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ABSTRACT 

Pulsed plasmas were investigated as a means of controlling the composition of 

the surfaces generated via plasma polymerisation. A variety of precursors were 

studied under a range of plasma conditions using both continuous wave and 

pulsed plasmas. Surface and bulk analytical techniques were used to characterise 

the deposited plasma polymers whilst deposition rate measurements aided in 

understanding the effects of altering the various plasma parameters. 

Continuous wave plasma polymerisation of saturated cyclic fluorocarbons 

yielded plasma polymers with high fluorine/carbon ratios. Plasma instability at 

low powers limits the extent to which continuous wave power can be used to 

achieve good selectivity in the polymerisation process. 

Pulsed plasma polymerisation of perfluoroallylbenzene was studied in detail to 

investigate the influence of pulsing parameters on the surface composition. 

Highly aromatic surfaces were obtained through retention of the perfluorophenyl 

group from the precursor. Deposition rate experiments confirmed polymerisation 

was taking place in the off-portion of the duty cycle for precursors with a 

functional group susceptible to radical initiated reactions. 

A cyclic siloxane precursor with vinyl substituents was used to generate surface 

consisting of siloxane rings in an organic matrix. The monomer structure was 

retained through the reaction of the vinyl groups in the off-portion of the duty 

cycle. For low duty cycle pulsed plasma polymers the Si:0 ratio of the plasma 

polymers was identical to that of the monomer, indicating successful retention of 

monomer structure using pulsed plasmas. 

Preliminary investigations into the pulsed plasma polymerisation of styrene oxide 

yielded a range of polymer compositions with varying oxygen contents. The 

properties of the surfaces varied with oxygen content. 

The results indicate that pulsed plasmas can give significant enhancements over 

continuous wave plasmas in controlling surface composition and properties. 
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CHAPTER ONE 

INTRODUCTION TO PULSED PLASMAS AND 
A N A L Y T I C A L TECHNIQUES 

1.1 INTRODUCTION 

Advances in the application and understanding of plasma processes have resulted in 

plasma technology becoming a key technology for modern life. Plasma processing is 

currently a multi-billion pound global industry. Intensive research is now being 

undertaken to gain further insights into the theory and practical application of plasma 

processing as a manufacturing technique for a large range of applications. This thesis 

studies the technique of plasma polymerisation as a means of depositing organic 

coatings. In particular it aims to investigate the extent to which pulsed power can be 

used to achieve additional control over the stoichiometry of the resuhant surfaces. 

In this chapter the basic principles of plasma processing are introduced followed by a 

brief introduction to the analytical techniques used to characterise the plasma 

polymers deposited in the work. 

1.2 PLASMAS 

The plasma state is often referred to as the fourth state of matter, Fig. 1-1, and its 

occurrence is, perhaps surprisingly, quite common. Gas discharges are present in a 

variety of forms from the natural examples of the solar wind, lightening and the 

Aurora Borealis (Northern light) or Aurora Australis (Southern light), to man-made 

fluorescent tubes, neon signs and the new energy efficient light bulbs. In fact up to 

99% of the matter in the universe may be in the plasma state. Given the fact that 

recent theories on the origin of life on earth propose that the first amino acids, the 

building blocks of living systems, were a result of an electrical discharge in a 



"primordial soup" of gaseous hydrocarbons, we may even owe our very existence to 

plasmas! 

Although gas discharges have been examined since the first studies on cathode ray 

tubes in the latter half of the nineteenth century, it was Langmuir in 1928 who coined 

the word plasma to denote the ionised gases formed in electrical discharges.' Today 

as our understanding of the plasma state grows, plasmas find more and more 

applications in our everyday lives. The electronics revolution of the past thirty years 

could not have taken place without the development of plasma processing. The etch 

and deposition processes enabled by plasma technology are essential for the 

manufacture of integrated electronic circuits.'^ In 1991 the plasma processing 

industry had world-wide revenues of US$ 1 billion. 
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Fig. 1-1: State of matter versus temperature indicating why the piasma state is often referred to 
as the 'fourth state of matter'. 

1.2.1 Deflnition of plasma 

A plasma (or gas discharge) is an ionised gas and is more rigorously defined as a 

quasineutral gas of charged and neutral particles which exhibits collective 

behaviour.^''^ The gas remains electrically neutral when the dimensions of the 

discharge gas volume are significantly greater than the Debye length Xd, which 

defines the distance over which a charge imbalance can occur. 



Eq. 1-1 

where Eo = permittivity of free space, k is the Boltzman constant, Te is the electron 

temperature, Ue is the electron density and e is the charge on the electron. The 

number of positive and negative species in the plasma remains equal and the plasma 

is said to be quasi-neutral. 

1.2.2 Classiflcation of plasmas 

Plasmas can be broadly classified as either equilibrium or non-equilibrium plasmas 

depending on the relationship between the average electron energy and the energy of 

the ions and neutral species in the plasma. 

1.2.2.1 Equilibrium Plasmas. 

These are also referred to as 'hot' plasmas. In an equilibrium plasma the rate of 

energy transfer from the electrons to the atoms and molecules in the plasma is 

sufficient to raise these neutral species to the same energies as the electrons. These 

plasmas are stable to small alterations in plasma conditions as they are in an 

equilibrium condition and hence thermodynamically stable. Examples of equilibrium 

plasmas include the stars, arc discharges and plasma torches.^ 

1.2.2.2 Non-Equilibrium Plasmas. 

In non-equilibrium plasmas, also known as glow discharges, the temperature of the 

electrons, Te, typically in the range 1-30 eV, is not equal to the temperature of the gas 

molecules or atoms, Tg. In fact the Tg/Tg ratio is usually 10̂  - 10'' and hence this type 

of plasma is used where ambient temperatures are required. 

For example the average electron energy in a fluorescent light bulb is about 2 eV = 

15,000 degrees Kelvin,^ yet the bulb doesn't melt because the electron and neutral 



temperatures are unequal. Another consequence of non-equilibrium transport is that 

in contrast to equilibrium plasmas, non-equilibrium plasmas are not 

thermodynamically stable to small perturbations in plasma conditions. 

Plasmas can be characterised in terms of their average electron temperature and the 

charge density within the gas. The particular non-equilibrium plasmas used in this 

work and for the majority of laboratory plasma studies are termed glow discharges. 

Fig. 1-2 shows the electron energy and electron density of glow discharges relative to 

other plasmas (ref 4, p. 18). 
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Fig. 1-2: Classification of plasmas according to ionisation density and electron energy. 

Glow discharges can be further subdivided depending on the experimental method 

used to ignite and sustain the discharge. 

1.2.2.2.1 Parallel Plate Discharge. 

This is a discharge produced due to the application of a voltage between two flat 

electrodes in a tube filled with a gas at low pressure. The electrons respond to the 

applied electric field and transfer their energy to the atoms and/or molecules in the 

tube. These excited molecules relax via radiative emission to produce the 

characteristic glow of the fluorescent tube and neon sign. Due to the low pressure 

and mass throughput however the parallel plate discharge has not found major 

application in the industrial production of chemicals or films. 



1.2.2.2.2 Corona Discharge. 

At higher pressures the glow discharge becomes highly unstable. One way to avoid 

this is to alter the geometries of the electrodes e.g. a point and a p l ane .Us ing this 

electrode geometry discharges can be produced at pressures up to 1 atmosphere. The 

name corona comes from the localised glow at the point electrode. Due to the small 

active volume around the point, corona discharges also do not find major application 

in the industrial production of chemicals. They are used for some applications 

however, for example in copying machines where they are used to produce charged 

particles and also in the surface modification of some plasfics. 

1.2.2.2.3 Silent Discharge. 

The silent discharge combines the high pressure of the corona discharge with the 

large excitafion volume of the glow discharge to give a discharge which can be used 

for volume plasma chemistry. It consists of two parallel electrodes one of which is 

covered with a dielectric layer. As a result of the dielectric, microdischarges occur 

between the electrodes in most gases. The reduced field at breakdown corresponds 

to electron energies of 1-10 eV, ideal for the excitation of atomic and molecular 

species and the breaking of chemical bonds. 

1.2.2.2.4 Radio-Frequency Discharges. 

These are also known as electrodeless discharges as the electrodes are not in direct 

contact with the species in the plasma. This is a great advantage as contamination of 

the products from electrode decomposition or sputtering is avoided. The energy is 

transferred to the gas via inductive or capacitive coupling depending on the electrode 

geometry employed. In the case of inductively coupled plasmas two types of 

discharge can exist depending on the applied power and plasma conditions, an 

electrostatic or E-type discharge and an electromagnetic or H-type discharge.' The 

most common frequency used is the industrial frequency 13.56 MHz. Since the 



wavelength of the applied field is large compared to the reactor dimensions relatively 

homogeneous plasmas can be generated. As long as the collision frequency is higher 

than the frequency of the applied field the discharge behaves very much like a dc 
8 

discharge. This implies that non-equilibrium conditions can be expected at low 

pressures while equilibrium conditions will be expected at higher pressures i.e. 1 

atmosphere. Radio frequency plasmas are widely used in laboratories for both 

optical emission and plasma-chemical studies. 

1,2.3 Plasma properties 

This section introduces some of the elementary physical characteristics of glow 

discharges which wi l l be referred to in later chapters. 

1.2.3.1 Electron energy 

The electrons in the plasma have energies in the range 1-10 eV. One electron volt = 

1.6 x 10"'̂  J. The kinetic theory of gases relates the translational energy to 

temperature via the equation £ = 3/2 kT where £ is the average electron energy, k is 

the Boltzmann constant and T is temperature in degrees Kelvin.^ Therefore one 

electron volt corresponds to 

^ 1.602 X 10-''^ 
^ = 7739 K. Eq. 1-2 
3. k 

Hence for electrons in the 2-8 eV range this corresponds to temperatures in the range 

lO"* - 10^ K. However as these are non-equilibrium plasmas this energy is not 

transferred to the atoms or molecules within the gas which remain at or relatively 

close to ambient temperatures. 

1.2.3.2 Electron energy distribution function 

The electrons span a range of energies however, governed by the electron energy 

distribution function (EEDF).^° The exact nature of the EEDF depends on plasma 

7 



conditions but may be either Maxwellian or Druyvesteyn in nature, or a combination 

of both, Fig. 1-3. As can be seen a certain fraction of the electrons have energies 

considerably greater than the average electron energy. These are important as it is 

they that are responsible for the ionisation that occurs in glow discharge plasmas. 
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Fig. 1-3: Plot showing electron energy distributions for various average electron energies. 

1.2.3.3 Plasma potential 

The potential of the plasma is usually several volts more positive than the least 

negative surface in contact with it."*'* This is a direct result of the greater mobility of 

electrons relative to positive ions. Following the initiation of the electric field the 

highly mobile electrons rapidly leave the plasma resuhing in the build up of a 

positive potential. Eventually the potential of the plasma gets to a value, the plasma 

potential, where the flux of electrons and positive ions leaving the system becomes 

equal and hence the plasma remains electrically quasi-neutral. 

1.2.3.4 Plasma sheath 

The potential difference between the plasma and the surfaces in contact with it, 

occurs mainly in a narrow region at the edge of the plasma.^''' This region, known as 

the plasma sheath has a negative potential relative to the rest of the plasma and hence 

a lower electron density. As a resuh of this lower electron density the plasma sheath 

8 



appears dark due to the reduced excitation of gas species. Positive ions are 

accelerated within the sheath prior to bombarding the substrate surface. 

1.2.4 General Applications of Plasmas. 

1.2.4.1 Surface modification 

Exposing the surface of a solid to a plasma results in observable changes in its 

physical and chemical properties. Chemical changes can be monitored via analysis 

techniques such as X-ray photoelectron spectroscopy (XPS), secondary ion mass 

spectrometry (SIMS), attenuated total reflection FTIR spectroscopy, and atomic 

force microscopy. Physical properties which are often altered include morphology," 

wettability,'^''^ adhesion characterisfics,"*'^'^ hydrophobicity'^'^ and refractive 

i n d e x . H e n c e treatment of a normally unreactive polymer such as polypropylene 

with an oxygen plasma for example, results in the incorporation of oxygen containing 

functional groups such as C=0, OH and C-OOH onto the surface. This results in the 

polymer having improved wettability and adhesion properties and processes such as 

painting and printing on the polypropylene can now be carried out with greater ease 

and efficiency. Cross-linking can also occur, changing the chemical nature of the 

surface. It has been shown^' that treatment of polyethylene with an oxygen plasma 

followed by ageing resuhs in the formation of a polypropylene type structure on the 

surface. 

1.2.4.2 Etchins 

Surfaces in contact with a plasma can not only be chemically modified but also 

physically etched^ '̂̂ ^ resuUing in the development of microstructures with large 

depth to width ratios. For example in devices for integrated circuits, trenches in 

silicon for charge storage can be a mere 0.2 |j.m wide and 4|j.m deep. Aspect ratios of 

this size on structures of these dimensions are not achievable using conventional wet 



chemical processes. The basic principle behind plasma etching lies in inducing 

surface reactions to transform the solid starting material e.g. silicon, into volatile 

products, e.g. silicon halides, which desorb from the surface into the gas phase. 

1.2.4.3 Deposition 

In addition to modifying or etching the surfaces of substrates, it is also possible to 

deposit new materials onto surfaces in contact with the plasma. Plasma 

polymerisation can deposit polymeric organic coatings from almost any precursor 

onto substrates placed within the plasma at temperatures at or near ambient. Section 

1.3.1 deals with this topic in more detail. 

Plasma Enhanced Chemical Vapour Deposition (PECVD) can be used to deposit 

inorganic coatings. In contrast to thermal CVD where the activation energy for fi lm 

formation reactions at the surface is supplied thermally, PECVD relies on the low 

activation energy of the radicals produced in a plasma to generate an inorganic thin 

f i lm on lower temperature substrates. Along with metallic coatings PECVD is 

currently extensively used to deposit amorphous silicon hydride, silicon carbide, 

silicon dioxide, silicon nitride and diamond-like carbon (DLC) films. 

1.3 PULSED PLASMA POLYMERISATION 

This secfion aims to outline the basic principles behind the plasma polymerisation 

technique as a means of depositing thin films. This is followed by a discussion of the 

advantages and principles of pulsed plasmas along with the timescales of some 

typical plasma processes. Finally some examples of pulsed plasmas from the 

literature are presented. 

10 



1.3.1 Plasma Polymerisation 

One of the major advantages of plasmas in terms of modifying the surfaces of 

substrates is their ability to form polymeric coatings from precursors which would 

not under normal circumstances be considered polymerisable. In this way the surface 

properties of the substrate can be altered whilst the bulk properties remain 

unchanged. This ability to polymerise normally unreactive monomers arises from the 

very nature of the non-equilibrium plasma itself Once initiated the glow discharge 

contains species with sufficient energy to break chemical bonds and generate reactive 

precursors from any compound with sufficient vapour pressure. 

1.3.1.1 Origin of the glow discharge 

Any gas at low pressure contains a small amount of free electrons as a resuh of 

natural ionisation processes such as radioactivity, photoionisation or cosmic rays. 

When an electric field is applied across such a gas electrons respond instantly (ns) 

reach energies of several electron volts. These energetic electrons then undergo 

inelastic collisions with gas molecules which are still 'cold' resulting in ionisation 

and subsequent release of further electrons. The ionisation increases to a certain 

level at which the loss of ions to the surrounding walls is balanced by their 

generation within the plasma. At this point the plasma contains high energy 

electrons, ions and photons all leading to the formation of a wide variety of highly 

excited and reactive species. These excited species have a lower energy of activation 

for reaction and can react to form the products of the plasma polymerisation process. 

Table 1-1 shows the range of energies present within the plasma environment. 

11 



Species Range of energies /eV 

Electrons 0-20 

Ions 0-2 (gas phase) 

Metastables 0-20 

UV/visible photons 3-40 

Table 1-1: Range of energies associated with a glow discharge, 24 

As a consequence of the range of species within a plasma, e.g. ions, metastables and 

photons along with the distribution of electron energies, sec. 1.2.3.2, p. 7, a wide 

variety of reactive species can be generated from a single precursor. In addition to 

this range of potential reactants i.e. positive and negative ions, radicals and neutrals, 

there are a variety of potential reaction mechanisms within the plasma, both gas-

phase and at the surface of the growing plasma polymers. Consequentiy plasma 

polymerised films are usually highly crosslinked films whose composition and 

structure can be significantly different from that of the original monomer. In order to 

control the properties of the resultant surfaces it is necessary to control the 

composition of the plasma polymers. 

1.3.1.2 Advantages of plasma polymerisation 

Despite the inherent complexity of the plasma polymerisation process and the 

difficulty in controlling the reaction products, there are several advantages to using 

plasma technology over conventional chemical processes. It is because of these 

advantages that the plasma industry has experienced such growth over recent years. 

1. It is a simple and dry method to modify the surface properties and composition 

of substrates. Simple in-house apparatus can be constructed relatively easily. 

The widespread application of plasma technology has now made plasma 

processing equipment and/or diagnostic equipment available commercially. 

2. A wide range of precursors allows an extensive range of chemical groups to be 

introduced onto surfaces. 
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3. Plasma deposition can deposit coatings onto almost any substrate over a wide 

temperature range. 

4. Surface modification and/or deposition can take place uniformly over the surface 

5. Bulk properties of the substrate are generally not affected by plasma processing. 

6. Film thickness can be easily controlled to a few nanometers, provided the 

deposition rate is well established and the run-run uniformity of the process is 

properly characterised. 

7. Due to the unique nature of the process films with novel properties can be 

prepared. 

8. Plasma polymerised films are generally pin-hole free and can be highly 

crosslinked leading to excellent properties as barrier layers. 

9. In plasma etching the use of low pressure gases allows sub-micron high aspect 

ratio structures to be produced in a clean environment. This capability is 

essential for the modem micro-electronics industry. 

10. Plasma technology is an environmentally friendly technique relative to wet 

chemical processes, due to the relative lack of the need for solvents and liquid 

waste. 

1.3.1.3 Plasma polymerisation mechanism 

The overall mechanism for glow discharge polymerisation is extremely complex 

consisting of both gas phase and surface reactions and being strongly dependent on 

plasma parameters. A schematic indicating this complexity is shown in Fig. 1-4. 
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Fig. 1-4: Schematic of reaction pathways and processes occurring during plasma processing. 

The overall plasma polymerisation mechanism consists of the three fundamental 

steps common to most polymerisation mechanisms, i.e. initiation, propagation and 

termination. The significant difference between plasma polymerisation and 

conventional polymerisation lies in the inherent complexity of each of the individual 

steps. Initiation and propagation can occur either through reactions of monomer with 

previously excited species in the gas phase or with radicals at the surface of the 

polymer. Termination reactions occur with much greater frequency that in 

conventional polymerisation due to the large number of free-radicals present, 

however re-initiation occurs readily due to irradiation or electron or ion 

bombardment of the plasma polymer or gas phase species. Previously deposited 

polymer can react further to yield volatile by-products hence resulting in etching of 

the plasma polymer and re-incorporation of the products into the gas-phase. 

Electron impact can lead to dissociation or desorption of adsorbed molecules or bond 

breaking within a polymer network. Any surface in contact with the plasma will be 

subjected to positive ion bombardment due to the presence of the plasma sheath, 

sec. 1.2.3.4. Depending on plasma conditions these ions can have energies anywhere 
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in the range 10 - 500 eV. The ultraviolet radiation from the plasma has sufficient 

energy to break chemical bonds and can penetrate to greater depths than any other 

process.̂ -̂ ^̂ '̂ 

The important point to take from Fig. 1-4 is that everything that comes in contact 

with a plasma can become part of the polymerisation process. Some studies^^ have 

shown that even the substrate can become part of the plasma polymerisation system. 

It is precisely because of the enormous number of reactions occurring within the 

reaction chamber that it is so difficult to determine the exact mechanism of 

polymerisation in a plasma. The majority of processes occurring within the plasma 

are highly dependent on not only the type of monomer used but also the operational 

parameters of the plasma. Hence to gain control over the plasma polymer 

composition it is necessary to have control or knowledge of a wide variety of plasma 

parameters. 

1.3.2 Pulsed Plasmas 

From the discussion so far it is clear that an important aspect of plasma deposition of 

thin films is the degree of control which can be attained by varying parameters such 

as pressure, posifion of the substrate in the reactor, substrate temperature and bias, 

along with absorbed power and the monomer flow rate which controls the residence 

time of each molecule in the discharge region. The majority of experiments are 

conducted under confinuous wave conditions whereby the plasma is sustained by 

continuous supply of power to the system. Even at low powers extensive 

fragmentation of the monomer molecules occurs resulting in polymeric films formed 

which often have little structural resemblance to the precursor gas. Hence control of 

the film properties by choosing appropriate monomers is restricted. An alternative 

strategy for gaining control over plasma properties and over the properties of the 

deposited films is by the use of pulsed power. 
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1.3.2.1 Advantages ofpulsed plasmas 

The nature of pulsed plasmas leads to them having several advantages over 
continuous wave plasmas including; 

1. Reduced heat load on substrates and reactors due to a time averaged reduction of 

the ion and electron bombardment of the surrounding surfaces. The iona and 

electron bombardment decay rapidly with the sheath following the start of the off-

time. As a resuh thin films can be produced without damaging a thermally 

sensitive substrate or any layers which may have been previously deposited. 

2. Possibility of production of layered structures by altering the duty cycle of the 

pulsing the composition of the plasma polymers can be altered during the 

experiment. Also by syncronising gas pulsing with power pulsing layered 

structures of completely different compositions can be deposited. 

3. Reduced UV emission from the plasma due to the reduction in ion and electron 

energy results in less crosslinking^^ and loss of structure. 

4. Reduced residual free radicals in plasma polymers as a consequence of reduced 

ion, electron and UV bombrdment in parallel with reaction of surface free radicals 

with gas phase species in the off-time.'^'^'''^ 

5. Control over level of dissociation of parent gas. Extremely high power, short 

pulses at a low duty cycle allow complete dissociation of precursor gas with 

minimal heat load on the reactor.. 

6. The possibility of alternative reaction mechanisms in off-time offers the potential 

for highly selective reactions hence controlling the composition of the plasma 

polymer. 

7. Elimination of suspended macroscopic particles which sometimes appear in 

continuous wave reactors, or control over the size and density of particles formed.. 

8. Possibility for measurement of lifetimes of excited species. 

Sec. 1.3.3, p.24 gives examples of where these advantages have been exploited in the 

literature. 
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1.3.2.2 Pulsing parameters 

In pulsed plasma operation the r . f power to the system is modulated at a frequency 
much lower than the usual applied radio frequency. The parameters which can be 
varied are therefore the plasma on-time, ton, plasma off-time, toff and the amplitude of 
the pulse in volts which controls the peak power applied to the plasma. These can be 
represented schematically as shown in Fig. 1-5. 

POWER 

TIM 
Fig. 1-5: Schematic indicating the relationship between the various pulsing parameters. 

Tp is the pulse period and 1/Tp is the pulse frequency. The duty cycle is defined as 

[ton / (toff+ton)]x 100 and the average power supplied to the plasma is given by 

ton 
< P > = Po X Eq. 1-3 

,ton + toff, 

where Po is the peak r . f power supplied by the r . f generator. The average power 

delivered to the plasma and the frequency of the pulsing are altered by changing the 

length of the on and off-times. 

1.3.2.3 Experimental set-up for pulsed plasmas 

Pulsing the r . f power to the plasma is achieved by driving the r . f generator with a 

pulsed analog d.c. voltage from a pulse generator. The various pulsing parameters, 

frequency, duty cycle etc. can be monitored on an oscilloscope attached to the pulse 

generator. The oscilloscope can also be used to monitor the response of the plasma 

to the pulse generator. Fig. 1-6 shows pictures of the oscilloscope screen before and 

during a typical pulsed plasma polymerisation run. 
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The appearance of the r . f is monitored by an antenna inserted into the Faraday cage. 

Upon plasma ignition the r.f. voltage is detected by the antenna and appears as the 

central trace on the oscilloscope screen. In this way the response of the r . f generator 

to the pulse generator can be monitored. There is a slight delay, < 10 (as, after the 

d.c. signal before r . f is detected. This is a function of the response time of the r . f 

generator, and the ignition of the plasma. Note also that the narrow focused lines on 

the scope screen from the pulse generator become slightiy wider as the oscillating r . f 

signal (13.56 MHz) is superimposed on the d.c. signal. This provides a strong 

indication of the r . f integrity of the set-up as any r . f leaks are readily apparent on the 

d.c. trace. 
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Fig. 1-6: Pictures of oscilloscope screen before (top) and during typical pulsed plasma 
operation. T h e upper and lower signals in both figures are the d.c. pulse on and off signals 

respectively from the pulse generator. The central signal is the voltage reading from the r.f. 
antenna placed inside the Faraday cage. On-time = 10 fis, off-time = 25 fis. 

1.3.2.4 Typical timescales in pulsed plasmas 

One of the principle reasons for the use of pulsed plasmas previously was to allow 

investigation into the timescales of the various processes occurring within glow 

discharges. By igniting and extinguishing a discharge the rate of decay and 

formation of various gas-phase species and plasma parameters have been measured. 

A brief overview of the typical timescales for various processes occurring within a 

plasma is given below. 
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1.3.2.4.1 Gas Breakdown. 

Before any reactions can take place the plasma must be initiated and hence the first 

process to be looked at is the breakdown or ionisation of the gas. When a high 

frequency electric field is applied across a gas, charged particles in the gas are 

accelerated. Electrons are almost always present in the gas due to ionising cosmic 

radiation and natural background radiation.'*'"' These electrons will oscillate within 

the gas provided the walls of the container are sufficiently far apart. Elastic 

collisions between electrons with sufficient energy and gas molecules will eventually 

produce excited neutral or ionised atoms resulting in breakdown of the gas.''̂  The 

length of time required before breakdown occurs depends on several factors such as 

electrode configuration, applied power, ionisation potential of the gas and gas 

pressure. 

Haydon and Plumb"^ studied the electrical breakdown of nitrogen and dry air at 

pressures in the range ten to hundreds of torr. RF voltages of up to 10 kV with a 

pulse width of 10 |is were applied across a parallel plate discharge. The length of 

time needed to produce breakdown i.e. the formative time is reduced upon increasing 

the overvoltage across the gap. With large overvoltages the ionisation growth is 

rapid and the impedance of the discharge falls rapidly. From DC studies"'' it was 

found that overvohages in the range 57 to 75% greater than the voltage needed to 

sustain the discharge, produce formative times of a fraction of a microsecond in 

nitrogen. Once the impedance of the discharge is reduced (due to the presence of 

ions and electrons) the voltage drop across it is reduced and a lower applied voltage 

is sufficient to sustain the discharge. Haydon found that immediately following the 

voltage drop there is a large increase in the discharge current and photon output from 

the discharge. In his model the plasma has attained a steady state after approximately 

0.7|as 

Boswell^^ studied the plasma breakdown using a pulsed helicon wave plasma. His 
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plasma conditions involved a 250 W argon plasma at 0.5 mT. The helicon wave 

pulsed plasma had a magnetic field = 35G and source diameter of 20cm. He found 

that at breakdown there is initially a high plasma potential associated with high ion 

energy and low density. Again once breakdown has occurred the density rises 

rapidly and the voltage decreases with the impedance of the plasma. At the 

beginning of the pulse the maximum energy of the ions is decreasing and the density 

is increasing. The potential drops rapidly (50 |is) as the ionisation and loss rates are 

equalised. The electron density rises rapidly at the start of the pulse to reach a 

plateaux (100|as). There is an initial high energy spike of electrons which is 

explained as follows. Initially high energy electrons are produced due to the electric 

field components along the axis of the reactor. These can cause ionisation and some 

of them escape to reach the analyser. The loss of these electrons leads to a rapid rise 

in plasma potential which reduces further loss and resuhs in increased ionisation. It 

is stated that the plasma potential cannot start to decrease until ions begin to leave the 

system. The timescale for an ion to be lost radially is of the order of 10 ms. The 

electron energy distribution changes during the duration of the pulse. The 

distribution during the occurrence of the spike shows 5% of electrons have energies 

in excess of 500 eV. As the plasma potential falls the higher energy electrons can 

escape from the plasma and the average electron energy falls. Also the antenna 

voltage decreases due to the reduced loading as a results of greater densities in the 

plasma. This reduces the fields in the plasma so that electrons are not accelerated to 

such high energies. I f the delay between pulses were to be reduced to the decay time 

of the plasma then the initial spike would be greatly reduced. It should be possible to 

choose an average electron energy and modify the dissociation by choosing the 

appropriate repetition rate for the pulsing. Bouchoule and Ranson^^ studied volume 

and surface processes in a low pressure hydrogen-argon plasma. They found that it 

took a few microseconds for the electron density to rise and estimated that it took 

between five and twenty milliseconds to establish chemical equilibrium. 
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1.3.2.4.2 Effects of pulsing parameters on plasma processes. 

Once breakdown has occurred and the discharge is initiated the pulse width and duty 

cycle determine how much the discharge resembles a continuous wave discharge. I f 

the discharge is sustained for a period of several hundreds of milliseconds or seconds 

then the plasma behaves much like a continuous wave plasma. Any advantages 

which could be gained from employing the pulsed technique such as reduced 

fragmentation or less UV emission wil l be lost. The only advantage in such a case 

would be the opportunity for reactions to occur in the off-phase of the cycle which 

would of course not be possible in the continuous wave mode of operation. It is the 

off-phase of the cycle and the effects of variation of the off time of the pulse which 

wi l l now be examined more carefully. 

1.3.2.4.3 Plasma Relaxation Mechanisms 

Once the power to the discharge has been disconnected the electron density in the gas 

falls rapidly. The length of time necessary for the electron density to drop depends 

on the nature of the gas present in the reactor. Overzet"' et al have been studying the 

effect of pulsing the power on the negative ion flux from radio frequency reactors. 

The electron energy relaxation times are of the order of a microsecond for the 

pressures studied.^^^^ The electrons within the gas are completly attached within 5 

|is. The decay time constant in CF4 discharges is of the order of 100 ^is, indicating 

that the attachment processes in the CF4 discharges are slower than in the helium 

chlorine discharges and are only slightly faster than the 400 |is seen in Ar discharges 

Fleddermann et af^ undertook measurements of the electron density and attachment 

rate coefficient in silane helium discharges and showed that the addition of silane to 

the gas mixture resulted in a large reduction of the electron density. They concluded 

that the major loss mechanism was a volumetric loss process most likely dissociative 

attachment of electrons to a product of the silane dissociation as these fragments 

would be electronegative. 
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By comparison the majority of negative ions are swept out of the system on 

timescales of tens of microseconds. These negative ions would previously have been 

confined to the central region of the plasma due to the electrostatic sheath 

surrounding the plasma and would most likely have formed from electron attachment 

reactions during either the on-time or the off-time of the duty cycle. Havelag and 

Kono"' have measured negative ion densities in a radiofrequency plasma of 

fluorocarbon gases. The results indicate that the negative ion densities are about one 

order of magnitude greater than the electron densities. 

Along with ions there are of course various other excited species in the afterglow of 

the plasma such as metastable radicals and neutrals. Nieman'*' et al studied the 

formation and decay of metastable fluorine atoms in pulsed fluorocarbon/oxygen 

discharges using laser induced fluorescence. They suggest that electron impact on 

C F 4 and ground state fluorine atoms result in the formation of a metastable excited 

fluorine which has a lifetime of 500 |is. Table 1-2 is a summary of the timescales 

measured for various plasma processes. 

Process Timescale Reference 

Gas Breakdown <1 î s 2 

Electron Density Rise 100 |is 

Steady State 0.7 ^s 1 

Dissociation of CHF3 10-100 |is 12 

Excited F lifetime 500 ^s 11 

Chemical Equilibrium 5-20 ms 4 

Electron Attachment 5-400 ^s 6 

Electron energy relaxation times 1-10 \xs 6 

Radial loss of an ion 10 ms 

Loss of negative ions 10-100 ms 9 

Table 1-2: Timescales of processes occurring in plasmas. Refer to Fig 1-6 and experimental 
sections of later chapters for a comparision to timescales used in this work. 



1.3.3 Pulsed plasmas in the literature 

The principle of pulsing the power to the plasma as another means of controlling the 

plasma properties and composition of the plasma products has been recognised since 

studies on plasma polymerisation became an important field in their own right. A 

patent from 1969 seems to be the first reported application of a pulsed glow 

discharge with advantages over a CW discharge."*" In it a pulsed styrene vapour 

discharge resuhed in more flexible coatings than the corresponding CW plasma. 

This same benefit was recently reported for flexible fluorocarbon wire coatings 

deposited from hexafluoropropylene oxide.'*" Other early studies on the use of pulsed 

plasmas''̂ ''*^ confirmed that different products could be obtained through the use of 

modulated power. Since these earlier studies the use of pulsed power as a means of 

controlling the composition the plasma polymers has been largely overlooked. 

However in the past 3-4 years there has been renewed interest in the area. 

Yasuda and Hsu"̂ '*^ studied the effect pulsing power to a glow discharge had on 

various perfluorocarbon and hydrocarbon monomers by investigating the contact 

angles and radical densities of the substrates in contact with the plasmas. They found 

the contact angles changed in response to the compositional changes induced at the 

surface by depositing plasma polymers using a range of pulsing conditions. They 

also studied the pressure changes observed upon plasma ignition and deposition rates 

of plasma polymers from these discharges. The results indicated significant 

differences between the behaviour of hydrocarbons and perfluorocarbons in plasma 

polymerisation along with the fact that certain monomers were more sensitive to 

pulsing that others. Monomers without any functional group susceptible to off-time 

reaction showed little variation in the products of the plasma polymerisation whether 

pulsed or continuous wave power was used. 

The possibility of off-time reactions allows for novel approaches to be taken to 

achieve specific surface properties. Off-time reduction of halide containing 
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organometallic films can reduce or even completely eliminate the halide content at 

the surface resulting in a metallic film at low substrate temperatures.''^'''' Llewellyn 

et al have used pulsed plasma deposition to deposit aluminium and tin onto room 

temperature substrates. By using high powered short pulses they were able to 

completely dissociate the precursor gas allowing high quality metal films to be 

deposited without the need for high substrate temperatures. 

Pulsed plasmas have also been shown to be effective in controlling the density and 

size distribution of nanosized particles formed in organometallic plasma 

p o l y m e r s . V a r y i n g duty cycle effects the size and distribution of the 

nanoparticles and the metallic nature of the films. Pulsing also aids in reducing 

powder formation in silane discharges. It is suggested that negative ions are the 

precursors to powder formation. Pulsing reduces the build-up of these negative ions 

by allowing diffusion to the surrounding surfaces in the off-time. 

Pulsed plasmas are particularly useful for modifying the surfaces of substrates with 

non-planar geometries. Treatment of the inside surfaces of catheters to improve their 

biocompatibility has been carried out using pulsed plasma polymerisation. During 

the off-time the reactive species can diffuse along the inside of the tube resulting in 

uniform deposition on all surfaces.Pulsed microwave plasmas have been used for 

homogeneous deposition of siloxane plasma polymers on three-dimensional 

substrates.^" 

Timmons et af^'^^ studied the effect of a radio frequency pulsed plasma on 

fluorocarbon monomers. The compositions of the films produced were analysed 

using X-ray photoelectron spectroscopy and Fourier transform infrared spectroscopy. 

The studies showed progressive and substantial change in the molecular composition 

of the plasma deposited films with variations in duty cycle. Significantly it appears 

that a relatively high level of compositional control is possible, a fact which could be 

exploited in designing films with specific properties. Further work by the same 

25 



author and other workers in recent years has indicated the extent to which pulsed 

plasmas can be exploited to control plasma polymer composition. 58-61 

62 Pulsed plasmas have also found application in plasma-etch technology 

Samukawa^'' used a time modulated ECR plasma discharge for controlling the 

polymerisation in Si02 etching. 10-100 |us pulse widths were used and good 

correlation was found between the density ratio of CF2 radicals and atoms in the 

CHF3 plasma and the combination of the pulse duration and intervals. This method 

provides for control of the polymerisation and achievement of highly selective 

etching to Si during Si02 etching. For highly selective Si02 etching it is effective to 

reduce F-atom generafion and to deposit low-fluorine polymer by using a pulsed 

discharge of 10-20 [as. The authors claim this also leads to an increase in deposition 

rate due to an increase in the relative number of CFx radicals absorbed onto the 

surface at this repetition rate. At a fixed pulse width of 10 |as the F/CF2 ratio changed 

with changing pulse interval. This is attributed to the difference in the rates of 

reactions producing the different species. When the interval time is more than 10 îs 

the CF2 radical density decreases and this is considered to be due to the difference in 

lifetimes between CF2 radicals and F atoms. 

Boswell and Porteus '̂* have studied the etching of silicon using SFg gas in a pulsed 

plasma. The advantage of pulsing the plasma is a reduced heat load on the reactor. 

With a duty cycle of 20% the temperature could be held within a few degrees of 

ambient. For long pulses the mean etch rate is approximately 20% of the continuous 

wave etch rate as would be expected. However for decreasing pulse lengths the etch 

rate is seen to increase until at a pulse duration of 2 ms the etch rate is the same as for 

the continuous wave experiment. Recently there has been much interest in pulsed 

plasmas as a means of reducing lateral etching at oxide interfaces in silicon etch 

processes. 
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1.3.4 Aims of current work 

The aim of this thesis is to explore to what extent pulsed plasmas can be used to 

control the composition of plasma polymers deposited from a range of monomers in 

an low pressure glow discharge. By investigating the chemical structure of the 

resultant surfaces, this thesis will aim to examine the effect of varying pulsing 

parameters on the plasma polymerisation process and to what extent monomer 

structure influences the amount of selectivity attainable through the use of pulsed 

power. 

1.4 CHARACTERISATION TECHNIQUES 

Plasma polymers have been analysed by a wide variety of techniques since studies in 

this area began.̂ '̂̂ '̂̂ '̂̂ ' This work provides examples of the use of X-ray 

photoelectron spectroscopy, transmission FT-IR spectroscopy, UV-visible 

spectroscopy, atomic force microscopy and deposition rate studies. Work was also 

carried out using the synchrotron radiation source at Daresbury using X-ray 

Absorption Spectroscopy (XAS) to study pulsed plasma polymer composition. This 

work has been reported elsewhere.^^ 

1.4.1 X-ray Photoelectron Spectroscopy (XPS) 

1.4.1.1 Introduction. 

The establishment of X-ray photoelectron spectroscopy as an important technique for 

determining not only the elemental, but also the chemical composition of a surface, 

can be traced back to the work of Kai Siegbahn's group in Uppsala, Sweden in the 

period 1955-1970.^^ It was Siegbahn, who was awarded a Nobel prize for his work, 

who first realised that the chemical envirormient of the atom had a significant effect 

on the apparent binding energy of the electrons in the sample. He coined the 
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acronym ESCA, electron spectroscopy for chemical analysis, to allow for this, and 

for the fact that Auger peaks were also present in an 'XPS' spectrum.X-ray 

photoelectron spectroscopy is now an extensively used non-destructive technique in 

the characterisation of surfaces. It has been used to study the surfaces of 

polymers,^''™ copolymers'"'^^''" and blends along with monitoring the modification of 

surfaces via plasma treatment and/or UV irradiation.^''''*'" For surfaces containing 

functional groups which are normally indistinguishable via XPS, there are now a 

wide variety of reagents available for the chemical derivatisafion of the surface to 

allow the individual species to be identified.'^ 

1.4.1.2 The photoelectric e ffect 

In its simplest form XPS involves irradiating a sample with photons from the X-ray 

region of the electromagnetic spectrum and studying the kinetic energies of the 

photoemitted electrons which escape from the sample as a resuh of absorption of the 

X-rays. The photoemission of electrons can be represented schematically as in Fig. 

1.11." 

The process involves energy transfer from the photon to the atom and momentum is 

conserved. As the energy of each incident photon is known, i f the kinetic energy of 

the photoelectron is measured, then the binding energy of the electron in the original 

atom can be calculated. This can be seen from the basic equation of photoelectron 

spectroscopy 

KE - hv-BE-^ziis Eq. 1-4 

where KE = kinetic energy of the photoemitted electron, h = Planck's constant, v = 

frequency of X-rays, BE = the binding energy of the electron in the atom and is the 

work function of the spectrometer. 
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1.4.1.3 Surface sensitivity 

As stated earlier XPS is a surface sensitive technique due to the fact that only 
electrons from a few tens of Angstroms of the surface can escape to be analysed. 
Fig. 1-8 shows a plot of inelastic scattering mean free paths of electrons as a function 
of energy. As can be seen, for the energies of interest, 100-1000 eV, the mean free 
paths vary between 10 and 100 monolayers.^^ Hence the electrons are only 
originating from the first few atomic layers and the technique is a highly surface 
sensifive one. 
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Fig. 1-8: Inelastic mean free paths of electrons in a solid as a function of energy. 

1.4.1.4 Instrumentation 

A schematic of the essential components of an XPS spectrometer is shown in Fig. 1-9 

followed by a brief descripfion of the harware requirements and features of the 

spectrometer. 
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Fig. 1-9: Schematic of an XPS spectrometer. 

1.4.1.4.1 Ultra high vacuum requirement. 

In XPS as in most other surface characterisation techniques ultra high vacuum, 

between 10'^ and 10"'° torr, is required. This is essential to prevent surface 

contamination of the sample and minimise inelasfic collisions of the photoelectrons. 

1.4.1.4.2 Photon Sources. 

X-rays are generated by bombarding a target with high energy electrons which have 

sufficient energy to knock out core electrons from atoms of the target. Electrons 

from higher levels within these atoms then fill the holes in the inner level and release 

their extra energy in the form of X-rays. 

The target needs to have several specific properties. It should be a good conductor of 

heat as the heat generated by the colliding electrons wil l need to be dissipated easily. 

This requires that the target be made of metal. The emission spectrum of the target 

should consist of a few sharp lines against a low background caused by 

bremsstrahlung. These sharp lines should have a narrow linewidth and be of 

sufficiently high energy to excite the electrons of interest in the sample. Aliuninium 

and magnesium are the most common metals used as anodes. The Mg Kai,2 line 

which was used in this work, has a linewidth of 0.7 eV and generates photons of 
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energy 1253.6 eV.^' Emission occurs as a result of electron decay from the 2pi/2 and 

2p3/2 levels to the Is energy level.^° The spectrum is dominated by the ai,2 emission 

but the a3,4 lines are important also. This doubly ionised transition gives rise to 

satellite lines in the XPS spectrum of about 8% the intensity of the parent peak and 

with kinetic energies about 8 eV higher. 

The target is separated from the sample by a thin (several microns) aluminium 

window. This protects the sample from both stray electrons from the X-ray source 

filament and hydrocarbon contamination which may be boiled off the X-ray target. 

1.4.1.4.3 Electron Analyser. 

Once the electrons have been emitted from the sample they need to be analysed to 

determine the range of kinetic energies present. A concentric hemispherical analyser 

81 

(CHA) as shown schematically in Fig. 1-9 consists of two concentric hemispherical 

surfaces with a potential difference applied across them. The potential is such that 

the outer hemisphere is at a negative potential relative to the inner. Electrons enter 

the analyser at the source slit and for a given AV only electrons of a certain kinetic 

energy wil l be deflected in the right path to exit the analyser at the collection slit. 

Here they are collected by a channeltron which amplifies the signal to the data 

collection software. Varying electrostatic fields act as lenses to allow only electrons 

of a specific kinetic energy through the analyser. 

The resolving power of the analyser is given by AE/E where z\E is the half-width and 

E is the kinetic energy of the electrons entering the analyser. The resolving power of 

the analyser is given by: 

AE R 

where R is the mean radius of the hemisphere and W is the combined width of the 

slits. The easiest way to improve the resolution of the spectrometer is to reduce the 

kinetic energy of the electrons prior to them entering the analyser. The CHA is 
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usually operated in one of two retarding modes. In FRR (fixed retardation ratio) 

mode the electrons are retarded by a constant ratio of their initial kinetic energies. In 

the second retarding mode the electrons are decelerated to a constant pass energy and 

hence the analyser is set at a constant absolute resolution. This mode is known as 

fixed analyser transmission, FAT mode. 

1.4.1.5 Spectral Interpretation 
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The position of the peaks in the XPS spectrum not only depends on the binding 

energy of the core electron prior to excitation, but also on any collisions or energy 

transfer processes it undergoes following excitation. An example of a typical 

widescan XPS spectrum is shown in Fig. 1-10 
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Fig. 1-10: Low resolution XPS spectrum of a plasma polymer deposited from a 
perfluorocyclohexane discharge. 

The characteristic step-like spectrum shows both primary XPS features and 

secondary Auger features. The step-like appearance of the spectrum is a result of the 

cumulafive effects of the inelastic kinetic energy tails on the lower kinetic energy 

side of the elasfic peaks. As the excited primary electrons pass through the solid, 

prior to reaching the surface a certain fraction of them undergo inelastic collisions 

whereby they lose energy. When these electrons enter the analyser they have slightly 



less energy than the elastically scattered electrons and result in the formation of the 

low kinetic energy tail behind the main peak. 

When the photoelectron loses energy to another electron resuhing in the excitation of 

that other electron to a higher energy level within the atom, the process is known as 

shake-up. Shake-up peaks are particularly prominent in polymers containing 

aromatic rings and are often used as an indication of the level of aromaticity of a 

ma te r i a l .When the photoelectron loses energy to another electron resulting in the 

emission of that other electron, the process is known as shake-off. 
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Fig. 1-11: Schematic of shake-up and shake-off energy loss mechanisms. 

1.4.1.5.1 Chemical Shift in XPS 

Core level spectroscopy can be used not only for determination of the elemental 

composition of the surface region but also provides information on the oxidation 

states of the various elements present and the chemical environment surrounding the 

atoms.*^ The chemical shift of a core level is due to the fact that the electron density 

around a nucleus is dependent on the nature of the atoms bonded to it. The binding 

energy of an electron is a balance between the potential of the nucleus and the 

repulsive Coulomb interaction with other electrons. The change in the electron 

density distribution as a result of bonding causes a shift in binding energy of core 

level electrons. A highly electronegative element such as fluorine induces a large 



change in binding energy due to the large effect it has on the charge density 

surrounding the target atom. 

Fig. 1-12 shows part of the photoelectron spectrum of ethyl chloroformate.^"* The 

three separate peaks in the C Is region are due to the different chemical envirormients 

surrounding the three carbon atoms, whilst the presence of the chlorine peak 

indicates the use of XPS for elemental analysis.. 
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Fig. 1-12: XPS spectrum of ethyl chloroformate. 

Fig. 1-13 shows a carbon Is spectrum of polyvinylidene difluoride (PVDF).^^ The 

carbon bonded to hydrogen gives a peak at 286.1 eV while the carbon bonded to 

fluorine gives a peak at 290.6 eV. The increase in binding energy of C-Fx carbons is 

due to a reduction in the level of electrostatic screening on the carbon core electrons 

due to the high electronegativity of the fluorine atoms. Fluorine attached to carbon 

induces a very large chemical shift which is also dependant on the number of fluorine 

atoms bonded to the carbon. The fluorine effect of fluorine is strong enough such 

that even carbons not directly attached to fluorine have their core levels shifted. The 

effect of fluorine makes XPS an ideal method for investigating the composition of 

fluorine containing plasma polymers. 
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Fig. 1-13: XPS spectrum of PVDF. 

1.4.1.5.2 Line Shape Analysis of XPS spectra 

Line shape analysis or peak fitfing of XPS spectra involves deconvolving the broad 

XPS envelope into its individual component peaks of narrower linewidth. Clark et al 

have carried out extensive studieŝ '̂̂ ^ on fluorocarbon polymers using XPS 

techniques, and with the aid of peak fitting software the various C-F functionalities 

can be distinguished. Peaks were assigned based on binding energy values from the 

literature. Fig. 1-14 shows the peak fitted high resolution XPS spectrum of plasma 

polymerised perfluoroallylbenzene. 
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Fig. 1-14: C Is spectrum of a perfluoroallylbenzene plasma polymer. 
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The measured linewidth, ful l width at half maximum (FWHM), for core levels is a 

combination of the following; 

(a) linewidth of the X-ray source, 

(b) the contribution to the FWHM due to the spectrometer 

(c) the natural width of the core level under investigation 

The contributions from (a) and (c) are essentially Lorentzian line shapes while (b) is 

usually Gaussian in shape. The combination of the various contributions to the 

overall line width results in a hybrid shape with a Gaussian distribution dominating 

and a Lorentzian character to the tails. It has been shown that the assumption of a 

pure Gaussian shape for the observed peaks introduces only a negligible error in peak 

fitting.'" 

1.4.1.5.3 Depth Profiling using XPS. 

As explained earlier the sampling depth in XPS is limited to between 10 and 100 A 

due to the inelastic mean free path of electrons in a solid. The probability of an 

inelastic scattering event occurring is a random process and is described by the 

exponential decay law.^^ 

I(x) = Ioexp(-x/A(Ek,Z)cos^ Eq. 1-6 

or more simply 

1 = Ocos^ Eq. 1-7 

where 1 is the escape depth and ^ is the Inelastic Mean Free Path (IMFP) of the 

photoelectrons. The important point is that photoelectron intensity is related to cos 6 

where 6 is the angle of emission relative to the normal to the surface. For example a 

sample studied at normal emission would have three times the sampling depth of one 

studied at an angle of 70° to the surface normal. Hence by varying the angle at 

which the electrons are collected the sampling depth can be varied. This allows a 

compositional depth profile of the sample to be obtained. This method of depth 

profiling is termed angle resolved X-ray photoelectron spectroscopy (ARXPS). 
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Although it is a non-destructive technique, one of the major hmitations of this 

technique is of course that the sampling depth is limited to about 100 A due to the 

limitations imposed by the inelastic mean free paths of the electrons. 

1,4,2 Infrared Spectroscopy 

Transmission infrared spectroscopy can be used to gain information on the bulk 

composition of the plasma polymers. Absorption of electromagnetic radiation of 

wavelength X increases the energy of the molecule by an amount AE according to the 

equation:^^ 

AE = hc / l Eq. 1-8 

where h = Planck's constant and c = speed of light. 

Depending on the wavelength of the incident radiation the absorbed energy may be 

in the electronic, vibrational or rotational energy levels of the molecule. Radiation 

from the infrared region of the electromagnetic spectrum leads to increases in the 

vibrational and rotational energy of the molecule. The vibration induced by the 

absorption of the electromagnetic radiation must result in a change in the dipole 

moment of the molecule in order for absorption to be allowed under classical theory. 

The intensity of absorption is proportional to this change in dipole moment, hence 

highly polarised bonds e.g. C=0 give rise to stronger absorptions than purely 

covalent bonds e.g. C-C. 

Specific functional groups have characteristic absorption frequencies associated with 

them. By studying a range of infrared frequencies and the positions of the 

absorptions information on the functional groups present within the plasma polymer 

can be gained. Infrared spectra of plasma polymers generally consist of fairly broad 

bands relative to the monomer. This indicates the formation of a large variety of 

slightly different chemical environments for each functional group within the plasma 

polymer.^^ 



The transmission infrared spectra of the plasma polymers are collected by placing an 

IR-transparent potassium bromide disk in the plasma during the polymerisation run. 

XPS analysis shows that plasma polymers deposited in this way have the same 

surface composition as those deposited onto glass slides. Attenuated Total 

Reflectance infrared spectroscopy (ATR-IR) which probes the top several microns of 

the plasma polymer gives identical IR spectra to the transmission experiments. The 

results indicate the compositional homogeneity with depth of the plasma polymers 

deposited from both continuous and pulsed plasmas. 

1.4.3 Atomic Force Microscopy 

Atomic force microscopy (AFM) is used to study the topography of surfaces and was 

invented in 1986 by Binnig'^ to study the surfaces of non-conducting samples on the 

atomic s c a l e . A schematic of the AFM experimental set-up is shown in Fig. 1-15. 

In AFM a sharp tip mounted on a cantilever is brought close enough to the surface of 

a sample such that it interacts with the atoms at the surface. The atomic force 

between the tip and the sample is monitored via the deflection of the cantilever. This 

is measured using an optical system composed of a laser and a split photodiode.'°° 

Once the deflection of the cantilever is detected a feedback loop moves the sample 

stage in the z direction to maintain a constant distance between the sample surface 

and the tip. This movement of the stage is a mirror of the topography of the surface 

and can be plotted to generate an image of the surface. 
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Fig. 1-15: Experimental set-up of atomic force microscope. 

The AFM can be operated in various modes in order to measure the surface forces. 

The two most common operating modes used to determine topography are contact 

mode and Tapping® mode. In contact mode the sample and tip are in close contact 

throughout the entire scan. In Tapping® mode'°'''°'''°^ the tip oscillates close to its 

resonant frequency. The tip is made to strike the surface at the downward apex of 

each cycle and small changes in the oscillation amplitude can be detected. In this 

mode the force imparted on the sample is very small, 10~'° - 10"̂  N, '"" and since the 

tip is not dragged along the surface there are virtually no shear forces. 
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CHAPTER TWO 

PLASMA POLYMERISATION OF TRIFLUOROMETHYL 
SUBSTITUTED PERFLUOROCYCLOHEXANE 

MONOMERS 

2.1 INTRODUCTION 

Plasma polymerisation can be used to deposit organic coatings at ambient temperatures 

from a wide range of precursors onto almost any surface. Polymerisation occurs via 

activation and reaction of the precursor molecules.' Ions, radicals and excited 

molecules polymerise in the gas phase and react with the growing polymeric film.^ 

Plasma polymerisation is recognised as being a clean, dry technique, which generates 

little waste compared to conventional wet chemical methods. However it does have 

some limitations, in that the stoichiometry and physical characteristics of the plasma 

polymer product are strongly influenced by process parameters (e.g. gas composition 

and flow rate,''''* substrate temperature,^ the position of the substrate relative to the glow 

discharge,^ type of substrate,^ discharge power,^ reactor size^ etc.). Conventional 

polymer synthesis tends to produce structures containing repeat units which bear a 

strong resemblance to the monomer species, whereas the plasma polymer network can 

be extremely complex. 

Low temperatiu-e glow discharge polymerisation of perfluorocarbons can yield low 

surface energy films'^ which find application as hydrophobic,^''° p r o t e c t i v e , a n d 

biocompatible coatings.'^''^ Fluorinated plasma polymers are also used as 

dielectrics,'^''^ optical layers,^° and as perraselective membranes.'̂ ' Fluorinated gases 

are widely used for the etching of silicon wafers hence the study of the mechanism of 

plasma polymerisation of these compounds is of interest to the semi-conductor 

industry.^ 
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In this chapter the plasma polymerisation of a range of substituted cyclic 

fluorocarbons is evaluated as a means of generating highly fluorinated surfaces. 

Cyclic fluorocarbons are reported to undergo plasma polymerisation much more 

readily than their acyclic counterparts. The monomers investigated are 

perfluorocyclohexane (PFCH), perfluoromethylcyclohexane (MCH), perfluoro-1,2-

dimethyl- cyclohexane (12DM), perfluoro-l,3-dimethylcyclohexane (13DM) and 

perfluoro-l,3,5-trimethylcyclohexane (TMCH), Fig. 2-1. A l l of these molecules 

have equivalent fluorine to carbon ratios (F/C=2). 

CF2. 
CF2 CF2 

CF3 F3C' 

PFCH MCH 12DM 13DM 

Fig. 2-1: Structures of monomers used in this study. 

TMCH 

The resultant plasma polymers are expected to be highly fluorinated and their 

stoichiometry including the relative abundance of different CFn (n = 0-3) 

functionalities wi l l be studied using X-ray photoelectron spectroscopy. This 

technique is particularly suited to the study of fluorinated surfaces due the highly 

electronegative nature of fluorine, see sec. 1.4.1.5. This electronegativity allows for 

the identification and quantification of the various functional groups present at the 

surface of the sample. Using XPS it should be possible to determine to what extent, 

i f any, the subtle differences between the precursors are retained in the final plasma 

polymers. 
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2.2 E X P E R I M E N T A L 

2.2.1 Experimental Apparatus and Procedure for Plasma Polymerisation. 

Monomers were purchased from Fluorochem Ltd. and further purified via freeze-thaw 

cycles. These freeze-pump-thaw cycles ensured complete degassing of the monomer 

prior to its introduction to the reactor. The purification method is based on the principle 

that by reducing the vapour pressure of all gases above a liquid the solubility of gases 

within the liquid decreases,̂ ^ resulting in extraction of any dissolved gases into the 

vapour from which they can be pumped away. Plasma polymerisation experiments 

were carried out in an electrodeless cylindrical glass reactor (internal diameter = 5 cm, 

volume = 490 cm^) enclosed in a Faraday cage,̂ "* Fig. 2-2, p. 50. The reactor was fitted 

with an Edwards needle valve on the gas inlet and pressure measurement was taken 

from the output voltage of an Edwards ATC-E thermocouple gauge. The reactor was 

continuously pumped by a 33 dm'' hr"' Edwards E2M2 mechanical rotary pimip via a 

liquid nitrogen cold trap yielding a base pressure of 2 x 10'̂  torr and a leak rate of better 

than 2.3 x 10"̂ ^ kg s"' (calculated assuming ideal gas behaviour,^^ sec. 2.2.2). This 

ensured that at an operating pressure of 0.2 torr, over 99% of the reactor contents were 

fluorocarbon monomer. 

An ENI ACG-3 r.£ power generator with maximum power output switchable between 

30 and 300 Watts wdth an operating frequency of 13.56 MHz., was inductively coupled 

to the gas via an LC matching circuit and a copper coil. The copper coil of diameter 0.5 

cm consisted of 10-tums wound externally around the reaction chamber spanning 8-16 

cm from the gas inlet. Forward and reflected power measurements along with SWR 

readings (SWR = standing wave ratio = total power generated/power fransmitted to the 

plasma) were taken on an RS SWR/power meter. Following ignition of the plasma the 

r . f circuit was balanced by matching the impedance of the load to that of the r . f 
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generator i.e. 50 Ohms. This was achieved by adjustmg the inductance and capacitance 

of the LC circuit to reduce the SWR and reflected power readings to a minimum. 

In a typical reaction run the reaction vessel was scrubbed with detergent prior to each 

experiment, rinsed with water and isopropyl alcohol (IPA), oven-dried, then cleaned 

with a 50 W air plasma at a pressure of 0.2 torr for 30 mins. The reactor was 

subsequently vented to atmosphere and a glass shde (approx. area 13 mm x 5 mm) was 

positioned in the centre of the copper coils. The glass shde had previously been 

ultrasonically washed in detergent and rinsed with deionised water and analar IP A. The 

reactor was then re-evacuated and the base pressure and leak rate checked to ensure 

satisfactory vacuum conditions. I f the determined leak rate was acceptable (typically 

better than 1.6 x 10-12 y^g ^-1 calculated assuming ideal gas behaviour),^^ the reactor was 

purged with monomer for 2 mins prior to igniting the glow discharge. Plasma 

polymerisation was carried out for 10 mms after which the r . f power to the plasma was 

termmated. Upon termination, the reaction zone was purged with monomer for a ftirther 

2 mins, the reactor vented to atmosphere and the sample removed. 
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2.2.2 Flow Rate Calculation 

At the pressures used in these studies ideal behaviour can be assigned to the gases such 

that their behaviour is governed by the equation:'̂ '̂'̂ ^ 

P V ^ n R T Eq.2-1 

where P = pressure, V - volume, R = universal gas constant and T = temperature in 

degrees Kelvin. 

Volumetric flow rate Fv defined in Eq. 2-2 can be calculated by measuring the rise in 

pressure for a given flow (or leak) between times t = 0 and t = t: 

Fy = — = — X — Eq. 2-2 

If — IS approximated as — then: 
/=o dt At 

Fv = X Eq. 2-j 

^ RT M ^ 

At STP the volume of one mole of gas is 22414 cm^ and with V in cm^, R = 82.06 atm 

cm^ K"' mol' ' , T in Kelvin, P in atm and t in seconds:̂ ^ 

F v = — X — X 2 2 4 1 4 cm^s-' Eq. 2-4 
^ RT At 

For mass flow rates, Fm, which are referred to in later chapters; 

F„ = X— kg s Eq. 2-5 
" RT At ^ ^ 

where M = relative molecular mass of the monomer. 

2.2.3 Sample Characterisation 

2.2.3.1 X-ray Photoelectron Spectroscopy 

A Kratos ES200 X-ray photoelectron spectrometer with an unmonochromated X-ray 

source (Mg Kai,2 = 1253.6 eV) was used for chemical characterisation of the deposited 

fluorocarbon films. The glass slides were mounted on a stainless steel probe tip using 

Scotch adhesive tape and the probe was wiped with analar IPA prior to insertion in the 
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spectrometer, typical base pressure < 2 x 10"̂  torr. Emitted core level electrons were 

collected at 30° take-off angle from the substrate normal with a concentric 

hemispherical analyser ( C H A ) operating in fixed retardation ratio mode ( F R R = 22:1). 

The spectrometer was calibrated with respect to the gold 4f7/2 peak at 83.8 eV, (FWHM 

= 1.2 eV).^^ Instrumentally determined sensitivity factors for unit stoichiometry were 

taken as C ( l s ) : F ( l s ) : 0( ls) : N(ls): Si(2p)=1.00: 0.53: 0.55: 0.74 : 1.05. The absence 

of any Si(2p) XPS feature following plasma polymerisation was taken as being 

indicative of complete coverage of the glass substrate. XPS spectra were collected and 

analysed on an interfaced IBM P C computer. 

2.3 R E S U L T S 

A Marquardt minimisation computer program which assumed a Gaussian peak shape 

with a fixed relative ful l width at half maximum (FWHM) was used to fit the C ( l s ) 

envelope for each plasma polymer with five different carbon functionalities"": C - C F n 

(286.6 eV), C F (287.8 eV), C F - C F n (289.3 eV), CF2 (291.2 eV), and CF3 (293.3 eV). 

The CF3 and CF2 components could be assigned unambiguously and so the dominant 

C F 2 feature at 291.2 eV was used as a reference offset. Mg Ka3,4 satellite peaks with 

different FWHM were also taken into account.^" Fig. 2-3, p. 53 shows a typical C(ls) 

peak fit for a 5 W PFCH plasma polymer. The relative concentration of each carbon 

functionality was calculated by dividing the corresponding peak area by the total C(ls) 

area. The elemental F / C ratio for each film was calculated from the F ( l s ) and C(ls) 

peak areas taking into account the appropriate sensitivity factors. 

Experiments were carried out employing discharge powers in the 1.5 - 40 W range. Fig. 

2-4 - Fig 2-7, pp.54-56. The composition of plasma polymers produced using powers 

greater than 7 W varied little with changes in discharge power and the degree of 

substitution of the perfluorocyclohexane precursor molecule, with a F / C ratio of 1.5 ± 

0.03 together with 17 ± 0.5% C - C F n , 31 ± 0.4% CF(total), 30 ± 0.5% C F 2 , and 22 ± 

0.5% CF3 . At glow discharge powers lower than 7 W, a strong variation in the relative 
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concentration of CFn functionalities was found which depended upon the power used 

and the structure of the fluorocarbon monomer. In the case of PFCH the contribution of 

the C-CF„ peak to the overall C(ls) envelope drops from 19 ± 0.7% at 7 W to 13 ± 0.7% 

at 1.5 W, which coincides with an increase in the CF2 content from 30 ± 0.5% to 40 ± 

0.5% respectively, Fig. 2-6. In comparison, for TMCH the C - C F n content drops from 19 

± 0.7% at 7 W to 12 ± 0.7% at 1.5 W, and the CF2 rises slightly from 29 ± 0.5% at 7 W 

to 33 ± 0.5% at 1.5W, Fig. 2-7. The CF3 contribution for PFCH remains approximately 

constant at 22 ± 0.5% irrespective of power, whereas for TMCH it rises from 23 ± 0.5% 

at 7W to 28 ± 0.5% at 1.5 W. The chemical compositions of plasma polymers formed 

from monosubstituted MCH and disubstituted 12DM and 13DM at low powers fall in-

between the values reported for the unsubstituted (PFCH) and trisubstituted (TMCH) 

plasma polymers. It is of interest to note that the structural isomers perfluoro-1,2-

dimethylcyclohexane (12DM), perfluoro-l,3-dimethylcyclohexane (13DM) yield 

identical plasma polymers at any given power. For all of the substituted 

perfluorocyclohexane precursors, the F /C ratios found in the plasma polymer deposits 

decrease with increasing electrical discharge power. 
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Fig. 2-3: C(ls) peak fit for a 5 W perfluorocyclohexane plasma polymer. 
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Fig. 2-4: C(ls) XPS spectra of PFCH plasma polymers deposited as a function of discharge energj'. 
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Fig. 2-5: C(ls) XPS spectra of TMCH plasma polymers deposited as a function of discharge energy. 
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2.4 DISCUSSION 

Plasma polymerisation o f cyclic fluorocarbons is an effective way of producing 

polymeric layers at a high deposition rate and with a high F/C ratio.^^ The effect o f 

altering the discharge power upon the composition o f plasma polymers depends not 

only on the geometry o f the reactor, the position o f the substrate and the powers used, 

but also to varying degrees on the structural nature o f the precursors. '̂̂ ^"^^ In the present 

plasma polymerisation study, where the only difference between the monomers is the 

number o f trifluoromethyl groups on the perfluorocyclohexane ring (ranging from 0 to 

3), the relative abundance o f CFn functional groups is dependent upon the discharge 

power used. A t discharge powers greater than approximately 7 W, the chemical 

composition becomes independent o f monomer structure and power. This may be 

attributed to extensive fragmentation o f the precursor molecules to yield effectively the 

same chemical species in the plasma phase since all o f the fluorocarbon monomer 

structures under investigation possess the same F/C elemental ratio. However, at 

powers below 7 W, the structure o f the deposited polymer is influenced by discharge 

power and also the chemical structure o f the perfluoromonomer. For very low discharge 

powers the amount o f CF2/CF3 in the plasma polymer reflects the amount o f CF2/CF3 in 

the precursor molecule, Fig. 2-8 and Fig. 2-9. The observed increase in CF2 and CF3 

content is accompanied by a reduction in crosslinking. This can be attributed to less 

fragmentation o f precursor molecules in the gas phase and within the growing f i l m . 
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The average electron energy in low pressure glow discharges is typically only a few 

electron volts.^ This is well below the energy needed for the dissociative ionisation of a 

fluorocarbon ~ 13 eV.^ Since electrons within a plasma have a range of energies, it will 

only be electrons from the high energy tail of the distribution which wil l possess sufficient 

energy to cause dissociative ionisation. A decrease in the discharge power wil l cause a 

drop in the electron population of the high energy tail, leading to a greater number of non-

fragmented precursor molecules impinging onto the growing plasma polymer surface. 

Increased incorporation o f these non-fragmented molecules in the plasma polymer would 

result in the composition of the final plasma polymer bearing more of a resemblance to 

the starting material. Such a drop in electron energies at lower powers wil l also reduce 

the plasma potential (the substrate is at a floating potential) which wil l produce less ion 

and electron bombardment of the growing polymeric film and hence less crosslinking.''' A 

drop in the number of excited species present within the plasma at lower powers wil l also 

cause an attenuation in the V U V irradiation of the growing polymer. VUV irradiation of 

polymers is known to cause C-C bond scission which can lead to crosslinking. 
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2.5 CONCLUSION 

Plasma polymerisation o f perfluorocyclohexane (PFCH), perfluoromethylcyclohexane 

(MCH), perfluoro-l,2-dimethylcyclohexane (12DM), per£luoro-l,3-dimethylcyclohexane 

(13DM) and perfluoro-l,3,5-trimethyl- cyclohexane (TMCH) results in highly fluorinated 

surfaces. XPS analysis shows the relative abundance of the various CFn (n = 0-3) 

functionalities found in the respective plasma polymers is shown to be strongly influenced 

by the electrical discharge power and the structural nature o f the fluorocarbon precursor. 

At electrical discharge powers above 7 W, the chemical nature o f the plasma polymer 

becomes independent o f power level and monomer structure. At powers below 7W, the 

structural differences between the various precursor molecules are reflected in the 

composition o f the final plasma polymers. At low powers crosslinking o f the resultant 

plasma polymer is reduced, however due to the minimum power input required to sustain 

the discharge there exists a restriction on the extent to which continuous wave power can 

be used to control the composition of the plasma polymers. 
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CHAPTER THREE 

HIGHLY FLUORINATED SURFACES VIA 

CONTINUOUS AND PULSED PLASMA 

POLYMERISATION OF 

PERFLUOROCYCLOHEXANE AND 

PERFLUOROCYCLOPENTENE 
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CHAPTER T H R E E 

H I G H L Y FLUORINATED SURFACES VIA CONTINUOUS 
AND PULSED PLASMA POLYMERISATION OF 

PERFLUOROCYCLOHEXANE AND 
PERFLUOROCYCLOPENTENE 

3.1 INTRODUCTION 

Plasma polymerisation o f cyclic fluorocarbons has been shown in chapter two to lead to 

the formation o f highly fluorinated plasma polymers. This results in the generation o f 

surfaces wi th very low surface energy^ which f ind application as hydrophobic,^'"^ 

protective,"*'^ and biocompatible coatings.''^ I t was found that the exact composition o f 

these polymers was dependent on the discharge power used and the chemical structure 

o f the precursor, despite the fact that the chemical differences between the starting 

compounds were very sHght. A l l compounds were fu l ly saturated cychc compounds, the 

differences between them being the number and/or position o f the trifluoromethyl 

substituent groups on the perfluorocyclohexane ring. At powers greater than 7 W 

plasma polymers deposited from all five precursors had identical stoichiometries. 

However at powers below 7 W the chemical differences in the precursors began to be 

reflected in the XPS specfra o f the plasma polymers. Whereas at 15 W discharge power 

the plasma polymers from all precursors had ~ 29% CF2 content, at 1.5 W the 

percentage CF2 in the plasma polymers varied from ~ 33% for the trimethyl substituted 

compound to greater than 40% for the unsubstituted perfluorocyclohexane. Clearly at 

low power densities there is the potential for the chemistry o f the precursor to be 

exploited as a means o f tailoring the composition and hence properties o f the final 

plasma polymer. 
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In this chapter the influence o f precursor chemistry on the composition o f plasma 

polymers w i l l be further investigated. Plasma polymers f rom perfluorocyclohexane and 

perfluorocyclopentene w i l l be compared to determine i f i t is possible to use a plasma to 

generate surfaces whose compositions reflect those o f their precursors. 

Perfluorocyclohexane contains exclusively CF2 linkages and therefore is a potential 

candidate for the synthesis o f a PTFE-like plasma polymer. Since the precursor 

contains only CF2 groups the appearance o f other functionalities and the disappearance 

o f C F 2 groups f r o m the plasma polymer can be used as a measure o f the extent o f 

dissociation o f the precursor during the plasma polymerisation process. 

Perfluorocyclopentene is also a cyclic fluorocarbon but significantly has a double bond 

wi th in the ring structure. The effect o f this unsaturation on the plasma polymerisation 

process and the structure o f the final plasma polymers w i l l be investigated. 

The results o f chapter two indicate however that even at very low power densities 

sufficient fragmentation o f the precursor occurs to yield surfaces with significantly 

different compositions f rom the starting material. The control which can be achieved by 

reducing the power to the gas is limited by the need to input sufficient energy to sustain 

the ionisation processes within the plasma. During the work carried out for chapter two 

it was found that for the gas flows and pressures of this work the plasma became 

unstable at continuous wave powers below -1.5 W. As an alternative method of 

gaining control over plasma properties and over the properties o f the deposited film the 

power to the plasma was pulsed. 

I n pulsed plasmas the power to the system is modulated at a fi-equency much lower than 

that o f the applied radio frequency. As discussed in chapter one, sec. 1.3.2, pulsing the 

r . f power to the plasma has several inherent advantages over continuous wave plasma 

polymerisation.^'^ Excessive heating o f reactor walls and substrate is avoided because 

there is reduced ion bombardment o f the surfaces in contact wi th the plasma.' Also any 

decay o f short-lived excited species during the off-portion o f the duty cycle can help to 

attenuate both the V U V emission and the variety o f species contributing to the overall 

plasma polymer structure. In addition, conventional polymerisafion reactions can occur 
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during the off-time. The extent to which pulsing can be used to enhance desired 

chemical reaction pathways within an electrical discharge is not yet flilly established. 

This chapter wi l l therefore consider the effect o f both chemical composition and pulsed 

power on the plasma polymerisation processes for perfluorocyclohexane and 

perfluorocyclopentene, with the ultimate aim of gaining control over the chemical 

structure o f the surface of the substrates exposed to the plasma. 

3.2 EXPERIMENTAL 

Plasma polymerisation experiments were carried out in an electrodeless cylindrical glass 

reactor (internal diameter = 5 cm, volume = 490 cm^) enclosed in a Faraday cage. This 

was continuously pumped by a 33 dm^ hr"̂  Edwards E2M2 mechanical rotary pump via a 

liquid nitrogen cold trap yielding a base pressure of 2.66 x lO'-' mbar and a leak rate of 

better than 1.6 x 10"^^ j^g g-l (calculated assuming ideal gas behaviour,^). A 13.56 MHz. 

r . f generator was inductively coupled to the gas via an LC matching circuit and a copper 

coil (0.5 cm diameter, 10-tums) wound externally around the reaction chamber spanning 

8-16 cm from the gas inlet. The substrate was positioned in the centre of the copper 

coils. For the experiments employing pulsed power, a signal generator was attached to 

the r . f generator and a cathode ray oscilloscope was used to monitor the pulse duration, 

interval and amplitude, see chapter 1, sec 1.3.2. The pulse rise and fall time was 100 ns. 

The peak power (Pp) delivered to the copper coil could be varied between 20-180 W, 

whilst on-times (ton) and off-times (toff) varied between 20 - 1900 ^s and 5 - 1000 |is 

respectively. The average power <P> delivered during pulsing was calculated using the 

following expression: 

< P > = Pp X ( ^" ] Eq. 3-1 
Vton + toff-^ 

Prior to each experiment, the reactor was pumped down to base pressure and the 

monomer vapour was introduced into the reaction chamber at a pressure of 0.2 torr via a 

fine needle valve at a flow rate o f 7.1 x 10"̂  kg s"̂  for perfluorocyclopentene and 

66 



1.6 X 10"' kg s"' for perfluorocyclohexane. The reactor was purged with monomer for 2 

mins prior to igniting the glow discharge. Plasma polymerisation was carried out for 10 

mins. Upon termination, the reaction zone was purged with monomer for a further 2 

mins, and finally vented to air. 

A Kratos ES200 X-ray photoelectron spectrometer equipped with an non-

monochromafic X-ray source (Mg Kai,2 = 1253.6 eV) was used for chemical 

characterisation o f the deposited fluorocarbon films. Emitted core level electrons were 

collected at 30° take-off angle fi'om the substrate normal with a concentric hemispherical 

analyser (CHA) operating in fixed retardation ratio mode (FRR = 22:1). The 

spectrometer was calibrated with respect to the gold Afjapeak at 83.8 eV, (FWHM = 1.2 

eV).^° Instrumentally determined sensitivity factors for unit stoichiometry were taken as 

C(ls) : F( ls) : 0 ( l s ) : N( l s ) : Si(2p)- 1.00 : 0.53 : 0.55 : 0.74 : 1.05. The absence of any 

silicon XPS features following plasma polymerisation was indicative o f complete 

coverage o f the glass substrate. 

An FTIR Mattson Polaris instrument was used for transmission infrared analysis of 

plasma polymers deposited onto potassium bromide disks. Typically 100 scans were 

acquired at a resolution o f 4 cm'\ 

3.3 PERFLUOROCYCLOHEXANE: RESULTS 

3.3.1 X-ray Photoelectron Spectroscopy. 

For each plasma polymer, the C(ls) XPS envelope was fitted using a Marquardt 

minimisation computer program which assumed a Gaussian peak shape with a fixed 

relative fiill width at half maximum ( F W H M ) . " The C(ls) XPS spectra were fitted using 

5 different carbon fimctionalities: C-CFn (286.6 eV), CF (287.8 eV), CF-CF„ (289.3 eV), 

CF2 (291.2 eV), and CF3 (293.3 eV). The CF3 and CF2 peaks could be assigned 

unambiguously, and therefore the dominant CF2 peak was taken as a reference offset at 

291.2 eV. As the X-ray source was unmonochromated, M g Ka3,4 satellite peaks with 
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different F W H M were also taken into consideration.^' The M g Kai,2 C ( l s ) F W H M were 

found to vary between 1.9 eV and 2.2 eV. The relative concentration of each carbon 

flinctionality was obtained by dividing the corresponding peak area by the total C ( l s ) 

envelope area. The elemental F /C ratio for each film was calculated from the F(ls) and 

C ( l s ) peak areas taking into account the appropriate XPS sensitivity factors. 

3.3. J. J Continuous Wave Plasma Polymerisation 

The change in appearance o f the C ( l s ) XPS spectra with increasing continuous wave 

power is shown in Fig. 3-1, p. 70. At higher powers, the deposited plasma polymer films 

exhibit very little variation in composition. At lower powers however the relative 

concentration o f CF2 fiinctionality increases with decreasing power whilst the number of 

crosslinked (C-CFn) carbon centres drops. Fig. 3-2. This suggests that the CF2 content 

of the films could rise even further i f the power can be reduced. Below 1.5 W the 

continuous wave plasma becomes unstable at the operating pressure o f 0.2 torr. 

3.3. J. 2 Pulsed Plasma Polymerisation 

From equation 3-1, p. 66, the average power delivered to the plasma <P>, is a function 

o f three variables viz. off-time (toff), on-time (ton) and peak power (Pp). The effect of 

altering each o f these variables upon the composition o f the deposited film was studied. 

Fig. 3-3 shows the C ( l s ) XPS spectra o f plasma polymer films obtained where the off-

time was varied (v^th a fixed peak power o f 20 W and on-time o f 20 |is). The CF2 

component increases relative to the crosslinked (C-CFn) peak with rising off-times (i.e. 

decreasing average power). This trend was also observed for shorter on-times (with a 

fixed peak power o f 20 W and off-time o f 250 us), and lower peak powers (with a fixed 

on-time o f 20 |is and off-time o f 250 ^s). Fig. 3-6 and Fig. 3-8 respectively. These 

results are consistent with the continuous wave experiments, where decreasing average 

power was found to yield a higher CF2 content and a lower level o f crosslinked carbon, 

whilst the CF3 contribution remains steady. Fig. 3-9 compares the CF2 content o f the 
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deposited plasma polymer films for all the experiments. It can be concluded that for the 

same average power, a pulsed glow discharge produces a film with higher CF2 content 

than that obtained with a continuous wave plasma at average powers below 7 W. 
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Fig. 0-9: Variation in CF2 content of plasma polymers, deposited from pulsed and continuous wave 
perfluorocyclohexane discharges, as a function of average power. 

Transmission Infrared Spectroscopy. 

Transmission infrared measurements give information on the bulk composition of the 

plasma polymer. For fluorocarbons the information that can be gained fi-om the infrared 

spectra of the plasma polymers is limited. This is due to the very intense C-F absorption 

at ~ 1100 cm"' and the strong coupling between vibrational modes in this region. Due to 

both these factors exact assignment of the absorptions seen is not attempted. Fig. 3-10 

shows a comparison of the transmission IR spectra of two plasma polymers gathered 

using potassium bromide disks. Despite there being an order of 
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magnitude difference in the discharge power used to deposit the two plasma polymers 

the infrared spectra are almost identical. 
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Fig. 3-10: Comparison of the transmission infrared spectra of plasma polymers deposited onto 
potassium bromide disks from 15 W and 1.5 W perfluorocyclohexane plasmas. 
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3.4 PERFLUOROCYCLOHEXANE: DISCUSSION 

CF3 and CF2 functionalities account for up to 65% of the total C(ls) envelope in the 

continuous wave plasma polymerisation of perfluorocyclohexane, which is consistent 

with previous studies in the 1-100 W power range .The amount of crosslinking in the 

plasma polymer has previously been shown to be dependent upon the W/FM 

parameter,̂ ^ (where W = discharge wattage, F = flow rate in moles/minute and M = 

molecular mass of the gas). In the present study, both F and M are constants and 

therefore the degree of crosslinking (C-CFn) can be directly correlated to the input 

power, Fig. 3-1. 

A variety of reactions can potentially occur during plasma polymerisation. These can be 

subdivided into collision induced reactions (e.g. electron impact dissociation, 

polymerisation in the gas phase, and ion bombardment at the gas-substrate interface) and 

radiation induced reactions (e.g. unimolecular excitation and dissociation, along with 

radiative degradation of the growing polymer network). The effect of power level on 

each of these types of reaction is addressed below. 

The input power influences the average electron energy <s>, the population of the high 

energy tail of the electron energy distribution, and the density of exched species present 

in the plasma. Any reactions which involve electrons from the high energy tail of the 

electron energy distribution will be affected by the drop in the number of high energy 

electrons with decreasing input power.'" One such reaction is the ionisation of 

perfluorocyclohexane which has an activation energy of approximately 13 eV.'^ A 

smaller fraction of perfluorocyclohexane molecules will be expected to undergo 

dissociation via electron-collision ionisation at lower input powers, resuhing in more 

non-fragmented perfluorocyclohexane molecules impinging upon the substrate. Such a 

rise in perfluorocyclohexane flux incident upon the surface will lead to a greater CF2 

content in the resultant plasma polymer layer. 
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The type and relative abundance of CFn radicals contained in the glow discharge can 

also influence the composition of the plasma polymer deposit.'̂ '̂ ^ The difluorocarbene 

radical CF2, is relatively stable with respect to other types of CFn radical. It has been 

shown to be a major constituent and an important precursor to polymer formation in 

fluorocarbon plasmas. ^̂ '̂ ^ Depletion of CF2 species fi"om fluorocarbon plasmas can 

occur via electron-collision processes to liberate a fluorine atom as follows;'^ 

CF2 + e' ^ C F + F + e" 

This reaction has an electron energy threshold of 6.1 eV. Since 6.1 eV is greater than 

the average electron energy within the plasma (typically about 2 eV), one would also 

expect a drop in the number of CF2 species lost through this particular process with a 

corresponding increase in the CF2 content of the plasma polymer layer. 

It is of interest to note that the CF3 content of the deposited perfluorocyclohexane 

plasma polymer films remains fairly constant with respect to C W power level. CF3 

species can be produced in the gas phase both through tmimolecular rearrangements, as 

evidenced by mass spectrometry^^ and through ion-molecule collisions.'̂ ^ On the 

surface, ion bombardment of the fluorocarbon polymer also results in generation of CF3 

functionalities.^^ CF3 can be removed firom the plasma through reactions of the 

following type: 

CF3 + e"^ CF2 + e' + F 

Electron-collision dissociation of CF3 yields CF2 and fluorine, which requires electrons 

of 2.2 eV energy . Since this is fairly close in magnitude to the average electron energy 

within the glow region (typically about 2 eV), then the number of electrons at these 

energies wi l l be relatively unperturbed by variations in the power supplied to the plasma. 

Even at low powers there should be an ample supply of 2.2 eV electrons for this reaction 

to occur.̂ ^ 

Another consequence of the drop in high energy electrons at lower powers, is a decrease 

in the number and energy of electrons able to transverse the plasma sheath, thereby 
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leading to a reduction in the ion and elecfron bombardment of the growing fihn, hence 

causing less crosslinking at lower continuous wave powers. Excited species within 

plasmas emit photons with energies between 3 and 40 eV.̂ ^ Such UV radiation from a 

hydrogen discharge has been shown to cause surface crosslinking in polyethylene.^^ A 

reduction in power will attenuate the amount of VUV radiation contained in the plasma 

which in turn wi l l produce less crossUnking in the polymeric product. 

In some plasma deposition processes high subsfrate temperatures are requfred to 

encourage surface reactions and achieve good quality films.^'* A lower subsfrate 

temperature gives rise to greater adsorption of non-fragmented precursor molecules onto 

the subsfrate.'̂ '̂̂ ^ A drop in the subsfrate temperature at lower powers should reduce 

the number of reactions occurring at the surface especially positive enthalpy change 

reactions, such as bond breaking. 

3.4.1.1 Pulsed Plasma Polymerisation 

For average powers below 7 W, pulsing of the perfluorocyclohexane glow discharge 

produces a plasma polymer with a greater CF2 content and less crossUnked (C-CFn) 

carbon than that found for corresponding continuous wave experiments. One possible 

explanation for the drop in crosshnldng during pulsing could be the lower subsfrate 

temperature, since a significant advantage of pulsing the fluorocarbon glow discharge is 

that extensive heating of the reactor walls and subsfrate can be avoided.^' The plasma 

sheath voltage decays rapidly leading to a time-averaged reduction in the nxmiber and 

energy of positive ions bombarding the surface and hence the subsfrate will experience 

less heating. Previous XPS studies have shown that ion bombardment of plasma 

polymerised fluorocarbon films results in a rise in crosslinked carbon cenfres at the 

expense of CF3 and CF2 functionalities.^^ Therefore less ion bombardment of the 

growing plasma polymer fikn will lead to a smaUer amount of crosslinking. Also it has 

been reported that VUV emission from pulsed discharges is lower than from C W 

discharges,̂ ^ which should further reduce the activation of the subsfrate, again resulting 
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in less crosslinking in the final polymer film. The cumulative effect of lower substrate 

temperatm-e along with reduced ion bombardment and VUV irradiation during pulsed 

plasma polymerisation will be expected to produce a narrower distribution of electronic 

enviroiraients for a particular type of C(ls) fimctionality. Indeed this is found to be the 

case, since the widths (FWHM's) of the component peaks in the C(ls) XPS profiles fall 

with decreasing peak power, Fig. 3-11. 
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Fig. 3-11: Variation in FWHM of C(ls) component peaks versus peak power (on-time = 20 fis, off-
time = 250 }is) from plasma polymers of perfluorocyclohexane. 
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3.5 PERFLUOROCYCLOPENTENE: RESULTS 

3.5.1 X-ray Photoelecfron Spectroscopy 

At low powers the composition of the plasma polymer is particularly sensitive to the 

continuous wave power input. Fig. 3-12, Fig. 3-13. On increasing glow discharge power 

from 1 to 5 W the amount of CF2 incorporation falls sharply, from 35% to 26%, whilst 

the other fimctionalities all rise by between 2% and 3%. Beyond 5 W film composition 

shows a much lower dependence on discharge power yielding polymers composed of 

approximately 22 ± 1.2% C-CF„, 31 ± 1.7% CF, 27 ± 0.9% CF2 and 19 ± 0.9% CF3. 

The F/C ratios of all the polymers deposited from continuous wave discharges are 1.30 ± 

0.07, irrespective of discharge power used, compared to a value of 1.6 for the precursor 

molecule; this corresponds to a 19% loss in fluorine content. 

The results from XPS analysis of polymers deposited from pulsed plasmas are also 

shown below, Fig. 3-14 - Fig. 3-17. When the power to the plasma is pulsed the average 

power delivered to the glow discharge is a function of three variables, namely off"-time, 

on-time and peak power. All functionalities show the same trends with average power 

irrespective of which variable is altered; for example the amount of CF2 incorporation 

into the plasma polymer rises at the expense of CF3 with increasing ofF-time and 

decreasing on-time and peak power. This is clearly shown when the percentage CF3 and 

CF2 in the plasma polymers are plotted against average power. Fig. 3-18. Evidently 

decreasing the average power has the same effect of increasing the CF2 and decreasing 

the CF3 content of the polymers regardless of whether it is continuous wave power, ofi"-

time, on-time or peak power which is varied. It appears that on average pulsed plasma 

polymers have a slightly higher CF2 and lower CF3 content than continuous wave plasma 

polymers deposited at the same average power, i.e. pulsing slightly enhances the 

retention of monomer stoichiometry and reduces rearrangements relative to continuous 

wave plasma polymerisation. As with the continuous wave experiments the F/C ratio of 
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all the polymers deposited from pulsed plasmas is constant; the value being only sUghtly 

lower at approximately 1.28 ± 0.05. 
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Fig. 3-18: Comparison of the percentage CF2 and CF3 in plasma polymers of PFCP as a function of 
average power delivered to the plasma. 

3.5.2 Transmission Infrared Spectroscopy. 

The IR spectrum of PFCP vapour, Fig. 3-19, shows well resolved and intense absorption 

peaks at 1769(m), 1396(s), 1327(m), 1299(m), 1219(m), 1178(vs), 1011(vs), 986(vs) 

and 601(m) cm"\ The peak at 1769 cm"' is assigned to the C=C stretch in 

perfluorocyclopentene^°'^' while the peaks below 1400 cm"' are characteristic of all 

fluorocarbons due to C-F stretching vibrations.^^" '̂' Coupling between C-C and C-F 

stretching vibrations in this region means it is not possible to assign these peaks to 

particular vibrational modes.̂ ^ 
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Fig. 3-19: Transmission infrared spectrum of perfluorocyclopentene vapour. 

In contrast with the well resolved peaks seen in the PFCP spectrum the transmission 

infrared spectra of the plasma polymers deposited from both continuous wave, Fig. 3-20 

and pulsed plasmas, Fig. 3-21 and Fig. 3-22, on potassium bromide disks consist 

principally of a strong broad absorption band about 1100 cm'' due to C-F stretching 

vibrations. On the whole changing the continuous wave power and the average power 

in the case of pulsed plasmas does not alter the IR spectra greatly. However at low 

powers the spectra of the plasma polymers do begin to show features in common with 

the monomer, namely smaller peaks appearing more resolved at 1392, 1338, 1026 and 

974 cm -1 
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Varying the off-times from 250 |is to 20 jis, hence average powers from 1.5 to 10 W 

causes the peak at 1174 cm'^ to be reduced relative to the 1215 cm"' absorption. Also 

the peaks at 974 cm'' and 1026 cm'' are more clearly resolved at longer off-times. The 

same trends are in evidence when the on-time is the variable employed to control the 

power to the plasma. In this case on-times varied between 160 [is and 1000 (is resulted 

in average powers between 2.7 and 10 W. Fig. 3-22 shows little difference between 

polymers deposited at 160 |is or 640 îs on-time. However the infrared spectrum of the 

polymer from the 1000 |is on-time experiment shows a reduction in the peaks at 974 cm' 

', 1026 cm"', 1174 cm'', and 1714 cm"'. 
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Fig. 3-20: Infrared transmission spectra of plasma polymers deposited from continuous wave 
perfluorocyclopentene plasmas as a function of discharge power. 
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3.6 P E R F L O U R O C Y C L O P E N T E N E : DISCUSSION 

The continuous wave plasma polymerisation of perfluorocyclopentene has previously 

been studied by Eaveŝ ^ who compared the plasma polymers with those obtained from 

cathodic electropolymerisation. In an inductively coupled reactor at a pressure of 0.1 

torr and a power range 5 - 40 W he found the deposited polymer had a F / C ratio of 1.4 

and the composition of 21% C-CFn, 30% C F , 30% CF2 and 18% CF3. 

As stated earlier the power input to plasmas can be quoted in terms of the W/FM 

parameter,̂ ^ (where W = discharge wattage, F = flow rate in moles/minute and M = 

molecular mass of the gas). In this work the flow rate used was 3.33 x 10'' moles s'' 

while Eaves quotes a flow rate of 1.67 x 10"' moles s''. Eaves reported no significant 

variation in polymer composition at power inputs greater than 5 W, which corresponds 

to an energy input of 142 J kg"'. This agrees with the findings of these investigations 

where 10 W plasma power corresponds to the same energy input per molecule. No large 

changes in the composition of the plasma polymers deposited are seen above 10 W 

continuous wave power in this system. Also the compositions of the polymers in this 

high power range are in good agreement. Considering the difficulties in comparing 

results from two different plasma polymerisation systems, the results are remarkably 

similar. 

C-CF„ CP CF2 CF3 

Eaves 20% 30% 30% 18% 

This work 21% 31% 28% 20% 

A variety of reactions can potentially occur during plasma polymerisation. These can be 

subdivided into collision induced reactions (e.g. electron impact dissociation, 

polymerisation in the gas phase, and ion bombardment at the gas-substrate interface) 

and radiation induced reactions (e.g. unimolecular excitation and dissociation, along 

with radiative degradation of the growing polymer network). The effect of power level 

on each of these types of reactions has already been considered , however the most 
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notable points can be summarised as follows; reduced power to the gas results in lower 

average electron energy and a reduction in the population of the high energy tail of the 

electron distribution,^^ a reduction in the number of excited species in the plasma and 

hence a reduction in the ultraviolet and vacuum-ultraviolet emission,̂ ^ and finally a 

reduction in the number and energy of positive ions bombarding the sample due to a 

reduction in the plasma potential. 

With a reduction in the energy within the gas it is expected that the precursor molecule 

wil l dissociate less and that the dissociation process wil l be dependent to a greater extent 

on the relative bond strengths and thermodynamics within the perfluorocyclopentene 

molecules. Hence, at low powers, the structure of the precursor would be expected to 

have a greater effect on the composition of the final plasma polymer. The structure of 

perfluorocyclopentene is represented below, Fig. 3-23. As can be seen the monomer 

consists of three sp̂  carbons and two sp̂  carbons with two and one fluorine atoms 

attached respectively. 

CF, 

CF CF 

Fig. 3-23: Molecular formula for perfluorocyclopentene; cyclo-CsFg. 

The presence of unsaturation in a perfluorocarbon system is known to activate the 

system making it more likely that C-F bond scission resulting in formation of a fluorine 

atom wi l l occur compared to a saturated fluorocarbon system. For example exhaustive 

defluorination occurs in the dimerisation of perfluorocycloalkenes either through 

fluorine loss resulting in formation of an allyl radical, or via nucleophilic attack on the 

double bond.^^ The fact that the F/C ratio of plasma polymers deposited firom 

perfluorocyclopentene discharges remains constant at approximately 19% less than that 

of the monomer despite changing discharge power is of interest. It suggests that at low 

powers the chemical structure of perfluorocyclopentene, in particular the presence of 
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the double bond, causes defluorination of the precursor to become a key step in at least 

one of the reaction pathways leading to plasma polymer deposition. 

This reduction in F/C ratio within the plasma is to be expected based on the results of 

Fenzlaff and Illenberger""^ who carried out electron beam studies of the unimolecular 

decomposition of perfluorocompounds in the gas phase. Their results indicate that at 

thermal or near thermal electron energies attachment of electrons to cyclic 

fluorocarbons in the gas phase generates metastable parent radical anions, Fig. 3-24. 

These have lifetimes with respect to autodetachment on the ns-ms timescale at the 

pressures used in the study. 

e" + M ^ M"̂ *̂  F' + (M-F) 

^ F + (M-F)' 

M = cyclo-CsFz, (M-F) = " M minus F" 

Fig. 3-24: Scliematic of defluorination of perfluorocyclopentene under electron bombardment (from 
reference 40). 

At electron energies higher than thermal however, autodissociation results in the 

production of either F and (M-F) or F and (M-F) ion pairs depending on the value of 

the electron energy. In the case of perfluorocyclopentene at ~2 eV electron energies, 

the dominant autodissociation mechanism yields a fluoride anion and a defluorinated 

(M-F) radical. In a plasma these radicals will diffuse to the surface of the polymer and 

be incorporated either intact or following fi-agmentation, into the plasma polymer 

resulting in a lowering of the F/C ratio relative to the starting compound. Since the 

average electron energy of the discharge is approximately 2 eV,^' it is to be expected 

that this reaction pathway would be a significant one within the overall plasma 

polymerisation process. 

A significant loss in CF2 content of the plasma polymers occurs on increasing fi-om 1 W 

to 5 W discharge power. This is consistent with increased loss of fluorine fi-om the allyl 

carbon. However the F/C ratio does not show a corresponding decrease as would be 

expected, which impHes that the fluorine lost must be re-incorporated mto the polymer. 
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This is supported by the presence of CF3 groups at the surface of the plasma polymer 

which is evidence of destruction of the ring via C-C bond scission, and subsequent 

fluorination of CF2 containing fi-agments, thus allowing fluorine re-incorporation into the 

plasma polymer to occur. Not surprisingly the CF3 content rises with power in this low 

power region as increasing power will result in a greater number of fluorine atoms 

available to fluorinate the growmg plasma polymer. The increase in CF3 content does 

not match the fall in CF2 content since loss of CF2 carbons while Uberating fluorine 

atoms, also eliminates potential sites for CF3 formation. 

A l l plasma polymers in this low power region also contain over 20% crosslinked carbon 

i.e. C-CFn. Along with the expected crosshnking processes associated with plasma 

polymerisation as a result of the energetic nature of the conditions, additional 

crosslinking could also originate fi-om nucleophilic attack on the olefinic carbons with 

loss of fluorine, not surprising given the activity of perfluoro-substituted double bonds to 
T O 

such reactions. 

At discharge powers above ~7 W, CF3 and CF2 content increases in the plasma 

polymers while C F content levels off and the crosslinked carbon decreases shghtly. At 

first glance this is unexpected as it is to be expected that increasing the power to the 

plasma will increase the fi-agmentation of the precursor and hence increase the 

proportion of crosslinked carbon in the final plasma polymer. Previous studies have 

indeed shown,^^ that increasing plasma power increases the amount of crosslinking in 

the resultant polymer. However when the structure of the precursor is accounted for the 

resuhs are at least plausible. 

At low powers, 1-5 W, plasma polymerisation would be expected to yield a polymer 

with a large degree of retention of monomer structure and stoichiometry. Greater power 

in the plasma wil l result in generation of more fi-ee fluorine atoms and destruction of the 

ring systems. The dangling bonds produced will be capped by the fluorine radicals 

hence reducing the number of non-fluorinated carbons in the plasma polymer. Since 
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olefinic carbons, C-CFn and C F , are the most reactive sites these should be preferentially 

destroyed. Hence one would expect a larger drop in C-CFn than in C F (since fluorination 

of C-CFn produces C F ) along with moderate rises in CF2 and CF3 content, just as is seen 

in Fig. 3-13. 

The strongest direct evidence for this reaction of the double bond in the 

perfluorocyclopentene molecule during plasma polymerisation comes firom a comparison 

of the IR spectra of the monomer and the spectra of the plasma polymers. The absence 

of a strong absorption band at 1768 cm"', due to C=C stretching vibration,'" in the 

plasma polymers indicates that loss of the double bond occurs readily during the plasma 

polymerisation process. 
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Fig. 3-25: Graph of F / C ratios of plasma polymers as a function of average from pulsed and 
continuous wave plasmas of perfluorocyclohexane and perfluorocyclopentene. 
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3.7 CONCLUSIONS 

The plasma polymerisation of perfluorocyclohexane was used to generate highly 

fluorinated surfaces with F/C ratios as high as 1.8. Initially it was found that low 

discharge powers produced films with the highest fluorine content. In an attempt to 

further increase the fluorine content of the films, pulsed plasmas were employed. In a 

pulsed plasma the r . f power to the discharge was modulated by using the signal from a 

d.c. pulse generator to control the r . f generator. It was hoped that the pulsed plasmas 

would allow greater retention of the stoichiometry of the precursor in the plasma 

polymer. XPS analysis of the plasma polymers showed that for identical average 

powers, polymers deposited from a pulsed plasma had a greater F/C ratio than those 

deposited from continuous wave plasmas. The pulsed plasma polymers also had greater 

CF2 content and a lower degree of crosslinking i.e. greater retention of monomer 

structure. 

Perfluorocyclopentene was also used as a precursor to highly fluorinated, low surface 

energy polymeric coatings. Plasma polymers deposited from perfluorocyclopentene 

plasmas had a lower F/C ratio (-1.3) and lower CF3 and CF2 content than 

perfluorocyclohexane polymers. This was to be expected given the stoichiometry of the 

starting material. However the presence of the unsaturation in the ring system of the 

perfluorocyclopentene molecule was expected to result in a different plasma chemistry 

to perfluorocyclohexane. This is indeed what was found as the variations observed in 

plasma polymer composition as a function of discharge power and pulsing parameters 

were distinctly different for the two precursors. 

The difference between the stoichiometrics of the plasma polymers from 

perfluorocyclohexane and perfluorocyclopentene and the changes in the relative 

contributions of each carbon functionality to the overall polymer stoichiometry with 

varying plasma conditions are a result of the difference in the structures between the 

two precursors. These differences in the plasma polymers also give an insight into the 
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pathways leading to the production of the final polymer from the plasma. The most 

significant points taken from a comparison of the two sets of results are; 

1. In the case of perfluorocyclohexane the F/C ratio depends on the input power 

whereas for perfluorocyclopentene the F/C ratio of the plasma polymer is 

independent of discharge power, Fig. 3-25, p. 95. 

2. For perfluorocyclohexane the percentage CF3 in the plasma polymer is 

independent of power whereas the crosslinked carbon (C-CFp) content is a 

function of discharge power. For perfluorocyclopentene the opposite is true with 

the crosslinked carbon content approximately constant while the CF3 content 

increases with discharge power. 

3. The amount of crosslinked carbon present in the plasma polymers is much greater 

for those polymers deposited from perfluorocyclopentene than in those fi-om 

perfluorocyclohexane. 

The differences observed in the plasma polymers are due to the monomers breaking 

down in fundamentally different maimers within the plasma due to their respective 

chemical structures, in particular the presence of a double bond in the 

perfluorocyclopentene molecule. A critical step in the plasma polymerisation process 

for perfluorocyclopentene is removal of one of the fluorine atoms adjacent to the double 

bond resulting in a carbon with no fluorine attached, ready to be incorporated into the 

growing plasma polymer. This reaction would allow for the observed high concentration 

of crosslinked carbon and the constant value of the F/C ratio irrespective of power in 

the plasma polymers from perfluorocyclopentene. The argument is the same as the one 

used for explaining why the CF3 content of the plasma polymers from 

perfluorocyclohexane plasmas remains high irrespective of power. The necessary 

reactions are constantly taking place and are not affected by changes in the plasma 

conditions. 

In the case of perfluorocyclohexane the defluorination process was power dependent 

whereas in the case of perfluorocyclopentene one of the principle means of 
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defluorination is via the initial and favoured loss of fluorine fi-om beside a double bond. 

The stoichiometry of the final plasma polymer is a result of the balance between the 

various fluorinating and defluorinating reactions occurring within the glow discharge. 

The fact that the F/C ratio remains constant within the power range studied indicates 

that within this power regime the fluorination/defluorination equilibrium is unaffected by 

discharge parameters. 
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CHAPTER FOUR 

AN INVESTIGATION OF THE PULSED PLASMA 
POLYMERISATION OF PERFLUOROALLYLBENZENE 

4.1 INTRODUCTION 

4.1.1 Background 

The very nature of the plasma polymerisation process lends itself to extensive molecular 

rearrangements in the route leading to the formation of the deposited film and/or the 

gaseous by-products. High energy electrons, ultraviolet photons, positive ions 

accelerated across the plasma sheath and excited neutrals and ions in metastable excited 

states all possess sufficient energy to dissociate the precursor into many fi-agments 

which may bear little or no resemblance to the molecular structure of the precursor.''^''' 

Al l this suggests that any attempts to maintain the molecular structure in a plasma 

polymer face inherent difficulties. In spite or maybe even because of this the quest for 

retention of precursor structure in plasma polymers is one which has been actively 

pursued by a number of researchers.'*''̂  The ultimate aim of retention of monomer 

structure is not purely academic as ultimately control over the composition of the 

surfaces produced leads to control over their properties. 

4.1.2 Previous approaches towards improving selectivity 

The approaches taken to achieve structural retention in the final plasma polymer can be 

subdivided into two broad categories. The fiirst involves controlling the physical 

characteristics of the reaction system such as reactor design,'* power,^ pressure,̂  flow 

rate,̂ '̂  excitation fi-equency,^''° substrate temperature'' and bias'^ etc. The second 

approach is to try to control the chemistry occurring within the reactor by a judicious 

choice of precursor structure,'^ carrier gas,''' reactant mixtures'^ and even substrate 
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composition.'^'^^ Ultimately of course most investigations involve finding the optimum 

balance between physical and chemical parameters to yield the desired products. 

In order to control the physical properties of the plasma polymer, and hence the surface 

which it produces, it is essential that control be gained over its chemical composition. 

The results of chapter three suggest that pulsing the power to the plasma may be an 

effective way of enhancing the importance of the chemistry of the precursor in 

determining the structure of the final plasma polymer. In an effort to examine this 

prospect more closely it was decided to carry out a more detailed investigation of pulsed 

plasma polymerisation using another perfluorocarbon precursor, perfluoroallylbenzene 

(A), C9F10. 

XF,-CF=CF, 

(A) 

Fig. 4-1: Structural formula of perfluoroallylbenzene. 

4.1.3 Factors influencing choice of starting material 

Aromatic vapours have been studied previously'̂ "^"^ as precursors for plasma 

polymerisation with the resultant plasma polymers investigated for apphcations as 

protective and impermeable coatings,̂ "̂'̂ ^ thin film capacitors,̂ ^"^" dielectric layers,^' 

reverse osmosis membranes,̂ '̂  semiconductive thin fikns,'^'^ electroluminescent thin 

films^'* and permselective membranes.̂ ^ 

For this study perfluoroallylbenzene was chosen as a precursor for a variety of reasons. 

Firstly this is believed to be the first study carried out into the plasma polymerisation of 

perfluoroallylbenzene, as no other studies of continuous nor pulsed plasma 

polymerisation of the precursor have been found in the literature. Secondly the 

structure and properties of perfluoroallylbenzene are ideally suited to allow a detailed 

study of pulsed plasma polymerisation. The molecule consists of two important 

fimctionalities namely the aromatic fluorinated phenyl group and the perfluorinated allyl 
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substituent. These two fiinctional groups can be expected to behave completely 

differently under plasma conditions. 

As mentioned in chapter three the presence of fluorine in an olefmic carbon bond has 

the effect of activating the bond relative to its hydrocarbon analogue. As a result of 

this it is to be expected that not only will the allyl group in perfluoroallylbenzene be 

easily activated during the on-time of the pulsing cycle, but it will also be highly 

susceptible to polymerisation reactions in the off-time. Along with the reactivity 

induced by the fluorine substitution the fact that the perfluoroallyl group is itself a 

substituent on a phenyl ring will further enhance its reactivity. In gas phase reactions of 

phenyl based compounds reactions occur preferentially on the side chains while the 

phenyl ring remains intact. For example methyl radicals react with toluene vapour with 

a hundred-fold preference for the side chain rather than the ring positions."^ 

In contrast to the fluorinated allyl substituent the perfluorinated phenyl group would be 

expected to be relatively stable. Studies on the plasma polymerisation of benzene and 

other aromatic starting materials have yielded films with compositions varying fi-om 

highly unsaturated with evidence of aromaticity," '̂'̂ ^ to fihns with no evidence for 

retention of the aromatic fiinctionality.'"' The plasma polymerisation of 

perfluorobenzene has been studied previously as a means of depositing both organic'*' ''̂  

and inorganic/metal containing fihns.'*^ '*'' It has been shown in previous studies on the 

plasma polymerisation of perfluorobenzene that under certain conditions it is possible to 

get reasonable retention of the phenyl group in the plasma polymer.'' . 45.46 

Due to the strong and characteristic absorptions of the phenyl group the presence or 

absence of this ftmctional group from the plasma polymers should be easily determined 

from its infrared spectrum. The unsaturated ally] group also gives rise to strong infi-ared 

active absorptions outside of the 1000-1100 cm'' range. Hence in combination with the 

obvious opportunity for XPS analysis due to the high fluorine content of the monomer, it 
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should be possible to obtain a reasonable amount of information on the structure of the 

plasma polymers. 

4.1.4 Summary 

The aim of the work in this chapter will be to combine the unique advantages of pulsed 

plasmas, in terms of their physical characteristics, with the unique chemistry of 

perfluoroallylbenzene to deposit a plasma polymer which is highly aromatic in character. 

It is hoped that by having a sacrificial functional group in the form of the perfluorinated 

allyl substituent, for initiation in the on-time and reaction in the off-time, it will be 

possible to exploit the chemical properties of the precursor in combination with the 

physical properties of a pulsed plasma to achieve retention of the perfluorophenyl group 

in the final plasma polymer. 

In addition the effects of pulsing the power to the discharge will be examined in more 

detail, by examining reactor profiles, the effect of average power and the plasma 

polymer deposition rate as a fimction of pulsing parameters. 

4.2 E X P E R I M E N T A L 

The experimental apparatus and procedure for continuous wave and pulsed experiments 

was as described in chapter three. The monomer, perfluoroallylbenzene, was pxirchased 

from Aldrich and placed in a pyrex monomer tube. The PFAB Uquid was then degassed 

via five freeze-thaw cycles. The clean reactor was pumped to base pressure and the 

monomer vapour was introduced to a pressure of 0.2 torr at a flow rate of approximately 

1.45 X 10'̂  kg s'\ The electrical discharge was ignited and sustained for 10 minutes 

after which the r . f was switched off. Continuous wave powers between 1.5 and 8 

Watts were employed with pulsing times, ton and toff, varied over the range 10 |is to 6 ms 

with a peak power between 8 and 200 W. Prior to removing the sample from the 
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reactor the system was purged with TVS for a fiuther two minutes and finally vented to 

atmosphere. The samples were then removed and characterised. 

The C(ls), 0(ls) , F(ls) and Si(2p) high resolution XPS specfra were acquired for all 

plasma polymers. XPS was also used to determine i f complete coverage of the substrate 

surface was occurring. Glass subsfrates were used for the XPS samples and the absence 

of a peak in the Si(2p) region of the XPS spectrum was indicative of complete coverage 

of the substiate. Instrumentally determined sensitivity factors for unit stoichiometry 

were taken as C(ls) : 0 ( l s ) : F(ls) : Si(2p) equal to 1:00 : 0.62 : 0.53 : 1.08. 

Transmission infrared spectia were acquired on a Mattson Polaris specfrometer. The 

monomer spectrum was acquired as a thin film between two potassium bromide disks 

whilst the plasma polymers were deposited on the surface of a single disk. Typically 

100 scans at a resolution of 4 cm"' were collected. 

An atomic force microscope (Digital Instruments Nanoscope HI) was used to investigate 

the topography of the substrate surface following plasma polymerisation. The AFM 

images were acquired in Tapping® mode'* .̂ The data is presented unfiltered. The 

technique employs a stiff sihcon cantilever oscillating at a large amplitude near its 

resonant frequency (several hundred kHz), with the position of the cantilever detected 

by an optical beam system. The advantages of the Tapping® mode of operation include 

low contact forces and no shear forces during scanning. The large oscillations overcome 

the capillary attraction of the surface whilst the high oscillation frequency allows the 

probe tip to strike the surface many times before moving to the next lateral position. 

Deposition rate measurements were taken by monitoring the change in mass of a quartz 

crystal sensor in the plasma with time. A Kronos Digital Film Thickness Monitor''^ 

records the change in the resonant frequency of a quartz crystal as a function of time. 

The resonant frequency of the crystal is proportional to its mass. The deposition 

monitor displays the change in mass as a thickness reading. Successfiil isolation of the 
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crystal and electronics fi-om the plasma r . f allows in-situ monitoring of the plasma 

polymer deposition. 

4.3 RESULTS AND DISCUSSION 

4.3.1 Pulsed polymerisation studies with varying average powers. 

4.3.1.1 X-ray Photoelectron Spectroscopy 

A Marquardt minimisation computer program which assumed a Gaussian peak shape 

with a fixed relative fiall width at half maximum (FWHM) was used to fit the carbon (Is) 

envelope for each plasma polymer with different carbon functionalities: C-CFp (286.6 

eV); CF (288.4 eV); C F - C F n (289.4 eV); CF2 (291.2 eV); CF3 (293.3 eV).'^ There is 

also a small component with a different FWHM at very high binding energy which is too 

high in energy to be associated with a direct photoionisation peak, Fig. 4-2. This 

corresponds to a t t - t i* shake-up satellite due to unsaturation in the plasma 

polymer''̂ '̂ "'̂ '̂ ^ and directly associated with the dominant component centred at 288.4 

eV corresponding to =C-F aromatic features.''̂  The assigned value of -295 eV is based 

on previous studies of plasma polymers of perfluorobenzene.''̂ '̂ '''̂ '' The CF3 and CF2 

peaks could be assigned unambiguously so the CF2 peak was taken as a reference offset 

at 291.2 eV. Mg Ka3,4 satellite peaks with different FWHM were also taken into 

consideration." C(ls) FWHM's were found to vary between 2.0 eV and 2.6 eV. The 

relative concentration of each carbon fianctionality was obtained by dividing the 

corresponding peak area by the total C(ls) envelope area including the 7t-7t* shake-up 

peak. 688.3 eV was the centre of the F(ls) peak which had a FWHM between 2.7 and 

2.9 eV. Taking into account the appropriate XPS sensitivity factors, the F/C ratio for 

each film was calculated from the F(ls) and C(ls) peak areas. Oxygen incorporation 

into the polymer was always less than 1.5%. 
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The change in appearance of the overall C(ls) photoelectron spectra with increasing 

discharge power is shown in Fig. 4-3. At low powers the highest component is centred 

around 288.4 eV, corresponding to carbons bonded to one fluorine. At higher powers 

the C(ls) spectra show greater intensity at higher binding energies indicating an increase 

in the proportion of highly fluorinated carbons in the plasma polymer with increasing 

discharge power. 

These changes in polymer composition with plasma power can be seen when the 

percentages of the various component peaks in the overall C(ls) XPS spectra are plotted 

as a function of continuous wave power, Fig. 4-4. As the discharge power is decreased 

the amount of C F increases from approximately 36% at 16 W to just over 50% at 1.5 W. 

This is accompanied by a decrease in the relative contributions of CF3 and CF2 

functionalities to the overall plasma polymer structure. The amount of carbon not 

bonded to fluorine (C-CFn) initially rises to -23% then falls to a value of -16% in the 

higher power polymers. 

c 
o 

O 

CF-CFn 

TT-TT Mg Kas 4 

\ 
286 288 290 292 294 

Binding Energy / eV 
296 298 

Fig. 4-2: Peak-fitted high resolution C(ls) spectrum of a plasma polymer deposited onto a glass 
substrate from a pulsed PFAB discharge. Pulsing conditions: on-time 10 jis, off-time 6000 ^is, peak 

power 70 W. 
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The plasma power can also be adjusted by varying the duty cycle parameters using a 

pulsed plasma. Changing the off-times with on-time constant at 10 ^s and peak power 

constant at 70 W resulted in changes in the XPS spectra. Fig. 4-5 and polymer 

composition. Fig. 4-6. For longer off-times the composition of the plasma polymer 

closely resembles that of the precursor with a high percentage of CF (55%) and a F/C 

ratio of 0.97 compared to 66% CF and 0.90 for the monomer PFAB. It is of interest to 

note that 55% of the CF content of the monomer arises from the aromatic ring. As the 

off-time is decreased, especially below 1000 jos, the amounts of the other fiinctionaUties 

particularly CF3 and CF2 increase at the expense of CF. 

Comparable results are seen in the on-time experiments on PFAB. The effect of altering 

the pulse on-time on the XPS specfra and plasma polymer composition is shown in Fig. 

4-7 and Fig. 4-8, p. 112. For experiments in which the on-time was changed the off-

time was 6000 fis with a peak power of 70 W. This range of duty cycles allowed 

average powers of between 0.37 and 16 W to be delivered to the plasma. Increasing the 

on-time from 10 to 2500 \is leads to a reduction in the percentage of CF (from 57 to 

31%) and an increase in the amoimts of CF2 and CF3 in the plasma polymer. The F/C 

ratio increases with both decreasing off-time and increasing on-time from values close to 

that of the monomer i.e. 0.9 at low average powers to approximately 1.5 at high average 

powers. Fig. 4-9, p. 113. 
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Fig. 4-9: Plot of F /C ratios versus average power for plasma polymers deposited from PFAB 
discharges with varying continuous wave power, on-time and off-time. 

4.3.1.2 Transmission Infrared Spectroscopy. 

The infi-ared spectra of perfluoroallylbenzene and all plasma polymers show no 

absorption peaks above 2000 cm"', typical of the spectra of all perfluoro-compounds.^^ 

The infi-ared absorption spectrum of PFAB liquid, taken as a thin film between two KBr 

disks, shows absorption bands at 1788(s), 1655(m), 1530(s), 1510(s), 1427(w), 1356(s), 

1335(s), 1295(s), 1175(s), 1082(m), lOOl(s), 966(s), 812(s), 737(w) and 685(w) cm"'. 

The spectra of the plasma polymers fi-om CW and pulsed plasmas are shown in Fig. 4-

10, Fig. 4-11 and Fig. 4-12. Of most significance is the behaviour of the single peaks at 

1788 cm'' and 1655 cm"' and the doublet at 1530/1510 cm"'. The absorption at 1788 

cm"' can be assigned to C=C sfi-etch of the double bond in the allyl substituent^'"^° with 

the second singlet and doublet assigned to C-C(an)inatic) sfi-etch of the fiiUy fluorinated 

phenyl group.^' The doublet and singlet in the 1340-1300 cm"' region of the spectrum of 

the monomer have also been assigned to the CF=CF2 group 58 
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Upon increasing discharge power these peaks disappear from the specfra of the plasma 

polymers indicating loss of the both the allyl and aromatic fimctionalities at high plasma 

powers. However at lower average powers i.e. low CW powers, long off-times or short 

on-times, the aromatic nature of the monomer is mirrored in the plasma polymers as 

indicated by the increase in intensity of the C-C(aromatic) sfretch peaks. The peak at 1788 

cm'' never shows itself to be present to an extent comparable to that seen in the 

precursor which suggests that reaction of the C==C double bond on the allyl group is 

important in the deposition process. Peaks in the region 1400 cm'' to 1000 cm'' are 

difficult to assign imambiguously but are characteristic of all fluoro-compoimds due to 

C-F sfretching vibrations.^^ The peak at 1350 cm'' has previously been assigned to the 
CO 

imsaturated carbon-carbon vibration in the allyl group. All plasma polymers show a 

broad peak in the 1700 cm'' region. This could be due to C=C or C=0 fimctionahties. 

However, given the fact that XPS shows the fihns to contain very little oxygen, with an 

0/C ratio < 0.03, it is most likely due to the presence of C=C double bonds. 
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Fig. 4-12: Transmission FT-IR spectra of plasma polymers deposited from pulsed plasmas as a 

function of on-time; off-time = 6000 us, peak power = 70 W. 

4.3.1.3 Ultraviolet/visible spectroscopy. 

The UV/visible specfra of plasma polymers deposited onto quartz subsfrates were 

recorded for three different on-times, 60, 120 and 600 jis. Fig. 4-13. All three plasma 

polymers show intense absorption below 300 nm consistent with a large degree of 

imsaturation within the polymers. For shorter on-times the specfra become sUghtly more 

structured with the 60 |as spectrum showing two clear absorption features at 220 and 

270 nm. Phenyl containing molecules show intense absorption in this region and in 

conjimction with the IR spectrum for this duty cycle, Fig. 4-12, p. 116, the results 
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confirm that shorter on-times lead to a more ordered and aromatic plasma polymer. 
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Fig. 4-13: UVA'^isible absorption spectra of plasma polymers depositee] onto quartz slides for 
different on-times; off-time = 6000 fis, peak power = 70 W. 

4.3.1.4 Atomic Force Microscopy 

The surface of the plasma polymer was examined following plasma deposition using 

atomic force microscopy. Fig. 4-14 shows an AFM image of a plasma polymer 

deposited from a pulsed plasma with the following conditions; on-time 20 |is, o f f time 

4000 [IS, peak power = 70 W. Upon initial examination the surface appears featureless 

and flat as has been reported previously for plasma polymerised fluorocarbon films.^" 

Following repeated scanning with the AFM tip however the surface of the film 

undergoes rearrangement. 

Vinogradov and co-workers have reported the patterning of thin, 2-10 nm, plasma 

polymerised organic films by an atomic force microscope.^^ They attribute the 

patterning process to several factors including mechanical and Coulomb forces, heat 
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effects, material transfer and electric charge deposition depending on the conditions. 

The exact reason for the rearrangement of these pulsed plasma polymers is imclear at 

present and needs further study. 
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Fig. 4-14: Atomic Force Micrograph of a plasma polymer deposited from a low duty cycle PFAB 
plasma showing the effect of repeated scanning on the topography of the surface. 
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4.3.2 Discussion of variable average power results. 

The results of the XPS, infrared and UV-visible absorption studies clearly indicate that 

highly aromatic surfaces can be obtained with pulsed plasmas. By lowering the duty 

cycle, either by increasing off-time or decreasing on-time, retention of the phenyl ring in 

the plasma polymer can be enhanced. This can be due to two different effects 

depending on whether the variable altered is on-time or off-time. I f the on-time is 

reduced there will be less fragmentation and hence rearrangement of the precursor 

molecules in the gas phase prior to them undergoing conventional radical-induced 

polymerisation in the off-time.^ A reduction in on-time also reduces ion bombardment 

of the growing polymer which is known to induce cross-linking and rearrangement at the 

surface.^' On the other hand i f the off-time is increased then there is a greater chance 

for incorporation of non-fragmented perfluoroallylbenzene molecules into the plasma 

polymer before they become exposed to fiirther excitation and dissociation in the next 

pulse cycle.^^ Hence it appears that by manipulating the timescales of the duty cycle it 

is possible to control the aromaticity of the deposited plasma polymer. 

When analysed in greater detail however it becomes apparent that there may be another 

possible explanation for the increase in polymer aromaticity with reduction in duty 

cycle, which bears no relation to the magnitude of the timescales involved in the pulse 

cycle. It is possible that the changes in polymer composition may be purely a result of 

the effect of the average power being delivered to the plasma. From Eq. 4-1 it can be 

seen that altering on or off-time wil l change the average power deUvered to the plasma; 

f ton ^ 
< P > = Pp X — Eq. 4-1 

Vton + toffy 

where <P> is average power and Pp is peak power. 

Hence any study carried out by varying pulsing parameters will be affected by the 

associated change in average power supplied to the plasma. In terms of these 

investigations it has been noted that continuous wave studies indicate that increasing 
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average power results in a less aromatic plasma polymer in the coil region. This is 

caused by two contributing factors; 

1. Increased power leads to a more energetic plasma resulting in greater 

fi-agmentation and dissociation of the precursor. 

2. Changing the average power alters the distribution of deposition along the length 

of the reactor, i.e. the reactor profile. 

The effect of average power on the reactor profile of this particular experimental 

configuration was investigated by comparing two reactor profiles, one fi-om a low power 

plasma, 2 W, and one fi-om a high power plasma, 16 W. 

4.3.3 Effect of average power on reactor profile. 

Previous studieŝ '̂̂ ^ have indicated that substrate position within the reactor can have a 

pronounced effect on the structure of the plasma polymer and during the continuous 

wave experiments it was noticed that deposition was not occurring uniformly along the 

reactor length at higher powers. For the reactor profile experiments substiates were 

placed in three different positions, namely 4 cm upstream fi-om the centre of the coils, in 

the centre of the coils and 4 cm downstream. Fig. 4-16 shows that the XPS spectia for 

the plasma polymers deposited at the different positions are all quite similar. The 

upstream XPS spectnrai does show greater resolution however with a FWHM for the 

component peaks of 1.84 eV compared with 2.4 eV for the coils and downstream 

spectra. 

The FT-IR transmission spectra, Fig. 4-17, are more informative than the XPS spectra. 

The IR spectra show that for a 2 W plasma, the peaks associated with the precursor, in 

particular at 1500, 1350 and 990 cm'^ diminish as the substirate is moved fiirther along 

the length of the reactor firom the gas inlet. 

In the case of the 16 W plasma the JR. specti-a of the deposits are the same regardless of 

substrate position, Fig. 4-18. Extensive molecular rearrangement and dissociation 
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results in none of the plasma polymers showing any evidence of a phenyl group with the 

main feature of the spectra being the strong absorption at 1200 cm'' due to C-F stretch. 

c 
o 
O 

Down 

284 288 292 296 
Binding Energy / eV 

Fig. 4-16: C(ls) XPS spectra of plasma polymers deposited from a 2 W CW plasma with varying 
reactor positions; 4 cm upstream, in the centre of the coils and 4 cm downstream. 
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The results clearly show that on going from 2 to 16 W continuous wave power the loss 

in aromaticity of the plasma polymers in the coil region can be attributed both to a more 

energetic environment at the gas/surface interface and to the effects of the difference in 

reactor profile between the two regimes. 

Therefore it is reasonable to assume from these results that the changes in polymer 

composition seen during the pulsing experiments are not entirely due to the previously 

discussed factors relating to pulsing timescales, but are also a consequence of the effect 

increasing average power has on the composition of plasma polymers deposited in the 

coil region. It is important to determine therefore how much of a factor the average 

power actually is during the pulsing experiments and i f the confrol over polymer 

composition obtainable by pulsing the power is attributable in anyway towards the 

change in pulsing parameters, or is merely an average power effect. 

4.3.4 Pulsed plasma polymerisation studies using constant average power. 

One of the reasons for the increasing F/C ratios and CF2 and CF3 contents in the plasma 

polymers with increasing average powers is that the deposits in the coil region derive 

their composition from several different processes. The first is direct activation and 

polymerisation of the PFAB precursor and incorporation of the stoichiometry and 

properties of the PFAB into the plasma polymer. Another source of raw material for the 

growing polymer arises from ablation of polymer deposited upstream from the coil 

region and subsequent re-deposition onto the substrate within the coils. The former 

produces an aromatic polymer with F/C ratio less than one; the latter a more highly 

fluorinated, non-aromatic polymer. The results from the reactor profile experiments 

show that at low average powers more PFAB is incorporated into the polymer due to 

more imreacted PFAB reaching the coil region and less ablation of the plasma polymer 

deposited upsfream from the coils. 
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In order to remove the effect of average power and study more closely the effect of on 

and off-time on the deposition process, a series of experiments were carried out in which 

the average power to the plasma was kept constant by varying the peak power of the r . f 

while simultaneously altering the on or off-time. The parameters were chosen to produce 

an average power of 4 W. The conditions used are given in Table 4-1: 

Experiment 
No. 

On-time 
(\^) 

Off-time 
(lis) 

Peak Power 
(W) 

1 10 10 8 

2 10 90 40 

3 10 360 150 

4 12 600 200 

5 43 600 60 

6 150 600 20 

Table 4-1: Pulsing parameters for experiments where average power was kept constant at 4 W. 

Experiment 
No. 

% 
C-CF„ 

% 
CF 

% 
CF-CF„ 

% 
CFftotal) 

% 
CF, 

% 
CPs 

% 
n-n* 

1 22.49 31.18 15.85 47.03 17.14 10.47 2.24 

2 22.41 34.19 14.84 49.03 17.24 8.48 2.83 

3 23.36 34.22 13.20 47.42 17.61 8.54 3.07 

4 19.92 41.56 12.57 54.13 17.21 5.60 3.14 

5 22.73 38.41 11.07 49.48 16.92 8.08 2.79 

6 23.36 34.22 13.20 47.42 17.61 8.54 3.07 

Table 4-2: XPS results from experiments using constant average power of 4 W by varying on-times, 
off-times and peak powers. 

Only plasma polymers deposited in the coil region were investigated. The contributions 

of the various carbon environments to the overall C(ls) area are shown in Table 4-2. 

Transmission FT-IR specfra were also gathered for experiments 1 to 3 i.e. the 

experiments in which the off-time was altered and the peak power adjusted to maintain 

constant average power. The XPS data for these runs (and run 4) show an increase in 

the percentage CF and K-n* peaks along with a decrease in the percentage CF3, 

indicating increased retention of the precursor stoichiometry and reduced rearrangement 

respectively with increasing off-time. Fig. 4-19 shows the increase in intensity of the 
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infrared peaks associated with the phenyl ring with increasing off-time despite the fact 

that the peak power also increases. Since the average power is constant for these 

experiments it is reasonable to assume that the increase in retention of the precursor 

structure is a result of the reduction in duty cycle with increasing off-time. As the off-

time increases the species which undergo initiation in the on-time, via UV irradiation, 

ion or elecfron bombardment etc. have more time to polymerise either in the gas phase 

or at the gas/subsfrate interface. This greater delay time before the next initiation 

sequence allows for a greater retention of the initial structure of the 

perfluoroallylbenzene in the plasma polymer. The increase in fragmentation during the 

on-time due to increasing peak powers at lower duty cycles, obviously is less important 

than the length of the off-time. 
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Fig. 4-19: I R Spectra from pulsed plasmas with varying off-times and peak powers to give a fixed 

average power of 4 W. On-time = 10 ps. 

Varying both on and off-times, but keeping duty cycle constant along with peak power 

allowed another series of experiments with constant average power to be carried out. 

This allows us to maintain a constant on-time/off-time ratio i.e. initiation/propagation 

ratio and study the effect of changing the timescales of the pulsing through several 

orders of magnitude without the variation in peak power. The pulsing ranged in 

frequency from 1 kHz to 25 Hz and the results are presented in Table 4-3 and Fig. 4-20, 

p.l29. 
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Pulsing 
Parameters 

% 
C-CF„ 

% 
CF 

% 
CF-CF„ 

% 
CF. 

% 
CPs 

% 
n-n* 

10/1000 19.96 39.57 11.71 17.30 7.32 3.37 

50/5000 20.92 42.84 9.63 16.53 6.38 3.70 

100/10000 20.92 39.99 14.12 15.87 6.09 3.01 

200/20000 21.49 42.48 10.42 16.48 6.34 2.78 

400/40000 22.71 41.44 11.27 15.27 6.25 3.06 

Table 4-3: XPS results from experiments using constant average power of 4 W with varying pulse 
frequency. 

The data fi-om this set of experiments show that is no major changes in the composition 

of the plasma polymers through the range of pulse fi-equencies studied. Any changes in 

XPS values are within experimental error however IR spectra of the plasma polymers 

deposited in these experiments show that upon going through the series 10/1000 ŝ (10 

^s on, 1000 ŝ off) , 50/5000 ^s, 100/10000 îs the retention of tiie phenyl group in the 

plasma polymers is increased. Increasing the timescales further through 200/20000 ŝ 

and 400/40000 us does not increase retention. In fact the polymers deposited in the 

latter two cases are less aromatic than the polymer deposited from the 100/10000 [is 

plasma. 

These results suggest there is an optimum time regime for retention of monomer 

structure using a pulsed plasma. At timescales less than this optimtim, the discharge is 

of f for an insufficient length of time for incorporation of the maximum amount of non-

fragmented precursor into the plasma polymer. At timescales above the optimum the 

longer on-times result not only in initiation but also in excessive and undesirable 

fragmentation of the precursor before the off-period. Additional work is required to 

investigate this phenomenon further. 
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Fig. 4-20: I R Spectra from pulsed plasmas with varying pulse frequency but fixed average power of 
0.7 W. Peak Power = 70 W. 

4.3.5 Deposition rate studies 

In an attempt to gain a greater understanding of the effect of pulsing the power to the 

plasma studies of the polymer deposition rate from perfluoroallylbenzene plasmas were 

carried out. Both perfluorocyclohexane and perfluorocyclopentene plasmas were also 

investigated and the results are presented here rather than in chapter three for the sake 

of comparison. 

In these experiments a gold coated quartz crystal with a surface area of 1 cm^ is placed 

in the centre of the plasma. The resonant frequency of the crystal is related to the mass 
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of the crystal and when the plasma polymer is deposited onto the crystal its mass 

obviously changes. This change in mass is measured via the change in the resonant 

frequency of the crystal and displayed as a thickness reading on the deposition monitor. 

By monitoring the thickness of fihn deposited over time the deposition rate of the 

plasma polymer can be calculated. 

500 

Off-time 

400 H 

< 300 

^ 200 

-10 10 20 30 40 

Time / s 
50 60 70 80 

Fig. 4-21: Plot of thickness versus time for plasma polymers deposited from periluoroallylbenzene 
pulsed plasmas as a function of off-time, on-time = 20 us, peak power = 70 W. 

Fig. 4-21 shows the effect of increasing off-time on the film thickness per second for 

plasma polymers from perfluoroallylbenzene pulsed discharges. As expected increasing 

the off-time reduces the deposition rate due to the reduced power input to the plasma. 

The same effect is seen for pulsed plasmas of perfluorocyclohexane and 

perfluorocyclopentene, i.e. reducing the duty cycle of the pulsing reduces the overall 

deposition rate. Fig. 4-22, p. 132. The reason the same frends are seen for all three 

monomers is because the effect of changing the average power to the plasmas by 

altering the duty cycle overshadows any differences between the three precursors due to 
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their different chemistries. In order to reduce the effect of duty cycle on the deposition 

rate results it is necessary to consider the deposition rate per Joule.^'^^ This gives us an 

indication of the amount of polymer formed at the surface of the crystal per imit of 

energy supplied to the discharge. The deposition efficiency in Angstroms/Joule is 

calculated as follows; 

Deposition Efficiency (A / J) = Dep-Rate (A / s) ^ ^ 
Average Power (J / s) 

In contrast to Fig. 4-22 which shows all three precursors showing the same behaviour 

with increasing off-time. Fig. 4-23 shows that when we consider the deposition rate per 

Joule the three monomers show significantly different behaviour with a reduction in 

duty cycle. In the case of perfluorocyclohexane the deposition rate per Joule remains 

essentially constant regardless of the off-time chosen. For perfluorocyclopentene the 

deposition rate increases up to an off-time of ~ 300 jis and then remains constant. For 

perfluoroallylbenzene the deposition rate per Joule increases as the off-time is increased. 

The changes seen in the deposition rates per Joule must be attributable to polymerisation 

processes occurring in the off-portion of the duty cycle.^'^^'^° 
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Fig. 4-22: Comparison of the effect of duty cycle on the deposition rate of plasma polymers from 
pulsed discharges of perfluorocyclohexane, perfluorocyclopentene and perfluoroallylbenzene; on-time 
= 20 jis, peak power = 70 W. 
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Fig. 4-23: Comparison of deposition rates per Joule of plasma polymers from perfluorocyclohexane, 
perfluorocyclopentene and perfluoroallylbenzene discharges as a function of off-time, on-time = 20 

fis, peak power = 70 W. 
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In the case of perfluoroallylbenzene the increasing deposition rate per Joule with 

decreasing duty cycle can be explained by deposition occurring during the off-portion of 

the duty cycle. This being the case then for the same amount of energy input per on-

time the amount of polymer deposited over the total duty cycle will be greatest for the 

longest off-time. The fact that the deposition rate per Joule continues to rise even for 

off-times as long as 1000 \is suggests perfluoroallylbenzene is susceptible to continued 

polymerisation in the off-time. The situation is slightly different for 

perfluorocyclopentene where the deposition rate per Joule initially rises and then levels 

off with increasing off-time. This suggests that for the first - 300 ŝ of the off-time, 

deposition processes continue but for off-times greater than this there is no longer any 

significant polymerisation taking place, i.e. an off-time of 1000 ]xs will give you the 

same amount of deposition per Joule as an off-time of 400 us. In the case of 

perfluorocyclohexane the deposition rate results indicate there is no significant 

deposition occurring in the off-portion of the duty cycle as the deposition rate per Joule 

remains approximately constant regardless of off-time. 

It is clear fi-om the above results that the length of the off-time can be important in 

determining the deposition efficiency of a pulsed plasma depending on the chemistry of 

the precursor. In the case of perfluoroallylbenzene there is obviously deposition 

occvirring during the off-portion of the duty cycle. It is of interest to determine how long 

this off-stage polymerisation occurs and also what effect the length of the on-time has 

on the off-time polymerisation. Further studies which investigated a wider range of duty 

cycles were therefore carried out on pulsed plasmas of perfluoroallylbenzene. The 

results are presented in Fig. 4-24. 

As can seen the effect of increasing off-time on the deposition efficiency of the pulsed 

plasmas depends on the on-time. For each on-time there are three different regions of 

behaviour of the deposition efficiency. The first region is where the deposition 

efficiency increases with increasing off-time which can be attributed to the off-stage 

polymerisation compensating for the reduction in average power as a result of the 
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decreasing duty cycle. In the third region the deposition efficiency drops with 

increasing off-time. This may be due to there being insufficient energy to effectively 

initiate the plasma polymerisation due to the very low levels of average power and long 

off-times. The second level Hes between the first and third and corresponds to the duty 

cycle range where the deposition efficiency remains constant. 

The maximum deposition efficiency attainable is also dependent on the on-time. While 

10 ^s gives a sUghtly higher maximum deposition rate in A/J than 20 ŝ on-time the 

maximum efficiency is achieved when a 50 îs on-time with greater than 3000 |is off-

time. This is most probably due to continued polymerisation in the off-time of the active 

species/sites generated during the 50 )as on-time. 

The results therefore indicate that with a pulsed plasma of perfluoroallylbenzene there is 

an optimum range of duty cycles where maximum deposition efficiency can be achieved 

by finding the optimum balance between the on-time (initiation) and off-time 

(propagation) reactions. 
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Fig. 4-24: Deposition rate per Joule as a function of off-time for plasma polymers from pulsed 
plasmas of perfluoroallylbenzene with varying on-times. 
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4.4 CONCLUSION 

A detailed investigation into the pulsed plasma polymerisation of perfluoroallylbenzene 

has been undertaken resulting in the generation of fluorinated surfaces of a highly 

aromatic nature. Preliminary continuous wave studies mdicated significant differences 

between plasma polymers deposited at low and high discharge powers. Low powered 

plasma polymers show an XPS profile centred aroimd C-F i.e. carbon bonded to one 

fluorine. Bhgh power plasma polymers contain a high fluorine content with the XPS 

profile shifted to higher binding energies. The conclusion that lower power plasmas 

retain more of the aromatic nature of the perfluoroallylbenzene precursor is confirmed 

by the infirared results. Absorptions associated with the precursor are much stronger in 

the spectra of low power plasma polymers and in some cases are completely missing in 

the spectra of the polymers deposited fi-om higher power plasmas. 

Pulsed plasma polymerisation studies were carried out to study the effect of changing 

the duty cycle of the pulsing on the composition of the plasma polymer. Increasing the 

off-time and decreasing the on-time both resulted in an increase in aromaticity of the 

plasma polymer as indicated by XPS, infi-ared and ultraviolet/visible spectroscopy. The 

dramatic reduction in intensity of the infi-ared absorption at 1788 cm"' in all the plasma 

polymers indicates that the unsaturated allyl fimctionality is highly susceptible to plasma 

reaction and is the most likely site for both initiation and fi"ee-radical polymerisation 

leading to phenyl group incorporation in the final plasma polymer. 

Examination of the surface using atomic force microscopy revealed all plasma polymers 

were smmoth and pin-hole free. However after repeated scanning the surface of low 

duty cycle pulsed plasma polymers was modified. Further work need to be carried out 

toinvestigate this phenomenon fiirther. 

Reactor profile experiments confirmed the effect average power has not only on the 

composition of the plasma polymers deposited in the coil region, but also on the 
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distribution of stoichiometrics throughout the reactor. It was discovered that for high 

plasma powers most of the perfluoroallylbenzene precursor was being deposited 

upstream fi-om the coil region. This resulted in the principle reactants for plasma 

deposition in the coil region being non-aromatic, highly fluorinated by-products arising 

fi-om the ablation of the previously deposited plasma polymer or fi-om dissociation of 

perfluoroallylbenzene in the gas phase. 

It was decided to investigate how significant the variation in average power during the 

pulsing experiments was in determining the stoichiometry of the plasma polymers. This 

was estabhshed by carrying out a series of experiments where the pulsing parameters 

were varied in combination to maintain the same average power in each experiment. 

The results clearly demonstrate that control over the surface composition, in this case 

the aromatic nature of the plasma polymer, can be achieved by manipulation of the 

timescale of the pulsing. 

Hence the improvement in monomer retention seen in the varying average power 

experiments with increasing off-time and decreasing on-time is due not only to a 

reduction in average power delivered to the plasma, but also to the influence of pulsing 

parameters on the plasma polymerisation process. 

The firequency of the pulsing was found to have a slight impact on determining the 

extent of selectivity of the plasma polymerisation process. By keeping the duty cycle 

and peak power constant and altering the fi-equency of the pulsing an optimum 

firequency range for retention of monomer structure was found. Within this range 

excessive fi-agmentation in the on-time is avoided but sufficient time is allowed in the 

off-time for conventional polymerisation reactions to retain the aromatic nature of the 

precursor in the surface. 

Deposition rate experiments were carried out to further explore the function of the on 

and off-time reactions in the overall pulsed plasma polymerisation process. As expected 

monitoring deposition rate in Angstroms/second merely indicated that with decreasing 
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duty cycle the deposition rate decreased. I f deposition efficiency, Angstroms/Joule, was 

monitored however the effects of the different precursor chemistries and the effects of 

varying duty cycles and frequencies became more clear. The studies indicate that 

perfluorocyclohexane is not very susceptible to off-time reactions with the length of the 

off-time having very little effect on the deposition efficiency. In the case of 

perfluoroallylbenzene on the other hand the length of the off-time is critical in 

detemiining the deposition efficiency of the pulsed plasma. This is attributed to the 

susceptibility of perfluoroallylbenzene to reactions in the off portion of the duty cycle. 
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CHAPTER F I V E 

ORGANOSILOXANE SURFACES VIA PULSED PLASMA 
POLYMERISATION 

5.1 INTRODUCTION 

5.1.1 Background 

In recent years there has been much interest in the development of inorganic polymers.' 

These materials generally consist of an inorganic backbone to which is attached organic 

or organometalUc side groups.̂ '̂ '"* The principle behind the design of these 

macromolecular compounds is that the traditional advantages of inorganic compounds 

such as heat and radiation resistance, electrical conductivity and electro-optic properties 

can be combined with the characteristic advantages of organic polymers, for example 

ease of fabrication, corrosion resistance, flexibility and strength.''"* In an inorganic 

polymer the backbone provides the inorganic character while the side groups can be 

designed to control properties such as solubiUty and Uquid crystallinity along with 

surface-related properties such as hydrophobicity, adhesion or biocompatibility. 

5.1.2 Poly(siloxanes) 

One of the oldest and most widely exploited of the inorganic polymers are the 

poly(organosiloxanes) (sihcones) (1). These consist of a Si-O-Si backbone with side 

groups attached to the silicon atoms, as represented below. 

f — 0 - S i H 
I 
R 

CH3n 

- 0 - S i H 
CH 3 n 

(1) (2) 

The chains of alternating silicon and oxygen atoms are among the most flexible units 

known, which results in the polysiloxanes having some of the lowest glass transition 
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temperatures (Tg) of all polymers, for example poly(dimethylsiloxane)(2) has a Tg = -

130°C. The high flexibility of polysiloxane polymers can be attributed to three principle 

factors; 

(i) there is an inherently low barrier to rotation of the Si-0 bonds 

(ii) the Si-O-Si bond angle is able to widen under moderate tension and 

(iii) the side groups are located on every second atom on the backbone compared to all 

backbone atoms having substituents as is generally the case for conventional organic 

polymers. 

This spacing of the side groups combined with the flexibility of the Si-O-Si bond angle 

serves to reduce the amount of intramolecular interactions which would otherwise 

restrict the flexibility of the overall polymer. 

Polysiloxanes have a high resistance to both thermo-oxidative and hydrolytic cleavage 

of their skeletal units.^ The oxidative stability is at first surprising given the fact that 

sihcon has a high tendency to combine with oxygen. However in the case of 

polysiloxanes the siHcon atoms in the inorganic backbone are already bonded to two 

oxygen atoms hence there is no driving force for oxidative cleavage of the Si-O-Si 

bonds. Unlike the linear siUcates which are extremely sensitive to hydrolytic cleavage, 

the sihcon-oxygen bonds in the polysiloxanes are stable in aqueous media. This 

resistance to hydrolysis reflects the protective function of the hydrophobic organic side 

groups on each Si atom. 

Polysiloxanes have been widely exploited for their optical properties.^''' The 

polysiloxane backbone has a broad window of optical transparency. 

Poly(dimethylsiloxane) is transparent to all wavelengths fi-om 250 nm to the near 

infrared. In appUcations where stability to ultraviolet light is important, for example 

space applications or appUcations requiring exposure to intense sunlight, this optical 

transparency of the polysiloxane backbone is important. In experiments where 

radiation-induced reactions of the side groups are desired the stabiUty of the sihcon-

oxygen bonds allows the substituents to be manipulated without affecting the overall 
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polymer backbone. In terms of their use in biomedical and medical applications the 

polysiloxanes have the fiirther advantage of being resistant to chain cleavage upon 

exposiu-e to X-rays or y-radiation. In contrast to the C-C units in their organic 

counterparts, inorganic backbones such as Si-O-Si are resistant to free-radical cleavage 

processes. 

5.1.3 Plasma polymerisation of siloxane precursors 

The interest and exploitation of organosilicon compounds to produce conventional 

organosilicon polymers and elastomers means they are now extremely important 

materials both for their industrial appHcations and their use for fimdamental studies in 

macromolecular science. Such interest in conventional polymers has naturally induced 

corresponding interest in plasma polymers derived from organosiUcon precursors. In 

fact there has been a very special interest in the organosihcones since the earhest days 

of plasma polymerisation studies. This may be due to a number of reasons including;" 

1. There are many organosilicon compounds which are sufficiently volatile at ambient 

temperatures to be easily and successfiiUy used in standard plasma-chemical 

procedures. 

2. The materials are relatively inexpensive, are commercially available and easy to 

handle having much lower flammabihty than organometalhcs for example. 

3. In comparison to fluoropolymers for example, siloxanes are available with a huge 

variety of sidegroups which therefore offers a wide variety of potential fimctional 

groups for grafting onto substiate surfaces. 

4. The natural affinity between pure crystalline silicon and organosihcon plasma 

polymers has meant keen interest in the study of organosiUcon plasma polymers for 

appUcations in the semi-conductor industry. 

5.1.4 Applications of polysiloxane plasma polymers 

This wide interest in the plasma chemistry of organosilicones has led to the exploitation 

of their plasma polymers in a wide variety of applications. Plasma polymers of 
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organosilicon compounds have been studied as adhesion promoters for various metals^ 

including steel,̂ '̂  and platinum,^''" along with non-metallic substrates such as Kevlar," 

and glass.'" They have also been deposited for use as dielectrics in capacitors for semi

conductor applications and sensor devices.'^''^ The broad range of transparancies and 

radiation stabiHty of the siloxane backbone has been exploited in applications such as 

optical coatings either with variable refractive index^^"'̂  or as transparent coatings with 

anti-reflective or scratch resistant properties.'^'^° Plasma polymerized films from 

mixtures of organosilicons and nitrogen showed absorption in the ultraviolet and were 

used as UV filters.^' 

A widespread use of plasma polymer films of organosilicones is as barrier coatings for 

corrosion prevention. '̂̂ '̂̂ ^ Their usefiilness in this application is a result of their 

extremely low permeability towards water vapour.̂ '''̂ ^ In fact protective overcoats of 

plasma polymerized hexamethyldisiloxane on evaporated aluminium in automotive 

headlight reflectors are one of the largest single applications of plasma polymer films. In 

1987 Bosch GmbH annually coated over 10 million of its reflectors in order to prevent 

corrosion of the aluminium.^^ Along vAth their resistance to water vapour they also 

have the advantage of being transparent which makes them ideal for use as barrier 

coatings on plastic food packaging.^' 

Organosilicon plasma polymers are also used in biomedical applications.^^"Critical 

surface tensions of 20-30 mJ m"̂  are recommended for surfaces with good 

biocompatibility.Siloxane polymers have a critical surface tension of approximately 

22 mJ m"̂  and are non-toxic. When untreated polypropylene and polypropylene coated 

with the plasma polymer of hexamethylcyclotrisiloxane were analysed following 

exposure to blood, the plasma-polymer-treated-polypropylene was found to have fewer 

adhering blood cells and to have induced fewer morphological changes in the cells than 

the untreated polypropylene.^^ Plasma polymers deposited from 

octamethylcyclotetrasiloxane discharges were used as biocompatible coatings for 

membranes in blood oxygenators. •'̂  
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Plasma polymers of cychc siloxanes have been studied along with other sihcon -

containing precursors for their use as permselective membranes for the separation of 

various gas mixtures into their individual components. Oxygen over nitrogen''̂ ''*^ and 

hydrogen over carbon dioxide"*' are among the mixtures tested. For the enrichment of 

oxygen from nitrogen/oxygen mixtures e.g. air, plasma polymerized 

octamethylcyclotefrasiloxane was foimd to provide the best combination of permeability 

ratio and O2 permeation rate."*̂  A membrane of the plasma polymer of 

hexamethylcyclotrisiloxane on a cellulose acetate subsfrate was used to study the 

separation of a binary liquid mixture (alcohol/water).'*^ 

The effects of siloxane chain length on the separation characteristics of pervaporation 

membranes prepared by plasma polymerisation has recently been studied"" and it was 

found that the cyclic siloxane with the longest chain length gave the best performance in 

terms of high selectivity and high permeation rate. The separation characteristics of the 

membrane were related to the hydrophobicity of the surface in contact with the 

ethanol/water solution. The higher permeation rate for monomers with longer siloxane 

chain lengths was attiibuted to greater flexibihty within the plasma polymer. Recent 

work details the use of a plasma polymer coating from octamethylcyclotefrasiloxane 

discharges being used as a membrane with selective gas sorption characteristics to be 

used in detecting inhalating anaesthetics."^ 

The flexibility of siloxane chains has akeady been mentioned as leading to lower glass 

fransition temperatures. Lower Tg's are known to enhance ionic conductivity"^ and 

these two properties have been exploited to produce an ionically conductive thin film 

from the plasma polymerisation of octamethylcyclotefrasiloxane with organic and ionic 

co-monomers and dopants."^ 

The choice of the starting material for this study of pulsed plasma polymerisation was 

influenced by several factors. This is the first study of the plasma polymerisation of 

teframethyl-tetravinyl-cyclotetiasiloxane (TVS) (3). The chemical structure of the 
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precursor is such that it contains an inorganic silicon-oxygen skeleton combined with 

organic methyl and, more importantly, vinyl substituents. The inorganic siloxane rings 

will contribute the properties previously discussed in relation to siloxane compounds. 

The vinyl groups should provide sites to allow polymerisation to proceed both during the 

on-time and through conventional radical-induced polymerisation in the off-time. 

Polymerisation through the vinyl groups would be expected to result in a highly 

crosslinked structure with good chemical stability. 

CH, 

CH2=CH 

^3-

0^ 

o 

CHo 

; s i : 

.CH=CH2 

0 

Si; 

0 

CH, 

CH=CH2 

-Si ' 

•CH=CH2 

Fig. 5-1: Molecular formula of Ci2H24Si404, tetramethyl-tetravinyl-cyclotetrasiloxane (TVS). 

The work reported in chapters three and four has shown it is possible to enhance 

retention of precursor structure in the fimal plasma polymer through the use of pulsed 

plasmas. In particular the studies of pulsed plasmas of perfluoroallylbenzene 

demonstrated the presence of a fimctional group susceptible to free-radical 

polymerisation enhances the effectiveness of pulsed plasmas as a means of tailoring the 

surface composition. The aim of the work reported in this chapter is to determine i f it is 

possible to exploit the characteristics of pulsed plasma polymerisation in conjunction 

with the chemical characteristics of TVS to such an extent as to retain the siloxane rings 

of the monomer in the fmal plasma polymer. The objective being to produce a surface 

consisting of siloxane rings enclosed in a cross-linked organic matrix. 
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5.2 EXPERIMENTAL 

The experimental apparatus and procedure for continuous wave and pulsed experiments 

was as described in sec 3.2. The monomer, TVS, was purchased from Aldrich and 

transferred to the monomer tube under an inert atmosphere. The TVS liquid was then 

degassed via five freeze-thaw cycles. The clean reactor was piunped to base pressure 

and the monomer vapour was introduced to a pressure of 0.1 torr at a flow rate of 

approximately 8.4 x 10" kg s" . The electrical discharge was ignited and sustained for 

10 minutes after which the r . f was switched off Continuous wave powers between 1.5 

and 8 Watts were employed with pulsing times ton and toff varied over the range 10 îs to 

6 ms with a peak power of 70 W. Prior to removing the sample from the reactor the 

system was purged with TVS for a fiirther two minutes and finally vented to atmosphere. 

The samples were then removed and characterised. 

The C(ls), 0(ls) and Si(2p) high resolution XPS specfra were acquired for all plasma 

polymers. XPS was also used to determine i f complete coverage of the subsfrate surface 

was occurring. Nylon films were used as substrates and the N(ls) spectrum of the 

surface following plasma deposition was recorded. The absence of a peak in this region 

of the XPS spectrum was indicative of complete coverage of the substrate. 

Instumentally determined sensitivity factors for unit stoichiometry were taken as C(ls): 

0(ls) : N(ls) : Si(2p) equal to 1:00 : 0.62 : 0.46: 1.08. 

5.3 RESULTS 

5.3.1 Infrared Absorption Spectroscopy 

The infrared spectrum of the monomer, TVS is shovra in Fig. 5-2 with assignments for 

the absorption peaks presented in Table 5-1. The major absorption peaks in all 

the spectra appear at approximately 1050 cm"' due to Si-O-Si stretch vibrations of the 

siloxane ring system. Compared to the analogous C-0 sfretching vibrations seen on 

carbon compounds these Si-0 vibrations are approximately five times more intense.̂ ^ 
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The C-H stretch vibrations at ca. 3000 cm' are very weak compared to hydrocarbons 

however this is a recognised fact in the infrared spectra of organosiUcon compounds.̂ '" 
52 

E 0) c 

4000 3500 3000 
- [ — I — 1 — 1 — 1 — [ — I — I — I — I — ] — I — I — : — I — I — I — I — r -

2500 2000 1500 1000 
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c 
CO 

c to 

2000 
I ' ' ' I 

1800 1600 
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1400 1200 1000 

Wavenumber / cm'^ 
Fig. 5-2: Transmission infrared spectrum of tetramethyl-tetravinyl-cyclotetrasiloxane (TVS) on a 
KBr disk. Peaks associated with the vinyl groups are labelled V. 
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a (cm"') Mode Comment 

3055 v̂ (=CH2),v̂ (=CH2) in vinyl groups 

2965 v^(CH3), v^(CH3) in Si-Me 

1597 v(C=C) in vinyl groups 

1406 5(=CH2) in vinyl groups 

1262 5̂  (CH3) in Si-Me 

1076 (Si-O-Si) 

1008 x(C=C) in vinyl groups 

961 CO (=CH2) in vinyl groups 

793 p (CH3), V (SiC) in Si-Me 

575 V Si-(CH=CH2) 

Table 5-1: Assignments for IR absorption bands in FT-IR spectrum of TVS; v, 5, p, ©, x denote 
stretching, bending, rocking, wagging and twisting modes respectively, a and s asynunetric and 
symmetric vibrations. 

The effect of altering continuous wave power on the infrared spectra of the plasma 

polymers deposited from TVS discharges is shown in Fig. 5-3. On increasing discharge 

power the position of the Si-O-Si peak moves to shghtly lower wavenumbers relative to 

the monomer. Even at a power input as low as 1.5 W, the lowest power at which it was 

possible to maintain a plasma at the pressures used, this peak at ~ 1070 cm'' has 

broadened and lost its fine structure relative to the parent compound. The shape and 

position of this peak alters fiirther with increasing discharge power. Whereas at 1.5 W 

the Si-O-Si vibrations yield a peak resembling an unresolved doublet with a more intense 

component at higher wavenumbers, for a discharge power of 2 W or greater the doublet 

is no longer distinguishable and the more intense absorption is toward the lower 

wavenumber side of the peak. The peak at -1262 cm'' and the doublet at -793/750 cm" 

' attributed to silicon bonded to methyl groups'*̂ *̂ ' decrease in intensity relative to the 

Si-O-Si peak with increasing power. The doublet has also broadened and the two 

component peaks can no longer be resolved. It is also noted that the ratio of the 

intensity of the peak at 1262 cm'' to the peak at 800 cm'' decreases with increasing 

power. 
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The most notable difference between the spectrum of the monomer and that of the 

continuous wave plasma polymers is the disappearance of the absorptions associated 

with the vinyl fimctionalities from the polymer specfra. The peaks at 3055 cm"', 1597 

cm"', 1406 cm"', 1008 cm"' and 961 cm"' are all absent from the continuous wave 

plasma polymers. 

O 
C 
CO 

1.5 W 

I I I I I I I I I I I I I I I I I I I I I I I I I I I I I 

3500 2500 1500 500 
Wavenumber / cm"^ 

Fig. 5-3: Transmission FT-IR spectra of plasma polymers deposited from continuous wave TVS 
plasmas as a function of discharge power. 
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The infrared transmission spectra of plasma polymers deposited from pulsed TVS 

discharges are compared in Fig. 5-4 and Fig. 5-5. As was the case with the continuous 

wave experiments, increasing average power resuhs in a broadening and general loss in 

resolution of the Si-O-Si peak at -1080 cm"' . It is of interest to note however that in 

contrast to the case of the low power continuous wave experiments, for pulsed plasmas 

v^th long off-times or short on-times, i.e. low duty cycles, the Si-O-Si peak does retain 

some of the fine structure evident in the precursor. The width and resolution of the 

absorptions in this region of the specfra are much smaller for low duty cycle pulsed 

plasma polymers than for the lowest power CW polymers. Also the position of the Si-O-

Si peak is closer to its position in the monomer (1080 cm"') in the specfra of pulsed 

plasma polymers compared to the continuous wave plasma polymers. Unlike the plasma 

polymers form the continuous wave discharges which indicate complete lack of the 

original vinyl groups from the plasma polymers, the low duty cycle pulsed plasmas 

yielded polymers which show sUght absorptions at wavenumbers associated with the 

vinyl groups. 

5.3.2 X-ray Photoelectron Spectroscopy. 

The chemical structure of the starting material and hence the resultant plasma polymers 

means X-ray photoelecfron specfroscopy is not as powerfiil an analytical tool for the 

analysis of these surfaces as was the case for the perfluorocarbon surfaces generated in 

earher work. The precursor in this case consists of four elements viz. carbon, oxygen, 

sihcon and hydrogen, compared to just fluorine and carbon in the previous studies. 

Hydrogen is not detectable directly by core level XPS due to it having only a single 

elecfron '̂̂  and the lack of a sfrongly elecfronegative atom such as fluorine means there is 

insignificant chemical shift on the C(ls) peak to give identifiable changes in the overall 

profile of the spectrum with varying plasma parameters. In fact as can be seen in Fig. 5-

6, p. 157, there is little change in the profile of the XPS specfra with changing plasma 

parameters for continuous wave, off-time or on-time experiments in any of the carbon, 

oxygen or sihcon specfra recorded. 
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Due to silicon and oxygen having approximately the same effect in terms of their 

induced shift in C(ls) binding energy, peak fitting the overall C(ls) profile has not been 

attempted. Despite these difficulties the technique does give some information on the 

composition of the surfaces generated by the plasma polymerisation of TVS by allowing 

determination of the ratio of carbon:oxygen:silicon at the surface of each plasma 

polymer taking into account the appropriate XPS sensitivity factors.̂ '' 

The elemental percentages and ratios of the plasma polymers deposited from continuous 

wave and pulsed plasmas are given in Table 5-2 to Table 5-4 with the changes in 

elemental composition with plasma parameters shown in Fig. 5-7, Fig. 5-8 and Fig. 5-9, 

p. 158. 

Power (W) % Carbon % Oxygen % Silicon C O C:Si Si:0 

1.5 53.4 23.6 22.9 2.26 2.33 0.97 

2 55.1 23.5 21.3 2.34 2.59 0.91 

4 56.7 22.0 20.2 2.58 2.81 0.92 

6 57.8 23.7 18.5 2.44 3.12 0.78 

Error ± 2.24% ±3.8% 2.2% ± 3.02% ±2.22% ±3.0% 

Table 5-2: Percentages of each element (hydrogen excluded) in plasma polymers deposited from 
continuous wave TVS discharges with varying discharge powers. 

Off-time % Carbon 
( M S ) 

% Oxygen % Silicon C O C:Si Si:0 

100 52.6 24.5 22.3 2.26 2.33 0.97 

500 53.1 24.0 22.8 2.34 2.59 0.91 

1000 52.6 25.0 23.7 2.58 2.81 0.92 

3500 52.9 23.6 23.5 2.44 3.12 0.78 

6000 54.2 23.0 22.8 2.36 2.38 0.99 

Error ± 2.% ±3.8% 2.2% ± 3.02% ±2.22% ±3.0% 

Table 5-3: Percentages of each element (hydrogen excluded) in plasma polymers deposited from 
pulsed TVS discharges with varying off-times: on-time = 10 jis, peak power = 70 W. 
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On-time 
(us) 

% Carbon % Oxygen % Silicon C:0 C:Si Si:0 

10 54.2 23.0 22.8 2.36 2.38 0.99 

60 52.7 23.9 23.3 2.21 2.26 0.97 

120 52.4 24.8 22.8 2.11 2.30 0.92 

250 52.5 25.6 21.7 2.05 2.42 0.85 

500 59.5 21.7 18.8 2.74 3.16 0.87 

Table 5-4: Percentages of each element (hydrogen excluded) in plasma polymers deposited from 
pulsed TVS discharges with varying on-times: off-time = 6000 us, peak power = 70 W, 
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Fig. 5-6: C(ls), 0(ls) and Si(2p) high resolution XPS spectra of plasma polymers deposited from 
continuous wave and pulsed plasmas of tetravinyltetrasiloxane. 
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5.3.3 Deposition Rate Studies 

The results of the deposition rate studies carried out on the pulsed plasmas of TVS are 

shown in Fig. 5-10 to Fig. 5-13. 

Fig. 5-10 is a plot of deposition rate measured in Angstroms per minute as a fimction of 

off-times for TVS plasmas with different on-times of 10, 20 and 50 ^s. To compare the 

results from the different on-times as a fimction of average power a plot of deposition 

rate versus average power is shown in Fig. 5-11. As was seen in the case of the 

fluoromonomers, chapter four, for any particular on-time the deposition rate per minute 

decreases with increasing off-time. However unlike the earlier studies the decrease is 

not continuous. In the case of the experiments with 20 and 50 îs on-times the 

deposition rate per minute remains approximately constant for off-times between 200 

and 1000 \is. At off-times shorter than 1000 \is the on-time is critical in determining the 

deposition rate. Interestingly the plasmas with the shortest on-times i.e. 10 |is give 

highest deposition rates for a given off-time in this region. As the average power will 

obviously be different when comparing results from experiments with the same off-time 

but different on-times, it is necessary to determine if this is the principle reason for the 

difference in deposition rates with on-times. 

Fig. 5-11 is a plot of deposition rate/min versus average power for the same experiments 

as in Fig. 5-10. As can be seen the difference in deposition rates for different on-times 

remains, even when average power is taken into account. For an average power of 2 W 

(duty cycle of 2.8%) the deposition rate from a pulsed plasma with an on-time of 10 us 

is approximately twice that of 20 \is on-time and three times that of a plasma with 50 ŝ 

on-time. 

For pulsed plasmas with off-times greater than 2000 fis the deposition rate is recorded as 

between 30 and 50 A/min regardless of the on-time. When the deposition rate is 

measiured as Angstroms per Joule, Fig. 5-12, this means that at off-times greater than 

2000 jxs the deposition efficiency is greater for shorter on-times. This plot also 
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illusfrates the efficiency of deposition from plasmas with 10 \is on-time initially starts to 

rise with increasing off-time to a maximum of 4.5 A/J for off-times up to -1000 |as, then 

falls rapidly to its final value of approximately 2.5 A/J. For on-times of 20 ^s, the 

efficiency shows no such rise and fall, instead climbing gradually from 0.5 A/J at 200 |is 

off-time to a steady value of approximately 2 A/J at or above 1000 \is. Pulsed plasmas 

with on-times of 50 ps show the same gradual increase to a steady value of greater than 

1000 [xs but the final value of ~ 0.7 A/J is lower than for the shorter on-time 

experiments. 
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Fig. 5-10: Graph of deposition rate in A/min versus off-time for pulsed TVS discharges with different 
on-times. 
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5.4 DISCUSSION 

5.4.1 Continuous Wave Plasma Polymerisation 

Continuous wave plasma polymerisation of TVS results in the generation of an organo-

silicon surface the composition of which depends on the discharge power. At the lowest 

discharge power possible, 1.5 Watts, the plasma polymer has a infrared spectrum 

dominated by absorptions associated with siUcon containing species. This is the case 

regardless of discharge power, the three dominant peaks in the spectrum being at 1250 

cm'', 1050 cm'' and 800 cm'' corresponding to Si-CHs bending, Si-0 sfretch and Si-CHs 

rocking respectfiiUy. The sfrength of the Si-C absorptions reflects the fact that the Si-C 

bond has some ionic character (-12%).^^ While the plasma polymer deposited from a 

1.5 W continuous wave plasma does show some fine structure on the peak around 800 
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cm"', in general the infrared specfra of the plasma polymers from continuous wave 

discharges are typical of plasma polymers i.e. the absorption peaks are broad and poorly 

resolved. The presence of high energy elections, near and vacuum ulfraviolet radiation, 

ions, and excited metastables leads to a highly energetic environment both in the gas 

phase and at the surface of the growing organo-silicon film.^^ This results in extensive 

fragmentation of the precursor molecules in the gas phase to yield a wide variety of 

species for incorporation into the plasma polymer.̂ ^ In addition to the range of different 

contributing species the plasma polymer itself is exposed to intensive and continuous ion 

and elecfron bombardment along with irradiation from ulfraviolet, visible and infrared 

radiation. The result is a polymer with a wide variety of bond lengths and angles leading 

to broad and featureless infrared absorption bands relative to the precursor. As the 

discharge power is mcreased the peaks become even less resolved and absorption is 

noted at wavenumbers not at all associated with the starting material TVS e.g. 800-900 

cm"' and 2800-2900 cm"'. 

The absence of the peaks associated Mdth the vinyl group from the infrared spectra of 

the continuous wave polymers indicate either that the group is cleaved from the siloxane 

backbone or else remains attached to the sihcon but takes an active part in the plasma 

polymerisation process. 

The XPS results show that all polymers have carbon contents lower that the starting 

material. This implies that CxHy species are being lost during the plasma polymerisation 

process. In the case of siloxane precm-sors it has previously been suggested that the Si-

C bonds attaching the organic sidegroups to the siloxane backbone are likely to be the 

first bonds to be cleaved under plasma conditions, resulting in the abstraction of alkyl 

groups. Fig. 5-14.̂ ^ The drop in carbon content and sHght decrease in Si:0 ratio found 

in this study also support the assertion that cleavage of the Si-C bonds are significant 

reactions in the plasma polymerisation process. 
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0—Si—O + (C2H3) 

Fig. 5-14: Possible free radical generation reactions with accompanying loss of C,Hy species from 
TVS following electron and/or UV bombardment of precursor. 

5.4.2 Pulsed Plasma Polymerisation 

In the case of polymers deposited from pulsed plasmas with high duty cycles the results 

are similar to those obtained from CW discharges. The absorption bands associated with 

vinyl groups have completely disappeared. The asymmetric Si-O-Si peak has become 

wider and shifted to sUghtly lower wavenumber and there are continuous absorbances 

from this peak down to 800 cm''. 

The polymers deposited from low duty cycle pulsed plasmas on the other hand, show 

significant differences to both the continuous wave and high duty cycle polymers. The 

infrared spectra of these polymers show a much sharper Si-O-Si peak at approximately 

the same position as in the TVS monomer. This would indicate the Si-0 bond angles and 

lengths to be approximately the same in the low duty cycle pulsed plasma polymers as 

they are in the monomer, i.e. that the siloxane rings have remained intact in these 

polymers. Also of interest is the fact that the peak at ~ 800 cm'' has retained its 

structure and the two components of the doublet are still visible. XPS data shows the 

Si/0 ratio to be approximately equal to that of the starting material (Si:0 = 1) for these 

low duty cycle polymers again suggesting retention of the siloxane rings at the surface of 

the substrate. 

Even with low duty cycle pulsed plasmas the susceptibility of the vinyl group to plasma 

polymerisation is again evident as the associated peaks are exfremely weak in these 
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spectra. There is however some evidence that at very low duty cycles not all of the 

vinyl groups have been lost. The two shoulders on the lower wavenumber side of the Si-

O peak at 1008 and 961 cm"' originate from the C=C twisting and =CH2 wagging modes 

respectively of the vinyl group in the monomer. Hence it would appear that due to the 

high proportion of vinyl groups in the starting material at very low average powers a 

small proportion of these are retained in the plasma polymer. 

5.4.3 Deposition Rate Studies 

Deposition rate experiments were carried out to gain more information about the effect 

of pulsing on the plasma polymerisation of TVS. The results are different from those 

obtained from pulsed plasmas of the perfluoromonomers studied in earlier chapters. In 

Fig. 5-10 and Fig. 5-11 it can be seen that at off-times below 1000 ŝ the expected drop 

in deposition rate with increasing off-time is not present for on-times of 20 and 50 ŝ . 

Also the deposition rate depends on the length of the on-time and this dependence on 

the on-time is independent of average power. Surprisingly the plasmas with greater on-

times give lower deposition rates. 

These frends can be explained i f we consider the pulsed plasma polymerisation process 

as a two-step process. The first stage (on-time) acts principally to initiate the 

polymerisation by generating radicals through elecfron and ion bombardment and UV 

irradiation of the gaseous precursor and any surfaces in contact with the plasma. The 

longer the on-time the greater will be the initiation and the number of potential sites for 

reaction and hence continued deposition in the off-time. However as the infrared and 

XPS results show a longer on-time also leads to greater fragmentation of the precursor. 

This will lead to a greater nimiber of low molecular weight species which may not be 

incorporated into the plasma polymer and wil l simply be pumped away from the reaction 

zone. The second stage (off-time) is free from elecfron, ion and UV bombardment and 

reactions occurring here are principally a result of free-radical induced processes either 

in the gas phase or at the surface of the plasma polymer. 
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The vinyl groups in the TVS precursors are particularly susceptible to these free-radical 

propagation reactions and hence deposition continues in the off-time. In contrast to the 

low molecular weight deposition likely to be occurring in the on-time, off-time 

deposition will involve larger molecular weight fragments or entire precursor molecules 

being incorporated in the growing polymer network. Hence a shorter on-time producing 

a greater amount of deposition can be explained by an increase in the (off-time/on-time) 

deposition ratio leading to a greater number of higher molecular weight precursors 

depositing per unit time. This off-time deposition also leads to a retention of the 

siloxane rings in the final plasma polymer, Fig. 5-15. 
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Fig. 5-15: Possible free radical reactions of vinyl groups leading to retention of siloxane structure in 
plasma polymer. 

To explain the constant deposition rate with increasing off-time from plasmas with on-

times of 20 and 50 |is and off-times less than 1000 ŝ it must be assumed that 

deposition in the off-time is occurring to such a significant extent that it is the same or 

greater than that occurring in the on-time. Hence at off-times less than 1000 jis the off-
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stage deposition is occurring quickly enough to mean that no re-initiation is necessary to 

maintain the growth rate of the plasma polymer. 

The plots of deposition efficiency i.e. deposition rate/Joule versus off-time and average 

power. Fig. 5-12 and Fig. 5-13 receptively, confirm that deposition in the first 

millisecond of the off-stage is critical in maintaining a deposition rate for plasma 

polymers from the pulsed TVS discharges. Fig. 5-11 shows the efficiency of deposition 

rise for all on-times up to an off-time of 1000 us after which it levels off. Fig. 5-13 

show a duty cycle of 1.5%, leading to an average power of approximately 1 W, results 

in the highest efficiency of deposition of the three on-times. At this duty cycle the 

pulsed plasmas with 10 us on-time are over six times more efficient at depositing plasma 

polymer than plasmas with on-times of 50 us. 

5.5 CONCLUSIONS 

The aim of this chapter was to exploit the advantages of pulsed plasmas to generate 

surfaces consisting of polysiloxane chains linked in an organic matrix. The starting 

material tetramethyl-tetravinyl-cyclotetrasiloxane was chosen as it consisted of the 

siloxane backbone with a vinyl substituent on each of the sihcon atoms, while in 

addition to this having a high enough vapour pressure to sustain a discharge. This is the 

first reported work on the plasma polymerisation of this compound. It was hoped that 

suitable pulsing conditions would result in polymerisation via free-radical reaction of the 

vinyl groups in the off-time hence allowing generation of plasma polymers with the 

structure of the monomer i.e. the siloxane rings, intact. 

The continuous wave plasma polymers from TVS discharges showed evidence that loss 

of carbon containing fragments from the precursor was a prominent reaction pathway in 

the plasma polymerisation process. In addition to this the spectra indicated cleavage of 

the Si-O-Si bonds was also occurring in the continuous wave discharges. Analysis of the 

spectra indicated a large variety of bond lengths, angles and types in these plasma 
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polymers, confirming significant scrambling of the structure of the precursor in the final 

product. 

In confrast pulsed plasmas of TVS resulted in significantly better results than the 

continuous wave discharges. In the case of pulsed plasmas with high duty cycles the 

loss of monomer structure was again evident from the infrared and XPS specfra. In the 

case of plasmas with low duty cycles however the retention of monomer structure in the 

plasma polymer was significantly improved relative to both continuous wave and high 

duty cycle pulsed plasmas. The infrared specfra indicated Si absorption bands in ahnost 

the exact same position as in the monomer and these bands remained narrow and well 

resolved. In particular the shape and position of the absorption associated with the anti

symmetric Si-O-Si sfretch, in combination with the Si:0 ratio obtained from XPS 

analysis, suggests the siloxane rings remain intact in the plasma polymer. 

The assertion that this retention of monomer structure is achieved via off-time 

polymerisation is confirmed by deposition rate studies. These indicate that shorter on-

times lead to more efficient deposition probably due to greater incorporation of higher 

molecular weight fragments into the polymer. Significant off-time polymerisation is 

shown to occur for up to 1000 ^s in the off-time after which time the polymer growth 

rate is reduced. 

The results of these preliminary studies have shown how pulsed plasmas can be 

exploited to retain the monomer structure in the surfaces generated by plasma 

polymerisation. High selectivity to free-radical reactions of the substituent vinyl groups 

in the off-time of a pulsed plasma results in the production of colourless coatings 

consisting of siloxane rings in an organic matrix. Further work is necessary to obtain 

more information regarding the structure of these surfaces and their properties in 

relation to their application as transparent permselective membranes or barrier coatings. 
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CHAPTER SIX 

PULSED PLASMA POLYMERISATION OF STYRENE 
OXIDE. 

6.1 INTRODUCTION 

Pulsed plasma polymerisation has been shown to be effective in retaining the fimctional 

groups of precursors in the final plasma polymers, c.f. chapters three to five. The basic 

principle ties in exploiting a functional group in the precursor which reacts preferentially 

to other portions of the molecule. This is achieved via a combination of a reduction in 

the overall energy within the plasma, both in the gas phase and at the surface of the 

subsfrate and through contioUed conventional polymerisation reactions in the off-phase 

of the duty cycle. The presence of xmsaturation in the starting material assists in 

retention of the precursor structure by providing preferential sites for free-radical 

reactions in the off-time. 

In this chapter pulsed plasmas will be used to contiol the stoichiometry of surfaces 

generated by the plasma polymerisation of styrene oxide (1). Styrene oxide consists of a 

monosubstituted benzene ring with an epoxy group as a substituent. Fig. 6-1. The 

epoxide ring is the sacrificial functional group in this case, taking the place of the vinyl 

groups reported in previous chapters. It is likely to be far more susceptible to reaction 

both in the on and off-stages than the aromatic benzene ring. The use of pulsed plasmas 

should allow maximum retention of the benzene ring in the final plasma polymer. 

Styrene oxide also has the advantage of being inexpensive and volatile at room 

temperature. The plasma polymerisation of styrene has been extensively studied'''*^°' 

33,39,40,35,53,54 somc work has also been carried out on the plasma polymers of 

oxiranes, '̂̂  principally ethylene oxide or propylene oxide, however this is the first 

reported study of the plasma polymerisation of styrene oxide. Whilst plasma polymers 
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of styrene have been used as hydrophobic layers, those of ethylene oxide have 

hydrophiUc surfaces. 

o 
H C ^ ^ C H , 

(1) 
Fig. 6-1: Structure of styrene oxide 

6.1.1 Applications of plasma polymers from aromatic precursors 

The polyaromatics are an important group of industrial polymers due to their physical 

and chemical properties such as thermal stabihty and irradiation resistance.'° This 

interest in polyaromatics has been fransferred to the area of plasma chemistry. 

Aromatic compounds have been widely studied as precursors for plasma 

polymerisation.'*'^^ The resultant plasma polymers have been used in a variety of 

applications ranging from elecfronic components such as thin film capacitors '̂"^^ and 

dielectric layers,̂ ^ to their use as impermeable protective coatings.̂ ''"^^ Plasma polymers 

from aromatic precursors have also been used as reverse osmosiŝ ^ and permselective 

membranes.^' 

Plasma polymers and copolymers of styrene have been studied for use as resist layers in 

lithographic applications.^°"^'' Low atomic weight elements have low X-ray absorption 

coefficients so heavy metals need to be incorporated into the resist. An Au-C film was 

deposited for use as a mask layer in x-ray lithography by simultaneous evaporation of 

gold and plasma polymerisation of styrene.̂ "* 

Plasma polymerised coatings have also been investigated for use in gas sensor 

devices.̂ '̂ '̂ ^ A plasma polymer of styrene has been shown to adsorb moisture 
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depending on the circumstantial himiidity and this property has been exploited in its use 

as a moisture sensor.''̂  

The unique elecfronic structure of aromatic plasma polymers has led to then use as 

semiconductive^°'^^'^^ and elecfroluminescent thin fihns^^. Plasma polymers of quinoline 

have been studied^^ with a view towards their use as conducting thin films and the 

results compared to the plasma polymers of benzene and pyridine. Retention of the 

aromatic nature of the precursor in the final plasma polymer is essential in order to yield 

a film composed of a highly conjugated 7t-elecfron system, the conductivity of which 

could be increased by doping with iodine. Styrene and other aromatic plasma polymers 

have also been used as switching elements in microelecfronic components.̂ ^ '*̂  

6.2 EXPERIMENTAL 

The experimental set-up for both continuous wave and pulsed plasma polymerisation 

experiments was as described as in chapter three, sec. 3.2. Styrene oxide hquid was 

purchased from Aldrich, b.p. 194''C and fransferred to a pyrex monomer tube. Five 

freeze thaw cycles were used to fiirther purify the hquid. The reactor was pumped to a 

base pressure <4 x 10'̂  torr and then the monomer vapour allowed to flow through the 
o 1 

reactor at a flow rate of ~ 5.9 x 10' kg s' . These conditions ensured a pressure of 0.2 

torr with the monomer accounting for >99% of the contents of the reactor. 

After two minutes purging the reactor with styrene oxide vapoiir the r . f was turned on 

and the plasma sustained for ten minutes. Continuous wave powers between 1.5 and 8 

Watts were used with pulsing on and off-times in the range 10 - 6000 ^s. The plasma 

polymers were deposited onto potassium bromide disks and glass slides for infrared and 

XPS analysis respectively. Following plasma polymerisation the r . f was turned off and 

the reactor purged for a fiirther 10 minutes with styrene oxide vapour. The reactor was 

then pumped to base pressure and imderwent two nifrogen pimip/purge cycles before 

the samples were removed and immediately characterised. 
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A BP300 XPS spectiometer was used to acquire high resolution XPS spectia from the 

C(ls), 0( ls) and Si(2p) regions for each plasma polymer. Specfra were acqmred at a 30 

° take-off angle from the substrate normal. Instrumentally determined sensitivity factors 

for unit stoichiometry were taken as C(ls) : 0(ls) : Si(2p) equal to 1:00 : 0.62 : 1.08. 

The absence of a Si(2p) peak was indicative of complete coverage of the glass substiate. 

Transmission infrared spectra were acquired on a Mattson Polaris specfrometer. The 

monomer spectrum was acquired as a thin fihn between two potassium bromide disks 

whilst the plasma polymers were deposited on the surface of a single disk. Typically 

100 scans at a resolution of 4 cm"' were collected. 
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6.3 RESULTS 

6.3.1 Infrared Spectroscopy 

The infrared spectrum of the starting material is shown in Fig. 6-2. The low frequency 

region of the spectrum is enlarged for clarity. As seen the spectrum is relatively 

complex with a large number of absorption bands below 2000 cm"'. The complexity of 

the spectrum arises from the combination of the absorption bands associated with the 

substituted phenyl group and the cyclic ether or epoxide group.'*̂ ''*̂  Both of these 

functional groups have group stietching modes associated with ring sfretching modes of 

vibration."*^ The presence of dipole-inducing oxygen in the molecule means the epoxide 

ring generates a complex series of strong absorptions even when unsubstituted e.g. 

ethylene oxide. Whilst no attempt will be made to assign vibrational modes to all peaks 

in the spectrum, the more characteristic absorptions are discussed below. 

6.3.1.1 Infrared Absorption Bands of Styrene Oxide 

6.3.1.1.1 Absorptions associated with phenyl stretching modes. 

The sfrong absorption peaks in the region 3050-3100 cm"' are due to aromatic C-H 

sfretching vibrations.''̂ ''*^ The three weak bands in the region 1800-2000 cm"' are 

known as summation bands and have been assigned to bmary combinations and 

overtones of aryl C-H wag modes with fimdamentals in the region 800-964 cm"'."*̂  The 

pattern of these bands is characteristic for a particular substitution. For a mono-

substituted phenyl ring the pattern consists of 5 weak bands and one very weak band. In 

the case of styrene oxide only the first three members of the series are visible. The 

absorptions at 1607 cm"', 1497 cm"' and 1452 cm"' are due to 'ring breathing' 

vibrations involving skeletal sfretching modes of the semi-unsaturated C-C bonds of the 

benzene ring. When combined with the presence of the C-H sfretching bands above 

3000 cm"' the presence of these bands is usually sufficient for the positive identification 
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of the presence of a substituted benzene group.'*^ The medium intensity bands at 1072 

cm'* and 1026 cm"' are characteristic of mono-substituted benzenes, while the sfrong 

bands at 758 cm'' and 698 cm'' are due to out-of-plane C-H and out-of-plane ring 

deformation vibrations respectively. Their presence and position also indicate mono-

substitution of the benzene ring. 

6.3.1.1.2 Absorptions associated with the epoxy group. 

The aliphatic C-H sfretching vibrations of aliphatic groups generally resuU in absorptions 

in the region 2800-2950 cm"', hi the case of epoxy CH2 groups however the 

characteristic frequency is raised to closer to 3000 cm"'.'*'''''̂  This is the case for styrene 

oxide and it results in the overlap of the aliphatic and aromatic C-H sfretching bands. 

The sfrong peak at 1476 cm"' (between the pafr of aryl deformation peaks) is due to O-

CH2 deformation. Skeletal ring breathing vibrations causes a sfrong absorption peak at 

1254 cm"' due to change in the C-0 bond length. The strong absorption band at 876 cm" 

' can be assigned to symmetric C-O-C sfretching. Other peaks in the region 1400-900 

cm"' are due to ring-breathing deformation modes of the epoxide group. 

178 



c 

4000 3500 3000 2500 2000 1500 1000 500 

Wavenumber / cm" 

c 

I 
(0 c TO 

2000 1200 

Wavenumber/cm" 

Fig. 6-2: Transmission infrared spectrum of styrene oxide liquid and an expanded view of the low 
frequency end of the spectrum. 

6.3.1.2 Infrared spectra ofplasma polymers of styrene oxide 

The fransmission infrared specfra of the polymers deposited from continuous wave and 

pulsed plasmas of styrene oxide are shown in Fig. 6-1, Fig. 6-4 and Fig. 6-5. The specfra 

of all plasma polymers are significantly different from that of the starting material. The 

absorption bands at approximately 3000 cm"' have separated into two separate groups, 

one in the range 3000-3100 cm"', the other from 2800-2950 cm"'. 

A l l the plasma polymers have sfrong absorptions at -700 cm"' and a doublet of medium 

sfrength absorptions at 1497 cm"' and 1452 cm''. There is also a medium intensity peak 

at -760 cm"'. The summation bands evident in the styrene oxide spectrum aroimd 2000 

cm"' are still discernible in the specfra of the plasma polymers. The presence of these 

peaks in association with the C-H sfretching bands above 3000 cm"' confirm the 

retention of phenyl rings in the plasma polymers. 
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The peaks associated with C-0 sfretching at 1476 cm"' and 876 cm"' in the monomer are 

absent from the spectra of the plasma polymers. Similarly other strong absorption peaks 

in the 1400-900 cm"' range of the spectrum of styrene oxide are missing from the 

infrared specfra of the plasma polymers regardless of discharge power or pulsing 

conditions employed. However all plasma polymers show absorptions of varying 

intensity in the region 1700-1800 cm"' and 1000-1200 cm"'. 
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Fig. 6-3: Transmission FT-IR spectra of plasma polymers deposited from continuous wave styrene 
oxide plasmas as a function of discharge power. 
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6.3.2 X-ray photoelectron spectroscopy 

C(ls) XPS spectra of styrene oxide continuous wave plasma polymers are shown in Fig. 

6-7. XPS spectra of pulsed plasma polymers are shown in Fig. 6-8 and Fig. 6-9. The 

spectra consist of a major component centred at 285.0 eV which corresponds to carbon 

atoms in a crosslinked/hydrocarbon enviroiraient.''^ On the higher binding energy side of 

this peak a weak shoulder is discernible indicating the presence of electronegative 

oxygen atoms in the plasma polymer. The relative intensity of this shoulder varies with 

discharge power and duty cycle in the case of continuous wave plasmas and pulsed 

plasmas respectively. Also apparent in the C(ls) spectra is a small peak situated 

approximately 7 eV above the main C-H peak. This peak is a result of low energy 7C-7t* 

shake-up transitions accompanying the core level ionisation of the hydrocarbon carbon 

atoms.'*̂ ''*̂  The presence of this peak confirms the aromatic nature of the carbon atoms 

associated with the main peak.'* '̂̂ ° The C(ls) profile of the plasma polymer deposited 

fi-om the lowest duty cycle pulsed plasma used in this study is shown in Fig. 6-6. Three 

Mg Kai,2 components of equal FWHM corresponding to C-H (285.0 eV), C-0 (286.6 

eV) and C=0 (287.9 eV) were used to fit the main portion of the spectrum.̂ '̂̂ ^ The li

lt* shake-up peak had a different FWHM to the other components. 

The relative contributions of each type of carbon environment to the overall profile is 

calculated by dividing the component peak area by the total C(ls) area. The XPS 

spectrum shown in Fig. 6-6 shows the polymer to consist of 84 ± 1 % C-H, 10 ± 1% C-0 

and 1 ± 0.5% C=0 with the n-TZ* peak accounting for 5% of the total C(ls) area. This 

polymer had the highest percentage of oxygen of all samples analysed. Upon increasing 

duty cycle the amoimt of oxygen dropped to approximately 4% in the case of the 

highest duty cycles used. The loss was principally firom the C-0 peak with neghgible 

variation in the C=0 peak. The percentage oxygen was greater in low duty cycle pulsed 

plasmas than in low power continuous wave plasmas. The intensity of the n-n* peak 
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showed no significant variation as it remained between 4 and 5% regardless of plasma 

parameters. 

6.3.3 Physical properties of the plasma polymers 

Apart fi-om the chemical differences between plasma polymers deposited using varying 

plasma conditions there were also noticeable differences in some of the physical 

properties of the plasma polymers. Low duty cycle pulsed plasma polymers resulted in 

relatively high energy surfaces. The plasma polymers were colourless but had adhesive 

properties and were wettable, giving contact angles similar to those observed with water 

on imtreated glass. In contrast the high power continuous wave polymers and high duty 

cycle pulsed plasma polymers yielded relatively low energy surfaces which were non-

adhesive and hydrophobic. 

In addition to the plasma polymers deposited as films on the reactor walls and substrate 

it was also noted that downstream from the plasma zone a fine white powder was 

deposited during the plasma polymerisation runs. The majority of the powder 

accumulated at the first obstruction to gas flow in the reactor i.e. a right-angle bend in 

the outlet pipe, approximately 40 cm from the cenfre of the coils. This dust was 

deposited to varying degrees in all experiments except under high power continuous 

wave conditions. The powder was white in colour and was apparently insoluble in 

water, isopropyl alcohol, acetonitrile, and acetone, although sUght solubility was 

observed following 6 hours toluene reflux. Similar powder formation has previously 

been reported in studies of the plasma polymerisation of styrene.̂ '̂̂ '* and benzene.̂ ^ Its 

formation has been attributed to ohgomerisation/agglomeration reactions in the gas 

phase and in the case of plasma polymerisation of benzene elecfron microscopy studies 

showed it to consist of 0.12 |am diameter spheres agglomerated into chains or clumps.̂ ^ 
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6.3.4 Deposition Rate Studies 

Deposition rate studies were carried out to examine the effect of various pulsing regimes 

on the deposition rate of plasma polymers from styrene oxide plasmas. The deposition 

rate of plasma polymers from pulsed styrene oxide plasmas decreases with increasing 

off-time regardless of on-time, Fig. 6-10. Plasmas with longer on-times give greater 

deposition for a given off-time, however for an particular off-time plasmas with shorter 

on-times are slightly more efficient in terms of deposition rate per Joule, Fig. 6-11. The 

differences between different on-times are not very large compared to those seen in the 

case of TVS in chapter five for example. In fact when the results are analysed as a 

fimction of average power the three on-times yield practically the same deposition rate 

and efficiency. Fig. 6-12. 
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Fig. 6-10: Plot of deposition rate versus off-time for pulsed plasmas of styrene oxide with various on-
times. 
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Fig. 6-11: Plot of deposition efficiency versus off-time for pulsed plasmas of styrene oxide with 
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6.4 DISCUSSION 

Fig. 6-3 to Fig. 6-5 show the infi-ared transmission spectra of plasma polymers deposited 

fi-om pulsed and continuous wave discharges differ significantly fi-om the spectrum of the 

monomer. In the spectrum of the monomer the aryl and epoxy C-H stretching vibrations 

overlap as a result of the unusually high frequency for vibrations involving CHx groups in 

an epoxy ring.''^'''^ In the plasma polymers the aliphatic C-H stretch vibrations have 

moved to lower wavenumber indicating a change in the environment of the CH groups 

i.e. loss of the epoxy ring. This assertion is fijrther supported by the loss of the strong 

absorptions at 1476 cm'\ 1254 cm"̂  and 876cm"̂  all of which were assigned to the epoxy 

group in the parent compound. These differences indicate loss of the epoxy group 

readily occurs regardless of the pulsing conditions or the discharge power. 

The infrared spectra also indicate that whilst loss of the epoxy group is universal, the 

plasma polymerisation process does not result in loss of the benzene ring from the 

plasma polymers. All plasma polymers show strong evidence of the presence of 

substituted phenyl groups in their infrared spectra. In fact the spectra of the plasma 

polymers show remarkable similarity to the infrared spectrum of polystyrene. Fig. 6-13. 

The peaks associated with a substituted benzene ring, in particular those at 3040 cm\ 

1607 cm'^, 1497 cm'\ 1452 cm \ 758 cm'' and 698 cm'', are all evident in the spectra of 

the plasma polymers. In addition the retention of aromaticity is better in the case of low 

duty cycle pulsed plasmas than for continuous wave plasmas. This is indicated by the 

relative intensities of the aromatic and aliphatic C-H stretch vibrations around 3000 cm\ 

Increasing the discharge power or duty cycle results in increased loss of aromaticity in 

the plasma polymers. 
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Fig. 6-13: Transmission irfrared spectrum of polystyrene thin film spin-coated onto potassium 
bromide disk from 2% w/v toluene solution. 

However there does exist some significant differences between the spectra of the plasma 

polymers and polystyrene, namely; 

(i) The aliphatic C-H sfretching band in the plasma polymer is broader and less 

resolved than in polystyrene and 

(ii) The plasma polymers have vibrational modes resulting in peaks at 1700 cm-1 and a 

broad peak in the 1200-1000 cm-1 region, neither of which are present in 

polystyrene. 

The difference m the C-H band is most likely due to the plasma polymers consisting of a 

greater variety of bond lengths and environments due to the inherently complex nature 

of the plasma polymerisation process.̂ ^ 

The peak at approximately 1700 cm"' may be due to C-0 sfretching vibrations. These 

vibrations generate intense absorptions which will be obvious in the infrared specfra 

even i f only a low percentage of oxygen is present in the sample. It is of interest to note 
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that the intensity of this band at 1700 cm"' varies depending on the plasma parameters. 

The intensity of the broad band at 1200-1000 cm'' mirrors the intensity of the peak at 

1700 cm'' so it reasonable to assume that this is due to the same oxygenated species. 

These bands are more intense at lower discharge powers in the continuous wave samples 

and at lower duty cycles in the pulsed plasma polymers. This peak may result from 

either retention or re-incorporation of the oxygen from the epoxide ring of the styrene 

oxide in the plasma polymers. This being the case it indicates that lower powers and 

reduction of duty cycle improves retention of the oxygen in the final plasma polymer 

and that pulsing the r . f power significantly improves retention of the oxygen over 

continuous wave plasma polymerisation. This is supported by the XPS results, sec. 

6.3.2, which show plasma polymers from pulsed discharges have a greater oxygen 

content than continuous wave plasma polymers. Deposition rate measurements suggest 

that polymerisation in the off-stage, most likely at the reactive epoxy-ring, aids in the 

retention of oxygen in the plasma polymers. The higher oxygen content resuhs in a 

siu-face which has adhesive properties and is hydrophilic. 

An alternative origin for the oxygen-containing groups is reaction of residual radicals in 

the plasma polymer with oxygen in the atmosphere prior to analysis.̂ '̂̂ ^ The variation in 

relative intensity of the peak would then be a result of the relative proportion of 

oxidised/unreacted plasma polymer. Since all experiments were carried out for the same 

length of time higher discharge powers and duty cycles result in thicker samples, sec. 

6.3.4, hence i f oxidation is occurring at or near the siuface of the film then it will be 

proportionately smaller for these samples. However higher discharge powers/duty 

cycles would also produce a more energetic plasma enviroimient resulting in a polymer 

with a greater nvimber of residual radicalŝ "̂̂ ^ which would be expected to result in 

greater oxidation, confrary to what is observed. 

In order to clarify the origin of the oxygen in the plasma polymers an angle-resolved 

depth profile study was carried out in the XPS spectrometer. As explained in chapter 

one the angle between the electron energy analyser to the surface of the sample is 
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critical in determining the sampling depth in XPS analysis."*' The resuhs in Fig. 6-14 

indicate that the percentage oxygen is lowest at the surface of the plasma polymer. 

Hence it would appear that the origin of the oxygen peaks in the infra-red specfra of the 

samples does not come from post-deposition contamination/reaction but is primarily due 

to retention/re-incorporation of oxygen from the precursor. 
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192 



6.5 CONCLUSION 

These preliminary investigations into the pulsed and continuous wave plasma 

polymerisation of styrene oxide indicate universal loss of the epoxy-group from the 

resultant plasma polymer regardless of discharge conditions. Al l plasma polymers show 

some level of retention of the aromatic benzene ring of the precursor, this being greatest 

for low duty cycle pulsed plasmas. 

The oxygen content of the plasma polymers is also a fimction of the deposition 

conditions. Pulsed plasmas resuU in plasma polymers with a higher oxygen content than 

continuous wave polymers. Deposition rate measurements indicate some off-stage 

deposition is occurring most likely due to reaction of the epoxy-ring with residual 

radicals in the gas phase or at the surface of the growing polymer. Post-deposition 

oxidation of the plasma polymer siuface is not responsible for the variation in oxygen 

content. The physical properties of the resultant surfaces change with the oxygen 

content. Plasma polymers with the highest oxygen content generate high energy 

hydrophilic surfaces. 
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CHAPTER SEVEN 

CONCLUSIONS 

The work in this thesis was aimed at exploring the possibility of using pulsed power to a 

plasma to achieve greater control over the composition of the surfaces generated via 

plasma polymerisation. A variety of precursors were studied under a range of plasma 

conditions using both continuous wave and pulsed plasmas. Surface and bulk analytical 

techniques were used to characterise the deposited plasma polymers whilst deposition 

rate measurements aided in understanding the effects of altering the various plasma 

parameters. The results were interpreted in terms of the various potential reaction 

pathways available for each precursor during the plasma polymerisation process. 

Continuous wave plasma polymerisation of saturated cyclic fluorocarbons yielded plasma 

polymers with high fluorine:carbon ratios. At low plasma power densities the chemistry 

of the precursor was reflected in the composition of the plasma polymers, however at 

higher powers the high energy plasma environment leads to a scrambling of the monomer 

structure in the final plasma polymer. A lower power density limit exists below which a 

continuous wave plasma is unstable. This hmits the extent to which continuous wave 

power can be used bD achieving good selectivity. 

The plasma polymerisation of two cyclic perfluorocarbons, perfluorocyclohexane and 

perfluorocyclopentene was compared in chapter three. The presence of the double bond 

in PFCP altered the response of the monomer to changes in plasma parameters. Whereas 

for PFCH increasing the plasma energy, either continuous wave or pulsed, led to an 

increase in cross-linking and a reduction in the F/C ratio of the deposited film, PFCP 

plasma polymerisation resulted in a constant F/C ratio regardless of discharge power in 

the range investigated. Pulsed plasmas produced enhanced retention of precursor 

structure relative to CW plasmas resulting in a higher CF2 content and F/C ratio at the 
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substrate surface. 

In chapter four the pulsed plasma polymerisation of perfluoroallylbenzene was 

investigated in detail to examine the influence of the various pulsing parameters viz. on-

time, off-time, duty cycle, frequency and pulsed power, on the pulsed plasma 

polymerisation process. The choice of monomer allowed the selectivity of the process to 

be followed by monitoring the retention of the aromatic ring in the plasma polymers. 

Deposition rate experiments indicated polymerisation was definitely taking place in the 

off-portion of the duty cycle for precursors with a reactive centre i.e. a double bond. 

Reducing the duty cycle of the pulsing increased the deposition rate per pulse i.e. 

deposition efficiency. Low duty cycle pulsed plasmas resulted in highly aromatic 

surfaces with extremely good retention of the perfluorobenzene ring fi-om the precursor. 

Pulsed plasma polymerisation of a cyclic siloxane precursor, tetravinyl-tetramethyl-

cyclotetrasiloxane exploited the principles studied in chapter four to produce a surface 

consisting of siloxane rings in an organic matrix. The monomer structure was retained 

through the reaction of the vinyl groups in the off-portion of the duty cycle. For low 

duty cycle pulsed plasmas polymers the Si/0 ratio of the plasma polymers was identical 

to that of the monomer, indicating successful retention of monomer structure using 

pulsed plasmas. 

Preliminary investigations of the pulsed plasma polymerisation of styrene oxide were 

undertaken to examine the behaviour of another functional group, the epoxide ring, to 

pulsed plasma conditions. A range of polymer compositions with varying oxygen 

contents were observed. The properties of the resultant surfaces varied with oxygen 

content. 

Suitable choice of precursor structure allows pulsed plasmas to give significant 

enhancements in control over surface composition and properties. Future work should 

focus on two broad areas. More information is required on the nature of the pulsed 

plasma polymerisation and how the processes occurring differ from continuous wave 
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process. Time-resolved gas phase diagnostics such as mass spectrometry, optical 

emission spectroscopy and laser induced fluorescence could be used to study on and off-

time reactions in more detail. Pulsed voltage to a powered substrate would aid in 

understanding the effect of a pulsed plasma on the ion bombardment of the surface. 

Finally a broader range of chemistries of both the gas phase precursor and the substrate 

surface could be investigated to gain the maximum benefits fi-om pulsed plasmas. 
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University of Durham - Board of Studies in Chemistry 

Colloquia, Lectures and Seminars from Invited Speakers 

1993 

October 4 Prof F.J. Feher, University of California 

Bridging the Gap Between Surfaces and Solution with 

Sessilquioxanes 

October 27 Dr. R. A.L. Jones, Cavendish Laboratory 

Perambulating Polymers 

November 10 Prof M.N.R. Ashfold, University of Bristol 

High Resolution Photofragment Translational Spectroscopy: A 

New Way to Watch Photodissociation 

November 17 Dr. A. Parker, Rutherford Appleton Laboratory 

Applications of Time Resolved Resonance Raman Spectroscopy to 

Chemical and Biochemical Problems 

1994 

January 26 Prof J. Evans, University of Southampton 

Shining Light on Catalysts 

February 2 Dr. A. Masters, University of Manchester 

Modelling Water Without Using Pair Potentials 

February 16 Prof K.H. Theobald, University of Delaware 

Paramagnetic Chromium Alkyls: Synthesis and Reactivity 

February 23 Prof P.M. Maitlis, University of Sheffield 

Across the Border: From Homogeneous to Heterogeneous 

Catalysis 
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October 19 Prof N . Bartlett, University of California 

Some Aspects of Ag(II) and Ag(III) Chemistry 

November 23 Dr. J.M. Williams, University of Loughborough 

New Approaches to Asymmetric Catalysis 

December 7 Prof D. Briggs, ICI and University of Durham 

Surface Mass Spectrometry 

1995 

January 18 Dr. G. Rumbles, Imperial College 

Real or Imaginary Third Order Non-Linear Optical Materials 

March I Dr. M . Rosseinsky, Oxford University 

Fullerene Intercalation Chemistry 

April 26 Dr. M . Schroder, University of Edinburgh 

Redox-active Macrocyclic Complexes: Rings, Stacks and Liquid 

Crystals 

May 3 Prof E.W. Randall, Queen Mary and Westfield College 

New Perspectives in NMR Imaging 

October 11 Prof P. Lugar, University of Berlin 

Low Temperature Crystallography 

November 17 Prof D. Bergbreiter, Texas A & M 

Design of Smart Catalysts, Substrates and Surfaces fi-om Simple 

Polymers 

November 22 Prof I . Soutar, Lancaster University 

A Water of Glass? Luminescence Studies of Water Soluble 

Polymers 

1996 
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January 10 Dr. B. Henderson, Waikato University 

Electrospray Mass Spectrometry-A New Sporting Technique 

January 17 Prof J.W. Emsley, Southampton University 

Liquid Crystals: More Than Meets the Eye 

January 31 Dr. G. Penfold, ? 

Soft Soap and Surfaces 

March 6 Dr. R. Whitby, University of Southampton 

New Approaches to Chiral Catalysts: Induction of Planar and 

Metal Centred Asymmetry 

March 12 Prof V. Balzani, University of Bologna 

Supramolecular Photochemistry 

August 20 -25, 1996 

Conference Attended 

12* International Symposium on Plasma Chemistry, 

University of Minnesota, USA. 
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