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ABSTRACT 

Non-isothermal plasma modification of polymer surfaces is of scientific and technological 

interest, since it can be used to improve wettability, adhesion, etc. This thesis covers 

three main areas, firstly a study of the processes occurring at the plasma - polymer 

interface using a newly developed technique, secondly the fluorination of polymer 

surfaces using a novel transportable reagent and lastly the oxidation of rubber substrates. 

The interaction of N 2 , 0 2 , air and H 2 glow discharges with polyethylene surfaces has 

been studied using a newly developed mass spectrometric technique. The species 

permeating through to the reverse side of the polymer substrate can be detected and 

characterised. Compared to previously reported approaches, this method is capable of 

sampling reaction products within closer proximity to the plasma - polymer interface, 

thereby circumventing the complication of primary product species undergoing 

secondary processes within the bulk of the elecuical discharge prior to detection. The 

nature of the feed gas is found to strongly influence the chemical reaction pathways 

occurring at the plasma - polymer interface. 

Xenon difluoride (XeF2) plasma treatment of a series of polymers containing 

different repeat units gives rise to surface fluorination. A comparison with CF4 plasma 

modification shows that XeF2 electrical discharges are more effective at fluorinating 

polymers. The extent of fluorine incorporation can be accounted for in terms of a 

structure-behaviour relationship derived from extended Huckel molecular orbital 

calculations. Exposure of polyethylene and polystyrene to xenon difluoride (XeF2) in the 

presence of vacuum ultraviolet (VUV) irradiation also causes surface fluorination. The 

extent of reaction is found to depend upon the VUV absorption characteristics of the 

XeF 2 feed gas as well as those of the polymer substrate. 

Low pressure glow discharge, dielectric barrier discharge and ozone treatments all 

oxidise additive-free rubber substrates. The oxidation susceptibility of the rubber 

substrates differed during all three treatments, and was found to be dependent upon the 

concentration of unsaturated carbons, saturated carbons and phenyl rings. The additives 

placed in rubbers to improve properties such as tear resistance influence their degree of 

oxidation. 
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CHAPTER 1 

PLASMA CHEMISTRY AT P O L Y M E R SURFACES 



1.1 INTRODUCTION 

Since the early 1970's there has been an enormous expansion in the use of plasmas (also 

known as glow and electrical discharges).1 This technology is of vital importance to a 

number of the world's Largest manufacturing industries, e.g. microelectronics, steel, 

aerospace, automotive, biomedical, toxic waste management, etc.2 However, the 

behaviour of these electrical discharges is poorly understood at the molecular level due 

to the inherent complexity of this form of matter. In order to develop commercially 

viable industrial processes, an understanding of the fundamental processes is imperative. 

Non-equilibrium plasma treatment of polymeric materials can be used to improve 

the surface properties, e.g. optical reflection, adhesion, friction coefficient, surface 

energy, permeability, biocompatibility, etc. This chapter presents a systematic overview 

of the current state of knowledge related to the interaction of non-isothermal plasmas 

with solid polymer surfaces and the techniques used to analyse the modified surfaces. 

Chapters two and three describe how quadrupole mass spectrometry has been used 

to study interfacial diagnostics during plasma modification of polymer surfaces and how 

the problem of primary product species undergoing secondary processes within the bulk 

of the electrical discharge prior to detection has been overcome. 

Chapter four investigates the use of xenon difluoride (XeF^) plasma treatment to 

fluorinate polymer surfaces. Chapter five is concerned with the surface fluorination of 

polyethylene and polystyrene when they are exposed to xenon difluoride (XeF2) in the 

presence of vacuum ultraviolet (VUV) irradiation. Chapter six is a study of the 

oxidation of various rubber substrates. 

1.2 LOW PRESSURE NON-EQUILIBRIUM PLASMAS 

The term "plasma" was first used in 1929 by Langmuir to describe ionised gases/' A 

plasma can be considered as a partially or fully ionised gaseous state of matter which 

contains atoms and/or molecules in ground and excited states, ions of either polarity, 

electrons, and electromagnetic radiation.4 All of these species can be regarded as 

potential reactants.5 It is normally regarded as being an electrically conducting medium; 

although there is no overall charge imbalance, local perturbations from neutrality can 



occur. The number of ions and electrons must be approximately equal for it to be 

classed as a plasma. This quasi neutral gas comprising charged and neutral particles 

usually behaves in a collective manner.6 This requirement is satisfied when the 

dimensions of the discharge volume is greater than the Debye length. X D - The \ D is the 

distance over which a small potential can perturb a plasma and is given by. 

\ D = (EokT / ne 2)" 2 

where E c is the permittivity of free space, n the electron density, T the electron 

temperature, e the electron charge and k the Boltzmann constant. 

1.2.1 Discharge Theory 

Plasmas can be produced using a variety of means: electric fields, heating, laser 

radiation, and chemical processes. When a gas is subjected to an electric field, randomly 

occuning free electrons originating from cosmic rays or background radioactivity8 

become accelerated, and undergo elastic and inelastic collisions, the latter cause 

ionisation of the gas together with the formation of secondary electrons.4 This process 

leads to a cascade effect and the production of ions, atoms, metastables. free radicals, 

and electromagnetic radiation. 

1.2.1.1 Electron Energy 

The energy distribution of elections in a plasma is important as they are reponsible for 

the ionisation processes occurring in the plasma. The electrons in a plasma have a range 

of energies determined by the electron energy distribution function (EEDF). This is 

often in the form of the Maxwellian distribution7 which assumes that T c = T„ (where T e is 

the electron temperature and T g the gas temperature), Figure 1.1. However, for non-

equilibrium plasmas the Druyvesteyn distribution7 is a better approximation as it makes 

the assumption that T e » T (where T, is the temperature of the ions). Figure 1.1. 
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Figure 1.1: Maxwellian and Druyvesteyn energy distributions for electrons in a plasma. 
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1.2.1.2 Plasma Potential 

The electrons within the plasma are more mobile than the ions and reach the borders of 

the plasma faster, resulting in the plasma becoming positively charged. However, as the 

positive charge increases it is harder for the electrons to leave and a steady state is 

achieved where the rate of loss of electrons equals the rate of loss of ions and the plasma 

thus retains neutrality. The average potential difference between the bulk of the gas and 

the chamber is known as the plasma potential and is several volts more positive than the 

most positive surface. 7 , 9 

1.2.1.3 Floating Potential 

Similarly when an electrically floating surface is placed in a plasma the electrons reach 

the surface faster than the ions.9 A steady state is again achieved, and due to the 

negative potential of the substrate with respect to the plasma, ion bombardment of the 

surface is possible. 

1.2.1.4 Sheath 

The electron density at the edge of the plasma in contact with the chamber wall differs 

f rom the bulk of the plasma. The name given to this region is the plasma sheath7 and is 

visible as a dark space surrounding the plasma. The electron density here is lower than 

in the bulk and it has a much lower voltage. As the plasma has a uniform potential the 

voltage drop between the surface and plasma occurs mainly in the plasma sheath. 

1.1.2 Equilibrium and Non-Equilibrium Plasmas 

Plasmas can exist in three forms: complete thermodynamic equilibrium where the 

temperatures of all the species are equal (e.g. stars, explosions, etc.); local 

thermodynamic equilibrium where everything except the radiation temperature is equal 

(e.g. electric arcs, plasma jets, etc.); and non-equilibrium where the electron temperature 

(~ 10,000 K) far exceeds the temperature of the bulk gas (300 - 500 K, e.g. glow 



discharges). Equilibrium plasmas are useful for inorganic chemical synthesis.1 0 nuclear 

fusion, 4 metallurgy,14 etc. 

Non-equilibrium plasmas open up non-thennally activated reaction pathways. In the 

absence of external magnetic fields, their degree of ionisation is low ( 1 0 ° - 10"') so the 

gas consists of mainly neutrals at ambient temperature. 7 y In this case, average elecu-on 

energies can span 1 to 30 eV, however it is only the electrons contained within the high 

energy tail which are capable of causing ionisation. 1 1 Non-equilibrium plasmas provide 

low temperature processing environments under which thennodynamically unfavoured 

reactions are able to proceed. Such cold plasmas have found application in low 

temperature materials processing: e.g. amorphous silicon deposition, 1 2 plasma 

polymerisation,1"1 etching, 1 4 restoration of archaeological artefacts,1 : > polymer surface 

modification, 1 6 etc. 

1.2.3 Generation of Low Pressure Non-Equilibrium Plasmas 

Non-equilibrium plasmas can be generated at atmospheric and low ( l O - 4 - 10 mbar) 

pressures. In the case of low pressure electrical discharges, there are three main 

components to a plasma processing system: 

(i) Source of Electrical Power: Electrical power frequencies spanning the DC to 

microwave range are used at power levels ranging from 1 to 5000 W. 

(ii) Coupling Mechanism: The electrical power source can be resistively, capacitively 

or inductively coupled to the gas under investigation. A matching network is usually 

necessary to ensure that there is efficient power dissipation. 

(iii) Plasma Environment: The reactor geometry and other variables such as type of 

gas, pressure, f low rate, power level, processing time, must all be taken into 

consideration. Normally, the chamber is evacuated to a pressure well below its 

operating pressure, and then feed gas is introduced followed by ignition of the electrical 

discharge. 

Variation of the electrical discharge parameters (e.g. gas f low rate, gas pressure, 

reactor geometry, substrate temperature, frequency/intensity of power, etc.) can have a 

direct influence upon the plasma characteristics (i.e. electron density, electron energy 

distribution, gas density, residence time, etc.). 

6 



1.3 F U N D A M E N T A L P R O C E S S E S 

A variety of different reaction pathways are potentially viable at the surface of a polymer 

substrate immersed in a non-polymer forming electrical discharge, Figure 1.2. 

BULK PLASMA 

PLASMA SHEATH 

POLYMER SURFACE 

BULK POLYMER 

Electrons Ions Neutrals Vacuum-ultraviolet 

j 10 run 

10/irn 

Figure 1.2: Physicochemical processes occurring at the plasma - polymer interface. 

1.3.1 Neutrals 

Neutral species in the form of atoms, radicals, molecules, and metastables can all take 

part in reactions at the plasma - solid interface.5 

1.3.2 Electrons 

During plasma modification, electrons can participate in electron capture processes at 

the surface.5 

1.3.3 Ion Bombardment 

Any surface in contact with a plasma gains a negative charge due to the constituent 

electrons being more mobile than the ions. This leads to the build up of a space-charge 
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layer at the plasma - solid interface, which is known as the plasma sheath. The resultant 

electric field repels electrons away from and accelerates incident ions towards the 

surface. For floating substrates and chemically reactive plasmas, ion bombardment does 

not play a significant role. However in the case of noble gases, the absence of chemical 

interactions makes ion induced surface modification a major reaction pathway.' 

1.3.4 Electromagnetic Radiation 

The main source of electromagnetic radiation within an electrical discharge is the 

relaxation of metastables.18 Vacuum-UV irradiation of the substrate can lead to the 

formation of free radicals followed by their reaction with incident plasma species.'1' Al l 

organic polymers exhibit a strong absorbance below 160 run , 2 0 ' 2 1 hence penetration of 

V U V radiation into the subsurface results in chain scission and crosslinking." By 

placing a V U V transparent window between the electrical discharge and the polymer 

substrate it is possible to block out all of the reactive species apart f rom the V U V 

component; 2 , such experiments have demonstrated the important role played by V U V 

radiation during plasma modification. However the extent of treatment is critically 

dependent upon the absorption characteristics of the gas.24 

1.4 P O L Y M E R B E H A V I O U R 

The individual constituents of a plasma (i.e. electrons, ions, neutrals, and photons) are 

capable of interacting with an underlying polymer substrate in either an isolated or 

synergistic fashion to result in cleaning, etching, crosslinking, activation, and 

functionalisation. 2 5 Such changes can be used to alter the surface energy, polymer 

molecular weight distribution, chemical composition, and topography at a polymer 

surface. 
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1.4.1 Chain Scission 

Chain scission can lead to the formation of low molecular weight chains 2 6 2 ' which can 

be washed off with solvent. 2 8 I f this material is incompatible with the substrate then it 

tends to fo rm droplets on the polymer surface. 2 9 

1.4.2 Chain Mobility 

The movement of chain segments at the surface of some polymers can lead to dynamic 

behaviour during or following plasma treatment.3 0 This may result in migration of 

polymer chains into the subsurface,"1 " l 2 desorption 2 9 , 3 3 or solublisation into an adjacent 

medium. 1 ' Polymer tacticity can also play an important role during plasma modification 

since it can influence chain mobility. ' 1 4 

1.4.3 Crosslinking 

Reactive and noble gas plasmas have been shown to be capable of inducing crosslinking 

down to depths of 3 u.m as a result of direct and radiative transfer mechanisms.1 9 The 

direct component consists mainly of ions and metastables interacting with the outermost 

layers, whereas radiative vacuum-UV radiation penetrates into the subsurface and bulk. 2 2 

Typically, a lower level of crosslinking is found for chemically reactive plasmas 

compared to inert gas plasmas.'15 The structural nature of the polymer under 

investigation can be an important factor, for instance polyethylene tends to undergo 

crosslinking whereas polypropylene prefers chain scission.'16 Typically, a chemically 

modified top layer covers underlying crosslinked material; the density of the latter drops 

with increasing depth.'1 5 The crosslinked layer can limit polymer chain mobility and 

thereby provide stability to the overlying treated layer, 3 5 this can improve its heat 

resistance, frictional behaviour, cohesive strength, and form a diffusion barrier layer. 

1.4.4 Surface Activation 

Polymer surface activation occurs as a result of the impingement of plasma species. Free 

radicals are created which can further react with incident plasma species, alternatively 



they can participate in chemical reactions upon termination of the plasma, e.g. surface 

grafting, crosslinking, oxidation upon exposure, etc. 

1.4.5 Synthon Approach 

Structure-behaviour relationships can prove to be a reliable guide for predicting and 

designing interfacial behaviour. Clearly the type of gas and polymer employed during 

plasma modification governs what kind of treated surface is generated. For instance, in 

the case of oxygen plasma removal of polymer, strong linkages (e.g. aromatic and polar 

functional groups) inhibit etching, whereas weak bonds within the chain (e.g. C - C 

bonds) can enhance degradation.37 This rationale can be extended to plasma 

modification of polymer surfaces, where the type of functionality generated at the 

substrate can be correlated to the structure of the parent polymer . 3 8 , 3 9 ' 4 0 ' 4 1 ' 4 2 

1.5 C H A R A C T E R I S A T I O N M E T H O D S 

Surface analysis has been widely used to help understand the changes taking place at 

polymer surfaces during plasma modification. Many techniques have been employed, 

these include: X-ray photoelectron spectroscopy (XPS), secondary ion mass 

spectrometry (SIMS), ion scattering spectroscopy (ISS), electron microscopy, scanning 

probe microscopy, contact angle measurements, and infrared spectroscopy. Each 

technique has its inherent advantages and disadvantages, therefore it is vital that a 

multitechnique approach is used. Mass spectrometry has also been used as an in situ 

diagnostic technique to study the plasma - polymer interface during treatment. The 

effectiveness of some of the more informative analytical techniques is outlined below: 

1.5.1 X-ray Photoelectron Spectroscopy 

X-ray photoelectron spectroscopy (XPS) is a surface sensitive analytical technique. 

XPS is based upon the photoejection of a single electron during X-ray irradiation of the 

substrate, Figure 1.3 
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Figure 1.3: A schematic of the ejection of a photoelectron in XPS. 

The X-rays with energy lru cause electrons with a binding energy E b to be ejected from 

the core level. As lru > E b these electrons must have kinetic energy, E k . E k can be 

measured and since lru is known E b can be calculated. 

lru = E b + E k 

By suitable selection of the X-ray source, photoelectrons can be generated which 

originate f rom less than 5 nm below the surface, Figure 1.4. 

Each atom in the periodic table has its own characteristic core energy levels, and 

hence identification of the elements present at the surface is possible (apart f rom 

hydrogen). 4 3 Signal intensities provide information concerning elemental 

concentration. 4 4 For an individual atom, different chemical environments can give rise 

to a shift in the core level binding energy. For instance, different types of oxidised 

carbon environment (e.g. alcohol versus ester) can be distinguished. 1 8 Various standard 

polymers and reference compounds are normally used to assist in the identification of 

unknown surface species created during plasma modification 4"' Sometimes it is not 

possible to unambiguously identify functional groups present at a plasma treated polymer 
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surface (e.g. alcohol versus ether), in this case, derivatisation of the surface using 

labelling reagents can help to resolve these issues.46 4 7 

10" 

w

 1 0 

*-< 

a 10 2 

o 

10 1 

10 u 

10" 10 10 10 10 

Electron Energy / eV 

Figure 1.4: The dependence of attenuation length (monolayer) on the energy of the 

emitted electrons. 

Valence band XPS (XPS-VB) spectra provide a qualitative insight into changes 

occurring in molecular structure during plasma treatment (e.g. crosslinking 1 9 , 4 8 . 4 9 
)• It 

can also be helpful for differentiating between groups with the same core level shift (e.g. 

phenyl versus methyl, etc. 4 5). Another attribute of this technique is that chemical 

changes within specific functional groups along the polymer backbone can be 

followed 1 9 , 4 8 . 5 0 

1.5.2 Mass Spectrometry 

In mass spectrometry, molecules in the vapour phase are ionised. 5 1 The resulting 

fragmentation pattern of these ions separated by their mass to charge ratio (m/z) allows 
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molecular weight and molecular formula deduction." There are several types of mass 

spectrometry such as magnetic and time of flight but only quadrupole mass spectrometry 

w i l l be discussed in more detail here. 

1.5.2.1 Quadrupole Mass Spectrometry 

The quadrupole mass spectrometer (QMS) consists of three items, the ion source, the 

mass analyser and the ion detector; each responsible for a particular function. Ions are 

produced by the bombardment of the gas as it enters the spectrometer with elecuons 

emitted f rom a hot filament (e.g. Tungsten) source. 5 2 The positive ions are then 

accelerated towards the quadrupole analyser where they are separated on the basis of 

their mlz ratio. 5 1 The analyser consists of four symmeuically arranged, parallel, 

electrically conducting rods which produce fields which approximate those f rom 

hyperbolic surfaces, Figure 1.5 

y y 

s 

\ X 
s 

\ 

Figure 1.5 Schematic of the quadrupole mass analyser. 

Opposite rods are connected together electrically, and to each pair a combination of 

superimposed RF and DC potentials are applied, 5 1 described by, 

13 



P(t) = ± [U + V cos(27tft)] 

where U is the DC voltage, V is the peak amplitude of a RF voltage at frequency f and 

time t. An ion entering the analyser will experience complex oscillations and only ions 

with one particular mlz ratio at a given set of conditions wi l l have a stable path to 

traverse the length of the rods (the other mlz ratios wi l l be defocused and lost by 

collisions with the rod or spectrometer casing). 5 1 The mlz ratio can be altered by varying 

U or V , or by changing f. Keeping U/V constant means that the resolution of the 

quadrupole mass spectrometry is also constant, as seen by, 

m / Am = 0.126 / (0.16784 - U /V) 

Infinite resolution is possible by f ixing U/V at 0.16784 or it can be changed by variations 

in U/V. Most systems keep f constant and simultaneously vary U and V. 

After being analysed the ions are detected using a secondary electron multiplier, 

where the ions are accelerated into the first dynode initiating a cascade of electrons to be 

produced. A computer is often used to measure this current. 

Secondary ion mass spectrometry (SIMS) uses mass spectrometry to study 

secondary ions emitted f rom a surface during bombardment by energetic primary 

particles. 5 3 A high primary particle beam current leads to dynamic SIMS, whereas a low 

beam current provides static SIMS (SSIMS). The former is destructive and often used 

for depth profiling, whilst SSIMS can provide structural chemical information and high 

surface sensitivity. SSIMS has been extensively used to study polymer surfaces in a 

qualitative manner,54 it is molecular specific, can easily differentiate between polymers, 5 5 

and is able to identify branching, or unsaturation. 5 6 

1.5.3 Atomic Force Microscopy 

The relatively recent invention of atomic force microscopy ( A F M ) works by scanning a 

very sharp tip attached to a lightly sprung cantilever, across the sample surface whilst 

keeping the repulsive force between the probe and surface constant. Nanometer 

resolution of non-conducting substrates can routinely be achieved using A F M without 



the need for any additional sample preparation. A number of studies have shown that 

significant changes in surface morphology can occur during plasma treatment. 5 0 , 5 7 Some 

of the obtained structures are stable,64 whilst others can be washed off with solvent . 2 7 ' 5 8 

1.6 I N F L U E N C E O F G A S 

The chemical nature of the feed gas employed during plasma treatment can have a strong 

influence upon the surface modification of polymers. 

1.6.1 Noble Gases 

Noble gas plasma treatment of polymer surfaces creates free radical centres, 5 9' 6 0 , 6 1 which 

subsequently participate in hydrogen abstraction, crosslinking, or reaction with foreign 

molecules (e.g. air, polymerisable monomers, etc. 6 2), Tables 1.1-1.3. Modelling studies 

have shown that comparable levels of surface modification can be achieved using low 

energy noble gas ion beams,1 7'6 3 this is consistent with there being an absence of any 

chemical interactions between the glow discharge and the surface. Topographical 

changes also occur during noble gas plasma treatment; their physical appearance and 

stability strongly depends upon the nature of the polymer substrate under investigation 

and which inert gas is being used. 6 4' 6 5' 6 6 For instance, He plasma treatment of 

polyethersulfone generates cone-like features at the surface.6 4 

Inert gas plasma treatments can be used to lower the factional resistance of a 

polymer substrate (this can be important for biological applications);67 however 

subsequent biaxial orientation of such treated surfaces has been shown to result in the 

formation of ultra-fine protrusions, which impede good slip behaviour (this can be 

critical during film processing on the industrial scale). 6 8 Also inert gas plasma 

modification can improve the electrical conductivity of a polymer surface.5 0 



1.6.2 Nitrogen 

Nitrogen plasma treatment of polymers introduces mainly primary amine groups at the 

surface along with crossl inking, 2 9 3 1 , 6 9 7 0 however the rate of surface reaction is found to 

be slower compared to corresponding oxygen plasma treatments,1 9 Table 1.4. In the 

case of polypropylene, a preferential reaction of the syndiotactic phase is observed. 2 v 

Amine functionalised polymer chains can possess a dynamic mobility which allows them 

to be transported into the subsurface with the aid of a wetting permeable solvent, and 

they can also subsequently be pulled back out towards the surface by using an aqueous 

protonation medium. 3 1 Some nitrogen plasma treated polymer surfaces slowly oxidise 

upon exposure to air to form transient oxygenated moieties which gradually disappear 

with storage time. 3 3 

1.6.3 Hydrogen 

Hydrogen plasma reduction of polytetrafluoroethylene (PTFE) surfaces results in the 

formation of a 2 ran thick layer of defluorinated material, this is accompanied by a 

corresponding drop in its contact angle with water, thereby making the substrate more 

suitable for bonding, 7 1 7 2 Table 1.5. The predominant reaction pathway is considered to 

be fluorine abstraction by atomic hydrogen f rom the PTFE surface to form HF (this is 

highly favourable due to its exothermic nature), the free radical centre left behind either 

undergoes reaction with subsequent incident hydrogen atoms or participates in 

crosslinking at the surface. 7 3 Similarly, other types of polymer surfaces are also able to 

undergo hydrogen plasma reduction. 6 4 



r-o o to >o 
>, !>> 

> > 
. , 

r- £ r- ( 

r -
NO 

5/5 C
O

 

v: 
v: 

— 

lo
ss

: F-
NO _o o •2 2 lo

ss
: 

u ,r~; x : o S o> -C • £P s 00 

ic
li .2? s S 5 "oo ict
l 

ic
li 

o L J . '5 ict
l 

o lE < u_ < < < < iZ 

c 
,c 
* ^ FT FT FT i> J2 ON_ ON ON 

•a o' ON ON' ON* ON ON FT ON) 

< oc oc OO 00 oc OO 2l 0 s 

< OO 
l— ' ' 2l 1 

60 
c 
< 
2 ON ON oo co 
© r~' r-' ST ON1 ON" oT 

U N C NO oo oo 00 00 U N C 
' — 1 

S F^ F-
SO NO NO NO NO 

Vi 
r -

t 
( , o ! ^ 

C o o o r-X NO vO 1/-) <—< vO X ' — ' 1 ' 
vO 

ha
la

l 

la
te

 

:n
e 

lo
ri

de
 

ph
t 

cr
y 

lo
ri

de
 

« er
 

c o _-o 
HI 1_ 'u <v s 

•o
py

le
n 

ne
 

e3 S 3 

ion 

on c 
t3 hl

o 

M
E

 

•o
py

le
n 

e 

hy
le

 

e 

he
rs

 

M
E

 

>, 

•o
py

le
n 

yr
e 

hy
le

 

ca
rb

< £ he
rs

 

tr
a 

vi
ny

l 

ny
l 

>< Q. u> ca
rb

< 

£ 3 
t/5 

-tea 
V 

w vi
ny

l 

c > 
—9 >. _>-. _>» _>. >, >. 2 > >-> o 
O Po
l "5 "o "o o O "o "o >-. 

Po
l 

Qm Po
l 

& C &, & £. £» 0. c Z Po
l 

£2 



3 

o o 

< 

3 

< 

o o 

PL 

< 

C/3 
c 
X 

s 

c 

s 
>-
O a. 

c 

a. 
Q. 
>-, 

4> e o 

o a. 

c 

"o 

:3 

:3 

E 
Q. 
C 
o 
<L> 
C 
<+-
o 

r -C 
C/5 

C 

E 

C 
X 

>--9 
o 

a 
— , ^ 

a 
55 
S 
o E 

PQ 

U 
on 
Q 

po 

ii 
O 

3 

£ 
00 

OS on 

oc 
oc 

00 

4) 
>-, 

"© 

o 

>, 
> 

o o 
O 

fa 
_o 

e 

a. 
CL 

O ir, 

o 

< E 
2 
< 

5 
< 

2 
U-

< 

r-r-
>, 

oo 

f— 

o 3 

E 

E 

c 

o 

11 c 
0) 

4> 
o 

s 

a) c 

e 



O
th

er
 

D
SC

: 
[3

5]
 E

le
m

en
ta

l 
an

al
ys

is
: [

35
1 

X
PS

-V
B

: 
[1

9J
 

X
R

D
: 

[3
5]

 

A
FM

: 
[5

0]
 

El
ec

tr
ic

al
 c

on
du

ct
iv

it
y:

 1
50

,7
5]

 

X
PS

-V
B

: 
|6

3]
 

az 
UJ 

£ , 5 
OO ^ 

2-
S UJ on !— A

FM
: 

[5
0|

 E
le

ct
ri

ca
l c

on
du

ct
iv

it
y:

 [
50

] 

E
S

R
:|

60
] IT. 

!£. 
5 
U. 

< 

A
FM

: 
[6

41
 

A
FM

: 
|I

00
| 

E
SR

: 
|6

1]
 

SI
M

S:
 

|8
0|

 

A
dh

es
io

n 

o 
p- r-

C
on

ta
ct

 A
ng

le
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1.6.4 Oxidation 

Plasma oxidation can be used to remove contaminants present on a polymer surface. 8 ' I t 

can also lead to oxygen incorporation (various groups can be formed, these include 

alcohols, ethers, esters, acids, etc.). which in turn give rise to improved bondability of the 
88 89 90 91 

substrate ' ' or a change in its dielectric performance. Care needs to be exercised, 

since an overtreatment of the polymer substrate can produce a weak boundary layer as a 

result of extensive chain scission, which can have a detrimental effect on the adhesive 

performance of the treated surface. 9 2 

1.6.4.1 Oxygen Plasmas 

Oxygen plasma treatment of polymer surfaces comprises degradation of the substrate and 

reaction with ions, atoms, ozone, metastables of atomic and molecular oxygen, electrons, 

and a broad electromagnetic spectrum, Table 1.6. In the case of floating low pressure 

RF oxygen plasmas: the concentration of oxygen atoms is of the order of 19c (trace 

amounts of water can increase this value9"'), ozone concentration is less than 0.02%, the 

electron density is close to 4 x 10 1 4 m ° , with an electron temperature of approximately 4 

eV, the thermal energy of the neutral oxygen atoms is 0.1 eV, and the emission spectrum 

is dominated by three intense atomic oxygen lines at 130.2, 130.5, and 130.6 nm. 9 4 

Electron impact dissociation of molecular oxygen is considered to be the predominant 

reaction pathway for the formation of atomic oxygen. 9 5 

Modelling studies have shown that the reaction probability of ground state molecular 

oxygen with a polymer substrate in the presence of V U V radiation emitted by an oxygen 

plasma is l o w , 2 4 ' 9 6 hence i t is the attack of atomic oxygen at V U V activated surface sites 

which gives rise to oxygenation. 2 4 Surface modification quickly reaches a steady state in 

terms of chemical composition, 3 8 this can be attributed to an overall balance between 

oxygen incorporation and evolution of volatile reaction products (HoO, C O , C O ? , 

oligomers, e tc . 9 7 ) . For a fixed set of experimental parameters, the relative importance of 

these competing surface processes is dependent upon the type of polymer under 

investigation. A l l unstabilised polymers degrade upon exposure to an 02 plasma but the 

rates of oxidation are dependent upon their structure. Functional groups which readily 

react with oxygen without causing extensive chain scission (e.g. phenyl rings 4 1 9 8 ) help to 
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generate a more oxidised surface (e.g. carboxylate groups 3 9 4 1 ) , whilst structural units 

which are highly susceptible to cleavage wi l l encourage ablation, depolymerisation, and 

the unveiling of fresh polymer/ 9 ' 9 8 This leads to a whole range of chemical 

functionalities being generated at a polymer surface during oxygen plasma treatment (e.g. 

oxidised groups, crosslinked centres, unsaturated bonds, etc.). 9 9 Most polymers tend to 

experience an increase in oxygen content at the surface during oxygen plasma treatment; 

two notable exceptions are PTFE for which there is no change (although there is 

significant surface roughening 1 0 0) and P M M A which suffers a loss in surface oxygen 

content. 1 0 1 The plasma operating conditions can also influence the surface chemistry, for 

instance oxygen incorporation is greater at low powers in the case of polyethylene, 

whereas polystyrene does not display this behaviour.4 8 High power densities,9 6 long 

treatment times, and heating above the polymer glass transition temperature ( r ^ ) 1 0 2 all 

lead to extensive roughening of the polymer substrate as a result of etching. 

Most oxygen plasma treated surfaces are found to undergo ageing effects leading to 

hydrophobic recovery combined with a decrease in bondability. K b Any low molecular 

weight oxidised material present on plasma treated polymer surfaces may be washed off 

with a solvent. 1 0 4 Such low molecular weight oxidised material can be formed via the 

attachment of atomic oxygen to free radical sites (these may have been created either by 

hydrogen abstraction or V U V activation), this is followed by chain scission."7 4 0 

Extended ageing of oxygen plasma modified polyethylene results in almost a 

complete loss of oxygenated functionalities f rom the surface (probably due to desorption 

of low molecular weight oxidised material) to leave behind a highly crosslinked layer. 4 8 

Metal-containing polymers (e.g. polysilanes, polysiloxanes, etc.) quickly form an 

etch resistant inorganic oxide layer 3 7 ' 0 5 1 0 6 during plasma oxidation. Ageing effects have 

also been observed for oxygen plasma treated polysiloxane films, this is primarily 

attributed to cracking of the overlayer oxide film as a consequence of its markedly 

different mechanical properties" and density 1 0 7 relative to the underlying polymer 

substrate. 



1.6.4.2 Air 

Air and oxygen plasma treated polymer surfaces generally tend to have similar chemical 

compositions; 1 0 8 " w but differing levels of crosslinking, which is to be expected on the 

basis of each plasma emitting its own unique radiative V U V component, Table 1.7. Air 

plasmas are found to take longer than oxygen plasmas to achieve the same level of 

surface modification. 

1.6.4.3 Water 

Water plasma treatment is normally found to produce higher levels of oxygenation 

compared to corresponding oxygen plasma treaunents,11" Table 1.8. 

1.6.5 Fluorination 

Dissociation of CF 4 in a RF electrical discharge can be summarised as fo l lows : 1 " 

CFX — e - > F + CFX.! (where x = 4 to 1) 

Fluorine atoms are reported to be the most chemically reactive species during CF 4 

plasma treatment of polymer surfaces,4 0 Table 1.9. Ions, electrons, and electronically 

excited species play a relatively minor role . 1 1 2 Permeation of atomic fluorine deep into 

the subsurface followed by reaction with the substrate is consistent with this 

v i ewpo in t . 1 1 2 1 1 3 Extended Huckel molecular orbital calculations have been used to 

explain why fluorine atoms react via hydrogen abstraction in the case of saturated 

hydrocarbon polymers, whilst addition to double bonds is the preferred reaction pathway 

for polymers containing unsaturated centres, thereby yielding a greater level of surface 

fluorination for the lat ter . 4 0 4 2 

This structure-behaviour relationship has been utilised to introduce differing levels of 

fluorination along the length of a polymer chain consisting of both aliphatic and aromatic 

segments. 
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CF 4 glow discharge modification of polymer surfaces can be used to improve their 

water repellency." 5 In the case of polyethylene terephthalate and nylon, surface 

hydrophobicity introduced during CF 4 plasma treatment deteriorates upon immersion in 

water;' 2 this behaviour has been attributed to the rotational and diffusional migration of 

fluorinated moieties into the polymer subsurface. A way round this is to first deposit a 

highly immobile crosslinked plasma polymer layer which is subsequently fluorinated by 

CF 4 plasma treatment/ 2 

1.7 C O N C L U S I O N S 

Plasma modification of polymer surfaces can be used to improve their wettability, 

adhesion, permeability, gas barrier, electrical conductivity, abrasion resistance, 

biocompatibility, etc. A detailed understanding of structure-behaviour relationships at 

the molecular level allows the industrial end-user to optimise the macroscopic behaviour 

of such plasma treated polymer surfaces. 

It is the aim of this thesis to examine in greater depth the interactions occurring at 

the plasma - polymer interface. 
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CHAPTER 2 

MASS SPECTROMETRY AT T H E PLASMA -

POLYMER I N T E R F A C E 



2.1 INTRODUCTION 

Non-isothermal plasma modification of polymer surfaces has been of scientific and 

technological interest for over 30 years, since it can improve wettability, adhesion, 

hydrophobicity, oleophobicity, biocompatibility, permeability, etc. Short treatment times 

combined with negligible environmental waste have made this technique an important 

industrial tool. 1 In the past, mainly indirect analytical methods have been utilised to gain 

an insight into processes occurring at the plasma - polymer interface.2 For instance, 

characterisation of the substrate prior to and following plasma treatment using X-ray 

photoelectron spectroscopy (XPS),~~14 infrared spectroscopy (IR), 1 0 secondary ion mass 

spectrometry (SIMS),4'5 ion scattering spectroscopy (ISS),y contact angle 

measurements,4'6'7 and atomic force microscopy (AFM)' 1 " ' 4 has helped to identify 

physicochemical changes taking place at the surface. However as yet, it has not been 

possible to pinpoint and monitor the actual chemical processes occurring within the 

vicinity of the plasma - polymer interface in real-time. This lack of progress can 

primarily be attributed to it being experimentally difficult to discriminate between bulk 

plasma chemistry and reactions occurring at the plasma - substrate interface using in-situ 

diagnostic techniques, e.g. optical emission spectroscopy (OES),1 5 mass spectrometry,16 

electrical and magnetic probes,17 quartz microbalances,1819 or laser induced fluorescence 

(LIF) 2 0 . 

This chapter describes how the major stumbling blocks previously encountered 

regarding interfacial diagnostics during plasma modification of polymer surfaces can be 

overcome by exploiting the pressure drop across the substrate. Quadrupole mass 

spectrometry has been used to detect permeant species, thereby gaining access to 

interfacial reaction products and intermediates. A comparison is made between N2, O; 

and air plasma modification of polyethylene, due to the commercial importance of these 

treatments. 

- ( C H 2 - C H 2 ^ 

Polyethylene 
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2.2 EXPERIMENTAL SECTION 

Circular pieces of low-density polyethylene film (Goodfellows; 48 mm diameter, 

thickness 15 [im, density 0.92 gem"3) were ultrasonically cleaned in a 50 / 50, polar / 

non-polar solvent mixture of isopropyl alcohol / cyclohexane for 30 s and allowed to dry 

in air. Oxygen (BOC 99.9%), nitrogen (BOC 99.9%) and air were used as feed gases for 

the respective plasma exposures. 

Low pressure electrical discharge treatments were carried out using an electrodeless 

cylindrical reactor (39 mm diameter, 826 cm3 volume, and a leak rate of less than 2.5 x 

10"5 cmV 1 ) enclosed in a Faraday cage.21 This was fitted with a gas inlet, an active 

thermocouple pressure gauge and a mechanical rotary pump. A copper coil (4 mm 

diameter, 13 turns, spanning 9 cm) wound around the glass reactor was inductively 

coupled to a 13.56 MHz radio frequency generator via an LC matching network. All 

joints were grease free. For each experiment, a new piece of polymer film supported on 

a perforated metal flange was sandwiched between the plasma chamber and a Vacuum 

Generators Micromass QX200 quadrupole mass spectrometer (0 - 200 amu range; base 

pressure 2 x 10"10 mbar) multiplexed to a computer, Figure 2.1. The plasma reactor side 

of the polymer membrane was pumped down to a base pressure of better than 2 x 10"3 

mbar, and then 6 x 10"1 mbar of gas was introduced at a flow rate of 0.016 cmV 1 ; this 

resulted in a rise in the measured mass signal intensity on the other side of the polymer 

film corresponding to gas permeation22 Subsequently, the electrical discharge was 

ignited at 30 W, and species permeating across the plasma - polymer interface were 

identified using previously reported mass fragmentation patterns.23 Additional 

experiments, where a small amount of 0 2 was pulsed into the reactor during N 2 plasma 

treatment, were undertaken using a General Valve Iota one, series 9, pulse valve system. 

Prior to each experiment, it was established that the polymer film required in-situ 

heating at 60 °C to remove any absorbed water present in the bulk of the substrate, 

Figure 2.2. Subsequent exposure to D 2 0 (Goss Scientific, 99.9 % ) , at a pressure of 6 x 

10"1 mbar for 30 s followed by N 2 / O2 plasma treatment, confirmed this requirement. X-

ray photoelectron spectroscopy (XPS) was used to check i f any chemical changes had 

taken place at the polymer surface during annealing. XPS spectra were obtained on a 

Kratos ES300 electron spectrometer equipped with a Mg K a X-ray source (1253.6 eV) 

and a concentric hemispherical electron analyser operating in the fixed retarding ratio 
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mode (FRR, 22:1). Instrumentally determined sensitivity factors were taken for C(ls) 

O(ls) as being equal to 1.00 : 0.55. 

POLYMER 

MASS 
SPECTROMETER PLASMA 

Figure 2.1: Apparatus used for mass spectrometric analysis of species permeating across 

the plasma - polymer interface. 
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Figure 2.2: Water loss profile (m/z 18) during the heating of polyethylene film. 
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2.3 RESULTS 

0:C XPS ratios obtained prior to and following in-situ heating of the polyethylene 

substrate at 60 °C are reported in Table 2.1. Annealing was found to lower the amount 

of oxygen detected at the surface of untreated polyethylene and a corresponding 

decrease was also noted following nitrogen plasma treatment. This demonstrates that 

any water trapped within a polymer film can contribute towards surface oxygenation 

during plasma modification even when the feed gas is free of oxygen. 

Treatment O : C ± 0 . 0 2 

PE (as received) 0.11 

Solvent cleaned 0.02 

Heated 0.01 

O2 plasma 0.31 

Heated O2 plasma 0.30 

N 2 plasma 0.19 (0.15)* 

Heated plasma 0.10(0.16)* 

*Numbers in brackets represent N : C ratio 

Table 2.1: O : C XPS ratios for unannealed and heated polyethylene substrates. 

Typical mass profiles of species permeating through the polymer substrate during 

plasma treatment were acquired using a standard "off/on/off' sequence (20/60/120 s 

respectively), Figure 2.3. The maximum variations in mass signal intensities for N2, O2 

and air feed gases are summarised in Figure 2.4. During each experiment the pressure 

measured on the mass spectrometer side of the polymer film increased on glow discharge 

ignition and dropped to below its initial starting value upon termination of the plasma. 
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Figure 2.3(a): Mass profiles obtained using a 20/60/120 s, off/on/off sequence for the N 2 

electrical discharge (all profiles typical for the relevant masses). 
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Figure 2.3(b): Mass profiles obtained using a 20/60/120 s, off/on/off sequence for the 0 2 

electrical discharge (all profiles typical for the relevant masses). 
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;ure 2.3(c): Mass profiles obtained using a 20/60/120 s, off/on/off sequence for the An

electrical discharge (all profiles typical for the relevant masses). 
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Figure 2.4: Maximum variation in mass signal intensities during plasma treatment: (a) N 2 ; 

(b) 0 2 ; and (c) Air. 
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Mass spectrometric measurements taken during nitrogen electrical discharge 

treatment of annealed polyethylene displayed a rapid rise in m/z 28 which can be 

attributed to hydrocarbon fragment formation (predominantly propane and butane23), 

followed by a gradual fall in intensity due to a superimposed drop in nitrogen permeation 

through the polymer (as confirmed by the variation in the m/z 14 fragment of molecular 

nitrogen), Figure 2.3(a). In addition, other hydrocarbon fragments (m/z 26, 27, 29, 39, 

41, 42, 43, 44, 55, 56, 57, 67, 69, 71) were detected; these were assigned to 

predominantly straight chain alkanes with more than 2 carbon atoms,23 i.e. propane (m/z 

29, 28, 27, 44, 43, 39, 41, 26), butane (m/z 43, 29, 27, 28, 41, 39, 42), pentane (m/z 43, 

42, 41, 27, 29, 39), hexane (m/z 57, 43, 41, 29, 27, 55, 56), etc. All of these 

hydrocarbon species exhibited a sharp initial rise on lighting the plasma and continued to 

increase slowly until extinction, Figure 2.3. Mass fragments characteristic of methane, 

ethane and alkene formation were present at either very low or negligible concentrations 

(e.g. m/z 16, 30, 25, 40, 56, 42 for methane, ethane, ethene, propene, butene, and 

pentene respectively). A fairly steady amount of molecular hydrogen (m/z 2) loss was 

also measured throughout the duration of the electrical discharge exposure. Upon 

switching the nitrogen plasma off, all of the mass profiles displayed an instantaneous 

drop, followed by a further gradual decay towards the baseline; m/z 28 was the only 

exception due to it falling to below its original starting value. 

During oxygen plasma treatment of annealed polyethylene, C 0 2 (m/z 44), CO (m/z 

28 after correction for C0 2 ) and H 2 0 (m/z 18) evolution were observed in addition to H 2 

(m/z 2) and hydrocarbon fragments, Figure 2.4. The intensity of the oxidised species 

(C0 2 , H 2 0 and CO) reached a maximum value approximately 10 s following contact 

with the glow discharge, and then began to slowly decrease with time, Figure 2.3(b). A 

corresponding drop and then plateauing in m/z 32 (molecular 0 2 ) was noted. Molecular 

hydrogen and hydrocarbon production (same m/z fragments as previously seen for 

nitrogen plasma exposure plus 83 and 85) were also found to rise rapidly within these 

first 10 s, however these moieties then continued to increase in concentration at a slower 

rate. No oxygen containing hydrocarbon chain fragments were detected e.g. aldehydes, 

alcohols, ketones etc.23 Plasma termination after 60 s treatment caused a rapid drop in 

all of the mass signal intensities, to eventually level off. Mass 32 was an exception, since 

it mirrored this behaviour and returned to just below its initial value. 



Air plasma treatment of annealed polyethylene produced both the oxidised and 

hydrocarbon mass fragments, i.e. a combination of the N 2 and 0 2 plasma treatments, 

Figures 2.3(c) and 2.4. 

Exposure of the annealed polymer substrate to D 2 0 or H 2 0 prior to N 2 / 0 2 plasma 

treatment confirmed that absorbed water interferes with the surface chemistry, Table 2.2. 

No visible difference was evident in the hydrocarbon mass profiles. Whereas, the 

presence of water in the polymer resulted in a marked increase in the rate of oxidation. 

In the case of the D 2 0 experiments isotopically exchanged products were also detected 

(e.g. HD, D 2 and HDO). 

Gas pulsing experiments were undertaken in order to gain a deeper insight into the 

mechanistic details governing plasma modification. Firstly, a series of control 

experiments were carried out where 0 2 was pulsed into the 0.6 mbar N 2 gas feed stream 

passing through the plasma reactor in the absence of an electrical discharge. These 

showed that a 1000 u.s pulse of oxygen resulted in a 0.01 mbar rise in total pressure (i.e. 

less than 2 % change) and an accompanying amount of oxygen (jn/z 32) permeating 

through the polymer could be detected. No change in the level of N 2 permeation was 

observed, Figure 2.5. This gas pulsing sequence was then repeated during nitrogen 

plasma treatment (i.e. 20 s off / 30 s on / 0 2 pulse / 30 s on / 120 s off), Figure 2.6. The 

initial oxygen permeation (m/z 32) dropped to a slightly lower intensity than previously 

seen during the control experiment and subsequently decayed more rapidly; this 

behaviour coincided with the formation of oxidised species (C0 2 , CO and H 2 0 ) in 

addition to an enhancement in the rate of hydrocarbon and hydrogen evolution, Figure 

2.6. Clearly, it can be seen that the trends previously noted for oxygen plasma treatment 

(Figure 2.3(b)) have been superimposed onto the nitrogen plasma treatment mass profiles 

(Figure 2.3(a)). The oxidised products (C0 2 , CO and H 2 0 ) all diminished following the 

decay of the 0 2 pulse, whilst the hydrocarbon species continued to be formed at a higher 

rate throughout the rest of plasma treatment. A control experiment where a 1000 (as 

pulse of N 2 was employed instead of the 0 2 pulse gave no observable difference in the N 2 

plasma treatment, and therefore the possibility of a -slight change in pressure being 

responsible for the observed chemistry during 0 2 pulsing can be ruled out. Finally, it was 

found that i f oxygen was pulsed into the reactor immediately after termination of the N 2 

plasma, i.e. at t = 80 s, no consumption of oxygen was detectable, Figure 2.5(d). 
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Figure 2.5: (a) Change in m/z 28 signal (N 2) upon pulsing a 1000 u.s pulse of molecular 

O2 at t = 50 s; (b) m/z 32 (0 2 ) signal corresponding to (a); (c) m/z 32 (O2) signal upon 

pulsing a 1000 u,s pulse of molecular oxygen at t = 50 s into a 0.6 mbar N 2 plasma; and 

(d) m/z 32 (0 2 ) signal upon pulsing a 1000 u.s pulse of molecular oxygen upon extinction 

of the 0.6 mbar N 2 plasma, i.e. at t = 80 s. 
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Figure 2.6: Mass profiles obtained during the following sequence: 0.6 mbar of No passing 

through reactor from t = 0 s, ignition of plasma at t = 20 s, injection of 1000 |j.s pulse of 

Oa at t = 50 s, termination of plasma at t = 80 s (all profiles typical for the relevant 

masses). 



2.4 DISCUSSION 

Non-isothermal electrical discharges contain a wide variety of species: ground state 

atoms, molecules, metastables, ions of either polarity, electrons, and electromagnetic 

radiation (infrared - vacuum ultraviolet). Two types of interaction can occur at the 

plasma - polymer interface:24 direct reactions at the surface due to incident neutral 

species, ions, photons, and electrons; and indirect processes in the subsurface region as a 

result of VUV radiation penetrating down to 1-10 um. As a consequence, free radical 

centres are created in the surface region via atom abstraction,25,26 ion bombardment,26 

and photo-excitation.27 Subsequently these radical species can either react with the 

adjacent plasma medium or undergo crosslinking. The former is predominant in the case 

of oxygen plasma treatment on the basis of thermodynamic factors;28 whereas the latter 

tends to be more likely for nitrogen plasma exposure as a consequence of less favourable 

energetics for chemical reaction.29 VUV photodegradation processes will also be 

prominent in the near-surface region of polyethylene leading to chain scission 

accompanied by the formation of atomic hydrogen, Scheme 2.1 3 0 Since hydrogen free 

radicals are likely to be shortlived within the polymer subsurface, formation of molecular 

hydrogen and crosslinking are to be expected,30 Scheme 2.1. 

In the case of nitrogen plasma exposure, hydrocarbon formation was found to be the 

predominant reaction pathway (despite the absolute amount evolved being lower 

compared to oxygen plasma treatment). The continuous rise in hydrocarbon intensity is 

an indication of how polymer backbone cleavage results in a gradual increase in the 

number of oligomeric moieties at the surface in conjunction with a decrease in average 

molecular weight.31 The m/z 28 profile (which is a combination of nitrogen and 

hydrocarbon species) increases with an initial slope which is similar to that seen for the 

other hydrocarbon species; upon plasma extinction, it drops to below its starting value, 

thereby exhibiting a lowering (by 25 + 2%) of nitrogen permeability through the polymer 

film as a result of plasma induced crosslinking (as confirmed by the m/z 14 signal). 

Alkene products were not observed, this is probably as a consequence of the abundant 

supply of atomic hydrogen promoting termination reactions in preference to double bond 

formation at free radical sites along the polymer backbone, Scheme 2.1. The sharp drop 

in hydrocarbon evolution upon plasma extinction confirms the importance o f V U V 

photochemistry within the subsurface region.3 2 

53 



— C H 2 - C H 2* + «CH 2 - C H — 
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"CH 2 CH CH 2 CH 2 

+ 
Crosslinking —CH 2 ~ C H - C H 2 ~ C H 

"CH 2 CH CH 2 CH 2 

CH 2 - C H - C H 2 - C H 2 — 

Recombination 
H - + H« • H 2 

Termination 
CH 2 -CH 2 - + H - • — C H 2 - C H 

Termination 
• C H 2 - C H - C H 2 — + H - • - C H 2 - C H 2 - C H 2 — 

Scheme 2.1: VUV photodegradation reactions along the polyethylene backbone. 

A rapid rise in oxidised permeant species (m/z 18 (H 2 0) , 28 (CO) and 44 (C0 2 )) 

was evident during oxygen plasma treatment of polyethylene, thus indicating that 

oxidation processes coincide with plasma ignition. The subsequent decrease in 

concentration of these moieties during plasma modification implies that the rate of 

oxidation is greatest for the clean polymer surface. In contrast, hydrocarbon species 

gradually rise in intensity throughout plasma exposure. A corresponding consumption of 

molecular oxygen (m/z 32) occurs during the whole 60 s of plasma treatment. It can be 

deduced from these observations that oxidation is localised at the plasma - polymer 

interface, and therefore not initially rate limited (i.e. total combustion to H 2 0 , CO and 
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CCb), whilst hydrocarbon formation also occurs in the subsurface region (akin to 

nitrogen plasma treatment) as a consequence of VUV assisted photochemical chain 

scission, Scheme 2.1. The additional reactive oxygen species (ions, atoms and 

metastables) are responsible for oxidation reactions at the polymer surface,30 which give 

rise to the evolution of oxidised molecules H 2 0 , CO and C 0 2 , 3 3 Scheme 2 .2. The lack of 

any oxygen containing hydrocarbon chain fragments (in the 0-200 amu range) could 

either be due to their much longer chain lengths (slow permeation), lower solubilities 

(compatibility) in the bulk polyethylene host medium or their rapid decomposition. 

Oxidation 
PH + o: • p. + . O H 

Oxidation 
p. + o: — • PO 

Oxidation 
P. + o 2 • POO* 

etc. • CO 2 + CO + H 2 0 

Scheme 2.2: Typical oxidative reaction pathways occurring during oxygen plasma 

treatment of polyethylene. 

A synergistic reaction of atomic oxygen and VUV irradiation with the polymer surface 

causes polymer backbone cleavage and the formation of low molecular weight oxidised 

species,34 Scheme 2.3. This type of additional reaction pathway helps to explain why 

there is greater chain scission (i.e. increase in the amount of hydrocarbon mass fragments 

and also the formation of higher m/z 83 and 85) during plasma oxidation compared to 

corresponding experiments with nitrogen, 1 2 , 2 5 and has been verified by the dramatic rise 

and sustained rate of hydrocarbon fragment evolution upon pulsing a sm^ll amount of 0 2 

during N 2 plasma treatment, Figure 2.6. 



9-
P ' - C H 2 - C H - C H 2 - P i l l 

Chain 9 
F - C H 2 - C H + «CH 2-P 

Scission 

Scheme 2 .3: Additional weakening and cleavage of the polymer backbone adjacent to 

Oxygen glow discharge extinction produces a rapid decline in the evolution of oxidised 

species in conjunction with a sharp rise in the oxygen profile, followed by a gradual 

plateauing in the molecular oxygen signal (not observed for nitrogen). The latter 

behaviour could be potentially attributed to oxidation continuing after the plasma has 

been turned off (i.e. trapped free radical centres at the polymer surface undergoing 

reaction with vicinal ground state molecular oxygen), however, this can be ruled out 

since no oxygen consumption was detected on pulsing in oxygen upon extinction of the 

nitrogen plasma, Figure 2.5(d). A more likely explanation is the gradual deterioration of 

O2 gas barrier due to relaxation of polymer crosslinking via chain scission as depicted in 

Scheme 2.3. In comparison, the much more rapid disappearance of hydrocarbon 

fragments correlates to the instantaneous termination of VUV irradiation, thereby halting 

any photo-chemical cleavage of the polymer backbone. The overall net drop in oxygen 

permeation by 10 + 1% following plasma treatment implies that the polymer surface has 

been modified to yield a less permeable film. Again this can be attributed to crosslinking 

hindering the segmental motion of polymer chains to cause an attenuation in gas 

permeability.35 The observation that nitrogen plasma treatment causes mainly 

crosslinking (Scheme 2.1) whereas oxygen plasma exposure gives rise to predominantly 

chain scission and oxidation (Schemes 2.2 and 2.3) helps to account for the greater drop 

in gas permeability in the case of N 2 plasma treatment. Such an attenuation in gas 

permeability must be a contributing factor for the adoption of on-line nitrogen plasma 

pretreatment prior to metallisation of polymer film for high gas barrier applications. 

Air plasma treatment of annealed polyethylene confirms the observations obtained 

for both the N 2 and O2 glow discharge exposures. The mass profiles as expected are a 

combination of both treatments, Figure 2.3(c), with the intensities being less than for O2 

but greater than for N2 case, Figure 2.4. 

Finally, it is important to note that any moisture contained in the polymer substrate 

can influence the interfacial plasma - polymer chemistry. This factor appears to have 

oxygenated centres. 25 
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been overlooked in the past. It has been shown that when water is present in the 

polymer bulk, oxidised mass fragments (CO2 and H2O) are produced during N2 plasma 

treatment in a similar but milder manner to that seen for oxygen glow discharge 

exposure. These oxidised species are generated as a result of absorbed water within the 

polymer subsurface permeating towards the plasma - polymer interface, where it 

undergoes excitation and reaction, leading to oxygenation of the polymer surface. 

Heating of the substrate prior to plasma treatment removes any trapped water, Figure 

2.2, and thereby avoids surface oxygenation, this is verified by the accompanying drop in 

0:C XPS ratios, Table 2.1. Exposure of the annealed polymer film to D 2 0 or H 2 0 prior 

to plasma treatment confirms that water absorbed within the polymer substrate can 

strongly perturb the chemistry occurring at the plasma - polymer interface, Table 2.2. A 

comparison of the m/z 44 profiles shows that any absorbed water causes the typical 

hydrocarbon profile characteristic of nitrogen plasma treatment to acquire a 

superimposed C0 2 component normally associated with oxidation, Figure 2.7. 

2.5 CONCLUSIONS 

This chapter has shown that a new mass spectrometric technique has been developed 

which enables the detection of primary reaction products at the plasma - polymer 

interface. Real time mass spectrometric sampling at the nitrogen plasma - polyethylene 

interface confirms the importance of VUV initiated reactions (i.e. chain scission leading 

to hydrocarbon fragments). VUV induced crosslinking in the polymer subsurface 

restricts polymer chain mobility, which in turn gives rise to an overall improvement in gas 

barrier performance of the polyethylene substrate. A greater extent of polymer backbone 

cleavage occurs in the case of oxygen plasma treatment due to oxygenated centres 

causing a weakening of adjacent carbon-carbon bonds. Finally, it should be noted that 

any absorbed water within the polymer bulk can lead to an enhancement in oxidation 

chemistry at the plasma - polymer interface. 
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Figure 2.7: Mass 44 profile for: (a) N 2 plasma treatment of annealed polyethylene; (b) O 

plasma treatment of annealed polyethylene; and (c) N2 plasma treatment of annealed 

polyethylene which has been exposed to D 2 0 or H 2 0 . 
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CHAPTER 3 

MASS SPECTROMETRY AT T H E HYDROGEN 

GLOW DISCHARGE ~ P O L Y M E R I N T E R F A C E 



3.1 INTRODUCTION 

Non-isothermal hydrogen glow discharges are a source of atomic hydrogen1 and are thus 

used to clean surfaces2 e.g. semiconductors."'4 The flux of incident hydrogen atoms 

onto the vessel walls / subsuates promotes the formation of volatile compounds (CO, 

H 2 0 , CH 4 , etc.). Hydrogen plasmas are also used to anisotropically etch organic 

materials,5 etch diamond films,6 and to fabricate thin film transistors.7 Unlike the O: 

plasma the H> glow discharge has the advantage of non-oxidising conditions.8 

Previous work with the hydrogen glow discharge treatment of saturated 

hydrocarbon polymers has shown that the substrates undergo an increase in molecular 

weight due to crosslinking,9 1 0 with little change in contact angle.11 Unsaturated 

polymers also become hydrogenated12'1" and oxygen and sulphur containing 

functionalities are reduced and removed as H^O and H2S respectively.121" Hydrogen 

glow discharge treatment has also been used to defluorinate the surface of PTFE 1 4 to 

improve its adhesion to other surfaces,15 and to lower the dielectric losses of plasma-

polymerised films.16 

Hydrogen is often added to fluorinating gas plasmas e.g. CF4, to decrease the 

etching and increase the polymerisation behaviour of the electrical discharge.16'17 The 

hydrogen atoms react with the F atoms to produce unreactive HF, thus increasing the 

concentration of CFX by suppressing the recombination reaction of F and CFX. Addition 

of the hydrogen also allows control of the f i lm F:C ratio.1 7 

In diis chapter the effect of hydrogen glow discharges on polyethylene substrates is 

studied using the newly developed mass spectrometry technique described in chapter 2. 

3.2 EXPERIMENTAL SECTION 

Circular pieces of low-density polyediylene film (Goodfellows; 48 mm diameter, 

thickness 15 |J.m, density 0.92 g cm°) were uluasonically cleaned in a 50 / 50 solvent 

mixture of isopropyl alcohol / cyclohexane for 30 s and allowed to dr y in air. Hydrogen 

(BOC 99.9%), nitrogen (BOC 99.9 %) and deuterium (BDH, 99.9 %) were used as feed 

gases for the respective plasma exposures. 



Low pressure electrical discharge treatments were carried out as previously 

described in section 2.2. Prior to each experiment, it was established that the polymer 

fi lm required in-situ heating at 60 °C to remove absorbed water present in the bulk of the 

substrate. Additional experiments, where a small amount of gas was pulsed into the 

reactor during plasma treatment, were undertaken using a General Valve Iota one, series 

9, pulse valve system. 

3.3 R E S U L T S 

Typical mass profiles of species permeating through the polymer substrate during plasma 

treatment were acquired using a standard "off/on/off' sequence (20/60/120 s 

respectively), Figure 3.1. The maximum variations in mass signal intensities for all of the 

feed gases are summarised in Figure 3.2. During each experiment the pressure measured 

on the mass spectrometer side of the polymer film increased on glow discharge ignition 

and dropped to below its initial starting value upon termination of the plasma. 

Mass spectrometric measurements taken during the hydrogen electrical discharge 

treatment of annealed polyethylene displayed a rapid rise in hydrocarbon fragments (m/z 

27, 28, 29, 39, 41, 42, 43, 44, 55, 57, 67, 69, 71), Figure 3.2. These were assigned to 

predominantly straight chain alkanes with more than 2 carbon atoms,18 i.e. propane (m/z 

29, 28, 27, 44, 43, 39, 41, 26), butane (m/z 43, 29, 27, 28, 41, 39, 42), pentane (m/z 43, 

42, 41, 27, 29, 39), hexane (m/z 57, 43, 41, 29, 27, 55, 56), etc. All of these 

hydrocarbon species exhibited a sharp initial rise on plasma ignition and continued to 

increase slowly until extinction, Figure 3.1(a). Hydrogen plasma treatment produced 

similar mass fragments and profiles to nitrogen plasma exposure, (chapter 2) however 

the intensities were much lower and the range of fragments smaller, Figure 3.1(b) and 

3.2(b). A fairly steady amount of molecular hydrogen (m/z 2) was also produced 

throughout the duration of the electrical discharge exposure. Upon switching the plasma 

off, all of the mass profiles displayed an instantaneous drop, followed by a further 

gradual decay towards the baseline. 
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Figure 3.1(a): Mass profile obtained using a 20/60/120 s, off/on/off sequence for the H 2 

electrical discharge (all profiles typical for the relevant masses). 
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Figure 3.1(b): Mass profiles obtained using a 20/60/120 s, off/on/off sequence for the N 2 

electrical discharge (all profiles typical for the relevant masses). 
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Figure 3.2: Maximum variation in mass signal intensities during plasma treatment: (a) H 2 ; 

and (b) N 2 . 

67 



Further experiments, using the noble gases (Ar, Ne and He) and C F 4 as feed gases 

for the plasma treatment of polyethylene also produced hydrocarbon mass fragments and 

profiles similar to that of both the hydrogen and nitrogen electrical discharge treatments, 

Chapter 8, Appendix A. 

Gas pulsing experiments were undertaken in order to gain a deeper insight into the 

mechanistic details governing plasma modification. Firstly, a series of control 

experiments were carried out where D 2 was pulsed into the 0.6 mbar H 2 gas feed stream 

passing through the plasma reactor in the absence of an electrical discharge. These 

showed that a 1000 jits pulse of deuterium resulted in a 0.01 mbar rise in total pressure 

(i.e. less than 2 % change) and an accompanying amount of D 2 (m/z 4) permeating 

through the polymer could be detected. No change in the level of H 2 permeation was 

observed, Figure 3.3(a). This gas pulsing sequence was then repeated during hydrogen 

plasma treatment (i.e. 20 s off / 30 s on / D 2 pulse / 30 s on / 120 s off), Figure 3.3(b). 

No change in the hydrocarbon mass profiles or fragment pattern was observed, however, 

the D 2 pulse was less intense than for the control experiments and decreased more 

rapidly. Also m/z 2 production steadied and m/z 3 was formed, Figure 3.3(b). 

This procedure was then used for H 2 / D 2 (m/z 4) pulsed into a nitrogen plasma, 

Figures 3.4 and 3.5. No change in the level of N 2 permeation was observed when the 

gases were pulsed without plasma ignition, Figure 3.4(a) and 3.5(a). During plasma 

exposure the pulses caused the formation of hydrocarbon to drop dramatically but gave 

no change in the nitrogen production (m/z 14), Figures 3.4(b) and 3.5(b). For the D 2 

pulse, HD (m/z 3) was produced and an increase in m/z 2 was observed, Figure 3.5(b). 

No change in the mass fragment pattern for the hydrocarbons was detected. 
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Figure 3.3(a): Mass profiles obtained when a 1000 LIS pulse of D 2 is added to 0.6 mbar of 

H 2 passing through reactor at t = 50 s. 
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Figure 3.3(b): Mass profiles obtained during the following sequence: 0.6 mbar of H 2 

passing through reactor from t = 0 s, ignition of plasma at t = 20 s, injection of 1000 |is 

pulse of D 2 at t = 50 s, teimination of plasma at t = 80 s (all profiles typical for the 

relevant masses). 
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Figure 3.4(a): Mass profiles obtained when a 1000 |is pulse of H 2 is added to 0.6 mbar of 

N 2 passing through reactor at t = 50 s. 
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Figure 3.4(b): Mass profiles obtained during the following sequence: 0.6 mbar of N2 

passing through reactor from t = 0 s, ignition of plasma at t = 20 s, injection of 1000 |is 

pulse of H 2 at t = 50 s, termination of plasma at t = 80 s (all profiles typical for the 

relevant masses). 
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Figure 3.5(a): Mass profiles obtained when a 1000 (is pulse of D 2 is added to 0.6 mbar of 

N 2 passing through reactor at t = 50 s. 
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Figure 3.5(b): Mass profiles obtained during the following sequence: 0.6 mbar of N 2 

passing through reactor from t = 0 s, ignition of plasma at t = 20 s, injection of 1000 |is 

pulse of D 2 at t = 50 s, termination of plasma at t = 80 s (all profiles typical for the 

relevant masses). 



3.4 DISCUSSION 

Non-equilibrium electrical discharges contain a wide range of species (atoms, molecules, 

ions, electrons, and electromagnetic radiation) which undergo direct and indirect 

interactions19 with polymer surfaces causing the production of free radical centres.2 0 , 2 1'2 2 

These radical species can either react with the adjacent plasma medium or undergo 

crosslinking. A hydrogen plasma is a reactive medium (predominant reactive species are 

H atoms) thus both of these pathways are likely to occur. As for the N2, O2 and air 

plasma treatments (chapter 2) VUV photodegradation processes will be prominent in the 

near-surface region of polyethylene leading to chain scission accompanied by the 

formation of atomic hydrogen, Scheme 2.1. 2 3 Since hydrogen free radicals are likely to 

be short-lived within the polymer subsurface, formation of molecular hydrogen and 

crosslinking are to be expected,23 Scheme 2,1. 

For the hydrogen plasma exposure, as reported in previous studies,24 hydrocarbon 

formation was found to be the predominant reaction pathway, Figure 3.2. The absolute 

amount of hydrocarbons produced was much lower than that observed for the nitrogen 

plasma treatment, Figure 3.2. This is probably due to the termination of the free radicals 

at the polymer surface with H atoms produced in the plasma. 

R» + H« • R-H 

This effect has been noted in the hydrogen plasma treatment of PTFE, where 

defluorination occurs and the remaining free radicals in the PTFE backbone react with 

the H atoms.15 In this work, the enhanced termination halts chain scission and thus the 

production of hydrocarbon fragments. Plasma induced crosslinking is also impeded due 

to the decrease in concentration of the reactive free radical sites. This is shown by the 

very slight change in hydrogen permeability (by 1 ± 0.05%) compared to the large drop 

in nitrogen permeability for the N 2 plasma treatment. 

As expected, pulsing D 2 into a H 2 plasma had very little effect on hydrocarbon 

production as both H and D atoms are equally capable of reacting with the polymer free 

radicals and cause termination of chain scission. 

R . + D» • R-D 



However, new reaction pathways were observed; the formation of HD (m/z 3) and the 

decrease in the production of H2 (m/z 2). HD is produced due the combination of 

hydrogen and deuterium atoms,1 

D* + U* • HD 

which in turn leads to a decrease in the formation of H 2 . The mass profiles of H 2 (m/z 2) 

and HD (m'z 3) combined, Figure 3.3(b), give the original mass profile for H2 plasma 

treatment, Figure 3.1(a). 

The effect of termination of free radicals with H atoms has been confirmed by the 

pulsing of H2 / D 2 into a N 2 plasma. On introduction of the gas pulse into the N 2 plasma 

the amount of hydrocarbons decreased, Figures 3.4(b) and 3 .5(b). This indicates a loss 

of chain scission due to the capping of the polymer free radicals with H or D atoms. 

R» + H« • RH (loss of chain scission) 

No deuterated hydrocarbons were detected in either of the D 2 pulsing experiments and 

no N H X was observed on H 2 pulsing. 

3.5 CONCLUSIONS 

Hydrogen electrical discharge treatment of polyethylene causes the formation of free 

radicals along the polymer backbone. These free radicals can undergo chain scission and 

produce hydrocarbon fragments in a similar manner to that seen previously for nitrogen 

plasma treatment. However, the production of these fragments is impeded due to 

hydrogen atoms in the plasma reacting with the polymer free radicals thus terminating 

the chain scission. This chapter and chapter two have shown that the processes 

occurring at the plasma - polymer interface are dependent upon the feed gas used. 
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CHAPTER 4 

XENON DIFLUORTOE PLASMA FLUORIDATION 

OF P O L Y M E R SURFACES 



4.1 INTRODUCTION 

Fluorinated polymer surfaces are widely sought after for their low surface energies1 and 

chemical inertness.2 Direct plasma fluorination is an appealing way of achieving this 

goal.1-2 0 CF 4 , 7 1 3 - 1 6 ' 1 7 SF 6, 1 3 ' 1 8 C 2F 6 , ' 6 ' 1 7 and F 2

4 feed gases have been used in the past for 

this purpose. Most other types of fluorocarbon monomer tend to undergo fragmentation 

and polymerisation in the presence of an electrical discharge to form coatings, e.g. 

C F 3 H . 1 7 In general, surface modification is preferred over thin film deposition, since it 

offers faster processing speeds, lower consumption of monomer, and less waste. 

Xenon difluoride (XeF2) is another potential reagent for plasma fluorination. At 

room temperature it is a white solid with a vapour pressure of 4.5 mbar,21 and is often 

used for etching silicon " and silicon compounds, ' ' as well as for the removal of 

hydrocarbon residue from silicon surfaces.23 XeF 2 is also renowned as an effective 

fluorinating reagent for many solution phase organic reactions29"31 (e.g. addition across 

carbon-carbon double31 / triple bonds;30 hydrogen replacement,30'31 electrophilic 

substitution; fluorination of organoelements; fluorodecarboxylation, etc). XeF 2 

electrical discharges offer two potential advantages over existing plasma fluorination 

routes, firstly it is a solid compound and therefore can be easily transported; and 

secondly no chemically reactive byproducts from the feed gas can interfere with the 

surface reactions, since xenon is chemically inert towards polymer substrates (whereas 

other feed gases, e.g. CF4, SF6 etc, all generate additional reactive intermediate species, 

e.g. CFX, SFX respectively). In this chapter the susceptibility of a range of polymers 

containing different types of structural repeat unit towards non-isothermal XeF 2 plasma 

fluorination is examined. 
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4.2 EXPERIMENTAL 

Small strips of additive-free low density polyethylene (ICI), polypropylene (ICI), nylon 

6,6 (Goodfellows), polystyrene (Huntsman), polyetheretherketone (ICI), polyethylene 

teraphthalate (Hoechst), polycarbonate (General Electric Plastics), polyethersulfone 

(Westlake Plastics Company) and polysulfone (Westlake Plastics Company) were 

ultrasonically washed in a 50 : 50 mixture of isopropyl alcohol and hexane for 30 s and 

dried in air. Polyisoprene (Shell) was dissolved in toluene (2% w/v) and spin coated 

onto glass slides. Xenon difluoride (99%, Fluorochem) and carbon tetrafluoride (99.7 

%, Air Products) were'used as feed gases for surface plasma fluorination treatments. 

Experiments were carried out in a electrodeless cylindrical glass plasma reactor 

(diameter 5 cm, volume 500 cm3, base pressure of 6 x 10"3 mbar and a leak rate of better 

than 2 x 10"5 cmV1) enclosed in a Faraday cage,33 Figure 4.1. This was fitted with a gas 

inlet and a thermocouple pressure gauge. All joints were grease free. RF power from a 

13 .56 MHz generator was inductively coupled via an LC matching unit to a copper coil 

(6 cm diameter, 10 turns, and spanning 10 cm) wound around the reactor. Prior to each 
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experiment, the inside of the glass reactor was lined with polyethylene film in order to 

prevent etching of the glass walls by reactive XeF 2 glow discharge species. A typical 

experimental run comprised inserting a strip of polymer into the centre of the coils and 

evacuating to base pressure. XeF 2 stored in a steel reservoir heated to 80 °C was 

introduced into the plasma reactor via a leak valve at a pressure of 0.1 mbar. After 5 

mins of purging, the electrical discharge was ignited at 20 W. Upon termination of 

treatment, XeF2 was allowed to continue to pass over the substrate surface for a further 

5 mins, after which time the apparatus was evacuated back down to base pressure and 

vented to air. These experiments were repeated using a glass slide substrate in order to 

check for the absence of etching and subsequent redeposition of polyethylene from the 

reactor lining:- no fluorinated coating was detected. Control experiments where polymer 

substrates were exposed to XeF 2 in the absence of an electrical discharge indicated 

negligible surface fluorination (F:C ratio = 0.11 ±0 .01 for polyethylene, and 0.16 + 0.01 

for polystyrene). 

Surface characterisation prior to and following plasma fluorination was carried out 

using X-ray photoelectron spectroscopy (XPS). A Kratos ES300 electron spectrometer 

equipped with a Mg K a X-ray source (1253.6 eV) and a concentric hemispherical 

electron analyser operating in the fixed retarding ratio mode (FRR, 22:1) was used to 

acquire XPS spectra. C(ls) XPS peaks were fitted using a Marquardt minimization 

computer program with Gaussian components having equal full-width-at-half-maximum 

(FWHM). 3 4 Instrumentally determined sensitivity factors for C(ls) : O(ls) : S(2p) : 

N ( l s ) : F(ls) were taken as being 1.00 : 0.55 : 0.54 : 0.74 : 0.67 respectively. 

4.3 RESULTS 

C(ls) XPS spectra of untreated polyethylene (PE) and polypropylene (PP) showed a 

single peak at 285.0 eV corresponding to -C_xH y-, Figure 4.2(a). Polyisoprene (PIP) and 

polystyrene (PS) also displayed a main hydrocarbon peak at 285.0 eV with an additional 

%-K* shake-up satellite feature at 291.6 eV. 3 5 ' 3 6 C(ls) spectra of nylon 6,6 (N-66), 

polyetheretherketone (PEEK), polyethylene teraphthalate (PET), polycarbonate (PC), 

polysulfone (PSF) and polyethersulfone (PES) all contained oxidised carbon 

functionalities:35 e.g. carbon adjacent to carboxylate (C-C0 2) at 285.7 eV, ether linkage 
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Figure 4.2(a): C(ls) XPS spectra of clean polymers 

85 



(-C-O-) at 286.6 eV, carbonyl (-C=0) at 287.9 eV, carboxylate (-0-C=0) at 289.0 eV, 

or carbonate (-0-CO-0-) at 290.4 eV. In the case of polyethersulfone (PES) and 

polysulfone (PSF), carbon centres attached to sulfone groups (C-SCV) at 285.6 eV also 

needed to be included;35 whilst carbon bonded to nitrogen (-C-NH) at 286.0 eV and 

carbon located in an amide environment (NH-C=0) at 288.0 eV had to be taken into 

consideration for nylon 6,6 (N-66).3 5 

XeFi plasma treatment gave rise to extensive surface fluoiination, Table 4.1. A 

small amount of oxygen incorporation at the surface (~3 %) was found for the non-

oxygen containing polymers due to the reaction between trapped surface free radicals 

and the atmosphere during sample transfer from the plasma chamber to the XPS 

spectrometer.18 C(ls) spectra taken for each of the polymers following 1 min of XeF? 

plasma fluoiination are shown in Figure 4.2(b). Comparison of Figures 4.1 and 4.2 

shows that all the polymer surfaces have been fluorinated greatly, as peaks indicative of 

highly fluorinated carbon moieties are formed on treatment i.e. spectra shifts to a higher 

binding energy. Further interpretation of the spectra is limited as there is great number 

of different fluorinated carbon environments, this gives rise to undefined broad peaks and 

ambiguity in peak fitting. However, for the purpose of this work values for the main 

carbon environments were ascertained from tabulated fluorinated polymer standards18"" 

and the C(ls) envelopes were peak fitted to the following carbon environments: C x H y at 

285.0 eV, C-CF„ at 286.6 eV, CF at 287.8 eV, CF-CF,, at 289.3 eV, CF2 at 291.2 eV 

and CF3 at 293.3 eV, 1 8 ' 3 7 Figure 4.3. It is evident that XeF 2 is more effective than CF 4 at 

surface fluorination, and this difference is more pronounced for polymers containing 

>C=C< double bonds, Table 4.1 and Figure 4.4. It was found that over 95 % of 

fluorination occurred within the first 10 s for both types of feed gas. 



b) C(1s) 

PES 

PSF 

PC 

CO PET 

PEEK O 

PS 

PIP 

N-66 

PP 
PE 

i i 

280 284 288 292 296 
BINDING ENERGY / eV 

Figure 4.2(b): C(ls) XPS spectra of~XeF2 plasma treated polymers (20 W, 1 min). 
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Figure 4.3: C(ls) XPS spectra of: (a) clean polyethylene; and (b) XeF? plasma treated 

polyethylene (20 W, 1 min). 
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4.4 DISCUSSION 

XeF 2 molecules can undergo fragmentation in the vicinity of an alternating RF field to 

generate fluorine atoms. Similarly, electrical discharge excitation Of CF 4 can also yield 

chemically reactive fluorine atoms.2,12 This study shows that the predominant reaction of 

both these plasma treatments is fluorination of the polymer surfaces. Hydrogen 

abstraction by fluorine to form HF is a thermodynamically favourable initiation step for 

saturated polymers/ Scheme 4.1. The formation of HF is thennodynamically favourable, 

since C-H bond vtrengths are in the 3-4 eV range compared to 5.9 eV for H-F and 5.0 

eVforC-F. 1 2 

H 

- O 

H 

J 
H 

C ~ 

H 

H" 

c-

H 

H 

C-

H 

c-

H 

H 

H 

Scheme 4.1: Atomic fluorine attack at saturated hydrocarbon sites. 
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Scheme 4.2: Atomic fluorine attack at unsaturated hydrocarbon functionalities. 

The XPS F:C ratios for each treated polymer substrate can be compared with the 

theoretically expected value based on a straightforward substitution of C-H bonds by C-

F, Figure 4.5; it can be seen that polymers containing carbon-carbon double bonds 

experience a far greater degree of fluorination than might be expected on this basis. 

Hence, further fluoiination via addition must also be occurring for polymers containing 

carbon-carbon double bonds, Scheme 4.2. This is borne out by Figure 4.5, which shows 

that there is a good correlation between the proportion of carbon atoms located in 

>C=C< bonds and the level of fluoiination. This effect is more strongly accentuated for 

XeF 2 compared to CF4 plasma treatment, Figure 4.6. Extended Huckel molecular orbital 

calculations3 also predict that F atoms can participate in reactions at the polymer surface; 

these include hydrogen substitution and / or addition across carbon-carbon double bonds, 

Schemes 4.1 and 4.2 respectively. 
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Figure 4.6: Percentage of carbon atoms in >C=C< double bonds versus percentage 

conversion (based on fluorine substitution of C-H bonds). 



The greater susceptibility of polymer substrates towards XeF 2 plasma fluorination 

compared to CF4 glow discharge treatment might be due to the stoichiometrically higher 

concentration of F atoms for the former: XeF 2 dissociates readily into Xe and F atoms, 

whilst CF4 also produces CFX. 1 2 Another contributing factor might be the absorption of 

XeF 2 onto the surface prior to and during treatment. 

4.5 CONCLUSIONS 

The work contain in this chapter proves that XeF 2 glow discharges are a highly effective 

method for fluorinating polymer surfaces. The extent of fluorine incorporation can be 

accounted for in terms of a structure-behaviour relationship based on extended Huckel 

molecular orbital calculations. Greater fluorination occurs i f XeF2 is used as the feed gas 

for plasma treatment rather than CF4. 
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CHAPTER 5 

VUV ENHANCED XeF 2 FLUORINATION O F 
P O L Y M E R SURFACES 



5.1 INTRODUCTION 

Fluorination of polymer surfaces is a highly effective means for improving water 

repellency without altering the underlying bulk properties of the substrate.1,2 A number 

of different approaches have been utilised in the past to achieve this goal, these include: 

direct reaction with F2;3 conventional solution phase polymerisation of fluoromonomers 

to produce fluoropolymer coatings;4 chemical derivatisation of functional groups located 

at the surface;5'6 electrical discharge fluorination using fluorine containing gases e.g. 

CF 4; 7 ' 8 plasma polymerisation of fluoromonomers;9'10 and sputter deposition of 

fluorocarbon layers from a PTFE target.1 1'1 2 All of these techniques suffer from some 

type of drawback: the use of solvents, hazardous gases, expensive vacuum apparatus, 

etc. 

In the previous chapter XeF 2 electrical discharges were used to fluorinate polymer 

surfaces. This chapter describes another new approach, based on VUV-assisted xenon 

difluoride (XeF2) fluorination. XeF2 is potentially a useful reagent, since it exists as a 

solid at room temperature and is therefore easily transportable; it also offers the benefit 

of forming chemically inert xenon as the major waste product species upon reaction. 

Polyethylene and polystyrene were chosen as substrates. Both polymers have a straight 

chain hydrocarbon backbone, with the latter also containing pendant phenyl rings; this 

combination allows a comparison to be made of the relative susceptibilities of saturated 

versus unsaturated substrates towards VUV-assisted surface fluorination. 

CH H 

CH CH r 
1 n 

Polyethylene Polystyrene 
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5.2 E X P E R I M E N T A L 

Small pieces o f additive-free low density polyethylene (ICI) and polystyrene (Huntsman), 

were ultrasonically washed in a 50 : 50 solvent mixture o f isopropyl alcohol and hexane 

for 30 s and dried in air. Oxygen (BOC, 99.6%), nitrogen (BOC, 99.9 % ) , argon (BOC 

99.9 % ) , krypton (Spectra gases, 99 9 % ) and xenon (Spectra gases 99.9 % ) were 

employed as feed gases for generating the various V U V emission lines, in conjunction 

with a 13 56 M H z inductively coupled cylindrical plasma reactor (diameter 5 cm, volume 

500 cnr, base pressure o f 6 x 10"3 mbar and a leak rate o f better than 2 x 10"5 c m V 1 ) 

enclosed in a Faraday cage. 1 3 This V U V radiation source was attached via a l i thium 

fluoride window (cut-off wavelength below 104 nm 1 4 ' 1 5 ) to a gas exposure chamber, 

Figure 5 . 1 . A l l joints were grease free. A typical experimental run comprised placing a 

strip o f polymer 1 cm away f rom the LiF window, and evacuating both sides o f the 

apparatus to base pressure. XeF2 (99%, Fluorochem) contained in a heated steel 

reservoir (80 °C) was introduced into the fluorination chamber via a fine control leak 

valve at a pressure o f 0.1 mbar, whilst at the same time the electrical discharge feed gas 

was released into the other side at 0.1 mbar pressure. After allowing 5 mins for purging, 

the plasma was ignited at 20 W for 5 mins. Upon termination o f V U V exposure, X e F 2 

was allowed to continue to pass over the substrate surface for a further 5 mins. Next the 

reactor was evacuated back down to base pressure and then vented to air. Any potential 

loss in transmission o f the L iF window during V U V exposure was routinely checked by 

running a control experiment (VUV-assisted fluorination o f polyethylene). 

X-ray photoelectron spectroscopy (XPS) characterisation prior to and fo l lowing 

surface modification was carried out using a Kratos ES300 electron spectrometer 

equipped with a M g Kcc X-ray source (1253.6 eV) and a concentric hemispherical 

electron analyser operating in the fixed retarding ratio mode (FRR, 22:1). XPS spectra 

were accumulated on an interfaced PC computer. C( ls ) envelopes were fitted w i th 

Gaussian peaks having equal full-width-at-half-maximum ( F W H M ) 1 6 using a Marquardt 

minimisation computer program. Instrumentally determined sensitivity factors were 

taken as being C( ls ) : O( l s ) : F( ls ) equals 1.00 : 0.55 : 0.67. 
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5.3 RESULTS 

The C(ls) XPS spectrum for untreated polyethylene (PE) comprises a single peak at 

285.0 eV corresponding to -CxH y-, Figure 5.2(a). Polystyrene (PS) displayed an 

additional 71-71* shake-up satellite feature at 291.6 e V , 1 7 , 1 8 Figure 5.2(b). Control 

experiments, where XeF 2 was passed over the polymer substrates indicated that very 

little surface fluorination took place in the absence o f V U V irradiation (F:C ratio = 0.11 

+ 0.01 for polyethylene, and 0.16 + 0.01 for polystyrene). 

C( ls) spectra acquired following 5 min exposure o f the polymer surfaces to XeF2 in 

the presence o f V U V irradiation revealed a significant enhancement in fluorination, 

Figure 5.2. The C(ls) envelopes could be fitted with the fol lowing carbon 

functionalities: C_xHy at 285.0 eV, C-CF n at 286.6 eV, CF at 287.8 eV, CF-CF„ at 289.3 

eV, CF 2 at 291.2 eV and CF 3 at 293.3 e V , 3 , 1 9 , 2 8 also the 71-71* shake-up satellite at 291.6 

eV was still discernible for XeF 2 fluorination o f polystyrene in the presence o f V U V 

irradation emitted by O2 and N2 plasmas, Table 5.1. A corresponding variation in the 

F:C ratios was also noted, with the noble gases causing the greatest level o f fluorination, 

Table 5.1 and Figure 5.3. Furthermore, polystyrene was found to be more susceptible 

towards V U V assisted XeF 2 fluorination compared to polyethylene for all the electrical 

discharge feed gases apart from Xe (where similar levels were obtained). A small 

amount o f oxygen incorporation at the surface (~3 % ) could be found as a result o f 

reaction between trapped free radicals and the atmosphere during sample transfer from 

the V U V irradiation chamber to the XPS spectrometer.19 

A comparative study where XeF 2 was replaced wi th CF 4 led to no fluorination for 

any o f the V U V electrical discharge sources. This absence o f reaction can be attributed 

to CF 4 only absorbing at wavelengths below the LiF window cut-off o f 104 n m 2 0 , 2 1 (the 

V U V absorption cross-section o f CF 4 is very small at X > 110 nm) . 2 1 
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Figure 5.2(a): C( ls ) XPS spectra taken fol lowing V U V assisted XeF 2 fluorination of 

polyethylene. 
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ure 5.2(b): C(ls) XPS spectra taken fol lowing V U V assisted X e F 2 fluorination of 

polystyrene. 
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D I S C U S S I O N 

Photo-assisted XeF 2 etching o f silicon has been extensively studied in the past. ' ' ' 

X e F 2 spontaneously reacts with silicon to fo rm a fluorosilyl layer accompanied by the 

loss o f SiF 4. Concurrent V U V irradiation is found to enhance the rate o f silicon etching 

(greatest efficiency occurring at wavelengths below 120 nm). 

In the present study with polymer substrates, V U V wavelengths greater than 104 nm 

are transmitted by the LiF window. 1 4 , 1 5 The strongest V U V emission lines for the noble 

gas plasmas are the M ( I ) series,1 5'2 7 (where M is the noble gas atom); these correspond 

to the transition between the lowest lying excited electronic state and the ground state o f 
2 5 \ 2 6 28 

each atom (e.g. Ar 3s 3p 4s to 3s 3p ). Less intense M ( I I ) lines are also emitted 

arising f rom transitions between the lowest lying excited singly ionised state and its 

ground state (e.g. A r + 3s3p6 to 3s 23p 5). Any accompanying U V and visible radiation 

produced by these glow discharges is at least two orders o f magnitude lower in 

intensity. 2 7 The emission spectrum associated with low pressure N 2 plasmas is 

dominated by the atomic lines N( I ) at 174 and 149 nm, 2 7 ' 2 9 whilst 0 2 g low discharges 

emit a strong 0(1) line at 130 nm. 2 7 ' 3 0 ' 3 1 In both o f these cases, the V U V flux is at least a 

factor o f 10 lower in intensity compared to the noble gas plasmas under similar 

experimental conditions, 2 7 Table 5.2. 

V U V irradiation during exposure o f the polymer substrates to XeF 2 gas leads to an 

enhancement in surface fluorination, Table 5.1 and Figure 5.3. The degree o f overlap 

between the V U V emission lines and the absorption characteristics o f both the polymer 

substrate and XeF 2 gas can help to explain the observed variations in surface 

modification, Figure 5.4. In all cases, the transmitted V U V radiation is capable o f a-a* 

alkyl chain excitation (i.e. X < 160 nm 3 2 ) to produce free radical centres in the near-

surface region o f the polymer; 3 3 this activated surface can subsequently react with 

incident XeF 2 molecules. The greater intensity o f the noble gas V U V emission lines 2 7 

w i l l lead to more reactive sites, and thereby a greater level o f fluorination. 
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Gas M I emission M I I emission 

lines / nm lines / nm 

o 2 130 

N 2 149 -

174 -

A r 104.8 -

106.7 -

K r 116.5 -

123.6 -

Xe 131.2 110 

147.0 124.5 

Table 5.2: Strongest vacuum U V emission lines transmitted through the LiF window 

(cut-off at 104 nm). 3 6 

The absorption spectrum o f XeF2 in the V U V region is well documented;" ' it 

comprises a broad feature due to intravalence excitations i.e. 10a g - 7a„ (maximum 

absorption at around 158 nm), and several progressions o f sharp Rydberg transitions 

towards shorter wavelengths i.e. 57tu3/2 - 6sR at 145 - 141 nm, 57CU m - 6sR at 136 - 132 

nm, 57tu 3/2 - 5d„R at 124 - 120 nm, 57t„ \a - 5d<jR at 117 - 114 nm, 57tu 3/2 - 7sR at 116 -

112 nm, 10og - 6pJ{ at 115 - 112 nm, 5%u 3/2- 6dR at 110 - 108 nm, and 57tu 3/2 - 8sR at 

108 - 106 nm. 3 6 Formation o f atomic fluorine via photo-excitation and dissociation o f 

X e F 2 in the 180 - 105 nm V U V range can be summarised as fo l lows: 3 6 

X e F 2 — h o — • X e F + F 

XeF • X e + F(fast) 

The XeF fragment dissociates quickly, since it is very weakly bound. 3 6 The Xe + F 2 

product is not formed because the two F atoms are too far apart (-400 pm) in ground 

state. 3 6 The noble gas M ( I ) V U V emission lines, Ar (106.7 nm), K r (116.5 nm), and Xe 

(147.0 nm) overlap with the 5KU 3 / 2 - SsR, 5K„ in - Sdjl, and 10s - 7a u(broad band) 
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absorption features o f XeF 2 respectively. The relative absorption cross sections o f XeF 2 

in these regions 3 5 and the relative intensities o f the noble gas V U V emission lines 2 8 may 

explain the observed fluorination ranking o f K r > Xe > Ar V U V exposures. The minor 

ion-pair dissociation channel: 

XeF 2 — ho — • X e F + + F 

commences at excitation wavelengths below 129 nm, 3 6 and therefore overlaps wi th the 

onset o f photoionisation o f the polymer backbone (k < 120 nm, where the 

photoabsorption cross-section increases by 100-fold). 3 2 Hence, ionic reactions between 

F" and positively charged sites at the polymer surface can also occur for the noble gas 

V U V radiation sources. The slightly greater level o f fluorination obtained for V U V 

exposure f rom a N 2 discharge compared to an 0 2 plasma source might also be due to 

how well the V U V lines coincide wi th XeF 2 absorption regions: the N ( I ) line at 149 nm 

overlaps wi th the tail o f the 10s - 7o u broad valence band for XeF 2 , whereas, the 0(1) 

line does not overlap with any o f the XeF 2 absorption features and can therefore only 

give rise to indirect reaction via photo-activation o f the polymer surface. 

Extended Huckel molecular orbital calculations predict highly favourable energetics 

for the reaction o f atomic fluorine wi th unsaturated >C=C< bonds compared to saturated 

bonds. 3 8 Clearly, fluorine addition across a >C=C< double bond wi l l produce a greater 

rise in F.C ratio compared to fluorine substitution o f a C-H bond. This explains the 

greater susceptibility o f polystyrene compared to polyethylene towards fluorination. 

Furthermore, 7t-7C* photo-excitation o f the pendant phenyl rings in polystyrene by the 

weak U V component o f the electrical discharges (at X < 280 nm) 3 3 w i l l lead to a greater 

concentration o f reactive free radical sites. 

Some potential advantages o f V U V assisted XeF 2 fluorination surface modification 

over other fluorination techniques include the capability o f operating at atmospheric 

pressure (by using a weakly absorbing carrier gas for XeF 2 ) , as well as circumventing the 

need for solvents or F 2 gas. Also, VUV-assisted XeF 2 fluorination could be used in 

conjunction with a mask to perform photolithography. 
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C O N C L U S I O N S 

This work has shown that vacuum ultraviolet irradiation can be used to enhance the XeF 2 

fluorination o f polymer surfaces. The extent o f reaction is governed by the overlap o f 

the incident V U V emission lines with both the absorption characteristics o f the polymer 

backbone and the X e F 2 gas. Surface modification is found to be greatest for V U V lines 

emitted by noble gas plasmas. Unsaturated >C=C< bonds contained within the polymer 

structure are more susceptible towards fluorination compared to saturated C-H bonds. 
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CHAPTER 6 

SURFACE OXIDATION OF DIFFERENT TYPES OF 
RUBBER 



6.1 INTRODUCTION 

Numerous studies have been devoted to the oxidation of polymer surfaces. "" However, 

little work has been undertaken on the plasma surface modification of the polymers 

classed as rubbers. The starting material for rubber is a macromolecular substrate which 

is amorphous at room temperature, has a glass transition considerably below ambient 

temperature and can be crosslinked to form network structures.14 These crosslinked 

polymer networks are given the name "rubber" as they exhibit elastic behaviour i.e. can 

be stretched easily but return to their original shape and length on removal of the 

tension.14 

Rubbers are materials without which modern technology would be unthinkable; it is 

one of the main components used in tyres, shoe soling, cable insulation, food packaging. 

etc. 1 4 , 1 5 The annual consumption of rubber amounts to 13 million tonnes, about one third 

of which is natural rubber and the other two thirds is produced synthetically.14 In order 

to achieve the range and level of properties required of the rubber other substances need 

to be added, e.g. fillers, antioxidants and reinforcers. The compound composition and 

production processes also have an effect on the properties of the rubber. 

It is important that the susceptibility of these polymers to weathering is known as 

half the annual tonnage of rubbers is employed outdoors.14 The main source of rubber 

degradation is attack by oxygen (especially ozone) in the presence of sunlight.1 4'1 3 

Aitifical ageing processes are often used to simulate outdoor exposure e.g. ultraviolet 

radiation and ozone treatment. 

This chapter compares the dielectric banner discharge (also known as the silent 

discharge), the low pressure glow discharge and the ozone treatment of four of the main 

synthetic rubbers used today; ethylene propylene diene terapolymer (EPDM), butadiene 

acrylonitrile (NBR), styrene butadiene rubber (SBR) and chloroprene (CR). Both the 

industrial and additive.-free (pure) forms were treated in order to evaluate the influence 

of the commercial additives. 

EPDM 

1 [CH, I ; 

- C H o - C H , f R 4CH - C H 0 ~h 
m 

where m = 60, n = 30 and R = Diene 
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NBR 

CH 2—CH—CH —CH 2 

n 

-CH - C H 2 — 

J m 
where m = 66 and n = 33 

CR (Trans) 

'CH 0 ,CH 
\ // \ 

C CH, 
CI 

SBR 

"CH2—CH—CH —CH 2 -CH - C H 2 — 

where m = 45 and n =55 

6.2 EXPERIMENTAL SECTION 

The industrial samples (supplied by the Danish Institute of Technology) were cut into 

small strips (0.5 x 2 cm), ultrasonically cleaned in a 50 : 50 mixture of toluene : hexane 

solvents for 30 s and left to dry overnight in air. Also additive-free poly(acrylonitrile-co-

butadiene) 30-32 wt % acrylonitrile, poly(styrene-co-butadiene) 45 wt % styrene, 

poly(chloroprene) 10 % cis and poly(ethylene-co-propylene) 60 % ethylene were spun 

onto glass slides from a 2 % w/v toluene solution (all purchased from Aldrich). The 

additive free polymers were chosen to resemble as closely as possible the industrial 

monomer structures. Complete coverage of the substrate was checked using X-ray 

photoelectron spectroscopy to detect for the absence of the glass slide Si(2p) signal. 

Low pressure glow discharge treatments were carried out in a electrodeless 

cylindrical reactor enclosed in a Faraday cage, see Figure 4.1. This was fitted with a gas 
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inlet, a thermocouple pressure gauge, and a two stage rotary pump attached to a liquid 

nitrogen trap. An impedance matching network was used to inductively couple a copper 

coil wound round the reactor to a 13.56 MHz radio frequency generator. All the joints 

were grease free. Before each experiment the reactor was scrubbed with detergent, 

rinsed with isopropyl alcohol, dried and then cleaned further using a 50 W air plasma for 

30 min. A rubber sample was then inserted into the reactor and the system evacuated 

down to a base pressure of 4 x 10"3 mbar. Oxygen (99 9 % purity, BOC) was released 

into the chamber at a pressure of 0 2 mbar and left to purge for 10 mins. The glow 

discharge was then ignited at 10 W power for 30 s. After treatment, oxygen was 

allowed to continue to pass through the reactor for a further 10 mins, after which the 

whole system was let up to atmosphere. 

Dielectric barrier discharge treatment (30 s) of each sample in air was carried out 

using a home-built parallel-plate dielectric barrier cell operating at 3 Hz, 11 kV, with an 

electrode gap of 3 mm.1 Prior to each experiment, the electrodes were chemically 

polished and degreased using isopropyl alcohol. 

For the ozone treatment of the samples, ozone was produced endothermically in a 

controlled manner from oxygen using UV radiation (Hampden ozone cabinet, model 

803). An electrochemical cell was used to detect the quantity of ozone in the chamber. 

The additive-free and industrial samples were placed in the chamber simultaneously and 

the ozone concentration was increase steadily to 200 pphm (parts per hundred million) 

on ignition of the UV lamp. 

A Kratos ES300 electron spectrometer equipped with a Mg K a X-ray source 

(1253.6 eV) and a concentric hemispherical analyser was used to analyse the rubber 

surfaces by X-ray photoelectron spectroscopy (XPS). The fixed retarding ratio mode 

was used (22:1) and the XPS spectra were acquired on an interfaced PC computer. 

Instrumentally governed sensitivity factors were taken as C(ls) : O(ls) : S(2p) : N(ls) : 

Cl(2p) equals 1 : 0.55": 0.54 : 0.74 : 0.42 respectively. 
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6.3 RESULTS 

Wide-scan XPS spectra of the all the rubber samples showed that the major element 

present at the surface was carbon (hydrogen cannot be detected by XPS). The industrial 

samples and the pure NBR and SBR all contained oxygen even before treatment, Table 

6 1 Both forms of NBR contained a small quantity of nitrogen, however, the industrial 

form contained less than expected from the monomer structure. The pure CR contained 

carbon and chlorine in proportions consistent with monomer structure (0.25), however, 

the industrial CR contained less chlorine. For the industrial SBR sulfur was present. 

The C(ls) XPS spectra for the pure and industrial forms are displayed in Figures 6.1 and 

6.2 respectively; %-%* shake-up for the untreated pure samples of NBR and CR was 

visible at 291.7 eV, Figures 6.1(b) and (c). This shake-up was not present for the pure 

SBR, however, an additional peak at 289.0 eV was observed, Figure 6.1(d). 

During each of the three treatments all the rubber samples became oxidised and the 

0:C ratios for the samples were calculated, Table 6.1. Dielectric barrier discharge 

treatment gave the greatest level of oxidation for the additive-free polymers, Figure 6.3. 

However, the low pressure glow discharge treatment produced the largest 0:C ratio for 

the industrial rubber samples, Figure 6.4. 

In the case of the dielectric barrier discharge treated pure rubber samples, Figure 

6.5, C(ls) XPS spectra were fitted with Gaussian peaks of equal full-width-half-

maximum (FWHM), 1 6 using a Marquardt minimisation computer program. Energies 

distinctive of different types of oxidised moieties were referenced to the hydrocarbon 

peak (-CxHy-) at 285.0 eV: 1 7 carbon adjacent to a carboxylate group (C-C0 2) at 285.7 

eV, carbon singly bonded to one oxygen atom (C-0-) at 286.6 eV, carbon singly bonded 

to two oxygen atoms or carbon doubly bonded to one oxygen atom (-0-C-0- / C=0) at 

287.9 eV, carboxylate groups (-0-C=0) at 289.0 eV and carbonate groups (-O-CO-O-) 

at 290.4 eV, (with cyaho group at 286.6 eV for NBR and carbon bonded to chlorine C-

Cl at 286.1 eV for CR). The percentage of each functionality was calculated, Table 6.2. 

The major group present for EPDM was C-O, for NBR, CR and SBR it was the C=0 

and 0-C=0 groups. 
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Figure 6.1(a): XPS C(ls) spectra for the following treatments of additive free EPDM: (i) 

clean: (ii) low temperature glow discharge 30 s; (iii) dielectric barrier discharge 30 s; and 

(iv) ozone treatment 4 hrs. 
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Figure 6.1(b): XPS C(ls) spectra for the following treatments of additive free NBR: (i) 

clean: (ii) low temperature glow discharge 30 s; (iii) dielectric barrier discharge 30 s; and 

(iv) ozone treatment 4 his. 

122 



c CMs 

IV 

(J) 

o o 

ill 

ii 

i 

i 

280 284 288 292 296 
BINDING ENERGY / eV 

Figure 6.1(c): XPS C(ls) spectra for the following treatments of additive free CR: (i) 

clean: (ii) low temperature glow discharge 30 s; (iii) dielectric barrier discharge 30 s; and 

(iv) ozone treatment 4 hrs. 
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Figure 6.1(d): XPS C(ls) spectra for die following treatments of additive free SBR: (i) 

clean: (ii) low temperature glow discharge 30 s; (iii) dielectric barrier discharge 30 s; and 

(iv) ozone treatment 4 his. 
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Figure 6.2(a): XPS C(ls) spectra for the following treatments of industrial EPDM: (i) 

clean: (ii) low temperature glow discharge 30 s; (iii) dielectric barrier discharge 30 s; and 

(iv) ozone treatment 4 his. 
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Figure 6.2(b): XPS C(ls) spectra for the following treatments of industrial NBR: (i) 

clean: (ii) low temperature glow discharge 30 s; (iii) dielecffic barrier discharge 30 s; and 

(iv) ozone treatment 4 his. 
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Figure 6.2(c): XPS C(ls) spectra for the following treatments of industrial CR: (i) clean: 

(ii) low temperature glow discharge 30 s; (iii) dielectric barrier discharge 30 s; and (iv) 

ozone treatment 4 hi s. 
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Figure 6.2(d): XPS C(ls) spectra for the following ueatments of indusuial SBR: (i) 

clean: (ii) low temperature glow discharge 30 s; (iii) dielectric barrier discharge 30 s; and 

(iv) ozone treatment 4 his. 
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Figure 6.5: XPS C(ls) of the dielectric barrier discharge treated pure rubber 
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6.4 DISCUSSION 

Electrical discharges contain many species which can react with a polymer surface. The 

relative concentrations and energies of these species vary in the type of discharge used 

and influence the mode of surface modification. The two main types of electrical 

discharges often used to oxidise a polymer surface are the low temperature glow 

discharge oxygen plasma and the air dielectric barrier discharge. 

A low pressure non-equilibrium oxygen plasma consists of a range of energetic 

species e.g. molecular, atomic, electronically excited oxygen moieties, electrons, ions and 

electromagnetic radiation.18 Vacuum ultraviolet (VUV) and atomic atoms are thought to 

be the prominent components which cause oxidation of polymer surfaces.19 

The O atoms are produced by collision of ions, electrons and photons with O2 

molecules. 

0 2 • ( > + O 

The atomic oxygen can react with polymers by hydrogen abstraction and / or addition 

across carbon-carbon double bond.13 Extended Huckel molecular orbital calculations 

predict highly favourable energetics for the reaction of atomic oxygen with unsaturated 

>C=C< bonds (including phenyl rings) compared to saturated bonds.13 Clearly, oxygen 

addition across a >C=C< double bond will produce a greater rise in 0:C ratio compared 

to oxygen substitution of a C-H bond. 

RH + 0» • R« + OH 

RC=CR + 0» • RCO-(»)CR 

Free radicals are also produced at the polymer surface due to the V U V component 

of the plasma cleaving saturated bonds and exciting unsaturated bonds. The main atomic 

emission line in an oxygen plasma is at 130 nm.7 

RH + hu — • R» + H» 
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Polymers containing phenyl rings undergo greater oxidation due to the %-K* photo-

excitation of pendant phenyl rings by the weak UV component of the electrical 

discharges at X < 280 nm. 2 0 This leads to the formation of reactive free radical sites. 

The atomic oxygen then reacts with these free radicals. This reaction of atomic oxygen 

with the free radical sites created by the VUV radiation is the most likely mechanism of 

oxidation.21 

R. + O • RO 

The dielectric barrier discharge is a non-equilibrium plasma which operates at 

atmospheric pressure and produces uniform electrical breakdown.22 The parallel plate 

dielectric barrier discharge produces bright filamentary streamers of electrons and 

positive ions which extend between the two planar electrodes. Electronic collisions 

generate_electrons,_excited.neutrals,ions and photons. Ozone is the main constituent of 

an air discharge and is produced in a two step process (lifetime is in seconds, 100 x more 

concentrated than electrons, 10 x more than excited molecular species).23 

e + 0 2 • 20*+ e 

O + 0 2 + M • 0 3 + M 

where M = O , O2, 0 3 

Saturated polymers react with ozone via a peroxy radical mechanism, Scheme 6.1. 6 2 4 
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Scheme 6.1: Ozone attack at saturated hydrocarbon sites. 

Unsaturated polymers are prone to oxidative degradation by ozone due to their inherent 

reactivity.25 They react via a Criegee addition mechanism to yield ozonides.6'2 4'2 6'2 7 0 3 

reacts with the >C=C< to give an unstable primary ozonide (molozonide) which 

rearranges to an ozonide and further decomposes to carboxylic acid and carbonyl 

groups, Scheme 6.2.6 , 2 4-2 5-2 6 

//° 
\ / 0 — 0 R I — \ 

\ — / OZONE R ' \ / \ / / U ^ U N t * \ / \ y H 

c—c, 
+ 

H R2 H ' ^ O ' O 

H 

\ OZONIDE R2 
OH 

Scheme 6.2: Ozone attack at unsaturated hydrocarbon functionalities.24 
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Ozone is a useful reagent for cleaving double bonds; however, despite the unsaturation 

in phenyl rings they are relatively inert to ozone treatment in comparison to unsaturated 

>C=C< bonds. This is due to the stability of the phenyl ring resonance structure i.e. it 

resists oxidation. Ozone therefore oxidises double bonds to a greater extent than 

aromatics, with saturated polymers being the least oxidised,6 Table 6.3. 

POLYMER OZONATION RATE 

CONSTANT 6 

(1/moleV1) 

Polyethylene 0.012 

Copolymer of Ethylene and 

Propylene 

0.06 

Polypropylene 0.08 

Polystyrene 0.12 

Polybutadiene 8 x 104 

Polyisoprene 105 

Table 6.3: Rate constants for the reaction of ozone with various polymers.6 

In this work it has been found that the relative concentrations of saturated carbons, 

unsaturated carbons (i.e. >C=C<) and phenyl rings in the pure polymers has a different 

effect on their oxidation susceptibility during the three treatments. The low pressure 

glow discharge caused the greatest oxidation of the unsaturated (phenyl rings and 

>C=C<) polymers due to the reaction 6f O atoms with any unsaturated moieties being 

more favourable than the reaction with saturated bonds.13 The 0 :C ratio order followed 

that for concentration of >C=C< i.e. SBR > CR >NBR > EPDM, Figure 3. However, 

for ozone treatment the 0 :C ratio follows the order CR > NBR > SBR > EPDM. This is 

consistent with ozone oxidising polymers containing double bonds to a greater extent 
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than those containing phenyl rings, and much greater than those with saturated 

polymers.6 For the dielectric barrier discharge treatment a combination of the two orders 

is observed i.e. CR > SBR > NBR > EPDM. This is due to the combination of 

electron/photon excitation and ozone chemistry in an air dielectric barrier. Even though 

ozone is the main reactive component of a dielectric barrier discharge the photon 

component has to be taken into consideration. The radiation interacts with the polymer 

surface and alters the susceptibility of phenyl rings to oxidation i.e. the order of oxidation 

is different to that for pure ozone. 

The dielectric barrier causes the greatest oxidation of the polymers and ozone the 

least. This indicates that polymers are highly susceptible to ozonation in the presence of 

radiation. As the 0:C ratio increases for the polymers in the order CR > SBR > NBR > 

EPDM the oxidised shoulder visible for the silent discharge treated pure rubbers 

becomes more predominant Figure 6.5, i.e. the concentration of 0=C-0 and C=0 groups 

increases, Table 6.2. This is consistent with production of carboxylic acid (0=C-0) and 

carbonyl (C=0) groups formed in the ozone attack of double bonds, Scheme 6.2. 

For the industrial rubbers different oxidation series were found. This is due to 

impurities such as fillers added during the industrial processing.14'15'28 The main impurity 

in all four samples is carbon black, other impurities include zinc oxide and hydrocarbon 

species, Table 6.4. Carbon black is used to improve abrasion and tear resistance, tensile 

strength and stiffness of the rubber.14 For the low pressure glow discharge treatment the 

concentration of pure polymer contained in the rubber alters the oxidation order, i.e. 

there is more polymer contained in CR than SBR so its relative susceptibility to oxidation 

increases. In the dielectric barrier discharge case the high concentration of carbon black 

causes the silent discharge to arc, thus reducing its oxidising capabilities. It can therefore 

be seen that the additives in the rubber alter their susceptibility to oxidation. 

6.5 CONCLUSIONS 

The ozone, the low pressure glow discharge and the dielectric barrier discharge 

treatments all caused oxidation of the rubber surfaces. In the additive-free rubbers the 

dielectric barrier discharge caused the greatest oxidation. This is due to the combination 

of ozone and radiation interacting with the polymer surface. The relative concentrations 
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of saturated carbons, unsaturated carbons and phenyl rings in the polymers affected the 

oxidation susceptibility differently during each of the three treatments. For the industrial 

samples the amount of oxidation is altered by the additional impurities contained in the 

polymers. 

EPDM SBR CR NBR 

Polymer 41.5% 58.8 % 71.7% 58.8 % 

Carbon Black 33.9%* 29.4 %* 22.0 %* 29.0 %* 

Zinc Oxide 2.1 % 2.8 % 3.0% 2.9 % 

Stearic Oxide 0.4 % 1.2% 1.2% 

Mineral Oil 

(C xH y) 

20.1 % 5.9 % 

Sulphur 

Compounds 

0.4 % 0.9 % 1.0% 

Magnesium 

Oxide 

2.0 % 

Others 1.6% 6.9 % 0.4 % 1.2% 

Table 6 .4: Relative % amounts of the components in the four rubbers (* N550, # N774). 
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CHAPTER 7 

CONCLUSIONS 



7.1 CONCLUSIONS 

This thesis has investigated the physicochemical processes occurring at the plasma -

polymer interface. A new mass spectrometric technique has been developed to 

overcome the major stumbling blocks previously encountered with insitu diagnostic 

techniques. Primary reaction products formed at the electrical discharge - polyethylene 

interface permeate through the polymer to be detected and analysed by a quadrupole 

mass spectrometer The processes occurring at the interface are found to be dependent 

upon the feed gas used. Also, two new highly effective approaches for fluorinating 

polymer surfaces have been examined, as well as the oxidation of various rubber 

substrates. 

In the case of nitrogen plasma treatment of polyethylene the importance of vacuum 

ultraviolet (VUV) initiated reactions (i.e. chain scission leading to hydrocarbon 

fragments) has been confirmed. An overall improvement in gas barrier performance of 

the polyethylene substrate has been observed, and attributed to the VUV induced 

crosslinking in the polymer subsurface restricting polymer chain mobility. For oxygen 

plasma treatment oxidised products were observed, with the clean polymer surface 

giving the greatest oxidation rate. A corresponding consumption of oxygen was also 

seen. Hydrocarbons were again produced due to VUV initiated chain scission. 

However, their intensity was greater than for nitrogen glow discharge treatment due to 

the weakening of adjacent carbon-carbon bonds by oxygenated centres. This effect was 

confirmed when on pulsing oxygen into a stream of nitrogen during plasma treatment an 

increase in hydrocarbon intensity was detected. The reaction product intensities formed 

during air electrical discharge treatment of polyethylene were found to be a combination 

of those for the nitrogen and oxygen plasma treatments. 

During hydrogen glow discharge treatment of polyethylene the intensity of the 

hydrocarbon fragments was found to be much less than for the nitrogen plasma 

treatment. This is due to the hydrogen atoms produced in the plasma reacting with the 

polymer free radicals. This terminates the chain scission and thus impedes hydrocarbon 

formation. Additional pulsing experiments where the intensity of the hydrocarbons 

dropped on pulsing hydrogen / deuterium into a nitrogen plasma confirmed these 

deductions. 
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It was also found that absorbed water within the polymer bulk leads to oxidation of 

the polymer surface, even when the feed gas is oxygen free. It is therefore imperative 

that polymer substrates are annealed prior to plasma treatment. 

Xenon difluoride (XeF2) glow discharge treatment of polymer substrates gives even 

greater fluorination than the commonly used carbon tetrafluoride (CF 4) plasma 

treatment. This might be due to the stoichiometricaUy higher concentration of fluorine 

atoms in XeF2. XeF 2 also offers the advantage of being easily transported and not 

producing any additional reactive intermediates other than fluorine atoms. The 

susceptibility of various polymers to XeF 2 plasma fluorination can be accounted for in 

terms of a structure-behaviour relationship based on extended Huckel molecular orbital 

calculations. Hydrogen substitution by fluorine occurs for saturated polymers, with 

further fluorination via addition occurring for polymers containing carbon-carbon double 

bonds. 

Another method for fluorinating polymer surfaces is based on VUV-assisted XeF 2 

fluorination. The VUV radiation is produced using a glow discharge and passes through 

a LiF window (cut-off wavelength 104 nm) into the fluorination chamber. Here it is 

capable of interacting with the polymer surface to produce reactive free radical sites. 

However, unlike CF4, XeF 2 can also absorb VUV radiation of wavelengths greater than 

104 nm to produce fluorine atoms The extent of polymer surface fluorination is 

governed by the overlap of the incident VUV emission lines with both the absorption 

characteristics of the polymer backbone and the XeF 2 gas. As with the XeF 2 plasma 

fluorination, unsaturated >C=C< bonds contained within the polymer structure are more 

susceptible towards fluorination compared to saturated C-H bonds. Surface modification 

is found to be greatest for VUV lines emitted by noble gas plasmas. 

Low pressure glow discharge, dielectric barrier discharge and ozone treatments all 

caused oxidation of the synthetic rubbers. Dielectric barrier discharge gave the greatest 

oxidation of the additive free samples, due a combination of ozone attack and vacuum 

ultraviolet radiation. The relative concentrations of unsaturated carbons, phenyl rings 

and saturated carbons in the rubber influences their oxidation susceptibility differently 

during each of the three treatments. The additives added to rubber to improve their 

properties alter their degree of oxidation. 

To conclude, this thesis presents alternative methods for fluorinating polymer 

surfaces, a new technique which has enabled the deduction of the processes occurring at 
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the plasma - polymer interface and a study of the oxidation of synthetic rubber 

substrates. 
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CHAPTER 8 

APPENDIX A: FIGURES FOR NOBLE GAS AND 

C F 4 TREATMENT 
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Figure 8.1(a): Mass profiles obtained using a 20/60/120 s, off/on/off sequence for the He 

electrical discharge (all profiles typical for the relevant masses). 



(b) Ne 
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Figure 8.1(b): Mass profiles obtained using a 20/60/120 s, off/on/off sequence for the Ne 

electrical discharge (all profiles typical for the relevant masses). 
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(c) Ar 
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Figure 8.1(c): Mass profiles obtained using a 20/60/120 s, off/on/off sequence for the Ar 

electrical discharge (all profiles typical for the relevant masses). 
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Figure 8.1(d): Mass profiles obtained using a 20/60/120 s, off/on/off sequence for 

C F 4 electrical discharge (all profiles typical for the relevant masses). 
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Figure 8.2: Maximum variation in mass signal intensities during plasma treatment: (a) 

He; (b) Ne; <c) Ar; and (d) C F 4 . 
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