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Abstract 

We present a complete calculation of the photon jet rate in e"'"e~ annihilation up to 

O(aas). Although formally of next-to-leading order in perturbation theory, this calcula­

tion contains several ingredients appropriate to a next-to-next-to-leading order calculation 

of jet observables. No such calculation has been performed before, and the work discussed 

here represents a first step in that direction. In particular, we describe a generalization of 

the commonly used phase space slicing method to isolate the singularities present when 

more than one particle is unresolved. More jDrecisely, we provide an analytic evaluation 

of the following multiple unresolved factors: triple coUinear factor, soft/colhnear factor 

and double single coUinear factor. By comparing the results of our calculation with the 

existing data on the photon jet rate from the ALEPH Collaboration at CERN, we 

make a new determination of the process-independent non-perturbative quark-to-photon 

fragmentation function Dq^^{z, fip) at 0(o(as). As a first aj^phcation of this measure­

ment allied with our improved perturbative calculation, we determine the dependence of 

the isolated photon -f 1 jet cross section in a democratic clustering approach on the jet 

resolution parameter ?/cut at next-to-leading order. Inclusion of the next-to-leading order 

corrections to this observable considerably improves the agreement between theoretical 

prediction and experimental data. 

I V 



Contents 

Introduction 1 

1.1 Fundamentals of QCD 2 

1.1.1 Colour SU(3) 2 

1.1.2 Dynamical properties of quarks: Quantum chromodynamics (QCD) 3 

1.1.3 Asymptotic freedom and confinement 5 

1.2 Perturbative QCD: Essential theorems 6 

1.2.1 The KLN theorems 7 

1.2.2 The factorization theorem 8 

1.2.3 Fragmentation processes 9 

1.2.4 Importance of a precise determination of the quark-to-photon frag­

mentation function 10 

1.3 The weak interaction 12 

1.4 Jet Physics at LEP 14 

1.4.1 Introduction 14 

1.4.2 Jet definition 15 

1.4.3 Jet rates 17 

1.5 Calculation of jet cross sections at higher orders 19 

1.5.1 Three numerical methods 20 

1.5.2 An example: The e+e" 2 jets cross section at 0{as) 24 

1.5.3 The isolation of soft and coUinear divergences 28 



2 Photons in hadronic Z decays 37 

2.1 Two sources of final state photons 38 

2.2 Isolated Photons 40 

2.3 Non Isolated Photons 43 

2.4 The photon +1 jet rate at 0{a) 44 

2.4.1 The resolved contributions 45 

2.4.2 The quark-photon collinear contribution 47 

2.4.3 The factorization of coUinear singularities 49 

2.4.4 A possible form for ^p) 51 

2.5 An alternative approach 53 

2.6 The experimental measurement of the photon +1 jet rate 57 

2.6.1 The selection of photon -f 1 jet events at LEP 57 

2.6.2 The determination of Dg^^{z, ^F) for 0.7 < z < 0.95 58 

2.6.3 A comparison with the fragmentation function obtained in the lead­

ing logarithmic approximation 61 

2.6.4 The isolated photon region: z > 0.95 62 

3 The Photon +1 jet rate at 0{aa,) 67 

• 3.1 Contributions to the photon -f 1 jet rate at 0{aas) 69 

3.1.1 7* —>• qqj with real gluon brenisstrahlung 70 

3.1.2 7* qq-y with a virtual gluon 73 

3.1.3 7* —> qqg with the fragmentation function 73 

3.1.4 7* ^ qq with a virtual gluon and the fragmentation function . . . . 74 

3.1.5 7* —> qq with the fragmentation function 74 

3.1.6 Summary 75 

3.2 The phase space decomposition of the real contributions 75 

3.2.1 The single unresolved regions 77 

3.2.2 The double unresolved regions 80 

3.2.3 The fully resolved region 83 

V ] 



3.2.4 Summary 83 

3.3 Phase space decomposition of the virtual contributions 84 

3.4 Phase space decomposition of the contributions with the fragmentation 

function 84 

3.5 Outline of the calculation 86 

3.6 Summary and Outlook 90 

4 The resolved and single unresolved real contributions 92 

4.1 Resolved contributions 94 

4.2 Single unresolved contributions 99 

4.2.1 The unresolved gluon contributions 100 

4.2.2 The coUinear quark-photon contribution 104 

5 The two-particle unresolved real contributions 107 

5.1 The triple coUinear contributions 108 

5.1.1 The triple colUnear Hmit of the matrix element squared 109 

5.1.2 The triple coUinear limit of the phase space 110 

5.1.3 The triple collinear limit of the differential cross section 113 

5.2 The triple collinear cross section 115 

5.2.1 Contributions involving { ^ } 116 

5.2.2 Contributions involving { ^ } 120 

5.2.3 Contributions involving \^yjy^^ } 125 

5.3 The soft/collinear contribution 132 

5.3.1 The soft/collinear Hmit of the | |2 133 

5.3.2 The soft/collinear limit of the phase space 133 

5.3.3 The soft/collinear hmit of the differential cross section 134 

5.4 The double single coUinear contribution 138 

5.4.1 The double single collinear limit of the | P 139 

5.4.2 The double single colhnear hmit of the phase space 140 

5.4.3 The double single collinear limit of the differential cross section . . 142 

V l l 



5.5 Sum of the real contributions 143 

5.6 The approach with "strong ordering" 148 

5.6.1 The strongly ordered limits of the triple collinear differential cross 

section 149 

5.6.2 The strongly ordered limits of the soft/collinear differential cross 

section 153 

5.6.3 The strongly ordered hmits of the double single collinear differential 

cross section 155 

5.6.4 The sum of all strongly ordered contributions 157 

6 Virtual contributions 160 

6.1 The resolved contribution 161 

6.2 The unresolved contribution 164 

6.2.1 The colhnear limit of the virtual contribution 165 

6.2.2 Check of the colhnear hmit of M I 169 

6.2.3 Integration over the unresolved phase space region 172 

7 Contributions involving Df^^{x) 174 

7.1 Resolved contributions 176 

7.2 The structure of the unresolved contributions 177 

7.3 Contributions with Df_^^(z) 178 

7.4 Contributions with the gluon collinear to the quaxk 180 

7.5 Sum of all unresolved contributions 183 

7.6 Check of our result 185 

7.7 Integration of the fragmentation counter term 187 

8 Factorization of the collinear singularities 191 

8.1 The sum of all contributions to the 7 -M jet rate at 0{aas) 192 

8.2 Factorization of the collinear singularities in the fragmentation counter terml97 

8.3 Structure of the NLO result in terms of convolutions 199 

vm 



8.4 The NLO evolution equation for Z } , _ ^ ( 2 , / i ^ ) 204 

8.4.1 The derivation of the evolution equation for Z)q^-^(2, ^/p) 205 

8.4.2 A solution of the NLO evolution equation 206 

9 Numerical part of the calculation 209 

9.1 Structure of the program 209 

9.1.1 Generalities 209 

9.1.2 The individual contributions 210 

9.2 Consequence of the application of the hybrid subtraction method 213 

9.3 Study of the log(?/mj„) dependence 215 

10 Final results 220 

10.1 A NLO determination of i : ' , _ ^ ( ^ , / i F ) 220 

10.1.1 Theiormof Dq^y{z,fiF) 223 

10.2 The integrated rate for z > 0.95 225 

11 Summary and conclusions 227 

A Special functions 231 
A . l The Gamma fimction r ( . T ) 231 
A.2 The Beta function 5(a,/5) 232 

A.3 The Hypergeometric function i ^ 2 i ( « , b: c; z) 233 

A. 3.1 Definitions 233 

A.3.2 Various properties of the hypergeometric series 234 

A.4 The Di- and Trilogarithms: Li2(?/), Li3(y) and Su{y) 240 

A.4.1 Some commonly used relations between polylogarithms of different 

arguments 242 

A.4.2 Numerical implementation 243 

A.5 The function 243 

I X 



B Analytic Phase Space integrals 245 

B . l The Gram Determinant A(pa,p{„..,Pj) 245 

B.2 The two-particle phase space 246 

B.3 The three-particle phase space 247 

B.4 The four-particle phase space 248 

Bibliography 250 



Chapter 1 

Introduction 

One of the main goals of particle physics is to identify the structureless constituents of 

matter and to imderstand the nature of forces acting between them. At the smallest 

distances currently probed in high energy accelerators (ft! 10~^* m), there are two types 

of matter units: the leptons and the quarks, which both have spin 1/2. One chstinguishes 

charged leptons, like the electron, which can interact both electromagnetically and weakly 

and the lepton-neutrinos which only interact weakly. The quarks - which are the con­

stituents of hadrons - can interact via all three interactions: strong, electromagnetic and 

weak. These three fundamental interactions form the basis of our current understanding 

of particle physics, the Standard Model, which, up to now, appears to be in very good 

agreement with the experimental observations. 

The remainder of this introductory chapter will be organized as follows. In the first 

part we shall present the fundamental features of Quantum Chromodynamics (QCD), 

the theory of the strong interaction (Sections 1.1 - 1.4), with particular emphasis on the 

perturbative domain of QCD. Essential properties of the weak interaction will be outlined 

in Section 1.5. In the second part we shall discuss the production of hadronic jets in 

e+e" annihilation experiments. In particular we shall describe how jet cross sections can 

be calculated within the framework of perturbative QCD and how the results of these 

calculations compare with experiment. Finally, within this context, we shall present the 



a hadron. An example of a particle which seems to contradict this principle is the spin-

3/2 resonance A"*""*". It consists of three 'up' quarks, with all spins pointing in the same 

direction. 

This conceptual difficulty could be overcome by the introduction of a new quantum 

number, colour [3]. Quarks are assumed to carry one of the three colours (red, green or 

blue) and antiquarks one of the corresponding anticolours. The introduction of colour 

provides a way of categorizing which combinations of quarks are allowed. In fact, only 

colour singlet states can exist. If the group of colour transformation is SU(3), then the 

basic colour singlet states are precisely the observed baryons and mesons. The baryons 

are made of three quarks of different colours while the mesons consist of a quark-antiquark 

pair of the same colour. 

Since the quark model was suggested, three more quarks (charm, bottom, top) have 

been discovered, all being heavier than u, d and s. Eurthermore, experimental evidence of 

the validity of the 'colour SU(3) hypothesis' now exists. For example, the ratio R between 

the e~^e~ total hadronic cross section and the cross section for the production of a pair of 

muons provides one stringent piece of evidence for the existence of three colours. 

1.1.2 Dynamical properties of quarks: Quantum chromody-

namics (QCD) 

One of the fundamental ideas of QCD [4] is that the quarks carry colour and that these 

colour 'charges' of the quarks act as sources of the strong or chromodynamic force be­

tween quarks, just as the electric charges act as sources of the electromagnetic force. As 

the quarks carry both colour and electric charge, they experience both the strong and 

electromagnetic forces, as well as the more feeble weak and gravitational interactions. 

However, the chromodynamic force is by far the strongest in the region of our interest 

(f« 10~^^ m or equivalently for energies ranging between 1 GeV and few hundred GeV) 

and so can be examined independently from the others. 

In analogy to QED, where the electromagnetic force between charged particles is me-



dialed by one gauge boson, the photon, the chromodynaniic interaction between coloured 

quarks is mediated via the gauge bosons of QCD, the gluons. The conservation of colour 

in quark-quark interactions is a consequence of the invariance under a redefinition of 

the colour label associated with a quark inside the hadron, i.e. it is a consequence of 

the invariance under the colour symmetry group SU(3)c of the theory. The structure of 

SU(3)c is more complicated than the structure of the electromagnetic symmetry group 

U( l ) since the 8 massless spin-1 gluons themselves carry colour. These can therefore also 

act as source of the chromodynamic force and consequently can interact among themselves 

too. A hadron within this theory remains a colour singlet which is built of quarks which 

continually exchange gluons and consequently change colour. 

The Lagrangian density of QCD is given by-̂  

>c = - J i^ : . i^r+E [^I'D, - m,] i,,, (1.1) 

with 

= d,Al-d.Al-gr''A\Al., 

= d, + igAlT^. (1.2) 

The SU(3)c symmetry determines the algebra of the T" matrices in fixing the structure 

constants fate-

rpa rpl 

From the above equation ( l . l ) , we can read off the QCD interactions: the covariant 

derivative gives rise to a quark-gluon vertex, the contraction of the field strength 

tensors F^^F^'' yields 3-gluon and 4-gluon vertices. The parameter g is the strong coupling 

and can only be determined experimentally. 

The colour structure of QCD is contained in the matrices and their algebra. These 

can be factored out in practical calculations, yielding overall colour factors. Denoting by 

^We give here only a brief outline of the quantum field theory of QCD, a more formal and complete 

treatment can for example be found in [5]. 



A'̂  the number of colours, the most coimiion colour factors are: 

k=l a-1 Tfk Tkj 

CAS"^ = NS'^K, (1.3) 

and furthermore T/ = njTp- Thus for the specific case of SU(3) we have 

4 
CF = - , CA = 3. 

In the remainder of this thesis we shall keep the number of colours to be N and the 

only colour factor which will be present in the calculation of the photon 1 jet rate 

at 0{aas) is CF- Systematically, Ave shall write this colour factor as (^^^y^) to avoid 

confusion with the unresolved single collinear factor. 

1.1.3 Asymptotic freedom and confinement 

The essential physical idea is the following. The strong interaction between two coloured 

entities can be characterized by a coupling which is a function of the distance between 

them rather than a constant. In fact, when the distance probed is very small, or equiva­

lently when the energy is sufficiently high (typically greater than 10 GeV), the coupling 

tends to zero, i.e. the quarks only interact very weakly with each other and can be treated 

as free particles. The theory in this regime is called asymptotically free. This property 

of QCD is essential to guarantee that calculations at the quark level are meaningful. In­

deed as in QED, where the coupling constant is also small [a = j | ^ ) , in this high energy 

regime calculations of physical quantities are possible because the increasingly compli­

cated higher-order processes become decreasingly important. Such calculations will then 

be performed using a perturbative expansion - a series in the strong coupling constant 



On the other hand, when the distance between the two coloured entities increases 

and becomes macroscopic, the coupling between them becomes large and possibly even 

bigger than 1. This strong coupling is responsible for the observed confinement of quarks 

within hadrons. A phenomenon which is presently not yet fully understood theoretically, 

as non-perturbative methods are still under development. 

The origin of the running of the QCD coupling with the scale (i.e. the distance at 

which the interaction is probed) can be imderstood as follows. Let us consider a physical 

process which depends on one hard scale Q only. When this process is evaluated as a 

perturbative series in the strong coupling a^, ultraviolet divergences may appear. These 

divergences can only be renormalized by a redefinition of the coupling a^. As a result, 

becomes a function of the renormalization scale, which is typically taken to be Q, i.e. it 

runs. The derivation of the scale dependent strong coupling is outlined in Section 2.5. 

A more formal and complete derivation of the renormalization procedure of ultraviolet 

divergences in QCD can be found in [6]. 

In the evaluation of the photon -|-1 jet rate at 0{aas), no ultraviolet divergences occur 

as no pure quark or pure gluon self energy loops are included at this first order in Os and 

in a. The coupling does therefore not need to be renormalized. 

1.2 Perturbative QCD: Essential theorems 

At high energies, the evaluation of physical observables involving the production of quarks 

as a perturbative expansion in is considerably simplified if the masses of the quarks 

can be neglected. For the class of processes we will focus on in this thesis, the production 

of quark-antiquark pairs in e+e" annihilation, this is the case. This process depends on 

one large scale, the mass of the Z-boson {Mz = 91 GeV). Compared to this scale, the 

masses of the quarks produced by the decay of the Z-boson {u, d, s.c, b) can be consistently 

neglected. 



1.2.1 The K L N theorems 

The consideration of massless quarks and on-shell gluons in the calculation of cross sections 

leads however to soft and collinear divergences. Indeed, as an example, let us consider 

the production of a quark-antiquark pair wi th an additional gluon radiated on the quark 

side. In the massless l imi t , the inverse quark-gluon propagator given b)-^ s,̂  = 2EgEg(l — 

cos 9gg) vanishes i f either the gluon is soft, Eg ^ 0, or i t is collinear to the quark, 9qg —>• 0. 

Consequently the matr ix element squared which contains terms proportional to j — | 

diverges in these l imits . The cross section for the production of a quark-antiquark pair 

and a real gluon which is obtained as the result of the integration of the {qqg]-ma,tnx 

element squared over the 3-particIe phase space is also infinite: the phase space integrals 

are not calculable as their integrand contain infinities. However, the total cross section at 

0{as), which includes both real radiation and the contribution where a vir tual gluon is 

exchanged between the quark and antiquark is finite. This is a consequence of the Bloch, 

Nordsieck and Kinoshita, Lee, Nauenberg ( K L N ) theorems [7] which guarantee that for 

any suitably defined"^ physical quantity, calculable as a perturbative series, the infinities 

present in individual terms of the real and vir tual contributions arising in the calculation 

cancel amongst each other. 

In order to evaluate these real and vir tual contributions present at this order in Og and 

which contain singularities, a regularization procedure is required. The procedure used 

in this dissertation is dimensional regularization^. W i t h i n this procedure, the number 

of space t ime dimensions is considered to be d = A — 2e wi th e < 0. the regularization 

parameter. Going to <i 7̂  4 afl:ects both the phase space and matrix elements of the qq{g) 

process. As a result the integrals become feasible, the soft and collinear singularities 

arising in both real and vir tual contributions appear as poles in e. When the two contri­

butions are added together, the poles exactly cancel, and the l imi t e —> 0 can be safely 

2The invariant mass { s „ } defined by s^g = {Pq+Pgf is given by ip^pg in the massless limit. 

^We shall come back to explain what is meant by 'suitably defined' physical quantities later. 

•*For a formal derivation of the dimensional regularization procedure, see [8]. 



taken yielding a f ini te result for the total cross section. In Section 1.5.3 we shall explicitly 

demonstrate how soft and coUinear divergences manifest themselves as poles in e for this 

particular {qq{g)} production cross section. Furthermore we shall show for this example 

how the cancellation of singularities present in the real and vir tual contributions occurs. 

The suitably defined quantities to which the theorems above apply are infrared safe 

quantities. These are independent of the masses of the light quarks in the high energy 

domain. Such quantities possess a perturbative expansion in the small coupling that 

is free of soft or coUinear singularities. Consequently they are calculable in perturbation 

theory. As the masses of the light partons are only negligible at short distances, infrared 

safe quantities correspondingly depend only on the short-distance (or high energy) be­

haviour of QCD and not on the long-distance effects which produce the confinement of 

quarks. A n example of infrared safe cpantity is given by the total hadronic cross section 

in e"*"e~ annihilation. 

1.2.2 The factorization theorem 

For quantities which are 'infrared-sensitive', i.e. that have infrared and collinear singular­

ities, perturbation theory cannot make absolute predictions. The theory may however be 

able to predict their behaviour. Indeed, such quantities can sti l l be handled provided the 

singularities can be collected into an overall non-perturbative factor which describes the 

dependence of the quantity on long distance physics. Through this factorization proce­

dure, an arbitrary scale, the factorization scale, often denoted by is introduced. I t can 

be thought of as the scale which separates the long distance hadronic physics from the 

short distance partonic physics. The infrared-sensitive quantity becomes dependent on 

this scale and can therefore ultimately only be determined experimentally. Nevertheless, 

once the factorization procedure has been carried out, perturbation theory can stil l be 

used to predict how the non-perturbative factor varies or 'evolves' wi th different choices of 

the factorization scale. The factorization properties of particular infrared-sensitive quan­

tities can be proven to all orders i n perturbation theory. For more details concerning 



the factorization theorems, see [9]. Together wi th the K L N theorem, this factorization 

theorem constitutes the necessary theoretical basis allowing the description of scattering 

processes involving hadrons wi th in the framework of perturbative QCD. 

1.2.3 Fragmentation processes 

A typical class of infrared-sensitive quantities to which the factorization theorem applies 

are cross sections involving the fragmentation of quarks into hadrons in e+e" annihila­

t ion processes. The probability of obtaining a hadron as a result of the fragmentation 

process can be described by a fragmentation function which is a dimensionless, universal 

and process independent quantity. Generally, the leading-order cross section for the pro­

duction of a hadron in a hard collision may be expressed as a sum over all partons of a 

convolution between a partonic (or short-distance) cross section and the parton-to-hadron 

fragmentation funct ion. The collinear quark-gluon singularities appearing in the pertur­

bative expansion of the hard scattering cross section get absorbed into the fragmentation 

funct ion. Through this procedure, the fragmentation function becomes dependent on the 

factorization scale and can therefore only be determined experimentally. The perturbative 

expansion of the hard scattering cross section is rendered finite and calculable but also 

dependent on the factorization scale. 

I f the hadron under consideration is a photon the situation is slightly different as the 

quarks can emit a photon via the electromagnetic interaction too [10]. Consequently, the 

leading order cross section (which is of 0{a)) for the production of a quark-antiquark 

pair w i t h an additional photon receives two contributions, the processes e'^e~ qq'f and 

e'^e~ —> qq w i th associated quark-to-photon fragmentation. In this case, the quark-photon 

collinear singularities present in the first contribution need to be factorized in the quark-

to-photon fragmentation function of the second jDrocess. As a result both contributions 

become finite and /ip-dependent. 

The reason why these two above processes should be considered together wi l l be dis­

cussed in detail in Section 2.1. Furthermore, in Section 2.4 we shall derive the factorization 



of the quark-photon collinear singularities for the lowest order process e"'"e~ —̂  99+7- The 

factorization of these collinear singularities together wi th the derivation of the factoriza­

t ion scale dependence of the quark-to-photon fragmentation function at next-to-leading 

order (0[aas)) is one of the goals of this dissertation and w i l l be explicitly shown in 

Chapter 8. Using these results, we shall be able to detei'mine the factorization scale de­

pendent quark-to-photon fragmentation function at 0{aas) f rom experimental data on 

final state photons in e+e~ annihilation. This determination wi l l be described in Chapter 

10. 

1.2.4 Importance of a precise determination of the quark-to-

photon fragmentation function 

The quark-to-photon fragmentation function is of particular importance to estimate the 

cross section for final state photon radiation in hadron-hadron collisions; e.g. the process 

PP ^ 77 + ^ forms an important background to the Higgs decay pp ^ H + X ^ -\- X 

process, which is a preferred channel for the discovery of the Standard Model Higgs wi th 

intermediate mass at L H C . 

Let us first examine the different QCD processes contributing to pp X + 77. At 

leading order, two photons are produced through the Born process qq —> 77 and important 

contributions of C(a;,;) and 0{al) are the box graph and the fragmentation processes. 

Those three processes are illustrated in F i g . ( I . l ) . The box graph process gg 77 is 

mediated by a quark loop while the fragmentation processes qg -/{q —> 7) or gg ^ (q 

7)(? ~^ 7) contain one or two photons which are radiated approximately coUinearly f rom 

final state quarks. These processes may be evaluated in terms of the quark-to-photon 

fragmentation funct ion. So far those fragmentation processes have been estimated by 

P.Aurenche et al. and E.Berger et al. in [11] using the quark-to-photon fragmentation 

funct ion [12] available i n the literature^. I t was found [13] that the total cross section is 

dominated by the fragmentation processes. 

^We wil l return to the form of this lowest order fragmentation function in Section 2.5. 
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(a) 

(c) 

Figure 1.1: Examples for Standard Model background processes to the i f ^ 77 signal at 

hadron colliders: (a) Born process, (b) box graph, (c) single fragmentation, (d) double 

fragmentation. 

One of the main difficulties in the determination of a possible discovery channel for the 

Higgs boson comes f r o m the arbitrariness of its mass. This leads a priori to a multi tude 

of possible production and decay scenarios. However f rom the non-detection of the Higgs 

boson at LEP so far, lower bounds on the mass of the Higgs boson can be derived. 

Moreover, theoretical arguments yield some upper bounds on i t , as outlined in [14]. The 

Higgs mass can be constrained as follows, 65 GeV < MH < 1 TeV. A light Higgs 

{MH < 85 GeV) may st i l l be found^ at LEP2 while a heavy Higgs {MH > 180 GeV) has 

a clear signature at LHC through its or WW decays. The intermediate Higgs mass 

range (85 GeV < M f j < 180 GeV) seems to be more problematical . Although the Higgs 

production cross section is very large, the normally preferred decay mode into a pair of 

heavy b quarks suffers f r o m a large QCD two jet background to the extent that only 

^Details on Higgs searches at LEP2 can be found in [15]. 

^Details on searches for the Higgs in this intermediate mass range have been discussed in the Proceed­

ings of the LHC workshop (Aachen 1990), [13]. 
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rare decay modes wi th a clean and distinct signature (such as —> 77) are considered 

worthwhile. For an intermediate mass Higgs, this decay mode may be detectable despite 

its small branching ratio (si 10""^) because of the large Higgs production cross section. 

This process has a clear signature: the production of a pair of isolated high jjx photons 

and essentially no missing px- One serious source of background is however due to: 

the "irreducible" 77 backgroimd (i.e. same final state as the signal) f rom qq 77 and 

99 77-

As we mentioned in the previous paragraph the main contribution to the total 77 cross 

section comes f r o m the fragmentation processes (roughly one order of magnitude bigger 

than the box and Born graphs). As these contributions are related to the presence of a 

collinear photon in the final state, the fragmentation contributions could in principle be 

reduced by imposing some isolation cuts. However i t is not clear whether the imposition 

of such cuts is sufficient to obtain a clear distinction between signal and background. I t 

depends on how important those fragmentation contributions are. A precise determina­

t ion of this irreducible background and therefore of the quark-to-photon fragmentation 

funct ion is needed. The results obtained in the remainder of this thesis should help to 

contribute to this determination. 

1.3 The weak interaction 

As we mentioned before, at the energies we are particularly interested in , the quarks and 

gluons are the fundamental entities between which the strong interactions can be described 

wi th in perturbative QCD and between which the weak interactions are largely neghgible. 

I n e'^e" annihilation processes, however, the quarks are produced via the weak decay of 

a Z-boson. We shall therefore briefly outline essential features of the weak interaction to 

conclude the first part of this introductory chapter. 

Prior to the early 60's one of the most common processes where a weak interaction 

takes place was the neutron /3-decay into a proton, an electron and an antineutrino. I t 

was also predominantly this reaction which formed the basis of the first description of a 
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theory of the weak interactions by Fermi in 1934 [16]. W i t h i n this description the four 

fermions interact at a single point. This interaction is characterized by a single coupling 

GF-, {Gp = 1.1 X 10~^GeV~^), the Fermi coupling constant which measures the strength 

of the weak force and an a priori unknown function F which contains the essence of the 

weak interactions and is responsible for the transformations of the particles. .Just after the 

essential experimental discovery of the jDarity-violation property of the weak interactions 

17], in 1956 Feynman and Gell-Mann suggested that this function F should be a mixture 

of vector and axial vector quantities [18] to account for these parity-violating effects of 

the weak interaction. W i t h i n this pointlike interaction model for the weak force wi th 

couplings which are a mixture of a vector and an axial vector, one is able to explain all 

the data f r o m low-energy weak interaction processes. However, the Fermi theory makes 

unacceptable predictions for the high energy behaviour of the weak interactions. 

Nowadays the weak interactions may be described together wi th the electromagnetic 

interactions in a unified theory, the electroweak theory. W i t h i n this framework, the 

weak interactions are mediated by three gauge bosons: W^ and which couple to a 

quantum number called, weak isospin® . Through the Higgs mechanism, the symmetry 

between electromagnetic and weak interactions is spontaneously broken and the weak 

gauge bosons acquire mass [Mw ~ 80.4 GeV, ~ 91.2 GeV). 

A particular feature of the W and Z bosons is their coupling structure to fermions. 

As a result of the violation of parity by the weak interactions, the W couples only to 

the left-handed fermions, and the coupling of the Z boson to the left-handed and right 

handed fermions are non-identical. This is expressed in couplings wi th vector and axial 

vector contributions. 

A t low energies this electroweak model reproduces the Fermi model, provided that the 

weak charge gw is related to the Fermi constant Gp as follows: 

Gp gw (1.4) 

®We mention here only basic features of the electroweak model, more complete treatments can be 

found in the literature, for example in [19]. 
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V} aj Particles 

Quarks 
2 
3 

1 
2 u c t 

Quarks 
1 
3 - \ + |s in2 0H/ 1 

2 d s b 

Leptons 
0 1 

2 
1 
2 Leptons 

- 1 - i + 2sin^eH/ 1 
2 e T 

Table 1.1: Particle content of the Standard Model, electric charges ej. vector- and 

axialvector-couplings uy, a/ wi th sin^ Qw — 0.232 the ratio of electromagnetic and weak 

coupling constant. A l l particles are spin-1/2 fermions. 

The particle content of the Standard Model can be grouped into three generations of 

quarks and leptons, which are listed in Table 1.1. 

1.4 Jet Physics at L E P 

1.4.1 Introduction 

Electron-positron annihilation into hadrons is one of the most precise tools to study 

the properties of QCD. The success of these studies is partly due to the fact that the 

hadronic cross section near the Z resonance is large, 40 nb. Below and above the Z 

peak the e'^e" annihilation hadronic cross section is significantly smaller. In an electron-

positron annihilation event, the produced Z boson decays into a quark-antiquark pair. 

Subsequently, these quarks radiate gluons which themselves decay into gluons or quark-

antiquark pairs. A t a certain point, these partons (quarks or gluons) transform themselves 

into the experimentally observed hadrons. In a typical such event, two or sometimes three 

or more sprays of approximately comoving hadrons are produced. These sprays or clusters 

of hadrons are called jets. 

The first evidence for a jet structure in hadron production by e+e" annihilation pro­

cesses was reported back in the year 1975 [20]. The data, taken at the Stanford Laboratory, 
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showed an increasingly two-jet like event structure when the centre of mass energy, Ecm 

was raised f r o m 3 to 7.4 GeV. The jet structure manifests itself in a decrease of the mean 

sphericity, a measure of the global shape of hadronic events (ideal back-to-back two-jet 

events have a spericity value of 0, while spherical events have S = 1). In 1979, a small frac­

t ion of planar, well separated three-jet events were observed by the PETRA experiments 

around Ecm ~ 30 GeV [21]. Finally, the year 1982 brought first evidence for four-jet like 

events, observed by the J A D E experimental collaboration [22] at Ecm = 33 GeV. We shall 

comment on the occurence of these different n-jet like events at the end of this section^. 

Although the formation of these hadrons in e+e~ annihilation is the consequence of a 

non-perturbative process, various measurable cross sections wi th final state hadrons can 

be calculated wi th in the theoretical framework of perturbative QCD. The reason is that 

the production process of a primary quark-antiquark pair, the basic process leading to the 

formation of hadrons, occurs at a much earlier time than the production of hadrons. The 

non-perturbative interactions which change the quarks and the gluons into hadrons occurs 

"too late" to modify the original probability for the event to happen. Consequently, the 

production of hadrons, and in particular oi jets can be calculated in perturbation theory. 

1.4.2 Jet definition 

Most commonly, one measures the cross section for the final state to contain exactly 2, 3, 

4 , . . . jets. A jet definition provides then a procedure to classify experimentally final state 

hadronic events according to the number of jets they contain. Furthermore as jet cross 

sections shall be calculated in perturbative QCD, the same jet definition should be used 

in the parton-level calculation, to classify the quarks and gluons into parton level jets. 

To be applicable i n a perturbative calculation, a jet definition must satisfy the following 

criteria: I t should lead to cross sections which are free of soft and collinear singularities, in 

other words, the definition must be infrared safe. Furthermore i t should also be relatively 

^Further details on these experimental determinations together with an experimental overview of jet 

physics as a quantitative test ground of QCD properties can be found in [23]. 
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insensitive to the transformation of quarks and gluons into hadrons. 

The possibility of measuring and calculating infrared safe jet cross sections was first 

explored by Sterman and Weinberg [24]. In their picture, the jets are defined wi th the aid 

of cones surrounding the produced hadrons. The definitions used nowadays for electron-

positron collisions involve a clustering algorithm which successively combines the final 

state hadrons into jets. I n the corresponding theoretical calculations, the same algorithm 

is used to combine the partons into jets. More precisely, a test variable dij is constructed 

for all possible pair of momenta pi and p^ in an event. The pair wi th the smallest dij are 

then combined to fo rm a pseudoparticle provided dij is smaller than some fixed value of the 

experimental jet resolution parameter commonly denoted by i/cut- This process is repeated 

un t i l no fur ther clusterings occur. The number of jets and their momenta are then given by 

the remaining pseudoparticles. The recombination procedure can ensure that the resulting 

pseudoparticles are massless or that they preserve energy-momentum but cannot ensure 

both properties at the same time. The way the partons (hadrons) momenta are combined 

to give the pseudoparticle momentum defines a particular recombination scheme'̂ ^. The 

definit ion of the test funct ion d,j defines the jet algorithm. There are several distinct 

algorithms used at LEP and here we shall focus on the J A D E [26] and kr- or D U R H A M 

[27] algorithms. 

For the J A D E algorithm, the test variable is simply given in the e+e" centre-of-mass 

frame in terms of the dimensionless invariant quantity. 

d,,=y,, = '-^^2E,E,{l-cose,,). (1.5) 
5 

Notice that w i t h this definition, this algorithm is infrared safe: A particle that has only 

a small amount of energy w i l l not affect the final number of jets or their four-momenta, 

since i t w i l l only contribute to a small amount of the final four-momentum of the jet in 

which i t is included. Similarly i f two particles are nearly collinear, then the first step of 

the algori thm is to combine them into one jet . 

^°The definitions of the most commonly used scheme can for example be found in [25] 
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The k j or Durham algorithm was introduced when i t has been realized that the .JADE 

algori thm sometimes reconstructs "spurious" jets, i.e. clusters of hadrons or partons whose 

momenta do not correspond to any set of approximately comoving particles in the event. 

For example, this can happen when soft gluons are emitted close to one of the quarks or 

antiquarks. In this case the J A D E algorithm has the tendency to cluster the soft particles 

together instead of combining them separately wi th the quark and the antiquark. In the 

Durham algorithm defined in the e+e" centre-of-mass frame by, 

d,, = 2 m i n ( E ^ E j ) i i ^ l ^ ^ , (1.6) 
s 

the soft particles are clustered more naturally wi th the quark and the antiquark [27]^^. 

The Durham algorithm is also infrared safe and can therefore be used to measure and 

to calculate cross sections wi th a fixed number of jets. We shall use this jet algorithm 

to ul t imately evaluate the photon - f l jet rate at 0{aalphas) numericall)-. For any jet 

algorithm, at lowest order, each parton is identified wi th a jet , such that the jet cross 

section is simply given by the partonic cross section. This jet cross section is obtained 

integrating numerically the partonic matrix element squared over the phase space defined 

by the recombination algorithm. At higher orders the evaluation of jet cross sections 

requires more thought. Section 1.5 wi l l be dedicated to this study. 

1.4.3 Jet rates 

To conclude this section on generalities of the physics of jets at LEP we shall discuss the 

occurrence of n-jet . l ike events as a function of the jet resolution jDarameter y^ui- I i i Par­

ticular, in Figure 1.2, taken f r o m [14], the jet rates measured by the OPAL Collaboration 

are compared wi th the rates obtained f rom a fixed order perturbative calculation. Both 

rates are functions of ycut-

^^For a more detailed description of these two algorithms, see for example the contributions of Dok-

shitzer and Brown in the proceedings to the Durham workshop on Jet Studies at LEP and HERA 

(1991) [27, 28]. 

17 



2 
B 

OPAL 
E,„=91GeV 

• • axA 2-,3-,4-, 5-jet data 

QCDO(a| ) 

. . . . 2 _ n 2 * _ 
11̂  = .0017 eL,,AMS= 110 MeV 

• J '% - | i^=E^,A55s = 230MeV 

0.05 0.10 

^cut 

Figure 1.2: Jet rates as a funct ion of the jet resolution parameter ?/cut obtained using the 

J A D E algorithm. 

Concerning the measured rate, at large ycut the events are essentially all classified as 

2-jet events. As ycut decreases, the jets become narrower, fewer events are two jet like and 

the number of mul t i je t events increases. For some small y^ui the number of 2-jet events 

tends to zero. For an even smaller value of ycut the 3-jet rate tends to zero and so on 

for higher number of jets and smaller values of ycut- For the calculated rates, at 0{a1). 

the results are slightly diiferent. At large ycut one observes a similar behaviour as for 

the measured rates, however the results differ significantly for small values of ycut- For 

sufficiently small values of ycut in fact, the 2-jet rate tends to —oo while the 3-jet rate tends 

to -|-oo. Indeed, for small values of ycut the presence of large logarithms of ycut induces 

the breakdown of the perturbative approach. These logarithms must be resummed to all 

orders to obtain a rehable prediction. I t is only by resumming these large logarithms to 

all orders i n perturbation theory that the turn-over observed for example at ycut = 0.02 

for the 3-jet rate in Fig. 1.2 can be reproduced. 
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1.5 Calculation of jet cross sections at higher orders 

A t lowest order, as we have seen in Section 1.4 the individual partons in the final state 

can be identified as jets. The jet cross sections can be obtained by integrating numericalh' 

the parton cross section over the phase space defined by the jet algorithm. 

As higher order corrections are included, more and more partons are admitted in the 

final state. In contrast to the lowest order interpretation, the partons cannot be directly 

identified as jets anymore. Two things could happen: Either, a parton although i t is hard, 

can be clustered to other partons to form a jet. This jet is then defined wi th the aid of 

a je t algori thm w i t h an experimental resolution criterion ?/cut as discussed in Section 1.4. 

Or, when higher order corrections are included, the partons in the final state can also be 

collinear and/or soft. 

As the presence of soft and/or collinear partons in the final state induces divergences in 

different contributions to the partonic cross section, i t is not possible anymore to evaluate 

this cross section directly numerically. As mentioned in Section 1.2.1, the Bloch-Nordsieck 

and Kinoshita-Lee-Nauenberg theorems guarantee us however that similar divergences 

are also present in the vi r tual contributions to the jet cross section. Furthermore, those 

theorems ensure that these divergences present in the real and vir tual contributions (which 

manifest themselves as poles in e in dimensional regularization) cancel against each other. 

To evaluate the partonic cross section in such a way that the cancellation of soft and 

collinear singularities is possible, one would therefore in principle need to calculate the 

matr ix element and to perform the phase space integrals analytically in d dimensions. This 

becomes rapidly unfeasible as the number of particles in the final state increases [29]. An 

alternative is to find a way to split the calculation of jet cross sections into analytic and 

numerical parts. In this way, the divergent contributions are calculated analytically in d-

dimensions while the finite terms can be evaluated numerically using standard techniques, 

such as Monte Carlo integration. There are essentially three different methods which 

render the evaluation of higher order jet cross sections possible: the subtraction, phase 

space slicing and hybrid subtraction methods. We shall briefly explain these three methods 
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in the following. 

1.5.1 Three numerical methods 

The basic features of these numerical methods may be understood by means of the eval­

uation of a simple one-dimensional integral as suggested by Z.Kunszt and D.Soper in 

30], 

^ = ti{ri^'FM-'^m}- (1.7) 

F{x) is a complicated funct ion, which renders the evaluation of J analytically impossi­

ble. I could represent a n-jet cross section while F(x) could stand for the n 1-parton 

bremsstrahlung matr ix elements and x for an invariant mass Sij. As x 0, which cor­

responds in the framework of jet cross sections to the case when one of the final state 

particles becomes soft or coUinear, the integrand is regularised by the x^ factor as in 

dimensional regularization. The first term is however st i l l divergent as e —> 0. This diver­

gence is cancelled by the second term - which is the equivalent of the ?z-parton one-loop 

contribution - so that the integral is finite. 

The first method we shall describe is the method used first by R.K.Ell is , Ross and 

Terrano in [31] for the evaluation of 0{al) quantities in electron-positron annihilation, 

also known as the subtraction method. I t was then further developed by Z.Kunszt and 

D.Soper i n [30] to be applied to the evaluation of jet cross sections in hadron collisions. 

Here, a divergent term is subtracted f rom the first term and added to the second. 

= f ^ { F ( r c ) - F ( 0 ) ) , (1.8) 
Jo x 

so that the integral is manifestly finite. The first term shall be evaluated numerically in 

4 space t ime dimensions whereas the second one needs to be calculated analytically in 

(i-dimensions. This method has the advantages of requiring no extra theoretical cutoffs 

and making no approximations. A disadvantage is however that i t does require the ana­

ly t ica l evaluation of the subtraction term, the analogue of i^(0) â̂ S for each process 
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individually. A n attempt to systematize the evaluation of these subtraction terms has 

been recently suggested by S.Catani and M.H.Seymour in [32]. Details of their method 

can be found in [32]. For further appHcations of the subtraction method, see [33 . 

A n alternate approach which is known as the phase space slicing method was first 

introduced by [34] and further developed by W.T.Giele and E.W.N.Glover in [25]. In this 

review, the method was elaborated to evaluate higher order jet cross sections in e+e" 

annihilation. The essential tool of this approach is the decomposition of the integration 

region into two parts, 0 < x < S and ^ < a; < 1. In the first region, the function F{x) 

can be approximated by F{0) provided the arbitrary cutoff, which is a purely theoretical 

separation criterion, 5 <C 1, 

^ r '}lF{x) + F{0)ln(6). (1.9) 
J s X 

In the first region of phase space the integration can be performed numerically as F{x) 

is convergent over the whole range of integration, whereas in the second region i t needs 

to be calculated analytically. However the evaluation of the analogue of F{0) JQ ^X'^ 

should be easier to evaluate than the subtraction term in eq.(1.8). In the language of 

jet cross sections, the evaluation of F{0) JQ ̂ X^ corresponds to the evaluation of the 

approximated matr ix element squared over the approximated phase space in a singular, 

i.e. soft or collinear, region. As these soft/collinear approximations of matrix elements 

and phase space are universal [25], the appHcation of the phase space slicing method to a 

wide variety of physical processes is possible and facilitated. 

A main drawback of this approach however is the presence of the arbitrary cutoff 

S. The integral I or equivalently any physical process should not depend on 6. The 6 

dependence of the two terms in eq.(1.9) should cancel. I n the evaluation of a jet cross 

section, the cancellation of the S dependence is realised numerically by a Monte Carlo 

program. This is not a straightforward point for the following reasons. The soft/collinear 

approximations used in the analytic part of the calculation are reliable only when 6 is 
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small and are best when 6 is the smallest possible. For the numerical cancellation of the 

6 dependence on the other hand, "not too small" values of 6 are preferred since smaller 

values of S induce the cancellation of larger logarithms, possibly giving rise to numerical 

instabili ty problems. In practice 6 is chosen in such a way that the approximations 

performed in the analytic calculation are valid and that the instability problems are 

avoided. The phase space shcing method has been applied so far to e'^e~ —> 2 jets, 

e+e" —)• 3 jets [25], pp W, Z + 1 jet, pp —> 2 jets [35] and ep e - f 2 jets [36]. 

Finally, a th i rd method is a hybrid of the two previous techniques, called the hybrid 

subtraction method [37]. To preserve the portabihty of the phase space slicing method, 

we add and subtract only the universal soft/collinear approximations for 0 < x < 6. 

~ [('—F{x)+f~[F{x)-Fm^F{<d)H8)\. (1.10) 
yjs X Jo x J 

Eq. ( l . lO) reflects how the calculation of jet cross sections is performed using this method. 

The first and last term in this equation are identical to those in the equation describing 

the phase space shcing method, eq.(1.9). Consequently, when applying these two methods 

to the evaluation of jet cross sections, the isolation of soft/collinear divergences and the 

evaluation of the matr ix element squared integrated over the non-singular region wi l l be 

performed in the same way wi th in both methods. Moreover the cancellation of the 6 

dependence is also reahsed on a numerical basis wi th in the hybrid subtraction method. 

The difference between the latter two approaches is given by, 

f^{F{x)-FiQ)). (1.11) 

In the "language" of jet cross sections this term corresponds to the evaluation of the 

difference between the f u l l matr ix element squared and its approximation integrated over 
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the phase space restricted to the region where 0 < x < 6. Clearly, the difference between 

the two approaches tends to zero as <5 —)• 0. Furthermore, provided S is chosen small 

enough, all three methods should give equivalent results. This was shown to be indeed 

the case for a particular physical quantity, the energy-energy correlation function [38] in 

37] where the small unphysical parameter is labelled ymm. In particular, in this letter the 

authors discuss for which particular choice of the results obtained applying the phase 

space slicing or hybrid subtraction method, agreed reasonably well with the results ob­

tained using the subtraction method. They found that at large y^^^ the predictions varied 

rapidly with ymin- This is understandable since for large y^mi values, the approximations 

used to perform the analytic integrations are inaccurate. For i/min < 10"'*, this variation 

was found to be small. A reasonable approximation to the j/min 0 limit, which does not 

lead to numerical instabihty problems was therefore chosen to be yniin — 

10-'. 

Nevertheless, i t is worth iroting that i t can also happen that the difference between 

phase space slicing and hybrid subtraction methods as given in eq . ( l . l l ) leads to im­

portant discrepancies in the final numerical resvilts obtained applying one or the other 

method. 

Within the phase space slicing method, the matrix element squared and phase space 

are approximated in a given singular region and generally the approximations are accurate 

in that singular region. At the edges of the singular region it can however happen that this 

approximation is not appropriate anymore. In such cases, using the phase space slicing 

method could lead to erroneous results. Indeed, within this method, the pole part is 

obtained as the result of the analytic integration of the approximate matrix elements over 

the corresponding singular region of phase space. The finite contributions are obtained 

as the sum of the finite terms of the analytic integration and the result of the numerical 

integration of the matrix element squared over the resolved region of phase space. If the 

approximation of the matrix element squared is not appropriate this finite part may not 

be correct. 

Using the hybrid subtraction method, the integration over the singular region of the 

approximated matrix element squared is added and subtracted and such a problem is 
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avoided. The pole part is obtained as in the phase space slicing method. However, an 

additional finite contribution arises through the evaluation of the difference of the ful l 

matrix element squared and the approximated matrix element squared integrated over 

a given singular region, the analogue of Jq ^ [F{x) — F(0)] in eq.(l.lO). Clearly, if the 

approximation is accurate this difference term tends to zero. If not on the other hand it 

generates an additional finite contribution to the jet cross section, such that the results 

obtained applying one or the other method are different. 

When evaluating the photon - f l jet rate at 0{aas). as we shall discuss in more detail 

when describing the numerical part of this calculation in Chapter 9, at the boundaries 

of any single collinear regions, i t turns out that the single collinear approximation of the 

four-particle matrix element squared is not an appropriate approximation anymore. As we 

shall illustrate in Chapter 9, the large particle multiplicity in the process is responsible for 

this subtle inaccuracy. For this reason, in our numerical program evaluating the photon 

+ f jet rate at 0{aas), we will apply the hybrid subtraction method. 

1.5.2 An example: The e+e~ 2 jets cross section at 0{as) 

To illustrate how the hybrid subtraction method can be applied to yield a finite jet 

cross section, we shall consider a particular example, the e+e" —s- 2 jet cross section at 

0{as). We will first present how the different contributions to the cross section should 

be combined to yield a finite result using the phase space shcing method. We shall 

then specify which additional contribution shall be taken into account when the hybrid 

subtraction method is used instead. 

The essential tool of the phase space slicing method as we saw in the previous subsec­

tion, is the decomposition of the phase space into different regions, one where all final state 

particles are considered to be theoretically resolved (or seen) and others where at least one 

of the particles is said to be theoretically unresolved. The separation criterion between 

resolved and unresolved regions is given by a theoretical resolution parameter: Smin- Two 

partons are considered as theoretically resolved i f the invariant mass of the parton pair is 
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greater than Smin; they are said to be theoretically unresolved (i.e soft and/or collinear) 

otherwise. It is only in the unresolved regions, where at least one of the invariant masses 

of a parton pair Sij is less than ^min, that the calculation needs to be carried out in d 

dimensions. As a consequence of this slicing procedure of the phase space, the divergences 

associated with the presence of soft or collinear partons lie in the unresolved phase sĵ ace 

regions and can be isolated and analytically cancelled against the divergences present 

in the virtual contributions. We shall explicitly show how this cancellation happens in 

Section 1.5.3 for the evaluation of the e"'"e~ —> 2 jet cross section at 0{as). After the 

analytic cancellation of poles, the matrix element and the phase space restricted to the 

region where all final state particles are theoretically resolved can be evaluated in four 

space time dimensions. The jet algorithm can be applied to select the two-jet events. 

At lowest order the sole contribution to the e"'"e~ 2 jet cross section comes from the 

two-parton process e'^e~ —> qq. The partons q and q form the two jets. At next-to-leading 

order there are two contributions. One contribution comes from the tree level three-parton 

process e"̂ e~ qqg. The other is related to the next-to-leading order two-parton process 

e+e" qq, where a virtual gluon is exchanged. The three-particle phase space can be 

split into resolved and single unresolved regions. In these single unresolved or so-called 

one-particle unresolved regions, the gluon is "theoretically" unseen, i.e. it is collinear to 

the quark or to the antiquark or it is soft. Partons i and j are considered as collinear 

when the invariants built with their momenta is less than the theoretical parameter Sj^n, 

i.e. Sij < 5min- Parton k is soft when the invariants involving the momentum of parton k 

are less than s^n- Before deriving these divergent contributions explicitly, let us first see 

how all the different contributions to the 0{as) e+e~ —> 2 jet cross section combine to 

yield a finite result. 

Schematically, following the notation in [25], the differential cross section associated 

with the three-parton process e+e" —> qqg reads^^ 

da{e'^e 3 partons) = Oisqg - s^^)e{sgg - s. 

^̂ The step function 6(x) is 1 if a; > 0 and 0 otherwise. 

25 



X Aa[e^e —>• 3 partons). 

(1.12) 

In this equation, the first term represents the contribution to the three-parton cross 

section when all three partons q,q and g are resolved and can therefore be evaluated 

numerically, cl(7* '̂(e"^e~ —>• 3 partons). The second and third terms represent the di­

vergent contribution when the gluon is either collinear to the quark or to the antiquark 

d(T'̂ (e"'"e~ —)• 2 partons); the fourth term represents the divergent contribution arising 

when the gluon is soft d(j^(e'^e~ 2 partons). Eq.(1.12) can be reexpressed as follows. 

dcr(e"''e~ 3 partons) = da^^\e'^e~ —> 3 partons) 

-|-d(j*^(e"''e~ 2 partons) -|- da^(e'^e~ —> 2 partons). 

As the soft and collinear divergences present in da'-^ and da-̂  are expected to cancel 

against the divergences present in the virtual contributions, it seems natural to combine 

them and to define the two-parton resolved contribution as the sum of these contributions, 

da^^\e'^e~ 2 partons) = da^{e'^e~ —> 2 partons) 

+da^'{e'^e~ 2 partons) + d(T^(e+e" 2 partons) . 

(1.13) 

As will be shown in Section 1.5.3, the divergences are all proportional to the lowest order 

two-parton cross section da'-^^'^le'^e" —̂  2 partons) = CTQ. The resolved two-parton 

contribution da''^\e'^e~ 2 partons) then reads. 

d(7'^)(e+e" 2 partons) /C(5„-,5^n) d(j*^^^(e+e- 2 partons) (1.14) 

The so-called dynamical /C factor is finite and needs to be evaluated analytically. It 

depends on the theoretical resolution criterion Smin and on the invariant mass of the final 

26 



state Sqq. The 0{as) two-jet cross section is then finally obtained as the sum of the 

resolved two-parton cross section da^^\e+e'' 2 partons) and the two-jet contribution 

from the resolved three-parton cross section dcr(-'̂ '(e+e"' 3 partons). 

da{e'^e — 2 jets) d(j'^'(e+e" ^ 2 partons) + 0 x J da''^\e^e~ 3 partons) . 
(1.15) 

The integration represents the projection of the three-parton phase space onto the two-

jet phase space while 0 contains the experimental definition for a two-jet final state. 

dcT(e"'"e~ —̂  2 jets) is finite as it is the sum of two finite contributions, da^'^^e'^e' 

2 partons) is finite but obtained after the analytic cancellation of poles as in eq.(1.13), 

da^^\e'^e~ —> 3 partons) can be evaluated numerically in four space time dimensions. 

Finally, the jet finding algorithm can be applied to the three parton final state according 

to the experimental definition 0 to select the two-jet events. The e+e" 2 jet cross 

section at C(Q;^) is then obtained using the phase space slicing method, applying eq.(1.15). 

To evaluate the e+e" —>• 2 jet cross section at 0{as) using the hybrid subtraction 

method, one needs to consider some additional contributions which will be evaluated 

numerically. More precisely, for each singular region one needs to consider the contribution 

resulting from the numerical integration of the difference between the three-particle matrix 

element squared and the approximated matrix element squared over the three-particle 

phase space restricted to the particular singular region. For example, in the region of 

phase space where the gluon is soft, additionally to the terms present in eq.(1.15); we 

need to consider, 

0 X I {\M,,-g\' - \Ms0ft\') dPi'\M,P,,P^,Pg)d{s^^ - Sgg)eiS^„ - S gg) 

where \Mqqg\^ is the 4-dimensional three particle matrix element squared, |yWso/fP its 

soft approximation, and d/g'^^Mjp,,^^,^^) the 4-dimensionaI three particle phase space, 

which analogue in c?-dimensions is given in Appendix B. The integration and 0 symbols 

are defined as in eq.(1.15). In order to evaluate the e'^e" 2 jet cross section at 0(as) 

using the hybrid subtraction method, similar terms need to be considered in the region 
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where the gluon is collinear to the quark and in the region where it is collinear to the 

antiquark. 

1.5.3 The isolation of soft and collinear divergences 

In this subsection we shall see how the introduction of the theoretical resolution criterion 

•Smin enables us to isolate soft and single coUinear divergences. We shall present the 

factorization properties of matrix element squared, phase space and cross section in soft 

and collinear limits. In particular, the soft and single collinear contributions to the cross 

section for the process 7* —̂  qq at 0{as) will be explicitly derived and the cancellation 

between the soft/collinear real divergences and those present in the virtual contributions 

will be shown. The generalization to the process e'^e~ qq -\- n gluons where one gluon 

becomes soft or collinear can be found in [25 . 

For convenience we use the following notation 

q=l, q = 2, g = 3. (1.16) 

Following this notation, the invariants Sgg,Sqg and Sqg are denoted by 513,523 and 512 

respectively; The (i-dimensional three particle matrix element squared and phase space 

are given as follows. 

For massless quarks of unit charge, lyW ĝ-pp = |yMi23p reads: 

. (y23 , yi3\ , 2?/i2 - 6̂ 13̂ 23 

v 
A4-I23 

' \ y i 3 2/23/ 2/13̂ 23 
(1.17) 

where yij = j^- M is the mass of the final state. The d-dimensional three particle phase 

space is given in the Appendix B by eq.(B.4) and reads, 

/ dPi ' ' (7¥,pi ,p2,P3) = {2irf-'' j dRi'\M,p,,p2.,Ps) 

with, 

,Pi,P2,P3) = j{S12S13S23) ^ dsu dsi3ds23dftd-i 

8{sr2 + Sl3 + S23 - M^) ( 7 V / 2 ) ^ . 



The soft limit of the three-particle differential cross section 

a. The soft limit of the matrix element squared Î Wg^̂ p 

When the gluon is soft"^ ,̂ Eg ^ 0 and the invariants containing the momentum of the 

gluon pg, i.e. Sgg = Si3 and Sgg = S23, tend to 0. The soft gluon hmit is therefore defined 

requiring, 

(1.18) 

In this l imit , as 3^,^^ tends to 0, the matrix element squared |yWi23p given by (1.17) is 

singular and factorizes. It becomes, 

IMusl'\Mnnu{^)- (1.19) 

fabic) is sometimes called the eikonal factor [39] and reads 

fab{c) = (1.20) 
^ac^bc 

Thus in the soft gluon limit, the three-particle matrix element squared is written as the 

matrix element squared "without the gluon", IAI12I" , multiphed by a factor /r2(3) which 

contains all the soft gluon singularities. The product |yWi2p /i2(3) is the soft gluon 

apiDroximation of the ful l matrix element squared |y\4i23p. 

b. The soft behaviour of the phase space 

In the soft gluon limit defined above, the dimensional three-particle phase space also 

factorizes, 

dPi'\M,p,,p„ps) ^ dPi'^)(M,pi,p2)dPi3,(pi,P2,P3). (1.21) 

dP.2'''\M,pi^P2) is the two-particle phase space given in Appendix B by 

/dA^(M,p„p2) = J { s ^ - 2 y - ^ { 2 i r y - ' ^ d s , 2 S i s n - l V n . , 

whereas the soft phase space factor dP^'^j^{pi,p2,P3) reads 

'^PloftiPl^P2,Ps) = | d O d _ 2 5 i X d5i3d523 [Sl3S23]~ {2TrY~'^9(s^n " Si3)$(s^n - ^23). 

i^Recall, that in the massless l imit , = {pi + Pj^ = 2EiEj{l - cosdij] 
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Performing the angular integrals, and setting d = 4 - 2e, this soft phase space factor 

reads: 

cli'i5i(Pl,P2,P3) 
{ATTY d5i3d523 

167r2r ( l - e) 512 
513523 

'12 
^(5™n - 5i3)^(5n^n - 523). (1-22) 

When multiplied with the the soft matrix element squared / i2(3) we see that the soft 

phase space factor regulates the singularities in 523 and 513. 

c.The soft behaviour of the cross section 

We just saw how the three particle matrix elements and phase space factorize when the 

gluon becomes soft. We can now combine these results to obtain the soft behaviour of 

the cross section for 7* q + q + g. The 3-particle cross section da^gg = dai23 is given by 

d^l23 = (̂^̂) / 1-̂ 1̂231̂  clPi''(M,Pi,P2,P3), (1.23) 

where gs is the strong charge and {N- - 1)/27Y is the colour factor. In the soft gluon limit 

this cross section becomes, 

dcTi 23 |A^i2r d P f (M,pi ,p2)x /l2(3)dPi3,(pi,P2,P3) 
2/V 

(1.24) 

Al l the dependence on the soft gluon momenta p3 has factorized and is included in the 

square bracket in eq.(1.24), it multiplies the cross section "without the gluon", CTQ. The 

integrated soft gluon behaviour finally reads, 

Sf = / ^ . ' ( ^ ^ ) / l 2 ( 3 ) d P i 5 , ( p i , P 2 , P 3 ) 

^ ( 4 . , . ^ ) ^ V ^ " - 1 ^ A r ' " d 5 2 3 r"d3l3 
5i2 Jo Jo 

2 

S23S13 
5l2 

-e-1 

(1.25) 
2k \A/P J \ 2N J r ( l - e) 

Here is an arbitrary scale which is introduced to keep the strong coupling constant 

a, = glji'"^"-I^Tt, dimensionless in d^ i-2e dimensions. The product ^FC^O constitutes 
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the soft gluon approximation of the three particle cross section (J123. Furthermore, note 

that in this particular example of a three-parton final state process, 512 = and con­

sequently j/12 = 1 so that the factor 7/j2 can be omitted in eq.(1.25). If, however, we are 

interested to know the soft gluon behaviour of the cross section for a process which has 

an additional photon in the final state, as in the remainder of this thesis, this factor needs 

to be kept as yi2 is not equal to one anymore. 

Finally, when evaluating the soft approximation of the matrix element squared we have 

neglected all terms of 0{1) (or higher) in and S23. From this last equation, we see that 

it was justified to do so, as in the soft region of phase space (defined by 513 < 3^1^ and 

.523 < .Smin) tliose terms lead to contributions to the soft factor, Sp, which are of 0{yj^„) 

and therefore negligible. 

The single collinear limit of the differential cross section 

a.The single collinear limit of |A^g^p|̂  

The matrix element squared, in addition to being singular in the soft gluon region is also 

singular in the collinear regions. It is singular when q = 1 and g = 3, for example, are 

collinear and cluster to form a new parton Q such that: 

Pl+P3=PQ-

P3 and pi carry respectively a fraction z and I — z of the parent parton momentum pg. 

Pi = (l-z)pQ, p3 = zpQ. (1.26) 

As 1 and 3 are collinear 513 tends to 0, we consider the quark-gluon collinear limit to be: 

513 < < M l (1.27) 

In this l imit , we can ignore terms of order 1 in 513 in the matrix element squared and the 

invariants and .S23 become 

si2 = {l-z)M\ S23 = zM\ (1.28) 
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The matrix element squared 1^^123!^ exhibits an overall factorization, 

|A^i23p Pis^giz; 5i3)|yMg2|'. (1.29) 

y\4(52p is the two particle matrix element squared obtained replacing partons 1 and 3 by 

the parent parton Q. The collinear matrix element squared, PI3_.Q(Z, 513) is singular as 

•S13 —> 0. It is given by, 

PI3 - .Q(Z ,5 I3 ) = — P I 3 ^ Q ( ^ ) . (1.-30) 
5l3 

PI3^Q(Z) = Pgg^Q{z) is the (i-dimensional Altarelli-Parisi splitting Junction, [40] and 

corresponds to the probability that a quark emits a collinear gluon thereby losing a fraction 

z of its initial momentum. It is given by, 

(1.31) 

This particular splitting function has been originally derived in the context of collinear 

photon emission off electrons by von Weizsacker and WiUiams [41]. 

Throughout this thesis we will encounter both the cZ-dimensional splitting function 

Pah~^Q{z) as given in eq.(1.31) which we shall sometimes also denote P^i){z) (or P^iz)) 

and its counterpart in 4 dimensions. We will denote the 4-dimensional splitting function 

by Pab{z) or simply by P{z). 

b.The coUinear behaviour of the phase space 

The (/-dimensional three-particle phase space for M ~^ pi +p2 +P3 is given in (B.4). In the 

single collinear region, when 513 < 5 , ^ the invariants S12 and 523 are defined according 

to eq(1.28) and the three particle phase space factorizes, 

dPi'\M,p„p2,P3) ^ dPi'\M,pQ,p2)dPS{pi,P3,z), (1.32) 

where dP2{M,pQ,p2) is the known two-particle phase space in (f-dimensions given by 

eq.(B.3) with pq instead of pi. Performing the angular integrations and fixing ti = 4 — 2e, 

the coUinear phase space factor dP^^i{pi,p3,z) reads: 

5 i 3 ^ ( l - Z ] 
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Figure 1.3: Dalitz plot for the qqg final state phase space in terms of the invariants ygg and 

ygg. The kinematically allowed region is limited by ygg 4- ygg < 1. In region 1, the gluon 

is soft, in regions 2 and 3, the gluon is collinear to the quark or antiquark respectively. 

The region 4 is the 'theoretically resolved' region. 

c.The collinear behaviour of the cross section 

In order to determine the quark-gluon collinear contribution to the cross section, 

we must integrate the collinear matrix element squared over the single collinear region. 

We must ensure however that this single unresolved region does not overlap with the 

soft region; we must match this collinear region precisely onto the soft region so that 

there is no double counting and no omitted singular region. We must therefore require 

that Sgg < s^n = Si3 < 5min, while Sgg > 5inin = 523 > ^^in- It is showu in Fig. 1.3 

how the matching of the two regions of phase space is then realised. The requirement 

523 > 5min avoids the soft region and determines the lower boundary of the integration 

for z. 523 > 5min correspouds to ZS2Q > 5niin- In othcr words, as S2Q = M ^ , z has to be 

greater than i/min- In the quark-gluon coUinear limit the cross section dai23 becomes, 

dai 23 daQ2 X J 9l 2N Pl3^Q{z,S,s)dP^S (1.34) 
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All the divergences related to the collinear gluon have been factored and multiply the 

two-particle cross section daQ2. Integrating out the collinear behaviour gives. 

^ 1 4 2N 

27 \ 2N ) r ( i -

Pl3^Qiz, Si3)dPSiPl,P3, Z 

1 a, fN^ - r 

e Jo 

1 

d 5 i 3 5i3 ^ r dz[z{l-z)rP,3^Qiz) 
•Jymin 

l2^ [ 2N ) r ( l - e) \ I P 

2 \ +^ 
(2/11 

; i - e ) ( 4 - e ) V\l-e) 

2e(l - 2e) r ( l - 2e) _ 
(1.35) 

The full contribution from unresolved phase space 

We can combine the results from the previous subsections to give an expression for the 

sum of all contributions to the process 7* qqg where the gluon is real and unresolved. 

It yields, 

^H^' = [S'i? -f 2CF] O-Q 

= Rqq CTQ. (1.36) 

(7o is the tree level cross section for the process 7* qq. As the gluon can be collinear 

to the quark or to the antiquark, and since the resulting contribution is the same in both 

cases, the factor Cp needs to be multipHed by two. Rgg reads, 

, 2 \ +^ 

P, •qq 2TX 

1 
2A^ ) r ( l - e) 

47r/i' 
"hp 

X 
2 3 "'''T'̂ ' 
- -2W{y^^) + - - 31n(y^J + 7 - ^ 4-0(6). :i..37) 

Note that we have neglected terms of Oi^s^^ such that this equation for the two-particle 

resolved factor Rgg is only valid in the small 5inin limit. Furthermore, the complete con­

tribution to the Oia^ cross section for 7* —> qq with one unresolved gluon in the final 

state can be obtained by adding the one-loop virtual contribution oy to the unresolved 
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real contribution a^^ '. The matrix element "squared" |yVfyp associated with the loop 

diagram is obtained by interfering the tree level amplitude T with the loop amplitude C. 

\Mv 

An explicit calculation of yields 

2Re{Cr). 

\Mv\'=\M^reA'Vg 
qq; 

where Vgg is given by 

_ a, / i V ^ - i \ A7r^^r^r-^(i-6)r(i + 6) 

27r V 2N ) \ M 2 j r ( l -2e) 

Integrating \Mv\'^ over the two-particle phase space yields. 

+ 7 r 2 - - - 8 

(Jy = (ToVg 
qqi 

4^) + ay = ao/C,, (1.39) 

which is finite. The two-quark JC factor is obtained combining Vgg with the two-particle 

resolved factor Rgg and reads. 

(1..38) 

such that the two-parton contribution to the 0(a , ) cross section for the 7* qq process 

then finally reads. 

K,qg Rqq + Vgg 

27r V 2A^ 

+0(e) . 

'47r/i 2\ +e 
21n^(ymin) + y - 31n(ymin) - 1 

(1.40) 

In the second part of this first chapter we have discussed how jet cross sections may 

be calculated at higher orders in perturbative QCD. We have seen for the particular ex­

ample of the 0{as) process e+e" —* 2 jets how the phase space may be decomposed into 

theoretically resolved and single unresolved regions. And in these last regions we explic­

i t ly derived the soft and collinear contributions to the cross section. In the remainder 
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of this thesis, for the evaluation of the photon jet rate at order aa^ we shall ex­

tend this method to decompose the four-particle phase space and to analj'tically isolate 

collinear or/and soft divergences present in different contributions to the cross section. In 

this calculation we will have to deal with contributions which can have up to two parti­

cles simultaneously theoretically unresolved. Such configurations had so far never been 

considered in the calculation of jet cross sections. In a pure QCD calculation, they will 

only appear at next-to-next-to-leading order (NNLO). As a consequence, the calculational 

methods developed in this thesis to evaluate these double unresolved contributions will be 

applicable in a variety of calculations of jet observables at NNLO. Possible applications 

are e+e" ^ 3 jets at 0{al) [42] or pp 2 jets at 0 ( a f ) . 
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Chapter 2 

Photons in hadronic Z decays 

Electron-positron annihilation provides a very clean environment in which to test pertur-

bative QCD. The production of hadrons in e+e~ collisions at LEP (^/s = Mz) can be 

viewed as the production of a Z boson which subsequently decays into a quark-antiquark 

pair. During the subsequent QGD parton evolution process the ĉ uarks produced in the 

hard interaction radiate gluons which themselves decay into gluons or Cjuark-antiquark 

23airs. Ultimately, these partons are transformed into clusters of observable hadrons 

through the non-perturbative hadronization process. With the aid of a suitable jet def­

inition it is possible to analyse these hadronic final state events and to classify them 

experimentally according to the number of jets they contain. A given jet algorithm leads 

therefore to measurable jet cross sections. Furthermore, as we saw in Section 1.2, it is 

possible to match the theoretical parton level calculations performed in the framework of 

perturbative QCD to the experimentally observed hadronic jet rates. This correspondence 

is realized by subjecting both parton and hadron momenta to the same recombination 

algorithm characterized by a resolution criterion ycat- -Jet cross sections become then also 

calculable in perturbation theory. 

In a small fraction of events, in addition to the jets of hadrons one may observe a highly 

energetic photon. Experimentally, highly energetic photons are identified by a shower in 

the electromagnetic calorimeter, which is accompanied by "no charged tracks" pointing to 
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i t . We distinguish two possible sources for the emission of a photon in hadronic Z decays, 

depending whether the photon is emitted at an early or late stage of the QCD parton 

evolution process. We shall discuss these two sources in Section 2.1. Most earlier studies 

of photon -\-n jet events have concentrated their interest on isolated photons. After having 

explained how isolated final state photons can be defined, we shall present the results of 

theoretical analyses and the results of a comparison with experimental data on the isolated 

photon -j-n jets rate in Section 2.2. 

An alternative analysis of final state photons is obtained by treating the photon like 

any other parton and to cluster it together with the other partons in jets. The photon 

in this case is called nan isolated. We shall present the calculation of the lowest order 

photon -|-1 jet rate performed following this democratic approach in Section 2.4. Section 

2.5 will be dedicated to a brief discussion of alternative approaches to analyse final state 

photon events widely used in the literature. Finally, in Section 2.6 we will describe 

how the experimental measurement of the photon jet rate is reahzed by the ALEPH 

Collaboration at CERN. 

2.1 Two sources of final state photons 

In events where a photon is emitted in addition to the jets of hadrons, the photon can have 

two possible origins. The photon may have been emitted at an early stage in the QCD 

parton evolution process initiated from the primary quark-antiquark pair. Such photons 

are generally well separated from the other hadrons in the event. Indeed, considering the 

process e'^e~ qqj in the massless limit with the photon emitted on the quark leg, the 

inverse propagator Sg^ is given by, 

Sg-y = 2EqE^[l — COSOgj 

where Eg,E^ are the energy of the quark and the photon and 6g^ is the angle between 

the quark and the photon. For fixed energies of quark and photon, a large separation 

angle 0g^ corresponds to a large invariant mass of the parent quark propagator. By the 
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u n c e r t a i n t y p r i n c i p l e , th is impl ies t h a t the quark propagates fo r a short t i m e . Conse­

quen t ly , the r a d i a t i o n o f a p h o t o n by a cjuark at large angles occurs at an early stage o f 

t he h a d r o n i z a t i o n process. 

A l t e r n a t i v e l y the p h o t o n may ha,ve been rad ia ted somewhat later du r ing the hadroniza­

t i o n process. F o l l o w i n g the above argument , i t is then more hke ly tha t i t has been e m i t t e d 

co l l i nea r ly to one of the p r i m a r y quarks. However, i f i t is t r ave l l i ng fo r a long t i m e , the 

emiss ion cou ld take place d u r i n g the hadron iza t ion process. T h i s non-per tu rba t ive quark-

t o - p h o t o n f r a g m e n t a t i o n process is characterized by the universal and process-independent 

q u a r k - t o - p h o t o n f r a g m e n t a t i o n f u n c t i o n w h i c h is not calculable i n p e r t u r b a t i o n theory 

and mus t be measured. T h e f r a g m e n t a t i o n process must be considered together w i t h the 

coUinear emission of a p h o t o n f r o m a quark , as b o t h processes happen at a later stage of 

the Q C D p a r t o n e v o l u t i o n procedure. 

F r o m a theore t i ca l p o i n t of v iew, these two con t r ibu t ions are associated w i t h each 

o ther i n p e r t u r b a t i v e Q C D calculat ions since quark-pho ton coll inear s ingulari t ies may 

be f ac to r i zed i n t o the qua rk - to -pho ton f r a g m e n t a t i o n f u n c t i o n as ment ioned i n Section 

1.2.3 and as we shal l see when eva lua t ing the 7 j e t ra te at order a i n Section 2.4. 

I n expe r imen t s , such final state photons are generally not we l l separated f r o m the other 

hadrons , and are therefore harder to detect. We shall discuss the exper imen ta l detect ion 

o f these non isolated photons i n hadronic Z decays i n Section 2.6. 

Clear ly , as the t w o sources fo r the emission of a pho ton i n the final state are easily 

d i s t ingu i shab le f r o m each other , by impos ing some k i n d of i so la t ion c r i t e r i a on the pho ton , 

one is able t o reduce or even to comple te ly e l imina te the second source of final state 

photons i n Z decays. One can then s tudy isolatedfmdl state p h o t o n events. T h i s is exac t ly 

w h a t was p e r f o r m e d i n the earl ier expe r imen ta l [43, 44] and theore t ica l [45, 46. 47, 48 

analyses w h i c h we shal l describe below. 
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2.2 Isolated Photons 

I n a l l these earl ier analyses, the candidate p h o t o n is isolated f r o m the hadronic debris i n 

an event us ing a geomet r ica l cone centred around i ts d i rec t ion inside of which a m i n i m a l 

a ccompany ing hadron ic energy is a l l owed^ I n the next step, the pho ton is removed 

f r o m the event and the par tons are clustered together according to a j e t a l g o r i t h m w i t h 

r e so lu t ion c r i t e r i o n ?/cut, i-e. a l l par tons i , j are required to f u l f i l l yij < ?/cut- F i n a l l y an 

event is r e ta ined o n l y i f the restored candidate pho ton remains apart f r o m the jets i n a 

second a p p l i c a t i o n of the c lus te r ing a l g o r i t h m . I n pa r t i cu la r , we require 

Vc > Vcut (2.1) 

f o r a l l clusters c then f o r m e d . Thus i t is w o r t h n o t i n g tha t using th is procedure to isolate 

t he p h o t o n , any par t ic les associated w i t h the pho ton w i l l be incorpora ted i n the other 

j e t s . 

I n l ead ing order Q C D , the on ly process c o n t r i b u t i n g to the isolated pho ton +n j e t 

r a t e is e + e " —> qqj and the number of jets produced can be one or two . I f two jets and a 

p h o t o n are observed, each p a r t o n bui lds a j e t and the pho ton is we l l separated f r o m the 

o ther par tons . I f one j e t is observed i n a d d i t i o n to the pho ton , the event conf igura t ion 

is the f o l l o w i n g . T h e p h o t o n is placed i n one hemisphere and the quark-an t iquark are 

c lus tered toge ther i n the o ther hemisphere, back to back to the pho ton . Thus fo r an 

i d e n t i f i e d p h o t o n event we require , 

dq-fjdqy > &min; > Ejjiin- (2-2) 

I n p a r t i c u l a r , f o r the process e+e" qq^, f o l l o w i n g [46] we have, 

1 - x ' = .x(2 - X - - c o s ^ „ ) . 

^Notice tha t , we need to allow some m i n i m a l hadronic energy inside the cone surrounding the photon 

since a perfect ly isolated photon is not an infrared safe quanti ty. As we shall see later in this section, 

this po in t induces some differences in the way isolated photons are defined in the various theoretical 

calculations [45, 46, 47, 48]. 
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^ x\2-x-x')\^{l-cosB,,)., (2.-3) 

where x^x' and x^ are the energy f rac t ions carr ied by the quark , the an t iquark and the 

p h o t o n . These f r ac t ions are def ined as fo l lows: 

x = 2E^l^s, x' = 2Eqlyfs and x^ = 2 - x - x'. (2.4) 

I n t e rms of these energy f rac t ions , the scaled pai r invar ian t masses yi^ = Sij/s w i t h 

•Sej = (p, + P j f are g iven by, 

yg^ = 1 - x', yg-, = 1 - X, yqq = 1 - x^, (2.5) 

and i n t e rms of the energy f rac t ions x and x' the i sola t ion condi t ions fo r the p h o t o n are, 

l - x ' > x{2 - X - x')6, 

1 - x > x'{2 - x - x')6, 

2 - x - x ' > £, (2.6) 

where, 

S = ^ ( 1 - c o s 6 ' „ , „ ) , 

9 p . 
e = ( 0 < 5 . e < l ) . (2.7) 

A t nex t - to - l ead ing order the isolated p h o t o n -|- n j e t cross sections receive con t r ibu t ions 

f r o m the one loop e+e" qq-y and the tree level e+e" —> qq^g processes. A t most three 

je ts can be i d e n t i f i e d i n the final state, i n w h i c h case on ly the qq'yg process contr ibutes to 

t he cross sect ion. I f three je t s are i den t i f i ed , a l l the partons are we l l separated f r o m each 

o ther and f r o m the p h o t o n and each of t h e m fo rms a j e t . I f one or two je ts are observed 

i n a d d i t i o n t o the p h o t o n , b o t h processes con t r i bu t e and the 0{aas) cross section is given 

by 

d<T(7 + 7^jets) = 6 [dd^ {qq-)) + dcr" {qq-yg)] (2.8) 
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where 0 represents the p h o t o n and j e t def in i t ions to be appl ied to the partons and the 

p h o t o n . A l t h o u g h the phys ica l 7 + 1,2 j e t cross sections are finite, b o t h the v i r t u a l and 

g l u o n b remss t rah lung con t r ibu t ions conta in so f t / co l l inea r s ingulari t ies . I n order to nu­

m e r i c a l l y evaluate these next - to- leading order j e t cross sections, we must first ana ly t i ca l ly 

cancel t he divergences present i n the real con t r ibu t ions against the exp l i c i t divergences 

present i n the v i r t u a l graphs so tha t the cross sections are finite. Once the divergences 

have cancel led, the finite nex t - to leading order j e t cross section can be evaluated nu­

mer i ca l l y , the j e t a l g o r i t h m and isola t ion c r i t e r i a can be appl ied to the partons and the 

p h o t o n t o select p h o t o n - f 1, 2 j e t events. Th i s can be achieved using the phase space 

s l ic ing m e t h o d , i n a s imi la r way as f o r the evaluat ion of the e+e~ —)• 2 jets cross section 

w h i c h we described i n Section 1.5.2. Deta i l s of the app l ica t ion of the phase space s f ic ing 

m e t h o d t o the ca lcu la t ion of the 7-1-1 ,2 j e t cross sections can be f o u n d i n [46 . 

As we a l ready men t ioned , a pe r fec t ly isolated p h o t o n is not an i n f r a r e d safe Cjuantity 

and therefore some amoun t of hadronic energy needs to be al lowed inside the cone sur­

r o u n d i n g the p h o t o n . T h e d e f i n i t i o n of an isolated pho ton is not the same i n the various 

theore t i ca l ca lcula t ions [45, 46, 47, 48] as d i f fe ren t amounts of g luon energy are a l lowed 

inside the cone f o r each of t h e m . M o r e precisely, i n [46], soft gluons w h i c h are def ined 

by Sqg < .Sj^n and Sqg < 5min are a l lowed t o exist inside the cone. I n [47], soft gluons 

are a l lowed inside the p h o t o n cone i f the deposited energy is less then a f r a c t i o n e of the 

p h o t o n energy w h i l e i n [45] the g luon is combined w i t h the quark i f y{qg)-y > y , ^ . 

I t is w o r t h n o t i n g t h a t i n a l l these theore t ica l calculat ions, gluons and quarks are 

t r ea t ed d i f f e r e n t l y w i t h respect to the pho ton . Soft gluons are al lowed inside the cone 

s u r r o u n d i n g the p h o t o n w h i l e quarks are no t . I n the exper imenta l analysis, clearly the 

s i t u a t i o n is d i f f e r en t , t he a m o u n t of energy inside the cone is requi red t o be less t han 

the e x p e r i m e n t a l hadron ic energy resolu t ion threshold Ehad w h i c h is t y p i c a l l y of a few 

h u n d r e d M e V . 

A l l th ree ca lcula t ions are f o u n d to be i n reasonably good agreement w i t h each other 

and w i t h the avai lable da t a [43, 44] f o r the p h o t o n + 1 , 2 j e t rates. However , f o r the case 

of p h o t o n + 1 j e t ra te , i t was po in t ed out by E . W . N . G l o v e r and W..J .St i rHng i n [46] tha t 

42 



r e l a t i v e l y large negat ive correct ions over the whole range of y^-at are necessary i n order 

t o o b t a i n a reasonable agreement between the theoret ica l and exper imenta l results. T h i s 

conclus ion is no t very sat isfactory, and i n [46], i t is suggested tha t these large effects 

cou ld be a consequence of the " two step" procedure used to i d e n t i f y the pho ton i n a l l 

these previous analyses. 

2.3 N o n Isolated Photons 

A safer approach w o u l d be t o app ly the r ecombina t ion a l g o r i t h m simultaneously to a l l 

pa r tons i n t he event , i n c l u d i n g the p h o t o n . A f t e r c lus ter ing, one of the clusters contains 

t he e lec t romagnet ic shower and is called "pho ton" i f the f r a c t i o n of the e lectromagnet ic 

energy ins ide the cluster is larger t h a n the expe r imen ta l ly de te rmined value z^nt ( t y p i c a l l y 

eciual t o 0.7) , 

> ^cut- ( 2 . 9 ) 7 
Ey + Euad 

W i t h i n th i s democratic approach, one can expect t h a t part icles w h i c h are associated w i t h 

t he p h o t o n i n the event w i l l be combined w i t h i t by the cluster a l g o r i t h m independent ly 

of whe the r these par t ic les are quarks or gluons, un l ike i n the isolated p h o t o n analysis. 

However w i t h i n th i s democra t ic approach, the second source of final state photons 

is no t suppressed anymore; to evaluate p h o t o n +n je ts cross sections one also needs 

to consider the con t r i bu t i ons ar is ing f r o m the coll inear emission of a pho ton by one of 

t he quarks and re la ted to the non-pe r tu rba t ive quark- to p h o t o n f r a g m e n t a t i o n process. 

W e shal l present a theore t ica l and expe r imen ta l analysis of such non isolated final state 

photons i n the nex t sections. I n pa r t i cu la r we shall see how the comparison between 

the results of a lowest order ca lcu la t ion of the pho ton -|- 1 j e t cross section and the 

measurement of th i s cross section enables us to de te rmine the non-pe r tu rba t ive quark- to-

p h o t o n f r a g m e n t a t i o n f u n c t i o n at 0(a). 
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2.4 T h e photon +1 jet rate at 0{a) 

As there is no e+e~ ^ 7 + 1 p a r t o n process, the first non t r i v i a l con t r ibu t ions to the 

p h o t o n + 1 j e t r a te comes f r o m e+e" qqj and e+e" qq where one of the quarks f rag­

ments i n t o a p h o t o n . T h e C|uark-to-photon f r a g m e n t a t i o n f u n c t i o n is present at leading 

order . As th i s f r a g m e n t a t i o n f u n c t i o n depends on the f r a c t i o n of the parent pa r ton energy 

ca r r i ed b y the p h o t o n , we w i l l f o r m u l a t e the cross section i n terms of z ra ther t han the 

energy o f t he p h o t o n , E-y. W e shal l evaluate, 

1 d ( j 

(7o dz 

where (JQ is the tree level cross section fo r the process 7* —> qq. 

A s i m p l i f i c a t i o n fo l lows f r o m th is f o r m u l a t i o n too. T h e i n i t i a l state conf igura t ion 

becomes i r re levant f o r th i s ca lcu la t ion of the pho ton + 1 j e t rate . Instead of considering 

t h e t w o c o n t r i b u t i o n s t o be e'^e~ —> qq-^ and e"^e~ —> qq w i t h associated qua rk - to -pho ton 

f r a g m e n t a t i o n f u n c t i o n , we can as we l l consider the two con t r ibu t ions to be 7* qqj 

and 7* —> qq w i t h associated qua rk - to -p l io ton f r a g m e n t a t i o n f u n c t i o n . Th i s is wha t we 

shal l do i n the r ede r iva t ion of the pho ton + 1 j e t rate at 0{a) i n this section and i n the 

eva lua t ion of the nex t - to - lead ing order corrections to i t i n the f o r t h c o m i n g chapters of the 

d isser ta t ion^. 

T h e c o n t r i b u t i o n s re la ted to the three p a r t o n final state process 7* —> qqj are a l l 

" e x p e r i m e n t a l l y unresolved" . T h e three partons need to be clustered together according 

t o a j e t a l g o r i t h m w i t h a j e t reso lu t ion parameter Pcut to f o r m a two- je t event. Fu r the rmore 

as one of the je t s has t o f o r m the "pho ton" j e t , the f r a c t i o n of the e lectromagnet ic energy 

z ins ide one o f the clusters needs to be greater t han the exper imen ta l cu t , ^cut-

These rea l con t r ibu t ions can be ei ther theoretically resolved, i f a l l the final state par­

t icles are c lear ly d is t inguishable , t hey can be theoretically unresolved when the p h o t o n 

becomes col l inear t o the quark (or to the a n t i q u a r k ) , Sg^ (or 5 .̂̂ ) is less t h a n the theore t ica l 

2Note tha t we are finally interested m the quark-to-photon f ragmenta t ion in Z ^ qq. The t ransi t ion 

J* ^ Z is however jus t a mere replacement of the coupling factors. 
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s l ic ing pa ramete r s^^^ m th is case. T h e m t r o d u c t i o n of this theore t ica l pa r ton resolu t ion 

pa ramete r 5min, as we have seen i n Section 1.5.2, enables us to isolate ana ly t i ca l ly these 

col l inear divergences. Fu r the rmore , as the physical cross section is finite, these coll inear 

divergences w i l l be "absorbed" i n t o the bare quark- to -pho ton f r a g m e n t a t i o n f u n c t i o n . To 

s ta r t w i t h , we shal l concentrate on the con t r ibu t ions to the pho ton -|- 1 j e t ra te where the 

three par tons i n the final state are resolved theoret ical ly . Second, we w i l l e x p l i c i t l y show 

how the col l inear s ingular i t ies are fac tor ized in to the bare f r a g m e n t a t i o n f u n c t i o n . 

2.4.1 T h e resolved contributions 

T h e ( i -d imensional three pa r t i c l e m a t r i x element squared ( for massless quarks of u n i t 

charge) is g iven by eq.(1.17) and the t f -dimensional three pa r t i c l e phase space can be 

f o u n d i n the A p p e n d i x B (c.f. eq . (B .4 ) ) . I n the region of the three-par t ic le phase space 

where a l l t he final state par t ic les are clearly d i s t inc t , we have 

> s^^. (2.10) 

A n d the m a t r i x element sc[uared is finite. T h e theore t i ca l ly resolved con t r ibu t ions to the 

p h o t o n -f-1 j e t ra te , do" '̂̂ ^ can therefore be obta ined by in t eg ra t ing the fou r d imensional 

t h r ee -pa r ton m a t r i x elements over the "pho ton H-1 j e t phase space". 

I f we w o r k i n the J A D E j e t a l g o r i t h m [26], fo r example^ , w i t h a j e t resolut ion pa­

ramete r ?/cut < 1/3 t h e n , f o r a p h o t o n cluster w i t h a f r a c t i o n of e lect romagnet ic energy 

greater t h a n Zcut, the p h o t o n +1 j e t region is defined by, 

1 • Vqq < Vcut, 

E^ 
2 : yq^< 2/cut and ^ > ^cut, 

3 : Vq-y < ycut and > Zc«t- (2.11) 
-^7 + rjq 

^The de f in i t i on of the photon j e t region is defined slightly differently in the D U R H A M a lgor i thm 

[27], i t can be f o u n d i n [49]. 
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F i g u r e 2 . 1 : D a l i t z p lo t f o r the qq + ^ final state i n terms of the quark and an t iquark 

energy f r ac t i ons x and x'. T h e regions 1, 2 and 3 show the p h o t o n + 1 j e t phase space 

f o r ycut = 0.1 and Zcut = 0.7 i n the EO scheme. T h e do t t ed lines show regions 2 and 3 

f o r Zcut = 0.9. Region 1 where the quark-an t iquark combine to f o r m a j e t is separated 

f r o m the regions where the quark ( a n t i q u a r k ) combines w i t h the p h o t o n by a dashed 

l ine . ( F i g u r e t aken f r o m [49]) 

T h e cor responding D a l i t z p lo t is shown i n F i g . 2.1 fo r ycut = 0.1 and Zcut = 0.7. I n region 

1, t he qua rk and a n t i q u a r k combine to f o r m the j e t , wh i l e i n regions 2 (3 ) , the p h o t o n 

coalesces w i t h a qua rk ( a n t i q u a r k ) t o f o r m a m i x e d e lec t romagnet ic /hadronic cluster, x. x' 

are the qua rk energy f rac t ions def ined as i n the isolated pho ton analysis, c.f. eq.(2.5). 

I n the reg ion of phase space where quark and pho ton combine (regions 2 and 3) , the 

f r a c t i o n of e lec t romagnet ic energy i n the cluster, z, is re la ted to x and x' by, 

X — x 
(2.12) 

i n reg ion 2 and by eq.(2.12) w i t h x w x' i n region 3. I n region 1 the quark and the 
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a n t i q u a r k combine t o f o r m a j e t , thus leaving the pho ton comple te ly isolated. I n this case 

the p h o t o n cluster has z — 1. 

B y i n t e g r a t i n g over yg^ i n these three phase space regions b u i l d i n g the pho ton - M j e t 

phase space, i t is s t r a i g h t f o r w a r d to o b t a i n the resolved c o n t r i b u t i o n , dcr'^' to the p h o t o n 

j e t cross sect ion as a f u n c t i o n o f z and ?/min'*; 

1 d (T(«) (7 + l j e t ) 1 d a ( « ) ( 7 + l j e t ) , , 
1 • (^,.!/min,2/cut) = ^ [Z,ymin;ycui) 

(To cl^ CTQ az 

+RA{z,ycut)S{l-z). (2.13) 

Le t us first no te t h a t R^, w h i c h represents the c o n t r i b u t i o n to the resolved cross section 

where qua rk a n d a n t i q u a r k combine leaving the pho ton isolated, is independent o f the 

s l i c ing paramete r ymin- T h i s is because there is no s ingula r i ty associated w i t h the y ,^ 0 

l i m i t i n the m a t r i x element , da^-^' is the c o n t r i b u t i o n to the resolved cross section, where 

qua rk and p h o t o n , or an t iqua rk and pho ton are clustered in to one j e t , and depends on 

log(yinin)- So does dcr^^'. However when combined w i t h the theore t ica l ly unresolved 

c o n t r i b u t i o n s , dcr '^ ' , a l l y^^ dependence vanishes. 

Because of the low p a r t o n m u l t i p l i c i t y i n the final state, some ana ly t i c results can be 

ob t a ined f o r the resolved p h o t o n -|-1 j e t cross section at 0(a). da^^''. T h e constraints 

on t he invar ian t s d e f i n i n g the 7 + 1 j e t region of phase space given i n eq.(2.11) fix the 

boundar ies of t he phase space integrals w h i c h can be evaluated ana ly t i ca l l j ' . T h e exp l i c i t 

expressions f o r (2.13) have been der ived by E . W . N . G l o v e r and A . G . M o r g a n and can be 

f o u n d i n [ 4 9 ] . N o t e t h a t the eva lua t ion of resolved con t r ibu t ions to the 7 +1 j e t ra te at 

O(aas) w i l l have t o be p e r f o r m e d numer ica l ly as w i l l be presented i n Chapter 9. 

2.4.2 T h e quark-photon coll inear contribution 

I n t he reg ion o f phase space def ined by .s,^ < .Sniin, b u t .s,-̂  > .Smin the quark and the 

p h o t o n are col l inear and cluster to f o r m a new pa r ton Q such tha t : 

Pf+Pq=PQ-

^Vmin = TP^, where M is the mass of the final state. 
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p.y and pq ca r ry respect ively a f r a c t i o n z and I — z oi the parent pa r ton m o m e n t u m p g , 

Pq = { l - z ) p Q , p^ = zpQ. (2.14) 

I n t he q u a r k - p h o t o n coUinear l i m i t (5,..^ < s^^) the invar iants s,^ and 5̂ .̂  become 

Sqq- ={1-Z) ]VP Sq^ = . (2.15) 

I n th i s l i m i t , the m a t r i x elements and phase space rela ted to 7* qqj exh ib i t an overal l 

f a c t o r i z a t i o n i n exac t ly the same factors as the m a t r i x elements and phase spaces rela ted 

t o the process 7* qqg i n the quark-g luon colhnear h m i t discussed i n Section 1.5.3. We 

have respect ively, 

\M,,^\' Pq,^Q{z,Sq,)\MQ,\\, (2.16) 

w i t h , Pg^^Q ( z , 5 ,^ ) the collinear factor given by^ 

Pq^^Q{z,Sq^) = —Pq^-.Q{Z). 
'97 

As Sq^ tends to 0, the three pa r t i c l e phase space also factorizes. 

d P i ' ' ( M , p „ p „ P , ) <iPi'\M,PQ,Pq)dPlt}{Pq.,P,.. Ad), 

(2.17) 

(2.18) 

dP2{M,pQ,Pq) is the k n o w n two-par t i c l e phase space i n d dimensions given i n the A p ­

p e n d i x B by eq . (B .3 ) and the coUinear phase space fac tor dP^^}{pq,Pj.,z), reads. 

dP^S{pq.,P„z] 
167r2r ( l - e) 

Sq^z{l - Z) (2.19) 

T h e resul t we w i l l o b t a i n f o r qua rk -pho ton coll inear l i m i t of the d i f f e r en t i a l cross 

sect ion doqq^ is however somewhat d i f fe ren t t h a n the result ob ta ined i n eq.(1.35) fo r the 

q u a r k - g l u o n col l inear l i m i t of d i f f e r en t i a l cross section da qqg. I n the qua rk -pho ton coll inear 

l i m i t , doqq^ factor izes i n a col l inear f ac to r and the t w o pa r t i c l e cross section. W e f o r m a l l y 

have, 

dOqq, aQq X [ j Pq.^Q^Z, Sq,)dPi^ . (2.20) 

^Recall , Pqj-.Q(z) is the (i-dimensional Al tare l l i -Par is i sp l i t t i ng func t ion defined in eq.(1.31). I t is 

given by Pqj^q^z) 
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g'^ stands here f o r (ae^)47r^f^% where is in t roduced to m a i n t a i n a dimeusionless elec­

t r o m a g n e t i c coup l ing a. To evaluate the quark-gluon coll inear fac tor as i n eq.(1.35) 

we i n t e g r a t e d the col l inear m a t r i x element over a l l unresolved variables defined i n this 

col l inear reg ion . These unresolved variables were. 

Sqg and 

where z was the f r a c t i o n a l m o m e n t u m carr ied by the g luon. 

I n the c iuark-photon col l inear l i m i t of the d i f f e r en t i a l cross section ^0^^^. z represents 

t h e f r a c t i o n a l m o m e n t u m carr ied by the pho ton . As the p h o t o n is observed i n the final 

s ta te the col l inear d i f f e r e n t i a l cross section w i l l be a f u n c t i o n o f z. I n o ther words z 

does no t count as "unresolved var iable" anymore. To evaluate the quark pho ton coll inear 

d i f f e r e n t i a l cross section we o n l y need to in tegrate over s^^. T h e quark -pho ton coll inear 

f a c t o r (7^7 dz reads. 

CF^^Z = / g^Pq-.^Q (Z; Sg-y)dPS [Pq , P^ : z) dz 

T h e q u a r k - p h o t o n col l inear c o n t r i b u t i o n , dcr^^' to the p h o t o n - f 1 j e t rate , w h i c h is a 

f u n c t i o n of z and j/min is therefore g iven by. 

1 dcT*^^ 
{z.ym..) = Cp,. (2.22) 

(Jo dz 

2.4.3 T h e factorizat ion of coll inear singularities 

W e first r eca l l t he results ob ta ined so f a r fo r the con t r ibu t ions to the 7 -|-1 j e t ra te at 

0 { a ) . W e have, 

1 d c r ( 7 + 1 j e t ) ^ d a ( ^ ) ( 7 + l j e t ) d a ( ^ % + l j e t ) 

CTQ dz dz dz 

+ WlZ'^{z). (2.23) 
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As the three p a r t o n phase space and m a t r i x elements are comple te ly symmet r i c i n the 

variables and y^^^ the con t r ibu t ions obta ined considering the pho ton coll inear on 

the qua rk leg are iden t i ca l to those obta ined considering the pho ton coll inear to the 

a n t i q u a r k leg. To evaluate the p h o t o n + 1 j e t ra te at 0 { a ) we therefore on ly consider 

t he c o n t r i b u t i o n s where the p h o t o n is coll inear on the quark leg. and m u l t i p l y the resul t 

by t w o . T h e same procedure w i l l be considered for the ca lcula t ion of the pho ton + 1 

j e t ra te at 0{aas). Moreover , by charge con juga t ion invariance, we can assume tha t 

As the l e f t - h a n d side of the equat ion (2.23) is a finite exper imenta l !} ' observable quan­

t i t y , t he e x p l i c i t j divergence present i n the unresolved c o n t r i b u t i o n CF-, has to be compen­

sated by a s imi l a r divergence present i n the hare quark- to -photon f r a g m e n t a t i o n f u n c t i o n . 

Hence, we can decompose^ the hare f r a g m e n t a t i o n f u n c t i o n i n t o a finite renormal ized 

n o n - p e r t u r b a t i v e component Dq^^{z, j^ip) and a p e r t u r b a t i v e i n f i n i t e counter t e r m . I t 

reads, 

D {z) = Dq^^{z,^iF) + ~ -z — ; • (2.24) 

T o keep b o t h f r a g m e n t a t i o n f u n c t i o n s dimensionless, a mass f ac to r i za t i on scale has 

t o be i n t r o d u c e d compensa t ing the unphys ica l scale //. T h e renormal ized f r a g m e n t a t i o n 

f u n c t i o n Dq.^^(z, /.ip) now depends on the chosen mass f ac to r i za t i on scale, ftp. T h e per­

t u r b a t i v e counter t e r m i n eq.(2.24) ensures t h a t the r i gh t hand side of equat ion (2.23) is 

finite. Indeed , we o b t a i n , 

l d < T ( 7 + l j e t ) da(^^)(7 + l j e t ) W o n ^ ^ 
-{^,1-^F) = 2 ( y m . n , y c u t , 2 +2Dq^^{z,Hp) 

<Jo dz dz 

^ / V / 

^This decomposit ion is not unambiguous, as one could add an arb i t ra ry finite t e rm into the bare 

quark- to-photon f ragmenta t ion f u n c t i o n . The par t icular choice of finite terms defines the renormaliza-

t i o n / f a c t o r i z a t i o n scheme. The results given here correspond to the so-called modified minimalsuhtvaction 

(MS)-scheme [50]. 
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(2.25) 

Cons ide r ing the exp l i c i t expression f o r the resolved con t r ibu t ions da^'^\'j + 1 j e t ) , as 

g iven i n [ 4 9 ] , i t can be no t i ced t h a t as 2 ^ 1 this cross section grows l ike l o g ( l — 2)^. 

F u r t h e r m o r e the cancel la t ion of the y^^ dependence i n the 7 - | -1 j e t cross section becomes 

man i fe s t such t h a t eq.(2.25) m a y be r e w r i t t e n as, 

-{z,tiF) = 2Dg^,{z,^F)+ L log 
(Jo dz ^ '"^^ — , , 

( — ] 

ae 2^ 
+ ^ ' ' ' log 

TT / \ Z / ° \ 1 + ^ 

I ae^\ 
+ _ 1 / ( ^ , y „ . , ) + i ? A ( ^ , y c . t ) < 5 ( l - ^ ) , ( 2 . 2 6 ) 

where f{z,ycut) is a k n o w n regular f u n c t i o n w i t h f [ z = 1) = 1 and R/^ the p e r t u r b a t i v e 

componen t f o r isolated p h o t o n p r o d u c t i o n defined as i n eq. (2.13). Note tha t , when the 

h igher order correct ions t o th is process w i l l be inc luded i n the f o l l o w i n g chapters of this 

d i s se r ta t ion , as the resolved con t r ibu t ions w i l l be evaluated numer ica l ly , the cancel la t ion 

of t he ?/jnin dependence i n the finite answer w i l l also be shown on a numer ica l basis only. 

2.4.4 A possible f o r m for Dq^y{z,f.iF) 

T h e n o n - p e r t u r b a t i v e qua rk - to -pho ton f r a g m e n t a t i o n f u n c t i o n is u n k n o w n . I t is a un i ­

versal and process independent f u n c t i o n w h i c h is incalculable i n p e r t u r b a t i o n theory and 

needs t o be measured by exper iment . I t s va r i a t ion w i t h the f ac to r i za t ion scale i-ip may 

however be d e t e r m i n e d w i t h i n the f r a m e w o r k of p e r t u r b a t i v e Q C D . Indeed, r equ i r ing the 

bare q u a r k - t o - p h o t o n f r a g m e n t a t i o n f u n c t i o n D^!^^ to be independent of the unphysica l 

f a c t o r i z a t i o n scale HF, y ields an evolution equation fo r the non-pe r tu rba t ive f r a g m e n t a t i o n 

f u n c t i o n Dq^^{z, /.IF)- T h i s evo lu t i on equa t ion is de te rmined by the p e r t u r b a t i v e content 

o f D^ZUz) and reads. 

2 \ / 1 , n „\2' 
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A general f o r m of the f r a g m e n t a t i o n f u n c t i o n wh ich satisfies the above evolu t ion equa­

t i o n is g iven by, 
/ „2 \ 

Dq^,{z,pp) = A z / - ^ +B{z,iio). (2.28) 
V Mo/ 

where the scale /to and the associated f u n c t i o n 5 ( 2 , / < o ) are n o t h i n g more than the con­

stants o f i n t e g r a t i o n w h i c h shal l be de te rmined by the data . ^0 can also be viewed as 

t he scale below w h i c h the physics is non-pe r tu rba t ive . Requ i r ing t h a t the cross section is 

" w e l l behaved" as z tends to one a l low us to constra in f u r t h e r Dq^y{z. ftp). A possible 

choice f o r Dq^^{z, jip) w h i c h balances the singular behaviour of the resolved cross section 

diT*'^) (g iven by eq.(2.26)) is, 

\lT^ J Z V / i o l l - J 

I t corresponds to choose 5 = 0 i n eq.(2.28). Th i s f r a g m e n t a t i o n f u n c t i o n is an exact 

so lu t i on of the leading order evo lu t i on equat ion , the f ac to r i za t i on scale dependence is 

therefore e h m i n a t e d . Fu r the rmore , since the l o g ( l — z) behaviour is cancelled, the t o t a l 

d i f f e r e n t i a l cross sect ion is pos i t ive fo r a l l values of z. F ina l ly , i t is also w o r t h n o t i n g 

t h a t w i t h i n th i s approach, the quark - to -pho ton f r a g m e n t a t i o n f u n c t i o n Dq^^{z.jLp) is 

p r o p o r t i o n a l to the e lec t romagnet ic coupl ing constant a. 

A t the e lec t ron-pos i t ron colhder, b o t h up- and down- t y p e quarks are produced such 

t h a t the measured qua rk - to -pho ton f r a g m e n t a t i o n f u n c t i o n , D^E.^{z, ftp) is a combina t ion 

of up- and d o w n - t y p e qua rk - to -pho ton f r a g m e n t a t i o n func t ions . M o r e precisely i t is given 

by, 
nLEP/ N 2 (vl + al)D^^^{z, ftp) + 3 {vl + al)Di^^{z, ^ip) 

where Vq and Uq are the vector and ax ia l vector couplings of quark q w i t h the Z boson. We 

shal l present t he measurement of the quark - to -pho ton f r a g m e n t a t i o n f u n c t i o n i n pho ton 

+ 1 j e t events at L E P i n Section 2.6. 
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2.5 A n alternative approach 

As a resul t of the f a c t o r i z a t i o n of coll inear s ingular i t ies , we saw i n the last section tha t 

the bare q u a r k - t o - p h o t o n f r a g m e n t a t i o n f u n c t i o n can be decomposed in to a renormal ized 

f r a g m e n t a t i o n f u n c t i o n Dq^^(z, ftp) and a p e r t u r b a t i v e counter t e r m . As a consequence 

the r eno rma l i zed f r a g m e n t a t i o n f u n c t i o n satisfies an evo lu t ion equat ion given by eq.(2.27). 

A p a r a m e t r i c f o r m f o r Dq^^{z. /.IF) could then be suggested by r equ i r ing tha t the f rag­

m e n t a t i o n f u n c t i o n satisfies the evo lu t ion equat ion and impos ing t h a t the lowest order 

p h o t o n 4-1 j e t cross section is we l l behaved as z tends to one. A n a l te rna t ive procedure 

t o de t e rmine a pa rame t r i c f o r m fo r Dq-^^(z, fip) is ob ta ined by considering the next - to-

lead ing order e v o l u t i o n equa t ion and solving i t i n the leading l oga r i t hmic ap p ro x i ma t i o n . 

W e shal l e x p l a i n w h a t we mean by this s ta tement i n the f o l l o w i n g . 

One can consider t h a t the renormal ized quark- to -pho ton f r a g m e n t a t i o n f u n c t i o n evolves 

w i t h var ia t ions of ^p-, j u s t as usual f r a g m e n t a t i o n or pa r ton d i s t r i b u t i o n func t ions do, as 

a resul t of g l u o n b remss t rah lung and quark-an t iquark pai r p r o d u c t i o n [51]. A t next - to-

lead ing order t he r e su l t ing evo lu t i on equat ions ' are given [12] by. 

dhilnj,) 2TT Z 2W JZ y \yJ 

where P^gHz) is the lowest order quark- to-quark Al t a r e l l i -Pa r i s i spHt t ing f u n c t i o n defined 

as i n [40] by (^^^^^) ( T I T ) + - describes the q q-y s p l i t t i n g and is 

also present i n eq.(2.27). T h e second t e r m is not present i n eq.(2.27) and represents 

the c o n v o l u t i o n o f a quark - to -quark spHt t ing v i a the emission of a b remss t rah lung g luon 

"convo lu t ed" w i t h the qua rk - to -pho ton f r a g m e n t a t i o n f u n c t i o n . I t is w o r t h n o t i n g too, 

t h a t t he s t rong couphng is r u n n i n g i n th is evo lu t ion eciuation, i.e. i t is a f u n c t i o n of 

tip-

Indeed , f o r the eva lua t ion of a q u a n t i t y as a p e r t u r b a t i v e series i n the coupl ing ag. 

' 'Note tha t i n comparison w i t h the evolution equations given by .J.F.Owens in [12], we do not consider 

the g luon- to-photon f ragmenta t ion func t i on in eq.('2.31). I n [12], i t is claimed tha t for z > 0.5 this 

f r agmen ta t i on f u n c t i o n can be consistently neglected as i t is phenomenologically suppressed. 
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as h igher orders are i nco rpo ra t ed u l t r av io l e t divergences can arise. T h r o u g h the renor-

m a l i z a t i o n procedure necessary to remove these in f in i t i e s , the s t rong coupl ing constant 

becomes dependent on a m o m e n t u m scale character is t ic o f the process considered ( w h i c h 

is t y p i c a l l y g iven by Q"^ = M'j i n e+e~ ann ih i l a t i on ) . Moreover , when the process of 

r e n o r m a l i z a t i o n is imp lemen ted , i t is necessary to specify a p o i n t at w h i c h the coupl ing 

of t he t h e o r y is def ined. T h i s r enormal i za t ion po in t is denoted by a m o m e n t u m transfer 

/U. Since is dimensionless, i ts dependence on the renormahza t ion po in t /̂ is expressed 

t h r o u g h dimensionless ra t ios of the f o r m Q'^/j-i^. T h e r u n n i n g coupHng as{Q^) can then 

be re la ted t o the l o g a r i t h m of i n the f o l l o w i n g way, 

^ = /'KWl. (2.32) 

where t — ln(Q'^/fi'^) and the f u n c t i o n /3 determines the change i n the couphng as the 

r e n o r m a l i z a t i o n p o i n t /.i is changed. T h e f u n c t i o n /S is calculated up to fou r loops using 

p e r t u r b a t i v e methods , [52]. For the next - to- leading order calculat ions discussed i n th is 

thesis ( w h i c h are leading order i n the s t rong coupl ing constant ) , the one-loop result is 

su f f i c i en t , i t y ie lds , 

/?(a.) = -bal (2.33) 

w i t h b = ^^^2v^ ' deno t ing the number of quark flavours. I f the equat ion (2.32) is 

i n t eg ra t ed , one finds 

T h e e x p l i c i t dependence on as{0) can be removed by def in ing a scale parameter A by, 

so t h a t , 

= ( 3 3 - 2 . J ) T , ( O V A ' ) -

T h e scale paramete r A is a p p r o x i m a t e l y the scale a round w h i c h p e r t u r b a t i o n theory is 

n o t v a l i d anymore . E x p e r i m e n t a l measurements yields a value approx imate ly equal to 

200 M e V f o r = 5, [53]. Fu r the rmore , considering the f ac to r i za t ion scale i-ip to be the 54 



large momentum variable eq.(2.35) yields a relation between Q's(/<f) and ln(/tp) as we 

wanted. 

In order to solve completely the inliomogeneous evolution equation, i.e. eq.(2.-31), i t 

is necessary to specify appropriate boundary conditions and therefore to know the quark-

to-photon fragmentation function at a given ini t ia l scale /iQ. This must be taken either 

f r o m the data or f rom some set of model-dependent assumptions^. At asymptotically 

large values of the factorization scale i.Lp however, the solutions of the evolution equation 

(2.31) become independent of the in i t ia l boundary conditions. 

The leading logarithmic approximation relies on the presence of a single large mo­

mentum scale that characterizes the process under consideration. In e^e" annihilation 

processes, the mass of the incoming Z-hoson plays this role whereas in pp collisions the 

transverse momentum of the photon pr is the scale which characterizes the process. Solv­

ing the evolution equation (eq.(2.31)) in the leading logarithmic approximation means to 

consider the asymptotic l imi t where —> oo and to solve the evolution equation while 

retaining only the terms in ln ( / i ^ ) or more precisely the terms which are proportional to 

In {jS^ • The asymptotic solution reads, 

l i m D,^,{z^,,) = ^ \ n ^ W W . ) . (2.36) 
^^^eo ' - ^ - ^ v - ^ r . y 27r \ A 2 

Exact analytic expressions for ag^^{z) can be found using Mell in transformations and 

inverse Mel l in transformations in [55]. A parametric formula which accurately reproduces 

the exact leading logarithmic solution is given by D.W.Duke and .J.F.Owens in [12] as, 

2 I 2 . 2 1 - 1 . 2 8 . - f 1.29z^ ,0.0,9 , , , 2 . - 1 . 5 4 

1 - 1.631n(l - 2 ) 
-zo o ^ n 0.002(1 - 2 ) ' (2.37) 

A particular feature of this asymptotic solution is the logarithmic growth wi th ln( / t / r ) . 

More precisely, as these solutions are proportional to a l n ^ ^ ^ , f rom eq.(2.35), they 

Hn the literature i t is often called Vector Meson Dominance (VMD) contribution [-54]. This (VMD) 

model is based on the assumption that the photon may fluctuate mainly into p and w mesons. 
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can be considered to be proportional to a/as- What is often encountered in the litera­

ture [12, 56] is the assumption that the quark-to-photon fragmentation function, (like its 

asymptotic hmi t ) is also of order o/cv^. W i t h i n this assumption, the second term in the 

evolution equation (2.31) which at first appeared to be a higher order correction turns 

out to be of 0{a) and as important as the first term in the evolution equation. 

Moreover, for the evaluation of processes involving the quark-to-photon fragmentation 

funct ion at a given order i n a-s, the perturbative contributions which need to be taken 

into account w i l l of course vary depending whether one interprets the quark-to-photon 

fragmentation function as being of order a as in [49] or of order aja^ as in [12. 56]. 

Applications of the second interpretation are widely used in the hterature. I t is applied 

to e+e~ annihilation processes by [12, 56, 57], to the production of isolated photons in ep-

coUisions by [58] and to analyse isolated large photon production in proton-antiproton 

collisions by [59, 60 . 

Finally, as the quark-to-photon fragmentation function is a process independent func­

t ion, one could also t ry to implement the quark-to-photon fragmentation function evalu­

ated in the leading logarithmic approximation as given by eq.(2.36, 2.37) in the evaluation 

of the photon jet rate, as given by eq.(2.26). W i t h i n the leading logarithmic approx­

imation, when the quark-to photon fragmentation is evaluated, the terms in ln( / f | ' ) are 

considered to be dominant and all terms not proportional to ln((ti|^) are neglected. In 

the case of the photon jet rate given by eq.(2.26) where the fractional momentum 

z carried by the photon is relatively large {z > 0.7), neglecting those "non-logarithmic" 

terms does not necessarily appear to be a good thing to do. Indeed, as was pointed out 

by B.R.Webber in [61], the leading logarithmic approach is expected to yield an accurate 

prediction for any quark-to-hadron fragmentation function for intermediate values of z 

only. For large and small values of z however, the leading logarithmic (or leading log) 

approach is inadequate, because i t does not take into account the terms proportional to 

In z or l n ( l — z). 

Precisely in the case of the photon jet rate, z is large and inserting the quark-to-

photon fragmentation function obtained in the leading logarithmic approach the following 
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happens. As z ^ 1 the perturbative contribution to the cross section, do"̂ ''̂ ' has an explicit 

l n ( l — z) behaviour (as seen in eq.(2.26)) which, unhke in the first approach we presented, 

is not cancelled by a similar behaviour in the leading log quark-to-photon fragmentation 

funct ion. I t is not clear in this context, that the logarithmic terms of / i ^ are really 

much larger than the other terms and we therefore do not expect the quark-to-photon 

fragmentation funct ion to be adequately obtained using the leading logarithmic approach. 

However, the quark-to-photon fragmentation function is a priori unknown and wi l l be 

measured at LEP. I t is only by comparing the theoretical calculation of the photon - f 1 

jet rate and the experimental measurements that the form of the quark-to-photon frag­

mentation function can be determined. We shall present the experimental measurement 

of photon -|-1 jet events, and the comparison between the calculated (up to 0{(y)) and 

measured photon + 1 jet rate in Section 2.6. The comparison between the calculated (up 

to O(aas)) and measured rates w i l l take place in Chapter 10. 

2.6 The experimental measurement of the photon 

--1 jet rate 

2.6.1 T h e selection of photon + 1 jet events at L E P 

In this study of the A L E P H Collaboration at CERN [62], a sample of 1.17 mil l ion selected 

hadronic Z decay events are subdivided into 1 jet 2 jets + 7 , and > 3 jets -I-7 topologies 

using the D U R H A M algorithm [27] wi th the resolution parameter ycut, varied between 

0.001 and 0.33. The photon is clustered together wi th all the other particles, as in the 

parton-level calculation (c.f. Section 2.4) and events are kept when at least one of the 

reconstructed hadronic jets contains a photon {E^ > 5 GeV) carrying at least 70% of the 

tota l energy of the jet . The fractional energy, z of such a photon wi th in a jet is defined 

as, 

(2..38) 
+ Efiad 
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where Eha,d is the energy of all accompanying hadrons in the "photon-jet" determined by 

the cluster algorithm. Thus, events wi th completely isolated photons appear at ^ = 1. 

Currently, the measured z range is l imited to 0.7 < 2 < 1.0 by hadronic decay backgrounds 

which are very large when z < 0 .7 . The z distribution is divided into 6 equal bins between 

0 .7 and 1 for each topology. Furthermore, i n order to separate more clearly the large 

contribution coming f r o m the isolated photon component near z = \ the last bin is split 

into two parts: 0 .95 < z < 0 .99 and 0 .99 < z <l. 

The backgrounds are very large and mainly due to multi-photon clusters which remain 

indistinguishable f rom single photons. To a lesser extent in i t ia l state radiation (ISR) f rom 

the incoming leptons is also a background source. The first source arises mainly f rom the 

electromagnetic decays of hadrons and is important over the whole z range as highlighted 

in Fig. 2.2. Typical and relevant processes are 7r° — 7 7 and 77 —> 7 7 . Since ISR photons 

are mainly isolated, this background is very small for z < 0.9 but becomes the dominant 

background for z > 0 . 99 . ( 5 - 1 0 % ) . A l l these backgrounds are determined by Monte Carlo 

simulations and subtracted statistically f rom the data bin-by-bin in z for each value of 7/cut 

after direct experimental confirmation that the principal components, namely TT*^ — > 7 7 

are adequately simulated. 

The residue of the measured rate not accounted for after this statistical subtraction of 

all backgrounds described above is ascribed to final state radiation (FSR) photons. These 

events correspond to photons emitted f rom a primary quark-antiquark pair and wi l l be 

taken into account i n the measurement of the photon 4-1 jet rate. 

2.6.2 T h e determination of Dq^y(z,i.LF) for 0.7 < z < 0.95 

In Section 2.4 we saw that the lowest order photon jet cross section, given in eq.(2.26), 

could be wr i t t en as, 

l d a ( 7 + l j e t ) , , _ , , , f<^el\ f l + ( l - z y \ f s \ 
- J - -{^-.I^F) = 2 D , ^ ^ ( Z , ^ I F ) + log - J 

CTQ d z \ZTr / \ z J \fipj 

(ael\ / l + ( l _ . ~ ) n (z{l-zy-\ 
+ — ^ log \ ^ 

\ TT J \ Z J \ l + Z J 
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• A L E P H Data 

ED J E T S E T 

Ea J E T S E T FSR 

2-jets 

Figure 2.2: Observed z-^ distribution before background subtraction. The cross-hatched 

areas show the signal component in the JETSET Alonte Carlo selected sample. Figure 

taken f r o m [62]. 

+ / ( 2 , 2 / c u t ) + i ? A ( ^ , y c u t ) ^ ( l - ^ ) , (2.39) 
V ^ / 

where f{z,ycnt) is a known regular function wi th f{z = 1) = 1 and i?A is the the pertur­

bative component to the cross section for an isolated photon as defined as in eq. (2.13). 

In this context, we also saw that the quark-to-photon fragmentation function Dg_^^(z. fip) 

could be parametrized as in eq.(2.28) by. 

Dg^^{z,HF) = A + B{z,fio)-

The A- te rm is an exact solution of the leading order evolution equation for Dg_^{z. /.ip) 

which is constructed to cancel both the f.ip dependence and the logarithms of (1 — z). 

The second term, i ? ( 2 , ^ o ) is required in order to specify the starting value of the non-

perturbative fragmentation function Dg^^[z, fip) at fxp = /.IQ, the starting scale. 

Inserting this parametrization into eq.(2.39) yields, 

1 d(T(7 + 1 jet) 

dz 
Z^jlp) = log 
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+2B{z,fio) + ^ / ( 2 , 1 / c u t ) + RA{z.,ycut)Sil - - 0 . ( 2 . 4 0 ) 
TT 

The free parameters to be determined are the cut-off scale fig and the function B [ Z . J I Q ) . 

Various parametrizations have been tried in fitting ^^^^^^-^-^{z^ I-IF) to the five data 

points in the range 0.7 < z < 0 .95 at one particular value of j/cut (2/cut = 0 . 0 6 ) . The 

parametrizations tried include (ae^)/2H multiplied by a constant C, Ci -f- 6*2(1 — z). 

and C -f- (1 - zY. The A L E P H Collaboration found that B{z,f.io) = 0 does not give 

a sensible fit, whereas the data cannot differentiate between the other parametrizations. 

For simplicity, B(z,fio) = (ae'^)/2ir C is chosen as providing an adequate description of 

the data. The shape of the cross section, ^^^^^^37^(^)/^f) is well described wi th the 

^ - t e r m alone, but the normalization to the data requires the addition to this term of a 

negative constant. A corresponding double parameter fit having x ^ / 4 = 0 .24 gives [ 6 2 ] , 

Mo = 0.22tJ:?9GeV and C = - 1 2 . 1 ± 4 . 3 , (2.41) 

where statistical and systematic errors are combined in quadrature. The values of C 

and /to are found to be strongly correlated. Indeed, as an alternative, considering that 

when z 1 the only contribution to the cross section should come f rom the isolated 

contribution to i t , i.e. f rom i^A, yields the following relation between C and /<o, 

(7 = - l - l n ( ^ ) . (2.42) 

A one parameter fit having x ^ / 5 = 0.31 then yields, 

Mo = 0 . 1 4 1 ° ; ™ ^ GeV. (2.43) 

This single parameter fit was then used to evaluate the photon +1 jet rate for different 

values of yc^ti [62]. The results are shown in Fig. 2.3 where we see that the data are 

adequately described by the leading order calculation including the parametrized quark-

to-photon fragmentation function as in eq.(2.40) wi th the fitted value of and B{z. /.LQ) = 
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A L E P H A L E P H 

0.7 0.8 0.9 

ycu.=o.33 

Figure 2.3: Comparison of the photon -|-ljet rates measured for different values of ?/cut, to 

a universal fragmentation f tmction (see text) . Figure taken f rom [62]. 

However, there seems to be a discrepancy between theory and experimental data for 

z > 0.95. Before discussing this difference and defining an isolated photon cross section 

in the same way at parton and hadron level as in Section 2.6.4, we shall first see how the 

quark-to-photon fragmentation obtained wi th in the leading logarithmic approximation by 

D.W.Duke and J.F.Owens in [12] compares wi th the experimental data on the photon -|-1 

jet rate. 

2.6.3 A comparison with the fragmentation function obtained 

in the leading logarithmic approximation 

In the leading logarithmic approximation the factorization scale is chosen to be the 

large momentum characterizing the process, so /ip = Mz and the ini t ia l scale /.IQ is set 

equal to A<5C£)=200 MeV. The leading log quark-to-photon fragmentation function which 

is proportional to ln((5^/A^) is given by eq.(2.36, 2.37). Inserting this parametrization 

of the fragmentation function wi th these values for ftp and ^LQ into the leading order 

expression for the photon - f l jet cross section as given by eq.(2.39) gives a very poor 
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agreement w i t h the experimental data as can be seen in Fig. 2.4. 

A first improvement is obtained i f one considers fip not to be the characteristic large 

scale of the process but rather the maximum transverse momenta of the photon within 

the photon-jet^. 

PT \ 
- (2.44) 

(1 + 0 '̂ 
In the case where = px, the factorization scale ranges f rom 17 GeV at z=0.7 to zero at 

z=l, [62]. The lower-cut off scale A is kept to be 0.2 GeV. Fig. 2.4 shows the comparison 

of the theoretical prediction and the data at y^ut = 0.06. The prediction now follows the 

shape of the measured distribution but the rate is st i l l too large. A second improvement 

yielding an acceptable fit to the data in the range 0.7 < z < 0.95 can be obtained by 

allowing the in i t i a l scale to vary also. This is shown in Fig. 2.4 where A is found to be 

equal to 1.30l^;I9 GeV. 

However by choosing HF = pr , which is clearly not a hard scale, and by allowing 

A to be different f r o m the characteristic hadronization scale, we are not satisfying the 

criteria needed to jus t i fy the application of the leading logarithmic approximation. Ne­

glecting non-logarithmic terms in the quark-to-photon fragmentation function is clearly 

not appropriate anymore. We therefore deduce that the quark-to-photon fragmentation 

funct ion obtained using the framework of the leading logarithmic approximation seems 

to be ruled out by the data. 

2.6.4 T h e isolated photon region: z > 0.95 

From Fig. 2.3 i t appears that the cross section decreases up to z = 0.95 and an isolated 

photon peak in the final bin 0.99 < z < 1 is clearly noticeable. But , i t also appears that 

a f ract ion of this isolated component populates the 0.95 < z < 0.99 bin. The following 

is happening. A photon which had z = 1 at the parton level can, in the process of 

®From kinematical constraints the transverse momenta is related to the invariants Sg-y by p | = ^ ( l -

z)sg-y. Furthermore Sgy = (1 — ^ ) / ( l - f z)s, is the maximal allowed value for Sg-y from phase space 

constraints for sufficiently high values of T/cut, here chosen to be t/cut > 0.06, as in [62]. 
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4.5 

X 4 
A L E P H 

Figure 2.4: Comparison of measured Dizy) function extracted f rom the photon + l j e t 

rates at ?/cut = 0.06 to the Duke-Owens fragmentation function for Q = pp (dashed) and 

Q = Mz (dotted) w i th A = 0.2 GeV. The darkened area shows a fit to the (DO) function 

w i t h Q = PT yielding A = 1.30 GeV. Figure taken f rom [62 . 

hadronisation, emit a soft gluon and become less energetic, thereby ending up wi th a 

momentum fraction z less than one. Moreover, these hadronization effects, which give 

rise to a discrepancy between the parton level calculation and hadron level data appear 

to be more and more pronounced wi th increasing 2/cut-

This discrepancy can be relieved i f one defines an isolated photon to yield a fractional 

momentum z inside the "photon je t" to be greater than some fixed value (z > 0.95) at 

both parton a n d hadron level. Indeed, the agreement between parton level calculation 

and hadron level data is restored i f in Fig. 2.3 one combines the two highest z bins into one 

single bin containing isolated photon events. This provides us wi th a safe way to define 
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Figure 2.5: Integrated photon -|-ljet rate above z^ — 0.95 as function of ycut; compared 

wi th the calculation of Glover and Morgan [49] including the fitted non-perturbative 

component of the D{z^) function. Figure taken f rom [62 . 

isolated photons wi th in the democratic approach at parton and hadron level, unlike in 

the previous analysis described in Section 2.2 where an isolated photon was defined in a 

two-step approach. 

Furthermore, w i th this definition of an isolated photon and using the measured quark-

to-photon fragmentation function yields a leading order prediction for the integrated rate 

above z > 0.95 as a funct ion of ycut- As shown in Fig. 2.5, the agreement is adequate over 

the f u l l range of y^ut-

For large values of j/cut however, the theoretical prediction appears to be 2(7 away f rom 

the data points. This may be explained as follows: Let us consider the simplest process 
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e+e" qq. A t large y^^t, as can be seen f rom Fig. 1.2 in Section 1.2, events wi th 3 

partons in the final state resulting f rom the additional emission of a real gluon in the 

process above, fa l l into the two-jet rate at hadron level. Such events are of course not 

counted in the lowest order parton level calculation so that the discrepancy between data 

and theory in this case may be accounted for by higher order corrections. The next-to-

leading order corrections to the photon +1 jet rate shall be calculated in the remainder 

of this thesis and one of the aims of this calculation is to obtain a better agreement 

between the theoretical calculation and the data for the integrated rate for z > 0.95 and 

in particular at large t/^ut- Finally, note that the slight discrepancy between theory and 

experiment at small j/cut niay be explained wi th the help of Fig. 1.2 too. The theoretical 

calculation is a fixed order calculation which may not be reliable for small values of ycut 

due to the presence of large logarithms of y^ut- When next-to-leading order corrections 

are included this discrepancy should also be reduced. 

I n summary, in this chapter we have reviewed the phenomenology of photons in 

hadronic Z decays. In particular, after having described previous analyses of "isolated" 

photon - f 1 jet events where a two-step approach was used to identify the photon in Sec­

t ion 2.2, we have presented the lowest order calculation of the photon jet rate at 

0{a) in Section 2.3. This calculation is performed using a democratic approach where 

the photon is clustered together wi th all other partons in the final state. To be identified 

the photon is required to carry a large fraction of the energy inside the "photon jet". This 

lowest order calculation could be used to extract the non-perturbative quark-to-photon 

fragmentation funct ion at 0{a) as presented in Section 2.6.2. A reasonable agreement 

between this lowest order parton level calculation and the experimental measurement is 

achieved. Finally, using the quark-to-photon fragmentation function determined in this 

way, a prediction for the isolated photon -|- 1 jet rate could be made and a reasonable 

agreement between the theoretical prediction and the data is obtained, as discussed at 

the end of Section 2.6. I t appears however to be necessary to implement next-to-leading 

order corrections into the theoretical calculation. Their inclusion is expected to provide a 

better description of the data especially for large values of ycut- The comparison between 
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the next-to-leading order photon ^ - l jet rate and the data wi l l be shown in Chapter 10. 
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Chapter 3 

The Photon +1 jet rate at 0{aas) 

In the previous two chapters, we have presented the necessary tools to evaluate jet cross 

sections at higher orders. In particular, in Section 1.5.2 we have seen how the introduction 

of a parton resolution criterion ^min enabled us to divide the phase space of higher order 

jet cross sections into resolved and single unresolved regions. In a simple example we have 

shown how soft and collinear divergences could be analytically isolated and cancelled 

against divergences present in the vir tual contributions. On the other hand, in Section 

2.4, we have presented the calculation of the the photon +1 jet rate at lowest order. We 

had contributions f rom the process 7* —̂  9^7 and f rom the process 7* qq w i th one of 

the quarks fragmenting into a i^hoton. In particular, we have shown how the collineax 

quark-photon singularity is absorbed into the bare 0(a) fragmentation function D^^^. 

A t next-to-leading order, the contributions to the photon -f-1 jet rate involve the 

processes 7* qqj and 7* —> qq where one of the quark fragments into a photon, dressed 

w i t h an additional real or v i r tual gluon. In addition, a generic 0{aas) contribution to 

the baj^e quark-to photon fragmentation function (or counter term) has to be taken into 

account as well. As in the lowest order case we shall evaluate, 

1 dcT 

(7o d^;' 

where z is the fractional energy carried by the photon inside the "photon jet", CTQ is the 
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tree level cross section for the process 7* qq. 

Although the above cross section is finite at 0(aas), we expect some of the contri­

butions to contain divergences. A direct numerical evaluation incorporating the exper­

imental jet algorithm is therefore not possible straightaway. We need to separate the 

calculation into two parts: an analytical and a numerical part. We have to calculate all 

potentially divergent contributions and cancel the singularities amongst them analytically. 

A n important feature of this analytical part of the calculation is the need to extend the 

decomposition of the phase space into resolved and single unresolved regions to regions 

where more than one particle is theoretically "unseen". After a large analytic cancella­

t ion between real and vi r tual contributions has taken place, we expect that the remaining 

divergences, essentially due to coUinear quark-photon singularities, wi l l be factorized into 

the bare 0{aas) fragmentation function, rendering the differential cross section finite. Fi ­

nally once the divergences have cancelled, the different contributions to the cross section 

can be evaluated numerically while the jet algorithm is applied to select the photon +1 

jet events. 

I t is the purpose of this chapter to present the plan of the calculation of the photon - f l 

jet rate at 0{aas). In Section 3.1 we shall discuss the different classes of processes which 

enter in the calculation of this cross section. As we wi l l see, we need to consider processes 

wi th two, three and four particles in the final state. Experimentally, all contributions 

involving more than two final state particles are unresolved. The additional particles 

present i n the final state need to be clustered together according to a jet algorithm wi th 

jet resolution parameter ycut so that only the photon-jet and one further jet remain. On 

the other hand, the contributions wi th three and four particles in the final state can be 

theoretically resolved or unresolved. In Sections 3.2-3.4 we wi l l explicitly give the criteria, 

which define the phase space region where all particles are theoretically well separated 

and specify each theoretically unresolved region. We shall also outline how the different 

contributions to the cross section w i l l be calculated analytically in the remainder of this 

thesis. Finally, Section 3.5 gives an outline of the calculation wi th particular emphasis 

on the expected pole structures and cancellations of singularities between the different 
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0(a) 0(a) O(aas) 

Figure 3.1: Final state configurations contributing to the photon -|-1 jet rate 

contributions. 

3.1 Contributions to the photon +1 jet rate at O(aas) 

A t next-to leading order, one finds five classes of contributions to the photon -|-1 jet rate, 

which are represented schematically in Fig 3.1: 

(a) the tree level process 7* — q q g ^ . where the final state particles are clustered together 

such that a "photon je t" and one adchtional jet are observed in the final state. As 

we w i l l see in the next subsection, the photon can be isolated, in that case quark, 

antiquark and gluon are clustered together to form one jet. But i t can also be 

clustered w i t h one or two of the three other final state particles. 
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(b) the one loop gluon correction to the 7* qq'y process, where the photon and one 

of the quarks are clustered together: for this process i t can also happen that the 

photon is isolated and that quark and antiquark are combined into one jet. 

(c) the process 7* —> qqg^ where one of the quarks fragments into a photon while the 

remaining partons fo rm only a single jet . 

(d) the one loop gluon correction to 7* —> qq. where one of the quarks fragments into a 

photon. 

(e) the tree level process 7* qq w i th a generic 0{aas) counter term present in the 

bare quark-to-photon fragmentation function. 

We w i l l discuss the detailed structure of the contributions to the photon -(- 1 jet rate 

associated w i t h each of this classes of processes below. Some of these contributions may 

involve complicated phase space structure, wi th theoretically resolved, single unresolved 

and double unresolved regions. In this section we shall however not quantify the phase 

space configurations as Sections 3.2-3.4 are devoted to a detailed study of the individual 

phase space regions. 

3.1.1 7* —> qqj with real gluon bremsstrahlung 

The tree level process 7* qqg^ contributes to the photon -|-1 jet rate, i f the final state 

configuration is such that only the photon jet and an associated jet are observed. As the 

photon has to be identified in the final state, i t cannot be soft. Various different config­

urations are possible and a schematic overview is given in Fig. 3.2. Note that topologies 

where the role of quark and antiquark are exchanged are also present, but are not shown. 

The contributions arising when the photon is unresolved through clustering wi th either 

the quark or antiquark are in fact equal. Therefore, as in the calculation of the 7 -|-1 jet at 

leading order described in Section 2.4, we consider only the contributions corresponding 

to the Feynman diagrams where the photon is emitted on the quark leg. When summing 
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Figure 3.2: Different contributions from the tree level 7* —> qq'yg process. Square brackets 

denote theoretically unresolved particles, round brackets experimental clusters. 

all the contributions, the result obtained considering the photon associated with the quark 

will be multiplied by two. 
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The individual contributions can be structured as follows: 

(a) Theoret ical ly resolved contributions 

I f all particles are resolved, a 7 +1 jet event can only be formed if some final state 

particles are clustered together by the jet algorithm. The possible configurations 

yielding a photon + 1 jet event are displayed in Fig. 3.2.a. 

(b) Single theoretically unresolved contributions 

One has to distinguish two classes of single (or one-particle) theoretically unresolved 

contributions, depending whether the gluon or the photon is unresolved. 

(i) If the photon is unresolved, it is collinear to the quark while the gluon is hard. 

i.e. the gluon is theoretically resolved but combined with the photon-quark 

cluster or with the antiquark by the experimental jet algorithm. Alternatively, 

the gluon forms a jet on its own while the antiquark is clustered into the photon 

jet. 

(ii) I f the gluon is theoretically unseen, it can be soft or collinear to the quark 

or antiquark, while the photon is experimentally combined with the quark to 

form the photon jet or is isolated while all other partons form a single jet. 

The possible configurations of single unresolved contributions yielding a photon -f-

1 jet event are displayed in Fig. 3.2.b. 

(c) Double theoret ical ly unresolved contributions 

These contributions arise when the photon and the gluon are theoretically "unseen" 

in the final state. We count three double unresolved contributions: 

(i) Triple collinear contribution 

The photon and the gluon are simultaneously collinear to the quark. 

(ii) The soft/collinear contribution 

The photon is collinear to the quark while the gluon is soft. 
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(iii) The double single collinear contribution 

The photon is collinear to the quark while the gluon is collinear to the anti-

quark. 

For these three contributions, the final state configuration corresponds already to a 

photon jet event. Hence, the final state particles will not be clustered further 

by the jet algorithm. These contributions are schematically displayed in Fig. 3.2.C. 

3.1.2 7* —̂  qqj with a virtual gluon 

The one loop correction to 7* qq^ contributes to the photon jet rate, if two of 

the final state partons coincide in a single jet. One has to separate the theoretically 

unresolved collinear photon contribution from the contributions where a hard photon is 

clustered with the quark to form the photon jet or isolated while quark and antiquark 

form a single jet. 

3.1.3 J* qqg with the fragmentation function 

The tree level three parton production process with associated fragmentation contributes 

to the photon -(-1 jet cross section if, in addition to the photon-jet, only a single jet is 

formed. This is the case if, 

(i) the gluon is resolved, but clustered into the photon or antiquark jet or forms a jet 

on its own, while the antiquark is clustered into the photon jet. 

• (ii) the gluon is unresolved, i.e. it is collinear to the quark or the antiquark or it is soft. 

These configurations are illustrated in Fig. 3.3. Since this process is already of 0{as); 

only the 0{a) counter term in the bare fragmentation function contributes. 
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Figure 3.3: Different contributions from the tree level 7* qqg process with subsequent 

fragmentation of the quark into a photon. Square brackets denote theoretically unresolved 

particles, round brackets represent experimental clusters. 

3.1.4 7* qq with a virtual gluon and the fragmentation func­

tion 

The one loop correction to the quark antiquark with associated photon fragmentation 

process always yields a final state with a photon +1 jet. As in the previous case, only the 

C(Q') counter term in the bare fragmentation function contributes. 

3.1.5 7* qq with the fragmentation function 

On top of all the processes described above involving a real or virtual gluon, one has to 

consider a contribution to the photon +1 jet rate from the generic 0{aas) counter term 

present in the hare fragmentation function. Inclusion of this contribution absorbs all left 

over singularities of the processes cited above. 
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3.1.6 Summary 

The contributions to the photon - f l jet cross section from all these processes will be cal­

culated in the remainder of this thesis. The theoretically resolved, but experimentally 

unresolved contributions can be obtained numerically straightaway and will only be con­

sidered in Chapter 9. Al l single or double theoretically unresolved contributions need to 

be evaluated analytically to extract their divergent pole parts before they can be included 

in the numerical evaluation of the cross section. Their numerical implementation relies 

on the hybrid subtraction method introduced in Section 1.5.1 and will be discussed in 

Chapter 9. We will present the calculation of the single unresolved real contributions 

associated with the process 7* qq^g in Chapter 4, while the double unresolved contri­

butions will be evaluated in Chapter 5. The resolved and unresolved virtual corrections 

to 7* —> qq^ are derived in Chapter 6. Finally, Chapter 7 contains the calculation of 

all contributions involving the 0{a) counter term in the quark-to-photon fragmentation 

function. The 0[aas) fragmentation counter term will be introduced when we add up all 

divergent contributions in Chapter 8, yielding a finite result. 

So far we have only presented the different topologies of the contributions to the cross 

section under consideration, without quantifying the relevant regions of phase space for 

each contribution. The decomposition of the phase space into theoretically resolved and 

unresolved regions will be presented in great detail in the following three sections. 

3.2 The phase space decomposition of the real con­

tributions 

In the previous section we have outlined the generic structure of all individual contribu­

tions to the photon -f- l jet differential cross section at 0[aas). To each specific contribu­

tion corresponds a particular region of the final state phase space. In this section, we shall 

give the criteria which define the different phase space regions associated with the individ­

ual contributions to the tree level process 7* —> qq'^g. We shall also present schematically 



how these contributions will be calculated in the remainder of this dissertation. 

These real contributions can be separated into three categories: the theoreticalh' re­

solved, single unresolved or double unresolved contributions. The final state phase space 

therefore needs to be divided into corresponding regions. 

The (/-dimensional four-particle phase space dR^f'{pq.pq,p-y,Pg) is derived in Appendix 

B in eq.(B.6) and reads, 

1 /2 

i f = ^^^2 29 J ^^^^-1 ^^•'^-^ ^^'^-S ^(^«? + + ^'^3 + ^^7 + + ^̂ 57 ' M ' ) 

^ ' ^ ^ d5„;fd5„^d5„„d5^^ds^„d5„ 

where A 4 is the Gram determinant defined in eq.(B.7). The separation of the four particle 

phase space into different resolved and unresolved regions is one of the most subtle points 

in this calculation. As one sees from the equation above, the four particle phase space 

includes five independent integration variables dsij. The different phase space regions will 

be defined by specifying whether the invariants Sij are greater or less than a theoretical 

parton resolution parameter ^min (or a cut proportional to Sa^n)- In contrast to the three 

particle phase space which has only two independent integration variables (and is easy to 

draw (Fig. 1.3)) the four particle phase space is difficult to visualize. To split this phase 

space into different regions which do not overlap and without leaving out any of them is 

therefore not a trivial task. In particular, it is not easy to ensure that no singular region 

is omitted. In a singular phase space region, the four-particle matrix element squared, 

is singular, as one of the invariants s^j present in the denominator tends to 0. 

Before we define each singular phase space region it is worth noting that all the in­

tegration variables cited above will not have to be constrained in the same manner. For 

example, does not need to be limited as it does not appear in the denominator of the 

four-particle matrix element squared, M\'^. Furthermore this matrix element squared 

vanishes in the soft quark limit, i.e. 5,^ does not need to be constrained either. We al­

ready saw that this was the case for the 7* qqg process in Section 1.5.3. The only 
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variables that are constrained are thus. 

Sq-yi Sgj. Sqg, Sqg, 

although in the double unresolved region, we shall choose to constrain the combinations. 

for certain configurations. The decomposition of the four-particle phase space is summa­

rized in Fig. 3.4. In this table, we have specified which invariants are less than .Smi,, (or 

a cut proportional to s^^^) for each singular region of phase space. We have also noted 

which invariants are greater than s^.^^ to eliminate overlaps between regions determined 

by the same combinations of invariants less than s^j^. Invariants that are not specified 

are completely unconstrained. 

Moreover, for each of the singular phase space regions we shall specify how the fraction 

z of energy carried by the photon inside the "photon jet" is obtained. For each of these 

contributions we will require that the energy fraction z reconstructed by the jet algorithm 

is greater than the experimental cut Zcut-

The four-particle phase space can be divided into the following regions. 

3.2.1 The single unresolved regions 

We count four (five including the antiquark-photon collinear region) different single unre­

solved phase space regions as the photon or the gluon can be theoretically not identified. 

By analogy with the definitions of the single unresolved regions of the 3-parton final state 

phase space, it would seem natural to define the single unresolved regions of the 4-parton 

final state phase space by specifying which single invariant Sij is less than s^^ in the 

collinear regions and which pair of invariants is less than ^min in the soft region. However 

in the presence of an additional particle in the final state these cuts are not appropriate 

anymore. Indeed the single unresolved regions are defined as follows: 
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57 coUinear 
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Real contributions 
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"̂ 975 ^ '̂ min Sqg < Smin,5 •̂ 95 '5inin,g ^qg '̂ min.g 

•̂ gĵ  ^ '̂ min •^qg ^ '̂ min.g ^qg '̂ min,̂  

"̂ 97 '^inin,7 •̂ 97 ^ 'Smin •̂ 973 ^ •̂ min ^qf ^ •̂ min 

Soft / collinear Double single collinear 

•Sq7 '5min 
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Sqg <̂  •Smin 

9̂7 

Sqf ^ <5min 

•̂ 93 •̂ min 

Sqg < •Smin 

•̂ 97 '̂ r 

Figure 3.4: Phase space decomposition of the real 7* qq^/g contributions. For abbre­

viation, we have introduced .Sinin,7 = Smi^Sqq^/M^ and Smin,g = SminSqqgl. Note that 

the single and double unresolved regions where the photon clusters with the antiquark 

are not shown. For these regions, the necessary cuts are obtained by exchanging q and q. 

Altogether, there are five single unresolved and six double unresolved regions. 

i) The single collinear quark-photon region^ 

•̂ 97 ^ 
•̂ 997 

nun ^ 2 5,7 > •'mill 
•̂ 997 

1M is the mass of the final state 

•̂ 975 '^min; Sqg ^ -Smin) (3.1) 
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(ii) The single collinear quark-gluon region 

(iii) The single collinear antiquark-gluon region 

(iv) The soft gluon region 

Sqg < •Smin '̂ 93 ^ '̂ min jy^2 ' '̂ '̂T '^min, •3(37 •̂ min- (3-4) 

We shall justify the boundaries of the different single unresolved regions as given above 

in Chapter 4. For now, let us just say that with these boundaries no singular region of 

the 4-parton phase space is omitted or double counted. 

In Section 1.5.3 we have presented the calculation of the soft and single collinear 

contributions to the cross section related to the process 7* —> qq at 0{as). We saw that 

in these single unresolved regions of the three-particle phase space, one could write the 

cross section as the product of a universal ''one-particle unresolved factor'' and the two-

particle tree level cross section C T O - These single unresolved factors were Cp in eq.(1.35) 

and Sp in eq.(1.25) for the colhnear and soft gluon case. In Section 2.4 we discussed also 

the collinear quark-photon behaviour of the three-particle cross section aqq^. The related 

collinear factor Cyp is a function of z. These three factors were obtained by integrating 

the approximated matrix elements over the corresponding single unresolved phase space 

regions. 

The contributions to the photon -|-1 jet rate at 0{aas) in the single unresolved regions 

of the 4-particle phase space will be obtained in a similar manner and will even yield 

single unresolved factors analogous to Cp, Sp and C^pdz. These factors will be slightly 

modified to take into account the change in the boundaries between the single unresolved 

regions of the three and four parton phase space. In the 4-parton phase space those 
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single unresolved factors shall be denoted by Cp, Sp and C^pdz and will be evaluated in 

Chapter 4. Furthermore, to yield the single unresolved contributions to the photon -|-1 jet 

differential cross section, these factors will be multiplied with the following three particle 

cross sections, 

(i) aqq-./, if the gluon is unresolved, 

(ii) (JQqgi if the photon is collinear to the c|uark^. 

The three particle cross sections, cr̂ ^̂  and aQqg are free of divergences and will be evaluated 

numerically. Moreover, the jet algorithm will be applied to cluster these three-particle 

final state events into 7 -|-1 jet events. The different single unresolved configurations are 

depicted in Fig. 3.2.b. The fraction of energy carried by the photon inside the photon jet, 

z, is obtained when this jet is constructed with the help of the jet algorithm. However, 

for the quark-photon collinear contribution it is worth noting the following. In the quark-

photon cluster, the photon carries a fraction z of the parent momentum pg. When the 

jet algorithm is applied, an additional parton could be clustered with this parent parton 

Q. Hence the reconstructed value of z, the fractional momentum of the photon in the 

Q+psiTton cluster, will be sometimes less than the value used in the analytic calculation 

of the collinear factor C-yp- It is this reconstructed or "experimental" value of z which 

has to be greater than z^nt-

3.2.2 The double unresolved regions 

In the double unresolved regions, the gluon and the photon are theoretically not identified. 

As the photon has to be seen in the final state, it can only be collinear to the quark and 

cannot be soft" .̂ The gluon on the other hand can be collinear to the quark or to the 

antiquark or it can be soft. Corresponding to these different final state configurations we 

-Q is the parent parton of the quark and the photon, as in Section 2.4. 

^Recall that we only list the contributions associated with the processes where the photon is emitted 

on the quark leg. 
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decide to define three double unresolved phase space regions: the triple collinear region, 

the soft/collinear region and the double single collinear region. As before, these regions 

are matched by three analogous double unresolved regions where the photon clusters with 

the antiquark. 

In the introduction to this subsection, we mentioned that the different phase space 

regions are determined by specifying which invariants appearing in the four-particle phase 

space are greater or less than s^^- This is not exactly true in the double unresolved 

regions. In particular, in the triple collinear region we need to constrain the "triple" 

invariant Sq^g = .s,̂  -|- Sqg + s^g as it appears in the denominator of the four-particle 

matrix element; we will require: Sq-^g < Smin- The three different double unresolved 

regions are defined more precisely as follows. 

(i) The triple collinear region 

In this region, the photon and the quark are simultaneously collinear. 

Sq-yg < Smin ^ud Sgg > Smin- (3-5) 

We require Sqg > Smin since in this region the gluon is collinear but not soft. The 

fractional energy z of the photon inside the quark-photon-gluon cluster is given by, 

where E-y,Eq,Eg are the energy of the photon, the energy of the quark and the energy 

of the gluon respectively. 

(ii) The soft/collinear region 

In this region the photon is collinear to the quark while the gluon is soft. We require, 

Sqy < •Smin? Sqg <C 5mjn and Sqg <C •Smin-
(3.7) 

For this configuration, z the fractional energy of the photon inside the quark-photon 

cluster is given by. 
- ^' -

" ~ Ey + Eq ' y'-'-' 

since the energy of the gluon is close to zero. 

81 

- ( 3 . 8 ) 



(iii) The double single collinear region 

In the double single collinear region, the photon is collinear to the quark and the 

gluon is collinear to the antiquark and we have: 

•5g7 < 5111111, and Sqg > 5min and Sqg < Sj^dn- (3.9) 

For this configuration, z the fractional energy of the photon inside the quark-photon 

cluster is given by 

z = ' -2/9-7, (3-10) -\- Eq 

as in the soft gluon case. 

As mentioned in the previous section, these two-particle unresolved contributions cor­

respond already to a photon +1 jet final state configuration. The configurations cor­

responding to these three two-particle unresolved contributions are shown in Fig. 3.2.c. 

Unlike in the single unresolved regions, the jet algorithm cannot cluster the particles fur­

ther. The fraction z defined in the analytic evaluation will also be the "experimental" 

z. 

Moreover, in the single unresolved region we have seen that the different contributions 

to the cross section may be written as the product of single unresolved factors and a 

resolved three-particle cross section. Similarly, in these two-particle unresolved regions 

cited above we shall write the differential cross sections as the product of a "two-particle 

unresolved!'' factor and the tree level parton cross section GQ. In order to evaluate analyti­

cally these as yet unknoiun two-particle unresolved factors in each particular two particle 

unresolved region defined above, we need to determine the particular approximations of 

matrix elements and phase space and to perform the phase space integrations over the 

"unresolved variables". This is the same procedure as used to evaluate the quark-photon 

collinear factor C-^F^ for example, where we have integrated the approximated matrix ele­

ment in this single collinear region over the unresolved variable 5,^. The determination of 

the matrix elements, phase space and differential cross section in these three two-particle 

82 



unresolved regions of the four-particle phase space will be extensively discussed in Chapter 

5. 

3.2.3 The fully resolved region 

In principle this region is defined by requiring that all constrained invariants are greater 

than the theoretical parton resolution parameter, Smin, i-e. by reciuiring that. 

qy ^ •Smiri) Sqy ^ •'min; ^qg ^ •^nun; -̂ 95 > 'Smin; Sqg > 5min; Sqg > S^^. (3.11) 

However, it turns out that the boundaries of this region are more subtle than that and must 

be chosen so as to match onto the boundaries of the unresolved regions. Consequently, 

the resolved region is defined as being the remaining phase space region of the four parton 

phase space when all unresolved regions are excluded. In this non singular region, the 

four-particle matrix element squared is finite and can be evaluated numerically. The 

phase space integrals can be performed using standard Monte Carlo techniques and the 

jet algorithm can be directly applied to select photon -|-1 jet final states. Furthermore, 

the fraction z of energy carried by the photon inside the photon jet is determined entirely 

by the jet algorithm. The numerical evaluation of this contribution will be discussed in 

Chapter 9. A picture of the different resolved configurations can be found in Fig. 3.2.a. 

3.2.4 Summary 

In this section we have given the criteria which allow us to split the four-particle final state 

phase space into resolved., single unresolved and double unresolved regions. These criteria 

are summarized in Fig. 3.4. As we mentioned in the beginning of this section, since the 

phase space is five-dimensional, it is difficult to visualise. Furthermore, as the boundaries 

of different unresolved regions involve triple invariants, we are unable to illustrate how 

these different regions match onto each other. 
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3.3 Phase space decomposition of the virtual con­

tributions 

As mentioned previously, the virtual contributions to the 7* —> 557 process are of two 

types corresponding to the presence of a theoretically resolved or unresolved photon in the 

final state. The three particle phase space given by eq.(B.4) divides therefore as follows: 

(a) The resolved photon region 

s 97 •5min5 '̂ 97 ^ '̂ min- (3--1-2) 

(b) The unresolved quark-photon collinear region 

s 97 ^ •Smiri) Sq^ > (3.13) 

plus a similar region for the collinear antiquark-photon'Configuration. 

However, the virtual contributions contain divergences independently of what the phase 

space region is. In Section 1.5.3 we have seen that the complete finite ^(Q;^) cross section 

for the process 7* qq is obtained by adding the one loop virtual contributions ay to 

the unresolved soft and collinear contributions (xj^^ Similarly here, we expect that the 

divergences present in the virtual contributions with a hard photon will cancel against 

the divergences present in the single unresolved real contributions where a hard photon 

is emitted together with a soft or collinear gluon in the final state. On the other hand, 

in the unresolved photon region, the virtual contributions will need to be associated with 

the two particle unresolved real contributions described earlier. The calculation of these 

virtual contributions will be detailed in Chapter 6. 

3.4 Phase space decomposition of the contributions 

with the fragmentation function 

As we saw in Section 3.1, two classes of processes with a quark fragmenting into a photon 

give rise to contributions to the photon -|-1 jet cross section: 
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(a) The process 7* —̂  qq with a virtual gluon and associated fragmentation of the quark, 

which always yields a photon and another jet in the final state. 

(b) The tree level process 7* qqg with associated fragmentation of the quark. 

Depending on whether the gluon is theoretically seen or not in the final state the real 

contributions with associated fragmentation can be subdivided further into resolved and 

unresolved contributions. The corresponding three particle final state phase space needs 

therefore to be divided accordingly. We distinguish four regions of the three-particle final 

state phase space: 

(i) The resolved gluon region 

Sqg ^ 'Smin) Sqg > •Sniin- (3T4) 

(ii) The single collinear quark-gluon region 

Sqg < 'Smin, 'S,-̂  > 'Smin- (3-15) 

(iii) The single collinear antiquark-gluon region 

Sqg ^ 'Sminj Sqg <! .Snjiji- (3-16) 

(iv) The soft gluon region 

Sno < s qg \ -̂ min) >̂ 9g 
•S,-, < 'Smin- (3-17) 

Concerning the calculation of the contributions involving Dq^^, in Section 1.2.2 we saw 

that for processes involving a fragmenting parton in the final state the cross section is 

obtained as the convolution of the underlying bare partonic cross section with the 6are 

fragmentation function. It is commonly denoted by, 

aqqg ® Dq^y. 
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The exact meaning of this convolution, together with a detailed presentation of the cal­

culation of all contributions involving the 0{a) quark-to-photon fragmentation counter 

term will be given in Chapter 7. 

In this and in the previous two sections, we have presented the decomposition of the 

phase space for all the contributions entering in the calculation of the photon -|-1 jet rate 

at O(aas). At the end of each section, we have attempted to explain how the individual 

contributions shall be calculated in the remainder of this thesis. While doing so, we have 

also mentioned that divergences present in some contributions will cancel against those 

present in other contributions. Throughout this chapter, we have so far not quantified the 

divergences in terms of poles in e. This shall be schematically presented in the last section 

of this chapter. More precisely, in the next section we shall summarize the plan of the 

calculation of all the contributions to the photon -|-1 jet rate at O^aa^) with particular 

emphasis on the expected pole structure in the different contributions. We shall outline 

how this calculation will yield a finite Smin-independent result. 

3.5 Outline of the calculation 

Before starting the detailed calculation of the various contributions to the photon 4-1 jet 

rate at 0{aas) in the forthcoming chapters, we shall specify in this section which contri­

butions should be grouped together, as they yield the same structure and in particular, as 

by doing so, some divergences cancel''. We will first present the expected pole structure of 

the different pieces and summarize the expected cancellations of singularities between the 

different contributions in Figs. 3.5-3.6. Finally, we also note that, although the various 

contributions depend on the theoretical parameter s^^, the physical 7 4-1 jet cross section 

will not. 

For the contributions "without fragmentation", unless all the particles are theoretically 

seen in the final state (in which case there are no divergences) the contributions can be 

^Recall that these divergences manifest themselves in dimensional regularisation where d = i-2e, as 

poles in e. 
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wri t ten as a product of an "unresolved factor", which contains all the singularities, and 

a tree level cross section. These "unresolved factors" can be of two types, depending on 

whether one or two particles in the final state are theoretically not identified, i.e. soft or 

coUinear. 

In Sections 1.5.3 and 2.4.2, we have derived the single unresolved factors, C f , 5"̂  and 

Cp^dz. From eqs. (1.25), (1.35) and (2.21), we see that Cp and Cp-ydz contain at most 

1/e poles, whereas SF is proportional to 1/e^. We expect the slightly modified unresolved 

factors Cp, Sp and Cp^dz to have the same pole structure. Depending whether i t is the 

photon or the gluon which is unresolved, these single unresolved factors wi l l be multiplied 

by the tree level cross sections, Oqqg.Gqq^. Furthermore, we saw in Section 1.5.3 that 

soft and coUinear divergences due to the emission of a soft or collinear gluon in the real 

diagram are cancelled against similar divergences in the vir tual graphs. In particular the 

sum of the real and vi r tual unresolved factors R^q and V^^ yields the two-particle finite 

/C-factor. 

The two-particle unresolved factors, on the other hand, are unknown at this stage 

of the dissertation, but f r o m the discussion of the pole structure of the single unresolved 

factors, we note the following. W i t h each pair of collinear particles one can associate a 1/e 

pole, while one expects a 1/e^ singularity when a particle becomes soft. As a consequence, 

for the two-particle unresolved factors, we expect the most singular pole generated in the 

calculation, to be in 1/e^. These leading singularities wi l l be generated in two different 

contributions, in the soft/collinear contribution f rom the 7 ' —> qqg'i process and in the 

v i r tua l contributions associated wi th the one loop process 7* qq-y process where a 

collinear photon is emitted in the final state. However, when these two contributions 

are considered together, the Ije' poles must cancel leaving at most Ije^ poles. We also 

expect the two real contributions wi th two pairs of collinear particles to contain terms of 

C ( l / e ^ ) at most. Each of these divergent two-particles unresolved factors multiplies the 

Born cross section c tq . 

For the contributions f rom the 7* qqg process, wi th subsequent fragmentation we 

can also discuss the leading singularity structure. Here, nearly all contributions can be 
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^qqg ' ^ 

aoCp • Dg^^{z) 
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Sum (^0 • 7 ) + Fa ^QQa ' Fb 

a,[D{z,iXF)-l{^,\)\ 

Figure 3.5: Expected pole structure of contributions wi th a collinear photon. 

wr i t t en as the product of a partonic cross section and the fragmentation function. In 

almost all cases, i f the gluon is unresolved in the final state, the partonic cross section 

aqqg factorizes further into the corresponding single unresolved factors Cp and Sp defined 
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aqq-y • Rqq{'f) O'qq-yg 

y<AAA. 

(Tggj [V„-(̂ ) -1- Fc] 

Sum (Tgq-y [Kgq-(j) + Fc] '^qq-yg 

Figure 3.6: Expected pole structure of all contributions wi th a resolved photon. 

before and the two-particle tree level cross section C T Q . 

However, when the gluon is colhnear to the fragmenting quark, the cross section is a 

convolution of the partonic cross section and the fragmentation function as we shall see 

in Chapter 7. The structure of all the contributions involving the fragmentation function 

is summarized in Fig. 3.5. 

I n addition to the unresolved gluon singularities, the fragmentation function itself also 

contains divergences. In fact, in Section 2.4.2 we saw that the collinear quark-photon 

singularity contained in C-yp is factorized into the bare 0{a) quark-to-photon fragmen­

tat ion funct ion. For our analysis of the expected pole structure in each contribution, we 

can therefore also consider a single factor of 1/e to be associated wi th the bare 0(a) 

counter term present i n the fragmentation function. Consequently, when the gluon in 

the process 7* qqg followed by fragmentation is soft, we expect a singularity of order 
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1/e^ X 1/e = Ije^. Similarly, the one-loop 7* —> qq process followed by fragmentation also 

generates a 1 /e^ singularity. Because the soft gluon responsible for these poles does not 

probe the fragmentation region, these singularities must precisely cancel. On the other 

hand, when the gluon is collinear to the quark or to the antiquark we expect poles of order 

1/e X 1/e — to be generated. However, as the quark-gluon singularity does probe 

the fragmentation region these singularities are not completely compensated by the 

one-loop graphs. Any remaining singularities must be cancelled by the ^(aQ:^) counter 

te rm in the fragmentation function. This counter term, although i t is so far unknown, wi l l 

have the necessary pole structure to absorb all the left-over singularities and to ensure 

that the 0{aas) 7* —> 7 -F 1 jet cross section is finite. 

Finally, the two-particle unresolved factors, along wi th the single unresolved factors 

and the resolved tree level cross sections aqgg, Gqq^ and aqq-yg w i l l all depend on the the­

oretical parameter ^min , or more precisely on \ri{y^^). However, since the fragmentation 

funct ion is process independent at any order, i t must be ^min independent. The left­

over singularities f r o m the sum of all unresolved contributions should therefore also be 

independent of s.^^. We w i l l explicitly show that this is the case in Chapter 8. 

Furthermore, when the finite results f rom the analytic calculation, denoted by Fa-Fb. Fc 

in Figs. 3.5-3.6, are combined in the numerical program wi th the result for the resolved 

contributions, the f inal result for the 7* 7 - | - 1 jet cross section at 0{aas) becomes s,nin-

independent. The cancellation of the s,-^„ dependence shall be explicitly proven when 

describing the numerical part of the calculation in Chapter 9. 

3.6 Summary and Outlook 

To summarize, in this chapter, we have outlined the calculation of the photon -|- 1 jet rate 

at 0{aas). A t this order, five different subprocesses are relevant. These were presented in 

Section 3.1. Each subprocess can further be structured into contributions f rom different 

phase space regions. A detailed phase space decomposition of all contributions is given 

in Sections 3.2-3.4. Finally, we have sketched the expected pole structure of all contri-
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butions i n Section 3.5. In the following chapters, we shall now calculate these individual 

contributions. 

The resolved and single unresolved contributions f rom the tree level four parton process 

7 * —> qq-)g w i l l be presented in Chapter 4 , the double unresolved contributions f rom this 

process follow in Chapter 5. Chapter 6 contains the calculation of the vir tual gluon 

corrections in the process 7* —> qq'). Real and vir tual gluon corrections to 7* —* qq 

w i t h subsequent quark-to-photon fragmentation wi l l be derived in Chapter 7. Finally, 

Chapter 8 summarizes the results of the analytic part of the calculation of all divergent 

contributions to the i^hoton + 1 jet rate at 0{aas). Af ter cancellation of all divergences, 

this process can be evaluated numerically. The numerical calculation wil l be outlined in 

Chapter 9, while a comparison between these results and the experimental data on the 

photon -|-1 jet rate w i l l be presented in Chapter 10. 
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Chapter 4 

The resolved and single unresolved 

real contributions 

In the next two chapters we wi l l present the calculation of the contributions to the 7 

jet rate at 0{aas) relevant to the process 7* qqf wi th real gluon bremsstrahlung. The 

Feynman diagrams relevant to the amplitude for 7* qqjg are shown in Fig. 4.1. This 

process contributes to the 7 - f l jet differential cross section i f the final state configuration 

is such that only the photon jet and a single associated jet are observed. The possible 

topologies were illustrated in Fig. 3.2. 

I n the previous chapter, we have discussed how the real contributions can be theoret­

ically resolved or unresolved depending whether the final state particles are theoretically 

"seen" or "unseen". A final state particle may be theoretically "unseen" if i t is collinear 

or soft. We claimed that the real contributions associated to 7* —> qq'jg can be separated 

into three categories; the theoretically resolved, single unresolved and double unresolved 

contributions. We w i l l present the calculation of the double unresolved contributions in 

Chapter 5. The theoretically resolved and single unresolved contributions wi l l be discussed 

in this chapter which is organized as follows. 

In Section 4.1, we give the expressions of matrix element squared and phase space 

in d dimensions which are necessary for the calculation of the resolved and unresolved 
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Figure 4 . 1 : Tree level 7* —> qq'^g amplitudes 

contributions. 

The different expressions for the various single unresolved matrix element squared 

and phase spaces w i l l be presented in Section 4 .2 . In the evaluation of the associated 

differential cross sections, we note that ""^more than iwo" particles are theoretically seen 

(i.e. clearly distinguishable) in the final state. A 7 - |-1 jet event can then only occur i f 

some final state particles are clustered together according to a jet algorithm. Hence the 

evaluation of the phase space integrals wi l l ultimately be performed numerically. 

I n Section 4 . 2 , we shall see however that when one particle is unresolved, the fu l ly 

differential four-particle differential cross section may be writ ten as the product of a single 

unresolved factor which contain the divergences and a finite three particle differential cross 

section. Only the three particle diffential cross section w i l l be evaluated numerically. 
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4.1 Resolved contributions 

We introduce the following labels for the four final state particles, 

q = l , (? = 2, 7 = 3, g = 4, 

such that the invariants containing p-y = ps for example become 

Sq^ = 5 i 3 , 5^^ = 523 and Sjg = 534. 

Following this notation the matrix element squared for the scattering of a quark-

antiquark pair w i t h a photon and a gluon \Mqq-yg\'^ = |Ali234p niay be writ ten in d = 4—2e 

dimensions as ^, 

|-Mi234|^ = f + I6yi-^yi3 + 16y'{'>yi4 + 16t/i92/23 + 162/io?/24 - ^'^vh + IGyuyisyi^ 
2/132/142/23J/24 V " 

+32j/i22/i3l/24 - 16j/i22/i3 + 32t/i2yi42/23 - 162/122/14 + 16yi22/232/24 - 16j/i2y23 - I62/122/24 

+ 16yi2 + 16?/i3?/24 - 162/132/142/23 - 162/132/142/24 - 162/132/232/24 + 162/132/24 - 32t/i32/24 
N 

+ I62/142/23 + I62/142/I3 - 162/142/232/24 - 322/14^23 

2 (322/122/132/14 + 322/132/142/23 - I - 322/i32/i42/24 
2/132/142/134 V 

- f ^ ( - 16^12 - 322/122/13 - 162/122/14 - 327/122/23 - 16yi22/24 -h 322/i2 - I62/122/13 
2/132/232/1342/234 V 

-487/122/132/24 + 32yi22 / i3 - 48yi22/i42/23 + I62/122/14 - I67/122/I3 + 322/122/23 - I - 162/12^24 - I62/12 

-16^132/23 - I67/13 - I - 162/132/142/24 - 167/132/14 - 162/132/23 + 642/132/23 - 327/132/24 + 487/132/24 

-322/142/23 + 167/142/232/24 + 482/142/23 - I62/23 - 162/23^24 

-fe^ - 32y?., - iSyl^yu - 487/122/23 + 642/i2 - 16yi22 / l4 - 647/127/14^23 
2/132/242/1342/234 V 

+482/12^14 - 167/12^23 + 482/12^23 - 322/12 - I67/147/23 - 16yi42/53 + 327/142/23 

+ ^ ( 1 6 2 / 1 2 2 / 1 4 ^- 162/142/23 + 167/142/24 
2/132/134 V 

-he^ ^ ( - 322/10 - 482/io2/i3 - 482/102/24 + 642/i, - I62/122/13 - 642/i22/i32/24 

2/142/232/1342/234 V 

+482/122/13 - I62/122/24 + 487/122/24 - 327/12 - I62/132/24 - 162/132/24 + 322/132/24 

^This matrix element squared has be evaluated using the algebraic program F O R M , [63] 
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( - 16y?2 - 16y?23/i3 - 322/̂ 22/14 - l&yhv^a - ^'iyjoyoi + 32yf., 
2/142/243/1342/234 \ 

-482/12^13^24 + 162/12^13 - 162/122/14 - 482/122/14̂ 23 - 64?/i2yi42/24 + 32yi22/i4 + I62/122/23 

-I62/12I/24 + 322/122/24 - I62/12 - 32?/f32/24 + 162/132/142/23 - 162/132/14̂ 24 - 162/132/14 

+ 162/132/232/24 + 482/132/24 - 32y{42/24 - I62/14 - 32yi42/|3 - 16yi42/232/24 + 482/142/23 

-322/142/24 + 642/142/24 - I62/232/24 - 162/|4^ 

+ ^ f I62/122/13 + 162/132/23 + 162/132/24 
2/142/134 V 

-l-e^ ^ - ^ r - ( 322/122/232/24 -l- 322/132/232/24 + 32yi42/232/24 
2/232/24 2/534 \ 

+ ^ ( 1 6 2 / 1 2 2 / 2 4 + 162/132/24 + 162/142/24 
2/232/234 V 

-He^ 0—( I62/122/23 + 162/132/23 + 162/142/23 
2/242/234 V 

-he' ( 482/?2 + 482/I22/13 + 482/122/14 + 482/122/23 + 482/1-32/24 - 962/12 + 162/12̂ 13 
2/132/142/232/24 V 

+642/122/132/23 + 962/122/132/24 - 482/i22/i3 + I62/122/14 + 962/i2yi42/23 + 642/i22/i42/24 

-482/122/14 + I62/122/23 - 482/122/23 + I62/122/24 - 482/122/24 + 482/i2 - I62/132/24 + I62/132/142/23 

+ 162/132/142/24 + 162/132/232/24 - 162/132/24 - 162/142/23 - 162/142/23 + 162/142/232/24 

1 / \ 
+e" — - 642/122/132/14 - 64-2/i32/i42/23 - 642/i32/i42/24 

2/132/142/134 V / 

+e- ^ ( - 162/fo - 8O2/102/13 - 16yliyi4 - ^^yhyia - I62/122/24 + 'i'^vh 
2/132/232/1342/234 V 

+322/122/13 + 162/122/132/14 - 482/i22/i32/24 + 8O2/122/13 + I62/122/14 - 48j/i22/i42/23 + I62/122/14 

+322/122/23 + 162/122/232/24 + 8O2/122/23 + 162/122/24 + I62/122/24 - 16yi2 + 322/132/23 + 322/̂ 3 

+ 482/132/14 2/23 - 162/132/142/24 + 322/132/14 + 322/132/23 + 481/132/23̂ 24 - 642/132/23 + 642/132/24 

-482/132/24 + 642/?42/23 - 162/142/23^24 - 482/142/23 + 322/53 - I - 322/232/24 

+e^ f - 482/?-) - 322/10 2/14 - 322/̂ 2̂ /23 + 962/12 + I62/122/14 - I62/122/142/23 

2/132/242/1342/234 \ 

+322/122/14 + I62/122/23 + 322/122/23 - 482/i2 + 162/̂ 42/23 + 162/?4 + I62/142/23 - 482/i42/23 + I62/23 

+ £ ^ — - o — f - 482/122/14 - 482/142/23 - 482/142/24 

2/132/134 V 
+£" ( - 482/?o - 322/122/13 - 322/i,2/24 + 96yi2 + I62/122/13 - 162/122/13̂ 24 

2/142/232/1342/234 V 
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+322/122/13 + 162/122/24 + 322/122/24 - 487/12 + I62/132/24 + I62/13 + I62/132/24 " 482/132/24 + I62/24 

+e^ ( - 162/?2 - I62/102/13 - 802/192/14 - I62/122/23 - 8O2/192/24 + 321/^9 + I62/122/13 

2/142/242/1342/234 V 

+162/122/132/14 - 482/122/132/24 + I62/122/13 + 322/i22/i4 - 482/122/142/23 - I6O7/122/142/24 + 8O2/122/14 

+ I62/I22/23 + 162/122/232/24 + I62/122/23 + 327/122/14 + 802/122/24 - I62/12 + 647/̂ 32/24 - 162/132/142/23 

+647/132/142/24 + 322/132/14 - I62/132/232/24 - 187/132/24 + 482/142/24 + '^'^yU + 642/i42/23 

+ 642/142/232/24 - 482/142/23 + 482/142/24 + 322/142/24 + 322/232/24 + 322/24 

1 
+£" 2 ~ ~ 482/122/13 - 482/132/23 - 482/132/24 

2/142/134 V 

+ ê  9— ( - 642/122/232/24 - 647/132/232/24 - 642/142/232/24 
2/232/242/534 V 

+ r f - 487/122/24 - 487/132/24 - 482/142/24 
2/232/i34 V ' J 

+e" 9— ( - 482/122/23 - 48yi32/23 - 482/142/23 
2/242/534 V / 

+e ( - 322/?9 - 322/192/13 - 322/i22/i4 - 322/i22/23 - 327/̂ 92/24 + 322/̂ 2 - 327/i22/l3 
2/132/142/232/24 V 

-487/122/132/14 - 962/122/132/23 - 162/122/132/24 + 322/122/13 - 322/i92/?4 - I62/122/142/23 

-962/122/142/24 + 322/122/14 - 322/122/23 - 482/122/232/24 + 327/122/23 - 322/122/94 + 322/122/24 

-322/12 - I62/132/24 + 167/132/14^23 + 162/132/142/24 + 167/132/232/24 - 162/13^24 - 16yi32/24 

-I62/142/23 - I62/142/23 + 162/142/232/24 - 162/142/23 

1 / 
+e 9— 322/122/132/14 + 322/i32/i42/23 + 322/i32/i42/24 

2/132/142/134 V 

+e ^- ( 162/19-2/13 + 162/19-2/23 - 327/^2 - I62/122/13 - 327/i27/i32/i4 - 487/122/13 
2/132/232/1342/234 \ 

-322/12^14 + 322/122/14^24 - 162/12^23 - 32yi22/232/24 - 48yi22/23 - 322/122/24 " 322/i32/23 

- 1 6 y j 3 - 322/132/14^23 - 162/i3yi42/24 - 162/132/14 - 322/132/23 - 327/137/932/24 - 327/137/54 

+642/132/24 - 322/̂ 4^23 - 167/142/23^24 + 642/142/23 - I62/23 - 162/232/24 

1 

2/132/242/1342/234 
32y?2 + 482/122/14 + 482/122/23 - 962/i2 + 162/i22/i4 + 642/i22/i42/23 

-802/122/14 + I62/122/23 - 807/122/23 + 322/12 + I62/142/23 - 327/i4 -f I67/142/23 - 327/142/23 - 322/23^ 

+ e — ^ ( 487/122/14 + 482/142/23 + 487/147/24 
2/132/134 
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+e (s'2yh + 482/12^13 + 48̂ 122/24 - 962/i2 + 162/122/13 + 642/i22/132/24 
2/142/232/1342/234 V 

-8O2/122/13 + I62/122/24 - 802/122/24 + 327/12 + I62/132/24 - 322/13 + 16yi32/|4 - 322/132/24 - 322/24 
/ 

+e (I62/122/14 + 162/1̂ 2/24 - 322/12 - 322/122/13 - 322/122/132/14 + 322/i22/i32/23 
2/142/242/1342/234 V 

-I62/122/14 - 1282/122/142/24 - 482/122/14 - 322/122/23 - 322/122/232/24 - 16yi22/24 " 481/122/24 

-322/132/24 - 162/132/142/23 - 642/132/142/24 - 162/132/14 - I62/132/232/24 + 642/132/24 - 641/142/24 

-I62/14 - 322/142/23 - 642/142/232/24 + 642/142/23 - 642/142/24 + I282/142/24 - 162/232/24 - 162/54^ 

1 / \ 
+e 482/122/13 + 482/132/23 + 482/132/24 

2/142/134 V / 
1 / \ 

+ e 2~ 321/122/232/24 + 322/132/232/24 + 322/142/232/24 
2/232/24̂ 234 V 7 

1 
l-e-

2/232/234 
482/122/24 + 482/132/24 + 482/i42/24 

+ f — K — ( 482/122/23 + 482/132/23 + 482/142/23 
2/242/234 V 

+ ^ ( 322/?2 + 322/122/13 + 322/̂ 22/14 + 322/i22/23 + i''2yhy24 + I62/122/13 + 322/i22/i32/i4 
2/132/142/232/24 V 

+ 322/122/132/23 + 162/122/132/24 + 162/12^14 + 16yi22/l42/23 + 32yi22/l4y24 + 16yi22/23 + 322/122/232/24 

+ I62/122/24 + 162/132/24 - 162/132/142/23 - 162/132/142/24 - 162/132/232/24 + 162/132/24 + 162/132/24 

4-162/14^23 -h 162/142/23 - 16yi42/232/24 + 162/142/23 
J 

+ ( - 322/1, - 322/̂ .,2/i3 - 322/122/14 - 321/̂ 22/23 - 322/1̂ 2/24 + 642/f, + I62/122/132/14 
2/132/232/1342/234 V " " 

-642/122/132/23 - 322/122/132/24 + 162/i2y?4 - 322/122/142/23 - 322/i22/i42/24 + 162/122/23̂ 24 + 162/12̂ 24 

+ I62/132/23 + 162/132/142/23 + 162/13^142/24 + 162/132/23 + 162/132/232/24 - 322/132/24 + 162/142/232/24 

-322/14^23 

+ ^ f - 162/?2 - 322/122/14 - 322/122/23 + 322/i2 - I62/122/14 - 48yi22/i4y23 

2/132/242/1342/234 V 

+322/122/14 - I62/122/23 + 322/122/23 + I62/12 - I62/142/23 + I62/14 - I62/142/23 + I62/142/23 + I62/23 

1 / 
H - I62/122/I4 - 162/142/23 - 162/142/24 

2/132/1:34 V 
+ ( - I62/L - 32yi22/i3 - 322/122/24 + 322/1, - I62/122/13 - 482/i22/i32/24 

2/142/232/1342/234 V 

+322/122/13 - 162/122/24 + 32i/i22/24 + I62/12 - I62/132/24 + 162/13 - I62/132/24 + I62/132/24 + I62/I4 
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- 32yf2 - 322/122/13 - 322/i22/i4 - 322/12̂ 23 - 322/i22/24 + 642/̂ 2 + 
2/142/242/1342/234 

+ I62/122/13 + 162/122/132/14 - 322/122/132/23 - 322/i22/i32/24 - 322/122/142/23 + 322/i22/142/24 

+ I62/I22/23 + 162/122/232/24 + 167/132/142/23 + 162/132/142/24 + 162/132/232/24 - 322/132/24 

+ 162/142/24 + 167/142/232/24 - 322/142/23 + 162/142/24 - 322/142/24 

1 

+-

2/142/134 
J 

2/232/I34 
1 

2/242/934 

I62/122/13 - 162/132/23 - 162/132/24 

I62/I22/24 - 162/132/24 - 162/142/24 

I62/122/23 - 167/132/23 - 167/142/23 (4.1) 

where we have kept terms up to 0{e^) and where the finite term can be found at the end 

of eq.(4.1). Although this expression is rather long, for the most part, we shall use i t to 

obtain approximations in the single and double unresolved l imits. 

The fZ-dimensional phase space derived in (B.6) is given by, 

/ A \ - l / 2 

NP 29 j dO^_i AQ,d-2 dOd-S d 5 i 2 d5i3dSi4d523d524d534 

X 
- A 4 \ — 
M 2 

Ksi2 + 5 i3 + 5l4 + 523 + 524 + •S34 " M ^ ) , (4.2) 

Wl i t h . 

A 4 = — 
1 

l"6L 
•Sl2^-S34^ + 513^524^ + Sl4^523^ 

(4.3) — 2 |^5i25235345i4 + 513523524514 + 5i25245345l3^ 

In the resolved phase space region which is the region of the four-particle phase space left 

over when all unresolved regions are excluded, the matrix element squared is finite. Thus 

for the evaluation of the resolved contributions, we only need to consider the 4-dimensional 

analogue of the mat r ix element squared given above by eq.(4.1) and integrate i t over the 4-

dimensional phase space restricted to this resolved region. The four dimensional analogues 

for the four particle matr ix element squared and phase space can be obtained by setting 

e = 0 in both eq.(4.1) and eq.(4.2). Including the overall coupling factors, we have, 

N ' - l \ f a , \ ^""^'^ ^2^Y [ \Mn3.W{M.,p,,p,,ps.,p,), (4.4) 
2A^ 27r 27r 
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where the 4-dimensional phase space given by, 

dP^iM,pr,p2,P3,P4) = (27r)-«di?^(M,pi ,p2,P3,P4) , (4.5) 

is understood to be restricted to non-singular regions. 

4.2 Single unresolved contributions 

We distinguish two classes of single unresolved real contributions depending on whether 

the photon or the gluon is unresolved. I f the photon is unresolved, i t is collinear to 

the quark^. I f the gluon is unresolved i t can be coUinear to the quark, collinear to the 

antiquark or i t can be soft. The possible final state configurations of simple unresolved 

contributions yielding a 7 + 1 jet event were displayed in Fig.3.2.(b). 

I n Sections 1.5.3 and 2.4 we have discussed the simple collinear q — •y behaviour of 

the cross section aqq^ and the simple q — g collinear and soft gluon behaviour of aqqg. In 

both cases we found that the three-particle differential cross sections could be writ ten 

as the product of the two particle cross section for the scattering of a quark-antiquark 

pair, (To and one universal one-particle unresolved factor. These were Cp^dz, in the 9 — 7 

l i m i t , Cp i n the q ~ g l i m i t and Sp in the soft gluon l imi t . I t can be shown [25] that this 

behaviour of the three-particle differential cross section can be extended to cross sections 

w i t h more than three particles in the final state. In the various single unresolved regions 

of the four-particle phase space we therefore expect to be able to write the differential 

cross section for the scattering of a quark-antiquark pair wi th a photon and a gluon as 

the product of one particle unresolved factors and a three-particle cross section. However 

as the cuts defining the single unresolved regions in the 4-parton phase space differ f rom 

those defining the single unresolved regions i n the 3-parton phase space, the one-parton 

unresolved factors w i l l be slightly modified. 

-Recal l that we only consider contributions where the photon is collinear to the quark and obtain the 

contribution where the photon is collinear with the antiquark by multiplying it by two. 
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Ult imate ly the 7 + 1 jet rate wi l l be evaluated numerically using the hybrid subtraction 

method. W i t h i n this method, in a given singular region only the matrix element squared 

is approximated. Consequently we w i l l choose the boundaries of the single unresolved 

regions according to the following criteria. 

(a) W i t h i n those boundaries the known single unresolved approximations of the matr ix 

element squared are accurate approximations of the " f u l l " 4-particle matrix element 

squared. 

(b) No singular region is omitted or double counted. 

The resulting contributions to the 7 + 1 jet rate in each single unresolved region of the 

four-particle phase space are given below. 

4.2.1 The unresolved gluon contributions 

The collinear quark-gluon contribution 

In the region where the quark and the gluon are collinear we have^: 

Sqg = 5 i4 < S^riJ^, Sqg = S24 > 5 m i n - ^ , Sq^g = 5i34 > 5inin, 5,-^ _ 523 > 5 iTun; 

(4.6) 

or i n terms of the scaled invariants yij, 

Uqg = yi4 < yniin?/l24, Vqg = ?/24 > !/min2/l24, Uqig = 2/134 > 2/min, Uq^ = 1/23 > Vmin-

(4.7) 

The quark and the gluon cluster to fo rm a new parton Q such that. 

Pi +P4 = P Q , 

where particles 4 and 1 carry respectively a fraction y and 1 — y of the parent parton 

momentum pQ, 

Pi = ( l - y ) p Q , p4 = ypQ. (4.8) 

^As usual, M is the mass of the final state. 
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In this l i m i t , the invariants s^, S24 and 5124 become, 

•S12 = (1 - y) SQ2, S24 =ySQ2, Si24 = SQ2 (4.9) 

while the invariants containing p^ = p^ become, 

Sl3 = (l - y) SQ3, S34 = ySQ3. 

The matr ix elements and phase space exhibit an overall factorization in this collinear 

l i m i t . We have, 

|Â 1234P ̂  Pi4^Q{y,S24)\MQ23\'., (4.10) 

w i t h , |A^Q23p the three-particle matrix element squared for the scattering of a quark-

antiquark pair w i th a photon and P i 4 ^ g ( j / , 5 1 4 ) given by eq.(1.30) the simple collinear 

factor which is the product of the inverse of the small invariant and the Altarelli-Parisi 

spUtting funct ion, 

Pu^Qiz,Si4) = — P i 4 ^ Q i y ) . 
Si4 

The four particle phase space becomes, 

dPi'\M,p^,p2,P3,P4) dPt\M,pQ,p2,P3)dP^;kPuP4,y) (4.11) 

where d7?3'^^(M,PQ,p2,Ps) is the three-particle phase space in d-dimensions given in Ap­

pendix B by eq.(B.5). The coUinear phase space factor dP^^j(pi,p4;y) given in eq.(1.33) 

reads, 

dPS{PuP4,y) = Yo^^^ZTT^'^'^^^i'^^y^^-y^V- (^-12) 

To evaluate the quark-gluon collinear factor, we need to integrate the collinear matrix 

element squared over all unresolved variables defined in this simple collinear region, 

5 i4 and y. (4-13) 

The fractional momentum y is defined wi th respect to the momenta carried by the colour 

connected particles: the quark, the antiquark and the gluon. In particular y is defined as 

the following ratio, 

y = 
y?9 ^ y2±_ (4.14) 
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Since ?/24 > ymin!/i245 the lower boundary of the y integral is y^^^ exactly as in the sim­

ple quark-gluon collinear region of the 3-parton phase space. Consequently the simple 

collinear factors Cp in the 3-parton process (1.35) and Cf in the 4-parton process wi l l be 

similar. Indeed we have, 

CF = j 9 l y j ^ 1 4 - . Q ( ^ , 5 i 4 ) d P £ ? ( p i , P 4 , y ) 

/ d2/i4 y^r' / [y{l - y)\-' Pr^-^giy) 
I — e] Jo L Jymin J 27rV 2A^ J \ M ^ J T i l - e ) Jo LA.i„ 

= CpiyuAy = CF(yQq-r- (4.15) 

Pu t t ing all the factors together, we find that in the single unresolved quark — gluon 

l i m i t the four particle differential cross section dcr^ factorizes. 

d . . . ( ^ ) ( f i ) f 2 f ? ) 4 ( 2 . r ( , f 7 i A ^ „ 3 . N p r ( M , p „ p „ P 3 , f t ) 
Y z i V J KZirJ \ ZTT J ^ ^ J 

CFXJ(2irf-''\MQ23\'dRi'\A4,pQ,p2,P3) = CF x <JQq,. (4.16) 

where crgj^ is the three-particle cross section for the scattering of a quark-antiquark wi th 

an additional hard photon. 

The collinear antiquark-gluon contribution 

In the region where the antiquark and the gluon are collinear we have, 

_ -̂ 124 _ 5i24 _ _ 
Sqg = 524 < 5 i n i n - ^ ^ , 5,^ = 5 i4 > 5min-j^5 5,^ = 5i3 > 5nun; Sq^g = 5234 > 5niin-

(4.17) 

The resulting contribution in this region of the four particle phase space to the 7 + 1 jet 

rate is similar to that in the q — g collinear region. I t is obtained exchanging the role of 

the quark and antiquark and therefore yields, 

dcT4 ^ CF aqQ^. (4.18) 
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T h e soft gluon contribution 

In order to match onto the simple coUinear quark-gluon regions, the soft gluon region is 

defined as follows, 

^qg = •Sl4 < • S m i n " ^ ^ anCl Sqg — 524 < •Smin ' ^l'^ " ^^"^ •5min; _ 523 > •^miiT 

(4.19) 

The four particle matrix element squared and phase space factorize in the soft gluon limit, 

|yMi234r -> |Ml23|Vl2(4), (4.20) 

where /i2(4) is the eikonal factor defined in eq.(1.20), 

514524 

In this limit, the four particle phase space divides into a phase space for the three hard 

(resolved) particles dP3'^^(7¥,pi,p2)P3) and a soft phase space factor dPj^]j(pi,p2,P4)-, 

dPi''(M,Pi,P2,P3,P4) -> d P f (7¥,Pi,p2,P3)dPi5,(pi,P2,P4), (4-21) 

where the soft phase space factor reads, 

{ATTY d5i4d524 
dPlUp„P2,P.) = I 6 . 2 r ( l - e ) 512 

514524 
1 1 / 1 . / / O . I / A I - _ . , I 

•512 

As before, all of the dependence on the unresolved variables is collected into the soft 

approximations to the matrix elements and the phase space. We find, 

SF = /<7.' ( ^ ^ ) / l 2 ( 4 ) d P , t ^ , ( p i , P 2 , P 4 ) 

= {yi2r''SF = {y,,)-''S^, (4.22) 

where Sp is the soft gluon factor in the 3-parton process given in eq.(1.25). The modifica­

tion of this soft factor in the 4-parton process is due entirely to the changed boundaries. 

As usual, the contribution to the cross section from the single soft singular region 

factorizes, as follows (c.f. eq.1.24), 

da^^ SpX (Tqqg- (4.23) 
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T h e s u m of the unresolved gluon contributions 

The sum of the single unresolved ghion contributions is then given by. 

2CF + SF O-qq^ = Rqq{^)aqq^ , 

where the real unresolved factor i?gg(-y) depends on the invariant mass of the quark-

antiquark pair and is given by, 

qq(i) 2IT\ 2N J r ( l - e) V M2 

X % n + ! - 2 ln\y^^) - 3 ln(y„-?/^„) + 7 - ^ (4.24) 

4.2.2 The collinear quark-photon contribution 

In the region where the quark and the photon are collinear we have, 

_ 5 i 2 3 _ Si23 _ _ 
Sqy — 5 i 3 < - S u i i n - j ^ , Sq^ — S23 > ^raia. ' '^975 ~ •Sl34 > •Smin? ^qg — •^min; 

(4.25) 

so that the quark ( = 1) and photon (= 3), cluster to form a new parent parton Q such 

that, 

Pi + P 3 =VQ-

Each carries respectively a fraction z and 1 — z of the parent parton momentum pg, 

Pi = ( l - 2 ) p Q , P3 = ZPQ. 

In this hmit (513 < ^ ) the invariants S12 and 523 are given by, 

Su = (1 - z) SQ2, S23 = Z SQ2, (4.26) 

while the invariants containing p4 become, 

5 i 4 = (1 - z) 5(53, 534 = Z SQ3. 
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The four-particle matr ix element squared and phase space factorize in exactly the same 

way as i n the quark-gluon collinear l imi t wi th the role of 7 = 3 and ^ = 4 being inter­

changed and y replaced by z. Unlike the quark-gluon case however, the photon is observed 

in the f inal state and hence only 513 is an unresolved variable, z which is the fractional 

momentum carried by the photon inside the quark-photon cluster is defined wi th respect 

to the momenta carried by the electromagnetically connected particles, 

^ ^ Vqi _ ^23 (4.27) 
Vqqi 2/123 

I n this l i m i t , the four particle differential cross section factorizes, 

d<T4 ^ CF-ydz X j { 2 n f - " ' \ M Q 2 , \ ' d B ! i \ M . , p Q , p 2 A H ) . , (4.28) 

where C T Q ^ ^ is the three-particle cross section for the scattering of a quark-antiquark pair 

and a gluon. A n d Cp-y^^z is the simple quark-photon collinear factor of the 4-parton 

process. As in the quark-gluon collinear case, this factor is related to the known 3-parton 

collinear factor, Cp-fdz given by eq.(1.35) by, 

Cp-ydz = CF^dz{yQq-)-\ (4.29) 

Concerning the boundaries of the single collinear regions of the 4-parton phase space 

it is worth noting the following. In both, q — g and 9 — 7 colhnear regions we have 

required 7/134 > y^n in order to guarantee that these regions match onto the triple colliuear 

region defined by 1/134 < Umin- However, when both invariants yis and yi4 are small these 

two simple collinear regions overlap. The contribution to the total cross section in this 

overlapping region is however of 0(yr„in) and therefore negligible. Nevertheless, as we shall 

ul t imately evaluate the differential cross section within the hybrid subtraction method, 

i t is important to ensure that the matrix element squared is correctly approximated 

w i t h i n this region too. Indeed, by requiring that 2/134 > ymin, we can be sure that in 

the overlapping region the matr ix element squared is correctly described by the sum of 

the simple collinear g — 7 and q — g approximations. 
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To conclude, in this chapter we have given the explicit forms for the matrix element 

squared and phase space relevant to the resolved and single unresolved real contributions. 

The contributions to the 7 + 1 jet rate arising f rom the four particle process (when all 

the f inal state particles are resolved) and f rom the three particle processes as in eq.(4.16) 

and eq.(4.23) w i l l be evaluated numerically. This wi l l be discussed in detail in Chapter 9. 
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Chapter 5 

The two-particle unresolved real 

contributions 

I n the previous chapter we have discussed the calculation of the theoretically resolved and 

single unresolved real contributions relevant to the tree level process 7 * qq'yg- Each of 

these two classes of real contributions corresponds to final state configurations where more 

than two particles are theoretically "seen". I n each case, we gave the analytic expressions 

for matr ix elements squared and phase spaces. We also saw that a 7 - f 1 jet event can only 

arise i f some final state particles are clustered together by the jet algorithm, and that the 

finite differential cross sections w i l l ultimately be evaluated numerically. The evaluation 

of the two-particle unresolved real contributions, on the other hand can be performed 

analytically and is the subject of the coming chapter. 

For the two-particle unresolved contributions, which can arise when the photon and 

the gluon are theoretically "unseen", the final state configuration already corresponds to 

a 7 - f l jet event. Hence the final state particles wi l l not be clustered further by the jet 

algorithm. As mentioned in Chapter 3, these double unresolved real contributions are 

of three types ^: the triple collinear, the double single collinear and the soft/collinear 

1 Recall that for the evaluation of all these contributions we will always only consider contributions 

corresponding to the configurations where the photon is collinear to the quark. The contributions corre-
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contributions. 

This chapter contains the calculation of these two-particle unresolved real contribu­

tions to the tota l 7 +1 jet differential cross section at 0{aas) and is organized as follows. 

I n Section 5.1 we demonstrate the factorization properties of phase spaces, squared ma­

t r i x elements and fu l l y differential cross section in the triple coUinear l imi t . In Section 

5.2 we present the calculation of the phase space integrals over the triple collinear region. 

The evaluation of the soft/collinear and double single collinear contributions is discussed 

in Sections 5.3 and 5.4 respectively. In Section 5.5 we present the result for the sum of 

these contributions. Finally, Section 5.6 is dedicated to a study of these contributions in 

different strongly ordered l imits . 

5.1 The triple collinear contributions 

As we saw in Chapter 3, the triple collinear configuration arises when the gluon and 

the photon are collinear to the quark. The triple collinear configuration is illustrated in 

Fig.3.2.(c). I n order to evaluate the triple colhnear contributions to the photon -|-1 jet 

rate we need to determine the appropriate approximations for the matrix element squared 

and phase space in the triple collinear l imi t and perform the phase space integrals over 

the unresolved variables. 

The t7Hple collinear region of phase space is defined by. 

= 5 i 3 4 < 5 m i n and Sgg = 524 > •Smin- (S-l) 

Hence the tr iple collinear l imi t is obtained considering 5 ^ 5 = 5134 < s^n- In this hmit , 

the photon, gluon and quark cluster to fo rm a new parent parton Q such that, 

Pq+Pi+Pg^PQ- (•5-2) 

sponding to configurations where the photon is collinear to the antiquark are identical. When summing 

all the contributions, we will therefore multiply the result obtained considering the photon associated 

with the quark leg by two. 
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The photon, the gluon and the quark carry respectively a fraction z, y and (1 —y — z) of 

the parent parton momentum pq, 

Pi=zPQ, Pg^yPQ, Pq = {\-Z-y)pQ. (5.3) 

The invariants Sqq = Si2 ,Sqy = S23 and Sgg = S24 are given by the following, 

^12 = {l-y-z)sQ2 = i l - y - z ) M \ 

523 = zsQ2 = zM^, (5.4) 

524 = ysQ2 = yM^, 

where M is the invariant mass of the final state. 

The algebraic structure of these double unresolved contributions is unique to the triple 

collinear l i m i t of the matr ix element squared, and when analytically integrated over the 

singular regions of phase space wi l l form the triple collinear factor. These contributions 

are expected to arise in analytic calculations of exclusive quantities at the second order 

in perturbation theory. Such calculations have, to the best of our knowledge, not been 

performed before in the literature. Hence, in Section 5.2 we wi l l present the evaluation of 

the t r iple collinear contributions to the 7 -|-1 jet rate in some detail. 

5.1.1 The triple coUinear limit of the matrix element squared 

As usual to simplify the notations, we choose to label the final state particles as follows, 

g = l , g = 2, p = 3, 5 = 4. 

We are interested in the triple collinear l imi t of the matrix element squared for the 

scattering of a quark-antiquark pair wi th a photon and a gluon. In this l i m i t , 1 |) 3 || 4 

and the (f-dimensional four-particle matrix element squared given by eq.(4.1) factorizes, 

^ ^ 1 2 3 4 ^ PI3A^Q{Z, y, 5 i 3 , ^14 , ^134) MQ2 ^• 
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| A ^ Q 2 p is the two-particle matrix element squared and ^134^(5 (2 , 5 i 3 , 5 1 4 . 5134) defines 

the triple collinear matr ix element squared. This triple coUinear matrix element squared 

is obtained by keeping only the terms which contain any pair of the invariants, 

Sqf = 5 i 3 , Sqg = 5 i 4 and 5,^^, = 5 i 3 4 , 

i n the " f u l l " four particle squared matrix elements (given by eq.(4.1)). I t reads, 

P i 3 4 ^ q ( ^ , J/, •Sis, 5 1 4 , 5 1 3 4 ) = 

^ 4 [ l - z - y){l + { l - z - y f - t[z' + zy + y') - e'zy) 

•S i35 i4 zy 

_̂  4 { l - z - y){l - z + e^zy) + (1 - yf - e(l - y){z^ + zy + / ) + e^zy 

S13S134 zy 

^ 4 { l - z - y){l - y + e^zy) - f (1 - zf - e( l - z)iz^ + zy + y'-) + ^zy 

5145134 zy 

- l ( L z i ) ( ( i - . ) f H + ( i _ , ) i I i _ 2 , ) . (.5,5) 
5 f 3 4 V 5 i 4 S l 3 / 

The same factor is appropriate for the collinear q^yg l imi t of the Z —J- 9^75/, Z —> qqjfg 

and Z qqjgg squared matr ix elements. We expect this triple collinear factor to be the 

generalization of the simple collinear factor wi th three collinear particles instead of two 

and to be as universal as the single soft and single collinear matrix element squared 

encountered i n Chapter 1 and 2. 

In terms of the scaling variables yij = 

Pl3i^Q{z, y, 5 l 3 , 5 i 4 , 5134) = -^PI34-.Q{Z, y, ?/i3, J/14, ^ 1 3 4 ) - (5.6) 

5.1.2 The triple collinear limit of the phase space 

The 4-particle phase space in c?-dimensions derived in (B.6) is given by. 

I dPi'^ = {2^)'-''J dK (d) 
4 , 
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where, 

dR id) : - A 4 ) 
-1/2 

X 

M 2 29 
y dOd_i dOrf_2 d(]ei_3dsi2 d5i3d5i4d523ds24d534 

A 4 \ — 
M2 

<5(.Si2 + 5i3 + 5i4 + S23 + 524 + 534 - M^), (5.7) 

w i t h , 

512^534^ + 5i32s24^ + ^14^523^ 

2 5i2523534'Sl4 + •Si3523524'Sl4 + •Si2524'S345l3 (5.8) 

I n the tr iple collinear l imi t of the four-particle phase space, as the triple invariant 5134, 

which is constrained in the triple collinear region to be less than Smin ; does not appear as 

an integration variable in the expression of the four-particle phase space, dPj ' ' ' we need 

to insert i t using, 

y d S i 3 4 (5(̂ 13 5 i 4 - I - 534 - 5134) = 1. 

Using the definitions of 512 , ^ 2 3 , ^24 in the triple collinear l imi t , given in eq.(5.5), the 

product of the integration variables dsij in the 4-particle phase space given above yields, 

d 5 i 3 4 d 5 i 3 dsi4 ds34 dsi2 ds23 d.S24 - > d 5 i 3 4 d 5 i 3 d 5 i 4 d 3 3 4 dsQ2 dz dy {sQ2y. 

The Gram determinant becomes, 

- 16 ^ 
-{{1 ~ y - Z) S34 - y Si3 - Z S u f + 4ZJ / 513 5 i 4 

In the tr iple coUinear Hmit, 5434 = 5134-514-1 -534 is less then s-^^ and the invariants 513 , S14 

and 534 are of 0{s^n)- Consequently, all the terms in are of the same order, namely 

of O(s'l^jj^) and none of them can a priori be neglected. This differs f rom the single soft 

or collinear phase space where the approximation simplified the phase space. 

A particular feature of the triple collinear l imi t is the factorization of the four-particle 

phase space, dR^f' into the 2-particle phase space dR2^\M, pq, P2) and a triple coUinear 

phase space factor, 

d i ? f ( M , p i , p 3 , p 4 , P 2 ) dRi'\M,pQ,p2)dRi%Q ,Pl,P3,P4) d 5 i 3 4 , 
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and equivalently. 

{2Ky-^'dRf'^ ^ i27ry-MRi'^ X (27r)2-2'^di?S d5i34. 

id) (d) 
cot 

di?2 iM,pQ,p2) is the two particle phase space given accorchng to (B.3) by, 

d i? (^) (M,pg ,P2) = ( 5 Q 2 ) ' ^ ^ d 5 g 2 5 ( 5 g 2 - M ^ ) , 

while the tr iple collinear phase space factor reads, 

d ^ S ( P Q , P l , P 3 , P 4 ) d5i34 : 
1 

L16 
.2d-i 

d - i 
2 1 

1 ^ 
2 

A , 
d - i 

2 
A' 

<5(5l3 + 5l4 + 534 " 5l34) dn<i_2 dQd-3 

X d5i34 d5i3 d5i4 ds34 dz dy (5.9) 

or i n terms of the dimensionless invariants j / , j = 

dR ji (PQ, P i , P3 , P 4 ) d 5 i 3 4 = F dyi34 dyi3 d?/i4 d?/34 d^ dy 

X 6{yi3 + yi4 + 2/34 - 2/134) 

A;' 
d-4 

2 
A : 

(5.10) 

w here A ' = M ^ A " and the overall factor F is given by. 

F = 2-' dnd-2 dnd-3 [ M Y " ' (5.11) 

The angular integration terms in eq.(5.11) can be intuitively understood as follows: While 

the remaining invariants {yij] i n the problem are fixed, a rotation of the 95'7-s3'stem 

around the q axis is s t i l l possible {dO,d~2) and the parity of the 55r7-system allows two 

combinations {dild-3). Performing these angular integrations and setting c/ = 4 — 2e, we 

find. 

F A L J r ( l - 2 e ) 4 
(5.12) 
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5.1.3 The triple collinear limit of the differential cross section 

As for the matr ix elements and phase space, the four particle differential cross section 

for the scattering of a quark-antiquark pair wi th a photon and a gluon, factorizes in the 

tr iple coUinear Hmit, 

d(T4 = 
A ^ ^ - l 

2A^ 2TI 27r 
4(27r)^(M') ' ' / |yMi234pdPi ' ' (M ,p i ,p2,P3 ,P4; 

TCr^dzx J \MQ2\'dPi'\M,pQ,p2) (5.13) 

E<T0 
As usual,-CTQ is the two-particle cross section while the dimensionless factor TCp-^dz con­

taining all the singularities, is formally given by, 

' N ' - l \ ' "~ 
TCp^dz = 

2N 
^ 4 ( 2 . ) ^ ( M f 7 d 5 i 3 4 d / ^ 5 | A ^ . . r , 

where 

\M coll M' 
-Pi34^Q{z,y,yi3,yy4,yi34). dP^S = {'^^Y~''dRi%Q:PuP3;P^)-

The tr iple collinear contribution to the differential cross section is then obtained as the 

product of (To and TCp-ydz. To evaluate TCp-ydz we need to integrate the triple collinear 

factor Pi34^Q for the emission of a photon and a gluon off a quark over all "unresolved" 

variables defined in the triple collinear phase space region. These unresolved variables 

appear i n the denominator of Mcot ^, and are given by. 

2/134, y i 4 . 2/13 anc 

I n the next section we shall evaluate these four phase space integrals. Before doing so, 

we shall briefly outline how one can organize the calculation. In fact, the large number 

of terms in this contribution can be conveniently managed if TCp-ydz is decomposed 

according to the scaled invariants {yij} present in the denominator of the triple collinear 

mat r ix element squared, - P I 3 4 ^ Q ( - ^ , 2 / , 2 / i 3 , 2 / i 4 , 2 / 1 3 4 ) given in eq.(5.5). We consider, 

TCp^dz = Hdzxl TC^p] 
2/132/14 

1 

2/132/134 

1 

2/142/134 
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Lyi42/l34 

H is an overall factor and is given by. 

VIA 

2/l32/f34 2/?34 

H = 
27V 2 J [ 2 K ) ^ ^ ) 

2e 
i{2n) -2+4e F 

where F is the factor present in the triple colHnear phase space factor of eq.(5.r2). H then 

reads. 

H 
2TT 

1 
(5.14) 

^ 2iV J \M'-J \2KJ \2W J 4n T{1-2e)' 

When explicit ly evaluating the phase space integrals, we shall see that if these integrals 

can be reordered such that the first integral does not have the integration variable {yij} in 

the denominator of the integrand, the integration procedure simplifies. This simplification 

w i l l be achieved for all terms in TCp^dz apart f rom TCp} —-— . 

The integration variable ?/i34 is already constrained by the definition of the triple 

collinear region, so that for all terms we w i l l choose to do this integral last. The lower 

boundary of the y integral is fixed to be j / m i n to avoid overlapping wi th the soft/collinear 

region. The integration variables yi3 and yi4 are unconstrained and we choose to integrate 

over these two variables first. 

As an example we consider the expression for the differential cross section TCp^ ynym 

2/142/134 
= / d y i 3 4 / dy dy^4 dy ia i -A^J ^ 3 4 ^ 0 

Jo Jymin Jo Jyi3a 2/142/134 J 

The Gram determinant is wri t ten as a quadratic in yi3 and the boundaries of the yi3 

integral, i.e. yi^a and yi3b. are the solutions of A 4 = 0. The upper boundaries of the 

subsequent integrals yi4 and y are fixed by requiring that A^' is negative. Note as well that 

the integration over j/34 has been performed using the delta function ^ ( 2 / 1 3 + 2 / 1 4 + 2 / 3 4 ^ 2 / 1 3 4 ) -

Moreover to simplify further the notations, we have chosen to denote by ^134^15 
3/141/134 

the part in PI34^Q{Z, y, j / i 3 , y^, 2/134) which contains the denominator {2/142/134} • Similarly 
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we can wri te . 

1 

2/132/134 

rVmin y l - 2 / • ( l - y ) O T 3 4 rVlib „ . _ l / 9 _ f 
= / d?/i34 / dy / d?/i3 / d?/i4 [ - A 4 ] ' P134-Q 

1 

2/132/134. 

where the order of the integrations over ?/i3 and 2/14 has been swapped, since the integrand 

contains a factor { — 1 instead of | — } . The boundaries of the second and third integral 

(here 1/13 and y) are obtained in a similar way as for the expression of TCp}^: We write 

—A4 as a quadratic i n y^ and require that i t is positive. The other contributions, 

1 2/13 

.2/142/134 

can be obtained in an analogous way. 

2/14 

y i 3 y ? 3 4 
and TC}/^ 

y i34 

For r4;' 
1 

y i32 / i4 

we w i l l choose to consider, 

'•(l-z)yi34 

/ dyi34 / dy / dyi4 / dyis [-A4J 
Jo Jymin Jo Jyi3a 

P 134-^(3 
1 

2/13^14 

This contribution w i l l be harder to calculate because the first integral over yi3 has a factor 

of yi3 in the denominator of the integrand. 

For the whole tr iple collinear differential cross section TCp-ydz we wi l l therefore have 

to evaluate, 

r l - z / • ( l - 2 ) y i 3 4 . fyi3b l / 2 _ e 
dyi3 [-A4J 

rymin / - i - z / • ( i - z ) y i 3 4 /-yisb . / n - i / 
r C F ^ d ^ = Hdz X / dyi34 / dy / dyi4 / dyi3 [ - A 4 ] 

Jo Jymin Jo Jyiia 

X { Pl34^Q 
1 

yi32 / i4 
+ A 3 4 ^ C 

2/13 

yi42/l34 
+ ^^134^^ 

Lfl4i/1 

/•2/min / - l - ^ f{l-y)yi3i fVlib 1 
i f d z X / d?/i34 / dy / dyi3 / dyi4 [ - A J 

7o Jymin Jo Jyit-' 

2/14 

+ - f l34-^Q 

/ 2 - e 

2/?34. 

X Pi 134-^Q 
1_ 

2/132/134 J 
134^Q 

2/132/134] 

(5.15) 

5.2 The triple collinear cross section 

We choose to divide the calculation of TCp-y into three distinct phases corresponding 

to three different types of contributions to TCp-y- These types are defined according 
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to the different double invariants {yij} present in the denominator of P I 3 4 _ , Q . We have 

contributions involving: { ^ j , { ^ } ^^d { ^ ^ ^ ^ } - For all these contributions, we perform 

the y integral in the range [ymin, (1 — z)] as the difference between integrations over the 

ranges, [0, (1 - z)] and [0, ymin]- We label the integrals by TCp'^'^ and TCpi^^ respectively 

for j = a,..., f and perform each integral separately. The f u l l cross section is thus. 

TC 0) TC TC ( j -2) 
Fy • 

5.2.1 Contributions involving ( 
VIA 

As an example, we present the calculation of TCp!^ 

Tc^;l 
1 

2/142/134 
= 4 / d?/i34 / dy 

Jo 2/134 Jymijx Jo 

1 f^" 1 / - ( l - ^ " * 1 

/134 / dy I d 2 / i 4 — Rl34^Q 

fyi3b 

/ d y i 3 [(2/136 - 2/13) (2 /13 - 2 / l 3 a ) . 

2/14 

- l / 2 - £ 

1 

l - z ) -

2/1342/14 

l - 2 £ 

explicitly. 

To s implify the notations, we define, 

Pi i 3 4 ^ g 
1 

2 / l 3 4 y i 4 

i^1^ ,2 / ) 
2/134 2/14 

such that P''{z,y) is independent of 2/134 and 2 / i 4 -

, ( c . l ) T h e contribution TC^"/ 

We shall first describe the calculation of TC^pf, the contribution to TC^p] for 0 < y < 

( 1 - 2 ) . W i t h the rescaUng 2/13 = X (2/136 - 2 / i 3 a ) + 2 / i 3 a , the 2/13 integral becomes, 

/ dx (2/136 - 2 / i 3 a ) ~ ^ ' [x ( l - X ) ] " ^ ^ ^ " ' • 

The X integral gives rise to a Beta function as defined in (A.6) such that, 

/ dxiyi 
Jo 

= 16% ( y i 3 6 - 2 / l 3 a ) 

1 2 2 r ^ ( l / 2 — e 
/136 - 2 / l 3 a ) ~ ^ ' [X(l - = (2/136 " 2 / l 3 a ) " ^ ' r ( l - 2e) 

-2e r ( l - 2e) 
P ( l - e ) ^ 
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where we have used the relation ( A . l ) between Gamma functions, r(a;). 

The difference between the upper and lower boundary of the first phase space integral 

raised to the power —2e, i.e. {yi3b — 2 / l 3 a ) " ^ ^ gives us the phase space factor which regu­

lates the integration over the unresolved variables. This wi l l be the case for each of the 

contributions to the triple collinear differential cross section. 

I f we solve — A 4 = 0 as a polynomial in y-is we obtain y i3a ,6 = [—^ ± ^] /2o: wi th , 

a -(1 - z ) \ , 13 = 2 { l - y - z ) [(1 - z)yi34 - 2/14] + 2yu y z , 

= 16yi4yz{l - y - z) [(1 - z)yi34 - j / 1 4 ] , 

and therefore, 

16' (2/136 - 2/l3a) 
-2e 

2/14 2/^ [ 1 - y - z ) [(1 - z)y,s4 - 2/14] (1 - z f . 

The posi t ivi ty of - A ^ ' impUes, yu < (1 - -2)2/134 and y < {1 - z) which leads to the 

natural choice of variables. 

y i 4 = v{l - z ) y i 3 4 and y = t{l - z ) , 

for which the regularizing phase space factor reads, 

16^2/13^ - 2 / i 3 a ) " ' ^ = \v{l-v)t{l-t)yl^,z 

The contribution, TCp^^ is thus. 

(5.16) 

TC 
( c . l ) 
F-y 

2/142/134, 

X r " d y i 3 4 ( 2 / 1 3 4 ) - ^ - " / ' dt [t{i - t ) r [ dv I [{I - v ) v r n z . , t y 

Jo Jo JO V 

According to (A.6) , the v (or 2/14) integral gives a Beta function, 

e r ( l - 2 e ) ' 
/ • I 1 

dv - [{I — v)v] 
Jo V 

so that, 

TC 
(c . l ) 
F 7 

2/142/134 

•2e ^ -e 
r " d y i 3 4 ( 2 / 1 3 4 ) - ^ ^ - ^ fdt[t{i-t)r nzA); 

Jo Jo 
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where, 

P%z,t) 
tz 

{ l - t ) { l - t { l - z ) ) -^t\l-z)zt +{l-z) 

-e(l - z) Y + (1 - z)zt + (1 - zf t"] + t \ \ - z)zt 

The 2/134 integral is straightforward yielding 

/•?/min 

/ d2/i34 ( y 
Jo 

2 e - l (2/min) 
-2e 

/134; 2e 

so that, after performing the t integral which yields only F functions, TC'^p^^ finally reads, 

TC ( c . l ) 
F 7 

1 

2/142/134 

27r -2e ^ -e 
(2 /min) 

-2£ 

r ( l - 2e) 

X 
2 . - ( l - 2 e ) j ( l - 2 £ ) 2 ^ ( 1 - 2 e ) 

where P^{z) stands for the (/-dimensional Altarelli-Parisi splitt ing function given by (1 + 

{ \ - z Y - e z ^ ) j z . 

T h e contribution TCf^^ 

For the calculation of the contribution to TCj^^ where 0 < 2/ < 2/min; we can neglect terms 

of 0(2/) i n the matr ix element and phase space as they become of C(2/min)- In this hmi t , 

V 

and solving — A " = 0 as a quadratic in 2/13 yields, 

(2/136 - 2 / i3a)"^ ' = [16yi42/2(l - 2)[(1 - 2)2/134 - 2/14]"' ( 1 - 2 ) ^ ' " -

The integration over 2/13 is unchanged. However, in this l imi t and wi th the following 

redefinitions, 

we find, 

2/14 = ^^(1 - - 2 ) y i 3 4 and y = ty^in, 

16^(2/136 - 2/ l3a) = k l - V)tyminyl34^\ (1 " Z 
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Therefore, 

1 

2/l4?/l34 

rymm 1 
= 4 / d?/i34 

^0 yi34 

becomes, 

X 

X 

/ d W dy^, — n z , y ) 
Jo Jo 

r dyis [(?/ l36 - 2/13) (2/13 - 2/l3a)] ^'^ ' (l " 2 ) " 
l - 2 e 

X 

P ( l - e ) 

Jo V Jo JO 
dtt -c-l 

_ 1 r2 ( l -e ) 
- e r ( l - 2 e ) 

^ ( y m i n ) 

2x \-3t 

The total for TCi?} 

Combining the results of the previous two subsections and reintroducing the overall factor 

H, we finally obtain, 

H X 
1 

yi4yi34 

xz'^{l-z)-'^iy, 

1 

M2 / V27ry V 27r ; r2 ( l - e) 

-2e r-'ll - e) 
r 2 ( l - 2 e ) 

2e2 
1 / r d - 2e) 

{ 3 - z ) { l - e ' z ) j l - z ) ^ { l - z f 
2z{l-2e) ' ( l - 2 e ) ^ 2 ^ ( 1 - 2 e ) J 

(5.17) 

Other similar contributions 

Following the same steps for the integrations over ?/i3, ?/ i4, yi34 and y we can obtain two 

other contributions to the triple differential cross section, namely TCp] and TCp^. They .(/) 
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respectively read, 

H X T c i ^ ; 2/13 

2/142/134 i 2iV j i 7¥2 j 

x l i i ^ 
4e f 1 - 2e)2 

\ / 

- ^ ) 
r2 ( i - 2 6 ) 

\{l - e) (5.18) 

( / ) H X TC>;̂  
y?34 ^ PP ) [2TTJ {'271 J r-{l-e) 

-2e r^(l - e) 

2N 

X z-Hl - z 

1 

, -2e 
(2/. r2(l - 2e) 

f l - 2e)2 
(5.19) 

Notice that for these two contributions we can safely extend the l^J^ dy down to 0, since 

jym\n gjygg Q^iy ^ contribution of (9(2/min), which we can neglect. 

5.2.2 Contributions involving 

As an example we describe the calculation of TCp] formally given by, 

y i 3 2 / l 3 4 
= 4 / d2/i34 / dj/ / dj/13 — P ( 2 , y ) 

./O 2/134 "'2/min -/O 2/13 

T ' " dyi4 [iyi4b - 2/14) (2/14 - 2/i4a)] ' (1 - y) 
- l - 2 e 

where P^[z.y) is defined in an analogous way to P'^{z,y) and is independent of 7/134 and 

2/13-

As before, we divide the cross section into two pieces according to the range of the y 

integral; 0 < y < 1 - z and 0 < y < y^n denoted by TCpl^^ and TCp^^ respectively. In 

both cases, the first integral - over the invariant that does not appear in the denominator 

120 



of this part of P I34^Q which in this case is yi4 - gives a similar result to the first integral 

encountered in the evaluation of TCp^\ 

r ' ( l / 2 - e ) , , _ 2 , r ( l - 2 e ) 2 . 
^ ^ ^ ^ - 3 ^ (2/146 - 2/l4a) =T^Y^l^l^ [yi4b-yi4a) • 

Solving — A " = 0 as a polynomial in ?/i4 we obtain yi4a,b = [—/^ i ^] / 2 Q ' wi th , 

a = - ( 1 - y)\ /3 = 2 { l - y - z ) [(1 - y)yi34 - y,s] + 2y,3 y z , 

= 16 ?/i3 y 2 (1 - 2/ - [(1 - y)yi34 - 2/13] > 

and the difference between the upper and lower boundaries raised to the power -2e reads, 

yi3yz{l-y - z) [(1 - y)yi34 - 2/13] 1 (1 - yf 16' ( y i 4 6 - yi4a) 
-2e \4e 

The posi t ivi ty of - A " impHes yis < ( 1 - 2 / ) 2/i34 and y < [l - z) which leads to the 

following natural choice of variables, 

2/13 = ^(1 - 2/) 2/134 and y = t { l - z ) . (5.20) 

The regularizing phase space factor is thus given by, 

16' (2/146 - yi4ar'' = [ v { l - v ) t { l - t ) y l , z Y \ l - z)-'^ [1 - til - z ) t , 

so that, 

TC (6.1) 
F 7 4 . S i ^ (1 -

r ' ( i - e , 

r d v - [ { l - v ) v r [' dt[t{l-t)] 
Jo V Jo 

[ dt /134 (2/134) ^ ' 
JO 

2€ 

[1 - (1 - Z)t] 
P\z.t).. 

where, 

(1 - z ) { \ - t) [(1 - 2 ) + e ' ( l - ^ )^ t ] + (1 - (1 - z)t) 
tz{l - z 

- e [1 - (1 - z)t] \ z ' ^ { \ - z)zt + { \ - z f t^] ^ t \ l - z ) z t 
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The integrations over v (or yis) and 2/134, give similar results to those in da^lp. 

-2e 

e r ( l - 2e) 2e 

respectively. 

The t integral requires more thought. I t reads. 

-L 
X 

1 - i ( l - z)' 

e [1 - t{l - z)] [z' + (1 - z)zt + (1 - z f t'] + (1 - (1 - z)tf + z{l - z) t 

+ (1 - ^ ) ( 1 - t ) [{1-z) + e \ l - z ) z t 

which we divide into two pieces, according to the presence of two different denominators 

in the integrand, I — -\-12, where, 

/ i = - r d t t - ' - \ l - t ) - ' x e [ z ^ + i l - z ) z t + { l - z f t \ 
Jo 

u = J 
Jo 

1 - t ( l - z)' 

(1 - ^) (1 - t) [(1 - z ) + e\l - z)zt] + (1 - (1 - z)tf + z{l - z) t 

The evaluation of h is straightforward, yielding only Beta functions. 

X 

T \ l - e) 
r (2 - 2e) 

'-{l-ez')il-2e) - {l-z)i2 + ez) + -{1 - z f i l - e) . 

A l l terms in I2 contain a factor [1 — t{l — z)] in the denominator such that the result of 

the integrations yields hyper geometric functions. We decompose i t further according to 

the powers of t and (1 — t) present in the integrand of I2 so that I2 = / 2 1 + -^22 + ^23 w i th . 

/ 2 1 = ( l - z f I 1 r - H i - t ) - ^ ^ 
[ i - t ( i - ^ ) ] 

1 r ( i - e)r(2 - 6) 

e r (2 - 2t) 
{ \ - z f F2r{l,-e-2-2e:l-z) 
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/•22 = C Z 
lo Jo 

' i t 
- £ + 1 

/23 = z 

e ^ W l - , ) ^ r ( i - e ) r ( 2 - . ) 
' ^ ^ r ( 3 - 2 e ) 

[ l - t { l - z ) ] 

F 2 i ( l , l - e ; 3 - 2 e ; l - z ) , 

Jo [ 1 - ^ ( 1 - ^ ) 1 

e ' z { \ - z ) F,,{lA-e-2-2e-\-z). 
r ( 2 - 2e) 

F2i(a, 6; c; a;) is the hypergeometric function defined in (A.10). Using the identities amongst 

contiguous hypergeometric functions given in Appendix A by eq.(A.17), / can be consid­

erably simplified. We find, 

r ^ ( i - ^) 
r ( l - 2e) 

X 
P%z) { l - e ' ) { l - z y 

(1 - 2e) 
F 2 a ( l , l - e ; 2 - 2 e ; l - ^ ) 

( l - z ) ( 2 + e.) ( l - z Y j l - e ) e\l - z 

z{\~2t) ^ 2z{l-2e) ( l - 2 e ) _ 
(5.21) 

Altogether, we find that the contribution to TCP^ for the region of phase space where 

0 < 2/ < (1 - ^) is given by, 

1 
TC (6.1) 

2/132/134 

27r V\l-e),^ . ^ - 2 e . - e , „ , -̂2e 
; ( i - z] z (2/min)" 

e2 r ( l - 2e) 

P^{z) { l - ^ ) { l - z f 
X 

(1 - 2e) 
F 2 i ( l , l - e ; 2 - 2 e ; l - 2 ) 

( l - ^ ) ( 2 + e.) ( l - . ) ^ ( l - 6 ) 6 ^ ( 1 - . - ) 

^ ( l - 2 e ) ^ 2 ^ ( 1 - 2 e ) (1 - 2e) 
(5.22) 

As in the previous section, for the contribution f rom the 0 < 2/ < ymin integral some 

simplifications of matr ix element and phase space can be made. Terms of 0{y) can be 

ignored. 

P\z,y) 

and w i t h the following change of variables 

P'{z) 

y 

2/14 = vyi34 and y = f j / m i n , 
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r C ? ^ ' ' reads, 

TC (6.2) _ (5.23) 

Combining these two results and reinserting the overall factor i / , we find. 

H X TC^ 
2/132/134 

, 2 _ i \ / , ^ „ 2 \ 2 e , / 2^ ^ 

\ 2N J \ AP 

xz-^{l-zY'^ (y 

1 

27ry \2Tr J r2 ( l - e ) 

2e r ' ' ( l - 6 ) 
r2 ( l - 2e) 

2e2 e + e ^^"""^ ^ r 2 ( l - e ) ^ 

(1 - 2e) 
F 2 i ( l , l - e ; 2 - 2 e : l - ^ ) 

( l - z ) ( 2 + ez) , ( 1 - ^ ) ^ ( 1 - 6 ) ^ 6 ^ ( 1 - ^ ) 

K l - 2 e ) 2 ^ ( 1 - 2 e ) ( l - 2 e ) 
.(5.24) 

Following similar steps, one can easily also obtain TCp}^ ^^^^^ . The results of the 

j / i 3 and y i 4 integrals contain Beta functions, whereas the integration over y generates 

hypergeometric functions. We obtain, 

1 
H X r 4 1 

y i 4 

y i 3 y i 3 4 

xz-^{l~z)-'' ( y ^ n ) " 

27r 27r i r-{l - e) 

-2. r ' ' ( l - e ) 
r2 ( l - 2e) 

X ^ (1 / ) ( ^ [ i _ F2AI, 1 - e; 2 - 26:1 - 2)1(5.25) 
262 ^ ( i - 2 e ) L 2n , , ;jv 

As w i t h the contributions TC^pf and r c } { ; ^ ' , since there is no factor of y in the 

denominator of the integrand, the contribution TC}?̂ ^̂  where 0 < y < ymin gives only a 

contribution of 0(ymin) and can therefore be neglected. 
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5.2.3 Contributions involving 1 
2/132/14 

As this part of the calculation of the triple coUinear contribution to the 7 + 1 jet rate at 

O(aas) presents some additional calculational difficulties, we wi l l describe i t in great de­

ta i l , although the proofs of all identities used are given in the Appendix A. The differential 

cross section TCp^ 
yi3yn 

TC (a) 
F-y 

2/13^14 

is formally given by, 

, „ rymin /"l-Z /•(1-2)V134 1 

4 (1 - z)-'-'' / d y i 3 4 / dy / d y ^ 
Jo Jymin Jo y\A 

X dyi3 — [(2/136 - 2/13) ( y i 3 - 2 / l3a)] ^'^ ' P^iz; y); 
Jyi3a 2/13 

where P"'{z,y) is defined in an analogous way to P''{z,y) and P'^[z.y). As usual we 

divide the y integration into two pieces and first present the calculation of TCp^^'', the 

contribution to TCp^ for the region of phase space where 0 < y < {1 — z). 

Denoting the y i s integral as / , and making the substitution, y^s = (?/i36 — 2 / i 3 a ) x + 2/i3o 

we obtain, 

/ = (2/136 - 2 / l 3 a ) ^ ^ ' / LY(1 - X)]"^^^"' [(2/136 - 2/ l3a) X + 2 / l3a ]~^ 
JO ^ ' 

flSa [ yi3a 

, ) - 2 ^ ^ r ^ ( l / 2 - e ) F / i 1 / 9 , 1 9 , ( 2 / i 3 a - 2 / 1 3 6 ) \ , 
= (2/136 - 2 / i3a j ^^7^ ^ ^ 2 1 1 , 1 / 2 - 6 , 1 - 2 6 , {ty.lb) 

yi3a 1 (1 - 2e) V 2/l3a / 

We wish to bring / into a fo rm which allows us to perform the j/14 and y integrals. Hence 

we consider the following redefinitions, 

yi4 = v{l - z) yi34 and y = t ( l - z), (5.27) 

so that, y^3a,b = 2/134 (A ± Bf where, A = ^ { l - t ) { l - v ) , B = V ^ t and, 

( 2 / i 3 a - y i 3 6 ) 4 A i ? _ 4 Z (5.28) 
2/i3a [ A - B Y - {l + Z r 

w i t h Z = - f . the integration boundary yi3a is then related to Z, A and 5 in the following 

way, 

[l + Zf = 
A-B 

A 
1 2/l3a 

y i 3 4 A^ 
(5.29) 
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W i t h these definitions (5.28) and (5.29) for the argument of the hypergeometric function 

and the lower boundary y i s a , both appearing in eq.(5.26), we apply the following relation 

between two hypergeometric series of argument {(Y+fp"} ^i^d {Z'^}. 

I 4Z \ 
1 , 6 , 2 6 , — - — =il + Zf F2,{1.3/2-b,b+l/2.,Z') (5.30) 

V (1- + / 

which is explicit ly proven to hold for all values of z in Appendix A . 

W i t h the help of this relation (5.30), / can be rewritten as follows, 

-2. 1 1 r 2 ( l / 2 - 6 ) ^. Z V t _ 
I = iyi3b - yi3a) — 7-, 7T V n ' ^ o 7 -^21(1,1 + e:l - 6 - , 

yi34 {1 - v){l -1) r ( l - 2 e ) V { l - t ) { l - v ) J 
I f i ^ r -̂2̂  ^ 1 r ( l - 26) ^ , , ^ ZVt \ 

= I D y i 3 f c - y i 3 a ) jz rrz TT-j^^T^ r F21 1,1 + e; 1 - e; 7^ TTTI r , 
yi34 (1 - v ) ( l - 0 ^2(1 - e) V { l - t ) { l - v ) / 

(5.31) 

where, 

16' (yi36 - y i3a)~^' = [t{l - t)v{l - v ) z yl^^ 

TC^^ [ ^ ] then yields. 

r 4 V ' = 4 7 r ( l - z ) - 2 ^ - T " r d t r ^ ( i - i ) - - P ^ ( . , t ) 

r2 ( l — 6 ) Jo Jo 

= I' 

For the calculation of I ' , defining a = and using the definition of F2i{a, 6, c; z) in 

terms of inf in i te series given by (A.8) we obtain 2, 

r(n-€)r(-n-e) 
rF2i) 

2lt shall be noted that this series diverges for Z = I. However this divergence is integrable and does 

not affect the validity of eq.(5.33) as is proven in the Appendix A. 
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where the last equahty is expHcitly proven in Appendix A. According to eq.(A.2) we also 

have, 

and / ' yields. 

, „ ^ , r ( i - f 6 ) r ( i - 6 ) 

6 r ( n - M - h e ) ' 

Inserting / ' back into eq.(5.32) and performing the t r iv ia l integral over 7/134, we find 

that. 

r 4 ; ^ ' = ^ ( i - ^ ) - ^ ' ^ - ' ( 2 / m i n ) - ^ ^ r d t r ' ( i - t ) -
6 -̂0 

1 
{ l - z ) { l - t ) 

P\z,t) 

XF21 l , - e ; l - e ; 
-zt 

( 1 - ^ ) . 
(5.35) 

where P°-{z,t) is given by, 

zt 
1 -F ( l - . ) 2 ( l - t ) ^ 

-e[z' + z{l-z)t + ( l - ^ ) ' i ' ) 

-6^ z ( l - z ) i . 

Rewrit ing P°-{z,t) as a polynomial in i . 

1 
-P^{z.t) = 

{ l - z ) { l - t ) 

where the index denotes the associated power of t, 

A_,{z) = P\z)., Ao{z) = 

A_r{z) + Ao{z) + t Ar{z) (5.36) 

Ar{z) = i i - ^ ( l - 6 ) , 

[ 2 ( 1 - z ) + e 2 ( l - F e ) ] , (5.37) 

(5.38) 

we can wri te , 

( a . l ) 
r ^ ; ^ ^ = 27 r ( l - ^ ) - ^ ' z - ' ( 2 / : A „ ( . ) i dt t - + « ( l - t ) - ' F21 [l; -6 ; 1 - 6; 

(5.39) 
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To evaluate Ba-, we rewrite the hypergeometric function present in B^ in its integral 

fo rm, 

F21 l , - e ; l - e ; 
-zt 

1-t 1: du u -t-i 1 + 
uzt 1-1 

l-t 
and then split i?„ into la^ and la^ w i th integrands respectively proportional to ^ and 

1 + ^ Partial fractioning, we have, 

1 /•! 
5 . 

X y du u 

1 /•! 

u -

4ld. ( l - . ) 

^ / d ^ r - " ( i - 0 -

+- f \ i t ( i ~ t)-'~'t-'+''+'! 

n - 1 zt 

l-t\ l-t 

du u' 1 + 
uzt 1-1 

l - t 

For i t is straightforward to perform the u and t integrations. 

1 r ( l - 6 ) r ( l + a - e ) 

62 r ( 2 + a - 2 e ) ' 

The second integral, / „2 on the other hand requires more effort. 

(5.40) 

/ „ 2 = - fdtt-^+'^-ii-tr-' f 
6 Jo Jo 

du u' 1 + 
uzt 

1 -t 
- 1 

t f 
6 JO 

dt t - e + l + « (1 - t)-'-^ X J . 

We note that / „2 is only mult ipl ied by \ and i t is therefore sufficient to expand J at most 

up to the order of e. 

J du 1 + 
uzt /•! . . uzt " " - i 

1 -t 
du \nu 1 + 

1 -t 
= J i - eJ2. 

Performing the u integral in J i , we obtain 

zt 1 -t 
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such that Ia2 becomes, 

1 
Ia2 - I dtt-'^"{l-t)-' In 

6 JO \ 

-z dulnu r dt (1 - t ) 
Jo Jo 

i - t { i - z y 

. 1 - ^ J 
- e ^ - e + a + l r/-i , / i . . M-1 (1 - t{l-uz) ' (5.41) 

I n the last line neither of the integrations u or t has been performed yet, however, the 

order of integration has been swapped. For specific choices of a, we expand J„2 as a series 

in 6. The integrals contain generally polylogarithms. For example, for a = - 1 , we find, 

' ( c v = - l ) 2 X 
S . M l - 0 , f \ . . l n ( l - t ( l - z ) ) 

dt 

i 

0 t 
2/ 

L + / dt 

+ 6 / dt 
1 I n ^ ( l - t ) , , lnt\n{l-t) 

i : 
+ e dt 

t Jo t 
1 I n t I n ( 1 - t ( l - z ) ) _^ l n i l - t ) l n { l - t { l - z ) ) 

t 
f i t l n n n ( l - n i ^ ^ J ) _ f 

Jo t ./o 
/ • I , In^ u , , I n i i 

- f 2:6 / du r + zt \ du In z 
Jo \ \ — uz] Jo (1 - uz) ' "Jo (1 - uz) 

Replacing the definite integrals by the di-and tr i logari thm functions Li2 and Li3,5i2, 

defined in the Appendix A, we find. 

/ ( a = - l ) 2 - L i 2 ( l - ^ ) 

+e(3 Cs - 2 Li3( l - z ) - 5i2(l - z ) + 2 U3{z) - ln{z)U2{z) .(5.42) 

Following similar steps we can easily obtain 7(^=0)2 and / ( a= i )2> 

-^(a=0)2 —z\nz + ei —2z\nz — ZIA2 —• , (5.43) 

I ( ' - ^ > " + ' { ( T - H ^ 0 ( ' - ^ > ^ - 5 I ' ^ ^ ^ ^ ^ ' ^ ' " W 

( {l-zX 
+ U-22z + %z\n{z)-^z{z~2)U2 

\ ^ 

+ i( _ 4 + 5z - 2z In 2 - 2̂  + 2Li2(l - 2) + Hz)) 

129 



+ i ( l - . ~ ) ^ ( L i 2 ( . ) + l n ( . ) l n ( l - . ) ) - \{l - z)z\n{z) | (5.44) 

The final result for TC^?;^' is thus. 

H X r c } ? ; ' ' 
1 

. y i 3 y i 4 

' A ^ 2 _ i \ / 4 7 r / i 2 y ^ r a . \ (aeV 

V 2iY ; . , 

x ( i - ^ ) - 2 ^ 2 - ( y ^ J 

A 4 ^ ) ( 4 i + 4 2 ) . 
" a = - l 

1 

AP 1 \2K J r-{l-e) 

- 2 e r ^ ( l - ^ ) 
r ( i - 26) 

(5.45) 

Turning to the contribution f rom the region of phase space where 0 < y < y m i n , 

rc j r t^^ ' , we note that, as before, some simplifications of the integrand can be made. First, 

nz){l-z) 
P'{z,y) 

such that TCpf^ is given by 

1 

y i 3 y i 4 

/•2/min rVmin du /•(1-2)OT34 1 
= ^ P\z){l - z)-^' / d y i 3 4 / — / d y i 4 — 

^ Jo Jo y Jo y i 4 

X / d y i 3 — [ ( y i 3 6 - y i 3 ) ( y i 3 - y i 3 a ) . 
Jyi3a y i 3 

Integrating out yis gives the same factor as before. 

, _ 2 , 1 r ( l - 2 e ) 
vr l6^ (y i36 - y i 3 a ) — ^ ( 1 3 ^ 

Making the obvious change of variables. 

F21 1 , 1 / 2 - 6 : 1 - 2 6 ; 

-1/2-. 

y i 3 a - yi3fe 

y i 3 a 

y i 4 = -^(1 - z ) y i 3 4 , y = t y m i n , 

the regularising phase space factor yields, 

1 6 ' ( y i 3 f c - y i 3 a ) " ^ ' = [ y i 3 4 y m i n 2 t ^ ^ ( l - ^ ^ ) ] ' ( l " 2) 

where, y i 3 a , 6 = f ^ i A ± Bf w i th , 

A = ^ { l - z ) { l - v ) , B = 
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Using the relation (5.30) between two hypergeometric functions of argument jj^pji and 

z'^ as we did for the evaluation of TCj^^^ we finally obtain a hypergeometric function of 

the fo rm. 

F21 l , l + e ; l - 6 ; 
zvty^ 

1 + C(2/min)-
( 1 - ^ ) ( 1 - ^ ) . 

The remaining integrals are t r iv ia l , and put t ing all the factors back, we find, 

H X t 4 ; ' ) 1 
2/132/14 2A^ J [a/P J 

, n i - e ) j 1 

^ni-2e) 

2Tr 27r J r2 ( l - e) 

~-Ayr.^n)-''z-^{l-z)-^P^{z)\. (5.46) 

Finally, the complete result for this contribution is obtained as the difference of 

eqs.(5.45) and (5.46), i t reads. 

H xTC (a) 
F 7 

2/132/14 27V M2 27r 27r; r2 ( i - 6 ) 

x ( l - . ) - - z - ' ( y ™ . ) - - ^ ^ } ^ 

X U E ^«(^) ihl + / a 2 ) + ^ ( y m i n ) - ' ( l - Z)' P'{Z) , 
a=-l 

(5.47) 

where the la are defined in eqs.(5.40) and (5.41) and the A^ are given by eqs.(5.37) and 

(5.38). 

Summary 

I n this section we have completed the calculation of all terms contributing to the singular 

factor f r o m the tr iple coUinear region of phase space. For some of these terms we have 

here only given the unexpanded form. In Section 5.5, we wi l l develop the remaining un-

expanded hypergeometric function in e series up to 0{e^) and, after some rearrangements 

of terms, we w i l l give the final result for the triple coUinear contributions to the 7 -f-1 jet 

rate at 0{aas). 
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5.3 The soft/collinear contribution 

The soft/collinear configuration arises when the photon is collinear to the quark and the 

gluon is soft as illustrated in Fig.3.2.(c). In order to evaluate these contributions, we 

need first to determine the relevant approximations for the squared matrix elements and 

phase space in the soft/collinear l imi t and then integrate the unresolved variables over 

the soft/colhnear phase space region. 

The soft/collinear region of phase space is defined by, 

Sq^ = 5 i 3 < and 5 „ = 5 i 4 < .Sniin, Sgg = 524 < •Smin, (5.48) 

as one could have expected. In this region we require Sq^ = 513 < Smin since the photon 

and the quark are collinear and Sqg = S14 < S m i n ; = 524 < as the gluon is soft. 

Unlike in the triple collinear region of phase space, 5134 is unconstrained and may also be 

less than 5 m i n in the soft/collinear region. There is however no overlapping between these 

two regions because in the tr iple collinear region we require S24 > s^^-

In the soft/collinear l i m i t , the photon and the quark cluster to form a new parton, the 

parent parton Q such that, 

Pi+P3=PQ, (5-49) 

and the energy of the gluon tends to 0 such that 0. The photon and the quark carry 

respectively a fraction z and (1 - z) of the parent parton momentum pg, 

P3 = z PQ, pi = { l - z) pQ. (5.50) 

The invariants s^g = 3^2, = S23 are given by the following, 

5 i 2 = {1- z) SQ2 = { l - z ) A'P and S23 = ZSQ2 = z A/P, (5.51) 

where A4 is the invariant mass of the final state. 

I n this section we w i l l present the factorization of matrix element squared and phase 

space in the soft/collinear l imi t defined above and evaluate the soft/coUinear contribution 

to the differential 7 + 1 jet differential cross section. 
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5.3.1 The soft/collinear limit of the | M P 

I n the soft/collinear l im i t defined above, the matr ix element squared for the scattering of 

a quark-antiquark pair w i t h a photon and a gluon factorizes, 

|A^1234|^ Pl'34^5g'(2,524,5i3,5i4,Sl34) \MQq\^. 

As usual, jA^Q^-p is the two-particle matrix element squared, P^ll^J^q {Z.S24.S13.S14.S134) 

defines the soft/collinear approximation to the squared matrix elements. This soft/collinear 

factor is obtained by setting j / = 0 in the triple coUinear matrix element squared, P I 3 4 ^ Q , 

given i n eq.(5.5) and is therefore. 

P l l i ^ Q i z . S24, .13, .14, . 1 3 4 ) ^ ( ( 1 - Z ) + 'JiliL^] (5.52) 
5i35i4524 \ .134 / 

I n terms of the scaled invariants. 

r,soft/coh . _ 4 / ?/i4 + (1 - Z)yi3\ ^e/ ^ ro\ 
Pl34-iQ [Z, y24, 2/13, 2/14, 2/134) = JJ-^ ( l - ^) + P ( z ) - (5-^)3) 

-'wr .2/132/142/24 V 2/134 / 

5.3.2 The soft/collinear limit of the phase space 

We would like to determine the soft/coUinear l imi t of the four-particle phase space as 

given by eq.(B.6). I n this l imi t the 4-particle phase space is expected to factorize into 

a soft/collinear factor dR^^^Jj^ and the known 2-particle phase space d i ?2 ' ' \ Using the 

definitions of 6 1 2 , . 2 3 , .24 h i the soft/coUinear hmi t , given in eq.(5.51), the product of the 

integration variables {sj j} in the 4-particle phase space can be rewritten, 

d.Sl3 ds24 dsi4 dsi2 dS23 dS34 8 (^Si2 + Sl3 + .14 + .23 + .24 + .34 " M'^) 

dyi3 dy24 dyu d z dy34 dyi346(yi3i - 2/i3 - 2/i4 - 2/34)d.Q2 S{SQ2 - M^)M^° , 

where we introduced the integration variable 7/134 via a ^-function, just as we did in the 

calculation of the tr iple coUinear contribution in the previous section. Replacing the 
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factors of 27r, we find that, 

{2TrY-''dRf{Ad,p2,P2,p,,P4)^{2T^f~'dR^2\M..PQ,P2M2^^^^^ 

(5.54) 

where, 

d/?(''^ , ( p i , P 2 , P 3 , P 4 ) = 2-̂ ^ dn,_2 dnd_3 M ^ M Y " ' 

xdyi34 dyi3 dyi4 dy34 dz dy24 <5(yi34 - y i 3 - y i 4 - y34) 
d-4 
2 - A : , (5.-55) 

This is similar to the triple coUinear factor given by eq.(5.5) wi th y replaced by y24. 

As y i34 is unconstrained in this region of phase space, we choose to rewrite A " as a 

quadratic in y i 3 4 . In other words when performing the phase space integrals we wil l first 

integrate over y i 3 4 . W i t h the definitions of the invariants y i 2 and y23 in the soft/coUinear 

region of phase space, 

1 
- A 4 = ^ ( (1 - Z)^(yi346 - y i 3 4 ) ( y i 3 4 - yi34a) 1 , 

w i t h yi34a,6 given by. 

yi34a,b I - Z 
y i 3 ( l - z) + yi4 + y i 3 y i 4 ± 2 y y i 3 y i 4 y 2 4 2 • 

5.3.3 The soft/collinear limit of the differential cross section 

As in the tr iple coUinear l i m i t , the differential cross section factorizes in the soft/collinear 

l i m i t . I t can be wri t ten as the product of (TQ, the two-particle cross section and a singular 

soft/collinear factor, SCp-ydz, 

da4 SCp-ydz X CTQ, (5.56) 

where. 

SCp-ydz = 
2N 27r 

ae; 
27r 4(27r)^ ( / ^ f 7 ^ ^ 5 v c J - ^ W . M 

1.34 



where, 

and, 

. y 2 j-)SOf t/col / \ 

•/^soft/col = ^134-*Q [^•,^24,Si3,Si4,Sis4), 

2 - 2 d j r>{d) 
liPl,P2,P3,P4)- (5.57) 

To evaluate the soft/coUinear differential factor SCp^dz we need to integrate \Msoft/coi\^•, 

given by eq.(5.52) over the soft/coUinear phase space given by eq.(5.55). 

As in the previous section, it is useful to organize the calculation in terms of the 

behaviour of the matrix elements with respect to the invariants. We therefore decompose 

SCp^dz as follows, 

SCF^dz = Hdzx Sd;^ 
?/l32/l4j/24 

+ 5 4 ^ ^ 
1 

2/132/142/242/134] 
(5.58) 

w 
(a) here, SC'^^ 1 

yi3yiiy2i 
and SC^^ are respectively obtained by integrating 

yi3yny2iyi3i. 

the first and second term of P^slHo' as given in eq.(5.52) over the soft/coUinear phase 

space. 
Before we present the calculation of each of these two contributions to SCpy let us 

note the following. As we mentioned before we will write the Gram determinant as a 

quadratic in 7/134 and carry out the 2/134 integration first. The integrations over the other 

unresolved variables j/13, yi4 and ?/24 will be performed subsequently. Unlike for the triple 

coUinear phase space region, the positivity requirement of —A '̂ only fixes the boundaries 

on the y-134 integral and does not constrain the other integrations which are therefore 

bounded by the slicing parameter y^n-

Returning to our derivation of the soft/coUinear cross section, we find that the con­

tribution SCp^ 
y i 3 » 4 ? / 2 4 

reads. 

1 

2/132/142/24 J 

rymin d?/ i3 fymin dj/24 Z"̂™'" d?/ 
Jo yi3 Jo 2/24 "'0 

14 

y i 3 

ryi3ib 
X / dyi34 

2/14 
n z ) { i - z) 

(1 - z)^(yi34fc - 2/l34)(2/l34 - 2/l34a) 
-1/2-e 
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Performing the ?/i34 integration, and using the usual identity for F functions, we obtain 

the regularising phase space factor, 

r ^ ( l / 2 - e) 
(yi346 - ?/l34a) ' ' { I - Z) ' = 71 [2t/l3?/l4y24] ' (1 " ^) 

r ( l - 2 e ) 

The other integrations are now trivial, such that. 

- 1 r ( i - 26) 

(a) 
H X 5C>;' 

1 

y i3y i4 j / 24 27V 27r 

a-e; 

27r / n ( l - e) 

1 (5.59) 

For 5 4 " ; 

SC 

J/13 3/14 2/24 S/134 

1 
2/132/142/242/134 

on the other hand we have to evaluate, 

•2/min d?/l3 y^/min d?/24 /"J/min d y i 4 /•2/min Clyis /•2'min cl?/24 T 
Jo 2/13 •^O 2/24 •''0 

i 
y i 3 

yi346 d?/l34 

2/14 
X P ^ ( 2 ) b l 4 + 2 /13 (1 - 2 ) ] 

( 1 - zf{yxZAb - 2 / l34 ) (2 / l34 - 2/l34a) 
-1/2-e 

' ? / 1 3 4 a 2/134 

Because of the factor of { — } , this integral is rather more tricky to evaluate. 

As in the case of the evaluation of TC}?] in the previous section, the first phase space 

integration gives rise to a hypergeometric function. 

134 
/•3/i34b d y i 3 4 u ^ / M-1/2-

/ [(2/1346 - 2 / l34 ) (2 / l34 - 2/l34ajJ 
-'?/134a 2/134 '3/1340 2/134 

. r ( l - 2 e ) , , . 
16- ( y , 3 « - V . 3 , J - ' ' — i ' . , f 1,1/2 - ^, 1 - 2e; • 

r 2 ( l _ e ) - - J/I34a V • ' • 2/1340 

With the change of variables, j/24 = ^ymin, the argument of the hypergeometric function 

reads, 
2/l34a - 2/1346 

while, 
2/l34a 

1 

- 4 V ^ 2 / l 3 2 / l 4 ^ 2 / m i n 

2/14 + 2 /13 (1 - ^ ) + yi3i2/min " 2V^2/l3yi4^yr, 

( 1 - . ) 

2/l34a 2/14 + y i 3 ( l - ^ ) + 2/13^2/min " '^VZyisVutyrmn 

To simplify the notations we temporarily make the identifications A = yi4 + 2 /13 (1 — 2 ) 

and a = zyi^yi^t. Neglecting all terms of C ( 2 / i n i n ) , 

/ l 3 4 X 4 [?/i4 + 2 / 1 3 ( 1 - 2 ) ] = ( 2 2 / l 4 y i 3 t 2 / i r u n ) " ' P ' { z ) 47r^^^^ _ 
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A p /1 1 /o 1 0 - 4 \ / 2 / m i n a X - ^ , F21 l , l / 2 - e , l - 2 e : ^ 

= 47r(z 2/14 2/1312/min) ' ^ ' ( ^ ) 7 ; k : v ^ ^ i 3 4 -
r ( l - 26) 
P ( l - e) 

A priori i t seems that 7 i34 contains terms of 0{yjymin) which we have not encountered 

anywhere else in this calculation. In fact, one could argue whether it is "allowed" to 

neglect terms of this type at all. Fortunately it turns out that does not contain 

explicit terms of 0 { ^ J y ^ ) but /134 = 1 + C(?/min) as we show below. 

By definition of the hyper geometric function we have, 

r ( n + 1/2 - e) r ( l - 2e) 

V ^ ^\/ymiTi<^/ n=0 

- 4 \ / y m i n Q 

A - 2 ^ / y ~ a r ( l / 2 - e)r(n + 1 - 2e) 

where we have truncated the sum at ?z = 1 since for larger values of n the terms are of 

0{ynun)- The coefficient C is easily evaluated, 
^ r(3 /2 - e) r ( l -2e) ^1 

r ( l / 2 - e ) r ( 2 - 2 e ) 2 

such that inserting the expanded hypergeometric function back into /134 we have, 

/ ;34 = (1 - 2 ^ ^ ) (1 - 2 = 1 + 0 { y ^ . ) . 

Setting / i 3 4 to 1, the evaluation of the remaining integrals is immediate and we obtain, 

H X SC^FI 
2/13^142/242/134, \ 2N ) ) \2nJ \ 2n J r-{l - e) 

X-Ayn,n)-''nz)z-'. (5.60) 

Summary 

Collecting the two terms, the full contribution to the 7 + 1 jet differential cross section 

arising when the photon is collinear to the quark and the gluon is soft reads, 
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X 
9 
- (y^^)-'^ z-^P^ 
£3 

Z . (5.61) 

5.4 The double single collinear contribution 

The double single collinear region of phase space is defined by the following constraints 

on the invariants, 

Sq-y = 5 i3 < Smin, Sgg = S24 < Smin, (5.62) 

with the additional requirement, 

Sgg = Si4 > S^n, (5.63) 

as the gluon is collinear to the antiquark but is not soft. This configuration occurs when 

simultaneously, the photon and the quark form a collinear pair while the gluon and the 

antiquark are also coUinear. This is illustrated in Fig.3.2.(c). 

In order to evaluate these contributions we need first to determine the relevant approx­

imations for the squared matrix elements and phase space in the double single collinear 

l imit and then integrate the unresolved variables over the double single collinear phase 

space region. 

In this limit, the photon and the quark cluster to form a new parent parton Q such 

that, 

PI+P3 = PQ, (5.64) 

while the gluon and the antiquark cluster to form a new parent parton, Q with, 

P2+P4=PQ; (5.65) 

The photon and the quark carry respectively a fraction z and (1 — z) of the parent parton 

momentum pg, 

P3 = zpQ, pi = {l-z)pq. (5.66) 

whereas the gluon and the antiquark each carry a fraction y and 1 — y of the parent 

momentum pq such that, 

P4 = yPQ, P2 = {l-y)pQ- (5.67) 
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In this section we will present the factorization properties of the four-particle final 

state matrix elements and phase space in the double collinear limit and evaluate the cor­

responding differential cross section. We will however see that the factorization procedure 

is slightly different than in the previous cases (triple collinear, soft/coUinear contribu­

tions). In particular, we will see that the invariants which are not less than s^in need to 

be defined slightly differently when evaluating the matrix elements and the phase space 

in the double single collinear Hmit. 

5.4.1 The double single collinear limit of the | M |^ 

In the double single collinear limit defined by eqs.(5.66, 5.67), the invariants S„Q = ^12, 

Sqg = S i 4 , Sq^ = 523 and s^g = S34 can be redefined as follows, 

512 = {l-y){l-z)sQQ = {l-y){l~z)A4' 

.Si4 = y{l - z) SQQ = y{l - z) 

S23 = z{l - y) SQQ = z{l - y) 

S34 = yzsQQ=yzM\ (5.68) 

where M is the invariant mass of the final state. 

Note that unlike in the soft/collinear region, 534 is here precisely defined. Conseciuently 

the triple invariant 5134 is also fixed, 5134 = 513 -|- 514 -|- 534 = yA/P. This appears to 

reduce the number of independent variables by one, however, we will show that, correctly 

integrating out j/134 yields the same result than considering it equal to y. 

Using the redefinitions of the invariants given by eq.(5.68), the four particle matrix 

element squared factorizes in the double single collinear Hmit as follows, 

|A^1234| ' Pl3-.Q;24-.QiZ;y,Si3,S24))\MQQ\^ (5-69) 

with, 

Pl3-.Q;24^Q{z,y,Si3,S24)) = 4Pi3_Q ( 2 , 5i3)P24-Q(2/, ^24) 

4 1 p^(^)J_p^(2/). (5.70) 
M^yi3 y24 
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I n o t h e r w o r d s , t h e d o u b l e s i n g l e c o l l i n e a r f a c t o r is t h e p r o d u c t o f t w o s i m p l e c o l l i n e a r 

f a c t o r s m u l t i p l y i n g t h e t w o - p a r t i c l e s q u a r e d m a t r i x e l e m e n t l A ^ g g p . 

5.4.2 The double single collinear limit of the phase space 

I n t h e d o u b l e s i n g l e c o l l i n e a r H m i t S13, 524 < •^min; a n d 514 > s ^ i n , t h e f o u r - p a r t i c l e p h a s e 

space f a c t o r i z e s i n t o a d o u b l e c o l l i n e a r p h a s e space f a c t o r : dR'"fJ^i^i^{p-i,p3,p2,P4) a n d t h e 

t w o - p a r t i c l e p h a s e space , d i ? 2 ' ^ ' { M , P Q , P Q ) . H o w e v e r t o w r i t e t h e f o u r - p a r t i c l e p h a s e space 

as t h e p r o d u c t o f dR^'^^M,pq, pq) a n d dR^fJ^f^;^ o n e needs t o be c a r e f u l . 

I n f a c t , i f o n e uses t h e r e d e f i n i t i o n s o f t h e i n v a r i a n t s sjj g i v e n b y e q . ( 5 . 6 8 ) ; t h e r e a re 

t o o m a n y i n t e g r a t i o n v a r i a b l e s p r e s e n t i n t h e f o u r p a r t i c l e p h a s e space t o d e f i n e dz a n d 

d y . T o s h o w t h e f a c t o r i z a t i o n p r o p e r t y o f t h e f o u r - p a r t i c l e phase space i n t h e d o u b l e 

s i n g l e c o l l i n e a r l i m i t w e p r o c e e d t h e r e f o r e as f o l l o w s : 

W e first i n s e r t / dsqq 8 [SQQ — M ^ ^ i n t h e f o u r - p a r t i c l e p h a s e space ( B . 6 ) i n o r d e r t o 

o b t a i n t h e n e c e s s a r y ^ - f u n c t i o n t o b u i l d d i ? 2 ( - ' ^ ; P Q ) P g ) - W e t h e n c o n s i d e r t h e f o l l o w i n g 

r e d e f i n i t i o n s o f t h e i n v a r i a n t s , 

yi2 = 1 - 2/13 - yi4 - 2/23 - .2/24 - 2/34, 

2/23 = 2/234 - 2/34 - 2/24, 

2/34 = 2/134 - 2/13 - 2/14, 

2/14 = 2 / ( 1 - ^ ) , 

2/234 = z- ( 5 . 7 1 ) 

T h e i n t e g r a t i o n v a r i a b l e s a r e t h u s , ^ , ?/, 2/13, 2/24 a n d 2/134- W e t h e n w r i t e ( — A " ) as a 

q u a d r a t i c i n 2/134 a n d i n t e g r a t e o v e r 2/134. W h e n d i s c u s s i n g t h e f a c t o r i z a t i o n o f t h e m a t r i x 

e l e m e n t s , w e s a w t h a t 2/34 a n d h e n c e 2/134 w e r e fixed a n d r e p l a c e d t h e m r e s p e c t i v e l y b y 

zy a n d y. H o w e v e r , i n o r d e r t o see t h e f a c t o r i z a t i o n o f t h e p h a s e space w e a re f o r c e d t o 

i n t e g r a t e o v e r 2/134- A p r i o r i t h e r e seems t o b e a n i n c o n s i s t e n c y i n t h e p r o c e d u r e u s e d t o 

o b t a i n t h e f a c t o r i z a t i o n p r o p e r t i e s o f m a t r i x e l e m e n t s a n d p h a s e space . 
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A closer look enables us to assert that there is no inconsistency in this procedure. In 

fact, the boundaries of the 2/134 integration turn out to be 1/134^.6 = 2/ i 0{y^i^). Hence 

by replacing 1/134 by y in order to obtain the double single collinear matrix elements we 

make an error of C(2/min)5 which we do throughout this calculation and it is therefore a 

consistent approximation to make. 

Wi th the definitions of the invariants given by eq.(5.71), 

1 
16 

- A 4 = — 1(1 - zf{yi34 - 2/l34a)(2/1346 " 2/l34^ 

r4 

r l O 

where, up to C>(2/min), 

, ^ 2/132/24^2/(1 - y) 
yi34a,b = 2/ ± 2 . r . 

\ i ^ - z ) 

Furthermore, with the same redefinitions of the variables yij the measure of the four-

particle phase space becomes, 

J dSi3ds24 dSi4 dSi2 ds23 ds34 6 (^Si2 + S13 + S14 + 523 + ^24 + ^34 - M 

d5i3ds24 Jdsi34dzdy j dsqqS^SQQ - JVP) M 

dyi3dy24^ j dj/134 dz dy j dsqQ8{sqQ - NP) M 

Changing variables once more, considering 2/134 = ( 1 - .?)(.'C(2/1346 - 2/i34a) + 2/1340), in this 

limit the four-particle phase space reads, 

d 7 ? f (^//,P2,P2,P3,P4) ^ dR['\M.,pq,pq) X d 4 1 , , ( p i , p 2 , P 3 , P 4 ) , (5-72) 

where, 

d 4 1 ; e ( P i > P 2 , P 3 , P 4 ) = 2-'d^,.2d^d-3 dy,3dy24dzdyM'[M'Y-' 

X [ 1 6 2 ( 1 - z){y{l - y) 2/132/24]"' / dx [x{l - x)]~^^^'\, 
Jo 

= 7r2-' dn,_2 dfi ,_3 dy,3 dy24 d^dyM^* [ M ^ " ' 

X [^(1 - z){y{l - y) yi3y24V 
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This X integration plays the role of an angular integral over the polar angle between the 

[q — 7) and {q — g) planes. Replacing the factors of 27r and integrating out the unresolved 

angular variables, we find that, 

d ^ i o L ( P l , P 3 , P 2 , P 4 ) = ( 2 7 r ) ' - ^ ^ d 4 1 , , ( p i , p 3 , P 2 , P 4 ) 

= M - ( i 6 . ^ ) ^ p ( i - . ) r - ^ ^ H ' - ^ H j 

X (dy24 dy [2/(1 - 2/)2/24] J , (5.73) 

which is exactly the product of two single collinear phase space factors as one could have 

expected. 

5.4.3 The double single collinear limit of the differential cross 

section 

As with the previous double unresolved contributions, the integration of the resolved two 

particle matrix elements over the two particle phase space yields a factor of CQ. This is 

multiplied by the integral of the approximation of the unresolved matrix elements over 

the unresolved phase space. Explicitly, we have, 

d(T4 DCp-ydz X (To, (5-74) 

where. 

z > c . , d . - ( ^ ) (I) 4 (2 . , ' / a . - , 5 . r 5 ) 

with, 

\Mdouble\'^ = Pl3^Q;24-.Q{z,y,Sl3,S24)- (5-76) 

Identifying terms, we find, 

' i V ^ - l \ / 4 V \ ^ ^ / a x /ael\ 1 

d2/i3 2 / 1 - 3 d 2 / 2 4 2/2-4 4. ^y^' - y^^'^ ^^^^^ • X 
/ n " " - ^ In , 

1-2 
V 
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The constraint y^ > y^^ fixes the lower boundary of the y integral to be ^ since in 

the double single collinear region yu = y{l — z). I^ot is straightforward to calculate and 

is given by. 

hoi = 
{yn 

-2e 

2(yn [i-zY -
( l - e ) ( 4 - e ) F 2 ( l - e ) 

2(1 - 2e) r ( l - 2e) _ 

The double single collinear contribution to the differential cross section then finally 

reads, 

,2-
/ /V - — I \ / M-iriir \ / «„ \ / ctt 

DCF^ 2N 

12/11 

M2 27r 

1 
= (1 - z^P^iz) 

-2t 

2(yn : i - z 

27r J r2 ( l - e) 

( l - e ) ( 4 - e ) F ^ ( l - e ) 
(5.77) 

2(1 - 2e) r ( l - 2e) 

With the evaluation of the double single collinear contributions we have completed 

the evaluation of all two-particle unresolved real contributions to the 7 1 jet rate at 

O(aas). In the next section, we will present a compact answer for the sum of these three 

contributions. 

5.5 Sum of the real contributions 

In this forthcoming section we present the results obtained for the e expansions of the three 

double unresolved real contributions to the differential cross section: the triple collinear, 

the soft/collinear and the double single collinear contributions. 

We first note that the e expansion up to 0{e^) of - ^ 2 1 ( 1 , 1 — e; 2 — 2e; 1 — 2 ) is given by, 

F(2-2e) / I 
F 2 i { l . l - t - 2 - 2 t - l - z ) j dtt~'{l-t)-'[l-t{l-z)]-^ 

Jo 

In , 
r ( l - 2e) (1 - 2e) 

+e (^2U2{l-z) + ^ln'{z)^ 

+e'- U u 3 { l - z ) - 2 S u { l - z ) - U n ' { z ) 
\ 0 
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- 2 L i 2 ( l - 2 ) l n ( z ) + - l n ( z ) 
6 

(5.78) 

This is needed for some terms of the triple collinear contributions. 

Collecting together the results for the triple collinear contribution to the differen­

tial cross section (equations (5.17), (5.18), (5.24), (5.19) and (5.47)) and expanding the 

expressions as series in e where we have not done it so far, we find, 

1 da triple 

UQ dz 

1 'N'-l\ / 4 V 
P ( l - e) V 2iV 2TTJ \ 27r 

X • 

+ -

In(^) ( l - f ) + 1 - f - + 2 ln( l - z)P{z) - 2 Hy^.)nz) 

ln(2) ln ( l - z ) { - 2 ^ z - 2 P{z)) + ln{z) - 1 - ^ + 

. l n ' W ( - 5 + ^ ) - 3 W - . ) P W - l + l l i - ^ ^ W 
2 

n'Piz) 
+ ln( l - z ) ( - 2 - ' ^ + 3 P{z)) + Li2(l - z) {-2 + z - P{z)) + ^ 

+ ln(2/min) 
bz 

2 -F y + 3 P{z) + \n{z) {-2 + Z + 2 P{z)) 

-2Hl-z)P{z) +\n\y^^)bP{z) 

, / 1 bz P{z)\ , , JVi Uz , 7P{zy 
9 

^ P{^)\ , 2, X / I 3P(2)^ 

9^ 
+ ln(2r) l n ( l ~z)[2-}-^-3 P{z)j + ln(z)U2il - z ) { i - 2 z ) 

+ ln'{l-z) ( 2 + ^ - 3 P{z)'j + ln ( l - .~)Li2(l -z){4-2z + 2 P{z)) 

+ ^ - 7 P{z) + ln\z) - + ln^(.) ln( l - . ) (s - ^ + ^ ( 2 ) ) 
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+ ln{z) \n\l -z){2-z + 3 P{z)) + ln ( l - ^) Q - 11^ + 7 P{z)^ 

-f Li3(l - 2) (-4 + 2 2 - 2 Piz)) + 812(1 - z ) ( 2 - z - 3 P{z)) 

, 7 ln3(l _ z)Piz) ^ 4̂  Li2(l - . ) + 9 Piz)m -

+ In (y^n) (112(1 - 2) (4 - 2 2 + 2 ^(z)) + ln(2) ln( l - ^) (4 - 2 2 + 2 P{z)) 
\ 

+ In^z) (3 - y - P{z)) - + ln( l - . ) (4 + . - 6 P{z)) 

+ ln(z) f2 + J - 3 Piz)) + 5 ( ln(l - z)f P{z) + 1 - 111 + 7 P{z) 
\ 2 J 2 2 ) 

+ hi^(y^ . ) ( ln ( . ) ( 2 - ^ - 5 P{z)) + 2 - ^ 1 ^ - 3 P{z) - ln( l - z)P{z)) 

19 ln3(y™n)P(^) 5.79) 
3 

where P^z) is the 4-dimensional splitting function, it is equal to [1 (1 — zY\lz. 

Similarly, collecting together the results for the soft/collinear contributions (equa­

tions (5.59) and (5.60)), and making similar expansions in e, we find. 

1 daso ft/col 

ao dz 
SCp-r 

2 1 \ /A^..2\ 2E X /Q,g2 1 N ^ - l \ UTTfi'Y' f a 9 

r 2 ( l - e ) \ 2N J \ IVP J \27rJ \27r J 

X I i [-2P{z)] + ^[-2z + 2P{z) \n{z) + 6 l n ( y ^ „ ) P{z) ] 

2z H z ) - Piz) la'iz) + I n ( y ^ n ) ( -6^ - QPiz) ln(^)) 

9ln'iy^n)Piz) 

1 
+ -

e L 

+z In'iz) + ̂ M-^ + l n ( y ^ , ) (6.1n(^) + 3P(.) In^(z)) 

+ ln ' (ymin)(9z + 9P(^) ln(^))-f 91n3(y^„)P(^) | . (5.80) 

The intermediate results for the double single collinear contribution are given by equation 
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(5.77), which after expansion in the e —> 0 hmit yield, 

1 dadouble 

(Jo dz 
= DC F-y 

1 
r2(l - e) \ 2Â  M2 2xJ \2Tr 

+ -
1 

2 l n ( l - z)P{z) - - 2 ln(2/w)P(. 

- 2 ln( . ) ln ( l - . ) P ( . ) + ^ - + ln ( l - . ) ( - 2 . + 

3 ln ( . )P ( . ) 
\n'{l-z)P{z) + 

+ ln(2/™n) 2 z + 3 P(2) + 2 ln{z)Piz) - 4 ln( l - z)P{z) 
\ / 

+5 ln'(2/min)P(^) 

^ ^ l " 3 . 7P(z)-

V 3 4 y 

_ .W^Wl (̂'9 Ml - ^)-'Pi^) 7pr.^ 31n^(z)P(.) -Mn(2 : ) ln( l - 2 ) 2z — { r{z) 

ln (̂l - z)P{z) 
3 

2 y 3 

3z 7P{z)\ ln{zy-P{z) 
+ ln{l-z) + + 4P(z)C(3) 

+ In (y^n) f - 3 z + 7 P{z) + Hz) {-2z-3 P{z)) - _ ln'iz)P{z) 

\ 
+ ln ( l -z){iz-3 P{z)) + 2 l n ' ( l - z)P{z) + 4 ln(2) ln( l - z)P{z) 

+ In^(ymin) ( -5 z - 3 P(z) - 5 Hz)P{z) + 4 ln( l - z)P{z)) 

19 ln%„un)P (2 ) l (5.81) 
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The sum of all three two-particle unresolved real contributions therefore reads, 

1 a.<S" 
(To dz 

= TCF^ + SCFJ + DCF^ 

1 'N^-l\ /4V 

x< 

+ -

r ^ ( i - ^) 

[-2 Piz)] 

2N IVP 

ce,\ / a e ' 
2KJ \ 2TT 

4 ln ( l - z)Piz) + Iniz) (1 - | + 2 P(z)) + 1 + ^ " ^ ^ z ) 

+2 \niy^n)Piz) 

+ - - i + ^ - 7P(^) + Li2( l -z)i-2 + z - Piz)) 

J Iz 9Piz 
+ l n ( l - . ) - 2 - - + ^ - + l n ( z ) l n ( l - ^ ) ( - 2 + 2 - 4 P ( 2 ) ) 

/ 
13z . . , 2, ^ / 3 . 3, 

+ ln( . ) - l - - ^ - F 3 P ( z ) ) - f l n ^ ( . ) ( - - + ^ Piz) 

-4 l n ' ( l - z)Piz) + 
5 7 r 2 p ( ; 

3z 
+ Hy^n) [Hz) i-2 + z-2 Piz)) - 6 ln ( l - z)Piz) - 2 - — + 6 Piz) 

1 
+ ln\y^^)Piz) 

-1 + 7r 
2 , 1 30 , 3Piz)\ . , _ /13 23^ 

3 
-f 4 / + ^ ^ ( ^ \ 4 

+ 7P(0) 

+ ln(^ 0 TT-

i_ z__2Pizy 
+ In^(^) T; + 

1 25 z dPizY 

-f l n ( 0 ) l n ( l - z ) 2 + 

3 • 6 3 J • ' \2 

13z 9Piz) 
+ l n ( 0 ) L i 2 ( l - 0 ) ( 4 - 2 2) 

+ ln\l - ^) (2 + ^ - ^-^r^] + ln ( l - ^ )Li2( l - ^) (4 - 2 0 + 2 Piz)) V 2 4 / 
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' 4 ' V6 12 • 3 y ' "'̂ ^ ' \2 • - ' 2 

+ In'(z) ln ( l _ ^) (̂ 3 - y + 2 P{z)^ + ln(2) l n ' ( l - 2) (2 - z + 4 P{z)) 

-f Li3(l - ^) ( -4 + 2 z - 2 P(z)) -f Si2(l - z ) { 2 - z - 3 P{z)) 

^ S l n ^ a - ^ , 4L i2 ( l - . ) . + 13P(.)C(3) - ^ M i z i l l ! ^ 
/ 

+ In(yniin) (^Li2(l - z) (4 - 2 z + 2 P(z)) + ln(z) ln ( l - 2) (4 - 2 2 -F 6 P(2)) 

+ ln ( l - z) (4 + 52 - 9P(2)) - + 7 ln^(l - 2)P(z) + i - 111 

-M4 P(2) + ln(z) (2 + y - 6 P(z)) + \n\z) (s - y + P(z)) ' 

+ In ' (y^n) (3 ln ( l - z)P(2) + ln(2) (2 - 2 - P(2)) + 2 - ^ - 6 P(z) 
_U lA.y^.)Piz)y ^. g^^ 

5.6 The approach with "strong ordering" 

As a check of our calculation of the real two particle unresolved contributions to the differ­

ential cross section, we rederived it in two strongly ordered limits. Instead of considering 

particle 1 and particle 2 to be collinear at the same time to particle 3, we consider the 

two different contributions; either particle 1 is colhnear to particle 3 followed by particle 

2 collinear to the cluster of particles 1 and 3, (denoted by (13)), so that (513 <C 5 2 3 ) , or 

particle 2 is coUinear to particle 3 followed by particle 1 being colhnear to particle (23) 

where we have (523 5 1 3 ) . In general, in the strongly ordered approximation, each of the 

unresolved real contributions {triple coUinear, soft/coUinear and double single collinear), 

gets "replaced" by the sum of two strongly ordered contributions. Each strongly ordered 

contribution is obtained by considering a different strongly ordered limit for each singular 

region. 
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As a result of this calculation we will find that the strongly ordered approximation 

correctly reproduces the leading divergences -those proportional to C ( ^ ) or C ( ^ ) which 

are associated with the leading and next-to-leading logarithms - but does not generate 

the correct subleading divergences proportional to 0 (^ ) (corresponding to the next-to-

next-to-leading logarithms) or the non-logarithmic terms of 0(1). 

5.6.1 The strongly ordered Hmits of the triple collinear differ­

ential cross section 

In this section we will determine the two strongly ordered limits of the triple collinear 

matrix element squared, phase space and differential cross section. 

The strongly ordered limits of the triple collinear matrix element squared 

In the strongly ordered collinear limit, 513 <C 514, so that first 1 and 3 become collinear to 

form a cluster (13) followed by (13) and 4 becoming collinear, i.e., 

l + 3 + 4 ^ ( 1 3 ) + 4 ^ g . 

The momenta can be expressed as, 

= (1 - a) p ( i3) , P3 = ap(i3); P4 = bpq., p(i3) = (1 - 6) pQ, (5.83) 

such that 6 = 2/ ^nd a = z / ( l — y). 

In this strongly ordered hmit, the triple collinear factor Pi34^Qix, y, 5 i 3 , 5 1 4 , 5134) given 

by eq.(5.5) factorizes into the product of two simple collinear factors of consecutive 

Altarelli-Parisi splitting functions divided by the small invariants in this limit. More 

precisely, the Altarelli-Parisi splitting functions are functions of the momentum fraction 

a and b or equivalently and y, while the small invariants are 513 and 5(13)4, so that, 

/ z \ 

Pl34^Qiz, y, 5 i 3 , 5 i 4 , 5134) Pl3^{13) _ ^^^^^j P(13)4^Q(2/, -5(13)4), (5.84) 
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where Pah-,c{z,Sab) is given by eq.(1.30)- In this limit, 5(13)4 ~ •S134 while S14 = (1 - z -

2 / ) / ( l - y)si34-

Alternatively if we let 1 and 4 become collinear and form the cluster (14), followed by 

(14) and 3 becoming collinear, i.e. in the strongly ordered limit where 514 C 513, then we 

have the following two-stage process, 

1 + 3 + 4 ^ (14) + 3 g . 

Introducing the momentum fractions a and b as before, 

pi = (1 - a) p ( i4) , p4 = ap ( i4 ) , 3 = 6pQ, p^^4^ = (1 - b) pq, (5.85) 

such that a = y/[l — z) and 6 = 2 . In this limit, the triple collinear factor again factorizes 

into a product of two consecutive Altarelli-Parisi splitting functions divided by the small 

invariants namely, 

f y \ 

P-i34^q{x,y,S-L3,Si4,Sr34) Pl4^(14) T j T, P ( 1 4 ) 3 ^ Q ( ^ , •S(14)3)- (5-86) 

The two small invariants are 514 and 5(14)3 ~ 5134 while 513 = (1 — 2/ — z ) / ( l — 2 )5134. 

At this stage, before we determine the strongly ordered limits of the triple collinear 

phase space and differential cross section, we would like to be able to decide when one or 

the other of the strongly ordered approximations is a "good" approximation to the triple 

collinear matrix element squared P I 3 4 ^ Q . As an example let us consider the strongly 

ordered collinear limit of P\34^Q when 2/13 < 2/14- We define the ratio r = and the 

ratio of the triple collinear factor and its strongly ordered limit 

- r i 3 ^ ( 1 3 ) -r(13)4-^Q 

Figure (5.1) displaying R{r), will help us to determine the quahty of the approximation. 

Here we have fixed z = 2/3, 2/ = 1/6, 2/14 = 1/100 and select various values of 2/134- In the 

strongly ordered hmit, 2/134 is fixed, 2/134 = { l - y ) / { l - z - y ) y u - 5yi4, shown as a solid fine 

in figure 5.1. As r approaches 0, the ratio R{r) approaches 1, indicating that the strongly 
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yi34 = yi4*5 
[-yi34 = yi4*4 
yi34 = yi4 * 6 

0.2 0.4 0.6 o.i 
r 

Figure 5 . 1 : The ratio R{r) (for 7/13 <C y^) as defined in the text.- We choose. 2 = 2 /3 , 

y = 1/6, ?/i4 = 1/100 for convenience and different values for 2/134 as a function of 2/14. 

ordered l i m i t is indeed a good approximation when ?/i3 ^ 7/14. When r increases, the 

ratio increases as the strongly ordered approximation becomes significantly smaller 

than the " f u l l " approximation PI34^Q. However, as soon as we allow 1/134 to deviate f rom 

its strongly ordered l im i t value, the approximation breaks down over the whole range of 

r . This is shown by the dashed and dotted lines. In practice, however. 1/134 is constrained 

by the Gram determinant, so that the deviations are st i l l relatively small. 

I n summary, the strongly ordered l imi t of the matrix element squared given by ecp(5.S4) 

is a good approximation of the " f u l l " matrix element squared PI34^Q only i f the require­

ments yi3 <C yi4 and 2/134 ( i - y ) yi4 are both satisfied. 

T h e strongly ordered l imits of the triple collinear phase space and differential 

cross section 

I n the two strongly ordered l imits the phase space also factorizes and becomes the product 

of two simple collinear phase space factors. 
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I n the first strongly ordered l imi t , defined in eq.(5.83), <C $14, we f ind that the 

phase space factor takes the form, 

'iPtrlu ~ dy(i3)4d?/i3dad6x [ a ( l - a ) ] - [ 6 ( l - 6 ) ] - ^ ( y ( i 3 ) 4 ) - 1 y i 3 ) - ^ 

~ z-'{l - z - y Y \ \ - y)"^+'?/"'(2/(i3)4)~'(yi3)"'d^ Ay dy(i3)4 dyjg, 

such that i n this strongly ordered l imi t , the contribution to the differential cross section 

reads, 

,2 

" 1̂  2iV ) \2^) \ ' 2 ^ l f ^ 

1 J „ , 

- i O = 1 ^ , , I I , ,0 I 1 ^ I .-̂  I T̂O ^ 

X /^""" dy(i3)4 (y(i3)4) ' ^ /* CI2/13 (2/13)" 

\, 27V y \, M2 y V27r; ^ 27r ; r 2 ( l - e) 2e2 

X d2/(l - y - z)-^ y-^ { - ^ ] P^{y) (5.87) 

Since 0 < a < 1 and a = z~ the y integral is bounded by I — z. Furthermore 513 <C 514 

impHes that the yi3 integral is bounded by (1 — y)y[i3)A-

On the other hand, i f <C 513, in the strongly ordered l imi t defined by eq.(5.85) the 

phase space factor takes the following form: 

dP^tf^t^ ^ dy(i4)3d2/i4dad6x [ a ( l - a ) ] - n 6 ( l - 6 ) ] - ( y ( i 4 ) 3 ) - ^ ( y i 4 ) - ^ 

~ y-'{\ - z - y)-\l - 2)-'+^2-'(?/(i4)3)"'(2/i4)"M^dydt/(i4)3dyi4. 

I n this l i m i t z, y and 2/13, ?/i4 are interchanged wi th respect to the previous strongly 

ordered differential cross section, so that. 

TC 
strong{b) 

- \ 2N \2IVJ \ 27r J ^ ( 1 - e) 
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X I dy(i4)3 (y(i4)3)"^"' dyi4 {yi,}-'-' 

X r 'dy y-'[l ~ y - z]-'z-'{l - z)-'+' ( - ^ " j p^U) 

27V j \ M ^ ) K-ITTJ \ 2w) r 2 ( l - e) 262^^™'^^ ^ ' 

n i _ , - . r , - p ^ ( ^ ) p ^ ( . ) ^ , (5.88) X 
'Vmin 

where the y integral is bounded by 1 — 2 as 6 = ^ < 1 and the y^^ integral is bounded 

by (1 — 2)7/(14)3 since 1̂4 <C 513 i n this strongly ordered hmit . 

5.6.2 The strongly ordered limits of the soft/collinear differ­

ential cross section 

T h e strongly ordered l imits of the soft /col l inear matr ix element squared 

In the l im i t where the gluon (parton 4 ) first becomes soft wi th the quark and photon 

(partons 1 and -3) subsequently becoming collinear, 514, S24 *C 1̂3, i.e., 

1 + 3 + 4 - ^ 1 + 3 ^ Q, 

such that, 

Pi = { l - z ) p Q , P3 = ZPQ, 

the soft/collinear approximation to the matr ix element squared, Pislllq' given by equa­

t ion (5.52) also factorizes. We obtain a product of a soft and a simple collinear factor. 

A^3il^?(^,?/24, 513, 514, 5134) - ^ / l 2 ( 4 ) Pl3-.Q(^, ^is), 

where the eikonal factor /^^(c) is defined in eq.(1.20). To obtain this fo rm we made the 

identifications, 

5l34 5i3, 

1 SQ2 S12 

2/24 524 (1 - 2^)524 
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Alternatively, i f we let 1 and 3 become coUinear before the gluon becomes soft, 513 <C 

•5Q4, 524, then, 

1 + 3 + 4 - ^ g + 

such that, 

p i = ( l - z ) p Q , P3 = ZPQ, 

then, 

A'si i^g' l^ '2/24, •S13, 514, 5134) ^/Q2(4) PI3^Q(2,5I3), 

where we have used the replacements. 

•S134 

5i4 

1 

y24 

SQ4 

(1 - Z)SQ4 

SQ2 

•524 
As in the previous section, the strongly ordered l imits of the soft/collinear matr ix ele­

ment squared depends only on four of the unresolved variables, while the f u l l soft/collinear 

mat r ix elements squared (given by P^gf l fg ' in eq.(5.53)) depends on all five. As a result, 

when the f i f t h variable deviates f rom the strict strongly ordered l i m i t , the strongly ordered 

approximation is not reliable. 

T h e strongly ordered soft /col l inear phase space and differential cross section 

In both strongly ordered l imits the soft/collinear phase space factorizes. I t becomes a 

product of a simple collinear phase space and a simple soft phase space factor. 

I n the strongly ordered l i m i t , where parton 4 first becomes soft followed by 1 and 3 

becoming collinear, 514, S24 <C S13, the phase space factor becomes: 

dP, 
id)(a) 
soft 

S14S24 

S12 
(•S13) ' [ ^ (1 - Z)] 'd5i3d524d5i4d2:, 

whereas i f parton 1 and 3 become collinear before 4 becomes soft, S13 < SQ4, 524, the 

phase space factor becomes. 

SQ2 
(513) '[-2(1 - z)] Msi3d524dS(34d2. 
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For the differential cross section we then obtain. 

gQStrong(a) _ ' N ^ - l \ / 4 V 2t 

•2N M 2 2nJ \2w J r 2 ( l - e ) 
P^iz)[il-z)zr 

X / d?/i3(?/l3) ' / d?/i4 / d?/24 
JO Jo Jo 

y\4y2A 

1 ( N ^ - l \ (iTTjX 2\ 2e 

M2 

r^'z-'PH 

2e3 \ 27V 

x { y 

for 5i4, 524 < 5i3, wliile, i f Si3 <C 5i4, 524, we have, 

yi2 

1 

- l -e 

yi2 

27rJ \ 27r J ^ ( 1 - e ) 

(5.89) 

SC F j 2N M 2 :2TrJ \2TT ) P ( l - e 

/•ymin /"J/min 1 /"J/min 1 
/ dy24 / d2/i3—(2/13) / d2/Q4 

io 2/13 ^13 yQ2 
1 / A ^ 2 _ i \ /47r^ 

P^{z)[{l-z)z\ 

2/(34^24 

2/Q2 

-l-£ 

2e3 V 2A^ M -'̂ ^̂  y ^27r; V 27r ; r 2 ( l - e) 

x ( 2 / n ^ n ) - ' ^ ( l - 2 ) - ^ 2 - ^ P ^ ( 2 ) . (5.90) 

This contribution differs f rom the expression given by eq.(5.89) only by a factor of (1 —z)~^ 

5.6.3 The strongly ordered limits of the double single collinear 

differential cross section 

Firstly, the double single colhnear \ M ^ given in eq.(5.69) and the double single collinear 

phase space given by eq.(5.73) are already in a strongly ordered form. They are given by 

the product of two simple collinear matrix element squared and phase spaces. Further­

more, in the two strongly ordered double single collinear limits the invariants are defined 

as i n eq.(5.68). I n particular, we have 2/14 = 2/(1 — z) in both strongly ordered hmits. 

Nevertheless, for the evaluation of the strongly ordered double single collinear differ­

ential cross section we need to distinguish two hmits; either 2/13 <C 2/24 or 2/24 <C 2/i3- In 

these l imi ts the boundaries of the phase space integral change. 
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In order to determine the double single collinear contribution to the cross section, 

we have integrated the double single collinear matrix element squared over the double 

single collinear region of phase space. Furthermore, we made sure that this double single 

collinear region precisely matches onto the soft/collinear region. This was achieved by 

requiring that, 

y\3 < Vmin and ?/24 < ?/min, 

in both regions of phase space, and yi4 < y^^n in the soft/collinear region whereas yu > 

2/min in the double single collinear region. Similarly, when the two strongly ordered l imits 

are considered we must ensure that each strongly ordered soft/collinear region matches 

onto the corresponding strongly ordered double single collinear region. 

Again, in both strongly ordered soft/collinear and double single collinear regions we 

w i l l have, 

2/13 < Vmin and ?/24 < 2/min-

The invariant y^, however is not constrained in the same manner in both different strongly 

ordered soft/collinear regions of the phase space as we can infer f rom eq.(5.59) and 

eq.(5.60). Therefore y-14 w i l l also be constrained differently in both strongly ordered 

double single collinear regions. 

More precisely, i n the strongly ordered soft/collinear Mmit where 2/14,2/24 < 2/i3, in­

spection of eq.(5.89) shows that yi4 is constrained to be less than yniin- Consequently, in 

the strongly ordered double single collinear region where (2/24 ^ 2/13), to guarantee that 

the matching between this region and the corresponding strongly ordered soft/collinear 

is reahzed we require that 2/14 > 2/min- As 2/14 = 2/(1 - z), the lower boundary of the y 

integral for this strongly ordered region is then 

On the other hand, in the strongly ordered soft/collinear region where 2/13 "C 2/14,2/24, 

f r o m eq.(5.90), we see that i n this case 2/Q4 is bounded to be less than 2/min and as 2/Q4 = 

we have 2/14 < 2/min(l — z)- In order for the corresponding strongly ordered double single 

collinear region (2/13 <C 2/24) to match onto this strongly ordered soft/collinear region, we 

w i l l require 2/14 > 2/min(l — z) which corresponds to a lower bound on y of y > 2/min-
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Following this remark, the sum of these two strongly ordered approximations of the 

double single collinear contribution yields. 

2N M 2 

1 
2 I T J \ 2 T r J r 2 ( l - e ) 

X - / d 5 i 3 ( s i 3 ) - ^ " ' / d524(524)"'"' 
Jo Jo l-z 

dy 

+ ds24s24)-'-' rds^sis^s)-'-' r dy\[{l-y)yr'P'{y) 
J o J o Jyrnin I 

2A^ 

1 
X --r 

M 2 

-(2/min)-ni + (1 

a 
277 

1 
- n z m - z ) z ] -

2K J r 2 ( l - e ) ^ 

(1 - e)(4 - 6) r - { l - e ) 
(5.91) 

' ' 2e(l - 2e) r ( l - 2e) 

Comparing this expression wi th the expression of the double single collinear contri­

bution without any strongly ordering given by eq.(5.77) we see that the strongly ordered 

result is obtained by the replacement. 

-{i-zY [1 + (1 - m 

5.6.4 The sum of all strongly ordered contributions 

The sum of all strongly ordered real contributions is obtained as follows. Each singular 

contribution (triple collinear, soft/collinear and double single collinear), is replaced by the 

sum of its two corresponding strongly ordered l imits . Evaluating the resulting integrals 

for the sum of all real strongly ordered contributions, the pole part yields. 

1 dajf^'*''""^ 
dz 

strong{b) _^ gQ, strong{a) _^ gQ stTong{b) ^ jjQStrong 
'F^ 

2N 
Ols_ 
2 - K 

1 

e2 L 

27r / Vm - t ) 

7 
2 P(2 ) l n ( y ^ n ) + ( 1 -t- - 2 - 3 P(2) 
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+ ln(z) ( l - + 2P(^) ) + 4 P ( z ) l n ( l - 2 ) 

^Piz) + lp{zy)+\n\y^r.)Piz) 

- 2 - ^ z + QP{z) +\n{z)i-2 + z + P{z)) + ln(2/mii, 

- 6 P ( z ) l n ( l - 2 ) 

l n ( l - z) \n{z)\-2 + z - 4P(z)] - 4P(z) ^ ^ ( 1 - z) 

+ Li2( l - z ) [ - 2 + 2; + ln^ ( . ) 

+ l n ( l - z 

+ ^ ( 1 ) 1 -

2 4 ^ 
7 9 

- 2 - - . + - P ( . ) + l n ( z ) 
5 9 

- 2 - r + 
3 P ( . ) ] } 

(5.92) 

I f we compare this result wi th the result obtained for the sum of the three two-particle 

unresolved real contributions without taking the strongly ordered approximation (as in 

eq.(5.82)) we see that, the strongly ordered approximation correctly reproduces the leading 

divergences - those proportional to 0{-^) and 0{^) - but does not generate the correct 

subleading divergences proportional to 0 [ j ) . The finite terms of 0{1) are also incorrectly 

reproduced. The leading and next-to-leading logarithms generated by expanding the most 

singular poles are correctly reproduced, but single logarithms and non-logarithmic terms 

are not. We understand this as follows: The poles in ^ , ^ arise f rom the evaluation 

of successive phase space integrals at the lower boundaries where the strongly ordered 

approximation is very close to " f u l l " approximation of the matrix elements. On the 

other hand, terms proportional to \ arise when evaluating only one of the phase space 

integrals at its lower boundary while the other phase space integrals contain significant 

contributions close to their upper boundaries. A t these upper boundaries, the ratio r 

between the two invariants defining the strongly ordered l imi t is no longer small and the 

strongly ordered approximation to the matrix elements is no longer accurate. 

I n summary, i n this section we have performed a cross check of our calculation by 
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evaluating the real contributions in different strongly ordered limits. We have found 

agreement for the most singular terms, while less singular terms appear to be different. 

This disagreement can be explained as due to an insufficient approximation of the differ­

ential cross section in the strongly ordered l imits. Therefore, since the results obtained 

applying "strong ordering" only reproduce the leading divergent terms correctly, they wi l l 

not be taken into account in any further part of this dissertation. 
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Chapter 6 

Virtual contributions 

I n the previous two chapters we have decomposed the four-particle phase space and ex­

tracted the divergences present in the 0{aas) four-parton process 7* —s- qq^yg where one 

or two particles are theoretically unresolved. In other words, only two or three particles 

are theoretically identified in the final state. I f three particles are theoretically well sepa­

rated, the experimental cuts w i l l combine these particles further to select photon - f l jet 

events. 

In this chapter we w i l l take into account the exchange of a vir tual gluon in the 7* —> qqj 

process, which when interfered wi th the tree level process also gives rise to contributions 

of 0{aas). More precisely, the matrix element "squared" \M\v associated wi th the loop 

diagrams is obtained by interfering the lowest order real amplitude T wi th the loop 

amplitude C, 

\M\'v = 2Re{CT*). 

The Feynman diagrams related to the real and vir tual amplitudes for 7* — q q j are shown 

in Fig. 6.1 and Fig. 6.2. 

As discussed in Section 3.1, the calculation naturally divides into two parts, depending 

on whether or not the three particles are resolved. Both resolved and unresolved contri­

butions are divergent and need to be combined wi th the appropriate real contributions 

described earlier. In the resolved v i r tual contribution both quarks and the photon are 
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clearly distinguishable and we expect the divergences to cancel when combined wi th the 

real contribution i f the gluon is either collinear wi th one of the quarks or is soft (c.f. Sec­

t ion 3.3). On the other hand, in the unresolved part, the quark and photon are considered 

to be collinear and fo rm a single pseudo particle, Q the parent quark. The expected lead­

ing singularity is proportional to (P(z)/e^). In fact, the most singular divergences f rom 

this piece arises f r o m the possibility of a soft gluon being internally exchanged, which 

gives rise to a term proportional to ( C ( l / e ^ ) ) , occurring simultaneously wi th the collinear 

emission of the photon f r o m a quark - which is related to a contribution proportional to 

{P{z)/e). These most singular poles should cancel wi th those present in the soft/collinear 

contributions calculated in the previous chapter. 

This chapter is organized as follows. First, we consider the well known forms for the 

v i r tua l mat r ix elements and specify over which region of phase space these w i l l be used in 

our fur ther study. The known published forms are not suitable for extracting the collinear 

l i m i t , so in Section 6.2, we reformulate the matrix elements in order to be able to take the 

l im i t Sq^ —>• 0. As Bern, Dixon, Dunbar and Kosower have studied the helicity amplitudes 

for the collinear l imi ts of one-loop amplitudes we compare their results wi th ours for the 

collinear v i r tua l matr ix elements in Section 6.2.2. Finally, the collinear matrix elements 

are integrated over the simple collinear phase space in Section 6.2.3. 

6.1 The resolved contribution 

The squared matr ix elements for the 7* qqg process at one loop have been calculated 

many times in the hterature [25, 31, 34]. The calculation of this process is part of the 

0(al) corrections to the three-jet rate in e+e~ annihilation, which was originally derived 

by Ellis, Ross and Terrano in [31 . 

As we are interested in the vir tual contributions wi th an outgoing photon instead of 

an outgoing gluon, we need to replace the colour factors in eq.(2.20) of [31] as follows. 

CA - ^ 0 , N F ^ 0, C'F CF, 
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Figure 6.1: Tree level 7* qq^ amphtudes. 

Figure 6.2: V i r tua l gluon corrections to the 7" -> qqj amplitude. 

furthermore we need to consider. 

when the quark has charge e,. Af ter these replacements, eq.(2.20) of [31] reads, 

\M\l = {\Mgq-y\^ X + P ( y i 2 , y i 3 , 2 / 2 3 ) ) , 

where, 

a. 
^9(7 ) = — 27r V 27V J r ( l - 2e) IVP 

(6.1) 

(6.2) 
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and, 

^(2/12 ,2 /13 ,2 /23) = 27r I 27V 

[ 2/12 , y i 2 , y i 2 + 2/23 . 2/12 + 2/13 
X < • + • + + 

I 2/12 + 2/13 y i 2 + 2/23 2/13 2/23 

+ I n 2/13 
42/12 + 22/122/13 + 42/122/23 + 2/l32/23 

(2/12 + 2/23)^ 

r42/î 2 + 22/122/23 + 42/122/13 + ^13^231 

2/13^23 2/132/23 

2/?3 + 2/l3 91 „ 2/?2 I 22/12 
2 I n y i 2 7 - 7—^ + 

2/132/23 ( y i 3 + 2/23) V(2/l3 + 2/23)^ ^13 + 2/23, 

The funct ion P is defined as. 

(6.3) 

R{x,y) = l n a ; l n 2 / - l n , T l n ( l - x ) - l n2 / ln ( l - 2/) + ^TT^ - 1 1 2 ( 3 ; ) - L i 2 ( 2 / ) • (6.4) 

As usual we made the identifications of g = 1, ^ = 2 and 7 = 3 in addition to the 

invariant masses s^j = (pi + Pj)^ and the scaled variables yij = Sij/jVP where = Si23 

is the (mass)^ of the ofl'-shell photon. We see that in eq.(6.1) the divergent terms coming 

f r o m the emission of a soft or collinear gluon have precisely the necessary fo rm to cancel 

the singularities present in the single unresolved soft or collinear contributions to the tree 

level process 7* qqig, i.e. those present in Rqq(-y) defined in eq.(4.24). The cancellation 

of singularities between these two classes of contributions wi l l be presented in Chapter 8. 

To ensure that the photon is resolved f rom the quark and antiquark, we define the 

resolved three parton phase space to be, 

•̂ 97 "^min, "̂ 97 '̂ min-

I n this region the resolved vi r tual cross section can be wri t ten as 

do-J/"' = y,,-(-y)da,,-^ + P, (6.5) 
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Vqq{-y) IS the vir tual factor defined in eq.(6.2) while wi l l be evaluated numerically using 

the finite expression of Elhs, Ross and Terrano in eq.(6.3) and the experimental jet algo­

r i t h m to select a photon + 1 jet final state events, aggj w i l l also be evaluated numerically. 

The more interesting problem lies in the unresolved region as we shall see in the next 

section. 

6.2 The unresolved contribution 

I n the unresolved region of phase space, the c^uark becomes collinear wi th the photon so 

that, defining a new parent quark, Q, w i th momentum pq we have, 

PQ =Pg+P'y=Pl +P3-

As usual, we introduce the variable 

pi = { 1 - z)pQ, p3 = zpQ. (6.6) 

The photon carries then a fraction z of the composite quark momentum. In this simple 

collinear l im i t the three particle phase space factorizes into a simple collinear phase space 

factor, as we saw in Chapter 2, 

dP^'\M,pg,p„p^) dPi'\M,pQ,p,)dP^;}{pg,p,,z). (6.7) 

dP2^\M, PQ , Pq) is the known two-particle phase space in d dimensions given in the Ap­

pendix B by eq.(B.3) and the colhnear phase space factor dP^^}{pq. p^z), 

dP^S{Pq,P„z) = ^ ^ J l ^ — - d . „ d . [ 3 „ . ( l - .) (6.8) 

A t this stage we would like to take the corresponding l imi t of the vir tual matrix 

elements. However, we note that the fo rm given in eq.(6.3) is unsuitable for taking the 

collinear l i m i t , since as S13 (or equivalently 2/13) —>• 0, terms of the form, 

iog(5l3) 

5l3 
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are generated. Such terms are problematic and are generated by taking the S13 —> 0 l imi t 

after an expansion of the vir tual matrix elements as a series in e. The correct procedure 

would be to take the collinear l imi t first and then expand the matrix elements as power 

series in e. For example, consider the term. 

Expanding as a series in e yields, 

which, as .s —̂  0, is ill-defined. Dimensional regularization solves this problem wi th the 

prescription, 

e 

in the hmi t s = 0. In the unresolved region, 513 hes in the range [0,Smin] and the 

unexpanded f o r m must be used. 

6.2.1 The collinear limit of the virtual contribution 

W i t h the help of the scalar loop integrals BQ, CQ and Do, we can bring the matrix element 

squared of eq.(6.1) into an "unexpanded form" [64] and then take the collinear l imi t . 

Expl ic i t calculation yields a dimensionless virtual collinear factor VCp-ydz multiplying 

the lowest order two particle cross section-^, 

dcrv VCF-ydz X ao, (6.9) 

where, 

VCF.dz = ( - 1 ) [ - ^ ) [ - J ^ j [ ^ ) [ - 2 ^ ) r ( l - 2 e ) 

dz [^(1 - ^ ) ] - ^ X / d2/i3(2/i3)"^V;,,, (6.10) 
JO 

1 Recall that we only consider the contribution where the photon is on the quark leg. We shall multiply 

the result by two at the end. 
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where the funct ion Vcoi contains the scalar integrals. Explicit ly, 

-3 

where we have divided the contributions into parts wi th different z dependences. Vj^i, 

Klh Veil are respectively given by, 

P ' ( ^ ) r - - . . 

Ko/ = — X 1 -DoiP2,Pl,P3) - Do{pi,P2,P3) + Co{pi,P3) - Co(pi3 ,P2) 
2/13 

+ Co{p2,P3) - 2(7o(pi2,P3) - ^ 0 ( ^ 2 3 , P i ) ' 5Po(?^123) + 2(1 - e)Po(Pl23)} , 
= f x 

2/13 

-z{l~eY + 5{l-e)z + -
Az 2 

1 - e 
- 7z 

X {-Doipi,P2,P3) + Co(Pl,P2) + Co{p2:P3) " Co{Pl2,P3) " Co(p23,Pl)} , 
Kl, = - — P o ( p i 3 ) e ( l - ez). (6.11) 

2/13 

The Co and P̂ o integrals contain double poles in e while the integral over 2/13 wi l l generate 

an additional pole i n e. We therefore expect that the leading contribution comes f rom 

^coh while the scalar integrals in V^^i must conspire to give zero. 

The scalar integrals / appearing in the above expression are related to the usual loop 

integrals / as described below. I t is useful to define the constant, 

ATTV , r ( i + 6 ) r ^ ( i - e ) 
= ' [M^J ^-'^ r ( i - 2.) • ^ ^ - ' ' ^ 

The above loop integrals are derived in their most general fo rm in [65]. Only four integrals 

are necessary for this computation; the bubble integral, the triangle integral wi th one and 

two external masses equal to zero and the box integral wi th three massless external lines. 

We here quote the general results for the scalar integrals prior to taking the collinear 

l i m i t . 

First , the bubble integral for momentum Pa, Po(Pa), is given by, 

:k „ / d'^^ 1 

Pa 

(47r )2- e r ( 2 - 2 e ) ^ ^ 
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(47r)2 l - 2 e e \ M \ 

Cr 
BoiPa)-

For the t r i ang le in t eg ra l , i t is usefu l to f i r s t give the result fo r two off-shell legs. I f 

m o m e n t u m Pc = Pa+ Pb enters and m o m e n t a pa and pb ex i t t hen i f pl.,pl ^ 0, and pi = 0, 

t he scalar t r i ang le loop in t eg ra l Co{pa,Pb) reads, 

Co{pa,Pb) 

Pa +Pb + 

Pa+Ph 

J f 2 ^ 

1 

{2i^Y k^ik + pbYik + pa + PbY 

z r ( i + e) r ^ ( i - e ) i - p i r ' - i - p l ) " 

( 4 7 r ) 2 - £2 r ( l - 2 e ) pi - pi 

Cr 1 f p l PI \ 1 

(47r)2 £2 ^yM2 

C r 1 
(4vr)2 (p2 - p2) Co{pa;Pb)-

T h i s is a su i tab le f o r m f o r t a k i n g the pi ^ 0 l i m i t , so t h a t the t r i ang le in tegra l w i t h 

PI = Sab^O and pi = pi = 0, is g iven by, 

z r ( l + e) T'{1 - e) ( - p ^ ) -
Co{Pa,Pb) (47r)2-̂  £2 r ( l - 2 £ ) P: 

Cr 1 , ^-e 1 

C'o(Pa,Pfe)-

(47r)2 £ 
Cr 1 

(47r)2 5,, 

T h e box d i a g r a m Do{pa,Pb,Pc) needs on ly to be considered i n the h m i t where, pi 

PI = PI = O, 

Pa+Pb+Pc ^ Pa 

Do{pa,Pb,Pc) 
Pb 

167 



Cr 2 1 

(47r)2 SabSbc 

(1 - 2/a6)-^ i^2i f - e , - 6 : l - e ; - ^ ^ 

+ (1 -y ( , e ) ' i ^2 i - e , - e ; l - e ; 
l - V b c J 

/ 
- ( l - 2 / , , ) ^ ( l - 2 / 6 , ) ' F 2 i - e , - e ; l - e ; 

V 

Cr 1 

(1 - y 6 c ) ( l - y a 6 ) , 

-DoiPa,Pb,Pc); 
(47r)2 Sa6.S6c 

where i ^ 2 i ( — — e ; 1 — 2 ) can be expanded as a series i n e, 

i ^ 2 i ( - e , - e ; 1 - e; = 1 + Li^iz) + [Us{z) - S.^iz)] + Oie"). 

I t is necessary to consider these scalar integrals fo r the specific m o m e n t u m config-

m-ations appear ing i n eq.(6.11) and take the coUinear l i m i t . T h i s corresponds to the 

replacements , 

? / l 2 ^ ( l - 2 ) , y23-^Z, 

w h i l e select ing yi3 t o be smal l . I n th is l i m i t , and using the nota t ions pij = Pi + pj. 

Ptjk = Pi + Pj + Pk we find, 

1 
^0(^123) 

Bo{Pl3) 

CoiPuPa) 

Co{P2,P3) 

Co{Pl,P2) 

Co{p23,Pl) 

c2 ' 

l - { z ) -
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so t h a t , 

Coipi2,P3) 

Co{Pl3,P2) 

Do{P2,Pl,P3) 

Do{Pl,P2,P3) 

^{l-zry^,' F2i{-e,-e:l-e-z), 

( i - 2 ) - ^ + ( ^ r - i (6.13) 

VI, = 
2/13 

2 
—; + -,yii - 1/1-3 ( 1 - ^ ) - ^ 2̂1 ( - e , - e : l - e ; . ) 

1 (3 + 2e) 

e f l - 2 e 

= 0, 

1 ( e ^ - 1 ) 

y i 3 ( l - 2 e ) 

As expected , the leading pole c o n t r i b u t i o n not p ropo r t i ona l to the qua rk -pho ton s p l i t t i n g 

f u n c t i o n P^z) vanishes. V^„i is no t requi red t o vanish because of the ex t r a power of e 

w h i c h makes i t a sub-leading t e r m . 

6.2.2 Check of the coUinear limit of \M\y 

T h e coUinear behaviour of one-loop ampl i tudes has been s tudied by Bern , D i x o n , Dunbar 

and Kosower [66] us ing he l i c i ty ampl i tudes . I n this subsection we wish to use the i r work to 

check our resul t f o r the coUinear l i m i t of the squared m a t r i x element \M.^ = 2 R e ( £ T " " ) . 

G i v e n an a r b i t r a r y h e l i c i t y con f igu ra t ion , i n [66] the qua rk -pho ton coll inear l i m i t of 

the t ree a m p l i t u d e Mqq^, associated w i t h the real process 7* qq-y is g iven by. 

M 
lib 

997 Esput'rM',p''')MQ„ (6.14) 

whereas the col l inear l i m i t of the one loop he l i c i ty a m p l i t u d e Mq^^ y ie lds . 

iloop # v M [ % ' ^ E (SpHt'ir{p'q\p',^)M'^:^ + SpUtl'{p'q<',p'^^)MQq , (6.15) 
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w i t h A the h e l i c i t y of the parent quark Q. 

T h e s p H t t i n g ampHtudes Spht*Zx{Pq%P^') and Spht'^l^iPg^p')") are expected to be 

un iversa l and t o depend on ly on the two ex te rna l legs becoming coUinear. Fu r the rmore , 

the t ree s p l i t t i n g ampl i tudes Split^Lf are such t ha t , when one takes the sum of a l l squared 

amp l i t udes of de f in i t e h e l i c i t y one obtains the usual f o u r d imensional s imple coll inear l i m i t 

of t he 7* —> qq') m a t r i x element squared encountered before ^ i n Section 1.5.3, 

Y . \ M , , , ? ^ - P{Z)\MQ,\\ (6.16) 

T h e relevant tree s p l i t t i n g ampl i tudes squared are i n fac t given by, 

= \SpUt'r{p-..p;)\'^—^^^., (6.17) 
97 

\SpUe^\pt ,p-)\' = \Sphtr'{p;,P^)\' = ~^-. (6.18) 
' 9 7 

T h e one-loop s p l i t t i n g f u n c t i o n s Splitl°^{p\''.p^'') ar is ing i n eq.(6.1.5) are, 

SpUtl'ip'^p^") = Spht'iripi^p'^") X r s ( p ^ , p ^ ^ ) , (6.19) 

w i t h t he relevant rsiPq",pif^) g iven by. 

rs{Pg,P^) = rs{p^,p.^) = ^f{z,Sg^), 

rs{p-,p;) = r s ( p + , p + ) = ^ ( / ( z , . s , , ) - 0 , (6.20) 

and where the f u n c t i o n f{z,Sq^) is. 

9 
- - ^ ( l - z ) - ^ ( M - ^ + - ( 2 / , , ) - ^ - 2 L i 2 ( 

W e also have t h a t f o r a l l h e l i c i t y ampl i tudes . 

'Recall that P{z) is the four dimensional splitting function. 
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M[7\' = lVqq-\Mqq-\\ (6.22) 



where Vgg is the v i r t u a l f ac to r associated w i t h the loop d i a g r a m related to the process 

7* —qq encountered i n eq.(1.38). 

For an a r b i t r a r y h e l i c i t y conf igu ra t ion , let us denote twice the p roduc t of the loop and 

tree a m p h t u d e by I n the coUinear h m i t i t becomes ( for a single hehc i ty ) , 

\M A |2 9n7 
v\ —^ 

1 
Split tree 2 

-A| 
•'97 

Vqq- + 2 r. X \M tree\2 
A I • (6.23) 

S u m m i n g over a l l possible h e l i c i t y conf igurat ions and using the results i n [66], the coll inear 

h m i t of \M\Y reads. 

2 9||7 
— \M 99 1 
' 97 

P i z ) ( V q q + f { z , s j ] + r i z ] 
\ ) 

(6.24) 

(6.25) 

w i t h r{z) = — 1. I n th i s equa t ion (6.24) a l l terms are p ropo r t i ona l t o , 

— \Mqq\\ 
•5 97 

as one cou ld have expected. T h e t e r m w h i c h is not p r o p o r t i o n a l to P{z). r{z) arises f r o m 

te rms p r o p o r t i o n a l to z present on ly f o r some of the he l i c i ty conf igurat ions as can be seen 

f r o m eq.(6.20) . 

F i n a l l y , we find t h a t t he expression (6.24) can also be represented d iagrammat ica l ly , 

P{z) 9117 

+ — r z 

f{z,Sq^) 
' 9 7 

{ P ( z ) [ y „ - + / ( z , 3 „ ) ] + r ( z ) } . 

I f we now make a p a r t i a l expansion i n t of our result f o r VcoU g iven i n eq.(6.11) we see 

t h a t 

Vcol 
1 

' 9 7 

- 8 - f TT' 

- | ( 1 - z)-\y^^r + | ( 2 / i 3 ) - ^ - 2 L i 2 ( ^ ) 1 , (6.26) 

w h i c h is of t he f o r m of (6.24) and therefore agrees w i t h the colhnear l i m i t of the v i r t u a l 

one-loop amph tudes g iven by B e r n , D i x o n , Dunba r and Kosower. 
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6.2.3 Integration over the unresolved phase space region 

L e t us now r e t u r n t o our de r iva t ion of the singular v i r t u a l coll inear con t r ibu t ions to the 

t o t a l d i f f e r e n t i a l cross section 7* ^ 7 + 1 j e t , VCpj. T h e in teg ra t ion of yis over the 

unresolved reg ion generates an overal l 1/e fac tor . I n order to calculate the v i r t u a l con t r i ­

bu t i ons up t o 0(1) i n e we need therefore t o keep terms of 0(e) i n Vcoi- I n other words, we 

need t o e x p a n d Vcoi one order f u r t h e r i n e t h a n i t was necessary fo r the comparison of our 

resul t w i t h the one of B e r n , D i x o n , Dunba r and Kosower (as i n eq.(6.26)) . P e r f o r m i n g 

f u r t h e r m o r e the yia i n t eg ra t i on , the unresolved quark -pho ton coll inear v i r t u a l f ac to r is 

g i v e n by, 

2N J \ Q ' J ' ^ \27rJ\27r J T{1 - 2e) 

X (y^n)-'' [ ^ ( 1 - ^ ) ] " ^ 

X n z ) 
2_ , _ i , 1 e f 3 + 2e 
3̂ 3̂ + 2̂ y^nin _c^^J • 3̂ 

+ - ( l - . ) - ^ F 2 a ( - e , - e : l - e ; ^ ) 

; i - e z ) 
' 2e(l - 2 e ) ; ' 

As expec ted , the most d ivergent pa r t of th is expression is p ropo r t i ona l to P^{z) and pre­

cisely cancels the leading s ingu la r i ty present i n the two-par t i c le unresolved con t r ibu t ions 

t o t he f o u r p a r t o n process discussed i n the previous chapter , namely the leading singu­

l a r i t y i n the so f t / co l l i nea r c o n t r i b u t i o n SCpi ( c f . Section 5.3.3). T h e subleading poles 

do no t cancel; t hey are u l t i m a t e l y fac to r ized i n t o the Oiptas) f r a g m e n t a t i o n f u n c t i o n , as 

w i l l be presented i n Chap te r 8. 

I n conclus ion , i n th i s chapter we have de te rmined the divergences present i n the re­

solved and unresolved v i r t u a l con t r ibu t ions f r o m the one-loop process, 7* —> qqj{g). We 

saw t h a t t he resolved con t r ibu t ions possess divergences w h i c h have the r i gh t f o r m to can­

cel those present i n the real single unresolved con t r ibu t ions . For the unresolved v i r t u a l 

c o n t r i b u t i o n s on the o ther hand , on ly the leading s ingular i ty pa r t has a s imi la r f o r m to the 

l ead ing s i n g u l a r i t y pa r t of the double unresolved con t r ibu t ions . T h e r ema in ing singular 

t e rms w i l l need t o be absorbed i n the 0{aas) counter t e r m of the quark- to -photon f r ag -

172 



m e n t a t i o n . T h e cancel la t ion of these singular i t ies together w i t h the cons t ruc t ion of the 

f r a g m e n t a t i o n counter t e r m w i l l be p e r f o r m e d i n Chapter 8. T h e evaluat ion of a l l finite 

c o n t r i b u t i o n s ar is ing i n th is chapter , such as Fc and agg^ w i l l be dealt w i t h numer i ca l ly 

and presented i n Chapte r 9. 
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Chapter 7 

Contributions involving D ^ _ ^ ^ { x ) 

I n a d d i t i o n t o the real and v i r t u a l con t r ibu t ions der ived i n the three previous chapters, 

we need t o consider a f u r t h e r process c o n t r i b u t i n g t o the 7* 7 -f-1 j e t ra te at 0{aas): 

t he p r o d u c t i o n of a qua rk -an t iqua rk pai r associated w i t h a real or v i r t u a l g luon . fo l lowed 

by the f r a g m e n t a t i o n of a quark i n t o a p h o t o n . T h e c o n t r i b u t i o n of th is process to the 

d i f f e r e n t i a l cross sect ion is g iven by the convo lu t ion of the tree level 7* qqg or one-loop 

7* qq cross section w i t h the hare qua rk - to -pho ton f r a g m e n t a t i o n f u n c t i o n , Dg_^^{x), 

w h i c h we i n t r o d u c e d i n Section 1.5.3. 

T h e F e y n m a n diagrams associated w i t h this process are shown i n F i g . 7 .1 . As usual, 

charge c o n j u g a t i o n invar iance impl ies D^^^ = D?^^ Therefore , to s i m p l i f y the discussion, 

we o n l y consider the c o n t r i b u t i o n where the quark f ragments i n t o a pho ton , and account 

f o r t he a n t i q u a r k f r a g m e n t a t i o n c o n t r i b u t i o n by m u l t i p l y i n g the resul t by two . T h e general 

s t r u c t u r e of th i s c o n t r i b u t i o n is, 

daf'^ = d(T'^"(^) i ? , % ( x - ) d x , (7.1) 

d(T^'^'\ and da ' f ( ^ ) are the f u U v d i f f e r en t i a l cross sections and x is the r a t i o between the 

p h o t o n and the parent quark momen ta . 

T h e hare q u a r k - t o - p h o t o n f r a g m e n t a t i o n f u n c t i o n , D^_^^{x) is the sum of a non per-

turbative p a r t , Dq^-y{x, HF) w h i c h depends on the f ac to r i za t i on scale fip and can on ly 

be d e t e r m i n e d by exper imen t , and a perturhative counter t e r m . Since the u n d e r l y i n g 
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.060000 

F i g u r e 7 .1 : C o n t r i b u t i o n s i n v o l v i n g the bare f r a g m e n t a t i o n f u n c t i o n D f ( x ) 

7* ~^ IQid) process is a l ready of 0{as), on ly the 0(a) counter t e r m needs to be consid­

ered. T h e c o n t r i b u t i o n f r o m the convo lu t ion of the tree-level 7* —> qq process w i t h the 

O(aas) counter t e r m is discussed i n the nex t chapter. To the order a, the f r a g m e n t a t i o n 

f u n c t i o n can be decomposed. 

^^^{x,flF) + - — 
1 'i + ( i - x y 

1.2) 
r ( i - e ) V X )• 

As usual , th i s separat ion int roduces a dependence on the f r a g m e n t a t i o n scale ^.ip to the 

phys ica l f r a g m e n t a t i o n f u n c t i o n Dq^^(x, f.ip). 

As discussed i n Section 3 .1 , the f r a g m e n t a t i o n con t r ibu t ions separate i n t o three cat­

egories, depend ing whe the r t he g luon is resolved, unresolved or v i r t u a l . I f the g luon 

is i d e n t i f i e d i n the final state, we w i l l find t h a t the s ingulari t ies present i n this resolved 

c o n t r i b u t i o n are exac t ly cancelled by the real coUinear photon/resolved gluon c o n t r i b u t i o n 

f r o m the 7* qqgj process. Th i s precisely parallels the cancel la t ion of the quark -pho ton 

col l inear s i n g u l a r i t y i n the 7"* —> qq'y process w i t h the 0(a) f r a g m e n t a t i o n coun te r t e rm 

m u l t i p l y i n g the 7* qq process present at lowest order discussed i n Chapter 2. 

I f , on the o ther hand , the g luon is unresolved, i t can be combined w i t h the quark or 

w i t h t he a n t i q u a r k or i t can be sof t . I n the absence of the quark- to -pho ton f r a g m e n t a t i o n 

f u n c t i o n , the i n f r a r e d s ingular i t ies f r o m the 7* qqg process exact ly cancel against those 
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f r o m the one-loop 7* —> qq process as we saw i n Section 1.5.3 . Due to the presence of 

the f r a g m e n t a t i o n f u n c t i o n , th is is no longer the case. W h e n the g luon is coll inear to 

t he qua rk w h i c h subsequently f ragments i n t o a pho ton , the parent quark m o m e n t u m is 

shared between the quark and the g luon and the f r a c t i o n a l m o m e n t a carr ied by the p h o t o n 

and the g l u o n are re la ted t o each other . T h e consequence is t h a t a convolu t ion between 

f r a g m e n t a t i o n f u n c t i o n and p a r t o n level cross section arises. As we shall see in Section 7.4. 

a large p a r t of t he divergences present i n this c o n t r i b u t i o n cancels against the divergences 

present i n the double unresolved con t r ibu t ions discussed i n Chapter 5. 

T h e o rgan iza t ion of th is chapter is as fo l lows . I n Section 7.1 we shall give the f o r m 

of the resolved con t r i bu t ions . T h e general s t ruc tu re of the unresolved con t r ibu t ions w i t h 

associated f r a g m e n t a t i o n w i l l be presented i n 7.2, wh i l e the ca lcu la t ion of these con t r i ­

bu t ions w i l l be described i n some de ta i l i n the remainder of th is chapter. As a check 

o n our i n t e r m e d i a t e results , i n Section 7.6 we compare our expression f o r the s u m of the 

c o n t r i b u t i o n s w i t h the resul t of K u n s z t and Trocsanyi i n [47]. As they do not specif ical ly 

consider the 7* —> 7 + 1 j e t ra te , bu t ra ther the cross section fo r the process 7* —> 7 -(- A' 

Ave shal l find t h a t b o t h results on ly agree i n the most singular piece. 

7.1 Resolved contributions 

W e saw i n Sect ion 3.1 t h a t the tree level process 7* —> qqg w i t h a theore t ica l ly wel l 

separated g l u o n accompanied by f r a g m e n t a t i o n of the quark contr ibutes to the 7 + 1 j e t 

d i f f e r e n t i a l cross section i n the f o l l o w i n g t w o cases: 

( i ) T h e g l u o n is c lustered together w i t h the quark w h i c h f ragments i n t o a pho ton . 

( i i ) T h e g l u o n is c lustered to the an t iquark or i t is isolated wh i l e the an t iquark is 

c lus tered w i t h the p h o t o n j e t . 

I n b o t h cases the cross section has the f o r m given by (7.1) w i t h x. the f r a c t i o n a l 

m o m e n t u m car r ied by the p h o t o n inside the qxiark-photon coll inear cluster, 

d a ^ = da"''' D^_^^{x) dx. (7.3) 
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I t is w o r t h n o t i n g t h a t a; is a theoretical parameter w h i c h is on ly related to the m o m e n t a 

of qua rk and p h o t o n . I t does not necessarily coincide w i t h the f r a c t i o n a l m o m e n t a carr ied 

by t he p h o t o n inside the p h o t o n j e t z, w h i c h is reconstructed by the j e t a l g o r i t h m . I n 

p a r t i c u l a r x = z o n l y holds i f the pho ton j e t on ly contains the quark and pho ton , wh i l e 

the a n t i q u a r k and g luon are combined to f o r m the second j e t . I f on the other hand , the 

a n t i q u a r k or the g luon are clustered by the j e t a l g o r i t h m i n t o the pho ton j e t , one w i l l 

genera l ly find z < x. U l t i m a t e l y , i t is the experimental z, w h i c h is compared w i t h the 

e x p e r i m e n t a l cu t z^ut arid requi red to be greater t han z^ut-

W e note t h a t the s ingu la r i ty s t ruc tu re f r o m the qqgj final state i n the l i m i t where 

the qua rk and p h o t o n are coUinear (discussed i n Section 2.4.2) is p ropo r t i ona l to P(x) 

and depends o n l y on the theore t ica l x value. I n f ac t , when the g luon is resolved, the 

cance l la t ion of the s ingular i t ies between the qqg final state w i t h f r a g m e n t a t i o n counter 

t e r m and those generated i n the qqgj final state when the quark and pho ton are coll inear 

is una f fec ted by the possible discrepancy between x and z. Th i s exp l i c i t cancel la t ion w i l l 

be demons t r a t ed i n Chapte r 8. 

7.2 T h e structure of the unresolved contributions 

I n the prev ious sect ion, the precise value of z was de te rmined by the j e t a l g o r i t h m and 

is no t necessarily t he same as x. S imi l a r ly , when the g luon is unresolved, z and x do not 

necessarily coincide. 

I f the g l u o n is sof t or coUinear t o the an t iqua rk , we can i d e n t i f y the r a t i o between the 

p h o t o n and the quark m o m e n t a x hy z, since on ly quark and p h o t o n f o r m the "pho ton" 

j e t , a n d , 

da™ = da''^'^ Df_^^(z)dz. 

E x p U c i t expressions f o r the i n d i v i d u a l con t r ibu t ions wiU be g iven i n Section 7.3. O n the 

o ther hand , i f the g luon is coUinear t o the quark , so t h a t the g luon carries a f r a c t i o n y 

of t he q u a r k / g l u o n cluster m o m e n t u m , z is no longer equal to x. I n f ac t , z is g iven by 

the p r o d u c t of the m o m e n t u m f r a c t i o n carr ied by the quark , 1 — y and the r a t i o between 
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p h o t o n and qua rk m o m e n t a a;, so t ha t , 

z = .^(l - y). 

W e there fore i n t r o d u c e the cons t ra in t , \l Azb[x(\ — y) — z) and integrate over x so t h a t , 

da-Q^ y ie lds , 

d < = da^^-^Df^^ ( - ^ ] (7.4) 

T h i s "unresolved var iab le" y w i l l be in tegra ted out w i t h the const ra int y < 1 — z. A de­

t a i l e d p resen ta t ion of the ca lcu la t ion of this pa r t i cu la r c o n t r i b u t i o n is given i n Section 7.4. 

7.3 Contributions with Dq_^^{z) 

I n th is sect ion, we shal l l i s t the con t r ibu t ions ob ta ined when the g luon is v i r t u a l , coll inear 

to the a n t i q u a r k or i t is sof t . I n these cases, as we ment ioned i n Section 7.2, since the 

f r a g m e n t i n g qua rk carries a l l of the p h o t o n j e t m o m e n t u m , x = z and the cross section 

has the f o l l o w i n g f o r m 

daf'^ = da"^'^'^ Df_,^{z)dz. 

F u r t h e r m o r e we have seen i n Section 1.5.3 t h a t i n the unresolved regions of the three-

p a r t i c l e phase space, the pa r ton ic cross section da''^^ factorizes i n t o a single unresolved 

f a c t o r m u l t i p l y i n g the tree level cross section CTQ. These single unresolved factors were, 

CF (g iven i n eq. (1.35)) i f the g luon is coUinear and 5̂ ? (g iven by eq. (1.25)) i f i t is soft . 

A s i m i l a r f ea tu re also occurs when the g luon is v i r t u a l ; the cross section factorizes 

i n t o a k n o w n v i r t u a l f ac to r Vqq (eq.(1.38)) and the tree level cross section CTQ. AS these 

fac tors have already been der ived before, we w i l l merely quote the i r un in tegra ted f o r m 

before p e r f o r m i n g the in tegra t ions over the unresolved variables. Th i s should lead us to 

t he resul t f o r t he con t r ibu t ions w i t h associated f r a g m e n t a t i o n . T h e d i f fe ren t con t r ibu t ions 

w i t h Dq_^^(z) are g iven as fo l lows . 

I f a g l u o n is exchanged in t e rna l ly , the c o n t r i b u t i o n to the 7* ^ 7 + 1 j e t reads. 

dal = aoVgg-D''iz)dz 
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= CTO 
a, A V V / i V ^ - A r( l + e)r2(l-e) 
27r \ iV/2 2N T(l - 2e) 

D^(z)dz X 4 - - - 8 + 7 r 2 - 1 6 e - h | 7 r ^ e + 0 ( 6 ^ ) (7.5) 
e 

W h e n the g l u o n is real b u t sof t , the invar iants and Sqg are b o t h less t han the theore t ica l 

cu t 5min we find, 

da^ = aoSFD'^(z)dz 

as / 47r^ 2\ « 

27r \ M2 27V 

X 

r(i - e) 

/ dyq,(yq,)-'-' / d y , , ( y , , ) - ^ - i x D^(z)dz 

1 

2TT \ IVP 2N 
D^(z)dz ^2 (Vmin) 

-2c (7.6) 
r( i - e) 

W h e n the g l u o n is col l inear t o the an t iqua rk , < 5min b u t Sgg > s^un- As usual, y is the 

f r a c t i o n a l m o m e n t u m carr ied by the g luon , Sgg = y M ^ and the d i f f e r en t i a l cross section 

reads^, 

dag'̂ '̂  = aoCFD''(z)dz B, 

<^0 
as f47r^f2 - 1 

X 

27r \ A/P J \ 2N J T(l - e) 

r " dy,Ay,,)"-' f [y(i - y)rP,,^Q(y) x D^(z)d: 
Jo Jymin 

as f^TTi^'Y f N ' - 1 \ 1 

27r I M2 

--^(yu 

D^(z)dz(y^^y 

+ 

2N J T(l - e) 

( l - e ) ( 4 - e ) r 2 ( l - e ) 
(7.7) 

2e2(l - 2e) r ( l - 2e) 

N o t e t h a t t o s i m p l i f y the n o t a t i o n , inside the equations we have denoted the bare quark-

t o - p h o t o n f r a g m e n t a t i o n f u n c t i o n by D^(z) instead of Df^^(z). We wiU use the same 

s i m p l i f i e d n o t a t i o n i n the nex t section as we l l . 

^Pqg^Q is the usual n-dimensional Altarelli-Parisi splitting function defined in 1.5.3. 
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7.4 Contributions with the gluon collinear to the 

quark 

As discussed i n Section 7.2, when the g luon , w h i c h carries a f r a c t i o n y of the parent 

qua rk m o m e n t u m p g , is col l inear to the f r a g m e n t i n g quark , we can make the i d e n t i f i c a t i o n 

z = a;(l — y). T h e f r a g m e n t a t i o n f u n c t i o n is thus a f u n c t i o n of 2 / ( 1 — y) and the general 

f o r m f o r the cross section is g iven by eq.(7.1). Moreover , i n the quark-gluon coll inear 

H m i t , the p a r t o n i c cross section agqg takes a s imi la r f o r m as i n eq.(7.7), bu t w i t h y l i m i t e d 

hy I — z ins tead of 1. T h e c o n t r i b u t i o n to the d i f f e ren t i a l cross section denoted by d a ^ ' ' ' 

reads. 

X 

i - y j 1 - y 

2 ^ V M2 y V / r ( i -
dy 

Jo jymin i- - y \ ^ y/ 

l a , f i K f i ' V f N ' - l \ 1 
^ 0 ^^7^ T ( 2 / . 

— € 
min J 

X [ ' ^ - ^ [y{l - y)rPiy) x D ^ j — ] d z (7.8) 
Jv^i„ 1 - y \ ^ - y 

£27r V j \ 2N ) ^" r ( l - £ ) ' 

' • i - ^ dy 
'3/min ^ - y \ ^ ~ y , 

T h e y i n t e g r a l now involves the f r a g m e n t a t i o n f u n c t i o n and requires some work to eval­

ua te . T h e r e su l t i ng expression w i l l i nvo lve a convo lu t ion of the s p l i t t i n g f u n c t i o n w i t h 

t he f r a g m e n t a t i o n f u n c t i o n . However , the convo lu t ion in tegra l present i n eq.(7.8) appears 

t o have an exp l i c i t y^^^ dependence coming f r o m the lower boundary of the y in tegra l . 

However , we k n o w t h a t since y^^ is an a r t i f i c i a l parameter w h i c h cannot inf luence the 

phys ica l cross section f o r any choice of f r a g m e n t a t i o n f u n c t i o n , the ymin dependence mus t 

m e r e l y act m u l t i p l i c a t i v e l y on the f r a g m e n t a t i o n f u n c t i o n D^. 

To see t h a t th i s is indeed the case, we add and subtract the c o n t r i b u t i o n where a g luon 

is co l l inear t o a cjuark m u l t i p l i e d by D^{z). We can thus r ewr i t e this convo lu t ion in tegra l 
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i n t he f o l l o w i n g way, 

d a D e 27r V M2 y 2N J T(l - e) 
( y m i n ) - ^ D^(z)dzao 

X / ' dy[y(l-y)rPqg^Q(y) 

(1 - e)(4 - e) r 2 ( l - e) 

'Vmin 

2 

e ^^"^"^ ' 2e(l - 2e) r ( l - 2e) _ 

d a g ' ' ' ' + ao CFD''(z)dz, (7.9) 

w i t h dag* ' ' g iven by. 

d a 
c ( , ) ' _ 1 as [in^'Y f N ' - l \ 1 
D e^°27r I AP 2N J T(l - e) 

(yn 

V i - y y 

1 - y 
x i r^dy[y(l-y)]-^Pqg^Q(y)x 

- l[^dy[y(l-y)rPqg^Q(y)D^(z)'^. 

I n t he first i n t eg ra l of the expression f o r dag* ' ' , the in tegrand vanishes when y 0, 

and we can safely ex t end the range of i n t eg ra t ion to 0. B y doing so, the convo lu t ion 

c o n t r i b u t i o n i t se l f becomes ymin independent as we wanted . Us ing the d e f i n i t i o n , 

l + ( l - y y - e y ^ ' 
P,9^Q{y) = 

y 

and the change of var iable y — l - t , dag* ' ' can be r e w r i t t e n i n a more f a m i l i a r f o r m , 

1 
d a c{qy 

D 
1 as A V y / i v 2 _ ^ \ 

" I ' ^ " 27r 1̂  hP ) [ 27V ; r ( l - e ) 

^ r . ^ w f l + t ' - e ( l - t ) ^ ' 
d t [ t ( l - t ) ] - ' — ^ ' 

(2/min)' 

D- ( f ) 
\ - t 

- D^(z) 

- [~ d t [ t ( l - t ) ' -
Jo 1 - t 
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T h i s can be rearranged using the d e f i n i t i o n of the " + " p resc r ip t ion defined i n A p p e n d i x 

A 5 
h{t)-h{l) J: dt 

hit) 
dt 

w i t h , 

h{t) = 

{{i-ty+%-J. {i~ty+ 

{i + t')t-w^ 

f 
Jo 

dt 
Ml) 

(1 - i ) i + ^ ' 

and h{l) = 2D^{z)., 

so t h a t . 

1 

^'"^ - " 7 ^ ° ^ ^ 2 ^ i M ^ j l ^ A ^ y ' r ( l - £ ) (yminY 

X 
i d t ( i + t2)r^ 

i?^ f ^ ) + l ? ^ ( ^ ) / dt 
\ t j Jo 

\ 2 - { l + t^-)t 

— £ 

t (( i- i)^+0+" '''Jo "' {i-ty+^ 

f ' ^ n - t y - H - ' D ^ ( - ) - D^{z) j'dtt-\i-ty-
Jz t \ t j Jo 

.(7.10) 

I t is convenient to d i v i d e dcj^^^' i n t o t w o par ts : dcr̂ ^"^ "̂ ' , w h i c h is p ropo r t i ona l to D^[z). 

and dcr^'^'^^ i n v o l v i n g (z/t). Each of these con t r ibu t ions tu rns out to be of 0(l/£^). 

Indeed each t e r m is e x p l i c i t l y o f 0(1/e) wh i l e the 0{a) counter t e r m present i n D^_^^ as 

g iven i n eq.(7.2) is p r o p o r t i o n a l to 1/e. W e must therefore expand each t e r m up to 0{e^). 

B y do ing so we o b t a i n the f o l l o w i n g expressions. 

£ r ( i -2£) 

9 

- + 

2N j r ( i - £) 

3 e 

[y^^VD^iz) 

+ £ 2 ( 1 - 2 £ ) 2 ( 1 - 2 £ ) J 

1 1 a, fiTT^'Y f N ' - l \ 

7''°'^^27l M2 [ 2N J r ( l - £ 
{y^^rD^iz) 

da 
C(q.2y 
D 

1 as /47r^2^ 

2N J r ( l - £ ) (yn 
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+ 
1 a, / 4 V y /7V2-1\ 1 ^ 

X / — D -
Jz t \t (1 -0+ 

—e 

1 f l n \ l - t y 

1 - t 

7.5 Sum of all unresolved contributions 

In combining the different terms f rom tlie previous sections, we notice t l iat the unresolved 

gluon contributions discussed in Section (7.3) (dcr^^^', dcr£ and dcr^) which are all pro­

portional to D^{z) can be combined wi th the collinear quark-gluon contribution, also 

proportional to D^{z), that is present in dcr^'^') c.f. eq.(7.9), to give, 

da^ = [2CF + SF + V,,-] aoD^{z)dz 

= ICggaoD^{z)dz, 

where }Cqq is the f ini te two quark /C-factor introduced in Section 1.5.3. Expanding up to 

0{e), we f ind , 

1 a, f^Tii'Y f N ' - 1 
d a f (7o 

X 

2N 
X D''{z)dz 

r ( l - e ) 2 7 r V 

- 2 1 n ' ( 2 / ^ N ) - 3 1 n ( y ^ „ ) + ^ - l ) + e(2\n\y^n) + | l n 2 ( y ^ „ ) 
V ^ / ^ 

+ ( — - 7) Hy. 2 + TT̂  - 4C(3) 7.11) 
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Finally, the sum of all the contributions involving D^^^ reads 

= (To 
1 as f iiTf-i^ 'N^ - 1 

2iV t \ t , 

+ e I I -21n2(2 /^„) - - l n ( y ^ O + / _ - - j j ^(1 -

1 - t 

/ 3 /27r^ \ 
21n'(YMIN) + ;7ln'(2/™N) + ^ - 7 ln(Y„ 

+5 + JTT^ - 8C(3)j ^(1 - t) 

1 / l n ' ( l - t ) \ ,^ 2̂  

^ l n ( ^ ) M l - 0 (^^^2^ ^ ( l - t ) l n W + ( l - 0 1 n ( l - i ) 

(7.12) 

which can be wri t ten i n the following form 

d(7 99(5) 
D 

X 

1 a, / ^ V 2 - l \ r i d^ 

r ( l - e) 27r V M2 / 

" _ i p ( o ) + 4 i ) + ec(^) 

2/V 
d2 

99 
(7.13) 

The coefficient of the leading pole term represents the universal lowest order Altarel l i-

Parisi [40] quark-to-quark split t ing function in four dimensions, P j ° \ which is given by. 

p(o) 
99 

(7.14) 
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7.6 Check of our result 

As a check of our result given in eq. (7.13), we compare this expression for dcr^''^' which 

represents the unresolved contribution to the 7 + 1 jet rate involving D^^^-, w i th the 

result obtained by Kunszt and Trocsanyi in [47] for the corresponding contribution to the 

inclusive differential cross section. 

The fragmentation contribution to the cross section for 7* —> 7 + A ' given in [47] reads. 

1 1 a, 
" e ' ^ ° r ( l - e ) 2 ^ \ WJ 

# 2 

2N X-, t \ t 

+ e X 
1 - t 

" 1 ' 
1 + n + 

'27r^ 

2 \ l - t 

+ ,(7.15) 

where a;̂  = daj^^J^ is the sum of the vir tual contributions involving D^{x-^) given by 

^<ci = aoT / , / 5^ (x , )dx 

a, / 4 V \ 7 7 V ^ - 1 \ r ( l + e ) r 2 ( l - e ) 
M2 

£'^(x^)d.T^ X 

^ 2A^ 

2 3 

r ( l - 2e) 

8 + TT̂  + 0(e) 

and the real contributions, dcrf„^; involving ( f ^ ) - These real contributions, in contrast 

to our case, are obtained by integrating the three particle matrix element squared over 

the tvhole three particle phase space, 

fiTTfi^Y fN'^ - a yi dx„ 

X 

27r V M2 

1 

2iY 
" - 9 j j B I ^ 

r ( l - e) 

X 

^7 "^q 

^y\2 dyis dt/23 0 ( 1 -1/13 - 2/23) iyuyidVis) 

( 1 _ [ ^ + + ^^12 - €yi3y23 
V?/13 t/23/ 2/132/23 
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X ^ (1 - yi2 - 2/13 - 2/23) S : 1- J/23 - ^ 

Ident i fying Xg = by t as we did in eq.(7.13) one obtains, 

y r ( l - e) X 2TT\M^ ) \ 2N J r ( l - e ) J . , t " \ t 

( 1 ( 1 + ^ 2 ) 3 / 1 \ 3 5 7 , , J 

which, after utiHzing the + -prescription and combining wi th dcrj^^; gives eq.(7.15). 

The v i r tua l contributions involving the fragmentation function are identical in both 

approaches. However, the contributions f rom the real emission are different. Indeed, to 

calculate the real contributions, we have not integrated over the whole of phase space, but 

l imi ted ourselves to the unresolved collinear and soft regions of the three particle phase 

space. As a consequence, dcr^f^^' and da'^^^i^ are the contributions involving D^^^ for 

two different process: the exclusive 7 - f 1 jet rate in our case (eq.(7.13)) compared to the 

inclusive 7 -f- A' differential cross section in the other case (eq.(7.15)). Hence we should 

not expect these two contributions to be identical. 

However, at the edges of the phase space, in the so called "unresolved region" x^ and 

z = E^/{Ej - f Eq) are equal to each other and we therefore f ind that the most singular 

contribution, 

(^0 7̂  
1 \ 1 / i dt ^ f x ^ \ f 1 [ ( 1 + ^2) ^ 3 

2Tr J V 2A^ 

is the same in both expressions dcr̂ '̂ ^^ and dafnif- Note that this term can be wri t ten in 

a more compact fo rm as follows, 

^ ( ^ 4 1 ^ \ ( ^ ] ^ . \ - l p i o ^ ^ n ] (7.16) 
27r \JVP J \ 2N J r ( l - e) e 

where the convolution symbol 0 is defined by, 

( f ® g ) i x ) = [ dxi [ dx2S{x-xiX2)f{xi)g{x2) 
Jo Jo 

L X Xi \Xi 
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and Pj° ) is the universal lowest order Altarelli-Parisi quark-to-quark sphtting function 

encountered in eq.(7.13). 

7.7 Integration of the fragmentation counter term 

The final step is to insert the decomposition of the bare fragmentation function given in 

eq.(7.2) into the sum of all fragmentation contributions given in eq.(7.13). In doing so, we 

w i l l obtain the fragmentation co//mear factor, FCp-ydz which is made up with two different 

contributions, da^f^^ and da^'^^^\ containing the non-perturbative and perturbative terms 

of the fragmentation function respectively. The precise form of the non-perturbative part 

of the fragmentation funct ion, D(z.fiF) must be fixed by experiment and i t is our goal 

to t ry to determine i t by comparing our final results wi th the actual data f rom LEP. For 

da^^^^\ we therefore cannot perform the integrations analytically and rely on numerical 

methods to compute the relevant convolutions. Neglecting terms of 0(e), we find. 

' N ' - l \ . 1 as /47ru^' 

2N 

^ dt ^ / z 
j D [ ^ - , , , ] d . 

X 
. ( ! - « ) + 

-2ln\y^in) -31n(?/; + 3 
1 
2 

1 a 
<7o 

ln(2/MIN) + 

' 4 V ^ 

1 n ( l - t ) \ 
( l + ^^) + | ^ ( l + ^ ^ ) + ( l - ^ ) 

r ( l - e) 27r V M2 

a^dzEq ® D{z,i.Lp). 

2N 
dz D{z,iip) 

(7.18) 

A divergence remains —\Pqq^ , which wi l l ultimately be cancelled by the 0{aas) coun-

ter term part of the bare fragmentation function multiplied by the lowest order 7* —> qq 

cross section. 

On the other hand, the t integration over the perturbative counter term in (7.12) can 
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be analytically carried through. We f ind 

1 

r 2 ( l - e ) \ 2N J \2TTJ \27r J \ AP 

f 1 

dz 

X ' 

1 
+ -

e 

2 + - + ln{z) ( - 2 + z ) - 2 l n ( l - z)P{z) 

+ ln\l - z)P{z) + ln\z) [ l - i ] - L i _ p ( ^ ) + ln{z) (-5 + z) 

+ l n ( l 2 - ? - -F ln(z) l n ( l - z) (2 - z) 
2 

2 7r2p(^ 
+ L i 2 ( l - ^ ) ( 2 - ^ - 2 P ( ^ ) ) - H 

+ ln( j /™N) ( 2 - ^ - 3 P(^) + H z ) (2 - 2) + 2 l n ( l - z)P{z)^ 

+ Hi.ll/M') ( 2 - ^ + In(^) i 2 - z ) + 2 l n ( l - z)P{z) 

+ ln^(2/NUN) ( - 2 P ( ^ ) ) 
J 

- 6 - ^ - 2 P(.~) + In^(^) (-^ - I) + In(^) l n ( l - z) ( - 5 - .~) 

+ ln2(l - z ) ( ^ - l + ^ + j + l n ( l - ^ )L i2 ( l - z ) { - 2 + z + 2 P{z)) 

+ \n'{z) + H{z) l n ( l - z ) ( - l + ^ ) + In(^) (5 - 4 ^) 
V 3 D/ V 2 J 

+ ln(z) l n ^ ( l - . ) ( - 1 + i ) + l n ( l - . ) -

+ L i 2 ( l - ( - 3 - Y - ^ ) + L i3( l - ^) (2 - ^ - 2P(^ ) ) 

+ S i 2 ( l - ^ ) ( 2 - ^ - 2 P ( ^ ) ) - f 

+ l n 3 ( y ^ „ ) 2 P ( 2 ) 

'-q^-llnM-z)Piz) 

+ ln^(YMIN) ( l n ( . ) ( - 1 + 0 - l n ( l - z)P{z) - 1 + 1 + 
3P{zy 
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+ Hyu,n)(^Hz) ( - 5 - z ) + Hiz) ( - 1 + g + L i2 ( l - z ) i - 2 + z + 2P{z)) 

TT^Piz) •3P{zy 
+ ln(z) l n ( l - z) ( - 2 + z) + l n ( l - - 2 + 3 + — ^ 

- l n ^ ( l - z ) P ( z ) + ^ - 7 P ( z ) ' 

+ l n ( ^ y M 2 ) f In^(^) f-1 + ^ ) + In(^) ( - 5 - z) - H{1 - z)P{: 

3P{zy 
+ L i 2 ( l - ^) ( - 2 + ^ + 2 P{z)) + l n ( l - z) \^-2 + -+ ^ 

2K'P{Z) I z 
+ l n ( 0 ) l n ( l - z ) ( - 2 + z) 3 + T + ^ W , 

+ ln' ( /4 /A^') ( - 1 + 7 - - -')-P(^) + l'>(^) ( - 1 + S 

+ l n 2 ( j / ^ J l n ( 4 / M - ^ ) 2P(^) 

+ I n ( y ^ N ) l n ( / 4 / i ^ ^ ' ) ( " 2 + ^ + 3 P(^) - 2 l n ( l - ^)P(^) + In(^) ( - 2 + z ) ) | . 

(7.19) 

Analysing the structure of the answer we f ind that i t can be wri t ten in the following 

compact fo rm, 

1 ( < \ fc^s\ / 4 v V 7 ^ ^ ' - i ' 
'̂ '̂ P " ' ' ° r 2 ( l - e ) V27r ; V27r7 V M' 2N 

dz 

1 
1 - eln 

M2 
;7.20) 

where c*̂ ' and c'̂ ^ are both given in eq.(7.12). 

The fragmentation collinear factor FCpi is then finally given by 

1 
FCp, = — ( < f ) + d < f ) (7.21) 

To summarize, in this chapter we have presented the calculation of the contributions 

to the 7* ^ 7 - M jet cross section f rom the C ( a , ) 7* qq{g) processes followed by 
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quark-to-photon fragmentation through to order 0{aas). We found that the contributions 

where the gluon is theoretically resolved contain at most 1/e poles (from the fragmentation 

counter term) which exactly cancel wi th the 1/e singularity present in the single unresolved 

real contributions related to 7* — q q ^ g where the quark and the photon are collinear. 

The residt for the unresolved contributions, on the other hand, contains 1/e- poles as 

leading singularities. I n the next chapter, these contributions wi l l be combined wi th the 

v i r tua l and the double unresolved contributions presented in Chapters 5 and 6. 

This concludes not only Chapter 7, but also our presentation of the calculation of all 

contributions to the 7 4- 1 jet rate at O(aas) which we started to describe in Chapter 4 . In 

the next chapter we shall collect our results together and absorb the "left-over singularity" 

in the 0{aas) ciuark-to-photon fragmentation function. Once this is achieved, we shall 

be able to evaluate numerically the 7 -|- 1 jet rate at 0{aas) in Chapter 9 and compare 

our results w i t h the existing experimental data of the A L E P H Collaboration in Chapter 

10. 

190 



Chapter 8 

Factorization of the coUinear 

singularities 

Our ul t imate goal is to determine the non perturbative quark-to-photon fragmentation 

funct ion. This w i l l be achieved by comparing the measured photon -|-1 jet rate and the 

perturbatively calculated up to 0{aas) photon - f - l jet differential cross section. 

So far we have determined all different contributions to the 7 -|-1 jet rate and calculated 

analytically all theoretically unresolved and hence divergent contributions to i t . What is 

left to do in order to obtain a finite photon + 1 jet rate is the following. We need 

to evaluate the finite cross sections in the different resolved regions of the phase space. 

This shall be dealt w i t h numerically in Chapter 9. Furthermore, we need to regroup 

all divergent contributions together and absorb the "left-over" singularities into the bare 

quark-to-photon fragmentation counter term. We shall f u l f i l l this task in this chapter. 

I n Section 8.1 we present an outline of the results obtained so far, and regroup the 

different unresolved contributions in such a way that cancellation of singularities become 

feasible. In Section 8.2 we give the final result of the analytic calculation and factorize 

the left-over singularities, essentially due to the emission of a collinear photon in the final 

state, into the 0{aas) counterterm of the bare c|uark-to-photon fragmentation function, 

rendering the differential cross section finite. 
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So far, when performing the calculation of the 7 -|-1 jet rate, we have determined the 

perturbative counterterm in the quark-to-photon fragmentation function order by order. 

We have ensured that the physical cross section is finite at 0(a) in Section 2.4 and shall 

ensure that i t is finite at 0{aas) in Section 8.2. An alternative and equivalent way used 

in the literature to obtain the finite cross section is to construct the 0{a) and the 0{aas) 

counterterms simultaneously. In Section 8.3 we shall present our results following this 

more widely used approach. 

Finally requiring that the bare fragmentation function is independent of the choice 

of the factorization scale fip w i l l yield the next-to-leading order evolution equation for 

the non-perturbative fragmentation function Dq^^{z, fip). We shall derive this evolution 

equation and an exact solution of i t in Section 8.4. 

8.1 The sum of all contributions to the 7 +1 jet rate 

at 0(aas 

As the coupling cxg is small at high energy, we can express the 7 -|- 1 jet differential 

cross section as a perturbative series in the strong couphng a.,. In this thesis we l imited 

ourselves to consider the first two terms of this perturbative series. In Section 2.4 we saw 

that the first order term in this series, the lowest order contribution to the the 7 - f 1 jet 

rate was proportional to the electromagnetic coupling constant a, that i t was dependent 

on the factorization scale fXp but independent of the slicing parameter as i t should 

be. A t next-to-leading order, i.e. at 0{aas), an outhne of the results obtained so far is 

given below. 

The sum of all real and vir tual contributions participating to the 7 -|- 1 jet rate at 

0{aas) is formally given by the following, 

1 d ( 7 ^ ^ ° ( 7 - M jet) _ ^ [ 1 dafl(3 partons + 7 ) 

(To [ (To d^; 

1 day {2 partons -|- 7 ) 

(To dz 
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+ E partons) dE, dE^8{E^ - zE,) Z?,%(z) 

+ E - 1 ? ^ ( 2 partons) d^;. dE, 6{E, - zE^) D^^^{z)\ 
a ^0 dEa J 

+ E — 7 ^ ( 2 partons) dEa dE^ S{E^ - zE,) D^^Jz) 

^ + + + (8.1) 

<To d^ o-Q dz (Jo o-Q 

The symbol 0 represents the projection of the three and four particle phase space onto 

the experimental definition of a 7 -|- 1 jet final state. Each type of parton a contributes 

to the bai^e parton-to-photon fragmentation function D^^^ and the sum runs over all 

partons. Note that at this order, the gluon-to-photon fragmentation function does not 

contribute to the 7 -t-1 jet rate, only quark and antiquark can fragment into a photon. 

Furthermore, due to charge invariance, as usual we can assume that the quark-to-photon 

and the antiquark-to-photon fragmentation functions are equal. 

As discussed in the previous chapter, in the contributions involving the bare frag­

mentation funct ion, denoted by (Jjf*^^ the underlying 7* —> qq(g) process is already of 

order as, and only the 0{a) counterterm present in the quark-to-photon fragmentation 

funct ion needs to be considered. On the other hand, for the contributions denoted by cr^J, 

the underlying 7* qq process is of 0{1), therefore perturbative counterterms of 0(a) 

and of O(Qas) need to be taken into account. The fragmentation contribution f rom the 

two parton final state is simply, 

d ^ l f = E ^ a % ( ^ ) <^odz = 2Df_^^(z)aodz. (8.2) 
a 

In the previous four chapters we have seen that the real contributions, the vir tual 

contributions and the contributions involving the bare quark-to-photon fragmentation 

funct ion could be divided according to whether or not the final state particles are resolved 

or unresolved, 

1 dan 1 d a j f ' 2 da^P 1 C7„-̂  ^ â -̂  
T ~ = A— + A— + -^99(7) j — + [^•^) 

(To dz (7o dz (To dz (Jo dz cJo 
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I day _ 2 dcrf' 1 (T„-^ 
(To dz (To dz • ' ' '-Vo dz 

da'f*̂ ' dalf' <T„ = 2 ^ + 2 D % ( . ) d . ^ . (8.5) 
(To (To (To 

The f u l l y resolved contributions d(T(^' are finite, while the unresolved contributions dcrj^' 

contain all infinities and are proportional to (TQ. Furthermore, all contributions cori^e-

sponding to the presence of a collinear photon or associated with the quark-to-photon 

fragmentation function have been multiplied by a factor of t w o as identical contributions 

are obtained considering either the photon collinear to the antiquark or associated wi th 

the antiquark-to-photon fragmentation function. Contributions associated wi th a hard 

photon are not mult ipl ied by this factor. 

Regrouping the terms in eq.(S.l) according to the cross section they are proportional 

to, we obtain, 

1 dâ ^̂ (7 + ljet) ^ 1^4^ + 1 ^ + 2 ^ , . ^ ^ 
(To dz (To dz (To dz (To ' ^ ^ 

+ - ^ + 2 ^ + 2i}f_,(z) 

+ [^99-(7) + f ] + 2 [Cp, + Z) f_ , ; 
(To dz ' r ^ ' \ (To 

-Fi+D{z..^lF) 

(To dz 

Recalling that Cp-y = (?/I2)~'C'F7, Pfc is given by 

(8.6) 

\ 27r / 
(8.7) 

while ICqg{-y) is obtained as the sum of the unresolved gluon factor Rqq(^) given in eq.(4.24) 

and the v i r tua l factor Vgg^^^ defined by eq.(6.1), 

.2 
ICqq(^) = -2log'{y^^) - 3\og{y^^y,2) + y - 1- (8-8) 

These, and the other contributions given in the last two lines of eq.(8.6) are finite and 

w i l l be evaluated numerically later in this thesis. 
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Here we focus only on the first line of eq.(8.6) which contains the only remaining 

divergences. The sum of all unresolved contributions yields. 

1 d a i f ) + d ( j r ) + (jg^^ 

1 

X 

P ( l - c) 

r I 
e' 

1 

e 

dz 

2N 
as_ 

2TT 

TCF^ + SCpy + DCp-y + VCpy + FCp-y 

r . 9\ 2e 
ae„ 

-i + - - H i - z ) P ( z ) + H z ) + -

4 L i . ( l - . ) n . ) . l n ( . ) ( 4 - i ) - i ^ ! i i ^ . l - ^ 

1 z 
+ \n\z) - - + - - l n ( l - z ) ^ + 

2TT^P(Z) 
2 l n ( ^ ) l n ( l - 2 ) P ( z ) 

+ ( i n ( ^ ) (2 - ^) + 2 l n ( l - z)P(z) + 2 - 0 In ( ^ ^ ^ 

+ 

^Fa z,\n 

1 

:2/r 

- l \ as f4:nfi^' 1P(O) , ^(1) D 9^7 >- ,MF) (8.9) 
r ( l - e ) \ 2N J 2K \ J 

Note that, we give here explicitly only the pole part of the sum of the unresolved contri­

butions. A t this point of the dissertation, we are principally interested to know what are 

the left-over singularities which need to be absorbed in the perturbative counterterm of 

the bare fragmentation function. The knowledge of the finite part is not relevant for this 

purpose and we denote i t by. 

F j z , l n i - ^ ,y^ (8.10) 

The sum of all unresolved contributions can be writ ten in a more suggestive and 

concise fo rm as, 

1 [daj f> + d(j i f> - f 

(Jo dz 
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' A ^ ^ - l 
2N 2TT 

ae'g 
27r 

' 4 7 r ^ 

JVP 

+ 

P ( l - e) 

- ^ 4 ° ' ® P^? - ' + 71- ( ^ ) 4° ' ® 4°^ + P^ 

/4Vy 1^(0) + . . 
2N J 27r[M^ J [[ e^^" + )^Vg^,[.a^F) r ( i - e 

(8.11) 

where we have introduced the next-to-leading order quark-to-photon Altarelli-Parisi split­

t ing funct ion P j ^ ' . 

A n important check on the above result is the agreement between the next-to-leading 

order quark-to-photon Altarelli-Parisi splitt ing function P j^ ' w i th results previously ob­

tained in the literature. Although Pj^^ has as such never been directly calculated before, 

i t can be inferred f rom the known timelike next-to-leading order quark-to-gluon split t ing 

funct ion Pj^^ [51, 67] by considering the following replacements of colour factors. 

0, 

The next-to-leading order quark-to-photon sphtting function reads \ 

pi})[z) = | _ l + ^ ,+ (-8 + l . ) l n z - f 2 z l n ( l - . ) - F ( l - i z ) l n ^ z 

+ l n ^ ( l - z) + 4 1 n 2 l n ( l - z) + 8Li2(l - z) - ^Tr^] p ( ° ) ( z )} . (8.12) 

The calculation of P j ^ ' was originally performed by Curci, Furmanski and Petronzio 

51], as part of the derivation of the 0{a1) corrections to the spacelike and timelike 

Altarell i-Parisi evolution equations. The method of their calculation - an explicit pro­

jection of the spli t t ing functions out of the corresponding parton level subprocesses - is 

however mostly undocumented. Very recently. Rijken and van Neerven [67] have rederived 

P j j ^ in the calculation of the 0{al) corrections to the inclusive fragmentation of hadrons 

^Note that in our calculation we have taken the colour factor Cp and the electric charge of the quark 

tq outside of the splitting function. 
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in e+e~ annihilation. In their calculation P j j^ appears as the residue of the simple pole 

of the 0(a1) bare cross section. Similarly, P^}^^ is the residue of the simple pole in the 

bare 0(aas) exclusive 7 -|-1 jet rate. The Altarelli-Parisi splitting functions are in fact 

universal and are expected to arise in any next-to-leading order perturbative calculation 

where in i t i a l or final state partons can be collinear. The collinear singularities occur­

ring in these potentially substantially different calculations are precisely given in terms of 

AltareUi-Parisi spli t t ing functions. 

8.2 Factorization of the colHnear singularities in the 

fragmentation counter term 

The left-hand side of eq.(8.6) is an observable and finite quantity. The explicit divergences 

present on the right hand side of eq.(8.6) need therefore to be compensated by similar 

divergences in the bare quark-to-photon fragmentation function. Hence, in the bare frag­

mentation funct ion we need to add the following O(aas) perturbative counterterm, 

i 'N2 1 

P ( l - e) 

1 

27V / 

27r 

ae^' ' 4 V ^ p ( 0 ) ^ p ( 0 ) ^ l p ( l ) 
11 ^ If 2e 

- P ( ; ) ® Z ) , ^ , ( ^ , / . F ) 
r ( l - e ) \ 2N 

The bare quark-to-photon fragmentation function up to O(aas) is therefore given by. 

D^^.(z) D 
ae„ i p ( o ) 

97 

+ 

+ 

2N 

'N^ - r 
2A^ 

as_ 
2TT 

a 

ae„ 
27r 

2\2e r J _ p ( 0 ) ^ p(0) , J_p(l) 
2^2-̂ 99 ^ -̂ 97 ^ 2e " 

(8.13) 

where stands for f ^ T T y -
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The unresolved contributions to the 0{aas) cross section added to the NLO countert­

erm in the quark-to-photon fragmentation function therefore read, 

1 [d(T(f) + d ( T f ) + (TJ?)] 

1 

dz p 

,2\2£ ,̂̂ 2 

r 2 ( l - e ) \ 2N M2 2% 2% 

J I z P(z] z 

4 3 ^ 12 ^ 2 
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' 3 ^ 6 ^ 3 + H(z) -2 + 

13 z 

+ ln(z) l n ( l - z ) ( - 3 + ^ - ^ ~ j + ln (z )Li2( l ~ z) (i - 2 z) 

+ l n ^ ( l -z)(^l + ~ - ^ j + l n ( l - 2)Li2(l - z) (2 - z + 5 P{z)) 
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( //2 ^ 

\ M 2 , 

+ 9P(z)C(3) 

3z 3P{zy 
- 2 H{\ - z)P{z) - f l n ( l - ^) - 2 - — + — 

+ L i 2 ( l - z) ( - 2 + z - 6 P(z)) - f ln(z) ( 3 - Y ) + ^ - ^ + (̂̂ ) 

+ ln2(z) ( - 2 - f z) + ln(z) l n ( l - z) ( - 2 + z - 4 P{z)) -F 

ln(t/min) 

l n ( l - z)P{z) + \ - \ + l n ( . ) ( 1 - \ 

\ - 2 z - P{z) + 2 H{1 - z)P{z) - + ln^(2) (2 - z) 
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+ ln{z) \n{l-z)i2-z + 4P{z))+ l n ( l - z) 2 + - ^ 

3 P ( . ) + L i 2 ( l - z ) { 2 - z + 6 P{z)) + ln{z) - 3 + 

H z ) ( l - ' - -2P{z)) + 1 - ^ - 3P(z ) - l n ( l - z)Piz) 
\ 2 J 4 + ln^(!/min) 

- 2 ln^{y,rnn)P{z) 

+ In ( ^ 1 In(ymin) 

+ 2 In l n ^ ( y ^ „ ) P ( z ) | . 

2 + ^ + 3 P(^) + In(^) ( - 2 + z)~2 l n ( l - z)Piz) 

(8.14) 

This result obtained for the sum of all unresolved contributions added to the NLO 

counterterm in the bare quark-to-photon fragmentation function is independent of i-i but 

depends on the factorization scale and on the theoretical slicing parameter j/min- VVhen 

i t is combined wi th the resolved contributions to the differential cross section present 

formally in eq.(8.6), this j/min dependence w i l l cancel as we wi l l explicitly show in the next 

chapter. Furthermore, note that to the finite contributions at 0{aas) we also need to 

add the finite contributions involving the renormalized non-perturbative quark-to-photon 

fragmentation funct ion, Dq^.y{z, ftp). I t originates f rom the combination of eq.(8.9) and 

eq.(8.13) and reads, 

'N^ - 1 1 <io'D(np) ^ 
(To dz 27r 27Y ^gq ,,2 + S * Dg^^iz.Jlp). (8.15) 

8.3 Structure of the N L O result in terms of convo­

lutions 

I n this section we shall present an alternative way of constructing the finite 0{aas) 

cross section. I t is an equivalent procedure of absorbing the collinear singularities in the 

perturbative fragmentation counter term. 
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In this formalism, which is widely used in the literature [68, 69] the collinear di­

vergences present in the bare lowest order and in the bare next-to-leading order cross 

section are factorized simultaneously in the bare quark-to-photon fragmentation function, 

D^_^^{z). For this purpose, the f ini te differential cross section, (up to 0{aas)) is wri t ten as 

a sum of convolutions between so-called finite coefficient functions Cij and infinite tran­

sition functions Tij. Both functions depend on the factorization scale /.ip. More precisely 

in our case, the f ini te cross section up to 0{aas) is given by, 

1 da(j + I j e t ) _ 
A = 2F^ + 2R q ̂  Dq, (8.16) 

(To dz 

where Dg represents the bare quark-to-photon fragmentation function D^_^^{z) and the 

bare cross sections are given by, 

Fq = c „ ( g ) r , , . 

(8.17) 

(8.18) 

Fg which is given in eq.(7.18) by, 

,2 \ « 

' 2k '\M^ [ 2N 
(8.19) 

can be rewri t ten as the convolution of a coefficient function and a transition function as 

follows, 

Fg = Cgg®Tgg, (8.20) 

Wl i t h , 
2 \ W J V 2 - 1 ip (o ) 

27V / [e 
(8.21) 

where the 1 denotes the distribution 6{1 - z). The finite coefficient function C „ reads^. 

r - ^ 9 
2N m 2 ^qq ^ S 

is given in tlie previous chapter by eq.(7.12). 

(8.22) 
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The bare cross section F^ on the other hand, corresponds in our calculation to the sum 

of the bare lowest order cross section and the next-to-leading order sum of the real and 

v i r tua l contributions. I t is given by. 

F, = F i % , y ^ . ) - , ^ s A ^ 
e . 

+ ^ ^ (8.23) 
0-0 

where -F^^°'(^, ymin) is the finite part of the bare lowest order cross section. The sum of 

real and v i r tua l contributions at next-to-leading order is given by, 

1 [ d 4 ^ ' + d a f ^] 

1 

TCF^ + SCp-y + DCp-y + VCF^ 

P ( l - e ) 

f 1 

27V M2 27r 27r 
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l + l ^ ^ P i ^ ) + H z ) [ - l - l z ) U n ^ z ) { - | + lz 

3\n-{l-z)P{z) 
+ ln(z)ln{l-z){-2 + z-2P{z)) 
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+ l n ( l - z ) ( - 2 - - z + ^P{z) + U,{1 - z ) i - 2 + z - 2P{z)) 

+ Hv^n) ( - 2 +^-z + 3P{z) + \n{z) ( - 2 + z) - 2 l n ( l - z) P{z) 

+ ln'(2/min)2P(^) 

+ i^^H^,ymin) (8.24) 

Note that here too, we only explicitly give the pole part of the sum of the real and vir tual 

contributions as the knowledge of its finite part, denoted by F^^' is not necessary to see 

how the factorization of collinear singularities occurs in this formalism. 

The inf ini te part of F^ can also be wri t ten as the convolution of a coefficient function 

and a transit ion funct ion, as Cqq ® Vq^. The coefficient function Cqq is given in eq.(8.22) 
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and Tg^ contains all infinities. A l l terms present in Tg^ appear then to be proportional to 

universal Altarelli-Parisi spli t t ing functions or convolutions of two of them. We have, 

^4 

_ i p ( o ) ' 

+ 

2TT 27r 

V ' 
M2 

2(2 97 ^11 2e ' ' ' ' 

.(1) ^ pio) 
11 

(8.25) 

P-y is the sum of the finite lowest order and next-to-leading order terms occuring in 

the corresponding bare differential cross sections. More precisely, i t is given by = 

P^°^ + P,*^^ + 2 ^ P R where P R stands for the finite terms resulting f rom the sum of all 

resolved contributions not proportional to (Jo, c.f. eq.(8.6). Moreover, is a function of 

z and T/niin- The infini te transition function F , ^ is defined on the other hand by. 

97 27r 
_1p (0) 

2t 

27r 27r 

' iV^ - 1 
2A^ 

p{0) ^ n ( 0 ) _ J _ n ( l ) 
2g2 97 ^ 99 26 '^'^ 

(8.26) 

Using the above definition of transition functions and coefficient functions, the 7 -|- 1 

jet difi'erential cross section (up to order aa^) denoted by A, can then formally be writ ten 

as, 
Dn 2P^ + 2Cg Tg, + F , A = 2F^ -\- 2Fg ^ J-Zg - -r ^^qq |J- 97 T J- ^ 

As A is finite, i t can also be wri t ten only in terms of finite quantities 

A = 2F^ + 2C, 99 P 9 ' 

(8.27) 

(8.28) 

where Dq stands for the renormalized fragmentation function Dq-^y{z, fip). From this 

equation, i t is possible to deduce the fo rm of the NLO bare quark-to-photon fragmentation 

funct ion, yielding. 

4 ^ i ^ 9 % ( - ) 
F ; ; ®Dq- F : ; ® F , 
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^27r ' ^M 2N 

27r 27r ^ ^ 2A' ) V ^ K 

(8.29) 

I t has exactly the same form as the one we obtained in eq.(8.13) summing the re­

sults obtained separately after the factorization of the collinear singularities at 0(a) and 

Furthermore, as a particular case of this symbolic way of presenting the finite cross 

section as i n eq.(8.27, 8.28) we can rederive the result obtained for the lowest order cross 

section only. Omi t t ing all terms proportional to in the original coefficient and transition 

functions these become, 

^qq ~ ^ qq ~ 

- ( — ] r8.30) 

so that, 

= 2F^") + 2(7(,")® [r(^) + r ( ^ ) ® i ) ( ° 

= 2Fi«)-h 2rl") + 2^(") 

= 2F^") + 2£ ' ; " ' . • (8.31) 

Equating the terms in the last two lines, we find. 

= r ;^ ) + I ) H . (8.32) 
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The lowest order expression for the bare fragmentation function as found in Section 2.4 

is then restored, 

Dg^D^^^iz) = P , ^ , ( . , M F ) - r ( ^ ^ 

To conclude this section, we would like to comment on the u t i l i ty of this formalism. 

From equation (8.27), i t might seem at first sight that wi th in this framework where the 

renormalization procedure occurs only once, the bare cross sections Py and P, only, need 

to be evaluated explicit ly in order to obtain a finite cross section. I t might appear that one 

does not need to insert the explicit lowest order fragmentation counter term to evaluate 

some contributions to the cross section - as we needed to in our calculation. However 

this is not the case. In order to know how to define the transition function F,-,, and to 

know which poles need to be absorbed in the O(acXs) fragmentation counter term, one 

needs to perform the calculation as we did, factorizing the collinear singularities order by 

order. In particular, in order to know that the residue of the simple pole in F,^ is given 

by — | P j ^ ' one needs to have previously calculated Py and P, ® jP,"^- Nevertheless this 

formalism enables us to present our results in a compact and elegant form, in terms of 

universal spli t t ing functions or convolutions of them. 

8.4 T h e N L O evolution equation for Dq^^{z^ iip) 

In order to obtain a finite differential cross section we have factorized the collinear singular­

ities i n the perturbative counterterm of the bare quark-to-photon fragmentation function 

at some factorization scale ^lF• The bare quark-to-photon fragmentation function should 

however not depend on the scale at which the factorization procedure takes place. Requir­

ing i n fact that i t is independent of the factorization scale yields the NLO evolution 

equation for the renormalized non-perturbative fragmentation function Dq^y{z, (.ip). In 

the following, we shall first derive this evolution equation and then present an exact (up 

to 0{aas)) solution of i t . 
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8.4.1 T h e derivat ion of the evolution equation for Dq^-f(z, i.LF) 

Requiring that the bare quark-to-photon fragmentation function defined in eq.(8.13) does 

not depend on the scale at which the factorization procedure takes place implies, 

cWni^il) d\n{iil) 2K ' ^ 2K 2K ' \ 2N J 

1 / / , 2 ' 

1 / » 2 N 

h In -777 , f ' ^ f L z l ] p(o) ^ ^ ^ i ^ i i f i M 
+ 27r^^l , 2N y ^ ' ^ ^ 5ln(/x^) 

+ ^ S . (^1^) ® Dq^'ri^,^^). (8.33) 

For terms i n the th i rd line of this equation, which are proportional to Of̂ , the variation 

of the non-perturbative fragmentation function wi th respect to i^ip. is given 

by the lowest order evolution equation for Dq^-^{z.jLp). To be more precise, at 0{a). we 

have, 

D[%{z) = Dg^,{z.,^,F) - f - - ^ 5 , [ t - ] (8.34) 

so that, 

d l n ( ^ > ) d\n{i^j,) 2K 2K \]VP ) " 

Note that , i n this lowest order evolution equation we have kept terms up to 0{e). We 

need to do so in order to keep all terms up to 0 ( 1 ) in the next-to-leading order evolution 

equation (eq.(8.33)) since is mult iplied by { \ ] . 

Inserting the lowest order evolution equation given by eq.(8.35) instead of ^^I'^^^'i^^''^ 

i n the next-to-leading order evolution equation (eq.(8.33)), we find the following result, 

d\n{i.il) 2K '-^^ 2K 2K \ 2N ) '^'^ ^ 2K \ 2N J ^ ^ '^"^^ ^ ^ 

The structure of this evolution equation is specific to the quark-to-photon fragmentation 

funct ion. This equation is made up wi th two type of terms: The lowest and next-to-
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leading order inhomogeneous terms. 

and a convolution term. 

27r 27r 27r I 27V / " 

This convolution term or similar ones are expected to arise in any evolution equation of 

renormalized parton-to-hadron fragmentation functions. A similar term occurs also in 

the calculation of the inclusive hadron fragmentation process by van Neerven and Rijken 

67]. This convolution term is related to the fact that the photon can be produced via 

the fragmentation of a secondary quark into a photon. 

The existence of the inhomogeneous terms on the other hand is specific to the quark-

to-photon fragmentation function. This terms appear since the photon can couple directly 

to the original quark via the electric charge of the quark whereas other hadrons like 

pions or kaons cannot. More precisely, in our case, where the identified hadron is a photon, 

i t can also be produced through the bremsstrahlung emission off a quark participating in 

the hard scattering. 

8.4.2 A solution of the N L O evolution equation 

This N L O evolution equation is insufficient to uniquely determine the non-perturbative 

quark-to-photon fragmentation function Dg^y(z, fip). This determination wi l l ultimately 

be performed by comparing the calculated photon -|-1 jet rate and its experimental mea­

surement. However i t is possible to give an exact (up to 0{aas)) solution of the next-

to-leading order evolution equation. This solution is a first step leading to the ultimate 

determination of Dq^^{z, fip). In the same way, the exact (up to 0(a)) solution of the 

leading order evolution equation, presented in Chapter 2 (eq.(2.29)) led to a determi­

nation of the quark-to-photon fragmentation function by a comparison between the LO 

calculation of the photon -1-1 jet rate and the data. 
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A n exact {0{aas)) solution of the next-to-leading order evolution equation is ob­

tained considering the following. We construct this solution by imposing that i t takes the 

following general form, 

Dq-^l{z,l-lF) = 
^+ 2N 2r 

ae: a. f JV^ - 1 

27V 
B, (8.37) 

where A, B are unknown functions of ^p and /<o which is a constant of integration. 

D^^'^^z, (.ip) is the exact solution of the lowest order evolution equation (eq.(2.27)). We 

saw in Section 2.4.4 that i t is given by. 

D^^^\z,,p) = ^Pi^hn ^ +D{z,,o). 
2 

lip (8.38) 

where the non-perturbative input fragmentation function D{z,no) is given (at order a) 

by, 

i ) ( z , ^ o ) = ^ - ^ ? l n ( l - ^ ) ^ + C 

w i t h C being a fitted constant as in eq.(2.41). Inserting equation (8.38) in the general 

f o r m suggested for the exact solution of the next-to-leading evolution equation (eq.(8.37)) 

and neglecting all terms which have more than one power of a^, we obtain. 

B z,— 

so that the solution of the NLO evolution equation reads, 

27V [^4. 

+ 2 K 2N In ( ^ j P(J) 
ael 1 
^ ^ P ! ° ) l n i^±\+D{z.,i.o) 
2n 2 97 

(8.40) 

The non-perturbative contribution P(z ,^o) must stil l be extracted f rom the data. Fur­

thermore, i t is worth noting that, since this solution P(^^^)(2 T^ip) is an exact solution 

of the next-to-leading order evolution equation, the factorization scale dependence of the 

photon -hi jet rate, is eliminated. 
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I n conclusion, after having presented a summary of the results obtained in the pre­

vious chapters for the calculation of the 7 - M jet rate at next-to-leading order, in this 

chapter we have absorbed all the remaining coUinear singularities in the fragmentation 

counterterm and obtained a finite - f-ip and T/min dependent - answer for the sum of 

the unresolved contributions. Finally, we have also determined a solution of the next-

to-leading order evolution equation which shall help to determine the quark-to-photon 

fragmentation funct ion. In the next chapter, we shall evaluate wi th in a FORTRAN program 

the resolved contributions and calculate the photon -|-1 jet rate at O(aas). The final 

comparison between those results, and the experimentally measured 7 4-1 jet rate leading 

to a next-to-leading order determination of Dq^^(z. ftp) w i l l be fulf i l led in Chapter 10. 
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Chapter 9 

Numerical part of the calculation 

We have now collected all necessary ingredients to evaluate the next-to-leading order 7 
-)- 1 jet differential cross section numerically. This evaluation shall be dealt wi th i n this 

chapter, which is organized as follows. In Section 9.1, after having outlined the general 

structure of the program we shall explain how all different contributions mentioned in the 

previous chapters are implemented in the numerical program. Particular features of the 

evaluation of the fu l l y resolved real contributions wi th the hybrid subtraction method wi l l 

be illustrated in Section 9.2. Finally, the j/min dependence of the resulting cross section is 

studied in Section 9.3. 

9.1 Structure of the program 

9.1.1 Genera l i t i e s 

The FORTRAN program evaluates the 7 -|-1 jet rate as the sum of four cross sections. 

Those are determined according to the following criteria: the number of particles present 

in the final state and the presence (or absence) of the quark-to-photon fragmentation 

funct ion. For each contribution, the appropriate matr ix element squared is integrated 

over the corresponding 7 - f - l jet phase space using Monte Carlo techniques, i.e. wi th 

VEGAS [70]. To be more precise, the cross section is obtained as follows. The events, 
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which are just points in the phase space, are generated randomly. To a given event, a 

succession of selection criteria are applied in the course of the program. As the phase 

space is constructed, the physical events are chosen and each event is weighted by the 

volume of phase space associated wi th i t . A t the same time the invariants yij are defined 

allowing the reconstruction of the four-momenta pf of the particles in the events. The 

jet algori thm is then applied to these momenta to select the 7 +1 jet events. Finall}', for 

these selected events, the matr ix element squared is evaluated. As a result, each 7 -(- 1 jet 

event is weighted by its corresponding phase space volume and matrix element squared. 

The collection of all weighted events ult imately builds the cross section. 

9.1.2 T h e ind iv idua l contributions 

The four individual contributions to the photon -1-1 jet rate at O(aas) are denoted by: 

s igb , s i g c , s igd , s ige^ These four contributions are as follows: 

(1) 2 partons -f photon (sigb). 

There are two contributing processes wi th a hard photon in the final state. 

(a) The LO process: 7* —> qqj. 

(b) The NLO process: 7* -> qq^yig) w i th an unresolved (real or virtual) gluon in 

the final state. 

The LO contribution is obtained by integrating the 3-parton matrix element squared 

over the 3-parton 1-jet phase space, while the NLO contribution is obtained by 

integrating the product of the 3-parton matrix element squared and the unresolved 

factor fCqq(^) (defined in eq.(8.8)) over the 3-parton 1-jet phase space. Furthermore 

the N L O part also contains the result of the integration over the 3-parton 1-jet phase 

^siga is omitted for historical reasons. In fact, originally the FORTRAN program (EEPRAD) [46], evaluated 

the next-to-leading order cross section for the production of n jets and one isolated photon. The cross 

section s iga is the cross section for the production of n jet partoiis + 7. However if the number of jets 

produced is 1 as in our case, s iga does not contribute to the total cross section. 
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space of the finite expression present in the matrix element squared associated wi th 

the resolved vi r tual contribution (given by eq.6.3) yielding F^ as presented in Fig.3.6. 

(2) 2 partons wi th fragmentation (s igc) . 

There are two contributing processes: 

(a) The LO process: 7* ̂  ® Dq^i 

(b) The NLO process: ^i* ̂  qq ® Dq^^ 

For both contributions, the final state configuration corresponds already to a pho­

ton -)- 1 jet event - one parton must fragment into a recognizable photon while 

the other forms a jet. The LO contribution is the sum of the non-perturbative and 

^F-dependent lowest-order quark-to-photon fragmentation function and a finite con­

t r ibut ion . This finite contribution, given in eq.(2.25), is the result of the sum of the 

simple quark-photon coUinear contribution of the 3-parton final state process and 

the bare quark-to-photon fragmentation function. The non-perturbative fragmen­

tat ion funct ion is the result of the comparison between the calculated rate at lowest 

order and the measured photon -j-1 jet rate as was discussed in Section 2.6. 

The N L O contribution is made of three terms: The non-perturbative next-to-leading 

order and /.<i?-dependent quark-to-photon fragmentation function, the finite sum of 

al l two-particle unresolved contributions (given by eq.(8.14)) and a convolution term 

involving the lowest order //jT—dependent quark-to-photon fragmentation function 

given by eq.(8.15). The next-to-leading order ^/^-dependent fragmentation function 

is itself composed of two contributions, a perturbative part which is dictated by the 

solution of the NLO evolution equation (given in eq.(8.40)) and a non-perturbative 

part which is at this stage of the dissertation stil l unknown. I t wi l l be ultimately 

obtained in the next chapter f rom a comparison between the result of the calculated 

up to 0{aas) jet differential cross section and the measured rate. Consequently, 

note that all plots showed in the remainder of this chapter are obtained considering 

the lowest order non-perturbative quark-to-photon fragmentation function given in 
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eq.(8.38). 

(3) 3 partons + photon (sigd). 

This contribution is only present at O(aas) and describes the process 7* —> qqjg 

where both photon and gluon are theoretically resolved. This cross section is ob­

tained by integrating the 4-parton matr ix element squared over the 4-parton phase 

space subject to the requirement that only one jet is observed in addition to the 

photon. I t is in order to evaluate this contribution correctly that we need to im­

plement the hybrid subtraction method. The results of the implementation of this 

method w i l l be illustrated in Section 9.2. 

(4) 3 partons wi th fragmentation (sige). 

This contribution is also only present at next-to-leading order and describes the 

process where a hard gluon and the fragmentation function are present in the fi­

nal state, 7* —> qqg (g) Dg^^. The fragmentation function considered here is the 

sum of the lowest order non-perturbative quark-to-photon fragmentation function 

and the finite contribution^ Pt given in eq.(8.7). Finally, the cross section s ige is 

obtained as the integration of the 3-parton matrix element squared multiplied by 

the fragmentation function considered above over the 3-parton ^ photon -|- 1-jet 

phase space. Notice that the contribution f rom the gluon-to-photon fragmentation 

funct ion does not occur at this order. 

These individual contributions and their sum as functions of are illustrated in 

Figs. (9.3,9.4). 

^This finite contribution has been obtained as the sum of the bare quark-to-photon fragmentation 

function and the simple collinear quark-photon contribution in the 4-parton =^ photon -t- 1-jet phase 

space, (c.f. eq.(4.29)). 
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9.2 Consequence of the appHcation of the hybrid 

subtraction method 

As we already mentioned, the implementation of the hybrid subtraction method is crucial 

for the evaluation of the fu l ly resolved real contributions. W i t h i n this method, inside a 

singular region we evaluate the difference between the f u l l 4-parton matrix element squared 

and its approximation in that singular region while outside any singular region, i.e. in the 

resolved region, we calculate the f u l l 4-parton matrix element squared. The approximated 

matr ix element squared considered here is either the double unresolved matrix element 

squared (triple collinear, soft/collinear, double collinear) or one of the single unresolved 

ones (simple soft or simple collinear), all defined in Chapters 4 and 5 of this dissertation. 

Inside the singular regions, by choosing appropriately their boundaries, we have ensured 

that the approximations of the matrix element squared are accurate. A t the boundaries 

of the double unresolved regions and the single soft gluon region the approximations of 

the matr ix element squared are also accurate. However, at the boundaries of the single 

collinear regions i t turns out that i t is not the case. This can be seen in Fig. 9.1 which 

shows the cross section as a function of one of the invariants, ? / ,g , in different single 

unresolved regions. Clearly, in the single collinear domain, the size of the cross section 

at the boundary of this region or just below y^^ is stil l significant, while i t is completely 

negligible in the soft-gluon region^. 

As discussed in Section 4.2.2, (c.L eq.(4.25)), in the [q - 7) collinear region, the 

invariant yqg can become less than ymin-, but is not necessarily so. In other words, we 

allow the [q — 7)-collinear and the [q — 5f)-collinear regions to overlap when y^g < yn^n 

and yq^ < y^^. The reason for this can be seen in Fig. 9.1: in the region ygg > ymin-, the 

(q — 7)-collinear contribution grows for decreasing yqg. This behaviour is due to terms 

proportional to { ^ } in the matrix element squared. Those terms naturally are not at all 

accounted for by the simple collinear (g —7) approximation of the matrix element squared. 

^Note that in Fig. 9.1, the rates in the double unresolved regions are not shown as they are smaller 

by orders of magnitude than the rates displayed. 
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Figure 9.1: The four-parton contribution (sigd) to the cross section as function of 

logio(2/ga) for different regions of phase space. The parton resolution cut is y^^n = 10 

0.7. 

- 6 

and aCg = a^Cp = 27r, while y^nt = 0.1 and z^ut 

used in the region t/,^ < but wi th ygg > y^^^- For y,^ < y^n, as we allow the two 

collinear regions cited above to overlap, the approximation of the matrix element squared 

is given by the sum of the two {{q — 7) and (g — g)) simple collinear approximations. The 

terms in { ^ } are then correctly taken under consideration. As can be seen in Fig. 9.1, 

i n the region where ygg < ymin? the divergent terms in the single collinear g — 7 collinear 

region are removed, the corresponding cross section decreases towards lower values of ygg. 

I n a given single collinear region only one invariant is required to be less than ymin, 

while in any other singular region at least two invariants are constrained to be less than 

2/min- Due to the large particle mult ipl ici ty in the final state, at the boundaries of a given 

single collinear region, i t can happen that an invariant which is not constrained to be 

less than y^in can approach this theoretical cut and be of the same order of magnitude 

than the invariant which is constrained in this singular region. The invariant which is 
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Figure 9 .2 : The four-parton contribution ( s igd) to tlie cross section as function of 

log^Q{y^j) for the different invariants. The parton resolution cut is j/min = 10~^ and 

ae^ = asCp — STT, while ycut = 0 .1 and 2cut — 0 .7 . 

constrained in this single coUinear region appears in the denominator of the f u l l matrix 

element squared and of its approximation while the invariant which is not bounded in 

that particular singular region appears only i n the denominator of the f u l l matr ix element 

squared. As a consequence the difference between matrix element and approximation 

can be sizeable. Applying the phase space slicing method means simply ignoring these 

contributions - placing a strict cut at y^g — y.^^ - and ignoring the contribution to the 

left of \ogiQ{yqg) = —6 in Fig. 9 . 1 . This is clearly not the right thing to do. 

Although the contributions just below j/min may be sizeable, as the invariants tend to 

0 , all contributions also tend to 0. This is shown in Fig. 9 .2 , which represents the cross 

section as a funct ion of the various y^y As there is a symmetry under the exchange of 

quark and antiquark the y-ij and ?/2j distributions are equal. 
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Figure 9.3: Contributions of the individual terms ( s i g b , s i g c , s i g d , s ige) to the 

tota l cross section as funct ion of j/min for Heat = 0.1 and Zcut = 0.7. For clarity, only the 

next-to-leading order contributions are shown. Furthermore we take ae^ = asCp — 27r. 

9.3 Study of the log(y^2n) dependence 

As can be seen in Fig. 9.3, the size of the different contributions to the differential cross 

section increases dramatically as ymin becomes smaller. This rapid rise is due to the 

presence of logarithms of i n each of the contributions. In the analytic part of this 

calculation, we saw that the leading poles present in the different unresolved contributions 

(real, v i r tua l and involving the quark-to-photon fragmentation function) were poles in 

{ ^ } . These poles were sometimes multiplied by factors of the fo rm y^^- On expansion as 

a series i n e, the poles cancelled amongst each other yielding a f ini te result (eq.8.14). This 

result however contains terms proportional to logarithms of up to a certain power 

being maximally equal to 3. This \o^{\j^^ dependence of the sum of all unresolved 

contributions appears clearly in Fig. 9.3 by the curve representing the variation of s igc 

w i t h variations of y-^rs.-
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Figure 9.4: The sum of all next-to-leading order contributions to the total cross section 

as funct ion of for j / ^ u t = 0.1 and Zeut = 0.7. Moreover, we took ae^ = a^Cp = 27r. 

The solid line is a f i t of the fo rm C i + C2 2 /min ln^ 2/min-

The f inal cross section which is obtained as the sum of all theoretically resolved and 

unresolved contributions 7nust of course be independent of yaun-, as the introduction of 

this parameter is an artifact of the calculation. Consequently, we expect the presence 

of a similar log^(yinin) dependence in the sum of s i g b , s i g d and s ige to cancel this 

dependence coming f rom the s igc contribution. I n this case, i t appears f rom Fig. 9.3. 

that all three contributions separately contain logarithms of ymin, including log^(ymin) 

terms. 

I t can be seen f rom Fig. 9.4 that the sum of all resolved and unresolved contributions 

is clearly t/nun-independent (wi thin the numerical errors of the calculation) providing that 

?/inin is taken small enough. In practice, this means for values of y^in ranging between 

10~^ to 10"^ for the chosen value of the experimental jet resolution parameter ?/cut = 0.1. 

Furthermore the differential rate as a function of z illustrated in Fig. 9.5 appears also 

2/iiun~independent. Hence, these two results demonstrate the consistency of our approach 
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Figure 9.5: The differential cross section as function of z for different values of y^j^^ and 

Ucut = 0.1. Only the next-to-leading order contributions are included, we again take 

ae^ = agCp = 27r. A l l points were evaluated in the respective bin centres, the results for 

different values of y^^ have been shifted across the bin only for better visibility. 

to perform the calculation of the NLO photon - f l jet cross section - there is a region of 

parameter space where the choice of the unphysical parameter y^n does not affect the 

physically observable cross section. This is actually an extremely powerful check of our 

calculation. Not only have the explicit poles cancelled as discussed in Chapter 8, but 

the f inal numerical result does not depend on the parameter introduced to isolate the 

divergences. Each individual term has a very strong dependence on ymin, but the sum 

of al l terms is flat i n ymin- For ?/min = 10"^, the magnitude of the individual terms is 

C(5000), while the final result (after enormous cancellations) is 0(lO). Of course, in 

some contributions the logarithms appear explicitly, while in s i g d particularly, they are 

generated by the Monte Carlo integration and form the largest source of error. 

Concerning the figure displaying the 2/niin dependence of each contribution to the cross 

section, i.e. Fig. 9.3, we notice that for large values of j/min the cross section deviates f rom 
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the i/min-independent value. This is because for large y^^ values the approximations used 

i n the analytic calculation become less accurate. In particular, terms of 0(?/min log'^(2/niin)); 

which have been neglected, become sizeable. On the other hand, for values of y^in below 

10~^ the errors on the result become important due to the necessity of cancelling large 

logarithms numerically. The total result becomes therefore less stable numerically for 

such small values of ymin- A reasonable choice of ymini which does not lead to problems 

of numerical instabili ty is therefore ymin = 10"^. This value of y^^n wi l l be used in the 

remainder of this thesis to compare the results of the calculated 7 -|-1 jet rate at 0{aas) 

w i t h the measured rate. 

I n conclusion, after having outlined how the numerical part of the calculation has been 

performed, we have demonstrated that the results of this next-to-leading order calculation 

of the photon + 1 jet rate were independent of the theoretical cut y^^ for values of y^in 

ranging between 10"^ to 10"^. The value ymin = 10~^ has been chosen to determine the 

next-to-leading order non perturbative quark-to-photon fragmentation f rom a comparison 

between the results of this calculation and the data. This determination together wi th a 

study of the experimental cut (7/cut)-dependence of the results shall be carried out in the 

next chapter. 
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C h a p t e r 1 0 

F i n a l r e s u l t s 

In the previous chapter, we have proven the consistency of our approach evaluating the 

photon -|-1 jet rate at order acts- We have shown that the results of the numerical program 

evaluating this rate were ymin independent. Having this numerical program available, i t is 

now possible to determine the non-perturbative quark-to-photon fragmentation function 

up to this order f rom a comparison between the results of this program and the experi­

mental data f r o m the A L E P H Collaboration at CERN. Section 10.1 is dedicated to this 

determination while a prediction for the integrated photon +1 jet rate for z greater than 

0.95 w i l l be presented in Section 10.2. 

10.1 A N L O determination of Dq^^{z,fiF) 

In Chapter 8, we saw that the non-perturbative quark-to-photon fragmentation function 

Dg_^^{z, (.IF) is part of the next-to-leading order photon - f 1 jet rate, which can be expressed 

in the following way, 

l ^ ^ ^ M ! ^ ) = 2^, + 2 C „ « i > _ (10.1) 
(To dz 

where and C,, are both finite, i ^ ^ is the sum of the finite lowest order and next-to-

leading order terms occurring in the corresponding bare differential cross section (c.f. Sec­

t ion 8.3) and Cqq is a coefficient function given by eq.(8.22). 
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We have also found that the non-perturbative quark-to-photon fragmentation function 

D(z,/.ip) could be given as an exact solution (up to O(aas)) of a next-to-leading order 

evolution equation, (c.f. eq.(8.36)), which took the following form, 

i ; ( ^ ^ ^ ) ( z , ^ ^ ) = A J Z / - ! ^ ] + A J Z / - ^ ] ® D { Z , ^ C O ) + D { Z , ^ O ) . (10.2) 
\ f^o J \ Mo / 

The functions Ai and A2 are known functions given in eq.(8.40). The non-perturbative 

input funct ion D{z, /.IQ) on the other hand, is up to now unknown. I t wi l l be determined 

together w i t h [.IQ, the starting scale^, in this section. 

In Chapter 2, we saw that a lowest-order determination of the non-perturbative frag­

mentation funct ion D[z^^ip) could be given by, 

D(^^\z,^ip) = A ( Z , ^ ] + D{zai,)., 

where the A - t e r m is an exact solution of the lowest order evolution equation, given by 

eq.(2.27) and a comparison w i t h the measured photon - f 1 jet rate yielded a lowest-order 

determination of the non-perturbative fragmentation function at a starting scale which 

was 

o2 

- 4 ° ) l n ( l - ^ ) ^ - l - l n 

w i th fio = 0.14 GeV. (10.3) 

I n this parametric fo rm, the logarithmic term in (1 — z) had been introduced to guar­

antee that the lowest-order photon -|-1 jet rate is well behaved as z tends to 1 (c.f. Section 

2.4.4). The cut-off scale and the other constant terms had been f i t ted to the data. 

More precisely, they had been f i t ted to the measured photon - f 1 jet rate for one partic­

ular value of the jet resolution parameter j / c u t {Vcut = 0.06). The next-to-leading order 

quark-to-photon fragmentation function at a given starting scale /.IQ, D(Z, HQ) w i l l be such 

that the lowest order component of the photon -|-1 jet rate calculated at next-to-leading 

^Recall that /JQ can be seen as the scale below which the perturbative approach is not valid anymore. 
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Figure 10.1: Comparison of the photon -|- 1 jet rate at leading and next-to-leading order 

w i t h the A L E P H data. The non-perturbative quark-to-photon fragmentation function is 

fitted to the data for ?/cut = 0.06 only. The jet rates for the other values of T/cut are then 

predictions f r o m the leading order and next-to-leading order calculations. 

or der is s t i l l well behaved as z tends to 1. A possible parametric fo rm for D{z,fio) (at 
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N L O ) therefore reads, 

D{z,^^) = [ - 4 ° ' l n ( l - zf + a, . f { z ) + W\ (10.4) 

w i t h the unknown parameters being a i , 6 i and /̂ o the cut-off scale. The strong coupling 

constant cv̂  is fixed. I t is chosen to be a s (Af | ) = 0.124, the leading order value for the 

strong coupling constant obtained f rom the hadronic i?-ratio. 

A tr iple parameter fit using only the data at j / ^ u t = 0.06 yields, 

2 

D{z,fio) = ^ [ -P j , ° ) ln ( l - zf + 20.8(1 - z) - 11.07 , 

wi th Mo = 0.64 GeV. (10.5) 

The resulting values of this fit obtained wi th = 0.27/3 have been used to evaluate 

the photon -|-1 jet rate calculated up to next-to-leading order for different values of j / c u t 

(2/cut=0.01, 0.1 and 0.33). The obtained rates are compared wi th the the leading order 

predictions and the A L E P H data given in six ^-bins (0.7 < 2: < 1) in Fig. 10.1. 

Consistent results are found over the whole range of y^it showing the universality of the 

non-perturbative quark-to-photon fragmentation function D { Z ^ ^ F ) - Furthermore, f rom 

Fig. 10.1, i t can be seen that any y c u t dependence of the photon -\-\ jet rate is adequately 

described by the perturbative calculation. 

10,1.1 The form of Dq^j{z, / i p ) 

A comparison between the determinations of Dg^^(z, f.i,p) at leading and next-to-leading 

order is shown in Fig. 10.2. The fragmentation functions displayed as functions of z are the 

solutions of the respective evolution equations wi th the corresponding non-perturbative 

input distributions D { Z , ^ Q ) fitted at /Iq • Both inputs are proportional to the electro­

magnetic coupling constant and the quark charge; more precisely, they are proportional 

to (aej)/27r. 

Unlike the corresponding photon - f l jet rates at leading order and next-to-leading or­

der which are, by construction, completely independent of the choice of the factorization 
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Figure 10.2: The quark-to-photon fragmentation functions at leading and next-to-leading 

order as functions of z only shown for a quark of unit charge. The factorization scale [ip 

is taken equal to Mz in both cases (see text) . 

scale / / F , the fragmentation functions are sensitive on this choice. As the mass of the 

.2-boson is the on l j ' hard scale in the problem, we chose to display these fragmentation 

functions at the factorization scale ixp = Mz- The next-to-leading order quark-to-photon 

fragmentation funct ion is a universal, process-independent quantity, which has been un­

known up to now. I t appears in all processes involving quarks and photons in the final 

state, and could be used to re-evaluate those processes, which so far have only been evalu­

ated using model dependent assumptions for this fragmentation function. Most prominent 

examples for such processes are the prompt photon cross section at hadron colliders and 
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the photon pair cross section at LHC. As mentioned in Section 1.2.4, the precise evalua­

t ion of the latter process is crucial to determine whether a Standard Model Higgs-boson 

of intermediate mass can be detected at LHC. 

10.2 The integrated rate for z > 0.95 

The measured and calculated integrated rates above z — 0.95 can be displayed as a 

funct ion of ?/cut and the results of this comparison are shown in Fig. 10.3. The leading-order 

curve provides an adequate description of the data as mentioned in Section 2.6.4. The 

next-to-leading order curve describes the data well and provides even a better agreement 

between theory and experiment than the leading-order curve over the whole range of y^ut-

A t the end of Section 2.2, after having presented the results of previous analyses of 

the photon +n jet rates, where a "two step" procedure was used to isolate the photon, 

we mentioned that wi th in this approach large negative next-to-leading order corrections 

were required to obtain a reasonable agreement between the theoretical and experimental 

results. From Fig. 10.3 this appears clearly not to be the case when the photon is clustered 

inside the jets simultaneously wi th the other partons and where the photon inside the 

photon-cluster is called isolated i f i t carries at least 95% of the electromagnetic energy of 

the photon-jet. This confirms the suggestion made in [46], that the large effects present 

in the previous analysis were simply a consequence of the procedure used previously to 

isolate the photon. Using the safer democratic approach instead, the next-to-leading order 

corrections are of reasonable size. 
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Figure 10.3: The integrated photon -|-1 jet rate above z = 0.95 as function of j / c u t , 

compared w i t h the f u l l leading-order and next-to-leading order calculations including re­

spectively the leading-order and next-to-leading order determined quark-to-photon frag­

mentation functions, Dq^^(z, fip). 
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Chapter 11 

Summary and conclusions 

I n this dissertation we have performed the calculation of the photon +1 jet rate at 0{aas) 

which represents a first step towards the evaluation of jet observables at next-to-next-to-

leading order. To achieve this task, despite the presence of soft and collinear singularities 

arising in various contributions to this jet rate, we separated this calculation into an 

analytical part, which contains all the divergences and a finite numerical part. The 

introduction of a theoretical resolution parameter j / m i n enabled us to realise this separation 

for all four, essentially different, contributions involving a photon or the fragmentation 

process i n the final state, c.f. Fig. 3.1. In particular i t enabled us to decompose the four 

particle final state phase space into theoretically resolved, single unresolved and double 

unresolved regions, as defined in Fig. 3.4. This decomposition of the four-particle final 

state phase space represents one of the most difficult tasks achieved in performing this 

calculation. 

Indeed, due to the large particle mult ipl ici ty in the final state, we found that the 

expected boundaries f r o m an analysis of the single unresolved (soft or collinear) regions 

in the three-particle final state phase space (c.f. Section 1.5.3) had to be modified to 

properly define the single unresolved regions in the four-particle final state phase space. 

More precisely, the theoretical separation criterion j / m i n had to be multipHed by the triple 

invariant defining the three colour connected or electromagnetically connected particles. 
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as explained in Section 4.2. Once this was carried out, the known simple coUinear and 

simple soft approximations of matrix elements and phase space (c.f. Section 1.5.3) could 

be used to determine (in Chapter 4) the single unresolved real contributions to the photon 

-1-1 jet rate f rom the four parton process at order aa^. 

I n the double unresolved regions of the 4-particle final state phase space, which we 

first had to define in Section 3.2, these approximations of matrix elements and phase 

space were previously unknown. Indeed, in Chapter 5, prior to the evaluation of the 

double unresolved contributions (triple coUinear, soft/collinear and double coUinear), we 

had to first define the corresponding triple coUinear, soft/collinear and double coUinear 

l imits of the 4-particle matr ix elements and phase space. Once these approximations had 

been found, the evaluation of the double unresolved contributions, for which an elaborate 

presentation is given in Chapter 5, was rather detailed and involved. In particular, the 

t r iple coUinear contribution could only be evaluated using various subtle properties of the 

hypergeometric series. 

A l l analytically calculated unresolved contributions presented in Chapter 5, 6 and 7 

respectively, were combined in Chapter 8 to yield a result that stil l contained double and 

single poles i n e in addition to the physically important finite component (eq.(8.9)). A 

fifth essentially different contribution to the photon -|-1 jet rate at 0{aas) displayed in 

Fig. 3.1, is given by the tree level qq production process wi th the bare next-to-leading order 

quark-to-photon fragmentation function "attached" to one of the quarks. The pole part 

of the sum of the unresolved contribution is to be factorized into this bare fragmentation 

funct ion, yielding a finite physical photon +1 jet rate. These pole parts must therefore be 

universal functions. Indeed, we found (first by inspection of our result and subsequently 

by more general arguments) that the coefficient of the { ^ } pole is given by the convolution 

of two leading order AltareUi-Parisi spHtting functions ( -Pj° '®Pj° ' ) and that the residue of 

the { ^ } pole is given by the next-to-leading order quark-to-photon sphtting function P j^ ' . 

To find that when all contributions are summed together the { ^ } left-over singularity is 

precisely given by this next-to-leading order spHtting function provides us wi th one of 

the most stringent checks of the correctness of the analytic part of the calculation of the 
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photon jet differential cross section at 0[aas). 

Once the factorization of the left-over collinear singularities into the perturbative 

counter te rm of the bare next-to-leading order fragmentation function is realised, as 

described in Section 8.2, the non-perturbative quark-to-photon fragmentation function 

Dg^^(z, fip) and the jet rate becomes finite and dependent on the factorization scale fxp. 

Requiring that the bare next-to-leading order quark-to-photon fragmentation function is 

independent of this scale enabled us to derive a next-to-leading order evolution equation 

and an exact (up to O(aas)) solution of i t in Section 8.4. When implemented into the 

photon -f-1 jet rate, i t leads to a jip independent differential cross section. 

A l l these contributions were then implemented into a FORTRAN program which evalu­

ated the photon +1 je t rate at ^ ( a Q ' ^ ) . As motivated in Section 9.2, the hybrid subtraction 

method (defined in Section 1.5) had to be used to evaluate the resolved real contributions. 

Outside any singular region, for each event selected by the jet algorithm, the " f u l l " matrix 

element squared is evaluated while inside any of those regions the difference between the 

complete 4-particle matr ix element squared and its approximation (used in the analytical 

part of the calculation) are considered instead. Consequences of the application of this 

method on the behaviour of the invariants { j / i j } constrained in the singular regions were 

shown in Figs. (9.1,9.2). 

The most stringent test on the consistency of our approach and the correctness of 

the results obtained is provided by Fig. 9.4, where i t is shown that the results of the 

numerical program are independent of the choice of the theoretical slicing parameter ?/min-

This result was obtained after a numerical cancellation of large logarithms of y m i n taken 

up to the t h i r d power had been realized. 

Finally, i n Chapter 10 we have presented a determination of the process independent 

non-perturbative quark-to-photon fragmentation function up to 0{aas) using our next-

to-leading order calculation and the existing data f rom the A L E P H Collaboration. The 

fit was obtained using only the data for ycut = 0.06. A comparison between the calculated 

and the measured photon - f 1 jet rate at other values of the experimental jet resolution 

parameter y^nt showed clearly (in Fig. 10.1) that any ?/cut dependence of this jet rate is 
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adequately described by our next-to-leading order perturbative calculation. A further 

comparison between the calculated and measured integrated rates for values of z greater 

than 0.95 - i.e. "isolated "photon -|-1 jet events - was displayed in Fig 10.3. The theoret­

ical next-to-leading order curve (function of ?/cut) was found to describe well the data and 

to provide a better agreement between theory and experiment than the curve yielded by 

the leading order calculation of the photon + 1 jet rate for all values of ?/cut considered. 

In summary, we have presented a complete calculation of the photon -|-1 jet rate at 

0{aas\ Several new concepts and calculational methods, which could directly be ap­

plied to the evaluation of jet observables at next-to-next-to-leading order, were developed 

throughout this calculation. As a direct result, we obtained a new determination (at order 

aas) of the process independent non-perturbative quark-to-photon fragmentation func­

t ion which could be used for a re-evaluation of processes involving final state photons, 

such as one important background process to the detection (via its photon pair decay 

mode) of the Higgs-boson of the Standard Model of Particle Physics. 
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Appendix A 

Special functions 

I n this appendix we have collected the definitions and properties of special functions which 

we have used in different parts of the calculation throughout this dissertation. A complete 

list of the most commonly used definitions and properties can be found in [71] and [72]. 

A . l The Gamma function r{x) 

The funct ion r(x) can be defined by, 

T{x) = I'dye-yy^-', {x > 0). 
Jo 

I t has the following properties: 

r ( x + l ) = xT{x), 

r ( n + l) = n\, 

r (2 x) = ? ^ T{x) Fix + 1/2), (A.l) 
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A n alternative, but equivalent definition for the Gamma function is the so-called Euler 

representation 

T(z) - l i m — 1.2.3..n 
^ ' z ( l + 2) (2 + z)..[n + z) 

The advantage of this definition is that i t enables one to write the Gamma function in an 

exponential form, 

r ( l + ^) = exp - z 7^ + ^ i — ^ C(j) , (A.3) 

n = 0 ^ ' 

where is the j t h Riemann Zeta function and 7̂ ; the Euler constant. 

Throughout this thesis we used the above definition to expand in e the V functions 

obtained as a result of the phase space integrals. Moreover, some frequently used combi­

nations of r functions and their e expansion are 
2^^ A ^2 r 2 ( l - e 

2e%, (A.4) 
r 1 - 2e 6 

r ( l - 2e) - ^^ - ' ^ 

A.2 The Beta function B(a,P) 

The Beta funct ion B(a, /?) is defined by the following integral, 

Jo 

= Re{a),Re{^)>Q. (A.6) 

In some cases, we can relax the constraint Re[a), Re{l3) > 0, we have 

/ • a 6 * ^ - . ( i - * r - = M (A.7) 

Jo L[a + p) 

for Re{a) > 0 and Re{^) < 0 w i th Re(a + ^ ) < 1 . 
Indeed, considering the substitution u = |-, the relation (A.7) can be wri t ten as 

CO 
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which is equal to 

a 
= 1 

according to the definition (A. 10) and the identity (A. 14). 

A.3 The Hypergeometric function F 2 i ( a , b: c; z 

A.3.1 Definitions 

The hypergeometric funct ion F2i{a, b; c: z) can be defined by the hypergeometric series 

n = 0 \^)n 

where < 
(Oo = 1 

The hypergeometric series terminates if a or 5 is equal to a negative integer number or 

to zero. For c = —n, w i t h n being a natural number, i t is undeterminate. I f we exclude 

these values of a, c the hypergeometric series converges in the unit circle \z\ < 1. I f 

Re{c — a — 6) > 0, then 

- ^ • ( - - ^) 

otherwise F2i{a, b; c; 1) is divergent. 

The hypergeometric funct ion ^2i («! b; c; z) can also be defined by its integral repre­

sentation 

Re{c) > Re(b) > 0 . (A.10) 

Furthermore, the function u = F2i(a, b] c: z) satisfies a differential equation called the 

hypergeometric equation [71], 

z { l - z ) ^ + [ c - ( a + 6 + l ) z ] ^ -abu = 0 . ( A . l l ) 
az'^ az 
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In fact, let us denote by F2i{a,b;c; z) = F, F' = ^ and F" = ^ the hypergeo-

metric series and its first two derivatives wi th respect to its argument z. To show that 

F2i{a, b; c]z) = F satisfies the following equation 

z{l-z)F" + [c - {a + b+l)z]F' -abF = 0, 

we expand F and its derivatives in infinite series including the powers of z present in the 

hypergeometric differential equation. More precisely, we consider 

F2i{a,b] c]z 

dF2i(a,b; c; z 
dz 

di^2i(«, b; c; z 
dz 

d'^F2i{a,b; c; z 

dz^ 

,d^F2i(«, b] c; z 

= E 
T{a + n)T{b + n)r{c) 

t'onc + n)rin + l)T{a)Tib) ' 

^ { a + n){b + n) Tja + 7i)T{b + n)T{c) 
^ (c + n) r (c + 72)r(n + l ) r (a)r(6)^ ' n = 0 . 

r{a + n)T{b + n)Tic) 
S ^ r ( c + n ) r (n + i ) r (a)r (6) ' ' ' 

~ {a + n){b + n) r (a + n)r(6 + n)r (c^ 

71=0 (c + n) r(c + n) r (n + i ) r (a ) r (6) ' 

n=0 

r{a + n)r{b + n)T{c) 
r (c + n) r (n + i)r(a)r(6)-

(A.12) 

where in the above equations we wrote F ' , zF', zF" and z'^F" as the infinite series of 

F mult ipl ied by some factor proportional to [n] which are underlined. Inserting these 

identities the hypergeometric ecjuation becomes, 

{a + n){b + n) a + n){b + n) ^ , , , ^^ , ^ 
n -,—-^—^ - n{n - 1) + c -^—^—^—- - [a -\- b + l)n - ab = 0 

(c + n) 

which is satisfied. 

[c + n] 

A.3.2 Various properties of the hypergeometric series 

I n the evaluation of the triple coUinear contributions (in Chapter 5) we needed to use 

various properties of the hypergeometric functions. In what follows, we shall list the ones 

which follow f r o m the definition of the hypergeometric series F2i{a, b; c; z), while more 

subtle properties of i t w i l l be explicitly proven. 
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a. Some elementary relations 

F2i{a, b; c; z) = F2i{b, a; c; z ) , 

F2,{-a, b; b: z) = {1 - z f (A.13) 

F2i(0, b,c;z) = 1 . (A.14) 

b. Relations between contiguous hypergeometric functions 

( c - a ~ b ) F - { c - a ) F { a - l ) + b{l-z)F{b+l) = 0, (A.15) 

( b - a ) ( l - z ) F - { c ~ a ) F ( a - l ) + {c-b)F{b-l) = 0, (A.16) 

' a - l - { c - b - l ) z ] + { c ~ a ) F ( a - l ) - { c - l ) { l - z ) F { c - l ) = 0, (A.17) 

where F denotes F2i{a,b; c; z) and i^(a ± l ) , i ^ ( ^ ± 1) and F{c ± 1) stands for F2i{a ± 

1, 6; c; z),F2i{a, b± 1; c; z) andF2i(a, b,c± l,z) respectively. 

c. Some other useful relations between hypergeometric functions of different 

arguments 

- A Relation between F{z) and F(l — z): 

F2i{a,b; c;z) = A^F2i{a,b:a+b-+l;l-z)+A2{l-zy-''-^F2iic-a.,c-Lc-a-b+l:l-z), 

(A.18) 

1 A r(c)r{c-a-b) J A r (c)r(a ,+6-c) 
wliere = and A2 = V(a)r(b) • 

- A quadratic transformation^: 

In performing the calculation of the triple collinear contribution to the differential 

cross section, for terms involving { — — } we have used the relation 

F 2 i f l , 6 ; 2 6 ; - 4 ^ ) = ( l + ^ ) 2 F 2 i ( l , 3 / 2 - 6 ; 6 + l / 2 ; ^ 2 ) , (A.19) 

^ A l l these relations and further ones are cited in [71]. We have here limited ourselves to those which 

we explicitly used in the development of the calculation presented in this dissertation. 
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which holds for all values of z. In the following we shall prove the equality of these two 

series on a term by term basis, independently of the value of z. Furthermore, we shall 

also show that i t is justified to expand the resulting hypergeometric function in infinite 

series to perform the v integration, (as in eq.(5.33)), although this series diverges at 1. 

The relation (A.19) between two infinite series is correct i f the two series satisfy the 

following two criteria: 

(a) They have the same value and the same first derivative at zero, which is t r iv ia l ly 

the case here. 

(b) They satisfy the same hypergeometric differential equation. 

We therefore have to see whether ( 1 + z ) -^ F21 ( l , ^\ 2^; ( l ^ l f ) = fulf i l ls 

d^u 
+ 6 + 1 / 2 - ( 2 + 3 / 2 - 5 ) ^ ^ 

du 
d? 

-{3/2-b)u = 0 , ( A . 2 0 ) 

which is the differential equation satisfied by ^ 2 1 ( 1 , 3 / 2 - 6 ; 6 + 1 / 2 ; z'^). Defining y = ( Y ^ , 

and considering F' = ^ and F " = £ | , the above equation reads 

E F X 

(1 + ^) 

1-z^) 

F' X 
1 

b + ( 1 + ^ ) - 6 z{i + zy 

- { l - z ' ) { 2 - z ) - { l - z ' ) { l - z ] 

+ F' X 

+ F" 

. . i - ( ^ M . ' 

Az 16z^ 

[l + z) 

{l-z% (A.21) 
Xi + z f {i + zY 

The idea is then to make this differential equation to look hke the one satisfied by 

F21 ( 1 , 6; 26; ^ ) which is, 

Az l(\z^ iz 

When we proved that F2i{a,b]c; z) satisfies the hypergeometric equation (A.11), we 

expanded F and its derivatives in infinite series including the powers of z eventually 
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present in the hypergeometric equation. Following the same idea here, the equation 

(A.20) yields 

E ^ Y . E n 
n=0 

En = {2b + n){l + z) [ l - z ' ) 3^ 1 . , b + 
1 n 

b\z' (1 + ^) 

\ - b \ z { \ ^ z - ' 

+ n ( l - z 2 ) ( l + z) 

1 + n)(6 + n) 

i ( l - . ^ ) ( 2 - z ) - ( l - z ^ ) ( l - . ) 

6 + 
2 ' 2 

b): 
{ \ - z ) 

( 1 - z ) ^ 

+ n 1 + n ) ( 6 + n) -7z(72 - l)(26 + n) (A.22) 

But this equation for E is st i l l not equal to zero. 

However, one has to remember that there is some arbitrariness in the way one groups 

the terms together. By this statement we mean here the following. There are two possible 

procedure to express zF' (for example) in an infinite series proportional to the infinite 

series defining F (as i n eq.(A.8)). Either one includes the factor z in the infinite series 

and obtains 
&F2y{aMc\z) ^ ^ r ( a + n)r ( / ) + n ) r ( c ) „ 

d^ „ ^ o - ^ r ( c + n ) r ( n + i ) r ( a ) r ( 6 ) " ' 

or one considers as a factor mul t ip lying the infinite series only, in which case one finds 

instead 

dF2i(a,6;c;^) ^ (a + n)(6 + n) V{a + n)Y{b + n)Y{c) „ 
^ d^ " (c + n) r ( c + n ) r ( n + l ) r ( a ) r ( 6 ) ^ • 

The underlined factors proportional to n in the above expressions of the two infinite 

series being different, inserting one or the other way of wri t ing zF' i n the hypergeometric 

equation does not yield the same contribution to E^. In a way this relation (A.22) is not 

unique. 
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Afte r some algebraic manipulations we found that the identity (A.21) becomes equal 

to zero when one considers 

E F X ( 1 - . ^ ) 

4z 
{l + zf 

3 

F'x 

3z 1, 

1 

( l + z ) - - - 6 z{l + z) 

- ; - { l - z ' ) i 2 - z ) - ( 1 - / ) ( 1 - . ) (1 + ^) 

{z'-z)il + zy + 6 ( . - l ) ( l + z) 

+ F' X 

+ F" 

- (1 - 4' 

iz 16z^ 
{ l - z ' ) i l + z), 

6{z^ - z') + 46(z2 - z) 

(A.23) 
(1 + 2)2 ( l + z)4j 

where we have added and subtracted the underHned terms in comparison wi th eq.(A.21). 

By doing so, these terms then get shifted f rom one infinite sum, F', to the other, yF' . 

As a result En finally becomes 

En = {2b + n){l+z)x {1-z') 

- "^-b)z{i + zy 

3z 1 , , 
y + 2(^ + ^^ 

1 
+ n{2b + n){l + z){l - z') x 

+ ^^{z'-z){l + zy- + 6 ( . - ! ) ( ! + 2 ) ^ I 

+ (1 + n ) ( 6 + n ) X 

^ ( l - 2 ^ ) ( 2 - . ) - { 1 - z ^ y i - z ) (1 + - ) 

- - ( -2 V2 2{b + ;- - i ^ - b ] z ' ( 1 

1 + 
- i i - z y 

•6{z'-z') + 4 6 ( z ^ - 2 ) | 

( 1 - ^ ^ ) ( 1 + | n ( l + n)(6 + n) - n (n - 1)(26 + n) 

which is equal to zero. This statement ends the proof of the vahdity of relation between 

two hypergeometric series of arguments {z^} and { ( Y | ^ } on a term by term basis. 
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In evaluating the terms of the triple collinear contribution involving { : ^ ^ ^ } ; i e. in 

deriving / ' in eq.(5.32), we have expanded the hypergeometric series F 2 i ( l , l + e: 1 — e: Z^) , 

obtained applying the quadratic relation mentioned above, in infinite series. Furthermore 

we have used this expansion to perform the v integration and obtained eq.(5.32). I t 

is worth noting however, that according to the definition of the hypergeometric series, 

(c.f. Section A.3.1), at Z = 1, a value of Z in the range of integration of the v integral, 

this series diverges. In what follows we shall prove that this divergence is integrable and 

therefore does not affect the vahdity of the integration in eq.(5.33). 

For this purpose we show that 

rv'+S 
Av V -e-l - £ - 1 F, 

4Z 
21 1 , 1 / 2 - 6 , 1 - 2 6 , — 

(1 + zy 
{AM) 

vanishes for 6 ^ 0 , where v' i-t IS the value of v iov Z = 1. 
[l-t(l-z)] 

For Z^ close to 1, i t is convenient, using (A.18), to write the hypergeometric function 

of argument lu = , as a function of I — w, 

F2i{l,l/2-e,l-2e,w) = AiF2i {1,1/2 - e,-3/2 + e,l - w), 

+A2{1 - lu)-'^'-' F21 (-2e, 1/2 - e, 1/2 - 6,1 - lu) 

A _ r ( l -2e ) r ( - l / 2 -6 ) 1 A _ r ( l - 2 e ) r ( l / 2 + £ ) 
where Ai - ^_2e)r\i/2-c) ^2 - r ( i ) r ( i / 2 - 0 • 

i^2i (1 ,1/2 - e, 3/2 + e, 1 - ID) vanishes for ^ —*• 0. Furthermore, in the second term, 

choosing v = v' + Se'^ w i th 9 6 [—7r,0] and expanding w in power series in 6 i t becomes 

1 (1 - t{l - z))' 
w = 1 

16 z H ^ i - t y 

Neglecting 0{S) terms, I'g yields 

f i8e''Ae{v')-"'[ 
J-IT 

.52 e2»« + o ( r ) . 

4 

x A 
1 {1-til 2 „2i6 8'e 

16 z H ^ l - t y 

, ^ r ( l - 2 £ ) r ( l / 2 + e)r t z { l - t ) 

r ( i ) r ( i / 2 - e ) i { ^ - t { i - z ) y 
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I n order to guarantee that a r g ( [ e ' Y ) ^ 6 integral becomes 

J—-IT ^ 

I'g then gives 

t z { l - t ) .2 , n . . 3 v -= [-evr^ + 0(e^)] 1 + — 
; i - t ( l - z ) ) 2 j 

-2t 

which vanishes for ^ 0. 

Hence, we have then proven that the integrand of the v integral in eq.(5.32) does 

not have any non integrable singularity at 1. We were therefore allowed to expand 

- F 2 i ( l , l + e; 1 — t]Z'^) in an infinite series and to pursue the evaluation of the triple 

coUinear contribution using this expansion. 

A.4 The Di-and Trilogarithms: Li2(y), Li;3(2y) and 5i2(y) 

The e expansion of hypergeometric functions often yields D i - and Trilogarithmic functions. 

In the following section, we shall summarize the definitions and the most commonly used 

properties of these polylogarithmic functions. Again, we l imited ourselves to the relations 

used in this thesis. A complete table of these functions and their properties can be found 

in [72;. 

The Dilogari thm l^^2{y) and the Trilogarithm Ij^iv) can be both defined via an integral 

or via an inf ini te sum. The Dilogarithm Li2(y) is given by 

T - / X ^ l n ( l - x ? / ) [ y . \ n { l - x ) / A - . -X 
L\2{y) = - dx — — = / dx— -. (A .2D) 

Jo a; Jo a; 

The Tri logar i thm U3{y) is defined by 

f i l n ( . ' i ; ) l n ( l - x y ) _ fv U2{x) 

JQ X Jo X 
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whereas the Tri logari thm Si2{y) is defined by 

^ . X 1 /• , ln'^(l - xy) 1 P , -
(A.27) 

The Dilogari thm Li2{y) and the Trilogarithm Li3(y) can also be defined as infinite 

sums 

n=l " 

00 , , n 

Li3(y) = E i i -
n=l 

The shape of these three functions is depicted in F i g . ( A . l ) . 

Figure A . l : D i - and Trilogarithms 

(A.2S) 

(A.29) 
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A.4.1 Some commonly used relations between polylogarithms 

of different arguments 

To reduce the size of the answer in Chapter 5 we made extensive use of the following 

relations between polylogarithms of different arguments [72]: 

U2{l-y) = -Li2(2/) - ln(y) l n ( l - ?/) + (2 , 

L i 2 f - — ) = U2{y) + ln{y)ln{l-y)-]-ln'{y)-C2.. 
\ y J 2 

U 2 ( - - ^ ] = - U 2 { y ) ~ W { l - y ) , 
V 1 - 2 / / 2 

L i 3 ( l - y ) = - 5 i 2 ( ? / ) - l n ( l - y ) L i 2 ( ! / ) 

- i l n ( j / ) l n ^ ( l - 2 / ) + C3, 

U s ( - - ^ ] = S,2{y)-U,{y) + \n{l-y)U2{y) + hn'{l-y)., 

L i a f - — ) = Su{y)-Us{y) + Hl-y)U2{y) + l\n\y)., 
\ y J ^ 

( V \ 1 (l - v \ 
+C2ln +-\n{y)\n{l - y)\n ^ , 

V - y ) 2 \ y ) 

Si2{l-y) = -Li3(2/) + ln(?/)Li2(2/) + ^ l n ( l - y ) l n 2 ( 2 / ) + C3, 

5 ' i 2 f - — 1 = - L i 3 ( i / ) + ln(y)Li2(j/) + ^ l n 2 ( ! / ) l n ( l - ? / ) 
\ y J ^ 

- ^ l n ^ ( y ) + C3, 

S,2(-~—] = S , 2 { y ) - \ \ A i - y ) . (A.30) 
V 1 - 2 / / 6 

where = L i2 ( l ) = ^ and (s = l^k{l) = Si2{l) = 1.20205690315959...,. 
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A.4.2 Numerical implementation 

The power series defining the polylogarithms are only slowly convergent. To evaluate those 

numerically in an efficient manner, instead of the definitions above we shall consider the 

series expansions given below. Introducing u = - l n ( l - x), the dilogarithm Li2(. 'c) can 

be expi'essed as [72] 

where the integrand in the above expression is the generating function of the Bernouilli 

numbers [73]. Therefore 

I n a similar fashion, starting f rom eq.(A.27) and performing the same change of integration 

variables as before, after a simple integration the function Si2{x) yields, 

1 oo n-t-2 

Sr^{-)--^i:{n + ^ ) B n j ^ y (A.32) 

Finally for the t r i logari thm Li3(x) given in (eq.A.26), using the expansion of Li2(a ; ) , lett ing 

t = I — exp[—z] and performing the ^-integration, we obtain, 

CO CO 1 p-f- l 

We have used these series expansion truncated to a finite order to compute the poly­

logarithms for X < 1/2. For arguments outside this range, one of the relation (A.30) has 

been applied first. To be more precise, we have used these truncated series in a slightly 

modified fo rm. As the Bernouilli numbers are rapidly increasing, we have considered 

equivalent series whose arguments, instead of being Bernouilli numbers are ratio of two 

consecutive Bernouilli numbers. 

A.5 The function 

I n the evaluation of the contributions involving the quark-to-photon fragmentation func­

t ion we encountered another type of special functions, namely the " + " functions. "+" 
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fuzictions are really distributions, and are as such only defined when convoluted wi th 

smooth functions. I f h{t) is a given smooth function, we have 

I' dt h{t) [g{t)l ^ £ dt [h{t) - h{l)] g{ty {AM) 

The singular behaviour of h{t)g{t) a,st lis compensated by a contribution at i = 1, such 

that the convolution integral, / J dt h{t) [g{t)]_^ is finite. In Chapter 7, we have encountered 

convolution integrals of the fo rm 

w i t h , h{z) = P{z) and, 

( i - t ) , ' i ( i - t ) i ( 1 - 0 

Using the definition (A.34), we can rewrite these three convolution integrals as follows: 

'dt ^ f z ^ ( l n \ l - t ) \ 1 
J 

1 dt [P ( f ) - tP{z) 

Jz t \ty \ {1 ~ t) J^ 3 
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Appendix B 

Analytic Phase Space integrals 

Throughout this thesis we needed to integrate various matrix element squared over the 

two-particle, three-particle and four-particle phase spaces. Their derivations in terms of 

the invariants {sij] is completed here below. 

B . l The Gram Determinant A{pa,pb: --^Pj) 

When one writes the n-particle phase spaces in terms of the invariants Sij. the required 

.Jacobian is related to the Gram Determinant A defined by 

/ 

A(Pa,P6--,Pj) 

Pa 

Pb 

Pa Pa • Pb 

Pa Pb • Pb 

•• Pa- Pj 

•• Pb-Pj 

(B.l) 

V Pj - Pa Pj-Pb ••• Pj • Pj J 

I t satisfies the following properties: 

A(a ,6 , . . ) = A(6 , a , . . ) , 

= A ( a , 6 + A a , . . ) , 
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= A ( - a , 6 , . . ) . 

B.2 The two-particle phase space 

The two-particle phase space of a particle wi th mass v M ^ decaying into two massless 

particles w i t h momenta Pi and energy is given by 

| d P i ' * ( M , p i , p 2 ) = i27ry-'J dRi{M,p„p2) 

and 

/ d 4 ^ ) ( M , , „ p 2 ) = / ^ ^ ' ( ^ - ^ - ^ ^ ) 

2^ 
P2 = l-Pl 
El = bl I 

We can choose a particular frame in which q'^ = (7¥, 0 ,0,0, . . ) , pi'' = {Ei, Ei,0,0,..). 

The dots stand for dimensional zeros. Rewriting the remaining d '^^Vi integral as a 

radial-angular integral gives 

j dR^''\M,pr,p2) = ^ J dEr dn,_, E,'-^ 6{p2'), 

where 

Jdrtd = J'^de^ £de2sm92... J^^ dOd-ism'^-^Od-u 

and the volume of the c/-dimensional hypersphere 

Furthermore we have 

PI = {q-p,y = W -2E,M = soi, 

w i t h 
soi+M^ _ dsoi 

- 2 i W ~ ' "^^^ ~ " 2 M ' 
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and therefore 

Considering also that 

leads to the following expression for the d-dimensional two-particle phase space: 

with 

JdR^'\M,pr,p,) = J { s u ) ' ^ ^ d s r 2 S i s , , - M ' ) . (B.3) 

B.3 The three-particle phase space 

The three-particle phase space of a particle with mass \/M^ decaying into three massless 

particles with momenta P, and energy Ei is given by 

J dPi'\M,PuP2,P3) = {2Tf-''J dRi'\M,p,,P2..P3), 

and 

P3 = 9 - P l -P2 
El = | p i l , B 2 = IP2 l 

We can consider a particular frame in which g'' = (M, 0, 0,0,..). pi^ = i ^ i , 0,0,..), 

P2^ = (£^25-^2 cos ^12,-E2 sin ^12, 0,..). The dots in and pi'^ represent (i-dimensional 

zeros, while in p2^ they stand for d — 2 unspecified angles in (f-dimension. The three-

particle phase space then yields 

J d4'^(M,pi,p2,p3) = ^ JdE, dE2 de,2 d ^ d - x dfi ,_2 (e^ E2 s in^12) ' ' .^(pa'), 

where / d f i ^ , are defined in (B.2). Also 

A(g,Pl,P2) = A(pi,p2,P3)= 7512513523 = M'^Ey^E^'^ Sm^ 0^2, 
4 
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and 
1/2 

dEi dE2 d6i2 = (16M^ Si25i3.S23 ds^ dsi^ds ' 23-

The three-particle phase space becomes 

,Pl,P2,P3) = J { 3 1 2 3 1 3 3 2 3 ) " ' ' dsu dsi3ds23dnd-l dnd-2 

6{S^2 + S13 + S 2 S - M ' ) { M ' ) ' ^ . (B.4) 

Using the dimensionless invariants yij = ^ three-particle phase space also reads 

J dPt\M,puP2,P3) = i 2 7 r f - ' ' j dRi'\M,puP2,P3).. 

with 

j dRi'\M,PuP2,P3) = / ( ? / l 2 2 / l 3 ! / 2 3 ) ' " ^ ^ d n , _ 2 

^ ( y i 2 + yi3 + 2/23 - 1) (M^)'^-'* dyu d ? / i 3 d y 2 3 - (B.5) 

B.4 The four-particle phase space 

The four-particle phase space of a particle with mass VM^ decaying into four massless 

particles with momenta Pi and energy Ei reads 

J dPt\M,p„p2,Ps.,p,) = {2irr~''J dR['\lM,pi,p2,P3,P4)., 

and 

ldR['\M,p„P2,P3,P4)= J 
d ' ^ - l p i d ' ^ - V 2 d^-^p3 

2Eo 2E3 
^ R^y 

Pi = Q-Pl - P 2 - P 3 
El = \pi\,E2 = | P 2 l , E 3 = IP3 l 

We can choose a particular frame in which 

q'' = ( M , 0,0,0,..), 

= ( ^ 1 , £^1,0,0,..), 

P2'' = {E2,E2Cosed-i,E2smed-u..), 

Ps" = ( £ ; 3 , i ; 3 cos ( 9 ^ - 2 , - ^ 3 sin 6 lrf_2 cos 6'd_3,E3 sin 61^-2 sin ^ d _ 3 , . . ) . 
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and dd-2, are the 3 Euler angles between p i , p2 and ps. In q'^ and p i ' ' the 

dots stand for zeros in J-dimensions, in p2^ they stand for d — 2 unspecified angles in 

(i-dimensions, while in p3^ the dots stand for c? — 3 unspecified angles in c?-dimensions. 

The 4-particle phase space then reads 

jdR^^'^ = ^ J d n ^ - i dnd.2dnd-3dE, dE2 dEs d0d., ddd.2 ddd-3 s{P4') 

d-3 

sm 
d-4 

0d-3, El E2 E3 sin 6d-i sin 9^-

where / dCld, dfid are defined in ( B . 2 ) . 

Furthermore considering 

A(g,Pi,P2,P3) = •"A(pi,p2,p3,P4) = -M^-Ei^Ei'^Ea'^ sm'ed-ismyd-2sin'ed-3 = ^4; 

and 

d5i2 d5i3 d5i4 d523d524 d334 = 2^^E^^E^^E^^dE^ dE2 dEs d^^_i d^^_2d^d_3 

= 2 ^ M 2 El E2 Es dEi dE2 dEs 

s'm0d~i smOd-2 dOd-i d9d-2d9d-3 , 

the four-particle phase space finally yields 

| d P f (M,pa,p2,p3,P4) = i27ry-''JdRi'\M,pi,p2,ps.,P4)., 

with 
' • - -1/2 

/ dn^_ i dCtd-2 dnd-3 S{su + 513 + 514 + 523 + 524 + 534 - M ^ ) 
^ M 2 29 

- A 4 \ ^ 
M 2 

where A 4 is given by 

d5i2 dsi3dSi4ds23d524,d534, ( B . 6 ) 

- A 4 = — 
16 L 

512^534^ - f 513^524^ + 5i4^323^ 

2(512523534514 + 513^23524514 + 5i25245345l3 ( B . 7 ) 
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