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ABSTRACT 

Weakness and subjective fatigue are common features of rheumatoid arthritis (RA). However, 

whether there is a true increase in the fatigability of rheumatoid skeletal muscle, in which fibre 

atrophy has been frequently reported, is unclear. Such factors may influence the ability to 

respond to exercise programmes. 

In this work, a reliable and sensitive technique for the objective measurement of forearm muscle 

fatigue during sustained grip was developed, using power spectral analysis of the surface 

myoelectric signal (SMES). 

The inter-relationships between grip force (hand function) and the activity and severity of the 

rheumatoid disease process with muscle fatigue (defined as the decline in the median frequency 

of the SMES with work, (MDFG)) and the initial median frequency of the SMES (IMF) were 

examined. It has been previously suggested that the IMF of the SMES may reflect the fibre type 

of the underlying muscle. The response to a 12-week progressive right hand grip strengthening 

programme in healthy females and those with RA was also evaluated. Potential predictors of 

outcome and the mechanisms of strength gain were examined. 

Forearm muscle fatigue in RA was not significantly greater than in healthy controls. However, 

higher levels of fatigue were associated with greater systemic disease activity and greater 

disease severity. 

The IMF of the SMES was shown to be stable over a wide range of grip forces for a given 

individual. It was significantly elevated in rheumatoid subjects, and showed a direct association 

with greater disease severity. 

Handgrip exercise was highly effective in improving hand fiinction in females with RA. 

Strength gains were also demonstrated in healthy controls. Subjects with more severe disease 

and greater IMF of the SMES showed the greatest improvement in hand function. Greater 

systemic and local disease activity during the 12-week programme were limiting factors to 

improvement in grip. Local (right hand) disease activity remained stable or improved in the RA 

group overall, in spite of a trend towards deteriorating systemic and left handed disease activity. 

The two main potential mechanisms of strength gain (neural adaptation and gains in muscle 

mass) were assessed in both rheumatoid and healthy groups. The former was assessed by 

evaluation of the neuromuscular efficiency, derived from the relationship of the root mean 

square of the SMES at a given grip force. Gains in muscle mass were also assessed using this 

technique and by volumetric analysis of forearm musculature using magnetic resonance 

imaging. Although significant gains in muscle mass were demonstrated in the control group, no 

such gains were seen in the rheumatoid subjects. This indicates that neural adaptation was an 

effective method of strength gain in the rheumatoid group. 
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Chapter One. Introduction. 

Weakness, subjective fatigue and diminished function are significant problems in 

rheumatoid arthritis. These problems are multifactorial in origin, with potential 

contributing factors including pain, inflammation, deformity, reflex inhibition of muscle 

and deconditioning. Histological abnormalities, including muscle fibre atrophy, have 

been noted in several studies of rheimiatoid skeletal muscle and have been suggested to 

be secondary to disuse atrophy, denervation, or both of these processes. The 

significance of such findings with respect to fatigue and fiinctional capacity are unclear. 

In spite of the high prevalence of subjective fatigue in rheumatoid disease, the issue of 

whether there is increased fatiguability within the muscle has not been addressed. 

Power spectral analysis of the surface myoelectric signal during sustained muscular 

work is an established technique in the assessment of muscle fatigue. The decrease in 

the median frequency with time has been shown to reflect metabolic and 

electrophysiological changes occurring within the muscle and is a useful indicator of 

muscle fatigue (Komi & Tesch, 1979; Sadoyama et al, 1988). Other myoelectric 

parameters which may be derived from the frequency spectnmi have been shown to be 

ahered in neuromuscular disorders, specifically primary myopathies and myopathies 

secondary to neuropathic lesions, including denervation. Such measures may therefore 

be useful in the assessment of the functional significance of netiromuscular 

abnormalities in subjects with rheumatoid disease and their relationship with disease 

measures. 

The issue of therapeutic strengthening exercise in rheumatoid arthritis is an area of 

confusion. Much of the lack of a consensus of opinion is related to a lack of well 

designed, scientifically based research on the subject, a lack of functionally based 

programmes, difficulties with defining those subjects who will benefit, and concerns 

that such programmes will have adverse effects upon the disease. 

This study addressed the inter-related issues of the significance of neuromuscular 

abnormalities and the response to a simple strengthening exercise programme in 

rheumatoid arthritis. Specific issues were addressed using the technique of power 

spectral analysis of the surface myoelectric signal during isometric contractions. 

Evidence of specific neuromuscular abnormalities in skeletal muscle of subjects with 



RA was sought. The nature of these changes was examined, specifically whether they 

resembled changes typical of a primary myopathy or those of a myopathy secondary to 

denervation, in addition to whether there was abnormal fatiguability of the muscle 

during isometric contractions. The relationship between these neuromuscular 

abnormalities and disease characteristics (that is the severity and activity of the disease) 

was also assessed. 

It is not known whether the changes which have been noted within rheumatoid muscle 

affect the response to strengthening exercise in rheumatoid disease. Indeed, the 

mechanisms of strength gain in RA have also received little attention in spite of these 

being the basis for the development of exercise programmes in healthy individuals. 

These areas were also investigated in this study. 

Grip strength was chosen as the functional task in this study for a number of reasons. 

Grip strength is the cornerstone of hand functional analysis and reflects disease severity 

and disease activity in rheumatoid disease. The forearm muscles, which are important in 

the performance of a gripping task, have the advantage of easy accessibility for surface 

electromyography. Hence, the assessment of myoelectric characteristics during a task 

that is known to reflect not only strength, but also many aspects of the rheumatoid 

disease process, was possible. The ability to grip is vital in daily function and is a task 

with which most individuals are familiar, which improves the reliability of 

measurements of strength and myoelectric characteristics. Performing a handgrip 

strengthening exercise programme has the potential advantage of improving function 

rather than simply the strength of a single muscle and allowed easy monitoring of 

disease status and myoelectric characteristics over the course ofthe programme. 



Chapter Two. Grip strength, muscle fatigue and hand 

grip strength training in rheumatoid arthritis: a 

literature review. 

2.1.1 Introduction 

Diminished function in rheumatoid arthritis is mtiltifactorial in origin, with potential 

contributing factors including pain, stiffness, deformity, psychological elements, muscle 

weakness and dysfunction and fatigue. Histological abnormalities exist within the skeletal 

muscle in RA, the potential significance of which - in particular in relation to weakness 

and fatigue - form the basis of the first three sections of the literature review. The effect of 

exercise upon hand function, measured as grip strength, in the presence of these factors in 

RA is unclear. This will be reviewed in the latter two sections of this chapter. Firstly, the 

literature to date on the subject of the characteristics of rheumatoid muscle will be 

addressed. 

2.1.2 Histological changes in muscle in rheumatoid arthritis. 

Muscle has a relatively limited range of histological changes in reaction to disease and 

most of these changes are non-specific (CuUen and Mastaglia, 1982; Neville, 1973). 

Myopathic changes have been noted in RA; however there are no histological changes in 

muscle which are specific to the disease (Magyar et al, 1977). A combination of features 

may suggest the diagnosis (Magyar et al, 1977; Halla et al, 1984). 

Myopathies can be classified as primary, due to a defect in the muscle itself, or secondary 

to a defect within the nerves supplying the muscle, in which case the myopathy is 

neurogenic in origin (Jones and Round, 1990). Primary myopathies can be further 

subdivided into atrophic and destructive myopathies. Atrophic myopathies are associated 

with disuse and involve the reduction in fibre size with little, i f any, reduction in total 

number. In destructive myopathies muscle fibres are lost. Although atrophic myopathies 

are often considered to preferentially affect type I I fibres (Jones and Round, 1990), this is 

dependent upon the presence of factors such as arthrogenous inhibition and the nature of 

the disuse. 



Disuse can be regarded as localised (when one joint is inflamed and held immobile) or 

generalised (secondary to systemic illness or changes in lifestyle). However, many 

workers fail to differentiate between the two (Russell and Hanna, 1988; Nordemar et al, 

1976b). 

In the situation of general disuse, but no joint immobilisation. Type I I fibre atrophy 

predominates, probably because the patient does not make contractions strong enough to 

recruit high threshold motor trnits containing Type I I muscle fibres (Grimby and Thomee, 

1988). Preferential Type I I fibre atrophy also occurs in relation to upper motor neurone 

lesions and spinal cord transection (Magyar et al, 1977). Brooke and Kaplan (1972) 

suggested that in mild RA, atrophy of Type I I fibres occurs due to limitation of rapid, 

forceful movements. In severe RA, they proposed that Type I I fibres actively 'splint' the 

joint, preventing atrophy of these fibres, but allowing Type I fibre atrophy, since the latter 

are inactive. 

Between these two extremes, various mixtures of atrophy in the response to injiuy or 

disease may exist (Herbison et al, 1987; Young, 1993), possibly due to a coexistence of 

general disuse and local immobilisation, which may vary with time. Although most 

histological studies of muscle in RA have indicated preferential atrophy of type II fibres, 

as has been discussed (Haslock et al 1970; Magyar et al, 1977; Edstrom and Nordemar, 

1974), this may be related to the characteristics of the subjects assessed, the muscle 

studied (Herbison et al, 1978) and the limitations of some of the techniques used in 

assessment in the earlier studies (Wroblewski and Nordemar, 1975). Nordemar et al 

(1976a; 1976b) demonstrated atrophy of both fibre types in the quadriceps of subjects 

with functional class I and I I RA. 

Histological studies have shown that muscle fibres do not atrophy uniformly (Magyar et al, 

1977). The length of a muscle during a period of immobilisation influences the final 

length, the addition of new sarcomeres increasing the longitudinal length of a muscle i f it is 

immobilised in a lengthened position (Haggmark et al, 1979). Conversely, i f the muscle is 

held in a shortened position, shortening will occur due to the loss of sarcomeres (Gordon 

andPatUiIlo, 1993). 

In an immobilised joint at a fixed angle, the pattern of atrophy is dependent upon the 

relative length of the muscle, which in turn influences the type and amount of impulses 



fi-om stretch receptors. In muscles immobilised in a relaxed state, type I fibre atrophy 

predominates (Grimby and Thomee, 1988). It has been suggested that the observed 

histological changes are due to fibre type transformation rather than a specific fibre 

atrophy possibly related to altered loading and changes in muscle length (Kilmer, 1996; 

Appell, 1990), although there is little evidence to support this. Muscle fibre atrophy and 

alterations in muscle length may have significant effects upon function, the fi-equency 

spectrum of the SMES and spectral parameters in fatiguing contractions, as will be 

described later. 

Neurogenic myopathy can also give rise to atrophic fibres and usually affects both 

fibre types, which is a distinguishing feature from atrophic myopathy (Kilmer, 1996; 

Jones and Roimd, 1990). I f the condition is chronic, then reinnervation often 

commences. Reinnervation occurs by the growth of nearby motoneurones, which form 

contact with the atrophic fibres and supply them. The muscle fibres then adopt the 

characteristics of the motoneurone supplying them; i f the neurone is of the same type then 

the fibre characteristics remain the same (self-reinnervation) and i f not, they change 

(Jones and Round, 1990; Milner-Brown et al, 1974; Thomas et al, 1987). Milner-Brown 

et al (1974) and Thomas et al (1987) studied MU recruitment in human muscles 

reinnervated by surgical reunion after complete section. Some motor units showed normal 

force threshold and twitch tension; others did not. Thomas et al (1987) concluded that the 

predictive factor in recovery of normal MU function was whether self-reinnervation 

occurred. Over a period of time, after a period of multiple innervation, the process of 

denervation-reinnervation continues, the end result of which may be fibres of a uniform 

type, or at least an increase in the relative amounts of one fibre type (Jones and Round, 

1990; Engel, 1970) 

Hence, in diseases of muscle of neurogenic origin, the successive denervation and 

reinnervation may give rise to fibres with their original characteristics or may result in 

fibres of a uniform type. 

The most common histological findings in RA are muscle fibre ati-ophy and nodular 

myositis (Halla et al, 1984; Magyar et al, 1977). The latter involves nodular 

accumulations of mononuclear cells and although originally thought to be specific to RA 

(Curtis and Pollard, 1940; Steiner et al, 1946) it has since been noted in other connective 

tissue disorders (Sokolofif et al, 1950; Pearson, 1959). It is, however, a common finding 



in RA; Sokoloff et al (1950) noted it to be present in approximately 56% of rheumatoid 

subjects. 

Haslock et al (1970) described a wide variety of neuromuscular changes in RA, including 

fibre atrophy, peripheral neuropathy and myositis. Their proposal that denervation is an 

important association with fibre atrophy has been reported by many workers (Magyar et al, 

1977; Curtis and Pollard 1940; Sokolofif et al, 1950; Halla et al 1984). Magyar et al (1977) 

in a study of muscle biopsies from 100 cases of RA, found atrophy of type I I muscle fibres 

to be a common finding with the appearances of Type I fibres being "within normal 

limits". They agreed with others (Morrison et al, 1947; Yates, 1963; Haslock et al, 1970) 

that the type I I fibre atrophy was neurogenic in origin, based on the small diameter, 

angular arrangement and enzyme activity of the fibres. This is indicated fiirther by the 

findings of abnormalities within intramuscular nerves. 

In further biopsy and EMG studies in RA, Wroblewski and Nordemar (1975) confirmed 

the above findings, demonstrating muscle fibre atrophy and degenerative changes. Brooke 

and Kaplan (1972) found Types I and I I fibre atrophy in severe and mild RA respectively. 

Russell and Hanna (1988) emphasised the importance of histochemical studies to the 

demonstration of isolated atrophy of Type I I muscle fibres in RA. The mechanisms which 

may be involved in fibre atrophy will be discussed further in relation to weakness in RA. 

Other non-specific changes have been noted in rheumatoid muscle; their significance is 

unclear and will be only briefly outlined here. Changes include degenerative changes in the 

sarcoplasm and interstitial changes such as perivascular nodular myositis, lymphocytic 

accumulations, abnormalities within the muscle spindles and different stages of vasculitis 

(Magyar et al, 1977; Wroblewski and Nordemar (1975), Engel 1966a, 1966b; Cape et al, 

1970; Jerusalem et al, 1971). Focal muscle fibre necrosis and rheumatoid myositis (which 

is rare as a distinct entity) have also been demonstrated particularly when there is an 

inappropriately elevated ESR compared to the degree of synovitis (SERD) or a large 

increase in the level of creatine phosphokinase (Halla et al, 1984; Brooke et al, 1972; Reza 

and Verity, 1977). 

The mode of selection of subjects for histological studies of rheumatoid muscle varied 

between those in which biopsies were taken during unrelated surgical procedures and those 

in which subjects had clinical symptoms such as weakness and muscle pain, necessitating 



muscle biopsy. This adds to the difficulty in interpreting the relevance of the findings of 

such studies. The main disease parameter associated with histological abnormalities of 

rheumatoid muscle has been reported to be independent of both the activity and duration of 

the disease (Magyar et al, 1977). 

2.2.1 Weakness in RA. 

Weakness and dysfunction may be related to extrinsic factors such as altered joint 

mechanics and psychological elements (Stenstrom, 1994; Clough, 1991; Wolfe and 

Cathey, 1991) and to intrinsic factors associated with histological changes in muscle and 

arthrogenous muscle weakness. This latter term describes the inability to voluntarily 

generate the active tension in rested muscle that is necessary for the performance of 

everyday motor tasks, as result of joint disease (Stokes and Young, 1984). Functionally 

significant muscle weakness is a common problem in RA. Ekdahl and Broman (1992) 

demonstrated the existence of diminished functional capacity, isometric and isokinetic 

strength and isokinetic endurance in the lower limbs of subjects with class I I RA. Isometric 

strength was found to be 75% of control values, isokinetic strength 65 - 75% and isokinetic 

endurance reduced to 45 % of the control level. These fmdings confirm earlier fmdings by 

others (Tiselius 1969; Ekblom et al, 1974; Nordesjo et al, 1983; Danneskiold-Samsoe and 

Grimby, 1986; Hsieh et al, 1987). Isometric and isokinetic weakness has also been 

reported in relation to the upper limbs (Ekblom et al 1974, Beals et al 1985; Danneskiold-

Samsoe and Grimby, 1986; Hsieh et al, 1987) with upper limb endurance being reported as 

normal (Hsieh et al, 1987) or reduced (Nordesjo et al, 1983). 

Arthrogenous muscle weakness, is multifactorial in origin (Lee et al, 1974; Helliwell et 

al, 1987; Young, 1993). Contributing factors include reflex inhibition and intrinsic changes 

within the muscle in the form of muscle fibre atrophy and other less specific changes. 

As long ago as 1873, Sir James Paget recognised muscle wasting and weakness as a 

'clinical sign of muscle atrophy associated with chronic inflammation of the joints' 

(Magyar et al, 1977). Such findings occur early and may be the initial manifestation of 

the disease (Ropes et al, 1959). Disuse, active rheumatoid disease with systemic 

manifestations, local joint disease, drugs, neurological, muscular, skeletal and soft tissue 

structural abnormalities, trauma and poor nutrition may all potentially play roles 

(Herbison et al, 1987; Stokes and Young, 1984; Haslock et al, 1970). 



Primary muscle atrophy in injury or disease may be selective to the fibre type, the specific 

region of a muscle or muscle group or to agonists or antagonists. It will vary according to 

the disease and with disuse, immobilisation and reflex inhibition (Grimby and Thomee, 

1988). 

The effects of disuse upon muscle fibres have been described. Disuse (the term being used 

non-specifically) has been suggested to be the cause of muscle weakness in rheumatoid 

arthritis (Hollander and M'̂ Carty, 1972) and most workers agree that it does contribute 

(Haslock et al 1970; Magyar et al, 1977). However, as Hsieh et al (1987) demonstrated, 

weakness does occur in patients who are very active and functional. 

True (painless) arthrogenic reflex inhibition is the voluntary inhibition of alpha motor 

neurones in the anterior horn cell of the spinal cord by afferent stimuli fi-om the joint 

region (Young, 1993; de Andrade et al; 1965). This must be differentiated from pain 

inhibition, which is partly involuntary - involving long loop reflex pathways - and partly 

voluntary (Grimby and Thomee, 1988). Studies involving post-operative inhibition of 

muscle during painful and pain free periods have indicated that pain does not seem to be 

associated with reflex inhibition (Shakespeare et al, 1985). 

Potential mechanisms of reflex inhibition are the presence of joint effusion, the joint 

position and muscle group involved. The aspiration of joint efTusions reduces the 

inhibition of voluntary muscle contractions and reflex inhibition is more marked i f the 

effusion is large (Stokes and Young, 1984). However, aspiration does not abolish the 

inhibition completely, implying that other factors are involved (Stokes and Young, 1984). 

Reflex inhibition alters with joint angle, as demonstrated in post menisectomy patients in 

whom inhibition was less when the knee was exercised isometrically in flexion 

(Shakespeare et al 1983; Stokes and Young, 1984). There are obvious implications to this, 

since it will be more effective to increase strength and prevent atrophy by exercising the 

joint at an angle at which the reflex inhibition is at a minimum. 

In joint disease, it is likely that reflex inhibition occurs in all muscles associated with a 

particular joint and may persist for years with possible dysfunction as a result (Young, 

1993). However, different groups may be affected to different extents. Joint damage 

results in greater weakness of tiie extensor muscles than the flexors (Arvidsson and 



Eriksson, 1986; Sargeant et al, 1977). The cause of this is not clear: reflex extensor 

inhibition and flexor facilitation have been proposed as potential mechanisms (Young, 

1993). 

There are other important factors associated with weakness in rheumatoid disease. These 

include disease duration, the use of specific drugs and disease activity. On the basis of the 

findings described above, the mechanism of weakness associated with the latter seems 

likely be due to reflex or pain inhibition. 

Hsieh et al (1987) studied the isometric quadriceps and hamstrings strength in patients with 

early rheumatoid arthritis and minimal knee involvement. They found that the strengths of 

these muscles were approximately 80% of normal values, with the quadriceps being the 

weaker group. In a study of patients with RA awaiting knee surgery, with longer disease 

duration and more severe disease, the knee strength was found to be approximately 40% of 

normal (Nordesjo et al, 1983). These studies indicate the importance of disease duration to 

the extent of muscle weakness in RA, confirming the histological fmdings of more marked 

changes in such patients (Magyar 1977; Haslock et al, 1970). 

2.2.2. Athrogenous weakness and muscle fibre atrophy in RA: a summary. 

From the above description of rheumatoid muscle and related weakness, it is evident that 

there are two potential mechanisms of muscle atrophy in RA: denervation and disuse. 

Different fibre types may be affected according to the relative importance of the two 

mechanisms which may occur alone or in combination. In addition the effects upon fibre 

type will depend upon the nature of the immobilisation in the case of disuse and the pattern 

of reinnervation in the case of denervation. This, in addition to the wide variety of subjects 

studied, may help to explain the differences in the findings in different studies of muscle in 

RA. 

2.3 Fatigue 

2.3.1 Introduction 

Like weakness, fatigue is a phenomenon with many definitions and is a common feature of 

rheumatoid disease (Belza, 1995; Finals et al, 1981). However, although subjective fatigue 

9 



is a common complaint, the prevalence of objective fatigue in RA is unknown. This is 

partly a result of the many definitions of the phenomenon and the difficulties in its 

measurement, in addition to a lack of research in the area. The contribution of muscle 

abnormalities to fatigue in RA is also unknown. This section reviews the concept of 

fatigue, the phenomenon of fatigue in RA and its measurement. 

2.3.2 Defining Fatigue. 

Fatigue is an extremely complex phenomenon. It can be described and measured in terms 

of subjective, fianctional and physiological aspects (Edwards, 1981). These definitions do 

not necessarily reflect the same phenomena and different terminology is often used by 

different workers, adding to the confusion in the interpretation of the literature in relation 

to the concept of fatigue. 

Subjective Fatigue is a conglomerate of symptoms related to physical and subjective 

exhaustion. It can be assessed by rating scales, including those of Borg (1982). Although it 

may reflect cardiovascular responses to work and is important in relation to function and 

performance, it may be poorly correlated with specific changes occurring at the level of the 

muscle (McArdle et al, 1991). 

Functional fatigue may be defined as a failure to maintain the required or expected force 

(Edwards, 1981), or as a decrease in the force generating ability of a muscle resulting from 

recent activity (Bigland-Ritchie et al, 1984). It can be measured in terms of the loss 

(absolute or rate) of a given force, such as grip. Some workers call this physiological 

fatigue; however, fatigue begins the moment a muscle begins to contract and must be 

regarded as a process rather than a single event (Bigland Ritchie et al, 1986). 

Measuring and describing fatigue must involve assessing the changes which occur from 

the initiation of work. The above definitions of functional and subjective fatigue do not 

reflect this fact and a more sensitive definition is needed to better describe and measure 

muscle fatigue. 

True physiological fatigue is a term that reflects the many metabolic changes and 

alterations at the level of the muscle fibre which occur during contraction. Ultimately, 

these are major factors which will predict the degree of fatigue an individual experiences 

(Windhorst and Mommaerts, 1996; Westerblad et al, 1991). 
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In the investigation of muscle fatigue, it is useful to focus upon the unit of muscle 

contraction, the motor unit, defined as an individual motor nerve cell and the muscle fibres 

it activates. Processes which occur during fatigue can affect the function of the motor unit, 

resulting in the changes which are commonly observed: a decline in performance, 

eventually subjective changes and i f extreme, injury. 

2.3.3 Fatigue in RA 

Subjective fatigue in RA is extremely common, with a reported prevalence of 80 to 93% 

(Belza, 1995; Pinals et al, 1981). Belza (1995) reported that 61% of the variation in 

subjective fatigue in RA could be explained by pain, gender, poor sleep, reduced 

activity levels, comorbid conditions and functional status. 

Unlike self-reported fatigue and in spite of the decline in functional capacity noted in 

RA (Ekdahl and Broman, 1992), physiological fatigue in this disease has not been 

investigated. Subjective scores cannot be assumed to represent functional or 

physiological fatigue, since subjective fatigue does not consistently correlate with 

objective measures of fatigue (Oberg, 1994). Subjects with RA are recognised as being 

deconditioned and at an increased risk of cardiovascular and peripheral vascular disease 

(Myllykangas-Luosujarvi et al, 1995), in addition to having the histological 

abnormalities within skeletal muscles which have been described. These factors may 

result in a reduced ability to cope with the metabolic by-products which accumulate with 

muscular work, which in turn will result in early muscle fatigue (Jones and Round, 1990; 

Edwards, 1981). Physiological fatigue in RA is fiirther investigated in this study using 

analysis of the fi-equency spectrum of the surface myoelectric signal. 

2.3.4 Mechanisms of Fatigue. 

Numerous biological and motivational factors may potentially contribute to muscular 

fatigue, occurring anywhere along the 'chain of command' pathway involved in motor unit 

activity, fi-om the higher centres in the CNS to cross bridge cycling within the muscle 

(Bigland Ritchie, 1981a, 1981b; Edwards, 1981). Metabolic influences upon muscle 

fatigue with exercise with time progressively include phosphocreatine depletion, lactate 
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and proton accumulation, glycogen depletion, reduction in blood glucose and an increase 

in the blood tryptophan:amino acid ratio. The former two features are particularly 

important limiting factors in exercise of higher intensities (Edwards et al, 1977). 

Changes in the myoelectiic signal have been noted to occur with fatigue and have been 

utilised in its assessment. These myoelectric manifestations of fatigue in relation to the 

surface myoelectric signal (SMES) during voluntary work will be described after a short 

description of the terminology used in electromyography. 

2.3.5 The description of the myoelectric signal. 

The myoelectric signal (MES) can be described and quantified in many ways. The 

interference pattern describes the pattern of the MES during a voluntary contraction, where 

many MU potentials are superimposed upon one another, making it impossible to define 

each MUAP individually. The MES may be quantified by the measurement of its power at 

different frequencies (by the process of frequency spectral analysis) or the voltage of the 

signal, expressed as the root mean square (RMS) voltage of the MES, or the integrated 

emg (lEMG). This can be further evaluated by the examination of the relationship 

between this measure and the force exerted. This relationship is termed the neuromuscular 

efficiency (NME) and will be described fiirther in a later section. The use of such 

parameters in the assessment of muscle performance and fatigue m health and disease will 

now be detailed. 

2.3.6 Myoelectric Manifestations of Fatigue. 

During sustained muscular contractions, physiological and biochemical modifications 

occur. These include an elevated level of metabolites, resulting in an alteration of the pH of 

intra and extracellular fluid and modification of the electrical properties of muscle fibre 

membranes (Lindsti-om and Petersen, 1981). As a result, changes occur in the amplitude, 

shape, spatial width and propagation velocity of the motor unit potential - and therefore in 

the myoelectric signal. 

Since Edwards and Lippold described changes in the myoelectric signal during contraction 

in 1956, several changes in the myoelectric signal during work have been advocated as 
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indicators of muscle fatigue. These include a rise in signal voltage during a sustained 

submaximal contraction, a decrease in voltage during a sustained maximal voluntary 

contraction and a decrease in force i f a given level of SMES amplitude is maintained 

(Lindstrom, 1970; Lindstrom et al, 1977; Edwards and Lippold, 1956). Changes in the 

frequency spectrum of the SMES also occur with fatigue (Lindstrom et al, 1977) and will 

be described further below. 

2.3.7 The RMS of the SMES as an indicator of fatigue. 

The increase in the SMES amplitude as a fimction of time during sustained submaximal 

contractions has been used as an indicator of muscular fatigue for over 4 decades. Stephens 

and Taylor (1972) studied the smoothed rectified integrated EMG (lEMG) from the first 

dorsal interosseous muscle in three subjects during contractions at 70-80% MVC sustained 

for 30 seconds. They noted that whilst force is maintained the lEMG increases, and 

declmes once mechanical fatigue in the form of a reduction in contraction force occurs. A 

non linear rise in the amplitude of the SMES has been noted by West et al (1995) and 

others (Fugelvand et al 1993; Lind and Petrofsky, 1979). The increase in the lEMG and the 

root mean square (RMS) of the SMES with fatigue during sustained submaximal 

contractions (Kuroda et al, 1970) has been postulated as being related to a progressive 

increase in muscle fibre recruitment, impaired excitation-contraction coupling and/or an 

increase in firing frequency as contractile element failure of the initial muscle fibres 

involved commences (Edwards, 1981). However, although a rise in the RMS of the SMES 

and in the lEMG continue to be accepted as indicators of muscle fatigue (Stulen and 

DeLuca, 1978; Cooper et al 1993, Troup and Chapman, 1972), some workers have 

reported no change or a decline in this parameter with sustained work (Chapman et al 

1970; Seidel et al 1987). Findings differ according to the muscle studied, and the intensity 

of the work involved. It is likely that this is related to the differences which exist between 

muscles in relation to their motor unit control schemes, as will be described in section 2.4. 

It is for these reasons that DeLuca (1985) and Edwards (1981) stated that the change in the 

signal amplitude is of little use as an indicator of fatigue. More recentiy, analysis of the 

SMES in the frequency domain (power spectral analysis) has been utilised in the 

monitoring of muscle fatigue. 
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2.3.8 Power spectral analysis (PSA) of the surface myoelectric signal. 

The power spectioim describes tiie relationship between the signal amplitude and 

frequency (Lindstrom, 1970). Richardson ( 1 9 5 1 ) was the first to use power spectral 

analysis, in dividing the EMG spectrum into two parts using a filter, to measure the 

spectral content. Walton (1952) and other workers (Fex and Krakau, 1957; Scott, 1967) 

further developed the technique for clinical use and the technique has been applied in a 

wide variety of settings (Lindstrom et al, 1970; Muro et al 1982; Lindsti-om 1970; 

Kadefors et al, 1976). Various methods exist in the determination of the power 

spectrum of a signal (Duhamel and Vetterli 1990). However, subjecting the raw MES 

to a Fast Fourier Transform (FFT) algorithm is the most commonly accepted method in 

PSA (Petrofsky and Lind, 1980; Basano and Ottonello, 1986). 

2.3.9 The description of the power spectrum and power spectral parameters. 

The numerous parameters used to describe the power spectrum and changes which 

occur in response to activity include the mean, median and mode frequencies, the ratio 

parameter, peak frequency and spectral width. 

The frequency spectrum of the MES is most commonly described in relation to the 

median (MDF), mean (MNF) or mode (MoF) frequencies (Stulen and DeLuca, 1981; 

Merletti et al, 1992). The M D F is the frequency at which the power spectrum is divided 

into two regions of equal power. The mode frequency, is the frequency of the peak 

amplitude of the spectrum. The mode frequency is not suitable for use in power spectral 

analysis, as it has a high coefficient of variation (Schweitzer et al, 1979). The median 

frequency ( M D F ) is generally the preferred parameter, being superior to the others 

particularly in the estimation of changes in conduction velocity and it is less sensitive to 

noise (Stulen and DeLuca, 1981). The gradient of the median frequency of the SMES 

( M D F G ) describes the gradient of the regression line fitted to the median frequency versus 

time plot and has become a popular index of muscle fatigue during sustained submaximal 

isometric conti-actions. This is related to physiological changes that occur during tiie 

process of fatigue, as will be described further. The initial median frequency ( I M F ) 

describes the value obtained from the intercept of the of the regression line on tiie y axis 

(time = 0) . The IMF represents the median frequency of the SMES prior to the onset of 
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fatigue. Spectral parameters are shown in relation to the power spectrum in figures 2.3.1 

and 2.3.2. 

Figure 2.3.1: The frequency spectrum of the SMES. 
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Figure 2.3.2: The change in the median frequency of the SMES with time. 
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The spectral width (SW) describes the wddth of the power spectrum at half the peak 

amplitude. This parameter has not been focused upon in the literature to date, possibly 

because its' physiological basis is unclear and it may add no additional information to 

that supplied by the MDF in relation to the behaviour of the underlying working 

muscle. Although the ratio parameter, which expresses the ratio of low frequency 

components to high frequency components (Schweitzer et al, 1979), is most sensitive to 

conduction velocity, the relation is non linear and it displays a high covariance (Stulen 

and DeLuca, 1981). 
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2.3.10 The frequency spectrum in relation to E M G measures. 

The frequency spectrum of the myoelectric signal depends upon the action potentials of 

individual muscle fibres within the pick-up zone of the recording electrodes, the 

conduction velocity of the action potentials, the thickness and length of the muscle, the 

distance between the muscle fibres and the detection surface of the electrodes, the 

electiode configuration, the duration of the action potential, the number of phases, turns 

and zeros, fibre type and the level of force (Lindstiom et al, 1977). The relationship of 

the power spectrum with force will be described later. 

In signal theory, the influence of the conduction velocity of a single fibre action 

potential wil l persist through all mathematical manipulations in the modelling of 

various processes. In all expressions describing the power spectrum, the velocity 

always appears together with the frequency as a quotient (frequency/velocity), thus any 

velocity change can be seen as a shift of the spectrum along the frequency axis 

(Lindstrom, 1970; Lindstrom and Magnusson, 1977). Fourier transformation of a 

potential of fixed geometrical shape also shows that the power spectrum density is 

inversely proportional to the squared value of the velocity (Lindstrom et al, 1970). 

When the conduction velocity decreases, a signal increase, in addition to a spectral 

shift, occurs. Such changes are important in the monitoring of muscle fatigue and will 

be outlined in the section 2.3.11. 

The power spectrum obtained with surface electrodes will differ from that obtained using 

intramuscular elecfrodes, having a maximum in the frequency region between 10 and 

lOOHz, using surface electrodes compared with between approximately 100 Hz (or lower) 

and 200 Hz witii inframuscular electiodes (Krivickas et al, 1996). The MES (and therefore 

the frequency spectrum) is strongly influenced by the inter-electrode separation 

distance (EES), which affects the bandwidth and amplitude of the EMG signal. A smaller 

distance produces higher frequencies and lower amplitudes than a large lES. 

The duration of a myoelectric signal is commonly used as a signal characteristic. It 

plays a large part in the determination of the distribution of power over the frequency 

interval; pulses of short duration contain more high frequency energy than pulses of 

longer duration. The power spectrum is strongly influenced by the number of phases of 

a motor unit, which in turn is strongly associated with the duration of the signal. When 
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the duration is constant, an increase in phase number causes a spectral shift towards 

higher frequencies. When the duration increases in proportion to the number of phases, 

a more pronounced peak is seen in the lower region of the power spectrum (Lindstrom 

and Petersen, 1981). 

The fibre type composition of the muscle has been linked with the initial median 

frequency (IMF) and the change in the MDF with time during a fatiguing contraction 

(termed tiie MDF gradient, tiie M D F G ) (Linssen et al, 1991; Arendt-Nielsen et al, 1988; 

Portero et al, 1989; Merletti et al, 1990). Type I I fibres have been shown to have higher 

MDFs than type I in contiaction (Milner Brown et al, 1986) and display higher 

conduction velocities along the muscle fibre membrane (Linssen et al, 1991). The higher 

conduction velocity may be due to the generally larger diameters of Type I I fibres 

(Broman et al, 1985; Kereshi et al, 1983), altiiough Sadoyama et al (1988) found that tiie 

conduction velocity correlates with the cross-sectional area of the fibres, rather than the 

diameter. Many workers have proposed that the MFCV is related to fibre diameter: 

larger fibres with faster MFCVs wil l have greater mean power frequencies (MNFs) 

(Basmajian and DeLuca, 1985). However, the proposal that muscle fibre diameter is the 

important factor in determining the MDF must be brought into question when the 

muscle fibre type is considered. In studies of lower limb musculature, Gerdle et al 

(1988b) and Moritani et al (1985a) reported a strong relationship between the MNF of 

the EMG and the percentage of type I I fibres. Westbury and Shaughnessy (1987) also 

documented this relationship in the masseter muscles of females. Many of the studies 

relating the MDF to fibre diameter have been performed upon men, in whom type I I 

muscle fibres are larger than type I fibres in most muscles. Hence the increase in MDF 

with force may be due to either the fibre type or diameter. However, in women the size 

difference between fibre types is much less: many authors have reported type I fibres to 

be larger than type I I fibres (Gerdle et al, 1991; Simoneau and Bouchard, 1989; Froese 

and Houston, 1985). Gerdle et al (1991) used this finding to examine the influence of 

the fibre type composition on the MNF, by studying a gradually increasing static knee 

extension in 10 women. The vastus lateralis and medialis and the rectus femoris 

muscles were studied; biopsies of the former showed larger type I fibres than type II in 

8 subjects. Two important fmdings were reported: significant positive correlations 

between the MNF and torque were demonstrated for all 3 muscles and negative 

correlations between type I fibres and the MNF. 
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Although the Type I I fibres in most muscles are larger than type I fibres, this is not true 

for a small number of muscles, including the erector spinae, temporalis and iliopsoas 

(Polgar et al, 1973). This may explain the atypical changes in the frequency spectrum of 

the SMES that has been observed in some of these muscles (Roy et al, 1989). 

Hence, in order to interpret the frequency spectrum of the MES from forearm muscles, it 

is important to establish the relative size and proportions of fibre types in the forearms of 

healthy individuals. Johnson et al (1973) demonstrated the extensor digitorum communis 

(EDC) to consist of a slight predominance of Type I I fibres (51.3 % ) , which are slightly 

larger than Type I fibres. Although no information on the flexor carpi radialis (FCR) is 

available in the literature, the flexor digitorum profundus also shows a predommance of 

Type I I fibres (60.9 % ) , which were significantiy larger than Type I fibres. 

It is evident that fibre diameter is not the sole factor influencing the muscle fibre 

conduction velocity. As has been discussed, it has been demonstrated to be related to 

the metabolic state of the fibre. Conduction velocities have been demonstrated to be 

higher in type I I fibres than type I (Mortimer et al, 1970); this may be related to 

physiological characteristics such as greater ATPase activity, Câ "̂  flux and shorter 

action potentials and twitch times (Moritani et al, 1985b). 

Muscle length has been found to have an effect on the power spectrum (Gerdle et al, 

1988a; Inbar et al, 1987; Bazzy et al, 1986). Most studies indicate that with the muscle 

in a lengthened state the low frequency part of the spectrum is more prominent than 

when at shorter lengths (Inbar et al, 1987; Bazzy et al, 1986; Duchene and Goubel, 

1993). In some studies which are presumed to be non-fatiguing, part of the observed 

spectral shift could be attributed to the change in muscle force with length. However, 

in studies at each muscle length where forces were expressed in terms of the 

percentage of the maximal voluntary contraction (MVC), similar results were obtained 

(Okada, 1987). Several possible mechanisms for these observations have been 

suggested (Kossev et al, 1992; Duchene and Goubel, 1993). A decline in conduction 

velocity with increasing muscle length can be explained in terms of modification of 

fibre diameter and/or reduction in the distance from the deeper, smaller diameter (low 

MFCV) fibres to the detection surface of the electrode (Bazzy et al, 1986). Conversely, 

it is possible that the distance from the detection surface to the active MUs increases 
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when the muscle is lengthened, resulting in an increase in high-frequency filtering and 

the observed spectral shift (Lindstrom and Petersen, 1983a, 1983b). 

Lindstrom (1974) found that reducing muscle thickness increases the power of high 

frequency components. However the opposite was found by Bazzy et al (1986). This is 

one factor which causes variations in myoelectric characteristics between different 

muscles. 

The SMES is affected by changes in muscle temperature (Petiofsky, 1979), possibly due 

to the effects on resistance of the sarcolemma (Fink and Luttgau, 1976). The temperature 

rise during an isometric contraction is linearly related to the force of confraction (Edwards 

et al, 1975). An increase in muscle temperature results in a reduction in signal amplitude, 

tiie RMS of tiie SMES and an increase in MNF (Peti-ofsky, 1979). 

2.3.11 Power spectral compression during muscle fatigue. 

Altiiough Piper first described a reduction in tiie frequency of the MES witii work in 1921 

(the Piper rhythm) (Stulen and DeLuca, 1981), it was four decades before contiaction-

induced changes in the frequency content of tiie myoelectric signal were quantified by, 

amongst others, Kogi and Hakamada (1962) and Kaiser and Petersen (1962). These 

workers demonstiated a decline of power density in the high frequency region and an 

increase in the low frequency region during work, using octave band filtering. This was 

termed the "power spectral shift" and was subsequently confirmed by other workers 

(DeLuca, 1984; Lindstiom et al, 1977). Lindsfrom (1970) pointed out that the conduction 

velocity of muscle fibres scales the power density of the myoelectric signal, implying that 

the power specfral "shift" to a lower frequency is actually a power spectial 

"compression". 

Different time dependent phenomena take place witiiin tiie muscle during an isometiic 

contraction, including myoelectric and power spectial density changes as a result of 

alterations of amplitude, shape, width and propagation velocity of MUAPs, recruitinent 

alterations of motor imits, changes in the firing rates of individual motor units and 

changes in tiie force twitch of individual motor units (DeLuca, 1984). These have all been 

utilised as myoelectiic manifestations of muscular fatigue and can be expressed in terms 

of the changes in mean and median frequencies, conduction velocity and amplitude (the 
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average rectified value and root mean square of the signal). Changes in the signal 

amplitude with fatigue have been discussed. Power spectral compression has been 

advocated as a sensitive measure of muscle fatigue and will be fijrther described below. 

2.3.12 The Description of Power Spectral Compression. 

As outiined earlier, the MFCV has been shown to be closely associated with the 

frequency spectrum of the SMES. Lindstrom et al (1970) demonstrated that theoretically 

the power spectral shift towards lower frequencies and the increase in the myoelectric 

signal witii fatigue could be accounted for by a single elecfrophysiological correlate, the 

conduction velocity. They fiirther proposed that, since changes in the frequency can be 

used to determine changes in the conduction velocity, they could also be used to assess 

fatigue. However, in a review of potential myoelectric indicators of fatigue, Merletti et al 

(1990) concluded that certain spectral variables (mean and median frequencies - see 

below) are more sensitive to fatigue than the conduction velocity. 

The mean and median frequencies are both appropriate indicators of power spectral 

compression and have been demonstrated in several studies to correlate with conduction 

velocity and muscle fibre type distribution as discussed in Section 2.3.10 (Linssen et al, 

1991; Hakkinen and Komi, 1983; Viitasalo and Komi, 1978; Van Boxtel et al, 1983). 

Changes in the MNF have been used to describe alterations in the power spectrum during 

fatiguing contractions (Hagberg, 1979; Broman and Kadefors, 1979; Ortengren et al, 

1979; Lynne-Davies, 1979). Variability is small compared with its change with muscle 

fatigue, and it is stable and reliable (Daanen et al, 1990). However, the median frequency 

(MDF) is the preferred parameter (Stiilen and De Luca, 1978, 1979; Sabbahi et al, 1979; 

Petrofsky and Lind, 1975). It is superior to the MNF for estimating changes in conduction 

velocity and is less sensitive to noise (Stulen and DeLuca, 1981). 

Some workers have analysed the spectral changes which occur during muscle contraction 

by dividing the frequency spectra into a set of individual frequency bands (arbitrarily 

chosen) and also by examining the frequency contents (Dolan et al 1995; Moxham et al, 

1982; Bigland-Ritchie et al, 1981a; Andersson et al, 1976; Hary et al, 1982; Schweitzer et 

al, 1979). Some studies have found that the high/low frequency ratio reflected fatigue-
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induced changes in the muscle (Moxham et al, 1982; Bigland-Ritchie et al, 1981a; 

Andersson et al, 1976; Dolan et al, 1995). However others have found this method to be 

less reliable than the MDF as an index of fatigue (Hary et al, 1982; Schweitzer et al, 

1979). This may be due to the arbitiary nature of the banding and the number of bands 

chosen. Dolan et al (1995) pointed out that 2 to 3 bands may not be adequate and used 10 

bands with some success in reflecting fatigue. 

2.3.13 Mechanisms of Power Spectral Compression during Muscle Fatigue. 

Various overlapping theories for the main mechanism of spectial modification exist 

(StiUen and DeLuca, 1981; Fex and Krakau, 1957; Lindstiom et al, 1970, 1977; Duchene 

and Goubel, 1993; Mortimer et al, 1970; Mills, 1982). The phenomenon is likely to be 

associated with many inter-related factors, including altered muscle fibre conduction 

velocity, the synchronisation of motor unit firing, accumulation of metabolic by-products, 

ischaemia, and the muscle fibre type(s). 

The muscle fibre conduction velocity (MFCV) is a basic physiological parameter that 

affects the myoelectric signal spectial density and contributes to its compression during 

fatigue (Merletti et al, 1990). The conduction velocity declines as voluntary muscular 

contiactions progressively fatigue to exhaustion (Stalberg, 1966). Mortimer et al (1970) 

and others have suggested that that a reduction in conduction velocity is the most likely 

cause of power spectral compression (Lindstrom and Petersen, 1983a; Lindstiom, 1970; 

Kranz et al, 1983; Stulen and DeLuca, 1982). However, otiiers pointed out tiiat a decline 

in conduction velocity alone does not explain the power spectial changes seen (Bigland-

Ritchie et al, 1981a; Merietti et al, 1990) and spectial modifications can occur 

independentiy of changes in MFCV (Brody et al, 1991). The mechanisms by which tiie 

decline in conduction velocity occurs remain unclear (Bigland-Ritchie et al, 1981a, 

1981c). 

The intiamuscular accumulation of metabolic by-products during isometric contiactions 

may be due to an increased production (Ahlborg, 1972) and/or reduced removal as a result 

of reduced blood flow during contractions (Couch et al, 1971; Mortimer et al, 1971). The 

accumulation of protons and lactic acid and tiie resulting reduction in pH (Dawson et al, 

1977) is associated with functional fatigue (Sahlin et al, 1975; Karlsson, 1971) and has 

been suggested to cause power spectial shift in fatigue (Mortimer et al, 1970). This is 
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related to the decline in muscle fibre membrane excitability with decreasing pH (Tasaki et 

al, 1967), particularly intracellular pH (Terakawa et al, 1978). In addition, when pH 

drops, less calcium ions are available to produce a muscle contraction (Nakamuru et al, 

1972). A decline in membrane excitability leads to a reduction in conduction velocity, 

which in turn has been shown to be related to power spectral compression (Mortimer et al, 

1970). Such findings have led many workers to conclude that the rate of decline in the 

MNF may be dependent upon the metabolic state of the fatiguing muscle (Nagata et al, 

1981; Komi and Tesch, 1979; Moritani et al, 1985a). 

Other studies have not been consistent with this hypothesis, suggesting that lactate 

accumulation is unlikely to be the sole cause of power spectral shift (Bouissou et al, 1989; 

Beliveau et al, 1991; Brody et al, 1991). Karlsson et al (1975) proposed that lactate 

influences the power spectral shift only for given intensities of isometric contraction. 

Bouissou et al (1989) demonstrated a correlation between MNF and lactate concentration, 

but found no relation with muscle pH - possibly due to difficulties in measuring cytosolic 

pH. Brody et al (1991) demonstrated an initial relationship between conduction velocity, 

pH and MDF, but MDF and conduction velocity altered differently in sustained 

stimulated contractions. Beliveau et al (1991) reported that MNF but not force generating 

capacity had completely recovered within a few minutes, despite persistence of acidosis 

indicating other processes are involved. In further work, Beliveau (1992) concluded that 

changes in power spectral frequency components in exercise are not uniquely determined 

by changes in muscle pH and conduction velocity and suggested that other metabolites 

such as inorganic phosphate and its diproprionated form may have a role. However, a 

study of simultaneous surface electromyography and '̂P NMR spectroscopy by Bendahan 

et al (1996) found no overall correlation between the high/low frequency band ratio and 

changes in metabolism during fatiguing static contractions of forearm musculature. 

Blood flow in contracting muscle is restricted or arrested (Naess and Storm-Mathiesen, 

1955; Mottram, 1963). Stephens and Taylor (1972) and Fox and Kenmore (1967) 

suggested that impulse transmission in the neuromuscular system is most sensitive to 

ischaemia. In the evaluation of the recovery from fatigue by voluntary test contractions, 

Hara (1980) confirmed that ischaemia is involved in muscle fatigue; this is probably 

related to the accumulation of metabolites. Humphreys and Lind (1963) reported that the 

blood flow in the forearm is near to total occlusion during handgrip at 70% of the 
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maximum grip strength (70% MGS). During grips performed at levels between 30 and 60 

% MGS, the blood flow is increased. 

Studies have also been performed assessing the affect of muscle length on the power 

spectrum during fatiguing activity. Huijing et al (1986), assessing the triceps surae and 

gastrocnemius, found that changes in MNF with the muscle in the lengthened state 

were significantly greater than at shorter lengths. However, endurance at longer muscle 

lengths was greater. When this was allowed for in further assessments, no significant 

length-related effect was shown. 

Much of the early work on the mechanism of power spectral shift concentrated on the 

synchronisation of motor unit firing. Lippold et al (1957) and others (Fex and Krakau 

1957; Lago and Jones 1977; Bigland-Ritchie, 1983) suggested that the switch from the 

normal, desynchronised firing pattem to a synchronised form causes the spectral shift. 

Mortimer et al (1970) concluded that the phenomenon is not solely due to the 

synchronisation of MUAP's, but is largely due to the decline in conduction velocity, 

which has been detailed above. 

There is evidence that muscle fibres of different types have different properties during 

fatiguing exercise. Larsson (1978) and Viitasalo and Komi (1978) were the first to 

propose that the MDF declines more rapidly during a sustained isometric contraction to 

exhaustion in subjects with a high proportion of Type I I fibres than those with a high 

percentage of Type I fibres. Hakkinen and Komi (1983) found a relationship between 

the relative decrease in mean power frequency during a 50% MVC and the relative 

area of Type I I fibres of the vastus lateralis muscle. Kourinka (1988) compared the 

fatiguability in the human biceps (which contain a predominance of slow twitch fibres) 

and the triceps (which have a majority of fast twitch fibres) (Johnson et al, 1973, Fallentin 

et al, 1985) and demonstrated different power spectra and restitution patterns between the 

two muscle groups. Linssen et al (1991) identified the relative roles of types I and II 

muscle fibres in fatigue by assessing the muscle fibre and surface EMG studies in patients 

with congenital myopathies, comparing those who had 95-100 % type I fibre 

predominance with those patients with 80% type I fibres and with normal controls. They 

concluded that type I I fibres have a greater force generating capacity and are more 

fatiguable than type I fibres, as reflected by almost no decline in signal conduction 

velocity and only a slight increase in surface EMG ampUtude during work in subjects 
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with myopathy. Overall, studies indicate that muscles with relatively high proportions 

of type I I fibres have faster spectral shifts than do muscles with high proportions of 

type I fibres (Moritani et al, 1986; Van Boxtel et al, 1983; Arendt-Nielsen and Mills, 

1988; Portero et al, 1989; Merietti et al, 1990; Huijing et al, 1986). On the basis of these 

studies, power spectral shift has been proposed to be related to the relative roles of 

different fibre types (Milner Brown et al, 1986; Braakhekke et al, 1989). This seems 

likely but other factors are also likely to be significant. 

Duchene and Goubel (1993) emphasised the difficulties in interpreting the results 

relating to muscle fibre type and power spectral shift, in the light of other physiological 

changes that are occurring. These include altered MU recruitment and firing rates and 

alternations in activity between synergists (Duchene and Goubel, 1990). A description 

of the relation of the SMES to force and motor unit control pattems will now follow. 

2.4. Motor unit control and the relationship between force and the 

SMES. 

2.4.1 Introduction 

Changes in neuromuscular control are involved in spectral modifications, as 

emphasised by Stulen and DeLuca (1981) and DeLuca and Creigh (1985). Changes in 

motor unit recruitment alter the fi-equency spectrum of the MES, whereas alterations in 

the MU firing rates have little effect (DeLuca et al, 1983; Solomonow et al, 1990). In 

order to interpret the alterations which occur in the SMES during muscular 

contractions and the inter-relationships between the myoelectric parameters and force, 

a review of the mechanisms of the modulation of MU activity is appropriate. Studies of 

the relationship between the SEMG and force will also be reviewed. 

2.4.2 Motor unit control and the generation of force. 

Motor unit (MU) control, through the recruitment of new motor units and modulation of 

MU firing rates, forms the basis of the maintenance of a given force during a sustained 

muscular contraction and in increasing levels of force output (Milner-Brown et al, 1972). 

Numerous workers have addressed the interaction between these two forms of MU 
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control with contradicting results. Much of the controversy relates to the examination of 

different muscles and the type and intensity of contractions performed. Since each muscle 

has unique anatomical and physiological characteristics, it is likely that they also differ in 

their motor control schemes (DeLuca et al, 1982a, 1982b; Lawrence and DeLuca, 1983). 

Henneman and co-workers first described the orderly recruitment according to motor 

neurone size (the size principle) in a series of studies on MUs during reflex contractions 

of muscle m cats (Heimeman et al, 1974; Bawa et al, 1984), smaller motor neurones being 

recruited earlier than larger ones. Milner-Brown et al (1973a) confumed this pattern of 

orderly recruitment in voluntary contractions of the first dorsal interosseous muscle of the 

hand in humans. Other workers (Desmedt and Godaux, 1981; Nardone et al, 1989) have 

shown that MU recruitment according to the size principle does not occur universally in 

all muscles, raising the prospect of differences between muscles and during different 

types of work. This may in part be explained by the fact that the initial studies were 

performed using contractions of single muscles only, which does not of necessity reflect 

the situation in the fianctional setting. 

The other mechanism of motor unit control m increasing levels of force is the modulation 

of motor unit firing rates, rate coding. The behaviour of MUs with respect to firing rates 

over a range of force remains an area of conftasion. MU firing rates have been reported as 

varying monotonically wdth force (Milner-Brown et al, 1973b), as plateauing at 

submaximal force levels (Bigland and Lippold, 1954a,b; Monster and Chan, 1977) and as 

firing at constant rates, independent of force (Bracchi et al, 1966). Low threshold MUs 

have been reported to exhibit low firing rates by some workers (Burke, 1981; Kemell D, 

1965) whereas others have reported them to fire at higher rates than higher threshold units 

(Person and Kudina, 1972; DeLuca and Erim, 1994; Erim et al, 1996). 

Although the relative influence of the MU recruitment and firing frequency on the 

generation of force has been widely investigated (Milner Brown et al, 1973a, 1973b; 

Clamann, 1970; Bracchi et al, 1966; Erim et al, 1996; Bigland and Lippold, 1954a), 

there remains a lack of consensus of opinion, which is likely to be due to differences in 

the muscles studied and protocols used (Edstrom and Grimby, 1986). The mechanical 

properties of a muscle are dependent upon its composition with respect to the fibre type, 

which may in turn be expected to play a role in determining the specific modulation of 

motor units and recruitment strategies. Muscles with similar fibre compositions have been 

25 



shown to differ in their mechanisms of the maintenance and increase in force output. The 

relative roles of recruitment and rate coding may depend upon the size of the muscle and 

its functional requirements (Fugelvand et al, 1993). Recruitment of MUs has been shown 

to be the most important strategy in the generation of force in large muscles over a wide 

range of force (0-90% MVC), whereas rate coding is important in smaller muscles 

involved in finely controlled movements, with recruitment being important within the 

force range of 0-50%MVC (DeLuca et al, 1982a, 1982b). There is no available 

information relating to the number of motor units in the extensor digitorum communis 

(EDC) and flexor carpi radialis (FCR) muscles. However, in muscles such as those of the 

forearm which are medium sized and perform both powerful movements and finely 

controlled movements of the fmgers and wrist, it seems likely that recruitment is the more 

important factor in the generation of increasing levels of force, since the rate of firing of 

motor units can vary on demand but only within a limited range of frequencies 

(Basmajian, 1963). Recruitment is especially important at low tensions, with frequency of 

firing contributing increasingly to stronger tensions (Milner-Brown et al, 1973b, 1973c). 

In relation to the forearm musculature, this has been confirmed in the EDC by Monster 

and Chan (1977). However, even at high tensions, recruitment has been found to be 

important in some muscles (Clamann, 1970; Hannerz, 1974). 

Riek and Bawa (1992) assessed MU recruitment in two forearm muscles, extensor 

digitorum communis (EDC) and extensor carpi radialis (ECR), during sustained isometric 

wrist extension and radial deviation tasks at progressive unspecified force levels. They 

demonstiated size-ordered recruitment of MUs in both muscles during both tasks. 

Monster and Chan (1977) studied the behaviour of MUs in the EDC during voluntary 

isometric contractions, confirming that the size principle held true for this muscle under 

these circumstances. Jones et al (1993) showed that the size principle also applied to the 

recruitment of MUs in tiie flexor carpi ubiaris (FCU) during isometric wrist flexion and 

ulnar deviation. Although these tasks differ from the grip task used in this study, it is 

evident that the size principle does hold true for extensor and flexor forearm muscles 

during isometiic contractions. Monster and Chan (1977) found motoneurone firing rates 

in the EDC during isometric contractions to increase with increasing force levels, 

plateauing at submaximal force levels. 

Another important consideration in relation to MU activity in the clinical setting during a 

functional task, such as grip, is inter subject variation in MU activity, which in tum will 
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affect SMES parameters. Fleckenstein et al (1994) demonstrated large inter-individual 

variation in M U recruitment patterns in forearm flexor muscles during wrist flexion at a 

standard load. Although the use of a standard load rather than a percentage of maximum 

was a limitation of the study, it does indicate the need to consider inter-subject variation in 

MU recruitment in the performance of a functional task which may not be demonstrated 

in studies involving isolated muscle contraction. 

Having described the mechanisms of MU modulation in the generation of force, the 

relationship between force and the SMES and between the RMS and spectral parameters 

will now be described. 

2.4.3 The relationship between the SMES and force. 

Since Lippold reported a linear relationship between the lEMG measured from the 

gastrocnemius and soleus muscles during plantar flexion of the foot in 1952, numerous 

reports have been published on lEMG-force relationships in human muscles. Reviews 

by Bouisset (1973), Bigland-Ritchie (1981b), Perry and Bekey (1981), Basmajian and 

De Luca (1985) and more recently Hof et al (1987) and Clancy and Hogan (1991) are 

amongst those to confirm that there is a close relationship between the two parameters 

for a range of muscles studied. The nature of the relationship varies between different 

studies, with disagreements as to whether the relationship is linear or non-linear (Perry 

and Bekey, 1981). Sources of variation include differences in the structural and 

physiological properties of the muscle(s) being assessed, as has been discussed in 

relation to M U control, the relative amounts of Types I and I I fibres and their 

orientation, accompanying synergist/antagonist inter-relationships, work intensity and 

contraction type, viscoelastic properties and methodological aspects such as electrode 

type and configuration (Moritani and DeVries, 1978; Lawrence and DeLuca 1983; Perry 

and Bekey, 1981). Overall, it appears that the linear relationships obtained at low to 

moderate force levels are related to recruitment, whereas quadratic relationships 

observed at higher force levels are related to rate coding. The force levels at which the 

linear relationship becomes quadratic will vary according to the muscle involved (Perry 

and Bekey, 1981). 

The presence of muscle synergism may help to explain the discrepancy between linear 

and parabolic relationships. Hof and van den Berg (1977) compared the lEMG-
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isometric force relationship in the soleus whilst sitting and whilst standing, the latter 

also involving both heads of gastrocnemius. Although the relationship for the 

individual muscles were non-linear, once summed the relationship became linear. 

Hence when the muscle being studied is one of a group of synergists, the relationship is 

likely to be deceptively linear, particularly i f bipolar electiodes are being used (Perry 

and Bekey, 1981). 

Perry and Bekey (1981) also emphasised the importance of muscle length on the nature 

of the lEMG-force relationship. This has been confirmed by others who have 

demonstrated that the differences between the lEMG-force relationship obtained at 

different joint angles disappears when the force is expressed as the percentage of the 

maximum voluntary contraction (Vredenbregt and Rau, 1973; Hof and van den Berg, 

1977; Cnockaert et al, 1975). With regard to the forearm musculature, West et al 

(1995) reported the lEMG recorded from forearm flexor muscles to increase linearly 

with grip force over the range 30-75%. 

Since there is a wide variation between muscles in their relationship between force and 

the MES, Lawrence and De Luca (1983) concluded that there is "no physiological 

model to describe accurately the relationship between the amplitude of the surface 

recorded MES and measured force output of different muscles in various contraction 

modes". 

2.4.4 Neuromuscular efficiency (NME) 

Fischer and Merhautova (1961) first proposed the concept of the 'efficiency of 

electrical activity' (EE A) when they suggested plotting the lEMG as a function of the 

force of an isometric contraction. This later became known as neuromuscular 

efficiency (NME). DeVries (1968) recommended that it was more logical to invert this 

ratio (force : lEMG) such that the 'efficiency' would vary directly with function and 

most workers have expressed NME in this way (Lindeman and Drukker, 1994; Milner-

Brown et al, 1986; Woods and Bigland-Ritchie, 1983). 
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2.4.5 The relationship between force and spectral parameters. 

Studies of the inter-relationship between force and the mean or median power 

frequencies of the power spectrum have involved the use of step contractions 

(Petrofsky and Lind, 1980; Hagberg and Hagberg, 1988, 1989; Duchene and 

Goubel, 1990) and ramp contractions (Gerdle et al 1991; Bilodeau et al 1990; Gerdle et 

al 1990; Hagberg and Hagberg, 1989). 

Initial studies using step contractions (the maintenance of force for a few seconds of 

different percentages of the MVC, without apparent fatigue) suggested that mean 

power frequency was independent of contraction intensity (Petrofsky and Lind, 1980). 

More recent studies have suggested that the MNF increases with increasing work 

intensity at low levels of force (up to 25 to 30 % ) . An increase in the high frequency 

part of the spectrum when the level of contraction increased has been described for 

different muscles, such as elbow flexors (Hagberg and Ericson, 1982), plantar flexors 

(Hagberg and Hagberg, 1988) and masticatory muscles (Duchene and Goubel, 1990). 

For higher levels of force, conflicting results have been reported. Some workers have 

found an absence of an increase in MNF with increasing force level (Hagberg and 

Hagberg, 1988; Hagberg and Ericson, 1982; Bazzy et al, 1986; Van Boxtel and 

Schomaker, 1984; Merietti et al, 1984). Other workers have reported an increase MNF 

(Broman et al, 1985; Bilodeau et al, 1991), or a decrease (Westbury and Shaughnessy, 

1987) with higher forces. 

In studies using ramp contractions (for example, varying the force from 0 to 100 % of 

maximum for 5 seconds) results have also been conflicting. An increase in spectral 

parameters with increasing force has been noted (Gerdle et al 1991; Bilodeau et al 

1990) , but other studies have shown no significant increase (Gerdle et al 1990; 

Hagberg and Hagberg, 1989). When ramp and step contractions are compared, the 

increase in spectral parameters with the former is more pronounced (Bilodeau et al, 

1991) . 

The inconsistency of findings in the study of MNF-force relationships may be related 

to differences between individual muscles, their fibre type composition and distribution 
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and their patterns of recruitment, in addition to the vast differences in study protocols. 

The other obvious limitation of both approaches to the assessment of the SMES: force 

relationship is the possibility that fatigue is taking place in the tests, particularly the 

ramp protocol. 

2.4.6 The relationship between power spectral compression and force. 

At very low levels of isometric contractions (approximately 10 % MVC), even in the 

presence of considerable subjective fatigue, there is generally no decrease in MDF or 

MNF with time. In fact, a rise has been noted for some muscles (Arendt-Nielsen et al, 

1989; Hagberg and Hagberg, 1989), whilst no change has been noted for others 

(Fallentin et al, 1985; Christensen et al, 1988). In addition, since the muscle fibre 

conduction velocity (MFCV) is generally reported as increasing with force levels, the 

rise in the MDF or MNF which has been reported in studies of some muscles has been 

explained by the predominance of recruitment of new MUs - specifically type I I fibres 

(Broman et al, 1985; Sadoyama, 1988) - over any other events (Duchene and Goubel, 

1993). 

For isometric contractions ranging from 15 to 30 % MVC, decreases in the median and 

mean frequencies have been reported for most muscles (Duchene and Goubel, 1990; 

Hagberg and Ericson, 1982). At this level of force, spectral parameters are probably 

affected by two mechanisms having opposite effects: the decline in muscle fibre 

conduction velocity in active motor units (due to local fatigue) and the recruitment of 

'fresh' (large) motor units (Krogh-Lund and Jorgensson, 1991; Duchene and Goubel, 

1993). For isometric contractions greater than 40 to 50%, declines in the MFCV and 

MDF are consistently noted (Linssen et al, 1990; Arendt-Nielsen and Mills, 1988; 

Duchene and Goubel, 1993). 

It can be concluded from the available literature that spectial modification with fatigue is 

likely to be multifactorial in origin. At high levels of force, progressive recruitment of 

more MUs is less likely and the effect of factors such as accumulation of metabolites and 

reduction in conduction velocity predominates, causing specfral compression to lower 

frequencies. 
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Many studies assess fatigue up to the 'endurance point' - the point where the force begins 

to fall. Those studies that last beyond this point indicate a fall in SEMG amplitude and 

reinforcement in the decline in spectral variables and MFCV (Arendt-Nielsen and Mills, 

1988). This may indicate that, after the endurance point, the slow fibres dominate in the 

recruitment pattem since they are less fatiguable (Duchene and Goubel, 1993). 

2.4.7 The relationship between the signal amplitude and spectral parameters during 

fatigue. 

Although the alterations in the signal amplitude and frequency spectrum compression are 

both considered to be myoelectric manifestations of fatigue, their reported inter­

relationship varies. Chan and Chuang (1996) reported an increase in the amplitude and 

decline in the MNF of the SMES recorded from the EDC during isometric contiactions 

over a range of force from 25 to 100 % in 39 healthy subjects. In a combined 

intramuscular and surface EMG study of the mean power frequency (MNF) and RMS of 

the MES measured during sustained maximal and submaximal (50% MVC) contractions 

of the biceps brachii muscle, Moritani et al (1986) confirmed an increase in the RMS 

during submaximal contractions, with an accompanying decline in the MNF. During 

maximal work both the RMS and MNF progressively decreased with time, the decline in 

MNF being greater during the maximal than the submaximal test. This work emphasises 

the importance of considering the intensity of the muscular work involved when using the 

change in the RMS of the SMES with time as an indicator of fatigue. The authors 

concluded that the underlying mechanisms of spectral shift and those involved in the 

alteration of signal amplitude differ, with the spectral shift partly reflecting the underlying 

metabolic state of the muscle and the amplitude dependent upon characteristics of MU 

activity. 

2.4.8 Changes in the SMES and the frequency spectrum in disease. 

For decades, attempts have been made to define specific characteristics of the SMES 

which represent neuromuscular disorders (Walton, 1952). The interference pattem was 

first focused upon in this respect. In a neurogenic lesion, it is not possible to recruit the 

maximum number of motor units in a voluntary contraction and the interference pattem 

is reduced (Lenman and Ritchie, 1987). Action potentials are normal or slightly 
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increased in duration and are normal or slightly decreased in dimension (Buchthal and 

Pinelli, 1953). Polyphasic potentials are common and can result in an increase in the 

frequency of the signal and result in confusion in the differentiation from a myopathy 

(see below). In primary myopathic disorders, since there is no significant reduction in 

the number of MUs activated during a voluntary contraction, recruitment is normal and 

a full interference pattern is obtained (Lenman and Ritchie, 1987), although there may 

be a slight reduction in signal amplitude and abnormal spikes may be apparent 

(Kugelberg, 1949). Muro et al (1982) reported the lEMG per unit force recorded from 

the surface of the biceps during isometric contraction to be significantly higher in 

subjects with neuromuscular disorders, particularly those of neurogenic origin, in 

comparison with those with 'myogenic disorders' and healthy controls. That is, 

subjects with neuromuscular disorders show lower neuromuscular efficiencies than 

healthy subjects. This was confirmed by Lindeman and Drukker (1994). Examination 

of the interference pattern of the SMES may give an indication of the presence of a 

neuromuscular disorder (Larsson, 1975). However this measure lacks specificity and 

sensitivity, leading workers to examine the frequency content of the signal (Walton, 

1952; Larsson, 1975). 

Lower spectral frequencies in neurogenic disorders (Blanchi and Vila, 1985; Lindstrom 

et al, 1985, Muro et al, 1982; Herberts et al, 1973; Larsson, 1975) and higher spectral 

frequencies in subjects with myogenic disorders (Walton, 1952; Gersten et al, 1965; 

Lindstrom et al, 1985) have consistently been reported. In patients with primary 

myopathies, Lindstrom (1970) found the spectral peak to be displaced to frequencies as 

high as 400-600 Hz, whereas in patients with neuropathy, the high frequency content was 

lower than normal. Lindeman and Drukker (1994) noted the IMF of the SMES recorded 

from the quadriceps during isometric knee extension at 80% MVC to be raised in 33 

patients with myotonic dysfrophy (a myogenic disorder) and reduced in those with 

hereditary sensory and motor neuropathy (HSMN; a neurogenic disorder, n=29). Greater 

MDF gradients were noted in the myogenic group but not the neurogenic group compared 

to controls. 

The higher spectral frequencies observed in primary myopathies have been suggested 

to be related to polyphasic, short potentials (Walton, 1952; Kugelberg, 1949). Workers 

who have reported the alterations seen in the frequency spectrum of the SMES in 

myopathies give little attention to the potential influence of fibre type to these changes. 
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For example, Lindeman and Drukker (1994) studied subjects with myotonic dystrophy, 

which is associated with the degeneration of type I fibres; there may be some increase in 

the size of type I I fibres (Gilroy, 1990). This may help to explain the increased MDF and 

greater fatiguability in the group with primary myopathy, since these are characteristics of 

type I I fibres (Moritani et al, 1986; Merietti et al, 1990). 

Two mechanisms have been proposed to explain the lower spectral frequencies noted 

in neurogenic disorders; reduced muscle fibre conduction velocities (Hermens et al, 

1984; Lindstrom et al, 1985) and increased synchronisation of MU firing (Hermens et 

al 1984; Latash, 1988). 

Larsson (1975) noted the shift towards higher frequencies in neurogenic lesions to 

correlate with the duration of symptoms of the disorder and described this as 

"functional evidence of the scar from the disease". He also noted shifts to higher 

frequencies in those subjects in whom the disorder was of shorter duration and 

suggested this to be related to a relative increase of action potentials with thin 

components, characteristic of reinnervation. This would explain the high frequencies in 

subjects with neurogenic lesions reported by other workers (Engel, 1975; Cruz 

Martinez et al, 1984; Latash, 1988). Desynchronisation of muscle fibre contractions 

secondary to prolonged inactivity has also been suggested to play a role in the 

phenomenon of raised spectral frequencies in some subjects with neurogenic disorders 

(Latash, 1988). The possibility of a return to normal frequency spectral characteristics 

of the SMES i f full reinnervation occurs has not been addressed. However, this may 

explain why some workers reported normal frequency spectra in subjects with 

previously documented neurogenic lesions (Walton, 1952). 

2.4.9 The E M G in rheumatoid arthritis. 

Few EMG studies of patients with rheumatoid arthritis have been published in the 

literature, particularly over the last 2 decades and those reports available utilised needle 

electrodes. Analysis of the frequency spectrum during muscle contraction has not been 

investigated in rheumatoid disease. 

In a study of the deltoid, biceps brachii, abductor poUicis brevis and quadriceps 

muscles of 93 patients with RA, Steinberg and WynnParry (1961) noted changes 
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suggestive of a combination of denervation and a primary myopathy, with a fi i l l 

interference pattern (small amplitude, broken up short duration polyphasic action 

potentials), suggestive of myopathic lesions and abnormal intensity-duration curves 

with long duration polyphasic potentials - suggestive of denervation. The EMG 

findings did not correlate with the degree of weakness nor wasting, nor were they 

related to steroid therapy. There was some relation to disease activity. Seventy-nine 

patients were found to have EMG findings suggestive of polymyositis, mostly in 

proximal muscles - as found by Horowitz (1949). Lenman and Potter (1966) reported a 

reduction in neuromuscular efficiency in subjects with RA. 

There seems little agreement about the presence of spontaneous EMG potentials, 

suggestive of denervation, in RA (Amick, 1960). Mueller and Mead (1952) 

demonstrated low amplitude action potentials and a disorganised pattern on the EMG, 

with no spontaneous activity in 25 patients with RA. Morrison et al (1947) showed 

spontaneous activity in 50% of 34 rheumatoid subjects, but normal EMGs on 

contraction. Wramner (1950) found spontaneous activity on the EMGs of 76% of 50 

rheumatoids, whereas Newman et al (1953) found no such activity. The variation in 

findings is not surprising, since Lenman and Ritchie (1987) point out that the finding of 

abnormal activity in neurogenic lesions is highly variable and that fibrillation potentials 

can also occur in myogenic lesions. 

Graudal and Hvid (1959) found inflammatory changes in the first dorsal interosseous 

muscles of 60% of 31 patients with RA; 18 other muscles were normal. In 17 other 

patients no changes were seen. Amick (1960) found no significant EMG changes in 25 

patients with RA and muscle wasting. They concluded that wasting was due to disuse. 

2.4.10 Recovery of the myoelectric parameters after work. 

The intrasession repeatability of SMES analysis is concerned with the allowance of 

adequate rest intervals between the performance of each task, in order, that the 

myoelectric parameters will be restored to their resting values. Such studies have been 

termed restitution studies (Kourinka, 1988). Larsson et al (1965) and Johansson et al 

(1970) showed rapid changes to occur in the power spectrum after fatiguing exercise. 

Mechanical and physiological recovery times seem to be longer than that of the frequency 

spectrum of the SMES (Funderburgh et al, 1974; Hara, 1980; Peti-ofsky, 1981). Mortimer 
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et al (1970) demonstrated that muscle fibre conduction velocity (which is closely related 

to the frequency spectrum) returns to normal within 2 minutes after ischaemic exercise, in 

parallel with the restitution of blood flow. Restitution of the power spectrum follows a 

logarithmic course with time (Kourinka, 1988; Kadefors et al, 1968; Petrofsky, 1981). 

Most studies published to date using SMES analysis during work use rest intervals 

which seem to be chosen empirically, with no reference made to the assessment of 

adequate restitution of myoelectric parameters after these intervals. 

There is little information available in the literature as to the repeatability of forearm 

myoelectric parameters specifically during grip. In a study of the SMES amplitude 

measured from 'medial and lateral forearm' musculature during sustained isometric grip 

at up to 70% MGS, Lind and Pefrofsky (1979) noted the average half wave SMES 

amplitude to have retumed to close to initial values within 3 minutes and completely by 

7 minutes post exercise, in parallel with the MGS. Petrofsky and Lind (1980) reported 

the centre frequency of the SMES recorded from the FCR during grip over a range of 

25-90% MGS to return to baseline levels within a rest interval of 1 minute. 

Although most studies indicate that the repeatability of both same day and between-day 

testing of the RMS of the SMES is good for a variety of muscles (Lind and Petrofsky, 

1979; Kadefors et al, 1968), some workers have shown poor recovery rates of this 

parameter after short rest periods. For example. Miller et al (1987) examined the 

recovery of the MVC, NME (force/rectified integrated EMG), and the metabolic state of 

the adductor pollicis muscle (phosphocreatine and pH) after thumb adduction at 

maximum force for 4 minutes. Whilst the MVC and metabolic parameters had 

recovered within 20 minutes of recovery, the NME had not recovered after 60 minutes, 

indicating the rectified lEMG was not fully restored. 

Studies which aim to assess the restitution of the power spectral variables after exercise 

are more apparent in the literature than those of the signal amplitude. Most studies have 

indicated that the median and mean frequencies of the SMES recover significantly 

more quickly than muscle force and myoelectric parameters such as the RMS. Kadefors 

et al (1968) studied the frequency spectra of various muscles after isometric conttactions 

and found that recovery of the MES varied accordmg to the muscle assessed. They 

showed that 69% of extensor carpi radialis, 69 % of extensor carpi ulnaris and 42 % of 

extensor digitorum superficialis to have recovered within 90 seconds of terminating the 
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exercise. An early restoration of the MDF in advance of mechanical variables is 

confirmed by other workers (Funderburgh 1974; Petrofsky, 1981; Larsson et al, 1965; 

Johansson et al, 1970). 

Since the change of the M D F with time during muscular work is most commonly used 

as the indicator of fatigue, the restitution of the gradient of the M D F of the SMES over 

time (the M D F G ) is an important feature to examine when assessing recovery intervals. 

Although there is little information available on the repeatability of this feature in 

forearm musculature, this issue has been addressed in studies of other muscles. Dolan et 

al (1995) examined the restitution of the M D F G in back muscles in the study described 

above. They reported correlation coefficients of 0.92 (TIO) and 0.50 (L3) on within day 

testing (after a rest interval approximately 1 hour). Krivickas et al (1996) reported an 

intraclass correlation coefficient of 0.43 (p=0.006) for the repeatability of the M D F G of 

the SMES recorded from the biceps during isometric contractions sustained for 100 

seconds repeated after a 5 minute rest interval. 

It is evident from the literature that the frequency spectrum is highly repeatable on same 

day testing, after short rest periods. Many studies indicate that this is also true for the 

RMS of the SMES. The repeatability of the change in the RMS with time (expressed as 

the RMS gradient) is unclear. 

2.5. Strength training in rheumatoid arthritis. 

2.5.1 Introduction. 

The use of therapeutic exercise in rheumatoid arthritis is an area of confusion and 

controversy. This is largely a result of the lack of well-structured research in the field, the 

large number of publications based upon anecdotal evidence and tiie concern tiiat exercise 

will result in deterioration in disease (Mapp et al, 1995; Farrell et al, 1992). The followdng 

section will review the literature to date on sttength training in relation to disuse weakness 

and rheumatoid arthritis. Handgrip strength training will be specifically focused upon, 

although where necessary studies in relation to isometric exercise of other muscles will be 

described. Firstiy, the mechanisms of stiength training will be detailed. 
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2.5.2 Mechanisms of strength gain in healthy individuals. 

In healthy individuals, two main mechanisms of strength gain in a progressive strength 

training programme have been identified. Initially strength gains are related to neural 

factors; later, gains in muscle mass become important. 

Neural factors 

The nervous system is of paramount importance for the expression and development of 

strength. Indeed, it is probable that increases in strength can occur without 

morphological changes in muscle, but not without neural adaptations (Enoka, 1988). 

The concept of neuromuscular efficiency (Muro et al, 1982) has been described 

earlier (2.4.4). Improved levels of neural activity and a motor learning effect have been 

observed with strength training (Moritani and DeVries, 1979). Ikai et al (1968) suggested 

that most people normally operate at a level of neural inhibition, as a protective 

mechanism, preventing them from demonstrating their true strength capacity. With 

training or in competition this inhibition may be removed. With training, subjects learn 

to recruit motor units - or to utilise the tensions the muscles can produce - more 

effectively (Moritani and DeVries, 1979; Komi, 1986; Enoka, 1988; Hakkinen, 1989). 

Psychological factors, increased arousal and neural facilitation (disinhibition) may lead 

to f l i l l activation of muscle groups (Hakkinen et al, 1988). This neural facilitation (or 

neural adaptation) has been proposed to be the mechanism underlying the initial rapid 

strength gain in training programmes (Edstrom and Grimby, 1986; Sale, 1987). The 

phenomenon has been illustrated in various reports, including the demonstration of a 

fraining effect on the non-exercised confralateral Iknb of subjects who undergo unilateral 

arm or leg exercise (Enoka, 1988). In addition, specific training responses are more likely 

to be due to neural mechanisms than purely adaptations of muscle (Enoka, 1988). 

The phenomenon of neural adaptation is most important in the first 2-3 weeks of strength 

training (Moritani and DeVries, 1979), but is maintained during subsequent training, when 

hypertrophy becomes the predominant factor in the further gain of strength. 

Gains in muscle mass with strength training. 

In 1935, Fenn and Marsh found muscle cross-sectional area (CSA) to be an important 

determinant of the maximum isometric force which could be produced by an isolated 
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skeletal muscle preparation. Since then it has been established that the strength of a muscle 

is in proportion to the physiological cross sectional area of the muscle (Arkin, 1938; 

Asmussen et al, 1965). 

Muscular growth in response to overload training occurs primarily from hypertrophy of 

individual muscle fibres (Hakkinen and Komi, 1983; McDonagh and Davies, 1984). The 

process of hypertrophy is related to the synthesis of cellular material, particularly protein 

myofilaments. Myofibrils thicken and increase in number and additional sarcomeres are 

formed by an acceleration of protein synthesis and decreases in protein breakdown 

(Edstrom and Grimby, 1986; McDonagh and Davies, 1984). 

Although muscle fibre hyperplasia has been reported with particular strength training 

regimes (Tesch, 1988; Larsson and Tesch, 1986), the literature supports hypertrophy as 

the greatest contribution to increased muscle size in response to strength training (McArdle 

et al, 1991; MacDougall et al, 1984). 

In addition to changes in muscle fibre size, the evidence suggests that the contractile 

properties, metabolic capacity and associated enzymes can change with training (Gollnick 

et al, 1972), but the fibre type and twitch characteristics remain stable (Brooks and Fahey, 

1985). However, there is some evidence that a fast twitch fibre wUl be transformed into a 

slow twitch fibre, but only i f their nerve supplies are experimentally interchanged 

(Edgerton et al, 1980; Kilmer, 1996). The subject of fibre type transformation in healthy 

individuals in response to training remains highly controversial. However, as described 

earlier, it may be an important result of the process of reiimervation (Jones and Round, 

1990). 

2.5.3 Important features of strength trammg programmes. 

In designing a strength training programme, it is important to establish the specificity of 

the exercise involved in relation to the required task, the training threshold above which 

improvements in strength will occur, and the optimal intensity needed to produce the 

greatest strength gains within the shortest period of time. This is extensively reviewed by 

numerous workers (McDonagh and Davies, 1984; Atha, 1981). It has been demonstrated 

that the optimal training intensity for both isometric and dynamic exercise involves 
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submaximal but high intensity, fatiguing contractions (Szeto et al, 1989). This is termed 

the overload principle (MacDougall et al, 1980). 

Training threshold is a function of strength (Enoka, 1988). As strength increases in a 

training programme, the required muscle tensions for training must increase accordingly. 

Thus an effective training programme must utilise progressively higher resistance loads. 

McDonagh and Davies (1984) concluded that a threshold load of 25-30% MVC must be 

utilised in order to achieve increases in isometric strength. 

The response of a muscle to training is specific to the type of exercise and the joint angle 

used and the speed of contraction (Maiming et al, 1990). It will also be influenced by the 

cause(s) of the muscle weakness, where present. The best training for a task involves task 

specific muscle contraction, that is, the performance of the task itself (Carr and Shepherd, 

1987; Rutherford, 1988). Contemporary approaches to strength training often involve the 

identification of which muscle groups to train from observation of task performance. 

However, it can be difficult to defme accurately the muscle groups by this means, 

particularly when joint deformity and altered joint angles are present. By training task 

performance rather than concentrating on simple strength regimes for isolated muscle 

groups, it is likely that this can be avoided (Carr and Shepherd, 1987). However, it may 

contribute to abnormal muscle contraction or the utilisation of a compensatory strategy, 

particularly in patients with joint diseases, such as RA (Wynn Parry, 1983). 

2.5.4 Assessing the mechanisms of strength gain. 

De Vries (1968) and Moritani and DeVries (1979) utilised the measurement of the NME 

in the assessment of the mechanisms of strength gain in a strength training programme. 

They monitored the NME over the course of the programme and suggested that, i f the 

strength gain were due to neural adaptation, the ratio of force to signal amplitude would 

be expected to remain the same. I f this were due to gains in muscle mass, the ratio would 

increase. 
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Figure 2.5.1: Schema for the evaluation of mechanisms of strength gain, using the 

concept of neuromuscular efficiency, after Moritani and De Vries (1979). 
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Since the strength of a muscle is in proportion to its cross-sectional area (CSA) (Arkin, 

1938; Asmussen et al, 1965), changes in muscle size in limbs have been examined by the 

assessment of the limb CSA using skin fold caUpers and, more recently, by imaging 

techniques such as ultrasound and magnetic resonance imaging (MRI). The former 

technique involves the measurement of the skinfold thickness at two or more sites of the 

limb, and the CSA calculated. Helliwell and Jackson (1994) applied this technique to the 

assessment of forearm muscle mass, as shown in the following equation: 

CSA (cm2) = n 

-] 2 

FOG STd + STv) 

271 40 

R - U 

where FOC = forearm circumference (cm) 

STd = dorsal skin thickness (mm) (NB: double fold of skin thickness was measured) 

STv = ventral skin thickness (mm) 

R = area of radius (cm^) 

U = area of uba (cm^) 

R and U taken ft'om tables of bone diameter (Virtama and Helela, 1969), assuming circular 

cross-section (Horsman and Leach, 1974). 
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It has been shovm that the estimation of muscle mass by this method is inaccurate (Young 

et al, 1980), although there may be some correlation between the two measures. Helliwell 

and Jackson (1994) reported this method of forearm CSA measurement to correlate closely 

with that obtained using computed tomography in six subjects with RA and one normal 

subject. These workers suggest that assessment of the CSA by skinfold callipers is a usefial 

method for the monitoring of change in the muscle CSA. However, the repeatability of the 

technique was not reported. 

Ultrasonography has been used to monitor changes in muscle CSA (Young et al, 1980). 

However, significant inter-observer variation has been reported (Howe and Oldham, 1996) 

and the sensitivity to change is unclear. In the study by Helliwell and Jackson (1994) 

described above, CT scaiming was used in a single measurement of forearm cross-

sectional area in 7 subjects, 6 of these with RA. The repeatability of scanning was not 

reported. The radiation associated with CT scanning limits its suitability for research. 

Engstrom et al (1991) demonstrated that magnetic resonance imaging (MRI) accurately 

measures the CSA of skeletal muscle. MRI has also been shown to identify small changes 

in skeletal muscle induced by resistance ti-aining (Treutii et al, 1994). MRI has been used 

to assess lower limb muscle volume changes in healthy individuals over a 17-week period 

of bed rest, demonstrating declines in muscle mass over this period. The coefficient of 

variation over 1 week in a group of healthy controls was 1.1%. Volumetiic analysis of 

forearm musculature has not been described in the literature. 

2.5.5 Strength training and disuse weakness. 

Considerable discrepancy exists between animal studies and those of humans in relation 

to strength training and disuse weakness. Animal studies have shown a very rapid retum 

to normal strength with training after a period of disuse (McDonagh and Davies, 1984), 

whereas human studies have varied. Humans with long standing disuse weakness can 

experience large sti-engtii gains with tiaining (Hakkinen, 1994). However, studies 

involving strength training after a short period of immobilisation are less clear and have 

failed to show any difference between a wide variety of strength tiaining regimes, 

including everyday motor tasks (Hakkinen, 1994). 
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The mechanisms of strength gain in such cases are also unclear. It is possible that neural 

adaptation and gains in muscle mass may be disrupted. Skeletal muscle fibres - like 

neurones - are permanent cells which do not divide after birth. Post-natal growth consists 

purely of the addition of cytoplasmic mass with no increase in muscle fibre number. The 

regeneration of muscle fibres after injury does occur to a limited degree, but is limited to a 

cytoplasmic response (i.e. a regrowth of sarcoplasm); lost muscle mass can only be 

replaced by hypertrophy of surviving fibres (Taussig, 1984). 

2.5.6 Strength training in RA 

Specific problems in relation to exercise to be considered in the patient with RA are 

related to the fluctuation in the activity of the disease (and therefore in pain and stif&iess), 

the mter-subject variation in the condition of joints and ensuring that the joint condition is 

not worsened by the exercise. Other factors include the presence of joint deformity - which 

may make some strengthening regimes difficult - and the presence of complications 

associated with the systemic nature of rheumatoid disease, for example peripheral 

neuropathy and active clinical myositis (Herbison et al, 1987). 

Isometric strengthening exercises are frequentiy recommended for patients with RA. 

Machover and Sapecky (1966) found a strength gain of 23% in the exercised limb and 

18%) in the contralateral (unexercised) limb, after a 7-week programme of daily isometric 

quadriceps exercises in 11 patients with RA. The latter indicates that the process of neural 

adaptation occurred. 

Handgrip exercise has been demonstrated to improve grip strength in RA (Dellhag et al, 

1992). For example, Hoenig et al (1993) demonstrated improved grip stiength in RA with 

12 weeks of balanced resistive hand exercise performed for 10-20 minutes, twice daily. 

Brighton et al (1993) also reported improvements in grip strength with daily active hand 

exercise in subjects with class I RA. 

In all of the studies above, no adverse effects of the programmes were found. Lyngberg et 

al (1988) reported a reduction in the number of swollen joints by 35 - 45 %>, including 

those joints which were stressed during a home exercise programme of bicycle ergometry, 

dynamic strength exercises and stretching in subjects with class I and I I RA. 
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The issue of compliance in home exercise programmes was also examined by Ekdahl et al 

(1990), who found 4 initial training sessions to be as effective as 12, and Treusch and 

Krusen (1943) who found 2 supervisory sessions to improve compliance. Parker and 

Bender (1957) recommended a home therapy programme be reinforced every 2 months. 

Since RA is a fluctuating disease, the education of the patient with respect to exercise 

regimes and how to adapt them according to disease variations has been recommended 

(Mahowald et al, 1988,1990). Lyngberg et al (1988), in the stiidy described above, also 

emphasised the need for an initial period of supervision prior to the commencement of the 

home programme to ensure compliance. 

In a rare study of the physiological changes associated with stiength tiaining in RA, 

Nordemar et al (1976a) performed a study of muscle fibre size (assessed on biopsy) and 

physical performance after physical training (involving aerobic and stiength tiaining -the 

type not clearly stated - predominantiy of the lower limbs) in patients with RA of 

fijnctional class I or I I . Atrophic type I and I I fibres were noted in most subjects. Stiength 

gains were demonstiated in most subjects and an increase in muscle fibre size, of both 

Types I and I I was noted, being more marked in the latter. No fibre type tiansformation 

with training was noted, nor was there extensive formation of new fibres. 

2.6. Grip strength in rheumatoid arthritis. 

2.6.1 Introduction. 

Grip strength is a significant measurement in rheumatoid disease, reflecting hand 

function and disease activity and severity (Lansbury, 1958; Nordenskold and Grimby, 

1997). Indeed, Nordenskold and Grimby (1997) foimd grip force to be a more accurate 

assessment of actual global disability than the widely used Health Assessment 

Questionnaire (HAQ) score. Pincus et al (1987) reported grip strength to be a predictor 

of increased mortality in rheumatoid disease. The assessment of forearm muscle fatigue 

and other myoelectric characteristics during grip and the investigation of the response to 

handgrip strength training has many advantages. Grip is a task that is familiar to most 

individuals, is a vital task in daily activity and reflects the fiinctional impact of 

rheumatoid disease upon an individual (Pincus et al, 1987; Nordenskold and Grimby, 

1997). Local disease activity, deformity and bone mineral density (a measure of disease 
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severity, particularly in early disease) can all be measured. The forearm musculature is 

actively involved in grip and is easily accessible for measurement of the SMES during 

work. 

2.6.2 The rheumatoid hand. 

In early rheumatoid disease, active inflammation of the joint and periarticular structures 

can result in diminished hand function through pain, swelling, stiffness, muscle weakness 

and triggering of tendons. As the disease progresses, the relative contributions of these 

features in addition to permanent deformity fluctuates (Myers et al, 1980; Hart and 

Huskisson, 1972; Wright and Johns, 1960). 

Numerous deformities can occur either alone or in combination in the rheumatoid hand. 

The two which are most characteristic of the disease, uhiar deviation and anterior 

subluxation at the metacarpo-phalangeal (MCP) and wrist joints, can be explained by the 

change in forces seen in flexor tendons in this disease (Smith et al, 1964). The other 

mechanisms which have been proposed include contracture of the ulnar interossei, ulnar 

dislocation of the extensor tendons (Brewerton, 1957), hand use, unilateral capsular 

damage, gravity, joint shape and pull from the ulnar deviated little finger (Sti-aub, 1962). 

None can be considered as a primary cause since they are not consistently present or do not 

work consistentiy in the direction of the deformity (Flatt, 1963), but each may play a part 

in accentuating or fixing the deformity (Buimell, 1955). 

The theories described lead to other conclusions in terms of the treatment and prevention 

of rheumatoid deformities of the hand. The exercise regime of squeezing a rubber ball has 

been proposed by some to be unsuitable (McGregor andWright, 1967), since it is 

exercising the flexor tendons. The role of the forearm extensor muscles in grip is 

frequentiy not appreciated, although some workers have emphasised that the extensors are 

at least as important as the flexors to grip strength (Snijders et al, 1987; Hagg and Milerad, 

1997). I f the wrist is pulled into extension, then the extensors are exercised to a greater 

extent (Snijders et al, 1987; Hagg and Milerad, 1997). This should be beneficial, since grip 

is stronger with the wrist in some degree of extension (Simmons et al, 1981). Such a 

regime reflects a functional task and the acquisition of motor skills is an often neglected 

though highly important aspect of therapeutic exercise (Hakkinen, 1994). In injury or 

disease, the loss of strength in the flexor and extensor muscle groups can occur. This 
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emphasises the need to consider both groups in devising a suitable fiinctionally orientated 

rehabilitation programme. 

2.6.3 Factors AfTecting Grip Strength in RA. 

In RA, grip strength is reduced compared to the normal population (Mathiesen et al, 1991). 

This can be solely due to reflex inhibition, true muscle weakness, effusion, joint stiffness, 

pain (or related factors such as synovitis) or deformity (including bony deformity and soft 

tissue alterations wdth altered joint mechanics). 

Spiegel et al (1987) found grip strength to correlate with walk time, wrist and hand 

tenderness, deformity, total joint tenderness, swelling, ESR and wrist and hand swelling. 

There was no correlation between subjective nor objective morning stif&iess but other 

studies have disputed this (Myers et al, 1981). 

Grip stiength demonstrates circadian variation (Wright, 1959; Harkness et al, 1982) in both 

healthy and rheumatoid subjects. A decline occurs in early morning and evening. Nwuga 

(1975) found a positive correlation between grip stiength and body weight in healthy 

females, as did Thomgren and Werner (1979), although the latter workers found no 

correlation with the rate of development of a MVC. No significant relationship was found 

between the body weight and endurance of grip (Nwuga, 1975). Schmidt and Toews 

(1970) found grip strength to decline after the age of 30 years in males and 40 years in 

females. 

2.6.4 The assessment of grip strength. 

The measurement of grip stiength remains the foundation of hand assessment (Cantiell, 

1976; Myers et al, 1980; Mathiesen et al, 1991). One of the most popular methods of grip 

strength measurement utilises the air filled bag. This is comfortable and easy to use and 

provides some tactile feedback to the subject during gripping. They allow a grip test of 

longer duration to be performed, which is often too uncomfortable with other devices 

(Pearson et al, 1982). 

There are drawbacks to these devices, as highlighted by Unsworth et al (1990) and Lee et 

al (1974). Since pneumatic devices are filled with air, (which is compressible), the system 
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is non-linear in response and this is likely to lead to a very small error only. The pressure 

within the system is dependent upon the force divided by the area over which it is applied. 

The measured grip pressure is potentially influenced by hand size and alteration of hand 

position during and between measurements. It is therefore important to ensure all subjects 

maintain a standard hand position. Various bag sizes are available to suit different hand 

dimensions. It has been found that, for a given force, with larger bag and/or hand sizes, 

lower pressures are recorded. Also, for a given force applied at different starting pressures, 

different readings are obtained (Unsworth et al, 1990). It has also been demonstrated that 

different techniques of squeezing the cuff or bag will give rise to variations in pressure 

readings (Carus et al, 1985). For example, when the bag is gripped with the fmgers 

"digging in", a greater pressure is recorded than when gripped with the fingers lying flat. 

On the basis of these potential sources of error, it is recommended that the volume, size 

and initial pressure of the bag is recorded with every measurement and subjects advised 

appropriately on their use (Unsworth et al, 1990). 

The Durham gripper also provides measurement of grip strength which are sensitive and 

repeatable and can measure a wide range of forces (Jones, 1984). This is a 4-channel, 

stainless steel, strain gauge dynamometer, which can be used to measure grip and 

individual finger forces. 

The most appropriate index of grip strength, for example tiie maximal voluntary 

contraction (MVC), the time to attain the MVC, etc. remains conti-oversial. 

Various parameters have been used in the description of grip sti-engtii (Myers et al, 1980; 

Grindulis and Calverley, 1983). These include the maximum grip strength, the time taken 

to reach peak grip, tiie rate of loss of grip force fi-om the maximum value (MVC) to tiie 

point of release ('fatigue rate'), the rate of loss of grip from the release point to the baseline 

value ('release rate') and the integral of the force-time curve, which reflects tiie total 

amount of work done. 

There are few studies examining the inter-relationship between the functional parameters 

and their association witii aspects of joint disease. Helliwell et al (1987) found tiiat neither 

the area under the force-time curve, the fatigue rate nor the release rate provided additional 

information to the MVC. The time to reach peak grip was independent of the MVC and 

possibly being partly a reflection of joint stiffness. 
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Chapter 3: Materials and Methods 

3.1 The apparatus. 

The apparatus consisted of a grip bag, pressure transducer, EMG amplifier, preamplifiers, 

filters and electrodes, a data acquisition (DAQ) card and laptop computer, as displayed in 

figure 3.1.1. 

3.1.1 The Grip Bag 

This was a 14.5 cm x 9.5 cm, cloth covered, air filled bag, which was connected to a pressure 

gauge, displaying the grip pressures on a dial. The bag was also connected to a pressure 

transducer, the signal from which was amplified, digitised and relayed to the computer. The 

pressure inside the bag was altered using a rubber bulb and valve. A feedback bar gauge on 

the computer display gave the subject a target pressure at which to aim; this target pressure 

was a given fraction of the individual's maximum grip strength: 1/3, 1/2 or 2/3 MGS, 

according to the specific test being performed. The starting pressure in the bag was 40 mmHg 

in all tests. 

The grip bag and pressure transducer were calibrated against a mercury sphygmomanometer 

at the beginning of every week, using a specifically designed calibration programme. The bag 

was connected via a three-way tap to the pressure transducer and a mercury sphygmo -

manometer, the latter giving the true pressure reading from the bag. The output from tiie 

pressure tiansducer was digitised by the DAQ card. 

Using the baseline value of 40mmHg, the ADC output was recorded for steps of lOmmHg. 

Figure 3.1.2 shows the resultant graph of ADC output against bag pressure. The slope of 

this line gave the calibration factor which was multiplied by the ADC reading obtained 

from the tests. 
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Figure 3.1.2: The pressure readings versus the ADC output (microvoUs) from the grip 

bag compared with the sphygmomanometer (mmHg). 

=3 a 150 

-r 
50 100 150 

ADC output (nV) 



3.1.2 Surface Electromyography: Signal Acquisition and Processing. 

The signal acquisition hardware included a Medelec MS92a EMG machine and pre-

amplifiers for amplification of the myoelectric signals. These were then filtered by a set of 

filters, with a bandwidth of 3-512 Hz. The signals were then digitised by a DAQCard-1200 

(National Instruments), a multifunction analogue, digital and counter-timing 10 PCMCIA 

card, with a fast 12-bit ADC with 8 analogue inputs. It converted the analogue pressure and 

surface myoelectric signals to digital signals for further processing by a laptop computer (a 

Viglen 486MHz Dossier). See Figure 3.1.1. 

The system software, developed by Dr P Jones (Regional Medical Physics Dept., South 

Cleveland Hospital), consisted of calibration, data acquisition and analysis 

programmes. The data acquisition program initially cleared the input boxes for subject 

details and opened a file for the EMG and gripper/bag data. It then wrote the patient details 

into an individual file. Calibration constants from the grip bag were read in and a reading 

was taken from the grip bag (the starting pressure of 40mmHg) to act as a baseline. 

Both the surface myoelectric signal (SMES) and grip pressure readings were sampled at 

1024 samples per second (twice the Nyquist rate), in order to prevent high frequency 

aliasing of the SMES. Although such high sampling rates of the grip pressure were 

unnecessary, a uniform sampling rate for all signals simplified the acquisition programme. 

The pressure readings from the grip bag were displayed as a bar chart; the SMES was also 

displayed on the computer screen just prior to commencing the test, but processing 

limitations did not allow simultaneous display during the test. Al l data from each test (the 

SMES from both EMG channels and the grip pressure) were written to a file. 

The software used to analyse the SMES from each EMG channel read the data in one-

second epochs, each epoch consisting of 1024 samples. A fast Fourier transform algorithm 

was applied to each epoch to obtain a frequency amplitude spectrum for each epoch and the 

spectral peak and median frequency (MDF) were located. For each test, the mean MDF 

and spectral peak for the specific channel was calculated by averaging the values calculated 

from the 30, one-second epochs. The MDF for each 1-second epoch over the 30-second test 
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Figure 3.1.3: the grip force: R M S voltage gradient ( F : R M S G ) 

Grip force 
(N) 

regression line 

RMS(nV) 



was plotted against time and a linear regression line fitted to the 30 sample points. The 

initial median frequency ( I M F ) was calculated from the intercept (t=0) of the regression 

line, in keeping with the findings of other workers that this is more reliable than using the 

MDF of the first one second epoch (Mannion & Dolan, 1994). The gradient of the 

regression line represented the M D F gradient ( M D F G ) . The spectral width was 

determined by averaging the 30 amplitude spectra, applying a three point moving average 

with three passes to the composite spectrum and calculating the width of the spectrum at 

half the peak amplitude. 

The option for data windowing was available, the effects of which were assessed in a pilot 

study (4.1.6). Data windowing was not used in the main study. 

The root mean square voltage of the SMES ( R M S ) was calculated for each one second 

epoch by squaring each of the 1024 voltage samples scaled to EMG amplitude gain and 

taking the square root of the mean of these values. The initial R M S ( I R M S ) and the R M S 

voltage gradient ( R M S G ) were determined from the intercept and slope respectively of a 

least squares regression fit to the RMS value for each epoch plotted against time. 

The composite spectrum of each channel for each test was visually appraised, specifically 

to assess for the presence of significant interference spikes (e.g. 50 Hz mains pickup). The 

grip pressure readings over the test period were assessed to ensure that a constant force 

(within 5% of the target value) was maintained. 

The grip force : R M S voltage gradient ( F R M S G ) . 

The target grip force was plotted against the mean extensor and flexor RMS voltages from 

each grip test and linear regression lines fitted. The slopes of the regression lines were 

termed the grip force : R M S gradients ( F : R M S G ) for each channel. This was used in 

assessing the mechanisms of strength gain during the handgrip exercise programme 

(Chapter 8). See Figure 3.1.3. 

49 



CD CM 
CD U-> 

U-1 to ro rsi 

L O CD 

n in 

1 ^ L n 

C8 
> Q. 

< LU ID 

•5 

u 

50 



3.2. The SMES acquisition and analysis system: calibration and 
electrode placement. 

3.2.1. System description and calibration. 

The SMES acquisition and analysis system was calibrated using a signal generator. The 

frequency and amplitude of the generated signal were measured with an oscilloscope 

and a frequency counter. Signals of known frequencies were fed through the pre­

amplifiers into the system and the centre frequency and RMS voltage of the SMES were 

then calculated using the analysis software. Signal acquisition was performed with the 

EMG amplifier set to a gain of 500 ^V/div and 200 |j,V/div, since these were the gains 

used in SMES recording. The resuhs are shown in Table 3.2.1, showing no difference 

in the generated signal frequency and the system resuhs. A maximum of less than 0.5% 

difference in the RMS of the SMES calculated by the system at a gain of 500|iV/div and 

2.7% at a gain of 200 ^iV/div was found. 

Figure 3.2.1: Calibration of the SMES acquisition and analysis system. 

Frequency generator 
EMG machine 

Filters &DAQ card 

Preamplifiers 

oscilloscope 
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Table 3.2.1: SMES acquisition and analysis calibration. 

Sensitivity Parameter Generated 

Signal 

System Result: 

Extensor 

channel 

System Result: 

Flexor channel 

SOO^V Frequency (Hz) 100 Hz 100 Hz 100 Hz 

RMS (|aV) 1059 1064^V 1056 

200 laV Frequency (Hz) 100 Hz 100 Hz 100 Hz 

RMS (^V) 423.4 415 412 ^iV 

3.2.2. The placement of electrodes on the forearm for the recording of the 

SMES. 

The specific sites for location of the extensor electrodes were on the belly of extensor 

digitorum communis (EDC), one third of the length of the forearm measured from the 

lateral epicondyle of the humerus. The flexor electrodes were located by firstly 

identifying the belly of the flexor carpi radialis (PGR) according to surface anatomy 

guidelines (Lumley, 1996), and identifying a point on the muscle, one third of the length 

of the forearm distal to the lateral epicondyle. The length of the forearm was taken as 

the distance between the lateral epicondyle and the radial styloid. 

The skin of the right forearm was prepared at the landmark sites by rubbing with 

antiseptic 'Steret' wipes. The skin was allowed to dry, shaved with a disposable razor 

and finally rubbed with fine sandpaper ('Cardiopreps'). The skin impedance was then 

checked using an impedance meter to ensure a value less than 4 kQ. 

Nicolet Blue Sensor Disposable Pre-gelled Foam Backed Electrodes (Side Snap), with a 

detection surface area of 1 cm were applied to the forearm on the extensor surface 

(extensor channel) and the flexor surface (flexor channel). A bipolar arrangement was 

used to allow differential amplification. Two electrodes per channel were applied, with an 

interelectrode distance of 1cm for each and the electrode positions were recorded using 

horizontal (a fixed scale on the arm rig) and vertical (inverted depth gauge) scales. The 

ground electrode was applied to the sternum. 
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Figure 3.2.2: Position of extensor electrodes and arm in rig for forearm SMES 
analysis during grip. 

electrodes 

leads 

Grip bag 

Forearm clasp and 
strapping 

Wrist in 30° 
extension 

Figure 3.2.3: Position of flexor electrodes and arm in rig for forearm SMES 
analysis during grip. 

Wrist in 30° 
extension 

Forearm clasp and 
strapping 

leads 
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33 The assessment of grip strength. 

3.3.1 Subject positioning and grip testing. 

The subject was positioned according to the American Society of Hand 

Therapists recommendations for the measurement of grip strength (Fess & 

Moran, 1981). 

Figure 3.3.1: Subject positioning for grip testing. 

Subject seated 

Feet flat on floor 

Shoulder adducted 

Elbow in flexion 
of 90° 

Forearm in neutral 
position 

Wrist in 30° 
extension 

An arm rig with an adjustable elbow rest and wrist straps was mounted on a stand of 

adjustable height. The rig had a horizontal scale attached to allow recording of surface 

landmarks. The rig and stand allowed the subject to be positioned as shown in figure 

3 .3 .1 , which is the position recommended for grip strength testing (Fess & Moran, 

1981). The peak grip strength was assessed using the grip bag. The subject was asked 

to perform her maximum grip on three sequential tests, at 20-second intervals, each 

lasting 3 seconds. The mean of the three tests was taken as the subject's maximum 

grip strength (MGS). 

Software was developed* for testing and analysing grip, which allowed a target grip to be 

calculated according to the maximum grip. The subject had a visual feedback of their grip 

and the given target pressure was displayed on the computer screen. 
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3.4 The Assessment of Forearm Muscle Cross-sectional Area (CSA) 

and Volume. 

Three methods of assessment of forearm muscle mass were applied during the study and 

compared to determine the optimal method. Two of these techniques involved the 

assessment of CSA and the other assessed muscle volume. 

3.4.1 The Assessment of the Cross-sectional Area (CSA) of the 

Forearm. 

Two methods of assessing the cross sectional area of the forearm were used. These were 

the skinfold caliper technique and single slice magnetic resonance imaging (MRI) of the 

forearm. 

The skinfold caliper technique was used in the initial assessment of forearm CSA. 

Skinfolds were measured at the site of maximum forearm circumference identified on 

the extensor aspect of the forearm and on the flexor aspect of the forearm level with the 

site on the extensor aspect, using calipers as described by Helliwell and Jackson, 1994. 

CSA = 7I(F 

_ 2 

ypC- tSti+Stv) 
271 40 

R - U cm^ 

where: FOC = forearm circumference (cm) 
R= area of the radius (cm2) 
U = area of the ulna (cm2) 
Star forearm skinfold thickness meaani 
on the extensor aspect of the forearm (mm) 
Stv! forearm skinfold thickness measured 

R+U 

on the flexor aspect of the forearm (mm) 

NB: a double fold of skin was measured by the calipers. 

R and U taken from tables of bone diameter (Vutama and Helela, 1969), 
assuming circular cross-section (Horsman and Leach, 1974). 

* Dr Patrick Jones, Regional Medical Hiysics Department, South Cleveland Hospital. 
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This technique was not found to be repeatable over same day testing of 8 controls and 

was therefore rejected as a method of evaluation of the CSA of the forearm. 

As a result of this, magnetic resonance imaging of the forearm was used for both 

cross-sectional area and volumetric measurements of the forearm muscle. The-subjects 

were scanned in the prone position, with the study arm flexed and internally rotated at 

the shoulder, the elbow partially flexed and the forearm pronated. Cross sectional area 

of the right forearm musculature at the site of maximum extensor muscle area (located 

by initial imaging in the coronal plane) was measured from TWl MRI sequences 

obtained on a 1 .OT Siemens Impact Scanner. The outer edges of the forearm muscle 

compartments was identified visually on the computer screen and traced manually using 

a computer mouse and tracer tool. The area within the muscle compartments was then 

calculated using an analysis package. 

3.4.2 Volumetric analysis of the musculature of the right forearm. 

Volumetric analysis of the musculature of the right forearm was studied using a 

Siemens MRI Scanner*. A 15 cm section of the right forearm was scanned, initially 

using three separate scanning techniques (Tl weighted. Proton and 3D), in order to 

ascertain the optimal scanning protocol for use in further assessments in the main study. 

The details of this initial study are further described in Chapter Five. The proximal 

scanning slice was located just distal to the superior radioulnar joint. The subjects were 

scarmed in the prone position, with the study arm flexed and internally rotated at the 

shoulder, the elbow partially flexed and the forearm pronated. Eight, 1 cm slices with 1 

cm intervals were imaged using the Tl-W technique and fifteen, 1 cm slices imaged 

using the proton technique. The mean number of slices in the 3D studies was 22. 

* Scanning was performed in the Department of Radiology, South Cleveland Hospital and analysis of the 
scans for forearm muscle CSA was performed by Dr Robert Campbell, Consultant Musculoskeletal 
Radiologist, South Cleveland Hospital. 
* 

Scanning was performed in the Department of Radiology, South Cleveland Hospital, under the 
supervision of Dr Robert Campbell, Consultant Musculoskeletal Radiologist. The development of the 
analysis technique and analysis of all scans were performed within the Regional Medical Physics 
Department, South Cleveland Hospital by Mr Darren Hogg & Mr Robert Royall. 
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Each slice was stored as an image file on the computer. The file format was a square 

matrix of 256*256 pixels, where each pixel had an intensity (grey level), representative 

of the tissue type at that point on the image. Since each slice was of known thickness 

(1cm for the T l -W and proton imaging and 0.6 cm for the 3D scanning technique), each 

pixel represented a calculable volume and is referred to as the voxel. 

The segmentation process. 

The digital processing in the form of segmentation was used to analyse the images, 

using the HERMES medical image processing software package (Nuclear Diagnostics 

Ltd). Segmentation used the technique of region growing, starting with the middle slice, 

where a pixel (the 'seed pixel') was chosen which reflected the muscle being assessed. 

A region of similar pixels was then identified (muscle region) and those pixels with 

intensities outside the seed pixel range were rejected (background). Similarity criteria 

(Homogeneity Range and Edge Weight) were set manually, which controlled the 

sensitivity of the identification of pixels as muscle or background. 

The Homogeneity Range and Edge Weight settings were selected in order to allow the 

most consistent and sensitive identification of muscle tissue without misclassification of 

non muscle tissue, while being flexible enough to classify most muscle areas with a 

single seed pixel. These parameters then stayed fixed for all other images acquired using 

that specific scanning technique (e.g. Tl -W imaging). 

Segmentation of the other slices was then performed. Placement of the seed pixel in a 

similar position to that in the middle slice was found to be the most appropriate site for 

accurate seeding in the remaining slices. Some slices also contained isolated muscle 

regions; these needed to be segmented separately. Summation of the muscle voxels 

produced an estimate of the muscle volume in the section of the forearm studied. 

In some cases, the distal (1st) image lacked adequate contrast to permit accurate 

definition of muscle tissue using the segmentation technique. In the assessment of the 

proximal (15th) image through the inferior RUJ, segmentation incorrectly classified the 

joint as muscle. Therefore the distal (1st) and proximal (15th) slices were discarded 

from each Proton series. Each series then contained 11 slices covering an 11cm region 

of the forearm. 
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3.5 The Assessment of Rheumatoid Disease. 

The evaluation of rheumatoid disease status in subjects with RA involved the evaluation 

of the severity and activity of the disease. Assessment of the disease activity was 

subdivided into evaluation of the local disease activity in relation to the right hand and 

wrist and systemic disease activity. 

The severity of disease was assessed by the grip strength of the right hand and a 

deformity score. In a subset of subjects, the hand bone density of the right hand was 

also used as an indicator of disease severity (Peel et al, 1994). Hand bone densitometry 

was performed according to the technique described by Devlin et al (1996) using a 

Lunar DPX-L Scanner. The subject was positioned as shown in figures 3.5.1 and 3.5.2, 

with the right hand placed flat, palm dovrawards upon a perspex board. The acquisition 

and analysis software used in this measurement was based on the small animal software 

package (Lunar Corporation, Madison, New York), in the method described by Devlin 

et al (1996). A six-point region of interest was used to measure the bone density of the 

right hand and wrist, excluding the distal radius and ulna. 
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Figure 3.5.1 Patient positioning for bone densitometry of the right hand using a Lunar 

DPX-L Scanner. 

Figure 3.5.2. Close-up view of the position of the right hand on perspex board for hand 

bone densitometry. 
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Hand fiinction deteriorates with deformity in rheumatoid disease (Spiegel et al, 1987; 

Lansbury, 1958). The severity of the disease process affecting the right hand and wrist was 

assessed by a hand flinctional score, the Keital Hand Functional Index (Kalla et al, 1988, 

as detailed in Appendix 12.1.1) and a wrist-weighted deformity score, based on the score 

described by Helliwell and Jackson (1994), which evaluated the subluxation at each MCP 

and PIP joint (1 point for each i f deformity present), and the wrist (a score of 5). This was 

ftirther developed in this study in order to evaluate the severity and type of the deformity at 

the wrist and MCP. The severity was graded as mild, moderate or severe, with a score of 1, 

2 or 3 at the MCP joint and 5, 10 or 15 at the wrist. The type(s) of deformity evaluated were 

subluxation and ulnar deviation, resulting in two deformity scores, one for subluxation and 

one for ulnar deviation, each with a maximum score of 30. An example of a deformity score 

for a subject with RA is shown in figure 3.5.3. 

Figure 3.5.3: An example of a right hand and wrist subluxation score in a female with RA. 

Wrist Thumb Index Middle Ring Little 

MCPJ MCPJ MCPJ MCPJ MCPJ 

None 0 o v 0 0 0 0 

Mild 5 V 1 1 1 1 V 1 V 
Moderate 10 2 2 V 2 V 2 2 

Severe 15 3 3 3 3 3 

Total subluxation score in this case = 11/30. 

The systemic disease activity in those subjects with rheumatoid arthritis was assessed by 

the serum C-reactive protein (CRP) level (Wollheim, 1993), the duration of general 

morning joint stiffness from the moment of waking and a 28-point upper limb weighted 

joint score (Boers et al, 1995; Tugwell and Boers, 1993; Fuchs et al, 1989). The Fuchs joint 

count is based upon the presence of tenderness and swelling when presstire is applied to the 

shoulder, elbow, wrist, metacarpophalangeal (MCP), proximal interphalangeal (PIP) joints 
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and knees. The scores for tenderness and swelling of the left and right were recorded. 

Local disease activity at the right hand and wrist was also evaluated by 11-point numerical 

rating scores for pain and stiffness in the right hand and wrist on the day of attendance 

(Boers et al, 1995; Tugwell and Boers, 1993). The Fuchs Score is shown in Appendix 

12.1.2. 

3.6 The Test Protocol 

In all studies all subjects were advised to rest their upper limbs on the day of testing, 

prior to attendance for assessment. Al l subjects were tested between 11 a.m. and 4 p.m. 

The maximum grip strength (MGS) was recorded using the grip bag, taken as the mean of 

3 readings each performed 2 minutes apart. A fifty minute rest period followed, during 

which all subjects with RA were assessed using a Fuchs joint score, numerical scores for 

pain and stiffness in the right hand and wrist, and the duration of general joint stiffness 

that day. At the initial and final visits, the Keitel Functional Index and right and left hand 

& wrist deformities were also recorded. The preferred wrist angle (expressed in degrees 

of extension) for gripping the bag was recorded by asking the subject to grip the bag as they 

would normally whilst seated in the standard position, with the forearm in the test rig. 

Subjects performed all grip tests in 30° of wrist extension. The C-reactive protein was 

measured at each visit in all subjects with RA. and the height and weight of all subjects 

were also measured at the initial visit. 

The circumference of the right arm and dorsal and ventral skinfolds were initially 

measured at the MRI landmark. These were repeated three times and the average of 

each reading taken. The theoretical CSA of the forearm at that site was calculated 

using the formula as described earlier. However, since this technique was not 

demonstrated to be repeatable over short and long term testing, this method was 

abandoned and the forearm muscle mass of subgroups of subjects was examined 

using MRI scanning which measured either the cross-sectional area of the forearm 

musculature or its volume. 
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The subject was seated in the standard position. On the initial visit, forearm landmarks for 

electrode positioning were identified. The right arm was secured in the arm rig, in mid 

supination/pronation. The extensor and flexor landmarks were recorded using horizontal 

and vertical scales. 

The skin was prepared at each landmark. The electrodes were applied at the landmarks, two 

at each site, in transverse configuration, with 1 cm interelectrode separation at each site. A 

ground electrode was placed on the upper arm after similar skin preparation to the other 

sites. Skin impedance was checked to ensure a value less than 4 kQ was achieved. 

With the subject's arm in the study position, she was asked to maintain a grip of one third 

of her maximum strength (1/3 MGS), for 30 seconds. The test was started when she had 

achieved the target level. The computer screen had a feedback bar providing a target 

pressure at which to aim. A five minute rest period followed. 

The procedure was then repeated, with a target set at 1/2 MGS, followed by a ftirther 5 

minutes rest. The procedure was then repeated, with a target set at 2/3 MGS. 

The wrist was maintained in a position of 30° of extension in all tests. 

3.7 The Grip Strength Exercise Programme. 

The hand exercise programme involved balanced resistive, mid range gripping of a 

soft rubber ball, with the wrist in 30 degrees of extension. A small reference bar, 

with a 30° angle was provided to each patient. The regime was progressive, 

performed once daily for the first 6 weeks then twice daily for the following 6 

weeks. Ten maximal repetitions (each lasting 10 seconds) were performed with one 

minute's rest between each repetition. 
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All subjects were supervised at the initial visit in performing the exercise 

programme and were contacted by telephone once weekly for the first two weeks of 

the programme to ensure that they were complying and coping with the regime. 

Al l subjects received an information and instruction leaflet at the initial visit, as 

detailed in Appendix 12.2. 
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Chapter 4. Pilot Studies. 

4.1 Pilot Studies I: The development of study techniques and protocols. 

4.1.1 Introduction 

Several factors may affect the fi-equency spectrum of the surface myoelectric signal (SMES). 

These can be categorised as factors associated with muscle contractions, experimental 

technique and aspects of SMES analysis. The work involved in this study was handgrip. 

This task was required to be such that all subjects could perform it. Repeatable, reliable 

measurements were essential. 

Features of the measurement of the SMES which may influence the power spectrum include 

preparation of the detection surface, the skin and the interelectrode separation distance. The 

length of the muscle(s) from which the myoelectric signal is being generated is also 

important and is in turn influenced by the joint position. Lastly, aspects of the analysis of the 

SMES, including the use of wdndowing techniques and data smoothing may influence the 

spectral parameters. The following studies were performed in order to develop the technique 

of power spectral analysis of the forearm musculature during grip and standard protocols for 

the main study. Characteristics of the spectral width, a parameter which has not been 

evaluated, were also examined. 

Two study groups were involved in the following pilot studies and are described in Table 4.1.1. 

All subjects were in the standard test position for all studies. 

Table 4.1.1: Pilot studies I: Details of the study groups involved in initial pilot studies. 

1 Group 1 Age(SD)(yrs) Disease duration(SD) (yrs) 

1 Controls (n=12) 1 47.8(8.1) 

f RA (n=12) 1 55.4 (9.7) 12.5 (8.9) 
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4.1.2 Skin preparation 

Basmajian and DeLuca (1985) recommended that the skin be prepared prior to electrode 

application by cleaning the skin with alcohol and rubbing with fine sandpaper. This did not result 

in consistently satisfactory levels of impedance (<4kf2), but shaving the skin between these two 

stages produced the required levels to achieve this. 

4.1.3 Grip Tests 

The Durham Gripper 

Initial diflBculties encountered with the dynamometer derived fi-om the Durham hand assessment 

system (Jones, 1984) were its size, weight, strain gauges and calibration and difHculties with 

maintaining a constant grip force. The gripper was originally designed to be adjustable for 

different hand sizes. A study of 12 patients with RA and 12 normal subjects found that all 

preferred the gripper at its smallest size and found the adjustable bars to be cumbersome. It was 

therefore altered permanently to a small size, with a semi-cylindrical back for comfort of grip. 

Most subjects with RA found the gripper to be 'too heavy' and as a result it was placed in a 

moulded plastic holder on a flexible spring support which was mounted on a platform. The 

calibration of the gripper was not linear. There was no significant drift in the system demonstrable 

over a period of 36 hours, but the gripper was calibrated at least once daily. Subjects could not 

sustain a target grip with the gripper. This led to the introduction of the grip bag for the study 

protocol. 

Initial studies using the grip bag 

Initial studies using the grip bag were necessary in the development of the study protocol. These 

included the repeatabilities of maximum grip, choice of wrist position and the ability to maintain 

target grips and wrist position during submaximal tests. 

The repeatability of maximum grip. 

In order to ensure that the maximum grip strength (MGS) measured was repeatable, the ability of 

subjects to repeat a maximum grip on 3 occasions within 1 minute was assessed in a group of 

subjects with RA. All performed 3, three-second maximum grips in the standard test position at 
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Figure 4.1.1: Protocol: The repeatability of maximum grip strength (MGS) over 3 tests 
performed 20 seconds apart by 12 females with RA and 12 female controls. 

100% Three, 3-second 
maximal grips at 
20 second 
intervals. 

O 

0 3 23 26 46 49 

time (seconds) 

Statistical analysis: 
Repeated measures ANOVA was used to test for significant variation between 
the three measurements. 

Correlation between the measurements was assessed using the Spearman 
correlation test. 

Figure 4.1.3: Protocol: maintenance of the target grip. 
100% 

i 

\ t / 
5 minutes rest 

Each grip was heldfor 30 seconds and the computer 
screen monitoredfor variation in grip force. 

• 1/3MGS 

1/2MGS 

2/3MGS 

4/5MGS 

MGS 
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20 second intervals. There was an extremely significant correlation (p<0.001) between the test 

and retest MGS, as shown in figure 4.1.2 and Table 4.1.2. 

Figure 4.1.2: The repeatability of maximum grip strength (MGS) over 3 tests performed 

20 seconds apart by 12 subjects with RA and 12 controls. 

£ 300.00 J 
t 250.001 
5 ~ 200.C 
f l 150 00 + 
E •i- 100.00 

50.00 + 
.00 

Contro l s*—•—• 

: m 
RA 

Group Mean MGS (SO) (mmHg) 
Testl ' iTnt2"~ T T m I J 

Control 216.7 218.5 217.3 

I (11=12) (43.5) (42.7) (43.1) 
RA (11=12) 79.4 80.67 79.92 

{ (34.64) (34.31) (33.76) 

3 1 
Test 

Maintenance of the target grip. 

The ability of subjects to maintain a given grip pressure for 30 seconds, based on the target 'bar" 

on the computer screen was assessed. Most subjects (RA & controls) had no difficulty in 

maintaining grips at 1/3, 1/2 and 2/3 MGS. Although most subjects with RA could maintain grips 

at 80% of their MGS for 30 seconds, control subjects could not do so. Variations of force 

beyond 5% of the target were regarded as unsatisfactory. 

Maintenance of a constant wrist position during testing. 

Since joint angle has been noted to influence the power spectrum, the wrist position (angle of 

extension) was monitored during a 30-second grip test at 2/3 MGS performed by both subject 

groups. The joint angle was monitored manually every 5 seconds, using a small goniometer. All 

subjects maintained wrist joint angle with a maximum variation of 2". 

The repeatability of the choice of wrist position. 

Twenty-four female subjects (12 with RA & 12 controls) were asked to perform a grip at 2/3 

MGS for 30 seconds and their chosen angle of wrist extension noted using a goniometer. This 

was repeated on 2 fiirther occasions at 5-minute intervals. The resuhs, as displayed in figure 
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Figure 4.1.4. Protocol: The repeatability of the chosen angle of wrist extension during 
standard 30-second grip tests performed at 2/3MGs, by 12 females with RA and 12 
female controls. 

100% 

§ 5? 
« a 

Sminutes rest intervals • 2/3MGS, 
held for 30 
seconds 

Statistical analysis: 

The repeatability of the chosen angle of wrist extension in each group was 
assessed using repeated measures ANOVA. 

The chosen angle of wrist extension by the RA and control groups was 
compared using an impaired non-parametric t-test. 
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4.1.5, show that the chosen wrist angle is highly repeatable at the same testing session in both 

groups. The chosen angle of wrist extension was significantly greater in the controls than in the 

RA group (p<0.0001). 

Figure 4.1.5: The repeatability of the chosen angle of wrist extension* during standard 30-second 

grip tests performed at 2/3MGS by 12 female subjects with RA and 12 female controls. 

M M B « ^ of wrist eKnsioa 0 *> 

Group Testl Testl Testa 

RA (n=12) 22.1 (7.1) 22.3 (72) 22.5(7.6) 

Controls 

(n=12) 

40.5 (7.29) 40.7(7.2) 40.9(7.4) 

Controls 

Test number Testniunber 

*The RA and control groups were compared using unpaired non-parametric t-tests. The rqieatability 

of the angle of wrist extension within each group was assessed using repeated measures ANOVA. 

4.1.4 Choice of bandwidth 

The usable energy of the MES is limited to the 0 to 500 Hz fi-equency range, with the 

dominant energy generally being in the 50-150 Hz range for normal muscles (Latash, 1988). 

The appropriate bandwidth for SMES analysis fi^om forearm musculature was assessed by 

studying the fi-equency spectra of the SMES measured fi-om extensor and flexor channels 

during standard grip tests performed at 2/3 MGS by the subjects in both pilot study groups. 

Although a bandwidth of 300 Hz would have been appropriate for the majority of tests, a 
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Figure 4.1.6. Protocol: The effect of interelectrode separation (lES) distance upon SMES 
parameters in 10 female controls. 

100% Grip at 2/3MGS 
at 1cm lES. 

Grip at 2/3MGS 
at 2cm lES. 

5 minute rest 

Statistical analysis for each SMES parameter: 

A Wilcoxon signed rank test was used to assess for any significant variation between the 
SMES parameters obtained using the two EES distances. 

Spearman correlation test was used to assess the correlation between the SMES parameters 
obtained using the two lES distances. 
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selected bandwidth of 500 Hz allowed for the occasional test in which the signal at 

frequencies above 300 Hz was noted. 

4.1.5 Interelectrode Studies 

The effects of the interelectrode separation (lES) distance on the SMES parameters were studied 

using Nicolet electrodes. Inter-electrode distances of 1 and 2 cm were compared during 30 

second standard grip tests performed at 2/3 MGS at 5 minute intervals by 10 of the subjects fi-om 

the control pilot study group. The resuhs are shown in figures 4.1.7 and 4.1.8. 

The spectral width was higher with the lower lES distance. The effect of the lES distance upon 

the IMF and decline in median frequency of the SMES with time (the MDF gradient, MDFc) 

differed for the two chaimels; both spectral parameters being greater for the larger lES for the 

extensor channel, the opposite being the case for the flexor channel. The centre frequency was 

very similar at both lES distances. As expected, the spectral peak and RMS of the SMES were 

greater with the greater lES. None of the differences were statistically significant when assessed 

using a Wilcoxon signed rank test and all showed significant correlations between 1 and 2 cm 

lES distances (Spearman r ranging from 0.6383 to 0.8788 and p from 0.0235 to 0.0008) with the 

exception of extensor MDF gradient (r = 0.1636, p=0.3257). 

Figure 4.1.7: The effect of lES distance upon spectral parameters (expressed as the mean 
(SD)) recorded from the extensor and flexor forearm musculature during standard grip 
tests at 2/3 MGS by 10 right handed female controls. 

180 
160 
140 
120 
100 
80 
60 
40 
20 

I 
Spectral 

width 

11 cm 
I 2cm 

ft: J1 IMF 
Centre 

frequency 

Ex Fx Ex Fx Ex Ex=extensor 
Fx=flexor 

u 
I -0.1 
^ -0.2 

§• -0,3 
m 
fe -0.4 

0.5-1-

Extehspr Rek<sr 

• 1cm 
• 2 c m 

68 



Figure 4.1.8: The effect of lES distance upon the spectral peak and the RMS of the SMES 

(expressed as the mean (SD)) recorded from the extensor and flexor forearm musculature 

during standard grip tests at 2/3 MGS by 10 right handed female controls. 
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It can be concluded that the interelectrode distance does have an effect upon the amplitude 

and frequency parameters measured from forearm musculature during sustained grip. 

Although these differences were not found to be statistically significant this may be related 

to the small size of the group assessed. A standard interelectrode separation of 1 cm for each 

charmel was used for the study protocol, in keeping with that used by other workers at 

different sites (Bendahan et al, 1996). 

4.1.6 Hanning windowing 

Windowing techniques are used by some workers in order to reduce the effect of sampling a 

random signal over a short time interval. Other workers have not used data windowing. 

Windowing would not be expected to have an effect upon spectral parameters apart from the 

peak spectral amplitude. To assess the effect of a Hanning window on the surface myoelectric 

signal (SMES) a comparison between power spectral parameters of the SMES from both 

channels before and after application of a Harming window was performed for data from a 

30 second test at 2/3 MGS in 29 female subjects with RA (mean age (SD) 55.9 (7.2); 

disease duration 11.2 (6.8) years). As expected, the application of the Harming window in 

the analysis of the SMES has a significant effect on the spectral peak. Small differences were 

also noted in the other spectral parameters, none were statistically significant. 
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Table 4.1.2: Comparison between the power spectral parameters of the SMES from the 

forearm extensor channel during a 30 second grip test performed at 2/3 MGS before and after 

the appUcation of Banning window (n=29). Mean (SD). 

Window Spectral Centre Spectral width MDF Gradient IMF (Hz) 
peak Frequency (Hz) (Hz/sec) 
(HV) (Hz) 

Nil 9.8033 74.47(19.89) 153.60 (38.76) -0.4550 118.60 
(9.777) (0.229) (29.55) 

Manning 6.3233 71.61 (17.39) 153.8 (42.87) -0.4577 (0.262) 118.20 
(6.131) (29.71) 

*P <0.0001 0.186 0.090 0.846 0.264 
Student's Paired T-Test. 

Table 4.1.3: Comparison between the power spectral parameters of the SMES from the 

forearm flexor channel during a 30 second grip test performed at 2/3 MGS before and after the 

application of Hanning window (n=29). Mean (SD). 

Window Spectral peak Centre Spectral MDF IMF (Hz) 

Frequency width (Hz) Gradient 

(Hz) (Hz/sec) 

Nil 5.48 55.97 123.67 -0.3957 115.06 

(5.98) (18.79) (46.23) (0.270) (23.76) 

Hanning 3.78 54.90 122.27 -0.3893 113.39 

(3.86) (16.43) (46.53) (0.272) (23.95) 

*P 0.0080 0.463 0.301 0.638 0.090 

Student's Paired T-Test 

It can be concluded that the application of a window in the analysis of the frequency 

spectrum of the SMES may have significant effects upon some spectral variables, specifically 

the spectral peak amplitude. In reviewing the findings of other workers, comparison between 

non-windowed and windowed data studies must be regarded with caution. Windowing 

techniques were not used in the analysis of the frequency spectra in flirther studies. 
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4.1.7 The Effect of Smoothing Cycles on Power Spectral Parameters. 

Smoothing of the power spectrum was introduced in order to reduce noise in the spectra. 

Reducing noise without excessively smoothing the spectra is important because of 

automated analysis. The effect of smoothing on the power spectra of the SMES of forearm 

musculature generated during a 30 second grip test performed at 2/3 maximal grip can be 

demonstrated by examining a typical power spectrum before and after smoothing cycles 

from one standard grip test performed by a subject with RA. 

Figure 4.1.9: The effect of smoothing cycles upon spectral parameters: data from the extensor 

channel from one standard grip test performed at 2/3 MGS by one subject with RA. Spectra 

ji^ore and after 10 smoothing cycles. 
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Figure 4.1.10: The effect of smoothing cycles upon spectral parameters: data from the 

extensor channel from one standard grip test performed at 2/3 MGS by one subject whh 

RA. 
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The effect of smoothing on the power spectra of the SMES of forearm musculature was 

fiirther studied in 16 subjects with RA (mean age (SD) 56.8 (6.9) years; disease duration 

10.9 (6.4) years). They performed a standard 30-second grip test performed at 2/3 

maximal grip. The power spectra were subjected to 0,3 and 10 smoothing cycles and the 

resulting spectral parameters compared using pafred non-parametric tests. As can be 

seen in tables 4.1.4 and 4.1.5, smoothing cycles can have a significant effect upon the 

spectral peaks, centre frequencies and initial median frequencies of both flexor and 

extensor channels, but not on the median frequency slopes. 

Table 4.1.4: Comparison of 0,3 and 10 smoothing cycles on forearm EMG spectral 

parameters in 16 female subjects with RA. Extensor channel (Mean (SD). 

Parameter 

Peak 

Centre (Hz) 

No smoothing 

6.269(3.87 

76.12(2074) 

Width (Hz) 177.56(34.79) 

IMF (Hz) 137.99 (22.00) 

MDF gradient -0.3238 (0.2186) 

(Hz/sec) 

3 cycles 

5.562(3.51) )*** 

79.19 (22.86) 

181.06(33.61)* 

138.15 (22.12) ** 

-0.3275(0.2167) 

10 cycles 

5.41 (3.43)+* 

78.5(22.00) 

183.38 (35.89)+ 

138.24(22.15)** 

-0.3256 (0.2126) 
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Table 4.1.5: Comparison of 0,3 and 10 smoothing cycles on forearm EMG spectral 

parameters in 16 female subjects with RA. Flexor channel (Mean (SD)). 

i Parameter No smoothing 3 cycles 10 cycles 1 

Peak 3.18 (2.95) 2.90 (2.70) *** 2.79(2.60)** j 

Centre (Hz) 53.13 (14.12) 48.06 (8.71) ** 47.44 (8.29)* j 
Width (Hz) 130.88(53.48) 128.56(51.30)** 133.00(51.89)*** j 

1 IMF (Hz) 117.93 (23.47) 115.96(24.38)*** 116.26(24.48)*** j 
MDF gradient -0.3631 (0.2281) -0.3631 (0.2292) -0.3656 (0.2257) | 

(Hz/sec) j 

0 vs 3 cycles; *p derived from Wilcoxon signed rank test; * p<0.05; **p<0.01; ***p<0.001 

3 vs 10 cycles; *p derived from Wilcoxon signed rank test; *p<0.05; **p<0.01; ***p<0.001 

Smoothing of the power spectrum may allow the spectral peak to be identified with 

greater precision. The process does affect some spectral parameters: the site at which 

the peak is located may in turn affect the width of the spectrum, and the centre and 

initial median frequencies. It was found that 3 smoothing cycles provided an adequate 

degree of noise reduction to allow reliable identification of the spectral peak, without 

excessively smoothing the data. 
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Figure 4.2.1. Protocol: The short-term repeatability of SMES parameters from standard 
grip tests performed by 40 females with RA and 16 female controls. 
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Statistical analysis: 

For each SMES parameter, the mean percentage variation between the two tests was 

calculated. The correlation between the results from the two tests was assessed by a Spearman 

correlation test. 
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4.2 Pilot Studies I I : The repeatability of the technique of SMES 

analysis of the forearm. 

4.2.1 Introduction 

In order to develop the study protocol two forms of repeatability studies were carried 

out. Firstly, a short-term repeatability study (the restitution study) was performed to 

assess the restitution of myoelectric parameters on repeated testing. This allowed an 

appropriate rest interval to be calculated, for repeated testing at a single session. 

Secondly, a long-term repeatability study was performed to assess the true 

repeatability of the technique over a 3 week period - which was the testing interval 

planned for the main study. These studies involved two subject groups, one consisting 

of subjects with RA, the other of healthy controls. Al l were right hand dominant 

females. The subjects studied for the restitution study differed from those in the long-

term repeatability assessment. The short and long term repeatabilities were analysed 

using the method recommended by Mathews et al (1990), describing the mean absolute 

percentage variation between tests. 

4.2.2 The restitution study 

The repeatability of the technique over a period of 5 minutes, in rheumatoid and control 

subjects was assessed. The study groups are described in Table 4.2.1. 

Table 4.2.1: Details of the subject groups in the restitution study. 

Group Age (SD) (years) Disease duration (years) 

Controls (n=16) 44.96 (8.12) — 

RA (n=40) 58.88(8.91) 11.17(4.87) 

On the day of testing, subjects rested their upper limbs prior to testing. All were tested 

between 11 am and 3 p.m. The MGS was assessed by taking the mean of three, 3 -

second maximum grips, performed 20 seconds apart, followed by a 50-minute rest 

period. They then performed a standard right handgrip test at 2/3MGS for 30 seconds 

and after a 5-minute rest interval the 2/3MGS test was repeated. The electrodes were 

left in place between testing sessions. The myoelectric parameters from the two tests 

were then compared. 
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Figure 4.2.2: Repeatability of the RMS of the SMES (flexor channel) from standard grip 

tests at 2/3 MGS performed 5 minutes apart by 16 female controls. 
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Figure 4.2.3: Repeatability of the RMS of the SMES (flexor channel) from standard grips 

at 2/3 MGS performed 5 minutes apart by 40 females with RA. 
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All subjects were able to repeat the required task of a sustained handgrip at 2/3MGS for 

30 seconds after a 5-minute rest interval, with less than a 5% variation of grip force 

during each test. The repeatability of the surface myoelectric parameters was assessed in 

terms of the R M S of the SMES, the M D F G , IMF and spectral width. The initial R M S of 

the SMES (IRMS) and the gradient of the R M S of the SMES (RMSQ) were also 

assessed. 

The RMS of the SMES showed a mean variation of less than 10% on retesting after a 5 

minute interval in all channels for both groups, ranging from 5.72 - 8.22%. This is 

shown for the RA and control groups in figures 4.2.2 and 4.2.3 (flexor channel) and 

4.2.4 and 4.2.5 (extensor channel). 

Figure 4.2.4: Repeatability of the RMS of the SMES (extensor channel) from standard 
grip tests at 2/3 MGS performed 5 minutes apart by 16 female controls. 
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Figure 4.2.5: Repeatability of the RMS of the SMES (extensor channel) from standard 
grips at 2/3 MGS performed 5 minutes apart by 40 females with RA. 
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Figure 4.2.6: Repeatability of the M D F G G of the S M E S (flexor channel) from standard 
grip tests at 2/3 M G S performed 5 minutes apart by 16 female controls. 

•0.S -0^ -OJ 

0.2 n 

MDFG Teat 2 
(Hz/sec) 

-0.2 

•OA 

-O.SH 

-0.8-1 
MDFG Teat 1 (Hz/sec) 

OJ 

i(SD);95%a 
•ftst 1: -0.3712 (0.2046); -0.4802 to -0.2622 
Test 2: -0.3988 (0.2131); -0.5123 to -0.2853 
!*r(p): 0.9753 (1X0.0001) 
% mean differcKe (SD): 7.34 % (12.60) 

Figure 4.2.7: Repeatability of the M D F G G of the S M E S (flexor channel) from standard 
grips at 2/3 M G S performed 5 minutes apart by 40 females with RA. 
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The restitution of the power spectrum was assessed by evaluating the repeatability of 

the M D F G , I M F and spectral width. Significant recovery of the frequency spectrum was 

demonstrated in both groups within the 5 minute rest interval, as indicated by good 

short term repeatability of these three parameters. The mean percentage variation of the 

extensor and the flexor M D F G ranged from 5.25 % to 7.61 % as shown in figures 4.2.6 

to 4.2.9 and in tables 4.2.2 to 4.2.5. 

Figure 4.2.8: Repeatability of M D F G of the S M E S (extensor channel) from standard grip 
tests at 2/3 M G S performed 5 minutes apart by 16 female controls. 
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Figure 4.2.9: Repeatability of the M D F G of the S M E S (extensor channel) from standard 
grips at 2/3 M G S performed 5 minutes apart by 40 females with RA. 
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Figure 4.2.10: Repeatability of the IMF of the SMES (flexor channel) from standard 
grip tests at 2/3 MGS performed 5 minutes apart by 16 female controls. 
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Figure 4.2.11: Repeatability of the I M F of the SMES (flexor channel) from standard 
grips at 2/3 MGS performed 5 minutes apart by 40 females wHh RA. 

150 

140 

130-1 

- N - 120 

e* 110-1 

I 100 H 
u. 

1 90 

80 

70 

60 

i(SD);95%a 
Test 1: 105.42 (18.62); 99.47 111.38 
Test 2: 104.86 (16.34); 99.63 - 110.09 
*r(p): 0.8653 (p<0.0001) 

differeDce (SD): 7.00 % (6.09) 

80 100 120 

IMF Test 1 (Hz) 

140 160 

77f 



The I M F of the SMES was highly repeatable after the 5 minute rest interval in both 
groups, as shown in figures 4.2.10 - 4.2.13. 

Figure 4.2.12: Repeatability of the IMF of the SMES (extensor channel) from standard 
grip tests at 2/3 MGS performed 5 minutes apart by 16 female controls. 
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Figure 4.2.13: Repeatability of the IMF of the SMES (extensor channel) from standard 
grips at 2/3 MGS performed 5 minutes apart by 40 females with RA. 
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There is no information available in the literature on the restitution of spectral width 

after exercise. This parameter was found to be highly repeatable in extensor and forearm 

musculature for both study groups, with a mean percentage variation ranging from 

5.91% to 9.96 %, as detailed in Tables 4.2.2 to 4.2.5. 

The rate of change of the RMS of the SMES with time (the R M S g ) recorded from 

forearm musculature during grip at 2/3 MGS was not demonstrated to be a reliable 
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indicator of fatigue on repeated testing with 5minute intervals between tasks. The 

repeatability data for this parameter are given in Tables 4.2.2 to 4.2.5. 

The initial RMS of the SMES (IRMS) repeated after the 5 minute interval correlated 

with the baseline value with r ranging from 0.7525 to 0.9375; however, the mean 

percentage difference ranged from 7.81 % to 32.12 %. 
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Figure 4.2.14. Protocol: The long-term repeatability of SMES parameters from standard 
grip tests at 1/3MGS performed 3 weeks apart by 19 females with RA and 18 female 
controls. 
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Figure 4.2.15. Protocol: The long-term repeatability of SMES parameters from standard 
grip tests at 1/2MGS performed 3 weeks apart by 24 females with RA and 30 female 
controls. 
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Figure 4.2.16. Protocol: The long-term repeatability of SMES parameters from 
standard grip tests at 2/3MGS performed 3 weeks apart by 18 females with RA 
and 21 female controls. 
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Figure 4.2.17: The repeatability of the RMS of the SMES (extensor channel) from 

standard grip tests at 2/3 MGS performed 3 weeks apart by 18 females with RA. 
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greater variation on retesting than the control groups at each grip level. The myoelectric 

parameters measured during the grip tests at 2/3 MGS showed the least variation on 

retesting. The mean percentage variation of the RMS of the SMES measured at the 

extensor channel during grip was 5.22 % for the control group and 7.33 % at the 2/3 MGS 

levels. The mean percentage variation at the lower grip force levels ranged from 8.41 % to 

8.57 % in the two groups over the 3-week period. These findings are displayed in figures 

4.2.17 and 4.2.18 (extensor channel) and 4.2.19 and 4.2.20 (flexor channel). 

Figure 4.2.18: The repeatability of the RMS of the SMES (extensor channel) from 

standard grip tests at 2/3 MGS performed 3 weeks apart by 21 female controls. 
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The RMS of the SMES measured at the flexor channel during grip showed a greater mean 

percentage variation over the lower grip force levels than at the extensor channel, ranging 

from 8.09 to 11.58% at the lower two grip force levels. The mean percentage variation was 

less at the higher grip force level (2/3MGS), being 5.49% for the control group and 9.23% 

for the group with RA. 
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Figure 4.2.19: Repeatability of the RMS of the SMES (flexor channel) from standard grip tests 

at 2/3 MGS performed 3 weeks apart by 21 female controls. 
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Figure 4.2.20: RepeatabiUty of the RMS of the SMES (flexor channel) from standard grip tests 

at 2/3 MGS performed 3 weeks apart by 18 females with RA. 
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There was no significant difference between the extensor nor the flexor M D F G of the SMES 

of Test 1 and Test 2 in either group, the mean percentage variation ranging from 14.25 to 

17.66 %, as shown in figures 4.2.21 and 4.2.22 (extensor channel) and 4.2.23 and 4.2.24 

(flexor channel). However, the repeatability of this parameter at the lower force levels was 

much poorer, the mean percentage variations being 23.15 % and 31.8 % in the control and 

RA groups respectively in the ¥2 MGS test and 61.3 % and over 270 % in the 1/3 MGS test. 
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Figure 4.2.21: The repeatability of the M D F G of the S M E S (extensor channel) from 

standard grip tests at 2/3 M G S performed 3 weeks apart by 18 females with RA. 
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The repeatability of the M D F G measured at the flexor channel showed a similar pattern to 

the extensor channel, with the repeatability being satisfactory at the higher grip pressure 

level of 2/3 MGS (14.4 % «& 15.9 % for the control and RA groups respectively), but not at 

the lower grip force levels. The flexor channel resuhs showed a greater variation on 

retesting than the extensor chaimel. Overall, the variation on retesting was greater in the 

groups with RA. 

Figure 4.2.22: The repeatability of the M D F G of the S M E S (extensor channel) from standard 

grip tests performed at 2/3 M G S 3 weeks apart by 21 female controls. 
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Figure 4.2.23: The repeatability of the M D F G of the S M E S (flexor channel) from standard grip 

tests at 2/3 M G S performed 3 weeks aptart by 21 female controls. 
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Figure 4.2.24: The repeatability of the MDFG of the SMES (flexor channel) from standard grip 

tests at 2/3 MGS performed 3 weeks apart by 18 females with RA. 
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The I M F showed a good repeatability over the range of grip forces at which subjects were 

tested, with a mean percentage variation of less than 9%, the results at the higher grip force 

level of 2 /3MGS being the most repeatable. 

The I M F of the S M E S measured at the flexor channel showed a greater variation than the 

extensor channel. The variation at a grip force of 1/3MGS showed the greatest variation; 

12.09 and 17.24 % for the control group and RA group respectively. At higher grip force 

levels, the mean percentage variation was less than 7.5%, with r ranging from 0.7232 to 

0.9565 and all correlations reaching significance at p<0.0001. The repeatability data of the 

I M F at 2 /3MGS are displayed overleaf in figures 4.2.25 and 4.2.26 (flexor channel,) and 

4.2.27 and 4.2.28 (extensor channel). 

The spectral width measured at the extensor channel showed a mean variation ranging from 

5.17% to 13.50 % over the three week period, as indicated in tables 4.2.7 to 4.2.22. The 

repeatability of the measurement of the spectral width of the flexor channel was less 

satisfactory than the extensor channel, with a mean percentage variation ranging from 8 .92% 

to 25.30% (r: 0.5953 to 0.9119). The tests performed at a level of 2/3 M G S were the only 

to show a mean percentage variation of less than 10% for both groups. The least variation 

was shown at the higher grip force level for both subject groups, at both the extensor and 

fiexor channels. 

The gradient of the R M S of the S M E S ( R M S G ) - showed extremely poor repeatability 

over the 3 week period for both study groups at all levels of grip. The mean percentage 

variation of the R M S G on retesting ranged from 55.29% to 270.29%, with no specific 

channel nor grip force level being superior. 

The repeatability of the initial R M S of the S M E S ( I R M S ) in both channels was variable, 

but most satisfactory for both groups at the higher grip force level. The I R M S measured at 

the extensor channel showed a mean percentage variation on retesting ranging from 7.51% 

to 47.98 % and 19.19% to 50.32% at the flexor channel. The repeatability of the I R M S was 

consistently poorer for the RA group at all grip force levels. 
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Figure 4.2.25: The repeatability of the I M F of the SMES (flexor channel) from standard 

grip tests at 2/3 MGS performed 3 weeks apart by 21 female controls. 
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Figure 4.2.26: The repeatability of the I M F of the SMES (flexor channel) from standard 

grip tests at 2/3 MGS performed 3 weeks apart by 18 females with RA. 
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Figure 4.2.27: Repeatability of the Initial Median Frequency (IMF) of the SMES (extensor 

channel) from standard grip tests at 2/3 MGS performed 3 weeks apart by 21 female controls. 

140 -| 

130 • 

120 • 

X 110 -
CM 

in 100 -» 1-
u. 90 -90 -

80 -

70 -

60 -

• • 

— I 1 1 1 — 

60 80 100 120 140 

IMF Test 1(Hz) 

mean (SD); 95% CI 
Test 1: 111.61 (11.22); 106.51 -116.72 
iTest2: 112.90(10.29); 108.21-117.58 
i*r(p): 0.6492(0.0007) 
jWilcoxon Rank test: p = 0.2522 
i% Mean difference (SD): 4.37 % (5.57) 

160 

Figure 4.2.28: Repeatability of the IMF of the SMES (extensor channel) from standard grip 

tests at 2/3 MGS performed 3 weeks apart by 18 females with RA. 
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4.2.4 The repeatability of forearm myoelectric parameters generated 

during sustained submaximal grip: discussion and conclusions. 

The information available in the current literature relating to the intra-session and inter-

session repeatabilities of myoelectric parameters have been outlined earlier in the 

review of the literature. In this study, specific myoelectric parameters during grip •were 

demonstrated to be restored to near baseline values after a 5 minute rest interval. These 

were the RMS, M D F G and the I M F of the SMES and the spectral widths. This early 

restoration of the RMS of the SMES from forearm musculature is in keeping with the 

findings of Petrofsky and Lind (1980) who reported the forearm SMES amplitude to be 

restored to normal range after a 3 minute interval after submaximal contraction. The 

long-term repeatability of the RMS of the SMES recorded from the forearm during 

submaximal contraction noted in this study is consistent with findings of others in 

relafion to other muscles, including the elbow flexors. Moritani & DeVries (1978) 

reported a test-retest correlation of r = 0.988, p<0.001 in isometric contracfions of these 

muscles over a range of force levels. Chan and Chuang (1996), in one of the few studies 

examining the SMES of the EDC during isometric contraction, reported "excellent 

repeatability" of the RMS of the SMES but failed to provide any specific details. 

The M D F G of the forearm SMES returned to original baseline levels quickly in same 

day testing, as shown in the restitution studies. Although there is little available 

information in the literature relating to the gradient of the M D F derived from the SMES 

of forearm musculature over the test time, Kadefors et al (1968) reported the M D F of 

the SMES recorded from the extensor forearm musculature to be highly recovered 

within 90 seconds. Other workers have reported similar findings in the investigation of 

other muscles, as discussed earlier in Chapter Two. 

The MDFG of the SMES recorded from forearm musculature during grip was not a very 

stable parameter over time in comparison to the IMF and spectral widths, as 

demonstrated in the long term repeatability studies in section 4.2.3. The relative 

instability of the MDFo of the forearm SMES over time has been noted by other 

workers, particularly in association with subjects with neuromuscular diseases. 

Lindeman and Drukker (1994) reported up to 80 % variation in the MDFG obtained 

from the SMES of the rectus femoris during isometric contractions up to 80% of 

maximum in subjects with hereditary motor and sensory neuropathy or myotonic 
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dystrophy over 24 weeks. In this study, the mean (SD) percentage variation in the 

MDFQ of the forearm SMES from the most repeatable test, that at 2/3 MGS, ranged 

from 13 (8.2) % to 17 (11.3) %. This may have been related to variation in levels of 

upper limb activity over the interval between testing, both in the control and RA 

subjects. The very poor repeatability of the M D F G at lower levels of grip is likely to 

reflect the variation in fatigue experienced at these levels and on different days. Given 

the variation and the large standard deviation within both the RA and control groups, 

very large subject numbers would have been required to investigate the M D F G over a 

given time period such as the 3 month exercises programme. 

There is no information in the literature as to the repeatability of the forearm IMF nor 

the spectral widths, which were found to be restored to baseline values after 5 minute 

intervals on same day testing and to be highly repeatable over a 3 week interval. High 

degrees of both inter- and intra-session repeatability of the IMF in other muscles such as 

the rectus femoris (Viitasalo & Komi, 1975) and the back (Dolan et al, 1995) has been 

demonstrated. The repeatability of the spectral width derived from the SMES from any 

musculature has not been reported. 

The results of the restitution and long term repeatability studies in combination indicate 

that the M D F G of the forearm S M E S during grip at 2/3 M G S is a helpful and sensitive 

indicator of the fatigability of the forearm muscle at a given time and this fatigability 

alters over time. In addition to this, the high degrees of repeatability of the I M F of the 

S M E S and spectral widths on same day and long term testing indicates that they are 

reflecting more stable characteristics of forearm muscle than does the M D F G . The 

significant differences demonstrated between the extensor forearm musculature of the 

rheumatoid and control groups in relation to the former two parameters also suggest that 

they are reflecting intrinsic features of the forearm muscle during contraction that may 

be affected by the disease process in RA. This is further discussed in a later section. 

It is possible that the M D F G of the forearm SMES may be more repeatable over the long 

term i f shorter exercise durations were used and / or higher levels of grip, since there 

was a trend towards higher repeatabilities at higher force levels. This can be explained 

by the increased likelihood of fatigue at higher force levels, as shown in the pilot studies 

of the relationship between grip force levels and the M D F G (Section 4.3). The duration 

of the task used in this study, 30 seconds, was an arbitrary choice; other workers 
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(Merletti & Roy, 1996) have used similar durations, although others have used shorter 

or longer durations of exercise for tests. 

The R M S intercept and the R M S gradient were not repeatable after the 5 minute 

interval, indicating they are unsuitable for use in repeated tests with rest intervals of 5 

minutes. The R M S gradient of the R M S of the SMES (the R M S G ) and the initial R M S 

of the S M E S were not repeatable over the three week period. The finding of poor 

restoration of the initial R M S and the gradient of the R M S of the S M E S after a 5 minute 

rest interval demonstrates the sensitivity of such parameters to the effects of prolonged 

contraction. 

The demonstration of poor repeatability of the RMSQ derived from forearm musculature 

during grip emphasises the hazards of using it as an indicator of fatigue and suggests 

that the results of studies which have not assessed the repeatability of this parameter 

prior to its use in such situations should be regarded with caution. The lack of 

correlation between the degrees of restoration of the MDFQ and the R M S G after exercise 

also indicates that they are affected by differing - though not mutually exclusive -

factors and that the R M S G is possibly more sensitive to the effects of muscular 

contraction. 

In view of the findings of the repeatability studies, the 2/3 M G S test was adopted for 

further use in the main study in the investigation of myoelectric characteristics of 

forearm musculature in health and rheumatoid disease. The highly reliable power 

spectral parameters, the I M F and spectral width, were examined further in terms of their 

relationship with disease parameters in RA and on the basis of these investigations (as 

will become evident) were assessed as potential use as predictors of outcome to an 

exercise programme. The R M S of the S M E S was repeatable at all grip force levels, and 

values at different force levels at each testing were used to calculate the gradient of the 

regression line fitted to the plot of grip force versus the R M S of the S M E S (the F R M S 

gradient, F R M S G ) and used in the investigation of the mechanisms of strength gain in 

the handgrip programme. 
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4.3. Pilot Studies III . 

4.3.1 The relationship of grip force with SMES parameters. 

The relationship of grip force levels with SMES parameters was studied in seventeen 

female controls (mean age (SD) 42.6 (6.1) years). Their MGS was determined 

according to the standard protocol. Fifty minutes later, they performed a series of grips 

as outlined in figure 4.3.1. 

Figure 4.3.1: The surface myoelectric parameters vs grip force levels protocol. 

20 seconds rest 5 minute rest intervals between each 30 second grip 

SO minutes 

M G S 10% 33.3% 50% 66.67% 80% 

The results of this study are best described graphically and are outlined in figures 4.3 .2 

to 4.3.9. It can be seen that the RMS and the MDFG of the SMES fi-om both extensor 

and flexor forearm musculature correlate with increasing grip force levels. There was 

little effect of the level of grip force upon the IMF, nor upon the extensor spectral 

width. Whilst the flexor spectral width showed some linear trend with increasing force 

levels, there was no significant effect of grip force upon this parameter over the force 

range 30 to 66.7 % of the MGS, which were the levels of grip force used in the main 

study protocol. 
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Figure 432: Mean R M S of the S M E S ( \ ) and Unear regressioii Unes Qt) from extensor 

forearm musculature during standard grip tests versus percentage maximal grip pressure 

in 17 female controls. ANOVA F=7.94; 0.4951, p <0.0001. 
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Figure 433: Mean R M S of the S M E S (A) and linear regression Unes 01) from flexor 

forearm musculature during standard grip tests versus percentage maximal grip pressure 

in 17 female controls./liVOf^ F=16.43; 1^=0.2721,p <(i.0001. 

B 

120.00 
100.00 
80.00 
60.00 
40.00 
20.00 
0.00^ 
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0.00 20.00 40.00 60.00 

%MGS 
80.00 

Figure 43.4: Mean M D F G of the power spectrum of the SMES (A) and linear regression 

lines CB) from extensor forearm musculature during standard grip tests versos percentage 

maximal grip pressure in 17 female controls. ANOVA F=27.73; r2=0.5766, p < 0.0001 
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Figure 43.5: Mean M D F G of the power spectrum of the SMES (A) and linear regression 

lines (B) from flexor forearm musculature during standard grip tests versus percentage 

maximal grip pressure in 17 female controls. ANOVA F = 18.68; r' = 0.4825, p < 0.0001. 
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Figure 4J.6: Mean I M F of the power spectrum of the SMES (A) and Unear regression 

Unes (B) from extensor forearm musculature during standard grip tests versus percentage 

maximal grip pressure in 17 female controls. A /VOl^ F = 0.5579,p = 0.6939. 
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Figure 4J.7: Mean IMF of the power spectrum of the SMES (A) and Knear regression 

Unes ^ ) from flexor forearm musculature during standard grip tests versus percentage 

maximal grip pressure in 17 female controls. ANOVA F = 1.793,p = 0.1393. 
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Figure 43Ji: Mean spectral width (A) and linear regression lines (B) from extensor 

forearm musculature during standard grip tests versus percentage maxunal grip pressure 

in 17 female controls. ANOVA F=l. 732; p = 0.152Z 
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Figure 43.9: Mean spectral width (A) and linear regression lines (B) from flexor forearm 

musculature during standard grip tests versus percentage maximal grip pressure in 17 

female controls. For grip force range 10-80% MGS: ANOVA F = 2 65,V = ft 073, p = 

0.018. For grip force range 33.3-66.7% MGS: F= 0.0662, p = 0.9360. 
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4.3.2. Summary and Discussion: The relationship of grip force with 

SMES parameters 

In the attempts to use the EMG signal as an indicator of muscular force during an 

activity, the relationship between the EMG signal and the force exerted by a muscle or a 

muscle group has been the subject of intense research for many years. However, as 

Perry and Bekey (1981) point out and as has been detailed in the literature review, the 

quantification of EMG-force relationships is still clouded by confusion. 

For the neuromuscular efficiency to be a valid measure, it was important to establish 

that a linear relationship exists between force and the RMS of the forearm SMES during 
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grip. This was demonstrated in this study to be the case in relation to the forearm 

musculature. The findings indicate that the RMS of both the flexor and extensor 

forearm SMES was linearly related to grip force over the levels used in this study, that 

is 30 - 66.7 % of maximum grip strength. Over this range of force, recruitment would 

be expected to be the major mechanism of modulation of force (Milner-Brown et al, 

1973; Milner-Brown and Stein, 1975; Perry and Bekey, 1981), although this is very 

likely to be an over-generalisation (Duchene and Goubel, 1993) and muscles vary in 

their M U modulation mechanisms, as detailed in the literature review. Other 

mechanisms contributing to the increase in the RMS of the SMES with increasing force 

are the M U firing rates and the synchronisation of M U discharges (Duchene and 

Goubel, 1993) 

In order to avoid the effects of muscle synergy, which can make the relationship 

between myoelectric parameters such as the RMS of the SMES and force deceptively 

linear (Hof and van den Berg, 1977; Perry and Bekey, 1981), the flexor and extensor 

muscle groups were assessed separately. However, this does not exclude synergistic 

activity within the muscle groups. Therefore it is important to emphasise that the 

relationships that were demonstrated between grip force and the myoelectric parameters 

apply to the flexor and extensor muscle groups rather than specific muscles within that 

group. 

This study, which involved step contractions, demonstrated that grip force had relatively 

little effect upon the IMF 0 - 80 % MGS, particularly over the grip force range used in 

the main study (30 - 66.67 % ) . Petrofsky and Lind (1980) reported the mean power 

frequency of the SMES recorded from the flexor carpi radialis muscle during handgrip 

to be independent of contraction intensity over a wide range of grip force, from 25 to 

100% MGS. Kaiser and Petersen (1965) reported similar results to the findings in this 

study and those of Petrofsky and Lind (1980), showing that, although some changes 

occurred in the low frequency range of the spectrum, most of the frequency components 

remained stable. In a mathematical model of myoelectric activity. Person and Libkind 

(1970) reported the frequency of the SMES is likely to depend upon the duration of the 

MUAPs, once a threshold number of MUs are firing. 

In keeping with the findings of most workers relating to a variety of muscles, the MDFG 

of the SMES recorded from forearm musculature increased (i.e. became more negative) 

97 



with increasing levels of force. This is likely to be related to a combination of the 

progressive recruitment of type I I fibres at higher force levels (which, in forearm 

muscles, are larger (Polgar et al, 1973) and more fatiguable, with faster declines in the 

M D F G than type I fibres), the synchronisation of motor unit discharges, ischaemia, the 

accumulation of metabolites and the decline in pH and muscle fibre conduction velocity 

with increasing sustained force levels. 

Grip force had little effect upon the extensor spectral width over the grip force levels 

30-80 % MGS. Similarly, grip force had little effect upon the flexor spectral width over 

the grip force range of 33.3 to 66.7 % of the MGS. 

The RMS and MDFG of the forearm SMES during submaximal grip were therefore 

demonstrated to be linearly related to force over the range used in the main study, that 

is, 33.3 - 66.67 % MGS. The IMF was demonstrated to be independent of grip strength 

levels over this range of grip strength. 
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4.4 Pilot studies IV: The inter-relationship between forearm 

myoelectric parameters derived from the SMES during sustained 

submaximal grip. 

4.4.1 Introduction 

In this section the inter-relationship between the myoelectric parameters of the extensor 

and flexor myoelectric parameters will be described. In addition the relationship 

between the IMF (an established spectral parameter) and spectral width will be 

assessed. The spectral width is a feature of the frequency spectrum which has been 

demonstrated earlier to be a stable parameter on intra- and inter- session testing. It has 

not been utilised as a myoelectric parameter by other workers. The physiological 

significance of this parameter is unclear. 

Two subject groups - one containing female subjects with RA, one with healthy female 

controls were evaluated. These groups were those involved in the main study and are 

detailed in Table 6.1.1 and repeated in Table 4.4.1, with the study protocol, on the 

facing page. Results from the 2/3MGS test are used in the examination of the inter­

relationship between forearm myoelectric parameters derived from the SMES during 

sustained submaximal grip. This study is placed here, prior to the main study, as it adds 

insight into appropriate myoelectric parameters and helps in further interpretation of the 

studies which will follow. 

4.4.2 Results: The inter-relationship between forearm myoelectric parameters 

derived from the S M E S during sustained submaximal grip. 

In the evaluation of the relationship between the myoelectric parameters of the extensor 

and flexor channels, the RMS voltage of the SMES was found to be significantly greater 

in the extensor channel, in both the healthy and the rheumatoid groups, with significant 

correlation between the two channels. 

The M D F G was also greater (that is, more negative) in the extensor muscle group than 

in the flexor group, although this difference did not reach statistical significance in 

either study group. A significant correlation between the two channels was again seen in 

99 



Figure 4.4.2: The M D F G of the SMES recorded from the right forearm flexor channel 

versus that from the extensor channel during a standard right hand grip test performed at 

2/3 MGS by 161 females with RA. 
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Figure 4.4 J : The I M F of the SMES recorded from the right forearm flexor channel 

versus that from the extensor channel during a standard right hand grip test performed at 

2/3 MGS by 161 females with RA. 
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both groups (r = 0.2346, p=0.0090; r = 0.2894, p = 0.0003, for the control and RA 

groups, respectively). The I M F o f the SMES was greater in the extensor channel in both 

the R A and control groups, this difference reaching statistical significance in the control 

group. A significant correlation between the two channels was demonstrated for the 

rheumatoid group only (r =0.1428, p=0.1297 and r = 0.3120, p < 0.0001, for the control 

and R A groups, respectively). There were significant correlations between the spectral 

widths f rom the two muscle groups in both the control group (0.3214, p < 0.0001) and 

the R A group (r = 0.3130, p < 0.0001). 

There was significant correlation between the I M F and spectral width in both channels 

in both the subjects with R A and in controls. 

Figure 4.4.4: The relationship between the spectral width and the I M F of the extensor (A) 

and flexor (B) SMES in 161 females with RA and 114 healthy female controls. 
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4.4.3 Discussion. 

I t is evident that, although correlation was demonstrated between some o f the 

myoelectric parameters o f the extensor and flexor forearm muscles o f the healthy 

subjects, the relationship was not consistent. This indicates that the value o f a 

myoelectric parameter cannot be assumed to represent that o f another muscle in a given 

individual. However, the correlations between the two muscle groups were consistently 

significant for the RA group. This suggests that, i f these myoelectric parameters are 

affected by rheumatoid disease - as w i l l be investigated in later studies - then it appears 

that both muscle groups are affected. 

The correlation between the spectral width and the I M F o f the SMES in each muscle 

group and in both rheumatoid and healthy subjects indicates that the wider the 

spectrum, the higher the IMF. This is to be expected, since an increase in the spectral 

width occurs through increases in high frequency components o f the spectrum. 

The physiological basis o f the spectral width is unclear, although it may be a useful 

parameter in the assessment o f muscle characteristics during contraction. The studies 

which have been described earlier indicate that this parameter is stable on both short 

term and long term testing, is independent o f grip force over the range 30 - 66.7 % 

MGS and correlates wi th another spectral parameter, the IMF. Since the I M F has a 

sound physiological basis and has been shown to be helpfril in the investigation o f 
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neuromuscular disorders (Muro et al, 1982; Larsson, 1975), then the IMF was selected 

for further assessment o f neuromuscular aspects o f rheumatoid disease. The M D F G 

was also utilised as an indicator o f the fatiguability o f muscle in RA. This parameter 

may be a useful measure o f the frequency spectrum, particularly when evaluating the 

repeatability o f techniques involving power spectral analysis. Further studies assessing 

characteristics o f spectral width in relation to physiological changes occurring within 

the muscle are warranted. 
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Chapter 5. The Assessment of the muscle mass in the right forearm. 

Pilot studies. 

5.1. Introduction 

The assessment o f the cross-sectional area o f the forearm using skinfold caliper 

techniques was not repeatable on between day testing in females with RA nor in healthy 

controls. Initial studies in relation to the assessment o f muscle mass in the right forearm 

used magnetic resonance imaging. This involved measurement o f the cross-sectional 

area o f the forearm and, later in the study, the evaluation o f forearm muscle volume. 

The repeatabilities o f these techniques were assessed and the inter-relationship between 

the CSA o f the right forearm and the forearm muscle volume was examined. 

5.2 Cross Sectional Area (CSA) of the Right Forearm using Magnetic 

Resonance Imaging. 

The repeatability o f measurement o f the cross-sectional area o f the right forearm was 

assessed in ten healthy subjects (3 men and 7 women) by measurement on three 

occasions over one week; the results are given in Table 5.2.1. The technique was shown 

to be highly repeatable, with a mean (SD) percentage difference o f 1.45 (1.00) %. 

Table 5.2.1: The repeatability of the assessment of C S A of the right forearm using 

single slice magnetic resonance imaging in ten healthy subjects. 

Mean C S A (SD) (cm^) F ratio (p) Mean difference 
(SD) (%) 

Test 1 Test 2 Tes t s 

23.95 (4.66) 24.67 (5.33) 23.8 (5.00) 0.0758 (0.9272) 1.45 (1.0)% 
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5.3: Volumetric analysis of the musculature of the right forearm. 

In the development o f the method of volumetric analysis o f forearm musculature using 

magnetic resonance imaging, the repeatability o f the technique was evaluated and 

different scanning modes examined in order to determine the optimal scanning 

technique. 

5.3.1 The repeatability of volumetric analysis of the right forearm musculature. 

Ten heahhy volunteers were studied to assess the repeatability o f the technique o f 

volumetric analysis o f the musculature o f the right forearm, in addition to comparing 

different scanning techniques. A 15 cm section o f the right forearm of all volunteers 

was scanned on three separate occasions over a 1 week period, using three separate 

scanning techniques ( T l weighted. Proton and 3D) on each occasion. The scanning 

techniques used are described earlier in section 3 .4. 

In the T l - W images, the distal (1st) image lacked adequate contrast to permit accurate 

definition o f muscle tissue using the segmentation technique. In assessment of the 

proximal (8th) image through the inferior RUJ, segmentation incorrectly classified the 

joint as muscle. These slices were rejected and the remaining 6 slices used, covering a 

distance o f 11 cm (including the spaces between slices). Due to similar problems when 

processing the Proton images and to ensure consistency, the distal (1st), second and 

proximal (15th) slices were discarded from each Proton series. Each series then 

contained 11 slices covering an 11cm region o f the forearm. 

The 3D scanning technique was rejected due to the poor sensitivity to segmentation 

techniques which w i l l be described further below. The resuUs of the other two scanning 

techniques are as shown in Tables 5.3.1 and 5.3.2. 

Table 5.3.1: The repeatability of volumetric analysis of the forearm of ten subjects over 
three testing occasions using proton imaging. 

Technique 

Proton 

mean volume (voxels) (SD); 95 % CI 

Testl 

78473 

(17216); 

66159 - 90788 

Test 2 

79068 

(17735); 

66382 - 91754 

Tests 

78293 

(17197); 

65992 - 90594 

*F ratio 
(P) 

1.228 

(0.3163) 

mean 
difference 
(SD) (%) 

1.01% 

(1.05%) 
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Table 5.3.2 : The repeatability of the adjusted volume of the right forearm from Tl -W 

imaging technique over three testing sessions (mean (SD); 95 % C I (voxels)). 

Technique mean volume (voxeb) (SD); 95 % C I * F ratio 
(P) 

^ mean 
: difference 

( S D ) ( % L i 
Test l Test 2 Test 3 

T I W 74743 75590 17 : 74974 1.077 1.315% 

(16351); (17007); (16811); ' (0.3617) (1.55%) 

63046 - 86439 63424 - 87754; 62949 - 7949 

*ANOVA, Bonferonni repeated measures. 

Figure 5J.1: The repeatability of the volumetric analysis of the right forearm using T l -W 

and proton scanning techniques over three testing sessions in ten subjects (mean). 

T1 Proton 
Scanning technique 

•Testl 
•Test 2 
•Tests 

5.3.2 Selection of the optimal M R scanning technique in volumetric an 

forearm musculature. 

is of 

The 3D technique was rejected early in the study, due to poor sensitivity to 

segmentation techniques. In analysing the 3D images, it was not possible to select a 

seed pixel which would allow repeatable segmentation o f scan slices. The 3D scaiming 

process also took longer to perform and was therefore less preferable when considering 

the comfort o f the subject or patient, particularly those with upper limb disorders such 

as RA. 

Since the proton sequences contained 11 sections and the T l slices only 6, then the 

former would be expected to be a more reahstic representation o f the forearm. The T l 
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and Proton Scanning techniques were compared in each o f the ten subjects. The average 

percentage difference (SD) was 4.581 % (0.87), with the proton scans greater in all 

subjects as shown in figure 5.3.2. 

Figure 53.2: Comparison of T l - W and Proton imaging techniques in volumetric analysis 

of right forearm musculature in 10 subjects. 

•Proton 

1 2 3 4 5 6 7 8 9 10 
Subject 

5.4. A comparison of forearm muscle volume with proximal forearm 

cross-sectional area (CSA) as measured using magnetic resonance 

(MR) imaging. 
The CSA o f the proximal image was compared with the total foreann muscle volume 

(within the 11 cm study section) assessed by both proton and T I W M R imaging in the 

ten study subjects. The mean o f the three tests was taken for each parameter. Significant 

correlation was demonstrated between the forearm CSA and forearm muscle volume 

using both scanning techniques, with correlations o f 0.9485 (p<0.0001) and 0.9464 

(p<0.0001) for proton and T I W imaging modes, respectively. These findings are 

displayed in figure 5.4.1 

Figure 5.4.1: Mean forearm muscle volume vs mean forearm CSA as measured using 
proton and T l - W MR imaging in 10 subjects. 
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5.5. The analysis of forearm muscle mass in the right forearm: a 

summary. 

The technique o f evaluation o f the forearm muscle cross-sectional area using skin-fold 

calipers (Helliwell and Jackson, 1994) was shown to be unreliable over short and long 

term testing. The evaluation o f the CSA of the forearm using magnetic resonance 

imaging was demonstrated to be a highly repeatable technique. Later in the study, it 

became evident that volumetric analysis o f the right forearm musculature may be a 

more sensitive method o f monitoring the changes in muscle size. The technique for the 

assessment o f forearm muscle volume using M R I scanning was then developed. The 

findings detailed above demonstrate this technique to be highly repeatable. Good 

correlation between the forearm muscle CSA and muscle volume was also demonstrated 

using magnetic resonance imaging. Imaging using the proton scanning technique was 

chosen for further imaging studies. Since more scanning slices were expected to reflect 

the true muscle volume more accurately and in addition it involved shorter scanning 

time compared to the 3D imaging technique. 
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Chapter 6. Results. 

6.1. Grip Strength in RA. 

6.1.1 Introduction 

Reduced grip strength is frequently noted in rheumatoid disease and has been demonstrated 

to reflect global disability, hand function, disease activity and severity (Nordenskold and 

Grimby, 1997). I t is therefore an important measurement in the subject with RA, yielding 

much information about the disease process in that subject. The reduction o f grip strength is 

multifactorial in origin, wi th pain, stiflftiess, swelling, deformity, arthrogenic muscle 

weakness and altered muscle function all being potential contributing factors. The two main 

findings associated with rheumatoid muscle are significant loss o f muscle mass and 

histological changes. There is very little known about the functional performance o f 

rheumatoid muscle and the relevance o f the frequently reported myopathic changes 

(suggestive o f disuse and / or denervation) is unclear. I t is possible that the disease process 

affecting the muscle wi l l resuh in altered behaviour o f muscle fibres in the muscle o f subjects 

with rheumatoid disease and this in turn may be reflected in altered myoelectric 

characteristics, allowing subjects with significant myopathy to be identified. The specific 

myoelectric characteristics addressed in this study were the initial median fi-equency (IMF), 

the spectral width and the change in the median frequency over time during contraction 

expressed as the M D F gradient (MDFG ) . One potential, though unproven, association with 

rheumatoid myopathy is increased muscle fatigue. Fatigue is a common complaint in 

rheumatoid subjects, but whether the muscle itself is abnormally fatiguable is unknown. This 

can be examined using the M D F G o f the SMES as an indicator o f fatiguability. I f 

rheumatoid myopathy is functionally significant, then the effects o f this upon the response to 

exercise warrant investigation, since it is possible that rheumatoid muscle abnormalities 

prevents normal adaptations to exercise f rom occurring. Discerning the predictors o f 

outcome to an exercise programme in such patients is important. 

108 



a s 

I 
s 

•to* 

en 
O 

£ 
, f i 

u 

.2 05 s 

i ^ -o Q "olj 

O 

•a 
e ^ 
M U) 

M JI3 

•£ i 

DC 
e 
2 

" 2 

t 

0 0 
o 

o 

0^ 

O 

o 

o 

0 0 

0 0 

OS 

o 

CN 

0 \ 

0 0 

oo 
<N 
ON 
ON 

o 

o 

0 \ 
ON 

cs 

^. 
0 0 
CO 

o \ 

o 

o 

so 
0 0 

o 
v i 

0 \ 
( N 
r<1 

O 
so 

( N 
f N 

B 
O 

u 
II 
B 

O 
o 
o 

?• 

so 
0 \ 
<N 

o 
II 

CN 
Q 

O 
o o 
o 

.1 
a 
B 
9 

i 
B 

S 
e 
•o 
•a 
B 

JS 

JS 

•c 
o 
M) 
B 

B 
O 
u 
a s 
2 

^B 

s 
s 
a. 
2 

2 
s 

•o 
B 
es 
B 
OS 

DC 

a 
B 
C3 Ml 
-<-> B 

u 

ft. 

b. s 
s 

' ( « 
B 
Si 

E2 
E 

U 5 
U w 

OS 
u 
V 
B 

B 
O 

S 
O 

8 
83 

•a 
4) 

«8 

« 2 ^ 1 
•a I 

so 
V-) 

so 
f N 

( N 

o i O 
i 

<N i o 

o 
o 

Q 
o 
o 
o 
<N 

SO 

<N 

O 
SO 
0 0 

o 

I 
o 

I 
o 

B 
es 
0£ 



These issues were investigated in this study and the resuhs wil l be detailed in the following 

chapters. Firstly the factors affecting hand fiinction in RA, as reflected in grip strength -

were evaluated. Secondly, the factors affecting forearm myoelectric characteristics during 

grip in both rheumatoid subjects and healthy controls were examined. The aims o f such 

investigations were to detect whether a difference in muscle fatigue (as defined by the 

M D F G ) , existed between the two groups; to assess whether there are specific myoelectric 

indicators o f myopathy in R A and to determine the factors which are related to such 

indicators, should they exist. 

Following these studies, the response to hand grip strength training in RA and controls were 

also assessed by grip strength, muscle fatigue and other myoelectric characteristics, in 

addition to the effects upon local disease activity in RA. In those subjects who did gain 

strength, the mechanisms o f strength gain were investigated, specifically as to whether 

neural adaptation and / or gains in muscle mass occurred. Identifying those subjects in whom 

these changes occurred is also important and predictors o f the outcome in relation to 

myoelectric and disease characteristics were also examined. 

In summary, three main issues were addressed. Firstly, what are the effects o f muscle and 

disease characteristics upon function in RA? Secondly, what are the effects o f rheumatoid 

disease upon muscle? Finally, what are the effects o f muscle and disease characteristics upon 

the response to exercise in RA? 

6.1.2 Factors affecting grip strength in RA. 

The evaluation o f grip strength and myoelectric characteristics during grip involved the 

assessment o f two study groups consisting o f right hand dominant females. One hundred and 

sixty one subjects with estabUshed R A (American Rheumatism Association criteria, Amett et 

al, 1988) formed the 'RA group' and there were one hundred and fourteen healthy controls. 

The characteristics o f the study groups and baseline results are shown in Tables 6.1.1 -

6.1.4. 
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Step down muhiple regression analyses followed by analysis o f variance (ANOVA) were 

used in order to define the best predictors o f the MGS, M D F G and I M F of the SMES from 

forearm musculature in the two study groups. The subject characteristics studied in both 

groups were the age, B M I , the extensor and flexor M D F Q and IMF. Additional 

measurements in the R A group involved the assessment of the disease status in these 

subjects. This was evaluated by measurement o f the duration of the disease, the disease 

severity (right hand and wrist subluxation and ulnar deviation scores and, in a subgroup, the 

bone mineral density o f the right hand), systemic disease activity (CRP and the duration of 

morning stiflftiess), local disease activity (right hand swelling, tenderness, pain and stifihess 

scores), and the preferred wrist joint angle during grip. 

In the control group, grip strength declined with age, confirming the findings o f others 

(Hackel et al, 1992). Age, the extensor and flexor M D F G and extensor I M F were 

significantly related to the MGS (R^ = 0.3029; F = 13.28; p<0.000]); all showing negative 

relationships wi th grip strength. The B M I had no significant infiuence upon the MGS, nor 

did the forearm muscle volume nor hand B M D have any significant relationship with the 

MGS in the control subjects in which these were measured, the details o f which are shown 

later in figures 6.1.5 and 6.1.6. Further examination o f the inter-relationship between grip 

and these latter two variables wi l l be discussed later. 

In the rheumatoid group the age, extensor M D F Q and the flexor IMF, the disease duration, 

CRP, right hand and wrist pain and subluxation score, the hand fiinctional index, were the 

best independent predictors o f maximum grip strength in RA, accounting for 57.55 % o f the 

variation in MGS within the group (F = 23.36; p<0.0001). Al l showed negative relationships 

with the MGS; with the exception o f disease duration. Although the latter may seem to be a 

surprising finding, there was no relationship between the disease duration and other 

measures o f disease severity in relation to the deformity scores. As wil l be discussed in the 

discussion o f the study findings in Chapter Nine, there seems little relation between disease 

duration and hand fiinction allowing for age. Hence, young individuals can have severe 

disease and, similarly, older individuals can have mild disease. Some o f the relationships 

between grip strength and these parameters are shown in the figures which follow. 
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Figure 6.1.1: The relationship between MGS of the right hand and age in 161 right hand 

dominant females with RA and 114 female controls. 
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No significant relationship was demonstrated between the right and left hands in relation to 

maximum grip strength, hand joint scores (swelling and tenderness), hand fiinctional index 

nor hand and wrist subluxation and ulnar deviation scores. 

Hence at a given time, grip strength in healthy individuals is significantly related to age, 

intrinsic muscle characteristics (the extensor I M F ) and the fatiguability o f the muscle 

(extensor and flexor M D F G ) . Those who are capable o f gripping at higher levels show 

greater fatigue. 

Grip strength in rheumatoid disease shows similar relationships to healthy controls with age, 

intrinsic muscle characteristics (the extensor I M F ) and the fatiguability of the muscle 

(extensor M D F G ) . In addition, it is significantly related to general disease activity ( C R P ) , 

local disease activity (right hand and wrist pain), local disease severity (right hand and wrist 

subluxation), hand fiinction (the Keitel index). A decline in grip strength occurs with 

increased local and general disease activity and local disease severity. Surprisingly, higher 

grip strengths were noted m those with longer disease duration. 

Figure 6.1.2: M G S of the right hand versus the duration of disease in 161 right hand 

dominant females with R A . 
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Table 6.1.5: The multiple regression analysis for the factors affecting grip 
strength in female healthy controls. 

Variable Coefficient S D T ratio P 
Age -1.45 0.49 -2.93 0.0041 
Extensor 
M D F G 

-77.67 20.53 -3.78 0.0003 

Flexor M D F G -78.31 25.74 -3.04 0.0029 
Flexor I M F -0.91 0.41 -2.21 0.0289 

= 0.3029; ANOVA: F = J3.28;p < 0.0001 

Table 6.1.6: The multiple regression analysis for the factors affecting grip 
strength in females with rheumatoid arthritis. 

Variable Coefficient SD T ratio P 

Age -0.88 -0.15 -2.51 0.013 

Extensor 

MDFG 

-62.41 -0.25 -3.91 0.0002 

Flexor IMF -0.62 -0.18 -2.82 0.006 

CRP -0.48 -0.11 -1.88 0.0494 

Pain in hand 

and wrist 

-3.85 -0.15 -2.41 0.017 

Subluxation 

score 

-2.19 -0.22 -3.19 0.0018 

Hand functional 

index 

-3.37 -0.27 -3.74 0.0003 

Disease 

duration 

0.07 0.11 1.87 0.06 

= 0.5755. ANOVA: F = 23.36; p< 0.0001 
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Figure 6.1.3: The relationship between the MGS of the right hand and the flexor IMF of the 

SMES in 161 females with RA and 114 controls. 
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Figure 6.1.4: MGS of the right hand versus the right hand and wrist subluxation score 

in 161 right hand dominant females with RA. 
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Figure 6.1.5: The relationship between the right hand MGS and right hand BMD in 81 right 

hand dominant females with RA and 21 female controls. 
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The bone mineral density (BMD) of the right hand is a recognised indicator of disease 

severity in RA (Peel et al, 1994). This was also found to be a significant predictor of the 

MGS in the subset of 81 females with RA in whom this was measured. Details of these 

subjects are given in table 6.1.7. No significant difference in age, disease duration nor body 

mass index existed between this subgroup and the main RA study group. 

Table 6.1.7: Subject characteristics of the main study group and subgroup in which 

right hand BMD was measured (mean (SD)). 

1 GROUP i Age i Disease i Body mass 

! (years) j duration 1 index (kg/m^) hand (g/cm )̂ 

i (months) (mmHg) 

1 BMDRA 1 51.621 i 120.025 i 24.386 102.03 0.3660 

1 subgroup 1 (11.46) 1 (101.50) 1 (4.37) (73.97) (0.067) 

1 (n=81) 

1 Main RA 1 51.93(12.49) i 117.08 1 24.25 (4.01) 94.62 (65.27) 

j study group i (104.54) 

(n=161) 

1 BMD i 46.45(12.10) i 25.29 (3.70) 304.32 0.4100 

1 control (63.29) (0.0431) 

i subgroup 

(n=21) 

1 *P i > 0.05 i > 0.05 <0.01 p=0.0009 

|#P i > 0.05 i > 0.05 j > 0.05 >0.05 

* unpaired non parametric test: RA BMD group versus control BMD group. 

# unpaired non parametric test RA BMD group versus main RA study group. 

This finding is in keeping with the earlier finding, that grip strength declines with disease 

severity (right hand and wrist subluxation). The relationship between the hand BMD and 

grip strength in healthy females and those with RA is shown in figure 6.1.5 on the facing 

page. 
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Figure 6.1.6: The relationship between the volume of the right forearm muscuhiture 

and the MGS of the right hand in 28 right hand dommant females with RA and 14 

female controls. 
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In the two fiarther subgroups in which the muscle mass were studied (Tables 6.1.8 and 

6.1.9), neither the cross-sectional area nor muscle volume of the forearm were 

demonstrated to be significantly related to the MGS in the subsets of rheumatoid 

subjects in which these were measured. The forearm muscle volume was lower in the 

RA group, although the difference was not significant. 

The details of the groups in whom the CSA and the volume of the right forearm 

musculature were measured are shown in the following two tables. The grip strength 

and forearm muscle volume is also displayed in figure 6.1.6 on the facing page. 

Table 6.1.8: Characteristics of the RA subgroup assessed in the study of the CSA 

of the right forearm (mean (SD); range). 

Groups Age (years) BMI (kg/m^) MGS 
(mmHg) 

Disease 
duration 
(months) 

Right 
forearm 
CSA (cm') 

RA (n=27) 51.15 (11.72); 23.48 (2.70); 102.27 125.42 26.40 (5.25); 

36-75 19.00-30.10 (69.45); (107.81); 20.50-44.9 

24-267 9-384 

All parameters showed no significant difference with the initial RA study group of 161 subjects. 

Table 6.1.9: Characteristics of the subgroups included in study of the volumetric 

analysis of forearm musculature (mean (SD); range). 

Groups Age (years) BMI (kgW) MGS 
(mmHg) 

Disease 
duration 
(months) 

Right forearm 
muscle volume 
(cc) 

RA 49.66 (12.52); 23.88 (261); 106.69 104.14 i 186.84(26.79); 

(n= 28) 28-74 20.20-32.16 (67.69); (99.88); i 134.71-238.59 

26-300 5-420 

Controls 

(n=14) 

41.64 (12.36); 

24-66 

22.25 (2.25); 

19.47-28.93 

**330.71 

(79.56); 

220-540 

: 202.12 
1 (23.41); 
! 156.99-231.94 

*p< 0.01; unpaired non parametric test: RA vs. controls. 
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6.1.3 Summary: Factors predicting maximum grip strength of the right 

hand in health and in rheumatoid disease. 

The aims of this section were to examine the effects of muscle and disease characteristics 

upon hand function, as measured by grip strength in females with rheumatoid arthritis. 

Healthy females were also studied. 

In both healthy females and those with rheumatoid disease, hand function is significantly 

related to age and emg characteristics of the muscle (the extensor IMF in the controls and 

the flexor IMF in the RA group). The greater the age and the higher the IMF, the lower the 

grip strength. Individuals who are capable of gripping at higher levels show higher levels of 

fatigue. 

In rheumatoid disease, hand function is also significantly related to disease severity (hand 

subluxation and bone mineral density), general disease activity (CRP) and the local disease 

activity (pain in the right hand and wrist). 

Although muscle mass is known to be an important factor in muscle strength, it is not an 

independent predictor of grip strength in health nor in RA. 

The effects of muscle and disease characteristics upon function have now been examined. 

The effects of disease and function upon the muscle will now be assessed. 
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6.2 Forearm myoelectric parameters during sustained grip in 

rheumatoid arthritis. 

6.2.1 Introduction 

In the initial pilot studies described in Chapter Four, the M D F G of the SMES, an 

established indicator of muscle fatiguability, was demonstrated to be a repeatable, force 

related measure on same day testing and is likely to be a sensitive indicator of the state 

offatiguability of the muscle at a given time. The IMF was demonstrated to show little 

variation with force levels and to be stable over time and is a potential indicator of the 

intrinsic characteristics of the muscle, specifically in relation to muscle fibre 

composition and behaviour. 

In the studies described in the following two sections, the results of the evaluation of the 

effects of rheumatoid disease upon these muscle characteristics will be discussed. 

Firstly, the rheumatoid and control groups were compared in relation to hand function 

and myoelectric parameters, to assess the effects of the presence of rheumatoid disease 

upon the chosen characteristics of the muscle. Following this, the effects of rheumatoid 

disease on muscle were further investigated by examining the inter-relationships 

between measures of disease activity and severity and these myoelectric parameters. 

6.2.2 Grip strength and myoelectric parameters in RA: a comparison with healthy 

female controls. 

Characteristics of the two study groups have been given in Table 6.1.1. Further details 

describing the mean, standard deviation and range of the myoelectric parameters for 

these groups are outlined in Table 6.2.1. There was a significant difference between the 

RA and control groups in relation to age and grip strength, the RA group being older, 

with a lower MGS. As noted in the initial pilot studies, the standard deviations of 

maximum grip strength and M D F G in both the control and the RA populations were 

large. The finding of a large SD of the M D F Q is often ignored by other workers, but was 

emphasised by Lindeman and Drukker (1994) in studies of lower limb musculature. 
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The two groups were compared in relation to the M G S and myoelectric parameters 

using unpaired, non-parametric t-tests. No significant differences existed between the 

extensor nor the flexor M D F G in either. The I M F and the spectral widths of both flexor 

and extensor forearm musculature were significantly higher in the RA group, with p < 

0.0001 in all cases. These findings are illustrated below in figure 6.2.1. 

Figure 6.2.1: The mean (SD) right hand MGS, IMF and spectral widths of the 

SMES derived from extensor and flexor forearm musculature during sustained 

grip at 2/3 MGS in 161 females with RA and 114 controls. 
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Table 6.3.1: The multiple regression analysis for the factors affecting the 
extensor M D F G in female healthy controls. 

Variable Coefficient SD T ratio P 
MGS -0.0018 0.0004 -5.348 < 0.0001 

= 0.1963; ANOVA: F = 28.61;p < 0.0001 

Table 6.3.2: The multiple regression analysis for the factors affecting the 
flexor M D F G in female healthy controls. 

Variable Coefficient SD T ratio P 
MGS -0.0010 0.0003 -3.223 0.0017 

Table 6.3.3: The multiple regression analysis for the factors affecting the 
flexor I M F in female healthy controls. 

1 Variable Coefficient SD T ratio P 
I MGS -0.0360 0.0185 -1.946 0.0541 

r = 0.0241; ANOVA: F = 3.79; p = 0.0541 
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6.3 The effect of the activity and severity of rheumatoid disease upon 

forearm myoelectric parameters during grip. 

6.3.1 Introduction 

Having examined the effect of the presence of rheumatoid disease upon muscle 

characteristics, the effects of disease activity and severity upon these characteristics 

were then investigated. 

The specific myoelectric parameters assessed were the extensor and flexor M D F G and 

the I M F . These were derived from the S M E S recorded from the forearm during a 

standard 30 second hand grip test performed at 2/3 M G S . Firstly, the factors affecting 

these myoelectric parameters in healthy controls were established, prior to the 

assessment of the rheumatoid group. There is a lack of information in the literature 

about power spectral analysis of the S M E S during grip in healthy individuals, the 

evaluation of this group was important to establish normal patterns. 

6.3.2 Factors influencing forearm myoelectric parameters during grip in healthy 

controls. 

In the control group, a multiple regression model revealed the M G S to be the best 

predictor of both the extensor and flexor M D F G (R "̂" 0.1963; F=28.61, p<0.0001), with 

age and B M I having no independent effect, allowing for grip strength. 

The extensor I M F was unaffected by the age, B M I nor the M G S . The M G S was the best 

predictor of the flexor I M F (R^=0.0241; F=3.7880, p = 0.0541). 

6.3.3 Factors influencing forearm myoelectric parameters during grip in females 

with rheumatoid arthritis. 

In the RA group, a multiple regression analysis revealed the M G S , CRP, joint stiffness 

and ulnar deviation score of the right hand were significantly related to the extensor 

M D F G (R^ = 0.2376; F = 9.79; p<0.0001), all but joint stiffness having negative 

associations with the extensor M D F Q . The only significant predictor of the flexor M D F G 

was the deformity of the hand, with right hand and wrist subluxation and ulnar deviation 

both showing significant relationships with this myoelectric parameter (R^ = 0.0182, 
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Figure 6.3.1: The relationship between right hand MGS and MDFG of the 
extensor (A) and flexor (B) forearm musculature in 161 females with RA and 114 
female controls. 
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both showing significant relationships with this myoelectric parameter (R^ - 0.0182, 

ANOVA: F = 2.2478; p < 0.0001), having positive and negative associations 

respectively with the MDFQ. 

The relationship between the M D F G and grip strength in RA and controls is shown in 

figures 6.3.1 on the facing page. The relationship between the M D F G (fatigue) and the 

CRP (a measure of disease activity) and the ulnar deviation score (a measure of disease 

severity) are shown in figures 6.3.2 and 6.3.3. 

Figure 6.3.2: The relationship between the extensor M D F G and the C-reactive 

protein (CRP) of 161 females with RA. 
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Figure 6.3.3: The relationship between the extensor MDFG and the ulnar deviation 

of the right hand and wrist in 161 females with RA. 
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Table 6.3.4: The multiple regression analysis for the factors affecting the 
extensor M D F G in females with R A . 

Variable Coefficient SD T ratio P 
Joint stiffness 0.0178 0.0088 2.028 0.0446 
Ulnar 
deviation 
right hand 
and wrist 

-0.0070 0.0036 -1.911 0.0582 

MGS -0.0019 0.0003 -5.853 <0.0001 
CRT -0.0017 0.0009 -2.006 0.0468 
BMI -0.0135 0.0055 -2.468 0.0148 

= 0.2376; ANOVA: F = 9.79; p < 0.0001 

Table 6.3.5: The multiple regression analysis for the factors affecting the 
flexor M D F G in females with R A . 

Variable Coefficient SD T ratio P 
Ulnar 
deviation 
right hand 
and wrist 

-0.0139 0.0068 -2.059 0.0415 

Subluxation 
right hand 
and wrist 

-0.0101 0.0056 1.811 0.0723 

Table 6.3.6: The multiple regression analysis for the factors affecting the 
extensor I M F in females with R A . 

Variable Coefficient SD T ratio P 
Duration of 0.0095 0.0052 1.832 0.0692 
morning 
stiffness 
Joint swelling -1.7771 0.5270 -3.372 0.0010 
Subluxation 0.6308 0.2554 2.470 0.0147 
right hand 
and wrist 

= 0.0720; ANOVA: F = 4.62;p = 0.0041 
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The extensor IMF was significantly related to the duration of general morning stiffness 

(a measure of systemic disease activity), joint swelling (local disease activity) and the 

right hand and wrist subluxation score (disease severity) (R^ = 0.0720; ANOVA: F = 

4.62; p = 0.0041). Only the joint swelling showed a negative association with the IMF. 

The MGS, disease duration, right hand and wrist joint swelling and the subluxation 

score were the sole factors showing significant relationships with the flexor IMF (R^ = 

0.1981, ANOVA: F = 9.46; p < 0.0001), all but the latter having negative associations 

with the flexor IMF. The relationships between the MGS and extensor and flexor IMFs 

have been illustrated earlier in figures 6.1.3 and 4.3.7. The relationship between the 

flexor IMF and the disease duration is demonstrated in figure 6.3.4. 

The IMF is therefore related to disease severity (measiu-ed by the subluxation score), 

systemic disease activity (morning stiffness) and local disease activity (joint swelling) 

and in the flexor muscles, the disease duration. 

Figure 6.3.4: The relationship between the disease duration and the forearm flexor 

IMF in 161 females with RA. 
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6.4 Summary: Forearm myoelectric parameters during grip in 

rheumatoid arthritis. 

The results described in the previous two sections demonstrate the relationship between 

characteristics of muscle during grip and rheumatoid disease. Although the forearm 

muscles of rheumatoid subjects were no more fatiguable than in healthy controls, there 

were significant associations between forearm fatiguability and disease activity, severity 

and hand function. 

The IMF and spectral widths were significantly higher in rheumatoid subjects than 

healthy controls and in further analyses of the IMF significant associations with disease 

severity and activity were demonstrated. 

These results indicate that there is a significant association between the disease process 

in rheumatoid arthritis and both the state of a muscle at a given time - assessed by its 

fatiguability - and the condition or intrinsic characteristics of the muscle, assessed 

mainly by the IMF of the forearm SMES. These results will be further discussed in 

Chapter Nine. 

Having established that the characteristics of muscle during grip in RA differ from 

healthy individuals and are associated with the disease process, the next two sections 

wil l investigate the significance of these features in relation to the response to exercise. 

Firstly, the question as to whether adaptations in fiinction can occur in RA with an 

exercise programme will be addressed. Secondly, the ability to alter the IMF, which has 

been demonstrated in earlier sections to be an intrinsic muscle characteristic which is 

abnormal in RA, wil l be studied. Potential predictors of outcome to the exercise 

programme, specifically in relation to muscle characteristics, will also be investigated. 
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Chapter Seven. Grip Strength Training in Rheumatoid Arthritis. 

7.1. The response to grip strength training in rheumatoid arthritis. 

7.1.1 Introduction 

The aims of the following investigation of the response to a handgrip exercise programme 

in females with rheumatoid disease were to assess the effect of exercise upon fianction 

(measured by grip strength) and upon the muscle itself - assessed by the IMF of the 

forearm SMES. Potential predictors of outcome to the exercise programme were also 

studied, with outcome being defined as the improvement in grip strength after 3 months of 

exercise. The effects of such a programme on local disease activity were examined, since 

one of the limiting factors in the use of therapeutic exercise programmes is the concern that 

exercise wil l cause deterioration in the disease. The final study examined the mechanisms 

of strength gain in such a programme. 

7.1.2 The effects of handgrip exercise upon hand function in health and rheumatoid 

disease. 

The response to the grip strength training programme described in Chapter Two was 

assessed in two study groups, consisting of 79 females with RA and 39 healthy female 

controls. Al l subjects in the exercise groups were drawn from the original baseline study 

groups described in Table 6.1.1. Their characteristics, initial grip strength and myoelectric 

parameters are described in Tables 7.1.1 and 7.1.2. The mechanisms of strength gain were 

also assessed in a subset of subjects from both groups, and will be described in Chapter 

Eight. 

Subjects were assessed at baseline and 3, 6 and 12 weeks after commencing a progressive 

grip strength exercise programme, according to the study protocol, as described earlier in 

Chapter Three. No subjects withdrew from the study. There were six reported incidences 

of daily exercise sessions missed in relation to disease activity. 
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At baseline, the MGS was significantly greater in the control group (mean (SD): 303.68 

(71.55) mmHg versus 101.99 (68.81) mmHg; p<0.0001; see Table 7.1.1). The two groups 

also differed in the IMF and spectral widths measured from both forearm channels at 

baseline, with values being significantly greater in the rheumatoid group. 

An extremely significant (p< 0.001) increase in the MGS was noted in the RA group at 3 

weeks compared to baseline; a further extremely significant increase was noted at 12 weeks 

compared to that at the 3 week assessment. This compares to a significant increase in the 

MGS noted at 12 weeks in the control group. These changes in hand fijnction are illustrated 

in figures 7.1.1 to 7.1.3. 

Table 7.1.2: Maximum grip strength (MGS) of the right hand in RA and control 

groups during the 12 week handgrip exercise programme (mean (SD); range). 

Group Mean MGS 
(SD); range 

(mmHg) 
WeekO Week 3 Week 6 Week 12 

RA 101.99 (68.81); 134.56*** 146.95*** # 157.53*** ### 

n=79 23-345 (79.99); (83.33); (80.82); 

26-450 33-460 30-390 

Control 303.68 (71.55); 325.63 (57.96); 327.16(58.35); 345.68* (64.12); 

n=39 140-460 158-450 165-460 165-540 

Repeated measures ANOVA: *p<0.05; ***p<0.001 compared to baseline; 
#p<0.05; ###p<0.001 compared to result at 3 weeks. 
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Figure 7.1.1: The mean (SD) right hand MGS in the RA and control groups 

over the 12 week exercise programme. 
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Figure 7.1.2: The mean percentage change (SD) from baseUne in the right hand MGS 

in the RA and control groups over the 12 week exercise programme. 

200-

180 < 

c 160-

-co 
| i 120 + 

E I 
80 4 

60 

40 

20 

0 

IRA 

I Control 

6 

Week 

12 

*p < 0.05, ***p < 0.001: paired non-parametric test 

Figure 7.1.3: The mean (SD) percentage change in the right hand MGS compared to 

the previous test in the RA and control groups over the 12 week exercise programme. 
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Figure 7.2.1: The IMF of the SMES recorded from the extensor (A) and 

flexor (B) forearm channels in RA and control groups over the 12 week 

handgrip exercise programme (mean (SD)). 
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7.2.1 The effect of handgrip exercise on the IMF of the forearm SMES. 

There were no significant changes in the chosen characteristic of the forearm muscle - the 

IMF of the SMES - noted in either the rheumatoid subjects nor in the controls over the 3 

month handgrip exercise programme. These results are shown in Table and Figure 7.2.1. 

Table 7.2.1: The extensor and flexor forearm IMF in RA and control groups during 

the 12 week handgrip exercise programme (mean (SD); range). 

Group Mean IMF, extensor channel 
(SD); range 
(mmHg) 

WeekO Weeks Week 6 Week 12 

RA 

n=79 

122.06 (20.48); 

74.82-198.16 

122.16(16.37); 

88.36-165.07 

119.78 (16.22); 

80.50-159.52 

119.83 (16.82); 

79.84-170.77 

Control 

n=39 

110.72(11.46); 

90.41 -129.96 

109.03 (16.42); 

32.11 - 125.85 

109.49 (11.45); 

90.05-132.02 

109.47 (9.97); 

90.29- 127.99 

Group Mean IMF, flexor channel 
(SD); range 
(mmHg) 

WeekO Week 3 Week 6 Week 12 

RA 

n=79 

109.30 (20.28); 

66.59 - 143.93 

109.88(20.17); 

64.59-150.02 

109.88(20.85); 

68.38-159.66 

107.24 (20.41); 

68.32-153.84 

Control 

n=39 

91.45 (16.90); 

65.99 -149.45 

94.84 (17.05); 

69.79-140.05 

94.64 (16.98); 

69.95 - 146.47 

93.53 (16.24); 

69.89- 136.33 
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7.3.1 The effect of handgrip exercise on local disease activity in RA. 

In this section, the effects of right handgrip exercise upon local disease activity in the 

right hand and wrist will be described. The effects of the handgrip exercise upon local 

disease activity (right hand and wrist pain and stiffness, joint swelling and tenderness 

scores) were assessed and compared with local disease activity in the left hand (joint 

swelling and tenderness) and systemic disease activity measurements: the CRP and the 

duration of general morning stiffness. The mean, standard deviation and range of each 

of these parameters at baseline and three, six twelve weeks into the exercise programme 

are given in Table 7.3.1 and illustrated in Figure 7.3.1. 

Table 7.3.1. Disease parameters in 79 females with RA during a 12 week hand 

exercise programme. (Mean (SD); range). 

WeekO Week 3 Week 6 Week 12 

CRP 

(IU/1) 

9.78(13.23); 
0.86-61.90 

11.41 (16.37); 
0.89-80 

16.69 (22.32); 
0.89-99.40 

14.352 
(22.51); 
0.89-120 

Duration of 
morning 
stiffness 
(minutes) 

95.82 
(210.51); 
0-1440 

102.75 (281.87); 
0-1440 

122.14(316.97); 
0-1440 

154.50 
(353.79); 
0-1440 

#Right hand 
and wrist 

2.77 (2.62); 
0-10 

2.72 (2.74); 
0-10 

2.87 (2.64); 
0-10 

3.04 (2.53); 
0-10 

pain 
#Right hand 
and wrist 
stiffness 

3.253 (2.45); 
0-10 

2.947 (2.481); 
0-9 

2.99 (2.56); 
0-10 

3.09 (2.56); 
0-10 

Right joint 3.77 (3.29); 4.07 (3.34); 4.06 (3.19); 3.76 (3.04); 

swelling score 0-12 0-11 0-10 0-13 

Left joint 3.57(3.68); *2.84 (3.02); 3.32 (2.700); 3.81 (3.46); 

swelling score 0-13 0-11 0-10 0-10 

Right joint 3.03 (3.30); 3.82 (3.91); 3.67 (3.81); 3.94 (3.50); 

tenderness 0-12 0-13 0-13 0-13 

score 

Left joint 2.85 (3.10); *3.84 (3.92); 3.66 (3.99); **4.28(4.17); 

tenderness 0-12 0-15 0-15 0-13 

score 

Paired non-parametric test: *p < 0.05; ** p < 0.001 compared to baseline. 

#0-10 numerical rating scale. 
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There was no evidence of an increase in local disease activity in the right hand during 

the course of the programme. Systemic disease activity, measured by the CRP and 

duration of morning stiffness, increased during the course of the programme, the trend 

not reaching statistical significance. There was an overall increase in disease activity in 

the left hand, with significant increase in joint tenderness noted at week 12 compared to 

baseline. 

Figure 7.3.1: Right and left hand disease parameters measured during a 12 week 

right hand exercise programme in 79 females with RA (mean (SD)). 
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Paired non-parametric test: *p < 0.05; **p< 0.001 compared to baseline. 
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Table 7.4.1: The results of the multiple regression for the percentage gain in grip 

strength (dependent variable) in females with rheumatoid arthritis. 

Variable Coefficient SD 1 T ratio P 

Extensor IMF 1.64 1 0.26 1 2.59 0.012 

Subluxation score 7.49 1 0.38 1 3.17 0.002 

Tenderness score 22,30 1 0.52 1 3.78 0.0003 

CRP -0.159 1 -0.21 1 -0.208 0.042 

Swelling score -20.15 1 -0.41 1 -2.83 0.006 

Disease duration -0.27 1 -0.25 1 -2.44 0.018 

Constant -138.21 1 -1.67 0.100 

= 0.3078; F = 6.4113;p< 0.0001 



7.4.1 Predictors of the outcome of a handgrip exercise programme in RA 

Handgrip exercise has been demonstrated earlier to be effective in improving grip strength 

in females with RA. In this section, the evaluation of potential, specific predictors of 

outcome to the handgrip exercise programme in females wrth RA will be examined. 

The principal outcome measure in this study was the change in handgrip strength. Subject 

characteristics and the forearm IMF were assessed in both groups, in addition to the disease 

duration and severity and the disease activity over the course of the exercise programme. 

The mean disease activity was measured by the means of the four measurements of CRP, 

joint swelling and tenderness scores, patient-rated right hand pain and joint stiffness, and 

the duration of general morning stiffness taken over the 12 week programme. Disease 

severity was measured by the subluxation and ulnar deviation score of the right hand and 

wrist and, in a subset of 57 subjects, the right hand BMD at baseline. 

In a step-dovra muhiple regression model including these factors, the significant predictors 

of improvements in grip strength in the RA group were the disease duration, the mean CRP 

and right hand and wrist joint swelling over the course of the programme, which were 

negatively associated with the change in grip strength. The extensor IMF, the subluxation 

of the right hand and wrist and the mean tenderness over the programme were also 

significant predictors of outcome, having positive associations with the grip strength 

response. Thirty one percent of the variation in the final grip strength was accounted for by 

the above mentioned outcome predictors (ANOVA: F = 6.41; p<0.0001; R^ = 0.31). These 

relationships are further described in Table 7.4.1 and in figures 7.4.1 to 7.4.3. The mean 

MGS and myoelectric parameters of both groups over the 12 week programme are shown 

in Tables 71.2-7.2.1. 

The final grip strength in the control group was best predicted by the MGS at baseline (R^ = 

0.4869; F = 34.21; p<0.0001). 
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Figure 7.4.1. The relationship between the change in the MGS of the right hand 

during a handgrip exercise programme and the disease duration in 79 females with 

RA. 
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Figure 7.4.2 The relationship between the change in the MGS of the right hand during 

a handgrip exercise programme and the disease duration in 79 females with RA. 
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Figure 7.4.3: The relationship between the change in the MGS of the right hand 

during a handgrip exercise programme and the right hand and wrist subluxation 

score in 79 females with RA. 
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In a subset of 57 subjects with RA in whom the right hand BMD was measured, hand BMD 

was not demonstrated to be a significant predictor of gain in grip strength during the 

handgrip exercise programme. No significant differences existed between this group and 

the main exercise group in terms of the variables described in Table 7.4.2. 

Table 7.4.2: Details of the subgroup of females with RA taking part in the handgrip 

exercise programme in whom BMD of the right hand was measured. 

Parameter Mean (SD); range 

Age (years) 50. 72 (12.14); 27-74 

BMI (kg/ni2) 24.70(5.67); 19.72-31.73 

Disease duration (months) 119.16 (106.52); 5 ^20 

Right MGS (mmHg), week 0 107.27(74.11); 24-345 

Right MGS (mmHg),week 12 161.82(77.63); 30-370 

BMD of the right hand (g/cm )̂ 0.3700(0.07); 0.26-0.55 

Extensor MDFG (Hz/sec), week 0 -0.3700 (0.2400); -1.259 to 0.1620 

Flexor MDFG (Bz/sec), week 0 - 0.3100 (0.2300); -0.897-to 0.1750 

Extensor IMF (Hz), week 0 122.07(21.06); 74.82-178.76 

Flexor IMF (Hz), week 0 108.83(20.7); 66.69-143.93 

130 



7.5 Summary: Handgrip exercise in Rheumatoid Arthritis. 

The studies which have been described of the effects of handgrip exercise in rheumatoid 

arthritis indicate that significant improvements in hand function occur with a simple 

home hand strength training programme. 

The outcome measure of the exercise programme, the change in grip strength, was 

positively related to the extensor IMF from the initial visit. This myoelectric 

characteristic, which has been demonstrated earlier to be a highly repeatable parameter, 

significantly elevated in rheumatoid disease and related to disease severity (the right 

hand and wrist subluxation) showed no change over the twelve week exercise 

programme. 

Subjects with severe disease, reflected in the lowest grip strength at baseline, higher 

IMFs and greater subluxation scores, were demonstrated to benefit the most fi'om a 

handgrip exercise programme, relative to their hand function at baseline. Although grip 

strength was shown earlier to decline with increasing hand and wrist subluxation, 

subjects with significant deformity do benefit significantly with exercise, with, perhaps, 

" more to gain" than those who already exhibit good hand function. Tenderness also 

showed a surprising positive relation with improvements in hand function; however, 

this may have been related to an increased general use of the hand in those subjects who 

were improving the most. Significantly, it is evident that joint tenderness was not a 

limiting factor to the response to the hand exercise programme. Furthermore, there was 

no indication of exacerbation of local or systemic disease activity during the course of 

the programme. 

Longer disease duration, high amounts of joint swelling over the course of the 

programme (a measure of local disease activity) and the CRP (systemic disease activity) 

were all significant negative predictors of the gain in grip strength during the 

programme. 

It is evident, therefore, that subjects with rheumatoid disease benefit greatly from a 

simple hand strength training programme and suitable predictors of outcome have been 

identified, one of which is a stable characteristic of forearm muscle. The significance of 

these findings will be discussed further in the discussion section (Chapter Nine). 
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The last study addresses the question of the mechanisms of the observed strength gain 

in rheumatoid disease. It is evident that subjects with RA do have abnormal muscle 

characteristics, indicated by the presence of neuromuscular changes (muscle fibre 

atrophy related to denervation and / or disuse) on histology and the myoelectric 

characteristics, specifically the IMF. Whether these features interfere with the normal 

stages of strength gain - neural adaptation and muscle hypertrophy - during a handgrip 

strength training programme - will now be investigated. 
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Table 8.2.1: Details of the study group consisting of 27 right hand dominant 

females with RA (mean (SD); range). 

Age Disease MGS (mmHg) CSA (cm2) FRMSG 

(years) duration (mmHg/uV) 

(months) 

baseline 12 weeks baseline 12 weeks baseline 12 weeks 

51.50 122.32 102.81 154.96 26.40 26.68 Extensor Extensor 

(14.95); (14.95); (75.54); (71.33); (5.15); (5.09); 0.81 1.12 

36-75 9-384 24-267 50-320 20.5-44.9 20.3-44.9 (0.70); (0.81); 

0.25-3.70 0.23-3.88 

Flexor Flexor 

2.73 2.55 

(1.68); (1.22); 

1.07-7.64 0.68-5.80 



Chapter Eight. Mechanisms of grip strength gain in a hand exercise 

programme. 

8.1. Introduction 

The two main mechanisms of strength gain in a progressive strength training 

programme are neural adaptation and increased muscle mass, as has been discussed 

earlier in Chapter Two. The F R M S G (the regression line fitted to the plot of the grip 

force versus the R M S voltage) has been used by several workers to assess neural 

adaptation (no change in FRMSG) and increases in muscle mass (indicated by an 

increase in FRMSG). The mechanisms of strength gain in the hand exercise programme 

were investigated using magnetic resonance imaging techniques to measure changes in 

muscle mass and the F R M S G to assess both changes in muscle mass and neural 

adaptation. 

8.2 The assessment of the mechanisms of strength gain during a hand 

exercise programme using cross-sectional analysis of forearm 

musculature by magnetic resonance imaging. 

The initial study involved a comparison of the mechanisms of strength gain as indicated 

by the FRMSG and the changes noted in the CSA of the right forearm using magnetic 

resonance imaging. The FRMSG in a group of 27 females with RA performing the 12 

week hand exercise programme was assessed at 0, 6 and 12 weeks during the 

programme; the forearm CSA was measured at baseline and at the end of the 

programme by MRI. Subject details and the pre and post exercise values are shown in 

Table 8.2.1. 

At baseline, the CSA of the right forearm in these subjects with RA significantly 

correlated with grip strength (r =0.4996; p = 0.0110; figure 8.2.1). However, as shown 

earlier using multiple regression analyses, there was no significant correlation between 

these two parameters allowing for factors such as body mass index and age. 
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Figure 8.2.1: The relationship between the cross-sectional area (CSA) of the right 

forearm and the maximum grip strength of the right hand in 27 females with RA 

prior to commencing a hand grip exercise programme. 
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During the exercise programme, significant gains in grip strength were noted in the 

group, the change being significant at 6 weeks (p<0.05) and extremely significant at 12 

weeks (p<0.001) compared to baseline. 

Figure 8.2.2: The mean (SD) MGS of the right hand in 27 females with RA during 

a 12 week hand exercise programme. 
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Figure 8.2.3: The percentage changes in the CSA of the right forearm and in the MGS of 

the right hand in 27 females with RA after a 12 week hand grip exercise programme. 
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Figure 8.2.4: The percent^ change in the F:RMS gradients at the extensor and flexor 

channels vs that in right forearm CSA in 27 females with RA after a 12 week handgrip 

exercise programme. 
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Changes in the F R M S G during the exercise programme were noted, with a significant 

increase in the mean F R M S G for the extensor channel. An overall increase in the slope 

for the flexor channel also occurred, the latter not reaching statistical significance. 

However, no relationship was demonstrated between the change in M G S and the change 

in the F R M S G of the extensor channel (r = 0.2947; p = 0.2091) nor the flexor channel 

(r= 0.2448; p=0.2184). 

Figure 8.2.5: The relationship between the changes noted in the grip force : RMS of the 

SMES gradient (FRMSG) (extensor channel) and MGS of the right hand after a 12 week 

hand grip exercise programme in 27 females with RA. 
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Figure 8.2.6: The relationship between the changes noted in the grip force: RMS of the 

SMES gradient (FRMSG) (flexor channel) and MGS of the right hand after a 12 week 

hand grip exercise programme in 27 females with RA. 
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No significant relationship was demonstrated between the changes noted in the FRMSG 

of the extensor and flexor channels, as demonstrated in figure 8 .1.7. 

Figure 8.2.7: The percentage changes in the FRMSG of the flexor channel versus that of 

the extensor channel in 27 females with RA after a 12 week handgrip exercise programme. 
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There was no significant relationship between the change in the forearm CSA and that 

in the FRMSG of the flexor channel (Spearman r = -0.2209; p=0.2683). The change in 

the extensor FRMSG showed a significant negative correlation with the change in the 

CSA (r= -0.4420; p=0.0210); see figure 8.2.4. 

The C S A of the right forearm showed no significant change for the study group over the 

12 week exercise period (26.40 cm^ vs 26.70 cm^; p=0.1442) and no correlation was 

demonstrated between the change in MGS and change in CSA over the 12 week period. 

In view of these findings a different approach to the assessment of forearm muscle mass 

was developed, since the lack of change in the CSA may have been related to the 

insensitivity of the measurement. 
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Figure 8.3.1: The right forearm muscle volume and grip strength of the RA and control 

groups at baseline and after 12 weeks of a handgrip exercise programme (mean (SD)). 
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8.3. The assessment of the mechanisms of strength gain during a hand 

exercise programme using volumetric analysis of the forearm 

musculature. 

The mechanisms of strength gain were further investigated using the F R M S G and a 

different approach to the assessment of muscle mass: volumetric analysis of the 

musculature of the right forearm. This alternative approach to the assessment of muscle 

mass was pursued as there was a question as to the sensitivity of CSA assessment of 

small changes in muscle mass, particularly in individuals with RA, where the muscle 

fibre atrophy may be patchy. 

Two study groups were assessed, consisting of fourteen subjects with RA and fourteen 

controls. All were right hand dominant females, the details of which are given in Table 

8.3.1. Details of the F R M S G at 0, 6 and 12 weeks of the programme, in addition to the 

changes in the forearm muscle volume and MGS of the right hand are shown in figures 

8.3.1. - 8.3.3. No significant differences in age, weight nor B M I existed between the 

two groups. As shown earlier (section 6.1), in a multiple regression analysis there was 

no significant relationship demonstrated between the right forearm muscle volume and 

MGS of the right hand in neither the control nor the RA groups. 

At baseline, the right hand MGS was significantly higher in the control group; no 

significant difference was detected between the forearm muscle volume. After 12 

weeks of exercise, gains in right hand MGS were extremely significant and significant 

for the RA and control groups respectively. Significant increases in the right forearm 

muscle volume were detected for the control group, but not the RA group, as shown in 

figure 8.3.1. Changes in forearm muscle volume reflected the increases in grip strength 

noted in the control group, with significant correlation being demonstrated between the 

changes in the two parameters, as illustrated in figure 8.3.2. No such relationship was 

seen in the RA group. 
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Figure 8 J.2: The change in the volume of the right forearm musculature vs change in 

MGS of the right hand in 14 female controls (A) and 14 females with RA (B) after a 12 

week handgrip exercise programme. 
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In the evaluation of the F R M S gradients at baseline and after 12 weeks of the exercise 

programme, a significant decline in the F R M S G gradient was noted in the extensor 

channel of the control group after 12 weeks of hand exercise. Declines in the FRMSo 

were noted in the flexor channels of both groups aflerl2 weeks and an increase in the 

gradient in the extensor channel of the RA group; none of these changes reached 

statistical significance (Table 8.3.1). 

No significant correlation between the increase in forearm muscle volume noted on 

MRI and the changes in the F R M S G were noted for any chaimel. These results are 

shown in figures 8.3.3 and 8.3.4. The high variation in the relationship between the 

changes in grip strength, muscle mass and the F R M S G is illustrated in figures 8.3.5 and 

8.3.6, describing results for individual subjects. 

Figure 8.3.3: The relationship between the change in forearm muscle volume and the 

F:RMS gradients derived from extensor (C) and flexor (D) channels after a 12 week hand 

exercise programme in 14 females with R A . 
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F=RMS gr.di.,.« derived fr.m extensor (A) » d flexor (B) eh«m.U .fter • 12 « « * 

exercise programme in 14 female controls. 
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Figure 8.3.5 Grip strength vs RMS of the SMES for extensor and flexor channels in 14 
female controls over a 12 week exercise prc^ramme. The associated changes in slope of the 
regression lines, MGS and forearm muscle volume are given in the associated tables. 
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Figures 8 J.6: Grip strength vs RMS of the SMES for extensor & flexor channels in 14 females with 
RA over a 12-week exercise programme. The % changes in slope of the given regression lines, MGS 
and forearm muscle volume are given in the associated tables. 
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8.4 Summary 

In the assessment of changes in forearm muscle mass during the hand exercise 

programme, significant gains were seen in some control subjects and the group as a 

whole, which correlated with the gains seen in grip strength. There were no significant 

changes in the mean muscle mass in rheumatoid subjects, as measured by the CSA in 

the first group nor total forearm muscle volume in the second group. 

There was a wide variation in the F R M S G of both channels in both groups during the 

programme. Increases in the F R M S Q showed no correlation with the changes in forearm 

muscle volume. 
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Chapter Nine. Discussion: Grip strength, forearm muscle 

fatigue and the response to hand grip exercise in rheumatoid 

arthritis. 

9.1 Introduction 

Muscle atrophy has been recognised as a chnical feature of rheumatoid arthritis for over 

a century. Over the last three decades histological abnormalities, in particular fibre 

atrophy, within skeletal muscle have been widely reported. However, the flinctional 

significance of fibre atrophy in RA and its relationship to the disease process and the 

response to rehabilitation programmes is unclear. Contributing factors to the lack of 

advance in the understanding of muscle disorders in RA are confusion surrounding the 

histological findings and a lack of specific measures which reflect the characteristics of 

underlying muscle. As has been clarified in Chapter Two, a review of the literature 

indicates that the histological findings suggest the presence of a combination of a 

primary myopathy secondary to disuse (local or generalised) and a neurogenic 

myopathy secondary to denervation related to the systemic disease process. . 

Muro et al (1982) suggested that electrophysiological characteristics of muscle during 

contraction can be valuable measures in the assessment of neuromuscular disease. 

Studies have suggested that the assessment of the initial median frequency (the IMF, 

that is the median frequency (MDF) of the myoelectric signal prior to the onset of 

muscle fatigue) recorded from muscle during contraction can give valuable information 

on the intrinsic characteristics of the muscle, including the presence of myogenic or 

neurogenic fibre atrophy. Monitoring the change in the MDF (represented by the 

MDFG) during muscular contraction indicates the fatiguability of the muscle at that 

time. 

After developing the technique of power spectral analysis of forearm musculature 

during grip and initial pilot studies which examined the relationship between 

myoelectric parameters and grip force, this technique was used to examine 

neuromuscular disorders in rheumatoid arthritis. This is the first such study in this 

disease. Specific issues were addressed. Firstly, electrophysiological evidence for the 
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presence of neuromuscular abnormalities within rheumatoid muscle during a functional 

task (grip) were sought. Having demonstrated that there is such evidence of 

neuromuscular abnormalities, the relationship with the disease process in subjects with 

RA was examined and significant relationships with disease were demonstrated. The 

significance of such neuromuscular abnormalities to the response to a simple hand 

exercise programme in RA was then evaluated. Other important issues were examined 

in this study. These were the evaluation of factors affecting grip strength in RA and the 

assessment of forearm muscle mass and mechanisms of strength gain in hand exercise 

programmes in RA. The following discussion will address the findings relating to these 

issues that have been detailed in earlier sections. 

9.2 The use of grip in the assessment of the myoelectric characteristics 

during contraction. 

Many studies of myoelectric characteristics during contraction involve isolated 

contractions of an individual muscle, with which the subject may be unfamiliar and 

which may not reflect the characteristics of the muscle in the functional setting. In this 

study, the electrophysiological characteristics of the forearm were studied during grip. 

The use of this task confers many advantages. Grip is a fimctional task with which most 

subjects are familiar, even those with inflammatory arthritis. The assessment of grip 

strength remains the cornerstone of hand functional analysis and it is an extremely 

important measure in rheumatoid disease, since it reflects not only hand fianction but 

also the activity and severity of the disease (Lansbury, 1958; Nordenskold and Grimby, 

1997). The involvement of the hand and wrist in rheumatoid disease usually occurs 

early in the disease process and, i f abnormalities of muscle are associated with the 

disease, forearm muscles may be expected to be involved early. The study of 

myoelectric characteristics of the muscle during grip allows the evaluation of their 

relationship with disease measures, including local disease. Forearm muscles are easily 

accessible for the recording of the surface myoelectric signal (SMES) and this, in 

combination with the ease of the task involved, is likely to have contributed to the 

reliability of the technique of frequency analysis of the forearm SMES. 
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Some of the confusion surrounding the response to strength training programmes in R A 

relates to concerns over compliance with programmes, unfamiliarity with the required 

tasks and lack of association between the exercise and daily function. Handgrip was 

chosen as the basic task in a strength training programme for several reasons. It is 

essential to function and loss of grip strength in R A is a significant and common 

problem, as has been described. Familiarity with the task was likely to improve 

compliance. Monitoring changes in the myoelectric characteristics of the forearm at 

given intervals over the three-month programme was possible, allowing the monitoring 

of muscle fatigue (the MDFQ) and the possible identification of myoelectric predictors 

of outcome (such as the I M F ) . The assessment of changes in forearm muscle mass with 

exercise was also possible using magnetic resonance imaging. 

9.3 The initial median frequency of the forearm myoelectric signal as 

an indicator of muscle characteristics in RA. 

The investigation of neuromuscular abnormalities in rheumatoid disease using analysis 

of the surface myoelectric signal has many advantages over histological examination 

and intramuscular EMG studies. Histological examination of rheumatoid skeletal 

muscle gives a valuable 'picture' of the tissue, but does not convey any information as 

to whether such changes are evident during the performance of a ftanctional task. 

Histological analysis and intramuscular EMG studies rely on examining an involved 

area of muscle; the patchy nature of the disease process within the muscle (Halla et al, 

1984) may result in an uninvolved area being assessed. 

Subjects with rheumatoid disease were shown to have lower neuromuscular efficiencies 

(NME) during grip, as described by the lower FRMSQ values in this group. This is in 

keeping with the reports by other workers of a reduction in NME in neuromuscular 

diseases (Lenman and Potter, 1966; Muro et al, 1982; Lindeman and Drukker, 1994). 

However, it does not give any further specific information relating to the nature of the 

neuromuscular disorder. 

In spite of the numerous reports of neuromuscular abnormalities in rheumatoid disease, 

their significance in relation to the disease process and functional outcome is unclear. 
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The initial median frequency of the myoelectric signal (the IMF) has been foimd to be a 

useful indicator of the presence of neuromuscular disease and in the differentiation 

between a primary myopathy and a myopathy that is neurogenic in origin. Those studies 

which have assessed fi-equency spectral changes in myopathic lesions have not 

addressed disuse atrophy specifically, and the reported spectral alterations are taken as 

representative of primary myopathic lesions as a whole (Walton, 1952; Lindstrom et al, 

1985). However, i f disuse atrophy did not result in the typical changes which result in 

the alterations in the fi-equency spectrum in other myopathic lesions then the observed 

elevation of the IMF can still be explained by the presence of disuse atrophy of 

predominantly type I fibres. In this study the IMF of the forearm myoelectric signal 

recorded during submaximal grip was shown to be a repeatable parameter on both short 

and long term testing. It was unrelated to the level of grip force for a given individual 

over the force range examined. This myoelectric parameter may represent intrinsic 

characteristics of the forearm muscle - specifically its fibre type composition and 

behaviour - in a given individual, which is stable over time and over the course of an 

exercise programme. 

The IMF was higher in both the forearm flexor and extensor muscle groups in the 

rheumatoid subjects when compared to the controls and there was a significant 

correlation between the flexor and extensor IMF in the rheumatoid subjects. This latter 

finding indicates that those subjects with RA who had an abnormal extensor IMF also 

had abnormal flexor IMFs. Both the flexor and extensor IMFs were significantly 

associated with greater disease severity (right hand and wrist subluxation and in the case 

of the flexor IMF, grip strength), with higher IMFs being noted in more severe disease. 

Although a high IMF is associated with muscle lengthening, this caimot explain the high 

value in both muscle groups, since i f one group lengthens in response to this deformity, 

the other group would be expected to shorten. It is therefore likely that the increase in 

IMF noted in rheumatoid forearm muscle is associated with changes in the fibre type 

composition of the muscle. 

As detailed in the review of the literature, both a primary myopathy (related to disuse) 

and a neurogenic myopathy are thought to occur in RA, but it is unclear as to which is 

the more important of the two and their relevance to function and the response to 

rehabilitation programmes. It is possible that the relative contribution of each 
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mechanism varies between individuals according to the characteristics of the disease. In 

neuromuscular disorders, a high IMF usually reflects a primary myopathy. However, it 

may also be seen in subjects with neurogenic myopathies when there is reirmervation 

occurring, or possibly after reinnervation has occurred i f the injured muscle fibres have 

become predominantly type I I due to reinnervation by those motoneurones which 

usually supply type I I fibres. This is termed neuromuscular plasticity (Gordon et al, 

1988). Alteration of muscle fibres to a different fibre type has not been demonstrated in 

healthy fibres, even in response to training. However, it has been demonstrated 

experimentally (Edgerton et al, 1980) and is thought to occur in the response to injury 

(Kilmer, 1996). Regeneration and reinnervation after neural damage is a random 

process, unlike the specific nature of innervation during development (Gordon et al, 

1988). I f the findings in this study are taken to represent muscle reiimervation with a 

resulting type I I fibre predominance, it would appear that the type I fibres had been 

more affected, with recovery through terminal sprouting of healthy type I I 

motoneurones (Gordon et al, 1988). I f the increased IMF observed in subjects with RA 

was related to muscle atrophy through disuse (i.e. a primary myopathy), then it still 

seems likely that the type I fibres were the greater affected, since the IMF is related to 

fibre type. However, there are other reasons which have been suggested for the raised 

median frequency of the MES observed in myopathies, including polyphasic, short 

potentials (Walton, 1952; Kugelberg, 1949). 

Brooke and Kaplan (1972) reported type 1 fibre atrophy in severe RA. In this study, the 

subjects in the RA group were all drawn from a hospital population and it could be 

argued that they have more severe disease on that basis. This would be in keeping with 

the possible reasons that have been described for the raised IMF. Those studies which 

have reported type I I fibre atrophy in RA (including Haslock et al, 1970; Magyar et al, 

1977) have obtained biopsies mainly from the lower limb musculature. It is possible that 

the changes within the forearm musculature differ from those in the lower limbs. There 

are no histological studies of forearm muscle in rheumatoid disease available in the 

literature to confirm or disprove this. 

The IMF of the SMES recorded from the forearm during submaximal grip is therefore 

an indicator of disease severity and indicates that the changes that occur within 

rheumatoid skeletal muscle are related to the severity of the disease process. The 
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extensor IMF showed positive correlation with systemic disease activity, reflected by 

the duration of general morning stiffness. Conversely, local disease activity in the hand -

reflected by the hand joint swelling score - was negatively associated with the IMF. The 

flexor IMF showed a similar relationship with local joint swelling. This is difficult to 

explain. It is possible that general disease activity results in the preferential use of Type 

I I fibres, (which may predominate in severe RA (Brooke and Kaplan, 1972)) and which 

may actively splint the joint, with inactivity of type I fibres and a resulting elevation in 

the IMF. Local disease activity may result in arthrogenous inhibition of the more 

powerful (type II) fibres, lowering the IMF. It is unclear whether arthrogenous 

inhibition affects one specific fibre type more than the other (Young, 1993). 

It is evident that the IMF of the SMES, which reflects underlying changes within the 

muscle, is closely associated not only with the disease process, but also fluctuates with 

the systemic activity of the disease. The effects of arthrogenous inhibition upon the IMF 

are unclear but may be the reason for a decline in the IMF with increases in local 

disease activity. 

The negative association between the flexor IMF and disease duration is another 

indication that, in this group, disease duration did not correlate with disease severity. It 

is also in keeping with the finding by Magyar et al (1977) that there was no relationship 

between disease duration and the extent of the neuromuscular changes noted on 

histological examination of skeletal muscle. In a thorough review of disease assessment 

indices in RA, Symmons (1995) gives no mention to the duration of the disease in 

relation to the severity nor the activity of the disease, indicating it is not considered to 

be an important feature of disease assessment nor its outcome. 

9.4 Other factors associated with hand function in RA. 

Grip strength is a well-established indicator of both hand function and global fionctional 

capacity in rheumatoid disease (Nordenskold and Grimby, 1997). The association 

between the I M F of the SMES, representing underlying neuromuscular changes, and 

grip strength has been discussed above. Other factors significantly related to grip 

strength in both groups were the age and the M D F Q (extensor and flexor in controls and 
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flexor only in the RA group). The decline of grip strength with age has been reported by 

others and reflects the decline in overall hand function with increasing age (Hackel et al, 

1992). 

The findings in this study that grip strength in rheumatoid disease significantly declined 

with increasing systemic disease activity (measured by the CRP), local disease activity 

(right hand and wrist pain), and the disease severity (hand subluxation) are in keeping 

with the findings by many other workers (Pincus et al, 1987; Spiegel et al, 1987; Ritchie 

et al, 1968; Lansbury, 1958;). The significant increase in grip strength with disease 

duration is initially surprising. However, in this study group, there was no correlation 

between disease severity and the duration of the disease and the lack of significance of 

disease duration in relation to the severity and outcome of the disease has been 

discussed. Also the decline in strength with immobilisation is most marked in the first 

week (Kilmer, 1996). Although there are several other factors associated with the 

decline in grip strength in RA, this does indicate that longer disease duration does not 

necessarily indicate greater muscle weakness in RA. As has been detailed, no 

relationship between the muscle changes noted on histological studies of rheumatoid 

muscle and the duration of the disease (Magyar et al, 1977). I f such changes are related 

to functional weakness, as is suggested by the relationship found between the IMF and 

grip strength, then the findings in this study in relation to disease duration are not 

surprising. 

9.5 Fatigue in rheumatoid arthritis. 

The M D F Q of the SMES is a well-established indicator of muscle fatigue during 

submaximal work (Lindstrom et al, 1977). This parameter was demonstrated to be a 

sensitive and repeatable measurement on same day testing but showed a high variation 

on retesting after 3 weeks, as discussed earlier in the discussion of the pilot studies. This 

may indicate that the fatiguability of the muscle changes over short periods of time and 

measurements on a given day reflect the state of the muscle on that day. The variation 

over time makes it a less useful indicator of changes in fatigue in response to treatment, 

such as an exercise programme. 
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There is a theoretical basis for suspecting increased muscle fatigue in RA: reduced local 

blood flow in relation to vascular disease and vasculitis (Myllykangas-Luosujarvi et al, 

1995), deconditioning (Ekdahl and Broman, 1992), the possibility of an increased ratio 

of type I I : type I fibres (the former being more fatiguable) and systemic disease may all 

play a part. Subjective fatigue has a reported incidence of up to 93 % (Belza, 1995). 

However, increased forearm muscle fatigue in rheumatoid disease was not demonstrated 

in this study. Indeed, subjects with RA worked at lower levels of muscular fatigue than 

did healthy individuals; this was associated with lower work intensities in the RA group. 

Working at lower levels of fatigue and at lower work intensities may be related to 

fimctional disability or to a protective mechanism against damaged and inflamed joints. 

No difference in the M D F Q between the two groups existed allowing for the difference 

in grip strength. It is possible that shortening of muscle fibres in relation to the disease 

and positions of immobilisation resulted in less marked power spectral shifts. This may 

have compensated for the other factors mentioned above which may have increased the 

spectral shifts. 

Fatigue (measured by the MDFQ) was associated with the systemic activity of 

rheumatoid disease (measured by the CRP): the greater the disease activity, the greater 

was the extensor muscle fatigue experienced by subjects with RA. Greater disease 

severity, (measured by ulnar deviation of the hand and wrist) was also associated with 

greater fatiguability of both the extensor and flexor forearm muscles. The association 

between reduced fatiguability with greater hand and wrist subluxation scores in the 

flexor muscle group may be associated with flexor muscle shortening in such a 

deformity. The relationship demonstrated between joint stiffness - a measure of local 

disease activity - and reduced fatiguability of the extensor forearm muscles again raises 

the issue of arthrogenous inhibition of muscle fibres playing a protective role in 

preventing excess fatigue from occurring. 

Greater muscle fatigue was seen in the extensor muscles compared to the flexor muscles 

during grip in both the healthy subjects and in those with RA. The importance of the 

extensor forearm muscles to the vital task of gripping is often overlooked. As Hagg and 

Milerad (1997) point out, electromyographic studies of gripping have focused mainly on 

forearm flexors, in spite of the need for the extensors to stabilise the wrist against the 

action of the flexors (Snijders et al, 1987). Greater fatigue in the extensor muscles in 
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comparison to the flexors has been noted by other workers (Hagg and Milerad, 1997; 

Roy et al, 1991). These workers concluded that this is related to the work of the 

extensors in stabilising the wrist. This vital action of stabilising the wrist emphasises the 

fact that i f the extensors are weakened then grip strength is likely to decline. Individuals 

with rheumatoid disease are often observed with their hands in a resting posture 

involving wrist forward flexion. This may be related to increasing the joint volume, 

making this position more comfortable in active disease. Unfortunately, it also is likely 

to contribute to over activity of the flexors and the resulting typical rheumatoid 

deformities (Smith et al, 1964). In addition, the extensors would be suspected of 

becoming more deconditioned, contributing to the deterioration in grip strength. This 

was an important factor in the handgrip exercise which individuals performed, which 

emphasised the action of pulling the wrist into 30 degrees of extension, thereby 

exercising the extensors even before the gripping task was commenced. 

Subjective fatigue was not assessed in this study and therefore the relationship between 

subjective and objective fatigue caimot be reported. However, the high reported 

prevalence of fatigue in RA in spite of the lack of any demonstrable forearm muscle 

fatiguability in handgrip exercise indicates there is no relationship between the two 

parameters. This does not exclude the possibility of excessive fatiguability in 

rheumatoid muscle during other tasks, particularly dynamic exercise. 

9.6 The response to a handgrip exercise programme in RA. 

The handgrip exercise programme was found to be highly successful, particularly in 

subjects with rheumatoid disease. Significant gains in grip strength were noted, with no 

exacerbation of disease activity. In addition, no subjects withdrew from the programme. 

Such findings emphasise that simple home strength training programmes in rheumatoid 

arthritis can be highly effective in improving function without exacerbating disease 

activity. 

The primary outcome measure of the handgrip exercise programme was the gain in grip 

strength expressed as a percentage of the strength at baseline. The greatest response was 

seen in those with the greatest disease severity, indicated by the subluxation score, the 
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flexor IMF and lowest grip strength at baseline. These subjects evidently had "more to 

gain" and demonstrate that exercise can be of significant benefit even in severe disease. 

The finding that the flexor IMF was a predictor of outcome to the hand exercise 

programme is highly significant, since it indicates that neuromuscular abnormalities, 

which are associated with the severity of the rheumatoid disease, do not prevent the 

ability to respond to a strengthening programme. 

Greater disease activity was a limiting factor to the response to the exercise programme. 

This may be related to arthrogenous muscle inhibition, pain inhibition and joint 

stiffness. Al l subjects were urged to continue the exercises unless severe disease activity 

prevented them from doing so: there were only six reported incidences of days missed 

in relation to disease activity. In addition, the general improvement in disease activity 

measures in spite of the deterioration of left hand and general activity scores indicates 

that such exercise programmes do not exacerbate the disease and may actually help it. 

This has been demonstrated by Harckom et al (1985) in an aerobic conditioning 

programme in subjects with RA. 

Those subjects with longer disease duration also showed less improvement compared to 

those with earlier disease. As has been emphasised earlier, these were stronger than 

those with earlier disease and were not those with more severe disease - indicating they 

had "less to gain" relative to their initial strength. In addition, the less pronounced 

improvement seen in subjects with longer disease duration may be related to the 

inability to neurally adapt in longstanding disease, although there is no evidence in the 

literature to support this. 

Greater tenderness of the right hand and wrist was noted in those subjects who showed 

the greatest improvement in grip strength. As has been discussed, there was no overall 

exacerbation of disease activity during the programme. The increased local tenderness 

may have been related to greater use of the hand as a result of gains in hand fimction. 

Perhaps most significantly, it is evident that the increased tenderness was not a limiting 

factor in response to the exercise programme. 
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Reported compliance with the exercise programme was excellent, possibly related to an 

initial supervisory session, regular follow-up in the form of phone calls (Stenstrom, 

1994) and 3-weekly assessment sessions, the ease of the regime and familiarity with the 

task involved and the noted improvement by the subjects over the course of the 

programme, encouraging further compliance. Some workers have reported disease 

severity to be a limiting factor in the compliance with exercise programmes in RA 

(Gecht et al, 1996). This was not the case in this study, possibly due to the factors 

relating to compliance, which have been detailed here. 

9.7 Mechanisms of strength gain in the hand exercise programme. 

The examination of mechanisms of strength gain in RA involved the assessment of the 

processes of neural adaptation and gains in muscle mass. Initial approaches to the 

assessment of muscle mass involved the assessment of the forearm cross-sectional area 

by two techniques, one utilising skinfold calipers and the other magnetic resonance 

imaging. The former technique was not found to be repeatable on same-day nor on 

between-day testing. Helliwell and Jackson (1994) used this technique in the assessment 

of the forearm CSA in rheumatoid subjects and controls. They did not report the 

repeatability of the measurement but did demonstrate a correlation between CSA 

calculated according to the caliperiper method and that derived from CSA assessment of 

the forearm using computed tomography scanning. Other workers have reported the 

accuracy of skinfold caliperiper techniques to be imsatisfactory in the assessment of 

muscle cross-secfional area (Haggmark et al, 1978; Young et al, 1980). 

The CSA of the forearm assessed using MRI was shown to be a repeatable 

measurement. No change in the forearm CSA was demonstrated with handgrip exercise 

in spite of significant gains in grip strength in the rheumatoid subjects. No control 

subjects were assessed in the CSA study. The lack of change in forearm CSA in the RA 

subjects may have been related to a true lack of change of muscle mass or to a lack of 

sensitivity of the measurement, since gains in muscle mass could have occurred out of 

the region scarmed. In addition, since rheumatoid myopathy may be patchy in 
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distribution, the CSA may not accurately reflect the muscle mass. This was the basis for 

proceeding to the study involving volumetric analysis of forearm musculature before 

and after the hand exercise programme. Such a technique has been described in the 

assessment of lower limb musculature, but not for the measurement of muscle volume 

in the forearm. The technique used was shown to be sensitive and reliable. Cross-

sectional area was demonstrated to correlate with muscle volume in both subjects with 

rheumatoid disease and healthy controls. No correlation was demonstrated between 

forearm muscle mass (neither the muscle cross-sectional area nor the muscle volume) 

and grip strength in subjects with RA nor controls. This illustrates that grip strength 

does not just rely upon muscle mass in health nor in joint disease. 

The mechanisms of strength gain were studied in subgroups of rheumatoid and control 

subjects. Volumetric analysis of forearm musculature demonstrated that healthy subjects 

gained forearm muscle mass in response to the handgrip exercise programme. However, 

in spite of significant gains in grip strength by rheumatoid subjects, there was no gain in 

forearm muscle mass in this group. This is in agreement with the findings of Nordemar 

et al (1976b), who demonstrated atrophy of both type I and I I muscle fibres in the 

quadriceps muscles of subjects with RA prior to a lower limb conditioning and 

strengthening exercise programme, but no change in the fibre size after 7 months. 

However, in a different study, the same workers showed a gain in muscle fibre size in a 

similar strength training regime after 6 weeks (Nordemar et al, 1976a). The findings in 

this study would indicate that gains in strength in this group occurred through the 

process of neural adaptation. This also seems likely from the time course noted in 

strength gain, with the improvements being noted predominantly in the first half of the 

programme. However, the occurrence of neural adaptation cannot be confirmed by the 

examination of the FRMS^ (the neuromuscular efficiency), which showed a wide 

variation over the course of the study in both the RA and control groups, unrelated to 

strength gains. For example, some subjects showed significant gains in strength without 

gains in forearm muscle mass - indicating that neural adaptation was the main 

mechanism of strength gain. However, the FRMSG showed a decline over the 3 month 

period, which is not consistent with either neural adaptation nor gains in muscle mass. 

These findings indicate that the RMS of the SMES recorded from the forearm during 

grip is not a stable parameter over the course of a 3-month handgrip exercise 
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programme. As a result, the use of the relationship between grip force and the R M S 

(the FRMSG) to define mechanisms of strength gain in such a programme is unreliable. 

It seems likely therefore that subjects with rheumatoid disease gained strength 

predominantly through the process of neural adaptation. The ability to neurally adapt is 

vital to strength gain in a training programme (Enoka, 1988). Those subjects with more 

severe disease - and highest IMFs, possibly reflecting neuromuscular abnormalities -

showed the greatest benefit relative to their initial function, indicating that the ability to 

neurally adapt is not limited in rheumatoid disease. The ability of reirmervated muscle 

to neurally adapt in response to strength training is not reported. Muscle weakness 

related to a disuse atrophy has been reported to improve with strengthening programmes 

(Hakkinen et al, 1994). However, this assumes that the injury or disease which led to the 

initial disuse atrophy has resolved, which is not the case in the ongoing process of 

rheumatoid disease. 

9.8 Implications for exercise programmes in rheumatoid disease. 

The demonstration that fiinctional home based strength exercise programmes are safe 

and effective in subjects with RA with a wide range of age, disease duration and disease 

severity, indicates that such programmes should be used more regularly. Neither 

neuromuscular abnormalities nor muscle fatiguability were found to be limiting factors 

in the response to this programme. Indeed, those subjects who gained the most relative 

to their baseline hand function were those with severe disease, which included the most 

extreme neuromuscular abnormalities within the group, indicated by the elevated IMF. 

Although it cannot be assumed that similar responses will be obtained with dynamic 

strength training regimes, there seems little reason to suspect that such regimes would 

be limited by the neuromuscular changes in rheumatoid subjects which were reflected in 

the increased IMF of the SMES. Dynamic strength training regimes have the advantage 

of reflecting functional activities more than do many isometric exercises and can result 

in greater gains in strength. Those studies of dynamic strength training programmes in 

RA indicate that such programmes are safe and effective (Stenstrom et al, 1997) and 

may be more effective than static training programmes (Ekdahl et al, 1990). Whether 
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excessive fatiguability during such dynamic strengthening exercise is present in RA 

would be more difficult to investigate with analysis of the fi-equency spectrum of the 

SMES, since the technique is based on the use of static muscular contractions (Stulen & 

DeLuca, 1979). 

The use of aerobic conditioning programmes has potential advantages in RA, since 

these individuals are deconditioned and at increased risk of cardiovascular disease 

(WoUheim, 1993; Myllykangas-Luosujarvi et al, 1995). Strength training involves 

mostly the adaptations of type I I fibres which, on the basis of the myoelectric findings 

described above, may have predominated in the forearms of the rheumatoid subjects. 

The response to more aerobically based, submaximal programmes involving type I 

fibres cannot be predicted from this study. However, the safety of the handgrip exercise 

programme in spite of high intensities of effort is reassuring when considering the 

potential safety of less intensive, aerobic programmes. Studies by Nordemar et al 

(1976b) confirm the safety of such forms of exercise in rheumatoid subjects. 

9.9 Further work. 

The list of the areas within the broad field of exercise and neuromuscular function in 

rheumatoid disease which merit research is endless. The work detailed in this study 

indicates that neuromuscular changes are evident in RA and related to the severity of the 

disease. These neuromuscular abnormalaties are suggestive of type I I muscle fibre 

predominance, either due to disuse atrophy of type I fibres or to the reinnervation 

predominantly by type I I motor neurones of denervated muscle fibres. Such changes do 

not limit the response to a simple but effective handgrip strengthening programme. 

Whether they do have an impact upon the outcome to aerobic conditioning programmes 

in RA, which rely predominantly upon type I fibres programmes requires further 

investigation, since such programmes have numerous potential benefits in this disease. 

Similarly, the effect upon dynamic strengthening regimes is also a worthy focus for 

further research. 

No abnormal fatiguability of muscle during forearm handgrip was demonstrated in 

subjects with rheumatoid arthritis in spite of the reported high prevalence of subjective 
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fatigue in this disease. This does not exclude excessive fatiguabihty during other forms 

of exercise, that is high intensity dynamic and lower intensity aerobic work. Since this 

may be a limiting factor in the response to rehabilitation programmes and will influence 

the design of such regimes, the fatiguability of muscle in rheumatoid disease during 

such tasks also merits investigation. 

No gain in forearm muscle mass was demonstrated in females with RA in spite of the 

demonstration of increases in muscle mass in healthy controls. This was not a limiting 

factor in the response to the exercise programme, but the question remains as to whether 

muscle hypertrophy can occur in rheumatoid disease. Dynamic strengthening 

programmes have been shown to be safe in subjects with RA, the assessment of changes 

in muscle mass in such programmes is warranted. 

9.10 Summary 

The technique of power spectral analysis of the SMES recorded from forearm 

musculature during sustained handgrip was shown to be a reliable technique over same 

day testing in both healthy females and those with rheumatoid disease. Specific spectral 

parameters, the initial median frequency and spectral width, were highly repeatable over 

long term testing and were independent of the intensity of grip over the force range 33.2 

to 66.7% MGS. The RMS of the SMES and the MDFcwere linearly related to grip force 

over this force range. The repeatability of the median frequency gradient was 

unsatisfactory for long term monitoring of forearm muscle fatigue. Although the RMS 

of the SMES was shown to be a repeatable measure over a 3 week period, it was 

demonstrated to be an unstable parameter over the course of the exercise programme by 

examination of the neuromuscular efficiency. The latter finding confirms the opinion of 

others (Lindeman & Drukker, 1994) that this measure is not a sensitive technique for the 

assessment of mechanisms of strength gain in handgrip exercise programmes. 

The home based functional task related handgrip exercise programme was demonstrated 

to be a highly effective method of improving hand function in rheumatoid disease. 

Those subjects with the most severe disease and lowest levels of hand function 
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benefited the most from such a programme. There was no evidence of increased disease 

activity. In fact there was some improvement in the local disease activity in spite of 

deterioration in systemic disease activity and contralateral disease activity scores during 

the course of the programme. 

The findings in this study indicate that neuromuscular abnormalities do exist in skeletal 

muscle of females with RA and are evident during the performance of a functional task. 

Such abnormalities are related to the severity of the disease and the systemic disease 

activity, but do not result in excessive fatiguability of the muscle. Subjects with RA 

work at lower levels of fatigue, in association with lower work intensities. Although 

muscle fatigue levels in RA are not excessive, greater fatiguability of rheumatoid 

muscle is associated with greater systemic disease activity and the severity of the 

disease. These neuromuscular abnormalities are suggestive of type I I muscle fibre 

predominance, either due to disuse atrophy of type I fibres or to the reirmervation 

predominantly by type I I motor neurones of denervated muscle fibres. Such changes do 

not limit the response to a simple but effective handgrip strengthening programme. 

In the assessment of mechanisms of strength gain in response to the handgrip exercise 

programme, the use of the parameter neuromuscular efficiency, was not found to be a 

usefiil indicator of the mechanisms of response. Similarly, skinfold calliper techniques 

were not demonstrated to be repeatable nor accurate measures of forearm cross-sectional 

area. A sensitive and reliable technique for the assessment of forearm muscle mass 

involving volumetric analysis using magnetic resonance imaging was developed. No 

gains in muscle mass were demonstrated in females with rheumatoid disease, although 

changes in this parameter in healthy females were demonstrated. 
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Chapter Ten. Conclusions. 

The use of power spectral analysis of the surface myoelectric signal recorded from 

forearm musculature is a reliable technique in the investigation of neuromuscular 

features of rheumatoid disease. The initial median frequency (IMF) of the SMES is 

repeatable over both short-term and long-term testing and may reflect the presence of 

neuromuscular abnormalities in the forearm musculature in females with functional 

classes I or I I RA derived from a hospital population. Such abnormalities are detectable 

during the performance of a simple, functional task. 

The median frequency gradient of the SMES is a repeatable and sensitive parameter on 

same-day testing although showed a poor repeatability on long-term testing. This 

indicates that it is a useful indicator of the state of fatiguability of forearm muscle at a 

given time, but is not a reliable measure for the monitoring of forearm muscle fatigue 

over long intervals.. This parameter is linearly related to grip force over the force range 

33.3 to 66.7% MGS. 

The neuromuscular abnormalities demonstrated in the forearm musculature of females 

with RA during handgrip are suggestive of type I I muscle fibre predominance, either 

due to disuse atrophy of type I fibres or to the reinnervation predominantly by type I I 

motor neurones of denervated muscle fibres. These abnormalities are related to the 

severity of the disease and the systemic disease activity, but do not result in excessive 

fatiguability of the muscle. Subjects with RA work at lower levels of fatigue, in 

association with lower intensities of work. Although muscle fatigue levels in RA are not 

excessive, greater fatiguability of rheumatoid muscle is associated with greater systemic 

disease activity and the severity of the disease. Such changes do not limit the response 

to a simple but effective handgrip strengthening programme. 

Home based handgrip strengthening exercise is a simple, safe and effective method of 

improving hand function in females with rheumatoid disease. Individuals with severe 

disease may benefit the most from such a programme. Gains in muscle mass were not 
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essential in the response to such a strengthening programme and indicate that neural 

adaptation is possible in subjects with rheumatoid disease. 
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12.1.1 (APPENDIX A):The Keital Hand Functional Index 
(Kallaetal, 1988). 

(1) Tip of thumb to 
bypothenar 5th finger 

Right Left 
0 = full & no delay 

1 = fill! & eflfort/delay 
2 = to prox phalanx 3 

& 4 
3 = less 

(2) Bending of 2nd 
finger 

Right Left 
0= Clutched normally 

1 = cannot bend 
normally, tip reaches 
palm 
2 = fingertip does not 
reach palm 

(3) 3rd finger 
Right Left 

As above 

(4) 4th finger 
Right Left 

As above 

(5) 5th finger 
Right Left 

As above 

(6) Forearm held 
horizontal, palms 
pressed together, point 
upward 

Right Left 1 = Full, no delay 

2 = Full & effort/delay 
3 = Volar & dorsal 
flexion of wrist 45 
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(7) Forearm held 
horizontal, volar 
surfaces pressed 
together, point 
downward 

Right Left 
0 = Full, no delay 

1 = Full & effort / delay 
2 = Palmar & ventral 
flexion of wrist 45 

Backs of hands on 
table,elbows 
rectangular, ulnar 
margin of hand lifted 

Right Left 
0 = fuU 

1 = back of hands on 
table, margin caimot lift 
2= backs of hands not 
fully on table 

Radial margins of 
hands on table, thumbs 
pointing downward 
before table edge, 
planes of hands 
inclined inward, no 
lateral bending of 
trunk 

Right Left 
0 = fiill 

1 = planes of hands 
perpendicular 
2 = planes not vertical 
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Appendix 12.1.1: The Fuchs 28 point disease activity score. 

FUCHS INDEX 

Name: 

Date: 

Visit: 

SWELLING TENDERNESS 
SHOULDER-R 
SHOULDER - L 
ELBOW - R 
ELBOW - L 
WRIST - R 
WRIST - L 
R : THUMB - MCP 

THUMB - PIP 
INDEX - MCP 
INDEX - PIP 
MIDDLE - MCP 
MIDDLE - PIP 
RING - MCP 
RING - PIP 
L I T T L E - MCP 
L I T T L E - PIP 

L : THUMB-MCP 
THUMB - PIP 
INDEX - MCP 
INDEX - PIP 
MIDDLE - MCP 
MIDDLE - PIP 
RING - MCP 
RING - PIP 
L I T T L E - MCP 
L I T T L E - PIP 

KNEE - RIGHT 
KNEE - L E F T 

TOTAL 

Normal: 0 
Abnormal: 1 
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APPENDIX 12.2.1 The Hand Grip Strengthening Programme. 

Choose a regular time every day to do your hand exercises, for example lunchtime (when 
your joints have loosened up). 

Sit in a chair with your 
arms at your side, 
resting on the arm rests. 

A 
your arm 

Place the exercise ball 
in your right hand. 
Put your wrist in the correct 
position by placing it against 
the bar supplied to you. 
Keep your wrist in this 
position. You can take the 
bar away. 

ball 



A Grip the ball as tightly 

as you can for 10 seconds. 

Rest for 1 minute. 

Do this a total of 10 times. 

W E L L DONE !!! 

Do this ONCE E V E R Y DAY FOR T H E FIRST 6 W E E K S of the programme, then 
increase the amount you do to T W I C E A DAY for the remainder of the programme. 

If there are problems with your exercise programme, please do not hesitate to let Dr Speed 
know. 


