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Radiative Corrections to the
Photon + 1 Jet Rate at LEP

Abstract

We present a complete calculation of the photon +1 jet rate in eTe~ annihilation up to
O(aas). Although formally of next-to-leading order in perturbation theory, this calcula-
tion contains several ingredients appropriate to a next-to-next-to-leading order calculation
of jet observables. No such calculation has been performed before, and the work discussed
here represents a first step in that direction. In particular, we describe a generalization of
the commonly used phase space slicing method to isolate the singularities present when
more than one particle is unresolved. More precisely, we provide an analytic evaluation
of the following multiple unresolved factors: triple collinear factor, soft/collinear factor
and double single collinear factor. By comparing the results of our calculation with the
existing data on the photon +1 jet rate from the ALEPH Collaboration at CERN, we
make a new determination of the process-independent non-perturbative quark-to-photon
fragmentation function Dy—(z,pr) at O(aas). As a first application of this measure-
ment allied with our improved perturbative calculation, we determine the dependence of
the isolated photon +1 jet cross section in a democratic clustering approach on the jet
resolution parameter yqy; at next-to-leading order. Inclusion of the next-to-leading order

corrections to this observable considerably improves the agreement between theoretical

prediction and experimental data.
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Chapter 1

Introduction

One of the main goals of particle physics is to identify the structureless constituents of
matter and to understand the nature of forces acting between them. At the smallest
distances currently probed in high energy accelerators (a2 107'® m), there are two types
of matter units: the leptons and the quarks, which both have spin 1/2. One distinguishes
charged leptons, like the electron, which can interact both electromagnetically and weakly
and the lepton-neutrinos which only interact weakly. The quarks — which are the con-
stituents of hadrons — can interact via all three interactions: strong, electromagnetic and
weak. These three fundamental interactions form the basis of our current understanding
of particle physics, the Standard Model, which, up to now, appears to be in very good
agreement with the experimental observations.

The remainder of this introductory chapter will be organized as follows. In the first
part we shall present the fundamental features of Quantum Chromodynamics (QCD),
the theory of the strong interaction (Sections 1.1 — 1.4), with particular emphasis on the
perturbative domain of QCD. Essential properties of the weak interaction will be outlined
in Section 1.5. In the second part we shall discuss the production of hadronic jets in
ete™ annihilation experiments. In particular we shall describe how jet cross sections can
be calculated within the framework of perturbative QCD and how the results of these

calculations compare with experiment. Finally, within this context, we shall present the




a hadron. An example of a particle which seems to contradict this principle is the spin-
3/2 resonance A**. It consists of three ‘up’ quarks, with all spins pointing in the same
direction.

This conceptual difficulty could be overcome by the introduction of a new quantum
number, colour [3]. Quarks are assumed to carry one of the three colours (red, .green or
blue) and antiquarks one of the corresponding anticolours. The introduction of colour
provides a way of categorizing which combinations of quarks are allowed. In fact, only
colour singlet states can exist. If the group of colour transformation is SU(3), then the
basic colour singlet states are precisely the observed baryons and mesons. The baryons
are made of three quarks of different colours while the mesons consist of a quark-antiquark
pair of the same colour.

Since the quark model was suggested, three more quarks (charm, bottom, top) have
been discovered, all being heavier than u, d and s. Furthermore, experimental evidence of
the validity of the ‘colour SU(3) hypothesis’ now exists. For example, the ratio £ between
the ete~ total hadronic cross section and the cross section for the production of a pair of

muons provides one stringent piece of evidence for the existence of three colours.

1.1.2 Dynamical properties of quarks: Quantum chromody-
namics (QCD)

One of the fundamental ideas of QCD [4] is that the quarks carry colour and that these
colour ‘charges’ of the quarks act as sources of the strong or chromodynamic force be-
tween quarks, just as the electric charges act as sources of the electromagnetic force. As
the quarks carry both colour and electric charge, they experience both the strong and
electromagnetic forces, as well as the more feeble weak and gravitational interactions.
However, the chromodynamic force is by far the strongest in the region of our interest
(= 107'® m or equivalently for eneréies ranging between 1 GeV and few hundred GeV)
and so can be examined independently from the others.

In analogy to QED, where the electromagnetic force between charged particles 1s me-



diated by one gauge boson, the photon, the chromodynamic interaction between coloured
quarks is mediated via the gauge bosons of QCD, the gluons. The conservation of colour
in quark-quark interactions is a consequence of the invariance under a redefinition of
the colour label associated with a quark inside the hadron, i.e. it is a consequence of
the invariance under the colour symmetry group SU(3). of the theory. The structure of
SU(3), is more complicated than the structure of the electromagnetic symmetry group
U(1) since the 8 massless spin-1 gluons themselves carry colour. These can therefore also
act as source of the chromodynamic force and consequently can interact among themselves
t0o. A hadron within this theory remains a colour singlet which is built of quarks which
continually exchange gluons and consequently change colour.
The Lagrangian density of QCD is given by
1

L= Fo R+ byl Dy = mi] (1)
q
with
Fo o = 0,AL— 9,A%L — g™ ALA;,
D, = 0,+gAT,. (1.2)

The SU(3), symmetry determines the algebra of the T* matrices in fixing the structure
constants fgp.:

[Taij] _ z'fabcTc.
From the above equation (1.1), we can read off the QCD interactions: the covariant
derivative D, gives rise to a quark-gluon vertex, the contraction of the field strength
tensors F® F* yields 3-gluon and 4-gluon vertices. The parameter g is the strong coupling

urv™' a

and can only be determined experimentally.

The colour structure of QCD is contained in the T* matrices and their algebra. These

can be factored out in practical calculations, yielding overall colour factors. Denoting by

1We give here only a brief outline of the quantum field theory of QCD, a more formal and complete

treatment can for example be found in [5].



N the number of colours, the most common colour factors are:

N2 —1
= OF (51']' = (W) (Sij s

1
= TFéab — 5(Sab7

Ca6% = N§*, (1.3)

and furthermore Ty = ny Tr. Thus for the specific case of SU(3) we have

4
CF:§, CA:3

In the remainder of this thesis we shall keep the number of colours to be N and the
only colour factor which will be present in the calculation of the photon + 1 jet rate
72_1

at O(aq,) is Crp. Systematically, we shall write this colour factor as (%—) to avoid

confusion with the unresolved single collinear factor.

1.1.3 Asymptotic freedom and confinement

The essential physical idea is the following. The strong interaction between two coloured
entities can be characterized by a coupling which is a function of the distance between
them rather than a constant. In fact, when the distance probed is very small, or equiva-
lently when the energy is sufficiently high (typically greater than 10 GeV), the coupling
tends to zero, i.e. the quarks only interact very weakly with each other and can be treated
as free particles. The theory in this regime is called asymptotically free. This property
of QCD is essential to guarantee that calculations at the quark level are meaningful. In-
deed as in QED, where the coupling constant is also small (o = Ié—T) in this high energy
regime calculations of physical quantities are possible because the increasingly compli-
cated higher-order processes become decreasingly important. Such calculations will then

be performed using a perturbative expansion — a series in the strong coupling constant

s



On the other hand, when the distance between the two coloured entities increases
and becomes macroscopic, the coupling between them becomes large and possibly even
bigger than 1. This strong coupling is responsible for the observed confinement of quarks
within hadrons. A phenomenon which is presently not yet fully understood theoretically,
as non-perturbative methods are still under development.

The origin of the running of the QCD coupling with the scale (i.e. the distance at
which the interaction is probed) can be understood as follows. Let us consider a physical
process which depends on one hard scale ) only. When this process is evaluated as a
perturbative series in the strong coupling «,, ultraviolet divergences may appear. These
divergences can only be renormalized by a redefinition of the coupling a. As a result, a;
becomes a function of the renormalization scale, which is typically taken to be @, 1.e. it
runs. The derivation of the scale dependent strong coupling oy is outlined in Section 2.5.
A more formal and complete derivation of the renormalization procedure of ultraviolet
divergences in QCD can be found in [6].

In the evaluation of the photon 41 jet rate at O(ac), no ultraviolet divergences occur
as no pure quark or pure gluon self energy loops are included at this first order in o5 and

in o. The coupling «, does therefore not need to be renormalized.

1.2 Perturbative QCD: Essential theorems

At high energies, the evaluation of physical observables involving the production of quarks
as a perturbative expansion in «; is considerably simplified if the masses of the quarks
can be neglected. For the class of processes we will focus on in this thesis, the production
of quark-antiquark pairs in ete™ annihilation, this is the case. This process depends on
one large scale, the mass of the Z-boson (M7 = 91 GeV). Compared to this scale, the
masses of the quarks produced by the decay of the Z-boson (u,d, s,c, b) can be consistently

neglected.



1.2.1 The KLN theorems

The consideration of massless quarks and on-shell gluons in the calculation of cross sections
leads however to soft and collinear divergences. Indeed, as an example, let us consider
the production of a quark-antiquark pair with an additional gluon radiated on the quark
side. In the massless limit, the inverse quark-gluon propagator given by? s,, = 2E,E,(1—
cos 8,,) vanishes if either the gluon is soft, £, — 0, or it is collinear to the quark, 844 — 0.
Consequently the matrix element squared which contains terms proportional to { i}
diverges in these limits. The cross section for the production of a quark-antiquark pair
and a real gluon which is obtained as the result of the integration of the {qqg}-matrix
element squared over the 3-particle phase space is also infinite; the phase space integrals
are not calculable as their integrand contain infinities. However, the total cross section at
O(a,), which includes both real radiation and the contribution where a virtual gluon 1is
exchanged between the quark and antiquark is finite. This is a consequence of the Bloch,
Nordsieck and Kinoshita, Lee, Nauenberg (KLN) theorems [7] which guarantee that for
any suitably defined® physical quantity, calculable as a perturbative series, the infinities
present in individual terms of the real and virtual contributions arising in the calculation
cancel amongst each other.

In order to evaluate these real and virtual contributions present at this order in a5 and
which contain singularities, a regularization procedure is required. The procedure used
in this dissertation is dimensional regularization®. Within this procedure, the number
of space time dimensions is considered to be d = 4 — 2e with ¢ < 0, the regularization
parameter. Going to d # 4 affects both the phase space and matrix elements of the ¢g(g)
process. As a result the integrals become feasible, the soft and collinear singularities
arising in both real and virtual contributions appear as poles in €. When the two contri-

butions are added together, the poles exactly cancel, and the limit ¢ — 0 can be safely

2The invariant mass {s,,} defined by s;y = (pg + pg)? Is given by 2p,p, in the massless limit.
3We shall come back to explain what is meant by ‘suitably defined’ physical quantities later.

1For a formal derivation of the dimensional regularization procedure, see [8].



taken yielding a finite result for the total cross section. In Section 1.5.3 we shall explicitly
demonstrate how soft and collinear divergences manifest themselves as poles in ¢ for this
particular {¢g(¢)} production cross section. Furthermore we shall show for this example
how the cancellation of éingularities present in the real and virtual contributions occurs.

The suitably defined quantities to which the theorems above apply are infrared safe
quantities. These are independent of the masses of the light quarks in the high energy
domain. Such quantities possess a perturbative expansion in the small coupling «; that
is free of soft or collinear singularities. Consequently they are calculable in perturbation
theory. As the masses of the light partons are only negligible at short distances, infrared
safe quantities correspondingly depend only on the short-distance (or high energy) be-
haviour of QCD and not on the long-distance effects which produce the confinement of
quarks. An example of infrared safe quantity is given by the total hadronic cross section

in ete™ annihilation.

1.2.2 The factorization theorem

For quantities which are ‘infrared-sensitive’, i.e. that have infrared and collinear singular-
ities, perturbation theory cannot make absolute predictions. The theory may however be
able to predict their behaviour. Indeed, such quantities can still be handled provided the
singularities can be collected into an overall non-perturbative factor which describes the
dependence of the quantity on long distance physics. Through this factorization proce-
dure, an arbitrary scale, the factorization scale, often denoted by pr is introduced. It can
be thought of as the scale which separates the long distance hadronic physics from the
short distance partonic physics. The infrared-sensitive quantity becomes dependent on
this scale and can therefore ultimately only be determined experimentally. Nevertheless,
once the factorization procedure has been carried out, perturbation theory can still be
used to predict how the non-perturbative factor varies or ‘evolves’ with different choices of
the factorization scale. The factorization properties of particular infrared-sensitive quan-

tities can be proven to all orders in perturbation theory. For more details concerning



the factorization theorems, see [9]. Together with the KLN theorem, this factorization
theorem constitutes the necessary theoretical basis allowing the description of scattering

processes involving hadrons within the framework of perturbative QCD.

1.2.3 Fragmentation processes

A typical class of infrared-sensitive quantities to which the factorization theorem applies
are cross sections involving the fragmentation of quarks into hadrons in e*e™ annihila-
tion processes. The probability of obtaining a hadron as a result of the fragmentation
process can be described by a fragmentation function which is a dimensionless, universal
and process independent quantity. Generally, the leading-order cross section for the pro-
duction of a hadron in a hard collision may be expressed as a sum over all partons of a
convolution between a partonic (or short-distance) cross section and the parton-to-hadron
fragmentation function. The collinear quark-gluon singularities appearing in the pertur-
bative expansion of the hard scattering cross section get absorbed into the fragmentation
function. Through this procedure, the fragmentation function becomes dependent on the
factorization scale and can therefore only be determined experimentally. The perturbative
expansion of the hard scattering cross section is rendered finite and calculable but also
dependent on the factorization scale.

If the hadron under consideration is a photon the situation is slightly different as the
quarks can emit a photon via the electromagnetic interaction too [10]. Consequently, the
leading order cross section (which is of O(a)) for the production of a quark-antiquark
pair with an additional photon receives two contributions, the processes ete™ — ¢gy and
ete™ — ¢ with associated quark-to-photon fragmentation. In this case, the quark-photon
collinear singularities present in the first contribution need to be factorized in the quark-
to-photon fragmentation function of the second process. As a result both contributions
become finite and pp-dependent.

The reason why these two above processes should be considered together will be dis-

cussed in detail in Section 2.1. Furthermore, in Section 2.4 we shall derive the factorization



of the quark-photon collinear singularities for the lowest order process ete™ — ¢g+v. The
factorization of these collinear singularities together with the derivation of the factoriza-
tion scale dependence of the quark-to-photon fragmentation function at next-to-leading
order (O(ae)) is one of the goals of this dissertation and will be explicitly shown in
Chapter 8. Using these results, we shall be able to determine the factorization scale de-
pendent quark-to-photon fragmentation function at O(aq,) from experimental data on

final state photons in e*e~ annihilation. This determination will be described in Chapter

10.

1.2.4 Importance of a precise determination of the quark-to-

photon fragmentation function

The quark-to-photon fragmentation function is of particular importance to estimate the
cross section for final state photon radiation in hadron-hadron collisions; e.g. the process
pp — v + X forms an important background to the Higgs decay pp — H4+X - yy+ X
process, which is a preferred channel for the discovery of the Standard Model Higgs with
intermediate mass at LHC.

Let us first examine the different QCD processes contributing to pp — X + vy. At
leading order, two photons are produced through the Born process ¢ — vy and important
contributions of O(e,) and O(a?) are the box graph and the fragmentation processes.
Those three processes are illustrated in Fig.(1.1). The box graph process gg — 77 is
mediated by a quark loop while the fragmentation processes ¢g — v(qg — ) or g¢9 — (¢ —
v)(g — 7) contain one or two photons which are radiated approximately collinearly from
final state quarks. These processes may be evaluated in terms of the quark-to-photon
fragmentation function. So far those fragmentation processes have been estimated by
P.Aurenche et al. and E.Berger et al. in [11] using the quark-to-photon fragmentation

function [12] available in the literature®. It was found [13] that the total cross section is

dominated by the fragmentation processes.

5We will return to the form of this lowest order fragmentation function in Section 2.5.
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(a) (b)

(©) (d)

Figure 1.1: Examples for Standard Model background processes to the H — vy signal at
hadron colliders: (a) Born process, (b) box graph, (c) single fragmentation, (d) double

fragmentation.

One of the main difficulties in the determination of a possible discovery channel for the
Higgs boson comes from the arbitrariness of its mass. This leads a priori to a multitude
of possible production and decay scenarios. However from the non-detection of the Higgs
boson at LEP so far, lower bounds on the mass of the Higgs boson can be derived.
Moreover, theoretical arguments yield some upper bounds on it, as outlined in [14]. The
Higgs mass can be constrained as follows, 65 GeV < My < 1 TeV. A light Higgs
(My < 85 GeV) may still be found® at LEP2 while a heavy Higgs (My > 180 GeV) has
a clear signature at LHC through its Z°Z° or WW decays. The intermediate Higgs mass
range (85 GeV < My <180 GeV) seems to be more problematical”. Although the Higgs
production cross section is very large, the normally preferred decay mode into a pair of

heavy b quarks suffers from a large QCD two jet background to the extent that only

6Details on Higgs searches at LEP2 can be found in [15].
"Details on searches for the Higgs in this intermediate mass range have been discussed in the Proceed-

ings of the LHC workshop (Aachen 1990), [13].
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rare decay modes with a clean and distinct signature (such as H — vv) are considered
worthwhile. For an intermedidte mass Higgs, this decay mode may be detectable despite
its small branching ratio (& 107%) because of the large Higgs production cross section.
This process has a clear signature: the production of a pair of isolated high pr photons
and essentially no missing pr. One serious source of background is however due to:
the “irreducible” vy background (i.e. same final state as the signal) from ¢g — v and
99 = 77-

As we mentioned in the previous paragraph the main contribution to the total vy cross
section comes from the fragmentation processes (roughly one order of magnitude bigger
than the box and Born graphs). As these contributions are related to the presence of a
collinear photon in the final state, the fragmentation contributions could in principle be
reduced by imposing some isolation cuts. However it is not clear whether the imposition
of such cuts is sufficient to obtain a clear distinction between signal and background. It
depends on how important those fragmentation contributions are. A precise determina-
tion of this irreducible background and therefore of the quark-to-photon fragmentation

function is needed. The results obtained in the remainder of this thesis should help to

contribute to this determination.

1.3 The weak interaction

As we mentioned before, at the energies we are particularly interested in, the quarks and
gluons are the fundamental entities between which the strong interactions can be described
within perturbative QCD and between which the weak interactions are largely negligible.
In ete~ annihilation processes, however, the quarks are produced via the weak decay of
a Z-boson. We shall therefore briefly outline essential features of the weak interaction to
conclude the first part of this introductory chapter.

Prior to the early 60’s one of the most common processes where a weak interaction
takes place was the neutron S-decay into a proton, an electron and an antineutrino. It

was also predominantly this reaction which formed the basis of the first description of a
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theory of the weak interactions by Fermi in 1934 [16]. Within this description the four
fermions interact at a single point. This interaction is characterized by a single coupling
G, (G = 1.1 x 107°GeV™?), the Fermi coupling constant which measures the strength
of the weak force and an a priori unknown function I' which contains the essence of the
weak interactions and is responsible for the transformations of the particles. Just after the
essential experimental discovery of the parity-violation property of the weak interactions
[17], in 1956 Feynman and Gell-Mann suggested that this function I' should be a mixture
of vector and axial vector quantities [18] to account for these parity-violating effects of
the weak interaction. Within this pointlike interaction model for the weak force with
couplings which are a mixture of a vector and an axial vector, one is able to explain all
the data from low-energy weak interaction processes. However, the Fermi theory makes
unacceptable predictions for the high energy behaviour of the weak interactions.

Nowadays the weak interactions may be described together with the electromagnetic
interactions in a unified theory, the electroweak theory. Within this framework, the
weak interactions are mediated by three gauge bosons: W* and Z°, which couple to a
quantum number called, weak isospin® . Through the Higgs mechanism, the symmetry
between electromagnetic and weak interactions is spontaneously broken and the weak
gauge bosons acquire mass (Mw ~ 80.4 GeV, Mz ~ 91.2 GeV).

A particular feature of the W and Z bosons is their coupling structure to fermions.
As a result of the violation of parity by the weak interactions, the W couples only to
the left-handed fermions, and the coupling of the Z boson to the left-handed and right
handed fermions are non-identical. This is expressed in couplings with vector and axial
vector contributions.

At low energies this electroweak model reproduces the Fermi model, provided that the

weak charge gw is related to the Fermi constant Gr as follows:

Gr I
L , 1.4
Nt (14)

8We mention here only basic features of the electroweak model, more complete treatments can be

found in the literature, for example in [19].

13



ef vy af Particles
2 1 4.2 1
z = — 2sin” O s twu|cl|t
Quarks -3 2 3 2
—% —%+%Sin29W —% d S b
0 1 L I VR I
Leptons 2 2 el erT
—1 —% + 2 sin? Ow —-% € 74 T

Table 1.1: Particle content of the Standard Model, electric charges es, vector- and
axialvector-couplings vy, a; with sin® O = 0.232 the ratio of electromagnetic and weak

coupling constant. All particles are spin-1/2 fermions.

The particle content of the Standard Model can be grouped into three generations of

quarks and leptons, which are listed in Table 1.1.

1.4 Jet Physics at LEP

1.4.1 Introduction

Electron-positron annihilation into hadrons is one of the most precise tools to study
the properties of QCD. The success of these studies is partly due to the fact that the
hadronic cross section near the Z resonance is large, 40 nb. Below and above the Z
peak the ete™ annihilation hadronic cross section is significantly smaller. In an electron-
positron annihilation event, the produced Z boson decays into a quark-antiquark pair.
Subsequently, these quarks radiate gluons which themselves decay into gluons or quark-
antiquark pairs. At a certain point, these partons (quarks or gluons) transform themselves
into the experimentally observed hadrons. In a typical such event, two or sometimes three
or more sprays of approximately comoving hadrons are produced. These sprays or clusters
of hadrons are called jets.

The first evidence for a jet structure in hadron production by e*e™ annihilation pro-

cesses was reported back in the year 1975 [20]. The data, taken at the Stanford Laboratory,

14



showed an increasingly two-jet like event structure when the centre of mass energy, Ecm
was raised from 3 to 7.4 GeV. The jet structure manifests itself in a decrease of the mean
sphericity, a measure of the global shape of hadronic events (ideal back-to-back two-jet
events have a spericity value of 0, while spherical events have S = 1). In 1979, a small frac-
tion of planar, well separated three-jet events were observed by the PETRA experiments
around E.., ~ 30 GeV [21]. Finally, the year 1982 brought first evidence for four-jet like
events, observed by the JADE experimental collaboration [22] at E.,, = 33 GeV. We shall
comment on the occurence of these different n-jet like events at the end of this section®.

Although the formation of these hadrons in e*e™ annihilation is the consequence of a
non-perturbative process, various measurable cross sections with final state hadrons can
be calculated within the theoretical framework of perturbative QCD. The reason is that
the production process of a primary quark-antiquark pair, the basic process leading to the
formation of hadrons, occurs at a much earlier time than the production of hadrons. The
non-perturbative interactions which change the qu-arks and the gluons into hadrons occurs
“to0 late” to modify the original probability for the event to happen. Consequently, the

production of hadrons, and in particular of jets can be calculated in perturbation theory.

1.4.2 Jet definition

Most commonly, one measures the cross section for the final state to contain exactly 2, 3,
4,...jets. A jet definition provides then a procedure to classify experimentally final state
hadronic events according to the number of jets they contain. Furthermore as jet cross
sections shall be calculated in perturbative QCD, the same jet definition should be used
in the parton-level calculation, to classify the quarks and gluons into parton level jets.
To be applicable in a perturbative calculation, a jet definition must satisfy the following
criteria: It should lead to cross sections which are free of soft and collinear singularities, in

other words, the definition must be infrared safe. Furthermore it should also be relatively

9Further details on these experimental determinations together with an experimental overview of jet

physics as a quantitative test ground of QCD properties can be found in [23]).



insensitive to the transformation of quarks and gluons into hadrons.

The possibility of measuring and calculating infrared safe jet cross sections was first
explored by Sterman and Weinberg [24]. In their picture, the jets are defined with the aid
of cones surrounding the produced hadrons. The definitions used nowadays for electron-
positron collisions involve a clustering algorithm which successively combines the final
state hadrons into jets. In the corresponding theoretical calculations, the same algorithm
is used to combine the partons into jets. More precisely, a test variable d;; is constructed
for all possible pair of momenta p; and p; in an event. The pair with the smallest d;; are
then combined to form a pseudoparticle provided d;; is smaller than some fixed value of the
experimental jet resolution parameter commonly denoted by ycu. This process is repeated
until no further clusterings occur. The number of jets and their momenta are then given by
the remaining pseudoparticles. The recombination procedure can ensure that the resulting
pseudoparticles are massless or that they preserve energy-momentum but cannot ensure
both properties at the same time. The way the partons (hadrons) momenta are combined
to give the pseudoparticle momentum defines a particular recombination scheme!®. The
definition of the test function d;; defines the jet algorithm. There are several distinct
algorithms used at LEP and here we shall focus on the JADE [26] and kp- or DURHAM
[27] algorithms.

For the JADE algorithm, the test variable is simply given in the ete” centre-of-mass

frame in terms of the dimensionless invariant quantity,
Sij -
dij =Y = —;]— = ZEzE](l — COS (91']'). (13)
Notice that with this definition, this algorithm is infrared safe: A particle that has only
a small amount of energy will not affect the final number of jets or their four-momenta,
since it will only contribute to a small amount of the final four-momentum of the jet in

which it is included. Similarly if two particles are nearly collinear, then the first step of

the algorithm is to combine them into one jet.

10The definitions of the most commonly used scheme can for example be found in [25]
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The kg or Durham algorithm was introduced when it has been realized that the JADE
algorithm sometimes reconstructs “spurious” jets, i.e. clusters of hadrons or partons whose
momenta do not correspond to any set of approximately comoving particles in the event.
For example, this can happen when soft gluons are emitted close to one of the quarks or
antiquarks. In this case the JADE algorithm has the tendency to cluster the soft particles
together instead of combining them separately with the quark and the antiquark. In the

Durham algorithm defined in the e*e™ centre-of-mass frame by,

1 — N
d;; = 2 min(EZ, E?) (—CSO—SQJ—) (1.6)

the soft particles are clustered more naturally with the quark and the antiquark [27]'.
The Durham algorithm is also infrared safe and can therefore be used to measure and
to calculate cross sections with a fixed number of jets. We shall use this jet algorithm
to ultimately evaluate the photon +1 jet rate at O(aalphas) numerically. For any jet
algorithm, at lowest order, each parton is identified with a jet, such that the jet cross
section is simply given by the partonic cross section. This jet cross section is obtained
integrating numerically the partonic matrix element squared over the phase space defined
by the recombination algorithm. At higher orders the evaluation of jet cross sections

requires more thought. Section 1.5 will be dedicated to this study.

1.4.3 Jet rates

To conclude this section on generalities of the physics of jets at LEP we shall discuss the
occurrence of n-jet like events as a function of the jet resolution parameter yey:. In par-
ticular, in Figure 1.2, taken from [14], the jet rates measured by the OPAL Collaboration

are compared with the rates obtained from a fixed order perturbative calculation. Both

rates are functions of Yeus.

1¥or a more detailed description of these two algorithms, see for example the contributions of Dok-

shitzer and Brown in the proceedings to the Durham workshop on Jet Studies at LEP and HERA
(1991) [27, 28].
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Figure 1.2: Jet rates as a function of the jet resolution parameter yeus obtained using the

JADE algorithm.

Concerning the measured rate, at large ycu: the events are essentially all classified as
2-jet events. As y.,, decreases, the jets become narrower, fewer events are two jet like and
the number of multijet events increases. For some small ¢, the number of 2-jet events
tends to zero. For an even smaller value of y., the 3-jet rate tends to zero and so on
for higher number of jets and smaller values of Y. For the calculated rates, at O(a?d),
the results are slightly different. At large y..; one observes a similar behaviour as for
the measured rates, however the results differ significantly for small values of yeu- For
sufficiently small values of y.,; in fact, the 2-jet rate tends to —oo while the 3-jet rate tends
to +o0o. Indeed, for small values of y.,; the presence of large logarithms of y.,; induces
the breakdown of the perturbative approach. These logarithms must be resummed to all
orders to obtain a reliable prediction. It is only by resumming these large logarithms to
all orders in perturbation theory that the turn-over observed for example at yeu = 0.02

for the 3-jet rate in Fig.1.2 can be reproduced.
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1.5 Calculation of jet cross sections at higher orders

At lowest order, as we have seen in Section 1.4 the individual partons in the final state
can be identified as jets. The jet cross sections can be obtained by integrating numerically
the parton cross section over the phase space defined by the jet algorithm.

As higher order corrections are included, more and more partons are admitted in the
final state. In contrast to the lowest order interpretation, the partons cannot be directly
identified as jets anymore. Two things could happen: Either, a parton although it is hard,
can be clustered to other partons to form a jet. This jet is then defined with the aid of
a jet algorithm with an ezperimental resolution criterion yeu as discussed in Section 1.4.
Or, when higher order corrections are included, the partons in the final state can also be
collinear and/or soft.

As the presence of soft and/or collinear partons in the final state induces divergences in
different contributions to the partonic cross section, it is not possible anymore to evaluate
this cross section directly numerically. As mentioned in Section 1.2.1, the Bloch-Nordsieck
and Kinoshita-Lee-Nauenberg theorems guarantee us however that similar divergences
are also present in the virtual contributions to the jet cross section. Furthermore, those
theorems ensure that these divergences present in the real and virtual contributions (which
manifest themselves as poles in € 1n dimensional regularization) cancel against each other.
To evaluate the partonic cross section in such a way that the cancellation of soft and
collinear singularities is possible, one would therefore in principle need to calculate the
matrix element and to perform the phase space integrals analytically in d dimensions. This
becomes rapidly unfeasible as the number of particles in the final state increases (29]. An
alternative is to find a way to split the calculation of jet cross sections into analytic and
numerical parts. In this way, the divergent contributions are calculated analytically in d-
dimensions while the finite terms can be evaluated numerically using standard techniques,
such as Monte Carlo integration. There are essentially three different methods which
render the evaluation of higher order jet cross sections possible: the subtraction, phase

space slicing and hybrid subtraction methods. We shall briefly explain these three methods
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in the following.

1.5.1 Three numerical methods

The basic features of these numerical methods may be understood by means of the eval-
uation of a simple one-dimensional integral as suggested by Z.Kunszt and D.Soper in
[301,

7 = lim {/01 92 e p(a) — %F(O)} . (1.7)

e—0 T
F(z) is a complicated function, which renders the evaluation of 7 analytically impossi-
ble. T could represent a n-jet cross section while F(z) could stand for the n + 1-parton
bremsstrahlung matrix elements and @ for an invariant mass s;;. As  — 0, which cor-
responds in the framework of jet cross sections to the case when one of the final state
particles becomes soft or collinear, the integrand is regularised by the z¢ factor as in
dimensional regularization. The first term is however still divergent as € — 0. This diver-
gence is cancelled by the second term - which is the equivalent of the n-parton one-loop
contribution - so that the integral is ﬁnite.

The first method we shall describe is the method used first by R.K.Ellis, Ross and
Terrano in [31] for the evaluation of O(a?) quantities in electron-positron annihilation,
also known as the subtraction method. It was then further developed by Z.Kunszt and
D.Soper in [30] to be applied to the evaluation of jet cross sections in hadron collisions.

Here, a divergent term is subtracted from the first term and added to the second,
1 d; 1 d: 1
I = lim{/ 22 ee(F(z) — F(0)) + F(0 / —Trf——F 0)}
0

_ /01 & (p(a) - F(0)), (1.8)

x

so that the integral is manifestly finite. The first term shall be evaluated numerically in
4 space time dimensions whereas the second one needs to be calculated analytically in
d-dimensions. This method has the advantages of requiring no extra theoretical cutoffs
and making no approximations. A disadvantage is however that it does require the ana-

lytical evaluation of the subtraction term, the analogue of F/(0) A ”f:z:6 for each process
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individually. An attempt to systematize the evaluation of these subtraction terms has
been recently suggested by S.Catani and M.H.Seymour in [32]. Details of their method
can be found in [32]. For further applications of the subtraction method, see [33].

An alternate approach which is known as the phase space slicing method was first
introduced by [34] and further developed by W.T.Giele and E.W.N.Glover in [25]. In this
review, the method was elaborated to evaluate higher order jet cross sections in ete~
annthilation. The essential tool of this approach is the decomposition of the integration
region into two parts, 0 < # < § and § < z < 1. In the first region, the function F(2)
can be approximated by F'(0) provided the arbitrary cutoff, which is a purely theoretical

separation criterion, § < 1,

de 5
I ~ lim{/ —aF(z)+ F(0 /—d—l"ce—lF 0)}
s

- /1 ) + P(0) In(6), (1.9)

In the first region of phase space the integration can be performed numerically as F (2)
1s convergent over the whole range of integration, whereas in the second region it needs
to be calculated analytically. However the evaluation of the analogue of F(0) (f “"I—Irc6
should be easier to evaluate than the subtraction term in eq.(1.8). In the language of
jet cross sections, the evaluation of F(0) [’ dz’”zf corresponds to the evaluation of the
approximated matrix element squared over the approximated phase space in a singular,
i.e. soft or collinear, region. As these soft/collinear approximations of matrix elements
and phase space are universal [23], the application of the phase space slicing method to a
wide variety of physical processes is possible and facilitated.

A main drawback of this approach however is the presence of the arbitrary cutoff
6. The integral 7 or equivalently any physical process should not depend on §. The §
dependence of the two terms in eq.(1.9) should cancel. In the evaluation of a jet cross
section, the cancellation of the § dependence is realised numerically by a Monte Carlo

program. This is not a straightforward point for the following reasons. The soft/collinear

approximations used in the analytic part of the calculation are reliable only when § is
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small and are best when § is the smallest possible. For the numerical cancellation of the
§ dependence on the other hand, “not too small” values of § are preferred since smaller
values of § induce the cancellation of larger logarithms, possibly giving rise to numerical
instability problems. In practice § is chosen in such a way that the approximations
performed in the analytic calculation are valid and that the instability problems are
avoided. The phase space slicing method has been applied so far to efe™ — 2 jets,
ete™ — 3 jets [25], pp — W, Z + 1 jet, pp — 2 jets [35] and ep — e+ 2 jets [36].
Finally, a third method is a hybrid of the two previous techniques, called the hybrid
subtraction method [37]. To preserve the portability of the phase space slicing method,

we add and subtract only the universal soft/collinear approximations for 0 < z < 6,

T ~ 1im{/01d—% F(z) - F(0) 5‘“6 /5dir6——F )}

e—0 T 0
lde §dx
~ 11“3{/5 ZotF(@)+ [ =t [F(e) - F(0)]

/5 d—txe——F 0)}
~ {/s f:””_F( )+/05%[F(m)—F(O)]—l—F(O)ln(&)}. (1.10)

Eq.(1.10) reflects how the calculation of jet cross sections is performed using this method.
The first and last term in this equation are identical to those in the equation describing
the phase space slicing method, eq.(1.9). Consequently, when applying these two methods
to the evaluation of jet cross sections, the isolation of soft/collinear divergences and the
evaluation of the matrix element squared integrated over the non-singular region will be
performed in the same way within both methods. Moreover the cancellation of the ¢

dependence is also realised on a numerical basis within the hybrid subtraction method.

The difference between the latter two approaches is given by,
§dx ’
/0 2 (F(z) - F(0)). (1.11)

In the “language” of jet cross sections this term corresponds to the evaluation of the

difference between the full matrix element squared and its approximation integrated over
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the phase space restricted to the region where 0 < z < ¢. Clearly, the difference between
the two approaches tends to zero as § — 0. Furthermore, provided é is chosen small
enough, all three methods should give equivalent results. This was shown to be indeed
the case for a particular physical quantity, the energy-energy correlation function [38] in
[37] where the small unphysical parameter is labelled Y. In particular, in this letter the
authors discuss for which particular choice of ymin the results obtained applying the phase
space slicing or hybrid subtraction method, agreed reasonably well with the results ob-
tained using the subtraction method. They found that at large yn the predictions varied
rapidly with ym,. This is understandable since for large ymin values, the approximations
used to perform the analytic integrations are inaccurate. For ymin < 10~, this variation
was found to be small. A reasonable approximation to the ymin — 0 limit, which does not
lead to numerical instability problems was therefore chosen to be ymin = 107°.

Nevertheless, it is worth noting that it can also happen that the difference between
phase space slicing and hybrid subtraction methods as given in eq.(1.11) leads to im-
portant discrepancies in the final numerical results obtained applying one or the other
method.

Within the phase space slicing method, the matrix element squared and phase space
are approximated in a given singular region and generally the approximations are accurate
in that singular region. At the edges of the singular region it can however happen that this
approximation is not appropriate anymore. In such cases, using the phase space slicing
method could lead to erroneous results. Indeed, within this method, the pole part is
obtained as the result of the analytic integration of the approximate matrix elements over
the corresponding singular region of phase space. The finite contributions are obtained
as the sum of the finite terms of the analytic integration and the result of the numerical
integration of the matrix element squared over the resolved region of phase space. If the
approximation of the matrix element squared is not appropriate this finite part may not
be correct.

Using the hybrid subtraction method, the integration over the singular region of the

approximated matrix element squared is added and subtracted and such a problem is
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avoided. The pole part is obtained as in the phase space slicing method. However, an
additional finite contribution arises through the evaluation of the difference of the full
matrix element squared and the approximated matrix element squared integrated over
a given singular region, the analogue of [J £ [F(z) — F(0)] in eq.(1.10). Clearly, if the
approximation is accurate this difference term tends to zero. If not on the other hand it
generates an additional finite contribution to the jet cross section, such that the results
obtained applying one or the other method are different.

When evaluating the photon +1 jet rate at O(acq;), as we shall discuss in more detail
when describing the numerical part of this calculation in Chapter 9, at the boundaries
of any single collinear regions, it turns out that the single collinear approximation of the
four-particle matrix element squared is not an appropriate approximation anymore. As we
shall illustrate in Chapter 9, the large particle multiplicity in the process is responsible for
this subtle inaccuracy. For this reason, in our numerical program evaluating the photon

+1 jet rate at O(aq;), we will apply the hybrid subtraction method.

1.5.2 An example: The ete™ — 2 jets cross section at O(«;)

To illustrate how the hybrid subtraction method can be applied to yield a finite jet
cross section, we shall consider a particular example, the ete™ — 2 jet cross section at
O(c;). We will first present how the different contributions to the cross section should
be combined to yield a finite result using the phase space slicing method. We shall
then specify which additional contribution shall be taken into account when the hybrid
subtraction method is used instead.

The essential tool of the phase space slicing method as we saw in the previous subsec-
tion, is the decomposition of the phase space into different regions, one where all final state
particles are considered to be theoretically resolved (or seen) and others where at least one
of the particles is said to be theoretically unresolved. The separation criterion between
resolved and unresolved regions is given by a theoretical resolution parameter: Spin. Two

partons are considered as theoretically resolved if the invariant mass of the parton pair 1s



greater than s.,, they are said to be theoretically unresolved (i.e soft and/or collinear)
otherwise. It is only in the unresolved regions, where at least one of the invariant masses
of a parton pair s;; is less than su;,, that the calculation needs to be carried out in d
dimensions. As a consequence of this slicing procedure of the phase space, the divergences
associated with the presence of soft or collinear partons lie in the unresolved phase space
regions and can be isolated and analytically cancelled against the divergences present
in the virtual contributions. We shall explicitly show how this cancellation happens in
Section 1.5.3 for the evaluation of the ete™ — 2 jet cross section at O(a;,). After the
analytic cancellation of poles, the matrix element and the phase space restricted to the
region where all final state particles are theoretically resolved can be evaluated in four
space time dimensions. The jet algorithm can be applied to select the two-jet events.

At lowest order the sole contribution to the e*e™ — 2 jet cross section comes from the
two-parton process ete™ — ¢g. The partons ¢ and § form the two jets. At next-to-leading
order there are two contributions. One contribution comes from the tree level three-parton
process ete™ — ¢gg. The other is related to the next-to-leading order two-parton process
ete™ — ¢g, where a virtual gluon is exchanged. The three-particle phase space can be
split into resolved and single unresolved regions. In these single unresolved or so-called
one-particle unresolved regions, the gluon is “theoretically” unseen, i.e. it is collinear to
the quark or to the antiquark or it is soft. Partons z and j are considered as collinear
when the invariants built with their momenta is less than the theoretical parameter s,
i.e. 8;; < Smin. Parton k is soft when the invariants involving the momentum of parton k
are less than spi,. Before deriving these divergent contributions explicitly, let us first see
how all the different contributions to the O(a,) ete™ — 2 jet cross section combine to
yield a finite result.

Schematically, following the notation in [25], the differential cross section associated

with the three-parton process ete™ — ¢gg reads!?

do(ete™ — 3 partons) = |0(s,5 — Smin)0(S55 — Smin)

12The step function #(z) is 1 if > 0 and 0 otherwise.
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F0(Smin — Sq9)0(Sgg — Smin) + 0(Smin — S4¢)0(S9g — Smin)

4+-0(Smin ~— Sqg)0(Smin — 3g4)| X do(ete™ — 3 partons).
(1.12)
In this equation, the first term represents the contribution to the three-parton cross
section when all three partons ¢,§ and g are resolved and can therefore be evaluated
numerically, do®(ete~™ — 3 partons). The second and third terms represent the di-
vergent contribution when the gluon is either collinear to the quark or to the antiquark

do®(ete” — 2 partons); the fourth term represents the divergent contribution arising

when the gluon is soft do®(ete™ — 2 partons). Eq.(1.12) can be reexpressed as follows,

do(ete” — 3 partons) = do™(ete” — 3 partons)

+doC(ete” — 2 partons) + do’(ete” — 2 partons).

As the soft and collinear divergences present in do® and do® are expected to cancel
against the divergences present in the virtual contributions, it seems natural to combine

them and to define the two-parton resolved contribution as the sum of these contributions,
do®(ete™ — 2 partons) = |do”(eTe” — 2 partons)
+doC(ete” — 2 partons) + do”(ete”™ — 2 partons)|.

(1.13)

'As will be shown in Section 1.5.3, the divergences are all proportional to the lowest order

two-parton cross section do'"*(efe” — 2 partons) = ap. The resolved two-parton

contribution de(ete™ — 2 partons) then reads,

de®(ete — 2 partons) = |K(Sqq, Smin) do'*¢(ete” — 2 partons)|. (1.14)

The so-called dynamical K factor is finite and needs to be evaluated analytically. It

depends on the theoretical resolution criterion sy, and on the invariant mass of the final

26



state s,;. The O(ay) two-jet cross section is then finally obtained as the sum of the
resolved two-parton cross section do(®(ete™ — 2 partons) and the two-jet contribution

from the resolved three-parton cross section do(®(ete™ — 3 partons),

do(ete™ — 2 jets) = |do™®(eTe™ — 2 partons) + O x /da(R)(e+e_ — 3 partons)|.
(1.15)
The integration represents the projection of the three-parton phase space onto the two-
jet phase space while © contains the experimental definition for a two-jet final state.
do(ete™ — 2 jets) is finite as it is the sum of two finite contributions. doB®(ete —
2 partons) is finite but obtained after the analytic cancellation of poles as in eq.(1.13),
do®(ete™ — 3 partons) can be evaluated numerically in four space time dimensions.
Finally, the jet finding algorithm can be applied to the three parton final state according
to the experimental definition © to select the two-jet events. The ete™ — 2 jet cross
section at O(a,) is then obtained using the phase space slicing method, applying eq.(1.15).
To evaluate the ete™ — 2 jet cross section at O(ey) using the hybrid subtraction
method, one needs to consider some additional contributions which will be evaluated
numerically. More precisely, for each singular region one needs to consider the contribution
resulting from the numerical integration of the difference between the three-particle matrix
element squared and the approximated matrix element squared over the three-particle
phase space restricted to the particular singular region. For example, in the region of

phase space where the gluon is soft, additionally to the terms present in eq.(1.15), we

need to consider,

[G) x / (IJMqrig|2 - |/V150ft’2) dPé‘l)(M, Pa> Pa> Pg)0(Smin — Sqg)0(Smin — 5g5)]

|2 its

where |M,q,|? is the 4-dimensional three particle matrix element squared, [Moy:
soft approximation, and dP354) (M, p,, ps, pe) the 4-dimensional three particle phase space,
which analogue in d-dimensions is given in Appendix B. The integration and © symbols
are defined as in eq.(1.15). In order to evaluate the ete™ — 2 jet cross section at O(as)

using the hybrid subtraction method, similar terms need to be considered in the region
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where the gluon is collinear to the quark and in the region where it is collinear to the

antiquark.

1.5.3 The isolation of soft and collinear divergences

In this subsection we shall see how the introduction of the theoretical resolution criterion
Smin €nables us to isolate soft and single collinear divergences. We shall present the
factorization properties of matrix element squared, phase space and cross section in soft
and collinear limits. In particular, the soft and single collinear contributions to the cross
section for the process v* — ¢ at O(a;,) will be explicitly derived and the cancellation
between the soft/collinear real divergences and those present in the virtual contributions
will be shown. The generalization to the process ete™ — ¢g -+ n gluons where one gluon
becomes soft or collinear can be found in [25].

For convenience we use the following notation

2, g=3. (1.16)

M

¢g=1 q
Following this notation, the invariants sgg,sz and s, are denoted by s13,s23 and s19

respectively; The d-dimensional three particle matrix element squared and phase space

are given as follows.

For massless quarks of unit charge, | Mg |* = |Mizs|* reads:

9 _
|Mas|” = [(1 — ) (92_3 + %> i Lk £ L Cy”y”] , (1.17)
Y13 Y23 Y13Y23

where y;; = % M is the mass of the final state. The d-dimensional three particle phase

space is given in the Appendix B by eq.(B.4) and reads,
/dl)éd)(ﬂ47 p17p27p3) = (2ﬁ)3_2d/dR((3d)(*/\/]7 Pl;p2;p3)

with,

1 -4
/dR:(zd)(MaPhP%PB) = mﬁf/(312513323)(1T dsyy dsi3dsysdQyy dg—s

2-d
2 .

8(s12 + 813 + S23 — MQ) (1\/[2)
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The soft limit of the three-particle differential cross section

a.The soft limit of the matrix element squared |M |
When the gluon is soft'®, E, — 0 and the invariants containing the momentum of the

gluon p,, i.e. 849 = $13 and Sz = 23, tend to 0. The soft gluon limit is therefore defined
requiring,

$13 < Smin 823 < Smin- (1.18)
In this limit, as Smin tends to 0, the matrix element squared [Mg3|* given by (1.17) is
singular and factorizes. It becomes,

I./\/l123|2 — IM12|2 f12(3) (119)

fas(c) is sometimes called the eikonal factor [39] and reads

fan(c) = Lot (1.20)

SacSbe

Thus in the soft gluon limit, the three-particle matrix element squared is written as the
matrix element squared “without the gluon”, |M2|?, multiplied by a factor fi2(3) which
contains all the soft gluon singularities. The product |Myz|® fi12(3) is the soft gluon

approximation of the full matrix element squared | M3

b.The soft behaviour of the phase space

In the soft gluon limit defined above, the d-dimensional three-particle phase space also

factorizes,
d

dPB(d) (M7 p17p27p3) - dPZ(d)(j‘la pl:pZ) dps(o}t(plap27p3)- (121)
dP(d)(M, p1,p2) is the two-particle phase space given in Appendix B by

2
d 4—d 9—d de_l 9
/dPQ (]V-[a p17P2) = /(312) 2 (27(’) 2d—1 dSlg 5(812 - M ) R

whereas the soft phase space factor dPs(j}t(pl,pg,pg) reads

2-d d—4

1 _
dPs(jJ)"t(p17p27p3) = Zdﬂd—zsn2 ds13dsas [s13523] 2 (27) 7 40(Smin — $13)0(Smin — 523)-

13Recall, that in the massless limit, s;; = (p; +p;)? = 2E; E;(1 — cosbij).
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Performing the angular integrals, and setting d = 4 — 2e, this soft phase space factor

reads:

4r)e dsy3dsas [$13823] ¢
AP, pe:p3) = 167 2(F(l)—e) . ?3[ = 93] 0(Smin — $13)0(Smin — $23).  (1.22)

512 S12

When multiplied with the the soft matrix element squared fi2(3) we see that the soft

phase space factor regulates the singularities in sy5 and sy3.

c.The soft behaviour of the cross section

We just saw how the three particle matrix elements and phase space factorize when the
gluon becomes soft. We can now combine these results to obtain the soft behaviour of

the cross section for v* — ¢+ G+ g. The 3-particle cross section dogg, = doyes is given by

N? -

doya3 —95 ( )/|/\/{123| dP3 (M P1: P2, P3); (123)

where ¢, is the strong charge and (N* —1)/2N is the colour factor. In the soft gluon limit

this cross section becomes,

doyas —>/!M12|2 sz (M, p1,p2) [/gs ( 5N )flg( )dPoﬂ(pl po,p3)|.  (1.24)

012=00

All the dependence on the soft gluon momenta ps has factorized and is included in the

square bracket in eq.(1.24), it multiplies the cross section “without the gluon”, oo. The

integrated soft gluon behaviour finally reads,

S'F = /gs ( 2N )fl?( ) Oft(pl P2, p3)
?)¢ /2 — y Smin Smin S —e—1
= a_ (47TH ) ]\/ ]. _2‘/ d323/ dSlS |:823q13J
2r \I'(1 —¢) 2N 512 Jo o o1a

a, (arp?\TN? -1\ 1 2 ol e s
N §¥<MZ> ( IN F(1_6)6_2(ymin) (y12)". (1.25)

w

Here 4 is an arbitrary scale which is introduced to keep the strong coupling constant

o, = g’p~*/4An, dimensionless in d = 4 — 2¢ dimensions. The product Srog constitutes
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the soft gluon approximation of the three particle cross section oy,3. Furthermore, note
that in this particular example of a three-parton final state process, sy, = M? and con-
sequently y;2 = 1 so that the factor y§, can be omitted in eq.(1.25). If, however, we are
interested to know the soft gluon behaviour of the cross section for a process which has

an additional photon in the final state, as in the remainder of this thesis, this factor needs

to be kept as y12 is not equal to one anymore.

Finally, when evaluating the soft approximation of the matrix element squared we have
neglected all terms of O(1) (or higher) in s;3 and s,3. From this last equation, we see that
it was justified to do so, as in the soft region of phase space (defined by s;3 < Smin and
593 < Smin) those terms lead to contributions to the soft factor, Sg, which are of O(Ymin)
and therefore negligible.

The single collinear limit of the differential cross section

a.The single collinear limit of [M g, |?
The matrix element squared, in addition to being singular in the soft gluon region is also
singular in the collinear regions. It is singular when ¢ = 1 and g = 3, for example, are

collinear and cluster to form a new parton @ such that:
p1+p3 = pQ-
ps and p; carry respectively a fraction z and 1 — z of the parent parton momentum pg,
p1=(1-2)pg, P3 = 2pq- (1.26)
As 1 and 3 are collinear s;3 tends to 0, we consider the quark-gluon collinear limit to be:

$13 < Smin << 1‘42 (127)

In this limit, we can ignore terms of order 1 in sy3 in the matrix element squared and the

invariants s15 and s93 become
s12 = (1 —2) M?, S93 = z M2 (1.28)
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The matrix element squared |My3]? exhibits an overall factorization,
|M123]2 — P13—.~Q(Z;813)IJWQ212- (1.29)

|Mg2|? is the two particle matrix element squared obtained replacing partons 1 and 3 by
the parent parton ). The collinear matrix element squared, Pi3—.q(z,s13) 1s singular as

s13 — 0. It is given by,

1
P13_+Q(Z, 813) = —P13_)Q(2). (130)

513
Pis_g(z) = Py_o(#) is the d-dimensional Altarelli-Parisi splitting function, [40] and

corresponds to the probability that a quark emits a collinear gluon thereby losing a fraction
z of its initial momentum. It is given by,

14 (1 —2)% —ez? (1.31)

Pia_g(z) =

This particular splitting function has been originally derived in the context of collinear
photon emission off electrons by von Weizsacker and Williams [41].

Throughout this thesis we will encounter both the d-dimensional splitting function
Payo(2) as given in eq.(1.31) which we shall sometimes also denote Pjy(2) (or P*(z))

and its counterpart in 4 dimensions. We will denote the 4-dimensional splitting function

by P.(z) or simply by P(z).

b.The collinear behaviour of the phase space

The d-dimensional three-particle phase space for M — p; +py+ps is given in (B.4). In the

single collinear region, when s;3 < Sy the invariants sj2 and sy3 are defined according

to eq(1.28) and the three particle phase space factorizes,
AP (M dP (M drY . 1.32
3 ( ;P17p2>P3)—> 2 ( >anp?) col (p11p37~)7 ( . )

where dP{(M,pg,p2) is the known two-particle phase space in d-dimensions given by

eq.(B.3) with pg instead of p;. Performing the angular integrations and fixing d = 4 — 2,

the collinear phase space factor ch(jl) (p1,Pps3, ) reads:

(4r)°

— ——16‘77211(1 3 dsy3dz [3132(1 — 2)] O(Smin — S13)0(523 — Smin)-  (1.33)

ch(il(plapE)a Z)
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Figure 1.3: Dalitz plot for the ¢gg final state phase space in terms of the invariants yqq and
yas- The kinematically allowed region is limited by yg, + vz < 1. In region 1, the gluon

is soft, in regions 2 and 3, the gluon is collinear to the quark or antiquark respectively.

The region 4 is the ‘theoretically resolved’ region.

c.The collinear behaviour of the cross section

In order to determine the quark-gluon collinear contribution to the cross section,
we must integrate the collinear matrix element squared over the single collinear region.
We must ensure however that this single unresolved region does not overlap with the
soft region; we must match this collinear region precisely onto the soft region so that
there is no double counting and no omitted singular region. We must therefore require
that sy < Smin = $13 < Smin, while Sz > Smin = S23 > Smin. b 18 shown in Fig. 1.3
how the matching of the two regions of phase space is then realised. The requirement
S93 > Smin avoids the soft region and determines the lower boundary of the integration
for z. Sg3 > Smin corresponds to zSsg > Smin. 1D other words, as syq = M?, z has to be

greater than ymin. In the quark-gluon collinear limit the cross section doq93 becomes,

N? -1
d0-123 - d0Q2 X I:/gz ( :)N ) PlB—)Q(Z7513)dPC(OdI) * (1'34)
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All the divergences related to the collinear gluon have been factored and multiply the

two-particle cross section dog,. Integrating out the collinear behaviour gives,

N? -1
CF = /932 ( IN ) P13—’Q(27313)dpc(jl)(plap37Z)

as (N? -1 (47m2)E Smin et P e
= 5 ( SV ) (1= 6)/0 dsi3 $13 [/ymin dz [2(1 = 2)] " Pia—o(2)

1o N%Z -1 1 47y +5( .
T e2n\ 2N JT(1—e€) \ M? Yimin)

2 . (1—¢€)(4—¢) Tl —¢) o
[;(ymjn) B 2¢(1 —2¢) I'(1 — 2¢) } ' (1.33)

The full contribution from unresolved phase space

We can combine the results from the previous subsections to give an expression for the

sum of all contributions to the process v* — ggg where the gluon is real and unresolved.
It yields,
O'I(QU) = [Sr +2CF] oo

= qu ag. (136)

0o is the tree level cross section for the process v* — ¢g. As the gluon can be collinear
to the quark or to the antiquark, and since the resulting contribution is the same in both

cases, the factor Cr needs to be multiplied by two. Ry reads,

R - as (N*—1 1 4 p? *e
W oor U 2N JT(1—¢) \ M?

2 . 2r?
x [— — 210" (i) + 2 BInyi) + 7 H +0(e).  (1.37)

Note that we have neglected terms of O(spmin) such that this equation for the two-particle
resolved factor R,; is only valid in the small sy, limit. Furthermore, the complete con-
tribution to the O(a;) cross section for v* — ¢ with one unresolved gluon in the final

state can be obtained by adding the one-loop virtual contribution oy to the unresolved
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real contribution ag]). The matrix element “squared” |My|? associated with the loop

diagram is obtained by interfering the tree level amplitude 7 with the loop amplitude L,
|IMy|* = 2Re(LT™).

An explicit calculation of [My|? yields
|My|? = [Miree|*Vyq,

where V,; is given by

as (N2 =1\ (drp?\ T 21— aT(14+¢)[ 2 3
V= — SRy S 1 ;
O 9x ( 2N ) ( M? ) ['(1 — 2¢) €2 T € 8 (1.38)

Integrating |My|? over the two-particle phase space yields,
ov = 0-0‘/;1!77

such that the two-parton contribution to the O(w) cross section for the v* — ¢g process

then finally reads,

o\ b oy =00 Kyg (1.39)

which is finite. The two-quark K factor is obtained combining V,; with the two-particle

resolved factor R,; and reads,

/qu = qu'i'v;ﬁ
2

O N2—1 4.7-‘-#2 +e . , - |
- ﬁ( 2N )(ﬂ/[?) [_21n (ynﬁn)‘l‘?—.?»ln(ymjn)_l

+0O(e). (1.40)

In the second part of this first chapter we have discussed how jet cross sections may
be calculated at higher orders in perturbative QCD. We have seen for the particular ex-
ample of the O(a,) process ete™ — 2 jets how the phase space may be decomposed into
theoretically resolved and single unresolved regions. And in these last regions we explic-

itly derived the soft and collinear contributions to the cross section. In the remainder
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of this thesis, for the evaluation of the photon +1 jet rate at order car; we shall ex-
tend this method to decompose the four-particle phase space and to analytically isolate
collinear or/and soft divergences present in different contributions to the cross section. In
this calculation we will have to deal with contributions which can have up to two parti-
cles simultaneously theoretically unresolved. Such configurations had so far never been
considered in the calculation of jet cross sections. In a pure QCD calculation, they will
only appear at next-to-next-to-leading order (NNLO). As a consequence, the calculational
methods developed in this thesis to evaluate these double unresolved contributions will be

applicable in a variety of calculations of jet observables at NNLO. Possible applications

are ete™ — 3 jets at O(a?) [42] or pp — 2 jets at O(a?).
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Chapter 2
Photons in hadronic Z decays

Electron-positron annihilation provides a very clean environment in which to test pertur-
bative QCD. The production of hadrons in e*e™ collisions at LEP (y/s = Mz) can be
viewed as the production of a Z boson which subsequently decays into a quark-antiquark
pair. During the subsequent QCD parton evolution process the quarks produced in the
hard interaction radiate gluons which themselves decay into gluons or quark-antiquark
pairs. Ultimately, these partons are transformed into clusters of observable hadrons
through the non-perturbative hadronization process. With the aid of a suitable jet def-
inition it is possible to analyse these hadronic final state events and to classify them
experimentally according to the number of jets they contain. A given jet algorithm leads
therefore to measurable jet cross sections. Furthermore, as we saw 1n Section 1.2, 1t is
possible to match the theoretical parton level calculations performed in the framework of
perturbative QCD to the experimentally observed hadronic jet rates. This correspondence
is realized by subjecting both parton and hadron momenta to the same recombination
algorithm characterized by a resolution criterion Yeu- Jet cross sections become then also
calculable in perturbation theory.

In a small fraction of events, in addition to the jets of hadrons one may observe a highly
energetic photon. Experimentally, highly energetic photons are identified by a shower in

the electromagnetic calorimeter, which is accompanied by “no charged tracks” pointing to
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it. We distinguish two possible sources for the emission of a photon in hadronic Z decays,
depending whether the photon is emitted at an early or late stage of the QCD parton
evolution process. We shall discuss these two sources in Section 2.1. Most earlier studies
of photon +n jet events have concentrated their interest on isolated photons. After having
explained how isolated final state photons can be defined, we shall present the results of
theoretical analyses and the results of a comparison with experimental data on the isolated
photon +n jets rate in Section 2.2.

An alternative analysis of final state photons is obtained by treating the photon like
any other parton and to cluster it together with the other partons in jets. The photon
in this case is called non isolated. We shall present the calculation of the lowest order
photon +1 jet rate performed following this democratic approach in Section 2.4. Section
2.5 will be dedicated to a brief discussion of alternative approaches to analyse final state
photon events widely used in the literature. Finally, in Section 2.6 we will describe

how the experimental measurement of the photon +1 jet rate is realized by the ALEPH

Collaboration at CERN.

2.1 Two sources of final state photons

In events where a photon is emitted in addition to the jets of hadrons, the photon can have
two possible origins. The photon may have been emitted at an early stage in the QCD
parton evolution process initiated from the primary quark-antiquark pair. Such photons
are generally well separated from the other hadrons in the event. Indeed, considering the

process ete™ — ¢gy in the massless limit with the photon emitted on the quark leg, the

inverse propagator sg, is given by,
Sgy = 2E,F,[1 — cos 0]

where E,, E., are the energy of the quark and the photon and ,, is the angle between
the quark‘ and the photon. For fixed energies of quark and photon, a large separation

angle 0., corresponds to a large invariant mass of the parent quark propagator. By the
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uncertainty principle, this implies that the quark propagates for a short time. Conse-
quently, the radiation of a photon by a quark at large angles occurs at an early stage of
the hadronization process.

Alternatively the photon may have been radiated somewhat later during the hadroniza-
tion process. Following the above argument, it is then more likely that 1t has been emitted
collinearly to one of the primary quarks. However, if it is travelling for a 1011g tiine, the
emission could take place during the hadronization process. This non-perturbative quark-
to-photon fragmentation process is characterized by the universal and process-independent
quark-to-photon fragmentation function which is not calculable in perturbation theory
and must be measured. The fragmentation process must be considered together with the
collinear emission of a photon from a quark, as both processes happen at a later stage of
the QCD parton evolution procedure.

From a theoretical point of view, these two contributions are associated with each
other in perturbative QCD calculations since quark-photon collinear singularities may
be factorized into the quark-to-photon fragmentation function as mentioned in Section
1.2.3 and as we shall see when evaluating the v +1 jet rate at order o in Section 2.4.
In experiments, such final state photons are generally not well separated from the other
hadrons, and are therefore harder to detect. We shall discuss the experimental detection
of these non isolated photons in hadronic Z decays in Section 2.6.

Clearly, as the two sources for the emission of a photon in the final state are easily
distinguishable from each other, by imposing some kind of isolation criteria on the photon,
one is able to reduce or even to completely eliminate the second source of final state
photons in Z decays. One can then study isolated final state photon events. This is exactly
what was performed in the earlier experimental [43, 44] and theoretical [45, 46, 47, 48]

analyses which we shall describe below.
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2.2 Isolated Photons

In all these earlier analyses, the candidate photon is isolated from the hadronic debris in
an event using a geometrical cone centred around its direction inside of which a minimal
accompanying hadronic energy is allowed'. In the next step, the photon is removed
from the event and the partons are clustered together according to a jet algorithm with
resolution criterion yeu, i.e. all partons 7,5 are required to fulfill y;; < yeu. Finally an
event is retained only if the restored candidate photon remains apart from the jets in a

second application of the clustering algorithm. In particular, we require
yC’y > ycut (21)

for all clusters ¢ then formed. Thus it is worth noting that using this procedure to isolate
the photon, any particles associated with the photon will be incorporated in the other
jets.

In leading order QCD, the only process contributing to the isolated photon +n jet
rate is ete™ — ¢y and the number of jets produced can be one or two. If two jets and a
photon are observed, each parton builds a jet and the photon is well separated from the
other partons. If one jet is observed in addition to the photon, the event configuration
is the following. The photon is placed in one hemisphere and the quark-antiquark are

clustered together in the other hemisphere, back to back to the photon. Thus for an

identified photon event we require,
0,”,0@7 > amm, E,y > FEoin- (22)
In particular, for the process ete™ — ¢gv, following [46] we have,

1
1—-2 = z(2—-2- :v’);(l — cos f,),

r4

INotice that, we need to allow some minimal hadronic energy inside the cone surrounding the photon
since a perfectly isolated photon is not an infrared safe quantity. As we shall see later in this section,

this point induces some differences in the way isolated photons are defined in the various theoretical

calculations [45, 46, 47, 48].
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, (2.3)

1
l—2 = z'(Q—x—:c’)a(l—cosﬁﬁ)

F4

where z, 2’ and z, are the energy fractions carried by the quark, the antiquark and the

photon. These fractions are defined as follows:
r=2E, /s, 2'=2E;/V/s and z,=2—2-2" (2.4)

In terms of these energy fractions, the scaled pair invariant masses y;; = si;/s with

Sij = (Pz‘ + P]‘)2 are given by,

[A]
(&}
p—

Yoy =1 -2, Yoy = 1 — 2, Yo = 1 = 2, (2.
and in terms of the energy fractions 2 and z’ the isolation conditions for the photon are,

1—2 > z(2—z-2"),

-2 > 2'(2—z—2')6,

2 —z—a > ¢ (2.6)
where,

1
5 = 5(1—cos0mm),

¢ = Zbmm (0<6,e<1) (2.

Vs

At next-to-leading order the isolated photon + n jet cross sections receive contributions

(]
-~
N

from the one loop ete™ — ¢y and the tree level ete™ — ¢gvg processes. At most three
jets can be identified in the final state, in which case only the ¢gyg process contributes to
the cross section. If three jets are identified, all the partons are well separated from each
other and from the photon and each of them forms a jet . If one or two jets are observed

in addition to the photon, both processes contribute and the O(ac) cross section is given
by

o

do(y + njets) = O [da1 (q@y) + do® (q(j'yg)} (2.8)
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where © represents the photon and jet definitions to be applied to the partons and the
photon. Although the physical v + 1,2 jet cross sections are finite, both the virtual and
gluon bremsstrahlung contributions contain soft/collinear singularities. In order to nu-
merically evaluate these next-to-leading order jet cross sections, we must first analytically
cancel the divergences present in the real contributions against the explicit divergences
present in the virtual graphs so that the cross sections are finite. Once the divergences
have cancelled, the finite next-to leading order jet cross section can be evaluated nu-
merically, the jet algorithm and isolation criteria can be applied to the partons and the
photon to select photon +1, 2 jet events. This can be achieved using the phase space
slicing method, in a similar way as for the evaluation of the ete” — 2 jets cross section
which we described in Section 1.5.2. Details of the application of the phase space slicing
method to the calculation of the v + 1,2 jet cross sections can be found in [46].

As we already mentioned, a perfectly isolated photon is not an infrared safe quantity
and therefore some amount of hadronic energy needs to be allowed inside the cone sur-
rounding the photon. The definition of an isolated photon is not the same in the various
theoretical calculations [45, 46, 47, 48] as different amounts of gluon energy are allowed
inside the cone for each of them. More precisely, in [46], soft gluons which are defined
by Sgg < Smin and Sg; < Smin are allowed to exist inside the cone. In [47], soft gluons
are allowed inside the photon cone if the deposited energy is less then a fraction ¢ of the
photon energy while in [45] the gluon is combined with the quark if y(gg)y > Y-

It is worth noting that in all these theoretical calculations, gluons and quarks are
treated differently with respect to the photon. Soft gluons are allowed inside the cone
surrounding the photon while quarks are not. In the experimental analysis, clearly the
situation is different, the amount of energy inside the cone is required to be less than
the experimental hadronic energy resolution threshold Ejeq which is typically of a few
hundred MeV.

All three calculations are found to be in reasonably good agreement with each other
and with the available data [43, 44] for the photon 41,2 jet rates. However, for the case
of photon + 1 jet rate, it was pointed out by E.W.N.Glover and W.J.Stirling in [46] that
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relatively large negative corrections over the whole range of y.,, are necessary in order
to obtain a reasonable agreement between the theoretical and experimental results. This
conclusion is not very satisfactory, and in [46], it is suggested that these large effects

could be a consequence of the “two step” procedure used to identify the photon in all

these previous analyses.

2.3 Non Isolated Photons

A safer approach would be to apply the recombination algorithm simultaneously to all
partons in the event, including the photon. After clustering, one of the clusters contains
the electromagnetic shower and is called “photon” if the fraction of the electromagnetic

energy inside the cluster is larger than the experimentally determined value zqy (typically

equal to 0.7),
E’Y

. B 2.4
K E7+EHad>ZCt (29)

Within this democratic approach, one can expect that particles which are associated with

the photon in the event will be combined with it by the cluster algorithm independently
of whether these particles are quarks or gluons, unlike in the isolated photon analysis.
However within this democratic approach, the second source of final state photons
is not suppressed anymore; to evaluate photon +n jets cross sections one also needs
to consider the contributions arising from the collinear emission of a photon by one of
the quarks and related to the non-perturbative quark-to photon fragmentation process.
We shall present a theoretical and experimental analysis of such non isolated final state
photons in the next sections. In particular we shall see how the comparison between
the results of a lowest order calculation of the photon + 1 jet cross section and the

measurement of this cross section enables us to determine the non-perturbative quark-to-

photon fragmentation function at O(«).
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2.4 The photon +1 jet rate at O(«)

As there is no efe™ — 4 +1 parton process, the first non trivial contributions to the
photon +1 jet rate comes from eTe™ — ¢gy and ete™ — ¢g where one of the quarks frag-
ments into a photon. The quark-to-photon fragmentation function is present at leading
order. As this fragmentation function depends on the fraction of the parent parton energy
carried by the photon, we will formulate the cross section in terms of z rather than the

energy of the photon, E.,. We shall evaluate,
1 do

oo dz
where oy is the tree level cross section for the process v* — ¢q.

A simplification follows from this formulation too. The initial state configuration
becomes irrelevant for this calculation of the photon + 1 jet rate. Instead of considering
the two contributions to be ete™ — ¢gy and eTe™ — ¢g with associated quark-to-photon
fragmentation function, we can as well consider the two contributions to be v* — qgqy
and v* — ¢g with associated quark-to-photon fragmentation function. This is what we
shall do in the rederivation of the photon +1 jet rate at O(a) in this section and in the
evaluation of the next-to-leading order corrections to it in the forthcoming chapters of the
dissertation?.

The contributions related to the three parton final state process y* — ¢gy are all
“experimentally untresolved”. The three partons need to be clustered together according
to a jet algorithm with a jet resolution parameter ycy, to form a two-jet event. Furthermore
as one of the jets has to form the “photon” jet, the fraction of the electromagnetic energy
z inside one of the clusters needs to be greater than the experimental cut, zcye.

These real contributions can be either theoretically resolved, if all the final state par-
ticles are clearly distinguishable, they can be theoretically unresolved when the photon

becomes collinear to the quark (or to the antiquark), sqy (or s7,) is less than the theoretical

2Note that we are finally interested in the quark-to-photon fragmentation in Z — ¢gq. The transttion

~* — Z is however just a mere replacement of the coupling factors.
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slicing parameter sy, in this case. The introduction of this theoretical parton resolution
parameter spmin, as we have seen in Section 1.5.2, enables us to isolate analytically these
collinear divergences. Furthermore, as the physical cross section is finite, these collinear
divergences will be “absorbed” into the bare quark-to-photon fragmentation function. To
start with, we shall concentrate on the contributions to the photon + 1 jet rate where the
three partons in the final state are resolved theoretically. Second, we will explicitly show

how the collinear singularities are factorized into the bare fragmentation function.

2.4.1 The resolved contributions

The d-dimensional three particle matrix element squared (for massless quarks of unit
charge) is given by eq.(1.17) and the d-dimensional three particle phase space can be
found in the Appendix B (c.f. eq.(B.4)). In the region of the three-particle phase space

where all the final state particles are clearly distinct, we have
Sgv = Smins Sgy =~ Smin- (210)

And the matrix element squared is finite. The theoretically resolved contributions to the
photon +1 jet rate, do® can therefore be obtained by integrating the four dimensional
three-parton matrix elements over the “photon +1 jet phase space”.

If we work in the JADE jet algorithm [26], for example® , with a jet resolution pa-

rameter yeqe < 1/3 then, for a photon cluster with a fraction of electromagnetic energy

greater than zey, the photon +1 jet region is defined by,

1: Yaq < Yeut

E
2 W oand ——
Yoy < Yeut AN E'y‘|'Eq

> Zcuts

E
3: = cu nd ———— cube 2.11
Yoy < Yeut a0 E7+Eq>zt ( )

3The definition of the photon +1 jet region is defined slightly differently in the DURHAM algorithm
[27], it can be found in [49].
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Figure 2.1: Dalitz plot for the ¢g + v final state in terms of the quark and antiquark
energy fractions z and @’. The regions 1, 2 and 3 show the photon + 1 jet phase space
for yeue = 0.1 and 2y, = 0.7 in the EO scheme. The dotted lines show regions 2 and 3
for z.a = 0.9. Region 1 where the quark-antiquark combine to form a jet 1s separated

from the regions where the quark (antiquark) combines with the photon by a dashed

line.(Figure taken from [49])

The corresponding Dalitz plot is shown in Fig. 2.1 for ycy = 0.1 and zgy = 0.7. In region
1, the quark and antiquark combine to form the jet, while in regions 2 (3), the photon
coalesces with a quark (antiquark) to form a mixed electromagnetic/hadronic cluster. z,z’
are the quark energy fractions defined as in the isolated photon analysis, c.f. eq.(2.5).

In the region of phase space where quark and photon combine (regions 2 and 3), the

fraction of electromagnetic energy in the cluster, z, is related to = and 2’ by,

2 _ _ I
R (2.12)

z = —, Z

22—

in region 2 and by eq.(2.12) with z « 2’ in region 3. In region 1 the quark and the
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antiquark combine to form a jet, thus leaving the photon completely isolated. In this case
the photon cluster has z = 1.

By integrating over yg, in these three phase space regions building the photon +1 jet
phase space, it is straightforward to obtain the resolved contribution, do® to the photon
+1 jet cross section as a function of z and ymin?,

1 de™®(y +1 jet) 1 de@B(y +1 jet)
—_ ' (27 Ymin; ycut) = - -
0o dz 0o dz

+Ra(2,Yeur)8(1 — 2). (2.13)

(27 Ymin; ycut)

Let us first note that R, which represents the contribution to the resolved cross section
where quark and antiquark combine leaving the photon isolated, is independent of the
slicing parameter Ymin. This is because there is no singularity associated with the y,¢ — 0
limit in the matrix element. d6® is the contribution to the resolved cross section, where
quark and photon, or antiquark and photon are clustered into one jet, and depends on
10g(Ymin). So does do®. However when combined with the theoretically unresolved
contributions, do™), all 4, dependence vanishes.

Because of the low parton multiplicity in the final state, some analytic results can be
obtained for the resolved photon +1 jet cross section at O(«), do®. The constraints
on the invariants defining the v +1 jet region of phase space given in eq.(2.11) fix the
boundaries of the phase space integrals which can be evaluated analytically. The explicit
expressions for (2.13) have been derived by E.W.N.Glover and A.G.Morgan and can be
found in [49]. Note that the evaluation of resolved contributions to the y +1 jet rate at

O(aa,) will have to be performed numerically as will be presented in Chapter 9.

2.4.2 The quark-photon collinear contribution

In the region of phase space defined by sy < Smin, but 8z > Smin the quark and the

photon are collinear and cluster to form a new parton ¢ such that:

Py + Pg = PQ-

*yYmin = 532, where M is the mass of the final state.
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p, and p, carry respectively a fraction z and 1 — z of the parent parton momentum po,
pe=(1-2)pe,  Py=72pPq (2.14)

In the quark-photon collinear limit (S,y < Smin) the invariants s,z and sg, become
S0 = (1 — 2) M?, gy = 2 M. (2.15)

In this limit, the matrix elements and phase space related to v* — ¢y exhibit an overall
factorization in exactly the same factors as the matrix elements and phase spaces related
to the process v* — ¢gg in the quark-gluon collinear limit discussed in Section 1.5.3. We

have respectively,
| Migs|” — qv*Q(zasqv)lf\/tQ?Iz: (2.16)

with, Py,_o(2,54y) the collinear factor given by®
1

Prya(2,84y) = S r—0(2)- (2.17)
7y

As s, tends to 0, the three particle phase space also factorizes,
d d d .
AP (M, py. g, pr) — APL™ (M, po, p5) AP} (g, P 2): (2.18)

dP4(M,pg,p;) is the known two-particle phase space in d dimensions given in the Ap-
pendix B by eq.(B.3) and the collinear phase space factor dPC(OdZ) (pg, Py, 2), reads,

(4r)°

ch(jl) (g, Py, 2) = mdsqw dz [squ(l - 3)] O(Smin — Sqv)- (2.19)

The result we will obtain for quark-photon collinear limit of the differential cross
section do,z, is however somewhat different than the result obtained in eq.(1.35) for the
quark-gluon collinear limit of differential cross section dogge. In the quark-photon collinear

limit, do,z, factorizes in a collinear factor and the two particle cross section. We formally

have,

doggy — 07 X [/ * Ppylz,50,)dPS)| (2.20)

5Recall, Pyy—.q(2) is the d-dimensional Altarelli-Parisi splitting function defined in eq.(1.31). It is

given by Ppy_.o(z) = Lﬂl_—z)—z-ﬁ
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¢? stands here for (ae§)47r;526, where x? is introduced to maintain a dimensionless elec-
tromagnetic coupling . To evaluate the quark-gluon collinear factor as in eq.(1.35)
we integrated the collinear matrix element over all unresolved variables defined in this

collinear region. These unresolved variables were,

Sqg and  z,

where z was the fractional momentum carried by the gluon.

In the quark-photon collinear limit of the differential cross section dogg,, z represents
the fractional momentum carried by the photon. As the photon is observed in the final
state the collinear differential cross section will be a function of z. In other words z
does not count as “unresolved variable” anymore. To evaluate the quark photon collinear

differential cross section we only need to integrate over s,,. The quark-photon collinear
factor Cry dz reads,
d
Cpydz = /92qu+Q(z7Sq’y)ch(ol)(pan%Z) dz

aej (4mp’)

[2(1 - Z)]_E P(”_;Q(z)dz/o dsgy Sq—;_l

T T(1—e)
e’ . +e

The quark-photon collinear contribution, da(CU) to the photon +1 jet rate, which is a

function of z and ymi, is therefore given by,

1 do¥
- di (2, Ymin) = Crr. (2.22)

2.4.3 The factorization of collinear singularities

We first recall the results obtained so far for the contributions to the v +1 jet rate at

O(«). We have,

doP (v +1 jet) do@)(y + 1 jet)

1 do(y +1 jet)

_— = 2 miny Ycuts 2 min; £

oo dZ dZ (y Yeut Z) + dZ (y )
+2D27%(2). (2.23)
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As the three parton phase space and matrix elements are completely symmetric in the
variables y,, and yg,, the contributions obtained considering the photon collinear on
the quark leg are identical to those obtained considering the photon collinear to the
antiquark leg. To evaluate the photon + 1 jet rate at O(c) we therefore only consider
the contributions where the photon is collinear on the quark leg, and multiply the result
by two. The same procedure will be considered for the calculation of the photon + 1
jet rate at O(aa,). Moreover, by charge conjugation invariance, we can assume that
D a—y — D q9—-

As the left-hand side of the equation (2.23) is a finite experimentally observable quan-
tity, the explicit % divergence present in the unresolved contribution Cr, has to be compen-
sated by a similar divergence present in the bare quark-to-photon fragmentation function.
Hence, we can decompose® the bare fragmentation function into a finite renormalized

non-perturbative component D,_.(z,up) and a perturbative infinite counter term. It

reads,

1 (4rp?\° 1 aey) (14 (1 —2)°
bare — . _ —9 . 2.24
D=5 (z) = Dy ‘W(Z”LLF)-I_e ( 1% ) ['(1—¢) (2_) ( z (224

To keep both fragmentation functions dimensionless, a mass factorization scale pp has
to be introduced compensating the unphysical scale p. The renormalized {ragmentation
function D,_~(z,pr) now depends on the chosen mass factorization scale, pp. The per-

turbative counter term in eq.(2.24) ensures that the right hand side of equation (2.23) is

finite. Indeed, we obtain,

1 do(y +1 jet do® (v +1 jet
_ia_J_)(z,uF) = 2 (d )(ymin,ycuwz) + 2Dy (2, 1iF)
g0 z 2

(=521

6This decomposition is not unambiguous, as one could add an arbitrary finite term into the bare

quark-to-photon fragmentation function. The particular choice of finite terms defines the renormaliza-

tion/factorization scheme. The results given here correspond to the so-called modified minimalsubtraction

(MS)-scheme [50].



(2.25)

Considering the explicit expression for the resolved contributions do®(y 4 1 jet), as
given in [49], it can be noticed that as z — 1 this cross section grows like log(1 — z)2.
Furthermore the cancellation of the y,;, dependence in the v +1 jet cross section becomes

manifest such that eq.(2.25) may be rewritten as,

1ldo(y+1 jet)(z,ﬂF) 9D, () + @eg) <1 + (1 - 2)2) log (i)

o dz T z 5
2 _ p) . 9
+(a_) (1+<1 ))k)g(z(l z))
i z 142
aeg .
+ —71'_ f(za ycut) + RA(Za ycut)5(1 - Z), (226)

where f(z,ycus) is a known regular function with f(z = 1) = 1 and Ra the perturbative
component for isolated photon production defined as in eq. (2.13). Note that, when the
higher order corrections to this process will be included in the following chapters of this
dissertation, as the resolved contributions will be evaluated numerically, the cancellation

of the ymin dependence in the finite answer will also be shown on a numerical basis only.

2.4.4 A possible form for D,_..(z, pr)

The non-perturbative quark-to-photon fragmentation function is unknown. It is a uni-
versal and process independent function which is incalculable in perturbation theory and
needs to be measured by experiment. Its variation with the factorization scale pp may
however be determined within the framework of perturbative QCD. Indeed, requiring the
bare quark-to-photon fragmentation function Dga_ify to be independent of the unphysical
factorization scale up, yields an evolution equation for the non-perturbative fragmentation

function D,—.(z, ur). This evolution equation is determined by the perturbative content

of D%"¢(z) and reads,

q—

o
3]
|
SN

esige) _ (o) (1022F) (

dln(p%) 27 z
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A general form of the fragmentation function which satisfies the above evolution equa-

tion is given by,

L2
DQ*’Y(’%N’F) =A (27 %) + B('ZaﬂO)' (228)

Ko

where the scale 1o and the associated function B(z, yo) are nothing more than the con-
stants of integration which shall be determined by the data. po can also be viewed as
the scale below which the physics is non-perturbative. Requiring that the cross section is
“well behaved” as z tends to one allow us to constrain further D,_.(z, r). A possible

choice for D,_.(z, ur) which balances the singular behaviour of the resolved cross section

do® (given by eq.(2.26)) is,

ae?\ 1+ (1 —2)? %
qu,y(z,lu,};v) = <_i) ( ) 11’1 (#%(1 ig)Q) . (229)

27 z

It corresponds to choose B = 0 in eq.(2.28). This fragmentation function is an exact
solution of the leading order evolution equation, the factorization scale dependence is
therefore eliminated. Furthermore, since the log(1 — z) behaviour is cancelled, the total
differential cross section is positive for all values of z. Finally, it is also worth noting
that within this approach, the quark-to-photon fragmentation function Dy_.(z,ir) is
proportional to the electromagnetic coupling constant a.

At the electron-positron collider, both up- and down- type quarks are produced such
that the measured quark-to-photon fragmentation function, D(I;E,P;(z, [tF) is a combination

of up- and down-type quark-to-photon fragmentation functions. More precisely it 1s given

by,
DLEP 2 (vZ + aﬁ)Du_W(z, NF) +3 (”3 + aﬁ)Dd_w(z, 1E) (2.30)

a—r(2: 1F) = 2 (v2+a2)+3 (vi+al) ’

where v, and @, are the vector and axial vector couplings of quark ¢ with the Z boson. We
shall present the measurement of the quark-to-photon fragmentation function in photon

+1 jet events at LEP in Section 2.6.
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2.5 An alternative approach

As a result of the factorization of collinear singularities, we saw in the last section that
the bare quark-to-photon fragmentation function can be decomposed into a renormalized
fragmentation function D,—~(z, ur) and a perturbative counter term. As a consequence
the renormalized fragmentation function satisfies an evolution equation given by eq.(2.27).
A parametric form for D,_.(z,tr) could then be suggested by requiring that the frag-
mentation function satisfies the evolution equation and imposing that the lowest order
photon +1 jet cross section is well behaved as z tends to one. An alternative procedure
to determine a parametric form for D,_,(z, up) is obtained by considering the next-to-
leading order evolution equation and solving it in the leading logarithmic approximation.
We shall explain what we mean by this statement in the following.

One can consider that the renormalized quark-to-photon fragmentation function evolves
with variations of pp, just as usual fragmentation or parton distribution functions do, as
a result of gluon bremsstrahlung and quark-antiquark pair production [51]. At next-to-

leading order the resulting evolution equations” are given [12] by,

ODunfeypr) _ 06} 140 =2 ulih) :
b i A R it ~ Dy (y, ur) PO | = 2.31
dln(p%) 2 z * ot J: oyt (Y5 1) Fog Yy (2:31)

where Pq(g)(z) is the lowest order quark-to-quark Altarelli-Parisi splitting function defined

as in [40] by (1\;2]\‘,1) (%)_I_ The first term describes the ¢ — g¢v splitting and is

also present in eq.(2.27). The second term is not present in eq.(2.27) and represents

the convolution of a quark-to-quark splitting via the emission of a bremsstrahlung gluon
“convoluted” with the quark-to-photon fragmentation function. It is worth noting too,
that the strong coupling e, is running in this evolution equation, i.e. it is a function of

3.
Indeed, for the evaluation of a quantity as a perturbative series in the coupling as,

"Note that in comparison with the evolution equations given by J.F.Owens in [12], we do not consider
the gluon-to-photon fragmentation function in eq.(2.31). In [12], it is claimed that for z > 0.5 this

fragmentation function can be consistently neglected as it is phenomenologically suppressed.
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as higher orders are incorporated ultraviolet divergences can arise. Through the renor-
malization procedure necessary to remove these infinities, the strong coupling constant
becomes dependent on a momentum scale characteristic of the process considered (which
is typically given by Q* = M2 in ete™ annihilation). Moreover, when the process of
renormalization is implemented, it is necessary to specify a point at which the coupling
of the theory is defined. This renormalization point is denoted by a momentum transfer
{. Since a; is dimensionless, its dependence on the renormalization point u is expressed
through dimensionless ratios of the form @?/u?. The running coupling a;(Q?) can then
be related to the logarithm of Q? in the following way,

da,(t)
dt

= Blas(t)], (2.32)

where t = In(Q?/p?) and the function § determines the change in the coupling as the
renormalization point g is changed. The function f is calculated up to four loops using
perturbative methods, [52]. For the next-to-leading order calculations discussed in this

thesis (which are leading order in the strong coupling constant), the one-loop result is

sufficient, it yields,
Bla,) = —be, (2.33)

with b = 331—23rnf , ns denoting the number of quark flavours. If the equation (2.32) is

integrated, one finds

_a,(0) o -
on(t) = Ty o (2.34)

The explicit dependence on a,(0) can be removed by defining a scale parameter A by,

A2 = p2e1/as(Ok

so that,
127
2y _
as(Q%) = (33 — 2n;) In(Q2/A2)’

The scale parameter A is approximately the scale around which perturbation theory 1s

(2.35)

not valid anymore. Experimental measurements yields a value approximately equal to

200 MeV for n; = 5, [53]. Furthermore, considering the factorization scale ur to be the
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large momentum variable @, eq.(2.35) yields a relation between a,(u}) and In(p}) as we
wanted.

In order to solve completely the inhomogeneous evolution equation, i.e. eq.(2.31), it
is necessary to specify appropriate boundary conditions and therefore to know the quark-
to-photon fragmentation function at a given initial scale po. This must be taken either
from the data or from some set of model-dependent assumptions®. At asymptotically
large values of the factorization scale i however, the solutions of the evolution equation
(2.31) become independent of the initial boundary conditions.

The leading logarithmic approximation relies on the presence of a single large mo-

mentum scale that characterizes the process under consideration. In ete™ annihilation

processes, the mass of the incoming Z-boson plays this role whereas in pp collisions the
transverse momentum of the photon pr is the scale which characterizes the process. Solv-
ing the evolution equation (eq.(2.31)) in the leading logarithmic approximation means to
consider the asymptotic limit where u% — oo and to solve the evolution equation while
retaining only the terms in In(u%) or more precisely the terms which are proportional to

In <“'2F>. The asymptotic solution reads,

g
: a /’L%‘ .7 v
ul-linoo Dy (z,pF) = 5 In Az ag—qy(2). (2.36)

Exact analytic expressions for a,_.,(z) can be found using Mellin transformations and
inverse Mellin transformations in [55]. A parametric formula which accurately reproduces

the exact leading logarithmic solution is given by D.W.Duke and J.F.Owens in [12] as,

1[2.21 —1.282 +1.292°
== 0019 1 0.002(1 — )27+ . 2.37
G = T em(l—2) (1-2) (237)

A particular feature of this asymptotic solution is the logarithmic growth with In(uF).

More precisely, as these solutions are proportional to «ln (i—%), from eq.(2.35), they

81n the literature it is often called Vector Meson Dominance (VMD) contribution [54]. This (VMD)

model is based on the assumption that the photon may fluctuate mainly into p and w mesons.
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can be considered to be proportional to a/a,. What is often encountered in the litera-
ture [12, 56] is the assumption that the quark-to-photon fragmentation function, (like its
asymptotic limit) is also of order a/a;. Within this assumption, the second term in the
evolution equation (2.31) which at first appeared to be a higher order correction turns
out to be of O(«) and as important as the first term in the evolution equation.

Moreover, for the evaluation of processes involving the quark-to-photon fragmentation
function at a given order in «;, the perturbative contributions which need to be taken
into account will of course vary depending whether one interprets the gquark-to-photon
fragmentation function as being of order « as in [49] or of order a/a, as in [12, 56].
Applications of the second interpretation are widely used in the literature. It is applied
to ete~ annihilation processes by [12, 56, 57], to the production of isolated photons in ep-
collisions by [58] and to analyse isolated large pr photon production in proton-antiproton
collisions by [59, 60].

Finally, as the quark-to-photon fragmentation function is a process independent func-
tion, one could also try to implement the quark-to-photon fragmentation function evalu-
ated in the leading logarithmic approximation as given by eq.(2.36, 2.37) in the evaluation
of the photon +1 jet rate, as given by eq.(2.26). Within the leading logarithmic approx-
imation, when the quark-to photon fragmentation is evaluated, the terms in In(p%) are
considered to be dominant and all terms not proportional to In(u%) are neglected. In
the case of the photon +1 jet rate given by eq.(2.26) where the fractional momentum
2 carried by the photon is relatively large (z > 0.7), neglecting those “non-logarithmic”
terms does not necessarily appear to be a good thing to do. Indeed, as was pointed out
by B.R.Webber in [61], the leading logarithmic approach is expected to yield an accurate
prediction for any quark-to-hadron fragmentation function for intermediate values of z
only. For large and small values of z however, the leading logarithmic (or leading log)
approach is inadequate, because it does not take into account the terms proportional to
Inz or In(1 — z).

Precisely in the case of the photon +1 jet rate, z is large and inserting the quark-to-

photon fragmentation function obtained in the leading logarithmic approach the following
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happens. As z — 1 the perturbative contribution to the cross section, do®) has an explicit
In(1 — 2) behaviour (as seen in eq.(2.26)) which, unlike in the first approach we presented,
is not cancelled by a similar behaviour in the leading log quark-to-photon fragmentation
function. It is not clear in this context, that the logarithmic terms of u% are really
much larger than the other terms and we therefore do not expect the quark-to-photon
fragmentation function to be adequately obtained using the leading logarithmic approach.

However, the quark-to-photon fragmentation function is a priori unknown and will be
measured at LEP. It is only by comparing the theoretical calculation of the photon + 1
jet rate and the experimental measurements that the form of the quark-to-photon frag-
mentation function can be determined. We shall present the experimental measurement
of photon +1 jet events, and the comparison between the calculated (up to O(e)) and
measured photon +1 jet rate in Section 2.6. The comparison between the calculated (up

to O(aq;,)) and measured rates will take place in Chapter 10.

2.6 The experimental measurement of the photon

+1 jet rate

2.6.1 The selection of photon + 1 jet events at LEP

In this study of the ALEPH Collaboration at CERN [62], a sample of 1.17 million selected
hadronic Z decay events are subdivided into 1 jet +7, 2 jets +7, and > 3 jets +7 topologies
using the DURHAM algorithm [27] with the resolution parameter yeus, varied between
0.001 and 0.33. The photon is clustered together with all the other particles, as in the
parton-level calculation (c.f. Section 2.4) and events are kept when at least one of the
reconstructed hadronic jets contains a photon (E, > 5 GeV) carrying at least 70% of the

total energy of the jet. The fractional energy, z of such a photon within a jet is defined
as,
E,

== 2.38
E’y —I_ Ehad ( )

<
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where Ej,4 is the energy of all accompanying hadrons in the “photon-jet” determined by
the cluster algorithm. Thus, events with completely isolated photons appear at z = 1.
Currently, the measured z range is limited to 0.7 < z < 1.0 by hadronic decay backgrounds
which are very large when z < 0.7. The z distribution is divided into 6 equal bins between
0.7 and 1 for each topology. Furthermore, in order to separate more clearly the large
contribution coming from the isolated photon component near z = 1 the last bin is split
into two parts: 0.95 < z < 0.99 and 0.99 < z < 1.

The backgrounds are very large and mainly due to multi-photon clusters which remain
indistinguishable from single photons. To a lesser extent initial state radiation (ISR) from
the incoming leptons is also a background source. The first source arises mainly from the
electromagnetic decays of hadrons and is important over the whole z range as highlighted
in Fig. 2.2. Typical and relevant processes are 7% — v and n — vv. Since ISR photons
are mainly isolated, this background is very small for z < 0.9 but becomes the dominant
background for z > 0.99. (5-10%). All these backgrounds are determined by Monte Carlo
simulations and subtracted statistically from the data bin-by-bin in z for each value of Yeut
after direct experimental confirmation that the principal components, namely 0 — vy
are adequately simulated.

The residue of the measured rate not accounted for after this statistical subtraction of
all backgrounds described above is ascribed to final state radiation (FSR) photons. These
events correspond to photons emitted from a primary quark-antiquark pair and will be
taken into account in the measurement of the photon +1 jet rate.

2.6.2 The determination of D, (z,ur) for 0.7 <z <0.95

In Section 2.4 we saw that the lowest order photon +1 jet cross section, given in eq.(2.26),

could be written as,

L1590 1 o (5) (3

[o)y) dz _ﬁ l,%;
el 1+ (1—2)° z(1 — 2)2
Q) (2T T2 Ve (2220
+( T ) ( z o8 1+ =

58

e~



0.06 E
E o ALEPH Data
0.05 - JETSET
0.04 _ &= JETSET FSR
0.03 £ +
0.02 £
0.01 f— ®
0 »
0.7 0.8 0.9 1
Zy
2-jets

Figure 2.2: Observed z, distribution before background subtraction. The cross-hatched

areas show the signal component in the JETSET Monte Carlo selected sample. Figure

taken from [62].

+ (?;l) f(za ycut) + RA(Zaycut)(S(l - Z), (239)

where f(z,Yeut) is @ known regular function with f(z = 1) =1 and Ra is the the pertur-
bative component to the cross section for an isolated photon as defined as in eq. (2.13).
In this context, we also saw that the quark-to-photon fragmentation function D, (z,1r)
could be parametrized as in eq.(2.28) by,
2
Dyr(z,pr) = A (z, E_I;’_) + B(z, o).

Ho
The A-term is an exact solution of the leading order evolution equation for Dy_.,(z, ftr)
which is constructed to cancel both the ur dependence and the logarithms of (1 — z).
The second term, B(z, ug) is required in order to specify the starting value of the non-
perturbative fragmentation function D,_.,(z, ur) at pp = o, the starting scale.

Inserting this parametrization into eq.(2.39) yields,

1 do(y +1 jet) fael\ (141 -2)° s oz
o dz (z:0r) = T z log 21+ z
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¢ aeq
+2B(Z: /UO) + Tf(zaycut) + RA(Z7ycut)5(1 - Z)(240)

The free parameters to be determined are the cut-off scale yo and the function B(z, uo).
Various parametrizations have been tried in fitting %%Lljeﬁ(z,,up) to the five data
points in the range 0.7 < z < 0.95 at one particular value of ycu: (Yeue = 0.06). The
parametrizations tried include (ae?)/27 multiplied by a constant C, Cy + Co(l — z),
and C + (1 — 2)?. The ALEPH Collaboration found that B(z,uo) = 0 does not give
a sensible fit, whereas the data cannot differentiate between the other parametrizations.
For simplicity, B(z, po) = (ce2)/2x C is chosen as providing an adequate description of
the data. The shape of the cross section, %d;'(l::—jﬁ)(z,/ﬁp) is well described with the

A-term alone, but the normalization to the data requires the addition to this term of a

negative constant. A corresponding double parameter fit having x*/4 = 0.24 gives [62],

o = 022713 GeV and C = —12.11+4.3, (2.41)

-0.19

where statistical and systematic errors are combined in quadrature. The values of C
and o are found to be strongly correlated. Indeed, as an alternative, considering that
when z — 1 the only contribution to the cross section should come from the isolated

contribution to it, i.e. from Ra, yields the following relation between C and po,

s
C=-1—-In (—) . (2.42)
23
A one parameter fit having x*/5 = 0.31 then yields,
fio = 0141321022 GeV. (2.43)

This single parameter fit was then used to evaluate the photon +1 jet rate for different
values of yeu, [62]. The results are shown in Fig. 2.3 where we see that the data are
adequately described by the leading order calculation including the parametrized quark-

to-photon fragmentation finction as in eq.(2.40) with the fitted value of o and B(z, 1) =
(ae?)/2m) C.
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Figure 2.3: Comparison of the photon +1jet rates measured for different values of ycy to

a universal fragmentation function (see text). Figure taken from [62].

However, there seems to be a discrepancy between theory and experimental data for
z > 0.95. Before discussing this difference and defining an isolated photon cross section
in the same way at parton and hadron level as in Section 2.6.4, we shall first see how the
quark-to-photon fragmentation obtained within the leading logarithmic approximation by

D.W.Duke and J.F.Owens in [12] compares with the experimental data on the photon +1

jet rate.

2.6.3 A comparison with the fragmentation function obtained

in the leading logarithmic approximation

In the leading logarithmic approximation the factorization scale up is chosen to be the
large momentum characterizing the process, so pur = Mz and the initial scale po is set
equal to Agep=200 MeV. The leading log quark-to-photon fragmentation function which
is proportional to In(Q?/A?) is given by eq.(2.36, 2.37). Inserting this parametrization
of the fragmentation function with these values for gr and po into the leading order

expression for the photon +1 jet cross section as given by eq.(2.39) gives a very poor
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agreement with the experimental data as can be seen in Fig. 2.4.
A first improvement is obtained if one considers up not to be the characteristic large

scale of the process but rather the mazimum transverse momenta of the photon within

the photon-jet?,
z(1 — 2)?
(i+2)

In the case where ur = pr, the factorization scale ranges from 17 GeV at z=0.7 to zero at

pr = (2.44)

z=1, [62]. The lower-cut off scale A is kept to be 0.2 GeV. Fig. 2.4 shows the comparison
of the theoretical prediction and the data at ye = 0.06. The prediction now follows the
shape of the measured distribution but the rate is still too large. A second improvement
vielding an acceptable fit to the data in the range 0.7 < z < 0.95 can be obtained by
allowing the initial scale to vary also. This is shown in Fig. 2.4 where A is found to be
equal to 1.3013:7% GeV.

However by choosing pr = pr , which is clearly not a hard scale, and by allowing
A to be different from the characteristic hadronization scale, we are not satisfying the
criteria needed to justify the application of the leading logarithmic approximation. Ne-
glecting non-logarithmic terms in the quark-to-photon fragmentation function is clearly
not appropriate anymore. We therefore deduce that the quark-to-photon fragmentation
function obtained using the framework of the leading logarithmic approximation seems

to be ruled out by the data.

2.6.4 The isolated photon region: z > 0.95

From Fig. 2.3 it appears that the cross section decreases up to z = 0.95 and an isolated
photon peak in the final bin 0.99 < z < 1 is cleatly noticeable. But, it also appears that
a fraction of this isolated component populates the 0.95 < z < 0.99 bin. The following

is happening. A photon which had z = 1 at the parton level can, in the process of

9From kinematical constraints the transverse momenta is related to the invariants sy by p3=z(1-

2)s4y. Furthermore sgy = (1 — z)/(1 4 2)s, is the maximal allowed value for s,y from phase space

constraints for sufficiently high values of yeyt, here chosen to be yeus > 0.06, as n (62].
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with Q = pr yielding A = 1.30 GeV. Figure taken from [62].

hadronisation, emit a soft gluon and become less energetic, thereby ending up with a
momentum fraction z less than one. Moreover, these hadronization effects, which give
rise to a discrepancy between the parton level calculation and hadron level data appear
to be more and more pronounced with increasing ycue-

This discrepancy can be relieved if one defines an isolated photon to yield a fractional
momentum z inside the “photon jet” to be greater than some fixed value (z > 0.95) at
both parton and hadron level. Indeed, the agreement between parton level calculation
and hadron level data is restored if in Fig. 2.3 one combines the two highest z bins into one

single bin containing isolated photon events. This provides us with a safe way to define
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component of the D(z,) function. Figure taken from [62].

isolated photons within the democratic approach at parton and hadron level, unlike in

the previous analysis described in Section 2.2 where an isolated photon was defined 1n a

two-step approach.

Furthermore, with this definition of an isolated photon and using the measured quark-
to-photon fragmentation function yields a leading order prediction for the integrated rate
above z > 0.95 as a function of y.. As shown in Fig. 2.5, the agreement is adequate over
the full range of yeys-

For large values of y.,, however, the theoretical prediction appears to be 20 away from

the data points. This may be explained as follows: Let us consider the simplest process
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ete™ — gG. At large yeu, as can be seen from Fig. 1.2 in Section 1.2, events with 3
partons in the final state resulting from the additional emission of a real gluon in the
process above, fall into the two-jet rate at hadron level. Such events are of course not
counted in the lowest order parton level calculation so that the discrepancy between data
and theory in this case may be accounted for by higher order corrections. The next-to-
leading order corrections to the photon +1 jet rate shall be calculated in the remainder
of this thesis and one of the aims of this calculation is to obtain a better agreement
between the theoretical calculation and the data for the integrated rate for z > 0.95 and
in particular at large yey. Finally, note that the slight discrepancy between theory and
experiment at small y, may be explained with the help of Fig. 1.2 too. The theoretical
calculation is a fixed order calculation which may not be reliable for small values of ycu
due to the presence of large logarithms of y.,;. When next-to-leading order corrections
are included this discrepancy should also be reduced.

In summary, in this chapter we have reviewed the phenomenology of photons in
hadronic Z decays. In particular, after having described previous analyses of “isolated”
photon +1 jet events where a two-step approach was used to identify the photon in Sec-
tion 2.2, we have presented the lowest order calculation of the photon +1 jet rate at
O(e) in Section 2.3. This calculation is performed using a democratic approach where
the photon is clustered together with all other partons in the final state. To be identified
the photon is required to carry a large fraction of the energy inside the “photon jet”. This
lowest order calculation could be used to extract the non-perturbative quark-to-photon
fragmentation function at O(«) as presented in Section 2.6.2. A reasonable agreement
between this lowest order parton level calculation and the experimental measurement 1s
achieved. Finally, using the quark-to-photon fragmentation function determined in this
way, a prediction for the isolated photon + 1 jet rate could be made and a reasonable
agreement between the theoretical prediction and the data is obtained, as discussed at
the end of Section 2.6. It appears however to be necessary to implement next-to-leading
order corrections into the theoretical calculation. Their inclusion is expected to provide a

better description of the data especially for large values of ycu. The comparison between
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the next-to-leading order photon +1 jet rate and the data will be shown in Chapter 10.
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Chapter 3

The Photon +1 jet rate at O(aas)

In the previous two chapters, we have presented the necessary tools to evaluate jet cross
sections at higher orders. In particular, in Section 1.5.2 we have seen how the introduction
of a parton resolution criterion s, enabled us to divide the phase space of higher order
jet cross sections into resolved and single unresolved regions. In a simple example we have
shown how soft and collinear divergences could be analytically isolated and cancelled
against divergences present in the virtual contributions. On the other hand, in Section
2.4, we have presented the calculation of the the photon +1 jet rate at lowest order. We
had contributions from the process v* — ¢gy and from the process v* — ¢¢ with one of
the quarks fragmenting into a photon. In particular, we have shown how the collinear
quark-photon singularity is absorbed into the bare O(a) fragmentation function D,_.,.
At next-to-leading order, the contributions to the photon +1 jet rate involve the
processes v* — ¢y and v~ — ¢d where one of the quark fragments into a photon, dressed
with an additional real or virtual gluon. In addition, a generic O(aa;) contribution to
the bare quark-to photon fragmentation function (or counter term) has to be taken into

account as well. As in the lowest order case we shall evaluate,

1 do

oo dz’
where z is the fractional energy carried by the photon inside the “photon jet”. oq is the
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tree level cross section for the process v* — ¢q.

Although the above cross section is finite at O(aq;), we expect some of the contri-
butions to contain divergences. A direct numerical evaluation incorporating the exper-
imental jet algorithm is therefore not possible straightaway. We need to separate the
calculation into two parts: an analytical and a numerical part. We have to calculate all
potentially divergent contributions and cancel the singularities amongst them analytically.
An important feature of this analytical part of the calculation is the need to extend the
decomposition of the phase space into resolved and single unresolved regions to regions
where more than one particle is theoretically “unseen”. After a large analytic cancella-
tion between real and virtual contributions has taken place, we expect that the remaining
divergences, essentially due to collinear quark-photon singularities, will be factorized into
the bare O(aa,) fragmentation function, rendering the differential cross section finite. Fi-
nally once the divergences have cancelled, the different contributions to the cross section
can be evaluated numerically while the jet algorithm is applied to select the photon +1
jet events.

It is the purpose of this chapter to present the plan of the calculation of the photon +1
jet rate at O(aa,). In Section 3.1 we shall discuss the different classes of processes which
enter in the calculation of this cross section. As we will see, we need to consider processes
with two, three and four particles in the final state. Experimentally, all contributions
involving more than two final state particles are unresolved. The additional particles
present in the final state need to be clustered together according to a jet algorithm with
jet resolution parameter yey so that only the photon-jet and one further jet remain. On
the other hand, the contributions with three and four particles in the final state can be
theoretically resolved or unresolved. In Sections 3.2-3.4 we will explicitly give the criteria,
which define the phase space region where all particles are theoretically well separated
and specify each theoretically unresolved region. We shall also outline how the different
contributions to the cross section will be calculated analytically in the remainder of this
thesis. Finally, Section 3.5 gives an outline of the calculation with particular emphasis

on the expected pole structures and cancellations of singularities between the different
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(d) (e)

Figure 3.1: Final state configurations contributing to the photon +1 jet rate

contributions.

3.1 Contributions to the photon +1 jet rate at O(aas)

At next-to leading order, one finds five classes of contributions to the photon +1 jet rate,

which are represented schematically in Fig 3.1:

(a) the treelevel process v* — ¢g4g7, where the final state particles are clustered together
such that a “photon jet” and one additional jet are observed in the final state. As
we will see in the next subsection, the photon can be isolated, in that case quark,
antiquark and gluon are clustered together to form one jet. But it can also be

clustered with one or two of the three other final state particles.
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(b) the one loop gluon correction to the ¥* — ¢¢y process, where the photon and one
of the quarks are clustered together; for this process it can also happen that the

photon is isolated and that quark and antiquark are combined into one jet.

(¢) the process v* — ¢gg, where one of the quarks fragments into a photon while the

remaining partons form only a single jet.

(d) the one loop gluon correction to v* — ¢g, where one of the quarks fragments into a

photon.

(e) the tree level process v* — ¢ with a generic O(aas) counter term present in the

bare quark-to-photon fragmentation function.

We will discuss the detailed structure of the contributions to the photon + 1 jet rate
associated with each of this classes of processes below. Some of these contributions may
involve complicated phase space structure, with theoretically resolved, single unresolved
and double unresolved regions. In this section we shall however not quantify the phase

space configurations as Sections 3.2-3.4 are devoted to a detailed study of the individual

phase space regions.

3.1.1 ~* — qgy with real gluon bremsstrahlung

The tree level process v* — gggy contributes to the photon +1 jet rate, if the final state
configuration is such that only the photon jet and an associated jet are observed. As the
photon has to be identified in the final state, it cannot be soft. Various different config-
urations are possible and a schematic overview is given in Fig. 3.2. Note that topologies
where the role of quark and antiquark are exchanged are also present, but are not shown.
The contributions arising when the photon is unresolved through clustering with either
the quark or antiquark are in fact equal. Therefore, as in the calculation of the v +1 jet at
leading order described in Section 2.4, we consider only the contributions corresponding

to the Feynman diagrams where the photon is emitted on the quark leg. When summing
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Figure 3.2: Different contributions from the tree level v* — ¢gvyg process. Square brackets

denote theoretically unresolved particles, round brackets experimental clusters.

all the contributions, the result obtained considering the photon associated with the quark

will be multiplied by two.
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The individual contributions can be structured as follows:

(a)

Theoretically resolved contributions

If all particles are resolved, a v +1 jet event can only be formed if some final state
particles are clustered together by the jet algorithm. The possible configurations

yielding a photon + 1 jet event are displayed in Fig. 3.2.a.

Single theoretically unresolved contributions
One has to distinguish two classes of single (or one-particle) theoretically unresolved

contributions, depending whether the gluon or the photon is unresolved.

(i) If the photon is unresolved, it is collinear to the quark while the gluon is hard,
i.e. the gluon is theoretically resolved but combined with the photon-quark
cluster or with the antiquark by the experimental jet algorithm. Alternatively,
the gluon forms a jet on its own while the antiquark is clustered into the photon
jet.

(ii) If the gluon is theoretically unseen, it can be soft or collinear to the quark
or antiquark, while the photon is experimentally combined with the quark to

form the photon jet or is isolated while all other partons form a single jet.

The possible configurations of single unresolved contributions yielding a photon -+

1 jet event are displayed in Fig. 3.2.b.

Double theoretically unresolved contributions
These contributions arise when the photon and the gluon are theoretically “unseen”

in the final state. We count three double unresolved contributions:

(i) Triple collinear contribution

The photon and the gluon are simultaneously collinear to the quark.

(i) The soft/collinear contribution

The photon is collinear to the quark while the gluon is soft.
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(iii) The double single collinear contribution

The photon is collinear to the quark while the gluon is collinear to the anti-

quark.

For these three contributions, the final state configuration corresponds already to a
photon +1 jet event. Hence, the final state particles will not be clustered further

by the jet algorithm. These contributions are schematically displayed in Fig. 3.2.c.

3.1.2 ~* — ¢g¢y with a virtual gluon

The one loop correction to ¥* — ¢gy contributes to the photon +1 jet rate, if two of
the final state partons coincide in a single jet. One has to separate the theoretically
unresolved collinear photon contribution from the contributions where a hard photon is

clustered with the quark to form the photon jet or isolated while quark and antiquark

form a single jet.

3.1.3 ~* — ggg with the fragmentation function

The tree level three parton production process with associated fragmentation contributes

to the photon +1 jet cross section if, in addition to the photon-jet, only a single jet 1s

formed. This is the case if,

(i) the gluon is resolved, but clustered into the photon or antiquark jet or forms a jet

on its own, while the antiquark is clustered into the photon jet.
(ii) the gluon is unresolved, i.e. it is collinear to the quark or the antiquark or it is soft.

These configurations are illustrated in Fig. 3.3. Since this process is already of Olas),

only the O(«) counter term in the bare fragmentation function contributes.
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Figure 3.3: Different contributions from the tree level v* — ¢gg process with subsequent
fragmentation of the quark into a photon. Square brackets denote theoretically unresolved

particles, round brackets represent experimental clusters.

3.1.4 ~* — ¢q with a virtual gluon and the fragmentation func-
tion

The one loop correction to the quark antiquark with associated photon fragmentation
process always yields a final state with a photon +1 jet. Asin the previous case, only the

O(a) counter term in the bare fragmentation function contributes.

3.1.5 ~* — qG with the fragmentation function

On top of all the processes described above involving a real or virtual gluon, one has to
consider a contribution to the photon +1 jet rate from the generic O(ac;) counter term

present in the bare fragmentation function. Inclusion of this contribution absorbs all left

over singularities of the processes cited above.



3.1.6 Summary

The contributions to the photon +1 jet cross section from all these processes will be cal-
culated in the remainder of this thesis. The theoretically resolved, but experimentally
unresolved contributions can be obtained numerically straightaway and will only be con-
sidered in Chapter 9. All single or double theoretically unresolved contributions need to
be evaluated analytically to extract their divergent pole parts before they can be included
in the numerical evaluation of the cross section. Their numerical implementation relies
on the hybrid subtraction method introduced in Section 1.5.1 and will be discussed in
Chapter 9. We will present the calculation of the single unresolved real contributions
associated with the process v* — ¢qgyg in Chapter 4, while the double unresolved contri-
butions will be evaluated in Chapter 5. The resolved and unresolved virtual corrections
to v* — ¢gv are derived in Chapter 6. Finally, Chapter 7 confains the calculation of
all contributions involving the O(a) counter term in the quark-to-photon fragmentation
function. The O(aaq,) fragmentation counter term will be introduced when we add up all
divergent contributions in Chapter 8, yielding a finite result.

So far we have only presented the different topologies of the contributions to the cross
section under consideration, without quantifying the relevant regions of phase space for
each contribution. The decomposition of the phase space into theoretically resolved and

unresolved regions will be presented in great detail in the following three sections.

3.2 The phase space decomposition of the real con-
tributions

In the previous section we have outlined the generic structure of all individual contribu-
tions to the photon +1 jet differential cross section at O(aas). To each specific contribu-
tion corresponds a particular region of the final state phase space. In this section, we shall
give the criteria which define the different phase space regions associated with the individ-

ual contributions to the tree level process 4* — ggvg. We shall also present schematically

|
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how these contributions will be calculated in the remainder of this dissertation.

These real contributions can be separated into three categories: the theoretically re-
solved, single unresolved or double unresolved contributions. The final state phase space
therefore needs to be divided into corresponding regions.

The d-dimensional four-particle phase space de,d) (pg, Pg, Dy, Py) 1s derived in Appendix
B in eq.(B.6) and reads,

A -1/2 .
dRr{ EQ“JT / AQu1 dQ—s A3 8(Sgs + 54y + Sgg + Sgy + Sgg + Sgy — M?)
—ANST
(W) dsygdsgydsggdsgydsgydsyy,

where Ay is the Gram determinant defined in eq.(B.7). The separation of the four particle
phase space into different resolved and unresolved regions is one of the most subtle points
in this calculation. As one sees from the equation above, the four particle phase space
includes five independent integration variables ds;;. The different phase space regions will
be defined by specifying whether the invariants s;; are greater or less than a theoretical
parton resolution parameter Spin (0r a cut proportional to Smin)- In contrast to the three
particle phase space which has only two independent integration variables (and is easy to
draw (Fig. 1.3)) the four particle phase space is difficult to visualize. To split this phase
space into different regions which do not overlap and without leaving out any of them is
therefore not a trivial task. In particular, it is not easy to ensure that no singular region
is omitted. In a singular phase space region, the four-particle matrix element squared,
|M|? is singular, as one of the invariants s;; present in the denominator tends to 0.
Before we define each singular phase space region it is worth noting that all the in-
tegration variables cited above will not have to be constrained in the same manner. For
example, s,, does not need to be limited as it does not appear in the denominator of the
four-particle matrix element squared, |M|?. Furthermore this matrix element squared

vanishes in the soft quark limit, i.e. s,; does not need to be constrained either. We al-

ready saw that this was the case for the v~ — g¢gg process in Section 1.5.3. The only
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variables that are constrained are thus,

S S

Sy Fvs Sqg> 3gs

although in the double unresolved region, we shall choose to constrain the combinations,

Sqvg; Sqvg;

for certain configurations. The decomposition of the four-particle phase space is summa-
rized in Fig. 3.4. In this table, we have specified which invariants are less than smi, (or
a cut proportional to sm,) for each singular region of phase space. We have also noted
which invariants are greater than sy, to eliminate overlaps between regions determined
by the same combinations of invariants less than syin. Invariants that are not specified
are completely unconstrained.

Moreover, for each of the singular phase space regions we shall specify how the fraction
z of energy carried by the photon inside the “photon jet” is obtained. For each of these
contributions we will require that the energy fraction z reconstructed by the jet algorithm

is greater than the experimental cut zcys-

The four-particle phase space can be divided into the following regions.

3.2.1 The single unresolved regions

We count four (five including the antiquark-photon collinear region) different single unre-
solved phase space regions as the photon or the gluon can be theoretically not identified.
By analogy with the definitions of the single unresolved regions of the 3-parton final state
phase space, it would seem natural to define the single unresolved regions of the 4-parton
final state phase space by specifying which single invariant s;; is less than smin in the
collinear regions and which pair of invariants is less than sn;, in the soft region. However
in the presence of an additional particle in the final state these cuts are not appropriate

anymore. Indeed the single unresolved regions are defined as follows:
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Real contributions

!

Resolved

Single unresolved

Double unresolved

| | | |

qg collinear gg collinear g soft

g~y collinear

Sqvy < Smingy Sgvg > Smin Sgy > Smin S¢v > Smin

Sgvg > Smin S99 < Smin,g Sgg9 > Sming S99 < Sming

Sqg = Smin Sqg = Smin,g Sqg < Smin,g Sq9 < Sming
Sgy = Smin,y Sgv > Smin Sgvg = Smin Sgy > Smin
Triple collinear Soft/collinear Double single collinear
< Sgv < Smin Sgv < Smin
s Smi
gvg < Smin
. 849 < Smin Sqg > Smin
S5g > Smi
gg =~ Smin
Sgg < Smin Sqg < Smin
Sq—,y > Sm.in
Sqry > Sn]jn S‘TY > Smin

Figure 3.4: Phase space decomposition of the real v* — ¢gvg contributions. For abbre-
viation, we have introduced Sminy = Smin Sqgv/M* and Sming = Smin Sqq0/M?. Note that
the single and double unresolved regions where the photon clusters with the antiquark
are not shown. For these regions, the necessary cuts are obtained by exchanging ¢ and ¢.

Altogether, there are five single unresolved and six double unresolved regions.

(i) The single collinear quark-photon region’

Sqa S
a7 a9
Sq'Y < Smin M2 8(7’)’ > Smin M2 3 Sq’yg > Smin ng > Smin s (31)

LM is the mass of the final state
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(i1) The single collinear quark-gluon region

Sqqg Sqqg

Sq9 < Smin SVik 859 > Swmin L Sgvg > Smin; Sgy > Smin; (3.2)

(iii) The single collinear antiquark-gluon region

Sqg 44
 Saz . Sqag q
375 < Smin L Sgg > Smin iz S > Smins Sgyg > Smin; (3.3)
(iv) The soft gluon region
s <. Seg oo Seds S s . 3.4
qg9 min MQ’ q9 Smin ]\/[27 Sq'y Smin Stj‘y > Smin- ( . )

We shall justify the boundaries of the different single unresolved regions as given above
in Chapter 4. For now, let us just say that with these boundaries no singular region of
the 4-parton phase space is omitted or double counted.

In Section 1.5.3 we have presented the calculation of the soft and single collinear
contributions to the cross section related to the process v* — ¢gq at O(a,). We saw that
in these single unresolved regions of the three-particle phase space, one could write the
cross section as the product of a universal “one-particle unresolved factor” and the two-
particle tree level cross section gg. These single unresolved factors were Cr in eq.(1.35)
and Sr in eq.(1.25) for the collinear and soft gluon case. In Section 2.4 we discussed also
the collinear quark-photon behaviour of the three-particle cross section o,4,. The related
collinear factor C.r is a function of z. These three factors were obtained by integrating
the approximated matrix elements over the corresponding single unresolved phase space
regions.

The contributions to the photon +1 jet rate at O(aa,) in the single unresolved regions
of the 4-particle phase space will be obtained in a similar manner and will even yield
single unresolved factors analogous to Cr, S¢ and C,pdz. These factors will be slightly
modified to take into account the change in the boundaries between the single unresolved

regions of the three and four parton phase space. In the 4-parton phase space those
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single unresolved factors shall be denoted by Cr, Sp and C’A,Fdz and will be evaluated in
Chapter 4. Furthermore, to yield the single unresolved contributions to the photon +1 jet

differential cross section, these factors will be multiplied with the following three particle

cross sections,
(1) 04qy, if the gluon is unresolved,
(ii) 0gg, if the photon is collinear to the quark?®.

The three particle cross sections, 0,5, and ogg, are free of divergences and will be evaluated
numerically. Moreover, the jet algorithm will be applied to cluster these three-particle
final state events into ¥ 41 jet events. The different single unresolved configurations are
depicted in Fig. 3.2.b. The fraction of energy carried by the photon inside the photon jet,
z, is obtained when this jet is constructed with the help of the jet algorithm. However,
for the quark-photon collinear contribution it is worth noting the following. In the quark-
photon cluster, the photon carries a fraction z of the parent momentum pq. When the
jet algorithm is applied, an additional parton could be clustered with this parent parton
Q. Hence the reconstructed value of z, the fractional momentum of the photon in the
Q+parton cluster, will be sometimes less than the value used in the analytic calculation

of the collinear factor C.p. It is this reconstructed or “experimental” value of z which

has to be greater than z,.

3.2.2 The double unresolved regions

In the double unresolved regions, the gluon and the photon are theoretically not identified.
As the photon has to be seen in the final state, it can only be collinear to the quark and
cannot be soft3. The gluon on the other hand can be collinear to the quark or to the

antiquark or it can be soft. Corresponding to these different final state configurations we

2() is the parent parton of the quark and the photon, as in Section 2.4.
3Recall that we only list the contributions associated with the processes where the photon is emitted

on the quark leg.
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decide to define three double unresolved phase space regions: the triple collinear region,
the soft/collinear region and the double single collinear region. As before, these regions
are matched by three analogous double unresolved regions where the photon clusters with
the antiquark.

In the introduction to this subsection, we mentioned that the different phase space
regions are determined by specifying which invariants appearing in the four-particle phase
space are greater or less than sy,. This is not exactly true in the double unresolved
regions. In particular, in the triple collinear region we need to constrain the “triple”
invariant Sg,y = Sgy + Sqg + Syg as it appears in the denominator of the four-particle
matrix element; we will require: S,,, < Smin. The three different double unresolved

regions are defined more precisely as follows.

(i) The triple collinear region

In this region, the photon and the quark are simultaneously collinear,
Sgvg < Smin  and  Sgg > Smin. (3.5)

We require sg; > Smin since in this region the gluon is collinear but not soft. The

fractional energy z of the photon inside the quark-photon-gluon cluster is given by,
E’Y

S ETE

where E.,E,,E, are the energy of the photon, the energy of the quark and the energy

(3.6)

z

of the gluon respectively.

(i1) The soft/collinear region

In this region the photon is collinear to the quark while the gluon is soft. We require,
Sgy < Smin;  Sgg < Smin  and  Sgp < Smin- (3.7)

For this configuration, z the fractional energy of the photon inside the quark-photon

cluster is given by,
Lk,

:m:

since the energy of the gluon is close to zero.

y!i'y; (38)

z
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(iii) The double single collinear region
In the double single collinear region, the photon is collinear to the quark and the

gluon is collinear to the antiquark and we have:

Sy < Smin, and  Sgg > Smin and  Sgg < Smin- (3.9)

For this configuration, z the fractional energy of the photon inside the quark-photon

cluster is given by

E’Y

z

as in the soft gluon case.

As mentioned in the previous section, these two-particle unresolved contributions cor-
respond already to a photon +1 jet final state configuration. The configurations cor-
responding to these three two-particle unresolved contributions are shown in Fig. 3.2.c.
Unlike in the single unresolved regions, the jet algorithm cannot cluster the particles fur-
ther. The fraction z defined in the analytic evaluation will also be the “experimental”
z.

Moreover, in the single unresolved region we have seen that the different contributions
to the cross section may be written as the product of single unresolved factors and a
resolved three-particle cross section. Similarly, in these two-particle unresolved regions
cited above we shall write the differential cross sections as the product of a “two-particle
unresolved” factor and the tree level parton cross section og. In order to evaluate analyti-
cally these as yet unknown two-particle unresolved factors in each particular two particle
unresolved region defined above, we need to determine the particular approximations of
matrix elements and phase space and to perform the phase space integrations over the
“ynresolved variables”. This is the same procedure as used to evaluate the quark-photon
collinear factor C.r, for example, where we have integrated the approximated matrix ele-
ment in this single collinear.region over the unresolved variable s,,. The determination of

the matrix elements, phase space and differential cross section in these three two-particle

82



unresolved regions of the four-particle phase space will be extensively discussed in Chapter

3.

3.2.3 The fully resolved region

In principle this region is defined by requiring that all constrained invariants are greater

than the theoretical pdrton resolution parameter, s, i.e. by requiring that,
Sgy > Sminy  Sgy > Smins  Sqg > Smin,  Sgg > Smin- (3.11)

However, it turns out that the boundaries of this region are more subtle than that and must
be chosen so as to match onto the boundaries of the unresolved regions. Consequently,
the resolved region is defined as being the remaining phase space region of the four parton
phase space when all unresolved regions are excluded. In this non singular region, the
four-particle matrix element squared is finite and can be evaluated numerically. The
phase space integrals can be performed using standard Monte Carlo techniques and the
jet algorithm can be directly applied to select photon +1 jet final states. Furthermore,
the fraction z of energy carried by the photon inside the photon jet is determined entirely
by the jet algorithm. The numerical evaluation of this contribution will be discussed in

Chapter 9. A picture of the different resolved configurations can be found in Fig. 3.2.a.

3.2.4 Summary

In this section we have given the criteria which allow us to split the four-particle final state
phase space into resolved, single unresolved and double unresolved regions. These criteria
are summarized in Fig. 3.4. As we mentioned in the beginning of this section, since the
phase space is five-dimensional, it is difficult to visualise. Furthermore, as the boundaries
of different unresolved regions involve triple invariants, we are unable to illustrate how

these different regions match onto each other.
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3.3 Phase space decomposition of the virtual con-
tributions

As mentioned previously, the virtual contributions to the v* — ¢gv process are of two
types corresponding to the presence of a theoretically resolved or unresolved photon in the

final state. The three particle phase space given by eq.(B.4) divides therefore as follows:
(a) The resolved photon region

Sgv > Smin,  Sgy > Smin- (3.12)

(b) The unresolved quark-photon collinear region
Sgy < Smin; Sgy > Smin, (3.13)
plus a similar region for the collinear antiquark-photon configuration.
However, the virtual contributions contain divergences independently of what the phase
space region is. In Section 1.5.3 we have scen that the complete finite O(as) cross section
for the process v* — ¢ is obtained by adding the one loop virtual contributions ov to

the unresolved soft and collinear contributions Ug). Similarly here, we expect that the

divergences present in the virtual contributions with a hard photon will cancel against
the divergences present in the single unresolved real contributions where a hard photon
is emitted together with a soft or collinear gluon in the final state. On the other hand,
in the unresolved photon region, the virtual contributions will need to be associated with

the two particle unresolved real contributions described earlier. The calculation of these

virtual contributions will be detailed in Chapter 6.

3.4 Phase space decomposition of the contributions
with the fragmentation function

As we saw in Section 3.1, two classes of processes with a quark fragmenting into a photon

give rise to contributions to the photon +1 jet cross section:
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(a) The process v* — ¢¢ with a virtual gluon and associated fragmentation of the quark,

which always yields a photon and another jet in the final state.

(b) The tree level process v* — ¢gg with associated fragmentation of the quark.

Depending on whether the gluon is theoretically seen or not in the final state the real

contributions with associated fragmentation can be subdivided further into resolved and

unresolved contributions. The corresponding three particle final state phase space needs

therefore to be divided accordingly. We distinguish four regions of the three-particle final

state phase space:

(i) The resolved gluon region

Sqg = Smin; Sgg = Smin-

(ii) The single collinear quark-gluon region

Sgg < Smins S5g > Smin-

(iii) The single collinear antiquark-gluon region

Sgg > Smin; 359 < Smin-

(iv) The soft gluon region

Sqg < Smin; Sgg < Smin-

(3.14)

Concerning the calculation of the contributions involving D, in Section 1.2.2 we saw

that for processes involving a fragmenting parton in the final state the cross section is

obtained as the convolution of the underlying bare partonic cross section with the bare

fragmentation function. It is commonly denoted by,

Oqgo ® Dy
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The exact meaning of this convolution, together with a detailed presentation of the cal-
culation of all contributions involving the O(a) quark-to-photon fragmentation counter
term will be given in Chapter 7.

In this and in the previous two sections, we have presented the decomposition of the
phase space for all the contributions entering in the calculation of the photon +1 jet rate
at O(aas). At the end of each section, we have attempted to explain how the individual
contributions shall be calculated in the remainder of this thesis. While doing so, we have
also mentioned that divergences present in some contributions will cancel against those
present in other contributions. Throughout this chapter, we have so far not quantified the
divergences in terms of poles in €. This shall be schematically presented in the last section
of this chapter. More precisely, in the next section we shall summarize the plan of the
calculation of all the contributions to the photon +1 jet rate at O(aas) with particular
emphasis on the expected pole structure in the different contributions. We shall outline

how this calculation will yield a finite spin-independent result.

3.5 Outline of the calculation

Before starting the detailed calculation of the various contributions to the photon +1 jet
rate at O(aq,) in the forthcoming chapters, we shall specify in this section which contri-
butions should be grouped together, as they yield the same structure and in particular, as
by doing so, some divergences cancel?. We will first present the expected pole structure of
the different pieces and summarize the expected cancellations of singularities between the
different contributions in Figs. 3.5-3.6. Finally, we also note that, although the various

contributions depend on the theoretical parameter spn, the physical v 41 jet cross section

will not.

For the contributions “without fragmentation”, unless all the particles are theoretically

seen in the final state (in which case there are no divergences) the contributions can be

4Recall that these divergences manifest themselves in dimensional regularisation where d = 4 — 2¢, as

poles in €.
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written as a product of an “unresolved factor”, which contains all the singularities, and
a tree level cross section. These “unresolved factors” can be of two types, depending on
whether one or two particles in the final state are theoretically not identified, i.e. soft or
collinear.

In Sections 1.5.3 and 2.4.2, we have derived the single unresolved factors, Cr, S¢ and
Cr.,dz. From eqs. (1.25), (1.35) and (2.21), we see that Cr and Cpydz contain at most
1/e poles, whereas Sp is proportional to 1/ 2. We expect the slightly modified unresolved
factors Cr, Sp and é’pvdz to have the same pole structure. Depending whether it is the
photon or the gluon which is unresolved, these single unresolved factors will be multiplied
by the tree level cross sections, oagy,0qzy. Furthermore, we saw in Section 1.5.3 that
soft and collinear divergences due to the emission of a soft or collinear gluon in the real
diagram are cancelled against similar divergences in the virtual graphs. In particular the
sum of the real and virtual unresolved factors R,; and V,; vields the two-particle finite
K-factor.

The two-particle unresolved factors, on the other hand, are unknown at this stage
of the dissertation, but from the discussion of the pole structure of the single unresolved
factors, we note the following. With each pair of collinear particles one can associate a 1/e
pole, while one expects a 1/€? singularity when a particle becomes soft. As a consequence,
for the two-particle unresolved factors, we expect the most singular pole generated in the
calculation, to be in 1/€*. These leading singularities will be generated in two different
contributions, in the soft/collinear contribution from the v* — ¢gg~y process and in the
virtual contributions associated with the one loop process ¥* — ¢y process where a
collinear photon is emitted in the final state. However, when these two contributions
are considered together, the 1/€®> poles must cancel leaving at most 1/€* poles. We also
expect the two real contributions with two pairs of collinear particles to contain terms of
O(1/€?) at most. Each of these divergent two-particles unresolved factors multiplies the
Born cross section ay.

For the contributions from the v* — ¢gg process, with subsequent fragmentation we

can also discuss the leading singularity structure. Here, nearly all contributions can be
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Figure 3.5: Expected pole structure of contributions with a collinear photon.

written as the product of a partonic cross section and the fragmentation function. In
almost all cases, if the gluon is unresolved in the final state, the partonic cross section

0,4, Tactorizes further into the corresponding single unresolved factors Cr and Sr defined
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Figure 3.6: Expected pole structure of all contributions with a resolved photon.

before and the two-particle tree level cross section og.

However, when the gluon is collinear to the fragmenting quark, the cross section is a
convolution of the partonic cross section and the fragmentation function as we shall see
in Chapter 7. The structure of all the contributions involving the fragmentation function
is summarized in Fig. 3.5.

In addition to the unresolved gluon singularities, the fragmentation function itself also
contains divergences. In fact, in Section 2.4.2 we saw that the collinear quark-photon
singularity contained in C,p is factorized into the bare O(a) quark-to-photon fragmen-
tation function. For our analysis of the expected pole structure in each contribution, we
can therefore also consider a single factor of 1/¢ to be associated with the bare O(a)
counter term present in the fragmentation function. Consequently, when the gluon in

the process v* — ¢gg followed by fragmentation is soft, we expect a singularity of order
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1/€* x 1/e = 1/€. Similarly, the one-loop v* — ¢g process followed by fragmentation also
generates a 1/¢> singularity. Because the soft gluon responsible for these poles does not
probe the fragmentation region, these singularities must precisely cancel. On the other
hand, when the gluon is collinear to the quark or to the antiquark we expect poles of order
1/e x 1/e = 1/¢? to be generated. However, as the quark-gluon singularity does probe
the fragmentation region these 1/€? singularities are not completely compensated by the
one-loop graphs. Any remaining singularities must be cancelled by the O(aq;) counter
term in the fragmentation function. This counter term, although it is so far unknown, will
have the necessary pole structure to absorb all the left-over singularities and to ensure
that the O(aa,) v* — v + 1 jet cross section is finite.

Finally, the two-particle unresolved factors, along with the single unresolved factors
and the resolved tree level cross sections oygy, 04gy and oygyg will all depend on the the-
oretical parameter s, or more precisely on In(ymin). However, since the fragmentation
function is process independent at any order, it must be Smin independent. The left-
over singularities from the sum of all unresolved contributions should therefore also be
independent of smi,. We will explicitly show that this is the case in Chapter 8.

Furthermore, when the finite results from the analytic calculation, denoted by Fy, Fy, F,
in Figs. 3.5-3.6, are combined in the numerical program with the result for the resolved
contributions, the final result for the y* — 41 jet cross section at O(aa;) becomes Smin-
independent. The cancellation of the sy, dependence shall be explicitly proven when

describing the numerical part of the calculation in Chapter 9.

3.6 Summary and Outlook

To summarize, in this chapter, we have outlined the calculation of the photon + 1 jet rate
at O(aq;,). At this order, five different subprocesses are relevant. These were presented in
Section 3.1. Each subprocess can further be structured into contributions from different
phase space regions. A detailed phase space decomposition of all contributions is given

in Sections 3.2-3.4. Finally, we have sketched the expected pole structure of all contri-
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butions in Section 3.5. In the following chapters, we shall now calculate these individual
contributions.

The resolved and single unresolved contributions from the tree level four parton process
v* — ggvg will be presented in Chapter 4, the double unresolved contributions from this
process follow in Chapter 5. Chapter 6 contains the calculation of the virtual gluon
corrections in the process v* — ¢gvy. Real and virtual gluon corrections to v* — ¢¢
with subsequent quark-to-photon fragmentation will be derived in Chapter 7. Finally,
Chapter 8 summarizes the results of the analytic part of the calculation of all divergent
contributions to the photon + 1 jet rate at O(cc;). After cancellation of all divergences,
this process can be evaluated numerically. The numerical calculation will be outlined in
Chapter 9, while a comparison between these results and the experimental data on the

photon +1 jet rate will be presented in Chapter 10.
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Chapter 4

The resolved and single unresolved

real contributions

In the next two chapters we will present the calculation of the contributions to the 4 +1
jet rate at O(aey) relevant to the process y* — @y with real gluon bremsstrahlung. The
Feynman diagrams relevant to the amplitude for v* — ¢Gvg are shown in Fig. 4.1. This
process contributes to the v +1 jet differential cross section if the final state configuration
is such that only the photon jet and a single associated jet are observed. The possible
topologies were illustrated in Fig. 3.2.

In the previous chapter, we have discussed how the real contributions can be theoret-
ically resolved or unresolved depending whether the final state particles are theoretically
“seen” or “unseen”. A final state particle may be theoretically “unseen” if 1t is collinear
or soft. We claimed that the real contributions associated to ¥* — ¢gvg can be separated
into three categories; the theoretically resolved, single unresolved and double unresolved
contributions. We will present the calculation of the double unresolved contributions in
Chapter 5. The theoretically resolved and single unresolved contributions will be discussed
in this chapter which is organized as follows.

In Section 4.1, we give the expressions of matrix element squared and phase space

in d dimensions which are necessary for the calculation of the resolved and unresolved
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Figure 4.1: Tree level v* — ¢gyg amplitudes

contributions.

The different expressions for the various single unresolved matrix element squared
and phase spaces will be presented in Section 4.2. In the evaluation of the associated
differential cross sections, we note that “more than two” particles are theoretically seen
(i.e. clearly distinguishable) in the final state. A v +1 jet event can then only occur if
some final state particles are clustered together according to a jet algorithm. Hence the
evaluation of the phase space integrals will ultimately be performed numerically.

In Section 4.2, we shall see however that when one particle is unresolved, the fully
differential four-particle differential cross section may be written as the product of a single
unresolved factor which contain the divergences and a finite three particle differential cross

section. Only the three particle diffential cross section will be evaluated numerically.
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4.1 Resolved contributions

We introduce the following labels for the four final state particles,

2, =3, g=4,

¢=1, ¢
such that the invariants containing p, = p3 for example become

Sgy = S13, Sy = 523 and  Syy = Sa4.

Following this notation the matrix element squared for the scattering of a quark-
antiquark pair with a photon and a gluon [ Mgyg|* = [Mi234]* may be written in d = 4—2¢
dimensions as ?,

3 1

€ e —————
Y13Y14Y23Y24
+32y12113Y24 — 16y12913 + 32y12Y14Y23 — 16y12Y14 + 16Y12Y23y24 — 16y12y23 — 16y12Y24

IMigaal> = <16y:fg + 16y35y13 + 16y30y14 + 16yTy23 + 16y35y24 — 32y}, + 16y12y13Y14

+16y12 + 16yT3y2a — 16y13y14Y23 — 16y13y14Y24 — 16Y13Y23Y24 + 161334 — 32v13Y24

+1692,y03 + 16y1ay33 — 16y14y23Y24 — 32!/14?;/23)

1
+é —— (329129133/14 + 32y13Y14Y23 + 3231139143/24)
Y13Y14Y134
1 ¢
e ( — 1693, — 32yf,y13 — 16y25y14 — 32ylyyas — 16yZ,y24 + 32yi, — 16y12y73
Y13Y23Y134Y234

—48y19Y13Y24 + 32y12y13 — 48y12Y14Y23 + 10Y12Y14 — 16y12¥33 + 32y12y23 + 16y10y24 — 16y12
—16423y23 — 16y35 + 16y13y14Y24 — 16913Y14 — 16y13Y35 + 64y13y23 — 32y13Y34 + 48Y13y24
—32y24y03 + 16y14Y23Y24 + 48Y1aY23 — 16y33 — 16y23y24>

3 1

+e€— ( — 32y3, — 48yTy1a — 4812, ya3 + 6dyl, — 16y12y3, — 64y12¥14Y23
Y13Y24Y134Y234

+48y12y14 — 16y12y33 + 48y12y23 — 32912 — 16924423 — 16y1ay35 + 3'2y14y33>

1
+€e8—— (16y13y14 + 16y14y23 + 16y14y24>
Y13Y134

3 1

+e&&———
Y14Y23Y134Y234

( — 3203, — 48y%o 113 — 48yTay2a + 64yT, — 16y19y35 — 64Y12913Y24

+48y12y13 — 161254 + 48Y12y24 — 32012 — 1625924 — 16y13y54 + 323/133/24)

IThis matrix element squared has be evaluated using the algebraic program FORM, [63]
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s L
Y14Y24Y134Y234
—48y12y13Y24 + 16y10y13 — 16y12y74 — 48y10514Y23 — 64y12914Y24 + 32012914 + 16Y12Y23

( — 1633, — 16572913 — 3297514 — 16y7ay23 — 32u7ay24 + 3247s

—16y19y34 + 32y12y24 — 16y12 — 32yisy0a + 16y13y14Y23 — 16y13Y14Y24 — 16313Y14

+16y13y23Y24 + 48Y13Y24 — 3207424 — 16y34 — 32y1ay35 — 16y14Y23Y24 + 4814723

329143, + 64y1ay24 — 16y23y24 — 1634;%4)

1
e —— <16y12y13 + 16y13y23 + 16y13yg4>
Y14Y7134

3 1

Y23Y24 y;::34

1
+e?—— <16y12yz4 + 16y13y24 + 16y14yg4>
Y23Yo34

+¢ <32y12y23y24 + 32y13Y23Y24 + 323/143/23924)

1
+€3y Y <16yl2y23 + 16y13y23 + 16y14y23>
24Y234

1 0
+€2W <48y:f2 + 48y3oy13 + 48y%ay1a + 487 oy23 + 4817 4y0a — 96yTs + 1612073

+64y12y13y23 + 96y12813Y24 — 48y12413 + 16y1043 4 + 96y12Y14Y23 + 64Y12914Y24
—48y19Y14 + 16Y12Y35 — 48y12y23 + 16y12y54 — 48y12Y24 + 48y12 — 16y35y24 + 16y13y14Y23

+16y13Y14Y24 + 16Y13Y23Y24 — 161354 — 1634923 — 16y14y33 + 161/143/23?!24)

1
+e —— ( — 64y12y13Y14 — 64Y13Y14Y23 — 64y13y14y24)
Y13Y14Y134
1
4 —— ( — 1643, — 802513 — 1675114 — 80y3ay23 — 163Tau24 + 32015
Y13Y23Y134Y234

+32y12y35 + 16y12Y13Y14 — 48Y12913Y24 + 80y12013 + 16y1234 — 48y10y14Y23 + 16912914
+32y19925 + 16y19y2324 + 80y12Y23 + 16y12Y54 + 16y12y24 — 16312 + 32y33y23 + 32073
+48y13y1ay23 — 16v13Y14Y24 + 32013Y14 + 32y13Y55 + 48Y13Y23Y2a — 64y13Y23 + 64y13Y34
—48y13y24 + 64y 4Y03 — 16y14Y23Y24 — 48Y14y23 + 3235 + 3‘2y33y24)

1
ted— ( — 4893, — 32y2sy1a — 32yayns + 96ys + 16Y12y14 — 16y128n4Y23

Y13Y24Y134Y234

+32y10u14 + 16y10Y35 + 3212y23 — 48v12 + 16374323 + 16y%, + 161435 — 48Y14¥23 + 163!33)

1
+é? 3 ( — 48y19y14 — 48y14Y23 — 482/143!24)
Y13Yisa
9 1 3 5,2 2 2 2
4t = — 48y3, — 32y7,y13 — 32yiay24 + 96y12 + 16Y10y13 — 16Y12113Y04
Y14Y23Y134Y234



+32y12913 + 161292, + 32y10y24 — 48y10 + 16y75y04 + 16y75 + 16y13y34 — 48y13y24 + 163/34)

1

Y14Y24Y134Y234
+16y12913Y14 — 48y12Y13Y24 + 1612313 + 32512074 — 48Y12y14y23 — 160y12y14Y24 + 80Y12v14

+€? ( — 16y} — 16y7,y13 — 80yTay14 — 16yioy23 — 80y3ayna + 32y7, + 16312475
+16y12935 + 16y12y23Y24 + 16312723 + 32012534 + 80y12y24 — 1612 + 64y33y24 — 16y13314Y03
+64y13Y14Y24 + 32U13Y14 — 16Y13Y23Y24 — 48Y13Y2a + 48] 4yna + 32y7, + 64y14y3,

+64Y14Y23Y24 — 48Y14Y23 + 48Y14Y54 + 32Y14Y24 + 32ya3yas + 321/5’4)

et —— ( — 48y12y13 — 48Y13Y23 — 483/13?/24)
Y14Yi34
1
+e? ——— ( — 64y12y23Y24 — 64y13Y23Y24 — 64y14y33yg4>
Y23Y24Y334
1
+6— < — 48y12y24 — 48Y13Y24 — 482/143/24)
Y23Y334
1
+¢? 3 < — 48y12y23 — 48y13Y23 — 483/143/23)
Y24Y334
1
e—— ( — 3293, — 32y%5y13 — 32075y — 3207223 — 32yTay4 + 32u72 — 32y129is
Y13Y14Y23Y24

—48y12y13Y14 — I6Y12Y13Y2s — 16y12¥13Y24 + 32y12013 — 32912434 — 16y12Y14Y23
—96y12Y14Y24 + 32U12Y14 — 32y12Y33 — 48Y12Y23Y24 + 32y12903 — 32y12¥34 + 32y12Y24

—32y15 — 1623424 + 16y13Y14Y23 + 16y13Y14Y24 + 16Y13Y23Y24 — 16y13y24 — 16y13y24

—16y34y23 — 16Y14Y55 + 16y14Y23Y24 — 16y14y33)

1
te——— (32y12y13y14 + 32y13Y14Y23 + 3‘2y13y14y24>
Y13Y14Y134
1
f———— (1631%3?9/13 + 16325103 — 3203, — 16y12y7s — 32y12913%14 — 48Y12Y13
Y13Y23Y134Y234

—32y1974 + 32u19U14Y24 — 16y12Y33 — 32y12Y23Y24 — 48Y12Y23 — 32912934 — 32yi3Y23
—16yi5 — 32y13Y14Y23 — 16y13Y14Y24 — 16y13Y14 — 32013035 — 32Y13Y23Y24 — 32Y13Y34
+64y13y24 — 32y34y23 — 16y14Y23Y24 + 64y14Y23 — 16y35 — 16y;>3yg4>

1
+e—— (329?2 + 48y%yyr1a + 48y7,ya3 — 967, + 16y12y2, + 64y12¥14Y23

Y13Y24Y134Y234

—~80y12514 + 16912933 — 80y12y23 + 32y12 + 16y74y23 — 32424 + 16314y33 — 32y1423 — 32y§3)

1
+e—— (483112?/14 + 48y14y03 + 48?/143/24)
Y13Y134
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1
+e———— (32,7/‘?2 + 48y2oy13 + 48y o y2g — 96Y2s + 16y12y35 + 64y12Y13Y04

Y14Y23Y134Y234

—80y12y13 + 16y1002, — 80y12Y24 + 32y12 + 16y%5y04 — 32yi3 + 16y13y34 — 32y13y24 — 3'23/34)

1

+e———— (163/%21/14 + 162524 — 3293, — 3291275 — 32y12v13Y14 + 32¥12Y13Y23
Y14Y24Y134Y234

—16y1203, — 128y19y14Y24 — 48Y12914 — 32U12Y53 — 32U12Y23Y24 — 16y12y34 — 48y12924

—32y23y04 — 16Y13Y14Y23 — 04y13Y14Y24 — 16y13Y14 — 16Y13Y23Y24 + 64Y13Y24 — 64Y3 4yoa

—16y%, — 32y14Y55 — 64y1ayo3y2s + 64y14703 — 64314154 + 128y14y24 — 16y23y2a — 163/34)

+€ (48.%23/13 + 48y13Ya3 + 48y13y24>

Y14Y134

1
+e——e— (32y12y23y24 + 32y13y23Y24 + 32y14y23yg4>
Y23Y24Y534

+e <48y12y34 + 48y13Y04 + 48y14y24>

2
Y23Ya34

+e (48y12y23 + 48y13Yy23 -+ 48?4141923)

2
Y24Y334

_ <329'?z + 32025113 + 32uT,014 + 32y7ay03 + 32yToyaa + 16y12yi3 + 3212413914
Y13Y14Y23Y24

+32y12913Y23 + 16Y10U13Y24 + 16912474 + 16y12y14Y23 + 32y12Y14Y24 + 16y12y33 + 32y12Y23Y24
+16y19Y24 + 16yisy0a — 16y13y14Y23 — 16Y13Y14Y24 — 16Y13Y23Y24 + 16%13Y54 + 16y13y24
+16y2,23 + 16y14y35 — 161423724 + 1631143/23)

1

Y13Y23Y134Y234

<— 32y, — 320%,y13 — 32y75y14 — 32u7aYas — 32925924 + 64y, + 16y12v13Y14
—64y19Y13Y23 — 32U12Y13Ya4 + 16Y12YTs — 32012014Y23 — 32¥12Y14Y24 + 16Y12Y23Y24 + 16y12¥34

+16y73y03 + 16y13y14Y23 + 16y13Y14Y24 + 16y13Y25 -+ 16y13Y23y24 — 32y13Y24 + 16Y14Y23Y24

—32@/142123)
1

—_— ( — 1693, — 32y%,y14 — 325,003 + 32y}, — 16y10yi4 — 48y12Y14Y23
Y13Y24Y134Y234

+32y19y14 — 16y12Y53 + 32y12y23 + 1612 — 16y7,4y23 + 16y74 — 16y1ay33 + 16y14y23 + 163/%3)

1
+ 3 ( — 16y12y14 — 16y14Y23 — 163/143/24)
Y13Y134

1

— < - 162/?2 - 323/%2?413 - 329%2.@24 + 32yi’2 - 16y12yf3 — 48y12Y13Y24
Y14Y23Y134Y234

+32y1213 — 16719934 + 32012424 + 16y12 — 16yiayas + 16375 — 16913y34 + 16y13y024 + 163/34)
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1

Y14Y24Y134Y234
+16y12925 + 16y12013Y14 — 32Y12Y13Y23 — 32¥12Y13Y24 — 32Y12Y14Y23 + 32y12Y14Y24

<— 3203, — 322113 — 32uay1a — 32yTayas — 32yisyea + 64y,

+16y12Y25 + 16y12y23Y24 + 16y13Y14Y23 + 16y13y14Y24 + 16¥13Y23Y24 — 32913724

+16y2,y24 + 16Y1aY23Y24 — 32y14Y23 + 16y14Y34 — 32y14yz4)

+ 5 <— 16y12y13 — 16y13Yy23 — 16y13y24>
Y14Y134
1
+— (—- 16y12y24 — 16y13y24 — 16y14y24)
Y23Y334
1
+ 3 ( — 16y12y23 — 16y13y23 — 163/14?!23), (4.1)
Y24Ys34

where we have kept terms up to O(¢®) and where the finite term can be found at the end
of eq.(4.1). Although this expression is rather long, for the most part, we shall use it to
obtain approximations in the single and double unresolved limits.

The d-dimensional phase space derived in (B.6) is given by,

AR (M, pr, ps, s, pa) %lf [ 491 92 d0_s dsiz dsradsiadsmdsadsay
—ANTF
X < Ve ) 8(s12 + 813 + S14 + Sa3 + 524 + 834 — M?), (4.2)
with,
Ay = Ig[31225342 + s513°504% + 5147525
—2(512323334514 + 513893894814 + 312524334313”. (4.3)

In the resolved phase space region which is the region of the four-particle phase space left
over when all unresolved regions are excluded, the matrix element squared is finite. Thus
for the evaluation of the resolved contributions, we only need to consider the 4-dimensional
analogue of the matrix element squared given above by eq.(4.1) and integrate it over the 4-
dimensional phase space restricted to this resolved region. The four dimensional analogues
for the four particle matrix element squared and phase space can be obtained by setting
¢ = 0 in both eq.(4.1) and eq.(4.2). Including the overall coupling factors, we have,

NZ—-1 o ae?
R s
o ):< SN ) (27') (2—;> 4(27f)4/|M123412de(M>p1;pz;ps;pﬂ: (44)
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where the 4-dimensional phase space given by,
AP} (M, py, P2, p3,ps) = (27) °dRY(M, p1, P2, P3; Pa)s (4.5)

is understood to be restricted to non-singular regions.

4.2 Single unresolved contributions

We distinguish two classes of single unresolved real contributions depending on whether
the photon or the gluon is unresolved. If the photon is unresolved, it is collinear to
the quark?. If the gluon is unresolved it can be collinear to the quark, collinear to the
antiquark or it can be soft. The possible final state configurations of simple unresolved
contributions yielding a v +1 jet event were displayed in Fig.3.2.(b).

In Sections 1.5.3 and 2.4 we have discussed the simple collinear ¢ — v behaviour of
the cross section o,4, and the simple ¢ — g collinear and soft gluon behaviour of 044,. In
both cases we found that the three-particle differential cross sections could be written
as the product of the two particle cross section for the scattering of a quark-antiquark
pair, oo and one universal one-particle unresolved factor. These were Cp,dz, in the ¢ — 7
limit, Cr in the ¢ — ¢ limit and Sg in the soft gluon limit. It can be shown [25] that this
behaviour of the three-particle differential cross section can be extended to cross sections
with more than three particles in the final state. In the various single unresolved regions
of the four-particle phase space we therefore expect to be able to write the differential
cross section for the scattering of a quark-antiquark pair with a photon and a gluon as
the product of one particle unresolved factors and a three-particle cross section. However
as the cuts defining the single unresolved regions in the 4-parton phase space differ from
those defining the single unresolved regions in the 3-parton phase space, the one-parton

unresolved factors will be slightly modified.

2Recall that we only consider contributions where the photon is collinear to the quark and obtain the

contribution where the photon is collinear with the antiquark by multiplying it by two.
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Ultimately the v +1 jet rate will be evaluated numerically using the hybrid subtraction
method. Within this method, in a given singular region only the matrix element squared
is approximated. Consequently we will choose the boundaries of the single unresolved

regions according to the following criteria.

(a) Within those boundaries the known single unresolved approximations of the matrix

element squared are accurate approximations of the “full” 4-particle matrix element

squared.
(b) No singular region is omitted or double counted.

The resulting contributions to the 7 +1 jet rate in each single unresolved region of the

four-particle phase space are given below.

4.2.1 The unresolved gluon contributions
The collinear quark-gluon contribution

In the region where the quark and the gluon are collinear we have3:

S124 5124
YR Sgg = S24 7 Smin 75 Sgvg = 5134 > Smin, Sgvy = $23 > Smin;
M? & M2 ’

(4.6)

Sgg = S14 < Smin

or in terms of the scaled invariants y;;,

Ygg = Y14 < Ymin¥Yi24, Yqg = Y24 > Ymin¥Y124, Ygvg = Y134 > Ymin;, Yy = Y23 > Ymin-
(4.7)

The quark and the gluon cluster to form a new parton () such that,
P11+ Pa = Ppg,

where particles 4 and 1 carry respectively a fraction y and 1 —y of the parent parton

momentum pg,

b= (1 - y)PCb Ps =YPqg- (4~8)

3As usual, M is the mass of the final state.
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In this limit, the invariants sq,, o4 and s;94 become,
s12 = (1 —y) sz, S24 = Y SQ2, S124 = Q2 (4.9)
while the invariants containing p, = ps become,

813 = (1 - y) 5Q3, 834 = Y S5Q3.

The matrix elements and phase space exhibit an overall factorization in this collinear
limit. We have,

|Mazsal” = Pramq(y, s24)[Maasl”, (4.10)

with, |Mges|? the three-particle matrix element squared for the scattering of a quark-

antiquark pair with a photon and Pi4_q(y,s14) given by eq.(1.30) the simple collinear

factor which is the product of the inverse of the small invariant and the Altarelli-Parisi

splitting function,

1
P14—>Q(Z> 514) = —P14_:Q(y).
514
The four particle phase space becomes,
4P (M 4P (M 1P 4.11
4 ( ap17p27p3,p4) - 3 (‘ ,pQ,pQ,pS)C col (p1:p4:y) ( : )

where ngd)(M ,PQ,P2,P3) is the three-particle phase space in d-dimensions given in Ap-
pendix B by eq.(B.5). The collinear phase space factor dPC(Z)(pl,p4,y) given in eq.(1.33)
reads,
d (47)° ~ ,
dPY) (pr, ps,y) = md814 dZ[Sny(l - y)] : (4.12)
To evaluate the quark-gluon collinear factor, we need to integrate the collinear matrix

element squared over all unresolved variables defined in this simple collinear region,
S14 &nd Y. (413)

The fractional momentum y is defined with respect to the momenta carried by the colour

connected particles: the quark, the antiquark and the gluon. In particular y is defined as

the following ratio,
Yag _ Y24 (4.14)




Since Ya4 > YminYi24, the lower boundary of the y integral is ymin exactly as in the sim-
ple quark-gluon collinear region of the 3-parton phase space. Consequently the simple
collinear factors Cr in the 3-parton process (1.35) and Cr in the 4-parton process will be

similar. Indeed we have,

~ 2 N2 _ 1 (d)
Cr = /gs P14—+Q(Z7514)chol (p1>p4>y)

2N
o N2 _1 47"ﬂ2 € 1 Ymin¥124 d et 1 d . —p
2 2N M2 ) T(1—¢) /0 Y14 Y14 [/ymin yly(1 = y)]™" Pra—g(y)
= Cr(y124)™ = Cr(yes) ™" (4.15)

Putting all the factors together, we find that in the single unresolved quark — gluon

limit the four particle differential cross section doy factorizes,

N2 —1 a,\ [ o 2
( N ) (27) ( 2;) 4(271')4 (#2> /I/\/11234|2 dPAx(d)(M; P17P2;P3=P4)

d0'4
- éF X /(271-)3_2d|MQ23|2dR1(3d)(A{[apQ7p2>p3) = éF X 0Qgys (416)

where ogg, is the three-particle cross section for the scattering of a quark-antiquark with

an additional hard photon.

The collinear antiquark-gluon contribution

In the region where the antiquark and the gluon are collinear we have,

_ 5124 _ S124
Sgg = S24 < Smin 3,5 Sqg = S14 > Smjnm,

M?’

Sgvy = 513 > Smin; Sgvg = 5234 > Smin-
(4.17)

The resulting contribution in this region of the four particle phase space to the v +1 jet

rate is similar to that in the ¢ — ¢ collinear region. It is obtained exchanging the role of

the quark and antiquark and therefore yields,

d0'4 — éF O'qQ,Y. (418)
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The soft gluon contribution

In order to match onto the simple collinear quark-gluon regions, the soft gluon region is
defined as follows,

_ S124 d _ 5124 . _
Sgg = S14 < SminT;5 an Sgg = S24 < .Sm_inM—Q, Sgy = S13 > Smin; Sgy = S23 > Smin-

M?
(4.19)

The four particle matrix element squared and phase space factorize in the soft gluon limit,
| Mizaal* = [Miaal® fiz(4), (4.20)

where fi5(4) is the eikonal factor defined in eq.(1.20),

4812

fra(4) =

514524

In this limit, the four particle phase space divides into a phase space for the three hard

(resolved) particles dPB(d)(JVI, P1, P2, p3) and a soft phase space factor dpgg}t(Pl;])g,p4),

AP (M, p1, p2, p3,pa) = AP (M, pr, p2, ps) dPs(j,)w(PhP%m% (4.21)

where the soft phase space factor reads,

4:7?')E d514d894 S14824] ¢
dP(d) = ( ol [ ]
soft(pl’p2’p4) 167T2F(1 — 6) S12 812
As before, all of the dependence on the unresolved variables is collected into the soft
approximations to the matrix elements and the phase space. We find,
~ NZ—1
Sp = /gf ( SN ) Fr2(4)dPg ,(py, P2, pa)

= (y12)7* Sr = (4a0) ™ Sk, (4.22)

where Sg is the soft gluon factor in the 3-parton process given in eq.(1.25). The modifica-
tion of this soft factor in the 4-parton process is due entirely to the changed boundaries.

As usual, the contribution to the cross section from the single soft singular region

factorizes, as follows (c.f. eq.1.24),

doy — S X Tuge- (4.23)
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The sum of the unresolved gluon contributions

The sum of the single unresolved gluon contributions is then given by,
[201’ + SF} Oagy = Rog(4)agv s

where the real unresolved factor Ry, depends on the invariant mass of the quark-

antiquark pair and is given by,

B = as (N? -1 1 4rp?\°©
W) T 9 \ 2N JT(1—¢) \ M2

2(ygq)™" | 3 2m?
(y‘ég) + E - 21n2(ym-in) - 31n(yqq?/mjn) +7— —3“ . (4.24)

4.2.2 The collinear quark-photon contribution

In the region where the quark and the photon are collinear we have,

S123 5123

Sgy = 513 < SminM—za Sgy = 523 > Smin'Wa Sqyvg = S134 > Smin; Sqg = S24 > Smin;

(4.25)
so that the quark (= 1) and photon (= 3), cluster to form a new parent parton ¢ such

that,
p1+ p3=pg-

Each carries respectively a fraction z and 1 — z of the parent parton momentum pq,
p=(1-2)pg, P3 = ZPQ-
In this limit ($13 < Smin 328) the invariants s1, and sy3 are given by,
s12 = (1 — 2) g2, S93 = Z 3Q2, (4.26)
while the invariants containing ps become,

S14 = (1 — Z) 503, S34 = Z28Q3-
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The four-particle matrix element squared and phase space factorize in exactly the same
way as in the quark-gluon collinear limit with the role of v = 3 and g = 4 being inter-
changed and y replaced by z. Unlike the quark-gluon case however, the photon is observed
in the final state and hence only sy3 is an unresolved variable. z which is the fractional
momentum carried by the photon inside the quark-photon cluster is defined with respect

to the momenta carried by the electromagnetically connected particles,

= Yo _ Y3 (4.27)

Yagv Y123
In this limit, the four particle differential cross section factorizes,

doy — Cpydz x /(27r)3—Qd|MQ24|2ngd)(M, PQ, P2, P4); (4.28)

=9Q4g
where ogg, is the three-particle cross section for the scattering of a quark-antiquark pair
and a gluon. And C rydz is the simple quark-photon collinear factor of the 4-parton

process. As in the quark-gluon collinear case, this factor 1s related to the known 3-parton

collinear factor, Cr.,dz given by eq.(1.35) by,
Crodz = Crydz(ygs) ™" (4.29)

Concerning the boundaries of the single collinear regions of the 4-parton phase space
it is worth noting the following. In both, ¢ — ¢ and ¢ — 7 collinear regions we have
required Y134 > Yumin in order to guarantee that these regions match onto the triple collinear
region defined by 134 < Ymin. However, when both invariants y13 and y4 are small these
two simple collinear regions overlap. The contribution to the total cross section in this
overlapping region is however of O(ymin) and therefore negligible. Nevertheless, as we shall
ultimately evaluate the differential cross section within the hybrid subtraction method,
it is important to ensure that the matrix element squared is correctly approximated
within this region too. Indeed, by requiring that i34 > Ymin, We can be sure that in

the overlapping region the matrix element squared is correctly described by the sum of

the simple collinear ¢ — v and ¢ — ¢ approximations.
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To conclude, in this chapter we have given the explicit forms for the matrix element
squared and phase space relevant to the resolved and single unresolved real contributions.
The contributions to the v + 1 jet rate arising from the four particle process (when all
the final state particles are resolved) and from the three particle processes as in eq.(4.16)

and eq.(4.23) will be evaluated numerically. This will be discussed in detail in Chapter 9.
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Chapter 5

The two-particle unresolved real

contributions

In the previous chapter we have discussed the calculation of the theoretically resolved and
single unresolved real contributions relevant to the tree level process ¥v* — qgvg. Each of
these two classes of real contributions corresponds to final state configurations where more
than two particles are theoretically “seen”. In each case, we gave the analytic expressions
for matrix elements squared and phase spaces. We also saw that a v +1 jet event can only
arise if some final state particles are clustered together by the jet algorithm, and that the
finite differential cross sections will ultimately be evaluated numerically. The evaluation
of the two-particle unresolved real contributions, on the other hand can be performed
analytically and is the subject of the coming chapter.

For the two-particle unresélved contributions, which can arise when the photon and
the gluon are theoretically “unseen”, the final state configuration already corresponds to
a v +1 jet event. Hence the final state particles will not be clustered further by the jet
algorithm. As mentioned in Chapter 3, these double unresolved real contributions are

of three types 1: the triple collinear, the double single collinear and the soft/collinear

1Recall that for the evaluation of all these contributions we will always only consider contributions

corresponding to the configurations where the photon is collinear to the quark. The contributions corre-
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contributions.

This chapter contains the calculation of these two-particle unresolved real contribu-
tions to the total v +1 jet differential cross section at O(ac;) and is organized as follows.
In Section 5.1 we demonstrate the factorization properties of phase spaces, squared ma-
trix elements and fully differential cross section in the triple collinear limit. In Section
5.2 we present the calculation of the phase space integrals over the triple collinear region.
The evaluation of the soft/collinear and double single collinear contributions is discussed
in Sections 5.3 and 5.4 respectively. In Section 5.5 we present the result for the sum of

these contributions. Finally, Section 5.6 is dedicated to a study of these contributions in

different strongly ordered limits.

5.1 The triple collinear contributions

As we saw in Chapter 3, the triple collinear configuration arises when the gluon and
the photon are collinear to the quark. The triple collinear configuration Is illustrated in
Fig.3.2.(c). In order to evaluate the triple collinear contributions to the photon +1 jet
rate we need to determine the appropriate approximations for the matrix element squared
and phase space in the triple collinear limit and perform the phase space integrals over
the unresolved variables.

The triple collinear region of phase space is defined by,
Sqvg = 5134 < Smin  and  Sgy = S24 > Smin- (5.1)

Hence the triple collinear limit is obtained considering Sgyg = 5134 < Smin- ID this limit,

the photon, gluon and quark cluster to form a new parent parton Q such that,

Py + Py + Dy = Po- (5.2)

sponding to configurations where the photon is collinear to the antiquark are identical. When summing

all the contributions, we will therefore multiply the result obtained considering the photon associated

with the quark leg by two.
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The photon, the gluon and the quark carry respectively a fraction z, y and (1 —y — z) of

the parent parton momentum pg,
Py =2 PQ; Ps=ypPo,  pe=(1-2-y)pg (5.3)
The invariants s,; = S12 ,87y = S23 and Sz = S24 are given by the following,
s;2 = (1—y—2)sge=(1—-y—2)M?,
S93 = 2802 =% M?, (5.4)
S24 = YSQ2= y M?,
where M is the invariant mass of the final state.

The algebraic structure of these double unresolved contributions is unique to the triple
collinear limit of the matrix element squared, and when analytically integrated over the
singular regions of phase space will form the triple collinear factor. These contributions
are expected to arise in analytic calculations of ezclusive quantities at the second order
in perturbation theory. Such calculations have, to the best of our knowledge, not been

performed before in the literature. Hence, in Section 5.2 we will present the evaluation of

the triple collinear contributions to the v +1 jet rate in some detail.

5.1.1 The triple collinear limit of the matrix element squared

As usual to simplify the notations, we choose to label the final state particles as follows,

2, p =3, g =4.

il

qg=1, q

We are interested in the triple collinear limit of the matrix element squared for the
scattering of a quark-antiquark pair with a photon and a gluon. In this limit, 1 |31 4

and the d-dimensional four-particle matrix element squared given by eq.(4.1) factorizes,

’/\/11234|2 — P134~.Q(Z,y;513,314, 5134) |-/\AQ2|2-
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|Mgs|? is the two-particle matrix element squared and Piss_.q(2,Y, $13, S14, S134) defines
the triple collinear matrix element squared. This triple collinear matrix element squared

is obtained by keeping only the terms which contain any pair of the invariants,
Sgy = 513, Sgg = S14 and Sqvg = S134;
in the “full” four particle squared matrix elements (given by eq.(4.1)). It reads,

P134~,Q(Z> Y, 513, S14, 3134) =

4 (1—z-y)(1+1=z-y) —elz"+ 2y +y°) — €2y)

513514 Y
T T ) e i) (et et () G R R
5135134 Y
P et (1 —y+efzy) + (1= 2)° —e(l —2)( + 2y +y*) + €2y
5145134 Y
_ 4-9 ((1 —6)2%—(1—6)8—15—26). (5.5)
$134 S14 513

The same factor is appropriate for the collinear ¢vg limit of the Z — ¢gvg, Z — ¢q77g
and Z — qgvgg squared matrix elements. We expect this triple collinear factor to be the
generalization of the simple collinear factor with three collinear particles instead of two
and to be as universal as the single soft and single collinear matrix element squared
encountered in Chapter 1 and 2.

In terms of the scaling variables y;; = %,

1

P134—»Q(Z> Y, 513, S14; 5134) = MZP134—>Q(Z; Y, ?J13,?/14,y134)- (5.6)

5.1.2 The triple collinear limit of the phase space

The 4-particle phase space in d-dimensions derived in (B.6) is given by,

/ dPY = (27)i-3 / dRY.
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where,

(d) (—A4)—1/2
/dR4 = —/de—l dﬂd_g de-gdS]Q d813d814d323d824d334

M2 29
"_A4 (12;4 2 -
X < IVE > 6(s12+ S13+ S1a+ Sz + Soa + 534 — M ) (5.7)
with,
1 2. 2 2.2 2. 2
Ay = 6 812°834” + S13°S24” + S14”S23
—2<812823334814 + 513823824814 + 312824534813>J- (5'8)

In the triple collinear limit of the four-particle phase space, as the triple invariant s34,
which is constrained in the triple collinear region to be less than s, does not appear as
an integration variable in the expression of the four-particle phase space, dPﬁ,(d) we need
to insert 1t using,

/d5134 6(s13 4 s14 + 834 — s134) = L.
Using the definitions of s15, $y3, s34 in the triple collinear limit, given in eq.(5.5), the

product of the integration variables ds;; in the 4-particle phase space given above yields,

d3134 d813 d814 d334 d812 d823 d824 — d8134 d513 d514 d834 dSQ2 dZ dy (SQQ)Q.

The Gram determinant becomes,
M M

[—A4 — 1—6- — ((1 -y — Z) 834 — Y S13 — % 814)2 + 42y S13 S14| = E —Ag]
In the triple collinear limit, 134 = S33+ 814+ 534 is less then syin and the invariants sq3, Si4
and s34 are of O(smin). Consequently, all the terms in A, are of the same order, namely
of O(s2;,) and none of them can a priori be neglected. This differs from the single soft
or collinear phase space where the approximation simplified the phase space.

A particular feature of the triple collinear limit is the factorization of the four-particle

phase space, ngd) into the 2-particle phase space ngd)(M, pg,p2) and a triple collinear

phase space f&ctor,
4 ( >P17P3>p4ap2) 2 ( )pQ7p2) COI(PQ,]?1>P3>P4) 5134,
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and equivalently,

2r) 4R = (2r)7 2R x (27)2 AR dsyas.

col

dpP(¥ dpP{? =dP(&

col

ngd)(]\l, pQ,p2) is the two particle phase space given according to (B.3) by,

—s dQg_
dR(d)(j\/la anp?) = (3@2)42— —2% dSQQ 5(5@2 — A/IQ) s

while the triple collinear phase space factor reads,

(d) 1 d_;'i 1 '%’ ' d2;4 ; ";_
AR (PP, P3; pa) ds1ss = [E] [E] [— A4] [— A4]
2d—1
X 59 6(813 4 14 + S34 — S134) dQa_p A3
X d3134 d813 d814 d834 dz dy N (59)

or in terms of the dimensionless invariants y;; = 37,

d—4

ng? (g, P1,P3,pa) dsiza = F dyi34 dyss dy1a dyse dz dy [— AZ] ’ [— AZ]

o=

X 8(y13 + y1a + Yss — Y134) (5.10)
where A’ = M*A” and the overall factor F is given by,

F = 274 d0y_y dQy_s M* [M?]**. (5.11)

The angular integration terms in eq.(5.11) can be intuitively understood as follows: While
the remaining invariants {y;;} in the problem are fixed, a rotation of the ggvy-system
around the g axis is still possible (dQ;_,) and the parity of the ggy-system allows two

combinations (d4_3). Performing these angular integrations and setting d=4—2¢, we

find,
F = —l—zw_%f\/f“ [M?)* (5.12)
(1 —2¢)4 ‘ '
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5.1.3 The triple collinear limit of the differential cross section

As for the matrix elements and phase space, the four particle differential cross section

for the scattering of a quark-antiquark pair with a photon and a gluon, factorizes in the

triple collinear limit,

N? -1 Qs oe? 2¢
doy = ( ON ) (é‘;) (2—7:) 4(2m)* <ﬂ2) /|/\/11234|2 dPti(d)("W;Pl;PmPa;Ptx);

— TCpdz x / | Moal2d P (M, pg, ps) (5.13)

=00
As usual, 0 is the two-particle cross section while the dimensionless factor TCF,dz con-

taining all the singularities, is formally given by,

_[(N*-1 a,\ [ el a/ 2)\2 @) )
TCF»de = ( oN ) (’2_ﬂ_) <'2?) 4(2-‘_) (/“1' ) /d3134chol IMcoll ’

where

1
|M001|2 = —MjP134—»Q(Zyyay13,y14,3/134), ch(jz) = (27)2_2ddR£2(PQ;P17P3;P4)-

The triple collinear contribution to the differential cross section is then obtained as the
product of oy and T'Cp,dz. To evaluate TCp,dz we need to integrate the triple collinear
factor Py34_.q for the emission of a photon and a gluon off a quark over all “unresolved”

variables defined in the triple collinear phase space region. These unresolved variables

appear in the denominator of |M,,|?, and are given by,

Y134, Y14, Y13 and Y.

In the next section we shall evaluate these four phase space integrals. Before doing so,
we shall briefly outline how one can organize the calculation. In fact, the large number
of terms in this contribution can be conveniently managed if TCr,dz is decomposed

according to the scaled invariants {y;;} present in the denominator of the triple collinear

matrix element squared, Pyss_.q(,Y, Y13, Y14, Y134) given in eq.(5.5). We consider,

1 b 1 1
— | +1Cc® [——] +1CY [——}
y13y14] Fy Y13Y134 Fy Y14Y134
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e 1
srcft)| 2] o) || yrol | |

Y14Y134 Y13Y134 Y134

H is an overall factor and is given by,

N?—1 o el 2\ 2€ 9
H = il ) —24de
—( ON ) (27r> (%)(") 4@m)

where F is the factor present in the triple collinear phase space factor of eq.(5.12). H then

N? -1 4y * ra ael) 1 1
o= @) (%)L 1 5.
( IN ) ( YE ) (%) (%) ir T(1 - 2¢) (5.14)

When explicitly evaluating the phase space integrals, we shall see that if these integrals

reads,

can be reordered such that the first integral does not have the integration variable {y;;} in
the denominator of the integrand, the integration procedure simplifies. This simplification
will be achieved for all terms in T'Cg.dz apart from TCI(:'? [ﬁ]

The integration variable y;34 is already constrained by the definition of the triple
collinear region, so that for all terms we will choose to do this integral last. The lower
boundary of the y integral is fixed to be Ymin-to avoid overlapping with the soft/collinear

region. The integration variables yi3 and y14 are unconstrained and we choose to integrate

over these two variables first.

N . . . . c
As an example we consider the expression for the differential cross section TCH [y“—?lmz] ,

1

. 1 Ymin 1-2 (1—2)y134 Y13b —1/2—¢
TCI(M) [—_] = / dy134/ dy/ dy14/ dy13 [—AY] 2 Pizyq [
0 Y 0 Y13a Y14Y134

Y14Y134 min
The Gram determinant is written as a quadratic in y;3 and the boundaries of the yi3
integral, i.e. 513, and w3, are the solutions of A} = 0. The upper boundaries of the
subsequent integrals 5,4 and y are fixed by requiring that A is negative. Note as well that

the integration over ys4 has been performed using the delta function 6(y13+y14+Y34 —Y134)-

Moreover to simplify further the notations, we have chosen to denote by Pizs—¢ {ymllm]

the part in Piss—.q(2,Y, Y13, Y14, Y134) Which contains the denominator {y14y134} . Similarly
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we can write,

b 1 Ymin 1-=2 (1-y)y1as Y14b m—1/2—¢ 1
TCI(:W) { ] :/0 dy134/y d?//o dy13/ dy14 [—A4] 12 Pisy—g
y

Y13Y134 min l4a
where the order of the integrations over y;3 and y4 has been swapped, since the integrand
contains a factor {y%} instead of {y%} The boundaries of the second and third integral
(here y13 and y) are obtained in a similar way as for the expression of TC}%: We write
—A” as a quadratic in y;4 and require that it is positive. The other contributions,

d Y e Y 1
TC(){ 12 ] TC}Q[ = ] and TCY) [_2_]

Fy
Y14Y134 Y13Y134 Y134

can be obtained in an analogous way.

For TC’I(;aW) [ylslyn] we will choose to consider,

‘min

a 1 Ymin 1-z (1-2)y134 Y136 —1/2—¢ 1
TCI(W) [—] :/ dy134/ dy/ dy14/ dyis [—Af{] 2 Pi3sq { l .
0 Yy 0 Y13a ’ Y13Y14

Y1314

This contribution will be harder to calculate because the first integral over y13 has a factor

of 15 in the denominator of the integrand.

For the whole triple collinear differential cross section TCp,dz we will therefore have

to evaluate,

Ymin 1-z (1-2)y134 Y135 —1/2—¢
TCpydz = Hdz X/o dy134/ dy/o dy14/ dyr3 [—AY]
Y y

min 13a

2
Y14Y134

1
X Piaa_ + Piag,
{ 1= [ ] 13420 [y14y134

Y13Y14

Ymin 1-2 (1-y)y134 Y14b n—1/2—c
+ Hdz X/O dy134/ dy/o dyIS/ dy14 [——A4]
Y v

min l4a

1 Y14
d Pras.. t Prs [_H
{ 1340 [%3%34] 134-Q y13y334

5.2 The triple collinear cross section

We choose to divide the calculation of TCr, into three distinct phases corresponding

to three different types of contributions to TCr,. These types are defined according
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Y134

] + PlB4—:»Q[ Y13 ] + P134——-*Q |:2—

y13y134] ’
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to the different double invariants {y;;} present in the denominator of Pi34_.q. We have

contributions involving: {yl%}, {y}—s} and {yla } For all these contributions, we perform

the y integral in the range [Ymm, (1 — z)] as the difference between integrations over the
ranges, [0, (1 — z)] and [0, Ymin]. We label the integrals by TC}J;I) and TC},—?;?) respectively

for j = a,..., f and perform each integral separately. The full cross section is thus,

TcY) =Teg) —1CE?.

5.2.1 Contributions involving {yﬁ}

As an example, we present the calculation of Tcl Fops

TC’(C) [ } 4 /ym (1-= ?/134 P [ 1 J
= dy134 — / y / — £7134—Q
i Y14Y134 1o Y134 Y Ymin Y14 Y134Y14

13b —1/9—¢ _1—9¢
X / dyy3 [(y136 — y13) (y13 — Y130)] 12 (1—2)717%,
Y

13a

explicitly.

To simplify the notations, we define,

1 } _ Pzy)

M)
Y134 Y14

Pi3s_.q [

Y134Y14

such that P°(z,y) is independent of 5134 and yy4.

(cl

The contribution T'C},

We shall first describe the calculation of TC’I(JCQYI), the contribution to TC'I(;CW) for 0 <y <
(1 — z). With the rescaling y13 = x (Y136 — Y132) + Y130, the y13 integral becomes,

/01 dx (y1ss — y13a) [X(l e 1/2—¢

The y integral gives rise to a Beta function as defined in (A.6) such that,

/01 dx (y13s — ylSa)—26 [x(1 - X)]—I/Z_e = (v~ yl?’a)_% %32__6)6)

_9e I'(1 — 2¢
= 16°7 (y13p — Y130) 2 Fg(lfe)),
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where we have used the relation (A.1) between Gamma functions, I'(z).

The difference between the upper and lower boundary of the first phase space integral
raised to the power —2¢, i.e. (y135 — ylga)_%, gives us the phase space factor which regu-
lates the integration over the unresolved variables. This will be the case for each of the
contributions to the triple collinear differential cross section.

If we solve —A! = 0 as a polynomial in y;3 we obtain yy30 = [~ % 6] /2c with,

o = —(1—2)2 g = 2(1—y—2)[(1—2)y1s4—y14] + 2y14y 2z,

8 =16yuyz(1—y—2) (1 — 2)y13s — Y14},
and therefore,

16° (ylab - y13a)_2€ = [ymy Z (1 —y- Z) [(1 - z)y134 - y14]]‘ (1 - 2)46-

The positivity of —A” implies, y14 < (1 — z)y134 and y < (1 ~ z) which leads to the

natural choice of variables,
114 = v(1 — 2) Y134 and y=1t(l —z), (5.16)
for which the regularizing phase space factor reads,
16 (sr0s — y150) = [0 (1= 0)t (L= )uarz]

The contribution, TC;,%’U is thus,

[—1—] = 4 F—Q_—Qe—)u—z)—?fz-ﬁ

T
Y14Y134 P2(1 - 6)
‘ Ymin —1-2¢ 1 —€ 1 1 —€ ¢
- —[(1 - Pe(z,t).
x [ dyras ()™ [ a1 =0 [ do (0= 0™ P

According to (A.6), the v (or y14) integral gives a Bela function,

ol

-y

1 1 e 1 F2(1 —€)
./0 do S =™ = =2 Fr 5
so that,
c 1 4 “9  —e¢ Ymin e 1 —e c
TCI(V‘A‘YI) l—"] = Sl (1 _Z) *z / dy134 (y134) : 1/ dt [t(l —t)] P (Z:t)7
Y14Y134 € 0 0
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where,

P(z,t) = i[(l—t) [(1-t(1—2)) + €21 —2)zt] + (1 - 2)°

tz
—e(l—2) [P+ (1 =2zt + (1= 2)? 2] + (1 - z)zt].

The y;34 integral is straightforward yielding,
—2¢

Ymin —2e— Ymin
/ dyi34 (y134) B _(_y%’
0 2e
so that, after performing the ¢ integral which yields only I' functions, TCJ(;;YU finally reads,
—2¢ F2(1 - 6)
['(1 — 2¢)

. (3—2)(1 — €z) (1-—2) (1-2)?
X[‘ZP @) - a2y o209 T(-29)

(1= 2)7" 27 (Ymin)

1 27
TC(C.l) I: :l _ et
o Y14Y134 €?

where P¢(z) stands for the d-dimensional Altarelli-Parisi splitting function given by (1 +
(1 —2)? —ez?)/2.

The contribution TC}C;Y?)

For the calculation of the contribution to TC}? where 0 < ¥ < Ymin, We can neglect terms
of O(y) in the matrix element and phase space as they become of O(yYmin)- In this limit,
1 —2z)P(z
PC(Z7y) - ( Z) ( )7
4
and solving —A/ = 0 as a quadratic in y;3 yields,

(y13b - yl3a)_26 = [163’14?/3(1 - Z)[(l - 2)9134 - y14]—e (1 - Z)HC-

The integration over y;3 is unchanged. However, in this limit and with the following

redefinitions,

y1a = v(1 — 2)y134 and Y = tYmin,

we find,

16°(ya3s — Y130) " = [U(l ~ ¥)  Ymin y%34z]_ (1-2)"
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Therefore,
c. 1 Ymin 1
TCI(MQ)[ } = 4/ dy13¢ —
Y14Y134 0 Y134
Ymin (1—2)y134' 1 R
X/ d?// dy1s — P°(z,y)
0 0 Y14

Y13b ~1/2—¢ —1—2¢
X / dy13 [(y13b - y13) (y13 - y13a)] 1z (1 - 3) 12 ;
Y

13a

becomes,
(c.2) F(l - 26) - _—€pe —€
TCpy" = 4n F—Z(_l——e) (1=2)7° 27P*(2)(Ymin)

Ymin 1

/ dv v(l—v)]™" / dy134 (y134)-2‘”1/ de ¢t
0 0

- t??f‘ ; o
27 —€ € pe —3e
= B P )

The total for TCI(;CW)

Combining the results of the previous two subsections and reintroducing the overall factor

H, we finally obtain,

1 N? -1 4rp? * o ae? 1
HxTCY = (__) Xy __ L
X Fr [y14y134} ( 2N ) ( M? ) 27 27 F2(1 — 6)

—2¢ P4(1 - 6)
['?(1 — 2¢)

271 = 2) 7 (Ymin)

. [_ “P(2) <1 = (min) (1 = Z)e%gl(T_—%)

_(3_‘2)(1 _622) (1 _Z) e (1 _2)2 ] (5'17)

221 —2¢)  (1—2¢) 2z(1-2¢)]
Other similar contributions

Following the same steps for the integrations over Y13, y14, Y134 and y we can obtain two

other contributions to the triple differential cross section, namely TC' ., and TC’FV They
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respectively read,

I« TO@ | Y3 _ N2 -1 drp?\* (&) el 1
Y| yray2ag 2N M? 2r) \ 27 ) T2 (1 —¢)
_oe TH1 =€)
—€ 1_ —2¢ nin 2e
X (1= 2 (i) ™ 55

1 0= [Z . e)}, (5.18)

" ke (1 — 2¢)? €
1 N2 =1\ [4np®\* [a,\ [cel 1
el ] = (M) () (3) (3) =
_ 2 Y1 —¢)
€f1 _ )2 . Ze
X z (1 Z) (yx’mn) 1-\2(1 _ 26)
(1—2)(1— 6). (5.19)

(1 — 2¢)?

Notice that for these two contributions we can safely extend the f Zdy down to 0, since

g™ dy gives only a contribution of O(Ymin), which we can neglect.

5.2.2 Contributions involving {y%}

As an example we describe the calculation of T'C I(;bg formally given by,

Ymin 1 y)y134 1 b
= 4/ dyrag — y/ dy13 — P (2,y)
Y134 Yymin Y13

Y14b — —€ —1—-2¢
x [ dyna (1 = 91) (12 = 22077 (=)
Y

l4a

TCY) [

Y13Y134

where P?(z,y) is defined in an analogous way to P°(z,y) and is independent of y;34 and

Y13.
As before, we divide the cross section into two pieces according to the range of the y

integral; 0 <y <1 — 2z and 0 < y < Ypmin denoted by TC’}(;?:) and TC’I(;{’;YQ) respectively. In

both cases, the first integral — over the invariant that does not appear in the denominator
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of this part of Py3s—.g which in this case is y14 - gives a similar result to the first integral

encountered in the evaluation of TCI(TCQYI),

—%¢ F(l - 26) 2¢

I'?(1/2 —¢ _
( / ) (?J14b - y14a) = mee (y14b - ?J14a)

T-39

Solving —A! = 0 as a polynomial in y;4 we obtain y14,p = [—F % 6] /20 with,
o = _<1 - ?/)27 B=201-y- 2) [(1 = y)yr3a — Yis] + 2y13y 2,

§% = 16y13y2(1 —y —2) [(1 —y)y13a — Y13},

and the difference between the upper and lower boundaries raised to the power —2¢ reads,
16 (Y146 — 3;’14a)_26 = [913 yz(1—y—2) [(1 —y)yza - 3/13]]— (1- y)'e.

The positivity of —A” implies y13 < (1 — y)y134 and y < (1 — z) which leads to the

following natural choice of variables,

13 = 0(1 = ¥) Y134 and y=1t(1-2) (5.20)
The regularizing phase space factor is thus given by,
16° (g1 — y1aa) 7 = [0 (L=t (L= ulyyz] (1 =271 -t -2,
so that,
(6.1) _ F(l - 26) —2¢ —€ Ymin —1-2¢
TCF"/ = 4 Wﬁ'(l—_é—) (1 — Z) Zetl Z /0 dy134 (y134)
o L [(1 = vy /1 dt b1 — )] L pieg)
—[(1 - - ——P°(2,1),
X/o v @ —opl i—a—oy %
where,
1
b _ 2 _ _ _ 3
P’(z,t) = m[(l —z)(1—-1) [(1 —z) +€(1 z)zt] + (1= (1 - 2)t)

—e[l—(1—2)t] [+ (1 —2)zt+ (1 - 2)° 2] + (1 —z)zt].
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(c.1)

The integrations over v (or y;3) and yi34, give similar results to those in dog,;”’,

1 T%(1 - )%
(-9 o ()™
eF(l—Qe) 2e

respectively.

The t integral requires more thought. It reads,
€— 1 —€
= f iy
[1-— t 1-— Z)]
x{—e[l——t(l—z)] [22+(1—z)zt+(1—z)2t2} +(1—-(1-2)t)° +2z(1—-2)t

-+a—zx1—oﬁ1—@-+8a—zpql.

which we divide into two pieces, according to the presence of two different denominators

in the integrand, [ = I; + I, where,

1
L= —/du**@—w*xebﬁwl—@d+ﬂ—zfﬂ’

_ e~ 1 )—e
& _‘/d 1—t1—a]
X[U—zﬁl—ﬂ[ﬂ—z)+3O—zﬁ4+ﬁf{1—@63+32G—zﬂ].

The evaluation of I; is straightforward, yielding only Beta functions,

’(1—¢p 1 1
L = =———<|-—=(1-€ez")(1-2¢) — (1-2)(2 ~(1-2)*(1- }

L= g [T e=20 - (=) + 5= -9

All terms in I, contain a factor [I — ¢(1 — 2)] in the denominator such that the result of
the integrations yields hypergeometric functions. We decompose it further according to

the powers of ¢ and (1 —t) present in the integrand of I so that I = Iz + 22 + Iy5 with,

) —e+1

€= 1
Iy = (1- /dt
= ?) 1—t1—a]

1 T(1-¢el'(2-
e I(2-2¢)

6)(1 — 22 Fu(l, -2 -2¢1 - 2),
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I L e
Ly = €z(1-2) /Odtm
, (1 —¢l'(2—c¢

= 2 (1l-2) F(?)—‘)) )F21(1,1—6;3—26;1—z),

“(1-1¢)
Iy = €2(1- /dt
& ‘ l—tl—z)]
I?(1 -
(1-¢) Fo(l,1 — €2 —2¢1— z).

.: 622(1—2)m

Fyy(a, b; ¢; ) is the hypergeometric function defined in (A.10). Using the identities amongst
contiguous hypergeometric functions given in Appendix A by eq.(A.17), I can be consid-

erably simplified. We find,

(1 —¢) Pi(z)  (1=e¥)(1—2) o
I= fow " ez [abi-ezmislee)
(1-2)2+ez) (1—22(1—-¢  €(1—2) B
T 2(1-2¢) 2:(1-20 (-39 (5.21)

Altogether, we find that the contribution to TC’%) for the region of phase space where

0 <y < (1l-—2z2)is given by,

| - B0 ™

TC(b.l)
Y13Y134 €2 ( 6)

Fy

X l B P;(Z) _a —(;21(126; 2k Fn(1,1-62-261~2)
(1 B 2)(2 N EZ) (1 _ 2)2(1 _ 6) 52(1 — Z) = o
T z(1-2¢) 22(1 - 2¢) " (124 >

As in the previous section, for the contribution from the 0 < y < ¥Ymin integral some

simplifications of matrix element and phase space can be made. Terms of O(y) can be

ignored,
PE
Pb(Z, y) N (Z) )
Y
and with the following change of variables
ya=vy3¢  and Y = Wmin,
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TCI(;bf) reads,

2 T%(1 —¢)
TC(bQ) _ N e _ —€ V=3¢ € ) = 2
B = -5 g () )™ ) 529
Combining these two results and reinserting the overall factor H, we find,
2 _ P 2 2e P)
Hxre® || = (1) (2 (a_) AN
Y13Y134 2N M? 27 27 ) T2(1 —¢)
e (1 =€)
—€ _ —2€ . 2e
x 27 (1= 2)™* (Ymin) T3 50
! Pe(z) | P(z) .  T(1 = 2€)
X262 {(— c + . (ynun) (1 — ,c) —F2(1 — 6)
1 —é2)(1 — 2)?
—( a 1(26) ) For(1,1 — 62 —2¢;1 — z)
- N2(1 201 _
_(1 2)(2 + ez) N (1-2) (1- €) N e(1 . z) (5.24)
z(1 — 2¢) 22z(1 — 2e) (1 —2¢)

Following similar steps, one can easily also obtain TC’}? [;l—;:’—;é—] The results of the
134
y15 and yp4 integrals contain Beta functions, whereas the integration over y generates

hypergeometric functions. We obtain,

2¢ 2
@ | Y _ N? -1 4y (&) ae; 1
i xTCp [y13y§34] - ( IN M? or) \ 2r | T2(1 —¢)

X z7¢(1 — 2)7* (Yonin) ™ 574((11_;263)_
><217 (1 ;(f)g;e)z [1 - Fu(1,1 - 62— 261 — 2)](5.25)

As with the contributions TC’%’” and TC};J?), since there is no factor of y in the
denominator of the integrand, the contribution TC}?f) where 0 < y < Ymin gives only a

contribution of O(ymi,) and can therefore be neglected.
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5.2.3 Contributions involving {ylslym}

As this part of the calculation of the triple collinear contribution to the v +1 jet rate at
O(aa,) presents some additional calculational difficulties, we will describe it in great de-

tail, although the proofs of all identities used are given in the Appendix A. The differential

1
Y13Y14

1 19 [Ymin 1-2 (1-2)y134 1
Fy [ } = 4(1-=2) 2 / dy13a / dy/ dyiy —
0 Y 0 Y14

TC(a)
Y13Y14 min

cross section TC’}(,%) [ ] is formally given by,

Y13b 1 ’ —1/2—6 a
X / dy13 — [(ylsb - y13) (y13 - y13a)] P (Z= ?J);
y Y13

13a
where P%(z,y) is defined in an analogous way to P%(z,y) and P°(z,y). As usual we
divide the y integration into two pieces and first present the calculation of TCI(‘-‘.I;,U, the
contribution to TCI(%) for the region of phase space where 0 < y < (1 — z).

Denoting the y13 integral as I, and making the substitution, y13 = (¥135 — Y130) X + Y136

we obtain,

1
I = (y13b - 3/13a)_2E /0 [X(l - X)]—I/Q_E [(yISb - y13a) X+ y13a]-1

-1
1|9 (v13a—v1238)X
Yi3a Yi3a

2 1 T%H1/2—¢) ( (Y130 — y13b)) o
= — Y134 Fp1,1/2 — €1 — 2¢, ——=] (5.26
(130 = 9130) y13¢ (1 — 2e) 2 / Y13a (5.26)

We wish to bring I into a form which allows us to perform the y14 and y integrals. Hence

we consider the following redefinitions,
y14 = v(1 — 2) Y134 and y=1t(l—z), (5.27)

so that, y1345 = Y134 (A £ B)? where, A = /(1 —t)(1 —v), B=Vzvt and,

(yise —y1zs) _  4AB 42 (5.28)

Y13a - (A=-B)P T (1+2)%
with Z = —% the integration boundary yi3, is then related to Z, A and B in the following

way,

A— B\? 1 130 .
1+ 2) = ( ) = . 5.29
( ) ) o A7 (5.29)
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With these definitions (5.28) and (5.29) for the argument of the hypergeometric function
and the lower boundary y,3,, both appearing in eq. (5 26), we apply the following relation
between two hypergeometric series of argument {—2- a +Z >} and {Z?%},

Fn (1, b, 2b, ( 12

'Tjgg)=(L+@2EﬂLW2—@b+uzzﬂ (5.30)

which is explicitly proven to hold for all values of z in Appendix A .

With the help of this relation (5.30), I can be rewritten as follows,

_oe 1 1 [2(1/2 —¢) < zvt )
= — Fy(1,1 l—€¢——F———),;
Aol e T ey e 7 R S A (e G U
—2¢ a 1 F(l ) ( zvt )
= € — Futl1 il — €6 ——7—— ),
(5.31)
where,
16° (ya136 — 3J13a)—26 = [t(l —t)v(l —v) 29334] )
TC’I(;av'l) [ylayu] then yields,
1 - 26 ym”‘ ! —€ -1—¢ pa
TC}(?nyl) = 471'(1 — Z) 2e-1 V—E F2 1— 6 /0 y134 26(1:1,/134‘/0 dtt (1 —t) ! P (Z,t)
X 1dv v N1 —v) LR <1 1+¢1— ——l)—t—) (5.32)
0 B HIEDIED

=r

For the calculation of I’, defining o = 1‘% and using the definition of Fy(a,b,c; z) in

terms of infinite series given by (A.8) we obtain ?,

. T(n+1+el(1—¢) /1 1t —ecl-n ¢
,_ n [ Qu ot (] — p)met 5.33
g ;P(n—l—l—e)F(l—l—e)xa , vy (5:33)

_ I(n=aI'(—n—c¢

= T(—2¢)

21t shall be noted that this series diverges for Z = 1. However this divergence is integrable and does

not affect the validity of eq.(5.33) as is proven in the Appendix A.
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where the last equality is explicitly proven in Appendix A. According to eq.(A.2) we also

have,
I'(=n—¢) = (=1)*" (1 +e)T(1 —¢)

l'(n+1+4¢ °
and I’ yields,
2 T(1—¢)? —zt 3
' = —— —~_ Fy|ll,—-¢l—¢—]. 5.34
¢ T(L - 2¢) 21(' © 6‘(1_15)) (5.34)
Inserting I’ back into eq.(5.32) and performing the trivial integral over y;34, we find

that,

a. QT —2e, —¢ —2¢ ! —€ —€ 1 a
TCI(W,YI) = 6—2(1 — 2’) 2 z (ymjn) 2 /0 dt ¢ (1 — t) m P (Z;t)

_zt
X Fy (1,—6;1 -6 _Zt)) : (5.35)

where P%(z,t) is given by,

Py = ZOU=2) i) [1 + (1—2)’(1 -1y

2t
—e(22 + 2(1=2)t + (1-2)0)
- z(1— z)t].
Rewriting P%(z,t) as a polynomial in ¢,
1 1
Ll pe = [2AL () + Ade) +tA ] 5.36
AT e = (A A + A (5.36)
where the index denotes the associated power of ¢,
1- 5 ae
A_i(z) = P(z) Ao(z) = —(—;2—)[2(1 —2) +ez(l+¢), (5.37)
Y
Ai(z) = L=2) g (5.38)

we can write,

1
TCI(:%yl) _ 271_(1_2)—252-5(%1”'11)—25 Z Aa / dt t—e+oz ) Fy (1; -l —g¢ (1 — t)

a=-1

=B,
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To evaluate B,, we rewrite the hypergeometric function present in B, in its integral

—zt 1 uzt 171
F21<1,—6;1—€;1_t> = —e/o du uw? [1+1—t]

and then split B, into I,, and I,, with integrands respectively proportional to % and

form,

[1 + %] —1. Partial fractioning, we have,
1 1
B, = —= [ i1 —peet

e Jo
1 17zt

x/duu*eu_l— [1+uz] i
0 1-t 1—-t

/ det=ete (1 — 1)~

+— / de(1 e lt_€+a+1/ du v [1 +

= lo + 1o

uzt ]
—t

For I, it is straightforward to perform the u and ? integrations,

ITA—-el'(l+a—c¢) -
. == . 5.40
M el (24 a— 2€) (5:40)

The second integral, I, on the other hand requires more effort,

1 1 zt 171
I, = i / dt t=tte(1 — t)—‘z_1 / du u™¢ [1 + v ]
0 0 1 -1t

Z 1
= / dt t=tHe(1 — )7t x
€ Jo

o |

We note that I, is only multiplied by % and it is therefore sufficient to expand J at most

up to the order of ¢,

1 uzi uzl 9
J = /(;du [1+1—t] —e/dulnu [1+1 t] + O(€)

= Jl - GJQ.

Performing the u integral in J;, we obtain,




such that I, becomes,

Lt - _ 1—t(1-2)
_ tt€+0’ __.t €
e/od (=1 ln( 1 -1 )

[ " dulnu / YO e (g —we)) . (5.41)

In the last line neither of the integrations u or ¢ has been performed yet, however, the

order of integration has been swapped. For specific choices of o, we expand I, as a series

in e. The integrals contain generally polylogarithms. For example, for @ = —1, we find,
l (1-1) n(l—1¢(1-
_— [ / " n( / i z))
—i—e/ dt +e/ &t lntlngl —1)
41— 1 _ —_ ] -
—6/ dt lntln(l t(l-2)) e/ &t In(1 —%)ln(1—t(1 - z))
t 0 t
In? u Inu
+ze/ dy — zc/ du Inz .
(1 —uz) (1 —uz)

Replacing the definite integrals by the di-and trilogarithm functions Li; and Lis, Sy,
defined in the Appendix A, we find,

1[ [=? )
I(a:—l)? = EI: (_6_ — ng(l — Z))

Following similar steps we can easily obtain I(4—o)2 and I(a=1)2,

1—
Tiamoyy = —% l—zlnz + e< —2zlnz — zLi, (—( z)) + zLig(1 — z))] , (5.43)

z
1 3 11 1 1
Ta=1)2 = - X [Z(l —z) te { (Z - Eﬂ'?) (1-2)— 3 [822 — 627 In(2)

+14 — 222 + 8z1n(z) — 42(z - 2) Li (— = 2))]

z

+i(—4+5z —2zInz — 2% 4 2Liy(1 — 2) +221n(z))
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#2(1 = 2 (Lia(2) + In(z) In(1 - 2)) - %(1 — 2)zln(z) } J (5.44)

F4)

The final result for TCI(;T) is thus,

1 N2 =1\ (4np2\* (o ae? 1
Hx TCEY = ( ) q
TR Y13Y14 2N M? 2 2 ) T2(1 —€)

—2¢ _—¢ —2¢ FZ(l - 6)
X (1= 2)"*2"(Ymin) _I‘(l——27)
xs S Au(z) (T + Loa). (5.45)

<

a=-—1
Turning to the contribution from the region of phase space where 0 < ¥ < Ymin,

TC’}‘:Q), we note that, as before, some simplifications of the integrand can be made. First,

. Pe(z)(1 — z)’

P(z,y) "

such that T'C %’2) is given by,

1 Ymin Ymin dy (1-2)yi34 1
7C) [—-—] = 4 P21 -2)"% / d / —/ dyq4 —
Py Yr91a ( )( ) A Y134 A Y Jo Yi4 Vi

Y13b 1 —1/2—¢
X / dy13 — [(yIBb - ?/13) (913 - y13a)] 1/2 -
Yy

13a Y13

Integrating out y;3 gives the same factor as before,

o 1 T(1—=2¢) Y13¢ — Y13b
16¢ —ypa) Py [ 1,1/2 — 1 — 26, ——— .
w16 (y13b Y13 ) Y170 F2(1 — 6) 21 ( / €; €

Y13a
Making the obvious change of variables,
Y14 = U(l - 2) Y134, Y = tYmin,
the regularising phase space factor yields,
16(y136 — Yr13a) = [31334 Yuin 2L V(1 — v)]_e (1-2)*,

where, 13, = £2(A £ B)? with,

1-z
A=+/(1-2)(1-v), B = /z0tYmin.
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Using the relation (5.30) between two hypergeometric functions of argument (1::-—22)2 and
2% as we did for the evaluation of TC’I(;?W'I) we finally obtain a hypergeometric function of

the form,

(1-2)(1—v)

The remaining integrals are trivial, and putting all the factors back, we find,

72 __ A 2
mxrel? | ——| = (R} () (%) (S)
v Y13Y14 2N ]V[Q 2% 27 F2(1 — 6)
F2(1 - 6) 1 —3e _—¢ —€ pe =
Finally, the complete result for this contribution is obtained as the difference of

eqs.(5.45) and (5.46), it reads,

1 N2 =1\ [4np2\* /a,\ (e 1
H TC(G) = (_s) R A
Xy thylj ( oN ) <M2> ox) \2r ) TP — o

t min
Fyy (1,1 +el-¢ ——y—) =1 + O(Yumin).

(1= 22 (i) ™ =g
14 1 B
x{§ 3 Ale) (s + )+ 5o (12 PC(z)} ,

(5.47)

where the I, are defined in egs.(5.40) and (5.41) and the A, are given by eqs.(5.37) and
(5.38).

Summary

In this section we have completed the calculation of all terms contributing to the singular
factor from the triple collinear region of phase space. For some of these terms we have
here only given the unexpanded form. In Section 5.5, we will develop the remaining un-
expanded hypergeometric function in € series up to O(€®) and, after some rearrangements

of terms, we will give the final result for the triple collinear contributions to the v +1 jet

rate at O(aay).
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5.3 The soft/collinear contribution

The soft /collinear configuration arises when the photon is collinear to the quark and the
gluon is soft as illustrated in Fig.3.2.(c). In order to evaluate these contributions, we
need first to determine the relevant approximations for the squared matrix elements and
phase space in the soft/collinear limit and then integrate the unresolved variables over
the soft/collinear phase space region.

The soft/collinear region of phase space is defined by,
Sey = 513 < Smin and  Sgg = 14 < Smin,  Sgg = 524 < Smin; (5.48)

as one could have expected. In this region we require s,, = S13 < Smin since the photon
and the quark are collinear and s,y = $14 < Smin, 8¢ = 524 < Smin as the gluon 1s soft.
Unlike in the triple collinear region of phase space, s34 is unconstrained and may also be
less than smin in the soft/collinear region. There is however no overlapping between these
two regions because in the triple collinear region we require $s4 > Smin-

In the soft/collinear limit, the photon and the quark cluster to form a new parton, the

parent parton () such that,

p1+Pps = po, (5.49)

and the energy of the gluon tends to 0 such that p; — 0. The photon and the quark carry

respectively a fraction z and (1 — z) of the parent parton momentum pg,

ps=2zpg, pi=(1-2)po. (5.50)
The invariants s,z = S12, Sy = S23 are given by the following,
si2=(1—2)sgz=(1—2) M? and So3 = 2802 = z M?, (5.51)

where M is the invariant mass of the final state.

In this section we will present the factorization of matrix element squared and phase
space in the soft/collinear limit defined above and evaluate the soft/collinear contribution

to the differential v +1 jet differential cross section.
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5.3.1 The soft/collinear limit of the | M |?

In the soft/collinear limit defined above, the matrix element squared for the scattering of

a quark-antiquark pair with a photon and a gluon factorizes,

|/\41234|2 - 18304}1/501(2,824>513;514»5134) |MQ§|2~

soft/col
P134—+Q (27324;513;314; 3134)

As usual, [Mg;|? is the two-particle matrix element squared,
defines the soft /collinear approximation to the squared matrix elements. This soft/collinear
factor is obtained by setting y = 0 in the triple collinear matrix element squared, P34—q,

given in eq.(5.5) and is therefore,

s0 co 4 S + 1 —z)8 - -
PIBA{-t—{Ql(Za S24, $13; S14, S134) = ———— ((1 —z)+ 14 ) 13> P‘(z), (.3_.32)
513514524 S134
In terms of the scaled invariants,
soft/co 4 y1q + (1 — 2)y13 .
P, fi/ : =—I(1- Pé(z). (5.53
131-q (% Y24, Y13, Y14, Y134) MOy15y14y24 z) + e (2). (5.53)

5.3.2 The soft/collinear limit of the phase space

We would like to determine the soft/collinear limit of the four-particle phase space as
given by eq.(B.6). In this limit the 4-particle phase space is expected to factorize into
a soft/collinear factor ngi)ﬁ and the known 2-particle phase space ngd). Using the
definitions of $y9, S3, o4 in the soft/collinear limit, given in eq.(5.51), the product of the

integration variables {s;;} in the 4-particle phase space can be rewritten,

dsis dsgy dsyg dsyp dsyz dsas 6 (812 + 813 + S14 + S23 + 824 + S34 — M2>

- dy13 dy24 dy14 dz dy34 dy1345(y134 — Y13 — Y14 — y34)d3Q2 6(5@2 - JV[2)1W10 s
N e’

where we introduced the integration variable 34 via a é-function, just as we did in the

calculation of the triple collinear contribution in the previous section. Replacing the
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factors of 27, we find that,

— d _ —
(27)*22d RO (M, pa, pa, ps, pa) — (27)2 AR (M, pg, p2) x (27) XA R ot (1, P2, P, Pa),

d
},/CO, (p1.p2,p3.p4)

(5.54)

dP!

S0

where,
dRii}t/ool(p17p2ap37p4) = 274 dQy_, dQy_3 M [M?)*

xdy134 dle dy14 dy34 dz dyoq 5(y134 — Y13 — Y14 — y34)

x[-Af{}%[—A;’}_ . (

This is similar to the triple collinear factor given by eq.(5.5) with y replaced by yaq.

o=

(&7

55)

As 1134 is unconstrained in this region of phase space, we choose to rewrite Al as a
quadratic in y;34. In other words when performing the phase space integrals we will first

integrate over y;34. With the definitions of the invariants 12 and 93 in the soft/collinear

region of phase space,
1
—Aj = 16 ((1 - 2)2(?/1346 — 1134) (Y134 — y134a.));

with Y134a,b given by7

1 .
Yi34ab = ——(yw(l - Z) + Y14 + Y13Y14 + 2\/y13y14y242)-

1—2z

5.3.3 The soft/collinear limit of the differential cross section

As in the triple collinear limit, the differential cross section factorizes in the soft /collinear

limit. It can be written as the product of g, the two-particle cross section and a singular

soft /collinear factor, SCp.dz,

doy — SCp,dz X 0y, (5.56)

where,

Nz -] o\ [a€l A/ 9\ @ )
SOF’YdZ = ( IN ) <§7—F> (2—7:) 4(27‘-) <ﬂ) /dPsoft/coIIMsoft/coll ;
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where,

2 _ soft/col
IMsoft/coll = P134ﬁ;Q (27524,813;51475134);

and,

AP} et = (20) ARG (P12, s, o) (5:57)
To evaluate the soft/collinear differential factor SCp.,dz we need to integrate | M, /collg,
given by eq.(5.52) over the soft/collinear phase space given by eq.(5.55).
As in the previous section, it is useful to organize the calculation in terms of the
behaviour of the matrix elements with respect to the invariants. We therefore decompose
SCp.,dz as follows,

a 1 1
SCp,dz = Hdz x (30}3 [——} +5cf [——D : (5.58)
Y13Y14Y24 Y13Y14Y24Y134

a b . . . .
where, S CI(;W) [msy}wm] and SC 1(;7) [m] are respectively obtained by integrating

the first and second term of Pf;{i{g’l as given in eq.(5.52) over the soft/collinear phase

space.

Before we present the calculation of each of these two contributions to SCpy let us
note the following. As we mentioned before we will write the Gram determinant as a
quadratic in y;34 and carry out the y;s4 integration first. The integrations over the other
unresolved variables y13, y14 and 1,4 will be performed subsequently. Unlike for the triple
collinear phase space region, the positivity requirement of —Aj only fixes the boundaries
on the y;34 integral and does not constrain the other integrations which are therefore

bounded by the slicing parameter ymin.

Returning to our derivation of the soft/collinear cross section, we find that the con-

tribution SC’,(:?W) [ ! ] reads,

Y13Y14 Y24

@ 1 Ymin d Ymin d Ymin d
SC’},W) I:__—} = 4 / _yli/ y24/ Y14 Pe(z)(l _ Z)
Y13Y14Y24 0 Y13 JO Y24 JO Y14

~1/2-¢

Y134b 9
X / dyi34 [(1 - Z) (?J134b - y134)(y134 - 9134a)]
Y

134a
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Performing the y,34 integration, and using the usual identity for I' functions, we obtain

the regularising phase space factor,

I?(1/2 — e 2 g - (1 - 2e
T(1 = 26)) (11545 — Y134a) (1 — 2)727" = 7 [2y13914y24) (1~ 2)7" ————Fg(l — e;'
The other integrations are now trivial, such that,
. 1 N2~ wu?) " e?
rscti] - - (57 (2 2) (B
Y13Y14Y24 2N M 27 27 ) T} (1 —¢)
1 -3¢ pe —€ ==
< () PH(2) (5.59)
For SC}Q [—1—] on the other hand we have to evaluate,
Y13Y14Y24 Y134
1 Ymin dy13 Ymin dy24 Ymin dy14 )
o[l < [ e et
= Y13Y14Y24Y134 0 Y13 JO Y24 JO Y14 (2) laa + ol )

Y1346 —1/2—¢
/ AL [(1 - 2)2(?/1341; - 3/134)(?/134 - y134a)] .
y13¢a Y134

Because of the factor of {yllj}, this integral is rather more tricky to evaluate.
As in the case of the evaluation of TCI(;GAY) in the previous section, the first phase space

integration gives rise to a hypergeometric function,

y13ab 1/9—¢
Lizg = / Yiss [(3/1341; - ?/134)(?;’134 - y134a)] 12
Y134a Y134

I'(1 — 2¢) —2e 1 Y134a — Y134b
= 70— 16° — Y1340) Fy 11,1/2 —€,1 — 2¢;, —/————— | .
Wrz(l —¢€) (4120 = 9130 Y1340 . / / , Y134a

With the change of variables, Y24 = tYmin, the argument of the hypergeometric function
reads,

Yi3da — Y1346 _ —44/2Y13Y141Ymin

Y134a y1a + y13(1 — 2) + Y13tYmin — 2¢/2Y13Y14Ymin

while,

1 (1-2)

Yisaa Y14 T Y13(1 — 2) + Y13tYmin — 2V ZY13Y14 Ymin

To simplify the notations we temporarily make the identifications A = y14 + y13(1 — 2)

and o = zyyay14t. Neglecting all terms of O(Ymin),

I'1 —2e¢
Iiza X 4y +y13(1 = 2)] = (23149138 Ymin) ™ P*(2) 47 Fg(l - 6;
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A —4 min®
x— D Fy (1,1/2_6,1_263_—_ \’y“)

A— 2\/ Ymin X A-=2 YminC¥
e mer L1 —2¢ )
= 4o vnemis tamin) P T % T

A priori it seems that I, contains terms of O(y/ymin) Which we have not encountered
anywhere else in this calculation. In fact, one could argue whether it is “allowed” to
neglect terms of this type at all. Fortunately it turns out that I4, does not contain
explicit terms of O(,/Ymn) but Liss = 1 + O(Ymin) as we show below.

By definition of the hypergeometric function we have,

—4\fYmin ) _ i[ —4\/YrminCt }" TC(n+1/2 —€)(1 — 2¢)

F21 (1,1/2—6,1—2

SA—2 YrminC¥ A =2 Jmme] T(1/2 —€)T(n+1 - 2¢)
minac
= 14 4 Oy,

where we have truncated the sum at n = 1 since for larger values of n the terms are of

O(Ymin)- The coeflicient C is easily evaluated,
o - I'(3/2—el'(1-2) 1
T OT(1/2-eT(2-2¢) 2

such that inserting the expanded hypergeometric function back into I, we have,

-1
/ 'min & min
I, = (1 _ VY ) (1 —2——\%“) =1+ O(Ymin)-

A
Setting I!,, to 1, the evaluation of the remaining integrals is immediate and we obtain,
o] - -(57) () 8) ()
Y13Y14Y24Y134 2N M? I7 or ) T2(1 — )
Xglg (Ymin) = P(2) 27" (5.60)
Summary

Collecting the two terms, the full contribution to the v + 1 jet differential cross section

arising when the photon is collinear to the quark and the gluon is soft reads,
N? =1\ [4rp*\* /a ael 1
z = _5 PR ____d
5Crd ( 2N ) (M?) (27r> o JT2(1—¢)
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2 —3¢ _—¢ pe -
x|~ (Ymmin) "¢ 27°P(2)] . (5.61)

5.4 The double single collinear contribution

The double single collinear region of phase space is defined by the following constraints
on the invariants,
Sqy = $13 < Smin, Sqg = 524 < Smin, (5.62)
with the additional requirement,
S99 = S14 > Smin, (5.63)

as the gluon is collinear to the antiquark but is not soft. This configuration occurs when
simultaneously, the photon and the quark form a collinear pair while the gluon and the
antiquark are also collinear. This is illustrated in Fig.3.2.(c).

In order to evaluate these contributions we need first to determine the relevant approx-
imations for the squared matrix elements and phase space in the double single collinear

limit and then integrate the unresolved variables over the double single collinear phase

space region.

In this limit, the photon and the quark cluster to form a new parent parton Q such

that,
P1+P3 =P, (5.64)
while the gluon and the antiquark cluster to form a new parent parton, Q with,
P2 + Pa = Ppg; (5.65)
The photon and the quark carry respectively a fraction z and (1 — z) of the parent parton

momentum pq,

Ps = 2z pQ, pr=(1-2) pg. (5.66)
whereas the gluon and the antiquark each carry a fraction y and 1 — y of the parent
momentum pg such that,

ps=ypg, P2=(1-y)po (5.67)
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In this section we will present the factorization properties of the four-particle final
state matrix elements and phase space in the double collinear limit and evaluate the cor-
responding differential cross section. We will however see that the factorization procedure
is slightly different than in the previous cases (triple collinear, soft/collinear contribu-
tions). In particular, we will see that the invariants which are not less than smi, need to
be defined slightly differently when evaluating the matrix elements and the phase space

in the double single collinear limit.

5.4.1 The double single collinear limit of the | M |?

In the double single collinear limit defined by eqs.(5.66, 5.67), the invariants s,z = 12,

Sqg = S14, Sgy = S23 and s,y = s34 can be redefined as follows,

s12. = (1—y)(1—=2)sg5=(1-y)(1~-2) M?

s;y = y(l—2)sga =y 1—2)M?

s;s = 2(1—y)sgg=z(1—y)M*

s34 = yzsgg = yzM?, (5.68)
where M is the invariant mass of the final state.

Note that unlike in the soft /collinear region, s34 is here precisely defined. Consequently
the triple invariant s34 is also fixed, s134 = S13 + S14 + S34 = yM?. This appears to
reduce the number of independent variables by one, however, we will show that, correctly
integrating out 34 yields the same result than considering it equal to y.

Using the redefinitions of the invariants given by eq.(5.68), the four particle matrix
element squared factorizes in the double single collinear limit as follows,
|-"/11234|2 - P13—>Q;24->Q(Z>ya313>324))|MQQ12 (5.69)
with,
P13—>Q;24—>Q(37 Y, 13, 524)) = 4P13~,Q(Z, 313)P24_.‘Q(y; 324)
4 1 1

= P ). (5.70)



In other words, the double single collinear factor is the product of two simple collinear

factors multiplying the two-particle squared matrix element [Mgg!*.

5.4.2 The double single collinear limit of the phase space

In the double single collinear limit $13, So4 < Smin, and S14 > Smin, the four-particle phase
space factorizes into a double collinear phase space factor: dR((iiLb,e(pl, p3, P2, P4) and the
two-particle phase space, ngd) (M, pq,pg). However to write the four-particle phase space
as the product of dR@ (M, pg,py) and dR((;iLble one needs to be careful.

In fact, if one uses the redefinitions of the invariants s;j given by eq.(5.68), there are
too many integration variables present in the four particle phase space to define dz and
dy. To show the factorization property of the four-particle phase space in the double
single collinear limit we proceed therefore as follows:

We first insert fdsgg 6 (SQQ - MQ) in the four-particle phase space (B.6) in order to
obtain the necessary §-function to build dR4(M, pg, pg). We then consider the following

redefinitions of the invariants,

Y12 = 1 — y13 ~— Y14 — Y23 — Y24 — Y34,
Yoz = Y234 — Y34 — Y24,
Ysza = Y134 — Y13 — Y14,

Y14 = 3/(1_2);

Y234 = Z. (571)

The integration variables are thus, z, ¥, y13, Y24 and y134. We then write (—Af) as a
quadratic in y,34 and integrate over y134. When discussing the factorization of the matrix
elements, we saw that ys4 and hence y134 were fixed and replaced them respectively by
zy and y. However, in order to see the factorization of the phase space we are forced to
integrate over y;34. A priori there seems to be an inconsistency in the procedure used to

obtain the factorization properties of matrix elements and phase space.
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A closer look enables us to assert that there is no inconsistency in this procedure. In
fact, the boundaries of the y;34 integration turn out to be y134,5 = ¥ & O(ymin). Hence
by replacing y134 by y in order to obtain the double single collinear matrix elements we
make an error of O(Ymin), which we do throughout this calculation and it is therefore a
consistent approximation to make.

With the definitions of the invariants given by eq.(5.71),

1
—Ay = 16 [(1 — 2)* (4134 — Y1340) (Y134 — y134)] ’

where, up t0 O(Ymin),

1 —
Y134ap = Y +2 y13y24zy( y)
1-2)

Furthermore, with the same redefinitions of the variables y;; the measure of the four-

particle phase space becomes,

/d513 dsgq dsis dsqg dsgz dszg 6 <812 + 813 + S14 + S23 1+ S24 + S34 — M2)
N s’

— d813 d824 /d5134 dz dy /dSQQé(SQQ — J\/_f?) 11/14 N

— dyi3 dyoq /dy134 dz dy /dngé(sQQ — ]\/[2) M

Changing variables once more, considering yi34 = (1 — 2)(2(¥1346 — Y134a) + Y134a), in this

limit the four-particle phase space reads,

dRc(ld)(j\47 p2ap27p37p4) - ngd)(]V[/ pQ/pQ) X dREI‘iLble(pltp%p&p‘l): (572)
where,
AR (1, payps,pa) = 27404, dQus dyis dyss dedyM* [MP]4*

< [162(1 — 2)(y(1 —9) o] [ defe(l =)V

=16¢7w —2—-—§(1(1_33

= 727405 dQy_s dys dyas dedyM* [M7)*

x [2(1 = 2)(y(1 — y) yrsyaa] -1%;_23
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This z integration plays the role of an angular integral over the polar angle between the
(¢—~) and (§— g) planes. Replacing the factors of 27 and integrating out the unresolved
angular variables, we find that,

d .
dP(i(ongle(plap37p2>p4) = (27?')2 deRl(i((i)?u,ble(plﬂp37p27p4)

B (471')26M4 —c
= M(1672)2T2(1 — ¢ (dy” dz[2(1 = 2w )
X (dyu dy[y(1 = y)yai| _e> ; (5.73)

which is exactly the product of two single collinear phase space factors as one could have

expected.

5.4.3 The double single collinear limit of the differential cross
section

As with the previous double unresolved contributions, the integration of the resolved two
particle matrix elements over the two particle phase space yields a factor of . This is

multiplied by the integral of the approximation of the unresolved matrix elements over

the unresolved phase space. Explicitly, we have,

doy = DCp,dz X 0y, (5.74)
where,
N2—1\ (a,) (e i [, 2)% (@ 2 575
DCpydz = ( 5N > (2—7) (ﬁ) a(2r)* (u?) /deoubzelMdoubzel . (5.75)
with,
| Maouste|” = Pr3—.0124—0 (%, Y5 513, 524)- (5.76)

Identifying terms, we find,

N?2 -1 4y’ % a, aeg e e e 1
bep, = ( aN ) (1\/[2) <2—7r> (27 S =) P C gy

Ymin Ymin 1 e ¢
X /0 dyrs gz~ /0 dys yo /yM dy [y(1 —9)I" P(y).
1

=lcol

142



The constraint ¥4 > ymin fixes the lower boundary of the y integral to be =i since in
the double single collinear region y14 = y(1 — z). L.y is straightforward to calculate and
is given by,

()™ e (—9(-9 21-9
I = 6—3[2(%@) (1—-2) — 2(1 —2¢)  T(1—2¢)

The double single collinear contribution to the differential cross section then finally

reads,

ver= (577) (55) (32) (%) pr=ge it -7
x@z—c[-z(ym)—ﬁ(l—zr— S R

With the evaluation of the double single collinear contributions we have completed
the evaluation of all two-particle unresolved real contributions to the v + 1 jet rate at

O(aa,). In the next section, we will present a compact answer for the sum of these three

contributions.

5.5 Sum of the real contributions

In this forthcoming section we present the results obtained for the e expansions of the three
double unresolved real contributions to the differential cross section; the triple collinear,
the soft/collinear and the double single collinear contributions.
We first note that the e expansion up to O(e?) of Fyi(1,1 —¢€;2—2¢;1 — z) is given by,
Fn(l,1—¢2-261—2) = F221_—2:) / dt t7¢(1 =)™ 1 —t(1 — 2)]” -t
(1 —2¢) (1—2¢)

BRECED <1—z>l‘1“

+e (QLig(l —z)+ %ln%z))

+e <4Li3(1 )= 28p(1 = 2) %1113(2:)
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(&

=I

(o8]
S’

—9Lis(1 — 2)In(z) + %ln(z))]. (.

This is needed for some terms of the triple collinear contributions.

Collecting together the results for the triple collinear contribution to the differen-
tial cross section (equations (5.17), (5.18), (5.24), (5.19) and (5.47)) and expanding the

expressions as series in € where we have not done it so far, we find,

1 datriple

= TCp,

- = () (5F) ) ()
X{é[ln(z) (1 _ i) 1= 223PE) o= )Pz - 2 ln(ymjn)Pe(z)}

2 4 2
+£[ln(z) In(1 —2)(—242—-2P(z)) +In(z) (_1 _ 54_3 n 3P;(Z)>

€

oy dz

i) (—5 4+ 22) a1 - 2ype) - 4 1 - TE
#hu(1 ) (2= 248 P)) 11— 2) (242 - P+ T

dz
+ 1n(Yrmin) < -2+ > +3P(z) +1In(z) (=24 z + 2 P(2))

2 1In(1 - z)P(z)) + 102 (Ymin) 5P(z)}

—1 477 (_1_ 27 ﬂ:’l) +1n(z) (E _Lte 711(2))

3 12 2 4 4 2
AT S
+1n(2)In(1 — 2) (2 + 972 — 3P(z)) +In(z)Lio(1 — 2) (4 — 2 2)
(- 2) (24 -52—2 3 P(2)) +In(1 = 2)Lia(1 — 2) (4 = 22 + 2 P()
+2—z—z _7P(2) + In%(2) (% - %) () n(1 - =) (3 - 3—2'3 +P(2))




Hln(2)In¥(1 = ) (2 — 2 4+ 3 P(2)) + In(1 - 2) (% 2 1P(2))

F4

+Lig(1 = 2) (=4 422 — 2 P(2)) + S12(1 = 2) (2 — 2 — 3 P(2))

PN 3 APE) Ly iy = 2) 49 P(z)c(3) — 120 —;)FQP(z)

+ 10 (Ymin) (Li2(1 ~2)(4—22+2P(2))+In(z)In(1 —2) (4 =22 + 2 P(z))

+1n%(2) (3 -2 P(z)> - 2”23 (&) L a1 = ) (4 4 2 — 6 P(2))

(o) (24 2= 3P()) +5 (a1 = 2))" P() + -ty 7P(z))

11 2

+ 10% (yomin) <ln(z) (2—z=5P() 42— —= —3P(z) ~In(1 - z)P(z))

191 3 min P(z

19 (i) P(2) 519
3

where P(z) is the 4-dimensional splitting function, it is equal to [1 + (1 — z)?)/=.

Similarly, collecting together the results for the soft/collinear contributions (equa-

tions (5.59) and (5.60)), and making similar expansions in €, we find,

_1_ dgsoft/col
Jo dz

= SCpy
B 1 N2 =1\ [4rp®\* (a) ae?
T2l —¢) \ 2N M? o/ \ 2r

><{i [—2P(z)] + 612 [22 4+ 2P(2) In(z) + 6 1n(Ymin) P(2)]

3

[0

41 [ — 92 In(2) — P(2)1n2() + 1n(gmin) (=62 — 6P(2) In(2))

9 1n%(yomin) P(z)]

P(z) In’(2)

S 4 In(ymn) (621n(2) + 3P(:) n'(2))

+z In®(2) +
4+ 10* (Ymin) (92 + 9P(2) In(2)) + 9ln3(ymjn)P(z)}. (5.80)
The intermediate results for the double single collinear contribution are given by equation
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(5.77), which after expansion in the ¢ — 0 limit yield,

1 dadouble

o dz

= DCp,

- s () (5 () (59)
x{ = {2 In(1 — 2)P(z) — 31;& -2 ln(ymm)P(z)J

+%[ —21n(2)In(l = 2)P(z) + 37 - 7P2(Z) +In(1 — 2) (—‘22 + 31z) Pz(z)>
+3 In(2)P(z) In2(1 — 2)P(2) + m2P(z)

2

+ In(Ymin) (2 z+3P(2)+21In(z)P(z) —4 In(1 — z)P(z))
+5 1112(ymjn)P(z)}

+EE (1 2) (z - 3P(2)) +1n(z) (—3_2 + 7_11@)

2 2

+? (—g + P_iz_)) +1n%(2) In(1 — 2) P(2) + In(2) In*(1 — 2) P(z)

3P(Z)) _ In(l - z)m®P(z) 7P(z) - 3 In*(2)P(z)

+1In(2) In(1 — 2) (22 -~ 1

In*(1 — 2)P(z 3z  TP(z) In(z)7*P(z) .
+ ( 3) ()-’rln(l—z)(—T—F 5 )— 3 +4 P(2)((3)

+ 10 (Yrmin) ( —3z+7P(2)+1n(z) (22 -3 P(2)) — 2W23 (=) _ In?(2) P(2)

+1In(1 — 2) (42 — 3 P(2)) + 2 In*(1 — 2)P(z) + 4 In(z) In(1 — z)P(z))

+ 102 (Yumin) (=5 2 — 3 P(2) — 5 In(2)P(2) + 4 In(1 — 2) P(2))

19 1n°(yomin ) P(2) 5
— 3 } (5.81)
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The sum of all three two-particle unresolved real contributions therefore reads,

1 da%U)

Tg dz

= TCF,Y—}-SCF,Y-FDCF,Y
_ 1 N2 -1\ [drp?\* <as) e’
- I2(1-¢ \ 2N M? 2/ \ 2

x{ 1 ~2p(2)

€

+£:7 [4 In(1 — 2)P(z) + In(2) <1 - % + 2P(z)) T 74_2 —3P(2)

+2 ln(ymjn)P(z)}

%[—% 1%" 7 P(2) + Lig(1 — 2) (=2 4 2 — P(2))
+In1 - 2) (-2 -~y gp(z)) T+ In(2)In(l = 2) (~2 + 2 — 4 P())
+1n(2) (—1 - 1—15 + 3P(z)) +1n?(2) (-% + 3? - P(z))
_41n%(1 - 2)P(2) + 5ﬁ2§(2)
1ntsn) (1n(2) (-2 + 2 = 2 P(2)) = 6 In(1 = 2)P() 2= -+ 6P(2))
10 (gmn) P2

~1 42 (-% _ 37% 3’1(2)> +1n(2) (% _ %iJr?P(z))

In(z)e? (‘% | g ~ 2133(2)) T n(2) (% N % ~ 3132(z))

+1In(z)In(1 — 2) (2 + %’i - g@) + lﬁ(z)LiQ(l —2)(4-22)

+In2(1 - 2) (2 + 72—2 _ 15];(2)) (1 = 2)Lip(1 = 2) (4 — 22 + 2. P(2))
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6 12 3 2

&

+3?TZ — 14 P(z) + In(2) (Z_ Tz, P(z)) +1n(1 - 2) (% P ‘21P(z))

+102(2) In(1 - 2) (3 - 37 + 2P(z)) +ln(2) In?(1 = 2) (2 — = + 4 P(2))

+Lig(1 — 2) (=4 4+22—2P(2)) + Si2(l — 2) (2 -z =3 P(2))
8 In®(1 — 2)P(2) 51In(1 — z)7?P(z)
+ 3 3

+ 10(Ymin) (Lig(l —2)(4-22+2P(2))+1n(z)In(l —2) (4 — 2z + 6 P(2))

+4Liy(1 — 2)z+ 13 P(2)((3) —

1

-~J

z

472P(2)

3
9z

47 In(1 = 2)P(2) %
+14 P(2) + In(2) (2 TELR 6P(z)> +1n%(z) (3 _ 22 P )

+In(1—2)(4+52—9P(2)) -

S

+1n? (i) (3 10(1 = 2)P(2) +1n(2) (2 = 2 = P(2) 42— 372 ~6P(:))

_u 1n3(y;in)P (Z)}. (5.82)

5.6 The approach with “strong ordering”

As a check of our calculation of the real two particle unresolved contributions to the differ-
ential cross section, we rederived it in two strongly ordered limits. Instead of considering
particle 1 and particle 2 to be collinear at the same time to particle 3, we consider the
two different contributions; either particle 1 is collinear to particle 3 followed by particle
2 collinear to the cluster of particles 1 and 3, (denoted by (13)), so that (s13 < s23), or
particle 2 is collinear to particle 3 followed by particle 1 being collinear to particle (23)
where we have (s33 < $13). In general, in the strongly ordered approximation, each of the
unresolved real contributions (triple collinear, soft/collinear and double single collinear),
gets “replaced” by the sum of two strongly ordered contributions. Each strongly ordered

contribution is obtained by considering a different strongly ordered limit for each singular

region.
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As a result of this calculation we will find that the strongly ordered approximation
correctly reproduces the leading divergences —those proportional to C’)(E%) or 0(;12—) which
are associated with the leading and next-to-leading logarithms — but does not generate
the correct subleading divergences proportional to O(%) (corresponding to the next-to-

next-to-leading logarithms) or the non-logarithmic terms of O(1).

5.6.1 The strongly ordered limits of the triple collinear differ-

ential cross section

In this section we will determine the two strongly ordered limits of the triple collinear

matrix element squared, phase space and differential cross section.

The strongly ordered limits of the triple collinear matrix element squared

In the strongly ordered collinear limit, s13 < $14, so that first 1 and 3 become collinear to

form a cluster (13) followed by (13) and 4 becoming collinear, 1.e.,
1+3+4 5 (13)+4— Q.
The momenta can be expressed as,
m=(1-a) P(13); Ps = @ P(13); ps = b pg, pP(3) = (1 —b) po, (5.83)

such that b=y and a = z/(1 — y).

In this strongly ordered limit, the triple collinear factor Py34—.¢ (z,y, $13, S14, S134) Given
by eq.(5.5) factorizes into the product of two simple collinear factors of consecutive
Altarelli-Parisi splitting functions divided by the small invariants in this limit. More
precisely, the Altarelli-Parisi splitting functions are functions of the momentum fraction

a and b or equivalently = and y, while the small invariants are si3 and s(13)s, S0 that,

z -
P134—>Q(Z, Y, 513, S14, 3134) - P13~.(13) (m, 313) P(13)4—.»Q(y> 5(13)4); (0-84)
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where P,,_..(z, $a) 1s given by eq.(1.30). In this limit, s3)4 ~ s134 while s34 = (1 — 2z —
y)/(l — Y)S134-

Alternatively if we let 1 and 4 become collinear and form the cluster (14), followed by
(14) and 3 becoming collinear, i.e. in the strongly ordered limit where s14 < 513, then we

have the following two-stage process,
1+43+4—(14)+3— Q.
Introducing the momentum fractions e and b as before,
p=(-a)pay, p=apus,  3=bpe,  pan=(1-bpe, (585

such that @ = y/(1—2) and b = z. In this limit, the triple collinear factor again factorizes

into a product of two consecutive Altarelli-Parisi splitting functions divided by the small

invariants namely,

P134—>Q($,?/,813, S14, 5134) - P14—.»(14) (ﬁ,sn) P(14)3~4Q(Z;5(14)3)- (5-86)
The two small invariants are s14 and s(14)3 ~ 134 while s13 = (1—y—2)/(1 - z)s134.

At this stage, before we determine the strongly ordered limits of the triple collinear
phase space and differential cross section, we would like to be able to decide when one or
the other of the strongly ordered approximations is a “good” approximation to the trfple
collinear matrix element squared Pis4_.g. As an example let us consider the strongly
ordered collinear limit of Py34 .o when y13 < y14. We define the ratio r = z’% and the

ratio of the triple collinear factor and its strongly ordered limit

Pias_.q

R(r) = .
(r) Pi3_3) Pasya—g

Figure (5.1) displaying R(r), will help us to determine the quality of the approximation.
Here we have fixed z = 2/3, y = 1/6, y14 = 1/100 and select various values of y134. In the

strongly ordered limit, 34 is fixed, y134 = (1—y)/(1—2—y)y14 = 5y14, shown as a solid line
in figure 5.1. As r approaches 0, the ratio R(r) approaches 1, indicating that the strongly
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YI34 = )’14 * 5 _— P
12 Llyyu=ye*4 . T |

Yiu=Ya*6 e

Figure 5.1: The ratio R(r) (for y13 < y14) as defined in the text.r We choose, z = 2/3,

y = 1/6, y14 = 1/100 for convenience and different values for 34 as a function of yy4.

ordered limit is indeed a good approximation when y;3 < y14. When r increases, the
ratio R(r) increases as the strongly ordered approximation becomes significantly smaller
than the “full” approximation Py34_.¢. However, as soon as we allow y134 to deviate from
its strongly ordered limit value, the approximation breaks down over the whole range of
r. This is shown by the dashed and dotted lines. In practice, however, y134 is constrained
by the Gram determinant, so that the deviations are still relatively small.

In summary, the strongly ordered limit of the matrix element squared given by eq.(5.84)
is a good approximation of the “full” matrix element squared Pi34—.q only if the require-

(1-v)

ments y13 < Y14 and yi34 = i=g—n) Y14 are both satisfied.

The strongly ordered limits of the triple collinear phase space and differential

cross section

In the two strongly ordered limits the phase space also factorizes and becomes the product

of two simple collinear phase space factors.
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In the first strongly ordered limit, defined in eq.(5.83), s;3 < $14, we find that the

phase space factor takes the form,

dP dy(13)4dy13dadb X [a(l - a)]_e[b(l - b)]—e(y(13)4)_6(y13)_6

rzple

—14¢

~ T (l=-z—-y)(1-y) ¥~ (yasys) (y13)"°dz dy dyasys dyis,

such that in this strongly ordered limit, the contribution to the differential cross section

reads,
2 2\ 2¢ 2
Tcstrong (N =1 Awp (as) ae; 1
N 2N M? 27 2r ) T?(1 —¢)
Ymin e (1-v)ya3) e
X /0 dyas)s (y(13)4) ! /0 dyas (va3) !

1-2
X/ dy z7[1 —y — 2]y~ (1 —y) "' P* (
v

min

N? -1 47 p? x (as) aeg 1 1 ( )—25 —e
= ) =) =———— —(Ymin) 2
2N M? 27 2r ) T2(1 —¢) 2¢? Y

x/yl_zdya—y—z)-f y Pe( : )P‘(y) L (5.87)

min l_y ]_—y

=) rw

l—y

Since 0 <a <1 and a=j
implies that the y;3 integral is bounded by (1 — y¥)y3)4-
On the other hand, if s14 < s13, in the strongly ordered limit defined by eq.(5.85) the

phase space factor takes the following form:

dPOY) ~ dyaasedyisdadd x [a(1 — a)]7[b(1 — )] “(yaaa)"“(314)~°

~ YT (1 =2 —y) (L — 2) T T (Ya)s) T (y14) T dzdydynayzdyra

In this limit z, y and yi3, y14 are interchanged with respect to the previous strongly

ordered differential cross section, so that,
Tog® = N1 () (a—> aeg 1
N 2N M? 27 2r ) T2(1 —¢)
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Ymin e (1-2)y(14)3 e
X/o dy4)3 (y(14)3) 1/0 dy14 (y14) !

1-z
X / dy y™ [l —y— 2] 27¢(1 — 2)_1+5 Pe <——y—) Pé(2)
y

min 1‘—2

N2 — 1\ [47p2\ ¥ /a, ae? 1 1 o
= (-) ) _.(y . ) 2¢ 27¢
2N M? 27 21 ) T2(1 —¢) 2e2™"

X/H(l B P“‘( Y ) Pe(2) 112’ (5.38)

Ymin 1—2

where the y integral is bounded by 1 — z as b = = < 1 and the y;4 integral is bounded

by (1 — z)y(14)3 since s14 < s13 in this strongly ordered limit.

5.6.2 The strongly ordered limits of the soft/collinear differ-

ential cross section
The strongly ordered limits of the soft/collinear matrix element squared

In the limit where the gluon (parton 4) first becomes soft with the quark and photon

(partons 1 and 3) subsequently becoming collinear, sy4, Soq4 < 813, 1.€.,
1+34+4—-14+3—0,

such that,
pr=(1—2z)pg,  ps=2zpo,
the soft /collinear approximation to the matrix element squared, Pf§;’i{3” given by equa-

tion (5.52) also factorizes. We obtain a product of a soft and a simple collinear factor,

S co 1
P1§4{ZQZ(Z,?/24,313,514,8134) - §f12(4) Pi3_.g(z, s13),

where the eikonal factor fus(c) is defined in eq.(1.20). To obtain this form we made the

identifications,

8134 —F 813,
1 SQQ _ S19
Y24 S24 (1 - 2)524
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Alternatively, if we let 1 and 3 become collinear before the gluon becomes soft, s;3 <
SQ4, 324,then,
1+344—-Q+4—0Q,
such that,
pr=(01-2)pg, ps=2pq,
then,
softfcol 1
Pisaq (2, Y24, 513, 14, S134) — 3fQ2(4) Pis_o(z, s13),

where we have used the replacements,
S$134 7 SQ4

s19 — (1 —z)sgq
1 S

1 ser

Y24 So4

As in the previous section, the strongly ordered limits of the soft /collinear matrix ele-
ment squared depends only on four of the unresolved variables, while the full soft /collinear

matrix elements squared (given by Pfg{i{g’l in eq.(5.53)) depends on all five. As a result,

when the fifth variable deviates from the strict strongly ordered limit, the strongly ordered

approximation is not reliable.

The strongly ordered soft/collinear phase space and differential cross section

In both strongly ordered limits the soft/collinear phase space factorizes. It becomes a

product of a simple collinear phase space and a simple soft phase space factor.

In the strongly ordered limit, where parton 4 first becomes soft followed by 1 and 3

becoming collinear, s14, 24 < s13, the phase space factor becomes:

e S14824] ¢ —e —¢
dPW@ |22 o Ve [z(1 — 2)] " “ds1adsaadsiadz,
S12

soft
whereas if parton 1 and 3 become collinear before 4 becomes soft, s13 K Sg4; S2s, the

phase space factor becomes,

S04S04 |
AP ~ l——i‘; 24] (s15)~[2(1 = 2)]"“ds15dsaadsoadz.
2
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For the differential cross section we then obtain,

N?2 -1 4 p? % Qs aeg 1 . B
( oN ) (M?) (E) (27) r g @l =2
Ymin Y13 Ymin 9 —1-e 1
X/ dyi3 (y13)_1_6/ dy14 / dya4 [yMyA} —

0 0 0 Y12 Y12

B 1 (N*-1 47 p? % <as> e’ 1
T 28\ 2N M? 2r) \ 2r ) T?(1 —¢)

X (Yrin) ™ 27 P(2), (5.89)

é;(jstrong

for s14, S24 < S13, while, if 153 < $14, S24, We have,
Nt -1 4 g %
2N M?
—1-¢
Ymin Ymin min 9
X/ dy24 / y13 — y13 / YQ4 [M]
0 0 y13 YQ2 YQ2
B 1 (N*-1 47”42 % <a3> el 1
26 2N M? 27 2r | T%(1 —¢)

X (Ymin) (1 — 2) 27 P(2). (5.90)

é;(jstrong(b

Il

%) gl

—€

This contribution differs from the expression given by eq.(5.89) only by a factor of (1—2)

5.6.3 The strongly ordered limits of the double single collinear
differential cross section

Firstly, the double single collinear | M |? given in eq.(5.69) and the double single collinear
phase space given by eq.(5.73) are already in a strongly ordered form. They are given by
the product of two simple collinear matrix element squared and phase spaces. Further-
more, in the two strongly ordered double single collinear limits the invariants are defined
as in eq.(5.68). In particular, we have y14 = y(1 — 2) in both strongly ordered limits.
Nevertheless, for the evaluation of the strongly ordered double single collinear differ-
ential cross section we need to distinguish two limits; either y13 < 24 OF y24 < 13- In

these limits the boundaries of the phase space integral change.
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In order to determine the double single collinear contribution to the cross section,
we have integrated the double single collinear matrix element squared over the double
single collinear region of phase space. Furthermore, we made sure that this double single
collinear region precisely matches onto the soft/collinear region. This was achieved by
requiring that,

Y13 < Ymin and Y24 < Ymin;

in both regions of phase space, and ¥4 < Ymin in the soft/collinear region whereas y14 >
Ymin in the double single collinear region. Similarly, when the two strongly ordered limits
are considered we must ensure that each strongly ordered soft/collinear region matches
onto the corresponding strongly ordered double single collinear region.

Again, in both strongly ordered soft/collinear and double single collinear regions we

will have,

Y13 < Ymin and Y24 < Ymin-

The invariant y;4, however is not constrained in the same manner in both different strongly
ordered soft/collinear regions of the phase space as we can infer from eq.(5.59) and
eq.(5.60). Therefore y;4 will also be constrained differently in both strongly ordered
double single collinear regions.

More precisely, in the strongly ordered soft/collinear limit where y14,y24 < y13, 10-
spection of eq.(5.89) shows that yi4 is constrained to be less than ymin. Consequently, in
the strongly ordered double single collinear region where (y24 < ¥13), to guarantee that
the matching between this region and the corresponding strongly ordered soft/collinear
is realized we require that 714 > Ymin- As y114 = y(1 — z), the lower boundary of the y

Ymin

integral for this strongly ordered region is then ¥mi

On the other hand, in the strongly ordered soft/collinear region where y;3 < y14, You,
from eq.(5.90), we see that in this case yg4 is bounded to be less than ymin and as yo4 = 24
we have y14 < Ymin(1 — 2). In order for the corresponding strongly ordered double single
collinear region (y13 < yo4) to match onto this strongly ordered soft/collinear region, we

will require y14 > Ymin(1 — z) which corresponds to a lower bound on y of ¥ > Ymin.
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Following this remark, the sum of these two strongly ordered approximations of the

double single collinear contribution yields,

N? -1 dr\* o ae? 1
D StTOTLg = (_s) q € — )z —€
Cr ( N ) (M) > (—zﬁ)—FQ(l_e)P@m )2
1

Smin
X{/ d$13 813 / d324 524 6_l/ . dy
0 Ymin

1-z

Smin 1
+/ ds24(524)” / dsi3(s13) 5—1/9 _ dy}[(l )y~ P(y)

- (%) (5 ) (5) mimgreon o4
2 [ %(ym)_e L+ —2)]- (122(f)£42;)6) ngl—_zz; ] - (39

2
Comparing this expression with the expression of the double single collinear contri-
bution without any strongly ordering given by eq.(5.77) we see that the strongly ordered

result is obtained by the replacement,
2 1
—(1=2)" — Z[H’(l—z)e]-

5.6.4 The sum of all strongly ordered contributions

The sum of all strongly ordered real contributions is obtained as follows. Each singular
contribution (triple collinear, soft/collinear and double single collinear), is replaced by the
sum of its two corresponding strongly ordered limits. Evaluating the resulting integrals

for the sum of all real strongly ordered contributions, the pole part yields,

]- d (U)Strong stron stromn, strom, siromn,
~ R o poge@ oo ®) 4o sopre® 4 sonn Y + D

Jo dz
_ Nt -1 4rp? % (as) aeg 1
B 2N M? 27 2r ) T%(1 —¢)

x{ — %P(z) + 61—2 [ZP(z)ln(ymjn) + (1 + 22 - 3P(z))
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+1In(z) <1 — %z + 2P(2)) + 4P(z)In(1 — Z)]

+ (=5 + 57— TPE) + 3PE)T) + 102 (umin) P(2)

+ ln(ymjn)[ <~2 — ;z + 6P(z)) + In(2)(-2+ z + P(2))
—6P()In(1 — z)]

+1In(1 — 2)In(2)[=2 + z — 4P(2)] — 4P(2)In*(1 — 2)

+1n?(z) [—g + %z ~ P(2)] + L1 = 2)[-2+ 2
+1In(1 — 2) [—2 — ;z + gP(z)] + In(2) [—g - 22 + 3P(z)]}

+ 0(1)}. (5.92)

If we compare this result with the result obtained for the sum of the three two-particle
unresolved real contributions without taking the strongly ordered approximation (as in
eq.(5.82)) we see that, the strongly ordered approximation correctly reproduces the leading
divergences - those proportional to O(%) and O(%) - but does not generate the correct
subleading divergences proportional to (9(%) The finite terms of O(1) are also incorrectly
reproduced. The leading and next-to-leading logarithms generated by expanding the most
singular poles are correctly reproduced, but single logarithms and non-logarithmic terms
are not. We understand this as follows: The poles in E%, }3 arise from the evaluation
of successive phase space integrals at the lower boundaries where the strongly ordered
approximation is very close to “full” approximation of the matrix elements. On the
other hand, terms proportional to % arise when evaluating only one of the phase space
integrals at its lower boundary while the other phase space integrals contain significant
contributions close to their upper boundaries. At these upper boundaries, the ratio r
between the two invariants defining the strongly ordered limit is no longer small and the
strongly ordered approximation to the matrix elements is no longer accurate.

In summary, in this section we have performed a cross check of our calculation by
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evaluating the real contributions in different strongly ordered limits. We have found
agreement for the most singular terms, while less singular terms appear to be different.
This disagreement can be explained as due to an insufficient approximation of the differ-
ential cross section in the strongly ordered limits. Therefore, since the results obtained
applying “strong ordering” only reproduce the leading divergent terms correctly, they will

not be taken into account in any further part of this dissertation.
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Chapter 6
Virtual contributions

In the previous two chapters we have decomposed the four-particle phase space and ex-
tracted the divergences present in the O(aa;) four-parton process ¥y* — qgyg where one
or two particles are theoretically unresolved. In other words, only two or three particles
are theoretically identified in the final state. If three particles are theoretically well sepa-

rated, the experimental cuts will combine these particles further to select photon +1 jet

events.

In this chapter we will take into account the exchange of a virtual gluon in the v* — ¢gy
process, which when interfered with the tree level process also gives rise to contributions
of O(aa;). More precisely, the matrix element “squared” |M|% associated with the loop
diagrams is obtained by interfering the lowest order real amplitude 7 with the loop
amplitude £,

M]3 = 2Re(LT™).
The Feynman diagrams related to the real and virtual amplitudes for v* — ¢gy are shown
in Fig. 6.1 and Fig. 6.2.

As discussed in Section 3.1, the calculation naturally divides into two parts, depending
on whether or not the three particles are resolved. Both resolved and unresolved contri-
butions are divergent and need to be combined with the appropriate real contributions

described earlier. In the resolved virtual contribution both quarks and the photon are
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clearly distinguishable and we expect the divergences to cancel when combined with the
real contribution if the gluon is either collinear with one of the quarks or is soft (c.f. Sec-
tion 3.3). On the other hand, in the unresolved part, the quark and photon are considered
to be collinear and form a single pseudo particle, ) the parent quark. The expected lead-
ing singularity is proportional to (P(z)/€®). In fact, the most singular divergences from
this piece arises from the possibility of a soft gluon being internally exchanged, which
gives rise to a term proportional to (O(1/€?)), occurring simultaneously with the collinear
emission of the photon from a quark — which is related to a contribution proportional to
(P(z)/€). These most singular poles should cancel with those present in the soft/collinear
contributions calculated in the previous chapter.

This chapter is organized as follows. First, we consider the well known forms for the
virtual matrix elements and specify over which region of phase space these will be used in
our further study. The known published forms are not suitable for extracting the collinear
limit, so in Section 6.2, we reformulate the matrix elements in order to be able to take the
limit s, — 0. As Bern, Dixon, Dunbar and Kosower have studied the helicity amplitudes
for the collinear limits of one-loop amplitudes we compare their results with ours for the
collinear virtual matrix elements in Section 6.2.2. Finally, the collinear matrix elements

are integrated over the simple collinear phase space in Section 6.2.3.

6.1 The resolved contribution

The squared matrix elements for the v* — ¢gg process at one loop have been calculated
many times in the literature [25, 31, 34]. The calculation of this process is part of the

O(a?) corrections to the three-jet rate in e*e™ annihilation, which was originally derived

by Ellis, Ross and Terrano in [31].

As we are interested in the virtual contributions with an outgoing photon instead of

an outgoing gluon, we need to replace the colour factors in eq.(2.20) of [31] as follows,

CA——>O, NF—>0, 0}27—>CF,
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Figure 6.1: Tree level v* — ¢¢y amplitudes.

Figure 6.2: Virtual gluon corrections to the v* — ¢¢vy amplitude.

furthermore we need to consider,

2 2
a; — asaeg,

when the quark has charge e,. After these replacements, eq.(2.20) of [31] reads,

ML = (|Mgy[* X Vage + F(y12,%13,923)) (6.1)
where,
ay (NP— I\ T2(1—T(1 +¢) [4np®\ [ 2(ye))™c 3
7 — s _ a9 _ 7 2 _ ¢
Vaatn = 5, ( 2N ) (1 -2 M? €2 ctm -8, (62
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and,

a, (N? —1
F(y127y13,3/-23) = g( N )

{ Y12 Y12 n Yi2 t+ Y23 Y12 T Y13

+ +
yi2 + %13 Y2+ Y3 Y13 Ya3

4y2, + 2y19y13 + 4y12Y23 + y13y23]
(Y12 + Yo3)?

dy?y + 2y12Y23 + 4y12y1s + y13y23]
(y12 + y13)?

2 2 2 2
+ (y12 + ,
L lylz (ot ) p Yt (%12 + y23)

+lny13[

+Inyas [

R(y12,
Y13Y23 Y13Y23 (ylo y13)

Yis T Y3 _ Y 2912 .
] 21n y12 ( + . (6.3)

Y13Y23(Y13 + Y23 Y13 + ¥23)® Y1z + Y3

The function R is defined as,
R(z,y) = [1n:1:1ny —Inzln(1—z)—Inyln(l —y)+ éﬂj — Liy(z) — Lig(y)]. (6.4)

As usual we made the identifications of ¢ = 1, § = 2 and ¥ = 3 in addition to the
invariant masses s;; = (p; + p;)* and the scaled variables y;; = si;/M? where M? = 5153
is the (mass)? of the off-shell photon. We see that in eq.(6.1) the divergent terms coming
from the emission of a soft or collinear gluon have precisely the necessary form to cancel
the singularities present in the single unresolved soft or collinear contributions to the tree
level process ¥* — q@7g, i-e. those present in R,g(,) defined in eq.(4.24). The cancellation
of singularities between these two classes of contributions will be presented in Chapter 8.

To ensure that the photon is resolved from the quark and antiquark, we define the

resolved three parton phase space to be,
Sgy > Smin, Sgv > Smin-
In this region the resolved virtual cross section can be written as
dU%/R) = Vag(n40agy + I (6.5)
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Vit is the virtual factor defined in eq.(6.2) while F;, will be evaluated numerically using
the finite expression of Ellis, Ross and Terrano in eq.(6.3) and the experimental jet algo-
rithm to select a photon +1 jet final state events. oy, will also be evaluated numerically.

The more interesting problem lies in the unresolved region as we shall see in the next

section.

6.2 The unresolved contribution

In the unresolved region of phase space, the quark becomes collinear with the photon so

that, defining a new parent quark, ¢), with momentum pgy we have,
PQ = Pqg + Py = P1+ s
As usual, we introduce the variable z,
pr=(1-2)pg,  Ps=zpe (6.6)

The photon carries then a fraction z of the composite quark momentum. In this simple
collinear limit the three particle phase space factorizes into a simple collinear phase space
factor, as we saw in Chapter 2,

AP (M, py, pg,py) — AP (M, pq, pg) AP (o Py 2). (6.7)

dPg(d)(M, pQ,Pg) is the known two-particle phase space in d dimensions given in the Ap-
pendix B by eq.(B.3) and the collinear phase space factor dPC(j,) (Pgs Pvys 2)s

(4"

ch(jl)(plhp’Y? Z) = mdsqv dZ |:$q’yz(1 bt Z):| . (68)

At this stage we would like to take the corresponding limit of the virtual matrix
elements. However, we note that the form given in eq.(6.3) is unsuitable for taking the

collinear limit, since as s13 (or equivalently y;3) — 0, terms of the form,

log(s13)

3

513
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are generated. Such terms are problematic and are generated by taking the s;3 — 0 limit
after an expansion of the virtual matrix elements as a series in €. The correct procedure
would be to take the collinear limit first and then expand the matrix elements as power
series in €. For example, consider the term,

—€

S

—
Expanding as a series in € yields,

~ ~log(s) + O(e),

which, as s — 0, is ill-defined. Dimensional regularization solves this problem with the

prescription,

in the limit s = 0. In the unresolved region, s;3 lies in the range [0, Smin] and the

unexpanded form must be used.

6.2.1 The collinear limit of the virtual contribution

With the help of the scalar loop integrals By, Co and Do, we can bring the matrix element
squared of eq.(6.1) into an “unexpanded form” [64] and then take the collinear limit.

Explicit calculation yields a dimensionless wirtual collinear factor VCpydz multiplying

the lowest order two particle cross section?,

doy — VCpydz x oo, (6.9)

where,

vorar = (e () (5) (2) (5) Mt

Ymin
dz [(1 = 27 x [ dyna (r)™ Ve, (6.10)

1Recall that we only consider the contribution where the photon is on the quark leg. We shall multiply

the result by two at the end.
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where the function V,,; contains the scalar integrals. Explicitly,
Voot = Voo + Vigy + Vo,

where we have divided the contributions into parts with different z dependences. V,,

2 73
V. ol Vc

A >, are respectively given by,

Pe(z . A n .
Vo = % X {—DO(PQ,PDPS) — Do(p1, p2,ps) + Co(p, p3) — Co(piz, p2)
+éo(p2>P3) - 200(P12>P3) - CA’0(1723;;!91) - 530(])123) + 2(1 - G)Bo(Pwa)} 3
1 4z 2
V2 = — [— 1—e)?+5(1—- - Tz
col y13X Z( 6)"" ( €)Z+1—6 11— 7
X {—ﬁo(Pl,P2,p3) + OO(P1,P2) + éo(Pz;PB) - OO(p127P3) - 00(P23=P1)} ;
1 -
Vf;l = — — Bo(piz)e(l — ez). (6.11)
Y13

The Cy and D, integrals contain double poles in € while the integral over y;3 will generate
an additional pole in e. We therefore expect that the leading contribution comes from
V1, while the scalar integrals in V2, must conspire to give zero.

The scalar integrals I appearing in the above expression are related to the usual loop

integrals I as described below. It is useful to define the constant,

(AT ¢ T+ eI (1—e .
OF:Z(ﬁﬁ>(—D T(l—2¢) (6.12)

The above loop integrals are derived in their most general form in [65]. Only four integrals

are necessary for this computation; the bubble integral, the triangle integral with one and
two external masses equal to zero and the box integral with three massless external lines.

We here quote the general results for the scalar integrals prior to taking the collinear

limit.
First, the bubble integral for momentum p,, Bo(p,), is given by,
k d%k 1
Bo(p.) = 2 P = / 2m)¢ &2(k + p,)?
oot T Pa
i T(14+¢ I'*(1l—¢)

(dry2<c ¢ I(2-2¢)"°



_ Cr 1 1 pZ w
- (4r)21—2e \M2)
Cr -

= WBD(P(I)-

For the triangle integral, it is useful to first give the result for two off-shell legs. If
momentum p, = p, + ps enters and momenta p, and p exit then if p?,p2 # 0, and =0,

the scalar triangle loop integral Co(p,,ps) reads,

p"+pb+ Pa
Pat Dy d?k 1
C as = p +k = /
o(Pe, Ps) ) ’ (27)* k2(k + po)*(k + pa + po)°
B T4 (=) (=) - (R
(4r)2-c 2 I(1 -2 p2 — p?
_ Cr 1 p? _6__ p: - 1
T nze \\M? M2) ) (p2—p?)
Cr 1 .
_ Colpa, 23)-
@) (7 =gy o)

This is a suitable form for taking the p? — 0 limit, so that the triangle integral with
p? = 545 # 0 and p2 = p; = 0, is given by,

i T(+e¢ P1—¢ (—p2)°
Co(pa,ps) = (47)2—¢ €2 I'(l—2¢) p?

The box diagram Do(pa, ps, p) needs only to be considered in the limit where, p? =
pi=p: =0,
Pat Pyt pe Da
k

De Ds
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Cr 2 1

_ br 2 el e
T () & Sabsbc(yab) (ec)

X I:(l - yab)_6 F-21 (—e’ —€; 1 — €; Yac )

1— Yac
+(1 - ybc)ﬁ F21 (—67 —6; 1 . 6; yac )
I Ybe
Yac
—(1 = yap) (1 — yoe)* F2 (_67'—6;1—€; )J
( )( )< Fa T = 95) 1 — at)

Cr 1

- X - p . ),
(47r)2 SabShe O(P s Dby D )

where Fy(—e, —¢; 1 — €; z) can be expanded as a series in ¢,
Fu(—e,—€1—¢2) = 1+ € Lis(z) + € [Lis(2) — S12(2)] + O(Y).

It is necessary to consider these scalar integrals for the specific momentum config-
urations appearing in eq.(6.11) and take the collinear limit. This corresponds to the

replacements,

yiz2 = (1= 2), y— 7,
while selecting g3 to be small. In this limit, and using the notations pi; = pi + p;;

pijk = Pi + pj + pr we find,
Bo(p12s) !
—_ —_—
o\P123 a1 — 26),

—€

» Y13
B s
o(pia) = e(1 — 2¢)’
A y_e
Oo(plaPB) — 61;,

éo(Pzaps) — 262

A 1 — —€
Co(PlaPQ) - (_eT)—’

A 1
Co(ps, ;1) — [1 - (2)'5] —



éo(Plz,PB) - [1 — (1~ Z)—E] 12'7

€
A 1
CO(p137P2) - 6—2,
~ 9 )
DO(PZ;PlaP3) — 5_2(1 — Z) Y13 F21( e.—e: 1l —e€ ~)
A 9 . B
Do(plap2ap3) - 6_2 I:(l - Z) + (Z) — 1:|7 (613)
so that,
Pé(z) 2 . 2 .
Vor = Y13 [—6_2+ Y3 — s (1—2)" Fa ( €, —€1—¢2)
1342
e(l1—2¢)]’
Vfol = 07
‘/601 - L(GZ — 1)
y13 (1 — 2¢)

As expected, the leading pole contribution not proportional to the quark-photon splitting

function P¢(z) vanishes. V2, is not required to vanish because of the extra power of ¢

which makes it a sub-leading term.

6.2.2 Check of the collinear limit of M|}

The collinear behaviour of one-loop amplitudes has been studied by Bern, Dixon, Dunbar

and Kosower [66] using helicity amplitudes. In this subsection we wish to use their work to

check our result for the collinear limit of the squared matrix element M|}, = 2Re(LT7).
Given an arbitrary helicity configuration, in [66] the quark-photon collinear limit of

the tree amplitude M ., associated with the real process y* — ¢gy is given by,

Moz IS Split?se (ple, p*) Mg, (6.14)
A=+
whereas the collinear limit of the one loop helicity amplitude M yields,
Micer A0, 2 (spzzt"“(pq ,p20) MG+ Split“SP(p)*, pyY) MQq), (6.15)
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with A the helicity of the parent quark Q.

The splitting amplitudes Splitt_rie(p;\",pib) and .S'plz'tl_of\p(p;;a,p;‘;b) are expected to be
universal and to depend only on the two external legs becoming collinear. Furthermore,
the tree splitting amplitudes Split'$® are such that, when one takes the sum of all squared
amplitudes of definite helicity one obtains the usual four dimensional simple collinear limit

of the v* — Gy matrix element squared encountered before ? in Section 1.5.3,

ab, 1 .
5 Mgl M L ()| Moyl (6.16)
A 97
The relevant tree splitting amplitudes squared are in fact given by,
treef 4+ V|2 gtreel — —\(2 1(1—2)2 . 1=
Splitr (o P = |Splitye(py o) = —— (6.17)
v *
g tree — v 1oatre - 11 q
|SplitZ(pf, )P = |Split{™(pg,p7)I* = ——. (6.18)
g
The one-loop splitting functions Splitl_"f\p(pg“;p%\b) arising in eq.(6.15) are,
Splitl_oip(p(?“,p;;b) = Splitﬁj%pé‘“,pﬁ}") X rs(pga,pgb), (6.19)

with the relevant rs(pga,pgb) given by,
f(2,84+);
(f(z, Sqy) —

rs(py,p¥) = rslpf,p;) =

DN | — | —

) : (6.20)

[N RN

rs(py,py) = rs(py,py) =
and where the function f(z, s4,) Is,

fz,549) = (1= 2)"(ygr) " + :%(yqv)_e - 2Li2(2)] (6.21)

Nl o

We also have that for all helicity amplitudes,

1
MG = SVag Mg, (6.22)

2Recall that P(z) is the four dimensional splitting function.
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where V,; is the virtual factor associated with the loop diagram related to the process
v* — qq encountered in eq.(1.38).
For an arbitrary helicity configuration, let us denote twice the product of the loop and
tree amplitude by |[M?|%. In the collinear limit it becomes (for a single helicity),
1 : .
prZEKE_Lﬂmﬂﬁﬁx{%q+szxLMyﬂ? (6.23)
qay
Summing over all possible helicity configurations and using the results in [66], the collinear

limit of |[M |} reads,

b1 , :
M 2 a2 (Vi + TG0 ) 702 (6.20
9
with r(z) = —1. In this equation (6.24) all terms are proportional to,
1 -
— Myl (6.25)
g7

as one could have expected. The term which is not proportional to P(z), 7(z) arises from

terms proportional to z present only for some of the helicity configurations as can be seen

from eq.(6.20).

Finally, we find that the expression (6.24) can also be represented diagrammatically,

‘Zﬂj ) '@* +P(Z) f(2,544) *O"

= — x {P(2) [Vog + f(z:507)] + 1(2)}-

If we now make a partial expansion in € of our result for V.., given in eq.(6.11) we see

Vil = L{P(z)([_f_z_i_Ssz]

Sqvy

that

+ [—;2(1 —2) (ys) " %(yla)_e - 2Li2(3)] ) - 1}7 (6.26)

which is of the form of (6.24) and therefore agrees with the collinear limit of the virtual

one-loop amplitudes given by Bern, Dixon, Dunbar and Kosower.
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6.2.3 Integration over the unresolved phase space region

Let us now return to our derivation of the singular virtual collinear contributions to the
total differential cross section v* — v + 1 jet, VCpg,. The integration of y;3 over the
unresolved region generates an overall 1/¢ factor. In order to calculate the virtual contri-
butions up to O(1) in ¢ we need therefore to keep terms of O(¢) in V,,;. In other words, we
need to expand V,,; one order further in e than it was necessary for the comparison of our
result with the one of Bern, Dixon, Dunbar and Kosower (as in eq.(6.26)). Performing

furthermore the ;3 integration, the unresolved quark-photon collinear virtual factor is

given by,

ver = (57) () e G () e

X (Ymin) 72 [2(1 = 2)] 7
. 2 . 1 I, 3+ 2¢ 1 e ' _
X (P (2) [6—3 Ymin ~ 73 + =2 Ymin (E) + = (1 —2)"° Fyu(—e,—€1 —¢2)
(1 —ez)
+26(1 —2¢))°

As expected, the most divergent part of this expression is proportional to P¢(z) and pre-
cisely cancels the leading singularity present in the two-particle unresolved contributions
to the four parton process discussed in the previous chapter, namely the leading singu-
larity in the soft/collinear contribution SCr., (c.f. Section 5.3.3). The subleading poles
do not cancel; they are ultimately factorized into the O(ae,) fragmentation function, as
will be presented in Chapter 8.

In conclusion, in this chapter we have determined the divergences present in the re-
solved and unresolved virtual contributions from the one-loop process, v* — ¢gv(g). We
saw that the resolved contributions possess divergences which have the right form to can-
cel those present in the real single unresolved contributions. For the unresolved virtual
contributions on the other hand, only the leading singularity part has a similar form to the
leading singularity part of the double unresolved contributions. The remaining singular

terms will need to be absorbed in the O(aq;) counter term of the quark-to-photon frag-
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mentation. The cancellation of these singularities together with the construction of the
fragmentation counter term will be performed in Chapter 8. The evaluation of all finite
contributions arising in this chapter, such as F, and 0,5, will be dealt with numerically

and presented in Chapter 9.
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Chapter 7
Contributions involving D, (z)

In addition to the real and virtual contributions derived in the three previous chapters,
we need to consider a further process contributing to the y* — v +1 jet rate at O(acy):
the production of a quark-antiquark pair associated with a real or virtual gluon, followed
by the fragmentation of a quark into a photon. The contribution of this process to the
differential cross section is given by the convolution of the tree level v* — ¢gg or one-loop
~* — g cross section with the bare quark-to-photon fragmentation function, Df_w(:v),
which we introduced in Section 1.5.3.

The Feynman diagrams associated with this process are shown in Fig. 7.1. As usual,
charge conjugation invariance implies Dfﬁﬂ = Dq@__"y Therefore, to simplify the discussion,
we only consider the contribution where the quark fragments into a photon, and account

for the antiquark fragmentation contribution by multiplying the result by two. The general

structure of this contribution is,

o) — 4596 DB () da, (7.1)

q—
dag(g), and do?79) are the fully differential cross sections and z is the ratio between the
photon and the parent quark momenta.

The bare quark-to-photon fragmentation function, Df_w(:v) is the sum of a non per-
turbative part, Dy (z,ur) which depends on the factorization scale pp and can only

be determined by experiment, and a perturbative counter term. Since the underlying
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Figure 7.1: Contributions involving the bare fragmentation function Df__v(x).

7" — qq(g) process is already of O(e), only the O(a) counter term needs to be consid-
ered. The contribution from the convolution of the tree-level v* — ¢g process with the
O(aa,) counter term is discussed in the next chapter. To the order «, the fragmentation
function can be decomposed,

lae? (4rp?\° 1 14+ (1—2z)?
DB =D, - : .
o) = Dlone) 4 152 () 1 (B2 (

I
[SN)
N—

As usual, this separation introduces a dependence on the fragmentation scale up to the
physical fragmentation function D, (z, uf).

As discussed in Section 3.1, the fragmentation contributions separate into three cat-
egories, depending whether the gluon is resolved, unresolved or virtual. If the gluon
is identified in the final state, we will find that the singularities present in this resolved
contribution are exactly cancelled by the real collinear photon/resolved gluon contribution
from the v* — ¢ggy process. This precisely parallels the cancellation of the quark-photon
collinear singularity in the 4* — ¢g¢vy process with the O(a) fragmentation counterterm
multiplying the v* — ¢g process present at lowest order discussed in Chapter 2.

If, on the other hand, the gluon is unresolved, it can be combined with the quark or
with the antiquark or it can be soft. In the absence of the quark-to-photon fragmentation

function, the infrared singularities from the 4* — ¢gg process exactly cancel against those
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from the one-loop v* — ¢g process as we saw in Section 1.5.3 . Due to the presence of
the fragmentation function, this is no longer the case. When the gluon is collinear to
the quark which subsequently fragments into a photon, the parent quark momentum is
shared between the quark and the gluon and the fractional momenta carried by the photon
and the gluon are related to each other. The consequence is that a convolution between
fragmentation function and parton level cross section arises. As we shall see in Section 7.4,
a large part of the divergences present in this contribution cancels against the divergences
present in the double unresolved contributions discussed in Chapter 5.

The organization of this chapter is as follows. In Section 7.1 we shall give the form
of the resolved contributions. The general structure of the unresolved contributions with
associated fragmentation will be presented in 7.2, while the calculation of these contri-
butions will be described in some detail in the remainder of this chapter. As a check
on our intermediate results, in Section 7.6 we compare our expression for the sum of the
contributions with the result of Kunszt and Trécsanyi in [47]. As they do not specifically
consider the 4* — ~ + 1 jet rate, but rather the cross section for the process v* — v+ X

we shall find that both results only agree in the most singular piece.

7.1 Resolved contributions

We saw in Section 3.1 that the tree level process v* — ¢gg with a theoretically well

separated gluon accompanied by fragmentation of the quark contributes to the v + 1 jet

differential cross section in the following two cases:
(i) The gluon is clustered together with the quark which fragments into a photon.
(i1) The gluon is clustered to the antiquark or it is isolated while the antiquark is
clustered with the photon jet.
In both cases the cross section has the form given by (7.1) with z, the fractional

momentum carried by the photon inside the quark-photon collinear cluster,

do}® = do D7 (z) da. (7.3)
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It is worth noting that z is a theoretical parameter which is only related to the momenta
of quark and photon. It does not necessarily coincide with the fractional momenta carried
by the photon inside the photon jet z, which is reconstructed by the jet algorithm. In
particular z = z only holds if the photon jet only contains the quark and photon, while
the antiquark and gluon are combined to form the second jet. If on the other hand, the
antiquark or the gluon are clustered by the jet algorithm into the photon jet, one will
generally find z < z. Ultimately, it is the ezperimental z, which is compared with the
experimental cut z.,; and required to be greater than z ;.

We note that the singularity structure from the ¢ggy final state in the limit where
the quark and photon are collinear (discussed in Section 2.4.2) is proportional to P(2)
and depends only on the theoretical 2 value. In fact, when the gluon is resolved, the
cancellation of the singularities between the ¢gg final state with fragmentation counter
term and those generated in the ¢ggy final state when the quark and photon are collinear

is unaffected by the possible discrepancy between ¢ and z. This explicit cancellation will

be demonstrated in Chapter 8.

7.2 The structure of the unresolved contributions

In the previous section, the precise value of z was determined by the jet algorithm and
is not necessarily the same as z. Similarly, when the gluon is unresolved, z and z do not
necessarily coincide.

If the gluon is soft or collinear to the antiquark, we can identify the ratio between the
photon and the quark momenta z by z, since only quark and photon form the “photon”

jet, and,

999 _ (5999 DB
dof? = do®™ D/,

(z)d=.

Explicit expressions for the individual contributions will be given in Section 7.3. On the
other hand, if the gluon is collinear to the quark, so that the gluon carries a fraction y
of the quark/gluon cluster momentum, z is no longer equal to . In fact, z is given by

the product of the momentum fraction carried by the quark, 1 —y and the ratio between
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photon and quark momenta z, so that,
z=1z(l—y).

We therefore introduce the constraint, fj dz6 (z(1 —y) — z) and integrate over z so that,

do¥¥ yields,

do¥® = do*® DB | ——| —. 7.
oh o oy (1—3/)1—3/ (7.4)

This “unresolved variable” y will be integrated out with the constraint y <1 —z. A de-

tailed presentation of the calculation of this particular contribution is given in Section 7.4.

7.3 Contributions with D7 (z)

In this section, we shall list the contributions obtained when the gluon is virtual, collinear
to the antiquark or it is soft. In these cases, as we mentioned in Section 7.2, since the
fragmenting quark carries all of the photon jet momentum, z = z and the cross section

has the following form

dagi(g) — do9909) Df_w

(z)dz.
Furthermore we have seen in Section 1.5.3 that in the unresolved regions of the three-
particle phase space, the partonic cross section do?% factorizes into a single unresolved
factor multiplying the tree level cross section op. These single unresolved factors were,
Cr (given in eq. (1.35)) if the gluon is collinear and Sr (given by eq. (1.25)) if it is soft.
A similar feature also occurs when the gluon is virtual; the cross section factorizes
into a known virtual factor V,; (eq.(1.38)) and the tree level cross section co. As these
factors have already been derived before, we will merely quote their unintegrated form

before performing the integrations over the unresolved variables. This should lead us to

the result for the contributions with associated fragmentation. The different contributions

with DB

9=
If a gluon is exchanged internally, the contribution to the y* — v + 1 jet reads,

(z) are given as follows.

do} = oo VygDP(2)dz
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s (47r/ﬂ)6 <N2 — 1) T(1 +€)l?(1 —¢)

7 o0 \ M2 2N T(1 — 2¢)
B 2 3 2 3 3 2 2 -
D (z)dzx[—e—Q——e-—8+7r —166+57F6+0(6)J. (7.5)

When the gluon is real but soft, the invariants s,, and s4, are both less than the theoretical

cut Smin we find,
doy = oo SpDP(2)dz
a, (4np?\* (N? -1 1
= 05 —
O 97 \ M2 IN | T(1—¢)
Ymin d —e1 Ymin d —e—1 DB d
X A ng(ng) /0 Yag (ng) X (2) z

= o (4%2)5 (N;\‘[ 1) F(ll— 5 DR (e)ds [—3 (i) ™| (76)

2}

When the gluon is collinear to the antiquark, sg; < Smin but sgg > Smin. As usual, y is the

fractional momentum carried by the gluon, s,, = yM? and the differential cross section

reads’,
Aol = 5 CrDP(2)dz
_ a, (4rp?\  (N? -1 1
9\ e aN ) T(1—¢
Ymin 1
< [ vy (a) ™ [ dyly(L = )] Pry-qly) x D(2)d2

o, [(4mp?\° [N? -1 1 B .
- UO%(M?) ( 2N )F(l—e)D (2)d2(ymin)

2 . (=6 —-¢ T*(1—¢ o
% {_g(ymjn) * 2¢2(1 —2¢) T(1-2¢) | (7.1)

Note that to simplify the notation, inside the equations we have denoted the bare quark-

to-photon fragmentation function by D?(z) instead of Df_w(z). We will use the same

simplified notation in the next section as well.

1Pq_g—»Q is the usual n-dimensional Altarelli-Parisi splitting function defined in 1.5.3.
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7.4 Contributions with the gluon collinear to the
quark

As discussed in Section 7.2, when the gluon, which carries a fraction y of the parent
quark momentum pg, is collinear to the fragmenting quark, we can make the identification
z = z(1 —y). The fragmentation function is thus a function of z/(1 — y) and the general
form for the cross section is given by eq.(7.1). Moreover, in the quark-gluon collinear
limit, the partonic cross section o,q, takes a similar form as in eq.(7.7), but with y limited

by 1 — z instead of 1. The contribution to the differential cross section denoted by dag(Q)

reads,

dz
I—y

o, [(47p?\ [N -1 1
709 \ M2 oN ) T(1—¢)

Ymin e 1—2 dy e .
X/o dYgq(Yas) l/y ' 1—‘_—?/[19/(1 — )] Pyyooly) x D? (—) dz

_ o 4rpt\° (N2 —1 - 1 (i)~
C e2n \ M? 2N "T(1—¢ Yrmin

[ - P < D7 ( )dz (19)

min 1—3/

doC®) = 4o pB ('_1:1/)

1—y
The y integral now involves the fragmentation function and requires some work to eval-
uate. The resulting expression will involve a convolution of the splitting function with
the fragmentation function. However, the convolution integral present in eq.(7.8) appears
to have an explicit Ymin dependence coming from the lower boundary of the y integral.
However, we know that since ym, is an artificial parameter which cannot influence the
physical cross section for any choice of fragmentation function, the Ymin dependence must
merely act multiplicatively on the fragmentation function DEB.

To see that this is indeed the case, we add and subtract the contribution where a gluon

is collinear to a quark multiplied by DZ(z). We can thus rewrite this convolution integral
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in the following way,

Cle) _ cle) , las (4mp?\° (N2 -1 1 .
dop'’ = dop? +Z2_7r(M2) ( 5N F(1_6)(ymjn) DB(z)dzao

AL Ayl =) Pumoly)

- [%Ziynmin)‘e - (122(16)£42;)6) ngl——?g ”

= dag(q)’ + 00 Cp DB (2)dz, (7.9)

with dag(q), given by,

/ 1 s [4xu?\° [ N? -
dag(q) = —_¢ o <7W> ( 1) ! (Ymin) ~°dz

¢ 2r \ M? ON ) T(l—¢)

min

1 . —€ D® (1iy) _nB
<4 |yl =) Puoly) x | = - DPG)

1

— [ dyly(1- ?/)]_Cqu—"Q(y)DB(Z)}‘

1-2

In the first integral of the expression for dag(q)l, the integrand vanishes when y — 0,
and we can safely extend the range of integration to 0. By doing so, the convolution

contribution itself becomes ymin independent as we wanted. Using the definition,

1+ (1 -y -’

Pry-q (y) = y )

and the change of variable y =1 — ¢, dag(q)l can be rewritten in a more familiar form,

) 4ru?\C (N? =1
dO’g(q) = —100d2&< il > ( ) F( L )(ymin)—e

€ 2 \ M? 2N 1—c¢
) { Ik dt[t(l_t)]_e<1+t21—_6(t1—t)2> DBt(%) DR

) /0 &L — O (1 + 1 1—_6(: - t)Q) DB(z)}.

181



This can be rearranged using the definition of the “4+” prescription defined in Appendix

A3,
1 h(t) L oR(t)—h(1) 7 h(1)
o = AR SV )
/z R (EEIEN / “ (1 —2)i+e /0 & (1 —)t+e’
with,
1+12)t7<DF (2
h(t):( )t () and  h(1)=2DB(2),
so that,
cley _1 AT p N1 1 =
dop™ = eaodg <M?> ( ON ) T = ey Ymin)

R DBG)MB [arm e

DI gy

—e[/zldtt(l—t)l et‘eDB< ) — DB(%) / det=¢(1 —t)! ]}( 10)

It is convenient to divide dag(‘”' into two parts: dag(q’ly, which is proportional to DB(z),
and dag((ﬂy involving DB (z/t). Each of these contributions turns out to be of O(1/€?).
Indeed each term is explicitly of O(1/¢) while the O(a) counter term present in Dq_w as

given in eq.(7.2) is proportional to 1/e. We must therefore expand each term up to O(e?).

By doing so we obtain the following expressions,

c@1l) _l L% AT N? -1 1 \=¢ B
dop B 600d <M2) ( 2N F(l—e)(yn"n) Do ()

{‘2 *’ﬁé_l—_a_i[z +2(£2€)+2(1i26)]}

1 o, (4np*\(N? -1 1 B
= ——aodz—ﬂ_( 9) ( N )F(l—c)(ymm) D”(z)

x{g +e(3—%2> + e <—4C(3) -%72 +7)}’

: 1 a, [(4rp?\ (N? =1 1
d C(q.2) - _Zood “s " —€
D ¢ o \ M2 N ) T = o) W)
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<[ () it o]
= Lo () (F2) g toma
=]

—e [(1_11(1__—;)+ (1+1¢%) + it)t(l +i)+ (1 - t)]

1
,[1 (In*(1 —1) ) 11n%(%) )
e [H(EUSY) ey 0

7.5 Sum of all unresolved contributions

In combining the different terms from the previous sections, we notice that the unresolved

gluon contributions discussed in Section (7.3) (dag(q), do3 and do))) which are all pro-

portional to DB(z) can be combined with the collinear quark-gluon contribution, also

proportional to DP(z), that is present in dag(q), c.f. eq.(7.9), to give,

dof = [2Cr + Sp+ V4] 0o DP(2)dz

= Ky500 DF (z)dz,

where K,; is the finite two quark K-factor introduced in Section 1.5.3. Expanding up to
O(e), we find,

. 1 o, (4xp?\ (N2 -1
K _ s B
dop = UOF(1—6)2W(M2) ( 2N ) x D7(z)dz

2
(2 i) 310t + 5 =1) + (2 ) + 50

4 (3?’:_2 - 7) In(Yomin) — 2 + 72 — 44(3))J . (7.11)
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oy Teads,

Finally, the sum of all the contributions involving D

dag(g) = dag-kdag(q)l

1 1 o (4wp®\"(N2—1\ ftdt /2
- eaom—e)ﬁ(M?) ( 2N )/ZTD<?)dZ

et

e | (~210%mi) — 3 ) + (5 - 2)) s
i) + (D) e P04 40 0]

(1—1);+ 1—t¢ 1—¢
22

+¢? [(2 I0° (Yemin) + gan(ym) + (—3— — 7) 10 (Ymin)

45+ %772 - 8§(3)) 51— 1)

_l_l (M) (1+t2) + %lnz(t)(1+t2)

2 11—t 1-t

In(¢)In(1 —¢
&111—%—) (1+¢%) + (1 —¢)ln(t)+ (1 —t)In(1 - t)}} )
| (7.12)
which can be written in the following form
; 1 o (4rp?\ (N2 -1 Ldt z
do?de) = il / — D(—)d
7D T —e2r \ M oN ) Lt O\
1
X [—ZP"(‘?) +cM+ ecff)] : (7.13)

The coefficient of the leading pole term represents the universal lowest order Altarelli-

Parisi [40] quark-to-quark splitting function in four dimensions, Pq((?) , which is given by,

PO —

a9

[((111“:)? + 25(1 ~t)} | (7.14)
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7.6 Check of our result

As a check of our result given in eq. (7.13), we compare this expression for danq(g ) which
represents the unresolved contribution to the y +1 jet rate involving Dq_w with the
result obtained by Kunszt and Trocsanyi in [47] for the corresponding contribution to the

inclusive differential cross section.

The fragmentation contribution to the cross section for 7 — v+ X given in [47] reads,

47(s) _l 1 as 4y (N2 -1 /1 dt DB< >d
ot = 70 I'l —¢)2r ( M? 2N zy 1 ;)"

Sl

e (), 00 -5 (),

+21i(t—)(1 +1%) + (212— = 2) 6(1~1) — ;t + %J +0(62)}> (7.15)

11—t 3 2

where z., = % da?f}j}’ is the sum of the virtual contributions involving D®(z.,) given by

dofy = 0o quDB(%)dmv
B as (Arp®\ (N =1\ T'(1 + e)T}(1 - ¢)
- UO_(M?) ( 2N ) (1 — 2e)
B 2 3 2
DP(z,)da, x [_6—2 -2 -840+ 0]

and the real contributions, de}? , involving D? ( q) These real contributions, in contrast

to our case, are obtained by integrating the three particle matrix element squared over

the whole three particle phase space,

drp?\* [ N? -1 1de T
R _ A pBlx
Vina = 7o ( M? ) ( 2N )fzv Zq b (mq)

1 —¢
X ———6) / dyq2 dy13 dy2s O(1 — Y13 — ya3) (Y12¥13Y23)

T(1 -
2yq9 — €
% [(1 _ )<y23 i >+ Y12 y13y23}
Y13 Y23 Y13Y23
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2F
><5(1—y12—y13—y23)5(1—y23— \/gq)

Identifying «, = %E-sl by ¢ as we did in eq.(7.13) one obtains,

4\ (N? -1 1 1dt  /z
dof = gy 22 at <_7>
7Inl UOQW‘(M2) ( 2N )I‘(l—e) xvtD t

x{_l(1+t2)_§< ! >_§t+,§+;5(1—t)},

e 1—1t 2\1-1¢ 2 2

which, after utilizing the + -prescription and combining with doy,. gives eq.(7.15).

The virtual contributions involving the fragmentation function are identical in both
approaches. However, the contributions from the real emission are different. Indeed, to
calculate the real contributions, we have not integrated over the whole of phase space, but
limited ourselves to the unresolved collinear and soft regions of the three particle phase
space. As a consequence, dag(g) and da?fffl’) are the contributions involving D, ., for
two different process: the exclusive v + 1 jet rate in our case (eq.(7.13)) compared to the
inclusive v + X differential cross section in the other case (eq.(7.15)). Hence we should
not expect these two contributions to be identical.

However, at the edges of the phase space, in the so called “unresolved region” z., and

z = E,/(E, + E,) are equal to each other and we therefore find that the most singular

contribution,
as (4rp?\° (N2 -1 1 1 dt (%) 1[(1+#) 3
= —D(= — 51—t ¢,
UO2W<M2)( 2N )I‘(l—e)/gc7tD 1) e (1—t)++2( iis

is the same in both expressions dag(g) and da?f:(j). Note that this term can be written in

a more compact form as follows,

o, (4rp*\ (N* -1 1 L 50 -
— - - D 1
UOQW(]V]2> ( N )F(l—e)x[ P @D (7.16)

where the convolution symbol ® is defined by,

(FO@) = [ dn [ doybls—ne)f(@)()



and Pq(g) is the universal lowest order Altarelli-Parisi quark-to-quark splitting function

encountered in eq.(7.13).

7.7 Integration of the fragmentation counter term

The final step is to insert the decomposition of the bare fragmentation function given in
eq.(7.2) into the sum of all fragmentation contributions given in eq.(7.13). In doing so, we
will obtain the fragmentation collinear factor, FCp,dz which is made up with two different
contributions, dagg(g) and dag‘j(g), containing the non-perturbative and perturbative terms
of the fragmentation function respectively. The precise form of the non-perturbative part
of the fragmentation function, D(z, ur) must be fixed by experiment and it is our goal
to try to determine it by comparing our final results with the actual data from LEP. For
do—gg(g), we therefore cannot perform the integrations analytically and rely on numerical

methods to compute the relevant convolutions. Neglecting terms of O(¢), we find,

- 1 Arp\© (N -1 1dt z
dotdle)  — =D <_ )dz
Tnp JOFl—e)Qﬂ'(/\/ﬁ) ( N ) VA

x{ [1+t2 +§5(1—t)]

[

(( ))( )+<M>+(1+t2)+ln(ti(1+t2)+(1‘t)”

T —¢)2r \ M?

= 0odzF, @ D(z, ur). (7.18)
A divergence remains [—%Pq(g)], which will ultimately be cancelled by the O(aa;) coun-
terterm part of the bare fragmentation function multiplied by the lowest order y* — ¢g
cross section.

On the other hand, the ¢ integration over the perturbative counter term in (7.12) can
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be analytically carried through. We find,

- 1 N?—1 « ae?\ [4ru\*
9d(e) _— il 4 f
doy 721 — o) ( 2N ) (27r> (2%) (M2 ) dz

x{ei?[— 24 2 +1n(z) (24 2) = 2 In(1 - z)P(z)}

+%[+ In(1 — 2)P(z) + In*(2) (1 — -:;—) — 72—2 — P(2) +1In(2) (5 + 2)
+1In(1 — z) (2 — % — %(2)) +1In(2)In(1 — 2) (2 — 2)
27%P(2)

+Lig(1 —2)(2—2—-2P(2)) + 5
Hin(gmn) (2= 2 =3 P(2) +1(2) (2= 2) + 2 In(1 = 2)P(:))

Fin(u/M?) (2 bz (2= 2)+ 2 In(1 - Z)P(z))

£ 10 (i) <—2P<z>>}

—6 — 2z — 2 P(2) +In*(z) (—-g — %) +1In(2)In(1 — 2) (=5 — 2)
+1n2(1 — z) (—1 -+ Z + 311(2)> +In(1 — z)Liy(1 — 2) (-2+=2+ 2 P(z))

+1n%(2) (-_3 + f) +1n2(2) In(1 — ) <—1 + 5) +In(z) (5 — 42)

375
+1n(z) In*(1 — 2) (—1 + %) +ln(1 = 2) (772 _ ”;(3))

F4)

+Lig(1 — 2) (—3 - %f - 3132(2)) +Lis(1—2)(2—2z—2P(2))

572P(z) 1 4 i
1 — gln (1 —2)P(z)

+S12(1 —2)(2—2—-2P(z)) +

+ 10®(Ymmin ) 2P(2)

+ 102 (Yomin) (111(2) <_1 + g) (i = P() - 14D+ 31’2(z))
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+ In?(Ypin ) In(p%/M?) 2P(z)
10y In(i3/M%) (<24 £ 4 8P() 2 In(1 = 2)P(2) +1n(2) (<2 + 2)) }

(7.19)

Analysing the structure of the answer we find that it can be written in the following

compact form,

_ 1 a62 4 p? ®INT—1
do?ile)  — < ) d
> T ¢ (H ) or ) \ M2 N )

1 1 0 2 1 50
x{—z [1—eln (MQ—)] Pq(q)-l—cgl)-l—ecfl) ®2Pq(7),

where c ) and c (2) are both given in eq.(7.12).

The fragmentation collinear factor FCr, is then finally given by

FCp, = (029 + dogg) .

opdz

To summarize, in this chapter we have presented the calculation of the contributions

to the v* — 7 +1 jet cross section from the O(as) v* — q4(g) processes followed by
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quark-to-photon fragmentation through to order O(aa;). We found that the contributions
where the gluon is theoretically resolved contain at most 1/¢ poles (from the fragmentation
counter term) which exactly cancel with the 1/e singularity present in the single unresolved
real contributions related to v* — ¢gyg where the quark and the photon are collinear.
The result for the unresolved contributions, on the other hand, contains 1/e* poles as
leading singularities. In the next chapter, these contributions will be combined with the
virtual and the double unresolved contributions presented in Chapters 5 and 6.

This concludes not only Chapter 7, but also our presentation of the calculation of all
. contributions to the v + 1 jet rate at O(acq,) which we started to describe in Chapter 4. In
the next chapter we shall collect our results together and absorb the “left-over singularity”
in the O(aq,) quark-to-photon fragmentation function. Once this is achieved, we shall
be able to evaluate numerically the v + 1 jet rate at O(aq;) in Chapter 9 and compare

our results with the existing experimental data of the ALEPH Collaboration in Chapter

10.
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Chapter 8

Factorization of the collinear

singularities

Our ultimate goal is to determine the non perturbative quark-to-photon fragmentation
function. This will be achieved by comparing the measured photon +1 jet rate and the
perturbatively calculated up to O(aa;) photon +1 jet differential cross section.

So far we have determined all different contributions to the v +1 jet rate and calculated
analytically all theoretically unresolved and hence divergent contributions to it. What is
left to do in order to obtain a finite photon + 1 jet rate is the following. We need
to evaluate the finite cross sections in the different resolved regions of the phase space.
This shall be dealt with numerically in Chapter 9. Furthermore, we need to regroup
all divergent contributions together and absorb the “left-over” singularities into the bare
quark-to-photon fragmentation counter term. We shall fulfill this task in this chapter.

In Section 8.1 we present an outline of the results obtained so far, and regroup the
different unresolved contributions in such a way that cancellation of singularities become
feasible. In Section 8.2 we give the final result of the analytic calculation and factorize
the left-over singularities, essentially due to the emission of a collinear photon in the final
state, into the O(aq,) counterterm of the bare quark-to-photon fragmentation function,

rendering the differential cross section finite.
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So far, when performing the calculation of the v +1 jet rate, we have determined the
perturbative counterterm in the quark-to-photon fragmentation function order by order.
We have ensured that the physical cross section is finite at O(«r) in Section 2.4 and shall
ensure that it is finite at O(aw;) in Section 8.2. An alternative and equivalent way used
in the literature to obtain the finite cross section is to construct the O(a) and the O(acy)
counterterms simultaneously. In Section 8.3 we shall present our results following this

more widely used approach.

Finally requiring that the bare fragmentation function is independent of the choice
of the factorization scale pp will yield the next-to-leading order evolution equation for
the non-perturbative fragmentation function D,_.,(z, ur). We shall derive this evolution

equation and an exact solution of it in Section 8.4.

8.1 The sum of all contributions to the v +1 jet rate
at Oaay)

As the coupling a, is small at high energy, we can express the v + 1 jet differential
cross section as a perturbative series in the strong coupling c. In this thesis we limited
ourselves to consider the first two terms of this perturbative series. In Section 2.4 we saw
that the first order term in this series, the lowest order contribution to the the v + 1 jet
rate was proportional to the electromagnetic coupling constant «, that it was dependent
on the factorization scale gr but independent of the slicing parameter ymin as it should
be. At next-to-leading order, i.e. at O(aa,), an outline of the results obtained so far is

given below.

The sum of all real and virtual contributions participating to the v + 1 jet rate at

O(aa;) is formally given by the following,

0o dz

1 do™MFO(y +1jet) o 1 dog(3 partons + 7)
(oJy) dz B
1 doy(2 partons + )
+_
0o dz

192



1d
i (3 partons) dE, dE,6(Ey — zE,) Df—v( )

~ 00 dE,
L4V o vartons) dE, dE, 8(E, — zE.) D
- oo dE par OHS) a Y ( v ) a—vy( )
1 da B
+3 )dE, dE, 8(E, — 2E,) DZ__(z)
1d 1d de?@) g9
= R, SV, 0 T (8.1)
o1y dz oy} dz (o) o)

The symbol © represents the projection of the three and four particle phase space onto
the experimental definition of a v + 1 jet final state. Each type of parton a contributes
to the bare parton-to-photon fragmentation function Df_w and the sum runs over all
partons. Note that at this order, the gluon-to-photon fragmentation function does not
contribute to the v +1 jet rate, only quark and antiquark can fragment into a photon.
Furthermore, due to charge invariance, as usual we can assume that the quark-to-photon
and the antiquark-to-photon fragmentation functions are equal.

As discussed in the previous chapter, in the contributions involving the bare frag-
mentation function, denoted by UQQ(Q the underlying v* — ¢g(g) process is already of
order a;, and only the O(«a) counterterm present in the quark-to-photon fragmentation
function needs to be considered. On the other hand, for the contributions denoted by ol
the underlying v* — ¢g process is of O(1), therefore perturbative counterterms of O(a)

and of O(aa,) need to be taken into account. The fragmentation contribution from the

two parton final state is simply,
ZDM z)oodz = 2D7 _ (z)oedz. (8.2)

In the previous four chapters we have seen that the real contributions, the virtual
contributions and the contributions involving the bare quark-to-photon fragmentation

function could be divided according to whether or not the final state particles are resolved

or unresolved,

1 dog 1dot® 2 doY lo
= — - R QQ’Y ZC qqg 3
o dz oo dz + oo dz a0 )a dz + 7 oo (83)



1 doy 2 da(U) 1 045y

- — _ ki 1k '

gg dZ Jo dZ + [V;q(ly) + C] Jg dz (8 4)
dagj(g) dag B o

= 2 2D 2 5

%o %o + q—w( )dz o0 (8.5)

)

The fully resolved contributions do‘® are finite, while the unresolved contributions do;
contain all infinities and are proportional to ¢p. Furthermore, all contributions corre-
sponding to the presence of a collinear photon or associated with the quark-to-photon
fragmentation function have been multiplied by a factor of two as identical contributions
are obtained considering either the photon collinear to the antiquark or associated with
the antiquark-to-photon fragmentation function. Contributions associated with a hard
photon are not multiplied by this factor.

Regrouping the terms in eq.(8.1) according to the cross section they are proportional

to, we obtain,

1 doMEO(y + 1 jet) 2 do?) 2 doi”) daD) B
— = — + — +2 +2D,_ ( )
0o dz oo dz oy dz 0o
1
-+ ’C a) + F J(;Z’Y + 2 [CF’Y + DqB~*y} ;Zg
=Fy+D(z.pr)
1 dag;{R) (3.6)

gp dZ‘

Recalling that CN’FA, = (y12)"*CFy, F} 1s given by
2 min 1-—-
F, = (%) x [P;;’) In (5 y“’i( Z)) —l—z] , (8.7)

TT HE

while K yg(,) is obtained as the sum of the unresolved gluon factor Ryg(y) given in eq.(4.24)

and the virtual factor V() defined by eq.(6.1),

2

™
Kagtn) = —2108" (gmin) — 3log(yminynz) + 5 = 1. (8.8)

These, and the other contributions given in the last two lines of eq.(8.6) are finite and

will be evaluated numerically later in this thesis.
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Here we focus only on the first line of eq.(8.6) which contains the only remaining
divergences. The sum of all unresolved contributions yields,
1 [da,(;iU) + da%,U) + agj)

0o dz
B 1 N? -1 (a) ae?\ [4np’\*
T TX1—¢ \ 2N o) \ 2r ) \ M?

x{ 212_[_1 + Z —In(1 = 2)P(z) +In(z) <—1 + g)]

J = TCF,Y + SCFA, + DCF.Y + VCFA, + FCF7

2 4 4

+% [ _4Tiy(1 = 2)P(2) + In(2) (4 _ Z) 1 -PE) 19z
272P(z)

3 2 In(z) In(1 — 2)P(2)

1
+1n?(2) <—5 + Z) —In(1 - z)z +

2
KE

N (m(z) (2—2)+2In(1 - 2)P(z) +2 - %) In (M?) J

1
+Fa (27111 (W) 7ymjn> }

1 N2 -1\ a, [4rp®\° 1
T Ti-9 ( 2N ) o ( M2 ) K_ZP‘?(‘?) * Cg”) ®D"*‘”(z’“F)] - 69

Note that, we give here explicitly only the pole part of the sum of the unresolved contri-
butions. At this point of the dissertation, we are principally interested to know what are
the left-over singularities which need to be absorbed in the perturbative counterterm of

the bare fragmentation function. The knowledge of the finite part is not relevant for this

K
F,lz1n 777 | Yomin | (8.10)

The sum of all unresolved contributions can be written in a more suggestive and

purpose and we denote it by,

concise form as,

1 dag) + dang) + JE)U)

0o dz
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1 NZ -1 <a3> ae2\ [dnp? 2
?2(1—¢) \ 2N ox) \2r ) \ M2

1 0) 0 HF ,
x[—é—gpq(q ® PO — 2P >+ In (M2 PO ® PO+ F,

1 N? -1 47r,u
* T(l—¢) ( 2N ) ( CS”) ®Dq+'y(3=,“'F)} ,

(8.11)

where we have introduced the next-to-leading order quark-to-photon Altarelli-Parisi split-
ting function PL).

An important check on the above result is the agreement between the next-to-leading
order quark-to-photon Altarelli-Parisi splitting function qu) with results previously ob-
tained in the literature. Although Pq(ql{) has as such never been directly calculated before,
it can be inferred from the known timelike next-to-leading order quark-to-gluon splitting

function Pq(gl) [51, 67] by considering the following replacements of colour factors,
Ca — 0, Np — 0, Ct— Cr,
The next-to-leading order quark-to-photon splitting function reads *,

PY(z) = {—l—!——g—z-{- (—S—I——;-z> lnz+221n(1—z)+<1—é—z)1n22

a 2

+ [m"’(l —2z)+4lnzIn(l — z) +8Liy(1 — 2) — %#’] P;;))(z)} . (8.12)

The calculation of Pq(gl) was originally performed by Curci, Furmanski and Petronzio
[51], as part of the derivation of the O(a?) corrections to the spacelike and timelike
Altarelli-Parisi evolution equations. The method of their calculation — an explicit pro-
jection of the splitting functions out of the corresponding parton level subprocesses — is
however mostly undocumented. Very recently, Rijken and van Neerven [67] have rederived

P ) in the calculation of the O(a?) corrections to the inclusive fragmentation of hadrons

INote that in our calculation we have taken the colour factor Cr and the electric charge of the quark

e, outside of the splitting function.
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in ete™ annihilation. In their calculation Pq(;) appears as the residue of the simple pole
of the O(a?) bare cross section. Similarly, qu) is the residue of the simple pole in the
bare O(aq,) exclusive v +1 jet rate. The Altarelli-Parisi splitting functions are in fact
universal and are expected to arise in any next-to-leading order perturbative calculation
where initial or final state partons can be collinear. The collinear singularities occur-

ring in these potentially substantially different calculations are precisely given in terms of

Altarelli-Parisi splitting functions.

8.2 Factorization of the collinear singularities in the
fragmentation counter term

The left-hand side of eq.(8.6) is an observable and finite quantity. The explicit divergences
present on the right hand side of eq.(8.6) need therefore to be compensated by similar
divergences in the bare quark-to-photon fragmentation function. Hence, in the bare frag-

mentation function we need to add the following O(aa;) perturbative counterterm,
1 N2 —1 «@ ae?\ [4np?\ 7 1
(@as) — G\ [ f [ plO) g pt P(l)]
Dy 1‘2(1—6)( 5N ) (271’) (%)(,ﬁv) gatn ®Fw +5

]. IV2 — 1 O 471.#2 € 1 o
() (2 Eronn]

The bare quark-to-photon fragmentation function up to O(acy) is therefore given by,

DE = D s (223 [Lpo
q—vy( ) - q—”Y(Z IU’F) + 2_73' ,U/F Z qy

Nt -1 et oze2 i *r
i (0)
+( 2N ) (277) (271')5 (,u%«) [9 R ®P T3 P ]

() @ () Brerciend. oo

2N 2 Ue

where S, stands for ((4“_)2).




The unresolved contributions to the O(aa;) cross section added to the NLO countert-

erm in the quark-to-photon fragmentation function therefore read,

() ()
i[dO'R +d0'v +UD ] +D(aas):

Jdg dZ P

1 N*—1 dru?\* ael o,
[?2(1—¢) \ 2N M? 27 27

x{—6+z+ﬂ(—l+—~FH@)+l()@l—§Z~P@D

3 12 2
P 13
+1In(2)x* (—% + g + %) +1n*(2) (—2 + TZ)

+1In(z) In(l — 2) (——3 + 72—2 - 3]32(2)> + In(2)Liy(1 — 2) (4 — 22)

+1n’(1 - 2) (1 + 54—2 - 3];(2)> +1n(1 — 2)Lis(1 — 2) (2 — 2 + 5 P(2))

+1n3(z) (—2 — %) + 1n2(z) In(1 —2)(2—2+ P(z)) — 5

+1n(z) In¥(1 - 2) (1 -~ 3P(z)> 4 1n(1 - 2) <_§ - P(z))

+Li2(1—z)( 3-|—{—Z— )—I—ng,l—z (=24 2z -3 P(2))

+S15(1 = 2) (4 =22 — 6 P(2)) + 5 1n°(1 6@P()+9P@M@)

+1n (iF_) [_2 In?(1 — 2)P(2) + In(1 — 2) ( 5 3_2i+ 232(_))

+1n%(2) (=2 + 2) +In(2) In(1 — 2) (-2 + z — 4 P(2)) + : 7

i (45 [r =900 412 1 1 )]

- In(yoin) [ L2 P42 - o)) -

L
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FIn(2)In(1 — 2) (2 — 2 + 4 P(2)) + In(1 — 2) (2 $32 911(z))

4 &

+Lis(1 —2) (2 — 24 6 P(2)) + In(z) (—3 + 372 — 3P(2)> }

+10* (Yrmin) [111(2) (1 - g - 2P(z)) +1-— 972 —3P(z) —In(1 - z)P(z)]

-2 ln3(ymjn)P(z)

+1n (2‘4—%;) In(gomin) [ —2+ 243 P(2) +In(z) (=24 2) — 2 In(1 - z)P(z)}

+2 In (%) 1n2(ymjn)P(z)}. (8.14)

This result obtained for the sum of all unresolved contributions added to the NLO
counterterm in the bare quark-to-photon fragmentation function is independent of x but
depends on the factorization scale ur and on the theoretical slicing parameter ymin. When
it is combined with the resolved contributions to the differential cross section present
formally in eq.(8.6), this ymin dependence will cancel as we will explicitly show in the next
chapter. Furthermore, note that to the finite contributions at O(aa,) we also need to

add the finite contributions involving the renormalized non-perturbative quark-to-photon

fragmentation function, D,_(z,ur). It originates from the combination of eq.(8.9) and

eq.(8.13) and reads,

Ldopey _ @sg (N2 1) [0, (M2) o i
o0 =9 — Az up). 1
oo dz s S 2N qu In 12 T’ ® Dy—r(2, LF) (8.15)

8.3 Structure of the NLO result in terms of convo-

lutions

In this section we shall present an alternative way of constructing the finite O(acy)

cross section. It is an equivalent procedure of absorbing the collinear singularities in the

perturbative fragmentation counter term.
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In this formalism, which is widely used in the literature [68, 69] the collinear di-
vergences present in the bare lowest order and in the bare nezt-to-leading order cross
section are factorized simultaneously in the bare quark-to-photon fragmentation function,
DZ__(z). For this purpose, the finite differential cross section. (up to O(aa;)) is written as
a sum of convolutions between so-called finite coefficient functions C;; and infinite tran-

sition functions I';;. Both functions depend on the factorization scale up. More precisely

in our case, the finite cross section up to O(aay) is given by,

1 do(y + Ljet L
U—_”(”dL‘?—) = A =2F, +2F,®D,, (8.16)
0 pA

where f)q represents the bare quark-to-photon fragmentation function DqBﬁw(z) and the

bare cross sections are given by,

F’Y = F, +C®Ty, (8.17)

Cog ® gy (8.18)

S
|

F, which is given in eq.(7.18) by,

2\ ¢ 2
A as /.L N '_1 [ 1 (0) (1)]
= — — —= . 8.19
i QWSE(M?> ( N ) a4 (8.19)

can be rewritten as the convolution of a coefficient function and a transition function as

follows,

Fy=Cy®Ty, (8.20)
with,
2\ € / N2
Qg H Ne—1 [1 (0)] )

—1_=2g (£ -P 8.21
Fog =1 27 Se (u%) ( 2N ) e 1)’ (8:21)
where the 1 denotes the distribution §(1 — z). The finite coefficient function Cy, reads?,
Gy =25 (1Y |1 (22 P 4 0 8.22
1= 57\ 9N n E w TS | (8.22)

2621) is given in the previous chapter by eq.(7.12).
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The bare cross section 1:1, on the other hand, corresponds in our calculation to the sum
of the bare lowest order cross section and the next-to-leading order sum of the real and

virtual contributions. It is given by,

2
~ aeq

Ey = FO (2, yn) + 50 (

(8.23)

€
vis M? e 17 oo dz

e ) [—1 p(o)] 1 [dok” +doy”)]

where Fio)(z,ymjn) is the finite part of the bare lowest order cross section. The sum of

real and virtual contributions at next-to-leading order is given by,

1 [dagj) + dag,U)J
- =TCpy+ 5Cpy + DCry + VCp,

Jo dz

1 N2 -1 47’ 2 aeg Qs
I'2(1 —¢) 2N M? 27 27

1 - %z + In(z) <1 — %z) + In(1 — 2) P(z)]

|
= E + 2P e (1= =) i) (<34 22)

3’1 ;Z) P(2) 4 () In(1 = 2) (—2 + = — 2P(2))
+In(1 - 2) <—2 - %z + gP(z)) tLig(1 = 2) (=24 2 — 2P(2))

Fin(yn) (24 22+ 8P(2) +In(2) (=2 + 2) — 2In(1 - 2) P(2))
+ 1n2(ymjn)2P(z)}

+F§1)(z,ymjn)}. (8.24)

Note that here too, we only explicitly give the pole part of the sum of the real and virtual
contributions as the knowledge of its finite part, denoted by Fy) is not necessary to see
how the factorization of collinear singularities occurs in this formalism.

The infinite part of F, can also be written as the convolution of a coefficient function

and a transition function, as Cpy ® T'py. The coefficient function Cy, is given in eq.(8.22)
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and T, contains all infinities. All terms present in I'p, appear then to be proportional to

universal Altarelli-Parisi splitting functions or convolutions of two of them. We have,

n ae? ,u2 ¢ 1
- q 0
Byo= B+ 5rs (M_) 2P
2 2 2 2e
ae; oy o (N°—1 L 1 0 0 1
o 2 ('W) {(v) (5 P O P — 5 P

N L ) g p© 95
1) s ero]h. (8.25)

F, is the sum of the finite lowest order and next-to-leading order terms occuring in
the corresponding bare differential cross sections. More precisely, it is given by F, =
Féo) + Fﬁsl) + E;_OFR where Fg stands for the finite terms resulting from the sum of all
resolved contributions not proportional to oo, c.f. eq.(8.6). Moreover, F, is a function of

z and Ymin. The infinite transition function Iy, is defined on the other hand by,

ae? ILI,Q ¢ 1
r = Sas(4) [2re]

ae? a 2\* /N2 1 1 1
+— 52<“ ) ( )[——P(O)@P;;’)—%Pg) . (8.26)

95 21°c E 2N e2 7

Using the above definition of transition functions and coefficient functions, the v + 1

jet differential cross section (up to order aey) denoted by A, can then formally be written

as,

A=2F, +2F,® Dy = 2F, + 203 ® [Ty + Tog ® Dy - (8.27)
As A is finite, it can also be written only in terms of finite quantities,
A=2F,+2C,,®D,, (8.28)

where D, stands for the renormalized fragmentation function Dy—ry(z, puF). From this

equation, it is possible to deduce the form of the NLO bare quark-to-photon fragmentation

function, yielding,

D,=DB _(2) = I',}]®D,—1; @Ty

a—
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ae? J7’ 1
= Dyy(z,0r) + .2_q56 (_2) GPJS)

o, L
s (o) (1) -

ae as 0 0 | —
+2/( ‘)77 ( IN )( ) 72 q(q)®Pq(7)+§qu(7) :

(8.29)

qq ® Dq—*"l(z NF)

It has exactly the same form as the one we obtained in eq.(8.13) summing the re-
sults obtained separately after the factorization of the collinear singularities at O(c) and
O(aay).

Furthermore, as a particular case of this symbolic way of presenting the finite cross
section as in eq.(8.27, 8.28) we can rederive the result obtained for the lowest order cross

section only. Omitting all terms proportional to e in the original coefficient and transition

functions these become,

cl) = 1, rie) =1,

a9
re = _%ag () Lpo 8.30
o - —'2—7{_ el 7o - 3 ( )
so that,
Al = 2F§“)+2F;°‘)®Dg“)
= 2F® 4+ 20 @ 1@ 4 T @ D
= 2F§a)+2rg°;>+21)ga>

= 2F(* 2D, | (8.31)
Equating the terms in the last two lines, we find,

D =T 4 D). (8.32)

q
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The lowest order expression for the bare fragmentation function as found in Section 2.4

is then restored,

D;’ =D (2) = Dyy(z,pr)— P((;:)

gy
2 2\ €
= Dyy(z,pF) + %Z_—qse (ﬁ—%) %Pq(.?).

To conclude this section, we would like to comment on the utility of this formalism.
From equation (8.27), it might seem at first sight that within this framework where the
renormalization procedure occurs only once, the bare cross sections F7 and ]:"q only, need
to be evaluated explicitly in order to obtain a finite cross section. It might appear that one
does not need to insert the explicit lowest order fragmentation counter term to evaluate
some contributions to the cross section — as we needed to in our calculation. However
this is not the case. In order to know how to define the transition function I'y, and to
know which poles need to be absorbed in the O(aa;) fragmentation counter term, one
needs to perform the calculation as we did, factorizing the collinear singularities order by
order. In particular, in order to know that the residue of the simple pole in I'y, is given
by [—%qu)} one needs to have previously calculated F,, and ]:“q ® %Pq(fy’). Nevertheless this
formalism enables us to present our results in a compact and elegant form, in terms of

universal splitting functions or convolutions of them.

8.4 The NLO evolution equation for D, .,(z, ur)

In order to obtain a finite differential cross section we have factorized the collinear singular-
ities in the perturbative counterterm of the bare quark-to-photon fragmentation function
at some factorization scale pr. The bare quark-to-photon fragmentation function should
however not depend on the scale at which the factorization procedure takes place. Requir-
ing in fact that it is independent of the factorization scale pp yields the NLO evolution
equation for the renormalized non-perturbative fragmentation function Dy_.,(z,ur). In

the following, we shall first derive this evolution equation and then present an exact (up

to O(acwy)) solution of it.
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8.4.1 The derivation of the evolution equation for D, ..(z, ur)

Requiring that the bare quark-to-photon fragmentation function defined in eq.(8.13) does

not depend on the scale at which the factorization procedure takes place implies,

de—w( ) — ) <« OD gy (2, 1) _ qSP ©) 4 ae &s 52 N? -1 p1)
dIn(p%) Jln(p%) 27 21 2N ”

ae? o N2 -1 1 I
_ X o (Y T pO) g plO) [ adal
27 ‘27r‘56 ( 2N )qu ®P‘” [ € +21n <./\/IQ>J
! N? -1 0D, . (z,pF) | 1 I
il pO) @ Zla=V\ S PF) | 2 FF
+27TS ( 2N ) aa ® Jln(p%) €+ln M?

n N? -1 ..
+ﬁSe ( N ) Pq((?) ® Dyy(2, pr)- (8.33)

4

For terms in the third line of this equation, which are proportional to ¢, the variation
of the non-perturbative fragmentation function with respect to pup, %ﬁ%‘f—) is given
F

by the lowest order evolution equation for D,_.,(z, ur). To be more precise, at O(a), we

have,

1
D) (2) = Dy (2, up)+—a—e"5 (u ) PO, (8.34)
2r F
so that,
aDie) (2) 0D, (2 pr) _ o€l
- _‘1_—*7_: — ZemPr) g plo) 51 P(O). 8.35
dlIn(p%) 0 0ln(u%) oy ot " /\/[2 (8:35)

Note that, in this lowest order evolution equation we have kept terms up to O(e). We
need to do so in order to keep all terms up to O(1) in the next-to-leading order evolution

equation (eq.(8.33)) since B—%I‘n’—“{(z# is multiplied by {1}.
Inserting the lowest order evolution equation given by eq.(8.35) instead of %ﬁ—;”—F

in the next-to-leading order evolution equation (eq.(8.33)), we find the following result,

aD(Z7l1’F) _ aez (0) CY@ O{s N2 —1 ( ) o J\TQ -1 (©) ‘
Oln(pd) — 2« bl o 21‘ or \ 2N b+ 52 2 \ 2N P, ® D(z,pr) (8.36)

The structure of this evolution equation is specific to the quark-to-photon fragmentation

function. This equation is made up with two type of terms: The lowest and next-to-
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leading order inhomogeneous terms,

2 2
% p(oy | X% %s (NZ__I) PO

or 9" " 2 2r \ 2N 2

and a convolution term,

o (N2 -1

97 \ 2N ) P ® Dyy (2, 7).

This convolution term or similar ones are expected to arise in any evolution equation of
renormalized parton-to-hadron fragmentation functions. A similar term occurs also in
the calculation of the inclusive hadron fragmentation process by van Neerven and Rijken
[67]. This convolution term is related to the fact that the photon can be produced via
the fragmentation of a secondary quark into a photon.

The existence of the inhomogeneous terms on the other hand is specific to the quark-
to-photon fragmentation function. This terms appear since the photon can couple directly
to the original quark via the electric charge of the quark e, whereas other hadrons like
pions or kaons cannot. More precisely, in our case, where the identified hadron is a photon,

it can also be produced through the bremsstrahlung emission off a quark participating in

the hard scattering.

8.4.2 A solution of the NLO evolution equation

This NLO evolution equation is insufficient to uniquely determine the non-perturbative
quark-to-photon fragmentation function D, .. (z, ur). This determination will ultimately
be performed by comparing the calculated photon +1 jet rate and its experimental mea-
surement. However it is possible to give an exact (up to O(aa;)) solution of the next-
to-leading order evolution equation. This solution is a first step leading to the ultimate
determination of D, (z,pur). In the same way, the exact (up to O(e)) solution of the
leading order evolution equation, presented in Chapter 2 (eq.(2.29)) led to a determi-
nation of the quark-to-photon fragmentation function by a comparison between the LO

calculation of the photon +1 jet rate and the data.
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An exact (O(acq;)) solution of the next-to-leading order evolution equation is ob-
tained considering the following. We construct this solution by imposing that it takes the

following general form,

N?_1 zo) ae? oy (N? —1 N
Dy y(z,up) = [1 + ( 5N ) ‘)WA} ® DY)z, pup) + 2= ( 5N )B, (8.37)

A Om
where A, B are unknown functions of z, ur and g which is a constant of integration.
DUO)(z, up) is the exact solution of the lowest order evolution equation (eq.(2.27)). We
saw in Section 2.4.4 that it is given by,
ae? 2
DTNz, up) = Q—;P;;’) In (i_g) + D(z, o) (8.38)
0

where the non-perturbative input fragmentation function D(z, uo) is given (at order a)
by,
ae [

D(z, po) = o

with C being a fitted constant as in eq.(2.41). Inserting equation (8.38) in the general

—POn(1 - 2)* +C|,

a7

form suggested for the exact solution of the next-to-leading evolution equation (eq.(8.37))

and neglecting all terms which have more than one power of a;, we obtain,

2 2 2 2
EEY _ po), [ PE B PE :pm_lpo) P<°1 Er 8.39
A(Z’ u%) Fu ln(ué)’ Pu) T T ® ) &

so that the solution of the NLO evolution equation reads,
2 N -1 I
(NLO) - D qp(O ] &6 %5 py [ EE
b (2 1r) (21 10) + 27 " (;L ) * 27 2m \ 2N o 13

a, (N? -1 752 ae?l I
hath In{ZE} pO) —a_pO, ( EE D )
+27f( N ) n(#%) “ ®[2F2 o\ ) (5 ko)

(8.40)

The non-perturbative contribution D(z, pip) must still be extracted from the data. Fur-
thermore, it is worth noting that, since this solution DVLO)(z, ur) is an ezact solution
of the next-to-leading order evolution equation, the factorization scale dependence of the

photon +1 jet rate, is eliminated.




In conclusion, after having presented a summary of the results obtained in the pre-
vious chapters for the calculation of the v +1 jet rate at next-to-leading order, in this
chapter we have absorbed all the remaining collinear singularities in the fragmentation
counterterm and obtained a finite - up and Yy, dependent — answer for the sum of
the unresolved contributions. Finally, we have also determined a solution of the next-
to-leading order evolution equation which shall help to determine the quark-to-photon
fragmentation function. In the next chapter, we shall evaluate within a FORTRAN program
the resolved contributions and calculate the photon +1 jet rate at O(ac;). The final
comparison between those results, and the experimentally measured v +1 jet rate leading

to a next-to-leading order determination of D,_.(z,pr) will be fulfilled in Chapter 10.
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Chapter 9
Numerical part of the calculation

We have now collected all necessary ingredients to evaluate the next-to-leading order vy
+ 1 jet differential cross section numerically. This evaluation shall be dealt with in this
chapter, which is organized as follows. In Section 9.1, after having outlined the general
structure of the program we shall explain how all different contributions mentioned in the
previous chapters are implemented in the numerical program. Particular features of the
evaluation of the fully resolved real contributions with the hybrid subtraction method will

be illustrated in Section 9.2. Finally, the v, dependence of the resulting cross section is

studied in Section 9.3.

9.1 Structure of the program

9.1.1 Generalities

The FORTRAN program evaluates the 7 41 jet rate as the sum of four cross sections.
Those are determined according to the following criteria: the number of particles present
in the final state and the presence (or absence) of the quark-to-photon fragmentation
function. For each contribution, the appropriate matrix element squared is integrated
over the corresponding v +1 jet phase space using Monte Carlo techniques, i.e. with

VEGAS [70]. To be more precise, the cross section is obtained as follows. The events,
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which are just points in the phase space, are generated randomly. To a given event, a
succession of selection criteria are applied in the course of the program. As the phase
space is constructed, the physical events are chosen and each event is weighted by the
volume of phase space associated with it. At the same time the invariants y;; are defined
allowing the reconstruction of the four-momenta p!' of the particles in the events. The
jet algorithm is then applied to these momenta to select the ¥ +1 jet events. Finally, for
these selected events, the matrix element squared is evaluated. As a result, each v + 1 jet
event is weighted by its corresponding phase space volume and matrix element squared.

The collection of all weighted events ultimately builds the cross section.

9.1.2 The individual contributions

The four individual contributions to the photon +1 jet rate at O(aq;) are denoted by:

sigb, sigc, sigd, sige’. These four contributions are as follows:

(1) 2 partons + photon (sigb).

There are two contributing processes with a hard photon in the final state.

(a) The LO process: v* — ¢g¢7.
(b) The NLO process: v* — ¢gy(g) with an unresolved (real or virtual) gluon in
the final state.

The LO contribution is obtained by integrating the 3-parton matrix element squared
over the 3-parton 1l-jet phase space, while the NLO contribution is obtained by
integrating the product of the 3-parton matrix element squared and the unresolved
factor Kyq(,) (defined in eq.(8.8)) over the 3-parton 1-jet phase space. Furthermore
the NLO part also contains the result of the integration over the 3-parton 1-jet phase

lsiga is omitted for historical reasons. In fact, originally the FORTRAN program (EEPRAD) [46], evaluated
the next-to-leading order cross section for the production of n jets and one isolated photon. The cross
section siga is the cross section for the production of n jet partons + . However if the number of jets

produced is 1 as in our case, siga does not contribute to the total cross section.
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space of the finite expression present in the matrix element squared associated with

the resolved virtual contribution (given by eq.6.3) yielding F, as presented in Fig.3.6.

2 partons with fragmentation (sigc).

There are two contributing processes:

(a) The LO process: v* —qq ® D,_.,

(b) The NLO process: v* — ¢¢ ® D,

For both contributions, the final state configuration corresponds already to a pho-
ton + 1 jet event — one parton must fragment into a recognizable photon while
the other forms a jet. The LO contribution is the sum of the non-perturbative and
pr-dependent lowest-order quark-to-photon fragmentation function and a finite con-
tribution. This finite contribution, given in eq.(2.25), is the result of the sum of the
simple quark-photon collinear contribution of the 3-parton final state process and
the bare quark-to-photon fragmentation function. The non-perturbative fragmen-
tation function is the result of the comparison between the calculated rate at lowest

order and the measured photon +1 jet rate as was discussed in Section 2.6.

The NLO contribution is made of three terms: The non-perturbative next-to-leading
order and pp—dependent quark-to-photon fragmentation function, the finite sum of
all two-particle unresolved contributions (given by eq.(8.14)) and a convolution term
involving the lowest order pp—dependent quark-to-photon fragmentation function
given by €q.(8.15). The next-to-leading order yr—-dependent fragmentation function
is itself composed of two contributions, a perturbative part which is dictated by the
solution of the NLO evolution equation (given in eq.(8.40)) and a non-perturbative
part which is at this stage of the dissertation still unknown. It will be ultimately
obtained in the next chapter from a comparison between the result of the calculated
up to O(aq;) jet differential cross section and the measured rate. Consequently,
note that all plots showed in the remainder of this chapter are obtained considering

the lowest order non-perturbative quark-to-photon fragmentation function given in
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eq.(8.38).

(3) 3 partons + photon (sigd).
This contribution is only present at O(aa;) and describes the process v* — ¢gvg
where both photon and gluon are theoretically resolved. This cross section is ob-
tained by integrating the 4-parton matrix element squared over the 4-parton phase
space subject to the requirement that only one jet is observed in addition to the
photon. It is in order to evaluate this contribution correctly that we need to im-

plement the hybrid subtraction method. The results of the implementation of this

method will be illustrated in Section 9.2.

(4) 8 partons with fragmentation (sige).

This contribution is also only present at next-to-leading order and describes the
process where a hard gluon and the fragmentation function are present in the fi-
nal state, v* — ¢qg ® D,_.,. The fragmentation function considered here is the
sum of the lowest order non-perturbative quark-to-photon fragmentation function
and the finite contribution? Fy given in eq.(8.7). Finally, the cross section sige is
obtained as the integration of the 3-parton matrix element squared multiplied by
the fragmentation function considered above over the 3-parton = photon + 1-jet
phase space. Notice that the contribution from the gluon-to-photon fragmentation

function does not occur at this order.

These individual contributions and their sum as functions of ymin are illustrated in

Figs. (9.3,9.4).

2This finite contribution has been obtained as the sum of the bare quark-to-photon fragmentation

function and the simple collinear quark-photon contribution in the 4-parton = photon + 1-jet phase

space, (c.f. eq.(4.29)).
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9.2 Consequence of the application of the hybrid
subtraction method

As we already mentioned, the implementation of the hybrid subtraction method is crucial
for the evaluation of the fully resolved real contributions. Within this method, inside a
singular region we evaluate the difference between the full 4-parton matrix element squared
and its approximation in that singular region while outside any singular region, i.e. in the
resolved region, we calculate the full 4-parton matrix element squared. The approximated
matrix element squared considered here is either the double unresolved matrix element
squared (triple collinear, soft/collinear, double collinear) or one of the single unresolved
ones (simple soft or simple collinear), all defined in Chapters 4 and 5 of this dissertation.
Inside the singular regions, by choosing appropriately their boundaries, we have ensured
that the approximations of the matrix element squared are accurate. At the boundaries
of the double unresolved regions and the single soft gluon region the approximations of
the matrix element squared are also accurate. However, at the boundaries of the single
collinear regions it turns out that it is not the case. This can be seen in Fig. 9.1 which
shows the cross section as a function of one of the invariants, y,,, in different single
unresolved regions. Clearly, in the single collinear domain, the size of the cross section
at the boundary of this region or just below ymin is still significant, while it is completely
negligible in the soft-gluon region®.

As discussed in Section 4.2.2, (c.f. eq.(4.25)), in the (¢ — ) collinear region, the
invariant 1,, can become less than ymin, but is not necessarily so. In other words, we
allow the (g — 7)-collinear and the (¢ — g)-collinear regions to overlap when ¥,y < Ymin
and ¥,y < Ymin- LThe reason for this can be seen in Fig. 9.1: in the region y,g > Ymin, the
(q — )~collinear contribution grows for decreasing y,,. This behaviour is due to terms
proportional to {i} in the matrix element squared. Those terms naturally are not at all

accounted for by the simple collinear (¢—+) approximation of the matrix element squared,

3Note that in Fig. 9.1, the rates in the double unresolved regions are not shown as they are smaller

by orders of magnitude than the rates displayed.
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Figure 9.1: The four-parton contribution (sigd) to -the cross section as function of
log,o(y,g) for different regions of phase space. The parton resolution cut s Ymin = 10-6

and aeg = a,Cp = 27, while yo = 0.1 and 2z, = 0.7.

used in the region ¥,y < Ymin but With Yo > Ymin. For 3oy < Ymin, as we allow the two
collinear regions cited above to overlap, the approximation of the matrix element squared
is given by the sum of the two ((¢—~) and (¢ — g)) simple collinear approximations. The
terms in {ﬁ} are then correctly taken under consideration. As can be seen in Fig. 9.1,
in the region where y,y < Ymin, the divergent terms in the single collinear ¢ — v collinear
region are removed, the corresponding cross section decreases towards lower values of ygq.

In a given single collinear region only one invariant is required to be less than Ymin,
while in any other singular region at least two invariants are constrained to be less than
Ymin. Due to the large particle multiplicity in the final state, at the boundaries of a given
single collinear region, it can happen that an invariant which is not constrained to be

less than yYmin can approach this theoretical cut and be of the same order of magnitude

than the invariant which is constrained in this singular region. The invariant which is
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Figure 9.2: The four-parton contribution (sigd) to the cross section as function of
log,o(yi;) for the different invariants. The parton resolution cut is Ymin = 1078 and

aeg — a,Cp = 2x, while Yoy = 0.1 and zcy = 0.7.

constrained in this single collinear region appears in the denominator of the full matrix
clement squared and of its approximation while the invariant which is not bounded in
that particular singular region appears only in the denominator of the full matrix element
squared. As a consequence the difference between matrix element and approximation

can be sizeable. Applying the phase space slicing method means simply ignoring these

contributions — placing a strict cut at Yy = Ymin — and ignoring the contribution to the

left of logy(ysy) = —6 in Fig. 9.1. This is clearly not the right thing to do.
Although the contributions just below ymin may be sizeable, as the invariants tend to
0, all contributions also tend to 0. This is shown in Fig. 9.2, which represents the cross

section as a function of the various y;;. As there is a symmetry under the exchange of

quark and antiquark the y1; and ys; distributions are equal.

215




Figure 9.3: Contributions of the individual terms (sigb, sigc, sigd, sige) to the
total cross section as function of Ymin for yeur = 0.1 and zey = 0.7. For clarity, only the

next-to-leading order contributions are shown. Furthermore we take aeg = a,Cp = 27.

9.3 Study of the log(ymin) dependence

As can be seen in Fig. 9.3, the size of the different contributions to the differential cross
section increases dramatically as ymin becomes smaller. This rapid rise is due to the
presence of logarithms of ymin in each of the contributions. In the analytic part of this
calculation, we saw that the leading poles present in the different unresolved contributions
(real, virtual and involving the quark-to-photon fragmentation function) were poles in
{Cls} These poles were sometimes multiplied by factors of the form y&,;,. On expansion as
a series in ¢, the poles cancelled amongst each other yielding a finite result (eq.8.14). This
result however contains terms proportional to logarithms of ymin up to a certain power
being maximally equal to 3. This 10g%(Ymin) dependence of the sum of all unresolved

contributions appears clearly in Fig. 9.3 by the curve representing the variation of sigc

with variations of Ymin-
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The solid line is a fit of the form ¢; + ¢2 Ymin 1n? Yimin.-

The final cross section which is obtained as the sum of all theoretically resolved and
unresolved contributions must of course be independent of Ymin, as the introduction of
this parameter is an artifact of the calculation. Consequently, we expect the presence
of a similar log®(yYmin) dependence in the sum of sigb, sigd and sige to cancel this
dependence coming from the sigc contribution. In this case, it appears from Fig. 9.3.

that all three contributions separately contain logarithms of Ymin, including 1og*(Ymin)

terms.

It can be seen from Fig. 9.4 that the sum of all resolved and unresolved contributions
is clearly ymin-independent (within the numerical errors of the calculation) providing that
Ymin 15 taken small enough. In practice, this means for values of ymin ranging between
10~5 to 10~2 for the chosen value of the experimental jet resolution parameter yey = 0.1.
Furthermore the differential rate as a function of z illustrated in Fig. 9.5 appears also

Ymin—independent. Hence, these two results demonstrate the consistency of our approach
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Figure 9.5: The differential cross section as function of z for different values of ymn and
Yt = 0.1. Only the next-to-leading order contributions are included, we again take
ael = a;,Cp = 2r. All points were evaluated in the respective bin centres, the results for

different values of ymin have been shifted across the bin only for better visibility.

to perform the calculation of the NLO photon +1 jet cross section — there is a region of
parameter space where the choice of the unphysical parameter ymi, does not affect the
physically observable cross section. This is actually an extremely powerful check of our
calculation. Not only have the explicit poles cancelled as discussed in Chapter 8, but
the final numerical result does not depend on the parameter introduced to isolate the
divergences. Each individual term has a very strong dependence on ymin, but the sum
of all terms is flat in Ymin. FOr Ymim = 1078, the magnitude of the individual terms is
O(5000), while the final result (after enormous cancellations) is O(10). Of course, in
some contributions the logarithms appear explicitly, while in sigd particularly, they are
generated by the Monte Carlo integration and form the largest source of error.
Concerning the figure displaying the ymn dependence of each contribution to the cross

section, i.e. Fig. 9.3, we notice that for large values of Y the cross section deviates from
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the ymin—independent value. This is because for large Ymin values the approximations used
in the analytic calculation become less accurate. In particular, terms of O(Ymin 108 (Ymin))
which have been neglected, become sizeable. On the other hand, for values of Ymin below
10-2 the errors on the result become important due to the necessity of cancelling large
logarithms numerically. The total result becomes therefore less stable numerically for
such small values of Ymin. A reasonable choice of Ymin, Which does not lead to problems
of numerical instability is therefore ymn = 107%. This value of Ymin will be used in the
remainder of this thesis to compare the results of the calculated v +1 jet rate at O(acy)
with the measured rate.

In conclusion, after having outlined how the numerical part of the calculation has been
performed, we have demonstrated that the results of this next-to-leading order calculation
of the photon +1 jet rate were independent of the theoretical cut Ymin for values of Ymin
ranging between 107° to 107°. The value ymin = 10~ has been chosen to determine the
next-to-leading order non perturbative quark-to-photon fragmentation from a comparison
between the results of this calculation and the data. This determination together with a

study of the experimental cut (ycut)-dependence of the results shall be carried out in the

next chapter.
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Chapter 10

Final results

In the previous chapter, we have proven the consistency of our approach evaluating the
photon +1 jet rate at order aa,. We have shown that the results of the numerical program
evaluating this rate were yp, independent. Having this numerical program available, it 1s
now possible to determine the non-perturbative quark-to-photon fragmentation function
up to this order from a comparison between the results of this program and the experi-
mental data from the ALEPH Collaboration at CERN. Section 10.1 is dedicated to this

determination while a prediction for the integrated photon +1 jet rate for z greater than

0.95 will be presented in Section 10.2.

10.1 A NLO determination of D,_.,(z, ur)

In Chapter 8, we saw that the non-perturbative quark-to-photon fragmentation function

Dy_.,(z, ur) is part of the next-to-leading order photon +1 jet rate, which can be expressed

in the following way,

1 doNEO(y + Ljet
~=Z (y + Liet) =2F, + 204 ® Dy, (10.1)

Jo dz

where F, and Cy, are both finite. F, is the sum of the finite lowest order and next-to-

leading order terms occurring in the corresponding bare differential cross section (c.f. Sec-

tion 8.3) and C,, is a coefficient function given by eq.(8.22).
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We have also found that the non-perturbative quark-to-photon fragmentation function
D(z,pr) could be given as an exact solution (up to O(ae;)) of a next-to-leading order
evolution equation, (c.f. eq.(8.36)), which took the following form,

1,2 Z
D(NLO)(Z,,UF) = Al (2’7;—5> —f‘AZ (2, Z_};‘) ®D(Z,/_LO) +D(’Z7 IU‘O) (102)
0 0

The functions A; and A, are known functions given in eq.(8.40). The non-perturbative
input function D(z, o) on the other hand, is up to now unknown. It will be determined

together with po, the starting scale', in this section.

In Chapter 2, we saw that a lowest-order determination of the non-perturbative frag-
mentation function D(z, pp) could be given by,

2
D(LO)(Z7/LF) =A (Z, ,Uf_}27‘> + D(Z7/j'0)7

Ho
where the A—term is an exact solution of the lowest order evolution equation, given by

eq.(2.27) and a comparison with the measured photon +1 jet rate yielded a lowest-order

determination of the non-perturbative fragmentation function at a starting scale uo, which

was
2
1o _ae 0 s
DEO) (2 up) = 2—7:’ _Pq(v) In(1-2)?-1-1In (2—#%)] )
with wo = 0.14 GeV. (10.3)

In this parametric form, the logarithmic term in (1 — z) had been introduced to guar-
antee that the lowest-order photon +1 jet rate is well behaved as z tends to 1 (c.f. Section
92.4.4). The cut-off scale yo and the other constant terms had been fitted to the data.
More precisely, they had been fitted to the measured photon +1 jet rate for one partic-
ular value of the jet resolution parameter Yeut (Yeue = 0.06). The next-to-leading order
quark-to-photon fragmentation function at a given starting scale o, D(z, o) will be such

that the lowest order component of the photon +1 jet rate calculated at next-to-leading

1Recall that pg can be seen as the scale below which the perturbative approach is not valid anymore.
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Figure 10.1: Comparison of the photon 4 1 jet rate at leading and next-to-leading order
with the ALEPH data. The non-perturbative quark-to-photon fragmentation function is
fitted to the data for yey, = 0.06 only. The jet rates for the other values of ycy, are then

predictions from the leading order and next-to-leading order calculations.
order is still well behaved as z tends to 1. A possible parametric form for D(z, o) (at
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NLO) therefore reads,

2
ae
D(z,po) = 5+ [P In(1 - 2)* + as - f(2) + b (10.4)
with the unknown parameters being a1, b; and pg the cut-off scale. The strong coupling
constant « is fixed. It is chosen to be o (M%) = 0.124, the leading order value for the
strong coupling constant obtained from the hadronic R-ratio.

A triple parameter fit using only the data at yc, = 0.06 yields,

2
e
Dizm) = 5 [~ PO1n(1 - 2)* + 20.8(1 - 2) — 11.07] ,
with  pg = 0.64 GeV. (10.5)

The resulting values of this fit obtained with x* = 0.27/3 have been used to evaluate
the photon +1 jet rate calculated up to next-to-leading order for different values of Yeut
(Yew=0.01, 0.1 and 0.33). The obtained rates are compared with the the leading order
predictions and the ALEPH data given in six z-bins (0.7 < z < 1) in Fig. 10.1.

Consistent results are found over the whole range of ey, showing the universality of the
non-perturbative quark-to-photon fragmentation function D(z,pr). Furthermore, from

Fig. 10.1, it can be seen that any yc.. dependence of the photon +1 jet rate is adequately

described by the perturbative calculation.

10.1.1 The form of D, (z, i)

A comparison between the determinations of D, ..(z,up) at leading and next-to-leading
order is shown in Fig. 10.2. The fragmentation functions displayed as functions of z are the
solutions of the respective evolution equations with the corresponding non-perturbative
input distributions D(z, uo) fitted at po . Both inputs are proportional to the electro-
magnetic coupling constant and the quark charge; more precisely, they are proportional
to (ael)/2m.

Unlike the corresponding photon +1 jet rates at leading order and next-to-leading or-

der which are, by construction, completely independent of the choice of the factorization

223



0.02

0.018

Dq_)y (z, U = Mz)

0.016

0.014

0.012

0.01

0.008

0.006
NLO

0.004

0.002

I\II\III\I\|!II|II>]III|(]IIIIII]

! | s
0.7 0.75 0.8 0.85 0.9 0.95 1

Figure 10.2: The quark-to-photon fragmentation functions at leading and next-to-leading

order as functions of z only shown for a quark of unit charge. The factorization scale pr

is taken equal to Mz in both cases (see text).

scale pp, the fragmentation functions are sensitive on this choice. As the mass of the
Z-boson is the only hard scale in the problem, we chose to display these fragmentation
functions at the factorization scale ur = Mz. The next-to-leading order quark-to-photon
fragmentation function is a universal, process-independent quantity, which has been un-
known up to now. It appears in all processes involving quarks and photons in the final
state, and could be used to re-evaluate those processes, which so far have only been evalu-
ated using model dependent assumptions for this fragmentation function. Most prominent

examples for such processes are the prompt photon cross section at hadron colliders and
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the photon pair cross section at LHC. As mentioned in Section 1.2.4, the precise evalua-
tion of the latter process is crucial to determine whether a Standard Model Higgs-boson

of intermediate mass can be detected at LHC.

10.2 The integrated rate for z > 0.95

The measured and calculated integrated rates above z = 0.95 can be displayed as a
function of Yy and the results of this comparison are shown in Fig. 10.3. The leading-order
curve provides an adequate description of the data as mentioned in Section 2.6.4. The
next-to-leading order curve describes the data well and provides even a better agreement
between theory and experiment than the leading-order curve over the whole range of yeu.

At the end of Section 2.2, after having presented the results of previous analyses of
the photon +n jet rates, where a “two step” procedure was used to isolate the photon,
we mentioned that within this approach large negative next-to-leading order corrections
were required to obtain a reasonable agreement between the theoretical and experimental
results. From Fig. 10.3 this appears clearly not to be the case when the photon is clustered
inside the jets simultaneously with the other partons and where the photon inside the
photon-cluster is called isolated if it carries at least 95% of the electromagnetic energy of
the photon-jet. This confirms the suggestion made in [46], that the large effects present
in the previous analysis were simply a consequence of the procedure used previously to

isolate the photon. Using the safer democratic approach instead, the next-to-leading order

corrections are of reasonable size.
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Figure 10.3: The integrated photon 41 jet rate above z = 0.95 as function of yeut,
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Chapter 11
Summary and conclusions

In this dissertation we have performed the calculation of the photon +1 jet rate at O(aas)
which represents a first step towards the evaluation of jet observables at next-to-next-to-
leading order. To achieve this task, despite the presence of soft and collinear singularities
arising in various contributions to this jet rate, we separated this calculation into an
analytical part, which contains all the divergences and a finite numerical part. The
introduction of a theoretical resolution parameter y.,;, enabled us to realise this separation
for all four, essentially different, contributions involving a photon or the fragmentation
process in the final state, c.f. Fig. 3.1. In particular it enabled us to decompose the four
particle final state phase space into theoretically resolved, single unresolved and double
unresolved regions, as defined in Fig. 3.4. This decomposition of the four-particle final
state phase space represents one of the most difficult tasks achieved in performing this
calculation.

Indeed, due to the large particle multiplicity in the final state, we found that the
expected boundaries from an analysis of the single unresolved (soft or collinear) regions
in the three-particle final state phase space (c.f. Section 1.5.3) had to be modified to
properly define the single unresolved regions in the four-particle final state phase space.
More precisely, the theoretical separation criterion ymi, had to be multiplied by the triple

invariant defining the three colour connected or electromagnetically connected particles,
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as explained in Section 4.2. Once this was carried out, the known simple collinear and
simple soft approximations of matrix elements and phase space (c.f. Section 1.5.3) could
be used to determine (in Chapter 4) the single unresolved real contributions to the photon
+1 jet rate from the four parton process at order ce.

In the double unresolved regions of the 4-particle final state phase space, which we
first had to define in Section 3.2, these approximations of matrix elements and phase
space were previously unknown. Indeed, in Chapter 5, prior to the evaluation of the
double unresolved contributions (triple collinear, soft/collinear and double collinear), we
had to first define the corresponding triple collinear, soft/collinear and double collinear
limits of the 4-particle matrix elements and phase space. Once these approximations had
been found, the evaluation of the double unresolved contributions, for which an elaborate
presentation is given in Chapter 5, was rather detailed and involved. In particular, the
triple collinear contribution could only be evaluated using various subtle properties of the
hypergeometric series.

All analytically calculated unresolved contributions presented in Chapter 5, 6 and 7
respectively, were combined in Chapter 8 to yield a result that still contained double and
single poles in € in addition to the physically important finite component (eq.(8.9)). A
fifth essentially different contribution to the photon 41 jet rate at O(ac,) displayed in
Fig. 3.1, is given by the tree level g¢ production process with the bare next-to-leading order
quark-to-photon fragmentation function “attached” to one of the quarks. The pole part
of the sum of the unresolved contribution is to be factorized into this bare fragmentation
function, yielding a finite physical photon +1 jet rate. These pole parts must therefore be
universal functions. Indeed, we found (first by inspection of our result and subsequently
by more general arguments) that the coefficient of the { %} pole is given by the convolution
of two leading order Altarelli-Parisi splitting functions (Pq(fy)) ®Pq(;))) and that the residue of
the {%} pole is given by the next-to-leading order quark-to-photon splitting function Pg).
To find that when all contributions are summed together the {1} left-over singularity is
precisely given by this next-to-leading order splitting function provides us with one of

the most stringent checks of the correctness of the analytic part of the calculation of the
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photon +1 jet differential cross section at O(cy).

Once the factorization of the left-over collinear singularities into the perturbative
counter term of the bare next-to-leading order fragmentation function is realised, as
described in Section 8.2, the non-perturbative quark-to-photon fragmentation function
D, (z,pr) and the jet rate becomes finite and dependent on the factorization scale pp.
Requiring that the bare next-to-leading order quark-to-photon fragmentation function is
independent of this scale enabled us to derive a next-to-leading order evolution equation
and an exact (up to O(aay)) solution of it in Section 8.4. When implemented into the
photon +1 jet rate, it leads to a pr independent differential cross section.

All these contributions were then implemented into a FORTRAN program which evalu-
ated the photon +1 jet rate at O(aw;). As motivated in Section 9.2, the hybrid subtraction
method (defined in Section 1.5) had to be used to evaluate the resolved real contributions.
Outside any singular region, for each event selected by the jet algorithm, the “full” matrix
element squared is evaluated while inside any of those regions the difference between the
complete 4-particle matrix element squared and its approximation (used in the analytical
part of the calculation) are considered instead. Consequences of the application of this
method on the behaviour of the invariants {y;;} constrained in the singular regions were
shown in Figs. (9.1,9.2).

The most stringent test on the consistency of our approach and the correctness of
the results obtained is provided by Fig. 9.4, where it is shown that the results of the
numerical program are independent of the choice of the theoretical slicing parameter ymin.
This result was obtained after a numerical cancellation of large logarithms of ymin taken
up to the third power had been realized.

Finally, in Chapter 10 we have presented a determination of the process independent
non-perturbative quark-to-photon fragmentation function up to O(aq;) using our next-
to-leading order calculation and the existing data from the ALEPH Collaboration. The
fit was obtained using only the data for y., = 0.06. A comparison between the calculated

and the measured photon +1 jet rate at other values of the experimental jet resolution

parameter Yoy showed clearly (in Fig. 10.1) that any yc.. dependence of this jet rate is
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adequately described by our next-to-leading order perturbative calculation. A further
comparison between the calculated and measured integrated rates for values of z greater
than 0.95 — i.e. “isolated "photon +1 jet events — was displayed in Fig 10.3. The theoret-
ical next-to-leading order curve (function of y.,) was found to describe well the data and
to provide a better agreement between theory and experiment than the curve yielded by
the leading order calculation of the photon +1 jet rate for all values of yeu considered.
In summary, we have presented a complete calculation of the photon +1 jet rate at
O(aa,). Several new concepts and calculational methods, which could directly be ap-
plied to the evaluation of jet observables at next-to-next-to-leading order, were developed
throughout this calculation. As a direct result, we obtained a new determination (at order
o) of the process independent non-perturbative quark-to-photon fragmentation func-
tion which could be used for a re-evaluation of processes involving final state photons,
such as one important background process to the detection (via its photon pair decay

mode) of the Higgs-boson of the Standard Model of Particle Physics.

230




Appendix A

Special functions

In this appendix we have collected the definitions and properties of special functions which
we have used in different parts of the calculation throughout this dissertation. A complete

list of the most commonly used definitions and properties can be found in [71] and [72].

A.1 The Gamma function I'(xz)
The function I'(z) can be defined by,
1
['(z) = / dy e ¥ y* 7, (z > 0).
0

It has the following properties:

I'(z+1) = =z(z),
'ln4+1) = nl
My =1, I(3)=vm
N2 ) = 22; I(2) Tz + 1/2), (A1)
M(z—n) = (=1)" FP((_lz“:fffl)). (A.2)
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An alternative, but equivalent definition for the Gamma function is the so-called Euler

representation
1.2.3.n
r =1l z,
(z) = lim z(1 + 2)(2 + 2)..(n + z)n

The advantage of this definition is that it enables one to write the Gamma function in an

exponential form,

'l+z) = exp{—Z’yE + i (_;)j C(])}, (A.3)

n=0

where ((7) is the 7 th Riemann Zeta function and g the Euler constant.
Throughout this thesis we used the above definition to expand in ¢ the I' functions

obtained as a result of the phase space integrals. Moreover, some frequently used combi-

nations of I' functions and their € expansion are

I*(1—¢ 2T s
M-z ~ 7§ (A4)
PA=9l0+e _ |4 ;
F(l — 26) = 1-2¢ C3. (AO)

A.2 The Beta function B(a, ()
The Beta function B(a, 3) is defined by the following integral,

Blof) = [ dermia—pr,
I«

)T'(5)

= L 7 R R 0. A6
T(a B) e(a), Re(B) > (A.6)
In some cases, we can relax the constraint Re(a), Re(f) > 0, we have

/01 db bP-1(1 — b)e-t = 1;((—2)5%) (A7)

for Re(a) > 0 and Re(B) < 0 with Re(a+ ) < 1.

Indeed, considering the substitution v = %, the relation (A.7) can be written as
/ wP = (u = 1)1 — ),
1
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which is equal to

N(o)r(8) .
e F21(0,+i‘,,1 + f;1),

according to the definition (A.10) and the identity (A.14).

A.3 The Hypergeometric function Fs(a, b; ¢; 2)

A.3.1 Definitions
The hypergeometric function F(a,b;c; z) can be defined by the hypergeometric series

Fula, bic;z) = 3 (—;% (A9)

n=0

(Z)n =L ntl)

Do =1
where { ( Jo
()

The hypergeometric series terminates if a or b is equal to a negative integer number or
to zero. For ¢ = —n, with n being a natural number, it is undeterminate. If we exclude
these values of a, b, ¢ the hypergeometric series converges in the unit circle |z| < 1. If

Re(c—a —b) > 0, then

Fu(a, b ¢; 1) = ?E?f(j);(‘; - 2 (A.9)

otherwise Fyi(a, b; ¢; 1) is divergent.
The hypergeometric function Fy(a, b; ¢; z) can also be defined by its integral repre-
sentation
I'(e) 1 _ _
bje;z) = ———/ de 2711 — )= (1 - t2) 7,
F21(a’ ,C,Z) F(b)F(c—b) 0 ( ) ( Z) ’
Re(c) > Re(b) > 0. (A.10)
Furthermore, the function u = Fy(a, b; c; z) satisfies a differential equation called the
hypergeometric equation [71],
d*u

z(l—z)a?+[c—(a+b+l)z]j—z —abu =90. (A.11)
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In fact, let us denote by Fy(a,bj¢c;2) = F, F' = % and F" = d F the hypergeo-

metric series and its first two derivatives with respect to its argument z. To show that

Fyi(a,b; ¢; z) = F satisfies the following equation
z2(1—2)F" + [c — (a+b+1)z] F' —abF = 0,

we expand F and its derivatives in infinite series including the powers of z present in the

hypergeometric differential equation. More precisely, we consider
< T(a+n)(b+n)(c)
F. b; c; = ",
ACLER Z T(c+m)D(n + DT (a)T(6)
dFy(a,byc2) i a + n) b-l— n) Tla+n)l(d+n)(c)
dz B (c+n) T(c+n)T(n+1)C(a)l(b) °
——

zszl(a,b; cz) i I'(a +n)I'(b+n)T(c) o
dz — 2T+ n)I(n+ DT(a)I ()
ZdQFgl(a,b; cz) in (a+n)(b+n) T(atn)'(b+n)(c) n
dz? T~ (c+n) Tle+n)(n+1)I(a)T(?)
LA Fn(a b)) & [(a+n)I(b+n)(c) .
’ dz? = L0 Y e e T @) (A-12)

where in the above equations we wrote F',zF" 2F" and z?F" as the infinite series of
F multiplied by some factor proportional to {n} which are underlined. Inserting these

identities the hypergeometric equation becomes,

(a—l—n)(b-{—n)_nn_ Ca—{—n)(b—i—n)
L Py (=Dt e

which is satisfied.

—(a4+b+1)n—ab =0

A.3.2 Various properties of the hypergeometric series

In the evaluation of the triple collinear contributions (in Chapter 5) we needed to use
various properties of the hypergeometric functions. In what follows, we shall list the ones
which follow from the definition of the hypergeometric series F21(a, b; ¢; z), while more

subtle properties of it will be explicitly proven.
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a. Some elementary relations

Fn(a, b ¢ 2) = Fn(d, a; ¢ 2),
Fo(—a,b;b;2z) = (1—2)° (A.13)

Fn(0,b,¢ 2) = 1. (A.14)
b.Relations between contiguous hypergeometric functions

(c—a—=b0F ~(c—a)Fla—1)+b(1—2z)F(b+1) = 0, (A.15)
(b—a)(1l=2)F —(c—a)F(la—1)+(c—bF(b—1) = 0, (A.16)
a—1—(c—b—1)z]+(c—a)F(a=1)—(c=1)(1—2)F(c—1) = 0, (A7)

where F' denotes Iy (a,b;c;z) and F(a£1),F(b+ 1) and F(c £ 1) stands for Fyi(a £
1,b;¢;2),Fo1(a,b+ 1;¢; z) andFy(a,b,c £ 1, z) respectively.

c. Some other useful relations between hypergeometric functions of different

arguments
— A Relation between F(z) and F(1 — z):

Fyi(a,b;c;z) = A1 Foi(a, by a+b—+1; 1—z)+A2(l—z)C_“‘bF21(c—a,c—b, c—a—b+1;1-2),

(A.18)
N _ ) (c—a-—b __ P(c)(at+b—c
where Al = ]__‘(c—a()F(c—b) and A2 = —(—I,Wl.

— A quadratic transformation’:

In performing the calculation of the triple collinear contribution to the differential

cross section, for terms involving {5131514} we have used the relation

i ) = (14 2)%Fyn(1,3/2 = b;b+1/2;2%), (A.19)

1+2)

LA]] these relations and further ones are cited in [71]. We have here limited ourselves to those which

F21 (1, b, 2b,

we explicitly used in the development of the calculation presented in this dissertation.
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which holds for all values of z. In the following we shall prove the equality of these two
series on a term by term basis, independently of the value of z. Furthermore, we shall
also show that it is justified to expand the resulting hypergeometric function in infinite
series to perform the v integration, (as in eq.(5.33)), although this series diverges at 1.

The relation (A.19) between two infinite series is correct if the two series satisfy the

following two criteria:

(a) They have the same value and the same first derivative at zero, which is trivially

the case here.
(b) They satisfy the same hypergeometric differential equation.

We therefore have to see whether (1 + z)™% Fy; (1, b; 2b; (1_‘11_—22)2) = v fulfills

d%u du

E= 22(1-2%) + [b+1/2—(243/2 )2 5 —(/2—bu =0, (A20)

d2z2

which is the differential equation satisﬁed by Fy1(1,3/2—b;b+1/2; 2). Defining y = (Hz)g,

and considering F' = d“ and F" = d 2%  the above equation reads

e = el B duea] oG9 dasa- G-
b x [ - A=) - (-0 -]
+F’><[ [p+2-(3-0) 2]8;2—(1—22]
P a0 (A2

The idea is then to make this differential equation to look like the one satisfied by

Fo (1, b 26 i )which is,

4z 1622 4z
— _F" — F' — (1+b+1 F' —bF = 0.
(1+2) (1+2)* ( )(1 + z)?

When we proved that Fy(a,b;c; 2) satisfies the hypergeometric equation (A.11), we

expanded F and its derivatives in infinite series including the powers of 2 eventually
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present in the hypergeometric equation. Following the same idea here, the equation

(A.20) yields

E

I
]
&

E, = (26+n)(1+z)[(1—z2)[3;+;(14—2)] [b+§—<;—b)z2](l+z)

—<;——b 1+z}
!

1= (14 - S-S -2) - (=20 =)

(1+n)(b+n)[2[b+—;——(;—b)](1 ?) (1_2)}

1
+ ln(l +n)(b+n)—n(n—1)(2b+n) ] )(1 + z). (A.22)

But this equation for E is still not equal to zero.

However, one has to remember that there is some arbitrariness in the way one groups
the terms together. By this statement we mean here the following. There are two possible
procedure to express zF (for example) in an infinite series proportional to the infinite

series defining F' (as in eq.(A.8)). Either one includes the factor z in the infinite series

and obtains

dFy(a,b;c; z) i Pla+n)D(b+n)T(c)
Sl G 2)

dz - :4;043« T(c+ n)(n + D)T(a)T(B) "’
or one considers z as a factor multiplying the infinite series only, in which case one finds
instead
ZdF21(a,b;c z) i a+n Y(b+n) T(a+n)'(b+n)F(c) o

dz (c+n) (c+n)l(n+ DI'(a)L'(b)

The underlined factors proportional to n in the above expressions of the two infinite
series being different, inserting one or the other way of writing zF" in the hypergeometric

equation does not yield the same contribution to E,. In a way this relation (A.22) is not

unique.
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After some algebraic manipulations we found that the identity (A.21) becomes equal

to zero when one considers

E = Fx [(1—22)[372-%%(1-!-2)]—[b-{-%—<;—b>z2J(1—l—z)—(g—b)z(l—kz)?}

F4

+(—1f—)2F'x { [-%(1 —2)(2-2) - (1—22)(1—2)] (1+2)

z

E4 4

T (RO CERES
+F % { [2(b+%— (;-b)f) 8;25 —(1—2)2} _6(— ) + 46(22—2)}
T F”[(l i)? - (11-%;4} (1—2%)(1 + 2), (A.23)

where we have added and subtracted the underlined terms in comparison with eq.(A.21).
By doing so, these terms then get shifted from one infinite sum, F'; to the other, yF' .

As a result F, finally becomes

B = v+ x 0= [ 0] = g

2 2
- (g ~b) <1+ 2)2]

+n(2b4n)(1+2)(1 - 27) % { [—%(1 _A)2-2) — (1- (- z)] (1+2)

—b) 22] (1+ z)

N~

_I._

—I—(1+n)(b+n)x{[2<b+%— (;_b)zz) (:2)

_ (2% — 2%) +4b(2? — z)}

(22—2)(1+2’)2 + b(z—l)(1+z)2}

| o

™

-]

a1+ )+ m) (o - (24| 1= )1+ ),

which is equal to zero. This statement ends the proof of the validity of relation between

4z

two hypergeometric series of arguments {z?} and {mz—} on a term by term basis.
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1
Y1314

In evaluating the terms of the triple collinear contribution involving { }, le in
deriving I' in eq.(5.32), we have expanded the hypergeometric series Fi(1,1+¢;1—¢; Z2),
obtained applying the quadratic relation mentioned above, in infinite series. Furthermore
we have used this expansion to perform the v integration and obtained eq.(5.32). It
is worth noting however, that according to the definition of the hypergeometric series,
(c.f. Section A.3.1), at Z = 1, a value of Z in the range of integration of the v integral,
this series diverges. In what follows we shall prove that this divergence is integrable and
therefore does not affect the validity of the integration in eq.(5.33).
For this purpose we show that

47

v/ +8 1
P = el — )T — 1,1/2 —¢,1 — 26, ———— A.24
I /v’—5 dvwv (1—v) 1127 Fy ( ,1/2 — €, €, i Z)z) ( )

vanishes for § — 0, where v’ = [1—_}(?7)] is the value of v for Z = 1.

For Z2 close to 1, it is convenient, using (A.18), to write the hypergeometric function

of argument w = (li—g)% as a function of 1 — w,

Fn(1,1/2 —¢,1 —2¢,w) = A1Fn(1,1/2-¢63/2+€1- w),

FA,(1 = w) Y2 Fyy (=2¢,1/2 — €,1/2 — €,1 — w)

—w?2€

L(1-26)T"(=1/2—¢) and Ag — I(1-2¢)l'(1/24¢

where A1 = ——5ra/rg TL(i/2-¢) -
Fy(1,1/2 — €,3/2 + €,1 — w) vanishes for é — 0. Furthermore, in the second term,

choosing v = v’ + 8¢ with 6 € [—=,0] and expanding w in power series in 6 it becomes

1 (1 — t(l — Z))4 2 28 3
- — 5% e” 67).
16 z2¢2(1 — t)? e +0(5)

Neglecting 0(6) terms, I; yields

1
4
I (1—=t(1—2))* o gig-1/2—¢
XAz [E 212 (1 —1)? o
I'(1-2)I(1/2 +¢) [ tz(1 —t) ]e
LT(1/2 —¢) (1 —-t(1 - 2))?

0 .
1= [ isefao) (- )

—T

—2¢

— 426
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0 . .
% d8619[6219]_1/2—6~

In order to guarantee that ax‘g([ew]?) € [—m, ] the # integral becomes

0 1/ 1
do e” [62’6] Vime —~er? 4+ 0(e?).
7

/:gdg ¢if [62i0+2m]‘1/2‘5 n

i
2

I{ then gives

T e

which vanishes for § — 0.

Hence, we have then proven that the integrand of the v integral in eq.(5.32) does
not have any non integrable singularity at 1. We were therefore allowed to expand

Fy(1,1 + €1 — ¢ Z%) in an infinite series and to pursue the evaluation of the triple

collinear contribution using this expansion.

A.4 The Di- and Trilogarithms: Liy(y), Liz(y) and Si2(y)

The € expansion of hypergeometric functions often yields Di- and Trilogarithmic functions.
In the following section, we shall summarize the definitions and the most commonly used
properties of these polylogarithmic functions. Again, we limited ourselves to the relations
used in this thesis. A complete table of these functions and their properties can be found
in [72].

The Dilogarithm Li,(y) and the Trilogarithm Lis(y) can be both defined via an integral

or via an infinite sum. The Dilogarithm Lis(y) is given by

Lis(y) = —/01 de 9(17—@ :/Oydx}le“i). (A.25)

The Trilogarithm Lis(y) is defined by

Lis(y) = /01 da ln(x)lnil — zy) _ /0?/ Liz(:ls)7 (A.26)

T
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whereas the Trilogarithm S),(y) is defined by
In? (1-— (1-—
Saa(y) / dg 1 = y) / drln 2) (A.27)

The Dilogarithm Liy(y) and the Trilogarithm Liz(y) can also be defined as infinite

sums

‘ 2
o
\
>
[\
oo
S’

Lis(y) = f:

Liz(y) =

n=1

o y"
n_3-
The shape of these three functions is depicted in Fig.(A.1).

1.8 : , .

1.6 | L)
14 | ]

1.2 L A

0.8 | 7
0.6 | ]

0.4 | ]

Figure A.1: Di- and Trilogarithms

241



A.4.1 Some commonly used relations between polylogarithms

of different arguments

To reduce the size of the answer in Chapter 5 we made extensive use of the following

relations between polylogarithms of different arguments [72]:

Lio(1~y) = —Lis(y) —In(y)In(1 —y) + (2,
b (<222) = Lia) +100) 00 =)~ 5~ 6,
. Yy . 1 2
i (~pty) = w - =),
Lis(1 —y) = —S12(y) —In(l —y)Lix(y)

—%ln(y) In*(1 —y) + (s,
Lig (——y—) = Sia(y) — Lis(y) +In(1 — y)Lix(y) + élne’(l -y),
Lis (—}——y) = Si(y) — Lis(y) + In(1 — y)Liz(y) + %hl?’(y),

+(aln (1 Y ) + %ln(y)ln(l —y)In (1 ;y) :

Sl —y) = —Lisly) +In(y)Liy) + 5 1n(1 = 1) 0*(w) + o,

S (-122) = —Li) + () 51570 (1~
—%lllg(y) + (s,

Si2 (—I—z—y) = Sply) — %lns(l —y), (A.30)

where s = Lis(1) = % and (5 = Lig(1) = S12(1) = 1.20205690315959...,

[N
g
[S



A.4.2 Numerical implementation

The power series defining the polylogarithms are only slowly convergent. To evaluate those
numerically in an efficient manner, instead of the definitions above we shall consider the
series expansions given below. Introducing v = —In(1 — z), the dilogarithm Liy(z) can
be expressed as [72]

Lix(e) = | %dt,
where the integrand in the above expression is the generating function of the Bernouill:

numbers [73]. Therefore
o] n+1

u
Li => By——m. A

(@) =2 By (A:31)
In a similar fashion, starting from eq.(A.27) and performing the same change of integration

variables as before, after a simple integration the function Sis(z) yields,

Sial) = %i(n + 1)3,1#;—)!. (A.32)

Finally for the trilogarithm Lis(z) given in (eq.A.26), using the expansion of Li»(z), letting

= 1 — ezp[—2] and performing the z-integration, we obtain,

s

L13 Z Z q + 1 qBP—Q[(p - q + 1)q] (p + 1); . (A33)

p=0¢=0

We have used these series expansion truncated to a finite order to compute the poly-
logarithms for = < 1/2. For arguments outside this range, one of the relation (A.30) has
been applied first. To be more precise, we have used these truncated series in a slightly
modified form. As the Bernouilli numbers are rapidly increasing, we have considered

equivalent series whose arguments, instead of being Bernouilli numbers are ratio of two

consecutive Bernouilli numbers.

A.5 The “4” function

In the evaluation of the contributions involving the quark-to-photon fragmentation func-

tion we encountered another type of special functions, namely the “+” functions. “+”
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functions are really distributions, and are as such only defined when convoluted with

smooth functions. If A(t) is a given smooth function, we have
/ dth(t) [g(t)], = / dt [h(t) — h(1)] g(t). (A.34)

The singular behaviour of A(t)g(t) as ¢ — 1 is compensated by a contribution at ¢ = 1, such
that the convolution integral, [, dt A(t) [9(t)], is finite. In Chapter 7, we have encountered

convolution integrals of the form

with, A(z) = P(z) and,

90, = 7 _1t)+’ (h(lil__t)t)); (ha(?l(l__t)t)>+.

Using the definition (A.34), we can rewrite these three convolution integrals as follows:

/1 di P (3) P(z)In(1 - 2) + /1 dr [P () - 1P(2)

(1-1),’ 1—1
[5rE) (T, = rem gy el
+
[0, - —§P<z>ln3<1—z>
+/:% i Gz :zP(Z)J In?(1 — 1), (A.35)
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Appendix B

Analytic Phase Space integrals

Throughout this thesis we needed to integrate various matrix element squared over the
two-particle, three-particle and four-particle phase spaces. Their derivations in terms of

the invariants {s;;} is completed here below.

B.1 The Gram Determinant A(p,, ps, .-, P;)

When one writes the n-particle phase spaces in terms of the invariants s;;, the required

Jacobian is related to the Gram Determinant A defined by

Pa Pa PaPb " Pa'Pj
Do Pa Po-Po " PbPj

A(pa; -, Pj) = (B.1)
Pi Pa P;-Pp " PjPj

It satisfies the following properties:

A(a,b,..) = A(b,a,..),



= A(-a,b,..).

B.2 The two-particle phase space

The two-particle phase space of a particle with mass vV M? decaying into two massless

particles with momenta P; and energy F; is given by

[ AP M pip) = (20 [ ARYM, p1,p2)

and
d—1 d—1
(d) (4T AT g
/dRz (M7P1;P2) = 2F, 21, 5((] 4 Pz)
dcl—lp1 _
= §(py? .
2El (p2) P2 = 4—p1
By = |pil

We can choose a particular frame in which ¢* = (M,0,0,0,..), pi* = (£, E41,0,0,..).
The dots stand for d-dimensional zeros. Rewriting the remaining d*~'p; integral as a

radial-angular integral gives
1 2
/dR(d)(M>P1,P2) = g/dEl dQu-1 E197° 6(p7),

where

27 T bl
/ a0, = / d6, / 0, sin by... / 40,1 sin®% 0,_,,
0 0 0

and the volume of the d-dimensional hypersphere

a0, = 27 _y, (B.2)
/ ¢ T TR T " -

Furthermore we have

Pg = (q—P1)2 = M’ -2, M = 504,

with
_501+M2’dE1 _ dsor

M=o 2k
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and therefore

1 M? —s =3 53
/dR:(Zd)(‘/‘laplalh) = m/‘d%l (Wfﬁ) li]\?[l) dQ_;.

Considering also that

s12 = (pr +P2)2 = M? — s,

leads to the following expression for the d-dimensional two-particle phase space:
[ AR (M i) = (@) [ dRE (M, pr,pa),

with
(d) d—4 d'Q'd—l 2 :
/dR (M/ pl,pg) = /(812) 2 a1 d812 5(812 — ]W') . (B?))

B.3 The three-particle phase spacé

The three-particle phase space of a particle with mass v/ M? decaying into three massless

particles with momenta P; and energy F; is given by
[ AR (M1, ps) = (27)7% [ ARS (M, o, o),

and e i
de- de-

R(d) M 4! P2 §(pa2

/d 3 ( 7p17p27p3) 2E1 2E2 (p3)

P3 = 9—p1—P2
E) = |pil, B2 = P2l

We can consider a particular frame in which ¢* = (M,0,0,0,..), p* = (£, F1,0,0, s
pa* = (FEa, Ey cos by, I sin 61,0,..). The dots in ¢* and p;* represent d-dimensional
zeros, while in py* they stand for d — 2 unspecified angles in d-dimension. The three-

particle phase space then yields
[ AR (M, p, 2 s) = % [ 4By 4By 4613 491 A0 (Br By sin 0rs) ™ 8o,
where [ dfy, dQy are defined in (B.2). Also
A(g,p1,p2) = A(p1,p2,p3) = 3312313323 = M?E;*Ey’sin® 0y,
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and
/2

1/2
dEl dE2 dolg = (].6./1([2 312813823) d.Sl'_) d313d523.

The three-particle phase space becomes
1

/ngd)(‘/V[aplap27p3) = m/(312513523)‘i:’;‘1 d512 d313d823d9d_1 de_Q
5(812 + S13 + S93 — ./142) (IVIQ)%E (B4)

Using the dimensionless invariants y;; = 37> three-particle phase space also reads

/dPéd)(jV_[,pl,p%pg)) = (27‘—)3_2d/dRI(Bd)(M7p1>p27p3)7

with
1 a-e dQg_
/ngd)(M,PhPmPs) = m/(ylzylsyza) 2 Qdd_ll dQg_s
8(yr2 + Y13 + Y23 — 1) (M?)*™* dyyp dyradyaa. (B.5)

B.4 The four-particle phase space

The four-particle phase space of a particle with mass v M? decaying into four massless

particles with momenta P; and energy E; reads
/dpél(d)(‘/\/faphp?:p&p‘l) = (277)4_3d/dRz(ld)(ALPl;PQ;PB:pA;);

and

dd—l d-1 dd—l
P1 d P2 pP3 5( 42) _ R4(d)-

/dRA(xd)(M’PhPQ;P:s,PLt): / 9F, 2F, 2E, p o =
| 1—P2—P3

2 — P,
Ey = |pil, B2 = Ip2|,E3 = Ip3l

We can choose a particular frame in which
¢ = (M,0,0,0,..),
m* = (Ei, F4,0,0,..),
pt = (Fa, Eycosfy_q, Eysinby_y, ),
ps* = (Es3, B3cos 04 o, E3sinfy_5cosy_3, E3sinfy_osin 43, ..).
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04-1,04_> and 0,5 are the 3 Fuler angles between p;, p, and p3. In ¢* and p;* the
dots stand for zeros in d-dimensions, in p,* they stand for d — 2 unspecified angles in
d-dimensions, while in ps* the dots stand for d — 3 unspecified angles in d-dimensions.

The 4-particle phase space then reads

1
/ dRr,® = S / dQy_y dQy_,dQy_sdE; dE, dEs d8y_y dfy_y d8y_3 6(ps®)

d-3
(El E2 E3 sin 9d_1 sin 0d—2> sind_4 Hd_g,

where [ dQy, dQ, are defined in (B.2).

Furthermore considering
A(q,p1,p2,p3) = A(p1,P2,P3,p4) = — M?E,?E> E3? sin? Gd_lsin‘z 0y osin’ 05 = Ay,
and
dsy dsis dsig dsgsdsyy dssy = 2°MPE*E,*Ey*dE; dE,; dEs dfyy 8y 9d0y s
= 2°M? (=A,)Y? By Ey B3 dE, dE, dF;s
sinfy_q1 sinf@y_q dfg_1 dfg_odb 5,
the four-particle phase space finally yields

/dpcl(d)(M>plap2ap37p4) = (277)4_3d/th(ld)(Maplap%p&p‘l):

with
(d) (A7 2
R, Mz / dQy_1 dQy_o dQy_5 6(s12 + s13 + S14 + S23 + S24 + S34 — M*)
—AN T
( WE ) d312 d313d814d823d824,d334, (B6)
where A, is given by
+A, = 1'6'[31228342 + 51375247 + S147803"
—2(312323334314 + 513523524514 T+ 512824334513)]' (B-7)

249



Bibliography

[1] Y. Ne’eman, Nucl. Phys 26 (1961) 22;
M. Gell-Mann, Phys. Rev. 126 (1962) 1067;
M. Gell-Mann and Y. Ne’eman, The eightfold way, Benjamin (New York, 1964).

[2] M. Gell-Mann, Phys. Lett. 8 (1964) 214;
G. Zweig, CERN preprints CERN-TH-401 (1964), CERN-TH-412 (1964).

[3] O.W. Greenberg, Phys. Rev. Lett. 13 (1964) 598;
M.Y. Han and Y. Nambu, Phys. Rev. 139B (1965) 1006.

[4] H. Fritsch, M. Gell-Mann and H. Leutwyler, Phys. Lett. 47B (1973) 365.

[5] G. Sterman, Introduction to Quantum [ield Theory, Cambridge University Press
(Cambridge, 1993).

[6] G. Sterman, Phys. Rev. D17 (1978) 2773, 2789.

[7] F. Bloch and A. Nordsieck, Phys. Rev. 52 (1937) 54;
T. Kinoshita, J. Math. Phys. 3 (1962) 650;
T.D. Lee and M. Nauenberg, Phys. Rev. (1964) 1549.

[8] J.C. Collins, Renormalization, Cambridge University Press (Cambridge, 1984).

[9] J.C. Collins and D.E. Soper, Ann. Rev. Nucl. Part. Sci. 37 (1987) 383.

250



[10] K. Koller, T.F. Walsh and P.M. Zerwas, Z. Phys. C2 (1979) 197;
E. Laermann, T.F. Walsh, I. Schmitt and P.M. Zerwas, Nucl. Phys. B207 (1982)

205.

[11] P. Aurenche et al., Z. Phys. C29 (1985) 459;
E.L. Berger, E. Braaten and R.D. Field, Nucl. Phys B239 (1984) 52.

[12] J.F. Owens, Rev. Mod. Phys. 59 (1987) 465;
D.W. Duke and J.F. Owens, Phys. Rev. D26 (1982) 1600.

[13] P. Aurenche et al. and C. Seez et al., Contributions to the Large Hadron Collider
Workshop, (Aachen, October 1990).

(14] R.K. Ellis, W.J. Stirling and B.R. Webber, QCD and Collider Physics, Cambridge
University Press (Cambridge, 1996).

[15] M. Carena and P.M. Zerwas, in Physics at LEP2, Vol. 1, G. Altarelli, T. Sjorstrand
and F. Zwirner (eds.), CERN (Geneva, 1996).

[16] E. Fermi, Z. Phys. 88 (1934) 61.
[17] T.D. Lee and C.N. Yang, Phys. Rev. Lett. 104 (1956) 254.
[18] R.P. Feynman and M. Gell-Mann, Phys. Rev. 109 (1958) 193, 111 (1958) 362.

[19] F. Halzen and A.D. Martin, Quarks and Leptons, J. Wiley and Sons (New York,
1984).

[20] G. Hanson et al., Phys. Rev. Lett. 35 (1975) 1609.

[21] TASSO Collaboration: R. Brandelik et al., Phys. Lett. B86 (1979) 243;
MARK-J Collaboration: D.P. Barber et al., Phys. Rev. Lett. 43 (1979) 830;
PLUTO Collaboration: Ch. Berger et al., Phys. Lett. B86 (1979) 418;
JADE Collaborotion: W. Bartel et al., Phys. Lett. 91 (1980) 142.

251




[22] JADE Collaboration: W. Bartel et al., Phys. Lett. B115 (1982) 338.

[23] S. Bethke, Contribution to the Durham Workshop on Jet Studies at LEP and HERA
J. Phys. G17 (1991) 1441.

[24] G. Sterman and S. Weinberg, Phys. Rev. Lett. 39 (1977) 1436.
[25] W.T. Giele and E.W.N. Glover, Phys. Rev. D46 (1992) 1980.
[26] JADE Collaboration: S. Bethke et al., Phys. Lett. B213 (1988) 235.

[27] Y. Dokshitzer, Contribution to the Durham Workshop on Jet Studies at LEP and
HERA, J. Phys. G17 (1991) 1441.

[28] N. Brown, Contribution to the Durham Workshop on Jet Studies at LEP and HERA,
J. Phys. G17 (1991) 1441.

[29] W.T. Giele, Doctoral Thesis, Leiden (1989).
[30] Z. Kunszt and D.E. Soper, Phys. Rev. D46 (1992) 192.
[31] R.K. Ellis, D.A. Ross and A.E. Terrano, Nucl. Phys. B178 (1981) 421.

[32] S. Catani and M.H. Seymour: Phys. Lett. B378 (1996) 287, Nucl. Phys. B485 (1997)
291.

[33] Z. Kunszt and P. Nason, in Z physics at LEP 1, Vol. 1, G. Altarelli, R. Kleiss and
C. Verzegnassi (eds.), CERN (Geneva, 1989).

[34] K. Fabricius, I. Schmitt, G. Kramer and G. Schierholz, Z. Phys. C11 (1981) 315.
[35] W.T. Giele, E.W.N. Glover and D.A. Kosower, Nucl. Phys. B403 (1993) 633.
[36] E. Mirkes and D. Zeppenfeld, Phys. Lett. B380 (1996) 205.

[37] E.W.N. Glover and M.R. Sutton, Phys. Lett. B342 (1995) 375.

252



[38]

[39]

[43]
[44]

[45]

[46]

A. Ali and F. Barreiro, Phys. Lett. 118B (1982) 155;

A. Ali and F. Barreiro, Nucl. Phys. B236 (1984) 269;

D.G. Richards, W.J. Stirling and S.D. Ellis, Phys. Lett. 119B (1982) 193;

D.G. Richards, W.J. Stirling and S.D. Ellis, Nucl. Phys. B229 (1983) 317;

N.K. Falck and G. Kramer, Z. Phys. C42 (1989) 459;

7. Kunszt, P. Nason, G. Marchesini and B.R. Webber in “Z physics at LEP 17,
CERN 89-08, vol. 1, eds. G. Altarelli, R. Kleiss and C. Verzegnassi (CERN, Geneva,

1989).

F.A. Berends and W.T. Giele, Nucl. Phys. B313 (1989) 595;
A. Bassetto, M. Ciafaloni, and P. Marchesini, Phys. Rep. 100 (1983) 201;
M. Mangano and S. Parke, Phys. Rep. 200 (1991) 301.

G. Altarelli and G. Parisi, Nucl. Phys. B126 (1977) 298.

C.F. Weiszacker, Z. Phys. 88 (1934) 612;
E.J. Williams, Phys. Rev. 45 (1934) 729.

7. Bern, L. Dixon and D.A. Kosower, Proceedings of the Zeuthen Workshop on 7QCD
and QED in Higher Orders”, Rheinsberg, 1996, Nucl. Phys. Proc. Suppl. 51C (1996)

243.
OPAL Collaboration: P.D. Acton et al., Z. Phys. C54 (1992) 193.
DELPHI Collaboration: P. Abreu et al., Z. Phys. C53 (1992) 555.

G. Kramer and H. Spiesberger, Matriz element calculation of quark bremsstrahlung

in O(aa,), DESY 92-022 (1992), contribution to the Workshop on Photon Radiation
from Quarks, Annecy, France, 1991.

E.W.N. Glover and W.J. Stirling, Phys. Lett. B295 (1992) 128.

[47] Z. Kunszt and Z. Trécsanyi, Nucl. Phys. B394 (1993) 139.

253



[48] M.H. Seymour, Z. Phys. C56 (1991) 116.
[49] A.G. Morgan and E.W.N. Glover, Z. Phys. C62 (1994) 311.
[50] G. Altarelli, R.K. Ellis, G. Martinelli and S.Y. Pi, Nucl. Phys. B160 (1979) 301.

[51] G. Curci, W. Furmanski and R. Petronzio, Nucl. Phys. B175 (1980) 27;
W. Furmanski and R. Petronzio, Phys. Lett. 97B (1980) 437.

[52] D.J. Gross and F. Wilczek, Phys. Rev. Lett. 30 (1973) 1342;
H.D. Politzer, Phys. Rev. Lett. 30 (1973) 1346;

W.E. Caswell, Phys. Rev. Lett. 33 (1974) 244;
0.V. Tarasov, A.A. Vladimirov and A.Yu. Zharkov, Phys. Lett. 93B (1980) 429;

T. van Ritbergen, J.A.M. Vermaseren and S.A. Larin, NIKHEF preprint 97-001.

[53] Particle Data Group: Phys. Rev. D54 (1996) 1.
[54] M. Gliick, K. Grassie and E. Reya, Phys. Rev. D30 (1984) 1447.

[55] E. Witten, Nucl. Phys. B120 (1977) 129;
R.J. DeWitt, L.M. Jones, J.D. Sullivan, D.E. Willen and H.W. Wyld, Jr., Phys. Rev.

D19 (1979) 2046 [Erratum D20 (1979) 1751].
[56] M. Gliick, E. Reya and A. Vogt, Phys. Rev. D48 (1993) 116.
[57] E. Berger, Xiao-Feng Guo and Jian-Wei Qiu, Phys. Rev. D53 (1996) 1124.

[58] P. Aurenche, P. Chiappetta, M. Fontannaz, J.P. Guillet and E. Pilon, Z. Phys. C56
(1992) 589.

[59] L. Gordon, M. Gliick, E. Reya and W. Vogelsang, Phys. Rev. Lett. 73 (1993) 388.

[60] P. Aurenche, P. Chiappetta, M. Fontannaz, J.P. Guillet and E. Pilon, Nucl.Phys.
B399 (1993) 34.



[61] B.R. Webber, Contribution to the Durham workshop on Jet Studies at LEP and
HERA J. Phys. G17 (1991) 1441.

[62] ALEPH collaboration: D. Buskulic et al., Z. Phys. C69 (1996) 365.

[63] J.A.M Vermaseren, Symbolic Manipulation with FORM, Computer Algebra Nether-
lands, Amsterdam, 1991

[64] E.W.N. Glover (private communication)

65] G. ’t Hooft and M. Veltman, Nucl. Phys. B153 (1979) 365.

[66] Z. Bern, L. Dixon, D.C. Dunbar and D.A. Kosower, Nucl. Phys. B425 (1994) 217.
67] P.J. Rijken and W.L. van Neerven, Nucl. Phys. B487 (1997) 233.

68] W.A. Bardeen, A.J. Buras, D.W. Duke and T. Muta, Phys. Rev. D18 (1978) 3998.
[69] E.B Zijlstra and W.L. van Neerven, Nucl. Phys. B383 (1992) 525.

70] G.P. Lepage, J. Corup. Phys. 27 (1978) 192.

[71] A. Erdelyi (ed.), Higher Transcendental Functions, vol. I, Bateman Manuscript
Project, Mc Graw-Hill (New York, 1953).

[72] A. Devoto and D.W. Duke, Riv. Nuovo Cimento 7, Vol.6 (1984) 1.

(73] M. Abramowitz and I. A. Stegun, Handbook of Mathematical functions, National
Bureau of Standards Applied Mathematics Series 55 (1964).




