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Abstract 

This Thesis is concerned with three particular aspects of extended cosmic strings 

and domain walls in cosmology: their dynamics, gravitation and interaction with a 

black hole. 

In Chapter 3, we study the dynamics of an abelian-Higgs cosmic string. We find 

its equations of motion from an effective action and compare, for three test trajec­

tories, the resulting motion with that observed in the Nambu-Goto approximation. 

We also present a general argument showing that the corrected motion of any string 

is generically antirigid. We pursue the investigation of the dynamics of topological 

defects in Chapter 5, where we find (from integrability conditions rather than an 

efl̂ "ective action) the eflPective equations governing the motion of a gravitating curved 

domain wall. 

In Chapter 4 we investigate the spacetime of a gravitating domain wall in a 

theory with a general potential V{^). We show that, depending on the gravitational 

coupling e of the scalar <l>, all nontrivial solutions fall into two categories interpretable 

as describing respectively domain wall and false vacuum-de Sitter solutions. Wall 

solutions cannot exist beyond a value lemax, and vacuum-de Sitter solutions are 

unstable to decaying into wall solutions below emax; at Cmax we observe a phase 

transition between the two types of solution. We finally specialize for the Goldstone 

and sine-Gordon potentials. 

In Chapter 6 we consider a Nielsen-Olesen vortex whose axis passes through the 

centre of an extremal Reissner-Nordstr0m black hole. We examine in particular the 

existence of piercing and expelled solutions (where the string respectively does and 

does not penetrate the black hole's horizon) and determine that while thin strings 

penetrate the horizon — and therefore can be genuinely called hair — thick strings 

are expelled; the two kinds of solution are separated by a phase transition. 
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Conventions and Notations 

We use the following conventions: 

• Sets and groups 

The sets of the integer, real and complex numbers are denoted by Z, E and C 

respectively. Groups are noted in a sans serif font [e.g. U(l)] and denotes 

the n-dimensional unit-radius sphere. 

• Coordinates 

All spacetimes are four-dimensional, and we use the following coordinates: 

- Cartesian coordinates: {t,x^,x^}] 

- Cylindrical coordinates: {t.Q^d^z}] 

- Spherical coordinates: {t,r,6,(p}. 

• Metric signature 

We use a "mostly minus" signature (-[-,—,—,—). 

• Manifolds and Embeddings 

The spacetime manifold is denoted by M and has dimension d = 4. A general 

submanifold is denoted by S and has dimension n; its orthogonal complement 

in M will be written ̂ 5 and have dimension n', so that d = n-\-n'. In the 

case of a string's worldsheet or a wall's worldvolume, the submanifold will be 

noted W. The vacuum manifold of a field theory will be written V, and a 

black hole's (outer) horizon, 7i. 

• Tensor Indices 

We use the following conventions when indexing a tensor in the Gaufi-Codazzi 

formalism: 



Conventions and Notations xiv 

- Spacetime indices are denoted with lowercase Latin letters: a, 6, c,... 

- Worldsheet indices are denoted by uppercase Latin letters: A,B,C,... 

- Directions perpendicular to the worldsheet are denoted by Greek letters 

from the middle of the alphabet: A, z^,... 

• Miscellaneous notations 

- When an equation defines its left-hand side, we shall replace the equal 

Sign by — . 

- When an equation introduces a new notation, we shall replace the equal 

Sign by — . 

- In chapters 3 and 5, we denote quantities evaluated at the defect's core 

by underlining them. For instance, /̂ ^̂  K,ab\y^ = /^atldefect• 



Part I 

Topological Defects 



;5xtended Defects 

1.1 Extended Defects in Cosmology 

Over the past few decades, topological defects have become a familiar class of objects 

in many areas of physics. In solid state physics, for instance, defects are an important 

topic in the study of crystals and their properties; in high energy physics, topological 

solutions, such as solitons or instantons, are nonperturbative solutions to the field 

equations, and therefore have much to contribute to the understanding of particle 

physics beyond the perturbative level. 

In cosmology — the context that interests us — topological defects (domain 

walls, cosmic stings, monopoles and textures) are believed to have formed generi­

cally during phase transitions in the very early Universe, at times well beyond the 

reach of any traditional particle physics experiment, via the Kibble mechanism [63 . 

Perhaps most notably, the gravitational properties of strings have been invoked to 

account for the existence of cosmic structure (galaxies and galaxy clusters) in the 

Universe [59,89]. Whether strings would really have been able to seed structures 

compatible with the ones we observe today or not is still an open question (see the 

discussion on pages 49ff); in any case, there is no denying that the idea of topologi­

cal defects is a beautiful and powerful one, and that its study may have a great deal 

to teach physicists. 

In the past, topological defects have often been considered in the so-called thin 

limit, where they have no thickness. Such pioneering works as Israel's "thin wall 

formalism" [61] to study the dynamics of membranes, Vilenkin's [87] and Ipser & 

Sikivie's [60] efforts to determine the gravitational field of walls, and Aryal, Ford & 
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Vilenkin's metric [7] describing a cosmic string piercing a black hole are all impor­

tant precursors of the work described in this thesis which assume that the defects 

have zero thickness. At first sight, this approximation seems perfectly reasonable, 

since the defects of cosmological interest are likely to have formed at the Grand 

Unified Theory (GUT) scale 77 ~ 10̂ ^ GeV, and that — even for finite-sized defects 

such as wall bubbles of string loops — their thickness is typically many orders of 

magnitude smaller than their size. In fact, most efforts to understand extended 

defects followed the proposition by Hill , Schramm and Fry [58] of a late time phase 

transition producing thick walls (see the discussion at the beginning of chapter 4) 

and, more recently, the idea of topological inflation [88,69,70 . 

There are, however, other well-recognised reasons for studying thick defects. For 

instance, it is cosmologically important to study the collapse of bubbles and loops, 

because this tells us interesting things, such as the lifespan of these defects (which 

in turn constraints their cosmological impact) or whether this collapse forms a black 

hole. Presumably, at the end of the collapse (where most of the physical interest 

resides) the string's thickness may become comparable to its size, and the thin defect 

formalism breaks down. 

For these reasons, and others discussed on page 24, it is important to consider 

the effect of the defects' thickness on the results obtained in the infinitesimally thin 

limit. In this thesis we contribute to the effort made over the past decade or so to 

understand these effects. 

In Chapter 3, we study the dynamics of thick abelian-Higgs cosmic strings in a 

flat spacetime, focusing on three illustrative trajectories, then discuss more generally 

the implications of the thickness of the defects for their rigidity. Chapter 4 describes 

the plane-symmetric gravitating solutions of the Goldstone and sine-Gordon mod­

els; it was originally intended as a preliminary to the study of the dynamics of thick 

gravitating walls (which is the topic of Chapter 5), but has spanned some interesting 

results in its own right. Chapter 6 presents an investigation of the system consisting 

of a Nielsen-Olesen cosmic string and an extreme Reissner-Nordstr0m black hole, 

with the axis of the string passing through the centre of the black hole. In partic­

ular, we investigate whether or not the previously observed phenomenon of "flux 

expulsion" does indeed occur. Somewhat unexpectedly, we find similarities between 
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our results and those of chapter 4. 

1.2 The Goldstone Model: Global Strings and 
Domain Walls 

The Goldstone model [49, section 4] is given by the action 

S = J d'^Xy^C, (1.1) 

where C is the Lagrangian density 

2 (1.2) 
y ( $ ) = A ($<j>^ - 7/2)^ 

This theory of a single (real or complex) scalar "Higgs" field ^(x"-) depends on 

two real parameters: the coupling constant A, which gives the strength of the self-

interaction of and the vacuum expectation value (VEV) rj of which is the value 

of |$ | for which the potential reaches its global minimum. The Higgs vacuum (i.e. 

the configuration devoid of Higgs particles) is therefore given by |$ | = rj} 

Here we consider the range of parameters A,?] > 0. If $ G M, the potential V{^) 

is the "double well potential" shown on figure 1.1a, which admits two degenerate 

minima at { ± 7 7 } ; if $ G C, the potential is the well-known "Mexican hat" (or "wine 

bottle") potential displayed on figure 1.1b, for which the degenerate vacua form a 

circle of radius rj in the complex plane. 

The Lagrangian (1.2) is clearly invariant under global U ( l ) gauge transformations 

defined by 

^ ^U{^)=e'"'^, (1.3) 

where a is a constant. Because of the form of (1.3), the polar decomposition of the 

complex Higgs field 

<l> = 77X(a;'^)e^^(^'^^ (1.4) 

is particularly useful, since a gauge transformation then only afi"ects x? shifting it 

uniformly by a factor a. The real functions X and x sue called respectively the 

-̂ In this thesis we are interested only in solutions which tend to the vacuum at spatial infinity, 
and therefore represent "finite" objects. This condition is necessary, but not sufficient, for the 
solution to be local. 
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F($) 

(a) $ G (b) $ e C 

Figure 1.1: (a) The double well potential of the real Goldstone model, (b) The Mexican 
hat potential of the complex Goldstone model. 

Higgs and the Goldstone fields. If $ is real, the above remains trivially true, with 

X = 0, and a can only take the values {0, ±7r}. 

Replacing this decomposition into (1.2), we obtain 

C = r,'' ( v „ x ) ( V " ^ ) + X' (v„x) (v°x ) - — {X'-1) 

where 
def 1 

Wu = 

(1.5) 

(1.6) 

An important consequence of the U(l)-invariance of the potential is that it has 

degenerate minima. The vacuum manifold V of this theory, defined as the set of 

all $ that minimize the potential, is the circle |$ | = r]. The U ( l ) symmetry can 

therefore be spontaneously broken by an explicit choice of vacuum at each point of 

spacetime. The Higgs mechanism and the Goldstone theorem then tell us that the 

Higgs field acquires a mass, 

mii = VXr], (1.7) 

whereas the Goldstone field remains massless. The reason for this is that X describes 

fluctuations of $ in a radial direction, for which the potential is curved (at $ = 

7y, V" = AXrf — 4m| ) while x describes angular fluctuations of for which the 

potential remains flat (see figure 1.1b). Note that the quantity is defined as the 

inverse of the Higgs mass, and therefore characterizes the fall-olf of this field towards 
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its vacuum value. In other words, when we have a localized solution (a defect), Wn 

is its characteristic size: width of a domain wall, thickness of a cosmic string or 

radius of a monopole. 

The Euler-Lagrange equations derived from Lagrangian (1.5) are 

a x - x [ (v„x) ( V x ) -2{x'-1)] = 0, 

Dx + 2X-'{V,X) (V' 'x) = 0 

(1.8a) 

(1.8b) 

(where we have rescaled the coordinates x'^ so that W}i = 1). A static cosmic string 

solution along the 2:-direction in flat spacetime can be found by making the Ansatz 

X = X(g), x = N'^'i the constant G Z is then the string's winding number. This 

form clearly solves (1.8b), leaving an equation for X, 

x" + — - x 
Q 

+ {X' - 1) 

whose solution can be shown to satisfy asymptotically: 

\N\ 

X = 
i - £ . + o ( . - ) 

= 0, 

for ^ 0, 

for Q oo. 

(1.9) 

(1.10) 

Eq. (1.9) can be solved numerically using the routine SOLVDE from Ref [82], which 

yields the parameter x^. The profiles X{g) for N = 1,2,3 and 4 are presented 

in figure 1.2; the energy densities plotted are the tt components of the rescaled 

version Tab of the energy-momentum tensor Tab, which is conventionally defined by 

ab\ 
6^=0 

= ^ I d'^x ^-g Tab ^g' (1.11) 

For our model (1.2) we obtain, in terms of the Higgs and Goldstone fields. 

T„t ' = ' ^ T „ t = ( V . X ) (V,X) + X' (V„x) (V,x) 
11 

9ab 
1 

{VaX) ( V X ) + X' (V„x) (V»x) - 2 -

(1.12) 

The solutions of figure 1.2 describe linear objects called global (abehan) strings. 

By "linear" it is understood that these objects are much longer than they are thick; 

however, the string's width WB_ is set to 1 and they are not one-dimensional. Also, 

although the solutions that we have found are straight, cosmic strings come in all 

shapes, including loops; we shall deal abundantly with curved strings in this thesis. 
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10 15 20 

(a) = 1 (b) iV = 2 

(c) N = 3 (d) N = 4 

Figure 1.2: Profiles X{g) (sohd) and energy density profiles for global strings with 
(a) iV = l , (d) 7V-4 . 
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Note in particular that the total energy per unit length of global strings, which 

is given by / d?x^/^^\T^Q, diverges logarithmically at infinity: 

lim E ~ lim 
£ l ^ O O A->-oo 

g dg g ^ lim In — ) . , . (1.13) 

A^oo \WYi.J 

However, in a cosmological setting, cosmic strings are never alone but form a net­

work. Then, A is not allowed to tend to infinity, but only to a cutoflf value ^ which 

is the typical distance between global strings in the network. 

If $ G R , equation (1.8) becomes simply 

• X + 2X (X^ - 1) = 0; (1.14) 

this time we can solve this equation if we make the Ansatz X = X{z), and find the 

flat spacetime kink solution (see figure 1.3) 

X(z) = tanh(z), (1.15) 

This solution describes a domain wall separating two regions with different vacua: 

for negative z, the vacuum is X = - 1 and for positive z, the vacuum is X = +1 . 

Again, although this particular solution describes a flat wall, curved walls can exist, 

and we shall encounter some examples later on. 

(a) X{z) (b) Energy density 

Figure 1.3: The static kink solution, (a) The field solution X = tanh(2:). (b) The energy 
density associated with this solution. 

1.3 The Abelian-Higgs Model: Local Strings 

The second model in which we are going to consider topological defects is the local 

version of the Goldstone model, called the abelian-Higgs model. This is given by 
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the action (1.1), this time with 

C = (Da^) (D^'^y - ^FabF^' - V($) , (1.16a) 

F($) = ^ ( $ t $ _ ^ 2 ^ 2 ^^^g^^ 

The parameters A and rj have the same meaning as in the Goldstone model (and are 

still strictly positive) and the potential for $ (G C ) is still the usual Mexican hat 

potential. This model can be obtained from the Goldstone model by requiring that 

the abelian-Higgs Lagrangian be invariant under local U ( l ) transformations, which 

are defined by 

^ - > [ / ( $ ) - e ^ ^ " ( ^ " ) $ . (1.17a) 

(The factor e, which is the charge associated with the group U ( l ) , is conventional.) 

To maintain the invariance of the Lagrangian, this forces us to introduce new terms 

to cancel those appearing, from the spatial dependence of a, in the kinetic part of 

C. This implies the introduction of a gauge field Aa which must transform as 

Aa-^ Aa-\-e-'Waa. (1.17b) 

These new terms can be incorporated in the gauge covariant derivative 

i^a = Va + i e ^ , (1.18) 

and one must also introduce in the Lagrangian a kinetic term for the new particle, 

which we take to be quadratic in Fab: where 

Fab = 2d^aAb]. (1.19) 

Contrary to the global case, the possibility of choosing a space-dependent phase 

a{x°') allows us to get rid of the phase of and it is conventional to rewrite the 

field content of this theory in terms of two new fields X and Pa defined by 

^ = r,X, 

1 , , (1-20) 
Aa = - {Pa - V<,a) . 

Moreover, although the parameters A, 7] and e appearing in the Lagrangian are 

well-adapted to the description of the properties of the particle solutions of the 
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theory before the symmetry breakdown, we shall use another set of parameters 
which are more natural to discuss the topological solutions after the breaking. These 
parameters are the string's Higgs and gauge widths wn and Wg, and the Bogomol'nyi 
parameter ^ [15], and are defined by 

def _ 1 1 

p def rr^ _ 2^ 
ml 26̂  

6 

The Bogomol'nyi parameter is sometimes defined as the inverse of above.̂  

The coordinate rescaling to make w^i = I must this time be accompanied by a 

rescaling of the gauge field, 
x"- - ) • WYI X"", 

(1.22) 
Pa -> W^^Pa, 

which allows us to get completely rid of the width wn in the equations of motion {wg 

does not appear there, as it can be written in terms of wn and /?); this corresponds 

simply to choosing units in which the string has a Higgs width of order unity. 

In the new variables, and calling Fab the strength field associated with Pa, the 

Lagrangian and equations of motion become 

C = v' 

and 

(VaX) (V^X) + X'PaP'' - ^FatF^' - ^ {X' - l)' 

• X - XPaP" + l-X (X^ - 1) = 0, 

v-2 p6 
VaF"" + - — = 0. 

(1.23) 

(1.24) 

/3 

The prototypical solution for this theory is found by assuming that the string is 

static, straight and along the 2;-axis in flat spacetime; that is, by writing the Ansatz 

X = X{Q), 
(1.25) 

^This is the case for instance in our paper [4], and therefore some care is necessary when 
comparing that paper to the chapter derived from it in this thesis, chapter 3. 
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This leaves us two coupled ordinary differential equations (DDEs): 

x " . ^ - ^ - l x i x ^ - , ) = o, 
Q 2 ^ ' 

Q P 

(1.26) 

The functions which solve these equations (for N = 1) will be written X N Q and 

PNO and called the Nielsen-Olesen (NO) solution [76]. They admit the following 

asymptotic behaviour [80]: 

X NO 
X e l ! 

2̂ 2 

{0 - i)e 

PNO = 

for g ^ 0, 

foi Q oo,p < 4, 

ior g ^ oo,/3 > 4; 

for ^ —)• 0, 

for ^ ^ oo. 

(1.27) 

1 - P2 

Note that we obtain a global string in the limit ^ -> oo by setting P = 1, i.e. 

choosing the gauge vacuum, in Eq. (1.26).^ 

The Nielsen-Olesen functions are plotted on figure 1.4 for = 1 and a few values 

of A .̂ This solution, unlike the global string, has a finite energy per unit length; 

this is due to the presence of the gauge field: for very large g, i t aligns itself so as 

to cancel the gauge covariant derivative term in the energy density. 

The special case ^ = 1 is called the critical case. Assume that p = 1, and 

consider the energy per unit length obtained by varying the action (1.1) with 

the Lagrangian (1.16). We can then find a Bogomol'nyi argument for the system by 

writing Ei in the following way: 

•12̂  
Ee=J S x y f ^ g \[e\VaX XPbf + Fab — 7;^ab — l ) 

(1.28) 

- J d'xy/^e^' [2Pa^bX - Fab {X^ - l)] 

(where eab is the totally antisymmetric tensor of two indices). Noting that the 

integrand in the last term is Va [e^^Pb {X^ - 1)], we can use GauB's theorem to 

^In fact, this is not exactly the global string of the previous section, because of the factor 1/4 
by which we multiplied the potential. However, we will never deal with global strings in this thesis, 
only domain walls, and the extra factor in the potential will never cause any problem. 
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Figure 1.4: Profiles XNO(^) and PNO(^) for = 1 and A/" = 1 (solid). A" = 3 (long-
dashed) and A" = 10. 

express it in terms of the string's winding number N\ 

= 27r|A^| + / d ' x y f ^ { [eWaX + XP^Y + 
1 

Fab - -£ab {X^ - l ) > 27r|A^ . 

(1.29) 

Therefore, we see that the energy will be minimized — by 27r|A"| — if the following 

"Bogomol'nyi equations" are satisfied: 

8\VaX = -XPb, 

1 
Fab = 2^ab {X^ - l ) 

(1.30) 

These equations are first order ODEs, as opposed to the second order equations (1.24) 

to which they are equivalent. I f 7̂  1, we cannot write the energy as a topological 

term plus a positive contribution as above and the system does not admit Bogo-

mol'nyi equations. 

1.4 More Complicated Models: Superconducting 
Strings 

There are several ways to generalize the Goldstone and abelian-Higgs models of the 

previous sections. The first generalization is (just as we modified the Goldstone 

model by demanding that it be locally invariant) to impose a non-abelian symmetry 

to the theory — this corresponds to considering vector Higgs fields rather than 

scalar ones. A second generalization consists in including new, diflferent fields. In 
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this section, we will see how this may lead to the strings becoming superconducting. 
(More precisely, we will consider the case of the bosonic superconducting string.) 

Enlarge the abelian-Higgs theory to contain the two fields $ and Aa plus two 

new fields a and Ba, with Lagrangian density 

C = (Da^) ( D " $ ) ^ - ^FabF^' 

(Daa) (D^a)^ - ^GabG''' - V{^, a), (1.31a) 

F ( $ , a) =^ - ri'f + ^\cj\' - m > | 2 + / | $ | V P - (l-31b) 

This Lagrangian is invariant under transformations of U ( l ) x U(1)EM- The first 

U ( l ) group is associated with the Higgs field $ and the gauge field Aa, which interact 

with each other through the gauge-covariant derivative = (Va -\-ieAa) As 

before, this symmetry is spontaneously broken and the Higgs acquires a mass; this 

breakdown is responsible for the existence of the topological defect. The second 

group, U(1)EM5 is associated with the new scalar a which interacts with a gauge 

field Ba via the derivative DaCJ = (Va -I- igBa) d] this group will not be broken 

outside the string, and therefore the gauge particle associated with the P-field will 

remain asymptotically massless. For this reason, it is commonly referred to as the 

photon and U(1)EM is called electromagnetism. 

As before. Fab is the strength field of Aa, and now Gab is that of Ba- The 

parameters A, rj and e retain their previous physical meaning; the new parameters 

are A (which gives the strength of the self-interaction of the a), m (which is the mass 

of the a), / (which characterizes the $-cr interaction) and g, the electromagnetic 

charge. 

This time we make the following Ansatze for the fields: 

V A 

Aa = - ( P a - V a a ) , Ba = - (Ca " VaX) , 
e g 

with which the Lagrangian becomes 

^ ( V a X ) ( V ^ X ) + PaP^'X' + [(VaS) (V^s) + CaG^S^' 

(1.32) 

A774 

- 2 - 2 - ^FabF^' - ^GabG^' - y ( X , 5 ) , (1.33a) 
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T/(X, s) = ^ {X' - i f + a2Xh' + ^35^ {s' - 2) . (1.33b) 
Here, we have defined the following (positive) parameters: 

2m2 2 / m 2 

A772 AAr]2' (1.34) 

P is the usual Bogomol'nyi parameter, and 0 plays a similar role for electromag-

netism. We shall determine the respective ranges for the parameters shortly. As 

usual, we have also redefined the coordinates, so that the string has a Higgs width 

of order unity, and rescaled the gauge fields Pa and Ca by WE-

The idea behind superconducting strings [93] is to choose the parameters in such 

a way that electromagnetism is broken inside the string; the photon then acquires 

a mass there, and the string carries a current 

.2 
def 3a = a^Daa-a(Daay = s'Ca. (1.35) 

A 

Babul et al. [9] have argued that in order to have a superconducting string with 

a current along it , the following conditions must be met: 

1. A string must be present: 

This can be achieved by imposing the usual boundary conditions X{0) = 

P{oo) = 0,X(oo) = P(0) = 1. 

2. The vacuum must be non-conducting: 

V{s = 0, X = 1) < y(s / 0, X = 0), which implies: 

^3 < \ . (1.36) 

Note that this condition is not very strict: it was obtained by minimizing 

5(5^ - 1) by - 1 . I f s never reaches 1, e.g. if s(s^ - 1) > -1 -\- K, (for positive, 

small ĉ) then the condition becomes 

as < J (! + «)• (1.37) 

3. The vacuum must be a global minimum: 

In other words, {5ySs^) V(s = 0, AT = 1) > 0, i.e.: 

a2 - 2as > 0. (1.38) 
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4. It must be energetically favourable for the string to conduct elec­
tromagnetism: 

This is only true if the contribution to the system's energy due to the fact that 

"5(inside string) ^ 0" is negative. This implies 

U <0 (1.39) 

where 

(1.40) U= fgdg \s'' - f s'C - f ^ s ^ X ^ o + (s' - 2) 
J I Oil ai ^ \ 

(Here we have simplified the real expression; see [9, Eq. (9)] for a fuller ex­

pression. In particular, we have assumed that G does not change significantly 

when one switches on s.) 

More constraints apply if one considers quantum effects [55 . 

A prototypical solution can again be found numerically for a static straight string 

(say d^t X = y = 0) with a current along it , that is 

X= X{g), 

s = s{g), 
(1.41) 

Pa = NP{g) Va^ , 

Ga= G{g)WaZ. 

The equations of motion from (1.1, 1.33) then become 

X " + ^ - - I x {X' - l ) - a , s ' X = 0, 
g g^ 2 ^ ^ 

f + L _ C h - 2 ^ s ( s ' - l ) - ^ X ' s = 0, 
g ai ^ ^ ai 

P' 1 
(1.42) 

P" - — - ^ X^P = 0, 
g (3 

Q P 

They clearly reduce to the Nielsen-Olesen equations (1.26) if one sets s = C = 0. 

The asymptotic forms for these fields is given below. There are up to 9 coefficients 

which are not determined by the equations of motion: for small g, these are XM, Sq, 

Co and p2 (although p2 is subdominant); for large g, these are XQO, SOO, Poo, Coo and 
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X(g) = < 1 — Xr 

S(Q) 

iP - 4)f 

«o { l - ? [ 2 ^ (1 - 4) - Co] e' + O ig')] for e ^ 0, 

for -> 0, 

for ^ -> oo, /? < 4, 

for ^ oo, /J > 4; 

(1.43) 

l - | P 2 k ' + P 4 C ^ ^ ' V ' + 0 ( ^ 4 ^ 

^ + ^-§Q' + 0{g^) Co 

for ^ —)• oo; 
for ^ 0, 

for ^ ^ oo; 

for ^ 0, 

for g ^ oo. Coo + Coo MQ) 

Note that, numerically, the coefficients in (1.43) need not be the same as those 

in (1.27) or (1.10), even if they have the same name. Some solutions are shown on 

figure 1.5. 

10 12 14 10 12 14 

(a) P = 0.01 (b) 0 = 0.02 

Figure 1.5: The straight superconducting string for ai = 0.01, a2 = 0.5, — 0.1, 
P = 1.0 and (a) P = 0.01 and (b) P = 0.02. The plots show X (solid), s (long-dashed), P 
(short-dashed), C (dotted) and = Grz = C (dot-dashed). 



Part II 

The Dynamics of 
Topological Defects 



The GauB-Codazzi Formalism for 
Topological Defects 

In this chapter, we briefly introduce the Gaufi-Codazzi formalism, which is a pow­

erful tool for considering the embedding of a submanifold 5 in a manifold M. In 

this thesis, M will always be the four-dimensional spacetime manifold and S will 

be the worldsheet W of the topological defect in which we are interested. As a 

consequence, we deal exclusively with the special case of the formalism where the 

submanifold extends in the timelike direction, i.e. the normals of <S in are all 

spacelike. Moreover, we shall restrict ourselves in this introduction to the notions 

that we will use in later chapters (see [43] for walls and [4] for strings). For a more 

complete and general description, we refer the reader to [86] and, in a notation closer 

to ours, to [24-28 . 

For an infinitesimally thin defect, i t is clear that the mathematical abstraction 

that we call "worldsheet" can be identified with the defect itself, but for the kind 

of extended defect that concerns us, S should rather be identified with the defect's 

core. For all models introduced in the previous chapter, this is defined by the locus 

of the points of M where the Higgs field vanishes, $ = 0. 

Consider a general n-dimensional submanifold S embedded in the d-dimensional 

spacetime manifold M. Then, S has an orthogonal complement in M which we 

denote by ^S. We shall adopt the convention of noting spacetime indices with 

lowercase Latin letters (a, 6,. . .), indices parallel to S with uppercase Latin letters 

(A, J5,...) and indices perpendicular to S by Greek letters (/i, v,...). 

Let us now coordinatize the spacetime M with x°' {a = 0,... ,d - 1), S with 
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a"^ (A = 0,... ,n — 1) and "HS with {}i = 0,..., d — n — 1). S then admits at 

each point n tangential vectors (or tangents) tA"' and n' = d — n normal vectors (or 

normals) n^", which are defined by: 

Moreover, let X°-(a'^) be the coordinates of *S in M. Then, for each the object 

is a vector in M which is tangent to <S, and can therefore serve to project indices 

onto it . 

As they were defined in (2.1), the n^^ exist only on S itself, i.e. at = 0; we 

can extend them regularly off the submanifold to form a family of normals on the 

whole spacetime M by requiring that, for any fi and ly, 

V V a n , 6 = 0. (2.2) 

There are still many ways of choosing the families of normals, but we can always 

choose them in such a way that they are orthonormal in ^A, that is: 

n^an^b = -(^M- (2-3) 

The embedding of <S in is naturally described by "fundamental forms" con­

structed from the normals. The iirst fundamental form of 5 in M is defined as 

d—n—l 

Kb = Qab + ^ n^an^b (2.4) 

and it is the projection tensor of 5, as can be seen by noting that 
^ab h Q = haci 

(2.5) 
ah hah Tin = 0 

(Note that the first fundamental form lives in M, not in S\ i t is represented by a 

matrix of size d x d, with at most v? non-vanishing elements.) 

We can also define the intrinsic metric 7^5, which lives on <S, by projecting the 

metric Qab with X^-^A-

JAB - X ,AX , B 9 a b - - ^ - ^ - (2-6) 
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The first fundamental form and the intrinsic metric are equivalent in the sense that 

lAB = ^°',A^^,B hab, 
(2.7) 

h = A ,B 7 • 

^AB has determinant 7 and can be used in S to determine the Levi-Civita connection 

"V, the Riemann curvature tensor ^^R^BCD, the Ricci tensor ^^RAB and the scalar 

curvature " i ^ . This corresponds to seeing <S as a manifold in its own right. 

The first fundamental form does not contain enough information to represent 

the ful l diflterential structure of S: we must define at least the second fundamental 

form 

K^ab = h%h\Vcn^d. (2.8) 

For each / i , K^ab is also called an extrinsic curvature of <S, because i t represents how 

the submanifold curves in A4 away from the hyperplane normal to n^"'. They are 

clearly symmetric in a and 6, and they lie tangential to <S, i.e. n°' K^ab = 0 for all fj,. 

If the codimension n' of S (i.e. the dimension of <̂S) is greater than 1, the choice 

of normals is not unique. For instance, at each {t,z), a cosmic string admits two 

normals n i^ and 712^ (see figure 2.1), but even if we impose orthonormality, we can 

still rotate rigidly the pair (ni", n 2 ^ ) around the string to obtain a second pair of 

normals (n'^^, 7^2"). This is similar to a gauge choice, with gauge group SO(2). (Note 

that the first and second fundamental forms are gauge-independent, in that sense.) 

Therefore, if n' > 1, we also define the normal fundamental form of S by 

P'.a = n,'Van,b = -P%a. (2-9) 

The P'^i.a are gauge-dependent; in fact, they are the connection on the normal bundle 

of S, and the difference between two normal fundamental forms (corresponding to 

two choices of normals) is a proper gauge-independent quantity. 

It is useful to express the derivatives of the normals in terms of the fundamental 

tensors: 
d—n—l 

Van^b = K^ab+ XI / ^ V ^ ^ t ; (2-10) 
i/=0 

in particular, for ci — n + 1 (the case of a domain wall), we have the useful relation: 

Kab = ^arib (2.11) 
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Figure 2.1: Origin of the normal fundamental form. If a submanifold has codimension 
n' > 1, the choice of normals will not be unique. The figure shows two difi"erent pairs of 
(orthonormal) normals on a cosmic string. 

(where we dropped the index / i , since there is now only one direction perpendicular 

to the submanifold, and where it might be necessary to symmetrize the right-hand 

side over a and b). 

The GauB identity provides a link between the (i-dimensional geometry of the 

spacetime and the n-dimensional geometry of the submanifold. In our notation, it 

is written: 

d—n—l 

^^R\cd = R%rsh%h\h\h'd+ {K\cK^bd-K\dK^bc). (2.12) 
fj,=0 

Contracting it once, then twice, we obtain: 

d—n—l 

^Kb = R%rsh%h\h\+ {K^K^ab-K^acK^b'). (2.13) 

d—n—l 

"^ = ^ + E (^M' -^ /^a6 i^ / ' -2 i ?a6 W ) - (2-14) 

In particular, the last equation in flat spacetime {Rab = 0) simplifies to 

d—n—l 

E i^f^'- K,abK/') . (2.15) 
/i=0 

Finally, let us introduce the Lie derivative of a tensor field T (with components 

Tab-^^'") along the vector field n°' at a point p as 

£ „ T | / = ' - l i m ^'•'^l" - ^ ! " , (2.16) 
t 0̂ I, 

where (̂ ^̂  is the pullback map from the point to a point p°' -}- tn"-. In a curved 

spacetime, the Lie derivative is the closest object to our usual notion of derivative 
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that can be defined, since it describes the variation of T along the integral curves of 

n" 

In terms of the components of T, the definition (2.16) implies: 

CnTab-'''^'" = rfVe Ta6...''̂  " + Te6...'̂ ' " rf - f all othcr lower indices 

- Tab-^'^"' Ve rf - all other upper indices (2.17a) 

= rf de Tab...""^" + Teb...'"^'" da rf + all other lower indices 

- Ta6...'̂  •• de rf - all other upper indices. (2.17b) 



Effective Motion of a Cosmic String 

3.1 Introduction and Chronology 

String dynamics is an important topic in the study of cosmic strings. Traditionally, 

Nielsen-Olesen strings have been either considered in their full field generality (for 

instance in numerical simulations of their interactions) or in the crude Nambu-Goto 

approximation (notably in analytical studies of their dynamics or to determine the 

properties of cosmic string networks). This approximation consists in replacing 

the string by an infinitesimally thin vortex-line. Although both approaches have 

their merits, they also have their limits: the full field action is too complicated 

to be studied analytically except in the most symmetrical cases, and the Nambu-

Goto action breaks down near cusps and kinks (which just happen to be points of 

particular interest on the string). 

The starting point of the study of string dynamics is of course the action (1.1) 

with the appropriate Lagrangian density. In this chapter we consider the abelian-

Higgs model (1.16), 

£ = (Da^) {D^^y - ^FabF-' - V(^), (3.1a) 

T/(<|>) = ^ ( $ t $ _ ^ 2 ^ 2 ^^^^^ 

The Nambu-Goto action 

^NG = J d'a x / - 7 (3.2) 

where, according to the notation of chapter 2, 7 is the determinant of the intrinsic 

metric (2.6) of the worldsheet coordinatized by a^] has been known to approximate 
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the dynamics of Nielsen-Olesen strings for a quarter of a century [76,42], and has 
provided a convenient and comparatively easy way to study and simulate the dy­
namics of these objects. In his original paper [42], Forster not only showed that 
Nambu-Goto strings effectively approximated Nielsen-Olesen's solution, he also de­
scribed the method to find corrections to this approximation (but he did not do it 
himself). 

In the case of cosmic strings (as opposed to that of dual strings, the context 

in which Nielsen & Olesen and Forster considered this solution), it may be vital 

to consider these corrections — even in more general cases that the loop discussed 

in section 1.1. The reason is that cosmic strings have a finite width, and that in 

this case the Nambu-Goto action only approximates accurately the full action when 

the string's radii of curvature are large (in a sense that will be made more precise 

later in this chapter). This condition is badly violated at cusps and kinks on the 

string; sadly, these points (collectively referred to as "small-scale structure") have 

a particular importance for the cosmological implications of strings: it seems that 

quite generically string loops will radiate most of their energy through their small-

scale structure (see for instance [37,44,23]). The rate of energy emission by the 

loop — which determines its longevity, and therefore its repercussions in cosmol­

ogy — clearly depends on the quantity of cusps and kinks on it . 

Using the Nambu-Goto action and equations of motion, numerical simulations 

have shown a certain behaviour for the strings in a network. In particular, they 

have yielded the rate of energy loss by cosmic loops, via an estimation of the num­

ber of cusps and kinks on the worldsheets of the strings. Clearly, it would be of 

great interest to determine whether strings obeying the ful l field dynamics produce 

more or less small-scale structure than their Nambu-Goto counterparts, and there­

fore decay faster or slower, respectively. An effort over the last ten years or so 

(see [71,51], [43,53,52], [29,3]; [6,5]) has yielded an action generalizing the Nambu-

Goto approximation. In this chapter, we rederive this action and, by considering 

the equations of motion associated with i t , we are able to determine whether the 

worldsheet becomes more or less crinkly. As a matter of terminology, a worldsheet 

is called rigid if i t is less crinkly (i.e. i t has less small-scale structure) when it obeys 

the ful l action equations of motion than when it obeys the Nambu-Goto equations 
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of motion. Otherwise, it is called antirigid. 

Following Forster [42], we are going to consider the full action for this model, 

S = J d^xyf^ C (3.3) 

and, by integrating it over the directions perpendicular to the string's worldsheet, 

obtain a new action of the form 

5efF = j £eff (3.4) 

(provided some assumptions hold). In the simplest approximation, this yields the 

Nambu-Goto action; our goal is to go beyond this "zeroth-order approximation." 

As we have seen in the previous chapter, it is possible to express the abelian-

Higgs Lagrangian and equations of motion in terms of real fields X and as 

C = i y x r ^ X ^ P l - ^ F l - ^ ^ { X ^ - . r (3.5) 

and 

• X - + J—X {X" - 1) = 0, (3.6a) 
2'̂ k̂ 

^^pab ^ ^xP^ = 0. (3.6b) 

(Remember that (3 is the Bogomol'nyi parameter, and note that we have not yet 

chosen coordinates such as the string's width WB. is of order unity.) 

Apart from the above equations of motion, the formalism described in chapter 2 

provides us with "geometrical equations of motion" obtained by taking the Lie 

derivatives of the metric and the three fundamental forms along the normals. These 

are 
/ \ 

Cfi9ab = '^ /̂xab - y ^ £fiu P(an\u\b) , (3.7a) 
\ iy=l,2 I 

C^hab = 2K,_,ab, (3.7b) 

^^iKyab = K^{a''K\^\b)c, (3.7c) 

C^^^a = 0. (3.7d) 

Note that we assume here that the "background" manifold, is flat: gab would 

be the Minkowski metric if we were working in Cartesian coordinates. The need for 

equation (3.7a) comes from our choice of working with a coordinate system based 

on the worldsheet W, which is forced by the form (3.4). 



3.2. The Expansion of the Equations of Motion 26 

3.2 The Expansion of the Equations of Motion 

Following the method presented in chapter 2, we coordinatize the worldsheet W by 

two coordinates a^(A = 0,1) (which can be imagined to be the "time" t and a '2;' 

coordinate along the string). Perpendicularly to W, we define coordinates ('^ by 

^ / i " = (^f^j = 0,1. Then the four vectors {cr^,^^} form a basis for M. 

This choice of "Gaussian" coordinates is motivated by the form of the Nambu-Goto 

action which we wish to obtain and generalize; however, it has the disadvantage of 

being only valid within the radii of curvature of W. 

A first remark we could make is that equation (3.7d) integrates immediately to 

yield 

/3a(a^ = /3a(<^\ 0) = (3.8) 

(In this chapter, and in chapter 5, we underline quantities evaluated on W.) 

I t is not possible to solve the equations of motion (3.6, 3.7) without any further 

approximations or Ansatze. We shall therefore restrict ourselves to strings very close 

to the Nielsen-Olesen vortex, and expand the equations of motion in some (small) 

parameter <; so that the Nielsen-Olesen solution corresponds to = 0. The NO 

solution was found in the case of a static straight string (i.e., a flat worldsheet), 

but since it also corresponds to a Nambu-Goto string, which is curved but has zero 

thickness, we expect that the parameter ^ is a combination of the string's width WB. 

and some typical value I£ for the elements of the string's extrinsic curvature K_^b at 

= 0. Namely, we define 

<^=\K\wn. (3.9) 

Now we must scale all length parameters out of the equations of motion, so that 

these can be meaningfully expressed as a series in the parameter whose zeroth-

order corresponds to the Nambu-Goto equations of motion. To do this, rescale the 

following coordinates and fields: 

('-^x^^ = e/wE, (3.10a) 

= (3.10b) 

^Ma6 -> l^ixab = R K^ab, (3.10c) 

Pa-^R^a, (S.lOd) 
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Pa^W^Pa, (3.10e) 

^Kb^Kb = R^^Kb. (3.10f) 

(/? = 1 / ^ is the typical value for the string's radii of curvature.) Then, —> WuC^, 

and the remaining equations (3.7) become, 

/ \ 
^fiQab = 2<; K^ab - £fiiyP{an\i,\b) , (3.11a) 

V - / 

C^hab = 2<̂  K^ab, (3.11b) 

^fif^uab = ^ l^(i{a^ >^\u\b)c- (3.11c) 

We now must apply this rescaling to the equations for X and Pa- The difference 

in the rescaling for and will pose a small notational difficulty. Indeed, we have 

that -> WYid^" and = 5^ ED^ . Therefore, 

• X = -^DAD^'X + + (3-12) 
R^ 

where = i^^^a- Then, equation (3.6a) becomes 

d^d^X + ^ «:^a^X + C^^DAD'^X - XP^ + ^ X (X^ - l ) = 0. (3.13) 

Now, turn to Fab- Multiplying equation (3.6b) by Wu yields 

^M^^^" + {-DAO^'P^ + /^;,P^^) + (^''DAD^P^ + " ^ 

(3.14) 

(for h — B and 6 = respectively). 

To summarize, the equations to solve are 

/ „ \ 
C^gab = '^^ l^fiab - ^£fiuP{an\i,\b) , (3.15a) 

C^hab = 2<; K,^ab, (3.15b) 

^fil^i/ab — ^ l^ij,{a^l^\v\b)cj (3.15c) 

0 = d^d^X + c^Kf^d^X + q^DAD'^X - XP'^ + ]-X {X^ - l ) , (3.15d) 

+ -^X^P^, (3.15e) 

0 = ^/.P^" + {-DAO^P"^ + /^^P^^) + ^'DAD'^P'' + -^X^P". (3.15f) 
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Next, we must expand the fields in powers of the dimensionless parameter 

9ab — yab + + 2 ̂  ^ab + 0 , 

hab — '''ab + + 
2^ + 0 (^^), 

^fiab + + 
2̂  + 0 (c^), 

Pa 
p(0) + + 1^2 P(2) 

2 ^ + 0 (^^), 

X = + + 1^2^(2) 
2 + 0 . 

(3.16) 

Before we consider the equations order by order, we should note a few facts. First, 

that we have expanded P^, and therefore we must replace P°' = g"'^Pb everywhere, 

where is found at each order by expanding the relation g°'^gbc = ^"ft- Second, 

since and are of same order, we have that 5^ ~ ^DA-

Moreover, it is possible to know the background metric to all orders exactly. The 

expansion of any quantity Q oS the worldsheet takes the form, 

and in the case where Q is gabi the series has a finite number of terms, because 

^jjL^v^^pab 0, 

C^Ci^Cp^f^ = 0. 

In fact, one finds that, 

lAB + ^qX^'K.^AB + <^^X'"^'"!^„AC ^vB^ ^^PSp^^^ 

(3.17) 

9ab 

^^PtLB 

-9 = -7 

(3.18) 

(3.19) 

In particular, note that g^^ = g}^J] this will simplify the equations of motion later 

on. 

3.2.1 The Zeroth Order and the Nambu Action 

Inserting the expansion for the fields into the equations of motion and setting ^ = 0 

leads to 

= = C,KZ = 0, (3.20a) 
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(5'°''"'aaX<''>) - x W f f W - ' - p W p f + - 1) = 0, (3.20b) 

d, (5(»)'"'5(»)'''p('')) + i x W ^ s m ^ S p m = 0, (3.20c) 

d, (<;(°>'"'5<'"'"'i^i?) + iA:('')^g(°)'"'pf' = 0. (3.20d) 

The three geometrical equations integrate immediately: 

(0) _ f JAB 0 

/ » i : ' = ^ . , (3-21) 

(0) _ 
'^Hab ~ l^iJiah-

Note that g^i, is written in Cartesian coordinates (which for <r = 0 are equivalent 

to our Gaussian coordinates); it would be more useful in cylindrical coordinates, in 

which case we replace —6^,, by —Diag(l, Q^). 

We now must insert g^^")^^ into the equations for X^°) and Pi^^ Remembering 

that X depends only on Q, and making the usual Nielsen-Olesen Ansatz^ X^^^ 

X{Q), Pi°^ = P(^)Va^, we find that X and P must satisfy, 

y p2 1 

' ' ' ' (3.22) 

Q P 

where a prime denotes differentiation with respect to g. Equations (3.22) are of 

course the Nielsen-Olesen equations, and we can solve them numerically. The solu­

tions for X and P are plotted in figure 3.1. Insertion of the Nielsen-Olesen functions 

to approximate the full X , P^ into the action (3.3, 3.5) leads to the Nambu-Goto 

action. 

3.2.2 The First Order 

Inserting the expansion of the fields into (3.15) and retaining only the terms pro­

portional to <;-, we find 

^(^9ab - 2 (l^t^ab - ^iJiu^iariub)) = 0, (3.23a) 

'^fiab 'C^/'il ' - 2/5„„6 = 0, (3.23b) 

^We consider A'" = 1 for simplicity. 
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Figure 3.1: The Higgs field X (solid) and the polar gauge field P^ of the Nielsen-Olesen 
solution. 

r (1) 

-d^d.xm - K^d.x^o^ + Pi'"p^°'A:(^ + 2pWpWx(' ' ) 

= 0 

= 0, (3.23c) 

(3.23d) 

- 5 , p ( i ) - /.^PW + i x W ^ P i ^ ) + 2 i x W x ( ^ ) p W = 0. 

(3.23e) 

(3.23f) 

As for the zeroth order, the geometrical equations (3.23a-3.23c) integrate easily 

to give 

sit ' = Sil' + 2 - x^p^.n,,^) 

(1) _ ^(1) 
nab i-^b p,{a —fib)c' 

Equation (3.23e) is solved [3] by the Ansatz 

Pi'^ = -uiA^'e..Pi'\ (3.24) 

where cUa = ^^''nP^ua is called the twist vector. Therefore, we are left with three 

equations (3.23d, 3.23f) for X^^), P̂ ^̂  and P]^^ To simplify them, notably by elimi­

nating the the extrinsic curvature terms, we decompose them in cylindrical harmon-
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ICS, 
xf" 

— 
^ Q 

H(e) 

p(i) xf 
= ^ " 7 He) 

p(l) 
Q 

" - " 7 

(3.25) 

With this Ansatz the remaining equations become 

- H " - - + -
e e 

^ + PNO + J i^xlo -1) + 2 ^ ^ ^ ^ A = Xi,o, (3.26a) 

_ A " + | + + + 2 ^ N ° | ! ! ° 5 = p ; „ , (3.26b) 

_ A ' + g> + = eP^o- (3.26c) 

Equations (3.26) can be seen not to admit solutions for S,A and which are 

smooth and bounded throughout the ^—axis (see also discussion in [29]). Therefore, 

we must consider only the trivial solution, 

S = A = Îr = 0. (3.27) 

3.2.3 The Second Order 

Considering the terms at order in (3.15), we obtain the following equations: 

^,9ab - 44^6 = 0, (3.28a) 

- Klb = 0, (3.28b) 

Cpi^.ab - 2 {!l,ia''^\li)c + >^Ka^'^ '^|.|^)c) = 0' (3-28c) 

-d,d,X('^ + x^^^AB^/'d^X^'^ + 

-h2Pf )p^n(2)^(o) ^ 1^(2) (3^(0)2 _ 1) = 0, (3.28d) 

- a (y^rr-e .^f (°) - ) a^a^P^ '̂ = 0 (3.28e) 

-d,F('J + xOn^^^K/^FjS) + ^X(«)F(^) + | x ( ° )^ (2 )p i ° ) = 0. (3.28f) 

Again, the geometric equations integrate easily, and (as for the first order) we expand 

the fields in cylindrical harmonics to get rid of the curvature terms: 
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^ i " = Me) + X^^^.ABH.^" He), 
AB (3.29) 

P(2) 

(where a;̂ ^ = def xl^x" 1 

This leaves us five equations for the five fields ^, A, A and ijj, which split into 

two sets of coupled equations, for unbarred and barred variables: 

^No + 17 (3X^0 - l ) + 2^^^^\ + eXi,o = 0, (3.30a) 

and 

4 + + y ( 3 X S o - l ) + 2 ^ ^ ^ ^ A ,X;,o = 0(3.31a) 

-A" + ^ -^ 2^' - 2 | + ^ + 2 ^ ^ ^ ^ " + ,P^^ = 0(3.31b) 

# - 2A' -h + ^ ^ N o = 0.(3.31c) 

These equations admit regular solutions and can therefore be easily solved nu­

merically; the result of these integrations is presented on figure 3.2. It satisfies the 

following asymptotic behaviours at the origin: 

^ ~ 

A ~ g\ (3.32) 

A ~ const. 

3.3 The Effective Action and Equations of Motion 

3.3.1 The Effective Action 

If we insert the solutions g^^\ ^/g^^\ K,^^^^, X ^ " ^ and Pj"^ found in the previous 

sections into the action (3.3, 3.5), we can carry out the resulting integral on directions 

perpendicular to W, and obtain an eff'ective action for the abelian-Higgs model based 
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Gauge field A 

Higgs field 4 

Gauge field A 

Gauge field IJJ 

Higgs field t 
10 

(a) Unbarred functions (b) Barred functions 

Figure 3.2: The unbarred and barred functions for the second order solution, for the 
critical case /3 = 1. 

on the Nielsen-Olesen solution. This is Anderson's action [3 

p.AB (3.33) 

The four parameters / i , are numerical coefficients obtained by integrating over 

^W; since we only know the solutions numerically, these coefficients must be found 

in the same way. They are plotted against /?'^ in figures 3.3 and 3.4, and are shown 

in table B . l . They are given by 

fi = 27Tr] / g dg 
Jo 

r 3 ^ ai = — y g dg 

^ w n H I NO I / v 2 1^2 
NO ^ „ 9 ^ ^ ^ v ^ N o - ^ ) 

V ' 2 , ^ N O - ^ N O , P^NO 1 
^ N O ~i ~ + - f " + i ( ^ N O - ! ) • 

TT 
a2 = -

4 ,0 

TT 

g^ g 

g'X^^o {2( - e) + ^ ^ o (2A - A - gij;) + 4/?^Pi 2 
NO 

2 
NO 

(3.34a) 

(3.34b) 

, (3.34c) 

(3.34d) 

3.3.2 The Effective Equations of Motion 

In order to derive the effective equations of motion of the string, we must express 

the effective action (3.33) in terms of the worldsheet coordinates X^, with respect 
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Figure 3.3: The parameters nK'Krj^) and ail(i:rj^) as functions of the inverse Bogomornyi 
parameter 1//?. 

(a) Q;2/7r 

20 40 60 80 100 

(b) C K S / T T 

Figure 3.4: The parameters a2l'K and as/IT as functions of 
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to which we are varying i t . To do this, note that 

Hence, defining 

we see that 

ATAB def ^a:A \r -B 
^^CD — ^ •,C^a;D , 

(3.35) 

(3.36) 

l^fiAB BA 5 

I^IIABI^U H^ICDI^U — ^ ^a;CD^ -^b]AB — ^^BD^^CA 

Now, the connection on the worldsheet is given by 

1 
T f i ^ C = ^ t ' ' ^ [iBE^C + 1CE,B - IBC^E) = l'''^X^EXa^BC. (3.37) 

and the Riemann tensor [either directly f rom the above connection of via the GauB 

equation (2.12)] is 

^^TABCD = X^-AcXa-BD — X^-AvXa-BC- (3.38) 

We may therefore, using the identity RABCD = | - R ( 7 A C 7 5 D — 7AD7BC) and the 

symmetries of N^^, infer the following useful relations: 

CA 
BC 

W = -N AB 
BA 

(3.39a) 

(3.39b) 

(3.39c) 

H / i • • 

Note that in (3.33) the term K^AB mult iplying is in fact / i ^ ^ ^ ^ ^ ^ ^ , which is equal 

to l'r^°) by (2.15), since K^^^^ = 0.] The variations of the constituent terms of (3.40) 

are 

Therefore, we can also express the effective action (3.33) as 

1 
"2 + ^ a 3 ) " r ^ + a 3 A f ^ M 

CB 
ED-

(3.41a) 

(3.41b) 

(3.41c) 
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Noting that 9 = / "r (Pa is proportional to the Euler characteristic of the 
worldsheet (which is a topological invariant), or f rom the above equations, we see 
that the ai term w i l l not contribute to the equations of motion. The "r^ term gives 

= -AK,ABX''''^^ . (3.42) 

In this calculation we used the Riemann identity [DA, DB\X°-fi = ^^TCDABX"''^^ 

which implies X^'^^,B = h ^ ^ X ^ B = | " rX""^ . 

The N ^ § N ^ E term gives 

3 { X ^ ' ^ N E S N ^ E ) . , A + 3 {N^EX^-^^'').^AB • (3-43) 

Inserting into this the following relation 

AMB va:CD vb\B v -Ava-.CD _ ^ / vb v ;M va\CD 

= - J ( " r 7 c z , ) ^ ^ X « ^ ^ " = 0, (3.44) 

we finally f ind that the equations of motion for the worldsheet to fourth order in q 

are 

4 n X ^ = - 2 (a2 + 2a,) K,ABX'-^^^ + 3^3 ^ ^ ' ^ ( A ^ l c A ^ I D ) . ^ 
^ ' (3.45) 

+ ^a,N^^X^-^'''',AB. 

(Note that for <r = 0 this reduces to the Nambu equation, D X " = 0, and that there 

are no contributions at order q^.) 

We can now express this equation of motion in terms of the fundamental forms. 

Using (3.35) and 

X'^.AB = X\AB - VA'^BX^C, (3.46a) 

Xa,DX^,AB = 0, (3.46b) 

i t follows that 

= - ( S - ' - n / n / ^ C M B = '5'"'nM%AiJ- (3-47) 
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Contracting the equations of motion wi th n^"- and wi th X^^p gives us equations 
of motion parallel and perpendicular to W : 

- f i ^ A = (4a2 + 2a3)" r ; . 4B«; / ' ' + 4^3 < 5 ' ' ' ' i v ' ' S / " " / ^a iCDAS, (3.48a) 

0 = 3a3 ( A f | | ? A f ^ f ) p + 4^3 N^h^^l""^ X\pX,,cdab. (3.48b) 

(This last equality is an identity for the unperturbed worldsheet.) Therefore, the 

equations of motion also read 

^ / i ^ = - (4^2 + 2a3) " r ; A 5 / i ^ " ^ ^ + 4^3 - K^^CMAB - ^^P^B^PCD-A 

E \ 
— /̂xp ^ / l !^pCD;B ~ l^pCD A H^EB ~ ^fip ^A;B l^pCD + f^fiCD ^ ^BJ • 

(3.49) 

In this notation the Nambu equation assumes the familiar form 

/.^ = 0. (3.50) 

3.4 Three Illustrative Trajectories 

In this section we shall derive the corrections to the motion of three test trajectories: 

a collapsing circular loop, a travelling wave and a helical breather. Then, we wi l l 

determine f rom this corrected motion whether these three string solutions are rigid 

or antirigid. A more general discussion of the r igidity of strings beyond the Nambu 

l i m i t is postponed un t i l section 3.5. 

Before we consider the corrections to these trajectories, let us briefly introduce 

their Nambu characteristics and discuss what we would expect to find. 

The loop trajectory [64] is given by 

X°'(T, a) = (r , cos(r) cos (a), cos ( r ) sin(cr), O), (3.51) 

(where r and a are the worldsheet coordinates cr° and a^) and collapses to a point 

after a t ime A r = 7r/2 = L / 4 , where L = f da = 27: is the length of the closed 

loop. This is a good trajectory for investigating the diflferences between the Nambu-

Goto and Anderson's actions, (3.2) and (3.33), because at r = A r the extrinsic 

curvatures invariants of the worldsheet become singular, that is <r —> oo and the 

Nambu-Goto action breaks down. Of course, the corrected action also breaks down, 

but since i t is to four th order i t should remain valid longer than the Nambu-Goto 
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action. Therefore, we should observe roughly three zones for the collapse of the loop: 
1° Both the Nambu-Goto and Anderson's actions are valid, 2° The Nambu-Goto 
action breaks down, but Anderson's remains valid and 3° Anderson's action breaks 
down. Intuitively, r igidi ty would be indicated by a retardation of the divergence of 
the curvature invariants, i.e., of the collapse. 

The travelling wave is a variant of the flat worldsheet where we allow the super-

imposition of a displacement depending only on one of the light-cone variables of 

the worldsheet, a± = a ±T. That is, the travelling wave is described by 

X^iT,a) = ( r , / ( r - a ) , 5 ( r - a) , a ) . (3.52) 

This has been shown to be a solution to the f u l l field theory [45], and since this 

is clearly also a solution of the Nambu equations DX^ = 0, we anticipate that no 

corrections w i l l be found. 

Finally, the helical breather (see e.g. [83]) is given by 

X " ( r , a) = ^T, A / 1 - g2 cos(r) cos(cr), ^J\- cos(r) sin(a), , (3.53) 

where ^ is a free parameter such that g —)• 0 gives the collapsing loop and g —> I 

gives the flat worldsheet. For 0 < g < 1 the trajectory is never singular and the 

extrinsic curvature peaks at approximately — q^/q^. Rigidi ty would be indicated 

by a preference for lower extrinsic curvature, and therefore a negative correction to 

the amplitude of breathing oscillation. 

3.4.1 The Collapsing Loop 

In Cartesian coordinates, the position of a collapsing loop centered at the origin is 

X^iT.a) = ( r , Z ( r ) c o s ( a ) , Z ( r ) s i n ( c r ) , 0 ) , (3.54) 

where Z(T) is the time-varying radius of the loop. The normals of the worldsheet 

are given by ri^a-^",A = 0, and are 

no^ = (Z, cos(a), sin((7), 0 ) / \ / 
(3.55) 

n i " = (0 ,0 ,0 ,1) . 
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Then, 

I^OAB 

lAB = 0, 

lAB = 

^A^ B — 

Z 0 

^ r r i ^ V 0 - z 

l - Z ^ 0 
0 -z^ 

0 

zz 
\ (3.56) 

V 
1 - Z 2 

0 
1 - ^ 2 / 

A B 
Z f 0 1 

~z[i 0 

and the equation of motion to order is 

Z Z + l - P 

z(i-z^' 
3/2 7 = 0 , (3.57) 

which admits as general solution: 

Zo ( r ) = k cos r - T o 
(3.58) 

Choosing TQ = 0, A; = 1, we obtain the canonical loop trajectory (3.51). 

Now we want to solve Eq. (3.49) for a corrected radius Z{T) = ZQ[T) + 8Z[T). 

Inserting (3.56), the right-hand side of (3.49) becomes: 

4 (as + as) " r . ^ B /̂ s'"̂ ^ = 32 (^2 + ^3) sec^(r) t an( r ) [7sec^(r) - 6] . (3.59) 

The left-hand side of (3.49) can be obtained by varying the expression (3.57), 

whereby we obtain 

5Z + 2 t a n ( T ) ^ Z - 5Z = 3 2 - {a2 + as) sec^(T) t an( r ) [7sec2(r) - 6] . (3.60) 

The solution can be obtained by varying the constants of (3.58), and is 

5Z = 3 2 - (a2 + as) ^ sec^(r) + ^ sec^(r) + ^ sec(r) - ^ cos(r) - ^ sin(r) 

(3.61) 

Clearly, (3.61) tells us that the r igidity of the string w i l l be determined by the 

combination a2 + as. This is plotted on figure 3.5a and is negative for the range 

of p that we consider. This means (figure 3.5b) that the loop collapses faster and, 

according to the discussion at the beginning of this section, is antirigid. 
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Nambu collapse 

Corrected collapse 

0 20 40 60 80 100 0 0.2 0.4 0.6 0.8 1 1.2 1.4 

(a) "Rigidity" parameter (0:2 + aj^/i: (b) Corrected collapsing loop 

Figure 3.5: The corrected collapsing loop, (a) The "rigidity" parameter (a2 + Q;3)/7r 
as a function of the inverse Bogomol'nyi parameter 1//?. (b) Comparison of the Nambu 
collapse of a loop with the corrected collapse, for /? = 1 and a (large) value of = 1/10. 

Note that the approximation breaks down when lii^oAsI — 0(1 /U;H ) , J-G- when 

COST = 0{wYi)\ for ^ = 1/10 as in figure 3.5b this this happens at r ~ 1.1, which 

is indeed the point where the two solutions start to differ significantly. This is 

indicated on the figure by a vertical dashed line. 

3.4.2 The Travelling Wave 

The travelling wave is a worldsheet which has position 

X ° = ( r , / ( r - a ) , 5 ( r - a ) , < 7 ) 

and normals 
V = ( 0 , f f ' , - / ' , 0 ) / x / / ' 2 + 5'2, 

(3.62) 

(3.63) 
« i " = i f " + / ' , 9', f " + 9 " ) / V r T F ' . 

We denote by a prime " ' " the diflferentiation wi th respect to the function's argument, 

i.e. T — a. Wr i t ing 

A ( T - a ) ^ = ' r + 9'^ 

C(r - a) (f'g' - f'g") / A , 

k,(T - a) i f g ' - f'g") / ^ \ , 

k i { r - a ) ' ^ ( f ' f " + g'g")/^\, 

(3.64) 
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we have: 

^ ^ ^ = i A - 1 - A 

J. A A' / 1 \ - / - 1 1 

2 v - i / - ^ V 1 - 1 

and i t is straightforward to see that all terms in the right-hand side of (3.49) vanish 

separately: as expected, we find no corrections. 

3.4.3 The Helical Breather 

The helical breather trajectory is given by 

( r , Z ( r ) c o s ( ( j ) , Z ( r ) s i n ( c r ) , ^ a ) , (3.66a) 

no^ = {0,qsm{a), -gcos(a) , Z)/^q^ + Z'', (3.66b) 

n i ^ = {Z, cos(a) , s in(cr ) ,0) / \ / l - Z 2 (3.66c) 

and describes the worldsheet of a helical sting (i.e., a corkscrew) wi th breathing 

parameter q. I t is a generalization of the flat cosmic string loop, for the latter is 

obtainable by taking the l imi t ^ 0; the l imi t g ^ 1 is the flat worldsheet. W i t h 

our choice of normals, we obtain 

^A 
0 

^AB — ~ 
qZ / 0 1 

1 f z 0 
lAB 

(3.67) 

x / i ^ V 0 -z 
_ ( l-Z^ 0 

^""^-y 0 -{q' + Z^) 

hence, the equation of motion to zeroth order is 

+ J —17^ = 0, (3.68) 
( l - ^ 2 j {q^ + Z^) ( l - ^ ' j 
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which admits for general solution 

Zo{r) = V k ^ ^ c o s • (3-69) 

Choosing again A; = 1, TQ = 0, and calling 

n ( r ) = cos2(r) + sin^r), (3.70) 

we find 
q f 0 

= 1 

l l - q ' . . ,f 0 1 
^AB = - q ^ ^ s m i r ) ^ ^ Q 

(3.71) 

^AB=n(^l \ y 
The zeroth order solution (3.69 w i t h g = l , r o = 0) is called a "breather," because 

i t smoothly oscillates f rom one helicity to the other (a "right-handed" corkscrew to 

a "left-handed" one) and back. 

Then, the right-hand side of equation (3.49) becomes 

- 3 2 < r V l - ^ ^ cos(r)(^-9/2 - /?2 + - A n - ^ ) , (3.72) 

where we have defined the following numerical coefficients 

A = 6 [{a2 + as) + c^2q^] , 

P2 = 7(^2 + as) + (38a2 + 22as)q^ + (7^2 - 3as)^^ 

Ps = 5^' [(7^2 + 5as) + (7^2 + 2as)g'] , 

A = 15g^(2a2 + as). 

As w i t h the loop, the left-hand side of (3.49) is obtained by varying the trace of 

(3.73) 

S (/ii) - n-'/^Z + 20-^/2(1 - q') s in(r) cos ( r ) J^ 

+ ^7-^/2 [q^-(l-q^)cos'{T)] 6Z, 

so that the corrected equation of motion is 

SZ + s in(r) cosir)5Z + " d " ^ co^^(^)^^ 

= - 3 2 - v ^ c o s ( r ) r 2 - ^ ( A - P2^~^+P3^~^ - PA^~^) 

(3.74) 

(3.75) 
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We give an exact solution to this equation in appendix A; for now i t is more 

instructive to consider the quasiflat case, q ^ 1. Let us pose = 1 — <^ 1; then, 

(3.75) becomes 

(-4^S 
SZ + SZ = - 3 2 [(a2 + as) cos(r) - (2a2 + as) COS(T) sin2(r)] (3.76) 

and the corrected trajectory can be wri t ten [at O (<r̂ ) 

4c'A2 
Zo + 6Z =A 1 (2a2 + as) cos 1 + (2a2 + 3as) 

+ - ^ ( 2 a 2 + as)cos(3T). 

(3.77) 

Comparing this w i t h the unperturbed solution, we see that the eflfect of the correc­

t ion is threefold: 

• I t alters the frequency, sending r —)• [1 -f4^^A2(2a2 + 3as ) / / / ] r . Since both 

as and a2 + as are negative, this reduces the frequency, an eff'ect we would 

say tends to make the worldsheet rigid. 

• I t modifies the amplitude of the oscillation by a factor 1 — <;̂ A2(2a2 + as)//x, 

which could be either greater or smaller than 1, depending on (5\ figure 3.6a 

shows that 2a2 + as is positive for subcritical (5 and negative for supercritical 

Therefore, the amplitude is increased for < 1 and decreased for > 1. 

• I t adds a higher frequency oscillation \i (5 ^1. 

For simplicity, let us consider the case (5 = l\ then 

Zo + (^Z = A cos 1 + as I T (3.78) 

i.e. the only eflFect of the correction is to reduce the frequency of oscillation of the 

breather, which would seem to be unambiguously rigid. (See figure 3.6.) 

However, for general (5^ we observe a curious property: suppose that we initialize 

the correction at the instant of maximal velocity rather than maximal amplitude, 

8Z{-'KI2) = 5Z{-Ti/2) = 0, we find 

4c^A2 
Zn + SZ =A 

cr^A^ 
1 (2a2 + 9a3) sm 1 + •(2a2 + 3as) 

^ 3 
(3.79) 

•(2a2 + as)sin(3r ' ) + 0(^^) 
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Corrected motion 
Z + 10 (̂̂ Z 

2a2 + GLz 

Nambu motion Z 

0L2 + 2*̂ 3 

20 40 60 80 0 0.2 0.4 0.6 0.8 1 1.2 1.4 
r 

(a) Parameters of the helical breather (b) Corrected trajectory for the helical 
breather 

Figure 3.6: The corrected hehcal breather, (a) The parameters (Q;2 + \oLz)h and 
(2Q!2 + as)/7r appearing in the equations of motion and solutions of the hehcal breather, 
as functions of /5. (b) The corrected breather trajectory for = 1, A = ^ = 1/10. (In fact, 
the eff"ect is so small that we have plotted Z -\-10^ bZ) 

(where r ' = r 7r/2). This time the amplitude is increased for all fi. I f we consider 

again 5̂ = 1, this reduces to 

ZQ -\- dZ = A { 1 ^3 I sm 1 + as ) r (3.80) 

Although i t is not clear f rom this formula, an analysis of the Ricci curvature "r near 

r ' = 0 shows that i t is increased, which we would call antirigidity. (A calculation 

of the extrinsic curvature for the general solution rather than this particular case is 

included at the end of appendix A. ) 

3.5 The Worldsheet Rigidity from the Action 

To summarize the findings of the previous section, we could say that, although for 

the collapsing loop we found that the worldsheet was unambiguously antirigid, i t 

was much more diff icult to tell in the case of the helical breather. In fact, we found 

that i t was not possible to determine directly f rom the corrected motion whether i t 

behaved r igidly or antirigidly, and had to compute the corrections to the worldsheet's 

curvature; in doing so, we found that — foi/3 = l — the string could behave either 

way, depending on the in i t ia l conditions. 
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In this section, we wish to consider the question of the worldsheet rigidity in more 

detail, using an argument originally due to Polyakov [81]. We abandon our attempts 

to determine the r igidi ty of the worldsheet directly via the corrected dynamics of 

the string to concentrate on the very definition of r igidi ty (respectively antirigidity), 

namely a decrease (increase) of the small-scale structure on the worldsheet. 

Let us perform a rescaling of the worldsheet coordinates, that is X"- -)• XX"-. 

These transformations alter of course the scale of crinkles on W and magnify or 

reduce the small-scale structure, depending on whether A ^ l . Rigidity would be 

indicated by an extremum of the energy (or the action) wi th respect to the parameter 

A, as illustrated in figure 3.7. 

-S 

X 

Figure 3.7: Illustration of Polyakov's argument for a rigid worldsheet (solid fine) and an 
antirigid worldsheet. 

Let us consider then the fourth-order action, which we can write as 

(3.81) 

where M^^, = !5Lf,AB • As M^^M^.^ = Ml - 2 d e t ( M ) , this can be rewritten as 

•S = f i A - q^aiS + [(as + as ) / i - 2a3/2], (3.82) 

w i t h A the area of the worldsheet for the range of { r , a} being integrated over, 9 

proportional to the Euler character of W and 

(3.83a) 
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l2 = J ( i V v ^ d e t ( M ) . (3.83b) 

So now perform the rescaling X " XX^ as mandated by the argument. Then, 

JAB X^lAB, 

and hence 

-S ^ X^tiA + q^aiQ + A- 'c^ [(a2 + a,)Ii - 2a,l2]. (3.85) 

We know that a3,a2 + as < 0, and clearly / i > 0, so in order to determine the 

shape of S{X) we only need to determine the sign of d e t ( M ) . For this purpose, we 

can work in the conformal gauge, JAB = VAB, where we find 

d e t ( M ) = {KLOOQUIU — HIOQUQU) ~ ^ ( / ^ i i ^ i i o ~ / i m ^ o i o ) 
(3.86) 

~ 2(«Q0Q^]^^Q — /iioo^oio) • 

I f we impose the Nambu equations of motion, = 0, this determinant is strictly 

negative. Hence, since is positive, we see that 5(A) is unbounded below. We 

must therefore conclude that the string is generically antirigid. This does not mean 

that all trajectories are antirigid, but rather that they cannot all be rigid. Let us 

now illustrate this w i t h the three cases that we have considered in the previous 

section. 

• Col laps ing loop 

In this case, de t (M) = 0 because the loop is flat and therefore has only one non-

vanishing second fundamental form. As noted in section 3.4.1, the parameter 

a2 + as then determines alone the rigidity behaviour of the worldsheet. Since 

this parameter is negative, 5'(A) is unbounded and this solution is antirigid. 

• Trave l l ing wave 

Here M ^ i , = 0 altogether. 

• He l i ca l breather 

In this final case, both Mf^^ and de t (M) are non-zero. Although the string 

is generically antirigid (due to an unstable mode) some trajectory corrections 

may have vanishing projection onto that unstable mode, and be rigid. 
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From the discussion in section 3.4.3, it is clear that whether the the correction 

projects or not onto the unstable mode depends on the parameter q and on 

the initial condition. Let us trade q for A and pose E = sin(ro). Figure 3.8 

shows the zones in the parameter space (A^, T?) where the worldsheet is rigid 

and antirigid. (The computations to compose the figure require the solution 

for arbitrary q of appendix A, and we therefore postpone them until then.) 

Figure 3.8: Diagram showing the regions or rigidity and antirigidity (shaded) for the 
hehcal breather and /? = 1. A^ = 1 - and S = sin(To) are the two parameters upon 
which the rigidity depends. 

3.6 Outlook 

In this chapter we have determined that cosmic strings are generically antirigid 

when considered beyond the Nambu limit. Cosmologically, this implies that string 

networks will have a shorter life — and less impact — than previously believed. 

This result is somewhat annoying in a more "mathematical" way. The main reason 

for finding the effective motion and determining the rigidity of the worldsheet was 

that the Nambu approximation would not be valid at the small-scale structure. By 

finding that the quantity of small-scale structure was actually increased by going 

further than the zero-thickness limit, we have in a sense contradicted our assumption 

that finding corrections to the Nambu-Goto action would improve our knowledge of 

the string's dynamics. We would somehow had preferred to find that the corrected 

dynamics of the string was rigid; this would have given us an a posteriori confir­

mation that indeed we know more about the string's motion now. But there is still 
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hope that this w i l l indeed be the case when we consider the gravity of the defect, 
an important ingredient that is s t i l l missing in this analysis. 

The method used in this chapter to obtain the eflfective motion consisted in 

expanding the fields off" the worldsheet, and integrating the action S over these 

perpendicular directions to obtain a quantity based on W . This method relies 

crucially on our use of the custom-made system of Gaussian coordinates. However, 

i t was mentioned earlier in this chapter that this basis's existence and uniqueness is 

only guaranteed up to a distance R of the string's core. Therefore, we should not 

be allowed to integrate the action outside the interval g = {0,R). What makes the 

method work is that all our fields (including the gauge field Pa) are massive, and 

therefore fa l l off exponentially rapidly to their vacuum values (1.27). By the time 

the coordinate system breaks down, all integrands are effectively zero and we do not 

make any mistakes by integrating the action up to infinity. 

Consequently, one can genuinely wonder whether this method can (or should) be 

applied in the presence of massless fields (such as the graviton in pure General Rela­

t i v i t y and the dilaton in Brans-Dicke or stringy extensions of i t ) , since these would 

not benefit f rom this rapid fal loff at infinity. A similar problem occurs wi th global 

strings (whose field decays as at large distances). Of course, the integrands of 

the action could st i l l all fa l l off exponentially despite the presence of massless fields, 

and the effective action method might st i l l work; only an explicit calculation could 

tell . 

For simplicity, we shall consider the dynamics of gravitating walls rather than 

strings. We shall then see (in chapter 5) that there is another way of finding the 

effective equations of motion for a defect, which does not require the integration of 

the eflfective action. Before we can do this, however, we need to know more about 

the gravitation of plane-symmetric domain walls, which w i l l play a role similar to 

that of the Nielsen-Olesen string in this chapter. 



Gravitating Plane-Symmetric Domain 
Walls 

4.1 Introduction 

For some time, topological defects — in particular cosmic strings — have been 

believed to hold the key to some important observations that the standard Big 

Bang model cannot explain alone. Most spectacularly, the standard model fails to 

predict the existence of cosmological structures in the Universe (galaxies and clusters 

of galaxies) because of the Cosmological Principle (CP), which postulates that at 

large scales the Universe is homogeneous and isotropic; these symmetries are used 

to derive of the Robertson-Walker metric, upon which the Big Bang scenario is 

based. Although the CP is in agreement wi th the Universe that we observe today at 

scales much larger than the size of galaxy clusters, these symmetries actually make 

the early Universe so completely homogeneous that gravity cannot be invoked to 

explain the formation of cosmic structure. 

To remedy this situation, several explanations have been proposed, which should 

be regarded as fixes to be patched to the standard cosmological model. The first 

possibility is that gravity was not well described by General Relativity in the early 

Universe. There are good reasons to believe that this is indeed the case, such as the 

non-minimal coupling of matter to gravity in the low energy l imi t of string theories 

(which gave b i r th to the so-called string cosmology, and most notably the "pre-Big 

Bang" scenarios). The second explanation originates in the Friedmann equations 

(the Einstein equations for the Robertson-Walker metric), which in certain special 
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circumstances admit exponentially fast growing Universe solutions. Such a period in 
the early Universe may indeed have happened, and is called an infiationary epoch. 
Inf la t ion was originally proposed to solve the flatness problem, but i t was soon found 
to provide seeds to the growth of cosmic structures. Indeed, during inflation, the 
Universe is believed to have increased by about 60 e-folds ( ~ 10^^); this would have 
blown up t iny quantum fluctuations into cosmic-sized inhomogeneities which could 
have served as seeds for gravitational collapse. The th i rd possibility is the existence 
of topological defects. In particular, moving cosmic strings would have created 
inhomogeneities in their wake which could have cause the formation of galaxies or 
galaxy clusters (see [59,89] and references therein). 

Al though global abelian strings seem so be ruled out as potential causes of grav­

i tat ional seeding [2,79] because of the power spectrum that they generate, recent 

claims of a non-Gaussian signature in the Cosmological Microwave Background Ra­

diation (CMBR) [41,78,77] would indicate, i f they are verified [22,10], that inflation 

cannot account by itself for observations, and that topological defects may have ex­

isted and influenced the seeding of cosmic structure after all . (Almost all inflationary 

models predict a purely Gaussian spectrum, but see for instance [84].) Even i f these 

claims tu rn out to be unfounded, topological defects are formed quite generically in 

phase transitions in the early Universe [63], and ideally we should be able to explain 

this lack of impact. By contrast, i t has been so far impossible to integrate realisti­

cally the inflationary paradigm into particle physics (with the possible exception of 

"topological inf lat ion" scenario, as we shall see later), because of the very specific 

potential required. 

Among the different kinds of topological defects, domain walls are possibly the 

most interesting, gravitationally speaking. First, their metric is not static like that 

of most of the other defects but time-dependent, as was shown by Vilenkin [87 

and Ipser & Sikivie [60] using Israel's th in wall formalism [61]; the wall exhibits a 

de Sitter-like expansion along its parallel directions. (This is the case even though 

the Higgs scalar field is static! I n fact, domain wall spacetimes cannot be static i f 

one imposes a refiection symmetry around the wall's core; see [47] for an example.) 

Second, the wall exhibits a cosmological horizon at a finite proper distance from its 

core, although this horizon is a consequence of the coordinates used, which were 



4.2. P l a n e - S y m m e t r i c Spacetimes 51 

chosen so that the flat spacetime wall lies along two spatial directions and at the 
origin of the th i rd one. The proposal by H i l l , Schramm and Fry (HSF) [58] that soft 
topological defects — meaning topological defects formed at a late time — could 
lead to cosmic structure caused some interest and prompted diverse attempts to find 
thick domain wall solutions [92,91,50,75] (wi th or wi thout gravity). Indeed, walls in 
the HSF scenario are thick and light ("soft"), because at the time of their formation 
the scalar field's V E V r/ is much smaller than the Planck energy. Unfortunately, 
HSF walls were discovered to be incompatible wi th the C M B R [62,66], and extended 
defects were again out of fashion. 

One of the problems of the inflationary paradigm is that i t cannot be easily in­

corporated in the particle physical models of the early Universe, because i t requires 

a very particular potential to agree wi th observations. However, i t was recently 

noted [88,69,70] that the core of topological defects formed very close to the Planck 

time would provide ideal conditions for inflation: these regions are in effect domi­

nated by the vacuum energy of the Higgs held (which is trapped at the top of its 

potential by the topology of the defect). Although such defects would usually be 

called " thin" because the Higgs V E V is comparable to the Planck scale, i t was noted 

that this thickness would be of the same order than the de Sitter horizon as seen 

f rom wi th in the defect's core. Thus, the idea of inflat ing topological defects was 

born; these defects are of course in a strongly gravitating situation, and an in-depth 

analysis of this situation has never yet been performed. In this chapter, we examine 

plane-symmetric thick domain walls, following all the possible solutions, f rom the 

very weakly to the strongly gravitating ones. 

4.2 Plane-Symmetric Spacetimes 

We consider the action (1.1) w i t h C = CG + CM where 

CM = ( V a * ) ( V ° $ ) - (4.1b) 

Here, $ is a real scalar field (the "Higgs" field) and U{^) is a symmetry-breaking 

potential which has a discrete set of degenerate minima. R is the spacetime's Ricci 
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scalar. We assume that the spacing between the minima of U{^) is proportional to 
a parameter 77 (the Higgs V E V which sets the symmetry breaking scale) and that 

is characterised by a scale Vp = U(^-F), where $ F is a local maximum situated 
between two minima of the potential. 

Let us start by scaling the dimensionful parameters via 

e = 87rGr,2; 

the parameter e then characterises the strength of the gravitational interaction of 

the Higgs field. Let us also rescale the potential by let t ing V { X ) = U{7] ^)/VF] wi th 

this choice, V{XF) = 1, where X-p = ^F/T] is a false vacuum. So far, there is only 

one scale i n this problem, the Higgs boson's mass, whose inverse is the domain wall's 

thickness W}i: 

Withou t loss of generality, we can set Wn = 1, which simply means that we measure 

distances in units of WE-

Although all the results of this chapter wi l l remain valid for any general poten­

t ia l satisfying these (and possibly other) conditions, we shall consider two particular 

potentials, both for illustrative purposes and to allow us to perform numerical sim­

ulations to refine our analytical results. These potentials are the Goldstone (or 

"A$^") and the sine-Gordon (sG) potentials, given respectively by 

V { X ) = {X^ - 1 ) ' (4.4) 

and 

ViX) = ^ [1 + cos{X)]. (4.5) 

In terms of the new field X , the action and equations of motion are 

(4.6) 

and 

• ^ = 4g (4.7a) 

Rai= e[2VaXV,X-g,iV{X)], (4.7b) 
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where Qab is the metric tensor f rom which Rat is buil t . Note that li X = Xp, then 
the Einstein equation (4.7b) reduces to 

R 
Gab = -egab = 9ab, (4-8) 

whose solution is a four-dimensional de Sitter spacetime [56, page 124). In this case, 

e clearly plays the role of an effective cosmological constant. We call this a "false 

vacuum-de Sitter" (vdS) solution. 

Let us now turn to the metric: we shall demand that i t has planar symmetry 

i.e. K i l l i n g vector fields dx.dy and xdy — ydx, and reflection symmetry around the 

wall's core, which we can place at 2 = 0, where z now measures the proper distance 

f rom the wall . The metric can then be wri t ten as 

ds^ = A'{z) dt" - B\t, z) {dx' + dy^) - dz\ (4.9) 

Although this is the most general metric w i t h the symmetries that we impose, the 

fact that the Higgs field is static, X = 0, means that 

Ru = {A'B - AB') = 0, (4.10) 

which (setting an integration constant to zero) implies B{t,z) = b(t)A{z). Then 

R * t ' R \ ^ ^ ^ - l = 0, (4.11) 

which imposes b{t) = ê * for some constant k. The coupled scalar-Einstein equations 

then finally reduce to 

A' 1 dV 

^ " ^ ' A ^ ' = 2 9X' ^'-''^^ 

^ = -'-[2X'' + V ( X ) ] , (4.12b) 

Equation (4.12c) fixes the constant k. 

Before solving the above equations (4.12), let us pause to consider what we mean 

by a "wall solution." We know now that X = Xp and a de Sitter spacetime wi l l 

always be a solution of these equations, which we do not want to call a wall, since 
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the Higgs field remains in its false vacuum value throughout space. Putt ing X = Xp 
into (4.12b, 4.12c), we get 

A{z) = cos(kz), 

3 

(4.13) 

and therefore 

ds^ = cos^kz) dt" - ê *̂ cos'ikz) {dx^ + dy^) - dz\ (4.14) 

Although this is a rather unfamiliar form for the de Sitter metric, i t can be cast into 

the usual ds^ = dr"^ — e'^^^dx^ by transforming the t and z coordinates to r and ( , 

such that e'^'^ = cos{kz) and C = tan(A;^)e~^7^-

In section 4.5, we wi l l investigate which solutions are admitted by the system 

of equations (4.12). In particular, we want to know which solutions are stable or 

unstable in what range of the parameter e. Clearly, the vdS solution is a solution for 

all values of e, but i t is not necessarily always stable; indeed, this solution is always 

unstable to the scalar field roll ing down the potential to the same minimum -1-1 or 

— 1 throughout spacetime. We are not interested in this t r iv ia l instability; the one 

that interests us here is the instability to decay into a domain wall configuration. 

We define a domain wall solution to be a function X{z) of the proper distance 

f rom the wall such that X{0) = Xp. Moreover, we shall require that the function 

{X(z) — XY) be odd, which corresponds to imposing that X tends to diff"erent 

vacua as 2: ± 0 0 , i.e. that the solution is topological. Concerning the boundary 

conditions, we shall see that when gravity is switched on, the Higgs field may not 

have the time to reach its true vacuum value at the horizon (which wi l l be for us the 

l imi t of validity of the coordinates in the z-direction). Therefore we cannot impose 

Xh = X{z\^) = ±1. However, we see f rom equation (4.12a) that as we reach the 

horizon and A —>• 0, A'/A blows up and i f we want the solution to be regular we 

must require X^ = X'(ZY^) = 0. Moreover, we shall only consider solutions which 

have reflection symmetry around z = 0, which means A'{0) = 0. Finally, we can 

choose t so that ^ ( 0 ) = 1. 
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4.3 Analytical Predictions 

In this section, we would like to see i f i t is possible to determine any properties of 

the solutions of equations (4.12) analytically. First, we know that wall solutions do 

exist in flat spacetime, and therefore we expect that for small e these solutions wi l l 

s t i l l exist by continuity, albeit perturbed by the inclusion of gravity. In particular, 

they w i l l exhibit a cosmological horizon at some very large proper distance z^. As 

e increases, we expect the horizon to move closer to the defect's core, unti l roughly 

e = 0 ( 1 ) , at which point the horizon moves inside the domain wall. One of two 

things could then happen. 

1. The scalar field ignores the proximity of the horizon and falls away minutely 

f rom the false vacuum. That is, X^ can be arbitrary close to the false vacuum 

Xp without being actually identical to i t . Of course, since this solution's 

energy would be dominated by its vacuum contribution, we would expect the 

Einstein equation to be close to (4.8) and the resulting spacetime to be almost 

de Sitter; however, a wall solution would exist for all values of e. 

2. The scalar field admits two qualitatively different types of solution. In the 

first kind, the field at the horizon remains relatively close to the true vacuum 

value, Xh = 0 (1 ) ; and in the second kind X(z) = Xp, and the spacetime is 

exactly de Sitter. These two kinds of solution should be separated by a phase 

transit ion at some particular value emax- Contrary to the previous case, wall 

solutions would not exist at all beyond the phase transition. 

Figure 4.1 shows schematically the evolution of Xh w i th e in two scenarios above. 

(We have used in this discussion and in the figure the fact that X'{z) > 0 and 

therefore Xh = X p implies X{z) = Xp. See figure 4.4.) From the work of Basu & 

Vilenkin [12], and our own work f rom chapter 6 (which predates this research), we 

would expect the second scenario to hold. Our goal in this section is to determine 

analytically whether a wall solution can be found for all values of e, and i f the 

vdS solution is stable for all values of e. This w i l l establish (beyond any numerical 

uncertainty) which of the two possibilities above is realized. 
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Xh 

Figure 4.1: The evolution of Xh(e) in the two different scenarios. In the first scenario 
(solid line), Xh can take arbitrarily small values. In the second, we observe a phase 
transition at some Cmax, after what X^ = 0. 

4.3.1 Existence of a Wall Solution 

For a nontrivial wall solution, we require that X{oy > 0 and ^'(zh) = 0. Taking 

the derivative of the scalar equation (4.12a) yields 

X'" = - S ^ X " X ' 
A 

where [using (4.12b) 

A" ^ f A ' \ Id^V 
- 3 ^ X " ^ F { z ) X \ (4.15) 

F ( . ) = 3 e X - + 3 ^ + i ^ ' ^ 
^2 2 5 X 2 -

Now, at 2 = 0, (4.12c) gives 0 < 3̂ :̂  e [1 - X'(0)% and thus 

X"'(0) = X'(0) 3e -6k'-]--
2dX^ 

> X'(0) e + -
2dX' 

(4.16) 

(4.17) 

Therefore, if e > \V"{Xp)\/2, X'" > 0 and X' is increasing and can never vanish at 

the horizon. We conclude that there can be no wall solution for 

e>l\V"{XY)\. (4.18) 

This condition becomes e > 2 for the Goldstone model and e > 1/4 for the sine-

Gordon model. 

4.3.2 Stability of the Vacuum-de Sitter Solution 

We know that the vdS solution exists for all values of e, and that for e > \V"{Xp)\/2 

it is the only solution. However, we still need to determine the stability of this 

solution to decaying into a domain wall solution for smaller values of e. 
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To do this, consider a vdS solution, A{z) = cos{kz),X = Xp and k"^ = e/3. This 
solution w i l l be stable i f there is no perturbation ^{t, z) of X p which is odd in z and 
growing in time. Setting X = X p + ^, we note that the corrections to the geometry 
are 0(^^) (and thus negligible). The question of the stability of the vdS solution 
then translates into whether the following linearized equation for ^ 

- 3ktan{kz)C - sec\kz) f j ' + 2/c^) - - - — = 0 (4.19) 
V / 2 uX 

admits any solutions of the type described above. 

We find that (4.19) does indeed admit unstable solutions for 

k'='-<l\V"{X,)\, 

the leading instabili ty being given by 

C = e'"''sm(kz)cos''{kz), (4.20) 

where 

Thus for 

1/ = + ^V9k^-2V"iXp). (4.21) 

e<€^ax = ^ | V " ( X p ) , (4.22) 

the vdS solution is unstable to decay into a wall solution. Numerically, we then have 

( 3 
- for Goldstone, 

emax = < ^ (4.23) 

— = 0.1875 for sine-Gordon. 
^ 16 

In the interval (emax, femax), we must resort to numerical methods to decide which 

solution is the true one. 

4.3.3 A More General Perturbation 

One might be worried that the previous analysis might not be correct because i t 

was not carried out in a global coordinate system for de Sitter spacetime. Indeed, 

i t is conceivable that there exists some perturbation which is bounded in time in 

the patch covered by our coordinates {t, x, y, z} but unbounded elsewhere on the de 
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Sitter hyperboloid. Let us consider here the global system of coordinates {i, ^, 
in which the metric takes the Robertson-Walker form [56 

ds^ = d p - ^ cosh{kif i^dx^ + sm%x) [dO'^ + s in2(^)#^] | . (4.24) 

Then one can check that the equation to be satisfied by a perturbation ^{t,x) is 

(in the Goldstone case) 

X-\-3k t&nh(kz)X - k^ sech^iki) [X" - f 2 co t (x )X ' ] = 2X. (4.25) 

The condition that X be odd in z translates to X being odd in x around x = '^Z'^-

Separating variables, X(t,x) = ^{t) M(X)) we get 

fi" 2 cot{x)li' - ^ / i = 0, (4.26a) 

i-hSktmh{ki)^ - [2 -\-Csech^(ki)] f = 0, (4.26b) 

where C is a constant. The first equation is solved by = cos(x) or ^ = cot(x); 

the latter being singular, we choose fi = cos(x), which implies C = —3k'^. I t is then 

possible to find the general solution of the equation for ^, which is given in terms of 

the hypergeometric function 2Fi(a, b; c; z) by 

at) = a sech'ikif^-^ 2F1 (̂-̂  - 7, ^ - 7; 1 - 27; sech\ki)j + 

/ o r \ 

P sech'(A;^)t+'^ 2F1 + 7, - 7; 1 27; sech2(A;^) j 

(4.27) 

where a and p are constants and 

V9FT8 , , 
7 = - ^ . (4.28) 

For the purposes of checking when this solution is stable, we can set = 0 

because the second hypergeometric function falls off to zero for large i. The first 

hypergeometric function, on the other hand, explodes at t —)• CXD for any value of k, 

and thus of e, although its values remain smaller longer for large k. 

Transforming back this perturbation into our original set of coordinates {t, x, y, 

z}, we find 

at, X, y, z) = sinikz) ( - ^ , - ' ; - ^ Z + A . A ^ (4.29) 
\ z z I ) 
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where 

= l + cos'(A;^) smh(kt) - - p \ ^ ' (4.30) 

and y is the parameter defined in (4.21). Therefore, this depends on = x"^ -\- y^, 

and the de Sitter solution decays into a solution of a kind we do not consider in this 

chapter. 

4.4 Weak Gravity 

In fiat spacetime, .4 = 1 and we can integrate equation (4.12a) to get an implicit 

solution z{X) which we could in principle invert to get X{z): 

X'2 = V{X) 
X dY 

(4.31) 

For small e, therefore, we expect to find wall solutions close to equation (4.31). 

Let us therefore expand all quantities in powers of e and solve order by order: 

X ( ^ ) = X W ( ^ ) + eX( i ) (z ) + e^X^^\z) + 0 (e^) 
(4.32) 

A{z) = A^^)[z) eA^^\z) + A^^\z) + 0 {e^). 

To zeroth order, we find of course that X^°) is given by the flat spacetime solu­

t ion (4.31) and that A^^") = 1. To order e, we then obtain the following equations: 

2 dX |^(o)(^) 

^(1)" = _ 1 [2X(^)'2 - f V (X(^)) ] = - X ^ ° ) ' ^ 
3 

The boundary conditions for X^^^ and A^^^ are 

^ ( i ) (0 ) = A(i) ' (0) = 0; X(^)(0) = 0 ,X( i^ ^ 0 for large 2. 

Then we can integrate (4.33) to get 

2 7 X(o)'2 

and also. 

(4.33a) 

(4.33b) 

(4.34) 

(4.35a) 

(4.35b) 

A^m + 2 (^ (1 )^ (0 ) . _ ^(0) _ ^(1) J ^ -? ,2^(o) ' (o )x (^ ) ' (0 ) . (4.36) 
o 3 
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4.4.1 The Goldstone Model 

Consider the specific case of the Goldstone model, ^ ( X ) = (X^ - 1)^, with the usual 

flat spacetime kink solution X(z) = tanh(2;) (figure 4.2). Then, equations (4.33, 

3 , , , , 

1 

X 0 

-1 

-3 
-8 -4 

Figure 4.2: The flat spacetime solutions X = tanh(2:) for the Goldstone model (solid 
line) and X = 4arctan (e /̂̂ ) - TT for the sine-Gordon model of section 4.4.2. 

4.36) give: 

X^i) = - i sech2(z) [Sz tanh(^)], 

A^'^ = - | l n c o s h ( ^ ) -lunh\z). 
o 6 

To summarize, to first order we find 

(4.37a) 

(4.37b) 

X = tanh(2:) - - sech^(2;) [32: -\- tanh(2;)] + 0 (e^), 

21ncosh(2:) - -tanh^(2;) + 0 ( e ^ ) , 

(4.38a) 

(4.38b) 

(4.38c) 

This solution is compared with the one found numerically on figure 4.3. 

4.4.2 The Sine-Gordon Model 

Now, let us consider the potential V{X) = | (1 + c o s X ) = cos^(X/2). This time, 

equation (4.31) gives 

X(°) =4arctan(e^/2) - T T . (4.39) 
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Figure 4.3: Comparison between the numerical solution (sohd line) and the first order 
approximation equation (4.38). At this scale the two solutions for the scalar field are 
superposed. This is done for e = 1/10. 

The backreaction to order 0{t^) this time is given by 

X = 4 arctan (e^/^) - TT - 6e 2; sech y-j , 

A = 1- 4:6 In cosh ^0 , 

k = 2e. 

(4.40a) 

(4.40b) 

(4.40c) 

4.5 Strong Gravity 

If e<^ 1, our expansion breaks down, and we must solve the equations (4.12) nu­

merically. In fact, we can split this problem in two parts by rewriting (4.12b) as 

/ A'\' / A'\^ f 
( T + T + ^ [2X'^ + n ^ ) ] = 0, (4.41) 
\ A ) \ A ) 3^ 

and solving the following equations 

X' = r . 

z ' = - ^ [ 2 y 2 + v ( x ) ] - z ' 

(4.42a) 

(4.42b) 

(4.42c) 

for X , Y and Z = A! jA. Then, of course, one obtains A{z) by exponentiation of the 

integral of Z{z), and k via equation (4.12c). The boundary conditions required for 

a wall solution are X ( 0 ) = Z(0) = y(zh) = 0. 

In this section, we consider only the Goldstone case; the results for sine-Gordon 

are rather similar, and we postpone their presentation to the next section. To solve 
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these equations, we have used the routine S O L V D E from [82]. Typically, we obtain 

wall solutions such as the one shown on figure 4.4. As we can see, X does not go to 

its asymptotic value X = ± 1 at the horizons (and consequently the energy density 

does not vanish there). 

X 

9tt 

z 
(b) 

(c) 

Figure 4.4: Numerical solution of the equations (4.42) for the Goldstone model. This 
solution was obtained for e = 0.9 (in which case the horizon was situated at a proper 
distance = 2.789). The figure shows (a) the Higgs field, (b) the energy momentum 
tensor T^'x = ^̂ /y = T\ and T^^, (c) the function A{z) and (d) the metric component 
9u{z)=AHz). 

We want to follow the solutions numerically from the weak to the strong gravity 

sectors. In section 4.3 we argued that for e < emax = 1-5 the de Sitter solution 

should be unstable to decay into a wall solution, whereas for e > 2 wall solutions 

could not exist any more. This imples that there exists a phase transition between 

the two regimes, and this is what we want to check numerically. To do this, we see 

from the general shape of the wall solutions for the scalar field X , and from the 
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fact that XY = 0, that i t suflfices to follow the evolution w i t h e of the value X^. 

The "wall phase" corresponds to Xh > 0 and the vdS phase to Xh = 0. The result 

is presented in figure 4.5a. Part b of this figure shows the evolution of the proper 

distance to the horizon; for very small e, we see that this tends to the dashed line 

Zh = 3/2e, but quadratic corrections quickly spoil the agreement. 

e 

(b) 

Figure 4.5: (a) The evolution of Xh as a function of e. (b) Log-log plot of the proper 
distance to the horizon as a function of e (solid line) compared with the first order pre­
diction of 2;h = 3/2e (dashed line). The dash-dotted fine indicates the phase transition at 
e = 3/2, Xh ~ 2.221: compare part (a) with figure 4.1. 

Figure 4.5a is typical of a second-order phase transition (the first derivative of 

Xh is discontinuous) wi th order parameter e. A t the phase transition, we have 

the vdS solution, for which the distance to the horizon is given by ^^{z) = 0, i.e. 

cos(A;zh) = 0. W i t h k = and e^ax = 3/2, which gives Zh = 7r/>/2 « 2.221. 

This is in good agreement w i t h the observation (dot-dashed line in figure 4.5b), and 

confirms and refines the analytic results of section 4.3: i n the zone e G (cmax, f^max) 

we find vdS solutions. 

4.6 Domain Walls in a de Sitter or Anti-de Sitter 
Background 

In this section we want to show that i t is rather straightforward to consider domain 

wall solutions in a de Sitter or anti-de Sitter background. First of all, adding a 

cosmological constant consists in replacing the Einstein tensor Gab = Rat - ^Qab R 

by Gab + ^9ab in (4.7b), and the equations of motion (4.12) must be modified as 
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follows: 

^ " + 3fx' = ig, (4.43a) 

^ = -i[2X'' + V { X ) ] - l \ , (4.43b) 

(^)^ = ^i^i[^'^-^w^5'^- (̂ -̂ ^̂^ 
There are two qualitatively different cases: i f A > 0 the background is de Sitter, 

and i f A < 0 the wall is embedded in anti-de Sitter spacetime. The latter case 

is of particular interest because the eflPect of the cosmological constant counteracts 

that of the eflPective cosmological constant created by the wall's backreaction [see 

equation (4.8) and the discussion attached to i t ] . Note as well that, strictly speaking, 

for an anti-de Sitter background, A:̂  < 0 i f we want the reflection symmetry around 

z = 0. For the metric to be real, this would then imply b{t) = cos{kt), which 

requires the {x,y} sections to be hyperbolic [35]. However, this does not aff'ect the 

equations of motion, and we w i l l not discuss i t further; for a more detailed discussion 

of domain walls in an anti-de Sitter background, see [36 . 

Now, let us notice that when X = 0 (i.e., the vdS solution) equations (4.43) 

reduce to equations (4.12) i f we replace e by Agff = e + A. The analytical argument 

of section 4.3.2 was carried out using the vdS solution, and should st i l l be valid upon 

replacement of e by the effective cosmological constant Agff. This means that we 

should st i l l observe a phase transition, since now there are no more wall solutions 

for A > | | 1 ^ " ( V F ) | . Numerically, one can check that varying e and A wi th Agff fixed 

alays gives the the same vdS solution. For the wall solutions, the terms wi th e 

mul t ip ly ing X' clearly spoil this invariance. 

Figure 4.6 shows the evolution of the value of Xh as a function of e and A for 

both models we considered. A takes the values —0.3, —0.2, . . . , 0.3 in these figures. 

(In the sG case, figure 4.6b, we do not see any curves for A = 0.2 or 0.3 because the 

condition tells us that for A > 3/16 = 0.1875 the only solutions are vdS.) Notice 

that in the Goldstone case (figure 4.6a) the curves seem to have retained some of 

the translational symmetry of the vdS solutions. 

Figure 4.7 shows the evolution of the proper distance to the horizon as a function 

of e and A for the same values of the parameter A. Note that at the phase transition 
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1 

0.8 

0.6 

65 

Xh 
0.4 

0.2 

0 

X . 

0 0.1 0.2 0.3 0.4 0.5 

(a) (b) 

Figure 4.6: Evolution of Xh as a function of e and A (from right to left, A = 
—0.3,—0.2,... 0.2,0.3). (a) shows the Goldstone case, and (b) shows the sine-Gordon 
case. In (b) we have actually divided Xh by TT to help the comparison with case (a). 

this distance is always the same (TT/V^ for Goldstone and 27r for sine-Gordon), as 

expected from the discussion above. 

A - 0 . 3 

2h 10 

A = -H0.3 

(a) (b) 

Figure 4.7: Distance from the wall to the horizon, as a function of e, for the same values 
of A as in figure 4.6. (a) was obtained for the Goldstone model and (b) for sine-Gordon. 
Again, the broken lines show the values of z^ at the phase transition. 

Now let us turn to the solution in the anti-de Sitter case, A < 0. We now find 

three qualitatively distinct solutions. For very small e, the wall's self-gravitation can­

not compete with the anti-de Sitter expansion and A'/A is strictly positive; in fact, 

it is easy to check that the solution plotted on figure 4.8a is A{z) = cosh(y^|A|/3;2). 

As one increases e, the metric potential A is observed to decrease close to the wall's 

core, whereas the Higgs profile is slightly smoothed (figure 4.8b). This is the begin-
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ning of a complete change in the metric function A{z): as the wall's gravitational 

interaction is switched on, A assumes the shape of a "double well," with a local 

maximum at the imposed boundary value ^(0) = 1 and two local minima symmet­

rically situated at A{±Zm) for some z^- As e increases, this double well becomes 

deeper, whereas z^ moves away from the wall. Notice that so far the function A{z) 

is strictly positive, and therefore none of these solutions exhibit an horizon. Even­

tually, however, for some critical value Cc of e, the two minima of A{z) vanish as 

Zm —)• oo (figure 4.8c). For e > 6c, the metric potential becomes negative at a finite 

distance z^, thus giving rise to the wall's horizon. 

(b) 

Figure 4.8: Solutions X{z) (solid fines) and A(z) to the sine-Gordon equations for A = 
-0.3 and e = 0 (a); 0.2 (b); 0.367... (c) and 0.4 (d). 

Figure 4.9 shows the parameter space (A,e), and the diflferent kinds of solution 

that we find. It is interesting to note that the two lines separating the three phases 
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seem to run parallel with each other in both cases, indicating that a phenomenon 

similar to the triple point observed in the phase diagram of water never occurs. 

This is to be expected, since as long as the wall does not have an event horizon it 

is constrained to take its asymptotic value at infinity. (Of course, this topological 

constraint does not imply that the lines are parallel, merely that they cannot meet 

in the physical range e > 0; figure 4.9 then suggests that the range of the parameter 

e over which the value of the Higgs field at the horizon is allowed to drop from 1 to 

0 is approximately constant.) 

de Sitter 

0.8 Wall 
-Wall \ with 

0.4 - without\ horizon 
. horizon 

0.4 r ' \ ' 

0.3 - \ de Sitter 

^ 0.2 -
\ W a l l ^ 

0.1 -
Wall 
without 
horizon 

\with \ 
\ horizons 

0 ^ 
-0.3 -0.2 -0.1 0 0.1 0 0.2 

A 

(b) 

Figure 4.9: Parameter space (A, e) and the types of solutions found numerically for 
(a) Goldstone and (b) sine-Gordon. 

Finally, we can show a bifurcation diagram for this phase transition by plotting 

a normalized action S against e for the different solutions (figure 4.10). Using the 

form of our metric, we find that 

' A" p 
(4.44) 

and from (4.12b, 4.12c) we get 

S = j d^x ( £ G + >CM) = r/̂  y rfS ^^^'A^ V ( X ) = TV dz V{X) (4.45) 

where contains the integrations over t, x and y. The normalized action is then 

S = S/N. For the vdS solution, 5 = 2/3k = 2/VSe. 
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0.8 - ^ 

0 0.5 1 1.5 2 2.5 3 
e 

Figure 4.10: Bifurcation diagram for the gravitating Goldstone wall. We plot here the 
normalized action 5 as a function of e. Solid lines indicate the stable solutions found 
numerically, and the dashed line represents the unstable de Sitter solution. 

4.7 Discussion and Conclusion 

The lack of existence of wall solutions for e > Cmax and the phase transition by 

which this occurs are two interesting results obtained in this chapter. We can gain a 

different insight on this phenomenon by considering the topology of the wall and vdS 

spacetimes; let us start with the de Sitter solutions, whose well-known topology [56 

is pictured on figure 4.11. 

t = X =const 

X 

Figure 4.11: The de Sitter hyperboloid and its spherical section, obtained by fixing the 
time coordinate as well as one spatial coordinate, x in this case. 

The four-dimensional de Sitter spacetime can be viewed as a hyperboloid em­

bedded in five-dimensional Minkowski spacetime ds^ = dv^ — d'uP' — dx^ - dy^ - dz^, 

with equation 

v''-w^-x^-y''-z' = -k-\ (4.46) 
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Introducing global coordinates on the hyperboloid, the four-dimensional metric can 
be written as (4.24) 

ds^ = dp - ^ cosh{kif [dx^ + sin(x)' {de^ + sm{e)^d(f>^)] . (4.47) 

We see that the sections of constant i are described by three-dimensional spheres of 
r ~ n 2 

radius [cosh{kt)/k\ . This radius is increasing exponentially fast (recall the expo­

nential form for this metric from page 54) which is why the de Sitter spacetime is 

said to describe an inflating universe. 

Let us now consider the wall solutions, whose metric is given by (4.9), 
ds^ = A^(z) dt" - B\t, z) [dx^ dy^) - dz\ (4.48) 

with B{t, z) = A(z) ê *. Defining a new set of coordinates by 

x * = A{z)^^'x, 

y*'^ A(z)e''y, 

t* - z ' ' - I A{z) e''. 
k 

(4.49) 

k 
the metric can be written 

f + z* I A{z) e-'' -k{x^^ y') A{z) ê ^ 

/ A'2\ 
ds^ = dt*^ - dx*^ - dy*^ - dz*^ - { l - ^ ] d z ' (4.50) 

This is very close to the five-dimensional Minkowski metric, and we can cast (4.50) 

into that form by defining a fifth variable 

we then see the wall spacetime as a four-dimensional hypersurface embedded in the 

flat five-dimensional spacetime, just like the de Sitter hyperboloid. 

To find what this hypersurface is, note that in the "starred" coordinates, z is 

given implicitly by 

k^ ( r 2 _ 3̂ *2 _ y.2 _ ^*2^ ^ _^2(^)^ (4 52) 

which, in terms of the variable w*, must be rewritten 

f 2 _ ^ , 2 _ y , 2 _ ^ , 2 ^ _ ^ l ^ (4 53) 
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For de Sitter, A{z) = cos{kz), w* = sin{kz)/k, and (4.53) reduces to the hyper-

boloid (4.46). For the wall solutions, we can only work analytically in the small-e 

limit; for sine-Gordon solutions, we find 

w = [ sech(V2)c/^ = 4arctan(e"/2)-7r = X(°)(z). (4.54) 
^0 

The hypersurface is then given by a hyperboloid which has been squashed in the w* 

direction, 

t*^ - x*^ - y*^ - z*^ = - ^ [ 1 + Aelncosh(u;72)]. (4.55) 

The spatial section of this hypersurface is plotted, for e = 1/30, on figure 4.12. The 

wall is situated at the rim of the discus, in the region of high curvature, whereas 

far from it the hypersurface is fiat, and the horizons on either side of the defect are 

situated at the poles of the ellipsoid. The two characteristic lengths of the problem, 

wn and are roughly the two radii of the ellipsoid, the Higgs width corresponding 

to its fixed "height" (as shown in the figure) and the proper distance to the horizon 

to its "width." 

2WE 

2zh 

Figure 4.12: The t* = z* = 0 (ellipsoidal) section of the weakly gravitating sine-Gordon 
domain wall, here for e = 1/30. 

We now see what happens to the solutions as we vary e: for very small e, the 

spatial section of the hypersurface is an ellipsoid which is very squashed, since Zh is 

very large. As e increases, this squashing becomes less and less pronounced, until 

(at e = Cmax) the ellipsoid becomes the de Sitter sphere. 
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The reason for the disappearance of wall solutions at large gravitational coupling 
seems to be linked to the compactness of the wall's spatial section, which (as for de 
Sitter) is topologically identical to Ŝ . This phenomenon had already been observed 
by Avis & Isham [8] (and was rederived recently by Espichan Carrillo et al. [40]), 
who studied solutions of theory in a spatially closed interval of R. They found 
that when the interval becomes too small, all topological solutions cease to exist. 
What is new here is that is it the wall's self-gravity which compactifies spacetime at 
its own characteristic scale. (Most recently, a similar phenomenon was also observed 
in the case of monopoles [72].) 



The Dynamics of Curved Gravitating 
Domain Walls 

5.1 Introduction 

When we have seen in chapter 3 that the motion of cosmic strings was inherently 

antirigid, we also remarked that our analysis was lacking a potentially important 

ingredient: gravity. In the previous chapter we have investigated the profound 

impact of the Higgs's self-gravity, not only on the spacetime surrounding it but also 

on the existence of topological solutions. In this chapter, we wish to bring these 

elements together and determine the dynamics of gravitating curved walls. 

A special motivation for this research lies in the claims (see for instance [16,33,32]) 

that gravitating defects, strings or walls, might be totally geodesic. We have seen in 

the case of the string that the Nambu-Goto dynamics could be expressed in terms of 

the extrinsic curvatures as /̂ ^ = 0 for all this is quite general and also applies to 

the case of walls, as we shall see later. A "totally geodesic" defect satisfies the more 

restrictive dynamical condition /̂ ^̂ ^ = 0 — in other words, the cores of these defects 

do not actually curve inside the background spacetime. There is some concern that 

this result is due to some overrestrictive assumptions, in particular regarding the 

form of the defect's metric. Sadly, this work is still in progress, and we will not be 

able, in this thesis, to settle definitely the question of whether the string is totally 

geodesic or not. 

In the conclusion to chapter 3, we have noted that the eflfective action method 

might not work in the presence of gravity because the latter is mediated by a massless 
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particle. There is, however, another method to obtain the efl"ective dynamics of a 
defect which does not require the integration of the action. In this method, which we 
follow here, the equations of motion at each order n are obtained from integrability 
constraints at order n + 1. Clearly, its disadvantage is that we must solve the field 
equations to one order higher than that of the eff"ective equations of motion that we 
want to obtain. 

We consider a domain wall identical to the "A$^" wall of the previous chapter, 

that is, we investigate the dynamics derived from the action 

S = SQ -i- Su J dx"^ y f ^ (CG + CM) , 

where all the "matter" parameters ($, A and 77) have the same interpretation as 

before. The gravitation Lagrangian CQ is again the usual Hilbert action, with R 

being the spacetime Ricci scalar. 

We introduce the new field X and the gravitational coupling e by (4.2), which is 

e = SnGrj\ 

This time, however, we do not yet rescale the coordinates, but explicitly keep in 

the equations; the action and equations of motion become: 

S ' ^ - ^ S = j d ' x V ^ ^ R - ^ (V,X) (V«X) - {X' - lY] I (5.3) 

and 

CCTT 

Rah — e 2{VaX) { W ' ' X ) - \ g ^ { X ' - i y (5.4b) 

5.2 The Equations of Motion 

We are now going to use the GauB-Codazzi formalism to reformulate the equa­

tions (5.4) in terms of the "geometrical" quantities introduced in chapter 2. The 
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wall is seen as a worldvolume W embedded in the spacetime manifold M. We can 

therefore define a single family of unit normals n"' = {d/dzY (where we have defined 

the coordinates in such a way that the wall's core lies at 2; = 0) and compute the 

first and second fundamental forms for the defect; since the wall has codimension 1, 

there is no need to define the normal fundamental form, as it vanishes. 

The equations of motion for the fundamental forms are can be found by taking 

Lie derivatives as in chapter 3; we get 

^nhab — 2Kab, 

Cr,K = -K ab •wi (5.5) 

CnKab = - - ^ K b [X^ - 1 ) ' + 2e{baX) {t)^X) + 2KacK,' - \\Rab - KK^b-

Here, Da are the covariant derivatives parallel to the worldvolume. 

The equations for X and Rab can also be written in this "3+1" fashion. In 

fact, the diagonal equations for Rab are identical to the equations for Kab and K 

above; thus the only missing equations are the scalar and the non-diagonal Einstein 

equations, which read 

X + i r X , - 2X [X^ - 1) + wlb^X, 

bbK\ - DaK = 2eX^,baX. 

To summarize, the equations of motion that we must solve are 

^n^ab — 2Kabi 

Kb {X^ - l f + 2e{baX) [b-X] + 2KacK,^ 

- \\Rab - KKab, 

Cr,K = -K 

X = -KX^, + 2X - 1) + wlb^X, 

bbK\ = baK + 2eX^,baX. 

We can now rescale the coordinate z: z u = Z/WE and set WB. 

from (2.17b) = d/dz, this yields 

(5.6) 

(5.7) 

(5.8a) 

(5.8b) 

(5.8c) 

(5.8d) 

(5.8e) 

1. Since 

h'ab = 2i^-a6) (5.9a) 
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Kb = -^Kb {X^ - 1) ' + 2e[baX) {D-X) + 2KacKt' 

- ^^Rab - KKab, (5.9b) 

' 2 X ' 2 + ( X 2 - 1 ) ' ] , (5.9c) 

X" = -KX' - f 2X (X^ - 1) -f D^X, (5.9d) 

= DaK + 2eX'DaX, (5.9e) 

where a prime denotes diff"erentiation with respect to the perpendicular variable u. 

From now on, we will omit equation (5.9e), because it does not contribute to the 

determination of the eflfective dynamics. 

Finally, we want to rescale Kab and = {t, x, y} as well. Following the method 

of chapter 3, we would rescale Kab by a quantity l/<r characterising the wall's ex­

trinsic radius of curvature, q = \K}. However, we must realize that there are now 

two contributions to Kab, coming from the wall's self-gravity and from its bending, 

which are respectively of order 0(e) and 0(q). Hence we must consider the cases 

e > q and e < q separately. Moreover, the wall also has a cosmological horizon sit­

uated at a finite proper distance u ~ 1/e away from it, and now both the distances 

R = 1/q and 1/e represent limits to the validity of our system of coordinates. We 

deal with this problem by rescaling the coordinates diff"erently in the two cases. 

5.3 The Gravity-Dominated Case (e > <;) 

In this case, we set 
Kab — ^ ^ab ? 

(5.10) 
= x^/e. 

Noting that, by the GauB equation, this implies that "î â  must be rescaled as 

^^Rab = e^Kb, (5.11) 

and writing Da for the rescaled derivative Da, equations (5.9) then become 

K, = 2e^ab, (5.12a) 

<b = -Kb - 1 ) ' + e [2Kabi^Mh'^ - Kab " i^i^ab] + 2^DaXDbX, (5.12b) 

= - 3 {X^ - l Y - e (llr + K^) + e^h^^DaXD^X, (5.12c) 

X" = 2X ( X ' - 1) - ei^X' + e^a^'^DaDbX. (5.12d) 
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(The equation for f^ab was modified using that for X . ) 

We see that the equations do not depend on the parameter c, which makes this 

case easier to solve. We can apply our method and expand all the quantities in e, 

hab '''ab + ^ "'ab + + 0 ( 6 ^ ) 

l^ab + ^l^ab + + O(e^) 

rab + ^ 'ab + . 2 | L ( 2 ) 
^ ' ab + 0 ( 6 ^ ) 

X = x w + eXW + ,2xm + O(e^) 

(5.13) 

and solve the equations order by order. The procedure is the same for all the cases 

that we consider in this chapter, and it is only completely shown for this case. 

5.3.1 The Zeroth Order 

At zeroth order, the equations (5.12) reduce to 

/»i°' '= 0, (5.14a) 

= - C (^^ - 1)% (5.14b) . ( 0 ) ' _ h(0) 
"ab 

/̂ (o)' = -3 (X^ - 1) , (5.14c) 

X(«)"= 2 ( X ( o ) 2 _ i ) x ( o ) (5.14d) 

and are of course solved by 

X^^\u) = tanh(u), (5.15a) 

h^:=^l\ (5.15b) 

4? = - i ? - / ^ V o ( u ) , (5.15c) 

/̂ W = /sW-3/o(u), (5.15d) 

where, as usual, underlined quantities are evaluated at the worldvolume, and we 

define 

fn{u)= / dusech.(uY, 

J (5.16) 

(All of the functions that we shall define for notational simplicity will be such as 

they vanish at u = 0.) This zeroth order can be compared with the results that we 
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obtained in the previous chapter. Although we did not compute the fundamental 
forms there, these can be checked to be 

h!! = A'(u) diag (1, -e^''/^ -e^''/^) , (5.17a) 

i r - / ^ = ^ r . ^ ^ (5.17b) 

Note how h^^ is of order 1, but K^^ is of order e: this is why we did not rescale hab-

The appearance of a zeroth-order contribution for the extrinsic curvature in (5.15c) 

is due to the rescaling Kab i^ab in this chapter. 

5.3.2 The First Order 

If we consider the terms proportional to e, the equations of motion become 

h^2' = 24?, (5.18a) 

- 4 / j i " , > X ( ' " ( j ! : ( ' " 2 - l ) x W , (5.18b) 

^ ( 1 ) ' = _ (11^(0) + ^m) _ i 2 x ( » ) - 1) X " ) , (5.18c) 

;C<"" - 2 (3X(°' ^ - 1) X ( " = -/ .("'XC'' . (5.18d) 

Taking into account the zeroth order solution, the equation for X*'' is 

- 2 ( 3 X ^ 2 _ 1) = - (/.(«) - 3/o) (5.19) 

Noting that X^^)' is the zero-mode of the operator dl - 2 (3X^^)2 _ j^^st 

conclude that 

/̂ °̂̂  = 0. (5.20) 

This is the first integrability condition, obtained at order but giving an equation 

of motion at order e°. (This confirms that to zeroth order the wall obeys the Nambu 

dynamics.) We can obtain this condition in a more general way by noting that /o 

is an odd function of w, then multiplying equation (5.19) by X^^^' to obtain 

X^i )" - 2 (3X('^)2 _ ^ ( 0 ) . ^ (x(i) 'x(o) ' - X(1)X(°)") ' 
(5.21) 

= - U^'^ - 3/o) 



5.3. The Gravity-Dominated Case (e > q) 78 

Integrating over M then yields the constraint K,^^'> = 0. The solution for X^^) is 

X^^^ = [3u + tanh(u)] sech(uY. (5.22) 

We then get 

C = ^ l ' + 2K,,U - 2/ii°'Fo(«), (5.23a) 

4 r = ^ l ' + ( 2 ^ ' 4 ° > ^ - 4 ? ) « - ^ ; ' / o ( « ) 

- mu) + 2h{u)] + l^^Gdu), (5.23b) 

= «;(!) _lir(»)„ + 3Go(«), (5.23c) 

(5.24) 

where 

Go{u) - y du [Uanh{u)sech(uyx^'\u) - 3f^{u)] , 

Gi{u)'^2fo{u)Fo{u) + Go{u). 

5.3.3 The Second and Third Orders 
Keeping the terms in O(e^) in (5.12) we get 

/ ^ i f = 2 4 > , (5.25a) 

- - 1 ) ' - 4/»«X(°) (XW^ - 1) X(« 

- 4/ii°> - 1) - 2/i<°' (SXC)^ - 1) (5.25b) 

„ ( 2 ) ' ^ _ (11 (̂1) + 2K(»)«:(") - 12X(°' (XC'^ - 1) x ' ^ ' 

_ 6 ( 3 J \ : < ° ) 2 - 1 ) X « 2 , (5.25c) 

X ( 2 ) " _ 2 ( 3 X ( » ) 2 - 1) = - (/cli 'xC)' + s ^ X f i ) ' ) + 6X(°>J!:(')^ (5.25d) 

We consider again the equation for X^^^ first; replacing all the lower order con­

tributions, we obtain 

X^2)" - 2 ( 3 X ( ° ) 2 - 1) X ( 2 ) = -/.(Dx^o)' + terms odd in u. (5.26) 

Multiplying by X^°^' and integrating over R, we find that 

Kf^'^ = 0 (5.27) 
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and thus the wall still obeys the Nambu-Goto dynamics at first order in e. 

Anticipating that we will find the first corrections to the Nambu motion at 

second order, i.e. from the X-equation at third order, we do not need to compute 

all the terms of AC^^^ and KP''^\ in fact, all we need is the even contribution to 

because all other terms in the equation for X^^^ will be odd. A rather long 

calculation yields 

= ẑ ^̂ ) + u^!^^ Ilr(o)"^ -h terms odd in u. (5.28) 

We finally come to the equation at third order. The equation for X^^^ is 

XP)" _ 2 (SXC)^ - 1) = - (/cP' + "r'^)"") XC)' 

+ terms odd in u. 

Therefore, multiplying by X^^^' and integrating over the real line gives 

(5.29) 

(5.30) 

which yields the lowest-order corrections to the Nambu eff"ective action, 

h{u)\Z 
K, = - 6 

5.4 The Curvature-Dominated Case (<: > e) 

(5.32) 

If c;̂  > e, Kab will be of order <;̂, and we let 

Kab — ^ ^^06) 

which implies "i?a6 — Kab- The equations then depend on two parameters, c and 

>c'^-^<l. (5.33) 

and are 

Kb = '^<^'^ab, (5.34a) 
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< t = <; {2Kacl^b" - l^l^ab - "̂ a6) - ^hab ( X ' " l ) ' + 2<r'xL>aXAX, (5.34b) 

K' = -cr (/^2 + llr) - 3x (X^ - 1)^ + 2q^>ch''^DaXDbX, (5.34c) 

X " = 2X (X^ - 1) - ^/^X' + q^D^X. (5.34d) 

The gravitational coupling of the Higgs field is characterized by K now, and note 

that although <; and x are small, we do not know their relative sizes. We must now 

expand all the fields in terms of these two parameters and solve order by order. 

Let us start with the flat spacetime case, x = 0, when the equations reduce to 

= 2qK,ab, (5.35a) 

â6 = ^ {2Kacf^b'' " K,K,ab - "^ai) , (5.35b) 

K,' = -(^ («:2 + 11̂ ) ^ (5.35c) 

X" = 2X (X^ - 1) - cAcX' -\- q^b^X. (5.35d) 

In this case, we can compute 'Ifa^ from equation (2.15) — in particular, "r̂ Ĵ  = 

f^ac 1^ I Solving order by order in we obtain to 0{q'^) 

hai = K, + 2i ^^u + e {2^u + i^tiK'') , (5.36a) 

'2 /4?4?i l«^^ + 2 4 ' = 4 ' ^ ) „ 

(0 )2 , 2 

+ f2«(?«(°y»)^^ + i ^ i f ' | „ ^ 

!^b 

(5.36b) 

(5.36c) 

(5.36d) 

where 

X^^^ = sedi^(u) ducosh\u) duui^,,'^ sech\u) (5.37) 
Jo J-oo 

is an odd function of u. This is enough to obtain the first corrections to the Nambu 

dynamics; at order q^, the equation (5.35d) multiplied by X^^^' reads 

- X ^ X C ) " ) ' = - (/cP' + / s i f X(0r + terms odd in u (5.38) 

and therefore integrating over M yields the corrected equation of motion for the wall, 

( y - l ) fcir + 0 {e). (5.39) 
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This is the same as equation (5.31), once we replace the value for ^^r^^^"-^ (and with 

<r rather then e). 

We must now think about the best approach to solve the field equations when 

X 7̂  0. Let us start by considering the case ^ = 0; it is easy to see from (5.34) that 

we can solve the equations exactly, so that X = tanh(w) (the kink solution) and 

hab is a constant. This means that, order by order in we can solve the equations 

exactly to all orders in x . The calculations follow the same lines that we have shown 

already twice in this chapter: we compute the quantities hab, f^ab and X at each order 

in K and use them to derive integrability constraints at the previous order. Let us 

just give here the results. [We write Q^^'^^ for a quantity at order <;"^x" and g^"'' ) 

for the series (in K) at order q^.' 

• To order 
h (0,-) 

ab •hlb ' 

= / i^° ' - ) -3x/o(n) , 

X^^'-) =tanh(^i). 

'^ab 
(5.40) 

• To order 

' > i ; - ' = / ^ i ' ' ' + 2 « i r - 2 x z ^ r ^ o ( « ) , 

^(1.-) = ^ ( 1 , ) _ J O 0,2^ _ 4^;f(0,0),;(.(l,0) 

(5.41) 

X^^') = -^[3u^ tanh(ii)] sech^(w), 

and the equations for X^^' ) implies /̂ (°'°) = /̂ ^̂ -̂ ^ = 0, i.e. ) = 0. 

To order <̂ ,̂ noting that the equation for X^^-^^ reduces to 

^(3,0)/ , _ 2 (3^(0,0)2 _ ;^(3,0) ^ _^(2,0)^(0,0)/^ (5 43) 

we see that if /̂ ^ '̂°^ contains even terms other than the constant Kf'^'^\ then this 

is all we need to get the lowest-order corrections to the Nambu dynamics — 
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from the case e > c, we anticipate that this will indeed be the case. We find 

that 

^(2,0) ^ ^(2,0) ^ ^0,0) 11̂ (0,0) ab ^2 ^ ^^^^ ^^^^^ ^ (5 43) 

In Eq. (5.41) we have not written all terms, but all that even ones are there.] The 

tilde functions are defined by 

Go{u) = J du4tsLnh(u)sech\u)X''\u), 
.u (5.44) 

Gi{u) = 2fo(u)Fo{u) + du [4tanh(?/) SQc\i\u)X^^^^\u) - 9f^{u)' . 

From (5.43), we obtain that the first corrections to the Nambu-Goto motion are 

given by: 

^ ^ - y ( ? " ' ) + (5.45) 

5.5 An Example: Bending the Gravitating Wall 

In the previous two sections, we have computed the lowest-order corrections to 

the Nambu dynamics of gravitating extended domain walls by the method of the 

integrability condition. In the two cases considered, e > q and e < we have found 

that these corrections appear at quadratic order in the dominant parameter, and 

have the form 

In the case of the string, recall that we did not have any quadratic corrections to 

the Nambu motion because the term in the action which would have given such 

corrections was proportional to the Euler characteristic of the worldsheet; for the 

wall, the appearance of corrections at order q^ means that the equivalent term is 

not a topological invariant. 

The problem now is that (except in flat spacetime) we do not know "r^J^ which 

is needed to understand the consequences of the corrected equations. Unfortunately, 

this is still work in progress and we do not yet have a general interpretation of (5.46), 

but we present below a case where we can estimate "r̂ ^̂  and obtain an equation 

of motion for the wall. We consider the gravitation-dominated case (5.31), and 

approximate the unknown "r̂ ^̂  by the "rat obtained by bending a plane-symmetric 
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gravitating wall (see [46]), as shown in figure 5.1. The three-dimensional intrinsic 

metric (2.6) is given by 

^AB = X\AXa,B, (5.47) 

where is the position of the wall in spacetime. We bend the wall by replacing 

(5.48) 
Tla ^ n'^ = Ua-\- ia, 

where ^(t,x,y) is a scalar perturbation along Ua (defined only at u = 0) and the 

perturbation of Ua was determined by requiring that X"^,^n[j = 0 (recall that X'^^A 

is parallel to W ) . 

Original wall W 
Perturbed wall W 

Figure 5.1: Bending the plane-symmetric wall. 

We can use the general formula (3.35) to compute the variation of K 

!^AB !^AB = ISLAB + i;AB + f ,C X^-AB = ISLAB + i\AB-

AB-

(5.49) 

This could have been found from the definition (2.11) using dVA^Bnc = 0.] There­

fore, 

(5.50) 

since the unperturbed /̂ ^^ corresponds the flat wall and, at zeroth-order, obeys 

the Nambu dynamics K = 0. Here, • is the background (i.e., unperturbed) three-

dimensional d'Alembertian. The problematic quantity 1 1 / ^ ° ) ^ ^ can now be found as 

the (rescaled) Ricci tensor computed from the perturbed intrinsic metric 7 ^ 5 , 

JAB = 7 A B - i A i B - (5.51) 



5.5. A n Example: Bending the Gravitating Wall 84 

Note that we want "r^^^, and that therefore we can assume that 7^5 is the flat 
worldvolume (any corrections will presumably appear at higher orders ^^T^^B^^)'^ then, 

%B = (2 - C ) hAB + \ i A i B + i,Aci.B-° (5.52) 

(where we have rescaled a factor e^). Finally, the equation of motion (5.31) is 

= - J (y - l ) (e;.B?^^^f;C^^ + + . (5.53) 

The worldvolume is be totally geodesic if all solutions of the above equation (5.53) 

are such that = 0; at first sight, this need not be the case. 



Appendix A 
An Exact Solution to the Perturbec. 
.Equations of Motion for the Helica. 
.Breather 

In this appendix, we give (without deriving it), the general solution to the equation 

for the correction to the breather solution. 

6Z + 2^-^ M r ) cosir)6Z + l ^ S ^ ^ £ h ^ s Z 

-32-xAI7cos ( r )0 -^ ( /? i - ^2^-^ + ps^'^ - p4^~^) 
(A.1) 

This equation can be solved by varying the parameters of the zeroth order solu­

tion (3.69); this gives 

16 
6Z{r) = ^ y - - + y - - J (cos(r) + A V s m ( r ) ) 

A _ A : A 
3 0 3 4 ^ 4 + 5Q5 6Q6 COS(T) (A.2) 

U 
+ Ao sin(r) tan"^ [q tan(r)) + sin^(r) cos(r) ^ A^O" 

Here, VL{T) and the coeflficients (5i are as defined in section 3.4.3 and the A '̂s are 

A 
An = 640( 3 + - 360(5 +4+ ^1/^2+ 48(^35 + ^ + 4 +4 1̂3 ^ 2 ; - - - y ' ' q^J- ' ' q^ ' q^ ' q^ 

25( 63 + ?? + l ^ + i ? + I A 
V q^ q^ 

(A.3a) 

A 
720^ 1920 3 - ^ A - 360 15 - - - - + 48 105 - ^ - ^ 

15 
6̂ 

n c^fc^AK 210 136 110 105\ /53 - 5 945 
V q^ 

(A.3b) 
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A, = 
A 

A3 

A4 

A5 

As 

360/1 

A 

90fi 

A 

8A 

1920A - 360( 5 - + 48(^35 - - 4 )^3 
r y V q^ 

- 5 315 
49 _ 39 _ 35 
2̂ ^ ~ 4̂ 

4 8 0 A - 360/?2 + 48 7 - ^)/?3 - 5F 63 - ^ - ^ ) A 
^V"^ " V " q' r 

-60/^2 + 4 8 ^ - 5 9 - - /?4 
9̂  

15/i 

3/i 

6 ^ - 5A; 

(A.3c) 

(A.3d) 

(A.3e) 

(A.3f) 

(A.3g) 

We can use this solution to investigate the rigidity of the helicoidal trajectories 

in function of the parameters A and H, where A ^ = 1 — and E = sin(ro). We are 

going to observe how the Ricci curvature [given by the flat background case of the 

Gaufi equation (2.15) 

2q^P 2ZZ 
T = K, AB 

•liAB^Ii (̂ 2 + ^2)2(1-^2) (1-^2)2(^2 + ^2) 

depends on the correction. We take (3 = 1 for simplicity, and note that for ZQ 

2A2 

(A.4) 

03 g2sin2(r) - cos2(r)' (A.5) 

Suppose we want to investigate the behaviour of near a general initial point 

To, where 6Z{TO) = 5Z{TQ) = 0. Then, 

5h 2Acos(ro) ^ 64eWcos2(ro) , , 

We have used (A. l ) to evaluate 5Z and noticed that /?4 = 0 for = 1.] The 

combination "r (5"r will be negative if the magnitude of the curvature is decreased, 

which corresponds to rigidity and positive if i t is increased (antirigidity). From (A.5, 

A.6) we see that rigidity requires 

•(2 - A2) E2 - 1] [ -A2 + 2 A 4 - 8A^E2 ^ 13^6^2 _ g^6^4J > Q_ (^ 7) 

The sign of Jl'r is shown in figure 3.8, and is positive in the shaded zones and 

negative in the white zone, showing respectively antirigidity and rigidity. With the 

exception of the loop g = 0, the string admits both rigid and antirigid behaviour for 

every value of q. 



Appendix B 
Numerical Tables 

In this appendix, and in appendix C, we compile some of our numerical results from 

all chapters. The motivation for this is that, although figures provide a considerably 

more efficient (not to mention comfortable) way of analysing this numerical data, 

anyone trying to reproduce our results would appreciate some numbers with which to 

compare their own results. The tables below present only a (usually small) fraction 

of all the numerical data that we have collected. 

B . l Effective Motion of a Cosmic String 

a2/7r as/TT 

10.00 3.272 6.025 77.761 -104.985 

5.00 2.813 3.347 23.565 -32.835 

2.00 2.314 1.634 4.308 -6.767 

1.00 2.000 0.999 1.069 -2.138 

0.50 1.736 0.642 0.174 -0.722 

0.10 1.278 0.272 -0.097 -0.094 

0.02 0.977 0.141 -0.065 -0.030 

0.01 0.880 0.111 -0.052 -0.023 

Table B . l : The numerical coefficients appearing in the action to fourth order for some 
values of the Bogomol'nyi parameter (3. For /? = 1, it can be analytically deduced from 
the equations of motion that ^i/TTif = lotij-Kif = 2, and that 2Q;2 + = 0. 
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B.2 Gravitating Plane-Symmetric Domain Walls 

A e 
-0.3 0.640275 No horizon 1.000000 

1.000000 3.214 0.872038 
1.500000 2.422 0.468277 
1.980000 2.220 0.034594 

-0.2 0.495200 >16.051 1.000000 
0.500000 10.885 1.000000 
1.000000 2.965 0.810156 
1.500000 2.344 0.376235 
1.698000 2.220 0.035201 

-0 .1 0.325000 No horizon 1.000000 
0.500000 4.954 0.994331 
1.000000 2.784 0.743873 
1.598000 2.220 0.035841 

0.0 0.000000 GO 1.000000 
0.500000 4.035 0.974744 
1.000000 2.643 0.672953 
1.498000 2.220 0.044748 

0.1 0.000000 8.593 0.999996 
0.500000 3.548 0.943331 
1.000000 2.528 0.596269 
1.398000 2.220 0.037234 

0.2 0.000000 6.076 0.999624 
0.500000 3.229 0.902233 
1.000000 2.433 0.511465 
1.298000 2.220 0.037234 

0.3 0.000000 4.961 0.997155 
0.500000 2.996 0.852712 
1.000000 2.352 0.413619 

1 1.199000 2.219 0.027412 

Table B.2: Proper distance to the horizon Zh and Higgs field at the horizon Xh for the 
Goldstone wall solutions, as functions of the cosmological constant A and the gravitational 
coupling e. 
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A e 

0.0 0.0 
-0.1 0.3257 
-0.2 0.4951 
-0.3 0.6403 
-0.4 0.7736805 
-0.5 0.8999353 
-0.6 1.0213456 
-0.7 1.1392772 
-0.8 1.2545750 
-0.9 1.3678212 
-1.0 1.4794279 

Table B.3: Value of e at which the domain wall develops a horizon in anti-de Sitter case 
and for the Goldstone model. 

A e 

0.0 0.0 
-0.010 0.034298 
-0.025 0.0598243 
-0.050 0.0934222 
-0.100 0.1540836 
-0.200 0.2632996 
-0.300 0.3679453 
-0.400 0.4708016 
-1.000 1.0773506 

Table B.4: Value of e at which the domain wall develops a horizon in anti-de Sitter case 
and for the sine-Gordon model. 



Part I I I 

Cosmic Strings and Black Holes 



Abelian-Higgs Hair for Extreme 
Reissner-Nordstr0m Black Holes 

6.1 Introduction and Chronology 

For many years after their discovery, black holes have been believed to be rather 

simple physical systems, characterised only by a small number of parameters, or 

"charges": M (the black hole's mass), Q (its electric charge) and J (its angular 

momentum). (One should also allow for a magnetic charge obtained from Q by 

duality.) There even exist theorems that prove this conjecture, the so-called "no-

hair theorems" (see for instance [13]). With time, however, some of these results were 

unduly extrapolated, and theorems made place to "folklore" in the non-specialist's 

mind (see [34] for a review on this subject). 

The classic no-hair theorems stipulate that "the only long range information that 

a black hole can support is its electromagnetic charge, its mass and its momentum." 

No-hair folklore says that the only non-trivial field configurations an event horizon 

% can carry are its massless spin-one and spin-two charges Q, M and J. In the past 

ten years, new, "hairy" black hole solutions have been found which either contradict 

the folklore or violate some assumption of the theorems: 

The theorems consider only "long-range fields," whereas folklore seems to for­

bid even fields that live close to the black hole. For convenience, and follow­

ing [1], we shall call hair a property of the black hole which can be measured at 

infinity, and dressing a short-ranged field living exclusively on the black hole's 

horizon and its vicinity. Lee, Nair and Weinberg [68,67] have found a static 
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field configuration in SU(2) gauge theory whose singular behaviour at the ori­
gin is hidden behind an event horizon. They have interpreted this solution as 
a small black hole inside a monopole; the SU{2) fields then constitute dressing 
(but not hair) to the black hole, in clear contradiction with the folklore. 

• No-hair theorems assume that the fields in question are stable; it is possible 

for a black hole to support hair (in the sense just defined) if the correspond­

ing field solution is unstable. This is for instance the case of coloured black 

holes [11,90,14,65], which display Yang-Mills hair. 

• I t is also assumed by no-hair theorems that the topology of the spacetime 

outside the black hole's horizon is trivial. This opens the possibility that 

topological defects might carry some field(s) from the black hole to infinity, 

thus constituting genuine hair. This is the case that we investigate in this 

chapter. 

The present work is part of the eflfort started by the paper of Achiicarro, Gregory 

and Kuijken (AGK) [1] to determine whether or not a cosmic string can pierce a 

black hole and therefore constitute hair to this black hole. 

In 1986, Aryal, Ford and Vilenkin (AFV) [7] wrote a metric which can be in­

terpreted as an axisymmetric conical singularity centered on a Schwarzschild black 

hole (see figure 6.1), i.e. an infinitely thin cosmic string threading a black hole. The 

AFV metric is 

d s ^ = [ l - ^ ] d e - - r'de' - r ' i l - iGfif sm{e)W- (6.1) 
1 -

Their work, however, did not resolve the question of the existence of abelian-Higgs 

hair growing on a black hole (this was not its purpose); indeed, not only did AFV 

not consider a thick string, there also remained the vital question of whether the 

fields would settle into a configuration corresponding to such a metric. The main 

concern would then be that the fields refuse to pierce the horizon. Recognising this 

fact, AGK [1] tackled numerically the problem of the abelian-Higgs field theory 

in a Schwarzschild background, and found that indeed, thin cosmic strings could 

thread a black hole; in fact, these strings seemed rather oblivious of the horizon (see 

figure 6.2 below). Thick strings, however, did react to the black hole's presence by 
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exhibiting a pinching of the fiux tubes close to the horizon's equator (figure 6.3). 

AGK then went on to include the string's backreaction in their calculations, and 

showed that their solutions were in fact smoothed versions of the AFV metric. 

X2, = z i z = rcos{6) 

Cosmic string 

Q = r sm(0) 

Figure 6.1: A cosmic string threading a black hole. N and S denote the "North" and 
"South" poles, at respectively ^ = 0 and 19 = TT. (Note the difference between the angles 
e and 

Further work [54] showed that other conical singularities could also be smoothed 

out by the vortex. I t had been known for some time (from the work of Gleiser 

and Pullin [48]) that a cosmic string modelled by a conical singularity can be split 

by an instanton, corresponding to the creation of a pair black hole/anti-black hole 

inside the "string." Combining these two results, i t was possible to find [38,57,39] an 

instanton to split smooth metrics as well; this provided a decay channel to extended 

(and thus more realistic) cosmic strings, which are otherwise stabilised by their 

topology. Unlike the original instanton, however, the one for smooth metrics contains 

two U(l) gauge fields, the broken U(l) (responsible for the creation of the vortex) 

and a new, unbroken, U( l ) , which we shall call electromagnetism. 

The extra U(l) symmetry prompted naturally the question of what happened 

when the black hole itself was electromagnetically charged. This question was ad­

dressed by Chamblin et al. (CAES) using the numerical approach of AGK in [31,30 . 

They concluded that, while in nonextremal cases the picture remained the same as 

for a Schwarzschild black hole, in the extremal case a new phenomenon occurred as 

the string was always expelled, regardless of its thickness. 
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In this chapter, we are concerned with the extremal Reissner-Nordstr0m black 
hole. We shall see that things are not as simple as claimed by CAES, and that flux 
expulsion does not occur in all cases. 

6.2 Abelian-Higgs Strings in a Reissner-Nords-
tr0m Background 

We consider here the abelian-Higgs theory described in chapter 1, given by the 

Lagrangian density (1.16) 

C = [Da^y (D^^) - - ^ {^^^ - i f , (6.2) 

where as usual ^ is the Higgs field and Da = Va+ieAa is a gauge-covariant derivative 

describing the interaction between the gauge field Aa (with strength tensor Fab) and 

As before, we make the conventional Ansatz 

$(x") =?7X(2;^)e^^(^"^ 

1 (6.3) 
Aa(x^) = -lPaix')-VaXi^'')]-

e 
With this notation, we have seen that the equations of motion are (1.24): 

DX - PaP^'X + - i y X (X^ - 1) = 0, 

VaF^^ + ArX^P^ = 0. 

To consider the existence of abelian-Higgs hair to the black hole, Ref. [1] solved 

the field equations in a Schwarzschild background, and Refs. [31,30] in a Reissner-

Nordstr0m background. Since the Schwarzschild metric is the particular case Q = 0 

of the Reissner-Nordstr0m one, we adopt the latter's line element: 

^ ^ _ 2Gm ^ \ _ r^dnl. (6.5) 

d e f , . . ^ = V{r) 

The equations can be (notationally) simplified by defining scaled quantities 

(r, M , 0) = (r,Gm,q)/wB_ and rescaling the radial variable by a factor of WE as 

in section 1.3. Then, F -> 1 - 2M/r + Q'^/r'^ (with the new, rescaled, r) and 
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equations (6.4) become 

1 . . / , . o . X N'^P'^X -4 [T'V{T)X']' - — L - [sin(^)xl • + - X iX' - 1) + ^ X J ^ ^ 0 
r^^ ^ r2sm(^) L 2 ^ ^ r2sin(^)2 ' 

[V(r)P'] + , sin(^) P 

sm{e) 
X^P 

(6.6) 

Here we have assumed that the gauge field can be written Pa = A/'PVa??. The 

symmetry about'd ensures that X and P depend only in r and 9; primes and dots 

therefore denote diflferentiation with respect to r and 9, respectively. 

Notice that we are only left with two scales: r+ (the radius of the black hole's 

outer horizon measured in units of the Higgs width of the string) and p = wl (the 
o 

gauge width of the string, also in units of WH , squared). Additionally, we can always 

thicken the string by increasing its winding N. 

Eqs. (6.6) were solved in [1,31,30] for the range [ fmin, ' '^m] x [0,27r], where r ^ i n is 

the radius of the black hole's outer horizon "H, 

Tmin = r+ = M + ^ / M ^ ^ (6.7) 

and is some radius suflSciently larger than for the numerical results to make 

sense. 

6.3 Numerical Method and Results 

To solve numerically the equations (6.6), we have used the technique developed 

in [1], which consists in relaxing initial configurations of the fields X and P on 

the (rectangularly) discretized plane, (r, ^) (z,j) (r^ = r+ -\-idr,9j = jd9). 

We replace therefore the fields by their values on this grid, X{r,9) —> Xij 

X{i,j) (and similarly for P), and the differential operators by suitably discretized 

versions. Adopting the notation of [1] and [30] (that is, XQQ Xij,X±Q Xi±ij 

and Xo± Xi^j±i), we find that the discretized version of (6.6) is {XOQ,PQO) -> 

(^oT>nr). withi 

^ ^^ _ ^ + 0 - ^ ^ - 0 I cot 0 XQ+-XO- . T / - x + o + X - o . X0++X0-
j ^new _ r \^ r ) 2Ar ~^ 2Ag ^ Ar^ ^ r^AO^ /g a \ 

^Two misprints crept into the corresponding equations (24a,b) of [20]: the terms divided by 
A r 2 should be and "P+o + P_o" — as above — instead "X0+ + X 0 - " and "PQ+PO-"-
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pnew 
^ 0 0 — 

^ (M - cot g^Q+'-P"- + yP+o+P-o , P0++P0-

2T/ ^ 0 0 
Ar2 + r2A02 + p 

. (6.8b) 

There is, however, a subtlety in this process: relaxation methods usually require 

that the values of the fields be fixed at all the boundaries of the domain of integra­

tion. If indeed we know the asymptotic values of X and P at r —> oo (the vacuum) 

and at 6 -> 0,7r (the string core values), the solution at the horizon r = r+ is not 

only unknown, it is the main result we expect from these numerical calculations. The 

solution imagined by AGK [1] to this problem was to also update the values of the 

fields at the horizon immediately after updating the interior of the grid. Replacing 

r = r+ in (6.6), we obtain equations on the horizon: 

sine f P \ ' X'^P 
(6.9) 

sin^ \r—r+ ' + 

We discretize this in the same way that we discretized the equations on the interior 

of the grid, except that we must now take discretized diff'erential operators that do 

not depend on X-Q or P_o, since these points do not exist. The resulting equations 

are' 

A o o — A g o = 

p » nnew 
^ 0 0 -> -Too 

Ar ^ Ae2 + 4 I^AQO -Lj + 2 V l h ^ j 

-Po-
(6.10) 

VM2-Q^ 1 I ^ + y 2 
AT- ' A6i2 2 / 3 ^ 0 0 + 

The process of updating the interior of the grid and then the horizon at each iteration 

was carried on until the largest relative correction in absolute value on the grid 

became smaller than some e: 

max 
id 

ynew v o i d pnew pold 
hj hj 

ynew v o i d 

, max 
pnew pold 

hj hj , max pold 
hj 

< E. (6.11) 

The evaluation of the maximum of the relative errors was carried out over the whole 

grid, including the horizon. (A value of e = 10~^ is usually enough for plots; for 

quantitative results, better accuracies must be considered.) 

2Again, there were two misprints in equations (26a,b) of [20], where " r+" should read " r | " in 
both denominators. 
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We have first of all implemented the algorithm described above in the case of a 

Schwarzschild black hole. Figures 6.2 and 6.3 show the fields we obtained for thin 

and thick strings. In each case, our results compared well to the figures of [ I j ; in 

particular, we also found that the Nielsen-Olesen approximation is excellent for thin 

vortices, and is even reasonable for thicker vortices, which however tend to pinch 

slightly at the equator of H. 

0 2 0 ^ ^ 10 20 4 ^ 0 10 

(a) Field X (b) Field P 
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(c) JC-contours 

0 10 20 30 40 

R 

(d) F-contours 

Figure 6.2: A t h i n cosmic str ing threading a Schwarzschild black hole. Here, M = 
10, (5 = 0, /? = 1/2, = 1 and rm = 60. For the sake of clarity, the gr id i n (a) and (b) 
was very coarse, Nr = NQ = 50; for (c) and (d) we used Nr = Ne = 200. e = 10-2 i n all 
cases. The horizon is represented by the dashed fine i n (c) and (d). 

We then turned our attention towards Reissner-Nordstr0m black holes, com­

paring now our results with those of CAES. We found, as they did, that in the 
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(d) P-contours 

Figure 6.3: A thick cosmic string threading a Schwarzschild black hole. This time 
M = 10,Q = 0,(3= 1/2, N = 400 and = 150. Here, Nr = Ne = 100 and e = lO'^. 
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nonextremal case the picture remains qualitatively the same as for Schwarzschild 
black holes. For extremal black holes, however, our results differ from their original 
claims; indeed, we find that the expulsion of the matter fields for thin strings in this 
limit is the result of a loophole in the numerical method (when applied to extremal 
black holes). 

If we are to study piercing and expelled solutions numerically, we must first 

define those more precisely. We say that the string is expelled from the black hole if 

the solution on H corresponds to a string core (X = 0, P = I); otherwise, the string 

is considered to pierce the black hole. 

Let us now see why our results differ from those of CAES. Because in the extremal 

case V'(r^) = 0, it can be seen from (6.9 or 6.10) that the extremal horizon decouples 

from the bulk of the grid. This manifests itself in (6.9) by the fact that the terms 

containing derivatives of X or P with respect to r vanish, and in (6.10) by the 

disappearance of X±o and P±Q. Note that this leaves ODEs for X{6) and P{6) on 

which are of course much simpler to solve than partial differential equations. 

Explicitly, these are 

J P \ M^X^P ^'-''^ 

ysmt/ J p 

The consequence of this decoupling is that whatever happens inside the grid will 

have no influence on the horizon. In other words, before accepting a solution one 

must still check that it is continuous (better yet: smooth) as r ^ r+. This is not 

automatic; because of the nonlinearity of the equations to integrate, different initial 

guesses might lead to different solutions on the horizon. 

Physically, the reason for this decoupling resides in the fact that the horizon 

lies at an infinite proper distance away from the rest of grid. Indeed, the (proper) 

distance between two points at constant ,̂ 9 and and at (coordinate) distances r i 

and Ti + 6r from the singularity is 

A / ~ / --= = I (6.13) 



6.3. Numerical Method and Results 100 

In the extremal case, A/ ~ r i + M l n | r i — M\ and the integral diverges as r i —> 
r+ = M. In a numerical code, the first row of the grid {i = 0) lies at r+ and the 
second lies at an infinite proper distance away from it. 

By itself this would be harmless, because the program would still use Eq. (6.12) to 

update the horizon, albeit independently from the rest of the grid. We do, however, 

encounter a real problem if the initial guess on the horizon is a solution of (6.12), 

because clearly the program then never updates this guess. This is notably the case 

for a "core" guess (X = 0, P = 1), which was the one that CAES always used.̂  If 

this guess is made on the horizon, the program will never be able to modify it, and 

whether or not it smoothly connects with the solution on the interior of the grid is 

left for the programmer to ensure. To turn around this problem, we have considered 

three different initial data sets: 

• Core: X = 0,P = 1; 

• Vacuum: X = 1,P = 0; 

• Sine: X = sme, P = 1. 

Note that although the vacuum solves Eqs. (6.12), it does not satisfy the boundary 

conditions on the poles, which are core. 

Our results then show that (for a thin string) if we choose a core initial data set 

on the horizon (figures 6.4a, 6.5a), then we find that the string is expelled; however, 

if we use either of the vacuum or sine guess (figures 6.4b, 6.5b) we find that the 

string pierces the horizon. The solution on the interior of the grid is the same for 

all three initial data sets. 

We have several physical and numerical reasons to believe that the piercing 

solution is to be preferred: firstly, the fields have lower energy in the piercing case 

(because of the X' and P' terms in the energy density); secondly, this solution 

is smooth at the horizon, unlike the expelled one (where, despite decreasing the 

stepsize Ar , i t proved impossible to smooth the sharp jump from X = 0 on the 

horizon to X ?̂  1 on the bulk of the grid); finally, i t is numerically more robust, 

since it can be obtained by more general initial guesses. 

•^CAES's paper [31] claims, just under Eq. (3.4) to have used a vacuum guess. Prom our results, 
this seems to have been a typo, however, and Andrew Sornborger confirmed to me that they have 
always used {X = 0,P = 1) (core) as the initial horizon guess. 
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Note that we consider the smoothness of the physical solution to be an important 

argument in favour of the piercing solution. Under the requirement that the solution 

should be continuous at r = r+, it would be easy to simplify the numerical method 

described above by computing the values of the fields on the horizon simply by 

continuity from the bulk the grid. I t is true that this method would be less accurate 

than relaxing equations (6.10),^ but it would have the advantage of always selecting 

smooth solutions.^ 
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(b) Vacuum or sine guess 

Figure 6.4; Contours of X and P for a core guess ( lef t) and a vacuum (or sine) in i t i a l 
guess. The parameters are M = Q = 10, /? = AT = 1, £ = IQ-^ , Nr = NQ = 100. 

To determine how the transition from a piercing to a wrapping solution occurs as 

we thicken the string, we can take advantage of the fact that, on the horizon, we now 

have ODEs. This allows for much quicker and more accurate numerical methods. 

For the following calculations we have used the relaxation routine SOLVDE of [82, 

chapter 17 . 

The solutions we find all have the same shape on H (figure 6.6): the Higgs field 

rises from the core value at the poles with a non-zero ^-derivative to some maximum 

value Xm at 6 = 7r/2, whereas the gauge field falls from the core value at the poles 

with vanishing ^-derivative to some minimum value P^ at (9 = 7r/2. 

For massive black holes (or, equivalently, thin strings), the fields adopt a vacuum 

profile on most of the horizon (symmetrically around 9 = 7r/2) and interpolate 

^Presumably, this was the reason for inventing this more complicated method in the first place. 
^When we consider the case of a single string ending on a black hole in the next section, we will 

have to solve the equations on the boundary 6 = ir; there, however, the discretized equations are 
unstable, and we wil l have to resort to this continuity method; see page 106. 
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40 
20 

R 

(a) Core guess (b) Vacuum or sine guess 

Figure 6.5: Field X relaxed f r o m a core guess (left) and f r o m a vacuum (or sine) in i t ia l 
guess. The parameters are M = Q = 10, ̂  = AT = 1, e 10"^, Nr = No = 50. 

0 0.5 1 1.5 2 2.5 3 0 0.5 1 1.5 2 2.5 3 

[a) X{9) (b) P{e) 

Figure 6.6: Functions X{e) and P{e) on the black hole's horizon hi P = N = 1 and 
M = 10,2.5,2,1.9 and 1.8865. 
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smoothly to their fixed boundary values at the poles. As we decrease the black 

hole's mass (thicken the string), X^ and P^ move away from the vacuum values, 

i.e. Xm decreases and P^ increases. As figure 6.7 shows, foTp = N = l this occurs 

gently at first, and accelerates suddenly, as if the string had crossed some critical 

width beyond which it cannot pierce the horizon any more; eventually, the fields are 

expelled from it (see figure 6.8 for an example of such a solution). 

Figure 6.7 also shows the effect of varying the Bogomol'nyi parameter /? on the 

curves X^i'^/M) and Pm(l/M). Increasing this parameter means thickening the 

gauge width of the string, and therefore we expect that the critical mass for the 

transition to occur will increase, which is precisely what happens. However, there 

seems to be a limit value of M = 1/2, that is, for N = 1 and regardless of the value 

of p, all strings whose width wu is smaller than r+/2 must pierce the horizon, and 

therefore constitute hair to the extremal black hole. 

0 0.1 0.2 0.3 0.4 0.5 0.6 

(a) Xm{l/M) 

0 0.1 0.2 0.3 0.4 0.5 0.6 

(b) Pm{l/M) 

Figure 6.7: Evolution of Xm{l/M) and Pm{l/M) for iV = 1 and /3 = 1/2, 1, 2, 5, 10, 
20, 100 and 500. 

This can also be inferred from figure 6.9, which shows the evolution of Mc (defined 

as the critical mass below which the only possible solution is the expelled one) as a 

function of p and N. This figure also shows that increasing A'̂  has that same effect 

of increasing Mc, which had also been anticipated from the fact that it also thickens 

the string. This time, however, we observed that increasing actually shifted the 

curves X m ( l / M ) and Pm{l/M) to the left, without changing their shape. This is in 
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contrast to figure 6.7, where clearly the shape of Pm[llM) changes as ^ increases. 

(This is probably due to the fact that varying /? changes the gauge width of the string, 

but not the Higgs width.) Beyond N = 8, the numerical results started becoming 

somewhat unreliable; unfortunately, that is not enough to obtain evidence for the 

existence (or otherwise) of a limit value of M , as when we varied j3 at fixed N = 1. 

z 0-

(a) X-contour (b) P-contour 

Figure 6.8: A n example of expelled solution. Here, M = Q = 1.8 (just below the 
cr i t ica l value M = 1.8865 shown on figures 6.6 and 6.7); also, p = N = 1, e = 10"^ and 
Nr=N0 = 100. 

6.4 String Ending on a Black Hole 

We now turn to the important case of a string ending on a black hole. The existence 

of such a configuration is necessary to check that a pair black hole/anti-black hole 

can be created inside the string, which might then be split and decay. We have 

seen that in the Schwarzschild case, AGK [1] have proved that these configurations 

are quite possible; we now investigate the case of Reissner-Nordstr0m black holes, 

and show that not only these configurations always exist, they also exhibit in the 

extremal case a phenomenon analogous to the flux expulsion of the previous section. 

On the horizon, and for numerical purposes, the single-string case diff'ers from 

the one we considered previously only by the boundary conditions on the poles. At 

^ = 0 we still require a string, but at ^ = TT nothing actually forces the fields to take 

a vacuum configuration. Indeed, we found that the only smooth solutions were such 

that the Higgs field X had a vanishing derivative at the South Pole (see figure 6.10). 
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Mr 

(a) Mc{l3) for N ^ l (b) Mc{N) for /5 = 1 

Figure 6.9: Cr i t i ca l mass Mc as a func t ion of the Bogomol 'nyi parameter /? (for N = 1) 
and of N (for P = 1). On figure (a), the curve asymptotes at 2; on figure (b) we cannot 
te l l , more points would be required. [In (b) we have joined the points to guide the eye.] 

Clearly the value of X^ = X{7r) depends on the black hole's mass; therefore, if 

we want to tackle this problem on the whole grid (and following the method that 

worked so well on the horizon), we need to also update the 9 = TT boundary. We 

can find the equations of motion on this line by assuming that P/ sin 9 -> 0 and 

that Xg 0 there, but unfortunately the resulting numerical scheme was unstable 

(i.e., numerical roundoff" errors propagated uncontrollably) and the replacement of 

the discrete diflPerential operators by more sophisticated ones, accurate to order 

0(Ar^ , A^^) or higher, failed to stabilize the code. This problem was solved by 

decomposing the method in three steps: 

1. Solve the problem on the horizon alone and fix the value of the fields 

at the South Pole S. The initial guess for X onTi was X = sin{9/2), which 

is 1 at S, and as the program updated it, X{S) decreased. Without fixing the 

value of X(S), the program of step 2 "missed" the real solution and updated 

X until i t vanished identically on the horizon. 

2. Solve inside the grid and on the horizon as before. Also (and only for 

the first 100 iterations or so) couple the horizon to the grid interior, so that 

the solution on the horizon will drive that on the whole spacetime outside it. 
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3. Update the 9 = n boundary by continuity, assuming X^e = P,e = 0 there. 

An example of a configuration found by this program is presented on figure 6.11. 

M - 1 

0 0.5 1 1.5 

M = 1 

0 0.5 1 1.5 2 2.5 3 

(a) x{e) (b) p{e) 

Figure 6.10: Solution on the horizon for a single string ending on the extremal black 
hole for /3 = iV - 1 and M = 9,2,1.3,1.1,1.03 and 1. (At this scale, the X-profile for 
M = 1 Hes on the axis.) 

Returning to figure 6.10, we see that as we thicken the string, the X field is 

again expelled from the horizon (completely so for M 1, i.e. for a string of width 

comparable to the black hole's outer radius), whereas the P field quickly adopts the 

"monopole" form: 
def 1 +cos(^) 

mon — 2 

This configuration is illustrated on figure 6.12. 

6.5 Analytical Considerations 

In this section, we shall try to extract analytically some information from equa­

tions (6.6). We will show in particular that both penetration and fiux expulsion 

must occur (respectively for thin and thick strings), and place bounds on each be­

haviour. We shall see that these bounds will be somewhat weak, but in agreement 

with the numerical values previously found. 

We can first of all argue that thin strings must penetrate the black hole's horizon. 

Following [1], we postulate that such a string would look very much like a Nielsen-
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(a) X{r,e) (b) P{T,d) 

Figure 6.11: Solution for a single str ing ending on the extremal black hole for M = Q = 
10, /5 = = 1 and £ = 10 -3 , A^̂  = NQ = 50. 

(a) X-contour (b) P-contour 

Figure 6.12: Contours of X and P for a single str ing ending on the black hole, and 
M = Q = 1/2, (3 = N = l,Nr^Ne^ 100, = 10. 
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Olesen vortex, and therefore take the shape X = X{g), P = P{g), where g is still the 
distance from the z-axis, g = rsm9. Then, the equations of motion (6.6) become 

g 2 ^ y j^/ y ^ ^ / \ Q J 

P' X^P g^ 
-P" + - + 

Q P 

/ P' 
\ { p " - 2 - ] - (6.14) 

2 M / „ _ P^ 
r \ g ^ 

On the right-hand side we have terms of the order g'^/r^ times terms of order unity. 

Near the core, g ~ 0(M~^) ; for thin strings, M ^ y/N ^ 1 and therefore this is 

negligible. Then, since the left-hand side of the equations are precisely the Nielsen-

Olesen equations, we find that the Nielsen-Olesen solution satisfies the equations of 

motion near the core. These solutions tending exponentially fast to their asymptotic 

values (1.27), by the time the premultiplying factor g'^/r'^ becomes significant, the 

terms in X',P', X" and P" are themselves negligible, and the solution should still be 

Nielsen-Olesen. In brief, the Nielsen-Olesen solution (which penetrates the horizon) 

should be an excellent approximation to the real solution for thin strings. Notice 

that this argument does not make any assumption on Q, and that therefore its 

conclusion should be valid for extremal black holes too. 

However, it was shown in [31] that for high-winding (and hence thick) strings 

the flux must be expelled. Indeed, if the black hole is deep inside the string core, 

we can neglect the X^P-term in the equation for P (6.6), which is then solved by 

p ^ l _ p ( ^ 2 _ g 2 ^ g . j ^ 2 ^ ^ (6.15) 

where p is some constant. Clearly, P = 1 on the horizon if M = Q = r+. Moreover, 

the flux across the horizon is God = P and vanishes. Finally, the corresponding 

solution for X is given hy X = [h{r) sin^]^; near the horizon, [31] found that 

(IT 
d { \ n h ) ^ - = = = (6.16) 

A / ( r - r + ) ( r - r _ ) 

For extremal black holes, 6 ~ r — r+ and X vanishes at the horizon. 

6.5.1 Proof of Flux Expulsion for Thick Strings 

First of all, recall that in the extremal case, the horizon decouples from the rest of 

the spacetime, and that flux expulsion is always a solution on the horizon. Hence, 
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all we need to do to prove that expulsion must happen is to show that for some range 
of M > Mc a piercing solution cannot exist.^ We are going therefore to assume that 
a piercing solution exists on the horizon, and use (6.9) to deduce some properties of 
this solution. Whenever these properties are found to be inconsistent, the solution 
must correspond to flux expulsion. 

Assume therefore that a nontrovial solution {X{9), P{9)) exists on the horizon. 

This solution must be symmetric about 9 = 7r/2, and thus X and P have respectively 

a maximum Xm and a minimum P^ there. By expanding the equations at ^ = 0, TT 
i t can be seen that \X\ > P = 0 at the poles; therefore, there exists a point such 

that P = 0 and P < 0 at (9 = 6'o. 

Consider equation (6.9) at ^ = 7r/2; since X^ee < 0, i t implies 

Hence, 

(where we have maximized over X^ in the last step). This gives us an upper bound 

on P(TI/2). We will now obtain a lower bound on the same quantity, and the 

consistency of these two bounds will provide the maximum range of the parameter 

M over which a piercing solution can exist. 

The lower bound on P(7r/2) can be estimated by noting that P^ must be larger 

than it would be if P decreased linearly from the pole to 7r/2 with the highest 

possible slope, which is P(9o): 

> 1 - ^{Pm. (6.18) 

Now, this slope is 

l ^ ( ^ o ) | = —X^Ptd.n9o < - ^ t a n ^ o (6.19) 

and therefore (using the bound previously found on Pm) 

Assuming that M < \/2N, this gives 

- - ^0 < cot^o < 7 r - (6.21) 
' 2 / ? ( l - ^ ) 

'We consider only smooth solutions. 
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For M ^ X ^ < 2/?, one can show that P has a maximum at 7r/2, and hence 

The compatibility between (6.17) and (6.17) implies 

V27T^M^ > UVSP^N (^1 - j . (6.23) 

If this inequality is violated, then the vortex flux must be expelled. Writing M = 

M/y/2N, this is the case for 

For (3 = N = 1^ this gives M < 0.7, which is a weak bound: as we have seen, our 

numerical work puts this bound at M 1.8865 (flgure 6.6). 

6.5.2 Proof of Penetration for Thin Strings 

Now we are going to employ the same kind of argument to show that thin strings 

must penetrate the horizon. That is, we are going to show that expelled solutions 

cannot exist for big enough black hole masses. Since expulsion is always permitted 

on the horizon (and therefore can only be excluded by continuity with the rest of 

the grid), we need to consider the general equations (6.6) close to (but not only at) 

the horizon. 

Assume that a solution is expelled. Then at r = r+, X = 0 and P = 1; for r <: M 

therefore, M^X^ < 1 and [(r - M^X']' > 0. Then, for r > M 

]-M^X sin^ 9 sm9de {sm9deX) < XN^P^ < XN\ (6.25) 

We know that X is symmetric around 7r /2 , where it reaches a maximum value 

Xm, and that s i n^X vanishes at ^ = 0 ,7r/2 and TT. Let be the value at which 

'sin6'A:^ = 0; it must satisfy \M'^ ^\r^ 9^ < N^. For M < this is trivial, so 

let us now assume that M > V2N. Let o; > 6>o be defined by sin^ a = 2N^. 

Integrating (6.25) on the range {9,n/2) foi 9 > a gives 

X{9) > X{9) ^ M ^ cot 9-\-N'^ CSC 9 In tan 9/2 (6.26) 
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But since X < 0 in (a,7r/2), we can deduce that 

Consistency of this with (6.26) therefore requires that 

> ((9 - a) [csc^ Q; cot 6' + esc 9 In tan 9/2] (6.28) 

holds for all 9 G (a,7T/2). The lowest value of M for which this inequality is 

violated gives the bound for the existence of an expelled solution. For N = I, we 

find = 8.5, i.e. 1/M ^ 0.343. 

6.5.3 String Ending on a Black Hole 

Our aim in this paragraph is to show analytically that the phenomenon of X-flux 

expulsion observed numerically for strings ending on a black hole must indeed occur. 

Consider the equations on the horizon (6.9); as we mentioned in the previous 

section, they will have the boundary values X = 0, P = 1 at the North Pole ^ = 0 

and X = Xm, P = 0 at the South Pole 9 = n. By integrating the equation for P, 

we obtain 

f 1 j (1 + cos ^) < 2P < (1 -h cos 9). (6.29) 

Therefore, as M'^//3 —)• 0, P approaches Pmon- Let us assume that this is the case, 

and find the behaviour of X . As in the case of the string threading the black hole, 

note that X = 0, P = Pmon is always a solution on the horizon. 

Assume that there exists a piercing solution. Then X (7 r ) = Xm > 0 is a local 

maximum value of the Higgs field. Let 9o be defined by ^sin 9oX^ = 0. Then, at 

9o we have 

Since M <^ N, 9o will be close to TT; using the bounds on P , we can see that 

2 4 M 
- (TT - ^o) < sin ^0 < -7= • (6.30) 

Integrating the equation for X (6.9) between 0 and n gives 

d9X 
M2 p2 

sm 2iV2 ^ ' sine '0 

P2 M2 
— ^ - ^ s i n ^ 1 - X 2 
sm^ 2N^ ^ ' 

(6.31) 
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The first integral can be bounded above by AM'^XJN'^X^. The second one can be 

also bounded by noting that X is positive on [7r/2, 6*0], but negative at TT. Therefore, 

we have a bound for X in [7r/2, TT] in 

X < XrnN"^ sm^ 

Hence, X can be bounded below in this interval by 

(6.32) 

X > X . 1 (6.33) 

Finally, 

X 
P^ 

sin^ 2A 2̂ 
s i n ^ ( l - X ^ ) > l X 

'7r/2 

P2 M^sin^ 

\2 
> T ^ X ^ ( 1 

16 

sin^ 2A 2̂ 

1 -
8 M _ 2 \2 

(6.34) 

Inserting these bounds in (6.31), we find that the piercing solution cannot exist 

if 

< ^ r i - ^ ^ ^ ^ 
64 NX^ 

1 -
8 M _ 2 \ 2 

(6.35) 

For = 1, this gives M < 0.3. 

6.6 Discussion and Outlook 

The most prominent results of this chapter are the proof that thin strings always 

pierce a Reissner-Nordstr0m horizon (and therefore may be seen as hair to the 

black hole), and the existence of the phase transition separating the piercing and the 

wrapping solutions (and illustrated in figure 6.7). This phase transition is somewhat 

reminiscent of that separating wall and vacuum-de Sitter solutions in Chapter 4, 

where (recall the discussion from pages 68ff) we concluded that the compactness 

of the spatial section of the wall and de Sitter spacetimes was responsible for the 

phenomenon. 

We can similarly trace the existence of wrapping solutions (and therefore of 

the phase transition) to the topology of the space where the fields X and P live. 

From the literature [30,31] and from our own results, we know that fiux expulsion 

occurs only when the Reissner-Nordstr0m black hole is extremal, which — according 

to (6.13) — corresponds to the black hole's horizon decoupling from the rest of 
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spacetime. In the discussion attached to that equation, we have recognised this 
fact as the cause of the numerical problems which invalidated some of the results 
of [30,31]; now we are also in a position to argue that this particularity of the 
extremal black hole is at the source of the phase trasition. 

Indeed, for a nonextremal Reissner-Nordstr0m black hole the spatial section of 

spacetime where the fields live is three-dimensional, and only its boundary (the 

horizon) is a compact manifold. However, if % decouples from the rest of the 

spacetime exterior to it , we must consider the fields separately on the horizon and 

on the space exterior to it (with some proper joining condition in the coordinate 

distance r ) . The fields on the horizon then truly live on a compact spatial section 

of spacetime, namely and our discussion of section 4.7 applies. 

We can compare this result with an interesting extension of our work and that of 

AGK and CAES. Moderski & Rogatko [73,74] and (in a more general case) Santos k 

Gregory [85] have studied the same problem of a cosmic string piercing a Reissner-

Nordstr0m black hole, but in dilatonic gravity. After our papers [21,20] outlining 

the subtlety in the numerical treatment of the horizon, Moderski & Rogatko [74 

re-examined their previous claims of flux expulsion for extremal black holes, and 

confirmed — in contrast to the results of this chapter — that flux expulsion occurred 

in all cases. 

In our notation, the metric of the case that they have considered is 

\ rJ i - K \ M) " ^ ' 

and the extremal case is given by r+ = M = Q. The key point is to notice that a 

term r (r — Q'^/M) replaces in ggg. This term vanishes for the extremal horizon, 

which implies that the held equation for P reduces to 

P - cot(^)P = 0, (6.37) 

and we conclude from the boundary conditions that the only solution is P(r+, 9) = 1. 

Moderski & Rogatko then confirmed this result numerically by using the three initial 

guesses that were introduced earlier in this chapter. 

Apart from considering dilatonic gravity (or other generalizations of Einstein's 

theory of gravity), there are several ways to continue the work of this chapter. 
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The most obvious way would be to consider more general black hole and/or string 
solutions, such as rotating black holes or superconducting strings. But one could also 
decide to go all the way in the numerical direction and investigate dynamical and/or 
less symmetric interactions of strings and black holes; this would be necessary, for 
instance, to verify the stability of the solutions discussed in this chapter, or how 
they can form {e.g., is the string captured by the black hole?). 

Looking back at the beginning of this chapter, we recall that the work on 

this topic started with the study by AGK [1] of a Nielsen-Olesen string pierc­

ing a Schwarzschild black hole. Then CAES introduced a second U(1)EM group 

corresponding to electromagnetism by replacing the Schwarzschild black hole by a 

Reissner-Nordstr0m one [31,30]. Therefore, it would now seem logical to analyze 

the case where this U(1)EM interacts not only with the black hole but also with the 

string; this implies replacing the Nielsen-Olesen string by a superconducting one. 

Let us then consider the bosonic Lagrangian density (1.31) 

(Daa) (Z)V)^ - ^GatG''' - T/($, a), (6.38a) 

] / ($ , a) = ^ ( $ 2 - rj'Y + ^ a ' - m ' a ^ + f ^ ' a ' . (6.38b) 

We make the same Ansatz for the fields as (1.32), but in this chapter we consider 

the string in a Reissner-Nordstr0m background and therefore (refer to figure 6.1) 

X = X{r,9), 

Pa = P(r,9) V ,^ , 
(6.39) 

s = s{r, 9), 

Ca = Cr{r,e) VaT + Ceir, 9) Wa9. 

According to (1.35), this form for Ca allows for an electromagnetic current ja in the 

r and 9 directions, i.e. around 7i. 
The equations of motion derived from the Lagrangian (1.33) are 

• X - P^P^X + ^ X (X^ - 1) + a2s'^X = 0, (6.40a) 
Li 

US - CaC's + 2—5 (s' - 1) + —Xh = 0, (6.40b) 
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VaF''' + ^X'P' = 0, 

WaG^' + ^s^C' = 0. 

In the Reissner-Nordstr0m background 

(6.40c) 

(6.40d) 

ds' = V(r)dt^ - V-'(r)dr' - r^dQ', (6.41) 

these become 

--[r'Vir)X']'- sm{e)X + - X ( X 2 - 1 ) + 
r-2sin(^)2 0, (6.42a) 

- 4 [ r V ( r ) s ' ] ' - - ^ - ^ [sm{e)s\ + 

+ 2 ^ . (.2 - 1) + 

[y ( , )P ' ] ' + ? ^ P X^P 

0, (6.42b) 

0, (6.42c) 

sin(^) sin(^) - j J ^^s'Cr = 0, (6.42d) 

nr ) (a -C^ j J -|^52C, = 0 (6.42e) 

on the bulk of the grid, and 

{r, -M)X' + lx + l comx - 'jx {X^ - l ) -
^ ^ ^ ^ 2 sm^(6') 

0, (6.43a) 

K - M ) y + i s + I corns - \cl - ^^rls {s' - 1) - " f ^ X h = 0, (6.43b) 
2 a i 

( r ^ - M ) P ' + l p - i c o t ( ^ ) P - ! i ^ 0, (6.43c) 

a - + cot(^) [Cr - j - jrls^Cr = 0, (6.43d) 

(r+ - M) (^Cr - C'e) + JTIS^CQ = 0 (6.43e) 

on the horizon. These equations are currently being studied, but sadly we lacked 

the time to make some real progress towards understanding the behaviour of this 

system. We can see, however, that the equation for Cr on the horizon, (6.43d), 

does not reduce to an ODE at extremality, and the analysis might well prove more 

difficult than in the case of the abelian-Higgs vortex. 



Appendix C 
Numerical Tables 

This Appendix contains the numerical tables corresponding to Part I I I . As in Ap­

pendix B, only a small subset of our numerical results are given below. 

N M 1/M X(7r /2) P(7r/2) 

1 0.1 5.0 0.200 0.999610 1.04910e-09 
3.0 0.333 0.987626 1.82632e-05 
1.5 0.667 0.683601 0.0646497 

1.0 5.0 0.200 0.999210 0.00390753 
3.0 0.333 0.974058 0.0748739 
1.9 0.526 0.607430 0.564400 

10.0 5.0 0.200 0.992768 0.323259 
3.0 0.333 0.886321 0.704002 
2.1 0.476 0.389957 0.967027 

100.0 5.0 0.200 0.963488 0.872222 
3.0 0.333 0.818832 0.967984 
2.1 0.476 0.344228 0.997370 

2 1.0 5.0 0.200 0.997470 0.00625655 
3.0 0.333 0.901614 0.138023 

4 5.0 0.200 0.988423 0.0142843 
4.0 0.250 0.924558 0.0724505 

6 5.0 0.200 0.962400 0.0307028 
8 5.0 0.200 0.870635 0.0767509 

Table C . l : Value of X(7r /2) and P(7r/2) on the horizon of the extremal Reissner-Nords-
tr0m black hole as function of N, /3 and M (or 1/M). See figure 6.7. 
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M 

2.0 0.98625 
1.8 0.97278 
1.6 0.94513 
1.4 0.88336 
1.2 0.73490 
1.0 0.06253 

Table C.2: Value of X (7r) on the horizon for a single string ending on a black hole (see 
figure 6.10). 



Part I V 

Conclusion 



Conclusion 

In this thesis, we have studied some properties of extended topological defects in 

a cosmological setting. More precisely, we have studied the effective dynamics of 

cosmic strings and gravitating domain walls, the spacetimes of domain walls, and 

the static solutions of the system consisting of an abelian-Higgs cosmic string and 

an extremal Reissner-Nordstr0m black hole. Al l these topics — although related — 

do not form a logical ensemble, and we chose to present our conclusions at the end of 

each correspoinding chapter. We therefore only summarize these conclusions here. 

Our efforts to understand the dynamics of cosmic strings yielded an effective 

equation of motion for the strings in terms of either its extrinsic curvatures /̂ ^ 

Eq. (3.49)] or the spacetime coordinates of its core [Eq. (3.45)]. We investigated 

the corrected dynamics of three different trajectories (a circular loop, a travelling 

wave and a helical breather) and compared them with their Nambu-Goto counter­

parts. With the help of these results, and a more general argument valid for any 

trajectory, we found that the corrected trajectory was generically antirigid. 

We then investigated the spacetimes of plane-symmetric domain walls, and found 

that, depending on the strength e of the Higgs's gravitational interaction, they could 

be of two distinct kinds. The first corresponds to a wall solution, and in the second 

the scalar field sits at the top of the potential (false vacuum) while the spacetime 

is exactly de Sitter. These two types of solution are separated by a second-order 

phase transition (see figure 4.5). The existence of the vacuum-de Sitter solutions 

can be linked to the topology of the domain wall and the de Sitter spacetimes. We 

then specialized our investigations to the particular cases of a Goldstone and a sine-

Gordon walls, which allowed us to perform some numerical simulations to confirm 
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and refine our analytical predictions. 

Our analysis of the dynamics of topological defects continued with the case of 

gravitating domain walls. After identifying the two qualitatively different cases to 

consider, we determined the lowest-order corrections to the Nambu-Goto equation 

of motion in both cases [Eq. (5.46)]. This chapter describes work still in progress, 

and sadly some more work is necessary to determine whether this equation forces 

the wall to be totally geodesic or not; preliminary findings suggest that it does not. 

Finally, we also discussed the interactions between abelian-Higgs cosmic strings 

and extremal Reissner-Nordstr0m black holes in the case where the string's axis 

passes through the center of the black hole. In particular, we addressed the question 

of flux expulsion, a phenomenon which had been analytically established for high-

winding strings, but only numerically observed for thin vortices. Using a mix of 

analytical and numerical methods, we showed that in fact thin strings must penetrate 

the horizon 7i (and therefore count as hair) and that thick strings are expelled from 

7i. These two types of solution are separated by a second-order phase transition (see 

figure 6.7a) reminiscent of the one which we observed in the spacetime of domain 

walls, which occurs when the string has a thickness comparable to that of the black 

hole. In this case too, the existence of expelled solutions can be traced to the 

topology of the space where the fields live. 
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