graphs and does not exhibit 

any significant deviation from the fitted lines. Thus, it is hoped that the majority of 

solvent effects, such as hydrogen bonding, are removed by the use of toluene and 

acetonitrile. 

The absorption spectra of DEMI, DCH, and ULTRA in a variety of volume 

fractions of acetonitrile are shown in Figure 6.5-1 to Figure 6.5-3, respectively. The 

spectra are all concentration normalised from a single value of the concentration of a 

stock solution, accounting for the additional volume of solvent mixture added. As a 

result the accuracy on the extinction coefficient is not very good, and errors are thus 

incurred as is evident from Figure 6.5-1 to Figure 6.5-3 with the erroneous extinction 

coefficient measurements. All three materials exhibit large increases in the intensity of 

the absorption band for over 0 - 35 % acetonitrile. The reason for this is not clear, but, 
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despite great care to ensure that the solute was fully dissolved, it is likely that in all 

cases they have not, resulting in the loss of the absorption intensity. The effect is less 

prominent with ULTRA since it is far more soluble than DEMI or DCH. As already 

discussed, at low volume fractions DEMI and DCH exhibit two prominent absorption 

bands which gradually merge as more acetonitrile is added. With ULTRA on the other 

hand, the two absorption bands are already close together and almost merge 

completely when dissolved in pure acetonitrile. This indicates further that ULTRA is 

in a more aromatic state than DCH and DEMI, and serves to confirm the conclusions 

made with the preceding solvatochromism experiments and EFISH experiments on the 

tertiary amino TCNQ adducts. Finally, it should be noted that there is little evidence of 

an isosbestic point associated with the absorption bands of any of the tertiary amino 

TCNQ adducts which would indicate the presence of intermolecular complexes or 

isomer formation [223]. However, the bands A and B are generally too close to each 

other to confirm this fully. 

The presence of the second band (B) as already mentioned, complicates the 

issue of the position of band A and severely hampers the measurement of the area 

under the peak. In an attempt to circumvent this problem, a spectral curve fitting 

program is employed which is commercially available [256]. The overall absorption 

band is fitted to four absorption peaks using a Gaussian and Lorentzian summation 

lineshape (see Appendix V). The first two bands correspond to peaks A and B, and 

the second two correspond to the respective vibronic bands associated with A and B 

[236]. This method was found to reproduce all absorption spectra extremely 

accurately (r 2 > 0.999). The error on the position of the band is approximately 1 %. 

The error on the area under the curve is uncertain, but it was found that it did not vary 

greater than 5 % over a number of fits using different initial positions for the bands. 

However, this error became larger (up to 20 %) when fitting the spectra at higher 

volume fractions where the bands merge. 

The evolution of bands A and B for the tertiary amino TCNQ adducts, as 

estimated from the fitting procedure are shown in Figure 6.5-4 - Figure 6.5-10, where 

the error induced by the fitting procedure is adequately shown. It is difficult to 
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estimate the oscillator strength since this involves the calculation of the area under the 

absorption band, which is ultimately dependent on the intensity of the band. As already 

discussed, due to the possibility that the solute has not dissolved fully in toluene, the 

intensity follows an anomalous evolution with volume fraction. Secondly, it is difficult 

to match the absorption intensities between the separate halves of the experiments 

which accounts for the sudden jump in intensity at 50 % acetonitrile (see Figure 6.5-4 

and Figure 6.5-7). Thus, the observation of any real trends in the evolution of the area 

is extremely difficult (see Figure 6.5-5 and Figure 6.5-6). For ULTRA the error on the 

width of the peak is extremely large since the absorption bands merge quickly, and it is 

almost impossible to identify any evolution of the width of the band with increasing 

volume fraction. As a result of these errors in combination with those involved with 

the concentration of the solute, the area under the absorption bands for ULTRA is not 

presented. For an analysis of the oscillator strength to be conducted, the experiments 

should be repeated with greater care with the above points in mind. However, there 

are indications from the experiments on DCH and DEMI that the area of the 

absorption bands remain constant. I f this is the case, then the oscillator strength will 

increase and decrease due to the dependence upon the inverse of the transition 

frequency. Since the oscillator strength is related to the polarisability [257], the results 
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pertaining to the polarisability calculated by the 40-state SOS method appears to be 
confirmed further. 

The evolution of the transition frequencies for all three materials are similar and 

show a reversal in the solvatochromic shift at low volume fractions. The point at 

which this occurs is found to be 8.9 %, 9.3 %, and 4.7 % acetonitrile for band A of 

DEMI, DCH and ULTRA respectively. A similar behaviour is exhibited with band B. 

There are indications that the reversal point occurs at a slightly higher volume fraction 

than band A. It is unclear however, i f this is actually the evolution of B or an artefact 

of the fitting procedure. The widths of the absorption bands for DEMI and DCH 

follow a similar evolution to that of the transition energy, but no reversal is observed 

with ULTRA. The bands for DEMI and DCH first narrow rapidly, then widen, and the 

reversal point is similar to that of the transition energy which is why the area remains 

constant, but, as already indicated, care must be observed with this since the 

calculation of the width of the band may again be an artefact of the fitting procedure. 

Finally, it is interesting to note the evolution of the ratio of the intensities of band A 

and B with respect to volume fraction of acetonitrile. This is shown in Figure 6.5-9 

and Figure 6.5-10 for the three materials. Band A is initially less intense than B. 

However, the intensity of A rapidly increases with respect to B where it soon becomes 

larger. The point where bands A and B are of equal intensity appears to occur roughly 

around the cyanine limit. At present, it is difficult to attribute a reason for this 

behaviour so it is left purely as a point of interest. 

In addition, the positions of the cyanine limit with respect to volume fraction of 

acetonitrile immediately confirms the conclusion made earlier, that ULTRA is more 

aromatic than DEMI or DCH, and it appears from these measurements that DEMI and 

DCH are equally aromatic. This is in excellent agreement with the conclusions 

obtained with the EFISH results. 

It is interesting to estimate the reaction fields and dipole moments of the 

material at the cyanine limit. The evolution of the density, dielectric constant, and 

refractive index (see Figure 6.5-11 and Figure 6.5-12) of the pure solvent mixture has 

been measured. All the graphs exhibit a linear variation with volume fraction (though 
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0.87 

y = -8.38E-4x +0.867, max dev:0.00500 

Volume Fraction of Acetonitrile (%) 

» 20 

y = +0.324x +1.38, max dev:0.965 

Volume Fraction of Acetonitrile (% 

Figure 6.5-11: Variation of the density (top) and dielectric 
constant (bottom) of mixtures of acetonitrile and toluene. 
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Figure 6.5-12: Variation of the refractive index of mixtures of 
acetonitrile and toluene. 

there is the slightest of deviations shown with the density), thus the medium is ideal in 

which to study the variation of the transition frequency with reaction field. The 

reaction field, R may be calculated by using equation ( 2.3-13) for ellipsoidal and 

spherical local fields. Using the volume fractions obtained at the reversal point for 

each material and using Figure 6.5-11, the dielectric constant at the reversal point may 

be estimated for DEMI, DCH and ULTRA. Then, the reaction field, Rs and dipole 

moment, ju£ at the cyanine limit may be calculated using the estimates of the dipole 

moment, and polarisability presented in Chapter 4 for both local field formalisms. 

These are presented in Table 6.4-1. It is noted that the dipole moment at the cyanine 

limit is higher using an ellipsoidal local field formalism than the corresponding spherical 

dipole moment in accordance with the findings in Chapter 4. Conversely the respective 

reaction field is lower than the spherical reaction field. The reaction field at this point 

for DEMI will be compared to the 40-state calculations in the next chapter in an 

attempt to ascertain which local field is the better approximation to the SOS 

calculations. It should be noted that at the cyanine limit, the change in dipole moment 
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upon excitation, Aju is equal to zero so the excited state and ground state dipole 

moments are equal. This means that the estimates of p. in Table 6.5-1 are also 

estimates of the excited state dipole moment. Calculations of the excited state dipole 

moment of D-7C-A polyenes have revealed an almost constant variation with reaction 

field where the variation is only 10 - 20 % between the gas phase and the cyanine limit 

[257]. Such a variation means it is possible to estimate Ap in the gas phase and thus 

B(0) may also be estimated in the gas phase using the two level model. The results are 

presented in Table 6.5-2 alongside estimates of the oscillator strength, fosc and the 

transition dipole moment, peg which has been measured in DCM. fosc and peg have 

been estimated from the area under absorption band A in DCM, utilising the fitting 

program [256] to estimate the size and shape of the band. As shown, the estimates 

appear to be reasonable. B(0) is calculated using equation ( 6.4-5) using the transition 

frequency for DCM. The use of the transition frequency for DCM instead of the gas 

phase value may result in a small over-estimate of B(0). Given the errors involved with 

such estimates, the values of B(0) presented here are in good agreement with the 

MOP AC values of B(0) presented in Chapter 3, though the values are less than that 

predicted by the 40-state SOS calculation. Nonetheless, this method appears to be 

valid to a first approximation. 

Material vf(%) e 

(D) (D) (D) 

Rsph 

x lO 3 au (D) xlO'3 au 

DEMI 8.9 4.2 6.8 15.2 15.6 11.3 28.8 7.0 

DCH 9.3 4.4 5.0 13.1 11.6 6.8 21.9 4.6 

ULTRA 4.7 2.9 6.4 14.1 9.8 4.3 17.3 2.9 

Table 6.5-1: Estimates of the dipole moment and reaction field at the cyanine limit 
for the three tertiary amino TCNO adducts, obtainedfrom the measured values of 
volume fraction of acetonitrile and corresponding dielectric constant, using the 
spherical and ellipsoidal gas phase dipole moments estimated in Chapter 4. 
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Material fosc. A^k (D) V (D) PSPH 

x 10 3 0 esu x 10 3 0 esu 

DEMI 0.74 6.14 8.8 11.9 65 88 

DCH 0.50 5.04 6.6 8.8 33 45 

U L T R A 0.92 6.84 3.4 3.2 31 29 

Table 6.5-2: The oscillator strength and transition dipole moment estimated in DCM. 
Also presented are estimates of the change in dipole moment upon excitation in the 
gas phase and corresponding values of B(0) for both local fieldformalisms. The 
error on and B is ± 35 %. 

§6.6 Conclusions. 

The position of the absorption band for the five materials discussed in this 

thesis have been measured and compared to Reichardt's 2*^(30) polarity scale. Both 

NPP and DED were found to exhibit standard solvatochromic behaviour where a 

bathochromic shift was found for NPP and a hypsochromic shift was found for DED. 

Attempts to estimate B from an analysis of the degree of solvatochromic shift yielded a 

lower B value than that suggested by MOP AC calculations or EFISH experiments. The 

solvatochromic behaviour of the tertiary amino TCNQ adducts was found to be similar 

to that of the merocyanines in that a reversal in the direction of shift is observed and 

that there is now direct evidence of a change in sign in B. Closer inspection of the 

position of specific solvents such as DCM and chloroform reveal that small values of B 

would be expected since the tertiary amino TCNQ adducts are close to the cyanine 

limit in these solvents. Such experiments have confirmed also that ULTRA lies further 

to the right of the BLA diagram than DEMI or DCH. 

In an attempt to obtain a more accurate evolution of the transition frequency 

with respect to solvent polarity, experiments have been conducted in binary mixtures of 

toluene and acetonitrile. This has served to confirm the order of aromaticity of the 

materials which is in agreement with studies conducted in the crystal phase. Analysis 
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of the evolution of the oscillator strength proves difficult due to experimental error in 

the estimate of the concentration of the solutions. Nonetheless, estimates of the 

oscillator strength in conjunction with estimates of the dipole moment in the gas phase 

and at the cyanine limit have proved useful to estimate 8(0) in the gas phase. These 

were found to agree reasonably well with MOP AC calculations. 

Comparisons of the evolution of the transition energy with reaction field for 

DEMI with the SOS calculations will be made in the next chapter. 
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Chapter 7 

A Comparison of Experimental and 

Theoretical Data for DEMI. 

§7.1 Introduction. 

In the previous chapters, a large amount of experimental data has been 

collected for DEMI, namely the dipole moment, fi, first hyperpolarisability, 5(0), and 

transition energies, veg in various solvent media. Since n is known, the evolution of 

the dipole moment can be calculated as a function of reaction field, R and compared to 

the 40-state SOS calculations on DEMI, which are discussed in Chapter 3 [258]. 

Furthermore, i f the reaction field of DEMI is known, the evolution of veg as a function 

of R may be compared to the SOS calculations utilising the results discussed in 

Chapter 6. The reaction field of DEMI in chloroform and DCM can also be estimated 

allowing comparisons of p\0) to be made. Since DEMI has been observed to lie close 

to the cyanine limit in chloroform and DCM, we can see whether such calculations 

conclude the same result. 

Such comparisons will also attempt to ascertain which of the local field 

formalisms provide a better match to the theoretical calculations. The results of the 

hyper-Rayleigh scattering experiments conducted elsewhere will also be discussed and 

compared to the data presented in this study. 
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§7.2 The Dipole Moment. 

Values of the dipole moment in DCM, /us and in the gas phase, / / , calculated in 

Chapter 4 using the ellipsoidal and spherical local field formalisms, are summarised in 

Table 7.2-1 alongside some of the parameters used to estimate these, namely the 

polarisability, a, the cavity radius, r , and the shape factor Az. The variation with f 

has already been discussed (see for example Figure 4.5-1, Chapter 4) where large 

increases in the dipole moment are seen for moderate increases in cavity radius. We 

recall, through calculations of the refractive index and the dipole moment, that there 

are indications that the "actual" cavity radius may lie somewhere between the 

estimated SAS and crystal structure radii. Thus, both the SAS and crystal structure 

radii and their corresponding dipole moments are presented below. 

Obviously from these results, uncertainty remains over which estimated value 

of the dipole moment represents more closely the "real" dipole moment of the 

molecule. Given that the evolution of the transition frequency of DEMI in various 

solvents is novel, it is crucial that an accurate estimate of the reaction field acting upon 

the molecule is made so that the position of the cyanine limit with respect to reaction 

field is found. The gas phase dipole moment, estimated from the experiments in DCM, 

is at the point where the reaction field, R is zero. Thus, we can immediately compare 

this with both sets of SOS calculations. Furthermore, from this value and by varying 

Parameter / /?*• 

22.4 6.8 30.6 17.3 33.0 15.2 38.1 26.0 

f (A) 3.8 3.8 4.4 4.4 3.8 3.8 4.4 4.4 

a 1 az (A 3) 45.4 45.4 45.4 45.4 99.0 99.0 99.0 99.0 

A 0.3333 0.3333 0.3333 0.3333 0.1027 0.1027 0.1027 0.1027 

Table 7.2-1: Various dipole moments estimated for DEMI and the parameters used in 
their estimation. 
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the value of the dielectric constant, the dipole moment and reaction field may be 
estimated and plotted as a function of each other. Recalling equations ( 2.4-5) and 
(2.3-14), 

ft=(l-/aK a n d R = 
ft* g 

(1-faY 

(7-2-1) 

it is possible to plot / i , as a function of R (shown in Figure 7.2-1) for both the spherical 

and ellipsoidal local field formalisms which are estimated using the SAS cavity radius. 

These are plotted for dielectric constants ranging between 0 (i.e. the gas phase value) 

and 80 (the dielectric constant for water), thus representing nearly the entire range of 

reaction fields experienced by DEMI in the gas and solution phases, neglecting specific 

solvent effects. It is easy to see that a straight line is produced due to the 

proportionality of ns with R. Also plotted in Figure 7.2-1 are the two sets of SOS 

calculations using the SCI (Single Configuration excitation Interactions) and SD-CI 

(Single and Double excitation Interactions) methods. As discussed in Chapter 3, the 

evolution of n for both sets of calculations are similar and there is little difference 

between the values of at any value of reaction field. In comparison, there is a far 

better correlation between the experimental estimates of fis calculated using the 

ellipsoidal formalisms and the SOS calculations than that obtained with the spherical 

formalisms. For similar solution state dipole moments, a larger reaction field is 

experienced i f a spherical cavity was used than i f an ellipsoidal cavity is used. This is 

primarily due to the larger polarisability, az associated with the ellipsoidal local field 

model compared to that used with the spherical local field model, thus intuitively an 

agreement with an ellipsoidal field model is likely since the theoretical calculations also 

utilise the larger polarisability, a. instead of the average polarisability. 

Before any conclusions can be made however, the polarisability and cavity 

radius used in such calculations must be considered. Obviously, the evolution of the 

dipole moment with reaction field will differ depending on the value of these two 

parameters. Reproducing Figure 7.2-1, Figure 7.2-2 shows the variation of the 
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Figure 7.2-1: Variation of the dipole moment with reaction field, as estimated from 
experiment using the spherical (squares) and ellipsoidal (circles) local field 
formalisms. These are compared to the results of 40-state SOS calculations using SCI 
(crosses) and SD-CI (triangles) methods. 
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Figure 7.2-2: Variation of the dipole moment with reaction field, as estimated 
from experiment using the spherical (stars) and ellipsoidal (squares) local field 
formalisms, calculated using the SAS cavity radius (dotted lines) and crystal 
structure radius (solid lines). These are compared to the results of 40-state SOS 
calculations using the SD-CI (circles) method. 
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spherical and ellipsoidal dipole moments with reaction field i f the cavity radius is 

changed to the crystal structure radius. With the ellipsoidal curves it is assumed that 

the ratios of the principal axes remain the same and therefore, Az remains unchanged. 

In this case, the increase in cavity radius increases the value of the dipole moment, but 

the gradient of each curve remains unchanged. Therefore, there is still a better 

correlation between the ellipsoidal dipole moments and the SOS calculations, 

compared to that of the spherical dipole moments. 

A change in the gradient, dnjcR is induced by a change in the polarisability. 

Comparing the average polarisability calculated by MOP AC and used for the 

experiments in this study (45.4 A 3) to the average polarisabilities estimated by the 

40-state SOS calculations, the SCI method (44.5 A 3 in the gas phase [258]) agrees 

well with the MOPAC calculations but the SD-CI method predicts far lower 

polarisabilities (26 A 3 in the gas phase [258]). Similar comparisons are observed for az 

(100 A 3 (MOPAC), 121.2 A 3 in the gas phase (SCI), 64.6 A 3 in the gas phase 

(SD-CI)), and it is noted that the SCI estimate of the az is higher than the MOPAC 

estimate, but the SD-CI a, is again lower. The effect of a change of the polarisability 

on the curves produced in Figure 7.2-1 is simple. I f the polarisability is higher than the 

value used in experiments, from the experimental solution state dipole moment the 

value of the gas phase dipole moment will be lower than estimated in Figure 7.2-1, 

perhaps providing a better initial correlation with the SCI calculations and the 

ellipsoidal values. However, as the dielectric constant of the medium increases, the 

dipole moment will increase faster with reaction field than is seen with Figure 7.2-1. 

Thus, a larger gradient is observed. I f on the other hand, the polarisability is smaller 

than that used experimentally, a higher gas phase dipole moment will be predicted, but 

the gradient will be lower since a larger change in reaction field is needed to produce 

the same change in dipole moment. I f the SD-CI polarisabilities were used, both the 

ellipsoidal and spherical curves would not correlate with the SOS calculations. 

However, i f the SCI polarisabilities were used, there would still be a good correlation 

with the ellipsoidal formalism and not the spherical formalism. We must recall 

however, the comment made in Chapter 3, that the gradient, dp/dR pertaining to the 
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SD-CI calculations should be lower as is confirmed by the above argument. As this is 

not exhibited with the SD-CI calculations, some inconsistency is associated with these 

results. With the above points in mind, one is led to the conclusion that the use of an 

ellipsoidal local field when estimating dipole moments, provides a better estimate (in 

accordance with the SCI calculations at any rate) than the use of a spherical local field, 

and that the method used in Chapter 4 provides a satisfactory correlation, given the 

experimental error. Furthermore, one should note that SOS a and az also vary with 

reaction field, which accounts for the changes in gradient with the SOS dipole moment 

curves. Obviously it is difficult to incorporate such a change into the experimental 

estimates of the dipole moment, thus only a linear correlation with reaction field is 

observed with the experimental curves. It is therefore possible that a poor correlation 

of the dipole moment is found with the SOS calculations for specific values of reaction 

field. 

A comparison of the evolution of veg with R can now be made to the SOS 

calculations, and the position of the cyanine limit with respect to R, estimated in the 

following section. 

§7.3 The Transition Energy. 

The evolution of the dielectric constant with volume fraction of acetonitrile, 

(Figure 6.5-8) can be used in conjunction with the dipole moment measurements 

discussed above, to estimate the reaction field for DEMI as a function of volume 

fraction of acetonitrile. Then, the transition energy of the absorption band for DEMI 

may be plotted versus reaction field and compared to the SOS calculations (SCI data 

only, since SD-CI data is unavailable). This is shown in Figure 7.3-1 for both spherical 

and ellipsoidal local field formalisms. 

Unfortunately the magnitude of the transition energies do not agree, and the 

theoretical calculations predict a larger variation of the transition energy than is clearly 

the case from the experimental results. Nonetheless, there is excellent agreement with 
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Figure 7.3-1: Evolution of the transition energy of DEMI versus reaction 
field Experimental estimates of the reaction field are made using the 
ellipsoidal (circles) and spherical (squares) formalisms. These are 
compared to 40 state SOS SCI calculations (triangles). 
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Figure 7.3-3: Variation of the transition energy of DEMI with 
reaction field which is estimated using various polarisabilities and 
cavity radii and compared to theoretical results. 

189 



Chapter 7. 

the position of the minimum as estimated using the ellipsoidal dipole moments and the 

theoretical calculations. This is not surprising since there is already a good correlation 

between the theory and the ellipsoidal dipole moments. Therefore, it is logical that the 

estimate of the reaction field which is obtained from the dipole moment would appear 

to agree well with theory. As a result it is seen, once again, that the estimated reaction 

field for the spherical data is too large and does not agree with the theoretical data. 

The effect of varying the polarisability and cavity radius for the estimate of the 

reaction field is seen in Figure 7.3-3. Increasing the polarisability to that of the SCI 

value (121 A 3), shifts the entire curve to smaller reaction fields, but the "width" of the 

curve remains relatively unchanged (squares and dashed line). Increasing the radius 

however, has the effect of decreasing the "width" as well as shifting the entire curve to 

smaller reaction fields (stars and dashed line). Thus, for there to be a better correlation 

with the SCI calculations, the SCI polarisability and a smaller radius should be used 

which would have the effect of "widening" the curve while ensuring that the minimum 

still correlates. In view of the fact that the magnitude of the transition energies do not 

agree it would be a futile gesture to try to do this. 

Finally, recalling Table 6.6-1, it is found that the minimum energy is found 

when the ground state dipole moment is 29 ± 6 D, as calculated using the ellipsoidal 

formalism. This is also in agreement with the theoretical data (32 D for the SCI 

calculations and 29 D for the SD-CI calculations). It is noted that this is approximately 

the estimated value of the ellipsoidal dipole moment for DEMI in chloroform and 

DCM (33 ± 7 D in DCM and 30 ± 6 D in chloroform). Once again, the experimental 

evidence appears to agree with the theoretical results since the observed transition 

energy of DEMI in chloroform and DCM is close to the minimum transition energy, 

i.e. the cyanine limit. 

§7.4 The First Hyperpolarisability. 

In Chapter 5 it was found that though the dipole moment depended a great deal 

on the geometrical nature of the local field, there was only a small increase in the value 
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of 0 when ellipsoidal local fields are used, though this was only for small values of 0. 

In Table 7.4-1, values of 0(0) for DEMI obtained from the EFISH experiments at 

1.907 um are thus summarised for the ellipsoidal local field formalism only. Also 

presented are the corresponding values of 0(0) found from the SCI and SD-CI 

calculations (see Figure 3.3-2, Chapter 3 and the figures below) by correlating the 

estimated reaction field of DEMI in chloroform and DCM. Inspection of the results 

reveal that Mp)^^ does not agree with the SCI theory in either solvent. Recalling 

Figure 3.3-2 which is reproduced below (Figure 7.4-1), it is evident that the point 

where 0(0) is zero is not at the point where the minimum transition energy occurs. 

The minimum transition energy nearly coincides with the maximum (in a negative 

sense) 0(0). Thus a large negative value is calculated for DEMI in both solvents. 

However, the SD-CI data produces a lower result because; generally the magnitude of 

f3(0) is lower, 0(0) first increases to a maximum before decreasing to zero, and the 

variation of 0(0) is less sensitive to the reaction field. Therefore in the case of 

chloroform there is quite a good agreement (given the experimental error involved) 

with the SD-CI theory. It is also noted that confusingly the SD-CI cyanine limit 

{0 = 0) coincides with the SCI transition energy minima which suggest further 

inconsistencies between the two sets of calculations. 

The sensitivity of the 0(0) response to the reaction field as calculated by the 

SOS method is very large. Inspection of Figure 7.4-2 shows that relatively small 

changes in dipole moment produce very large changes of 0(0). For example, the 

Solvent 
EFISH Msci P(°)SD-CI 

Chloroform +28 -376 -20 

DCM +9 -484 -212 

Table 7.4-1: Summary of EFISH results for DEMI compared to theoretical 

calculations estimated from a correlation of reaction fields. Units of 10'30 esu. 
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Figure 7.4-1: Evolution of 0(0) for DEMI as estimated using 40-state 
SOS SCI (Squares) and SD-CI (circles) calculations. Also presented is 
the theoretical evolution of the transition energy estimated using the SCI 
method 
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Figure 7.4-2: Evolution of p(0) for DEMI as estimated using 40-state 
SOS SCI (Squares) and SD-CI (circles) calculations. Also presented 
is the theoretical evolution of the dipole moment estimated using the 
SD-CI method 
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difference between the dipole moments of DEMI in chloroform and DCM (29 - 33 D) 
induces a change of -190 x 10"30 esu in 0(0) with the SD-CI calculations. A similar 
change is observed with the SCI results. Therefore, any error in the estimate of n or R 
would result in a grave error in the correlation of the values of 0(0). This is a possible 
reason as to why the results in DCM do not correlate. Also, in view of the fact that 
the calculations (at least the SCI calculations) over-estimate the response of the 
transition energy to reaction field, the 0(0) response with respect to reaction field may 
also be erroneous. Thus, relatively small changes in dipole moment, in reality may not 
result in a large change in 0(0). Indeed, it is unfortunate that the evolution of the 
transition energy with respect to reaction field is unavailable for the SD-CI 
calculations, and it is suggested that this is obtained as soon as possible. 

Independent measurements on DEMI, as discussed in Chapter 3 are confusing 

to say the least, and attempts to correlate them are hindered also by the choice of local 

field factor [259, 260, 261]. However, there is further evidence that the measured 

value of 0(0) correlates well with the SD-CI calculations. Recalling Chapter 3, 

-85 x 10'3 0 esu was measured for DEMI in DMF using a dipole moment of 45 D to 

extract 0(0) (which agrees moderately well with the dipole moment measurements 

presented in this study) [259]. Comparing the 0(0) values in Figure 7.4-2, the 

corresponding dipole moment according to the SD-CI calculations is around 50 D. 

Considering that the predicted value is equivalent to an ellipsoidal dipole moment, 

which should be larger than the experimental spherical value, it appears there is also a 

good correlation between measurement and calculation. 0(0) was also found to be 

approximately -200 x 10"30 esu in a PMMA thin film, and the corresponding dipole 

moment was found to be 46 D, estimated using ellipsoidal local fields [261]. Again 

referring to the SD-CI calculations and given the possible errors involved, there is an 

excellent agreement with experiment where 0(0) is predicted to be -250 x 10'3 0 esu. 

However, at these high reaction fields, the two sets of calculations converge, i.e. 

similar values of 0(0) are obtained for similar dipole moments so there is also a degree 

of agreement here with the SCI calculations. It appears that the confusion over the 
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correlation of experimental results with these calculations has thus arisen due to the 

sensitivity of the calculated p\0) to the reaction field. 

However, one must be careful with the above correlations. The experimental 

estimates of the dipole moment are calculated on the basis of polarisabilities which are 

similar to that of the SCI theory, which clearly do not agree with the SD-CI 

polarisabilities. I f the SD-CI polarisabilities were used, then there would be a poor 

correlation between the evolution of the dipole moments and transition energies, as 

well as the hyperpolarisabilities. Estimates of the polarisability using MOP AC (in 

conjunction with the average radius, r admittedly) provide reasonable estimates of the 

refractive index when using the Clausius-Mossotti equation. Thus, there is a tendency 

to "believe" the SCI polarisabilities rather than the SD-CI polarisabilities, even though 

it would be logical for the polarisability to reduce i f a second electronic excitation is 

take into account during transitions, as is done with the SD-CI data. On the other 

hand with the SCI calculations, even though there is a good correlation between dipole 

moments and the evolution of the transition energies, the hyperpolarisabilities do not 

match at lower reaction fields which is perhaps due to the over-estimation of the 

sensitivity of the transition energy to reaction field. In fact, there is an excellent 

correlation between the SD-CI p\0) values and experimental measurements. Clearly 

there are further inconsistencies here. 

There is an extremely poor correlation between the magnitude of p\0) 

measured for DEMI in chloroform using EFISH (« 30 x 10'30 esu) and the magnitude 

of p\0) measured for DEMI in chloroform using hyper-Rayleigh scattering techniques 

(350 x 10'3 0 esu) [262, 263]. There are arguments for and against the EFISH values 

being reasonable. It is possible that, due to the high polarity of the solute, conduction 

may occur in the cell resulting in a reduction of the signal which could be mistaken as a 

non-linear optical response of opposite sign to the solvent. However, i f this was the 

case, at higher concentrations no up-turn in signal would be seen as the non-linearity of 

the solute overcomes the non-linearity of the solvent. The up-turn has been observed 

at least in the case of ULTRA and DED in DCM. I f the conduction was 
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a function of the concentration, then a non-linear behaviour would be observed with T 

and w, and this has not been seen. True, the concentrations are weak and large errors 

are associated with the values of p\0), so it is possible that the actual NLO response is 

not seen and the increase in signal could be due to slowly varying fluctuations in laser 

power. However, experiments were conducted extremely carefully and repeated 

several times where similar gradients of T versus w were found each time. 

Furthermore, it seems unlikely, given the good correlation with the solvatochromic 

experimental evidence, that the EFISH experiments provide erroneous results. 

Measurements of the evolution of fi(0) with reaction field (as is conducted with the 

binary mixture experiment on the transition energy in toluene and acetonitrile) via 

hyper-Rayleigh scattering experiments are currently underway [263], and the initial 

results yield some interesting questions. Figure 7.4-2 shows that |/?(0)| for DEMI falls 

to about half the value in toluene, at around about 30 % acetonitrile, which is then 

followed by a rise to the acetonitrile value. The results are not yet conclusive, but this 

does show that a minimum in |/?(o)| is observed. Furthermore, and perhaps crucially, 

Figure 7.4-2 shows that |/?(0)| does not fall to zero; a phenomenon which has been 
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Figure 7.4-2: Evolution of the magnitude of /? for DEMI in volume 
fractions of acetonitrile and toluene. 
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attributed to incoherent summation of the second harmonic scattered signal due to 
fluctuations of the reaction field of DEMI in solution [263]. Therefore, the hyper-
Rayleigh scattering experiments may provide an over-estimation of 0(0) when a polar 
molecule such as DEMI resides close to the cyanine limit. However as indicated, the 
results are new and are as yet inconclusive, thus it would be difficult to use this for the 
reason for the discrepancy. Further experimentation is also being conducted to 
ascertain whether ULTRA evolves in a similar manner. 

§7.5 Conclusions 

A comparison has been made between experimental measurements of ju, veg 

and 0(0) as a function of reaction field for DEMI to that of SOS calculations. A good 

correlation has been found with // which has been calculated using ellipsoidal local 

fields. However, this is only found i f the polarisabilities in such calculations are similar 

to the SCI variation of the SOS method. I f the SD-CI polarisability is used a poor 

correlation is found with the dipole moment. However, this also intuitively suggests a 

degree of inconsistency between the two sets of calculations, since they predict similar 

dipole moments. 

On the basis of calculations of the dipole moment using the SCI polarisabilities, 

the position of the minimum transition energy (i.e. at the cyanine limit) with respect to 

reaction field agrees well with the SCI calculations. However, the sensitivity of the 

transition energy to the reaction field is clearly over-estimated, and the magnitude of 

this energy is also clearly over-estimated. SD-CI data is presently unavailable and it is 

suggested that such calculations should be obtained. 

The SCI estimate of the evolution of 0(0) does not agree with that of EFISH 

experiments. However, the SD-CI estimate of 0(0) does agree with experimental 

results, though it is acknowledged this agreement is based on different values of 

polarisabilities used for the calculation of the dipole moment and reaction field. There 

is also a fairly good correlation with results obtained elsewhere and the SD-CI 

calculations. It is also noted that the sensitivity of the SOS values of 0(0) to the 
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reaction field is large, thus providing a possible reason as to why there are often poor 

correlations between theory and experiment. 

Attempts to correlate results from hyper-Rayleigh scattering experiments have 

proved unsuccessful. However, there is evidence that the hyperpolarisability is over

estimated at the cyanine limit, due to the fact that the measurement of the evolution of 

Such attempts to compare data have proven to be difficult in the light of local 

field problems. However, these suggest consistently, that the use of ellipsoidal local 

field formalisms for the measurement of the dipole moment and reaction field on a 

molecule, produces a better correlation with the SOS calculations, as would be 

expected since similar polarisabilities are used in the estimate of the dipole moment. 

The presence of two sets of calculations confuses comparisons further due to 

apparent inconsistencies with the polarisabilities and the position of the cyanine limit. 

Though it is logical that the SD-CI calculations are more accurate, it would be useful 

to ascertain i f this is true before further comparisons can be made. As indicated, 

attempts to do this are currently underway, with hyper-Rayleigh scattering experiments 

on the evolution of |/?(o)| of DEMI and ULTRA, and it would be useful, despite 

experimental difficulties, i f this could be conducted with EFISH experiments. Then it 

could be ascertained, quite readily, i f any of the theoretical models are correct. 
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Summary, 

In this thesis, the measurement of the dipole moment, hyperpolarisability and 

transition frequency of a number of highly polar and polarisable NLO organic 

chromophores in various solvents, is discussed and compared to similar measurements 

conducted on NPP. A summary of the results obtained for these materials is given 

here with indications as to possible avenues for future work. 

As discussed in Chapter 3, NPP is a well known material and has been studied 

extensively. Literature values of the dipole moment, n (7 to 8 D) and 

hyperpolarisability, fi(0) (« 40 x 10'3 0 esu in acetone, 12 x 10'3 0 esu in 1,4-dioxane) 

have been obtained. These compare well to the values obtained in this study 

(ji = 6.9 / 8.3 D, /?= 30.3 / 45.2 x 10'3 0 esu (1.064 urn) in chloroform for spherical and 

ellipsoidal formalisms respectively). Furthermore, indications of the sign of /? for NPP, 

derived from solvatochromism experiments, agree well with the results obtained from 

the EFISH experiments in that a positive /? is predicted and observed. However, 

attempts to estimate the value of /? for NPP using the solvatochromic data, yielded 

values that were too low. 

The dipole moments of four materials, synthesised at Sheffield Hallam 

University, were measured in chloroform. The dipole moments of three of the 

"Sheffield" materials were found to be extremely large (11-18 D (spherical local field)) 

which serves to confirm the zwitterionic nature of the molecules. In addition, the 

dipole moment of SHEF D was found to be moderate in chloroform (4.4 D). This is 

however, large compared to that of a solvent molecule (p. » 1 D for chloroform), 

which has a similar charge-separation distance to that of SHEF D. This further 

confirms that SHEF D is indeed zwitterionic. 

The dipole moments for DED (measured in chloroform) and the three tertiary 

amino TCNQ adducts (measured in DCM) were also obtained. The dipole moments 

199 



Summary. 

for these chromophores were also found to be extremely large (14 - 23 D (spherical 

formalism), 19 - 33 D (ellipsoidal formalism)). These were far higher than that 

obtained for NPP (up to five times higher for DEMI) and slightly higher than those 

possessed by three of the "Sheffield" materials. Once again, the high dipole moments 

serve to indicate the zwitterionic nature of the tertiary amino TCNQ adducts. It was 

noted that the dipole moment calculated using the ellipsoidal local field formalism for 

DEMI (15 D gas phase) agreed remarkably well with the results of 40-state SOS 

calculations for DEMI, which predicts a dipole moment in the gas phase of 14 D. The 

dipole moment for DED, measured in solution (20 D ellipsoidal formalism), is also in 

agreement with experimental measurements conducted on DED in the crystal phase 

(26 D). 

With EFISH experiments, calibration of the solvents, and the glass windows 

involved with the experiment, yielded good agreements with the results obtained from 

the literature. One is thus lead to believe that the experiment works reasonably well. 

This is further confirmed by the good agreement of 0(0) for NPP, measured here, with 

that obtained from the literature. 

Measurements of nP(0) for DED yielded a y9(0) value which was only slightly 

higher than that of NPP (-55 / -93 x 10"30 esu (spherical / ellipsoidal) in chloroform at 

1.064 u,m), but it was noted that the magnitude of nfKQ) was five times higher than the 

magnitude of ju/%0) obtained for NPP. Measurements of p(p) for DED in DCM 

yielded lower values than those in chloroform, but it was noted that a deviation in 

linearity with the T versus w graph was evident. This was attributed to the fact that at 

stronger concentrations a finite absorption at 532 nm reduces the second harmonic 

signal produced. Thus, the /2(0) value for DED in DCM is erroneous. However, the 

sign of /%0) obtained for DED in both chloroform and DCM again agrees with the sign 

predicted by solvatochromism experiments where a hypsochromic (negative) shift in 

transition energy was observed. Once again, attempts to measure the value of 0(0) 

from the solvatochromic data proved unsuccessful where the calculated /%0) is far 

lower than the EFISH value. 
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The values of /%0) for the tertiary amino TCNQ adducts measured at 1.064 u,m 

were found to be erroneous, since the sign of f%0) at 1.064 urn did not agree with the 

sign of y3(0) obtained at 1.907 urn. This was attributed to the fact that the absorption 

intensity at 532 nm is large, thus the second harmonic signal is overcome by the 

absorption at the concentration of measurement. Nonetheless, the 1.064 um EFISH 

experiments on the tertiary amino TCNQ adducts served to demonstrate anomalous 

dispersion phase matching. The coherence length was found not to decrease, as is 

usually found with EFISH experiments conducted away from resonance, but to 

increase with increasing solute concentration. This was attributed to the fact that at 

532 nm the refractive index of the solution at 2<y is increasing slower than the 

refractive index of the solution at co, due to the anomalous dispersion of the refractive 

index at 2o>. Thus, it would be possible, by increasing the concentration of the solute 

accordingly, to obtain a perfectly phase matched solution, providing the solubility and 

NLO response of the chromophore is large enough to observe such an effect. 

The hyperpolarisabilities for the tertiary amino TCNQ adducts measured at 

1.907 um in chloroform or DCM were all found to be extremely low, though again it is 

noted that the magnitude of the #/0(O) products were equivalent or higher than the 

magnitude of //>5(0) for NPP (see Tables 5.6-1 and 5.6-2). Furthermore, the sign of 

y9(0) varied for the same chromophore, depending on the solvent of measurement. The 

low values of /3(0) for the tertiary amino TCNQ adducts were attributed to the fact 

that the geometry of the tertiary amino TCNQ adducts are such that they reside close 

to the cyanine limit in chloroform and DCM. The results of solvatochromism 

experimentation produces encouraging signs for this hypothesis. Reversals in the shift 

of the transition frequencies of the tertiary amino TCNQ adducts were found when 

plotted versus the £^(30) solvent polarity scale. Furthermore, similar behaviour is 

exhibited through the measurement of the extinction coefficient of the absorption band 

for ULTRA in various solvent media. This reversal is similar to that exhibited by 

merocyanine dyes, and it is indicative that the geometry of the tertiary amino TCNQ 

adducts crosses the cyanine limit as the polarity of the molecular environment 

increases. This agrees well with the results of theoretical calculations on the tertiary 
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amino TCNQ adducts (see Chapter 3). Furthermore, the transition frequencies of the 

tertiary amino TCNQ adducts in chloroform and DCM are such that they lie close to 

the minimum transition frequency, i.e. the geometries of the tertiary amino TCNQ 

adducts are close to the cyanine limit in these solvents. Therefore the low value of 

/%0) measured through EFISH is confirmed through solvatochromic analysis since (3 is 

expected to be zero at the cyanine limit. 

From the positions of the cyanine limit with respect to each other, and the 

values of p(0) with respect to each other, the order of aromaticity for the tertiary 

amino TCNQ adducts could be confirmed (DCH<DEMI<ULTRA). Furthermore it is 

also postulated that DED is more aromatic than any of the tertiary amino TCNQ 

adducts since no reversal of the transition energy shift is observed for DED and that it 

is negative. This agrees with the conclusions made from studies of these materials in 

the crystal phase. 

Attempts to accurately estimate the position of the cyanine limit with respect to 

the reaction field of the tertiary amino TCNQ adducts have been made via 

solvatochromism experiments conducted with binary mixtures of toluene and 

acetonitrile. The minimum in transition frequency was found to occur at low volume 

fractions of acetonitrile (8-10 % acetonitrile), and the order of aromaticity predicted 

from these results agrees with the conclusions made earlier. It is noted that at the 

cyanine limit, the excited state dipole moment is equal to the ground state dipole 

moment, since /?, and subsequently Ap, is zero. Thus, attempts to measure the excited 

state dipole moment were made by estimating the value of the dipole moment at the 

cyanine limit via the measurements of the ground state gas phase dipole moments 

conducted earlier. The subsequent excited state dipole moments of the tertiary amino 

TCNQ adducts were found to be similar in magnitude to the ground state solution 

phase dipole moments measured in DCM, further confirming that the geometry of the 

tertiary amino TCNQ adducts lies close to the cyanine limit in these solvents. It was 

further postulated that A// and consequently 0(0) could be estimated in the gas phase, 

providing the excited state dipole moment stays constant. It was further postulated 

that the error due to changes in the value of the excited state dipole moment is only 
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around 10 - 20 %. Subsequent calculations of yS(0) for the tertiary amino TCNQ 

adducts yielded positive values that were not unlikely for these molecules in the gas 

phase. The /%0) values were lower than the values of /?(0) predicted by 40-state SOS 

calculations on the tertiary amino TCNQ adducts, but nonetheless these served as a 

good first approximation to obtaining a value of fi. 

Comparisons of the experimentally determined dipole moment of DEMI to the 

40-state SOS calculated dipole moment reveal that measurements of the dipole 

moment, calculated using ellipsoidal formalisms allow for better correlations than i f 

spherical formalisms were used to calculate the dipole moment. This was to be 

expected to a degree, since both the theoretical calculations and the ellipsoidal 

formalisms utilise the polarisability tensor which is higher than the average 

polarisability utilised for the spherical formalisms. Further comparisons revealed a 

good agreement between the values of the ground state dipole moment for DEMI, 

measured in this study, and the theoretical calculations. Furthermore, this meant that 

an agreement was also made with respect to the positions of the cyanine limit as a 

function of the reaction field for DEMI. Correlations with the hyperpolarisability, 

measured in this study, and that of the theoretical calculations, revealed that the 

theoretical evolution of /3 is extremely sensitive to reaction field. This allows for poor 

correlations obtained previously elsewhere. In addition, inconsistencies between sets 

of theoretical calculations and between different molecular parameters (for example the 

point where /? = 0 does not coincide with the transition frequency minima) inhibits 

comparisons further. Nonetheless, there appears to be a good agreement between the 

EFISH results presented here, and the SD-CI SOS calculations (see Chapters 3 and 7). 

It was also noted that |/?(0)| for DEMI obtained from EFISH experiments in 

chloroform at 1.907 um (30 x 10'30 esu) does not agree with |/?(0)| obtained from 

hyper-Rayleigh scattering (HRS) experiments conducted on DEMI also in chloroform 

(350 x 10"30 esu). In view of the above arguments for the position of the cyanine limit 

of the tertiary amino TCNQ adducts and the subsequent low values of p(0) measured, 

the HRS result appears to be over-estimated. This is perhaps further confirmed by 
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additional HRS experimentation which has been conducted elsewhere on DEMI in 

binary mixtures of toluene and acetonitrile. Though |/?(o)| was found to fall 

significantly and then rise with higher volume fractions of acetonitrile as expected, 

|/0(O)| did not fall to zero, which was extremely surprising. The experiments are yet to 

be fully confirmed and are still ongoing, however this significantly explains the 

discrepancy between the EFISH results and the HRS measurement. Further HRS 

experimentation is being conducted upon ULTRA and it will be interesting to see i f 

similar results are yielded. 

Comparisons should therefore be made between HRS experiments and EFISH 

experiments. Experimental difficulties are significant with EFISH, such as low 

solubility and degradation of high dielectric constant solvents under the influence of 

high intensity static electric fields, which is why such experiments using higher 

dielectric solvents have not been conducted thus far. However, the enhanced solubility 

of ULTRA at least lends itself to the possibility that EFISH experiments could be 

conducted on ULTRA in mixed media, and it is possible for other experimental 

difficulties to be overcome, by pacifying electrodes. The reason why |/9(0)| for DEMI 

does not reduce to zero with the HRS experiments has been attributed to random 

fluctuations of the solvent media inducing fluctuations in the reaction field of DEMI 

which are subsequently measured by the HRS technique. These fluctuations would not 

be measured using EFISH since the signal from EFISH experiments is coherently 

summed. Comparisons of the two experiments in the same media would confirm this 

hypothesis conclusively. 

The molecular properties of the tertiary amino TCNQ adducts and their 

subsequent evolution are extremely novel. Extensive literature searches have revealed 

only a few materials that exhibit similar reversals in the shift of the transition frequency, 

thus exhibiting a crossover from quinoidal tendencies to aromatic tendencies. 

Furthermore, the dipole moment is extremely large in comparison to organic molecules 

of similar size. As a result the tertiary amino TCNQ adducts have the potential to 

enhance our understanding of how such highly dipolar molecules behave under the 
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influence of electric fields in various media. It is suggested that further solvatochromic 

experiments utilising a number of different binary mixtures should therefore be 

conducted. 

Finally, such experiments may tell us how the solvents interact with the solute 

molecules as well as how the geometry of the solute evolves with increasing solvent 

polarity. The origin of the second absorption band associated with the absorption 

spectra of the tertiary amino TCNQ adducts has not been attributed, and attempts to 

associate the band to various phenomena pertaining to the chromophores, have as yet 

proved inconclusive. Solvatochromic experiments conducted in binary mixtures of 

associating solvents may reveal a possible answer. The presence or lack of an 

isosbestic point on the absorption band may infer or eliminate the possibility that the 

band is a consequence of inter-molecular interactions. 
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Appendix I 

Computer Programs. 

Several computer programs have been developed to allow relatively easy 

collection and analysis of experimental data obtained from EFISH and dipole moment 

experiments. In this appendix these computer programs are described. 

A l . l EFISH Experiments. 

The programs used to collect the data and write it to a file have previously been 

developed [264] and will not be shown here. The resulting experimental data is left in 

the form of a text file consisting of three columns of data representing the translation 

distance, the second harmonic signal, and the normalised signal. The analysis only 

requires the use of the normalised signal (the last column) thus the middle column may 

be discarded by inserting the program into various spreadsheet packages [265] and re-

saving as a text file ensuring that any text headers are removed. 

To analyse the fringes, a non-linear regressional analysis program [266] is 

employed in conjunction with a small control program shown below. The control 

program was developed using a standard text editor and saved in text format: 

Title "Maker Fringe Fitting Program"; 

// This program finds the amplitude, offset, frequency and phase of the maker fringes; 

Angletype Radians; 

Variables 1, Intensity; 

Parameter Offset, Amplitude, Frequency, Phase; 
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Sweep Frequency=l.0,2.6,0.2; 

Function Intensity=OfFset+Amplitude*(Sin(Frequency*l+Phase))A2; 

Plot Grid, Title="Maker Fringes", Xlabel="Distance (mm)", Ylabel="Normalised 

Intensity"; 

Rplot; 

Nplot; 

Poutput "c:/dirl/dir2/..../file.dat"; 

Output To "c:/dirl/dir2/. ../file.out" 1, Intensity, Predicted; 

Data "c:/dirl/dir2/ /file.txt"; 

The control program is designed to fit the function which is described by 

( 5.4-1) in §5 using the "Function" command in the program. To ensure that the best 

fit is found, several initial frequencies are tried through the "Sweep" function. Upon 

convergence, the "Amplitude", "Frequency", "Phase" and "Offset" "Parameters" are 

calculated and stored in a data file (file.dat) via the "Poutput" command. The "Plot" 

command allows a graph of the fit to be displayed on screen. This is also sent to a file 

(file.out) via the "Output" command. Finally, the "Data" command specifies where the 

data file (file.txt) can be found. 

Once the Maker fringe fitting is complete, the amplitude, frequency and offset 

of the fringes may then be used to calculate TL, and the coherence length, lc. For this 

purpose a dedicated mathematical analysis program has been utilised [267] in 

conjunction with several subprograms shown below. 

First the coherence length and the average height of the fringes must be 

calculated, taking into account any neutral density filters in the signal arm and the ratio 

of the boxcar sensitivities between the solution experiment and the corresponding 

quartz experiment: 
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(Th i s part of the program finds the average intensity, am and the coherence length, lc 

from the Amplitude, Offset, and Frequency obtained from the fitting program*) 

nd=0; (*Neutral density value in signal arm*) 

angle=2.5*3.14159/180; (*Wedge angle (radians)*) 

al =0.59529; (* Amplitude*) 

a2=0.05424; (*Offset*) 

frequency= 1.29744; (*Frequency*) 

r=5/5; (*Ratio of sensitivities quartz/solution*) 

a3=3.1459/(2*frequency); 

lc=a3*Tan[angle]; (*Coherence length*) 

am=(al/2+a2)*(10And)*r; (*Average intensity*) 

Print["***************************************"] 

Print["Coherence Length = ",lc*10A3," microns"] 

Print["Average Intensity = ",am] 

Print["***************************************"] 

Once this is completed, the coherence lengths and average intensities for glass, 

quartz and each solution may be used in the next program to calculate the 

corresponding r L 's. The appropriate optical and electrical constants are provided in 

§5.4: 

(*This part of the program calculates T from the average intensities and coherence 

lengths calculated above.*) 

epsO=8.85 10M2; (*Permittivity of free space, F m'1*) 

wlngth=1.064; (*Wavlength (urn)*) 

e0=2.5*10A3/(299.8*0.2); (*Electric field (statvolts an 1 )*) 

xl=0.3; (*Path length before wedge (cm)*) 

x2=0.2; (*Path length across wedge (cm)*) 

x3 =0.3; (*Path length after wedge (cm) *) 
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lcg=20.56; 

ng2w=1.519; 

ngw=l.50699; 

gammag=3.8*10A-14; 

lcq=20.9; 

amq=5230; 

nq2w=l.54702; 

nqw=l.53413; 

dll=1.2*10A-9; 

(*Glass parameters*) 

(*Glass coherence length (jam)*) 

(•Refractive index, 2©*) 

(•Refractive index, ©*) 

(*r of BK7 Glass (esu)*) 

(*Quartz parameters*) 

(*Coherence length for quartz (urn)*) 

(Average fringe height for Quartz*) 

(*Refractive index, 2©*) 

(*Refractive index, ©*) 

(*d u coefficient for quartz (esu)*) 

(*Fresnel factors for quartz*) 

ql=(2*nq2w/(nq2w+l))*((nqw+l)/(nq2w+l))*(l/(nq2w+nqw))*((2/(nqw+l))A2); 

q2=((nq2w+nqw)/(nq2w+l))*(l/(nq2w+nqw))*((2/(nqw+l))A2); 

lcl=22.2; 

aml=.1102; 

nl2w=1.447; 

nlw=nl2w-wlngth/(4*lcl); 

alphw=0.0; 

alph2w=0.0; 

(*Solution parameters*) 

(*Coherence length (|im)*) 

(*Average intensity*) 

(•Refractive index, 2©*) 

(*Refractive index, ©*) 

(*Absorption at © (cm"1)*) 

(*Absorption at 2© (cm'1)*) 

(*Fresnel factors for solution*) 

tpw=2*ngw/(ngw+nlw); 

tw=2/(l+ngw); 

ta2w=2 *ng2 w/( 1 +ng2w); 

11 =ta2w*twA2*( l/(ng2w+ngw))*((ngw+n!2w)/(ng2w+nl2w)); 
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t2^a2w*twA2*tpwA2*(l/(n!2w+nlw))*((nlw+rJ2w)/(ng2w+nl2w)); 

(•Calculation of rL*) 

fx=(Exp[-2*alphw*x2]+Exp[-alpl£^ 

gammal=l/(t2*lcl)*Sqrt[((-t 1 *gammag*lcg+ 

((aml/amq)*((q 1 A2)+(q2A2))*(d 11 A2)*(lcq)A2/((eOA2)*fx))A(0.5)))A2]; 

Print["***************************************"] 

Print["gamma = ", gammal," esu"] 

Print["************************ ******* * * * * * * * * " ] 

This program may modified for the calculation of r G by inserting equation 

( 5.4-4) and the related Fresnel factors shown in §5.4 into the appropriate sections 

above. 

To calculate /jfi(co) from the gradient of TL versus weight fraction, another 

program was developed as shown below. For this part, the gradients of the graphs 

obtained from the dipole moment experiments and the corresponding dipole moments 

are required. In addition i f available, the change in refractive index with weight 

fraction and change in specific volume should also be used, but these are not essential 

as their neglect produces only a small error in the final calculation. Several local field 

variations are possible and are obtained by inter-changing the equations under the 

reaction field factor section: 

(This part of the equation calculates the final gamma for the solute by knowing the 

solvent T, and the gradient, (X~ldv from the T - weight fraction graph, and dsjdw 

from the dielectric data*) 

na=6.022045 10A23; (*Avogadro's number (mol'1)*) 

lcl=24.0; (""Coherence length of the solvent*) 

wlngth=1.064; (*Wavelength (urn)*) 

nw=n2w-wlngth/(4*lcl); (*Refractive index at frequency ©*) 

n2w=l .447; (*Refractive index at frequency 2a>*) 
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el=4.3; 

gammal=6.0*10A-14; 

mw=296.4; 

d=1.31678; 

mu=18.2*10A-18; 

k=1.38*10A-16; 

t=296; 

dgamdw=-1.34*10A-ll; 

dedc=64100; 

dedw=d/mw*dedc; 

vol l=l /d; 

dvoldw=0; 

dn2dw=0; 

(•Dielectric constant of solvent*) 

(*r of the solvent (esu)*) 

(*Molecular weight of solute (g mol'1)*) 

(•Density of solvent (g cm"3)*) 

(*Dipole moment (esu)*) 

(*Boltzmans constant (esu)*) 

(•Temperature (K)*) 

(* Solution gradients*) 

(•Gradient from EFISH graph (esu)*) 

(•Dielectric constant with concentration (cm3 mol"1)*) 

(*Dielectric constant with weight fraction*) 

(*The specific volume (cm3 g"1*) 

(*Change in specific volume*) 

(*Change in square of refractive index*) 

(*The reaction field factors*) 

f l sph=81 *mw/((el+2)*(nwA2+2)A3); 

£2sph=(2*el+nwA2)*(2*nwA2+n2wA2)A3*mw/((n2wA2+2)A4*nwA6*el); 

f3sph=27*mw*(nwA2+2*el )/(el •(nwA2+2)A3 *(n2wA2+2)); 

fell=27*mw#(el+(n2wA2-el)*along)/(el*(l-(n2wA2-l)*along)*(nwA2+2)A3); 

along=0.1027; 

nfacl=3/(nwA2+2); 

epsfacl=l/(el+2); 

nfac2=l/(nwA2); 

epsfac2=l/el-2/(2*el+nwA2); 

(•Calculation of up*) 

(•For Debye factors use; flsph, nfacl, and epsfacl*) 

(•For pure Onsager factors; use f2sph, nfac2 and epsfac2*) 

(*For mixed Lorentz/Onsager factors; use f3sph, nfacl, and epsfac2*) 
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(*For ellipsoidal factors; use fell, nfacl and epsfac2*) 
a=EngineeringForm[ 

gamma2=f3sph*((vol 1 *dgamdw)+(gammal *dvoldw)+(vol 1 *gammal) 

-voll *gammal *(nfacl *dn2dw+epsfac2*dedw))/na]; 

b=EngineeringForm[mubeta=gamma2 * 5 * k*t]; 

c=EngineeringForm[beta=mubeta/mu]; 

Print["***************************************"] 

Print["mu*beta=", b," esu"] 

Pnnt["***************************************"] 

Print["beta= , ,,c," esu"] 

Print["***************************************"] 

Finally, to calculate the value of /? at zero frequency using the two-level model 

described in §5.6, the following program may be used: 

(*This part of the program calculates P(0)*) 

v=2.998*10A8; (*Speed of light (m s'1)*) 

lambdamax=474* 10A-9; (*X m a x (m)*) 

wavelength= 1.064* 10A-6; (*Wavelength (m)*) 

betaw=-389.6*10A-30; (*£(©) (esu)*) 

mu=33*10A-18; (*u(esu)*) 

(•Conversion to angular frequencies*) 

w=v/(2*3.1415* wavelength); 

weg=v/(2*3.1415*lambdamax); 

(•Calculation ofp(0)*) 

a=EngineeringForm[betaO=betaw*(l-(wA2/(wegA2)))*((l-4*(wA2)/(wegA2)))]; 
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b=EngineeringF orm[mu*betaO]; 

Print["****** ************ *********************»j 

Print["betaO = ", a," esu"] 

Printf"***************************************« j 

Print["mu*beta = ", b," esu"] 
Pnnt["***************************************"] 

A1.2 Dipole Moment Experiments. 

The following programs are used in conjunction with Mathematica [267] to 

calculate dipole moments using various local fields. First using Debye local fields: 

(*Guggenhiems equation for dipole moment*) 

(*Boltzmans constant (*ergs K" 1*) 

(•Temperature (K)*) 

(•Dielectric constant of solvent*) 

(*Refractive index of solvent*) 

(•Gradient dsfdC (mols cm"3)*) 

(*Avogadro's number • ) 

(•Calculation of the u*) 

u=(10A36#9+k*t/(na*4*Pi)*3/((el+2)*(nlA2+2))*grad)A0.5; 

Print["guggenhiems dipole moment = ",u," Debyes"] 

Secondly, using Onsager's local fields. As is explained in §4.4, the average 

polarisability and molecular semi-axes are needed for this calculation in conjunction 

with the experimental results. 

k=1.38 10A-16; 

t=295; 

el=4.8; 

nl=1.436; 

grad=31400; 

na=6.022 10A23; 
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(•Programme to determine dipole moments using Onsager local fields.*) 

Slope=38000; 

epsl=4.8; 

aav=45; 

kT=4.1*10A-21, 

slo=Slope* 10A-6/(6.023* 10A23); 

a=9.5; 

b=3.1; 

c=2.2; 

r=(a*b*c)A(l/3); 

Print["r= *',r] 

(•Gradient dejdC (mols cm"3)*) 

(•Dielectric constant of solvent*) 

(* Average Polarisability *) 

(•Boltzmans constant times Temperature (J)*) 

(• Convert Slope to SI Units (m"3)*) 

(•1/2 molecule length (A)*) 

(•1/2 molecule width (A)*) 

(•1/2 molecule thickness (A)*) 

(• Reaction Field Factors *) 

fsph=(l/(rA3))*(2*epsl-2)/(2*epsl+l); 

(* Spherical Cavity Field correction factor *) 

Gsph=((3 *eps 1 )/(2*eps 1+1 ))*( 1 /(1 -fsph*aav)); 

(*Calculation of Dipole Moments*) 

musol=Sqrt[(slo-Gsph*aav# 10A-30)3*kT*8.854* 10A-12/Gsph]/(3.336* 10A-30); 

Print["usol = musol," D"] 

mugas=( 1 -fsph*aav)*musol; 

Printfug =", mugas," D"] 

(*Calculation of reaction field*) 

react=fsph*musol*0.0583; 

Print["reation field = ",react] 
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Finally, for the calculation of dipole moments using ellipsoidal local fields, the 

next computer program is utilised. This time the polarisability along the major axis and 

the molecular semi-axes lengths are required: 

(•Programme to Determine Solution State Dipole Moments *) 

Slope=38000; ' 

epsl=4.8; 

kT=4.07295*10A-21; 

al=100; 

aav=45; 

slo=Slope* 10A-6/(6.023 * 10A23); 

(•Gradient dsfSC (mols cm'3)*) 

(•Dielectric constant of solvent*) 

(*Boltzmans constant times Temperature (J)*) 

(* Dipole axis polarisability (A3)*) 

(* Average Polarisability (A3)*) 

(* Convert Slope to Correct Units *) 

a=8.0; 

b=3.6; 

c=1.9; 

r=(a*b*c)A(l/3); 

Print["r= ",r," Angstroms"] 

(* Determine Scholte Ellipsoidal Integrals *) 

(*l/2 molecule length (A)*) 

(*l/2 molecule width (A)*) 

(*l/2 molecule thickness (A)*) 

x2=(s+aA2)A(3/2); 

yl=(s+b A2) A(l/2); 

zl=(s+cA2)A(l/2); 

ml=x2*yl*zl ; 

Along=((a*b*c)/2)*NIntegrate[l/ml, {s,0,lnfinity}]; 

Printf"Along = ", Along] 

(* Reaction Field Factors *) 

flong=(3/(rA3))*Along*(l-Along)*(epsl-l)/(epsl+(l-epsl)* Along); 

fsph=(l/(rA3))*(2*epsl-2)/(2*epsl+l); 
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(* Ellipsoidal Cavity Field Correction Factor*) 

Gell=(epsl/(epsl+(l-epsl)*Along))*(l/(l-flong*al)); 

(* Spherical Cavity Field correction factor *) 

Gsph=((3*epsl)/(2*epsl+l))*(l/(l-fsph*aav)); 

(*Calculate dipole moments*) 

musol=Sqrt[(slo-Gell*al * 10A-30)*3*kT*8.854* 10A(-12)/Gell]/(3.336* 10A-30); 

Print["usol = musol," D"] 

mugas=(l-flong*al)*musol; 

Print["ug =", mugas," D"] 

(•Calculate reaction field*) 

react=flong*musol*0.0583; 

Print["reation field = ",react," AU"] 
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Appendix II 

Description of the Second Harmonic 

Waves and Boundary Conditions in Non-

Linear Media. 

In the following sections, the equations describing the second harmonic, bound 

and free wave field amplitudes (Chapter 5, ( 5.3-6) and ( 5.3-7)) will be derived, where 

a description of the boundary conditions in the EFISH cell is also given [268, 269, 

270]. The derivations of the bound and free wave amplitudes for the specific case of 

the solution wedge in the EFISH cell the are also given. 

AIL1 The Bound Wave. 

The non-linear wave equation, defined in §1.3, may be written for the spatially 

varying second harmonic electric field, E2<D{z) as [269,271] 

f l ^ + a ^ + k'J?- = - I ^ l ^ ( . - ) [ £ . ( z ) f e**, 

A l l - 1 

where kf =2am2a>/c, and kb =2(ma)/c are the free wave vectors of the second 

harmonic free and bound waves, respectively, a2a is the absorption coefficient at the 

second harmonic frequency, and d e f f { z ) is the spatially varying induced non-linear 

coefficient of the medium. The solution of A l l - 1 is the sum of the free wave 
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amplitude, Ej- and bound wave amplitude, Eb(z) which will vary because of the spatial 
variation of the non-linear polarisation; 

E2a,(z) = Efe-a>j2eik<* + Eb(z)eik>2. 

A l l - 2 

Assuming no initial free wave, substitution of A l l - 2 into A l l - 1 yields the equation for 

+ (a2ta + 2 i k b ) ^ + (k2

f-k2

b + i k b a 2 a ) E b ( Z ) = - ^ d e f f ( z ) [ E ^ ) ] 
dz1 dz 

A l l - 3 

The inter-electrode distance is far larger than the coherence length 

(lc = ftj\kf - kb\ = nftsk), thus the fringing of the static electric field induces a smooth 

variation in deff{z). The slowly varying amplitude approximation may then be 

considered so that [269] 

dz2 
(a2a+2ikb) 

cEb(z) 

dz « (k}-k2 +ikba2m)Eb(z)\, 

A l l - 4 

then 

c (k}-kb

l +ikba2a) J 

A l l - 5 

Equation A l l - 5 may be simplified further i f a2(0 is small compared to Ak, which is 

always the case for absorption coefficients less than 100 cm'1 [268] 

103 03 

A l l - 6 
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so ( 5.3-6) in Chapter 5 is thus obtained. 

AII.2 Boundary Conditions. 

In each part of the cell where second harmonic light is generated, the 

fundamental wave is accompanied by a second harmonic bound wave which is 

proportional to the non-linear polarisation as described in AII -1 . At each boundary, a 

transmitted and reflected second harmonic free wave will be created, where the 

amplitudes may be calculated by considering the boundary conditions for the second 

harmonic electric and magnetic fields, E2m and H2m respectively. 

Considering the general case of a boundary between two media, 1 and 2 

respectively, in medium 1 the second harmonic waves are a free wave, , a bound 

wave, E^ and a reflected free wave, ER so that 

A l l - 7 

where 

e f = [ k f + i ^ z , eb={kb+ia<1>)z, 

A l l - 8 

and a2(a> kfi and kb refer to medium 1. Note for completeness, the absorption at a 

is also included. Since the wedge angle is small (no more than 10°), continuity 

relations of the E and H field parallel to the interface can be observed, thus leading to 

(270] 

Efj)e"< + + £ £ V ' = 4 2 V * ' + E<2\z)e'* 

n^e"' • / W W * * ~4lERe-ie< =n%E?ei6< - n ^ e ^ 

A l l - 9 
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where z = z0 at the interface. It is assumed that can be omitted from the two 
equations in All- 9 since multiple reflections are neglected for a finite wedge angle 
[268, 270]. Also, the assumption that fyand 0b are identical in media 1 and 2 is in 
error with the physical situation, though the final results remain unchanged with the 
specific case [270]. Eliminating E$ from All- 9 yields 

4 V ' = t^Efe"' + TXE^] - T2El2) W'" 

All- 10 
thus obtaining ( 5.5-7) in Chapter 5, where 

„ ( ' ) + „ ( ' ) w

( 1 ) + « ( 2 ) 

f _ a> 2a> j _ rl2m ^ "co 
' (1) , (2) ' 2 (•) , (2) ' 

"la> ^n2a> n2a> T r,2a> 

All- 11 
and [272] 

l2a> ~ 

All-12 

AII.3 The Second Harmonic Wave in an EFISH Cell. 

As mentioned in Chapter 5, the analysis of the second harmonic wave 

throughout the region concerning the electrodes is identical to that of Oudar's [270]. 

Considering Figure 5.3-1 in Chapter 5, at position 3 there is no incident free wave and 

the two bound waves for the glass (G) and solution media (L) are 

% = , Q J* o V roE0(E°(3j)2 =(rLttfe-"E° 
K«) -{<) 

K) - K ) 

An-13 
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as described by the equations in ( 5.3-10), Chapter 5. Using A l l - 10 the free wave 

created at position 3 is thus 

f t - _ TITO _ r r l 

A l l - 14 

where T1 and T2 are described by A l l - 11 for the glass (1) and solution (2) media 

respectively. Just before position 4 in Figure 5.3-1, the free wave is 

Ef(4) = E L

f e i [ k M a * j 2 ) ) x \ 

A l l - 15 

where x2 is the path length between the glass windows. The two bound waves created 

at position 4 are now 

^ a , ( 4 ) = ( W ) 2 ^ ° " 

A l l - 16 

where t" is given by equation ( 5.3-5) in Chapter 5. Therefore, the total free wave 

after position 4 is thus 

E°fe19' =tl"E}eia' + TLEL

b -TG{rGrL) E1 

A l l - 17 

where t2

L

a is the same as ( 5.3-5) except that the refractive indices are measured at lax, 

and T L and T G are described by A l l - 11 for the solution (1) and glass (2) media 

respectively. 

As already indicated in Chapter 5, the product of the Fresnel factor, is 

close to unity, so these factors may be dropped. Furthermore, since the refractive 

index of the liquid and glass media differ by no more than 15 %, the same argument 

may be applied to some of the other coefficients, namely 
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2<B T.t 
2m TJ 

All- 18 

Thus, with the aid of these assumptions and A l l - 14, after transmission through 

interface 5, A l l - 17 becomes 

[268] J. L. Oudar, / . Chem. Phys., 67 (2), 446, (1977). 

[269] R. W. Boyd, Non-Linear Optics, Academic Press Inc., London, (1992). 

[270] F. Kajzar, I Ledoux, J. Zyss, Phys. Rev. A, 36 (5), 2210, (1987). 

[271] J. Jerphagnon, S. K. Kurtz, J. Appl. Phys., 41 (4), 1667, (1970). 

[272] E. Hecht, Optics, 2nd Ed., Addison-Wesley Publishing, Wokingham, England, 

id ,9 2a> 2<o t + e f 

An-19 
as is given by equations (5.3-9) and ( 5.3-10) in Chapter 5. 

References for Appendix II . 
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Appendix III 

Systems of Units and Conversion Factors. 

Throughout this study a variety of different unit systems are used for non-linear 

optical and other parameters. This appendix is intended to remove any confusion over 

the magnitude of these parameters by converting them to the MKS system and using 

the numerical factors below. 

In the Gaussian system of units (CGS), the polarisation of a bulk media, P(/) is 

related to the electric field strength, E(t) by [273] 

P(0 = P 0 + z{M') + * ( 2 ) E 2 (0 + * ( 3 ) E 3 ( / ) + , 

AM- 1 

where the units of P(/), P 0 and E(/) are statvolts cm'1 = statcoulomb cm"2. Thus %^ 

is dimensionless, x^ n a s u n i t s °f c m statvolt'1, and x^ n a s units of cm 2 statvolt2. 

Similarly for the polarisation of an individual molecule, p(t), the relationship to the 

local field, E ; o c ( f ) is as follows 

p(/) = u + aEloc (t) + (t) + yE,J (t)+. 

AIII- 2 

where p(/), and / i , this time have units of statvolts cm 2 s statcoulomb cm, and E / o c(*) 

still has units of statvolts cm"1. Thus, the units of a, (3 and ^are cm3, cm 4 statvolt'1 and 

cm 5 statvolt"2 respectively. Usually, the units in the Gaussian system are just quoted as 

electro-static units (esu). 
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Similarly in the MKS system, P(/)and p(/) are related to E ( / ) and E Z o c ( f )v ia 
the equations 

p(0 = p 0 + s 0[z { M < ) +x ( 2 )r - ( t ) + z ^ ( t ) ] 
p(f) = ii + eo[aEloc(t) + 0EUK

2(t) + yEloc

3(tj\ 

AIII- 3 

where the units of P ( f ) and P 0 are C m' 2, p(f) and fi are C m, E ( f ) and E / o c ( f ) are 

V m"\ and s0 is 8.85 x 10'1 2 F m"1. Since [F] = C V 1 , %^ is still dimensionless, ^ ( 2 ) 

has units of m V"1, and % ^ n a s u n ' t s of m 2 V"2- Also, or, /? and y have units of m 3, 

m 4 V 1 , and m 5 V 2 , respectively. 

To convert from one unit system to another, various conversion factors need to 

be considered which are also presented in Table A I I I - 1 . The most notable inclusion to 

these is the An factor. In a Gaussian system for a linear medium, the displacement, D 

is given by 

D = E + 4^P = E(I + 4 ^ ( 1 ) ) . 

AIII- 4 

However, in the MKS system the same equation is given by 

D = e 0 E + P = f 0 E ( l + ^ ( , ) ) , 

AIII- 5 

thus it is easy to see that a multiplicative factor of 4 K is involved when converting to 

MKS units from Gaussian units. A similar factor is involved with the microscopic 

displacement. 

Occasionally a slightly different convention is used with the MKS system in the 

placement of s0 
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P(0 = P o + ^ ( , ) E ( 0 + J , 2 , E 2 (0 + ^ ( 3 ) E 3 (0 
p(/) = u + s0aEloc(t) + fiEj (t) + f E j (t) 

AIIJ- 6 

I f this is the case, > > A y are simply multiplied by e0 to convert to this 

MKS system from the previous MKS system. 

Finally, the atomic unit may be derived from the solution to Schrddingers 

equation for a one electron atom (i.e. Hydrogen). The Rydberg unit of energy is 

defined as (MKS units) [274] 

Ryd = —^TTT = 13.605 eV, 
32x2e2

0h2 

where m is the mass of an electron, e is the electronic charge, and h is Planck's 

constant divided by 27t. The atomic unit of energy is defined as 1 au = 2 x Ryd, and 

the atomic unit of length is the first Bohr radius, 

ao=^£o^_ = 0.52892 A. 
me' 

Thus 1 Ryd = e2/l6n:£0a0, and 1 au = e2/47re0a0. The electric field produced by an 

oscillating dipole the size of the first Bohr radius is E = En=] /ea0, thus the atomic unit 

of electric field is (note capitals here denote the atomic unit of electric field) 

Conversions to the MKS system for miscellaneous units are presented in Table A I I I - 2 

below. Values of the numerical constants used in the MKS and CGS systems are also 

presented in Table A I I I - 3 [273]. 
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Parameter Units (MKS) Units (esu) Conversion Factor, JC 

(1 (MKS) = x (esu)) 

Q C state 2.998 x 109 

V V statV 1/299.8 

*o F m 1 — — 

[F] C V 1 statC statV"1 9x 109 

V m ' 1 statV cm"1 1/(3 x 104) 

Cm" 2 statC cm"2 3 x 105 

Cm" 2 statC cm'2 3 x 105 

None None 1 

z(2) m V 1 cm statV 1 (3 x 104)/4TI 

m 2 V 2 cm statV 2 (3 x 104)2/4TI 

p(0 C m statC cm 3 x 1011 

M C m statC cm 3 x 1011 

a m 3 enf 106 

n ^ V 1 cm4 statV 1 (3 x 1010)/4TC 

r m 5 V 2 cm5 statV 2 106(3 x 104)2/4TI 

Table AIII- J: Units and Conversion factors between the MKS and CGS systems, e.g. 
lm3 = 106 cm3. 
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Parameter Units (X) Units (Y) Conversion Factor, x 

(1X=XY) 

r m Angstroms (A) 101 0 

M esu Debyes (D) 101 8 

M C m Debyes (D) 3 x 10 2 9 

£«> M O V m - 1 Atomic units (au) 1.948 x 10-12 

Table AIII- 2: Miscellaneous unit systems and conversion to the MKS system, e.g. 1 m 
= io'°A. 

Constant Symbol M K S Units CGS Units 

Speed of light. c 2.998 x 108 m s'1 2:998 x lO^cms' 1 

Charge of electron. e 1.602 x 10"19C 4.803 x 10"10 esu 

Avogadro number. K 6.023 x 102 3 mol"1 6.023 x 10 2 3 mol"1 

Electron rest mass. me 9.109 x 10" 3 1Kg 9.109 x 10' 2 8 g 

Boltzman constant. kB 1.381 x lO - 2 3 JK"1 1.381 x lO^ergK" 1 

Planck constant. h 6.626 x 10 - 3 4 J s 6.626 x 10"27 erg s 

Electron volt. eV 1.602 x 10"19J 1.602 x 10"12erg 

Table AIII- 3: Numerical constants presented in both MKS and CGS systems. 

References to Appendix III 
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Appendix IV 

Tables of the ^ ( 3 0 ) and 7 1 * Scales of 

Solvent Polarity. 

The following table shows values of various indicators of solvent polarity. 

Solvents are in order of increasing dielectric constant [275] and are compared to the 

£w(30) polarity scale and the 7i*-scale with it's associated HBA (|3) and HBD (a) 

parameters [276]. 

Solvent E ET

N(30) 71* P a 

1,4 Dioxane 2.2 0.164 0.553 0.37 0.00 

Benzene 2.3 0.111 0.588 0.10 0.00 

Toluene 2.4 0.099 0.535 0.11 0.00 

Diethylether 4.3 0.117 0.273 0.47 0.00 

Chloroform 4.8 0.259 0.580 0.00 0.44 

Chlorobenzene 5.6 0.188 0.709 0.07 0.00 

T H F 7.6 0.207 0.576 0.55 0.00 

D C M 8.9 0.309 0.82 0.00 0.30 

Cyclohexanone 16.1 0.281 0.755 0.53 — 
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Acetone 20.7 0.355 0.683 0.48 0.08 

T M U 23.1 0.318 — — — 

Ethanol 24.6 0.710t 0.540 0.77 0.83 

Methanol 32.7 0.762 0.586 0.62 0.93 

Nitromethane 35.9 0.481 0.848 — 0.85 

DMF 36.7 0.404 0.875 0.69 0.00 

Acetonitrile 37.5 0.460 0.713 0.31 0.19 

DMSO 46.7 0.444 1.000 0.76 0.00 

Table AIV-1: Scales of solvent polarity. 
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Appendix V 

The Gaussian-Lorentz Summation 

Lineshape Used for Spectral Curve Fitting. 

The lineshape used to fit the absorption spectrum of the tertiary amino TCNQ 

adducts is as follows [277] 

f ^ e x p - 4 1 n 2 { ^ } + _ L Z £ 3 

y ' = a ° /r~r , ' 
a w l n z 1-a, 

I + 1 

where a ;, a2, and <^ are the peak amplitude, centre, width, and lineshape factor 

respectively. The fitting program finds the parameters a0 - a3 and the area, a4 may be 

found by using the following equation 

4 a, Vln2 1-a, 
~ ^ ^ + 

As explained in Chapter 6, four peaks are fitted to the total absorption band and the 

area and position of the first two bands estimated. An example of an absorption fit is 

shown in the graph below, r 2 was found to be better than 0.999 each time and it is 

estimated that the error on the position and area is no more than 1 % and 5 % 

respectively. 
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Figure AV- 1: The absorption spectrum for DEMI with a typical fit 
from four Gaussian - Lorentz summation lineshapes. 
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Appendix VI 

Derivation of the Reaction Field. 

The derivation of Onsager's reaction field is well known and is reproduced in 

many texts [278, 279, 280]. Considering a spherical cavity of radius a which is 

surrounded by a medium of dielectric constant, e, at the centre of which is a non-

polarisable, ideal, point dipole oriented in the z-direction (see Figure 2.3-1), the 

potential outside and inside the sphere, defined by <j>} and <j>2, respectively must be 

found. The solution to Laplace's equation, V 2 ^ = 0 is the usual manifestation of ^ 7 

and <f>2 [278]. In spherical co-ordinates, Laplace's equation becomes 

Y fr2K J r2sm9d9\ d9) 

AVI-1 

where r and 9 are spherical co-ordinates. The general solution to A V I - 1 is given by 

Bottcher [278], and is found to be 

0{r,9) = ±(anr" +bnr-^)Pn(cos9) 
n = 0 

AVI-2 

where an and bn are determined from the potentials at the boundary or from the 

asymptotic behaviour at infinity, and P„(cos0) is the Legendre polynomial defined by 

the generating function [278] 
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ijl-2(cos0)z + z2 «=o 

AVI-3 

Thus, <f>, and <j>2 are obtained using A V I - 2, yielding the coefficients an, bn, c„, and dw 

respectively for the potentials outside and inside the cavity. The boundary conditions 

in this case are 

L.=°. 
1.. _ 
1̂1 _ I dr)r=a \ d r ) r = a 

AVI-4 

The term represented by the coefficient dn in <f>2 is due to charges inside the cavity, 

which, for an ideal dipole, may be represented by the potential [278,279] 

0 = -^-cos#. 
r 

AVI-5 

In addition, using the boundary conditions, we find that a„ = 0 and, for values of n * 1, 

bn and cn are also zero. For n = 1, using the boundary conditions and A V I - 5, we find 

that 

7 3 
0 , = ju, 

1 2e + l 
c - fo-Qg 

1 2s + \ a3 

AVI-6 

so that 
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COS0, 
2s+\r7 

u „ 2(s-\) u 
Y 2 r2 2e + \ a3 

AVI-7 

The potential inside the cavity is, thus a superposition of the dipole field in vacuo and a 

uniform reaction field R, given by [278, 279, 280] 

1 2 ( g - l ) 
F3 2e + 2 
l i.\Q. I I 

AVI-8 

For a polarisable point dipole, the above calculations may be extended with the 

inclusion of a polarisability, a [280]. The reaction field may then be defined as [278] 

l - f a 

AVI-9 

The calculation of the ellipsoidal reaction field is far more intricate, so only the 

result is presented here. Scholte [281] was the first to derive an expression for the 

ellipsoidal reaction field, and a number of similar calculations have since been made, 

essentially arriving at the same result [278, 282, 283]. With the case of a 

homogeneous dipole density, with it's direction not along one of the major axes of the 

ellipsoid, the reaction field for a non-polarisable ideal point dipole is 

R = F-n 

AVI-10 

where the tensor F is defined as 

3 Ax{\-Ax){s-\) 
r ̂  = -. r 

abc e + ( 1 - s)Ax 

AVI-11 
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where Ax is the shape factor, given previously by equation ( 2.3-20), in the A direction, 

where X = x,y,z and a, b, and c are the principle semi-axes of the ellipsoid in the z, y, 

and x direction respectively. A similar relationship for the reaction field to A V I - 9 is 

then found for the case of a polarisable dipole, substituting AVI-11 for / . 

[278] C. J. F. Bottcher, Theory of Electric Polarisation., 2nd ed.; O. C. Van Belle, P. 
Bordewick, A. Rip., Volume 1; Dielectrics in Static Fields., Elsevier, London, 

[279] B. K. P. Scaife, Principles of Dielectrics, Clarendon Press, Oxford, (1989). 

[280] L. Onsager, J. Am. Chem. Soc., 58, 1486, (1936). 

[281] Th. G. Scholte, Recueil, 70, 50, (1951). 

[282] R. J. W. E. Le Fevre, D. A. A. S. Narayana Rao, Aust. J. Chem., 8, 330, (1955). 

[283] J. A. Abbott, H. C. Bolton, Trans. Farad. Soc, 48, 422, (1952). 
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