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Gauge Theory Constraints on the Fermion-Boson Vertex
by

Ayse Kizilersu

Abstract

In this thesis we investigate the role played by fundamental properties of QED in determin-
ing the non-perturbativé fermion-boson vertex. These key features are gauge invariance
and multiplicative renormalisability. We use the Schwinger-Dyson equations as the non-
perturbative tool to study the general structure of the fermion-boson vertex in QED. These
equations, being an infinite set, have to be truncated if they are to be solved. Such a trunca-
tion is made possible by choosing a suitable non-perturbative ansatz for the fermion-boson
vertex. This choice must satisfy these key properties of gauge invariance and multiplicative

renormalisability.

In this thesis we develop the constraints, in the case of massless unquenched QED, that have
to be fulfilled to ensure that both the fermion and photon propagators are multiplicatively
renormalisable-at least as far as leading and subleading logarithms are concerned. To this
end, the Schwinger-Dyson equations are solved perturbatively for the fermion and photon
wave-function renormalisations. We then deduce the conditions imposed by multiplicative
renormalisability for these renormalisation functions. As a last step we compare the two
results coming from the solution of the Schwinger-Dyson equations and multiplicative
renormalisability in order to derive the necessary constraints on the vertex function. These

constitute the main results of this part of the thesis.

In the weak coupling limit the solution of the Schwinger-Dyson equations must agree
with perturbation theory. Consequently, we can find additional constraints on the 3-
point vertex by perturbative calculation. Hence, the one loop vertex in QED is then
calculated in arbitrary covariant gauges as an analytic function of its momenta. The
vertex is decomposed into a longitudinal part, that is fully responsible for ensuring the
Ward and Ward-Takahashi identities are satisfied, and a transverse part. The transverse
part is decomposed into 8 independent components each being separately free of kinematic
singularities in any covariant gauge in a basis that modifies that proposed by Ball and
Chiu. Analytic expressions for all 11 components of the O(«) vertex are given explicitly in
terms of elementary functions and one Spence function. These results greatly simplify in

particular kinematic regimes. These are the new results of the second part of this thesis.
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Chapter 1

Introduction

The sciences do not try to explain,

they hardly even try to interpret,

they mainly make models.

By a model is meant a mathematical construct which,
with the addition of certain verbal interpretations,
describes observed phenomena.

The justification of such a mathematical construct is
solely and precisely that it is expected to work.

-J.V. Neumann-




1.1. “The Jewel of Physics” 2

1.1 “The Jewel of Physics”

The physicist’s endless quest is to understand nature. A major success is Quantum Elec-
trodynamics, the quantum theory of the interaction of light and matter. According to R.
Feynman it is the “ jewel of physics” and the “physicist’s proudest possession”. Quantum
Electrodynamics (QED) is the best tested of all theories of the fundamental interactions.

It is a gauge theory which predicts experimental results to great precision.

1.2 Gauge Field Theories [1, 2]

The main interest of high energy physics is the particles and their interactions, which are
governed by symmetry groups. These determine conservation laws and the invariances of
the physics. For instance, when we transform quantities by translations or rotations, if they
remain unchanged we can talk about symmetries and conservation laws. In mathematical
language, this lack of change means physical laws are invariant under certain groups of

transformations, the symmetry groups. Basically, these symmetry groups [3] are:

1- Space-time symmetries which include the Lorentz and Poincaré groups. In quan-

tum field theory (QFT), particles are described by fields which obey appropriate equations.

Invariance of these equations under the space-time symmetry groups leads to the conser-
vation of energy, momentum and angular momentum. The momentum four-vector is the
generator of space-time translation and angular momentum is that of space-time rotations.
One of the most important examples of this kind of invariance is the principle of relativ-
ity, which requires that the equations of motion should be invariant under the Poincaré
group. The fields can only be scalars, spinors, vectors and tensors under this group. Such

a Poincaré transformation is :

e — 2" =a*+ 12", (space-time translations plus rotations) . (1.2.1)
For instance, vector and Dirac fields transform under this group as :

Vector field : ¢ (z) = t¢"(z)

'

Dirac field : W'(z') = D(e)¥(z), D(e) = et e (1.2.2)
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2-Internal symmetries : Experiments in particle physics have shown that as well

as being representations of the Poincaré group, the fields also have internal degrees of
freedom. This is due to the invariance of the equations of motion under certain groups
of transformations such as the U(1) and SU(2) phase transformation groups related to

internal quantum numbers (isospin, flavour, color, etc.).

These symmetries can be either global or local. Global transformations are independent of
space-time coordinates. Local transformations will be different from one point to another
(i.e. they depend on space-time coordinates). An example of such a symmetry is the U(1)
gauge group of electromagnetic theory. This symmetry ensures that the observables do
not depend on the phase of the field; the physics constructed with ¥(z) is the same as the
physics constructed with the fields ¥'(z) where :

U'(z) = M U(z) , (1.2.3)

If A has no dependence on z then we have a global symmetry, but if A = A(z) then we
have a local symmetry. As we shall see all the forces of nature (the strong and electroweak

forces) are well described by local gauge theories.

1.2.1 Quantum Electrodynamics : QED as a Gauge Theory

As mentioned before, in a QFT, particles are identified by the fields which obey relativistic
wave equations. These fields interact with each other under the influence of four fundamen-
tal forces by the exchange of gauge bosons. One of these forces is the Electromagnetic
Force which has been developed over a long period with contributions from Faraday,
Maxwell, Einstein, Feynman etal. Today the nature of the electromagnetic interaction is
better known than any other. The unification of Maxwell’s electromagnetism with the

quantum field theory is called Quantum Electrodynamics or QED [4, 5].
In QED, the relativistic wave equations for spin-1/2 and spin-1 particles are given below :
I. Vector (Maxwell) Field :

Photons, the spin-1 or vector particles, are described by Maxwell’s equations. In covariant
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form these are :
0.F* =0, (1.2.4)
where the field strength tensor F** can be expressed in terms of the vector potential A*
by :
F* = g*AY — 9V A* | (1.2.5)

where A, denotes the photon field. The appropriate Lagrangian is :

1
L= —7F"F, . (1.2.6)

II. Dirac Spinor Field :

Fermions (i.e. spin-1/2 particles obeying Fermi-Dirac statistics) are described by the Dirac

equation, which in covariant form is :
(iv*0, — m)¥ =0, (1.2.7)

where ¥ denotes spinor (fermion) fields and v, are Dirac matrices satisfying

{7#,7"} = 2¢**. Eqn. (1.2.7) is the equation of motion of the Dirac Lagrangian, which is :

LDirac = 1970,V — mUT . (1.2.8)

If one looks for invariances of spin-1/2 fields, the Dirac Lagrangian for a free theory is

found to be invariant under :
Uoey | T Teieh (1.2.9)

where A here is a constant. Thus the transformation in Eqn. (1.2.9) is global. In order to
generalize the global symmetry to a local one, the Lagrangian must be invariant under the

local transformation :

U — U =@y | (1.2.10)
When this transformation is applied to the Dirac Lagrangian, Eqn. (1.2.8), for the free
theory, it yields :

Lpirae = LDirac — €0 v* U A,A | (1.2.11)
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The Lagrangian is clearly not invariant under local gauge transformations. However, in-

variance 1s achieved by replacing the derivative operator 0* by D*, the covariant derivative,

defined by :
0,— D,=0,— ieA, |, (1.2.12)
where A,, the vector field, is required to transform as :
A, =A,+0,A (1.2.13)
and then Dirac Lagrangian can be written as :
L=V(iv*D,—m)¥ . (1.2.14)

Now Eqn. (1.2.14) is locally gauge invariant. When the Maxwell field term, —3 F,, F**, is
added to this Lagrangian, it gives the Lagrangian of QED :

1 _ _
Lopp =~ F"Foy + eTy* A0 + T (i749, —m) ¥ . (1.2.15)

The covariant derivative automatically generates the interaction term. It is a feature of all

local gauge symmetries that they generate the basic interactions.

In summary, QED is a local gauge theory describing the electromagnetic interactions of
fermions and photons, and is determined by the given Lagrangian. Thus, QED is invariant

under the local (gauge) transformations :
A, = A +0.A(z)

- eieA(r)\If ,
T = Teieh® | (1.2.16)

1.2.2 Gauge Fixing

The property of gauge invariance means that A* and A" are equally good as photon fields.
Therefore, when we perform a functional integration over A, , this lack of uniqueness of

the vector potential causes overcounting. To overcome this, we fix the gauge and thereby
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eliminate this infinity of choices. The Lagrangian is then no longer gauge invariant. To do
this, we introduce the Lagrange multiplier (or gauge fixing term)

1 2
— 7
EGF = _—26 (auA ) N (1.2.17)

into the Lagrangian. ¢ is the covariant gauge parameter in this term. As a result, there will

be many different, but physically equivalent gauge conditions. Each has its own advantages.

Then, the QED Lagrangian is modified to :

1 — — 1
Lopp = =7 F*Fou + €0y* A0 + T (i7"0, —m) ¥ — % (0,A%Y . (1.2.18)

The different choices of gauge fixing term does not alter the physics.

1.3 Path Integral Formalism

In this section, we shall present the derivation of the Schwinger-Dyson equations (SD) to
make this thesis self-contained. In order to do this, the path integral technique [4, 6; 7]

will be used. Let us briefly review this formalism:

This technique strongly depends on fundamental quantum mechanics. The Path integral
(or functional integral) can be thought of as the sum of contributions of all the possible
paths that a particle can travel between initial point a with position z; and final point
b with position zs. Instead of calculating the certain motion of a particle as in classical
mechanics, only probabilities are calculable in quantum mechanics. The probability, that
a particle is created by a source, then moves in space-time, interacts and is then destroyed
by observing it is given by summing over all possible paths. If we divide up each path into
N intermediate points, and then sum over all paths, by integrating over the positions of

these intermediate points, we can write :

) N
) :ngréog&qsn_» /DqS . (1.3.1)

paths

The integral [D is an infinite product of integrals, taken over all possible paths. All

intermediate points between a and b are connected by what are called the Green’s functions
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G of the theory. In other words, path integrals are a compact form of Green’s functions.

If S is the action for a path, then the amplitude 1s :
exp [1S(field)] (1.3.2)

and the integral over all paths is given by :

/ exp [i S (field)) [] D(field) . (1.3.3)

In general, the path integral of a field theory is given by the addition of the term
J dzsource(z) field(z) as :

Z [source] = /D[field]exp [z <S + / dz(source) (ﬁeld))] , (1.3.4)

where the source represents particle creation or annihilation. The functional Z has a
Taylor series, Z(source) = Y¢° 6"Z(0)/6[source(z)].....6[source(z,)], and is known as the
generating functional because it generates all Green’s functions of the theory by taking

functional derivatives with respect to the source term :

- o T4l (135)

where J is the source of some scalar field. For instance, the 2-point Green’s function gives

the boson propagator in a free scalar field theory :

G(z,y) _ELl) iAr(z — y) (2-point function) (1.3.6)
A = — = — -Po1 u on «J.
and the fermion propagator in the case of free fields is :
8*Zo[n, 7] .
G(z,y — =1Sp(z — , 1.3.7
O = 5@ eme) o~ PO (.57

where n and 7 are the sources of fermion and anti-fermion fields, and are Grassmann
variables. When the free action is replaced by the complete one by the addition of the
interaction term, Eqn. (1.3.4) is true for the interacting fields as well. The generating

functional Z generates both disconnected and connected graphs. When this formalism is
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applied to the amplitude for a physical process, one wants to distinguish these two types of
graphs and find another functional that generates only connected graphs. This is denoted

by W and is related to Z by :

Z [source] = e Wloureel (1.3.8)
or
Wisource] = —ilnZ [source] . (1.3.9)
The second derivative of W with respect to sources is
W = —i—ézZ— = 1G.(21,22) (1.3.10)

6J(z1) 5J($2) J=0 6J(w1) 6J (z2) ly=0

where G, is now the connected Green’s function. The next step is to find a new generating
functional for the proper (1l-particle irreducible) vertex : ', with no external propagator

factors. It can be derived from W by the functional Legendre transformation:

Wsource] = T'[field] + /d:z:(source) (field) (1.3.11)
where the sources and fields satisfy :
SWI{J] . 6T[¢] 3
__5J(:c) = é(z) , 5a(0) J(z) . (1.3.12)

Making use of the above expressions, we obtain two useful relations :

. _ W] _ ¢(=)
iGo(zy,2y) = T 60 - I (1.3.13)

e @)
Mew) = Syoe) ~ o) (1:3.14)

If we generalize Eqn. (1.3.13), we can write (n + 2m)-point Green’s function in QED as :

g Wi, n, )

il
e
+
[
2
—~
]
-
3]
=
N
-
@
S
IN
o
N
3
~—
—~
—
bt
pu—y
(53]
~—
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1.3.1 Derivation of the Schwinger-Dyson Equations in QED

The exact equations for the Green’s functions of the theory can be found by using the same
path integral method. These relations are called the Schwinger — Dyson equations.
They provide the starting point for the study of non-perturbative physics. Their derivation

is based on a simple fact that the functional integral of a complete derivative is zero :

6 —
/D%; =0 . (1.3.16)
If we apply this to the example of a scalar theory :
/’ngé—i;exp {z (5(¢) + [ J¢) } =0 (1.3.17)
[D8i [5'(9)+ 7] expi <5(¢) + [ do J¢) _0 . (1.3.18)

This can be rewritten as a differential equation :

[s' (—z%)} Z]=0 . (13.19)

Now, as an example let us derive the Schwinger-Dyson equation for the gauge boson which
relates 2-point Green’s functions to the 3-point one. First of all, referring to Eqn. (1.3.4),

the generating functional can be written for QED as :

Z[Jn,m) = exp W[I,n70)
2Unm = [ DADW D]

X exp{i [S(A#, v, v) +/dz (J"Au +n7+ﬁkﬁ)] }7
(1.3.20)

where the action S, including gauge fixing term, can be written as :

S = /dm{ — iF’“’Fw-{— U(id—m)y— %(@,A“f — eW’yﬂA“\I}} . (1.3.21)
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Making use of Eqn. (1.3.1) yields the following differential equation :

i (i yrsd) oo avan= . nom

Taking the derivative of the QED action, Eqn. (1.3.21), with respect to the boson field,

A,, we have :

TR [Ogu — (1 - €7)8,0,] A — e Ty, 0 . (1.3.23)

Substituting this equation into Eqn. (1.3.22) gives
26 15 —7,6 iW[J, ’—] _
e+ (o= =62) (537) =« (37 (57| 7o =0

and after differentiating, we obtain the following equation in terms of connected Green’s

(1.3.24)

functions :

- - () S8

(1.3.25)

Now, by using Eqn. (1.3.11) to replace W with the proper vertex function, T, leads to :

W [J,,n,7] = T[A,, U, 7] + /dm (7,4 + T +79) (1.3.26)
which satisfies;
SWJ] u SWn] SWn) —
= - o _ _
6J, A o7 ’ on v
(1.3.27)
§T[A] ; SIv) 6T[w]
w4 - T w s w T
where
W U §°T )
LY , o0 (1.3.28)
éném o sUSU &V
After making use of the above relations for Eqn. (1.3.25), we find
§T §°T -
= [ag,, — (1-¢1)0,8,] A*(z) — iey, | —=———— .
§A(x)lg=TF=0 [ I ( ¢ )ﬁ,ﬁ ] (2) = ie (6\11(3,‘) 6¥(z) w:ﬁ:o)

(1.3.29)
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Now taking the derivative of this equation with respect to A,(y), and setting the fields
equal to zero, we have
8T
6A,(y) 8Au(z)

A=0=U=0

B ) ' 0 8T
= [Pgw = (1-€7) 0,0.] 6"z — ) = e 57 (6%) 50 ()

Then the derivative of the inverse matrix with respect to A, is :

M _ 8

-1
SA, s, MM

where
_ 8T
B oV (Z]) 6@(22)

Inserting this relation into Eqn. (1.3.1), we find :

8T
6A,(y) 6Au(z)

A==T=0 [Dg“" B (1 N 6_1) On (9,,] 8z —y) + (21, 22)

(1.3.31)

where
: 6T s 6T ) -
M,,(z,2) = 2e/d21d227u <6T(x)6\11(zl)) §AL(y) 60 (2,) 6V(2,) (5\11(22) 55(.@)) :

(1.3.32)

Making use of Eqn. (1.3.15) to write derivatives of the proper vertex in terms of connected

Green’s functions :

83T
-G = — =eA, 1.3.
¢ (y, Z1’22) 6A,,(y) 6\11(21)6\11(Z2) A:W:T:O ¢ (y,21,22) ’ ( 3 33)
(02) s\
_‘G ! = T, .~ A= < == S 1.3. 4
ety (6@(@6@(@/)) ER (133
—iG2(z,y) = ) = A7 Nz,y) (1.3.35)
) = A |~ A Y
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Eqn. (1.3.31) finally becomes :

i874(2,9) = [i(Bo),, (2,0)] " — ¢ [ dzdzSe(z, 2) A (53 21, 22) S (2, ).
(1.3.36)

This equation can be represented diagramatically as :

I+p/2
-1 -1 .
p v
AN, = AaAannnne - NE
—
p p The + I
1=p/2

Figure 1.1: Schwinger-Dyson equation for the gauge boson

1.3.2 Ward-Takahashi Identities

We are now going to derive identities which are an important consequence of the gauge
invariance of the generating functional. The best known, the Ward-Takahashi identity |7,
4], relates the fermion propagator to the proper fermion-boson vertex. Such identities are
essential in proving the equality of renormalisation constants Z, = Z,. The generating
functional for QED given earlier in Eqn. (1.3.20) is invariant under gauge transformations,
Eqn. (1.2.16). This is because changing variables in an integral has no effect on its value.
The only term, which is not gauge invariant, is the gauge fixing term and the coupling to
the sources. But since the generating functional Z is gauge invariant and only a function

of n,7 and J , these terms must vanish. Therefore, variation of the generating functional

gives :

Z7+6Z = /’D[Au] D[Y] D[W]{expi/d:c [C(Au, U, 0) + A, J* 47V + 77@)]

+ (—% (0,A*) B + J*(9,A) + ieA (n_sﬁ - ﬁW)) } :
(1.3.37)
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Expanding the exponential to the first order in A and integrating by parts gives :

[ 281202 - (0,80 + s (o(eIT00) ~70a) ) — 8,07
X exp 1 [S-{—/ dz (A‘,J"—}-T]'\I/ +77W)] =0.

(1.3.38)

Rewriting this expression as a functional differential equation for Z, using Eqn. (1.3.1), we

get :

y 6 &\ 16 _
A[—a,,J -|—e<77677($) "55(:::)) €8u JJJZ[JU 7]=0 . (1.3.39)

After replacing Z by the connected Green’s functions yields

o, W oW oW
——0,—— — 0, J*(x +ie< — = )zO 1.3.40
£ TG T ) (1349
We then write this in terms of the proper vertex function using Eqn. (1.3.26) :
O 6T éT &y
——3., A* —
68,,14 (a:)—i—a,,&A (z )-I—ze( 02) qjéW(a:)) 0 . (1.3.41)
Taking derivatives with respect to ¥ and ¥ and setting A = ¥ = ¥ = ( leads to :
5 8T
W (2) 60 (y) 6A(z) | a=w=T=0
82 — 4T 6T
= je— Ve — U—{:
5T (2)6 0 (y) ( 50(z) 5\11(7”)) 4=Tozo
&°r §°T
=ie |64z — y)=—— — 6%z — z)_*]
[ ( 8U(z) 6¥(x) §U(z) 69 (y)] 4og=T=0
(1.3.42)

To transform this equation into momentum space, we make a Fourier transformation where

1pr—iky 6 I o 4 -1/1.
/ dx / dyel =) — T aag = (D= RSTE) L (1343)
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and
) §3T
d /d /d i(po—ky—qz) __
/ B A e W (z)6¥(y) 6AH(2) ] A=w=T=0

=1e(2m)*8(p — k — q) T(k,p, q), (1.3.44)

Eqn. (1.3.42) then gives the relation between the inverse fermion propagator and the 3-

point vertex function in momentum space :

=1

T, qp+q) =S5 (p+a)— SF () . (1.3.45)

This is known as the Ward-Takahashi identity. If we differentiate Eqn. (1.3.42) with respect
to A,(y) and set A =0 it gives :

a 67T
——0,8(x—y)=20, 1.3.46
g Oontle =) = e A Lo (1:3.46)
The Fourier transform of this equation gives :
¢
AL (0) =95 (1.3.47)

¢
which is a Ward-Takahashi identity for the photon.

This short description of how to derive the SD-equations and the simplest Ward-Takahashi

identities provides us with the main tools for this thesis, which we shall use in the coming

chapters.

The structure of this thesis is as follows :

o In Chapter 2, we are going to give a brief introduction to using the SD-equations. The
commonest way to deal with these equations is to make an ansatz for the fermion-

boson vertex. We discuss some simple choices for this ansatz in the rest of this

chapter.

o The SD-equations are solved perturbatively for the fermion and photon wave-function

renormalisations in Chapter 3.

o In chapter 4 we compute the most general form for the fermion and photon wave-

function renormalisations for them to be multiplicatively renormalisable.
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o In Chapter 5, we make a comparison, order by order, between the results of Chapter 3
and Chapter 4 to determine the constraints on the fermion-boson vertex imposed by

multiplicative renormalisability.

o In Chapter 6, the one-loop vertex in QED is calculated in arbitrary covariant gauges

as an analytic function of its momenta.

e [inally, we give our conclusions in Chapter 7.




Chapter 2

Constructing Non-Perturbative
Vertices

Although this may seem a paradoz,
all ezact science 1s dominated
by the idea of approzimation.

-B. Russell-

16




2.1. Introduction 17

2.1 Introduction

In this section, we shall discuss non-perturbative methods to address some of the problems

in Quantum Field Theory (QFT) that cannot be addressed by perturbation theory [8].

The calculation of a scattering process by using path integral methods involves a term
which contains the exponential of the action of the relevant theory. As we have seen, in
Eqn. (1.2.15) the action of the theory usually contains two parts : a free and an interaction
part. The free piece contains the non-interacting term obtained by taking all couplings to
zero. It gives a Gaussian integral which can be computed exactly. The exponential of the
interaction term may be expanded in powers of the coupling constant. Then, the calculation
of e"e™ scattering, for instance, is approximated at low orders by a few Feynman diagrams.
This perturbative approach to QED works very well. In this regard, QED is known to be
the best understood QFT. However, perturbation theory is not the whole story of a QFT.
There are problems which cannot be solved by the procedure just described. For example,
Quantum Chromodynamics (QCD), the theory of strong interaction physics, possesses a
property known as confinement [9, 10, 11]. In the long distance or infrared region, the
potential energy between two quarks increases linearly as V(r) ~ kr. As a result of this
property, if we try to separate a quark and an antiquark in a meson, then, instead of having
a free quark and antiquark, we have two separate mesons. In this way, we believe quarks
are confined and free quarks never observed. Only in the short range or high energy limit,
when the potential energy of two quarks is V(r) =~ a/r do quarks behave as though they
are free. It is, of course, impossible to give a proof of confinement, a large-distance or
low-energy phenomenon, in the context of perturbative QCD. Non-perturbative methods

have to be sought to understand this phenomenon.

In perturbation theory, if one starts with zero mass in the Lagrangian, fermion fields will
always remain massless. However, there is a strong evidence of a new phase of QED when
the coupling is strong (a ~ 1). Then, fermion masses may be generated dynamically by
chiral symmetry breaking [12, 13, 14, 15, 16, 17, 18] : “start from nothing to get some-
thing” [19]. Therefore, QED has to be treated non-perturbatively in the strong coupling

region where the chiral symmetry breaking occurs.
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In this thesis we study the non-perturbative framework for investigating QED in the contin-

aum [20, 21]. The natural vehicle for this is the system of Schwinger-Dyson equations [7].

2.2 Schwinger-Dyson Equations

The Schwinger-Dyson (SD) equations are [9] coupled integral equations which relate the

Green’s functions of a field theory to each other. Solving these field equations provides a

solution of the theory. Once all the n-point Green’s functions of a field theory are known

then everything possible is known

about that field theory. Below we show the first few of

the infinite tower of SD equations :

ot
Beerenn -c¢ : -cl‘
~ \'U

Figure 2.1:

e ;

Schwinger-Dyson equations
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The solid dots indicate full quantities, which include all possible fermion-gauge boson
emission and recapture and lines without dots indicate bare quantities. Straight lines rep-
resent the fermion propagator, Sr(p), wavy lines the photon propagator, A,,(p), and Np

is the number of flavours of fermion.

Obviously, as seen from these graphs, the full set of SD-equations for any particular field
theory contains an infinite number of equations which relate 2-point functions to 3-point
vertices, 3-point vertices to the 4-point functions, and in general n-point Green functions
to the (n + 1)-point Green functions. It is therefore not possible to solve this infinite set of
equations simultaneously. However, we can make progress by truncating or approximating
this system of equations [22, 23, 9], to arrive at a solvable problem from which we can
hope to extract all the necessary information. The best known truncation is perturbation
theory. In the limit of sufficiently small coupling constant, when a << 1, the SD-equations
are the usual perturbative expansion of the S-matrix. As previously discussed, in this
small coupling regime we need only calculate a few diagrams for a scattering amplitude
and the rest will be relatively smaller. However for o ~ 1, this picture breaks down,
as the next terms are of the same order and so cannot be neglected. In this region,
these equations should be solved non-perturbatively. Thus if one wants to study the non-
perturbative behaviour of any Green function, which may demonstrate dynamical mass
generation or quark confinement, this requires some (non-perturbative) approximation or
truncation rather than a perturbative one. Moreover by making approximations we may
lose uncontrolled key pieces of the physics. Since gauge invariance and multiplicative
renormalisability are two basic requirements of a gauge theory any successful model must

maintain these two important properties [22, 15]. How to achieve this is what this thesis

1s about.

The most common way to deal with the SD-equations is to replace the fermion-gauge
boson vertex by a suitable ansatz. In other words, instead of solving the SD-equation for
the vertex (the third graph in Fig. (2.1)) we approximate its solution. Then the problem
is reduced to solve the coupled equations for the fermion and gauge boson propagators.
The idea behind this truncation is to choose the vertex ansatz in a clever way so that we
maintain all the relevent information lost by decoupling the equations for the propagators

from the rest of the equations. As a result of the truncation, this vertex ansatz has to
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satisfy certain criteria that the solution of the vertex equation must itself satisfy. These

criteria [24, 25, 9] are listed below :

Any ansatz for the vertex function :

e I)- must satisfy the Ward-Takahashi identity;

-1 -1

= — & - —eo—
— -
k P

*—
q

2
N
k

Figure 2.2: Ward-Takahashi identity

q. (k% p*, ¢*) = Szl (k) — Sel(p) . (2.2.1)

In gauge theories Ward-Takahashi identities (7, 4] are consequences of gauge invari-
ance. They are not only satisfied at every order of perturbation theory, but are also

true non-perturbatively, as we have described in Sect. 1.3.2.

o II)- must be free of kinematic singularities. As a result of the Ward identity,

Figure 2.3: Ward 1dentity

d5r(p)
apu

the vertex should have a unique form in the limit £ — p [26].

(2.2.2)

)

I'“(p,p) = ,{l_rg I'“(k,p) =
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o III)- must reduce to the bare vertex in the free field limit; in other words, when full

propagators are replaced by bare ones, it should reduce to the bare vertex.

e IV)- must have the same transformation properties as the bare vertex v,, under

charge conjugation C [25, 27];
CTu(k,p)C™' = =TT (-p,—k) . (2.2.3)
e V)- should ensure the multiplicative renormalisability of the SD-equations
[28, 22, 29].

o VI)- should ensure local gauge covariance of the propagator and vertex [30, 9].

2.3 Importance of the Vertex Ansatz

The aim is then to try to find a suitable vertex ansatz which satisfies the above criteria.
With this in mind, we shall, in this section, build up a picture of where we presently are.
We shall see how this idea works, where we have reached today and what more can be
done. Before starting to develop these ideas, some terminology and conventions have to

be introduced.

¢ Ladder Approximation means the full vertex is replaced by the bare one.

\"O

<—
q

ot

P
Z
A\
k

Figure 2.4: Ladder approximation

¢ Quenched Approximation is when the corrections to the photon propagator are

not taken into account (i.e. the second graph of Fig. (2.1) does not contribute). It is
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equivalent to taking the number of flavours to zero (Nr = 0). In this approximation,

the full photon propagator is replaced by the bare one.

'vvvg'vvv‘
p

AYAYAVAYAYAYAYA
—p
P

Figure 2.5: Quenched approximation

e Sp(p) is the complete (full or dressed) fermion propagator carrying momentum p.

It involves two functions

of p%. This fact follows from the spin structure of the

fermion propagator. These two functions can be chosen to be F(p?), the wave-

function renormalisation, and M(p?), the mass function, so that

* Full Fermion Propagator :

iSp(p) = i% . (2.3.1)

[This can be (and often is) written in a variety of other ways, e.g.

Sp(p)~! = a(p?®) ¥+ B(p?), etc, always involving two independent scalar functions.

Since Sp(p) is a gauge-variant quantity, these functions F(p?), M(p?) will in general

depend on the gauge. They can be calculated, in principle, at each order in pertur-

bation theory. At lowest order F/(p?) = 1, M(p*) = m, the bare mass. Therefore,

* Bare Fermion Propagator :

i

g—m

i Sp(p) = (2.3.2)

¢ The full photon propagator involves a photon wave-function renormalisation, G(p?),

analogous to F(p?), then,

*Full Photon Propagator :

J AW(P)

At the lowest order G(p?)

- _z% [G(p2) (gw -p;f”) +£p;f”} : (2.3.3)

= 1. So,
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*Bare Photon Propagator :

ZAMV(p) = _}7 uv + (é - 1) p;% 3 (234)

where ¢ is the arbitrary covariant gauge parameter introduced in Sect. 1.2.2. We
shall see in the next section that the same functions F(p?), M(p?) also occur in the
complete fermion-gauge boson vertex, since the Ward-Takahashi identity relates the

3-point Green’s function to the fermion propagator in a well-known way.
e xFull Vertex :
—ielh | (2.3.5)
*Bare Vertex :
—tey* . (2.3.6)

After introducing our notation, we can now start to solve the SD-equations in the simplest

approximation, called the rainbow approximation.

2.3.1 Rainbow approximation

The Rainbow approximation [29, 14, 31, 32, 33] is the name given to the combination of
the Ladder, Fig. 2.4, and Quenched approximations, Fig. 2.5, where the vertex and photon
propagator are bare and only the fermion propagator is full. This approximation can be

represented as
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=y

Figure 2.6: Rainbow approximation

This SD-equation, Fig. 2.1, can be solved for the wave-function renormalisation and the

mass function. Making use of the Feynman rules for Fig. 2.6,

i) = ~iS2 ()~ [ é“; (wier") i Sp(k) (~ier®) ibL(e),  (237)

where M denotes that this integral is to be performed in Minkowski space, e is the bare
coupling and ¢ = k — p. Using the expressions for the full and bare fermion propagators,

and for the bare photon propagator, the above equation can be written as,

Z(ﬁ_M(pz)) — i(;d—m) e’ /Mﬂ F(pZ)

F(p?) C@ntn ¢ (R - MA(E))

x [7“ (¥+M@pY) v <gw +(€- 1)%)] :
(2.3.8)

Multiplying by /4 and taking the trace (and noting that the trace of an odd number of

y-matrices is zero), Eqn. (2.3.8) gives the inverse fermion wave-function renormalisation :
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R /ﬂ F(E) Tr[muiév“(gumt({—l)qu—;b)}-
q

F(p?) 1673 pt Im ¢? (k? — M?(k?))
(2.3.9)
Related traces are calculated by using :
Tr (" kv) = ~8k-p,
(2.3.10)

Te(#v" Er'auqn) = 4[(k*+p*) k-p—2k%p?] .
Substituting Eqn. (2.3.10) into Eqn. (2.3.9) and neglecting M with respect to k and p, we

obtain,

1 o d*k 2 (€-1) 2 2 2 2
F(pZ)—1+47T3p2/Mk2q2F(k){_2k.p+ 7 +p)k'p_2kp)}'
(2.3.11)

The ratio of the mass function to wave-function renormalisation is found by taking the

trace of Eqn. (2.3.8) :

YO o e f, S PELED y fye (g6-1 2)]

F(p?) 16 Jm P (B2 — MP(R?) ¢
(2.3.12)
with
Tr (v"49w) = 16
Tr (v"9"quq) = 44" . (2.3.13)
Letting the bare mass go to zero, Eqn. (2.3.12) can be written as :
M(p? ' d*k  F(k?*) M(k?
F(p?) 473 Jm q* (k*— M?(k?))

Usually, it is easier to perform the integration in Euclidean space rather than Minkowski
space. In order to do this, we rotate the ky-plane by 7/2 radians, a procedure proposed by

Wick. We can interpret this in mathematical language as :
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Minkowski Space — Euclidean Space
ko — iko
ki (2=1,2,3) — k; (2.3.15)
d*k’' — idik

ki, =k2—k o —kE =~ (K2 + k)
So, we shall now evaluate the k-integration in Euclidean space by employing a Wick rota-

tion, assuming the necessary analytic properties hold.

It is then appropriate to describe our Euclidean coordinate system. We choose the external

momentum as
P = (p,0,0,0), (2.3.16)

and use spherical polar coordinates in 4-dimensions. The internal momentum k% is then

given by the 4-vector

k* = (kcost, ksintsinf cos ¢, ksint sinfsin ¢, ksintp cos 6) (2.3.17)
where

k:[0,00] , #:[0,7] , 0:[0,7] and ¢ : [0, 2n]

The 6 and ¢ integrals are trivial, since our integrals have only 1 dependence, because they
have terms like k - p = kpcosi. The radial and angular parts of the k-integration can be

performed by writing the Jacobian as :
d*k = 27 k* dk? sin® ¢ dy
This leads to

1 a [N ordE?
— = ] = — —si F(k?
F(p?) ! 2p27r2/0 /o q? sinp Ay F (k)

X {—Qk-p+ (6;1) ((k2+p2)k-p—2k2p2)} :

(2.3.18)

Referring to Appendix B for these angular integrations, one can see that Eqn. (2.3.18)

takes the form,

1

A2
—_—— — k2 .2 7 e 3.
F(p?) 9272 Jo dk” F(E7) (X1 + £ X3) (2.3.19)
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where Xy, = -26L,,- (k2 + pz) Lo+ 2%k Iy, ,
X, = (K +p%) Lo— 2%k, . (2.3.20)

Splitting the above integral into two regions, we have :
1

F(p?)

Similarly, Eqn. (2.3.12) becomes

el 2l [ reme e e

2 2
—1+4M[/ dk*F )5—+ ; dk?F(k)g%J, (2.3.21)

+ /pA dk"’@F(k")M(k?)(BH)}
(2.3.22)

We now use an iterative procedure appropriate to perturbation theory. Starting from

F(k?) =1 and collecting only leading order terms for the sake of simplicity, Eqn. (2.3.21)
yields :

F(p?) =1 +“—§1 543 (Z‘f) In? £ +g (%) In® f; +0(e'). (2323
One of the checks of whether the rainbow approximation for the vertex is good or not is to
see whether the above solution for F'(p?) ensures its multiplicative renormalisability. As a
necessary requirement of multiplicative renormalisability, the wave-function renormalisa-

tion should be of the form :

PO =1+ E Nk (f) r*%(f—é) o 5+ Ofa)
(2.3.24)

As we can see these two expressions Eqns. (2.3.23, 2.3.24) are not equal to each other
except in the Landau gauge, ¢ = 0. Therefore this solution of the SD-equation is not
multiplicatively renormalisable for an arbitrary covariant gauge. Moreover, as we shall
shortly discuss, this approximation violates the Ward-Takahashi identity [23, 29], and

hence one of the requirements of gauge covariance, in all but the Landau gauge ¢ = 0.

In any acceptable truncation of the field theory, the physical observables should be gauge

independent, such as the mass of the particle, the critical coupling at which the mass is
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generated etc. In Fig. 2.7, the Euclidean mass, defined by m = M (m) from Eqn. (2.3.22), is
plotted versus the coupling constant for different gauges in the rainbow approximation [29].
The bare mass is zero. The perturbative and non-perturbative solutions agree in the region
of a < a., but once we reach the critical coupling, these two solutions separate from each
other. The mass remains zero in perturbation theory, but if & > a. then a nonzero value
can be dynamically generated [34]. Obviously in this plot the Euclidean mass has different

values for different gauges, which means that the mass has a gauge dependence in this

approximation. This is clearly not acceptable.
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Figure 2.7: Dynamical mass generation in the rainbow approximation

with Landau ({=0) e, Feynman ({=1) o, Yennie (£=3) &

The next step is to improve on the rainbow approximation by trying to re-establish the
gauge invariance of the theory which is lost by approximating the vertex by its bare form.

Since the Ward-Takahashi identity is an exact relation between the inverse full fermion
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propagator and the 3-point vertex function, one can use it to try to extract some informa-

tion about the vertex function.

q.T*(k*,p*, ¢%) = Sp'(k) — SR (p) . (2.2.1)

2.3.2 Ball-Chiu Vertex Ansatz

The standard approach to representing the vertex is to divide it into two pieces which are

called Transverse and Longitudinal parts [26, 22],
T (k,p) = T7(k,p) + T (k,p) (2.3.25)
with
q.Ir(k,p) =10 (2.3.26)

where ¢, is the photon momenta. Because of Eqn.(2.3.26), the transverse part of the vertex

does not know anything about the Ward-Takahashi identity.
In order to satisfy Eqn. (2.2.1), an obvious first try for a possible vertex function could
be :

bV o
T*(k,p, q) = (g"" - %) v, + f]— (S7'(#) - S (%) - (2.3.27)

The above choice fulfills the Ward-Takahashi identity and Eqn. (2.3.26) for every value of
V., but if we consider the limit £ — p then Eqn. (2.3.27) should have a unique limit given
by the Ward identity, Eqn. (2.2.2). When this limit of Eqn. (2.3.27) is taken, we find

g"q" ¢“q” (9SE'(p)
r# = |g" — V.(p, : 3.
(p,p) (g Z ) (p,p) + o ( o (2.3.28)
This result can be equal to Eqn. (2.2.2) if and only if
oSzt
Vo(pp) = 25— (2) ; (2.3.29)

dp¥
i.e. the function V, is specified to be the vertex itself. This happens because the full vertex
is free of kinematic singularities; so the singularities appearing in Eqn. (2.3.28) must cancel

between the longitudinal and transverse parts.
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As a second try one can apply the Ward identity to the inverse fermion propagator, which

can be written in general as :
Sp' = a(p?) P+ 500", (2.3.30)

and when the Ward identity is applied, we find :

dSF
apu

I(p,p)

= a(p’)y. +2d'(P)p* P+ 20/ (p)p* . (2.3.31)

We write this expression in terms of k£ and p in a careful way so as not to introduce any

kinematic singularity, which was not originally in Eqn. (2.2.1). Thus

I(p, p)
= Jim % (k) a) + 5 o e L) e ) HT)

k—p

= I'7(p,p) +Ti(p,p) . (2.3.32)

On multiplying Eqn. (2.3.32) by g,., we can easily see that it satisfies the Ward-Takahashi

identity automatically. Hence, Eqn. (2.3.32) can be expressed as :

Pkp) = 2 (alk) +a) + Skt ) (4 2= P
+ (k+p)* bk = b(p") + % (2.3.33)

k2 — p2
Consequently, by choosing a(p?) and b(p?) in Eqn. (2.3.33) as

2y _ 2\ _ M(Pz)
CL(p ) - F(pg)? (p ) - F(p2) ’

Ball and Chiu [26] express the non-perturbative structure of the part of the vertex (a
part conventionally called the longitudinal component ) that fulfills the Ward-Takahashi
identity in terms of two non-perturbative functions describing the fermion propagator. The

vertex proposed by them can be written as
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Tsc(k,p) = TL(k,p)
_ e 1 n 1
2 \F(k*) "~ F(p)

l(k“+p”)(lé+if)< 1 1 )

_|_

? Ry \FF) T
(B +p%) (M) M)
R (F(k‘*) - F(p2)> | (2:3.34)

In addition, the Ward-Takahashi and Ward identities put some natural constraints on
the transverse vertex : one is that the photon momentum is orthogonal to the transverse

vertex,
9.T%(k,p) = 0, (2.3.35)
and the second is that in the limit of g, — 0, the transverse piece vanishes,

I (p,p)=0 . (2.3.36)

It is this condition that is not satisfied by our first example in Eqn. (2.3.27). Since the
full vertex and its longitudinal component are free of kinematic singularities, this requires

that the same property must hold for the transverse vertex as well.

One of the deficiencies of the rainbow approximation is, therefore, overcome by the BC
vertex, namely, respecting the Ward-Takahashi identity [24]. We now see if it is any
good for the multiplicative renormalisability of the fermion propagator [23, 24, 31, 35, 36).
Substituting the BC vertex in the SD equation for the fermion propagator,

q=k-p
-1 -1
—— = — - —?I—,Vovl
— — —>
P P k Ti=Tk

Figure 2.8: Ball-Chiu approximation
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~S7(p) = ~i887'(0) = [ 7o (<ieTo) i Se(b) (—ien®) iDL (4")
(2.3.37)
Making use of Eqns. (2.3.4, 2.3.1) and Eqn. (2.3.34), we get
1 ey d*k )
F(p?) = 1+ 16 p? 72 /M k2q* FE)
x{A s (gw +(€-1) q;Z“)J
FBT [+ ) (k) o (4 6= 1) L)),
' (2.3.38)
where
1 1 1
=3 <F<k2> * F<p2)>
B = ! ! ! 2.3.39
D (F(kz) - F<p2>) ' (2339)
Using the traces
Te[p(k+ F) (k+p)" Kv'9w) = 4[(F+p%) k- p+2k%7]
Te[f(k+ P (k+p)" kr'qua] = 4(8 ) k-p, (2.3.40)

and Eqn. (2.3.40) in Eqn. (2.3.38) and performing a Wick rotation, we have

1 _ « d'k
F(p2) - 4p27r3 E k2q2

F(k?)
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This expression can be written as

1 a AZ
=1- dk?* F(E*) [A(X) + €X 3.
F(p2) 1 2p2 72 Jo F( )[A( 1+ ¢ 2)+B(Yl+§Y2)]> (2342)
where
2
Vi = (B +p?) Ly +2k0% Iy - (¥ -p*)" La
v, = (B-p) h, | (2.3.43)
and
Xo = —2Dha— (B +p") Lp+ 2k Io,
X; = (kz + P2) Lo —2kp Iy (2.3.20)

We refer to Appendix B for the evalution of these angular integrals. Splitting Eqn. (2.3.42)

into two regions to compute the k-integral, we find the expression for 1/F(p?) :

1 - 1 «
F(pt) — 2p?m
p? [ k2 3 k2 k? |
2 2 2, 1.2 B (12 .2
x {/O dk F(k)-.fA(—-Q—F)+BZF(p +L)—§Bp2 (x p)J

+/p:2 dk? F(k?) &‘A (-i) + Bﬁp_2 (p2 +k2) + 53% (1&’ _p2)j }

2 k2 4 k2

(2.3.44)

If we substitute Eqn. (2.3.39) into the above expression and tidy up, we find

e = red ] ¢ (- 59) ()
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Again, using on iterative procedure, we find

o' ? 3 fo% 2
F(p)=1 + —61 = (%—8§)+<ﬁ)1 i?

af\T (€ 3¢ 3¢
+ (E) (6_?+16) A2+O( o).

(2.3.46)

Again looking at Eqn. (2.3.24) we see that result is not multiplicative renormalisable.
There are some extra terms in the above expression which can only be cancelled by the
transverse component of the vertex, since the longitudinal part is fixed by the Ball-Chiu

construction. Thus the natural next step will be to try to find a suitable transverse vertex.

2.3.3 Curtis-Pennington Vertex Ansatz

We have seen in the previous section that multiplicative renormalisability puts a condition
on the transverse component of the vertex [22, 37]. It is only the transverse vertex that
can restore multiplicative renormalisability of the fermion propagator and hence it should
know about F(p?), M(p?). In order to construct a suitable non-perturbative transverse
structure of the vertex, perturbation theory can be used as a guide. Let us anticipate a

perturbative result we shall derive in Chapter 6, namely :

S k2 af ; k?
— gl — k* — ;2 2,
~3 L, In— ) (kK" §+ p* K ) lnp , when £°>> p

(6.2.48)

I'pr =

One can try to establish a non-perturbative ansatz that gives the above result in the
weak coupling limit when k% >> p?. In perturbation theory, if only leading log terms are
considered then the wave-function renormalisation can be written as :

al . p?

F(p )—1+—lnp+ ) (2.3.47)

Note that the following form gives Eqn. (6.2.48) apart from the y-matrix structure :

1] 1 1] af B
1 [F(l&) _ F@?)J ~_ 2 F (2.3.48)
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As we shall see, the correct y-matrix structure, in the limit £2 >> p?, is offered by the

basis vector :
TEKR* >> p*) = —K*y“ + k* F—k* g+ p* K. (2.3.49)

Consequently, the transverse vertex can be written as

o€ (K /p)
L (2.3.50)

One can then write a possible non-perturbative transverse vertex as :

L 1] 1 1] 1
FT_§[F(k2) —F(pz)J 5 (2.3.51)

The full vertex satisfies charge conjugation relation, Eqn. (2.2.3), as a result of this the
transverse is symmetric in k, p. Thus one can only think of having a k? term in the
denominator in the limit k> >> p*>. However if we account for all symmetry properties and
the correct dimensions (since the vertex by itself is dimensionless) the above expression

can be rewritten as the so called Curtis-Pennington (CP) vertex [22], in which the massless

case 18 ;

b T_GM 1 _ 1 (k2 +p2)
op =5 [F(W) F(p2)J 2 —p2)2 . (2.3.52)

Obviously, by defining the transverse vertex in such a form a kinematic singularity has

been introduced when k% — p2. In the massive case the CP vertex takes the form

] [ F(1k2) - F(lp?)} : (2.3.53)

where

(K2 —p*)? + (M*(K?) + M?*(p?))°

2.3.
- (2.3.54)

d=




2.83. Importance of the Vertex Ansatz 36

By using this vertex to solve the SD-equation,

q=k-p
-1 -1 fﬂ\’l
—— = - @
— —
p p k =Tyt

Figure 2.9: Curtis-Pennington ansatz

If we add the CP-vertex to the BC-vertex in Eqn. (2.3.37), we find :

e - 0-1 d*k . : N
=87 () = =827 (0) ~ [ oy (SiePhover) i Se(8) (=ier®) ial(a)
(2.3.55)
Substituting the fermion and photon propagators into this expression, we get,
i d*k (k* + p*)
= 1 F(k*)—=——B
F(p?*) ,+ Fut 16 p? 73 /M k? ¢2 ( )(kz—p2)
w2 2 . u v Q#QV
XTr[lﬁ(v (7 = #) + (k +p)* ) kv} (guu+(£—1) : ) ,
(2.3.56)

where recall B is defined in Eqn. (2.3.39) and F, is the contribution coming from the
longitudinal part of the vertex given in Eqn. (2.3.34). After taking related traces,

T [# (7" (* = #°) + (4 0)" f) Br'0u] = 12(K—p*) k-p,

Tr [# (v (0 — ) + (k+ )" 4) Fr'qua] = O, (2.3.57)
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in Eqn. (2.3.56) and performing the Wick rotation, we obtain :

1 - 14 F 4 Ja d*k
F(p?) " ap ek

F(k*) B (K +p*) . (2.3.58)

Evaluating the angular integration we have :

1
= 1
70 + FL
k2 A2 2
2 2 2 .2 2 2\ P~
8p7r[ dk?* F L-}—p)p—z-}—/pz dk* F(p) B (k +p)k2},
(2.3.59)
and after tidying up, this expression can be rewritten as :
! = 14+ F
F(p?) ’
(k? 12 (L2 1 2
. [ (1o FO) 320
4p w2 Jo F(p*)) 4 p* (k* — p?)
A? 2 2 (1.2 2
. ) 1B
(2.3.60)

Referring back to Eqn. (2.3.45) for the form for F,, we see, the necessary cancellation

between the longitudinal and transverse parts has taken place. We then find :

wy - - [ (o~ 25) (5)

LB E) e

Eventually, this solution of the wave-function renormalisation comes out to be multiplica-

tively renormalisable :

F(P2)=1+a—€ln£2— l<3§—> lnzp—-}- 3 (g—f) 7\—2+ O(a). (2.3.62)
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and the mass function for this vertex is,
3 2
“mi 4] (2.3.63)

which is gauge independent at least for leading logs.

We have already seen in Fig. 2.7 that the mass function was dependent on the gauge pa-
rameter in the bare vertex approximation. We also mentioned that any candidate for a
vertex ansatz has to produce physical observables independent of the gauge. Numerical
studies of non-perturbative quenched QED [29, 24, '34, 31, 35) using the CP vertex in
SD-equation, Eqn. (2.3.55), have shown that the Euclidean mass is no longer strongly de-
pendent on the gauge parameter. As a result of this, in analogy with Fig. 2.7, the mass

function is plotted against the coupling constant [29], using CP vertex, in the figure below :

1 T T T L) T T T
?
- 2 i
. ?
2
10T . 4
.2
é
- 9 .
L4
107 s ]
E é
R Pe i
©
10°F . _
L
10.. ] 1 1 1 1 1 ]
) 1-0 15 20 2'S
a

Figure 2.10: Mass generation with Curtis-Pennington ansatz

In these studies, the critical coupling constant is also plotted versus gauge parameter

[34], then it looks like :
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2.5 T T T T T T T T T
CP o
B Rainbow o 1
2.0 L ° J
- o .
1.5 L J
1 - 1
l'O m
0.5 L J
| | i
0 1 1 1 ! 1 1 1 1 1
0 5 10 15 20
3

Figure 2.11: Gauge dependence of the coupling constant with CP ansatz

This vertex (CP) makes the critical coupling weakly dependent on the gauge parameter.
There is appreciable improvement compared with the Rainbow approximation where the
critical coupling is strongly gauge dependent. Since the aim is to find a vertex ansatz that
makes the critical coupling and other observables completely gauge independent, there
is still room for improvement. This may come from the contribution of the other basis
vectors in the transverse vertex since only one of them is used in the CP-vertex. In this
regard, Bashir and Pennington have recently suggested a different ansatz for the transverse

component. All this work is in the context of quenched QED.
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2.3.4 Bashir-Pennington Vertex Ansatz

g=k-p

-1 -1
_g_ = - fl\&'

e
k T%= TectThp

o
=y

Figure 2.12: Bashir-Pennington ansatz

Bashir and Pennington have taken into account four of the basis tensors in the transverse
piece which involve an odd number of y-matrices to study the SD-equation. Referring to

Ball-Chiu’s work [26],

Th(k,p) = > 7 (k0% ¢%) TH(k,p), (2.3.64)
1=2,3,6,8
where
T, =(p"k-q)—K'(p-q))(k+¥),
Ty =q¢°v*—q"4,
T¢ =~"(p*—k*) + (p+ k)*4,
T¢ = —v"k*plo,, +k*g— p* K
1
with Ow =3 [ 7] - (2.3.65)

They have tried to solve the SD-equation for the wave-function renormalisation F(p?) and
mass function M(p?) in quenched QED by demanding a gauge independent critical coupling
constant using bifurcation analysis. They managed to write the transverse vertex in terms
of two unknown functions W; and W, which have some constraints to obey. Multiplicative

renormalisability of the fermion propagator imposes the constraint
1
/ dzWy(z) =0 | (2.3.66)
0
whereas, the gauge-independence of the critical coupling places the following constraint on

W,

1 dx
/O = Wilz) =0 (2.3.67)




2.3. Importance of the Vertex Ansatz 41

Then, a non-perturbative multiplicatively renormalisable solution of the wave-function

renormalisation and the mass function are

M@p') = B~ , (2.3.68)

the latter only holds in the neighbourhood of the bifurcation point v = a¢/4 7. Coeflicients

of the basis tensors are then given in terms of the functions W, and W, [38] :

With
1 1 1 k2 p2
=12 .2\ _ - PR k2
T(k*,p ) = 4 k2 —p? sl(kz,pz) [Wl (p2 ) W <k2 )J )
then
1 kK +p? 1 1 LE 49
a1 ~ 1 =12 2
T6(k*,p*) = 2 k2 p?)2 <F(k2) F(pz)) + 3 k2 — p? 7(k*, p)

11 1 k2 p?
Y8R 5 ) [Wl (F)*Wl (k_” ’

26 (I2(k2,102) 6 7'6(1\72,])2)

12 02y -
T2(k%,p%) = (k2= p?)? s5(KZ, p2) (k2 — p?)
1 1 k? p?
_ Wyl = )
(k% — p?)? sa(k?,p?) [ ’ (7’2 ) H (k2 )]
k2 + p? 1 k? p?
__(k2 _p2)3 32(k2,p2) W, F - W, w2 )
7'3(/{:2,1)2) = -ﬁTﬁ(kzalﬂ)

1 1 1 k? £
- o _ 5 k2 2
1 k2 +p2 1 kZ p2
ToE i M\ ) e

4 4 4 G R22 2 2
+lk +p* - 6k*p 1 W, k* W, p° ,
6 (K2-p2)3  sy(k2,p?) p? k2

and
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TS(k2ap2)

where

(12(k2, p2)

a3(k?, p?)

qs(kza p2)

42

k2+ 2
_2/#_—257.6(162,])2)_{_?(1{;2,1)2)

1 1 L k?
K2 —p? sa(k%,p) |2 0\ P2
1 k%4 p? 1
3 (k2 — p?)? sy(k2,p?) |

2 kt4pt 1
3 (K7 p2)® sy(k%,p7) |

61611
5 -0 -]

k‘2 ])2
o7 F(k2)+ﬁ F@p*)

k M(k?)
p M(p?)

M(p?)
M(k?)

P(K) + £ T2 P

1 [B MEYFE) P M(pz)F(Pz)J
k b

F=5 |7 MEOEGD  E MFR)
kp [ o Loy MOBF(EY) 5 . o M(KR)F(?)
W | ) oo ¢ 3p>M(p2)F(p2)] ’
1 E apd 4 4 M(kQ)F(kZ)) P4 4 M(kz)F(kQ)
= | TP TG TR >M(p2)p(p2)]

Bashir and Pennington also give a simple example for W; and W,. However, these functions

are not unique. Still more information is required in order to pin them down. Hopefully,

this information may be extracted from the perturbation theory calculation in arbitrary

covariant gauges, which we introduce later in this thesis.
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2.4 Our Aim

Our aim in the first part of this thesis is to find non-perturbative constraints on the
fermion-gauge boson vertex by using the fermion F(p) and photon G(p) wave-function
renormalisations for unquenched QED. The next step will be to make a simple suggestion
for constructing a non-perturbative vertex ansatz which satisfies these constraints. To
represent the main steps of this procedure, we display in the following flow diagram the

calculations of Chapters 3-6.
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Non-perturbative massless QED

'

Schwinger-Dyson equations

1

Truncation

Make an ansatz for 3-point vertex

is needed

1

44

The ansatz must satisfy

Full vertex 1s divided into
longitudinal and transverse

criteria, (see Sect.2.2), which
the full vertex itself satisfies

As a result of Gauge

" parts
It =T7{ +Th

Invariance Ward Identities
must be fullfilled

T* basis tensors are

given by Ball-Chiu

Using charge conjugaton and
other informations,

Longitudinal vertex is fixed
by Ball-Chiu

Fﬁ :Fj‘ac

}

Transverse part left to be
determined. The vector
structure of the vertex leads to

8
Ty = i mi(k?, %, ) TY

7i, the coefficient functions
are the only unknowns

perturbative expansion of
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Substitute this vertex into
the coupled SD-equation

Calculate the general form of
multiplicatively

renormalisable F and G
L

'

Solve SD-eqn. for the 1/F and 1/G
in terms of the constants of

the perturbative expansion of 7;

Perturbative calculation and

all other vertex information

Y
Order by order comparison to get
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o1
b 4

Construct non-perturbative vertex ansatz

Figure 2.13: Flow diagram of the Schwinger-Dyson calculation




Chapter 3

Solving Unquenched
Schwinger-Dyson Equations in
Massless QED

On the mountains of truth

you can never climb in vain :

either you will reach a point higher up today,
or you will be training your powers so that
you will be able to climb higher tomorrow.

-Nietzsche-

45
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3.1 Introduction

Our main intention is to study the fermion-gauge boson interaction in massless QED by us-
ing the unquenched SD-equations. One can approximate the fermion-gauge boson vertex
by an ansatz satisfying the criteria which were mentioned previously in Eqns. (2.2.1-2.2.3).
The longitudinal part of this vertex is fixed completely by Ball and Chiu [26]. However,
the transverse part remains undetermined. It was seen in the last Chapter, how multiplica-
tive renormalisability plays an important role in fixing this [22, 29]. It is crucial to know
the constraints imposed by multiplicative renormalisability [28, 39] on the vertex function.
This would help us find a better approximation for the fermion-gauge boson vertex func-
tion. In this context, we shall devote this chapter to two main topics in the framework of
massless QED :

(1) studying the unquenched fermion SD-equation for the fermion wave-function renormal-
isation in an arbitrary covariant gauge,

(2) studying the unquenched gauge-boson SD-equation for the photon wave-function renor-

malisation in an arbitrary covariant gauge.

These SD-equations are displayed below :

g=k-p
<
-1 -1 {P/'\/l‘z
e = —F— - @
—> —> -
p p k r%c+ﬁ‘
q=k-p
-1 -1 a
NN = AN - NE
—> —>
p p
_’
k Dpe+Th

I'igure 3.1: Unquenched Schwinger-Dyson equations for fermion and gauge boson
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We shall write out the most general perturbative expansion of the coefficients 7; appearing
in the representation of the transverse vertex. This will yield the perturbative expansion
for the wave-function renormalisation and photon functions upto next-to-leading log terms
of the expansion parameters of 7;. Then, we shall see how multiplicative renormalisability

constraints these parameters. This will help us construct the non-perturbative transverse

vertex.

Let us start with the unquenched SD-equation for the fermion.

3.2 Unquenched Schwinger-Dyson Equation
for the Fermion in massless QED

azkp
1 -1
—— = -
—> e —
p P k Tac+TIt

Figure 3.2: Unquenched Schwinger-Dyson equations for fermion

Making use of the Feynman rules, Fig. 3.2 above can be written as :

~iS7(p) = —iS¥ ' (0) - [ @d“T’;(—iew iSp(k) (—iey’)idule) . (321)

Recalling the fermion and photon propagators from Chapter 2 in the massless case,

F(p?
iSp(p) = i (5) , (2.3.1)
: - G(q? v v
itule) = i (g, D) 0
= —iAfu—ifq;z", (2.3.3)

and employing the Ward-Takahashi identity for the longitudinal part of the photon prop-

agator,

¢"Tu(k,p,q) = Sp' (k) = SF'(p), (2:2.1)
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we can rewrite Eqn. (3.2.1) as :

iS74(p) = iS;l(p)—e2/M%{ Iz Se(k)y” AL (q)

+€ (SF(8) = 57 (9)) Se(h) qi} ,

= iS7l(p) — € /M (;l:;‘i{ T Sp(k)v" AL(9)

+e <q%_5;1(p) Sp(k) q—{) } (3.2.9)

Being an odd integral, the second term in the integral is zero :

/ Ik 4 _. (3.2.3)

2 ¢*
After substituting the fermion and photon propagators, Eqn. (2.3.1, 2.3.3), in Eqn. (3.2.2),we
get

F(p?) (2m)* F q
¢ rF(K) 4 }
Fp?) k¢
(3.2.4)
Multiplying by #/4 and taking the trace, we find :
1 ta d*k 4.9
— Tr Fu VR k2 2 L, — wiv
77 1+ 6737 /M o 1{ PIr Kv" F(F) G(g) (gu 7z )
2 2
p F(k?) }
‘ak %F(zﬂ) '
(3.2.5)
As always, we divide the full vertex into two pieces,
I'e=T;+ I . (3.2.6)

Recall the definition of the longitudinal piece given in Chapter 2 :

FZ(kap) = F%C(kap)
= AY*+ B (" +p") (k+ ¥) ,
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where

(F(lm ! F(lzﬂ)) ’

N —

B = 5w (F(lki’)‘F(lp?))'

Also recall the transverse piece is :

F%(kapa q) = Z Ti(kz)p2aq2) Ti“’

1=2,3,6,8

49

(2.3.38)

(2.3.64)

where the 7; are coefficient functions depending on momenta k2, p? and ¢2, which are as

yet undetermined, and the T’s are the basis tensors defined by Ball and Chiu [26],

Ty =(pk-q9)—k(p-q))(F+ ¥,
Ty =47~ q"{,

¢ =~*(p* - k) + (p+ k)4,

T¢ = —v"k'plo, + kg — 'K,

1
with Ou = '2— [7;“71/] :

Making use of this full vertex function in Eqn. (3.2.5), we have :

1 X dik
=1 / F(k?
F(p?) t 1673p? Jnmr kg2 ()

P 1
X{—fgmrﬁ(k 1)

:
+AG(¢") Tr| py* k" (g;w - q;‘i)]

FBGU)TE| Ao (4 ) Ko (g — 2

+ G(¢*) Tr( AN 2 (gw - q;‘j)”

9.9

(2.3.65)

(3.2.7)
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Let us compute the necessary traces below :
Tr [$Av. Ev" 9wl = — 8Ak-p ,
Tr [Av. Kv"qu0.] =  AA((K+p)k-p-2kp) |
Tr [¢B(k+p)(k+ ) kv'gu] = 4B ((*+p)k-p+2Ep?)
Tr [#B(k+p)*(k+ P Fr'que] =  4B(R—p*)’k-p
Tr [$T5 Ky 9 = 4K +p") (KPP~ (k-p)?)
Tr [$T15 K" quq.] = 0,
Tr [#T5 K2 9u] = 16 (k- p)? +8k*p* —12(K* +p*)k-p ,
Tr [$75 K" qua.] = 0,
Tr [#T§ 7" 9 = 12(k* = p)k-p
Tr [T Ky qua0] = 0,
Tr [PT5 K" 9u] = 8(kp*—(k-p)?) ,
Tr [PT5 K" qu9)] = 0,
Tr [F 4] = 4k -k-p)
Using these traces, Eqn. (3.2.7) acquires the form :
41,
o = e e P
2
< (o

+G(¢?) {A <—2k _;]13 (K +p) k- p - 21&#})}

vt [B(( 4 )2 - Lot pre )

+OP) | ) (897 = ()

+T3(4(k ) +2k°p” = 3(k* + p*) k- p)
+76(3 k- p)
+1 (282 )’-’)]} (3.2.8)
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To perform these integrals, we move to Euclidean space using the Wick rotation. Tidying

up leads to :

1 _ . d4k
F(p?) 473p? JE k?¢q
_ F(k*) p_ 2 L
{ éF(p"’) g (F = k-p)
+ F(k [%(4 )’ + 2k%p* — 3k - p (k? + p?))
B
+q—2 (2 k2 + p?) (k2p2—(k-p)2))J

c;*

+ RO G(ﬁ[ s (K + 1) (k2p2 ~(k-p))
(4 +2L22 3(k* +p*) k- p)

—Te

(36 = #*) k- p)
Ts(zw £ p)?) ”

(3.2.9)

To proceed further, we introduce the following general form of the perturbative leading

logarithmic expansion of the fermion and photon wave-function renormalisations :

2

2
F(pZ) = 1 + « (All IHF + A10> + a2 (Agg ln A2 + A21 11’1 A2>

2
+ a3 <A331H P + A32 h’l F) + 0(0’4) , (3210)

and

2 2
G(qz) =1 + « <B]1 IHF + BIO) + a2 (Bzg h’l A2 + Bgl In A2>

2
+ (333111 [—\—i + B32 11’1 A2> + O(a‘i) ,

(3.2.11)

where we keep only leading and next-to-leading logarithms. Eqn. (3.2.9) can then be re-

expressed as follows after plugging in these expansions and splitting up the angular and
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radial part of the integral :

1 5 AZ g 2 -2
o = 1—T2p2/0 /Odk dip sin? 1
F(k2)p2 2
- (k2 — k.
X{ gF(zﬂ)q( &)

2

2
+ F (k%) [(1 + aBio) + (aBy1 + &*By) In % + a? By, In? % + - }

A
x[ p {4(k-p)2 + 2k%p? —3k-p(k2+p2)}

b {20 @ - )

+ F(k?) [(1 + aBio) + (aBy + a2By)In X_z + a?By, In? %22_ 4. }
<| 2 ) {19 - o)
- % {4(k - p)? + 2k — 3(K2 + pD) k .p}
—;—2{3(162—192)’0-1?}

_§{2k2p2—2(k-p)2}J } (3.2.12)

Before we divide this equation into four pieces and for convenience deal with these sepa-

rately, we introduce the following simplified notation for the angular integrals. We define

" 2y, (Bop)"
In,m~/0 dip sin? o rarl (3.2.13)

We then separate Eqn. (3.2.12) into terms with an explicit gauge dependence L, the con-

tribution of the “A” and “B” parts of the longitudinal vertex, L 4, Ly, and the contribution

of the transverse vertex, T, such that

—— = 1-(Lf+ LS+ L+ 1. 3.2.14
F(pz) ( ¢ A B ) ( )

We collect the terms containing ¢ in Lg,

f__af [F L P
=gy ¥ g (Fhaha) G2
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The other terms are :

f _ 1 A? de k2
La = gop ), *EE)A

X { (a + a2 BIO) {4 .[2’2 +2 k2p2 10’2 -3 (k2 + pz) 11’2}

g 2 2
+/0 dy sin2¢ ((a2B11+a3B21) 1n%+asB221n2%+ >
1
X {492 +26%% = 3k p (2 + %)} } : (3.2.16)
/A Sy LY F(k?) B
BT a2xZp2 Jy

X { (e + a® Byo) {2 (k% + p*) (K** Iy, — 12,2)}
+/ dip sin? | (a® B + 0® By1) In— + a® Bypln2 = 4 ...
0 A? A2

X q% {206 + p?) (K2 — (k %)} } , (3.2.17)

1 A?
f — 2
T = 37757 Jo dk
X { F(k‘2) (Ol + a2 BlO) < To (k2 + p2) {/\72])2 10,1 - 12,1}
- T3 {4 Lo+ 2k%p* Ioy — 3 (kK + p?) 11,1}
— 76 {3 (k2 - p2) 11’1}

— T8 {2 k2p2 10,1 - 2]2,1} )
™ q2 q2
+ [T dwsin?$ FO?) (@ Bu 4 ® Ba) n L5 40 Byt Lt
0 A2 A2
-
X ( Z 0+ 7) {¥2? - (k-p)?}
T
—q—§{4(k-p)2+2k2p2—3(k2+p2)k-p}
76 2 _ .2
— = 3(k°=p*)k-p
7 B =)k}

- % {2 k2p? — 2(k .p)2} ) } . (3.2.18)
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Now we are going to solve each integral separately starting with Lé.

3.2.1 Lé Calculated

In this calculation there are three different combinations of the angular integrals which we
shall denote by different letters (X;,Y;,Z;). As a first step, recalling the combination in
Sqn. (3.2.15) as X7 and referring to Appendix B for I,

X1 = k2p2 10,2 — p2 11,2
= 0 gf 4 P2 9)‘
-t aEn
where 0! = 0(p* — k%) , 0{_ = 0(k* - p2) . (3.2.19)

We can then rewrite Eqn. (3.2.15) as

Fo of A% dRk? F(kz) LL
LE = A _A”,Tsz) (eq.thl\)))

The ratio of the fermion wave-function renormalisations can be expressed as follows by

using Eqn. (3.2.10) :

k2 2
)=1 + a Ap (lnp——ln%)

12 2 2 2 2
+ o [ Aq (ln2 i In® ;\p_z) + A2, (ln2 % —In e In %)
AR

L2 ?
+ (A2 — Ao An) (hl — —1 ) + - ] . (3.2.20)

We are interested in the terms which give a contribution to leading and next-to-leading
logarithms in the fermion wave-function renormalisation. Keeping this in mind, we con-

centrate on the integration region between p? and A? in L,

f__af M dE F(RY)
L{ _ 47r Az '22_ F(])T) . (3-2.21)
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Taking into account Eqn. (3.2.20), we can rewrite L’é as,

af . . Pt .
Ll = ‘E{ 4 a Ap (e;‘ —lnF€{>
» P .
+a2 [ A22 <ln27\3€{‘ — ln2ﬁ£{‘> + A%l (Eg( — thE;\)
2
+ (A2 — A1o A1) (ff — ln%ﬁ‘) } + }, (3.2.22)

where £f are given in Appendix D. On evaluating these integrals, (refer to Appendix D)

we obtain :

We shall now calculate L.

3.2.2 Lﬁ Calculated

As we can see in the Eqn. (3.2.16) there are some terms for which we cannot perform the an-

gular integrations immediately, for example the ones containing In(g?/A?) and In?(¢?/A?).
The angle dependence is through the ¢* term, since ¢ = k% 4+ p* + 2k - p. In order to

perform the angular integrals, we have to separate out the angular dependence, using

2 2 2 . L2 2 -
q (k2 +p*—2k-p) | | +p)+ln<1_2 k-p )

lnp = In 12 iz —(k2+p2)

2 2 2 2 2
q 2 (K° +p°) (k* 4+ p?) k-p 2 k-p
1n2ﬁ = 11’1 T—+21n—A2—ln 1—2m +ln 1—-2— .
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We now use the following series representations :

k-p 20 (k-p)
In{1—-2———— = — = A
Il( (k2+p2)> ; S (k2+p2)s
kp o0 2n+1 (k_p)n-{-l n 1
n®{1-2—-—| = 2 —. 3.2.25
" ( <k2+p2>) LT e g (2)
Then :
2 2 2 . . p)?
mL - Ere) o, ke, (Rep)? ,
A2 A2 (k? + p?) (k2 + p?)?2
2 2 2
2 4 2 (K* +p°)
11’1 7\—2 = ln 'A—2
2 2 L. . p)?
+ an(]g_+‘zi_) —9 k-p -9 (k- p) — ..
A2 (k* + p?) (k? + p2)?
(k-p)*
4o ... 2.2
t Ayt (3.2.26)
Now, these quantities can be written in terms of I,,,,. Therefore, Lf; 18,
7 A2 2 2
k2 4 p? k2 2
X { (a + a2 BlO -+ (a2 Bll + 013 B‘Z]) ln(—mp—) + a3 ng h’l2 (—[;L)>

X (4 12'2 + 2]{,'2])2 [0,2 et 3 (k2 + p2) 11,2)

E2 4 p?
+ (Ot2 Bii +a® By +20° Byy In ﬂ)

A2
2 2,2 2 2
x| = (k2+p2) (413,2’*‘2]617 ]1,2_3(k +P)[2’2)
2 2.2 2 2
NCE (4 112+ 2k%% Ly — 3 (K + p*) I,
8
- _—3 (k2 n p2)3 (4 15’2 + 2 k2p2 13,2 -3 (kz + p2) ]4’2)
4
+ aB B22 |: m‘)_?' (4]4,2 -+ 2]\’,’2[)2 12,2 -3 (k? +p2) 13’2)
8
T ET Y (4152 + 257" Isp — 3 (K + p*) L)

_ ” . (3.2.27)
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Referring to Appendix B for the evalution of

i = 4]2,2+2k2P2]o,2—3(k2+P2)11,2
= 0,
Y2 = 4132+2k2p2112—3(l\,2+p)[22
T k*, 9 7rp
- I gf _ 0P a2 f

Ys = 4L, +2kp I, —3(k + Pz) I3

k4
= —ZZ (o —knel ~IP (2L2 p*)6s

8 p?

B

T p
8

Y, 4150+ 2k Is, — 3(K2 + p?) I,
3r k* 3r pt
= 3 (2p* — k%) (k* + p?) 07 — 33 32 (2k* — p*) (K* +p%) 0%, (3.2.28)

leads us to write Eqn. (3.2.27) as :

1 F(?)
Ld = / di? (1
ey (*F@?))
.2 2
X { <a2 BH + a3 Bgl + 2&3 Bgz In (_kA_*;—p))
LEGE=F) 0, 10 Gk -p°)
1P @) AR @)

3B _—— g B A £
+ « 22( 4 p2 (k2 +p?)2 4 k2 (k2 + p2)2 + 7+ )

+ O(a*) } : (3.2.29)

Together with

1
2
1 k2 2
= 5[2+C¥A11 <ln-——ln£—) F e J . (3230)
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Eqn. (3.2.29) can be displayed as :

1 A? k2 2
o .2 p
Ly = 7 o dk [2+aA11 <lnp—lnp> + ]
k2 4 p2
X { <a2 Bi1+a® By +2a° By, In %)
1 k* (3p® — k?) ;1 p? (3k% - p?) ot
T L R Y N (2R
VEV (29" - k%) oy 1p* 2B —p%)
+ -~ T A 8_ 3 A 0+
2 p? (k2 + p?)? 2 k2 (k2 + p?)?
v J
5 k* (2p? — k? 5 p* (2k? — p?
By, | - K (2p Jgr _ 50" | p)i
4 p? (k2 + p?)2 4 k2 (k2 4 p2)?
+ J } (3_2'31)
Splitting this integral into two regions and keeping the terms to order o® gives,
1 P’
o dk?
L 4 p? /0 &

X 20°B;; + 2a° By + 40° B lnp—2+ SAn B lnk—z—lnp—2
11 21 22 M55 @ An Bn A2 A2

<1 k2 (3p — k%) 1 kY (2p° — k?) N )

X 2% Byy + 20 By, +4a* B lnk—2—|— AL B lk—z—l p_2
11 21 22 M55 @ An bn IlA2 HA2

+2a° By, (—§ﬁ it ) + ) + O(a“)} : (3.2.32)




3.2. Unquenched Schwinger-Dyson Equation for Fermion in massless QED 59

Referring to Appendix D for these integrals, the above expression yields

f 1 2 3 3 p? g .4
LA = Zﬂ-: 2a B11+ 2a BQl+a (4B22—A11B11)1HF Z—F?

/P ¢P _5¢F
+o® Ay By <Z2+_24_) + 2a° By, ( ia)

+(262By+ 20° By — o® Ay By n 2o [H 4 6
11 a” Dy — «a Ay b1y HF Z+7

3 AV Y,
+20a° (4 By, + A1 Biy) Z+7 + a” By, 1 ;

(3.2.33)

Therefore, the expression for Lﬁ is found to be :

3 2 A B 2 2
Lﬁ = 8_7? [—a2 Bll In (%) + 013 —lléli 1H2 (%) - CYS B22 11’12 (%):’

(3.2.34)

3.2.3 Lg Calculated

Now we shall follow the same steps as L7 for the L} part, starting from,

f ! o dk® F(k*
LB = _27T2p2 o F( )B
k2 2
X { (a—i—azBlo-l—(an ln%)

X (2 (k* + PQ) (k*p? Iop — 12,2))

2
+ 20(2 Bu (k2 + p2) l:- (k2—+p2) (k2p2 ]1,2 - 13,2)
2
NG
8 2.2
- m (k p I3y — 15,2>

- . } } , (3.2.35)
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with the related angular integrals being (see Appendix B)

X

k*p*loo — Iy,
3—”—29{
8 p?

37rp0£’

k2P2]12—132

m k* T p*
gf __ef

4 p? +4k2 o

k2P2 ]2 2= 14,2

k4 4
3—2p—(5k2+2 P 0L+ 5 (50 + 2k%) ]

k2p2 [32 —15,2
37Tk 2 f
3—2—(1», +p )9—+__,—

Eqn. (3.2.35) can be written as :

1 A?
Ly = dk?
B 4 p?

= ('~ 7o)

, (B4 (3E 5 oo 3

X {<a+a B10+a2BulnT— 4p (kz p)a_-}-z
ko s
e —ﬁg

+a? By <

1k (BK% 4+ 2p?) 4
“8p2 (K2+p?)

1 p* (5p% 4 2k?)

gf £ \f T°v )
“TRE (R

1 1,

2 p? (k2+P2)9__2k (k2+P2)0++ >}

60

(3.2.36)

P’ 2 f
p(k +P2)0+)

(3.2.37)
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Making use of the Eqn. (3.2.20),

F(kY)B = (1 -

1 k? p?
= m{—aAn (ln-[—ﬁ—lnﬁ)

&2 2 2 2 2
—o? [Azz (lnz— — In? 2—2-> + Afl nZ (lnp— —ln%)

A A A? A?
k2 2
+ (A1 — Ajo An) <lnﬁ —ln%>} —eee } )
(3.2.38)
So L} becomes :
1 A? 1
foo_ 2
by = 47 p? Jo dk (k% — p?)
k? 2 kz 2
X { All <lnﬁ—ln%)+a[/122 (ln2p—1n2%)
2 2 L2 k2 2
+A%l ln%(ln%“lnp)+(A21—A10A11) <1nﬁ_ln%>]+‘}
k2 4 2
X {<a2+a3310+a3311 ln%)
3 k? 3p2
— (k2 LAY L k2 2\ pf
< (=2E 0 emo 3R ol
! P
+a® By x (Eai‘*' ﬁg-{-
LR GF +29%) oy L' (5p° +287)
89 (R4p) T BE (Bip) f

1k 1 1p5 1
AR/} ST LN ) ST I
it 3 it >}

(3.2.39)

After separating the integration regions, we see that the only contribution to the leading

and next-to-leading log terms comes from p? — A? region. Hence,
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1 A?
L = / dk?
B 47p? Jp2

k2 p2 . k2 X p2
{Au (1n7\-5—1np) +a[A22 (ln F—ln e

2 2 k2 k2 2
+A3, In2- <1np__1n__> + (Ag1 — Ao Anr) (lnp—ln%>] —}

X

A2

;2 3 p® (K*+p?)
2 3 3 —
x {(a +a® Bu +a’ By hlﬁ) (‘zmkz-pz)

RN QR VIS
k?(kZ_pQ) 8 k2 (k? +p2)(k2_p2)

(3.2.40)

1 P2 —3 /0 2 _gyK _3px
L}; - 4_7r{ o* An +a3<A2 410_A§11n§_2'_48+(A21—A10A11) 48)
3LF
+a3 Bio A1r 1 2
34k 1 1
+a3BllA11< 49 +€§+§%\+§Ei\3+'”>}'

(3.2.41)

see Appendix D for the £. After evaluating these, we finally find the solution for Lé :

1 3 2
f o 2 (P
LB—E{ - §A“1n (F
1 3 [A% 2 2
* “3[‘§A“B“ z(f"g 2)}1”3%

(3.2.42)
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3.2.4 Transverse Piece Calculated

The last piece we have to calculate is the transverse part, which can be written as

S N v dk?
F(p?) — 27 p? Jo
2 2
X { (a + a2 B]() + 012 B]] In w)

X [ o (K* + p?) (kz,’l’? Io1 - [2,1)

- T3 (4[2,1 +2k%? Iy — 3 (K% 4 p?) 11,1)
~ 76 (3(K* ~p*) 1))

—rs (2k%p% Ioq —211) J

+a2B11[ 2 (K + p?) < (LQQ )( P111—131)

2 2,2
‘W<’“’“’“‘L‘*l)"”)

- 73 ( (%% + p?) - p?) (4 Iy + 2k Iy - 3(k* + p%) "2'1)
s (41 428 100 )
: )
- 763(k2 - Pz) <_ (k2 42—112) I2a
“Er
ceo e )
2 2 2
. ( CETD) (Qk p°I— 213,1)

2
~ gy (K - 2) - )J

+ O(a?) } (3.2.43)
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To calculate this expression, we have to input the coefficients of the basis tensors, i.e.
the 7; in the transverse vertex, Eqn. (2.3.64). Let us see what we can say about these
coefficients? The transverse vertex is dimensionless. So knowing the dimensions of the basis

vectors from Eqn. (2.3.65) would tell us what the dimensions of the 7;’s are. Therefore, if

d = momentum?;

1
dim. of T : d° — dim. of 1, : i
dim. of T} : d — dim. of 13 : %,
1
dim. of T : d -— dim. of 74 : 7
1
dim. of T§ : d — dim. of 7 : 7 (3.2.44)
As was mentioned before, the C-parity operation [27, 25] of Eq. (2.2.3) requires
(k2 p%, ¢4 = ra(p*, k%, ¢*) , symmetricink andp
(k% p%¢") =  7(p’,k%,¢") , symmetricinkandp |,
(k% p%,¢%) = —71e(p? k% ¢*) , antisymmetricink and p |,
(k% p?,¢%) = 7s(p®, k%, ¢*) , symmetric in k and p
(3.2.45)

In general, the 7; can be written as a sum of terms, each with the correct dimensions and

symmetry properties, as :

T= ) fi (K ") (F,G). (3.2.46)
2

Each of these terms can be divided in two parts : (1) the part responsible for giving
the right dimensions which only depends on momenta squared. Although each of the 7;
would have ¢* dependence in general, this would severely complicate the situation. We
therefore introduce effective 7;’s which are only functions of p? and k2. This is because
the leading and next-to-leading logarithms are generated by regions where either p? >> k?
or k? << p?, and then ¢* ~ max(k?,p?). The forms of the 7;’s are guessed such that the

integrals are soluble. (2) the part which depends on the fermion and photon wave-function
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renormalisations at momenta p? and k%. Its structure has to ensure the correct symmetry

of 7; when multiplied with part (1). Hence, we can write :

T = 2 7-2/ + 2 TZH 3
(k% + p?) (k% — p?) (k* + p?)?

T3 = ! Té + = Tél y
(k% —p?) (k2 + p?)

_ 1 , (=9
= (k2 + p?) ot (B+p2)2 ¢
Ts = ! T 4+ 1 T
T (k2 - p?) ; (k2 +p?) °®

(3.2.47)

The factor 2 in the numerator of 7, is merely for later convenience. The 7/ and 7/ are
antisymmetric and symmetric under k* — p?, respectively. In general, antisymmetric

combinations of F' and G, i.e. the 7/, can be written as :

2 k2 k2 2 k2 2
= ak; <ln%—lnp> + o? [J <ln " —In® A2> + M, <lnp—ln/p\2>}
+0(a?), {i=2,3,6,8}, (3.2.48)

and symmetric combinations, 7/,as :
p’ L2
]C 2 k2 k 2
+a2[Ji' (ln A2+ln )—I—M' <ln—+lnﬁ>+Q’ln—lnp

+0(%), {(i=2,3,6,8) , (3.2.49)

K,JM,K',J'M',H" and @' are the constants which will be found later. The angular

integrals we need are given by :

Xﬁ k2P2 ]0,1 - ]2,1
7 k?
= 3p? — k2) 0!
3 7 —(3p )02 +

2
T p
gﬁ(?*kz—l’z)oi,
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X7

Xs

Ys

Y7

Z

Z3

Zy

k P2 11,1 — I3,

r k* r p*

T ]7 (2p* — k%) 0/ + 16 p_2 (2k* — p?) 0-{ )

k*p* Iy — Iy,

T ki T p*

B (2p% — E2)(k* + p?) 07 + 33 7 (28" =) + %) 0],

7 k? ?
T 07 k0l = (3K =) 0],

4 I2yl + 2 k2p2 10,1 — 3(k2 -+ p2) 11’1
s
4
41, + 2K p? I, — 3(k% 4 p?) I,
7 k2

2
™
§ 57 [P =k = ap'] 0l 4 55 [Pk — ) 3] o

41,142 k*p? Iy — 3(k2 + Pz) I3

T ki 2 N 2 of T p 2 24 1.2 2\ pf
Ep-?@p — B (R +p7) 02 + 1o 55 (2K =) (B +p7) 04

I4,1
T kt 9 2N /7.2 N nf T p* 2 24 (1.2 0 pnf
3—2?(76 +2p°) (k +P)9—+3—2ﬁ(10 +2k%) (K + p*) 03 .

66

(3.2.50)
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We can now rewrite the transverse piece as :

1 A?
A 2 2
T/ = 7 Jo dk* F (k%)
2 2
72 (79 2 k? 2 N pnf p° 2 2 of
X (_'2—(k +P)+73+T8) 2_p2(k —3p) 0l + 2—U-(p —3k%) 64
3k2 f 3p2 f
—76 (K* — p?) <§ }50‘ + 5 F9+
+a2B11

T2 0 2 §k_4(2p2—k2) f §p_4(2k2—102) f. ..
><[< 2 (k +p)+7'3+7'g><4p2———(k2+p2) oLt

4 p2 (kZ +p2)2 -

5P (R =AY,
4 k2 (k2 + p?)?
+ O(a?) } . (3.2.51)
We would also like to define here two quantities, Z] and Z!, which we are going to use
later :
Z! = F(k*)7!
2 2
p k
= alk; (lnp —lnp)
k2 p2 k2 p2
+a2 l:.], <11’12 Xi - hl2 p) + (Mz — ](, AIO) (h’l ﬁ — IHF

k2 2 k?
+K; Ay <ln —1n % —In? F) } , (3.2.52)
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Zl = F(E)r!

% i2
= ak! [(lnpﬁ—lnF) +H,-’}

2

k ! < k2 2
-+ a2[Ji’ (ln e + In? A2> + (M + K] Ayo) (ln e +lnp)
.2 2

k? k? 2 k2 k
+ I{:All (ln F‘*']nphl%)-{-HAllln;\_?__*.Qln_ln%:'
(3.2.53)
As a next step, the effective 7; will be substituted into Eqn. (3.2.51) and then to avoid the

expression being too long, we divide T/ into two parts the symmetric and antisymmetric

combinations of F(p®) and G(p?). The antisymmetric part is

1 A?
T = dk? F(k*
4w p? Jo (k%)
k2 4 p2
X { (a—l—asz-i—aZBn ln%>

c oo (KRB =88) PP (PP 3K
e (G R e

, (K* + p?) 3 k? 3 p?
GRS 2p20_+" o

+ o By
I} ' ! 3 k4 (2p2—k2) f
X [(_T2+73+Ts) ( Zp_g(k2+p2)(k2—p2)9—

3p! (2k? — p?) f
3P of 4 ...
Rz (k2 +p?) (K2 —p?) * *

3 k2p? 3 k2p?
N 07 += o1
73<2<k2+p2)<k2 D R (Y Py ey )
3k2 k2__ 2 3 2 k2— 2
+ 74 +——( p)0f+—-p—( p)i
2 p? (k* +p?) 2 k% (k%4 p?)

5K (K = (K +25%)
4 p2 (k? +p2)3 -
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and the symmetric part is

1 A?

fn 2 2
T g Jy WFE)

2 2 (k2
X o+« B10+a Bnln—AZ—

" " " k? (k2 - 3p2) f P2 (P2 - 3k2) f
X [(“7’2 + 73+ 75) (ﬁ (k*+p?) 2%2 (k2 + p?) 01
2, 2y2 .2 2
_Té'(k—p) §f_9j +§p_gi
(k? +p2)2 2 p2 2 k?

+ o? By,

SRR (- p)

4 p2 (k2 + p2)4

(3.2.55)

To evaluate T/’ by using Eqn. (3.2.52), we first split up the integral as;
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1 »’
fr _ 2
T N 47rp2/ dk
2
X {(a-}-a B]0+a Bll II’IF)
, ;[ 1k (K? = 3p?
/ 3k2 (kz_pQ)
~Zs 9 2 (L2 2
2 p? (k* +p?)

+ o*Bp

3 k! 22—192
4p A 2

3 k2 p?
7z e
? (2(k2+p2><k2 A )
/ 3K (K +p)
L 357 (2
2 p* (k* —p?)
5 k* (k* — p*)(k* + 2p?)
_*_ZI7 (k2+p2)3 +... + ......

1 A
/ dk?
4m p? Jp2

k?
X {<a+a BlO+a Blllnp>

. —~ 3k?
x[(—Z2+ Zh+ 70 ¥’ ))

1 p?
§k_ (k* — p?
_ 3p (K +p7)
Zg
2 k% (k? — p?)
+ o By

/ / / 3P4 (2k2_p2)
{ (=22 + 23+ Zy) (Zﬁ(kz-f-pQ)(kQ—p?) oo

, 3 k?p?
s FErmE=m )
) 3 p? (K~ p?)
7 bl N A
e (M (F+ )
5 p* (K — p?)(p" + 247)
iE (k2 — p?) * + o)
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We consider the p? — A? integration region only which gives the contribution to leading

and next-to-leading logarithmic terms. Then referring to Appendix D for the k-integration,

1 : !

T/ = 87{ o (mKy+ Ks+ Ks) 1 403 (= o+ Js + Jg) t&
—a® (= My + Mz + Ms) t] + & Ay (=K, + Ks + Kg) t¥
+C¥3 A11 (— .[(2 -+ 1(3 + [\,8) té‘

—3a® Kety — 3a° Joti + 30® (Ms — Ko A1o) t5 — 30° Ko App tX

+ o BlO < (— .[\/2 + I\/3 + ]{8) ti\ -3 1(6 t‘;\ )
+a® By ( (= Ky + s+ Kg) 65 — 3 KgtX
— 3Ksth + 3K, tf;’)

+ O(a")}
(3.2.57)

This result can be written as :

i = 2 2w 23 kK4 K+ K
™ B v Z(— 2+ K3+ Kg+ Kj)
P’
+a31n3F{—-(—J2+ J3+ J6+J8)
A B
+w+m (- Ko+ K3+ K¢ + Ks)}
p? 3
+a31112p{—z(—]‘42+M3+M6+ A4g)
3
+Z( 10+ Bio) (— Ky + K3+ Ke + Kp)

3
+Z Bll (](3 - 1{6) }

+ O(a?) }

(3.2.58)
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Taking Eqn. (3.2.53) into account to evaluate T/ ", we get :

1 r’
f _ 2
i = 4ﬁp2‘4 dk

2
X {<a+a2Bm+a2Bu ln%>

< [(— 2+ 204 7

2p? (K* +p?)
" 3 k2 (k2 B p2)2
—Zs 9 2 (k2 + p?)?

+ CY2 Bll

(
(
[z e m
(
(

k2p2
—zl
; Firt )
" 3 k? (k2 _p2)2
— Zs TS R g
2 p? (k* +p?)
5k4 k2 22 k2_ 2\2
SEERE-R ]
4p2 (k2+p2)4

L™ e

L2
X { (Q+Q2BIO+CY2B11 lnp>

x[(_zg+ Z+ 72) (2
7 3p2 (k2—p22
_z (L

+ aof By

3 k2p?
_zV S_rr 4.
: )

_z ( _
6

—+0m%} (3.2.59)

3
2
§E&ﬁ+2wﬂﬁ—m02+“>}
4 k? (k2 +p2)4
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Referring again to Appendix D for the related k-integrals,

i = si{ a2< (= K, + K + K2) tf—31(gt;’>
T

+a3< (= Jy+ 5+ Jg) t§ — 3J5t8
+ A (- K; + Ky + Kg) t5 — 3 Ay K t?

2 %
+ (- Q2+ Q3+ Qy) ln — 3Qs ln—t”
2

+Bu1n%(( Ky + Kb + K3) 7 — Kg3tg))

+a? ((— K+ K3 + Kg) t§ — 3Kt
+ (= Hy+ Hy + Hy) 1§ — 3a® Hy ti‘é)
+ad ((— Ty Js + J) ¢85 — 355
+ (=M + ML+ ML) 5 — 3 ML,
+ A (K + K+ ng 15— 3 Agg K4t
+An (= Ky + K+ Kb) 5 — Ay Kb 3¢5
+Au (= Hy+ Hy + Hy) 13— 3 Ay Hy el
e 2
Q0+ Q) n L e - 30y P e
+ Bio (— Kj + Kj + K3) t§ — 3 Bio Kg t1,
+ Bio (— Hy + H + Hy) t5 — 3 Byg HjtX,
+ Bu (= K; + K3+ Kg) t1; — By Kg3ti;

+ Bu (= Hg + Hy + Hg) t1y, — 3 Byy Hg t1s

— 3By Kith + 3 By K4t%, — 3 Byy Hit + 3Bqutf;,>} .
(3.2.60)

73
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After evaluating these integrals, we can now write the result as :

<§em+m+m+mw
2
3
+ao?ln (5 (= Hy+ Hy+ Hg+ Hy) + 2(13 — 16 In2) K}
+

-7
5
4

+¢wﬁ<(%+&g@m+m+m+@)
+%( Q)+ Q5+ Q5+ Qp) + 2 ( J’+J’+J’+J’))
+a31n2%<<77+81n2)( Jo+Js+Jg+ Jg) + 2(13 — 16 In2) J;
+@;+m ) (At Bu) (= KG + K§ + Kg + Q)
+2(13 = 161n2) (A1, + Bu) K.
+§( M + My + Mg + M)
+§(A10+Bm) (— K3 + K3 + K§ + K3)
+%Mu+&Q(H}HT+E+HU
+(5H481n2) (- Q4+ @+ Qs+ Q) + 13-16102)

(3.2.61)

Recall Eqn. (3.2.14),

=1-(Ll+ i+ Li+T/' 417/ 3.2.14
F(p2) ( 13 A B ) ( )

Consequently, we at last arrive at the result :
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1 p2
1*4—;{‘““‘?
2
2, 2P £ 3
a’ln X—Z—li_<§+-8—) All

(- K+ K+ K§ + I(é)]

W | ©

3 . . . .
+Z (- K2+ K3 + K¢+ Kg) +
2
2. P 3
x lnA—z'l: —§B11

1
+3 (16In2-7) (- Ky + K5 + K¢ + K§)

+g(—H§+H§+Hé+H§)+2(13—161112)](,;]
2 ‘
31,3P° 1 (¢ §> 2_(§ l) _Au By
alnAz[(2+8 Ay 3 13 Azz 5

1 . . . ,
+Z (A1 + Bu) (Ko + K3+ K¢ + Kg) — (= Jo+ J3+ Js + Jg)
5 ' . . , .
+Z(A11 +Bu) (- Ky + K3+ Ko+ Kg) + 2 (- Jy + J§ + J§ + J3)

SRR

2
31,,2P £ 3) 3 3 3
In“— (A1 A;1 — A -+-)—-=-An B ~Ay1Bi1-=B
ain AZ [( 10 A11 21) <2+8 g/ 10+8 11 511~ 5 522

+2 (Aot Buo) (- Kz + Ka+ Ko+ Ko)

—% (= Mo+ Ms + Mg + Ms) + g By (K3 — Kg)

+%(16 In2-7)(-Jo+J5+J5+J5) + 2(13—161n2) J§
+g (= ME+ M+ M+ M)

+ -21- (16 102 — 7) (A + Bu) (= Kb+ K} + K + K2)

+ Z‘ (Aw+ Bio) (= K+ K} + KL + K)

+ 2 Buy (Kb — K5) + 2(13 — 16102) (Ay1 + Bu) K
+7(6102-7) (- Q4+ Q4+ Q5+ Q) + (13- 16102) Q)

3
5+ B) (- B4 B B )| + 00 }

(3.2.62)
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3.2.5 Quenched Schwinger-Dyson Equation

We shall now consider quenched SD-equation as a simple example. In order to do this
(see Chapter 2), the photon wave-function renormalisation should be taken as G(p?) = 1
in the photon propagator, Eqn (2.3.3), or equivalently all B;; terms can be set to zero in
Eqn (3.2.11). We can, therefore, write the result replacing all By; and Byo terms by zero
in the Eqn. (3.2.62) as follows :

1 1 p2
= 14 —! _ afln
F(p?) + 4T al Az
2 3
- oIl [ -(5+5)
3 e - g e 9 4} < 4} ’d}
+2 (- K2+ Ks+ K¢ + Kg) + 1 (- K5+ K5 + K¢+ K§)
p’| 1
— a2 lnF[ 5 (16 lIl 2~ 7) (— I(é + I\fé + I(é + I\,é)

+g— (-Hy+ Hy+ HE+ HE) + 2(13 - 161n2)1(gJ

2
p £ 3 26 1
— aslns—[ (§+—8-) A2 - <—3-+5) Ago

1 . . . .

+Z An (=Ko 4+ K3+ Kg+ Kg) = (—J2+ J3 + Js + Js)
5
3

+7 (—Q;+Q§+Qé+%)}

2 8

2
3
- a3 lnz% [(Am Al — Agl) (é + —)
3 . . , 3
+ZA10 (= K24+ K3+ K¢+ Kg) — 1 (— My + Ms+ Mg + M)

1
+-2-(161n2—7) (-Jo+J3+Jg+Jg) + 2(13 - 161n2) J§

9 9 P
+2 (— My + M3+ M{ + M) + ZAIO (- K3+ K5 + K§ + K3)

1
+5 (16102 = 7) Ay (= K3+ K5+ K¢ + K5) + 2(13 - 161n2) Ay K

+3(16102-7) (- Q4+ Q4 + Q5 + Q4) + (13- 161n2) Q)

3
+ZA11 (‘H§+H§+Hé+ﬂé)} + O(a?) }

(3.2.63)
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3.3 Unquenched Schwinger-Dyson Equation
for the Photon in massless QED

As a second main topic, in this section, we are going to discuss the unquenched SD-equation
for the gauge-boson. We shall try to solve it for the photon wave-function renormalisation
in order to find multiplicative renormalisability constraints on the electron-photon vertex.
This equation has some different features from the fermion equation. For instance, the two
fermion legs have to be treated equally. We can ensure this symmetry property by dividing

the external momenta into two equivalent pieces as shown in the following figure.

I+p/2
-1 -1 °.
,_[ v
AN, = aaannne - Ne
— —
p p The + %
L —
I-p/2

Figure 3.3: Unquenched Schwinger-Dyson equations for photon

Using the Feynman rules, Fig. 3.3 can be expressed as,

SO = =il - () Ne [ G T (—ier®)sSn(Es) (<ie) (e )
(3.3.1)
where
& = (E+p/2)
0. = (L—p/2)
The definition of the fermion * and photon propagators are given already in Chapter 2,
iSe(e) = it
+
iA*(p) = —1—;; [G(p) (9“” - p;fy) + ép;fu} :

*From now on for convenience, we shall display the fermion and photon wave-function renormalisation
functions  as follows : F(p?) = F(p) and G(p*) = G(p) .
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We now introduce a projection tensor [10, 11] in order to get a scalar equation for the
photon wave-function renormalisation. We can remove the quadratically divergent term

and project out the ultraviolet logarithmically divergent terms, by using the following

tensor

1

Pu =32 (4pups — P9) (3.3.2)

which satisfies the following properties :
P¥g, = 0,

P¥p,p, = 1 . (3.3.3)

When it acts on the inverse photon propagator, it gives

1 1
P*ATY = —— o
W Gl ¢
v -1 1
R (3.3.4)
So, we can write Eqn. (3.3.1) by using P*” as :
1 to d*¢ )
e = Ve hee T PO P T [ ey -]
(3.3.5)

Employing the Ball-Chiu definition, Eqn (2.3.34), from Chapter 2, the longitudinal piece

of the vertex can be written as follows with the momenta indicated in Fig. 3.3 :

Bc = AV + B(fe+ f-) (b4 + L)
= Ay’ + 4B e, (3.3.6)

where
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B = <F<16+>“F(1e_>>

L [F(e) = F(ty)
4l-p F(L)F(L)

The transverse piece is then :

with the basis tensors of Eqn. (2.3.65) are now

Ty = 2 (¢p-pe-p) 4,

Ty = P =0 ¥,

T = —29"4-p+ 20 ¢,

Ty = =7 p"lon+p -0 .

Making use of the full vertex, 't = ' + 't of Eqns. (3.3.6-3.3.8), we get :

C 14N e d*¢
G(p?) Fard &

X{ ATr (v £+ 4-)
FABTe (4 f, f0 1)
bonea ) )

F(e-) F(Ey) Py

The traces needed are listed below :

79

(3.3.7)

(3.3.8)

(3.3.9)

(3.3.10)
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v 2
Ty fs Ay 4] = 4A {2(1{#6"—174]))—9“” (é"‘—%)},
4 - p)? 3
P Trv* f4 Ay” 4] = @A {8%52—)—242—5102},
2
T g, B f) = B {4€“€”<f2+%)—pueve p},
P, Tr|[+* f. B g = 1B 16£2 2] (£-p)? — 444 202
w Tr[y* fo B & f] = @ ?— (¢-p)* — - D 5
2
Tl fTE L] = 4 {z(m%) (00— 0 ptig)
l.
+7p (¢ -pp”p”—pzﬁ”p")},
" “ 41y 2 P’ 2 2.2
Pu Te[y" £+ T4 4] = 32 2+ ) (-p) =) ¢
2
Te[y* 4T3 4] = 4 {2€”€”p2+p“p”42—gw (ﬁ—%)—ﬂ“p”f-p},
7 p 473 2 2,2 2 {2 p’
Py Tr[y* f4T5 4] = 37 2 ((6-p)?—0p*)+3p% (¢ -7l
p2
Ty fTE f) = dmy {—zevpu (e2+z)_4pupue.p

2
+2.q;w€p <€2_%> })

P Tl ez g = 2 fesep (o= D

3p?
Te[v* 4, T¢ 4] = 475 {—ppC— 00 P +0p"L-p+p*L-p}
M p 47g 2 )
P, Triy 4,T5 4] = 37 {2(€-p)?=0p°)},

(3.3.11)

using these we can re-express Eqn. (3.3.10) as
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1 1o d*l
= F
G(p?) L+ Nr 33 p? /M 22 (6) F(E-)
(€ p)? 2 3 5
A8 — 20— =
X{ L P 2"
2
+ B ( (16]—)5— ) (¢-p)* — 48" ~ pzfz]
: 2 P 2 g2 2
+ _ 72{2(6 -{-—4—> ((f-p) —Ep)}

ool e-3)

+7s {2 ((¢-p)? - %) } H . (3.3.12)

Now, we move to Euclidean space by performing a Wick rotation. Substituting the

definition of A and B from Eqn. (3.3.7) leads to :

G(lz - 1‘a]3VF2/ ;1462
p?) 3m3p? Jp 03 02
<{ 5 P+ pey s ve - 3y
+i (F(L)E'—pF(h)) :(1651—2—2) (6-p)2— 44 — p2g2J
bR R . {z (mi—?) (<e~p>2_e2p2)}

. {2 ((€-p) = €5%) + 35" (EZ } %2')}

fesen e-3)

{2 (0 p) - ) ]}

(3.3.13)

We would like to carry out this calculation in three steps, writing

=1—-(L]+ Li+T") , 3.3.14
G'(p2) ( A B ) ( )
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just as we analogously did for the fermion function in Sect. 3.2, where

, _ alp [ & € L, 8,
Li = 673 p? /Ef_;_é_ (F(ly)+ F(L-)) | 8 2 2¢ 2P | (3.3.15)
o el [ O (68 ) e

Lg = 1278 p? /E[igz_ 7 p 16 2] (£-p) 4/ p* et

(3.3.16)

- L] afs(eed) o)
_@-zae p)? = p**) + 3p 02 4)]

L

r
p(gz__)}
] 2€2

— 78 2(

} (3.3.17)

We first evaluate L.

3.3.1 L] Calculated

To compute L, we need to know the following quantity :

22 22
F(@.{.)-}—F(g_) = 2+QA11 (II'IA_-;+1HF>+2GA10

+a? A lné + In* = & +a’ A lnﬁ+l£
R e A? S C

+0(®) . (3.3.18)

As we came across before, 2 and ¢2 depend on angle. This dependence must be separated

out in order to perform the angular integrals. This we do by noting :

f2 £2 _ (EZ +P2/4) (e.p)Z
1nA2+1nA2 = QIH_—F—‘l‘IH 1—m
€2 2 4 e 2
g (E-p) (3.3.19)

A2 (g2 + p2/4)2 - ’
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4 e (&2 + p*/4) (62 4 p?/4) (¢-p)
2 "4 2 - 2
ln KE‘*“h’lﬁ = 21n——A2——+21n—A2—ln l—m
{-p {-p
n? {1+ —"___ n?(1 - —
i ( +<e2+p2/4[>)+ ! ( (ez+p2/4>) ’
¢+ p?/4) (2 4 p?/4) (¢-p)°
= 21 Zﬁ__ — —.

n A2 + ?,hl A2 (52 +p2/4)2

(3.3.20)
Substituting the above expressions into Eqn. (3.3.18) yields,
22+ p? /4
F(E.{_) + F(f_) = 2 [1 + « (All IHL—%L'Z-F AIO)
2+ p*/4 £ 4p’/a
+a2<A221n2( Af/)_*'Alen( Af/))}
(& +p*/4) (¢ p)?
+ « (All'l“ O[A21+ 2aA22 In Az ——(e2+p2/4)2_
+ 2a%A __g:ﬁ_+...>+(’)(a3)
P\ (2 + /1)
(3.3.21)
Introducing the following definition for the angular integrals :
Kot = /0 @b sin (3.3.22)

and making use of this together with Eqn. (3.3.21), we obtain :
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- C“NF/ de? ¢
3m2p?
2 4 2
X{Zl:l-*- Q(Alllnge__txéﬂ‘k AIO)
02+ p?/4 2+ pt/4
a2(A221n2( A];/)+A2lln( AZ;/))]

8
X | =Ky1— 202 Koy — §p"‘Kol
p2 ’ ' 2 )

02 +p?/4
- (aAu + a® Ay + 202 Ay In (—+A€—Z—l)
1 8
X[ m( 1\41—2f 1\21——]) ]{21)

R re—— Kel 20° K4y — —P K41> + - }

20 + p2/4

2

8
= Kon— 28 Kyy = 55 Koy ) + ]

2
oo e x[ €2+p2/4 (
T

8 3
17 (41— 26 1(21— =p 1(21)

ez n p2/4
+ O(a3)} . (3.3.23)

p2

Referring to Appendix C for these angular integrals,

XI’Y = I% 1(2,1 — 252 ](0,1 - gp2 ](0’1

1 p2
— - = N1 64 _ 4 B’Y _—H'Y
X ET (166 -3p") 2 02 (2 +p2/4)

X:;Y = }831(411—2€2 .[(2’1— gp2](211
€2 4 2,2 4 2
= 7rp—4(16€+4fp—3p)91 “2(2@—;0)0
X3‘Y = 51(6,1_262 ](4,1— g])2 [(4,1
m {4 6 4 4 42 y
= 5p— (3248 +24p* " + 129 % + 3p°) 62
+ -2% (—p* —6p2 2 +24¢%) 07 . (3.3.24)
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where

02 = 0(p*/4-10%),
0] = 0(* -p*/4), (3.3.25)
L} now takes the form,
= o / der ¢
37 p?
2, 2
X {2 {1 + « (All ln(f-*_—A‘Z/Q-i— A10>

¢4 pl4 ¢+ p?/4
+a2<A221n2( AI;/)_,'Alen( Af/)

1 1 p?
- A3 -~ g
X [p4 @7 (180 =30) O =5 w7 4

2+ p?/4
- (aAu + a2 A21 + 20’2 Agg In (—+m>

A2
[ 1 E? 1 2 b
< T (5 o0+ 009 = a0) o4 g 0o -0 +
[ 1 Iz 1 p2 T
+2a2A22 m( (16@4—*—462[)2—3]))(9 +-8-%(2€2—p2)01)+
+0()}

(3.3.26)

After separating this expression into two regions of integration and collecting the terms

which give contributions to the leading and next-to-leading logarithms,
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~ 2C¥NF
A 2
3rp
p?/4 2 2
X { /0 d€2[<]+aA111nf;\—2+ CY2A2211’1221%)

« 22 (16 ¢* — 3p?)
p* (€2 + p?/4)

A 4 2 2 4
—42/4d€ 14+ « All ll'l'A—2+ AlO + « A22 In KE-*— A21 lnp

p2

“ @+ p/4)

2 2 €2_ 2
+(CYA11+26Y2A22 ln‘é—) p (2 p)zl'*'o(ag)},

+ 0]

A?) 16 (€% + p*/4)
(3.3.27)
and using the results in Appendix E for the ¢-integrals, we have
Nrp P’ P’
LX = 37rp2{ 2 (a+ C!2A11 h’lm-}- O!3 A22 11’12m Ef
-2 (CY + a2 AIO) Zf - 2 (02 All + a3A21) eé
—2a3 A22 Z:’; - a2 A]] gﬁ - 20!3 A22£§
+O(a?), (3.3.28)

where ¢7 and ¢F are given in Appendix E. Substituting the explicit expression for the £7,

C¥, we finally obtain the result :

go= 2 e wB-3
+0(a?) }

(3.3.29)
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3.3.2 L} Calculated

Now we compute Lj, Eqn. (3.3.17). We use the following expression,

F(f_) - F(£+) Y £
] I N ORI N P
= (aAn+ o Ay) [1 (1 (€2+p2/4)> 1<(1+(£2+P2/4)>}
+a Azz{an A? [ln<1 (€2+p2/4)) 1<(1+(52+P2/4)”
5 ¢-p ) L-p
: o (1= ) - () )
+ O(a?)
Note that
L DY (UL
n (- gm) ()
P LY M (23 )
(C+p*/4) 3 (€ +p/4)° ’

2 Z'P 2 f‘P
n (1 T@ +p2/4>) - (1 G +p2/4>)
_, w5 (Lt
Erpar 3@

(3.3.30)

After substituting these quantities into Eqn. (3.3.17), we get

aNp A dU £
— |16 = — 2] (£ p)* — 4¢* — p*f?
12rp? Jo (302 K 6p2 (£-7) P

Lg

22 2/4
X { (aAll + o® Ao + 20° Ay (_—_*;Xf—/)>

2 2 (¢-p)?
% <*2(e2 +p2/4) 3 (£ + p?/d)? + )

2 (£-p)? 5 (£-p)*
+2a” Ay, (2(€2+p2/4)3 + §(€2+p2/4)5 — )

+ O(a%) } (3.3.31)
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On splitting radial and angular parts and by using the definition of the angular integral,
Eqn. (3.3.22), we can display the above equation as,

= O‘NF/ de ¢
672 p?
2 +p%/4
X {(0114114- 02A21+2a21422(%u>

2 4 4 292
X[ - m{<16;2‘—2> 1(2,1_(4€ +p€)[(0,1

2 1 ¢
S (9572w |

2 2
+ a2 A22 l: (—'—)3 { (16 17 - 2) .[(4’1 et (4[4 + p2£2) 11,2’1}

5 (£-p)? % 4, 292
+§m{<16 )1{6,1—(46 +pE)K4,1}+--~}

+ 0(a?) } : (3.3.32)

On performing the angular integrals (refer to Appendix C) :

62
Y, = (16 = - 2) Koy — (46 + p*0?) Ko,
p

2 T p?
= 4%1?(882— 3p?) 027 — ZT?O“Z’
2
)/27 = (16:;— - 2) ]\/411 - (4@4 + p2£2) 1{2,1
€4
- 4#1?1-(864-}- pt — )0”+6—“—2(326“ — 8p*0* — pY) o7,

£2
Y;y = (16 - = 2) ](6,1 — (464 + p2€2) 1(411
P
"6

¢
= —m—(=324° - 200'p* — 150p"¢* 4 21p°) 07
P

0’;4 52 (16p*f2 + 48p%¢* — 38445 + p0)67 (3.3.33)
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we arrive at the following expression,

Np (A
L1 = 2 / de? 2
B 6 P2 p?/4

2
X { <01A11 + o® Ay + 202A22K§)

|- (37)

2 1 2
—= (p (32€4—8p2€2—-p4)>+"']

3 (€2 4 p?/4)3 \ 6442
2A 2 p2 3:)[4 8 252 4
ot An (€2 + p?/4)3 64132( 20 -8p—p) |+
+(9(a3)} : (3.3.34)

We only keep the p?/4 — A? region in the l-integration as this the leading and next-to-
leading contribution to 1/G(p). Hence, collecting the related terms and making use of the

integrals listed in Appendix E, we have

Ngp A? 2 3 2
L = 67 p? /172/4{ (a An+ o A21) (—ef + gfé>
3 L 2 L 3 L
+26¥ A22 (62—567)4—0{ A22(2€6)
+O(a“)} , (3.3.35)
which takes us to the result :
Nr 2 A, P s Az 5 P’ 4

(3.3.36)
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3.3.3 Transverse Part Calculated

The last step is to calculate the contribution of the transverse piece, Eqn. (3.3.17), to
1/G(p), ~

N d* 2
77 = 2L /E F(é+)F(€_){ T [2 (eu%) ((f-p)2—p252)}

~ 3n3p? JE A2
r 2
2 242 2 [,2 P
- 2
— Te ——6ép <€2—Z):|

— 7q TQ (- p)? - p*%) ]} , (3.3.37)

To proceed, we shall use the coeflicient functions of basis tensors, 7;, which were discussed

in the last section, Eqn. (3.2.47). They can be written down for the momenta relevant to

Fig. 3.3 in the form

1
I
| 1
= 5T B os@Eepm (3.3.38)
i IR o
| 1
T8 = m Wt m B

The difference that arises in this case is that these coefficients are now angle dependent.
Now, we shall follow the same method to calculate 77 as we did for the fermion equation.

Hence separating 7' into two pieces according to two different groups of combinations of

the F(¢) and G(£),

TY =T(7)y + T ("), (3.3.39)
where
, a Np d*t
A /E mi P FE)

1 ! ! !

X [ 7 p ((ﬁ-p)2—~ ngz) (p— 73— 78)
3 0% 2 o (& -p*/4)

— = (0’ = p*/4) 13 bp—-—">—_trs 3.
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T’Y” —

N [ re R

3m3p? Jp 03 02

1 2 202 " n" "
X{ T ((-p)* = p*&) (1 = 73 = =)

wwer (- 5) 75 - wemm el

(3.3.41)
We first consider T" by referring to 7/ in Eqn. (3.2.48).
, 22 2 2 2 2 2
T, = —alk; (ln—[é— - lnp) + o? [Ji (lnz—/—é — ln2p) + M; (lnA—Z - lnﬁ)] .
(3.3.42)
Substituting it in 7', we find
oyt aNp d4f 2 2
d 3n3p? JE 3 02 Fey) Fie)
1
X {n ((¢-p)? - p*2%)
2 22
X l: (—a (1{2 - 1(3 - 1{8) + 0’2 (]‘42 - M3 - Mg)) (hlA—-; - IHA—_2>
2 J J 1 2 éi 1 2 62— 3
-l—a(2— 3_']8) n F—HF +(9(a)
3
- e?_ 2 4
+2€_p( p°/4)
2 2 1 €-2i- 62—
X | p* (a K3 — o M3) NSz IHF
2 2J 1 2 63- 1 2 62— 0] 3
—apJs | In" 5 — In" 5 + O(a”)
(&2 -p*/4)
P ET
2 %
X [(—aKG + o Ms) (hlA_t — In A__2>
2 22
+a? Js (m“’A—g — In? A-;) + (9(a3)} } : (3.3.43)

Now making use of Eqn. (3.3.30), we can write T” as :
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v ;ﬂ";’; /E E?;_ F(e,) F(6-)
X {zl—p (¢-p - %)
X [ ~a (Ky— K3 - Ks) (2 G i'}i/@ 4 § (132(5;';?/34)3 . )
+a?(My — Ms — Ms) (2([_,5;';/4) +§(£2(i';)/34)3 + )
+a?(Jy — J3 — Jg) (_2%_2%4,“.) + O(aB)}

3 2 2
+m(f —p°/4)

(e o L-p 2_(Lp)f
g [ P (o Ks = o Ms) (2(e2+p2/4) ts@vpae t >

£-p)° 5 (¢-p)P
T <_2 CEyn e ) F o) J

(e -p*/4)
M CEYTy
2 - 2 : £- 2 €-p)®
X [ p (-—OZI(G-I-CY Ms) <2 (€2+;)2/4) +§ (82(+;72)/4)3 + )

(£-p)° 5  (L-p)° 3
+a*Js (_2(E2+p2/4)3_§(132+p2/4)5+“')]+0(a)}' (3.3.44)

To continue this process, we calculate the product of F’s

F(ly) F(L-)
(£ +p%/4)

= (1+2adp+a®Al)+2 (a A+ o Ay 4+ a? Apy Am) In—g

(£ + p*/4)

+a2(2A22+ A%l) 1Il2 A2

A? A2

_(e-p)?
< (1~ 5 )

2 42 1. (2 +P°/4) ( E-p )
+a® Aj; In 1 In 1+—€2+p2/4

£-p L.p
2 42 _tr ),y 1-_—> N 3.
ta Anln(1+€2+p2/4> n( R +(’)(a)} (3.3.45)

£2 2 4 2 2
+ (aAn +a?Ag+ a2 A1 Ao+ 20° Ay 1n(—+L/—) + o? A?l ln(e—+u4—)>
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Using the series representation for In (1 £ (¢ - p)/(¢* + p*/4)), Eqn. (3.2.25), and performing

the angular integrals by using Appendix C , we can represent T by

2Np [A
s dg? E2
d 3m2p? /0
24 p?/4
X { — 20[2(1(’2 - K3 — I(g) (1 + 2010+ 2a A5 ln-(—-té)—/))
1(2,1 €2p2 I(O,l 1(4’1 _ €2p2 1(2,1 n
(+p*/4) (2 +p*/4)  3(E+p*/4)° 3(£2+p/4)3
-2 a3 A]] (1{2 - 1(3 — I(g)

I(4’1 £2p2 1(2’1 _ Ii’g,l E2p2 1(4,1

(2 +p2/4)° (£ +p?/4)° 3(L2+p2/4)°  3(0%+p%/4)°

Ks, Cp? K4, Kg £2p* K¢ )
2(£2+p2/4)5 2(Z2+p2/4>5 6(£2+p2/4)7 6(£2+p2/4)7

+203(M2 - M3 — Mg)
x Ifg’l _ E2p2 I(O,l Il'4,1 _ €2p2 1(2,1 4.
(+p/4)  (C+p2/4) 3(2+p*/4)° 3(£%+p?/4)?

1(4»1 €2p2 1(2,1 5 I(G’l 5€2p2 1(4’1
(2 +p2/4)2 (B +p*/4)P°  6(2+p2/4)°  6(€2+p?/4)°

+p*(a® K3 — o M3)
y ( 3 (2 —p*/4) Koy (2 =p*/4)Kyy )

(€2 + p/4) (2 +p2/4)°

+2(—a?Ke+ o® Mg)
y (3 (2 —p?/4)Kon (82— p?/4) Ky, )

(€% + p?/4)? (€2 + p2/4)*
2+ p?/4
+a3p2 1(3 (2 AlO + 2A11 In ——1—12)/—>

y < ; (2 —p*/4) Kon  (£2-p*/4)Ksn >

(€2 +p*/4) (€2 +p2/4)°
2 2 4
-2a® Ky (2 Ao+ 2411 In E—-}—Kéi)

y ( s (—p*/4) Kyy | (P =p*/4) Ky | )
(€% +p*/4)? (2 + p*/4)*
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+a® A p* K
02— p2/AK 5 (2 —p?/4 1 (€2 —p?/4
X(_ (&~ p () Koy 5 (C=22/8) +_(__P_/_1K6’1+...>

@+ p/aP 2 (E+p2/ap YT 2@ /A

—'203/411-[(6
2/ K 2 - p?/4
x(—( p?/4) K4, ( p/)f\'s,1+--'>

(e2+p2/4)7° (B4 p2/4)

_a3p2J3
@) 5 (B
x( 7y R RO I

+a® Js
L P s ) o
(oG K S Ko ) o}

(3.3.46)

Evaluating these angular integrals and concentrating on the p* — A? region for the (-

integration, we obtain,

e2
X {—20’2(1(2—1(3—]X8 1+2€¥A10+ QCYAH lnp)

(
(1 2 +p2/4 -3 @ +2pfj4>2>>
+20° (M, — (

1 1 4
8 (€2 +p2/4 2 (€ + p?/4)?)
ZZ
+p2 (ang,—asM;; <1+20A10+ 20/411 IDF>
3 (¢ —p2/4)
X | =
2 gz +p2/4

£2
+2 —a2l(s+ a3M6 1+2aA10+ 2&/111 In —
A2

<5 r) o)
(3.3.47)
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Now we are going to evaluate the /-integrals by using Appendix E,

2N,
T = 37rp1;1{ — 20 (K; — K3 — Kg) (¢ + ¢)
— 40® Ay (K~ Kz — Kg)(tf + th)
3 2
+ %aQ KstF + 3p%o® Ay KstsL

3 3
—_ f QI(GtL 20.’3 All 1(6 tsL + 0(04)} .

(3.3.48)
We eventually arrive at the result :
3 3 2
T = { l: 5 1&2—1(3—1(8)—3Is3+ 51(6) lﬂ%:l
3 . P*
CY All 1(2 - ](3 — ]\8) - 3A11 ](3 + 5 All 1\6) lI’l F:l
0(a) }
(3.3.49)
We can start to deal with 77" which is,
N, d*l
v QIVE /
d 3m3p? JE 0% (2 F(t) F(E-)
1 2 292 !
X{ I ((5'17) —Pf) (r =5~ 75)
3 P’ 2(¢- p)?
_ €2 _ 2. _n " )
2(E+p/4) ( 1 ) [p NGO
(3.3.50)

Recalling the definition of 7 from Eqn. (3.2.49),

Iz f2
7_;1 = o li[('z (lnp + lnp> + Hi]

¢ o 2 o eoon
-|—a2[Ji (ln F-i_l 2A2)+ M; (lnﬁ+lnﬁ)+ Q: n—lnF + 0(a%),

(3.3.51)
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and inserting this into Eqn. (3.3.50), we find :

« NF d“é
3mdp? J 22

T'yll

F(ey) F(e-)

1 2 2 92
g (=)

x[a(K;-Ké—K)(ln%+lni—z>+a(H{,—H§—Hg)
ba (= sy = 59 (g e )
vl (] = M= M) (1n gk + 10
@ (@ G- Q) s 1 |

3p® (& —p?/4)
2 (€24 p*/4)

! e+ 62 !
x| aK; ln—A;—i-lnA + a H;

e 2 2 2
+o? J; (ln A2+ln i2)+a M, (l €++ln£ )

A? A?
o8
+o? Q) lnA‘; lnA2 }
(& —p*/4)
GErnE

/ Ei ZZ /
X | aKg ln—[ﬁ-i-lnp + o Hg

¢ ¢ 2 2
+ o Jg (1 2A+2+1112A+2)+ o’ Mg <1 S )

2 2
+a2Q61n€ b }}

+3

n -5 (3.3.52)

Making use of Eqn (3.3.20) and referring to Appendix C for the angular integration, we
can rewrite the above equation as,
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T’YII — ;WNZI; / d€2 Z?

X {m(1+2aA10)
X [ of (Hy - Hi— Hg) (I21 — p*0* Koq)
+ (a?(Kp— K~ Kb)+ o® (M§— Mj— M)
x{21 (£ +p2/)(h p2£2](0,1)_...}

+a3(J3 JS){QIQ(_E%(I\ P£21\01)+"'}
2 2
+a® (@ - Q4 @)) {1 AP 16y, - 202 K0 + } + O(a“)}
1
+-————(€2+p2/4)aA11

X [a2(H§— Hé— Hé) {2 (€2+p2/4) (I p2£2 I(O,l)_ }

2
+ o (Ky - K5 - KY) {41 2M(1 —p*? Koq) + } + 0(a3)}

3p® (62 —p?/4)
T2 (2 +p/4)

2 2
X [a2 H Ko1 + (o K3+ o® M3) {zlnwffo,l- }+ }

(1 + 2&1410)

A2

+a’Jg {21 2—@2112)2/4) 1+ } + o® Q) {1 2——“2_*;\]2) /4)1’ 1+ }+ (’)(a“)}

3])2 é2_p2 4 €2+p2/4 ) ) Z2+p2 4 )
2 E@ + P2;4§ oA | 208 Hy ln (_—AQ—) Ioy + 4a® I3 In® %—)“ Ko1+ O(a®)
(2 -p*/4)

m(1+2amo)

+3

2+ p*/4
X [042Hé1f2,1+(a2Ké+a3Mé){21 i%/) 2,1_...}

£2 24 Ez 24
+a3Jé{ 12# +...}+Q3Qg{1Z#J(mjL...}_}_()(aﬂ]

+3——((;22;;’;//$)2a Any [QazHél AP g, t\’; [ g, 4 a0t iy EXP +A§’2/4) - O(a )”
(3.3.53)
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On evaluating the integrals, we obtain :

T’Y// — 2NF / d£2€2

37rp
X { —————
{(52 + p?/4)
/ 7] ] ’ ’ P €2 +p2 4
X [ o® (Hy — Hy— Hy)+ 20% (K — Ki— K}) 1H%

+20® Ay (H, — H, — H})
+o® (M — My — Mg)+ 2 Ao (K} — K — K§)+ An (Hy — Hy — HY))

(£ +p°/4)
A2
+a” (2(J; = J3— Jg) + (@2 — Q5 — Qs) + 4 Au (K ~ K3 — Ky))

X 2 In

(£ +p°/4)
x n? = 4 o(at)
2 2 2 2
P 27 P 24
07 4 S 02 = Gt 0] = )]
x{w o 2@+ T Er )
32 (B
2 (£ +p*/4)
2 2
x [a H, + 202 K)In WWL 2% Ay H,
, , €2+ 2 4
+ (2a3M§ + 4 A0 Ky + 2a3A11H3) 1n(_._A_fﬁ

2+ p?/4
+ (2a3J§+ QL + 4a® A Ké) ln2£—+[\sﬂ + (’)(a“)]

x{ L gy __2_03}
202 (2 +p2/4) T p(B+p2/4)

(62 — p*/4)

(62 + p2/4)?

0+ p?/a
X [a2Hé + 2a2l(élnw+ 2a° Ay Hy

A2
¢+ p?/4
+ (20° M§ + 4 Ao K + 20° A Hy) 1n(“1#

2 2
+ (20° Jg+ o Q4 + 40° Ay K) In Exr/h +Af /)

2 262
x {—p— 0] + ——0"} . (3.3.54)
p?

+3

+ O(a*)

82
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Now we perform the /-integral, referring to Appendix E ,

2
x{ [IHZPP ((20? (I} — Ky — Ky))
2
p ' 7 7
+ 1n2m( 203 (J, — J,— J3)
+a? (@) Q4 @)+ e A (K- K = k)| 0+ )

—3—1[’2l1np—2 (20* K3)

+ w# (20° Jg+ o Q4+ 40° Ay Kg)} t
L [aZ(H;— Hy — Hy) (i + 15)
+ (2 (o 4+ 20° Ayo) (K — K5 — IK3) + 20° (M; - M — My)
+20® Ay (Hy — Hj — Hé)) (ty + t5)
to? (2(J;— = R+ Q- Q5 - Q)
+4 AL (K — Ky - i’é)) (s + té)}
_3%2.[ PHytE 4 (2(0 + 20° Aw) Kj + 20° M) + 20 Ay H)) 1
+a® (2J5+ Q3+ 4 Ay K3) té]
3 p?

T [azHét# + (2(a® + 20° Avo) K + 20° M+ 20° Ay H) t2

v (2004 Qht 4An KD) ts]

99

+ O(at) } : (3.3.55)
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Evaluating the above integrals, we arrive at the end of the calculation :

100

Np

T‘y/l — -
37r2
X { a? ln%

9
X [(I(; - K- Kj) (_Z +3 1n2) + K5(=3+ 6In2) + K} (—¥+ 91n2>

3 3 3
+ 5 (Hy — H; - Hé)+§H§—ZHéJ

2

+a? In? %
X |2 (K~ K~ K§)+ 3 Kh- %Ké]

) 2

+a°1n3 %—2-

1 1
A (KL - K5— K§) + 2 Ay K — Ay K

1 1, 1
+Z(Q§—Q§"Q§)+ 5@3*1@6}
2
+a31n2%
1 1 ! 9 ' 1 27

+ An (K, — K4 — K)) (—g +6 1n'2>

27
+ All I(é (-— 6+ 121n 2) + A11 I\é (—-3— + 18 In 2>
3 . 3
+3(Mf = M~ ME)+ 5 M}~ 2 M
+Awg(1f; — K- 2KL) + A3 K} — Aloglx"g

+(Q2 - Q3 — Qp) (—g + gm) + Q5 (—%+ 31n2) + Qf (—%7+ 21112)

3 3 3
+ZA11(H£_ Hi— Hg)+ = A1 Hy —

) ZAll Hé] + 0(04)

To bring these four results together, we recall the formula below, Eqn. (3.3.14),

= 1—(L]+ L+ T"4+T7") . 3.3
G(pg) ( A B ) (

(3.3.56)

14)
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We can then write 1/G(p) in the following form, analogous to the result for 1/F(p) in the
fermion case, Eqn. (3.2.62),

1 Ng
= 14 =
) T
2
P 13
x{ - azlnA2 + aﬁ
2
—azlnz-};—z
[ A
x| 5+ 7 S (ks + K- K- I(g)}
gt
- azln%é-_
11 3. .. N . X
X (AIO — —A11> + —(1&'2-}— Ky - K¢~ Iig)
12 2
L g ;
+ (T+ 31112) (Ky+ K§— Kg— Kg)+ = Ké-{-( 9+ 121n2) K§
3
V2 (a4 - o H@]
3 3P
—a'lIn Az

A 1
X[—gzz'f- 'Q-(Jé-f' J;I;—Jé—Jé)

+ An (]‘2 + 1‘3 - 1‘6 i8) (Qz + Q3 é - Qg)

2
a3ln2%
A 11 3 , , . ,
X [ (%— ﬁA )— §A11(I\'2+ K3 - K¢ — Kg)

+<_79+31n2) (J3+ J§— J6— J§) + ng+ (-9+ 121n2) J§

+ (:23 +6 1n2> A (Kb + K= Kb~ KY)
+3 A1 I"’Zli + Ay (—18 + 241n 2) I(é

+%(M2’, + M= MY — ML)+ %AIO(I(Q + Ky — K- K

3 —9

+§Q’3+(‘29 61n2)Q6}—0(a4>}

(3.3.57)
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Until now we have considered the SD-equation for fermion and photon wave-function renor-
malisations. As seen in Eqns. (3.2.62. 3.3.57), these equations depend on the constants
which appear in the coeflicient functions, 7’s of the basis vectors. These constants de-
termine which combinations of F' and G we are talking about in the transverse vertex
construction. Multiplicative renormalisability imposes conditions on the fermion-boson
vertex through these constants. In order to find these constraints, we shall first work out

in the next chapter what the general multiplicatively renormalisable forms of the fermion

and photon functions are.



Chapter 4

How Multiplicative Renormalisation
Puts Conditions

on the Fermion and Photon
Wave-function Renormalisations

If you wish to advance into the infinite,

explore the finite in all directions.

-Goethe-

103
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4.1 Introduction

The divergent nature of QFT requires renormalisation [40, 7, 4, 39]. This is because in
almost every field theory, the corresponding Feynman graphs have loops which give ultra-
violet divergent integrals. In order to have a meaningful theory, these infinities have to be
removed, so that we are left with finite quantities which are observable. This renormalisa-
tion can be carried out in a number of different ways. The divergences seen in Feynman
diagrams are thought to be caused by the infinite nature of certain bare (unphysical and
thus unmeasurable) quantities such as the coupling constant, mass and Green’s functions
etc. A redefinition of these bare quantities in terms of physical, measurable quantities
removes the divergences. After this redefinition, we have physical parameters with finite
measurable values. If this process is successful for the relevant field theory by using any

renormalisation scheme, then we say this theory is renormalisable.

The cornerstone of the renormalisation is regularisation {40, 4, 5, 39]. This means we can
manipulate the divergent integrals to give a finite answer in terms of the regularisation
parameters which depend on the regularisation method used. There are several regulari-
sation techniques, for instance, dimensional regularisation, cut-off regularisation etc :
Cut-off regularisation [5, 7] means we replace the infinite upper limit of the divergent
momentum integral with some ultraviolet finite cut-off parameter, A. The result is finite
but will depend on this parameter.

Dimensional Regularisation [4, 7] means we evaluate the divergent integrals in a d-

dimensional space. This introduces an infinitesimal parameter ¢ = d — 4. This often

results in a pole at d = 4.

After regularising the theory, it must be renormalised. Whichever regularisation scheme
is used the renormalised quantities must be independent of the regularisation technique,
i.e. the parameters, A,e. As was mentioned above there are several techniques to make
the theory renormalisable to all orders in perturbation theory. We mention two equivalent
schemes: the counterterm and multiplicative renormalisations. For the counterterm
renormalisation we begin with the physical Lagrangian defined in terms of physical
quantities. New terms proportional to the original ones (counter terms) are added directly

to the Lagrangian in order to cancel the divergent parts. After this cancellation, we have
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a finite theory.

The renormalisation procedure considered in this thesis is multiplicative renormalisation [4,
28, 22]. In multiplicative renormalisation the divergent sum over all the relevant Feyn-
man diagrams are absorbed into the redefinition of physical quantities and Green’s func-
tions. We shall consider multiplicative renormalisation in the case of QED since this is

main interest of the thesis.

4.2 Multiplicative Renormalisability of QED

In QED, the full-propagators and the vertex function are all divergent. However, by
introducing the following definition of the finite (renormalised) propagators and the vertex
function, we can absorb these divergences into functions, Z;, Z; and Z3 which are infinite
sums of the corresponding, divergent Feynman graphs. We remove the divergences at all

orders by introducing fields [40, 4, 7] :
U= 2,70y, A2 =27PA%, Ta=Z7'Ty, (4.2.1)

where Z,, Z, and Z3 are the vertex, fermion and photon renormalisation constants, respec-
tively. Subscripts r and 0 denote renormalised and bare quantities. The divergence of the

fermion propagator is absorbed into Z; :
Sa(p,p) = Z7 (g, A) So(p, A) (4.2.2)
and similarly for the photon function :
Anp) = Z5 AL - (4.2.3)

The gauge covariance of the photon propagator requires that the covariant gauge parameter

is similarly renormalised.
€r = Zs_lf . (4.2.4)

Analogously to the others, the divergence of the vertex function is canceled by the factor

Z1!

=771y, (4.2.5)
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with the above definitions, the coupling constant is renormalised according to,
Za

Er = Z Z36 . (426)

Making use of the Ward-Takahashi identity [7, 40] :
Zl = Z2 3 (4:27)
the coupling constant renormalisation becomes,

en=2"%e. (4.2.8)

4.3 The General Multiplicatively Renormalisable G(p?)

In this section, we shall look for the most general form of the multiplicatively renormalisable
photon wave-function renormalisation. In order to do so, the renormalised Gr can be

written in the following form by using Eqn. (4.2.3) :
Gu(p,p) = Z5'(n,A) Go(p,A) - (4.3.1)

Now, introducing the following quantities, for convenience,

2 2
p H
P = lﬂ"#—2 y M = h’lﬁ y
and
p2

we define the most general perturbative expansion of the unrenormalised photon wave-

function renormalisation up to next-to-leading logarithms by * :
Go(p,A) = 1+a0(Bn(P+M)+Bm)+ag (BQQ(P+M)2+BQI(P+M))
+ 03 (B (P + M)* + By (P + M)?) + af (Bus (P + M)* + By (P + M)?)

+ O(af) . ‘ (4.3.3)

*The notation oy has been adopted instead of «, which was used in previous chapters, in order to stress
that the coupling is bare
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The renormalised photon wave-function constant 1s :

Zi'=1 + ao(zu M + z10) + o (222 M* + 20 M)
+ o (233 M2 + 23 M?) + 0 (24 M* + 245 MP)
+ 0@, (4.3.4)

and since a = e%/4 w, using Eqn. (4.2.8), the bare coupling constant, in terms of renor-

malised quantities, is :

Qo = Qg (1 + ar(x11 M + X10) + 0 (x22 M? +xa M)+ (xasM® + xaa M*) + - ) ,

where B’s, Z’s and x’s are constants to be determined. After having prepared all the

necessary ingredients, we can renormalise the photon wave-function renormalisation at

pt = A%

"
B=A = M=his=0,
Y
Z3(A*,A?) = constant
4
Gr(p,p) = Golp,A) (4.3.6)
u2=A2

Therefore, as a left hand side of the Eqn. (4.2.3), we can take the following form for the

renormalised photon wave-function renormalisation :
Ga(p) =1 + an(BuP + Bi)+ o2 (B P+ By P)
+ o2 (Bsa P* + By P?) + b (Bus P* + Bus P°)
+ 0(3). (4.3.7)

To find the right hand side of Eqn. (4.2.3), we multiply Go, Eqn. (4.3.3), by Z; !, Eqn. (4.3.4).
Then to convert the bare coupling constant to the renormalised one, we insert Eqn. (4.3.5)

into it. Order by order comparison of this result for different powers of M with Eqn. (4.3.7)
yields :
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ar M : By +z1=0,

agconst Bio+ Zi0=0,

a% M? : Biuzin+ Buxun+ B+ ziixu +222=0,

aAMP Buixi1+2By+ Buizn=0,

ot M : Biiz10+ BioX11 + 210 X11 + Bio 211221 + Bar + Bii x10 + 211 X10 = 0,
o M3 : 2 299 X11 + Bz + 233 + B11 X22 + Baz 211 + Bi1 222 + 2 By 211 X1

+2 By x11 + 211 X22 =0,

o3 M*P : 2Bypzin+ Buxan+4Byaxi+ Bzt 2Binznxin+3Bs=0,

ay M P? 3Bz + 2By xu1+ Byz 2 =0,
ol M?* Bi1 X21 + Ba1 Z11 + 2 By a1 + BioXaz2 + 2 By 210 X11 + 2 za1x11

+211 X21 + Bio 222 + 2 By1 211 X10 + B32 + 2 Bio 211 X11 + 210 X22 + 232
+2 Bjs X10 + Bi1 201 + Bz 210+ 2 292 10 = 0,
A MP 2 B3z + Bi1 221 + 2 Baa 210 + 2 By1 z10 X11 + 2 Ba1 211

+2 By 211 x10 + 4 B2 x10+ Biix2a1 =0 .
(4.3.8)

Solving the above equations for Z’s, B’s and x’s gives the following relations :

zn = —Bu,

z10 = —bio,

Z2 = % (B + x11) »

zg = 2By By — Ba,

23y = —g Bio Bi1 x11 — -;— Bio B}, + By Biy — By X10x11 + Bar x11 + %Xn )

zag = _Bfl _ B} xu _ Bu xi
6 2 2
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Bsa
B33

B32

X22
X33

X32

Bll

T(Bn - X11) )
1 (B2 3
3 (% ~3 B? x11 + Bn Xf1> ,
1 1 , 1

Bi1 x10 x11 + B21 B + 5 Bio Bi1 x11 — 5 Byo Biy — Bai x11 — 3 Byixa1 5
X%l ]
X?l )

5
—2x% x10+ 5 X11 X1 - (4.3.9)

2

These relations are between z’s—B’s and B’s—y’s. We also need to know the relation

between z’s and x’s. Hence, this time we compare Eqn (4.3.5), order by order, with the

definition of the coupling constant given in Eqn. (4.2.8). Then we find :

agM X111 = 211,
Or X100 = 210,
2 ag2 . _
ar M* ¢ x22 = zu1Xn + %2,

2 . _
oM @ Xa1 = 211 X100+ ZioXu + 2,
3 a3 . _ .
oy, M? ¢ X33 = zin X2+ 2z x11 + 233,

o M? : x32 = zi1Xa1 + Z10 X2 + 2222 X10 + 2 221 X11 + 232

(4.3.10)

On collecting all the above relations, we can display them as :

X1t = A1 = —B,
X0 = 210 = — By,
X2z = X1 = B,
X2t = 4 Byg Bi1 — By,
Xa = Xh = - By,

X32 = —8 Byjo B}, + % By By .
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By, = B,

B3 = B},

By = 2 BuBu-2BoBY,
222 = 0,

233 = 0,

zy1 = 2 Byo By — By,
232 = Bfl By — %Bll By .

Finally, making use of these results for the photon wave-function renormalisation constant,
2 2

2
Zo=1 + ao (Bn In % + Bm) + o (Bfl In® % + By In %)

3 p3 1.3 % o 2 2 @
+ g <Bll In F + (5 Bll B2] -2 BlO B11> In F)
+ O(a?), (4.3.11)

the coupling constant,

p p?
+ afi <B121 ln2 —_ + (4 BIO Bll — le) ln F)

+ad | -B3 1n3._'2 + (-8 B,y B? +§B B In2 _‘2 + O(a?
R 11 10 “11 9 11 &21 A2 ( ) )
(4.3.12)

and the multiplicatively renormalisable bare photon wave-function renormalisation,

2

2 2
Golp,A) =1 + ao (Bu In [% + Bm) +al (Bfl In’ % + By ln %)

-~

2 5 2
+ of (Bfl L4 (- By By, — 2 Bio Bfl) In? p-)

A? 2
+ O(ap)

(4.3.13)
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the inverse of Gy :

_1 mE _p
Colr A7) =1 4+ a |-Bn1 n5z ~ B
2
+ ag ((—le + 2B11 BlO) h] P[{E + Bl20>
By B P’ P’
+ ag l:( 12 1 + BlO Bl21) ln2 /—\-E + (2B10 BQ] - 3B11 Bl20) II’IF + -
(4.3.14)
Hence the renormalised photon wave-function renormalisation can be written as :
p? p’ p’
Ga(p, ,u,) =1 + Qp B11 ln ? -+ afi (B121 ll’l2 ;2— + (B2] -2 BlO Bll) ln F)
2 5 2
+ ai (Bfl 11’13 ‘i—Z + (5 B21 Bll — 5 Bl() BIZI) 11’12 %)
+ O(az)
(4.3.15)

4.4 The General Multiplicatively Renormalisable F(p?)

Analogously to the previous section, we deal with the fermion wave-function renormali-
sation. We similarly define the following general perturbative expansion of the unrenor-

malised Fy to next-to-leading order in powers of logarithms as :

2
Fo(p,A)=1 4+ o (All In % + A10>

2 2
+ oo (An 2 4 Ay In p—)

A? A?
p’ P’
+ ag <A33 1113 F + A32 1112 p) . (441)

We again introduce P and M of Eqn. (4.3.2) and note that the gauge dependence of

the parameters A;; can be usefully displayed. Since gauge dependence arises from photon
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propagators, any A;; cannot have a higher power of ¢ than ¢*. Then Fy(p, A) can be written

as

Fo(p,A) =1 + ap(@mé+b)(P+ M)+ (i€ +r)

ad(a28 + b€+ ) (P + M) + o (g2 €% + 726 + 55) (P + M)
ay(az € + b3 + €+ ds) (P 4+ M)

od(gs & + 138 + 538 +13) (P + M)?

O(ag) , (4.4.2)

+ 4+ + +

and the fermion wave-function renormalisation constant becomes :

Zy p/A) =1 + an(zi M+ yi) + o (22 M? + yp M) + o (23 M° + y3) M? + O(a) .

(4.4.3)
Recalling Eqn. (4.2.4),
o = Zér (4.2.4)
using Eqn. (4.3.4) for Z3, we have
fo = (=
x |1 = ag (Bi M + Buo) — a2 (By — 2 BioBuy) M + o (Bme1 _ B”f”) M- } -
(4.4.4)
and Eqn. (4.2.8),
o = Z; ' an, (4.2.8)

we obtain the following relations between bare and renormalised quantities,

Olof = aRéR )
a(Q) = afzéRZS_l )

st = SE77 . (4.4.5)
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Making use of all the above quantities, the unrenormalised wave-function renormalisation

can be written as :

Fo(p,A) = 14 aréra

(P+ M)

+ag by {1 — (Buu M 4+ Byo) ap + (Blzl M? + (4B1oB11 — Ba) M) ai} (P + M)

+orérqa

+agri {1 = (Bu M + Bi)ag + (B, M* + (4B1oBiy — Bu) M) o+ -}

+of, {@26k +b2€r (1 — axBu M — Buo) + &2 (1 — 2an (Bu M + By))} (P + M)’
+0 {0262 + 126n (1 — axBy M — Byo) + 55 (1 — 20 (Byy M + Byo))} (P + M)
+02 {as & + 532+ csbn + ds} (P + M)

+0} {482 + 738l + s3bn 15} (P+ M)?

+0(ak) .

Renormalising F' (as for G) at

H2:A2

recalling Eqn. (4.2.2),

we then can display the left hand side of this equation as :

FR(paN) =1

(4.4.6)
== Fr(p, ) = Fo(p, A) one | (4.4.7)
Fulp, 1) = Z57 (1) A) Fo(p, A) (4.2.2)
+ ag(@1é+b)P+ar(@é+m)
+ al(ag + b€+ ) PP 4 a2 (26 + 126 +53) P
+ (a3 +bsE +c3é +d3) PP
+ ai(‘]s E 4?4536+ t3) P* + O(a*) .
(4.4.8)

After multiplying Fy, Eqn. (4.4.6), by Z;}, Eqn. (4.4.3), in order to obtain the right hand
side of the Eqn. (4.2.2), we can compare two sides order by order in powers of M. We find

for the terms listed as o}

M™ PP to be :
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ar M

87

o M*?
ot PM
ot M

R

oS P*M

R

as PM

al€R+zl+b1:0 )
aér+ri+y=0

a2+ (by+ zmia1) €p+ 2z — 21 B+ ¢ — by By 4+ 21 b, =0

20560+ (:101 +2by) bn+ 200 — b1 B+ 21 b1 =0

@&+ (y1a1+ 2191 +72) n
+ybit+armnty+so—bBo—zn1Bo—y1bh—mBn=0,

az €y + (7102 + b3) &5

+(c3+ z9a1 — z1 a1 Byy + 216y — by Byy) &
Bazéy+ (3bs+ 2z a0) £4

+ (Bcs+2a32;1 —2by Byy — 7 Biyay) ég

+2z1¢co4+ 220y —4cy By +3ds 4+ b6 B —22,b,B;; =0
3a383 + (z1a2 +3b3) &
+(zla1b1+ga1bf+%—alblBu> En
+d3s—2c¢; By + 2165

g3én+ (ra+ 2192+ y1a0) &

+(ss+y2ar +z1m2 — by Big— o By +y1 by + 2541 — 21 a4 Byg
—y1a1Bu—z1q Bll) {r
+ys+its+zer +y2 by +42 By By — 2 By + 1y, By

114

—229B1o— 2y, Biy — by Byy + 14 3121 —2cBio~2s;Bn+z1s24+y1 ¢

—22.0Byo—2y —1bybyy +4b; ByoByy — 22,7, By,

2q383 + (273 + 21 2 + 2y10,) &
+ (2172 = y1a1 By — 21 41 Bio — 2by Bio + 2y by — 72 Byy
+y2 a4 +253) 3
—28;B11+4b1 By1 Bio+ 2182+ 234+ 2y1 ¢
— by Byy —4¢cy Big—221 by Bio — 2y, by By -

(4.4.9)
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Solving the above equations leads to :

21 = —a1ép— by,
(l% 2 bl
zZ; = 75}1'*' (a1b; —ay Byy) € + 5(51 —~ Bn) ,
a? 3 1, 2 2 1 2 2
23 = —€§R+ (—§a1 by + a3 Bu> & — 3 <al by +3a1 by B — aq Bu) €r
1 1 1

i = —Q1€R—7’1,
Yo = (2‘11‘11—Q2)€12a+(2017”1—7‘2+2b1(]1‘alBlo—thll)fn

+2r1 by — 55,

3
Y3 = (92 a — 5“? (h) fg

3
+ (‘301 big1 + g2 b0 — 5‘137‘1 +roa1 —2¢ By +adBot+iaq B11> &

3 5
+(a1 by Bio+ 1201 — =¢u bf ——a1rm Bin—3a1biry +a1s2+ 3¢ by By

2 2
3
- 57"2 By —q Bfl - a B21)§R
1 3 s 3
_§blB2l+32bl_§T1b1+§rlblBll_32Bll+blBllBIO)
a2 a3
a; = 71, a’3:_61'a
1
b2 = albl, b3‘—‘3(l%b1,
¢ = l(bB + b%) c:l<ab2+abB)
2 5 01 BT o), 3= 5 \ah 100 611)
1 1 1
d3 = -éb?-l-gben-l'gblBl?],
1,
g3 = 01Q2—§G1Q1a
ry3 = —5037“14-(117“2“(11(’1(114'51(]2,

1 1
$3 = a132+-2-7'2311+bl7‘2—§f11bf—alb17°1—5017"1311,

1 1 1
iz = 3 by By1 + by 83 — by Byy Byo + §b1 By + 83 By — 5" b} . (4.4.10)
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Substituting these relations into the unrenormalised fermion function , we eventually arrive

at :

Fo(p,A) = 1+ ap(aré+b)In

2

A2 + ao(q1 £ +11)

2

a?

+ (?lg Fab b4 2 (B11+b1))1 A2+a0(q2§ +r26+52) m%
a3 a b] al bl b3 bl B2 b2Bll P
+ aﬁ(—(;lf"“rl Er—= b+ Bu)l+g+—Sr+-5— | n’5

3 afql 3 a’%rl 2

+ o G201~ —— £+ |- 5 bh—arbiqn )€

2
+ T2B11+a132+'f’2b1—q1b1_(LlrlBll—albl'rl 6
2 2 2
b, B 7y b2 r by B 2
+ ( 1221 — by B11 Bio + s2 Bin — 121 +52b1_'—1'—12_11)] lnz%,
(4.4.11)
and its inverse :
1 p?
=1 + ap(~a—b)In=+a(—qé—m1)

A2

a? b
+ of (51 E+a1b é+ 51 (b — Bn)) In’ 7\—2‘ + ((2a1 @ = g)¢”

2
+ (2a1r1+2bigi—7r2)E+2bir — s9) ln%

3 aq b] b3 _ b1 Bll b% B11 3 p2

2
3 _ 41 3_a1b12 9 P
+a°< 6 "z ¢ty P Bulmg ey 2)lnA2

3 3
+ ag [<q2a1 — §a3q1> 53 + (_5037"1 +T2(L] +q2 bl —3a1 b] q1> €2

B 3 aym B
ik 11+61132+7‘2bl 291b2+%—3alb17‘1 '*‘Ghban)f

2

3 3
+ by B11 Bio+ 52 Bi1 — 57”1 bf — 82 b + 57"1 by Bu) ] In’ L

2 A2

(_
(_ by Ban

(4.4.12)
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and the renormalised fermion wave-function renormalisation becomes :

Fr(p,p) =1 +

+

p2
(85 ((11 éﬂ. + bl) 11'1;—2‘

by

(bl + Bu)) In %

2 ‘1% 2
R 7ER+¢1161€R

2

+ a?z((‘h—01Q1)5121+(7‘2—51Q1—017‘1)511—51310'*-32—7‘151) IH%
a’ alb ar b ¥ b B B p?
+ G| ght Gt (it Bt g 2) In 5
+ ai(("‘l%—af‘h)fi’*(_a%rl—2015141+7‘2a1+‘12bl)f;21
\ 1 1
+ szl“Q1b1_alblBlo—§b1913n+§7"2311+0132
1
—5017’1311—2%517‘1)@1
1
"'b%BlO‘*'S?bl_leBllB]0+§b1B21
2 2P
+SQBU—T'1 bl Bll_rl bl) In p
(4.4.13)
Then the A;; of Eqn. (4.4.1) are :
Ann = aé+b
Aw = qé+m
b
Ay = 1€2+alb1§+ 1(Bu'i-bl) )
An = @€ +ré+s;
al 1 a1 b ¥ &6 B 1
Az = ?1534'5“?51524‘ 121(B11+b1)+6+ 1311+§b3311 )
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a2 a2r
Ay = <q2a1— 12q1> §3+ (- 121 +a17'2+b1(h_a1b1‘h) 52

ry B 1
+( 2211 +a1$2+7~2b]—Eal'rlBu—alblrl>é

1 1 1
+§ bl B21 —_ b] Bll BlO + S9 Bll —_ 5 ™ b% + Sa bl — 5 ™ b] Bll . (4414)

4.5 Non-Perturbative Applications of MR

Multiplicative renormalisability renormalises the theory to all orders in perturbation the-
ory. We assume that it works non-perturbatively too [22, 23, 28]. The following examples

demonstrate the application of the above result to non-perturbative QED.

4.5.1 Quenched Example

In the case of quenched QED, G = 1, means

Z3:]. - Qg = Qg

(4.5.1)

Collecting only leading terms, the renormalised fermion wave-function renormalisation

takes the form :

2
Fa(p,p) =1 + agr(ag&+by) ln%

(a1 &+ b1)? In? P’

2
+ oy 5 2
b 3 2
o ““L;i In® % + O(a?) . (4.5.2)

We can easily sum the above expression to give

2
Fe(p,p) = exp (an(alf-*-bl) 1n5—2)
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After a very trivial step we reach the non-perturbative form of the fermion wave-function

renormalisation :

Fe(p,p) = (%)an(al E+b1)

(4.5.3)

4.5.2 Unquenched Example

To illustrate a simple example in this case, we consider only leading logarithms and £ = 0.

Then the renormalised wave-function renormalisation becomes :

»?
Fe(p,p) =1 + oapbIn=
7

2

b
+ Ol;é (bl 4+ Bll) IHQ%

b 2
+ aigl (b1 + Bi1) (b1 + 2 Byy) hf%% + O(cz) -

(4.5.4)
This expression can be written as
b 2
Fr(p,u) =1 + OfRB—l (Buln _p_2)
1 W
2 2
ay b1 bl 2 2 P
—— | —=—+1)] | By In" =
Fa(me) (1)
3
Yr by by by 3 3P 4
= — | =41 |5=—+2) | BjIn" =
* 6 Bn (Bu+ )(Bll+>< i 7) T Olaa)
pz ~b1/Bn;
= (1 —ag B In ﬁ) . (4.5.5)
Recalling the following relations for the coupling constant,
Qp = a(A) :aR(I —‘QRBHM‘*' aleflM2+ )
pw @

= ofp) (1 —afp) By In nz + o*(p) BY In? i + - )
= o) (4.5.6)

(1+ a(p) Bu Inp?/A%)
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where a(y) = ag. This leads to,

Ca N (D]
(1 (1) By 1 /ﬂ) a(h) (4.5.7)
similarly,

T AR )

Substituting the above expression into Eqn. (4.5.5), we arrive at the result

po- [0

b1/B11
a u)]

(4.5.9)

in terms of the running coupling, as the renormalisation group requires.

In this chapter we established a most general multiplicative renormalisable form for the
fermion, Eqn. (4.4.12), and photon wave-function Eqn. (4.3.14) renormalisations. We
have also demonstrated how this method works non-perturbatively. Now as a natural
step we will make use of these multiplicatively renormalisable functions F' and G from
Eqns. (3.2.62, 3.3.57) to constrain the vertex function. This is what we shall do in the next
chapter.



Chapter 5

MR Constraints on the Vertex

Physicists like to think that
all you have to do is say,
these are the conditions,
now what happens next?

-R.P. Feynman-
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5.1 Introduction

In this Chapter, we shall combine the results of the previous two chapters to find the con-
straints on the fermion-photon vertex imposed 'by multiplicative renormalisability. Hav-
ing calculated the multiplicatively renormalisable fermion, Eqn. (4.4.12), and photon,
Eqn. (4.3.14) wave-function renormalisations, in Chapter 3, it becomes possible to compare
these functions order by order with those computed by solving the SD-equations directly,
Eqn. (3.2.62, 3.3.57). As a second step, we also take into consideration the other informa-
tion detailed in Chapter 6, and conditions listed in Chapter 2 on the vertex function to

show how to construct a nonperturbative vertex ansatz for unquenched QED.

We first take the quenched case as a simpler example to demonstrate the procedure given
above. Hopefully this will be a helpful example to understand the unquenched case which

is relatively more complicated.

Before we start to give this example, we want to make a point clear which is important
for the following procedures, that is : K;, J;, M;, K, J!, H],Q; and M; are constants in
Eqns. (3.2.48, 3.2.49). Nevertheless, they may depend on { and Np. However, this can
only be in a particular way : the K;, K!, M;, M! and Hjcan at most be linear, J;, J{ and Q;
quadratic in £ or Ng according to the multiplication factors (i.e. logarithms) appearing in
Eqns. (3.2.48, 3.2.49). Consequently, we should keep this point in mind when the procedure

of comparison is-performed in the rest of the chapter.

5.2 M.L.R. constraints in Quenched QED

As was mentioned earlier, in the quenched approximation, the photon wave-function renor-
malisation, G = 1. We therefore only have the fermion wave-function renormalisation to
deal with. On comparing Eqn. (3.2.63) and Eqn. (4.4.12) in each order for the ¢ term, we

obtain :

2

P .
o lan— comparison:
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ju—

a = E y b] =0 . (521)

Using this information together with Eqn. (4.4.14), we find,

A11 = 4%{ 5 A22 = — . (522)

o comparison:

gp=r=0] . (5.2.3)

Recalling A;o from the previous chapter and making use of the values of ¢; and ry, the first

next-to-leading term in F' becomes

[Aw=0] . (5.2.4)

21..2P . )
agln Az comparison:

2
ay

1 3
—_— 2 —_= —_——_— pu— p—
2é 47r|: < +8) An
.3
4

(=Ko + K3+ K¢ + K3) +

!

A
_%:pm+m+&+mﬂﬁem+m+m+my

pm+m+m+mﬂ,

1o

(5.2.5)
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2

P .
ol ln;\—2 comparison:

~g; & — 1l — 5

_ 1
- 47

(16 In2 — 7) (=K} + K+ K + K}) + 2K} (13 — 161n 2)

B =

3 )
+3 cmrme )

2=0, s2=0 | . (5.2.6)

Referring to Table 5.2, we can see that the K] only depend on Ay, i.e. €, and the H; depend
on Ajp. This is where Eqn (5.2.6) comes from. Moreover the study in quenched QED of the
fermion wave-function renormalisation using the Landau Khalatnikov([30] transformation
shows that, to order o?, the gauge dependence merely occurs in the leading logarithm term.
Having q; = s, = 0, the r; term is the only one left as the next-to-leading contribution
in F at order o? and makes the fermion wave-function renormalisation gauge dependent

unless ry = 0. Therefore, we take r, = 0 and A, is then simply :

. (5.2.7)

and

(16 In2 —~7) (=K, + K3 + Kg+ Kg) + 2 K¢ (13 — 161n2)

| =

3 / ! ! !
+5 (= Hy + Hy + Hy + H))

(5.2.8)
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2
31.3P o
agpln Az comparison:

a3 _ 1 & 3 2¢
e | g e (Fe)

1
+-Ap (K + Ks+ Ko+ Kg) — (—Joa+ S5+ Je + Js)

4
5 ! ! ! /! ! )
+ ZA” (—Ky+ Ky + Ko+ Kg)+ 2 (—Jy+ J3 + Jg + Jg)
3
Z( Q2+Q3+Q6+Q8):l ;
A%l ! ! ! !
T4 = (Rl detJs) = 2 (=Dt S+ S+ )
(5.2.9)
“_( Q2+Q3+Q6+Q)__All( Ko+ Ky + K¢+ Kg)
12p

3
Qg in X—- comparlson

0 = (AoAnn— Axn) (g + g)

4

3 3
+ —Ap (K + K3+ Kg + K3) — 1 (=M, + M3 + Mg + M;)

(16 In2 — 7) Ay (=K} + Kb+ K+ K3) + 2(13 — 161n 2) Ay; K
(16 In2 —7) (—=Jp + Jo+ Js + J5) + 2(13 — 161n2) J}

(Mg + Mg+ Myt M)+ 5 Ao (=6 + K+ K+ 1)

(16 In2-7) (—Q3 + Q5+ Qs + Qg) + (13 - 161n2) Qg

W] =] O — N

=

1 (=Hy + Hy + H+ Hg)
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3

0==|(-Ma+ Ms+ Ms+ Mg)— 3 (—M;+ Mz + Mg+ M)

N

1
+§(—7+ 161n2) (—J; + J3+ Jg + Jg) + 2(13 — 161n2) Jg
+-(=7+161n2) (-Q5+ Q3+ Qs+ Qg) + (13 =16 1n2) Qs

Avy (—Hj+ Hy+ Hy + Hy) .

1
4
3
4

(5.2.10)

We see that finding a multiplicatively renormalisable fermion wave-function renormalisa-
tion is entirely related to the structure of the transverse vertex. Having a multiplicatively
renormalisable F' requires that the transverse component must have a particular form to

obey the above constraints.

5.2.1 Non-Perturbative Vertex Ansatz in Quenched QED

Obviously, all these constraints depend on the combinations of various constants yet to be
determined according to different combinations of the wave-function renormalisation. We
take the Ball-Chiu [26] construction, which determines the longitudinal piece, as a guide.
This suggests that we consider symmetric and antisymmetric combinations of the function

F. To be explicit, we use the following forms for the non-perturbative fermion-photon

vertex :
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K=An;
1 F(Lkﬁ—ﬁf) J = A2, — Ag
M= -4 +2 A1 Ao
K=-4n
2| F(K*) = F(*) || J = Axn
M= Ay

Table 5.1: Antisymmetric combinations of F' in quenched QED

1, 1 + 1 —2 J’ :A%I_A22

M'=—An +2A51 Ao
Q/ =0 ) H' = -2 A0

I(I:All
2| F(E*) + F(p*) =2 || J = Ay, M'= Ay
Q=0 , H = -2Ap

Table 5.2: Symmetric combinations of F' in quenched QED

To use these tables, consider the first entry. If the 7; involve an antisymmetric combination
of F, e.g. ﬁ — ﬁ, then the constants K, J;, M; are as given on the right hand side
of the Table 5.1. The next step is to write down the coefficient functions 7; of the basis

vectors as a combination of the above choices. Then :

T, = xi*1+yi*2
+ x4 ylx2, :=2,3,6,8 (5.2.11)

where z;,y;,z; and y; are constants. The numbers 1,2,1' and 2’ denote the different

combinations of the wave-function renormalisation in the left hand column of Tables 5.1,
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5.2. Which combination of these forms (1,1’,2,2’) can be taken to construct the simplest
non-perturbative transverse vertex that satisfies the given constraints? In order to find
this out, let us insert Eqn. (5.2.11) into Eqns. (5.2.5-5.2.10). Starting from the former,
Eqn (5.2.5), we have :

A
I Al (—x2+x3+$6+3)3)— Av (—y2 +ys + ys + ys)

— 3An (—zh+ay+zgtag) + 3An (—ys+ys+ys+us) - (5.2.12)

From now on we shall use the following nomenclature, since the same combinations of the

different constants in Eqn. (5.2.12) appear everywhere,

X' = —zi+ x4+ zf + =g, {Xi:X,Y---, m"=:v,y-"}
X' = —2i+ 2+ 2+ ol {Xi' =X,V 5 =2y }
(5.2.13)
Therefore, Eqn. (5.2.12) can be written as
o A (X-¥)-3 (X -V
% - (X—Y)-3(X'—Y) . (5.2.14)
Eqn. (5.2.8) yields,
R C S SR 0
% = (X -Y)= (X' +3Y), (5.2.15)
and Eqn. (5.2.9) gives :
0 = (—;+ 81n2) (X' = Y')+ 2(13 - 161n2) (2} — vL) -
(5.2.16)

Solving these equations gives,
= 3Y' |
= X-Y-6Y |,

o MI*—‘%

7 . ’ /
= - (‘5 +8 M) Yj— 4(13 - 161n2) (75 — yg) - (5.2.17)
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In order to find the simplest solution satisfying these equations, Eqn. (5.2.17), it is sufficient
to choose :

X = -zt 3+ 6+ 28= %,
and the rest will be

Y = X'=Y'=0. (5.2.18)

Obviously, every x;, which satisfies this equation, can be a solution, for instance,

1
Te = '2- 3
The simplest example is to take the coefficient functions,

To = T3:T8=0 N

and then 7¢ becomes :

1 1 1
= e (R we) 6

Hence, an ansatz for the non-perturbative transverse vertex could have the form,

.1 1
= (F(kﬂ) )

) [0 = B+ (p+ B)* 4] -
(5.2.21)

This is in fact very similar to the CP-vertex, except that there is no kinematic singularities
in the k2 — p? limit.

Taking Eqns. (5.2.2, 5.2.4, 5.2.7) into account together with Eqn. (4.4.11), we can write

down the leading logarithm terms for the wave-function renormalisation in the quenched

case as :

2
of pP 1 [ 2 P’
- 14 —mIpf L 2 (=) mrE . 9.
F +4ﬂ_ln 2+‘2(47r n®— + : (5.2.22)

By summing this, we can rewrite it as :

F(p*) = (i—i)_ (5.2.23)

which is clearly multiplicatively renormalisable.
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5.3 M.R. constraints on ['; via
the Fermion Wave-function Renormalisation

In this and the next section, we shall repeat the above strategy, to find constraints for

unquenched QED,

9=k-p
-1 1
o— = -
— —
p p k TectI¥
=k-p
-1 -1 °
WVAVAV V.V .V N VAV VAV V V.V R
- —
P p
bl
k DIy

Figure 5.1: Unquenched Schwinger-Dyson equations for fermion and gauge boson

Now we display the layout of whole calculation again below, since it is such a lengthy

procedure.

Non-perturbative massless QED

1

Schwinger-Dyson equation

t

Truncation is needed
Make an ansatz for 3-point vertex

1

Flow diagram will be continue in
the next page
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Non-perturbative massless QED

1

Schwinger-Dyson equations

!

Truncation is needed
Make an ansatz for 3-point vertex

1

The ansatz must satisfy
criteria, (see Sect.2.2), which

Full vertex is divided into
longitudinal and transverse

the full vertex itself satisfies

As a result of Gauge

parts
I‘; = I‘ﬁ + FT’;

Invariance Ward Identities
must be fullfilled

T* basis tensors are

given by Ball-Chiu

Using charge conjugation and
other informations,

[
Longitudinal vertex is fixed
by Ball-Chiu

I'y =The

!

Transverse part left to be
determined. The vector
structure of the vertex leads to

FCLI‘" = E?:l Ti(kg’pz) q2) Ti“

73, the coefficient functions

are the only unknowns

perturbative expansion of

T; are suggested

Substitute this vertex into

the coupled SD-equation

Calculate the general form of

multiplicatively

renormalisable F and G

L

!

Solve SD-eqn. for the 1/F and 1/G

in terms of the constants of
the perturbative expansion of 7;

Perturbative calculation and

all other vertex information

s
Order by order comparison to get
constraints on the vertex function

imposed by multiplicatively

renormalisability

N |
Y

We are here

Construct non-perturbative vertex ansatz

Figure 5.2: Flow diagram of the Schwinger-Dyson calculation
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Here, we first deal with the wave-function renormalisation. To do this, we start by com-
paring ¢ terms order by order between multiplicatively renormalisable F, Eqn. (4.4.12),

with those found by solving the SD-equation, Eqn. (3.2.62) :
2

ag ln% comparison:
£
b —b = — >
alf 1 47 )
Y
1
a, = 4—7r 3 b1 =0 . (531)
Then A;;, Eqn. (4.4.14), becomes
£
Apn= —=—| . 3.2
== (5:32)
g comparison:
—@é-rm = 0 ,
Y
q=r =0 . (5.3.3)

This requires Ay to be

: (5.3.4)

p?
o lnzp comparison:
2
Ge o _L_(£43
¢ = 47r[ (2+8> An
3 9 /
Y

14122 = (=K + Ky + Ko + Ks) + 3 (K, + K, + K, + K3)

(5.3.5)
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2

ag lnf;2 comparison:
_%%62 —ré — 89
+%Fﬁ+16h@(—K§+K§+K§+K@+203—1Mn®Ké
+ (—H;+H;+Hg+Hg)] ,
!’
=10 (5.3.6)
and
ro+ 5, = ﬁ —gBll
%(16 In2 = 7) (=K} + K} + K + K2) + 2(13 — 161n2) K.
+%(%+%+%+%4
(5.3.7)
3P

ajln Az comparison:

3
e § 3_.__l_ é § 2 E _AnBu
66 = 4ﬂ[<2+8)&1 <3+2 An 8

+ 1 (All + Bn) (K2 + K3+ Ke + Kg) — (=Jo+ J3+ Js + Js)
5 ! ! ! !
+Zmu+&0@KHJ + K+ Kg)+ 2 (=Jy+ Jy+ J5 + Jg)
3
2 eargraran)

4

2
All

—Jy+ 3+ Jg + Jg) . (5.3.8)
(A + By) (=K + Ky + Kg + Kg)

= (Lt St+Jst+Js)— 2
3 ,
7 (-Q2+ Q3+ Q6+ Qs) —

wl,_;/—\
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comparison:

ad In? iz

a1 (r2é+ s2) — Bn (%f‘*‘ 32)

¢ 3

1 3 3 3
= Tir [(Aw An — An) (5 + g)

~3 A1 Bio + 3 An By — 5 By,
43 3

4
3

+=(16 2 —7) (=Js+ J3+ J5+ J5) + 2(13 — 161n2) J;

OO —

9
+= (=M, + My + M§ + M) + ) (Ao + Bio) (=K + K3 + Kg + Kg)

O =~

+7 (16102 -7) (-Q + @5+ Qs + Qs) + (13~ 161n2) Q5

[N PN U

3 Ay + Buy) (—Hy+ H+ HL+ H@} |

ﬂ

(Ao + Bio) (—K2 + K3 + K¢ + Kg) — 1 (=M, + M3 + Mg + M)
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1

3 ! ! /
4(47r) (—M2 + Ms;+ Mg+ Ms) -3 (—M2 +Mé+ MG + MS)}
3
= §A11 Ay + grz By
3 15
Y7 ) n+ gy ) Ay By
3 7 /
+ m By [(I — Kg) + 3 (K3 — Kg)]
+ (—=7+ 16In2) (=J;+ J3 + Jg + Jg)
2 (4r)
2 ' 3 ! ! 1 /
+ E (13 — 161n 2) J6 - 4—@ (All + Bu) (—H2 + H3 + HG + HS)

+

1
4(i7r) (16102 —7) (—Q + Q5 + Qs+ Qg) + - (13- 16 In2) Qg

(5.3.9)
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The conditions in the boxes, Eqns. (5.3.5-5.3.9), are the constraints multiplicative renor-

malisability of the fermion wave-function renormalisation imposes on the vertex function.

5.4 M.R. constraints on the ['r via

the Photon Wave-function Renormalisation

To construct a suitable ansatz for the transverse vertex, we need as much information as

possible coming from the coupled SD system. Solving this system for the fermion wave-

function renormalisation only gives part of the constraints. The rest is extracted from the

photon function. To do this, we repeat the same steps for the photon function as we have

carried out for F. Comparison takes place between Eqn (4.3.14) and Eqn (3.3.57) order

by order for G. Obviously, this time instead of looking at the way terms depend on the

gauge parameter £, we compare the dependence of Np, the number of flavors hidden in the

B terms. Then :

2

ayg ln% comparison:
Np
By, = —
"3y
a( comparison:
~ 13 Np
7 12 (30)
aZn?P_ comparison:
0 A2 °
A 3
0 = % + 5 (G + K~ K = k)

|

2

(5.4.1)

(5.4.2)

)

(5.4.3)
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ol lnA—z2 comparison:
— By + 2By By = —% [ <A10 - %Au) - g(f(z + Ky — Ko — Ks)
+ (—2+ 3 ln2> (K, + K — K~ K2)
+%K§ + (=94 12 1n2) K§

3
+4%+%—%—%4,

|

Np[ (17 3
“Byp+ 2Bn B = —3—;{ (ﬁ _2 ln2> Au+ 5 (<K ~ Ko+ Ko + Kq)
3
I (—H; — Hy + Hg + Hy)
+g Ki+ (—9+12 In2) Ké}
(5.4.4)
p2
ad 1n3F comparison:
A 1 .
0 = 24 -+ Ji—Ji—JY)
3 2
/ ) 1 i
+ A (JG + K — K~ i) + 2 (Q2 + Q3 — Q6 — @)
, 1
A== (~h =T g+ T) — 5 (-Qh— Q5+ Q4+ Q3) (5:4:5)
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p?
ol anF comparison:
B
% (— Ba1 + 2 Byo Bn1)
N A 11 3
== _—3—7-1'F— [ "'211' - EAgg bt §A11 (1(2 + _[(3 - 1(6 —_ ](8)

9 ! ! ! 3 !

+ (=94 121n2) J. + (—g +61n2) Au (I + K — K - K3)

+3A1n K3+ 2 (=94 12 In2) Ay K

3
+%(M2’, MG — My~ M3) 45 Ao (K} 4 K — G — )

3 , -9 3 /
3 Au (Hy+ Hy = Hy— H) + (54 5 1n2) (Q4 + @b~ Qs — Q3)

3 9
+ZQQ+(——+61n@c%] ,

!

3 A 7 7

b2 (Ko~ Ko+ Ko+ K) (2 A — By)
_ g (—Hj — HY + Hy + Hj) (2 A1y — Bu)
b DKL An— Bu) 42 (<9 +12 1n2) K (4 A — By
4 _;_Jé + (-94+12n2)Js+ %Qé + %(—9 +12 In2) Qg

(5.4.6)
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Again the conditions on the vertex have been enclosed in boxes, Eqns. (5.4.3-5.4.6). The
general multiplicative renormalisability constraints on the 3-point vertex function are ex-
pressed in terms of the constants K, M,J, K',J', M’ H',Q'. These appear in the defi-

nition of the coeflicient functions of the basis vectors in the transverse vertex, 7/, 7/, in

Eqns. (3.2.48, 3.2.49),

= ak; (ln;};i2 — lni—i) + ao? [Ji (1n2 i—z —In? %) + M; (hli—z —In %)]
+ 0, (s =2,3,6,8)} (3.2.48)
= a lK{ (mi—z +1In i—i) + H{]
+o? [J,’ (lnzg -ani—Z) + M| (lni—z-f-ln[]i—z) + Q; lni—z lni_zz}
+ 0%, {i=12,3,6,8) (3.2.49)

and they also appear in the combination of the non-perturbative F’s and G’s, Tables 5.3, 5.4.
Basically in the above expressions the 7] and 7;" have been written as a general perturbative
expansion of the different combinations of non-perturbative F' and G. Each symmetric and
antisymmetric combination of the F' and G gives similar perturbative expansions but with
different constants. Thus, as we shall see below, each individual non-perturbative form of
the fermion and photon wave-function renormalisations has its own set of constants. Here
some examples are listed in analogy with the quenched case of Tables 5.3, 5.4. Again the
right hand side of the tables below gives the constants, e.g. K,J,M,H,Q,K',J',M', H',Q',

for the 7;’s constructed from the combinations of F' and G given on the left.

Antisymmetric combinations of F' and G are :
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:K:All
1 el J =4} - An
F(k*)  F(p®)
M=-A45+ 24, Ay
K= By
1 1 2
2 — J =B% — B
Gk~ G o

M= -B3 4+ 2 B11 Bio

G(kYH GO*

K= A1 - Bn
J = A}, — Ay — A1 Bi1 + By

M= —As + 2 A11 Aro — Ao Bi1 — A1 Bio + B

K=A;1 + By
G(p*) Gk 2
4 - J = Ay — Aoy — By
F(k*)  F(p%) 1
M= —Az1 4+ 2 A11 Ao + Aro Bu1 — A1y Bio — Bay
K= Ay, + B
1 1 2 2
— J =As — A A1 B B, — B
5 F(k2)G(k2) F(p2)F(p2) 1 22 + A1 B + By 22
M= —Ay1 4+ 2 Ay1 A1o + A1o B11 + A11 Bio — B2y + 2 Bio B
K= A1 - Bin
6 J :A%I_AQQ_B]?1+B22

11
F(k)G(p*)  F(p*)G(K?)

M= —A51 + 2 A11 A1o — Ar0 B11 + A1 Bio + Bai — 2 Bio B

Table 5.3: Possible antisymmetric combinations of F' and GG
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K'= _All
/ 1 1 ' 2
-2 =As, — A
S oA a7 P A
M'=—-A 42 A1 Ao
Q=0 , H' = -2A5p
K = - By
2! L + 1 -2 J! :B121—_322
G(k*) ~ G(p*)
M'= —B31 4+ 2 B11 Bio
Q=0 , H = -2Bp
K'=-An+ Bn
G(k*) |, G(p*
3 %(?%-FFL(];%_Q J' =A} — Agy — A11 By + Bng
M'=—A3 4+ 2 A1; Aro — A10 B11 — A1 Bio + B
Q' =0 , H' =-2(A0— B)
K'=—-An+ B
2 2
Gk
M'=—Ay + 2 Ay1 Ao — Ao Bii — A11 Bio + B
Q'=-2A11Bnn , H = -2(A10— Bio)
K'=-An - Bu
| Fems t T e 2| U = Al Ant AuBu+ Bl - B
M'=—-Ay+ 2 A1 Ao+ A1o B11 + A11 Bio — Baa + 2 Bio B
Q=0 , H = -2(A10+ Bi)
K'=-An1 — B
6 1 1 2|l J' =A% — Ay + B2, — B
R G TP GF) L
M'=—-Ay 4+ 2 Ay Ajg+ A1o Bi1 + A11 Bio — Ba1 + 2 Bio B
Q' =2An B , H' = -2(A10+ Bo)
7! G(k*) + G(p*) - 2 K'=By, ,J'= By ,M'= By
Q’:O 5 HI:—2B10
8! F(k*) + F(p*) - 2 K'=An ,J'= Ay, M'= Ay

Q'=0 , H = 241

Table 5.4: Possible symmetric combinations of F' and G
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5.5 Applications

The next step is to make use of all these examples for the multiplicative renormalisability
constraints. In order to satisfy these, we have a set of equations-to solve. As a first step
the coefficient functions, 7;, can be written as a sum of different non-perturbative forms of

F and G with the above examples. Hence, 7/ and 7/’ become :

n=1+71 (5.5.1)

1

In general, a symmetric combination of F' and G is :
Til = zix 1+ y;*x2+ z; %3+ x4+ s; x5+ 7r; %6, (5.5.2)
while an antisymmetric combination of F' and G 1s :

! = zhix U4+ yix2' + 23 + x4 + s k5 k6 4+ vk T+ wik8§,
(5.5.3)

where z,2',y,y’ - - - are constants. The number of constants needed to solve these equations
is proportional to the number of various combinations of the F' and G. These combina-
tions will appear in the ansatz for the non-perturbative transverse vertex. We then try
to solve these equations by choosing a minimal number of combinations, in order to find
the simplest possible vertex ansatz. However, at this moment we cannot decide which of
these forms are necessary and which not, so we keep them all. Hence, the next step is
to insert Eqn. (5.5.2) and Eqn. (5.5.3) in the constraints to find these equations, starting

with the ones which come from the fermion wave-function renormalisation comparisons,

Eqns (5.3.5-5.3.9).

5.5.1 Application to the Fermion Function

Eqn. (5.3.5) gives :
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TR A [(Xp+ Ze+ T+ Sp+ Ry) = 3 (X + 2+ Ty + Sy + Ry — Wj)]

+ Bu [(Yy— Zp+ Tr+ S;— Ry)+ 3 (=Y) + 2;+ Tj - S; - Ry + Vj)],

comparing ¢ and N terms on both sides of the equation

1
(1) s 5 = (Xy+ Z+ Ty + Sp+ Rp)— 3 (X} + Z;+ Tj+ Sy + R, - W)

2) : 0 = (Yy— Zr+ Ty+ Sy — Ry)+ 3 (=Y + Zj+ Tj— S; — Ry + V})

(5.5.4)
Using Eqn. (5.3.8) :

A} Al

D = TR (X4 2+ T+ Sy 4 Ry) = (Xp+ Zp+ Tp+ Sp+ By + 3W))]

1
+ AnBu |2 = Sp+ 5 (XG4 Yj+ 42)+ 3T) = 25)— By = V] - w;)|

1 ! ! ! !
+ BL |2 - Ty+ 5 (Y)- 52— 5Tj+ S+ Ry - 5V))|

and comparing £2, ¢ Np and N} terms leads to :

1
()5 = (Xp+ Zp+ Te+ S+ By = (Xp + Zp+ Ty + S) + R+ 3W))

1

(4) 0 = —Zf—5f+ 9

(X;+ Y/ +42;+ 3T} - 25— Ry — V| = W))

1 / ! / ! / /
(5) : 0 = Zy—Ty+ 5 (Y/ =52~ 5T+ S;+ B~ 5V)

(5.5.5)
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Eqn. (5.3.7) yields :

Ay = rl+ s
- Lla, <—-7—+81n2> (=X} - 2, - T)— S — R, + W})
yp 5 pmdp = Ty = 5= R+ Wy
+2(13 = 161In2) (—~zg — 25 — tg — Sg— T+ wg)l

3 7

+2(13 — 16In2) Biy (—yg+ 2+ t5 — S — rs + vg)

+3By (=Y]+ Z;+ Tj— S;— Ry - Vj) ,

and looking at the coefficients of the ¢ and Np terms, we obtain :

1 7
(6) : ro = ~ @) [ (—§+ 81n2> (X}+ Z;+Ti+ S;+ R, - W})
+2(13 - 16In2) (zg+ 25+ tg+ sg + rg—wé)}
1 3 7 7 ! ! / ! 1
()52 = |~ 5Bu+ (—5+8n2 Bn (-Yj+ Z,+ T} - S;— R;+ V))

+2(13 = 16In2) Byy (—ys+ 26+ ts— sg— 76 + vg)

+3Bo (=Y} + Zj + Tj— S;— Ry — v;)}

(5.5.6)

The last Eqn. (5.3.9) gives :
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7 / ! ! /
= A’;’I[ - (—§+ 8ln2) (Xf+ Z;+ T+ S;+ R, — 2Wf)
—2(13 - 16In2) (zg+ zg+ tg+ sg+ rg — 2wg)]

+ An By ——+8ln2> (X;+3Y;+ 25, + 2R, — 3V/ — W})

+ (13— 161In2) (—zg— 3ys — 255 — 276 + 3vg + wg)
3
+= (z3+ z3+ tz3+ s3+ TB)_Z(:I:G'*' z6+ te + S6 + T6)

3
4
9 ! / I 7 / /
Z(x3+z3+t3+s3+r3—w3)

9
|

(=2Z;—Ts+ Sy + Ry)

>

+ A By l—

+2 (=4Y) + Zy+ Ty — Sy - Rf—4v;)}

o~ o

3 3
+ B121|: Z(y3—23+t3+ 33—7’3)+Z(—y6+ 26 — tg — S¢ + Tg)

(v3— 25— 3+ s34+ 75— v3)

!

( y6+z6+t6 G_Té+vé)

3

=(Y; + S;— Ry)

+ (34 82) (24 T)+ V) +2 (13- 16 102) (5 + 5+ §)
+ BllBIO[

I\D

3 ! ! ! !
(5.5.7)
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again comparing the { and Np terms, we get :

1 7 ! /
-3 (—§+ 81n2> (Xj+3Y/+25;+ 2R, - 3V/ - W)
+ (13— 161n2) (—zg— 3yg — 255 — 21 + 3vg + wg)
3 3
+Z($3+ z3+ t3+ s3+ TB)_Z(Q:G‘*' 26+ te+ se¢ + 16)
9 9
=7 (B3t zttgt syt g —wi) + 2 (76 25+ g+ 55+ 76 — wp)
13 13
~ 35 (Zr+ Ty~ Sy = By) - ¢ (—4Y/+ 2; + T) - S; - R} - 4V))

7 ! ! ! (] / 1
_(_5+8ln2> (X)+ Z;+ T} + Sy + Ry - 2W))

—2(13 — 161n2) (x5 + 2z + tg + sg+ rg — 2wg)

3 3
Z(y3—23+t3+ 53‘T3)+Z(—y6+ zg — tg — Sg + Tg)

9 9 ! ! I
—7 (= m—tat sy 5= vg) =7 (~ys+ 26+ tg ~ s~ 76+ Vo)

7
+ (_§+ 81”) (Z)+ T)+ V}) + 2(13 — 16 1n2) (4 + t5 + vp)

13 13

+= (Y + S;= R+ = (-4 Y[+ Z;+ Tj— 4S; - 4R, - V)

(5.5.8)

5.5.2 Application to the Photon Function

We now substitute 7/ and 7" into the constraints which the comparison with the photon

wave-function renormalisation has yielded, Eqns. (5.4.3-5.4.6). Using Eqn. (5.4.3), we get

2 ! / ! / !
sAun = —An (X, + z,+ T+ S, + R, - W)
+Bu (=Y + Z,+ T)- S, - R,+ V) |
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. and comparing ¢ and N in this equation gives :

2 !
(10) : —5 = (X3 + 2z, + T, + Sy + R, — W2)
(5.5.9)
11): 0 = (=YI+ 2+ T, - S, — R, + V)
Now Eqn. (5.4.5) yields :
A2 A%l X/ ZI T/ Sl RI W/
11 _T< R e L 7)
+ A1 Biy (ny+ T -5 - Rfy)
— By (Z;-F T, + V;) )
the following equations :
(14) : -2 = (X, + Z,+ T\ + S+ R, + W)
(15): 0 = (Z,+T,- S, — R) : (6.5.10)
(16): 0 = (Z,+ T+ V)

Eqn. (5.4.4) leads to :

7 3 'l ! ! ! /

B21 = A11B11l<1_2—21n2>+§ <A’Y+ Z,,,‘*’ T’y+ S’Y+ R’Y)
3
2

3 t !
+ 3121[ (Yp_ZP+TP+Sp_Rp)+_(—yé+zé+t3_33—'r:/3+'l)g)

+

+(=9+ 12In2) (—zg — 25 — tg — sg — 15+ wg)]
3

2 2

+(=9+12In2) (—yg+ zg+ tg — S — r5 + vé)l
+ 2B By

(5.5.11)
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The last constraint, Eqn. (5.4.6), gives :
- (214—1n2) A2 4 (-2-71—-ln2> An Bn
= Afl[g(X,,Jr Z,+ T, + S+ R,)
—~3 (z3+ 23+ t5+ s5+ r5 — w;)
—2(=9+4 12In2) (zg+ zg + tg+ sg+ rg — wg)
+- (254 25+ 3+ s+ g+ wp)

+=(=9+ 12In2) (zg+ 25+ ts+ sg + 76 + wg)

3
+ Au Bn Z(—Xp—i- 2Y, - 32, + T, + S, — 3R,)

+3 (—ys+ zh+ th— sh— i+ vj)
_}.%(xg—{-zg—*-tg—i-sé-}'?‘é“wé)

+2(—9+ 12In2) (—ys + 26 + tg — sg — 16 + vg)
+%( 94 121n2) (ah+ 25+ th+ sh+ 5 — wh)
+g(—z§—tg+sg+7‘§)

+(=9+ 12In2) (—z5 — tg + sg + T5)

3
+ B121 "Z(YP_ZP+TP+SP—RP)

( y3+z3+t —33—r3+v3)

(=9+ 12In2) (—ys+ 26+ te — S5 — Tg + vg)

+ (23+ U3+ tz)

+(=9+ 12In2) (25 + vé—i—tg)]

3
4
1
2
3
2
(—
3 ! ! !
+ BubBiwo 5 Y + S, + Rp)

(5.5.12)
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comparing ¢2, N2 and € Np terms, we obtain the equations below :
p g F

148

(17) : —(

(

l—ln?

24

— —In2

24

(19) :

)

)

0

3
§(Xp+ ZP+TP+SP+RP)

—3 (25t 23+ 3+ s34 75— wh)
—2(—9+ 12In2) (x5 + 2z + tsg+ s+ 176 — wg)

+7 (234 z+ 5+ s34 5+ wh)

DO | QO

+=(=9+ 12In2) (zg + 25 + tg+ s+ r6+ wg)

(254 25+ ta+ s5+ 75— wh)

(=94 12In2) (-yg + 26+ L6 — 6 — 75 + ve)
(—9+ 12In2) (zg+ 26+ tg+ sg+ 76 — wg)

(—23— 5+ s3+ 73)

+
+(=9+ 12In2) (— 25 — tg+ S5+ T¢)

(Y- Zy4 Tyt S Ry)

_%(_yg+ Zy+ 1y — s5 — g+ vg)

_%(_9+ 12In2) (—ys + 26+ b6 — s — 76 + v5)
+g(zg+vg+tg)

+(=9+ 121n2) (25 + v+ t4) + 18—3 (YH Sy + RQ)

(5.5.13)
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As far as leading and next-to-leading terms are concerned, the above constraints ensure
that both fermion and photon propagators are multiplicatively renormalisable in massless
unquenched QED. Having these constraints imposes conditions on the transverse part of
the vertex. Our intention in future work is to find simple solutions to these constraints
and so obtain a non-perturbative form for the fermion-photon vertex. To aid this we
need as much information as possible about the vertex function. Part of this comes from
the perturbative calculation which we are going to present in the next chapter, where we
compute the 3-point vertex and the coefficient constants, 7;, at one loop order. Surprisingly
this perturbative calculation has not been done before. This is because it involves rather

complicated and lengthly algebra, as we shall see.



Chapter 6

Complete Analytic Form of
One-Loop QED Vertex in Any
Covariant Gauge

Contradiction is not a sign of falsity,
nor the lack of contradiction a sign of truth.

-Pascal-
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6.1 Introduction

In this chapter, the one loop vertex in QED is calculated in arbitrary covariant gauges as
an analytic function of its momenta. As mentioned before, the vertex is decomposed into
a longitudinal part, that is fully responsible for ensuring the Ward and Ward-Takahashi
identities are satisfied, and a transverse part. Furthermore, in this chapter the transverse
part is decomposed into 8 independent components each being separately free of kinematic
singularities in any covariant gauge in a basis that modifies that proposed by Ball and
Chiu [26]. Analytic expressions for all 11 components of the O(«) vertex are given explicitly
in terms of elementary functions and one Spence function. These results greatly simplify

in particular kinematic regimes.

The only truncation of the complete set of Schwinger-Dyson equations, that we know of,
that maintains the gauge invariance and multiplicative renormalizability of a gauge theory
at every level of approximation is perturbation theory. Physically meaningful solutions of
the Schwinger-Dyson equations must agree with perturbative results in the weak coupling
regime. Perturbation theory can thus serve as a guide to allowed non-perturbative forms.
As mentioned earlier, the wave-function renormalisation, F(p?), and the mass function,
M(p?), are the constituents of the full fermion propagator and they can be calculated at
each order in perturbation theory. Now these two functions must occur in the fermion-
boson vertex, since the Ward-Takahashi identity relates the 3-point Green’s function to the
fermion propagator in a well-known way. This is satisfied at every order of perturbation
theory. Indeed, such identities are true non-perturbatively. Thanks to the works of Ball
and Chiu [26] we know how to express the non-perturbative structure of the part of the
vertex ( a part conventionally called the longitudinal component ) that fulfills the Ward-
Takahashi identity in terms of the two non-perturbative functions describing the fermion
propagator, Eqn. (2.3.34). We have also learnt that multiplicative renormalizability of the
fermion propagator imposes further constraints on the vertex, as extensively discussed in
Chapters 2, 5, but these have yet to be fully exploited. While the bare fermion-boson vertex
in a minimal coupling gauge theory is simply v*, in general the vertex involves twelve spin
amplitudes that can be constructed from v* and the two independent 4-momenta at the

vertex as elucidated by Bernstein [41]. This would suggest that the complete fermion-
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boson vertex involved a large number of independent functions. However, some of these at
least must be related to the fermion functions F(p*), M(p?), not to mention the analogous
boson renormalization function G(p?). It is to the nature of these forms that perturbation
theory can be a guide, but only if we calculate in an arbitrary gauge. For instance, if we
calculated the vertex in massless QED merely in the Landau gauge we would find the v#
component was like its bare form just v*. This would serve little as a pointer to the form
T [F~Y(k?) 4+ F~1(p*)]v* as its non-perturbative structure. Only by calculating the vertex
in an arbitrary gauge does this result become clearer. Ball and Chiu have performed this
O(a) calculation of the vertex in the Feynman gauge and we will be able to check their

result and correct a couple of minor misprints in their published work.

Thus our aim is to compute the fermion-boson vertex to one loop in perturbation theory
in any covariant gauge and to decompose it into its 12 spin components, of these all but
1 is zero. This full vertex is by its very nature free of kinematic singularities. We then
divide the vertex into two parts : the longitudinal and transverse pieces. The longitudinal
component alone fulfills the Ward-Takahashi and Ward identities. The way to ensure
this without introducing kinematic singularities was fully described by Ball and Chiu as
discussed in Chapter 2. We then investigate the transverse part and decompose it into the
basis of 8 vectors proposed by Ball and Chiu [26]. We examine each coefficient of these and
find that two have singularities in arbitrary gauges. These are not present in the Feynman
gauge in which Ball and Chiu work. We propose a straightforward modification of their
basis that ensures each transverse component is separately free of kinematic singularities
in any covariant gauge. This makes this basis a natural one for future non-perturbative
studies.

We divide the discussion into 6 parts:

o the one-loop calculation of the vertex in asymptotic limit is presented in Sect. 6.2.4

and extraction of the one-loop transverse vertex in the same limit is in Sect. 6.2.5;

e the one loop calculation of the vertex, its decomposition into spin amplitudes and
the expression of these in terms of known functions, including one Spence function

with 10 different arguments are all presented in Sect. 6.3.6;
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e the one loop calculation of the fermion propagator to determine the functions F(p?),

M (p?), which fix the O(c) longitudinal part of the vertex is in Sect. 6.4.1;

e the extraction of the transverse part of the one loop vertex and its decomposition

into 8 independent components in the Ball-Chiu basis are described in the rest of

Sect. 6.4.2;

e checking the singularity structure of each of the components of the vertex is given in
Sect. 6.5. This leads to the proposal of a new basis for the transverse vertex, which

has coeflicients that have only the singularities of the full vertex;

e deducing the form of the vertex in specific kinematic regimes.

6.2 Getting Started
6.2.1 Definitions: Feynman rules and basis vectors

For the most part the definitions given here are standard, but they are stated here to make
this chapter self contained. The perturbative calculation involves the use of bare quantities

defined as follows in Minkowski space :

bare vertex : —iel), = —iey, , (6.2.1)
fermion propagator : iSe(p) = i(F+m)/(pP —m?) , (6.2.2)
photon propagator : A%, (p) = —i[p’gw + (€ - Vpup| /p* , (6:2.3)

where e is the usual QED coupling and the parameter ¢ specifies the covariant gauge.
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5
p
A Py
- = - +
q q
D D

B
X

Figure 6.1: The fermion-boson vertex to one loop order showing the definition of
momenta and Lorentz indices

The vertex, Fig. 6.1, I'*(k, p) can be expressed in terms of 12 spin amplitudes formed from

the vectors v#, k*, p* and the spin scalars 1,§, # and ¥ # [41]. Thus we can write
12
M =3 PvH, (6.2.4)

=1
where we number the V/ as follows
VW= kg, Vi=pty, Vi =k, V=K

VS# = 7;‘%16’ ‘/6u = ’Yu ] V7u = k.# ] Vsu :p#
Vo' = ptkp, Vio=kkp, V="K V=18 . (6.2.5)

The vertex satisfies the Ward-Takahashi identity
q."(k,p) = Sp' (k) = Sg'(p) (2.2.1)

where ¢ = k — p, and the Ward identity

I'(p,p) = aipusp’l(p) ) - (2.2.2)

as the non-singular £ — p limit of Eqn. (2.2.1). With the fermion propagator given to any
order by Eqn. (2.3.1), we follow Ball and Chiu and define the longitudinal component of
the vertex by
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1+ HG+pH( 1 1
+ 2 (k2 — p?) (F(lﬂ) F(p2)>
_(pt R (ME) MY
(k* —p?) ( F(k?)  F(p?) ) . (2.3.34)

I'f alone then satisfies the Ward-Takahashi identity, Eq. (2.2.1) and being free of kinematic
singularities the Ward identity, Eq.(2.2.2), too. The full vertex can then be written as

[*(k,p) = T7(k,p) + (K, p) (2.3.25)
where the transverse part satisfies
q.I'7(k,p) =0 and T7(p,p) =0 . (6.2.6)

The Ward-Takahashi identity fixes 4 coeflicients of the 12 spin amplitudes in terms of
the fermion functions — the 3 combinations explicitly given in Eq. (2.3.34), while the
coefficient of o, k* p* must be zero [26]. The transverse component I'.(k, p) thus involves

8 vectors, which can be expressed in Ball-Chiu form
8
T4 (k, p) :E:T2 02,8 TH(k,p) (2.3.64)
i=1

where

¢ =p"k-q) -k (p-q)

Ty =1[p"(k-q)— k(- QK+ P
T8 =q¢*v" —q"

T =[p*(k-q) — k*(p- 9k p or,

T = gt (6.2.7)
T8 =70 =)+ (p+k)d

1
T =50 = F) A+ B) - - BT+ (R4 p) E o

TE = Ko + b -
. 1
with Ouw = 5[7/1771/] . (628)
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The coefficients 7; are Lorentz scalar functions of k and p, i.e. functions of k2, p?, ¢°.

A general constraint on the eight 7;’s comes from C-parity transformations. The full vertex

must transform under charge conjugation, C, in the same way as the bare vertex [41, 25, 12},

so that
CTu(k,p)C7' = —I‘;";(—p, -k) . (2.2.3)

From the Ward-Takahashi identity, Eq. (2.2.1), it is clear that I'} (k, p) must be symmetric
under k < p interchange. The symmetry of the transverse part depends on its y-matrix

structure. Thus from Eq. (2.2.3) together with
Cr,C™t=—9] (6.2.9)
yields the following transformation properties for 7;(k?, p?, ¢*) :

T,-(kQ,p2,q2) = Ti(p2,k2,q2) for 1=1,2,3,4,5,7,8
T6(k2’p2aq2) = _TG(p2>k27q2) . (6210)

6.2.2 Calculation of One-Loop QED Vertex
in the Asymptotic Limit

In this section the one-loop 3-point vertex function shown in Fig. 6.1 is calculated in
arbitrary covariant gauge in the asymptotic limit [22], which means

k* >> k-p >> (p?,m?). This calculation is extremely simple when compared with
vertex calculation at all momenta, which is going to be presented later in this chapter.
Hovever, this limit can be very helpful for two reasons : (1) Later, it will provide a
check to ensure the correctness of the calculation of the vertex in this limit. (2) Even
without a lot of complicated algebra being involved, it makes us realize that the Feynman
parametrization method does not lead to a reasonably simple answer, since it results in a

number of unrelated integrals that cannot be expressed in terms of elementary functions.

The vertex of Fig. 6.1 is naturally written as

T*(k,p) = v* + A*(k,p) . (6.2.11)
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From the Feynman rules specified in previous section, A* to O(«) is simply given by :

—ieA* = /M (g;;‘,(—iev“) iSp(p — w) (—iey*)iSp(k — w) (—iey”)iAgp(w),
(6.2.12)

where M denotes the loop integral is to be performed in Minkowski space. Substituting

Eqns. (6.2.3) for Sp(p) and A? (p), we have with o = e?/4r :

wo_ T o (Bptm) (B b+ m) s Wallg
A (27r)4/Md (0 —w)? —m?] | [(k-w)2—m2]7 [w TE-N=7
wo_ o (P 4 m) v (f- p+m) Ta
AT = 47r3/Md w? [(p — w)? —m?] [(k — w)? — m?
o i, B (P= o +m) v (f= ot m) p
e R R (e
(6.2.13)

on separating the g,g and w,wg parts of the photon propagator. By making use of the
Feynman parametrization, the two integrals in Eqn. (6.2.13) can be solved in the asymptotic
limit. We will do this calculation in two parts, one which vanishes in Feynman gauge called

A% and the other which does not called Af, as follows :

6.2.3 AY Calculated

In this section we handle the first integral in Eqn. (6.2.13) and solve it by using a cut-off

regularization method,

Za/ 2 Y (P— o+ m)y* (k= b +m) s
M

M= 0 e T T = (= w0 -

(6.2.14)

We start by applying a convenient Feynman parametrization to this integral which is :

1 1 1-z 1 '
- = 2/0 da:/o P T R (6.2.15)

With the choice of

a=w , b= (k—w)—m? , c=(p—w)’ —m?, (6.2.16)
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we get the following expression for the Af :
—q 1 1-¢ a (o b f—
A¥ = ijf/d‘*w/ dw/ dy 7 (F= ptm) v (- ptm)Ta .
27 0 0 [w? + (k? = 2k -w —m?)z + (p* — 2p - w — m?) y]
(6.2.17)

As a standard procedure to avoid performing a tricky angular integration, we change the

variable of integration to w', where
w=w—zk-—yp . (6.2.18)

Consequently, with this new variable w', Eqn. (6.2.17) becomes

1 1 -z d? !
Afl‘:_icf_/dx/ dy/__l”___S
273 Jo 0 M(w’2_D)

x [y (B— ' —z K-y p+m) v (b= ' —z E—y P+ m)
(6.2.19)

where
D=—kz(1—z)-py(1—y)+2zyk-p+miz+m’y . (6.2.20)

Referring to Eqn. (F.2), integrals of odd powers of w' give zero. Hence, after discarding

these odd terms, we can separate w® and w? part of the numerator in Eqn. (6.2.19) to

simplify it :

; 1 1-z (Ao + w? App) + m A,
M= do [ dy/ d“w( > ) " (6.2.21)
273 Jo 0 M (w'2 _ D)

So, now we will evaluate the w'-integration in Euclidean space by employing a Wick rota-

tion, but we will leave external momenta and the mass still in Minkowski space,

1 1-z ' —-A +w2’A —mAn
M= g e [ dy i, 2 . 2o )
273 Jo 0 E (w;3 +D)
where
Ay = —2[(1—x)(1—y) Fr. b+ zy Py K
-z (1l —2) k%lé—y(l—y)ﬁwﬁ+m27"]’
A = Y,

Amo = 4" +EY (6.2.23)
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Making use of the two w'-integrals

12 A?
/A2 o 1 | 2w +D
w ——m = —_——— | —_—
0 (w/2+D)3 2 (w/2+D)2 . )
2
_ T
Moo 5D (6.2.24)
and
A2
A? , u)'2 72 |1 w"1 w'2 2
diw = —|= —In(w +D
0 (w? 4+ D) 2 [Z(w "+ D2 w'+D ( )0
which gives
A? d4 t wl2 = 1 A2 3
b w m A2 S0 ( n 5 —- 5) y (6225)
Eqn. (6.2.22) can be written as :
—x A 3 m
M o= g [ [ ] = Awgp +an (= 3) ~ Awgp)
(6.2.26)

Obviously, Ajg, A12 and Ao are symmetric and quadratic in z and y. We want to make
the integrand linear in either of the two variables in Eqn. (6.2.26). We do this by replacing
the y-variable by

y=2(1-2) , (6.2.27)

Consequently, we get :

AY = 2WV/d;z:/dzl—ac)
x{ Yo <ln%—g> — 4m(p* —f—k”);D
+((1=2) (=24 20) oy paz(1 =) po, K

~a(1=2) b, K== 21 =2 432) e B ) 3
(6.2.28)
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where

D = (B*4p*2® —2k-p2)a? + (—k* 4+ p*z — 2p*2% + 2k -pz + m¥) 2z
+ (=p*z+p*22 4+ mPz) . (6.2.29)

Now let us perform the z-integral first and, for that, recall the related integrals from

Appendix G :
1 (1-2) 1 4
/de — =g HO)
1 n —
[P EE R
0 D
1 1 2
/ dz(l —z)In(D) = | dz(1 —z)In(k*) = ln(2L ) . (6.2.30)
0 0

After using these integrals in the previous equation, we collect the terms which are pro-
portional to O(k°In k% k) and O(k~'Ink?) in A{ as these are the terms we are interested
in :

2

o 1 1 A 1 1
A} = —/ da:_/()dz(l—x)(‘y“lnﬁ—i—(l—z) kvuﬁ—ﬁ—ka“E) ,

27 Jo
(6.2.31)
which, on z-integration, gives
Yo B Fr ¥ R
Au___/ ( T~ (1-2) 2 lnp—+2m el
(6.2.32)
Evaluating the z-integral, we finally have A* to order « :
u k200 & Kru ¥ _ k? ﬂ k_2
AT = yp ( 7 ln il In— 2T 4m e In 7)o (6.2.33)
6.2.4 A} and A* Calculated
We now turn our attention to the 2nd integral in Eqn. (6.2.13), which is:
tm)y (k= +m)
b= s (e-1) [ dw pip— p . . 2.34
he= wil(p— ) — m][(F— ) — (6:239



6.2. Getting Started 161

Once more, by using a suitable Feynman parametrization for the above expression :

_ e (l-z-y)
azbc - 3'/ do [ d ey s (6.2.35)

with the same choice of a, b, ¢ as in Eqn. (6.2.16) and the same change of variables from w

to w' as mentioned there, Ay takes the form :
ia [t -z (l—z—y)
A = b (6-) [ dw [de [ ey
2 b (€~ 1) m o y(w'z—D)4

X [(AQO (z,y)+ w'2A22 (z,y) + w'4A24 (z, y)) +m (Amo (z,y)+ ’LUI2Am2 (z, y))] )
(6.2.36)

In the above expression, the numerator has been written after eliminating odd integrals

and collecting even powers of w. Wick rotating to Euclidean space, Eqn. (6.2.36) becomes,

11—z —
Ag=3a —1/dm/ dy/d“ U-zzy)
‘- D)

X [(Am (z,y) — wg A22 (z,y) + wg A24 (:v,y)) +m (Amo (z,y) — w;AmQ (x,y))] .

(6.2.37)
Making use of the integrals :
AZ dy _ 10 A dw PRI m?
/o w2+D)* ~  3dDJ (w*+D)® 6D’
/A2 diw w? 1 0 2 dww? pe, 7°
o (w2+D)* 30DJo (w?+D)® 3D’
A2 dhwwt A2 dlww? D A2 i w?
/0 (w? + D)* /o (w? + D)* /0 (w? 4+ D)*
Wz oy AT 11
= 7 (ln TG , (6.2.38)

in Eqn. (6.2.37) and changing the y-variable to z as in Eqn. (6.2.27), we get
1-x
Ay = —1/d:v/ dy (1 —z)(1 —z2)

1 AT 11
X AQo(m Z) 6D2 - AQQ(:C 2) @ + A24( ) h’lf — F

+m (Amo(:c, z) (jlﬁ — Ama(z, 2) 3%) } ,  (6.2.39)
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where

A20($,z)=[ - :vz( )kzldk%
+ 22 (1—2)(1— 2+ 22)k* § gy, — 2® (1 — z) k',
- 2%z2(1- )k27uk77/+$32(1_$)k27u7fk(1_1:) )

A,y = = 50 =2)(1=2+220) fu p22(1 - 2) pr ¥
+ %m(l—Qm)]é’yu]é—x(l—?z-—sz)p“}é
— z(l—z)(1 —2z)k* p— (1 —2z) k" K
— z(1=2) k- 2 (1-22) k™,
— a(l-z+zm) Fpu|(-a)

Agy(z,2) = YWw(l-2) ,

Apo(z,2) = z?k*y, §—22°k

Ama(z,2) = E* (1 —3z) . (6.2.40)

Recall the related integrals from Appendix G to evaluate z-integral :

1 (1—:10)2 _ 1 2k -pz 4 61 19
/Od:v = —k2a<1+ = )+c9(k kSInk?) |
1og(l—2) 1 k- pz L?
1 n(] —z)?
]de%yi) — 04 0G( 4k WMk , n=23.. . (6241

Keeping only terms which would not vanish after performing the z-integral, and collecting

terms proportional to O(k®In k%, k1ln k?) in A%, we get:
3o 1 1
IL —_— B — —_— —
£y = S 1)/0 d:c/o dz(1 — 2)(1 — z)
A? 1 1 —z)?
< [a-ammn - (<30 -2 bupm ok o sti- o) B

D

(1—33:)}

_ M
mk 3D

(6.2.42)
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Performing the z and z integration, we have :

A N T
4 ’”) (6.2.43)

k—+ooa
A”’ (6—1)(—7ulnp+71np—2—mplnp—2

As a last step to completing the calculation for one-loop QED vertex in the asymptotic

limit, we add A} and A% to arrive at the final answer :

AP = AT+ AL
k2 =00 o k? k2
B 47r{ 67”IHA2 2(_ Fro g+ (E—1)k" ﬁ)ln;

ku k.?

(6.2.44)

6.2.5 The Transverse Vertex

Having calculated the full one-loop vertex, there is only one more step towards obtaining
the transverse vertex which is to compute the longitudinal part of the vertex to order «,
asymptotically, and subtracting it from the full vertex. Calculation of the longitudinal
part, which is the Ball-Chiu vertex, depends direction the knowledge of 1/F and M/F
since they appear in Eqn. (2.3.34). Expressions for these quantities can be borrowed from

the detailed discussion in Sect. 6.4.1. :

1 _ af . p?
e - LT it
M) _ a P’
o) —m<4ﬁ(§+3)lnp> . (6.2.45)

Inserting these quantities into Eqn. (2.3.34) leads us to :

Ff = Fgc

Lo k2p2Jr of (k* f+ k" p+p* lé)l P’

= v At k2 *2
@ kQ

o k
g (6.2.46)



6.3. Ezact calculation of one loop vertex 164

Since our aim is to find the transverse part of the vertex to order «, in the limit

k* >> k- p >> (p?,m?), we subtract Eqn. (6.2.46) from Eqn. (6.2.44). Consequently :

% = A*-T%
— __q_é. u k_2 @ _ H 143 kz
= —g5.7 1np2+47rk2[ g+ (E-1)k i‘]lnp—z
% ke g (6.2.47)
8mk? P p? o

Since the gauge independent part does not give any contribution to leading log. term of
the fermion propagator we can drop this term. Now by rearranging the above expression,

we find

oo af k? af k?
R

for k2 >>k-p>> (p*,m?) . (6.2.48)

6.3 Exact calculation of one loop vertex

In this section the 3-point vertex function shown in Fig. 6.1 is calculated to one-loop order
in an arbitrary covariant gauge for every range of momenta and its complete analytic form

is presented. In order to do this, we can start off from Eqn. (6.2.13), which is

A* = ia/d4w7"(]d— o+ m)y* (k= 4+ m) Ya
M

R w {(p — w)? — m] (k= w] —m]

: _ vl U
a Zz%(f -1 /M dw ﬂ:ui fj(p —%)w—*)-:*n—l)nzz] ([(}Ii - ﬁ)j—mgﬂ?) ’ (6:2.13)
What makes the present calculation in an arbitrary covariant gauge significantly longer
and more complicated than that of Ball and Chiu in the Feynman gauge ({ = 1) is the
form of the photon propagator, see Eqn. (6.2.3). The decomposition of the loop integrals of
Eqgs. (6.2.12-6.2.13) into scalar forms in the general case brings greater complexity because
of the potential appearance of infrared divergences in Eq. (6.2.13). Nevertheless, knowing

the Feynman gauge result is a most helpful check on our results.
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Our first step is to perform a little y-matrix algebra where the useful identities of y-matrices

are given in Appendix A and so we rewrite Eq. (6.2.13) as

e

[ 4 a
A = —m/Md“’{wz[(p—w)z—mﬂ[(k—w)?—m"’l

B#
e = [(k—w)?—mzl}’

(6.3.1)
where
AP = (= ) (K= ) e
+my*[(F— o)+ (K= #)] e+ m* 17 Va (6.3.2)
B = o (P ) v (F— )
+m p[(F— )7+ (k= B)] o+ m® syt b (6.3.3)

To proceed, we introduce the following seven basic integrals over the loop momentum d*w

JO,JW, J@ 1O 1M 1?) and K©.

e (T =N (e (634)
(A e [(p—w)?—v:;i [k (639)
W= e e (0:39)
A = = (030
L (T N (= (658
W= e e (6:39)
KO = [ 4 e (6:3.10)

Now, we shall give the outline of this calculation for ease of understanding :
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A* of Eq. (6.3.1) can then be re-expressed in terms of five of these as :
ta

A* = ———{ (v (P2 K+ mpy" + my* f+ mPy*) 7a) JO

4 73

— (B R+ M+ my ) ) S
+ (Y YY) S
+ (£- 1)( (=7 E7* = VKA —mAty” — mytyt) I
+ KO
+(7u}47uk7/\ + m’)’"}d’}'“’)’/\ + mﬁ’u’)’#k’)’/\
+m2’y"’y“7k) Il,(f)) } (6.3.11)

Our next step is to compute the basic scalar, vector and tensor integrals of Egs. (6.3.4-
6.3.10), [42, 43, 44] each of which is a function of £ and p. We relegate to Appendices H

and | the tabulation of each of the intermediate integrals.

6.3.1 JO Calculated

J© is the only scalar integral that appears in the result of the vertex calculation and
it can be solved in terms of some special function which is called Spence function or
Dilogarithm [45]. This is a kind of integral that one always comes across when triangular
Feynman graph is calculated. In this context, a very useful piece of work comes from
t’Hooft and Veltman [42]. They have developed a method to compute the general solution

of one-loop one, two, three and four-point functions. We shall follow this method to

evaluate the J(® integral:

1
©= [ g : 3.4
R T T (B S (634
First of all, as a standard procedure, a Feynman parametrization is introduced :
! 2/1d /zd ! (6.3.12)
—_ = T .
abe "o “ho Vlak (b= a)z + (c— byl
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With the choice

a = (k—w)*—-m?
b = (p—w)?—m?
c = w, (6.3.13)

the denominator of the J© integral can be written as

D = w+2w-(kzx—pr+py—k)+ (pz—kz):c+ (mz—p2)y—i—k2
(6.3.14)
To get rid of the scalar product of w, the following substitution is made :
w=w+kz—pr+py—k . (6.3.15)
Therefore, J(® can be expressed as
J(O)—2/1d:z:/zd / T (6.3.16)
o o Y Ju (w? + N)3 ’ .
where
N = (k=-p) e(l-2)-py*—2p (k—p)zy
+y (2k-p—p* +m?) —m? . (6.3.17)

Using dimensional regularization to evaluate the w'-integral (see Appendix F) yields

/d‘*w'm - m?%% . (6.3.18)
Substituting this result into Eqn. (6.3.16) gives
JO = i7r2/01 dx/;dy [a:c2+by2+ca:y+d:c+ey+f]_l , (6.3.19)
with
a = —(k-p)?  b=-p’°, c=-2p-(k-p), d=(k-p?*

e = 2k-p—p*+m’ =-m? . (6.3.20)
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Changing the y-variable to

y=y-az , (6.3.21)
with the special choice of « such that

(a+ca+ba?)=0 , (6.3.22)

the integrand of Eqn. (6.3.19) becomes linear in z :

m.z —/ /(l “dy [(Bz+A)™ (6.3.23)

where

B = 2ay +cy +d+ea |,
A = by'2 tey +f . (6.3.24)

Now it is easy to evaluate the z integral. In order to do this, z and y should be interchanged

with some simple transformations. This gives :

SO _ [y doe  [Ta [ e 6.3.25
z7r2_/ /y/(l —a) x(B:c+A)_/o y/_y/a x(B:E+A) - (6:325)

Performing the z-integral we have,

J(O) (1—0() /1 I
SN / dy - {In(A+B) ~In (A+ B
in? 0 B -«

_ /0'“ dy' % {m (A+B)—In (A - B%)} . (6.3.26)

Rearranging the integrals and adding the same extra term In (byo® + eyo + f) to each of

the integrand in a way that the total contribution of this term is zero leads to :

% = /_(:ady—{ln (A+ B)— ln(by02+ey0+f>}‘

'

)y L1 B—Y ) —1n (by,?
- g {n (4 egty) mwt e )

-+
|
o)
Q.
QQ\
l._..
o=
=
TN
h
|
&
Q=
N~——
=3
TN
o~
<
S
+
3]
w2
S
+
~
N
——

(6.3.27)
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where

 —d—ea
B=0 =y =g =Y - (6.3.28)

By making further changes of variables
Yy =y-a y=(l-ay , y=-ay , (6.3.29)

9

in the above three integrals, we get the following expression for J(0) :

J©) 1 1
it /0dy[(c+2ba)y+2a+d+(e+c)a]
x{ln[by2+(c+e)y+a+d+f]—ln[byf+(c+e)y1+a+d+f]}
3 (1-a
- /o y[(c+2ba)(1—a)y+d+ea]
X{ln[(a+b+c)y2+(d+e)y+f]—1n[(a+b+c)y§+(d+e)yz+f]}
1 o
B /c>dy[—(c+26a)ay+d+ea]
><{ln[ay2+dy+f]—ln[ay§+dy3+f]} , (6.3.30)
where
Y1 =Yt ; Y2 = (1‘110(1) ; ygz—% . (6.3.31)

Rewriting Eqn. (6.3.30) in a more convenient way for its evaluation in terms of Spence

functions, we obtain

J©) 1 1 )

—ln[by12+(c+e)y1+a+d+f]}

1 1l -« 9
[l syt @i ey ]

~1In [(a+b+c)y§+(d+e)yz+f]}

+/()1dy(y—jY—yB—){1n ey’ +dy+ f] —In [ay§+dy3+f]}}-
' (6.3.32)
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Three integrands in Eqn. (6.3.32) have a similar form. Thus, if one of these is solved, its
solution can be applied to the other two integrals. Now, let us take the third integral in

Eqn. (6.3.32) which is the simplest and call it S,

1 1 9
/ dy iy [Inlay? + dy + ) = Infays? + dys + )
(6.3.33)

After splitting up the logarithms, we can write S3 as follows,

5= Loy

[1n(y —y1) +1In(y —y2) —In(ys —y1) — In(ys — 32)]
(6.3.34)

where y; and y, are the roots of the second order polynominal (z* + dz/a + c/a). Now

let us concentrate on the first and third terms in Eqn. (6.3.34) and call their sum R,

REAMQWLQM@—W—M%—mH- (6.3.35)

We are now approaching the integral form of the Spence function. In order to achieve this,

let us replace y by y’
y=y—u . (6.3.36)

The R-integral is then divided into two pieces :

-y, 1 ,
R o= /0 dym[lny —hl(?/s—yl)]
“n 1 ’
- /0 dy 7 +vi—1s [lny —In(ys — yl)] . (6.3.37)
Making further substitutions
y=(1-w)y and ¢y =-my , (6.3.38)

respectively in the above two integrals, we find

- [l 0 - -]

/01 dy {yly — Y+ Y3 [1n(—y1y”) ~ In(ys - yl)] } ’ (6.3.39)
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After integrating by parts, we obtain

— In (1 — ) In < 4 > / dy“iln ( — ! y") . (6.3.40)
Y1 —Ys Y3 —h Y1— Y3

Since the definition of the Spence function is :
n(1l — zt)
/ i ) (6.3.41)

R can be written in terms of Spence functions as
—1 1 - -1
R — Sp(.m >+ln( y3)1n<y1 )
Y1 — Y3 Y1~ Ys Y1—Ys
- Sp( s ) — ln( —% ) ln( u > . (6.3.42)
Y1 —Ys Y1 —Us 1= Us

Using the following property of the Spence functions,

2

Sp(z) = —Sp(1 - z) + % “ln(e)In( - z) (6.3.43)

we can eliminate the explicit logarithms and R becomes simpler :

RzSp( ys )—Sp(y3_1> . (6.3.44)
Ys— Y1 Ys — W1

Now taking into account the second and fourth terms in Eqn. (6.3.34) as well, the complete

Ss can be written as :

-1 -1
5'3=Sp< Y3 )—5p<y3 >+Sp< Y3 )—Sp<y3 ) (6.3.45)
Y — Ys — Ys — Y2 Y3 — Y2

Having computed the third integral in Eqn. (6.3.32), we can apply this solution to the other

integrals in Eqn. (6.3.32). But before continuing with this procedure, we first substitute
a,b,c,d,e and f from Eqn. (6.3.20) into Eqn. (6.3.32) :
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J© 1

n? —2(£A)
1o, 1 [ 2\ 2] [ 2 2]
X{/dy ; <1n yz—(1+%)y+-m—2 —In y12—(1+%)y1+%)
0 Yy — U ! P P ] | p Y2
1o, 1 [ 2 m?2\ . m?] [, m?2 m?]

1 ] 1 -I ' m2 2
-I—/dy ; (ln y2—y+—2]—ln[y32~y3+12]>},
0 ¥y —Ys L q q

(6.3.46)
where
A% = (k-p)® — E*p? . (6.3.47)
Now using Eqn. (6.3.45) with choice of (+A), J(© acquires the form,
ir? y y y1—1
JO = {Sp 1)+5p = | =S| —
-2A y1—1 yl_T;_z 3/1—7:_2
-1
—Sp( Y2 ) —Sp( yzmz) +Sp( Y2 m2)
y2 — 1 Y2 — 37 Y2 — 37
-1
—I—Sp( Ys )—Sp(y3 )
Ys— q1 Ys— @1
-1
(5tm)- =)
Yz — @2 Ys — 42
(6.3.48)
where
—(k-p)+A
o = 1+M§2_> NW=yota, Y= %0 ) y3=—@ )
P (1-a) e
1
Vo = A (k%2 — 2(k - p)* + 2(k - p)A — p*A + p*(k-p) —m?(k-p—A)]
14+ 4/1—4m?/q¢? 1 —+/1—4m?/¢?
a1 = ) q2 =
2 2

(6.3.49)
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Massless case:

It is useful to consider the massless case, when the integral J(© greatly simplifies. Taking

m — 0, the J© becomes

. 9 1
() (52 o)
2A P y1 — 1 P 31 P Yy — 1

-1 -1
+Sp ("” ) + Sp( Y ) —~ Sp (y3 ) } (6.3.50)
Y2 ys — 1 y3 —1
Using the following properties of the Spence function:
z |
Sp(z) + Sp (m_ 1) = —gh(l-2), @< (6.3.51)
1 1., . 72
Sp(z) + Sp (;) = —§ln (z) —irlnz + ER z>1 (6.3.52)
B Ty —y
Sple+y—ay) = Spla)+Sp(y) - Sp ()
Ty— =z 1.,z =°
- S il P L
g ( y ) TNy
Ttytey y—zy
- n (=2
T T
o (x+y+$y>ln (:c—:z:y) ’
z y
(6.3.53)
and writing dilogarithms in terms of the Spence function
f(z) = Sp(l-=z) , (6.3.54)

straightforward but tedious algebra enables to us to write J () as

1 k-p—A k-p+ A 1. ¢? k-p—A
© - - - f—= —lntIn|—=]%.

(6.3.55)
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6.3.2 I Calculated

1

© = dw ..
! /d [(p — w)? — m?] [(k — w)?2 — m?] w? (6.3.8)

This integral did not appear in the result of the one-loop vertex calculation but only in
an intermediate stage. In any gauge theory, when one deals with vector particles (such as
the photon here) in other than Feynman gauge (¢ = 1), the above integral appears in the
calculation. The w? term in the denominator puts the I(® vertex-type loop integral in a
different category compared to the J()-type integral. In order to evaluate I ©) integral, a
recursive algorithm is used proposed by Davydychev for the vertex-type diagram [44] in

the massless case. We introduce this technique to solve the massive I(®) integral below.

Methodology:

In general, the Feynman integral corresponding to Fig. 6.1 can be written in the following

form :

1

I(v1,v2,v3) = /d w[(p o T (b= W) = [l (6.3.56)

where d is the space-time dimension, v; (¢ = 1,2, 3) are the powers of denominators assumed
to be positive integers. If one of the indices v; vanishes then this integral takes the form of
the one-loop 2-point integral. This method (algorithm) is based on the so-called integration
by parts technique. By using the following identity, which is true for ¢ = 1,2, 3

2y, 0 (g: —w) B
/d v 0w, { [(p — w)? — m?" (f(k —w)? —m?]”? [w?]”® } =0, (6.3.57)

we can define our ¢q, ¢, and ¢s for the I©-integral as:

1 =1,2,3, q =p, q2 = k, g3=0 . (6.3.58)

This identity comes from the possibility of throwing away surface terms in the case of

dimensionally regularized integrals. Performing the derivative in Eqn. (6.3.57), we find
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dI(V17V2aV3) =

176

Aul-{-lBugCug, Aul Bu2+l Cu3

/ddw(%’ - w)u{ 2y (p — w)"” n 2v; (k — w)* N

where
A=(p-w)’-m?),  B=(k-w)' -m’
For 7 = 1, Eqn. (6.3.59) can be written as

d-[(l/lal/?ay.?) =

/ddw (p—u;)u{2'/1 (b w)” | 2 (k= w)”

Au1+1 BVQCU:; A"l Bu2+1C’u3

Making use of the following identity [46, 47}

2(gi — w)u(g; — w)* = (¢ —w)* + (g — w)?

for z = 1 we have,

200 —w)u(k—w)* = 2(p—w)’ + (k- w)’

2(p — w)u(-w)* = 2(p—w)* +w’—p’

vz w* _
Av Br2(Qvstl - O’
(6.3.59)
C=uw . (6.3.60)
2v3 w# —0
Av Br2(Cvatl -
(6.3.61)
— (g —q;)* (6.3.62)
- (p - k)2 3
(6.3.63)

If we substitute Eqn. (6.3.63) into Eqn. (6.3.61), and also add and subtract m? term to

each of the integrands in the following way, we find

2v1 |(p — w)2:tm2
dI(VlaV2,V3) = /ddw{ ,¢[1u1+1BV2C’V3 ]

21, [(p — w)?+m? + (k — w)?+m? — q2]

+

Avi Br2+1(Cvs

A [(p — w)?4+m? + w? — p2] }

A"l Bu2 Cu3+1

(6.3.64)
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Recalling A, B and C from Eqn. (6.3.60), we can rewrite the above equation in a simpler
form :

21/1 + 1) + V3 2V1m2

d](l/l,l/z,l/3) = /ddw{ A Bz (v +Aul+1Bu20us

Vs 2u,m? — vyq?

Avi—1 Bra+1(va + An Bre+i(vs

+

V3 2usm? — vap?
+AV1—1BV2CI/3+1 + An BVQCVS_H . (6365)

Refering to the definition of I(vy,vs,v3), Eqn. (6.3.56), we find the following relations

between the integrals :

—2vym?I (vy + 1,v9,v3) + <q2 — 2m2) vol (v,v9 + 1, v3)
+ <p2 — m2) v3l (11,02, v3 + 1) = (21 + va + vz — d) I (11, 15, v3)
+vd (vy — Lvg + L) +val (1y — 1w, 5+ 1) . (6.3.66)
Eqn. (6.3.66) is written in such a form that integrals with the sum of the indices

o = v, + v5 + v3 are collected on the right hand side, and integrals with

o =v; + vy + v3 + 1 are on the left. Similar calculations for 7 = 2,3 yield,

L =2
n (q2 - 2m2) I(I/1 + 1,1/2, 1/3) — 21/2777,2[(1/1, vy + ]_,1/3)
+v3 <k2 - mz) I(n, v, v3+ 1) =(v1 + 209 + w3 — d) I (11, 12, v3)
+l/1[(l/1 -+ 1,1/2 - ].,1/3) + 1/3] (1/1,1/2 - ]., Vs + 1), (6367)
L =3:

1/1 (p2 — m2) I(v1 4 1,v9,v3) + 12 (kz — m2) I(vy,v9 4+ 1,vs5)
= (I/] + V9 + 21/3 - d)](l/l,l/g,l/g) + 1/1[(1/1 + 1,1/2,1/3 - ].)
+I/3I (1/1, Vy + 1, V3 — 1) . (6368)

Eqns. (6.3.66-6.3.68) can be regarded as a system of simultaneous equations to be solved

for the integrals I(vy +1,vs,v3), I(v1,v2+1,v3) and I(vy, 15, v3+ 1) with the determinant
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—2u;m? va(q? — 2m?)  va(p? — m?)
2x = | ni(¢® — 2m?) —2uym? v3(k® — m?)
v (p* — m?) vo(k* — m?) 0

Evaluating the above determinant, we obtain,

2x = nvavs [ 2(p* — m?)(¢> — 2m?)(k* — m?)
+2m2(p2 _ mz)z + 2m2(k2 _ mz)z]

If these equations are solved for J(vy,ve,v3 + 1), we find :

1
I(ry,vo,va+1) = X
(v1,v2,v3+ 1) 5%

—21ym? vo(g? — 2m?) (2vy + va + v3 — d)I(v1,v2,v3)
+vl(v1 — 1,v0 + 1,13)
+V31(l/l - 1,V2,V3 + ]-)

1/1(q2 — 2m2) —2uom? (1 + 202 + v3 — d)I (11, v2,v3)

+vil(v + 1,15 — 1,v3)
+v3l(v1,va — 1,v3+ 1)

1/1(;02 —m?) vo(k? — m?) (i + 2 + 25 — d)I (11, v2,13)
+VII(U1 + 1’1/271/3 - 1)
+I/2](I/1,I/2 +1,v3 — 1)

178

(6.3.69)

(6.3.70)

(6.3.71)

Having calculated the determinant of this matrix leads us to the following relation :

I(n,ve,v3+1) = V;—;?{ [4m4 —(¢* - 2m2)2] X

[(1/1 + Va + 21/3 — d)](l/],l/g,l/;g) + 1/1](1/] + 1,1/2,1/3 - ].) + 1/21(1/1,1/2 + 1,1/3 — 1)]

+ [(0* = m?)(¢* — 2m?) + 2m*(k? — m?)| x

[(vi + 2v2 + v3 — d) I (11, v2,v3) + i (1 + 1,05 — 1, v3) 4+ val (v1, 15 — 1,v3 + 1)]

+ [(k2 —m?)(¢* = 2m?) + 2m*(p* — mz)] X

[(v1 + va + 2v3 — d) I (v1,v2,v3) + 12l (1 — L, va + 1, w3) + val (v — 1,1, v3 4+ 1)) }

(6.3.72)
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To solve for the 1% integral, Eqn. (6.3.8), 11, v, and vs have to be chosen as follows in

Eqn. (6.3.72) :
vy=vyg=v3=1 . (6.3.73)
We can then write the I(®) integral as,
19 = [(1,1,2)

1 4 2 2/ .2 2
= Z{ I(1,1,1) (4 — d) [4m + (p* — m*)(¢" — 2m?)

+ (K> = m?)(¢* = 2m?) + 2m*(p* — m®) + 2m*(k* — m?) — (¢* - 2m2)2:|

+ [1(2,1,0) + 1(1,2,0)] [4m* — (¢* — 2m?)?]

+[1(2,0,1) + I(1,0,2)] [(p* — m?)(q* = 2m?) + 2m*(k* — m?)]

+ [1(0,2,1) + 1(0,1,2)] [ (¥? q—2m)+2m2(p2—m2)]}.
(6.3.74)

Apparently the complete solution for 1® depends on the integrals of two-point functions
which are I(2,1,0),1(1,2,0),1(2,0,1),1(1,0,2),1(0,2,1) and 1(0,1,2). Since ¢ = 4 —d,
one can notice that the eI(1,1,1) term in Eqn. (6.3.74) disappears as € — 0.

To evaluate 1(2,1,0) and 1(1,2,0), we can refer to the integral
[ diw [(p —w)? - mg] B [(k —w)? - mﬂ " Whose solution is given in Appendix H. Then
we define 1(2,1,0) from Eqn. (6.3.56) as

d*w

1(2,1,0)(k,p) = / 0w~ [k —w)f = (6.3.75)

The relation between I(2,1,0) and Eqn. (H.9) is given below
d?w
kp) = /
1(2,1,0)(k,p) 2m2 Omy J [(p — w)? — mi] [(k — w)? — mi)

1
= Qpi——
@ —am?)

mi=mz=m

S . (6.3.76)

Similarly, we find for (1,2,0) :
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1(1,2,0)(k,p) = I(2,1 Y T S
(1,2,0)(k,p) (2,1,0)(k,p) = 2im (q2_4m2)5 ;
1
12 = g
(2,0,1) i (pz—m2)L
€ 2 2
_ Ly _ptm
11,0.2) = (m? — p?) (C p2—m2L> ’
1(0,1,2) = I(1,0,2) (k* & p*)
10,2,1) = 1(2,0,1) (k* & p?) . (6.3.77)

Substituting Eqn. (6.3.77) into Eqn. (6.3.74), we finally complete the solution of the (-

integral :

19 = 1(1,1,2)

o 1 [(p* —m?) ¢* + 2m?(k* — p’)]
— 2 2 2
= zw{;[——?qSﬂ-p 7 =)’ L
2 _ 02\ 2 _ 2L2 _ )]
ppe B =m) @ = 2m (k- p*)]
(k% — m?)?
_ pC
(7 ) (2 = m?) } . (6.3.78)
In the massless case:
Letting mass m, go to zero, x becomes
x = k'p*q® . (6.3.79)
and I(® becomes appreciably simpler
in? k2p?
1 =171(1,1,2) = s [—C-}—ln (qzu‘)] . (6.3.80)

6.3.3 J,§1> Calculated

The method of relating Lorentz vector and tensor integrals to scalar integrals is by now

standard [26]. Recall Eqn. (6.3.6)

Wy

M 1,
Rl A b e e} e

(6.3.6)
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As a Lorentz vector J, ;Sl) can only have components in the directions of the 4-momenta k,

and p,. Thus, we can write :
2
T
I = ==kt a(k,p) + pudn(k,p)] (6.3.81)

where J,, Jp must be scalar functions of k and p. The factor of iw?/2 is taken out purely

for later convenience. By forming scalar products as

i
k‘uJ’(Ll) T (k2JB + k- pJB) 3
f 2
PO = % (k-pJa+p*Js) (6.3.82)

and solving Eqn. (6.3.82) for J4 and Jp leads us to

1
JB(kap) = m [ 2k 'pkuJ‘El) - kap”']lsl)] ,
Ja(k,p) = Js(p,k) , (6.3.83)
where
A? = (k-p)? - k*p* (6.3.84)

is the ubiquitous triangle function of k£, p and ¢q. Then substituting Eqn. (6.3.6) into
Eqn. (6.3.83), we obtain

1 4 k-w
To(k,p) = M{ 2k‘p/dew2 [(p — w)? —m?] [(k — w)? —m?]

2 4 P2
~2# |, 4 e [(k—w)?—mﬂ] |
(6.3.85)

One then rewrites the numerators appearing in the integrands using the identities

%hew = Kt omt (- w) -]

2p-w = p'tuw?-m?—|(p—w)—m? | (6.3.86)
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to obtain the following expression for the Jp in d-dimension :

1 2 dw
Je(k,p) = W{ (k.p_k)/[(k—w)2—m2][(P—w)2"m2]

2 2 2( 2 2 d*w
b ler (8 =mt) =8 =) | G e
d*w 5 d?w
_ k.p/wz[(p_w)hmq +k /w2[(k_w)2_m2]}. (6.3.87)

The 16 basic scalar integrals, of which 4 appear in this equation, namely, @-(k, p), Qs(k, p),
14(k, p) and Q14(p, k), are given in the Appendix I. We thus deduce

1
Jp(k,p) = F{ (k-p—#)p[C+2-25]
Flea () - )
—k.pﬂ‘(C+2—L)+k2,u‘(C’-}—Z—L')} . (6.3.88)
Tiding up this expression, we find,
1 fJo/ 5, 2 2
Jp(k,p) = E{?( koq+p'koq)+k-pL— KL +2k ¢St

(6.3.89)

Ja and Jpg are related to each other by the following simple relation which enables us to

write J4 immediately :

JA(k)p) = JB(pak)a

1 [ J :
Ja(k,p) = Z;{—; (—m2k-q —k2k~q) +k-pL —p2L—2k-qS},
(6.3.90)
where
L2
JO = %Ja , (6.3.91)
m2 p?

L' =Lpek) | (6.3.93)

9\ 1/2 1 — 4m?/q? 1/2+1
s =1 (1 - 4m_2) in fa )1/2 | (6.3.94)

2 q (1 —4m2/q2)'* — 1]
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As we can see from these expressions L, L' and S are all elementary functions and J(©
is expressed in terms of Spence functions. Substituting the solutions for J4 and Jg in

Eqn. (6.3.81), we find

JO = é{ K [%(—mzk-q—ka-q)+k-le—p2L—2k-qS]
+p, [%(m k-qg+p*k- >+k-pL—k2Ll+2k-qS]}.
(6.3.95)
6.3.4 J!(UQ) Calculated
4 w,w,
Ju 0 o == (6:3.7)

In an analogous fashion, the tensor integral J(2) of Eqn. (6.3.7) can be expressed in terms

of scalar integrals K,Jc, Jp and Jg by

2 k?
5 = S s (k-0 )

k 2
+ (p#ku + kup., 2g,w ) JD + (p,upu guup ) JE} (6396)

All but K (k,p) are ultraviolet finite and so the number of dimensions d has been set equal
to 4. In d = 4 + € dimensions, with px the usual scale parameter introduced to ensure that

the coupling o remains dimensionless for any d. So we rewrite J,, in d dimension :

- .2 2
JO = i{ 9“"1<0+<kuk gwl” )JC

2 d d
k - 2
+ <p;tku + kupu - QQMU%) JD + (pupu - guu%> JE} .
(6.3.97)
Contracting the indices with ¢**, Eqn. (6.3.97) yields
K, = _'___z_gou(Z)
lﬂ'
= / dhw !
z7r2 [(p — w)? — m?] [(k — w)? — m?]
= ———K : (6.3.98)

im?
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Recalling the K(©-integral from Appendix I, we can write,

K, =
where Cc =

We also have to evaluate J¢, Jp and Jg.

indices with k¥ and p* :

_kv (kuJ(2)) —

im?

k
[E-I(o + (k4Jc + 2]62 k- pJD) <1

nv

2o () =
2,2

2
p’ ek
[dl(o+<(k p) ¥

___f)/_
€

)Jc + <2P2k'PJD +p’ JE) (1

2 (C—25+2)

2 In(7) — In(m?/u?) .

The first step towards this is to saturate the

(6.3.99)

07 (#2) 41 (02)) =

k.
[—d—EKo + (k2Jc + PzJE) k-p <1 -

%) + [(k - p)? <1 - %) + k2p2] JD:'~

(6.3.100)
Rearranging Eqn. (6.3.100),
k?
—k" kI — =K, =
in? ( ) d °
k%6 + 2%k - pJ ]@ €)+[(k p)? _k2p2(1_i>]
c PoD 16 4716
2 v uJ(?) p21{ —
o () - Tk =
1 €
Ry 22 4
(9" = (3= 55)] Jo + [ pn 4] (5 4 55)
L(ﬁf (kuJ(2)) + kY ( uJ(2)) ) _ kl](o -
im? d
3 € 3 €
2 2,2 (k. p)? 2o 4 —
2h7k: - p( 16)JC+2[kp +(2+8)(L p)]JD-}-Zpk p<4+16>JE
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To solve this system for Jo, Jp and Jg, we use the matrix method :
' Y
Jo = 5 (6.3.102)
where
k? 2
ke 2k%k - pe’ (k-p)? - ——f—e‘
- 2,2
X = (k‘p)2_kj&€_ 2p2k-p€' p4€l
2k2k - pé (k- p)2et + 2k2p? 2%k - pe
(6.3.103)
with et =1+¢€/4, e =1—¢€/4 and € =3/4 +¢/16 .
2 pupug(® _ kg 2 / 2 K*p?
=gk k) - Ko 2k2k - pe (k-p)? — e
k2 2
p p“J %Is (k-p)? - jf—e‘ 2p%k - pé'
Y =
771?" (P"k“Jﬁ) + k) (k-p)Pet + 2k 2p°k - pe
Lkio)
(6.3.104)
Substituting Eqns. (6.3.103, 6.3.104) into Eqn. (6.3.102) we obtain J¢ in the form :
2 €
o = ghorn(i-
']C( ’p) dA2p ](0 1 4
2 1 €
v Y (k- )2+ k22 (= =
+ m?A“{ P () (k) K <2 4)
3 €
v Nt (24 =
+k (k7)) p ( 5+ 4>
3 €
v (2) v (2) 2L . _Z4 =
[ (2) 4 (o)) 0 (-5 +5) |
(6.3.105)
Similarly Jp is
Z
Jp== |, 6.3.1
b= (6:3:106)
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where
ke 2y Sl - %;Jro (k-p)? - B e
= (k-p)? - k—2;f12-6‘ i—i;p”p”ﬁ? - %21&’0 pte
2k2k - pe’ # (p"k“J,(f,) + k"p“J‘(ﬁ) 2%k - pe
—%#KO

(6.3.107)

Replacing Z and X in Eqn. (6.3.106) with Eqns.(6.3.107,6.3.103) we obtain Jp as,

2 €
Inlkp) = =l (1-5)

o (28 [P (- )
o ) (-3
c k2p?
() () [ (1-5) + ]
(6.3.108)

Jo(k,p) and Jg(k,p) are symmetric functions in k and p, hence Jg can be written as,
Je(k,p) = Je(k,p) . (6.3.109)

Now, we contract the indices of J(2) with p* and make use of Eqn. (6.3.86) to write the
tensor integral of Eqn. (6.3.7) in terms of some vector integrals

Wy

1
PO = 4 [t

w)? —m?]
w,

T
+2/d [(k —w)? = m?] [(p — w)? —m?]

=Y [ w,
ey e e

= —Quio(p k) + (P —m*) IV (k,p) + Q“s(k,p) .
(6.3.110)
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Recalling Y, and @4 from Appendix. E the above expression takes the following form

<2, € 2 2 2
u 7(2) _ it _mt ) (P =m) g
p J;w (k7p) 4 k” (C+2 k2 L) + 2 ']u
<2 ,.€ 2
+ Ik tp), (C +2- ’;—2 - 25) : (6.3.111)

In a similar fashion, k“.]‘(‘i) yields

k*J(k,p) = p*JD(p,k)
2 e 2 L2 — m2
- _”4” D, <C+2——"—7’2-—L) +(—L)J§”

p 2
1:7!'2/1,5 m2
+ 1 (k+p) |C+2——=-25] . (6.3.112)
p

Therefore, by substituting the two Eqns. (6.3.111,6.3.112) into the Eqns.(6.3.105,6.3.108),
we find

1 2 2\
Je(k,p) = 4A2{<2P2+2k'p%>—4k-pS+2k-p(1—%)[,

+ (2k-p(p* —m?) +3p (m* — k%)) Ja + p*(m* - pQ)JB} ,

1
Io(kip) = gz 2kp [0 =m0+ 0 - a1
2 2
—k? (2% —25+ <1 - %) L'+ (- m2)JA]
2 [ 7712 9 9
—p* [-25 + - L+ (K -m?)Js| ¢,
and ]

Je(k,p) = Je(pk) (6.3.113)

all of which involve the previously defined Ju, Jp, L, L' and S of Egs. (6.3.94).

6.3.5 I/(}) and Il(f) Calculated

M= fw = . 0.
1, /M d wt [(p— w)2 — m? [(k — w)? — m?] (6.3.9)
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In a way analogous to the computation of J; (1) and J(), the ultraviolet finite integrals

uv ?

IS) and Il(ﬁ) [44] of Eqns. (6.3.9, 6.3.10) can be re-expressed in terms of scalar integrals,

14,15, I, Ip, Ig, that in turn involve the same functions we have already computed. Thus

M = %rj[kuIA(k,p) + pulp(k,p)] (6.3.114)
where
La(k,p) = Klg{— %Jo— —{ (m? — p)k? — (m? — k") k- p} S
+(;L%p?—) [pz—k-p+ p;qz(kz—mz) (m2+k-p)] L
N k2Xq2 (m? +k-p) L’} : (6.3.115)
and
Is(k,p) = Iu(p,k) . (6.3.116)

x appearing in the denominator is the same as in Eqn. (6.3.70)

X = (¢ = 2am?)(p — (K — ) + (5 = ) ()’

— p2k2q2+2[(p2+k2)k'p—2p2k2]m2-I—m4q2,

(6.3.117)

WLW,

2 _ 40
e A T e

(6.3.118)

2 kZ
o = %{ g“”J0+ <k k, —gu,,z> Ic

k 2
+ (pukv + kupy, — g,w( 5 )) Ip + (pupu —gwpz) IE};
(6.3.119)
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1 2 k'p m2 !
Ic(k,p) = m{ 2p°Jo —4 I <1+(k2—m2)L

+(2k-p=3p") Ja — p'Js

b (c2k - p(m? = ) + 37(m? = K)) L+ g —p2)13} ,
(6.3.120)

In(k,p) = 4;2{ — (k- p)Jo+2 (1 + (kz—’me) +2 (1 +ﬁL>

+(2k-p— k) Ja+ (2k-p—1*) Js

+ (k2(m2 —p?) =2k -p(m? - k2)) 14
+ (P*(m* — ¥*) = 2k - p(m® — p")) I } , (6.3.121)

Ig(k,p) = Ic(p,k) . (6.3.122)

The 1/x term in I4, Ip,Ic and Ip arises from the extra 1/w? factor that occurs in the
second integral of Eq. (6.2.13). Notice that the 1/x term arises in all but the Feynman

gauge. The possibility of singularities at y = 0 has consequences as we shall see later.

6.3.6 The Complete vertex A#

In terms of the basic functions Jy, Ja, JB, Jo, Ip, JE, 4, I, Ic, Ip, I and the ultraviolet
divergent Ky, all of which depend on the momenta k and p, i.e. are functions of the

Lorentz scalars k2, p* and ¢?, A* can be written completely as :
p q
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Au(k,p) = E{[

(—4k, p—4p, F+2v.k-p—2v, F #)Jp
+ (4. #+9") b

3
(1 + Ze)u‘f(o]

Jo

+ (€- 1)[ (’“4]"# P+2v. Fp+4Am(p. + k) — 2m27u) T

k?
+ (2’6217# K- k2ku p+ ?7# K+ mkzp“

+ (mk? — dmk - p)k, + 2mk, F p+m(2k-p—k*)y, F
, \ m2k2
—mk*y, p+2m°k, f— 7M>JC

+<2k2pu p—2k-p—m?k, p+2p°k, f+k-pr. ¥
+2mp’y, f+ 2mp, f §—2m(p* + k- p)k,
+2(k* — k- p)p, — 2mk?y, p
+2mk, § p+2m’p, f—m’k- pw) Ip

2
+ (%% KB+ 0k, g+ m(p* —2k-p)y, §— mp'p,
+ Zmpu k ﬁ"’ mp27u }é - mpzku

2

m
+2m’p, ¥ — —5-;02%) Ig

+ (_Zpu ]é + 2]‘7# 7‘ — Tu }6 16 - k27u - zmku) Ja
+ (_p27u — Yu K- 2mpu) JB

+ 2y, (C +2 - 25)} } . (6.3.123)
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Now we will express A#, analogously to Eqn. (6.2.4), as

12
A*(k,p) =3 PiV¥ | (6.2.4)
i=1
ith pi = Zpi (6.3.124)
w1 1T 0 3.

where the subscript on the P* indicates this calculation is only to first order in . Rear-

ranging Eqn. (6.3.1), P can be explicitly displayed as follows :

Pl = 204~ 2Jo+ (1) (m*lc+p%Ip)
P} = 2Jg~2Jp+ (1) (KIp+m?Ig) ,

P} = —2Jo+2J4+2Jg—2Jp
Jo K 2 p?
+(-1) —?—?Ic—k'PID-i-mID-F?IE-*-JA ,
Pi = —2Jp+(£-1) (Klo+mp - Ja)
Jo k2 k- 2 1 1
P15 - JO_']A_JB+(€_1)(ZO+TIC+_§£ID+%E_§JA_§JB)7
6 2 2 2 k? p’ 1 3e .
ps = —mJo—kJA—pJB+—-2—Jc+k-pJD+3JE+§<1+Z,u)l(o
Jo m? m? m? k? 2
O e S ey IS S S
—f—({ 1)( m 1 4]»]0 2 k pID 4pIE 2.]/1 2JB

+ulC+2-25]).
P17 = 2mJ0—4mJA
Jo K’ 2 P2
+(—1m ?_Qk'pIC‘FE‘IC_pID_k'pID—glE—JA ;
P18 = 2mdy—4mJp
J k2 2
+ (£ —1)m <70+-§-Ic— k'P]D+k2ID—%'IE—JB) ;
P} = (E-1)m(p+1Ig),
P110 = (f—l)m(ID-*-Ic),
pz k2
Pt = (5_1)m<P21D+ k'pIC‘}'?]E_'Q—IC)a

2 k2
P? = (£-1)m (_kZID —k-plg+ %IE - 7%) : (6.3.125)
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Notice that both the integrals I4, Ig cancel out in this result. Moreover, this result has an
ultraviolet divergent term in P because the fermion propagator is UV divergent. As we
shall see in the next section, the presence of the same kind of divergence in the longitudinal
part ensures that they cancel out and leave the transverse vertex ultraviolet finite. Though
this expression appears to involve all 12 spin vectors, one of their coefficients is not inde-
pendent. The Ward-Takahashi identity, Eq. (2.2.1), only involves K, #,1 as spin structure
on the right hand side. This means that ¥ g and g  terms that occur in ¢,I'* must occur
in the form of the anticommutator, { ¥, #} = 2k - p. Consequently, the coefficients P; of
Eq. (6.2.4) are related by :

P112 _ P19(p2 —k-p)+ Pllo(k p— k2) — Pl11 . (6.3.126)

Formally, this completes our calculation of the one loop corrections to the QED vertex in

any covariant gauge for arbitrary momenta.

6.4 Analytic Structure of the Vertex

6.4.1 Longitudinal Part

Figure 6.3: The inverse fermion propagator to one loop order in perturbation theory

As explained in Sect. 6.2.1 (and in Sect. 2.3.2), the longitudinal component of the vertex is
determined by the fermion functions, F(p?), M (p?), thanks to the Ward-Takahashi identity.
In this section we compute these functions to O(«) by calculating the one loop corrections

to the fermion propagator, Fig. 6.3, which can be written as

iSF1 = iS2T +5(p?) . (6.4.1)
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We now replace the inverse fermion propagator by Eqn. (2.3.1)

-l"‘M(PQ)__i —-m 2
where
B(p*) = /M (;iﬂ]; (—wv“)igf::z (—iev”) ;21) (g;w +(€- 1)q“q")
(6.4.3)

We can split Eqn. (6.4.2) into two pieces according to whether they involve odd or even

numbers of y-matrices :

i _

PO +3 (6.4.4)
Mt

- T~ 1y, . (6.4.5)

The odd number of 4y-matrices contribute to ¥,

Yy = - - /M qz(kgl_kmz) ['w K. + (fq—zl) dKd (6.4.6)

473

and the even number of y-matrices give ¥, :

am d*k .
22 = —47r3 M qz(kg _ mg) [7#7 + (6 - 1)] ) (647)

Obviously, knowing X; would tell us what 1/F is. We first concentrate on evaluating this

term. After performing some y-matrix algebra in d-dimensions, we can write Eqn. (6.4.6)

= - 47r3{ 7“/ dd A— m?)
V 16 2k% g+ P K ¥)
£-1) / k! T =) } . (6.4.8)

Solving the above integrals using dimensional regularisation (see Appendix H) leads to
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where C has been defined before in Eqn. (6.3.99). After some tidying up, ¥, acquires the

form
au’ m? m?
Y, = P C+1+—+|{1+—|L
A7 p? p?

+(-1) [C+ (HZ—;) (1—L)” : (6.4.10)

If we substitute this result in Eqn. (6.4.5) and multiply it by ¢ #, we then obtain the inverse

fermion wavefunction renormalization to O(«) as,

[Cp‘ + (1 + ’Z—j) (1- L)] . (6.4.11)

F7(p") = 1+a§

4

To find the ratio M/ F we shall evaluate ¥, Eqn. (6.4.7). This task can be carried out by
referring to Appendix H. It eventually yields, '

S, = —mia#c{(e+4)(C+2—L)+({—1)(C+2—L)} . (6.4.12)

47

After substituting this expression into the Eqn. (6.4.5) and multiplying by the factor (—i),

we obtain,

M) _ o, omifo 3 ) _
Fod) - T {C+2 Lt =742 L)} : (6.4.13)
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Having calculated two cornerstones of Ball-Chiu vertex 1/F and M/F up to O(«) allows
us to write what the longitudinal vertex is to this order. Now let us call Sect.6.3.6 where
we defined the full vertex in tems of 12 spin amplitudes and their coefficients. Four of these
12 components define what is called the longitudinal vertex. This is related by the Ward-
Takahashi identity to the fermion propagator. This fact allows three of these components
to be expressed in terms of the fermion wave-function renormalisation F(p?), and its mass
function M(p?) and forces a fourth to be zero. As we decribed in Sect. 2.3.2 Ball and Chiu
have shown how to construct this longitudinal vertex in a way free of kinematic singularities.
As mentioned several times, this freedom is essential in ensuring that the Ward identity is

the ¢ — 0 limit of the Ward-Takahashi identity. Therefore the longitudinal component of

the vertex is :

'Y = MLY+ ML+ A3L5 + M\ LYy, (6.4.14)
in terms of 4 tensors :

L = v¢

LY = VA4 VE+VE+VE

L= VAV

LY = 2%k-pVF—VF | (6.4.15)

and the 4 coefficients

M o= 0 . (6.4.16)

Simple substitution of Eqns. (6.4.15, 6.4.16) into the Eqn. (6.4.14) gives the longitudinal

vertex, which we write out as :



6.4. Analytic Structure of the Vertex 196

Ty = g—iw{zcuw (1+k—:) (1-L)+ <1+—7;32-2-) (l—L)]

of n u m " 1
+ 4—7;(79 p+EE+pp+p k)m

1 1 m2\ _, m?
[t

am (p+ k)
—~ 4Tr(+£)(———)(L L) . (6.4.17)

6.4.2 The Transverse Vertex

Having calculated the vertex to O(«), Eqn. (6.3.125), we can subtract from it the longitu-
dinal vertex of Sect. 6.4.1, Eqn. (6.4.17), and obtain Eqn. (2.3.64) for the transverse vertex

to O(«) . This is given by a rather lengthy expression,

T4 (k,p) = {ZV“< Az

e+ (e -1)ed)| L

! (i) (i)
T (k? — p?) (k? —m?) A? [fl (-1 ] L

F oz [0+ (€ 1) 8

A
1 )
57 [+ (€~ DAY ] o
+$[z§”+(5—1)l§”])} : (6.4.18)

in terms of the 12 vectors V}* of Eqn. (6.2.5) with the coefficients which are listed in the

Appendix J.
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Our task is now to represent this result in terms of the eight basis vectors, orthogonal to the
boson momentum, each unconstrained by the Ward-Takahashi identity, defining I'7(k, p),
Eq. (2.3.64). Thus from Eqn. (6.2.7) we can alternatively write out

Iy = K [np®—k-p) -+
+ pty -Tg(k2—k'p) —7'3—76]
+ kP [n(p’ —k-p)+ 7T+ s

+ Pk (R = kep) Tt — 7o)

+ g+ TP — B) + 7s(k - p)]
+ YEP [

+ P [ﬁ(kz—k-p)—T4(k2—k'P)(k-P)—Ts+%(k2"P?'—Qk'P)]
+ ke [Tl(pz—k-p)—u(pz—k-p)(k'P)+Ts+%(k2—P2—2k'1’)]

+ pRP [ra(k*—k-p) + 7]

+ K kB [ra(® = k-p)+ 7]

[
ok [ 20—

+ b [+ 26 -0

Comparing Eqns. (6.4.18) and (6.4.19), we have 12 equations for the 8 unknown 7;. Since
['% is transverse to the vector ¢,, Eq. (6.2.6), only 8 of these equations are independent.
Here are the 12 equations we need to solve for the 7;’s arising from the comparison of the

coefficients of the various tensors :
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k* K comparison :

% (:—04 - (2A2 + 3p2q2) mt — [4 (p2 + k- P) A+ 6p2q2k .p] m? — p'l [2(k2 + qZ)AQ + 3p2k2q2]
™
+E - D[~ (282 +3p%¢%) m* + 97 [-20° + #2 — k- p)A? - 35%%¢] |}
S
+o5{ - (247 - 3p%¢?) - 2k - pA” — 3p%%k - p
+(§ ; 1) [ e (2A2 _ 3p2q2) mb 4+ [(2(;}2 — k)p - q + 6p3(k? +pz)) A2
+3p2 (4p%k2q2 — k - p(p? — k2)?) ]mq
- [(8(1’2 — k%2 +6p°p - q—6k*k-q—6(p* + k“)) A?
+3p’k? (4k%p - q — 4p°k - ¢ — (P — £%)?) ] m? + p*k2q? (242 + 3¢k - p) ]}
L 24, (E-1)
+m{ (A2 — 2%k .p) m? — 2k%pt + _X_ [ (AZ - 2p%k -p) m? + 2p4k2]}

L 4 2 _ n.2y,,4 2 2 2 2 27 . 2 2
+2P2A4(p2_k2){[A —3(p* - E)p'p-g) m* + p7p-q [(k-p+ P*)A? = 3%k - p(p® — k7))

+(§ ; 1) [ g% [A* = 3p*(p? — k2)p - ] m

+ [ (P*(p* — k%) + 2k°p - q) A* - 2p*(p* — B*)(p* + 2k7)A°
+35(0% — K) (k - p(p® + 3k%) — K3(3p° + k7)) | m*

+22 (2K = %) = 2%k - q) A*

+2p%(p% — B%) ((p* + k) (=2p° + k- p) — p*k°) A?
+3p* k% (0 — k%) (0 + ¥*)p - ¢ - %k - g) ]m2

+0'k2 0% ¢ [0 + k- p)AT + 3%k - p(r? — #)] |}

L
2p2Ai(p? — k2){ [_A4 + 2(172 - kz)(kz +k ~p)A2 + 3k2P2(P2 - kz)k : ‘I] m?

+
—k2A4 + 2k2(p2 _ kZ)p . qu _ 3p2k4(p2 _ kz)p q
+('5;—1)[ g2 [A% = 2(p? — K2)(k? + k - p)AZ — 3p2k2(p — k2)k - g] m®

+[ [20%(k? = p*) + (* = p*) - p?%] A* 4+ 2K°(p7 — &) [P + 2#2)
+k - p(p? — k%) A% = 36497 (° — &) [~ a(k® + p7) — 2%k - g] [

+k2[ [P?(p* — k*) + 2k°p - q] A*

—2p°(p" - k?) [(k* + p)(k - p — 2k?) — p*k7] A®
—3p*k2(p? — k) [2k%p - ¢ — 2(k* + p*)k - q] ]mz

+hiplg? [A4 + 2p2(lc2 _pY)A? 4 3p2k2(p2 —k)p- q] ] })

=7 (P’ -k -p)-m+7 (6.4.19)



6.4. Analytic Structure of the Vertex 199

p* p comparison :

e (?;%{ — (247 + 3k%¢%) m* — [4 (K + & -p) A + 6°¢%k - p] m® — k? [2(p” + ¢") A% + 3p%k%¢7]
+(E = 1) [ - (247 +3K2¢%) m* + K [2(7 + k* — k - p) A% + 3p7k¢?] 1}
+%{ — (2A2 + 3k%¢?) — 2k - pA? — 3k%q%k - p
+(£—;—ll[ — ¢ (2% - 3k*¢*) m® + [ (2(p° = Kk - g + 6k°(k* + p?)) A
+3k? (4p%k2¢* — k - (" — k2)?) |m®
+[ (422 ~ K20 + 6k%p - g ~ 6K%%k g - 12p%k*)) A2
+3p°k! (—4k%p - g + 4%k - + (07 — B2)7) | m® + K'p%? (24 + 3% -p) | }

L { (a7 - 2% -p) m? - 2%k" + €1 (8%~ 2% - p) m? + 24%p?) }

+4k2p2A2 X
L 2
topTAi(p? = k2){ [A* +2(p° — k*)(p” + k- p)A? = 3k%p*(p* — k*)p - g] m?

+p° A% = 2p%(p® — kP)k - gA? - 3k p*(p* — k*)k - g

+ ; . [ —q? [AT+2(p" — kB) (P + k- p)A? - 3p’k*(p* — kP)p - g m°

+[ [2k2(k? — p?) + (k* — p*) + k2q?) A* + 2p2(p? — kz)[kz(kz +2p?)
—k - p(p? - kz)} A? = 3p*k*(p® — %) [k - q(k® + p%) + 2k°p - ] ]m“
—p? [ [_kz(pz — k%) — 2p%k - q] A?

22(p? — k2) [(k2 + p2)(k - p — 2p?) — p?k?] A2

+3kAP (7 — k%) [~20%k g + (K2 4+ p%)p - o] | m?

+pik2g? [A4 — 2k%(k? = p?)A? 4 3p2k2(p? — K2)k - q] ]}

7

L
TprAlpr - 1)

+(E;l)[ — g2 [A* = 3KA (P — KV - ] m®

{ [—A% + 3(p° — k2)kk - q) m® + K%k - ¢ [(k - p + k%A% + 3k%k - p(p® — k7))

+[ (B20% = k%) + 2%k - q) AT = 2K (p? — *)(K + 2p°) A7
+3k8(p? — k%) (k- p (K + 3p°) + p*(3k% + p%)) ]m"
k2 [ (p2(k? - ) — 2p%k - q) A*
+2k2(p? — k) ((p* + k*)(—2k% + k - p) — p?k?) A
+3k*p% (p° — k%) (—(P” + k*)k - ¢ + 2k%p - g) ]m2
kg% g [(K 4+ k- p)AT - 3% (" — £7)] | })
= rp(k? ~k -p)— T3 — Tg (6.4.20)
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k* p comparison :

o/ J
(5] @82+ 3%k -p) m* + (8(a” + k- p)A? + 687pPg?) m’
+8A4 + (4])2](7 q— 4k2p q— 2p2p2) A2 _ 3p2k2q2k p
+(€-1) [ (2A% + 3¢%k - p) m* — 2k%k - pA? — 3p%k2¢%k p]}
S 2
+ 5 { (2424 3¢%k -p) m? + (5¢° + 2k - P)A” + 37K’
-1
+% [ ¢* (2A% +3¢%k -p) m® + [ —4AY 4+ (3(p® + k%)% + 207k - g — 2k%p - q) A?
+3p%k* ((p* — k*)* + 4p°k - ¢ — 4k%p - q) ]m“ + {4(k2 +p)Aat + (12p2k2(p2 + k%)
—2k - p(p® + k)? — 26k - p(p® + k%) + 4k%p%k - q) A2 — 3p%k? (k p(p? - k2)?
—4p2k'2q2)]m2 — 4pPk2A% — p2k? ((p2 k)2 4 ap?k g —8kZp.g

F2R3 (7 + K7) + 8p°K?) — 3ptk* ((p* — k)P — 4k%p- g+ 4p%k ) |}

1 2,2 CN2) 2 2.2, =D/ 2,2 N, 2 5 2.2
+4k2p2A2{(1’ k? + (k- p)°) m® + 2p°k7k P+ [(p k2 + (k- p)?) m? — 2pk k~p]}
L 4, .22 L2VA2 4,2 o 2
+2p2A4(p2—-k2){[A + p2(p? = kDA + 3p*(P® — kDk -¢] m
+p? A% — p?(p® — K?)(5p” — 4k - p) A% + 3p k2 (p® - k%) ¢
~1 )
+££X_)[ ¢ [A% 4 p2(07 — K2)A2 + 3p4(p? — K2k - g] m® + [(pz(p- _k?) 4 2%%p- ) A
_p2(p? — k?) (3p2(k% + p?) — %%p - q) A% — 3k (p? — kz)(qz(pz + k)
(o - k2)k - q)]m4 _pz[(pzqz (- k2)(3p + kz)) At
+p2 (0% — k%) (5(k% + p2)k - g + 3k - p(k? + p?) — 2k%p - q) A
HP R — K) (P + p2) + (0 — KD)p - q) |m?
+p'k20%p ¢ [(22 +p - )A% + 37K (7 — p7)] |}
L 4 12002 LIVA2 _ apdin? 12 2
AT L A~ KA 3G - ) g] m

—k2A* — K (p? — k?)(5k® — 4k - p)A® — 3k*p*(p° — K¥)k ¢
-1

b)) > ) [ ¢* [-A* + KX (p? — k*)A% - 3k (p® — k®)p - g m° + [ (K*(p* — k%) + 2p°k - q) A
_k.2(p2 _ k2) (3k,2(k2 +p2) + 2p2(k2 — k- q)) AZ _ 3k4p2(p2 _ k2)(q2(p2 4+ k2)
+(p* - k)p- q)] m* + [(pzkz(k2 —-p’) -2k - q) A*
—k*(p? ~ k%) (6p%k? + 3p*(p* + k%) — 2k%k - p — 2(p” + k*)k - p) A?
13p2k(p? — k2) (k2 +p%)p-q — 2%k 'q)]mz — pPkig?Al
+3p%k(p° — k*)(p* + K — 2p - g) A
+3p RSP — k) ((p° = Kk g — 4%k -p+ 220 + k%) | })

=T2(p2—k'p)+T3—T6+Ts (6.4.21)
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p* K comparison :

yo (4J°4{ (2A% + 3¢%k - p) m* + (4(p® + k*)A? + 6p°k%¢*) m*p’k* (242 + 3¢°k - p)
+(€—1) [ (2A2 +3¢%k -p) m* — 2%k - pA® — 3p%k?%k p]}
:4{ (2A2 + 3¢%k - p) m? + (p + k2)A2 + 3p%k>¢?

+(5—;— [q2 (2A? 4+ 3¢%k - p) m® + [ —4A* 4+ (3(p® + k%)% + 2p%k - g — 2k%p - q) A?
+3p°k” ((p° — #%)* — 4k%p - g + 4p%k - q) ]m4 + [4(/62 +p7)A%+ (12p2k2(p2 + k%)
—2k - p(p? + k?)? — 4p°k%p - q(p® + k2)) A? - 3p°k? (k p(p? — k2)?
—4p2k2q2)]m2 _ 4p?k2A% _pzkz((pz k)2 —4k%p g
+8p%k - q + 2p°(p* + k%) + 8p2kz) — 3ptk? (( — k%) +4p’k - q — 4k%p - q) ]}

1 27,2 2y, 2 21,2y, =1/ 2,2 2y, 2 _ 9 2.2

+4k2p2A2{(P B2+ (k -p)") m* + 2p°k%k - p+ = [0 + (k- p)?) m? = 2p%k%k - p }

L
+ 2pZAi(p? — k?)

{ (A" +p2(p2 _ kz)AZ + 3p(p? — k%) - q) m2

pPA* — p*(p® — kM)A 4 3k (p" — k*)p ¢

[ ¢ [A*+p°(p7 — k*)A% + 3p*(p” — k*)k - g m° +[( p’(p* — k%) - 2k%p - g) A
P20 — k) (37 (R + 1) — 2%k ) A = 3k (p* — k) (2% + #°)

+(p* — )k - q)] m?* + [(pzkz(/c2 —p?) —2p% - q) At

—p*(p® — k%) (6p°k” + 3K (p* + k%) — 20°k - p — 2(p” + k°)k - p) A?

—3k2p5(p? — k?) ((k2 Pk g —2%p q)]mz I RIN

—3’62176(1?2 _ k?)(pZ + k? + 2% - q)A2

—3k1pO(p? — k) (62 — K2)p - q — 4p%k -p+ 20°(0° + k%) |}

(f

1

L

+2p2A4(p2 —k?)

{ (—A4 + E2(p? — k2)AZ — 3k%(p? — k2)p - ) m?
_k2A4 _ k4(p2 _ k2)A2 _ 3p2k4(p2 _ k?)k q

+(§ ; 1) [ g7 [~ A+ B2(p? — K2)A2 - 3k (p? — k2)p - g] m® + [(kz(p2 — k2) + 2p%k - q) A

—p(p" - kz) (30°(k? + #%) — 2%%p- g) A? = 3k (p? — k%) (4°(p% + k)

+(p? = E)p - q) |t + 62| (K207 - (67 — K2)(3R + pP)) A1
+k* (p* )( (K +p?)p 4~3k p(k2+p ) - 2p’k - q) A
—3k*p*(p” — k%) (¢*(k* + p*) + (p ]m

0%k g [(27 — k- 0)A° - 322 (8 — )] | })
=ry(k®—k-p)+73+T6—Ts (6.4.22)
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v4 K p comparison :

% (%{ - 2¢°m? - 2k - pqz}
-

L 2A2/.2 1.2
+2p2A4(p2—k2){ 2p°A%(p* — k%)p q}

i

+m{2m2(f ~ Kk g})

S (6.4.23)

v, comparison :

%(%{quzm‘l+4A4m2+p2k2q2A2
m\4r

+(€_ 1) _ q2A2+p2k2q2A2

J

rg{ - A2 @~ a7k p)
He-D[-A2(@m* -k 0) |}

+21€f‘$m_z{ — A (K + p*)m® + 2p°K?)
+% [ — A% ((k? + pym? + 2p%k?) }}

L
+2p2A4(p2 —k?)

{A%07 - ¥) (A% = p"p- @)m? + p*A% + p'k - ) }

+(€-1) [Az(pz — k%) (A% = p’p - q)ym® + p* A% + p*k - q) ]}

]

L
+2p2A4(p2 —k?)

+e - )] - A%p? - B (8% + Ep - gym® + KA~ k'p q) | }

{ — A%(p?* — k%) (A% + Pp-g)m? + k*A% — k'p - q) })

=13q" + 76 (p> —Kk°) + 7k - p (6.4.24)
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k* comparison :

am( Jo

(€ - 1)[ [(—4¢® +8p-q — 6k - p) A® + 3p® (2k%p - g — (p* + k)b - ¢)| m?

~¢* [2(p-a— PP)A® +3p°k?p - g ] }
+%{8A2p q

+QE_;_1){ ¢ [(—44% + 8p - q ~ 6k - p)A® + 3p*(2k°p - ¢ — (p* + k*)k - ¢)] m*
+[( - 499%K20® + Ty'p - g + 6k%k - p(k? = p?) + 21p% - p(p® — k)
—PPRE(5? + k- p) — 46p% ) A% + 6572 (p* + Kk - g + 4p%k2(p" — k)
~4ptk - g + 1092k - g) | m? — p*¢? [ (3K2(p + k) — 8k%p - g + 297k - ) A?
+3p%k? (k% - q + p°k - q — 2k7p - q) J}

D a7 -]

n 8p2A2 [p2(p? — k2) — A2
2p2A4(p2_k2){p [P*(0* ~ #°) — A7]

+(£—;L){p2 [ —¢* [2A* + (p* - k*)(2p - ¢ — P°) A% + 3p’¢*(p* — K*)k - p] m®
[ (87 — k)7 + 8k%k g — 4(p? = K*)(k* + k- p)) A*
P2 (0% — k2) (=T(p? + k)2 + 26k - p(p? + k2) + 4pk - g + 2K%(p? — k?)) A?
+6p°K7 (9 — k%) (4g%k - p — (" = K)?) | m?
—p2g? [2k2A4 +(p? — k?) (2 p(p? + k?) — gpzkz) A2
3p?k*(p* — k%) (K°p- ¢ — P’k - q) ] }

1

L
+ 2p2A%(p? — k?)

-1
D (0 - )87 = 0 - B0 - 4k g+ k- p)A + 3K = )

{8k2A% (A% (5" - K)k )

- [ (12k4(p® — k2) + 12p%k - p(p* — k?) — 4k*p - q + 4p*k - q) A*

—2k%(p? - &?) (—19p2k2k g+ 3k - p(k* — p*) - 5pk g — 12p4k2)) A?
~6k*p?(p? — k%) ((p* — ¥*)*k - p — 4p’k%¢") ]m2

—kp? [ (10(k — p?) + 4p - g) A*

—(p? = k%) (—12k%p - ¢ + 14p°k - g + 3(p% — k%) + p*(p” + £°) + 10p°k%) A®
3k (0 — k) (9 — K°)° + 4k - g — 4k%p-q) })

.
=7 (p>—k-p)~ ra(p? —k-p)(k-p)+ 75 + —2(k? - p’ — 2k - p) (6.4.25)
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p* comparison :

am

—4——(4ﬂ4{8A2 —k-gm®+ A% —k%p. q)

+(E-1) [{ [ (2(k* = p*) + 6(k - p — 2k%)) A 4 3k*(p* + k*)p - ¢ — 6p”k%k - q|m®
7 (28% +3p%%?) }]}
+Ai{ —8A% g
(6 D [{a2[ (6% p— 1082 — 2%) A% 4 3k2 (p - 4(p? + k) — 2%k - ) | m*
+[120° + ¥2)A*
+ (39970 + 5Kk g — 13Kk - g — 4p*k - p(p” — k) + PR3 (K + £ - p)) A7
+6k2p? ((p‘* +EYE g — 4k - g + 6p%k2k - q — 4pk2p - q)] m?

+3p2k2¢%k - q}] }

1
+4k2p2A2{
¢-1
+—X—— [2mp2k2k . q]}
L
T 2p7AT(p? — k)
(f -1) [ mp { 2 [2A% - (07 — k(242 — k2)A? — 3p2k2g2(p? — k2))] m*

{ — 8p?A% (A2 +k - p(p® — k?))

+ [ (8(k* — p*) — 4k - p(p* + k*) + 8p7k") A*

+2(p* — k%) (=13p*k%k - ¢ — k - p(p* — k*) — 3p*k - ¢ — 12p%k%) A
6%k (p? — k?) [(pz — k)2 - p — 4p%k?g? ]mz

+0P k2 g%k - p [(~2k g+ A% + 3%k - — )] | }

7

L
+ 2p2A%(p? — k?)

3 X = [ #2{q [2A% +7E2(" - k)A? = 3120 = K)(K'p - ¢ — Pk - )] m*

{8k2A2 [k2(p? - k) + A?]

— [ (4k2(p? — k?) — 4k%p - g + 4pk - q) A*

—k*(p? — k) (=5(p® — k*)* + 14k - p(p® + k?) — 2p°(p* + k%) — 4p°k - q) A?
—6k*p?(p? — k?) (4¢%k - p— (p* — k%)) ] m?

—p?k2¢%k - q [(2p - q + 4D AT+ 3K°(p* — k)p - q] ] })

:n(k?_k.p)-r4(k2-k.p)(k-p)-r5+-;l(k2—pz-zk.p) (6.4.26)
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p* K p comparison :

(M4 {€~1)[- Bak - gm® +p-g(287 +38%¢*)] | }

SR

L ¢-1 2 2 2012 2, 4
+2p2A4(p _kz){ [ ){q [(3p + 2k -p)AT - 3p*(k’p - g — p’k - q)] m

+ [41(: At — (3p“k2k q—p’k -p(p® — k) —5pip-q - 24p2k2) A?

+6p%k? (4% - p— (0 — k2)?) ] m?

—3p*k*¢’k - qp - q}] }

L ¢-1 202 _ 12 20A2 4 an2,2y,.4
+2p2A4(p2—k2){ X [mk (p —kz){q (A% +3k“¢*)m

+[ (<1427 + £7) + 4k%p - g + 2k - p(p + k7)) A7
R (6K - p(r® — k)2 - 24p°k?¢°) [m?
+k2¢? [(20° + £3)A% + 3p°%¢°] | })
(0’ — K p) 47 (6.4.27)

* K p comparison :

am (47r4{(£_ 1 [_ [_3q2p-an2 —k-q(2A% +3p qr")]]}

(D o an]

L (6 — 1) 2 .2 2 .2 . 2 . 2 2 .2 4

+_2k2A4(p2_k2){ - [— (»? & ){q [(3k2 + 2k - p)A? — 3k2(—p*k - g + k2p - g)] m
+ [4p2A4 — (=3p°k%k - ¢ + K%k - p(p® — k?) + Bk*k - ¢ — 24p°k?) A’nn(6.4.28)
1619 (4g%k - p — (o7 — K)?) | m?

—3k*p’¢’p - qk - q}] }

L (f—l)_mz 2 S 2,42 2 2y 4
+—2k2A4(p2—k2){ " [ k(" -k ){q (A" +3p°g")m
+ [ (-14p*(p* + k?) + 4p%k - ¢ + 2k - p(p* + k7)) A?
+07 (=6k - p(p? — K%)? — 24p%k%¢?) | m?
+p2q? [(%2 +p2)A2 + 3p2k2q2] }]})
= T4(k2 -k- p) + 17 (6429)
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Y. K comparison :

T (ale-n[-meer -]}

+%{(5;1) [_qu(pz_mz) (q2m2+2A2+q2k-p)]}
(E; 1) [_ QmpzAZ]}

5 -1 2
{( )[ P*@° — k{287 - (0% + K)p - g + 2%k - g] m*
+[- 2(1’ + k%A% - p*(p* - k°)? — 4p"k - g + 4p%k%p - g] M’

—-p*¢’k p+ p4k2q2}]}

+4k2p2A2 { +

+ —2k2A4(p ey

L’ 2 _ 32 2 2 _ 12 4 2712 2 21, 2
+——2k2A4(p2_k2){m(p B){2(28% - k% - q)m* + [(263(6® — p?) + 4p% - p)A

+4p2kiq? — k%k - p(p? — kz)z]m'z + kp’’p - q}] })

R g (p? — k?) (6.4.30)

v, P comparison :

Y )
ST

L €1
I

4 [2(p2 + kZ)AQ + k?(pZ _ k2)2 _ 4k,4p g+ 4p2k2k . q] m2
4q2k-p+p4k2q2}]}

*ap 2A2{+

L 2 .2 2 2 2 4 2,12 2 21 2
+_2P2A4(p2_k2){(p —k ){q (24 - p°p-g)m® + [(211 (k* — p?) + 4k%k - p)A

+4k*p*e® — K%k - p(p® - kz)z] m’ +p'k’¢’p- q}] })

S %(pz —k?) (6.4.31)

Laborious solution of these 12 equations yields expressions for the 8 transverse coefficients

;. Each is a function of k2, p?, ¢ and {. The results are as follows :
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71:£(3+€)m{ - %(m2+k‘p>J0—25

47 A2
(PP+k-p)L (K*+k-p)L
t T T , (6.4.32)
3
Ty -4A—2(m2+k p)-rg
a |1/, 9 (L+L) 1 m?
+ 47rA2{8(q 4m?) Jo + 4 2 " 2pk2 P

o /4 2 3¢ 2~2 4 m

1| —-2m? k 2 B 2 W

2 ) 2 ' ,
S L p+k]{m6<}%—£> +p2k2(L—L)}

2(p* - k) k2

q* m? m?\ m? 4 4 )
(1) o (1-2) 1) w1

+3 [k2p2 (L+ L’) —m? (k2L + p2L')]

2
+3TmZ( 2_k?) [(m ~p) L — (m? - k?) L]
¢ 3 ot [ = )Lk - )]
2
* 522( P k) (mt - ) [(m2+p2)L - (m2+k2)L’]

+ [— 8q¢*(m* + K'p?) + 12p°k%(¢* — m*) + 2¢°(K* + p*)m’
3
—xam'a (m? +kp) + kP k- p(g" - m?)
9 3
+ 2(p2 _ k2)2m2 _ F,,,’,1'2]_.'2132q2 k p+ 'A_2'm2p2k2(p2 _ k?)?] S} }’

(6.4.33)
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3
sz (24 b p) (0 — B2 (€= 1)

a 24 k2 — 2m?)?
+ 87FA2{(—A2— (r 3 )>J0 —2(m*+ k-p)S
k-p m? m2\ 1,5, 5 :
i (1) s (122) )+ ot

1
+(m?+ k-p) + W(p2+k2)(p2k2+m2k-p)}

2k2— 4 2_k22 3
n 8;22(6_1){[(1’ - m*) _ (p - ) _ 8A2(p2_k2)2(p2k2_m4)] Jo

T3 = -

2 2, 7.2
m .2 2 (p*+ k%) . 2
+Wk'l’(k +p)——2———<k-p——m)

]. k2 p2 ]
+=| - m? p2+m2— L+ [K+m?=|L A?
X p? k?

6 1
m° , L L 1 5,09 '
-5 k-p (;2-+k_2>_§pkq k'P(L-i- L)

1 2, 2 2 27! 1 2. 4 2 27!

+70°m (v?L -k L)—iqm (L + KL
1 ,

+ 50" = K)g*(m* +pK*)(L - L)

+ 1;‘;(174 ~ k) [(0* - mHL - (k- m?)L|

2
+ _mT(p4 _ k4)[k p— m2](L _ L') + m2(p2 R k2)(p4L _ k4L’)
It K4 2k p 4 KL )

+ 8%42(3)2 — kD[ +2k-p + k%) [(p4k2 - m8)L - (k*p? - mG)L']

3m?
8A2
3m4 [
+ 5 (0~ K [0 = m?) L+ (8 —m?)L]

(p? = k2)? [p2(m? = K*)L - k¥ (m? — )L

_ S_A_z_pzkqu(pz _ k2)2 [(pz _ mz)L+ (k2 _ m2)Ll]

+ [_ 8m4A2 + 4m2(p2 + kZ)A2 + 2m2(p2 _ k2)2[m2 _ (p2 + k2)]
_ 2m4q2[m2 + k p] + 2p2k2q2[m2 +k p] + 2m4(p2 _ k2)2

N 2_2_2(]2(172 _ k2)2(m4 _ p2k2) [m2 +k .pJ J S] }, (6.4.34)
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T4

T5:8

e

1
4+~
X

3¢ 1 , 2
(1+2A2 (m +k'P))JO—Wk'P

4m? k? P '
e < L- L2L) A? 4+ 3m2(p? —k*)(L- L)

mq?

e )[k2+2k p+p]<£—%>

m4 4
e (-9

3m L ~ ) {(m? 4 p)L - (m? +k2)L}

23_12.( 2 _ k2)(m? - p*?)(L— L) - 2A2(m - )L+ L)
{ L+ (k? - m?)L'}

{ — 20m?%¢® — 242(p% + k%) — 12m ¢ [m?+k-p)

%(m4 - p2k2)}5]} , (6.4.35)

(P* 1K) 2

(E—l){ — [A2_%(p2_k2)2+q‘72[m2+k,p]j| J0+2—k?

2 2
P k '
(3 — 1?) (mL - p—zL> A+ 2m(p? - K2)(L - L)A?

2 2
2m2q2{(1 - %) L+ (1 - %) L'}A2

L L
2q2{(m2+k2)—5 +(m2 +p2)p}A2

{2[m+k p]+qkp——(p )}(L+L')
m—(p2 _ k2){q2m2 + 2q2k p - %(pZ _ k2)2}(L_ Ll)
1 i 1 4
10+ E)P L+ EL) - 260" - RN (PL - L)

q2(p2 + k2 - ‘2m2) ((12m2 +¢%k-p+ QA?') 5} } ) (6.4.36)
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Te = ( k2)7’2(§ = 1)

210

2 2 2 2
o 2 2y | 4 3q 4 212 (P° = k)1 21.2
+ —Bmzos—l){(p —k)[———on —Pk)JJo-—2p2k2 [ —

4 8A?

2
+_1.[ m2A2{<p2—m21%)L— (kQ—mz—:%)L}
X

+gmA(K = p)[m? — k- pl(L+ L)~ 2m¥(k - p)(p'L ~ L)

mzq2{< ke p)L (1+%)L}

- T;k -p(p? - k%) [(m? - p)L+ (m? - kQ)L']

1 /
—§p2k2q2{[k2—k-p]L— [p2—k-p]L}

[p (m? — k1)L — k*(m? p2)L’] + 2m2k2p? (k2L~p2L’)
3m [
+ 52 (P = K7 = 8) [pP(m® = KL - K (m — p*) L]

2
TR R - ) [(m? + p") L+ (m? + k)L
3m? 5 a0 2 212 2,2 2 27!
- P k(" = K [(m? = p) L~ (m? — k)L ]

3m? , 45 4 4 2 2 2 27’
- SRR = k) [(m? + KL~ (m? + p)L]

3 '
+Wq4(p2 _ Ic2) [(m6+p4k2)L+ (m6+p2k4)L]

4 207 2 [ - )L = (0 - )L

3m

+(p2—k2)[ 2A2q [m + k- p]-}-wk"" 2q4[m2+k.p]

(6.4.37)
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~2¢*{g* [m® + k- p| +24%} S ] } , (6.4.38)
and
= e S (p ) st (e kon) 1 (k)

(6.4.39)

These 7;’s are given in an arbitrary covariant gauge specified by {. As promised, all the

7’s have been expressed in terms of elementary functions and one scalar integral.

By letting m — 0, the 7;’s simplify enormously and four of them, corresponding to
y g 3 g

i =1,4,5,7, actually vanish :
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Massless case:

m— 0:
T, = gr%{JoKk ;p2+422p2k2q2> (6—2)+k-p}

k? (k+P)2 3 » 2 _ 12 (P‘|‘k)2
+lnp—2|:(2(p2—k2)+4A2k p(p k)>(€—2)+(p2——k2)
+lnk3p2l<£7k-pq2+l)({—2)+1]

LE-2) } (6.4.40)
i ) (14 ke p (k) (€ 2)
+1n k3p2 [% <1 — Z—z—z(kz —P2)2) (¢ - 2)}
_(k ;p)2 =) } (6.4.41)
a 2 _ |2 2
e )
k? 3 2 2 (P+k)2
+lnp—2[<z—2k p(p* — )_2(;02 kg))(€_2):|
+1nkgp2 Z?)—zk-pqz(f—Q)]
(6.4.42)
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4 2
« 9 q 2 1.2 k

Our next step is to explore various limits which we now undertake.

6.5 Freedom from Kinematic Singularities

Clearly the full vertex, I'*(k, p), is free of kinematic singularities. The Ball-Chiu construc-
tion ensures that the longitudinal part is free of them, so the transverse part must be.
However, after decomposing this transverse part into 8 components, it is not necessary
that the individual components will each be free of kinematic singularities. Ball and Chiu
showed that with their choice of eight basis vectors Eqn. (6.2.7), the transverse vertex in
the Feynman gauge possessed this property of being singularity free. Here we explicitly
consider whether this is true in an arbitrary covariant gauge. Indeed such checks are far

longer than the initial calculation reported above. We consider several limits in turn.

6.5.1 A2-50:

This limit arises when two external fermion legs are parallel or anti-parallel to each other.
The proof depends crucially on the behaviour of the combination of Spence functions
forming the integral Jy that appears in every 7;. Thus, for instance, when we consider the

limit A?2 — 0, i.e. (k-p)? — k*p?, we can deduce from Eqs. (6.3.4, 1.15-1.18) that J can

be expanded in powers of A? as :

Jo=J2+ [ AT+ O(AY) (6.5.1)
where
2 /kz ] 2 /kz 2
m? 4 /k2p? k2 —p k?—p

2
Jl — , 2
° [3q3(m2 + VED) VR P
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and Y; and Z; are defined as

V() = UL —
(VI /) (e + ) VT
X (3@(m2—p2)+ \/I;(kz—"ﬂ)) ;
Zl(k2,p2) — 1

g (m2 + \/k2P2)3 (g5 — 4m?) VE*p?
4
8 6 _ 8 4 (k? 2 _ = k2 2)
X ( m m +p 3\/ p
8 2
+ m? (2q3 + 3k (k2 +p' + k2p2)> +3 k2p2q3> :

@ = kK +p*— 2k

Together with the known behaviour of all the other functions, such as L, L' and S,itisa
lengthy but straightforward calculation to deduce that each ; is finite in the limit A? — 0,
despite the appearance of explicit 1/A? and 1/A* terms. As we have seen above in the
massive case, the expressions become very long and complicated. therefore for the sake
of simplifying matters and for better understanding, we shall evaluate the limits for the
massless case rather than massive, unless it is necessary. We can start with the same limit

discussed above, A2 — 0. We start with Eqn. (6.3.55) :
2 k-p—A k-p+ A 1. ¢° k-p—A
= — —— - fl—— ]+ zh=sh|——r0 3.
S A[f( p? ) f( p? )+2np2n k-pt+A  (6:3.55)

We expand this expression in powers A%, recalling Eqn. (6.5.1) :
Jo = O+ gAY+ JEAT + O(A®) (6.5.1)

where
0 2 k? 2 %
0 = T/ 2.1n——5— 22111—2’
P 4o P VE P P
2 (VE? - 3v/p?) | k? 1 | q?
3k2p2gl 3 /k2pBql pr o 3/ESpS T p?’




6.5. Freedom from Kinematic Singularities 215

1

- k2 2 kQ 2 qO
101&44(3 +3p7 — 8y Rp?) - 20\/kItT !

D
+
204/ k6p10q10

(3\/— —15/kap? + 25\/k2p 5\/_) nE . (652
Some other quantities acquire the following form in this limit :

3=

A? At
k .p N k2p2 + - + e
2/ETpr  8\/k5pP
qg = ]C2 + p2 -2 k2p2
q2 — q2— A2 -+ A4 + -
O VEIpT  4\/EBpE
2 2 2 4 4
mL - pe__2 a AT
p? P VEp 4\/k6 ogd 2k}
(6.5.3)
The 7;’s then can be written as :
a | 1 g
= 14+ -1)(=-nd
= g re-n(z-ng)|
a [ 29 % T %
= —— [-——+2In= —D|-=+In—=
73 247p? | 3+ np4+(§ )( 3+np4 5
Te = 0 >
6%
Te = o ) (6.5.4)

6.5.2 y—0:

As seen from Eqn. (6.2.12) the full vertex, and hence the transverse part, has no pole
singularities when x — 0. However, the expressions for 75, 73, 74, 75, 76 and 77,

Eqns. (6.4.32, 6.4.39), have explicit factors of 1/x in all but the Feynman gauge. As can
be seen from Eqn. (6.3.70) x only vanishes if both p? and k* tend to m?, i.e. when
both of the fermion legs, Fig. 6.1, are on-mass-shell. Then as k* — p?, x = ¢*(p* — m?)%.
In this limit the full vertex only has logarithmic singularities, like In (1 — m?/p?): these

arise when the external legs are on-shell or when the internal fermions can be real. Con-
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sequently, an acceptable basis for the transverse vertex is one in which only these log-
arithmic singularities occur. Explicit calculation shows that 75,73, 75 and 76, given by
Eqs. (6.4.33, 6.4.34, 6.4.36, 6.4.37), do have only these logarithmic terms when x — 0.
However, both 74 and 77 have poles in 1/(p? — m?) term. In this limit the two vectors T}
and T point in the same direction :

T = (p(k-q) =K (p- @) K'pon
e (B =kp) (p+ k) Epian

1
TE = S - B B - = B+ (b ) B,
RN R 2 SV (6.5.5)

k2—p?

Consequently these two coefficients, 74, 77, can have a singularity, which cancels in I'7.
These singularities are readily removed by choosing a new basis for the transverse vertex,
the S¥ (z = 1,....,8). Clearly this only involves changes to T3 and T7". Note that these
singularities do not arise in the Feynman gauge (£ = 1), and so Ball and Chiu were not

aware of this constraint.

We write
T%(k,p) = 28: a'St, (6.5.6)

where -

St =pk-9)—K(p-q) ,

Sy =Wk -k DI+ 9) ,

SY =g -¢"4

S = W+ K) - — K+ 2p - k)R o

¢ =q0

S =70 -F)+(p+ kA

S =S R+ B - = B+ (B4 ) PR,

SE = 4 R pro + K P - . (6.5.7)
Then

oo = 1, for 1=1,2,3,56,8, (6.5.8)
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and

Oy = — T4 3

o7 is then given explicitly by :

am 3q¢*
or = a0 (- 2+ 0

I mi¢? (L L s o aonfL L
oo ) - (-

- 2(p? — k)

4 4 4

q g [T 9o [ M :
-4 LR I A~ AL

2{p (p“ 1) * (k“ >L}

3L k) (o )L (o

- 20 0 - YL L)

3t - a4 1) +
8 [ - w2 )]
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(6.5.9)

(6.5.10)

+{ = 10m?¢* - ¢*(p* + ) - 6= (m? + k- p) + o (m* ~ k%)

—2¢*(m* + k- p) — 4q2A2}S} } .

(6.5.11)

In this new basis, all the o;’s (¢ = 1,....,8) have no singularities other than the expected

logarithmic ones. Note that in this new basis, the C-parity operation of Eq. (2.2.3) requires

0-4(k27p2,q2) = _04(p2a kzaqz) )

(6.5.12)
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which Eq. (6.5.7) ensures.

6.5.3 Asymptotic limit:

It is convenient to give here the simple asymptotic limit for the transverse vertex. In the

limit that either of the fermion momenta are large, e.g. k* >> k- p >> (p?, m?),

q4 k4

)
" T In— + —= [6k%%k - p — 8(k - p)° + 3k*p? — 6k*(k - p)* — 6Kk -] ,

pt 3kS
_ 2 (k-p) _ p*  4k-p?), ¥
JO - E[(l’F k2 ——W_*_ 374 h’l?

(k-p) 2p*  8(k-p)? 5
+<2+T—W+‘Tb;—)]+o(l/k)a (6.5.13)

1

then the 7;’s come out as :

"= 12:k4 (26_1)1111;—;_36:# (56=1)
£ '12:k2(5+1)1“§"18:1@2(“7)’
rs = —24:”(5—2)111;—3#(5—2),
o= n§_4:k2_ (6.5.14)

Consequently, these 7’s lead to the following transverse vertex, which is the well known

limit derived in Sect. 6.2.5 Eqn. (6.2.48) :
P L P s
rf = = l LI (6.5.15)

6.5.4 Photon Mass Shell Limit, ¢> — 0 and k? — p*

In the photon mass-shell limit, ¢ — 0 :

p2+k2
kp - 9 ’

A2 - (P2 - k2)2
4 )

2 k2 p2 1. k® q4
S ) [f(ﬁ‘f(ﬁ)*il“?lf‘w] ’

(6.5.16)
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(5)-(8) - o

where

—of W r) 2 5.
St T (6.5.17)
In this limit, the 7’s are :
Ty a ) 1 p? + k2 | k?
— —————————— — —_—— 'l —
2 =0 2 (p? — k2)? 2Pt _ k2

2 2 2 2 2
P+ k 5p0+ k. k
— 14 —— —
+ (¢ 1)[ +p2—k2F+2p2—k2 =

1 2 k? k? 4
+<1+-U——1n—)1n g l}

2p2_k2 p2 k2p2
o= 2 l1+(-1) LR 6.5.18
L% 24mpt 3 pt)]’ (6:5.18)
T3 _ ].
g2 — 0 - 47T(p2—k2)2
(¥ + ")’
< { a-oSHr
T N (e 0 PR Gl 5 0 i PO
+2(2 6)(1‘3 +p)+(2 ’f) D) 1 6(p2—k2)2 lnp2
2k%p® (" +p)*\, ¥ 2, 12 gt
+[(p2—k2+(1_€)2(p2—k2) lnF—{—(?—ﬁ)(p +k) lnk—21-)—2- ,
T3 «a 29 qg 7 qg
2 = i) M R Y G R 5.
:2:;2 247rp2[ 3+ np4+(£ ) 3+ np4 (6.5.19)
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T6 a 2 + k2 k2
q? — 0 871'A2(p2 — kz)

Te
g2—0
k2 —p?

=0, (6.5.20)

Ts o k?

g?—0 8w A?

78 (87
q?2—0
k2 —>p?

g (6.5.21)
We finally came to the end of this chapter and to the end of this thesis having presented
the complete one loop calculation of the fermion-boson vertex in QED in an arbitrary
covariant gauge. In this perturbative calculation we have computed the coeflicient func-
tions, 7;, of the basis tensors to order a. These functions are the only unknowns in the
transverse vertex. From the beginning of this thesis all our effort has been learn about
the non-perturbative structure of the vertex. However, as we saw it is not easy to deter-
mine this. Perturbation theory is simpler, but even there their form is very complicated.
Nevertheless, non-perturbative coefficient functions must agree with this calculation in the
weak coupling limit. Therefore, these perturbative 7; hopefully will guide us to construct a
non-perturbative ansatz together with the constraints from multiplicative renormalisability

found in Chapters 4, 5. This construction is for future work.



Chapter 7

Conclusions

With everything that we do,

we desire more or less the end;

we are impatient to be done with it
and glad when it is finished.

It is only the end in general,

the end of all ends,

that we wish,

as a rule, to put off as long as possible.

-Schopenhauer-
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We began this thesis with the aim of investigating QED from a non-perturbative point
of view. The SD-equations are introduced as the field equations of the relevant Quantum
Field Theory. Because these equations are an infinite nested set that relates one Green’s
function to another, they are not solvable unless they are truncated at some level. The
solution of the SD-equations have to be multiplicatively renormalisable and gauge covariant
since all full n-point functions must have these features. Though we need to truncate these
equations in order to find their solution, we know that even the solution for the 2-point
functions must know about the higher point functions. So, a reasonable truncation seems to
be to approximate the 3-point vertex in a way that incorporates some how all the necessary
information from the higher point functions. Then, the SD-equations can be solved for the
2-point functions, i.e. for the fermion and boson wave-function renormalisations and the
fermion mass function. To do this, various 3-point vertex ansatz are proposed in the case of
quenched QED, each of them were an improvment on the previous one and have their own
features and deficiencies. In general, the aim of all ansatz for the 3-point vertex should be to
ensure the solutions of the SD-equation for the 2-point functions respect gauge invariance

and multiplicative renormalisation.

In this thesis, we extend these studies to massless unquenched QED. The purpose of this
study was to understand the structure of the fermion-boson vertex and construct a non-
perturbative 3-point function in the case of unquenched QED. We have carried out this
investigation along two different directions : (1) the SD-equations are studied in order
to deduce the constraints needed to ensure both the fermion and photon propagators are
multiplicatively renormalisable, (2) the one loop perturbative calculation of the 3-point

vertex is performed in an arbitrary covariant gauge.

In both directions, the vertex function, being a Lorentz vector, involves twelve independent
spin and Lorentz vectors. Each of these vectors has a coefficient that is an analytic function
of the three Lorentz scalars, k?, p? and ¢?, that can be formed from the two independent
4-momenta flowing through the vertex in the case of the coupling of two spin-1/2 particles

with a vector boson.

Four of the 12 components define what is called the longitudinal vertex. This is related

by the Ward-Takahashi identity to the fermion propagator. This fact allows three of these
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components to be expressed in terms of the fermion wave-function renormalisation F'(p?),
and its mass function M (p?) and forces a fourth to be zero. Ball and Chiu have shown how
to construct this longitudinal vertex in a way free of kinematic singularities. This freedom
is essential in ensuring the Ward identity is the ¢ — 0 limit of the Ward-Takahashi identity.
Since the vertex can be written in terms of the longitudinal and transverse parts, the rest
of these 12 component (8 of them) give the transverse piece. In the massless case, four
of them are zero and so we are left with only four tensors multiplied with four coefficient
functions, 7;. The only unknowns in the vertex functions are these coefficient functions.
Their symmetry properties are determined by the parity operation and their dimension is
fixed by the dimensionless of the transverse vertex. Making use of these conditions the
logarithmic expansion of the coefficient functions are substituted in the fermion and boson
SD-equations in order to solve for the fermion and photon wave-function renormalisations.
After calculating the general multiplicative forms of F' and G, these are compared with the
ones coming from the solution of the SD-equations. This comparison gives the constraints
on the vertex function imposed by multiplicative renormalisability. Attempts to find a

simple solution to these constraints will be the basis of future work.

To gain more knowledge about the vertex function, we have also calculated the coefficient
functions for one-loop fermion-boson vertex in arbitrary covariant gauges since a perturba-
tive calculation provides a very useful check on the non-perturbative one. Surprisingly this
one loop calculation had only been previously performed in the Feynman gauge by Ball
and Chiu [26]. Our results correct some typographical errors in their publication in that
gauge. The vertex has only logarithmic singularities: these arise either when the external

legs are on-shell or when the internal fermions can be real.

Having calculated the complete one-loop 3-point vertex at order « allows us to subtract
the longitudinal vertex from our one loop answer to find the transverse vertex to O(a).
This result can be represented in terms of a basis of eight vectors orthogonal to the boson

momentum, each unconstrained by the Ward-Takahashi identity.

We propose a new transverse basis S¥ (z = 1...,8), Eqns. (6.5.6, 6.5.7), which has com-
ponents with only the logarithmic singularities of the full vertex. This basis modifies the

T! (i =1,....,8) of Eqn. (6.2.7) proposed by Ball and Chiu [26]. Though their basis has
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no additional singularities in the Feynman gauge, this is not the case in any other gauge.
Eqns. (6.2.4, 6.4.18-6.4.39, 6.5.6-6.5.10) constitute our new result in QED to one loop.
The same and/or related integrals arise in QCD, and so this calculation could, in princi-
ple, be extended to non-Abelian theories in any covariant gauge too. However, the length

of this calculation, as presented in Chapter 6, is what has doubtlessly deterred previous

computations.

Though our perturbative calculations are self-evidently only true to O(a), our aim has
been wider. The hope is that the coefficients of each of the transverse vectors, S¥, like
those of the longitudinal component, are free of kinematic singularities at all orders in per-
turbation theory and even non-perturbatively. Just as use of the Ward-Takahashi identity
specifies non-perturbatively the longitudinal vertex in terms of the fermion propagator,
Eqn. (2.3.34), multiplicative renormalisability too imposes relationships between the ver-
tex and the fermion propagator. These constrain the transverse vertex. A start has been
made in analysing these powerful conditions. Ignoring such requirements and use of, for
instance, a bare vertex (the rainbow approzimation) in studies of chiral symmetry breaking
leads to the generation of highly gauge dependent masses. In contrast non-perturbative
enforcement of the Ward-Takahashi identity and the constraints of multiplicative renormal-
isability dramatically reduces or even eliminates [23, 38] this unphysical gauge dependence.
Indeed, knowing the vertex in any covariant gauge may give us an understanding of how the
essential gauge dependence of the vertex demanded by its Landau-Khalatnikov transforma-
tion [30] is satisfied non-perturbatively. Moreover, having a basis for the transverse vertex
with coefficients free of non-dynamical singularities is a key step in further investigations

of a meaningful non-perturbative truncation of Schwinger-Dyson equations.

Obviously, the natural end of this study will be to bring all the results together to construct
simple ansatze for the possible non-perturbative fermion-photon vertex. An extension of
the multiplicative renormalisability constraints to massive QED may be on a list of future

work.

An unquenched vertex ansatz should be particularly useful in numerical studies of dynam-
ical mass generation in QED and other gauge theories. Previous work [48, 49, 34, 35] has
highlighted the sensitivity of the results to the structure of the full vertex. An unquenched
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vertex ansatz can also be adopted for the quark-gluon vertex in studies of QCD, of quark
confinement and of chiral symmetry breaking. This should prove more realistic than the

rainbow approzimation often used.
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Appendix A

A ~y-matrix algebra in 4-dimensions

P=7"pu (A1)
{7} =2¢" (A.2)
=4, (A.3)
T = =2, (A4)
YAy =49, (A.5)

1P = =20

~v-matrix algebra in d-dimensions :

vit)
viti)

z)

Yy =d (A.6)
Yt =—(d-2)7" (A7)
7P = (d — 4) vy + 49, (A.8)
Yyt = g** 4P (-8 + 2d)

+9°Py*(8 — 2d) — (6 — d)y*yPy* (A.9)
Y7’ = (2 — D1y’ — (2 - )Py, (A.10)
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Appendix B

B Angular Integration for the Fermion SD-Equation

This appendix is related to the fermion SD-equation of Chapter 2,3 [50] :

Recalling the definition of the angular integration, Eqn. (3.2.13);
/”d;z) sin? P
0
(B.1)
where
k-p = |kl|p| cost and g=k—p. (B.2)
It can be in the form of
Lo = Kl [ sinp P (8.3)
mme P (a — bcosp)™’ )
with
a=R+p , b=2]ksl. (B.4)

Now, we shall calculate I,, ,, for different n and m values starting fromn =0,m =1:

sin ¢
Ipy = / dip .
o1 (a—bcosy)) (B:5)
Changing the 1 variable as
z=cos?y, (B.6)
integral becomes
11— 22
d .
/ Z (a—bz) (B-7)

by making further changes of variable

y=a—bz, (B.8)




B. Angular Integration for the Fermion SD-Equation 228

we get

a+b dy R
o, = / B.
0,1 b2 by \/— ( 9)

where
R=b—(a—y)i=0-da’*+2ay—y°.

We divide this integral into three pieces

(b2 _ a2) /a+b dy a [otb dy 1 e+t  (a—y)
A — =t - —= 4 — d .
b? a=b Y \/R + b a—b \/E + b2 / y (B 10)

start to deal with the first one :

Io, =

atb  dy

1
I, = /G_b = (B.11)

By making following changes of variables three times one after the other :

2 -1/2
L e e ()
y Lot \/_7 —5?2)2  \a?2 -2 ’

z =
a 1 b? -1/
— _——— .l - (aZ-b7) d 2
N o B = (G R B
b sin @ 1
w o= e R, = ——— /
(a? — b?) o1 va? — b2 J-x/2
(B.12)
Finally, the result is :
T
Ié,l = m (B.13)

We now evaluate the second integral in Eqn. (B.10) :

a+b dy
I3 = / — . B.14
0,1 b \/F ( )
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Again changing the integration variables twice :
w=y—a I, = / b dw
e T Vo w

and

w/2
2, = / do .

w=>bsinb,
-7/2

It results in
13’1 = 7.

The third and last integral to evaluate is :

a+b a —
13,1 = /a dy( y)~

Making changes of y-variable
w=y-—-a,
and furthermore
~7/2
w=bsinf, I3 = b/ do sin .
This integral gives
I3, = 0.

Therefore, adding these three integrals together leads to :

Ios = % (a - VaT=F) ,

where
1/2
Va2 —b = [(p2 + k)2 -4k p2] = [(p* — KV =

We now introduce the following quantity for convenience to use from now on,

z <1

h(.’IZ) = (1+$—|1—$') = {1 .7321

DO | =

lp* — k?|.
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(B.15)

(B.16)

(B.17)

(B.18)

(B.19)

(B.20)

(B.21)

(B.22)

(B.23)
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Inserting the @ and b quantities from Eqn. (B.4), I can be written as

_ 4 2 1.2 2 _ 12
Ly = W((P +E)—p*—k ()
s k? k?
- I (). o2
Eventually, we find
7r k?
Ly = 5 h (F) . (B.25)
The angular integration for n =m =10 :
Too = / dip sin?yp = = (B.26)
0 2
n=2m=0:
Lo = /" dip sin® ¢ (k -p)?
0
= KPR [y sin®p costy
- %k? P, (B.27)
n=4m=20:

Lo = [ disin's(k-p)°

— % Eipt (B.28)

Ly = /Oﬂd'%/)k'P

= |k2||p2|/dv,b sin? 1 cos
_— (B.29)

n=nm=0:

Lio=0 n : odd number . (B.30)
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Now we shall write Eqn. (B.3) for m =1 as :

cos™

_ niam [T e 2y WY
Ly = [k]"|p] /OCM sin d)(a—bcosd})

1 a
= =@, 10+=
5 10+ 5

we then can calculate this expression for different values of n starting from n =1 :
1

a
L, = 9 Ioo+ 5 In,

In—l,l ] (B31)

recalling a and b from Eqn. (B.4)

Ly = —7+——a[(p* + k) = |p* — ¥]

2 4

1
I, = 3 Lo+

a

I
5 1,1

= L +E)h (’“_j) . (B.33)

n=3:

2

6 8 4 4
Tp k Tp k
= — —h|—=]. .
6F " <p8> i (p“) (B34)
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n=4%:
] a
Liy = —513,04-5[3,1
7 at ra® Twab?
_ Sy _ e
T6 52 ( @ = b))~ 35~ T
7 p® (p? + k?) 8 70 (p? + £2) L4
= =X __h|— —_ Zhl—] . )
39 k2 = + TG h " (B.35)
n=2>y
1 a
Is; = —'2‘[4,0+§]4,1
5 4 212 4
_ Ta B 2_1)2_7ra_7rab_7rb
g VY =Y T T o T Bz
10 k12
— Qsh(—g)
64 k P
8 8 4
TP k 57 5 6, (K

Now we shall calculate the angular integrals for the n = n,m = 2. In order to do this, we

take the derivative of Eqn. (B.31) with respect to a;

0 N . 9 cos™ ¢
é_aIn’l ~ Ja [2" /0 dp sin g(a——bcosd))} ’
cos™

= Y T g sty Y
B 2"/0 & sin ¢(a—bcos¢)’

d

— Ly = —Il.2. B.37
aa vl v2 ( )

Let us use this equality to evaluate the angular integration for the different values of n.

n=0:

0
Ly = —5Ioa

Jda

s a
t e \veme !

s 1 k?
- et .
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n=1:
0
L; = —5;11,1
il o Nz
.
TP’ 1 L k4
T -\
n=2:
0
I, = _’a_aIZ,l
- a3
= 4b2< __b2 3& +2(1V —b2+ >
4 6 2
_ 3mp 3 k‘ + 7 p? L k '
8k |p* — k?| 8 |p? — k2|
n=23
0
Iz = —%13,1
al
= Va? — b2 b?
862< 4a®>+3a® b+\/—_—b5+a )
6 .8 4 2
oo (YT L (F)
4k |p? — k2 \p*)  4lpP R\ p
n=4
0
]4,2 = —a—l;Ll,l

3 a2 b2 b*

5m p®

T a®
T 1602 \Va? — b2

L0
— —————h
5 r ()

)—Sa +4a%Va? - b2+ 8

6 6 2.4
97 p A k LT T k'p L
27— ] 16 5% — #7]

k2

(_

P’

).

233

(B.39)

(B.40)

(B.41)

(B.42)
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n=2>y
0
I = ——1
5,2 5g 51
6 4
o 5 4 /3 5 a 3,2, b
= 3p [—Sa +5a*vVat—-b—a +——m+2ab+ 4}

10 12 8 8 2.6 .4
_ _3mpm L (ETN L mpt (R STET (R
32k% [p? — K2 \p'?) 4P’k \p?)  32[p’ -k \p*

(B.43)
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Appendix C

C Angular Integrations for the Photon SD-Equation

This appendix is related to the fermion SD-equation of Chapter 4 [50, 43].

Recalling the definition of the angular integral for the photon SD-equation, Eqn. (3.3.22),

_ T Sil’l2 (ep)n
Kur = [ 4 e ()

Splitting up the denominator of this integral as

1 1
(T EE R
1 1 1
B 2_a<a—bcoszb+a+ bcosv,b) ’ (C.2)
where
p?
a:Z2+Z, b=1¢|p|, (C.3)
K, then can be rewritten
K,, = ! I, + ! J, (C.4)
n,l - 2(1 n,l 2(1, n,1 9 .
where
/ — d 2. A
Loy /0 Y sin QZ)Qa <a——bcos¢) ’
= d Zop — | ———— ] . .
I /o ¥ sin 17Z)2a (a—{— bcosd)) (C.5)
Making use of Eqn. (B.25) for J and I’ integrals, we find that
, T 44?
']0,1 = ]0’1 = '272- h (p—2> . (CG)

Therefore Ko, becomes

I, 1 m 44?
o = 2= et () e
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Analogously to the angular integral calculation in fermion case, we can derive the following

relations :
Jn,l = ']n—l,O - aJn-l,l )
IT/L,I = _111—1,0 + aI’r”L—l,l ) (C-S)

for n = 1 these give

/
Jip = Joo—adoy= —11,1,

then [y, gives
1
K, = 5 (]{,1 + Jl,l) =0. (C.9)
Forn=2:

J2,1 = Jl,O"‘ aJl,] = —a J1,1 = a]{,1 ’ (C.lO)

thus at the end K, can be written in terms of I; 1, Eqn. (B.32)

]{2’1 = [{’1:211,1 s

2 4
. mp 16¢
o () o
n=3:
Jsg = Jo—aly = —Ié,l ;
Ksp = 0 . (C.12)
n=4

Jsg = Jo—adsn=—alds; = aI;;,l
K4, can be expressed in terms of I3, Eqn. (B.34),

1{4’1 = I(;,l == 2]3’1 )

6 8 18 4
Tp 2°0 T 4, (164
- h Z .

and n =5 :

1(5,1 = O . (014)
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Appendix D

D Integrals Used for the Fermion Equation [50]

k?

2
/ ar
5 —41n2

k?

/ e

p4

(3p° = #2)

(k2 +p?)
.2
k)lnk—
k2+p) AZ

2

(5 —4ln2> 2 yoc@) -

A2
/p2 2k_4(2p2—k2)
o 4 (k2 + p?)?
—7ln2+5
[kt
o 4 (k2 +p?)? A2

2

15
4 ?

(=7 In2+5) ln%—3ln2+;f(2)-—

P2

dk*
0

9

k?
Pt

(k* = p?)

-+ 2¢2)

4

/ a? =

(-3+ z<(2)) b

k?

(¥’ +p%)
pt (k2 = p?)
p
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(D.3)

(D.7)
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p2 k4 (5k2+2p2) k2 p2
o = / a? = In o —
8 0 4 (k2+p2)(k2——p2) A2 In = A2

P2 k6 1 k2 p2
¢ = / dk = In— _1nE
9 0 p4 (k2+p2) (k2_p2) (nA2 nA2)

P (D.10)

Il
I
5
|

1
= —-hLl (D.11)

A2 1.2 k2
F = / % In? —
p

= —-In®= (D.12)

p
= -3 ln—&g+4ln2 , (D.13)

13k —p?) R

K _ 2 In —

Iz / aK? k2+p) n
3

= ~_12p —2¢(2) (D.14)

K __ 2p 2k2_p)
o = / W BT
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tr
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elO

K
ell

K
612
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2 2 .2 2 .2
/p dk2 p_2 (21“ p ) n _l”_
0 k (k.2 +p2)2 A2

3 p? 1
(§+ 1n2) hlﬁ_i (2)+3In2

e F oy P e
1

%
3 IH2P+QC(2) ;

Azdk2 1 (k2+p2) (1 k2 p2>
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A 1 (k*+ p? k? 2
- ( 2+p2) <1n2__1np
p’ k? (k? - p?)

1 2
5 In3%+2((2) In—

/A2 dei (k2 +p2) 1n2 k2 5 p2
e R (E )
2

3192

A2 2 1 k2 p2
ek MR T
/,,2 d B2 (= ) (lnA2 In A2)
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¢(2
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R CETD I

A2 2 2 .2 .2
/ a2 P (5p° + 2k?) (m’”—_
4

A 4 2
/ a2 ! n X
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1
1
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/p dsz_(l”—:;p_z (1np_+1n_]”__>
0

A2 A2
2

(=7 +81n2) 1n%+c ,
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(D.16)

(D.17)

(D.18)

(D.19)

(D.20)

(D.21)

(D.22)

(D.23)
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k? (k% —3p%) p’ k?
_ 12 2
ty = / dk p4 k2 ) In A2+1n e

2

= (-7+81n2) In’ A2+(9(lnp) , (D.24)
p? k2 (k2 _ 3p2) p2 k2 k2
P __ 270 N7 MF T o -
i = [ dk ) In 22 10 25 +In?
2
= (-7481n2) In’ A2+O(1np) , (D.25)
_3p2) k?
P _ 2 —
= / W k2+p)lnA2
2 2
= 2( 7+81n2) In i2+0(lnp) : (D.26)

p? L2 (k2 _p2)2 p2 k2
i = /0 W (it

= (=11+16,1n2)1 P om (D.27)
- 2 A2 ’ )
k2 (kZ—p) p2 k?
P __ 2 2 £ 2 v
tr = f W e (M
2 2
= (=11+161n2) In’ A2+0(ln%) , (D.28)
k2 (k? 2)2 2 k? k?
P _ 2 _] —_— —
£ / k2~ ———(k2+p) (1 2 In 1+ In?
2
= (=11+4161n2) In’ A2+O(1HX5) : (D.29)
kQ( p*)?
P __ 2 R
£ = / W T
11 2 2
- (—?+81n2)1 %+0(1n%) : (D.30)
K . 1 (p 3k?) p’ k?
= 1
t /,, e e Ui
= 3P o) (D.31)
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(D.34)

(D.35)

(D.36)

(D.37)

(D.38)

(D.39)
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. 2 312) 2
K — dk2 (p 1 s
110 /’,2 k2 (k2 + p? ) Az + In? A2

2

romE) | (D.40)

= 41n3%+81n21n e

A'Z

A? 2 _ 9qL2 2 2 2
= / dk?lu—)(lnpl E —]f-)
Y4

11 2 k2 (k2 -I-p2) A2 A2 A2
5. 3 P p’
= l ¥ +8In2 In* == A’ + (’)(ln =) (D.41)
A? 1 (p* —3k?) | k?
K — de_ N E T l -
tiz /,,2 k2 (21 p?) | AZ
3 2
= 51 A2+4ln21n[—@+c , (D.42)
. S O (e L) N
K — 1 _
t1s /p L2 k2+p) n A2
P
3P
= In F +41n2 In? A2 + O(ln P) , (D.43)
- 1 (p —k2) k?
K _ — Z
5 = /,,2 W T ) In 2 +1nA2
3. 2 P
- 2 _ £ _ 92 44
5 1 i 4 lnA 41n2 (D.44)
s /"2 el k)
15 2 k2 (k2 + p?)?
T
K _ 2 (p _kQ) In 2 P 1 ﬁ
tie = LQ dk* k2(k2+p) ( A2+nA2
4, 3p P’
= -3 In® = e — 4 In? A2 81n21np+c , (D.46)
A2 1 (p* — k?)? p2 L2 k2
K _ 2 L\ —RT) L x
5 = /,,2 et e Uk In— +In’
p?
= _§13p —4122——121n21n—+c , (D.47)

6 A? A? A?
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i A2 1 p2 _ k2)2 k2
K — 2_ — -
tis = /,,2 dk k? (k2 + p?)? In A2

1 2

2P
A2 1 (p2_k2)2 k2
tX =/ dkz————lz—
19 2 k2 (k2+p2) n A2
1,4 2
= _§1 A2+2ln A2+81n2lnp+c , (D.49)
A2 k2 2 k2
1 :/ A s |In g5+ )
20 . ( ) <n nA
3 2P2 P
A? 2
K _ 2
ty = /p2 dk (k2 +p2)2
2
P 1
= —lnp—§—21n2 , (D.51)

where ¢ is some constant.
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Appendix E

E Integrals Used for the Photon Equation [50]

&

p2/4
/de
0

#

A
Lo 5@

A2
/ e
p2/4

L 02 (1604 — 3p*)

13

—— 4+ = In2

24

1
—— In
4

2

1
2

p* (€% + p*/4)

)

€2

— r  Iln=
S(2 + p2/4) | A

2
2p——i-lanln

A2

2

p2

2

P20 —p") &
8 (L2 +p2/4)?  A?

2 £

p2
F )

A?

é?

1 2
L —ln21n2£—> ,

A2
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(E.6)
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ls

t

2

A2
dé2 p 2£4 _ 2 £2 _
/2/4 64 (£2 4 p*/4)° (3 Sp
1. p?

2
¥4 (_§ IHF) )

A2 2 P2 4 2 42

324 8p°f

/,,2/4 64 (22 + p?/4) ( P

2/4 4
/p ar 2
0 p? (2 + p?/4)

2 _i_ + ln_2_
Pi"16" 8 ) >
2/4 94
/P a0 2¢
0 p* (£ + p*/4)?

p (3w

2152 (€2 — p/4)
2(02 4 p?/4)?

I
( 3ln2> ’
o

2 20 (¢~ p*/4)
2(2 + p*[4)?

2 _7+5ln2
P \7 16 8 ’

M
/pm 8 (L2 + p*/4)

1, p?
2
P(smp+ﬁ’
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t

ty

ty

2

/A ar —P mE
————————————————————— n_
o S@E ) MR

1 2
p? (——12 + = ln21n—+c

16 A? 8 A?

M Pl
/p2/4 8 (% + p*/4) T Az

24 2(8 +p*/4)?
1 p?
(2 lnp + c) ,

A _m2 2 2
/ P L
e 24 pra)? A

1
e ORI E CR
A _ Iz
ar— P g
LM 20 /a7 A2

6 A2 A?

pz(lln?’p———l 02 1n? +-1“’ +0

[Can 0Bl
PR I
2

ln—lﬁ—{-c ,

(@) e
LM“(ﬁ+ﬁMVmA2

1 2 p2

——l2 2-|—ln21n———ln—+c

2 A A? A?

2
m? _Lion?
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A2

?
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(E.14)

(E.15)

(E.16)

(E.17)

(E.18)

(E.19)

(E.20)



E. Integrals Used for the Photon Equation 247

N (B —prf) O
L 2 1 2 -
4= [ Ty

= ——13p + In2 In? lnzﬁ (E.21)
T3 A? A2 A2 '

L _ A? ( —P /4)
o = [ @
= P ( L2 (E.22)

t = [0l T L
b= e ETem

A2 p2 A2 1 p2
— 2 - £ _ L
= p <p2 hfz-+tyhg) (E.23)

where ¢ i1s some constant.
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Appendix F

F Some standard integrals in d-dimensions

, d?k Canl(n—=4d/2) 1
—  _ — g9
i) /(k2 + s)" o I'(n) s(=d4/2) °

/ddk_k_#__o
(k2+8)n_ )

k“k" Fn—d/2-1) ¢*
dg, _ . df2
it2) / F = M (n)  sm-d/z-1)
/ddk k? _ .W(ml’(n—d/Z—l) d
k2 + )" 2I' (n) s(n=d/2-1)
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Appendix G

G Related Integrals to Vertex calculation
in Asymptotic Limit [50]

This appendix is related to the one-loop vertex calculation in the asymptotic limit of

Sect. 6.3 :

Definitions:
D = a+bz+cz?
where
a = ——p2z+p2z2+m2z ,
b = —k2+p2z—2p2z2+2k-pz+m2—mQZ ,
c = k24+p*2?—-2k-pz
A = 4ac- b
= —k*— 2k%p%z + 2m2k 2 4+ 4Kk - pz + 2K*m® |
and
V=A = k*+p*z—m?z -2k -pz—m* . (G.1)
) 1dx 1 nb—l—ZCm——\/—AI 1n<b+2c—\/—A b+\/——A> (G.2)
7 — = = , (G.
o D V=A b+2cx+v-A4AY b+2c++v-A b—+V-A
where
b+v—-A = 2(p22—p2z2—m2z) ,
b—vV—-A = 2(—k2—p2z2+2k-pz+m2) ,
b+2c+V—-A = 2(k2+p22—m2z—2k-p2> ,

b+2c—vV—-A = 2m?
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Therefore we find for Eqn. (C.2) :

ldz 1 2% - 2 % 2
i) i —(1+—’f) [ln(%z—z—l—zz) ln;—lnk—]—l-(?(k"’),
p?

o D K 2
(G.3)
1
. b rldzx
i1) / d:c———lnD 0—52 D (G.4)
where
! m? m?
InD lnT—ln —z—z+tz ,
o p p
1z 1 2k -pz m? k2 k?
ZZZ) A d&?-——m(l‘l' 12 )(1 F—ln;ﬂ—;—ln-})—? N (G5)
1?2 g b Vb —2ac ldz
T 2 /_
) 0 de cly 2¢ nD 0 2¢? o D
1 2k -pz 1 2k -pz m? k? k?
:ﬁ<1+ 12 >+W<1+ 12 )(IHPT—IHEE—III?
+O(k™) (G.6)
1 22" bz |' B —2ac Yb(B? —3ac) [1da
r_r = 1 A SN i
v) /o do c? 2¢3 nD 0 2¢8 o D

3 2k -pz 1 2k -pz k? k? p?
_2_k5(1+ 7 )_P<1+T—) <1n—+ln—+ln—

+O(k™Y, (G.7)

1 n —
/d:cw_(_lD—x—):0+(’)(k‘2,k"4lnk2) ,  n=12-,
0
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. 1 1 b+20wl 2¢ ldzx
R

0

+O(k™), (G.8)

- 2 2 2
+ — 1 <1+4L pz) [In—lc—+ln£-—ln<—n1—z—z+z)]
P p

k4 k2 m?

+O(k), (G.9)

] /1d x? B ab+ (b* — 2ac)z 1 dz
iz) DT T cAD A D
-1 2k -p=z -

= T 14 7 + O(k™), (G.10)

1 1—2z)2 1 2k -pz a4
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, 1 g8 1 ' a(2ac— b))+ b(Bac—b)z || b(6ac—b?)
2 /0 dJE_D_2 T 22 D) 0 + c2AD 0 22 ’
-1 2k -pz 1 4k - pz k2 k? p?
+O0(k™) (G.12)
3 tog(l—z) 1 4k -pz k? s
ZA - — k 1
xii) /0 dzx 7 o (1 + 0 In 7 + O(k™°), (G.13)

1 n _ 2
) / 2D g Lony , n=2,3-- . (G.14)
0 D?
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Appendix H

H d-dimensional Integrals Corresponding
to the Vertex Calculation

This appendix briefly outlines the evalution of the related integrals in Chapter 6. We first

deal with general 2-point scalar integral as follows :

1
Ln(k,pymy,my) = / d*w 5 7. (H.1)
((k =) = md]" [(p — w)* — m}
Using Feynman parametrization :
1 I'(n+p) /1 _ - 1
= dz 2™ V(1 — g)P! H.2
ArBr  T(n)I'(p) Jo v (1-2) [zA+ (1 —z)B]"*"’ (H.2)
where
A = (p - ’LU)2 - mg )
B = (k—w)2—mf ,
the denominator of the I,,-integral becomes :
K=uw?=2w (pz+k(1-2))+p’z+ k(1 —z)—-mliz-mi(l—1z).
We now change the variable of integration as :
w=w—(pz+k(l-2z)). (H.3)
Consequently, K 1is,
I{:w'2+(k—p)2x(1——:c)—mga:—mf(l—z) . (H.4)

Substituting K into the Eqn. (H.2), we find the I;-integral to be :

_F(n+p) ! 1] — )] dayy 1
]pn(k7p’ ml’m2) - T(n)F(p) /0 d (1 ) /d (wlz _ L)n+p ) (HS)
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where
L=—(k—plz(l—-z)+miz+mi(l-2z) . (H.6)

After making a Wick rotation and using Eqn. (F.1), we find,

, F(n+p—4d/2) n - -1 —ne
Lon(k, p,ma,ma) = i(—1)"* /d n=1(] _ g)p=t [d/2nep,
P ( y Py T m2) Z( ) F(TL)F(p) o T ( .’IJ)
(H.7)
i) n=p=1,m =my=m:
. ['(2 —d/2) 1
Lu(k,p,m,m) = ip?* —— [ d'w . (H8
If we take in Eqn. (H.7), we get
) re-d4/2) n _
— -d/2 d/2-2
In(kypymym) = inl? e /0 dz L , (H.9)
where
L = —¢z(l-e)+m®> , q¢=k-p,
and

d = e€+4.
We then find I;; to be :

1 2
Iy (k,p,m,m) = z'7r2p‘/0 dzx lC—ln (1 - —z(l —”c))} ,

where

Performing the z-integral gives

Liy(k,pym,m) = ir’u (C +2 - 25) , (H.10)
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where

s=1 ( m2)1’2 (1—4m?/g)"* 41
2 (1 —4m?/g2)'/* —1

1

(p = w)* = m?| w?

1(0,p,0,m) = / ddw[

Applying Eqn. (H.2) to this case, we get,
, r2-d/2) n _
I — df2 / d Ld/2 2
11(0’pa0am) T 1-\(1)1—\(1) o T 3

where
L=—-pz(l—z)+m’z
Performing the z-integral we have,
I;(0,p,0,m) = ir?u (C+2-L) ,

where

2”) n:P:1;P=0am2=0,m1:m3

Moreover,
I(kOmO)—/ddw !
11 » ¥ I - 'LU2 [(k . w)2 _ m2] ’
= i7r2p5<C+2—L') ,
where

255

(H.11)

(H.12)

(H.13)

(H.14)

(H.15)

(H.16)
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Now we take 2-point vector integral :

wl/

S (HAT)

I’ (k,p,m{,my) = d*w 5 >
whpmm) = (k= w)* =mi]" [(p — w)* — m}

After using the Feynman parametrization, changing the variable of integration and per-

forming the integral in d-dimensions, we get :

y _F(n+p)/1 a1 -t [ a ,w' +p'z+ k(1 -21)
Ipn(k,p, mlam2) - F(n)F(p) 0 dz (1 .’E) d*w (w/ _ L)n+p '

On tidying up we arrive at :

I;;n(k’pa my, m2) = iﬂd/2(_1)n+p

1
X { p” A dzz™ (1 —:z:)”_1 L/2-n-p

1
+k | dez™ ' (1 —z)?P LR (H.18)

0

where

L=—¢z(1-2)+miz+mi(l—-2) . (H.19)

w)n=p=1;m =my=m:

wV

. H.20
— m2] [(k —w)? - m2] ( )

L(k,p,m,m) = /ddw
n(k,p ) [(k _ w)2
On using the general solution which is I}, (k, p,m1,m2), this is :

1 1
Ifl(k7p>m’m) = iﬂ-dﬁr (2 - d/2) (p"/ dz $Ld/2_2 + ku/ dz (1 — $) Ld/2—2> )
0 0
where

L = —¢*z(1—z)+m? |
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and tidyding up, one gets :

1Y, (k, p, m, m) = i7r2p‘/01 de (p'z + K(1 - ) [C—ln (1 _ .0 _x)ﬂ |

m2
Now evaluating the z-integral, we obtain,

I{,(k,p,m,m) = i7r2;f-(p—-;-i€—l (C+2-25) . (H.21)

v)n=p=1k=0,m =0,my=m:

wY

(H.22)

1
Ifl(oapaoam) = /O ddw 'Ll)2 [(

Py —m

Again making use of Eqn. (H.20), we get

1
Ifl(o’p) 0’ m) = iﬂd/zl—‘ (2 —d/2) p"/ dz de/2—2 ,
0
- g2, €.V 1 p2
= ir°u‘p dzz|—C —1In 1___2(1_:5)
0 m

Evaluating z-integral, we find :

1%,(0,p,0,m) = mmf-’;—

C+2—’:—:— (1—T—2)21n (1—”_2)] . (H.23)

vi) n=p=Lp=0,my=0,m =m:

v

v _ d w
14(k,0,m,0) = /dww2[(k—w)2—m2]’

v

P - m? m?\? k?

ke (- 2ful-8)]
(H.24)
Tnp = / d'k = (H.25)

[(k = p)?1" [(R? — m?)]”
The obvious thing to do here is to use Feynman parametrization :
1 I'(n + p) /1 a ; 1

= dez™ (1 -z) , H.26
ey Ve e S U Py e s (H.26)
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where

with the denominator :
K = k' -2k-pz+p’z—m?-1z)
The next step is to change the variable to k' where
E=k—pz |,

Jup then becomes :

I'(
anzrn-{'i/dmx pl/dd ,H_p ,

where
L=—-pz(1 —2z)+m?(1 -2)

Then for this general case, we find :

I(n+p—d/2)
L(n)T(p)

1 p2 d/2—n—p
X / dz,z" (1 — z)¥/*? (l - —2:1;) :
0 m

an - i7Td/2 (_1)n+P (m2)d/2—n—p

1
Jun = /ddk Y -
2
= Zﬂ',u/ dx[ —In(l —z) — 1n<1-—%m>}

o (CZu( )] -
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i) n=2,p=1:

dy,
o (p /d T (H.29)
In(p) = 1 0 /ddk 1 +/ pr 1
2= )\ T = p (R = m?) (k— p)? (K2 — m?)
1:71'2/1,5 m2 pZ
= ——— |C—- |1+ —=|In|1l-=— H.
On2-zﬂ)[c ( +p2> n( ﬂﬂ>l ’ (130
1
d
() = [ d' o P B (H.31)
Letting p — —p :
' 1
_ d
Jau(p) = / d*w wi [(p+ w)? — m?]
Changing the w-variable as w = k — p, J,, becomes :
Julp) = Jul-p) ,
Z.7'l'2/.l,5 m2 p2
kl/
v _ d
W = | O
— i7rd/2(—1)”+7’r(n +P d/2 / d:ETL p—lLd/2 n—p : (H33)
where
L=—p’z(l —z)+m*(1—-z).
mw) n=p=1:

v

v dy. k
T = /dk%_m%m_ma , (H.34)
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Making use of Eqn. (H.33) :

1 2
J = iﬂzpuﬂe/o dz [Cx—a:ln(l—:c)—:cln<1——p—2x)} ;

m
= 2”2“#6[0+7Z—:+2—(1—’;—:>1n(1—:1—2” : (H.35)
wn=2,p=1:
T4 (p /dd £ , (H.36)
(k= p)* (k* — m?)

J4(p) = %[C+( —%)—(HZ—:)ln (1—:1—2)} . (H.37)

v

J2Ull (p) = / ddww4 [(p _lfu)z —m?

(H.38)

If we change the k-variable to w = k — p in J;(k,p), and let p — —p, we get :

50 = [ R

The first term in the expression below is the one we want to evaluate, Jy,(p) :

kl/
, _ d %
Ju(p) = p /d [(w— p) ~ m?] +/d (k —p)* (k* —m?) p——p

2 2
= mﬁ’_ [Hp_m( - %)} : (H.39)
p?




I. More Integrals for the Vertex Calculation

Appendix I

I More Integrals for the Vertex Calculation [50]

Q1 =

Qs

@s

Q7

; 1
I i

2 2
iﬂ'?u‘{C— (1—21?) In (1—p—2)} ,
P m

d kl/
IR e

v 2 4 2
. P m m P
il {7[C+2+p—2—(1—-p—4)1n<1—m>]} ,

; 1
/Md k (k — p)* [k? — m?]

. 2‘7.‘,2 m2 p2
K o = ) {C‘ (1 *72) i (1 ’m_)} !

kV
d
s ey e

. Z'7r2pu m2 m4 p2
# <m2—p2>{c+ (1‘?) - (”F)m(l‘%‘f !

k2

d
I T
m2Q3 )

] K kv
/Md g (k — p)* [k? — m?|
m2Q4 ’

/ d?w !
Mo [(k—w)?=m? [(p—w)? —m?]
in?u [C+2-25]

261

(L1)

(1.3)

(L7)
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262

1
_ d
@s = /Md v [(p — w)? — m?] w?
= in?ut[C+2— L] , (1.8)
v _ d w”
% = e o=
2
= T+ Rc+2-28] (L9)
v _ d w”
Qo = /Md w [(p— w)? — m?] w?
it m? m? p?
1
_ d
@ = /Md v [(p— w)? —m?] w?
im? m? 2
_ W#f{c— (1+p—2> In (1-%)} , (L11)
v _ d w”
% = fy e
v 2 2
_ i7r2§3{1+%—1n (1 —%>} , (112)
_ d ! _ [©
Qu = [ i G- wP — A [(F=wf —mfwt
a1 2 _mHg? + 2m?(k? — p?
Y {;[_2q25+p2(p ();_m?)?( ),
2 (B2 =m?)g® —2m?® (K —p*) /| C
B o D R ROl A
(L13)
where we recall
2
C = —z—'y—ln(ﬁ)——lnm—2 )
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o m\ [ am?/e)” 4]
S = 1—4— n 172 (1.14)
2 q (1 - am2/q2)"/? — 1]
Qu = d*w ! =JO
Mo [(p—w)? = m?] [(k - w)? —m?] w? ’
J© is naturally expressed in terms of the Spence function Sp(z) :
z In(l —y) _
Splz) = — [ d , I.15
pe) = — [ Ay (L15)

so that

where
—(k-p)+ A
a = 1+_(__p2)__, V1 =Y t o, y2=—L, ys:—gg )
p (1—0) o
1
Yo = 2pzA[k2p2—2(k-p)2+2(k-P)A—P2A+P2(k‘P)—m2(’“'P‘A)] :
144/1—4m?/¢? 1 — /1 —4m?/¢?
q1 = 2 i q2: 2

(L17)
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In the massless case, Jy simplifies to

2 p*—k- p+A
"= gl () -

Sp
n(b2)s (Z—)} 9
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Appendix J

J Coefficients Related to the Vertex Calculations

In this appendix the coefficients of the 12 vectors V;* in Eqn. (6.4.18) are explicitly tabu-
lated.

agl) = 3p°(k* —m?) —2k-p(p* — m?) +4A%,
3mip? PPk
2 2’

o) = k-p(pt+m?) -

o = B -m?),
k2

o) = K k-p— < (m? + k%),

a?) = k?(p? - m?) - 2k cp(k? —m?) + 4A?,

(3) 2 s K 4 o
a;) = mik-pt AT —(m+p7),
o = KpP-m?)-2k-p(K —m?),
1.2 02 21.2
o) = BB TR k) - 208
ags) = —2A?,
A?
5
(lg) = ——2—,
agG) — —(Ic2+m2)A2,
2
aga) _ _(T_+k2) A?,
2
o) = -8ma?,

) = m [—3(k-p)2+k2k-p+2p2k-p—2A2],

[ k292 L4
o = m |2k p- - —(k'P)z__}’
] 2 2
o) = m[-K+k-p|,
[ 352 k2
9 = m —%—7+2k p},
2
() _  _ Q_k
ay m2 P
2
(12) - q—k2
agy m2 R

) = o, i=8,9,10,11,12 . (J.1)
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R
()
b(7)

1

b(i)

1

b(l)

2

by

oD (k & p), B2 = al)(k  p),
a)(k & p), i =3,4,5,6

a¥(k & p), ¥ = oMk & p),

0, §=09,10,11,12

aP(k & p), b = oM (k  p),
az)(kt—)p), 1=25,6

S (k o p), b8 = a(k & p),
—a{"?(k < p), by'? = —aiV(k < p),

(m?+p*)(k-p) — (k-p)® — %2(”3 + k%),

p2
m(k - p) = - (m? + ),
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&= o, i=1,.,12
4k2 3 4,2

&) = —p2 + m2p —m*p?k? + p*k*k-p—m'k-p,
k42 4k2

P = — 2” —mkpt —— + Kk p,

k?
cg3) — (m2_k2) (A2+?(k2+m2)_m2k.p>’

(4) m4 k2 4 3 k4p2

o) = ——+kp k- p-m'kp- +m'p'k,
2 _ 02
ch) = (k m)A27
2
2002 _ 1.2
£ — m*(m k)Az,
2
(n _ N2 920 o L2, 21’4]32 212 1.
c2—m(3(kp) 2p°k-p kkp)m+2+3pkkp
2.4
p°k
o (k) - B (e,
L2p? kA
cgs) = m[((k-p)2—2k2k-p+ 2p +?>m2
—p2k4+p2k2k-p—k2(k-p)2+k4k-p],
& = m (k2—k p)mz——ik2
2 bl
2 k2
& = m[(%-zk-p+3>m2+q2k-p+%2},
k- k22
an) - m<m2q2 2P+ ;(kz—pz)—}—p?k']?(k'p—kz)),
2 2k-
&P = ml—m2-(12—k2—k——2—p(172+k2)] : (J.3)
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0, i=1,.,12
Ik o p), ) = (ko p),
. i=5,6
$(k - p), &' = (ko p),
~!(k & p), &’ = "k & p),
4k2 4,2

m?(k - p)* — p2 + mzp ~pi(k-p)? +p’k*k-p—m'k-p

4,2 .2 4
e +m?p’k-p—m'k-p— Ep ,

2 2

P2 2 2 2 272
m A2+5(k —p°) | m”—p AT,
q2

m [(——k‘2 k -p + (k . p)2) 'I‘n,2 — p2A2 — —ik2p2] . (J4)
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(m4 _ p4)A2,
(m* — p*)A? + m’p* (K — p*),

—2(p* —m?)*(k* — p*) k- p— (p* — m*)A?,

(m* — p*)A? + m*p* K2 (k* — p*) — 2m* k- p (k* - p°),

—(p* = m*)A? + p*(K* — p*)(p* — m?)%,

(m4 _ p4)A2 . 2m2p2 k- p(k2 _ p2) + m4p2(k2 _p2),

—(p* = m"A? + p*(E* - p*)(p* — m?)?,
(m* — p*)A? + mip*(k* — p?),

0,

(p* — m*)(F* — p*)A%,

(p* —m*)(K* - p*)A%,

gmp* (p* — m*)A?,

m [29%(p* — m?)A? — mp* (K — p*)] ,
8mp?(p* — m?)A?,

m [2% (5% — m)A? + m2p?kA (K - p)]
m3(k* — p?) [P — 2k - 7],

m’p*(k* — p),

m3p? (K = p*) [p* = k- p]

m¥(k? — p?) [2(k - p)* — p*(k - p) — P°K7]

0, ;=5,9,10,11,12
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0
gt
P

0

Y

hgi)
¥
h{®)

h{®

R
R
hgl)

h{®)
RS

R

~el)(k  p), P = -k o p),
~e(k < p), =~k o p),
0, t=5,9,10,11,12

—e{)(k o p), i=6,7,8

—eD(k < p), P = —eM(k = p),
—el)(k < p), £ = Pk o p),
—e' Ok < p), 00 = —eP(k - p),
"D (k - p), 2 = (k- p),
—e{(k & p), i=5,6

m [(k2 - %) (—k2p2 —2k*k-p+4(k -p)2) m? — 2k*(k* — mz)Az] ,

m [(—2k2m2(k2 —p?)k-p - k'm?(k? - p2)) — 2k*(k* - mz)Az]

0, $=5,7,8,9,10,11,12
2k-p, 1=1,2

—(k* 4+ p?), i=3,4

—2A?,

0, i=1,..,12

0, i=1,2,4,9,10,11,12
—4A?,

202

—2m?A?,

4mA?, i=17,8

0, i=5,6,11,12

KO 5y = 7 [ - bo3] &7
WOk & p) = K*p* - m’k-p,
Bk o p)=m [-p* k- p+ A%+ (k)]
WOk ) = m ¥~ )
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zg2>(ka):mW_( 2 (k- p) )

2k2p? m T*‘P

m2 A?

(4) (2
h'(k e p)=(m +k-p)+W’

0, i=5,7,8,9,10,11,12

m? (1 1 )
l_l—T(F+F)}A,

272
(2) . m A 2]{: p 9
l2 (k — p) 2k2p2 k:2 +p Iy
2 A2
(4) _m A )
ly'(k < p) VT +m*—k-p,
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