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Abstract

Bayesian emulation has proved to be a useful tool for working with complicated, high

dimensional simulators, approximating the simulator’s behaviour in a probabilistic

way, enabling operations such as prediction or calibration, and therefore providing

an efficient approximation to the simulator’s representation of the system.

Complex systems, however, are often modelled by several different simulators,

each with different strengths and weaknesses. Combining them to better understand

the system, or comparing their behaviour as functions, is very difficult. This is

largely because their input spaces cannot be directly linked.

In this thesis, we present two methods for using emulation to jointly model two

simulators, allowing them to be compared. We also introduce two simulators of the

ocean carbon cycle, OG99NPZD and HadOCC. The ocean carbon cycle is of interest

largely because it concerns the biological processes by which some carbon is stored in

the deep ocean. These simulators have different input spaces and model the system

differently, and standard emulation proves to be unable to compare them.

The first method for two simulators, hierarchical emulation, works with pairs of

simulators for which one is an extension of the other, and therefore whose input

spaces are mostly similar. This uses the relationship between the simulators to

emulate the more complex as a sum of the simpler simulator and some newly created

functions. Validation studies using hierarchical emulators to model two versions of
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HadOCC show that the hierarchical emulator outperforms the standard methods in

modelling both the extended simulator and the difference between the two.

The second, intermediate variable emulation, makes no constraint on the rela-

tionship between the simulators, instead making connections using sub-processes

represented in both. This allows the representations of a system by two simulators

to be directly compared; the contributions of the different sub-processes can be con-

trasted, and the sub-processes themselves can be used to gain better understanding

of the relationship between the two input spaces. Intermediate variable emulators

are used to compare OG99NPZD and HadOCC.

Finally, to enable an efficient and robust implementation of these methods, as

well as of the standard emulation method, an object-oriented framework for emula-

tion is presented.
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Chapter 1

Introduction

1.1 Computer Simulators

Whether we consider it or not, computer simulators now play a significant part in

everyday life. One area where this is especially the case is weather prediction - the

forecasts we use daily or hear of in the press are the results of hours of intense com-

putation involving sophisticated models. The output, whether it covers the next few

hours or the next several hundred years, will often be used to make crucial decisions

or communicated to the public for our use. Ultimately, the simulator should be able

to be used to gain insight into the real system, for prediction (forecasting the value

of the system under particular conditions) or calibration (deducing which sets of

inputs lead to output which most closely matches observations of the real system).

What is sometimes less well understood is the amount of error in these pre-

dictions, whether owing to a lack of understanding of the process, to insufficient

computing power or to some other factor. While the forecasts are often interpreted

as precise and true, a closer look reveals many sources of uncertainty. There are

several reasons why a simulator might not give an accurate likeness of the real world,

as listed for example by Kennedy and O’Hagan (2001).

A simulator relies on knowing the values of various aspects of the system, which

are entered as input parameters. These may each have a clear physical meaning, for

example the viscosity of the ocean, or the speed at which dead phytoplankton sink

to the sea floor. They may be more abstract, and constructed to fit the working of

1



1.1. Computer Simulators 2

the simulator, for example a ‘nutrient uptake half-saturation constant’ (Hemmings,

2000). Either way, obtaining a correct value for these inputs is usually either ex-

tremely difficult or impossible. It is likely that the quantity varies across the spatial

or temporal region of interest so that there is no ubiquitously ‘true’ value. It could

well be that no experiment to obtain an estimate of the value can even be conceived

of, much less performed. This means that there are many parameters whose true

values are unknown, and none about which we are certain.

This is made worse by the fact that no simulator will ever truly and fully describe

the system it models. Processes or parameters will be absent, and the understanding

behind the modelling choices may even be entirely wrong. This means that even if

we were to obtain the ‘true’ parameter values and run the simulator with them, the

output we obtained would not match the system.

A further source of error is that with deterministic computer simulators (the

focus of this work), once values have been specified for each parameter, the output

will always be the same. With the real world this is not the case - even when

all the specified conditions remain the same there will be residual variation. This

may be because of features of the system that have been omitted, and so could

in theory be reduced by refining the simulator (in which case this fits into the

previous category). On the other hand there may be elements that are stochastic

and inherently unpredictable.

Finally, the dimension of the space of input parameters and the speed at which

the simulator evaluates usually mean that exploring a simulator’s behaviour over its

input space is impossible.

Addressing some of these issues will be the focus of the first part of this thesis.

In Chapter 2, the ocean carbon cycle will be briefly explained, and two simulators

which model it, OG99NPZD and HadOCC, will be introduced.

In Chapter 3, we introduce Bayesian emulation and explain how an emulator is

built. This involves several decisions, concerning such issues as the design of experi-

ments, choosing a suitable regression surface and specifying a correlation structure,

and we will focus on these in some detail. To illustrate the emulation process, we will

build emulators for OG99NPZD and HadOCC. After this, attention will be turned
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to emulation for multiple simulators. In Chapter 3, a method is introduced for the

construction of large Latin hypercube designs, with particularly good properties for

validation studies. This method is employed in the example in Chapter 5.

1.2 Studying multiple simulators

While emulation can help to understand the uncertainties around a particular sim-

ulator, by enabling the user to better handle the high-dimensional input space, its

performance is limited by the simulator itself. If the simulator represents the system

badly, so will the emulator, and it does not offer any way to expose missing or poorly

modelled processes, a key source of error mentioned in the previous section.

One approach that has been proposed to address this weakness is to study mul-

tiple simulators. Any system that it would be beneficial to understand is likely to

be modelled by several different simulators. Many countries have their own weather

and climate models, banks independently predict the financial market’s behaviour,

oil companies each create models predicting yield, and so on. Depending on the

level of interaction between these interested parties, the simulators may differ sig-

nificantly. Some will include certain processes where others omit them. There will

be different ways to parameterise elements of the system’s behaviour, and varying

levels of complexity.

It seems intuitively plausible that using these simulators together should lead

to a better understanding of the system in question. Rather than regard one as

the best, and all others as redundant, many scientists take the view that each has

strengths and weaknesses, and can give insight as modellers seek to improve their

representations of the system.

In Chapter 4, a brief summary is given of existing work involving multiple sim-

ulators, most of which deal with a single calibrated output from each simulator.

In contrast, we seek to treat each simulator as a function of its input space, using

emulators. There follows an exploration into the difficulties involved in comparing

simulators when their input spaces are not the same, and a breakdown of some ways

in which simulators can differ.
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Chapters 5 and 6 then introduce new methods for emulating multiple simulators,

each applicable to a particular sort of difference. Hierarchical emulation, the focus

of Chapter 5, is able to emulate a pair of simulators for which one is a particular

sort of extension of the other, by incorporating the relationship between the two

into the emulator. An example is given using two versions of HadOCC, and in a

validation study the hierarchical emulators outperform their standard equivalents.

Intermediate variable emulation, introduced in Chapter 6, is applicable to a much

broader class of pairs of simulators. The simulators must share some similar process,

but there needn’t be any clear links between their input spaces. This method is

used to compare the effects of each input space on the processes modelled in each

simulator, and to explore the ways these processes contribute to each representation

of the system. Intermediate variable emulation is then used to compare OG99NPZD

and HadOCC, and to show up differences and similarities between the two that

would be very difficult to infer by other methods.

Having seen the process of emulation in Chapter 3, and two extensions to this in

Chapters 5 and 6, it will be clear that any emulator will involve highly structured

data, and a large number of calculations. In Chapter 7 we therefore propose an

object-oriented framework for emulation, using S4 objects in R (R Development

Core Team, 2011). This will be extended to incorporate hierarchical emulation and

intermediate variable emulation.

Overall, it is hoped that these methods demonstrate the value of comparing

multiple simulators viewed as functions, and of emulation as a suitable technique

for doing this.



Chapter 2

Modelling the Ocean Carbon

Cycle

Much of the existing work on computer simulators focusses on climate, a crucial

part of which is the transfer of carbon between the air and the sea. In order to

show the methods later introduced in action, we first introduce a physical system,

the ocean carbon cycle, and briefly describe two simulators of it.

It is estimated that roughly 2 gigatonnes of the world’s anthropogenic carbon is

held in the oceans (Palmer and Totterdell, 2001). While much of this is held by the

water itself, some is captured by ocean-dwelling life forms, and eventually sinks to

the ocean floor. This transfer of carbon to the deep ocean through biological tissue

is known as the biological pump. The capture of carbon occurs through phytoplank-

ton photosynthesising in the surface layer of the ocean, where sufficient light and

nutrients are available. Rather than release the carbon in the same place, however,

the phytoplankton often sinks to the deep ocean before the carbon is released, and

it is this process which leads to a reduction in partial pressure between the ocean

surface and the atmosphere, leading to a carbon flux (Oschlies and Garçon, 1999).

Because the ocean is such a vast and complex system, this process is affected

by many other physical, chemical and biological processes. In each part of the

ocean surface there will be particular currents and flows, temperatures, salinity and

viscosity. There will also be various predators, particular types and concentrations

of nutrients, and prevalent types of behaviour within the plankton community.

5



2.1. Compartmental ocean ecosystem modelling 6

In an attempt to capture some of these details, both models introduced below

couple a biological model to a physical model. In this study, the biological models

will be our focus, leaving the forcing functions and models governing the physical

processes alone, and so before introducing the two specific simulators used in this

thesis, we will discuss the seminal compartmental ocean ecosystem model on which

they are based.

2.1 Compartmental ocean ecosystem modelling

The goal of Fasham et al. (1990) (whose simulator we will refer to as FDM90) was to

learn about how ocean ecosystems affect atmospheric carbon dioxide, in particular

focussing on the cycles in plankton and nutrient populations, whose roles had been

shown to be important by both microbiological results and satellite data. The

link between carbon dioxide and the phytoplankton population had been explored

through simulation before, [see Fasham et al. (1990) for references], but this approach

was new, in that they chose to model the system from the bottom up, allowing the

microbial processes and the resulting transfers of nitrogen to govern population

dynamics and biogeochemical cycles.

Because nitrogen is widely accepted as the limiting nutrient for the production

of phytoplankton, a compartmental ecosystem model was used, with each compart-

ment representing a possible form nitrogen could take in the system. These were

phytoplankton (P), zooplankton (Z), bacteria (B), nitrate nitrogen (Nn), ammo-

nium nitrogen (Nr), labile dissolved inorganic nitrogen (Nd) and detritus (D), each

measured in mMol Nitrogen m−3. Their choice of compartments is explained and

detailed in Fasham et al. (1990).

The compartmental model works on the premise that within the mixed layer,

the speed of the flows and mixing are fast enough relative to the biological processes

that it may be considered biologically homogeneous. The mixed layer is the topmost

layer of the ocean, where there is enough light to support photosynthesis based life

such as phytoplankton, and so it is here that the biological activity of interest takes

place. In FDM90, the depth of the mixed layer is given by h(t), a forcing function.
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This simply gives a depth for each time point, which is then fed into the simulator.

Solar radiation is also given by a forcing function, whose values come from climate

data.

The compartmental populations in FDM90 are governed by differential equations

describing the flows of nitrogen between compartments, for example

dZ

dt
= β1 G1(P )︸ ︷︷ ︸

Grazing on P

+ β2 G2(B)︸ ︷︷ ︸
Grazing on B

+ β3 G3(D)︸ ︷︷ ︸
Grazing on D

− µ2Z︸︷︷︸
Excretion

− µ5Z︸︷︷︸
Natural death

− h(t)
Z

M︸ ︷︷ ︸
Effect of MLD

.

This shows how nitrogen can join the zooplankton compartment from another, or

leave the zooplankton compartment to contribute to another. Here, β1, β2, β3, µ2

and µ5 are biological input parameters to be specified by the user. The final term

represents the change in concentration of zooplankton with the change of mixed

layer depth. Unlike phytoplankton, which is a plant, zooplankton is deemed able to

move around in order to remain where it can survive, and so when the mixed layer

depth changes, the zooplankton concentration adjusts accordingly.

The simulators introduced in this chapter, and used throughout the rest of this

thesis, both contain compartmental ecosystem models similar to FDM90. However,

unlike FDM90, both are coupled to numerical circulation models, describing the

currents and flows in the ocean.

2.2 Oschlies-Garçon (OG99NPZD)

The physical model in Oschlies and Garçon (1999), referred to as OG99NPZD, covers

the North Atlantic from 15◦S to 65◦N, and down to a depth of around 5.5 kilometres.

The vertical grid-scale is smallest nearest the surface, where the nitrogen and light

based biological action takes place. The top ten layers are all around 11-15m thick,

having been altered to be more precise than the original physical model. Forcing

functions are used to describe wind stresses, friction stresses, salinity and sea surface

temperature, and the mixed layer depth, vertical diffusivity, viscosity and advection

currents are all then simulated.

OG99NPZD uses this modelled physical system behaviour to calculate the change

in each biological tracer concentration Ci, in terms of nitrogen, by equations of the
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form

∂Ci
∂t

= −∇ · (uCi)︸ ︷︷ ︸
advection

− Aρ∇4Ci︸ ︷︷ ︸
horizontal diffusion

+
∂

∂z

(
Kρ

∂Ci
∂z

)
︸ ︷︷ ︸

vertical mixing

+ sms (Ci)︸ ︷︷ ︸
‘source minus sink’

.

It is the fourth term that summarises the biological behaviour analogous to that in

FDM90.

Oschlies and Garçon reduce FDM90’s seven compartments to four: nutrient

(N), phytoplankton (P), zooplankton (Z) and detritus (D). The dynamics of each

population are governed by the source minus sink equations

sms(P ) = J̄ (z, t, N)P︸ ︷︷ ︸
growth

−G (P )Z︸ ︷︷ ︸
grazing

−
(
µPP + µPPP

2
)︸ ︷︷ ︸

death

sms(Z) = γ1G(P )Z︸ ︷︷ ︸
grazing

− γ2Z︸︷︷︸
excretion

− µZZZ2︸ ︷︷ ︸
mortality

sms(D) = (1− γ1)G(P )Z︸ ︷︷ ︸
unassimilated food

+µPPP
2︸ ︷︷ ︸

dead P

+µZZZ
2︸ ︷︷ ︸

dead Z

− µDD︸ ︷︷ ︸
remineralisation

−ws
∂D

∂z︸ ︷︷ ︸
sinking

sms(N) = µDD︸ ︷︷ ︸
remineralisation

+ γ2Z︸︷︷︸
excretion

+ µPP︸︷︷︸
dead P

− J̄ (z, t, N)P︸ ︷︷ ︸
P growth

.

Here, J̄ (z, t, N) is average daily phytoplankton growth as a function of depth (z),

time (t) and nutrient concentration (N), and the function G(P ) uses several biologi-

cal inputs to determine the rate at which phytoplankton is predated by zooplankton.

Figure 2.1 shows more clearly the transfers of nitrogen between compartments in

OG99NPZD, and Table 2.1 lists and explains the input parameters. The notation

for these matches that in Oschlies and Garçon (1999). The maximum and minimum

columns show appropriate regions in for each input variable. These do not reflect

where OG99NPZD can be run, for in many cases it can perform far outside these

bounds, but rather regions in which the true system value, or ‘best’ value at which

to run OG99NPZD, almost certainly lies. These judgements were made by John

Hemmings, of the National Oceanography Centre.
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Name Parameter Max. Min.

γ1 Zooplankton food assimilation efficiency 0.3 0.95

a Maximum photosynthetic rate at temp = 0◦C

(day−1)

0.3 3

α Initial slope of P-I curve (d−1/
(
Wm−2

)
) 0.05985 0.06615

b Max. photosynthesis - base factor for temperature vari-

ation

fixed at 1.066

c Max. photosynthesis - variation of temperature factor

exponent ((◦C)−1)

0 1.25

γ2 Excretion rate (days−1) 0 0.1

kw Light attenuation due to water (m−1) fixed at 0.04

kc Light attenuation due to phytoplankton

(m−1
(
mmolm−3

)−1
)

fixed at 0.03

ε Prey capture rate
((

mmolm−3
)−2

d−1
)

0.5 5

g Maximum grazing rate (day−1) 0.25 2.5

Cpp Ratio of phytoplankton to pigment (molNg−1) 0.4 0.6

PAR Ratio of PAR to total downwelling solar irradiance at

sea surface (P)

0.387 0.473

µP Specific phytoplankton mortality rate (day−1) 0 0.1

µPP Density dependent phytoplankton mortality

(d−1(mmolNm−3)−1)

0 0.1

µZZ Density dependent zooplankton mortality

(d−1(mmolNm−3)−1)

0 0.6

µD Remineralisation rate (day−1) 0.025 0.075

K1 Half-saturation conc. for DIN uptake

(mmolm−3)

0.05 1

ws Sinking velocity (m d−1) 2 30

Table 2.1: OG99 input parameters.

The notation here matches that in Oschlies and Garçon (1999).
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Figure 2.1: Transfers of nitrogen modelled by the Oschlies-Garçon simulator

2.3 Hadley Centre Ocean Carbon Cycle model

(HadOCC)

Conceptually, HadOCC (Palmer and Totterdell, 2001; Hemmings et al., 2008) splits

into three components; a physical model of the ocean, a model of inorganic carbonate

chemistry and a biological model. The processes modelled by the first two of these

are relatively well understood, but the biology, and in particular the process by

which carbon is exported to the deep ocean, is more difficult.

The physical model is similar to that used in OG99NPZD, but detailed approx-
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imations to the coastlines and the topography of the ocean floor are also included.

Tracers are subject to diffusion and advection, and are mixed using the same mixed

layer scheme as that in OG99NPZD. Forcing functions are used for heat, wind-stress,

salinity, sea surface temperature, fluxes of freshwater, precipitation and evaporation.

The values for these may come from observed data or from ocean or climate simu-

lators.

HadOCC adds two compartments to those used by OG99NPZD; dissolved in-

organic carbon (DIC) and total alkalinity. Their dynamics are derived from the

concentrations of the other four biological tracers, and so we can treat the biologi-

cal component of HadOCC as having the same four compartments as OG99NPZD.

Although the concentrations of nutrient, phytoplankton, zooplankton and detritus

are governed by nitrogen, they are also considered in terms of carbon content, de-

termined by fixed carbon:nitrogen ratios. Sometimes, in order to maintain these

ratios, HadOCC is forced to ‘throw away’ some nitrogen or carbon.

The overall changes in concentrations of biological tracers in terms of nitrogen

are determined by equations of the form

dTi
dt

= advection + diffusion + mixing + sinking + biology.

Here, the focus is on the biological components,

∂P

∂t

∣∣∣∣
biol

= RP︸︷︷︸
P grows

− Gp︸︷︷︸
P eaten

−mP 2︸︷︷︸
P dies

− ηP︸︷︷︸
P respires

∂Z

∂t

∣∣∣∣
biol

= Gz︸︷︷︸
Z grazes

−
(
µ1Z + µ2Z

2
)︸ ︷︷ ︸

Z dies

∂D

∂t

∣∣∣∣
biol

= mDP
2︸ ︷︷ ︸

P dies

+
1

3

(
µ1Z + µ2Z

2
)︸ ︷︷ ︸

Z dies

+ ED︸︷︷︸
Z excretes

− λD︸︷︷︸
remineralisation

− Gd︸︷︷︸
D eaten

∂N

∂t

∣∣∣∣
biol

= − RP︸︷︷︸
P grows

+ (m−mD)P 2︸ ︷︷ ︸
P dies

+ ηP︸︷︷︸
P respires

+
2

3

(
µ1Z + µ2Z

2
)︸ ︷︷ ︸

Z dies

+ (Gp +Gd −Gz − ED)︸ ︷︷ ︸
N released during grazing

+ λD︸︷︷︸
D remineralised

.

In these equations, R is a function of nitrogen and several of the biological parame-

ters governing phytoplankton growth from photosynthesis, and Gp and Gd determine
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Name Parameter Values Default

co2sys CO2 system option 0: off, 1: on 1

rcchlopt C:Chl option 0: fixed,

1: dynamic

0

chltracer chlorophyll tracer option 0: off, 1: on 0

nh4tracer NH4 tracer option 0: off, 1: on 0

vsupply vertical nutrient supply

within biology step

0: off, 1: on 0

dsinkopt implementation of detrital

sinking

0: external,

1: internal

1

Table 2.2: HadOCC switch inputs

the grazing of phytoplankton and detritus by zooplankton. The processes modelled

by HadOCC are shown in Figure 2.2, and the input parameters are described in

Tables 2.2 and 2.3. HadOCC includes several ‘switch’ variables, listed in Table 2.2,

which turn model features on or off, or choose between different parameterisations

of processes. For example the photopt variable determines which photosynthesis

submodel is used to calculate R, and the switch rcchlopt determines whether the

carbon:chlorophyll ratio is fixed or varying.

The notation used in Figure 2.2 and in the biological equations comes from

Palmer and Totterdell (2001) where possible, and failing that, Hemmings et al.

(2008). However MarMOT, our implementation of HadOCC, introduced in Section

2.4, fixes the input space to that in Table 2.3, and so from here on the names in

Table 2.3, which match those in MarMOT, will be used. Most of the quantities

in Figure 2.2 are derived from combinations of the input parameters in Table 2.3,

but where they match a particular input this is indicated in the table. Again, the

maximum and minimum values reflect the judgements of John Hemmings, our ocean

ecosystem model expert.
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Figure 2.2: Transfers of nitrogen modelled by HadOCC

Table 2.3: HadOCC input parameters. The notation here comes from the MarMOT code

(see Section 2.4), and does not match exactly to Palmer and Totterdell (2001), Hemmings

et al. (2008) or the HadOCC code. The quantities in Figure 2.2 in whose calculation the

input is used is noted in the ‘used in’ column, with an equals sign if the parameter is the

value of a quantity. When there is no entry in the ‘Used in’ column, the parameter is

involved in most or all of the processes. This table spans the following two pages.

Name Parameter Max. Min. Used in

rcchl C:Chl ratio (if fixed) (mgC/mgChl) 20 200
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Name Parameter Max. Min. Used in

rcchlmin Minimum C:Chl ratio (mgC/mgChl) 20 200

rcchlmax Maximum C:Chl ratio (mgC/mgChl) 20 200

rcnphy C:N ratio for phytoplankton 5.3 7.95

rcnzoo C:N ratio for zooplankton 4.5 6.75

rcndet C:N ratio for detritus 6 9

rparsol Ratio of PAR to total downwelling solar irra-

diance at sea surface

0.387 0.473

rchlpig Ratio of chlorophyll to total pigment 0.64 0.96

photmax Maximum photosynthetic rate (d−1) 1 3 R

alphachl Initial slope of photosynthesis v irradiance

curve (mg C (mg Chl)−1 (E m−2)−1)

2.78 8.33 R

kdin Half-saturation conc. for nutrient uptake

(mmol N m−3)

0.05 1

presp Phytoplankton specific respiration (d−1) 0 0.1 = η

pmortdd Conc. dependent phytoplankton specific mor-

tality (d−1(mmol N m−3)−1)

0 0.1 m,mD

pminmort Threshold for phytoplankton mortality

(mmol N m−3)

0 0.02 m,mD

fpmortdin Fraction of phytoplankton mortality to DIN 0 0.3 m,mD

gmax Maximum grazing rate (d−1) 0.25 2.5 GP , GZ , GD

holling Holling function exponent for grazing

model (integer)

Fixed at 2 GP , GZ , GD

epsfood Prey capture rate (d−1(mmol N m−3)−n) 0.5 5 GP , GZ , GD

fmingraz Food threshold for grazing function

(mmol N m−3)

0 0.2 GP , GZ , GD

fingest Fraction of grazed material ingested 0.5 1 GP , GZ , GD

betap Zooplankton assimilation efficiency for

phytoplankton

0.3 0.95 GP , GZ

betad Zooplankton assimilation efficiency for

detritus

0.3 0.95 GZ , GD

fmessyd Fraction of messy feeding to detritus 0 1 GP , GZ , GD

zmort Base zooplankton specific mortality (d−1) 0 0.1 = µ1

zmortdd Conc. dependent zooplankton specific mortal-

ity (d−1(mmol N m−3)−1)

0 0.6 = µ2

fzmortdin Fraction of zooplankton mortality to DIN 0.2 1 = fZ
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Name Parameter Max. Min. Used in

nitrifeuph Nitrification rate of ammonium in euphotic

zone (d−1)

0 0.05

nitrifaph Nitrification rate of ammonium below eu-

photic zone (d−1)

0 0.05

dsink Detritus sinking velocity (m day−1) 2 30 D sinks

rco3pprod Carbonate precipitated per unit primary pro-

duction

0.0065 0.0195

2.4 MarMOT

The Marine Model Optimization Testbed, or ‘MarMOT’, described in detail in Hem-

mings and Challenor (2011), is a piece of software developed to facilitate the analysis

of plankton models. Of particular interest are the uncertainties and model error that

often make inferences about the real system so unreliable. MarMOT incorporates

HadOCC and OG99NPZD, and enables the user to run both models at multiple

input points, making the same choices about vertical gridding, time scale, forcing

functions, and other aspects of the simulators not relating to the biological param-

eters.

On a practical level, MarMOT makes the way both simulators are run very

similar, so that input parameter sets, options tables and time, depth and output

choices are made using files of the same format for both simulators.

The choices of vertical gridding and time scale in particular mean that output

variables from both simulators are comparable in terms of time and space. The user

can also choose the output variables returned by the simulators, and there are many

variables available to both models.

Näıvely, MarMOT may appear to unify HadOCC and OG99NPZD to such a level

that parts of their input spaces can be identified with one another. In the MarMOT

input files, many of the biological parameters have names matching one another. For

example the OG99NPZD input µZZ is labelled zmortdd in the MarMOT input files,

implying that it has the same meaning as the HadOCC input of the same name.

While the meanings are clearly linked, as both are density dependent zooplankton
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mortality rates, the different parameterisations of zooplankton mortality along with

other processes in HadOCC and OG99NPZD mean that we cannot simply treat the

two input variables as corresponding. It is partly for this reason that the chosen

simulator input notation is from different sources, to emphasise that at least initially

we must treat these as two entirely independent input spaces. The idea of simulator

difference is an interesting one, and we will return to it in Section 4.2.

Both simulators are able to give either profile output, where the variable’s value

at each depth level is given for each time step, or scalar output, which has only

one value per time step. Some profile variables can be depth-integrated, through

MarMOT, in order to give a sort of across-depth average value. The prefix “iz.”

indicates that an output is the depth-integrated version of a profile output variable.

2.5 Choosing output variables

The output variables fit into various sorts of categories, some of which can only be

produced by one of the simulators. For example, many of the outputs can be pro-

duced in terms of carbon by HadOCC, using its C:N ratios, but not by OG99NPZD.

As our goal is the comparison of simulators, these outputs are of no use to us.

Both simulators can return the concentrations (in terms of nitrogen) of the four

tracers (nutrient, phytoplankton, zooplankton and detritus) at each depth level and

time-step, and can calculate depth-integrated values, summarising the concentration

over the depths to produce a scalar output. Figure 2.3 shows an example of HadOCC

and OG99NPZD output for each of the four tracers.

There are also linked quantities, for example particulate organic nitrogen (pon),

whose value is the sum of phytoplankton, zooplankton and detritus, and chlorophyll

(chl), which is derived from the phytoplankton concentration.

We will often be concerned only with scalar output, and will standardise the

time scale to have one output per day for a year. This means that for a particular

simulator and output variable, each input point corresponds to a time series of 365

points.

There are different motivations for focussing on a particular output variable for
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Figure 2.3: Time series outputs for the depth-integrated versions of the four main tracers.

The input points were the two ‘default’ points, one for each simulator. The solid line

corresponds to the HadOCC run and the dashed line to the OG99NPZD run.
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emulation. If one wishes to predict the value of the system at new inputs, it would

make sense to choose an output representing an interesting feature of the system.

Many of the outputs from HadOCC and OG99NPZD are specifically linked to the

biological pump mentioned earlier, for example biologically driven vertical carbon

transport (ctranbio), and so were we to use the simulators to mimic the effect of

the ocean carbon cycle, this might be an appropriate choice.

Sometimes emulators are used to calibrate the models, and find regions of the

input space that are ‘plausible’ in light of observed system data. In this case, the

output variable must be one for which we have access to observed system data, so

that the emulator can be used to find regions of input space that are likely to lead to

similar values. The Bermuda Atlantic Time Series experiment (BATS) (Steinberg

et al., 2001) collects data from the geographical region in which we are notionally

running HadOCC and OG99NPZD. One of their measurements is analogous to par-

ticulate organic nitrogen (pon). This can be output by both simulators, and so

would potentially be a good choice of emulator output variable were one intending

to find plausible input regions.

The goal of this thesis is to create methods to emulate and compare multiple

simulators, and so the choice of output should facilitate that. In Chapter 5 we

emulate depth-integrated chlorophyll (iz.chl), because the two simulators being

compared differ in their parameterisation of the carbon:chlorophyll ratio, and so the

effect on iz.chl is more pronounced than on many of the other outputs. In Chapter

6, we will emulate depth-integrated particulate organic nitrogen (iz.pon).

2.6 Summary

We have introduced two compartmental ocean ecosystem models, OG99NPZD and

HadOCC. While these have different input spaces, and model the system in different

ways, using MarMOT we are able to produce the same output variables on the same

spatial and temporal scales. Our chosen output variables for the remaining chap-

ters are depth-integrated chlorophyll concentration (iz.chl) and depth-integrated

particulate organic nitrogen (iz.pon), two scalar variables producing time series of
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daily values for a year for each input point.

Later we will become interested in the processes at work in both simulators,

and so will return to some of the details explained in this chapter. Our next step,

however, is to build an emulator of a single simulator, and this is the focus of the

next chapter.



Chapter 3

Emulation

Many, though by no means all, of the issues raised surrounding complex simulators

arise from their being very slow to run, and having high-dimensional input domains.

Emulation confronts these by building a statistical model of the simulator. At first

glance, building a model of the simulator may seem somewhat counter-productive.

However, it will hopefully become clear that it can be hugely beneficial.

An emulator is a statistical representation of our beliefs about a simulator which,

rather than giving a single precise output for a given set of input points x, as the

simulator does, gives a probability distribution for the simulator’s output s (x). Not

only do we obtain the mean of the distribution, which is the emulator’s approxima-

tion to s (x), but in the variance of the distribution we also have a measure of how

certain we are of the approximation.

If the emulator is constructed in such a way that it is much faster to compute

than the original simulator then we can obtain many more approximate values of the

simulator than we could realistically obtain true values, and if the approximation

is a good one then we can confidently use these values for our analysis. See Craig

et al. (1997, 2001); Kennedy and O’Hagan (2001); Kennedy et al. (2006); O’Hagan

(2006); Sacks et al. (1989); Santner et al. (2003) for more on this, and for a helpful

introduction to Bayesian emulation.

In this chapter we introduce emulation and explain the process of building an

emulator of a simulator.

20
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3.1 A brief overview

To build an emulator, we begin by representing the simulator output s (x) (which

at this point we will assume to be single-valued) for a collection x of n input points

by a function f (x),

f (x) =

q∑
i=1

ξi (x) βi + ε (x) . (3.1)

Here, β is a vector of coefficients, about which we are uncertain, the ξi (x) are known

functions of x and ε (x) is a correlated error term. To simplify notation we can write

the regression term
q∑
i=1

ξi (x) βi

using a design matrix X, such that for a set of input points x = x1, . . . , xn

X =


ξ1 (x1) . . . ξk (x1)

...
...

ξ1 (xn) . . . ξk (xn)

 .

Thus Equation 3.1 becomes

f (x) = Xβ + ε (x) .

Our emulator should meet two requirements (O’Hagan, 2006):

1. At any of the points x1, . . . , xn, where we already know exactly the output of

the simulator, we should have

f (x) = Xβ + ε(x) = s (x) ,

and the emulator’s distribution should have zero variance, because we know

with certainty that the simulator will always produce this same value1. We

refer to these input and output points, for which we know the simulator’s

behaviour, as training data, because we use them to ‘train’ the emulator.

1Recently work has been done to emulate stochastic simulators, for example Henderson et al.

(2009), for which this is not the case, but in this thesis simulators will always be assumed to be

deterministic, and in the applications we have in mind that is very often the case.
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2. For any input point x not in {x1, . . . , xn}, the emulator’s approximation should

be plausible in view of our beliefs and the data we have, and the probability

distribution should reflect our uncertainty about what the simulator may do

at this point.

Verifying the first of these is simple. Checking the second requires more care, and

some validation techniques for univariate emulators are described in Section 3.5.

The correlated error term is modelled by a Gaussian process,

ε (x) ∼ N
(
0, σ2

ε Σ(x)
)
,

where σ2
ε is an unknown variance parameter and Σ(x) the matrix of correlations

between the error at each pair of input points. That ε (x) has a Gaussian Process

distribution means that for any collection of points x1, . . . , xn in the domain of x,

the joint distribution of ε (x1) , . . . , ε (xn) is multivariate normal.

Combining this structure with Equation 3.1 gives

f (x) = Xβ + ε (x) | β, σ2
ε ∼ N

(
Xβ, σ2

ε Σ(x)
)
.

We would like the correlation between simulator output at two points to depend on

how far apart the points are, and so we introduce a correlation function ρ (·, ·) such

that for two input points xi, xj

Σ(x)ij = cor (ε(xi), ε(xj)) = ρ (xi, xj) .

Usually the correlation function will involve some parameters, which give us

control over the function’s behaviour. Because of the deterministic nature of the

simulator, we require that

Σ (x)ii = ρ (xi, xi) = 1,

enforcing the property that once we know the simulator’s output s (xi) at a particular

point xi, the emulator can predict it with certainty. As pairs of points become further

away from one another, the correlation between their errors tends to zero. We will

return to the correlated error term in more detail in Section 3.3.3
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Our goal is to be able to emulate the simulator’s behaviour at new inputs

x̃ = {x̃1, . . . , x̃m} using the training data. This is equivalent to finding the pos-

terior distribution

s (x̃) | s (x).

To do this, we need a prior distribution for {σ2
ε , β}. Options for this abound,

and it is difficult to know which distribution is appropriate. The choice is often

made for convenience, and in the case where we have a reasonably large amount of

well-designed data, it is not crucial to the reliability of the emulator.

A popular choice is the conjugate normal inverse-gamma prior,

p(β, σ2
ε ) ∝ (σ2

ε )
− d+2

2 exp

[
− a

2σ2
ε

]
(σ2

ε )
−1 exp

[
− 1

2σ2
ε

(β − β0)′B−1
0 (β − β0)

]
which splits up to give

τε = (σ2
ε )
−1 ∼ Γ

(
d

2
,
a

2

)
β | σ2

ε ∼ N2

(
β0, σ

2
εB0

)
,

where d, a, β0 and B0 are to be specified, ideally through expert elicitation. The

derivation of the posterior distribution

p
(
β, σ2

ε | s (x)
)

for the univariate case with the normal inverse-gamma prior can be found on page

330 of O’Hagan and Forster (2004).

One might also use its weak form

p
(
β, σ2

ε

)
∝ 1

σ2
ε

,

which puts infinite prior variance on s (x).

In situations where simulator data is much more scarce, the choice of prior be-

comes a crucial part of the process, and much care is taken to ensure it is a wise

one (Rougier, 2009).

Having chosen a prior distribution we can derive the posterior distribution of the

simulator’s output s (x̃) for any new set x̃ of input points. For either of the prior

choices above, we find that

s (x̃) | s (x)
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has a location-scale multivariate t-distribution. There is a relatively straightforward

separable extension of this is to emulate multivariate output, and Section 3.2 derives

the distribution in this case.

3.2 The emulator’s distribution

If a simulator has more than one output variable of interest, we can emulate them

jointly from the input variables. Extending the univariate framework described

above introduces various choices regarding the flexibility of the relationships between

the different outputs within the emulator. Wherever multivariate emulators are built

in this thesis, they are built around the following framework, which is explained in

more detail by Conti and OHagan (2010).

Our training data contains n input points x = {x1, . . . , xn} and the n×k matrix

s (x) of associated output, whose ith row is the vector s (xi) = (s1 (xi) , . . . , sk (xi)).

The marginal emulators all take the form

fi (·) = Xβi + εi (·)

with q common regression functions ξ1 (·), . . . , ξq (·) (including a constant term) used

to form the design matrix X (an n × q matrix), and the same covariance function

ρ (·, ·) for ε (·), but with different coefficient vectors βi, which together form the q×k

matrix B. We also introduce a covariance matrix Γ between the outputs, so that

for a single new input xi the multivariate emulator has the distribution

f (xi) | B,Γ,Θ ∼ Nk

(
XB, ρ (xi, xi) Γ

)
.

Using the non-informative prior

π (B,Γ | Θ) ∝ |Γ|−
k+1
2 ,

and working through, we find the emulator’s posterior distribution for the simulator’s

output at a new input point x̃ to be

s (x̃) | Θ, s (x) ∼ tn−q

(
m (x̃) , c (x̃, x̃) Γ̂

)
.
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This can be generalised for a collection x̃ = {x̃1, . . . , x̃q} of m new input points to

give the matrix t-distribution

s (x̃) | Θ, s (x) ∼ Tm,k

(
n− q,m (x̃) , c (x̃, x̃) , Γ̂

)
,

where

m (x̃) = X̃B̂ +
(
s (x)−XB̂

)′
A−1ρ (·, x̃)

c (x̃i, x̃j) = ρ (x̃i, x̃j)− ρ (x̃i, ·)A−1 ρ (·, x̃j)

+
[
X̃i −XA−1 ρ (·, x̃i)

]′ (
XA−1X

)−1
[
X̃j −XA−1 ρ (·, x̃j)

]
and

A is the spatial correlation matrix for the training data, Aij = ρ (xi, xj)

B̂ =
(
X′A−1X

)−1 (
X′A−1 s (x)

)
is the generalised least squares estimate of B

Γ̂ =
1

n− q

(
s (x)−XB̂

)′
A−1

(
s (x)−XB̂

)
is the GLS estimator of Γ

ρ (·, x̃i) = (ρ (x1, x̃i) , . . . , ρ (xn, x̃i)) .

There are various ways to deal with the correlation lengths Θ, some of which will

be discussed in Section 3.3.3. As we will see in detail in Chapter 7, this process can

be coded using an object-oriented structure.

Having outlined the basic structure of an emulator, we will now turn to examine

each stage of its construction in more detail. In Chapter 6, we will build multivariate

emulators, but for now we will continue with emulators of a single output variable.

3.3 Building an emulator

3.3.1 Design of experiments

Before an emulator can be constructed, one needs training data. In many circum-

stances, the statistician building the emulator has little or no input into how the

training data is constructed, but happily for this thesis we were able to run the sim-

ulator ourselves, and therefore had complete control over the input values included

in each training data set.
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As seen in Chapter 2, HadOCC has around thirty inputs, and initially we chose to

vary all of these. To place a point in every corner of this input space would therefore

require around 230 ≈ 1.1× 109 points. Clearly this makes covering the input space

with any satisfactory density extremely difficult. Many of our emulators were built

with around 1,000 points, and so strategic choice of these points was imperative.

The subject of experimental design is well established, and there are many stan-

dard techniques across various industries and research areas, such as engineering,

agriculture and medicine. However, in order to maximise the information contained

in the training data, experiments must be tailored to fit the nature of deterministic

simulators. Whereas, for example, in a clinical trial the same drug dose and patient

criteria will not yield the same results every time, deterministic simulators behave

otherwise. Therefore although experimental design techniques tailored towards clin-

ical trials replicate input points, this would simply waste simulator runs. It is also

likely that many of the simulator’s inputs have little effect on some output variables.

Were we to run the simulator at two points which had the same value in all but the

ith dimension, the output would inform us only about the effect of the ith input. If

it turns out that changes in this input alone have little influence, the simulator has

effectively been evaluated at the same point twice. For this reason, designs such as

factorial or fractional factorial designs, which contain no replicates of points but do

replicate values of each input variable, are often seen as inappropriate.

Prompted by these issues while designing experiments for a fluid flow simulator,

McKay et al. (1979) proposed Latin Hypercube sampling. To construct a n-point

Latin hypercube design (LHD) over k dimensions, one first divides the range of each

dimension into n intervals of equal probability (usually under a uniform distribution,

so that they are equally spaced), and samples a single value from each interval.

Design points are then formed by matching at random a value from each dimension.

If the LHD is projected onto any subset of the k input dimensions (this is effectively

what happens when some input variables have no effect), the remaining dimensions

are still well covered, with no duplicated points.

Since 1979, much work has been done on creating LHDs that are optimal in

some sense, focussing mostly on making them as space-filling and as orthogonal
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(a) Perfectly correlated LHD
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(b) A more space-filling and orthogonal

LHD

Figure 3.1: Two 6-point, 2-dimensional LHDs, constructed using different methods.

as possible. Even with a valid LHD, care must be taken to ensure that the design

allows as much information as possible to be drawn from the simulator. For example,

the LHD in Figure 3.1a, with perfectly correlated points, is completely unable to

distinguish the effect of x1 from the effect of x2. While in practice randomness

and large size would prevent a hypercube with such poor properties from occurring,

this demonstrates the need to ensure good orthogonality properties when building

an LHD. Figure 3.1b shows an LHD with better space-filling and orthogonality

properties.

Orthogonality is a popular criterion, which Iman and Conover (1982) and Owen

(1994) showed to be optimal for numerical integration. Both propose algorithms for

constructing near orthogonal LHDs. More recently, similar algorithms have been

proposed by Bingham et al. (2009) and C. Devon Lin and Tang (2010).

Another challenge for the design of computer experiments is the vastness of the

input space; in some way, we would like to span as much of the simulator’s domain

as possible. Morris and Mitchell (1995) proposed the maximin criterion with the

aim of minimising posterior variance at any set of points whose output value had

yet to be observed. They defined a distance list, comprising the distances between



3.3. Building an emulator 28

all pairs of points in the design, sorted from smallest to largest, and a corresponding

index list containing the number of pairs separated by each distance. The designs

termed ‘Maximin’ were those which maximised the smallest distance, and minimised

the number of pairs separated by that distance. They then extended this criterion

by working through the other elements of the lists to reach a unique LHD.

Where maximin LHDs are used here they have been constructed by an itera-

tive local search type algorithm proposed by Grosso et al. (2009). This algorithm

proceeds by making small perturbations to a Latin hypercube, then keeping any

improvements (in terms of minimum pairwise distance), and rejecting changes that

do not improve the design. The algorithm begins by generating an LHD with no

constraints, and then cycling through the following steps:

1. Set niter = 0.

2. Find all critical points in the LHD. These are those that are separated from

another point by the smallest distance (often this will just be the two points

closest together)

3. Choose one of the critical points at random. Call this point pc.

4. Choose one of the non-critical points at random. Call this point pnc

5. Choose a dimension at random. Call this kiter.

6. Swap the kthiter column of all points between pc and pnc in cyclic order, so that

between pc and pnc the ith value in the kthcrit dimension becomes the (i+ 1)st,

and the first of pc and pnc in the design takes the value of the other.

7. If the minimum distance of the resulting LHD is greater than or equal to that

of the previous design, keep this new LHD, reset niter to zero, and return to

step 2.

8. If the new minimum distance is smaller, reject the new LHD, set niter = niter+1

and:

� If niter < 100 (or some chosen value) return to step 2 (with the old LHD).
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� If niter = 100 (or some chosen value) stop and keep the current LHD.

It is appealing to strike a balance between being space filling and orthogonal,

since these two properties do not necessarily go hand in hand. Various algorithms

are proposed doing just this, for example one in Joseph and Hung (2008). However,

having built an LHD using a maximin algorithm, it is easy to check its orthogonality

properties, and to reject it and start again if they are poor. A common way to

proceed is to create a large number of designs and keep the best, a strategy that

can be employed for any criterion.

We will return to the subject of experimental design in Chapters 5 and 6 when

our needs will become more specific. As well as this, a new method for constructing

very large LHDs which are built from many smaller LHDs is discussed in Section

3.5.1. This strategy will be used in Chapter 5 for a validation study.

3.3.2 Regression surface

Within the emulation framework there are many different sorts of emulators, and

arguably one of the most pronounced differences is the place of the regression surface.

At one extreme, some choose to have only a single constant term, a surface of

order zero, so that all the interpolation and prediction work falls to the correlated

error term. This approach is shown in the examples in Oakley and O’Hagan (2004)

and Sacks et al. (1989). This can lead to catastrophic errors in prediction if the

correlated error term is poorly specified or the experiment poorly designed, since

if a new point is too far away from the training data for the correlation to have a

pronounced effect, the prediction begins to default to the constant mean (Kaufman

et al., 2011). A conventional and simplistic choice is to include all terms linearly

(Oakley and O’Hagan, 2004; Conti et al., 2009), enabling the regression function to

capture some of the global variation.

As we mentioned briefly in Section 3.3.1, in most computer simulators, only a

small selection of the input variables have a strong effect on the outputs, and so the

notion of active variables was introduced. Here, the regression surface involves a

subset xA of the input variables x. The functions ξi (xA) then tend to involve more
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complicated terms than the monomials described above, chosen such that they have

considerable linear effects on s (x) (Craig et al., 1996). In this scenario, the emulator

(for univariate output) becomes

s (x) = XAβA + ε (xA) + u (x) ,

where XA, βA are the design matrix and coefficients for the new regression surface.

The final term u (x) is a nugget, an uncorrelated residual which ‘soaks up’ the error

caused by leaving out some of the input variables from the regression surface and

correlated error. This is necessary because in considering only some of the input

dimensions the emulator no longer has the property that a particular simulator input

point should always yield the same output. The emulator no longer functions as a

perfect interpolator of the full training data, as it did when all input variables were

included. If the emulator has been well designed, the variance of this nugget should

be small, and the simplification of making the nugget uncorrelated will not matter

(Craig et al., 1997).

To choose the ξi (x) appropriately, one must, as far as possible, combine de-

tailed knowledge of the simulator with a careful analysis of the training data (Craig

et al., 1997). If simulator data is plentiful, then techniques such as stepwise model

selection can be used (Cumming and Goldstein, 2010). Rougier (2009) observes

that carefully chosen regression functions, incorporating expert knowledge of the

simulator, are helpful when attempting to extrapolate beyond the convex hull of

the training inputs. A more detailed regression surface also reduces the effect of

the error introduced through assumptions made for the correlated error, covered in

Section 3.3.3.

Clearly there is no ‘correct’ or ‘best’ choice of regression surface, and various

criteria could be established by which to select a regression surface. Some favour

parsimony (O’Hagan, 2006), while others prefer a surface with many terms (Rougier,

2009). Our approach will vary, but will hopefully be justified in each case.
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3.3.3 Correlated error

The correlation between the errors at two input points x and x′ is governed by the

correlation function

cor (ε (x) , ε (x′)) = ρ (x, x′) ,

and the modelling of the error by

ε (x) ∼ N
(
0, σ2

ε Σ (x)
)
.

This notion of a correlation function ρ (·, ·) and a single variance value σ2
ε assumes

that the correlation between the error at two points is determined solely by their

position relative to one another, regardless of their absolute position in the input

space. This is known as stationarity. How true this is rests largely on how well the

regression functions have been selected.

In general, the functions commonly used for ρ (·, ·) assume that the simulator’s

output is smooth, which is usually, though not always, the case (O’Hagan, 2006).

Indeed, choice of the correlation function ρ (·, ·) depends mainly on how smooth

we wish the emulator to be. The Matérn class of correlations can be relatively

‘rough’, and offer a high degree of flexibility in terms of differentiability and local

behaviour (Stein, 1999; Handcock and Wallis, 1994; Rougier, 2009), and are therefore

popular with some. The limiting case of the Matérn correlation function, in terms

of smoothness, is the Gaussian correlation function

ρ (x, x′) = exp
[
− (x− x′)T Θ (x− x′)

]
,

which we will use here, mainly for its convenient properties.

At the most general, we can assign a non-zero value for Θij for all i, j, however

usually this is simplified so that

Θij = 0 for i 6= j,

making the function separable. Again, one would hope that any significant interac-

tions between inputs are captured by the regression surface, and so this need not be

a problem.
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Assuming separability, we need only specify the diagonal elements θi of Θ, and

therefore may write

ρ (x, x′) = exp

[
−

p∑
i=1

θi (xi − x′i)
2

]
.

A further simplification is to make the function isotropic, by making all the correla-

tion lengths equal, θi = θ ∀i. This is only viable if the input data have been rescaled

so that the range of each input is the same. This extends the stationarity property

by asserting that the correlation between errors at two points depends only on the

magnitude of the distance between them, and not the direction.

Having decided upon a correlation function, we must attempt to deal with the

correlation hyperparameters θi. Although technically in a Bayesian framework they

are unknown parameters, they are often treated as fixed, and so the problem becomes

one of estimation. Finding an appropriate value is crucial to accurate prediction; a

small value will decrease the predictive variance, and the emulator may be overly

confident, whereas a large one will cause the emulator to be too uncertain. The

values can be validated by checking the performance of the emulator as a predictor,

using simulator data that wasn’t used to build the emulator (O’Hagan, 2006). A

common approach, and the one used predominantly in this thesis, is to use maxi-

mum marginal likelihood estimation, where β and σ2
ε are integrated out in order to

maximise the log-likelihood over θ. Diagnostics can be used to flag up problems aris-

ing from poorly chosen functions or misplaced assumptions (Bastos and O’Hagan,

2009), and these will be explored in Section 3.5.

3.4 Limitations of this approach

Emulation as described above is not automatically a good choice for any particular

simulator. The model relies on assumptions which are not always appropriate.

Firstly, the model described in this chapter is only suitable if the simulator’s

output is continuous everywhere in the input space, or if the regression surface can

be chosen such that it perfectly captures any discontinuities. If this is not the case,

the training data may combine with these wrong assumptions to badly damage the
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emulator’s predictions. It is wise to ask a simulator expert if they expect the output

to be continuous, and whether given the output at a point x, they would expect to

be informed about the output at a very nearby point x′ (Oakley, 2002).

The posterior distribution s (x̃) | s (x) for a Gaussian process emulator is deter-

mined by the choice of prior p (β, σ2
ε ). As we have mentioned, this choice is usually

biased towards convenience rather than an accurate representation of beliefs. It is

rare that one sees a choice other than the conjugate Normal Inverse-Gamma or its

weak form shown in Equation 3.2. Although neither of these will ever be correct,

they have the advantage of being conjugate, and therefore leading to relatively simple

computations. Expecting a simulator expert to specify ‘the best’ prior distribution

for β and σ2
ε , without limiting him to such a family, would be quite unreasonable.

In using the weak and non-informative prior,

p
(
β, σ2

ε

)
∝ 1

σ2
ε

, (3.2)

the model asserts that we have no information at all about the coefficients β, and

this is unlikely to be true. The Normal Inverse-Gamma prior allows the user to

specify some information, even though it may have a high variance. This is usually

done using a combination of two methods. Firstly, one can pose questions about the

behaviour of the simulator at various inputs to an expert, and find parameters that

fit these, a process known as elicitation, explained in more detail by Oakley (2002).

Secondly, one can use simulator data itself to estimate appropriate parameter values.

Craig et al. (1997) combine these approaches in their case study. When simulator

training data is scarce, the specification of the prior distribution is crucial to making

good predictions. The elicitation approach is a demanding one however, and in the

absence of a dedicated expert and the presence of many simulator runs, a non-

informative prior is a pragmatic choice.

The choice of correlation function further constrains the model, and is another

source of contention. The Gaussian correlation function is often criticised for being

too smooth. For example Rougier (2009) prefers the Matérn class, even though this

leads to less tractable results. Constraining the correlated error to be separable and

even isotropic is another potentially inappropriate simplification. It may be that in

order to capture the behaviour of the simulator, off-diagonal terms must be included
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in the correlation matrix Σ, or there may at least be different levels of smoothness

in different directions.

Although we have emphasised the emulator’s efficiency compared to the simu-

lator’s, it is limited in one way that the simulator is not. To build an emulator

requires the inverse or the factorisation of the correlation matrix Σ (x). For training

data containing n points, this is an n × n positive definite matrix. Rather than

a straightforward inverse function, such as R’s ‘solve’, the Cholesky decomposition

can therefore be used, which improves stability and increases the number of points

that can be handled. Even so, this operation limits the amount of training data an

emulator can handle, and can still lead to numerical instability.

Kaufman et al. (2011) propose the use of a correlation function with finite sup-

port, such that for points sufficiently far apart the correlation function is zero. This

makes the correlation matrix Σ (x) sparse, and drastically increases the capacity of

the emulator, through the use of sparse matrix techniques.

In general, building an emulator requires the arrangement and monitoring of a

large number of quantities, and of the modelling choices made at each step. By the

time one comes to using an emulator for prediction of a simulator’s behaviour at some

new points, the original training data, regression and correlation length specifications

and so on could easily have become confused, or have been lost. Although these

issues can be avoided by careful organisation, they are still real. With this in

mind, we present an object-oriented framework for emulation, in Chapter 7, which

enforces a tight structure on the entire emulation process. This framework also

brings benefits in computational savings and in ease of adaptation. Indeed, once

the core framework has been introduced, which fits around the techniques in this

chapter, it will be extended to include the methods presented in the later chapters.

Any of the issues raised in this section would be rich areas for study. In this

thesis however, the focus is on developing new and fairly general frameworks for

emulating multiple simulators, rather than on building the best possible emulators

for a particular setting. The methods developed in Chapters 5 and 6 can be used

with any of the modelling choices described in this chapter, and so the choices made

to illustrate them will often be fairly simple and pragmatic ones.
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Having said the above, it is important to check the emulator’s performance, in

order to find any poorly specified values or poor modelling choices. We now therefore

turn to emulator diagnostics.

3.5 Verification and validation

Having built an emulator, it is wise to check that it appears to be doing its job well.

Emulation methods introduce various approximations and simplifications which, for

some simulators, may not be at all appropriate. Even if the modelling choices

were good, poor values may have been used for the correlation lengths, or for other

numbers we have ‘plugged in’, such as parameters for prior distributions. A help-

ful summary of diagnostics for Gaussian process emulators is given by Bastos and

O’Hagan (2009), which includes some measures not appearing in this section.

Using training data alone

It may be that the simulator is costly to run or that data is scarce, and so we

would like to use all the data available to us to build our emulator. Rougier (2009)

presents two diagnostics that use only the training data. The first is the “leave-one-

out” method, where an emulator is built using all but one of the data points, and

then used to predict the remaining data point. This is repeated for each point in the

training data. This gives some indication of the emulator’s performance across the

input space, and gives a measure of the uncertainty we can expect in our predictions.

The second is the “one-step-ahead” technique, which builds up the emulator by

using the prior specifications alone to predict the first data point, then an emulator

built from the prior specifications and the first data point to predict the second,

and so on. This shows us how fast the emulator learns from each piece of data. In

this project we had access to plenty of simulator data, and so will not use these

techniques, but instead ones which make use of some new simulator data.
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Using new data

In terms of notation, we have an emulator built from data (x, s (x)) and a set of m

validation runs of the simulator, (x̃, s (x̃)). For shorthand we will write s̃ to indicate

the new output s (x̃), ŝ (x̃) for the emulator’s expected simulator output E (s̃ | s),

and Ṽ (x̃) (sometimes shortened to Ṽ) to denote the emulator’s variance matrix

var (ŝ (x̃) | s (x)).

First of all, the individual errors

ŝ (x̃i)− s̃i

can give useful insight into the emulator’s performance, particularly by studying

their behaviour in relation to input and output variables.

Linked to this, a measure for comparing the predictions with the true values is

the root mean squared error,

RMSE(s̃) =

√√√√ 1

m

m∑
1

(ŝ (x̃i)− s̃i)2.

This should be as small as possible, and is a measure of the accuracy of the emulator’s

prediction without taking into account its variance.

To include the effects of variance, one can find the individual standardised pre-

diction errors

SPE (ŝ (x̃i)) =
ŝ (x̃i)− s̃i√

Ṽii

.

If the correlation lengths are small enough relative to the ranges of the inputs,

these should approximately follow a standard normal distribution. If there are

some abnormally large values2, they should be investigated, perhaps by running the

simulator in the vicinity of the inputs in question, to see where this conflict between

emulator and simulator arises.

A systematic trend in these errors away from N (0, 1) can indicate a more sys-

tematic shortfall in the emulator. For example, if the SPE are mostly unexpectedly

small (or large), this indicates that there may be a problem with the correlated error

2Bastos and O’Hagan (2009). suggest 2 as a cut off, whereas Craig et al. (1997) suggests 3
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term. If there is a tendency for the SPE to be small (or large) near to training data

points, then we may have plugged in poor values of the correlation lengths, leading

to over (or under) estimates of variance. Otherwise there may be a problem with

our estimation of the variance σ2
ε .

If the errors are predominantly of the same sign, this indicates a poorly chosen

regression function. The numerator of the SPE should centre around zero, but if

the mean function of the emulator is not a good fit to the data, this will not be the

case.

Systematic trends are often easier to spot using plots. If the errors show an obvi-

ous trend against emulator predictions ŝ (x̃), rather than being randomly scattered

around zero, there may be a problem with the mean function or with the estima-

tion of the regression coefficients βi. If there is evidence of heteroscedasticity, the

stationarity assumption (induced by making the correlation dependent only on the

distance between two points, see Section 3.3.3) may be ill founded.

Plotting the error against individual input variables can be enlightening, as

trends can flag up effects of the inputs that are not adequately represented by the

regression surface. These plots can also help pin down sources of problems with the

correlated error term, if there are trends in the variance of the SPE for some inputs.

An emulator of the SPE values is a powerful validation tool. If a high proportion

of variation can be explained, this suggests that there are systematic trends in the

simulator that are not being captured by the emulator. In particular, there may

be problems with the regression surface. Emulating the SPE using a more complex

regression surface than that of the emulator of the output can particularly help to

expose problems, or to show whether the regression surface in the output’s emulator

is appropriate. This tool will be used in the example in Section 6.6.

In order to include the covariance between emulator predictions, which the mea-

sures mentioned so far do not incorporate, Bastos and O’Hagan (2009) suggest

looking at the Mahalanobis distance,

MD (s̃) = (s̃ − ŝ (x̃))′ Ṽ
−1

(s̃ − ŝ (x̃)) .

Under the assumptions made in emulation, this should have a scaled F distribution
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with m and n− q degrees of freedom,

n− q
m (n− q − 2)

MD (s̃) | s,Θ ∼ Fm,n−q,

where m is the number of points in x̃, n is the number of points in the training data

and q is the number of terms in the regression surface of the emulator.

Under these assumptions,

E [MD (s̃)] = m

var [MD (s̃)] =
2m (m+ n− q − 2)

n− q − 4
.

Clearly for each set of new inputs x̃, there will only be one Mahalanobis distance,

and so the distribution cannot be checked, but these summaries can be used to see

how well the emulator fits the emulation model.

In the examples in Sections 3.6 and 5.5 and Chapter 6 we will use these diagnostic

tools on real emulators, and examine plots that show features of the emulators in

more detail.

3.5.1 A method for generating large LHDs

For validation studies, particularly in computer experiments, a large number of input

designs can be very useful. Ideally, these should each have good space-filling and

orthogonality properties, and the design as a whole, when they are combined, should

also possess these features. However, as designs increase in size, particularly if they

are being made to fit some optimality criterion, both generation and storage can

become difficult. whole may have desirable properties, when divided into c designs

of size m, these properties are not necessarily retained.

In this section, a novel method is introduced for constructing large Latin hy-

percubes in such a way that neither generation nor storage need become an issue.

The method is compared to several alternatives, and is used to perform a validation

study with one million input points in Chapter 5. The method turns out to be

similar in its goal to that of Qian (2012).
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Figure 3.2: A 20-point LHD with K = 2 produced using c = 4 and m = 5, ar-

ranged using a 4-point index LHD with 2 dimensions, whose columns are the vectors

(3, 4, 2, 1) , (1, 3, 2, 4).

Staggered Latin Hypercube Designs

We will assume that the designs for the validation study are each of size m and

dimension k, and that there are c of them in total. The product m × c, the total

size of the combined design, will be denoted by N .

The staggered Latin hypercube method uses multiple smaller LHDs to build a

larger design which is itself an LHD. To build each column of the design, we split

the interval [0, 1] into m sub-intervals, each of which is then divided into c pieces.

Altogether this divides [0, 1] into N parts. Then for i = 1, . . . , c an m-point LHD

is built whose co-ordinates can only be in a particular part of each of the m sub-

intervals.

To avoid having a regimented structure in this design, rather than assign every

point for sub-LHD i into the ith piece of the sub-intervals in every dimension, a
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further Latin hypercube, the index LHD, is built, containing c points in k dimensions.

Then, the sub-interval in each dimension to which the points in the ith sub-LHD

are assigned is determined by the ith row of the c× k index LHD. A staggered LHD

is shown in Figure 3.2.

While this method ensures that both the N -point and m-point designs are Latin

hypercubes, at no point does information about the entire design have to be kept

together. This is a great advantage, since the memory required for a large design

can severely limit the design sizes available. The sub-LHDs need not be stored or

generated together, since the index LHD (which is usually relatively small) can be

stored and used to generate each part of the design separately. Ensuring that these

designs are LHDs allows us to claim the advantageous properties mentioned by Stein

(1987), and the staggered method enables this to be done at relatively low cost.

We found that an effective strategy was to use distributed computing to generate

the design, and a table in a database to store it, using the R package ‘RMySQL’

(James and DebRoy, 2010). Parts of the design can then easily be accessed and

used in R (R Development Core Team, 2011).

Comparison Study

Table 3.5.1 compares summaries for designs built using the staggered LHD method

with summaries for some intuitive alternative methods for building large designs. In

this study, m = 100, c = 100 and therefore N = 104. The final two options both use

the staggered LHD method, one by building unconstrained LHDs and one using the

maximin algorithm described in Section 3.3.1. We were interested to see whether

there was any positive or detrimental effect to the overall design by imposing the

maximin criterion on each sub-design, and also to see how the properties of the

sub-designs compared.

The methods, as numbered in Table 3.5.1 are

1. Generate c unconstrained LHDs each of size m using (imposing no constraint),

2. Generate c maximin LHDs each of size m using the algorithm from Grosso

et al. (2009) (explained in Section 3.3.1),
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Method
Maximum Correlation Minimum pairwise distance

Over N points Over sets of m

points

Over N points Over sets of m

points

1 0.0251 (0.0398) 0.374 (0.465) 0.156 (0.102) 0.258 (0.157)

2 0.0234 (0.0354) 0.357 (0.472) 0.153 (0.0824) 0.565 (0.523)

3 0.0247 (0.0405) 0.374 (0.445) 0.153 (0.0957) 0.254 (0.169)

5 0.0246 (0.0365) 0.376 (0.462) 0.151 (0.0889) 0.255 (0.161)

6 0.0233 (0.0338) 0.361 (0.410) 0.153 (0.0998) 0.561 (0.507)

Table 3.1: Summaries of designs built by the methods listed above, where each design

contains c = 100 chunks of size m = 100, and has dimension k = 10. The figures shown are

the means over 100 repetitions of the experiment, with the worst figure given in brackets.

3. Generate one N -point unconstrained LHD and, using random sampling, split

it into c chunks of size m,

4. Generate one N -point maximin LHD and, using random sampling, split it into

c chunks of size m,

5. Generate a staggered design with c chunks of size m, where each chunk is an

unconstrained LHD,

6. Generate a staggered design with c chunks of size m, where each chunk is

maximin.

Of these, the overall designs created by the first two methods are not LHDs, and

nor are the sub-designs created by the third and fourth. The fourth method, which

involves the generation of a maximin LHD of size N , is unrealistic for large designs,

and so is not shown in the results table.

It seems that the staggered LHD method, shown in the bottom two rows of

Table 3.5.1, produces overall designs with similar orthogonality and space-filling

properties to those created by the other methods mentioned. Whether the sub-

LHDs were created using the maximin algorithm seems to make little difference to

the overall N -point design in terms of correlation or minimum pairwise distance.
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This method could be developed by larger studies, and by investigations into

the difference made by the relative sizes of m and c. It could also prove useful

for the generation of training data, as well as validation data, for methods such as

the sparse correlation emulators proposed by Kaufman et al. (2011), where a much

larger set of training data can be used to build an emulator.

The size of N in this study is limited by the difficulty in finding the minimum

distance over many points, rather than by the methods themselves (except the third

and fourth, which involve storing the whole design at once). The staggered LHD

method will be used in the example in Chapter 5 for a validation study of size

N = 106, with m = c = 1000.

3.6 Example: OG99NPZD and HadOCC

Having outlined methods for emulation we can now use them to emulate the two

simulators introduced in Chapter 2, OG99NPZD and HadOCC.

The output variable here is the annual mean of iz.chl. This can be produced

by both simulators, with the same units and over the same spatial and temporal

region, and hence in such a way that the outputs should be expected to correspond

in meaning.

For input designs, four 1,000 point maximin Latin hypercubes were created, two

for each input space, which were named OG1, OG2, HAD1 and HAD2. It was

checked that each was roughly orthogonal.

The simulator input variables are listed in Tables 2.1 and 2.3, and the ranges

listed there were used to build these designs. As HadOCC has 27 varying inputs

(with rcchlopt set to zero) and OG99NPZD only 15, clearly there will be a much

higher density of points in the OG99NPZD input design.

As well as for validating the emulators, a motivation for building two designs for

each simulator was that they should provide some indication of the dependence of

choices and estimates on the design. For example, if the two designs for HadOCC

lead to a different subset of active variables being chosen, or to very different estimate

regression coefficients or correlation lengths, this should raise concerns.
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Figure 3.3: Comparing OG99NPZD and HadOCC output data (annual mean iz.chl),

after sorting each design’s output into numerical order. The straight line in each plot has

gradient one and intercept zero.

3.6.1 Emulating OG99NPZD and HadOCC

Before beginning to build an emulator, it is sensible to look at the simulator output

itself. Figure 3.3 compares the output values for the four designs, both within and

across simulators, and shows HadOCC and OG99NPZD to behave very differently.

The Box-Cox procedure suggested that for HadOCC mean iz.chl should be

log-transformed, but that OG99NPZD should use the untransformed mean. The
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datasets OG1 and HAD1 were used as training data, and OG2 and HAD2 for vali-

dation.

Initially, the approach taken to emulate OG99NPZD and HadOCC was a simple

and fairly standard one. All input variables were included as active, and a single

correlation length was estimated using maximum likelihood for each emulator. The

regression surface was linear and included all inputs.
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Figure 3.4: Some main effects plots for OG99, for OG1 and OG2 data combined. These

show the output plotted against some input variables.
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Having chosen regression functions, namely the first order polynomial with all

input variables included, the training data was used to find posterior summaries of

the coefficients, showing crudely the effect of each input variable on the simulator

output. Although all inputs were included in the emulators, for both simulators

only a small subset showed any significant effect. For OG99NPZD, the effect of µP

is clearly the most pronounced, followed by a, K1 and µPP , whereas µD appears to

have little marginal effect. For HadOCC, the most active variable was rcchl, and

to a lesser extent rcnphy.
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Figure 3.5: Some main effects plots for HadOCC, for HAD1 and HAD2 data combined.

These show the output, annual mean log (iz.chl), plotted against three input variables.

These can be seen from the main effect plots in Figures 3.4 and 3.5, as well

as from the posterior expectations for the coefficients β in Table 3.2. The ‘relative

difference’ column shows the difference of the two coefficients for each input, divided

by the largest coefficient for the pair of emulators (the constant terms for OG1 and
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HAD2).

OG1 OG2 Relative

difference

Const. 39.61 39.58 -0.00060

α 0.06 0.04 -0.00060

a 0.66 0.73 0.00186

γ1 0.03 -0.02 -0.00138

c 0.32 0.32 -0.00007

ws -0.05 -0.04 0.00037

ε 0.02 -0.05 -0.00189

g -0.04 0.01 0.00108

K1 -0.40 -0.39 0.00027

µP -1.92 -1.93 -0.00031

µD -0.04 -0.01 0.00069

PAR 0.15 0.17 0.00048

CPP 0.10 0.03 -0.00196

γ2 0.00 0.08 0.00181

µZZ 0.00 -0.01 -0.00017

µPP -0.64 -0.60 0.00080

Table 3.2: Posterior coefficients for

both OG99NPZD emulators.

HAD1 HAD2 Relative

difference

Const. 3.5804 3.6477 0.0185

rcchl -1.3206 -1.3365 -0.0044

rcnphy 0.4066 0.4143 0.0021

rcnzoo -0.0072 0.0101 0.0047

rcndet 0.0006 -0.0057 -0.0017

rparsol 0.0018 0.0097 0.0022

rchlpig -0.0000 -0.0045 -0.0012

photmax 0.0162 0.0023 -0.0038

alphachl 0.0134 0.0219 0.0023

kdin -0.0075 -0.0354 -0.0076

presp -0.0481 -0.0621 -0.0038

pmortdd -0.0097 -0.0022 0.0021

pminmort 0.0089 0.0098 0.0003

fpmortdin 0.0044 0.0014 -0.0008

gmax 0.0009 0.0058 0.0013

epsfood -0.0154 -0.0015 0.0038

fmingraz -0.0116 0.0043 0.0043

fingest -0.0005 0.0043 0.0013

betap -0.0017 -0.0144 -0.0035

betad 0.0031 -0.0150 -0.0050

fmessyd 0.0046 -0.0058 -0.0028

zmort 0.0048 -0.0164 -0.0058

zmortdd 0.0110 0.0122 0.0003

fzmortdin 0.0108 0.0147 0.0011

nitrifeuph -0.0177 0.0018 0.0053

nitrifaph 0.0151 -0.0035 -0.0051

dsink -0.0064 -0.0079 -0.0004

rco3pprod 0.0008 -0.0129 -0.0038

Table 3.3: Posterior coefficients for

both HadOCC emulators.

A more thorough sensitivity analysis could be done, enabling us to assess the
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influence of each input, using the techniques of Saltelli et al. (2000). In particular the

‘correlation ratio’ described on p28-29, where var (Y ) (the variance of the output)

is compared to var (Y | xi = x′i) (the variance of the output when input xi is fixed

at x′i) to discern the effect of input xi, might be helpful in this setting.

When two separate emulators are built for each simulator, one using each training

design, the correspondence between posterior coefficients is high, shown by the ‘rela-

tive difference’ columns in Tables 3.2 and 3.3. This implies that the amount of data

in each set of training data is sufficient to capture the major trends. The estimated

correlation lengths are also similar for both sets of training data. The OG99NPZD

emulators have correlation lengths of 0.347 for OG1 and 0.314 for OG2, whereas

the HadOCC emulators have lengths of 0.0150 and 0.0154 (except for the rcchl

correlation length, which was later increased to 1.5).

Again, these are reassuringly similar for each pair of designs.
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Figure 3.6: Standard prediction error for the OG99NPZD emulator with a linear surface.

3.6.2 Validating the emulators

Using some of the validation techniques discussed in Section 3.5, the performance of

each emulator can be checked. Figure 3.6 shows some behaviour of the standardised

prediction errors (SPE) for the OG99NPZD emulator3.

3Many of the plots in this thesis contain a straight line. This is always either the line with

gradient 1 and intercept 0, if two quantities are being compared (such as in Figure 3.3), or a
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The values appear to be roughly N (0, 1) and show no trend with output, which

is ideal. Similar plots showing SPE against input variables or predicted output

show no obvious trend, suggesting that a linear surface and an isotropic Gaussian

correlation structure is a good choice for OG99NPZD.
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Figure 3.7: Standard prediction error for the HadOCC emulator with linear surface and

isotropic correlation lengths.
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Figure 3.8: Standard prediction error for HadOCC emulators with isotropic correlation

(left) and a larger correlation length for rcchl (right).

Figure 3.7 shows the same plots for the HadOCC emulator with a linear surface

and isotropic correlated error. Unlike the OG99NPZD emulator this shows very

horizontal line at 0, usually to show whether some sort of error depends on another quantity (such

as in Figure 3.8).
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undesirable behaviour. The pattern in the SPE values with output suggests that the

emulator is not capturing the behaviour of the simulator. Studying the behaviour of

the SPE values in response to changes in input, it becomes clear that the non-linear

effects of rcchl on output are not being captured. Increasing the correlation length

for rcchl, θrcchl, to 1.5 removes this undesirable behaviour. Figure 3.8 shows SPE

against rcchl for both emulators, and Figure 3.9 shows the general behaviour of

the SPE with θrcchl = 1.5.
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Figure 3.9: Standard prediction error for the HadOCC emulator with a linear surface,

but with a larger correlation length for rcchl.

Figure 3.10 shows predictions and errors when these emulators are used to predict

the simulators’ behaviours at new input points (those in OG2 and HAD2).

3.6.3 Combining the emulators

Having built emulators of both OG99NPZD of HadOCC, we can use them to predict

both simulators’ values of mean annual iz.chl at new input points. However, it

isn’t obvious how they can be combined to provide any insight into the relationship

between the two simulators.

It is clear from the plots in Figure 3.3 that the distribution of output is differ-

ent for the two simulators. One might deduce from the fact that a non-isotropic

correlation function is required to capture HadOCC’s behaviour that it is somehow

more complicated. However, far fewer inputs are strongly active in HadOCC than

in OG99NPZD. Ideally, one might like to know if the same aspects of the system
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Figure 3.10: Plots of predictions and errors for the OG99NPZD emulator (top) and

non-isotropic HadOCC emulator (bottom). The emulators built from OG1 and HAD1

were used to predict the outputs for OG2 and HAD2.

are crucial in the two simulators. As they are modelling the same system and quan-

tities, and Tables 2.1 and 2.3 show that they have some inputs with very similar

meanings, it seems intuitive that the same sorts of quantities should be important.

However, the main effects plots in Figures 3.4 and 3.5 show this not to be the case.

The two most important inputs to HadOCC, rcchl and rcnphy, don’t have equiv-

alents in OG99NPZD. In OG99NPZD the most active inputs were a and c (both

similar to HadOCC’s input textttphotmax), K1 (similar to HadOCC’s kdin) and

µP and µPP , which are used to model phytoplankton mortality in a different way

from the linked HadOCC inputs pmortdd, fpmortdin and pminmort. None of these

semi-corresponding HadOCC input variables appear to have any significant effect



3.7. Summary 51

on HadOCC output, from either their main effects plots or their coefficients’ pos-

terior means and variances. Does this mean that the two simulators are behaving

entirely differently? Certainly, it appears that finding a ‘similar’ point in HadOCC

and OG99NPZD input space is not a simple task. These are some of the issues we

attempt to address throughout the remainder of this thesis, and in particular our

aim is to develop methods for emulating multiple simulators. In Chapters 5 and 6

we present methods for doing this in two particular circumstances.

3.7 Summary

This chapter has introduced emulation, a method for creating a statistical approx-

imation to a simulator. Some of the choices one faces when building an emulator

have been explored, such as methods for selecting the terms in the regression surface,

and possible structures for the correlated error.

We have also considered some of the weaknesses of emulation, and how these

might manifest themselves. Some diagnostic tools have been presented that help

pinpoint poor modelling choices in particular emulators.

These techniques have been used to emulate both OG99NPZD and HadOCC,

and it has been observed that, while these emulators are each useful for predicting

the behaviour of their respective simulator, they cannot easily be combined to help

understand the similarities and differences in how the two simulators model the

ocean carbon cycle.

Having laid this foundation, we now consider situations involving more than one

simulator. However, before beginning to pursue methods for emulating multiple

simulators, we will think in more detail about issues surrounding the topic.



Chapter 4

Multiple simulators

So far, we have studied the emulation of computer simulators with a view to building

an emulator of one simulator. However, an emulator does not in itself tell us anything

about the system, but only the simulator for which it was built. If the simulator

represents the system poorly then so will the emulator.

It is often the case, when a system is of interest, that it will be modelled by more

than one simulator. Sometimes these will be very similar in their structure, and will

give very similar predictions for the system. Often however, they will represent the

system in significantly different ways, and will not always behave similarly. We have

seen this phenomenon at work through OG99NPZD and HadOCC, two models of

the ocean carbon cycle, which were introduced in Chapter 2, and then used to build

emulators in Section 3.6.

Comparing the behaviours of the different simulators may help scientists to better

understand the system. It may reveal which aspects of the simulators are crucial and

which are barely contributing, or could be handled in a much simpler way. Where

one simulator is much more computationally expensive than another, it may help

discern whether the extra effort is worth spending. Combining the predictions of

several simulators may also give more accurate forecasts of the system.

Because these complex simulators are often high-dimensional and slow to run,

and therefore somewhat unwieldy, emulation is an attractive method for dealing

with them. Looking at multiple simulators introduces new issues for emulation,

especially concerning the input spaces of the simulators, and it is vital to consider

52
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these before thinking about methods for emulation. As we saw in the example in

Section 3.6, it is not immediately obvious how an emulator can be used to understand

the relationships between two or more simulators.

This chapter contains a summary of existing work concerning multiple simula-

tors, and details ways in which two simulators of a system can be different, laying

a foundation for Chapters 5 and 6 where specific emulation methods will be intro-

duced.

4.1 Multiple simulators in the literature

Joint emulation of two complex physical simulators has already been studied under

particular special circumstances. A strategy is presented by Cumming and Goldstein

(2010) for dealing with two simulators, one of which, sc (·) is a fast approximation

to the other, s (·). The models share the same input and output variables, but

in the faster simulator in their example, the vertical gridding is ten times coarser.

This makes sc (·) run much faster, and it therefore gives many more approximate

simulator outputs than the full simulator could give exact ones in the same time.

Cumming et. al. assume that there will be strong links between the behaviour of

the two simulators, and that they can therefore use evaluations of sc (·) to build an

emulator from which, given a specified belief structure, they can learn about s (·),

aided by a sparse collection of runs from s (·). Because both simulators share the

same inputs, their emulators’ regression functions and correlation structures can be

made to match, and so the two emulators can be linked probabilistically.

Although this technique does involve the emulation of multiple models, its goal

is to accurately emulate the slower model s (·), rather than to study the relationship

between the two. It is also limited, from our point of view, in forcing both models

to share the same input variables. With different simulators of a particular system

this is rarely the case.

Hung et al. (2009) focus on simulators with q branching factors z1, . . . , zq, each as-

sociated with mu nested factors vzu =
(
vzu1 , . . . , v

zu
mu

)
. Branching factors are usually

qualitative and switch-like, and introduce different ‘nested’ parameters depending
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on the level at which they are set. Therefore at different levels of the branching

factor, the simulator could be thought of as several different, albeit very similar,

simulators. This arises often in engineering contexts, where the use of a different

tool or technique will introduce different parameters, while a large group of ‘com-

mon’ parameters x = (x1, . . . , xt) remains the same. Design of experiments becomes

more complicated in this setting, and Hung et. al. present several branching Latin

hypercube design criteria, and a maximin design strategy. Because comparison of

the nested factors for different branching factors is meaningless, the distances be-

tween points in terms of each collection vzu of nested factors are treated separately

from those across the common parameters x.

Having designed their experiments, Hung et. al. go on to present methods for

emulation (under the synonym ‘kriging’) with branching and nested factors. They

model the simulator’s output using a constant mean term (a regression surface of

order one) and a Gaussian process residual Z (w), where w = (x, z,v) is a simulator

input point. All the work of interpolation and prediction is done therefore by the

stochastic Gaussian process.

In order to enable the same emulator to handle the different nested factors intro-

duced by the branching factors, Hung et. al. split the exponent of their correlation

function into two parts,

cor [Z (w1) , Z (w2)] = exp

{
−

t∑
i=1

αi (x1i − x2i)
2

−
q∑

u=1

[
mu∑
i=1

ku∑
j=1

γuij (vz1u1i − v
z2u
2i )2 I[z1u=z2u=zu,j ] + θuI[z1u 6=z2u]

]}
,

where q is the number of branching factors zu, mu the number of nested variables

associated with the branching factor zu, and ku the number of levels branching

factor zu can take. The first term models correlation for the common inputs, and

works in the same way as the separable Gaussian process described in Section 3.3.3,

with correlation lengths αi. The second handles the branching and nested factors,

and contains two terms with indicator functions. If the branching factors of two

points are at the same level, then a correlation function over the nested factors

is applied, working similarly to the correlation function for the common variables.
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This introduces correlation lengths γuij, for each nested variable within each level

of each branching factor. On the other hand, if the branching factors for two points

are set to different levels, a relatively large constant term θu is added to reduce the

correlation at the two points.

While this enables Hung et. al. to emulate these different cases of a simulator,

in terms of comparing simulators it has a few drawbacks. The separation of com-

mon and nested variables in the correlation function means that changes in overall

simulator behaviour involving more than just the nested inputs at different levels

of the branching factors cannot express themselves; the common inputs have the

same correlation lengths αi regardless of the settings of the branching factors. In

order to compare the behaviour of the simulator at different levels of the branching

factors therefore, one must study the correlation function’s parameters θu and γuij.

However, as discussed in Section 3.3.3, accurate estimation of these numbers is far

from trivial, and so comparisons may be quite tenuous. A very similar scenario in-

volving alternative versions of the same simulator is described in Section 4.2.1, and

a method for emulation in this case is presented in Chapter 5. Again, this method

is limited by the demand that the simulators have almost the same input space. In

Chapter 6 an emulation strategy for multiple simulators is presented that does not

make this demand.

In recent years, the existence of many different simulators modelling the earth’s

climate has lead people to consider how to combine the information they hold. It

is mostly agreed that a multi-model ensemble will perform better than any of the

single simulators it contains (Buser et al., 2009). Each simulator will have its own

strengths and weaknesses, and may closely fit some aspects of the system but not

others, and so in any situation it is best to consider as many [serious] simulators as

possible.

Raftery et al. (2005) use Bayesian Model Averaging to combine the forecasts

from an ensemble of simulator predictions s1, . . . , sk in order to predict the true

value y using the law of total probability,

p (y | s1, . . . , sk) =
k∑
i=1

wipi (y | si) .
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The wi are the probabilities that each simulator is the best in the ensemble, and

therefore sum to one. The function pi (y | si) should be interpreted as the probability

of y conditional on si, given that si is the best forecast in the ensemble. These

distributions are assumed to be Normal, with common variance, and this model is

used to estimate the wi by maximum likelihood. The result is a PDF for the true

system value y, conditional on the simulator ensemble, which is a weighted sum of

normal distributions.

In a similar vein, Smith et al. (2009) use weighted averages of forecasts from an

ensemble, but their approach differs in that rather than attach to each simulator a

probability wi of being the best in the ensemble, they weight each simulator by its

precision τi. Labelling the current observed system value (they use the example of

mean temperature) as X0, and the simulators’ outputs for the current and future

system states as (Xi, Yi) respectively, for i = 1, . . . ,m, they assume

X0 ∼ N
(
µ, λ−1

0

)
(λ0 known)

Xi ∼ N
(
µ, λ−1

i

)
Yi | Xi ∼ N

(
ν + β (Xi − µ) , (θλj)

−1),
attaching uniform prior distributions to µ, ν and β, and Γ priors to θ, λ1, . . . , λm

and to the λi hyperparameters. Using monte carlo they generate random samples

from the distributions of these parameters, and eventually the quantities of interest,

the future predictions Yi.

Leith and Chandler (2010) acknowledge that in order to predict a more detailed

feature of a system, for example a time series of temperatures, one must include

more detail of the simulators’ underlying structures. They begin by assuming that

all climate simulators will model more or less the same processes, and noting that

rather than aiming to give time-series predictions exactly matching the true climate,

they intend to match the system statistically. The outputs are therefore likely all to

follow a similar pattern, which can be summarised by the same parameters. They

then use the distribution of these parameters, arising from the notional population

of all climate simulators, to summarise uncertainty in the simulators’ outputs.

Rather than treat the simulators as functions over their input space, as in em-
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ulation, Raftery et. al and Smith et. al. use only a single prediction from each

simulator, along with some sort of judgement of each simulator’s validity or relia-

bility. Wilks (2006) gives a summary of methods for predicting climate in this way

from a multi-model ensemble. Although they give a more detailed treatment of the

outputs, Leith et. al. ignore the input variables, and assume that each simulator

models the same processes in a similar way. In many applications this is simply not

the case.

While these ensemble methods may produce a more accurate prediction than

using just one simulator, they cannot easily compare the behaviours of the simulators

across their domains, or contrast the treatments of a particular system feature in

each simulator. It is hoped that emulation can help with these tasks, and enabling

this is the focus of Chapters 5 and 6. However, before devising methods for emulating

multiple simulators, it is important to consider some of the ways in which two or

more simulators can differ. Because we intend to emulate the two simulators, we

focus on differences in the input spaces, and give examples from HadOCC and

OG99NPZD, the two simulators introduced in Chapter 2.

4.2 Breaking down simulator differences

Given two simulators, s1 (x1) and s2 (x2), of a particular system, where x1, x2 are

their respective collections of input variables, it is likely that we will be able to link

them in some way by their input space and their treatment of various processes.

They may have almost entirely the same components and input spaces, as do those

studied by Cumming and Goldstein (2010) or Hung et al. (2009). Equally, they may

model the system, or aspects of it, in very different ways, making such links more

complicated.

Approaching the problem in this way requires understanding of the simulators,

gained through expert advice and access to the code and surrounding documenta-

tion. In this project we were fortunate enough to have these, and so are able to

give examples where possible of how differences within and between HadOCC and

OG99NPZD fit into this framework.
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4.2.1 Simple extensions

A simulator will often have the option of including more parameters, usually either

by modelling a particular process in a more complicated way, or by including an

entirely new process. If the initial simulator is s0 (x), the extended version may be

written s1 (x, v, w), where x, v, w are each collections of input variables. The v are

those inputs whose values determine the relationship between s0 (·) and s1 (·). This

distinction will be made clearer in Chapter 5.

This situation naturally splits into two cases:

1. There exists a value v∗, such that s1 (x, v∗, w) = s0 (x) for all valid x, w,

2. There is no such v∗; s1 (x, v, w) cannot be constrained through its extra inputs

to be the same as s0 (x).

It may be useful to study the behaviour of the new parameters v, w. They could be

active only in the new module, or they may be used throughout the code. Either way,

the effects of the extension and the new parameters v, w will propagate through the

simulator’s state. In extreme cases, we may want to consider whether this changes

the meaning of the other inputs x, and whether equating the same value of x in

both versions of the simulator is valid.

The value v∗ exists

This scenario is approached, albeit with a different application in mind, in Goldstein

and Rougier (2009) (see especially Sections 4.3 and 6.2). Goldstein and Rougier are

interested in making improvements to a simulator, and eventually in the concept

of the ‘Reified’ simulator. They form a relationship between the two simulators

s0 (x) and s1 (x, v, w) which we use to develop a method to jointly emulate the two

simulators in Chapter 5.

In HadOCC, one can choose whether to make the Carbon:Chlorophyll (C:Chl)

ratio constant (by setting rcchlopt = 0), or varying (by setting rcchlopt = 1).

In the case where C:Chl varies, two new parameters rcchlmin and rcchlmax are

introduced, setting the minimum and maximum of the ratio. Thus

v = {rcchlmin, rcchlmax} .
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In either case, there is a parameter rcchl, setting the initial value of C:Chl (this

remains the same if C:Chl is constant), which belongs to x. If C:Chl is varying and

we set rcchlmin = rcchl = rcchlmax, then HadOCC behaves exactly as if we set

C:Chl constant at the same rate. So, with some reparameterisation, we can have a

v∗ such that s0 (x) = s1 (x, v∗, w). This forms the basis of the example in Chapter 5.

There is no v∗

When asked about C:Chl and the related parameters, John Hemmings, our expert

from the National Oceanography Centre, Southampton, suggested that we could

keep rcchlmax fixed at a value much higher than rcchl or rcchlmin can attain,

so that the extra parameter space contains only the input rcchlmin. It is then

impossible to achieve

rcchlmin = rcchl = rcchlmax,

and therefore to make the two versions of HadOCC equal one another.

More than one extension

It could be that a simulator s0 (x) can be extended in different ways, to s1 (x, v1)

and s2 (x, v2). Within this there are two possibilities:

1. It may be that the two extensions could be added simultaneously, in which

case s12 (x, v1, v2) is also possible,

2. It may be that they are mutually exclusive, for example two different ways of

adding in the same process, in which case adding both together is impossible,

and there is no s12 (·).

In terms of emulation, this distinction is probably unimportant, since s12, if it exists,

is just another type of the same problem. Where it makes more of a difference is in

comparison, since in the second case (if the two extensions are modelling the same

process) we may want to compare them directly with one another in a different way

from two extensions modelling different processes. It is also likely that v1 and v2

will contain similar parameters in the second case, but not in the first.
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In this scenario where a simulator s0 (x) is extended somehow, a possible strat-

egy for emulation is to emulate the simple, unextended simulator s0 (x), and then

somehow extend the emulator. This is the approach taken in Chapter 5.

4.2.2 Different parameterisations of a process

This situation is similar to that above, but crucially the ‘simpler’ model s0 (x) cannot

be run on its own. There may be several ways for this to occur, a common one being

where a particular process must be included in the simulator, but where the user can

choose how it is modelled. Here we have s1 (x, v1) and s2 (x, v2), but not s12 (x, v1, v2)

or s0 (x).

When the simpler model s0 (x) existed and could be evaluated, a possible strategy

was to emulate s0 (x) and then extend the emulator to emulate s1 (x, v1) or s2 (x, v2).

It is possible that, if the parameters v1 and v2 can be fixed in such a way that the

two models become the same, we may be able to conceive of some sort of ‘common’

emulator, analogous to the emulator of s0 (x) in Section 4.2.1.

This, as well as the previous section on extensions, involves branching and nested

variables as described by Hung et al. (2009). Their approach is to treat the common

inputs the same regardless of which extension applies, by estimating the mean and

correlation lengths and then adapting the correlation function depending on the

extension. The methods presented in Chapter 6 will offer an alternative means

of joint emulation here, in a way that facilitates comparison and understanding of

different simulators.

Photosynthesis in HadOCC

In HadOCC we must choose a submodel for photosynthesis, two of which are

OG99PHOT (Oschlies and Garçon, 1999) and A93D (Anderson, 1993). In the Mar-

MOT interface (introduced in Section 2.4), the groups of parameters which we are

here labelling v1, v2 are given the same names, meanings and units for either sub-

model, however since they enter HadOCC through completely different equations, it

seems more appropriate to treat them as different sets of input parameters. In Hung

et al. (2009) terminology, the choice of photosynthesis submodel is the branching
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variable and v1 and v2 the corresponding sets of nested variables.

In OG99PHOT, the photosynthesis-irradience curve is determined by

J =
PmaxαdPARd√

P 2
max + (αdPARd)

2
,

whereas in A93D it is

J = Pmax

[
1− exp

(
−αdPARd

Pmax

)]
.

Here

Pmax = photmax

αd = alphachl

PARd involves kdPAR, which uses rparsol.

The HadOCC code and the source code for the two photosynthesis submodels show

that the parameters do not split easily into photosynthesis or non-photosynthesis

inputs. Many of the input variables appear in both the photosynthesis submodels

and other processes in the code. This makes the idea of treating the two versions of

HadOCC as essentially the same simulator, but with a different submodel affecting

only a subset of the parameters, somewhat spurious.

4.2.3 Different simulators with similar processes

In many cases, two simulators of a system will have entirely different input spaces,

and processes will be parameterised in different ways. However, it is not hard to

imagine that we may well be able to match up processes between the simulators.

In ocean ecosystem models, processes such as mortality, grazing and growth will

be incorporated into most models, even if they are handled differently. For ex-

ample, HadOCC and OG99NPZD both deal with the grazing of phytoplankton by

zooplankton, but with different parameters and to different levels of detail.

Depending on how neatly the simulators split into comparable sub-processes,

we may be able to make comparisons between simulators at process level. This is

similar to Section 4.2.2, in that we are still concerned with how processes match up,

except that here we have no concept of a core model s0 (x), or a core group of inputs

x. Processes in different simulators can appear to be similar to varying extents.
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Zooplankton and Phytoplankton mortality

Zooplankton mortality is an example of a process which may appear strongly linked

for OG99NPZD and HadOCC. In HadOCC, zooplankton mortality causes a loss of

nitrogen from the zooplankton compartment and gains to detritus and nutrient (de-

termined by the proportion fzmortdin contributing to detritus). There is a constant

mortality rate zmort and a concentration dependent rate zmortdd (because there

should be more predators where there is more prey) such that loss from zooplankton

owing to mortality is

zmortZ + zmortddZ2,

where Z is the concentration of the tracer zooplankton. Of this,

fzmortdin
(
zmortZ + zmortddZ2

)
contributes to detritus and

(1− fzmortdin)
(
zmortZ + zmortddZ2

)
to nutrient.

In OG99NPZD, zooplankton mortality is entirely concentration dependent, mod-

elled by

µZZZ
2,

and all resulting nitrogen contributes to detritus. This means that if the HadOCC

parameters fzmortdin and zmort are set to be 1 and 0 respectively, the simulators

handle the process in the same way.

However, situations are rarely this simple. OG99NPZD contains a parameter γ2,

modelling excretion, so that γ2Z is lost from zooplankton and gained by nutrient,

whereas HadOCC doesn’t explicitly model excretion. If we treat γ2 (in OG99NPZD)

as functionally equivalent to zmort (in HadOCC), which Hemmings (2009) suggests,

then there is no way to make the two models the same.

This highlights the issue that although input parameters may have the same

name, units and descriptions in two different simulators, they shouldn’t necessar-

ily be identified, even if the system meaning is clear. For example asserting here
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that µZZ (from OG99NPZD) and zmortdd (from HadOCC) should be the same

(they have the same name, description and units in MarMOT) makes little sense,

because of the overall modelling of the process and their interaction with the other

parameters.

It is unclear whether we can capitalise on being able to link a process ‘exactly’

across two different simulators, when the behaviour of the rest of the simulators

means that the outputs will never match up. It is also unclear how we are to think

of the link between parameters which are given the same meaning and units in two

different simulators, especially when there are different groups of related parameters.

Another processes with complex input links is phytoplankton mortality. Phy-

toplankton mortality in HadOCC is controlled by the parameters pmortdd and

pminmort. Loss of nitrogen from phytoplankton owing to mortality is pmortddP 2

(where P is the concentration of phytoplankton) unless P < pminmort, in which

case there is no loss.

In OG99NPZD, nitrogen loss from phytoplankton through mortality is µPP +

µPPP
2. Of this, µPP goes to nutrient, and µPPP

2 to detritus. In HadOCC, a

constant proportion fpmortdin of the nitrogen from dead phytoplankton goes to

detritus, and the remainder to nutrient. So regardless of the values of the inputs,

HadOCC and OG99NPZD model the same processes but in different ways.

Intermediate variable emulation, the method presented in Chapter 6, uses emu-

lation and understanding of the simulators to enable comparisons in this setting.

4.2.4 Different processes

There will be situations where the processes in two simulators of a particular system

can’t be linked. It could be that there is no clear way to split the system up, or

that it is very poorly understood. The simulators could model the system in terms

of entirely different properties. However, even in pairs of simulators for which there

are many matching processes, it is likely there will still be some events that are

represented in one simulator but not in the other. For example, in OG99NPZD the

zooplankton feeds exclusively on phytoplankton, whereas in HadOCC it also eats

detritus. Not only does this create a series of nitrogen transfers involving detritus



4.3. Summary 64

in HadOCC that are not mirrored in OG99NPZD, it may also affect comparisons

between HadOCC and OG99NPZD involving zooplankton feeding on phytoplank-

ton. It is quite feasible that to produce plausible output, the zooplankton consumes

more phytoplankton in OG99NPZD than in HadOCC, in order to compensate for

not grazing on detritus.

It may be that if we are able to devise a method for emulating different simulators

where the processes match up, as in Section 4.2.3, we can extend it to be able to

deal with slight differences. However, jointly emulating two simulators that do not

match up even at process level could be very difficult. At the most cautious level, one

could derive a joint emulator f (x1, x2), where x1, x2 are the distinct sets of inputs

for the two simulators. This could then emulate both simulators’ outputs. However,

in order to make this different from two separate emulators, one of each simulator,

one would have to specify beliefs linking the behaviours of the two simulators, and

this would require serious thought.

Figure 4.1 shows the processes modelled by HadOCC and OG99NPZD, and

highlights any processes included by only one of the simulators.

4.3 Summary

In this chapter we have reviewed existing work concerning multiple simulators, and

summarised some possible relationships between two simulators. We noted that at

present, methods for emulation demand that the simulators be identical or very

similar in terms of input space, and that this is a very restrictive constraint.

In the following chapter we introduce hierarchical emulation, a method for emu-

lating simulators with simple extensions, as in Section 4.2.1. Intermediate variable

emulation, which enables emulation of two simulators whose sub-processes can be

at least partly matched, as in Section 4.2.3, and is therefore less restrictive, follows

in Chapter 6.
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Figure 4.1: Comparing processes represented by HadOCC and OG99NPZD. A dashed

line represents a process that is only modelled by HadOCC, and a dotted line a process

that is modelled only by OG99NPZD. A solid line shows a process that is included by

both simulators.



Chapter 5

Hierarchical emulation

The first type of simulator difference, described in Section 4.2.1, was to have two

simulators for which one, s1 (x, v, w) is an extension of the other, s0 (x). This is

a common occurrence, as there is often some choice over exactly which processes

to include in a simulator, and how detailed to make some parameterisations. In

this chapter we introduce hierarchical emulation, a method for emulation in this

situation, and give an example using two versions of HadOCC.

Our concern is the scenario in which the two versions of the simulator can be

made exactly the same by fixing the set of parameters v to a particular value v∗, so

that

s1 (x, v∗, w) ≡ s0 (x) (5.1)

for all valid values of x and w. The set of input variables w contains those input

variables belonging only to the more complicated simulator s1 (·), but whose values

do not affect the matching up of s1 (·) with s0 (x) at v = v∗. We will refer to the set

v as hierarchical variables and w as extra variables.

5.1 An emulation structure

The structure of a hierarchical emulator enables us to emulate s1 (x, v, w) in a way

that incorporates the information in Equation 5.1.

Firstly, assume that transformation functions gi (·) exist such that gi (v
∗
i ) = 0 for

each hierarchical variable vi. Superficially this is not always the case, for example

66
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in the HadOCC example involving the carbon:chlorophyll ratio in Section 5.5 where

making the two simulators equal involves a relationship between three of the inputs,

however, by re-parameterisation it can be achieved.

The simulators can then be linked to one another in terms of some new functions

ψ (·). With one hierarchical variable v, the more complex simulator s1 (x, v, w) can

be re-written

s1 (x, v, w) = s0 (x) + g (v)ψ (x, v, w) .

At v = v∗, the two simulators are equal, and the relationship is preserved. This

relationship is also used by Goldstein and Rougier (2009), where the more complex

simulator, s′ (·) in their notation, is a step toward making the simulator a better

representation of the real system.

When there are k hierarchical variables v1, . . . , vk, this is complicated slightly.

Simply having an s0 (x) term and a single hierarchical term(
k∏
i=1

gi (vi)

)
ψ (x, v1, . . . , vk)

will not work, because this will cause the two simulators to be equal when vi = v∗i for

any i, and this is not the case. Were we to use a function g (v1, . . . , vk), which was

zero only at (v∗1, . . . , v
∗
k), having a single hierarchical term could work, but this would

make choice of the function g (·) quite complicated. To limit equality to vi = v∗i for

all i therefore, we need to have at least

s1 (x, v, w) = s0 (x) +
k∑
i=1

gi (vi)ψi (x, vi, w) .

However this still fails to express the relationship between the two simulators cor-

rectly. For example, in the case with two hierarchical variables, v = (v1, v2), and no

extra variables w, this would give

s1 (x, v1, v2) = s0 (x) + g1 (v1)ψ1 (x, v1) + g2 (v2)ψ2 (x, v2)

and therefore

s1 (x, v1, v
∗
2) = s0 (x) + g1 (v1)ψ1 (x, v1)

s1 (x, v∗1, v2) = s0 (x) + g2 (v2)ψ2 (x, v2) .
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But this forces

s1 (x, v1, v2) = s1 (x, v1, v
∗
2) + s1 (x, v∗1, v2)− s0 (x) ,

which is not necessarily the case. Often interactions between variables have an im-

portant effect on simulator output, and so to include these, the hierarchical emulator

structure for k hierarchical variables must be

s1 (x, v, w) = s0 (x) +
k∑
i=1

gi (vi)ψi (x, vi, w) +
k∑
i=1
j>i

gij (vi, vj)ψij (x, vi, vj, w) +

. . .+ g1...k (v1, . . . , vk)ψ1...k (x, v, w) , (5.2)

so that every possible interaction is allowed for. In some ways this is similar to func-

tional ANOVA decomposition, where the main effects and interactions are modelled

by separate functions (see, for example Kaufman and Sain (2010)). Now, each g· (·)

function must satisfy

g[i]

(
v[i]

)
6= 0 ⇐⇒ vj 6= v∗j ∀j ∈ [i],

where v[i] is the set of hierarchical variables associated with the function ψ[i] (·). The

subscript [i] here denotes an index that may involve several numbers, for example

the ψij (·) in Equation 5.2. A simple strategy, which we will follow from here, is to

have

g[i]

(
v[i]

)
=
∏
j∈[i]

gj (vj) .

Note that the function g[i] (·) uniquely determines the function ψ[i] (·). We will con-

sider the implications of this in Section 5.2.3. Although this model looks somewhat

complicated, conversations with others in the field suggest that it is rare for there to

be more than a couple of hierarchical variables attached to any additional process.

Having decomposed the simulator s1 (x, v, w) using the relationship in Equation

5.1, a hierarchical emulator can be built using a collection of standard emulators

constructed as in Chapter 3
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5.2 Building a hierarchical emulator

The hierarchical emulation strategy is to emulate s1 (x, v, w) by emulating s0 (x) and

each of the functions ψ[i]

(
x, v[i], w

)
separately, so that

f0 (x) = X0β0 + ε0 (x)

is an emulator of s0 (x), and

h[i]

(
x, v[i], w

)
= H[i]β[i] + ε[i]

(
x, v[i], w

)
(5.3)

is an emulator of ψ[i]

(
x, v[i], w

)
.

The emulation framework in Chapter 3 enables us to build the emulators above,

so that for m new input points (x̃, ṽ, w̃) the posterior distributions

s0 (x̃) | s0 (x)

ψ[i]

(
x̃, ṽ[i], w̃

)
| ψ[i]

(
x,v[i],w

)
(5.4)

can readily be found, assuming data ψ[i] from each function ψ[i] (·) is available (the

design criteria necessary for this will be addressed in Section 5.2.2). However, it is

not obvious how these emulators can be combined to find

s1 (x̃, ṽ, w̃) | s1 (x,v,w),

which is the goal of hierarchical emulation.

In Equation 5.4, the data has been split up such that the output s0 alone is used

to train the emulator for s0 (·), the vector ψ1 to train the emulator of ψ1 (·) and so

on, and this has not yet been justified. Nor have we given a probabilistic framework

by which we can connect these separate emulators to form an emulator of s1 (·), or

explained how the data from ψ[i]

(
x̃, ṽ[i], w̃

)
is found. These issues are resolved in

the following sections.

5.2.1 Prior structure and separability

To construct emulators for the separate functions s0 (x) and the ψ[i]

(
x, v[i], w

)
, one

needs prior distributions

π[i]

(
β[i], σ

2
[i]

)
.
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Some options for these are discussed in Section 3.1. However, to build a hierarchical

emulator for s1 (x, v, w), these emulators must be probabilistically linked, and so a

joint prior,

π
(
β0, σ

2
0, . . . , βk, σ

2
k

)
,

is required.

Ideally, this prior distribution should allow the hierarchical emulator for s1 (·)

to be constructed from the emulators in Equation 5.4, rather than forcing all data

from s0 (·) and ψi (·) to be informative for each emulator.

O’Hagan (1998) investigates covariance structures for a random Gaussian process

function f (x, y) defined for x ∈ X , y ∈ Y , where X and Y may be finite or infinite

domains. Of particular interest is the covariance structure necessary to ensure that,

given observations f(x, y′), further observations f(x′, y′), for x′ 6= x, will provide no

more information about f(x, y), for y 6= y′. That is, (x, y) is separated from (x′, y′)

by (x, y′).

In the hierarchical emulation setting this is equivalent to saying that having

observed s0 (x) = s1 (x, v∗, w), no further observation s1 (x, v, w) will be informative

for s0 (x̃) = s1 (x̃, v∗, w). This means that so long as data s0 (x) is present, s1 (x, v, w)

will not inform the emulator for s0 (·) at new points.

O’Hagan asserts that the separation described above is true if the property

M (X ;Y), that

c [(x, y), (x′, y′)] =
c [(x, y), (x′, y)] c [(x′, y), (x′, y′)]

c [(x′, y), (x′, y)]

holds for all x, x′ ∈ X , y, y′ ∈ Y , where c [(x, y), (x′, y′)] = cov [f(x, y), f(x′, y′)].

The points (x, y) and (x′, y′) are separated by (x′, y)1. O’Hagan proves that this

propertyM (X ;Y) holds if and only if there exists a function a(x, y) on X ×Y such

that the covariance structure of the random variables

γ(x, y) =
f(x, y)

a(x, y)

1They are also separated by (x, y′), but the formulation above makes it easier to apply to the

problem at hand.
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has a Kronecker product form, i.e.

cov [γ(x, y), γ(x′, y′)] = cx {x, x′} cy {y, y′} .

Applying this to our problem, to justify using only the data from a particular

function s0 (·) or ψi (·) for the corresponding emulator term, we require that s0 (x̃)

be separated from s1 (x, v, w) by s0 (x), and that ψ[i]

(
x̃, ṽ[i], w̃

)
be separated from

s1 (x, v, w) by ψ[i]

(
x, v[i], w

)
. We must therefore ensure that

cov [f0 (x̃) , f1 (x, v, w)] =
cov [f0 (x̃) , f0 (x)] cov [f0 (x) , f1 (x, v, w)]

var [f0 (x)]
, (5.5)

where f0 (·) and f1 (·) are the emulators of s0 (·) and s1 (·).

This follows easily by thinking of s0 (x) as s1(x, v∗, w), and therefore of y = (v∗, w)

and y′ = (v, w) in the notation of O’Hagan.

By a similar argument, we can ensure that ψ[i]

(
x̃, ṽ[i], w

)
is separated from further

evaluations s1 (x, v, w) so long as ψ[i]

(
x, v[i], w

)
is known by enforcing

cov
[
h[i]

(
x̃, ṽ[i], w

)
, f1 (x, v, w)

]
=

cov
[
h[i]

(
x̃, ṽ[i], w

)
, h[i]

(
x, v[i], w

)]
cov

[
h[i]

(
x, v[i], w

)
, f1 (x, v, w)

]
var
[
h[i]

(
x, v[i], w

)] .

Note that at the moment we do not have direct access to evaluations of

ψ[i]

(
x, v[i], w

)
. We will turn to the design issues this raises in Section 5.2.2.

If we have only one hierarchical variable, v, then

cov [f0 (x̃) , f1 (x, v, w)] = cov [f0 (x̃) , f0 (x) + g (v) h (x, v, w)]

= cov [f0 (x̃) , f0 (x)] + g (v) cov [f0 (x̃) , h (x, v, w)] (5.6)

and

cov [f0 (x) , f1 (x, v, w)] = var [f0 (x)] + g (v) cov [f0 (x) , h (x, v, w)] . (5.7)

Therefore achieving separability is equivalent to stipulating that

cov [f0 (x̃) , h(x, v, w)] =
cov [f0 (x̃) , f0 (x)] cov [f0 (x) , h(x, v, w)]

var [f0 (x)]
, (5.8)

as seen by substituting Equations 5.6 and 5.7 into Equation 5.5. This is certainly

true if

βi, σ
2
i ⊥ βj, σ

2
j , for all i 6= j, (5.9)
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because then

cov [f0 (x) , h(x, v, w)] = cov [f0 (x̃) , h(x, v, w)] = 0.

In the general case, with k hierarchical variables,

cov [f (x̃) , f1 (x, v, w)] = cov [f0 (x̃) , f0 (x)] +
2k−1∑
i=1

g[i]

(
v[i]

)
cov

[
f0 (x̃) , h[i]

(
x, v[i], w

)]
and

cov [f (x) , f1 (x, v, w)] = var [f0 (x)] +
2k−1∑
i=1

g[i]

(
v[i]

)
cov

[
f0 (x) , h[i]

(
x, v[i], w

)]
,

and so Equation 5.5 becomes

2k−1∑
i=1

g[i]

(
v[i]

)
cov

[
f0 (x̃) , hi

(
x, v[i], w

)]
=

cov
[

f0 (x̃) , f0 (x)
](2k−1∑

i=1

g[i]

(
v[i]

)
cov

[
f0 (x) , hi

(
x, v[i], w

) ])
var [f0 (x)]

.

Again, if the prior specifications in Equation 5.9 are used, separability holds.

So, we shall stipulate that βi, σ
2
i ⊥ βj, σ

2
j , and therefore claim this separability

property. This ensures that if we have observed s0 (x) we do not need to incorporate

s1 (x,v,w) in order to predict s0 (x̃). Likewise, if ψ[i] (x,v,w) is known then further

simulator values s1 (x,v,w) are not informative for ψ[i] (x̃, ṽ, w̃).

A consequence of this prior structure, where (βi, σ
2
i ) ⊥

(
βj, σ

2
j

)
, is that the

variance of s1 (x,v,w) necessarily increases as the v move away from v∗. Studying

the behaviour of the emulators as this happens will show whether this presents a

problem in practice. Other prior structures may also lead to this same separability

property, and finding some would be a useful avenue for further research.

It has already been observed that data from the ψ[i] (·) are not readily available.

This problem and the separability criterion impose restrictions on the design of

training data, and these are discussed in the following section.

5.2.2 Training data design

The design structure required for hierarchical emulation as it has been set up here

is tied to two features of the model. One relates to the separability issues discussed
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above, the other to ensuring we are able to procure training data for each function

we aim to emulate.

In order to emulate a function s (x), it is necessary to have training data. Because

s0 (x) is a simulator, it can be evaluated, and training data gathered so that it can

be emulated. But this is not the case with the functions ψ[i]

(
x, v[i], w

)
. These are

defined only in relation to one another and to the simulators s0 (x) and s1 (x, v, w),

and cannot be ‘run’. To gather training data from them therefore, we must be

intentional in our designs for s0 (x) and s1 (x, v, w).

All the data used to build these emulators must be collected through the simula-

tors s0 (x) and s1 (x, v, w), including the data from the functions ψ[i]

(
x, v[i], w

)
. The

following explanation of how that is done is given for the case where there are two

hierarchical variables v = (v1, v2), and so the data structure in terms of functions

g[i] (·) and ψ[i] (·) is

s1 (x, v, w) = s0 (x) + g1 (v1)ψ1 (x, v1, w) + g2 (v2)ψ2 (x, v2, w)

+ g12 (v1, v2)ψ12 (x, v, w) . (5.10)

It is not difficult to see how it would extend to any number of hierarchical variables.

We begin with the assumption that we have run s1 (·) for a set of n points

{x,v,w}, giving the n-vector of output s1. We can easily find the corresponding

vector s0 of outputs from s0 (·) by computing either s0 (x) or s1 (x,v∗,w) for any

valid w. However these data will not enable us to calculate the corresponding vectors

ψ[i] of data from each of the ψ[i] (·). For this, we must isolate each ψ[i] (·) in turn, by

setting some of the hierarchical variables to v∗. For example, in the k = 2 setting,

when v1 = v∗1 (and therefore g1 (v1) = 0) and v2 6= v∗2 (and so g2 (v) 6= 0), we have

s1 (x, v, w) = s0 (x) + g2 (v2)ψ2 (x, v2, w) ,

and so

ψ2 (x, v2, w) =
s1 (x, v, w)− s0 (x)

g2 (v2)
. (5.11)

This enables us to find the vector ψ2, and similarly, setting v2 = v∗2, v1 6= v∗1 enables

us to find ψ1. Finally, computing the vector ψ12 requires all the data collected so
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far. In terms of vectors of data,

s1 = s0 + diag(g1 (v1))ψ1 + diag(g2 (v2))ψ2 + diag(g12 (v1,v2))ψ12

and therefore

ψ12 = [s1 − s0 − diag(g1 (v1))ψ1 − diag(g2 (v2))ψ2] [diag(g1 (v1)) diag(g2 (v2))]−1 .

The matrix diag(gi (vi)) is the diagonal matrix with the vector gi (vi) as its diagonal,

and so the matrix [diag(g1 (v1)) diag(g2 (v2))]−1 is simply the diagonal matrix with

terms analogous to the denominator in Equation 5.11.

With k hierarchical variables, in order to find the vectors of data necessary to

emulate each term the simulator s1 (x, v, w) must be run 2k times for each input

point at which vi 6= v∗i ∀i. To use such a point (x, v, w) in a hierarchical emulator

we must know s1 (x, v, w), s0 (x) and s1

(
x, v[i], v

∗
[−i], w

)
for all possible subsets [i]

of the indices {1, . . . , k}. The subscript [−i] here denotes the set of indices left

out by the set [i]. That is, to include a point with any hierarchical inputs not at

their v∗ values, the same point must be included with every possible subset of the

hierarchical inputs set to v∗.

Having completed this process we have 2k corresponding vectors of data,

s0, ψ1, ψ2, . . . , ψ12 and so on, and so can build emulators for each function using

the techniques in Chapter 3.

Recall from Section 5.2.1 that in order to justify not treating all evaluations

of s1 (x, v, w) as informative for all functions s0 (x) and ψ[i]

(
x, v[i], w

)
, new evalu-

ations of each function must be separated from evaluations of all other functions

by values from the same function. This means that, for example, if we know the

value of ψ2 (x, v2, w), and wish to predict the value of ψ2 (x̃, ṽ2, w̃), no additional

data s1 (x, v, w) are informative. Therefore, for any observation s1 (x, v, w) in the

training data, we must also have observations s0 (x) and ψ[i]

(
x, v[i], w

)
for all [i].

The design structure described in the above argument ensures this. If we choose

to include the point (x, v, w), we must also include
(
x, v[i], v

∗
[−i], w

)
, for all possible

subsets of indices [i], as only then have we access to the functions ψ[i]

(
x, v[i], w

)
.

Conversely, data from s0 (x) can be included on its own, without the correspond-

ing evaluations of s1 (x), and indeed any point can be included without including
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any corresponding points ‘higher up’ in the hierarchy, that is, with fewer of the

hierarchical inputs set to their v∗ values. In a situation where s0 (x) is very cheap

to run, and s1 (x, v, w) is expensive, this could turn out to be advantageous.

5.2.3 Choosing appropriate transformation functions

The g[i]

(
v[i]

)
functions used to transform the hierarchical variables determine the

values and distributions of theψ[i] data. A poor choice could lead to a poor emulator,

and especially to poor variance estimates for predictions.

The obvious approach when transforming the dependent variable for a regression

type model is to use Box-Cox. The Box-Cox transformation of a dependent variable

Y is

Y (λ) =


Y λ−1
λ

λ 6= 0

log(Y ) λ = 0

where the optimal value of λ can be found using maximum likelihood. This value is

optimal in that the transformed Y is a linear function of the independent variables,

and the errors are approximately normal with constant variance.

However, in finding the suitable transformation functions gi (·), we are not look-

ing to transform the dependent variable but the hierarchical variables, from which

the dependent variables ψi (·) will then be found. For example, in a system with

one hierarchical input v, we have

ψ (x, v, w) =
s1(x, v, w)− s0(x)

g(v)
= H1β1 + ε1.

We wish to find an appropriate transformation of v, rather than of the dependent

variable ψ (x, v, w), and therefore cannot use Box-Cox to find the gi (·).

Before thinking of specific transformations, it is worth considering what prop-

erties the functions g[i] (·) must have. Clearly in order to maintain the relationship

between s0 (·) and s1 (·) we must have g[i]

(
v∗[i]

)
= 0 and g[i]

(
v[i]

)
6= 0 for v[i] 6= v∗[i],

for all [i]. In order to be able to emulate the functions ψ[i] (·) they must be continuous

and finite, and so the g[i] (·) must be continuous and non-zero for all v[i] 6= v∗[i].

In keeping with the sorts of transformations allowed by Box-Cox we will consider
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functions of the type

g (v) = (v − v∗)λ (5.12)

and

g (v) = [log (v − v∗ + 1)]λ , (5.13)

for λ > 0, where these are functions of a single hierarchical input v. If, for some i,

v∗i is not on the boundary of the input space, or if vi ≤ v∗i , these functions will need

to be adapted.

As mentioned earlier, in order to simplify matters, when a term involves more

than one hierarchical input we will use the product of the transformation functions,

g[i]

(
v[i]

)
=
∏
j∈[i]

gj (vj) ,

so for example

g12 (v1, v2) = g1 (v1) g2 (v2) .

In classical linear regression, the optimal situation is for the residuals to appear

to be independent and normally distributed with mean zero. With this in mind,

the transformations could be chosen such that when the regression surface used

in the emulator is fitted to the resulting ψ vector, the residuals are as close to

normal as possible. However, the correlated error term means that these errors

aren’t independent, and so another possibility is to find the transformation such

that the residuals have minimal skew. We will return to this matter in the examples

in Section 5.5.
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5.2.4 The resulting emulator

Having set up the emulator, and designed training data (TD) ensuring separability

between terms, we have the result that for a set of new input points (x̃, ṽ, w̃)

E [s1 (x̃, ṽ, w̃) | TD] = E [s0 (x̃) | s0 (x)] (5.14)

+
∑

[i]

diag
(
g[i]

(
ṽ[i]

))
E
[
ψ[i]

(
x̃, ṽ[i], w̃

)
| ψ[i]

(
x, v[i], w

)]
var [s1 (x̃, ṽ, w̃) | TD] = var [s0 (x̃) | s0 (x)] (5.15)

+
∑

[i]

diag
(
g[i]

(
ṽ[i]

)2
)

var
[
ψ[i]

(
x̃, ṽ[i], w̃

)
| ψ[i]

(
x, v[i], w

)]
.

The emulators for the separate terms can be used to find these values, and also

enable us to sample from s1 (x̃, ṽ, w̃) |TD.

A serendipitous feature of the hierarchical emulator is that it includes within it

an emulator of the difference between the simulators, since

s1 (x, v, w)− s0 (x) =
∑

[i]

g[i]

(
ṽ[i]

)
ψ[i]

(
x̃, ṽ[i], w̃

)
.

Having already built emulators of the functions ψ[i] (·), we can easily find the mean

and variance of the simulator difference for new input points, or sample from the

posterior distribution. This is an attractive result, especially if the effect of the

extension of s0 (x) to s1 (x, v, w), and the change in this effect across the input

space, are of interest.

Building a hierarchical emulator requires many calculations and a lot of sort-

ing and storing of data. To do this effectively requires a careful framework, and

an object-oriented structure for hierarchical emulation in R (R Development Core

Team, 2011) is presented in Chapter 7. This structure requires the user to provide

training data, transformation functions and details of the hierarchical, extra and

common inputs. It then checks that the data fit the design criteria for hierarchical

emulation, and sorts the data according to the values of the hierarchical inputs, so

that they are ready to be used to build an emulator.

In order to build an emulator, the user must specify the method for building

the regression surface and the structure of the correlated error. These will then be

applied to construct the separate terms of the hierarchical emulator. Finally, new
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input points can be given, and the hierarchical emulator will use each of the terms

to predict the outputs of the simpler and extended simulators, and the difference

between them. Because the structure is object-oriented, the information for each

stage (data organisation, emulator building and prediction) is stored as separate

objects. The structure of the objects and methods ensures that the process is rigidly

organised, and no necessary information lost.

5.3 Comparing the hierarchical emulator with the

‘standard’

In order to see whether hierarchical emulation is worth pursuing, we must compare

it to the status quo. Questions we must therefore ask are:

1. What tasks are we asking the hierarchical emulator to perform?

2. What are the ‘standard’ emulators against which we will compare it?

These issues are explored below, before comparing different emulation strategies

using two versions of HadOCC.

5.3.1 Tasks for comparison

Predicting s0 (x) output

When the hierarchical emulator is used to emulate s0 (x), all terms apart from the

first are ‘switched off’, and we are left with an emulator of s0 (x). Therefore the

standard and hierarchical emulators of s0 (x) should perform identically.

Predicting s1 (x, v, w) output

Unlike any standard method, the hierarchical emulator for s1 (x, v, w) is built from

several terms, each of which is a separate emulator. Apart from the s0 (x) term,

each of these is multiplied by vectors g (v), and there is potential for this to disrupt

things. Because of the separability property established by the prior specification,

the variance of the hierarchical emulator’s prediction is the sum of the variances
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of the individual terms, and this has potential to become large as the hierarchical

variables increase.

Predicting s1 (x, v, w) output is useful in its own right, and in a situation where

s0 (x) is much cheaper to run than s1 (x, v, w), building a hierarchical emulator by

using many runs from s0 (x) and fewer from s1 (x, v, w) could be an attractive option.

Predicting some measure of the difference between s0 and s1

In comparing the two simulators, being able to reliably predict the difference between

them in some way will be a tremendous help. It may also enable us to discern the

circumstances in which the two simulators are very different, and when they behave

similarly. The prediction variable will be the difference

s1 (x, v, w)− s0 (x)

or, if the logs of the outputs are used, the ratio

s1 (x, v, w)

s0 (x)
,

so long as both functions are positive. Which of these is predicted by the hierarchical

emulator will depend on whether the simulator output or its logarithm is chosen.

Predicting s1 output ‘near’ s0

A key concern is how the emulators’ predictions and variances depend on the values

of the hierarchical inputs v. This may reveal features of the emulation models that

are not appropriate. In particular, it may be interesting to compare predictions of

the more complex simulator’s behaviour when it is very near to the simpler simulator,

that is when the v are very close to v∗.

5.3.2 Standard emulators

By ‘standard’ emulators, here we refer to those built using the methods in Chapter 3,

where the emulator is the sum of one regression surface and one correlated error term.

Therefore in these terms, a hierarchical emulator is a linear combination of standard

emulators. In either setting there are choices of prior distribution, regression surface
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and correlation function, and while these are important they are not the focus of

this chapter. In building any sort of emulator they should be made to best cater to

the simulator at hand. In this chapter, the default choice will be to use the weak

prior

p
(
βi, σ

2
i

)
∝ 1

σ2
i

,

include all input variables as active, include either all first order or all first and second

order terms in the regression surface, and model the error by a stationary, isotropic

Gaussian process, whose correlation length is the maximum likelihood estimator.

We will check that these choices are appropriate before continuing.

In comparing the hierarchical emulator with the standard approach, we focus

here particularly on the choice of independent variable and the use of training data,

and will try to make the other emulation choices comparable where possible. Having

determined the tasks set for the emulators, the set of ‘standard’ emulators against

which we are to compare the hierarchical emulators should include the choices that

intuitively best suit those tasks.

Emulators of s1

Firstly, we can build a standard emulator of s1 (x, v, w). This emulator can be used

to predict both s1 (x̃, ṽ, w̃) and s0 (x̃). If the inputs are all processed together, as a

data frame containing (x̃, ṽ, w̃) and (x̃, v∗, w) then the covariance matrix will also

enable us to calculate var [s1 (x̃, ṽ, w̃)− s0 (x̃)]. This emulator can therefore be used

to achieve each of the chosen tasks.

An emulator of s1 (·) can be built using either only the data where v 6= v∗, or all

the simulator data available, including data from lower down in the hierarchy. The

examples Section 5.5 will include both.

Separate emulators of s0 and s1

Instead of using an emulator of s1 (·) only, one could build separate emulators of

s1 (x, v, w) and s0 (x), then use these to predict s1 (x̃, ṽ, w̃) and s0 (x̃). These can be

combined to find the expected difference. Bounds on the variance of the difference
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for each input point can be calculated using the Cauchy-Schwarz inequality, but the

exact value var [s1 (x̃, ṽ, w̃)− s0 (x̃)] cannot.

Emulating the difference

So long as the training data is set up in the correct way, the difference can be

calculated exactly, then emulated using standard methods. Intuitively, this should

produce the best prediction of the difference. It doesn’t, however, provide a way to

see the difference relative to the values of each output, and so can only really be

useful when combined with an emulator of s0 (·) or s1 (·).

A truly comparable standard emulator

In comparing the performance of the hierarchical emulator with that of the standard

method, it seems appropriate, as far as possible, to include the same information

in both emulators. In terms of input data, this can be achieved by using the same

training data. However, the very structure of the hierarchical emulator includes the

information that

s1 (x, v∗, w) = s0 (x) for all x,w, (5.16)

because of the g (·) functions which switch off terms as necessary. A fair question

to ask then is, can this same information be included in a standard emulator?

A crucial aspect of this information is that when v = v∗, the value of w doesn’t

affect the value of s1 (·). This information could be incorporated into a regression

function, simply by making sure that all terms involving w also involved v in such

a way that this was achieved. However, for Equation 5.16 to hold in the correlated

error term, the correlation structure would have to be drastically changed. One

method would be to have correlation lengths for w that are a function of v, such

that when v = v∗ the extra inputs w add no variance.

This seems a sufficiently serious deviation from standard emulation for us to be

able to compare the hierarchical emulator with those in Section 5.3.2, and to think

of the capacity to include the information in Equation (5.16) as a benefit, rather

than an unfair advantage, of hierarchical emulation.
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5.4 Method summary

Before seeing an example, we quickly summarise the process of building an hierar-

chical emulator, in a heuristic algorithm.

1. Work out the common, hierarchical and extra input variables, and for each

hierarchical variable vi (for i = 1, . . . , k) find v∗i . This may require the input

space to be reparameterised, as in the example in Section 5.5.

2. Design the training data, adhering to the criteria in Section 5.2.2, and run the

simulator at these points.

3. Separate the training data into 2k ‘chunks’, one for each possible combination

of hierarchical variables at their v∗ value.

4. For each hierarchical input vi, use the training data to choose a suitable trans-

formation function gi (vi). This will depend on the choice of regression surface

to be used in each each emulator. See Section 5.2.3.

5. Use the gi (vi) functions and the training data to compute the ψ[i] vectors.

6. Build emulators for s0 (x) and each of the
(
2k − 1

)
functions ψ[i]

(
x, v[i], w

)
.

7. Use these emulators, combined with the g[i]

(
v[i]

)
vectors, to emulate s1 (x, v, w)

and s1 (x, v, w)− s0 (x), using the results in Section 5.2.4.

8. Validate the emulators using techniques from Section 3.5. In the example

in Section 5.5 we use the error, RMSE, SPE and MD. If these expose mod-

elling flaws in the emulators, the previous steps should be revisited, focussing

particularly on the structures of the regression surfaces and correlated errors.

5.5 Example - C:Chl ratio in HadOCC

In Section 4.2 various examples were given of simulator differences in HadOCC

and OG99NPZD. One that is relevant to this method is the ability to change the

carbon:chlorophyll (C:Chl) ratio in HadOCC, explained in Section 4.2.1. If the
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switch variable rcchlopt is set to 0, then C:Chl is constant and determined by the

input parameter rcchl. If rcchlopt = 1, C:Chl varies, and as well as rcchl (which

now functions as the initial value of C:Chl) we must give rcchlmin and rcchlmax,

the minimum and maximum values for C:Chl. When

rcchlmin = rcchl = rcchlmax,

the rcchlopt = 1 version of HadOCC performs identically to the rcchlopt = 0

version with the same value of rcchl. Therefore this pair of versions of HadOCC

can be used to build a hierarchical emulator. The variable iz.chl is a good choice

of output because it is strongly affected by the C:Chl ratio.

5.5.1 Different parameterisations

Although the two versions of HadOCC described above are identical for certain in-

put points, we cannot immediately discern the hierarchical variables v and extra

variables w. For this, the inputs must be re-parameterised. Two valid parameteri-

sations of rcchlmin, rcchl and rcchlmax are introduced here, each of which could

be used to build a hierarchical emulator.

Cuboid parameterisation

One difference between the possible parameterisations is the shape of the new input

space. This parameterisation takes the three inputs related to C:Chl; rcchlmin,

rcchl and rcchlmax, and produces three more, R, m1 and m2, whose ranges form

a cuboid. These are defined by

R = rcchlmax− rcchlmin ∈ [0,M+ −M−],

m1 =
rcchlmin−M−
M+ −M− −R

∈ [0, 1],

m2 =
rcchlmax− rcchl

R
∈ [0, 1],

where M− and M+ are the minimum and maximum respectively for rcchlmin,

rcchl and rcchlmax, given that each has the same range.

R denotes the difference between rcchlmin and rcchlmax, and is the only hi-

erarchical variable. When R = 0, the two versions of HadOCC are the same. The
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input m1 is a common input variable, since this is how the value of rcchl is found

in order to run s0 (x) in the cuboid parameterisation.

When R = 0, rcchlmin = rcchl, and

m1 =
rcchl−M−
M+ −M−

,

and so m1 replaces rcchl in the common inputs. Finally, m2 is an extra variable,

and exists only when R 6= 0.

The fact that this parameterisation induces a cuboid shape in the inputs means

that generating input Latin hypercubes is simple. In fact, because of the constraint

in the original input space for s1 (x, rcchlmin, rcchlmax), that

rcchlmin ≤ rcchl ≤ rcchlmax,

generating designs is more straightforward in the cuboid input space than before.

That said, this parameterisation may create scaling issues. When R is small, the

effect of m1 is strong, since the small range can be anywhere within [M−,M+], but

the effect of m2 is small, because there is only a small range in which rcchl can

sit. When R is large, this is reversed. Whether or not this is a problem is not

immediately obvious. Another advantage of this parameterisation is that having

only one hierarchical variable, R, means that the training data design criteria do

not force us to have too great a number of points.

Non-cuboid parameterisation

A second valid re-parameterisation is to keep rcchl as it is, and to introduce

dmin = rcchl-rcchlmin ∈ [0, rcchl−M−]

dmax = rcchlmax-rcchl ∈ [0,M+ − rcchl].

These are now both hierarchical inputs, as both must be zero in order to achieve

rcchlmin = rcchl = rcchlmax.

This parameterisation does not create the possible scaling problems that the cuboid

parameterisation does, but the shape of the input space is more complicated, which
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makes generating a training data input design less straightforward. Because there

are now two hierarchical inputs, the hierarchical emulator includes four terms, and so

in order to find data for s0 (·) , ψ1 (·) ψ2 (·) and ψ12 (·), each point (x, dmin, dmax) for

which dmin, dmax 6= 0 demands that we also evaluate s1 (·) at (x, dmin, 0), (x, 0, dmax)

and (x, 0, 0). This parameterisation would therefore make hierarchical emulation

more costly and impractical were s1 expensive to run.

For this example, we will use only the cuboid parameterisation, but an investiga-

tion into the effect of the choice of parameterisation would no doubt raise interesting

questions. It is likely that in many cases there will be a choice of emulator input

space, and choosing the most suitable one is an important part of the problem.

5.5.2 Cuboid design - example

Here, we show some hierarchical emulators of the two versions of HadOCC built

using the cuboid parameterisation, and compare them to some standard emulators.

Training data

The training data for this example was formed using a 1,000 point Latin hypercube

over the entire re-parameterised input space of s1 (x,R,m2). HadOCC was run at

each point, and the annual mean iz.chl calculated. To satisfy the design require-

ments, the annual mean of iz.chl was also found for s0 (x) for each point. This

gave an input design of 2,000 points, which we will refer to as ‘lhd1’. Of this, the

sub-design containing points at which R = 0 will be ‘lhd1 0’ and the subset of points

at which R 6= 0 will be ‘lhd1 1’.

Note that the corresponding points in lhd1 0 and lhd1 1 share common m1 val-

ues, rather than common rcchl values. This means we must be careful to use the

reparameterised input variables when building standard emulators of the difference.

Emulation choices

This study involves the building of many emulators, and in order for them to be as

comparable as possible, we decided initially to fix the type of emulator. Therefore in

this section, the regression terms are all first order, with all input variables included,
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and the correlated error terms are isotropic, with the correlation length found using

maximum likelihood.

On looking at the annual mean iz.chl output values, it became apparent that

the logarithm of the annual mean would be the most appropriate choice of output

variable. Figure 5.1 shows the s1 and s0 output compared both on the original and

log scale. Each point on the plot compares the two outputs with all shared inputs

the same in the cuboid parameterisation. Where C:Chl is varying, the values of

R and m2 are different for each point, as the data is lhd1, a randomly generated

LHD. It appears that on the original output scale, the relationship between the

two simulators is highly multiplicative. The Box-Cox procedure strongly suggested

log (iz.chl) as the best choice of output for standard emulators of s0 (·) and s1 (·).

Finding the best g (R)

In Section 5.2.3, some candidates for the g (·) functions were proposed. Here, only

one function g (R) is necessary, and we will consider the possibilities

g (R) = Rλ

and

g (R) = [log (R + 1)]λ

for some λ > 0. Evaluating these functions on our training data lhd1 allows us to

find the corresponding ψ vectors, by

ψ =
s1 − s0

g (R)
.

First order regression surfaces can then be fit to these vectors, and the vector of

residuals (referred to hereafter as the ‘h residuals’) analysed for skewness and close-

ness to normality2. Table 5.1 shows summaries for some different functions g (R).

2By “closest to normality”, we mean that the standardised regression residuals of the s vector

resulting from this transformation gave the highest p-value in the Kolmogorov-Smirnov test, using

N (0, 1) as the null distribution.
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(b) The same plot as above, but on logarithm scale

Figure 5.1: Annual mean iz.chl (top) and log (iz.chl) (bottom) from HadOCC with

varying C:Chl compared with fixed, using the dataset lhd1. The line y = x is added.
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The two best-looking transformations are

g (R) = R0.5278

which minimises skewness, and

g (R) = [log (R + 1)]1.881

which gives standardised residuals that are most plausible under N (0, 1). We will

pursue both, in order to gain insight into which might be a better criterion.

g (R) Skewness of h

residuals

Kurtosis of

h residuals

p-value from Kolmogorov-

Smirnov test

R -3.38 29.0 3.05× 10−8

log (R+ 1) 0.162 4.77 0.00152

Optimised with respect to standardised h residuals from lhd1

R0.5169 0.0114 4.68 0.0111

R0.5278 −4 .89 × 10−5 4.65 0.00932

[log (R+ 1)]1.881 −0.0998 4.86 0.0427

[log (R+ 1)]1.582 −1 .34 × 10−4 4.85 0.00932

Table 5.1: Summaries of the standardised h-residual vectors from linear regressions of

the ψ (x,R,m2) vectors created by some g (R). The skewness and kurtosis should be 0 and

3 respectively if the h residuals are normally distributed. In the bottom two chunks, the

quantities in italics are the optimised quantities. The Kolmogorov-Smirnov test is used

here as a goodness-of-fit test with N (0, 1) as the null distribution. A higher probability

indicates a better fit to the distribution.

Validation data

Fortunately, HadOCC is relatively quick to run, and so we were able to produce a

relatively large dataset with which to validate our emulators. The design ‘lhd6’ was

formed using a one million point Latin hypercube built using the staggered LHD

method introduced in Section 3.5.1, with c = 1000 and m = 1000. This means that

it breaks down into 1,000 sub-LHDs, each containing 1,000 points. Each of these



5.5. Example - C:Chl ratio in HadOCC 89

points was matched by a corresponding point with R = 0. HadOCC was then run at

all two million points, to produce both s1 and s0 data. For each emulator therefore,

we can produce 1,000 sets of prediction summaries for each version of HadOCC, one

for each sub-LHD.

Standard emulator performance

Diagnostics are summarised in all following tables by their minima, maxima, mean

and standard deviation. Plots will also be given where they show interesting results.

Because the Mahalanobis distance combines so much information, it will not be used

to choose between methods, although the values will be shown for some emulators.

This section summarises the standard emulators’ performance at the first three

tasks described in Section 5.3.1: predicting s0 (x), predicting s1 (x, v, w) and pre-

dicting the difference. For quick reference, the ‘best standard emulator’ choices are

summarised in Table 5.2.

Emulator Min. Max. Mean SD

Cuboid

inputs, lhd1 0,

(Table 5.3)

RMSE (log (s0)) 0.114 0.137 0.125 0.00437

Mean SPE (log (s0)) -0.103 0.0502 -0.0261 0.0268

Variance SPE ((s0)) 0.940 1.43 1.18 0.0804

Cuboid

inputs, lhd1 1,

(Table 5.4)

RMSE (log (s1)) 0.126 0.157 0.140 0.00507

Mean SPE (log (s1)) -0.120 0.0705 -0.0268 0.0301

Variance SPE ((s1)) 0.940 1.44 1.15 0.0817

Difference

data,

(Table 5.7)

RMSE
(

log
(

s1
s0

))
0.0941 0.115 0.103 0.00357

Mean SPE
(

log
(

s1
s0

))
-0.0979 0.114 -0.00878 0.0304

Variance SPE
(

log
(

s1
s0

))
0.948 1.39 1.12 0.0706

Table 5.2: Summaries for the best standard emulators of log (s0) , log (s1) and log (s1 / s0)

used over lhd6.

Predicting s0 (x) output

Table 5.3 shows diagnostics for a standard emulator of s0 (x) built using s0 (x) data

only. This uses the cuboid parameterisation and only the data lhd1 0 from s0 (x),
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and is therefore exactly the emulator used for the first term of the hierarchical

emulator. Diagnostics for s0 are therefore omitted from the hierarchical emulator

tables. Output from s0 (x) can also be predicted using emulators of s1 (·), and so

diagnostic summaries for s0 (x) are also shown in Tables 5.4, 5.5 and 5.6.

In Section 3.6, the emulator of HadOCC with isotropic correlation lengths had

very poor properties, shown most clearly in the plot of SPE against rcchl in Figure

3.8. In this Section therefore it was important to check the behaviour of the SPE

values, particularly in relation to rcchl and related variables. It turns out that

when the cuboid parameterisation is used, the SPE from a similar emulator shows

good behaviour against all inputs and against the predicted values. Figure 5.2a

shows this when the s1 (·) data (and not the s0 (·) data) are used to emulate s1 (·).

The emulator in Table 5.3, built using lhd1 0 (s0 (x) data only) and the cuboid

parameterisation outperforms each of the other standard emulators at predicting

s0 (x). The RMSEs are smallest, mean error closest to zero and the mean and stan-

dard deviation of the SPE consistently close to 0 and 1. The alternatives perform

much worse, with those built from lhd1 1 (shown in Table 5.4) severely overesti-

mating log (iz.chl), and SPE summaries in Table 5.6 showing that the full lhd1

dataset gives very poor variances for s0 (x).

Minimum Maximum Mean SD

RMSE (log (s0)) 0.1126 0.1366 0.1247 0.004366

Mean error log (s0) -0.006476 0.01185 0.002920 0.003120

Mean SPE (log (s0)) -0.1033 0.05020 -0.02609 0.02683

Variance SPE (log (s0)) 0.9402 1.4300 1.1778 0.08041

Table 5.3: Diagnostic summaries for the thousand sets of predictions found using the

standard emulator of log(s0) over lhd6, using the cuboid parameterisation, and lhd1 0.

This is exactly the emulator of s0 used for the first term of the hierarchical emulator

Predicting s1 (·) output

Tables 5.4, 5.5, 5.6 show performance summaries of emulators of log (s1 (x,R,m2)),

built using various combinations of training data.
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The best method for predicting s1 (x) appears to be the cuboid parameterisation

built with the training data lhd1 1 (Table 5.4).

Minimum Maximum Mean SD

RMSE (log (s0)) 0.1742 0.1991 0.1864 0.004218

Mean error log (s0) -0.08592 -0.06535 -0.07648 0.003446

Mean SPE (log (s0)) -0.6250 -0.4664 -0.5512 0.02468

Variance SPE (log (s0)) 1.243 1.685 1.486 0.07501

RMSE (log (s1)) 0.1258 0.1573 0.1397 0.00507

Mean error log (s1) -0.0164 0.00740 0.00445 0.00395

Mean SPE (log (s1)) -0.1203 0.0705 -0.02679 0.03011

Variance SPE (log (s1)) 0.9401 1.437 1.150 0.08170

RMSE (log (s1 / s0)) 0.1363 0.1623 0.1482 0.00384

Mean error log (s1 / s0) 0.0649 0.0804 0.0721 0.00246

Mean SPE (log (s1 / s0)) 1.545 1.876 1.700 0.05626

Variance SPE (log (s1 / s0)) 5.640 12.90 8.464 1.145

Table 5.4: Diagnostic summaries for the thousand sets of predictions using the standard

emulator of log(s1) over lhd6, using the cuboid parameterisation and the data lhd1 1.

Minimum Maximum Mean SD

RMSE (log (s0)) 0.1869 0.2086 0.1985 0.003341

Mean error log (s0) -0.1457 -0.1229 -0.1354 0.03389

Mean SPE (log (s0)) -1.0217 -0.8776 -0.9532 0.02302

Variance SPE (log (s0)) 0.8301 1.1892 1.0039 0.05165

RMSE (log (s1)) 0.1324 0.1635 0.1467 0.005049

Mean error log (s1) -0.01962 0.005789 -0.007970 0.003860

Mean SPE (log (s1)) -0.1396 0.04308 -0.0586 0.02887

Variance SPE (log (s1)) 1.008 1.496 1.217 0.08090

Table 5.5: Diagnostic summaries for the thousand sets of predictions over lhd6 using

the standard emulator of log(s1), on the original HadOCC input space and using the data

lhd1 1.
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Minimum Maximum Mean SD

RMSE (log (s0)) 0.1652 0.1996 0.1801 0.005196

Mean error log (s0) -0.02144 0.01007 -0.006785 0.004972

Mean SPE (log (s0)) -0.08462 0.02336 -0.03239 0.01825

Variance SPE (log (s0)) 0.3699 0.5229 0.4458 0.02400

RMSE (log (s1)) 0.1777 0.2132 0.1942 0.005093

Mean error log (s1) -0.03457 0.001028 -0.01420 0.005443

Mean SPE (log (s1)) -0.1355 0.004913 -0.05873 0.02071

Variance SPE (log (s1)) 0.4836 0.6611 0.5695 0.02894

RMSE (log (s1 / s0)) 0.0972 0.1254 0.1126 0.004334

Mean error log (s1 / s0) -0.01672 0.003560 -0.007415 0.003398

Mean SPE (log (s1 / s0)) -0.1579 0.1580 -0.0060 0.04652

Variance SPE (log (s1 / s0)) 1.724 3.846 2.389 0.2763

Table 5.6: Summaries of the diagnostics for the thousand sets of predictions found using

the standard emulator of log(s1) over lhd6, using the standard parameterisation, and lhd1,

that is all s0 and s1 training data (2,000 points).

The plots in Figure 5.2 illustrate the standard emulators’ performance as the

hierarchical input R changes. The top two plots show the SPE for the standard

emulator of s1 (·) built using lhd1 1, the emulator summarised in Table 5.4. Both

the SPE for log (s1) and the SPE for log (s1 / s0) show no trend with R, but the

distribution of the SPE values for the ratio is heavily biased. The bottom two plots

show the same summaries for the emulator built from lhd1. This time, both show a

considerable trend in SPE against R, particularly the ratio prediction. Several of the

other standard emulators, particularly the emulator built from the difference data,

show a similar pattern, with SPE values becoming more variable with increased R.

Figure 5.3c shows the Mahalanobis distances, transformed to fit the F -distribution

as described in Section 3.5, compared with the true F -distribution, and the corre-

spondence is poor.
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(b) Standard s1 (·) emulator, built using

lhd1 1, used to predict log (s1 (·) / s0 (·)),

with the N(0, 1) density plotted as a line.
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(c) Standard s1 (·) emulator, built using

lhd1, used to predict log (s1).
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(d) Standard s1 (·) emulator, built using

lhd1, used to predict log (s1 (·) / s0 (·)).

Figure 5.2: Comparing standardised prediction errors (SPE) for predictions of log (s1)

(left-hand plots) and log [s1 (·) / s0 (·)] (right hand plots) for standard emulators built with

different training data. The prediction data set used for these plots is a pair of 1,000 point

sub-LHDs from the lhd1 data.
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(a) MD (log (s1)), hierarchical emulator.
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(b) MD (log (s1 / s0)), hierarchical emula-

tor.
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(c) MD (log (s1)), standard emulator of

log (s1) built from lhd1 1.
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(d) MD (log (s1 / s0)), standard emulator

of log (s1 (·) / s0 (·)) built from ratio data.

Figure 5.3: Comparing the transformed Mahalanobis distances for the predictions of

log (s1) (left-hand panels) and log (s1 (·) / s0 (·)) (right-hand panels), for the hierarchical

emulator with g (R) = R0.5278 (top panels) and the best standard emulator (bottom pan-

els). The F -distribution densities are added, which should match the distribution of the

transformed MD values.
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Predicting the difference

Because the emulator output is log (iz.chl), the output for the difference emulator

becomes

log(s1 (x,R,m2))− log (s0 (x)) = log

(
s1 (x,R,m2)

s0 (x)

)
,

and so in fact it is the ratio of simulator outputs being considered.

Table 5.7 shows performance summaries of an emulator of the difference between

simulators. The difference can also be predicted using an emulator of s1 (·) built with

the cuboid parameterisation, and so summaries are also shown in Tables 5.4 and 5.6.

The emulator in Table 5.5 can’t be used to find ratios in the same way, because the

paired points have common m1 values, rather than common rcchl values.

The difference is best predicted by the direct emulator of the difference between

logs calculated from the data lhd1, as shown in Table 5.7. Again, although the

predictions from the lhd1 emulator in Table 5.6 are quite accurate, the SPE and

MD summaries show that the emulator’s variance is not as it should be according

to the model.

Figure and 5.3d shows the Mahalanobis distances, transformed to fit the F -

distribution as described in Section 3.5, compared with the true F -distribution, and

the correspondence is poor.

Minimum Maximum Mean SD

RMSE (log (s1 / s0)) 0.09409 0.1145 0.1030 0.00357

Mean error log (s1 / s0) -0.01059 0.009917 -0.001917 0.00295

Mean SPE (log (s1 / s0)) -0.0979 0.1135 -0.00878 0.0304

Variance SPE (log (s1 / s0)) 0.9477 1.390 1.115 0.0706

Table 5.7: Diagnostic summaries for the thousand emulators built from the standard

emulator of log(s1 / s0) over lhd6, using the cuboid parameterisation.

Hierarchical Emulators

The same diagnostics can be found for the hierarchical emulators as for the stan-

dard ones, and these are shown in Tables 5.8 (for g (R) = R0.5278) and 5.9 (for
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g (R) = [log (R + 1)]1.881).

Minimum Maximum Mean SD

RMSE (log (s1)) 0.1110 0.1411 0.1249 0.00483

Mean error log (s1) -0.0153 0.00488 -0.00544 0.00351

Mean SPE (log (s1)) -0.1054 0.04253 -0.03368 0.02529

Variance SPE (log (s1)) 0.6628 1.1083 0.8266 0.06385

RMSE (log (s1 / s0)) 0.07543 0.09944 0.08623 0.00391

Mean error log (s1 / s0) -0.0101 0.00641 -0.00252 0.00239

Mean SPE (log (s1 / s0)) -0.1212 0.05287 -0.04070 0.02752

Variance SPE (log (s1 / s0)) 0.9144 1.2911 1.0863 0.06558

Table 5.8: Summaries of the diagnostics for the thousand emulators build from the

hierarchical emulator with g (R) = R0.5278, used over lhd6.

Minimum Maximum Mean SD

RMSE (log (s1)) 0.1137 0.1430 0.1269 0.004896

Mean error log (s1) -0.01579 0.004716 -0.005260 0.003615

Mean SPE (log (s1)) -0.1102 0.04184 -0.03355 0.02592

Variance SPE (log (s1)) 0.6773 1.1235 0.8475 0.06432

RMSE (log (s1 / s0)) 0.07969 0.1020 0.08904 0.003881

Mean error log (s1 / s0) -0.009962 0.007323 -0.002326 0.002503

Mean SPE (log (s1 / s0)) -0.09556 1.205 0.002468 0.07526

Variance SPE (log (s1 / s0)) 0.9851 1587.8 6.6829 59.73

Table 5.9: Summaries of the diagnostics for the thousand emulators build from the

hierarchical emulator with g (R) = [log (R+ 1)]1.881, used over lhd6. Eight of the sub-

LHDs didn’t run properly, and some ratio predictions gave very unlikely values.

The logarithmic transformation function created some problems for values of

R close to zero, with the result that eight of the 1,000 LHDs in the lhd1 design

produced singular matrices and failed to run. Problems can also be seen through

the distribution of the SPE values, where the maximum value of 1588 is the result

of a very small R.
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Despite this, the predictions are more accurate using a hierarchical emulator with

either g (R) than with the best standard alternatives shown in Table 5.2, shown by

the smaller RMSE values for both log (s1) and log (s1 / s0). Recall that the summaries

for the hierarchical emulators’ predictions of log (s0) will be identical to that of the

best standard emulator, shown in Tables 5.2 and 5.3.

Diagnostics incorporating the variance structure show g (R) = R0.5278 to produce

better results than g (R) = [log (R + 1)]1.881. The SPE values for the log-ratio are

very promising, with mean and variance consistently close to 0 and 1 respectively,

although there is a slight negative bias. Similarly, the SPE for log (s1) shows a

slight negative bias, but is close to having mean zero and variance one. Figure 5.5

shows the behaviour of the SPEs for predictions of log (s1) and log [s1 / s0] for the

two hierarchical emulators.

The hierarchical emulator with g (R) = [log (R + 1)]1.881 has particularly poor

SPE values for the ratio, but the individual results reveal that errors particularly

unlikely under N(0, 1) usually come from points with very small R values. Figure

5.4 shows the two candidate g (R) functions over the interval [0, 1], and over the full

range of R. While R0.5278 enlarges values close to zero, the function [log (R + 1)]1.881

shrinks them, which turns out to be a most undesirable property.
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Figure 5.4: Comparing the two g (R) functions under consideration, [log (R+ 1)]1.881

(solid line) and R0.5278 (dot-dashed line), over [0, 1] (left) and over the range of R (right).
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(b) Hierarchical emulator with

g (R) = R0.5278 used to predict

log (s1 (·) / s0 (·)).
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(d) Hierarchical emulator with

g (R) =
(

log (R+ 1)
)1.881

used to pre-

dict log (s1 (·) / s0 (·)).

Figure 5.5: Comparing standardised prediction error (SPE) values for predictions of

log (s1) (left-hand plots) and log [s1 (·) / s0 (·)] (right hand plots) for hierarchical emulators

built using two g (R) functions and training data lhd1. The prediction data set used for

these plots is a pair of 1,000 point sub-LHDs from the lhd6 data.

Figure 5.3 shows the distribution of the Mahalanobis distances from the vali-

dation study, for the hierarchical emulator with g (R) = R0.5278, and for the most
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successful standard emulators. Although none of these plots shows a good fit to

the true distribution, shown by a solid line in each plot, the hierarchical emulator’s

values are closer.

5.5.3 Working with reduced s1 (·) data

An advantage of hierarchical emulation that was mentioned earlier is the ability to

use training data containing many runs of s0 (x) and comparatively few of s1 (x, v, w).

This is particularly helpful when s1 (x, v, w) is much more costly to run than s0 (x).

So far, our example has concentrated on emulators built from a training data

design containing equal numbers of points from the two simulators. In this section,

we build an emulator using 1,000 input points for the simpler version of HadOCC,

and only 100 for the more complex version. These hundred runs from s1 are all

matched in their x and m1 values by a point in the s0 data, and therefore the design

satisfies the criteria in Section 5.2.2. They were taken from a 2,000 point design, so

that a hierarchical emulator could also be built with 1,000 points each in the s0 and

s1 input spaces.

The emulator was constructed using the same choices as the previous ones in

this example, namely a first order regression surface involving all terms and a single

estimated correlation length for each level of the hierarchy. The transformation

function g (R) = R0.5278 was used. Three other emulators were also built, to compare

with this reduced s1 emulator. A standard emulator was built using the 100 s1 and

1,000 s0 points (i.e. the same reduced s1 data as the hierarchical emulator), and

another using just the 1,000 s1 points3. A second hierarchical emulator was built

from the full 2,000 point design.

It was suspected that when a comparatively small number of s1 data were used,

the emulator would perform considerably better ‘closer to s0’, i.e. for smaller values

of R. This feature has not manifested itself particularly in the emulators with equal

numbers of points for both simulators. The errors (emulator prediction minus simu-

3From the previous examples of standard emulators, this appears to be a better strategy than

using all 2,000 points. Compare Tables 5.5 and 5.6
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lator output) for each emulator are plotted against R in Figures 5.6 (for emulators of

log (s1)) and 5.7 (for emulators of log (s1)− log (s0)). The standard emulators sum-

marised in Figures 5.6a and 5.7a use the same data as the hierarchical emulators in

Figures 5.6c and 5.7c.
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Figure 5.6: Errors for four emulators of log (s1), plotted against g(R) (bottom axis) and

R (top axis).

This clearly shows a great reduction in the error when a hierarchical emulator
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is used, particularly when R is small. Improvement is greatest in the hierarchical

emulators of the difference, where the hierarchical structure enforces the relationship

between the simulators, so that the difference when R = 0 is always zero. The error

gradually increases with R, (see Figure 5.7c) until its accuracy appears roughly the

same as the standard alternative.

0 5 10 15

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

g(R)

E
rr

or

0 20 40 60 80 100 140 180

(a) Standard emulator from 1,100 point

design.

0 5 10 15

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

g(R)

E
rr

or

0 20 40 60 80 100 140 180

(b) Standard emulator from full 2,000

point design.

0 5 10 15

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0
1.

5

g(R)

E
rr

or

0 20 40 60 80 100 140 180

(c) Hierarchical emulator from 1,100
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Figure 5.7: Errors for four emulators of log (s1)− log (s0), plotted against g(R) (bottom

axis) and R (top axis).
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Figure 5.8 shows how the RMSE changes as the range of R in the data changes.

Because the number of points used to find the RMSE changes along the x axis, we

should be careful when comparing these values. In particular, the values with small

maximum R contain far fewer points, and are therefore much more changeable.

Figure 5.8a compares four emulators being used to predict log (s1). The hierar-

chical emulator built with the reduced s1 data (the solid line) shows a clear increase

in RMSE as R increases, performing very well when R is small. For R less than

roughly 100, this emulator outperforms the standard emulator built with all 1,000 s1

input points. The hierarchical emulator built with all 2,000 data points also shows

increasing RMSE as R increases, but not as noticeably.

Figure 5.8b shows emulators of the difference, log (s1) − log (s0). The standard

emulators are emulators of the difference calculated from the training data, which

showed to be the best standard method in Section 5.5. The reduced s1 standard

emulator is therefore built from the difference of log-output at each of the 100 points

included with R 6= 0. The hierarchical emulator of the difference in this case, where

there is only one hierarchical variable, is really built from the points for which a

difference (or ψ data) is available, and therefore the hierarchical emulator built

from reduced s1 data is also built only from these 100 points.

The advantage in the hierarchical emulation structure is much more marked

with reduced s1 data. The only extra information contained in the hierarchical

emulator, compared to the standard emulator with reduced s1 data (dot-dashed), is

the inclusion of the relationship

s1 (x,R,m2) = s0 (x) + g (R)ψ (x,R,m2) ,

and it appears from Figure 5.8 that this is a valuable addition to the emulator. This

supports the idea that when the more complex simulator is costly to run compared

to the simpler one, hierarchical emulation is a very effective strategy.
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(b) Emulators of log (s1)− log (s0) = log (s1 (·) / s0 (·)).

Figure 5.8: RMSE for four emulators, changing as the subset of data used changes. The

prediction data was restricted to R less than ‘Maximum R’ for values from 1 to 180 (the

maximum R takes in our experiment). The number of input points considered ranges from

5 (when R ≤ 1) to 1,000 (when R ≤ 180).
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5.6 Summary

In this chapter we have introduced hierarchical emulation, a method for emulation

for two simulators where one is an extension of the other. These must have the

property that when a small subset of the inputs, the hierarchical inputs, are set

to particular values, the two simulators behave identically. Hierarchical emulation

makes use of this relationship to emulate the more complicated simulator using a

combination of other emulators, one of which is an emulator of the simpler simulator.

We have established a prior structure for the emulator that ensures separabil-

ity between terms. The implications of this method on the design of experiments

have been explored, and some criteria established for the structure of the training

data. A hierarchical emulator requires some transformation functions g (·) for the

hierarchical variables, and desirable properties for these have been explored.

In order to assess the performance of hierarchical emulation, a validation study

was conducted using two versions of HadOCC. For this, a 1 million point staggered

LHD was created (see Section 3.5.1) so that hierarchical and standard emulators

could be compared with respect to various tasks. Overall, this showed hierarchical

emulation to outperform the standard method, both in its predictive accuracy and

its coherence with the emulation model. A further experiment to assess the perfor-

mance of a hierarchical emulator built with a reduced amount of data from the more

complicated simulator showed very promising results compared to the standard em-

ulator, and reinforced our beliefs that including the relationship between the two

simulators is beneficial. In Chapter 7, we present an object-oriented method for

programming hierarchical emulation.

Although this makes some progress towards emulating multiple simulators, the

set of situations in which it applies is still fairly restrictive. In Chapter 6, we

introduce intermediate variable emulation, whose scope is much wider.



Chapter 6

Intermediate Variable Emulation

The methods introduced so far jointly emulate two simulators only when their input

spaces are almost or entirely the same. However, this is not often the case, and so

for a method to be useful for comparing simulators, it should not make this demand.

In Section 4.2.3, we noted that even when they do not share the same input

space, two simulators of a particular system will often represent many of the same

processes. The descriptions of HadOCC and OG99NPZD in Chapter 2 and in the

examples of simulator differences in Section 4.2 reveal this to be true in their case.

In this chapter we introduce intermediate variable emulation, which takes ad-

vantage of this feature in order to emulate multiple simulators with different input

spaces in such a way that they can be compared. The idea is related to a technique

developed by Strong et al. (2012), where intermediate variables created in a similar

way are used to help understand structural uncertainty in computer models.

6.1 Synopsis

The basic premise of intermediate variable emulation is that a simulator can be

looked at with regard to three stages, each represented by sets of variables:

1. Input variables

2. Intermediate variables

3. Output variables.

105
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The input variables are the numbers input by the user to run the simulator, such as

those in Tables 2.1 and 2.3. The output variables are those that are returned by the

simulator, which an emulator aims to predict. These will usually be some summary

of the raw simulator output, for example the mean as in the example in Section 3.6,

or a multivariate summary of a time series.

In standard emulation, as described in Chapter 3, an emulator takes in the

input variables and produces a probability distribution for the values of the output

variables. However, when dealing with several simulators of the same system, each

with a different input space, this method makes comparison very difficult, as we

discovered when emulating OG99NPZD and HadOCC in Section 3.6. Seldom can

direct links between particular input variables be made, and the emulators cannot

easily be used to make inferences about the different modelling choices made in each

simulator.

Intermediate variables are a new construct, representing the states of some set

of sub-processes in a simulator1. Simulator code often contains sub-modules which,

as they run, produce variables other than the simulator output. These are usually

invested with some system meaning, for example the death, growth or concentration

of a particular species, or a transfer or flux that takes place. Two simulators of the

same system may well contain some corresponding sub-modules.

Suppose two computer simulators of an ecosystem each have a process represent-

ing the death of a particular species. Although their input variables are different,

making it impossible to identify points in each input space with one another, both

are able to produce a time series of this species’ mortality. These have a mean-

ing that can be treated as the same, and so features of these time series can be

compared. Producing a very similar time series from each model may enable us

to identify links between portions of the input spaces, or to see how different the

parameterisations of the process are in practice. The input variables can be used to

emulate intermediate variables to better enable this task.

1For a particular simulator there may be more than one possible set of intermediate variables;

they are not unique.
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Further than this, we can list all these intermediate variables for each simulator

in such a way that, at least in theory, if we know the values for all the intermediate

variables we no longer need to know the values of the input variables to calculate

the simulator output. Having done this, in principle we can use the values of the

intermediate variables to build emulators of the simulators’ outputs, since the rela-

tionship is deterministic.

Simulators of a particular system will usually have outputs that are linked in

meaning. Often they track the population of a particular species, or the concentra-

tion of a chemical. In the case of HadOCC and OG99NPZD, MarMOT, which was

introduced in Section 2.4, enables outputs to be produced that are assigned exactly

the same system meaning.

In the intermediate variable emulation framework, the emulators built from the

intermediate variables will have input (the intermediate variables) and output (the

output variables) with the same physical meanings for each simulator. This means

that the treatment of the sub-processes by the different simulators can be compared.

As well as making inferences about the relationships between the input spaces and

the intermediate variables, we can compare the relationships between the same in-

termediate and output variables for the different simulators. By emulating the

intermediate variables from each simulator’s input space, we can compare the effect

of the input variables on a range of variables that covers each simulator’s behaviour,

since the intermediate variables separate the input from the output.

Emulating the intermediate variables from the inputs of each simulator is mainly

informative for the relationships between the two input spaces. Emulating the out-

put from the intermediate variables helps compare the behaviour of each simulator

in terms of how the processes they model contribute to the overall representation of

the system. Figure 6.1 shows the relationship between the variables.

In the rest of this chapter, we will investigate how these emulators, and the

intermediate variables themselves, can be used to explore simulator differences. Each

step in the process will be explained and summarised, and then illustrated using

OG99NPZD and HadOCC, the simulators introduced in Chapter 2.
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Simulator 1 inputs Simulator 2 inputs

Intermediate variables

Output variables

Figure 6.1: A framework for intermediate variable emulation of two simulators. The

quantities in the boxes represent variables, not exact values. Although the intermediate

and output values for the different simulators will have different numerical values, in terms

of system meaning they are the same.

Intermediate variable emulation for a single simulator

As well enabling the comparison of different simulators, intermediate variable em-

ulation is also a useful tool for understanding a single simulator. The intermediate

variables allow one to probe into how the simulator is modelling the system, and

learn more about how the inputs contribute to various aspects of the model. In

Section 6.5 the intermediate variables will be used to refine the input region in a

way that cannot necessarily be done using output variables. This is done using ei-

ther observations of the intermediate variables, if available, or by ruling out inputs

leading to unrealistic behaviour in some intermediate variables. This could prove

especially useful for refining the input space in inputs that are not very active in the

output, but are used in some intermediate variables.

Although the focus in this chapter is on the use of intermediate variable emula-

tion for comparing two simulators, many parts of the method and analysis could be

implemented for one simulator. Implementing the theory in the examples through-

out this chapter will lead to a greater understanding of each simulator on its own,

as well as to the relationship between them.
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6.2 Adding intermediate variables

Whereas standard emulation requires no understanding of the simulator beyond its

input and output variables, intermediate variable emulation demands some appre-

ciation of the simulator’s workings. This will involve careful study of the source

code and any available literature, and liaising with experts of the system and the

simulators where possible. The quantities chosen as intermediate variables will not

necessarily be included as output to either simulator, and so the code may need to

be adapted to incorporate them.

Simulators of complex systems usually produce very structured high dimensional

output, often over both space and time. We will often restrict our interest to time

series, but the method can be extended to spatial data. It will also be assumed

throughout that the dimension of the output variables has already been reduced, or

the variables summarised somehow if necessary. The technique used for doing this

does not affect the methods described in this chapter.

For many pairs of simulators there will be more than one possible set of inter-

mediate variables, and which works best may depend on the goal of emulation. It

may be that one set of intermediate variables has a much simpler relationship to

the input or output variables than the other, and might therefore add very little

information. A good strategy is to look for common ground between the two sim-

ulators, for example processes given the same meanings, or concentrations of the

same tracers. There are likely to be quantities calculated at each time step in the

simulator, and these are often a good place to look.

For intermediate variable emulation methods to work, the intermediate variables

must separate (or very nearly separate) the input variables from the output variables.

That is, given the values of all the intermediate variables, no information about

the input variables should add much information about the output variables. This

requires a thorough understanding of the processes taking place in the simulator and

of the output, gained through some combination of source code, documentation or

expert advice. It is difficult to verify that this has been achieved, though if it hasn’t,

the emulators from intermediate to output variables will be severely wanting.

The key steps therefore in selecting intermediate variables are
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� Work with simulator experts, firstly to ask their advice about possible quanti-

ties to be used as intermediate variables, and in the later stages to gain their

feedback on the chosen quantities.

� Study papers and other documentation of the simulators, to gain further in-

sight. In particular, if there are some equations governing the simulators, work

out the primitive quantities in terms of which they are written.

� Work through the source code, to see how the quantities suggested for inter-

mediate variables manifest themselves. Study the calculation of the output

variable, and all the stages where input variables are used in its calculation.

These may well not be done in this order, and it is quite possible that the resources

mentioned will not all be available.

6.2.1 Example: HadOCC and OG99NPZD

Here, we investigate one possible description of HadOCC and OG99NPZD in terms

of intermediate variables, which will be used in the example sections throughout the

rest of this chapter.

Both HadOCC and OG99NPZD are compartmental simulators, modelling flows

of nitrogen between the same compartments. They are described more fully in

Sections 2.2 and 2.3. In both simulators the biological models are governed by

equations representing these nitrogen flows, such as the following ‘source minus

sink’ equations used in OG99NPZD:

sms(P ) = J̄ (z, t, N)P︸ ︷︷ ︸
growth

−G (P )Z︸ ︷︷ ︸
grazing

−
(
µPP + µPPP

2
)︸ ︷︷ ︸

death

sms(Z) = γ1G(P )Z︸ ︷︷ ︸
grazing

− γ2Z︸︷︷︸
excretion

− µZZ
2︸ ︷︷ ︸

mortality

sms(D) = (1− γ1)G(P )Z︸ ︷︷ ︸
unassimilated food

+µPPP
2︸ ︷︷ ︸

dead P

+µZZ
2︸ ︷︷ ︸

dead Z

− µDD︸ ︷︷ ︸
remineralisation

−ws
∂D

∂z︸ ︷︷ ︸
sinking

sms(N) = µDD︸ ︷︷ ︸
remineralisation

+ γ2Z︸︷︷︸
excretion

+ µPP︸︷︷︸
dead P

− J̄ (z, t, N)P︸ ︷︷ ︸
P growth

.

The representation in HadOCC is similar. At each time step, these equations are

used to update the concentrations of each compartment. Quantities that can be
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monitored at each time step and have the same meaning in both simulators therefore

include the concentrations of each tracer and the amounts of nitrogen transferred

between each pair of compartments, and so these fit the requirements of intermediate

variables.

Many of the outputs are fairly simply related to the tracers’ concentrations; for

instance, pon is the sum of phytoplankton, zooplankton and detritus, and chl is a

multiple of phytoplankton. We therefore chose nitrogen transfers as our intermediate

variables, in the hope that they would have a more interesting relationship to the

simulators’ outputs. Nitrogen transfer was also the quantity suggested by John

Hemmings, an expert in HadOCC and OG99NPZD.

Transfer Processes in

HadOCC

Processes in

OG99NPZD

Variable

name

N to P P growth P growth iz.np

P to N P grazed,

P respires,

P mortality

P mortality iz.pn

P to Z P grazed P grazed iz.pz

P to D P mortality,

P grazed

P mortality,

P grazed

iz.pd

Z to N Z mortality,

Z grazing

by-products

Z excretion iz.zn

Z to D Z mortality Z mortality iz.zd

D to N D remineralised,

D grazed

D remineralised iz.dn

D to Z D grazed iz.dz

D lost D sinks D sinks iz.ds

Table 6.1: Intermediate variables in terms of nitrogen transfer for HadOCC and

OG99NPZD, and the system processes that contribute in each simulator.

The nitrogen transfers at each time-step can be calculated by noting the subtrac-
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tions and additions of nitrogen made to each compartment. The amount of nitrogen

leaving nutrient and being added to phytoplankton in OG99NPZD, for instance, is

J̄ (z, t, N)P.

This transfer is associated with photosynthesis. The nitrogen transfers made at

each time step are listed in full for HadOCC and OG99NPZD in Table 6.1, along

with the physical processes each transfer represents in each simulator, and shown

diagramatically in Figure 6.2. This formulation leads to nine intermediate variables

in HadOCC and eight in OG99NPZD.
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Figure 6.2: Intermediate variables in HadOCC and OG99NPZD, matching those in Table

6.1. The arrows represent transfers of nitrogen, and therefore intermediate variables. The

dashed line shows a transfer present only in HadOCC.

Data

In order to be able to put intermediate variable methods into practice, four data sets

were constructed. ‘OG100’ and ‘OG1000’ are both data from OG99NPZD, created

using 100 and 1,000 point LHDs over OG99NPZD’s input space, respectively. It was

checked that these were roughly orthogonal and had good space-filling properties.

Similarly, ‘HAD100’ and ‘HAD1000’ are two datasets from HadOCC, containing 100

and 1,000 input points respectively, chosen by building LHDs over HadOCC’s input
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space. Each input point produces time series for each of the intermediate variables

listed in Table 6.1 and a time series for any simulator outputs. The input ranges

used were those given in Tables 2.1 and 2.3.

To illustrate this method, we choose depth-integrated particulate organic nitro-

gen (iz.pon) as the overall output for both simulators.

In both simulators, each intermediate variable is evaluated at each time and

depth level of the model. This means that in its raw form, the data for each simulator

contains 57 time series for each intermediate variable and input point, one for each

depth-level. MarMOT enables depth-integration of any quantity, providing a spatial

average. Although this loses some information, John Hemmings suggested that

working with the depth-integrated nitrogen transfers would be likely to work well,

thus reducing the data back to one time series per intermediate variable per input

point for each simulator.

In keeping with the MarMOT naming convention, we will name the intermediate

variables iz.tran, where tran represents the nitrogen transfer taking place. For

example iz.pn represents the transfer of nitrogen from phytoplankton to nutrient.

These names are shown in Table 6.1 and on Figure 6.2. The exception to this

rule is iz.ds, which represents detrital sinking. From here on, the general term

‘intermediate variables’ applied to OG99NPZD or HadOCC refers to these depth

integrated variables. In order to specify the simulator and time point, we will write

iz.transimulator
time

so that, for example, iz.npH
24 is the depth-integrated nutrient to phytoplankton

transfer for HadOCC at time 24.

6.3 Dimension reduction

A crucial part of the intermediate variable emulation process is choosing summaries

of the intermediate variables to be used in the emulators built in Sections 6.5 and

6.6. Each input point produces intermediate variables with multiple values, often in

a time series over several spatial regions. In order to be able to emulate using these

variables, they must be summarised.
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These summaries must contain enough information about the intermediate vari-

ables for the intermediate variable emulation model to capture the behaviour of the

simulator adequately. They must also avoid being too highly correlated with one an-

other, and must reduce the dimension of the intermediate variable space enough to

make emulation possible. Ideally, they should be quantities that are simple enough

to make any analysis fairly clear.

A simple method for summarising a time series, and the one we will employ, is

to select a subset of values from each time series to represent the data. To select the

most appropriate subset, we will use principal variable methods. There are various

algorithms for selecting principal variables, and here we will use one proposed by

Cumming and Wooff (2007).

The first principal variable is that for which the sum of the squares of correlations

with each other variable is the largest, found using the correlation matrix R between

the full collection of variables. This variable explains the highest proportion of the

variance of the data.

The second principal variable is found in a similar way, using the unscaled par-

tial correlation matrix of the remaining variables given the first principal variable.

This process continues until some chosen threshold is reached. The full algorithm

is presented in Cumming and Wooff (2007). At each step a variable is chosen that

captures features of the variation not yet captured by the existing principal vari-

ables. For our purpose, there is a delicate balance between representing the data in

enough detail and explaining enough variation on the one hand, and including too

many variables, therefore inducing cripplingly high collinearity among the principal

variables, and hindering analysis at the later stages on the other.

Popular ways of summarising time series often approximate the series by an an-

alytic function. Examples include orthogonal polynomials (Narula, 1979), wavelets

(Bayarri et al., 2007) and smoothing splines (Silverman, 1985; Wang, 1998). Ram-

say and Silverman (1997) and Ramsay and Dalzell (1991) cover various methods

for the analysis of functional data. Some of these techniques may also prove to be

effective strategies for intermediate variable emulation, but principal variables have

the advantage of being relatively easy to find, and make the analysis and comparison
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of time series a simple task.

Many of the curve-fitting techniques mentioned above are suited to different

shapes of curves to various degrees, and may produce poor results if applied blindly.

In using them for intermediate variable emulation it would be necessary to look

at the general shape of each intermediate variable, and to consider exactly which

curve-fitting method must be applied, and how. This is not necessary with principal

variables. There are possible sorts of data, for example a constant time series with

random noise added, for which principal variables will perform very poorly, but in

most situations they are robust.

In order to find the principal variables for each intermediate variable, a stopping

criterion must be chosen for the algorithm outlined by Cumming and Wooff (2007).

We choose to stipulate a minimum proportion of total variation in the data that must

be explained by the principal variables. This can be found, as shown in Cumming

and Wooff, by

1−
tr
(
S̃PV

)
tr (R)

, (6.1)

where tr (·) denotes the trace, R is the full correlation matrix of the data and S̃PV

is the unscaled partial correlation matrix of the non-principal variables given the

principal variables.

This stopping criterion enables us to ensure that the principal variables are cap-

turing information. If the number of principal variables for each intermediate were

specified instead, there would be no assurance of this. If too many were included,

unnecessary degrees of collinearity would be introduced. If too few, then too little

information would be retained. Stipulating the proportion of variance explained

also ensures that in a situation where principal variables will do very badly, such

as the extreme case of vectors of random noise, the algorithm will force many more

principal variables to be selected that might be desirable, thus raising alarm.

By construction, a linear combination of principal variables can be used to almost

perfectly reconstruct the full dataset. The kint principal variables used to represent

a collection of n full time-series of intermediate variable int from simulator sim

form an (n× kint) matrix P sim
int . For each intermediate variable int and simulator
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sim, a (kint × t) (where t is the length of a full time series) transform matrix T sim
int

can be found such that

P sim
int T

sim
int

approximately re-forms the entire dataset. One method for finding the elements of

P sim
int is to use the least squares coefficients, found by using the principal variables

to predict each time point in the full dataset in turn.

Principal variables with two simulators

To find the principal variables using data from more than one simulator, there are

several possible ways to proceed. For each intermediate variable shared by the

simulators, the data can be pooled and the principal variables chosen which best

represent the combined dataset. This makes for a simpler analysis, and is the option

taken where possible in this chapter. Alternatively, the principal variables could

be chosen that best represent each intermediate variable for each separate set of

simulator data. A third option is to choose principal variables for each simulator,

and then use the union of all these to represent each simulator’s data, however

this is likely to result in high degrees of collinearity. If the time series behave very

differently for the different simulators, pooling the data to find principal variables

may result in some features being missed. Methods using pooled data assume a

roughly equal quantity of data for each simulator; if this is not the case, the method

should be adapted.

Studying the behaviour of the intermediate variable data can provide insight

into which of the above options is best. If the designs over each simulator’s input

space are well chosen, for example Latin hypercubes with good orthogonality and

space-filling properties, they can be treated as representative samples from the input

spaces. Therefore the resulting intermediate variables can be treated as representa-

tive samples from the intermediate variable space. With appropriate caution, they

can be used to infer the behaviour of the populations of intermediate variables, and

to compare the ranges and shapes of the different simulators. A simple way to do

this is to plot a sample of the full time series for each intermediate variable and

simulator.
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The variances of the intermediate variables can also be compared as time pro-

gresses, to show which parts of each time series are more variable for the different

simulators. For each simulator, the variance of each intermediate variable can be

calculated at each time-step. These can then be used to find time-series of the ratio

of the variances of the two simulators’ values for each intermediate variable. Some

examples of plots of these time series are shown in Figure 6.4. This helps to expose

areas where one simulator may favour the placement of a principal variable, and the

other may not.

Care must be taken in interpreting these variance ratios. If a variable has consis-

tently higher variance in one simulator than another, it may be that it is inherently

more varying in some sense in that simulator. It may be, however, that the input

design is much more restricted in the other simulator, leading to much more con-

strained values. Because the input spaces are different, judging whether the two

input designs are similarly restrictive is impossible.

After this stage, the principal variables will be used to represent both simulators’

data, and so it is important to understand their relationship to the full datasets. If

the transform matrices T sim
int are different for the two simulators, and therefore the

relationship between the principal variables and the full set of intermediate variables

is different for each simulator, then we must bear this in mind when treating the

principal variables as comparable.

An effective strategy is to use the transform matrix for one simulator to recon-

struct the full time series from the other, by

P sim1
int T sim2

int .

The errors from this reconstruction can then be compared to the errors found when

using the principal variable matrix from the same simulator. If there is a large

difference, this implies that caution should be taken when treating the principal

variables as representing both simulators’ data in the same way.

Finally, depending on the overall goal of the emulation study, a different choice

of time points or summaries may be preferable. In this chapter, the main focus is

on learning as much as possible about the comparisons to be made between two

simulators, more or less in the absence of any system data. If observed data of some
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kind is available, for example of the output at a particular time point, then a better

choice may be to choose time points of the intermediate variables that give the

best prediction of this quantity. Rather than applying a technique such as principal

variables, a better strategy might be step-wise model selection, or studying the code

to work out any time dependencies between the quantities.

Method summary

The key steps for dimension reduction using principal variables are:

1. Plot samples of time series for each intermediate variable for each simulator,

and variance ratio time series plots for each intermediate variable. If these

reveal very different behaviours for the simulators, investigate further, and

consider an alternative strategy to pooling both simulators’ data to find prin-

cipal variables.

2. Combine the different simulators’ data for each intermediate variable and find

the principal variables. Ensure that the stopping criterion, usually the pro-

portion of variance explained, is achieved not just in the combined data, but

also in the data for each simulator on its own.

3. Find a transform matrix for each intermediate variable and simulator that

approximately reconstructs the full time series from the principal variables.

For each intermediate variable, use the transform matrix from one simulator’s

data to reconstruct the data from the other. If this results in relatively large

errors, note that the relationship between the principal variables and full time

series differs between the simulators.

This could be considered part of the analysis of the intermediate variable data, and

indeed it is crucial that the time series are summarised well, and that the relationship

to the full dataset is understood, for any further inferences to be credible. In Section

6.4, methods for analysing the principal variable data are introduced.
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6.3.1 Example: Dimension reduction

Step 1: Plotting time series data

The plots in Figure 6.3 (which spans three pages) show the hundred time series for

each intermediate variable from OG100 and HAD100. The vertical lines show the

principal variables, which will be found later. Similar plots for the larger datasets

HAD1000 and OG1000 show no different behaviour, but are more difficult to inter-

pret because of the density of the lines.

The two simulators appear to produce similar trends and distributions of values

except for log.iz.zd, and a few extreme values of iz.ds in OG99NPZD and of

iz.pd and iz.dn in HadOCC. The pattern of iz.np time-series appear mostly

similar, except that the first half of the OG99NPZD series are much less smooth

than the HadOCC series. Otherwise, the data are similar in terms of smoothness

and general trend.

Further comparison can be made by plotting the ratio of the variances for the

two simulators at each time point, as in Figure 6.4. For each intermediate variable,

log10

[
var
(
iz.tranOG99NPZD

t

)
var
(
iz.tranHadOCC

t

) ]

is plotted against time. The horizontal red lines are at zero, and so anything above

this line shows that at that time, the OG99NPZD data is more variable than the

HadOCC data, and anything below the line shows the converse. OG99NPZD shows

much higher variation for log.iz.zd and iz.ds, and also slightly higher at early

and late times for iz.np and iz.pn.

There is no obvious pattern of higher variability in one simulator’s data than in

the other. The ratios mostly vary even within a single intermediate variable. This

implies that rather than being due to the input ranges for the different simulators,

at least some of the variability is inherent in their modelling of the system.

Keeping in mind these slight differences between HadOCC and OG99NPZD, we

decided to combine the OG1000 and HAD1000 data to find principal variables, and

to continue with the methods in Section 6.3.
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Figure 6.3: Time series plots of intermediate variable output for OG100 (left) and

HAD100 (right). Each plot covers a year. The zooplankton-related intermediates are

transformed in both simulators, for reasons that will be explained later.
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Figure 6.3: Time series plots of intermediate variable output for OG100 (left) and

HAD100 (right). Each plot covers a year. The zooplankton-related intermediates are

transformed in both simulators, for reasons that will be explained later.
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Figure 6.3: Time series plots of intermediate variable output for OG100 (left) and

HAD100 (right). Each plot covers a year. The zooplankton-related intermediates are

transformed in both simulators, for reasons that will be explained later.
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Figure 6.4: Log variance-ratios for OG1000 and HAD1000. These are calculated by

finding the variance of each intermediate variable at each time point for both simulators,

then dividing the OG99NPZD variance by the HadOCC variance, and taking the base 10

logarithm of the ratio. In each plot the horizontal line is at 0, where both variances are

equal. Values above 0 indicate that the OG99NPZD data is more variable, values below

0 that HadOCC is more variable. Principal variables are shown by vertical lines.

Step 2: Finding the principal variables

Having plotted various features of the full time series, we can now reduce the di-

mensions by finding principal variables.
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Intermediate

variable

OG1000 & HAD1000 combined

Time points OG1000

variance

explained

HAD1000

variance

explained

iz.np 1, 3, 146,

277, 365

0.994 0.993

iz.pn 1, 29, 282,

365

0.998 0.993

log.iz.pz 3, 35, 164,

365

0.998 0.995

iz.pd 2, 17, 99,

355

0.997 0.996

log.iz.zn 21, 145,

(1)

0.994

(0.998)

0.988

(0.993)

log.iz.zd 1, 130

(365)

0.992

(0.999)

0.984

(0.995)

iz.dn 3, 10, 112,

365

0.996 0.995

iz.ds 2, 13, 124 0.997 0.992

log.iz.dz 5, 34, 148,

365

0.994

Table 6.2: Principal variables chosen when 99% of variation is to be explained. The

‘time points’ column shows the time points for each intermediate variable that have been

selected as principal variables. The dataset contains all the HAD1000 and OG1000 data,

and has therefore 2,000 time series for each intermediate variable. The two ‘variance

explained’ columns show how much of the variance of the individual data sets is explained

when these principal variables are used, calculated using Equation 6.1. The bracketed

numbers in italics show updated figures when more time points are added, so that at least

99% of variation in each dataset is explained by the principal variables found from the

combined dataset.

It is clear from the plots involving zooplankton in Figure 6.3 (sub-figures 6.3(e),
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(f), (i), (j), (k), (l) and (q)) that after a certain time, a high proportion of runs have

intermediate variables with values of zero, or almost zero2. For this reason, we will

deal with the logarithms of each of the intermediate variables involving zooplankton,

which was recommended by the Box-Cox model selection procedure. Details of how

this was applied are given in Appendix C.1, along with plots summarising the results.

We will return to this feature of the data when applying the techniques in Section

6.5. These variables will be written log.iz.tran.

To find the principal variables for each intermediate variable, we must specify

the proportion of variance they should explain (or a different stopping criterion)

and the dataset from which they are to be found. Table 6.2 shows the time points

selected for each intermediate variable such that 99% of the variance is explained

for the combined OG1000 and HAD1000 data. These time points are also marked

by vertical lines on the plots in Figures 6.3 and 6.4. For log.iz.zn and log.iz.zd

a larger number of principal variables is required in HadOCC than in OG99NPZD

to explain the same proportion of the variance. To address this, some more time

points were added, so that at least 99% of the variability in both HAD1000 and

OG1000 was accounted for by the principal variables. These extra time points are

shown in italics and in brackets in Table 6.2

The emulators created in the stages described in Sections 6.5 and 6.6 can be used

to give an indication of the amount of information retained through these stages.

This can therefore show up possible problems in the selection of the intermediate

variables and the dimension reduction stages. This is explained and illustrated with

an example in Appendix C.2.

Step 3: Reconstructing the full datasets

The final stage in dimension reduction is to verify that the principal variables for

each simulator relate to the full data in a similar way. We find T OG
int and T HAD

int , the

kint × 365 transform matrices, for each intermediate variable. Using these, we can

2The values for iz.pz and iz.dz do reach zero, and so were transformed to iz.tran+ 10−5 to

enable us to use the Box-Cox procedure. The lines at roughly −11.5 therefore represent log
(
10−5

)
.

The choice of value was fairly arbitrary, but 10−5 leads to a very conclusive Box-Cox transformation
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Figure 6.5: Time series of RMSE from reconstructing the full intermediate variable data,

using the correct transform matrix (solid line) and the matrix for the other dataset (dashed

line). The mean of each intermediate variable is given in brackets.
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Figure 6.5: Time series of RMSE from reconstructing the full intermediate variable data,

using the correct transform matrix (solid line) and the matrix for the other dataset (dashed

line). The mean of each intermediate variable is given in brackets.
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approximate the full time series from OG1000 by P OG
intT

OG
int, or those from HAD1000

by P HAD
int T

HAD
int .

In order to check that the data are reconstructed in a similar way, we compare

the reconstructions of OG1000 given by P OG
intT

OG
int with those from P OG

intT
HAD
int , and the

reconstructions of HAD1000 given by P HAD
int T

HAD
int with those from P HAD

int T
OG
int. Figure

6.5 shows the RMSE at each time point between the original data (OG1000 or

HAD1000) and the data reconstructed from the principal variables. A solid line

shows that the transform matrix used to reconstruct the data was found from the

same data, and a dashed line shows that the transform matrix from the other sim-

ulator’s data was used. The mean of each variables is given in the sub-caption in

brackets.

For most of the intermediate variables, the reconstruction using the other simu-

lator’s transform matrix gives errors that are within a factor of two of that using the

correct transform matrix. A notable exception is iz.dn, where the reconstruction

of the OG1000 data using T HAD
dn is particularly poor.

6.4 Analysing intermediate variable data

Before being used to build any emulators, the reduced dimension intermediate vari-

able data can be analysed to help compare the two simulators. Understanding the

relationships between the intermediate variables is also crucial in the emulation

stages described in Sections 6.5 and 6.6.

An indication of the correlation structure of the intermediate variable data can

be found by drawing heat maps (graphical representations of matrices, where each

square is coloured according to the corresponding value in the matrix) of the covari-

ance matrices of the principal variables for the two simulators. This shows which

intermediate variables are more correlated, both within their own principal vari-

ables and with other intermediate variables. However it does not take account of

the behaviour of combinations of intermediate variables.

A more detailed study of the different behaviours can be made using principal

component analysis (PCA). Comparing, for each simulator, the principal compo-
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nents across the reduced intermediate variable space will show which directions

account for the most variation, and which the least.

To find the principal components for a set of intermediate variables, written here

as x1, . . . , xp, for which we have n observations, we first create an n × q matrix X

containing the data, in a rescaled form explained below. This matrix is then used

to find the q × q matrix XTX, whose eigen decomposition can be found, such that

XTXαi = λiαi

for up to q eigenvectors αi (all normalised to have length 1) and eigenvalues λi.

Assuming these are in decreasing order of λi, the first principal component α1

gives the linear combination Xα1 with the highest variance, and αq the linear

combination with the least. If λq = 0 then Xαq represents a linear combination of

intermediate variables that is constant throughout the data. Jolliffe (2002) gives a

detailed introduction to PCA, and several extensions for specific scenarios.

PCA is sensitive to rescaling of the data. In this setting, if one intermediate

variable has, in general, much larger values than another, and has a higher variance

even though it is not in relative terms more variable, it will contribute heavily to the

first few principal components. The data from both simulators is therefore combined,

and rescaled so that each intermediate variable has mean zero and variance one. The

rescaled combined data can then be split to give a rescaled dataset for each simulator.

Each simulator’s dataset is then re-centred to have mean zero, so that simulator bias

does not overwhelm the analysis.

The principal components can expose combinations of variables that drive the

variation. These may be different for different simulators. The eigenvectors cor-

responding to small eigenvalues can also help to expose linear combinations of in-

termediate variables that are highly correlated. If the largest few eigenvalues are

much larger than the rest, this shows a subspace that is responsible for most of the

variation in the data, and this could be explored.

The eigenvectors from the PCA can be used to compare the behaviour of the

intermediate variables, by finding

var
[
Xsim1α

sim1
i

]
and var

[
Xsim2α

sim1
i

]
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for each eigenvector αsim1
i associated with the data from simulator sim1, where

the (re-scaled and re-centred) data from simulator sim is written Xsim. Significant

differences in these variances indicate differences in the structure of the intermediate

data.

Eigen decomposition can also be used to compare the variance matrices of the

data for two simulators, in a similar fashion to that of Goldstein and Wooff (2007,

chap. 9). If Σsim1, Σsim2 are the q × q variance matrices of the commonly rescaled

intermediate variable data Xsim1, Xsim2 for two simulators, then the eigenvalues of

Σ−1
sim1Σsim2 show up the degree of contrast between the datasets. Using the eigen-

values λi and eigenvectors αi we have

Σ−1
sim1Σsim2αi = λiαi

⇒ Σsim2αi = λiΣsim1αi

⇒ αi
TΣsim2αi = λiαi

TΣsim1αi

⇒ var (Xsim2αi) = λi var (Xsim1αi) . (6.2)

If the columns of Xsim1 and Xsim2 represent the same principal variables therefore,

this allows us to compare the variability of the linear combinations of intermediate

variables given by the eigenvectors αi. A large value λi � 1 shows that the linear

combination is much more variable in the simulator 2 data than in the simulator 1

data, and a small value λi � 1 shows the converse.

These methods are purely data analytic, rather than employing emulation, but

nevertheless can be very useful in comparing the behaviour of different simulators.

They provide a useful framework for presenting an expert with information about

the similarities and differences between two simulators. He may use these, and his

knowledge of the system, to make judgements about each simulator’s treatment of

the system. Better understanding the structure of the intermediate variable data

from each simulator, and the differences between them, will also help us when we

come to build emulators involving the intermediate variables. This technique can

also be used to compare the output variable data.
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Method summary

This stage of the analysis can be summarised by the following steps:

4. Draw heat maps of the correlation matrices of the principal variables for each

simulator, for a simple indication of the relationships between intermediate

variables.

5. Use PCA on the principal variables for each simulator. Look at the eigenvalues,

and compare the variances of linear combinations for the different simulators’

data, using the eigenvectors from both datasets.

6. Using the Eigen decomposition of Σ−1
sim1Σsim2, compare the variances of par-

ticular linear combinations. Plot the eigenvalues.

Having analysed the intermediate variable data itself, we can use emulation to

analyse the relationships between those and the other sets of variables, using the

framework shown in Figure 6.1. The findings of this section will be most useful in

Section 6.6, where an understanding of intermediate variable space is crucial to our

understanding of its relationship to the output.

6.4.1 Example: Analysing intermediate variable data

Having established in Section 6.3.1 that the principal variables found using the com-

bined HAD1000 and OG1000 datasets represent both well, we will use the principal

variables in Table 6.2 in this section, including the extra time points shown in italics,

so that at least 99% of the variation in each dataset is captured. This produces two

new datasets, OGPV99 and HADPV99, containing only the principal variable time

points of the intermediate variables. This means that OGPV99 has 30 columns and

HADPV99 has 34, and both have 1000 rows. HADPV99 has four extra columns

to represent the variable log.iz.dz. This intermediate variable will mostly come

into play when we investigate the relationship between intermediate variables and

output in Section 6.6, but the analysis in this section will show the extent to which

it contributes to the variability of the HadOCC data.
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Step 4: Correlation matrices
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Figure 6.6: Heat maps of correlation matrices for principal variables from OGPV99 and

HADPV99. Each square represents a particular principal variable, and these are ordered

by time (from left to right and from top to bottom).
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Heat maps of the correlation matrices for OG99NPZD and HadOCC’s intermediate

variables are shown in the plots in Figure 6.6. For both simulators these show very

high levels of correlation between iz.np and iz.pn, and between iz.pd and later

iz.dn. The later time points of the zooplankton related intermediates are also highly

correlated, particularly in OG99NPZD. This is probably at least in part because of

the tendency of these variables towards zero.

Step 5: Principal Component Analysis
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(a) Variances of principal components of

XOG over XOG (squares) and XHAD (stars).
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(b) Variances of principal components of

XHAD over XHAD (squares) and XOG (stars).

Figure 6.7: Variances of principal components from XOG (left) and XHAD (right) applied

to both datasets. The squares show the variances when the eigenvector is used on the

data for which it is a principal component.

To find the principal components of OGPV99 and HADPV99, the data had to be

rescaled. The two datasets were therefore joined to form a 2,000 point dataset, and

each principal variable of each intermediate variable was rescaled to have mean zero

and variance one. This combined dataset was then split and the datasets for each

simulator re-centred to have mean zero, so that the rescaled datasets, XOG and XHAD,



6.4. Analysing intermediate variable data 134

could be used separately. Each dataset had thirty columns3, and therefore produced

thirty eigenvectors, written αOG
i and αHAD

i for i = 1, . . . , 30.

The variances of the linear combinations using both sets of principal components

on both datasets are shown in Figure 6.7.

These plots show that, especially for the first few principal components, the

variances are close for both simulators, implying that the most varying subspaces of

OGPV99 and HADPV99 are oriented fairly similarly.

Step 6: Eigen decomposition of Σ1
−1Σ2

The variation in different directions within both datasets can be compared by study-

ing the eigenstructure of

ΣOG
−1ΣHAD,

where ΣOG and ΣHAD are the covariance matrices of the commonly rescaled data

XOG and XHAD. For this to work, the log.iz.dz data must be omitted from XHAD.
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Figure 6.8: Eigenvalues of ΣOG
−1ΣHAD (log-scale)

The eigenvectors with large corresponding eigenvalues represent linear combina-

tions of variables that are much more variable in XHAD than in XOG, and those with

small eigenvalues represent the opposite. As shown in Equation 6.2, the eigenvalues

are the factor by which the variance of that linear combination is larger in XHAD than

3In this example, the extra HadOCC variable log.iz.dz was not included for the PCA. When

it is, it makes a large contribution to the first PC.
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in XOG. The eigenvalues are shown in Figure 6.8, and the linear combinations with

the two largest and two smallest eigenvalues are given in Table 6.3.

The main contributions in the largest eigenvalue’s combination come from the

first time point of log.iz.zd, which fits with Figures 6.3l and 6.4w, and in the

opposite direction the first time point of log.iz.zn. The second largest is mainly

affected by early and late time points of iz.np and iz.pn. These represent a trade-

off between the two transfers as time progresses.

The very smallest eigenvalue is mainly linked to the earliest time points of

log.iz.zn and log.iz.zd. The second smallest involves slightly more variables,

but the main effect seems to come from iz.dn at times 10 and 112, in opposite di-

rections. Figures 6.3m and 6.4x support the notion that this is much more variable

in OGPV99 than in HADPV99.

Summary

This section shows that the simulators produce intermediate variables with mostly

similar behaviour, shown by the patterns in Figures 6.3 and 6.6, and by the variances

of the principal components’ linear combinations applied to both datasets. In certain

ways, however, the behaviour of the two simulators’ intermediate variables seems to

differ, as shown by the variance matrix comparison.

To an expert in the system, these may reflect underlying features of both simu-

lators, and may already help with comparing them. In particular, the relationships

between the different intermediate variables revealed by comparing the variance ma-

trices may expose features of the simulators that do not reflect the system, or areas

in which one simulator could be constrained. We will mainly use this analysis to

help in the task of emulation, particularly when the intermediate variables are used

as inputs.

6.5 Emulating intermediate variables

For each simulator, the input variables can be used to emulate the intermediate

variables using methods from Chapter 3. Because intermediate variables are multi-
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Intermediate

variable
Time

Eigenvalue

1,742 66.4 6.01×10−3 1.01×10−3

iz.np

1 · -0.44 · ·

3 · · · ·

146 · · · ·

277 · 0.27 · ·

365 · · · ·

iz.pn

1 · 0.61 -0.17 ·

29 · · · ·

282 · · · ·

365 · -0.55 · ·

log.iz.pz

3 · · · ·

35 · · · ·

164 · · · ·

365 -0.2 · · ·

iz.pd

2 · · · ·

17 · · 0.21 ·

99 · · -0.34 ·

355 · · · ·

log.iz.zn

1 -0.6 · · 0.45

21 · · · ·

145 0.23 · · ·

log.iz.zd

1 0.68 · 0.14 -0.83

130 -0.18 · · ·

365 · · · ·

iz.dn

3 · · · ·

10 · · -0.7 ·

112 · · 0.49 ·

365 · · · ·

iz.ds

2 · · · ·

13 · · · ·

124 · · · ·

Table 6.3: Comparing the linear combinations with contrasting variances for XOG and

XHAD. For clarity, any value not contributing to the first 95% of the sum squares for its

eigenvector has been replaced by a dot.
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variate, the model described in Section 3.2 is the one we will use.

We are able to build emulators from both input spaces to the same output space

(the intermediate variables), in the belief that in the intermediate variables almost

all of the behaviour of each simulator has been captured. Emulating the intermediate

variables from the input variables can therefore further our understanding of each

input space, and of links that can be drawn between them.

At this stage it is likely that a large number of quantities are being emulated,

and this introduces some new choices concerning the structure of the emulator. A

conventional approach in multivariate emulation, taken by Conti and OHagan (2010)

for example, and assumed in Section 3.2, is to use the same regression functions for

each output, and to estimate one correlation length for the whole set of data.

The intermediate variables, the outputs of the emulators at this stage, are or-

ganised into two tiers; the intermediate variables and the set of principal variables

(or other reduced dimension summary) for each. This could therefore be viewed as

one multivariate emulation problem, in which the same regression surface is used

for every intermediate variable at each of its time points, as a set of multivariate

emulation problems, one for each intermediate variable, or as a set of univariate

emulation problems, one for each principal variable of each intermediate.

In this example, we have taken the second approach: each intermediate variable

may have a different regression surface and correlation length, but within each inter-

mediate variable, the principal variables are jointly emulated using the same surface

and correlation lengths. It is hoped that this will help in identifying the effects of

inputs on the different intermediate variables.

For each intermediate variable, the regression functions were chosen using step-

wise model selection in R (R Development Core Team, 2011) for each time point,

and including the union of all terms. To avoid the inclusion of too many terms,

three dummy variables, containing randomly generated uniform values, were added

onto the input data. Any interaction terms added after one of these was included

was removed, and any linear term less active than one of these, and not involved in a

remaining interaction, was also removed. In practice, this made very little difference

in the examples shown here. Because the input design is approximately orthogonal,
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and each input is rescaled to cover the interval [−1, 1] the coefficients should be

simple to interpret.

Separating the behaviour of the simulator into particular intermediate processes

allows us to inspect the effects of each input variable on particular parts of the

simulator in closer detail. It may sometimes be that observed data is available

for some intermediate variables, in which case history matching can be used. This

method, explained in detail by Cumming and Goldstein (2010) or Vernon et al.

(2010), combines historical system observations z with simulator output s (x) to

refine the input space X , by ruling regions of input space out as ‘implausible’.

It is more likely that some parts of the input spaces will lead to values of in-

termediate variables that we believe to be impossible. Unrealistic values of some

input variables may not necessarily lead to unrealistic output, but they may lead to

unrealistic values for some intermediate variables.

In this case, emulators can be used to rule out regions of input space leading to

values of intermediate variable int outside a certain interval. The value of int at

input point x is written sint (x), and the emulator’s prediction fint (x).

Using the emulator, we can produce (1− pα) credible intervals for the simulator’s

value of int, sint (x), at any input point x, by

E (fint (x))± t(pα/2, df) sd (f (x)) , (6.3)

using the tdf -distribution resulting from the emulation model. If this interval is

completely outside of (Uint, Lint), the input point should be rejected. For the con-

clusions to be meaningful, the exact values of Uint, Lint and pα should be chosen

by experts, bearing in mind their beliefs about the simulator’s discrepancy.

This technique can be used to create a new, refined input design of approximately

size n for simulator sim in the following way:

1. Using a large dataset from sim, find the approximate fraction ksim of inputs

which lead to implausible behaviour

2. Generate a (1− ksim)−1 × n point input design for sim

3. Using an emulator, calculate 1 − pα credible intervals for each intermediate

variable over the input design
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4. For each input point, if the interval is entirely outside (Lint, Uint), disregard

the point. Otherwise, keep it.

The simulator can now be run over this refined input design to produce training

data, and an emulator can be built in the same way as before. Because the input

space is no longer a carefully chosen Latin hypercube, it will not necessarily have

good orthogonality properties. This can be checked by studying the eigenstructures

of the correlation matrices of the newly refined input designs. If the ratio of the

largest to smallest eigenvalues is relatively close to one, the design is still fairly

orthogonal. If the ratio is large, there is collinearity in the data, and this should

be investigated. A heat-map of the correlation matrix is a good way to see quickly

which inputs are highly correlated.

A fundamental difficulty in comparing different simulators, as mentioned in

Chapter 4, is that their input spaces often do not correspond. Input variables from

one simulator cannot automatically be linked to inputs in another, even though they

may be assigned the same meaning in different simulators.

There are two ways in which inputs from different simulators can be compared.

Firstly, in terms of the meaning they are assigned in each simulator. Inputs from

different simulators can be given exactly the same meaning, or a completely different

meaning. Somewhere between these extremes, inputs may have meanings that rep-

resent different aspects of the same process. Often, a process is represented by more

parameters in one simulator than in the other. In the simpler version, the inputs

may all be matched in meaning by inputs in the more complicated simulator, but

the extra parameters contributing to the process may adjust the meaning slightly.

This information can be learned from the simulators’ code and documentation or

from expert advice.

The other direction of comparison is the inputs’ effect on the simulator’s be-

haviour, in this case their effects on the intermediate variables. This is learned from

studying the emulators, in particular the coefficients associated with the inputs in

question, and those of any strong interaction terms present. For each simulator

there is an emulator for each intermediate variable, with coefficients for each prin-

cipal variable.
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Because the intermediate variable values and input spaces are different, com-

paring coefficients numerically is difficult, and so we introduce the idea of a relative

coefficient : every posterior coefficient value is divided by the largest coefficient relat-

ing to the same output, so that all range between plus and minus 1. For a particular

intermediate variable, we may then compare the coefficients for each input for the

different simulators, and more easily tell which behave similarly in terms of their

proportional effect. As with the example in Chapter 3, a more thorough under-

standing of the influences of the input variables could be gained by using some of

the techniques in the vast sensitivity analysis literature, for example Saltelli et al.

(2000), but here we opt for simpler measures.

If two input variables, given the same meaning in each simulator, have a very

similar effect on the intermediate variables, this supports the notion of linking them.

If input variables that sound similar in fact affect intermediate variables rather

differently, it may not be sensible to think of them as representing the same quantity.

It may be that inputs that are active in one simulator for a particular intermediate

variable have no apparently analogous variables in the other, in which case an expert

may be able to make judgements about which simulator best captures that aspect

of the system.

Having studied the behaviour of a particular intermediate variable, an expert

might decide that in fact it does not behave as he should like. Having an emulator

linking it to the input space may show whether this is a problem with the model itself,

or with the numbers chosen for the inputs. This insight may help in adapting and

improving the simulators to better capture the system, or in removing superfluous

aspects of the simulator.

Method summary

The steps that should be taken in this analysis are:

7. Study the input spaces of each simulator. Identify the links in meaning between

inputs, and groups of inputs that represent aspects of the same processes. Also

identify inputs from one simulator that have no obvious equivalent or linked

input in the other.
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8. Build emulators of each intermediate variable for each simulator, using the

methods in Chapter 3.

9. If there is any clearly unrealistic behaviour in the intermediate variables, use

the emulators to refine the input space(s). Build emulators of the intermediate

variables using the newly refined input space.

10. Using the coefficient estimates, calculate the relative coefficients for each em-

ulator.

11. Compare the behaviour of the inputs for the different simulators, asking:

� Do the inputs identified as similar, or linked, behave similarly?

� Are the inputs unique to one simulator important? If so, how?

� Where a process has more inputs in one simulator than another, do all

these inputs seem to be active?

� Are there any pairs of inputs that are given unrelated meanings but

behave similarly?

6.5.1 Example: Emulating intermediate variables

In this example, the output variable iz.pon (depth-integrated particulate organic

nitrogen) was also summarised using principal variables, using the same techniques

as those used in Section 6.3 for the intermediate variables. The time points chosen

were 1, 13, 105 and 365.

Step 7: Studying the input spaces

The first stage in this process is to understand the input spaces. Having studied the

inputs of OG99NPZD and HadOCC in Chapter 2 and in the examples in Chapter

4, we are in a good position to summarise the relationships between the input

parameters of OG99NPZD and HadOCC. Tables 2.1 (page 9) and 2.3 (page 13)

list the input parameters for OG99NPZD and HadOCC. These show that whereas

some are attributed the same meanings and units in each simulator, some input

parameters in one simulator have no obvious analogue in the other.
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OG99NPZD

input

HadOCC

input

Meaning

γ1 betap Zooplankton assimilation efficiency for phytoplankton

α alphachl Initial slope of photosynthesis v irradiance curve

(mg C (mg Chl)−1 (E m−2)−1)

ε epsfood Prey capture rate (d−1(mmol N m−3)−n)

g gmax Maximum grazing rate (d−1)

Cpp rchlpig Ratio of chlorophyll to total pigment

PAR rparsol Ratio of PAR to total downwelling solar irradiance at sea surface

µPP pmortdd Conc. dependent phytoplankton specific mortality

(d−1(mmol N m−3)−1)

µZZ zmortdd Conc. dependent zooplankton specific mortality

(d−1(mmol N m−3)−1)

K1 kdin Half-saturation conc. for nutrient uptake (mmol N m−3)

ws dsink Detrital sinking velocity (m day−1)

Table 6.4: Input parameters given the same meaning in OG99NPZD and HadOCC.

OG99NPZD

inputs

HadOCC inputs Process

a, c photmax Photosynthetic rate

µP , µPP pmortdd, pminmort, fpmortdin Phytoplankton mortality

µZZ zmort, zmortdd, fzmortdin Zooplankton mortality

γ1, ε, g, γ2 betap, betad, epsfood, gmax,

fmingraz, fingest, fmessyd

Zooplankton grazing

Table 6.5: Groups of input parameters representing aspects of the same process.

Tables 6.4, 6.5, 6.6 and 6.7 show which of the input parameters for OG99NPZD

and HadOCC are directly linked in meaning, which belong to groups of linked pa-

rameters, and which inputs to one simulator appear to have no linked inputs in the

other. Some inputs appear in more than one table. This is because while two input

parameters may be given exactly the same meaning in both simulators, for example

the concentration dependent phytoplankton mortality rates µPP (in OG99NPZD)

and pmortdd (in HadOCC), the extent to which we expect them to behave similarly
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may be mitigated by other parameters relating to the same process.

OG99NPZD

input

Description

γ2 Excretion rate (days−1)

µP Specific phytoplankton mortality rate (day−1)

µD Remineralisation rate (day−1)

a Maximum photosynthetic rate at temp = 0 ◦ C (day−1)

c Max. photosynthesis - variation of temperature factor exponent ((◦ C)−1)

Table 6.6: Input variables in OG99NPZD that have no obvious equivalent in HadOCC.

HadOCC

input

Description

rcchl C:Chl ratio (if fixed) (mgC/mgChl)

rcnphy C:N ratio for phytoplankton

rcnzoo C:N ratio for zooplankton

rcndet C:N ratio for detritus

presp Phytoplankton specific respiration (d−1)

pminmort Threshold for phytoplankton mortality (mmol N m−3)

fpmortdin Fraction of phytoplankton mortality to DIN

fmingraz Food threshold for grazing function (mmol N m−3)

fingest Fraction of grazed material ingested

betad Zooplankton assimilation efficiency for detritus

fmessyd Fraction of messy feeding to detritus

zmort Base zooplankton specific mortality (d−1)

fzmortdin Fraction of zooplankton mortality to DIN

rco3pprod Carbonate precipitated per unit primary production

nitrifeuph Nitrification rate of ammonium in euphotic zone (d−1)

nitrifaph Nitrification rate of ammonium below euphotic zone (d−1)

Table 6.7: Input variables in HadOCC that have no obvious equivalent in OG99NPZD.

The groups of parameters linked to phytoplankton mortality, which include µPP

and pmortdd, are shown in Table 6.5. This shows that µP is a constant phyto-

plankton mortality rate in OG99NPZD, and that in HadOCC there is a threshold
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pminmort, below which no phytoplankton dies, and a fraction fpmortdin, determin-

ing the path of the nitrogen from dead phytoplankton. These parameters, which

reflect aspects of the phytoplankton mortality process unique to one simulator, are

also shown in Tables 6.6 and 6.7.

Steps 8 & 9: Emulating, and dealing with any unrealistic behaviour

The first emulators to be built used the input and intermediate variables in OGPV99

and HADPV99 as training data, each of which has 1,000 input points.

In an attempt to be able to use the emulators to understand the most active

variables and pairwise interactions in each simulator’s representation of the inter-

mediate variables, a second order surface was chosen for each intermediate variable

using stepwise model selection with the Bayesian information criterion (BIC), and

one correlation length was estimated per intermediate variable. This may present

problems if the different principal variables within a particular intermediate variable

behave very differently, so we will monitor the performance of these emulators.

One of the purposes of this step is to use unrealistic values of the intermediate

variables to rule out portions of input space. From the plots in Figure 6.3, it is

clear that any nitrogen transfer involving zooplankton can very quickly go to zero

and remain there (see Figure 6.3(e), (f), (i), (j), (k), (l) and (q), where each has a

bold line at a low value after a certain time, representing a large number of runs).

This feature has already manifested itself numerically in strongly supporting a log

transform for these intermediate variables. This implies that significant proportions

of each input space lead to zooplankton becoming extinct. John Hemmings, our

expert, told us that because this is not the case in the real world, any input points

leading to zooplankton transfers tending to zero should be ruled out if possible.

Without studying these intermediate variables, this behaviour would not nec-

essarily have been observed. While these simulator runs have highly unrealistic

zooplankton related intermediates, their output values are indistinguishable from

those with more realistic zooplankton behaviour. Figure 6.9 shows iz.pon time

series from OG100 and HAD100, with those for which zooplankton becomes extinct

(in that at least one zooplankton related transfer is below 10−8 by the final time
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step) shown in red, and those for which it doesn’t in blue.
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Figure 6.9: Time series of iz.pon for OG99NPZD (top) and HadOCC (bottom) for

OG100 and HAD100, coloured according to whether zooplankton appears to become ex-

tinct (red) or not (blue).
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Figure 6.11b shows a very slight trend for zooplankton extinction to arise away

from high values of presp and low values of epsfood. Therefore, even were we to

have access to accurate observations of iz.pon, they would not enable us to rule

out (simply) the portion of input space leading to zooplankton extinction. It is

worth pointing out that numerically, both HadOCC and OG99NPZD are unable to

produce zero for some of the intermediates relating to zooplankton, and so in fact

we are concerned with sufficiently small outputs, rather than zero outputs. How

small is too small is for an expert to decide.

The plots in Figures 6.10 and 6.11 were drawn using OGPV99 and HADPV99,

and show points leading to at least one zooplankton related intermediate below 10−8

in red, and others in black. These indicate that large portions of space, at least in

some dimensions, should be ruled out by this procedure. In OG99NPZD, it seems

the main area of zooplankton extinction contains points with high γ2 and low ε, as

shown in Figure 6.10a. The pairs plots involving other variables mostly show very

little pattern, as in Figure 6.10b, although even here there appears to be a higher

density of ‘good’ points for high γ1 and low µPP .
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Figure 6.10: Pairs of inputs from OGPV99 plotted against one another, coloured ac-

cording to the latest time points of the zooplankton related intermediates. If any is below

10−8, the point is red, otherwise it is black.
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Figure 6.11: Pairs of inputs from HADPV99 plotted against one another, coloured

according to the latest time points of the zooplankton related intermediates. If any is

below 10−8, the point is red, otherwise it is black.

The most influential input variable in HadOCC is zmort, as shown in Figure

6.11a, with large values more likely to lead to zooplankton extinction. There are

interaction effects with epsfood and pmortdd, in opposite directions, but these are

weak.

Using the strategy outlined earlier in this section, the emulators enable us to

rule out portions of both input spaces leading to undesirable values of zooplankton-

related intermediate variables. Although in reality the values of pα (the confidence

level of the interval) and Lint (the lower limit of the acceptable interval for inter-

mediate variable int) should be chosen carefully by an expert, for the purposes of

this example we chose pα = 0.05, Lint = 10−10 (for OG99NPZD) and Lint = 10−6

(for HadOCC) for each of the zooplankton-related intermediates. The different val-

ues of Lint ruled out roughly the desired fractions of the input spaces. The need

for different values for HadOCC and OG99NPZD is most likely an artefact of the

higher dimension of HadOCC’s input space, which leads to lower precision in an

emulator built with the same amount of training data. Using the same value of

Lint would therefore lead much less of HadOCC’s input space to be ruled out than
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OG99NPZD’s, because the credible intervals are wider. Because the focus is on

values that are too low, Uint is effectively infinite.

In order to follow the method, a time point must be chosen at which each inter-

mediate variable is studied. Because the zooplankton-related variables are almost

entirely decreasing, we will use the latest principal variable for each one.

In order to create new input spaces, estimates for the proportions kOG and kHAD

of the current input regions leading to unrealistic behaviour must be found. OGPV99

and HADPV99 were used, and ksim set to be the proportion of input space leading

to at least one zooplankton related intermediate with a value of less than 10−8 at

its latest time step. This gave kOG = 0.478 and kHAD = 0.512.

To generate new input designs containing roughly 1,000 points, we therefore

included 1, 916 points in the initial design for OG99NPZD, and 2, 049 for HadOCC.

The emulators built from the unrefined datasets OGPV99 and HADPV99 were

run over these input designs, and used to create 95% credible intervals for each

intermediate variable at each input point, using equation 6.3.

In this example, the emulators for zooplankton related transfers all emulate the

logarithm of the output, and so intervals are built on the log-scale, and the bounds

then transformed back to the original scale.

This has the advantage that the lower bounds are all above zero, reflecting the

simulators’ inability to produce negative values. Using the emulators built from

OGPV99 and HADPV99, any point in the input space can be categorised as either

being very likely to result in zooplankton extinction, or not being likely enough to

disregard.

This procedure was followed three times for each of HadOCC and OG99NPZD,

twice with n = 1000 (to build training and prediction data) and once with n = 100

(to build prediction data). This resulted in six new datasets: OG948 (with 948

points), OG947 (with 947 points), HAD1007 (with 1,007 points), HAD1005 (with

1,005 points), OG98 (with 98 points) and HAD119 (with 119 points).

Figure 6.12 shows the distribution of input points in the new datasets between

pairs of inputs that were shown to be instrumental in zooplankton extinction. A

lower density of points for high zmort in HAD1005 and HAD1007 and for high γ2
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and low ε in OG948 and OG947 is clear, as expected.
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Figure 6.12: Pairwise distribution of points in the refined input designs.

Variable
Principal variable time points

OG1000 and HAD1000 OG948 and HAD1005

iz.np 1, 3, 146, 277, 365 277, 1, 3, 365, 12, 146

iz.pn 1, 29, 282, 365 282, 1, 30

log.iz.pz 3, 35, 164, 365 133, 3, 31, 359

iz.pd 2, 17, 99, 355 109, 1, 15, 355

log.iz.zn 21, 145, 1 172, 28, 343, 1

log.iz.zd 1, 130 365 141, 1, 365

iz.dn 3, 10, 112, 365 115, 1, 7, 253

iz.ds 2, 13, 124 127, 1, 6, 319

log.iz.dz 5, 34, 148, 365 148, 5, 34, 365

log.iz.pon 99, 1, 13, 365 105, 1, 13, 365

Table 6.8: Principal variables for the old datasets and for the new, refined dataset.

These were chosen so that at least 99% of the variation is explained in both datasets, and

are given in the order in which they were selected. There are therefore now 32 principal

variables for OG99NPZD, and 36 for HadOCC.
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Figure 6.13: Heat maps of correlation matrices for principal variables from OG947 and

HAD1007. Each square represents a particular principal variable, and these are ordered

by time (from left to right and from top to bottom).
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Figure 6.14: Time series plots of zooplankton related intermediate variable output for

OG98 (left) and HAD119 (right). Each plot covers a year.
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Figure 6.14 shows time series of zooplankton related intermediates from OG98

and HAD119, comparable to those in Figure 6.3. Although there are still signs of

zooplankton extinction, a higher density of non-zero zooplankton transfers is evident.

Box-Cox model selection, applied as before, still supports a log transformation for

each zooplankton related intermediate.

New principal variables, shown in Table 6.8, were then found for each interme-

diate variable, using the combined data from OG948 and HAD1005. These were

then used to build new emulators, which will be used from now on. As before, a

second order surface was fitted for each intermediate variable, using stepwise model

selection with the Bayesian information criterion (BIC), and one correlation length

was estimated per intermediate variable. Heatmap plots of the correlation matrices

for the new datasets OG947 and HAD1007 are shown in Figure 6.13.

This stage illustrates the value of intermediate variables for analysing individual

simulators, since as we have already mentioned, these implausible regions of input

space could not have been found using the output variables alone. The input regions

could be further refined by re-iterating this method, but this is not something we

will pursue here.

This history matching exercise already exposes some difference in the simulators,

in that in both cases there is a single input parameter almost entirely responsible

for the extinction of zooplankton. These two parameters, γ2 in OG99NPZD and

zmort in HadOCC, are given different meanings: γ2 is the rate of zooplankton

excretion, and zmort a constant zooplankton mortality rate. The influences of these

two parameters are shown in Figures 2.1 (page 10) and 2.2 (page 13), where it is

clear that unless fzmortdin = 0 in HadOCC, they do not relate to exactly the same

nitrogen transfers.

Steps 10 & 11: Finding and interpreting the relative coefficients

The relative coefficients from the emulators built over OG948 and HAD1005 were

then calculated, by dividing each posterior coefficient by the largest coefficient re-

lating to the same output. An abridged version of these is shown in Appendix

B,
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Table 6.9: R2 for regression surfaces in each simulator’s input to intermediate emulators.

Variable Time OG99NPZD HadOCC

iz.np

1 0.996 0.972

3 0.980 0.980

12 0.995 0.982

146 0.990 0.968

277 0.992 0.973

365 0.995 0.983

iz.pn

1 1.00 1.00

30 0.997 0.993

282 0.998 0.992

log.iz.pz

3 0.999 0.999

31 0.993 0.994

133 0.969 0.977

359 0.944 0.938

iz.pd

1 1.00 0.998

15 0.992 0.988

109 0.986 0.968

355 0.986 0.950

log.iz.zn

1 0.972 0.992

28 0.960 0.988

172 0.939 0.973

343 0.947 0.952

log.iz.zd

1 0.992 0.984

141 0.975 0.960

365 0.956 0.946

iz.dn

1 1.00 1.00

7 0.999 0.999

115 0.987 0.975

253 0.986 0.967

iz.ds

1 1.00 1.00

6 0.999 0.998

127 0.974 0.966

319 0.968 0.948

log.iz.dz

5 0.996

34 0.988

148 0.963

365 0.907
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OG99NPZD HadOCC

iz.np Pos: µP , a (esp. early),

c (early), a × K1, a × µP ,

c×K1 (early)

Neg: K1, a2,γ2
2 (late), a × c

(early), K1 × µP (early)

Pos: presp, alphachl, photmax,

photmax× presp, kdin2 (esp. early),

photmax×kdin, presp×zmort alphachl×presp

Neg: kdin, kdin×presp, presp2, rcchl×presp,

rcchl, zmort2 (late)

iz.pn Pos: µP

Neg: µ2
P

Pos: presp, photmax× presp, alphachl,

photmax

Neg: presp2, kdin

log.iz.pz Pos: ε, γ1, ε× γ2 (late)

Neg: γ2, ε
2, γ2

2

Pos: epsfood, betap, fingest, epsfood× zmort

Neg: zmort, presp, kdin, epsfood2 (early)

iz.pd Pos: µPP , µ2
P , γ1 × γ2,

a×K1, ε× γ2

Neg: µP , γ2
2 , γ2, a2

Pos: pmortdd, presp2 (late)

Neg: presp, presp× pmortdd, kdin,

kdin× pmortdd

log.iz.zn Pos: γ2 (early), ε, ε×γ2, γ1,

γ1 × γ2

Neg: γ2 (late), γ2
2

Pos: epsfood, zmort (early), fzmortdin (early)

Neg: zmort (late), zmort2

log.iz.zd Pos: µZZ (early), ε, ε × γ2,

γ1, γ1 × γ2

Neg: γ2, µ2
ZZ (early), γ2

2

Pos: epsfood, zmort (early)

Neg: zmort (late), zmort2

iz.dn Pos: µD (early), µPP ,

µ2
P (late), a×K1, ε

Neg: µP , γ2, a2, γ1 × γ2,

γ2 × µZZ

Pos: pmortdd, presp2 (late), zmort (early),

pmortdd× zmort

Neg: presp, presp × pmortdd (late), fzmortdin

(early), zmort× fzmortdin (early), kdin

iz.ds Pos: ws, µPP , µ2
P

Neg: ws × µP , µP , ws × µD,

µD

Pos: dsink, pmortdd, pmortdd× dsink, presp2,

pmortdd× zmort

Neg: presp, presp× dsink, presp× pmortdd

log.iz.dz Pos: epsfood, pmortdd (early), betad (early),

rcnphy (early), fingest

Neg: zmort, presp, kdin, epsfood2 (early)

Table 6.10: Summaries of the key input parameters (those with relative coefficients

of greater magnitude than 0.3) from each simulator for each intermediate variable, in

decreasing order of activity.

along with some performance summaries from predictions over OG947 and HAD1007.
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Any term with no relative coefficients above 0.15 are omitted, and values below 0.15

are replaced by a dot, for ease of reference.

Clearly this, and the analysis in Section 6.6.3, are only meaningful if the emu-

lators have been checked with diagnostic tools such as those described in Section

3.5. For the emulators built in this Chapter, the behaviour of the error and SPE

values were plotted against each input (or intermediate variable in Section 6.6.3)

and no clear trends were found. The R2 values for the regression surfaces in each

input to intermediate emulator are given in Table 6.9. In general the OG99NPZD

surfaces appear to capture a slightly higher proportion of the variance than those in

the HadOCC emulator.

The main inputs affecting each intermediate variable are given in Table 6.10. For

each simulator and each intermediate variable, these give the terms in the regression

surface in roughly descending order of importance, and show which have a positive

and which a negative coefficient. These were found using the relative coefficient

tables in Appendix B. It is clear that only a subset of each set of inputs is active

in each emulator. The terms mentioned in Table 6.10 are those with a relative

coefficient whose magnitude is more than 0.3 for at least one time point.

At this point, knowing about any collinearity in the new input designs is crucial,

since if the designs are far from orthogonal our interpretations of these coefficients

will be meaningless. A first tool is to find the eigenvalues of the correlation matrix

of the design. The ratio of the highest and lowest eigenvalues of the correlation

matrix of OG948 is 2.66, and the ratio for HAD1005 is 2.69. Neither of these is high

enough to raise any alarm, and so we continue with the method.

Combining this information with the details of the inputs’ relationships to one

another, the questions from step 11 on page 140 can be addressed. A summary for

the first, concerning pairs of inputs given the same meaning in the two simulators, is

given in Table 6.11. Most of the input parameters that appear to represent the same

quantities do behave similarly, although many of them are mostly inactive. Tables

6.12 and 6.13 summarise the effects of the input parameters unique to each simulator,

addressing the second question. These show some much more important parameters,

particularly µP and γ2 in OG99NPZD and presp and zmort in HadOCC.
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OG99NPZD

input

HadOCC

input

Summary

γ1 betap Little effect in either, except in log.iz.pz. Slight effect in other

zooplankton transfers in OG99NPZD.

α alphachl alphachl active in iz.np and iz.pn, whereas α has very little

effect.

ε epsfood Mostly similar, ε more active. Different interactions in log.iz.zd.

g gmax Very little effect.

Cpp rchlpig Very little effect.

PAR rparsol Very little effect.

µPP pmortdd Similar for iz.pd and iz.ds, and for iz.dn.

µZZ zmortdd Mostly inactive, except for µZZ in log.iz.zd.

K1 kdin Similarly active in iz.np. HadOCC also active for iz.pn, iz.pd,

iz.dn and log.iz.pz

ws dsink Very similar for iz.ds, inactive elsewhere.

Table 6.11: Summaries of effects of input parameters given the same meaning in

OG99NPZD and HadOCC.

OG99NPZD

input

Summary

γ2 Active in log.iz.pz, log.iz.zn, log.iz.zd, mildly in iz.np,

iz.pd

µP Strongly active in iz.np, iz.pn, iz.pd, iz.dn, iz.ds

µD Active in iz.dn and mildly in iz.ds

a Active in iz.np

c Mildly active in iz.np

Table 6.12: Input variables in OG99NPZD that have no equivalent in HadOCC.

The third question, about groups of parameters representing the same process,

deals with a combination of these results. A summary of these groups of input pa-

rameters is given in Table 6.5. Of the photosynthetic rate parameters, a is much
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more active than c in OG99NPZD, and both behave fairly differently from photmax

in HadOCC. The extra phytoplankton mortality inputs, fpmortdin and pminmort

seem largely inactive in HadOCC, whereas µP in OG99NPZD is clearly very impor-

tant. The linked phytoplankton mortality related inputs, µPP and pmortdd, have a

very similar effect, being influential in iz.pd, iz.dn and iz.ds in similar ways in

both simulators. Thus it seems that the differences in modelling of phytoplankton

mortality potentially may make a real difference to the values of some intermediate

variables, rather than cancelling out owing to different uses of the linked parameters.

HadOCC

input

Description

rcchl Mildly active in iz.np

rcnphy Mildly active in log.iz.dz

rcnzoo Inactive

rcndet Inactive

photmax Active in iz.pn and iz.np

presp Strongly active in all except log.iz.zn and log.iz.zd

pminmort Inactive

fpmortdin Inactive

fmingraz Inactive

fingest Mildly active in log.iz.pz and log.iz.dz

betad Mildly active in log.iz.dz

fmessyd Inactive

zmort Strongly active in log.iz.pz, log.iz.zn, log.iz.zd, log.iz.dz,

mildly active in most others

fzmortdin Mildly active in log.iz.zn and iz.dn

rco3pprod Inactive

nitrifaph Inactive

nitrifeuph Inactive

Table 6.13: Input variables in HadOCC that have no equivalent in OG99NPZD.

Of HadOCC’s extra zooplankton mortality parameters zmort and fzmortdin,

fzmortdin is only mildly active while zmort is active in each of the zooplankton

related intermediates, and some more besides. The linked inputs µZZ and zmortdd
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have very little effect, apart from µZZ in log.iz.zd. HadOCC’s extra grazing

parameters fmingraz, fingest, betad and fmessyd are mostly inactive, except

slightly in log.iz.pz and HadOCC’s extra intermediate variable log.iz.dz. This

is perhaps not surprising, since these intermediates arise from the grazing of phyto-

plankton and detritus by zooplankton.

Finally, there may be pairs of inputs that are given different meanings in the

two simulators but behave very similarly. These are likely to be linked to similar

nitrogen transfers. Two candidate pairs are µP and presp (both of which cause

transfers from phytoplankton to nutrient), and γ2 and zmort (causing nitrogen to

leave zooplankton).

The effects of µP and presp are very similar throughout, particularly in iz.np,

iz.pn, iz.pd and iz.dn where both are very active. In the emulators from inputs

to output (log.iz.pon), shown in Table B.1, these are the most active variables at

each time point. In OG99NPZD µP is a mortality rate for phytoplankton, whereas in

HadOCC presp is the phytoplankton respiration rate. This perhaps indicates that

a better understanding of these areas of the system would much improve modelling.

The similarity between the effects of γ2 in OG99NPZD and zmort in HadOCC

is not quite so striking, but still apparent; log.iz.pz, log.iz.zn, log.iz.zd,

iz.np and iz.dn show mostly the same effects, but with interaction effects that

are not always so easy to identify between simulators. This is perhaps because γ2

concerns only a transfer from zooplankton to nutrient (through excretion), whereas,

depending on the value of fzmortdin, zmort can also affect transfers from zooplank-

ton to detritus and nutrient.

Summary

For each simulator, this stage has increased our understanding of how each input

variable contributes to the representation of the ocean carbon cycle. The conclu-

sions drawn are independent of the choice of output variable, and so can be used to

count certain input parameters as less active in general than others. Even with only

one simulator, this stage enables reduction of the input space, using unrealistic in-

termediate variable values, that would not necessarily be achieved using the output,
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as seen in the example.

In Section 6.6, the intermediate variables are used to emulate the output. This

will be used to compare how the different processes interact to form the output for

each simulator. Once it is known which intermediate variables are more active, the

results of this section will show which inputs are most active, and where effort in

understanding the relationship between the two simulators and between their input

spaces should be focused.

6.6 Emulating output from intermediate variables

Knowing the effects of the intermediate variables on the output can increase our

understanding of each simulator and of the differences between their representations

of the system.

Because the intermediate variables (before dimension reduction) should capture

all the information in the simulator at each time point, it should be possible to

use the dimension-reduced intermediate variables to build emulators of the output

for each simulator. This is a good test of the choice and implementation of the

intermediate variables and their dimension-reduction. If these have been done well,

it should be possible to make accurate predictions from intermediate to output

variables for other datasets. If it isn’t, this is a sign that at some point in the

process things have gone awry.

As in the previous section, these methods rely on the emulators being well con-

structed, and so they must be carefully validated before being used to compare

simulators. Appendix C.2 shows some methods for validation of the intermediate

to output emulators, studying the behaviour of the SPE. Appendix C.3 shows how

this stage of intermediate variable emulation can be combined with the previous

stage to give an indication of the retention of information by the dimension-reduced

intermediate variables. This is done by combining the input to intermediate and in-

termediate to output emulators to produce an input to output emulator, from which

we can sample from the posterior distribution of the output at new input points.

How similar the samples are to samples from a standard input to output emulator
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indicates how much information has been lost in the process. These methods are

illustrated using OG99NPZD and HadOCC.

In the intermediate variables, the emulators for each simulator now have input

variables with the same meaning, whose effects can be directly compared. The em-

ulators may reveal some of the differences and similarities between the simulators in

terms of how they use the processes they model. Where there are processes repre-

sented in only one simulator, and therefore an extra group of intermediate variables

in its emulator that cannot be linked to any variables in the others, the emulator can

be used to show whether this process performs a key role in the simulator. However,

whereas the behaviour of the input to intermediate emulators was relatively simple

to interpret, this is not so for the intermediate to output emulators.

6.6.1 Intermediate variables as inputs

The main thrust of the difficulties encountered in working with intermediate vari-

ables is that we are not in control of the values they take. To produce training data

one would ideally like to be able to choose points in intermediate variable space,

and then run the simulator over these in the way that one can usually run it from

the input variables. However, this is not a simple idea. Often, the simulators each

calculate all variables (intermediate and output) at the first time step, then use

these values and the inputs to calculate the same variables at the second, and so

on. The value of a particular variable at time step i is derived from the values of

(potentially) all variables at time step i − 1, and so the time series are all heavily

intertwined.

Although in theory it is conceivable that one could rearrange a simulator so

that given a full set of (non-dimension-reduced) intermediate variables it was able

to produce the output, this would likely be very difficult. Furthermore, although a

particular point in intermediate variable space should be deterministically associated

with an output value, it is also associated with an input point, from which it was

(at least notionally) created. This means that there are potentially many invalid

intermediate points, which a simulator is not capable of producing from any input

point. Along with a version of the simulator that had intermediate variables as
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input, one would also need a way of rejecting invalid parts of intermediate variable

space.

Because the intermediate variables represent processes that are linked to one

another, and because the principal variables we choose to represent each intermediate

variable will often come from very structured data over time and space, we can expect

high correlation between the intermediate variables. The PCA in Section 6.4.1

may also show, through the least principal components, that there are some linear

combinations of intermediate variables whose variance is very small, and therefore

some pairs of linear combinations that are highly correlated.

This lack of orthogonality means that the coefficients in the regression surface

are not independent, and therefore cannot be compared as before. It may lead to

more serious problems, such as the ‘bouncing beta’ phenomenon, where estimates

and variances for coefficients become very high. Some possible strategies for dealing

with this problem are summarised by Kiers and Smilde (2007).

Rather than focus on the comparison of coefficients therefore, as in the input to

intermediate stage (where the input space was designed to be roughly orthogonal),

methods in this stage use simple performance summaries and plots relating to emu-

lator or simulator output in order to observe the effects of the intermediate variables.

We also take advantage of the common input space (the intermediate variables) the

two emulators share by running each emulator over data from the other simulator.

6.6.2 Methods and analysis

This analysis splits into two phases:

� Studying the effects of the intermediate variables within each simulator

� Investigating the differences between the two simulators in terms of their use

of intermediate variables to produce output

An idea of the behaviour of each simulator can be gained by studying the correla-

tions between the intermediate variables and the output. This can be done for each

intermediate variable in turn to investigate the main effects, or using products of in-

termediate variables to show the effects of interactions on the output variables. The
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first method is simple to display, for example by plotting the correlations between

each principal variable and the output variable, grouped by intermediate variable.

The second can be displayed by creating a matrix whose (i, j)− th entry is the cor-

relation between the element-wise product of the ith and jth intermediate variables

and the output, and plotting this matrix using a heatmap. Examples of both sorts

of plot are given later in this section and in Appendix C.2.

This stage gives useful insight into each simulator’s representation of the system,

and so may even be used in a single simulator context to learn more about how the

processes within a simulator are used to reach the output. Already these plots

may reveal different features in the two simulators, particularly if an intermediate

variable is very active in one but not in the other. However, the emulators can be

used for simulator comparison in a much more informative way.

Because the emulators from intermediate to output variables now have the same

input space for each simulator, an emulator of one simulator can be used over data

from the other. If an emulator predicts another simulator’s behaviour fairly well,

that indicates that the two simulators’ treatments of the intermediate processes are

not so different. If performance is poor, this indicates a contrast.

When analysing the differences between these emulators, we must keep in mind

the properties of each intermediate variable space, learned through analysing the

intermediate variable data in Section 6.4. In particular, our lack of control over the

intermediate variable space makes us unable to define the ranges of the intermediate

variables in the training or prediction data, and the two simulators may produce

values with very different ranges. Inferences made using the emulator of one sim-

ulator to predict the behaviour of another will be highly unreliable if the emulator

is operating outside the range of its training data unless the emulator’s variance,

which will be high at these points, is taken into account.

For this reason, the standardised prediction error (SPE) is more a reliable quan-

tity for analysis than those that do not take account of the emulator variance.

Suppose there is a cluster of high error (emulator minus simulator, unstandardised)

values in a particular region. If the SPE values are also high, this indicates that even

when standardised by the emulator variance (which in this case is clearly relatively
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small) this trend exists. If there is no prevalence of high SPE values in this region,

the emulator variance there is high, and therefore the difference highlighted by the

error values should not be given much weight. This will especially be the case when

a particular region of intermediate variable space is more sparsely populated by one

simulator than by the other.

The behaviour of the SPEs from predictions using the emulator of one simulator

over data from the other can be monitored across intermediate variable space. Ex-

tending the validation method of emulating SPE values mentioned in Section 3.5,

these SPE values can be emulated with the intermediate variables as inputs. If

the emulator captures a large proportion of the variation in the SPEs, using the

intermediate variables as inputs, this indicates that there is systematic behaviour

in the SPE values. This in turn indicates that the emulator is not capturing some

of the behaviour of the data, and therefore gives reason to believe that there are

systematic differences between the two simulators.

For comparison, the SPE from predictions using an emulator of the same simu-

lator should also be emulated, as well as some random vectors. The proportion of

variation captured by the regression surface when each of these is emulated forms a

good basis for comparison, particularly when the number of points is small relative

to the dimension of the intermediate variable space, which could lead to over-fitting.

If a relatively high proportion of variance in the errors for the emulator of another

simulator is explained by the regression surface, this indicates that there are sys-

tematic differences between the two simulators. These may not be particularly easy

to discern or describe, but methods shown in the rest of this section should reveal

the most important differences.

Plots similar to those used to understand the effects of intermediate variables on

the output can show the effects of the intermediate variables on the SPE. Instead

of plotting correlations between intermediate variables (or products of intermediate

variables) and output, we plot their correlation with the SPE. Examples of these

plots are given in Figures 6.19, 6.20, 6.21 and 6.22. Such plots are also used in

Appendix C.2 to validate the emulators on data from the same simulator as their

training data. This is imperative if conclusions are to be drawn from the emulators’
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performance over data from other simulators.

If the SPEs show a pronounced trend against a particular intermediate variable,

this indicates that there is an effect in the prediction data which is not captured by

the emulator of the other simulator. This intermediate variable may be inactive in

the other simulator, or it may contribute differently. The plots showing correlation

with simulator output will help discern which is the case, and will also enable one to

differentiate between intermediates which have a similar and strong effect on both

simulators, and those which are much less active.

Finally, understanding gained from this stage can be combined with that from

the input to intermediate stage to show further which inputs are linked, and which

are driving differences in the simulators.

Method summary

To summarise, when analysing the relationship between intermediate and output

variables, the following steps are useful

12. Study the behaviour of each simulator in terms of its intermediate variables,

using correlations between intermediate variables (or products of pairs of in-

termediate variables) and output.

13. Use the emulator of one simulator to predict the behaviour of the other. Com-

pare the RMSE to that using an emulator of the same simulator. If there is

little difference, the simulators appear to use their intermediate variables in

similar ways.

14. If the RMSE from the emulator of the other simulator is much larger, study

the SPE values to unearth the roots of the difference. If a high proportion of

variance can be explained by a regression surface, this indicates some system-

atic trends. Study the correlations between intermediate variables and SPEs

to try to reveal these trends.

These steps should show where the main differences lie between each simulator’s

handling of the intermediate processes. Having studied the effect of each input
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space on the intermediate variables in Section 6.5, our findings can be combined

to show which of the input to intermediate relationships are the most crucial to

understand.

For intermediate variables that have the same effect on both simulators, differ-

ences could still arise from the way they are created from the input variables. If an

intermediate variable is very active therefore, working to understand the different

ways the simulators calculate this intermediate variable could be very useful.

Input variables that are active only in intermediate variables that are largely

inactive do not necessarily need to be as well understood. However, the intermediates

for which they are active may be more important for different output variables.

This stage of intermediate variable emulation not only provides an insightful

method for understanding a single simulator, but enables a direct comparison to be

made using emulators, so that the differences between two simulators as functions

can be seen and studied.

6.6.3 Example: Intermediate to output

Step 12: Studying the behaviour of each simulator

An impression of the effects of intermediate variables on the OG99NPZD and

HadOCC output is given by plotting the correlation between intermediate and out-

put variables. Figures 6.15 and 6.17 show the correlations between each intermediate

variable and each principal variable of log.iz.pon for OG947 and HAD1007.

Figures 6.16 and 6.18 show heatmaps of correlations between pairs of interme-

diate variables and output variables. The intermediate variables are all positive on

their original scales, but the logarithms of the zooplankton related intermediates,

which are the quantities used to produce these plots, are negative. This affects

the signs of correlations between products of intermediate variables when one is

zooplankton related.
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OG99NPZD

In OG99NPZD it appears from Figure 6.15 that iz.pn has a very negative effect on

log.iz.pon at each time, as well as all but the first time point of iz.np.
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Figure 6.15: Correlations between each intermediate variable and each output variable

from OG947. Each set of principal variables is in time order.

As shown in Figure 6.13, the correlations between these intermediate variables is

very high. Discerning therefore which are actually affecting log.iz.pon is difficult.

Both iz.dn and iz.ds (at their later two times) and iz.pd have a mildly positive

effect, though these are more pronounced at the earlier time points of log.iz.pon.
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Figure 6.16: Correlations between products of pairs of intermediate variables and each

output variable from OG947. Each set of principal variables is in time order.

Correlations between iz.dn and iz.pd are very high, leading to more difficul-

ties in interpretation. The strongest second order effects in OG99NPZD (shown

in Figure 6.16) are of iz.np2 and iz.pn2, particularly iz.pn2
1. There appear to

be some strong interactions between iz.pn and other intermediates, especially the

zooplankton related ones.

HadOCC

Figure 6.17 shows that in HadOCC also iz.pn has a negative effect, particularly

iz.pn1
H . In contrast, iz.np seems to have very little effect on HadOCC output.
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As in OG99NPZD, iz.pd and the latter two time points of iz.dn and iz.ds have

a positive effect. Whereas in OG99NPZD the zooplankton related intermediate

variables on their own show almost no correlation with output, in HadOCC they

all show a slightly positive correlation. This is particularly true of log.iz.pz and

log.iz.dz, whose correlations are very similar at all time points. The correlations

between log.iz.pz and log.iz.dz in HAD1007 are very high, and so discerning

the individual effect of either on HadOCC output will be difficult.
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Figure 6.17: Correlations between each intermediate variable and each output variable

from HAD1007. Each set of principal variables is in time order.

The second order effects in HadOCC (Figure 6.18) appear much less simple than

those in OG99NPZD. The effect of (iz.pn1
H)

2
is strongly negative, and interactions
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between iz.pn1
H and log.iz.pz and log.iz.dz appear particularly strong. The

correlations between output and iz.pd2 and iz.dn2 are quite high, though less so

with log.iz.pon365
H .
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Figure 6.18: Correlations between products of pairs of intermediate variables and each

output variable from HAD1007. Each set of principal variables is in time order.

Conclusions

To summarise the apparent behaviour of the individual simulators:

� Both simulators show a strongly negative effect of iz.pn and a mildly positive

effect of iz.pd and later iz.dn on log.iz.pon.

� Both models show evidence of interaction effects between some time points of
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iz.pn and the zooplankton related intermediates.

� OG99NPZD shows a negative correlation between iz.np and log.iz.pon

(though this could be an artefact of high correlation between iz.np and iz.pn

in the data).

� HadOCC iz.pon appears to be influenced by log.iz.pz and log.iz.dz

(though again high correlations in the data make the effects hard to sepa-

rate).

Step 13: One emulator over the data of another

Before either emulator could be used on data from the other simulator, the prediction

datasets had to be altered slightly. Because there are no transfers from D to Z in

OG99NPZD, this was added as a variable so that the HadOCC emulator could be

evaluated on OG99NPZD data, but was fixed at log (10−5) (the value representing

no nitrogen transfer, since 10−5 is added to iz.dz in HadOCC before taking logs).

OG947 data HAD1007 data

Time Mean (& SD)

log.iz.pon

(OG947)

OG

emulator

HAD

emulator

Mean (& SD)

log.iz.pon

(HAD1007)

HAD

emulator

OG

emulator

1 3.10 (0.014) 0.0005 0.0076 3.09 (0.014) 0.0001 0.0035

13 2.86 (0.204) 0.0025 0.156 2.83 (0.251) 0.0019 0.0189

105 2.41 (0.332) 0.026 0.580 2.41 (0.505) 0.0198 0.165

365 2.22 (0.321) 0.0341 2.18 2.08 (0.664) 0.0510 0.214

Table 6.14: RMSE for each emulator used to predict log.iz.pon from OG947 and

HAD1007, as well as the mean and standard deviation of log.iz.pon at each time point.

Table 6.14 shows the RMSE values for each vector of predictions using the emu-

lators built from OG948 and HAD1005 over OG947 and HAD1007. At most times,

the RMSE from the emulator constructed using the other simulator’s data is over ten

times the RMSE from the prediction of the emulator constructed using data from

the same simulator. The errors are particularly large when the HadOCC emulator
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is used over OG99NPZD data at the latest time point. This is likely to be be-

cause the ranges of the intermediate variables are mostly wider in OG99NPZD than

in HadOCC, and so the HadOCC emulator is extrapolating far beyond its train-

ing data. Because the RMSE, unlike the SPE, is not standardised by predictive

variance, this is not accounted for.

Step 14: Studying the SPE values

To investigate systematic trends in the SPE values when an emulator of the other

simulator is used, emulators were built of each SPE vector, with intermediate vari-

ables as input. As well as this, emulators were built for the SPE vectors for predic-

tions from an emulator of the same simulator as the data, and eight random vectors

were generated, four each for the OG99NPZD and HadOCC data. These were drawn

from a normal distribution with the same mean and variance as the SPE (in most

cases these vectors appeared to be roughly normal). Each emulator was built with

a second order regression surface, chosen using R’s step function, and an isotropic

correlation function with its correlation length estimated by maximum likelihood.

Adjusted R2

Time 1 13 105 365

O
G

94
7 SPE (HadOCC) 0.839 0.984 0.958 0.980

SPE (OG99NPZD) 0.077 0.105 0.246 0.205

Random 0.033 0.024 0.0087 0.021

H
A

D
10

07 SPE (OG99NPZD) 0.973 0.953 0.966 0.919

SPE (HadOCC) 0.259 0.152 0.178 0.228

Random 0.011 0.0081 0.081 0.012

Table 6.15: Variation captured by regression surfaces for SPE vectors when an emulator

of the other simulator is used to predict log.iz.pon, compared with that for the emulator

of the same simulator, and for similarly distributed random vectors.

Table 6.15 shows the variation captured by the chosen regression surface for

each of these vectors. In each case, the notion is supported that the SPE from using

an emulator over data from the other simulator (the top row in each block of the



6.6. Emulating output from intermediate variables 172

table) contains systematic trends over the intermediate variables. Because of the

strange shape of the intermediate variable spaces, and the collinearity in the data,

using the emulator outside its training data range or interpreting the coefficients of

the regression surface might lead to misleading results. Instead, we note that clear

systematic trends are present and continue with the methods outlined.

The regression surfaces for the SPE from the emulator of the same simulator as

the data (the second line in each part of Table 6.15) capture very little variation.

This is encouraging, since a systematic trend would imply that the surface was not

capturing the behaviour of the simulator.
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Figure 6.19: Correlations between each intermediate variable in OG947 and the SPE

using an emulator built from HAD1005.
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HadOCC emulator over OG947

Figures 6.19 and 6.20 show correlations between intermediate variables (or pairs

of intermediate variables) in OG947 and the SPE when the emulator built from

HadOCC data is used over OG947.

In both simulators, iz.np and iz.pn appear to have very little effect on the SPE

values. That the effects of iz.pn should be mostly similar is perhaps surprising,

since the transfer represents different processes in the two simulators.
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Figure 6.20: Correlations between products of pairs of intermediate variables in OG947

and the SPE using an emulator built from HAD1005.

The most pronounced effect on the SPEs over OG947 from the HadOCC emulator

come from the first two time points of log.iz.zn (at the earliest two time points
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of log.iz.pon) and iz.pd. The effect of log.iz.zn on SPE is difficult to trace, as

this variable appears to have no strong effect in either simulator. Both simulators

show positive links between output and iz.pd, however the effect iz.pd has on the

SPE suggests that this effect is not the same. The latter two time points of iz.dn,

which are highly correlated with iz.pd, show the same link, further preventing us

from distinguishing between the two. Interactions between some of the zooplankton

related intermediates and iz.pd appear to contribute strongly to the SPE of the

HadOCC emulator over OG947, particularly at times 13 and 365. There is more

evidence of these interactions being systematically related to output in HadOCC

(from Figure 6.18) than OG99NPZD. In the example in Section 6.3.1 we saw that the

principal variables for iz.dn represent the full HadOCC and OG99NPZD datasets

somewhat differently. The apparent difference between their use of iz.dn could at

least in part be attributable to this.

OG99NPZD emulator over HAD1005

Figures 6.21 and 6.22 show correlations between intermediate variables (or pairs

of intermediate variables) in HAD1005 and the SPE when the emulator built from

OG99NPZD data is used.

The zooplankton related intermediates show strong links to the SPE when the

OG99NPZD emulator is used over HAD1007, particularly for log.iz.pon105
H . This

fits with the strong links between these variables and output in HadOCC that ap-

pear to be absent in OG99NPZD. The effects of log.iz.pz and log.iz.dz remain

very similar. That there is no especially strong link between log.iz.dz and the

SPE from the OG99NPZD emulator suggests that its effects on log.iz.pon in

HadOCC are not very important. In order to find out more, one could use the input

to intermediate variable emulators to produce intermediate variable designs where

log.iz.pz and log.iz.dz were less highly correlated.

Although iz.pn is the most influential intermediate variable in both OG99NPZD

and HadOCC, focussing on their use of iz.pd and iz.dn, and investigating whether

it is appropriate for the zooplankton related intermediates to be more influential (as

in HadOCC) or less (as in OG99NPZD) would best help understand the differences
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between them at this level.

As Table 6.10 shows, very few input variables in either simulator are strongly

active in iz.pn. The apparent link between µP (in OG99NPZD) and presp (in

HadOCC), which affect iz.pn, iz.pd and most other intermediates very similarly,

remains important. Some of the inputs that are active in HadOCC’s calculation

of iz.pn (for example photmax, alphachl and kdin) have apparent links with

OG99NPZD inputs that do not appear active in iz.pn. Studying the different

uses of these input variables may help to further understand differences between

OG99NPZD and HadOCC.
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Figure 6.21: Correlations between each intermediate variable in HAD1007 and the SPE

using an emulator built from OG948.
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Figure 6.22: Correlations between products of pairs of intermediate variables in

HAD1007 and the SPE using an emulator built from OG948.

Conclusions

To summarise what has been found about the differences between HadOCC and

OG99NPZD:

� The RMSE and SPE values found when using an emulator of one simulator

over data from the other suggest strong systematic differences between the two

simulators.

� The correlations between iz.np and iz.pn in OG947 or HAD1007 and the

SPE from the errors using an emulator of the other simulator are very low,
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implying that the two simulators use these intermediate variables in a similar

way.

� High correlations between iz.pd and the latter two points of iz.dn with SPE

for both datasets suggest that these intermediate variables are used differently

in the two simulators.

� When the OG99NPZD emulator is used over HAD1007, the zooplankton re-

lated intermediates are quite strongly correlated with the SPE. This consoli-

dates the conclusion from step 13 that these intermediates are more influential

in HadOCC.

Summary

This stage has improved our understanding of how the different intermediate pro-

cesses contribute to OG99NPZD and HadOCC, and where differences lie. Studying

the correlations between intermediate variables and output gave an indication of

the most important intermediate variables and of their effects. Using the emulator

of one simulator over the intermediate variable data of the other, made possible by

the formation of the same intermediate variables in each simulator, enables a di-

rect analysis of how similarly the two simulators use their processes. Both of these

steps enabled us to identify possible avenues for further investigation of differences

between OG99NPZD and HadOCC.

6.7 Further directions

This chapter has covered the process of using intermediate variable emulation to

compare two simulators and better understand each of them. Various aspects of the

methods shown could be developed, refined or augmented to bring improvement.

Some possible areas for further work are discussed here.
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Dimension reduction

Principal variables have been used in this chapter, largely because they are relatively

robust to different trends and patterns in the data, and simple to interpret in the

latter stages of intermediate variable emulation. In some cases it might be that a

functional approximation, for example a smoothing spline, might much better cap-

ture the features of the intermediate variable data, and allow for more information

to be retained. This requires careful study of how the method will be chosen using

the data, how the parameters will be interpreted, and of situations in which using

an alternative dimension reduction method would be particularly beneficial.

Choice of dimension reduction technique may also depend on the overall goal

of emulation. If a particular output variable is of interest, it may be better to

choose a subset of the full intermediate variables that best predicts this value, rather

than choosing the subset that best represents the intermediate variables. This may

involve purely data analytic techniques, but it could make use of understanding of

the simulators. For example, if only the previous time point is used at each stage

in the process, the intermediate variables from the time point before the one in

question might be a good choice.

Experimental design in intermediate variable space

It has been noted that one of the main difficulties in emulating the output from

the intermediate variables is our lack of control over the intermediate variables, and

therefore our inability to specify a design over that space. While this is inevitably

true (unless the simulator itself can be re-written to take intermediate variables as

inputs), history matching techniques could be used, along with the emulators from

input to intermediate variables, to create an approximate design.

In order to be able to specify the nature of the intermediate variable space, the

full set of intermediate variables would have to be jointly emulated from the input

variables, which is not the case in this chapter. There is also no guarantee that all

regions of the intermediate variable space can be filled; the values of intermediate

variables may be inherently linked in such a way that prevents, for example, a high

value of one and a low value of another. This may in itself be interesting, particularly
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if the limitations are different for the different simulators.

Where two intermediates are generally highly correlated, it may be possible to

use the input to intermediate variable emulators to produce data where this is not the

case. This could then provide more information about the effects of these variables,

in situations like that of iz.pz and iz.dz in HadOCC, whose effects are difficult to

tell apart in the example in Section 6.6.3.

Model selection for intermediate to output variables

In the examples in this chapter, the regression surfaces were built using the stepwise

selection procedure in R (R Development Core Team, 2011), searching by adding

and deleting terms, and allowing squared and second-order interaction terms. How-

ever this has certain shortfalls, particularly in being unable to choose between highly

correlated variables, and therefore potentially leading to spurious conclusions if the

effects of some variables are attributed solely to one. Existing work on model se-

lection in regression problems with highly collinear input variables could be used

here.

One potential solution would be to emulate the output using the principal com-

ponents of the intermediate variables, rather than the intermediate variables them-

selves (as in principal component regression). Although this might seem more diffi-

cult to interpret, the diagnostics and plots used in the example in Section 6.6.3 are

all also possible with a principal component emulator.

When one simulator is ‘better’

In this chapter the simulators are being compared without one being judged to be

more reliable or accurate. However, often it may be the case that one generally per-

forms better against observed data, or has had much more time and effort invested

in it, than another. In this case, intermediate variable emulation could perhaps be

viewed more as a tool for using the ‘better’ simulator to inform the other. In par-

ticular, the ranges and behaviour of the intermediate variables could be viewed as

standards, and used to deduce sensible input ranges for the other. This leads into

the much broader area of using expert knowledge in order to interpret the findings
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of intermediate variable emulation.

As a general emulation strategy

It has been mentioned throughout that intermediate variable emulation can be of

use in a single simulator context. This has mostly been related to an increased un-

derstanding of the simulator through use of intermediate variables. However, there

might be situations in which intermediate variable emulation is a better strategy

than standard emulation. Appendix C.3 explores the idea of combining the input

to intermediate and intermediate to output variable emulators to form an emula-

tor from input to output variables. Figures C.8 and C.9 show samples from the

combined intermediate variable emulators.

Because intermediate variable emulation splits the simulator into different stages,

and offers more flexibility in how the individual emulators are constructed, it may

be better equipped to deal with simulators that contain complicated relationships

for particular processes.

6.8 Summary

This chapter has presented intermediate variable emulation, a method enabling emu-

lation of multiple simulators of the same system in a way that improves understand-

ing of each, and facilitates comparison. Methods have been illustrated throughout

using OG99NPZD and HadOCC. Some pairs of highly active input parameters,

given different meanings in HadOCC and OG99NPZD, were shown to affect almost

all intermediate variables similarly, therefore suggesting links between the two input

spaces. Other inputs that are unique to one simulator were shown to be largely

inactive, lessening the motivation to link the input spaces in full.

Emulators from the intermediate to output variables showed that there are sys-

tematic differences between the two simulators. The transfer of nitrogen from phy-

toplankton to nutrient, iz.pn, is the most active in both HadOCC and OG99NPZD,

and appears to be treated very similarly. Other transfers, particularly iz.dn and

iz.pd, appear to contribute quite differently to the two simulators.
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Unlike hierarchical emulation, intermediate variable emulation does not require

that the simulators’ input spaces be almost the same, but instead makes use of simi-

lar process represented in each simulator, using them to create a set of ‘intermediate’

variables. By analysing the distributions and trends of the intermediate variables,

differences in the general behaviour of the simulators can be understood.

For each simulator, the input variables can be used to emulate the intermediate

variables, enabling a detailed study of the relationships between the input spaces.

Using expert knowledge of the system, unrealistic values of the intermediate vari-

ables can be used to refine the input spaces through history matching and similar

techniques.

Emulators of the output variables from the intermediate variables can also be

created for each simulator. Although the intermediate variable spaces are likely

to present difficulties for emulation because of their irregular shapes and collinear-

ity, having emulators with the same input and output variables for all simulators

enables direct comparison. Not only can the effects of the intermediate variables

on the output be observed for each simulator, the emulator of one simulator can

be used to predict the behaviour of another. Studying the behaviour of the errors

for these predictions reveals the key systematic differences between the simulators’

representations of the system.



Chapter 7

An object-oriented structure for

emulation

Up to this point, the focus has been on methods for emulation, rather than on their

implementation. Because of the quantity of data and the number of operations

involved in building emulators, the only feasible approach is to program. For this

thesis, all emulation was done in R (R Development Core Team, 2011), and in an

object-oriented way using the S4 class structure. In this chapter we explore the ben-

efits of object-oriented programming and apply them specifically to emulation. First

of all, we motivate object-oriented programming, and then introduce the S4 classes

in R. A framework for emulation is then presented, and extended to incorporate the

new methods from Chapters 5 and 6.

7.1 Why use objects?

In this thesis, methods for emulation have been presented that use large amounts of

simulator data, perform many calculations, and result in large collections of results.

Many collections of the same sort of data or results may be stored, and may need

to be accessed by different people or after long breaks, and so the potential for

mistakes and inefficiency is high. For instance, time consuming calculations such

as finding the inverse or Cholesky decomposition of the covariance matrix of the

correlated errors (the matrix Σ (x) in the notation of Chapter 3) or estimating the

182
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correlation lengths (see Section 3.3.3) may be repeated often as new techniques are

tried, or even as the same operations are carried out at different times or by different

people. The details of the correlation or regression surface associated with a set of

predictions may be lost or confused.

It is also likely that as understanding of the problem develops and new techniques

are devised, existing code will need to be adapted to deal with new sorts of simulator

data, or to perform new tasks. For example, code that performs standard emulation

as in Chapter 3 may need to be extended to be able to use a new correlation

function or to perform hierarchical emulation (Chapter 5) or intermediate variable

emulation (Chapter 6). Ideally, this would not require a new set of functions written

entirely from scratch, but could be built on an existing foundation. Object-oriented

programming (OOP) addresses each of these issues.

Rather than focus on functions, OOP revolves around tightly structured objects

and their interactions. In OOP, information that belongs together is encapsulated as

one object. All objects belong to a particular class, and classes have strict definitions;

knowing the class of a particular object means knowing exactly what each part

of the object is, and how the different components relate to one another. The

structure of the data is maintained without any part being lost, a feature that is

not guaranteed when components are stored separately. In emulation, there may be

delays between designing an experiment, running a simulator, building emulators

and making predictions, and several similar processes may be ongoing at once. An

object-oriented structure ensures that no information is confused or lost.

Classes can be related to one another through inheritance. Alfons et al. (2010)

describe this as one of the main advantages of object-oriented programming. Inher-

itance allows sub-classes to inherit their structure and behaviour from their super-

class, each sub-class extending the super-class in some way. Thus several classes

may be created representing fundamentally the same sort of information, but each

in a slightly different way, or with extra features.

Outside of OOP, in order to deal with different forms of the same sort of data,

functions must contain many checks to discern the meanings and features of their

arguments each time they are evaluated, in order to know how to behave. Another
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advantage of OOP is multiple dispatch. This streamlines the way functions are

made and used. A generic function is created representing the goal or task at hand,

and methods are written for this function, dispatching on various combinations of

classes of arguments, or signatures. When the function is called, the classes of the

arguments are checked against the signature of each method, and the correct method

is dispatched. Many methods can be written for each function, so that the same

task can be performed using the same function with any manifestation of the same

sort of information, so long as the relevant methods have been written.

This helps enormously with maintaining and adapting code. Suppose one has a

framework for emulation for a particular sort of simulator data, held in objects of a

particular class, and that throughout the code the simulator data is handled using

functions with methods defined for that class. In the event that another class is

created, containing a slightly different form of simulator data, one can simply write

new methods for each function to be able to handle the new class, and any code

using these functions will still work. In a non object-oriented setting, it can be much

more difficult to adapt code to deal with such a fundamental change. Methods also

provide flexibility in allowing objects of the same class to be created from various

different combinations of arguments.

OOP is also often preferred at an ideological level. Rather than think in terms

of long sequences of instructions and procedures starting with primitive items, it is

posited by many that people generally think in terms of meaningful objects, and

interesting operations one might want to perform on them. Leisch (2004), who holds

this view, uses the example of probability distributions. He argues that it is intuitive

to store pdf’s and cdf’s as objects, and to define operations on them, for example

the mean, variance, random sampling or some sort of plot, rather than to write

separate functions for each operation and distribution.

As the S4 emulation framework is presented in Section 7.3 and extended in Sec-

tions 7.4 and 7.5, the benefits of OOP for emulation will become clearer. Before

outlining this framework, we will introduce the S4 class structure in R (R Develop-

ment Core Team, 2011; Chambers, 1998).
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7.2 S4 objects

In R, data is organised using classes. The most prevalent class system is S3, or ‘old-

style’, which includes classes such as “lm”. These are not rigid in their definition;

different instances of a particular S3 class may include different parts. Although

this isn’t necessarily a problem if programming is done diligently and structure is

enforced by the writer, it can make dealing with complicated data structures difficult

and messy.

The S4 or ‘new-style’ class system is far more rigid in its approach. When an S4

class is defined, the user must specify its representation; exactly what components,

known as slots, make up an instance of this class. In the class representation each

slot is given a name and assigned a class. R will simply not allow an object of a

certain class to be created if its components don’t fit this specification. While this

can be frustrating, it ensures that all instances of a particular class have exactly the

same structure, and that the programmer is fully aware of this structure. Further

validation criteria can be added if necessary, so that the values of the slots must fit

certain constraints.

For any class, a sub-class can be defined, extending it. A sub-class must contain

at least the same slots as its super-class, the class it extends, and they must have

the same classes. The sub-class can contain further slots, enabling more information

to be stored. Through inheritance, any function that can take an instance of the

super-class will also accept an object of the sub-class, although new methods can

also be written that work only for the sub-class. This will be explored later.

Having defined classes, one can write methods enabling functions to dispatch on

different combinations of objects. Methods enable the same function call to behave

differently depending on the arguments it is given. Multiple dispatch is a common

occurrence in R, even in S3; the function plot will behave differently given two

vectors from when it is given a time-series or a single vector. Similarly, methods

can be defined in S4 for different combinations of inputs. There is actually more

control here, since under S3 the class of the first argument alone determines the

method, whereas in S4 the signature (the list of classes of the arguments) can be of

any length.
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Todorov and Filzmoser (2009) present an object-oriented structure for multivari-

ate analysis using S4 classes in R, providing helpful insight. They also explain how

OOP enables a user to much more easily adapt their code in order to introduce a

new function, or to enable existing functions to deal with a new sort of object. A

presentation by Leisch (2004) uses the example of classes representing images to

demonstrate inheritance and the writing of functions, with many illustrative exam-

ples of code. Different classes can be created to store different types of image, for

example bitmap, JPEG or SVG, and there may be different subclasses depending

on whether the image is black and white or colour. Functions using the images (for

example to plot the image, or to convert it to pdf format) can be made to behave

appropriately whatever type of object they are given, by writing methods for the

different classes.

For more general information about object-oriented programming in R using S4,

see Chapters 7 and 8 of Chambers (1998) or Chapter 5 of Venables and Ripley

(2000).

We are now in a position to develop a framework for emulation using S4 objects.

First of all, this will be for standard emulation as described in Chapter 3.

7.3 Emulation using S4

Broadly speaking, there are three stages to emulation. Firstly, one needs simula-

tor data with which to train the emulator. Secondly, the regression surface and

correlation function must be specified, and used with the training data to build an

emulator. Finally, the emulator can be given new input data, and asked to predict

the simulator’s output there.

Because each stage involves structuring data, and large amounts of information

belonging together, it seems appropriate to tackle the process in an object-oriented

way. It is possible that there might be large time intervals between each of these

stages, or that one might want to revisit parts of the emulation process to alter

some specifications, and so containing all the information relevant to that stage in

one highly structured object is an attractive concept. The core emulation structure



7.3. Emulation using S4 187

model.data.out

em.multi

ep.multi

reg.func

simulator
data

input
ranges

options

correlation
options

new input
data

Figure 7.1: An S4 object structure for emulation. The names in bold denote classes,

and the other text describes the inputs used to make objects of those classes. The arrows

represent the information needed to create an object of each class.

used here is shown schematically in Figure 7.1, and code for the core structure is

given in Appendix D.

The classes defined in this chapter can mostly be categorised into three groups,

mirroring the three stages mentioned above: simulator data, emulator, and predic-

tion. In this section, the framework developed to build a ‘standard’ emulator (as

in Chapter 3) is explained. It will then be extended to cater for the extra needs

of hierarchical emulation (Chapter 5) and intermediate variable emulation (Chapter

6). Throughout, a “class” is written in speech-marks, and a function in typewriter

font.

Simulator input data is stored in instances of “model.data”, where the values and

possible ranges (usually provided by an expert) of each input are slots. The sub-class

“model.data.out” also has slots containing a data frame of simulator output and a

corresponding vector of output names. Instances of these classes are created using

the function model.data, it being common practice in the S4 framework to name a

creator function after the class (or super-class) of the object it creates. These, and

the other classes described in this section, are detailed in Tables 7.1 and 7.2.

The method dispatched for the creator function model.data depends on the
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classes of the arguments it is given. If it is given two data frames, one containing

input points and one of corresponding input ranges, an instance of “model.data”

is created. If a vector of output names is also given, matching columns of output

data in the data frame containing input points, a “model.data.out” object is made.

These two classes are related by inheritance, and so any method that can dispatch

on a “model.data” object will also dispatch on a “model.data.out” object1. The

converse is not true.

Various methods exist for accessing parts of these objects, for example for cre-

ating a data frame of input and output together from a “model.data.out” object.

Another function, rescale, uses the ranges and the input data to rescale the inputs

to a particular interval, (the interval [−1, 1] by default) and returns the data frame

of rescaled values.

At the third stage (prediction), an emulator is used to create a probability dis-

tribution, and so an object of class “em.multi”, created in the second stage, contains

everything necessary to evaluate this distribution at new input points. The training

data is included, via a slot of class “model.data.out”, and any information needed

for the regression surface and correlated error. These details are stored in two more

classes of object, “reg.func” and “corr.mats”.

These classes were introduced to allow flexibility in how the emulator is con-

structed, and to facilitate changes to the emulator once it has been built. The

regression function is stored in the “reg.func” object, which can be created in sev-

eral ways. At the most basic, one may specify a list of functions to be used. Options

exist to use all linear terms or build a full second order surface. It is also possible to

specify a desired number of active variables, in which case the method calls a func-

tion written to find the ‘most active’ of the inputs. There are currently several other

options, including step-wise model selection with various constraints, but whichever

approach is taken, the resulting “reg.func” object contains exactly the same slots

1When a function is called, and the arguments match signatures for more than one method, a

hierarchy is in place. This means that the method using “model.data.out” will take precedence

over one using “model.data”. The class “ANY”, which can admit an argument of any class, takes

the least priority.
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with exactly the same meanings, and can be used to create an “em.multi” object in

the same way regardless of how it was made.

Similarly, the “corr.mats” object, which represents the correlated error function,

can be formed by specifying one correlation length, or a length for each input. In

the emulation process outlined in Figure 7.1, the “corr.mats” object is concealed

within the “em.multi” object. When correlation lengths are specified numerically,

the “corr.mats” object can be created on its own, from a “model.data” object and

these lengths. However, often optimisation is used to find the correlation lengths,

and in this case the regression functions must already be specified. Therefore the

“corr.mats” object is usually created within the em.multi creator function, rather

than on its own, using options (either numerical correlation lengths or optimisation

criteria) passed to em.multi.

The “corr.mats” object contains either the Cholesky decomposition or the inverse

of the correlation matrix, one of which must be available at later stages in the

emulation process. Indeed, at the “em.multi” stage, any calculation necessary for

prediction that does not require the new input points can be performed once and

stored, rather than being repeatedly performed at the prediction stage.

Predictions take the form of an “ep.multi” object. This is created using an

“em.multi” object and a data frame of new input points. The “ep.multi” object

contains the location, scale and degrees of freedom of the output’s posterior distri-

bution, the t-distribution summarised in Section 3.1.

It might seem immediately more intuitive to have a prediction function, rather

than a prediction class, which takes an “em.multi” object and new inputs and re-

turns summaries of the t-distribution. Indeed, the creator function ep.multi can

be used in this way. However, a prediction class brings with it extra advantages.

An “ep.multi” object has a slot containing the “em.multi” object used, and so the

information used for these predictions is stored with them, avoiding confusion or er-

ror. Furthermore, encapsulating the prediction information in a single object makes

interaction with the information much simpler. One might want to sample from

the distribution, draw particular plots or give certain summary statistics. Methods

could also be developed for the prediction classes in the hierarchical and intermedi-



7.4. Hierarchical emulation in S4 190

ate variable emulation frameworks. The “ep.multi” class is also used throughout the

hierarchical and intermediate variable emulation frameworks, both of which involve

relating various standard emulators to one another in a rigid structure.

7.4 Hierarchical emulation in S4

Having established a core object-oriented structure for emulation in R we can extend

it to build hierarchical emulators, which were described in Chapter 5. The core struc-

ture revolves around three sorts of class; data, model and prediction. For the stan-

dard emulation framework outlined in Section 7.3, these classes are “model.data”,

“em.multi” and “ep.multi”. In hierarchical emulation, the same three stages are

present, but the structure of the emulator requires some new functionality, and

therefore new classes.

The initial problem with hierarchical emulation is to organise the training data

into its separate blocks, each informative for only one of the functions. The data

class in the hierarchical setting is “hier.data”. Like “model.data” this is made using

a data frame of inputs (and optionally outputs) and a data frame of input ranges. To

enable the hierarchical features, it must also be given the names of the hierarchical

variables, along with their v∗ values and g (·) functions, and the names of any extra

variables w. The data is checked to make sure that the design criteria discussed in

Section 5.2.2 are satisfied, and organised into its separate blocks, according to the

function, ψ (·) or s0 (·), for which it is informative. The g (·) functions, hierarchical

variables and output data are then used to find the ψ (·) data. These blocks are

then used to create a list containing a “model.data” object2 for each term in the

emulator. As well as the simulator output variable, each of these also has an output

‘h’, which is the data from the ψ[i] (·) function (or s0 for the first block), calculated

using the data and the structure information. The emulators built for each ψ[i] (·)

function will use h as their output.

The class “hier.model” corresponds to “em.multi”, and requires the same choices

about the regression and correlation functions, along with an object of class

2This can also be an object of any subclass of “model.data”, for example “model.data.out”.
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Class Slots Slot’s class Description

model.data
input data.frame Input points

oldrange data.frame Ranges of inputs

model.data.out

(extends

model.data)

input data.frame Input points

oldrange data.frame Ranges of inputs

outdf data.frame Output data

outname vector Names of output variables

em.multi

data.obj model.data.out Training data object

names.out character Name(s) of output variables

reg.obj reg.func Regression surface object

cm.obj corr.mats Correlated error object

HcmH matrix The matrix
(
XA−1X

)
in Section 3.2

chol.HcmH matrix or

try-error

The cholesky decomposition of HcmH (or an

error if this fails)

beta.gls matrix The GLS estimate of the regression coeffi-

cients

sigma.gls matrix The GLS estimate of output covariance ma-

trix (Γ̂ in Section 3.2 )

ep.multi

mod em.multi The emulator object

xnew data.frame New input points

loc matrix Location of predicted output’s t distribution

scale array Scale of predicted output’s t distribution

deg.f numeric Degrees of freedom of predicted output’s t

distribution

Table 7.1: Classes used in the core emulation structure, with details about each of their

slots.
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Class Slots Slot’s class Description

reg.func

functions list List of regression functions

active vector∗ Names of active variables

summary summary.lm∗ Summary of regression surface

priormean vector∗ Mean of regression coefficients

priorvar vector∗ Variance of regression coefficients

options list∗ The options used to build the regression sur-

face

data model.data∗ The model data object used to build the re-

gression surface

corr.mats

data1 model.data Data for correlation matrix (n points)

data2 model.data∗ Optional second data set (m points)

corrlen data.frame Correlation lengths for each input dimension

corrmat matrix Correlation matrix (n×m, or n×n if ‘data1’

is null)

cholcm matrix∗ Cholesky factorisation of ‘corrmat’ if it can

be found

cminv matrix∗ Inverse of the correlation matrix ‘corrmat’, if

‘cholcm’ cannot be found

nugget numeric Variance for a nugget term (zero by default)

Table 7.2: Classes representing the regression surface and the correlated error, with

details about each of their slots. An asterisk in the ‘class’ column indicates that this slot

can also have class “null”.
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Training data,
Input ranges,
Hierarchical info.,
Transformation
functions

hier.data
model.data.out
for s0 (·)

model.data.out
for ψ1 (·)

. . . model.data.out
for ψ1...k (·)

Regression &
correlation options

hier.model
em.multi
for s0 (·)

em.multi
for ψ1 (·)

. . . em.multi
for ψ1...k (·)

New input points

ep.multi
for s0 (·)

ep.multi
for ψ1 (·)

. . . ep.multi
for ψ1...k (·)

Hierarchical info.,
Transformation
functions

hier.predict Expectations and variances for
s0 (·) , s1 (·) and s1 (·)− s0 (·)

Figure 7.2: An S4 object structure for hierarchical emulation, in terms of the hierarchical

emulation classes (left), and standard emulation classes (right). The names in bold denote

objects of classes from this chapter, and the other text describes the inputs used to make

those objects. The arrows represent the information needed to create each object.
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“hier.data”. The object then contains the “hier.data” object and a list of “em.multi”

objects, one for each of the “model.data” objects in the “hier.data” object’s list.

Having established the standard emulation framework therefore, this stage of hier-

archical emulation is simple.

Finally, objects of class “hier.predict” are created using a “hier.model” object and

a data frame of new inputs. The “em.multi” objects from the list in the “hier.model”

object are used to combine these predictions to predict the values of s0 (·) and the

ψ[i] (·) at each of the new points, by creating a list of “ep.multi” objects. The g (·)

functions and hierarchical inputs stored in the “hier.data” object are then used

to produce vectors “loc.s1”, “loc.s0” and “loc.diff” and matrices “var.s1”, “var.s0”

and “var.diff”, which give the expected values and variances of s1, s0 and s1− s0

respectively.

Figure 7.2 shows the flow of information through the hierarchical emulation

framework, in terms of both the specialised hierarchical emulation classes and the

standard emulation classes explained in Section 7.3.

At present, the hierarchical emulation structure works for univariate output only,

as it is described in Chapter 5. Extending it to multiple output variables is possible,

but introduces new questions about various aspects of the process, for example

whether to use the same transformation function for all outputs for each hierarchical

input, or to find the optimal function for each output.

7.5 Intermediate variable emulation in S4

As with hierarchical emulation, one of the main challenges in adapting the emulation

framework to intermediate variable emulation is in the structure of the data; once

this is incorporated into the code emulation is fairly straightforward. The classes

created for intermediate variable emulation are shown in Table 7.4, and the flow

of information between the classes is shown in terms of the intermediate variable

classes and the standard emulation classes in Figure 7.3.

In order to retain flexibility in the choice of dimension reduction technique, the

structure presented here deals with the dimension reduced intermediate variables.
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Class Slots Slot’s class Description

hier.data

data.list list List of model.data.out objects containing train-

ing data and output for each level of the hierar-

chy

hier.inputs character Names of hierarchical variables

extra.var vector∗ Names (if any) of extra variables

cond.vec vector v∗ values for each hierarchical variable

trans.fun list List of transformation functions, one for each hi-

erarchical variable

hier.model
data.obj hier.data The training data object

model.list list List of em.multi objects, one for each term in the

emulator

hier.model

md.new model.data New input points (x̃, ṽ, w̃)

model.obj hier.model Emulator object

predict.list list List of ep.multi objects, one for each term in the

emulator

loc.s0 vector Location for s0 (x̃)

loc.s1 vector Location for s0 (x̃, ṽ, w̃)

loc.diff vector Location for s0 (x̃)− s0 (x̃, ṽ, w̃)

var.s0 matrix Scale for s0 (x̃)

var.s1 matrix Scale for s0 (x̃, ṽ, w̃)

var.diff matrix Scale for s0 (x̃)− s0 (x̃, ṽ, w̃)

Table 7.3: Classes used in the hierarchical emulation structure, with details about each

of their slots. An asterisk in the ‘class’ column indicates that this slot can also have class

“null”. At present, this only works for univariate output.
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Training data,
Input ranges,
intermediate
variable names

inter.data.out

model.data.out
extended to
include interme-
diate variables

Regression &
correlation
options

em.inter

em.multi
from input
to output

em.multi
from inter-
mediate to
output

em.multi
from input
to int1

. . .
em.multi
from input
to intk

New
input
points

ep.multi
from input
to output

ep.multi
from input
to int1

. . .
ep.multi
from input
to intk

ep.multi
from inter-
mediate to
output

ep.inter

nsam

ep.inter.sam
array of nsam
samples from
output

Figure 7.3: An S4 object structure for intermediate variable emulation, in terms of the

intermediate variable emulation classes (left), and standard emulation classes (right). The

names in bold denote objects of classes from this chapter, and the other text describes the

inputs used to make those objects. The arrows represent the information needed to create

each object, and int1, . . . , intk are intermediate variables.
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Functions could be written to apply various techniques to raw data in order to

produce dimension reduced data in order to begin this process. The framework

outlined here will work for principal variables, summaries of a smoothing spline,

coefficients of orthogonal polynomials or any other summary, so long as functions

are written which reduce the dimension of the initial data, and then rebuild output

if necessary from the predictions.

Simulator data is stored in objects of class “inter.data.out”, which extends

“model.data.out”. As well as storing input and output data, instances of “in-

ter.data.out” store the intermediate variable data in a slot named ‘interdf’, the

intermediate variable names in ‘internames’ and their ranges in ‘interranges’. The

names of the intermediate variables in the ‘interdf’ data frame must each begin with

one of the ‘internames’, as this will be used to organise the variables later in the pro-

cess. Because this class extends the data classes in the core structure, functions such

as rescale or out.name, with methods for “model.data” and “model.data.out”, will

work for them through inheritance.

Setting the ranges of intermediate variables is not as simple as in standard em-

ulation. Because the values of intermediate variables cannot be chosen in the same

way as inputs, their ranges cannot be set, and so the range slot here contains approx-

imate ranges formed using the data, rather than strict ones. Because they are only

used to rescale data, it is not crucial that all intermediate variable values are within

these ranges; unless the values can extend far outside the reach of the training data,

the rescaled data will be approximately within the correct interval.

An intermediate variable emulator, which has class “em.inter”, is formed by

combining an “inter.data.out” training data object with choices about the regres-

sion surfaces and the correlated error. This object is built from many “em.multi”

objects. The slots ‘em.in.out’ and ‘em.inter.out’ hold emulators of the output vari-

ables from the inputs and the intermediate variables respectively. These are formed

by passing on the regression and correlated error choices with the relevant data to

create separate “em.multi” objects. Because of the number of separate “em.multi”

objects to be built at this stage, programming and usage are much simpler if cri-

teria for the regression surface and correlated error are given, rather than specific



7.5. Intermediate variable emulation in S4 198

functions and correlation lengths.

The slot ‘in.inter.list’ contains an “em.multi” object for each element of the

‘internames’ slot of the “inter.data.out” object. In the example in Chapter 6, this

feature was used to group the intermediate variables by nitrogen transfer. By includ-

ing ‘iz.dn’ in ‘internames’, for example, iz.dnOG
3 , iz.dnOG

11 , iz.dn
OG
110 and iz.dnOG

243 ,

whose names in the ‘input’ table all began with ‘iz.dn’, were jointly emulated in one

“em.multi” object. Had their full names each been included in ‘internames’, they

would have been emulated with four separate “em.multi” objects. Alternatively,

having only one element in ‘internames’, with which the names of all columns in

‘interdf’ began, would cause all intermediate variables to be jointly emulated.

Predictions of the simulator’s behaviour at new input points are held in objects

of classes “ep.inter” and “ep.inter.sam”. The first, “ep.inter”, simply uses the new

inputs and the “em.multi” objects in an “em.inter” object to create corresponding

“ep.multi” objects. Because new intermediate points are not given with the inputs,

the ‘ep.inter.out’ slot is formed using the predictions from the “ep.multi” objects in

the ‘in.inter.list’ slot. The variance attributes of ‘ep.inter.out’ are therefore condi-

tional on these predictions being correct. The various “em.multi” and “ep.multi”

objects can each be accessed and analysed in order to apply the techniques described

in Chapter 6.

In order to give access to the distribution of the predictions formed by using

inputs to predict intermediate variables which are then used to predict the output,

the “ep.inter.sam” class was created. This requires new input points, an “em.inter”

object and a number nsam. It then generates a sample of size nsam from the emula-

tor’s output distribution, by generating nsam points in intermediate space for each

input (using the ‘in.inter.list’ slot), and then sampling once from the ‘ep.inter.out’

slot for each of these points. The resulting output values are stored in the “array”

slot ‘loc.inter.out’.
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Class Slots Slot’s class Description

inter.data.out

(extends

model.data.out)

input data.frame Data frame of input values

oldrange data.frame Ranges of input variables

interdf data.frame Data frame of intermediate variable values

internames vector Names of intermediate variables.

interrange data.frame Ranges of intermediate variables.

outdf data.frame Output data

outname vector Names of output variables

em.inter

em.in.out em.multi An emulator from input to output

in.inter.list list A list of em.multi objects of emulators from

input to intermediate variables, one for each

element of internames.

em.inter.out em.multi An emulator from intermediate to output

ep.inter

ep.in.out ep.multi A prediction object for new inputs, using

em.in.out

in.inter.list list A list of prediction objects for new inputs,

one for each of the em.multi objects in the

in.inter.list slot of the em.inter object

ep.inter.out ep.multi A prediction object for new inputs, using

em.inter.out, and the predicted values of

in.inter.list as intermediate variables.

ep.inter.sam

ep.in.out ep.multi As in “ep.inter”

in.inter.list list As in “ep.inter”

loc.inter.out array An array of sampled predicted outputs, cre-

ated by sampling intermediate variables from

the in.inter.list predictions, then using these

with the em.inter.out to sample from the out-

put distribution.

Table 7.4: Classes used in the intermediate variable emulation structure, with details

about each of their slots. An asterisk in the ‘class’ column indicates that this slot can also

have class “null”.
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7.6 Efficiency and versatility

One of the main advantages of the object-oriented emulation framework is the ef-

ficiency arising from the use of the same classes throughout. For example, the

“em.multi” and “ep.multi” classes feature in both the hierarchical and intermediate

variable emulation frameworks. In both settings, once data has been appropriately

organised, the procedure is mostly reduced to building a collection of standard emu-

lators. This cuts down the amount of code to be written for creating and interacting

with the objects. By collecting similar sorts of information into identically struc-

tured objects, the code ensures that, for example, an “em.multi” object will always

work in the same way, and be able to be used by the same functions, whether it is

on its own or part of a “hier.model” or “em.inter” object. This is particularly useful

in intermediate variable emulation when using the intermediate to output variable

emulator of one simulator on data from another, as in Section 6.6.3.

Encapsulating everything relating to one aspect of the problem in an object also

makes adding new features to the code very simple. The use of an object does

not depend on how it was formed, but purely on its class; although the objects

mentioned throughout this chapter can sometimes be created in various different

ways, objects of the same class will always have the same features.

For instance, functionality could be added for the Matérn correlation function

by altering the creator function corr.mats, and the resulting “corr.mats” objects

will work wherever corr.mats is used throughout the framework.

The ability to write multiple methods for any function also leads to versatility

in how objects are created. There may be several possible combinations of data and

options that enable the creation of a particular type of object. A simple example

is the creator function reg.func, which has up to three arguments, and creates an

object representing the regression surface. At the simplest, reg.func accepts a list

of regression functions, so the signature is

"list", "missing", "missing".

Using the class “missing” enables a function to accept just one argument, even

though the generic function definition lists three. This then creates a “reg.func”
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object containing these functions in its ‘functions’ slot (see Table 7.2). All other

slots are “null”, because no data was given with which to provide summaries of the

surface.

If instead the arguments matched the signature

"list", "model.data.out", "missing",

one of two things may happen. If the list contains functions, as before, then these will

be used as regression functions, and the data will now be used to calculate values

for the other slots. Otherwise, the list should be a list of options specifying the

nature of the surface to be built. One can choose to include all first order terms, or

to use step-wise selection to find a second order surface. A desired number of active

variables can be given, in which case some different techniques can be employed to

find the most active. Any of these choices produces an object with exactly the same

features as if the list of functions had been given.

The final argument allows one to select the output variable(s), so that the sig-

nature is

"list", "model.data.out", "character".

If several output variables are included in the “model.data.out” object, this allows

the user to emulate a subset of them.

Methods are also invaluable when some functionality is to be added in such a

way that objects of some new class cannot be treated in the same way as their

analogies from the original framework. For example, suppose a principal component

emulator were to be built, where the input variables to the emulator are the principal

components of the inputs to the simulator. To achieve this, a new super-class of

“model.data.out”, “model.data.pc” could be created. In most respects, this data

will be used for emulation in almost exactly the same way as ordinary input and

output data. However, whereas in the standard emulator the inputs of training data

are often rescaled to be in a particular interval (in our case usually [−1, 1]), when

the inputs are principal components it is common practice to standardise them to

have mean zero and unit variance. Therefore, whereas the method of rescale used

for a “model.data.out” object uses the elements of the ‘oldrange’ slot as minima
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and maxima, the method for “model.data.pc” should interpret them as a mean and

standard deviation with which to standardise the data. Because of inheritance,

functions that should treat both classes in the same way do not need to have a new

method written.

Because the information is kept together with a tightly controlled structure, this

framework is also beneficial when working over a long time frame, or when making

changes after periods of inactivity. If an “em.multi” or “ep.multi” object is saved,

all the information necessary to continue using the emulator is retained and kept

together.

It is also possible that one might like to alter an emulation object by making

slightly different choices, for example to try a different set of regression functions,

or new correlation lengths.

A key function in the emulation framework is change.obj. This can be given

an object of any class from Tables 7.1, 7.3 or 7.4, and a list named ‘changes’,

whose elements must be named after arguments used somewhere in the emulation

structure, and will make a new instance of the same class but with the changed

arguments taking effect. For example, if some predictions had been made (to form

an “ep.multi” object ‘pred.old’), and diagnostics suggested using smaller correlation

lengths ‘new.corrlen’ the call

pred.new <- change.obj(pred.old, changes = list(corrlen=new.corrlen))

would be sufficient to create an “ep.multi” object ‘pred.new’ where the “corr.mats”

and “em.multi” objects had been re-built with the new correlation lengths.

7.7 Summary

This chapter has given a brief introduction to object-oriented programming (OOP),

and motivated the development of an object-oriented framework for emulation. In

order to pursue this, we then introduced the S4 class structure in R (R Development

Core Team, 2011).

A framework was built for standard emulation, as described in Chapter 3. The

classes in this framework mostly fit the three key stages of data, emulation and
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prediction. We also explained how the object-oriented nature of the framework

helps structure the more involved elements of the process, such as the regression

function or the correlated error.

The standard emulation framework was then extended twice; once to incorpo-

rate hierarchical emulation (introduced in Chapter 5), and once for intermediate

variable emulation (from Chapter 6). For both of these, a key part of the problem

is the structuring of the training data. Once this has been achieved, the standard

emulation classes can be used while the structure is maintained through specially

created classes mirroring the emulation and prediction stages mentioned earlier.

Having established these frameworks, the benefits of OOP were investigated fur-

ther, focussing particularly on the flexibility and adaptability that these frameworks

allow.
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Conclusion

The initial goal of this thesis was to develop the technique of Bayesian emulation to

be able to handle two simulators. This aim was motivated by the observation that

while no simulator will fully or accurately capture all aspects of the system it models,

different simulators have different strengths. Somehow being able to compare their

behaviour and representation is therefore a useful skill.

To illustrate our methods two simulators of the ocean carbon cycle, HadOCC

and OG99NPZD, were introduced. These both model the biological processes in the

ocean responsible for the ‘biological sink’, the transportation of carbon to the deep

ocean by organic matter. Their input spaces are not obviously linked in any way,

and as we saw in the example in Section 3.6, this means that standard emulation

methods are unable to help compare them. It was hoped that methods developed

in this thesis might enable us to draw some conclusions about the differences and

similarities in their representations of the ocean carbon cycle.

Part of the attraction of using emulation was that the simulators are treated

as functions, and can therefore be compared across their input spaces. As we saw

in Chapter 4, this is not the case with very many of the current methods involving

multiple simulators. This led to a study of the possible ways in which two simulators

of the same system could be different, and in particular how their input spaces might

be related. These ranged from two versions of a simulator that could be made to

be the same, to two simulators modelling the system in terms of very different

processes. It seemed sensible to capitalise on any links that could be made between

204
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the two, and so the methods developed in this thesis applied to different situations

from among those listed in Section 4.2.

Hierarchical emulation was introduced in Chapter 5, and focusses on the situa-

tion in which one simulator (s1 (x, v, w)) extends the other (s0 (x)), in such a way

that

s0 (x) = s1 (x, v∗, w)

for all valid x and w. This situation arises often, when a new process can be added

to a simulator, or existing components can be made more detailed. The ability in

HadOCC to make the carbon:chlorophyll (C:Chl) ratio either constant or varying

fits into this category.

Hierarchical emulation preserves the relationship between the two simulators and

enables emulation of either, and of the difference between them, by writing the more

complicated function as a sum of several terms, one of which is the simpler function.

A large validation study showed this method to outperform standard emulators in

the case of HadOCC, and to therefore be a useful tool for studying the relationship

between the two versions. Hierarchical emulation proved to be particularly effective

compared to standard methods when given only a small amount of data from s1

compared to s0. This makes it an especially attractive option when the extended

simulator is much more costly to run than the simpler version.

The prior specification is an important aspect of hierarchical emulation. In

our formulation each of the terms in the hierarchical emulator is independent of the

others, for reasons given in Section 5.2.1. Investigation into other prior distributions

that would maintain the properties we desire, but for which the terms of the emulator

are not independent, may further improve results.

In the grand scheme of simulator difference, hierarchical emulation can be used

on very few pairs of simulators. In particular, it could not enable us to compare

OG99NPZD and HadOCC, whose input spaces are entirely different.

Intermediate variable emulation, introduced in Chapter 6, applies to a much

broader class of pairs of simulators. The only requirement it makes is that both

simulators should contain sub-processes that have the same meaning. In two sim-

ulators of the same system this should not be uncommon. Examples of how this
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can be achieved in HadOCC and OG99NPZD are given in Section 6.2.1. These

intermediate variables enable the simulators to be compared in two stages.

Firstly, relationships between the input variables and the intermediate processes

are studied using emulators, enabling links to be made between the input spaces of

the two simulators. In the case of OG99NPZD and HadOCC, this showed that most

of the input parameters that appear to be equivalent in the two simulators either

behave very similarly or have little effect in either. The most active input variables

in each simulator turned out to be some that had no equivalent (in terms of their

descriptions in the code and documentation) in the other. However, studying the

relevant emulators provided evidence that these inputs might be linked. Why these

important quantities appear to have different meanings could perhaps be an area

for furthering understanding of the system.

The second stage is to study the relationships between the intermediate and

output variables in each simulator, to compare the ways the sub-processes are used to

form the output. Because both simulators have the same intermediate variable space,

the intermediate to output variable emulator built using data from one simulator

can be used over data from the other. This enabled us to see directly how differently

the two simulators behave at this stage. This showed that the output was affected

most strongly by the same intermediate variable in both OG99NPZD and HadOCC.

Using each emulator over data from the other simulator showed that the effects of

this variable were very similar. Some of the intermediate variables appeared to have

somewhat different effects on the output in each simulator. These findings could be

used to further investigate how each simulator uses the sub-processes it models.

It appeared from our use of intermediate variable emulation that OG99NPZD

and HadOCC are fairly similar. The intermediate variable data from each have very

similar patterns, and one can make some links between the input spaces. There are

differences in how each handles its intermediate processes, but the most influential

variable was very similar in both. Possible avenues for further investigation of their

differences are given in Chapter 6. Many of these would benefit enormously from

the advice of an expert.

Many possible developments could be made to intermediate variable emulation,
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some of which are mentioned in Section 6.7. Perhaps one of the most compelling

is the possibility of experimental design in intermediate variable space. For reasons

that are explained in Chapter 6, this is not a simple matter, but would greatly

facilitate comparison of the simulators, particularly where intermediate variables

are usually very highly correlated. Developing the method to incorporate observed

system data or judgements about which simulator is ‘better’ also has great potential

to increase the method’s usefulness.

Finally, an object-oriented framework was presented in Chapter 7. This covered

each of the emulation methods studied in this thesis, and demonstrates some of the

advantages of using object-oriented programming.
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Appendix A

Notation

This table lists the more important notation used in this thesis, a brief description

of the meaning, and the section in which it was first introduced. For simulator input

notation, which is not listed here, see Tables 2.1, 2.2 and 2.3, and for intermediate

variables for the example in Chapter 6 see Table 6.1.

Table A.1: Notation used, with brief description and where first introduced.

Notation Description Introduced

FDM90 The seminal compartmental PZN simulator, see Fasham

et al. (1990)

Sec. 2.1, p. 6

P Phytoplankton concentration in terms of nitrogen, in a

compartmental model such as FDM90

Sec. 2.1, p. 6

Z Zooplankton concentration in terms of nitrogen Sec. 2.1, p. 6

D Detritus concentration in terms of nitrogen Sec. 2.1, p. 6

OG99NPZD The compartmental ecosystem model from Oschlies and

Garçon (1999)

Sec. 2.2, p.7

N Nutrient concentration in terms of nitrogen Sec. 2.2, p. 8

HadOCC The Hadley Centre Ocean Carbon Cycle model (Palmer

and Totterdell, 2001; Hemmings et al., 2008), another

compartmental ocean ecosystem simulator

Sec. 2.3, p. 10

MarMOT The Marine Model Optimization Testbed, the software

through which we run the simulators

Sec. 2.4, p. 15

iz. A prefix to an output variable to denote that the values

have been depth-integrated. A sort of average over all

depth levels.

Sec 2.4, p. 16
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Notation Description Introduced

x A set of n input points to a simulator. Sec 3, p. 20

s (·) A simulator Chapter 3, p. 20

f (·) An emulator Sec 3.1, p. 21

ξi (·) Regression functions for the emulator, usually for i =

1, . . . , q, where ξ1 (·) = 1.

Sec 3.1, p. 21

β A vector of unknown coefficients for the regression terms

of the emulator

Sec 3.1, p. 21

βi The coefficient of ξi (x) Sec 3.1, p. 21

ε (·) The correlated error function for the emulator Sec 3.1, p. 21

X The n × q design matrix resulting from points x and

functions ξi (·)

Sec 3.1, p. 21

Σ (·) The correlation matrix for the correlated error ε (·) Sec 3.1, p. 22

σ2
ε The unknown variance of ε (·), assumed to be the same

for each input point

Sec 3.1, p. 22

ρ (·, ·) The correlation function used to build Σ (·) Sec 3.1, p. 22

x̃ A set of m new input points, in contrast to x, for which

we usually know s (x)

Sec 3.1, p. 23

LHD A Latin hypercube design Sec 3.3.1, p. 26

Θ The matrix of correlation lengths used by ρ (·, ·) Sec 3.3.3, p. 31

θi The correlation length associated with input xi, when

Θ is diagonal

Sec 3.3.3, p. 32

Ṽ Shorthand for var (ŝ (x̃) | s (x)) Sec 3.5, p. 36

RMSE (·) The root mean squared error between a vector of emu-

lator predictions and the true simulator outputs

Sec 3.5, p. 36

SPE (·) The standardised prediction errors Sec 3.5, p. 36

MD (·) The Mahalanobis distance Sec 3.5, p. 37

rcchlopt A switch variable in HadOCC, determining whether

the C:Chl ratio is constant (rcchlopt = 0) or varying

(rcchlopt = 1).

Section 4.2.1,

p. 58

s1 (x, x, w) The more complex of two simulators in a hierarchical

setting

Chapter 5, p. 66

s0 (x) The simpler of two simulators in a hierarchical setting Chapter 5, p. 66

v The hierarchical variables Chapter 5, p. 66

w The extra variables Chapter 5, p. 66
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Notation Description Introduced

v∗ The value of v such that s1 (x, v∗, w) = s0 (x) for all

valid x, w

Chapter 5, p. 66

g[i] (·) The transformation function for hierarchical variable vi Section 5.1, p. 66

ψ[i] (·) One of the functions making up the hierarchical emula-

tor

Section 5.1, p. 67

h[i]

(
x, v[i], w

)
An emulator of ψ[i] (·) Section 5.2, p. 69

H[i] The design matrix from h[i]

(
x, v[i], w

)
Section 5.2, p. 69

R The hierarchical variable in the rcchlopt example in

the hierarchical emulation chapter.

Section 5.5.1,

p. 83

m2 The hierarchical variable in the rcchlopt example in

the hierarchical emulation chapter.

Section 5.5.1,

p. 83

‘lhd1’ The 2,000 point training data in the rcchlopt example

in the hierarchical emulation chapter.

Section 5.5.2,

p. 85

‘lhd1 0’ The portion of lhd1 in which R = 0. Section 5.5.2,

p. 85

‘lhd1 1’ The portion of lhd1 in which R 6= 0. Section 5.5.2,

p. 85

OG100,

OG1000,

HAD100,

HAD1000

Initial designs for intermediate variable emulation ex-

ample

Section 6.2.1,

p. 112

iz.transimulator
time Intermediate variable iz.tran from simulator sim at

time t

Section 6.2.1,

p. 113

kint The number of principal variables used to represent in-

termediate variable int

Section 6.3,

p. 115

P sim
int The n×kint matrix of principal variables from full n× t

datasets of int

Section 6.3,

p. 115

T sim
int The (kint × t) transform matrix such that P sim

int T
sim
int ap-

proximately reconstructs the full data

Section 6.3,

p. 116

Xsim A matrix of intermediate variable data from simulator

sim

Section 6.4,

p. 130

Σsim The variance matrix of Xsim Section 6.4,

p. 130

OGPV99,

HADPV99

The datasets formed using the principal variables of

OG1000 and HAD1000

Section 6.4.1,

p. 131
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Notation Description Introduced

(Uint, Lint) The upper and lower bounds within which intermediate

variable int is considered acceptable

Section 6.5,

p. 138

sint (x) The simulator’s value of int at input points x Section 6.5,

p. 138

fint (x) The emulator’s prediction of sint (x) Section 6.5,

p. 138

OG948,

OG947, OG98,

HAD1007,

HAD1005,

HAD119

Datasets for OG99NPZD and HadOCC, refined to avoid

zooplankton extinction

Section 6.5.1,

p. 148

OOP Object-oriented programming Section 7.1,

p. 183



Appendix B

Input to intermediate relative

coefficients

The following tables (Tables B.2 to B.11) show the standardised generalised least

squares estimates for the coefficients for emulators of each intermediate variable at

each of its time points, from emulators built with second order regression surfaces

found using R’s stepwise model selection. The emulators had OG948 or HAD1005

as training data. To check their performance, the root mean squared error (RMSE)

is given from using each emulator to predict the output for OG947 or HAD1005.

The mean output is also given for comparison. The values have been standardised

by dividing each column by the largest coefficient (in magnitude) for that output,

so that each column’s values can range between plus and minus one. Table B.1

shows the two emulators for log.iz.pon, the overall output. Any coefficient whose

absolute value is below 0.15 has been replaced by a dot, and any row with no relative

coefficient larger than ±0.15 has been omitted.
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Time 1 13 105 365

a 0.38 · · ·

c 0.27 · · ·

K1 -0.33 · · ·

µP -1 -1 -1 -1

µ2
P · · 0.55 0.38

a2 -0.21 · -0.22 -0.24

γ2
2 · · 0.2 0.24

a× µP · · 0.19 0.2

a× c · · · -0.16

Mean 3.1 2.9 2.4 2.2

RMSE 0.0010 0.012 0.086 0.11

Time 1 13 105 365

photmax 0.15 · 0.25 0.29

alphachl · · 0.21 0.22

kdin -0.31 -0.22 -0.33 -0.4

presp -1 -1 -1 -1

presp2 · · 0.31 ·

photmax2 · · -0.16 -0.19

kdin2 0.23 · · ·

kdin×presp · · -0.38 -0.45

photmax×presp · · 0.29 0.35

photmax×kdin · · 0.23 0.25

rcchl×presp · · -0.16 -0.23

Mean 3.1 2.8 2.4 2.1

RMSE 0.0010 0.011 0.088 0.14

Table B.1: Relative coefficients and emulator summaries for log.iz.pon

for OG99NPZD (left) and HadOCC (right)
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Time 1 3 12 146 277 365

a 1 0.33 · 0.15 · 0.15

c 0.71 0.16 · · · ·

K1 -0.91 -0.2 · · · ·

µP · 1 1 1 1 1

µD · · · · · 0.15

PAR · 0.19 · · · ·

CPP 0.17 0.35 · · · ·

γ2
2 · · · -0.33 -0.37 -0.46

µ2
P · · -0.3 · · -0.27

a2 -0.58 -0.53 -0.15 -0.17 · -0.17

K2
1 0.27 -0.17 · · · ·

c2 · -0.17 · · · ·

µP × γ2 · · · 0.2 0.18 0.19

a×K1 0.19 0.58 · · · 0.15

a× µP · 0.4 · 0.16 · ·

ε× γ2 · · · 0.17 0.21 0.26

γ1 × γ2 · · · · · 0.17

a× c · -0.51 · · · ·

c× µP · 0.27 · · · ·

K1 × µP · -0.36 · · · ·

c×K1 0.2 0.29 · · · ·

γ2 × µZZ · · · · · -0.15

Mean 1.0 0.59 0.42 0.48 0.47 0.362

RMSE 0.042 0.037 0.021 0.031 0.031 0.026

Table B.2: OG99NPZD emulator of iz.np.
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Time 1 3 12 146 277 365

rcchl -0.26 -0.25 -0.28 · · -0.34

rcnphy · · -0.17 -0.17 -0.2 -0.18

photmax 0.49 0.5 0.53 0.35 0.44 0.58

alphachl 0.37 0.42 0.55 0.49 0.52 0.6

kdin -1 -1 -0.92 -0.57 -0.76 -1

presp · 0.17 0.82 1 1 0.68

pmortdd · · · 0.2 0.18 ·

presp2 · · -0.65 -0.53 -0.64 -0.94

rcchl2 · · -0.24 -0.25 -0.26 -0.19

photmax2 · · -0.23 -0.18 -0.2 -0.25

kdin2 0.73 0.45 · · · 0.18

zmort2 · · · -0.16 -0.35 -0.43

kdin×presp · -0.2 -1 -0.65 -0.8 -1

photmax×presp · · 0.53 0.42 0.49 0.61

rcchl×presp · · -0.43 -0.33 -0.35 -0.58

alphachl×presp · · 0.31 0.21 0.24 0.35

photmax×kdin -0.2 · 0.29 0.29 0.27 0.3

presp×zmort · · · 0.38 0.38 0.4

presp×pmortdd · · · -0.18 -0.19 -0.26

presp×epsfood · · · -0.19 -0.18 -0.18

rcchl×alphachl · · 0.17 · 0.16 0.2

rcchl×kdin 0.36 0.15 · · · ·

rchlpig×alphachl · · · · · ·

alphachl×kdin -0.35 -0.23 · · · -0.18

fingest×zmort · · · · 0.16 0.19

zmort×zmortdd · · · · · -0.19

epsfood×zmort · · · · 0.15 0.17

betap×zmort · · · · · 0.16

photmax×alphachl 0.17 · · · · ·

rcchl×photmax -0.16 · · · · ·

Mean 0.51 0.47 0.39 0.49 0.44 0.32

RMSE 0.045 0.027 0.024 0.036 0.031 0.029

Table B.3: HadOCC emulator of iz.np.
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Time 1 30 282

µP 1 1 1

µ2
P · -0.67 -0.19

γ2
2 · · -0.22

µP × γ2 · · 0.15

ε× γ2 · · 0.15

Mean 0.92 0.38 0.30

RMSE 0.0016 0.024 0.026

Time 1 30 282

rcnphy · · -0.19

photmax · 0.21 0.31

alphachl · 0.21 0.39

kdin · -0.36 -0.54

presp 1 0.73 1

presp2 · -1 -0.75

rcchl2 · · -0.18

photmax2 · · -0.15

zmort2 · · -0.33

photmax×presp · 0.23 0.38

alphachl×presp · 0.22 0.3

rcchl×presp · -0.18 -0.23

photmax×kdin · · 0.21

presp×zmort · · 0.19

epsfood×zmort · · 0.25

fingest×zmort · · 0.16

Mean 0.91 0.43 0.39

RMSE 0.0024 0.030 0.034

Table B.4: Relative coefficients and emulator summaries for iz.pn for OG99NPZD (left)

and HadOCC (right).
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Time 3 31 133 359

a · 0.18 · ·

γ1 0.58 0.62 0.41 0.33

ε 1 1 0.64 0.58

µP -0.16 -0.27 · ·

γ2 · -0.84 -1 -1

µPP · -0.16 · ·

ε2 -0.48 -0.39 -0.2 ·

γ2
2 · · -0.34 -0.36

a2 · -0.17 · ·

ε× γ2 · 0.2 0.41 0.41

γ1 × γ2 · · 0.27 0.24

µD × γ2 · · · 0.17

Mean -4.1 -4.8 -5.8 -7.3

RMSE 0.060 0.15 0.39 0.93

Time 3 31 133 359

rcnphy 0.22 0.19 · ·

photmax · 0.38 · ·

kdin -0.21 -0.62 -0.23 -0.19

presp -0.23 -0.8 -0.26 -0.28

epsfood 1 0.89 0.45 0.42

fmingraz -0.23 -0.19 · ·

fingest 0.35 0.33 0.19 0.17

betap 0.59 0.56 0.3 0.27

zmort · -1 -1 -1

epsfood2 -0.47 -0.34 · ·

photmax2 · -0.2 · ·

zmort2 · · -0.26 -0.25

kdin×presp · -0.56 -0.17 ·

betap×zmort · · 0.22 0.23

photmax×presp · 0.33 · ·

epsfood×zmort · · 0.28 0.33

photmax×kdin · 0.25 · ·

Mean -4.9 -5.3 -5.9 -7.3

RMSE 0.061 0.14 0.39 1.1

Table B.5: Relative coefficients and emulator summaries for log.iz.pz for OG99NPZD

(left) and HadOCC (right).
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Time 1 15 109 355

a · 0.2 0.2 ·

γ1 -0.16 · · 0.16

c · · 0.17 ·

ε · 0.18 0.36 0.36

K1 · -0.17 -0.2 -0.16

µP · -0.86 -1 -1

µD · · 0.3 0.28

CPP · · 0.23 0.23

γ2 · · -0.52 -0.59

µPP 1 1 0.95 0.73

µ2
P · 0.43 0.83 0.58

a2 · -0.41 -0.53 -0.37

µ2
D · · -0.21 -0.17

γ2
2 · · -0.73 -1

µD × µPP · · 0.15 ·

µP × µPP · -0.21 · ·

a×K1 · 0.35 0.43 0.29

a× µP · 0.17 0.29 0.18

γ1 × γ2 · · 0.7 0.79

γ1 × ε · -0.17 -0.3 -0.31

µP × CPP · · -0.2 ·

a× c · -0.22 -0.28 -0.17

c×K1 · 0.2 0.28 0.21

K1 × µP · · -0.25 ·

ε× γ2 · · 0.45 0.57

c× µP · · 0.2 ·

µP × µD · · -0.17 -0.18

a× µD · · 0.16 ·

K1 × µD · · -0.18 ·

γ2 × µZZ · · -0.19 -0.41

CPP × γ2 · · 0.15 0.21

µP × γ2 · · · -0.28

µD × γ2 · · 0.24 0.27

Mean 0.28 0.18 0.15 0.13

RMSE 0.0023 0.0072 0.012 0.013

Time 1 15 109 355

rcndet -0.17 -0.18 -0.16 ·

photmax · 0.18 0.15 ·

alphachl · · 0.2 0.15

kdin · -0.38 -0.31 -0.33

presp · -0.76 -0.86 -1

pmortdd 1 1 1 0.82

fpmortdin -0.18 -0.18 -0.17 ·

presp2 · 0.25 0.47 0.47

pmortdd2 · · · -0.15

zmort2 · · -0.2 -0.3

presp×pmortdd · -0.69 -0.65 -0.6

alphachl×pmortdd · 0.16 0.22 0.18

kdin×pmortdd · -0.36 -0.26 -0.23

alphachl×presp · · -0.19 ·

kdin×presp · · -0.18 ·

pmortdd×zmort · · 0.3 0.37

rcchl×presp · · -0.16 -0.16

pmortdd×fpmortdin -0.18 -0.16 · ·

photmax×pmortdd · 0.18 · ·

rcndet×pmortdd -0.17 -0.15 · ·

presp×zmort · · -0.24 -0.51

zmort×zmortdd · · · -0.15

Mean 0.035 0.034 0.045 0.034

RMSE 0.0012 0.0031 0.0071 0.0078

Table B.6: Relative coefficients and emulator summaries for iz.pd for OG99NPZD (left)

and HadOCC (right).
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Time 1 28 172 343

γ1 · · 0.34 0.35

ε · 0.15 0.53 0.54

γ2 0.54 · -1 -1

γ2
2 -1 -1 -0.67 -0.58

γ1 × γ2 · · 0.32 0.35

ε× γ2 · · 0.41 0.5

Mean -3.3 -3.8 -5.8 -7.5

RMSE 0.41 0.41 0.65 1.16

Time 1 28 172 343

kdin · · · -0.16

presp · · -0.18 -0.24

epsfood · · 0.33 0.37

fingest · · 0.15 0.16

betap · · 0.24 0.26

zmort 0.34 -0.29 -1 -1

fzmortdin 0.27 0.31 · ·

zmort2 -1 -1 -0.34 -0.31

betap×zmort · · 0.22 0.28

epsfood×zmort · · 0.25 0.35

fingest×zmort · · · 0.16

presp×zmort · · · -0.21

Mean -3.6 -4.2 -5.9 -7.4

RMSE 0.23 0.22 0.46 1.08

Table B.7: Relative coefficients and emulator summaries for log.iz.zn for OG99NPZD

(left) and HadOCC (right)

Time 1 141 365

γ1 · 0.32 0.31

ε · 0.46 0.5

γ2 · -1 -1

µZZ 1 · ·

µ2
ZZ -0.83 · ·

γ2
2 · -0.25 -0.4

ε× γ2 · 0.35 0.48

γ1 × γ2 · 0.24 0.32

Mean -6.2 -9.0 -13.1

RMSE 0.38 0.81 2.19

Time 1 141 365

kdin · -0.15 -0.17

presp · -0.17 -0.24

epsfood · 0.32 0.37

fingest · 0.17 0.17

betap · 0.24 0.26

zmort 0.33 -1 -1

fzmortdin -0.75 -0.25 ·

fzmortdin2 -0.61 -0.21 ·

zmort2 -1 -0.35 -0.31

betap×zmort · 0.21 0.28

fingest×zmort · · 0.17

epsfood×zmort · 0.21 0.35

presp×zmort · · -0.2

Mean -4.6 -6.6 -8.5

RMSE 0.39 0.49 1.20

Table B.8: Relative coefficients and emulator summaries for log.iz.zd for OG99NPZD

(left) and HadOCC (right)
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Time 1 7 115 253

a · · 0.27 0.18

c · · 0.24 0.25

ε · 0.15 0.33 0.38

K1 · · -0.21 ·

µP · -0.29 -1 -1

µD 1 1 0.32 0.27

CPP · · 0.22 0.26

γ2 · · -0.45 -0.52

µPP · 0.95 0.96 0.9

µ2
P · · 0.84 0.75

a2 · -0.34 -0.54 -0.39

µ2
D · -0.24 -0.21 -0.2

µD × µPP · 0.33 0.15 ·

γ2 × µPP · · 0.19 0.21

a×K1 · 0.27 0.46 0.34

a× µP · · 0.3 0.25

a× c · -0.17 -0.29 -0.26

c×K1 · 0.16 0.27 0.27

K1 × µP · · -0.23 -0.2

γ1 × γ2 · · 0.32 0.36

µP × µD · -0.4 -0.23 ·

a× µD · 0.17 0.2 0.16

µP × CPP · · -0.18 -0.2

c× µP · · 0.21 0.22

K1 × µD · -0.17 -0.21 -0.18

γ1 × ε · · -0.17 -0.17

γ2 × µZZ · · -0.34 -0.47

ε× µZZ · · · 0.19

Mean 0.031 0.093 0.15 0.18

RMSE 0.0001 0.0019 0.011 0.015

Time 1 7 115 253

rcnphy 0.23 0.21 · ·

rcndet -0.31 -0.31 -0.17 -0.16

photmax · · 0.21 0.18

alphachl · · 0.2 0.26

kdin · -0.23 -0.33 -0.27

presp · -0.34 -0.85 -0.93

pmortdd 1 1 1 1

fpmortdin -0.18 -0.18 -0.15 ·

zmort 0.51 0.39 -0.21 -0.26

fzmortdin -0.55 -0.5 · ·

presp2 · · 0.6 0.72

rcchl2 · · · -0.18

kdin2 · 0.17 · ·

presp×pmortdd · -0.27 -0.62 -0.49

alphachl×presp · · -0.24 -0.3

alphachl×pmortdd · · 0.2 0.17

kdin×pmortdd · -0.19 -0.24 -0.19

rcchl×presp · · -0.17 -0.27

pmortdd×zmort · · 0.36 0.48

kdin×presp · · -0.16 ·

betap×zmort · · 0.22 0.3

kdin×epsfood · · -0.16 -0.16

pmortdd×epsfood · · -0.15 -0.22

presp×epsfood · · -0.2 -0.18

epsfood×zmort · · -0.26 -0.21

pmortdd×fpmortdin -0.17 -0.18 · ·

rcndet×pmortdd -0.16 -0.16 · ·

rchlpig×presp · · · -0.16

kdin×zmort · · 0.15 0.21

fmessyd×zmort · · 0.17 0.19

zmort×fzmortdin -0.52 -0.43 · 0.18

Mean 0.0073 0.028 0.056 0.067

RMSE 0.0001 0.0012 0.0093 0.014

Table B.9: Relative coefficients and emulator summaries for iz.dn for OG99NPZD (left)

and HadOCC (right).
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Time 1 6 127 319

c · · 0.16 0.17

ws 1 1 1 1

µP · · -0.5 -0.53

µD · · -0.43 -0.48

CPP · · 0.16 0.17

µPP · 0.39 0.43 0.4

µ2
P · · 0.43 0.38

µ2
D · · 0.25 0.29

a2 · · -0.2 ·

ws × µPP · 0.29 0.2 0.17

ws × µP · -0.3 -0.66 -0.6

ws × µD · -0.19 -0.55 -0.58

µP × µD · · 0.29 0.29

a× ws · · 0.16 ·

a×K1 · · 0.21 0.16

ws ×K1 · · -0.17 ·

γ2 × µZZ · · -0.2 -0.29

Mean 9.8 27 52 53

RMSE 0.023 0.67 5.4 6.2

Time 1 6 127 319

rcndet · · · -0.16

photmax · · · 0.17

alphachl · · 0.16 0.2

kdin · · -0.19 -0.24

presp · · -0.54 -0.81

pmortdd · 0.22 0.6 0.74

zmort · 0.17 -0.23 -0.22

fzmortdin · -0.2 -0.2 -0.15

dsink 1 1 1 1

presp2 · · 0.36 0.58

zmort2 · · -0.2 ·

presp×dsink · · -0.48 -0.73

pmortdd×dsink · 0.2 0.46 0.52

presp×pmortdd · · -0.36 -0.41

fzmortdin×dsink · · -0.18 -0.21

alphachl×dsink · · · 0.15

kdin×dsink · · -0.18 -0.25

rcchl×presp · · · -0.23

alphachl×presp · · · -0.2

pmortdd×zmort · · 0.22 0.38

rcndet×dsink · · · -0.18

pmortdd×epsfood · · · -0.2

betap×zmort · · 0.16 0.21

kdin×epsfood · · · -0.15

fmessyd×zmort · · · 0.15

zmort×fzmortdin · -0.18 · ·

zmort×dsink · 0.16 · ·

kdin×zmort · · · 0.16

Mean 8.0 11.2 15 12

RMSE 0.041 0.39 2.4 2.6

Table B.10: Relative coefficients and emulator summaries for iz.ds for OG99NPZD

(left) and HadOCC (right)
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Time 3 33 137 314

rcnphy 0.34 0.27 · ·

rcnzoo 0.19 0.17 · ·

rcndet -0.16 · · ·

photmax · 0.35 · ·

kdin -0.2 -0.62 -0.21 -0.19

presp -0.18 -0.75 -0.25 -0.29

pmortdd 0.58 0.46 · ·

epsfood 1 0.84 0.43 0.4

fmingraz -0.22 -0.17 · ·

fingest 0.33 0.33 0.19 0.18

betap · 0.17 0.25 0.27

betad 0.51 0.33 · ·

zmort · -1 -1 -1

fzmortdin -0.24 · · ·

presp2 · · · 0.16

epsfood2 -0.35 -0.26 · ·

zmort2 · · -0.18 -0.16

photmax2 · -0.18 · ·

pmortdd2 -0.22 -0.25 · ·

kdin×presp · -0.5 -0.17 ·

betap×zmort · · 0.24 0.27

presp×epsfood · -0.2 · ·

photmax×presp · 0.25 · ·

kdin×epsfood · -0.18 · ·

photmax×kdin · 0.2 · ·

epsfood×zmort · · 0.16 0.19

kdin2 0.15 · · ·

Mean -9.2 -8.3 -8.6 -9.0

RMSE 0.073 0.18 0.48 0.88

Table B.11: HadOCC emulator of log.iz.dz.



Appendix C

Further plots for intermediate
variable emulators

C.1 Box-Cox for intermediate variables

Applying the Box-Cox model selection procedure to the intermediate variables sup-

ported using the logarithm of all zooplankton related variables. When the Box-Cox

procedure was applied, each intermediate variable had 365 time points for each input

point, in the datasets OG1000 and Had1000. A linear model was constructed (with

a first order surface including all input variables), and the optimal transformation

of the intermediate variable found, for each time point of each intermediate variable

and for each simulator.

The plots in Figures C.1 and C.2 each contain 365 points, and show the optimal

value of λ and the associated log-likelihood at each time point. It is clear from

the relatively high likelihood values associated with values of λ around zero for

the zooplankton related intermediates that the logarithm is a suitable choice of

transformation. These plots could also be used to support a transformation of

iz.pd, iz.dn and iz.ds, but this was not pursued because of the relatively low

likelihood values, and to avoid complicating the procedure. Diagnostics later in the

intermediate variable emulation process show that these quantities can be emulated

well with a second order surface.
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Figure C.1: Log-likelihood values for the optimal λ given by the Box-Cox transformation
procedure at each time point, for each intermediate variable in OG1000.
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Figure C.2: Log-likelihood values for the optimal λ given by the Box-Cox transformation
procedure at each time point, for each intermediate variable in HAD1000.
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OG99NPZD emulator.
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HadOCC emulator.
Mean = -0.069, SD = 1.13

Figure C.3: SPE at time 105 for each emulator over its validation data, with n (0, 1)
shown by a solid line.

C.2 Validating intermediate to output emulators

In order to be able to trust the conclusions drawn from studying the emulator of one

simulator over the data of another, we must have confidence in the emulators them-

selves. A particularly important aspect of this is the behaviour of the SPE when the

emulator is used over data from the same simulator. If these show systematic trends

with intermediate variables, this would undermine any inferences made in Section

6.6.3. In this section we validate the intermediate to output variable emulators built

from OG948 and HAD1005, using OG947 and HAD1007 respectively.

The mean, standard deviation and distribution of each SPE is shown in Figure

C.3. By attempting to emulate these SPEs in section 6.6.3, we have already seen

that there is little systematic behaviour in them, shown by the summaries in Table

6.15. This could be further investigated by studying the properties of the regions

leading to the highest and lowest SPE values.

Figures C.4 and C.6 show the correlations between each intermediate variable

and the SPE. Figures C.5 and C.7 show correlations between SPE and second order

combinations of intermediate variables. None of these plots shows any marked effect
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Figure C.4: Correlations between each intermediate variable in OG947 and the SPE
using an emulator built from OG948.

of any intermediate variables on the SPE, allowing us to put our confidence in the

emulators.

C.3 Combining the emulators

The emulators from both stages of intermediate variable emulation can be combined

to create an emulator from input to output variables. Samples of size n can be

generated from this emulator’s distribution in the following way:

1. For each input point, generate a sample of size n from the intermediate variable

space, using the emulator of input to intermediate variables.
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Figure C.5: Correlations between products of pairs of intermediate variables in OG947
and the SPE using an emulator built from OG948.

2. For each of these points, generate a random point from the output space, using

the intermediate to output variable emulator.

Each of these samples can then be compared with a sample of size n from the input

to output emulator’s distribution at the same input point.

This validates the entire process, but in particular the amount of information

kept in the emulator. If a crucial aspect of one of the simulators has been omitted

while selecting the intermediate variables, these emulators will perform poorly. If

the dimension reduction does not adequately represent the intermediate variables,

the samples will also be poor.



C.3. Combining the emulators 236

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

C
or

re
la

tio
n 

w
ith

 S
P

E
 a

t t
im

e 
1

np pn pz pd zn zd dn ds dz

(a) log.iz.ponH
1

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

C
or

re
la

tio
n 

w
ith

 S
P

E
 a

t t
im

e 
13

np pn pz pd zn zd dn ds dz

(b) log.iz.ponH
13

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

C
or

re
la

tio
n 

w
ith

 S
P

E
 a

t t
im

e 
10

5

np pn pz pd zn zd dn ds dz

(c) log.iz.ponH
105

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

C
or

re
la

tio
n 

w
ith

 S
P

E
 a

t t
im

e 
36

5

np pn pz pd zn zd dn ds dz

(d) log.iz.ponH
365

Figure C.6: Correlations between each intermediate variable in HAD1007 and the SPE
using an emulator built from HAD1005.

Problems could also arise from the independence between the input to interme-

diate variable emulators. Here, for example, the iz.pn variables have been emulated

jointly, but independently of all other intermediate variables. It may be that this loss

of structure leads to a much poorer representation of the simulator. If performance

of the combined intermediate variable emulators is poor compared to the standard

emulator, each part of the process should be studied carefully until the causes are

found.

Various summaries of the emulators’ performances could be used, but an effective

plotting strategy is to compare the samples to the true output value using boxplots,

as in Figures C.8 and C.9. These show time series from OG98 and HAD119, two
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Figure C.7: Correlations between products of pairs of intermediate variables in HAD1007
and the SPE using an emulator built from HAD1005.

datasets created in the example in Section 6.5.1, with boxplots of samples of size

100 from the standard input to output emulator (in red, on the right of each pair)

and from the combined intermediate variable emulator (in blue and on the left).

In most plots, the distributions are very similar, indicating that the intermediate

variable emulation has been done well. There are few input points (for example the

top-right plot in Figure C.8, showing run 6 of OG98) for which the intermediate

variable emulator performs relatively poorly. There are also some (for example the

final point in the first page of Figure C.8, corresponding to run 56) for which the

intermediate variable emulator is much more accurate than the standard.
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Figure C.8: Intermediate variable and standard emulators for some points from OG98.
The line shows the OG98 time series of log(iz.pon), the blue box-plots (left in each pair)
summarise 100 draws from an intermediate variable emulator at each principal variable
time point, the red box-plots (right) summarise 100 draws from a standard emulator.



C.3. Combining the emulators 239

0 100 200 300

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Time (days)

O
G

98
, R

un
 5

7

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0 100 200 300

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Time (days)

O
G

98
, R

un
 5

8

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0 100 200 300

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Time (days)

O
G

98
, R

un
 5

9

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0 100 200 300

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Time (days)

O
G

98
, R

un
 7

1

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0 100 200 300

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Time (days)

O
G

98
, R

un
 7

8

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0 100 200 300

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Time (days)

O
G

98
, R

un
 8

0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0 100 200 300

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Time (days)

O
G

98
, R

un
 8

3

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

0 100 200 300

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Time (days)

O
G

98
, R

un
 9

0

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

1.
0

1.
5

2.
0

2.
5

3.
0

3.
5

Figure C.8: Intermediate variable emulators compared to standard for OG99NPZD,
continued.
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Figure C.9: Intermediate variable and standard emulators for some points from HAD119.
The line shows the HAD119 time series of log(iz.pon), the blue box-plots (left in each pair)
summarise 100 draws from an intermediate variable emulator at each principal variable
time point, the red box-plots (right) summarise 100 draws from a standard emulator.
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Figure C.9: Intermediate variable emulators compared to standard for HadOCC, con-
tinued.



Appendix D

S4 emulation code

D.1 Core emulator

This appendix works through the core emulator code described in Chapter 7. Class

definitions match those in Table 7.1, which gives descriptions of each of the slots.

First of all, in order to be able to have slots that can belong to different classes,

some class unions must be defined.

setClassUnion("list_or_null", members=c("list","NULL"))

setClassUnion("vec_or_null", members=c("vector","NULL"))

setClassUnion("mat_or_null", members=c("matrix","NULL"))

setClassUnion("df_or_null", members=c("data.frame","NULL"))

setClassUnion("list_or_vec", members=c("vector","list"))

setClassUnion("df_or_vec", members=c("vector","data.frame"))

setClassUnion("missing_or_log", members=c("missing", "logical"))

setClassUnion("missing_or_vec", members=c("missing", "vector"))

setClass("summary.lm")

setClass("summary.lm_or_null")

setClassUnion("summary.lm_or_null",members="NULL")

setIs("summary.lm", "summary.lm_or_null")

setClassUnion("md_or_null", members=c("model.data","NULL"))

setClassUnion("missing_or_md", members=c("missing", "model.data"))

# Forming an S4 class analogous to the S3 class "try-error"

242
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setClass("try_S4")

setOldClass("try-error",prototype=tr, S4Class="try_S4")

setClassUnion("matrix_or_error", members=c("matrix", "try_S4"))

The data classes “model.data” and “model.data.out” can then be defined. The

representation gives the name of each slot, and the class to which it belongs (the

same information given in Table 7.1). The line contains = "model.data" shows

that model.data.out is a subclass of model.data.

setClass(

"model.data",

representation(

input = "data.frame",

oldrange = "data.frame"

)

)

setClass(

"model.data.out",

representation(

input = "data.frame",

oldrange = "data.frame",

outdf = "data.frame",

outname = "vector"

),

contains = "model.data"

)

In order to build objects of these classes, creator functions should be written. Firstly,

a generic function model.data is made. This specifies the names of the arguments

any methods for this function takes.

setGeneric("model.data",

function(tc.data, old.range, name.out, method, crit)

standardGeneric("model.data")

)

Methods can now be defined, corresponding to situations where each argument is of

a particular class. The vector of classes is the signature of the method, and matches
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the list of arguments in the generic function. The classes “ANY” (which matches

any class) and “missing” (where the argument need not be entered) are useful for

flexibility in defining methods. The final two arguments are not used until the core

structure is extended to handle more complicated sorts of simulator data.

Sub-classes and super-classes are also at work here. For example, an object of

class “character” is also of class “vector”, as is an object of class “numeric”, and so

a method will match any of these to a signature requiring a vector. The function

new creates an object of the class given as the first argument, using the following

arguments to fill its slots (so long as they fit the class definition).

setMethod("model.data",

c("data.frame", "data.frame", "vector", "missing", "missing"),

function(tc.data, old.range, name.out){

if(length(name.out)>1)

outvec <- data[,match(name.out, names(data))]

else if(length(name.out)==1)

outvec <- data.frame(data[,match(name.out, names(data))])

names(outvec) <- name.out

names.or <- names(old.range)

names.data <- names(data)

match.names <- match(names.or, names.data, nomatch=F)

input.df <- data[,match.names]

new("model.data.out",

input = input.df, oldrange = old.range, outdf = outvec, outname = name.out

)

}

)

setMethod("model.data",

c("data.frame", "data.frame", "missing", "missing", "missing"),

function(tc.data, old.range){

names.or <- names(old.range)

names.data <- names(data)

match.names <- match(names.or, names.data, nomatch=F)

input.df <- data[,match.names]
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new("model.data",

input = input.df, oldrange = old.range

)

}

)

The emulator class em.multi can now be defined in a similar way:

setClass(

"em.multi",

representation(

data.obj = "model.data.out",

names.out = "character",

reg.obj = "reg.func",

cm.obj = "corr.mats",

HcmH = "matrix",

chol.HcmH = "matrix_or_error",

beta.gls = "matrix",

sigma.gls = "matrix"

),

)

and a generic function em.multi made as a creator function:

setGeneric("em.multi",

function(data, reg, corrlen, outnames=NULL)

standardGeneric("em.multi")

).

The most high level method, which requires only a model.data.out object, a

reg.func object and correlation length choices, is defined first. The first two lines

of the function implement the option to emulate only some of the outputs from the

model.data.out object. The function out.name is an accessor function, accessing

the outname slot of a model.data.out object.

setMethod(

"em.multi",

c("model.data.out", "reg.func", "df_or_vec", "missing_or_vec"),
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function(data, reg, corrlen, outnames){

if(missing(outnames))

outnames <- out.name(data)

H <- des.mat(data, reg)

Y <- out.vec(data, name = outnames)

if(length(outnames)==1){

Y <- data.frame(Y)

names(Y) <- outnames

}

n.data <- nrow(Y)

q <- ncol(H)

if(is.numeric(corrlen)){

corr.mat.obj <- corr.mats(data, corrlen)

} else if (tolower(corrlen) == "estimate"){

message(sprintf(

"Estimating correlation lengths using %s as output",

outnames[1]

))

dist.array <- da_listp(rescale(data, new.range=c(-1,1), out.col=F), p=2)

corrlen.val <- est.corrlen.uni(

da=dist.array,

H=H,

y=out.vec(data, name = outnames[1])

)

corr.mat.obj <- corr.mats(data, corrlen.val)

}

if(is.null(corr.mat.obj@cholcm)){

HcmH <- t(H)%*%corr.mat.obj@cminv%*%H

HcmY <- t(H)%*%corr.mat.obj@cminv%*%Y

} else {

alp.cmH <- backsolve(corr.mat.obj@cholcm, H, transpose = T)

HcmH <- t(alp.cmH)%*%alp.cmH

alp.cmY <- backsolve(corr.mat.obj@cholcm, Y, transpose = T)

HcmY <- t(alp.cmH) %*% alp.cmY

}

chol.HcmH <- try(chol(HcmH), silent=T)
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if(class(chol.HcmH)=="try-error"){

HcmH.inv <- ginv(HcmH)

} else {

alp.s2h <- backsolve(chol.HcmH, HcmY, transpose=T)

alp.bh <- backsolve(chol.HcmH, diag(ncol(chol.HcmH)), transpose=T)

HcmH.inv <- t(alp.bh)%*%alp.bh

}

beta.gls <- HcmH.inv%*%HcmY

out.err <- Y - H%*%beta.gls

if(is.null(corr.mat.obj@cholcm)){

sig.gls <- (1/(n.data - q))*t(out.err)%*%corr.mat.obj@cminv%*%out.err

} else {

alp.sig <- backsolve(corr.mat.obj@cholcm, out.err, transpose = T)

sig.gls <- (1/(n.data - q))*t(alp.sig)%*%alp.sig

}

if(!is.matrix(sig.gls))

sig.gls <- matrix(sig.gls, nrow=1, ncol=1)

new("em.multi",

data.obj = data, names.out = outnames,

reg.obj = reg, cm.obj = corr.mat.obj,

HcmH = HcmH, chol.HcmH = chol.HcmH,

beta.gls = beta.gls , sigma.gls = sig.gls

)

}

)

More methods can now be defined that use different information to arrive at a

collection of objects that can be used to build an em.multi object. The method

below accepts lists for the second argument. The list may contain either functions to

be used for the regression surface, or criteria for building the surface. The function

reg.func creates the reg.func object, and dispatches the correct method depending

on which of these it is given.

setMethod(
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"em.multi",

c("model.data.out", "list", "df_or_vec", "missing_or_vec"),

function(data, reg, corrlen, outnames){

if(missing(outnames))

outnames <- out.name(data)

if(is.function(reg[[1]]))

reg.obj <- reg.func(func.list)

else

reg.obj <- reg.func(data, reg, output.name = outnames)

em.multi.fun(data, reg.obj, corrlen, outnames)

}

)

Finally, the class ep.multi, holding prediction information, is created.

setClass(

"ep.multi",

representation(

mod = "em.multi",

xnew = "data.frame",

loc = "matrix",

scale = "array",

deg.f = "numeric"

)

)

This is generated in the usual way, using a creator function. Some comments

show roughly what parts of the function are doing.

setGeneric("ep.multi",

function(xnew, mod.obj, names.out)

standardGeneric("ep.multi")

)

setMethod(

"ep.multi",

c("data.frame", "em.multi", "missing_or_vec"),

function(xnew, mod.obj, names.out){
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ep.multi.fun(xnew, mod.obj, names.out)

}

)

ep.multi.fun <- function(

xnew,

mod.obj,

names.out

){

# The following lines arrange the data, forming a model.data object with the

# new data, and building both design matrices.

old.range <- range.df(mod.obj@data.obj)

new.data <- model.data(xnew, old.range)

xnew.r <- rescale(new.data, new.range = c(-1,1))

names.out <- out.name(mod.obj)

n.out <- length(names.out)

n.new <- nrow(xnew)

H.new <- des.mat(new.data, mod.obj@reg.obj)

H.old <- des.mat(mod.obj@data.obj, mod.obj@reg.obj)

n.old <- nrow(H.old)

q <- ncol(H.new)

# The following lines use the design matrices and some information from the

# em.multi object to find the location matrix of the predictions’

# distributions

loc.new1 <- t(mod.obj@beta.gls)%*%t(H.new)

out.old <- out.vec(mod.obj@data.obj, name = mod.obj@names.out)

err.old <- out.old - H.old%*%mod.obj@beta.gls

corr.new.old <- corr.mats(mod.obj@data.obj, mod.obj@cm.obj@corrlen, new.data)

if(is.null(mod.obj@cm.obj@cholcm)){
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loc.new2 <- t(err.old)%*%mod.obj@cm.obj@cminv%*%cmat(corr.new.old)

} else {

alp.errcm <- backsolve(mod.obj@cm.obj@cholcm, err.old, transpose=T)

alp.cmnm <- backsolve(mod.obj@cm.obj@cholcm, cmat(corr.new.old), transpose=T)

loc.new2 <- t(alp.errcm) %*% alp.cmnm

}

loc.new <- loc.new1 + loc.new2

# The following lines compute the scale array, such that

# scale.array[i,i, , ] is the scale matrix for the ith output across all points

# scale.array[ , ,i,i] is the scale matrix for outputs at the ith point

cm.new <- corr.mats(new.data, mod.obj@cm.obj@corrlen, inv=F)

if(is.null(mod.obj@cm.obj@cholcm)){

c.star1 <- cmat(cm.new)

- t(cmat(corr.new.old))%*%mod.obj@cm.obj@cminv%*%cmat(corr.new.old)

cs2 <- t(H.new) - t(H.old)%*%mod.obj@cm.obj@cminv%*%cmat(corr.new.old)

} else {

alp.cs1 <- backsolve(mod.obj@cm.obj@cholcm, cmat(corr.new.old), transpose=T)

alp.H.old <- backsolve(mod.obj@cm.obj@cholcm, H.old, transpose=T)

c.star1 <- cmat(cm.new) - t(alp.cs1)%*%alp.cs1

cs2 <- t(H.new) - t(alp.H.old)%*%alp.cs1

}

if(class(mod.obj@chol.HcmH)=="matrix"){

alp.cs2 <- backsolve(mod.obj@chol.HcmH, cs2, transpose=T)

csm2 <- t(alp.cs2)%*%alp.cs2

} else {

HcmH.inv <- solve(mod.obj@HcmH)

csm2 <- t(cs2)%*%HcmH.inv%*%cs2

}

c.star.mat <- c.star1 + csm2

scale.array <- array(0, c(n.out, n.out, n.new, n.new))
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for (i in 1:n.out){

for (j in 1:n.out){

scale.array[i,j,,] <- mod.obj@sigma.gls[i,j]*c.star.mat

}

}

new("ep.multi",

mod = mod.obj, xnew = xnew,

loc = loc.new, scale = scale.array, deg.f = n.old-q

)

}
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