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Abstract 

This Thesis investigates the effect of membrane-active agents, such as 
synthetic ether hpids (SEL), local anaesthetics and polyunsaturated fatty 
acids (PUFAs) on human leukaemia cells. The two cell lines used were 
human acute myeloblastic leukaemia (HL60) cells and human 
myelogenous leukaemia (K562) cells. 

SEL, local anaesthetics and PUFAs were found to be cytotoxic to 
both cell lines at certain concentrations. The SEL ET-I8-OCH3 was 
found to be cytotoxic to both cell lines but the HL60 cells were found to 
be the more sensitive cell line. HL60 cells were found to be so sensitive 
to the action of the local anaesthetic dibucaine that a subtoxic 
concentration that killed <10% was not determined. However, in K562 
cells the combination of a subtoxic dibucaine concentration together 
with a range of ET-I8-OCH3 concentrations increased the cytotoxicity 
over that of ether lipid alone. 

PUFAs were shown to incorporate into plasma membrane 
phospholipids at concentrations as low as l ^ M after an incubation of 48 
hours. PUFAs were shown to be cytotoxic, but the addition of vitamin E 
reduced the cytotoxicity of arachidonic acid, eicosapentaenoic acid and 
docosahexaenoic acid in HL60 cells, and of docosahexaenoic acid in 
K562 cells. This implied that lipid peroxidation was involved in PUFA 
cytotoxicity. This was, however, not confirmed. PUFA in combination 
with ET-I8-OCH3 resulted in a slight decrease in cytotoxicity. PUFA 
combined with dibucaine did not alter cytotoxicity. 

Cells were also treated with a combination of PUFA and 1-P-D-
arabinoftiranosylcytosine (ara-C), which is an agent known to induce 
cell differentiation. Onset of differentiation was determined by 
following haemoglobin accumulation in K562 cells. PUFA on their 
own were found to promote accumulation of haemoglobin. The greatest 
accumulation of haemoglobin was observed with K562 cells treated 
with PUFA and ara-C. 
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Chapter I 

General Introduction 

Leukaemia is characterised by accumulation of abnormal white blood 

cells in the bone marrow (Hoffband & Pettit, 1985). These abnormal 

white blood cells cause bone marrow failure and infiltrate other organs. 

Leukaemia is often thought of as a childhood disease. It can, however, 

afflict all age groups and there are many different forms of the disease. 

Leukaemias are classified into acute and chronic leukaemia 

(Hoffband & Pettit, 1985). Acute leukaemia is subdivided into acute 

myeloid (myeloblastic) leukaemia (AML) and acute lymphoblastic 

leukaemia (ALL). AML is fiarther divided into six variants of French-

American-British (FAB) termed Mj -Mg. ALL is subdivided into three 

variants termed L1-L3. Chronic leukaemias comprise two main types, 

chronic granulocytic (myeloid) leukaemia (CGL) and chronic 

lymphocytic (lymphatic) leukaemia (CLL). 

ALL and many cases of AML may be caused by clonal 

proliferation by divisions of a single abnormal blast cell. The cells fail 

to differentiate normally but are capable of fiirther divisions. These 

abnormal cells accumulate and replace the normal haemopoietic 

precursor cells of the bone marrow and thus cause bone marrow failure 

(Hofftjand & Pettit, 1985). 

In the past, most anti-cancer treatments have attempted to inhibit 

DNA replication and tumour cell proliferation. However, over the last 

ten years, the plasma membrane has become a focus for drug 

development. The plasma membrane forms the interface between the 

external medium and the cytoplasm. The plasma membrane comprises 



of a fluid matrix of membrane lipids containing intrinsic proteins 

responsible for the maintenance of ionic gradients, nutrient transport 

and signal transduction. The cell receives information through 

hormones, growth factors and chemicals that stimulate receptors found 

on the surface of the cell to start a cascade of events that in turn may 

alter the growth, secretion and replication of the cells. The receptors are 

able to translate extracellular stimuli into chemical, ionic and electrical 

intracellular events (Evans & Graham, 1991). These signal transduction 

pathways may be used to alter the growth and replication of tumour 

cells. The disruption of essential signalling pathways may lead to 

tumour cell death. A number of signalling pathways could be targets for 

anti-cancer drug development, including inhibition of growth receptor 

binding, serine and threonine protein kinases, tyrosine protein kinases 

and phospholipase C (Powis, 1991). 

The structure and function of plasma membranes may be 

modulated either by compounds such as polyunsaturated fatty acids that 

become incorporated into membrane phospholipids (Wagner et ai, 

1992) or by lipophilic agents that partition into the membrane lipid 

matrix, including synthetic ether lipids (Tidwell et al., 1981) and local 

anaesthetics (Ohki, 1984). In this study the effects of these membrane-

active agents on human leukaemia cells will be investigated. 

Fatty acids are present as complex lipids (including 

phospholipids) in mammalian tissues and are obtained from dietary fat 

or through biosynthesis. There are two classes of polyunsaturated fatty 

acid that cannot be completely synthesised in mammals and are derived 

from the diet. These are the n-3 and n-6 fatty acids. Malignant cells 

derive all of their n-6 and n-3 PUFA from the tumour bearing host 



(Bums & Spector, 1994). Therefore the type and quantity of PUFA 

present is dependant on the host, and the host's diet. By changing the 

PUFA in the diet the membrane phospholipid structure will be altered 

and this may modulate membrane function. 

Supplementing the culture medium of cells with PUFA alters the 

fatty acid composition of the cellular phospholipids. HL60 cells 

supplemented with 32[iM DHA for 2 days greatly increased the 

percentage of 22:6 in the membrane phospholipids, compensated for by 

a reduction in 18:1 (Wagner et al., 1992). The fatty acids gamma-

linolenic acid (GLA) and eicosapentaenoic acid (EPA) inhibited the 

proliferation of three colon cancers HRT 18, HT 29 and CACO 2 

(Mengeaud et al., 1992). The supplementation of these fatty acids into 

the culture medium at a concentration of 60fiM increased membrane 

fluidity and induced lipid peroxidation of these three cell lines. When 

the antioxidant vitamin E was present with EPA or GLA membrane 

fluidity and the amount of lipid peroxidation was reduced (Mengeaud et 

al., 1992). Membrane fluidity was examined using fluorescence probe 

and electron spin resonance. 

As the membrane contains receptors the increased membrane 

fluidity could result in receptors not triggering a cascade of events and 

the loss of some signal transduction or alternatively triggering cascades 

inappropriately. This could in turn affect the response of the cells to 

cytotoxic agents. 

The effect of different fatty acid supplementation on the cell 

growth of MDA-MB-231 breast cancer cells was reported by Rose & 

Connolly (1990). The MDA-MB-231 cells were supplemented with 

fatty acid for 6 days in serum-free culture medium. At a concentration 

of 0.75^g/ml LA was found to stimulate cell growth, this was also true 

for low concentrations of OA (0.25fig/ml). MDA-MB-231 cell growth 



was inhibited by DHA (l-2.5|ig/ml) and EPA (2.5 |ig/ml). The 

stimulation of cell growth by LA was thought to be dependent on the 

inhibition of leukotriene biosynthesis. As inhibitors of leukotriene 

biosynthesis reduced the LA stimulus of cell growth (Rose & Connolly, 

1990). 

When HL60 cells were supplemented with either AA, EPA or 

DHA (20[iM) for 25 hours over 70% of cells were killed (Hawkins et 

al., 1998). When HL60 cells were supplemented with EPA (SO îM) for 

6-12 hours a pattern of chromatin degradation into oligonucleosomes 

occurred which is characteristic of apoptosis (Hawkins et al., 1998). 

HL60 cells supplemented with PUFA for 4-5 hours were also shown to 

induce lipid peroxidation. 

In this study HL60 and K562 cells were supplemented with 

PUFA to determine the effect on cell growth and the incorporation of 

the fatty acids in to the cell membranes. PUFA have been shown to 

increase membrane fluidity, lipid peroxidation and induce apoptosis. In 

this study other agents were combined with PUFA supplementation to 

determine i f the effects of PUFA on leukaemia cells are altered. 

Synthetic ether lipids have been the subject of several clinical 

trials with cancer and leukaemia patients. Initially the ether lipid 1-0-

octadecyl-2-methyl-rac-glycero-3-phosphocholine, commonly known 

as E T - I 8 - O C H 3 or edelfosine, was used. Berdel et al., (1987) partially 

characterised the tolerance to ET-I8-OCH3, eleven patients were 

treated intravenously with mild toxicity. Patients experienced a variety 

of side effects including gastrointestinal tract problems, liver toxicity, 

renal toxicity and a life-threatening interstitial pulmonary edema. All of 

these side effects were reversible when treatment stopped. ET-18-

O C H 3 was also tested on patients with non-small cell lung cancer 



(Berdel et al., 1985). Herrman & Neumann (1987) tested another ether 

lipid, BM41.440, which was given orally in a multi-institutional phase I 

drug trial. This was then taken on to a phase I I drug efficacy trial as a 

potential treatment for a wide spectrum of neoplastic diseases. 

Hexadecyl-phosphocholine has been used in phase I I trails as a topical 

treatment of skin metastases in patients with breast cancer (Unger et al., 

1988). These clinical studies have shown tumour responses in a small 

number of patients treated. A cyclic analog of ET- I8 -OCH3 , SRI 62-

834 (Sandoz Research Institute), was entered into phase I trials and it 

was found that low doses were tolerated owing to limiting toxicity in 

the gastrointestinal tract. A clinical phase I/II study was undertaken by 

Berdel (1990) to assess safety and efficacy of bone marrow 

autotransplantation after supralethal chemotherapy and radiotherapy in 

patients with acute leukaemia using remission marrows purged with 

ether lipids in vitro. After clinical trials of patients with acute 

leukaemia, a dose of 75|ug/ml of ET- I8 -OCH3 was recommended for 

bone marrow purging (Vogler et al., 1992). Purified blasts from patients 

with acute leukaemia were treated with one of two ether lipids, ET-18-

O C H 3 and hexadecylphosphocholine (Verdonck & Heugten, 1997). A 4 

hour treatment with 50|ig/ml of either of the ether lipid effectively 

killed the leukaemic blasts. 

The mechanism of action of ether lipids is unknown but they 

have been shown to alter various properties of the cell. Ether lipids have 

an affinity for membrane phospholipids (Noseda et al., 1988a). HL60 

and LLC-H61 cell lines treated with ET- I8 -OCH3 have increased 

membrane fluidity (van Blitterswijk et al., 1987). Ether lipids have been 

shown to increase intracellular free calcium (Lazenby et al., 1990; 

Lohmeyer & Workman, 1993). Ether lipids have also been shown to be 

involved in the inhibition of protein kinase-C (Helfman et al., 1983; 



Kiss et al., 1987; Shoji et al., 1988). In HT29 colon adenocarcinoma 

cells, ether lipids progressively arrested the cells in G\ and G2 phases 

of the cell cycle although progression through S and M phases was not 

altered (Principe et al., 1992). HL60 cells treated with ET- I8 -OCH3 

have displayed apoptotic cell death (Diomede et al., 1993b; Alonso et 

al., 1997). In HL60 cells ET- I8 -OCH3 also stimulated free radical 

production but did not stimulate free radicals in K562 cells (Wagner 

et al., 1998). Cells supplemented with PUFA that are treated with ether 

lipids can increase lipid peroxidation (Petersen et al., 1992; Wagner et 

al., 1992). 

In this study both leukaemia cell lines were treated with the ether 

lipid E T - I 8 - O C H 3 to determine its cytotoxic effects. The ether lipid 

was also combined with other freatments to determine any alterations in 

its cytotoxicity. 

Local anaesthetics have been studied for over one hundred years 

yet the exact mechanism of action is unknown at a molecular level. 

Local anaesthetics can alter the physical properties of cellular 

membranes (Seeman, 1972). Local anaesthetics have been shown to 

interact with polar head groups of membrane phospholipids (Shimooka 

et al., 1992) and they have also been shown to increase membrane 

fluidity (Seeman, 1972). For example, dibucaine has been shown to 

increase membrane fluidity as monitored by polarisation spectroscopy 

(Kingston etal, 1993). 

Local anaesthetics have been shown to induce cell death in SK-

N-MC human neuroblastoma cells (NB cells) in a dose-dependent 

manner (Kim et al., 1997). At a concentration of 0.1 mM dibucaine was 

shown to increase significantly the membrane fluidity of both the inner 



and outer membranes of NB cells at 20°C measured using fluorescence 

polarisation of DPH and TMA-DPH (Kim et al., 1997). Dibucaine 

(0.1 mM) was also shown to induce apoptosis, shown by the 

intemucleosomal DNA fragmentation. This concentration of dibucaine 

was also shown to increase infracellular calcium, which was probably 

due to membrane damage allowing an influx of exfracellular calcium 

(Kim et al., 1997). Dibucaine (30nM) cytotoxicity to NB cells was 

reduced in the presence of the antioxidants L-ascorbic acid and L-

cysteine suggesting that dibucaine-induced NB cell death involves the 

production of free radicals. 

In this study the effect of local anaesthetics on leukaemia cells 

was determined. The local anaesthetics were combined with other 

agents to determine i f any of their effects were altered. 

The purpose of this study was to investigate the effects of three 

membrane-active agents both alone and in combination on leukaemia 

cells. These treatments were tested in vitro in culture on two human 

leukaemia cell lines, HL60 and K562 cells. The agents to be 

investigated were the synthetic ether lipid, ET- I8 -OCH3, local 

anaesthetics (dibucaine, tetracaine and procaine) and polyunsaturated 

fatty acids, especially docosahexaenoic acid, eicosapentaeonic acid and 

arachidonic acid. 

The two human leukaemia cell lines used in this study were 

HL60 and K562 cell lines. Human Leukaemia (HL60) cells were 

obtained in 1976 from the peripheral blood leukocytes of a 35 year old 

female patient with acute myeloblastic leukaemia with maturation 

(FAB-M2) (Collins et al., 1977; Dalton et al., 1988). HL60 cells were 

grown in suspension cultures, firstly in conditioned media and then in 



the absence of conditioned media. The HL60 cells consist 

predominantly of promyelocytes, 5-10% of which spontaneously 

differentiate into more mature cells including myelocytes, 

metamyelocytes, and banded and segmented neufrophils (Collins et al., 

1980). K562 cells were derived from leukaemic cells obtained in 1970 

from a pleural effusion of a 53 year old female who had been suffering 

from chronic myelogenous leukaemia for about 4 years (Lozzio & 

Lozzio, 1975). K562 cells were the first permanent cell-line with a 

persistent positive Philadelphia chromosome after prolonged cultivation 

in vitro. K562 cells have retained meaningful indicators of malignancy 

including chromosome aberrations, cloning efficiency on agar, and a 

specific antigen(s) after prolonged cultivation. It therefore represents a 

unique source of human CML cells for experimental and clinical 

studies. In 1979, Andersson et al. found that K562 cells synthesised 

and expressed glycophorin. Glycophorin is an integral membrane 

glycoprotein and is the major sialoglycoprotein of human erythrocytes. 

K562 cells were found to express the proteins of normal erythrocyte 

membranes, although they lack the surface expression of the HLA-

antigen, which is also compatible with erythroid origin. K562 cells have 

a Natural Killer cell induced cytotoxicity which is highly compatible 

with the erythroid origin (Andersson et al., 1979). 

Both cell lines have been shown to have the ability to 

differentiate. HL60 cells can undergo growth arrest and differentiate 

into one of two functionally and morphologically distinct blood cell 

types (Collada-Escobar & Mollinedo, 1994). Dimethylsulphoxide 

(DMSO) and retinoic acid promote differentiation towards neufrophils, 

whilst vitamin D-3 and phorbol esters induce monocytic differentiation 

of HL60 cells. K562 cells can differentiate into immature myeloid or 



lymphoid cells by hexamethylene bis-acetamide (Green et al., 1993) but 

also along erythroid differentiation lineage by exposure to haemin, 

sodium butyrate or 1-P-D-arabinofuranosylcytosine (Andersson, 1979; 

Horton, 1983; Chen & Wu, 1994). 

Chapter 2 will report the cytotoxic effects of the ether lipid ET-

I 8 - O C H 3 on HL60 and K562 cells. The cytotoxicity of the three local 

anaesthetics was also determined separately on both cell lines. Subtoxic 

doses of the local anaesthetics, defined as a concenfration that kills < 

10% of cells, were used in combination with a range of ET- I8 -OCH3 

concentrations to discover i f ether lipid cytotoxicity can be increased 

while using lower concentration of ether lipid with the local anaesthetic. 

Chapter 3 will report the effect of PUFAs on both cell lines. The 

cytotoxicity of the different PUFAs was determined on both cell lines. 

The incorporation of the PUFAs into the membrane phospholipids was 

determined by gas-liquid chromatography. Combinafion experiments 

were undertaken in which : a subtoxic dose of PUFA was combined 

with a series of ether lipid concentrations, and subtoxic doses of PUFA 

were combined with a series of local anaesthetic concentrations. 

Chapter 4 will report cell differentiation for K562 cells by a 

known differentiating agent l-P-D-arabinofuranosylcytosine (ara-C). 

The induction of differentiation was monitored and the effects of 

PUFA on the possible induction of differentiation in the presence or 

absence of the differentiating agent was investigated. The progression 

of the K562 cells through the cell cycle will also be monitored after 



treatment with PUFA and or differentiating agent using a fluorescence 

activated cell sorter (FACS). 
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Chapter II 

Effects of Ether Lipids and Local Anaesthetics on 
Human Leukaemia Cells 

2.1 Introduction 

The chemical structure of the alkyl phospholipids (ether lipids) is 

closely related to platelet activating factor (PAF) (l-alkyl-2-acetyl->s'n-

glycero-3-phosphocholine). The general structure of the ether lipid 

consists of : (a) an ether-linked alkyl moiety at the sn-1 position; (b) an 

apparently nonmetabolisable group at the sn-1 position; and (c) a 

quaternary phosphobase at the sn-2> position of the glycerol moiety 

(Hoffman et al., 1986). The ether lipid used in this study was ET-18-

O C H 3 (l-0-octadecyl-2-0-methyl-rac-glycero-3-phosphocholine). 

Other ether lipids mentioned in this chapter include BM41.440, 

(1 -hexadecylmercapto-2-methyl-rac-glycero-3-phosphocholine), a 

thioanalogue of E T - I 8 - O C H 3 and various thiolysophospholipids. The 

structures of PAF, E T - I 8 - O C H 3 and BM41.440 are shown in Figure 

2.1. 

Andreesen et al. (1978) discovered that cells from patients with 

chronic myelocytic leukaemia exhibited sensitivity to 

alkylphospholipids, one being ET-I8 -OCH3. Tidwell et al., (1981) 

found that two human leukaemia cell lines responded differently to ET-

I 8 - O C H 3 ; HL60 cells were found to be sensitive, whereas K562 cells 

were more resistant. 

Andreesen et al. (1978) proposed that tumour cells had an 

inherently low alkyl cleavage enzyme, and therefore the ether lipid 

11 



would reach a concentration sufficient to inhibit vital cell functions and 

ultimately lead to cell death. This led Hoffman et al. (1986) to assay the 

activity of this alkyl cleavage enzyme in microsomes from HL60, K562 

and MDCK cells. The HL60 cells were more sensitive to the ether lipids 

than the other two cell lines but the activity of their alkyl cleavage 

enzymes did not differ significantly. Therefore no relationship was 

found between the response of the cell lines to the ether lipid and the 

lack of alkyl cleavage enzyme. By using a radiolabelled ET-I8-OCH3 

in intact cells, Hoffiiian et al. (1986) showed that ET- I8 -OCH3 was 

associated more with HL60 cells than K562 cells. Autoradiography 

showed that radiolabelled ET- I8 -OCH3 accumulated in the periphery 

of the HL60 cells, but was more uniformly distributed in K562 cells. 

Nontoxic PAF was shown to be evenly distributed throughout and 

rapidly metabolised by both HL60 and K562 cells. Hoffman et al. 

(1986) concluded that the enrichment of ether lipids in the surface 

membranes of the cell could inhibit the synthesis of 'i-sn-

phosphatidylcholine (Modolell et al., 1979), Ca2+-phospholipid 

dependent protein kinase (Helfman et al., 1983), and sialyl-transferase 

(Badore^a/., 1983). 

The mechanism of cytotoxic action of the ether lipids is 

unknown but they have been shown to alter various properties of the 

cell. Tumour cells grown in the presence of l-O-alkyl-2-O-methyl-sn-

glycero-3-phosphocholine showed alterations in the structural order of 

the membrane lipids (van BHtterswijk et ah, 1987). This freatment 

increased membrane fluidity in HL60 and LLC-H61 cell lines, the latter 

being a highly metastafic subclone of the Lewis lung carcinoma cell 

line. A number of ether lipids were also demonsfrated to induce HL60 

cells and mouse (Ml ) myeloid leukaemia cells to differentiate into 

mature granulocytes and macrophages, while no effect was observed on 
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normal mouse bone marrow cells (Honma et al., 1991). Ether lipids 

were shown to have an affinity for membrane phospholipids (Noseda et 

al., 1988a). Using electron spin resonance spectroscopy, the membrane 

fluidity of HL60 cells was found to be increased when freated with ET-

18-OCH3 and l-thiohexadecyl-2-ethyl-rac-glycero-3-phosphocholine 

(ET-16S-0Et). ET- I8 -OCH3 and five thio-/y.yophospholipid analogs 

(TLP), including BM41.440, were tested on a number of cancer and 

leukaemia cell lines (Berdel et al., 1983). The TLP revealed strong 

cytostatic and cytotoxic activity in human leukaemias and solid 

tumours. 

SRI 62 -834 ((±)-2- {hydroxy [tetrahydro-2-(octadecyloxy)-

methylfuran-2-yl} -phosphinyloxy} -A/^,////,-trimethylethaniminium 

hydroxide), the cyclic ether lipid analogue of ET- I8 -OCH3, also 

elevated intracellular "free" calcium in HL60 and K562 cells (Lazenby 

et al., 1990). The rise in calcium was inhibited by TPA which suggested 

that it may be modulated by protein kinase C. From this Lazenby et al. 

(1990) suggested that PAF receptors may be involved with the toxicity 

of this ether lipid. In serum free medium HL60 cells freated with 

subtoxic concentrations of ET- I8 -OCH3 or SRI 62-834 were shown to 

increase the intracellular calcium concentration from internal stores 

(Lohmeyer & Workman, 1993). This increase in intracellular calcium 

was thought not to be linked to the antitumour activity of ether lipids. 

More recently E T - I 8 - O C H 3 was shown to produce apoptosis in HL60 

cells but not in DMSO differentiated HL60 cells (Alonso et al., 1997). 

ET-18-OCH3 induced an increase in intracellular calcium concentration 

in differentiated HL60 cells through the PAF receptor. In contrast to 

Lohmeyer & Workman (1993), undifferentiated HL60 cells do not have 

a PAF receptor and the infracellular calcium concentration was only 

slightly increased by ET- I8 -OCH3 treatment (Alonso et al., 1997). 
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When the following ether lipids, ET- I8 -OCH3, ET-16S-0Et and 

4-aminoethyl-l-[2,3-(di-n-decyloxy)-rt-propyl]-4-phenylpiperidine (CP 

46665), were combined with DNA-interacfive agents such as 

adriamycin, 4-hydroperoxycyclophosphamide (4-HC) or cisplatin 

(CDDP) a marked additive inhibition of growth in BGl cells, a human 

ovarian adenocarcinoma, was observed (Noseda et al., 1988b). ET-18-

O C H 3 had been reported to inhibit the phosphorylation of PKC-

substrate proteins in HL60, KG-1 and K562 cells (Helfinan et al., 1983; 

Kiss et al., 1987). Shoji et al. (1988) found that BM41.440 was a potent 

and specific PKC inhibitor. The inhibition of PKC could be a critical 

factor as a pivotal role is played by this key phosphorylation system in 

biological processes including transmembrane signalling, cell growth 

and differenfiation (Nishizuka, 1984). BM41.440 inhibited PKC 

competitively with respect to PS (phosphatidylserine) but 

noncompetitively with respect to Ca2+ (Shoji et al., 1988), indicating 

that the thioether as well as ET- I8 -OCH3 (Helfman et al., 1983) 

interacted with site(s) on PKC also shared by PS but not Ca2+. ET-18-

O C H 3 and BM41.440 have been shown to cause short and long term 

antiproliferative activity on the colon adenocarcinoma cell line HT29 

(Principe et al., 1992). PAF had no similar potential. Flow cytometry 

showed that HT29 cells treated with ether lipids progressively arrested 

in Gi and G 2 phase although progression through S and M phases were 

not altered. From these experiments Principe et al. (1992) suggested 

that ether lipids may, directly or indirectly, inactivate the complex p34 

cdc2_cyclin that is essential for passage from Gi to S and G 2 to M 

phases of the cell cycle. 

A range of ET- I8 -OCH3 concentrations from 5-100|ig/ml 

significantly inhibited the reproductive ability of HL60 cells when 

incubated for either 1 hour or 4 hours, but under the same conditions 
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normal bone marrow cells were unaffected, as determined by 

clonogenicity (Vogler et al., 1987). When normal bone marrow cells 

were subjected to cryopreservation and thawing, between 60 % and 

79% of the colonies were recovered. This was also true for HL60 cells. 

However, the combination of cryopreservation after exposure to 50 

|ig/ml of E T - I 8 - O C H 3 for 4 hours prevented the recovery of HL60. 

This experiment was repeated on a mixture of normal bone marrow and 

HL60 cells, resulting in increased killing of HL60 cells while 

preserving 60-70% of the progenitor cells. As a result of these 

experiments it was thought that ether lipids may be useful in bone 

marrow purging. A number of clinical trials have been undertaken with 

ether lipids. Patients suffering from widespread malignant disease were 

treated in a phase I pilot study with ET- I8 -OCH3 (Berdel et al., 1987) 

which partly characterised the tolerability to the ether lipid. Cancer 

patients were also treated with BM41.440, for over nine months, which 

gave a good indication of their tolerance to, and therapeutic effects of, 

BM41.440 (Herrman & Neuman, 1987). ET- I8 -OCH3 and BM41.440 

have undergone phase I I clinical trials as reviewed by Berdel (1991). 

Clinical trials were undertaken on patients with acute leukaemia using 

remission bone marrows purged with ether lipids coupled with 

radiotherapy (Berdel, 1991). Vogler et al. (1992) recommended a bone 

marrow purging dose of 75|ig/ml of ET- I8 -OCH3 for 4 hours at 37°C 

after a study on patents with acute leukaemia. Koenigsmann et al. 

(1996) purged peripheral blood derived progenitor cells (PBPC) from a 

variety of cancer patients with ET- I8 -OCH3 instead of purging the 

bone marrow, to reduce the haematological recovery time after high 

dose tumour therapy. The PBPC were treated with 75)ig/ml for 4 hours. 

The in vitro recovery rate for CFU-GM after cryopreservation and 

purging was significantly reduced compared to cryopreservation alone. 
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These conditions led to a defined but predictable and tolerable toxicity. 

Koenigsmann et al. (1996) found that haematological recovery times 

after high-dose therapy were idenfically short provided similar amounts 

of PBPC were reinfiised. Two ether lipids, ET- I8 -OCH3 and 

hexadecylphosphocholine, were used to freat ten patients with acute 

leukaemias in vitro (Verdonck & Heugten, 1997). Purified blasts of the 

patients were placed in RPMI 1640 culture medium and freated with 

10)ig/ml or 50|ig/ml of ether lipid for 4 hours. The cytotoxicity of the 

ether lipids as determined by leukaemic colony forming cells or by 

incorporation of ^H-thymidine. Leukaemic blasts were effectively 

killed by both E T - I 8 - O C H 3 and hexadecylphosphocholine. Verdonck 

et al. (1997) also tested the cytotoxic effect of the ether lipids ex vivo 

against multidrug resistance positive leukaemic blasts. ET-I8-OCH3 

50)ag/ml freatment for 4 hours produced 100%) cytotoxicity for 

clonogenic leukaemia cells and almost 100%) cytotoxicity for purified 

blasts of patients with drug-resistant ALL. The ether lipids were also 

shown to induce apoptosis within 15 minutes of treatment with 25|ig/ml 

hexadecylphosphocholine. ET- I8 -OCH3 has also been shown to 

produce apoptosis in HL60 cells but not in K562 cells. (Diomede et al., 

1993b & 1994). Apoptotic cell death was shown by the percentage of 

fragmented DNA. HL60 cells treated with 20^M ET- I8 -OCH3 for 24 

hours increased the fragmented DNA by 40%, the same treatment in 

K562 cells only increased fragmented DNA by 1.8% (Diomede et al., 

1993b). 

Kelley et al. (1993) investigated the uptake of E T - I 8 - O C H 3 by 

L1210 cells and found that it was reduced by approximately 50% when 

human serum was present at levels as low as 0.5% (v/v) serum. When 

[3H]ET-18-OCH3 was incubated with freshly obtained human serum, 

84% of [3H]-ET-18-OCH3 was recovered associated with high density 
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lipoprotein or albumin (Kelley et al., 1993). Therefore only 16% of the 

E T - I 8 - O C H 3 would have been available to the cells, significantly 

reducing the concentration of ET- I8 -OCH3 given. In L1210 cells, the 

uptake of E T - I 8 - O C H 3 was nonsaturable, energy-independent and only 

moderately temperature sensitive, all of which are characterisfic of 

passive diffusion. From this, Kelley et al. (1993) concluded that passive 

diffusion was a feasible mechanism to explain why this compound 

associates with cell membranes. 

As ether lipids bind to serum it was decided to grow cells in 

serum-free culture medium in the present study so that the 

concentration in the culture medium reflected the concentration that was 

available to the cell. 

The two human leukaemia cell lines used in this series of 

experiments were HL60 and K562 cells. The HL60 cells have been 

shown to be sensitive to synthetic ether lipids (SEL) and were found to 

contain nearly twice as much naturally-occurring membrane ether lipid 

than the K562 cells (Chabot et al., 1989). When the membranes of the 

K562 cells were enriched with naturally-occurring ether lipid the 

sensitivity to ET- I8 -OCH3 was increased, the I C 5 0 value being 

reduced by approximately half Furthermore, the cholesterol content of 

the cell membrane may affect the toxicity of ether lipids (Diomede et 

al., 1992). For example, K562 cells (Tidwell et al., 1981) are richer in 

cholesterol than the sensitive HL60 cells (Diomede et al., 1990). 

Furthermore, K562 cells partially depleted of their membrane 

cholesterol content became sensifive to doses of ether lipid which were 

originally nontoxic (Diomede et al., 1992). The cholesterol content of 

the culture medium was also related to the cytotoxic action of ether 

lipid, suggesting that the cholesterol from serum added to the medium 

may modulate the biological activities of these drugs (Diomede et al., 
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1990). 

The ether hpid BM41.440 was found to increase the sensitivity 

of cells, which had been supplemented with a polyunsaturated fatty 

acid, docosahexaenoic acid (DHA) (22:6, n-3), to lipid peroxidation 

(Petersen et al., 1992). The chemical structure of ether lipids does not 

suggest that a free radical would be generated directly as a consequence 

of the metabolism of the drug. It is possible that free radicals may be 

generated indirectly as a secondary event of membrane damage and 

membrane fatty acids with increased numbers of double bonds are more 

susceptible to this secondary damage. In support of this, cytotoxicity of 

BM41.440 was found to be increased by prooxidants, such as Fe2+ 

plus ascorbic acid and by glutathione depletion (Petersen et al., 1992). 

L1210 cells enriched with 22:6 n-3 showed an increase in lipid 

peroxidation measured by ethane production and TEARS when the 

cofactors ascorbic acid and Fe2+ were present with ET-I8-OCH3 

(Wagner et al., 1992). Only trace amounts of ethane and TEARS were 

generated when ET-I8-OCH3 was present in 22:6 enriched cells 

without the cofactors. 

ET-I8-OCH3 (6fxM) induced apoptosis in HL60 cells and U937 

human myeloid leukaemia cells but not in DMSO-induced 

differentiated HL60 cells (Alonso et al., 1997). Apoptosis was 

determined by degradation of DNA into oligonucleosome-size 

fragments on gel elecfrophoresis. The effect of ET-I8-OCH3 on 

intracellular calcium concentrations was also determined. The apoptotic 

effect of ET-18-OCH3 was not related to changes in the intracellular 

calcium concentration. 

In HL60 cells, ET-I8-OCH3 stimulated free radical production 

at 20|iM (Wagner et al., 1998), K562 cells treated with up to 40|iM ET-

I8-OCH3 did not produce free radical production. Wagner et al. (1998) 
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showed that sensitive HL60 cells had more polyunsaturated fatty acids 

in membranes than resistant K562 cells. As the fatty acids in the 

membranes are a target for the production of free radicals, HL60 cells 

may produce more free radicals after ether lipid treatment than K562 

cells. 

Local anaesthetics have been shown to affect cells in many 

different ways. Local anaesthetics act on cell membranes causing 

membrane expansion (Seeman, 1972), modification of erythrocyte 

osmotic fragility (Roth & Seeman, 1971), inhibition of cell fiision 

(Poste & Reeve, 1972), impairment of mitochondrial respiration (Tarba 

& Cracium, 1990), inhibition of Ca2+ influx and prolactin secretion 

(Wagner et al., 1992), inhibition of Ca^+Mg^+ATPase activity 

(Garcia-Martin & Gutierrez-Merino, 1990), displacement of Ca2+ from 

membranes (Chen, 1974), and inhibition of cell ftision (Poste & Reeve, 

1972). Their mode of action is not well understood, but they have been 

shown to interact with polar head groups of membrane phospholipids 

(Shimooka et al., 1992) and to increase membrane fluidity (Seeman, 

1972; Paterson et al., 1972). Correlation between biological effects and 

oil : water partition coefficients of local anaesthetics suggest that 

hydrophobic sites, perhaps involving the membrane lipid matrix, may 

be an important site of action (Kingston et al. ,1993). 

In this study the local anaesthetics used were dibucaine, 

tetracaine and procaine; these tertiary amine local anaesthetics needed 

to be maintained predominantly in their cationic form at a pH below 7.5 

as the pKa values of these anaesthetics are around pH 7.8 (Low et al, 

1979). Under these conditions, the order of membrane surface 

adsorption of these cationic forms of local anaesthetics at any given 

concentration has been shown to be dibucaine > tetracaine > procaine 
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(Ohki, 1984). The order of toxicity in HTC cells was shown to be 

dibucaine > tetracaine > procaine (Kingston et al., 1993). In HTC cells, 

all three anaesthetics enhanced the cytotoxic effects of hyperthermia, 

and cell survival was decreased as the anaesthetics concenfration 

increased. Dibucaine was shown to affect plasma membrane fluidity, 

specifically at the acyl region of the membrane, by polarisation 

spectroscopy, using DPH as a probe (Kingston et al., 1993). Whereas 

tetracaine caused a smaller concentration-dependent increase in 

membrane fluidity at 37°C only and procaine did not fluidise the 

membrane. However, when TMA-DPH was used as a fluorescent probe 

procaine was found to affect membrane fluidity (Dynlacht & Fow, 

1992). The TMA-DPH probe reports fluidity from the polar headgroup 

region (Mateo et al., 1991). Therefore Kingston et al. (1993), concluded 

that procaine and perhaps tetracaine at 43°C may interact with the polar 

headgroups. 

Local anaesthetics were shown to induce cell death in SK-N-MC 

human neuroblastoma cells (NE cells) in a dose dependant manner 

(Kim et al., 1997). The order of cytotoxicity was dibucaine > tetracaine 

> procaine. NE cells treated with 0.1 mM dibucaine for 18 hours 

induced intemucleosomal DNA fragmentation. The fragmentation 

patterns were consistent with apoptotic cell death. Dibucaine was also 

shown to increase membrane fluidity using membrane polarisation with 

DPH and TMA-DPH probes in the dose range which induced apoptosis 

(Kim et al., 1997). Dibucaine (O.lmM) increased infracellular calcium 

concentration which resulted partly from intracellular sources (Kim et 

al., 1997). When the influx of extracellular calcium was prevented NB 

cell death was reduced. Kim et al. (1997) suggested that dibucaine-

induced cell death was due to the increase of intracellular calcium due 

to membrane damage. Apoptotic dibucaine-induced cell death was also 
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shown to involve the production of oxygen free radicals (Kim et al., 

1997). 

HL60 cells have been shown to be sensitive to ether lipids 

whereas K562 cells were more resistant. Both these cells lines were 

used in the present study to examine the cytotoxic effects of the ether 

lipid ET-I8-OCH3, and local anaesthetics dibucaine, tefracaine and 

procaine, alone and in combination with ET-I8-OCH3. Cells were 

supplemented with ET-I8-OCH3 in serum-free culture medium as ether 

lipids bind to serum proteins. Cells were supplemented with a local 

anaesthetic in serum-free culture medium, as experiments combining 

local anaesthetics with ether lipids were planned. 
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Figure 2.1 Structures of ether lipids 

The structures of three ether Upids that are referred to in this thesis are 
shown in this Figure. 

ET-I8-OCH3 
ET-18-OCH3 (1 -0-octadecyl-2-0-methyl-ra<:-glycero-3-
phosphocholine) is the synthetic ether lipid used to treat cells in these 
experiments. 

BM41.440 
BM4L440 is another synthetic ether lipid is frequently referred to in 
this study (l-hexadecylmercapto-2-0-methyl-rac-glycero-3-
phosphocholine). 

PAF 
Platelet activating factor (PAF) (l-alkyl-2-acetyi-5«-giycero-3-
phosphocholine) is a naturally occurring biologically active 
phospholipid. The structure of the synthetic ether lipids are closely 
related to PAF's structure. 
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Figure 2.2 Structures of local anaesthetics 

Three tertiary amine local anaesthetics were used in this series of 
experiments. The chemical structures of dibucaine, tetracaine and 
procaine are shown here. 
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2.2 Materials and Methods 

2.2.1 Culture conditions 

The present study utilised HL60 and K562 human leukaemia cell 

lines. The HL60 cells of unknown passage number were a kind gift 

from C M . Bunce at Birmingham University and the K562 cells of 

unknown passage number were purchased from European Collection of 

Animal Cell Cultures, Porton Down, Salisbury. 

The HL60 and K562 cell lines were grown in suspension culture 

in plastic flasks and 24-well plates under sterile conditions. Both cell 

lines were grown in RPMI-1640 medium (without L-glutamine) which 

was supplemented with heat-inactivated foetal calf serum (10%, v/v), 

2mM L-glutamine, penicillin (lOOIU/ml) and sfreptomycin (lOOpg/ml). 

The culture medium was filter-sterilised before use. The cells were 

maintained in an humidified incubator at 37°C in air / CO2 (19:1, v/v). 

All the cell-handling procedures took place in a class I I flow cabinet. 

Implements used for culturing the cells were purchased sterile or were 

autoclaved before use. 

2.2.2 Culture techniques 

Stock supplies of HL60 and K562 cells were grown in 10 ml of 

culture medium in 25cm2 flasks, 50 ml of culture medium in 70cm2 

flasks or 100 ml of culture medium in 125cm2 flasks. Cells were also 

grown in 1ml of culture medium per well in 24 well plates. For 

exponential growth, the cell number was kept between 2x10^ and 

1x106 cells/ml for both cell lines. The cell lines were seeded at 

2xl05cells/ml, either by dilution or pelleting by centrifligation at 300g 
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for 4 minutes at 20°C, followed by resuspension in fresh culture 

medium. After pelleting, the HL60 cells were resuspended in 1ml of 

culture medium by one or two strokes of a syringe fitted with 0.5mm 

internal diameter hypodermic needle, before adding the required 

volume of culture medium. HL60 cells were diluted or pelleted every 

alternate day. After pelleting, the K562 cells were resuspended in a 

small volume of culture medium using a 5ml or 10ml pipette rather than 

a syringe and needle. K562 cells had their culture medium changed on 

the third day and were diluted every second day thereafter. 

2.2.3 Estimation of cell number and viability by haemocytometer 

Cells were first mixed using a 5ml or 10ml pipette to achieve a 

homogeneous cell suspension. A 100|il sample of cell suspension was 

taken and placed into a 1.5ml centrifiige tube. An equal volume of 

trypan blue solution (0.6%, w/v trypan blue, in phosphate buffered 

saline (PBS)) was added to the cells and mixed to achieve a 

homogeneous suspension. A portion of this cell suspension was pipetted 

into the haemocytometer chamber, the cells were observed on an 

Olympus inverted microscope at x 10 magnification. The cells lying in 

the five large squares at the centre of the grid were counted, between 

25-75 cells were found in each of the five squares. Viable cells exclude 

trypan blue, so to obtain the number of viable cells only unstained cells 

were counted. To obtain the total cell number both stained and 

unstained cells were counted. A minimum of two counts were 

performed on each cell suspension. 
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2.2.4 Cryopreservation 

Cells were counted to determine cell number, as described in 

section 2.2.3, and pelleted by centrifiigation at 300g for 4 minutes at 

20°C. The cells were resuspended in a freezing mixture, comprising 

heat inactivated foetal calf serum/glycerol; (92:8, v/v) at a cell density 

of lx l06 cells/ml for HL60 cells and 8x105 cells/ml for K562 cells. 

Aliquots (1ml) of the cell suspension were pipetted into plastic freezing 

vials and placed into a freezing container, containing isopropyl alcohol. 

The freezing container achieved a freezing rate of -l°C/min when 

placed at -80°C for a minimum of 5 hours. After this time the vials were 

stored in liquid nifrogen containers at -196°C. 

2.2.5 Thawing 

Vials of frozen cells were thawed quickly by semi-immersion in 

a beaker of warm water. Cells (1ml) were then added to 9ml of culture 

medium containing 20% (v/v) heat-inactivated foetal calf serum and 

placed in an humidified incubator at 37°C in air / CO2 (19:1, v/v). 

Once the cells had successfiiUy doubled in number they were pelleted 

by centrifiigation, at 300g for 4 minutes at 20°C, and resuspended in 

culture medium containing 15% (v/v) heat-inactivated foetal calf serum. 

The percentage of foetal calf serum was reduced in this way until the 

cells grew in culture medium containing 10% (v/v) serum. The cells 

were then growing exponentially and were ready for experimentation. 
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2.2.6 Cell growth 

Doubling Time 

Cells were grown in culture medium over a period of 14 days, 

and were kept between 2x10^ and 1x10^ cells/ml to ensure exponential 

growth. The cells were counted every 24 hours, as described in section 

2.2.3. 

Cells were grown in serum-free culture medium for 4 hours 

when using ether lipids. Cell growth was checked to determine i f this 

length of fime in serum-free culture medium affected growth. Cells 

(5xl05) were seeded in either culture medium or serum-free culture 

medium and incubated for 4 hours at 37°C in an humidified atmosphere 

of air/C02 (19:1, v/v). After 4 hours the cells were counted as 

described in section 2.2.3. 

Cell growth in ^H-thymidine 

Cells were seeded in culture medium at different cell densities 

ranging from O-lxlO^ cells/well in a 96-well plate. Culture medium 

containing ^H-thymidine, 0.2^Ci, was added to the cells so that the 

total reaction volume was 200|Lil. The 96-well plate was then incubated 

for 3 hours in an humidified incubator at 37°C in air/C02 (19:1, v/v). 

After 3 hours the cells were harvested using a Skatron AS harvester. 

The cells were lysed by water onto Whatman glass fibre paper. The 

fibre paper was dried in an oven, and the discs corresponding to the 

wells were placed into scintillation vials, 4ml of Betafluor was added, 

and the radioactivity counted by liquid scintillation counting. The vials 

27 



were wiped with methanol to eliminate any counts owing to static. Each 

sample was counted for 5 minutes. 

2.2.7 Ether lipid cytotoxicity experiments 

The ether lipid ET-I8-OCH3 was added to the culture medium 

of HL60 and K562 cells. A stock solution of ET-I8-OCH3 (lOmM) 

was prepared in 100% (v/v) ethanol and filter-sterilised. It was stored 

for a maximum of two weeks in a glass container at -20°C. 

Ranges of ether lipid concentrations were prepared by serial 

dilution in 100% (v/v) ethanol. The required concentration of ether lipid 

was added to the serum-free culture medium so that the ethanol was 

present as 0.1% (v/v) of the culture medium. The concentration range of 

ET-I8-OCH3 was between 0-1 O^M for HL60 cells and 0-15^M for 

K562 cells. 

Cells (5x105) were seeded in 1ml of serum-free culture medium 

containing a range of ET-I8-OCH3 concentrations and 0.1% (v/v) 

ethanol final concentration, in 24 well plates, and were incubated for 4 

hours at 37°C in an humidified atmosphere of air/C02 (19:1, v/v). The 

control wells contained 0.1% (v/v) ethanol in the serum-free culture 

medium. After 4 hours the cells were pelleted by centrifligation at 300g 

for 4 minutes at 20°C, and resuspended in 1ml of fresh culture medium. 

The control untreated cells were counted, as described in section 2.2.3. 

From the control cell suspension a known volume containing 5x10^ 

cells was transferred to a 96-well plate. An equivalent volume was 

transferred from the ether lipid-freated cell suspension to a 96-well 

plate. These cells were incubated in culture medium containing ̂ H-

thymidine as described in section 2.2.6. 
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2.2.8 Local anaesthetic cytotoxicity experiments 

Both cell lines were treated with three local anaesthetics. Stock 

solufions of dibucaine-hydrochloride (20mM), tetracaine-hydrochloride 

(lOOmM) and procaine-hydrochloride (500mM) were prepared in 

distilled water and were filter- sterilised. They were stored for a 

maximum of two weeks at 4°C. 

Ranges of local anaesthetic concentrations in distilled water were 

prepared by serial dilution of the stock concenfrations. The required 

volume of local anaesthetic was added to the serum-free culture 

medium so that the distilled water was present as 0.1% (v/v) of the 

culture medium. Addifion of these local anaesthetics did not affect the 

pH of the culture medium. The concentration range of the three local 

anaesthetics on both cell lines was between 0-4mM. 

Cells (5xl05) were seeded in 1ml of serum-free culture 

medium containing a range of local anaesthefic concentrations, in 24-

well plates. The control wells contained 0.1% (v/v) distilled water in the 

serum-free culture medium. The cells were incubated for 4 hours at 

37°C in an humidified atmosphere of air/C02 (19:1, v/v), and then were 

pelleted by centrifijgation at 300g for 4 minutes at 20°C. The cells were 

resuspended in culture medium, and were incubated with ^H-thymidine 

as described in secfion 2.2.6, and counted as described in section 2.2.3. 
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2.2.9 Combination cytotoxicity experiments with ether lipid and 

local anaesthetic 

A subtoxic dose of local anaesthetic, defined as that 

concentration which killed < 10% of cells, was determined for 

dibucaine, tetracaine and procaine. At low concentrations, dibucaine 

proved to be very cytotoxic to HL60 cells and therefore a subtoxic dose 

was not used. The HL60 cells were incubated with 0.2mM tetracaine or 

4mM procaine. The K562 cells were incubated with O.lmM dibucaine, 

0.15mM tetracaine or 2mM procaine. 

Cells (5x104) were seeded in 1ml of serum-free culture medium 

in each well, in a 24-well plate. One set of cells was incubated in 

serum-free culture medium containing ether lipid concenfrations 

ranging between 0-20fiM in the absence of local anaesthefic. The other 

set of cells were incubated in culture medium containing a subtoxic 

concentration of local anaesthetic plus ether lipid concentrations 

ranging between 0-20|iiM. The cells were incubated for 4 hours at 37°C 

in an humidified atmosphere of air/C02 (19:1, v/v). After 4 hours the 

cells were pelleted by centrifiigation at 300g for 4 minutes at 20°C, and 

resuspended in culture medium. The cells were incubated with ^H-

thymidine as described in secfion 2.2.6, and counted as described in 

secfion 2.2.3. 

2.2.10 Statistical analysis 

In this study the incorporation of ^H-thymidine into the K562 

and HL60 cells was used to determine the cytotoxic effects of the ether 

lipids and local anaesthefics. The control cells were taken to be a 100% 

value and the other conditions were determined as a percentage of the 

control. To ensure the percentage values were normally distributed this 
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data was fransformed using arcsine and then analysed statistically using 

Oneway ANOVA. In subsequent chapters, when the data is given in 

percentage form, that data is also transformed using arcsine and then 

statistically analysed using Oneway ANOVA. 
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2.3 Results 

2.3.1 Growth conditions 

HL60 and K562 cells were routinely cultured in RPMI-1640 

culture medium containing 10% (v/v) heat-inactivated foetal calf serum, 

but when the cells were first taken out of liquid nitrogen it proved more 

successful to grow the cells in culture medium containing 20% (v/v) 

heat-inactivated foetal calf serum. This was especially true for the HL60 

cells. The percentage of serum was then reduced sequentially until the 

cells grew well in culture medium containing 10% (v/v) serum. The 

K562 cells responded quickly to the growth conditions and were 

available for experimentation in one week, whereas the HL60 cells 

grew much more slowly when thawed and took two weeks before they 

grew exponentially. 

The doubling time of both of the cell lines was established over a 

period of 14 days. The cell growth over that time is shown in Figure 

2.3. The doubling time of the HL60 cells was 24 hours whereas that of 

the K562 cells was slightly longer at 28 hours. 

Initially, the cytotoxic effect of ether lipids differed greatly from 

one experiment to another when experiments were performed in the 

presence of serum, probably because ether lipids bind to serum proteins 

(Kelley et ai, 1993). It is possible, therefore, that the majority of the 

ether lipid remained bound to serum proteins, explaining the variable 

cytotoxicity of this agent in different experiments. 

Subsequently, it was decided to expose cells to ET- I8 -OCH3 in 

serum-free culture medium, in order to avoid the sequestration of the 

ether lipid by serum proteins. However, it is possible that growth in 

serum-free conditions could adversely affect cell growth and viability, 
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Figure 2.3 Cell growth 

Cells were grown exponentially in RPMI-1640 culture medium. The 
cell growth over a period of 14 days was determined, as described in 
section 2.2.6. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

• HL60 cells 

• K562 cells 

The HL60 cells doubled in cell number in 24 hours. 
The K562 cells doubled in cell number in 28 hours. 
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so it was important to minimise the period of exposure to serum-free 

conditions. Further experiments demonstrated that both HL60 and K562 

cells could be grown in serum-free culture medium for 4 hours with no 

adverse effects on cell number and viability, as shown in Table 2.1. 

Therefore, in subsequent experiments, cells were exposed to ether lipid 

in serum-free conditions for a period of 4 hours. 

2.3.2 Cytotoxic effects of ET-I8-OCH3 on HL60 and K562 cell 

lines 

The cytotoxic effects of the ether lipids on both cell lines was 

initially determined by trypan blue exclusion. A more accurate method 

of determining the reproductive ability of the cells was required, and the 

incorporation of ^H-thymidine was used. The seeding density and 

amount of ^H-thymidine to be used was determined and an incubation 

of 50,000 cells/well with 0.2|aCi ^H-thymidine for 3 hours was chosen, 

this gave counts in the region of 50,000 - 100,000 dpm . 

Routinely, cells were exposed to various concentrations of ET-

I 8 - O C H 3 in serum-free medium for 4 hours, then centrifiiged and 

resuspended in fresh medium. A portion of this cell suspension was 

incubated with ^H-thymidine for 3 hours, as described in section 2.2.6. 

As results from experiments undertaken on different days needed to be 

compared, the counts needed to be standardised as they differed 

between experiments. Therefore, control cells were taken to incorporate 

100% ^H-thymidine, and from this value the other conditions were 

determined as a percentage of control. Table 2.2 shows that the 

incorporation of ̂ H-thymidine and the number of viable cells decreased 

as the concentration of ether lipid was increased. These two methods 

can be used to show that the ether lipid is inhibiting cell growth. The 
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Table 2.1 Comparison of cell growth in culture medium and 
serum free culture medium 

Cells (5xl05) were grown in RPMI culture medium of in serum free 
RPMI-1640 culture medium for 4 hours as described in section 2.2.6. 
After 4 hours the cells were counted as described in section 2.2.3. 

The cell number and viability were determined. The results of three 
separate experiments are summarised. Each result is the mean value of 
three replicates from one experiment, the standard deviation for each 
value was less than 5%. 

Cell line and culture medium Total cell number Viability 
grovm in (xl05 cells/ml) % 
HL60 cells grown in culture 5.48 99 
mediimi 5.42 100 

5.46 99 
HL60 cells grown in serum 5.47 99 
free culture medium 5.42 98 

5.44 100 
K562 cells grown in culture 5.35 99 
medium 5.37 99 

5.33 100 
K562 cells grown in serum 5.34 99 
free culture medium 5.35 100 

5.33 98 
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Table 2.2 The correlation between ̂ H-thymidine incorporation 
by cells and cell viability 

HL60 cells were incubated with a range of E T - I 8 - O C H 3 concentrations 
0-15|iM for 4 hours in serum-free culture medium, as described in 
section 2.2.7. The incorporation of ^H-thymidine into the control, 
untreated cells, was taken to be a 100% value and the incorporations in 
other conditions were determined as a percentage of the control. The 
viabihty of the cells was determined as described in section 2.23. 

Concentration of 
E T - I 8 - O C H 3 

iM 

Number of viable 
cells 

xl05 cells/ml 

Incorporation of 
^H-thymidine as a 

percentage of control 
0.0 5 100 
0.5 4.7 81 
1.0 4.2 77 
2.5 3.5 74 
5.0 2.1 41 
7.5 0 0 
15.0 0 0 
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cell counts give a record of the number of cells that do not take up the 

trypan blue stain at the end of the experiment and are therefore viable 

cells. The ^H-thymidine shows how many cells within the population 

are able to replicate. The ^H-thymidine incorporation results were 

believed to be a more accurate method of determining the effect on cell 

growth by membrane active agents, as it shows the percentage of cells 

able to reproduce. This method was used to show the effect of 

membrane active agents on the K562 and HL60 cells' reproductive 

ability. 

As ether lipid was delivered to the cells in 100% (v/v) ethanol 

and was present in the culture medium as 0.1% (v/v) ethanol, the 

control wells contained 0.1% (v/v) ethanol in the serum-free culture 

medium. From cell counts, viability and ^H-thymidine incorporation 

this had no effect on cell growth as shown in Table 2.3. 

Figure 2.4 shows the effects of ET- I8 -OCH3 on both cell lines, 

determined by the incorporation of ^H-thymidine. On exposure to ET-

I 8 - O C H 3 for 4 hours, the reproductive ability of the HL60 cell line was 

more susceptible to the effects of the ether lipid than the K562 cell line. 

The reproductive ability of the HL60 cells was markedly reduced at 

2.5|aM E T - I 8 - O C H 3 and was significantly different (p < 0.05) from the 

K562 cell line at 5|uM and 7.5\JM. At 7.5|iM the ether lipid had 

completely destroyed the reproductive ability of the HL60 cells 

compared with 15|iM for the K562 cells. This was reflected in the I C 5 0 

values of 4.1 I f i M for HL60 cells and 8.53|iM for K562 cells. 
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Table 2.3 Effect of 0.1% ethanol in culture medium on cell 
growth and ̂ H-thymidine incorporation 

Cells (5xl05) were seeded in 1ml of either serum-free culture medium 
or serum-free culture medium containing 0.1% ethanol, in 24 well 
plates. The cells were incubated for 4 hours at 37°C in an humidified 
atmosphere of air/C02 (19:1, v/v). After 4 hours the cells were pelleted 
as described in section 2.2.7. The cells were then counted as described 
in section 2.2.3 and the incorporation of ^H-thymidine was determined 
as described in section 2.2.6. The mcorporation of ^H-thymidine into 
the confrol, unfreated cells, was taken to be a 100% value and the other 
conditions were determined as a percentage of the confrol. 

The results of three separate experiments are summarised. Each result is 
the mean value of three rephcates from one experiment, the standard 
deviation for each value was less than 5%. 

Cell line and culture Total cell Incorporation of 
medium number ^H-thymidine as a 

(xl05cells/ml) percentage of confrol 
HL60 serum-free 5.44 100 
culture medium 5.48 100 

5.45 100 
HL60 serum-free 5.44 97 
culture medium + 5.47 101 

0.1%, ethanol 5.46 99 
K562 serum free 5.34 100 
culture medium 5.33 100 

5.35 100 
K562 serum-free 5.33 101 
culture medium + 5.34 97 

0.1% ethanol 5.34 98 
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Figure 2.4 Cytotoxic effects of ether lipids 

Cells were incubated with a range of E T - I 8 - O C H 3 concenfrations 
0-15 [iM for 4 hours in serum-free culture mediimi, as described in 
section 2.2.7. The incorporation of ^H-thymidine into the confrol, 
untreated cells, was taken to be a 100% value and the other conditions 
were determined as a percentage of the control. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

• HL60 cells 

• K562 cells 

The I C 5 0 values were 4.11|aM for HL60 cells and 8.53nM for K562 
cells. 

Oneway ANOVA was used to compare the incorporation of ^H-
thymidine into HL60 cells treated with E T - I 8 - O C H 3 with ± e 
incorporation of ^H-thymidine into K562 cells treated with ET-18-
O C H 3 . 

Significant differences were found between the treatments at 5\iM and 
7.5|iM (p<0.05). 
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n 
•D 

O 

c 
o 
CO 

c 
O c 
0 

o 



2.3.3 Cytotoxic effects of local anaesthetics on K562 and HL60 cell 

lines 

Figures 2.5 and 2.6 show that both the HL60 and K562 cell lines 

have similar sensitivities to the effects of the three local anaesthetics. 

The order of cytotoxicity for both cell types was : dibucaine > tetracaine 

> procaine. The I C 5 0 values for dibucaine were very similar for both 

cells lines; 0.28mM for HL60 cells and 0.22mM for K562 cell line. The 

initial response to the dibucaine was more severe for the HL60 cells. At 

a very low concentration of dibucaine (13|LIM) 28% of the HL60 cell 

line lost their reproductive ability. As the cells were very sensitive to 

low concentrations of dibucaine a subtoxic dose was not determined for 

this local anaesthetic. In the HL60 cell line, the cytotoxic effect of 

dibucaine increased with concentration but was not as severe as the 

initial response. Although the I C 5 0 value was similar for both cell lines 

the K562 cell line was affected to a greater extent as the concentration 

of dibucaine was increased. At a dibucaine concenfration of 0.8mM all 

the K562 cells had lost their reproductive ability compared to 2mM for 

the HL60 cells. Therefore, although initially the HL60 cells seemed to 

be affected by a low concentration of dibucaine the K562 cells proved 

to be more sensitive to higher concentrations. Tetracaine produced a 

similar effect on the reproductive ability of both cell lines. The I C 5 0 

value was 0.64mM for K562 cell line and 0.68mM for HL60 cell line. 

At lower concentrations (0.5mM) of tetracaine the reproductive ability 

of the HL60 cells was higher than the K562 cells. As the concentration 

of tetracaine increased both cell lines lost reproductive ability. At 2mM 

all the K562 and HL60 cells had lost their reproductive ability. The 

cytotoxic effect of procaine is not fijlly shown in Figures 2.5 and 2.6. 
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Figure 2.5 Cytotoxic effects of local anaesthetics on K562 cells 

Cells were incubated with dibucaine, tefracaine or procaine (0-2niM) 
for 4 hours in serum-free culture medium, as described m section 2.2.6, 
then cells were pelleted by centrifiigation, resuspended in culture 
medium and incubated with ^H-thymidine as described in section 2.2.6. 
The incorporation of ^H-thymidine into the confrols was taken to be a 
100% value and the other conditions were determined as a percentage 
of confrol. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

• dibucaine freated cells 

• tefracaine freated cells 

A procaine freated cells 

The I C 5 0 values for these local anaesthetics were determined from this 
graph. 

Local Anaesthetic IC<50 value mM 
Dibucaine 0.22 
Tefracaine 0.64 
Procaine 17.60 
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Figure 2.6 Cytotoxic effects of local anaesthetics on HL60 cells 

Cells were incubated with dibucaine, tetracaine or procaine (0-2mM) 
for 4 hours in serum-free culture medium, as described in section 2.2.6., 
then cells were pelleted by centrifiigation, resuspended in culture 
medium and incubated with ^H-thymidine as described in section 2.2.6. 
The incorporation of ^H-thymidine into the controls was taken to be a 
100% value and the other conditions were determined as a percentage 
of confrol. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

dibucaine freated cells 

tefracaine freated cells 

procaine freated ceUs 

The I C 5 0 values for the local anaesthetics were determined from this 
graph. 

Local Anaesthetic I C 5 0 value mM 
Dibucaine 0.28 
Tefracaine 0.68 
Procaine 16.75 
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Figure 2.7 demonsfrated that the I C 5 0 values for procaine were 

16.75mM for HL60 cells and 17.6mM for K562 cells. After a procaine 

concentration of 4mM the HL60 cells started to lose their reproductive 

ability. Approximately 20% of the HL60 cells lost reproductive ability 

at lOmM and approximately 80% of them cells lost reproductive ability 

at 25mM procaine. The K562 cell line started to lose reproductive 

ability at ImM. Approximately 20% of the cells had lost their 

reproductive ability at 8mM procaine concentration and approximately 

75% of K562 cells lost reproductive ability at 25mM procaine. 

2.3.4 Cytotoxic effects of ether lipid and local anaesthetics in 

combination on HL60 and K562 cell lines 

As both ether lipids and local anaesthetics are membrane-active 

agents, it was of interest to determine whether they might have additive 

or synergistic effects on leukaemia cell death. In these combination 

experiments, it was decided to determine the effect of a subtoxic 

concenfration of local anaesthetic, on the cytotoxicity of ET-I8-OCH3. 

Subtoxic doses of the local anaesthetics to be used in 

combination experiments with ET- I8 -OCH3 on K562 cells were 

determined from Figure 2.5, these were O.lmM dibucaine, 0.15mM 

tetracaine and 2mM for procaine. From Figure 2.4 the K562 cells lost 

their reproductive ability at 15|j,M ET-I8-OCH3. It was decided to 

determine the combined effect of ether lipid and dibucaine over the 

whole ether lipid concentration range, therefore the ether lipid 

concentrations ranged between 0-20|LIM. Figure 2.8 shows the cytotoxic 

effects of O.lmM dibucaine in combination with 0-20|LIM ET-I8-OCH3 

on K562 cells. The reproductive ability of K562 cells was inhibited by 
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Figure 2.7 Cytotoxic effects of procaine on K562 and HL60 cells 

Cells were incubated with procaine (0-25mM) for 4 hours in serum-free 
culture medium, as described in section 2.2.6, then cells were pelleted 
by centrifugation, resuspended in culture medium and incubated with 
^H-thymidine as described in section 2.2.6. The incorporation of ^H-
thymidine into the controls was taken to be a 100% value and the other 
conditions were determined as a percentage of control. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

K562 cells 

HL60 cells 

As can be seen from this graph, the IC50 value for procaine was 
17.6mM for K562 cells and 16.75mM for HL60 cells. 
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ET-I8-OCH3 alone, with an IC50 value of approximately 8.5|iM. The 

cytotoxic action of the ether lipid was greatly increased in the presence 

of O.lmM dibucaine, giving an IC50 value of 3.7nM ET-I8-OCH3. The 

addition of dibucaine to the ether lipid treated K562 cells significantly 

decreased the reproductive ability of the cells at ET-I8-OCH3 

concentrations of I f i M , 3 | iM, 5\xM and 7.5^M (p < 0.05). 

Figures 2.9 and 2.10 shows the effect of combining 0.15mM 

tetracaine or 2mM procaine, respectively, with ET-I8-OCH3. It is clear 

from these Figures that the combined effect of tetracaine with ET-18-

OCH3 or procaine with ET-I8-OCH3 did not alter the reproductive 

ability of the K562 cell line compared to the effect of ET-I8-OCH3 

alone. 

As shown in Figure 2.6 dibucaine proved to be very cytotoxic to 

HL60 cells and it was not possible to determine a subtoxic dose for 

combination experiments with ET-I8-OCH3. Subtoxic doses were 

determined for tetracaine and procaine in the HL60 cells, the 

concentrations used were 0.2mM and 4mM, respectively. Figure 2.4 

showed that the majority of HL60 cells had lost their reproductive 

ability at SfiM ET-I8-OCH3, from this the ether lipid concentrations to 

be used for combined experiments of ether lipid and local anaesthetic 

for HL60 cells ranged between O-S îM. Figure 2.11 shows the effect of 

the combination of tetracaine and ET-I8-OCH3. The addition of 0.2mM 

tetracaine to 0-5|iM ET-I8-OCH3 treated HL60 cells did not affect 

their reproductive ability compared to ET-I8-OCH3 treatment alone. 

Figure 2.12 shows the effect of combining 4mM procaine and 0-5fiM 

ET-I8-OCH3. No difference in reproductive ability was shown between 

HL60 cells that had been treated with procaine alone compared to HL60 

cells treated with ether lipid and procaine. 
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Figure 2.8 Cytotoxic effects of ether lipid on K562 cells in the 
presence/absence of dibucaine 

K562 cells were incubated with concentrations of ET-I8-OCH3 
ranging between 0-20\xM in the presence or absence of dibucaine 
(O.lmM) for 4 hours in serum-free culture medium. Then cells were 
pelleted by centrifiigation, resuspended in culture medium and 
incubated with ^H-thymidine as described in section 2.2.6. The 
incorporation of ^H-thymidine was taken to be 100% for control (0|iM 
ET-I8-OCH3) and the other conditions were determined as a 
percentage of the control. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

ether lipid treated cells 

ether lipid treated cells in the presence of 0. ImM dibucaine 

The IC50 values were 8.5(iM for ether lipid treated cells and 3.7|a,M 
for ether lipid cells in the presence of 0. ImM dibucaine. 

Using Oneway ANOVA analysis significant differences were found 
between the treatments at IJJM, 3JIM, 5\aM and 7.5nM ether lipid 
concentrations (p < 0.05). 
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Figure 2.9 Cytotoxic effects of ether Upid on K562 cells m the 
presence/absence of tetracaine 

K562 cells were incubated with concentrations of ET-I8-OCH3 
ranging between 0-10p,M in the presence or absence of tetracaine 
(0.15mM) for 4 hours in serum-free culture medium. Then cells were 
pelleted by centrifugation, resuspended in culture medium and 
incubated with ^H-thymidine as described in section 2.2.6. The 
incorporation of ^H-thymidine was taken to be 100% for control (0\iM 
ET-I8-OCH3) and the other conditions were determined as a 
percentage of the confrol. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

ether lipid treated cells 

ether lipid treated cells in the presence of 0.15mM tetracaine 

The IC50 values were 6.2)iM for ether lipid treated cells and 5.5|iM 
for ether lipid cells in the presence of 0.15mM tetracaine. 

From Oneway ANOVA statistical analysis no significant differences 
were found between treatments. 
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Figure 2.10 Cytotoxic effects of ether lipid on K562 ceUs in the 
presence/absence of procaine 

K562 cells were incubated with concentrations of ET-I8-OCH3 
ranging between 0-10|liM in the presence or absence of procaine 
(2niM) for 4 hours in serum-free culture medium. Then cells were 
pelleted by centrifiigation, resuspended in culture medium and 
incubated with ^H-thymidine as described in section 2.2.6. The 
incorporation of ^H-thymidine was taken to be 100% for control (Op-M 
ET-I8-OCH3) and the other conditions were determined as a 
percentage of the control. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

ether lipid treated cells 

ether lipid treated cells in the presence of 2niM procaine 

The IC50 values were 5.15fiM for ether lipid treated cells and 3.9fiM 
for ether lipid cells in the presence of 2mM procaine. 

From Oneway ANOVA statistical analysis no differences were found 
between treatments. 
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Figure 2.11 Cytotoxic effects of ether lipid on HL60 cells in the 
presence/absence of tetracaine 

HL60 cells were incubated with concentrations of ET-I8-OCH3 
ranging between 0-5)j.M in the presence or absence of tetracaine 
(0.2mM) for 4 hours in serum-free culture medium. Then cells were 
pelleted by centrifiigation, resuspended in culture medium and 
incubated with ^H-thymidine as described in section 2.2.6. The 
incorporation of ^H-thymidine was taken to be 100% for control (Op.M 
ET-I8-OCH3) and the other conditions were determined as a 
percentage of the control. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

• ether lipid treated cells 

• ether lipid treated cells in the presence of 0.2mM tetracaine 

The IC50 values were 3.28^M for ether lipid treated cells and 4.16|iM 
for ether lipid cells in the presence of 0.2mM tetracaine. 

From Oneway ANOVA statistical analysis no differences were found 
between the treatments. 
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Figure 2.12 Cytotoxic effects of ether lipid on HL60 cells m the 
presence/absence of procaine 

HL60 cells were incubated with concentrations of ET-I8-OCH3 
ranging between 0-5)j.M in the presence or absence of procaine (4mM) 
for 4 hours in serum-free culture medium. Then cells were pelleted by 
centrifugation, resuspended in culture medium and incubated with ^H-
thymidine as described in section 2.2.6. The incorporation of ^H-
thymidine was taken to be 100% for control (O^M ET-I8-OCH3) and 
the other conditions were determined as a percentage of the confrol. 

Each point represents the mean value + S.D. for 3 separate experiments 
(9 replicates). 

ether lipid treated cells 

ether lipid treated cells in the presence of 4mM procaine 

The IC50 values were 3.49|iM for ether lipid treated cells and 3.38)j.M 
for ether lipid treated cells in the presence of 4mM procaine. 

From Oneway ANOVA statistical analysis no significant differences 
were found between freatments. 
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2.4 Discussion 

Work reported in this chapter examined the cytotoxic effects of 

two types of membrane active agents on human leukaemia cell lines. 

The membrane active agents were an ether lipid ET-I8-OCH3 whose 

structure is closely related to PAF, and three local anaesthetics, 

dibucaine, tetracaine and procaine. The two cell lines used were human 

acute myeloblastic leukaemia (HL60) and human myelogenous 

leukaemia (K562) cells. 

The HL60 cell line and K562 cell line were grown in suspension 

culture. The cells grew exponentially when kept between 2x10^ and 

1x106 cells/ml and were grown until passage number 40. The time 

taken for the cell lines to double was found to be 24 hours for HL60 

cells and 28 hours for K562 cells. This is similar to that reported by 

Hoffman et al. (1986) who observed generation times of 24 hours for 

both cell lines. 

Ether lipids have been shown to localise in cellular membranes 

(Andreesen et al, 1978; Tidwell et al, 1981). In L1210 cells the initial 

unidirectional influx of ET-I8-OCH3 was nonsaturable, energy 

independent and slightly temperature sensitive (Kelley et al., 1993). 

From these results Kelley et al. (1993) concluded that ET-I8-OCH3 

was incorporated into the cell membrane by passive diffusion, and not 

by endocytosis as was previously thought (Bazill & Dexter, 1990). 

In this chapter ether lipids were presented to the cells by 

including the ether lipid dissolved in 100% ethanol into the culture 

medium. The ethanol concentration was kept to a minimum of 0.1% 

(v/v) of the culture medium. Kelley et al., (1993) reported that ether 

lipids bind to serum proteins and this could reduce their uptake by 

approximately 50%, even at serum levels as low as 0.5% (v/v). The 

51 



culture medium that the HL60 and K562 cell line grew in contained 

10% (v/v) heat-inactivated foetal calf serum. Therefore, for a known 

quantity of ether lipid to be available to the cells the culture medium 

should not contain serum. A short incubation time of 4 hours was 

chosen for the cells to grow in serum-free culture medium. Before 

testing the action of the ether lipid on the cell lines the growth of the 

cells in serum-free culture medium was established. It was found that a 

4 hour incubation in serum-free medium did not alter the growth rate of 

either cell line. 

Initially, the effect of the membrane active agents on cell 

viability was determined by trypan blue exclusion. From these cell 

counts total cell numbers and viable cell numbers could be established. 

The cytotoxic action of the membrane active agents was determined by 

loss of the cell's reproductive ability, as measured by the incorporation 

of 3H-thymidine into DNA. Cells (50,000) were incubated in growth 

medium containing 0.2)aCi of ^H-thymidine for 3 hours giving counts 

in the region of 50,000 to 100,000 dpm . 

The effect of the ether lipid ET-I8-OCH3 on cell growth was 

determined as a percentage of incorporation of ^H-thymidine into 

control cells. The effect of the ET-I8-OCH3 on HL60 cells 

reproductive ability was dramatic with an IC50 value of 4.11|LIM. The 

HL60 cells were much more sensitive to low concentrations of ET-18-

OCH3 than the K562 cells. At a concentration of l | i M ET-I8-OCH3 

25% of the HL60 cells lost their reproductive ability, whereas the K562 

cells were unaffected. The IC50 value for the K562 cells exposed to this 

ether lipid was 8.53|LIM ET-I8-OCH3. As the concentration of ET-18-

OCH3 increased the reproductive ability of both cell lines decreased. 

Al l of the reproductive ability was lost at an ET-I8-OCH3 

concentration of 7.5)iM for the HL60 cells and at \5\iM for the K562 
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cells confirming previous observations (Tidwell et al., 1981) that HL60 

cells were more sensitive to the ET-I8-OCH3 than the K562 cells. The 

LD50 for HL60 cells was 1.5|iM compared to 21|aM for K562 cells 

after a 24 hour exposure to ether lipid (Wagner et al., 1998) determined 

by clonogenic survival for 14 days. Clonogenic survival was lost totally 

at lOi^M ET-I8-OCH3 for HL60 cells and 100|iM for K562 cells. 

These values corresponding to LD50 and total loss of clonogenic 

survival are higher than the IC50 results in the present study. This may 

be due to the different assay for cytotoxicity, the presence of 10% FBS 

in the ET-I8-OCH3 incubations or the different exposure time to the 

ether lipid in the Wagner et al. (1998) experiments. The presence of 

10% FBS would alter the concentration of ether lipid available to the 

cells. Heesbeen et al. (1995) showed the effect of varying serum levels 

on the cytotoxic effects of ET-I8-OCH3 in HL60 and K562 cells. The 

reduction of FCS from 10% to 2% reduced the IC50 for the 

incorporation of ^H-thymidine from approximately 55^M to lOfiM, 

respectively, in HL60 cells and from approximately >96fiM to AO\iM, 

respectively, in K562 cells. The reduction of FBS to 2% in the culture 

medium of HL60 and K562 cells lowered the ET-I8-OCH3 IC50 values 

to nearer those obtained in this study with 0%) FCS. 

It is unclear why ether lipids are more cytotoxic to tumour cells 

than to normal cells. In this study the mechanisms of action of ET-18-

OCH3 were not investigated, but there are many different ways in 

which the ether lipid may affect tumour cells. Soodsma Qt al., (1970) 

showed that tumour cells had a low activity of the alkyl cleavage 

enzyme. This may cause an increase in concentration of the alkyl 

phospholipids which inhibit cell function, leading to cell death 

(Andreesen et al., 1978). The activity of the alkyl cleavage enzyme was 

assayed in microsomes from sensitive HL60 cells and resistant K562 
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and MDCK cells using l-hexadecyl-2-methoxy-glycero-3-

phosphocholine as a substrate (Hoffman et ai, 1986). Alkyl cleavage 

enzyme activity in HL60 cells did not differ significantly fi"om K562 or 

MDCK cells. Hoffman et al. (1986) concluded that the antineoplastic 

property of ether lipids cannot be based on a low alkyl cleavage enzyme 

activity in cancer cells. However, the HL60 cells showed a preferential 

sequestering of the ET-I8-OCH3 in the plasma membrane, and the 

incorporation of ether lipids into the plasma membrane has been shown 

to alter membrane fluidity which may contribute to cell death 

(Diomede a/., 1990). 

Tidwell et al., (1981), also showed that the K562 cells were 

more resistant to the cytotoxic effect of ET-I8-OCH3 compared to 

HL60 cells. The growth of HL60 colonies was reduced after a 24 hour 

pulse of 9.6^xM ET-I8-OCH3, whereas K562 colonies showed 

resistance up to 38|LIM. The resistance of K562 cells may be related 

to greater cholesterol content in the plasma membrane compared to 

HL60 cells (Diomede et al., 1990). In model membranes Diomede et 

al., (1990), showed that the amount of cholesterol in membranes 

affected ether lipid uptake. When HL60 cells were supplemented with 

cholesterol they were found to have a similar level of cholesterol 

content, and phospholipid to cholesterol ratio, as K562 cells. Over short 

exposures of 2 hours to ET-I8-OCH3, cholesterol-enriched HL60 cells 

showed approximately 40% reduction in ether lipid cytotoxicity 

compared to HL60 cells not enriched with cholesterol. This ether lipid 

cytotoxicity in the cholesterol-enriched HL60 cells was similar to that 

found in K562 cells. However, when cholesterol-enriched HL60 cells 

were exposed for 48 hours to ET-18-OCH3 the cytotoxicity of the ether 

lipid was not reduced compared to unmodified HL60 cells, whereas the 

K562 cells remained more resistant (Diomede et al., 1990). 
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Other possible effects have been observed that may account for 

the resistance to ET-I8-OCH3 of the K562 cells compared to HL60 

cells. Clonogenic studies (Wagner et al., 1998) showed that the LD50 

for H L 6 0 cells was 1.5fiM compared to 21)JM for K562 cells after a 24 

hour exposure to ET-I8-OCH3 in culture medium containing 10% FBS. 

In that study, Wagner et al. (1998) showed that HL60 cells generated a 

lipid derived free radical (L(j") when exposed to ET-I8-OCH3 (20fxM 

and above). The cells were first subjected to oxidative stress of 20|iM 

FeS04-7H20 and 100|aM ascorbic acid for 5 minutes. After 5 minutes 

ET-I8-OCH3 was added to the cells. Approximately 3 minutes after the 

addition of the ether lipid the production of L^' began in HL60 cells 

previously initiated to oxidise with Fe2+ and ascorbate. K562 cells 

treated with up to 40fxM ET-I8-OCH3 failed to produce the L^' . The 

production of this radical corresponds to the onset of early cytotoxicity 

suggesting that these events may be related. A steady state 

concentration of ascorbate fi-ee radical [Asc'̂ Jss was used to estimate 

the cellular oxidative stress of the cells. After the addition of ET-18-

OCH3 (> 15)JM) HL60 cells previously initiated to oxidise with Fe2+ 

and ascorbate showed a rapid increase in [Asc"']ss • There was no 

increase in [Asc'-Jgs when ET-I8-OCH3 was added to K562 cells 

except at 40|uM ET-I8-OCH3 which compared to the increase in HL60 

cells was comparatively small. This indicates that ET-I8-OCH3 results 

in an increased oxidative state in HL60 cells but not in K562 cells. 

Ether lipids themselves do not generate oxidative intermediates during 

metabolism (Magistrelli et al., 1995). Wagner et al., (1998) showed that 

the HL60 cells had more polyunsaturated fatty acids in membranes 

than in K562 cells. This makes the HL60 cells membranes more 

susceptible to oxidation after the addition of ET-I8-OCH3. Wagner et 
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al. (1998) thought that the free radical generation may be related to 

necrotic cell death or apoptosis. 

HL60 cells and HL60 cells induced to differentiate by DMSO for 

5 days (dHL60 cells) were used to determine the effect of ET-18-

OCH3 and PAF on cytosolic calcium and apoptosis (Alonso et al., 

1997). HL60 cells do not respond to PAF but dHL60 cells express PAF 

receptors as they differentiate towards granulocytes (Vallari et al., 

1990). In dHL60 cells both PAF and ET-I8-OCH3 {6\iU) treatments 

for 12 hours induced an increase in cytosolic free calcium [Ca2+]j 

composed of a transient peak and a sustained plateau. This increase 

was blocked by the PAF antagonist WEB-2170. In dHL60 cells, ET-

I8-OCH3 induced a larger increase in [Ca2+]|, as ET-I8-OCH3 had an 

affinity for the PAF receptor, but did not induce apoptosis (Alonso et 

al., 1997). In HL60 cells, ET-I8-OCH3, 6^M for 12 hours, only 

slightly increased [Ca2+]j and induced apoptosis. Alonso et al. (1997) 

found no correlation between the effects of ET-I8-OCH3 on [Ca2+]| 

and apoptosis. 

Cytotoxic effects of ether lipids may also be related to effects on 

cell signalling. The ether lipids ET-I8-OCH3 and BM41.440 have been 

shown to be specific protein kinase C (PK-C) inhibitors (Shoji et al., 

1988). PK-C inhibition would lead to a breakdown in transmembrane 

signalling, cell growth and differentiation (Nishiguka, 1984). Helfman 

et al., (1983) and Shoji et al., (1988) showed that BM41.440 and ET-

I8-OCH3 inhibited PK-C competitively with respect to 

phosphatidylserine but noncompetitively with respect to Ca2+. These 

studies focused on the effects of ether lipids on purified protein kinase 

C. Heesbeen et al. (1994) investigated the effect of ET-I8-OCH3 on 

PK-C activity while the enzyme was still in its phospholipid 

environment in the plasma membrane of HL60, dHL60 and K562 cells. 
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The cytotoxic effect of ET-I8-OCH3 gave an LD50 value of 6|ig/ml in 

HL60 cells this was reduced in dHL60 cells to 40|uM. The cytotoxic 

effect of ET-I8-OCH3 on HL60 and K562 cells pretreated with 

staurosporine, an inhibitor of PK-C activity, was identical to control 

cells, suggesting that PK-C activity in HL60 and K562 cells is essential 

for proliferation but not essential for the cytotoxic action of ET-18-

OCH3. 

Vogler et al. (1996) investigated the effect of ET-I8-OCH3 on 

the de novo synthesis of phosphatidylchohne in HL60 and K562 cells, 

by examining the activity of the rate-limiting enzyme choline-phosphate 

cytidylyltransferase. Vogler et al. (1996) showed that there was 

significantly more cytidylytransferase (CT) activity/|ig of protein in 

K562 cells compared to HL60 cells. The enzyme activity was measured 

by the incorporation of ^^^.p^osphocholine into CDP-choline in 

lysates of HL60 and K562 cells. ET-I8-OCH3 inhibited HL60 lysates 

to a much greater extent than K562 lysates with IC50 values of 22|iM 

and 359)iM, respectively. CT was partially purified from HL60 and 

K562 cells, cloned and sequenced. The cDNA of CT from the HL60 

and K562 cells were only different at one nucleotide. In K562 cDNA 

nucleotide number 751 was G, whereas in the HL60 cDNA nucleotide 

number 751 was A. This corresponded to a change at amino acid 

number 251 from glutamic acid (negatively charged) in K562 CT to 

lysine (positively charged) in HL60 CT. Vogler et al. (1996) thought 

that the increase in the positive charge of HL60 CT may contribute to a 

stronger binding of ET-I8-OCH3, resulting in its greater inhibition of 

the enzyme. 

ET-I8-OCH3 and BM41.440 were shown to significantly inhibit 

the growth of HT29 cells (Principe et al., 1992). Flow cytometry was 

used to assess the cell kinetics with bromodeoxyuridine pulse-labelling 
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experiments (BrdUrd/DNA analysis). These experiments showed that 

ET-I8-OCH3 and BM41.440 do not affect cell progression through S 

and M phase but HT29 cells were arrested in the exit fi-om G\ and G2 

phases. Therefore, ether lipids may directly or indirectly inactivate the 

complex p34cdc2.cyclin essential for passage fi-om to S and G2 to 

M (Principe fl/., 1992). 

K562 cells (grown in 10% FCS) were treated with ET-I8-OCH3 

(48|LiM) for 2 hours (Botzler, et al., 1996). This treatment was nonlethal 

but concentrations above 48|iM up to 191)iM showed a dose-dependent 

decrease in cell viability and promoted apoptosis. Apoptotic nuclei were 

detectable in K562 cells treated with 96|iM ET-I8-OCH3 for 2 hours as 

early as 2 hours after the treatment (Botzler, et al., 1996). This was 

shown by PI staining and FACS analysis. Increasing ET-I8-OCH3 

concentrations reduced the number of cells in S and G2+M. The 

cytotoxic effect of ET-I8-OCH3 (191fxM) on K562 cells was shown by 

the Gyo peak shift to the left and S and G2+M peaks disappeared 

completely. K562 cells treated with the nonlethal dose 48|iM ET-18-

OCH3 were shown to be 1.5-fold more sensitive to lysis mediated by an 

NK enriched effector cell population. Botzler et al. (1996) thought that 

nontoxic ether lipid treatment might induce a major histocompatibility 

complex-independent modulation in tumour cell membrane increasing 

immunogenicity. 

In the present study the experiments determined the cytotoxic 

effect of ET-I8-OCH3 on the HL60 and K562 cells reproductive 

ability. These concentrations were to be used in conjuncfion with local 

anaesthetic concentrations. The effect of the local anaesthetics on 

growth was determined by the incorporation of ^H-thymidine as 

previously described. 
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Dibucaine had a profound cytotoxic effect, giving IC50 values 

of 0.22mM for the K562 cells and 0.28mM for the HL60 cells. 

Although the HL60 and K562 cells had similar IC50 values low 

concentrations of dibucaine had a more severe effect on the HL60 cells 

than the K562 cells. Tetracaine also proved to be cytotoxic with IC50 

values of 0.64mM for K562 cells and 0.68mM for HL60 cells. Further 

experiments showed that procaine had an IC5Q value of 17mM for both 

K562 and HL60 cells. Procaine's effect on cell reproductive ability was 

not as dramatic as the other two local anaesthetics. This order of 

cytotoxicity of the local anaesthetics was the same for both cell lines, 

dibucaine > tetracaine > procaine. Kim et al., (1997) found the same 

order of cytotoxicity in SK-N-MC human neuroblastoma cells, with the 

IC50 values dibucaine 0.035mM > tetracaine 0.1 mM > procaine 

1.5mM. Ohki (1984) showed this was the order of membrane surface 

adsorption of the cationic forms of these local anaesthetics at any given 

concentration. In HTC cells, Kingston et al., (1993), showed this order 

reflected the linear relationship between o i l : water partition coefficients 

of the local anaesthetics and their IC50 values in HTC cells. This 

implied that their toxicity was related to a tendency to partition into the 

membrane lipid matrix or adsorb onto other hydrophobic cellular sites 

(Kingston et al., 1993). When HTC cells were incubated with these 

local anaesthetics under increased temperatures the membrane fluidity 

was effected, when measured by DPH fluorescence polarisation 

spectroscopy. Dibucaine was found to have strong fluidising effects 

suggesting that it may affect the acyl chain region of membrane 

phospholipids. Tetracaine's interaction with phospholipids was affected 

by temperature. Procaine did not fluidise the acyl chain region of the 

membrane at 37°C or 43°C (Kingston et al., 1993). 

59 



In the present study the mechanism of action of the three local 

anaesthetics was not investigated. The reduction in cell viability may 

have been related to increased membrane fluidity, increased 

intracellular calcium concentration or to apoptosis. Increasing dibucaine 

concentrations (0-1 mM) was found to increase significantly membrane 

fluidity of both inner and outer membranes in SK-N-MC human 

neuroblastoma cells at 20°C measured using fluorescence polarisation 

of DPH and TMA-DPH (Kim et al., 1997). A cell suspension of 10^ 

cells/ml was mixed with DPH or TMA-DPH and left to equilibrate at 

20°C for 30 minutes before the addition of dibucaine which was 

incubated for 30 minutes at 20°C before membrane polarisation 

measurements were taken. Dibucaine (0.1 mM) was shown to produce 

apoptosis in SK-N-MC human neuroblastoma cells (Kim et al., 1997). 

Apoptosis was determined by the production of intemucleosomal DNA 

fragmentation analysed by gel electrophoresis. Intemucleosomal DNA 

fragmentation was apparent after an 18 hour incubation with dibucaine. 

The resulting fragmentation patterns were consistent with the molecular 

weight expected from intemucleosomal DNA cleavage associated with 

apoptotic cell death (Gaido & Cidowski, 1991). The percentage of 

apoptotic cells increased as a ftmction of the log of the dibucaine 

concentration (Kim et al., 1997). 

Local anaesthetics have been shown to increase cytosolic 

calcium (Grant & Acosta, 1994). In SK-N-MC human neuroblastoma 

cells dibucaine (O.lmM) was shown to induce a rapid increase in 

intracellular calcium concentration followed by a sustained increase in 

concentration (Kim et al., 1997). In calcium free Krebs-Ringer solution 

the rapid and sustained increase in intracellular calcium was less 

profound. To determine i f the increase in infracellular calcium was a 
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result of increased membrane permeability by dibucaine resulting in an 

influx of calcium from extracellular sources or the ability of dibucaine 

to displace calcium from binding sites calcium release blockers and 

calcium chelators were used to produce an effect on cell death. A 

concentration of 45\iM dibucaine was used to determine this, this 

concentration killed approximately 70% of neuroblastoma cells (Kim et 

al., 1997). The addifion of inhibitors of intracellular calcium release 

and intracellular calcium chelators with dibucaine incubation showed 

no difference to the percentage of viable cells. However, when 

extracellular calcium was reduced, neuroblastoma cells treated with 

dibucaine showed an increase in the percentage of viable cells to 

approximately 40%. This showed that dibucaine probably induced 

neuroblastoma cell death by membrane damage allowing an influx of 

extracellular calcium (Kim et al., 1997). 

In SK-N-MC human neuroblastoma cells, the cell viability was 

significantly increased by the antioxidants L-ascorbic acid, L-cysteine 

and catalase at 45|iM in the presence of 30|iM dibucaine (Kim et al., 

1997), suggesting that dibucaine induced neuroblastoma cell death 

involves the producfion of oxygen free radicals. 

In the present study local anaesthetics were used together with 

the ether lipid, ET-I8-OCH3. Subtoxic concentrations of the local 

anaesthetics were required for each cell line. At low concentrations 

(>0.02mM), dibucaine was more cytotoxic to HL60 cells than K562 

cells. A subtoxic dose for dibucaine was not determined for the HL60 

cells. A subtoxic dose of O.lmM dibucaine was determined for K562 

cells. The IC50 values for tetracaine and procaine were similar for the 

HL60 and K562 cells although at lower concentrafions both these local 

anaesthetics were more cytotoxic to the K562 cells than to the HL60 
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cells. Subtoxic concentrations of tefracaine used were 0.15mM for 

K562 cells and 0.2mM for HL60 cells. Subtoxic concentrations of 

procaine used were 2mM for K562 cells and 4mM for HL60 cells. 

Ether lipids and local anaesthetics are considered to be 

membrane active agents and both affected the reproductive ability of 

the HL60 and K562 cell lines. A series of experiments were undertaken 

to discover i f combining the ether lipid with a local anaesthetic would 

alter the cytotoxicity of these agents. A subtoxic dose of local 

anaesthetic that reduced the reproductive ability < 10% was used, in 

conjunction with a range of ether lipid concenfrations (0-20|iM). A 

dose of O.lmM dibucaine was used for the K562 cells. Statistical 

analysis by Oneway ANOVA showed a significant difference between 

cells treated with ether lipid alone and those treated with ether lipid plus 

O.lmM dibucaine at ET-I8-OCH3 concentrations of: l | i M , 3fiM, 5|.iM 

and 7.5|LiM (p < 0.05). The cytotoxic effect was synergistic at ET-18-

OCH3 concentrations of above 3|iiM and up to 7.5\iM. For the K562 

cell line, the IC50 values were 8.5|uM for ether lipid treated cells and 

3.7|aM for ether lipid plus O.lmM dibucaine treated cells. As the 

concentration of ether lipid was increased above 7.5^M the differences 

between the two treatments became less apparent, and at an ether lipid 

concentration of 15|iM the cells from both treatments lost all of their 

reproductive ability. Between the ether lipid concentrations of 3fiM and 

7.5[iM, O.lmM dibucaine significantly reduced the reproductive ability 

of the K562 cells. As the concentration of ET-I8-OCH3 increased 

above 5|iM the effect of the O.lmM dibucaine was gradually lost as the 

cytotoxicity of the ether lipid itself increased. 
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The effect of ether lipid on K562 cells was determined in the 

presence or absence of tetracaine. K562 cells were treated with ET-18-

CH3 (0-lO[iM) only or ET-I8-OCH3 (0-lOfiM) in the presence of 

0.15mM tetracaine, but there was no significant difference between the 

effect on reproductive ability of these two treatments. The IC50 value in 

the presence of ET-I8-OCH3 alone was 6.2fiM and this was reduced 

slighfly to 5.5|LiM when 0.15mM tetracaine was present with ET-18-

OCH3 for the K562 cell line, but this difference was not statistically 

significant. The effect of ether lipid on K562 cells in the presence or 

absence of procaine was also determined. No alteration in the 

reproductive ability of K562 cells was evident when the cells were 

grown with ET-I8-OCH3 (O-lOjiM) alone compared to cells grown 

with ET-I8-OCH3 (O-lOf^M) plus 2mM procaine. The IC50 values 

were 5.15|uM for ether lipid treated cells, and 3.9|.iM for ether lipid plus 

procaine treated cells, but this difference was not statistically 

significant. 

In summary, in these combined ether lipid and local anaesthetic 

experiments for the K562 cells only the combination of ET-I8-OCH3 

and O.lmM dibucaine produced a synergisfic effect on the inhibition of 

reproductive ability compared to ET-I8-OCH3 alone. In neuroblastoma 

cells O.lmM dibucaine increased intracellular calcium and apoptosis. 

The overall effect of dibucaine on SK-N-MC human neuroblastoma 

cells was apoptosis (Kim et al., 1997). The apoptotic mechanisms may 

involve membrane damage, increased intracellular calcium and 

production of oxygen free radicals. At O.lmM dibucaine increased 

intracellular calcium, mainly induced by membrane damage, and 

induced apoptosis in human neuroblastoma cells. During the present 

study it is unknown i f intracellular calcium was increased, i f apoptosis 
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was induced, or i f the membrane was damaged to produce the 

synergistic effect of dibucaine with ET-I8-OCH3. Tetracaine and 

procaine when combined with ET-18-OCH3 showed no alteration in the 

K562 cell's reproductive ability compared to ET-I8-OCH3 alone. 

Combined ether lipid and local anaesthetic experiments were 

also undertaken on the HL60 cell line. As the HL60 cell line was 

sensitive to low concentrations of dibucaine, it was decided that a 

subtoxic dose of dibucaine could not be achieved. Therefore, the 

combined experiments were undertaken only with tetracaine (0.2mM) 

or procaine (4mM). The effects of ether lipid (0-5|iM) on HL60 cells in 

the presence or absence of tefracaine (0.2mM) were determined, but no 

significant differences were observed between HL60 cells treated with 

ether lipid and those treated with ether lipid plus tetracaine (0.2mM). As 

the concentration of ET-I8-OCH3 was increased, the reproductive 

ability of the HL60 cells was reduced with IC50 values of 3.3|iM for 

ether lipid plus tetracaine treated cells and 4.16fiM for ether lipid 

treated cells. Although there was a slight decrease in IC50 value when 

using the ET-I8-OCH3 plus tetracaine treatment, no significant 

difference was observed when statistically analysed using Oneway 

ANOVA. Furthermore, there was no statistically significant difference 

observed between HL60 cells treated with ether lipid or with ether lipid 

plus procaine. As the concentration of ET-I8-OCH3 was increased the 

reproductive ability of the cells decreased. The IC50 values were 

3.49|LiM for ET-I8-OCH3 alone and 3.38fiM for ET-I8-OCH3 plus 

procaine treatment of HL60 cells. 

From this series of experiments it is difficult to determine how 

ET-I8-OCH3 and the local anaesthetics exert their effects on both 

leukaemia cell lines. It was interesting that only dibucaine in 
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combination with ET-I8-OCH3 increased toxicity of the ether lipid in 

K562 cells. This synergistic cytotoxic effect may have been due to 

dibucaine increasing the membrane fluidity, allowing ET-I8-OCH3 to 

affect the membrane to a greater extent. Both ether lipids and local 

anaesthetics are membrane active agents that have a wide variety of 

effects, and therefore the combination of these agents may alter the 

activity of the transmembrane signalling enzymes, intracellular calcium, 

or induce free radicals to produce the synergistic cytotoxicity seen with 

ET-I8-OCH3 and dibucaine. Unfortunately the HL60 cells were too 

sensitive to dibucaine to determine any enhancement of cytotoxicity 

when combined with ether lipid. 
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Chapter III 
Effects of Fatty Acid Supplementation 

on Human Leukaemia Cells 

3.1 Introduction 

Fatty acids are present as complex lipids in mammalian tissues 

and are obtained from dietary fat or through biosynthesis. The n-3 and 

the n-6 fatty acids are two classes of polyunsaturated fatty acids 

(PUFAs) that cannot be completely synthesised in mammals and are 

derived from the diet. Essential fatty acids (EFAs) cannot be 

synthesised by the body. Fatty acids from the diet are elongated and 

desaturated to form the EFAs. All EFAs are polyunsaturated fatty acids 

(PUFAs), but many PUFAs are not EFAs. EFAs are precursors of 

eicosanoids and are important structural components of cell membranes. 

There are two families of EFAs, the n-6 PUFAs derived from 

linoleic acid 18:2^9,12 (LA) and the n-3 PUFAs derived from alpha-

linolenate (ALA) 18:3^9,12,15. JQ function fiilly as EFAs, LA and 

ALA must have all of their double bonds in the cis-form and be 

enzymatically transformed by the enzyme delta-6-desaturase (Horrobin, 

1982). In the n-6 family, LA is desaturated by this enzyme to form 

gamma-linolenic acid (GLA) 18:3'^6'9,12^ which is in turn elongated to 

give rise to dihomogamma-linolenic acid (DGLA) 20:3^^^^^^^^, the 

precursor of the 1-series prostaglandins (PGs). DGLA can also be 

desaturated by delta-5-desaturation to form arachidonic acid (AA) 20:4 

A5,8,11,14^ tĵ e precursor of 2-series PGs, thromboxanes and 

leukotrienes. In the n-3 family, a similar set of enzymes metabolise 

ALA. ALA is desaturated and elongated to give rise to eicosapentaenoic 

acid (EPA) 20:5^5,8,11,14,17^ the precursor of the 3-series PGs. EPA 
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is further converted to docosahexaenoic acid (DHA) 22:6^ 

4,7,10,13,16,19 xhe delta-6-desaturase enzyme determines the tissue 

levels of GLA, DGLA and 1-series eicosanoids. Under normal 

conditions AA, EPA, and DHA can be obtained from the diet. 

Several tumours have had their membrane properties and 

ftinctions modified by fatty acid supplementation. The fatty acid 

composition of cultured cells can be modified extensively by changing 

the type and amount of lipid contained in the culture medium (Bums & 

Spector, 1987). When fatty acids are available in the extracellular fluid, 

they are utilised preferentially, and de novo fatty acid synthesis is 

suppressed (Spector, 1975 & Spector et al., 1981). L1210 murine 

leukemia cells or Ehrlich ascites tumour cells were grown in male mice 

that had been fed on a diet supplemented with 16% saturated fatty acid 

from coconut oil or 16% polyunsaturated fatty acid from sunflower seed 

oil for four weeks prior to the inoculafion of the tumour and during the 

growth of the tumour (Bums & Spector, 1987). The fatty acid 

supplementation altered the membrane fatty acid composition in both 

the cell treatments. The membranes of L1210 cells grown in mice fed 

on a diet supplemented with 16% coconut oil contained twice as much 

monounsaturated fatty acid and half as much polyunsaturated fatty acid, 

but the overall saturated fatty acid content remained essentially 

unchanged (Bums & Spector, 1987). A large increase in oleic acid and 

a large decrease in linoleic acid with little or no change in the content of 

the other major fatty acids was detected. Similar fatty acid 

modifications were observed in the phospholipids of the cell 

membranes of Ehlrlich ascites carcinoma cells grown in mice fed with 

fatty acid-supplemented diets (Bums & Spector, 1987). In both cases 

the effects were confined to the membrane fatty acid composition and 
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there was no change in membrane phospholipid content, cholesterol 

content or phospholipid head group composition. This suggests a 

substitution of fatty acyl groups within the same phospholipid of the 

membrane. Lipid modifications produced in intact tumours have altered 

the physical properties of the plasma membrane lipid bilayer and 

produced a change in membrane fluidity (Bums & Spector, 1987). 

Supplementation of the culture medium of L1210 murine leukaemia 

cells with 32|aM DHA, caused an increase of 250% in polyunsaturated 

fatty acid content of the cell membrane (Bums & Spector, 1987). This 

was accounted for by an increase in DHA content, which was 

compensated for by a decrease of 57% in monunsaturated fatty acid, 

primarily in 18:1. DHA supplementation also resulted in a 35% increase 

in the membrane saturated fatty acid content. Similar modifications 

were found in cultured human Y-79 retinoblastoma cells (Bums & 

Spector, 1987). Y-79 cells supplemented with AA (30fiM) were found 

to have considerably less 18:1 and 73% more 20:4 in the cell 

membrane phospholipids compared to cells supplemented with oleic 

acid. When Y-79 cells were supplemented with DHA (30fiM) the cell 

membranes contained less 18:1 and 270% more 22:6 compared to cells 

supplemented with oleic acid. 

In this study HL60 and K562 cells were supplemented with fatty 

acids, and the effect on the membrane phospholipids was determined 

using gas-liquid chromatography. The fatty acids used in this study 

were OA, LA, A A, EPA and DHA. Their stmctures are shown in Figure 

3.1. 

The fatty acid supplementation of L1210 leukaemia cells grown 

in mice fed a diet of 16% sunflower oil, a rich source of PUFA, was 

shown to affect carrier-mediated fransport (Bums & Spector, 1987). 

PUFA supplementation reduced the uptake of methotrexate, a 
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chemotherapeutic drug, by 30% in L1210 leukaemia cells (Bums & 

Spector, 1987). As the K'^^ of the fransport process was changed the 

mechanism probably involved stmctural lipids altering the 

conformation of the membrane carrier sufficiently to influence the 

binding of the substrate. The effects on transport kinetics at 37°C were 

not uniform for all substances. This suggested a more complex 

mechanism than a general response to changes in bulk membrane 

fluidity (Bums & Spector, 1987). 

PUFA supplementation of cells has been shown to increase lipid 

peroxidafion and membrane fluidity. GLA, EPA and PGEi (between 40 

and 100)ig/ml) inhibited the proliferation of three colon cancers HRT 

18, HT 29 and CACO 2 in vitro (Mengeaud et al., 1992). The inhibition 

of the three cell lines was in the order HRT 18 > HT 29 > CACO 2. 

Although the IC50 values differed between the cell lines the inhibition 

by the fatty acids was in the order GLA > EPA > PGEi. GLA or EPA 

supplementation (60|iM) increased the membrane fluidity of all three 

cells lines, whereas PGEj had no effect. GLA and EPA also caused an 

increase in lipid peroxidation, but PGEj had no effect. GLA inhibited 

the proliferation of the three cell lines more than EPA and also induced 

lipid peroxidation more than EPA. The presence of lOjuM vitamin E 

totally corrected the increase in membrane fluidity by GLA and EPA 

and reduced the amount of lipid peroxidation. Mengeaud et al. (1992) 

found that PGE^ stimulated cAMP synthesis and GLA stimulated 

cAMP synthesis in the HRT 18 cells only. EPA decreased cAMP 

synthesis in all three cell lines. This inhibitory effect on tumour cell 

growth was due to the fatty acids themselves as indomethicin, an 

inhibitor of PG synthesis, did not modify the inhibition of proliferation 

caused by EPA and GLA and did not lower the levels of lipid 

peroxidation induced by these fatty acids (Mengeaud et al. 1992). 
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PUFA-induced lipid peroxidation can alter the effect of other 

agents on cells and is related to apoptotic cell death. Human breast 

tumour cells, MDA-MB-231, were treated with a subtoxic 

concentration of DHA (29|iM) in the presence of a cytotoxic 

concentration of doxorubicin ( I f iM) for 6 days (Germain et al, 1998). 

DHA supplementation enhanced doxorubicin toxicity over the 6 days, 

and this effect was further increased when oxidants were also present 

with DHA and doxorubicin. The effect of different fatty acids on 

doxorubicin-induced toxicity in MDA-MB-231 cells was determined 

(Germain et al., 1998). In the presence of oxidants the fatty acids (LA, 

a-linolenic acid, y-linolenic acid, AA, EPA, and DHA) increased 

doxorubicin toxicity more than the fatty acid and doxorubicin alone. 

The presence of antioxidants with the fatty acids reduced the enhanced 

effect of the fatty acids on doxorubicin toxicity. The order of the fatty 

acid effect of enhancing the toxicity of doxorubicin was in the order 

DHA > y-linolenic acid > EPA > AA > a-linolenic acid > linoleic acid. 

Doxorubicin increased lipid hydroperoxide level in MDA-MB-231 cells 

2-fold but the addition of DHA or oxidants did not significantly change 

the lipid hydroperoxide level. DHA with oxidants significantly 

increased the lipid peroxide level by 5-fold in MDA-MB-231 cells 

(Germain et al., 1998). When vitamin E was substituted for the oxidants 

both cell viability and lipid hydroperoxides returned to baseline levels. 

An increase in doxorubicin activity may have been due to increased 

lipid peroxide conditions. Highly unsaturated PUFAs could generate 

lipid peroxidation products from the primary radicals after the action of 

cytotoxic drugs (Germain et al., 1998). These products could act as 

'second messengers' and enhance the tumour drug sensitivity. 

PUFAs were shown to inhibit the growth of pancreatic cancer 

cell lines and HL60 cells (Hawkins et al., 1998). The PUFA-induced 
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cytotoxicity increased with the number of double bonds as did the 

degree of lipid peroxidation, with the exception of c/5-parinaric acid 

(CPA) with four conjugated double bonds which was readily 

peroxidised. HL60 cells supplemented with 20^M fatty acid for 25 

hours showed an increase in percentage cell death. The order of the 

fatty acid cytotoxicity was CPA 100% > DHA 85% = AA 85% > EPA 

70% > y-linolenic acid 35% > a-linolenic acid 7% = linoleic acid 7% > 

oleic acid 5%. PUFA-induced lipid peroxidation was correlated to the 

proportion of cell death in pancreatic cells and HL60 cells (Hawkins et 

al., 1998). Vitamin E (50|iM) blocked lipid peroxidation and cell death. 

HL60 cells treated with EPA (50|iM) between 12-30 hours produced a 

pattern of chromatin cleavage into oligonucleosomes characteristic of 

apoptosis (Hawkins et al., 1998). In pancreatic cells treated with EPA 

(50)aM) there was a great increase in lipid peroxidation, assayed by the 

thiobarbituric acid, between 6-24 hours. Hawkins et al. (1998) 

suggested that lipid peroxidation was involved in the PUFA-induced 

apoptosis in pancreatic cells and HL60 cells. 

In this study the effect of different concentrations of PUFA on 

cell reproducibility was determined. The addition of the antioxidant 

vitamin E was also used in PUFA supplementation to determine i f lipid 

peroxidation products may be involved with cytotoxicity in HL60 and 

K562 cells. 

The fatty acid supplementation of cells can enhance or inhibit 

cell growth. The effects of different fatty acids on the cell growth of 

MDA-MB-231 breast cancer cells in serum free culture medium was 

investigated by Rose & Connolly (1990). The cells were supplemented 

with LA, OA, EPA or DHA dissolved in ethanol for 6 days. Over the 

incubation period LA stimulated growth at an optimal concentration of 

0.75|ig/ml. OA stimulated cell growth only at low concentrations 
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(0.25|ag/ml). DHA significantly reduced cell growth between 

1-2.5 fig/ml. EPA significantly reduced cell growth at 2.5 fig/ml (Rose 

& Connolly, 1990). Selective inhibitors of prostoglandin and 

leukotriene synthesis were used to investigate the mechanism for the 

stimulation of MDA-MB-231 cell growth by LA. Indomethacin reduced 

the stimulatory effect of LA on the MDA-MB-231 cells but the cells' 

growth was still above that seen in the absence of LA supplementation. 

MDA-MB-231 cells were grown in serum-free medium containing 

625ng/ml of LA for 6 days with indomethecin, nordihydroguaiaretic 

acid (NDGA) or esculetin. NDGA and esculetin inhibited cell growth 

more than indomethicin. NDGA and esculetin inhibited leukotriene 

biosynthesis. At 16|LIM NDGA or 225[iM esculetin there was 

approximately a 74% reduction in cell number. These results suggested 

that MDA-MB-231 cell growth was dependent on inhibition of 

leucotriene biosynthesis rather than prostaglandin biosythesis, as both 

NDGA and esculetin were more effective at inhibiting cell growth than 

indomethecin (Rose & Connolly, 1990). 

Some fatty acids are the precursors of prostaglandins so PUFA 

supplementation may be able to alter the production of prostaglandins. 

Two murine colon ademocarcinoma cell lines MAC 13 and MAC26 

were grown in reduced serum concentration for 144 hours 

supplemented with LA or AA. Both LA and AA enhanced the growth 

of the two murine colon adenocarcinoma cell lines (Hussey & Tisdale, 

1994). The optimum concentration of LA for growth stimulation was 

ISf^M in both cell lines. For cells supplemented with AA the optimum 

concentration for growth stimulation was \l[iM for MAC 13 cells and 

33\xM for MAC26 cells. Higher concentrations of fatty acid inhibited 

cell growth in both cell lines. To investigate the growth promoting 

effects of LA and OA the cyclo-oxygenase and lipoxygenase inhibitor 
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indomethicin and the 5-lipoxygenase inhibitor BWA4C were used on 

PUFA-stimulated cell growth. MAC26 cells were grown in either 10% 

FCS or 1% FCS containing 33[iM AA. Concentrations above lOjaM 

indomethicin and BWA4C showed a dose-dependent inhibition MAC26 

cell growth. Below a concentration of lOjiM BWA4C, MAC26 cells 

supplemented with 33 [iM A A showed increased cell growth (Hussey & 

Tisdale, 1994). MAC!3 cells supplemented with LA in medium 

containing 0.5% FCS showed an inhibition of cell growth when treated 

with indomethacin or BWA4C. BWA4C inhibited the cell growth more 

effectively than indomethacin in cells supplemented with LA and AA. 

This suggests that LA and AA stimulate cell growth through a 

lipoxygenase pathway rather than a cyclo-oxygenase pathway. Neither 

of the inhibitors decreased LA induced cell proliferation and suggests 

that growth stimulation may be through another pathway (Hussey & 

Tisdale, 1994). 

Incorporation of PUFAs into membrane phospholipids also 

modified the metabolism of phospholipids, and especially 

phosphatidylinositols (Fujiwara et al., 1985). These changes are 

tolerated by normal cells but are associated with cytotoxicity in cancer 

cells. L1210 cells supplemented for 48 hours in DHA (32|uM) were 

shown to increase the accumulation of the antitumoural agent 

adriamycin (Bums & North, 1986). The amplified cytotoxicity was not 

as a result of increased polyunsaturation. 

PUFAs have been shown to enhance differentiation. HL60 cells 

supplemented with DHA (10)iM) for 120 hours have been shown to 

incorporate into the membrane phospholipids, as shown by gas-liquid 

chromatography (Bums et al., 1989). HL60 cells supplemented with 

DHA (10|LiM) were induced to differentiate with retinoic acid (Bums et 

al., 1989). During the first 3 days DHA supplementation increased 
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NBT reduction in retinoic acid treated cells compared to cells 

supplemented with oleic acid. Cells supplemented with DHA and 

treated with retinoic acid initiated differentiation, as shown by a 

proliferative arrest in population size and an increase in the percentage 

of cells in the G\/Q phase of the cell cycle (Bums et al., 1989). 

Supplementation of cells with PUFA has also been used to 

enhance the cytotoxic effect of other agents. L1210 murine leukaemia 

cells were grown in culture medium supplemented with DHA (32^M) 

for 2 days. The addition of the ether lipids ET- I8 -OCH3 or BM41.440 

was shown to be cytotoxic to cells, and to increase membrane lipid 

peroxidation (Wagner et al., 1992). The addition of vitamin E inhibited 

the peroxidation and cytotoxicity of ET- I8 -OCH3 in a dose dependent 

manner. In Chapter 2 it was shown that the combination of ET-18-

O C H 3 and dibucaine treatment resulted in an increase in cytotoxicity. 

In this chapter ET- I8 -OCH3 was combined with PUFA 

supplementation to determine i f PUFA could alter the cytotoxic effect 

of this ether lipid. PUFA was also combined with local anaesthetics to 

determine i f the cytotoxic effect can be altered. 

Supplementing cells with different fatty acids alters the 

membranes of tumour cells. In this study human leukaemia cells, K562 

and HL60, were supplemented with different fatty acids. The fatty acids 

used were OA, LA, AA, EPA and DHA. Their structures are shown in 

Figure 3.1. The incorporation of the fatty acids into the membrane 

phospholipids was determined by gas-liquid chromatography. PUFAs 

have been shown to increase lipid peroxidation. In this study vitamin E 

was used to determine i f any of the cytotoxic effects of the PUFAs were 

due to lipid peroxidation. The products of lipid peroxidation were also 
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investigated. Combination experiments on cells supplemented with a 

PUFA and ether lipid treatment and also on cells supplemented with 

PUFA and local anaesthetics treatment were undertaken to determine 

any alteration in cytotoxicity. 
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Figure 3.1 Structure of fatty acids 

The structures of five fatty acids that are referred to in this thesis are 
shown in this Figure. 

Oleic acid OA(18:l,n-9) 

Linoleic acid LA (18:2, n-6) 

Arachidonic acid AA (20:4, n-6) 

Elcosapentaenoic acid EPA (20:5, n-3) 

Docosahexaenoic acid DHA (22:6, n-3) 
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Oleic acid (18:1, n-9) 

HqC> 

Linoleic acid (18:2, n-6) 

HqCv 

Arachidonic acid (20:4, n-6) 

HgC ' ' -GO2H 

Eicosapentaenolc acid (20:5, n-3) 

HqC .COgH 

Docosahexaenoic acid (22:6, n-3) 



3.2 Materials and Methods 

3.2.1 Fatty acid supplementation 

The culture medium of K562 cells and HL60 cells was 

supplemented with one of the following fatty acids in the heat-

inactivated foetal calf semm: oleic acid 18:l(n-9) (OA), linoleic acid 

18:2(n-6) (LA), arachidonic acid 20:4(n-6) (AA), eicosapentaenoic acid 

20:5(n-3) (EPA), or docosahexaenoic acid 22:6(n-3) (DHA). 

The fatty acids were obtained either as a free acid or as a sodium 

salt of the fatty acid in a > 99% pure form. The free fatty acid 

(76^moles) was first dissolved in 1ml of lOOmM NaOH at 50°C with 

gentle shaking to form the sodium salt. This represents a 34% molar 

excess of NaOH over the fatty acid. Otherwise, sodium salts of the fatty 

acids (76^moles) were dissolved in 1ml of 20mM NaOH at 50°C. Heat-

inactivated foetal calf semm warmed to 40°C was added to achieve a 

final concentration of approximately 2mM fatty acid. The resulting 

heat-inactivated foetal calf semm supplemented with fatty acid was 

sterilised through a 0.22\xm filter, aliquoted into glass vials, flushed 

with nitrogen, sealed and stored at -20°C until required, for a maximum 

of two months. 

Fatty acid-supplemented culture medium was prepared by 

substituting heat-inactivated foetal calf semm in the culture medium 

with an appropriate concentration of fatty acid-supplemented heat-

inactivated foetal calf semm. 
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3.2.2 Free fatty acid assay 

To determine the concentration of free fatty acid in heat-

inactivated foetal calf serum and fatty acid-supplemented heat-

inactivated foetal calf serum, a modification of the method described by 

Antonis (1965) was used. The method is based on the production of the 

copper salt of the fatty acid in chloroform followed by an estimation of 

the copper content in the organic phase by reaction with zinc 

dibenzyldithiocarbamate (ZnDDC). Silicic acid (1.2 ± 0.2g), activated 

at 110°C for I hour prior to use, was slurried with 7.7ml of isopropyl 

ether in screw cap vials. Previously, the isopropyl ether had been passed 

through a column of activated alumina to remove peroxides. Heat-

inactivated foetal calf serum (0.3ml) or fatty acid-supplemented heat-

inactivated foetal calf serum (0.3ml) was added and vortexed for 1.5 

minutes. The silicic acid acted as a phospholipid adsorbent, removing 

phospholipids which were a source of interference, without affecting 

the levels of free fatty acids. The suspension was allowed to settle and 

4ml of the isopropyl ether supernatant was removed and transferred 

into glass centrifrige tubes which had previously been siliconised using 

dimethyldichlorosilane (0.5%, v/v) in heptane, then allowed to dry. The 

isopropyl ether was evaporated to dryness under nitrogen in a 40°C 

water bath and the lipid was redissolved in 5ml of chloroform. 'Copper 

reagent' (2.5ml), consisting of 3.8% (w/v) copper sulphate pentahydrate, 

0.45M triethanolamine and 0.05M acetic acid, was added and vortexed 

for 45 seconds. The tubes were then centrifiiged at 300g for 10 minutes 

at room temperature. Al l of the upper aqueous phase was removed by 

aspiration with a Pasteur pipette. A 3ml aliquot was taken from the 

remaining chloroform extract and placed into a clean tube. The colour 

was then developed by the addition of 0.5ml of ZnDDC (0.3%, w/v) in 
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chloroform. The tubes were mixed and the absorbance read at 440nm 

after 15 minutes at room temperature. 

Standard curves over the range 0-0.6 ^moles palmitate were 

produced using 12mM palmitic acid in chloroform and PBS to act as an 

aqueous phase. Assays were performed in triplicate, with blank assays 

and standard assays being included in each series of analyses. 

The 'copper reagent' and ZnDDC reagent were stored in the dark 

at 4°C and replaced every 2 months. 

3.2.3 Fatty acid toxicity study 

The effect of supplementing K562 and HL60 cell lines with fatty 

acids was determined as follows. Cells (2 x 10^) were seeded in 1 ml 

of culture medium supplemented with different concentrations of fatty 

acid in a 24 well plate, and incubated for 48 hours at 37°C in an 

humidified atmosphere of air/C02 (19:1, v/v). For K562 cells the fatty 

acid concentration range was 0-50|uM and for HL60 cells it was 

0-35fiM. The fatty acid concentration in unsupplemented heat-

inactivated foetal calf semm was not above O.llVmM. This was 

reduced to 11.7|uM in the culture medium. 

After 48 hours the cells were pelleted by centrifugation at 300g 

for 4 minutes at 20°C. The fatty acid-supplemented culture medium was 

removed and the cells were resuspended in 1 ml of fresh 

unsupplemented culture medium. The control cells were counted, using 

a haemocytometer as described in section 2.2.3. From the confrol, an 

appropriate volume containing fifty thousand cells were transferred to a 

96 well plate. The same volume of cell suspension was fransferred from 

the other conditions to a 96 well plate. The number of cells in the other 

conditions were not counted, but the same volume as fifty thousand 
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control cells was used. Each condition had four replicate wells. These 

cells were incubated with ^H-Thymidine as described in section 2.2.6. 

3.2.4 Fatty acid toxicity in the presence or absence of a-tocopherol 

To determine i f the effect of PUFA toxicity on the cell lines 

could be reduced by an antioxidant, a-tocopherol was added to the 

culture medium of HL60 and K562 cells. A stock solution of a-

tocopherol (0.2mM) was prepared in 100% (v/v) ethanol and filter 

sterilised. It was stored for a maximum of two weeks in a glass 

container at -20°C. The a-tocopherol was diluted using 100% (v/v) 

ethanol. The required concentrafion of a-tocopherol was added to the 

culture medium so that the ethanol was present as 0.1% (v/v) of the 

culture medium. 

Cells were supplemented with fatty acid for 48 hours, as 

described in section 3.2.3, in the presence or absence of a-tocopherol 

(lOf^M). After 48 hours the cells were pelleted by centrifiigation at 300g 

for 4 minutes at 20°C. The fatty acid-supplemented culture medium ± a 

-tocopherol was removed and the cells were resuspended in fresh 

unsupplemented culture medium. The control cells were counted, using 

a haemocytometer as described in section 2.2.3. From the control, an 

appropriate volume containing fifty thousand cells was transferred to a 

96 well plate and an equivalent volume of cell suspension was 

transferred from the other condifions to a 96 well plate. These cells 

were incubated with ^H-Thymidine as described in secfion 2.2.6. 
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3.2.5 Fatty acid incorporation into K562 and HL60 cells 

The cytotoxicity of the different fatty acids on both cell lines was 

established in section 3.2.3. From these results a dose which killed < 

10% of the cells was chosen to be a subtoxic dose. Cells (2 x 

lO^cells/ml) were seeded in culture medium with a subtoxic dose of 

each fatty acid, and incubated for 48 hours at 37°C in an humidified 

atmosphere of air/C02 (19:1, v/v). The K562 cells were incubated with 

lOuM DHA, 20|LiM EPA, 20^M AA, 20[M OA, and 20|iM LA. The 

HL60 cells were incubated with l^iM DHA, l[iM EPA, l | i M AA, 

50^M OA, and 20|aM LA. After 48 hours the cells were pelleted by 

centrifijgation at 300g for 4 minutes at 20°C. The culture medium was 

removed and the cells were resuspended in PBS. The centrifiigation was 

repeated twice and the cells were finally resuspended in 10ml PBS. A 

cell count was taken to determine the cell number, as described in 

section 2.2.3. The lipids were then exfracted, as described below. 

3.2.6 Lipid extraction 

Lipid extractions were carried out on semm, fatty acid-

supplemented semm and from control and fatty acid-supplemented 

HL60 and K562 cells by the method of Bligh & Dyer (1959). 

All solvents contained 0.005% (w/v) butylated hydroxytoluene 

(BHT) to minimise oxidation of fatty acids. To 1 volume of sample, 

3.75 volumes of chloroform/methanol (1:2, v/v) was added with 

thorough mixing. Subsequent additions of 1.25 volumes chloroform and 

1.25 volumes distilled water were each followed by thorough mixing. 

To assist the separafion of the two phases, a ten minute 300g 

centrifugation was carried out at room temperature. The bottom phase 



was then removed and dried under nitrogen to a small volume which 

was used for lipid assay procedures. 

3.2.7 Separation of phospholipids from neutral lipids 

Separation of phospholipids from the lipid extract was achieved 

by silicic acid column chromatography. As phospholipids are polar 

molecules they are adsorbed more strongly to silicic acid than neutral 

lipids. The neutral lipids such as acylglycerols and fatty acids can be 

washed off the column first with chloroform. Phospholipids are 

subsequently eluted with methanol. 

Silicic acid columns were used to separate phospholipids from 

the lipid extracts of HL60 and K562 cells (Borgstrom, 1952; Stein & 

Hales, 1972). Silicic acid was activated by heating for 1 hour at 110°C. 

Hyflo Supercel, an inert support, was added to increase the flow rate, 

using 0.5 g Hyflo Supercel/g silicic acid. 

The silicic acid and Hyflo Supercel were suspended in 

chloroform and poured into a glass column of 0.6cm internal diameter 

and 7 cm height. The lipid extract from the cells was added to the 

column in chloroform. The neufral lipids were eluted with 20ml of 

chloroform; the phospholipids were eluted with 20ml of methanol. 

When methanol was added the column changed from a cream colour to 

white. Therefore the cross over point between the two solvents could be 

seen, and the neutral lipids and phospholipids were kept separate. The 

phospholipid fracfion was then dried under nifrogen and then used to 

obtain the fatty acid methyl esters (FAME). 
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3.2.8 Preparation of fatty acid methyl esters (FAME) 

The fatty acid composition of the cellular phospholipids was 

determined using gas-liquid chromatography. The FAME were 

prepared using a modification of the method of Morrison & Smith 

(1964). The phospholipid fraction was dissolved in 0.5 ml boron 

trifluoride/methanol solution, the tubes were flushed with nitrogen, 

sealed, and incubated for 15 minutes at 100 °C. Cooled tubes were 

flushed again with nitrogen to remove volatiles created during 

incubation, and 0.5 ml disfilled water and 1ml hexane were added to 

each tube and vortexed. 

To assist the separation of the hexane and aqueous phases the 

tubes were centrifiiged at 500g for 10 minutes at room temperature. The 

FAME were extracted in the hexane phase which was concenfrated to a 

small volume (10-20|il) under nitrogen. Aliquots of the FAME were 

either injected onto the GLC column or dried down completely under 

nitrogen, and then sealed and stored in the dark at -20°C for fixture use, 

usually overnight or for 24 hours. 

The separafion of FAME was carried out using a Shimadzu GC-

9A Series gas chromatograph (glass column 2.0 m long, 2.0 mm 

internal diameter and 6.0 mm external diameter, packed with cyano-

silicone stafionary phase, 10% Alltech CS-5, on a chromasorb WAW 

100-200 mesh support), connected to a Shimadzu C-R6A Chromatopac 

integrator. Nitrogen was used as the carrier gas and the resolved 

components were detected by a flame ionisation detector 

(Hydrogen/air). A temperature programme (30 minutes per sample) was 

run : initial temperature = 210°C (10 minutes), rate of increase 

4°C/minute (10 minutes), final temperature = 250°C (10 minutes), 

carrier gas flow rate 59 ml/minute. Peaks were identified by comparison 
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of relative retention times (RRT) of the fatty acids relative to CI6:0 

with the RRTs of FAME standards. 

3.2.9 PUFA in combination with ether lipid toxicity study 

K562 cells (2x 105) were seeded in 1ml of culture medium. One 

set of cells, the controls, had no treatment. The second set of cells had 

no PUFA treatment. The third set of cells were supplemented with 

20^iM EPA and all cells were grown for 48 hours at 37°C in an 

humidified atmosphere of air/C02 (19:1, v/v). The chosen 

concentrafion of PUFA was a dose which killed < 10% of the cells, and 

this was the chosen 'subtoxic' dose determined from section 3.2.3. After 

48 hours the cells were counted as described in section 2.2.3, and 

pelleted by centrifiigation at 300g for 4 minutes at 20°C. The culture 

medium was removed, and the cells were resuspended in 1ml of semm-

free culture medium seeded at 5 x 10^ cells/ml. The confrol cells had 

0.1% ethanol with no ether lipid added. The other two set of cells were 

incubated with a series of ether lipid concentrations for 4 hours at 37°C 

in an humidified atmosphere of air/C02 (19:1, v/v). 

A range of ether lipid concentrations were prepared by serial 

dilution in 100% ethanol, as described in section 2.2.7. The required 

concentration of ether lipid was added to the semm-free culture medium 

so that the ethanol was present as 0.1% (v/v) of the culture medium. 

After 4 hours the cells were pelleted and the cells were incubated with 

^H-thymidine as described in section 2.2.6. 



3.2.10 PUFA in combination with local anaesthetic toxicity study 

K562 cells (2 x 10^) were seeded in 1ml of culture medium. One 

set of cells, the controls, had no treatment. The second set of cells had 

no PUFA treatment. The third set of cells were supplemented with a 

subtoxic dose of 20[iM EPA, then all cells were incubated for 48 hours 

at 37°C in an humidified atmosphere of air/C02 (19:1, v/v). After 48 

hours the cells were counted as described in section 2.2.3, and pelleted 

by centrifugation at 300g for 4 minutes at 20°C. The culture medium 

was removed and the cells were resuspended in 1ml of serum-free 

culture medium seeded at 5 x 10^ cells/ml. The control cells had 0.1% 

(v/v) of distilled water added with no dibucaine present. The other two 

sets o f cells were incubated with a series of dibucaine concentrations for 

4 hours at 37°C in an humidified atmosphere of air/C02 (19:1, v/v). 

A range o f dibucaine concentrations was prepared by serial 

dilution in distilled water, as described in section 2.2.8. An appropriate 

volume was then added to the serum-free culture medium to achieve the 

required concentration of 0.1% (v/v) of distilled water in the culture 

medium. After 4 hours the cells were pelleted and then incubated with 

^H-thymidine as described in section 2.2.6. 
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3.3 Results 

3.3.1 Cytotoxic effects of fatty acids on HL60 and K562 cells 

The cytotoxic effect of fatty acids on HL60 and K562 cells' 

reproductive ability was carried out as described in section 3.2.3. The 

fatty acids were dissolved in heat inactivated foetal calf serum and 

following filter-sterilisation the concentration of fatty acid in the stock 

solution was determined using the free fatty acid assay as described in 

section 3.2.2 and was found to be in the range of 1.6-1.8mM. The 

original heat inactivated foetal calf serum contained approximately 

0.117mM free fatty acid. 

The fatty acids were much more cytotoxic to the reproductive 

ability of the HL60 cells than the K562 cells. When both cell lines were 

supplemented with OA or L A a decrease in reproductive ability was 

observed. However, differences in reproductive ability became apparent 

between the two cell lines as the number of double bonds and carbon 

chain length increased in the PUFAs used to supplement the culture 

medium. 

Figure 3.2 shows the effect of supplementing K562 cells with 

OA, LA, A A , EPA and D H A . The order of cytotoxicity in the K562 

cells was OA = L A < EPA < A A < DHA . The concentration at which 

50% of the cells were inhibited ( I C 5 0 ) for the K562 cell line was > 

50 | iM OA, > 50| iM LA, > 50[iM A A , > 50| iM EPA, and 22.2|iM DHA. 

EPA was less cytotoxic than A A , even though EPA has a longer carbon 

chain and more double bonds. DHA was the most cytotoxic fatty acid. 

This may be related to the double bonds and carbon chain length. DHA 

has the most double bonds (6) and the longest carbon chain length (22 

carbon atoms). 
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Figure 3.2 The effect of fatty acids on K562 cells 

K562 cells were incubated with increasing concentrations of fatty acid 
for 48 hours, as described in section 3.2.3. Then cells were pelleted by 
centrifugation, resuspended in culture medium and incubated with ̂ H-
thymidine as described in section 2.2.6. The incorporation of ^H-
thymidine was taken to be 100% for control (O^M Fatty acid) and the 
other conditions were determined as a percentage of the control. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

• DHA supplemented cells 

• EPA supplemented cells 

A. AA supplemented cells 

T LA supplemented cells 

* OA supplemented cells 

The I C 5 0 values for the fatty acids were determined from this Figure. 

Fatty acid ICso value )JM 
DHA 22.2 
EPA > 50 

AA > 50 
LA > 50 
OA > 50 

Oneway ANOVA was used to compare the data. 
The reproductive ability of cells supplemented with DHA was 
significantly lower than the reproductive ability of cells supplemented 
with other PUFAs at 15|iM, 25^iM, 35 îM and 50 îM (p < 0.05). 
The reproductive ability of cells supplemented with AA was 
significantly lower than the reproductive ability of cells supplemented 
with EPA, LA or OA at 35}iM (p < 0.05). 
The reproductive ability of cells supplemented with AA was 
significantly lower than the reproductive ability of cells supplemented 
with EPA or OA at 50/iM (p < 0.05). 
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As the cytotoxicity was determined by the incorporation of ^ H -

thymidine as a percentage of the control cells, the data had to be 

transformed by arcsine before statistical analysis. To determine any 

significant differences between the supplemented fatty acids, Oneway-

A N O V A test was performed. The reproductive ability of the DHA-

treated cells was significantly lower than that in the presence of other 

PUFAs at \5[iM, 25 | iM, 35^M and 50 | i M (p < 0.05). The 

reproductive ability of the AA-treated cells was significantly lower than 

EPA, L A and OA at 35|aM (p < 0.05), and the AA-treated cells was 

significantly lower than EPA and OA at 50 | iM (p < 0.05). 

Figure 3.3 shows the effects of supplementing HL60 cells with 

OA, L A , A A , EPA and DHA. As the number of double bonds and 

carbon chain length of the PUFA increased the reproductive ability of 

the HL60 cells decreased accordingly. The I C 5 0 values for the HL60 

cell line was > 35f iM OA, > 35^M L A , 8.2|iM A A , 4.55|iM EPA, and 

l.6\xM DHA. Figure 3.3 shows that DHA supplementation reduced the 

reproductive ability of the HL60 cells the most, EPA supplementation 

also reduced the reproductive ability of the HL60 cells considerably. 

The reproductive ability of cells supplemented with either D H A or EPA 

were significantly lower than OA supplemented cells at 2.5fiM, 5 | iM, 

l O ^ M , 15|iM, 25f iM, and 35^M (p < 0.05). The reproductive ability of 

cells supplemented with A A were significantly lower than cells 

supplemented with OA at 5 | iM, 10|iM, 25 | iM and 35f iM (p < 0.05). 

To obtain a subtoxic dose, which killed <10% of the HL60 cells, 

a very low concentration of PUFA was required. As DHA was the most 

cytotoxic PUFA the subtoxic dose of l |uM was chosen from its 

cytotoxicity curve. 

Figure 3.4 shows the effect of DHA supplementation in the 

presence or absence of 10|iM a-tocopherol (vitamin E) on the 



Figure 3.3 The effect of fatty acids on HL60 ceUs 

HL60 cells were incubated with increasing concentrations of fatty acid 
for 48 hours, as described in section 3.2.3. Then cells were pelleted by 
centrifugation, resuspended in culture medium and incubated with ^H-
thymidine as described in section 2.2.6. The incorporation of ^H-
thymidine was taken to be 100% for control (O îM Fatty acid) and the 
other conditions were determined as a percentage of the control. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

• 

* 

DHA supplemented cells 

EPA supplemented cells 

AA supplemented cells 

L A supplemented cells 

OA supplemented cells 

The I C 5 0 values for the fatty acids were determined from this Figure. 

Fatty acid I C 5 0 value jiM 
DHA 1.6 
EPA 4.55 

AA 8.2 
LA >35 
OA >35 

Oneway ANOVA was used to compare the data. 
The reproductive ability of cells supplemented with DHA or EPA were 
significantiy lower than the reproductive ability of cells supplemented 
with OA at 2.5|xM, 5|iM, 10|iM, 15|aM, 25^M and 35MM (p < 0.05). 
The reproductive ability of cells supplemented with AA was 
significantly lower than the reproductive abihty of cells supplemented 
with OA 5|iM, lO^M, 25[iM and 35^M (p < 0.05). 
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reproductive ability of the K562 cells. This graph shows that the 

presence of a-tocopherol considerably reduces the cytotoxic effect of 

D H A on the cells reproductive ability. The I C 5 0 value for DHA 

supplemented cells was 22A^M and this was increased to > 50\xM in 

the presence of a-tocopherol. The reproductive ability of DHA 

supplemented cells in the presence of a-tocopherol was significantly 

higher than D H A supplemented cells in the absence of a-tocopherol at 

25|uM, 35|uM, and 50|uM (p < 0.05). When a-tocopherol was present in 

K562 cells supplemented with either A A or EPA there was no 

alteration in the cell's reproductive ability from cells that were grown in 

supplemented fatty acid media alone (summarised in Table 3.1). 

The effect of a-tocopherol on fatty acid supplemented HL60 

cells was very dramatic, resulting in a considerable reduction in the 

cytotoxic effects o f A A , EPA and DHA on the cells reproductive ability 

(shown in Figure 3.5). When lO^iM a-tocopherol was added to the 

HL60 cells the I C 5 0 of cells supplemented with A A was increased from 

S.2]iM to > 50| iM, the EPA supplemented cells I C 5 0 was increased 

from 4.55|aM to 31fiM, and the D H A supplemented cells I C 5 0 was 

increased from L69|a.M to 39|aM (summarised in Table 3.1). 

The reduction in the cytotoxic effects of the fatty acids by the 

addition of a-tocopherol is believed to be an indication of a reduction in 

l ipid peroxidation. Preliminary experiments were undertaken to 

determine the onset o f lipid peroxidation. No products of lipid 

peroxidation were discovered. This may have been due to not enough 

culture medium being examined or that the products of lipid 

peroxidation had been transformed into untoxic substances. 
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Figure 3.4 The effect of DHA on K562 cells in the presence or 
absence of a-tocopherol 

K562 cells were incubated with DHA (0-50}iM) for 48 hours, in the 
presence or absence of a-tocopherol (lO\iM), as described in section 
3.2.4. Then cells were pelleted by centrifugation, resuspended in culture 
medium and incubated wdth ̂ H-thymidine as described in section 2.2.6. 
The incorporation of ^H-thymidine was taken to be 100% for control 
(Op-M DHA) and the other conditions were determined as a percentage 
of the control. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

• DHA supplemented cells in the absence of a-tocopherol 

• DHA supplemented cells in the presence of a-tocopherol 

The I C 5 0 values for K562 cells supplemented with DHA was 22.4piM. 
The I C 5 0 value for K562 cells supplemented with DHA in the presence 
of a-tocopherol was > 50|JM. 

Oneway ANOVA was used to compare the DHA supplemented cells in 
the presence and absence of a-tocopherol. 
The reproductive ability of cells supplemented with DHA in the 
presence of a-tocopherol was significantiy higher than cells 
supplemented with DHA supplemented cells in the absence of a-
tocopherol at 25fiM, 35|iM and 50fiM (p < 0.05). 
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Figure 3.5 The effect of DHA on HL60 cells in the presence or 
absence of a-tocopherol 

HL60 cells were incubated with DHA (0-50jiM) for 48 hours, in the 
presence or absence of a-tocopherol ( 1 0 ^ ) , as described in section 
3.2.4. Then cells were pelleted by centrifiigation, resuspended in culture 
medium and incubated with ̂ H-thymidine as described in section 2.2.6. 
The incorporation of ^H-thymidine was taken to be 100% for control 
(0)LiM DHA) and the other conditions were determined as a percentage 
of the control. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

• DHA supplemented ceUs in the absence of a-tocopherol 

• DHA supplemented cells in the presence of a-tocopherol 

The I C 5 0 values for HL60 cells supplemented with DHA was 1.69)iM. 
The I C 5 0 value for HL60 cells supplemented with DHA in the presence 
of a-tocopherol was 39pM. 

Oneway ANOVA was used to compare the DHA supplemented cells in 
the presence and absence of a-tocopherol. 

The reproductive ability of cells supplemented with DHA in the 
presence of a-tocopherol was significantiy higher than cells 
supplemented with DHA in the absence of a-tocopherol at 2.5nM, 
5/iM, 10|iM, 15nM, 25)iM, 35MM and 50|iM (p < 0.05). 
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Table 3.1 IC50 values for the PUFAs in the presence or absence 
of a-tocopherol m HL60 cells and K562 cells 

Cells were incubated with increasing concentrations of fatty acid in the 
presence or absence of a-tocopherol (10|j,M), as described in section 
3.2.4. Then cells were pelleted by centrifugation, resuspended in culture 
medium and incubated with ^H-thymidine as described in section 2.2.6. 
The incorporation of ^H-thymidine was taken to be 100% for control 
(OpM Fatty acid) and the other conditions were determined as a 
percentage of the control. The I C 5 0 values reflect the concentration of 
fatty acid that iohibited 50% of the cells from reproducing. 

PUFA HL60 HL60 + K562 K562 + 
I C 5 0 value a-tocopherol a-tocopherol 
AAuM 8.2 >50 >50 >50 
EPAjiM 4.55 31 >50 >50 
DHA^M 1.69 39 22.4 >50 
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3.3.2 Incorporation of fatty acids into the cell membrane 

phospholipids 

The phospholipid fraction of the cell membranes from both cell 

lines were separated from the neutral lipid fraction, and the 

incorporation of the fatty acids into the phospholipid fraction was 

determined by gas-liquid chromatography. Standards of FAME were 

injected onto the column to obtain the relative retention times of known 

fatty acids, then FAME of the phospholipid fraction of the cell 

membrane of each cell line were injected onto the column. The gas 

chromatograph (GC) profile, not shown here, gave the incorporation of 

the fatty acids as a percentage. The retention times of the fatty acids 

were given from the point of injection. After subtracting the baseline 

and hexane peak from the profile the retention times were given 

relative to that of 16:0. Before statistical treatment of the data the 

percentages were transformed using arcsine. 

To identify unknown peaks the log^Q of the relative retention 

times (RRT) with respect to 16:0 and 18:0 were taken from the 

standards. A graph was drawn of carbon chain length vs \og\Q of RRT. 

Two graphs were drawn, one of the saturated fatty acids and the other 

the monosaturated fatty acids. These graphs are shown in Figure 3.6. 

From this the chain length of any unknown peak could be determined 

from the log jg of its RRT. K562 cells supplemented with 20]xM AA 

showed a significant (p < 0.05) increase in two peaks, one at 20:4 and 

an unidentified peak just before 22:6. From the logio RRT this peak 

was thought to be 22:5. 

Table 3.2 summarises the results of the GC profile from fatty 

acid supplemented K562 cells. The results show how supplementing 
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K562 cells with DHA, A A , EPA, LA, and OA differs from control 

unsupplemented cells. The K562 cells were supplemented with 10)iM 

DHA, 20^M A A , 20^M EPA, 20 |JM LA, or 20 | iM OA. 

K562 cells supplemented with 10|iM DHA were shown to be 

significantly different (p < 0.05) in the 18:0, 18:1 and 22:6 fractions of 

the phospholipids compared to the corresponding control value. 

Following supplementation with 10)j,M DHA, the PUFA content of 

membrane phospholipids increased substantially, due entirely to the 

significant increase (10.8%) in DHA. This was accompanied by a 

significant decrease (15.6%) in 18:1 levels and an increase (10.4%), 

though not statistically significant, in saturated fatty acids. 

K562 cells supplemented with 20[iM A A showed significant 

differences (p < 0.05) from the corresponding control in the 18:0, 18:1, 

20:4 and 22:5 fractions of the phospholipids. Supplementation with 

20 | iM A A substantially increased the PUFA content of the membrane 

phospholipids (20.1%) this was due to the increase (12.6%) in A A 

accompanied by an increase (7.1%) in 22:5 and by a significant 

decrease (17.9%) in 18:1 levels and an increase (4.8%) in saturated fatty 

acids. 

K562 cells supplemented with 20 | iM EPA showed significant 

differences (p < 0.05) from corresponding controls in the 16:1, 18:0, 

18:1, 20:5 and 22:6 fractions. EPA supplementation resulted in a 

substantial increase (20%) in the PUFA content of the membrane 

phospholipids. This increase was due to the significant increase (10.2%) 

in EPA and (11.56%) in DHA. This increase was accompanied by slight 

decrease (3%)) in saturated fatty acids and a larger decrease (20%) in 

monounsaturated fatty acid. 
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Figure 3.6 The relationship between logio relative retention tune 
(RRT) and carbon chain length of saturated and 
unsaturated FAME standards 

FAME standards were analysed using gas-liquid chromatography, as 
described in section 3.2.8. The retention times obtained for saturated 
FAME standards are represented in Figure A relative to the retention 
time of 16:0 • and 18:0 • . Figure B represents the retention times for 
monosaturated FAME standards relative to the retention times of 16:0 
• and 18:0 • . 
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Table 3.2 Incorporation of fatty acids into phospholipids of the 

cell membranes of K562 cells 

K562 cells were incubated for 48 hours with no supplemental fatty acid, 
lO^M DHA, 20)LiM EPA, 20fiM AA, 20̂ iM LA, or 20fiM OA, as 
described in section 3.2.5. The lipids were extracted and the 
phospholipids separated, as described in sections 3.2.6-3.2.7. The fatty 
acid composition of the cellular phospholipids were determined using 
gas-liquid chromatography, as described in section 3.2.8. The relative 
concentration for each peak was determined and the mean values ± 
standard deviations of three separate experiments are shown. 

Fatty 
acid 

Control DHA 
10|JM 

AA 
20|iM 

EPA 
20|iM 

LA 
20MM 

OA 
20jiM 

16:0 19.18 
±4.7 ^ 

27.0 
± 17.4 

26.72 
±4.9 

24.9 
±8.4 

28.34 
± 11.9 

10.3 
±3.4 

16:1 3.47 
±2.1 

none 
detected 

none 
detected 

0.87 
±1.7 

none 
detected 

none 
detected 

18:0 12.97 
± 1.5 

15.53 
±2.9 

10.23 
± 1.3 

10.23 
±1.4 

10.27 
±2.2 

10.1 
± 1.24 

18:1 49.17 
±3.8 

33.59 t 
±9.1 

31.3 t 
±1.7 

31.4 t 
±1.2 

24.21 t 
±4.1 

52.76 
±5.5 

18:2 0.77 
± 1.2 

0.27 
±0.24 

0.15 
±0.22 

1.32 
± 1.37 

21.94 t 
±2.35 

4.17 
±0 

20:4 3.26 
±3.64 

2.13 
±0.9 

15.85 t 
±2.96 

2.29 
±0.49 

1.73 
± 1.32 

4.34 
±0.84 

20:5 0.98 
±0.25 

1.25 
±0.73 

0.67 
±0.48 

11.18 t 
±2.43 

0.39 
±0.15 

1.32 
±0.2 

22:5 0.49 
±0.14 

0.41 
±0.32 

7.56 t 
± 1.3 

0.32 
±0.22 

0.15 
± 0.006 

0.22 
±0.1 

22:6 0.95 
±0.93 

11.78 t 
±6.4 

2.34 
±0.8 

12.51 t 
±3.9 

1.38 
± 1.3 

4.38 
± 1.15 

Others 8.76 8.04 5.18 4.98 11.59 12.41 

Data in table represent mean value ± standard deviation 
t Found to be significantly different (p < 0.05) from the corresponding 
control value using the Oneway ANOVA test. 
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K562 cells supplemented with 20|uM LA showed significant 

differences (p < 0.05) from corresponding controls in the 18:0, 18:1 and 

18:2 fractions. After LA supplementation the PUFA content of the 

membrane phospholipids was greatly increased (19%) this was due to 

the significant increase (21%) in LA. This was accompanied by a 

decrease (28%) in monounsaturated fatty acids. 

K562 cells supplemented with 20|iM OA were found to be 

significantly different (p < 0.05) from the corresponding control cells in 

18:0 fraction only. OA supplementation had decreased the 18:0 fraction 

by 1.3-fold. OA supplementation resulted in lowering (12%) the 

saturated fatty acid content of the membrane phospholipids the 

monounsaturated fatty acid content remained the same and the PUFA 

content was increased (9%), although this was not found to be 

significant. 

Table 3.3 summarises results of the GC profile from fatty acid 

supplemented HL60 cells. This bar chart shows how supplementing 

HL60 cells with DHA, AA, EPA, LA, and OA differs fi-om control 

unsupplemented cells. The HL60 cell line was supplemented with l ) iM 

AA, l|LiM EPA, \[xM DHA, 20^iM LA or 50)iM OA . 

Supplementing HL60 cells with l^iM AA showed significant 

differences (p < 0.05) from the corresponding controls in the 18:1 and 

20:4 fractions. Supplementation with I j i M AA increased the PUFA 

content of the membrane phospholipids (4.3%) this was due to mainly 

the increase (5.05%) in AA accompanied by a decrease (3.8%) in 18:1. 

There was a slight decrease in monounsaturated fatty acid (2.5%) and a 

slight increase in saturated fatty acids (4.8%). 
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Supplementing HL60 cells with 1 | iM EPA resulted in significant 

differences (p < 0.05) than the corresponding control in 18:1, 20:5 and 

22:6 fractions. EPA supplementation resulted in a substantial increase 

(15.71%)) in the PUFA content of the membrane phospholipids. This 

increase was due to the significant increase in (7%) in EPA and (6.6%) 

in DHA. This increase was accompanied by a slight decrease (2.5%) in 

monounsaturated fatty acids and no real difference in saturated fatty 

acids. 

Supplementing HL60 cells with 1|JM DHA showed significant 

differences (p < 0.05) from the corresponding control in 18:1 and 22:6 

fractions. Following supplementation with l^iM DHA, the PUFA 

content of membrane phospholipids increased substantially (12.4%), 

this was mainly due to the increase in DHA (10.1%)). This was 

accompanied by a decrease in monounsaturated fatty acids (9.7%) and a 

slight increase (0.8%)) in unsaturated fatty acids. 

Supplementing HL60 cells with 20|iM LA showed significant 

differences (p < 0.05) from the corresponding control in the 16:0, 18:0, 

18:1 and 18:2 fractions. Following LA supplementation the PUFA 

content of the membrane phospholipids was greatly increased (27.5%), 

this was mainly due to the increase in LA (26%). This was accompanied 

by a significant decrease in monounsaturated fatty acids (33%) and a 

slight increase in saturated fatty acids (4%)). 

HL60 cells supplemented with 50fiM OA showed significant 

differences (p < 0.05) from the corresponding control in the 18:0, 18:1 

and 22:6 fractions. OA supplementation resulted in lowering (7%) the 

saturated fatty acid content of the membrane phospholipids, the 

monounsaturated fatty acids were increased (15%) and the PUFA 

content was slightly increased (2%). 
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Table 3.3 Incorporation of fatty acids into the phospholipids of 

HL60 cells 

HL60 cells were incubated for 48 hours with no supplemental fatty 
acid, l}iM DHA, l̂ iM EPA, l^M AA, 20|iM LA, or 5 0 ^ OA, as 
described in section 3.2.5. The hpids were extracted and the 
phosphoHpids separated, as described in sections 3.2.6-3.2.7. The fatty 
acid composition of the cellular phospholipids were determined using 
gas-Hquid chromatography, as described in section 3.2.8. The relative 
concentration for each peak was determined and the mean values ± 
standard deviation of three separate experiments are shown. 

Fatty 
acid 

Control AA 
l|iM 

EPA 
IjiM 

DHA 
l̂ iM 

LA 
20^M 

OA 
50|iM 

16:0 17.33 
±4.2 

18.04 
±5.4 

17.51 
±8.1 

19 
±6.2 

28.67 t 
±4.1 

21.1 
±3.9 

16:1 3.79 
±4.4 

8.18 
±4.7 

2.5 
±4.3 

2.7 
±4.8 

none 
detected 

none 
detected 

18:0 14.47 
±1.9 

15.25 
±2.6 

14.0 
±2.4 

13.5 
±0.8 

6.9 t 
±4.9 

2.93 t 
±1.9 

18:1 45.53 
±3.9 

38.66 t 
±2.5 

33.84 t 
±2.6 

36.9 t 
±5.2 

16.6 t 
±2.81 

64.66 t 
± 5.3 

18:2 3.89 
±3.8 

0.38 
±0.4 

4.4 
±3.4 

4.8 
±4.2 

30.32 t 
±4.31 

none 
detected 

20:4 2.6 
±2.3 

7.65 t 
±2.6 

4.19 
±2.4 

3.5 
±1.9 

3.72 
±2.2 

1.49 
±1.08 

20:5 0.86 
±0.6 

1.28 
± 1.2 

7.9 t 
±4.5 

1.8 
±0.4 

0.7 
±0.2 

0.82 
±0.2 

22:5 0.26 
± 0.26 

0.50 
±3.5 

0.33 
±0.3 

0.29 
±0.2 

0.53 
±0.2 

0.22 
±0.1 

22:6 2.4 
± 1.6 

4.63 
±2.2 

9.0 t 
±3.0 

12.5 t 
±5.2 

1.96 
±0.86 

9.94 t 
±3.0 

Otiiers 8.98 5.43 6.33 5.01 10.6 0.0 

Data in table represent mean value ± standard deviation 
t Found to be significantiy different (p < 0.05) from the corresponding 
control value using the Oneway ANOVA test. 
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monounsaturated fatty acids were increased (15%) and the PUFA 

content was slightly increased (2%). 

K562 cells supplemented with OA showed a similar GC profile 

to the control cells with slight increases in 18:1, 18:2 and 22:6. There 

was a decrease by 1.6 -fold in the saturated fatty acids, mainly due to 

increases in 18:2 and 22:6. Supplementation with PUFAs showed a 

general trend to slightly increase the saturated fatty acids mainly by 

increases in the 16:0 fatty acid fraction. Apart from OA 

supplementation, the monounsaturated fatty acids of the other 

treatments decreased mainly due to a significant decrease (p < 0.05) in 

18:1. After fatty acid supplementation the corresponding phospholipid 

fatty acid fraction was increased. 

K562 cells were supplemented with 20\iM fatty acid except for 

DHA which was lOfiM. K562 cells supplemented with 20|aM EPA or 

10|_iM DHA resulted in increases in the 22:6 fraction. EPA (20jiM) 

supplemented cells increased the 22:6 fraction by 12% and DHA 

(10|iM) supplemented cells increased the 22:6 fi-action by 11%. K562 

cells could not be supplemented with 20|iM DHA, as the cells were too 

sensitive to this concentration. Therefore it could not be determined i f 

cells supplemented with 20fiM DHA would be able to incorporate a 

higher percentage of DHA into the membrane phospholipids than cells 

supplemented with 10|iM DHA. Similar results were observed with the 

HL60 cell line. HL60 cells supplemented with EPA ( l | iM) the 22:6 

fraction was increased by 11%; cells supplemented with DHA (If iM) 

the 22:6 fraction was increased by 10%. The general trend of PUFA 

supplementation was a significant decrease in the monounsaturated 

fatty acids, mainly in 18:1, with significant increases in polyunsaturated 

fatty acids, usually with the supplementing fatty acid, as shown in Table 

3.4. Supplementing with l ) iM AA showed increases in 20:4 and 
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Table 3.4 Overall effect of fatty acid supplementation on the 

phospholipid fraction of the K562 and HL60 ceUs 

Cells incubated for 48 hours with no supplemental fatty acid, the 
corresponding concentration of DHA, AA, EPA, LA or OA, as 
described in section 3.2.5. The lipids were extracted and the 
phospholipids separated, as described in sections 3.2.6-3.2.7. The fatty 
acid composition of the cellular phospholipids was determined using 
gas-liquid chromatography, as described in section 3.2.8. This table 
shows the relative percentages of saturated, monounsaturated and 
polyunsaturated fatty acids for the following treatments. 

Cell line / 
fatty acid 

Saturated fatty 
acid % 

Monoimsaturated 
fatty acid % 

Polyunsaturated 
fatty acid % 

K562 cells 

Control 32.15 52.64 7.65 

AA 20)iM 36.95 31.30 27.79 

EPA 20̂ iM 35.13 32.27 27.62 

DHA lOfiM 42.53 33.59 16.03 

LA 20jaM 38.61 24.21 26.43 

OA 20̂ iM 20.40 52.76 16.74 

HL60 ceUs 

Control 31.69 49.32 10.58 

AA IjiM 33.29 46.84 14.86 

EPA 31.51 36.34 26.29 

DHA IjiM 32.50 39.60 23.00 

LA 20̂ iM 35.57 16.60 38.03 

OA 50fiM 24.03 64.66 12.59 
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22:6 fractions but not in 22:5 as in 20|iM AA supplemented K562 

cells. Only small concentrations of PUFAs were required to aher the 

phospholipid profile of the cell membranes in HL60 cells. 

3,3.3 Combination of PUFA and ether lipid treatment 

The cytotoxic effects of the ether lipid ET- I8 -OCH3 on the 

HL60 and K562 cell lines were determined in Chapter 2. As described 

above PUFAs were incorporated into the membrane phospholipids of 

the HL60 and K562 cells. As ether lipids are thought to exert their 

cytotoxic effects by interacting with cell membranes, it was of interest 

to determine whether PUFA-induced modification of membrane 

phospholipids might influence the cytotoxic effects of ET-I8-OCH3. 

Cells supplemented with PUFA were combined with a range of ether 

lipid treatments to determine i f this PUFA plus ether lipid treatment 

would show any alteration in the cytotoxic effect of the ether lipid 

alone. The K562 cell line was used for the combination experiments as 

they were more resistant to the cytotoxic effects of the fatty acids. 

Therefore higher concentrations of fatty acid could be used to 

supplement the K562 cells without disrupting the reproductive ability of 

the cells in combination experiments. 

K562 cells were incubated in culture media supplemented with 

20\JLM EPA for 48 hours. This was followed by a 4 hour incubation in 

serum-free culture medium with a range of ET- I8 -OCH3 

concentrations (0-8|iM). As shown in Figure 3.7, as the concentration 

of E T - I 8 - O C H 3 was increased the reproductive ability of the K562 

cells decreased. Preincubation with 20^M EPA for 48 hours followed 

by an E T - I 8 - O C H 3 incubation increased the reproductive ability of the 
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K562 cells at 5fiM, 7|iM and S[iM ether lipid (p < 0.05) compared to 

cells that had no EPA incubation followed by ET- I8 -OCH3. 

3.3.4 Combination of PUFA and local anaesthetics treatment 

The cytotoxic effects of dibucaine, tetracaine and procaine were 

determined in Chapter 2. Local anaesthetics have been shown to bind 

with or partition into the cell membranes. In so doing they may exert 

some of their cytotoxic effect by interacting with the cell membranes. 

Therefore experiments to determine whether PUFA supplementation 

combined with local anaesthetic treatment would alter the cytotoxic 

effect of the local anaesthetics. Dibucaine was chosen to use in these 

experiments as it was the most cytotoxic local anaesthetic used and 

showed an effect in combination with ether lipid, as shown in Chapter 

2. Cells supplemented with PUFA were combined with a range of 

dibucaine treatments to determine i f this combined treatment would 

show any alteration in the cytotoxic effect of dibucaine alone. The 

K562 cell line was used for the combination experiments as they were 

more resistant to the cytotoxic effects of the fatty acids. Therefore 

higher concentrations of fatty acid could be used to supplement the 

K562 cells without disrupting their reproductive ability. 

K562 cells were incubated in culture medium supplemented with 

20[iM EPA for 48 hours. This was followed by a four hour incubation 

in serum-free culture medium with a series of dibucaine concentrations 

(0-0.5mM). As shown in Figure 3.8 as the concentration of dibucaine 

was increased the reproductive ability of the cells was lost. No 
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significant difference was observed between K562 cells grown in the 

presence or absence of EPA (20fiM). 
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Figure 3.7 Effect of PUFA in combination with ether Upid on 
K562 ceUs 

K562 cells were incubated with a subtoxic dose of PUFA for 48 hours, 
which was followed by a 4 hour incubation with a series of ether lipid 
concentrations in serum free medium, as described in section 3.2.9. 
Then cells were pelleted by centrifiigation, resuspended in culture 
medium and incubated with ̂ H-thymidine as described in section 2.2.6. 
The incorporation of ^H-thymidine was taken to be 100% for confrol 
(Ô iM Fatty acid, O^M ether lipid) and the other conditions were 
determined as a percentage of the control. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

• no EPA incubation followed by E T I 8 - O C H 3 incubation 

• 20pM EPA incubation foUowed by an E T - I 8 - O C H 3 

incubation 

The I C 5 0 value for K562 cells treated with E T - I 8 - O C H 3 was 6|iM. 
The I C 5 0 value for K562 cells supplemented with EPA and treated with 
E T - I 8 - O C H 3 was 9jaM. 

Oneway ANOVA was used to compare cells that had no EPA 
incubation followed by E T - I 8 - O C H 3 incubation with cells that had 
20fiM EPA incubation followed by an E T - I 8 - O C H 3 incubation. 

The reproductive ability of cells exposed to 20fiM EPA incubation 
followed by an E T - I 8 - O C H 3 incubation was significantiy higher than 
cells that had no EPA incubation followed by E T - I 8 - O C H 3 incubation 
at 5̂ iM, 7 ) J M and 8|LiM etiier hpid (p < 0.05). 
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Figure 3.8 Effect of PUFA m combination with dibucaine on K562 
cells 

K562 cells were incubated with a subtoxic dose of PUFA for 48 hours, 
which was followed by a 4 hour incubation with a series of dibucaine 
concentrations in serum free medium, as described in section 3.2.10. 
Then cells were pelleted by centrifugation, resuspended in culture 
medium and incubated with ̂ H-thymidine as described in section 2.2.6. 
The incorporation of ^H-thymidine was taken to be 100% for control 
(Op-M Fatty acid, OjuM ether Lipid) and the other conditions were 
determined as a percentage of the control. 

Each point represents the mean value ± standard deviation for 3 
separate experiments (9 replicates). 

• no EPA incubation followed by dibucaine incubation 

• 20 EPA incubation followed by dibucaine incubation 

The I C 5 0 value for K562 cells treated with dibucaine was 0.33mM. The 
I C 5 0 value for K562 cells supplemented with EPA and treated with 
dibucaine was 0.38mM. 

Oneway ANOVA was used to compare the data. No significant 
difference was found between the treatments at p < 0.05. 
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3.4 Discussion 

The work reported in this chapter determined the effect of fatty 

acids supplementation on the reproductive ability of the HL60 and 

K562 cell lines. The incorporation of fatty acids into the phospholipids 

of the cell membranes of both cell lines was shown. Combination 

experiments between PUFA supplemented cells and ether lipid 

treatment, and between PUFA supplemented cells and local anaesthetic 

were also undertaken. 

The HL60 cell line was found to be more sensitive to the 

cytotoxic effects of the fatty acid supplementation than the K562 cell 

line. Both cell lines were supplemented with fatty acids by including the 

fatty acid dissolved in the heat-inactivated calf serum contained in the 

culture medium. Initially the K562 and HL60 cells were grown in a 

range of fatty acid concentrations O-SO îM. OA (18:0 n-9), and LA 

(18:2 n-6), did not alter the cell growth of K562 or HL60 cell lines even 

at a concentration of SO îM. Other fatty acids used to supplement the 

both cell lines were AA (20:4 n-6), EPA (20:5 n-3) and DHA (22:6 

n-3). 

The order of cytotoxicity for the K562 cells was determined to 

be OA = LA < EPA < AA < DHA. In K562 cells OA, LA, AA and EPA 

did not have a cytotoxic effect on the reproductive ability up to a fatty 

acid concentration of approximately 20|LIM. Cells supplemented with 

AA (>20|^M) began to lose their reproductive ability. EPA with 5 

double bonds was less cytotoxic than AA with 4 double bonds but DHA 

with 6 double bonds proved to be the most cytotoxic. The I C 5 0 values 

for K562 supplemented cells were > 50|iM for OA, LA, EPA and AA, 

and 22.2[iM for DHA. In contrast the order of cytotoxicity on the 

reproductive ability of the HL60 cells was in the order OA < LA < AA 
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< EPA < DHA. PUFA supplementation severely reduced the 

reproductive ability of the HL60 cells. The I C 5 0 values for the HL60 

cells were > 35|iM OA and LA, 8.2faM AA, 4.55^M EPA and 1.6^M 

DHA. The I C 5 0 values of the HL60 and K562 cell lines were 

dramatically different showing that the HL60 cells were much more 

sensitive to PUFA supplementation that the K562 cells. PUFA 

supplementation of HL60 cells resulted in a sharp decline in the 

reproductive ability, as reflected by the I C 5 0 values. In the HL60 cells 

the order of cytotoxicity increased as the number of double bonds 

increased in the PUFAs but this was not true in K562 cells. The effect 

of various PUFAs on HL60 cells was also examined by toluidine blue 

staining and light microscopy (Hawkins et ai, 1998). HL60 cells were 

supplemented with 20|iM OA, LA, AA, EPA or DHA for 25 hours: the 

percentage of cell death increased with the number of fatty acid double 

bonds. In HL60 cells supplemented with OA (no double bonds) and LA 

(two double bonds) the percentage of cells death was 7%; 

supplementation with EPA (five double bonds) produced 70% cell 

death; and supplementation with either AA (four double bonds) or DHA 

(six double bonds) produced 85%) cell death in each case. Surprisingly, 

HL60 cells supplemented with AA killed more cells than EPA 

supplementation even though it had one less double bond. This order of 

fatty acid toxicity is similar to that observed with the K562 cells in this 

study. Finstad et al. (1994) supplemented HL60 cells with 60^mol/l of 

LA, AA, EPA or DHA and then measured the incorporation of ^H-

thymidine after 1,2 and 3 days of treatment. AA and EPA were found to 

be the strongest inhibitors of ^H-thymidine incorporation. After 3 days 

of treatment ^H-thymidine incorporation was reduced by 90% by AA, 

95% by EPA and 85% by DHA. OA and LA showed no inhibition or 

stimulation of cell replication. 
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Mengeaud et al. (1992) showed that EPA and GLA increased 

lipid peroxidation in a dose-dependent manner on three human colon 

cancer cell lines: HT 29, HRT 18 and CACO 2 cells, but that vitamin E 

(lOfiM), an antioxidant, significantly reduced the lipid peroxidation 

induced by EPA and GLA supplementation. HL60 and K562 cells were 

supplemented with 0-50|iM DHA in the presence or absence of Vitamin 

E (lOjLiM a-tocopherol) in order to determine i f the cytotoxic action of 

the PUFAs was due to lipid peroxidation. Vitamin E is known to reduce 

the effects of lipid peroxidation. In K562 cells a-tocopherol had a 

substantial protective effect on the cytotoxicity of DHA-supplemented 

cells. The IC50 value of DHA supplemented K562 cells was 22A\iM 

and this was increased to > 50|aM in the presence of lOfiM a-

tocopherol. K562 cells in the presence of a-tocopherol did not show 

any alteration to the cytotoxicity of AA or EPA supplementation, even 

though A A supplementation was moderately cytotoxic above 25^M. 

This may have been because AA and EPA were not as cytotoxic as 

DHA in K562 cells. When HL60 PUFA supplemented cells were grown 

in the presence of a-tocopherol the cytotoxic effect of the PUFA was 

considerably reduced. In the presence of lOfiM a-tocopherol the IC50 

values of HL60 cells supplemented with AA increased from 8.2|iM to 

> 50(iM, EPA increased from 4.55nM to Sl^iM, and DHA was 

increased from \ .69\xM to 39|LIM. This protective effect of a-tocopherol 

indicates that PUFA cytotoxicity maybe partially due to lipid 

peroxidation. Preliminary experiments were undertaken to show the 

onset of lipid peroxidation but no products of lipid peroxidation were 

found. There are three possible reasons for this. Firstly, too few cells 

were examined. Secondly, the assay conditions may have needed more 

alteration. Thirdly, the products of lipid peroxidation had been 

transformed into non-toxic substances. Hawkins et al. (1998) showed 
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that HL60 cells and a pancreatic cell line, (Mia-Pa-Ca-2 cells) treated 

with PUFAs induced lipid peroxidation, in the presence of Fe2+, and 

that this was correlated to the proportion of cell death caused by PUPA. 

Antioxidants vitamin E acetate and sodium selenite were able to 

prevent the cytotoxic effects of SO îM EPA. DNA fragmentation 

analysis showed that EPA (50|LIM) treatment of H L 6 0 cells for 24-72 

hours induced a specific pattern of chromatin cleavage into 

oligonucleosomes characteristic of apoptosis. 

The incorporation of the fatty acids into the phospholipids of the 

cell membrane was determined using gas-liquid chromatography. A 

fatty acid concentration that killed < 10% of the cells was chosen to be 

subtoxic. Subtoxic concentrations of fatty acids were used to 

supplement K562 cells. The concentrations used were lO^iM DHA, 

20|iM AA, 20|iM EPA, 20|iM OA and 20[LM LA. K562 cells were 

supplemented with fatty acid for 48 hours, and then the phospholipid 

fraction of the cell membrane was isolated and the amount of fatty acids 

incorporated were determined using gas-liquid chromatography. K562 

cells supplemented with DHA (lOfiM) showed a significant increase 

(p < 0.05) in the 22:6 fraction of the membrane phospholipids compared 

to control cells, and this was accompanied by significant decreases 

(p < 0.05) in the 18:0 and 18:1 fractions. K562 cells supplemented with 

AA (20|iM) showed significant increases (p < 0.05) compared to 

control cells, in the 20:4 fraction and 22:5 fraction, and this was 

accompanied by significant decreases (p < 0.05) in 18:0 and 18:1. The 

control FAME used did not include 22:5, and so the 22:5 fi-action was 

determined using a graph of carbon chain length as an x-axis verses a y-

axis of logio of RRT. Two graphs were drawn, one of the saturated 

fatty acids and the other the unsaturated fatty acids. From these graphs 

the chain length of any unknown peak could be determined from the 
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logio of its RRT. It is clear from K562 cells supplemented with AA 

(20faM) that some of the 20:4 fatty acid was elongated by 2 carbon 

atoms and desaturated to form 22:5. EPA (20|aM) supplemented K562 

cells showed significant increases (p < 0.05) compared to control cells 

in the 20:5 fraction by 11.4 fold, and in the 22:6 fraction by 13.2 fold, 

and this was accompanied by significant decreases (p < 0.05) in 16:1, 

18:0 and 18:1. K562 cells supplemented with EPA (20fiM) showed that 

some of the 20:5 fatty acid was elongated and desaturated to form 22:6. 

LA (20\iM) supplemented K562 cells showed a significant increase 

(p < 0.05) in the 18:2 fraction by 28.5 fold compared to control cells 

and this was accompanied by significant decreases (p < 0.05) in 18:0 

and 18:1. OA (20|iM) supplemented cells showed a significant decrease 

in 18:0 fraction compared to control cells, and this was accompanied by 

slight increases in 18:2, 22:6 and the 'other' fi-actions. From these 

results it is clear that a 48 hour incubation with fatty acids at the 

corresponding concentrations was sufficient to alter the fatty acids of 

the phospholipids in the cell membrane, and that the cells were then 

able to incorporate the fatty acids into the membrane phospholipids, and 

use them in some cases to form other essential fatty acids. 

Lower concentrations of PUFA had to be used to supplement 

HL60 cells (that is l|aM AA, l|aM EPA, l | i M DHA, 20^M LA and 

50^M OA) because of higher PUFA toxicity in these cells. HL60 cells 

supplemented with AA (l^iM) showed significant increases (p < 0.05) 

in the 20:4 fraction, compared to control cells, and this was 

accompanied by a significant decrease in 18:1 fraction. HL60 cells 

supplemented with EPA (I f iM) showed significant increases (p < 0.05) 

in 20:5 and 22:6, compared to control cells, and this was accompanied 

by significant decreases (p < 0.05) in the 18:1 fraction. Therefore HL60 

cells were able to elongate the 20:5 fatty acid and desaturate it to form 
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22:6. HL60 cells supplemented with DHA ( l | iM) showed significant 

increases (p < 0.05) in 22:6 and significant decreases (p < 0.05) in 18:1, 

compared to control cells. HL60 cells supplemented with LA (20|iM) 

showed a significant decrease (p < 0.05) in the 18:1, compared to 

control cells. HL60 cells supplemented with OA (50|iM) showed a 

significant increase (p < 0.05) in the 18:1 fraction, compared to control 

cells. It was clear that a 48 hour incubation was long enough to 

incorporate the fatty acids into the membrane phospholipids, even at 

concentrations as low as l^M. EPA (l|_iM) showed an increase in the 

22:6 fraction as well as in the 20:5, showing that the cells were able to 

elongate and desaturate the 20:5 fatty acid to form 22:6. Unlike the 

K562 cells, when HL60 cells were supplemented with AA (l^iM) there 

was no significant increase in the 22:5 fraction. This may have been 

because the fatty acid concentration was too low. Bums et al. (1989) 

supplemented HL60 cells with lOfiM DHA for 120 hours. This 

concentration was very toxic to the HL60 cells used in the present 

study. The 10|LIM DHA significantly increased 22:6 in the membrane 

phospholipids by over 4-fold (Bums et al., 1989). There was also a 

smaller but significant increase in 20:5 and decrease in 22:5 compared 

to unsupplemented cells. Bums et al. (1989) showed that there was 

only a slight increase in the proportion of 22:6 in membrane lipids after 

an 1 hour incubation with DHA. After a 24 hour incubation the 

proportion of 22:6 in the membrane lipids was greatly increased. 

Fatty acid supplementation in K562 and HL60 cells resulted in 

altering the phospholipids fatty acid of the cell membranes, with a 

decrease in monounsaturated fatty acids and an increase in the 

corresponding PUFA. Even HL60 cells supplemented with 

concentrations as low as I f i M PUFA showed increases in PUFA 

fractions and decreases in monounsaturated fatty acids. OA 
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supplementation resulted in a large increase in monounsaturated fatty 

acids and an increase in PUFA. PUFAs are incorporated into the cell 

membrane, so the cytotoxic action could be caused by a variety of 

membrane ftanctions and physical properties. For example fatty acid 

supplementation can result in changes in membrane fluidity (Spector & 

Bums, 1987). GLA and EPA, which contain 3 and 5 double bonds 

respectively, increased the membrane fluidity of three human colon 

cancer cell lines, while vitamin E reversed the increased membrane 

fluidity induced by EPA and GLA supplementation, possibly by 

interfering with phospholipid rearrangement (Mengeaud et al. 1992). 

MDA-MB-231 breast cancer cells were supplemented with LA, 

OA, EPA or DHA dissolved in ethanol for 6 days (Rose & Connolly, 

1990). Over the incubation period LA stimulated growth at an optimal 

concentration of 0.75)ag/ml, OA stimulated cell growth only at low 

concentrations (0.25 |-ig/ml), DHA significantly reduced cell growth 

between 1-2.5 |ug/ml, and EPA significantly reduced cell growth at 

2.5 ng/ml. Inhibitors of prostaglandin and leukotriene synthesis, 

indomethicin and NDGA or esculetin, were used to investigate the 

mechanism for the stimulation of MDA-MB-231 cell growth by LA. 

NDGA and esculetin inhibited cell growth more than indomethicin. As 

NDGA and esculetin inhibit leukotriene biosynthesis the results 

suggested that cell growth in MDA-MB-231 cells was dependent on 

inhibition of leukotriene biosynthesis rather than prostaglandin 

biosynthesis. The stimulatory effect of LA on the cells could be partly 

due to an increase in leukotriene biosynthesis (Rose & Connolly, 1990). 

After a 144 hour supplementation, LA (18|uM) or AA (17|iM or 

33)iM) enhanced the growth of the two murine colon adenocarcinoma 

cell lines MAC 13 and MAC26 (Hussey & Tisdale, 1994). The cyclo-

oxygenase and lipoxygenase inhibitor indomethicin and the 5-
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lipoxygenase inhibitor BWA4C were used to determine PUFA-

stimulated cell growth. BWA4C inhibited the cell growth by LA and 

AA more effectively than indomethicin suggesting that LA and AA 

stimulate cell growth through a lipoxygenase pathway rather than a 

cyclo-oxygenase pathway. Neither of the inhibitors decreased LA 

induced cell proliferation, and this suggests that growth stimulation may 

be through another pathway (Hussey & Tisdale, 1994). In the present 

study LA did not increase cell growth. Cell growth was reduced with 

AA, EPA and DHA. This may have been due to an alteration in 

leukotriene biosynthesis or in prostaglandin biosynthesis. Future work 

could include fatty acid supplementation of HL60 and K562 cells with 

prostaglandin or leukotriene biosynthesis inhibitors to determine i f there 

is any alteration in cell growth. 

When L1210 cells supplemented with 32nM DHA for 48 hours 

were treated with iron and ascorbic acid, a carbon-centered POBN spin 

adduct was produced (Wagner, et al, 1993). When 40^M ET-I8-OCH3 

was added to these conditions the carbon-centered spin adduct and 

ascorbate radical was produced. Increasing ET-I8-OCH3 concentration 

(20-80|iM) increased the intensity of the ascorbate radical. The 

ascorbate radical intensity was shown to peak 40-60 seconds after the 

addition of ET-I8-OCH3 (Wagner et al., 1993). The production of these 

lipid radicals shows the involvement of lipid peroxidation with ether 

lipid cytotoxicity. 

PUFA supplementation has also been shown to increase the' 

effect of chemotherapeutic agents. L1210 cells supplemented with 

32|uM DHA for 2 days followed by 0.4|iM adriamycin with no DHA 

supplementation for up to 5 hours showed a marked decrease in the 

percentage of cell survival (Spector & Bums, 1987). 
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As PUFA had been shown to increase the effect of other agents, 

in this study combination experiments were undertaken to determine i f 

PUFA supplementation could change the effect of other membrane 

active agents. Firstly PUFA supplementation was combined with ether 

lipid treatment. Secondly, PUFA supplementation was combined with 

local anaesthetic treatment. The K562 cells were used for combination 

experiments as higher concentrations of PUFA could be used, and, as 

shown in Chapter 2, the K562 cells showed a response to combined 

experiments between ether lipid and local anaesthetic. EPA (20|iM) was 

the PUFA chosen for combination experiments as it was the PUFA with 

the largest number of double bonds that could be used at 20|aM. 

K562 cells were supplemented with a subtoxic concentration of 

EPA for 48 hours. After this the cells were incubated in semm-free 

culture medium with a range of ET-I8-OCH3 concentrations for 4 

hours. As the ether lipid concentration increased, the reproductive 

ability of the K562 cells was reduced. The ether lipid IC50 value was 

6fiM for unsupplemented cells and this was significantly decreased 

(p<0.05) to 9|aM in EPA-supplemented cells. Therefore PUFA 

supplementation decreased the cytotoxicity effect of the ether lipid ET-

I8-OCH3 in K562 cells. 

In contrast, L1210 cells supplemented with 32|iM DHA for 2 

days followed by ether lipid treatment with BM41.440 (0-30|iM) for 8 

hours without the fatty acid were shown to increase ether lipid 

cytotoxicity (Petersen et al., 1992). Petersen et al. (1992) repeated this 

experiment other fatty acids (20|xM) and BM41.440 showed that the 

cytotoxicity of the ether lipid was increased by increasing the number of 

double bonds in the fatty acids. L1210 cells supplemented with DHA 

for 48 hours with a prooxidant BSO (to deplete cellular glutathione) 

added during the final 24 hours increased the cytotoxicity of ET-18-
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0CH3 and BM41.440 at lO^M and 20^M (4 hour incubation). When 

Fe2+ and ascorbic acid was added to DHA supplemented cells treated 

with 5^M BM41.440 an increase in cytotoxicity was observed. This 

cytotoxicity was not reduced by the addition of the antioxidants 

butylated hydroxytoluene nor vitamin E. Vitamin E was also shown not 

to affect ET-I8-OCH3 cytotoxicity. Petersen et al. (1992) suggested 

that the metabolism of ether lipids may generate free radicals and that 

membrane fatty acids with increased numbers of double bonds are more 

susceptible to this secondary damage. 

In the present study a different fatty acid, EPA, was used at a 

lower concentration than that used in Petersen's study. Also a different 

ether lipid, ET-I8-OCH3, was used and for a 4 hour period, instead of 

for 8 hours as in Petersen's study. In the present study this lower 

concentration of EPA protected against the cytotoxic effects of the ether 

lipid. This may have been due to alterations in membrane fluidity or in 

membrane targeted pathways in the K562 cells resulting in a protective 

rather than an additive effect. 

Dibucaine was chosen in combination experiment with PUFA 

and local anaesthetic because it was the most cytotoxic local 

anaesthetic, and had increased the cytotoxicity of ET-I8-OCH3 in K562 

cells, as described in chapter 2. K562 cells were supplemented with 

EPA (20|iM) for 48 hours. The cells were then transferred into serum-

free culture medium with a series of dibucaine concentrations. As the 

concentration of dibucaine was increased the reproductive ability of the 

cells was decreased but EPA supplementation did not alter the cytotoxic 

effect of dibucaine on K562 cells. The dibucaine IC50 values were 

0.33mM for unsupplemented cells, and 0.38mM for EPA-supplemented 

cells. Therefore EPA did not increase the cytotoxic effect of dibucaine. 
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suggesting that PUFAs cannot be used to supplement tumour cells to 

increase the cytotoxic effect of a local anaesthetic. 

This study has shown that PUFA concentrations as low as 1 f iM 

can be sufficient to produce significant changes in phospholipid fatty 

acid composition in HL60 cells over a period of 48 hours. The PUFA 

are incorporated into membrane phospholipids and, in some cases, can 

be elongated and desaturated to form other PUFAs. Although a-

tocopherol was shown to protect HL60 cells from the cytotoxic action 

of AA, EPA and DHA, a-tocopherol only protected the K562 cells 

from the cytotoxic action of DHA. The protective action of a-

tocopherol indicated that the cytotoxic effect of the fatty acid may be 

partly due to lipid peroxidation. Unfortunately in this study no lipid 

peroxidation products were found. Supplementing K562 and HL60 cell 

lines with fatty acids for 48 hours was sufficient to incorporate the fatty 

acids into the membrane phospholipids, even at concentrations as low 

as 1 | i M in HL60 cells. When the PUFA EPA (20|iM) was combined 

with a ET-I8-OCH3 treatment in K562 cells, the cytotoxic effect was 

reduced compared to cells treated with ether lipid alone. When EPA 

(20)iM) was combined with the local anaesthetic dibucaine in K562 

cells, no alteration in the cytotoxic effect was observed compared to 

dibucaine treatment alone. 

In murine lymphocytic leukemia (L1210) cells the addition of 

ether lipids to cells previously supplemented with PUFA were shown to 

increase cytotoxicity and increase lipid peroxidation (Petersen et al., 

1992; Wagner et al., 1993). In K562 cells EPA supplementation 

reduced the cytotoxic effect of the ether lipid ET-I8-OCH3. There was 

also no alteration of the cytotoxic effect of the local anaesthetic on 

K562 cells, with or without EPA supplementation. More recent work 

has shown that prolonged supplementation with PUFA induced 
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differentiation in HL60 cells, increased lipid peroxidation, and induces 

apoptosis (Hawkins et al., 1998). 
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Chapter I V 

Effects of Differentiation Agents 

on Human Leulcaemia Cells 

Supplemented with Fatty Acids 

4.1 Introduction 

K562 and HL60 cell lines have both been shown to undergo 

differentiation. K562 cells can be induced to differentiate into 

erythrocyte-like cells by haemin, (Rutherford & Weatherall, 1979; Dean 

et al., 1981; Villeval et al., 1983) sodium butyrate, (Andersson, 1979; 

Chen & Wu, 1994) and l-P-D-arabinofliranosylcytosine (ara-C) 

(Luisi-DeLuca et al., 1984; Chen & Wu, 1994). K562 cells have also 

been induced to.differentiate into attachment cells by TPA (Panazis et 

al., 1981; Villeval et al., 1983). HL60 cells can be induced to 

differentiate into granulocytes by DMSO, HMBA and retinoic acid, and 

to macrophage-Hke cells by TPA (Panazis et al., 1981). As K562 cells 

differentiate into erythrocyte-like cells, it was thought that the 

properties of erthythrocytes could be used to show the onset of 

differentiation in the present study. 

K562 cells synthesise the membrane protein spectrin and do so at 

the same rate, whether non-differentiating or differentiating into 

haemoglobin synthesising cells in the presence of 0.05mM haemin 

(Hunt & Marshall, 1981). These workers showed very few differences 

between the proteins made by non-induced and induced cells, 

suggesting that K562 cells in culture are already at a late stage of 

erythroid differentiation and contain erthyrocyte-specific membrane 

proteins. Although the proteins synthesised by non-induced and induced 
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cells are similar, induced cells divide asymmetrically to form a 

nucleus-containing residual cell and an enucleated, smooth-surfaced, 

reticulocyte-like cell which contains the bulk of the haemoglobin 

(Andersson, 1979; Hunt & Marshall, 1981). Spectrin and erythrocyte 

external membrane proteins, including glycophorin, are sequestered into 

these smooth-surfaced, reticulocyte-like cell protmsion of erythrocyte 

size. These smooth vesicles are thought to be very similar in 

composition to that of mature erythrocytes. Although the protein 

composition of the cell has been greatly altered the only major change 

during haemin-induced differentiation is the onset of haemoglobin 

synthesis. 

The erythroid origin of K562 cells is shown by the synthesis and 

surface expression of glycophorin A (Andersson et al., 1979); which is 

one of the best characterised integral membrane glycoproteins and is the 

major sialoglycoprotein of human erythrocytes (Marchesi et al., 1976). 

Glycophorin A is known to be expressed exclusively on basophilic 

normoblasts and on later stages of the red cell differentiation in human 

bone marrow (Gahmberg et al., 1978). K562 cells also contain spectrin 

as seen by indirect immunofluorescence (Andersson, 1979). The 

erythroid features of K562 cells suggest that during blast crisis, the 

neoplastic stem cell has the potential to differentiate not only into 

immature myeloid or lymphoid cells but also along the erythroid 

differentiation lineage (Andersson et al., 1979). 

The distribution of transferrin receptors in bone marrow is 

restricted to cells of the erythroid cell lineage (Horton, 1983). 

Transferrin receptors appear at the earliest morphologically identifiable 

stages of erythropoiesis and are sfrongly expressed throughout the 

different maturation stages. The monoclonal antibody, F111/2D1, was 

used to investigate the transferrin receptors during erythroid maturation 
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of the K562 cell line during erythroid differentiation. The majority of 

control K562 cells were found to bind F111/2D1 (Horton, 1983). 

Exposure to haemin was found to induce haemoglobin accumulation but 

did not alter transferrin receptor expression: DMSO, not an inducer of 

differentiation in K562 cells, was also without effect, whereas sodium 

butyrate resulted in reduction in cell growth but not differentiation, and 

reduced F111/2D1 binding (Horton, 1983). TPA treatment blocked 

haemoglobin synthesis, reduced cell growth and also inhibited 

F111/2D1 expression (Horton, 1983). Therefore, the expression of 

transferrin receptors in K562 cells, could not be used to determine the 

degree of erythroid differentiation of K562 cells. 

When K562 cells were induced to differentiate by haemin, and 

synthesise large amounts of haemoglobin, preliminary analysis 

indicated that this was predominantly in the embryonic form 

(Rutherford & Weatherall, 1979). The presence of haemoglobin was 

confirmed by absorption bands at 540, 576, 414nm and quantitated at 

414nm. Haemoglobin was analysed and two major haemoglobin 

components were found in the positions of embryonic haemoglobin, 

haemoglobin-Portland and haemoglobin-Gower. 

K562 cells were also induced to differentiate by culturing with 

haemin or in glutamine deficient medium, to produce haemoglobin 

synthesising cells, by Erard et al. (1981). Induction with haemin was 

shown to be reversible. Haemoglobin concentrations were determined 

using absorption bands at 540, 576 and 414nm. Control K562 cells 

contained 0.3-0.5pg haemoglobin/cell, whereas glutamine-deficient 

cells contained 3-5pg haemoglobin/cell after 5 days. Cells treated with 

haemin in glutamine-deficient medium contained 26-34pg 

haemoglobin/cell after 5 days. A marked increase in haemoglobin 

content was also seen with hydroxyurea treatment in the presence of 
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haemin (Erard et al, 1981). After 4 days of hydroxyurea treatment, the 

cells contained 7pg haemoglobin/cell, but when haemin was added to 

the hydroxyurea treatment, the cells contained 22pg haemoglobin/cell. 

This effect was reversible. The haemoglobins produced were compared 

by isoelectrofocusing. In unfreated cells, embryonic haemoglobins 

Gowerl, Portland and foetal haemoglobin were detectable. When the 

K562 cells were induced to differentiate by glutamine-deficient 

medium or by haemin, an increase in the level of the three 

haemoglobins above was observed (Erard et al., 1981). 

Villeval et al. (1983) also found that K562 cells exhibit several 

erythroid features, including production of embryonic and foetal 

haemoglobin, glycophorin A, spectrin and tme acetylcholinesterase, and 

that three K562 clones showed the above to differing degrees. The 

effect of haemin, sodium butyrate and TPA on K562 clones were 

determined. Haemoglobin accumulation was enhanced by exposure to 

lOOfiM haemin, without significant modification of the expression of 

the other erythroid markers. Sodium butyrate greatly increased the 

activity of acetylcholineserase, slightly enhanced the production of 

haemoglobin, but did not modify the expression of glycophorin and 

spectrin. In TPA-induced cells, glycophorin almost disappeared, 

haemoglobin synthesis was reduced, and the acfion of haemin on 

haemoglobin accumulation was nearly abolished (Villeval et al., 1983). 

All the K562 cell lines were found to exhibit clear erythroid features 

including acetylcholinesterase. Neither butyrate nor haemin induced 

terminal differentiation of K562 cells, whereas TPA significantly 

diminished the erythroid phenotype. Cells freated with sodium butyrate 

increased in acetylcholinesterase activity (Villeval et al., 1983). 

Carbonic anhydrase is the most abundant protein present in 

human red blood cells, after haemoglobin. Villeval et al. (1985) 
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investigated the expression of carbonic anhydrase as a marker of 

erythroid differentiation. Studies using the Friend erythroleukemic cell 

line suggested that carbonic anhydrase synthesis occurred early during 

the maturation of erythroid cells. This study investigated the expression 

of carbonic anhydrase isoenzymes, especially carbonic anhydrase I , in 

human hematopoietic cell lines induced to differentiate with haemin, 

expression was studied by fluorescence labelling, SDS PAGE and 

Western blotting. Surprisingly, carbonic anhydrase I was absent from 

K562 cells, which, considering that glycophorin A is expressed in large 

amounts at their surface, cannot be explained (Villeval et al., 1985). 

Haemin and hydroxyurea both reversibly induce K562 globin 

synthesis (Erard et al., 1981). Induction by haemin has been shown to 

take place at the transcriptional level (Dean et al., 1981), increasing the 

rate and level of accumulation of globin messenger RNAs (Chamay & 

Maniatis, 1983). Hydroxyurea treatment also results in the increase in 

the rate of transcription of globin genes (Chamay & Maniatis, 1983). 

HL60 and K562 cells were induced to differentiate terminally, 

and their isoenzyme pattems of lactate dehydrogenase (LDH) in the 

cells before and after differentiation were determined 

electrophoretically on agarose gels (Panazis et al., 1981). HL60 cells 

were induced to differentiate to granulocytes by DMSO, HMBA and 

retinoic acid, and to macrophage-like cells by TPA. K562 cells were 

induced to differentiate into haemoglobin-synthesising cells by sodium 

butyrate and to attachment cells by TPA (Panazis et al., 1981). The 

treatment of leukemic cells with inducers of differentiation resulted in a 

quantitative shift of the isoenzyme pattem towards anodic or cathodic 

forms. This was correlated with the conversion of the chemically treated 

cells to morphologically more normal cells, as verified by light 

microscopy and/or synthesis of haemoglobin. The LDH isoenzyme 
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pattems of the chemically differentiated cells were characteristic for the 

particular cell type obtained after differentiation rather than for the 

nature of the inducer used, and was not similar to those of normally 

differentiated cells of the corresponding lineage (Panazis et al, 1981). 

This indicated that incomplete differentiation had occurred. When both 

cell lines were induced to differentiate, the relative levels of each 

isoenzyme changed. In the K562 cell line, it was difficult to distinguish 

between control and TPA-treated cells, butyrate-treated cells showed an 

increase in anodic isoenzymes mainly in LDH-1, and also in LDH-2 

and LDH-3. These isoenzymes were predominant in normal 

erythrocytes, so butyrate-treated cells are similar to normal erythrocytes 

in that they synthesise haemoglobin and characteristic lactate 

dehydrogenase isoenzymes (Panazis et al., 1981). 

One of the most effective agents in treating human acute 

myelogenous leukaemia has been shown to be 1-P-D-

arabinofiiranosylcytosine (ara-C) (Frei et al., 1969), although the reason 

for its selectivity is still unknown. Ara-C incorporates into the DNA, 

but not into RNA, of human myeloblasts (Major et al., 1981), and 

behaves as a relative chain terminator. The incorporation of ara-C into 

DNA correlates with inhibition of DNA synthesis (Major et al., 1982), 

causes DNA fragmentation, which results in the loss of clonogenic 

survival. Previous studies showed that inhibition of eukaryotic DNA 

replication resulted in an aberrant form of DNA synthesis, with certain 

segments of DNA being replicated more than once in a single cell cycle 

(Woodcock & Cooper, 1981; Woodcock et al., 1982). This form of 

aberrant DNA synthesis occurs after the inhibition of DNA replication 

by ara-C (Woodcock & Cooper, 1981; Woodcock et al., 1982). The 

additional copies of certain segments of DNA might result in the 

accumulation of DNA fragments and an alteration of gene expression. 
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Ara-C has also been shown to inhibit DNA synthesis in HL60 

cells (Griffin et ai, 1982). At sublethal doses it induces differentiation, 

accompanied by the loss of clonogenic survival. It is unclear whether 

this effect contributes to decreases in the self-renewal capacity of acute 

myeloblastic leukaemia cells after ara-C treatment (McCulloch et al, 

1981). 

Luisi-DeLuca et al. (1984) showed that ara-C is a potent inducer 

of K562 haemoglobin expression, which is irreversible. There is also a 

loss of clonogenic survival suggesting terminal differentiation. When 

ara-C's cytotoxicity was determined, concentrations of lO'^M and 

10"7M slowed cell growth, whereas concentrations of lO^^M and 

lO'^M resulted in loss of viability. Static cell concentrations without 

evidence of lethality, determined by trypan blue exclusion, were 

achieved by exposure to SxlO^^M ara-C. The differentiated, 

haemoglobin-containing cells were identified with benzidine staining 

and there was a progressive increase in the percentage of benzidine-

positive cells at concentrations of 10"^M to 5xlO"^M ara-C, with >50% 

of the cells expressing a differentiated phenotype (Luisi-DeLuca et al., 

1984). Higher concentrations of ara-C resulted in a progressive decline 

in the percentage of benzidine-positive cells. The induction of 

benzidine-positive cells was linear up to 144 hours of drug exposure. 

The induction of haemoglobin synthesis by ara-C was confirmed by 

PAGE (Luisi-DeLuca et al., 1984). Similar globin synthesis was seen in 

K562 cells cultured with 20fiM haemin for 6 days. 

K562 cells were exposed to SxlO'^M ara-C from 12-120 hours. 

Following exposure the cells were washed, resuspended in drug-free 

medium and assayed for haemoglobin accumulation at 120 hours. 

Exposure to ara-C for 12-24 hours was sufficient to result in a 

significant increase in benzidine-positive cells, while exposures > 48 
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hours were sufficient to induce haemoglobin synthesis maximally. The 

irreversible induction of globin synthesis, confirmed by PAGE, could 

be associated with terminal differentiation (Luisi-DeLuca et ai, 1984). 

In the presence of the irreversible inducer ara-C (3.6|iM), the 

queuine content of tRNA increased markedly when K562 cells 

differentiated into benzidine-positive erythroid cells, and cell growth 

was inhibited (Chen & Wu, 1994). This increase was shown to be an 

irreversible event during terminal differentiation by ara-C induction. 

When haemin (O.lmM) was used as an inducer of K562 cell 

differentiation the increase in the queuine content of tRNA was shown 

to be a transient event of reversible differentiation. 

When the cells undergo terminal differentiation, the cell cycle 

alters. The relative distribution of a population of cells throughout the 

cell cycle phases G\/Q, S, and G 2 plus M can be determined by flow 

cytometry, using a fluorescence-activated cell sorter (FACS). 

Flow cytofluorometric analysis of cell cycle distributions using 

propidium iodide (PI) allows the rapid determination of relative DNA 

content (Fried et al, 1976). This gives a quick and accurate means of 

cell cycle analysis of populations in culture and clinical specimens. The 

technique utilises a hypotonic solution of sodium citrate to rupture the 

cell membrane, enabling the dye to reach the nucleus. Most of the 

cytoplasm is removed in this process, and the remaining cytoplasm is 

unstained. Flow cytometric analysis of the phases of the cell cycle in 

K562 cells treated with ara-C (1.8|Limol) for 96 hours showed a decrease 

in the percentage of cells in Gj /o and S phases and an increase in cells 

in the G2+M phase of the cells cycle (Nagy et al, 1995). These K562 
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ara-C treated cells also showed a considerable increase in superoxide 

dismutase activity (SOD) and catalase activity. Nagy et al. (1995) 

suggested that differentation may be induced by increased OH- free 

radical yield. 

Polyunsaturated fatty acids (PUFAs) have been shown to induce 

differentiation in HL60 cells (Finstad et al., 1994). HL60 cells 

supplemented with EPA or AA (120^mol/L) for 3 days showed 

increased NBT reduction and generation of oxidative burst indicating a 

higher degree of differentiation in cells treated with PUFAs. HL60 cells 

supplemented with DHA (10|iM) accelerated retinoic acid induced 

differentiation in the first 50 hours (Bums et al., 1989). During the first 

50 hours DHA and retinoic acid treatment increased superoxide 

production and NBT reduction. Cell growth was reduced and the 

percentage of cells found in G^/Q of the cell cycle was increased. 

In this Chapter the effect of polyunsaturated fatty acids (PUFAs) 

on the differentiation of K562 cells induced by ara-C will be described. 

A concentration of ara-C was required that did not induce total 

differentiation, so that i f the addition of a subtoxic concentration of 

PUFA had an effect on differentiation, it would not be masked by the 

effect of ara-C. The onset of differentiation was determined by the 

production of haemoglobin, which was measured by its absorbance at 

414nm. The effect of the onset of differenfiation on the cell cycle 

profile was examined with flow cytometry using propidium iodide to 

determine the phases of the cell cycle. 

128 



4.2 Materials and methods 

4.2.1 Differentiation of K562 cells 

K562 cells were induced to differentiate into erythrocytes by 

adding l-P-D-arabinofliranosylcytosine (ara-C) to the culture medium. 

As the cells differentiate into red blood cells, the extent of 

differentiation can be assessed by accumulation of haemoglobin, which 

can be determined by a spectrophotometric assay. To determine 

whether the differentiation rate could be altered by the addition of 

membrane active agents, different fatty acids were used in combination 

with ara-C. 

A stock solution of ara-C (5mM) was prepared in distilled water 

and was filter-sterilised. It was stored for a maximum of two weeks in a 

glass container at 4°C. Ranges of ara-C concentrations were prepared 

by serial dilution in filter-sterilised distilled water. An appropriate 

volume < 1% of the ara-C solution was then added to the culture 

medium to achieve the required concentration. When the equivalent 

volume of filter-sterilised distilled water was added to K562 cells in 

culture, no adverse effects on cell growth or viability were observed 

(results not shown). 

4.2.2 Ara-C cytotoxicity experiments 

a) Cell viability 

K562 cells, (2 x 10^ cells/ml) were incubated in culture medium 

with different concentrations of ara-C ranging from 0-3.2fiM over a 

period of 0-5 days. At 24 hour periods, the cells were mixed to produce 

a homogeneous suspension and counted on a haemocytometer to 

determine cell number and viability as described in section 2.2.3. 
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b) Propidium Iodide staining of DNA 

On day 5, the cells were pelleted by centrifugation at 300 x g at 

20°C for 4 minutes. The culture medium was removed and the cells 

were resuspended in fresh culture medium at a cell density of 1x10^ 

cells/ml. A known volume of the cells, 200^1, was transferred to a small 

tube, to this 50\x\ of saponin solution [PBS containing 0.1% saponin 

(Flow LAbs) and 0.1% BSA, pH 7.4], 500^1 of propidium iodide 

solufion (0.25mg/ml propidium iodide (Flukka) in PBS) was added, 

followed by 500fxl PBS and a 50|ul aliquot of RNAse (stock solution 

made up in PBS at Img/ml using type I-AS RNAse (Sigma) and stored 

at -20°C in 200^1 aliquots). The samples were thoroughly vortexed and 

stored in the dark at room temperature for 15 minutes. The samples 

were analysed immediately on a Coulter Epics XL-MCL flow 

cytometer. 

4.2.3 Effect of EPA and ara-C on cell viability 

From previous experiments, (section 3.2.3), subtoxic 

concentrafions of fatty acids were established. These concentrations 

were used to supplement the cells in the following experiments. 

K562 cells were seeded at 2 x 10^ cells/ml in culture medium. 

Two sets of K562 control cells had no fatty acid added; another 2 sets 

of K562 cells were supplemented with a final concentration of lO^M 

EPA, and all cells were incubated for a period of 48 hours at 37°C in an 

humidified atmosphere of air/C02 (19:1, v/v). After 48 hours, both sets 

of cells were counted, as described in section 2.2.3, and pelleted by 

centriftigation at 300 x g for 4 minutes at 20°C. The culture medium 

was removed and the cells were resuspended in fresh culture medium at 

a cell density of 2 x 10^ cells/ml. One set of the control cells contained 
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no treatment, the other control set had a final concentration of O.Ol^iM 

ara-C added. One set of the EPA-supplemented cells had no EPA 

supplementation and a final concentration of 0.01|iM ara-C, the other 

EPA-supplemented cells contained a final concentration of \0[iM EPA 

and 0.01 fj.M ara-C. The control cells and the EPA supplemented cells 

were cultured for up to 5 days at 37°C in an humidified atmosphere of 

air/C02 (19:1, v/v). To establish that the volume of ara-C solution 

added did not affect the cells in any way, an equal volume of filter-

sterilised distilled water was added to the cells not given ara-C. At 24 

hour intervals the cells were mixed, counted, and the viability was 

determined as described in section 2.2.3. 

4.2.4 Determination of differentiation 

K562 cells were seeded at 2 x 10^ cells/ml in cultiire medium. 

One set of cells, the controls, had no fatty acid added. A final 

concentration of lOfiM EPA was added to the other set of cells (EPA-

supplemented cells). Al l cells were incubated for a period of 48 hours 

at 37°C in an humidified atinosphere of air/C02 (19:1, v/v). After 48 

hours, both sets of cells were counted, as described in section 2.2.3, and 

pelleted by centrifiigation at 300 x g for 4 minutes at 20°C. The culture 

medium was then removed and the cells were resuspended in fresh 

culture medium at a cell density of 2 x 10^ cells/ml. The control cells 

were split into two sets. One set contained no treatment, but a final 

concentration of 0.05|uM ara-C was added to the other set. The EPA 

supplemented cells were also split into two sets. One contained no EPA 

supplementation and no ara-C, the other contained no EPA 

supplementation and a final concentration of 0.05|iM ara-C. The control 

cells and the EPA supplemented cells were cultured for up to 5 days at 
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37°C in an humidified atmosphere of air/C02 (19:1, v/v). To establish 

that the volume of water containing ara-C added did not affect the cells 

in any way, an equal volume of filter-sterilised distilled water was 

added to the cells not given ara-C. 

Initially this experiment was carried out with a final 

concentrafion of 0.01 juM ara-C, very little difference was observed 

between the treatments (results not shown); from then on a final 

concenfration of 0.05|aM ara-C was used as described above. 

At 24 hour intervals the cells were mixed and counted to 

determine cell number and viability, as described in section 2.2.3. 

Haemoglobin accumulafion was then tested. Each day for 5 days the 

culture medium was removed by centrifugation at 300 x g for 4 minutes 

at 20°C, and the cells were washed twice in cold PBS (Rutherford & 

Weatherall, 1979) using the same centrifiigation conditions at 4°C. The 

cells were resuspended in lysis buffer, consisting of 0.81% (w/v) NaCl, 

0.03% (w/v) Mg-acetate, 0.12% (v/v) Tris-HCl (pH 7.4), and NP-40 

was added to 0.5% (w/v), at a cell density of 10x10^ cells/ml and cells 

were lysed by a 15 minute incubafion on ice followed by a 

centrifiigation at 300g for 15 minutes at 4°C to remove the nuclei. This 

method of cell lysis proved to be inconsistent and therefore the 

following method was used. After the cells had been washed twice in 

cold PBS, as described above, the cells were resuspended in filter-

sterilised distilled water at a cell density of 10x10^ cells/ml. The cells 

were then lysed by three cycles of freezing and thawing (Rutherford et 

al., 1981). The broken cell suspension was then centrifiaged at 500 x g 

for 10 minutes at room temperature to remove the nuclei. The 

supernatant was removed and centrifiaged at 140,000 g for 45 minutes at 

room temperature. The pellet was discarded and the haemoglobin 
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content of the final supernatant was determined from its absorbance at 

414nm. 

4.2.5 Effect of preincubation and concentration of fatty acid on 

haemoglobin accumulation 

From previous experiments (section 3.2.3) subtoxic 

concentrations of fatty acids were established. In sections 4.2.3 and 

4.2.4 a concentration of lOfiM EPA was used to supplement the culture 

medium. Initially, it was hoped to supplement other batches of K562 

cells with culture medium containing lOfiM DHA for 48 hours. This 

concentration was shown to be subtoxic in previous experiments, but 

when the DHA was removed by centrifiigation and replaced with 

culture medium containing a final concentration of O.OSpM ara-C and 

no DHA for up to 5 days, the cells clumped together and died after 2 

days. Even when the concentration of DHA was lowered to 2|iM, the 

same effect was observed. 

It was established from experiment 3.2.3 that 20\iM was a 

subtoxic concentration for EPA, AA, OA and LA. To determine i f an 

increase in fatty acid concentration would increase the accumulation of 

haemoglobin, both lOjuM or 20|uM EPA were included in the following 

experiment. 

K562 cells were seeded at 2 x 10^ cells/ml in culture medium. 

The first set of cells, the controls, had no fatty acid added; a final 

concentration of \0\xM EPA was added to the second set (EPAl 

supplemented cells) and a final concentration of 20|iM EPA was added 

to the third set (EPA2 supplemented cells) for a period of 48 hours at 

37°C in an humidified atmosphere of air/C02 (19:1, v/v). After 48 

hours, each of the sets of cells were counted, as described in section 
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2.2.3 and pelleted by centrifugafion at 300 x g for 4 minutes at 20°C. 

The culture medium was removed and the cells were resuspended in 

fresh culture medium at a cell density of 2 x 10^ cells/ml. The control 

cells were split into two sets, one set containing no freatment, and a 

final concentration of 0.05)iM ara-C was added to the other set. The 

EPAl supplemented cells were also split into four sets. The first 

contained a final concentrafion of lOfiM EPA supplementation and no 

ara-C. The second contained a final concenfrafion of lO^iM EPA 

supplementation and a final concentration of 0.05)^M ara-C. The third 

contained no EPA and no ara-C. The fourth contained no EPA 

supplementation and a final concentration of 0.05pM ara-C. The EPA2 

supplemented cells were also split into four sets. The first contained a 

final concentrafion of 20[iM EPA supplementafion and no ara-C. The 

second contained a final concentrafion of 20[xM EPA supplementafion 

and a final concentrafion of 0.05p.M ara-C. The third contained no EPA 

supplementafion and no ara-C. The fourth contained no EPA 

supplementafion and a final concentrafion of 0.05|^M ara-C. The control 

and the EPA supplemented cells were cultured for 3 days at 37°C in 

an humidified atmosphere of air/C02 (19:1, v/v). To establish that the 

volume of water containing ara-C added did not effect the cells in any 

way, an equal volume of filter-sterilised disfilled water was added to the 

cells not given ara-C. 

After 3 days, the cells were mixed and counted to determine cell 

number and viability as described in secfion 2.2.3. Haemoglobin 

accumulation was then tested. For each set of cells, the culture medium 

was removed by cenfrifiigafion at 300 x g for 4 minutes at 20°C, and the 

cells were washed twice in cold PBS (Rutherford & Weatherall, 1979) 

using the same centrifiigation conditions at 4°C. The cells were 

resuspended in filter-sterilised distilled water, at a cell density of 
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10xl06 cells/ml. The cells were then lysed by three cycles of freezing 

and thawing (Rutherford et al., 1981). The broken cell suspension was 

then centrifiiged at 500 x g for 10 minutes at room temperature to 

remove the nuclei. The supernatant was removed and centrifiiged at 

140,000 X g for 45 minutes at room temperature. The pellet was 

discarded, and the haemoglobin content of the final supernatant was 

determined from its absorbance at 414nm. 

4.2.6 Determination of effect of different fatty acids on 

haemoglobin accumulation 

Five sets of K562 cells were seeded at 2 x 10^ cells/ml in culture 

medium. The first set of cells, the controls, had no fatty acid added; to 

the second set, a final concenfration of 20 ̂ iM EPA was added (EPA 

supplemented cells), to the third set of cells, a final concenfration of 20 

fj.M AA was added (AA supplemented cells), to the fourth set of cells, a 

final concentration of 20)aM OA was added (OA supplemented cells) 

and to the fifth set of cells, a final concentration of 20fiM LA was 

added (LA supplemented cells), then all cells were incubated for a 

period of 48 hours at 37°C in an humidified atmosphere of air/C02 

(19:1, v/v). After 48 hours, each of the sets of cells were counted, as 

described in section 2.2.3, and pelleted by centrifugation at 300 x g for 

4 minutes at 20°C. The culture medium was removed and the cells were 

resuspended in fresh culture medium at a cell density of 2 x 10^ 

cells/ml. The control cells were split into two sets, one set containing no 

treatment, the other set containing a final concenfration of 0.05)iM 

ara-C. Each of the fatty acid supplemented cells were also split into two 

sets, one containing a final concentration of 20fiM of the initial fatty 

acid supplementation and no ara-C, the other containing a final 
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concentration of 20|iM of the initial fatty acid supplementation and a 

final concentration of 0.05|iM ara-C. The control and the PUFA 

supplemented cells were cultured for 3 days at 37°C in an humidified 

atmosphere of air/C02 (19:1, v/v). The cells with no ara-C treatment 

had an equivalent volume of filter-sterilised distilled water added, 

compared to the volume of ara-C added to the ara-C treated cells. 

After 3 days, the cells were mixed and counted to determine cell 

number and viability as described in section 2.2.3. The set of cells was 

split into two portions to determine haemoglobin accumulation, as 

described in section 4.2.5, and DNA was analysed on a Coulter Epics 

XL-MCL flow cytometer, as described in section 4.2.2.b. 
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4.3 Results 

4.3.1 Effects of ara-C on cell growth 

^ K562 cells were incubated with concenfrations of ara-C ranging 

from 0 - 3.2|_iM for up to 5 days, in order to determine its effects on 

cell growth, the results are shown in Figure 4.1. Increasing ara-C 

concentration caused inhibition of cell growth over 5 days. The 

concentrafion of 0.00 l | i M ara-C gave a significant decrease in cell 

growth (p < 0.05) from the control cells at 96 hours and 120 hours. 

Cells treated with O.Ol^iM ara-C gave a measurable, intermediate 

decrease in cell number throughout the 5 day period, this was 

significantly lower (p < 0.05) than control cells at 72 hours, 96 hours 

and 120 hours. Concentrafions of > 0.05[iM inhibited cell growth 

throughout the 5 day period. Although cell growth was inhibited at 

0.05[iM there was evidence of some cell reproductive ability, cell 

growth at 0.05|iM ara-C was significanfiy lower (p < 0.05) than confrol 

cells at 72 hours, 96 hours and 120 hours. Cells freated with 0.1 | iM 

ara-C had a significantly lower cell number (p < 0.05) than control 

cells at 72 hours, 96 hours and 120 hours. Concenfrafions of ara-C at 

0.5fiM and 3.2^M effecfively produced cytostafis, cell growth was 

significanfiy lower (p < 0.05) at 24 hours with 3.2|iM ara-C and at 48 

hours, 72 hours, 96 hours and 120 hours at 0.5|LIM and 3.2|iM ara-C. A 

concentrafion to be used in conjuncfion with fatty acids of O.OlfiM ara-

C was chosen as this produced a decrease in cell number with some 

proliferafion. 

137 



Figure 4.1 Effect of ara-C on the cell growth of K562 cells 

The cells were incubated wdth increasing concenfrations of ara-C for up 
to 5 days, as described in section 4.2.2. The effect of ara-C on cell 
growth is shown in this Figure. Each point represents the mean value 
for 3 separate experiments, (9 replicates). The error bars have been 
omitted, but the standard deviation was less than 5%. 

• confrol cells, no freatment 

• 0.00 IfiM ara-C 

A COljiM ara-C 

T 0.05|iM ara-C 

• 0.1|iM ara-C 

• 0.5^iM ara-C 

O 3.2^M aia-C 

Oneway ANOVA was used to compare cell viability of cells freated 

with the different concenfrations of ara-C wdth of confrol cells. 

The cell number of cells freated with 0.00l^iM ara-C was significantly 

lower (p < 0.05) from confrol cells at 96 hours and 120 hours. 

The cell number of cells freated with 0.01|iM, 0.05|aM and 0.1 jiM ara-

C was significantly lower (p < 0.05) from confrol cells at 72 hours, 96 

hours and 120 hours. 

The cell nimiber of cells freated with 0.5)JM ara-C was significantly 

lower (p < 0.05) from confrol cells at 48 hours, 72 hours, 96 hours and 

120 hours. 

The cell number of cells freated with 3.2^M ara-C was significantly 

lower (p < 0.05) from control cells at 24 hours, 48 hours, 72 hours, 96 

hours and 120 hours. 
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DNA analysis 

The DNA of cells treated with ara-C was analysed on a Coulter 

Epics XL-MCL flow cytometer to determine the percentage of cells in 

each stage of the cell cycle. Figure 4.2 shows the typical histograms 

produced for each sample, 1- 5. Histograms 1-5 are taken from control 

cells. 

Histogram 1- Forward Scatter (FS) vs Side Scatter (SS) 

This shows the relative distribution of cells by size and 

granulation. The x-axis represents SS and the y-axis FS. The ftirther the 

trace extends along the x-axis, the more granular are the cells; the 

fiarther the trace extends along the y-axis, the larger the cells. From this 

control sample, a gate (gate A) is placed around the cells and this gave a 

true representation of the size and granulation of K562 cells. 

Histogram 2 - FL3 vs FL3 Peak (using the FL3 detector) 

FL3 is the total flourescence of propidium iodide (PI) associated 

with the DNA of the cells. FL3 Peak is the brightest intensity of PI 

flourescence from the sample, as it goes through the beam. This 

histogram shows the amount of propidium iodide (PI) taken up by the 

cells. The FL3 vs FL3 Peak histogram ensures that only single cells 

were analysed. I f two cells pass through the analysis point very close 

together the result would appear to be one cell with twice the DNA, i.e. 

a cell in G2+M phase instead of being in GJ/Q phase. This is a check 

that doublets are not analysed instead of single cells. A gate (gate B) 

can be placed around a set of control cells to show how single unfreated 

cells would normally fluoresce PI. 
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Histogram 3 - F L 3 histogram (gated) 

This histogram analyses the amount of PI associated with DNA in the 

cells in both A and B gates. The x-axis represents the amount of PI 

taken up by the cells and the y-axis the number of cells. In the 

histograms the letter: C represents the proportion of cells in GJ/Q of the 

cell cycle; D represents the proportion of cells in S phase of the cell 

cycle; and E represents the proportion of cells in G2+M phase of the 

cell cycle. When the histogram was produced the mean of the 

fluorescence was also given and from this the different phases of the 

cell cycle can be determined. GJ/Q was determined by its peak and the 

amount of PI bound reflects the amount of chromosomal DNA. G2+M 

is placed where the mean of PI fluorescence was double that of GI/Q, 

between these two phases lies the S phase. The percentages of the cell 

population in each phase of the cell cycle was also determined. Cells 

found before C, the GI/Q phase, were dead cells, and therefore the 

percentage of dead cells was also determined. 

Histogram 4 - F L 3 histogram (ungated) 

This histogram is identical to histogram 3 except that all the cells 

are analysed, i.e. including those lying outside gates A and B. In the 

histograms the letter : F represents the proportion of cells in G\/Q of the 

cell cycle; G represents the proportion of cells in S phase of the cell 

cycle; and H represents the proportion of cells in G2+M phase of the 

cell cycle. When the histogram was produced the mean of the 

fluorescence was also given and from this the different phases of the 

cell cycle were determined. In this series of experiments no differences 

were found between histogram 3 and histogram 4. 
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Figure 4.2 Effect of ara-C on the ceU cycle profile of K562 cells 

The cells were incubated with increasing concentrations of ara-C for 5 
days, as described in 4.2.2. The effect of ara-C on the cell cycle profile 
as determined using a FACS machine is shown in this Figure. 
Histograms 1 - 5 show the typical profiles for each condition. The 3rd 
histogram from each treatment is used to show the cell cycle profile. 

1 Forward scatter vs side scatter. This shows the relative 
distribution of cells by size and granulation. Gate A represents 
the majority of the population of cells. 
X-axis = side scatter (SS) y-axis = forward scatter (FS) 

2 FL3 vs FL3 Peak. This ensures only single cells are analysed. 
Gate B represents the cells which are fluorescing PI as expected 
by a population of K562 cells. 
X-axis = FL3 (total PI fluorescence) 
y-axis = FL3 Peak (brightest intensity of PI fluorescence) 

3 FL3 histogram (gated). Shows the cell cycle profile of the cells 
included in gates A and B. 

4 FL3 histogram (ungated). Shows the cell cycle profile of aU the 
cells. 

For Histograms 3 and 4: 
C or F = Gj/o phase of the cell cycle 
D or G = S phase of the cell cycle 
E or H = G2+M phases of the ceU cycle 
x-axis = fluorescence of PI y-axis = number of cells 

5 Time vs FL3. This ensures optimal binding of PI has been 
achieved. 

Treatments: 
CON control cells, no treatment for 5 days 
O.OOluM 0.00IjiM ara-C for 5 days 
O.OluM 0.01 ̂ iM ara-C for 5 days 
O.OSuM 0.05\M ara-C for 5 days 
O.luM 0. L[M ara-C for 5 days 
O.S^M 0.5|iM ara-C for 5 days 
3.2IIM 3.2[M ara-C for 5 days 
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Table 4.1 Effect of different concentrations of ara-C on K562 cell cycle 

profile 

The cells were incubated with increasing concentrations of ara-C for 5 days, as 
described in 4.2.2. The effect of ara-C on the ceU cycle profile was determined 
using a FACS machine. The percentage of cells found in each phase of the cell 
cycle, was determined from histogram 3 of each treatment, as shown in Figure 
4.2. The percentage of dead cells was determined fi"om the percentage of cells 
found before G I / Q . 

Concentration 

of ara-C M,M 

% of cells in 

Gi/o (C) 

% of cells in 

S ( D ) 

% of cells in 

G2+M ( E ) 

% of dead 

cells 

0.0 (CON) 37.1 46.1 9.0 7.8 

0.001 33.9 50.0 9.4 6.7 

0.01 32.0 48.3 6.5 13.2 

0.05 15.5 30.5 40.0 14 

0.1 16.3 31.0 16.5 36.2 

0.5 25.9 29.8 17.6 26.7 

3.2 27.2 32.3 8.4 32.1 

142 



Histogram 5 - Time vs FL3 

This histogram ensures that PI binding has saturated the DNA. 

This line should remain horizontal for the analysis time. Any deviation 

either upwards or downwards means that optimal PI binding has not 

been achieved. 

The samples were analysed on low flow rate at a concentration 

of no greater than 100 events per second for a period of 5 minutes. 

The treatment histograms in Figure 4.2 are equivalent to 

histogram 3 from the control cell five histograms produced on DNA 

analysis. For each treatment histogram 5 Time vs FL3 was a horizontal 

line. The control for the K562 cells had no treatment. This is a typical 

representation of the K562 cell cycle used in this laboratory. The G\/Q 

peak was easily distinguishable, 37.1% percentage of cells were found 

in Gi/o, 46.1% were found in S phase and only 9%o were found in 

G2+M. In control cells, 7.8% of the cells were found before the GI/Q 

peak; cells found in this region were dead. Table 4.1 shows the 

percentages of cells in each phase of the cell cycle. At 0.001 )aM and 

0.01 | i M ara-C the percentage of cells in GJ/Q was reduced accompanied 

by an increase in percentage of cells in S. At O.OŜ iM ara-C there was a 

considerable decrease, compared to control cells, in the percentage of 

cells in GJ/Q and S (2.4 -fold and 1.5 -fold respectively), with a large 

percentage of cells in G2+M (4.4 -fold increase), while 14%) of the cells 

were dead this was a 1.8-fold increase compared with control cells. 

Between O.ljiiM and 3.2|iM ara-C there was a decrease in the 

percentage of cells in GI/Q and S phases compared to control cells with 

a greater percentage of cells in G2+M phase and a much higher 

percentage of dead cells, compared to control cells. At 0.1 )iM ,0.5fiM, 

and 3.2^M ara-C 36.2%, 26.7% and 32.1% of cells were dead, 
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respectively. Ara-C altered the percentage of cells in the different 

phases of the cell cycle. As the concentration of ara-C was increased the 

percentage of dead cells increased greatly. Up to a concentration of 

0.05|LiM ara-C the majority of the cells were alive. At 0.05|iM the main 

effect of ara-C was to alter the percentage of cells in the phases of the 

cell cycle. At and above 0.1 fiM ara-C the percentage of cells in the 

phases of the cell cycle was altered but the percentage of dead cells was 

increased considerably. The increasing percentage of dead cells was 

consistent with the decrease in cell viability in ara-C concentrations of 

O.ljiM, 0.5)aM and 3.2|aM, shown in Figure 4.1. 

4.3.2 Determination of effect of fatty acids and ara-C on cell 

growth of K562 cells 

The cytotoxic effects of fatty acids alone on K562 cells were 

reported in Chapter 3. In the present work, a subtoxic dose was chosen 

to treat the K562 cells in conjunction with ara-C. In previous 

experiments, the K562 cells had only been grown in fatty acid for 48 

hours and it was not known what effect growing the cells for a longer 

period of time in the presence of PUFA would have on the cells. An 

experiment was undertaken, therefore, to determine whether PUFA 

should be present in the 48 hour preincubation period only followed by 

an ara-C treatment, or in the 48 hour preincubation period followed by 

continued fatty acid presence during ara-C treatment. Therefore, the 

cells were grown in the preincubation period of 48 hours in the presence 

or absence of fatty acid, (10|iM EPA), followed by treatment with ara-C 

(0.01 )iM) for 5 days, in the presence or absence of 10|iMEPA. 

As seen in Figure 4.3, the addition of ara-C greatly reduced the 

cell growth in control and fatty acid-treated cells. As the cell number 
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was greatly reduced with a 5 day EPA incubation alone, it was decided, 

initially, that the fatty acid should be present as a 48 hour preincubation 

followed by the ara-C treatment alone. 

Figure 4.3 shows the effect of ara-C on K562 cell growth after 

the 48 hour preincubation in the presence or absence of EPA (10|iM). 

In the first 24 hours after the addition of ara-C, there was a significant 

decrease (p < 0.05) in the cell viability of all the conditions compared to 

the no treatment control cells. This was also true for 48 hours, 96 hours 

and 120 hours. It was evident that the preincubation of EPA (10|iM) for 

48 hours followed by no EPA incubation decreased the viable cells over 

the subsequent 48 hour period. Continued growth in EPA after the 48 

hour preincubation greatly decreased cell viability throughout the 

subsequent 5 days. For each of the fatty acid supplementation 

treatments the addition of ara-C further decreased the viability of the 

cells compared to fatty acid supplementation alone. After the entire 

treatment the viable cell number was in the order : control cells, no 

treatment > treatment with EPA (lOjuM) for 48 hours, followed by no 

further treatment > no treatment for 48 hours, then O.OlfiM ara-C for a 

future 120 hours > treatment with EPA (lO^iM) for 48 hours, then 

0.01|iM ara-C alone for 120 hours > treatment with EPA (10|uM) for 

48 hours, then EPA (10|liM) for a further 120 hours > treatment with 

EPA (lOiaM) for 48 hours, then EPA (lOfiM) with O.Ol^iM ara-C for a 

further 120 hours. 
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Figure 4.3 Effect of fatty acid and ara-C on K562 cell growth 

K562 cells were incubated with fatty acid and ara-C as described in 
section 4.2.3. The cells were incubated in the presence or absence of 
EPA (lOfiM) for 48 hours, followed by incubation in the presence or 
absence of EPA (lO^M) with or without O.OljiM ara-C for a further 
120 hours. The effect on cell growth after the 48 hour preincubation is 
shown in this Figure, time 0 is the start of the 120 hour incubation. 
Each point represents the mean value for 3 separate experiments, (9 
replicates). The error bars have been omitted, but the standard deviation 
was less than 5%. 

• control cells, no treatment 

• No treatment for 48 hours, then O.OljiM ara-C alone for a further 

120 hours 

• Treatment with 10|j.M EPA for 48 hours, then no further 

treatment 

* Treatment with lOjiM EPA for 48 hours, then O.OlpM ara-C 

alone for a further 120 hours 

A Treatment with lO^iM EPA for 48 hours, then lO\iM EPA for a 

further 120 hours 

• Treatment with lOjiM EPA for 48 hours, then lOjiM EPA with 

O.Ol̂ iM ara-C for a further 120 hours 

Oneway ANOVA was used to compare the different treatments with the 

control cells. 

At 24 hours, 48 hours, 96 hours and 120 hours each of the treatments 

were significantly different (p < 0.05) fi-om the control cells. 
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4.3.3 The effect of fatty acid and ara-C on haemoglobin 

accumulation in K562 cells 

Haemoglobin accumulation was assessed by the absorbance at 

414 nm of extracts derived from 10 x 10^ cells. Two methods were 

used to lyse the cells and remove the nuclei. The first method involved 

treating the cells with a 'lysing buffer' followed by an incubation on ice, 

followed by centrifugation. This method proved to give inconsistent 

results and the levels of haemoglobin fluctuated greatly for each 

condition, which suggested that not all cells were being lysed. The 

second method used three cycles of freeze/thawing, followed by two 

centrifugations. This method produced consistent results and was used 

for the haemoglobin accumulation assay. 

The culture medium was initially supplemented with lOfiM EPA 

for 48 hours, which was followed by fatty acid free culture medium 

containing ara-C, (0.01 |_iM) for up to 5 days. The results of this 

experiment have not been shown as no differences in the accumulation 

of haemoglobin between the conditions were observed. The ara-C 

concentration was increased to 0.05|j.M. Figure 4.1 shows that this 

concentration of ara-C decreased the cell number with some cell 

proliferation evident. Figure 4.2 shows that this concentration of ara-C 

does alter the percentage of cells in each phase of the cell cycle but the 

majority of cells are still alive. 

K562 cells were cultured in the presence or absence of lOfiM 

EPA for 48 hours, followed by ara-C treatment, at O.OSfiM for 5 days. 

The accumulation of haemoglobin was determined using the freeze 

thaw technique to lyse the cells. Figure 4.4 shows the accumulation of 

haemoglobin after the preincubation in the presence or absence of EPA 

(10|aM) and after the addition of ara-C, over a period of five days. At 
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Figure 4.4 Effect of fatty acid and ara-C on haemoglobin 

accumulation in K562 cells 

K562 cells were incubated in the presence or absence 10]j.M EPA for 
48 hours followed by no EPA in the presence or absence of 0.05|aM 
ara-C for 5 days, as described in 4.2.4. The effect on haemoglobin 
accumulation in cells after the 48 hour preincubation is shown in this 
Figure; time 0 is the start of the 5 day incubation. In each treatment 10 
X 10^ cells were assayed. Each point represents the mean value ± S.D. 
for 3 separate experiments, (9 repUcates). 

• control cells, no treatment 

• Treatment with lO^M EPA for 48 hours, then no fiirther 

treatment 

A No treatment for 48 hours, then 0.05 îM ara-C alone for a fiirther 

120 hours 
T Treatment with lOjjM EPA for 48 hours, then 0.05|aM ara-C 

alone for a further 120 hours 

Oneway ANOVA was used to compare the data. 

At 24 hours, 48 hours, 72 hours and 120 hours the accumulation of 

haemoglobin in control cell and cells treated with 10|iM EPA for 48 

hours, then no fiirther treatment were significantly lower (p < 0.05) than 

cells that had no treatment for 48 hours, then 0.05 îM ara-C alone for a 

further 120 hours and cells treated with 10|j,M EPA for 48 hours, then 

0.05jiM ara-C alone for a further 120 hours. 

At 72 hours and 96 hours the accumulation of haemoglobin in cells 

treated with lO^iM EPA for 48 hours, then no further treatment was 

significantly lower (p < 0.05) than control cells. 

At 96 hours the accumulation of haemoglobin in cells treated with 

lO îM EPA for 48 hours, then 0.05|aM ara-C alone for a fijrther 120 

hours was significantly lower (p < 0.05) than cells that had no treatment 

for 48 hours, then 0.05/iM ara-C alone for a further 120 hours. 
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24 hours, 48 hours, 72 hours, 96 hours and 120 hours cells treated with 

ara-C accumulated significantly more (p < 0.05) haemoglobin than cells 

without ara-C treatment. At 72 and 96 hours cells preincubated with 

EPA (lOjiM) alone accumulated significantly less (p < 0.05) 

haemoglobin than control cells. Only at 96 hours did cells preincubated 

with EPA (10|iM) followed by ara-C treatment accumulate significantly 

less (p < 0.05) haemoglobin than cells treated with ara-C alone. As the 

effect of EPA (lOfaM) preincubation had a small effect on haemoglobin 

accumulation it was decided to increase the EPA concentration to 

20\xM as this was the highest subtoxic concentration for K562 cells. 

Therefore a concentration of 20\xM was used to determine i f increasing 

fatty acid concentration would increase haemoglobin accumulation. 

4,3.4 Effect of different EPA concentrations and ara-C on 

haemoglobin accumulation in K562 cells 

To establish whether different concentrations of fatty acid altered 

the accumulation of haemoglobin, ten sets of cells were incubated as 

follows: 

con control cells with no treatment for 120 hours; con+ no treatment 

for 48 hours, then 0.05|iM ara-C alone for a fiirther 72 hours; plO 

treatment with lO^M EPA for 48 hours, then no further treatment for 72 

hours; plO+ treatment with lOfiM EPA for 48 hours, then O.OSfiM ara-

C alone for a further 72 hours; 10 treatment with 10|aM EPA for 48 

hours, then 10|iM EPA for a further 72 hours; 10+ treatment with 

lOfiM EPA for 48 hours, then lO^iM EPA with 0.05|iM ara-C for a 

further 72 hours; p20 treatment with 20|iM EPA for 48 hours, then no 

further treatment for 72 hours; p20+ treatment with 20|iM EPA for 48 

hours, then 0.05|LIM ara-C alone for a fiirther 72 hours; 20 treatment 
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with 20[iM EPA for 48 hours, then 20^M EPA for a further 72 hours; 

and 20+ treatment with 20|iM EPA for 48 hours, then 20|iM EPA with 

0.05|iM ara-C for a further 72 hours. After the total incubation time of 5 

days, the haemoglobin accumulation of 10 x 10^ cells was determined 

by absorbance of the cell extract at 414nm, this is shown in Figure 4.5. 

Only the cells grown with a 48 hour preincubation of EPA alone 

(plO or p20) showed no increase in haemoglobin accumulation, which 

is evident at lO^iM and 20|J.M EPA concentrations. With exposure to 

EPA alone for 5 days, 10|LIM or 20fiM, (10 or 20), a dose dependent 

increase in haemoglobin accumulation was observed. After a 5 day 

incubation with 20fiM EPA (20) the haemoglobin accumulation had 

increased by 2.3-fold compared to the control; for lOjuM EPA (10) the 

increase was by 1.4-fold. Haemoglobin accumulation was found to be 

EPA dose-dependent. 

The addition of ara-C for the final 72 hours of the 5 day 

incubation showed an increase in haemoglobin accumulation compared 

to control the cells not incubated with ara-C. Cells with no treatment for 

48 hours, then 0.05(iM ara-C for a ftirther 72 hours (con+) showed a 

2.3-fold increase in haemoglobin accumulation; equivalent to that 

observed with a 5 day exposure to 20|^M EPA alone (20). When cells 

were treated with EPA (lOfiM or 20[iM) for 48 hours, then 0.05|iM ara-

C for a further 72 hours (plO+ or p20+) a decrease of approximately 

1.25-fold in haemoglobin accumulation occurred when compared to 

cells with no treatment for 48 hours, then O.OŜ iM ara-C for a further 72 

hours (con+). Cells treated with EPA (lOfiM or 20|aM) for 48 hours, 

then EPA (lO^M or 20[iM) with 0.05|iM ara-C for a fiirther 72 hours 

(10+ or 20+) showed an increase in haemoglobin accumulation 

compared to cells with no treatment for 48 hours, then 0.05|iM ara-C 

for a further 72 hours (con+). Haemoglobin accumulation 
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Figure 4.5 Effect of different concentrations of EPA and ara-C on 

haemoglobin accumulation in K562 cells 

K562 cells were incubated in the presence or absence of EPA at lOjiM 
or 20|iM for 48 hours, followed by no EPA or 10|iM or 2 0 ^ EPA in 
the presence or absence of O.OSjiM ara-C for 72 hours, as described in 
section 4.2.5. The effect of haemoglobin accumulation in cells was 
measured by absorbance at 414nm. In each treatment 10 x 10^ cells 
were assayed. Each point represents the mean value ± standard 
deviation for 3 separate experiments, (9 replicates). 

con control cells, no treatment for 120 hours 

con+ No treatment for 48 hours, then 0.05|iM ara-C alone for a further 
72 hours 

plO Treatment with lOjiM EPA for 48 hours, then no further 
treatment for 72 hours 

plO+ Treatment witii 10|iM EPA for 48 hours, then O.OSfoM ara-C 
alone for a further 72 hours 

10 Treatment with lOjiM EPA for 48 hours, then lOjiM EPA for a 
further 72 hours 

10+ Treatment with 1 0 ^ EPA for 48 hours, then lO^M EPA with 
0.05)iM ara-C for a further 72 hours 

p20 Treatment with 20|iM EPA for 48 hours, then no further 
treatment for 72 hours 

p2(H- Treatment with 20[LM EPA for 48 hours, then 0.05|xM ara-C 
alone for a further 72 hours 

20 Treatment with 20 îM EPA for 48 hours, then 20pM EPA for a 
further 72 hours 

2(H- Treatment witii 20^M EPA for 48 hours, then 20^M EPA with 
O.OS^M ara-C for a fiirther 72 hours 
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was 1.12-fold higher with 10|iM EPA plus ara-C (10+) and 1.45-fold 

higher in cells treated with 20|iM EPA plus ara-C (20+) compared to 

cells treated with ara-C only (con+). 

This shows that prolonged EPA treatment alone can induce the 

cells to differentiate and accumulate haemoglobin. EPA in conjunction 

with ara-C increased accumulation of haemoglobin and differentiation 

of ara-C alone. 

Haemoglobin accumulation was not affected by treatment with 

EPA (lO^iM or 20|uM) for 48 hours, then no treatment for a further 72 

hours (plO or p20) compared to cells with no treatment (con). 

Haemoglobin accumulation was promoted by ara-C alone for 72 hours 

(con+); EPA alone for 120 hours (10 or 20); or EPA (48 or 120 hours) 

with ara-C treatment for 72 hours (pl0+, 10+, p20+ or 20+). 

Treatments with EPA for 48 hours, then for a further 72 hours in the 

presence or absence of ara-C showed a greater increase in haemoglobin 

accumulation with 20|iM EPA than with 10|uM EPA (20>10; 

20+>10+). Maximum haemoglobin accumulation was produced by 

treatment with 20|LIM EPA for 48 hours, then 20\iM EPA with 0.05|iM 

ara-C for a further 72 hours (20+). However, haemoglobin 

accumulation was decreased by treatment with lOfiM or 20fiM EPA for 

48 hours, then 0.05|iM ara-C for a further 72 hours (pl0+ and p20+), 

compared to no treatment for 48 hours, then 0.05)iM ara-C for a ftirther 

72 hour ara-C treatment (con+) (con+>pl0; con+>p20). EPA 

preincubation seemed to decrease the haemoglobin inducing power of 

ara-C alone. 

The effect of the above treatments on cell viability was also 

determined and is shown in Figure 4.6, the shaded area represents the 

viable cells and the whole bar the total number of cells. 
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Cell numbers decreased slightly to 94% of the control when 

treated with 10|uM EPA for 48 hours, then no treatment for a further 72 

hours (plO). In cells treated with 20|iM EPA for 48 hours, then no 

further treatment for 72 hours (p20), there was a further decline in cell 

number to 60% of the control. This dose-dependent decline in cell 

number, caused by treatment with EPA for 48 hours, then no treatment 

for 72 hours, (Figure 4.6), occurred in the absence of changes in 

haemoglobin accumulation (Figure 4.5). 

A more dramatic decrease in cell number was observed when 

cells were treated with EPA for 48 hours, then EPA for a further 72 

hours. Cell numbers decreased to 71% in 10|iM EPA (10) and to 40.5% 

in 20|LiM EPA (20), compared to the control (CON) (Figure 4.6), and 

this decline in cell number correlates with an EPA dose-dependent 

increase in haemoglobin accumulation (Figure 4.5). 

Cells with no treatment for 48 hours, then ara-C for a further 72 

hours (CON+) caused a decline in cell number, to 36% of the control 

(CON) (Figure 4.6), and this correlates with a 2.3-fold increase in 

haemoglobin accumulation compared to control cells (Figure 4.5). 

When cells were treated with EPA (10|uM or 20fiM) for 48 

hours, then ara-C treatment only for a further 72 hours (plO+ or p20+), 

the cell number decrease to approximately 79% for lO^iM EPA (plO) 

and 20^M EPA (p20) when compared to cells with no treatment for 48 

hours, then ara-C for a further 72 hours (CON+) (Figure 4.6). Cells 

treated with EPA (lO^tM or 20|iM) for 48 hours, then ara-C treatment 

only for a further 72 hours (pl0+ or p20+) decreased haemoglobin 

accumulation by approximately 48% compared to cells with no 

treatment for 48 hours, then ara-C for a further 72 hours 

(CON+)(Figure 4.5). The cell number of cells treated with 10|iM EPA 

for 48 hours, then lO^M EPA with ara-C for a further 72 hours (10+) 
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Figure 4.6 Effect of different concentrations of EPA and ara-C on 

cell growth and viability of K562 cells 

K562 cells were incubated in the presence or absence of EPA at 10/iM 
or 20)iM for 48 hours, followed by no EPA or 1 0 ^ or 20nM EPA in 
the presence or absence of 0.05jj,M ara-C for 72 hours, as described in 
section 4.2.5. The effect on cell growth and viabihty was determined as 
described in 2.2.3. Each bar represents the mean value ± S.D. for 3 
separate experiments, (9 replicates). 

• total cell number • viable cell number 
con control cells, no treatment for 120 hours 

con+ No treatment for 48 hours, then 0.05|aM ara-C alone for a further 
72 hours 

plO Treatment with lO îM EPA for 48 hours, then no fiirther 
treatment for 72 hours 

plO+ Treatment with lO îM EPA for 48 hours, then 0.05|iM ara-C 
alone for a further 72 hours 

10 Treatment with 10}iM EPA for 48 hours, then 10|iM EPA for a 
further 72 hours 

10+ Treatment with lOiiM EPA for 48 hours, then 10)iM EPA v̂ ith 
0.05pM ara-C for a further 72 hours 

p20 Treatment with 20(iM EPA for 48 hours, then no further 
treatment for 72 hours 

p20+ Treatment with 20jiM EPA for 48 hours, then O.OSjiM ara-C 
alone for a further 72 hours 

20 Treatment with 20|iM EPA for 48 hours, then 20^LM EPA for a 
further 72 hours 

20+ Treatment with lO^M EPA for 48 hours, then 20 îM EPA with 
0.05pM ara-C for a further 72 hours 
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did not alter compared to cells with no treatment for 48 hours, then ara-

C for a further 72 hours (CON+), cells treated with 20|nM EPA for 48 

hours, then 20fiM EPA with ara-C for a further 72 hours (20+) declined 

in cell number to 71% of cells with no treatment for 48 hours, then ara-

C for a further 72 hours (CON+) (Figure 4.6). Under these conditions 

haemoglobin accumulation was increased by 1.12-fold with 10|iM EPA 

and by 1.45-fold with 20pM EPA compared to cell with an ara-C 

treatment only for the final 72 hours (Figure 4.5). In general, therefore, 

when ara-C was present the cell number declined but the magnimde of 

this decline was not substantially affected by the presence of EPA, at 

either lOfiM or 20|iM, during either the 48 hour preincubation or 

throughout the entire 5 day incubation period. 

It is interesting to note that exposure of cells to 20\xM EPA for 5 

days, including ara-C for the final 72 hour, resulted in the greatest 

decline in cell numbers, to 25.5% of control, (Figure 4.6) and the 

greatest accumulation of haemoglobin (Figure 4.5). In general, cell 

viability was high in most of these conditions, though declined when 

cells were exposed to EPA for 5 days combined with ara-C for 72 hours 

(Figure 4.6). 

4.3.5 Effect of different fatty acids and ara-C on K562 cells 

In this experiment, K562 cells were incubated with one of the 

following fatty acids EPA, AA, LA or OA. DHA could not be used in 

this series of experiments as the addition of ara-C to cells supplemented 

with lOjuM DHA for 48 hours caused the cells to adhere to one another 

forming large clumps and the mortality rate of the cells increased. 

Reducing the concentration of DHA did not improve the clumping 

effect during the ara-C treatment. For the other fatty acids the highest 
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subtoxic concentration was 20)iM. Therefore, in this experiment a 

concentration of 20|LIM was used for each fatty acid. 

K562 cells were incubated with one of four different fatty acids 

at 20^M, for 48 hours followed by another 72 hours with the fatty acid 

in the presence or absence of ara-C (0.05j.xM). The fatty acids used were 

EPA, AA, LA or OA. At the end of the 120 hours the accumulation of 

haemoglobin in 10 x 10^ cells was determined, and the results are 

shown in Figure 4.7. 

Cells treated with EPA for 120 hours only (EPA) accumulated 

haemoglobin producing a 2.38-fold increase compared to control cells 

(con). Cells treated with ara-C for the final 72 hours only (con+) 

accumulated haemoglobin producing a 2.29-fold increase compared to 

control cells (con), very similar to the response seen in cells treated 

with EPA for 120 hours (EPA). When cells were treated with EPA for 

120 hours plus ara-C for the final 72 hours (EPA+) haemoglobin 

accumulation greatly increased, producing a 3.41-fold increase 

compared to control cells (con), a 1.49-fold increase compared to cells 

with ara-C for the final 72 hours only (con+) and a 1.43-fold increase 

compared to cells treated with EPA for 120 hours (EPA). 

Cells treated with AA for 120 hours (AA) increased 

haemoglobin accumulation by 2.32-fold compared to control cells 

(con). This increase was very similar to cells treated with EPA for 120 

hours (EPA) and to cells treated with ara-C for the final 72 hours only 

(con+). The addition of ara-C to the final 72 hours of the 120 hour AA 

treatment (AA+) further increased haemoglobin accumulation, by 

3.07-fold compared to control cells (con), by 1.34-fold compared to ara-

C only for the final 72 hours (con+) and by 1.32-fold compared to AA 

for 120 hours (AA). 
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Figure 4.7 EflFect of different fatty acids and ara-C on 

haemoglobin accumulation in K562 cells 

K562 cells were incubated in the presence or absence of fatty acid 
20jiM for 48 hours followed by fatty acid 20pM in the presence or 
absence of 0.05jiM ara-C for 3 days, as described in 4.2.6. The effect 
of haemoglobin accumulation in cells was measured by absorbance at 
414nm. In each treatment 10 x 10^ cells were assayed. Each bar 
represents the mean value ± standard deviation for 3 separate 
experiments, (9 replicates). 

con No treatment for 120 hours 

con+ No treatment for 48 hours, then O.OSJLIM ara-C alone for a 
further 72 hours 

EPA Treatment with 20|xM EPA for 48 hours, then 20pM EPA 
without O.OSJJM ara-C for a further 72 hours 

EPA+ Treatment with 20 îM EPA for 48 hours, then 20 îM EPA 
with O.OSjiM ara-C for a further 72 hours 

AA Treatment with 20|iM AA for 48 hours, then 20pM AA 
without 0.05)iM ara-C for a further 72 hours 

AA+ Treatment with 20[iU AA for 48 hours, then 20pM AA 
with 0.05(iM ara-C for a further 72 hours 

LA Treatment with 20pM L A for 48 hours, then 20|iM L A 
without 0.05jaM ara-C for a further 72 hours 

LA+ Treatment with 20^M L A for 48 hours, then 20}iM L A 
with 0.05pM ara-C for a further 72 hours 

OA Treatment with 20|j.M OA for 48 hours, then 20[M OA 
without 0.05)j,M ara-C for a further 72 hours 

0A+ Treatment with 20[M OA for 48 hours, then 20fiM OA 
with 0.05/j,M ara-C for a fiirther 72 hours 
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Cells treated with LA for 120 hours (LA) accumulated more 

haemoglobin than control cells (con), an increase of 1.32-fold. When 

ara-C was added for the final 72 hours of the 120 hour LA treatment 

(LA+) haemoglobin accumulation increased by 2.61-fold compared to 

control cells (con), by 1.14-fold compared to cells treated with ara-C for 

the final 72 hours (con+), and by 1.72-fold compared to cells treated 

with LA for 120 hours (LA). 

Cells treated with OA for 120 hours (OA) also increased 

haemoglobin accumulation by 1.51-fold compared to control cells 

(con). This increase was similar to that produced by cells treated with 

LA for 120 hours (LA). When ara-C was added to the final 72 hours of 

the OA 120 hour treatment, haemoglobin accumulation increased by 

2.61-fold compared to control cells, by 1.14-fold to cells treated with 

ara-C for 72 hours (con+), by 1.73-fold compared to cells treated with 

OA 120 hour incubation. 

K562 cells were found to accumulate haemoglobin in the 

presence of 0.05fiM ara-C for 72 hours or the presence of fatty acids 

alone for 5 days. Cells treated with AA or EPA for 120 hours 

accumulated approximately the same amount of haemoglobin as those 

treated with ara-C for 72 hours. The maximum haemoglobin 

accumulation was achieved in the presence of EPA for 120 hours 

combined with ara-C for the final 72 hours. The potency of the 

treatments at accumulating haemoglobin were in the order : 120 hours 

EPA with ara-C for the final 72 hours > 120 hours AA with ara-C for 

the final 72 hours > 120 hours LA with ara-C for the final 72 hours > 

120 hours OA with ara-C for the final 72 hours > 120 hours EPA > 

120 hours A A > 72 hours ara-C > 120 hours LA > 120 hours OA 

(EPA+> AA+ > LA+ > OA+ > EPA > AA > con+ > L A > OA). This 

order reflects the number of double bonds in the fatty acids. 
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The effect of these conditions on cell growth and viability is 

shown in Figure 4.8. The shaded area represents the viable cells/ml and 

the whole bar the total number of cells/ml. 

Cells treated with EPA for 120 hours (EPA) produced a decrease 

in cell number to 67% of the control (con). When ara-C was added to 

the final 72 hours of the EPA 120 hour treatment (EPA+) a further 

reduction in cell number was observed to 28% of the control (con). The 

addition of ara-C to the EPA treatment (EPA+) decreased the cell 

number by 38% compared to EPA treatment (EPA). The effect of ara-C 

alone for 72 hours (con+) reduced the cell number to 52% of the 

control. 

Cells treated with AA for 120 hours (AA) decreased the cell 

number to 85% of the control (con). Again the addition of ara-C to the 

final 72 hours of the AA 120 hour treatment (AA+) further reduced the 

cell number to 49% of the control (con). The addition of ara-C to the 

AA treatment (AA+) decreased the cell number by 29% compared to 

A A treatment (AA). 

When cells were treated with LA for 120 hours (LA) an increase 

in cell growth was observed to 137% of the control (con). However the 

addition of ara-C to the final 72 hours of the LA 120 hour treatment 

(LA+) dramatically decreased the cell number to 49% of control cells 

(con). The same effect on cell number was observed in AA with ara-C 

treatment (AA+). The addition of ara-C to LA treatment (LA+) 

decreased the cell number by 88%) compared to LA treatinent (LA). 

An increase in cell number was again observed when cells were 

treated with OA for 120 hours (OA) to 127% of the conti-ol (con). The 

addition of ara-C to the final 72 hours of the 120 hour incubation 
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Figure 4.8 Effect of different fatty acids and ara-C on cell growth 

and viability in K562 cells 

K562 cells were incubated in the presence or absence of fatty acid 
(20jiM) for 48 hours followed by fatty acid (20jiM) in the presence or 
absence of 0.05/iM ara-C for three days, as described in section 4.2.6. 
The effect on cell growth and viability was measured as described in 
2.2.3. Each bar represents the mean value ± standard deviation for 3 
experiments, (9 replicates). 

• total cell number • viable cell number 

con No treatment for 120 hours 

con+ No treatment for 48 hours, then 0.05)iM ara-C alone for a 
further 72 hours 

EPA Treatment with 20fiM EPA for 48 hours, then 20{iM EPA 
without 0.05|iM ara-C for a further 72 hours 

EPA+ Treatment with 20(iM EPA for 48 hours, then 20^M EPA 
with 0.05|aM ara-C for a further 72 hours 

AA Treatment with 20nM AA for 48 hours, then 20}xM AA 
wdthout 0.05pM ara-C for a further 72 hours 

AA+ Treatment with 20}iM AA for 48 hours, then 20|iM AA 
with 0.05jj,M ara-C for a fiirther 72 hours 

L A Treatment with 20|iM L A for 48 hours, then 20\jM L A 
without 0.05|JM ara-C for a fiirther 72 hours 

LA+ Treatment with 20|iM LA for 48 hours, then 20{iM L A 
with 0.05nM ara-C for a further 72 hours 

OA Treatment with 20)xM OA for 48 hours, then 20nM OA 
wdthout 0.05^M ara-C for a further 72 hours 

OA+ Treatment with 20^M OA for 48 hours, then 20^M OA 
with 0.05|iM ara-C for a further 72 hours 
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(OA+) decreased the cell number to 48% of the control (con). The 

addition of ara-C to the OA treatment (OA+) decreased the cell number 

by 78%) compared to OA treatment (OA). 

Incubations with EPA or AA decreased the cell number whereas 

OA and LA increased cell number. The addition of ara-C to the fatty 

acid treatment decreased the cell numbers to below 50%) of control 

cells. Ara-C treatment alone reduced cell number to 52% of control 

cells. The treatments caused alterations in cells number which were in 

the following order : LA 120 hours > OA 120 hours > control, no 

treatment > AA 120 hours > EPA 120 hours > ara-C 72 hours > LA 120 

hours with ara-C for the final 72 hours = AA 120 hours with ara-C for 

the final 72 hours > OA 120 hours with ara-C for the final 72 hours > 

EPA 120 hours with ara-C for the final 72 hours ( L A > OA > con > 

A A > EPA > con+ > LA+ = AA+ > OA+ > EPA+). This order does 

not correspond to the order of haemoglobin accumulation. 

The decrease in cell number produced by EPA or AA was 

coupled with an increase in haemoglobin accumulation by 2.38 -fold 

and 2.32 -fold, respectively, compared to control cells. LA or OA 

treatment alone for 120 hours stimulated both cell growth and 

haemoglobin accumulation by 1.32-fold and 1.51-fold, respectively, 

compared to control cells. As shown in Figures 4.5 and 4.6 a reduction 

in cell number was accompanied by haemoglobin accumulation but in 

this experiment OA or LA both stimulated cell growth and caused 

haemoglobin accumulation. EPA or AA decreased cell growth and 

caused a higher accumulation of haemoglobin than LA or OA. 

Cells treated with ara-C for 72 hours (con+) caused a decrease in 

cell number to 52% of the control, this was accompanied by a 2.27-fold 

increase in haemoglobin accumulation compared to control cells. When 
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cells were treated with fatty acid for 120 hours and ara-C for the final 

72 hours the cell numbers decreased further. The greater decrease in 

cell number caused by the addition of ara-C to the fatty acid treatment 

seemed to be accompanied by a further increase in haemoglobin 

accumulation. Cells treated with EPA for 120 hours with ara-C for the 

final 72 hours were found to accumulate the largest amount of 

haemoglobin and the most dramatic decrease in the cell number. Cell 

number was reduced to approximately 49% when treated with either 

AA with ara-C, or LA with ara-C or OA with ara-C. However AA with 

ara-C treatment caused a greater increase in haemoglobin accumulation, 

whereas LA with ara-C or OA with ara-C accumulated the same amount 

of haemoglobin. 

In Figures 4.5 and 4.6 the decrease in cell number suggests the 

onset of differentiation. In this experiment, EPA treatment for 120 

hours with ara-C for the final 72 hours gave the most dramatic decrease 

in cell number and caused the largest inducfion of the onset of 

differentiation. Even though AA treatment for 120 hours with ara-C for 

the final 72 hours did not decrease the cell number as significantly as 

EPA with ara-C, the AA with ara-C treatment did induce a large 

haemoglobin accumulation and the onset of differentiation. LA with 

ara-C or OA with ara-C reduced the cell number to approximately the 

same level as AA with ara-C but the amount of haemoglobin 

accumulation and onset of differentiation was less than AA with ara-C, 

this reflects the number of double bonds found in the fatty acids. 

The effect of different fatty acids with ara-C on the DNA of 

K562 cells was determined by FACS. Histogram 3 from the five 

histograms produced during DNA analysis is shown in Figure 4.9 for 

each condition of the experiment. Histogram 5 for each condition 
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showed that PI binding was optimal. The percentage of cells in each 

phase of the cell cycle is shown in Table 4.2. 

The control (CON) shows a typical K562 cell cycle profile under 

current investigation. When ara-C was added to the final 72 hours 

(CON+) an increase in the percentage of cells was observed in S phase 

and G2+M phases compared to control cells (CON). This was 

accompanied by a decrease in the percentage of cells in Gi/o and an 

increase in the percentage of dead cells compared to control cells. From 

Figures 4.7 and 4.8 the addition of ara-C seems to have induced 

differentiation accompanied by a reduction in cell number and an 

increase in haemoglobin accumulation. The cell cycle profile seems to 

reflect this with a reduction in the percentage of cells in Gi/o and a 

much higher percentage of cells in S and G2+M phase. 

The addition of the PUFA EPA for 120 hours (EPA) has 

increased the percentage of cells in GJ/Q phase, and G2+M phase and 

reduced the percentage of cells in the S phase of the cell cycle, the 

percentage of dead cells was also increased, compared to the conti-ol 

cells (CON). From Figures 4.7 and 4.8 the addition of EPA seemed to 

have induced differentiation accompanied by a decrease in cell number 

and an increase in haemoglobin accumulation. When ara-C was present 

for the final 72 hours of the 120 hour EPA treatment (EPA+) there was 

a decrease in the percentage of cells in Gyo phase, S phase and an 

increase in the percentage of cells in G2+M phase of the cell cycle, the 

percentage of dead cells also increased, compared to control cells 

(CON). Figures 4.7 and 4.8 seemed to show that EPA with ara-C 

treatment induced differentiation, which was accompanied by 

decreasing the cell number greatly and accumulating the largest amount 

of haemoglobin. This was reflected in the cell cycle profile with an 

increase in the percentage of cells G2+M and a decrease in G \ / q and S 
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Figure 4.9 Effect of different fatty acids and ara-C on the cell 
cycle profile of K562 cells 

K562 cells were incubated in the presence or absence of fatty acid 
2O11M for 48 hours followed by fatty acid 20\iM in the presence or 
absence of 0.05|j,M ara-C for three days, as described in 4.2.6. The 
effect on the cell cycle profile was determined by FACS, the histograms 
of the cell cycles for the following treatments are shown in this Figure. 

CON No treatment for 120 hours 
CON+ No treatment for 48 hours, then 0.05|j.M ara-C alone for a 

further 72 hours 
EPA Treatment with 20)iM EPA for 48 hours, then 20^M EPA 

without 0.05)JM ara-C for a further 72 hours 
EPA+ Treatment with 20[M EPA for 48 hours, then 20(iM EPA 

with 0.05|j,M ara-C for a further 72 hours 
AA Treatment with 20|iM AA for 48 hours, then 20|xM AA 

without 0.05|iM ara-C for a further 72 hours 
AA+ Treatment with 20jiM AA for 48 hours, then 20fiM AA 

with 0.05jLiM ara-C for a fiirther 72 hours 
LA Treatment with 20|iM LA for 48 hours, then 20|iM L A 

without O.OŜ iM ara-C for a further 72 hours 
LA+ Treatment with 20iiM LA for 48 hours, then 20^M L A 

with 0.05]aM ara-C for a fiirther 72 hours 
OA Treatment with 20|xM OA for 48 hours, then 20^M OA 

without 0.05jLiM ara-C for a further 72 hours 
0A+ Treatment with 20|iM OA for 48 hours, then 20|iM OA 

with 0.05p.M ara-C for a further 72 hours 

Histograms 
x-axis = fluorescence of PI 
y-axis = number of cell 
C = Gj/o phase of the cell cycle 
D = S phase of the cell cycle 
E = G2+M phases of the cell cycle 
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Table 4.2 Effect of different fatty acids and ara-C on K562 cell cycle 

profile 

K562 cells were incubated in the presence or absence of fatty acid 20|iM for 48 
hours followed by fatty acid 20|iM in the presence or absence of O.OSjiM ara-C 
for three days, as described in 4.2.6. The effect on the cell cycle profile was 
determined by FACS. This Table shows percentage of ceUs found in each 
phase of the cell cycle, this was determined fi-om histogram 3 of each 
treatment, as shown in Figure 4.9. The percentage of dead cells was 
determined fi-om the percentage of cells found before G I / Q . 

Fatty acid 

+/- ara-C 

% of cells in 

Gi/o (C) 

% of cells in 

S (D) 

% of cells in 

G2+M (E) 

% of dead cells 

CON 57.4 34.7 2.2 5.7 

CON+ 23.1 41.1 26.4 9.4 

EPA 62.5 21.8 6.6 9.1 

EPA+ 26.8 27.5 24.1 21.6 

AA 57.7 22.5 11.2 8.6 

AA+ 39.6 28.4 12.8 19.2 

LA 48.4 39.5 4.6 7.5 

LA+ 36.3 30.4 13.8 19.5 

OA 60.5 28.1 5.4 6.0 

0A+ 27.6 1 32.3 17.8 22.3 
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phases. In both EPA treatments with and without ara-C there was an 

increase in the percentage of cells in the G2+M phase of the cell cycle. 

Cells treated with EPA for 120 hours with ara-C (EPA+) for the final 

72 hours showed a decrease in the percentage of cells inG\/Q compared 

to cells treated with EPA for 120 hours alone (EPA). This was reflected 

by the 38% reduction in cell number when ara-C was presence in EPA 

treated cells accompanied by an increase in haemoglobin accumulation. 

There was a slight increase in the percentage of cells in S phase and an 

increase in the percentage of cells in G2+M phase of the cell cycle, 

there was also an increase in the percentage of dead cells in the EPA 

120 hour treatment compared to cells treated with EPA for 120 hours 

alone (EPA). The percentage of dead cells calculated by the DNA 

analysis, Table 4.2, and the percentage of viable cells as shown in 

Figure 4.8 do not match. This was due to the different methods used to 

determine the percentage of dead cells. The trypan blue exclusion 

method may have underestimated the percentage of dead cells 

compared PI assosicating with the DNA of the cells. 

The addition of the PUPA AA for 120 hours (AA) has decreased 

the percentage of cells in S phase and increased the percentage of cells 

in G2+M and dead cells, while the percentage of cells in GJ/Q remains 

constant, compared to control cells (CON). In Figures 4.7 and 4.8 

differentiation was accompanied by the reduction in cell growth and the 

increase in haemoglobin accumulation. The increase in the percentage 

of cells in GJ/Q is surprising but a larger percentage of cells are found 

in G2+M compared with control cells. The addition of ara-C for the 

final 72 hours of the 120 hour AA treatment (AA+) caused a decrease 

in the percentage of cells in GJ/Q and S phases and an increase in the 

percentage of cells in G2+M phase of the cell cycle and dead cells, 

compared to control cells (CON). In the cell cycle profile this was 
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reflected by the decrease in the percentage of cells in G\/Q and the 

increase in G2+M. In both AA treatments, with and without ara-C an 

increase in the percentage of cells in G2+M phase of the cell cycle 

occurred, compared to control cells. Cells treated with AA for 120 

hours with ara-C for the final 72 hours showed a decrease in the 

percentage of cells in GI/Q, a slight increase in the percentage of cells 

in S and an increase in the proportion of dead cells, the percentage of 

cells in G2+M was similar to cells treated with AA for 120 hours. The 

addition of ara-C for the final 72 hours of the AA 120 hour treatment 

showed a 29% decrease in cell number accompanied by an increase in 

haemoglobin accumulation compared to cells treated with AA for 120 

hours. 

Cells treated with LA for 120 hours showed a decrease in the 

percentage of cells in GJ/Q and an increase in S and G2+M and dead 

cells, compared to control cells. An increase in cell growth, as shown in 

Figure 4.8, was not accompanied by an increase in the percentage of 

cells in G1/0 in the cell cycle profile. The accumulation of haemoglobin 

was however reflected by the increase in the percentage of cells in 

G2+M. The addition of ara-C to the LA treatment decreased the 

percentage of cells in GJ/Q and S and increased the percentage of cells 

in G2+M and dead cells, compared to control cells. The induction of 

differentiation was accompanied by a reduction in cell number and in 

the accumulation of haemoglobin, as shown in Figures 4.7 and 4.8, was 

supported by the cell cycle profile. Cells treated with LA for 120 hours 

with ara-C for the final 72 hours showed a decrease in the percentage of 

cells in GI/Q and S phases of the cell cycle with an increase in the 

percentage of cells in G2+M phase and those dead compared to cells 

treated with LA for 120 hours. The addition of ara-C for the final 72 
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hours of the 120 hour LA treatment caused an 88% decrease in cell 

number accompanied by an increase in haemoglobin accumulation. 

The cell cycle profile of cells treated with OA for 120 hours 

showed an increase in the percentage of cells in GI /Q and G2+M and a 

decrease in S and dead cells, compared to control cells. This is reflected 

by the increase in cell number (Figure 4.8) and the increase in 

haemoglobin accumulafion (Figure 4.7). The addition of ara-C for the 

final 72 hours of the 120 hour OA treatment decreased the percentage 

of cells in GJ/Q and S phases and an increase in G2+M phase and dead 

cells compared to control cells. This reflects the decrease in cell number 

as shown in Figure 4.8, and the increase in haemoglobin accumulation 

shown in Figure 4.7 by this treatment. Cells treated with OA for 120 

hours with ara-C for the final 72 hours showed a decrease in the 

percentage of cells in GJ/Q of the cell cycle, there was a slight increase 

in the percentage of cells in S phase and an increase in the percentage of 

cells in G2+M and dead cells compared to cells treated with OA for 120 

hours. The addition of ara-C for the final 72 hours of the 120 hour 

treatment resulted in a decrease in cell number by 78%, this was 

accompanied by an increase in haemoglobin accumulation. 

The inducfion of differentiation by the fatty acids was reflected 

in the percentage of cells in G2+M phase of the cells cycle. Although 

the percentage of cells in G2+M was high for the EPA with ara-C 

treatment, it was lower than expected for the AA with ara-C treatment 

compared to the induction of haemoglobin by this treatment. Cells 

treated with fatty acid with ara-C show a reduction in the percentage of 

cells in GI/Q and an increase in G2+M compared to cells treated with 

the fatty acid alone. Cells treated with ara-C but no fatty acid showed an 

increase in G2+M and in S phase. Apart from the LA treatment, the 
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fatty acid treatment seemed to increase the percentage of cells entering 

G2+M. 
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4.4 Discussion 

The work reported in this study focused on the effects of 

unsaturated fatty acids on differentiation of K562 cells. It has been 

shown that K562 cells are able to differentiate by exposure to a number 

of differentiating agents, such as hemin, sodium butyrate and l-fi-D-

arabinofiiranosylcytosine (ara-C), (Andersson, 1979, Rutherford & 

Weatherall, 1979; Horton, 1983; Luisi-DeLuca et al, 1984; Chen & 

Wu, 1994). Ara-C was chosen as the differentiating agent in this study 

as it induced the cells into terminal differentiation, unlike the other 

agents which could be removed from the medium and the cells would 

revert to K562 cells again (Luisi-DeLuca et al., 1984; Chen & Wu, 

1994). Chen et al. (1994) used a concentration of 3.6|iM ara-C to 

induce differentiation in K562 cells, whereas Luisi-DeLuca et al. (1984) 

determined that 0.5|j.M was the concentration that produced maximal 

differentiation in K562 cells. 

Ara-C incorporates specifically into DNA and acts as a relative 

chain terminator which causes DNA fragmentation (Luisi-DeLuca et 

al., 1984). The extent of ara-C incorporation into DNA correlates with 

the inhibition of DNA synthesis. Ara-C (0.5)LIM) was shown to induce 

differentiation of K562 cells (Luisi-DeLuca et al., 1984) and caused 

irreversible haemoglobin expression which suggested terminal 

differentiation. After ara-C inhibition of DNA synthesis certain 

segments of DNA can be replicated more than once in single cells 

(Luisi-DeLuca et al., 1984). The accumulation of DNA fragments may 

alter gene expression leading to differentiafion. 

Bums et al., (1989) induced HL60 cells to differenfiate by 

supplementing the culture medium with lOfiM DHA for 120 hours. 
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After this time cells were resuspended in fi-esh culture medium 

containing DHA and then incubated with a known differentiating agent, 

retinoic acid (l|uM) for up to 5 days. Cells treated with DHA and 

retinoic acid significantly increased the production of superoxide on 

days 1 and 2, after this time there was no significant difference (Bums 

et al., 1989). HL60 cells treated with DHA plus retinoic acid also 

reduced more NBT at 24 and 48 hours than cells treated with 18:1 plus 

retinoic acid. In HL60 cells DHA and retinoic acid treatment resulted in 

the accelerafion of differenfiation and increased growth arrest was 

shown in GJ/Q phase of the cell cycle. Even a short supplementation 

with DHA for 1 hour produced accelerated differentiation with retinoic 

acid compared to exposure to 18:1 or no fatty acid treatment (Bums et 

al., 1989). This short incubation was long enough for the HL60 cells to 

incorporate the DHA into the plasma membrane. This may have altered 

the plasma membrane sufficiently to allow the differentiating agent to 

produce a greater effect. 

In the present study K562 cells were treated with fatty acids in 

the presence or absence of ara-C to ascertain whether induction of 

differentiation could be accelerated. Differentiated K562 cells were 

determined by their ability to accumulate haemoglobin. The K562 DNA 

was also examined using FACS analysis. 

Initially K562 cells were grown in a range of ara-C 

concentrations (0-3.2]iM) to determine the effect on cell growth. The 

effects of ara-C on cell growth was observed every day, over a period of 

5 days by trypan blue exclusion. Differences in cell growth were 

observed after 24 hours. Concentrations of 0.00 l | i M - O.OlfiM showed 

a decrease in cell growth but the cells were still able to replicate over 

the 5 day period. At a concentration of O.OŜ iM cells growth was greatly 
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decreased over the 5 days. Concentrations of 0.1 | iM - 3.2fiM produced 

cytostatis. The effect of these concentrations on the K562 DNA was 

determined using FACS, after 5 days. As the concentration of ara-C 

was increased up to 0.05^M there was an increase in the percentage of 

cells found in the G2+M phases of the cells cycle, the percentage of 

cells found in the GI/Q phase and S phase was reduced. At 

concentrations above 0.1 |uM ara-C the number of dead cells were 

greatly increased compared with control cells. The dead cells were 

shown on the histogram before the G\/Q phase of the cell cycle. These 

dead cells had probably apoptosed as the cells found before C in 

histogram 3 have fragmented DNA. There was a dose-dependent shift 

of cells initially from GI/Q phase of the cell cycle to S phase then to 

G2+M. The shift to S phase is consistent with the suggestion by Major 

et al. (1982) that the ara-C inhibits DNA synthesis. The increase in S 

phase was probably due to the DNA beginning to fragment with 

increasing ara-C treatment. With the K562 cells used in this study 

concentrations of 0.5|aM or 3.6\iM of ara-C caused a large amount of 

cell death. I f fatty acids were used with the high concentrations of ara-C 

(3.6|iM) used by Luisi-DeLuca et al. (1984) and Chen & Wu (1994), 

the effect of the fatty acid may have been masked by the effect of ara-C. 

In this study a concentration of 0.05)LIM ara-C was used in conjunction 

with fatty acid treatment. 

K562 cells supplemented with EPA for 120 hours showed a 

dose-dependent increase in haemoglobin concentration, this was 

accompanied by a decrease in cell growth. K562 cells supplemented 

with EPA for 120 hours plus ara-C for the final 72 hours showed a 

dose-dependent increase in haemoglobin concentration and this was 

accompanied by a further decrease in cell growth. The presence of 

172 



ara-C increased the effect of EPA alone. The increase in haemoglobin 

accumulation could have been caused by EPA increasing the 

membrane fluidity of the K562 cells making ara-C more effective. EPA 

is a precursor to eicosanoid synthesis. EPA supplementation could have 

altered eicosanoid synthesis, which may alter ara-C differentiation. 

K562 cells were then supplemented with different fatty acids in 

the presence or absence of ara-C. Cells treated with fatty acid alone for 

120 hours accumulated more haemoglobin than control cells and 

haemoglobin accumulation was in the order EPA > AA > OA > LA. 

EPA and AA were much more effective at accumulating haemoglobin, 

and this was accompanied by a reduction in cell number. LA and OA 

also accumulated haemoglobin, but this was accompanied by a 

stimulation of cell growth compared to control cells. From these results 

it appears that the greater the degree of unsaturation in the fatty acid the 

greater the haemoglobin accumulation. When ara-C was added during 

the final 72 hours of incubation, haemoglobin accumulation was 

increased in each condition. Maximum haemoglobin accumulation was 

achieved by a 120 hour treatment with EPA with ara-C present for the 

final 72 hours. The order of haemoglobin accumulation in the presence 

of ara-C was EPA > AA > LA > OA, and this order reflects the 

unsaturation of the fatty acids. The increase in haemoglobin 

accumulation was only slight for LA 18:2 n-6 and OA 18:0 n-9 

supplemented cells although cell growth was increased. LA stimulation 

of breast cancer cells growth has previously been shown (Rose & 

Connolly, 1990). The stimulation in cell growth was linked to an 

increase in leukotriene biosynthesis. Cells supplemented with either 

AA 20:4, n-6 or EPA 22:5, n-3 increased haemoglobin accumulation by 

more than double which was accompanied by a decrease in cell growth. 
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The cytotoxicity of the n-3 series, EPA and DHA, has been shown in a 

number of tumours (Mengeaud et al., 1992). 

Hawkins et al. (1998) showed that PUFA induced apoptosis 

associated with lipid peroxidation in HL60 cells. The HL60 cells 

supplemented with 20|iM fatty acid (AA, EPA or DHA) for 25 hours 

induced cell death, as judged by toluidine blue staining and light 

microscopy and by a crystal violet assay (Hawkins et al., 1998). OA 

and LA did not alter cell growth, EPA caused 70% cell death, and both 

DHA or AA produced 85% cell death. Cell death was caused by the 

induction of apoptosis as EPA (50|uM) treatment between 6-12 hours 

induced a pattem of chromatin cleavage into oligonucleosomes which is 

characteristic of apoptosis (Hawkins et al., 1998). Furthermore, HL60 

cells supplemented with PUFA for 4-5 hours induced lipid peroxidation 

that was associated with cell kill (Hawkins et al., 1998). The 

mechanism of peroxidation involves the initial formation of a 

conjugated diene. 

Different PUFAs have also been shown to increase cytotoxicity 

of a quinone-containing anti-cancer dmg doxorubicin which was again 

related to lipid peroxidation (Germain et al., 1998). PUFA treatment 

enhanced doxorubicin cytotoxicity in the human breast tumour cell line, 

MDA-MB-231 (Germain et al., 1998). Cell toxicity of doxombicin in 

the presence of subtoxic PUFA concentrations alone or combined with 

oxidants or antioxidants for 6 days was determined. The order of 

cytotoxicity was DHA > y-linolenic acid > EPA > AA > a-linolenic 

acid > linoleic acid. The effect of PUFA on dmg activity was increased 

with the double bond index with the exception of y-linolenic acid. 

Cytotoxicity promoted by doxombicin with fatty acid was further 
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increased in the presence of oxidants, while antioxidants abolished the 

stimulatory action of PUFA on doxorubicin cytotoxicity. Doxorubicin 

with DHA-induced cell death increased the level of lipid 

hydroperoxides, suggesting that lipid peroxidation could be involved in 

increased cytotoxicity (Germain et al., 1998). The antioxidant vitamin E 

abolished the cell cytotoxicity and lipid hydroperoxide content to 

baseline levels. This also favours an increase in lipid peroxidation as a 

possible mechanism of PUFA cytotoxicity. 

The DNA of K562 cells treated with the fatty acid in the 

presence or absence of ara-C was analysed using FACS, to determine 

the percentage of cells in each phase of the cell cycle. The DNA 

analysis showed that DNA from fatty acid supplemented cells was very 

similar to control K562 cells. When ara-C was present with the fatty 

acid the DNA was similar to K562 cells treated with ara-C alone. K562 

cells treated with both fatty acid and ara-C had an increase in the 

percentage of cells in G2+M and dead cells. The increase in the 

percentage of cells found in the G2+M phase of the cell cycle did not 

reflect the number of double bonds in the polyunsaturated fatty acids or 

the sensifivity to PUFA cytotoxicity. The addition of the fatty acids 

tested had an additive effect on ara-C induced differentiation 

determined by haemoglobin accumulation. 

DNA analysis was able to show the differences in the cell cycle 

between cells treated with or without ara-C. It would not be able to 

determine differences in the cell cycle between cells tteated with fatty 

acid and those not. This may result from the different way these two 

agent produce their effects. Fatty acids are incorporated in to the 

membrane and have induced haemoglobin accumulation, suggesting the 

onset of differentiation. Ara-C inhibits DNA synthesis and has been 
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shown to cause cells to accumulate haemoglobin and to stay in S phase. 

These two agents effect the cells in different ways and this is also 

reflected in the DNA analysis. 

Future work could include K562 cells treated with fatty acid in 

the presence or absence of ara-C and determine any effect on the 

production of lipid peroxide products. The effect of antioxidants on the 

accumulation of haemoglobin could also indicate i f lipid peroxidation 

was important in differentiation. The effects on eicosanoid synthesis 

could also be determined. Inhibitors of eicosanoid biosynthesis could be 

used to determine i f there was any alteration in haemoglobin 

accumulation in K562 cells. 

From the results in this study it has been shown that K562 cells 

can be induced to differentiate along the erythroid lineage by 

supplementing cells with 20|iM PUFA for 120 hours and/or with ara-C 

for the final 72 hours. The extent of the differentiation seems to be 

related to the degree of unsaturation of the fatty acid; the higher the 

degree of unsaturation the higher the induction of differentiation, as 

shown by haemoglobin accumulation. The degree of differentiation 

could not be determined from DNA analysis. PUFAs (20|aM) were also 

shown to produce an additive effect on ara-C induction of 

differentiation. These results suggest that the onset of differentiation 

may not be due to DNA inhibition alone but may also be modulated by 

plasma membrane events in K562 cells, as the incorporation of the fatty 

acids into the membrane produced haemoglobin in the K562 cells, and 

accelerated the effect of ara-C, a known differentiating agent. This was 

reflected by DNA analysis. The increase in the percentage of cells in 

G2+M phase of the cells cycle compared to the ara-C only treated cells 

may be related to the acceleration of differentiation in cells treated with 
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fatty acid and ara-C. The PUFA may affect differentiation by membrane 

fluidity altering transmembrane signalling pathways, or by altering the 

production of eicosanoids or by inducing lipid peroxidation, while ara-

C inhibits the synthesis of DNA. 
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Chapter V 
General Discussion 

Until recently most cancer treatments involved DNA inhibition but 

now the plasma membrane has become a target for the development of 

new drugs. The plasma membrane forms the interface between 

extracellular and intracellular environments and is responsible for the 

maintenance of ionic gradients, nutrient transport and signal 

transduction. The structure and ftmction of the cell membrane may be 

modulated by membrane-active agents such as polyunsaturated fatty 

acids (PUFAs), synthetic ether lipids (SEL) and local anaesthetics 

which affect the viability of tumour cells. The aim of this study was to 

investigate the action and interaction of three membrane-active agents 

in promoting tumour cell death: polyunsaturated fatty acids (PUFAs), 

synthetic ether lipid (SEL) and local anaesthetics. Human acute 

myeloblastic leukaemia (HL60) cells and human myelogenous 

leukaemia (K562) cells were used in vitro as model systems. 

PUFAs may influence tumour cells in various ways : (i) they are 

incorporated into membrane phospholipids and consequentiy alter 

membrane fluidity, thereby influencing the activity of membrane-bound 

proteins including those involved in signal transduction; (ii) n-6 PUFAs 

(especially arachidonate) are important precursors of eicosanoids and 

promote metastatic spread in several animal models, while n-3 PUFAs 

inhibit these processes (Mengeaud et al., 1992); (iii) elevated levels of 

PUFAs in membranes may lead to enhanced lipid peroxidation, which 

has been implicated both in tumour promotion (Bull et al., 1988) and 

cell death (Ip etal.,\99l). 
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SELs, such as ET- I8 -OCH3, inhibit proliferation of leukaemic 

and other tumour cells (Berdel, 1990) and are known to partition into 

cell membranes (Dietzfelbinger et al., 1992) and to inhibit the 

phosphoinositide signalling system (Diomede et al., 1990). At low 

concentrations, SELs inhibit the proliferation of leukaemic and other 

tumour cells, while normal bone marrow stem cells are affected only at 

higher concentrations (Honma et al., 1991). This has led to attempts to 

'purge' tumour cells from human leukaemic bone marrow samples by 

treatment with SEL in vitro (Berdel et al., 1992). 

Local anaesthetics such as dibucaine, tetracaine and procaine 

also kill tumour cells (Kingston et al., 1993) and partition into the 

membrane lipid matrix which increases membrane fluidity (Seeman, 

1972). 

In Chapter 2, HL60 cells and K562 cells were treated with a 

range of E T - I 8 - O C H 3 concentrations (0-15fiM) for 4 hours in semm 

free culture medium. The results showed that the HL60 cell line was 

more sensitive to ET- I8 -OCH3 than the K562 cell line, with IC50 

values of 4.11^M and 8.53|iM respectively. Cell reproductive ability 

was determined by incorporation of ^H-thymidine into DNA. HL60 

cells had previously been shown to be more sensitive to ET- I8 -OCH3 

than the K562 cells (Tidwell et al., 1981). The cells were treated in 

serum free culture medium because ether lipids bind to semm proteins 

(Kelley et al, 1993). In culture medium containing 2% FBS the I C 5 0 

values for E T - I 8 - O C H 3 were 5.3|ig/ml and 21^g/ml in HL60 and K562 

cells respectively (Heesbeen et al., 1995). These values are nearer to 

those obtained in this study. In 1990, Diomede et al. showed that the 

resistance of K562 cells to ET- I8 -OCH3 was correlated with a greater 

amount of cholesterol in membranes compared to that of HL60 cells. 
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The mechanism of ET- I8 -OCH3 cytotoxicity is unknown but it 

has been shown to affect cells in different ways. HL60 cells treated with 

20)iiM E T - I 8 - O C H 3 have been shown to generate a lipid derived free 

radical (Wagner et al., 1998). The production of the free radical began 

approximately 3 minutes after the addition of the ether lipid in the 

presence of Fe2+ and ascorbate. K562 cells treated with 40^M ET-18-

O C H 3 did not generate a free radical. Wagner et al. (1998) thought that 

as HL60 cells have more PUFAs in the cell membranes than K562 cells 

this may make the HL60 cells more susceptible to oxidation after the 

addition of ET- I8 -OCH3. In serum free medium HL60 cells showed 

evidence of membrane damage at concentrations above lOjiM ET-18-

O C H 3 (Wagner et al., 1998). This was thought to be related to necrosis 

or apoptosis. In K562 cells (grown in 10% FCS) tt-eated with ET-18-

O C H 3 (50|ug/ml) apoptotic nuclei were detectable after 2 hours of 

treatment (Botzler et al., 1996). A higher concenti-ation of 100|ig/ml 

E T - I 8 - O C H 3 in K562 cells produced an increase in the G\/Q phase of 

the cell cycle and the S and G2+M phases disappeared completely 

(Botzler et al., 1996). HT29 cells treated with ET- I8 -OCH3 or 

BM41.440 arrested in the G\ and G 2 phases of the cell cycle but 

progression though S and M phases were not affected (Principe et al., 

1992). Ether lipids may therefore indirectly affect the passage of cells 

from the G j to S and G 2 to M phases of the cell cycle. 

Ether lipids have been shown to alter phospholipid turnover 

(Diomede et al., 1990). Synthetic ether lipids inhibit inositol (1,4,5)-

trisphosphate mediated [Ca^+J signalling (Seewald et al., 1990), which 

may be as a result of the inhibition of phosphatidylinositol-specific 

phospholipase C itself (Powis et al., 1992), or by the depletion of 

phosphatidyl inositol-4-5 bisphosphate as a substrate for PLC, or the 

increased breakdown of inositol (l,4,5)-trisphosphate. The cytotoxic 
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effect of ET-I8-OCH3 on HL60 and K562 cells which were pretreated 

with staurosporine, an inhibitor of PK-C activity, was identical to 

control cells, suggesting that PK-C activity in HL60 and K562 cells is 

not related to the cytotoxic action of the ether lipid. (Heesbeen et al., 

1994). 

Chapter 2 also determined the effect of local anaesthetic on cell 

growth of both cell lines. The local anaesthetics used in this study were 

dibucaine, tetracaine and procaine. IC50 values for HL60 cells were 

0.28mM for dibucaine, 0.68mM for tetracaine and 16.75mM for 

procaine. IC50 values for K562 cells were 0.22mM for dibucaine, 

0.64mM for tetracaine and 17.6mM for procaine. Therefore the order of 

cytotoxicity in both cell lines was dibucaine > tetracaine > procaine. 

This was the same order of cytotoxicity of the local anaesthetics in SK-

N-MC human neuroblastoma cells (Kim et al., 1997). This order also 

reflects the linear relationship between oil : water partition coefficients 

(Kingston et al., 1993). From the IC50 values it seemed that both cell 

lines had a similar cytotoxicity to the local anaesthetics, but the HL60 

cell line was more sensitive than K562 cells to very low concentrations 

of dibucaine. Kingston et al. (1993) showed that the IC50 values of the 

local anaesthetics in HTC cells reflected the linear relationship between 

oil : water partition coefficients of the local anaesthetics in HTC cells. 

This implied that the toxicity of these local anaesthetics may be related 

to the tendency to partition into the membrane lipid matrix or adsorb 

onto other hydrophobic cellular sites (Kingston et al., 1993). This may 

also be true for local anaesthetic cytotoxicity in the HL60 and K562 

cells in the present study. In this study dibucaine was more cytotoxic 

than tetracaine and procaine. This may have been due to the ability of 

dibucaine to partition into the cell membrane more than tetracaine or 

procaine. Local anaesthetics have been shown to fluidise the membrane 
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of HTC cells and SK-N-MC cells (Kingston et al., 1993; Kim et al, 

1997). At O.lmM dibucaine was shown to induce apoptosis of, and to 

increase intracellular calcium levels in, SK-N-MC cells (Kim et al., 

1997). A t a higher concentration of dibucaine (45)iM) the involvement 

o f oxygen free radical in cell death was suggested. 

HL60 cells treated with ether lipid in the presence of local 

anaesthetic showed no difference to the cytotoxicity of cells treated 

with ether l ipid alone. In K562 cells a significant difference was found 

between cells treated with dibucaine and ether lipid compared to those 

treated with ether lipid alone. The significant decrease (p < 0.05) in ^ H -

thymidine incorporation was found at I f i M , 3 | iM, 5\xM and 7.5^iM 

ether lipid concentrations in combination with O.lmM dibucaine in 

K562 cells. The cytotoxic effect was synergistic at ET-I8-OCH3 

concentrations above 3|uM and up to 1.5\iM. The greatest difference 

was found at an ether lipid concentration of 5)iM, with a 4-fold 

decrease in ^H-thymidine incorporation in cells treated with ether lipid 

plus dibucaine compared to ether lipid alone. No differences were 

observed when tetracaine or procaine was combined with ET-18-OCH3 

in K562 cells. 

When K562 cells were treated with dibucaine together with ET-

I8-OCH3 the reproductive ability was significantly decreased when 

compared to K562 cells treated with ether lipid alone. This may be 

because dibucaine partitions more into the cell membrane than 

tetracaine and procaine. K im et al. (1997) studied the effect of O.lmM 

dibucaine on human neuroblastoma cells (SK-N-MC). This was the 

same concentration as dibucaine used in this study in combination with 

ET-I8-OCH3 in K562 cells, which was found to significantly decrease 

the reproductive ability compared to cells treated with ET-I8-OCH3 

alone. The presence of dibucaine may have increased the membrane 
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fluidity of the K562 cells, allowing ET-I8-OCH3 to affect the cell 

membrane to a greater extent. K i m et al. (1997) found that 0.1 m M 

dibucaine increased membrane fluidity of both inner and outer 

membranes in SK-N-MC cells. Future work from this study could 

include fluorescence polarisation of DPH and TMA-DPH at 20°C on 

K562 cells treated with a range of ether lipid concentrations in the 

presence or absence of O.lmM dibucaine. This would determine i f the 

addition o f dibucaine increased membrane fluidity in K562 cells treated 

with ether lipid more than in cells without ether lipid. Dibucaine 

(O.lmM) also increased the intracellular calcium concentration in SK-

N-MC cells (Kim et al., 1997). This increase was probably due to an 

influx of extracellular calcium as a result of membrane damage. In 

future work it would be interesting to determine i f dibucaine with ET-

I8-OCH3 could increase intracellular calcium concentrations. This 

could be determined using a calcium fluorescence probe. Inhibitors of 

intracellular calcium and intracellular calcium chelators would show i f 

any increase was from intracellular sources or extracellular sources. 

Extra cellular calcium could be chelated or depletion prevented to 

determine i f the influx of extracellular calcium affected the degree of 

cytotoxicity. Again O.lmM dibucaine has been shown to induce 

apoptosis in SK-N-MC cells (Kim et al., 1997). ET-I8-OCH3 

(50 i^g/ml) has also caused apoptosis in K562 cells (Botzler et al., 

1996). This concentration would have killed all the K562 cells in the 

present study. As both of the membrane-active agents used have been 

related to the induction of apoptosis, future work could investigate this 

further by the determination of intemucleosomal DNA fragmentation. 

K562 cells treated with ET-I8-OCH3 in the presence or absence of 

O.lmM dibucaine would demonstrate i f the synergistic cytotoxic effect 

was due to the induction of apoptosis. 
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Future work could also include the effect of ET-I8-OCH3 on the 

arrest of K562 cells in the cell cycle. FACS analysis could also be used 

to determine the percentage of cells in each phase of the cell cycle when 

cells are treated with ether lipid in the presence or absence o f dibucaine. 

ET-I8-OCH3 has been shown to arrest cells in G] and G2 phases of the 

cells cycle (Principe et al., 1992). ET-I8-OCH3 generated a lipid 

derived free radical in HL60 cells but not in K562 cells (Wagner et al., 

1998). Higher concentration of dibucaine (45fxM) was thought to 

involve the producfion of free radicals, as antioxidants significantly 

increased SK-N-MC viability. Although the synergistic effect was 

shown in K562 cells in this study, the study of the generation of free 

radicals could be an avenue of future work to determine i f the 

combinafion experiments produced fi-ee radicals. 

In Chapter 3, fatty acids OA, LA, A A , EPA and D H A were used 

to supplement both the K562 and HL60 cell lines. These treatments 

were shown to increase the incorporation of fatty acids into the 

membrane phospholipids. Bums et al. (1989) were able to supplement 

HL60 cells with lOf iM DHA for 5 days. This concentrafion of DHA 

would have been very toxic to the HL60 cells used in this study. Bums 

et al. (1989) showed an incorporation of 22:6 in the membrane 

phospholipids. HL60 cells supplemented with DHA for 1 hour showed 

a very slight increase in 22:6 membrane phospholipids. A 24 hour 

incubation with D H A was shown to greatly increase the incorporation 

of 22:6 in the membrane phospholipids. The incorporafion of fatty acids 

into the membrane phospholipids of HL60 and K562 cells was 

established in this study. It was found that even when cells were 

supplemented with very low concentrations of PUFA as used with 

HL60 cells the fatty acid became incorporated into the cell membrane 
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phospholipids after 48 hours. The incubation time of 48 hours was 

chosen as the cells had time to replicate at least once, allowing PUFA to 

become extensively incorporated into the membrane phospholipids. 

Both the K562 cells and HL60 cells incorporated the fatty acid into the 

membrane phospholipids. In the K562 cells A A and EPA (20|.iM) 

supplementafion resulted in some of the fatty acid being elongated and 

desaturated. In the HL60 cells EPA ( I f i M ) supplementation was 

incorporated into the membrane phospholipids and some of the fatty 

acid was elongated and desaturated. 

The order of cytotoxicity for both cell lines was DHA > EPA > 

A A > L A > OA. The HL60 cell line was found to be more sensitive to 

the fatty acids than the K562 cell line. When an anfioxidant a-

tocopherol (vitamin E) was added during fatty acid supplementafion 

some cytotoxicity was lost in K562 cells supplemented with DHA and 

in HL60 cells supplemented with DHA, EPA or A A . Vitamin E is 

known to reduce lipid peroxidafion and from these results it would seem 

that especially in HL60 cells the cytotoxicity was partly due to lipid 

peroxidation. PUFAs have been shown to increase lipid peroxidation. 

EPA and GLA increased lipid peroxidafion in three human colon cancer 

cell lines (Mengeaud et al., 1992). Hawkins et al. (1998) showed that 

vitamin E considerably reduced the cytotoxic effects of DHA. PUFAs 

were shown to induce lipid peroxidafion of HL60 cells and a human 

pancreatic cell line in the presence of oxidants (Hawkins et al. 1998). 

In this study vitamin E reduced the cytotoxic effect of the PUFA 

on HL60 cells supplemented with DHA, EPA or A A and K562 cells 

supplemented with DHA. Future work could detect the appearance of 

lipid peroxidafion products in K562 cells supplemented with DHA and 
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HL60 cells supplemented with DHA, EPA or A A , using the 

thiobarbituric acid assay. Lipid peroxidation can occur by enzymic 

methods involving, the synthesis of eicosanoids, or by nonenzymic 

methods. These two methods can be distinguished by the presence of 

eicosanoid synthesis. Indomethecin is an inhibitor o f cyclooxygenase 

activity. I f the presence of indomethecin reduced the cytotoxic effect 

and the lipid peroxidation products, this would suggest that the enzymic 

method and eicosanoid synthesis are involved in lipid peroxidation. 

However, i f indomethecin did not reduce cytotoxicity or lipid 

peroxidation products then the enzymic method would not be involved 

in l ipid peroxidation. Metals such as iron are known to stimulate lipid 

peroxidation. I f metals stimulate cell death in conjunction with PUFA 

then this implies that cell death is related to lipid peroxidation. 

PUFAs have been shown to increase membrane fluidity. EPA 

and GLA increase membrane fluidity in human colon cancer cell lines 

(Mengeaud et al., 1992). Future work could include the treatments used 

in the present study in order to assess for any increases in membrane 

fluidity. Membrane fluidity can be assessed by fluorescence-

polarisation measurements. 

ET-I8-OCH3 and BM41.440 have been shown to increase lipid 

peroxidation in L1210 murine leukaemia cells supplemented with DHA 

(Petersen et al., 1992; Wagner et al., 1992). In Chapter 2, the 

reproductive ability of K562 cells treated with ET-I8-OCH3 plus 

dibucaine was significantly decreased compared to cells treated with 

ether lipid alone. Therefore, PUFAs were used in combination 

experiments with ether lipids or local anaesthetics. EPA was the PUFA 

chosen for combination experiments as it can be used at the highest 
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subtoxic concentrafion and has 5 double bonds. K562 cells were firstly 

supplemented with EPA for 48 hours followed by a 4 hour incubafion 

with a series of ether lipid concentrafions. The IC50 value of ET-18-

OCH3 was significanfiy increased when the K562 cells were 

supplemented with EPA. This contradicts the work of others. L1210 

cells treated with DHA for 48 hours followed by an 8 hours BM41.440 

treatment displayed an increase in ether lipid cytotoxicity (Petersen et 

al., 1992). This cytotoxicity was shown to increase with the number of 

double bonds in the fatty acid, and cytotoxicity was not reduced by the 

addifion of antioxidants. Petersen et al. (1992) suggests that the 

metabolism o f ether lipid may generate fi^ee radicals and that membrane 

fatty acids with increased numbers of double bonds would be more 

susceptible to secondary damage. In this study EPA had a protecfive 

effect on ET-I8-OCH3. This may have been due to different 

experimental condifions from those of Petersen et al. (1992). EPA may 

have altered eicosanoid biosynthesis in K562 cells, which may have had 

a protecfive effect on ET-I8-OCH3. Future work could include the 

study of the influence of inhibitors of eicosanoid synthesis on this 

protecfive effect of EPA on ET-I8-OCH3. 

PUFA was also combined with local anaesthetic treatment. 

Again K562 cells were supplemented with EPA (20|iM) for 48 hours, 

followed by 4 hour dibucaine treatment. Dibucaine was chosen as it was 

the most cytotoxic local anaesthetic. In this study no difference in ^ H -

thymidine was observed between cells supplemented with EPA and 

control cells. Further study would not be advisable on the strength of 

these results. 
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In Chapter 3 PUFAs were shown to be incorporated into the cell 

membrane phospholipids. In chapter 4, PUFAs were used to determine 

whether the combination of PUFA with known differentiation agent 

ara-C would enhance differentiation. The induction of differentiation 

was monitored by the accumulation of haemoglobin and the decrease in 

cell growth. 

PUFAs have been shown to induce differentiation. HL60 cells 

were induced to differentiate with retenoic acid (Bums et al., 1989). 

The presence of l O ^ M DHA significantly increased differentiation 

during the first 50 hours, as shown by NBT reduction. After this time 

the amount of differentiation remained constant with and without the 

addition of DHA. 

In this study the effect of EPA on ara-C differentiation was 

determined in K562 cells. The accumulation of haemoglobin was used 

as an assay of differentiation. The presence of EPA for 5 days 

significantly increased the haemoglobin accumulation, and implied that 

EPA alone could induce differentiation. EPA (20nM) with ara-C 

increased the induction of differentiation. As EPA has 5 double bonds 

other fatty acids were used to determine how varying the number of 

double bonds would alter the induction of differentiation in the presence 

or absence of ara-C. K562 cells treated with EPA (20^m) or A A 

(20|iM) for 5 days showed a similar accumulation of haemoglobin to 

cells treated with ara-C for 72 hours only. When ara-C was added for 

the final 72 hours of the PUFA 5 day treatment a further increase in 

haemoglobin accumulation in the order EPA > A A > L A > OA was 

observed. The addition of L A or OA also increased haemoglobin 

accumulation above the level observed when using ara-C alone. Cells 



treated with fatty acid for 5 days, with ara-C treatment for the final 72 

hours, displayed decreases in cell growth. 

From this work it has been shown that PUFA, ara-C and PUFA 

plus ara-C fi-eatments result in haemoglobin accumulafion in K562 

cells. Luisi-DeLuca et al. (1984) found that ara-C (0.5|aM) exposures of 

48 hours were long enough to demonstrate that ara-C induced reversible 

differentiation. 

Both EPA and A A are precursors of eicosanoids but OA and LA 

are not. Future work could include supplemenfing cells with fatty acids 

with or without ara-C in the presence or absence of an inhibitor of 

eicosanoid biosynthesis, such as NDGA or indomethecin. I f the 

inhibitors of eicosanoid biosynthesis inhibited the influence of the fatty 

acids this would suggest that conversion to eicosanoids was an 

important step in the inducfion of PUFA differentiafion. I f no inhibitory 

effect was determined this may suggest that PUFAs exert their effects 

via membrane fluidity changes. 

OA and L A have both been shown to promote tumour growth (Ip 

et al., 1985; Rose & Connolly, 1990). OA and L A supplemented cells 

showed increases in cell growth over the 5 day treatment without ara-C. 

A decrease in cell number was usually accompanied by increase in 

haemoglobin accumulafion, which implied the onset of differentiafion. 

With L A or OA treatment stimulation of cell growth was also 

accompanied by haemoglobin accumulation. 

PUFA supplementafion of cells showed an increase in 

haemoglobin accumulafion. From the DNA analysis PUFA 

supplementafion alone does not appear to cause any great differences 

fi-om the control cells. K562 cells only accumulate haemoglobin when 

differenfiated, therefore PUFA would seem to be inducing 

differentiafion after a 5 day incubafion. Ara-C treatment increased the 



accumulation of haemoglobin : the percentage of cells in G\/Q was 

decreased and the percentage of cells in S and G2+M phase increased. 

The increase in S phase is consistent with ara-C treatment. Ara-C has 

been shown to inhibit S-phase DNA replication by causing an 

accumulation of strand breaks in the replicating DNA (Fram & Kufe, 

1982). PUFA supplementation plus ara-C treatinent showed a further 

increase in haemoglobin accumulation compared to cells treated with 

ara-C alone. The DNA analyses for fatty acid plus ara-C ti-eatinent is 

similar to ara-C treatment alone with a decrease in the percentage of 

cells in 01/0 and an increase in G2+M but the percentage of cells in S 

phase is nearer that for the control cells. From the DNA analysis fatty 

acid supplementation has not greatiy altered the percentage of cells in 

the phases of the cell cycle compared to control cells or control cells 

plus ara-C. The fatty acids may be causing the increase in haemoglobin 

by eicosanoid biosynthesis, membrane fluidity or lipid peroxidation. 

Future work would need to investigate how PUFA supplementation is 

causing the accumulation of haemoglobin in K562 cells. 

The present study has shown that the cytotoxicity of the ether 

lipid ET-I8-OCH3 was increased by combination with dibucaine in 

K562 cells. PUFAs were incorporated into cell membranes at 

concentrations as low as I f i M , with an incubation time of 48 hours. 

PUFA cytotoxicity was reduced by vitamin E, indicating that 

cytotoxicity may be partly due to lipid peroxidation, although this was 

not confirmed. Experiments which combined PUFA with ET-18-OCH3 

showed a decrease in cytotoxicity. The combination of PUFA and local 

anaesthetics did not enhance cytotoxicity. When K562 cells were 

incubated with PUFA for 5 days, both haemoglobin accumulation as 

well as a decrease in cell growth were observed, together with 
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alterations in cell cycle profile, indicafing that PUFA supplementation 

may induce differentiation. K562 cells supplemented with PUFA for 5 

days plus ara-C for the final 72 hours showed the greatest accumulafion 

of haemoglobin, decrease in cell growth, and alteration in cell cycle. 

Further work is required to determine the mechanisms of the acfion of 

the membrane active agents on human leukaemia cells. 
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