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ABSTRACT

Cretaceous Alkaline Igneous Rocks from the Aguas Emendadas Region,
Goias, Central Brazil.
Tereza Cristina Junqueira Brod, University of Durham.

Master of Science, 1998

The area of study is located in central Brazil, in the southem portion of Goias state. The
alkaline igneous rocks from Aguas Emendadas Region comprise volcanic and pyroclastic
varieties, emplaced in Phanerozoic sediments of the Parana Basin and in Precambrian
basement rocks. They were formed during a magmatic event which took place during Upper
Cretaceous and belong to the Rio Verde - Ipora Igneous Province.

The pyroclastic rocks were formed by processes involving fluidization and
phreatomagmatic events. Exsolution of volatiles and magma mixing are also invoived in their
genesis. The most common pyroclastic products are breccias with fragmental, lapilli-size
*matrices” and fragments of various origins (e.g. accessory, cognate, juvenile) reaching up to
metric dimensions. Armoured lapilli, “spinning droplets” and “frozen droplets™ of magma occur
in the breccia matrix and represent different stages of explosiveness.

Lavas, erupted in non-explosive intervals, are ultramafic to mafic (melaleucitites,
melanephelinites, leucitites, basalts and basanites), They are usually porphyritic, with
phenocrysts characteristically of olivine and/or clinopyroxene. Other common mineral phases
include leucite (pseudo-leucite), nepheline, kalsilite, perovskite, phlogopite, Fe-Ti oxides and,
in basalts and basanites only, plagioclase.

The rocks were variably altered by a combination of hydrothermal processes and
weathering. Minerals resulting from these alterations include carbonate, zeolites, serpentine
and hydroxides.

The chemical composition of several mineral phases is reported and discussed in terms
of its effect on the magmatic processes. Fractionation of olivine, clinopyroxene, spinel-group
minerals and perovskite controlled the chemical composition of magmas during evolution.

The whole-rock chemical data show that these rocks are divided into two groups one Mg-
rich and the other Mg-poor. The Mg-rich rocks are SiO.-poor, with high contents of CaO, TiO;
and incompatible elements, and have chemical affinity with kamafugites (Ti-rich diopside
phenocrysts and groundmass kalsilite are consistent with this). The occurrence of magma

mixing is supported by the chemical data.
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Chapter | - INTRODUCTION

The area of study is located in southern Goias State (central
Brazil), about 450 km Southwest of Brasilia, between the towns of Amorinpolis
and Montividiu (Fig. 1.1). The main road access to the area is off the GO-174
road through small unpaved tracks. The region has a tropical climate and is
covered by savannah-type vegetation. It has two main seasons, one dry and
other rainy.

The main regional geomorphologic feature of the area is the
| Caiapd Graben (Fig. 1.2), which defines the western limit of the “Planalto
Setentrional da Bacia do Parana” (Mamede ef al., 1983). In the study area, this
structure comprises a number of subparallel normal faults, separating half-
graben blocks oriented N-NW. The lower surface (to the west of the Caiapd
Graben) is part of the Alcantilados Plateau. Pena and Figueiredo (1972)
identified three planation surfaces, associated with the South-American
(Palaeogene), Velhas (Neogene) and Paraguagu (current) erosion cycles. The
River Caiapoé is part of the Amazon hydrographic Basin and the main river of
the area.

Two stages of field work were carried out in July 1996, using the
town of Ipora as the logistics base. The University of Brasilia provided the field

vehicles used in both stages, as well as a GPS receiver for the first stage.










Professor Othon H. Leonardos assisted in the first stage and the geologist
Maria das Gragas Viana in the second. A total of 70 samples were collected,
including both rocks and minerals. The samples are labelled in numeric order,
after the identification prefix 96AE. In addition to these, four other samples
were supplied by Prof. R.N. Thompson and Dr S.A. Gibson, from their previous
field work. These are labelled with the identifier prefix 92SOB. Sample
descriptions and locations are listed in Appendix 1. Appendix 2 gives a detailed
description of methods employed for sample preparation and anailysis.

The aim of this work is to characterise petrologically the volcanic
rocks from the Aguas Emendadas Region. Due to time and financial constrains
for field work in Brazil, the author did not undertake detailed geological
mapping of the sampled occurrences. However, information on regional
geology is provided in Chapters Il and Ill, based on published maps. Previous
mapping work by the author in the Ipora Region was also important in
establishing background knowledge of the regional geology.

Five localities in the Aguas Emendadas Region were sampled
during the current research and alkaline rocks from the Amorindpolis Region
were collected for comparison with the former. The studied rocks are part of the
Cretaceous Rio Verde-lpora Igneous Province. They intrude both the Pre-
Cambrian basement and the Phanerozoic sediments in the Northeast margin of
the Parana Basin.

The main difficulties found during field work concern the access,
distance and the scarcity of fresh rock-outcrops. The geological setting of many

of the sampled localities favours the occurrence of vent-related hydrothermal




alteration. Further, the alkaline rocks are particularly susceptible to the strong
tropical weathering regime prevalent in central Brazil.

The sampled occurrences in the Aguas Emendadas Region
comprise the Aguas Emendadas Complex, Neuzinha, Marimbondo, Cacimba
and Montividiu. In the northernmost, Amorindpolis Region, the visited localities
include the Amorinépolis Complex, six other small dykes or plugs and a dyke
from Morro do Macaco. The field descriptions and petrography of the Aguas
Emendadas Region can be found in Chapter IV. The mineral chemistry is
discussed in Chapter V and electron microprobe analyses are found in
Appendix 4. Chapter VI contains the interpretation of geochemical data for

rocks of both regions. The results of chemical analyses are given in Appendix

3.




Chapter Il - GEOLOGICAL SETTING

.1 INTRODUCTION

The various geological units present in the Southwest part of
Goias State will be described below, in a chronological order (Fig. I1.1).

The pre-Silurian units comprise localised, alloctonous fragments
of Archean to Paleoproterozoic gneisses,. orthogneisses, granites,
metamorphosed volcanic-sedimentary sequences and molasses. They are all
associated with the Brasiliano-Pan African Orogeny. After the amalgamation of
the Gondwana supercontinent different intracratonic basins were formed
including the Parana Basin, whose the Northeast portion occupies a large
portion of the studied region. During the Wealdenian reactivation there was an
extrusive magmatic event, represented by the continental flood basalts of the
Serra Geral Formation (a.k.a. Parana Basalts) and by the alkaline rocks of the
Ipora Province. Following this magmatism, sediments of the Bauru Group were
deposited. During the Tertiary and Quaternary laterites, soils and alluvial

deposits were formed.







1.2 PRE-CAMBRIAN

Between the towns of Arendpolis and Piranhas, gneisses are
found tectonically emplaced in Neoproterozoic rocks of the Arendpolis
Sequence. They occur as narrow and discontinuous strips (approximately 2km
apparent thickness) limited by faults with a general N-S trend. The fault zones
are occupied by biotite gneisses of Archean to Paleoproterozoic age, granitic to
granodioritic in composition, metamorphosed to the amphibolite facies. These
rocks are called Ribeirdo Gneisses and are interpreted as crustal fragments
tectonically emplaced into younger rocks (Pimentel, 1992; Pimentel and Fuck,
1992).

Hornblende-biotite plutonic orthogneisses of Neoproterozoic age
crop out over large areas near the towns of Arendpolis, Israelandia and
Sanclerlandia (the Arendpolis, Matrinxd and Sanclerlandia gneisses,
respectively). They are grey-coloured, medium-grained, homogeneous and
calcic to calc-alkaline in composition. The protoliths of these rocks are mostly
gabbro-diorites to granites. Geochemical and geochronological data indicate
that these gneisses are associated with the Brasiliano Orogeny (Pimentel,
1985; Pimentel and Fuck, 1987, Amaro, 1989; Pimentel, 1992).

Four volcanic-sedimentary sequences are known in the
Southwest of the Goias state: Bom Jardim, Arendpolis, Jaupaci and Ipora-
Amorindpolis (Seer, 1985; Pimentel and Fuck, 1986; Amaro, 1989). These
sequences comprise metavolcanic and metasedimentary rocks metamorphosed

in greenschist to amphibolite facies. Tectonically emplaced mafic and




ultramafic bodies are often found associated with the volcanic-sedimentary
sequences. |

The metabasalts from these sequences are geochemically similar
to low-K tholeiites of island arcs (Seer, 1985; Pimentel and Fuck, 1887, Amaro,
1989). Field and petrographic characteristics also indicate that the sequences
are associated with island arcs (Seer, 1985).

The tectonically emplaced mafic and ultramafic bodies are
interpreted by Pimentel and Fuck (1986,1987) as part of dismembered
ophiolitic complexes, which have been strongly deformed, metamorphosed and
are N-NW linearly oriented. These authors suggest the existence of at least
two suture zones, resulting from the closure of small oceanic plates between
the island arcs.

Intrusive bodies gabbroic to granitic composition are emplaced in
the volcano-sedimentary sequences. They have cataclastic textures and show
variable degrees of deformation. Angular xenoliths of amphibolitic composition,
are locally found. Such xenoliths are interpreted as metabasalts from the
volcanic-sedimentary sequences (Pimentel and Fuck, 1987b).

Elongated and mylonitized granitic bodies are also found. These
are limited by faults, and usually show a vertical (N20W) mylonitic foliation,
more noticeable at the limits of the bodies. Pimentel and Fuck (1992) obtained
a Rb-Sr age of 698 +/- 10 M.y. for one of these granites.

The volcano-sedimentary sequences and associated rocks are
interpreted as part of island arcs which started to evolve about 900 M.y. ago.
This magmatic, metamorphic and deformational activity occurred throughout

“the Neoproterozoic, having its peak at approximately 600 M.y. About this time a




continental collision happened, after which the area started to stabilise and
turned into a craton (Pimentel and Fuck, 1992b).

All the above mentioned units follow a general NNW to NNE
trend, belonging to a major structure named the Transbrasiliano Lineament
System. Mylonites from these units give ages varying from 630 to 594 M.y. and
are associated with the end of the ocean closure and continental collision
marking the end of the Brasiliano Orogeny (Pimentel et al., 1991). During this

tectonic cycle a progressive thickening of the crust took place (Pimentel and

Fuck, 1992).

Late to postorogenic granitioid bodies, with dimensions up to
batholithic, intruded the area. They consist of variable petrographic types, e.g.
gabbro, quartz diorite, quartz monzonite, granodiorite, monzogranite and
granite. They are divided into two age groups, one varying from 588 to 560 M.y.
and the other between 508 and 485 M.y. (Pimentel et al., 1996). The granites

are metaluminous, K-rich and were emplaced in an extensional regime.

1.3 PHANEROZOIC

The Piranhas Formation comprises a poorly-sorted conglomerate
which grades towards the top to a arkosic arenite with interbedded lenses of
argillite (Rosito et al., 1971). Clasts in the conglomerate include pyroclastic
rocks, glassy basic lavas, trachytes, andesites, amphibolites, gneisses and

granites (Faria et al., 1975). The bedding has a NW strike and dip, varying

10



between 35° and 60° NE. The Piranhas formation is approximately 600m thick.
These rocks were deposited over Pre-Cambrian rocks in a molassic
environment with no associated volcanism. The top contact, with the Vila Maria
Formation, is erosive (Faria et al., 1975). The age limits for this formation are
Cambrian and Pre-Devonian.

The Parana Basin sedimentary rocks can be divided into five
main sequences, limited by basin-wide unconformities: Silurian, Devonian,
Permo-Carboniferous, Triassic and Jurassic-Cretaceous (Zalan et al, 1990).
These sequences developed during three different subsidence phases: Siluro-
Devonian, Late-Carboniferous and Late-Jurassic to Early-Cretaceous (Fig.
11.2).

The Rio Ivai, Vila Maria, Fumas and Ponta Grossa formations are
associated with the first subsidence phase. The last three formations are
present in the study region. During the second phase of subsidence the {tararé
Group and the Aquidauana, Rio Bonito, Irati, Terezinha and Rio do Rastro
formations were deposited. Among these, only the Aquidauana Formation is
known to occur in the area. The third subsidence phase is represented by the
Rosdrio do Sul Group, Pirambodia, Botucatu and Serra Geral formations and the
Bauru Group; the last three units occurring in the studied area. These three
phases indicate nearly complete transgression-regression cycles (Zalén et al.,
1990).

The Vila Maria Formation marks the beginning of sedimentation in
the NE portion Parana Basin. Its type section is 14m thick (Faria, 1982) and
comprises siliclastic rocks, starting with a polymitic diamictite at the bottom and
grading to the sandstones of the Furnas Formation on the top. The Vila Maria

Formation was deposited in a shallow marine environment, subjected to tide

11
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influence and periodical air exposure (Faria, 1982), during the Llandovery
(Burjack and Popp, 1981).

The Furnas Formation is composed of a basal, polymitic
conglomerate and poorly sorted sandstones (Andrade and Camargo, 1982),
deposited in a fluvial continental environment and representing a regression
phase (Zalan ef al., 1987). At the margins of the Parana Basin the rocks of this
Formation are found directly above the basement rocks. The upper céntad with
the Ponta Grossa Formation was considered to be discordant at the borders of
the Basin and concordant at the centre (Andrade and Camargo, 1980).
However, Burjack and Popp (1981) give a Llandovery age for the Furnas
Formation and Upper-Devonian age for the Ponta Gfossa Formation, which
implies that they are discordant.

The Ponta Grossa Formation is the only part of the Devonian
sequence present in the NE portion of the Parana Basin. It covers the Silurian
sequence in a transgressional event and was locally deposited directly over the
Pre-Cambrian basement (Andrade e Camargo, 1980). lts main rock-types are
siliclastic, including conglomerates and sandstones. The Ponta Grossa
Formation has a discordant contact with the Aquidauana Formation, on the top.

The Aquidauana Formation is up to 300m thick and is sub-divided
into three members. The Lower Member comprises diamictites and, locally,
siltstone and shale, the Meddle Member is represented by poorly-sorted
sandstones, and the Upper is composed of siltstones and, rarely, phosphates
(Camargo e Souza Jr., 1986).

From the Upper-Jurassic, the geological evolution of the south-

western Goias was marked by intense magmatism. The first event is

13




represented by the extensive continental flood basalts of the Serra Geral
Formation, with ages between 147 and 119 M.y. (Aimeida, 1986). In the region
this Formation comprises basalt lava flows and diabase dykes and sills (Bez et
al., 1971; Gaspar and Danni, 1981; Almeida, 1986).

The second phase of Post-Palaeozoic magmatism in the region
comprises plutonic and volcanic alkaline rocks generated during the Upper
Cretaceous. These rocks are collectively grouped by Almeida (1983) under the
designation of Rio Verde-lpora Igneous Province. The aim of this thesis is
study some of the rocks associated with this magmatism. The Rio Verde-lpora
Igneous Province will be described in more detail in Chapter Il

After the alkaline magmatism, the Bauru Group was deposited
(Gaspar and Danni, 1981; Danni et al., 1990), starting with a basal polymictic
conglomerate and grading towards the top into sandstones. Bands of flint occur
throughout. The maximum thickness of the Bauru Group in the region is 150m
(Camargo and Souza Jr., 1986). The same authors give an Upper Cretaceous
age and favour a mixed fluvial-lacustrine depositional environment for this
Group. This completes the evolution of the Parana Basin in the area.

The Cenozoic is represented by detrital layers and laterites,

which cover older rocks indiscriminately (lanhez et al., 1983).
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Chapter lll - RIO VERDE-IPORA IGNEOUS PROVINCE

During the Late Cretaceous a series of alkaline provinces was
formed around the margins of the Parana Basin, among them the Rio Verde-
Ipora igneous Province (RVIIP) (Fig. I1l.1). Almeida (1967) associated these
rocks with an extentional tectonic event (Wealdenian reactivation) leading to
the emplacement, in a first stage, of alkaline rocks contemporaneous with the
basalts of the Serra Geral Fm. and, in a second stage, to the Late Cretaceous
alkaline rocks. Such event would have reactivated ancient fault zones of the
basement, through which the magmas ascended. This event is considered to
be an inland expression of the épening of the South-Atlantic Ocean (Almeida,
1983 and 1986).

Gibson et al. (1997) suggest that the main cause for the RVIIP
magmatism is the impact of Trindade Mantle Plume close to the region of Ipora.
However, VanDecar et al. (1995), based on seismic data, relate the Late
Cretaceous magmatism to the Tristan da Cunha Mantle Plume, considering it
an extension of the earlier Parana Basin magmatism. The discussion of the
causes of the magmatism is beyond the scope of this work, therefore it will not
be taken any further.

The RVIIP occupies an area approximately 250km long by 70km

wide, with N30W elongation. This coincides with a trend of faults in the
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basement. The major old structures related with the ascent of alkaline magma
are the Bom Jardim de Goids Arch and the Transbrasiliano Lineament. The
Bom Jardim de Goias Arch is a regional anticline structure with the axis
plunging S80W (Pena et al.,, 1975). The Transbrasiliano Lineament follows a
general Northeast orientation (Schobbenhaus Filho et al., 1975). Rift tectonics
affected the central-north portion of the RVIIP during the Upper Cretaceous
(Almeida, 1983). The formation of the Caiapé Graben is associated with this
event.

A wide variety of petrographic types is associated with the RVIIP
magmatism, comprising intrusive, sub-volcanic and volcanic products. Volcanic
rocks dominate in the South and intrusive bodies are more commonly found in
the centre-north (Bez et al., 1971; Danni, 1978; Barbour et al., 1979, Gaspar
and Danni, 1981; Danni and Gaspar, 1992; Danni et al., 1992).

The mafic-ultramafic Alkaline Complex of Santa Fé, located in the
North of the Province, is a ellipse-shaped body, measuring approximately
9.5km along its N-S axis and 6.5km across. It comprises dunites in the centre
and clinopyroxenites, peridotites alkaline gabbros and syenites around the
borders. K-Ar dating of biotite gives an age of 82.6 to 88.4 M.y. for these rocks.

Lamprophyre and phonolite dykes also occur (Barbour et al., 1979).

Near the town of lpora, two Upper Cretaceous, concentrically
zoned intrusions are described by Danni (1978). The Cérrego dos Bois
Complex is composed of two domes, covering an area of approximate 33km’.
The domes are formed mostly by dunites in the centre, surrounded by
wehrlites, olivine pyroxenites and websterites. To the North and to the South

rings of alkaline olivine gabbro, theralites and essexites are found. The whole
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structure is surrounded by a narrow and discontinuous intrusion of nepheline
syenite. Dykes of syenite intrude both the complex and the country rocks. The
other intrusion is called the Morro do Macaco Complex. It is formed by four
domes composed, from the core to the margin, of dunite, wehrlite, olivine
pyroxenite and clinopyroxenite. Syenites are found to the West of the domes.

The Fazenda do Buriti Complex is located about 15km Northwest
of lpora, occupying an approximate area of 35km” The intrusive facies are
represented by olivine clinopyroxenites, melagabbros, essexites, syenogabbros
and syenites. Associated to these rocks, a trachytic sill and quartz
microsyenites are found (Cerqueira and Danni, 1994).

Subvolcanic intrusions of picritic nature are commonly found in
the region. They occur as dykes, plugs and sills. The dykes are often only a
few metres wide and tens of metres long, filling fractures in the Pre-Cambrian
basement, with N30W and NSOE directions. The sills are normally emplaced in
Parana Basin strata. Their thickness is usually <6m but they can extend
laterally for more than 500m. They have homogeneous aspect, with no visible
indication of differentiation. The plugs are cylindrical in shape and can be up to
200m in diameter (Danni, 1994). The magma parental to the concentrically
zoned intrusions in the region (e.g. Morro do Macaco) is believed to be of
alkaline picritic composition, based in xenoliths found in these rocks (Danni et
al., 1992; Danni, 1994).

Near to the Bebedouro farm, 10km South of Amorinopolis (Fig.
l.1), a sub-volcanic association occurs. this is the result of ultrabasic alkaline
magmatism of perpotassic to sodic-potassic composition (Danni, 1985). The

occurrence is about 1200m in diameter. It is occupied in the centre by a
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cylinder-shaped intrusion of basanitic to tephritic composition. Ring and radial
dykes of olivine leucite melanephelinites, melanalicitites and olivine nepheline
melaleucitites preceded the main intrusion (Danni, 1985). The last event in the
complex was degassing of the sub-volcanic reservoir, forming breccia pipes
(Danni, 1985). At the Southwest of the main intrusion a katungite pipe is found.
This is the only occurrence of this type of rock described in the region so far
(Danni, 1985, Danni and Gaspar, 1992; Danni and Gaspar 1994). An important
characteristic noticed by Danni and Gaspar (1994) is the high content of TiO; in
the whole-rock analyses of this occurrence. Upper Cretaceous, high-Ti alkaline
rocks are coincident geographically with high-Ti continental flood basalts of the
Parana Basin, and this feature has been related to the source of the
magmatism (Gibson et al., 1995b).

The Alkaline-Carbonatite Province of Santo Antdnio da Barra
(Gaspar and Danni, 1981) is located in the southern part of the RVIIP. The
volcanic rocks of Santo Antbnio da Barra comprise alternated lavas and
pyroclastic deposits. The rock types include analcimites, olivine analcimites,
analcimitic breccias and carbonatitic pyroclastic rocks. Late dykes and plugs
occur associated with these rocks, including fourchites, melamonchiquites,
phonolites and trachytes. The magma parental to these rocks had a
nephelinitic composition (Gaspar and Danni, 1981). It ascended through the
Santo Antonio da Barra-lporéa tectonic-magmatic lineament, which is oriented
N40-50W. A volcanoclastic conglomerate was deposited on top of the volcanic
rocks (Rio Verdinho Formation; Gaspar and Danni, 1981). Sgarbi et al. (1998)

suggest that the rocks from Santo Anténio da Barra have a chemical affinity
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with kamafugites. K-Ar data give an 85 M.y. age for the volcanic rocks (Hasui et

al., 1971).

Other important volcanic association present in the RVIIP occurs
in the Aguas Emendadas Region, located between the towns of Amorindpolis
and Montividiu. It comprises dykes, plugs, and volcanic vents and pyroclastic
deposits, usually émplaced in the Aquidauana Formation and covered by the
Bauru Group. The rock types present include olivine melanephelinites, olivine-
analcite melanephelinites, olivine analcimites, nephelinites, micro-ijolites,
basanites and tephrites. These rocks were considered an extension of the
Alkaline-Carbonatitic Santo Antdnio da Barra Province (Danni et al., 1990).
These authors also suggested that the leucititic and nephelinitic rocks
originated from different magmas and that the leucititic rocks might be related
to the sources of diamonds found in alluvial deposits nearby.

Based on aeromagnetic data, associated with microprobe
analyses of stream sediment heavy mineral concentrate, Tompkins (1987)
describes the occurrence of a probable kimberlite, South of Amorindpolis.
However, she also considered that the lithosphere thickness is likely to be
<150km in the region, not deep enough for the kimberlite to be diamondiferous.

She therefore interpreted the source of diamonds in the region to be older (Pre-

Cambrian).
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Chapter IV - FIELD GEOLOGY AND PETROGRAPHY OF
AGUAS EMENDADAS REGION

IV.1 FIELD RELATIONSHIPS

IV.1.1 Introduction

Breccias composed largely of volcanic rocks and crystal
fragments are exposed in three different localities: Aguas Emendadas (17°02'S
51°07'W), Neuzinha (17°01'S 51°08'W) and Marimbondo (17°09'S 51°22’'W).
They all occur as a central breccia, surrounded by lavas, which intrudes
sedimentary rocks from the Parana Basin (Fig. IV.1.1).

The Neuzinha breccia consists of a continuous outcrop of
approximately 500m in diameter, cut by a track where the rocks are best
exposed. It is mostly surrounded by lava, although it is not possible to see the
contact relationships. The contact with the Aquidauana Formation is well
exposed as a hornfelsed sandstone to the Southwest of the breccia. Neuzinha
is the best preserved breccia among the localities sampled, even though it is
still hydrothermally altered and weathered (Fig. IV.1.2).

Marimbondo is the southernmost locality visited. The access is

limited by the thick vegetation cover. No relationship between the breccia and

21









lavas or country rocks could be observed. However, they are presumably the
same as in Neuzinha and Aguas Emendadas, since a similar pattern of a
central breccia and a semicircle of lavas emplaced in rocks of the Parana Basin
" is observed (Fig. IV.1.3). Sampling is very difficult as this breccia is the most
weathered of the three.

Aguas Emendadas is located in a valley cut in sandstones (Fig.
IV.1.4). The outcrop is continuous for at least 1km, with an average width of
100m. This breccia has been strongly hydrothermally altered, and a pervasive
carbonate/zeolite assemblage is observed throughout (Fig. IV.1.5).The contact
with the Aquidauana Formation is very clear and can be observed in different
places where development of homnfeises and columnar jointing in the host
sandstone occurs (Fig. IV.1.6).

The description and classification of volcaniclastic rocks follows
the parameters used by Cas and Wright (1987). The division of fragments into
size groups is listed in Fig. IV.1.7; while Fig. IV.1.8 presents a summary of

fragment classification according to provenence.

IV.1.2 Breccias

The following description of the breccias and their field relations
will be focused on Aguas Emendadas because of the better exposure, but

aspects of the other two will be also considered.

The breccias have an extreme range of grainsize, with subangular
blocks up to ~3m in diameter (Fig. IV.1.9) scattered in a breccia matrix that has

an average grainsize of ~6mm (1-50mm) (Fig. IV.1.10). The percentage of fine-
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grained material is highest in Aguas Emendadas while the Marimbondo breccia
has a more coarse-grained and matrix-poor fabric (Fig. IV.1.11). Neuzinha is
intermediate between these two extremes.

Through most of the Aguas Emendadas outcrop the breccia
matrix is entirely fragmental, but locally it grades over distances of 1-2m into
homogeneous, vesicular, very fine-grained, mafic igneous rock (Fig. IV.1.12).
This rock-type occurs over areas of up to 3x5m. This grading was not observed
in the other two localities.

The fragments are mainly juvenile. They are irregular to rounded
and locally vesiculated, with sizes varying from ash to block ( <1m). Bombs are
also present (Fig. IV.1.13). The freshest fragments have a dark grey colour,
changing into green when altered. Compositionally, they consist of an aphanitic
groundmass with clinopyroxene and olivine phenocrysts (Fig. IV.1.14). Crystals
of clinopyroxene and megacrysts of phlogopite are common in the matrix of all

three breccias.

Cognate fragments are very similar to the juvenile clasts, except
that they reach up to 3m in size, are less rounded, and can be very rich in
clinopyroxene phenocrysts (~70%). Some fragments show features of magma
mixing, such as the presence of two compositional domains in the same
fragment (usually with similar mineralogy but different modal proportions and
grainsize), with crenulated contact between them (Fig. IV.1.15). Locally, broken
cognate fragments are slightly separated by breccia matrix, but still retain their

original orientation relatively to each other, suggesting that very little or no

reworking occurred (Fig. IV.1.16).
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Accessory fragments comprise Pre-Cambrian igneous and
metamorphic rocks, Palaeozoic sedimentary rocks, and Cretaceous alkaline
rocks. They are usually angular, with an average that is lapilli size and rarely
submetric. The margins of sandstones are often recrystallised. Except for the
alkaline rocks, the accessory fragments are easily identified by their lighter
colour (Fig. IV.1.17), relative to the juvenile and cognate ones. As is often the
case in other pyroclastic deposits, accessory and accidental fragments are very
difficult to distinguish from each other. Nevertheless, the outcrop style suggests
that the accessory type is dominant. Marimbondo is the breccia with the highest
variety and proportion of accessory fragments, followed by Neuzinha.
Accessory and accidental fragments seem to be evenly distributed among the
three breccias; no preferential concentration zone was observed. Xenocrysts
are also present, K-feldspar is extremely common in Neuzinha. No depositional

structure such as grading or bedding has been recognised in the breccias.

IV.1.3 Dykes

A small number of sinuous, poorly-vesicular dykes, ~2 to 100 cm
wide, intrude these breccias (Fig. IV.1.18). They are mostly aphanitic but can
vary locally to porphyritic facies, with clinopyroxene (up to 2,5cm) and olivine
(up to 1cm) phenocrysts set in an aphanitic groundmass. Megacrysts of
phlogopite are often found at the margins of these dykes (Fig. IV.1.19). When
present, vesicles are concentrated in central parts of the dykes. The only

chilling feature present is the development of columnar joints in one of the

dykes (Fig. IV.1.20).
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The dykes were formed probably by a single injection of magma.
When present, textural and compositional differences across the dyke appear

to be related to flow and in-situ differentiation.

IV.1.4 Lavas

Samples of lava were collected from Neuzinha, Aguas
Emendadas, Marimbondo and Cacimba. The lavas occur as blocks on smali
hills around the breccias (Fig. IV.1.1) and seem to be located topographically
above them. At Aguas Emendadas it is possible to observe the lava covering
the breccia. Contact between lavas and sandstones was not observed. The
size of the outcropping blocks is variable, from a few cm to places were
relatively fresh rock covers areas up to 20m?®. Lavas are mostly altered into a
dark red soil but, when fresh, they are dark grey in colour (Fig. IV.1.21). Flow
banding can be locally recognised by the alignment of clinopyroxene
phenocrysts. Structures such as lava tubes and auto brecciation were not
found. Vesicles are rare and were only observed locally, at Aguas Emendadas
(Fig. IV.1.22).

The lavas are usually porphyritic with a variable phenocryst
content and aphanitic, dark grey groundmass (Fig. IV.1.21). Phenocrysts of
clinopyroxene are always present, olivine is very common. Other phenocryst
phases comprise phlogopite, Fe-Ti oxides and rare leucite.

The presence of "amoeboid"’ inclusions of different sizes, normally
containing bigger phenocrysts than their host lava, is noticeable at Aguas
Emendadas (Fig. IV.1.23). This suggests thati at least one episode of magma

mixing occurred previously to the eruption of the lavas. Cognate xenoliths in
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the lavas range in size from mm to a few cm. They are normally more rich in

phenocrysts than the enclosing lava. Xenoliths of cumulate rocks such as

pyroxenites and dunites are also present (Fig. IV.1.24).

IV.2 PETROGRAPHY

IV.2.1 Introduction

Petrographic studies have been carried out with the use of
transmitted-light petrographic microscope. Selected samples were submitted to
microprobe analyses but the results of this work will be discussed separately in
Chapter V. The nomenclature and classification of the rocks follows, as closely
as possible, the IUGS recommendations (Le Maitre, 1989; Woolley et al.,
1996).

The first attempt to classify the studied rocks resulted in two main
groups:

Group 1 - Volcanic Breccias and Associated Dykes

Group 2 - Lavas

Petrographic description of the Group 1 rocks is concerned with

\
aspects of the breccias in general, such as provenence and morphology of
their fragments, but not with details of the original mineralogy and textures of

the alkaline volcanic fragments. These are petrographically described within

Group 2, since it is assumed that they represent examples of the same
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magmatism in the region. The dykes and breccias are included in Group 1, due

to their related origin.

The classification of the Group 2 volcanic rocks was based on
their present mineralogy in most cases. An exception was made for pseudo-
leucite-bearing rocks. In cases where leucite was clearly the original phase
present in the rock, all pseudo-leucite was treated as leucite for classification
purposes. The studied rocks suffered different stages of post-eruption
modification. They were initially subjected to hydrothermal alteration, and later
suffered tropical weathering.

The key minerals used for classification are very sensitive to the
presence of fluids. Elements such as K and Na are easily mobilised, which
results in important mineralogical and chemical changes to the composition of
the studied rocks.

There is a strong possibility that the magmatism in the area had a
kamafugitic-carbonatitic affinity, but this can not be definitely proved on the
basis of petrographic observations alone. For a precise identification it would
be necessary to carry out extensive microprobe and stable isotope analyses. In
particular, it is important to stress that some of the rocks classified as
“nephelinite” could have originally contained kalsilite, later converted to
nepheline. Moreover, fine-grained kalsilite is indistinguishable from nepheline
under the ordinary petrographic microscope. If the presence of kalsilite could
be proved, then some of the nephelinites would be more accurately classified
as kamafugites. For these reasons, the terms nephelinite and melanephelinite
are hereafter accompanied by a question mark (?). Most rocks have a

cryptocrystalline groundmass. The vast majority of them have phenocrysts of




mafic minerals only. These two characteristics, together with the alteration,

make the classification of the volcanic rocks from the Aguas Emendadas region

extremely imprecise.

IV.2.2 Volcanic Breccias and associated Dykes

Breccia Matnx

Although many thin sections of the breccia matrix were prepared,
the large majority of these were sufficiently hydrothermally altered and
carbonated to obscure the details of their textures. Therefore, the petrographic
descriptions are concentrated on only those sections with minimal alteration.
The breccia matrix contains fine and coarse ash, carbonate, glass fragments,
rounded fragments of magma, crystal fragments and armoured lapilli, alongside
fragments of older alkaline rocks, sandstones of the Parana Basin and rock and
crystal fragments from the Pre-Cambrian basement. The matrix is best
described as a polylithic lapilli tuff.

Fragments of the Pre-Cambrian basement consist mainly of
amphibolites, granites and gneisses. They were probably transported by the
magma as xenoliths, since Pre-Cambrian rocks do not crop out near the
studied area. They represent the most common type of accessory fragment in
the breccia matrix. Loose K-feldspar crystals from the granites occur as
xenocrysts. The fragments are usually angular and the xenocrysts are often
broken. Fragments of basement rocks do not show any particular evidence of
contact metamorphism (Fig. IV.2.1). Fragments of the Parana Basin

sedimentary rocks are mainly sandstones. They are angular in shape (Fig.
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IV.2.2) but, unlike the Pre-Cambrian rocks, sandstone fragments locally show
evidence of recrystallisation.

Some alkaline volcanic rocks from Ipora province are also present
as accessory fragments (Fig. IV.2.2). The main rock types represented are, in
order of abundance, leucitites, basanites, olivine basalts, melanephelinites (?),
dunites and pyroxenites. Accessory fragments of melanephelinites (?) can be
distinguished from juvenile and cognate fragments mainly by their angular
shape.

Cognate fragments are compositionally classified as
melanephelinites (?). Aithough on occasions they may be difficult to distinguish
from the juvenile variety, cognate fragments are usually Iesé rounded.
Additionally, some cognate fragments show evidence of magma mixing, while
others have larger and more abundant pyroxene phenocrysts than the juveniles
(Fig. IV.2.3). Isolated crystal fragments of pyroxene, up to 3cm, also occur.
These are interpreted as having originated in the magma chamber and become
remobilised later by the ascending magma.

Juvenile fragments are dominant in the breccia matrix (Fig.
IV.2.3). Compositionally they are probably melanephelinites (?). Texturally they
range in size from ash to lapilli and have variable, usually rounded shapes. The
occurrence of juvenile vesiculated fragments is uncommon. Three different
types of spheroidal juvenile fragments are present, the important textural
differences between them are shown in Fig. IV.2.5. The first type comprises
“armoured lapilli”, the second is best described as “frozen droplets” of a magma

(glassy groundmass, microphenocrysts of pyroxene and olivine; Figs. IV.2.3
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and IV.2.4), and the third type consists of densely porphyritic, concentrically
oriented, cored structures (called “spinning droplets” in this thesis).

Armoured lapilli are defined as lapilli-sized rock fragments coated
with ash (e.g. Waters and Fisher, 1971; Lorenz, 1974; Schumacher and
Schmincke, 1991; Gilbert and Lane, 1994). Armoured lapilli are very common
in the matrix of the studied breccias. Such particles represent one of the types
of rounded structure mentioned previously. They are smaller than 1cm, usually
only identifiable under the microscope. The core has compositional range
similar to the accessory fragments and xenocrysts. The ash rim varies from
around 1/10 to 4/10 of the lapillus diameter (Fig. IV.2.6). Normally the lapilli are
rounded but occasionally the ash rim follows the contours of the angular rock
core (Fig. IV.2.7).

Frozen droplets of magma are often spherical, but they can also
be tear- or irregularly-shaped. Despite being lapilli-size on average, some
specimens can be smaller than 2mm. They have an abundant glassy
groundmass and the microphenocrysts are randomly distributed in most cases,
although concentric orientation is locally observed. The texture of the frozen
droplets is very similar to those reported by Hay (1978), Keller (1981,1989),
Hay and O’Neil (1983), Deans and Roberts (1984) and Riley ef. al. (1996), for
carbonatite-associated magmatism. Similar features are also described in
kimberlites (e.g. Clement, 1973; Clement, 1975; Dawson, 1980; Clement and
Skinner, 1985; Mitchell, 1995). The origin of such structures is controversial
and will be discussed later, in section 3 of this chapter.

The third type of spherical structure is hereafter called “spinning

droplets”. At first sight, they are very similar to armoured lapilli but can be







distinguished from the latter by the invariably present crystal nucleus and a rim
composed of tangentially oriented microphenocrysts in a glassy groundmass
(Fig. IV.2.2). These structures can reach up to 8mm in diameter. In Neuzinha,
they are much more common than armoured lapilli. The core can be occupied
by a crystal of phiogopite, pyroxene or olivine and, rarely, by rock fragments.
Phlogopite is the most common core material, followed by pyroxene. The rim
often represents more than half of the diameter of the structure. Although not
always readily identifiable, most microphenocrysts are very likely to be
pyroxenes. Other microphenocryst phases comprise oxides, carbonate,
phlogopite and, perhaps, melilite. The microphenocrysts are concentrically
orientated (Fig. 1V.2.8). Spinning droplets differ from frozen droplets by the -
presence of a crystal nucleus, higher microphenocrysts/groundmass ratio and
smaller, concentrically oriented microphenocrysts.

Very similar structures have been described in other alkaline
rocks, such as carbonatites, kimberlites and melilitites, and called “pelletal
lapilli”, “spherical lapilli”, “tuffisitic lapilli’, “concentric shelled lapilli" or simply
“concentric lapilli” (e.g. Clement, 1973; Dawson, 1980; Clement and Skinner,
1985; Mitchell, 1986; Keller, 1989; Dawson ef al., 1992; Stoppa and Lavecchia,
1992; Stoppa and Lupini, 1993; Mitchell, 1995; Stachel et al., 1995, Stoppa,
1996; Stoppa and Principe, 1997; Stoppa and Woolley, 1997; Kurszlaukis and

Lorenz, 1997; Lorenz and Kurszlaukis, 1997).

Homogeneous Mafic Igneous Rocks

Mineralogically, these rocks are composed of pyroxene, olivine,

and perovskite microphenocrysts set in a very fine grained groundmass (Fig.
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IV.2.9). Feldspathoids were not found. Petrographically these rocks are very
similar to the dykes associated with the breccias, except that they are
extremely vesicular and more rich in “inclusions”. The vesicles are filled with
carbonate and locally zeolite or clay minerals. The size of the vesicles varies
from <1mm to 10mm. In some portions the vesicles are joined (Fig. IV.2.10).
Inclusions of an even more mafic rock-type can be often observed
in both hand-samples and thin sections (Fig. IV.2.9). They have the same
minerals as the host rock, but are more fine grained and appear to have higher
modal abundances of pyroxene, olivine and perovskite microphenocrysts (Fig.
IV.2.11). The inclusions have iregular, usually “amoeboid” shape (Fig.
IV.2.12). Angular xenoliths of another mafic alkaline rock are also present and

can have diameters up to 2cm (Fig. IV.2.13). They have phenocrysts of

pyroxene up to 1cm and rare olivine.

Dykes

In thin section all of the sampled dykes are very similar, aithough
variable in grainsize. They are extremely mafic, comprising euhedral olivine (up
to 6mm) and clinopyroxene (up to 1.5cm) phenocrysts set in a groundmass of
these phases, opaques and perovskite. The largest euhedral perovskites may
best be described as microphenocrysts. The olivine is entirely altered to
carbonate and clay minerals, and these phases are also widespread in the
groundmass. No recognisable groundmass feldspathoids were observed, but

the presence of perovskite leaves no doubt that these dykes are strongly silica

undersaturated (i.e. melanephelinites?) (Fig. IV.2.14).
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Locally the dykes are vesicular (infilled by carbonate and
zeolites). Samples S6AE42 and 96AE46 (especially) contain scattered
inclusions (up to 7mm) of extremely fine-grained melanephelinite(?), with
rounded “amoeboid” margins (Fig. IV.2.15). These may be related to magma-

mixing episodes shortly before emplacement.

IV.2.3 Lavas

As a general rule most of the volcanic rocks are ultramafic and
porphyritic. The main mafic minerals are clinopyroxene (diopside) and olivine.
Melilite was found in one sample, and the occurrence of kalsilite was observed
during the microprobe work (Chapter V). The common accessories are
phlogopite, perovskite, Fe-Ti oxides, carbonate and apatite. The main products
of hydrothermal alteration and/or weathering are zeolites, serpentine, clay
minerals, carbonate and Fe-hydroxides.

The volcanic rocks are divided into four groups according to their
main felsic mineral:

Group 1 - melaleucitites

Group 2 - melanephelinites (?)
Group 3 - leucitites

Group 4 - basanites and basalts

Group 1 is formed by rocks which have frequent pseudoleucite in
the groundmass. Group 2 comprises rocks with nepheline (?) in the

groundmass. Group 3 rocks are characterised by phenocrysts of pseudoleucite.

Group 4 is formed by feldspar-bearing rocks.
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Melaleucitites

The melaleucitites are very rich in phenocrysts. All rocks in this
group have olivine and pyroxene as main constituents. Pseudo-leucite is
present as a groundmass phase. The most common accessories are
phlogopite, perovskite, Fe-Ti oxides, apatite and nepheline (?) (Fig. IV.2.16).

Olivine occurs mainly as phenocrysts. In some samples it is also
found in the groundmass, although only in accessory amounts. Two
generations of olivine phenocrysts are recognisable. One is euhedral to
subhedral, usually less than 3mm in size (Fig. IV.2.17). The second is normally
anhedral and up to 1cm in diameter, showing features of resorbtion (Figs.
IV.2.16, IV.2.17 and IV.2.18). In the groundmass, olivine is usually euhedral.
The olivines are often partially or totally altered to serpentine and/or a mixture
of clay minerals and carbonate.

The pyroxene is normally fresh and diopsidic in composition. In
thin section it can be strongly coloured from light brown to green. It occurs as
phenocrysts (up to 6mm) and as the main constituent of the groundmass (Fig.
IV.2.16). As a rule, phenocrysts are euhedral (Fig. [V.2.19), but some crystals
may show evidence of instability within the magma (Fig. IV.2.20). In the
groundmass the pyroxene occurs as euhedral microcrysts (Fig. IV.2.17).

Small crystals of pseudoleucite are the next main component of
the groundmass. They are found as anhedral to rounded “cloudy” small masses
(Figs. IV.2.16 and IV.2.17).

Phlogopite occurs both as phenocrysts and in the groundmass.

The phenocrysts are often partially or totally transformed into a microcrystalline
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mixture of Fe-Ti oxides, pyroxene, nepheline?, and olivine (Fig. IV.2.21). In the
groundmass, phlogopite is a late phase (Figs. IV.2.16 and IV.2.18).

Euhedral perovskite is an important accessory mineral in most

rocks of this group. It is found as microphenocrysts or as small crystals in the

groundmass.

Fe-Ti oxides are very common and occur as euhedral microcrysts

in the groundmass or as inclusions in pyroxene and phlogopite phenocrysts.

Small amounts of nepheline (?) are present in the groundmass of
most melaleucitites. It seems to be a late phase. Rarely, nepheline (?) is found

as phenocrysts, invariably associated with phlogopite (Fig. IV.2.22).

Some of the melaleucitites contain small vesicles filled with
carbonate (Fig. IV.2.16). Cognate xenoliths of pyroxenite (Fig. IV.2.20) and

dunite are very common.

Melanephelinites (?)

Compared with the melaleucitites, the melanephelinites (?) are
much poorer in phenocrysts (Fig. IV.2.23). They have a dominant,
microcrystalline, dark gréy groundmass. Another major difference is that
pyroxene is very rare in these rocks. When present it is mostly restricted to an
accessory phase in the groundmass. The main phenocryst types are olivine
and phlogopite, both often smaller then 2mm. The groundmass is mostly
microcrystalline, with recognisabie nepheline (?), olivine, Fe-Ti oxides,
perovskite and carbonate (Fig. IV.2.24). Kalsilite was found in the groundmass
of sample S6AEO08 (Chapter V).

Phenocrysts of olivine range in shape from perfectly euhedral to

anhedral (Figs. IV.2.23 and IV.2.25). The latter often show evidence of
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disequilibrium and may represent a separate variety of olivine. In the
groundmass, olivine is usually euhedral. All olivine varieties can be partially or
entirely altered to a mixture of clay minerals and carbonate.

Poikilitic phenocrysts of phlogopite occur as a late phase,
surrounding other minerals of tHe groundmass (Figs. IV.2.23 and IV.2.24).
Nepheline (?) occurs only in the groundmass, as small crystals showing

evidence of exsolution. Their shape varies from subhedral to anhedral.

Leucitites

This group is similar to the melaleucitites. The main difference is
that rocks of this group either have phenocrysts of leucite or abundant leucite
in the groundmass (Fig. IV.2.26). The main phenocrysts are leucite, pyroxene,
olivine and phlogopite, in this order. All these phases are also present in the
groundmass; pyroxene followed by leucite being the main ones (Fig. IV.2.27).
Accessories are olivine, phlogopite, perovskite, Fe-Ti oxides, nepheline (?),
apatite and carbonate. Cognate xenoliths of pyroxenite were also found in this

group of rocks.

Basalts and basanites

This group comprises the only feldspar-bearing volcanic rocks
found in the area. They range from aphanitic to porphyritic varieties very rich in
phenocrysts. The main phenocryst phases are pyroxene (diopside, upto 1 cm,
Fig. IV.2.28), olivine (usually euhedral, up to 5 mm) and plagioclase (up to 1
cm). The identifiable components of the groundmass are plagioclase,

pyroxene, olivine and rare nepheline in some rocks.
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IV.3 INTERPRETATION

This section aims to present a tentative model to explain the

morphology and formation of the volcanic deposits found in Aguas Emendadas,
Marimbondo and Neuzinha. It is based on data obtained in field work and
petrographic observations, compared with descriptions from the literature. The
following points are relevant to the interpretation of the field and petrographic
characteristics observed:
1 “Diatreme” is defined by Cas and Wright (1987) as “a pipe-like
conduit filled with volcanoclastic debris”. Alternatively, Mitchell (1986) gives a
more complete definition: Diatremes are “cone-shaped, downward-tapering,
inclined or vertical structural units composed, wholly or partly, of angular or
rounded clasts of cognate or xenolithic ongin, with or without a matrix. Xenolithic
clasts may be derived from the walls or the roof of the body. They are
commonly well-mixed and some xenoliths have apparently sunk within the
diatreme. Diatremes are volcanic features associated with volatile-rich
magmatism, commonly of ultrabasic composition®. The field relationships in all
three localities indicate that they fit these definitions and therefore may be
described as diatremes. The presence of sediments of the Parana Basin
topographically above the breccias in all three localities also supports this
interpretation. The breccias have been exposed after emplacement by a
combination of tectonic events and erosion (Figs. IV.1.1, IV.1.3 and IV.1.4).

2 The absence of structures such as cross-bedding, together with

the distribution of the fragments (Fig. IV.1.16), angularity of the accessory




“fragments (Fig. IV.1.17) and preserved rims of the armoured lapilli (Fig. IV.2.6)
indicate little or no epiclastic transport.

3 The presence of contact metamorphism in the sandstone (Fig.
IV.1.6) proves that the breccias were hot during emplacement. This, together
with evidence of little or no post-emplacement transport, rules out an epiclastic
origin (e.g. mud flow). Therefore the breccias represent pyroclastic deposits.

4 The presence of cognate fragments with different degrees of
crystallinity and locally preserved characteristics of magma mixing (Figs.
IV.1.15 and IV.2.3) both suggest the existence of a magma chamber prior to the
eruption. |

5 Cognate fragments can be compared with “autoliths’, sensu
Mitchell (1995), since they are interpreted as fragmented solid to semi-solid
material from the magma-chamber.

6 The formation of armoured lapilli requires presence of water at
some stage. Models for generation of accretionary lapilli are presented by
various authors (e.g. Woods, 1993; Gilbert and Lane, 1994, Shumacher and
Schimincke, 1995); they all consider water as the aggregating agent of ash. It
is assumed here that armoured lapilli are a variant of accretionary lapilli.

7 Spinning droplets are genetically linked with diatreme facies (e.g.
Clement and Skinner, 1985; Mitchell, 1995; Lorenz and Kurszlaukis, 1997,
Kurszlaukis and Lorenz, 1997). These authors, among others, consider two
possible alternative processes associated with the formation of diatremes: a
magmatic and a phreatomagmatic model (Lorenz and Kurszlaukis, 1997).

Mitchell (1995) gives a summary of the ideas involved in each model for
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diatremes associated with kimberlitic magmatism, while Lorenz and Kurslaukis
(1997) extend the studies for carbonatite related volcanism.

The magmatic mode! involves the rapid exsolution of a juvenile
volatile phase, where the particles are transported in a gas-liquid fluidized
system, resulting in a “cold” emplacement. McCallum (1985) studied fluidization
experimentally and suggests that it is an important process in the formation of
breccia pipes. In this case the previously described “spinning droplets” would
be formed inside the conduit, as proposed by Clement (1973) and later by
Dawson (1980). The main problem in this model, regarding the formation of
spinning droplets, is that in order to have a well-mixed system, as is the case in
diatreme facies, a turbulent movement is required. Such movement would
either prevent the formation of the spinning droplets or destroy their texture and
shape before the eruption.

Phreatomagmatic eruptions are the result of hot magma
interacting explosively with a body of water, also known as fuel-coolant
interaction (e.g. Sheridan and Wohletz, 1983; Cas and Wright, 1987). Authors
who adopt this model to explain the formation of diatremes and associated
facies include Lorenz (1979), Zimanowski et al. (1997), Kurszlaukis and Lorenz
(1997), Lorenz and Kurszlaukis (1997). In this model prior fragmentation of the
magma is not taken into consideration. The spherical shape and texture
(concentric orientation) of the spinning droplets is explained by magma
adhering to a previously crystallised nucleus, due to surface tension and
rotation of the droplets during transport (Mitchell, 1995).

“Spinning droplets” (Figs. IV.2.2 and IV.2.8) afe interpreted here

as the product of the rotation of magma droplets during ascent in a fluidized



system, and their subsequent solidification in the subaerial stage of a
phreatomagmatic explosion. This mechanism requires fragmentation and high
velocity of the rising “magma’, in order to form and spin the droplets. The
fragmentation, inside the magma chamber, could be associated with magma
mixing, exsolution of a volatile phase (high vesiculation), liquid immiscibility or
even a combination of two or more of these factors. The low density contrast
between the hot magma and a second phase (probably volatile) permits a
laminar transport at high velocity. When they reach the surface, the already-
shaped droplets quench.

A model for the formation of spinning droplets is presented by
Stoppa (1996) but it requires, by definition, a mantle xenolith/xenocryst as a
core for each lapillus and a magma with carbonatitic-melilititic affinity (Stoppa,
1996; Stoppa and Woolley, 1997). The cores found in lapilli from the Aguas
Emendadas region seem to be crystals formed in the magma chamber and
entrained by magma prior to the eruption. There is no evidence linking them
with @ mantle origin. Carbonatitic affinity of the magma, as well as liquid
immiscibility, can neither be proved nor ruled out at the present stage.

The name “spinning droplet” is proposed here in order to avoid
the size limitations implied by other definitions, and the misinterpretation of the
processes involved in the formation of these structures. A detailed study of the
spinning droplets, as well as experimental modelling and further comparison
with similar spherical structures associated with uitrabasic alkaline volcanism
elsewhere is required, in order to achieve a better understanding of their origin.

Therefore, the term “spinning droplet” is used here in a textural sense.
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8 Some of the frozen droplets (Figs. IV.2.3 and V.2.4) are
structureless, and were probably formed by fragmentation (like the spinning
droplets), but erupted during a lower energy stage (e.g. fire fountain; Keller,
1981; Deans and Roberts, 1984). An alternative possibility is that frozen
droplets are analogous to globular segregations (sensu Mitchell, 1995) present
in hypabyssal facies of kimberlites. In this case the bfeccias from Aguas
Emendadas region would represent a transitional facies between hypabyssal
and diatreme.

9 Pyroxene phenocrysts showing evidence of reabsortion by the
magma and disequilibrium textures (Figs. IV.2.16 and IV.2.20) suggest magma
mixing. The same applies to olivine phenocrysts (Fig. IV.2.17).

10 Another indication of magma mixing is the abundance of
“amoeboid” inclusions in samples from Aguas Emendadas region (Figs.
IV.1.23, IV.2.3,IV.2.9, IV.2.11, IV.2.12 and IV.2.15).

11 The presence of vesicles in the igneous rocks implies exsolution
of a volatile phase. However, the absence of amphiboles and the small
amounts of phlogopite indicate that the original magma was relatively poor in

water. This suggests that the juvenile volatile phase might have had a

significant CO, component.

12 The dykes intruded the breccia while it was still “soft’, as
indicated by their contact relationships (Fig. IV.1.18). On the other hand, the
breccia was cooler than the magma of the dykes, otherwise columnar jointing
would not have developed in the margins of the dykes (Fig. IV.1.20).

13 The presence of accessory fragments of alkaline volcanic rocks

within the breccias demonstrates that previous eruptions happened in the area.
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14 Near the surface, the rising magma interacted with water,
resulting in a phreatomagmatic explosion, when armoured lapilli were formed.
15 The absence of other deposits related to phreatomagmatic
eruptions, such as ash beds, can be explained by erosion.

Based on the points discussed above, a model consisting of
several stages is presented for the alkaline-rock formation in the Aguas
Emendadas region. This is summarised in Fig. IV.3.1.

Stage 1 - First episodes of magmatism in the region. These are preserved only
as accessory fragments in the breccias.

Stage 2 - An alkaline magma (M1) fills a magma chamber. Formation of
cumulates starts. Temperature in the magma chamber decreases.

Stage 3 - A second magma (M2) arrives at the magma chamber. The difference
in temperature between M1 and M2 provokes exsolution of volatile phases in
both magmas.

Stage 4 - The extra volume of M2, together with the exsolution of the volatile
phases, increases the pressure inside the magma chamber, causing instability
of the system followed by fragmentation of the fiquid (mixture) and triggers a
violent explosion. The mixture rises as a fluidized “body” at high velocity.
Stage 5 - At this stage the spinning droplets are formed. The rising mixture,
near the surface, interacts with water, presumably from the surrounding country
rocks.

Stage 6 - The magma arrives at the surface. An eruption column is formed
(probably with a base surge).Products of this explosion include, for example,

ash, armoured lapilli, spinning droplets and bombs.

69



Stage 7 - When the pressure is released, the rate of ascending magma
decreases and the whole structure collapses.

Stage 8 - A pyroclastic deposit fills the crater.

Stage 9 - A vesiculated magma continues to ascend within the conduit and
percolates the tephra, forming the small intrusive bodies of homogeneous mafic
igneous rock. The first lava flow erupts.

Stage 10 - The content of volatile phase decreases, the magma becomes less
vesiculated and with less energy. Dykes cut the breccia and feed further lava
flows. The presence of “amoeboid” inclusions in rocks formed between stages
3 and 10 shows that M2 was still continuously filling the magma chamber.
Stage 11 - At a certain point M2 supply is interrupted, and magma
differentiation restarts in the chamber, leading ultimately to the eruption of
feldspar-bearing lava.

Stage 12 - Hydrothermal activity takes place. Voicanic products outside the

crater are eroded.
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Chapter V - MINERAL CHEMISTRY

V.1 INTRODUCTION

A preliminary study of the chemical composition of several
minerals from the Aguas Emendadas Region was carried out using an electron
microprobe at the University of Cambridge. The minerals analysed comprise
olivines, clinopyroxenes, feldspathoids, feldspars, opaques and perovskite. A
description of the main characteristics of each of the studied minerals will be
given below. Details of the analytical procedures are given in Appendix 2 and

the microprobe data can be found in Appendix 4.

V.2 OLIVINE

The molecular proportions of forsterite in the studied olivines range from
Foss to Foss, which is consistent with the ultramafic character of the host rocks.
Individual olivine crystals may be zoned, with the forsterite content decreasing
from core to rim. Less frequently, a reverse zoning pattern is observed.

Although no detailed microprobe traverses have been done in olivine, this may
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suggest that reversely-zoned crystals are in fact a different generation of
olivine that has been assimilated by a more high-magnesium magma. The
existence of more than one generation of olivine phenocrysts is consistent with
the petrographic observations (Chapter V). Groundmass olivine has variable
composition. The crystals are usually less magnesian than the cores of olivine
phenocrysts, but may overlap the composition of the phenocryst rims. SiO,,
NiO (up to 0.37 wt.%) and Cr,O; (up to 0.1 wt.%) have positive correlations with

the forsterite content, while CaO (up to 1.21 wt.%) and MnO (0.73 wt.%) have

the opposite behaviour.

V.3 CLINOPYROXENE

All samples studied by microprobe contain diopside, as
phenocrysts and/or in the groundmass. The Na content of these pyroxenes is
reflected in a low acmite component (up to 3.34 mol% of the acmite molecule).
Therefore, they can be classified using the diagram for the four-component
system CaMgSi,0s-CaFeSi.0s-Mg.Si,Os-Fe,Si-0s (Morimoto et al., 1988; Deer
et al., 1992). This is represented in Fig. V.1, where most of the pyroxenes plot
within or very close to the diopside field. The composition of pyroxenes from
melaleucitites, melanephelinites (?) and leucitites overlap. That of the

pyroxenes from basanites is slightly more enriched in the hedenbergite

molecule than the other three.
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One particular characteristic of the studied pyroxenes is that they
have very high Ti contents (up to 5.97 wt.% TiO,), with TiO; increasing from the
core to the rim of the pyroxene. Similar high-Ti clinopyroxenes in Australian
leucitites have been described by Cundari and Salviulo (1989), who suggested
that Ti-enrichment is favoured by lower temperature and higher oxygen
- fugacity. |

Figure V.2 shows the comparison between clinopyroxenes from
the Aguas Emendadas region and those from other alkaline rock-types and
provinces. The Al content of most grains is higher than in lamproite pyroxenes.
The Ti/Al ratio of the Aguas Emendadas pyroxenes is higher than those from
the Roman Province and alkaline rocks from Paraguay, although the Al
contents are similar. The best fit is with pyroxenes from kamafugitic rocks

(Uganda). However, the composition range is wider in Aguas Emendadas

pyroxenes.

V.4 FELDSPATHOIDS

Two types of feldspathoids were found in the stydied rocks.
Nepheline was identified in four samples of melanephelinite (?), melaleucitite
and leucitite. All nephelines have an unusually high content of K;O, ranging
from 9.45 to 11.17 wt.%. This corresponds to an excess of K, in relation to the

ideal nepheline formula (maximum of 2 potassium cations per 32 oxygen), for
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all analysed grains. The proportion of the kalsilite molecule in these nephelines

varies from 29.61 to 34.51 mol%.

Kalsilite (Ksss3Ness) was found in a melanephelinite (?) sample
(96AE08). This was confirmed by XRD analyses of the sample, suggesting that
kalsilite is a significant mineral in this rock, although only one grain was

positively identified and analysed during the microprobe work.

V.5 FELDSPARS

Alkali feldspars occur as part of pseudoleucite aggregates, finely
mixed with nepheline, zeolites (EDS qualitative analysis only) and carbonate in
melaleucitites. Two analyses made of these feidspars gave compositions close

‘to the orthoclase end-member (Orss4ss8). Ba was not analysed, but the high
totals of the analyses suggest that it is not present in significant amounts.

Plagioclase was only found in basanites. It varies from Angs to
Ansss, corresponding to calcic andesine and sodic labradorite. It may contain

up to 1.46 wt.% FeO, but this is probably related to the presence of impurities

(Deer et al., 1992).
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V.6 PEROVSKITE

Perovskite composition is relatively restricted. During this work,
only EDS analyses of perovskite from three samples were carried out.
Therefore, it is not possible to do a direct evaluation of the concentration of
trace-elements such as the REE, Nb and Sr. When these elements are
dominant, they give origin to the end-members loparite, lueshite and tausonite,
respectively (Mitchell, 1996). The high analytical totals indicate that these
perovskites are relatively close to the ideal CaTiO; composition. Among the
analysed elements, only Si, Al, Fe and Na occur as significant trace elements.
If the analyses are recalculated on the basis of 3 oxygens, according to the
general perovskite formula ABO;, calcium occupies 94 to S6% of the A site,
and Ti occupies more than 99% of the B site. Thus, the end-members that
involve substitution of Ti (such as the Nb-rich end member lueshite) are
unlikely to be present in significant amounts. On the other hand, up to 4 to 6
mol % of end-members that require substitution of other cations for Ca (e.g. the

Na+REE-rich end-member loparite or the Sr-rich end-member tausonite) may

be expected.

V.7 OPAQUES

Opaque minerals generally occur as small groundmass grains

that make the microprobe analysis difficult. Most of the analysed grains gave a
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Iow- analytical total, even after recalculation of the Fe>/Fe” ratio to
stoichiometry, according to the method of Droop (1987). This may be due to a)
analytical error; b) the presence of non-analysed components or c) inaccuracy
of the Fe*/Fe? estimation method. Therefore, the analyses are given here a
semi-quantitative status, and caution should be taken in the interpretation of
the data.

Based on these semi-quantitative data, the opaque minerals are
part of the ulvéspinel-magnetite series. They are represented in Fig. V.3, where
most analyses plot near the titanomagnetite line, closer to the ulvéspinel than
to the magnetite end-member. However, some other elements are also
significant, although highly variable. Magnesium ranges from 0.33 to 10.23
wt.% MgO, chromium varies from 0.08 to 17.61 wt.% Cr,O; and aluminium
from 0.37 to 8.00 wt.% Al,Os. The highest contents of Mg, Cr and Al are from
opaques in the samples 96AE46 (melanephelinite (?)) and S6AES7 (leucitite).

These represent some degree of solid solution towards Mg-Al-chromites.

V.8 CARBONATE

Carbonate minerals were not analysed by electron microprobe.
However, since high trace-element contents of carbonates are considered an
indication of their magmatic origin, two hand-picked separates of carbonate
from veins were analysed by ICP-MS. Results are given in Appendix 3 and

analytical procedures were the same as for whole-rock analysis (Appendix 2).
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The Sr and Ba contents are in the ranges from 393 to 1586 ppm and from 391
to 722 ppm, respectively. These concentrations are low, if compared with
carbonates from carbonatites, which usually have Ba and Sr at percentage
levels. Based on the Ba and Sr concentrations, it is likely that the veins are a
product of hydrothermal processes, rather than a direct manifestation of
carbonatitic magmatism. On the other hand, the chondrite-normalized REE
patterns of these carbonates (Fig. V.4) are parallel to the REE pattems of
volcanic rocks from Aguas Emendadas, although at a lower concentration level.
To produce these parallel patterns, the partition coefficients for different REE
would have to be the same in both the magmatic and the hydrothermal events.
Moller and Morteani (1983) studied the REE distribution in calcites of different
origins. They suggested that the REE pattens in chondrite-normalized
diagrams can vary significantly between calcites of magmatic and hydrothermal
origins. In the cases reported by them, the hydrothermal caicite shows a
convex, middie-REE-enriched pattern, while the magmatic calcite has a steep,
roughly linear LREE-enriched pattern. Although these results may not be
necessarily applicable to this research, they illustrate the potential of
hydrothermal systems to crystallise calcites with REE-patterns broadly different
from those of magmatic carbonates. Short of a more detailed chemical and

isotopic study, the problem is unlikely to be solved.
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Chapter VI - GEOCHEMISTRY

VI.1 INTRODUCTION

From the total of rocks collected during the field work, those with
macroscopic pyroclastic textures, large amounts of xenoliths and pervasive
weathering/hydrothermal alteration were avoided during the geochemical
studies. A total of 45 samples from Aguas Emendadas and Amorinépolis
Regions were analysed for major and trace-elements by X-Ray Fluorescence
(XRF) and 41 samples were analysed for trace and rare-earth elements (REE),
by Inductively Coupled Plasma - Mass Spectrometry (ICP-MS). Appendix 2
describes the analytical procedures adopted. XRF and ICP-MS data are given
in Appendix 3 (Table A3.1 and Table A3.2, respectively), Table A3.2 also
includes the analyses of two samples of carbonate, collected from veins in the
Aguas Emendadas Complex (S6AE37Cb and S6AE38Cb).

Among the analysed samples a second selection was made, based
on petrography. Samples 96AE15 and S6AE64 were omitted, since they are
metamorphic rocks and probably constitute part of the Pre-Cambrian basement.
Sample 96AE6S is a gabbro and is excluded because it probably does not

represent a liquid. Samples S6AES54 and 92S0B212 proved to be altered. The
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" final set of selected samples is intended to typify the various stages and/or the

evolution of the magmatism in the region.

After these two selection steps, a data-base comprising 40 samples
was studied in detail. The samples are divided into two regions and four
groups, according to the field and petrographic information. The regions are
Aguas Emendadas and Amorinépolis. The former includes samples from the
Aguas Emendadas Complex, Neuzinha, Marimbondo and Cacimba, while the
latter comprises samples from Amorindpolis and Morro do Macaco. The
petrographic groups comprise: (I) melaleucitites, (ii) melanephelinites (?), (iii)
leucitites and (iv) basalts and basanites. An exception in the petrographic
classification was made for sample 96AE57. This is petrographically a leucitite,
but behaves geochemically as part of the Melaleucitite Group and, therefore,
has been moved to the latter for the purposes of this chapter.

The major elements (wt.%) were recalculated to a 100% total, on a
volatile-free basis. Samples with high loss-on-ignition (LOI) proved to be rich in
carbonate (e.g. 96AE42 - LOI=7.40 and 96AE46 - LOI=5.28). It is not clear
whether the carbonate in these samples is of magmatic or hydrothermal origin;
they were not excluded from the data set because their chemical behaviour is
consistent with similar samples in their group.

Sample 96AE20 (leucitite) has some of its trace-element contents
well above the average of the Leucitite Group (e.g. Nb, Zr, Y, Ba, Th, REE; see
Fig. V1.3.1, section V1.3 - trace-elements). However, the sample appears to be
fresh and no petrographically apparent reason, such as accumulation of one or

more particular mineral phases, was found to justify this difference. This

sample was therefore kept in the data base.




Tables A3.3 and A3.4 (Appendix 3) give, respectively, the norms
calculated according to CIPW and to the method of Le Bas (1973) for selected
samples. The norms were calculated using an arbitrary Fe,O4/FeQ ratio of
0.15.

The available information only allows limited inference about the

magma sources. A more detailed investigation of this topic requires radiogenic

isotope data.

The use of elements, such as potassium and rubidium, which are
likely to have been mobile during hydrothermal alteration and/or weathering is
avoided as much as possible. The discussion on the geochemistry of the rocks
from Aguas Emendadas will be focused, whenever possible, on those elements
that are less susceptible to such changes.

Most of the analysed samples are porphyritic (up to 46 modal %
phenocrysts), consequently the distinction between the effects of crystal

accumulation and fractional crystallisation becomes very difficulit.

Besides reporting the general chemical characteristics of the rocks

from the Aguas Emendadas Region, the discussion in this chapter will focus on

the following points:

1 - It can be demonstrated that the grouping of samples on the basis

of their chemical composition is in good agreement with the petrographic

observations.

2 - Among the rocks with high magnesium contents (melaleucitites
and melanephelinites (?)), it is possible to observe: (a) Small differences in
composition which are possibly related to the effects of slight variation in the

mantle sources or, alternatively, in the degrees of partial melting. (b) The

85




fractionation processes did not include significant amounts of clihopyroxene,
despite the prominence of this mineral as a phenocryst.

3 - The way in which the mafic magmas evoived can be deduced
from the chemical data.

4 - Inferences about the genesis of the Mg-poor rocks can be made,
although these are limited by the small number of analyses available.

The diagrams of Figs. Vi.1.1 and VI.1.2 establish a few themes to be
explored in this chapter. The separation of the rocks in two main geochemical
groups, one with high magnesium and the other low magnesium, is clear in
from Fig. VI.1.1. Fig. VI..1.2 exemplifies the differences in the chondrite-
normalized REE-patterns for two samples with similar MgO contents. It is
obvious that the melanephelinite (?) and the melaleucitite have distinct levels of
both REE-enrichment and LREE/HREE fractionation, which cannot be readily

explained by magmatic differentiation (see below).

V1.2 MAJOR ELEMENTS

The rocks are ultrabasic to basic, with SiO, varying from 36.72 to
50.61 (wt.%). Their MgO content ranges from 3.58 to 18.46 (wt.%) and the

magnesium-number (Mg# = wt.% MqO/(wt.% MqO + (wt.% Fe,O3T * 0.899847))

varies from 23.52 to 60.50. The total alkalis content (Na,O + K;0) varies from
1.29 to 8.68 wt.%; the highest content of KO is 5.14 wt.% and the highest

Na,O is 5.48 wt.%. The range for Fe,O,T (total iron expressed as Fe;0;) is
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10.02 to 18.13 wt.% and for Al,O; 6.33 to 17.38 wt.%. The studied rocks can
have up to 17.79 wt.% Ca0, 6.00 wt.% TiO, and 1.56 wt.% P,0s. In Fig. VI.2.1
some of the major element oxides are plotted against MgO (wt.%) to illustrate
these variations.

It is apparent from Fig. V121 that the melaleucitites and
melanephelinites (?) form a High-Magnesium Group (HMG), while the
leucitites, basalts and basanites plot in a Low-Magnesium Group (LMG). The
samples of HMG have lower SiO; and Al,Os contents and tend to have higher
Ca0, compared with the LMG.

The high contents of SiO, and Al,O; in the LMG correspond with the
higher modal abundances of felsic minerals, such as leucite and feldspar, and
lower modal olivine. The inflection of the trend in the CaO vs. MgO plot can be
explained by the onset of crystal fractionation of pyroxene in the less Mg-rich
magmas. This inflection occurs at approximately 11 wt.% MgO (LMG).

Within the HMG group, it is noticeable that there are two separate
trends of differentiation, at the same level of MgO (Fig. Vi2.1). The
melanephelinites (?) are substantially enriched in Fe,OsT and poorer in SiO;
(trend B), relative to melaleucitites (trend A). In both rock types the Fe,OsT
variation with MgO is consistent with removal of olivine, but not with the
removal of pyroxene, which only seems to be effective in the LMG.

To test this point, a diagram of Fe,O,T versus CaO (Fig. V1.2.2) was
constructed, using only samples with more than 11 wt.% MgO (HMG). The
shaded fields outline the composition range of analysed olivines (cores only)
and clinopyroxenes from some of these rocks (data from Appendix 4, tables

A4.1 and A4.2). The pyroxenes in the two rock-types are similar in composition,
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and for this reason they are represented by a single field. The same is not true
of olivines, because olivine from the melanephelinites (?) are richer in Fe than
those of the melaleucitites. The arrows in the figure represent the trends
resulting of the removal of the most magnesian olivine from each type of rock.
There is a good agreement between the trends defined by the whole-rock
analyses and the predicted fractionation of the respective olivines. On the other
hand, there is no trend indicating removal of clinopyroxene. In fact, as was
deduced from Fig. V1.2.1, Ca0 increases with decreasing MgO in the HMG
suite, which is contrary to the variation that would be expected if clinopyroxene
was being removed. These results pose an interesting problem to the
interpretation of the magmatic processes occurring in these rocks. The
presence of clinopyroxene phenocrysts is an indication that crystallisation of
this mineral from HMG magmas is possible and has occurred. On the other
hand, the chemical data suggest that clinopyroxene was not extensively
fractionated out of the HMG liquids. These two lines of evidence would be in
good agreement, however, if the pyroxene phenocrysts were not separated
from the magma after they formed. It is suggested here that clinopyroxene
crystallised and largely remained suspended in the HMG magmas during their
ascent, rather than being formed in a magma chamber, where they could have
been fractionated. On the other hand, in the case of LMG magmas, the
fractionation of ciinopyroxene in a magma chamber is likely to have occurred.

if both the HMG and the LMG are considered together, the
behaviour of Fe,OsT and TiO, seems to be controlled by the crystallisation of
more than one phase. Fe,O;T is probably associated with the crystallisation of

olivine, pyroxene and an oxide phase, while TiO, behaviour is probably
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governed by the same phases as Fe,OsT (except olivine) and perovskite. The
high TiO. concentration in some samples can be linked with the presence of
either an oxide phase or perovskite in the groundmass. According to the
mineral chemistry data (Chapter V) the oxide phase involved is part of the
ulvéspinel-magnetite series, with up to 39 wt.% TiO..

Despite the occurrence of small amounts of phlogopite phenocrysts,
the removal of tﬁis phase is not evident from the behaviour of major elements.
This is probably due to a much stronger effect of the removal of olivine,
clinopyroxene and oxides on the abundances of elements such as Mg, Fe and
Ti. Al,Os is not strongly affected by any of these phases. Furthermore, since
plagioclase and perovskite do not crystallise simultaneously (Veksler and
Teptelev, 1990), Al,O; will not be affected by the early fractionation of
plagioclase. Therefore, the behaviour of this oxide could mark the removal of
phlogopite phenocrysts in the perovskite-bearing rocks (HMG). The absence of
significant inflections in the aluminium trend (Fig. VI1.2.1), suggests that
phlogopite phenocrysts were not extensively removed from these liquids.

Some of studied samples have low contents of alkalis, compared
with similar petrographic types, indicating that there was a loss in these
elements during weathering and/or hydrothermal aiteration. The K20/Na,0 ratio
ranges from 0.07 to 3.11 for the whole of 40 samples and this ratio is highly
variable within the groups. The alkali content is likely to have been affected by
hydrothermal alteration more than the other major oxides. This may be
especially the case for samples from the Aguas Emendadas Complex, where
some of the leucitites have higher contents of Na,O than of K,O, suggesting

that minerals such as leucite were transformed into a sodic phase. Giampaolo
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et al. (1997) studied similar transformation in leucite-bearing rocks, suggesting
that a progressive Na increase occurs during alteration, while K, Ca and Mg
decrease in the bulk-rock chemical composition.

The total alkalis versus silica diagram (TAS) of Fig. VI.2.3 shows the
unreliability of alkalis as a means of classifying these rocks. Woolley et al.
(1996) pointed out that this diagram is unsuitable for leucititic and nephelinitic
rocks, and therefore recommended a classification based on modal criteria
which was adopted during this research (Chapter V). Thus, the petrographic
classification is maintained here, regardless of the inconsistencies of whole-
rock chemistry in the TAS diagram. The data for the foidites are still plotted for
comparison in Fig. VI.2.3, where it is noticeable that the HMG and the LMG
occupy different sectors of the diagram. Most of the melanephelinites (?) plot in
the foidite field, except for samples S6AE24 (basanite) and 96AES3 (picro-
basalt), while the basalt and basanites are distributed over the
basaniteftephrite, trachy-basalt and basaltic trachy-andesite fields.

Foley et. al. 1987 proposed the division of mafic ultrapotassic rocks
into four groups. Group |, I, Iil correspond to Lamproitic, Kamafugitic, Roman
Province-type rocks, respectively. Group IV is ftransitional, mostly between
groups | and Ill. Before the classification scheme can be applied, the analysis
must meet three criteria to confirm the uitrapotassic character of the rock: (a)
K,0/Na,0>2; (b) K,0>3wt.% and (c) MgO>3wt.%. The MgO content of the
analysed rocks is always higher than 3 wt.% and therefore meets the first
condition. On the other hand, as shown in Fig. VI.2.4, many samples have
K,0<3wt.% and K,O/Na,0 <2. Only one sample, from the leucitites group,

oty

satisfies both the second and third conditions. However, when the ‘chemical
e d
divi,sign of Foley et al. (1987)/ié applied, the samples still fit consistently in most
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of their diagrams (Fig. V1.2.5). The HMG can be classified as part of the
Kamafugite group, while the LMG plots mostly in the Roman Province group.
AIthough the alkali contents of these rocks are not reliable, it appears that most
of the other oxides have a consistent behaviour.

As expected, none of the selected samples has normative (CIPW)
quartz, demonstrating their degree of silica undersaturation. Normative
nepheline is present in all of the samples, while normative leucite occurs mainly
in the Melanephelinite (?) and Melaleucitite groups. Diopside and olivine are
often the predominant minerals in the CIPW norm, confirming the mafic
character of the rocks.

A norm calculation specific for alkaline rocks was developed by Le
Bas (1973), to be applied when calcium orthosilicate and/or acmite appear in
the CIPW norm. Most of the melanephelinites (?) and some of the
melaleucitites satisfied this condition. When the norms are recalculated
according to the method of Le Bas (1973), they are characterised by the
presence of normative gehlenite or akermanite in rocks containing CIPW-
normative acmite. Kalsilite is present in the norm of four rocks of the
Melanephelinite (?) Group. Two of them also coﬁtain normative acmite,
baddeleyite, akermanite, Fe-akermanite and perovskite, as the only Ti mineral.

As in the CIPW norms, the calculated compositions also confirm the mafic

character of these rocks.
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V1.3 TRACE-ELEMENTS

VI1.3.1 Compatible trace-elements

The Cr content of the analysed samples varies aimost continuously,
from 2 to 1952 p.p.m., as Ni ranges from 6 to 504 p.p.m. (Fig. Vi.3.1).
According to Wilson (1989), Cr values of 500-600 p.p.m. and Ni of 250-300
p.p.m. are considered high and suggest “derivation of parental magmas from a
peridotite mantle source”. Normally, the HMG rocks have higher Cr and Ni
contents than the LMG. The behaviour of Ni is readily explained by the
fractionation of olivine (Fig. VI.3.1). Cr is probably controlled by the
fractionation of spinel-group minerals. Although microphenocrysts of chromite
(sensu strictu) were not petrographically identified, the chromium content of
some analysed spinels can reach up to 17 wt.% Cr.0; (Chapter V), indicating
that spinels are a major control in chromium distribution.

Scandium mimics the CaO when plotted against MgO. The
concentration of this element initially increases with differentiation (in the
HMG), inflecting later towards progressive depletion, caused by clinopyroxene
removal from the LMG-type liquids. Sc contents vary from 10 to 43 p.p.m. (Fig.

VIL.3.1).

V1.3.2 Incompatible trace-elements

Nb (59-220 p.p.m.), Zr (206-789 p.p.m.), Hf (6-16 p.p.m.) and Th (1-
24 p.p.m.) behave in a very similar way (Fig. V1.3.1) indicating that their
concentrations are controlied by the same phases and/or melting processes.

Barium behaves as an incompatible trace-element and tends to be present in
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slightly higher in the LMG (Fig. VI.3.1), with an overall variation from 305 to
5240 p.p.m..

Yttrium ranges from 15 to 51 p.p.m and tends to increase from the
HMG towards the LMG (Fig. V1.3.1). Yttrium behaviour resembles that of the
HREE and this element does not appear to be removed in any important early-
crystéllising phase.

The Rare-Earth Element (REE) content increases from the HMG to
the LMG, but this increment is much more conspicuous for the Heavy Rare-
Earth Elements (HREE). From La to Lu the plots of REE against MgO become
more linear, suggesting that the higher the atomic number of the element the
more incompatible it behaves in the studied systems (Fig. VI1.3.1).

As observed for the major elements, some of the trace-elements
behave in a distinct way between melaleucitites and melanephelinites (?).
These differences are most apparent in Zr, Hf, Th, Nb and LREE, which are
enriched in the melanephelinites (?), relatively to melaleucitites for the same
MgO contents.

On chondrite-normalized REE diagrams the melaleucitites display
the lowest enrichment in light and heavy REE (Fig. V1.3.2). The highest
normalised REE contents are observed in samples of leucitites. Nevertheless,
as a group the leucitites span the widest range in abundances, partially or
entirely overlapping the patterns of the other rock groups (Fig. VI1.3.2); La,
values vary from 179 to 608 times chondrite, while Lu, ranges from 4 to 16
times chondrite in the analysed rocks.

All of the analysed samples are strongly enriched in Light Rare-

Earth elements (LREE) relative to HREE. Surprisingly, the LMG rocks have
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lower La/Yb, ratios than the HMG (Fig. VI1.3.3). This indicates that during
crystal fractionation a LREE-rich phase was removed from the liquid,
controlling the REE distribution. When plotted against TiO2, the La,/Yb, ratio
shows a positive correlation with this oxide (Fig. VI1.3.3), indicating that
perovskite is probably the most important phase affecting the behaviour of the
REE in these rocks. The available perovskite microprobe analyses for these
rocks do not include trace elements such as REE, Nb and Sr, but the
estimation of site occupancies suggests that 4-6 mol % of end-members other
than CaTiOs occur in solid solution. Among these a likely candidate is the
Na+REE-rich end-member loparite (see discussion in Chapter V). Mitchell
(1996) points out that perovskite is one of the most important REE-host in
alkaline rocks and that it is particularly enriched in LREE, with La/Yb ratios
exceeding 2000.

On chondrite-normalized multi-element diagrams (spiderdiagrams)
the four groups of rocks have very similar patterns, although those of the
Basalts/ Basanites Group plots are smoother than the other rocks (Fig. VI1.3.4).
Negative anomalies of Rb and K are probably associated with aiteration, more
than any other factor, such as residual phlogopite in the mantle source. Most
of the samples are depleted in Sr, relative to Nd, and the HMG samples often
show a small trough in P. The HMG also have a discrete positive anomaly in Ti,
which is not apparent in most LMG rocks.

The behaviour of the trace-elements demonstrates the resemblance
of these rocks to kamafugitic rocks. In a plot of the Th/Yb ratio versus Ta/Yb,
the rocks from Aguas Emendadas and Amorindpolis regions plot in a trend that

is mostly contained in the Kamafugite field (Fig. V1.3.5). In this case the LMG
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group follows the same trend of the HMG and does not confirm thé chemical
affinity with the Roman Province previously suggested by the diagrams of Foley

et al. (1987) (Fig. V1.2.4).

Fig. V1.3.6 shows a comparison between the studied rocks and mafic
alkaline rocks from Alto Paranaiba Igneous Province (XUXA), Uganda (4342),
Hegau, Germany (EU100) and Kaiserstuhl, Germany (EUS8). They have
equivalent degrees of enrichment, relative to chondrite, and the patterns are
similar, with persistent negative K and Sr anomalies.

Nb/Ta ratios (Fig. VI1.3.7) vary from 11.3 to 15.4. The fitting of a
least-square regression line yields a Nb/Ta ratio of 13.5, which can be taken as
an average value for these rocks. Zr/Hf ratios range from 30.5 to 48.4 with
average of 38.7. Ho and Y show extremely good correlation, with Y/Ho ratios
varying from 27.1 to 31.7 and averaging 28.2. The good linear correlation
between these elements, in the samples from the four groups (except for three
samples in the Zr-Hf diagram, Fig. VI.3.7), demonstrates the coherent
behaviour of the trace-elements and general lack of analytical error. The
apparent non-linearity of the Zr/Hf ratio in Fig. V1.3.7 is caused only by the
three samples with the highest abundances. In this case, some analytical bias
may be present at the higher end of the calibration range.

The diagram of Ni versus Lu (Fig. VI1.3.8) shows that some samples
from Aguas Emendadas and Amorinépolis plot outside the trend of crystal
fractionation for these rocks, indicating the presence of magma mixing during
the magmatism. This supports field and petrographic evidence which also point
to the presence of magma mixing (Chapter V). The use of Lu in a diagram to

illustrate magma mixing is unusual, but reference to Figs. VI.2.2 and
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V1.3.1 shows that it behaves more like a theoretical incompatible element than

any others analysed in this research.

V1.4 MELALEUCITITES AND MELANEPHELINITES (?)

Melaleucitites and melanephelinites (?) together constitute the High
Magnesium Group. Although these rocks have similar bulk-rock compositions,
there are some differences between them. Melaleucitites normally have higher
MgO than melanephelinites (?), despite having higher SiO, contents. On the
other hand, the melanephelinites (?) usually have higher Fe,O;T and P,Os
contents (Fig. VI.2.1).

The melaleucitites have higher Cr concentrations than the
melanephelinites (?), but their Ni values widely overlap (Fig. V1.3.1). The two
groups also have similar contents of HREE and Ba. Melanephelinites (?) are
more enriched in LREE, Nb, Zr, Hf and Th. The differences in incompatible
trace-elements between the two groups are more noticeable in chondrite-
normalized REE diagrams (Fig. VI.3.2), and spiderdiagrams (Fig. VI.3.4), these
clearly demonstrate the more enriched character of the melanephelinites (?).

The higher modal amounts of olivine and pyroxene phenocrysts in
the melaleucitites could influence the chemical behaviour of this group. Where
microprobe analyses of the phenocrysts are available, the chemical
composition of the sample was recalculated to remove the modal amounts of

phenocrysts. The results are shown graphically in Fig. Vi.4.1. It is noticeable
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that, once the phenocrysts are removed, the recalculated analysis shifts
towards, but does not quite reach the field of melanephelinites (?). This shows
that the chemical differences may partially reflect mineralogical characteristics

of the groups, but can not be entirely explained by them.

V1.5 INTERPRETATION

The rocks from Aguas Emendadas and Amorindpolis regions have
been chemically altered by a combination of weathering and hydrothermal
processes. This has mainly affected the contents of K, Na and probably Rb as
well: most of the other major and trace elements behave coherently. |

The parental magma(s) was probably low in silica, high in
magnesium, calcium, titanium and strongly alkaline. The contents of aluminium,
calcium, magnesium and trace-elements suggest a strong kamafugitic affinity.

The compatible trace-element and MgO contents testify to the highly
unevolved character of some of the HMG rocks (melaleucitites and
melanephelinites (?)). These can be considered a good approximation of the
primitive magmas in the studied rocks. Some other HMG rocks were produced
from these primitive liquids by variable amounts of olivine fractionation.

Although clinopyroxene is a modal constituent in melaleucitites and

melanephelinites (?), the chemical data indicate that it was not fractionated

from these magmas.
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The higher amounts of silica of the melaleucitites, compared to the
melanephelinites (?), for a given MgO could perhaps be explained by a small
amount of crustal contamination in the Melaleucitite Group.

The other chemical differences between melaleucitites and
melanephelinites, such as the enrichment in REE of the latter, are unrelated to
crystal fractionation and suggest that the two groups represent distinct parental
magmas that either originated from different mantle sources or from the same
source but with different degrees of melting. Since both groups have similar
chondrite-normalized multi-element (spiderdiagrams) patterns (Fig. V1.3.4) the
source for this magmas must have common characteristics.

The petrographic groups behave chemically in a coherent way,
except for sample 96AES7. There is chemical evidence to support the
inference, based on field and petrographic observations (Chapter IV), that
some extent of magma mixing occurred. This most probably involved two high-
Mg primitive magmas (melaleucititic and melanephelinitic (?)), and it is not
easily recognisable The rocks of the LMG may have evolved from each HMG
rock-type or from the mixture, but a higher number of LMG samples would be

required, together with isotope data, to clarify this.
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Chapter VIl - CONCLUSIONS AND SUGGESTIONS
FOR FURTHER STUDY

Field features and petrographic evidence indicate that magma
mixing was important in the formation of the Cretaceous alkaline rocks from the
Aguas Emendadas Region. At the present this seems to have involved two
unevolved magmas (melaleucititic and melanephelinitic (?)), but future work is
necessary to identify precisely the components involved in the mixing, in order
to understand the real importance of this process. Probably a more complete
data base and a larger number of samples of the more evolved rocks, together
with isotope geochemistry, would help elucidate this point.

At the moment, it is believed that the ‘explosive volcanism started
with an important fluidization component, related to escaping magmatic gas,
and that subsequently phreatomagmatic processes became important
throughout the top of the magma column, resulting in violent explosions and
various pyroclastic deposits. The magma was strongly fragmented during
uprise. In the most highly explosive eruption phases, “spinning droplets” were
produced by the rotation of magma droplets, during their ascent. The rotation
oriented the microphenocrysts around a solid crystal core and, at the time of
eruption, the chilled structures were preserved. In a less-explosive eruption

phase, when the magma was still fragmented but the energy was not high
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enough to rotate the droplets, “frozen droplets” were produced. The latter
structures lack the concentric orientation of microcrysts that is present in the
“spinning droplets”. The outpouring of lava flows was related to non-explosive
phases of eruption.

The analysed rocks have TiO2 contents compatible with those of the
high-Ti group of Gibson et al. (1995b), as expected from their location in the
northern margin of the Parana Basin.

On the basis of the present evidence, it is believed that the rocks
from the Aguas Emendadas Region are the result of kamafugitic magmatism,
perhaps associated with carbonatites. The presence of kalsilite in one of the
melanephelinites reinforces this suggestion.

The primary magmas were silica-poor and rich in MgO, alkalis, CaO
and incompatible trace-elements such as Sr and REE. A crustal contamination
component was probably involved in the magmatic evolution, affecting the
melaleucitites chemically and petrographically.

Weathering and hydrothermal alteration were responsible for
mineralogical and whole-rock chemical changes in the studied rocks. The most
noticeable results are the transformation of leucite into pseudo-leucite,
serpentinization of olivines and extensive carbonatization of the groundmass.

The main effect on the whole-rock chemistry is represented by a loss in alkalis.

A more extensive study of rocks from the region, with more detailed
sampling and investigation of additional occurrences of alkaline rocks in the
area would help to solve most of the problems summarised above.

A more complete mineral chemistry study is needed, in order to

obtain more information on the composition of olivine and pyroxene
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phenocrysts and to clarify the crystallisation history of the rocks from the Aguas
Emendadas Region. An extensive microprobe investigation of the feldspathoids
would establish the importance of kalsilite as a rock-forming mineral in these
samples. Determination of trace-elements such as Sr, Nb, Th and REE in the
perovskites would help to constrain their origin and to evaluate the bearing of
perovskite fractionation on the trace-elements contents of the evolving
magmas.

A study of xenoliths is required to elucidate some of the magma
chamber processes, as well as to constrain the origin of the magma.

A combined study of stable and radiogenic isotopes could help in
understanding the relative roles of magmatic differentiation, crustal assimilation

and post-magmatic alteration involved in the genesis of these rocks.
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Appendix 1 - SAMPLE DESCRIPTIONS

Sample Classification Occurrence  Description

NEUZINHA 17°01'S 51°08'W

96AEOQ1 Melaleucitite Lava Dark grey rock, aphanitic groundmass, pheno-
crysts of pyroxene (8mm) and olivine (1cm).

96AE02 Melaleucitite Block Dark grey rock, aphanitic groundmass, pheno-
crysts of olivine (5mm), pyroxene (7mm) and
phiogopite (6mm).

96AEQ03 Leucitite Lava Grey rock, aphanitic groundmass, phenocrysts
of pyroxene (1cm) and olivine(rare, 5Smm).

96AE04 Melaleucitite Lava Dark grey rock, aphanitic groundmass, pheno-

crysts of phlogopite (9mm), pyroxene (7mm)
and olivine (4mm).

96AE0S Melanephelinite (?) Block Grey rock, aphanitic groundmass, phenocrysts
of olivine (2mm), phlogopite (2mm) and rare
pyroxene.

96AEQ6 Melaleucitite Block Dark grey rock, aphanitic groundmass, pheno-
crysts of pyroxene (7mm) and olivine (1cm).

S6AEQ7 Melaleucitite Block Same as 96AEOD6 with flow banding.

96AE08 Melanephelinite(?)  Block Grey rock, aphanitic groundmass, very smail
phenocrysts of olivine and phlogopite.

96AE09 Breccia Matrix Greenish rock, fragmental matrix (ash-lapilli

size), fragments up to 1.5m, usually <20cm.
Fragments include gneiss, granite, amphibolite,
sandstone, alkaline rocks, crystals of k-
feldspar, pyroxene and phlogopite.
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MONTIVIDIU 17°18'S 51°13'W
96AE10 Lamprophyre Dyke
MARIMBONDO 17°09'S 51°22'W
96AE11 Melaleucitite Lava
86AE12 Melaleucitite Lava
96AE13 Melaleucitite Block
96AE14 Melaleucitite Block
96AE15 Amphibolite Fragment
96AE16 Breccia Matrix
CACIMBA

9BAES7 Leucitite Lava
AGUAS EMENDADAS 17°02'S 51°02W
9BAE17 Leucitite Lava
96AE18 Basanite Lava
96AE19 ?? Lava

Green rock, very altered, with megacrysts of
phlogopite.

Dark grey rock. Aphanitic groundmass.
Phenocrysts of olivine up to 8mm.

Grey rock with aphanitic groundmass.
Phenocrysts of olivine up to 1cm and rare
pyroxene.

Dark grey rock. Aphanitic groundmass.
Phenocrysts of olivine up to 6 mm and small
leucite.

Dark green rock. Aphanitic groundmass.

Phenocrysts of olivine (1.2cm), rare leucite
(3mm) and rare pyroxene (2mm).

Grey rock. Fine-grained. Fragment in breccia
96AE16.

Brown greenish rock. Very similar to 86AE09,
but with less ash=size material.

Aphanitic grey rock with small phenocrysts of
leucite and olivine.

Dark grey rock. Aphanitic groundmass. Pheno-
crysts of pyroxene up to 4mm, rare leucite and
olivine.

Grey rock. Aphanitic groundmass. Rich in
phenocrysts of pyroxene (7mm) and olivine.
Rare plagioclase.

Dark grey rock, very rich in irregular inclusions
of a porphyritic rock. Probably an example of
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96AE20

96AE21

96AE22

86AE23

96AE24

96AE25
96AE26

96AE27
96AE28
96AE29F

96AE30F

96AE31F

S6AE32F

86AE33

96AE34F

Leucitite

Melanephelinite (?)

Melaleucitite

Melaleucitite

Breccia

Basanite
Breccia

Breccia
Breccia
Melanephelinite (?)

Melanephelinite (?)

Melaleucitite

Melanephelinite (?)

Melanephelinite (?)

Leucitite

Block

Lava

Lava

Lava

Block

Block
Matrix

Matrix
Matrix
Fragment

Fragment

Fragment

Fragment

Breccla

Fragment

magma mixing.

Grey rock with aphanitic groundmass and
phenocrysts of leucite. Some vesicles, filled
with carbonate.

Magma mixing? Phenocrysts of olivine and
pyroxene. Texture similar to S6AE19.

Dark grey rock. Rich
pyroxene, olivine and phlogopite. Peridotite

in phenocrysts of

xenoliths (up to 3 cm).

Dark grey rock, aphanitic groundmass, rich in
phenocrysts of pyroxene (5mm) and olivine
(3mm).

Hydrothermal breccia. All fragments are of
melanephelinite (?), cemented by carbonate
and zeolites. Phenocrysts of olivine and
pyroxene.

Dark green rock. Aphanitic.

Green rock. Altered. Fragmental matrix (ash-to
lapilli-size), fragments up to 3m, usually
<20cm. Fragments include gneiss, granite,
amphibolite, sandstone, alkaline rocks, crystals
of k-feldspar, pyroxene and phlogopite.

Same as 96AE26.

Same as 96AE26.

Dark green rock. Aphanitic groundmass,
phenocrysts of olivine (1.2cm). Rare vesicles
filled with calcite.

Cognate fragment. Green rock. Altered, very
rich in vesicles and olivine phenocrysts (3mm).
Grey rock: Altered. Rich in phenocrysts of
olivine (5mm) and pyroxene (7mm). Some
vesicles (filled with calcite).

Light green rock. Altered. very similar to
96AE30F. Rich in “xenoliths” of a fine grained
rock.

Part of the breccia matrix. Grey rock. Altered.
Rich in vesicles, up to 5mm, filled with
carbonate and zeolite. “Xenoliths® of a dark
aphanitic volcanic rock.

Dark grey rock. Aphanitic groundmass.
Phenocrysts of leucite (4mm) and pyroxene

(3mm). Vesicles.
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96AE35 Melanephelinite (?)
96AE36 Basanite
86AE37Cb Carbonate
96AE38Cb Carbonate
96AE39Ch Carbonate
G6AE40Cb Carbonate

S6AE41Cb Carbonate
96AE42 Melanephelinite (?)

S6AE43 Melanephelinite (?)

96AE44 Melaleucitite

96AE4S Melanephelinite (?)

96AE46 Melanephelinite (?)

9BAE47F! Phlogopite
G6AE48F  Leucitite

96AE49F Melaleucitite

96AESOF  Melanephelinite (?)

86AES1 Breccia
96AES52F  Basanite

96AES53 Melanephelinite (?)

92508212 Basanite

92S0B214 Breccia

Breccia
Block
Vein

Vein
Fragment
Vein

Vein
Dyke

Dyke

Dyke

Dyke

Dyke

Dyke
Fragment

Fragment

Fragment

Matrix
Fragment

Dyke

Block

Matrix

Part of the breccia matrix. Very similar to
96AE33, more rich in “xenoliths™.

Dark grey rock. Rich in phenocrysts of
plagioclase (1.5cm), pyroxene (Smm) and
altered olivine (3mm).

Dark grey rock. Altered. Aphanitic ground-
mass. Scattered phenocrysts of olivine and
pyroxene.

Margin of the dyke. Dark grey rock. Aphanitic
groundmass with megacrysts of phiogopite and
small phenocrysts of olivine.

Central portion of the same dyke as S86AE43.
Dark grey rock. Very rich in pyroxene (1cm),
olivine (5mm) and phlogopite phenocrysts.
Rare vesicles.

Intermediate portion of the same dyke as
96AE43. Similar to 86AE43 but rich in vesicles.
Dark grey rock. Aphanitic groundmass.
Phenocrysts of pyroxene and olivine.

Grey rock. Aphanitic groundmass. Phenocrysts
of pyroxene (7mm) and rare olivine (4mm).
Grey rock. Aphanitic groundmass. Small
phenocrysts of olivine and pyroxene.

Dark grey rock. Aphanitic groundmass.
Phenocrysts of olivine and pyroxene up to
5mm.

same as 96AE26.

Grey rock. Aphanitic groundmass. Phenocrysts
of pyroxene (2.5cm), ofivine (Smm),
plagiociase (5mm) and possibly leucite.

Grey rock. Small phenocrysts of pyroxene and
olivine. Central portion rich in vesicles.

Dark grey rock. Aphanitic with rare small
phenocrysts of olivine.

Grey rock. Fragmental matrix (ash-to lapilli-
size),Similar to 96AE26 but less altered.
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AMORINOPOLIS REGION

96AES4 Plug
96AESS Olivine basalt? Plug
9BAESE Plug
96AES8 Melanephelinite (?) Block
96AEB4 Amphibolite Block
96AE65 Gabbro Outcrop
96AE66 Oli\)ine basalt? Block
9B6AE69 Basanite Block
AMORINOPOLIS

96AES9 Nephelinite (?) Dyke
96AES0 Breccia Outcrop
S6AE61 Melanephelinite (?) Lava
96AE62 Melanephelinite (?) Lava
92SOB154 Basanite Block
92S0B156 Melanephelinite (?) Lava
96AE63 Melanephelinite (?)  Block
MoORRO DO MACACO 16°25'S 51°07'W
96AEGS Leucitite  Dyke

Light green rock. Altered. 16°33'S 51°00W.
Same locality as 96AE54. Dark grey rock.
Aphanitic Phenocrysts  of
pyroxene, plagioclase and olivine.
Approximately 800m south of S8AES54. Grey
rock. very altered. Phenocrysts of K-feldspar.
Dark grey rock. Aphanitic groundmass. Small
phenocrysts of olivine.

Grey rock. Block of Pre Cambrian basement.

Grey rock. Plagioclase, clinopyroxene and

groundmass.

some olivine.

Dark grey rock. Aphanitic groundmass. Pheno-
crysts of plagioclase (Smm), small olivine and
rare pyroxene.

North of 96AES4. Green rock Aphanitic ground-
mass with small and rare phenocrysts of olivine
and plagioclase.

16°41'S 51°03'W

Dark grey rock. Aphanitic groundmass. Rare
phenocrysts of olivine and pyroxene.
Hydrothermal. Grey rock. All fragments of
melanephelinite (?). Carbonate cement.

Dark green rock. Aphanitic groundmass.
Phenocrysts of olivine (4mm)

Same as 96AE61.

Grey rock. Aphanitic groundmass. Small
phenocrysts of plagioclase and rare pyroxene.
Dark grey rock. Rock rich in small phenocrysts
of olivine and pyroxene.

Dark grey rock. Aphanitic groundmass. Rich in

phenocrysts of olivine.

Dark grey rock. Aphanitic groundmass with
phenocrysts of pseudoleucite up to 1cm.
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Appendix 2 - SAMPLE PREPARATION AND
ANALYTICAL TECHNIQUES

A2.1 INTRODUCTION

During the field work, rock samples were collected trying to avoid
weathered portions as much as possible. The samples were cut using a clipper
saw at the Universidade de Brasilia. Two pieces from the freshest centre were
separated, washed and dried. One piece was separated to be crushed and
powdered for later geochemical analysis and the other to produce thin sections
for petrography and microprobe analyses.

At the University of Durham, the samples selected for
geochemistry were crushed using a Fritsh Pulverisette jaw crusher (type 01-
704). Before each sample the jaw crusher was cleaned using a wire brush and
absolute alcohol in order to minimise contamination. The jaw crusher reduced
the samples to ~ 5 mm grain size. After that, the samples were ground using an
agate ball mill until a fine powder was obtained (~ 30 minutes). The powder
was stored in a previously labelled bag and kept in a dry place.

Five samples of calcite were collected in the field, mostly from

veins. These samples were washed, dried and pure mineral concentrates were
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obtained using a binocular microscope. Two samples were ground using an
agate ball mill and used for trace-element determinations by ICP-MS.

A single megacryst of phlogopite was extracted from a breccia
collected in the area by Prof. R.N. Thompson and Dr. S.A. Gibson. Visible
impurities were carefully removed from this crystal using a binocular
microscope and the ground material was sent to the University of Newcastle for

age determination.

All thin sections were made at the University of Durham.

A2.2Loss ON IGNITION (LOI)

Loss on ignition was determined by the following procedure. First
a porcelain crucible was weighed. Subsequently, 2g of dry sample (dried
overnight at 110°C) were weighed in the crucible and heated in a fumnace at.
900°C for 2 hours. After that, the crucible was put into a desiccator, allowed to
cool and then re-weighed. The ignited powder was stored in a labelled glass

bottle for future use in the production of fusion discs.

A2.3 FusioN Disc PREPARATION

Aliquots of 0.6 + 0.001g of ignited powder plus 3 + 0.001g of dry
lithium tetraborate flux.(“Spectrum 100B”) were weighed together, then mixed in
an agate ball mill that had been carefully cleaned. The mixture was transferred
into a Pt crucible. This was heated in a furnace at 1050°C for 20 minutes. The

fusion was poured into a graphite mould on a hot plate at 250°C and pressed
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with a stainless steel plunger. Once the disc had cooled it was labelled, stored

in a plastic bag and kept in a desiccator until analysis.

A2.4 POWDER PELLET PREPARATION

Approximately 10g of dry rock powder was mixed with 12-15
drops of Mowiol binding agent. The mixture was put into a mould and
compressed at 10 tons in a hydraulic press for approximately 1 minute. The

pellet was removed from the press, labelled and dried out for at least 30

minutes in an oven at 100°C.

A2.5 X-RAY FLUORESCENCE (XRF) ANALYSIS

The fusion discs were used to analyse 10 major elements. The
powder pellets were used to analyse 20 trace elements. Results for 45 samples
are presented in appendix 3 table A3.1, major elements are expressed as oxide
wt.% and trace elements as parts per million (p.p.m.).

All XRF work was carried out at the University of Durham using a
Philips PW1400 X-ray spectrometer, fitted with a PW1500/1072 sample
changer, with a 3kW rhodium anode tube as the X-ray source. International
standards (Govindaraju 1989) were used for calibration and analysed as
unknowns in the same run as the samples, to monitor the accuracy of the

calibration as well as the equipment performance. The readings were

processed using Philips X40 software.
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The 45 samples were analysed as a single batch in two runs, one
for trace elements, the other for major elements. An example of the results
obtained for international standards, as well as their recommended (rec) values

(Govindaraju 1989) is showed in table A2 1a for major elements and table

A2.1b for trace elements.

BE-Nrec BE-N

Nb 1000 1003

Zr 2650 2615

Y 300 312

Sr 13700 13621

” u 24 28

110 113

Pb 40 6.2

Ga 170 162

Zn 1200 1235

BHVO-1rec  BHVO-1 Cu 720 71

$i02 49.94 50.21 Ni 2670 2694

Ti02 2.71 272 Co 61.0 591

ARO3 13.80 13.69 Cr 3600 3708

Fe203 12.23 1230 Rb 470 470

MnO 0.17 0.17 Ba 10250 1016.1

MgO 7.3 7.04 Ce 1520 1545

Ca0 11.40 11.54 Nd 700 704

Na20 2.26 223 La 820 856

K20 0.52 0.54 Sc 20 247

P205 0.7 0.20 v 2350 2367
Table A2.1a Table A2.1b

A2.6 INDUCTIVELY COUPLED PLASMA MASS SPECTROMETRY (ICP-MS)

The ICP-MS work was carried out at the University of Durham,
using an Elan 6000 ICP Mass Spectrometer. Values for 36 trace elements were
determined for 39 rocks and 2 carbonate concentrates. They were analysed in

3 different runs, all following the same procedure. Each run consisted of:
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sample powders, a set of international standards and 3 blanks, making up to
about 30 samples.

An aliquot of 0.1+0.001g of powder (previously dried overnight at
100°C) was digested in 1mi of Aristar HNO; and 4ml of Aristar HF, in closed
Teflon vials on a hot plate at 130-150°C for at least 48 hours. The mixture was
then evaporated to a moist residue. 1mi of Aristar HNO; was added and the
mixture was evaporated again. The last step was repeated. This procedure
aims to remove all remaining traces of HF and silicon as SiF, formed during the
digestion. The final residuum was re-dissolved in 2.5ml of Aristar HNO; and 10-
15mi of MQ water, and heated for 30 minutes on a hot plate at 130-150°C. After
cooling, the sample was spiked with 1.25ml of internal standard solution
(2p.p.m. of Bi, Re and Rh) and the volume was completed to 50m! using MQ
water. The analysed solution had a dilution factor of 1/5000.

The intermal standard solution was used to allow compensation
for signal fluctuation. The blanks controlled sample contamination during the
digestion procedures and were used for processing the data. The international
standards monitored the accuracy of the method. ACalibration was based on the
readings of international standards and blanks.

Blank concentrations were typically below 0.01 p.p.m. for Ti, Mn,
Y, Nb, Cs, and all elements with atomic masses above 139 (except Pb). For V,
Gd, Rb, Sr, Zr they were below 0.03 p.p.m.. The blank concentrations for Sc,
Cr, Co, Ni, Cu, Zn, Ba, and Pb were extremely variable, indicating some kind of
contamination or interference during the sample digestion and/or analysis.
Relative standard deviations of replicate measurements of the same solution

were typically below 0.025 (except for Sc, Cr, Co, Ni, Cu, Zn, Ba and Pb -
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below 0.06). Table A2.2 shows the average values obtained for international
standards and the respective recommended values (Govindaraju 1989).

The method proved to be very precise and accurate for those
elements with atomic mass above 139 (except Pb). For some elements with
lower masses it is necessary to be very cautious. Even taking great care during
sample preparation, some contamination and/or analytical interference seems

to affect the results for Sc, Cr, Co, Ni, Cu, Zn, Ba and Pb. When available, the

XRF data for these elements were preferred.

BCR-14e¢ _ BCR.-1-av BHVO-1tec BHVO-1-av  X-108tec  X-108-av  AGV 14éc  AGViav
Sc 32.60 31.358 31.80 30.268 33.86 33.208 12.10 10.413
Tio2 2.24 2197 271 2743 0.14 0122 1.06 1.012
A 407.00 403.531 317.00 315.097 218.24 212313 123.00 116.570
Cr 16.00 68.612 289.00 293.936 466.83 456.559 12.00 47.575
MnO 0.18 0.182 0.17 0.169 0.15 0.140 0.10 0.094
Co 37.00 36.599 45.00 44634 38.32 37.246 15.10 15.227
Ni 13.00 1838.301 121.00 126.747 116.87 115.180 17.00 608.264
Cu 18.00 21.490 136.00 135123 85.63 190.291 60.00 56.353
Zn 120.50 110.273 108.00 103.392 66.12 99.552 £8.00 73.580
Ga 22.00 21.544 21.00 21.056 .33 9.173 20.00 19.827
Rb 47.20 47.554 9.60 9.457 13.03 12512 67.00 66.561
Sr 330.00 332.061 403.00 404.011 86.47 87.506 662.00 655.034
Y 38.00 37.432 27.60 27623 4.26 4312 21.00 20.089
Zr 185.00 189.925 179.00 176.115 26.13 23.687 225.00 230.673
Nb 13.50 12.768 19.60 19.547 0.58 0.630 14.40 14.746
Cs 0.96 0.948 0.01 0.094 0.65 0.704 1.26 1.230
681.00 686.490 138.00 132.731 35.44 34.778 1221.00 1219672

La 24.90 24970 15.80 15.451 0.93 0.901 38.00 37.941
Ce 53.70 52.626 39.00 37.556 173 1.701 66.00 67.149
Pr 6.80 6.884 5.70 5.450 0.25 0.276 6.50 8.481
Nd 28.80 29.539 25.20 25.665 1.14 1.265 34.00 32.814
Sm 6.59 6.597 " 820 6.242 0.38 0.348 5.80 5.837
Eu 1.96 1.959 2.08 2009 0.12 0.115 1.68 1.731
Gd 6.68 6.764 6.40 6.096 0.44 0.417 5.20 5.483
T 1.05 1.069 0.96 0.959 0.08 0.084 0.71 0.671
Dy 6.34 6.313 5.20 5.312 0.59 0.587 3.80 3.561
Ho 126 1.271 0.99 0976 0.12 0.138 0.73 0.667,
Er 3.63 3.529 240 2.484 048 0458 1.81 1.789
Tm 0.56 0.559 0.33 0.362 0.08 0.088 0.32 0.279
Yb 3.38 3.365 2.02 2.041 0.68 0.625 1.67 1.675
Lu 0.51 0.522 0.29 0.285 0.11 0.113 0.28 0.258
Hf 4.95 4927 438 4.477 0.69 0658 §.10 5.118
Ta 0.81 0.820 123 1.258 0.06 0.043 0.92 0.902
Pb 13.60 13.807 2.60 2.467 1.62 7.949 36.00 35.824
Th 6.98 6.003 1.16 1.259 0.13 0.132 6.50 6.359
U 1.78 1.696 042 0.438 0.16 0.131 1.89 1.903

Table A2.2 Comparison between recommended values (rec) for international standards
(Govindaraju 1889) and average (av) of results obtained in 3 runs (n=>5).
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A2.7 ELECTRON PROBE MICROANALYSIS

Microprobe work was carried out at the University of Cambridge.
The samples selected were made into polished thin sections at the University
of Durham and carbon-coated under vacuum at the University of Cambridge,

following the method of Reed (1996).

After coating, regions of interest were marked on the thin section
with use of a petrographic microscope. The samples were transferred to the
microprobe (model CAMECA SX-50, equipped with a Link ED System).

Points of interest were marked and stored in the system for later
batch analysis. Qualitative EDS analyses were also done when necessary to
identify unknown mineral phases.

All elements were determined by EDS quantitative analysis. The
calibration was set up with the use of a combination of minerals and synthetic
standards. Operating conditions were 20 nA and 20 kV. Detection limits are
typically 0.1%.

Microprobe results are given in Appendix 4.
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Appendix 3 - WHOLE-ROCK CHEMICAL DATA*

Table A3.1 - XRF data™, loss on ignition (LOI) and magnesium number (Mg#).
Major element oxides and LOI are expressed in weight percent (wt.%). Trace-
elements are expressed in parts per million (p.p.m.). Data were recalculated on

volatile-free basis. Magnesium number was calculated using the following

equation:

Mg-number (Mg#) = (MgO/(MgO+FeOT))*100, FeOT= 0.899847*Fe,0,T.

Table A3.2 - ICP-MS data*. TiO, and MnO are given in weight percent (wt.%),

the remaining elements are given in parts per million (p.p.m.).

Table A3.3 - CIPW norm results obtained with the computer program “IGPET
3". An arbitrary Fe,Os/FeO ratio of 0.15 were used to recalculate original

Fe, 05T of the samples into Fe;0; and FeO.

Table A3.4 - Normative composition of selected samples, calculated according

to the method of Le Bas (1973). The same Fe,03/FeQ ratios of table A3.4 were

used.

*For sample location and description see appendix 1
’ **For analytical techniques see appendix 2
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Appendix 4 - ELECTRON MICROPROBE ANALYSES

Table A4.1 - Olivines

Table A4.2 - Clinopyroxenes

Table A4.3 - Feldspathoids

Table A4.4 - Feldspars

Table A4.5 - Perovskites

Table A4.6 - Opaques

Fe,O5; concentration were estimated using the method of Droop (1987).
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