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Abstract 

Thin Aligned Organic Polymer Films for 
Liquid Crystal Devices 

This project was designed to investigate the possibility of producing 

alignment layers for liquid crystal devices by cross-linking thin films containing 

anisotropic polymer bound chromophores via irradiation with polarised ultra­

violet light. Photocross-linkable polymers find use in microelectronics, liquid 

crystal displays, printing and UV curable lacquers and inks; so there is an 

increasing incentive for the development of new varieties of photopolymers in 

general. 

The synthesis and characterisation of two new photopolymers that are 

suitable as potential alignment layers for liquid crystal devices are reported in 

this thesis. The first polymer contains the anthracene chromophore attached via a 

spacer unit to a methacrylate backbone and the second used a similarly attached 

aryl azide group. Copolymers of the new monomers with methyl methacrylate 

were investigated to establish reactivity ratios in order to understand composition 

drift during polymerisation. 
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Chapter One 

General Introduction and Background 

1.1 Liquid Crystals 

Liquid crystals are defined as, "A state of matter that is intermediate 

between the solid crystalline and the ordinary (isotropic) liquid phases."' This 

definition is appropriate because liquid crystals (also known as mesophases) 

display properties exhibited by both solids and liquids, for example, liquid 

crystals flow like liquids but can also show some of the anisotropic properties 

found in solids, such as birefringence and shear behaviour, due to a certain 

amount of ordering. There are many organic compounds that are known to form 

liquid crystal phases. 

There are three basic types of liquid crystal known as smectic, nematic 

and cholesteric^ these are represented schematically below. 

Figure 1.1 Types of Liquid Crystal 

NEMATEC CHOLESTERIC SMECTIC A 
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Nematic liquid crystals are the type mainly used in liquid crystal display 

cells of interest for the work reported in this thesis so cholesteric and smectic 

liquid crystals will be dealt v^th only very briefly. Nematic liquid crystals 

possess long range orientational order in the direction of their long molecular 



axes which are aligned parallel to a preferred direction known as the director. 

The molecules can rotate freely about their long axes and apart fi-om the ordering 

in the direction of the director, they are distributed at random as in a liquid. 

Nematic liquid crystal molecules exhibit anisotropy, are uniaxial with an 

electrical dipole in the direction of the long axis and are strongly birefiingent. 

The molecules have a tendency to align themselves due to the anisotropy caused 

by the shape and polarity of the molecules. Without any external alignment 

methods, electrical or magnetic fields and mechanical effects, the liquid crystal 

alignment is limited to microscopic domains. In a large volume of nematic 

liquid crystal the direction of the director in the microdomains is not the same 

but alters throughout the volume due to convection, flow and other forces. 

Nematic liquid crystal behaviour is found in elongated molecules 

consisting of six membered rings linked through their 1,4-positions either 

directly or through a small sub-unit. Some conjugated aromatic systems are 

shown below by way of illustration. 

Figure 1.2 Basic Structure of Aromatic Nematic Liquid Crystalŝ  

where X is a linking group, e.g. -N=N-

R and R' are short chain alkyls or polar substituent groups 



Figure 1.3 Examples of compounds that exhibit a nematic phase 

MBBA 4-Methoxybenzylidene-4'-butylaniline 

PCB 4-Pentyl-4'-cyanobiphenyl 

PAA para-Azoxyanisole 

MeO—< ( ))—N=N—< ( ) >—OMe 
I 
O 

Nematic liquid crystals are thermotropic so pass through mesophases in response 

to temperature changes, for example. 

Figure 1.4 Thermal Transitions of 4-Methoxybenzylidene-4'-butylaniline'' 

^ 21C ,̂ 47C , 

C, N and I denote the phases; crystalline, nematic and isotropic respectively. The 

temperatures shown correspond to the phase transitions, thus for this example the 

crystalline solid transforms to a nematic liquid crystal at 21C and the nematic 

phase is stable up to 47C when a second transition occurs to give an isotropic 

melt. These details are important in that they define the working range of a 

specific liquid crystal material; in practice mixtures of liquid crystals are used for 

many applications. 



Cholesteric liquid crystals are chiral, optically active molecules. The first 

examples of cholesteric liquid crystals were the cholesteryl esters extracted from 

cholesterol, hence the name of this liquid crystal phase. The cholesteric liquid 

crystal molecules are arranged in layers, with each subsequent layer rotated by a 

given angle from the axes of the molecules in the preceding layer. As a 

consequence of this the molecules form a helical structure, see Figure 1.1. 

Smectic liquid crystals can be used in liquid crystal cells and exhibit 

somewhat similar optical properties to nematic liquid crystals. However, the 

smectic phase has a greater degree of order compared to the nematic phase. The 

smectic liquid crystal molecules are ordered in layers with the molecular axes in 

the same direction, see Figure 1.1. This layering gives the smectic liquid crystals 

a larger amount of 'rigidity' compared to other types of liquid crystal. The 

molecules are long with the long molecular axes lying parallel to the director. 

Several different types of smectic liquid crystals exist, denoted A, B, C etc. but 

all have the same basic characteristics. 

1.2 Liquid Crystal Cells 

Liquid crystal displays are ubiquitous in modem society, they are to be 

found in digital watches, instrument displays, laptop computer displays and, 

probably in the fixture, flat-screen colour televisions. They have made this 

enormous impact in technology because they are flat, thin, lightweight and have 

a low power consiunption which means they have considerable technological and 

economic merit. 



The construction of a typical display cell ̂  is shown schematically below. 

Figure 1.5 A sandwich-type liquid crystal cell 

LIQUID CSYSTAL 

- ^ass plate 

- electrode 

- alignment Isyer 

The glass plates are usually coated with a layer of transparent conducting 

material, for example, indium tin oxide. To create patterns in the cell the indium 

tin oxide coating can be etched so only part of the liquid crystal is 'switched' 

when an electrical field is applied. One of the plates is often coated with a 

reflective layer, e.g. vapour-deposited aluminium, to reflect incident light through 

the liquid crystal and back out of the cell. 

Figure 1.6 Switching of a Liquid Crystal Cell 

LIGHT LIGHT 

electric field 

DARK 
reflective 
coating 

^ I I I 
LIGHT 

An electric field is applied across the cell which induces alignment with the field of 

the electrical dipole along the long axes of the liquid crystal molecules and 



causes them to 'switch' to an upright position. The transmission properties of 

the liquid crystal are anisotropic, being transparent when vertically aligned and 

opaque when horizontal so a change in the appearance (dark to light) of the 

liquid crystal cell can be observed. The liquid crystal cell does not produce any 

light itself but acts as a kind of shutter, in the case discussed it affects whether 

the incident light is absorbed or reflected. 

The alignment layers. Figure 1.5, are there to help align the liquid crystal 

xmiformly in one direction. Liquid crystals have a natural tendency to align but 

this alignment does not occur in only one direction, many microdomains are 

formed. For efficient 'switching' of the liquid crystal cell the liquid crystal must 

be uniformly aligned, hence the use of the alignment layer. 

Clean technology is used in manufacturing liquid crystal cells as dirt and 

impurity can affect their fimction. The thickness of the glass and liquid crystal 

layer are important and must not vary by more than a few micrometers otherwise 

uneven field strength and hence an erratic electro-optical effect results. The 

work to be described in this thesis was designed to address the science and 

technology of alignment and this is the topic of the next section. 



1.3 Alignment of Liquid Crystal 

1.3.1 Mechanical Alignment Methods 

The usual method of aligning liquid crystals is to use a rubbed film of 

polyimide .̂ This mechanical method is beUeved to work by forming small 

grooves in the polymer film with which the low molecular mass liquid crystal 

molecules align. This rubbing is accomplished by passing the polyimide film 

beneath a velvet covered roller. Mechanical rubbing can also be used on glass and 

the rubbing performed with paper or cloth. This method of ahgnment is used in 

the manufacture of liquid crystal cells because it allows mass production, the 

treatment of large areas of polymeric film, is relatively simple and has a low cost. 

Figure 1.7 Aligning of a Polyimide Film by Rubbing 

polyimide film 

velvet covered roller 

Various parameters can be altered to change the alignment such as the type of 

rubbing cloth used, rotation speed of the roller, speed that the polymer film passes 

under the roller and pile depth of the cloth. 

There has been much debate as to the exact mechanism by which 

alignment by a rubbed film occurs. The first theory was that the small Uquid 

crystal molecules fall into the microgrooves in the film and hence align 



unidirectionally'. However, microscopic examination of rubbed surfaces 

suggested that the microgrooves were generally too wide and irregular for Uquid 

crystal to align, nevertheless the more regular and narrow the microgrooves are, 

the better the alignment ̂ . 

Figure L8 Microgrooves Aligning Liquid Crystal Molecules 

imcrogrooves add Hquid crystal 

/ I 

Hquid crystal aligns 

Further investigation into the process revealed that alignment on a rubbed 

polymer film depends on the type of polymer used rather than the rubbing 

direction, i.e. when using poly(vinyl alcohol), liquid crystal aligns along the 

rubbed direction but when using polystyrene the orientation occurs at 90° to the 

direction of rubbing^. These results suggest that the liquid crystal may be aligned 

by a physical chemical, e.g. dipolar or Van der Waals interactions with the 

polymer fihns. The rubbing method only produces weak coupling between the 

liquid crystal and the substrate. Anisotropic Van der Waals forces probably form 

the main surface to liquid crystal interaction which causes alignment. Hydrogen 

bonding and dipole interactions between the molecules may also contribute to 

liquid crystal alignment. It is now generally thought that the formation of 

microgrooves aligns the polymer chains in the surface of the film which then 



cause the alignment of the liquid crystal molecules by weak intermolecular 

attractions. 

Vapourisation of metals or oxides (e.g. SiOj) on to the surface of the 

glass of the cell at an oblique angle of incidence is another technique for 

producing an alignment layer'. This technique can also introduce a tilt of the 

nematic liquid crystals which is beneficial as it causes faster switching of the 

liquid crystal cell, see Figure 1.9. 

Figure 1.9 Aligning Liquid Crystal Layers by Evaporation of a Metal 

or Oxide or a Monolayer of Surfactant Molecules on the Cell Surface' 

obliquely evaporated monolayer of surfactant 
molecules 

Another alignment technique shown schematically in Figure 1.9 is to use 

monolayer Langmuir coatings applied from aqueous solution to a surface. A 

glass slide is passed through an aqueous solution of surfactant (e.g. 

hexadecyltrimethylammonium bromide) and emerges coated in a monolayer of 

the surfactant. How the nematic liquid crystal is aligned depends on the 

concentration of the surfactant and the rate at which the glass plate is drawn 

through the solution. 



Other alignment techniques include curing a liquid crystal network in the 

presence of an electric field and stress-induced anisotropic deformation of the 

polymer backbone caused by compressing or stretching the polymer films. 

These mechanical techniques have many disadvantages. Often they are 

relatively 'dirty' and awkward processes and some are difficult to carry out on a 

large scale. I f a polyimide film is rubbed with a velvet-covered roller, bits of the 

velvet will stick to the polyimide surface. Liquid crystal cell manufacturing is 

supposed to be clean technology as dirt impairs the functioning of the cells. 

Rubbing inevitably creates fiiction and consequently electrostatic charges form 

on the polyimide films which affect the efficient switching of the liquid crystal 

cell. Other disadvantages are that the rubbing is hard to control as the velvet pile 

is not uniform. The speed of rubbing and velvet quality must be accurately 

maintained in order to obtain even microgrooves and hence even alignment. 

Larger scratches can also form in the polymer film fi-om the rubbing technique, 

leading to significant film scrap. 

I f an orientation layer could be produced by a remote non-contact 

technique such as ultra-violet irradiation, it would provide clear technological 

and manufacturing advantages. 

1.3.2 Photosensitive Polymers 

Photocross-linking polymers are becoming increasingly usefiil, they are 

found in microelectronics, photoresists, printing and ultra-violet curable inks. A 

variety of photosensitive polymers which can be made insoluble by irradiation 

with UV or visible light have been attracting much interest because of their many 

10 



uses; so there is an increasing incentive for the development of new varieties of 

photopolymer. The cross-Unking chromophore can be located within the 

polymer main chain or be appended to the main chain by a spacer group. 

Photocross-linkable polymers become cross-linked by formation of inter-chain 

bonds under the influence of light. When cross-links form, a network results and 

the polymer becomes insoluble. Cinnamate and chalcone groups have been used 

as side-chain chromophores for this purpose." 

Figure 1.10 Cross-linking of Side-chain Chromophores by Polarised UV Light 

= chromophore 

= cross-link product 

These photopolymers function by the reactive chromophore in the side-chain 

dimerising when irradiated with ultra-violet light. I f polarised light is used only 

chromophores which have the appropriate transition dipole lying in the direction 

of the electric vector of the polarised light will dimerise, forming cross-links 

between the polymer chains. Therefore wdth these photo-dimerised units lying in 

one direction, the cross-linked polymer f i lm will have an anisotropic structure 

and the potential for use as an alignment layer for liquid crystal devices. This 

concept, as illustrated in Figure 1.10 above, has been demonstrated for 

cinnamates and its realisation in a practical application would be a major 

breakthrough for liquid crystal orientation as this remote technique would be 

11 



efficient and clean and so would have clear technological and manufacturing 

advantages over conventional rubbed polymer films. The cross-linking caused 

by polarised ultra-violet light aligns the photo-dimerised units in a uniform 

direction which in turn causes the liquid crystal molecules to align 

unidirectionally. 

1.4 Poly(vinyI cinnamate) 

Poly(vinyl cinnamate) was the earliest photopolymer studied and has 

been studied extensively for use as a thin film alignment layer for liquid crystal 

devices". 

The structure of poly(vinyl cinnamate) is shown below. It comprises of a 

polyvinyl backbone with cinnamoyl side chains which cross-link on irradiation. 

Figure 1.11 Poly(vinyl cinnamate) 

D: 
The basic unit necessary to produce cross-linking in polymers based on 

poly(vinyl cinnamate) is the -C=C-CO- unit. Depending on where and how this 

unit is attached to the polymer chain, the response to irradiation and the resultant 

physical properties can be modified. Poly(vinyl cinnamate) has good thermal 

12 



stability, reasonably good tensile strength, photosensitivity and good solubility, 

all of which are important for practical use of a photocross-linkable polymer. 

The system has been used commercially as a resist material for printing 

applications. 

1.4.1 Synthesis of Poly(vinyl cinnamate) 

Poly(vinyl ciimamate) can be prepared from poly(vinyl alcohol)'" which 

is obtained from poly(vinyl acetate) by hydrolysis. Reaction of poly(vinyl 

alcohol) with cirmamoyl chloride gives the desired product. Incomplete reaction 

at any stage can leave acetate or alcohol residues on the polymer chain. This 

method of synthesis does not yield a product carrying a cinnamoyl group on 

every available alcohol residue. 

Figure 1.12 Synthesis of Poly(vinyl cinnamate) 

T 
Me 

.0 OH 

Alternatively poly(vinyl cirmamate) can be produced by polymerising the 

monomer directly. Ciimamate containing monomers are polymerised 

cationically as free radical polymerisation leads to a cross-linked and therefore 

insoluble product. 

13 



Figure 1.13 Polymerisation of vinyl cinnamate 

The cirmamate group is synthesised using the Perkin reaction'^ The Perkin 

reaction involves the condensation of an acid anhydride with an aromatic 

aldehyde. A carboxylate ion is used as a catalyst. 

Figure 1.14 Perkin Reaction forming Cinnamic acid 

Na2C03 
V II ^ F = ^ ^ NaHC03 + Na "CHsCOCMe 

M e — C - O - C - M e 5 ^ 

CHjCOCMe 

O O 

hydrolysis 

Q- O O 

OH O O 

> l K ^ ^ ^ O ^ M e 

O O 

+ MeCQH 
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The anhydride reacts with the basic carbonate ion to provide a carbanion. 

The carbanion attacks the carbonyl group of the aldehyde then, after protonation, 

the newly formed anhydride undergoes dehydration followed by hydrolysis to 

form the product, cinnamic acid. 

1.4.2 Use of Poly(vinyl cinnamate) as a potential Alignment Layer 

On irradiating polymers containing cinnamic acid, a cross-linked polymer 

product results. In the simplest picture of the photocross-linking process, 

irradiation of this polymer results m a cinnamoyl side-chain on a polyvinyl 

backbone undergoing a 2+2 photocycloaddition with another cinnamoyl group 

on an adjacent polymer chain so forming a substituted cyclobutane cross-link. 

While this picture is widely accepted, and is essentially correct, it is incomplete. 

It has been suggested that part of the cross-linking process occurs via a radical 

mechanism but this is also uncertain. Attempts to identify the cyclobutane 

derivatives in irradiated films of poly(vinyl cinnamate) in complete 

stereochemical detail have proved difficult. Experiments have been carried out 

on the photoproducts and it has been found that in general, over 65% of 

poly(vinyl cirmamate) photoproducts are cyclic dimers of one kind or another 

and the remainder are oligomers which have not yet been fully characterised.'" 

15 



Figure 1.15 Cross-linking of Poly(vinyl cinnamate) 

2 

0 ^ 0 

x = n 
Photodimerisation of cinnamic acid derivatives produces two dimers, the 

truxillic and truxinic acids. There are ftirther stereoisomers of these dimers 

which depend on the position of the substituents on the cyclobutane ring. 

Figure 1.16 Dimerisation of Cinnamic acid 

H COOH 
Ph 

^ ^ H 
OOH OOH 

Ph 

a-tnixillic acid 

COOH 

P-truxinic acid 

Irradiation of poly(vinyl ciimamate) results in the formation of a-truxillic acid 

exclusively, which has been proved by hydrolysis of the photoproduct and 

chromatographic analysis of the reaction products.'" This is probably due to 

steric effects controlling possible chromophore orientations resulting fi-om the 

steric effect of the polymer chains. 

When exposed to irradiation with polarised ultra-violet light (325nm), 

cross-linking occurs at the chromophores as expected and gives rise to anisotropy 

in the surface layer which can be used to enhance alignment of a liquid crystal 

layer, thus films formed fi-om poly(vinyl cinnamate) in this way are effective as 

aligimient layers. The ultra-violet light must be polarised so that only molecules 

16 



lying in a certain direction wil l imdergo cross-linking to give the anisofropy and 

resultant aligimient required. It was established that poly(vinyl cirmamate) films 

have the ability to align liquid crystal layers after irradiation with polarised ultra­

violet light'^ Poly(vinyl ciimamate) films provide planar and 90° twist 

alignment with only some pre-tilt of the liquid crystal and a strong polar 

anchoring effect. This means that there is a good physical chemical interaction 

between the poly(vinyl cinnamate) and the liqtiid crystal. Planar alignment arises 

when the alignment layers are parallel and 90 ° twist alignment occurs when the 

alignment layers are arranged at 90" to one another, see Figure 1.17. The 

nematic liquid crystal molecules gradually twist throughout the bulk of the liquid 

crystal imtil they match both alignment layers. Pre-tilt of the liquid crystal 

means the molecules are slightly tilted towards the direction they are going to 

'switch' to so faster, improved functioning of the liquid crystal results, see Figure 

3.2, chapter 3. 

Figure 1.17 90° Twist Aligned Cell 

It has now been established that in this system it was not the product of 

cross-linking which was causing the alignment, as was originally proposed but 

17 



the aligrmient of the residual chromophores that had not cross-linked in the 

poly(vinyl cirmamate) film surface. Also it has been proposed that radical 

abstraction of hydrogen from the backbone occurs as well as cyclobutane 

formation during irradiation.''' Other disadvantages of poly(vinyl cinnamate) are 

that there is only a small pre-tilt angle and some degradation of the aligning 

ability occurs after a few temperature cycles. 

1.5 New Photopolymers for Liquid Crystal Alignment 

New materials that align liquid crystal are desirable in order to study the 

cross-linking and aligimient processes in more detail so as to establish effective 

systems for eventual application. The criterion for new materials for liquid 

crystal alignment was that anisotropy induced by light was the absolute priority. 

The intention was that this primary aim was to be accomplished with the 

following points in mind. 

1. Photo-induced positive anisotropy in the polymer is necessary. A 

material is said to possess positive anisotropy when all the molecules are aligned 

in the same direction which causes certain physical properties to be different in 

this direction. 

2. The polymer must be insoluble in the liquid crystal after exposure. 

3. The polymer must be photo-stable to visible light (400-700nm) after 

exposure. 

4. No ions are to be left in the polymer. 

The reasons for the first three requirements are self-evident. The fourth point 

relates to the intended use of such layers in active matrix displays; i f ions were 

18 



free in the cells their migration under the influence of the electrical fields could 

cause problems. 

Other photosensitive polymers apart from poly(vinyl ciimamate) have 

been studied, for example, polymers containing azobenzene or chalcone 

groups 
16, 17 

Figure 1.18 Examples of other Photosensitive Polymers 
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In this thesis the synthesis, characterisation and testing of new photosensitive 

polymers containing anthracene chromophores and azide groups is described. 
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Chapter Two 

Synthesis and Characterisation of an Anthracenyl Homopolymer 

2.1 Introduction 

Anthracene was considered to be a suitable chromophore for investigation 

as the active component of a photo-induced alignment material. This first target 

was chosen by the sponsors of this work. The photochemistry and photophysics 

of anthracene has been studied in great detail over many years.' The 

chromophore has several advantages for the purposes of this study for the reasons 

listed below. 

1. The system is well understood. 

2. The basic chemistry was expected to be fairly straightforward and the 

compounds involved stable, the only problem anticipated being the 

possible addition of dioxygen across the 9,10-positions (see later). 

3. The aspect ratio of the anthracenyl residue and its photodimer make both 

appropriate as potential alignment groups. 

4. The 4+4 photodimerisation of anthracene is wavelength dependent 

giving, in principle, a write/erase potential, see Figure 2.1. Thus, 

dimerisation occurs readily at wavelengths >365nm and the dimer is 

cleaved at wavelengths <255nm, in practice some photodimerisation 

occurs at wavelengths <255nm as well as cleavage and a competition 

occurs. 

The dimer can be cleaved at high temperature, usually above 180C but to some 

extent substituent dependent, this temperature is higher than anticipated 
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processing or working temperatures so it wil l not affect the functioning of an 

anthracenyl polymer as a photo-induced aligimient material. 

Figure 2.1 The dimerisation and cleavage of anthracene 

366 nm 

254nm 
heat 

Anthracene photodimerises by a 4+4 cycloaddition reaction through the 9, 

10 positions.^ In the simplest picture of this process, irradiation with ultra-violet 

light causes the excitation of an electron to an antibonding orbital associated with 

the anthracene molecule without changing its spin; that is, an excited singlet is 

formed. This excited state anthracene can then either release this excitation 

energy as fluorescence or combine with a ground state anthracene molecule to 

form a dimer. 

W >• A fluorescence 

A + V • Aj dimer 

Other processes may occur such as internal conversion, that is a return to the 

ground state with no emission or intersystem crossing, that is spin inversion to 

give a triplet (possibly followed by phosphorescence) but these were anticipated 

to be likely to occur only to a very limited extent in this instance. 

The polymer shown in Figure 2.2 was chosen as the first target for 

synthesis. It was thought that this might prove to be an interesting polymer for 

assessment as an alignment layer for liquid crystal systems. Selective 
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photocross-linking of the anthracene chromophores under the influence of 

polarised ultra-violet light (365nm) was the proposed mechanism for producing 

anisotropically modified material with an anisotropic surface. As the material 

wil l cleave back from the dimer under irradiation with ultra-violet light of 

<255nm, two approaches to the production of the alignment layer were 

considered. Namely, anisotropically selective photodimerisation of an isotropic 

film using polarised light or anisofropic dimer cleavage using polarised light in 

an isofropically cross-linked film. 

Figure 2.2 Target Anthracenyl Homopolymer (Poly(9'-anthracenoate-2-ethyl 

methacrylate)) 

Me 

0 ^ 0 

0 ^ ° 

The spacer chain was included so that the anthracene units were allowed 

sufficient mobility to come into contact with one another and cross-link 

efficientiy. It was hoped that this polymer would perform more effectively than 

poly(vinyl cinnamate) as an alignment layer, since the physical dimensions, 

stereoregularity and anisotropy of the photodimers acting as the alignment units 

were likely to be greater. 
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To synthesise this polymer the monomer was first made and then 

polymerised by free radical initiated polymerisation^. The first stage was to 

make 9-anthracenecarboxylic acid chloride from 9-anthracenecarboxylic acid 

which is commercially available. The method found in the literature'*'' was 

followed (carboxylic acid with thionyl chloride heated at 50C) but this proved 

unsuccessful as a mixture of products was obtained, the main product being not 

the expected 9-anthracenecarboxylic acid chloride but the analogue carrying an 

extra chlorine at the 10- position. The product was imdesirable for this project 

since the 10-chlorosubstituent might effect the stability of the photodimer and the 

attached heavy atom would be expected to modify the photophysics of the 

system. 

Figure 2.3 lO-Chloro-9-anthracenecarboxylie acid chloride 

.aoQ 
This undesired result was reproduced in several attempts at different 

temperatures, the reaction conditions were clearly too harsh and para chlorination 

in the 10- position of the anthracene ring occurred, probably via a radical chain 

process, even at 50C. Chlorination using the Vilsmeier reaction* was attempted 

and this produced the desired product. The Vilsmeier reaction involves the 

addition of a frace amoimt of N , N-dimethylformamide (DMF) to the thionyl 

chloride and carboxylic acid. The reaction can then be performed at room 

temperature so further aromatic ring chlorination does not occur. The DMF acts 
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as a catalyst and the mechanistic rationahsation and reaction pathway is outlined 

below, Figure 2.4. 

Figure 2.4 Reaction mechanism of the Vilsmeier chlorodehydroxylation reaction 
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Figure 2.5 Vilsmeier chlorination of anthracenecarboxylic acid 

OTO 
soci. '2 

trace DMF 
room temperature 

There has been much concern recently over the use of DMF as a catalyst in 

chlorodehydroxylations^ such as the Vilsmeier reaction. It was found that 

dimethylcarbamoyl chloride (DMCC) is formed as a side-product during the 

reaction, see Figure 2.6. This causes much concern, as DMCC is a known animal 

carcinogen and potential human carcinogen. Therefore strict safety precautions 

are required for this reaction. 

Figure 2.6 Formation of DMCC as a by-product of the Vilsmeier reaction' 
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The next stage was to react the 9-anthracenecarboxylic acid chloride with 

2-hydroxyethyl methacrylate (HEMA) to form the required monomer. 

Figure 2.7 Monomer synthesis 

.000, 
HEMA H > = 0 

NEt3 

dicNoromethane 

o Q 
This type of reaction is known as alcoholysis and involves the conversion of an 

acid halide into an este^^ 

Figure 2.8 Ester formation mechanistic pathway 

ROH R - C — 
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II V̂̂ ,H 
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R ^ O R 

The reaction was carried out in the presence of triethylamine to react with the 

HCI formed during the reaction and prevent the formation of by-products from 

side reactions. I f this was not done, the HCl might react with the alcohol to form 

an alkyl chloride or it might add onto the C=C of the monomer. 
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The final reaction in forming the homopolymer was a free radical 

initiated chain-growth polymerisation^ using azobisisobutyronitrile (AIBN) as the 

imtiator. 

Figure 2.9 Free radical polymerisation 

H Me 

o o o 

A B N 
2-butanone 

heat 

Me 

0 ^ 0 

The initiator, azobisisobutyronitrile (AIBN), decomposes on heating to form two 

radical species that initiate the polymerisation. AIBN can also be used as a 

photo-initiator but for this reaction the thermal route was chosen as photo-

initiation may have caused the anthracene units to cross-link during the 

polymerisation. 

Figure 2.10 AIBN decomposition 

-N=N-

CN 

2 — C - + N, 

CN ON 

There are a minimum of three processes required to describe a free radical 

polymerisation:-
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1. INITIATION 

R* + M = RM* 

2. PROPAGATION 

RM* + H, = RM„M* 

3. TERMINATION 

a) Combination 

RM„M* + RM„M* = RM2„^2R 

b) Disproportionation 

RM„M* + RM„M* = RM„MH + RM„M-H 

R* = radical species from initiator 

M = monomer 

* = single electron of radical species 

Termination can also occur by chain transfer of the radical to solvent, initiator or 

impurities in the reaction mixture. 2-Butanone was the solvent of choice as it has 

a low chain transfer constant so would not interfere in the polymerisation 

reaction to a significant extent. Azo initiators, unlike peroxides are not 

susceptible to chain transfer to initiator, so AIBN was used to initiate the 

polymerisation. Solution polymerisation was chosen as the preferred 

polymerisation method as viscosity can be kept low throughout the reaction and 

the solvent dissipates the heat from the exothermic polymerisation process. 

This polymerisation was expected to be quite straight forward and conventional. 

Methacrylates are well established and widely used monomers as a consequence 

of their structures, they react with elecfrophilic, free radical and nucleophilic 

reagents. The electron-withdrawing inductive effect of the ester carbon atom and 
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the electron-donating resonance effect of the C=0 adjacent to the site of the 

propagating radical account for their ready polymerisability by radical methods. 

Care has to be taken to eliminate oxygen from the reaction vessel as it inhibits 

polymerisation and can form an alternating copolymer with the monomer which, 

being a polyperoxide, is potentially dangerously explosive.' 

Figure 2.11 Copolymerisation of a methacrylate with oxygen 

Me Me 
Me / 

R-^CHzCOO-^CHzCOO-
R C H o — 0 - + O2 ^ \ 1̂ 

I COOMe COOMe 
COOMe 

The presence of dioxygen in methacrylate polymerisations results in a decrease in 

molecular weight and rate of polymerisation and the formation of a mixture of 

the copolymer with oxygen and the desired homopolymer. 
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2.2 Experimental 

2.2.1 Purification of Starting Materials 

1. Recrystallisation of Anthracenecarboxylic acid 

Anthracenecarboxylic acid was placed in a beaker with a magnetic stirrer 

bar. Hot ethanol was added with stirring and fiirther heating until all the 

carboxylic acid had dissolved. The hot solution was filtered quickly through a 

hot Buchner funnel under vacuum from a water pump then left to cool. Once 

cool the solution was placed in a refiigerator for two days. The crystals produced 

were collected by filtration and dried in a vacuum oven at 40C. To confirm the 

purity of the anthracenecarboxylic acid, thin layer chromatography, melting 

point, 'H NMR, '̂ C NMR, IR and mass specfroscopy were used to characterise 

the acid. Thin layer chromatography showed only one spot indicating only one 

compoimd present and the melting point was 219.2-220. IC (literature value 

220C from Aldrich catalogue); the spectra were consistent with a pure 

compound, see appendices. 

2. Distillation of Thionyl Chloride 

Standard distillation equipment was used with the addition of a scrubbing 

column containing sodium hydroxide solution attached to the top of the 

condenser to prevent hydrogen chloride and sulphur dioxide gases being released 

into the atmosphere. The apparatus was purged with nitrogen at the start. The 

oil bath was at 120C and the distillation head temperatiire reached 76C during the 

distillation. Colourless thionyl chloride was collected and securely sealed until 

required, the material was used within two weeks. 
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3. Distillation of 2-Hydroxyethyl methacrylate 

Standard vacuum distillation equipment was used. The 2-hydroxyethyl 

methacrylate is a monomer that will polymerise when heated so only a low 

temperature could be applied. The distillation was therefore executed at 35-40C 

and a pressure of 5mm Hg. Colourless 2-hydroxyethyl methacrylate was 

collected and stored over activated 4A molecular sieves in a sealed flask which 

was wrapped in aluminium foil and kept in the refrigerator (-5C). Distillation is 

necessary to remove inhibitor (usually hydroquinone or a hindered phenol) from 

the monomer which is added to prevent polymerisation during storage and also to 

remove ethylene glycol dimethacrylate which is also present as an impurity in 

commercial HEMA. Redistilled HEMA is stable for several weeks imder these 

storage conditions. 

Figure 2.12 Ethylene glycol dimethacrylate 

H Me 

H ^0 
O 

°0" 
Me H 

4. Decolourisation of Anthracenecarboxylic acid 

Anthracenecarboxylic acid is yellow and it would have been better i f it 

were colourless or white for forming films for photo-alignment layers for liquid 
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crystal cells. Three methods of decolourisation were attempted. The first 

involved dissolving the anthracenecarboxylic acid in THF then adding 

decolourising carbon (2% decolourising carbon by weight of the carboxylic acid). 

This mixture was boiled for 15 minutes then carefiilly filtered hot through a thick 

layer of Hyflo filtration aid. The anthracenecarboxylic acid did not decolourise. 

A second method was tried which involved dissolving the anthracenecarboxylic 

acid again in THF then filtering it cold through a filter funnel stopped up with 

cotton wool then filled with decolourising carbon. Finally anthracenecarboxylic 

acid (4g) was sublimed using temperature gradient sublimation equipment. A 

heating element heated the carboxylic acid to 200C while it was under vacuum 

(lO'^mm Hg). The anthracenecarboxylic acid sublimed, solidifying fiirther up the 

apparatus as small yellow crystals. At this point it was assumed that 

anthracenecarboxylic acid is intrinsically yellow and carmot be decolourised. 

UV/vis spectra were run of anthracenecarboxylic acid and anthracene as a 

comparison. The absorptions were different with anthracenecarboxylic acid 

having an absorption tailing into the violet/blue region of the visible spectrum 

which is the reason for the pale yellow colouration. 
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5. Recrystallisation of AIBN 

AIBN was dissolved in a minimum amount of methanol at room 

temperature. The AIBN solution was then placed in a refiigerator for five days. 

The AIBN crystals that formed were collected by filtration, dried under vacuum 

at room temperature, stored in a bottle, wrapped in aluminium foil and kept in the 

refiigerator. Initiator purified and stored in this manner is useful for 2 or 3 

months. 

2.2.2 Synthesis of Anthracene Homopolymer 

Synthesis of Anthracenecarboxylic acid chloride 

The acid chloride was synthesised following the scheme outlined in the 

introduction of this chapter. 9-Anthracenecarboxylic acid(26.08g, 0.117moles) 

was placed in a single necked round bottom flask, to which a Claisen head was 

attached leading to a condenser, a liquid air cooled collection flask and a vacuum 

pump. The Claisen head outlets carried a septum seal and a dropping fimnel. 

The apparatus was purged with nitrogen before starting the experiment. Thionyl 

chloride(80ml, 1.097moles) was added slowly to the anthracenecarboxylic acid 

with stirring, after the addition of all the thionyl chloride the mixture was left to 

stir for 10 minutes. A trace amount (3 or 4 drops) of fresh, dry N , N -

dimethylformamide was added through the septum seal using a syringe. The 

reaction mixture was then left to stir for an hour being continually flushed with 

nitrogen. The anthracenecarboxylic acid was insoluble in the thionyl chloride but 

the acid chloride was soluble so when the contents of the flask changed from a 
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yellow suspension to a pale brown solution the reaction was judged to be 

complete. 

The excess thionyl chloride was removed using low-pressure distillation, 

50mm Hg and 40C, residual traces of thionyl chloride were removed by placing 

the flask of anthracenecarboxylic acid chloride under vacuum overnight (lO'^mm 

Hg). Step two of the monomer synthesis must be carried out on the next day 

otherwise the anthracenecarboxylic acid chloride can become partially 

chlorinated by residual traces of thionyl chloride and this complicates 

purification. The anthracenecarboxylic acid chloride was obtained in yields of 

94-98% and was characterised by melting point 94.4-96.8C (lit. 93.5-94.5C)\ 'H 

NMR, '̂ C NMR, IR and mass spectroscopy, see appendices. 

Synthesis of Anthracene Monomer 

The 9-anthracenecarboxylic acid chloride was reacted with 2-

hydroxyethyl methacrylate in the presence of triethylamine. 

Anthracenecarboxylic acid chloride(26.94g, 0.112moles) was placed in a two-

neck round bottom flask with a dropping fuimel and a condenser attached to the 

flask. The apparatus was purged with nitrogen during the entire experiment. 

Dichloromethane(lOOml) was added slowly to the flask then left to stir for 20 

minutes then triethylamine(8ml, 0.057moles) was slowly added to the stirring 

dichloromethane solution. 2-Hydroxyethyl methacrylate(15ml, 0.124moles) was 

dissolved in dichloromethane(30ml) and placed in the dropping fiinnel. The 

HEMA solution was added very slowly to the stirring acid chloride solution, 

ensuring that the reaction temperature did not rise above 20C and left to stir for 2 

hours. After the reaction, the dichloromethane solution was washed three times 
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with an equal volume of distilled water, dried over anhydrous magnesium 

sulphate then filtered. The dichloromethane was removed by rotary evaporation 

and the last residual trace of solvent was removed by placing the flask under 

vacuum overnight. The product was recrystallised by dissolving it in a minimum 

amount of ethanol at room temperature then placing the solution in a refiigerator 

at -5C for two days. The crystals were recovered by filtration and were dried 

under vacuum at room temperature. The monomer had a melting point of 63.7-

65.2C. 

The experimental conditions recorded above provide a reproducible 

synthesis, it is important to take care over temperature and rates of addition of 

reagents; for example, i f triethylamine is added too rapidly an exotherm is 

observed and only triethylamine hydrochloride and starting materials are 

recovered. 

Crystals of the monomer were grown to try to obtain an X-ray crystal 

structure which might be useful in assigning the alignment of the anthracene 

functional groups in the photodimer. These crystals were grown by making a 

concentrated solution of the monomer in ethyl acetate and placing this solution in 

a 6mm diameter test-tube up to a height of 3cm. An equal volimie of hexane was 

then carefiilly dripped on top of the ethyl acetate solution, the tube was sealed 

with a rubber septum and the tube left for four weeks at room temperature in the 

dark. A few large crystals formed but imfortimately were not good enough for X-

ray crystallographic analysis. 
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Synthesis of Anthracene Homopolymer 

The monomer was polymerised using free radical initiated 

polymerisation. Solution polymerisation was attempted using AIBN as the 

initiator and 2-butanone as the solvent. 

The apparatus consisted of a 250ml flange flask with an overhead 

electrical stirrer, condenser, thermometer and septum seal attached. There was 

also an inlet and outlet for nitrogen gas. The apparatus was purged with nitrogen 

before the experiment and a constant flow of nitrogen was maintained during the 

experiment. Anthracenyl monomer(15g, 0.045moles) was placed in the flange 

flask with 2-butanone(80ml) and nitrogen was bubbled through the solution for 

two hours. The monomer solution was then stirred and heated until the 2-

butanone was refluxing (80C). Then AIBN(0.06g, 0.366mmol) dissolved in 2-

butanone(lOml) was injected in four aliquots at half hourly intervals into the 

reaction via the septum seal using a syringe. The reaction mixture was left to stir 

for four hours then the heat source was removed and the reaction mixture allowed 

to cool. The reaction mixture was added slowly to stirring hexane to precipitate 

the polymer. The polymer was dried in a vacuum oven at 40C then characterised 

by 'H NMR, '̂ C NMR and IR spectroscopy and GPC, see appendices and section 

2.3. 

The polymers were purified by dissolving the polymeric material in a 

minimum amoimt of chloroform then precipitating the polymer by adding the 

chloroform solution to an excess of cold stirring ethanol. This was repeated three 

times. The polymer was dried in a vacuum oven at 60C and characterised as 

before. 
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An alternative route for the synthesis of an anthracenyl homopolymer was 

investigated. This involved the reaction of poly(vinyl alcohol) with 9-

anthracenecarboxylic acid chloride. Poly(vinyl alcohol) dissolves in very few 

solvents, most of which react with acid chlorides. Two methods were attempted. 

The anthracenecarboxylic acid chloride had to be rigorously purified for 

this reaction to make sure that there was no residual thionyl chloride as this 

would cause undesirable side reactions. Anthracenecarboxylic acid chloride was 

synthesised as previously and placed overnight under vacuum (lO'^mm Hg). The 

flask of anthracenecarboxylic acid chloride was let down to nitrogen gas and 

sealed with a septum seal. A minimum amount of anhydrous toluene was 

introduced into the flask via injection with a syringe and the mixture was stirred 

until the acid chloride dissolved. The flask was placed in a refiigerator for three 

days until crystals formed which were recovered by filtration and used in the next 

stage. 

The reaction was carried out in the same way as the monomer synthesis, 

the apparatus was the same. Poly(vinyl alcohol) (5g, -IxlO'^moles) was placed 

in a single-neck round bottom flask with N,N-dimethylformamide (100ml) and 

heated to 80C with stirring for two hours. The mixture was then cooled to 60C 

and triethylamine (12ml) was slowly added, then the mixture was left to stir for 

half an hour. An excess of purified anthracenecarboxylic acid chloride (12g, 

0.05moles) was dissolved in 30ml anhydrous DMF and placed in the dropping 

funnel. This solution was added dropwise to the PVA solution and the reaction 

mixture left to stir for a further two hours. The DMF was removed by low-

pressure distillation (5mm Hg, 50C) then the product was washed with ethanol, 
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then chloroform to remove any residual impurities. This left a pale brown solid 

that was not readily soluble. The product was characterised using GPC, melting 

point, IR, 'H NMR, '̂ C NMR and mass spectroscopy, see later. 

Figure 2.13 Reaction of PVA with anthracenecarboxylic acid chloride 

010 
OH 

Q 
The second method involved dissolving poly(vinyl alcohol) (4.09g, 

~8.2xl0'^moles) in pyridine (130ml) overnight with refluxing and stirring. A 

further 90ml pyridine was added to the solution then it was cooled to 50C. 

Recrystallised anthracenecarboxylic acid chloride (10.02g, 0.042moles) was 

dissolved in pyridine (40ml) and added slowly with stirring to the poly(vinyl 

alcohol) solution. The reaction mixture was left to stir for 4 hours 30 minutes at 

50C. The product was washed with chloroform to remove residual impurities, 

then dried vmder vacuum overnight (lO'^mm Hg). 

Bulk polymerisation to synthesise the homopolymer was attempted using 

1 ,r-azobis-(cyclohexanecarbonitrile) as the free radical initiator. This free 

radical initiator was used as it has a longer half-life at higher temperature than 

AIBN so was more suitable for this reaction. 

Figure 2.14 l,r-azobis-(cyclohexanecarbonitrile) 

CN. 
-N=N-

CN 
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For the bulk homopolymerisation, anthracenyl derivatised HEMA (2.04g, 

0.0061 moles) was placed in the polymerisation vessel shown below and heated to 

68C until all the monomer had melted. A constant stream of nitrogen was 

maintained throughout the reaction. 

Figure 2.15 Bulk polymerisation apparatus 

nitrogen gas 

overhead dectiical stirrer 

gas bubbler 

glass flask 

stirrer . 

The temperature was raised to 75C and 1,1 '-azobis-(cyclohexanecarbonitrile) 

(0.04g-) was added quickly via an inlet and the reaction mixture was left to stir 

until it changed from liquid to solid. The reaction was stopped and the product 

cooled to room temperature, dissolved in chloroform, precipitated in ethanol and 

dried in a vacuum oven (lO'^mm Hg, 40C). 
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2.3 Results and Discussion 

9-Anthracenecarboxylic acid chloride 

The anthracene carboxyHc acid chloride was difficuk to characterise as on 

contact with the atmosphere it reacted with water and reverted back to 

anthracenecarboxylic acid. 9-Anthracenecarboxyhc acid chloride was produced 

in good yields as a yellow solid. The melting point observed was 94.4-96.8C, 

which is slightly higher than the literature value of 93.5-94.5C^ the difference 

and the relatively broad mehing range are probably both indications of the 

difficulty of obtaining this compound absolutely pure. 

Figure 2.16 9-Anthracenecarboxylic acid chloride 

g f 

Table 2.1 Yields from acid chloride synthesis 

Experiment Code Mass of Product (g) % Yield 

KEF6 21.21 98 

KEF12 26.94 94 

KEF15 39.63 94 

KEF24 40.12 95 

KEF 30 29.72 94 
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Elemental analysis gave the following results. 

Table 2.2 Elemental Analysis of 9-anthracenecarboxylic acid chloride 

C H N 

experimental 76.86 4.06 0.14 

theoretical 74.83 3.77 0 

The experimental values fall outside the normal error range for the technique and 

indicate that either the sample was impure or partially hydrolysed during 

analysis. The expected molecular ion (m/e 240) with the appropriate P+2 for one 

chlorine atom was identified by mass spectroscopy and the fragmentation pattern 

was consistent with that expected for the anthracene acid chloride (M-Cl, 205; 

M-COCl, 177). The 'H and '̂ C NMR spectra, see appendices, were consistent 

with the expected structure, see below, but showed some evidence of impurities. 

Nevertheless this material was good enough for the next stage of the synthesis 

and the monomer eventually produced could be satisfactorily purified. 

Table 2.3 Assignment of the 'H NMR spectrum of anthracenecarbonyl chloride 

SHIFT/ppm MULTIPLICITY INTEGRAL ASSIGNMENT 

7.25 S chloroform 

7.60 MULT 

(sextet when pure) 

4 c, d, h, i 

8.08 MULT 

(DD when pure) 

4 b, e, g,j 

8.57 S 1 f 
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In the '̂ C NMR spectrum the carbonyl peak (170ppm) and the complicated 

aromatic region (123-132ppm) can be clearly seen; however, there are more 

resonances than expected which indicates the presence of an impurity, probably 

the carboxylic acid. 

The IR spectrum (KBr disc) showed a strong absorption for the carbonyl group at 

1679cm'' though there is a peak in the hydroxyl region possibly indicating the 

presence of anthracenecarboxylic acid, although it may be due (in part) to damp 

KBr. 

Anthracenyl Monomer 

The anthracenyl monomer was produced in yields of 75-87% by the route 

described earlier. It had a melting point of 63.7-66.2C and was a pale yellow 

microcrystalline solid. 

Table 2.4 Yields of monomer synthesis 

Experiment Code Mass of Product (g) % Yield 

KEF7 22.04 75 

KEF13 32.73 87 

KEF25 46.77 84 

KEF27 72.83 76 
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Figure 2.17 9'-Anthracenoate-2-ethyl methacrylate 

Me 

k J 

Elemental analysis gave the values shown below which are well within the error 

limits of the technique. 

Table 2.5 C H N analysis of anthracenyl monomer 

C H N 

experimental 75.20 5;23 0 

theoretical 75.43 5.43 0 

Mass spectroscopy showed the expected molecular ion (m/e 334) and the 

fragmentation pattern was consistent with that expected for the monomer (M-

Q H A , 205; M - Q H A , 177; M-CisH^O^, 113; C^,H^,0„ 69). The 'H NMR 

spectrum, see appendix two) showed the following signals. 
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Table 2.6 Assignment of Peaks of 'H NMR spectrum of monomer 

SHIFT/ppm MULTIPLICITY INTEGRAL ASSIGNMENT 

1.58 S water 
(contamination of 

NMR solvent) 
1.99 s 3 c 

4.61 T 2 d 

4.88 T 2 d 

5.64 S 1 a 

6.23 S 1 b 

7.26 S chloroform 

7.51 MULT 4 f , g , k , l 

8.02 DD 4 e, h , j , m 

8.54 S 1 i 

The '̂ C NMR spectrum, using KEF 13 as an example (see appendix 2), showed 

the two carbonyls (169 and 167ppm), the methyl group (18ppm), the two CHj 

groups (62 and 63ppm) and multiple peaks in the range 124-135ppm accounting 

for aromatic and vinylic carbons. The IR spectrum showed a very complicated 

fingerprint region but clearly showed the carbonyl (1714cm"'), C-H stretches 

(3048 and 2960cm ') and a small, broad OH stretch which was probably due to 

residual ethanol from the recrystallisation process or damp KBr. 
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Anthracenyl Homopolymer 

Solution polymerisation, as described in the Experimental section, gave 

yields, number average molecular weight and polydispersities as illustrated by 

the examples recorded in Table 2.7. 

Table 2.7 Yields and molecular mass of polymers produced 

Experiment 

Code 

Mass of 

Product(g) 

% Yield Polydispersity 

KEF20 7.57 50 13200 2.50 

KEF23 9.63 55 11800 2.05 

KEF46 11.62 57 14000 2.04 

* GPC in chloroi form using column set: guard column, PL gel 5\im. lOOA, PL gel 
5^m Wk, PL gel 5|xm lO^A and polystyrene calibrants. 

The GPC data unambiguously demonstrated that a polymer had been 

produced. A l l the polydispersities are around 2 which is the expected molecular 

weight distribution for a typical well-behaved chain growth polymerisation 

terminated by disproportionation so h seems reasonable to conclude that the free 

radical polymerisation is mainly terminated by disproportionation. Yields are not 

very good and were not improved, in any of twenty experiments, by altering the 

reaction conditions. This may be a consequence of the bulk of the anthracene 

imit resulting in steric hindrance and preventing efficient monomer addition. 

Another possibility may be that anthracene is quenching the free radicals in the 

polymerisation but the author has no evidence to support either of these 

hypotheses. 
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The 'H NMR spectrum of the purified homopolymer, see appendix 2, 

indicated the product was pure. Broadening of the spectrum peaks and the 

absence of peaks representing the hydrogens of the monomer double bond are 

consistent with polymer formation. The minor sharp peaks marked S are 

associated with solvent impurities. The free radical polymerisation of methyl 

methacrylate displays a tendency towards syndiotacticity. The 'H NMR 

spectrum has been analysed in detail'" and predominantly syndiotactic and 

isotactic materials can be readily distinguished on the basis of shift and 

multiplicity of the hydrogen signals associated with the methyls and methylenes 

of the backbone. In the case of this substituted methacrylate polymer the broad 

band at 0.71ppm and the broad band with superimposed sharp line at 1.57ppm 

are similar, although not identical with the published spectra of predominantly 

syndiotactic poly(methyl methacrylate).'" 

Figure 2.18 Poly(9'-anthracenoate-2-ethyl methacrylate) 

b 

DIOIQ 
m 
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Table 2.8 Assignment of peaks of 'H NMR spectrum of homopolymer 

SHIFT/ppm INTEGRAL ASSIGNMENT 

0.71 3 b 

1.57 2 a 

4.02 2 d 

4.35 2 e 

7.25 4 

7.74 4 h, k, r, m 

8.16 1 1 

The IR spectrum showed a carbonyl peak at 1725cm ' broadened and shifted to 

higher frequency when compared to the monomer, C-H stretches at 2940-

3065ppm. The non-conjugated ester carbonyl of the polymethacrylate is 

expected to occur at higher frequency and the broadening is consistent with 

overlap of the conjugated and non-conjugated carbonyl bond. Stretches for C-0 

and aromatic C-H and C=C can be found in the complicated fingerprint region. 

The '̂ C NMR spectnmi, see appendix 2, was assigned as follows. 
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Table 2.9 Assignment of peaks of '̂ C NMR spectrum of homopolymer 

Peak (ppm) Assignment 

18.3 b 

30.9 a 

62.5 d 

63.3 e 

77.0 chloroform 

124-135 aromatic carbons 

167.1 c 

169.3 f 

These assigrmients follow in a straight forward manner from literature 

compilations and the monomer assignment. The spectrum is remarkably clean 

and simple and raises questions about the tacticity of the polymer. Thus, it is 

established that even at 75.5 MHz the carbonyl carbon of free radically 

polymerised MMA can be resolved into eight lines in the region 175 to 179ppm"' 

and these lines have been fiilly assigned to pentad sequences. The '̂ C spectra of 

the anthracenyl polymer was recorded at 1 OOMHz and there were no carbonyl 

signals in this chemical shift range, indeed only two unresolved lines were 

detected, that at 169.3ppm is assigned to the anthracenyl carbonyl with the 

167.1 ppm signal to the methacrylate carbonyl, the implication being that the 

polymer is highly tactic and presumably, on the basis of the 'H NMR analysis, 

syndiotactic. The other backbone carbon resonances were expanded and that 

associated with the methyl signal could be resolved into two signals with the 
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predominant signal constituting 85% of the intensity. The methylene backbone 

carbon was unresolved. Taken together these NMR data indicate that the 

polymer is most probably 85% syndiotactic, although the general lack of resolved 

fine structure in the characterising '̂ C resonances probably merits further study. 

The result, namely 85% syndiotacticity on free radical polymerisation of a 

methacrylate carrying a bulky substituent is not unreasonable. 

The attempted synthesis of an anthracenyl polymer from poly(vinyl 

alcohol) proved unrewarding, the experimental details have been given earlier. A 

typical experiment is summarised below. 

Table 2.10 Reaction of PVA and anthracenecarboxylic acid chloride in NEtj 

Experiment Mass of Volume Volume Mass of Acid Mass of 

Code PVA (g) Triethyl- DMF (ml) Chloride(g) Product 

amine (ml) 

KEF31 5 12 190 12 5.03 

This reaction did not appear to be successful. The IR spectrum was very 

similar to that of the poly(vinyl alcohol)(PVA) starting material, wdth a large OH 

sfretch (3440cm"') indicating the presence of many OH groups remaining on the 

polymer backbone. However, there was a small carbonyl stretch at 1717cm"' 

indicating the presence of the anthracenoate unit. The 'H spectrum in deuterated 

DMSO, see appendix 2, duplicated that of a poly(vinyl alcohol) spectrum, except 

for some very small peaks in the aromatic region (8-8.4ppm). Finally the '̂ C 

NMR spectrum showed no anthracene present, as there were no aromatic peaks 

so the spectnmi was of poly(vinyl alcohol). The product resembled the PVA 
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starting material in consistency and appearance, the only difference being a slight 

change in colour from white to pale beige. From these results it is evident that 

the reaction did not work as plaimed, the presence of a small amount of the 

anthracenoate units in the product may mean that it is trapped within the polymer 

and wil l not wash out properly or there was a very small amount of addition of 

the anthracenecarboxylic acid chloride to some of the hydroxyl sites on the 

poly (vinyl alcohol). 

Table 2.11 Reaction of PVA and anthracenecarboxylic acid chloride in pyridine 

Experiment 

Code 

Mass of PVA 

(g) 

Volume of 

pyridine (ml) 

Mass of Acid 

Chloride (g) 

Mass of Product 

(g) 

KEF37 4.09 260 10.02 4.27 

The IR spectrum of the product from this reaction, see appendix 2, was 

different to that of PVA as there was a very complicated fingerprint region, a 

good carbonyl peak (1790cm ') and peaks in the aromatic region (1076cm"'). 

There was still a large OH stretch but it was not as large as that of the starting 

material. A '̂ C NMR spectrum was not possible as the product was only 

sparingly soluble so not enough would dissolve in any of the available NMR 

solvents to give a good carbon spectrum. The 'H NMR spectrum in deuterated 

DMSO duplicated that of the PVA starting material, see appendix 2, apart from 

small peaks in the aromatic region (7-9ppm) indicating the presence of the 

anthracene group. The product from this reaction looked different from the PVA 

starting material. It was pale brown in colour and absorbed solvents on their 

addition forming a sticky solid which was less soluble than the product from the 
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earlier attempt (KEF31). From the characterisation results it looked as i f the 

anthracene had added onto the PVA partially but not as well as hoped or perhaps 

the anthracene was just trapped in the polymer structure. Even i f the PVA and 

acid chloride reactions had worked it would be unlikely that the anthracene side 

chain would occur as frequently along the polymer chain as in the anthracene 

monomer polymerisation. This method does not give the amount of confrol 

needed to produce an efficient alignment layer. Also a shorter spacer chain 

would result which may not provide the anthracene tinits with enough mobility to 

come into contact with one another and dimerise. 

The bulk polynierisation method was much more successful and polymer 

was readily obtained in 91% yield. However, characterisation of this 

homopolymer was unsuccessful as it was insoluble so only an IR spectrum could 

be obtained. The insolubility was probably due to the formation of branches and 

cross-linking during the polymerisation which is less controlled than the solution 

route. The IR spectrum resembled the IR specfra of solution made anthracenyl 

polymers, the carbonyl could be seen at 1726cm"', C-0 and aromatic stretches at 

1198 and C-H sfretches at 2925cm"'. 

High molecular mass in bulk polymerisations is due to the Trommsdorf 

effect. As the polymerisation proceeds, there is a marked increase in viscosity 

which reduces the diffusion rate of the polymer chains. I f the diffusion rate 

decreases, the rate of termination of radicals decreases as the growing chain ends 

can no longer easily reach one another as they are slow moving and few in 

ntmiber. Therefore the chains add more monomer residues and there is an 
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increase in molecular mass. The formation of cross-links occurs by a chain 

fransfer mechanism involving hydrogen absfraction from the polymer chain as 

well as by cross-linking of the chromophores. 

2.4 Film Forming and Cross-linking 

The film forming ability of the polymer was tested by forming a film in a 

glass vessel using a rotary evaporator, see figure 2.19 below. A solution of the 

homopolymer dissolved in chloroform was placed in a glass tube then the tube 

was spim on a rotary evaporator. A vacuum was applied slowly using a water 

pump and the chloroform evaporated, leaving a fairly even coating of film on the 

surface of the glass tube. It was possible to scrape off this film so producing a 

free standing transparent film which was fairly brittle and cracked when folded. 

Figure 2.19 Formation of a film of poly(9'-anthracenoate-2-ethyl methacrylate) 

) 
under / under 
vacuum 

In practical applications the polymer would be spin-coated onto a layer of 

ITO coated glass from a 2-5% solution of chlorobenzene and dichloromethane 

with the film layer being approximately 30nm-l)j,m thick. The fact that this 

material gives brittle free standing film is not an important factor in this 

application. 

Anthracene was chosen as the chromophore because of its unusual 

property of cross-linking at one wavelength (>290nm) to give a dimer which is 

cleaved at a lower wavelength (<254nm). Heat can also cause the latter process 
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of cleavage but this should not affect the application of the anthracene derivative 

of poly(hydroxy-2-ethyl methacrylate) as the temperature is sufficiently high so 

as not to be a problem during production or the fimctioning of the alignment 

layer. It must be noted though, that oxygen quenches photodimerisation of 

anthracene by forming an endoperoxide across the 9, 10 positions (see earlier)'. 

Figure 2.20 Photo-oxidation and dimerisation of anthracene 

Q photo-oxidation 

oxygen 
endoperoxide 

Therefore to produce only the photodimer, oxygen must be eliminated from the 

film. Tests on cross-linking have been carried out in the laboratories at the DRA 

Malvern by Dr. Ian Sage and Dr. Guy Bryan-Brown. The concept on which this 

work was based has been established since the initial findings show that the 

homopolymer material works as well as poly(vinyl cinnamate) as an alignment 

layer. The anthracene homopolymer undergoes photochemical modification and 

exhibits photo-induced birefringence. 
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Figure 2.21 Cross-linked poly(9'-anthracenoate-2-ethyl methacrylate) 

A quartz slide was coated with a thin film of the anthracenyl homopolymer using 

a Dynapert Precima Ltd. photoresist spinner to spin cast the films. The slide was 

irradiated by a deuterium lamp (30W, A,=185-370nm), with one half covered with 

black card. After irradiation the slide was washed with chloroform. 

Figure 2.22 Quartz slide after exposure to UV light 

•covered (no polymer remains 
after washing) 

• exposed (cross-linlted polymer 
remains) 

The polymer film that had been covered by the card washed off the slide but the 

film that had been irradiated by the deuterium lamp was insoluble. Therefore 

something had occurred and it was presumed that the film had cross-linked via 
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the anthracene units. Samples of the homopolymer were given to the DRA and 

Helen Varley (Ph.D. student working on this project) for further investigation 

into the process that was occurring. It was found that the film was cross-linking 

as had been predicted. 

2.5 Conclusions 

The anthracenecarboxylic acid chloride was made in good yields when 

the Vilsmeier method was used instead of the literature method*. The substituted 

HEMA monomer was produced in good yields. This proved that the chemistry 

worked and the monomer could be produced. Problems were encountered when 

producing the polymer as the procedure adopted produced only low yields of 

product, the highest being 57%. The probable explanation is that either steric 

hindrance from the anthracene groups or quenching of free radicals by anthracene 

is occurring during the reaction. It is fairly easy to purify the products and good 

samples of pure homopolymer have been obtained. Other methods of 

polymerisation were investigated but these did not work satisfactorily. The direct 

reaction of 9-anthracenecarboxylic acid chloride with poly(vinyl alcohol) did not 

work well. The aromatic hydrogens seen in the 'H NMR spectra have small peak 

intensities. This was probably due to the fact that only a small amount of 

anthracenecarboxylic acid chloride added onto the PVA hydroxyl groups or the 

anthracenecarboxylic acid chloride is trapped in the PVA matrix and has not 

added to the polymer at all. Bulk polymerisation produced polymer in good 

yields but the reaction was not well confrolled and the product was insoluble so 

could not be fully characterised or used as an alignment layer. Therefore solution 
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polymerisation seemed the best method to use to produce poly(9'-anthracenoate-

2-ethyl methacrylate) homopolymer. 

Poly(9'-anthracenoate-2-ethyl methacrylate) formed films from 

chlorinated solvents and when exposed to ultra-violet light became insoluble. It 

was assumed that this implies that cross-linking occurred. Samples of the 

homopolymer were given to the DRA in Malvern and Helen Varley (Ph.D. 

student) for further investigation. Results from these tests showed that the 

anthracene does cross-link when irradiated with polarised ultra-violet light and 

the cross-linked polymer aligns liquid crystal when incorporated into a cell. This 

system works at least as well as poly(vinyl cinnamate) as an alignment layer for 

liquid crystal devices. Work at Malvern suggests that this material works by a 

different aligimient mechanism to that foimd in poly(vinyl cinnamate). The 

mechanism is still under investigation. 
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Chapter Three 

Synthesis and Characterisation of an Azide Homopolymer 

3.1 Introduction 

The next homopolymer considered to be a suitable material for liquid 

crystal alignment was a methacrylate with appended azide groups. It was hoped 

that this polymer would perform better than the anthracene homopolymer, as it 

would incorporate some pre-tilt into the alignment layer. Pre-tilt of the liquid 

crystal occurs when there is an angle between the liquid crystal director and the 

polymer alignment layer siuface.' The pre-tilt is caused by electronic interaction 

and steric repulsion between the liquid crystal molecules and the alignment layer 

surface. These effects are influenced by molecular surface structures and 

alignment layer polymer conformation^ (length and surface density of chains). 

Figure 3.1 shows a comparison of cross-linked anthracene and azide polymers. 

When the anthracene polymer is exposed to polarised light the polarisability 

anisotropy decreases but the opposite effect was predicted for the azide system 

because of the expected structure. I f the polarisability anisotropy increases the 

cross-linked polymer will align the liquid crystals and related systems have 

caused a degree of pre-tilt. The exact mechanism for the process occurring is 

unknown but there is ongoing investigation by other research groups into pre-tilt 

angles and their causes. 
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Figure 3.1 A Comparison of the Structures of cross-linked Poly(anthracenoate-2-

ethyl methacrylate) with an Azobenzene cross-linked Azido Polymer 

Me 

0 ^ 0 

Me 

The pre-tilt effect allows more efficient 'switching' of the nematic liquid crystal 

by an electric field. The liquid crystal molecules are already slightly tilted 

towards the direction they are going to 'switch'. As a consequence, when an 

electric field is applied the liquid crystal molecules move faster to the upright 

position, see figure 3.2. 
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Figure 3.2 Switching of Pre-tilled Liquid Crystal 

electric 
field 

alignment layer 

liquid crystal molecules 

Cross-linking of this polymer was expected to be accomplished by 

photochemically promoted nitrogen elimination fi-om the aryl azide followed by 

dimerisation to form azobenzene links. This would give an enhancement in 

polarisability anisotropy on dimerisation and the transition moment would be 

along the principal polarisability axis. The cross-linking reaction is irreversible 

and the system would be expected to provide a pre-tilted alignment with 

reasonable stability (see previous page). 

The polymer shown below was chosen as the target for synthesis and study. 

Figure 3.3 Poly(para-azidobenzoate-2-ethyl methacrylate) 

Me 

0 - ^ 0 
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An azide group attached to an aromatic ring is appended to a polymer 

chain. Azide polymers have been found to respond quite effectively to 

irradiation but have been mainly used previously as cross-linkers for 

photoresists^ and not as alignment layers for liquid crystal devices. 

The first step in the synthesis was to convert 4-aminobenzoic acid to 4-

azidobenzoic acid chloride. This was accomplished in two stages, the initial 

stage being the formation of the azide group from the amine then the 4-

azidobenzoic acid was chlorinated with thionyl chloride. 

Figure 3.4 Formation of 4-Azidobenzoyl chloride 

NH, 
N 

1. cHCI 
2. NaN02 

CI" 

Q 
NaNg 

• Q 
SOCI2 

Q 
O ^ O H O ^ O H O ^ O H O ^ C l 

Diazotisations are performed at low temperature (0-5C) because nitrous acid 

(HONO) decomposes rapidly at room temperature. Nitrous acid is reasonably 

stable at low temperatures and has to be prepared as required because it cannot 

easily be stored. The nitrous acid was formed by the reaction of aqueous sodium 

nitrite with hydrochloric acid. 

Figure 3.5 Formation of Nifrous Acid 

Na N O ; + HCI 
0-5C ^ .,+^,-

• HONO + NaCI 
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The nitrosonium ion (NO^) is the reactive species in reactions involving nitrous 

acid. 

Figure 3.6 Formation of the Nitrosonium Ion 

HONO + H"̂  ^ f = ^ H O — N = 0 ^^=^ H2O + N=0+ 

H 

Diazo compounds are not generally isolated in their solid form as they tend to be 

explosive. The first step of diazotisation is the nucleophilic attack of the primary 

amine on the reactive nitrosonium ion, followed by loss of a proton. Then the 

oxygen is protonated and water eliminated giving the aromatic diazonium salt. 

Figure 3.7 Formation of a Diazonium Salt 
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The diazonium salt is converted to 4-azidobenzoic acid by the addition of 

aqueous sodium azide. 4-Azidobenzoic acid is then chlorinated using thionyl 

chloride to produce 4-azidobenzoyl chloride. 

The next stage was the formation of the desired monomer from 2-

hydroxyethyl methacrylate (HEMA) and 4-azidobenzoyl chloride. The first 

method attempted is outlined in the reaction pathway below. 

Figure 3.8 Monomer Synthesis 1 

Me 

chbroform 

RT 

OH 

This did not work as expected (see Results and Discussion section) so a different 

approach was attempted involving the Schotten-Baumen reaction"*. There is a 

problem with the Schotten-Baumen reaction as one of the solvents used is water 

and one of the reactants an acid chloride. Hydrolysis of the acid chloride must be 

slower than ester formation for this reaction to work successfully. The strong 

base, sodium hydroxide, prevents side reactions occurring with the hydrogen 

chloride formed, such as addition to the double bond. 
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Figure 3.9 Monomer Synthesis 2 
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The reaction used to polymerise the azide monomer was a free radical 

initiated polymerisation using 2-butanone as the solvent and AIBN as the 

initiator. The process of fi-ee radical polymerisation was discussed in Chapter 2 

(p29). 

Figure 3.10 Polymerisation of the Azide Monomer 
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There was a problem with the azide monomer polymerising spontaneously during 

storage so inhibitors, 4-methoxyphenol and 4-tert-butylcatechol, were used to 

overcome this problem. Inhibitors have the ability to absorb free radicals and 

therefore stop or slow down the polymerisation process. The inhibitor molecule 

reacts with a free radical forming a stable free radical species that does not react 

further. Typical inhibitors include quinone, hydroquinone and substituted 

phenols. Quinones are generally added to monomers that are available 

commercially, e.g. styrene and acrylates, to prevent polymerisation during 

storage. The inhibitors can be removed by low pressure distillation or washing 

with an aqueous weak base. 

It is worth mentioning at this point the safety aspect of handling and 

reacting compounds containing the azide group. A l l azides, organic and 

inorganic have the potential to be dangerously explosive. They can explode 

under the stimulus of heat, impact, friction or apparently spontaneously. 

Therefore careful handling is required at all times; ground glass joints were 

avoided and non-metallic vessels and equipment were used as metal azides are 

the most unstable of the azide compounds (only sodium azide is relatively safe). 

The aryl azides used in this work are relatively stable. 

Other polymers incorporating the azide group have been made by adding 

the azide group onto PVA, PVC, cellulose, gelatin and copolymers of maleic 

anhydride. Azido methacrylates and azidostyrene have also been made^ These 

polymers have mainly been used as photoresists and not as the alignment layer of 

liquid crystal devices. 
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3.2 Experimental 

3.2.1 Purification of Starting Materials 

1. AIBN 

The purification method used for AIBN can be found in chapter 2 (p35). 

2. 4-Aminobenzoic acid 

4-Aminobenzoic acid as supplied was dissolved in 4-5% HCl(aq.) at 50-60C, 

mixed with decolourising carbon (2% by mass) and stirred for 30 minutes, after 

filtration the colourless solution was careftilly treated with 30% sodium 

carbonate solution to adjust the pH to 3.5-4. The 4-aminobenzoic acid which 

precipitated was recovered by filtration and recrystallised fi-om ethanol. 

3. 2-Butanone 

2-Butanone was dried over potassium carbonate (anhydrous) then purified by 

fi"actional distillation using standard distillation equipment. 

4. HEMA 

The purification method used for HEMA can be foimd in chapter two (p33). 

5. Thionyl Chloride 

The purification method used for thionyl chloride can be found in chapter two 

(p32). 

3.2.2 Synthesis of Azido Homopolymer 

Synthesis of 4-Azidobenzoic acid 

4-Aminobenzoic acid (2g, 0.0145 moles) was placed in a two-neck, 

250ml round bottom flask with distilled water (50ml). A dropping fijnnel and 
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condenser were attached to the flask and the apparatus was flushed with nitrogen 

gas. Aqueous hydrochloric acid (3.5ml, 1.18M) was added to the flask with 

stirring and then the mixture was cooled to 0-5 C in an ice bath. Sodium nitrite 

(Ig, 0.0145 moles) in water (15ml) was slowly added and the solution was left to 

stir at 0-5C for two hours. This solution was filtered and placed in a 500ml two-

neck roimd bottom flask, sodium azide (0.95g, 0.0146 moles) in water (20ml) 

was added slowly to the cool solution and this was left to stir until no more gas 

was produced by the reaction. The reaction mixture was left to stand overnight. 

The next day the mixture was filtered to recover the product which was 

recrystallised from methanol to give pure, yellow 4-azidobenzoic acid (2.29g, 

96% yield), characterisation data are presented and discussed in the Results and 

Discussion section. 

Synthesis of 4-Azidobenzoyl chloride 

4-Azidobenzoic acid (2.29g, 0.014 moles) was heated with redistilled 

thionyl chloride (30ml, 0.3 moles) at 50-60C for two hours. The thionyl chloride 

was removed by vacuum distillation (20mm Hg, 40C) and the product placed 

under vacuum (lO'^mm Hg) to dry overnight. The 4-azidobenzoyl chloride was 

yellow/orange in colour (2.16g, 97% yield). 

Synthesis of Azido monomer 

Two different methods of reacting HEMA with 4-azidobenzoyl chloride 

to form the monomer were examined. The first method involved the reaction of 

the acid chloride with HEMA at room temperature in chloroform and 

triethylamine. 4-Azidobenzoyl chloride (4.94g, 0.0272 moles) was dissolved in 
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chloroform (80ml) in a two-neck round bottom flask with a condenser and a 

dropping flannel attached. Triethylamine (4ml, 0.0287 moles) was added to the 

stirring solution, the apparatus was flushed wdth nitrogen and left for 10 minutes. 

HEMA (4ml, 0.033 moles) dissolved in chloroform (15ml) was placed in the 

dropping funnel then added slowly to the stirring mixture. The solution was left 

to stir for 2 hours. Then the solution was washed three times with equal volumes 

of distilled water to remove the triethylamine and any excess HEMA. The 

product was difficult to characterise as it tended to spontaneously polymerise 

unless stored in solution, wrapped in aluminium foil and stored in the refiigerator 

at -5C. Free radical inhibitors (4-methoxyphenol and tert-butylcatechol) were 

added to the reagent mixture during monomer synthesis in all of several attempts 

to achieve this synthesis but polymerisation occurred every time. 

Figure 3.11 Polymerisation Inhibitors 

4-nnethoxyphenol 4-tert-butylcatechol 

OMe 

o ro 
OH 

ÔH 
OH 

It was also foimd that not all the HEMA was being removed from the azido 

monomer during washing so when it was polymerised a copolymer with HEMA 

was formed. 

The second method of synthesising the azido monomer investigated was 

to use the Schotten-Baumen reaction. 4-Azidobenzoyl chloride (5.84g, 0.0322 

moles) dissolved in a 3:1 mixture of acetone (15g) and benzene (5g) was slowly 
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added to a mixture of NaOH solution (15% weight for weight in water, 48g) and 

HEMA (4.52g, 0.0373 moles) dissolved in a 3:1 acetone-benzene mixture (28g) 

with vigorous shaking. This mixture was stirred vigorously for 90 minutes. The 

product was extracted with diethyl ether, the combined organic extract was 

washed three times with equal volumes of water, once with dilute acid and a 

further three times with equal volumes of water. The solvents were removed by 

rotary evaporation and the product dried under vacuum at room temperature to 

give 4-azidobenzoate-2-ethyl methacrylate, 7.62g 86% yield. Characterisation 

data are presented and discussed later. 

Homopolymer Synthesis 

The azido homopolymer was prepared by free radical polymerisation, 

using 2-butanone as the solvent and AIBN as the free radical initiator. The azido 

monomer (5.1g, 0.0185 moles) in 2-butanone (90ml) was placed in a 250ml 

flange flask with a condenser, overhead electrical stirrer, nitrogen inlet and 

outlet, a thermometer and a septum seal. The apparatus was flushed with 

nitrogen gas and the condenser was cooled with tap water throughout the 

experiment. The monomer solution was heated to 65C then AIBN (0.031 g, 

l.SxlO"^ moles) in 2-butanone (10ml) was added using a syringe via the septum 

seal. The reaction mixture was left to stir for 3 hours. The polymer was 

precipitated by pouring the reaction mixture into hexane(800ml) then collected 

by filtration and dried in a vacuum oven at room temperature (10"^mm Hg). The 

polymer, poly(para-azidobenzoate-2-ethyl methacrylate) was purified by 

reprecipitation from chloroform into hexane and dried in a vacuum oven, this 
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was performed three times. The polymer, poly(para-azidobenzoate-2-ethyl 

methacrylate) was pale yellow/beige (yield = 70%). Characterisation is 

discussed in the next section. 

3.3 Results and Discussion 

4-Azidobenzoic acid 

4-Azidobenzoic acid was a pale yellow solid. A melting point was 

attempted on standard melting point apparatus but the compound decomposed, 

turning dark brown. Confirmation of decomposition was obtained by use of 

thermogravimetric analysis which showed decomposition starting at 114C, see 

appendix 3. Initially there was a rise in mass which was possibly due to 

oxidation of the sample by air. The curve showed a smooth decomposition of the 

sample in the temperature range 114C (onset) to 204C. There was not a step 

mass loss of 17.2%) which would have been characteristic of a discrete nitrogen 

gas elimination. Electron impact mass spectroscopy gave the expected mass of 

m/e=163 for 4-azidobenzoic acid and a fragmentation pattern consistent with the 

assigned structure, with peaks at m/e 149 (M-14(N)), 135 (M-28(N2) base peak), 

120(M-43(N3H)). 

Figure 3.12 4-Azidobenzoic Acid 

O OH 

c r ^ g 

Q 
e 

72 



Elemental analysis gave the following results which do not entirely agree with 

the theoretical values predicted. This is probably due to the product being 

slightly damp from residual solvent as it was not possible to dry the material any 

more effectively without decomposition. 

Table 3.1 Elemental Analysis of 4-Azidobenzoic acid 

C H N 

Theoretical 51.53 3.07 25.77 

Experimental 50.23 2.95 25.19 

In the 'H NMR spectrum (see appendix 3), there are two pseudo-doublets in the 

aromatic region (7.2 and 8.1ppm), the system appears to be a simple AB coupling 

but multiplicities visible on expansion of the spectrum indicate the expected 

A A ' B B ' system. 

Table 3.2 Assignment of "C NMR Peaks for 4-Azidobenzoic acid 

SHIFT/ppm ASSIGNMENT 

30.0 acetone 

119.8 c and g 

127.9 b 

132.3 d and f 

145.5 e 

166.8 a 

The '̂ C NMR spectrum (see appendix 3) contains all the carbon peaks expected. 

Carbons c and g and also f and d are equivalent so only one peak is seen for each 
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pair. The 'H and '̂ C NMR spectra indicated that the product was pure and 

suitable for the next stage of the synthesis. 

Table 3.3 Assignment of Peaks in the IR Spectrum of 4-Azidobenzoic acid 

Peak (cm'') Assignment 

-3600 -OH 

3040 C-H stretches 

2140 N 3 

1715 C=0 

The main characterising peaks in the IR spectrum are recorded in the table above, 

the spectrum also showed peaks consistent with the presence of an aromatic ring, 

C-0 bond and -OH in the fingerprint region. The azide peak is of most 

significance as IR spectroscopy was the main characterisation technique used to 

indicate the presence of the azide group. 

4-Azidobenzoyl chloride 

4-Azidobenzoyl chloride was pale orange, with a melting point of 57.1-

58.2C which agrees with the literature value^ (57-58C). Mass spectroscopy EI 

gave the expected mass m/e at 181 for the parent ion and the fi-agmentation 

pattern was consistent wdth the assigned structure, with peaks at m/e 153 (M-

28(N,)), 146 (M-35(C1)), 118 (M-63(N2C1)). The fi-agments of larger mass than 

181 seen on some of the mass spectra for 4-azidobenzoyl chloride, were probably 

due to traces of coupling products, possibly azobenzene compounds, resulting 

fi-om reactions of the 4-azidobenzoyl chloride or its decomposition products. 
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Elemental analysis produced the following data which are in reasonably good 

agreement with expected values. 

Table 3.4 Elemental Analysis of 4-Azidobenzoyl chloride 

C H N 

Theoretical 46.28 2.20 23.14 

Experimental 45.86 2.15 23.15 

Figure 3.13 4-Azidobenzoyl chloride 
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Table 3.5 Assignment of Peaks of NMR Spectrum of 4-Azidobenzoyl 

chloride 

SHIFT/ppm INTEGRAL ASSIGNMENT 

2.06 — acetone 

7.3 2 c and g 

8.16 2 d and f 

As with the 'H NMR spectrum of 4-azidobenzoic acid, AA 'BB ' splitting can be 

seen in the two peaks in the aromatic region (see appendix 3). The peaks were 

slightly shifted compared to the 4-azidobenzoic acid 'H spectrum due to the 

effect of replacing the acid hydroxy group by a chlorine atom. 
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Table 3.6 Assignment of '̂ C NMR Spectrum of 4-Azidobenzoyl chloride 

SHIFT/ppm ASSIGNMENT 

30.0 acetone 

120.5 c and g 

129.8 b 

134.2 d and f 

148.8 e 

167.2 a 

The '̂ C NMR spectrum (see appendix 3) was as expected with carbons c and g 

and also d and f equivalent so only one peak was seen for each pair. The 'H and 

'̂ C NMR spectra indicate that the product was pure. 

Table 3.7 Assignment of Peaks of IR Spectrum of 4-Azidobenzoic acid 

PEAK (cm-') ASSIGNMENT 

1715 C=0 

2128 N 3 

3003 C-H 

IR spectroscopy showed all the main characterising peaks expected. The 

spectrum (see appendix 3) is virtually superimposable with that of the acid, apart 

from the large diminution in the intensity of the OH stretching at 3400cm-', small 

variations in relative intensities and a few new bands in the fingerprint region. 
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The residual absorption at 3400cm"' could be due to the KBr disc being slightly 

damp or slight hydrolysis of the acid chloride. 

Azido monomer 

The fitst method to synthesise the azido monomer did not work as 

expected. The reaction of HEMA and 4-azidobenzoyl chloride in the presence of 

triethylamine and chloroform did not go to completion so some HEMA remained 

with the azido monomer and hence a monomer mixture was formed. It was 

difficult to characterise this mixture as it tended to polymerise spontaneously. 

Characterisation had to be carried out immediately after synthesis and the 

monomer was kept at -5C during this time to slow down the polymerisation. 

Figure 3.14 The Azide Monomer and HEMA in the Monomer Mixture 

w 

H ^ Me 

H 

q 

p O k 
m 

n 

z 
OH 

77 



Table 3.8 Assignment of the IR Spectrum of the Monomer Mixture 

PEAKS(cm-') ASSIGNMENT 

3412 -OH 

3003 C-H 

2126 N 3 

1715 C=0 

IR spectroscopy showed all the main characterisation peaks for the monomer 

mixture, the -OH peak indicating the presence of HEMA. The fingerprint region 

contains peaks representing the aromatic ring, ester C-0 and C=0. 

Table 3.9 Assignment of the 'H NMR Spectrum of the Monomer Mixture 

PEAK (ppm) ASSIGNMENT 

1.38 solvent 

1.93 e, V 

2.04 acetone 

3.16 solvent 

3.77 z 

4.19 y 

4.33 solvent 

4.54 g,h 

5.62 a,x 

6.09 b, w 

7.21 k ,q 

8.51 m,p 
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The 'H NMR spectrum (see appendix 3) showed peaks representing both 

monomers, there was also solvent and a small amount of other impurity present. 

This could not be removed as attempted purification of the monomer mixture 

resulted in it polymerising spontaneously. The '̂ C NMR spectrum (see appendix 

3) was difficult to interpret due to the impurities in the sample but peaks could be 

seen representing the carbonyl carbons (166 and 167.5ppm), aromatic ring and 

C=C (120-140ppm). 

The second method of synthesising the azido monomer involved using 

the Schotten-Baumen reaction. 4-Azidobenzoyl chloride dissolved in benzene 

and acetone was added slowly with vigorous mixing to HEMA in benzene, 

acetone and 15% aqueous sodium hydroxide solution. This route gave a much 

cleaner product. 

Table 3.10 Assignment of the IR Spectrum of 4-Azidobenzoate-2-ethyl 

methacrylate 

PEAKS(cm-' ASSIGNMENT 

3003 C-H 

2107 N 3 

1715 c=o 

The IR spectrum (see appendix 3) showed the presence of the azide group and 

ester carbonyls and there was no remaining peak fi-om the HEMA starting 

material. 
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Figure 3.15 4-Azidobenzoate-2-ethyl methacrylate 
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This reaction works because the acid chloride is hydrolysed slowly compared to 

the rate of ester formation. A small amoimt of the 4-azidobenzoic acid was foimd 

in the reaction pot at the end of the synthesis and was successfully removed from 

the product by washing. The strong base, sodium hydroxide, prevents side 

reactions occurring with hydrogen chloride formed and no residual 2-

hydroxyethyl methacrylate remained at the end of the reaction. 

There was some concem initially about the use of acetone with sodium 

hydroxide as the production of a hydrate could result. 

Figure 3.16 Reaction of Acetone with Sodium Hydroxide 

OH 
O OH^ _ 

+ H2O 
OH 

Hydrates are usually stable only in water, otherwise the equilibrium shifts 

towards the carbonyl compound. The equilibrium in the acetone system is 

towards the carbonyl compoimd and the concentration of hydrate present is 
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negligible. No evidence of any interference from this reaction was found in the 

results. Another possibility with acetone in the presence of base is the formation 

of diacetone alcohol and its dehydration product. 

Figure 3.17 Products of the Reaction of Acetone in the presence of NaOH 
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No evidence for interference from this reaction was found either in the products 

of the Schotten-Baumen reaction. 

Table 3.11 Assignment of 'H NMR Spectrum of Azidobenzoate-2-ethyl 

methacrylate 

SHIFT(ppm) ASSIGNMENT 

1.91 d 

2.06 acetone 

3.87 solvent 

4.56 g , f 

5.63 a 

6.09 b 

7.20 

8.05 k, m 

In the 'H NMR spectrum (see appendix 3) the hydrogens of the methylene 

carbons g and f are not resolved and display a complicated splitting pattern and 
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must be taken as one group of peaks representing four hydrogens. The 

integration is not perfect for these peaks due to overlaps. The monomer, an 

orange liquid, is not easy to handle or purify as it tends to polymerise unless kept 

in a refrigerator at -5 to OC, exposure to heat and/or light have to be avoided 

because of the potential for azide decomposition and these restrictions rule out 

most purification procedures. 

Table 3.12 Assigrmient of '̂ C NMR Spectrum of 4-Azidobenzoate-2-ethyl 

methacrylate 

SHIFT/ppm ASSIGNMENT 

18 d 

30 acetone 

63 f , g 

120-146 c, s,j ,k, m, n, 1, i 

166 and 167 h,e 

The '̂ C NMR spectrum (see appendix 3) indicated the pure monomer structure as 

assigned in the table above. 

A sample of the monomer was analysed by GC mass spectroscopy. The 

GC trace showed the presence of two solvent peaks at lower retention volumes 

and then a large peak corresponding to the azido monomer. A mass spectrum 

was obtained for the azido monomer which showed peaks at m/e 113, M -

C7H4O2N3 and m/e 69, M-CjHgOjNj. No molecular ion was detected. On 

making a library database search comparing the mass spectnmi obtained from the 
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azido monomer with the library of structures, 2-methyl-l,2-ethanediyl ester gave 

the nearest match (see appendix 3). 

Figure 3.18 2-Methyl-l,2-ethanediyl ester 
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This is consistent with the presence of the double bond, short carbon chain and 

two ester groups in our product. Elemental analysis produced the following 

results. 

Table 3.13 Elemental Analysis of 4-Azidobenzoate-2-ethyl methacrylate 

C H N 

Theoretical 56.73 4.73 15.27 

Experimental 57.55 4.96 15.17 

The elemental analysis was not in good agreement wdth the theoretical values 

predicted. This was probably because the monomer contained some solvent but 

was difficult to purify due to its tendency to polymerise spontaneously. The 

amount of solvent present was negligible though so the monomer was used 

unpurified. 

Azido Polymers 

The azido polymers were prepared by free radical initiated 

polymerisation, using 2-butanone as the solvent and azobisisobutyronitrile as the 
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initiator at 50-65C. The product was precipitated in hexane as a pale 

orange/brown solid by pouring the reaction mixture into excess hexane. 

Azido Copolymer 

On polymerising the monomer mixttire a copolymer was formed of 4-

azidobenzoate-2-ethyl methacrylate with hydroxyethyl methacrylate, see figure 

3.19. 

Figure 3.19 Azide and HEMA Copolymer 
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Table 3.14 Assignment of IR Spectrum of Monomer Spectrum 

PEAK(cm-') ASSIGNMENT 

3606 -OH 

3002 C-H 

2126 N 3 

1713 C=0 
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The IR spectrum showed the presence of both monomers by the azide peak and 

the hydroxy peak. Peaks characteristic of the aromatic ring, ester C-0 and C=0 

bonds could be seen in the fingerprint region. 

Table 3.15 GPC Data for Azide Copolymers 

M„ PDI 

4800 10200 2.1 

8600 10500 1.2 

12900 20100 1.6 

There was a low molecular mass material present before purification which 

contained residual monomer and low molecular mass oligomers. It is also 

possible that a 1,3 dipolar cyclisation reaction could occur during polymerisation 

between the azide group and the C=C, this reaction would result in a five-

membered triazoline ring (see Figure 3.20) and a depletion of monomer and the 

production of defects. 

Figure 3.20 Triazole product 
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Table 3.16 Assignment of 'H NMR Spectrum of Copolymer 

SHIFT/ppm ASSIGNMENT 

0.90-1.40 m, X and solvent 

2.00 k 

2.05 acetone 

2.88 w 

3.18 solvent 

3.77 z 

4.04 1 

4.32 P 

4.53 q 

7.16 V , s 

8.05 u,t 

In the 'H NMR spectrum (see appendix 3), many of the peaks overlap in the 

aliphatic region of the spectrum, therefore it is difficult to calculate accurate 

integration values. Using peaks of the 'H NMR spectrum that were not 

overlapping, it was calculated that the monomer incorporation ratio was 2:1 

(azido monomer.HEMA). 

It was difficult to obtain a good '̂ C NMR spectrum (see appendix 3) as a 

concentrated solution could not be made due to low polymer solubility. A peak 

representing a carbonyl carbon can be seen at 166ppm and peaks in the 

aromatic/unsaturated region (120-145ppm) represent the benzene ring and C=C. 
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Azido homopolymer 

The azido homopolymer was prepared by free radical initiated 

polymerisation, using 2-butanone as the solvent and AIBN as initiator at 60-65C. 

When the polymerisation was performed at this temperature a soluble polymer 

was obtained. However, this polymer became insoluble i f left to stand at room 

temperature, even when it was wrapped in aluminium foil. Therefore it can be 

concluded that a thermal process was occurring, probably involving the cross-

linking of the azide groups forming an insoluble network. I f the polymer is 

stored under nitrogen gas, wrapped in tin foil , in the freezer at -21C it remains 

soluble so the low temperature must stop or at least slow down the cross-linking 

process. 

Table 3.17 Assignment of 'H NMR Spectrum of Poly(4-azidobenzoate-2-ethyl 

methacrylate) 

SHIFT (ppm) ASSIGNMENT 

0.90 - 2.20 a and b 

4.25 and 4.42 d,e 

6.99 h , l 

7.26 chloroform 

7.92 i , k 

The 'H NMR spectrum (see appendix 3) showed peaks which were consistent 

with the formation of the expected azide homopolymer. Broad peaks and the 

absence of the peaks representing the hydrogens of the monomer double bond 
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indicate that polymer has been formed. The resonances associated with the back 

bone methyl and methylenes, 0.8 to 2.2ppm, appeared as a set of broad 

overlapping peaks and were much less resolved than the analogous resonances in 

the anthracenoate polymers (Chapter 2) leading to the conclusion that these 

polymers are probably largely atactic and may have a significant frequency of 

structure defects. 

Figure 3.21 Poly(4-azidobenzoate-2-ethyl methacrylate) 
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GPC chromatograms for three samples from separate experiments showed that 

high molecular masses were being achieved. The polydispersities are quite broad 

but this is often seen in free radical polymerisations of methacrylates. 

Table 3.18 GPC Data for Azide Homopolymer 

M„ PDI 

32300 129000 4.0 

19800 63600 3.2 

43800 154500 3.5 



The IR spectrum (see appendix 3) showed all the functional groups expected 

were present in the homopolymer, see Table 3.19. 

Table 3.19 Assigimient of IR Spectrum of Poly(para-azidobenzoate-2-ethy 1 

methacrylate) 

PEAK (cm-') ASSIGNMENT 

3003 C-H 

2125 N 3 

1715 c=o 

The '̂ C NMR spectrum (see appendix 3) for the homopolymer shown in this 

report was recorded before purification as the piuified polymer was not soluble 

enough to enable a carbon-13 NMR spectrum to be run. Peaks representing a 

carbonyl carbon, arornatic carbons, side chain methylene groups and methyl 

group can be clearly seen. Poly(azidostyrene) has been made and the group 

reported that it was 'difficuh to evaluate sensitometrically due to its rather 

limited solubility'.^ 

Azide decomposition during polymerisation can be reduced by lowering 

the polymerisation temperature and increasing the amount of solvent used in the 

reaction.^ Although as the polymer becomes insoluble at room temperature and it 

was assimied that a thermal reaction was taking place, it can be presumed that 

some reaction of the azide groups will occur during polymerisation due to the 

elevated temperature. 
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3.4 Film Forming and Cross-linking 

It was thought that cross-linking of poly(4-azidobenzoate-2-ethyl 

methacrylate) would be accomplished by nitrogen elimination'" from the aryl 

azide followed by dimerisation to form azobenzene links. 

Photolysis 

R N 3 - ^ R - N : + N2 

Dimerisation 

2 R—N: • R — N = N - R 

Azido photopolymers can also cross-link by methods" other than nitrene 

coupling to form an azobenzene link. Insertion into C-H bonds and reaction with 

double bonds forming rings can also occur. It was pointed out by Merrill and 

Unruh' * that reactions of the nitrene depend upon the environment. 

Direct Insertion 

R - N : + H - C — I / 
R — N - C — 

Hydrogen Abstraction 

/ R—NH + " C ^ R - N : + H - C — ^ ^ ^ ^ \ 
\ ^ 

Cycloaddition 

R - N : + ^ / N - R 
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It was reported by the Defence Research Agency that the azide homopolymer 

was not forming cross-Unks by dimerisation as no evidence could be found in the 

spectra of irradiated films for azobenzene groups. Further investigation into the 

photochemistry occurring in this system needs to be undertaken, see chapter 5. 

Film forming and cross-linking were investigated by the same methods 

described in chapter 2 (p54). Namely, spinning films fi-om chloroform under a 

partial vacuum from a water pump and exposing a film of the polymer on a 

quartz slide to ultra-violet light from a deuterium lamp. The azide polymer 

formed films fi-om chloroform under vacuum and became insoluble when 

irradiated by the deuterium lamp (SOW). It was assumed that cross-linking had 

occurred, rendering the polymer insoluble. 

3.5 Conclusions 

The synthesis of 4-azidobenzoyl chloride was very straight forward and 

produced pure product in high yields. The first method to produce the azido 

monomer, using triethylamine in chloroform did not work as expected. From the 

spectra of the product polymer it can be seen that a copolymer was the final 

product rather than the desired homopolymer. This was probably due to the 

incomplete reaction of HEMA with 4-azidobenzoyl chloride and incomplete 

removal of residual HEMA. Hence, when the monomer mixture was 

polymerised a copolymer of HEMA and the azido monomer was produced. The 

copolymers obtained had incorporation ratios calculated fi-om 'H NMR spectral 

data of approximately 80:20 and 60:40 (azido monomer:HEMA) depending on 
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the amount of HEMA added to the acid chloride (1:1 and 1:1.3 mole ratio 

respectively). 

The Schotten-Baumen reaction was used in an attempt to produce the 

monomer. It was hoped that this reaction would circumvent previous problems 

since it had been used before for a similar type of synthesis'. The reaction 

worked, producing the azido monomer and a side product (4-azidobenzoic acid) 

which can be returned to the synthetic pathway so limiting wastage. When 

polymerising the pure azido monomer, concentrated solutions produced an 

intractable cross-linked polymer as did polymerising temperatures of >70C so 

dilute solutions of the monomer were used at 60-65C. It was assumed that a 

thermal cross-linking reaction of the azide groups occurred at >70C producing an 

insoluble polymer network. As the cross-linking is a thermal process some 

cross-links probably form during polymerisation at 60-65C. However, the 

polymer produced is soluble when recovered so this must not be occurring to a 

large extent. 

The azido polymer was found to form films and photochemically cross­

link. This is necessary for its intended use as an alignment layer for liquid crystal 

devices. However, the azide polymer was difficult to produce, purify and store 

as it was thermally and photolytically unstable. Other research groups have 

noticed the tendency of azide containing polymers to cross-link at room 

temperature^ This problem can be circumvented by careful production, storing 

products wrapped in aluminium foil in the freezer (-21C) and using intermediate 

products immediately after production in the next stage of synthesis. 
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Chapter Four 

Synthesis and Investigation of Copolymers of the 

Anthracene and Azide Monomers with Methyl Methacrylate 

4.1 Introduction 

When two or more monomers are polymerised together a copolymer is 

formed. The copolymerisation reaction is similar to homopolymerisation but 

there are more reactions occurring during the propagation step', see later. The 

product copolymer contains a mixture of the monomers and often exhibits the 

better qualities of both parent homopolymers. There are several ways that two 

different monomers can form a copolymer. 

1. Statistical copolymers - the two monomers join onto the growing chain 

statistically. 

A-A-A-B-B-A-B-B-A-A-B-B-B-A-A-B 

2. Alternating copolymers - monomers add to the propagating chain in a 

regular alternating order. 

A-B-A-B-A-B-A-B-A-B-A-B-A-B-A-B 

3. Block copolymers - a long sequence of one monomer is formed then a 

sequence of another monomer is added onto it. 

A-A-A-A-A-A-A-B-B-B-B-B-B-B-B-B 

4. Graft copolymers - one monomer type forms a backbone polymer chain 

with side groups of the other monomer appended to it. 

95 



A-A-A-A-A-A-A-A-A-A-A-A-A-A-A-A 
B B B B 
B B B B 
B B B B 
B B B B 
B B B B 
B B B B 

Copolymers of 9'-anthracenoate-2-ethyl methacrylate with methyl 

methacrylate(MMA) and para-azidobenzoate-2-ethyl methacrylate with MMA 

were made by a variety of methods. Free radical initiated solution 

polymerisation was used to find the reactivity ratios of the monomers with 

respect to one another. 

Reactivity ratios are useful because in the polymerisation, of a mixture of 

two or more monomers, the rate at which different monomers add to the growing 

chain determines the composition and hence the properties of the resulting 

copolymer. Therefore i f we know the reactivity ratios we can predict the 

probable copolymer composition. The sequence distribution of the monomers in 

the copolymer as well as the ratio of amounts is determined by the reactivity 

ratios. 

The copolymer equation'-^' is used to determine the reactivity ratios of 

monomers and is an instantaneous expression relating the monomer feed and 

copolymer compositions at any given time. I f we take M, as monomer 1 and M j 

as monomer 2, the four reactions occurring during propagation can be 

represented as follows. 
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M; + Mi Mi 

M; + M2 M j 

M2 + Mi — ^ M; 

M2 + M2 M2 

ki , and k22 are rate constants for self-propagating reactions 

k,2 and k j i are corresponding cross-propagation rate constants 

With the definition of the reactivity ratios as 

r, = k,,/k,2 r2= ^ji^^i^ 

and assuming radical reactivity is independent of chain length and the steady-

state principle applies (the steady state approximation assumes that during the 

major part of the reaction, the concentrations and the rates of change of all 

reaction intermediates are constant and small), the copolymer equation can be 

derived. The copolymer equation relates the instantaneous composition of a 

copolymer with the reactivity of the monomers involved. 

drM,1 = pVl,1(r,fM,1+rM,1) 
d[M2] [M2"]([M,]+r2[M;]) 

An approximation is then used assuming that at low conversion [M,]/[M2] 's 

essentially constant. 

H = [M,]/[M2] 

h = d[M,]/d[M2] 

r2 = r , t f / h + H(l-h)/h 

r = reactivity ratios, defined more generally as the ratio of the reactivity of the 

propagating species with its own monomer to the reactivity of the propagating 
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species with the other monomer. This last equation is known as the copolymer 

equation. 

Most procedures for evaluating the reactivity ratios involve experimental 

determination of the copolymer compositions for several different monomer feed 

mixtures. Many different methods can be used for copolymer analysis such as 

elemental analysis, radioisotope tagging and spectroscopy (IR, UV or NMR). 'H 

NMR spectroscopy was used to calculate the incorporation of the monomers in 

the product copolymer in this work. The accuracy of the reactivity ratios 

depends on using feed ratios for which the copolymer compositions are most 

sensitive to variations in the reactivity ratios. 

The copolymerisations were carried out to as low degree of conversion as 

possible (-5%) to minimise errors in the use of the differential form of the 

copolymerisation equation. It has been found that at these low degrees of 

conversion composition drift does not interfere with copolymer composition and 

hence the reactivity ratios. 

Composition drift can also be determined with the aid of reactivity ratios, 

extending the reaction times of the copolymerisations and analysing the 

monomer content of the two monomers in the product copolymers. Staudinger^ 

first noticed the phenomenon of composition drift in the 1930's and it is quite a 

straightforward concept. I f the two monomers being reacted together have 

different reactivity ratios it means they will enter the copolymer at different rates. 

This in turn will affect the monomer feed composition as one monomer will be 

depleted faster then the other. I f the feed is constantiy changing the 

incorporation of the monomers wil l be affected and so the polymer composition 
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will alter hence the term composition drift. This is why the copolymer equation 

is only an instantaneous expression of the copolymer composition, as due to 

composition drift the equation is constantly changing. 

4.2 Experimental 

4.2.1 Purification of Starting Materials 

The purification of most of the starting materials can be found in chapter 2 (page 

32) and chapter 3 (page 68). 

1. Methyl methacrylate 

Methyl methacrylate polymerises on heating so low-pressure distillation (20mm 

Hg, 46C) was performed. Standard distillation equipment was used. The 

colourless methyl methacrylate was collected and stored under nitrogen over 

activated 4A molecular sieves in a sealed flask, wrapped in aluminium foil at 

-21C prior to use. 

4.2.2 Copolymer Synthesis 

Synthesis of Anthracene Monomer/MMA Copolymers 

2-Butanone (70ml) was poured into a 250ml flange flask with condenser, 

overhead electrical stirrer, nitrogen inlet and outlet and a dropping funnel 

attached. The apparatus was flushed with nitrogen gas and the condenser was 

cooled with tap water throughout the entire experiment. A mixture of the 

anthracenyl monomer, MMA, 2-butanone (20ml) and AIBN (0.035g) was placed 

in the dropping funnel. The 2-butanone in the flange was heated to 65-70C then 

the monomer mixture was quickly added to the stirring solvent. The 
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polymerisation continued for 15 minutes, after this time the reaction was 

quenched by precipitation of the polymers; the contents of the flask were poured 

into a beaker of stirring hexane (750ml). The copolymer precipitated then was 

collected and dried in a vacuum oven (10"^mm Hg/40C). 

Table 4.1 Mass of the two Monomers used in each Copolymer Reaction 

Mass of M M A in monomer feed Mass of anthracenyl monomer in feed 

1.8g (0.018 moles) 0.67g (0.002 moles) 

1.6g (0.016 moles) 1.34g (0.004 moles) 

1.4g (0.014 moles) 2.00g (0.006 moles) 

1.2g (0.012 moles) 2.67g (0.008 moles) 

l.Og (0.01 moles) 3.34g (0.01 moles) 

0.8g (0.008 moles) 4.01g (0.012 moles) 

0.6g (0.006 moles) 4.68g (0.014 moles) 

0.5g (0.005 moles) 5.02g (0.015 moles) 

0.4g (0.004 moles) 5.35g (0.016 moles) 

0.3g (0.003 moles) 5.68g (0.017 moles) 

0.2g (0.002 moles) 6.02g (0.018 moles) 

Also, copolymers of 9'-anthracene-2-ethyl methacrylate and MMA (see Table 

4.2) were made by solution polymerisation allowing the reaction to continue for 

the longer time of four hours. These polymers were precipitated in hexane 

(400ml) and dried in a vacuum oven (lO'^mm Hg, 50C). Characterisation data 

can be found in the Results and Discussion section of this chapter. 
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Table 4.2 Amount of the two Monomers in the Feed 

Experiment 

Code 

9'-Anthracenoate-2-ethyl 

methacrylate 

Methyl methacrylate 

KEF47 15.63g (0.0467 moles) 5ml (0.0467 moles) 

KEF49 12.5g (0.0374 moles) 8ml (0.0748 moles) 

KEF50 7.82g (0.0234 moles) 10ml (0.0935 moles) 

KEF51 6.26g (0.0187 moles) 12ml (0.112 moles) 

KEF52 5.87g (0.0176 moles) 15ml (0.14 moles) 

KEF53 4.69g (0.014 moles) 15ml (0.14 moles) 

KEF54 3.52g (0.0105 moles) 18ml (0.168 moles) 

Bulk copolymerisation'' using l,r-azobis-(cyclohexanecarbonitrile) as 

the free radical initiator was attempted. 9'-Anthracenoate-2-ethyl methacrylate 

(1.56g, 0.0467 moles) and methyl methacrylate (8ml, 0.0748. moles) were placed 

in the reaction vessel (see chapter 2 page 41). The vessel was flushed with 

nitrogen gas before and during the experiment. The anthracene monomer 

dissolved in the MMA was heated to 65C with stirring then the initiator 1,1 '-

azobis-(cyclohexanecarbonitrile) (0.06g, 2.46x10"* moles) was added to the 

mixture and the temperature was elevated to 85C. The reaction mixture was 

heated and stirred until the mixture became solid then the product was cooled, 

dissolved in chloroform and precipitated in ethanol. The copolymer was dried in 

a vacuum oven (lO'^mm Hg, 40C). The copolymers were characterised and this 

data can be foimd in the Results and Discussion section. 
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Finally dispersion polymerisation" was attempted to synthesise the 

copolymer. Anthracenyl monomer (3.01g, 0.009 moles) was dissolved in MMA 

(10ml, 0.935 moles). Distilled water (300ml) was placed in a reaction flask and 

heated to 70C whilst being stirred with an overhead electrical Ultra-Turrax 

stirrer. The initiator, 4,4'-azobis-(4-cyanopentanoic acid) (0.17g, 6.63x10"* 

moles) was added to the hot, stirring water then the monomer mixture was added 

dropwise to the water. 

Figure 4.1 4,4'-Azobis-(4-cyanopentanoic acid) 

Q. CHs CHa , 0 

^ C C H 2 C H 2 " -N=N- C H 2 C H 2 C ^ 

HO CH OH 

When all the monomer had been added the reaction was left to stir for three 

hours. Then the remaining mixture was left to cool, the water removed on a 

rotary evaporator and the product dissolved in chloroform then precipitated in 

ethanol. The product was dried in a vacuum oven (20C, lO'^mm Hg). A second 

reaction was attempted using 4,4'-azobis-(4-cyanopentanoic acid) (0.29g, 

1.13x10'̂  moles) and leaving the reaction to stir for 5 hours. A final attempt 

using AIBN as the initiator was tried but produced the same resuUs as the 

reaction with 4,4'-azobis-(4-cyanopentanoic acid). Characterisation data can be 

foimd in the Results and Discussion section. 

Synthesis of the Azide/MMA Copolymers 

The copolymers of the azide monomer with MMA were synthesised 

using solution free radical initiated polymerisation. 2-Butanone (90ml) and 

AIBN (0.035g, 2.13x10^ moles) were used and the reaction was stopped after 20 
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minutes. The copolymers were precipitated in stirring methanol then re-

precipitated from chloroform and dried in a vacuum oven (lO'^mm Hg/room 

temperature) for two hours. 

Table 4.3 Mass of the two Monomers used in the Copolymer Feed 

Mass of M M A in Monomer Feed Mass of Azido Monomer in Feed 

1.8g (0.018 moles) 0.55g (0.002 moles) 

1.6g (0.016 moles) 1.1 Og (0.004 moles) 

1.4g (0.014 moles) 1.65g (0.006 moles) 

1.2g (0.012 moles) 2.20g (0.008 moles) 

l.Og (0.01 moles) 2.75g (0.01 moles) 

0.6g (0.006 moles) 2.48g (0.009 moles) 

0.53g (0.0053 moles) 2.68g (0.00974 moles) 

0.45g (0.0045 moles) 2.89g (0.01 moles) 

0.38g (0.0038 moles) 3.10g (0.011 moles) 

0.3g (0.003 moles) 3.30g (0.012 moles) 

0.23g (0.0023 moles) 3.51g (0.013 moles) 

0.15g (0.0015 moles) 3.72g (0.0135 moles) 

The copolymers were characterised by IR, 'H NMR and '̂ C NMR specti-oscopy 

which is described in the Results and Discussion section. 
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4.3 Results and Discussion 

4.3.1 Results of Synthesis 

Bulk Polymerisation 

The bulk polymerisation was successful in producing a copolymer of high 

molecular mass, see Table 4.4, but the polymer was only slightly soluble. This 

was probably due to branching and possibly very light cross-linking occurring 

during polymerisation which is a common occurrence during bulk 

polymerisation of methacrylates and is probably due to a chain transfer 

mechanism involving hydrogen abstraction from the backbone chain. The 

copolymer obtained in a yield of 91% was a pale yellow solid. 

Table 4.4 GPC Data for Bulk Polymerisation of Anthracenoate Copolymer 

Mn PDI 

93000 371300 4.0 

The IR spectrum (see appendix 4) showed the main peaks for the carbonyl group 

and C-H bonds but there was also an OH peak, probably due to damp KBr or 

residual ethanol from precipitation of the copolymer. 

Table 4.5 Assigimient of Peaks of IR Spectrum for Anthracenoate Copolymer 

PEAK (cm"') ASSIGNMENT 

3440 -OH 

2950 C-H 

1730 C=0 

1625 benzene ring 
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Figure 4.2 Poly(9'-anthracenoate-2-ethyl methacrylate-co-methyl 

methacrylate) 

a b 
Me. (j Me. 

0 ^ 0 0 ^ 0 

fMe 

OIOIQ m 

n 

The 'H NMR spectrum (see appendix 4) was clean, indicating that the copolymer 

formed was pure and contained no residual monomer. From the integration of 

the resonances associated with the anthracenoate monomer residue (aromatic 

hydrogen peaks at 7.5 to 8.6ppm) and methyl methacrylate (-OCH3 peak at 

3.5ppm) of this spectrum the incorporation of 9'-anthracenoate-2-ethyl 

methacrylate:MMA was measured as 1:15. 
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Table 4.6 Assignment of 'H NMR Spectrum of Anthracenoate Copolymer 

SHIFT (ppm) ASSIGNMENT 

0.85 b 

1.02 a 

1.25 ethanol 

1.62 d 

1.90 c 

3.60 f 

3.72 ethanol 

4.44 h 

4.82 i 

7.26 chloroform 

7.55 m, n, s, r 

8.07 t, 1, 0, q 

8.60 P 

The '̂ C NMR spectrum (see appendix 4) displayed poor signal to noise and the 

copolymer was only slightly soluble so the solution was too dilute to obtain a 

good '̂ C NMR spectrum. 
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Table 4.7 Assignment of '̂ C NMR Spectrum of Anthracenoate Copolymer 

SHIFT (ppm) ASSIGNMENT 

16.48 a 

18.44 b 

44.73 f 

51.83 c 

54.4 d 

58.5 solvent 

125.0-130.9 anthracene aromatic ring carbons 

177.0 e 

177.8 g 

178.1 j 

As a consequence, not all the expected carbon resonances can be seen in the 

spectra. Most of the main shifts expected were present, consistent with the 

expected structure of the copolymer. 

Dispersion Polymerisation 

The attempted dispersion polymerisation was unsuccessfiil, no polymer 

was formed. It was found that the monomer still remained after the 

polymerisation attempt. 
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Table 4.8 Assignment of IR Spectrum for Dispersion Copolymerisation 

PEAK (cm"') ASSIGNMENT 

3430 -OH 

3000 C-H 

1725 C=0 

The OH peak in the IR spectrum was probably due to residual solvent (water) or 

damp KBr. 

Figure 4.3 Methyl methacrylate and 9'-Anthracenoate-2-ethyl methacrylate 

a 
H 
\ 
/ 

H 

c 
Me 

O 
O 
I 

Me 
e 

f h 
H Me 

Q 
O 

s r 

The 'H NMR spectrum (see appendix 4) indicated no polymer had been formed 

as the peaks were sharp (whereas polymer resonances tend to be broad) and the 

shifts from the hydrogens of the carbon double bond of the monomer were still 

clearly present. 
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Table 4.9 Assignment of 'H NMR Spectrum for Dispersion Copolymerisation 

SHIFT (ppm) ASSIGNMENT 

1.25 solvent 

1.66 h 

2.08 c 

2.95 e 

4.61 j 

4.88 k 

5.64 f,a 

6.23 g,b 

7.26 chloroform 

7.50 t, s, n, 0 

8.06 u, m, p, r 

8.54 q 

There was a lot more 9'-anthracenoate-2-ethyl methacrylate recovered from the 

reaction flask than methyl methacrylate which was due to MMA being lost 

during the product recovery. This was because methyl methacrylate had a 

greater solubility than 9'-anthracenoate-2-ethyl methacrylate and was a volatile 

liquid so was more difficult to recover. 
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Table 4.10 Assignment of '̂ C NMR Spectrum for Dispersion Copolymerisation 

SHIFT (ppm) ASSIGNMENT 

18.5 h 

21.7 c 

35.2 solvent 

38.0 e 

62.5 j 

63.4 k 

77.0 chloroform 

125-136 C=C and aromatic carbons 

167.2 i , d 

169.4 1 

The '̂ C NMR spectrum (see appendix 4) was in agreement with the presence of 

the monomers and no polymer being formed. This reaction may have worked i f 

emulsifiers had been added to the reaction such as salts with lecithin or 

poly(vinyl alcohol). Emulsifiers aid in efficient mixing of the monomers, 

initiator and solvents by forming an emulsion of very small droplets of monomer 

suspended in the aqueous phase. However, for this study emulsifiers were not 

added because no ionic impurities could be tolerated in the product polymer and 

it would have been difficult i f not impossible to remove all ions or separate other 

emulsifying polymers from the product. A method of improved mixing may also 

improve the chances of success of the reaction as the smaller the monomer 
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droplets are, the greater the surface area and this increases the likelihood of 

initiation by a free radical species. 

Solution Polymerisation 

The solution polymerisations were successfiil and produced copolymers in fairly 

good yields(65-76% for reactions of 4 hours). The reactions that were stopped 

after 15 minutes had yields <5% to comply with using the differential form of the 

copolymer equation.. 

Table 4.11 GPC Data for Anthracenoate Copolymers (4 hour reaction time) 

Experiment code Mw PDI 

KEF47 14800 30200 2.04 

KEF49 14200 29200 2.05 

KEF50 16600 31800 1.92 

KEF51 16700 30000 1.80 

KEF52 14500 27700 1.92 

KEF53 16500 30400 1.84 

KEF54 18000 29900 1.66 

The polydispersity was around 2 which indicates a classical free radical 

polymerisation mainly terminated by disproportionation. 
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Figure 4.4 Poly(9'-anthracenoate-2-ethyl methacrylate-co-methyl methacrylate) 

I 
fMe 

q p 

The 'H NMR spectrum (see appendix 4) showed a pure product and the ratios of 

9'-anthracenoate-2-ethyl methacrylate to methyl methacrylate could be calculated 

from the integration of the appropriate resonances in the spectra, see earlier. 

Table 4.12 Assignment of 'H NMR Spectrum of Solution Copolymers 
SHIFT (ppm) ASSIGNMENT 

0.79 b 

1.02 a 

1.26 ethanol 

1.45 c 

1.82 d 

3.51 f 

3.60 ethanol 

4.44 h 

4.81 i 

7.27 chloroform 

7.53 m, n, r, s 

8.06 1,0, q, t 

8.57 P 
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The 'H and '̂ C NMR spectra (see appendix 4) showed all the peaks expected for 

the copolymer and agree with the spectra found for the bulk copolymerisation. 

The spectra indicated a pure product containing no residual monomers. 

Table 4.13 Assignment of '̂ C NMR Spectrum of Solution Copolymers 

SHIFT (ppm) ASSIGNMENT 

16.42 b 

18.67 a 

44.73 f 

51.78 c 

54.14 d 

62.49 h 

62.87 i 

77.00 chloroform 

125-131 aromatic ring carbons 

169.2 e 

175.8 g 

177.77 j 
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Table 4.14 Assignment of Peaks of IR Spectrum of Solution Copolymers 

PEAK (cm"') ASSIGNMENT 

3440 -OH 

2950 C-H 

1730 C=0 

Al l the main peaks for the fimctional groups present could be seen in the IR 

spectrum (see appendix 4). Peaks representing the benzene rings and C-0 bonds 

could be found in the fingerprint region. 

Azide Copolymer 

The azido copolymer was only made in very small amounts in order to 

calculate the reactivity ratios of the two monomers involved. As the copolymer 

was only produced in small amounts and cross-linked at room temperature or in 

light, purification was difficult and characterisation was carried out as quickly as 

possible. Residual monomers were removed from the copolymers but solvent 

remained. 
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Figure 4.5 Poly(para-azidobenzoate-2-ethyl methacrylate-co-methyl 

methacrylate) 

a b 
c Me d Me 

Me, 

Table 4.15 Assignment of 'H NMR Spectrum of Azidobenzoate Copolymer 

SHIFT (ppm) ASSIGNMENT 

0.88 b 

1.03 a 

1.27 c 

1.90 d 

2.45 solvent 

3.49 f 

3.60 solvent 

4.30 h 

4.52 i 

7.13 n, k 

8.06 m, 1 
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The 'H NMR spectrum (see appendix 4) was in agreement with the copolymer 

structure and incorporation of the two monomers could be calculated from the 

integration of the resonances associated with the azidobenzoate monomer residue 

(aromatic hydrogen peaks at 7.13 and 8.06ppm) and methyl methacrylate (-OCH3 

peak at 3.6ppm) spectra . The IR spectrum (see appendix 4) showed the presence 

of the azide group at 2125cm'' and other main peaks, see Table 4.16. 

Table 4.16 Assignment of IR Spectrum of Azidobenzoate Copolymer 

PEAK cm ' ASSIGNMENT 

2960 C-H 

2125 N 3 

1715 
0 

C=0 

The '̂ C NMR spectrum (see appendix 4) had a low signal to noise ratio as there 

was not enough copolymer sample in solution to obtain a good spectrum. Some 

of the main characterising peaks can be seen, C=0 at 177ppm, the benzene ring 

at 120-130ppm, CH2-CH2 of the azide monomer at 62ppm and methyl groups at 

14-22ppm. The copolymers had yields <5% to comply with the conditions for 

using the differential form of the copolymer equation. 

4.3.2 Reactivity Ratios 

The copolymerisations produced samples of the anthracene/MMA 

copolymer and the azide/MMA copolymer that contained no residual monomer 

after purification. Copolymers used for reactivity ratio calculations had been 

produced in yields of <5% to comply with the restrictions for proper use of the 
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differential form of the copolymer equation. At these low conversions it is 

assumed that the monomer feed ratio [M,] / [Mj] is essentially constant and there 

is minimal composition drift. 'H NMR spectroscopy was used to determine the 

amount of each monomer present in the product copolymer.^ 

Table 4.17 Mole Fractions of Monomers in the Feed and in the 

Product Copolymer (calculated from 'H NMR data) 

Anthracenoate Copolymer Azidobenzoate Copolymer 

Mole fraction of Mole fraction of Mole fraction of Mole fraction of 

Anthracenoate Anthracenoate Azidobenzoate Azidobenzoate 

monomer in the monomer in monomer in the monomer in 

Feed Copolymer Feed Copolymer 

0.2 0.21 0.1 0.07 

0.22 0.24 0.2 0.15 

0.3 0.34 0.3 0.51 

0.4 0.43 0.4 0.59 

0.5 0.46 0.55 0.66 

0.6 0.71 0.7 0.72 

0.7 0.73 0.85 0.77 

0.75 0.76 

0.8 0.82 
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Table 4.17 contains the mole fractions of the monomers calculated from the 'H 

NMR data. These values were then plotted in graphs of mole fraction of 

monomer 1 in the copolymer v. mole fraction of monomer 1 in the feed (graphs 

4.1 and 4.2). 

Graph 4.1 

Graph of mole fractions of the Anthracenoate monomer 
in the copolymer v. feed 

mole fraction of anthracene monomer in feed 
ideal copolymerisation 

• experimental data 
A data calculated from reactivity ratios 
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Graph 4.2 

Graph of Mole fraction of monomer units in azidobenzoate copolymer 
V. Mole fraction in feed 

mole fraction of azidobenzoate monomer in feed 
ideal copolymerisation 

• experimental data 
A data calculated from reactivity ratios 

Graphs 4.1 and 4.2 each show three plots; the straight lines represent the results 

for an ideal copolymerisation where r ,«r2wl , the circles are points determined 

from experimental data ('H NMR spectra of the copolymers and the feed mole 

fractions) and the triangles are the results of applying the values for the reactivity 

ratios obtained later in this section to the following equation. 
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F, = r,f,^f,f, 
r,f,̂  + 2f,f3 + r/,^ 

where r, and are the reactivity ratios and f, and f, are the mole fractions of the 

feed compositions. 

From the graphs it can be seen that the data for the copolymer systems 

investigated in this work lies close to the plot for an ideal copolymerisation but 

as the plot values lie between 0<r<l, composition drift will occur. However, 

where the curves cross the ideal copolymerisation line there is a point which 

represents a feed consistency where no composition drift will occur, this is 

known as the azeotropic copolymer composition (see the later section on 

composition drift). 

To find the reactivity ratios of the two monomers the following equation was 

applied. The procedure used here to estimate the values of the reactivity ratios 

was established by Fineman and Ross*. 

r2 = riH2/h + H(l-h)/h 

V2 and r, are the reactivity ratios 

H = mole ratio in the monomer feed of monomer 1 to monomer 2 

h = mole ratio in the product copolymer of monomer 1 to monomer 2 

Values for H and h were calculated for each polymerisation and graphs (graphs 

4.3 and 4.4) of H % v. H(l-h)/h were plotted for each copolymer system.'' 
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Graph 4.3 H^/h v. H(l-h)/h for Anthracenoate Copolymers 

Reactivity Ratios of Anthracene Monomer and MMA 

H /̂h 
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Graph 4.4 H^/h v. H(l-h)/h for Azidobenzoate Copolymers 

Reactivity Ratios of Azide Monomer to MMA 

From the graphs the values of r, and r j can be found from the slope and the 

intercept. 

Slope = ri = reactivity ratio of functionalised methacrylate monomer 

Intercept = r j = reactivity ratio of methyl methacrylate 

Table 4.18 Reactivity Ratios of Monomers in the two Copolymer Systems 

h h i"ir2 

Anth./MMA 0.84 0.76 0.64 

Azide/MMA 0.46 0.82 0.38 
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In the two copolymer systems investigated in this work, the reactivity 

ratios are less than unity. When both reactivity ratios are less than one, cross-

propagation is favoured by both monomers, i.e., 

M; + M2 ^ M,M2 

M ; + Mi • M2 Mi-

are the favoured reactions. Therefore there is a tendency towards alternation in 

the polymer chain. The closer the value of r^T2 is to unity, the greater is the 

extent of alternation in the copolymer chains. 

Structural effects influence the monomer reactivity ratios and hence the 

copolymer composition.^ The main effects to consider in the case of the systems 

investigated here are resonance and polar effects. In the monomers used in these 

experiments there was little difference in their steric and polar effects due to their 

similar structures, all the monomers being methacrylates. 

The errors of the values of the reactivity ratios have not been discussed 

yet. It should be kept in mind that reactivity ratio errors are fairly large and are 

often underestimated. However, uncertainty in reactivity ratio values is not as 

important as would be expected. Large errors are usually due to the insensitivity 

of the copolymer composition to the actual values of r, and r2 used. In some 

instances variations of up to 30% in the values of r, and r j only cause a very 

small change in the copolymer composition curve. 
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Errors Applied to Reactivity Ratios 

Errors are difficult to calculate for the reactivity ratio determination 

experiments due to the method by which the copolymers are analysed. The data 

obtained to use in the copolymer equation is acquired from weighing the feed 

monomers on an electronic balance and calculating the ratio of monomers in the 

copolymer using 'H NMR spectroscopy. 

Two initial measurements are made, the mass of the two monomers being 

put in the reaction pot and the ratio of the two monomers calculated from the 

integration of peaks in the 'H NMR spectra. So initially we must consider mass 

and NMR integration. 

1. Mass 

Errors made on a digital display balance are usually ignored as they are 

assumed to be negligible. As the same balance was used in every measurement, 

only systematic errors would affect the actual mass of monomer going into the 

pot. To actually calculate the error in the mass, the sample of monomer should 

be weighed approximately ten times and an average value foimd and the 

deviation from this average is the error. In this work the errors arising from mass 

measurements were considered to be negligible compared to errors originating 

from the 'H NMR integration. Therefore the errors from mass have been 

assumed to be minimal and have been disregarded. 

2. 'H NMR Integration 

Errors originating from the 'H NMR spectra of the copolymers are 

innumerable and caimot be easily estimated. The first source of errors arises 
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from baseline variations in the spectra which cause the results from the 

integration of the peaks to be inaccurate. Broad peaks are difficult to integrate 

precisely as there is a lack of obvious cut-off points for the peaks. This can be 

seen in diagram 4.6 where the two peaks merge into one another and it cannot be 

determined exactly where one peak ends and the next peaks starts. The cut-off 

points have to be estimated by eye and this leads to further error in the fact that 

cut-off points wil l not be placed at exactly the same point every time. This is not 

a reproducible variable and the errors from it are difficult to determine. 

The integration algorithm is also a source of error. A 'H NMR spectrum 

is recorded as a series of points that when joined together form the peaks. The 

integration algorithm takes each point separately and integrates the area under 

that point (see diagram 4.6). The integration values from each point are then 

added together producing the final result. Therefore this method does not take 

into account overlapping peaks. 

Figure 4.6 Representation of Integration Calculation for 'H NMR 

• • • 

ppm 

Errors for the integration of 'H NMR spectra are usually estimated at -5%, an 

estimate is all that can be used due to the number of variables that have to be 
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considered. For broad peaks, as in the case of the spectra for poly(para-

azidobenzoate-2-ethyl methacrylate-co-methyl methacrylate), the error is 

underestimated and the error would be at least 5% and probably much more. 

Estimating the error involved is therefore extremely difficult but has been 

attempted to try to give some indication of the accuracy of the reactivity ratio 

values. The 'H NMR spectrum of one sample was run several times on a 

400MHz spectrometer. The following data were obtained. 

Table 4.19 Integration Values of Peaks from NMR Spectra 

RUN PEAK 1 PEAK 2 PEAK 3 

(2 hydrogens) (2 hydrogens) (5 hydrogens) 

1 75.14 66.93 190.36 

2 137.59 124.92 336.10 

3 56.83 51.47 129.38 

4 92.12 82.16 210.57 

5 129.23 132.50 316.05 

6 81.03 81.87 211.85 

7 135.18 127.50 340.30 

8 107.30 113.07 250.38 

The integration values for each individual hydrogen were then calculated. 
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Table 4.20 Integration Values for single Hydrogens from 'H NMR Spectra 

RUN PEAK 1 PEAK 2 PEAK 3 

1 37.57 33.47 38.07 

2 68.80 62.46 67.22 

3 28.42 25.74 25.88 

4 46.06 41.08 42.11 

5 64.62 66.25 63.21 

6 40.52 40.94 42.37 

7 67.59 63.75 68.06 

8 53.65 56.54 50.08 

Finally the average values and standard deviation from these average values were 

calculated. 

Table 4.21 Average Values and Standard Deviations for Integration Values 

PEAK 1 PEAK 2 PEAK 3 

Average 50.90 48.78 49.63 

Standard 

deviation 

14.18 14.42 14.32 

However, it is not the error in the integrations that should be considered but the 

difference in the ratios of integration between peaks of the same spectrum. 

This information was then applied to the reactivity calculations for the 

anthracene and azide systems and the resuhs are shown below. 
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Errors :-

Anthracene system r +0.75 

Azide system r ±0.96 

These are large errors so the reactivity ratio values should be taken as a semi­

quantitative estimate which, never-the-less, gives an indication of the relative 

ease of incorporation of the monomers. Despite these reservations the lines of 

best fi t of the graphs representing H % v. H(l-h)/h are straight and appear to be a 

good fit with confidence limits of r̂  = 0.95, the results should not be wildly 

inaccurate. However, the method to determination the errors of the reactivity 

ratio values used here is not statistically sound. Reactivity ratios are not 

independent variables, i.e., the values of one reactivity ratio directly effect the 

other so therefore errors are usually predicted by a joint confidence limit which 

can be represented by a two-dimensional area on the monomer mole fraction 

graphs. 

4.3.3 Composition Drift of the Anthracene Monomer/MMA System 

The phenomenon of the alteration of the feed composition during 

polymerisation was first realised by Staudinger^ and is known as composition 

drift. Composition drift can occur in systems where r, and r j are both less than 

unity. The magnitude and direction of the drift depend upon the feed 

composition in the copolymerisation vessel. Copolymer composition plots for 

systems with r, and r j less than one are sigmoidal and cross the line for an ideal 

copolymerisation ( T ^ ^ T J ^ I ) at a point indicating the azeotropic copolymer 

128 



composition. This point represents a feed composition that will form a 

copolymer without composition drift. This is known as azeotropic 

copolymerisation. Above the azeotrope, the drift will occur in favour of one 

monomer, and below it, in favour of the other. 

The composition of the azeotrope can be calculated using the copolymer 

composition equation. At the azeotropic feed, 

dlM,] = ]M,] 
d[M]] [MJ 

thus, r,[M,] + [M,] = [ M , ] + r , [ M , ] 

I.e. 

or 

r,IM.I + 1 = MA + h 
[MJ [ M 3 ] 

I M , ] ( r , - l ) r , - l 

Therefore, [MJ = T2- 1 
r , - l 

Therefore, the exact position of the azeotropic point depends on the relative sizes 

of r, and T J . 

The reactivity ratios for the two copolymer systems and the graphs of 

monomer fraction in the copolymer v. monomer fraction in the feed (see graphs 

4.1 and 4.2) give the best indication of composition drift. 

Table 4.22 Reactivity Ratios of Monomers in the two Copolymer Systems 

r, h 

Anth./MMA 0.84 0.76 

Azide/MMA 0.46 0.82 
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From graphs 4.1 and 4.2 it can be seen that composition drift can occur in 

either direction depending on the feed composition, apart from at the azeotropic 

point. Using the reactivity ratios and the following equation 

f 3 p - ( l - r , ) / { 2 - ( r , + r,)} 

the point of the azeotrope can be calculated. For the anthracene system fap=0.6 

and the azide system fap=0.25. 

For fiirther evidence of composition drift in the MMA-anthracenoate-2-

ethyl methacrylate copolymerisations several copolymers were made from 

different feed ratios of the two monomers. These copolymerisations were 

allowed to continue for 4 hours. The table below shows the monomer ratios used 

in the feed compared to the ratios found in the copolymers. 

Table 4.23 Ratios of MMA: Anthracenoate Monomer in Feed and Copolymers 

Experiment Code Ratio MMA:Anthracenyl 

monomer in feed 

Ratio MMA: Anthracenyl 

monomer in product 

KEF47 1:1 1.047:1 

KEF49 2:1 1.842:1 

KEF50 4:1 3.953:1 

KEF51 6:1 5.56:1 

KEF52 8:1 8.33:1 

KEF53 10:1 10.20:1 

KEF54 16:1 14.93:1 

This information can be represented in a graph and appears to follow a 

sfraight line (see graph 4.5), although it should be emphasised that as 
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composition drift is occurring the feed ratios are no longer correct values. 

Therefore these results have been used to exhibit the change found as the 

copolymerisation progresses. 

Graph 4.5 Anthracenoate Monomer:MMA in Feed v. Anthracenoate 

MonomeriMMA in Copolymers 

Incorporation of Anthracene Monomer:MMA 

0 1 

Monomer ratio of anthracene monomerMMA in Copolymer 

The copolymer equation was then applied to these results. 

r2 = r , H % + H(l-h)/h 
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Then the following graph of /h v. H(l-h)/h was plotted. 

Graph 4.6 H % v. H(l-h)/h for Anthracenoate Copolymers 

Reactivity Ratios of Anthracene Monomer and MMA 

H^/h 

The reactivity ratios were calculated from this graph (slope = r i and intercept = 

T2). Values for the reactivity ratios at 4 hours (yield 65-76%) could then be 

compared with the values found after 15 minutes (yield <5%). 

Table 4.24 Reactivity Ratios of MMA and Anthracenoate Monomer from 

Copolymers made after 15 minutes and after 4 hours 

h 

Copolymer at 15 minutes 0.84 0.76 

Copolymer at 4 hours 0.90 0.95 
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It was discovered that after 15 minutes reaction time r,>r2 but after 4 hours 

reaction time r2>ri, this is a result of composition drift. However, as r, and r2 are 

both less than one, the direction and degree of composition drift will depend on 

the feed composition. 

4.4 Conclusions 

Bulk polymerisation worked well, producing copolymer in large yields 

with a high molecular mass. However, this large molecular mass together with 

the low solubility of the polymer led to the conclusion that cross-linking had 

occurred during polymerisation. This is a common effect during free radical bulk 

polymerisations of methacrylates probably caused by a chain transfer mechanism 

involving hydrogen abstraction from the polymer chain. 

The attempted dispersion polymerisation did not produce any polymer at 

all, only monomer was left at the end of the reaction. Emulsifiers were not used 

in the reaction as it was hoped that the vigorous stirring would be sufficient to 

form small droplets of the monomers. Conceivably this may have been the fault 

with the reaction and adding an emulsifier may have made the reaction produce 

copolymer. Emulsifiers were not added to the reaction because there had to be 

no ions present in the product polymer and adding emulsifiers would have made 

purification of the copolymers difficult i f not impossible. 

Solution polymerisation was foimd to be the best method for producing 

the copolymers using 2-butanone as the solvent. Copolymerisations were 

achieved using different ratios of the two monomers involved in order to 

calculate reactivity ratios and estimate composition drift. 
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The reactivity ratios of the anthracenyl monomer and MMA are similar 

but the anthracenyl monomer has a slightly larger reactivity ratio. The opposite 

result was foimd for the azide system with the MMA with a larger reactivity ratio 

than the azide monomer. Statistical copolymers will be formed from both 

systems but with a greater degree of alternation in the copolymer as r,r2 

approaches zero. As the monomers are used in making the copolymers, the feed 

stock composition wil l alter and hence the copolymer composition will differ as 

composition drift occurs, although this depends on the feed composition. 

Composition drift was noticed in the anthracenoate copolymer system but the 

effect was relatively small. Drift could occur in either direction depending on the 

feed stock consistency unless the feed for an azeotropic copolymerisation is used, 

then no composition drift will occur. 
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Chapter Five 

Suggestions for Future Work on the Synthesis of 

Alignment Layers for Liquid Crystal Devices 

5.1 Photochemistry of Poly(para-azidobenzoate-2-ethyl methacrylate) 

Azides exhibit photoelimination''^ of a molecule of nitrogen on 

irradiation with ultra-violet light and a nitrene results. 

hu 
R - N , RN: + N2 

Also, nitrene intermediates are formed by thermal decomposition of azide 

compoimds but only the photoreaction is of concern in this section. Due to the 

elimination of nitrogen the photoelimination reaction is irreversible. The nitrene 

species is extremely reactive and has a short lifetime (several microseconds). On 

irradiation of poly(para-azidobenzoate-2-ethyl methacrylate) it was hoped that 

the nitrene species formed would dimerise to yield azobenzene cross-links, see 

Figure 5.1. 

Figure 5.1 Azobenzene Formation 

2 

Scientists at the Defence Research Agency reported that azobenzene links were 

not formed on ultra-violet irradiation of the polymer which we provided, so 

further investigation into the process occurring is necessary. 

Azido photocross-linkable polymers have been described as, "A class of 

useful photopolymers that cross-link by non-dimerisable groups."^ From this 

statement it appears that it should not be expected that ultra-violet irradiation of 
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an azido polymer will result in azobenzene cross-links and maybe our initial 

objectives were a little naive. As nitrenes are so reactive there are many 

possibilities as to what could be happening."' ̂  

1. Recombination 

It was hoped that recombination would occur to cross-link the azide polymer 

system. 

R - N 3 ^ R - N : ^ ^2 

2 R - N : ^ R - N = N - R 

Two of the nitrene species react together to form an azobenzene cross-link. 

However, in continuous photolysis of azides there exists only a low concentration 

of nifrene present at any time, so azobenzene formation is unlikely. 

Recombination requires little activation energy so is more often witnessed at low 

temperatxires when no other reactions are occurring in competition. I f flash 

photolysis is used a high concenfration of nifrenes will be formed in the same 

instant so there would be a greater chance of azobenzene formation." 

2. Electrophilic attack on bond pairs 

a. Insertion into C-H bonds 

Figure 5.2 Insertion into C-H bonds 

+ H - C — • R — N - C — 

H 

Insertion into C-H bonds yields secondary amines. The selectivity of this 

reaction is that aromatic nifrenes insert into C-H bonds in the order 

primary<secondary<tertiary. 
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b. Insertion into 0-H bonds 

Insertion of a nitrene into an 0-H bond yields a hydroxylamine. This reaction 

could not occur in the poly(para-azidobenzoate-2-ethyi methacrylate) system as 

there are no 0-H bonds present. 

c. Insertion into N-H bonds 

This reaction could occur only i f a C-H bond insertion reaction had yielded a 

secondary amine. However, N-H bond insertion reactions tend to favour primary 

amines so this reaction is very unlikely in the poly(para-azidobenzoate-2-ethyl 

methacrylate) system. 

d. Hydrogen abstraction 

Figure 5.3 Hydrogen Abstraction 

R - N : H - C — • R—NH + ' C — 

R - N H + H - C — ^ R - N H 2 + C — 

Hydrogen abstraction involves a two-step process to form an amine as shown in 

Figure 5.3. However, as the products are radicals and radicals are highly reactive 

species, other reactions can be expected as well, see Figure 5.4. 
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Figure 5.4 Radical side reactions occurring with hydrogen abstraction 

— C - N H + - C — ^ — C - N - C -

_ i _ N H + — C - N H — C - N - N - C -

•c— + -c— — • —c-c— 

3. Addition to multiple bonds 

a. Addition to C=C 

The nitrene inserts into the double bond forming a heterocyclic ring, there are no 

C=C bonds present in poly(para-azidobenzoate-2-ethyl methacrylate) so this 

process could not occur. 

Figure 5.5 Addition to C=C 

R - N : * ^ 

b. 1,3 Dipolar cycloadditions 

This process involves the reaction of the double bond with the azide 

group, see Figure 5.6. 
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Figure 5.6 1,3 dipolar cycloaddition reaction 

R - N , 

As there are no C=C bonds present in the azide polymer system under 

investigation, this process could not be happening. Although, addition to C=C 

may be a complicating factor during polymer formation leading to structural 

defects (see Chapter 3). 

Azobenzene linkages were not formed on the irradiation of poly(para-

azidobenzoate-2-ethyl methacrylate) with UV light so the most probable 

reactions occurring are hydrogen abstraction or C-H bond insertion of the nitrene. 

According to Merrill and Unruh* the photocross-linking reaction is 

subject to variations depending on organic structure, i.e. the fate of the nitrene is 

a function of its environment. This is illustrated by the example that when 4-

azidobenzoic acid is irradiated with ultra-violet light, 4,4'-dicarboxyazobenzene 

is formed. However, when phenyl azide is irradiated, an amorphous solid with 

the empirical formula CgH^ON is formed containing no azobenzene groups. 

They also claim that the photo and thermal decomposition reactions are 

comparable. Therefore the same process was probably occurring when 

poly(para-azidobenzoate-2-ethyl methacrylate) became insoluble at room 

temperature as when the polymer was irradiated with ultra-violet light. 

Preliminary investigations into the photochemistry occurring showed that 

when films of poly(4-azidobenzoate-2-ethyi methacrylate) were exposed to UV 
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light, the polymer fi lm turned from pale yellow to orange. Orange colouration is 

often a characteristic of azo compoimds but there only needs be a very small 

amount present to cause a strong colour. The small amount of azobenzene cross­

links formed may remain undetected on analysis of the photo-product due to the 

low concentration. 

Further research into the products of this photo-reaction is required to 

determine the mechanism of the process occurring and the structures of the 

photo-products obtained. 4-A2idobenzoic acid does cross-link forming 

azobenzene links on irradiation.* Therefore, it seems likely that azobenzene 

groups can be formed on irradiation of the phenyl azide esters used in this work 

but in the polymer, poly(para-azidobenzoate-2-ethyl methacrylate), the 

environment of the azide provides many other sites where insertion or abstraction 

reactions could occur. 

Organic aromatic azides are characterised by an absorbance in the UV 

spectrum centred at 285nm. Therefore, to observe the photochemistry of the 

azide homopolymer, the polymer should be exposed to an UV source at 

X=2S5nm, although there may be some overlap with the weak absorption 

associated with the ester carbonyl. It would be beneficial to observe the 

photochemical behaviour of fragments of the polymer, e.g. 4-azidobenzoic acid, 

4-azidobenzoate-2-ethyl methacrylate and 4-azidobenzoic acid with poly(methyl 

methacrylate) as models for the reaction. The homopolymer photochemistry may 

be complicated with several processes occurring, yielding a variety of photo-

products. Therefore, i f fragments of the homopolymer are irradiated with UV 

light and the photo-products analysed, it may be easier to ascertain what products 
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are formed and hence what reactions have occurred. These results could be 

compared with the photo-products of the homopolymer and deductions made as 

to the mechanisms occurring during the photoreaction. 

5.2 Future Work 

There is still a lot of work to be done in the area of photocross-linking 

polymers for use as alignment layers for liquid crystal displays. The new 

polymers described in this thesis, although they do give the desired effect, do not 

function at the standard necessary for use in commercial liquid crystal display 

cells. The poly(9'-anthracenoate-2-ethyI methacrylate) does not introduce pre-tilt 

in the liquid crystal molecules and the cross-linking mechanism of poly(para-

azidobenzoate-2-ethyl methacrylate) is unclear so does not allow sufficient 

control over the alignment process. Investigation into the photochemistry of the 

azide system is necessary to discover i f hydrogen abstraction or C-H bond 

insertion is occurring and what product is formed after irradiation with UV light. 

Altering the spacer chain length between the chromophore and the 

polymer may affect the alignment properties. The spacer chain length affects the 

mobility of the chromophore, longer side chains provide greater mobility and 

vice versa. There may be an optimum side chain length that provides the 

chromophores with enough mobility to easily encounter one another and cross­

link but prevents side chain entanglement which would alter the polymer 

conformation and therefore the alignment properties. A variation of the 

anthracenoate polymer could involve the polymerisation of the glycidyl ester̂  of 

anthracene, see figure 5.7. 
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Figure 5.7 Glycidyl ester of anthracene 

,QOD, 
This polymer would have a shorter spacer imit which may alter the alignment 

properties, the bulk of the anthracene imits may cause steric hindrance with the 

main chain and might inhibit polymerisation. Longer chain lengths may prove to 

be more beneficial as the anthracene units in the derived polymers would possess 

a greater mobility so would be more likely to come into contact with one another 

and dimerise. A proper understanding of the factors influencing the process of 

photodimerisation requires a range of structures to be investigated. 

New polymers must be designed that fimction in an ideal way for a liquid 

crystal aligrmient layer. They must introduce unidirectional anisotropic 

alignment and pre-tilt to the liquid crystal molecules which allows efficient and 

fast fimctioning of the liquid crystal cell. The cross-linking mechanism must be 

fiiUy imderstood to allow confrol of the alignment and all the other criteria 

introduced in chapter one must be included, see page 18. Photocross-linkable 

polymers can include the chromophore imit in the main chain or appended to the 

main chain. In this thesis only polymers with appended chromophores have been 

investigated but a main chain chromophore polymer may function well as an 

alignment layer for liquid crystal display cells. 

143 



As poly(vinyl ciimamate) behaved quite well as an alignment layer, a 

main chain cinnamate polymer may prove to be worth investigation. Main chain 

cinnamates have already been synthesised but not for use as alignment layers for 

liquid crystal.* ' 

Figure 5.8 Main chain cinnamate polymers'" 

O H 

Q 

When irradiated with ultra-violet light these polymers cross-link forming a 

thermally stable, msoluble polymer network. The C=C bond undergoes 2+2 

photocycloaddition but other reactions have been found to occur as well, such as 

photo-Fries rearrangement", see Figure 5.10. Photo-Fries rearrangement 

produces a 2-hydroxychalcone derivative. This reaction is an intramolecular free 

radical process'̂  as shown in figure 5.9. 
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Figure 5.9 Photo-Fries Rearrangement Mechanism 

excited sb te 

tautom. 

According to Creed et al.'^ it is unlikely that the photo-Fries reaction will occur 

between polymer chains so cross-linking by this mechanism is unlikely but not 

impossible. The photo-Fries rearrangement product causes the polymer film to 

turn yellow which is not ideal for a liquid crystal alignment layer as the film is to 

be part of the transparent window of the liquid crystal display cell. To eliminate 

the likelihood of photo-Fries rearrangements the spacer group between the 

cirmamate moieties should be fairly rigid to prevent the units coming in contact 

with one another and hence prevent their reaction. 
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Figure 5.10 Reactions of Cinnamate after UV irradiation'" 

a. 

isomer is atb 

hu 

C 0 2 R 

di merisation 

photo-Fries 

Ph C O j R 

CO2R 

The isomerisation, see Figure 5.10, has not been studied extensively yet but is 

thought to only occur in polymers where the chains are very mobile so again, 

rigid chains are preferable to flexible spacer chains. 

Some main chain cinnamate polymers have been foimd to possess a nematic 

liquid crystalline phase'" at relatively low temperatures but this depends on the 

structure of the polymer. This would be imdesirable as the alignment layer could 

then interfere with the functioning of the liquid crystal cell. The nematic liquid 

crystal properties of the main chain cinnamate are structure dependent so a 

polymer must be designed that does not possess a nematic phase by incorporating 

flexible spacer groups between the chromophore units but this may allow the 
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other photochemical processes of isomerisation and photo-Fries rearrangement to 

occur. 

As the cirmamate chromophore can be introduced into the main chain of a 

polymer it may also be possible for other chromophores such as anthracene or 

other groups containing the chromophoric -C=C-CO- imit to be incorporated into 

the chain. 

Other ways of producing a material for use as an alignment layer might 

be to synthesise a polymer that cross-linked when exposed to ultra-violet light at 

a high temperature and then use the material at a lower temperature so no further 

reaction could occur. This is to prevent the problem of further reaction after 

irradiation with UV light, as it was established that not all the chromophores 

would react on UV exposure and also some relaxation probably would occur. I f 

some of the chromophores remain unreacted they could photocross-link in 

daylight and the alignment of the polymer film would be changed. Therefore it is 

necessary to ensure no fiuther reaction occurs after the UV irradiation that 

initially align the polymer film. Another method of circumventing this problem 

would be to 'neutralise' the chromophore as part of the post-exposure processing. 

That is, to find a way to 'wash' the mixture to remove the imreacted 

chromophore units or react the cross-linked polymer film with a reagent to 

remove unreacted chromophores or irradiate at a different wavelength to destroy 

one component selectively. 

Photocross-linkable polymers are a growing area of polymer science as 

there is a great need to find a clean, simple and efficient replacement for the 

rubbed polyimide films that are currently used as alignment layers in liquid 
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crystal device technology. This thesis has described an increase in knowledge in 

this area but there is clearly much more to do. 
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Appendix One - Instrumentation 

'H and '̂ C NMR Spectra were recorded using a Varian VXR 400 NMR 

spectrometer at 399.952 MHz ('H) and 100.577 MHz ('^C) and a Varian Gemini 

200 NMR specfrometer at 199.532 MHz ('H) and 50.289 MHz (''C). 

Mass spectra were recorded using a VG Analytical Model 7070E Mass 

Spectrometer. 

Infra-red Specfra were recorded using a Perkin Elmer 1600 series FTIR. 

Gel Permeation Chromatography was carried out using a Waters Model 590 

Chromatogram with a refractometer detector, PL gel 5\im mixed styrene-

divinylbenzene beads, solvent - chloroform and calibrated with polystyrene 

standards. 

Thermogravimetric Analysis was performed using a Stanton Redcroft TG760 

thermobalance. 

UV/vis. specfra were recorded using a Unicam UV/vis. spectrometer UV2 using 

Vision 2.0 software. 

Elemental analysis was performed on a CE-440 Elemental Analyzer from EAI 

Exeter Analytical Inc. 
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Appendix Two - Analytical Data for Chapter Two 

IHNMR Spectra 

1. Anthracene carboxylic acid 

2. Anthracene carboxylic acid chloride 

3. 9'-Anthracenoate-2-ethyl methacrylate 

4. Poly(9' -anthracenoate-2-ethy 1 methacrylate) (solution polymerisation) 

5. Poly(vinyl alcohol) + Anthracene carboxylic acid chloride in 

triethylamine 

6. Poly(vinyl alcohol) + Anthracene carboxylic acid chloride in pyridine 

i^CNMR Spectra 

1. Anthracene carboxylic acid 

2. Anthracene carboxylic acid chloride 

3. 9'-Anthracenoate-2-ethyl methacrylate 

4. Poly(9'-anthracenoate-2-ethyl methacrylate) (solution polymerisation) 

5. Poly(vinyl alcohol) + Anthracene carboxylic acid chloride in 

triethylamine 

IR Spectra 

1. Anthracene carboxylic acid 

2. Anthracene carboxylic acid chloride 

3. 9'-Anthracenoate-2-ethyl methacrylate 

4. Poly(9'-anthracenoate-2-ethyl methacrylate) (solution polymerisation) 

5. Poly(9'-anthracenaote-2-ethyl methacrylate) (bulk polymerisation) 

6. Poly(vinyl alcohol) + Anthracene carboxylic acid chloride in 

triethylamine 
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7. Poly(vinyl alcohol) + Anthracene carboxylic acid chloride in pyridine 
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Poiy(vinyl alcohol) + Anthracene carboxylic acid chloride in 

triethylamine 
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6. Poly(vinyl alcohol) + Anthracene carboxylic acid chloride in pyridine 
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Appendix Three - Analytical Data for Chapter Three 

J HNMR Spectra 

1. 4-Azidobenzoic acid 

2. 4-Azidobenzoyl chloride 

3. 4-Azidobenzoate-2-ethyl methacrylate 

4. 4-Azidobenzoate-2-ethyl methacrylate + hydroxyethyl methacrylate 

5. Poly(azidoben2oate-2-ethyl methacrylate) 

6. PoIy(azidobenzoate-2-ethyl methacrylate-co-hydroxyethyl methacrylate) 

l^CNMR Spectra 

1. 4-Azidobenzoic acid 

2. 4-Azidobenzoyl chloride 

3. 4-Azidobenzoate-2-ethyl methacrylate 

4. 4-Azidobenzoate-2-ethyl methacrylate + hydroxyethyl methacrylate 

5. Poly(azidobenzoate-2-ethyl methacrylate) 

6. Poly(azidobenzoate-2-ethyl methacrylate-co-hydroxyethyl methacrylate) 

IR Spectra 

1. 4-Azidobenzoic acid 

2. 4-Azidobenzoyl chloride 

3. 4-Azidobenzoate-2-ethyl methacrylate 

4. 4-Azidobenzoate-2-ethyl methacrylate + hydroxyethyl methacrylate 

5. Poly(azidobenzoate-2-ethyl methacrylate) 

6. Poly(azidobenzoate-2-ethyl methacrylate-co-hydroxyethyl methacrylate) 

TGA Trace 

1. 4-Azidobenzoic acid 
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Mass Spectrum 

1. 4-Azidobenzoate-2-ethyl methacrylate 
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2. 4-A2idobenzoyl chloride 
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3. 4-Azidobenzoate-2-ethyl methacrylate 
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4-Azidobenzoate-2-ethyl methacrylate + hydroxyethyl methacrylate 
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5. PoIy(a2idobenzoate-2-ethyl methacrylate) 

• - f V O 

2 8 0 I 

5 f ? » 

h9S-6St 

t - 0 9 S t 

h a s - 5 5 

o h in 

•J» 
01 

C 3 C 
u u o ^ 11 

nj o >̂  o o o X .11 
O C 'J £ z o • • '•J (-1 

o m o -n (J 
3 O 3 3 ID .•3 o •/I m 11 >• c 
o» S C tJ 'fl C c» O 

•3 31 c- c o a c 
Ol *• U Pj U O — z - (O 3 1̂  cn o a - -n — Tl - c r E ^ VI 01 in VI 

\ u X O C w 41 — u tn c in Tj 3 a >> — o •a 31 UJ •9 -a 3 ^ V y — 11 u o 3--5 U. c — w 1 w a ao £. SI u 
in -a — i i i 3> L. •n 
O V. 2 Z > 3 *- - i< u 31 c o a 
O 3 UJ ~ u 3 '3 '/J 31 ti n UJ > UJ CI ZJ a-— — a ' a < c u 

_j Z _l 'J1 a u Si 3 E 3 3 UJ t— "3 C (S U. VI < C i < 2 a < -J u. o 
^ a. c::/) o a o 



OE'S 

PoIy(azidobenzoate-2-ethyl methaciylate-co-hydroxyethyl methacrylate) 
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Trace 
1. 4-Azidobenzoic Acid % Mass Record 

Thermocouple record 

HILLIVOI.TS TO DEGREE C E L S I U S . ( r T / P T i R I I H Z THERHOCOUri.F.S) 

Taken from (BS ' i 9 3 7 : r t 2 : 1973) REFERENCE JUNCTION AT O'C ( C o r r e c t to n e a r e s t whole number) 
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Mass Spectrum 

1. 4-Azidobenzoate-2-ethyl methacrylate 
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Appendix Four - Analytical Data for Chapter Four 

^HNMR Spectra 

1. Poly(9'-anthracenoate-2-ethyl methacrylate-co-methyl methacrylate) 

(solution polymerisation) 

2. Poly(9'-anthracenoate-2-ethyl methacrylate-co-methyl methacrylate) 

(dispersion polymerisation) 

3. Poly(9'-anthracenoate-2-ethyl methacrylate-co-methyl methacrylate) 

(bulk polymerisation) 

4. Poly(azidobenzoate-2-ethyl methacrylate-co-methyl methacrylate) 

i^CNMR Spectra 

1. Poly(9'-anthracenoate-2-ethyl methacrylate-co-methyl methacrylate) 

(solution polymerisation) 

2. Poly(9'-anthracenoate-2-ethyl methacrylate-co-methyl methacrylate) 

(dispersion polymerisation) 

3. Poly(9'-anthracenoate-2-ethyl methacrylate-co-methyl methacrylate) 

(bulk polymerisation) 

4. Poly(azidobenzoate-2-ethyl methacrylate-co-methyl methacrylate) 

7^ Spectra 

1. Poly(9'-anthracenoate-2-ethyl methacrylate-co-methyl methacrylate) 

(solution polymerisation) 

2. Poly(9'-anthracenoate-2-ethyl methacrylate-co-methyl methacrylate) 

(dispersion polymerisation) 

3. Poly(9'-anthracenoate-2-ethyl methacrylate-co-methyl methacrylate) 

(bulk polymerisation) 
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Poly(azidobenzoate-2-ethyl methacrylate-co-methyl methacrylate) 
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Poly(9'-anthracenoate-2-ethyl methacrylate-co-methyl methacrylate) •• 

(solution polymerisation) 
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2. Poly(9'-anthracenoate-2-ethyI methacrylate-co-methyl methacrylate) 

(dispersion polymerisation) 
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Poly(9'-anthracenoate-2-ethyl methacrylate-co-methyl methacrylate) 

(bulk polymerisation) — 
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