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Abstract

Totally real 3-dimensional submanifolds of the nearlv Kaehler 6-sphere are the main topic
of this thesis. Having introduced preliminaries on the theory of complex and almost
complex manifolds. the nearlv Kaehler structure of S® and the non existence of almost
complex. 4-dimensional submanifolds of the 6-sphere [G3], the resuits of N. Ejiri [Ejl] on
orientability, minimality and characterization by means of constant sectional curvature

are given.

Results concerning the pinching of the sectional curvature in the compact case are
coming next (see: [D.O.V.V1]. [D.V.V2]). These results are obtained by using the integral
formulae of A. Ros [R]. formulae which play a crucial role in global Riemannian geometry.
After a discussion on a new Riemannian invariant 4. introduced by B.Y.Chen in [Ch2]. for
submanifolds of real space forms and the inequality (which is the best possible) satisfied
by 4, we focus on the case where the inequality becomes an equality. In this case the shape
operator of the immersion attains a special form and this helps with the classification.
In particular, if A/ is a 3-dimensional totally real submanifold of S® then the Chen'’s
equality becomes 9y, = 2. and if M is assumed to be of constant scalar curvature. we
classifv M by two explicitely described immersions of S* in §°. [C.D.V.V1]. By assuming
that the complementary distribution of a certain distribution of M is integrable. M is
characterized in terms of a warped product of a minimal, totallv real. non-totally geodesic
surface immersion in S®. which lies linearly full in a totally geodesic S* [C.D.\".\2].
Furthermore, with respect to totally real 3- dimensional submanifolds satistving Chen’s
equality ([D.V]): if M is contained in a totally geodesic S°, then M can be classified
in terms of complex curves in CP?(4) lifted via the Hopf fibration. These submanifolds
satisfv always Chen's equalitv. In case M lies linearly full in S® and satishes Chen's
equality classification has been in terms of tubes of radius 3. in the direction of the
second normal space. over an almost complex curve. Finally. local converses of the last

two results are proved.
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PREFACE

This thesis 1s work done in the Department of Mathematical Sciences of the University
of Durham under the supervision of Dr. J. Bolton and it is a discussion of the results
obtained in the direction of the totallv real 3-dimensional submanifolds of the nearlv

Kaehler G-sphere. The thesis is in its main part based on the following papers:

e [Ej1] on minimality and characterization in terms of constant sectional curvature.

[D.O.V. V1] and [D.V.\2] on the problem of the characterization by means of pinched

sectional curvature in the compact case.

[Ch2] on the invariant ¢ and Chen’s inequality-equality for immersions in real space

forms.

[C.D.V.V1] on the classification in the case of constant scalar curvature with Chen'’s

equality satisfied. bv means of two equivariant totally real immersions of S3,

[C.D.V.\2] on the classification. in case Chen’s equality occurs together with some
extra assumptions of integrabilitv on a certain distribution, in terms of warped prod-.
uct of totally real. minimal. non-totally geodesic, surface immersions lving linearly

full in a totally geodesic S° and

e [D.V] on the classification of such submanifolds satisfving Chen’s equality in terms
of complex curves in CP?(4) lifted via the Hopf fibration and of tubes of radius 7/2

in the direction of the second normal space over almost complex curves in S%.

No part of this thesis has been previously submitted for a degree in the University of

Durham or any other University.

©Fotios Travlopanos.
The copyright of this thesis rests with the author. No quotation from it should be pub-

lished without his prior consent and information derived from it should be acknowledged.




Preliminaries

It is well known that a G-dimensional sphere S® does not admit anv Kaehlerian struc-
ture. and whether S® does or not admit any complex structure. as far as we know. is still
an open question. However. by considering 5% as an hypersphere of R™ and identifving R”
with the imaginary Calev numbers [mO. an almost complex structure .J can be defined
on S% in a natural way (see for instance [Ca2]) and is. in a sense made precise in [C.G].
the “best” almost complex structure on S°.

Together with the standard metric g on S° J determines a nearly Kaehler structure
in the sense of A.Gray [G1]. ie: (V)X = 0. VX € X(5%). where V denotes the
Levi-Civita connection on S°. The construction of the almost complex structure on S* is
realized in terms of a vector cross product defined in R, a product which is defined using
the Cavlev multiplication. and is related also with the usual metric g on 5. This vector
cross product is preserved by a subgroup of SO(7), namely by elements of the group G,
of automorphisms of Im©O. and G, is a compact Lie group which acts transitivelv on S°
and preserves both .J and ¢. With respect to J, two particular types of submanifolds \/
of S® can be investigated: the almost complex, for which the tangent space remains
invariant under the action of .J. and the totally real, for which the tangent space of M/
is mapped by .J into the normal space of M .

In [G3] A.Gray proved that. with respect to the canonical nearly Kaehler structure. S has
no 4-dimensional almost complex submanifolds and thus there only exist 2-dimensional
almost complex submanifolds in S and these are always minimal. Almost complex sur-
faces will play a crucial role in the classification of totally real 3-dimensional submanifolds
of S° satisfving the Chen’s equality and curvature properties of such surfaces were first
obtained by K. Sekigawa in [S] where it was proved that: if 1/ <> S% is an almost com-
plex and non totally geodesic immersion of a surface M then the degree of the mapping

v is 3, if M has constant sectional curvature K then A € {i.1}. and in case M is

compact for a pinching of the sectional curvature A >  on M then N = | on M.
and when % <K <1lon M then N = % on M. Mloreover, by considering the subset

M o= {peM: aN.Y)#0}of M and defining the function G = ——1 V-al?).

where ¥+ denotes the connection in the normal bundle of M and o the second funda-

mental form of the immersion . in case M is compact. IX.Sekigawa proved that:




if —% <G < 0on M then G =0 or —ll and furthermore. A/ is homeomorphic to a
2-dimensional torus (resp. a 2-dimensional sphere) if G = 0 on M (resp. G = —% on M).
. Sekigawa provided examples of almost complex submanifolds of S® corresponding to
the cases k' = 1. F‘;'an(l 0 (in case M is of constant sectional curvature). In the same
direction. and with respect to the pinching of the sectional curvature in the compact case.
F.Dillen, B.Opozda. L.Verstraelen and L.\tancken proved. in [D.O.\.V2]. that. for an
almost C‘o‘;nplex surface in S% if + < A" < 1. then either A = L or K =} and in [D.\.V1]
F.Dillen. L.Verstraelen and L.\rancken proved that if 0 < A < é, then either ' = 0 or
I = . The method used in [D.O.V.V1] and [D.V.V1] was based on the integral formulae
of A.Ros [R] which provide a powerful tool in global Riemannian geometrv and there is a
certain analogy with Stokes™ theorem and Hopf’s lemma.

More recently. by using the method of harmonic sequences. an idea which goes back to
Laplace (see: L.Darboux. Lecons sur la theorie generale des surfaces. Gauthier-\illar.
Paris. 1915), J. Bolton and L. M. Woodward studied. in [B.W], the general situation of
harmonic maps of a Riemann surface into CP™ and deduced congruence theorems for
these maps, as well as for harmonic maps from a Riemann surface into S™. The same au-
thors together with L. Vrancken in [B.V.W1] studied almost complex curves in S®. These
are non-constant smooth maps from a Riemann surface into S°, whose differential is com-
plex linear and it is well-known that anv such map is a weaklv conformal harmonic map
or. equivalently, a weaklyv conformal minimal immersion. Theyv classified almost complex
curves, bv means of O(7)-congruence. in the following 4 different tvpes:

(I) linearly full in S® and superminimal,  (II) linearly full in S® but not superminimal.
(I11) linearly full in some totally geodesic S in S® (thus. by [Ca2]. necessarily not su-
perminimal) and (IVY) totallv geodesic. where the case (IV) is trivial and consists of
curves with image of the form S® N 1" where 17 C I'nO is an associative 3-planc. Of the
remaining 3 tvpes the best understood is that of tvpe (I). R.L.Brvant dealt with this case
in [B1]. he gave a “Weierstrass representation” theorem for such curves and proved that
there are compact almost complex curves of tyvpe (I) of everv genus. Almost complex
curves of genus 0, which are necessarily of tvpe (I) or (IV), have been studied by N. Ejiri
in [Ej2]. who described all S' - symmetric examples. In the case of constant Gaussian
curvature . as we have scen already. the values 0. /6. 1 obtained by K.Sckigawa in

[S]. correspond to almost complex curves of type (III). (I} and (IV) respectively.




The almost complex curves of tvpe (II) and (III) are more difficult to deal with. since
thev are not superminimal (i.e: the associated harmonic sequence does not terminate).
In the same paper. criteria for recognising when a weakly conformal map. from a Riemann
surface into S®. is O(7)-congruent to an almost complex curve of the above 4 tvpes. are
given and by considering almost complex curves of tvpe (I1I) the relation with totallyv real
harmonic maps into CP? has been investigated.

Although almost complex surfaces and totally real 3-dimensional submanifolds of S* are
minimal. totally real surfaces are not. In the direction of the totallv real non-minimal
surfaces very few things can be said. In the direction of totally real minimal surfaces M re-
sults were obtained by F.Dillen. B. Opozda, L. Verstraelen and L. Vrancken in [D.O.V.V'3].
Theyv showed that if M/ is homeomorphic to a sphere then A is totally geodesic and conse-
quentlyv. if 1/ is compact and has non-negative Gaussian curvature K, then either ' =0
or ' = 1. deriving from these that if 1/ is of constant Gaussian curvature A" then, either
KN = 0or K = 1. In Chapter 4 and in order to obtain theorem (25) which classifies
totally real 3-dimensional submanifolds of S® (satisfving the so-called “Chen’s equality”
and some extra assumptions of integrability) in terms of warped product, of totally real,
minimal. non-totally geodesic surface immersions in S® whose ellipse of curvature is a
circle (and consequently lies linearly full in a totally geodesic S°), we shall use a part of
the method followed by the authors in [D.O.\V.V3].

Recently in [B.V.W2]. J. Bolton. L. Vrancken and L. M. Woodward studied totally real
surfaces of S® with non-circular ellipse of curvature. In particular. theyv showed that such
surfaces cannot be linearly full in S°. each of them is an open subset of a complete totally
real minimally immersed R? and each complete one is “equivariant” in the sense that it
is invariant under a 1-parameter subgroup of (.

In the present thesis. results concerning totally real 3-dimensional submanifolds of S® are
discussed starting from some preliminaries on the theory of complex. almost complex man-
ifolds, the non integrable nearly Kaehler structure and the non existence of 4-dimensional
almost complex submanifolds of S8 We discuss in details the results of N. Ejiri on the
orientability, minimality and classification in terms of constant sectional curvature and
also the results of F. Dillen. B. Opozda. L. Verstraelen and L. Vrancken with respect
to the problem of characterization by means of pinched curvature in the compact case.

Furthermore. the very important and relatively new Riemannian invariant o, mrodnced

-




by B. Y. Chen in [Ch2]. with respect to submanifolds of real space forms. is discussed
independently. This invariant satisfies alwavs an inequality involving the main Rieman-
nian invariants of M and when this turns out to be an equality the shape operator of
the immersion attains a very “svmmetric’ form which provides information on the sec-
ond fundamental form of the immersion. Using the hvpothesis that the so-called Chen’s
equality is satisfied on a 3-dimensional totally real submanifold 1/ of S® and extra as-
sumptions of constancy of the scalar curvature and integrability of the complement of
a certain distribution D. classification has been obtained in [C.D.V.V1]. [C.D.V.AV2] in
terms of two equivariant totally real immersions of S? in S® and tubes around totally real
minimal immersions in S (in the direction of the second normal space), respectivelv. In
the last part we discuss the results of F. Dillen. L. \tancken [D.V] who classsified totally
real submanifolds of of S®. which are contained in a totally gedesic S°. in terms of almost
complex curves in CP?(4) lifted via the Hopf fibration S* — CP?(4) and showed that
such submanifolds alwavs satisfv Chen's equality. In case the 3-dimensional totally real
submanifold lies linearly full in S® the classification obtained in [D.V] is in terms of tubes

of radius 7/2 in the direction of the second normal space.




Chapter 1

General theory

1.1 Preliminaries, the Frobenius theorem

In Chapter 1 and specifically within the first two sections, after introducing notation and
some necessary concepts, we state the Frobenius theorem and we go on with the funda-
mental equations, standard rigidity theorems and basic facts from the theory of minimal
submanifolds of Riemannian manifolds together with a certain number of examples. In
the third section we extensively refer on the theory of almost complex manifolds and
in the last section we focus on the nearly Kaehler S® and present the proof of the non

existence of almost complex 4 - dimensional suline-number-mode bmanifolds of S°.

Let M be a differentiable manifold. We denote by F(M) the set of all . locally
defined on A, differentiable functions f € C*(\M,R), by X(M) the F()) - module of
differentiable vector fields on M and by C>* (M. .V) the set of all differentiable mappings
from M into another differentiable manifold V.

If feC>(M,N) the differential of f is defined by

(fo (X)), (9) = Xy (go f). (N.g) € T,M x C*(V,R) (1.1.1)
and the transpose of (f.), defined by the

(F) X X = LX) (1.1.2)

for anv X .. \, € T,M and " € DI(N). where D(.V) denotes the set of all ¢-forms
on V.




Let f be a differentiable mapping from the m-dimensional differentiable manifold M/ into

the n-dimensional V.

Definition 1 The mapping f is said to be an immersion if and only iof the differential
(fo)p is injective for every point p of M and in this case M will be called an immersed
submanefold of N When an ummersion f s injective it will be called an imbedding  «and
M ownll be sawd to be an imbedded submanifold of N

An open subset of a manifold can always be considered as a submanifold in a natural

manner and in this case will be called an open piece of the ambient manifold.
In order to state the Frobenius theorem we recall the following concepts

Definition 2 4 ¢- dimensional distribution on o differentiable manifold M is a map-
ping D defined on M which assigns to each pownt p in M a g-dimensional linear subspace
D, of T, M.

The g-dimensional distribution D will be called differentiable if there exist differentiable
vector fields. defined on a neighborhood of the point p. which. for each pownt 1 in this
neighborhood, form a basis of D . The set of these q vector fields with this property is said
to be a local basis of the distribution D .

A vector field X € X(M) s sad to be an element of D of X, € D, Vp € M.

The distribution D will be called involutive if and only iof [N.Y] € D. ¥(N.Y) €
D x D.

An imbedded submanifold f - M — XM of the manifold M will be called an integral
submanifold of the distribution D of and only f: f,(Tp.\[')) =Dy, Ype M where
f is the imbedding of M in M.

If there ezists no integral submanifold of D which contains properly M . then M will be
called « maximal integral submanifold of D .

A distribution D is sawd to be integrable if and only if. for every pomnt p & M. there

erists an integral submanifold of D containing p.

We can now state the classical Frobenius theorem in the following form(see Chl . pg:29-

30)

Theorem 1 An mvolutice distribution D on o differentiable manfold X~ oot grable.

: : sub
Furthermore. through cvery pomnt p € M there passes a unique marinal (it ://'ll/l(man/'/u[(/

9
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of D and every other integral submanifold containing p 1s an open submanifold of this

mazimal one.

An alternative way to state the above theorem is the following. Let us at first define
O={weD"M):o(\,)=0. Y(X.p)eDx\} (1.1.3)

and let I(€2) denote the ideal generated by Q in the ring of the exterior differentials on

M. Then theorem (1) can be stated as follows

Theorem 2 The distribution D s involutive if and only if dQ is contained in the 1deal

I(QY) where Q is given by (1.1.3).

1.2 Fundamental equations, minimal submanifolds

Let M be a differentiable manifold. A Riemannian metric on M is a (0.2)-tvpe tensor
field g satisfying the following conditions

(i) g is symmetric : g(\\.}) =g} X). VX.}Y € .’E(‘\A[/).

(i1) g is positive - definite : g(X..\') > 0. VX € i(ﬁ) and ¢g(.X,.X) =0 if and only if
X =0.

Let M be an n - dimensional manifold immersed in an m - dimensional Riemannian
manifold M with m > n. In a local discussion we can assume. without loss of generality.
that M is imbedded in ).

IF{Vout}, {U,z"}, where A =1.... .mand h = 1.... .n, are coordinate systems on

M and on M respectively, then

Suppose that f: W — M is the immersion. Let X € X(M) and identifv X with its image

f(X). If X =57, X*(-%) then under this identification, we get:
h=1 r

i O J
— h o
A _ZZ‘\ Ouk -(()IL"). (1.2.2)

A=1 k=1

If g is the metric tensor on the ambient space M we define the induced wmerric g on M

by setting
g(XN.Y)=¢g(X. YY), YN Y € X (M), (1.2.3)

10




Henceforth we use the same notation for the induced and for the metric tensor of rhe

ambient space and we also identifv r € M with f(r) € M.

Definition 3 [f for the cector £ € Tr(.ﬁ). L € M the equality g(X.&) = 0 holds

VX € T, M. then & is saud to be o normal vector of M in M at the point .

Let L1/ be the vector bundle of all normal vectors of M in /. Then the decomposition
T_Wi,\, = TM & 1L\ holds. We denote bv V the Levi - Civita connection on /. We

need the following

Lemma 1 ([Chl]. pg:37-38) If X\.Y € X(M) and N.Y are extensions of X and Y re-

spectively then {‘Z Y|y and (6_;3')\” do not depend on the extension.
Under the aspect of lemma (1) we can proceed introducing the following concepts

Definition 4 If XY € X(), with M is an immersed submanifold of the Riemannian
manafold M. let:

Vil = VY +A(X.Y) (1.2.4)

where VY denotes the tangential and h(X.Y) the normal component of 6‘\»}’. We
shall call V the induced connection «nd h the second fundamental form of the
submanifold M.

If € 15 u normal vector field we set
ViE = AN + Vie (1.2.3)

where —A¢ X denotes the tangential part and V<€ the normal part of V& with respect
to M. Then A will be culled the shape operator and V! the normal connection

([Ch1]. pg:41).

The shape operator is self-adjoint. the second fundamental form is a symmetric one and

thev satisfv the following relation

g (N Y) €)= g(A N V). VXY € (M), VEe€ X- (M), (1.2.6)

11




Definition 5 A normal vector field € on M will be called parallel in the normal bundle
if and only if : V€ =0. VX € X(M).

An ommersion f M — M s said to be totally geodesic if and only of h =0 on M.
If £ € XH(M) and A¢ = a- I for some function a, then € is called an umbilical section
on M. [f M s umbilical with respect to every local normal section of M, then M is called
totally umbilical.

Let {ei,... en} be an orthonormal basis in T, M. The mean curvature vector H of
M s defined by: H = 13" h(e,.e,).

If H=0 on M, then M is said to be minimal .

We define the covariant derivative of the second fundamental form by setting

(Veh) (Y. Z) = VE(h(Y.2)) = h (VY. Z) = h (Y. V4 Z) (L.

o
=1
—_

for all vector fields X.Y. Z € X().

If the covariant derivative of A vanishes identicallv on .M then h is said to be parallel.

Denote by R. R the curvature tensor fields of M and M respectively, then :
R(X.Y)Z = VyVyZ = ViVyZ = VixyiZ
= Vy(ViZ +h(Y.2)) = Vi(VyZ + h(X.Z)) = (VixyZ + h([X. Y], Z))
=VyVyZ +h(Y.VxZ) = Apv)Y + Vih(X. 2)
~ (VxVyZ + MX.Vy2Z) = 4y X + V(Y. Z))
- Vi Z = h({Y.X). Z)
and using the equation (1.2.7 ) we get
R (_\",_Y) Z=R(N.Y)VZ - 4x0Y + o)X + (V) (XL Z) = (Vih) (Y. Z)
(1.2.8)
where XY, Z € X(M). Taking IV" € X(M) and using (1.2.8) we deduce the Gauss

equation

g (é(_\', ¥) Z. n') —g(R(N.Y)Z. W) =
g(h(X.2). R (Y1) = g (h(X. W) . h (Y. 2)). (1.2.9)

and by considering the normal component in equation (1.2.8) and the definition of the

covariant derivative of /1 we deduce the Codazzi equation

(R(X.1) 2); — (V) (V. Z) = (Vh) (Y. 2). 210)
12




Definition 6 Let the curvature tensor of the normal bundle of V[ he:
RE(NY)E= ViVl = ViVeE - Vig € (1.2.11)

for all XY € X(M)., vEe X-(M).

Let us take .Y € X(M). &€ X-(M) and compute
RINY)E = ViVEe - VEVEE - Vi
= Ty (A + TEE) - Ty (X + VEE) — (A [Y 1]+ TA0)
= =Vided = A (X Aed) = Aee XN+ Vi Vi€
+ Vi (AeN) + A A X) + Aer Y - ViV + 4[N Y] - Vﬁ\:y]f =

R(X.Y)E =R (N.Y)E = (N, AeY) + h (X, 4:Y)
—(VaA) Y+ (Vyd) X

<
S

Taking 1y € X+(\/[) we deduce the Ricci equation
g (RIXYIED) = g (RH(X.Y)E0) +g([Ay A X.Y) (12.12)

Remark 1 If Rt = 0 then the normal connection of M is said to be flat .
In particular, if the ambient space M s of constant sectional curvature c then

RINY)Z=c-[g(N.2)g(Y.TV) — g(X. W) g (Y. 2)] (1.2.13)

for any vector fields X. Y. Z € X(M). Hence, for any vector fields X,Y.Z € X(M). the

R(N.Y)Z 1s tangent to M and thus the fundamental equations reduce to the equations

JR(X.Y)Z W) =c-[g(N.2) g(Y W) = g(Y.2) - g (X. 1)) +

G (X.Z) R(Y W) = g(h(Y.2Z) h (X)), (1.2.14)
(Vh) (Y. 2) = (Vyh) (X. 2). (1.2.15)
g (RN €0) = g (4, A X 1) (1.2.16)

of Gauss, Codazzi and Ricer respectively.

Definition 7 Let M be an n-dunensional submanaifold of the m-dirnensional manifold Y3
At each point r € M we define the first normal space Ny(x) to be the rnage Tmh of

the tangent space at v under the second fundamental form.

13
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Note: A g-plane bundle over a manifold )/ is called a Riemannian g-plane bundle
if it 1s equipped with a Riemannian metric and a compatible connection.
Let nus now state the fundamental theorems for submanifolds (see [Chl] and for rhe

proof [B.C)).

Theorem 3 (Existence) Let M be a simply connected n-dimensional Riemannian man-
tfold with a Riemannian g-plane bundle E over M equipped with a second fundamental
form h and associated shape operator A. If the equations of Gauss (1.2.14). Codazz
(1.2.15) and Ricci (1.2.16)are satisfied then M can be isometricelly immersed i an (n+q)-

dimensional space form R"9(c) of curvature ¢ with normal bundle F.

Theorem 4 (Rigidity) Let fi. f, : M — R™(c) be two isometric immersions of an
n-dimensional Riemannian manifold in an m-dimensional space form R™(¢) with normal
hundles E\ and E, respectively. equipped with their canonical bundle metrics. connections
and second fundamental forms. Suppose that there erists an isometry f : M — M such
that f can be covered by « bundle map f: E, — E, which preserves the bundle metrics.
the connections and the second fundamental forms. Then. there exists a rigid motion F

of the space form such that: Fo f, = fyo f.

[n the last part of the present section some basic results and a number of examples concern-
ing minimal submanifolds are included since the totally real 3-dimensional submanifolds
of the Nearlv Kaehler 6 - sphere are alwavs minimal.

e A minimal submanifold M in a Riemannian manifold N is an extremal for the

integral of volume ([Chl]. pg:75).

e If M is a minimal submanifold of an Euclidean space E™ the Ricci tensor is negative

semidefinite and 1/ is totally geodesic if and only if its scalar curvatnre is zero {T].

e Let Y!'.... X"l he rthe standard coordinates of the Euclidean space E"7'. A
hypersurface .M/ which can be globallv represented under the form
Nl = Ynel( Nt A
will be called a non parametric hypersurface . [t has been proved that:

If n < 7 then a non parametric hyvpersurface in £77' is necessarily lincar. I[f n > 7
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then examples of non linear non parametric hypersurfaces have been found ({Ch1].

pg:81).

¢ A submanifold of an Euclidean space E’ is minimal if and only if the position vector

field is harmonic [T].

o If M is a submanifold of a small hyvpersphere 5™~! of £™ centered at the point C'
then M is minimal in S™~' if and only if AN = -\ for some constant c¢. where
X denotes the position vector tield of M/ in E™ with respect to the point C' and A

the Laplacian on 1/ (see:[T}).

e Suppose that A/ is an n-dimensional submanifold of an Euclidean space E™. If the
position vector field X of M in E™ with respect to a point C' € E™ is parallel to
H. then the submanifold M is either a minimal submanifold of E™ or a minimal

submanifold of a small hvpersphere of E™ centered at the point C' ([Chl]. pg:81).

e Let M be an n-dimensional complete minimal submanifold of S™(a) with non-
negative sectional curvature and suppose that the normal connection of M/ is flat.
If the scalar curvature of M is constant, then A is either a great sphere of S (a)
or a pvthagorean product of the form
SPUry) x ...x SPY¥(ry). Ypi=n. 1< N<m-n+1

with essential codimension .V — 1. where r, = rz(’j—;)%. re{l...... VYL

e Let 1/ be an n-dimensional compact minimal submanifold of S™(a). If M has non-
negative sectional curvature and the normal connection of M is flat then. we have
that ./ is either a great sphere of S™(a) or a pvthagorean product of the form given

in the previous case [Y.I].
Examples of minimal submanifolds

Example 1 FEvery totally geodesic submanifold of a Riemannian manifold is a« minimal
submanifold. In particular. every great hypersphere of a space form R™ (k) ix a minimal

submanifold ([Chl1]. pg:86).

Example 2 Let a be a non - zero constant and M the subset of E? quren by
M = {(I'COS(D. rsino.  dacosh ”(5)) co.r € Ry M as a munamal surfaee o EYoand

of s called o catenoid .




Example 3 Let a be a non zero constant and define the subset M, of E? by
My = {(reoso.  rsino. ao):  r.o€ R—{0}}. Then M, is a minimal surface in E?

called the right helicoid.

Example 4 Let S7(r) be the q - dimensional sphere in E9"V of radius r and n. p be
positive integers such that p < n. The product manifold M, ,_, is given by the

M,y = .5"’(\/7%‘) X S”"’(\/g). We imbed M, ,,_, in S™' in the following way.

Tuke (X1.Xy) € Myp_p X My, where Xy is a vector of EP™' of lenghth \/g and Xy 15
vector in E,_,.\ of length \/r”—;"-_’ Consider (X.X3) as a unit vector in

Er=2 = EPFU En7PTL Then M, _, s a minimal submanifold of the (n+1) -dimensional
unit sphere and will be called o Clifford minimal torus.

In the specific case where n = 2 and p = 1 then M, is a flat minimal surface in S* culled

the Clifford torus.

Example 5 If (r.y.z) denote the standard coordinates in R® and (u'.... .u>) the stan-

dard coordinates in E° we consider the mapping defined by

Lol , 1 L
o= —yz. ut=——=zr, u = —=ur
1 . 5 = 9 .
ut = (2 — ). o’ = —(? 4 y* =227

2V3

This map restricts to give an isometric immersion of S2(v/3) into S*(1) and two antipodal
14 g . p
points are mapped into the samme point. Thus this map defines an wmbedding of the real
projective plane into S*(1). This real projective plane will be called the Veronese surface

and is a minimal surface of S*(1).

Example 6 Fvery compler submanifold M of a Kaehlerian manifold M s minunal (for
the proof see: §1.4 lemma (6)).

1.3 Complex and almost complex manifolds

In this section we deal with the theory of complex and almost complex manifolds. Stan-
dard results will be quoted together with a certain number of examples. Main references

for the material presented in (§1.3) are [Y.K1] and [Mat].
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Definition 8 Let M be a Hausdorff topological space. {U,} with o € A an open coveruy
of M and suppose that for each U, there is an homeomorphism v from U, onto an open
subset of C* such that ¢, o L:.;l eaUa NUG) — o (U U3) s @ holomorphic mapping
for any pair («. 3) € A x A, Then M is said to be a complex manifold of dimension
n and the family {(U,. Ca)taca is called a holomorphic coordinate neighborhood

system.

In this stage we quote some linear algebraic results on real and complex vector spaces
which will be applied to tangent spaces of manifolds.

Let 17 be a vector space over R. The complexification of V" is defined to be the set
VO =X +iY : X,Y € V'} and V% can be given the structure of a complex vector
space by defining the operations (X + }) + (X +iY) = (Y + X) + (Y +©Y) and
(a+ib)(X 4+4Y) = (aX =Y ) +i(bX +aY) foralla+ibe C, X +iY. N+ V¢
Identifving V¢ 2 X + /0= X € 1" we may consider | as a subset of 1'%

For anv Z = X +iY € V' we define its conjugate by: Z = X —iY € V¢ and the
operation of complex conjugation from V' onto itself satisfies:

ZX¥W=Z+W, MZ=N\Z, VZ,W eV vAeC LetV ben-dimensional vector
space, {e1,....en} a basis of \" over the reals. If X = 3 a’e; and Y = 3 Ve, are
elements of V' then we can write: X +:Y = 3 (a? + ible; = 3 Me, and by
considering the e; as elements of the complexification we can see that they form a basis
of 1'¢ over the complex numbers.

A linear endomorphism J of a real vector space 1" satisfving J? = —TI is said to be a
complex structure on |, where I denotes the identity transformation of 1.

Suppose that V" is a real vector space with almost complex structure .J. If for anv \ =
a+heC, X el weset A\ =aX +bJYX, then V" can be considered as a complex
vector space (clearlv 1™ has to be even dimensional).

Conversely, given an n-dimensional complex vector space | we can alwavs consider V"
as an 2n-dimensional real vector space and by defining the linear endomorphism J.X' =
1N, V.X € V" we construct a complex structure on V'. Let us extend this discussion on
the complexification 1.

[f 17 is a real vector space with complex structure .J we can extend J to a complex linear
endomorphism of 17 bv setting:  J(X +/Y) = JX +JY  and clearlv we shall have

Jt= -1

L7




Suppose 2n is the real dimension of 1" and {.X|,... .. L JX L JX,} abasis of V7. If
we put 2, = %(\k - iJXy)., Ze= %(\k +:JXy), VE=1.....n then:
{(Z\.....Zy,Z\,...Z,} is a basis of 1" and applying J we get

JZy =iZy. JZp=—iZy Yhe{l.... .}

[fweset VW ={ZeVY: JZ=iZ}, V% ={ZeV"Y: JZ=-iZ} we get the
decomposition into direct sum: V¢ = 11 @ V%! and in particular, by writing
Z=3Z-1J2)+3(Z+JZ). YZ €V, then the components of the analysis of 1°¢
in direct sum are of the form

T = (Y —iJX X eV} Vo ={\Y+4+iJX: XeV}

Let 17 be the dual of the vector space V', that is the real vector space of all linear
mappings from V" into R. Each element f € 1™ can be extended to a linear functional f
of 1'% by setting: f(\ +iY) = f(X)+if(Y), VX +iY eV©
Using this extension we see that if {f'.... . f"} is a basis of V"™* then {f‘ . f”} is a
basis of (17¢)*.

On the other hand. for & = f+ig € ()¢ we can define an element k of (V*)€ by setting
Tz..(Z) = ]?(Z) +ig(Z), vZ € V', where f~.,§ are the extensions on (1*)¢ of f and g
respectively.

The linear mapping (V*) 3 h — h e (V'€)* is an isomorphism and in conclusion the
spaces (1)< and (V)" can be identified.

If ./ is a complex structure on 1" then .J induces a complex structure on 1™ by setting
JAX)=f(JX). V(X.flelV x1™

Similarly with the case of 1. the decomposition in direct sum (V*)¢ =17, V5, holds
and the con_lponents of the sum can be described by

Vio={fe (V) f(X)=0. vXelbtl}

Lo ={fe () f(X)=0. VX el

We can now return to the generic case of differentiable manifolds.

Suppose M is an n - dimensional complex manifold. {z'.... . z"} complex local coordi-

nates around a point p of M and /.y’ the real and imaginary part respectively of the

coordinate z/. In this case {{57), .(Uijl) e (%) ,(—%) } is a basis of T,,.M and

{(deh),, (dz/'),,, oo (de) . (dy") ) a basis of the dual Ty, We set
)
')_

() _ l : () — 1 .
1)’_’ - { ()IJ P ()‘1// )l’} { IJfJ <)1/J )P} and

(dx1), = (dad), + i(dy),.  (dZ1), = (ddt), — z(dyf)p. Vi=1,....n.
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Then {(%—)p, (O%)p} and {(dz7),. (dZ),} result to be bases of T[f".\[ and (T;A\[)(' respec-

tively. Furthermore, we have

(@5, ((001>p> (4=), ((03?)1) =
(d=*) ((;J)I) = (d3%) ((%) ) = 0. (1.3.2)

Definition 9 Let M be a real differentiable manifold. A tensor field .J on M unll be

(1.3.1)

—

called an almost complex structure on M if and only if J is an endomorphism of the
tangent space T, M at each point v € M and J? = —1.

A manifold M with a fired almost compler structure will be called an almost complex

manifold.
Let M be a complex manifold. {z'.... .:"} complex local coordinates around a point p,
and =7 = 2/ +iy/.7 = 1.... .n. Define .J, € End(T, M) by setting:
d 0 7} J
Jl— )=, J|l—)=-=—]. ¥yj=1...., 1.3.3
<0IJ ) oyl <0,1/J ) (OIJ ) / " ( )

and we can extend .J on T "M by

J A, J {0 A :
J ($> =1 (E) . <0—§> = — <0?> oY)y =1.....n. (1.3.4)

[t is not hard to verifv that an element Z of T;'.\[ belongs to .C{(;"T)} (where £ denotes
the set of linear combinations ) if and onlyv if JZ = /Z and belongs to L'{(,’—fj} if and only
it JZ = —iZ. Suppose that {u’} is another local complex coordinates svstem around the

same point p and let w’/ = 1/ 4+ i/, Define the endomorphism J, of T, by

9 ) 0 0 n -
7 (a_> =0 (T) =" (0_) 152)

and extend on the complexification T M by setting

O A d () ) 0 . 8y
g <%> - (W) /i (m) - (5;7) (1.3.6)

If 25 = 2%(w!, ... w™). Yk =1.....n we have:

J J:/ J o
(W>p:zj: (()u"‘) ') (()—*J>V | (1.3.7)
. B ) -
(-1;/\)”:: ((’)1{"‘) (p) (E) (1.3.8)




foralt k=1.... .n.

Since %; and ag result to be linear combinations of == and respectivelv. we can

:J ) g
verifv. by applying J, that J and J, coincide at each point p € M. Hence. .J is independent

of coordinates and will be called the almost complex structure attached to M.

Definition 10 Let M, M be almost complex manifolds with almost complexr structures .J

and .J respectively. A mapping f: M — M will be called almost complex if and only

if Jof, = f.ol.

Suppose that M. A are complex manifolds and f a mapping from ./ into M. Let
(R {w? }721 be local coordinate systems around p € M. f(p) € M. We ask for
conditions on the mapping f in order to be an almost complex map.

Since f is a mapping then for the complex local coordinates on A, M we write:

1 1 n

w = (at oyt r Loyt !

). =gty ey forany j = 1., . .m where f*u/
Y Y y yJ

has been identified with 2/ and f*i7/ with v/. Consequently we can write the following

equations:
: 9 ou 0 ovl o
fs <d_lk_> - ZJ: <W> (p) (%—J) + zj: <?) (p) (5) , (1.3.9)
. 0 ou’ 15 v’ 9 -
fe (ﬁ) = zj: <OT/") (p) (b?) +Xj: (7) (p) (%) . (1.3.10)

Compairing f,(.J ( -)) with /(f ( %)) and f.(J (—/’,;)) with .]M(f,(#)) we see that [ is an

almost complex map if and onlv if the (ﬁﬁ)(l)) = (:)’; )(p) and (:;'—u‘i)(p) = —(:'ri )(p) are
satisfied for-all j, &, 1.e: existence of the Cauchy-Riemann holomorphicity conditions for f.

Hence. for almost complex mappings between complex manifolds we have the following:

Proposition 1 Let . M be compler manaifolds. the mapping f : M — M results to be
almost complex. with respect to the complexr structures on M and M, of and only of f s

holomorphic.

The space T, M will be called the complex tangent space of M at p.
Let (M..J) be an almost complex manifold. J its almost complex structure. Then the

complex tangent space at p can be decomposed into the direct sum
Ty (M) =T, (M) =T (). NIERES
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where T (). T (M) are the eigenspaces of .J corresponding to the eigenvalues +/ —1
respectively and it can be verified that a complex tangent vector Z € Tp“O(A\[) ( resp.

€ T,?J(,\[) ) if and only if Z =X —/JX (resp. X +iJ.X ). for some X € T,(\).

Remark 2 ([Mut]. pg:112) Let us at first recall that a complex manifold M is said to be
« complex submanifold of the complex manifold M if and only if M 15 a submanifold
of M when considered as real differentiable manifolds and the immersion of M into M ois
holomorphic.

In 11§10 of [Mat] it has been shown that a compact manifold is diffeomorphic to a closed
submanifold of RV . Furthermore. this assertion holds for an arbitrary paracompact mani-
fold (Whitney's theorem). However, it is not true in general that an arbitrary paracompact
complex manifold is holomorphically isomorphic to a closed complex submanifold of CV .

In particular, we have the following result ([Mat]. pg:112):

Proposition 2 A compact connected compler manifold in C¥ consists of one single

point.

In order to obtain the above result we use the maximum principle for holomorphic
functions. Specifically, any holomorphic function defined on a connected compler manifold
M and having its modulus attain a local 7ﬁaximum at a point py of M is a constant
function. By considering u standard coordinate system on CV the restriction of each
coordinate function on M s holomorphic and since M 1is assumed to be compact follows

that each coordinate function has to be constant.

Let us focus for the rest of the section on almost complex manifolds and quote some basic
results in order to rend more natural the pass towards the unit 6-sphere. which carries an
almost complex structure but it is not a complex manifold (the almost complex structure
is not integrable).

As we have alreadyv seen an almost complex structure can be attached to any complex

manifold. Conversely. we have the following

Theorem 5 Let M be a 2n - dimensional differentiable manifold with an alinost complex

structure J and suppose that there is an open cover of M satisfying the follouwiny:

There is a local coordinate systemn (' oyt .o x™ g™} on each open set 17 of ‘he cover




such that. for each pownt q € M the: .]q(#)q = (5%),, and Jq(#)q = -(df:k. ). ¥V k=
1.....n are satisfied. Then M s a compler submanifold and J is the almost complex

structure attached to the compler structure.

Proof: Let {&t gt .0 o™y} {wboelo oo u™ o} be local coordinate svstems on U.
V respectivelv. On UNV weset: w/ = o/ (xt oyt oo o y™). ol =vi(etoyt . L r'toyth
¥) =1.... . n and consequently the following relations hold
d durF\ 0 ok o
__:Z - f+z i (1.3.12)
o1 p orl ) Quk - Ord ) Ouvk
J our\ 9 ok 0
f:Z = T——,+Z = | 5% (1.3.13)
dyJ - dyl ) Ou* - ayl ) ovk
for anv j = 1,... .n. Applving the almost complex structure on the above equations and

compairing them we deduce that the

oub  wk ouk vk
o Gy oy 0w (1.3.14)

must be satisfied. If we put z* = 2F +iy*.  w* = u* +4v* then on U NV exist the
wh = uf(z o ) ek (:t 0 2" and w® must be holomorphic in the z'.... . 2" in

virtue of the equations (1.3.14). Hence M is a complex manifold.

Let A be an almost complex manifold with J its almost complex structure. For any
vector field X on )/ define a vector field J.X by setting (JX), = J,X,. Vpe€ M. The
map .Y — J.X results to be a linear transformation of the vector space X(.M) satistyving
JHNX) = -X, VX e X(\).

Consider X(A/) as a real vector space and denote by X¢'(.\/) the complexification of X(.\/).
An element Z = X + /Y € X¥9()M) will be called a complex vector field and at each
point p of M is defined by Z, = X, + 1}, € Tlf'.\[. The linear transformation .J can be
extended to a linear transformation of X(M) by J(X +iY) = JX +:JY and the bracket
is defined by [Z.Z] = ((N. ] -[V. T +i((X.T1+[. %), vZ=X+it. Z=F+¥¢

XE(M). In this way the complexification X' (M) becomes a Lie algebra over C.

Definition 11 If Z € X (M) s a complex vector field and Z, € Tp”)( My, wpe M
(resp. € 1}?"(1[)) then Z is said to be of holomorphic (resp. antiholomorphic/ fype.

We denote the set of vector ficlds of holomorphic and antiholomorphic type by X' M)




and X" respectively.c XC(M) is the direct sum of these subspaces.
The almost complex structure J will be called integrable if and only if:

(7. Z,) € XM, (2. Zy) € XV x X001,

Note:  Since the conjugate of the Lie bracket is the bracket of the conjugates and
X'O(M) = XO'( M) we see that if J is integrable then [Z,. Z5] € X0U(M). Y(Z,.Z,) €
XONAD) x XOH(A).

Definition 12 NV(X,Y) = [\\Y] + JJX, Y]+ J[X.JY] - [JX,JY], VXY € X()M))
is said to be the torsion tensor field with respect to the almost complex structure .J on

an almost compler manifold M r.
The following theorem links the concepts of integrable structure and torsion tensor field.

Theorem 6 An almost compler structure J 1s integrable if and only if:

NXY) =0, VXY e X()M).

Proof : Let X and Y be real vector fields and set Z = [X —:JX.Y — iJY]. Then. .J is
integrable if and only if Z € X'"9(\),VX,Y € X(M). On the other hand, it is easv to
check that: Z+1JZ = NV(X.Y) +JV(X.Y), VXY € X(M).

Observing that Z + 1JZ = 0 is equivalent to V(.X,}) = 0 and simultaneously to the
condition of Z being of holomorphic tvpe (since Z € X"%(\M/) is equivalent to JZ =27 )

we get the required assertion.

The next theorem is an “integration™ of theorem (6) connecting the integrability of
an almost complex structure with the condition that an almost complex manifold is a

complex manifold (for the proof see: [Mat] )

Theorem 7 Let M an almost compler manifold with almost complex structure J. Then
J s a complex structure if and only if the torsion tensor field with respect to .J ranishes

tdentically on M.
In the last part of the section we provide some further examples of complex manifolds

Example 7 Let C* be the n - dimensional compler vector space. and set & = & +

ko k=1 . n Identify Cn with R*™ by
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(12—t oyt oy") and define a complex structure Jy on R setting:
. P g

(hooatyt oy — (gt =,

the so-called canonical complex structure of R*®. In terms of the natural basis. .J is

quoen by the matrix

0 L\ _
(%0 <,

Example 8 A Lie algebra F over C is called a« complex Lie algebra. Consider F as a
real vector space and define a complex structure .J on F by setting - JX =/\X. VX € F.
Then J satisfies the [JX, Y] = [\.JY] = JIN\ Y], VXY € F. Conversely, if F is a
real Lie algebra with a map J satisfying [JX. Y] = [X.JY]| = J[X\ Y], VN.Y € F and
by defining (a + ib).X = a X + bJXN we get:

(a+ )X, Y] =(a+ [N Y]. VYX.Y € F. Hence. F is a complex Lie algebra.

Example 9 A complex Lie group G is a group which 1s at the same time a comnplex
manifold such that the mappings

GxG>3(a.b)—a-beG and G 3>a— a ' € G are both holomorphic.

e GGL(n.C) is a compler Lie group.
e C" is an additive complexr Lie yroup.
o The direct product of two complex Lie groups 1s a complex Lie group.

e Fuvery even-dimensional commutative Lie group is a complex Lie group (see:[Y.K1]).

| Example 10 (see:[Y.K1]) Let M be a complez manifold and let M be a covering space
over M with projection p : M — M. Let {U,} be an open cover of M such that U; s
| mapped by p holomorphically onto p(L')) for all j.

Denote by J the complex structure of M and by p, the restriction of p in ).

Define J; = (p;')s o Jo(p)).. OnUx N, the Ji and J; coincide since pi' o py is
the wdentity on Uy N U,. Therefore. the operator on M. having as its restrictions the .J,.

defines a complex structure J on M. By construction p s holomorphic with respect to J.

Example 11 Consider C" as a real 2n-dimensional vector space and let {a, ... ., } be

. . 2 ] . .
a basis. Define [ = “omna, € 2% and thinking about C oas an additoee abelian
- TETRAALY! J 4
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group 1" is a subgroup of (C". +).

Denote T = C*/T and let m : C* — T be the natural projection. U C T. DefiningU to be
an open in T if and only if 7= (U) is open in C". we confer T with a topological structure.
Each point w(a) € T.  « € C*. has a neighborhood homeomorphic to a neighborhood of the
point a € C". In this way T can be regarded as a compler manifold of complexr dimension

n and will be called the complex torus.

Example 12 In C'"!' — {0} is defined the equivalence relation

(%) ~ (w*) if and only if 3 N e C {0} :* =N -wk, Vhe{0,....n}

The quotient CP™ = C**' — {0}/~ will be called the complex projective space and
the topology on CP™ is defined in terms of the quotient topology.

Set Uy = {(z") e C**' = {0} : =/ #0}. w(U;) =U; where 7 : C**' - {0} — CP™

denotes the natural projection. Define the maps:

0; U — C*  such that o.([z]) = (2. Sy J—JH L5, Ve,
Then {(U;, ®;)}-} is a complex coordinate neighborhood of CP".
The local coordinate system {—? o Zgl . :J;l e —:} is called the inhomogeneous and
z%....,z"} the homogeneous coordinate system of CP™.
g Y

Example 13 Let S and S**! be two unit spheres . then the product manifold S*P+! x

S+ admats a complex structure (see[C.E]).

I the next section we discuss in detail the special case of the 6-dimensional unit sphere.
which admits a non integrable almost complex structure. For the time being we limit

ourselves in simply quoting the example.

1.4 Hermitian manifolds and the nearly Kaehler 6-

sphere

Before considering the case of the 6-sphere we need to recall some results from the general
theoryv on the almost Hermitian and Hermitian manifolds. Furthermore. we guote results

on the existence of r-fold vector cross products on manifolds. results which elucidate the




special character of S® and justifv the emphasis given on the study of this particular space

form.

Definition 13 Let M be an almost compler manifold with almost compler structure J.
A Hermitian metric on M is a Riemannian metric g such that

g(JNXNJY) =g(N.Y), V(XN Y)e X(\M) x X(M).

An almost compler manifold endowed with o Hermitian metric is said to be an almost
Hermitian manifold. A complexr manifold with a Hermitian metric will be called Her-

mitian .

Remark 3 FEvery almost compler manifold M admits a Hermitian metric. Indeed. if h
s @ Riemannian metric on M then. by setting:

g(N YY) = (X Y)+h(JX.JY). Y(X.Y) e X(M)x X(M), g is a Hermatian metric on
M.

Definition 14 Let M be an almost Hermitian manifold, J its almost compler structure
and g the metric. Define the Kaehler 2 - form by
O(N.Y)=g(JX. YY), V(X.Y) € X(M) x X(M).

Remark 4 Since g is positive - definite and the endomorphism J is not singular at each
point p of M. follows that: ® = ®A . A®. (k- times). 1 < k < n=diml is non zero

at each point of M. We conclude that an almost Hermitian manifold s always orientable.

In order to both state and prove a theorem connecting conditions of parallelism of the al-
most complex structure, the Kaehler 2-form with the integrability of the structure (equiv-

alently with the vanishing of the torsion tensor field V), we need the following:
Lemma 2 Let M be an almost Hermitian manifold with almost complex structure J and
Hermatian metric g. Then for all vector fields in X( M) the following relation holds

2. g((VaJ)Y.Z) = g(JN.N(Y.2)) =3 -d® (X, JY,JZ) =3 -dd(N.Y. 2).
(1.4.1)

Proof: To verifv the above equation we need to compute the differential of the KNachler

2-form ¢ recalling the definition (12) of the torsion tensor field and that the covarant
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derivative of Jis given bv: (V.Y =V JY = JVY VN Y € X()M).
For the calculation of d® let us at first recall ([Y.IK1]. pg:17) the following formulae for

the exterior differential of an 1-form w; and of a 2-form w.:

2y (N V) = X (o (V) = V() (V) = wr ([XLY]). (1.4.2)
3dws (N Y. Z) = N (wo (V. 2)) + Y (s (Z. X)) + Z (w2 (XL 1))
— ([NY].2) = e (V2 Z)..X) = ([2.X]. 7). (1.4.3)

Using the relation (1.4.3) and observing that
(Vi D)JY = =J(Vx Y (Vx®)Y. Z) =g(}Y,(VxJ)Z) and
NV Z) = (V) Z = (Vyz )Y + J(V2 )Y = J(Vy))Z

for anv X', Y. Z € X(\I) we can verify the required assertion.

Theorem 8 Let M be an alnost Hermatian manifold with almost compler structure J

and Hermatian metric g. Then the following conditions are equivalent

(1) VJ=0
(2) Vo=0

(3) V=0anddd=0.

Proof: We have (Vy®)(Y. Z) = ¢g(Y (V) 2), VX. Y. Z € X(\M). Thus V.J =0 if and
only if V& = 0. If V& = 0 then d® = 0 and using lemma (2) we get that the torsion
tensor field must vanish.

Converselyv. if ¥V = 0 and d® = 0 hold simultaneously then using again lemma (2) we
obtain that the covariant derivatives of the almost complex structure and of the Kaehler

2-form vanish.

Definition 15 A Hermitian metric g on an almost compler manifold M is said to be «
Kaehlerian metric if and only if the Kaehler 2-form ® 1s closed and wn this case M s
called an almost Kaehlerian manifold.

A complex manifold with a Kaehlerian metric is called a Kaehlerian manifold «and in
view of theorem (8) M is Kaehlertan if and only of V.J = 0.

An almost Hermatian manifold M with almost complex structure .J is said to he o nearly
Kaehler manifold if and only if: (VyJ)X =0. VN € X(M) (or equivalently
(VDY +(Vy- )X =00 VXY € X(\]).)

D
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From the general theory on nearly Kaehler manifolds we quote the following result con-

cerning the torsion and the curvature tensor ([Y.K1]. pg:145).

Lemma 3 Let M be a nearly Kaehler manifold with J almost complex structure. g metric

and R curvature tensor field. Then:

(1) g(RN.Y)Z W) = g(R(N.Y)VIZ W) — g((V )Y (V2 )IV)
(2) g(RIX.Y)Y.X) = g(R(N.Y)JY JN) + (V)Y (Vi )Y)
(3) g(RIN,Y)Z. W) = g(R(JN.JY)JZ, JW)

for all vector fields X. Y. Z. W € X(M)

Let us now focus on the 6-dimensional unit sphere and its (nearly Kaehler) almost complex
structure. We recall some results on the existence of r-fold vector cross products on
manifolds given that an almost complex structure is an 1-fold vector cross product.

An r - fold vector cross product X [B.G] on an n-dimensional vector space 1" is a
continuous map X : 17 — 1. 1 < r < n -1 satisfving:

< N(ay.....a;).a; >=0. Yie{l.....r}

< X(ay,....a),X(ay.... .a;) >= det((a;,a,)) where <, > denotes an ordinary positive
clefinite inner product on \'.

In [Wh] it has been proved that an r-fold vector cross product exists in preciselv the
following cases

nis even and r=1.

n is arbitraev and r = n-1.

n =4 or 8 and r = 3 (the discussion of the problem in [Wh] is in terms of algebraic
topology, for a purely algebraic approach see [J] or [Ek]). The concept of r-fold vector
cross product can be extended on the tangent space of a manifold (see:[G2]) and the

following result holds

Theorem 9 ([G2]) Let 5™ be the n - dimensional unit sphere in R™' and <. > the metric
tensor on S™, induced from the usual positive definite of R**. If S™ has a globally defined
r-fold vector cross product then. i the vector space sense. there is an (r+1)-fold rector

cross product on R**'.




Proof: Let X, denote the r - fold vector cross product on S™ at the point m € S™
Define the map P : (R*"7!)""! — R**! as follows:

let ay.... .a, € R a,. = b+ ¢ where b is the component of a,., normal to a,.... .a,.
If D=0 weset Play.... .a,.;) =0 and if b # 0 set

Play.... capey) =10l - Nglay. ... .a,) where d = {|b]|~" - b.

It is not hard to check that P defines actually an (r+1)-fold product on R**!  with
respect to the induced metric tensor. P is linear in a;.... .«, but in general is continuous

onlv in a,.,.

Combining theorem (9) with the result of ([Wh]) on the existence of r-fold vector cross
products and recalling that an almost complex structure is an 1-fold vector cross product.

we get:

Corollary 1 The only spheres with an almost complez structure are S* and S®. Further-

more. there does not exist a 3 - fold vector cross product on S8.

Under the view of the corollary (1) we now focus our attention on the case of the 6-
dimensional unit sphere. An almost complex structure can be constructed on S® using

the Cayley numbers.

Remark 5 ([Wi]. pg:163) A quaternion is a number of the form g = w + .01 + yj + =k
where w..t.y. 2 € R Addition is defined in the standard way and multiplication is gien
by: B
P=p=kt=—1. =k Jh=i hki=j ij4+ji=jk+kj=ki+ik=0.
Define the conjugate q by: § = w — ri — yj — =k and the algebra of quaternions results
to be assoctative but not commutative.

A Cayley number © = (q,. ) ts an ordered pair of quaternions and thewr set O s an 8 -
dimensional non - associative algebra over the real numbers. Addition and multiplication
in O are defined as follows

(@1-a2) £ (01 42) = (@ 2u).

(- q2)(q-q0) = (qray = @ goeqon + 2,

and the conjugate of r 15T = (. —qa). Then o7 = (qiq, + G,q2.0) and by ~ctting

L2 = @i, + Qoo we obtain 't > 0 unless = 0. Although associativity for the wialtipli-
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cation of Cayley numbers does not hold. we have the:

r(rer’) = (zx)x, (2')x = 2 (ax), forall .0 € O,

Moreover the |zx'| = |o||a’| holds. so the x2’" = 0 implies that either v =0 or & = 0.

A Caley number x = (q,.q2) is defined to be real if q, is real and go = 0 and is said to be

purely imaginary if q; is a purely imaginary quaternion.

The multiplication on the Cayleyv algebra O mayv be used to define a vector cross product

and to express the usual inner product in R” = Im(©) by setting:

uxv=-(uv—rvu), <urv>=-—={uv+ru) (1.4.4)

h

DN |
I -

for all u,v € Im(O).

Conversely, the Cavley multiplication on Im@, in terms of the inner and vector cross
product in R7, is given by (r + u)(s + v) =rs— < u,v > +rv + su + (u x v) where
(u,v) € Im(O) x Im(O).(r.s) € Re{O) x Re(O). The following lemma holds

Lemma 4 Identifying the imaginary part of the Cayley numbers with R” then the inner
product, the vector cross product and the Cayley multiplication (regarding in the same

time x as an X(R") linear mapping x : X(R") x X(R") — X(R") ) satisfy
(1) uxv=—-vxu,
(2) <uxvow>=<wvwxw>,
3) (uxv)yxw+ux(rxw)=2<uw>r—<r.w>u—<u.e >,

(4) Dy(vxw)=(Dyw)xw+rvx(D,uw).
for any u,v,w € X(R"). where D denotes the Riemannian connection on X(R").
We can approach the Cavley numbers in a slightly different way (see: [D.O.\V.\V3]).
Let {eg.e;,... .er} be the standard basis of R® and write each point o of R* in the
form a« = Aey + £ where 4 € R and r is a linear combination of e,.... .c-. We can

consider « as a Cavlev number and will be called purely imaginary if A = 0. For any pair

(u.e) € Im(O) x Im(O) we define the Cayley multiplication - by

W-t=— < U U>eq+ U X0, (1.4.5)
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where <. > is the usual inner product in R" and u x ¢ can be determined by the matrix

0 €3 —€r €5 —€4 €7 —Fg
—e3 0 e, e5 —€7—ey €5
€y —€] 0 —€r— € €5 €4
—es—eg e; 0 e e —eg | =[(e; x €)1y
€y €7 €5 —€4 0 —€3—F)
—€7 €y —e5—ey €3 (0 e
€ —E€5—€4 €3 €9 —€] 0

An almost complex structure on S°
Consider S® = {p € R" :< p.p >= 1} as a hvpersurface of R , where R’ is identified
with Im(Q©). Each point p € S® may be regarded as the unit normal vector to S® and the
tangent space can be identified with the linear subspace of R orthogonal to p. Define
J:X(S%) — X(S% : J, N\ =px N. V¥(p.X)eS®xT,S°.
Then .J, is an endomorphism of 7,S° at each p and moreover, using the standard properties
of the vector cross product (lemma 4). for all X.} € T,5° we obtain
TN =px(px X)=-X and
< TN Y >=<px X px Y >=-< X px(pxY)>=< X} >
Recalling the definition we conclude that (S®, <,>..J) is an almost Hermitian manifold
with respect to the almost complex structure .J.
If pe S%and X € T,R" we let P(.X) be the orthogonal projection of .\ onto 7, S°. Then,
if X' e X(5%):
(Vi) X = VeIX =g (V)

= VN/',\' (px X)=—px €’,\-X

=P{Dy (px X)} = px VyX

=P{(Dyp) x XN +px Dy X} —px VyX

=P{X x XN +px DyX}—pxVyX

=P{px DX} -pxV

=pxDyX -px VX

=px (6_\'.\'4— < Dx\X.p> p) —p X 6,\-‘\' =0
and it is proved that S® is a nearly Kaehler manifold but not Kaehlerian since the

second Betti number of S" is zero (see:{G1]). In order to see that S® is not Kachlerian we

could use a result of A.Grayv ([G1]. pg:280) according to which any orientable hvpersurface
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of R". with the almost complex structure induced by the Cavlev numbers. is Kaehlerian

if and only if it is totally geodesic.

In the last part of the section and of the chapter we are going to state and prove a
result of A.Grav on the non existence of 4 - dimensional almost complex submanifolds of
5% In order to proceed we need some preliminaries and we introduce them preserving

the notation and terminology used by A.Gray in [G2].

Definition 16 Let (.ﬁ, <.>..J) be an almost Hermitian manifold and M a submanifold
of M. Then, M is called:

an almost complex submanifold :if and only +«f J(T,M)CT,M. ¥V pe M

a totally real submanifold :if and only of J(T,\M) C L,M, V pell

Let M. M be Riemannian manifolds with A/ isometricallv imbedded in M and denote by
X(M). i(.\[) the Lie algebras of vector fields of A/ and restrictions of vector fields of M
on M respectively. Then the decomposition .i'(‘\[) = X(M) & X+ (M) holds.

Definition 17 Let M.\ be Riemannian manifolds as above and V, V their Riemannian
connections respectively. Define the configuration tensor

T : X(M) x (M) — X(]M) by setting

T(X,Y) =V Y — VY, Y(X.Y) € X(M) x X()M)

T(X.§) =PVyE, V(X.€) € X(M) x XL(M),

where P : .%('M) — X(\M) s the orthogonal projection.

The next lemma can be verified by direct computation.

Lemma 5 The configuration tensor satisfies the following properties
IvY =Ty X, <TyY. éE>=-<TEY >,
To(X(M)) C X)), To(XHIN)) C X(M), Y(X,Y)e X(M)xX(M). Ve X+H(M).

In the following two lemmata we impose further assumptins on M, M.

Lemma 6 Suppose that (\7 <.>..J) is a nearly Kaehler manifold and M s an almost
complex submanifold of M oand let V. be the Riemannian connections on M. M respec-

tively. Then:
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(a): M is a nearly Kaehler manifold ( M € NK )
(b): T\JX = JTyX, ¥ X € X(AI)

(¢): M is minimal in M.

Proof: M/ e NA = (V)N =0, ¥V X € ¥(\) =

Vol N = JVN =Ty JXN + Ve JN = JTe X = JV X =0 =

(Va DX+ T JX - JT¢X =0, VX € X()M).

Since (VyJ).X € X(M), TyvJX € X*(M) and JTv.X € X*(M), by taking tangential
and normal parts with respect to \/, we get:

(V)X =0and T JX = JTvX. VX € ¥(M) and the (a), (b) are proved.

In order to prove (c) we observe that since TvJX = JTxX, VX € X(M) and T is
svmimetric. we have:

INN=—-JTJX =-JT;xX. VXeX(M)=TxX+T;xJX =0 VXe€X(M)
Choosing an orthonormal frame defined on an open subset of M to be of the form
(N X, JX ... . JX,} we deduce the required assertion.

Note: In case the ambient manifold is Kahlerian and A is an almost complex submanifold

then /[ is minimal since anv Kaehlerian manifold is nearlv Kaehler.
Lemma 7 Let M be a 4-dimensional nearly Kaehler manifold, then M is Kaehlerian.

Proof: Choose {.\,JX.}.JY} to be an orthonormal frame field defined on an open

subset of M/, But M being Kaehler is equivalent, by definition, to: (V)Y + (V- J).X =
0 VX.Y € X(M) and the following hold:

< JY,JY >=1=< VyJY . JY >=0= VyJY LJY, (1.4.6)

<YV >=1=< V1Y >=< JV Y} JY >=0. (1.4.7)

Combining equations (1.4.6). (1.4.7) we obtain that (VyJ)Y is normal to J}  for all vec-
ror fields X.Y € X(.\/).

From the definition of nearly Kaehler manifold and repeating similar steps we have:
(Vi)Y = =(Vy )X LJX thus (V)Y is normal to J.X.

On the other hand. it is casy ro verifv that (V)Y = J(VJ)JY., VXY e X(]).
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Since (VyJ)Y is normal to the span{X. Y} we can write

(V) JY LIY = J(VJ)JY = (V) VLY (1.4.8)
(Vy ) IXLIN = — (Vi J) JY LN =
(VD) JY = — (V)Y LY (1.4.9)

hence, (V)Y is normal to the span{X..JX.Y JY}. But M is {-dimensional. therefore

(VxJ)Y has to vanish for anyv vector fields X.} € X(1/) and the assertion is proved.

Theorem 10 With respect to the usual almost compler structure on S® there are no 4-

dimensional almost compler submanifolds.

Proof: Let A/ be an almost complex {4-dimensional submanifold of S® Take: p €
M, X € T,M such that < X\.X >= 1 with Ty.\' # 0. Since S° is nearly Kaehler
follows from (b) in lemma(6) that: Ty JJX = JTxX #0, VX € T\

Define the function f(.X) = ||Ty.\]|? on the unit tangent space U, at the point p and

suppose that f attains its maximum at Xe T,M. We claim that :
< TV, TeX >=0. VY €U M. and Y Lspan{X.JX}. (1.4.10)

To verifv the equation (1.4.10) we proceed in the following way: take anv Y € U,\/.  such that

Y_I_sp(L‘rz{_\~', ]{} and define the function

alt) = f (mb( VN +sin ()Y ) (1.4.11)

Being X a point of maximum for the function f implies:

,lta‘t 0=0= % (o.s(t).{'%—sz'n Y |2z = 0 =

“ cos( \+sm ()Y
||Cos T X+ sm(’t)T Yo+ 5?2 (20T Y| =0 = 0,

and the rest consists in computing first order derivatives with respect to ¢ and substitut-

ing the value t = 0. The only term which survives is the term involving < T A T:Y >

which has to vanish. and equation (1.4.10) has been proved.

Considering the unit vector {7 = \ir’,\ with Y L{U. JU}. it is casy to check that
JT: N = T;-U which implies rthat {7 is another point in the unit tangeut space {f, .\

where the function f attains a maximum and under the aspect of the preceding discus-

sion we conclude that T¢} has to be normal to JT X Working similarly tov 7'/} w
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deduce
STV JTeX >=< TeJV. TN >=< ToJY. JTe X >=0. (1.4.12)

Combining the equations (1.4.11). (1.4.12) with the fact that the normal space 1,/ has
to be spanned by {T({ JT; {} since T;{ # 0 by assumption. we get that T} and
T':JY must vanish.

In this point let us recall lemma (3) and denote by R.K =1 the curvature operator and
the constant sectional curvature on S°® respectively and bv V¥ the Riemaniann connection
on the 6-sphere.

For [|Y]] = 1 and taking Z = X — JX.II" =} = JY we have

R=<R(NY)ZW>-<R(VY) X >= | (Ved) V)P =
K=|(Ve)Y +TgJY — JT¢Y |2

where (VJ)Y = 0 because of lemma (7) and of equations (1.4.11), (1.4.12). This is a
contradiction and since the initial assumption was the existence of a unit vector in U,.\ for
an arbitrarv p where T\.X' does not vanish, we can deduce that Tv.X =0. V.X € X(\/).
Consequently, M is totally geodesic in S® therefore M has to be an open submanifold of
a 4-dimensional sphere of constant curvature K. But, in the same time. ) has to be a
flat manifold, given that : 1/ is Kaehlerian (see:lemma (7)) and anv Kaehlerian manifold
of constant curvature is a flat manifold. provided dimM > 2 (see:[Y.K1]. pg:131). The

assertion has been proved.

In view of the above theorem we deduce that the almost complex submanifolds of S°
are almost complex surfaces and these surfaces are alwayvs minimal in S°.
Henceforth we focus on totally real 3 -dimensional submanifolds of S® but almost complex
and also totally real minimal surfaces will be taken under consideration within Chapter
4 in order to construct and classifv totally real 3-dimensional submanifolds which satisfy

Chen’s equality and some further properties.




Chapter 2

Totally real 3 - dimensional

submanifolds in S°

2.1 Introduction

In this chapter we focus on the first results concerning 3-dimensional totallyv real subman-
ifolds of 5% \We shall prove that any such submanifold A of S® is orientable, minimal and
we are going to present the first classification results by means of constant and suitably
pinched sectional curvature. In particular, Chapter 2 is structured as follows:

[n §2.2 we include preliminarv notation concerning the second fundamental form. the
shape operator and the basic equations of Gauss, Godazzi and Ricci adapted in the case
of submanifolds of a space form. We also define a (1.2)-tvpe tensor field G on S® relating
covariant di_fferentiation and almost complex structure and give a very useful geometrical
interpretation for G. Furthermore. we relate this tensor field with the normal connection.
the second fundamental form and the shape operator of the subme';{fol(l M. We finally
prove an important symmetry property concerning < h(.X,Y), JZ > for \.} . Z tangent
vector fields of M.

In §2.3 we give a proof of the orientabilitv and minimality of M and we present the first
classification result in terms of constant sectional curvature. The main reference for both
the first two paragraphs is [Ejl].

Some very important integral relations. due to A.Ros. are mentioned in the hegiuning of

the fourth section and then are followed by a description of the wayv a number of integral
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relations on compact manifolds are obtained. This enables us to give the proof of a classi-
fication result, for compact totallv real 3-dimensional submanifolds, by means of pinched
sectional curvature. The main reference is [D.O.V.V'1]. An improvement of the result of

(§2.3) is presented in the last section. The main reference is [D.V.V2].

2.2 Preliminaries, the tensor field G

Let (8% <.>.J) be the nearly Kaehler 6-sphere and )/ a totally real 3-dimensional sub-
manifold. We denote bv D . V and V the Riemannian connections on the 7-dimensional
Euclidean space. on the 6-sphere and on the submanifold M respectively. Since S° is a
space form of constant sectional curvature 1 then the fundamental equations of Gauss,
Godazzi and Ricci attain respectively the reduced form given by the svstem of equations

(1.2.15), (1.2.16) and (1.3.1) of the first chapter.
Definition 18 Let G(\N.Y) = (Vi J)(Y). VX, Y € X(S9)

It is easy to check that the above defined G is an (1.2) - tvpe tensor field on S* and it is
actually the covariant derivative of the almost complex structure J of the 6-sphere.

In the following lemma we give a geometrical interpretation for ¢ and we deduce some
useful properties linking G with the almost complex structure, the metric tensor and the
connection on S®. Moreover. we prove that if .\" and Y™ are tangential to M then G(X.Y")
is normal to M and we find its relation with the normal connection and the shape operator

of M.
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Lemma 8 Let \.Y.Z € T,5% Then:

G(X.1)=XxY-< N xYp>p (2.2.1)
G(XN.JY)=-JG(X.Y) (2.2.2)
( ) <YV JZ > N4 <X Z>IV =< XYV >JZ (2.2.3)
<G(NY).Z>+<G(N.2).Y >=0 (2.2.4)

<G, G ZNW)o=<N.Z><Y W > -< X, WW><Y 7>+
<JNXN.Z><Y, JW > - < JX,W><V JZ >, (2.2.3)
Further, if M is a totally real 3-dimensional submanifold of S®. then:

GIN.Y)=XxYeX (M), VX.Y e X)), (2.2.6)
where x denotes the vector cross product in R7.

Proof: Since computations concerning the proof of the above relations are not carried
out explicitely in [Ej1] and [D.O.V.V1] we shall give some details.
For P : X(R") — X(S°®) (orthogonal projection), p € S%, (X,Y) € X(S®) x X¥(S%). and

D the Levi-Civita connection in R”. we can write:

GIN.Y)=VyJY = JV Y =Vi(pxY)—px Vil =
=P{(Dxp) x Y +px DxY]=px VY =P[X x Y] =

GINY)=Nx¥Y-<XxY.p>p (2.

[N
o
-~
—

and the equation (2.2.1) is proved. The second equality can be obtained by using standard
properties of the vector cross product. To prove the equation (2.2.3) we use the definition
of the covariant derivative for an (1.2) tvpe tensor field and repeat similar steps as in

proof of equation (2.2.1) observing that:

6_\' Y xZ-<Y xZ.p>p)= 6’_\- (Y x Z)=PDx (<Y x Z,p>p).

PDy (<Y xZp>p)]=Dx (<Y xZp>p)—<Dy(<Y xZp>p).p>p

Since Dyp = X and X is normal to p it is clear that equation (2.2.4) follows directly from
equation (2.2.1).

In order to obtain the equation (2.2.5) we use (2.2.1). standard properties of the vector
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cross product and write:
<GX,Y) . GZW)>=< X xY ZxW>-<ZxWp> <XV xYp>
- <X\ xYp>-<ZxWp>
+ < XxYp>-<ZxW.p>
where < X\ x Y Z x W >=< \.Z> - <}V W >-< XN WW> <Y . Z>
To prove that G(X.Y) € XL(M) for any X.Y € X(\M). we follow a different method.
with respect to the process in [Ejl]. bv using properties of the vector cross product and

its relation with the Caley multiplication and the standard inner product in R’. Let

X.Y € X(M) and use equation (2.2.1) and the fact that M is totally real, in order to get:

<X JY >=0=< N pxY>=0=
<X xYp>=0= \xY XS =

GN.Y) =YX xY

and the first part of the (2.2.6) is proved.

Using once more the properties of the vector cross product we can easilv check that
G(X.Y) is normal to the span{.X.}.JX.JY} and it remains only to prove that G(.X'.}")
is also normal to JZ.

Assume, without loss of generality. that {.\".}. Z} is an orthonormal frame field defined on
an open subset of M and recall the relations between vector cross product. inner product

and Caylev multiplication given by the (1.4.4) in Chapter 1. We compute:
1
<\ xY, Z>= 5{(4\' xY)-Z-Z (X xY)}

1
:§{<.\'-)'.Z> -<Y - X.Z>}
1

= YY) Z-Z (X {0 X)) Z -2y )

Observing that < X\.Y >=0 if andonlvif Y- Y =Y - X we have < ' x }. Z >= 0 and

the assertion is proved.

Lemma 9 Let M be as in the previous lemma. then the following equations hold:

Vi JV=G (X V) + J(ViY). (2.2.8)

.4,/_\'&72—,//)(.\’4}'). ('_).'_)AT))

< W(XN.Y).JZ >=< h(N.Z). JY >. 1200 10)
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for all vector fields X.Y. Z € X(M).
Proof : Let X,Y € X(\/), then:

GIN.Y)= (Vi)Y =VJY —JVY =
—A N+ VLJY - VoY = h(XLY) =
GIN.Y)= -4y X + VEY = J(VyY) = JR(X.Y)

where G(.X',Y) is normal to }/. Taking the normal and the tangential component we
deduce equations (2.2.8) and (2.2.9). A proof of the third svmmetry relation appears in
lemma 4.1 of [Ejl]. pg:760. We shall obtain it in a slightly different and easier way by

observing that for all X,}Y. Z € X(M). we have:
0=<(VxJ)V.Z>
=< —Ayy X+ VY —Jh(X,Y) = J(VyY),Z >
=< Ay X, Z>-<Jh(X.Y).Z>

and on the other hand. < A(\.Y).£ >=< 4 X, Y >, VX,V € X(M). VEe XH(M).

Since the inner product in S°® is Hermitian, we get the assertion.

2.3 Orientability, minimality and classification in terms

of constant sectional curvature

Theorem 11 ([Ejl]. py:760-762) Any 3-dimensional, totally real submanifold of S® is

orientable and minimal.

Proof: To prove that M is orientable we recall standard properties of the vector cross
product and observe that:

<GX,Y) L, X >=< A xY \'>==-<Y I x X\ >=0,

<G Y >=< I x}Y YV >==-< XY xY >=0.

GXNY)=\UxY #0. XY e X(V)—- {0} with X and Y mutually orthogonal.

To prove the minimality we use the definition of the covariant derivative ot ¢ and the
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expression for the shape operator given by the equation (2.2.9). Then. the
(%—g) (Y.2)=VxG(Y.Z) -G (fmi Z) e () 6_\-2) ,
VG (Y, Z) = —Agyz) X + VEG (Y. 2)
hold. and combining them we deduce:

(V46) (1:2) = oy N + VEG (V. 2) = G (Va¥.Z) - G (¥. ¥ 2)

(2.3.1)

Using the (2.2.8), (2.2.9) of lemma (9) we can also get:
—Aghny N =Jh(JG (Y. Z) X). (2.3.2)
VG (Y. Z)=~(GJG(Y.Z). X))+ J(V:G(Y.2))). (2.3.3)

Combining the equations (2.3.1). (2.3.2 ), (2.3.3) and (2.2.2) of Lemma (8). and for any
X, Y. Z € X(\M), we obtain:

(%—g) (X.Y) = Jh(Jh(Y.Z),X) + JG (X,G (Y, Z))
T(VIG) (Y. Z) = G (h(X.Y).Z) =G (Y.h(X.Z)). (2.3.4)

In this point we modify from the process followed in [Ejl] by recalling the equation (2.2.3)
of lemma (8) and considering, without loss of generality, the vector fields X. Y. Z € X(M)
to be mutually orthogonal. Then the right hand side in equation (2.3.4) vanishes and

thus. by taking its tangential component, we get:

WX, JG(Y,Z)) +JG (h(N.Y).Z)+ JG(Y.h(X.Z)) =0, (.

o
o
(@1}
N—

Under the aspect of equation (2.3.5) let us choose {e;.e3,e3} to be local orthonormal
frame fields on M such that the conditions : JG(e(,e3) = e3, JG(es.03) = ¢ and
JG(es, e)) = e, are satisfied. Applving the equation (2.3.5), for this particular choice of

frame. we deduce the required minimality and the proof is completed.

We are going to present the first classification result in the case of a totally real
submanifold in S® with constant sectional curvature.
A description of the process followed in [Ejl] will be given but our intention is to fucus on

certain points where suggestions are omitted and the method used seems to b ahsenre.
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Theorem 12 Let A be a totally real. 3-dimensional submanifold of S®. If M has constant

sectional curvature then the values attained are: 1 if M s totally geodesic, or l—l(—)

Proof: Being the submanifold M of constant sectional curvature ¢ and the ambient space

the unit 6-sphere. the equation of Gauss reduces to:

(1-c) < X.Z><Y > =< X W><Y. Z >

+ <h{X.Z).h(Y V) > - <h(N.W). h(Y.Z) >=0. (2.3.6)

If ¢ =1 then h = 0 on M and M is totally geodesic in S Assume from now on that
c # 1.

Let r € M and define the function

W X)=<h(X,X).JX > vNelUMW={YecT, M: <X X>=1}.

The subset of the unit tangent bundle i, M is compact, let us assume that ;. attains its

maximum at the point .\ € U, /. We claim that:
<h(X,X).JY >=0 (2.3.7)

for anv Y € U, M with Y normal to .X'. In order to prove the relation (2.3.7) we use
the method of the maximalization, as we already did in order to prove theorem (9) of

Chapter 1. Let us define the function
1(6) =p(cos (0) X +sin(0)Y) (2.3.8)

where (\.Y)e U M xU, M. 8RN L1Y and in particular, X' is choosen to be the
point of the-unit tangent bundle at which the function p attains its maximum. Being .\’
a point of maximum of p implies that the first derivative of the function g evaluated at

# = 0 has to vanish. Therefore.

{
# < h(cosOX + s5infY . cos6 X + sinfY ), cosfJX + sinfJY > |40 =0

(

= g{coszﬁsmﬁ <h(X.X).JY >}e=0=0
— {(—sin20sind + cos'8) < h (X.X) . JY >}gmo = 0

=< h(X.Y).JY >=0 (2.3.9)

and the assertion (2.3.7) is proved. It is also clear that A(.X..X') has to be parallel to J.X.

Furthermore. the function ;¢ cannot be a constant. Indeed, M i1s minimal and non rotally
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geodesic and h(.X, .X) is parallel to JX'. Let us assume that p is a constant. Then. for

any element w = WLL” of the unit tangent bundle, the equalities

1
[Jull?

< h(w.w), Ju >=< h( ! ) ‘ ). i Loy — 00 ( ) < h(u.u), Ju >
el " el ]

must be satisfied, since p is supposed to be constant. We conclude that < h(u.u), Ju >= 0
for all w € U M. This is a contradiction consisting in that A(X,.X) is. from one side
parallel to .J.X and on the other. if ;2 is a constant. A{X, X) has to be perpendicular to
JX.

At this stage we will give some explanations regarding the method used in [Ejl] in order
to elucidate details for which there are no suggestions in the relevant paper.

According to [Ejl], at each point & € M we choose an orthonormal basis of the tangent
space by taking e; to be the maximum point of the function px in T, M and, modifving
in this stage the process, let us consider any pair .\, Y of orthonormal vectors such that
{e1, X.Y} results to be an orthonormal basis of T, M. Using the equations (2.3.7) and

(2.2.10) we can write:

h (el,el)zal.]el,
he, X)=arJ.X + 3JY.
hie.Y)=8JX + a3JY. (2.3.10)

Applving Gauss equation (2.3.6) to e;.e;, .X. X and e, e, Y, Y we get the svstem

1 -c= 3%+ a0y — a5=0.

1 _0_62-}.01@3—0%:0_ (2311)

From the above equations we deduce that:

a g — a3 = ajag — oF = oy — a3) = (@ — az)(az + a3).

Suppose that ay # a3, then: «; = oy + cy and in the same time the o) = —(v + a3)
must be satisfied, because of the minimality of A/. Consequently «; must be zero.

But. if o; = 0 then A(e,.e;) = 0 and this implies that h has to vanish, given that e; is an
eigenvector of the shape operator in the direction Je, and moreover e, has a maximum
property between all the cigenvectors.

Hence. by assuming a; # 0 we obtain ay, = a3 t.e: < h(X, X)), Jey >=< h(Y V). Jey >
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which implies that every tangent vector. normal to €. is an eigenvector of 4., ( and
this is actually the crucial point in order to proceed further with the computation of the

second fundamental form).

Choose e, € T, M to be the maximum point of the restriction of the function j in the
orthogonal complement of e, with respect to T, and let e; be another unit tangent
vector such that the {e;.e;.e;} forms an orthonormal basis of T,M/. In view of the
previous discussion both e, and ey are eigenvectors of the shape operator in the direction
Jey. From the special choice of the orthonormal frame and using equation (2.2.10) we

get:

< h(eq,e3)..Jez >=0. (2.3.12)

< h (82,63),-]62 >=(). (2313)
Preserving the notation let us define o, =< h(e;,e;), Je; >, ¥i =1,2.3 and since M is
minimal in S® we have

o) +ay+ a3 =0. (2.3.14)

In order to compute the quantities a; we apply Gauss equation (2.3.7) for \' = ¢, = Z

and Y = e, = W obtaining
1 —c+ < h(ee) hiesey) > — < h(ey.eq) hie.ey) >=0. (2.3.13)
Bv virtue of equation (2.3.12) and since ey, €. ¢3 are eigenvectors of 4., we can write :
hie,e)) =aidJe. hie.ex) =ases. hie.es) =ayle. (2.3.16)
Using equations (2.3.12), (2.3.13). (2.3.14) and the symmetry property given by the equa-
tion (2.2.10) we get

< h(ey,e)) h(ey.er) >=y -y, < h(e.e). h(er.e)>= . (2.3.17)

Working similarly and applyving the Gauss equation for X = ¢, =2. Y =y =11 we

deduce the following system

o+ ey + o= ().
| —c+ Yy - (v — (\:::: 0.

1—(:+01-a3—n§:l). 12.3.18)
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This system provides the following values for the unknownls:

(11_2,/ \/ 4 (2.3.19)

and by direct substitution we find:

l-c¢
3

hie.e)=2- - Jey. (2.3.20)

Combining the (2.3.12). (2.3.16). (2.3.19) and by using the minimality of M/ we mav set

1—c¢

h (6’.2,62):— 3 (J(’-[ + /\.]GQ. (_)321)
—ec

e ea)=—] — CJer — e, (2.3.22)

h(es, e3)=—AJej. (2.3.23)

Applyving once more the Gauss equation for X\ = ey = 11" and Y = e3 = Z we compute A

and the second fundamental form of M is given by:

l-c (1—
11(61761)22 3 C‘J&h h,(EQ 82): \/> J€1+\/7
l1-c 2(1 /1
h(eg,eg) = — 3 . ,]el — _(3—)_ ]2’ h(el,ez) _ 3 ]P)

I —¢ 2(1 -
3 < : JP;;. h (92.63) = — % . .]63. (2324)

hieie3) =~

The last step consists in computing the connection on .M by using the equation (1.2.13)
of Godazzi, from lemma (9) the equation (2.2.8) and the fact that the basis {¢). o €3}
is choosen to be orthonormal. After computing the connection a direct calculation gives

R(e).ez)e, = % - eg and this proves the theorem.

Remark 6 [t is clear that the crucial point in the whole discussion of the proof of the
above theorem consists in computing the values of the coefficients a; of the second fun-
damental form in the direction of the normal vector Je, and this 1s obtained by choosing
in a proper manner the vectors e).ey in the unit tangent bundle. We could obtain the
samne values for the coefficients v, by choosing the vector e, to be the marimum point of

the function p and taking e, and ey to be sinply eigenvectors of Ay.,. Using cquation




(2.2.10) h can be written in the form (see [D.D.V.V]):

hieye) =a ey, hiei.ex) = ardey, h (e1.e3) = azJe
hiey, &) = ardey +aJey + bley, hiey, e3) = bJe, —ades

h (E’;g. 6’3) = (}:;;.]E,’l — (l.]@g - b-]@;;, (2323)

where: ooy + a3+ a3 =0. a; >0. o —2a0>0. «; — 203 > 0.
Imposing that M is of constant curvature and applying the reduced Gauss equation for
N=e,=W, Y=ey=Zand for X =e, =W, Y =e3=27 we get the first and the

second equation of the system (2.3.18). the rest of the steps are the same.

2.4 A. Ros’ formulae and pinching in compact case

In this section results concerning the classification of totally real submanifolds of S% by
means of pinched curvature are presented. In order to proceed we need some results on

the integration on compact manifolds.

Let M be a compact Riemannian manifold, &M its unit tangent bundle. U /[, the
fibre of M over the point p € M and we denote by dp, du, du, the canonical measures
on M.UM.UM, respectively. For any continuous function f : UM — R and any k-

covariant tensor field T on M. we have (see:[R])

- fdu:/ / fduy| dp (2.4.1)
Jum M [ Juar,

/ (VT) (e ....u)du =0 (2.4.2)
UM
/ (VT) (e;.eioueou)f dur =0 (2.4.3)
Juar |53
where {e,...... ,€,} is an orthonormal basis of the the tangent space and V denotes the

Riemannian connection on M.

Remark 7 The above formulae play a crucial role in the rest of the chapter and provide

a powerful tool in obtaining results in global Riemannian geometry.
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They are used very often for the deduction of a number of integral relations by defining cer-
tain covariant tensor fields and functions on M, calculating their “covariant”derivatives
and Laplacians respectively and finally applying the quoted formulae of A. Ros.

Then by a combination of the deduced relations it is proved, in case M is compact, a very
useful integral relation involving the covariant derivative of the second fundamental form.
the shape operator and the sectional curvature of the manifold.

We do not intend to give here explicitely the proof of all the prerequisite relations which
are used in order to get the basic integral relation, but, since in [D.0.V.V1] details re-
garding the calculations are omatted, and the suggestions given, in particular as far as it
concerns the computation of the Laplacian, seem to be obscure, we think that a descrip-
tion in generic lines of the way the Laplacian of a function can be computed is necessary.
Furthermore, we intend to give few details concerning the computation of the covariant
derivative of tensor fields defined on the unit tangent bundle of M since this is necessary

in order to apply the above integral formulae.

We are going to present a method of computing the Laplacian of functions defined on the
unit tangent bundle of a Riemannian 3-dimensional manifold.

Let us take u to be an element of the fibre of L/ M through the point p in the unit tangent
bundle and take orthonormal unit vectors {e;,e3} to be normal to the vector u. Regard
{e,.e3} as an orthonormal basis of T,,(M,) and the vectors {u, ey, e3} as an orthonormal
basis of the tangent space at the point p. We choose vectors {u, ey, e3} such that
Gles,e3) = Ju, Glez.u) = Jes, G(u,e3) = Jey and denote by A the Laplacian on the
fibre through the point. Then, for any differentiable function f defined on the fibre, we

can write:
Af =eqeqf +ezesf. (2.4.4)

In order to describe a way of computing the Laplacian of a particular function defined
in the [D.O.V.V1] (lemma2. pg:744). since the suggestions given seem to be obscure, we
need, at first, to discuss briefly some generalities about the differential operators of the
divergence of a vector field and of the gradient of a function ([Car|, pg:83-87).

Let M be a Riemannian manifold of dimension n and p € M. It can be shown that there
exists a neighborhood U of the point p and n vector fields {E),..., E,}. defined on an

open neighborhood and orthonormal at each point of U, such that. the Vg E,(p) = 0 is
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satisfied. Such a family of vector fields will be called a (local) geodesic frame at p.

Definition 19 Let X' € X(M) be a vector field and f € D(M) a differentiable function
on M. We call divergence of the vector field X «a function divX : M — R given by
divN(p) = Trace{Y (p) — V- X(p)}. Vpe M.

The gradient of f is a vector field gradf defined on M by:

< gradf(p).u>=dfju e R VueT,(M). pell

Let us consider {E),... . F,} to be a geodesic frame defined in a neighborhood of the
point pe M. If X =" | f,E, and f any differentiable function on .M. it can be proved

that:
divX (p)=

gradf (p)=) _[(Ei (/) E: (p)]. (2.4.5)

Let now )/ denote a Riemannian manifold as above and define on A[ the following oper-

ator:

Definition 20 A f: D(M) — D()) denotes the Laplacian of M. given by:
Af =dwgradf. Vf e D(M).

Consider a geodesic frame {E,.... . E,} around the point p and f € D(.M). It follows

from the (2.4.5) that:
Af(p) =D EA(EAN ). (2.4.6)
=1
Let us consider the following function ([D.O.V.V1], Lemma 2, pg:744)

fluu)y=<h(uwu). Ju>*. (:

[N)
-
~1
~——

The domain of the function is the fibre in the unit tangent bundle over the point p of a
3-dimensional Riemannian manifold. In order to compnte the Laplacian of this function
we recall the equation (2.4.4) and under this aspect it will suffice to calculate separetely
cach term of the equalityv. We shall describe a method of computing by reterring to the

first term. for the the second the calculation can be carried out similarly.
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By assumption the vectors u, e;, e5 form an orthonormal basis of the tangent space of 1/

and moreover satisfy the relations:

Glea,e3) =Ju, Glu.ey) =Jes. Gles.u) = Je,. (2.4.8)

In the unit tangent bundle we consider the following vectors:
w(f) =cos(B)u+sin(B)es. ey (A)=—sin(6)u + cos () es. (2.1.9)

Observe that the first term in the expression (2.4.4) of the Laplacian can be equivalently
written:
d-z

= @ [< h (llg, ng) Jug >] i9:0 (2.—1.10)

ezey f (u)

and we can verify by straightforward calculation that

{
5 (< h(ug,ug), Jug >]lg=0 = 3- < h(u,u), Je; >
d?
pTE [< h(ug,ug), Jug >]|p=0 = =3 < h(u,u),Ju> +6- < h(u,e),Je, > . (2.4.11)

On the other hand we can easily compute

d , d 2
70 [< h(ug, ug) , Juy >2] lg=o = 2 - 7 (< h(ug,ug).Jug >)| +
2
2- < h(ug,ug), Jug > # < h(ug, ug) . Jug > |s=o- (2.4.12)
¢

Combining the equations (2.4.11), (2.4.12) we deduce the following expression

d* .
ﬁ [< h(U(;,u()) L Jug >] ‘9:0 =18 < h (I,L, u) Jey >? ¢
12- < h(u,e),Jes > - < h{u,u). Ju> —6- < h(u,u), Ju >* (2.4.13)

which actually is the first term in the equation (2.4.4) expressing the Laplacian. Similarly

working we can compute the remaining term ese; f(u) and finally we get:
Af(u) =18 < h(u.u) . hu.u) >* =42 f (u,u). (2.4.14)

Integrating the Laplacian over the compact submanifold /M, and recalling Stokes™ the-

orem, we deduce the following integral relation:

3-/ <h(u.u).h(u.u)>"':T-/ < h(uou) . Ju >? (21 15)
Juat, Jur,
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According to ([D.O.V.V1], lemma3. pg:744) we define the (0,7)- tvpe tensor field 7; by

setting:
Definition 21 Let T\ (X, ....., \7) =< G(X1, Xo), h( X3, Xy) > - < h{(X5, X4), JX7 >.

Let u be a vector in the unit tangent bundle and, in order to apply the integral formulae
of A.Ros, we need to compute Z?:l[(VTl)(ei. €iv €us €us €ys €4y €y, €4)]. We shall carry out
in few details onlv the calculation involving the first term of the summation. since the
other two terms behave similarly.

From the definitions of the tensor field 7| and of the covariant derivative of an (0,q)-tvpe

tensor field we have:

Ve, [Th (€1, u, ... ,u)] = Ve, [ G (e, u)  h{u,u) >< h(u,u), Ju>| =
Ve, < Gle,u),hu,u) > < h(u,u), Ju>+

<G (u,u), h(u,u) > [V, <h(uu),Ju>=

< ViG (e, u),h(uu) ><h(uu), Ju>+

< Gler,u), Vih(uu) >< h(uu), Ju>+

< Gler,u), h(u,u) >< Vyh(u,u), Ju>+

< G(ey,u),h(u,u) >< h(u,u),VeLl.]u> : (2.4.16)

T) (Ve er,uy ... u) =< G (Ve e, u), h(u,u) >< h(u,u), Ju>. (2.4.17)

T (e1, Ve uyu, ... ,u)y =< G (e, Veu), h(u,u) >< h{u,u),Ju>. (2.4.18)

2T, (ey, u, Ve u,u, ... u) =< G (ey,u) h (V. u,u), Ju>. (2.4.19)

2T (ey,u, u,u, Ve u, . u,u) =< G (e, u) A (Vo uu), Ju> . (2.4.20)

Ty (e1,uy ..., u, Vo u) =<Gle,u), h(u,u) >< h(u,u). JVeu>. (2.4.21)
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From the above relations, bv simply considering common factors, we deduce:

(VTy) (er.ef,u.... .u) =< Vég(el,u) -G (Ve u)—G(e, Ve u) hiu,u) >
< h(u,u), Ju>+ < Gle, u),Vj‘lh (u,u) — 2h (Ve u,u) >< h{u,u), Ju > +
<Glepou) hn,u) >< V;h (u,u) = 2h (Ve u,u), Ju > +

< Glepu) h{uu)>< h(u,u),ViJu—-JV, u>=

< (V. G) ey u), h(u,u) >< h(u,u), Ju>+

<Gle,u) (Ve h)(u,u) >< h(u,u), Ju>+

< Gle,u),h(uu) >< h(u,u),G (e, u) >. (2.4.22)

Recalling the equation (2.2.3) and repeating the same steps for the covariant derivative

of T} with respect to e; and e; we finally get the following expression:

3
Z [(VTY) (ei, €0y s, 1, u.u.u)) =

1=

L
h(u.u), h(u, ) > =2 < h(u,u), Ju>>+

3
+3 (< (V) (e wu) Ju> - < G (e u) h(u,u)>]. (2.4.23)

Note: We could alternatively, in order to simplify the calculations, start by proving that
the above sum does not depend on the particular choice of the basis and then assume
that u is an element of a basis {e|, e;, e3} satisfying

Gler,e) = Jes, Gleg,e3) = Jey, g(ea,el) = €2, h(el»el) = aJe;.

If we impose u = e, where e is choosen to be an eigenvector of the shape operator in the
direction Je,, then, follows from the method of proof of theorem (12), that h(e,.e,) =<

h{e,,er), Jey > Je; and this simplifies considerably the calculations.

Integrating (2.4.23) over the unit tangent bundle recalling the 2.4.1 integral formula

of A. Ros and using the (2.4.15) we obtain:

3
/ Z (< (Vh)(e;oucu), Ju> < G(u,e),(u,u)>)=
uM o

1

—- / [< h(u,u).Ju >2] . (2.4.24)
3 Jus

The basic integral relation. On /)] we define the following function:

g(u) =< h(u.u). Ju>-<(V.,h)(u,u uu),Ju>. (2.4.25)
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Moving on the same line. as in the previous case, we compute the Laplacian of the
function g recalling the definition of the second order covariant derivative of the second

fundamental form

(V*h) (wou,u u) = Vi (V) (v w.w) = (Vh) (Vo uou) —
(Vh) (u, Vyu,u) = (Vh)  (u,u,V,u,u). (2.4.26)

Next we describe a way to obtain integral relations involving the terms of the equation

(2.4.25). Define the (0,6)-type tensor field:
TQ (.Yl, ceey "\’6) =< h (_\’1, 4\’2) . J‘\'.’} >-<h (‘\’4, ‘\’5) R J‘X'G > . (2—127)

It is not hard to see, following the method previously described, that the relation below

holds:

(VQTQ) (t, w, U, w, U U Uy W) =

22 < (V?h) (wu.ucu) Ju >+ < h(u,u) > +2- < (Vh) (u,u,u), Ju > (2.4.28)

Integrating over the unit tangent bundle we get, in virtue of equation (2.4.3), the following

relation:
/ < (V?h) (wouwow,u), Ju> - < h(u,u),Ju>+
Junt
/ < (Vh) (u,u,u), Ju >*=0 (2.4.29)
Jum

Define the (0,4)-type tensor field T; by setting :

T (X1, oy Xo) =< R (X1, X2) b (X3, Xy) > (2.4.30)

[t can be verified that the following holds:

(VzTg) (w,u, u,u, u. u) =

2- < (V2h) (woucuou) ho(uou) > +2- < (Vh) (w,u,u), (VR) (w,u,u) > . (2.4.31)
Integrating over .M and using the integral formulae (2.4.1) we get:

/ < (Vzh) (v wow ) h(uou) >+
UAT

/ < (VRh) (wou.u)y AVh) (u.u.u) >=0. (2.4.32)
Just
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Recall the definition of the tensor field T, and compute :

E

((VETQ) (e;, e;, u, u,u,u, u,u)) =2 < (V'Zh) (e;,e;,u,u), Ju>- < h(u,u),Ju>+
1

- < (Vh) (u,u,u), (Vh) (u.u,u) > . (2.4.33)

O =
Il

§

[f we integrate over the U A, reasoning as in the previous cases, we deduce:

/ < (Vh) (u,u, u), (Vh) (4, u, u) > +
Junt

3
+/ Z [< (Vzh) (ei, e u,u), Ju > < h(u,u),Ju >] = 0. (2.4.34)
UM o

Recall the definition of the function g. As we have already mentioned we can compute
the Laplacian of the function g using the methodology proposed in the beginning of our
discussion. After some very long and tedious calculations we get the following result for

the Laplacian:

(Ag) (u) = =72 g (u) + 30- < h(u,u), (Vgh) (w, u,u,u) > —24- < h(u,u),Ju >* +
3
30- < h(u,u),h(u,u) > —48- Z (< (Vh) (u,u,€;), Ju>- < h(u,u),G(u,e) > —

=1

3
18- R (u, Ajyu, Ajyu,u) + 8- Z < h(u,u),Ju> < (Vzh) (e;, €5, u,u) > . (2.4.35)

=1

Integrating Ag over the compact UM , using Stokes’ theorem and observing that:

/ g(u) = —/ < (Vh) (v, u,u), Ju >?, (2.4.36)
um UM
/ "< h(u,u), (VQh) (u, u,u,u) >=
um
—/ < (Vh) (u,u,u) . (Vh) (u.u,u) >, (2.4.37)
UM

: / < h(u,u), Ju>?, (2.4.38)
Jum

Lol =1

/ < h(u,u), h(u.u)>=
UM

3
/ Z < (Vh) (u,u,e;), Ju > < h(u,u),G(u,e) >=
Junt

=1
1 [ y
- / < h(u,u),Ju >", (2.4.39)
3 Jum
3
/ Z < h(u.u).Ju>-< (Vzh) (u,u,e;,e), Ju>=
Juat 5
— / < (Vh)(u.u.u) (Vh) (w u ou) >, (2.4.40)
Juar
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we get the following equality:

=1
[

: / < (Vh) (u.u u). Ju > +30- / < h(u.u). Ju>? —
UM 78Y;

38 - / < (VR) (w.wcw) (Vh) (owou) > —18 - / R(w Aju. Ajucn) =0, (2.441)
Lint 7aY]
Moreover. it is not hard to verifv that

< (VR (XN.Y.Z). W >=< (VI (XY 1), JZ > —
<h(Y.Z2).G(N.WW) > — < h(Y.1V).G(N.Z) > (2.4.42)

and writing ||(VA)(u. u. w)|]? =< (VA)(u. w. u). Ju > + < (VA)(u, u u). Je, >* +

< (Vh)(w, u.u), Jes >2. by using the equation (2.4.42). we obtain:
3
| (VR (w,u, w) | = Z < (Vh) (e, u.u), Ju>?* -

3
2. Z< (uouce;) Ju>- < h(uu).G(ue)>+

1A (. u) |[P= < h(uow) . Ju>". (2.4.43)

Integrating the expression (2.4.43) over Y M . using the equations (2.4.23 ). (2.4.33 ) and
also the integral formula of A.Ros (2.4.3) we deduce :

3

\Y; 2:/' <AV (e, ) Ju>2 )11
./UMH( ) ()| -u_\,Z (Vh)(e,oucu). Ju ( )

As the final step let us define the function K(u) =< (Vh)(u, u.u). . Ju > on the unit

tangent bundle and compute its Laplacian obtaining

(AK) (u) = =72 K (u) + 2 [ (Vh) () [)* + 30 - Z< (Vh) (e w.u) . Ju > =
=1
3
12 Z (Vh) (e, u) . Ju > < G(ue) h(uu)>]. (2.4.45)
=1

An integration over the compact 1/ and using the equations (2.4.39) and (2.1.44) gives

3
Z (VI (e, uou) . Ju > =
uA

, | ' , 3
: / < (VI (uoucuy. Ju > +— / < h{uouy. Ju>" . 2L AG)
U TR

\

| O

e




Applving the relations (2.4.44). (2.4.46) and compairing their terms we deduce the fol-

lowing equation

/ (VR (wou u) il =
Juar
9 3

- / AV G wu)  Ju »? +'—A/ < h(wou)y. Ju>?. (2.4.47)
4 Juar Jue

Applyving once more the equation (2.4.47) in equation (2.4.11 ) we get :

3 , 1 ' .
—-/ <(Vh)(u.u w) . Ju>" ——_~/ < h(uou). Ju>* +
+ Jun 12 Jun

/ R(u, Ay u. Ayjyu.cu) =0. (2.4.48)
Juar

Lemma 10 The following relation holds:

~ / <A(Vh)(uouou). Ju>" +

+ Jun
1 . .

/ R(ur fl]u“‘e flJu- “) - A (Hfl.]uUHz_ < A_;uu., U >2) = 0.

JUM 16

Proof : In order to obtain this equation it is enough to apply equations (2.4.15) and

(2.4.33) in equation (2.4.33).

We can now state and prove a proposition from which. almost straighforwardly. we

shall obtain the main result of this section.

Proposition 3 Let M be a totally real 3-dimensional. compact submanifold of the nearly
Kuehler 6-sphere. Suppose that all its sectional curvatures satisfy the mequality K > 1/16.
Then f«r all w ¢ LL/Y]/

(1) <(Vh)(u.u. u). Ju>=0.

(2) R(u.Aju. Ay ua)= ﬁ A AyalP= < Ajuou >,

Proof :([D.O.V. V1], pg:748) By assumption A > % therefore. from the definition of the

sectional curvature we get: Ru. A u. Ao w) /(A= < Ajuu > > L oand the

assertion follows directly from lemma (10).

Let us now state and prove the main result of this section.

ot
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Theorem 13 Let M be a totally real 3-dimensional submanifold of S® and suppose that

all the sectional curvatures of M satisfy the inequality K > %. Then K =1 on M.

Proof:([D.O.V.V1]. pg:748) By assumption A > - and using (2) of the proposition (3).

if 4,0 15 not parallel to w. then span{u. A;,u} is a 2 - dimensional plane of sectional

% and this is a contradiction. By the contradiction we get that all the 4,,u

curvature
have to be parallel to the vectors «. But, as we have seen (2.2.9), in the beginning of the
chapter. the equality 4 ;,u = —Jh(u, 1) holds. This equality together with the fact that
Ay uis parallel w imply that:

|h(uu)l]? =< h(u.u). Ju > Yu€e UM, VpelM

and recalling the equation (2.4.15) we see that the second fundamental form must vanish

on M. The assertion is proved.

In the last part of this section section we give a first example of a 3-dimensional.

totally real, totallv geodesic submanifold of S°®.

Example 14 Let M = {x € S%:x =0, e+ 13 €3+ 15 €5+ L7 €7}

The immersion j : M — S%. where j denotes the natural injection, it is a totally real,

totally geodesic immersion of the 3-dimensional submanifold M. The submanifold M s
Spanned b, {e.,e,‘er,e,} o

actually the intersection of S® with the coassociative 4-plan§< and this intuitive approach

to the construction erplains the why the submanifold under consideration is totally real

and totally geodesic. In order to prove that M is actually a totally real submanifold

of the 6-sphere it will be enough to consider p € M, p = Z;ll)iei- e T,M e =

viey + ez + vses + vrer such that < p.v >=10, and compute Jyu.

2.5 Classification in compact case for sectional cur-

. . - 1
vature satisfying K >

The result which is going to be presented in this section can be found in [D.\V'.\V2]. A
lot of the details included in [D.\.V2] will be omitted since, in certain cases. the way
information about the second fundamental form is obtained is based in sorting ont the
solutions of a large svstem of equations which. on its turn. is formed by applving the

Gauss equation and the conditions of the proposition (3).
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Furthermore. another crucial point of the whole discussion consists in choosing a special
orthonormal frame, in order to compute the second fundamental form. and consequently
the connection, and this choice is based on applving the method of maximalization.

Since we have alreadv analvzed this method. details will not be given.

Let M be a totally real. compact. 3-dimensional submanifold of S* and p € M. On

the fibre of the unit tangent bundle through the point p we define the function:
fi(w) =< h{u.u). Ju>. (2.5.1)

The set U4 M, is compact. therefore we can suppose that f, attains its maximum at a point
u € UM,. We know that for any point w € UM, such that < u,w >= 0 it will be:

< h(u.u), Jw >= 0 and at each point p € M we choose e; to be the point of maximum
for the function f;. Denote by f, the restriction of f; to the orthogonal complement of e,
in the unit tangent bundle at each point p of M. [f the restriction is identically zero we
take e, to be an eigenvector of the shape operator 4 ,,,. otherwise we choose e, to be the
point where f5 attains its absolute maximum. Finally we consider e; to be a unit vector

satisfving the condition G(e,.e;) = e;.

Using the minimality of 3/ and the svmmetry of < A(X,Y).JZ > . it is easy to see

that the second fundamental form can be expressed in the following way:

/1(61.81) =a- »]61. lL(("-_).P-_)) =b- .]61 +d- J€3.
hies.es) =—(a+b) - Jey—d-Jey, hie,e))=b-Jex+c-.Jey

hiey,e3) =c-Jes —(a+d)-Jey, heses)=c-Jeg —d- Jes, (2.5.

o
[
[3]
S———

where a > b > 0 (since maximum conditions have been imposed on e, e5) and ¢.d € R.

At this point we shall simply state the following lemma which gives the possible values
of the coefficients of the second fundamental form. The method used in ([D.V.\"2]. pg:572-
574) is based in recalling proposition (3). imposing on that all the sectional curvatures
of M satisfv the inequality A" > ﬁ applving this together with the Gauss equation and
finallv decomposing any vector of the tangent space at the point p, with respect to the

choosen special orthonormal basis.

Having resolved a large svstem of equations. the following is obtained :

=1

(W}




Lemma 11 If M is a totally real, compact. 3-dimensional submanifold of S® and all

its sectional curvatures satisfy the K > % , then at each point p € M there exists an

orthonormal basis {ei.es. e3} of T, such that either: h = 0 on M (i.e: M is totally

geodesic in S5 ), or

5 3 1
/1(61.61):§-J€1, /L(e-z.eg):—\./T;-Jele/——o-./eg
— o =
/),((Jg.(fg\):—é'-](‘l — — Jes /L(Cl tg):—\/Tg'.jez
5 10
/1(61.63):—?-.163 h(ez, e3) ——£~.]eg, (2.5.3)

or

. JBQ

-Jes, hi(eyez) =0. (2.5.4)

Proposition 4 Let M be a totally real, compact, 3-dimensional submanifold of S® such

that all its sectional curvatures satisfy K > % Then the follounng cases can occur:

(1) K(p)=14h=0o0nll.
(2) KN(p)= <L, if the (2.5.3) hold.

16’

(3) L < K(p) <2, ifthe (2.5.4) hold,

16 167

L

where the values T

and f—é are actually obtained.
Proof: In the first case the point p is a totally geodesic point and an easy application of
the Gauss equation gives A'(p) = L.

In the second case we observe that h, has the same form as in theorem(11), relative to the

classification by means of constant sectional curvature K = 1—15 (it is enough to substitute
the value of ¢ = % in the svstem (2.3.24)). Thus, K(p) = % in virtue of the Gauss
equation.

In the third case. by emploving once more the Gauss equation, the (2.5.4) and straight-




1 21
R(€1.€2) €y = R(GI.Pg)C”;; = TE €. R(e-_).e;;)e3 = —lg )
R(e,ea)es = R(ey.e3) ey = R(es.e))es = 0. (2.5.0)

Let us consider any plane section 7 of the tangent space T,/ with an orthonormal basis

{\X.Y}, such that:
X = cosbfles + sinfle;, Y = sinoe, — cososinfey + coso - cosbes.

By direct calculation we see that:

RINY,N.Y) = L+ 2 cos2(0) = K(1) = & + 2 . cos?(g) = L < K <2

where the value % is attained when cos¢ = 0 (ie: when 7 passes through e,;) and the

value % is attained for |jcoso|| = 1 (ie: when m = span{es, e3}). The proof is completed.

Observing that any plane section of M may either pass through e, or coincide with

span{e;, es} we deduce, using proposition (4), the following

Corollary 2 If M is a totally real, compact, 3-dimensional submanifold of S® and all its
sectional curvatures satisfy either -~ < K <1 or % < K‘llbthen:

16
either K =1 and M 1s totally geodesic, or K = = on M.

L
16
Let us now consider the third case of the proposition (4).

Propositian 5 Let M be a totally real. compact. 3-dimensional submanifold of S® . of

L

- Then. there crists a

non constant sectional curvature saltisfying the inequality K >

global tangent vector field E\ and local tangent vector fields Es, E5 such that:

(1) {E\, Es, E3} is a local orthonormal frame such that G(Ey, Ey) = JE,.
(2) Vpe M : fi{u) =< h(u. u). Ju> attains its mazimum at E\(p).

(3) h(El’El)zé ]El /I(E'_).E2):’L(E.'}._E,’;):_\/Tg‘-]El.

WE\ Ey) = —¥3. JE,. h(Ey. E)) =0. hE E;) =Y. JE,

4
(4 ) VE. E, = VE._.EQ = V[.;{E_-; = 0.
VEIE‘E:_%'E_‘;. v/:‘_‘El :%-E:‘_ v”lE:;: 11 E_)

VE3E[ = —ll . E

g
™
I
]
f]
™
|
|
m
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Proof: (see:[D.V.\2]. pg:576) Since A" > % and A\ is not constant it follows from the
proposition (5) and from lemma (11) that the maximum point of f; defines globallyv on
M a vector field.

Let {E,, E3} be locally defined vector fields. orthogonal to E|. By a change of sign of Ej.
if necessarv. and by using lemma(11) once more we see that the first three conditions of
the proposition are satisfied. It remains to determine the connection.

Using the orthonormality of the vector fields and the compatibility of the Riemannian

metric, it is easy to check that the connection can be written in the form:

VE1E1 =ap by +apkE;. VE-ZE‘Z =an k) +axks
Vi, By =an By +apk, Vg Ey=—apk, +a By

ijEl = —(lglEQ + (I.QQE-_). VEJEl = —(13153 + (L33E-_) (_).)6)

where the {a;;} are locally defined functions. Recalling (2.2.8) of lemma (9 ). by using

the Codazzi equations
(Vh)(E\. Ea, Ey) = (Vh) (Ey. Ev.EV),  (VR)(E\ E3, Ey) = (VR) (B3, B\ Ey), (2.5.7)

we get : ajp =ap =ap =ay =0and ap =1, azp = —1.

By a direct substitution. of the found values for the o), s. the svstem 2.5.6 becomes

J

VE, E, =0, VE;,E-z = anky. V53E3 = apk,

1 1
Ve By =ayEjs, VE-.)El=1'Ez- VE;;EIZ—I'E% (:

o
(1]
oo
=

and on the other hand. direct computation gives:

3
—

I

R(el.ez.eg,el) = R(E’.l.t“;z.t";;. (’Q) = . R(é‘g.(j;;.f;;,(’.g) = T

=

Combining the last relations for the curvature tensor. the values obtained for the coeffi-

cients a;; and applving Gauss equation. we obtain:

1
E\ (023) — Ey (ay) +az - (”11 - 1) = 0.

=

1
E, (032) — Ey(ay) + (3 - "11) Sy =

, 1 : . : B
E-_g ((L;;'z) -+ E;; ((12;;) — —) ) - ll::-‘ - (I_-':.-, = —. (.))0)




If 6 is an arbitrary function defined locally on M we set:
[ =FE,, U,=cosOE,+ sinbFE;. U3 = —sindFE, + cosOEs5. (2.5.10)

[t is easv to see that {U.0". U3} satisfv the first three required conditions. Hence it
remains to search for a basis satisfving the last two conditions concerning the connection.
We retain the expression given for the {{;} in terms of the local function 6 and of the
E,s. Let us impose that the U} s satisfv the required conditions on the connection.

Recalling standard properties of the connection, the definition (2.5.10) of the U s. the

conditions (2.5.8) on the connection and observing that, for instance. we can write:

Ve,cos(0) - Ey =cos (0) - Vi, Ey + Ey(cos () - Ey =
E-z (COS (0)) : EQ = —sin (9) : EQ (9) : EQ, (2311)

where E,(0) = dO(E,), we see that if the U; satisfyv the last two conditions of the propo-

sition under discussion, then the following must hold:

11 .
dé (El) + app + T =0, df (EQ) + as3 = 0, do (E;) — a3p = 0. (2512)
Conversely. if the function @ satisfies the system (2.5.12) then the {5} satisfv the con-
ditions on the connection. The svstem (2.5.12) has locally a solution if and only if the

differential form:

v 11
< = (a + T) O+ agy -8y + a0

is a closed form, where {6,.6,.6,} is the dual of {E\. Ey, E3}.
In order to make clear the last conclusion. given that further explanations are omitted in
[D.V.V2]. it will be enough to observe that the local existence of a function #. which is a

solution of the (2.5.12). is equivalent to the following system :

11 11
E (0) = - (011 + T) = - (Cln + T) O (E)),
Ey(0) = axy = ag - 02 (Ey) . E3(0) = azy = a3y - 03 (£3). (2.5.13)

On the other hand. the assumption of the differential form w being closed (.o o =0).

is equivalent to the existence of the relations (2.5.9). Indeed:
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dw = d{(ay; +1f‘1)-()1 +ay3-0y — a3y 03} and as an indication of the way the process works we
shall give details ommited in [D.\".\"2]. Recalling the (1.4.2) from Chapter 1 and imposing
that .« 1s. in our case. a closed form. is equivalent to: dw(E,.E;) =0. Yi.j =1.....n

with 7 # j. As an application we compute:
dw (Ey. E9) = Ey (w(Ey)) — Ey (w(E))) ~w ([E\, Eq)) =
11
E\ (axn) — Ey (”n + T) —w (Vg By = Vi, B =
1
Ey(aps) — Ey{ay) —w <(l11 E3 — - Ez) =

Ey(ags) — E> (all) -

gy — azy - ap = 0. (2.5.14)

e | o

Working similarly we can complete the proof of the proposition.

Examples of totally real, 3 - dimensional, compact submanifolds of S°,
satisfying K > 1.
Example 15 Let S = {(y1.yo. y3, 4s) € R 1 yf + 43 + 43 + 43 = 1} and consider the
vector fields
Ny y2,y3.91) = (Yoo —y1oya —ys).
No(yr 2.y, us) = (Y3 —ya. =y v2).
N3y y2- U3y ys) = (Ys. ys. —y2. —y1). which form a basis of X(S3). It is easy to check that:
Y.V =2-X; [\o.\)=2-X. [\hX)=2-Y,
Define o metric <.> on S* by setting:
<X, X, >=0 f 1#) <X \1>__—. < Xs,. >>_7 < \j. \;>__,-
fweput By=3-X\. Ey=4-\/1-Xoo Ey=—§ /3Ny, then {E\ Es Ei} o5 an
orthonormal basis on S3. We denote by V the Levz-C'wztaL connection with respect to the

metric <.>. Using the Koszul's formula:

<VyY. Z >=

I\.)Ir—'

AN <Y Z>+Y-<Z XN >-Z- <X Y >
<V Z].N>-<[N.Z].Y > -<[Y.X],Z >}

and the definition of the curvature tensor. by a straightforward computation. we qget:

Lemma 12

(1 ) vf‘:'[El = VE-_,E'_) = V[,.'GE-; = ()




(2) Ve Ey=-4 Ey, VeE ={-Ey, VgE=4%FE, VgE =-1.F,.

(4) R(E\. Ey)Es = R(Ey. Ey)E, = R(Ey. E\)E, = 0.

(5 ) R(El,EQ)EQ = R(El.E;;)Eg = ﬁ . E] R(EQ,E;)E; = f—é : E_)
Observing now that

1 !

R(El-E‘z) Ey, = E - E, R(ElsE‘Z)El = —E - Ey, R(El»E‘z)Eri =0
1 1

R(Ele:})El:_E‘E.‘% R(EISE.'])E.?:']E'EM R(E17E3)E2:0
21 1

R(EQ,Eg) E-z: —'1—6'E3. R(EgE';)EgZ E'EQ, R(EQ,Eg)El :O

and since the vector fields {E,. E5, E3} form a basis on X(S3), by expressing any tangent
vector fields X , Y, Z . W with respect to this basis, it is not hard to verify the following

Lemma 13 If X. Y, Z. WV are vector fields on S® and V'+ denotes the orthogonal comple-
ment of a vector V7 with respect to <, >, then:
1
<R(X.Y)YW. Z >= T (<X Z> <Y W>-<XW> -<Y.Z>)+
0 . . :
= (< XN ZE s <YV R E s < XH W s <Y 2 S

— |

In order to prove the above relation we could proceed, according to the suggestion given
in ({D.V.V2], pg:578), using the fact that both the members of the equality in lemma (13)
are curvature-like and thus, it should be enough to prove that their sectional curvatures
are equal. Denote the right hand side by Q , take a plane section m in S and let {X,Y}
be an orthonormal basis of the plane section. such that:

N =cos0E, + sinfE5. Y = sinoE, — cososingE, + cospcosOFs, where o. # € R.

It is a matter of direct calculation to verify that:

RIX,Y Y \)=Q(X. Y. Y. X) =L + 2. cos?(e).

6 7 16
From the last equation we see that the sectional curvature corresponding to the plane

. . . - B . .
section ™ is given by: K(7) = £ + 2. cos?(0) and as an obvious consequence we yet:
9 y 5 T 16 , 1 Y

. 9 . . . .
% < KN(m) < ;—(l) where the ralue ﬁ is attained for any plane section containing E, and

the value 3t if 7 = span{E,. Ey}.
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Let f:8% — S%  (y1.ya. u3yy) — (0p. ro. vy, 0y 05, 2. 007

be the mapping having as an explicit parametrization:

[}

Syl +5y; =Sy — oyt ). e = —

(42 + 2 2 2 V/39
(uy +ys —uy —uy — ;/1) N T
Y

Y.

I
NN
P

(Ws]

~
-
Il

[

<
[\

(=10ysuy — 2ys — 10y244) .

V15 15
rs = T\ﬁ (Qyrys — 2ys — 2y3y2) . 15 = T\ﬁ(?yws — 2y3 + 22y1) -
V3
£ry= \/E (1091!,/4 + 2y — 1042y3) .

9

The following theorem can be obtained directly from the above parametrization and

recalling the way the frame {E. E,. E3} has been constructed.

Theorem 14 The mapping [ s an isometric, totally real embedding satisfying the

ME\ Ey) = — - J(E).  GULEL fLEy) = J f.(E3)

S

and the frame field {E\. E,. Es} satisfies the conditions of the proposition (4).

Remark 8 In [Mas] K.Mashimo classified the 3-dimensional, compact. totally real sub-
manifolds of S®. which are obtained as orbits of closed subgroups of Gy and has proved that
one of them has constant sectional curvature 1/16. The following example is the explicit
expression for this case ([D.V.V2]. pg:580) and the image of the immersed S*(1/16) which
s queen. s nothing but such an orbait.

Example 16 Let S*(1/16) = {(y1. y2. y3. 1) € R 1 yf + 3 + 45 + yi = 16} and we define
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the mapping: Q’(lﬁ) — R7 by setting :

15 o
=S s+ eu) (i = 2g) (yi+us—u3—ui).
2.2
By = 27" ZJ Z (i +v;) ?/L/J—302qujjk ,
1<) 1<j<k

P - y - - 2 2 - 2 - 2
vy =271 [yaya (3 — vi) (u;i’ + oyt =5yt = 5y3) + e (v — u3) (i + us = Suy = By
oy =27 Tyoyy (ud + 33 — vl = 3ud) + yuys (us + 303 — yi = 3uy)]

2 (s — ) (y'f (;/5’ +4u) = s (0 +43))]

25 = Ta (Y2, — U1, Y3, Ya) -

6 =27"2V6 [y (yi + Syar' — i = 5ui) — yaua (v2 + 500 = ya = 543)]
+10.27 V6 [(y1ys — o) (U307 — wivd)] -

Ty = Tg (y2= —Y1. Y3 Y4) -

By direct computation we can prove the following :
Theorem 15 The mapping x : S*() — S° is a totally real isometric immersion.

Let p = (4,0,0,0) € S*(). then z(p) = (0,-1,0,....0) and we shall show that there
are exactly 23 other points in S*() which are mapped onto the same point.

Since y? + y2 + y# + yi = 16 it is not hard to see that

Loy 2. ysnys) = =14+ 279 Ny, ya. y3. ys). where .V is given from the relation

NG Y2 s va) = oo, U8 W+ 00) =3 e U Y R

In order to prove that the mapping r . is actuallv 24 - fold. it should be enough to show
that there exist exactly 24 solutions of the form (y. y2, 3. ys). such that: N(y. 2. y3. y4) =
0 and y? + y2 +y3 + y? = 16.

By performing the substitution A\, = y? and supposing that A\, > A, > Ay > A, the

condition .V = 0 is equivalent to

(A = Aa) (A (Ar = o)+ A (A = Ay A (A = Ag)) +
(/\Q — /\3) (/\Q (/\1 — /\4) + A3 (A — /\,;) + /\1/\2 — /\3/\4) +

(/\3 - )\4) (/\1 (/\;; - ’\l) + /\'3 (/\;; - /\_1) + /\\;; (/\2 - /\4)) = 0

This equation has the non zevo solutions: either (A Ay Az Ay) = (A A AN where A > 0

or solutions of the torm



(Ao A A3 A y) = (A0.0.0) . with A > 0.

Since .V invariant under permutation of {y,.ys.y3.y1} and changing the sign of one or

more of the y;gs, if necessary. we obtain that the set of the solutions of the equation under

discussion is :

S ={({.0.0.0).(=4.0.0,0).(0.4.0.0). ... . (0.0,0. —4),(2.2.2.2),(=2.2.2.2), ...
c{=2,=2,-2.-2)} and obviously |S| = 24.

We need the following lemma (see: [D.V.\2]), which actually is the local version of the

Cartan. Ambrose, Hicks theorem ([Wol. pg:30).

Lemma 14 Let M™. M" be Riemannian manifolds with Levi-Civita connections V.V
respectively. Suppose that there are cfj. fori i ke {1,2,..... ,n} such that Vp € M.Vp €
M there ezist orthonormal frame fields {E.} around the point p and {E;} around p. such
that :

Ve E =) (E) and ViE; = (cfE).
k k

Then. for everype M.p € M there exists a local wsometry £ which maps a neighborhood

of p onto a neighbourhood of p and E; on Ei.

Let : x;: M, — S% 1y My, — S5 13 : M; — S% be the immersions correspond-

ing to the examples (15). (16) and (14) respectively.

Theorem 16 (see:[D.V.VZ2]. pg:582) Let r : M? — 5% be a totally real. isometric
immersion of a 3-dimensional complete Riemannian manifold into S°.If the sectional

curvatures K of M satisfy ' > %, then either M is simply connected and x s congruent,

either to:
(1 ) Iy A\[l — SG. ie: -llTi S A S %
(2 ) £yl 4\[3 — 56. ie: A = 1.

or I (the composition of the universal covering map of M with x), is congrucnt to:

Iyt ‘\[Q — 56, ie: K = #

Proof: Let ¥ = x o . where = denotes the universal covering map 7 : \[ — /.

From the Bonnet-\vers theorem we know that. since M is compact, the same i~ true for
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V. From proposition (4) we obtain that either M s totally geodesic. and in this case r©
Is congruent to xj3, or A has constant sectional curvature % .and T is congruent to .ry. or
that the sectional curvatures K. of M. vary between % and f—é

In the last case. from (4). (5) of the proposition (5). using the (1). (2), (3) of lemma (11)
together with lemma (12). we obtain that M s homogeneous and locally isometric to M.
But since 1/ is analvtic, there will be an isometrv between 1/, and M. Therefore there
exist. an orthonormal basis {E. Ey. E3} of M. an orthonormal basis {Fy. Fo. Fi} of M.

both defined globally and satisfving proposition (3). and an isometry ¢ : \[| — M. such

that:

[f we denote by ¢ the map between the normal bundles of A/, and M. defined bvo(JE,) =
JF;, then we see that ¢ preserves the bundle metric. the second fundamental form and
the normal connection. By the rigidity theorem (4 ) of Chapter 1, £ and x, are congruent
and since x; is an embedding, follows that r is an embedding, in the corresponding case.

and consequentlv r, is an isometryv. The proof is completed.




Chapter 3

Chen’s inequality and a Riemannian
invariant for submanifolds in space

forms

3.1 Introduction

In this chapter we discuss an inequality due to B.Y. Chen ([Ch2]) which involves the
main invariants of a submanifold of a space form. This inequality is an improvement of
an inequality proved by Chen in [Chl] and it is actually the best possible. since examples
of submanifolds of Euclidean space forms are given for which the inequality becomes an
equalitv. Specifically. Chen proved that:

1 n®(n-2)

mezé T — D) NHII* - (n+1)-(n—=2)¢|, (3.1.1)

where 7 denotes the scalar curvature of an n-dimensional Riemannian manifold (n > 2)
immersed in an m-dimensional space form R™(c) and at each p € M, for 7 running over

the set of all 2 - plane sections in T,,.M/. the function infK is defined by:
infK (p) = inf{K (7): Van CT,M}. (3.1.2)

Chen defined a new Riemannian invariant of a submanifold M of a space form. namely :

oy - M — R, which is given by :

Iy (p) = Z—()P—) —imnfK (p). (3.1.3)




and in this case Chen's inequality attains the form

— . n? .
n=2) - '_ a [H|? + (n+1) -} (3.1.4)

oy <
A > 2

We also investigate the situation of a submanifold for which the inequality becomes an
equality. In particular. Chapter 3 is structured in the following way:

In (§3.2) we introduce preliminarv notation and basic definitions. and give a proof of
a relation existing between, scalar curvature, length of the mean curvature and of the
second fundamental form, the sectional curvature of the space form and the dimension
of the submanifold. An algebraic lemma, which plays a crucial role in obtaining Chen'’s
inequality, will be stated as well.

In (§3.3), after proving the inequality. we focus on the case where the inequality becomes
an equality. It will be shown that. by an appropriate choice of the orthonormal frame,
the shape operator attains a verv “nice” form.

In (§3.4) we further insist in the case of the equality by defining and studying a distribution
on the submanifold M. Main reference for the sections (§3.2), (§3,3) and (§3.4) is [Ch2].
In section (§3.5) we consider the case of totally real 3-dimensional submanifolds of S®
and give the very elementary results about the form the shape operator and the second
fundamental form attains. and finallv we state and prove an existence and uniqueness
result which will be useful for the next chapter.

The last section (§3.6) is devoted to the presentation of some examples of totally real
submanifolds of S® satisfving the Chen’s equality. The further study of the implications
of the examples and of their influence in the classification will be emphalsized in the next
chapter and— in the present section we onlv deduced some first conclusions. The main

reference for the sections (§3.5) and (§3.6) are [C.D.V.V1] and [C.D.V.V'2].

3.2 Preliminaries

Let R™(c) denote an m-dimensional space form of constant sectional curvature ¢ and .M
an n-dimensional Riemannian manifold immersed in R™(c).

Consider an orthonormal frame {¢).... .€,.€,1.....€,} defined on an open subset of
the ambient space such that span {e,......¢,} = T,M at each point p € M. Then. the

orthonormal frame will be called an adapted frame. If {A)} are the coefficients of the
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second fundamental form. with respect to an adapted orthonormal frame. we can write :

1 (ei, €e5) n;ﬂhum H = %-Z:h, (e;.€;),
Ih])? = Z Z (he)" . IH|? = Z > onhne (3.2.1)
tj=la=n+l tj=la=n+l

We are going to prove a relation between the scalar curvature 7 of 1/, the length of the
second fundamental form. the length of the mean curvature vector, and the sectional

curvature of the ambient space form.

Lemma 15 Let M be a Riemannian manifold immersed in the m-dimensional space form

R™(c). Then the following relation holds:

=n2 JHPP=|h*+n-(n-1)-c (3:2.2)

Proof : Let {ef,....,en. €001, ..... em} be an adapted frame on R™(c). We denote bv R, R
the curvature operators on M and R™(c) respectively and use the notation involving the
coefficients of the second fundamental form given by the system (3.2.1).

Bv hvpothesis R™(c¢) is a ¢-space form and thus R(e, ej,ei,e;) =c,  Vi# ). Ontheother
hand 7 = Z:fj:l R(e;.e;,e;,¢;). Hence, by using the Gauss equation and in the same time
keeping in mind that from the n?® pairs (e;.€;) only n- (n — 1) of them contribute to the
sum giving 7, we obtain (3.2.2).

Recall in this point the following ([Ch1]):

Definition 22 Let M an n-dimensional submanifold of a Riemannian manifold. An
mvolutive distribution on M will be called a foliation on M. Let v be a subbundle of the
normal bundle of M. Then v is said to be a parallel normal subbundle if and only
if: Vx&ev, YX € T,\.p € M and for any section £ of the subbundle v. where V+

denotes the Leuvi-Crivita connection in the normal bundle of M.

In order to proceed with the discussion of the main result of this chapter we shall state

the following algebraic lemma ([Ch2] )

Lemma 16 Let a,.as. ..... (y. ¢ be real numbers. n > 2 and suppose that the cquation

(r ) =(n=1)- (3", a} =) holds. Then 2ayay > ¢ and the equality occurs if and

only if: ay +ay; =ax. Yh=3.4.... .n.




3.3 Chen’s equality and the shape operator

Let M/ and R™(c) be as in the previous section. {e,.... .e,,} an adapted orthonormal
frame and m = span{e,, e;}. Furthermore. let us assume that H/||H|| = ¢,., # 0 . where
H denotes the mean curvature vector. and set:

2
b=r LT n(i 1 2). WH|? = (n+1)-(n—2)-c (3.3.1)

were the o of the above expression is not the same with the one used in the introduction
of the current chapter. but its double. Using the relations, (3.2.2) of lemma (13). (3.2.1)

and (3.3.1) we get:
nd | HIIP = =1 AP+ (n—=1)-(6 - 2c). (3.3.2)

From the expressions (3.2.1) for the length of the second fundamental form and for the

mean curvature vector we obtain:

(Zh”“) = n—l)-{i i)+ (A +Z Z ) +d—2-¢}.

1#7 tj=la=n+2 (333)

Recalling lemma (16) and applving it we deduce:

2 R R > Z [ R+ ] Z Z [ ] —-2-c. (3.3.4)

1#] tj=la=n+l
On the other hand it is easy to verify, using the relations (3.2.1), the Gauss equation and

the definition of the sectional curvature, that:

m

= Z Wit = ) (hgy)° (3.3.5)

a=n+l a=n+1}

Combining the relations (3.3.3) and (3.3.4) we get

) > Z Z{ : /121) }+% z (h?j“)2+

a=n+1 3>2 tEI>2
1 R 27 . 0 q -
30 2 2 ) 5 2 (A +hg) ] + 5. (3.3.6)
a=n+2 j>2 “  a=n+2 -
and it is obvious that the inequalityv infR > % o holds.

Now. let us consider the case where the equality occurs in (3.3.6) and choose {e).0,}

siich that the sectional curvature A attains its minimum for the plane scetion - spanned

il
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by e; and e;. Moreover. we can choose a basis {e,... .e,} which diagonalizes the shape
operator in the direction e,.;. Under these circumstances, infK = % and it can be
applied the second part of lemma (16).

In order to apply it we first observe that, in case the equality occurs. the inequalities

(3.3.4) and (3.3.6) become equalities and the following sequence of equalities must be

satisfied:
0 - /n+l n+1 . a2
S=cHhiR = Y (hg)?
N a=n+2
(5 1 m n
v - +1
2 Z Z( hU h 2j ) 5 Z Z
a=n+l j>2 a=n+2 j>2
l m 2 ()- o
5 > (hS +hgy) + 5 (3.3.7)

a=n+2

The second of the above equations, after the simplification of the quantity g, becomes
zero and it is nothing but a sum of squares. Therefore, each of its terms must vanish and
thus we deduce the following information about the coefficients of the second fundamental

form:

higt = =hyfl =0, WML, =0
hi,=hy=h;;=0. r=n+2....m ,j=3.....n
WP+ RE = =R+ 0 =0, A =0. (3.3.8)

The first two equations of the svstem (3.3.8) are obtained using the vanishing of the terms
(h ”J“)z for any 5 > 2, =n+2....,m and the svmmetry of h. The fourth equation is
a consequence of the equalities (A9, + h$,)* = 0, where « = n+2,... ,m. The third has
been deduced by imposing : (h{;)* + (h};)? =0.forr=n+2,... ,mandi.j=3.....n
Finally, the fifth is implied by the assumption on the diagonalization of the shape operator

by the basis {e;.... .e,} with respect to the direction e, = H/||H||.

Setting : a; = h’*'.i = 1.2.....n we can apply the second part of lemma (16) and
obtain:
RFh R = 0 = = Rt (3.3.9)

Under the aspect of the above discussion and combining (3.3.7), (3.3.8 ) and (3.3.9) we

can state the following ({Ch2]. pg:570-571)




Theorem 17 Let M be an n-dimensional Riemannian manifold irnmersed into the c-
space form R™(c). Then the inequality (3.1.1) holds.
If equality occurs in (3.1.1) there is an adapted orthonormal basis {€. ... ey €ns1, ... €}

such that:

a 00...0
0 b0...0
0 0p 0] = 4,41, where a+b=pu.
0 00...u

and

> =
—_——
N o—
| >
b A
SN
o O
[ewilan]

O D 00 :‘—1’,. v]':n+2,...,m/.

where A, denotes the shape operator in the direction of the normal vector e,,, and A,

in the direction determined by the rest of the vectors e, o, ... €, of the normal space.

It is clear that in the case of a 3-dimensional totally real submanifold of S®, since A has
to be minimal, the invariant o satisfies the 0 < 2. In particular, the form attained by
the shape operators, when the Chen's equality d,; = 2 occurs, plays a crucial role in the

investigation of such submanifolds and this is going to be illustrated in due chapter 4.

3.4 An integrable distribution

[n this section we studv further the generic case of submanifolds M of a real space form
and specifically we focus on the properties of a distribution defined on 3/ when the Chen's

equality occurs on M.

Let M be a Riemannian manifold immersed in the real space form R™ (¢) and suppose

that at each point p € M the equality in (3.1.1), i.e: the

n--(n _2))~HHHZ_(IL*U‘('”—Q)'C}

AU |
/:Il.f[\ = 'é {T—(TT




holds. ( where the notation concerns the “initial” ¢ of the introduction ).
If this is the case then, the shape operators attain the form described in theorem (17).

At cach point p of M we consider the following subset of the tangent space
Definition 23 D(p) ={X e T, : (n-1)-h(X.Y)=n-H < X.Y > VY € T,\[}.

Let us assume, from now on, that the dimension of D(p) does not depend on the point p.

Then D(p) defines a distribution on M.

Remark 9 The distribution D defined on M prouvides information on the existence of
totally umbilical submanifolds of M which foliate M. In this case, if k denotes the di-
menston of the distribution. M will be called a k-ruled submanifold of the space form
and this means that is foliated (ie: an involutive distribution is given on M) by a family
of totally geodesic k-dimensional submanifolds. If this is the case then (see:[Ch2]). M
will be generated by the motion of a totally geodesic k-dimensional submanifold along an
(n-k)-dimensional manifold.

An analogous situation, probably a motwation for Chen to define the distribution D. is
the well known case of the ruled surfaces in the 3-dimensional Fuclidean space and in
particular we could mention the eramples of the cylinder., cone, hyperboloid. hyperbolic

puraboloid (saddle), of any ruled surface and more specifically of any developable surface.

Using the information provided by theorem (17). concerning the form attained bv the
shape operator when Chen’s equality occurs on M. we shall studyv further the distribution

D.

o It is evident that:

hieje;)=p-e,er.¥Vj=3.....n

hiejer) =0.Vy=3.....n.Vk=1...,n k#)

Therefore, at each point p € M. the vectors {e3.... .e,} are elements of D(p) and

thus. dimD(p) > n — 2.

If D(p) = spanf{esy.... ., } then dimD(p) = n = 2.




e Suppose that dimD(p) = n — 1. If e; € D(p) then:

(n—1)h(ez.e2) =n<ey,e, > H=0—
h{es.e) = 0= hl, = h;, = 0.
Vre{n+2,....m}
But, since a+b = p and e; ¢ D(p), aud moreover H = (n—1) - - e,,,. we get that
a =10, b= p and further. from the form attained bv the shape operators. in this

particular case, we obtain Imh = span{e,,}.

Let X,Y,Z € T,\ and use the Codazzi equation (1.2.15, Chapterl) to get:

VLiR(Y,Z) = VEh(N.Z) = h (VY. Z) + h(Y,VZ)
— h(VyX.Z) - h(X,Vy2).

If we choose X, Z € D(p) to be mutually orthogonal then, by using the definition
(23) of D(p), we see that A(.X.Z) = 0 and moreover:

Vsh(Y,Z) = h(VxY,Z)+h(Y,Vx2Z)
—h(VyX,Z) = h(X,Vy.Z) € span{eni,},

i.e: I'mh is a parallel normal subbundle of the normal bundle.

e Suppose that dimD(p) = n ie: D(p) = span{e,, e, ... .e,}. If this is the case, then
for the coefficients of the second fundamental form, by taking X.}Y € T,/ to be
mutually orthogonal and applving the defining property of D, we find that:
hf]- =0, Veyg=1.....n. ¥Yr=n+1,...,m
In cor;clusion, M will be a totallv geodesic submanifold of the space form R™(c)
and D trivially integrable since. dimImh = 0 and each m l'rej rid Submandfotsl  of the

distribution is totally geodesic.

e Consider again the cases:
dimD(p) =n — 1, Imh = span{e s}, Dt(p) = span{e;} and
dimD(p) = n—2. D=(p) = span{e|, e},
Choose X,Y € D and Z € D4, Then A(X,Z) = h(Y, Z) = 0. thus

(Vah)(Y.2)==-(N Y. Z) = h (Y. .V Z).
(Vyh)(XN.Z)=-h(Vy N Z) = h(X.Vy2)




and since the torsion is zero we deduce:

h{X,Y).2)=h(VyY.Z) = h(Vy N, Z). withV,}Y € D =
WX Y] Z)=p - {< X.VyZ > - <Y.VZ >} ens.

Using the Codazzi equation we finallv obtain:
RN Y, Z)=p < [X,Y].Z > ey = [N, Y] € D(p)

and it is proved (recalling the trivial case of being M totally geodesic in R™(¢)) that

the distribution D is integrable.

e Let us consider a connected component (or equivalently: a maximal integral sub-
manifold) of D(p). If dimD(p) = n then each connected component is totally
geodesic and consequently will be totallv umbilical.

If dimD(p) = n — 2 then D(p) = {e3,... ,e,}, using theorem (17), and for (k.r) €
{1.....n} x {n+2.... .m}, we have:

Ae, €k = pteg. Yk and A, e =0. VK>3, Vr

[t is obvious that the connected component under consideration is totally umbil-
ical.

If dimD(p) = n — 1 then, by interchanging e, with e, if necessary, we get:

D(p) = spanfe,.... .e,}. hi,=hy =0. a=0, b=pu

and it is easy to check that D(p) is totally umbilical.

Note: In the discussion of the totallv umbilicity of the distribution D we have modified
the process with respect to [Ch2]. making a direct use of the form attained by the shape

operator. We can state the following:

Lemma 17 Let M be an n-dimensional submanifold of a real space form R" (¢). Suppose
that the Chen’s equality holds and moreover we assume that the dimension of D does not

depend on point p € M. Then, exactly one of the following cases occurs:
(1) D isan (n-2)-dimensional distribution
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(2) D=TM and M is totally geodesic in R™(c)

(3) The first normal subbundle I'mh is I-dimensional and if we choose e, ., € Imh.
then A, oy has exactly two distinct eigenvalues 0. p with multiplicities 1 and n-1
respectively. Thus. D qives rise to an (n-1)-dimensional distribution.

Furthermore. the distribution D is integrable and each connected component of D is a

totally umbalical submanifold of the ambient space form.

Let M -5 ) be an immersion of the the n-dimensional manifold M. Let D be an
integrable distribution on M and D+ be the orthogonal complement of D in the tangent

bundle of M. Then:

Lemma 18 h(D.D*) = 0 «f and only if LM|y is a parallel normal subbundle of L in M

for any L. where L is a connected component of the distribution D.

Proof: If 4, V' denote the shape operator and the normal connection of the connected

component (of D) L in M. then for any X\ € L, and Z € L L (in M) we have
—,X+VEZ =V Z=VZ+h(X, 2).

Therefore, h(.X. Z) = 0 if and only if V£Z € D*+.
It is clear now that, h(D.D*) = 0 if and only if 1L (in M) is a parallel normal
subbundle of LL in M. for any L € D. But. LM|, = (D*])* and the assertion is

proved.

3.5 Chen’s equality, totally real 3-dimensional sub-
manifolds of S® and an existence and uniqueness

theorem.

In this section we are going to focus on totally real 3-dimensional submanifolds of S°®
satisfving Chen’s equalitv. A certain number of examples and basic facts. which are

prerequisites for the discussion of the results of the next chapter. will be given. Infact.




this section can be characterized as an introduction for Chapter 4. The main references

are [C.D.V.V1] and [C.D.V.V2].

Let M/ — A be an immersion of the n-dimensional Riemannian manifold M into the
m-dimensional manifold space form M and we assume that the immersion is minimal. In

this case H = 0. therefore Chen's inequality becomes:

| =

< =-(n+1)-(n-2) (3.5.1)

N

and the shape operators attain the following form (see:[C.D.V.V1])

r r
T kI, 0...0
r T

0 0 :...: |l =4, ¥Yr=n+1,....m.

Indeed, since we have choosen ||H||H = €,,, it H # 0 and if H = 0 then e, is a
direction which diagonalizes the shape operator, given that M is by hypothesis minimal.
follows from theorem (17) that the condition a + b = 0 must be satisfied and the assertion
is an obvious consequence. From now on we shall focus on totally real immersions of
3-dimensional submanifolds of S®. In this case the immersion is minimal and Chen’s
inequality becomes: 9y, < 2.

The next theorem gathers the first results concerning the Chen’s inequality. the form of
the shape operator when the equality dy; = 2 occurs, and it is a direct application of the

above observations.

Theorem 18 (see:/C.D.V.V1] ) Let M > S5 be a totally real immersion of the 3-
dimensional manifold M. Then oy < 2 and equality holds, at a point p of M. if and
only if there is a tangent basis {e\.e,,e3} and a normal basis {ey,es. €6} such that the
shape operators attain the form:

hiy iy O

hi,—h7,0 | = 4,. r=4.5.6.

0 00
The following theorem provides further information on the second fundamental form. ar

a point p € M. when the Chen's equality 0,/(p) = 2 occurs.
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Theorem 19 (see:/C.D.V.V1]) Let M be a totally real 3-dimensional submanifold of the
6-sphere. Then 0pr < 2 and the equality holds if and only if there is a basis {e,. ey, e3} of
T, M such that:

hier.er) =Aei. hiej.ey) = —Ney, h(es,es) = —AJe,.

hiei,e3) =h(eses3) = h(cs es) =0. (3.5.2)
where A € R* — {0} satisfies the 2\? =3 — 7(p).

Proof: Let us assume that the equality dy;(p) = 2 holds at p € M. If p is a totally
geodesic point there is nothing to prove. We assume p to be non totally geodesic.

On UM, = {u € T,M : < u.u>= 1} is defined the function f,(u) =< h{u.u). Ju >
and since U M), is compact, we can assume, using the method of maximalization, that
fp attains its maximum at the point u € Y M,. It follows, repeating the same steps as we

did in similar previous cases, that:
fo(uw) >0, <h(u.uw).Ju>=0, YuweUM, suchthat <u,w>=0.

But, A being totally real implies that 4,,-X = —JA(X.,Y") [see:(2.2.9) in lemma (9) of
Chapter 2]. Combining these facts we obtain that u i1s an eigenvector of A,,,.

Set u = e; and choose e,.e; such that. the set {e,e3,e3} is an orthonormal basis of
T,M and e; is an eigenvector of 4, of corresponding eigenvalue A;. From the theorem
(18) follows that the image of the operator A/, is a subspace of the tangent space. at
most 2-dimensional. and moreover. since e; belongs to this basis (rearranging the terms.

if necessary ), we can assiime :
AJe[e, = )\61, AJFI(,’.Q = —/\.]f‘g. AJPJE?;; = 0.

Using once more theorem (18). recalling the symmetry of < h(w, v). Juwe > and the fact

that {Je,, Jez, Jes} is an orthonormal basis of 1, . we obtain
< .4J9!€]‘,83 >= 0. Vlj: 1.2.3
and combining with the fact of being M minimal in S°. we get:

< .4,19:‘63,62 >=< .-1_/(.1( 1.6y >=< .-‘_/,,_,(’3‘(’-_3 >= ().
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Therefore, the second fundamental form has been completely determined as a function of

the eigenvalue A.

Applying the Gauss equation (1.2.14) for all the 2-plane sections {e,,e;} we obtain:

2r=06-2<hh> and <hh>=\N =2\ =3—-1

and the proof is completed.

The theorem on the uniqueness and existence of totally real immersions in S will be

splited in two parts (see:[C.D.V.V1])

Theorem 20 (Uniqueness) Let r'.z? : M — S8 be two totally real, isometric im-
mersions of a 3-dimensional Riemannian manifold (M, <,>), with second fundamental
forms h', h? respectively and the same orientation (induced by JG , where G is the tensor
field G(X,Y) = (6,\—.])}’ defined on the 6-sphere).

Suppose < h'(X,Y), J2!Z >=< h*(X.Y),Jx2Z >, VX,Y,Z € XM. Then. there exists

an isometry S® <5 S® such that r' = z%o A.

Proof: We have: V1JY = JV Y +G(X)Y), A, X =-Jh(X.Y), VXY € X(M),
(see:(2.2.8), (2.2.9). and we can check that the normal connections and the shape operators
2

of the immersions z!,? coincide. Applying standard uniqueness results for minimal

immersions in real space forms we have the required assertion.

Theorem 21 (Existence) Let (M. <,>) be a simply connected. oriented . 3-dimensional
Riemannian manifold and A : TM x TM — T M a skew symmetric operator assigning,

to each pair {X,Y} of linearly independent vectors, the unique vector X A'Y of length

\/< X, X> <Y,V > - < X.Y >2 which is orthogonal to both X.Y and such that the
set {N.Y, X A Y} is a positively oriented basis.
Let o be a symmetric bilinear T M - valued form defined on M and such that:

(1) Tra=0.

(2) <a(X,Y).Z > s totally symmetric.

(3) (Va)(X, Y. 2)+ X Aa(Y.Z) is totally symmetric.

(4) RX.Y)Z=<Y.Z> N=-<N.Z>Y+a(aY.Z2).X)-ala{N. Z). V)
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Then, there exists a totally real immersion r @ M — 5% such that the second fundamental

form h satisfies: h(X.Y) = Ja(X.Y) and moreover G(X,Y) = J(X AY).

Proof: For all vector fields \'.Y.Z € X() and for any {}7,}5, Y3} orthonormal vector

fields on M/ we have:

<XAY.Z2>+<XAZY >=0,

<¥I3AYL YA Y, >=0. (3.5.3)

Take .\, Y to be orthonormal, then. since < YAY, X >=< XY AY, Y >= 0, we get:

<Vz(NXAY) X >o==< NXAY. VXU >=<(VX)AY, X >,
<XAVZY X >=0=<V;(XYAY) X>=

< (VZX)AY.XN >+ < X A(VzY). X >, (3.5.4)

Similarly we obtain:

<V, (NAY).Y >= — < YAY, VY >,

<(VzZO)AY Y >=0=< V(X AY) Y >=

<(VzZX)AY + XA (V). XV AY > (3.5.3)
We also observe that

CXAY,XAY >=1==< V,(YAY).NYAY >=0=

<Vz(XAY). XYAY >=< (V2 U)AY + XA (VzY), XYAY > (3.5.6)
Combining the relations (3.5.4). (3.3.5) and (3.5.6) we obtain

Vz(XAY)=(VO)AY + YA (VzY) (3.5.7)

and it is easv to check that (3.5.7) is valid for arbitrary vector fields.

Identifv .NAI with T M via .Jy and define a connection V+ on N by setting

ViloY = VY + Jo (N AY) (3.5.8)




for all vector fields X.}Y € X(1/). where .J; is the identification between T )/ and N 1/.
Define a second fundamental form h and a shape operator 4, for any X.1 € X(1/) by

setting :

(X Y)=Jpa (X.}) (3.5.9)

Ayl =a(N.Y). (3.5.10)

The equations of Gauss. Codazzi and Ricci are satisfied hence. by the existence and
uniqueness theorems for immersions in real space forms, there exists an isometric immer-
sion x : M < S5 with second fundamental form h, normal connection V* and shape
operator 4, x. [t remains only to be shown that the immersion z is totally real.

Consider S® be immersed in R” by the inclusion map and define a vector cross product

on R by setting

px XN =LY, px hY=-X. X xY=J(YAY),

(JoX)xY =XAY—-< XY >p JXxJpY==-YAY (3.5.11)

for any vector fields X.} € ¥XR7. Denote by D the Levi-Civita connection on R’ and
using (3.5.8). (3.5.9). (3.5.10) and (3.5.11) we get:
Dy (px X)—=(Dyp)x X —px Dy XN =Dy (JoX) =Y x X = JyDy X
= Vi (JoX) = ApxY = B (XY AY)
- JoVy X = Joh (X))
= JoVy XN+ Jh(YAY)—-a(\.Y)
—Jo(XAY) = JhVy X —a (X))
=0.
Similarly working we can compute the rest of the equations in order to prove that the
defined vector cross product. is actually parallel.
Recalling the uniqueness of the vector cross product on the 6-sphere (see:[Cal]). and by
applving an arbitrary element of SO(7). we deduce that Al is totally real and the tensor
field .Jy coincides with the usual almost complex structure of S¢. This completes the proot
of the theorem.
As the final step in this section. by observing that the dimension of D(p) is either 3 or |

and from the form attained by the shape operators. we can state the following:
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Lemma 19 (see: [D.V] ) Let M be a totally real 3-dimensional submanifold of S® with
second fundamental form h. Then d,(p) = 2 if and only if there exists a tangent vector

v € I,M. such that : h(v.w) =0. Vw e T,\[.

3.6 Chen’s equality and examples

This section is actuallv the continuation of the previous one and provides some exam-
ples of totally real submanifolds satistfving Chen’s equalitv. These examples will be used
within chapter 4 for the classification of totallv real submanifolds of S® which satisfy
Chen’s equality and in particular thev will play a basic role in the classification of sub-
manifolds having constant scalar curvature as well as in the case where further conditions

of integrability on the distributions D and DL are imposed.

Example 17 Let S* = {(y1. y2. 3. y1) € E* 2y} +y5 +y2 +y2 = 1} be the unit sphere in
E*, where S? is considered as an immersed submanifold of R* by the inclusion map. Let

us define the vector fields X, Xy, X3 € X(S?) by:

Ny (g2, s, 91) = (2 =0 yas —y3) -

No (Y1 y2- Y3 94) = (Y3 —ys- =41 y2) -

A (!/1-, Y2, Y3, y4) = (!/-x- Y3 —Y2. = Y1) - (3-6-1)
It is eusy to verify that:

V. Xo]=2-X;, [L.\3]=2-X,, [5.\)=2-X, (3.6.2)

A metric <,> and an orthonormal basis { E|. E,. E3}, with respect to this metric. can be

defined on S3 by setting:

< -\'iy-\'j >=0, Vi#).

<X X >=< XL, X\, >=6. < X3, X;3>=36,

1 1 |
Ey=—-X,. E)= % Xy By = 5 ACE (3.6.3)
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Using the formula of Koszul we compute the connection on S* and get

VElEl = VE2E2 - VE_,}E,’;.

v'E,E'z = —vEgEl = E:z, VElE:s - —E'z«
D

VE3E| :—: E\. VE._)E;;:E|. VE‘3EQ:

Lol N

and a stratghtforward computation yields

R(E\.Ep) Er = -

R(EI,EQ)E:; == R(E2E3) E[ = R(Eg,El) Eg - 0
gE R(E\.E3)Ey = E\, R(Es E3)Ey=Es. (3.6.5)

Using theorem (21) we can define a symmetric bilinear form « on the tangent bundle by:

3 =
B (BB = —\/;.E‘Zs a(Ey Ey) = *\/g- £\,

a(Es, Ey) =a(Es, Ey) = a(E; E3) =0. (3.6.6)

a7 (ElvEl) =

Lol Ot

Using (3.6.4), (3.6.5) and direct calculation we can show the symmetric bilinear operator,
defined by (3.6.6), satisfies the conditions of the existence theorem (21) and hence there

erists a totally real isometric immersion:
(53. <. >) 25 S5 such that RX.Y)=Ja(X,Y), VX.Y € ,‘{(53).

In particular, by direct calculation we get 7 = =% infK = =L and thus 6 = 2.
! y 9 3 3

Note: The immersion v is a totally real immersion of constant scalar curvature T = —

ol

satisfying Chen's equality.

We proceed with the construction of a second totally real immersion of the 3-dimensional
unit sphere in S® which satisfies Chen’s equality and moreover, is of constant sectional

curvature.

Example 18 Consider again the S? as a submanifold of R*, the immersion qicen by the
inclusion map. Take the vector fields XN|. Xo. X3 as in ezample (17) and define o new
metric <,> on S? by setting:

<N X;>=0. Vi.je{l.....n}. i#,; and

< ‘\—1. _\'[ >= ,\-<_:. .\"_) > = _) < 4\.'5, _\-;g >= —1 (5()1—)
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Define the orthonormal basis {E\, Ey, E3} as in example (17) and by repeating analogous

steps we compute the connection and the curvature operator:

Ve El =VeEy=VgEy, Vg Ey=-VgE =—E;,

Vi Ey=—-Fy VgE =0, VgEy=-E. VgE,=0.

R(E\,Es)Es = ~E,. R(E\.E;)E;=E,. R(E, E;)E; = E,

R(E\.Es)Es = R(Es. E3)E, = R(E;.E\)E, = 0. (3.6.8)

Define a bilinear symmetric form on TS? by setting

(Y(E1,E1) =FE,. o(E\.E,))=-FE,. a(Ey Ey) = -E\,
CY(EI.E;;) = (Eg E;;) = (t (E;;. E';) =0. (369)

It is easy to verify that the conditions of the existence theorem (21) are satisfied. Therefore,

there exists a totally real tmmersion:
(8%, <,>) B 8% such that h(X.Y) = Ja(X.Y), VXY € X(5?).

By direct calculation we find: 7 =1, infK =-1, §=2.
Note: w» is a totally real immersion satisfying Chen's equality and of constant scalar

curvature.

Example 19 Let N be any unit vector in R" and S> be the unit sphere in the linear
subspace orthogonal to N. We consider an arbitrary surface immersion f . M* — S” and

define

oy (—g, g) X aime M2 > S7 2 2(t.p) = sin(t).N + cos(t) f(p).

Then ¢ is an example of « minimal, totally real immersion and it is easy to verify. using
theorem (18), that satisfies Chen's equality and furthermore. it is not of constant scalar
curvature.

Note: The mapping r is a warped product immersion of the surface immersion f : \M* —
S5 with the unit normal N to this S°. More details on the warped product tmmersions

there are in the next chapter. in the lust part of the section §4.3.
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Chapter 4

Chen’s equality and classification of

totally real 3-dimensional

submanifolds of SY

4.1 Introduction

In this chapter classification results are discussed, concerning totally real, 3-dimensional
submanifolds of S®, imposing at first. that thev all satisfv Chen’s equalitv. In particular.
chapter 1 is structured in the following way:

In (§4.2) the condition of being a totally real immersion of constant scalar curvature is
studied and it is proved that in this case the immersion is either totally geodesic or locally
congruent to one of the immersions v'. 1, (therefore satisfying Chen'’s equality) given in
the examples (17), (18) respectively. of the section (§3.6). The main reference for this
section is [C.D.V.V1].

In (§4.3). totally real, 3-dimensional submanifolds of S® satisfving Chen’s equality are
investigated, under the extra assumptions that the subspaces D(p), given by definition
(23) has constant dimension (and thus D results to be a distribution) and moreover that
the complementary distribution D+ is also integrable. In this case the warped product
immersion given in the example (19) of (§3.6) characterizes such immersions. satistving
the imposed conditions. The main reference for this section is [C.D.V.\"2].

In (§4.4) it is proved that. starting from a holomorphic curve N, 2y CPY(4). and using the
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Hopf's fibration S - CP2(4). we can find a totallv geodesic embedding S° -5 $% such
that the immersion P.V, Loy, S, where © denotes a lifting of the holomorphic curve to a
unit circle bundle over .V|. is a 3-dimensional totally real immersion in S® which satisfies
Chen's equality.

In (§4.5) almost complex curves without totally geodesic points are taken under consid-
eration and by defining a mapping from their unit rangent bundle into 5°. totzill,v real
immersions (possibly branched) satisfving Chen'’s equality are produced. Furthermore. by
defining tubes of radius 7 over almost complex immersions in S°®, new examples of totally
real 3-dimensional submanifolds are obtained.

In (§4.6) local converses of the above theorems are proved and more specifically:

for any totally real immersion of a 3-dimensional manifold in S®, which is not linearly
full in S° and satisfies Chen’s equality, there exists a totally geodesic S* and a holomorphic
curve S CP2(4) such that the totally real immersion is congruent to the map y which

is obtained from ¢ in the way described in the fourth section of this chapter.

for any totally real immersion of a 3-dimensional manifold, which is linearly full in S®.
satistfving Chen’s equality for a non totally geodesic point of the immersed submanifold,
there exists an almost complex curve in S® such that the initial immersion is congruent,
in a neighbourhood of the point p. to an immersion v obtained in the way described in

the second part of (§4.5). The main reference for the three last sections is [D.\'].

4.2 Chen’s equality and constant scalar curvature

As we have already mentioned in the introduction the basic assumptions on the totally
real, 3-dimensional immersion are that of satisfving Chen’s equality dy; = 2 and that
on the constancy of the scalar curvature. The classification will be obtained in terms of

immersions congruent to the immersions given in the examples (17) and (18) of §3.6.

Let M/* 5 S% be a totally real immersion of constant scalar curvature 7 such that
drr(p) = 2 at each point p € M. and moreover assume M? to be non totally geodesic.
If we recall theorem (19) then. by using the assumption that Chen’s equality is satisfied

on M. we can assert the existence of an orthonormal basis of the tangent space of M at
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each point p of M such that:

hiep.ery=AJey. hiej.ey) = =AJey. hies, er) = =NJey
hiel.es) = h{ey.e3) = h(es.ez) =0. (<4.2.1)
where 2 - A2 =3 — 7(p).

Before we state and give the proof of the main theorem of this section we need to

prepare lemmas.

Let us consider the function f,(u«) =< h(w.u), Ju > defined on the unit tangent bundle

UM, where q € M.

Lemma 20 Let g € M and s, be a critical value of the function f, at the point q. Then
se € {=A. 0.7}

Proof: Since s, is a critical value of f,, there will be u € Y M, such that:
folu) = s and < h(u.w), Juw >=0. Vw € UM, with wlu.

Take an orthonormal basis {e;.e,, e3} satisfving the relations (4.2.1) and put
3
L= e, + ey + ages,  where Zaf =1. (4.2.2)
1=1
The following steps are only a matter of easy calculations. First we note that
huw)=A(al = a3)Jey = 2 aqapJey. (4.2.3)

so that s, =< h(u, u), Ju >= A (af — 3a3) is a critical value of f, if and only if the

following system is satisfied:

< h(u,u),apJey —aJey >=3 (af - (5’) Aay =0, (4.2.4)

< h{u.u). ayJey —ayJeg >= A (af - aj) g = 0, (4.2.5)

where A # 0 since M is assumed to be non totally geodesic.

Let us consider the distinct cases oy = 0 and oy # 0.

If oy = 0 then the equation (4.2.3) becomes a3 = 0 and since Z;}:l a? =1 we ger
w e {+e. +ey}  and thus < h(uow). Ju >€ {+A.0}.
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If cy # 0 then the equations (4.2.4), (4.2.3) imply ;a3 = 0 and o2 = 30, therefore:

1 5 3
Of3:0, (1%:1, Cl%:l

Similarly working in the remaining cases we complete the proof.

In the next lemma it is shown that {e;, e;, e3} can be extended to orthonormal vector

fields { £\, E3, E3} satisfying similar conditions.

Lemma 21 If p € M there exist orthonormal vector fields {E\, Es, E3} around p such
that:

h(Ey, E)) = ME,, h(E|.Ey) =-ME,, h(E,E,)=-\E\,
h (El, Eg) - h (EQ, E'}) = h (Eg, Eg) == 0 (—1_)6)

Proof: Suppose that at the point p € M the function f, attains an absolute maximum
at ug. Let {U;,U,, Us} be a locally defined in a neighborhood U of p, differentiable
orthonormal basis such that, U;(p) = e;, with e; = u, satisfies the conditions (3.5.2) of

theorem (19) in chapter 3. Define the function v by setting:
e RS XU — RB 2 (alva'z-a-'}v (1) = (blv b27 b?o) (427)

where b, = 23

ij=1 @igj < h(U;,U;), JUx > —Xax, Vk = 1,2,3. Using the conditions

(3.5.2) in Chapter 3, satisfied by the elements of the orthonorinal basis. we get:

0 . b # m
Oby . A h=m=1
7k — 7 T _ _
8am (1703 »Ovp)—2<h([/l(p)v(/k (p)),JUm(p) > AOkm (p)*_gl\‘ L =m=2
A, h=m=3

By the implicit function theorem we can assert the existence of differentiable functions
ay, as, as defined on a neighborhood of the point p and such that:
the local vector field V' = a, -1} +ay - V) + ay - Vi satisfies V(p) = v and h(u.u) = X JIW.

% - JW and

Thus, the vector field IV = ﬁ satisfies the relation (V. 1V) = —

consequently, in a neighborhood of p. the function f, attains a relative extremum in 1 (p).
From lemma (20) we know that the set of the critical values of f, is finite and we also

observe that the quantity changes continuously. since the second fundamental

A
VAN
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form and the almost complex structure change continuously. Thus the vector V" has unit
length at each point.

If we take £, = |7 we can extend u differentiably to a vector field V. defined on a
neighborhood U, such that < V., V" >= 1 and moreover, at each point ¢ € U the function
[, attains its absolut maximum at V'(q).

The differentiable extension of the vector « to a unit vector field V = F|. for which the
function f, attains its maximum in V' (g), completes one part of the proof. Let us focus
on the part concerning the second fundamental form.

In the way F, has been chosen we know that 4, E; = A- JE,, ie: A is an eigenvalue of
the shape operator and as it is well known the shape operator has two more eigenspaces.
The first is 1-dimensional, corresponding to the eigenvalue —A and the second is again 1-
dimensional, corresponding to the eigenvalue 0. Since these three eigenvalues are different
and have constant multiplicities we can assert, using standard results, the local existence,

around the point p, of vector fields {E,, E3} such that:
flJEIEQ — —/\ . EQ, fl.lElE.'} - 0 (428)

Combining with the well known relation A;y.X = —Jh(X,Y), (2.2.9, chapter 2), we easily

complete the proof.

Let us now assume that for the orthonormal frame field { £, E,, E3} we have:
g (EhEz) =JE3, G (Ez E3) =JE, § (Es, EI) = JE,. (4-2-9)

In order to determine the connection on M we need the following two lemmata. In the first

of them we shall clarify some points which are not explicitely carried out in [C.D.\V.V1].

Lemma 22 Let {E}, E,, E;} be as in theorem (19) of Chapter 3, then:

VElEl = VE._,EQ == VE3E;;, (-1210)

<VEIE2+VE.2E1,E;; >= 0, (—1211)

1
vE3E1 = —§ : (1+ < V{;l E-g. Es >) . EQ. (—1212)




Proof: Using (4.2.6) of lemma (21) the Codazzi equation yields:

(Vh)(Ey, E3. E3) = (Vh) (Es, By, Ey)
P Vgl/l (Ej;“El) —h (VEIE;}.,Eg) - h (E;}, VElE;;)
= VJE":}}l (EI,E;;) - h (VEJEl, E;;) —h (El,vEBEg)
— h(E\,Vs,E;) =0

and thus
= Vg, E; isparallelto E3; and E31lVg E; = Vg, E;=0.

Moreover
(Vh) (Es3, E\, E\) = (Vh) (E\, E5, Ey)
= Vg h(E\,E\) =2 - h(VgE\ E))
=V h(Es E\) = h (Vg Es. Ey) — h(E3, Vg El)

and we deduce that

ANV JE —2-JA5 Ve,E\ = JAg Vg E\+ JA5,VE E\,
where

Ve, JE\ = JVg,E\+ G (E3, E\) = Vg, JE, = JVg,E\ - JE,
and

—2h (Vg B\, Ey) =2- < Vg, E,Ey > A E,,

since: vEgEl—LEl, h(E3, VEgEl) = 0, and AAJEIEQ =\ EQ.

(1.2.13)

Working similarly for the right hand side and recalling that because of the (4.2.13) we

have Vg, E3 = 0, we get:

AN IV, Ey+ A JE; +2- <VgE\ E; > ANE, = - < Vg E3, E| > -AJE,
+ < Vg Es, Ey > -AJE,

therefore:

<VgE,E;>=0 and

3 < VE3E1,E2 >= — < V[;lEg,E;; > —1.
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Using the equation of Codazzi we have:

(V}l) (Eg, EQ, EQ) = (Vh) (E-z, Eg Ez) —< VEZEQ, E3 >=10 (—1216)
(Vh) (Ey, Ev, Ev) = (Vh) (E\, By, E)) =

< VE,_)El +VE1E2,E3 >=0, < VEIEI,E;_) >=10, < szEQ.El >= 0. (-1217)
Combining (4.2.15), (4.2.16) and (4.2.17) we complete the proof of the lemma.
Lemma 23 The basis {E}, Ey, E5} given in lemma (21) satisfies either:

VEIEQ = VE.ZEQ = VE;3E3 =0
VE]E(} = _Eza VEZE\'} = El' vE] E2 = E3

2 2
VE2E1 = —Eg, VE3E1 - —gEQ, VE3E2 = §E1 (—1218)

i L .y /5 .
wzth7~~§,ze./\—\/;, or

VElEl = VE2E2 == VE3E3 = O,
Vg B3 =—-E,, VgE3=E\, VgkE;=E;

2 2

VE?El == Eg, VE3E1 = —EEQ, VEaEQ = §E1, (4219)
with =1, te: A=1.
Proof: In virtue of lemma (22) we have

< VE;EQ,E;} >=—-< VEzEl,Eg >,

< VE1E27E2 > = 0?

<VgEL,E),>=—-<VgE) E >=0
and thus:

VEIEQ =b- E3, VE2E1 = —b- E3, (—1220)

where b is a locally defined function. Applying Gauss equation for X = £, and Y = Z =

FE5 we obtain
< R(El., E;;) E;j.E;; >= 1. { l_)_)].)
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From the relations

< VglEg,El >= — < Eg,VE3E1 >=0,
< Vg B3, Ey >=— < E5,Vg E; >,
[E3, E\] = Vg, Ey - Vi, B, (4.2.22)

by using the (4.2.12) of lemma(22) we deduce:
1l=-< VE3E1,E2 > (< VEsEg,El >+ K VEQEg,El >)
+ < VESEl,EQ >< VEzEg,El >

and consequently
1 1 9

and combining with equation (4.2.20) we conclude that the local function b is a constant
and moreover satisfies b? = 1.

In order to determine A we apply Gauss equation for X =W = FE| and Y = Z = E;:
1 -2\ =< R(E,E;)E\,Ey >
=< Vg, Vg, £y = Vg, Vg Ey = Vo, B,-ve, B B2, By >
= -b< Vg,E3,E, > -2b< Vg, FEy, E, >

:—b‘z—gb-(b+1)

3
and so we get:
5 2
1-2-A%=—-2-— b 4.2.24
] 373 ( )
[f b = 1 then \? = ;—’ and if 5 = —1 then A\? = 1 hence, M is locally isometric either

to (S3,<>,), or to (S3, <>,) where <>, and <>, are the metrics constructed in the

examples (14) and (15) of chapter 3 repsectively. We can now state the following

Theorem 22 Let Al = S5 be a totally real immersion of the 3-dimensional manifold
M. Then oy < 2. If M has constant scalar curvature T and the equality 05y = 2 holds
identically then, either x is totally geodesic or locally congruent to one of the immersions

l’;"l, Wa.

Proof: It sufficies to recall the existence theorem (21) of chapter 3 and combine it with

the lemma (21).
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4.3 Chen’s equality and integrability of D+(p)

In this section, totally real 3-dimensional submanifolds of S¢ satisfving

® 0x(p) =2

e dimD(p) is constant and D+ is integrable

are classified using a minimal, non totally geodesic, totally real immersion of a surface A/*
into S®, whose ellipse of curvature is a circle. This immersion is linearly full in a totally
geodesic S°. the associated warped product provides the required 3-dimensional, totally
real immersion in S® satisfving the initial assumptions and furthermore, this process is

invertible.

Let f: M2 — 5% be a minimal immersion of a surface, S totally geodesic in S%. The
associated warped product ([N]) immersion is given by:
T 9 6 . ‘ ;
X (—5, 3) X cos(ty M* = S° 1 (t,p) — sin (t) N + cos (t) f (p) (4.3.1)

Let X € X(.M?). then the following equalities hold:

T (g) =cos(t) N — sin(t) f (p),

o (X)=cos(t) fu (X)), Jur, (%) =Nx f(p),
Jr, (X)) =cos (t)sin(t) N x f, (X) + sin® (t) Jf. (X). (4.3.2)

Using the (4.3.2) it is easy to verifv that the existence of the :

< N x f(p), f. (X) >=0. (4.3.3)
< N x fo(p), fu(Y) >=0. (4.3.4)
< JFAX), fo(Y) >= 0. (4.3.5)

for all vector fields X.} € X(/?). is equivalent to the fact of being the immersion f
totally real.

On the other hand. recalling rhat G(X.Y") is the tangential part, with respect to S%. of
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the vector cross product X" x Y in R'. by using standard properties of the vector cross

product we get

<G (X)L L)) N >=0. (4.3.6)

<Jf (X)) N>=0 (4.3.7)

and the condition that the warped immersion r be totallv real has been reduced to
conditions depending only on the surface immersion f.

Let us identifv M? with its image f(.1/?) and differentiate the equation (4.3.3) with respect
to ¥ keeping in mind that, the vector .V is constant and V x p is perpendicular to .\ for

all X € X(M?). given that the surface is assumed to be totallv real. We obtain
< Nxp X>=0=< N x 6”). N>+ < VX pﬁ,.\’ >= 0,

therefore
< NXY X >+< Vxp Ve XY +0(X.Y)>=0, (4.3.8)

since .V x pLVy X € X(M?). Hence.
CNXY, N >4+ < N xph(X.Y)>=0. (1.3.9)

where span{N.JX.JY'} = L, M in S? since M? is contained in a totally geodesic S°.
But < VxY X >+ < Nxph(NY)>=0=<VxX.Y >+< NVNxph\.Y) >
therefore < NV x Y, X\ >=< NV x p. h(X.Y) >= 0. i.e: equation (4.3.3) implies (4.3.4).
Take {¢.e,} to be an orthonormal basis of T, M/2. It is clear that G(e;. ¢,) is perpendicular
to the span-of the vectors {e,.c,. Je,. Je,. p} and from equation (4.3.4) we have that is
also normal to the constant vector .V. Furthermore. from the equation (4.3.3) we see that

N x p is perpendicular to the span of the vectors e,.e,, . Je,, Je; and in conclusion
Gler.ep) =+p x .V (4.3.10)
After changing the sign {(if necessary) we make sure that
ey Xxey=JN. o, x N=—<Jes. o, x N=Je,. (4.3.11)

Note: The normal space of 1/? in S7 is spanned by the vectors {Je,. . Je,. SN} On the

other hand <.V x \.Y >=0 and thus

< Nxh(YZ). X >+ < NxY h(XN.Z)>=0. VN.Y. Z2¢€ X(M). i1.3.12)
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By setting X = e;,} = ¢, we obtain:

< Jeg, h(es, Z) >+ < Jey.h(e;. Z) >= 0.

< h(es,e0), JZ >+ < hle.e).JZ >=0. (4.3.13)

where the equations (4.3.12) and (4.3.11) imply that the mean curvature vector of \/?
in S° is orthogonal to both Je, and Je,. If we recall equation (4.3.9) we see that V is
normal to H and clearly the mean curvature vector has to vanish.

Again from equation (4.3.9) and by recalling that px .V = +G(e|, e5) we see that h attains

the form:

h., (61’61) = atle'z + .3.]62,
h(eq, e0) = —aJe; — FJes,

h{ey, ex) = 3Jey — alde,. (4.3.14)

and this actually means that the ellipse of curvature of M/? is a circle (possibly a point).
Conversely, let us assume that 1/? is a minimal, totally real surface in S% whose ellipse

of curvature is a circle. In order to proceed we need the following (see:[D.O.V.\3]).

Lemma 24 Let M? be a totally real surface in S8. denote with V the Riemannian con-

nection on M?. Then:

A X =—J(h(X. V). (4.3.13)
ViJY =G (X, YY)+ J (VY )+ J(h(N.Y)". (4.3.16)
<h(X,Y),JZ >=< h(X.Z),JY >. (4.3.17)

for all (X,Y) € X(M?) x X(M?). where t denotes the tangential and n the normal part

with respect to M? in S%.

Proof: It is 6\ JY = -4,y X+ ViJY, where ¥ denotes the Levi-Civita connection on

S8, and from the definition of the tensor field G:
G(N.Y) = (V)Y
=VJY - IV Y

= Ay N+ TSy = JT Y = Th (X))
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G(N. V)= AN +ViJY — VY — Jh(X.Y) (4.3.18)

for all vector fields X.Y € X(3/?). On the other hand it is easy to check that G(X.Y") is

normal to M?. Hence. by taking normal and tangential components of (4.3.18) we deduce
the equations (4.3.15 ) and (4.3.16).

In order to deduce the equation (4.3.17) we use the (4.3.13) and get:
<h(NY). JZ >=— < (Jh(X.Y)N . Z>=< A;xY.Z >
where
‘%_,_\- <Y Z>=0=—=< A;vY Z>=<VY. 4,2 >
and thus
<h(X. YY), JZ >=<Y. A,xZ>=<h(X.Z).JY >.

The proof is completed.

We now return to the case of the totallv real minimal surface in S® with ellipse of
curvature a circle. Take {e,.e2} to be an orthonormal basis of the tangent space at the
point p € M2, It is easy to check that 1,M? is spanned by the set of vectors
{Je\. Jes. €y x €5 J(e; X €3)}. Using (4.3.17) in lemma (24) and the minimality of M? we

get that the second fundamental form can be written as

h (6’1,6’1):(11-16’1 + (l-_).]("-z + (l;;((?l X (’2) + (14.](61 X (,’2).

hiep,es)=ayJe; —aJe, + ey x ey) + dJ(e; x ea). (4.3.19)

To get further information on the coefficients of the second fundamental form we observe
(using minimality and the assumption that the ellipse of curvature is a circle) that. for

anv 1 = 1.2 and for anv ¢ € R. the following relations must be satisfied:

€ -+ey € + ¢
nh(

s )||2=uh<ei.ei)n2=>Hh(el,ez) 12 = ik (even) I

[|h (cosoe; + sinoe;. cosoe| + sinoey) I = (6052(9 — .smzd)) hey.e) ~ ~sim2oh (e 00) |

= |lcos20h (e, e1) + sin20h (¢ ) 7

= [ih (e e |1,




and as consequence we get

1 (er,ea) |2 = [[h (e e) |17, (4.3.20)

< h(ey.en), hie;.e,) >=0. (4.3.21)

From (4.3.19), (4.3.20) and (4.3.21) we get
(1.;'; + (Lf = +d? e+ aud=0. (4.3.22)

The next step consists in the use of the Codazzi equation. In order to apply this equation

let us at first write the connection ¥V on M? in the form:
Veer=des. Ve, =Be. V,e,=—-4de;. V.e = —Be. (4.3.23)
and consider the svstem

(Ve h) (e2,€1) = (Ve,h) (e1.€1) . (4.3.24)
(Ve,h) (e1.€2) = (Ve h) (€2.€9) . (4.3.25)

Compairing the coeflicients of the terms, on both sides of the above system, corresponding

to the same vectors of the normal space, we get

ey (a2) — ez (ay) + 2day — 2cay — az =0, (4.3.26)

es () + 2asd + a3 — 2cay — e (a3) = 0. (4.3.27)

Adding the equations (4.3.26) and (1.3.27) we get
ayd — cay = 0, (1.3.28)
and from the system formed by the equations (4.3.22), (4.3.28) we easily obtain
az=ay,=c=d=0. (4.3.29)

The (4.3.29) prove that A(N.Y) € JTM? VX.Y € X(M?) and more specifically. the

second fundamental form becomes

hiey.e)) =ayJey +asdes. hiey.en) = ayJey —ayJe,. (1.3.30)
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Under the aspect of the relations (4.3.15). (4.3.16) of lemma (24) it is clear that the terms
which merit a special attention, in resolving the svstem formed by the Codazzi equations.
are those involving the calculation of the terms V (e) x ;) and V,}k.](el xey). k=12

where V+ denotes the normal connection of 3/*. As an example let us compute:

V(e xey) = Ve leg x ea)— <V, (e x ), e; > -e;= < 691(61 X €). 65 > ¢

el
where
Ve (€1 X ey) = D, (e xe3)— < D, (€] Xep).p>-p

= D, (e X e3).

since the assumption of being M? totally real implies

<exenp>=0=< D, (e xe3),p>=—<e; XeyDyp>=
— < e X ey e >=< D, (e, xey).,p>=0. (4.3.31)
Therefore,

V. (er x e2) = D, (e, x €2)
= (D.,e1) x ey +e; x De ey
={V. e +hle.e)} xey+e x {Veea+hlee)}
={des +a;Je; + asJey +ag(e) X e3) +agd (e1 x e3)} X €3
+e) x {—dey +ayJey —ayJeg +c(e) x ey) +dJ (e x e3)}
= —aJ (e) x e3) — ayp — aze; + azJe; — A(ey x e3)
+ agp + ayJ (e x ey) — cey + d.J ey,
S0:
D., (ey X e3) = —aze;, — cey + ayJey +dJey — A(eq x e3)
and finally we get:

Vi (er x e3) =ayJe, +dJe, — Ale, x ey).
€y

Let {E|, E;} be an orthonormal basis of the tangent bundle of AM?. Define the subbundle

B of the normal bundle by serting:

B(p) = J(T,M) < span{G (E|. Es)}. (4.3.32)
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Let us recall at this stage the definition (22) in chapter 3. of a ¢-dimensional paral-
lel normal subbundle of the normal bundle. Using the relations (4.3.15). (4+.3.16) of
lemma(24) and the equation (4.3.30) we can show that the 3-dimensional normal subbun-
dle B is parallel in the normal bundle. Since computations are not carried out explicitely

in [C.D.V.V2] we calculate indicatively the following:

VEI-]EI = JVElEl "T'g(ElE[) + (]/1 (El.El))“ Sl
v;;l-]El = ‘—lJE‘Z - (—(IlEl - (I,QEQ)“ = .'1.]E2 eB

and

Vi (E\x Ey)) = Ve (B x Ey) = < Vg, (E\ x E) E, > E,
— < Vg (E\ x Ey) Ey > Ey

where for the terms involving the covariant derivative of the vector cross product we have

€E1 (Ey x E3) = Dg, (E) x E3)
=(Dg,) x Ey+ E, x Dg E,
={Ve, E\+h(EE)} x Ey+ Ey x {Vg Ey + h(E|. Ey)} x Ey
={AE; + a\JE| + a3 JEy} x Ey + Ey x {—AEy + ayJE, — ay JE,}
=—4(F, x E,) € B.

Analogoouslv working for the remaining cases we verify that B it is actuallyv parallel in

the normal bundle.

Since B7is a 3-dimensional subbundle of the normal bundle of M? we mayv use the

following theorem, due to J.Erbacher [Er]:

Theorem 23 Let \[" — ‘\Ai"*”(r)be an isometric tmmersion, M" be connected. and
suppose that the first normal space N(&r) is contained in a subbundle N of the normal
bundle. If N is invariant under parallel translation with respect to the connection i the
normal bundle and the dimension of N is a constant [ then, there exists a totally geodesic

submanifold N"* of ‘W”*”((') such that: ©(M™) C N+

Using the above theoremn we conclude that M2 lies in a 3-dimensional totally ceodesic

hyvpersphere of S% .
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Let V be a unit vector orthogonal to this S°. By construction J.X is tangent to S* and
hence orthogonal to .V for all X' tangent to )/?. Therefore the (4.3.3) is satisfied. the
(4.3.4) follows from (4.3.3) and (4.3.5) is true because M? is. by hyvpothesis, totallv real
in S,

Even if M? is totally geodesic we can determine uniquely this S° in the following way:
for any point p € M this S is the unique great hvpersphere of S® passing through p and
tangent to 1,0 @& B(p).

If M/? is not totally geodesic then it can not be contained in a totally geodesic 4-sphere.

The above discussion can be crystalized in the next theorem ({C.D.V.V2]):

Theorem 24

(1) Let f: M?— S® be a minimal, non totally geodesic, totally real immersion in
S8 | whose ellipse of curvature is a circle. Then M? is contained in a unique
totally geodesic S° and the warped product immersion (4.3.1) is totally real.

(2) Let f.x be as in (4.5.1), then x s totally real if and only if f 1s totally real
and J(f..X) s tangent to S° for all vector fields X € X(M).

(3) Let f,x beasin (4.3.1). If x is totally real, then f is totally real, minimal and

has as ellipse of curvature a circle.
We need the following

Example 20 Let F : M? — S° be a linearly full. superminimal (as described in §4.5),
almost complex immersion. Let U. 1" be local orthonormal vector fields defined on a neigh-
borhood W, which span the second normal bundle. For any v € (0.7) we define the tube

of radius vy, in the direction of the second normal bundle, by setting:
F, W x S' < S%: (1.0) — cos (7) f(x) + sin(y) (cos (8) U + sin () V7).
(4.3.33)
The mapping F, defines a totally real immersion if and only of: either cos(~) = 0 or

tan*(vy) = 3.

Let us now assume that X/ — 5% is a totallv real immersion of the 3-dimensional manifold

M. From lemma (19) of Chapter 3 we know that Chen'’s equality 04 (p) = 2 is satistied




at the point p of M if and only if there is an orthonormal basis {e|, e,, €3} of T, such
that:

hierey) = Aey, hley.ea) = —=NJey, hiey,es) = —AJey. and  h(eg,e3) = 0. Vk =
1.2.3 where 20? = 3 — 7(p).

Defining D(p) = {X € T,M : h(X.Y) = 0. VY € T,M} we get that D(p) is either
3-dimensional (and p is a totally geodesic point) or 1-dimensional.

From now on we assume that the dimension of D is constant on the manifold M. Accord-
ing to lemma (21) we can assert the existence of local orthonormal vector fields {E,}7_,.
defined on a neighborhood of the point p, and satisfving the conditions
hME\E)=NE|, h(E\.Ey) = -ANE,, h(Ey Ey) = —=AJE,, and h(E,, E3) =0, Vk =
1.2.3. where \ is a local function satisfving 2A? = 3 — 7(p).

Suppose G(E\, Ey) = JE3. G(Ey, E3) = JE,, G(Es, E|) = JE, and moreover we assume
that dimD(p) = 1, Vp € M and D+ to be integrable.

Let p € M and define the local functions
~f =< VgEj Ex> ij k=123 (4.3.34)

We have the following

Lemma 25 The above defined functions 75 satisfy the relations

. . . , A . 1, . .
“rfj +o5 =00 = =00 I = M= e VR = 3 (7'132 +1) (4335
Ev(N)==3 3. Ex(\)=-=-3-M7. E3;(\)= -\, (4.3.36)

Proof : From the Codazzi equation we have:
(Vh) (E\, B3, E3) = (Vh) (E3. E\. E3) =
Vi h(Es, E3) = 2h (Vg Ey Es) = Vi h (B E3) — h(Vg, B\ Ey) — h(E\. Vi, E3)

and thus
h(E\,Vg,E3) =0. (4.3.37)
If we put Vg, E3 = kE| + ptEy and use (4.3.37) we get

IL(El! VE3E3) = 0 P /\{H.]El —_ /L-]E-Z} = O —_—

K=[llL= () p——N VE_;EJS = 0 { 1538)




and the equation (4.3.38) implies that : ~}, =~3, = 0.

(Vh)(Es, E\,E\) = (Vh)(E|.E5. E|) =
VE%/\JEl —2h(NVp,E\.E\) = =h(Vpg Ey. E\) — h(E3. Vg EY), (4.3.39)

where Vi MJE, = E3(A)JE, + NV E; + AJE,. Using the (4.2.12) of lemma (22} we

can write

E3 (/\) .]E1 + /\JVEREl + /\-]EQ +2< vEsEl,Ez > /\JEQ =
- < vElEg, Ey>MNE+ < VElEI3= Ey > MNJEs, (43—10)

and since < Vg, E3, E, >=0 = — < E5. Vg, E| >. by comparing components on both

sides of the (4.3.40). we obtain

Es (/\) =A< VElEl.Eg >.
3 < vEsEl,E-g >= — < VEIE-_),E;; > -1.—=

Es(A\) = 3. 34 =), -1 (4.3.41)
Applving once more the Codazzi equation to the ordered triple E5, E, E'} we have

(Vh)(Ey, E\ Ey) = (Vh)(E Ey E)) =< Vg, B + Vg By E3 >=0,

Ey(A)=3N< Vg ELE,> E(N)=-3A<VgEy E >. (4.3.42)

Combining (4.3.42) with (4.3.39). (4.3.40) and (4.3.41) we complete the proof.

In order to simplifyv the notation we introduce the local functions :

— -3 — &3 W -2 — -
a=57, b=7n, =7 d=x

[ 2

- Then. by lemma (25), we get:

Vg By =cEy+aEy. Vg E,=—cE +bE;, Vg By =—aE, — bE),,

Ve, By =dEy, —bEy. Vg, Ey=—dE, +aE;, Vg, E3 =bE, —aFE).

Vi, Bl = —% (b+1)-E,. VpE,= %(b+ E,. VgE;=0,

E1 (A= =3Xd. E,(\) =3Xc. E;(AN) = )a. (4.3.43)

By assumption D+ is integrable and D+ = span{E\, E,}. Since D* is integrable we have:

[Ev Ey] =V By~ Vg, Ey =

—cE| +bEy — dEs + bEy € span{E,. E;} = b =0. (134

103




Lemma 26 The local function a. under the above assumptions, satisfies the conditions:

E(a) =0. Ey(a)=0. Es(a)=1+a>

Proof: From the Gauss equation and using the (4.3.43) for b = 0. we obtain:

O0=< R(E\.Ey)Ey Ey>=—c-a—Ey(a)+c-a= Ey(a) =0.
) =< R(EQ, E_g) E, Ey >= E| ((l,) = 0.
I =< R(EIE;) Eg.E[ >= E;g ((1) — (1.2 = 1,

and the proof is completed.

In order to state and prove the next lemma we remind well known facts about warped
product immersions, especially S. Hiepko's condition [Hi|, as it is stated in [N], about the
decomposition of a Riemannian manifold into a warped product.

Let M be a Riemannian manifold, with Levi-Civita connection V, isometricallv immersed
into the Riemannian manifold .V. A subbundle E. of the tangent bundle T 1/. will be
called:

(a) parallel if VY e E. V(N.Y)eTM x E,

(b) autoparallel if VY € E. V(X.Y) e Ex E,

(¢) totally umbilical if there exists H € £+ such that:

< VY. Z>=< XY > <HZ> VY(X.Y.Z)e Ex Ex E* and in this case H will
be called the mean curvature normal of £,

(d) spherical if it is totallv umbilical and its mean curvature normal H satisfies the
condition < VyH,Z >=0. V(\.Z) € E x Et.

[f £ is autoparallel, totallv umbilical or spherical, then it is involutive and all the leaves

of the foliation of M (induced by E) are: totally geodesic, totally umbilical or spherical

respectively.
Let My M. .. .. 1/, be Riemannian manifolds and M = My x ... x A, their product.
Let 7w, : M — M;. Vi = 0.1.... .k be the canonical projection. L, the foliation

of M canonically induced by M; and TM — TL; the vector bundle projection. If

Pre. .. .pr - My — R, functions. then:

k
< XY >=< (7). N (7)Y >+ (prom) (7). N (7). s
=1
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defines a Riemannian metric on M and (1, <.>) will be called the warped product
My x, My x oo x,, My of My, ..., Ay and py, ... . pr the warping functions.

T')M splits orthogonally. with respect to the metric <, >, i.e: TAM = &ETL;.

In [Hi] S. Hiepko proved the following “condition”:

Let M be a Riemannian manifold with TA = &§ E; an orthogonal decomposition into non
trivial vector subbundles such that E; is spherical and E} is autoparallel for i = 1.. .. k.

Then :

(a) For every point p € M there is an isometry ¢ of a warped product Mg x,, x ... x, M}

Pr

onto a neighbourhood of p in 1M such that:

pi(po) = ... =pe(po) =1 (4)

where py is the component of ©=!(p) in M. and such that:

v({po} x ... x {pic1} X M x {pix1} x ... x {pe}) is an integral submanifold of E; for
t=0,... . kand forall pg € My.... .pr € My (B)

(b) If M is simply connected and complete, then for every point p € 1/ there is an
isometry i of a warped product My x,, M, x ... x, A} onto all of M/ with the properties
(A) and (B). (for more details on the warped product immersions and representations of

the standard spaces of constant curvature in terms of warped products, see [N]).

Lemma 27 Let M be as above and p € M. Then, in a neighborhood of p. M is a warped

product of an interval (—¢. +€) and of the connected component N? of D+ through p.

Proof: Under the aspect of the above quoted result. and in order to prove that /[ is
actually a warped product of the asserteds form. we need to show that: for the components
of the orthoéonal decomposition T\ = D@D+, of the tangent bundle into the non trivial
subbundle D and its orthogonal complement D+*. the distribution D is spherical and D+
is autoparallel.

From the relations (4.3.43) we obtain Vg, E3 = 0. Therefore D+ is totally geodesic and,

by setting b = 0 in (4.3.43). we obtain
<VE1E]',E3 >= (SiJ(L'E;;. VIJ e=1.2.

Hence, D+ is totally wmbilical in )/ with mean curvature vector n = a-E3. Moreover. since
E\(a) = Es(a) = 0 we deduce that the mean curvature vector is parallel aud consequently

D+ will be spherical. Using Hiepko's condition (see:[Hi]. theorem 16) we have the required
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assertion.

We can now state and prove the main theorem of the section (see: [C.D.V.V2] )

Theorem 25 Let f: \[* < S° be a minimal, non totally geodesic totally real immersion
in S® whose ellipse of curvature is a circle. Then M? is linearly full in a totally geodesic

S®. Let N be a unit vector perpendicular to this S°>. The map

(- ) Xeost M? = S%: (t.p) — sin(t)N + cos(t)p

b

AN
[NeR =

s a totally real, non totally geodesic immersion satisfying Chen’s equality. Conversely,
every totally real, non totally geodesic immersion of a 3-dimensional manifold L into S°
such that: (i) 8y = 2, (ir) dimD =1 and (i) D* s integrable,

can be locally obtained in this way.

Proof: Using the theorem (24) we obtain the direct part of the assertion. Conversely,
from the lemma (26) we get that L is locally (for M? = N?) a warped product and the
distributions on L, determined by the the product structure, locally coincide with D and
D+L. Moreover, since h(D,D*) = 0. by using lemma (18) of Chapter 3, we obtain that L is
locally immersed as a warped product, with its first factor totally geodesic. Therefore, we
can assume that the first factor of the corresponding decomposition is 1-dimensional and
this decomposition is unique up to isometries. Hence, L is immersed in the wayv described

by the (4.3.1).

4.4 Sasakian structure on S°, Hopf lifting and classi-

fication.

In this section we are going to present the way a totally real 3-dimensional immersion in
S8 can be constructed. starting from a holomorphic curve ¢ in CP?(4). lifting ¢ on the
circle bundle, over the domain of the curve induced bv the Hopf fibration. to an invariant
immersion in S3 and proving the existence of a suitable imbedding of the 5-sphere into
Ss.

Let us at first quote some basic facts on the theorv of Sasakian manifolds and in partic-
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ular on the Sasakian structure of the S* induced from the complex structure of C*. As

references for the theory on the Sasakian manifolds we quote [Y.I{2] and [Y.IK1].

Definition 24 Let M be an odd-dimensional differentiable manifold, {@.£,n} an (1.1)-

type tensor field. a vector field and an 1-form respectively, such that,

0’ N ==X +np(X). 66=0. nloX)=0. nl&)=0.
V(N.&) e X (M) x X (M) (4.4.1)

Then M is said to be an almost contact manifold with almost contact structure
{o.€.n}. Define the Nijenhuis torsion tensor Ny, corresponding to the tensor field ¢

by setting
N, (XN Y) =[oN.0Y] - [N.Y]—0o[X.0Y] -0[oXN.Y]. VX.Y € X(M).
The almost contact structure on M is said to be normal if and only of Ny +dn @& = 0.

Suppose that a Riemannian metric tensor field ¢ is given on an almost contact manifold

M. then:
Definition 25 If the almost contact structure satisfies
g(oN, oY) =g(N. )= n(X)n(Y). n(N)=g¢(X.6). VXY € X(M). VEe€X-(M)

then {¢,&, m, g} 1s called an almost contact metric structure on M and M an almost
contact metric manifold.

An almost contact metric structure is called a contact metric structure :f:
d(X.Y) =g(oX.Y). V(X.Y) € X(M) x X(M).

Moreover, if a contact metric structure on M is in the same time normal. M u:ll be called

a Sasakian manifold.

Let M be an (2n+1)-dimensional contact metric manifold with associated contact metric

structure {@.&.1.¢g}. We have the following
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Theorem 26 ([Y.K1]. pg:272 ) An almost contact metric structure (6.£.1.g) on M is

a Sasakian structure if and only if :

(Vi)Y =g (X, V)€ —n(Y)X,V.X.Y € X(M). (4.4.2)

Let us put ¥ = £ in the equation (4.4.2). Using the definition of the covariant derivative

of an (1.1)-type tensor field we get:

(Vxo)e = g(X. 8¢ — (Y)Y = Vio(£) —o(Vx§) = g(X.§)§ - n(Y).X

and from the conditions of the definition (23) we have

9(X.&) = g(oX. 0&) — n(X)n(§) = —n(X),
since n(£) = 1 and ¢& = 0. Combining the above relations we obtain:
Vi€ =—-0X, V(X §)eX(M)xX(M). (4.4.3)

Let us consider the following examples of Sasakian manifolds.

Example 21 Let S+ = {z € C*"! . ||z]| = 1} be the (2n+1)-dimensional unit sphere
and for any z € S**! we put & = Jz, where J denotes the multiplication by i in C**!.
Let m: T.(C**!) — T.(S?"*1) be the orthogonal projection.

Setting © = m o .J we obtain a Sasakian structure {¢.£,n,g} on S™FU where. i s an

I-form dual to € and g is the standard metric tensor field on S***!.

In the next example we discuss the Sasakian structure induced on S® by the complex

structure of C* and also sketch its relation with the vector cross product on R ([D.V]).

Example 22 Let i : S° — S® C R be the inclusion map and consider S® as an hyper-
sphere of S® given by xy = 0. Let j be the map defined by
SENE (xy, 22, 3,0, 5. 05, 07) —> (L} + 1T5, L2 + 1T6, T3 + 127).

At each point p = (. ....17) € §° we define the structural vector field & by setting

Ep) = (z5.165.07.0. =0, =y, —r3) = €4 X P.
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and for any tangent vector field v = (v vo,v3, 0,05, 0. 07) € T,,(S'a), with v orthogonal to

£, we have
o(v) =(—vs. —vg. —v;. 0.0y 19, 13) = 0 X ey.

It is not hard to check that (S*.¢.£.1.q9), where n is dual to &, is a Sasakian manifold

and furthermore, the following hold
o =0=0f(p)=0, YVpeT,S” = (e, xp)xes— <(egxp)xe,.p>p=0.
and thus

ow=wxe;—<wxe.p>-p. YwéeE Tp55. (+.4.4)

In order to state and present the main result of this section it is necessaryv to quote some

generalities on the theory of invariant submanifolds of Sasakian manifolds.

Definition 26 Let M be a (2m+1)-dimensional Sasakian manifold with Sasakian struc-
ture (0.€,1.9). An (2n+1)-dimensional submanifold M of M1 will be called an in-

variant submanifold if and only if

(1) €€ X(M), everywhere on M and

(2) oX € X(M), V(p.X)e M x (M), that is: oT,(M) C T,(M). ¥pe M.

If M is an invarint submanifold of the Sasakian manifold M ., with induced structure
tensor fields denoted also by (0.€, 1. ¢) it can be verified that M is a Sasakian manifold.
Let V.V denote the covariant differentiation corresponding to the Levi-Civita connection
on M and M respectivelv and assume that M is an invariant submanifold of M. The
M being invariant means that the structural vector field £ is tangent to M. recalling the

(4.4.3), for anyv tangent vector field .\’ to .M/ we can write:
-0 X =V =Vl +(\N.§) =V,
and by compairing tangential and normal components on both sides we get:

h(N.E)=0. V(N.&eX(M)xX(NM). (1.4.3)
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Let us return to the specific case of the 5-dimensional unit sphere. Suppose that 1/? is
a 3-dimensional invariant submanifold of S°. The structural tensor field £ = e, x p of §°
will be tangent to M3,

If p, : C - {0} — CP?(4) denotes the canonical projection from C* — {0} onto the
quotient complex projective 2-dimensional space , then the so called Hopf fibration is
the composed mapping 7 : 5> — CP?(4) such that 7 =: p, o j and the inverse image. of
each point of CP?(4) under 7. is a circle. The Hopf fibration annihilates £, i.e: dx (&) = 0.
Then, if M/? is an invariant submanifold of S3. the image 7()M?*) is a holomorphic curve.
Conversely, if NV, 2, cp? (4) is a holomorphic curve and PV, is the circle bundle over V;,

induced by the Hopf fibration 7. then. if the diagram

=

P‘Vl—)' 55
7 l
Ny BCP2(4)

commutes, ) is an invariant immersion in the Sasakian space form S° with structure
vector field £ tangent along .
Before we state and prove the main result of the section we recall lemma (19) of Chapter

3.

Theorem 27 Let N, 2 CP%(4) be a holomorphic curve in CP2(4), PN, be the circle
bundle over Ny, induced by the Hopf fibration S> = CP2(4). and let PN, = S” be an

1sometric immersion such that the diagram

PN, % S
L on 7
N, Sepr(4)

commutes. Then there ezists a totally geodesic imbedding S° = S® such that the mapping

PN, % 56 s q (3-dimensional) totally real immersion in S® satisfying Chen's equality.
Proof: Let N; 2 CP2%(4) be a holomorphic curve, lift ¢ to an invariant immersion
PN, % S5 and identifv PN, with its image vi(PN,) C S%.

If h denotes the second fundamental form of the immersion © then from (4.4.5) we have
h(X.£&) = 0 for any tangent vector field NX. It follows. from the above quoted lemma (19).

that P.V| is a minimal submanifold of 5> satisfving Chen’s equality.
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It remains to prove the existence of an embedding S° “5 S5 such that the composed
mapping PN, 1Y S8 s a totally real immersion.

Consider S® as the hvpersphere in S € R7 given by the equation ry = 0. Let p € PN,
and let X' be a unit tangent vector of P.V, such that X is orthogonal to the structure
vector field £, where £ = €4 x p.

In this case {.X. 9.\, &} is an orthonormal basis for the tangent space of P.V,.

But £ = ey x pand JE = p x (ey x £) = ;1S therefore JELPN,.

On the other hand ¢.\' = X' x e;— < X' x ey, p > -p and the following hold:

<px X, X >=0. <pxXf>=<pxNe,xp>=-<XN.e;>=0

<PpX X, 0N >=<px X\. X\ xe;>=<p, X\ x (X xey) >=— < p.e;y >=0(44.6)
and from the relations (4.4.6) we get that
JXLU(T,PNy), VXLE and JELw (T,PN,) ateach pe PN,

and the assertion is proved.

4.5 Almost complex curves in S° and classification

Let ¢ : N2 — S°® be an almost complex curve. o denotes its position vector field in R".
For notation’s convention we indicate with « the second fundamental form of o. bv .J the
pullback of the almost complex structure to .N? and recall that. for any vector fields X. Y

tangent to the curve, the following formulae hold (see:[D.V])

o (N JY) = Ja(N.Y). Ay =J4, =4,/ ViIg=G(X.Y)+ IV
(Vo) (X.Y,JZ) = J(Va) (N.Y.Z) + G (q;*‘\',a (v, 2)) . (4.5.1)

Let p € N? be a non totally geodesic point. V™ an arbitrary unit tangent vector field
defined on a neighborhod 11" of p.
Define the (non-zero) function ;i = [Ja(V. V)], Since N? is almost complex in S it

follows that u does not depend on the particular choice of V. Let U = J1 and define the
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following vectors:

~ ~ . - . (1

Fl=o. Er=on. B=Joi. F=o@)
I

A (V1 Je (V.U

F3:(\( ]): o ( )=F1><F.x‘
/L 7
(11 (VT
F(;szx(}( ) F7:F3XO( ) (—152)
7 7
Then {F|. F,,... . F;} is a G, frame. given that G, preserves the vector cross product.

Since N? is an almost complex curve the vectors {F5, F3} span its tangent space and
. 2 .
consequently { Fy, Fs, Fs, F7} form a basis of the normal space along .V" Thus. there exist

functions {a.... .y} such that:

(Vo) (VV V) = pla Fy + a0 F5 + asFg + (nFr) . (4.5.3)

Using the equations (4.3.1). and in particular the (Va)(X,Y,JZ) = J(Va)(X. Y. 2) +
Q(c;*_\', a(Y, Z)), we obtain (given that by hvpothesis U = .JV) that:

(Vﬂ) (‘ [ L') = U (—(,k-_)F4 + (Y[Fa + (1 + (l'_‘) E; - Q;;F;') . (43—1)

On the other hand. we ma & that V? is:

e Superminimal if and onlyv if (Va)(1.1.17) is perpendicular to (Va)(1.1.07) and

both have the same length.

o L«'nearej fw{( La SC if and only if the components of (Va)(1.1717)
and (Va)(V. V1), orthogonal to Fy and F;, are (M&V% ino(t,o eamden €
of the P'”*[lmn}\u‘iu Kk Thart ost
We precatd F"f"" Pajé gAfour tvpes of almost complex curves(see [B.\'.\\'lD We now
see. from the equations (4.5.3) and (4».5.4), that .V? is an almost complex surface of tvpe
(I),i.:e superminimal and &Aewﬂj Fw[p(l if and only if a3 =0 and o, = — 3.
Similarly, V? is an almost complex surface of tvpe (III), i.e: linearly full in a rotally
geodesic S°, if and only if vy + o + a3 = 0.

Let sy, ;12 be functions. locally defined on N? by:

ViV =0 ViU =t ViU =—-V. ViV ==, (-£.5.5)




Recalling, from (4.5.2), that «(V.17) = u - Fy, the definition of the covariant derivative of

the second fundamental form « and equation (4.5.3), we obtain:
o =< (Vo) (V.1 V)  a (V1) >
= 51’ <a(V V). a(VV)> =2 <a(V.U),a(l;1) >,

therefore:

L1 , _
o pt = 5‘/ (,U,Q) =u-V (). (4.5.6)

Working similarly with the equation (4.5.4), using the equality «(V,JV) = u - F5 we

finally obtain

Viw) Ul

y = y O =
2 I

In order to proceed further we need the following technical lemma

Lemma 28 If D denotes the standard connection on R then

(1) Dv(uFy) =p-(—puFs+ o Fy + (g + 2u1) F5 + asFg + oy Fy)

(2) Du(pFy) = p-(—pF3 — coFy + (0 = 2p9) Fs + (1 + ) Fs — a3 F5
(3) Dv(ufs) = (—pFy — (cg + 2u) Fy + o Fs + (1 + ay) Fs — a3 F7)
(4) Dy(pFs)=p- - (—uFy — () = 2uo)Fy — agFs — a3y — oy F7)

(5 ) Dy (uFs) = p-(—a3Fy — (aq + 1)Fs + a Fs + (c + 34 ) F7)

(6 ) DutuFs) = p-(—(ag+ 1)Fy + a3F5 — apFs + (o — 3p2) F7)

(7) Dv(puF?)=p- (—ayFy + azFs — (ag + 3y Fs + a1 Fy)

(8 ) Du(/.LF7) = U~ ((YgF; + G.;Fs + (3#2 - CY])FG - CYQF;‘)

Proof : Although in [D.V] there are some computations, with respect to the way the
above equations can be deduced, we shall give some more details concerning the process.

First, let us observe that since @ is the position vector field of 5(1V2) C S8, it follows that:

<a(V.V).op>=0=< Dya(l.V).0 >= — < a(V,V),V >,




)

and decomposing the connection D of R”. with respect to the connection on o(.V?). the

normal connection and the second fundamental form « of the immersion @, we have

Dia(ViV) = =0, (daiy)V) + Via (V1) = < Via(V.1V) > -0 (15.8)
Via (V1) = (Va) (V1) = 2a(V 1) =

V\L(} (" ") = - (Q’[F; + CI‘QFg + C‘z’gFﬁ + ().'J‘FT) — 2« (,LLIL’T, "> . (—139)

and from the (4.5.3). (4.5.3) we get
AoV =< Agpey). V> U+ < A U > U
=<a(V.1).aVV)> V+<al V). a(V,V)>-U
=< puFy yuFy > V+ < pkbs. ubs > U

Hence,

AoV =21 (4.5.10)

[t is also clear that < V. (V. 17) >= 0 and by replacing (4.5.9), (4.5.10) in (4.5.8) and

combining with (4.5.3) we obtain:
Dy (a(V, V) = —p* - 0.1+ (Vo) VW V) = 2pa(UV) =

S0

D\' (a (‘— ‘)) = —/L2F2 + p- ((HF_; + (Y2F3 + CY,';F(; + G‘4F7 -+ 2,LL1F3) . (—1.—)11)

of Lowma 29
and (4.5.11) is actually the equation (1% Similarly we can compute the equations (2). (3)

and (4) of lemma (28). In order to deduce the fifth equation let us observe that:
Dy (uFg) = Dy (F> x a(1.17))
= (DyFo) x a (V1) + Fy x (Dra(V.1)

and thus

Dy (uFs) ={ViV+a (1 V)— <V > c;} x o (V, V)
+F x {u (—,[LFZ + o Fy+ ((12 + 241) Fo+ a3 Fs + Q4F7)}, (—1312)
where Vi-1" = U, and o= F,. Using (4.5.3) we get the fifth equation and analo-
gonsly we work for the rest of the cases.
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Theorem 28 Let o : N~ — S° be an almost compler curve, « denotes the second fun-
damental form of the immersion o. without totally gyeodesic points. Let UN, be the unit
tangent bundle of the curve and define the mapping

a(v.ov)

e (v o) I

CUN? — S® such that UN? S ¢S (:;*(U) X (4.5.13)

Then. v is a [possibly branched) totally real immersion into S® satisfying Chen's equality
y 4

and moreover is linearly full in S5

Proof: Consider vector fields {".1" as in lemma (28). Each element v of /{.N? can be

expressed. with respect to the basis {{.1'}. in the form v = cos(5) - V" + sin(§) - U and

it 1s easy to see that:

- t ~ t~
0. (v) =cos-o. V + sin-o,l. (4.5.14)
3 3
5t L. 2t L Lt Lo o
afv,v) = co.S"ga (1.1 + Sln,g(t (V.U + snga (U, 0. (4.5.15)

Using (4.5.2), the definition (4.5.13) of the mapping ¢ and standard properties of the
vector cross product it is not hard to deduce the following local parametrization for 0.

defined in a neighborhood 1} of a point ¢ :

e{g.t) = costFg (q) + sintF; (q) . (4.5.16)

for all (¢.t) e W x R.

In order to find conditions such that ¢ 1s an immersion of the unit tangent bundle of the

almost complex curve @ into S®, we need to compute the image under -, of the basis
-7 9 2

{V.U. 5} of UNZ.

From equation (4.5.16), by differentiation with respect to f, we get

(T, (%) = —sintFs + costFs. (4.5.17)
Let us compute the image of the vectors 1.7, At first we observe that:

v, (V) = cost Dy Fs + sintDy-F and v.(U) = costDy Fs + sintDy Fr.

On the other hand D\-(uF,) = V() Fy + nDyvF,. Vie {1.....7}.

Recalling (4)-(8) of lemma(28). combining with the above observations. and repeating



analogously the process followed in the case of the vector U, we find :

v, (V) = (—agzcost — aysint) Fy + (azsint — (ay + 1) cost) F5 +

U\~ (0 5
(3;1.1 — . ) bR (a) . (4.5.18)

ey (L) = (agsint — (1 + ay) cost) Fy + (azcost + aysint) Fy +

v - (0
<—3/L2 + ’L(th)> ' 'Q/]k (E) . (4319)

From the equations (4.5.19). (1.5.18) and (4.5.17) we see that v is an immersion at the

point (g,t) € W x R if and only if the following condition is satisfied:

(cv3 (q) cost + g (q) sint)® + (a3 (q) sint — (1 + ay (q)) cost)” # 0. (4.5.20)

Remark 10 If N? is linearly full and superminimal (i.e: of type (I)) then the equation
(4.5.20) is always satisfied. Indeed, let us choose a vector V™ such that, at the point q of
the neighborhood W, the ||[(Va)(u. u. u)||? attains an absolute mazimum at 17(q).

In this case we can always ensure that the relations az(q) # 0, ay(q) # 0 will hold and
consequently the (4.5.20) will be satisfied, unless the ay = —1 and sin(t) = 0 occur. This
means that the branching points of the immersion J* are two antipodal points on the circle

corresponding to the points on N? where the second normal space has no marimal rank.

We restrict now to the open dense subset on which u~ is an immersion. From the (4.5.17),
(4.5.18) and (4.5.19) we get that {—sintFy + costF;, Fy, Fs} is a basis of zl(lx{;\/';’)
along UN?. Since 'L:(q, t) = costFs(q) + sintF7(q), by a direct application of the definition

of the almost complex structure. we deduce:

J (—sintFg + costFy) = (costFg + sintF7) x (—sintFg + costFy) = —Fy.
J (Fy) = (costFg + sintF;) x Fy = —costFy — sintF;.

J (Fs) = (costFg + sintF7) x Fy = —sintF, + costFy.

Hence, v is a totally real immersion in S°.

Using the (4.5.17), (4.5.18). (1.5.19) we obtain:

~ (0 , o
D§ (w,, (a)) = —costFy — sintf> = —¢. {£.5.21)

D§F4:D§a_F5=O. (1.5.22)




where ¢+ is actually the position vector field of &{.V? in R” and D denotes the Levi-Civita

connection in R7. If A denotes the second fundamental form of the immersion ¢ then:
W (=) vow) =0, Y € UNZ.

Recalling lemma (19) of chapter 3 we conclude that Z4.V? (with its induced metric) satisfies
Chen’s equality.

[t remains only to check that UNV? lies linearly full in S® In order to prove the full
linearity in S® we need to compute the first normal space of the immersion w. Given that
cletails for the computation of the first normal space are ommited in [D.\7], we intend to

carry out explicitely some of them. Since

< U 9 i (2 >=1 =< Dyu 9\ 5 (2 >=10
“\ar ) \ad) 7T Vee\ar ) \a ) T
- (0 - (9
< Dyvw, <§> By >=— < (E) Dy Fy >

(in analogy we can deduce nformation for the covariant derivative with respect to the
vector [ and also for the component in the direction of the vector F5 ) hold. we see that
the first normal space of the immersion w can be computed by taking the normal compo-
nent (in S%) of the D\-Fy., Dy-Fs. D; F, and Dy F5 where D denotes the Riemannian
connection on R”. Let us consider for example the term Dy Fy. Recalling lemma (28) we

compiite
Do (eF3) = V() Fi + 1Dy Fy = {Dy (uF3) =V (1) i} =
%{u (—pFy + o Fy + (o +2000) Fy + asFy + o Fr) — V() Ey )
and by using (4.5.7) we deduce that:
Dy Fy= —pFy+ (ag + 2 ) F5 + a3 Fs + ay F7.

Therefore, the component of Dy-F, which contributes to the first normal space of ¢ is the
vector X' = —pF,. Similarly we see that the first normal space is actually spanned by the
vectors XN = —pFy and Y = uFy.

Repeating the same procedure we find

DyvFy = Fy+pFy - I,
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and since F) is an element of the second normal space we obtain that v (U .V?) is linearly

full in S® and the proof is completed.

Suppose that, a non totally geodesic almost complex curve is branched or has totally
geodesic points. In this case we can extend the immersion described by (4.5.13) in the
following way:

Let N2 2 S5 be the almost complex curve and consider two, mutually orthogonal. unit
vectors u; and u,. in the direction of the second normal space of the curve. An element of
the (unit) second normal bundle will be of the form w = costu, + sintu, and the tube S.V?
of radius 7 around the (almost complex) surface immersion ® (in the direction determined

bv the vectors w, us) can be parametrized by the mapping:
) - ™ ~ (T < 6
SN® 3 costuy (p) + sint us (p) — cos (3) o (p) + sin (5) (cost uy (p) + sintug (p)) € S°.

Adapting the method used in the proof of theorem (28) in case where the unit tangent

bundle is replaced by the second normal bundle we obtain

Theorem 29 Let ¢ : N? — S° be a (branched) almost complex immersion. Then the
above described tube SN? is a 3 - dimensional (possibly branched) totally real submanifold

of S% satisfying Chen's equality.

Remark 11 The parametrization of v given by the equation (4.5.16) 1s nothing but the
tube of radius 5 around the almost compler surface tmmersion (; in the direction deter-

mined by the vectors Fy and F; of the unit tangent bundle.

4.6 Local converses

We are going to present local converses of the theorems (27). (28) and (29).

Theorem 30 Let F : M? — S® be a totally real immersion which is not linearly full
in S%. Then M? automatically satisfies Chen's equality and there exists a totally yeodesic
S> and a holomorphic immersion o= N, 2y CP? such that F is congruent to . which is

obtained from o in the way described in theorem (27).
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Proof: M? % 5 (totally real) is by hvpothesis non linearly full in S, thus there exists
a vector u € R” which is normal to the image of M* under 1. Without loss of generality
we assume that ey = 1.

Since 1/? is totally real and ey | M? we get that £ = e, x p is a tangential vector field.

Therefore we can consider the diagram

3 SG
m
2

5'5

i

«— N

I
!
N

ielﬁ ls

C

Y

where 7 : M3 — N, denotes the Hopf fibration from S3 onto CP? and N, = n(M?).
Since £ is tangential then .V, is well defined and in order to show that ¢ : N, — CP? is
holomorphic it will be suffient to verifv that ¢ is an almost complex mapping which by
definition means (¢ow),(T,M?*) C T,\[3 Vp € \? ie: ¢(M?)is an invariant submanifold
of the Sasakian space form S°.

Take a unit vector field .X' € X(.M/?) such that X is normal to & = —Je,. Since G(U, V) is
normal to A3 for all U, V" € X(M?) we get

X+ = span{ey, JX,G(X,€)} where G(X,€) = Jey x £ Recalling (see:example 22)
that the (1,1)-type tensor field ¢ satisfies ¢(w) = w x ey— < w X eg,p > p.Vw € T,A?

we obtain
HN)=Xxeyg— <NV xepp>p=Xxe; =X xey

since G(.X,€) € X(M?). On the other hand

<H(X),JX >=< X\ xeppx X >=— < pe; >=0
<o(X),eq >=< X\ xep.00>=0

<O(X),(pxey) x XN >=< X xey,(pxe)xXN>=0

and consequently ¢(.X) € X(M?). VX € X(M?), i.e: M? is actually an invariant sub-
manifold of S and the proof of the theorem is completed.
Let us now take under consideration the case where the totally real 3 - dimensional sub-

manifold is contained in a totally geodesic 5°.
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Theorem 31 Let F : \M* — 5% be « totally real. linearly full. 3 - dimensional immersion
sastisfying Chen’s equality and p € \M? be a non totally geodesic point. Then. there exists
an almost complex curve N? 25 55 such that. F is locally congruent to w (around p) which

is obtained from ¢ in the way described in theorem (27).

Proof: Let p € JM? be a non totally geodesic point and choose (see:lemma 21) an

orthonormal frame field {E. £y, E3}, defined on an open neighborhood of p. such that:

h(E\ Ey) = ANJF,E\. h(E\.Ey) = —-AJF,Ey, h(Ey E;) = —-AJF.E).
h{E\, E3) = h(Ey, E3) = h{E3, E3) =0,
g(F*ElaF*E‘Z):JF*E.']-, g(F*E‘Z-FtEB) :']F*EI,7 Q(F*E;}.F,E[) :']F*E‘Z

where 2- X =3 — 72 and

vElE[ =cFEy + aFj3, VEIEQ = —cE| + bEj;, VElEg = —akF, - bE,.
szEl = dE2 — bE}, VE2E2 = —dEl + (lEj;, VEQEB = bEl - (LEQ.

1 1

VE3E1 = 3(b+1)E2, VE3E2: 3(1)-’:—1) E;. VE,JE:;:O,

where FE\(A\) = =3Ad. FE5(A) = 3Ac and E5(\) = Aa.
Identifv a neighborhood of the point p with a neighborhood I x 1t of the origin in R?

a

with coordinates (t.u,v). such that p = (0,0.0), and Ej = £.

There exist functions «; and «, defined on 1| such that the vectors E, + o, E3 and
E; + a9 F3 form a basis of the tangent space to 1V, C M? at the point ¢ = (0. . ¢). Let
us consider at first the case where a = 0 and b = —1. Then, if V denotes the Riemannian

connection on S®, we get:

Vi JF.Ey = JVg F.Ey + G (F.E\.F.Ey) = J (Vg F.Ey+ h(E\.Ey)) = JF.E, =
—aJF,E, — (b+1)JF.E, = Vg, JF,E; =0 and

Ve, JF.Ey = JVg, F.Ey+ G (F.Ey. F.Ey) = J (Vg,F.E3 + h(Ey. Ey)) + JF.E,
— Vg, JF,E;=(b+ 1) JF.E, —aJF.Ey, = Vg, JF,E; = 0.

Hence. JF,Ey is a constant vector field along M7,

It is also clear that the first normal space is spanned by JF.E\ JF,E, and in rhe same
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time is a parallel subbundle of the normal bundle since

< Vg JF.E, JF.Ey >=< Vg, JF.E; JF,E, >=0for i = 1,2.

Using the Erbacher’s theorem (23) on the reduction of the codimension we deduce that 1/*
has to be contained in a totallv geodesic S® and this actuallv contradicts our assumption.
Similarly working under the hyvpothesis of being a = 0 and b = —1 we get another
contradiction.

Under the aspect of the preceding discussion we can suppose that the set 11" of non totally
geodesic points . such that a® + (b+ 1)? # 0. is an open dense subset of M* and 11" N 11,
is open and dense in .

Since Vg, Ey = 0 and h(E3, E3) = 0 we can view F3 = g-

. as a constant vector field,

restricted on I and evaluated at the point ¢ = 0, and thus we deduce the following

parametrization for F(M?) :

F(t,u,v) = costF (0. u.v) + sintF,(E5(0, u. v)). (4.6.1)
Let us now define the mapping o by :

Wy 5 (u,0) 5 JF. (B3 (0, u.v)) € S°. (4.6.2)

Recalling that {E| + o E3, Ey + coEs} is a basis for the tangent space of 11, C M?* at

the points ¢ = (0, u, v) we get

6(0,u.v) = JF, (q) Es (q). (4.6.3)

(P* (El +a1E3) = DE1+alE;1JF*E3
= —a ((1) JF*EI ((1) - (b+ 1) ((1) JF*EB

hence
6o (EL+a Es) = —a(q) F(q) x F.E (q) = (b+1)(q) F(q) x F.E2(q).  (4.6.4)

and finally from the equalities

o;* (E, + o E3) = Diyyenyi JFEy
=((b+ 1) JF.Ey — aJF.Ey) (q)



we obtain
0, (Ey + aoE3) = (b+ 1) (q) F (q) x F.E\ (q) — a(q) F (q) x F.E» (q). (4.6.5)

Hence o is an immersion at points where a(¢) # 0 and b(q) # —1 and in this case the
&,(Tqﬂ'l) is spanned by the vectors JF,E\(¢) and JF,FE>(q).
Using standard properties of the vector cross product and (4.6.3)-(4.6.3) we can write

0 % 0, (E1 + 0 Ey) = (F x F.E3) x (=aF x F,E, = (b+ 1) F x F,E,)
=aF x F.E, — (b+ 1) F x F.E,.

and from the above equalities we get:
0 % 0, (Ei + a1 Ey) = —0, (Ey + 0o Ey) (4.6.6)

and thus ¢ is a (possibly branched) almost complex immersion in S°.

Recalling that for an almost complex curve ¢ : N, — S® with second fundamental form
a we have a(.X, JY) = Ja(X.Y') we see that, in order to compute the first normal space,
it will be sufficient to compute the components of Dg, a6, JF.E| and Dg, a6, JF.E\

normal to (5(11’1) and tangential to S®. Using lemma (22) we deduce

1
DEH_QIEBJF,,El = ((f-‘l- v, — g(b + ].)CY1> .]F,,E-_) — AF,,E[ + (L.]F*E;;,

1 .
DE3+ngEgJFtEl = ((1 + vy — § (b + 1) O-z) .]F*EQ + )\F*EQ ad (b + 1) JF.,E;;. (467}

and it is clear that the first normal space to @(1V) at the point q is spanned by F,E\ (0. u. v)
and F,FE5(0,u,v) where the F(0.u,v) and F,E(0, u,v) are mutually orthogonal vector
fields which are both orthogonal to the tangent space and the first normal space of the
immersion ¢. But. for .X and } orthonormal vector fields along an almost complex im-
mersion @ which are orthogonal to both the tangent and first normal space. by taking a
different parameter t, if necessary. instead of the parametrization (4.5.17). the map ¢ can

be locally expressed under the form:

w(t.q) = costXN(q) + sintY (q).




Since the complex line bundles determined bv ¢(.V,) and the first normal space can
be extended in the points where ¢ is not an immersion, the totallv real immersion v

(corresponding to ¢ by theorem (28) or (29)) can be written as

it w. o) = costF (0. u. ) + sintF, E3(0, u, v)

where = F and the proof is completed.



EPILOGUE

Recentlv, quasi-Einstein. i.e: the Ricci tensor has an eigenvalue with multiplicity at
least 2, totally real submanifolds of S® have been investigated in [D.D.V.V], where exam-
ples of 3-dimensional quasi- Einstein totallv real submanifolds have been constructed by
considering tubes with different radii. Specifically, starting from an almost complex curve

V¢ — 5% without totally geodesic points, the mapping

(N SUN? — 8% v — cosvo + sinyu X a_(_

[lee (v, v)

defined on the unit tangent bundle /N2, where o denotes the second fundamental form
of the surface N2, is an immersion on an open dense subset of //N? and moreover, v is
totally real if an only if either: (a) v = £ or (b) cos’y = % and N? is superminimal. In
both cases the immersion ¢* defines a quasi-Einstein metric on YN? and if (a) holds then,
with respect to this metric, d,v> = 2 and if (b) holds then dyn2 < 2.

Furthermore, a converse of the above result is given.

In [V] L. Vrancken studied Langrangian immersions M? £y S8 which admit a unit Killing

vector field Ej, i.e:
E;(<Y,Z>)=<[Es.Y).Z>+ <Y [E;,Z] > VY, Z¢€ X(MY.

(see: [Mat], pg:88), whose integral curves are great circles. Then, there exists an open
and dense subset U of M? such that each p € U has a neighborhood V" such that 1~ = §6
is obtained either as:

(1) a Hopf lift of a holomorphic curve in CP%(4) in the way described in theorem (27),
(2) a tube of radius 7 in the direction of the second normal bundle on an almost complex
superminimal surface in the wav described in theorem (28),

(3) a tube of radius 7 in the direction of the first normal bundle on an almost complex

. D s .
superminimal surface .N? = S®. described by

UN? 356, v —> olr-r)

ool

The complete classification of the 3-dimensional totally real submanifolds of the nearly

Kaehler S®. a problem which has been resolved (see:[B.V.W1]) with respect to the almost
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complex surfaces, is still open, only partial results. as the results quoted in the present

thesis, are known and the problem seems to be a hard one.
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