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Abstract 

This thesis investigates the morphology of early-type galaxies in two rich clusters using 
2D surface photometry. In particular, the amount of light in the 'disk' component is 
focussed upon, as the presence of a disk is the main morphological criterion in distinguishing 
between the traditional 'elliptical' and 'SO' classes. Extensive and photometric i?-band 
CCD observations of continuous areas of the Coma and Abell 1367 clusters were obtained 
at the 2.5 m Isaac Newton telescope, La Palma during March 1994. A subset of this large 
data-set has been used in this study, comprising a magnitude-limited (to R = 15.6) sample 
of 153 galaxies in the two clusters. 

Surface photometry measurements, including surface brightness profiles and isophotal 
shapes, have been made for the sample. Atmospheric seeing is a major problem when 
measuring light profiles at the distance of Coma from ground-based telescopes. Typical 
seeing at La Palma {FWHM^l.2") is a significant fraction of the efi"ective radius of many 
Coma/Abell 1367 galaxies (re~3" for small eUipticals). An iterative algorithm was devel
oped to deconvolve the effects of seeing from surface brightness profiles. The result of the 
algorithm is to extend the range of useful surface photometry inwards to within 2 times 
the FWHM. In order to parametrise the surface brightness profiles and discriminate be
tween different profile-types, further software was developed to fit one- and two-component 
model profiles to the seeing-corrected data. The following parameters were measured and 
tabulated for each of the 153 galaxies: total magnitude Mt] half-light parameters r i / 2 and 
( / i ) j^2! 3B at half-light radius / / ( r i / 2 ) ; photometric diameter Z^i9.23 (equivalent to Z7„); 
eUipticity at /? = 21.5 isophote £21.5; averaged isophote high-order terms (C3), (53), (C4) 

and (54); effective radii and surface brightnesses of 5 single power-law rn models, r"e and 
(n = 1,2,3,4,5); best-fitting power-law index n\ bulge effective radii and surface 

brightnesses from the two-component fit r^e and (/i) ^\ disk effective parameters r'̂ e and 
{nY^] and disk-to-bulge luminosity ratio DjB. 

The measured parameters have been used to investigate various aspects of early-type 
galaxy morphology. The conclusions are outlined below. Firstly, a two-component plus 
exponential model is a better fit to most galaxies than a single component law fit. 
Secondly, the traditional division of early-type galaxies into 'elliptical' and 'SO' classes is 
severely biased by the viewing angle. In fact, it appears that early-type galaxies comprise a 
population of objects with smoothly varying bulge-to-disk ratio - although a few ellipticals 
(less than 13%) do not appear to have a exponential component. Finally, there is a gen
eral correlation (with much scatter) between the size and the profile shapes of early-type 
galaxies. The interpretation is that smaller galaxies are more disk-dominated than larger 
galaxies, which can be linked to the merging process in rich clusters. 
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Chapter 1 

Introduction - Early-type Galaxies in 

Clusters 

1.1 Overview 

This thesis reports a study of the photometric and isophotal properties of early-type galax

ies in rich clusters, investigating their relation to morphology, environment and the forma

tion/evolution of galaxies. A picture seems to be emerging of a dichotomy in the population 

of bright early-type galaxies, based on their kinematics and isophote-shapes. Fast rotators 

often have disky isophotes, while slow rotators (flattened by velocity anisotropy) usually 

have regular or boxy isophotes. A main aim of this study is to investigate the relationships 

between early-type galaxies. Do SO's and disky ellipticals belong physically to a single class 

of objects, which have a smooth range of bulge-to-disk ratio's, seen at random viewing an

gles? It is probable that the dichotomy between disky and non-disky galaxies results from 

differences in the formation histories of the individual galaxies. By studying ellipticals and 

SO's in the rich cluster environment, we can put constraints on different models of galaxy 

formation. 

The observations on which this study is based were made during March 1994 with 

the Isaac Newton Telescope, La Palma. The following sections will review the major 

observations of galaxies in clusters which are relevant. At the end of this introduction, the 

aims and purposes of this study are outlined in more detail. The remainder of the thesis is 

then organised as follows. An overview of the observation program and the sample selection 

for the two observed clusters - Coma and Abell 1367 - is presented in Chapter 2. The data 
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preparation and photometric cahbration is described in Chapter 3. Chapter 4 outfines the 
methods used to obtain total magnitudes and global parameters for the sample, plus internal 
and external comparisons. Chapter 5 covers the surface photometry investigation, with a 
description of the method which has been developed to deconvolve the effects of seeing 
from radial profiles of intensity, ellipticity, position angle and isophotal shapes. Included in 
Chapter 6 is a method of fitting parametric forms to the data (a ful l data-set of deconvolved 
profiles and derived parameters is given in the appendices). Chapter 7 gives the analysis 
and discussion of the most important results from the data-set. Finally, a conclusion is 
given in Chapter 8. 

1.2 Galaxy Morphology 

Observationally, galaxies present to us a huge range of shapes, sizes, and appearances. In 

order to understand how galaxies evolved into the complex variety of objects we see today, 

the first stage is always to look for similarities and patterns which can be used to group 

galaxies into classes. The Hubble system (see figure 1.1) is the simplist and most widely 

used classification scheme (Hubble 1936, Sandage 1961). The most obvious distinction is 

between the elliptical (E) and spiral (S) classes. Ellipticals (or 'early-types') are smooth, 

featureless and spheroidal in appearance. Their stellar population is red {B — V ^ 1), and 

they were once thought to be completely deficient in interstellar dust, cool gas or recent star-

formation. The spirals (or 'late-types'), on the other hand, comprise two components - an 

elliptical-like central bulge plus a flattened stellar disk superimposed with a spiral-pattern 

of dust, H I I regions, and young blue stars. Hubble also recognised an intermediate type of 

galaxy - the SO or lenticular. Like spirals, SO's possess both bulge and disk components. 

However, the disks are smooth with no spiral structure, little evidence of dust-lanes and 

presumably no young stars. The two components (bulges and disks) which exist in galaxies 

must represent strikingly different formation mechanisms. Thus their relative importance 

in galaxies must provide vital clues in unravelling the processes of galaxy formation. 
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Figure 1.1: The classic Hubble 'tuning-fork' diagram of galaxy morphological types. 

1.3 The Cluster Environment 

Any theory of galaxy formation will have to explain how we end up with the mixture of 

morphological types which we observe today. Was the eventual morphology of a particular 

galaxy uniquely determined by its initial conditions? Alternatively, has the morphology 

of galaxies been largely determined by their subsequent evolution - in particular through 

interactions with other galaxies or the intra-cluster medium? 

A significant fraction of galaxies (~5%) in the present-day Universe occupy environ

ments where the number density of galaxies is considerably greater than the average (by 

a factor of ~100 or more). These aggregations of galaxies - the clusters - display a great 

range of morphologies, like the galaxies themselves. They include populous, centrally-

concentrated, and symmetrical systems such as the Coma cluster - which are interpreted 

as dynamically-relaxed systems (Peebles 1970, Butcher and Oemler 1978). Other clusters 

are less symmetrical, less dense, and show significant sub-clustering - presumably these 

clusters have not yet virialized. We are perhaps fortunate that Coma, one of our nearest 

neighbours, at a distance^ of about 145 Mpc, is also one of the richest clusters known -

richer than 95% of clusters in the Abell (1958) catalogue. Coma is, in effect, a natural 

laboratory where one can study the effects of an extreme environment on the evolution of 

^The Hubble Constant HQ is assumed to equal 50 kms~^Mpc"^ throughout this work. 
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galaxies - i f i t has happened anywhere, it must have happened in Coma! 

Although all morphological types are represented at all local densities, it has long been 

realised that the cluster and field populations are quite different (Hubble and Humason 

1931, Morgan 1961, Abell 1965, Oemler 1974). While the field population is dominated 

by late-type galaxies (spirals and irregulars), the richest clusters contain mainly early-

type objects (ellipticals and SO's). The core of Coma, in fact, is almost entirely devoid of 

spiral galaxies. These observations were taken further by Dressier (1980a), who showed 

that a smooth, monotonical relationship exists between the morphological fractions and 

local density. The morphology-density relation is very slow - virtually logarithmic - and 

extends all the way down to the low-density field, some five orders of magnitude in local 

space density. This fundamental observation does not rule out the possibihty that initial 

conditions, such as angular momentum (e.g. Sandage et al. 1970) and local density (e.g. 

Gott and Thuan 1976), dominate the eventual morphology of the galaxies. However, to 

explain the morphology-density relationship we would require these initial conditions to 

correlate with where the galaxy is forming - i.e. in a proto-cluster region or a proto-field 

region. Depending on the cosmological model used, such correlations may indeed exist. 

At present, however, these scenarios do not provide us with predictions which we can test 

observationally. 

The alternative to an 'initial conditions' type explanation for galaxy morphology is later, 

environment-dependent evolution. In the virialized core of Coma, which relaxed several 

cluster-crossing times ago, we expect mergers, collisions, and tidal interactions between 

galaxies to have been significant at the very least. The cores of rich clusters are bathed 

in a hot X-ray emitting gas. The deep ROSAT image of Coma (White et al. 1993) shows 

the extent of this gas (and incidently also shows significant sub-concentrations of X-ray gas 

within the cluster - associated with remnants of smaller clusters and groups accreted by 

Coma). Thus rich clusters possess a significant intra-cluster medium (ICM), which is likely 

to be an additional factor in galaxy evolution. 

1.4 Causes of the Morphology-Density Relation 

There are several mechanisms by which galaxy-galaxy and galaxy-cluster interactions in 

clusters can potentially explain morphology-gradients (see Dressier 1984 for review). These 
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are in general better understood than 'initial conditions' and can be tested by observation. 
It was long believed, for example, that sweeping of gas from spirals by various mechanisms 
- galaxy collisions (Spitzer and Baade 1951), ram-pressure stripping (Gunn and Gott 1972), 
and gas evaporation by the hot ICM (Cowie and Songaila 1977) - was responsible for the 
creation of SO's in rich clusters. Dressier (1980a) largely showed that this was unhkely to 
be a significant mechanism as SO's exist at all local densities, and have a higher bulge-
to-disk ratio than spirals at any given local density, as well as more luminous bulges. In 
addition, SO's sometimes possess a 'third-component', often described as a lens or a thick 
disk (Burstein 1979), which is not observed in spirals. It is, of course, possible that anemic 
spirals - i.e. spirals with depleted gas (van den Bergh 1976) - do form in this way (e.g. 
Strom and Strom 1979, Sulhvan et al. 1981). Also, Bothun (1981) claims a population of 
small-bulge SO's in the very core of Coma - perhaps these are the remnants of genuinely 
stripped spirals. Similarly, excesses of SO's have been found in the most X-ray luminous 
clusters, which are believed to be in the process of virialisation. However, a large number 
of SO galaxies are to be found in the field - around 10% of field galaxies are SO's according 
to Dressier (1980a). For these objects at least, it seems very unlikely that SO galaxies were 
formed by stripping gas from spirals galaxies (through interactions with other galaxies or 
the cluster environment). 

So why are there more SO's than spirals in clusters today? The important distinction 

between the disks of SO's and spirals is that spiral disks are still actively forming stars today. 

Larson et al. (1980) have suggested that to prevent gas exhaustion through star-formation, 

spirals must be continuously refuelled by infall from huge, tenuous, gas halo's. In dense 

regions, tidal encounters will easily 'strip' these loosely-bound envelopes, thus depriving 

the spirals of their gas supply, fading their disks, and turning them into SO's. Kent (1981) 

has shown that the morphology-density relation of Dressier can be reproduced by fading 

the disks of spirals by an amount which is a function of local density, plus various selection 

effects. The problem with these models is that the turnover of the LF's of spirals and SO's 

in clusters would be very different, which is not observed (Sandage et al. 1985). Processes 

in clusters are, therefore, increasing the masses of bulges as well as fading disks - the total 

light being roughly conserved. 

Another process by which the properties of cluster galaxies can be changed is through 

merging. A special feature of dense environments is the existence of 'supergiant' cD galaxies. 
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The massive elliptical-like systems have extended, low surface-brightness stellar envelopes 
up to 2 Mpc across. They seem to occur at peaks of local density - often at the kinematical 
centres of rich clusters (Quintana and Lawrie 1982), and also sometimes in smaller, but 
dense, groups of galaxies. Since cD's have never been found in a field environment, it is 
clear that they do not represent the extreme bright end of the elliptical LF, but rather 
the end product of a process which specifically occurs at high density. The high incidence 
of multiple nuclei (Schneider et al. 1983), and other observations, have led astronomers 
to beheve that cD galaxies have grown by early mergers of other cluster galaxies, plus 
cannibalism of smaller galaxies and tidal stripping. 

Have other galaxies undergone mergers during their evolution too? The formation of 

eUipticals from merging spirals (e.g. Toomre and Toomre 1972) could partly explain the 

increasing proportion of eUipticals with higher density. Brighter eUipticals ( M < -21) 

tend to be slow rotators (Davies et al. 1983). Slow rotation is difficult to produce from 

models of dissipative collapse of gaseous halo's believed to be responsible for disk formation 

(Fall 1983). Are we, therefore, to identify larger ellipticals (and possibly bulges) with the 

products of mergers? 

These last three sections have reviewed qualitatively the evidence of morphology for 

galaxy evolution in clusters. The next section summarises the more quantitative approach 

to morphology, using surface photometry. 

1.5 Early-type Galaxies - Surface Photometry 

Surface photometry of galaxies - the quantification of the 2D light distribution - is a pow

erful tool in the study of morphology of galaxies. Although surface photometry requires 

better signal-to-noise definition than aperture or integrated photometry, it aUows us to 

see, and measure, morphological detail that is otherwise hidden. Elliptical galaxies were 

once thought to be completely regular and amorphous objects, with no detailed or complex 

structure. In fact, surface photometry over the years has revealed a whole range of detailed 

structures in elliptical galaxies. These include shells, ripples, dust, bars and disks, all of 

which give clues to the evolutionary history of these galaxies. 

One of the earliest results of surface photometry of elliptical galaxies was that the shape 

of the surface brightness to radius function was remarkably uniform from galaxy to galaxy. 
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This function was, of course, the r^ law (de Vaucouleurs 1948). Expressed in its usual 
form: 

/ r , . 1 /A i \ 
(1.1) ^ V ' ^ i 

r. 
I{r) = / e e x p l^-c 

It can be shown by simple integration that if constant c has the value 7.6692, then scale-

parameter has the physical interpretation of being the radius enclosing half the total 

light - the effective radius. Throughout this work, I will use the the convention to mean 

the effective (half-light) radius of a model profile (such as r ^ ) , while I reserve r i /2 to mean 

the actual half-light radius of a galaxy. Only when a model perfectly fits a galaxy from 

r = 0 to r = oo does Ve = r i / 2 . The effective surface brightness (//)e is defined as the mean 

surface brightness within the isophote of effective radius r^. Again, I distinguish {tJ.)e for a 

fitted model from {11)1/2 for the aciwa/galaxy. 

The use of the de Vaucouleurs law to fit the surface photometry of ellipticals, and derive 

global parameters, has been a valuable tool in the study of the nature of elliptical galaxies. 

Much has been learned from parameter correlations. Ellipticals were once thought to be 

a homogeneous single-parameter family - with all properties correlating only with mass 

or luminosity. This was supported by the correlation between luminosity and velocity 

dispersion (Faber & Jackson 1976):-

Lo^a" (1.2) 

Other correlations between photometric parameters were soon discovered. Kormendy 

(1977,1980,1982) showed that the effective surface brightness and effective radius were 

correlated - more luminous galaxies had higher Tg, but lower /g. The large amount of scat

ter in the Faber-Jackson relation was recognized as an indication of a second parameter 

(Terlevich et al. 1981). Eventually, it was realised that the variance of global properties was 

exhausted by two free parameters - the so-called Fundamental Plane (Djorgovski & Davis 

1987, Dressier et al. 1987) relates the photometric parameters and /g to the velocity 

dispersion a:-

logre = QflogCT -h (5\ogh + 7 (1-3) 

The Faber-Jackson and Kormendy relations are thus projections of the fundamental plane. 

Because the fundamental plane relates a distance-dependent parameter (rg) to distance-

independent parameters (cr and / g ) , it has been used extensively in the field of distance 

indicators/peculiar velocities. The interpretation of the fundamental plane is that it derives 
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from the virial theorem, plus a dependence of mass-to-light ratio with mass. It is believed 
to originate from the formation and evolution processes. 

The de Vaucouleurs law has been by far the most popular tool used to parametrise 

and classify elliptical galaxies. Although there there has never been a rigorous physical 

justification of the law, numerical models of violent relaxation (van Albada 1982), merging 

(Barnes 1988) and tidal stripping (Aguilar &; White 1986) do produce or preserve r^-like 

profiles. However, the increasing improvements in CCD photometry over the past two 

decades has led to a questioning of the 'universahty' of the de Vaucouleurs ri-law, with 

many studies concluding that ellipticals have a wide-variety of shapes. Michard (1985) 

noted that systematic deviations from an r^-law fit seem to correlate with luminosity. 

Capaccioh (1985) showed that while the best match to an r^-law occurred for galaxies 

with — 21, galaxies brighter than this had more light at large radii (and vice-versa 

for fainter galaxies). 

This approach is taken further by Caon et al. (1993) and D'Onofrio et al. (1994), 

who fit a generalised r^-law to a sample of Virgo and Fornax early-type galaxies. The 

generalised r^-law (first derived by Sersic 1968), can be expressed as:-

r \ 1/" 
/ ( r ) = le exp - c„ - 1 (1.4) 

Where the constant c„ is chosen to define 7'e as the half-light radius of the model fit. The 

conclusion of Caon et al. (1993) and D'Onofrio et al. (1994) was that the best-fitting 

power-law index n is correlated with galaxy size in the sense that brighter/larger objects 

have higher n. They identify two groupings of galaxies from the n — rg diagram - 'ordinary' 

ellipticals and 'bright' ellipticals - with n < 4 and n > 4 respectively. They associate the 

'bright' ellipticals with the products of merging, and suggest that merging not only inflates 

the galaxy (increases Tg), but also changes the shape of the hght-distribution (increases n). 

An alternative explanation for the deviations of surface photometry from an 7'4-law is 

the presence of a disk-component. The surface brightness profiles of disks in spiral and SO 

galaxies have long been described by the exponential-law (Freeman 1970):-

/ ( r ) = / o e x p ( - ^ ) (1.5) 

Where IQ is central intensity and A is the disk scale-length. The exponential-law is in fact 
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a special case of the generahsed r^-law with n = 1:-

l'{r) = I^exp (-Cr r (1.6) 

The disk parameters can thus be expressed in terms of 'half-light' or effective radius and 

surface brightness - this convention is followed throughout this work, so that disk parame

ters are easily comparable to parameters from other model fits. 

If the disks of spirals and SO's follow an exponential-law, there is no reason to assume 

that any disks found in elliptical galaxies can not be approximated in the same way. Disks 

in elliptical galaxies were first discovered not from the surface brightness profile, but from 

deviations of the isophotes from a perfect ellipse. These deviations can be parametrised 

by the amplitude C4 of the cos(4^)-term in a Fourier expansion of the isophote radius in 

polar coordinates (Carter 1978). Positive values of C4 produce isophotes which are 'pointy' 

or 'lemon-shaped' - these are termed disky. Negative values of C4 can also occur - these 

produce hoxy isophotes. Typically C4 for ellipticals equals about 1% of the radius of the 

isophotes (Bender 1988). The usual (though not unique) explanation of disky isophotes 

is the presence of a weak, nearly edge-on, steflar disk (Carter 1987, Rix & White 1990). 

This makes disky ellipticals very similar to SO galaxies. This is backed by Bender et 

al. (1989), who found strong correlations between isophote shapes and other properties. 

The kinematics show that whereas boxy ellipticals are supported by a mixture of rotation 

(including minor-axis rotation) and anisotropic velocity dispersion (0 < Vja < 1), disky 

eUipticals appear to be strongly rotation-supported ( y / ( T ~ l , hke SO's). Both boxy and 

disky ellipticals are more flattened than regular ellipticals with C4~0. Boxy ellipticals can 

have high X-ray and radio luminosity, whereas disky ellipticals are X-ray and radio quiet 

(again, like SO's). It has long been known from kinematical studies that bright eUipticals 

are rotating too slowly to explain their flattening (Bertola & Capaccioli 1975), whilst fainter 

ellipticals are more rotationally supported (Davies et al. 1983). Thus we seem to have either 

a dichotomy or a trend in elliptical properties between fainter/disky/fast-rotating objects 

and brighter/boxy/slow-rotating objects. In the next section (1.6), we look at a possible 

causes of this trend/dichotomy from galaxy evolution in clusters. Using the evidence from 

surface photometry alone, can we verify whether a continuous range of disk/bulge ratio, C4 

or other properties is giving the sequence E{Boxy jBright) -> E{Disky) —>• 5'0, or are the 

different classes physically distinct? 
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1.6 Aims of This Study 

The morphology and structure of elliptical and SO galaxies in rich clusters can provide a vital 

constraint on theories of galaxy formation and evolution, as the review above demonstrates. 

Recently, many studies have looked at the differing properties of disky and boxy ellipticals. 

A picture seems to be emerging of a dichotomy in the eUiptical population. Boxy (brighter) 

ellipticals are supported by anisotropic velocity dispersion, while disky (fainter) eUipticals 

are flattened by rotation. Boxy ellipticals have higher X-ray and radio luminosities than 

disky ellipticals. The kinematics of boxy ellipticals suggests, possibly, a lower M/L ratio 

for these systems, at a given luminosity. Recently, HST data has extended this dichotomy 

to the cores of ellipticals, suggesting that disky/fainter systems have unresolved cores, 

whereas boxy/brighter ellipticals show a power-law break in their core intensity profiles. 

A l l this evidence points to there being two different formation processes for early-type 

galaxies. Bender, Burstein and Faber (1992) have proposed a scenario whereby the degree 

of gaseous dissipation occurring in the last merger determines the eventual characteristics 

of the galaxy. The first ellipticals are formed by gaseous mergers, producing disky, rapidly-

rotating systems. As larger systems are formed by increasingly stellar mergers, galaxies 

are produced which are slow-rotating (and boxy). This is termed the gas/stellar (GS) 

continuum. There should obviously be an environmental dependance as to how far the 

GS continuum has proceeded, w i th the relaxed central regions of rich clusters showing the 

greatest evidence of stellar mergers. 

A l l of the older surveys of nearby clusters were based on photographic plates (e.g. God

win and Peach 1977, Dressier 1980b, Binggeli et al. 1985). While this was adequate for 

L F and morphological studies, much more detail, such as structural and isophotal param

eters of galaxies can be accurately measured f rom CCD data (although, of course, smaller 

fields of view make i t harder to observe large samples). Recent studies such as Jorgensen 

and Franx (1994), using CCD data, have demonstrated the value of such an approach. 

Jorgensen and Franx showed that the distribution of isophotal shapes and ellipticities for 

ellipticals (fainter than Mb ~ —22) and SO's in Coma can be adequately modelled by a 

population which comprises 10% diskless systems and the remaining 90% wi th a uniform 

distr ibution of disk fraction LdlLtot between 0 and 1. SagUa, Bender h Dressier (1993) 

showed that C4 is correlated wi th residuals f rom the fundamental plane - explaining that 
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projection of stellar disks plus unresolved rotation (adding to a) is causing the effect. 

A large CCD-based survey of two rich clusters (Coma and Abell 1367) has been under

taken. The observations were made during March 1994, on the Isaac Newton Telescope, 

La Palma. A continuous area was imaged in the centres of both clusters, plus selected 

fields out to over half the turnaround radius for Coma (see Chapter 2 for fu l l details). 

Rich clusters provide large samples of galaxies at a common distance, and hence they are 

ideal laboratories for studying the statistical properties of galaxies. Radial profiles of sur

face brightness, ellipticity, position angle, and isophotal shapes have been measured for a 

magnitude-limited sample. Seeing is a big problem when t rying to extract radial profiles 

f r o m galaxy images at the distance of Coma or Abell 1367 - typical effective radii are in 

the range 3" ̂ 7 " compared to a typical seeing resolution of 1.3". Extensive deconvolution 

software to remove these effects has been developed. This has been a major part of this 

study, and is described in detail in Chapter 5. Global parameters such as effective radius, 

surface brightness and total magnitude (see definition above, Section 1.5) have also been 

measured. 

The principle aim to this project is to study the dichotomy of non-disky/disky ellipticals 

and the relationship between disky ellipticals and SO's. Do the disky eUipticals and the 

SO's belong to a single class, as Jorgensen and Franx suggest? Both the isophote shapes 

and the shape of the intensity profile wi l l be used to answer this. The profile-shape should 

provide an inclination independent measurement of disk-fraction Ld/Ltot - especially useful 

when the galaxy is near face-on. The 'missing' SO's which have low inclination and have 

been classed as elliptical (Rix and Whi te 1990) have never been convincingly identified -

a problem which this study aims to at least partially resolve. The effect of an extreme 

high-density environment upon the early-type galaxy population wi l l be investigated. The 

distr ibution of galaxies i n the central 1° area of Coma (which has been covered continuously) 

indicates that the core is dynamically relaxed, wi th the galaxies having interacted wi th each 

other frequently. This environment is devoid of cool gas and late-type galaxies. Selected 

fields out to over half the turnaround radius (r ~ 3°) were imaged in the I N T March 1994 

observations - galaxies here wi l l have not yet visited the cluster core, and wil l therefore 

have had much less opportunity to interact, accrete material or merge. Unfortunately, due 

to t ime constraints on the project, this part of the I N T March 1994 data-set has not yet 

been processed (though i t may fo rm part of a future study). 26 galaxies f rom the cluster 
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Abel l 1367 (which is more spiral-rich and less-relaxed than Coma) have been included in the 
sample. However, this number is too small to provide a realistic environmental comparison 
wi th Coma. The environment that is sampled in Coma is extreme, therefore the effects of 
galaxy mergers and interactions should be dramatic. Can the observed trends of profile 
shape and diskyness wi th luminosity indicate the degree of merging which has taken place? 
Relating the isophotal class of ellipticals to the type of merger last experienced (gaseous 
and dissipative, or stellar and dissipationless) could provide an important picture of how 
environment affects the merging process. 



Chapter 2 

Sample and Observations 

2.1 Observational Overview 

The observations relevant to this study were undertaken wi th the 2.5 m Isaac Newton 

Telescope ( I N T ) at the Observatario del Roque de los Muchachos, La Palma, Canary 

Islands, during the period between March 15th and March 21st 1994. The instrument 

used was the EEV5 CCD, positioned at the prime focus of the telescope. The EEV5 chip 

comprises an array of 1280 x 1180 pixels. Given a pixel-scale of 0.55"/pixel, this produces a 

relatively large field-size of 11'23" x 10'32". A l l observations were made using the standard 

i?-band filter, which provides the best contrast of galaxy surface brightness over sky surface 

brightness for this set-up - important for isophotal analysis. Also, observing in the i?-band 

(compared to B or V) de-emphasises the effects of dusty structure such as dust-lanes, which 

are often present in disky ellipticals or SO's. 

The photometric conditions and seeing throughout the 7-night run were consistently 

very good. Typically, the residual RMS scatter of standard stars was around 0.01-0.02 mag. 

Only on the first and last nights of the run was the seeing poor (FWHMr^ 3.0" and ~ 2.0" 

respectively). Additionally, very l i t t l e usable data was obtained on the final night (due 

to problems wi th the telescope pointing and tracking). The FWHM ior the remaining 5 

nights typically varied between 0.9" and 1.4". This left 5 nights (about 48 hours) worth of 

extensive and high quality photometric data. In order to calibrate the data photometrically, 

several mult iple standard star fields (taken f rom Landolt 1992) were observed every two to 

three hours. A t each occasion, the fields were selected to provide a good range in airmass 

(see Section 3.3). Twil ight exposures were taken at each dusk and dawn to provide evenly-

16 
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i l luminated CCD frames for flat-field calibration. Also, zero-exposure (bias) frames and 
dark-current exposures were taken for future calibration. 

A total of 398 science exposures were taken, covering the Coma and Abell 1367 clusters. 

A grid system was set-up to identify and locate each frame. The separation between 

neighbouring grid-points was 8', which provides considerable overlap between CCD fields 

(see Sections 2.2 and 2.3). The Coma grid covered a continuous area of 6° x 6", wi th 2025 

individual grid-points. I t would obviously have taken several months on the I N T to observe 

every grid-point, so i t was necessary to be selective. The priorities for the Coma part of 

the project were as foUows:-

• A continuous 1° X 1° square area, centred on the central cD galaxy NGC 4874 

• Selected grid-points between 1° and 3° f rom the centre of Coma. These points were 

pre-selected in the knowledge that the CCD image would contain at least one Coma 

galaxy ( f rom various sources, including NED - Nasa/IPAC Extragalactic Database) 

• A extension to the central area, surrounding the large (possibly cD) elliptical NGC 

4839 - this area is interesting because i t may represent a separate cluster which was 

captured by Coma 

• I f t ime allows, enlarge the central (continuous) area by exposing neighbouring frames 

A l l of the above priorities were achieved during the 5 (good seeing) nights. Almost 

every field was exposed at least twice - once at 60 seconds and once at 300 seconds. The 

reason for the two different exposure times is as follows. The shorter exposure ensures 

that the central pixel(s) are not saturated - typically highest counts are in the range 10000 

to 25000 - this is very important for profile-fitt ing and seeing deconvolution. The longer 

exposure times, whilst saturating the central pixel(s), provide higher S/N ratios further 

out in the galaxy, thus extending the range over which isophotal analysis is reliable. A 

similar observing program was devised for Abell 1367. However, the grid was smaller, 

covering only the central 0.7° x 0.7° area of the cluster. Also, the exposure times used 

were different f r o m Coma. A l l the data f rom Abell 1367 which was used in this study was 

observed wi th a single exposure t ime (120 seconds - sufficient to get reasonable S/N in the 

outer regions without saturating the core). Unfortunately, due to t ime limitations, only the 

data obtained on the night of March 16-17 has been used for this project. This data-set 
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comprises about two-thirds of the central Coma area and around half the Abell 1367 area 
covered (the remaining 4 nights of quality data, comprising mainly galaxies in the outer 
core of Coma, w i l l be included in a future study). 

2.2 Sample Selection - Coma (Abell 1656) 

The intention of this study is to provide an approximately magnitude-limited sample of 

early-type galaxies wi th in a volume-limited region of the central Coma Cluster. The con

tinuous area observed on the night of March 16-17 1994 forms the basis of the sample. 

This is a roughly rectangular region (approximately 1° x 0.5°) centred on the cD galaxy 

NGC 4874. The sample was ini t ia l ly identified using the catalogue of Godwin, Metcalfe 

&; Peach (1983), selecting only galaxies wi th an isophotal magnitude 626,5 brighter than 

17.3 (giving a magnitude-limit for early-type galaxies of approximately i?~15.7). W i t h the 

magnitude-limit chosen as such, almost all galaxies in the Dressier (1980) catalogue within 

this region are included in the sample. The total number of galaxies (all morphological 

types) is 129, of which two (Dressier # 's 138 & 219) are immediately rejected as back

ground objects (recession velocities greater than 20000kms~^, f rom NED) , bringing the 

total down to 127. The area covered by the survey, and the distribution of GMP galaxies 

(^26.5 < 17.3), is shown in Figure 2.1. I t is clear that the sample covers the densest part of 

the relaxed Coma core, where we can safely assume that galaxy-galaxy and galaxy-cluster 

interaction has been at least a significant factor in galaxy evolution. 

The observed area of Coma was covered by 23 CCD fields, each of dimensions 11'23" x 

10'32" (after t r imming) . As explained in the observations section 2.1, each CCD field was 

observed twice wi th different exposure times - 60 seconds (to ensure the galaxy cores aren't 

saturated) and 300 seconds (to increase S/N in the outer galaxy regions). When combined 

w i t h the large overlaps between neighbouring CCD fields, i t is clear that each galaxy is 

observed 2, 4 or sometimes 8 times - thus providing a large scope for internal photometric 

consistency checks. In total , there are 174 short exposure and 169 long exposure images of 

the 127 sample galaxies. The slight difference in the numbers of short and long exposures 

is due to the fact that 3 of the CCD fields were observed only wi th the short exposure (see 

Figure 2.1), which is part ly compensated by. the accidental repeat of a long exposure field. 

Simple morphological typing was then performed, using preferentially the long exposure 
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Figure 2.1: A map of the central region of Coma sliowing the locations of the galaxies in the Godwin, 

Metcalfe & Peach (1983) survey brighter than 626.5 = 17-3, relative to the area surveyed in this study. 

The rectangles represent the CCD fields - note the considerable overlap between neighbouring fields. The 

dashed rectangles show those CCD fields observed with two different exposure times (60s and 300s), while 

the three fields shown with dotted lines have only been observed with the short exposure (because of 

increasing sky-brightness before dawn). The three cD galaxies (NGC 4889, NGC 4874 and NGC 4839) are 

circled. 
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Figure 2.2: Examples from the sample of the four different morphological types used, (a) shows IC 4051, 

a typical E (early-type) - these account for more than 72% of the data-set. (b) shows NGC 4911, classed S 

(late-type), (c) shows Dressier #183, classed I (irregular), (d) shows GMP #3133, which is unclassifiable 

(U) due to its small size, but probably a compact elliptical. A l l images are to the same scale. 

frames. Only 4 types were assigned - E for early-type systems (including SO's and SBO's), 

S for late-type regular systems, I for irregular or peculiar systems, and U for unclassified. 

The criterion for classification is described as follows: E galaxies are smooth, amorphous 

and regular i n appearance; S galaxies are round or elliptical in shape but have noticeable 

substructure (spiral arms, dust lanes); I galaxies are irregular in shape and often have 

no well-defined core; U galaxies are generally small or faint and cannot convincingly be 

resolved between types E and S (but are most likely compact ellipticals which have entered 

the sample because of their high surface brightness). Figure 2.2 displays good examples 

of the four basic types, taken f rom the sample. The final breakdown of types is 92 E's, 

20 S's, 7 I's and 8 U's. As expected in this high-density environment, the dominant 

population is early-type - at least 72% of the total. Table 2.1 gives names, positions, 

redshifts, magnitudes, morphological type and numbers of exposures used for each galaxy 

in the sample. 

2.3 Sample Selection - Abell 1367 

In addition to the magnitude-limited Coma sample, observations were also made of a second 

cluster, Abel l 1367. Unlike Coma, Abell 1367 is a relatively spiral-rich irregular cluster -

thus providing a contrast w i th the high-density environment of the relaxed Coma core. As 
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Table 2.1: Table of the complete Coma galaxy sample, giving names, type, position, redshift, magnitude 
and number of exposures used. The table is divided into 4 blocks corresponding to the 4 basic morphological 
types allocated. Names are taken from the D80 (Dressier 1980) and GMP (Godwin, Metcalfe & Peach 
1983) catalogues. These are cross-referenced, where applicable, to the NGC, IC and RB (Rood k Baum 

Name of Galaxy Type Position (B1950.0) cz 626.5 # of Exp 

D80 # GMP # Other (D80) RA Dec (km/s) (GMP) A .̂ Ni 

Early-type (E) Galaxies 
62 2393 SO 12''58'"29.P 28°03'09" 8279 16.51 1 1 
63 2615 so/a 12''58'"07.7' 28<'02'07" 6708 16.97 2 2 

64 2866 E 12''57'"47.6^ 28°03'03" 6992 16.90 1 1 
65 2945 SO 12''57'"41.3' 28°02'40" 6092 16.15 1 1 
68 3660 IC 3963 SO 12''56'"48.6' 28°02'38" 6812 15.76 2 

69 3730 IC 3959 E 12''56'"43.r 28<'03'13" 7053 15.27 1 1 
70 3739 IC 3957 E 12''56'"42.6' 28''02'14" 6345 15.88 1 1 
71 3882 RB 214 SO 12''56'"32.5' 28''03'18" 6894 16.97 1 1 
72 3958 IC 3947 E 12''56'"27.r 28°03'16" 5702 15.94 1 1 
78 2000 NGC 4923 E 12''59'"07.2^ 28''06'58" 5409 14.78 1 1 
79 2157 NGC 4919 SO 12''58'"52.9' 28°04'41" 7282 15.06 1 1 
80 2237 SO 12''58'"46.r 28°04'18" 6664 16.26 1 1 
81 2252 E 12''58'"44.6' 28°05'13" 5976 16.10 2 
84 2956 SO 12''57™40.5^ 28°04'36" 6568 16.20 1 1 
87 3403 RB 234 E 12''57"05.9' 28"03'45" 7811 16.87 1 1 
88 3423 IC 3976 SO 12''57'"04.4' 28°07'10" 6817 15.80 1 1 
91 3997 IC 3946 SO 12''56'"23.5' 28<'04'48" 5916 15.28 1 1 
92 4499 SO 12''55'"38.3' 28<'05'05" 7095 16.10 1 1 
101 3178 RB 49 SO 12''57'"21.3' 28'07'35" 8009 16.18 2 2 

104 3296 NGC 4875 so 12''57'"13.0' 28n0'36" 8056 15.88 2 2 

105 3510 NGC 4869 E 12''56'"58.6'' 28°10'51" 6788 14.97 2 2 

106 3522 RB 8 SO 12''56'"58.P 28''09'59" 5126 16.39 2 2 

107 3557 RB 6 E 12''56'"55.3' 28°09'20" 6429 16.35 4 4 

108 3782 RB 262 SO 12''56'"39.6^ 28°10'50" 6396 16.55 2 2 

110 4626 SO/E 12''55'"25.5' 28°08'58" 7046 16.60 1 2 

111 4653 SO 12''55'"22.9* 28°09'10" 5805 15.67 1 2 

115 1865 SO 12''59'"21.6* 28n3'34" 4706 17.09 1 1 

116 2510 RB 113 SBO 12''58'"18.P 28n3'56" 8366 16.13 1 1 

117 2457 RB 119 SO/a 12''58'"22.6' 28°11'28" 8571 16.56 1 1 

118 2541 NGC 4906 E 12''58'"14.9' 28°11'35" 7494 15.44 1 1 

120 2794 NGC 4898B E tl2''57'"53.3' t28n3'32" 6371 16.19 1 1 

121 2798 NGC 4898A E 12''57'"52.9'^ 28°13'28" 6811 14.85 1 1 
122 2815 NGC 4894 SO 12''57" 51.7^ 28°14'12" 4634 15.87 1 1 
124 3201 NGC 4876 E 12''57'"19.5' 28n0'54" 6629 15.51 2 2 

125 3222 RB 43 E 12''57'"17.9' 28n i ' 47" 6907 16.47 1 1 

126 3206 RB 46 SO 12''57'"19.2^ 28n3'40" 6892 16.36 1 1 

127 3254 RB 42 SO 12''57'"15.4^ 28n4'16" 7514 16.57 1 1 

128 3269 RB 40 so 12''57™15.1'' 28n3'32" 8001 16.12 1 1 

129 3329 NGC 4874 D 12''57'"11.0'' 28n3'46" 7176 12.78 1 1 

130 3352 NGC 4872 E/SO 12''57'"09.r 28°12'57" 7205 14.79 1 1 

131 3414 NGC 4871 SO 12''57'"05.0' 28°13'31" 6717 14.89 1 1 

132 3487 RB 13 SO 12''57™00.7* 28n4'24" 7683 16.63 1 1 

133 3639 NGC 4867 E 12''56'"50.2* 28n4'25" 4793 15.44 2 2 

135 3851 RB 260 E 12''56'"35.2^ 28°14'13" 8320 16.98 1 1 

136 3914 RB 257 E 12''56'"30.4* 28°14'03" 5631 16.57 1 1 

137 4315 NGC 4850 E/SO 12''55'"56.8' 28n4'15" 5994 15.39 1 1 
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Table 2.1: Continued. 
Name of Galaxy Type Position (B1950.0) cz 626.5 # of Exp 

D80 # GMP # Other (D80) RA Dec (km/s) (GMP) N, Ni 

Early-type (E) Galaxies continued... 
142 2048 RB 133 E 12''59'"02.5' 28n6'05" 7558 17.06 1 1 

143 2390 IC 4051 E 12''58'"29.9' 28n6'35" 4932 14.47 1 1 
144 2516 IC 4042 so/a 12''58'"18.r 28n4'25" 6363 15.34 1 1 

145 2535 IC 4041 SO 12''58'"16.r 28°15'56" 7056 15.93 1 1 

146 2551 RB 110 SBO/a 12''58'"14.r 28n7'00" 7537 16.85 2 2 

148 2921 NGC 4889 D 12''57"'43.3' 28n4'44" 6494 12.62 1 1 

150 2940 IC 4011 E 12''57'"41.5' 28°16'24" 7245 16.08 1 1 

151 2975 NGC 4886 E 12'=57'"39.5' 28n5'24" 6359 14.83 1 1 

152 3170 IC 3998 SBO 12''57'"21.9' 28n4'35" 9401 15.70 2 2 

153 3213 RB 45 E 12''57'"19.2' 28°15'57" 6665 16.14 1 1 
154 3291 RB 38 SO 12''57'"13.3' 28n5'23" 6812 16.41 1 1 

155 3367 NGC 4873 SO 12''57"'07.7' 28n5'10" 5848 15.15 1 1 

156 3471 RB 18 E/SO 12''57'"01.6' 28n6'04" 6665 16.45 1 1 

157 3484 RB 14 SO 12''57'"00.9' 28n4'42" 6082 16.26 1 1 

158 3534 RB 7 SO 12''56'"56.6' 28°14'35" 6411 17.20 1 1 

159 3664 NGC 4864 E 12''56'"48.2' 28M4'47" 6806 14.70 2 2 

160 3761 IC 3955 SBO 12''56'"41.r 28n5'58" 7650 15.57 1 1 

161 4230 RB 241 E I2''56'"05.3' 28M7'04" 7198 15.19 2 2 

167 2417 NGC 4908 SO/E 12''58'"26.9'' 28°18'44" 8804 14.91 2 2 
168 2440 IC 4045 E 12''58'"23.9'' 28°21'35" 6896 15.17 1 1 

170 2727 IC 4026 SBO 12''57'"57.4' 28n8'59" 8220 15.73 4 4 

171 2805 RB 91 SO 12''57'"52.3' 28n9'59" 6141 16.57 1 1 
172 2839 IC 4021 E 12''57'"50.0' 28n8'38" 5689 16.01 2 2 

173 2861 RB 87 SO 12''57"M8.r 28''20'41" 7493 16.26 1 1 

174 2922 IC 4012 E 12''57'"43.2' 28''20'52" 7196 15.93 1 1 

175 3073 NGC 4883 SO 12''57'"31.2^ 28n8'14" 8071 15.43 4 4 

176 3390 RB 26 SO 12''57'"06.3' 28''18'58" 6832 15.89 2 2 

177 3433 RB 22 SO 12''57'"04.0' 28°18'35" 5569 16.56 2 2 
178 3439 RB 21 SO 12''57'"03.7' 28''21'17" 3650 16.72 1 1 

179 3561 NGC 4865 SO 12''56™54.9' 28021'14" 4609 14.54 2 2 

180 3656 RB 268 SO 12''56'"48.9^ 28°20'45" 7790 15.53 2 2 
182 4200 RB 243 SO 12''56'"06.9' 28°19'09" 5705 16.84 2 2 

193 3084 RB 155 E 12''57'"30.2' 28°23'51" 7566 16.43 2 2 
194 3792 NGC 4860 E 12''56'"39.r 28°23'35" 7864 14.69 1 1 

196 3935 E 12''56™28.5' 28''23'44" 6976 16.59 1 1 

198 4308 IC 839 SO 12''55'"57.3' 28°25'30" 6738 16.76 1 1 

199 4313 NGC 4851 SO 12''55'"56.8' 28°25'06" 7781 16.00 1 1 

200 4379 SO 12''55"'50.0' 28°23'44" 7506 16.08 1 1 

207 2912 RB 167 E 12''57'"44.3' 28°26'22" 6756 16.07 1 1 

208 3553 RB 136 SO 12''56'"55.3^ 28°28'02" 9439 16.96 1 0 

210 4648 Ep 12''55'"23.7' 28°27'00" 7352 15.97 2 1 

218 3818 so/a 12''56'"36.9^ 28°29'41" 7972 15.44 1 0 
2201 RB 129 12''58'"48.9^ 28°10'59" 5852 16.86 1 1 
2778 RB 94 12''57'"54.0* 28n2'21" 5410 16.69 1 1 

2960 RB 74 12''57'"40.7* 28n7'37" 5922 16.78 2 2 
3554 RB 271 12''56'"55.4^ 28''20'37" 7125 17.20 2 2 

Mte-type (S) Galaxies 
82 2374 NGC 4911 Sb 12''58'"31.4' 28'>03'34" 7970 13.91 1 -

89 3896 IC 3949 S 12''56'"31.4' 28°06'12" 7378 15.13 1 -

97 2059 NGC 4921 SBb 12''59'"01.6'' 28°09'17" 5459 13.53 1 -
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Table 2.1: Continued... 
Name of Galaxy Type Position (B1950.0) cz 625.5 # of Exp 

D80 # GMP # Other (D80) RA Dec (km/s) (GMP) N, 

Late-type (S) Galaxies continued. 
98 2347 RB 124 so/a 12''58'"34.5^ 28n0'08" 6828 15.85 4 -

99 2897 RB 83 SO 12''57"M5.4^ 28'"07'59" 9902 16.98 1 -

100 2910 RB 82 I 12''57'"44.8' 28°08'15" 5136 16.25 1 -

103 3400 IC 3973 so/a 12''57'"05.8^ 28°09'13" 4692 15.32 2 -

147 2651 RB 100 SO 12''58™03.6^ 28n4'29" 7679 16.19 2 -

149 2946 RB 77 SO 12''57'"41.9^ 28n4'59" 7816 16.31 1 -

181 3972 RB 252 SO 12''56'"25.7» 28°21'13" 6018 16.52 1 -
184 4779 SO 12''55'"11.4' 28°20'49" 17.04 1 -

191 2489 RB 116 SO 12''58"" 20.4^ 28°22'08" 6628 16.69 1 -

192 2584 SO 12''58'"10.9* 28"'24'55" 5441 16.14 1 -

197 4130 IC 3943 so/a 12''56™11.5' 28<'22'59" 6704 15.55 2 -

205 2441 NGC 4907 SBb 12''58'"24.3' 28°25'38" 5879 14.65 1 -

211 4849 Sa 12''55'"05.0' 28°27'28" 7069 15.81 1 -

212 4866 SO 12''55'"03.4' 28<'26'46" 16.25 2 -

2914 RB 166 12''57'"44.1^ 28''25'44" 7447 17.18 1 -

3298 12''57'"13.0'' 28<'02'46" 6554 17.26 1 -

4281 12''56'"00.6^ 28°23'54" 8473 17.08 1 -
Peculiar or Irregular (I) Galaxies 

102 3262 RB 41 SO 12''57'"15.0' 28°07'26" 3690 16.77 1 -
123 3068 RB 64 SBO 12''57'"32.0^ 28°11'58" 7904 16.47 2 -
162 4570 I 12''55'"31.7' 28n5 '41" 4649 17.25 2 -

169 2559 IC 4040 Scd 12''58'"13.3' 28n9'35" 7840 15.44 1 -

183 4555 I 12''55'"32.8' 28n9 '51" 8299 16.07 2 -

195 3816 NGC 4858 SBc 12''56'"37.3'' 28°23'06" 9436 15.64 1 -

220 4471 NGC 4848 Scd 12''55"'40.7' 28<'30'45" 7049 14.50 1 -

Unclassified (U) Galaxies (mostly compact ellipticals/SO's) 
90 3943 RB 209 SO 12''56'"27.9' 28«04'49" 5496 16.93 1 1 

109 3733 IC 3960 SO 12''56'"43.1' 28'"07'27" 6650 15.85 1 1 

112 4945 E 12''54™56.4' 28°09'02" 7428 16.64 1 2 

119 2654 RB 99 SO 12''58'"03.2* 28n3'30" 6984 16.38 2 2 

224 4043 SO 12''56'"19.r 28<'33'08" 17.19 2 0 

225 4235 SO 12''56'"04.2^ 28°34'28" 16.80 1 0 

3133 RB 55 12''57'"25.3' 28''11'38" 9833 17.23 2 2 

3640 12''56'"50.2' 28031'13" 7483 17.13 1 0 
t NGC 4898B: RA and Dec incorrect in NED (position taken from GMP instead). 
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w i t h Coma, a continuous area was observed on the second night of the I N T 1994 observing 
run (March 16-17). Unfortunately, the area covered was much smaller - an ' L ' shape 
approximately 0.6° long by 0.4° wide. However, this covered roughly half of the central 
region of the cluster, including the two bright eUipticals NGC 3862 and NGC 3842. The 
sample was magnitude-limited using the catalogue of Butcher and Oemler (1985), selecting 
galaxies w i t h a total magnitude J brighter than 16.5. This gives a magnitude-limit in R 
of ~ 15.55 - equivalent to the Coma magnitude-hmit (R ~ 15.7) when an adjustment 
is made for the slightly smaller redshift of Abel l 1367. The total number of galaxies 
(all morphological types) is 27, of which one (B085 # 66) is immediately rejected as a 
background object (recession velocity ~ 14000 km s~\ f rom NED) , bringing the total down 
to 26. The area covered in this study, and the distribution of Butcher Oemler (1985) 
galaxies [J < 16.5), is shown in Figure 2.3. 

The observations of Abel l 1367 comprise 7 large-format CCD fields, each covering an 

area of 11'23" x 10'32" (after t r imming) . Unhke the Coma fields, each Abell 1367 field 

was observed only once, w i th an exposure time of 120 seconds. This is long enough to 

produce a reasonable S/N in the outer regions without saturating the cores. Again, there 

is a large overlap between neighbouring CCD fields, giving repeat observations for 6 of 

the 26 galaxies - producing a total of 32 galaxy images. When the Coma and Abell 1367 

samples are combined, this study gives a grand total of 208 images of 153 separate galaxies. 

The Abel l 1367 galaxies were assigned basic morphological types (E,S,I and U) on the same 

basis as Coma (see Figure 2.2). Of the 26 galaxies in the sample, 21 were classified E (early-

type), 4 as S (late-type) and 1 as I (irregular) - no galaxies were classed U (unclassifiable). 

Once again, the major i ty of galaxies are early-type - though i t must be remembered that 

only a relatively small area of Abel l 1367 was covered in this study. Table 2.2 gives names, 

positions, redshifts, magnitudes, morphological type and numbers of exposures used for 

each galaxy in the sample. 

2.4 The Project Sample 

Global parameters ( r i / 2 , {1^)1/2) and total magnitudes are measured for all 153 galaxies in 

the sample, irrespective of morphological type (see Chapter 4 for methodology). Since these 

measurements are taken f r o m aperture photometry, a high signal-noise ratio is achievable 
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Figure 2.3: A map of the central region of Abell 1367 showing the locations of the galaxies in the 

Butcher & Oemler (1985) catalogue brighter than J — 16.5, relative to the area surveyed in this study. 

The rectangles represent the CCD fields - note the considerable overlap between neighbouring fields. Al l 

CCD fields were observed with an exposure time of 120s. The two bright elliptical galaxies (NGC 3862 

and NGC 3842) are circled. 
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Tab le 2.2: Table of the complete Abell 1367 galaxy sample, giving names, type, position, redshift, 
magnitude and number of exposures used. The table is divided into 3 blocks corresponding to the 3 basic 
morphological types allocated. Names are taken from the B085 (Butcher & Oemler 1985) catalogue. These 
are cross-referenced, where applicable, to the NGC and IC catalogues. Positions and redshift are taken 

Name of Galaxy Type Position (B1950.0) cz J # of Exp 

B085 # Other (B085) RA Dec (km/s) (B085) - N 

Early-type (E) Galaxies 
1 NGC 3862 E ll ' '42'"29.5' 19°53'02" 6462 13.10 1 
2 NGC 3842 E ll ' '41'"26.6' 20°13'38" 6237 13.11 1 

10 NGC 3837 E ll' '41'"20.8* 20oi0'20" 6130 14.05 1 

17 NGC 3841 E ll ' '41'"26.6' 20M4'58" 6363 14.51 1 

22 SO l l A 4 i m 4 3 45 20°07'20" 6454 14.68 1 

23 NGC 3844 SO ll' '41'"25.2* 20n8'25" 6834 14.69 1 

27 NGC 3845 s+ l l ' '41'"29.9' 20°16'24" 5643 14.76 1 

28 IC 2955 E ll' '42'"28.4^ 19°53'54" 6345 14.80 1 

33 SO ll ' '41'"45.2' 20'>06'13" 5440 14,96 1 

38 NGC 3851 E ll ' '41'"44.8' 20°15'30" 6469 15.08 1 

41 E l l ' '41 '"32.P 20°00'55" 7211 15.20 1 

45 SO ll ' '41'"21.9' 20°13'53" 6040 15.22 1 

46 SO ll ' '41'"24.0' 20<'03'23" 5624 15.25 2 

52 E ll ' '41'"01.4' 19"52'57" 6564 15.40 1 

64 SO l l ' ' 4 1 ' " l l . P 20n9'00" 6399 15.62 1 

69 E l l ' '41'"27.6' 20°04'43" 8004 15.78 2 

76 SO ll ' '42'"16.7' 19'"53'15" 6556 15.93 2 

81 ll' '42'"12.5* 19°51'36" 16.01 2 

90 ll ' '42'"35.2' 19048'4i" 16.14 1 

107 ll ' '42™33.8' 19°49'57" 16.36 1 

117 ll ' '41'"17.9' 20''01'14" 16.40 1 

Late-type (S) Galaxies 
1 3 NGC 3861 Sbc l l ' ' 42"28 .4 ' 20n5'03" 5082 13.34 1 

25 NGC 3857 SO ll' '42'"14.6'' 19M8'38" 6255 14.71 2 

58 Sc ll ' '42'"31.5' 20n4'44" 6009 15.50 1 

61 Irr l l ' '41'"26.3' 20°03'43" 4937 15.54 2 

Peculiar or Irregular (I) Galaxies 
12 S+ ll ' '41'"13.2' 20n4'49" 6903 14.12 1 
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f r o m the short-exposure fields. The main part of this study is the determination of seeing-
corrected / i ( r ) profiles, best-fit profile parameters and isophotal shapes for a sample of early-
type galaxies (see Chapters 5 and 6). Originally, i t was intended to use the long-exposure 
Coma frames to improve the signal-noise ratio in the outer parts of these galaxies. However, 
time-constraints have not allowed the problem of merging the short and long-exposure 
datasets to be resolved (particularly as the long-exposure images of galaxies are saturated 
in the core). Nonetheless, given the quahty of the flat-fielding and the photometry, the 
objectives of the study can be met using only the short-exposure data-set (see Chapter 7). 



Chapter 3 

Calibration and Preparation 

3.1 Introduction 

This chapter outlines the CCD calibration and data-preparation procedures which were 

carried out on the data of March 16th/17th, in order that data reduction can begin. Sec

tion 3.2 describes the CCD calibration procedures, including bias (zero-frame) correction 

and flat-fielding. Section 3.3 describes the photometric cahbration using Landolt standard 

stars. Finally, Section 3.4 outlines the interactive preparations made for each individ

ual galaxy frame, including the measurement of sky background, seeing FWHM, central 

co-ordinates and the identification of parasitic objects (such as other galaxies, stars and 

cosmic-ray spikes). 

3.2 C C D Calibration - Biasing and Flat-fielding 

Before CCD data can be used photometrically, i t must be corrected for biasing and flat-field 

variation. This was done using the packages of the NOAO Image Reduction and Analysis 

Facility ( I R A F ) . 

3.2.1 Bias Removal 

The bias was sampled using zero-second exposures of the CCD. A total of 17 bias-frames 

were taken throughout the I N T March 1994 observing run, of which 4 showed evidence 

of light-leakage and were rejected. To reduce the effect of readout noise on the individual 

28 
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bias frames (typically 3 A D U per pixel), the 13 zero-exposure frames were averaged into a 
single master bias-frame. The I R A F routine zerocombine subtracts the bias-level (typically 
2260 A D U per pixel) f r o m each zero-exposure frame and then averages the residual pixel 
counts. The master bias-frame thus contains only residual pixel-to-pixel bias structure (up 
to 15 A D U in one column) and not the bias-level - this is not required, because the I R A F 
routine ccdproc calculates and subtracts the bias-level for each individual image. I R A F 
does this by f i t t i ng a I D function to the bias overscan strip on each frame - defined by 
'pixels' (2-20,3-1150) of the CCD readout. This I D function, representing the bias-level, is 
then subtracted by ccdproc f r om the active region of the CCD readout - defined by pixels 
(23-1264,3-1151) - for each frame ( in addition to the master bias-frame). 

3.2.2 Flat-fielding 

I n order to cahbrate out the pixel-to-pixel variation in sensitivity on the CCD, i t is necessary 

to expose the CCD to a uniform source of i l lumination - a flat-field. This was done by 

exposing the CCD to a patch of twilight sky (chosen f rom fields known to have relatively 

few contaminating stars) for enough time to take the pixel count up to about half the 

saturation value (say 30000 counts). On the night of March 16th/17th, seven flat-fields 

were observed in the evening twil ight and six in the morning twil ight . The exposure times 

varied f r o m 1 second to 16 seconds. After each exposure, the telescope position was skewed 

by several arc-seconds to avoid co-adding contaminating stars in the master flat-field. 

The 13 flat-fields were first de-biased, then examined using I R A F . The flats taken in 

the dusk sky disagreed wi th the dawn flats by about 1.5% across the whole CCD. Apart 

f r o m this, the individual flats agreed wi th each other to 0.1-0.3%, and there was remarkably 

l i t t l e small-scale structure, and no dust rings. A master flat-field for the night was created 

by the following method:-

1. A n evening flat was divided by a morning flat using the I R A F routine imarith. 

2. A 2-d spline surface was fitted to this residual using the I R A F routine imsurface. 

3. The spline surface was used to scale the morning flats so that their large-scale struc

ture was identical to the evening flats (to wi th in around 0.2%). 
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4. A l l the flats (evening and morning) were scaled and median stacked using I R A F 
routine flatcombine into a master flat-field. 

A selection of object frames were then flat-fielded wi th I R A F using the master flat-

fleld. Inspecting the sky flatness on frames far f rom the cluster core (i.e. away from the 

intra-cluster l ight) showed that the in i t ia l flat-fielding was good to 0.8%. I t is not certain 

whether this sky variation is a genuine flat-field (response) error (i.e. should be divided off) 

or a residual caused by light leakage (i.e. should be subtracted off) or a mixture of both. 

Certainly, light leakage seems to be present - as only this can explain the difference between 

the dusk and dawn flat-fields. Looking at frames taken at different times of night, wi th 

different mean background levels, seems to suggest than the variation can be subtracted 

off, as the amplitude seems to depend principally on exposure time only, and not on the 

background count. 

The next step was to t ry and fit this residual and subtract i t f rom all the object frames. 

This was done by taking 9 long exposure (SOOs) frames which are far f rom the central cD's, 

such that they contain fewer objects and are less contaminated by intra-cluster light. The 

sky background was interactively measured for each frame, and a constant was subtracted 

to give the same background on each image (3000 counts). I R A F was then used to perform 

a clipped median stack on these frames. The resulting frame st i l l had some structure 

in i t (ghosts of galaxies) and pixel-to-pixel variation, which needed to be removed. This 

structure was removed by fitting a 2D second-order spline to the frame. This surface was 

subtracted f r o m all 9 object frames, and the sky was seen to be now flat to about 0.3%. 

There was s t i l l a small amount of systematic variation in the frames - the centres of the 

frames 'dipped' by 10 - 15 counts in the centre. The process outlined above was repeated 

a second t ime and a second residual surface was derived. Af ter this had been subtracted 

there was a modest improvement in the sky flatness. By mult iplying this residual frame (for 

300^ exposures) by 0.2 and 0.4, residual frames were produced for 60s and 1205 exposure 

images respectively. 

The conclusion is that a large-scale sky flatness of about 0.2% can be achieved for the 

night of March 16th/17th. However, the flatness in the photometry itself is not as good 

- w i th up to 0.8% variation across the frame. This is equivalent to a photometry error of 

0.008 mag f r o m one side of the CCD to the other side - across an individual galaxy (typically 

100 pixels), i t is clear that the flat-field error becomes neghgible (less than 0.06%). Using 
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the I R A F package ccdproc., all the standard star and galaxy images for March 16th/17th 
were t r immed, de-biased (master bias-frame subtracted) and flat-fielded (divided by master 
flat-field). Addit ionally, in order to flatten the sky to 0.2%, the residual frame (for the 
appropriate exposure t ime) was subtracted f rom each Coma and Abell 1367 image. 

3.3 Photometric Calibration - Standard Stars 

Once all the data has been de-biased and corrected for flat-field variation, i t is necessary 

to calibrate the data for zero-point and atmospheric extinction. Af te r this calibration has 

been performed i t is possible to turn a pixel count into an ahove-the-atmosphere photometric 

magnitude. In total , 39 images of standard stars f rom 11 fields were obtained throughout 

the night of March 16th/17th, all in the R-band and wi th a range of airmass bracketing the 

observations. A l l the stars were chosen f rom the Landolt (1992) photometric standards, 

which include mult iple fields of standard stars. The advantage of the multiple star fields is 

that several stars can be observed in a single exposure. The disadvantage is that there is 

no range in airmass for the groups of stars observed together. Fortunately, all the galaxy 

observations were made at low airmass, so the requirement for a big range in airmass to 

bracket the data was diminished. 

The first step of the stellar photometry was to measure an instrumental magnitude 

Mint f r o m each standard star image. This was done wi th John Lucey's / I V7£'V7photometry 

program, which includes a star photometry routine. First the images were displayed and the 

grey-scale range varied to pick out any obvious contaminating stars, cosmic rays, or defects. 

These were then removed by interpolating across them. The star photometry routine could 

then be used on the standard stars. The routine measures the mean background count per 

arc-second {hky) w i th in an annulus surrounding the star. Normally, the inner and outer 

radii used for the annulus were 20" and 30" respectively (wi th a pixel scale^ of 0.55"pixel~^, 

this equates to radii of 36.4 and 54.5 pixels). I f this wasn't possible, i f the star was too 

close to edge of the frame for example, then smaller radii were used (such as 13" and 23"). 

The total counts wi th in various apertures between radii of 5" and 21" centred on the star 

were integrated. A t a given aperture radius r ( " ) , the instrumental magnitude is measured 

^This was measured f rom positions of stars on an image of star-cluster M67, to an accuracy of less than 

1% 
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(3.1) 
as:-

M.„.M= 3 0 - 2 . 5 l o g [ ^ ' - ) 

Where L(r) is the integrated count wi th in the aperture and T is the exposure time. For 

each standard star, the photometry measurements were repeated five or six times, each 

t ime slightly shifting the origin of the apertures/annuli in a different direction f rom the 

centre of the stellar image. This was done in order to get a scatter of a few results and 

take the mean, rather than rely on one measurement. Also i f the different measurements 

gave total ly different results, this might indicate a problem, such a defect or cosmic ray 

which I had missed. For each star, the instrumental magnitude was taken to be the mean 

magnitude at an aperture radius of 11". Typically, the scatter in the different measurements 

of Mint(r = 11") was several millimags. Mint was not measured at a higher aperture radius 

than 11", because at greater radii the magnitude is affected by pixel noise or flat-field error. 

On many of the images, the magnitude continued to decline beyond 11" (i.e. i t appeared 

as i f there was st i l l some starlight beyond 11"), although on others i t stayed constant or 

even increased. The typical offset between the measured magnitude and the magnitude at 

the largest sized aperture {Mint{R = H " ) - Mint{R = 21")) is about 0.01 mag. I t cannot 

be said wi th certainty whether this is a real offset (due to bad focussing of the telescope) 

or an artifact of pixel noise or flat-field error adding to the star luminosity. However, i f 

Mint{R = 21") is used to fit the atmospheric absorption and colour term, the RMS scatter 

of standard stars f r o m the best photometric fit (see Equation 3.2) is doubled compared 

to the fit using Mint{R = 11"). For this reason, i t is sensible to choose the magnitude 

measured wi th in the smaller aperture, although i t is realised that there may be a small 

offset (less than 0.01 mag), which wi l l manifest itself in the zero-point. Table 3.1 gives 

a list of all the standard stars observed, including the instrumental magnitude measured 

for each star, the catalogue magnitude and colour index ( f rom Landolt 1992), the time of 

observation, the airmass and the atmospheric seeing. 

The instrumental magnitude in i? is a function of the true (above-atmosphere) R mag

nitude, the atmospheric extinction KR, the photometric zero-point ZP (which accounts 

for the sensitivity of the imaging device), and a colour-term C (which accounts for the 

difference in spectral response between the filter/CCD and a perfect /2-band filter). I f the 

observing conditions are photometric, then the decrement in magnitude due to the atmo

sphere equals KRSGCZ, where KR (the atmospheric extinction in R) is a constant during the 
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Table 3.1: The 39 standard stars observed on the night of March 16th/17th 1994, INT, La Palma. 

Name Time Airmass Seeing R V-R 
(Landolt) (UT) (sec z) (") (mag) (mag) (mag) 

99Z367 20:44 1.166 2.1 15.954 10.618 0.531 

RU149E 20:49 1.147 2.9 18.740 13.397 0.321 

RU149F 20:49 1.147 2.9 18.220 12.877 0.594 

RU149G 20:49 1.147 2.9 17.842 12.507 0.322 

RU149B 20:49 1.147 2.9 17.617 12.268 0.374 

RU149A 20:49 1.147 2.9 19.660 14.299 0.196 

RU149E 21:54 1.181 1.7 18.752 13.397 0.321 

RU149F 21:54 1.181 1.7 18.233 12.877 0.594 

RU149G 21:54 1.181 1.7 17.864 12.507 0.322 

RU149B 21:54 1.181 1.7 17.622 12.268 0.374 

RU149A 21:54 1.181 1.7 19.683 14.299 0.196 

RU149E 22:43 1.282 1.4 18.769 13.397 0.321 

RU149F 22:43 1.282 1.4 18.243 12.877 0.594 

RU149G 22:43 1.282 1.4 17.884 12.507 0.322 

RU149B 22:43 1.282 1.4 17.627 12.268 0.374 

RU149A 22;43 1.282 1.4 19.693 14.299 0.196 

RU149E 23:39 1.509 1.7 18.790 13.397 0.321 

RU149F 23:39 1.509 1.7 18.270 12.877 0.594 

RU149G 23:39 1.509 1.7 17.910 12.507 0.322 

RU149B 23:39 1.509 1.7 17.654 12.268 0.374 

RU149A 23:39 1.509 1.7 19.723 14.299 0.196 

101327 23:43 1.147 1.4 18.065 12.724 0.717 

101326 23:43 1.147 1.4 19.883 14.517 0.406 

101330 23:43 1.147 1.4 18.709 13.377 0.346 

101262 23:43 1.147 1.4 19.208 13.855 0.440 

104339 03:28 1.209 1.2 20.315 14.983 0.476 

104336 03:28 1.209 1.2 19.322 13.943 0.461 

104334 03:28 1.209 1.2 18.520 13.161 0.323 

104330 03:28 1.209 1.2 20.289 14.927 0.369 

104325 03:28 1.209 1.2 20.622 15.236 0.345 

107626 03:31 1.264 1.3 18.245 12.868 0.600 

107627 03:31 1.264 1.3 18.248 12.884 0.465 

107626 06:33 1.220 1.4 18.233 12.868 0.600 

107627 06:33 1.220 1.4 18.248 12.884 0.465 

PG1633D 06:36 1.065 1.4 18.707 13.367 0.324 

PG1633C 06:36 1.065 1.4 17.930 12.611 0.618 

PG1633B 06:36 1.065 1.4 17.696 12.379 0.590 

PG1633A 06:36 1.065 1.4 20.065 14.751 0.505 

110230 06:39 1.241 1.3 18.990 13.657 0.624 
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period of observations, and z is the zenith angle. The colour-term depends on the spectra 
of the object observed - to the first-order i t can be approximated as a linear function of 
an appropriate colour index, say V — R. Put t ing all this together into the photometric 
equation:-

R - Mint + 30 = ZP- KRsecz + Cv-RiV - R) (3-2) 

Other (higher-order) colour terms may exist in this expression, but their effect wi l l be 

very weak and invisible against the random scatter in the measurement of M , „ t . Taking 

the instrumental magnitudes Mint and the catalogue magnitudes R for each standard star, 

Equation 3.2 can be fitted to yield values for the constants ZP, HR and CV-R for the night 

of March 16th/17th. Once these constants are measured, i t is possible to convert any pixel 

count L into a magnitude R, for any observation of exposure t ime T, using the following 

equation:-

R= ZP - 2.5 log - KRsecz + Cy_/?( V - R) (3.3) 

To fit the photometric constants, a quasi-Newton minimisation algorithm was used to 

determine the values of the three constants which give the smallest value of RMS scatter 

in relation 3.2. The results of this fitting are shown in Figures 3.1(a) and (b), which 

display the separate trends on the photometry of the atmospheric extinction and colour 

term respectively. The best-fit constants are as foflows: ZP = 24.797, KR = 0.146 and 

Cv-R — 0.051. The RMS scatter to this fit is 0.013 mag. Given the weakness in the trend 

of the colour-term, and the fact that most of the target objects are ellipticals wi th V — R 

close to 0.5, i t was decided to drop the colour-term f rom the photometric equation and add 

a constant colour-term for V — R = 0.5 to zero-point. The new zero-point equals 24.823 

(24.797 + 0.5x0.051), and the photometric equation becomes:-

R = 24.823 - 2.5 log l^-j - 0.146secz (3.4) 

The RMS scatter is increased only very shghtly to 0.015 mag, and the mean uncertainty 

on measurements of R, f r om the quality of the photometric fit, is only 0.002 mag (from 

RMS/\/39). Of course, there is likely to be a much larger systematic offset of up to 

0.010 mag f r o m the measurement of Mint-

It is quite apparent f rom Figure 3.1 that the night was perfectly photometric. Plots 

(a) and (b) show that a good fit is achieved wi th low scatter. Plot (c) is particularly of 

interest, because i t shows atmospheric extinction, calculated for each star individually, as 
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Figure 3.1: The photometric f i t to the standard star photometry for the night of March 16th/17th. Plot 
(a) shows the change in magnitude due to atmospheric extinction versus airmass sec z. Plot (b) shows the 
change in magnitude due to the colour-term versus colour V-R. Plot (c) shows the atmospheric extinction, 
measured from individual stars, as a function of time, demonstrating that the night was photometric. 
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a funct ion of t ime during the night. I t is clear that the extinction is, wi th in error, constant 
for the whole night - f r o m 21:00 U T on March 16th to 07:00 U T on March 17th. 

3.4 Data Preparation 

After the photometric calibrations for the given night had been completed, i t was necessary 

to prepare each individual galaxy image for the photometric and isophotal data reduction 

which follows. This involves 'cut t ing ' out a suitable region of the CCD frame containing the 

galaxy to be studied, and measuring certain parameters f rom the galaxy which are required 

by the photometry procedures - specifically the sky background, the F W H M of the stellar 

PSF and the centroid (central x and y co-ordinates) of the galaxy. Also required is the iden

t if icat ion of regions/pixels which are regarded as contaminated - and henceforth excluded 

f r o m the photometric fitting. A l l these procedures were undertaken using John Lucey's 

AVIEWsoitwa.ve, which contains numerous image-display and photometry algorithms. 

The first step to be taken for an individual galaxy is to display the entire CCD frame 

using AVIEW. Once the correct galaxy has been identified, the next step is to measure 

the pixel count of the sky background. The whole frame is used to ensure the region 

chosen for the sky measurement is sufficiently distant f rom the galaxy, such that the light 

f r o m the galaxy is negligible. This causes a problem for the two Coma cD galaxies, as 

the light f r o m these galaxies is significant right up to, and beyond, their respective CCD 

frames. The solution is to measure the sky background f rom neighbouring (overlapping) 

CCD frames, carefully measuring the background offset between the galaxy CCD frame 

and the neighbouring frame. The sky background count is measured by placing circular 

apertures of chosen radius at locations which represent the local sky background for the 

galaxy in question, carefully avoiding cosmic-rays, stars and neighbouring galaxies. When 

sufficient apertures have been laid down, AVIEW calculates the average sky pixel count 

f r o m all the pixels in the apertures using a clipped mean. A n error on the sky measurement 

is also calculated using the standard deviation of the pixel counts. A demonstration of the 

sky measurement procedure using AVIEW is shown in figure 3.2. 

The next measurement to be undertaken is the F W H M of the stellar PSF. This is 

required for the seeing deconvolution routines (Chapter 5), and for setting inner radius 

l imi ts for the galaxy. Again, the whole CCD frame is used - this is because of the scarcity 
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Figure 3.2: Measuring the sky background count for the galaxy I C 4045 in Coma. The circles are manually 

placed apertures - the pixels within which are used to calculate the sky background and uncertainty. 

of stars due to the high galactic latitudes of Coma and Abel l 1367. In order to measure 

the F W H M , a theoretical model for the PSF must be fitted to the stellar images. The PSF 

model used here is the same as that used by Lucey et al. (1991) - a Hankel transform of the 

combined modulation transfer function of the telescope and atmosphere (see, e.g. Roddier 

1981). This gives a much better fit to observed stars than the often-used Gaussian PSF, 

which does not have enough power at large radii . Using AVIEW, several stars wi th good 

signal-to-noise (central count ^ 4000) are fitted wi th the PSF, and the average F W H M 

calculated. The stars are chosen to be as close as possible to the galaxy, as the F W H M can 

vary by 10% or more across the CCD frame. The PSF fitting procedure is demonstrated 

in figure 3.3. 

Once the sky background count and F W H M have been successfully measured, the whole 

area of the CCD frame is no longer needed. A small portion of the CCD frame containing the 

galaxy is 'chopped' f rom the image and reloaded into AVIEW. The size of the chopped image 

is chosen to include the outer l imits of the galaxy out to where the sky background was 

measured. This image is saved as i t w i l l be used later in the photometry and deconvolution 

programs. The new image defines a co-ordinate system, and the next step is to define the 
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Figure 3.3: The measurement of the FWHM of the stellar PSF. The circles show where a star has been 

located and chosen for fitting. A theoretical PSF is fitted to each star (small window). The final value for 

the FWHM is calculated as the average of the FWHM for all stars which are accepted. 

centroid (central x and y co-ordinates) for the galaxy. This w i l l be required as a starting 

point for the ellipse-fitting algorithm. The centroid is calculated using AVIEW by laying 

down a box centred on the brightest pixel - the centroid is calculated as the mean position 

of the light distribution wi th in the box. The size of the box can be varied according to the 

seeing and galaxy, but typically 11x11 pixels are used. The centroid fitting procedure is 

demonstrated in figure 3.4. 

The final operation carried out on the data before reduction is the identification of 

all pixels and regions of pixels which are deemed to be contaminated. This may be due 

to cosmic-rays, foreground stars or neighbouring galaxies - whatever the case, these pixels 

need to be recorded so that they can be excluded f rom all photometry procedures. Included 

wi th in AVIEW is a Star l ink algorithm called PISA, which identifies and parametrises (as 

ellipses) all regions of an image where the count exceeds the background by a certain 

amount across a certain area. The AVIEW display for this operation is shown in figure 3.5. 

Using the cursor, i t is possible to 'de-select' ellipses - the obvious one being that fitted to 

the target galaxy. In addition, AVIEW allows extra circles to be manually 'added' to the 
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Figure 3.4: Measuring the central co-ordinates of the galaxy I C 4045 in Coma. The galaxy is first zoomed 

and rescaled to display the central pixels. A variable sized box (typically 11x11 pixels) is placed close to 

the centre. The central co-ordinates are calculated from the the mean position of the light distribution 

within the box. 
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Figure 3.5: The use of PISA within AVIEW to identify all objects on an image, with the aim of locating 

all contaminated pixels. In this example, PISA has located and parametrised 7 ellipses where the count 

exceeds a certain level across a certain number of pixels. Using AVIEW, the ellipse containing the target 

galaxy (IC 4045) has been 'de-selected', as obviously these pixels are required - the ellipse now appears as 

a dashed line. 

PISA ellipses, to isolate objects which have been missed by PISA - cosmic-rays for instance 

(see figure 3.6). 

Once these preparatory procedures have been successfully undertaken, typically taking 

20 minutes per galaxy, AVIEW produces two ascii files containing all the information 

required to perform surface and aperture photometry on the galaxies. The first contains the 

F W H M , central co-ordinates and sky background count, along wi th photometric constants 

(see section 3.3). The second ascii file contains parameters of all PISA ellipses, plus any 

manually added circular apertures. This can easily be turned into a list of 'bad' pixels to 

be ignored in the surface photometry, or replaced in the aperture photometry. 

This chapter has outlined the necessary preparation procedures which must be car

ried out before data-reduction proper begins. In Chapter 4, the basic galaxy photometry 

procedures are outlined and comparisons made wi th other published data. 
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Figure 3.6: Manual identification of objects which were not located by PISA. These are typically small 

and bright (i.e. cosmic-ray streaks), or are blended into the target galaxy. AVIEW a.\\ows these areas to 

be identified with a variable radius circle and included with the PISA ellipses. In this example, 4 circles 

have been added to the ellipses in figure 3.5. The cross at the top right hand corner of the image is where 

a cosmic-ray has been identified - the user now adds a value for the radius and a fifth circle will be added. 



Chapter 4 

Aperture Photometry and Total 

Magnitudes 

4.1 Introduction 

This chapter describes the measurement of model-independent global photometric parame

ters for the Coma/Abel l 1367 sample, and their comparison wi th other published data (the 

Coma/Abel l 1367 sample is referred to as the Steel data-set when comparing with other 

authors data). Section 4.2 outlines the measurement of elliptical aperture magnitudes and 

the cosmological corrections applied to these magnitudes. Section 4.3 details how these 

aperture magnitudes are extrapolated to calculate a total (i.e. asymptotic) R magnitude 

for each galaxy. Section 4.4 shows how the half-light parameters are now easily measured. 

Section 4.5 looks at the internal comparisons of photometry f rom the repeated galaxy im

ages. Finally, Section 4.6 compares the total and aperture magnitudes measured here wi th 

other published data. 

4.2 Elliptical Aperture Magnitudes 

In order to measure the total magnitudes and half-light parameters {ri/2, ( M ) I / 2 ) of the 

galaxy sample, i t is necessary to perform aperture photometry on their images. I t was 

decided that elliptical apertures (based on fitted ellipses) rather than circular apertures 

would be used here for the photometry. This was for consistency wi th the rest of the study 

- global parameters fitted non-parametrically f rom the aperture photometry are then com-

42 
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parable wi th scale parameters fitted parametrically f rom surface photometry profiles (see 

chapter 6). There is also the consideration that since most galaxies are not circular, then 

circular aperture photometry is not the most appropriate way to represent the light distri

bution of real galaxies (admittedly, the difference between circular and elliptical aperture 

photometry is not great for many objects). 

The first task is to fit the objects wi th elliptical isophotes which are to be used as 

apertures in the photometry. This is done using a surface photometry routine which is 

based on GALPHOT, created by M a r j i n Franx (see Franx et al. 1989). A fu l l description 

of this method is given in Section 5.3. The end result is a table containing surface counts, 

ellipse parameters and higher order isophotal terms as a function of equivalent ellipse 

radius r ( = \/ab). The range in radius was f rom 0.3 pixels to the edge of the frame - the 

size of the radii increase logarithmically, w i th each radius a factor 1.1 greater than the 

last. Another useful feature of the ellipse-fitting process is that a 2D model of the image 

can be reconstructed f rom the output. This can then be used to 'patch' the pixels in the 

original image which are deemed to be 'bad' (i.e. due to contaminating objects, cosmic-rays 

and so on). These pixels were defined using AVIEW, and are completely ignored by the 

ellipse-fitting program (see Section 3.4). 

Once a table of the fitted ellipse parameters has been obtained, i t is a straightforward 

matter to produce a total aperture count wi th in each ellipse. This is done by summing 

the counts of the pixels in the 'patched' image which lie wi th in the given elhpse. A smafl 

correction is made to each aperture count to account for the difference in area between 

the summed pixels and the ellipse area (nab) - the surface count of the relevant ellipse 

is used ( f rom the surface photometry output) . Of course, this correction is neghgible for 

aperture radii greater than about 10 pixels. The background (sky) count is subtracted f rom 

each of the aperture counts - a discussion about how the sky is measured is included in 

Section 3.4. Using the calibration for zero-point and atmospheric extinction (Section 3.3), 

each aperture count can be converted into an above-the-atmosphere aperture magnitude. 

Thus, i f an ellipse of effective radius r = \/ab contains A'' pixels, each wi th a sky-subtracted 

count of Li and an area of Api^ (equals 0.3025"^ in this case), and / ( r ) is the sky-subtracted 

surface count of the ellipse, then the raw above-the-atmosphere aperture magnitude Rraw 
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is given by Equation 4.1. 

RraUr) = ^ P - 2 . 5 log 
E ^ i U + {irab - NA,i,) / ( r ) 

— KRsecz (4.1) 
T 

Finally, corrections are made to each aperture photometry point for reduction in mea

sured luminosity due to galactic extinction and /\-correction (Equation 4.2). 

Rcorrected{r) = RraM - 0.58AB - l.Oz (4.2) 

Where z is the heliocentric galaxy redshift. The galactic extinction in B is calculated 

according to the prescription of Burstein & Heiles (1984), and is very small at the high 

galactic latitudes of Coma and Abell 1367 (AB ^ 0.05). The /^-correction is to account for 

the redshifting of the galaxy spectral energy distribution wi th respect to the i?-bandpass, 

which has approximately the effect of a dimming of value 1.0^ in magnitude. Additionally, 

when aperture magnitudes are converted into surface brightness's (e.g. when calculating 

half-light surface brightness), an additional term 2.5log (1 + z^ is subtracted f rom the 

photometry to correct for cosmological dimming. 

4.3 Magnitude Extrapolation 

The calculation of total magnitude f rom aperture photometry is not a straightforward 

process. Galaxies do not have a sharp edge - their outer surface brightness profiles merge 

imperceptibly into the sky background. At some point, the galaxy signal is lost in the 

sky noise and/or the residual flat-field structure. In order to calculate the asymptotic 

total magnitude, therefore, i t is necessary to extrapolate f rom a region where the galaxy 

signal is well-defined. One method is to fit a power-law growth curve to the aperture 

photometry profiles (e.g. Jorgensen & Franx 1994), which automatically fixes the total 

magnitude, as well as the scaling parameters ( r i / 2 , ( M ) I / 2 ) - However, a growth curve makes 

the assumption that an r^-law (or other law) is followed f rom r = 0 to r = oo. This is a 

not a very good assumption, even for purely eUiptical galaxies, and wi l l lead to systematic 

errors in the derived parameters. The intention here is to obtain total magnitudes (and 

global parameters) which are as model-independent as possible, and are therefore not biased 

in any way by the morphology of galaxies. 

The method which has been used to measure the total magnitude takes as its base 

the aperture magnitude measured at an outer radius rout- The total magnitude is then 
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estimated by calculating how much luminosity lies beyond the ellipse r = rout- This is done 
by performing three least-squares power-law fits (r?, and exponential) on the surface 
brightness data between two limits r i and r2. The fit which gives the smallest is a good 
indicator of the shape of the galaxy profile in its outer regions - this can then be used to 
calculate the luminosity between r = Vgut and r = oo. The rules which govern the values 
of r i , r2 and rout are of importance, and are described here:-

• Outer profile-fitting limit r2 is calculated as the radius of the largest eUipse where 

the pixel count (minus sky) is still greater than 1.5 times the error on the sky mea

surement. This was chosen to ensure sufficient signal-to-noise for fitting the profiles, 

but yet far enough out to represent the outer profile of the galaxy. For some galax

ies, the surface photometry could not be considered reliable out as far as this - for 

instance, where a galaxy had be 'chopped out' from a sloping background (such as a 

cD halo), or i f a large parasitic object had to be removed. In these cases, a smaller 

value of r2 was obtained by manually inspecting the surface photometry profiles. 

• Inner profile-fitting limit r i is calculated by dividing r2 by 1.1^ ,̂ thus generating a 

range of 17 ellipse photometry points for the profile-fitting. Two exceptions are made 

to this rule. Firstly, for the four brightest/largest galaxies (i.e. NGC 4874, NGC 4889, 

NGC 3862 and NGC 3842), the rule is relaxed such that the inner hmit r i is reduced 

to the radius of the first elhpse outside r = 15". Secondly, for smaller galaxies, the 

value T i calculated above is smaller than 5", where seeing-effects dominate the profile. 

In such cases, r j is set to the radius of the first eUipse outside r = 5" (unless this 

produces less than 8 eUipse points in the range r i to r2, in which case r i = r 2 / l . r ) . 

• Outer radius for aperture photometry rout is calculated as the minimum of 7'2 

and the radius of the last aperture measurement (i.e. the last ellipse fitting entirely 

within the image). 

This procedure is used to measure total magnitudes for all 153 galaxies in the data-set. 

Also calculated for each galaxy is an extrapolated surface brightness profile. This involves 

replacing all pixel-count values from r2/ l . l '^ (i.e. two ellipses before r2) to an arbitrarily 

high radius, using the best-fit surface brightness profile between ri and r2. These profiles 

are used in the seeing-deconvolution routines (Chapter 5) - this is to reduce the effect 
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of noise in the outer profile, which can generate instability in the iterative part of the 
deconvolution algorithm. 

4.4 Global Parameters 

Once the total magnitude has been measured, it is straightforward to calculate the model-

independent half-light parameters. This is done using the seeing-corrected aperture and 

surface photometry profiles with equivalent radius (see Chapter 5, which describes the 

seeing-correction). The magnitude corresponding to half the luminosity is calculated. The 

half-light radius ri /2 can then be interpolated from the sequence of aperture photometry 

with radius. The uncertainty on ri /2 is calculated from the error on the magnitude (from 

the sky error) and the slope of magnitude against radius at ri/2- The half-light surface 

brightness (/i)i/2 (the mean surface brightness within r'i/2) is calculated by dividing the 

half-luminosity by T^rf^^- Also calculated is the mean surface brightness (^1/2) at ri/2 - this 

is simply interpolated from the surface photometry at r i /2. In Chapter 7, i t is demonstrated 

that f j , i f 2 — (/-')i/2 can be used to measure the shape n of a galaxy following a generalised 

r"-law. The half-light parameters, along with the total magnitudes, measured for each of 

the 153 galaxies in the sample, are shown in Table A . l in Appendix A. 

4.5 Internal Comparisons 

Of the 153 galaxies observed in the Coma & Abell 1367 sample, 41 objects were observed 

twice and a further 4 were observed four times, giving a total of 53 repeat images. The total 

(extrapolated) magnitudes for these 53 repeats are unaffected by seeing errors and should 

provide a useful internal consistency check on the quality of the photometry. Figure 4.1 

shows the internal comparison of total magnitudes, by comparing the magnitude of the 

image processed first with the magnitudes of subsequently processed images. This is plotted 

as both residual versus magnitude (upper diagram) and as magnitude versus magnitude 

(lower diagram). 

It is apparent that the residual plot shows no trend of increasing scatter with fainter 

galaxies. The RMS scatter is ±0.012 mag. This can be compared with the measured 

uncertainty, which is ~ib0.037mag. This suggests that the errors on the magnitudes. 
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Figure 4.1: Internal comparison of total (asymptotic) magnitudes, comparing first against repeat ob

servations. The upper plot shows the residual against magnitude. The lower plot shows the magnitude 

against magnitude. The shaded area is beyond the magnitude-limit (i?~15.7 for Steel). 
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which are derived from the sky errors, are somewhat exaggerated. Additionally, large 
disagreements between repeat magnitudes were taken into account when fine-tuning the 
sky-level (see Section 3.4). This may have had the effect of improving the sky measurements 
for repeat observations relative to single observations. 

As an additional internal photometry check, circular aperture magnitudes were mea

sured for all galaxies (diameter equals 20"). In addition to checking the internal photometry, 

these values can also be used to compare externally with the V-band Coma aperture pho

tometry of Lucey et al. (1991), see Section 4.6. Comparisons between aperture photometry 

measurements are particularly useful, because they are less affected by sky-error than to

tal magnitudes, and do not involve extrapolation. The internal comparison is shown in 

Figure 4.2, which has the same layout as Figure 4.1. The RMS scatter is similar to that 

of the total magnitude measurement at ±0.015 mag. This is somewhat larger than the 

typical measurement error due to the sky-error (~±0.007mag). Thus, other factors may 

come into play here, including seeing-correction, flat-field errors and pixel-scale errors. The 

conclusion is that the total and aperture photometry of galaxies is internally consistent to 

approximately ±0.01 mag. 

4.6 External Comparisons 

In this section, the total asymptotic magnitudes for Coma are compared with other pub

lished data. This is done to confirm the integrity of the photometry. The comparison 

data-sets are pubHshed in Andreon et al. (1996), Jorgensen & Franx (1994), Sagha, Ben

der k Dressier (1993), Godwin, Metcalfe k Peach (1983), Lobo et al. (1997) and Doi et 

al. (1995). Each comparison is discussed in detail below:-

1. Andreon et al. (1996). /?-band CCD photometry of 97 early-type galaxies, brighter 

than B = 17.0 (selected from Godwin, Metcalfe k Peach 1983), within 1° of the 

centre of Coma. The magnitudes quoted are total (asymptotic), so they should be 

comparable to the Steel data-set. The comparison is shown in Figure 4.3. 

2. Jorgensen Sz. Franx (1994). Gunn-r CCD photometry of 171 galaxies magnitude-

limited to r = 15.3 (selected from Godwin, Metcalfe k Peach 1983), within a rect

angular area (somewhat more than 1° square) centred on Coma. The magnitudes 
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Figu re 4.2: Internal comparison of circular aperture magnitudes (measured at diameter of 20"), com

paring first against repeat observations. The upper plot shows the residual against magnitude. The lower 

plot shows the magnitude against magnitude. 
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quoted are derived from fitting a growth curve to elliptical aperture photometry. The 
model used for elliptical and SO galaxies was a de Vaucouleurs r^-law. There may a 
systematic difference between these model-dependent total magnitudes and the au
thor's model-independent values, on top of the expected colour difference r — /?~0.3. 
The comparison is shown in Figure 4.4. 

3. Saglia, Bender & Dressier (1993). i?-band CCD photometry of 61 central Coma 

galaxies taken from the Dressier (1987) sample. The magnitudes quoted are derived 

from fitting a generalised growth curve to both elliptical and circular aperture pho

tometry. The eUiptical photometry was chosen for the best comparison with the 

author's data. The expected colour difference is i? — /?~1.9. The comparison is 

shown in Figure 4.5. 

4. Godwin, Metcalfe & Peach (1983). A catalogue of 6724 galaxies in an field 

2.63 degrees^ centred on Coma. The photometry is photographic (6-band) and isopho-

tal magnitude 626.5 (integrated magnitude within b = 26.5 isophote) measured for each 

galaxy. The catalogue has a magnitude-limit of 626.5 = 21. There will be a large dif

ference due to the colour and the offset between isophotal and total magnitudes. The 

comparison is shown in Figure 4.6. 

5. Lobo et al. (1997). A catalogue of 7023 galaxies in an field 0.4 degrees^ around the 

central cD galaxies in Coma. V-band CCD photometry, including isophotal magni

tude y26 . 5 (integrated magnitude within V = 26.5 isophote) are measured for each 

galaxy. The catalogue is complete to 1̂ 26.5 = 22.5. There will be a large difference due 

to the colour and the offset between isophotal and total magnitudes. The comparison 

is shown in Figure 4.7. 

6. Doi et al. (1995). A catalogue of 450 galaxies in a field 9.8° x9.8° centred on Coma. 

The photometry is photographic (5-band) and a total magnitude is estimated for 

each galaxy (by fitting a de Vaucouleurs growth-curve to 3 isophotal magnitudes). 

The catalogue has a completeness limit of B = 16.5. There will be a large difference 

due to the colour {B — i?~1.9). The comparison is shown in Figure 4.8. 

For each comparison, the mean offset and RMS scatter between the two systems are 

calculated. This measurement is repeated after rejecting any points which are more than 
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F i g u r e 4.3: Comparison of total magnitudes of Steel with total fl-band magnitudes of Andreon el al. 

(1996). The upper plot shows the residual (colour) against magnitude. The lower plot shows the magnitude 

against magnitude. The shaded area is beyond the magnitude-limit (R~15.7 for Steel, ii~15.3 for Andreon 

et al.). In both plots, the dashed-line shows the mean offset, whilst the dotted-line shows the best-fitting 

colour-magnitude slope. 



CHAPTER 4. APERTURE PHOTOMETRY AND TOTAL MAGNITUDES 52 

in 6 
I 

87 Galaxies 

3 

O 

Q.- -

10 

o o ^ 

Mean Offset = 0.02 ± 0.023 
RMS Scatter = 0.213 

CM Slope = - 0 . 1 5 ± 0.019 
RMS Scatter = 0.161 

12 14 

Magnitude 

16 

c D O 

E a r l y - t y p e o 

Unclassed D 

12 14 

Magnitude 

Figu re 4.4: Comparison of total magnitudes of Steel with total Gunn-r magnitudes of Jorgensen & 

Franx (1994), derived from growth-curve model fitting. The upper plot shows the residual (colour) against 

magnitude. The lower plot shows the magnitude against magnitude. The shaded area is beyond the 

magnitude-limit ( i i~15.7 for Steel, 7-~15.3 for Jorgensen & Franx). Late-type galaxies are excluded from 

the comparison due to colour difference. In both plots, the dashed-line shows the mean offset, whilst the 

dotted-line shows the best-fitting colour-magnitude slope. 



CHAPTER 4. APERTURE PHOTOMETRY AND TOTAL MAGNITUDES 53 

in 
d 

I 

Co i n 

3 
_o 
o 

a 
N 

in 

Q 
m 
to 

°3 ^ 
cu ^ T) 
=1 
'S 
(fl 
2 

C\2 

1 ' 1 
48 Galaxies 

1 . 1 . 

-
o ' -

Q 

o 0 CP .9 '" 
D . . _ O . P g g o g . f . p . . 

o 
o..g--Oo 

• 
...o' 

0 

• O 

Mean Offset = 1.314 ± 0.037 • 
RMS Scatter = 0.257 -

CM Slope = -0 .174 ± 0.021 
RMS Scatter = 0.155 

1 . 1 . -

10 12 14 16 

Magnitude R^ 

1 ' 1 

-

o o / ' 

/ 1 . 1 

c D O . 

E a r l y - t y p e o 

Unclassed • _ 

I . I . 

10 12 14 16 

Magnitude R^ 

Figure 4.5: Comparison of total magnitudes of Steel with total 5-band magnitudes of Saglia et al. (1993), 

derived from growth-curve model f i t t ing. The upper plot shows the residual (colour) against magnitude. 

The lower plot shows the magnitude against magnitude. The shaded area is beyond the magnitude-limit 

(i?~15.7 for Steel). Late-type galaxies are excluded from the comparison due to colour difference. In both 

plots, the dashed-line shows the mean colour, whilst the dotted-line shows the best-fitting colour-magnitude 

slope. 



CHAPTER 4. APERTURE PHOTOMETRY AND TOTAL MAGNITUDES 54 

100 Galaxies 

Mean Offset = 1.6 ± 0.026 
RMS Scatter = 0.257 

CM Slope = -0 .164 ± 0.021 
RMS Scatter = 0.201 

Magnitude /?f 

1 — 1 '•• 1 ' / 1 • / 

O A , ' " ® / . 

CD 0 / 

/ 
0 , - 0 / 

it
u

d
e 

6(
 

14
 

-

M
ag

ni
 

o O / 

w 

c D O . 

E a r l y - t y p e o 

o 

/ 1 

Unclassed ° _ 

1 , 1 . 1 , 

10 12 14 

Magnitude R^ 

16 

Figure 4.6: Comparison of total magnitudes of Steel with isophotal 626.5 magnitudes of Godwin et al. 

(1983). The upper plot shows the residual (colour) against magnitude. The lower plot shows the magnitude 

against magnitude. The shaded area is beyond the magnitude-limit (i?~15.7 for Steel). Late-type galaxies 

are excluded from the comparison due to colour difference. In both plots, the dashed-line shows the mean 

colour, whilst the dotted-line shows the best-fitting colour-magnitude slope. 
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Figure 4.7: Comparison of total magnitudes of Steel with isophotal Vos.s magnitudes of Lobo et al. (1997). 

The upper plot shows the residual (colour) against magnitude. The lower plot shows the magnitude against 

magnitude. The shaded area is beyond the magnitude-limit (i?~15.7 for Steel). Late-type galaxies are 

excluded from the comparison due to colour diflterence. In both plots, the dashed-line shows the mean 

colour, whilst the dotted-line shows the best-fitting colour-magnitude slope. 
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Figure 4.8: Comparison of total magnitudes of Steel with total S-band magnitudes of Doi et al. (1995), 

derived from growth-curve model f i t t ing. The upper plot shows the residual (colour) against magnitude. 

The lower plot shows the magnitude against magnitude. The shaded area is beyond the magnitude-limit 

( i i~15.7 for Steel, 5~15.9 for Doi et al.). Late-type galaxies are excluded from the comparison due to 

colour difference. In both plots, the dashed-line shows the mean colour, whilst the dotted-line shows the 

best-fitting colour-magnitude slope. 
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Table 4.1: Comparison between the authors total magnitudes and other published data-sets. The paren

thesised numbers after the offset and Colour-Magnitude-slope values are the standard errors on the last 

significant digit. 

Data-set Band Type N Offset RMS CM-Slope RMS 

(authors) (mag) (mag) (mag) (mag) 

Andreon et al. R CCD.Tota l 46 -0.110(30) 0.201 -0.123(26) 0.162 

Jorgensen & Franx r CCD.Tota l 87 0.020(23) 0.213 -0.150(19) 0.161 

Saglia et al. B CCD.Tota l 48 1.314(37) 0.257 -0.174(21) 0.155 

Godwin el al. b Phot.Isophotal 100 1.600(26) 0.257 -0.164(21) 0.201 

Lobo et al. V CCD.Isophotal 76 0.596(19) 0.166 -0.117(18) 0.131 

Doi et al. B Phot.Total 46 1.596(41) 0.276 -0.233(31) 0.180 

2xRMS from the offset. This is to ensure that rogue points do not bias the calculation. 

Additionally, to account for the colour-magnitude relation, the trend of residual against 

magnitude is fitted by a linear regression. Once again, rogue points are eliminated by clip

ping points which lay more than 3xRMS from the fit, and repeating the hnear regression. 

The RMS scatter of points from the C-M fit shows a big improvement against the RMS 

from a simple offset. Table 4.1 shows the relative quality of the various comparisons. 

For an extrapolated total magnitude, the comparisons are very good, with the typical 

RMS scatter between Steel and the other systems in the range 0.1-0.2 mag after the colour-

magnitude term has been accounted for. 

Although acceptable, the measurement errors on the total magnitudes are large due to 

the fact they involve an extrapolation. Circular aperture photometry, by comparison, is 

very simple to measure and results in smaller uncertainty. As a final check on the authors 

photometry, therefore, aperture magnitudes were measured for all galaxies (diameter equals 

20"). These are then compared with the V-band aperture photometry (same diameter) 

of Lucey et al. (1991). The comparison is shown in Figure 4.9. The RMS scatter is 

considerably lower than the previous comparisons at 0.016 mag. The mean colour index 

V — Riov this early-type sample is 0.56. 
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Figure 4.9: Comparison of apertures magnitudes of Steel with aperture magnitudes of Lucey et al. (1991). 

The upper plot shows the residual (colour) against magnitude. The lower plot shows the magnitude against 

magnitude. The shaded area is beyond the magnitude-limit (i?~15.7 for Steel). Late-type galaxies are 

excluded from the comparison due to colour difference. In both plots, the dashed-line shows the mean 

colour, whilst the dotted-line shows the best-fitting colour-magnitude slope. 
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4.7 Conclusion 

This chapter has described the elliptical aperture photometry method used to calculate 

asymptotic magnitudes and half-light parameters. The quality of the photometry has been 

shown to be of a high standard, with an internal scatter on the total magnitude of 0.015 mag. 

The comparison with other published data is also good, with RMS scatters in the range 

0.1 — 0.2 mag after the colour-magnitude relation is accounted for. Reasonable offsets are 

also achieved in comparisons with the other data-sets, despite the different methodologies 

employed. 

The next chapter will look at the surface photometry, and in particular, how to correct 

the surface brightness (and other) profiles for the effects of atmospheric seeing. 



Chapter 5 

Seeing Deconvolution 

5.1 Introduction - Galaxy Profiles and Seeing 

All ground-based astronomical observations suffer from atmospheric seeing. This is the 

blurring of an image caused by turbulent layers of air in the upper atmosphere. Without 

seeing, a 2.5 metre telescope would have a defraction-limited resolution of ~0.05". However, 

the effect of seeing reduces this resolution to anything between 0.5" and 5", depending on 

the site and the weather conditions. A point source, such as a star, is convolved by seeing 

into a point spread function (PSF). If the telescope is in focus and optically perfect, the 

PSF should be circularly symmetric, and can be approximated by a functional form. The 

resolution which results from seeing is usually quantified as the full-width half-maximum 

(FWHM) of the PSF. 

A problem occurs when we want to observe an extended source, such as a galaxy. Any 

structure on a scale of a few times the FWHM will be dampened, while structure finer than 

this may vanish altogether. At the distance of Coma, typical half-light radii of galaxies can 

be as small as 3", so clearly seeing will have a dramatic effect on ground-based observations. 

It is interesting to note that observing at the distance of Virgo (one-fifth the distance of 

Coma) reduces the effect of seeing on global properties of galaxies to well within tolerable 

levels. However, a large sample of galaxies at a common distance was required for this study, 

in addition to a rich-cluster environment (see Chapter 1) - in both these respects Coma is 

much more favourable than Virgo. Of central importance to this study is the photometric 

structure of early-type galaxies. The shape of the surface brightness profile, together with 

the ellipticity and higher order term profiles, can indicate the presence of photometric 

60 



CHAPTER 5. SEEING DECONVOLUTION 61 

FWHM 

Radius r (") 

d 

6 

FWHM 

C O 
:ti d 
o 

O 
o 

1 1 : i 1 ' 1 • • ' • . 

; (b) 

• , , , , 1 1 t 1 I 1 — 1 — 1 — 

1 10 

Radius r(") 

Figure 5.1: A demonstration of the effect of seeing upon an elliptical galaxy, (a) shows the surface 

brightness profiles, (b) shows the ellipticity profiles. The solid and dashed lines show the profiles before 

and after seeing convolution respectively. The profiles are produced by building an r^-law model gala.xy 

image (fe = 5", e = 0.35) and convolving with a seeing PSF {FWHM = 1.5"). 

features such as disks, boxyness, rings, bars, and so on. A surface photometry algorithm, 

such as G ALP HOT (Franx et al. 1989), will fit eUipses to a galaxy image and measure 

the surface brightness, ellipticity, position angle, centroid, and isophotai parameters for a 

galaxy, as a function of radius. Seeing has a dramatic effect on these profiles. Light from 

the sharply-peaked centre of the galaxy is redistributed further out, thus flattening the 

surface brightness profiles in the centre, but steepening them further out (up to a radius 

of 10 times the FWHM or more). If the galaxy is flattened (has a high elhpticity), the 

redistribution of light is anisotropic, with more light being scattered along the direction of 

the steeper hght profiles, i.e. the minor axes. This means that the eUipticity (and high-

order) profiles will be distorted, with the ellipticity very low (matching the PSF) at the 

centre, and increasing to the 'natural' value further out. The position angle and centroid 

profiles will also be affected to a lesser degree. An example of the effect of seeing upon 

surface brightness and ellipticity profiles is shown in figure 5.1. 

In order to perform a complete morphological study of early-type galaxies using surface 

photometry (see Chapter 1), a great deal of attention must be payed to the problems of 

seeing, and how to correct surface photometry profiles for the eff"ects of seeing. Section 5.2 

will briefly describe the well-known image restoration algorithms and explain why they 

are unsuitable for the purposes of this study. Section 5.3 looks at the surface photometry 

packages used in this project. The remaining sections of this chapter describe the new 
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methodology which has been devised for this study to derive seeing-corrected profiles from 
ground-based data. 

5.2 Image Restoration Methods 

There are several methods which can be used to 'restore' an image which has been corrupted 

by PSF convolution. These techniques have been applied recently in dealing with the 

problems of spherically-aberrated images from the Hubble Space Telescope (now corrected 

since the servicing mission). The best known of these is probably the Lucy-Richardson 

Algorithm, which generates a restored image by an iterative method. The basic essence of 

the iteration is that an (A'' -|- 1)*'' estimate of the 'restored' image can be derived from the 

N*^ estimate by multiphcation with a 'correction' image:-

' Original Data \ ^^^^i^^^i^p^p^^ 
\ImageNPSF ) 

(5.1) 

Where ' • ' represents the convolution operator and ^reflect{PSFy is the reflection of the 

PSF, i.e. reflect(PSF{x,y)) = PSF{-x,-y). The hmitation of this method is the 

creation of artificial 'artifacts' by noise amplification (overfitting of noise). For a diffuse 

object, this occurs after a relatively low number of iterations - it is very difficult to decide 

the best stopping point for the iterations. As the FWHM for ground-based data is large 

(compared to the detail to be recovered), this is not a viable method for this study. 

Alternative methods include Wiener filtering and Maximum Entropy. The Wiener 

method is an example of a Fourier non-iterative restoration. The main advantage over 

Lucy-Richardson is the shorter computation time required to reach a solution - the oper

ations being made in the Fourier transform domain. Typically, Wiener filter restorations 

appear to be of lower quality than restorations from iterative methods. They require certain 

conditions of the data which, in the case of this study, would certainly not be met - such as 

signal-independent noise and a well-sampled PSF. Generally speaking, image restoration 

methods are a rather clumsy way of removing the effects of seeing from a CCD image, and 

the interpretation of results are not always unambiguous. 

This study only requires the deconvolution of 1-D radial profiles of a galaxy. Therefore, 

a simpler method which retrieves this information and nothing else is needed. Firstly, an 

ellipse-fitting surface photometry algorithm is required to measure the raw radial profiles 
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in the first place. The routine which has been used here (based on G ALP HOT), is outlined 
briefly in Section 5.3. Secondly, an iterative deconvolution method has been developed for 
this study and this data - this is outlined in Section 5.4. 

5.3 Surface Photometry Measurement 

In order to assess the effect of seeing on the surface photometry of a gala.xy, it is first of 

all necessary to parametrise the surface brightness distribution. Given the symmetry of 

elliptical galaxies, the best way of doing this is to fit ellipses to the images. Provided the 

ellipses cover a large enough range in equivalent radius r (= Vab), then the 2D surface 

photometry of a galaxy is well described by the ID profiles of ellipse parameters (elhpticity 

e, position-angle $ and centroid [xcj^/c]) plus the photometry measured from the ellipses 

(mean intensity / and higher-order terms describing the deviation of / from the mean value 

around the ellipse). 

Various ellipse-fitting algorithms have been used in the past to measure surface pho

tometry of eUiptical galaxies. The routine which has been used in this study is based 

on GALPHOTcreated by Marjin Franx (see Franx et al. 1989). The advantage of 

GALPHOT over most other algorithms is that it uses the ellipse-fit to predict the inten

sity at every point in the image. Thus the final result is a unique, least-squares fit, 2D 

model for the galaxy image. The method normally used by other algorithms is to repeat 

iterations along various ellipses to minimize the residual intensity variations. At each iter

ation, the Fourier coefficients of the intensity residuals are determined. The 1st and 2nd 

order sine and cosine terms of the Fourier expansion (ci, 5 i , C2,52) can be used to adjust 

the ellipse parameters to produce a better ellipse-fit (see, for example, Jedrzejewski 1987). 

This does not necessarily result in a least-squares fit to the whole 2D image, because a 

model intensity for every point is not defined from the ellipse-fits. GALPHOT works by 

first performing a regular ellipse-fit, then correcting i t . This is done using an iterative 

process, whereby a 2D model image is reconstructed from the ellipse-fits and used to im

prove the ellipse-fits. Eventually, the reconstructed 2D model image matches the galaxy 

data, i.e. GALPHOT has self-corrected the inadequacies of the original eUipse-fit. Thus 

the algorithm is self-consistent - if GALPHOT is repeated on the reconstructed model, 

it will return the same eUipse-fit as it returned the first time. The image reconstruction 
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Figure 5.2: Using an ellipse-fitting algorithm (based on GALPHOT) to model the surface brightness 

distribution of a galaxy (/C4051 in Coma), (a) shows a grey-scale plot of the original CCD image, (b) 

shows the ellipses fitted to this image - only every second ellipse (with r>3.5") is shown for clarity. The 

ellipses are shown with a dashed-line beyond the radius where the ellipticity, PA and centroid are fixed, 

(c) shows the 2D model constructed by GALPHOT for this ellipse-fit. (d) shows how this model can be 

subtracted from the original image, leaving no residual. 
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is performed several times during the whole process, which is obviously time-consuming 
(taking a few minutes on a typical workstation). 

At the heart of this algorithm is the calculation of intensity at a given point {x,y) on 

the image. If these coordinates are translated and rotated to {x,y), such that the origin is 

at the centre of a given ellipse / and the i-axis is parallel to the major-axis, then a function 

mi for the particular elHpse can be defined:-

V=5+1; (5.2) 
Where mi represents the position of the point {x,y) relative to the ellipse, e.g. m/^ = 1 if 

the point lies on the ellipse; m;^ > 1 if outside the ellipse; and m;^ < 1 if within the eUipse. 

To measure the intensity / at the point {x,y), the largest ellipse /* is found which does 

not encompass the point. The value of m;^(.T,y) is calculated for this eUipse and its four 

nearest neighbours (/* — 2 < / < /*-f-2). As each ellipse has a measured mean intensity / , a 

function /(m^) is defined for the 5 points. This function is fitted by a 4th-order polynomial 

and solved for = 1, thus interpolating an 'imaginary' ellipse - of intensity / - passing 

through the point (x,y). 

In the original GALPHOT, the count for a given pixel is simply calculated using the 

above method, with (x,y) at the centre of the pixel. However, whilst this does produce a 

self-consistent model, the returned ellipse information in the central few pixels is inaccurate. 

This is because the pixel size is significant compared with the ellipse radii. For this study, 

a correction was made to GALPHOT, whereby the model in the central region (within 20 

pixels of the centre) is constructed by calculating the intensity at 121 points within each 

pixel (at the centres of 'sub-pixels' arranged in an 11x11 grid), using the method above. 

The pixel count is then the average of these values. The end result is more realistic profiles 

measured in the centre, with the same self-consistency (this was confirmed using made-up 

r^-law galaxies, integrating the flux over the central pixels). This was necessary for this 

study, because the central profiles are crucial in the deconvolution. The cost of this is, of 

course, extra computational time. 

The ellipses are fitted at equivalent radii separated by a factor 1.1. The range of the 

radii can be varied with GALPHOT, but for this study was fixed at r = 0.3 pixels for 

the innermost ellipse, whilst the outermost elhpse was the largest one partially within the 

image frame. The free-parameter fitting of the eUipse parameters (e,$,Xc,yc) described 
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above is only performed out to a radius where the S/N is sufficient. GALPHOT uses the 
uncertainties on the Fourier coefficients to determine this radii. However, this radii seems 
to be somewhat unstable, often being too far out - beyond where the fitted elhpses start 
crossing. Crossing ellipses are undesirable because they produce defects in the reconstructed 
2D model, which would cause problems in the deconvolution routine - see next section (5.4). 
Therefore a new cut-off radii has been devised, which has been found to be more stable 
- the cut-off radii is defined as that of the first ellipse whose intensity drops below 5% of 
the background count. Beyond this radii, the ellipse-parameters are fixed, and only the 
surface photometry is measured. The residuals from the mean intensity around the ellipse, 
parametrised in terms of Fourier coefficients (see section 1.5), are calculated only as far as 
4th order, which is sufficient to distinguish a galaxy as disky or boxy. These coefficients are 
divided by r.dl/dr so that they represent the relative radial deviation of the isophotes from 
ellipses. In theory, the sky background count can be extrapolated by fitting a model to the 
intensity profile, which includes the background. In reality, the raw CCD images (before 
chopping out of individual galaxies) are so large a more reliable method is to measure the 
sky interactively (prior to using GALPHOT). This is done using AVIEW- the sky can be 
measured by manually placing apertures at a sufficient distance from the galaxy (typically 
several arc-minutes). At the same time, a list of pixels are defined which are to be excluded 
from the ellipse-fitting - i.e. stars, companion galaxies, and cosmic rays. This is achieved 
using a version of PISA, which parametrises (as ellipses) sources of a given size which 
exceed the background by a certain count. These ellipses are displayed using AVIEW, 
and can be deleted or manipulated manually. Bad pixels which have not been enclosed by 
PISA ellipses can also be enclosed manually within circles. Finally, all enclosed 'bad' pixel 
coordinates are stored - to be used by the GALPHOT-hased routine. The interactive data 
preparation procedures were described in detail in Chapter 3. The original GALPHOT 
routine operated in the I RAF environment on I RAF data-frames, and produced tables 
in STSDAS format. As it was required for this study to combine GALPHOT with other 
routines (see Section 5.4), a final alteration was made to the algorithm - the new version 
runs in a UNIX environment on Starlink data-frames, and produces tables in ordinary 
text files. Figure 5.2 gives an example of the operation of the ellipse-fitting routine, using 
an image of the Coma galaxy IC 4051. The original image, best-fitting ellipses, made-up 
2D model, and the residual after model subtraction are all shown. 
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5.4 Profile Deconvolution 

If an ellipse-fitting algorithm (such as GALPHOT) can produce profiles of surface bright

ness f.1, eUipticity e, position-angle centroid ( x c , j / c ) , and isophotal shapes ( £ 3 , 3 3 , 0 4 , 5 4 ) 

as a function of ellipse radius r = \/ab for a ground-based galaxy image, then can the same 

profiles be derived minus the effect of seeing? Of course, the unconvolved galaxy can never 

be perfectly re-constructed, as information about where each photon has come from has 

been lost by the seeing process. In fact, there will be a whole series of model galaxies, made 

using different profiles, which will fit the observed profiles when convolved with seeing. The 

best that can be hoped for is to derive a model which is well-behaved and reasonable. The 

method which has been devised achieves this objective, and the basic principles will now 

be outlined. 

Before the deconvolution can proceed, there are a few variables which must be measured 

from the galaxy image interactively. These include the sky-background count (needed for 

the surface photometry), an estimate of the seeing FWHM (from fitting a model profile to 

a star), and a fist of 'bad' pixels (i.e. stars, companion galaxies and cosmic-rays that are 

rejected from the fit). The PSF model used here to fit stars is the same as that used by 

Lucey et al. (1991), i.e. a Hankel transform of the combined modulation transfer function 

of the telescope and atmosphere (see Roddier 1981). This gives a much better fit to the 

observed stellar profiles than the often-used Gaussian PSF, which does not have enough 

power at large radii. 

For the deconvolution itself, an iterative process is used to find a seeing-corrected sur

face photometry model. This iteration is based on the straightforward idea that when 

differences between the convolution of a model galaxy and the observed galaxy become 

small, the model galaxy is a close approximation to the observed galaxy without atmo

spheric seeing. The model galaxy is built using the profiles {iJ,{r),e{r),^{r),Xc{r),yc{r)} 

derived from ellipse-fitting, and it is these profiles which are altered to produce the final 

(seeing-corrected) model. The higher-order isophotal terms { c3 ( r ) , 53(r) , C4(r), S4(r)} are 

not included in this process because the measured profiles are too noisy. Therefore, these 

profiles are assumed to be zero. In essence, the criterion for a successful deconvolution can 
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be summarized as follows:-

68 

l^'model •k V ) — lJ-observed{j') ^correct (^) = fJ-modelir) 

(•model •k V ) — ^observedij') ^correct ij") — ^modeli^) 

^model •k V ) — ^ observedij') • then < ^correct ij") = ^modelir) 

•^model •k V ) — •^observedij') '^correct (^) — Xmodeli,'^) 

Vmodel •k V ) — Vobservedij') Vcorrectix) = ymodel{r) 

(5.3) 

{•^correct ('") = IJ-modelir) 

(^correct ('') — ^modeli^^) 

• then < ^correct ('') = ^model{r) 

3̂  correct ('^) — -^modeli^) 

ycorrect ('") = Vmodelir) 
J 

Where the symbol represents the convolution of the I D profiles due to the 2D seeing 

convolution of the model galaxy. The form of these convolutions are complex and cannot 

be analytically determined in advance - they depend not only on the PSF and radius, but 

also on the shapes of all the profiles, including the profile being convolved. A useful way 

of expressing the effect of seeing on the profiles at a given radius is a correction, i.e.:-

IJ-model{r) + A ^ ( r ) = Hobserved{r) 

(model{r) + Ae(r) = eobserved{r) 

I f { ^modetir) + ^Hr) = ^observedir) \ then \ ^,orrect{r) = ^model{r) \ (5-4) 

Xmodel{r) + Ax( r ) = Xobserved{r) 

Vmodelir) + Ay(r ) = yobserved{r) 

The whole problem now reduces to measuring the corrections (A/i{?^), Ae{r),etc.), which 

will convert the observed profiles into the seeing-corrected profiles. Measuring the correc

tions is a simple task if the unconvolved profiles are known - an image can be built from the 

profiles, then convolved with seeing, and the convolved profiles measured from ellipse-fits 

to the new image. The correction is then just the difference between the convolved and 

unconvolved profiles. The problem here is to do this in reverse - calculate the unconvolved 

(i.e. corrected) profiles given the convolved (i.e. observed) profiles. 

The iteration is begun by 'guessing' what the unconvolved profiles may look hke. Firstly, 

the observed galaxy image is run through an ellipse-fitting program (i.e. GALPHOT), and 

the raw uncorrected profiles are recorded. The outer parts of the observed profiles are noisy 

due to low signal-to-noise ratio (or bad flat-fielding). Since such noise would be 'over-fit' 

in the iteration, these parts of the observed profiles are smoothed using a cubic-spline 

approximation. Secondly, the ^ ( r ) profile is replaced within the seeing affected area by an 

r4-law (fitted between 5" and 15"). To ensure a continuous ^( r ) profile, radius-dependent 

weighting has been used to merge this into the outer profile. An -law was chosen because 
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a central profile more 'peaky' than the raw profile was required, and not out of any bias 

for what the final central profile might look like. Finally, the position angle, centroid, and 

ellipticity profiles are truncated in the centre as a first attempt to remove the effects of 

seeing. 

Given an estimate for the unconvolved (or seeing-corrected) profiles, it is possible to 

derive an estimate for the seeing-corrections using the method outhned above, i.e.:-

Ae^(r) = t^modd (r) - e^modeiir) 

A^\r) = ^'model ^ir)-^'modei{r) \ (5-5) 

Aa;^(r) = X^rnodel + (r) - x^modeiir) 

Ay\r) = y^model * {r) - y^^odeii'^) 

Where (^) denotes the first estimate of the seeing-corrected profiles and the resulting 

corrections. By subtracting these corrections from the observed profiles, a much better 

estimate for the seeing-corrected profiles can be derived:-

- Aei(r) 

- A $ i ( r ) 

- /^x\r) 

(5.6) 

f^^ modeli''^) — f-observedir) 

£ modeli,'^) ~ ^observedi^^) 

^'^model{r) = ^observed{r) 

X modeli^f') — ^observedi^^) 

y^modeli''') = yobserved{r) 

With these new estimates for the seeing-corrected profiles, the loop is repeated, i.e. new 

corrections are derived, which are then applied to the observed profiles to produce even bet

ter estimates for the seeing-corrected profiles. The 'convolution' of the ID model profiles is 

performed by building a 2D model galaxy using GALPHOT, convolving the image with the 

PSF (using a fast Fourier transform), and re-fitting the resultant image with GALPHOT 

to obtain the convolved ID profiles. Eventually, the iteration must converge - the seeing-

corrected profiles, when 'convolved' with seeing, become close to the observed profiles. This 

is tested by measuring the RMS difference between the observed and convolved /x(r) pro

files. The iterations are terminated if the RMS drops below 0.03 mag and has not changed 

by more than 10% from the previous iteration. The conditions for termination are thus 

(where n = number of iterations) :-

RMSn - J2 it^cbservediri) ' jJ-''model ^ (^Of < O'Ô  
m ^ 

(5.7) 
1=1 
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/ \RMSr.-RMSn-,\ ^ „ ^ 

One potential barrier to a successful convergence has already been mentioned - changing 

the shape of one profile (e.g. e(r)) effects the form of the seeing-correction of another profile 

(e.g. /w(r)). The seeing-corrections are applied to all the observed profiles simultaneously 

to derive new estimates for the seeing-corrected profiles. If one seeing-corrected profile 

has changed significantly since the last iteration, it could make the seeing-corrections for 

the other profiles invalid. This would have the effect of the algorithm trying to correct 

one profile, but perturbing all the others at the same time, making it hard to reach a 

convergence. In practise, this appears to be a second-order effect. The change in the 

seeing-correction for a given profile between iterations is too small to effect the other seeing-

corrections, especially as the initial estimates for the corrected profiles are quite good. 

For a typical Coma galaxy, the convergence is reached after only 3 or 4 iterations. I f 

a convergence, as determined by the conditions above, has not been reached by the 9th 

iteration, then the iterations are automatically terminated (it is assumed that a good 

convergence has been reached, but fine structure in the observed / i(r) is preventing a 

perfect match). 

The 'mapping' of the corrections in the scheme outlined above can be improved by 

mapping the seeing-corrected profiles at radius r to the convolved profiles at r -f Ar . This 

is because 'features' in the profiles are moved to slightly higher radii because of seeing con

volution. This is demonstrated in figure 5.3(a) and (d), where the 'bump' in the e(r) profile 

(solid line) is moved outwards when convolved with seeing (dashed line). To produce these 

graphs, an image was built from a perfect r 4-law (u(r) profile (rg = 5") and a flat e(r) plus a 

'bump'. This image was convolved with seeing (FWHM = 1.5"), and the 'convolved' £(?•) 

profile measured from the resulting image. The 'bump' in the e(r) profile here represents 

the inevitable point during the iterations where the seeing-corrected estimate is different 

from the 'true' value (say a flat e(r) profile) by a small perturbation. The outward shift 

A r is roughly dependent on FWHM and is found to be about 0.6xFWHM for / i(r) , and 

0.3xFWHM for the other profiles. In (a), the corrections are mapped the normal way, by 

comparing the seeing-corrected and convolved profiles at the same radius - the 'point-pairs' 

from which the correction is measured are linked by dotted lines. In (d), however, the 
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FWHM FWHM 

Radius r(") Radius r-(") 

Figure 5.3: A demonstration of how estimates of seeing-corrected profiles can be improved (using model 
galaxies). In (a) and (d), an estimated seeing-corrected e(r) profile (solid line) is convolved with seeing 
{FWHM = 1.5") to produce the dashed lines. In (a), the seeing-correction is measured between points of 
the same radii (dotted lines), whilst a radius increment is used in (d). See the text for full details of these 
different methods. The magnitudes of the seeing-corrections measured in (a) and (d) are shown in (b) and 
(e) respectively. If the 'true' seeing-corrected profile is flat, we can convolve this with seeing to simulate 
the 'observed' e(r) profile - this is shown as the solid line is (c) and (f). The corrections can then be added 
to these profiles (dotted lines) to produce better estimates of the seeing-corrected profiles (dashed lines) -
for each method, the corrected profiles are flatter. 
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corrections have been calculated as follows:-

Ae"(r) = e""model * (r + A r ) - e"modei{r) 

72 

(5.9) 

Of course, the profiles are built and measured at discrete radii, so r - j - A r is rounded to 

the nearest valid r, where A r = 0.3xFWHM for the ellipticity profile. The 'magnitude' 

of the correction profile Ae(r) is shown in (b) and (e). Figures (c) and (f) show how neio 

seeing-corrected estimate profiles (dashed lines) are built by adding the corrections to the 

'true' convolved profile (solid line - produced by convolving a model image made with a 

flat e(r) profile). Again, the point-to-point mapping for adding the corrections is shown 

by the dotted lines. I t can be quickly seen that for the basic method of correcting (figures 

a-^b^c), the size of the 'bump' is reduced in only 1 iteration. However, when a radius 

increment is used (figures d ^ e ^ f ) , the size of the perturbation is reduced stifl further, 

because the outward shift during convolution is partly accounted for. This means a solution 

will be found quicker and more cleanly. Another major advantage of this method is that 

the 'inner' regions ( ~ 0.5") of the convolved profiles are excluded from the fit. I t can be 

hard to fit the inner region using the basic method because the convolved profiles here are 

extremely insensitive to changed in the unconvolved profiles at the same radius. Also, the 

low pixel resolution at these radii make measuring the convolved profiles difficult, producing 

'artifacts' in the ellipse-fits - thus using these profiles for seeing-correction is not desirable. 

The final set of equations for measuring the seeing-corrections from the estimated seeing-

corrected profiles and their convolution is thus:-

A;u"(r) = f^""model *{r + Ar) ~ f^"'modeli''^) 

Ae"(r) = (""model -^ir + Ar) ( modeli^) 

A $ " ( r ) = ^""model * (r -f A r ) - ^""modelir) 

Ax"(r ) = x^'modei *{r + Ar) X modeli,^) 

Ay"(r ) = y""model * + A r ) ~ y^'modeli''^) 

(5.10) 

(where Ar = O.QxFWHM for ^ ( r ) and 0.3xFWHM for other profiles) 
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Using these corrections, a better estimate for the seeing-corrected profiles is calculated by: 

/^""^'modelir) = l^observedir + A r ) - AAi"(r) 

c'^^'modeiir) = e,bserved{r + A r ) - Ae"(r) 

^-+'model{r) = ^observed{r + Ar)-A^^ir) \ (5.11) 

x^'+^moddir) = Xobservedir + A r ) - Ax"( r ) 

y'^'^'moddir) = yobservedir + A r ) - Ay"(r) 

A final adjustment must be performed on the estimated seeing-corrected profiles, in 

order to ensure a convergence. I f there are small amplitude fluctuations in the profiles (with 

a scale of less than a few times FWHM), they will be smoothed out by the convolution. 

Thus, the correction functions calculated for these seeing-corrected profiles will also have 

fine structure. As the iterations progress, this fine structure will build-up into more or less 

random noise. Eventually, it will reach an equilibrium when it cancels itself out through 

the correction process, and stops growing. It is obviously not desirable to end up with 

final corrected profiles which contain unnecessary noise (note that this may still be a valid 

solution provided the noise is smoothed out in the convolved profiles, which must match the 

observed profiles). The solution is to 'smooth' fluctuations in the seeing-corrected profiles 

as they are produced. This is done simply by averaging each point in each profile by their 

nearest neighbour. Noting that the points in each profile are separated by a radius factor 

of 1.1, the smoothing is mathematically described as foUows:-

e r - 1 r . n e"(l . l r ) + e"(r) + e " ( l . l - V ) 

$"(r) = i [ $ " ( l . l r ) + $"(r) + $"(1.1"^) 

x"(r) =̂  | [ a ; " ( l . l r ) + . T " ( r ) + a ; " ( l . l - V ) ] \ (5.12) 

y"(r) = I [ y " ( l . l r ) + y"(r) + y " ( l . l - V ) ] 

//"(r) = I [^^"(l.lr) + A^"(r) + /l/"(1.1-V)] (r < 20") 

There was no need to smooth the surface brightness profile farther out than r = 20", 

because i t was more robust than the other profiles. On the other hand, i t was necessary 

to repeat the smoothing for e(r) (r < l.bxFWHM) and $(r ) (r < FWHM), as these 

profiles are particularly unstable in the centre. In fact, the central region, where the profile 

information is based only upon a few pixels, is a particular problem. In this region, the 

ellipse parameters (c, $, x, y) can occupy whole ranges of values with little or no effect 

on the seeing-convolved profiles. The only reasonable guess that can be made about these 
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CCD frame containing galaxy image is reduced, i.e. de-biased 

and flat-fielded, and the galaxy is 'chopped' out of the frame. 

Sky count is measured manually from circular apertures at 

large r from the galaxy. The seeing FWHM is measured by 

fitting a theoretical PSF (Hankel Transform) to nearby stars. 

Bad pixels (i.e. cosmic-rays, stars) are flagged manually or 

by using a program that locates and parametrises sources. 

Proflles of observed galaxy measured using an ellipse-fitting 

program, as a function of equivalent radius r = \/ab. 

The observed profiles are adjusted - (j,{r) is replaced at 

large r by an extrapolation. Other profiles are smoothed at 

large r using a cubic sphne approximation. This is to 

prevent fluctuations at large radii (due to low S/N or bad 

flat-fielding) feeding into the iteration. Also, crossing 

ellipses are removed by interpolating ellipse parameters 

between the nearest 'good' or non-crossing ellipses. 

A first estimate of the seeing-corrected profiles are required 

to start the iteration. These are derived by extrapolating an 

r4-law fit into the centre of the /i(r) profile. The other 

profiles are guessed by truncating (flattening) in the centre. 

As we now have a first estimate for the corrected 

model profiles, we can move on to the iterative part 

of the algorithm - see flow chart overleaf ... 

Figure 5.4: Flow Chart of Profile Deconvolution (Initial Stage) 
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... continued from previous flowchart 

Seeing-corrected profile estimates are cleaned up • 
crossing ellipses are replaced by interpolation. 

Using seeing-corrected model profiles, build an 
image and FFT-convolve with a P S F (Hankel transform, 
with measured F W H M ) . Convolution is performed with 

twice the pixel resolution to sample the P S F better. 

Using an ellipse-fitting routine, measure profiles 
from this convolved image (replace crossing and 

missing ellipses by interpolation, as before). 

Calculate 'seeing-correction' profiles using the 
seeing-corrected profiles estimates and the convolved 
profiles measured above (see equations 5.10 in text). 

The corrections are applied to the observed profiles 
to produce a set of seeing-corrected profile estimates, 
which should be better than the previous estimates 

(see equations 5.11 in text). 

Smoothing and damping of the seeing-corrected profiles 
is required to ensure noise or detail which is too 
fine to be fitted is not fed back into the iteration 

loop (see equations 5.12 and 5.13 in text). 

To test whether the iterations are converging, the 
R M S difference between the observed and convolved ^l{r) 
profiles is calculated (for the conditions to decide whether 
R M S difference is acceptable, see eqns 5.7 & 5.8 in text) 

Is 
MS diflterence 

Acceptable? (see above) 
D R have there been 9, 

terations'' 

Last seeing-corrected profiles are accepted as the final 
solution (any crossing ellipses are cleaned up by 

interpolation). Various fitting laws are fitted to the 
seeing-corrected /i(r) profile, and global parameters 
(''e.(M)e) are calculated. Errors are calculated on all 
profiles. Graphs are produced to show the corrected 
profiles and errors. An image is produced from the 
corrected profiles, convolved, and ellipse-fitted to 

produce graphs showing the quality of the final correction. 

E N D 

Figure 5.5: Flow Chart of Profile Deconvolution (Iteration Loop) 
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profiles is that they are approximately constant. Thus to prevent instability, it is thus 
necessary to 'damp' the eUipse parameter profiles within r = FWHM. This can be done 
by averaging each parameter with its own value at FWHM, i.e.:-

e-(r) = I [e"(r) + e^{fwhm)] 

$"(r) = I [2$"(r) + $"(/u;/im); 

x"(r) = I [2.7;"(r) + x^'ifhium) 

y"(r) = i [ 2 y " ( r ) y " ( / u ; / i m ) ] J 

This is the method employed by this study to obtain seeing-corrected ellipse-fit profiles 

from a CCD galaxy image. The important equations in the process are thus 5.10, 5.11, 5.12 

and 5.13. A flow-chart summarizing the whole algorithm is given in figures 5.4 and 5.5. 

Section 5.5 presents illustrations of the success of the process, using synthetic (i.e. made-up) 

model galaxy images. 

5.5 Examples using Synthetic Galaxy Models 

In order to verify the correct operation of the deconvolution process, several different galaxy 

'model' images have been constructed, and reduced in the standard way. The synthetic 

images are built with perfect r?-law intensity profiles (different profile laws are also con

sidered later on). The scaling-parameters (re, {fJ-)e)i ellipticity and background-level are 

chosen to be representative of galaxies observed in the Coma data-set. Using the same 

pixel scale (0.55"/pixel) and zero-point as the real data, the models simulate observations 

with a 605 exposure time (the shorter of the two exposure times used for the data). Finally, 

the images are convolved with a representative seeing PSF {FWHM ~ 1.1" —)• 2.6"), and 

photon noise is added to the pixels. 

The first example has r?-law parameters of rg = 8.5" and (/.i)e = 19.3 making a bright 

'Coma' galaxy of magnitude R = 12.66. The eUipticity profile is a constant at 0.29 and, 

Ukewise, the position-angle and ellipse-centroid are fixed with radius. Al l the higher order 

terms are zero - so the ellipses are regular and concentric. Figures 5.6(a-e) show, for the 

IJ.{r) profile, how well the fit is proceeding at 1, 2, 3, 6 iterations, and after the final 

(9th) iteration. Each graph shows the residual between the corrected profiles (raw and 

convolved) and the observed fi(r) profile. The convolved residual eventually drops to zero 

as the iterations progress, as expected - the convolved profile should match the observed 
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profile i f a solution is to be found for the corrected profile. As expected, the residual 
between the (unconvolved) corrected profile and the observed profile is very large for small 
r (in fact, this residual was divided by 10 to fit it on the plots). If the corrected /L<(r) 
profile matches, within error, the original model (pre-convolution) profile, then this is a 
solid verification that the program has worked. This is indeed the case - figure 5.6(f) shows 
the residual between the final corrected /^(r) profile and a best fi t r^'-law, plus the seeing 
correction which has been made to each point. Also shown is the error envelope on the 
deconvolved ^( r ) profile - the errors are calculated by adding in quadrature the error due to 
the background uncertainty with | times the local seeing-correction. Ignore the apparent 
seeing-correction at large radii (r > 40") - this is due to edge-effects in the FFT seeing 
convolution. Given that we have an estimate of the errors on the corrected /^(r) profile, we 
can minimize x'^ to get our best-fit r?-law. The range in r over which the 7'4-law is fitted is 
defined by 2xFWHM < r < r(Countc:il.5xASky). The scale-parameters returned from 
the fit match perfectly the input parameters used to make the model (see table 5.1). For 
comparison, a best-fitting rs-law and rs-law are calculated in the same way, and are shown 
on the residual plots. Despite the photometric similarity of galaxies with these profiles to 
an r4-law galaxy when convolved with seeing, the deconvolution very clearly distinguishes 
that this galaxy has an r4-law profile. 

Of course, the intensity profile is not the only profile to be effected by seeing - the 

ellipticity profile e(r) is strongly perturbed within about AxFWHM. Figure 5.7 shows 

the fitting process for the e(r) profile, just as figure 5.6 did for the iJ.[r) profile. Instead of 

showing a residual, figures 5.7(a-e) show the absolute ellipticities at different iterations - the 

graphs show both the corrected e(r) and its 'convolution', in addition to the observed profile, 

which includes some smoothing at high-r using a cubic-spline approximation (this removes 

the noise at high-?', and is used as the 'observed' profile in the fitting - see section 5.4). As 

expected, the corrected profile ends up fiat, while the convolved profile matches the observed 

profile. In fact, the match is extremely good for the first estimate of the corrected profile, 

and gets worse before it improves. This is because the first guess - replacing e(r) with a 

constant at low radii - is close to the true profile (which is, of course, a constant at all radii). 

The fitting of the other profiles drives the match away slightly in subsequent iterations, 

but eventually a convergence is reach when all the corrected profiles are close to their true 

profiles. Note the strange behaviour of the observed/convolved e(r) profile within about 2 
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Model Fig FWHM Prof C4 Input Input Input Output Output Output 

# # (") 
1 

r » log re e log re (A')e 

1 5.6 1.1 4 0.00 0.929 19.3 0.29 0.930(4) 19.30(1) 0.290(3) 

2 5.8 1.6 4 0.00 0.929 19.3 0.29 0.929(5) 19.30(2) 0.290(3) 

3 5.9 2.6 4 0.00 0.929 19.3 0.29 0.934(7) 19.32(3) 0.291(6) 

4 5.10 1.3/1.2 4 0.00 0.929 19.3 0.29 0.922(4) 19.26(1) 0.284(3) 

5 5.11 1.3/1.4 4 0.00 0.929 19.3 0.29 0.927(4) 19.30(2) 0.287(3) 

6 5.12 1.1 4 0.05 0.929 19.3 0.29 0.937(4) 19.33(1) 0.293(6) 

7 5.13 1.1 4 0.00 0.929 19.3 0.05-0.5 0.931(4) 19.31(1) — 

8 5.14 1.1 4 0.05 0.929 19.3 0.05-0.5 0.927(4) 19.29(1) — 

9 5.15 1.1 4 0.00 0.929 19.3 0.5-0.05 0.931(4) 19.31(1) — 

10 5.16 1.1/1.2 4 0.00 0.929 19.3 0.05-0.5 0.934(4) 19.33(1) — 

11 5.17 1.1 4 0.00 0.653 18.7 0.29 0.650(4) 18.69(2) 0.293(4) 

12 5.18 1.1 4 0.00 1.033 20.1 0.29 1.036(4) 20.11(1) 0.293(4) 

13 5.19 1.1 3 0.00 0.929 19.3 0.29 — — 0.289(3) 

14 5.20 1.1 5 0.00 0.929 19.3 0.29 — — 0.295(3) 

15 5.21 1.1 3 0.05 0.929 19.3 0.05-0.5 — — — 

Table 5.1: Comparison of scale-parameters and ellipticity of model galaxies which have been deconvolved, 
to the same parameters of the original (undegraded) models. The first two columns give the number and 
figure reference of the model galaxy. The next three columns give details of how the models were made, 
the FWHM of the PSF, the shape of the profile ( r i ) and the 'diskyness' of the isophote (c4 - the Fourier 
coefficient is divided by r.dl/dr to represent the relative radial distortion from an elliptical isophote). 
Where there are two figures for the FWHM, the first signifies the PSF with which the original model 
was degraded with and the second is the PSF used for the deconvolution (thus representing a error in 
the seeing measurement). The next three columns give the scale-parameters (appropriate to the profile) 
and ellipticity of the made-up model, before convolution. Where a range is given for the ellipticity, the 
ellipticity was modelled with a linear function in logr between the two values, rather than a constant. 
The final three columns (on the right) give the output parameters from the deconvolution routine - the 
scale-parameters from an r^-law fit and the ellipticity interpolated at the half-light radius. The numbers 
in brackets are the calculated error on the last significant digit. The parameters are not shown where they 
are meaningless (i.e. for non-r^-law profiles and varying ellipticities). 
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Figu re 5.6: Fitt ing the surface brightness of a perfect r?-law model galaxy (log re = 0.929, (/i)e = 19.3, 
e — 0.29) 'observed' in good seeing {FWHM = 1.1"). These plots show the comparison between the 
corrected / i ( r ) profile (convolved with seeing) and the 'observed' / j ( r ) profile, at various stages in the 
routine - at iteration 1: plot (a); at iteration 2: plot (b); at iteration 3: plot (c); at iteration 6: plot (d); 
after the final (9th) iteration: plot (e). The dashed line shows the difference between the corrected 
profile (convolved with seeing) and the observed profile. Note that this residual drops to nearly zero as 
the iterations progress, as expected. The residual between the true (i.e. unconvolved) corrected profile 
and the observed (i.e. degraded) profile is shown by the dot-dashed line, which was divided by 10 to fit 
onto the plots. The final plot (f) shows the residual (circles) between the final corrected / j ( r ) profile and a 
best-fit r4-law (scale-parameters are shown, see figure 5.8 for more detail). The 'tails' represent the seeing 
correction and the dotted lines are the error-envelopes, whilst the dashed and dot-dashed lines are the 
best-fit r3-law and rs-law profiles respectively (with the r^-law subtracted off'). 



CHAPTER 5. SEEING DECONVOLUTION 80 

F W H M F W H M 

CO 
d 

U) CO 

d 

CO 

d 

U CO 

ft ^ 

3 o 

d 

CO 

d 

CO 

.1-1 

o 

3 ° 

d 

(a) 

- I — I — I I I 111 

(c) 

T < 1 I I I I I I I 

1 i t e r a t i o n 

- I 1 I I I I I l | 1 1 I I I I I l | 

(b) 

H 1 I I I I I l | 

(d) 

- i - n - | 1 1 ' 1 I 1 I I I 

2 i t e r a t i o n s 

H 1 I I I I l l | 1 I 
3 i t e r a t i o n s 6 i t e r a t i o n s 

I I I 111 l | I I — I M i l l I I I I I — I I I I I I 

F i n a l C o m p a r i s o n 
( a f t e r 9 i t e r a t i o n s ) 

Radius r(") 

^ o 

ca 
•V 
u 
<u u 
i-, 
O 

o 

F i n a l C o r r e c t e d P r o f i l e 
€ ( t J = 0 . 2 9 0 1 ± 0 . 0 0 2 9 

10 

Radius r(") 

100 

Figu re 5.7: Fitt ing the ellipticity of a perfect r i - l aw model galaxy (log re = 0.929, (/i)e = 19.3, e = 0.29) 
'observed' in good seeing (FWHM = 1.1") - the same model as in figure 5.6. These plots show the 
comparison between the corrected e(r) profile (convolved with seeing) and the 'observed' 6(r) profile, at 
various stages in the routine - at iteration 1: plot (a); at iteration 2: plot (b); at iteration 3: plot (c); 
at iteration 6: plot (d); after the final (9th) iteration: plot (e). The corrected profile (after seeing 
convolution), shown by a dashed line, starts close to the observed profile, which is encouraging (this 
is because the original e(r) profile was just a simple constant). The match is knocked off slightly in 
iteration 2 (due to the fitting of other profiles), but quickly returns to the previous good fit. The true 
(i.e. unconvolved) corrected profile is shown by the dot-dashed line, and as expected remains nearly flat 
throughout the iterations. The final plot (f) shows the final corrected f ( r ) profile (circles) and seeing-
correction ('tails'). The interpolated ellipticity at the half-light radius is also printed. 
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pixels. This is merely an artifact introduced by the ellipse-fitting and low pixel samphng 
- if the centroid is near the boundary of 2 pixels, these inner radii will be fitted with a 
highly elliptical isophote, regardless of the true ellipticity! It can be seen, however, that 
the deconvolved profile does end up flat in the centre, and the convolved profile fits the 
observed perfectly. If a real galaxy does have an ellipticity gradient within its central few 
pixels, this will not, of course, be resolved. The final corrected output e(r) profile is shown 
is figure 5.7(f) - with seeing-correction and errors shown. The ellipticity at r^ from this fine 
is almost exactly that of the constant ellipticity originally fed-in (see table 5.1). 

The next series of models are based on the first model, with the same r^-law parameters, 

but are perturbed in various ways which should made them harder to deconvolve. This is a 

test of the limitations of the routine. For the first two models, the seeing FWHM is increased 

to 1.6" and 2.6", to simulate poor observing conditions. The final corrected profiles fitted to 

these models are shown as figures 5.8 and 5.9 respectively (the position angle and centroid 

are included as well as intensity and ellipticity). The key in both these figures are the same 

as for figure 5.6(f) for the r^ residual plots, with the circles representing the residual, and 

figure 5.7(f) for the other plots, with the circles representing the final corrected profiles -

see the captions for a detailed key. Seeing-corrections are shown as tails. As the figures 

show, the ripples in the ^ ( r ) — r? residual plot increase with seeing, as the seeing-correction 

increases. However, even at 2.6" seeing (about the worst in the Coma data-set), the routine 

still produces a good fit to the original model, with fiat e(r), $( r ) , and centroid profiles. 

The best-fit r^-law parameters have changed slightly, but are still correct within error. 

The next problem we may encounter with real data is an error on the measurement of 

the seeing FWHM. In fact, as the theoretical seeing PSF's used for the deconvolution are 

in steps of 0.1" (of FWHM), there will always be a small error (~0.025") in this respect. To 

test this problem, a model was constructed (same parameters as before) with FWHM = 

1.3". This model was then deconvolved twice - once using 1.2" as my 'measured' seeing, 

and again using 1.4", thus simulating a seeing measurement error of AFWHM = ±0.1. 

The results are shown in figures 5.10 and 5.11 respectively. Again, it is seen that a good 

fit is made to the model in both cases. The ri-law parameters are perturbed by about 2a 

from their correct values, but this is not hugely significant and the shape of the corrected 

/i(r) profile is still clearly r^. 

What if the galaxy to be deconvolved is not a 'perfect' elliptical, but has disky isophotes. 



CHAPTER 5. SEEING DECONVOLUTION 82 

F W H M F W H M 

l°gio'"e = °-Q29 i 0.005 
</x>. = 19.297 ±\ 0.018 
i 7 i f i l l I — I I ?• 1 1 1 1 1 — 

10 

Radius r (") 

100 

c 
o 
to 
O 

I I I I 

CD ( f ) 

£ w -

(b) 

I 11111 

(d) 

- , — I I I 1 1 1 1 | 1 — I 

e(rj = 0.29 ± 0.0029 

H 1 I I I I I l | 1 1 I I I I I l | 

4-

O 

i in 

u ^ 
I CM 

(g) 

1 

H 1 I I I I I l | 1 1 I I I I l l | 

(Mmmummmamm) 

10 

Radius r(") 

100 

Figu re 5.8: Deconvolution of a perfect r i - l aw model galaxy (logrg = 0.929, (/i)e = 19.3, e = 0.29) 
'observed' in moderate seeing (FWHM = 1.6"). These plots show the final corrected profiles (circles), 
with the seeing-correction ('tails' or solid lines) and error-envelope of the corrected profiles (dotted lines), 
(a) shows the surface brightness (n) profile, (b) shows the ellipticity (e) profile, (d) shows the position-
angle ($) profile, while (f) and (g) show the ellipse-centroid (x,y) profiles. The plot (c) shows the residual 
between the final corrected surface brightness profiles and the best-fitting r<-law. This r^-law was fitted 
over the unshaded area - defined by 2xFWHM < r < r(Count~1.5xASky) - using the calculated errors 
to weight the least-squares fit. (e) shows the same residual plot as (c), but with the y-axis scale increased 
by a factor of 10 to show more detail. In both (c) and (e), the best-fitted r a and rs-law profiles are shown 
for comparison - these are the dashed and dot-dashed lines respectively. The values of the best-fit r i - law 
scale parameters are printed in plot (e), while the interpolated value for the corrected ellipticity at re is 
displayed in plot (b). 
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Figure 5.9: Deconvolution of a perfect r^-law model galaxy (log r e = 0.929, ( ^ ) e = 19.3, e = 0.29) 
'observed' in poor seeing {FWHM = 2.6"). These plots show the final corrected profiles (circles), with 
the seeing-correction ('tails' or solid lines) and error-envelope of the corrected profiles (dotted lines), (a) 
shows the surface brightness {fi) profile, (b) shows the ellipticity (e) profile, (d) shows the position-angle 
($) profile, while (f) and (g) show the ellipse-centroid {x,y) profiles. The plot (c) shows the residual 
between the final corrected surface brightness profiles and the best-fitting r^-law. This r^-law was fitted 
over the unshaded area - defined by 2xFWHM < r < r{Count~1.5xASky) - using the calculated errors 
to weight the least-squares fit. (e) shows the same residual plot as (c), but with the y-axis scale increased 
by a factor of 10 to show more detail. In both (c) and (e), the best-fitted r^ and r^-law profiles are shown 
for comparison - these are the dashed and dot-dashed lines respectively. The values of the best-fit r <-law 
scale parameters are printed in plot (e), while the interpolated value for the corrected ellipticity at is 
displayed in plot (b). 
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Figure 5.10: Deconvolution of a perfect r i - l a w model galaxy (logr^ = 0.929, ( / j ) e = 19.3, f = 0.29). The 
image was degraded using a seeing PSF with FWHM = 1.3", but deconvolved using FWHM = 1.2" -
this represents a seeing FWHM measurement error of 0.1". These plots show the final corrected profiles 
(circles), wi th the seeing-correction ('tails' or solid lines) and error-envelope of the corrected profiles (dotted 
lines), (a) shows the surface brightness ( / i ) profile, (b) shows the ellipticity ( e ) profile, (d) shows the 
position-angle ($) profile, while (f) and (g) show the ellipse-centroid (x,y) profiles. The plot (c) shows the 
residual between the final corrected surface brightness profiles and the best-fitting r i - l aw. This r^-law was 
fitted over the unshaded area - defined by 2xFWHM < r < r(Count^l.5xASky) - using the calculated 
errors to weight the least-squares fit. (e) shows the same residual plot as (c), but with the j/-axis scale 
increased by a factor of 10 to show more detail. In both (c) and (e), the best-fitted rs and rs-law profiles 
are shown for comparison - these are the dashed and dot-dashed lines respectively. The values of the best-fit 
r^-law scale parameters are printed in plot (e), while the interpolated value for the corrected ellipticity at 
T e is displayed in plot (b). 
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Figu re 5 .11: Deconvolution of a perfect r4-law model galaxy (logrg = 0.929, {^)e = 19.3, e = 0.29). The 
image was degraded using a seeing PSF with FWHM — 1.3", but deconvolved using FWHM = 1.4" - this 
represents a seeing FWHM measurement error of 0.1" (in the opposite sense to figure 5.10). These plots 
show the final corrected profiles (circles), with the seeing-correction ('tails' or solid lines) and error-envelope 
of the corrected profiles (dotted lines), (a) shows the surface brightness (/<) profile, (b) shows the ellipticity 
(e) profile, (d) shows the position-angle ($) profile, while (f) and (g) show the ellipse-centroid {x, y) profiles. 
The plot (c) shows the residual between the final corrected surface brightness profiles cind the best-fitting r i -
law. This r*-law was fitted over the unshaded area - defined by 2xFWHM < r < r{Count~l.5xASky) 
- using the calculated errors to weight the least-squares fit. (e) shows the same residual plot as (c), but 
with the y-axis scale increased by a factor of 10 to show more detail. In both (c) and (e), the best-fitted 
r 3 and rs-law profiles are shown for comparison - these are the dashed and dot-dashed lines respectively. 
The values of the best-fit r <-law scale parameters are printed in plot (e), while the interpolated value for 
the corrected ellipticity at re is displayed in plot (b). 
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or an ellipticity gradient, or both? Figure 5.12 shows the corrected profiles for a model 
built with a positive C4 term of 0.05, representing strong disky isophotes. Figure 5.13 shows 
the same for a model built with a e(r) profile increasing from 0.05 to 0.5 (linearly in logr). 
A typical SO galaxy might well have both an increasing ellipticity and disky isophotes, so a 
model was built combining the features of the two previous models - the corrected profiles 
are shown in figure 5.14. Occasionally, the ellipticity of a galaxy might actually decrease 
with radius (such as a face-on SBO) - the fit to this model is shown in figure 5.15. Finally, 
figure 5.16 shows the corrected profiles for the same model as figure 5.13 (i.e. no C4, but 
increasing e(r)), but with a different seeing (1.2") used for the deconvolution from that used 
to convolve the model ( l - l " ) - For all these models, it can be immediately seen from the 
residuals of the corrected //(r) from a best-fit that all the models were constructed with 
r3"-laws, rather than any other function of ^ ( r ) . The scale-parameters of the best-fit in 
each case recover the parameters of the input r^ to an acceptable accuracy (see table 5.1). 
The ellipticity profile is also well recovered in each example - whether constant, increasing 
linearly, or decreasing linearly. 

Al l the model galaxies in the examples above were built with an r^-law profile, us

ing identical scale-parameters (logrg = 0.929, (fj,)^ = 19.3). The next two figures (5.17 

and 5.18) show the corrected profiles for r^-law models, made with different scale-parameters 

- logTe = 0.653 & = 18.7 representing a more compact galaxy, and logrg = 1.033 & 

(^)^ = 20.1 representing a more extended galaxy. The fits to both of these models shows 

once again how remarkably well the original profiles are recovered. Of course, many real 

galaxies do not follow r i laws. Figures 5.19 and 5.20 shows the corrected profiles for models 

made up with r^-law and rs-law profiles respectively. In the residual plots (c) and (e), the 

best-fit rs and r^' profiles are shown as dashed and dot-dashed lines respectively (they re

semble parabola when the is subtracted). As expected, the seeing-corrected ^(r) profiles 

follow these very precisely. The scale-parameters are wrong by a large margin, but this is 

expected as they describe the best-fitting r^-law. If the deconvolution routine can distin

guish between r s , and rs profiles, which are photometrically very similar, it will easily 

pick-up exponential-disks hidden in ellipticals, and other features of interest. The final ex

ample model to be deconvolved has an r^-law ^(r ) profile, a positive C4 parameter (0.05), 

and an increasing ellipticity profile (identical to the model in 5.13). Figure 5.21 shows the 

corrected profile fits, demonstrating again how successful this routine is. Note the slight 
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Figure 5.12: Deconvolution of a disky r<-law model galaxy (logre = 0.929, {n)e = 19.3, e = 0.29, 
C 4 = 0.05) 'observed' in good seeing {FWHM = 1.1"). These plots show the final corrected profiles (circles), 
wi th the seeing-correction ('tails' or solid lines) and error-envelope of the corrected profiles (dotted lines), 
(a) shows the surface brightness (//) profile, (b) shows the ellipticity (c) profile, (d) shows the position-
angle ($) profile, while (f) and (g) show the ellipse-centroid {x,y) profiles. The plot (c) shows the residujj 
between the final corrected surface brightness profiles and the best-fitting r^-law. This r<-law was fitted 
over the unshaded area - defined by 2xFWHM < r < r(Co«n<~1.5xA5Ay) - using the calculated errors 
to weight the least-squares fit. (e) shows the same residual plot as (c), but with the y-axis scale increased 
by a factor of 10 to show more detail. In both (c) and (e), the best-fitted ra and rs- law profiles are shown 
for comparison - these are the dashed and dot-dashed lines respectively. The values of the best-fit rT-law 
scale parameters are printed in plot (e), while the interpolated value for the corrected ellipticity at re is 
displayed in plot (b). 
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Figure 5.13: Deconvolution of an r4-law model galaxy (log re = 0.929, (/i)e = 19.3) 'observed' in good 
seeing (FWHM — 1.1"). The ellipticity of the 'manufactured' model was made to vary linearly (in logr) 
between e = 0.05 (at r = 1.0") and e = 0.5 (at r = 45.7"). This was done in order to test the recovery of the 
ellipticity profile. These plots show the final corrected profiles (circles), with the seeing-correction ('tails' 
or solid lines) and error-envelope of the corrected profiles (dotted lines). (a) shows the surfcice brightness 
( f i ) profile, (b) shows the ellipticity (e) profile, (d) shows the position-angle ($) profile, while (f) and (g) 
show the ellipse-centroid (a;, y) profiles. The plot (c) shows the residual between the final corrected surface 
brightness profiles and the best-fitting r^-law. This r^-law was fitted over the unshaded area - defined 
by 2xFWHM < r < r(Count^l.bxASky) - using the calculated errors to weight the least-squares fit. 
(e) shows the same residual plot as (c), but with the y-axis scale increased by a factor of 10 to show more 
detail. In both (c) and (e), the best-fitted r^ and rs-law profiles are shown for comparison - these are the 
dashed and dot-dashed lines respectively. The values of the best-fit r^-law scale parameters are printed in 
plot (e), while the interpolated value for the corrected ellipticity at re is displayed in plot (b). 
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Figu re 5.14: Deconvolution of a disky r<-law model galaxy (log re = 0.929, ( / j )e = 19.3, C 4 = 0.05) 
'observed' in good seeing {FWHM = 1.1"). The ellipticity of the 'manufeictured' model was made to 
vary linearly (in logr) between e = 0.05 (at r = 1.0") and e = 0.5 (at r = 45.7"). This might represent, 
for instance, a disky elliptical or SO galaxy. These plots show the final corrected profiles (circles), with 
the seeing-correction ('tails' or solid lines) and error-envelope of the corrected profiles (dotted lines), (a) 
shows the surface brightness {fi) profile, (b) shows the ellipticity (e) profile, (d) shows the position-angle 
($) profile, while (f) and (g) show the ellipse-centroid (x, y) profiles. The plot (c) shows the residual 
between the final corrected surface brightness profiles and the best-fitting r ' - l aw. This r<-law was fitted 
over the unshaded area - defined by 2xFWHM < r < r{Count~l.bxASky) - using the calculated errors 
to weight the least-squares fit. (e) shows the same residual plot as (c), but with the y-axis scale increased 
by a factor of 10 to show more detail. In both (c) and (e), the best-fitted r? and r i - l aw profiles are shown 
for comparison - these are the dashed and dot-dashed lines respectively. The values of the best-fit r i-law 
scale parameters are printed in plot (e), while the interpolated value for the corrected ellipticity at rg is 
displayed in plot (b). 
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Figure 5.15: Deconvolution of an r^-law model galaxy (log re = 0.929, (p)e — 19.3) 'observed' in good 
seeing (FWHM = 1.1"). The ellipticity of the 'manufactured' model was made to decrease linearly (in 
logr) between e = 0.5 (at r = 1.2") and e = 0.05 (at r = 55.2"). This might represent, for instance, a 
face-on barred SO galaxy. These plots show the final corrected profiles (circles), with the seeing-correction 
('tails' or solid lines) and error-envelope of the corrected profiles (dotted lines), (a) shows the surface 
brightness (//) profile, (b) shows the ellipticity (e) profile, (d) shows the position-angle ($) profile, while (f) 
and (g) show the ellipse-centroid (x, y) profiles. The plot (c) shows the residual between the final corrected 
surface brightness profiles and the best-fitting r^-law. This r^-law was fitted over the unshaded area -
defined by 2xFWHM < r < r(Count~1.5xASky) - using the calculated errors to weight the least-squares 
fit. (e) shows the same residual plot as (c), but with the y-axis scale increased by a factor of 10 to show 
more detail. In both (c) and (e), the best-fitted r J and r^-law profiles are shown for comparison - these 
are the dashed and dot-dashed lines respectively. The values of the best-fit r^-law scale parameters are 
printed in plot (e), while the interpolated value for the corrected ellipticity at rg is displayed in plot (b). 
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Figure 5.16: Deconvolution of an r i - l aw model galaxy (logre = 0.929, (/i)e — 19.3). The image was 
degraded using a seeing PSF with FWHM — 1.1", but deconvolved using FWHM = 1.2" - this represents 
a seeing FWHM measurement error of 0.1". As in figure 5.13, the ellipticity of the 'manufactured' model 
was made to vary linearly (in logr) between e = 0.05 (at r = 1.0") and e = 0.5 (at r = 45.7"). These plots 
show the final corrected profiles (circles), with the seeing-correction ('tails' or solid lines) and error-envelope 
of the corrected profiles (dotted lines), (a) shows the surface brightness (/j) profile, (b) shows the ellipticity 
(e) profile, (d) shows the position-angle ($) profile, while (f) and (g) show the ellipse-centroid (x, y) profiles. 
The plot (c) shows the residual between the final corrected surface brightness profiles and the best-fitting r <-
law. This r^-law was fitted over the unshaded area - defined by 2xFWHM < r < r{Count~l.5xASky) 
- using the calculated errors to weight the least-squares fit. (e) shows the same residual plot as (c), but 
with the y-axis scale increased by a factor of 10 to show more detail. In both (c) and (e), the best-fitted 
r 3 and rs - law profiles are shown for comparison - these are the dashed and dot-dashed lines respectively. 
The values of the best-fit r7 - law scale parameters are printed in plot (e), while the interpolated value for 
the corrected ellipticity at re is displayed in plot (b). 
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Figure 5.17: Deconvolution of a perfect r^-law model galaxy (e = 0.29) 'observed' in good seeing 
(FWHM = 1.1"). Different scale-parameters (logrg = 0.653, (//)e = 18.7) are used from the previous 
models, representing a more compact elliptical. These plots show the final corrected profiles (circles), with 
the seeing-correction ('tails' or solid lines) and error-envelope of the corrected profiles (dotted lines), (a) 
shows the surface brightness ( f i ) profile, (b) shows the ellipticity (e) profile, (d) shows the position-angle 
($) profile, while (f) and (g) show the ellipse-centroid (x,y) profiles. The plot (c) shows the residual 
between the final corrected surface brightness profiles and the best-fitting r^-law. This r 4 - l a w was fitted 
over the unshaded area - defined by 2xFWHM < r < r(Count^l.5xASky) - using the calculated errors 
to weight the least-squares fit. (e) shows the same residual plot as (c), but with the y-axis scale increased 
by a factor of 10 to show more detail. In both (c) and (e), the best-fitted r a and r s - law profiles are shown 
for comparison - these are the dashed and dot-dashed lines respectively. The values of the best-fit r<-law 
scale parameters are printed in plot (e), while the interpolated value for the corrected ellipticity at is 
displayed in plot (b). 
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Figure 5.18: Deconvolution of a perfect r?-law model galaxy (e = 0.29) 'observed' in good seeing 
{FWHM = 1.1"). Again, different scale-parameters (logrg = 1.033, {n)e = 20.1) are used from the 
previous models, representing a more extended elliptical. These plots show the final corrected profiles 
(circles), with the seeing-correction ('tails' or solid lines) and error-envelope of the corrected profiles (dotted 
lines), (a) shows the surface brightness (/i) profile, (b) shows the ellipticity (c) profile, (d) shows the 
position-angle ($) profile, while (f) and (g) show the ellipse-centroid (x, y) profiles. The plot (c) shows the 
residual between the final corrected surface brightness profiles and the best-fitting r^-law. This r^-law was 
fitted over the unshaded area - defined by 2xFWHM < r < r(Count~l.bxASky) - using the calculated 
errors to weight the least-squares fit. (e) shows the same residual plot as (c), but with the y-axis scale 
increased by a factor of 10 to show more detail. In both (c) and (e), the best-fitted r 5 and rs-law profiles 
are shown for comparison - these are the dashed and dot-dashed lines respectively. The values of the best-fit 
r<-law scale parameters are printed in plot (e), while the interpolated value for the corrected ellipticity at 
re is displayed in plot (b). 



CHAPTER 5. SEEING DECONVOLUTION 94 

FWHM FWHM 

m O 

a 

.2? 'C 
ffl 

in 

(0 
•w 
IH 

=) 

O 
CO 

(a) 

0) 

m 
I 

< 
I—* 
s5 
=1 

- d 

(U 
OS 

I 

i 

I I I 11 H I 1 i i 

' I 1 ' " " 

logjQr-g = 0,964 ±\0.004 
</i> = 19.356 ± 0,0113 

10 

Radius r(") 

100 

03 
d 

CO 

6 

(b) 

O I I I I I 

o 
in 

< 2 

m 

t J CO 

I •* 

2 S ^ 
j3 in 

o ^ 
I N 

(d) 

(f) 

e^rj = 0.2891 ± 0.0027 

I I I I I I l | 1 1 I M I I l | 

H 1 I I I I I I 1 

1 1 1 1 1 | 

(g) 

H 1 I I I I I l | 1 1 I I I I l l | 

10 

Radius r(") 

100 

Figure 5.19: Deconvolution of a 'perfect' model galaxy. To test how well the deconvolution routine 
recovers non-r? surface brightness profiles, an r^-law profile was used to construct the model (logrg = 
0.929, (/i)e = 19.3, £ = 0.29). The model was 'observed' in good seeing {FWHM = 1.1"). These plots show 
the final corrected profiles (circles), with the seeing-correction ('tails' or solid lines) and error-envelope of 
the corrected profiles (dotted lines), (a) shows the surface brightness (fi) profile, (b) shows the ellipticity (e) 
profile, (d) shows the position-angle ($) profile, while (f) and (g) show the ellipse-centroid (x,y) profiles. 
The plot (c) shows the residual between the final corrected surface brightness profiles and the best-fitting r <-
law. This r^-law was fitted over the unshaded area - defined by 2xFWHM < r < r{Count~l.bxASky) 
- using the calculated errors to weight the least-squares fit. (e) shows the same residual plot as (c), but 
with the y-axis scale increased by a factor of 10 to show more detail. In both (c) and (e), the best-fitted 
ri and r»-law profiles are shown for comparison - these are the dashed and dot-dashed lines respectively. 
The interpolated value for the corrected ellipticity at rg (from the r^-law fit) is displayed in plot (b). 
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Figure 5.20: Deconvolution of a 'perfect' model galaxy. To test how well the deconvolution routine 
recovers non-r? surface brightness profiles, an rs-law profile was used to construct the model (logr^ = 
0.929, (/i)e = 19.3, e = 0 .29) . The model was 'observed' in good seeing {FWHM = 1.1"). These plots show 
the final corrected profiles (circles), with the seeing-correction ('tails' or solid lines) and error-envelope of 
the corrected profiles (dotted lines), (a) shows the surface brightness (/i) profile, (b) shows the ellipticity (e) 
profile, (d) shows the position-angle ($) profile, while (f) and (g) show the ellipse-centroid {x,y) profiles. 
The plot (c) shows the residual between the final corrected surface brightness profiles and the best-fitting r?-
law. This r 4 - l a w was fitted over the unshaded area - defined by 2xFWHM < r < r{Count~l.5xASky) 
- using the calculated errors to weight the least-squares fit. (e) shows the same residual plot as (c), but 
with the y-axis scale increased by a factor of 10 to show more detail. In both (c) and (e), the best-fitted 
r 3 and r s-law profiles are shown for comparison - these are the dashed and dot-dashed lines respectively. 
The interpolated value for the corrected ellipticity at rg (from the r^-law fit) is displayed in plot (b). 
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Figure 5 .21: Deconvolution of a disky rs-law model galaxy (logrg = 0.929, (^)e = 19.3, C4 = 0.05) 
'observed' in good seeing {FWHM = 1.1"). The ellipticity of the 'manufactured' model was made to 
vary linearly (in logr) between f = 0.05 (at r = 1.0") and e = 0.5 (at r = 45.7"). As an r^-law galaxy 
contaminated with an exponential disk may sometimes have an r^-like profile, this galaxy could represent, 
for instance, an SO galaxy. These plots show the final corrected profiles (circles), with the seeing-correction 
('tails' or solid lines) and error-envelope of the corrected profiles (dotted lines), (a) shows the surface 
brightness (p) profile, (b) shows the ellipticity (e) profile, (d) shows the position-angle ($) profile, while (f) 
and (g) show the ellipse-centroid (x, y) profiles. The plot (c) shows the residual between the final corrected 
surface brightness profiles and the best-fitting r^-law. This ri-law was fitted over the unshaded area -
defined by 2xFWHM < r < r{Count~1.5xASky) - using the calculated errors to weight the least-squares 
fit. (e) shows the same residual plot as (c), but with the y-axis scale increased by a factor of 10 to show 
more detail. In both (c) and (e), the best-fitted and r^-law profiles are shown for comparison - these 
are the dashed and dot-dashed lines respectively. The interpolated value for the corrected ellipticity at Vg 
(from the r^-law fit) is displayed in plot (b). 
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Diameter D{") M ( < D) (degraded) M ( < D) (corrected) A M (Steel) A M (Lucey) 

6.0 13.999 13.935 0.064 0.067 

8.0 13.752 13.714 0.038 0.041 

10.0 13.580 13.555 0.025 0.027 

13.0 13.399 13.384 0.015 0.016 

16.0 13.269 13.259 0.010 0.010 

20.0 13.146 13.140 0.006 0.006 

25.0 13.039 13.037 0.002 0.004 

32.0 12.935 12.935 0.000 0.002 

40.0 12.856 12.856 0.000 0.001 

50.0 12.791 12.791 0.000 0.001 

Table 5.2: Comparison of aperture-photometry seeing-corrections derived from a degraded model cor

rected with the deconvolution routine, with the seeing-corrections of Lucey et al. (1991) and Bower et al. 

(1992). The model was circular, with a half-light radius of 7.0". 

' k ink ' in the / i ( r ) profile at r = 20". This is caused by the replacement of the observed iM{r) 

profile in its noisy outer regions by a profile fitted further in (to avoid noise-propagation 

- see section 5.4). This profile is chosen f rom an r^ , A or exponential, depending v\'hich 

gives the lowest ' in this case an ŵ as chosen, producing a kink where i t joins the A. 

5.6 Seeing Corrections and Aperture Photometry 

As a fur ther vaHdation of the surface photometry deconvolution method outlined in sec

tion 5.4, a model image was constructed ( r f - l aw , re = 7.0", {n)^ = 18.8, e = 0.0) and 

convolved wi th a PSF {FWHM = 1.4"). This image was processed wi th the deconvo

lut ion routine, and a 'seeing-corrected' image was buil t f rom the final corrected profiles. 

Aperture magnitudes (i.e. total flux within a circular aperture) were measured for both 

the degraded and corrected images. This was done using the same software [AVIEW) and 

standard aperture diameters as Lucey et al. (1991) and Bower et al. (1992). I t is then 

a simple matter to subtract the aperture magnitudes to calculate a seeing-correction for 

each diameter. A VTEH^ contains a catalogue of seeing-corrections at the standard diam-
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Diameter D{") M ( < D) (degraded) M ( < D) (corrected) A M (Steel) A M (Lucey) 

6.0 14.012 13.945 0.067 0.067 

8.0 13.765 13.723 0.042 0.041 

10.0 13.592 13.564 0.028 0.027 

13.0 13.411 13.394 0.017 0.016 

16.0 13.280 13.269 0.011 0.010 

20.0 13.156 13.149 0.007 0.006 

25.0 13.048 13.044 0.004 0.004 

32.0 12.944 12.941 0.003 0.002 

40.0 12.864 12.863 0.001 0.001 

50.0 12.798 12.797 0.001 0.001 

Table 5.3: The same as table 5.2, but using a flattened model galaxy to calculate the seeing-corrections 

(e = 0.35). 

eters for a range of FWHM and re (those at re = 5.0" and = 30.0" are tabulated in 

Bower et al. 1992 - note that the dependence on is weak). These corrections were deter

mined by convolving a model galaxy image wi th the given PSF, then measuring aperture 

magnitudes for the image before and after convolution - the offset is thus the correction. 

Since the PSF used in this study is identical to that used in Lucey et al. (1991) (a Hankel 

transform), the seeing-corrections derived f rom the deconvolution routine can be compared 

directly to the catalogued values - the results of this are shown in table 5.2. The RMS 

difference between the two sets of corrections is tiny (0.0018 mag), demonstrating that the 

deconvolution routine accurately reproduces the aperture photometry characteristics of the 

original, unconvolved image. This exercise is repeated for the same model galaxy, but wi th 

e = 0.35, representing a highly flattened elliptical galaxy. The result (shown in table 5.3) 

proves that the dependence of aperture photometry seeing-corrections on the ellipticity is 

neghgible. 
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5.7 Conclusions 

This chapter has outlined the problems involved in correcting surface photometry for the 

effects of atmospheric seeing. A n iterative deconvolution routine has been developed to 

correct I D profiles f rom an ellipse-fitting algorithm. Using made-up model galaxies, i t 

has been shown that iterative routine can accurately reproduce the surface brightness, 

e l l ipt ic i ty and position-angle profiles to well wi th in the FWHM. The robustness was tested 

by deconvolving wi th a different FWHM f r om that which was used to convolve the model 

{AFWHM = 0.1"), and the result was the same. Models wi th pointy isophotes, poor 

seeing and varying el l ipt ici ty were also tested, and the results were the same. Of course, 

w i th real images i t is not likely to be quite so impressive - asymmetry, dust-lanes (and 

other structures), pixel defects and focussing problems wi l l all contribute to degenerating 

the final solution. Nonetheless, i t is reasonable to expect that the resultant deconvolved 

profiles are unaffected by seeing distortions to wi th in perhaps 2xFWHM, compared to 

5 — lOxFWHM for uncorrected data, thus making the exercise worthwhile. Appendix C 

shows the deconvolved profiles (including seeing corrections) for the whole sample of 153 

galaxies (208 separate images) f rom the I N T March 1994 data-set. 

The next chapter w i l l look at the shapes of the surface brightness profiles. The fitting of 

several different models to the deconvolved light profiles is described, which wi l l hopefully 

provide important information about the structure of early-type galaxies. 



Chapter 6 

Parametrising the Surface Brightness 

Profile 

6.1 Introduction 

The shapes of the surface brightness profiles of early-type galaxies are important in deter

mining their morphology (see Chapter 1). For instance, a deviation of the ^i(r) profile f rom 

a pure power-law (such as an r^-law) can be indicative of a second photometric component, 

such as a disk. 

In the previous chapter, a non-parametric method was described to remove the effects of 

atmospheric seeing f r o m the surface brightness profile. The next step is to parametrise the 

profiles in order that morphological information can be obtained f rom the data. Each galaxy 

in the sample was fitted by 4 different profiles, and the best-fitting parameters retrieved, 

along wi th measurements of and RMS to indicate the comparative goodness-of-fit of 

the different models. Three of the models were single power-laws (r^- , r?- and rs-laws), 

which required only linear regression to fit to the data. The fitting of single power-laws is 

described in Section 6.2. The four th profile was a sum of two power-laws (an A plus an 

exponential), representing a two-component galaxy (i.e. an SO or disky E). This requires 

a more complex minimisation procedure, which is covered in Section 6.3. Finafly, in 

Section 6.4, made-up I D surface brightness profiles are used to verify the fitting techniques 

which are being employed. 

100 
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Profile 
1 

r m 

m = 3 1.24509 6.15678 

m = 4 1.39295 8.32678 

m = 5 1.50925 10.4968 

Table 6.1: The constants used in the power-law equation (6.1) to define the scaling parameters (eff'ective 

radius and effective surface brightness) for m = 3 , 4 , 5. 

6.2 Fitting Single Power-law Profiles 

Fi t t i ng a single-power law to a surface brightness profile /x(r) is a straightforward linear-

regression problem. The generaUsed r ^ - l a w profile (Sersic 1968) is given in Equation 6.1. 

(6.1) 

I f the constants and are chosen correctly, then the parameters and (/̂ )e take on 

the physical meanings of effective (i.e. half-fight) radius and effective surface brightness (i.e. 

mean SB within r^). For an r^-lavv, the constants can calculated analytically by integrating 

the power-law over all radii (a fuller mathematical description of SB laws is given in 

Section 1.5). For other power-laws (777^4), the integral is more complex and numerical 

solutions are required. According to Caon et al. (1993), who calculated numerical solutions 

for a wide range of m , the constants are well approximated by the following relations:-

am = 0.075(log 772)2 + 1.1025 log TTz-f 0.70199 ^g_2) 

= 2 . 1 7 0 m - 0.35322 (6.3) 

These are basically the Equations 5, 6 & 7 in Caon et al. (1993) rewritten in the conven

tion used here. The constants have been changed very slightly such that the and 

calculated for an 7-? - law match those calculated analytically. The above relations can now 

be used to find and (3m for the r^'- and rs-law profiles (see Table 6.1). 

Now that the formulae have been defined for the 3 different power-laws, i t is straight

forward to perform a weighted linear-regression on the data:-

I2m{r) = l + Sr^ (6.4) 
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This relation is fitted for each power-law, measuring the intercept / and slope S. Combining 
Equations 6.1 and 6.4, the scaling parameters can be calculated by:-

re= , {lj)e = I + (3m-Otm (6.5) 

V / 

The choice of radial range to fit the power-law is significant, and can diminish the quality 

of the results i f chosen badly. The inner radius l im i t is chosen to be equal to the FWHM 

of the seeing PSF - this is about the lowest radius where the seeing-correction made to the 

ix{r) profile can be regarded as reliable (typically 2 or 3 pixels in this data). In certain 

circumstances (see Section 6.3), this inner radius hmi t is increased to '2xFWHM. The 

outer l i m i t is set to the radius where the surface brightness drops below the standard error 

on the sky measurement. These l imits define a set of n measurements of ^ and associated 

error a at discrete radii r^. These are the values used in the weighted linear regression. The 

goodness-of-fit for each power-law is expressed by and RMS, determined as follows:-

RMS \ 
The errors on the data-points cr(ri) are the original measurement errors f rom the ellipse-

fitting program (plus a term at small r for the seeing correction). As the profiles have been 

smoothed by the deconvolution process, the value of defined above does not have its 

usual statistical meaning (see Section 6.3). For the given galaxy, however, the x^ values 

for the different power-laws and the two-component model can be directly compared as an 

indication of which gives the better fit (as can the RMS values). 

As w i t h the two-component model (Section 6.3), the dominant error on the fitting pro

cedure is not the random isophote measurement error, but the systematic sky measurement 

error. The errors on the 7'e and (;u)e parameters for a given power-law can be calculated 

by making two further linear regressions - one wi th sky error added to fi{r), the other wi th 

the sky error subtracted. The error on the scaling parameters is then estimated as the 

RMS difference between the values measured wi th fi{r) perturbed by the sky error, and 

the measurement without any sky error (see Equation 6.14, next section). 

In addition to the scaling parameters, the total magnitudes of the model are calculated 

for each power-law fit. Given that the total luminosity equals 27r(/)ere^ (where (/)e is (/x)e 
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expressed in counts), then i t can easily be seen that the total magnitude can be calculated 

as:-

Mtot = (Ai)e - 5 log re - 2.5 log (2^) (6.8) 

The errors on Mtot are calculated in the same way as the scaling parameters. In general, 

the better the power-law fit, the smaller the difference between the model magnitude calcu

lated above and the non-parametric asymptotic magnitude (calculated f rom the aperture 

photometry, see Chapter 4). 

6.3 Fitting a Two-component Profile 

Fi t t i ng a two-component model to yu(r) is a more complicated procedure than the previous 

case. The problem is that the shapes of the bulge and disk profiles, usually modelled as 

an r4-law and an exponential, are photometrically rather similar. Often, different models 

for the bulge and disk, wi th a range of parameter values, can combine to produce almost 

identical profiles. Thus, any attempt to deconvolve the two is fraught wi th difficulty. Many 

different methods have been developed in the past to overcome this - they can be grouped 

roughly into three general approaches:-

• I terat ive Methods ( I D ) 

Kormendy (1977) used an iterative process whereby the I D ^ ( r ) profile was divided 

into two ranges - one where the bulge dominates, and the other dominated by the 

disk. The two ranges were identified by eye, and separated by a gap where neither 

component dominates. The disk range was fitted by a exponential law, which was 

then extrapolated to the bulge range and subtracted. An r^-law was then fitted to 

the residual. This was, in turn, subtracted f rom the profile in the disk range, and 

a new exponential fitted to this residual. The whole process is repeated unti l some 

convergence criterion is satisfied. This method is not particularly subjective, and 

only works well where the disk is bright {B/D ratio ^ 1), as wi th spirals. I t is less 

successful w i t h the fainter disks of SO's and disky ellipticals. Related methods have 

been used by Burstein (1979) and Boroson (1981). 

Simultaneous F i t t i n g ( I D ) 

A n alternative to the iterative method is to solve for all the bulge and disk parame-
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ters simultaneously, applying some non-linear least-squares fit algorithm to the whole 
radial range, between suitable hmits (see, e.g. Kormendy 1977, Schombert &; Bothun 
1987, Baggley 1996). Schombert & Bothun (1987) use a grid search method to min
imise and retrieve the best-fitting scale-parameters for the r* and exponential 
components. They test their method on both model and real profiles, and conclude 
that the simple two-component model is inappropriate for most of their profiles, be
cause the returned is too high (even when the fit appears reasonable to the eye). 
This is to be expected, however, as most of their objects are spirals, which gener
ally are more complex in their structure than SO's, and probably require additional 
photometric components. The other main problem wi th this type of fitting is the 
systematic effect due to representing a 2D system by a I D profile. As the inchnation 
angle increases, so does the difference between the projected ellipticities of the two 
components (the disk is intrinsically much flatter than the bulge). I t is not clear in 
this case where the I D fj.(r) profile should be measured f rom. Schombert Bothun 
(1987) used major-axis profiles, while the FEAR collaboration (Sagha et al. 1997, 
see also Baggley 1996) measure profiles f rom surface photometry of circular annuli. 
For the former method, the different ellipticities result in different 'equivalent' radii 
being sampled at any point along the major-axis. Similarly, wi th circular annuli, a 
range of equivalent radii wi l l be probed in both components. The best method is to fit 
ellipses and calculate surface brightness f rom these ellipses, and express as a function 
of equivalent radii . This means that the ellipse f r o m which the surface photometry 
is calculated is, at least, intermediate between the projected ellipticities of the two 
components. A range of radii w i l l s t i l l be sampled, but the distortion f rom a per
fect r4 plus exponential law is reduced and restricted to the region where the two 
components are of similar brightness. This is the method used in this study, and a 
detailed investigation of the systematics caused by this inclination effect is given in 
Section 6.4. 

• 2-dimensionaI F i t t i n g 

A th i rd class of fitting procedures are those which use information about the 2D 

distr ibution of light in a galaxy image to decouple the bulge and disk components. 

A t the simplest level, differences between the major and minor axis profiles, coupled 
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w i t h an assumption of the projected ellipticities of the two components, can allow a 
separation of the two profiles (e.g. Kent 1986). More complex methods use deviations 
f r o m perfectly elliptical isophotes to detect and remove a disk component (e.g. Simien 
& Michard 1990, Scorza & Bender 1990). Jorgensen & Franx (1994) use an averaged 
Fourier coefficient C4 coupled wi th an ell ipticity measurement to statistically investi
gate bulge-disk contributions. Another approach is fit the entire 2D light distribution 
wi th a mixed bulge and disk model - solving for all the parameters required to con
struct such a model (e.g. Shaw & Gilmore 1990). Typically, this requires a minimum 
of 6 parameters - 2 scale-parameters for each component, plus a parameter defining 
the isophote shape (i.e. ellipticity, scale-height) of each component. Generally, fitting 
such a r igid model wi th a large number of parameters w i l l not produce a meaningful 
result. Rigidi ty is a general problem wi th this class of procedures - as well as making 
assumptions about the ^ ( r ) profiles, i t is necessary to make assumptions about the 
2D shapes of the components, which may prove to be unrealistic. 

The method used here is somewhat similar to that of Schombert and Bothun (1987). 

The ii{r) profile is fitted simultaneously by an r i - l a w plus an exponential disk. The fitting 

is in i t ia l ly performed on the deconvolved / / ( r ) profile wi th the nominal (measured) sky 

count I sky subtracted f rom the counts. The range of the fit is the same as for the single 

power-law fits - f r o m r = FWHM to /j,(r) = SB{ASky). The fitting function itself is 

described as follows:-

fJ-model V) = -2 .5 log (10-°-'"^''('-' + lO-°-'''^''(^)) (6.9) 

where fJ.b{r) = {lJ.^)e + (Xb + Pb 
r 

^b 
(6.10) 

and ij.d{r) = {fi'^)e + ad + P d [ ^ ) (6-11) 

Where the constants are set as = 1.39295, (3b = 8.32678, = -1.12441 and 0d = 

1.82224. W i t h the constants defined as such, the parameters r' 'e and r'^g represent the 

effective radii of the bulge and disk respectively, while (i^'')e and ( / i ' ' )e represent the effective 

surface brightnesses of the bulge and disk models respectively (the values of these constants 

can be calculated by integrating the profile-laws f rom r = 0 to r = 00 and f rom r = 0 to 

r = re , where the integrated luminosity to rg is half that to r = 0 0 ) . Note that these disk 

parameters are not the same as the standard parameters /IQ and A^, the central surface 
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brightness and scale-length respectively. The half-light parameters were chosen to allow 
direct comparison wi th the bulge and single power-law parameters. 

A least-squares fit is performed on the observed / i ( r ) profile by finding the values of the 

4 model parameters which minimise x^- The profile consists of n data points at radii r,-

(where i = 1 , n ) , and the random error on each data point fJ.{ri) is (7(r j ) . The normalised 

or reduced x^ Is then defined as:-

As w i th the single power-law fitting, the errors on the data-points cr(r,) are random errors 

associated wi th the photometry ( f rom the ellipse-fitting routine), and not systematic errors 

(i.e. zero-point error, sky background error). The seeing-correction error (estimated as 

one-fifth the seeing-correction) on the deconvolved profiles has been included in (7(r,), by 

adding in quadrature. Technically, this is a systemic error, but i t effects only the central 

few points and allows a greater flexibility of fitting in this area. Also, the profile itself 

has been smoothed by the deconvolution process. This all means that the x^ value does 

not quite represent a normalised x^ - i i i fact i t w i l l typically be underestimated by some 

factor. The x^ is s t i l l , however, a valid estimator of goodness-of-fit and can be used to find 

a reasonable least-squares fit to the data. The min imum x^ is also directly comparable to 

those calculated f r o m fitting single power-laws to the data. 

The x^ is minimised by searching a grid of the 4 parameters. Although time-consuming, 

this is more robust than most minimisation algorithms (such as Newton-type methods) 

which can fa l l down the wrong minima. As mentioned above, the' and exponential 

functions are such that different sets of parameter values can combine to produce models 

which are near-identical. In other words, there are many local minima, which must 

be rejected in order to find the global minimum. The ini t ia l grid search covers a large 

volume of parameter-space, including all reasonable models, but at a large step size between 

neighbouring parameter values. The l imits and step sizes for each parameter are given 

below:-

/ l - 2 < log < / I - f 2 {step 0.2) 

B -2< (^^)e <B + 2 (step 0.2) 

C - 2 < l o g r ' ' e < C + 2 {step 0.2) 

D-4< ( / ) e < D + 4 {step 0.4) 



CHAPTER 6. PARAMETRISING THE SURFACE BRIGHTNESS PROFILE 107 

The grid centre-points for the bulge parameters - A and B - were found by fitting a r i - l aw 
profile f r o m the seeing radius to the half-light radius (as measured f rom the whole-profile 
r 4 - l a w fit). The maximum allowed centre-point for the bulge effective radius is 20". I f the 
value of the centre-point is greater than this, the r i fit is probably suspect and the centre-
point is reset to 20" (the bulge surface brightness centre-point is also adjusted to conserve 
the magnitude). The disk effective radius centre-point C is always fixed at log20" - giving 
a search range between 0.2" and 2000". The disk surface brightness is often fainter than the 
bulge, so the grid centre-point D was set to equal B + 1 rounded to the nearest unit (the 
search area was also widened to cover 8 magnitudes). In total , 194481 different parameter 
combinations are selected in the first grid search. I f this in i t ia l search has produced a high 
value for min imum ( > 100) or low disk effective radius ( < 1"), i t is Hkely that the grid 
was too coarse, and the region of the global min imum has been skipped over. In this event, 
the grid search is repeated, w i th the same number of parameter combinations, but reducing 
the range and step sizes by a half. The centre-points are moved f rom the ini t ial centre-
points by half a step size to ensure that the parameter combinations are all independent. 
Note that a very low bulge effective radius ( < 0.05") is disallowed in all grid-searches - such 
values can sometimes produce a local min imum (especially for disky systems), but cannot 
be physically genuine. I f a grid-search includes these values, they are ignored in the search 
for a m i n i m u m x^-

When the min imum x^ is found f rom the above grid search, a series of more detailed 

searches are undertaken in progressively smaller regions of parameter-space for an even 

better fit. These are summarised in Table 6.2. At each level, the centre-points of the 

grid are set to the min imum x^ values f rom the previous search. Note the search range 

for each parameter overlaps by some margin the nearest sampled points f rom the previous 

grid-search, in case the min imum reached was not a global one. I f , on any grid search, 

the min imum x^ occurs at (or near) the boundary of one of the parameter ranges, this 

may imply that the previous min imum was local, and the actual minimum is outwith the 

area of the grid search. The min imum allowed distance f rom the range boundary is one 

step size for grid volumes 3 and 6, two step sizes for volume 5 and three step sizes for 

volume 4 (see Table 6.2). In this case, the grid search is repeated wi th the same volume of 

parameter-space, but w i th the centre-points moved to new values. The new value for each 

parameter centre-point is calculated as the min imum x^ value plus or minus the maximum 
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Grid Range Step-Size # o f Max # of Origin of 

# W AW Points n Steps Wmax Centre-Point Values 

1 ±2 0.2 194481 W In i t ia l guess (see text) 

(2) ± 1 0.1 194481 W (As 1, but moved by ^AW) 

3(a) ±0 .24 0.02 390625 W-AW From minimum, grid 1 (or 2)"̂  

3(b) ±0 .16 0.02 83521 W-AW ( f rom zero sky-error solution) 

4 ±0 .048 0.008 28561 W-3AW From minimum, grid 3(a) or (b)* 

5 ±0.0096 0.0016 28561 W-2AW From minimum, grid 4* 

6 ±0.00512 0.00064 83521 W-AW From minimum, grid 5* 

Table 6.2: Table showing the different 'levels' in the grid-search minimisation algorithm. The first column 

gives the level number. Grid 2 is only searched i f grid 1 has not found a satisfactory minimum (see te.xt). 

Grid 3(a) is executed in the principal (zero sky-error) minimisation, whilst grid 3(b) is the starting point for 

the two minimisations (with ± sky-error) used to calculate the errors on the profile fits. Grid-levels 4, 5 and 

6 are executed in all three minimisations. The second column gives the range searched for each parameter 

from the chosen 'centre-point' - the units of W are equal to logr*e, {n'')e and logr''e, but the range of (/j'')e 

is ±2W. The spaces between the sampled parameter values are given in the third column. Given that 

there are 4 parameters, the number of parameter combinations sampled is given by n = (1 - f 2W/AW)'^ 

- this is displayed in the fourth column. The next column shows Wmax - the maximum number of steps 

which the solution is allowed to be displaced from the centre-point (for each parameter). I f the minimised 

value of any parameter exceeds Wmax (which can't happen for grids 1 and 2) then the search is repeated 

at that grid-level {*see text for explanation of how the centre-points are chosen in this case). The final 

column explains how the centre-points are chosen for each new grid-level. 
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allowed distance from the centre-point. Thus the old minimum remains within the volume 
of the new grid search. This shift in parameter-space is allowed up to a maximum of 13 
times per level - the routine is then forced to set a smaller grid volume, unless it is already 
on the smallest grid volume, in which case the minimum found is accepted. 

If the grid search has succeeded in finding the global minimum, then given the step size 

of the final search volume, the minimizing parameters are determined to an accuracy of 

± 0 . 0 0 0 3 mag in {fi^)e, ± 0 . 0 0 0 6 mag in (^<^)e, and less than ± 0 . 1 % in and r'^e- This is, 

of course, considerably finer than the standard errors on the fitted parameters (see below). 

However, there is a small possibly that despite the rigorous grid search, the true minimum 

has not been descended upon. As an insurance, therefore, a quasi-Newton algorithm is 

used to minimise x^- The search bounds for this algorithm are set to ± 0 . 4 for logr''e, 

(^^)e and logr'^e, and ± 0 . 8 for ( / ) e - using the grid-search minima as the centre-point 

of the volume defined by the bounds. The starting-point for the algorithm is set to the 

grid-search minima plus a random displacement (the maximum magnitude of which is ± 0 . 1 

for log7'''e, (A<'')e and logr'^e, and ± 0 . 2 for (/u'^)e)- This algorithm is taken from the NAG 

Fortran library (routine number E04JAF). The algorithm will find a minimum x'̂  at some 

point in the parameter-space. If the value of this is less than the grid-search minimum 

X^i then these minimised parameters will be chosen as final parameter solution rather than 

those found from the grid-search. In practise, this rarely happens, which indicates the 

strength of the grid-search method. When the final parameter solution has been decided, 

the RMS difference between data and model (Equation 6 .7 ) is also calculated, in addition 

to minimum x^, for comparison purposes. 

If the value of the disk effective radius r'^e resulting from this initial minimisation process 

appears to be small relative to the bulge and the seeing FWHM, this may indicate a larger 

systematic error at low radius (from the seeing deconvolution) than has been accounted for 

by the errors a{ri) on the data-points fi{ri). Alternatively, a small exponential disk may 

well be a physically genuine feature of the galaxy core. As an attempt to discriminate, 

the initial minimisation is repeated using r = 2xFWHM as the inner radius cutoff, thus 

masking the area most likely to be affected by systematic errors. The disk effective radius 

is regarded as too small if r'̂ e is smaller than either 0.5 times the bulge effective radius 

or the FWHM of the seeing PSF. Additionally, if r'̂ e is smaller than both 2xFWHM 

and 1.5xr''e, then the disk radius is also flagged as small. These Umits are sufficiently 
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liberal enough to ensure that all ambiguous two-component fits are double-checked. If the 
new fit produces either an extended disk (r'̂ e > l-5r(,e) or a 'null' disk (r'^e < 0.5" or disk 
luminosity less than 5% of total, see below), then the original fit is replaced by the new 
fit. Otherwise, it is deemed that the fit has not substantially changed, and therefore the 
original fit is acceptable. 

Of course, it is very important to get an estimate for the errors on the minimised 

parameters. I f the individual data-points were only affected by random (Gaussian) errors, 

and was normalised, then the errors could be determined from the shape of the 

minimum. However, this is not the case, as mentioned above. The data-points are affected 

by systematic errors - in particular the zero-point error and sky measurement error. The 

zero-point error (i.e. the total uncertainty when converting counts into magnitudes) will 

perturb all the points by an equal amount, and will thus not affect the fit - only changing 

the two surface brightness parameters by the same (very small) increment. However, the 

sky measurement error changes the shape of the ^( r ) profile significantly, thus perturbing 

all 4 fitted parameters by various amounts - especially the disk parameters. It can safely be 

assumed that this is the dominant error in fitting a two-component law to a fj,{r) profile, and 

not the random errors. In order to estimate the size of these errors on the fitted parameters, 

the whole fitting process is repeated twice again - first with the sky measurement l a error 

added to the sky background, and then with it subtracted. In these two minimisations, 

the starting points are taken from the first minimisation (i.e. without sky error), the first 

two grid-searches (covering a huge volume of parameter-space) are omitted, and the third 

grid-search is reduced in volume (see volume number 3(b) in Table 6.2). Note that the 

inner radius-limit is same as that for the accepted first minimisation (i.e. FWHM or 

2FWHM). I f a given parameter P is measured as with no sky error, P"*" with sky error 

added, and P~ with sky error subtracted, then the error A P on P is estimated as:-

From the best-fitting parameters, it is possible to calculate the total magnitude of each 

component individually (using Equation 6.8), in addition to the whole object. The errors on 

these magnitudes are estimated using the same method as for the scale-parameters above. 

It is common to find the term Bulge-to-Disk Ratio used to describe the relative impor

tance of the two photometric components in spiral galaxies. For early-type galaxies, where 
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the disk component can be faint or non-existent, we normally use the inverse (Disk-to-Bulge 
Ratio) to avoid large numbers. This is easily estimated from the magnitudes of the two 
fitted components:-

— = IQ-O-M^d.sk-Mhnlge) (6.15) 
B 

Additionally, it is sometimes useful to express the bulge or disk luminosity as a fraction 

of the total light. This has the advantage of giving us a number in the range 0 to 1. The 

bulge and disk fractions are defined in this work as follows:-

^ _ lQ-OA{MMg^-MB+D)^ H ^ lQ-OA{Md,sk-MB+D) (6.16) 

Typically B/T is in the range 0.5 to 1.0 for early-type galaxies (Z)/T~0.0 — 0.5). The total 

model magnitude MB+D is calculated by adding the luminosities of the fitted bulge and disk 

components - note that this may be slightly different from the non-parametric asymptotic 

magnitude Mtot (calculated from the aperture photometry, see Chapter 4), depending on 

the quality of the fit. By calculating the magnitudes and luminosity fractions with the sky 

set to sky plus error and sky minus error, it is possible to use Equation 6.14 to estimate the 

standard errors on the bulge and disk magnitudes, and therefore, the luminosity fractions. 

The end product of the two-component profile fit must be consistent with the sensitivity 

of the deconvolution and be a physically reasonable model. In order to ensure this, hmits 

are adopted on the detection of each component. For the disk component, these limits are 

outlined below:-

• D / B < 0.0526. Equivalent to DjT less than 5%. Al l disks measured in this range 

are too faint to be regarded as a reliable detection and are thus rejected. 

• 0.0526 < D / B < 0.15. These disks are still faint, but acceptable if the detection is 

greater than l.Scr (i.e. D/B > 1.5AD/B), and the disks are of a reasonable size. 

The size criterion is that r'^g is greater than both 0.5" (due to pixel resolution) and 

r*e/3 (to ensure detection above the central bulge component). This is not to say 

that disks this small do not physically exist, only that they are outside the range of 

sensitivity of the method used here. 

• 0.15 < D / B < 0.5. The disks are accepted if they meet only the radius criterion 

above, regardless of the error on D/B. 
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• D / B > 0.5. Disks this bright are accepted regardless of their radius or any other 
property. 

If the disk component is rejected, then the bulge parameters are replaced by the single 

power-law r? parameters and no disk parameters are returned. The disk-bulge ratio D/B 

is set to 0 {D/T = 0, B/T = 1 ) - the error on DjB now becomes an upper hmit and is 

taken as the measured value of DjB with no sky error (see Table A.2 in Appendix A). 

Fortunately, very few galaxies in the Coma/Abell 1367 data-set are actually affected by 

the disk-detection limit - only 13 out of 153 have no detectable disk. As late-type galaxies 

are also included in the sample, it is also necessary to place limits on the detection of the 

or bulge component. These Umits are listed below:-

• D / B > 19.0. Equivalent to P / T less than 5%. All bulges measured in this range are 

too faint to be regarded as a reliable detection and are thus rejected. 

• 19.0 > D / B > 6.666. These bulges are still faint, but acceptable if the detection is 

greater than l.Scr (i.e. B/D > 1 . 5 A P / P ' ) , and the bulge are of a reasonable size 

{r^e > 0 . 5 " due to pixel resolution) and surface brightness ( ( ^ ) ' ' e < 25 mag to ensure 

detection above the disk component). 

• D / B < 6.666. Bulges this bright are accepted, provided they meet the radius and 

surface brightness criteria defined above. 

I f the bulge component is rejected, then the disk parameters are replaced by the single 

power-law (exponential) parameters and no bulge parameters are returned. The disk-bulge 

ratio D/B is set to oo {D/T — 1 , B/T = 0 ) . Once again, a glance at Table A.2 in 

Appendix A confirms that very few galaxies in the Coma/Abell 1367 data-set are actually 

affected by the bulge-detection limit - only 10 out of 153 have no detectable bulge (of which 

8 are late-type galaxies and 2 are unclassified). 

6.4 Testing the Profile Fi t t ing 

In order to demonstrate the reliability of the above methods, it is necessary to experiment 

with made-up models and profiles, whose parametric forms are precisely known. In the first 

set of examples, six ID ^ ( r ) profiles are made-up, using the four different parametric forms 
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described above. Three of the profiles are calculated from single power-laws (one each from 
, A and r ^ ) , with scale-parameters typical of Coma E galaxies (in fact, (/^)e and i\ are 

approximately set to the non-parametric values measured for NGC 4908). The remaining 
three profiles are combined bulge and exponential disk models, with parameters chosen 
to give a range in bulge-to-disk ratio - the disk fractions are 8% (~ disky E), 30% (~ SO) 
and 65% ( ~ SO/a). Al l six profiles have Gaussian errors added to the individual data-points 
which are typical in magnitude to those of real measured profiles (although the errors on 
the real profiles are actually smaller, because of the smoothing from the deconvolution 
algorithm). 

The six model profiles are put through the same procedure as the real galaxies - the 

results are shown in Figures 6.1 to 6.6. Plot (a) in each figure shows the best-fitting A 

•plus exponential law, plotted over the 'data'. The individual components are plotted as 

dashed lines, while the sum is a solid line. Note that the abscissa is - so a pure-r? 

surface brightness profile is represented by a straight line, while an exponential is a convex 

curve. If the fitting procedure returns a disk with an effective radius of less than 0.5", or 

with a total luminosity less than 1% of the whole galaxy, it is assumed that no disk has 

been detected. In this event, the bulge parameters are set equal to those returned by a 

pure r5"-law fit, and no disk parameters are returned (Figure 6.1 shows an example of this). 

These are less stringent conditions for non-detection of disks than outhned in Section 6.3, 

but it was deemed important to observe exactly what was fitted for each of the model 

profiles. The limits of the fit - defined by r = FWHM and ^ = SB{ASky) - are shown by 

dotted lines. The random errors on the data are shown by error bars (within SB{ASky)), 

whilst the systemic shift caused by a la sky-error is shown by the crosses. Plot (b) uses 

the same key, but displays the residual between the 'data' and the best-fit combined law. 

Plot (c) shows the best-fit pure ri- law [straight solid line) overlying the 'data', with the 

best fitting rs (dot-dashed fine) and rs (dotted line) curves also plotted. Plot (d) shows 

the residual between the 'data' and r^-law - and is thus directly comparable with plot (b) 

above. The difference between the best-fitting 7-3 curves and the best-fit are also 

shown, using the same key as plot (c). The table beneath the plots shows the best-fitting 

parameters for each profile, plus sky subtraction errors, total magnitudes, RMS and x^-

The results for the first three models show clearly how well this procedure identifies 

the best power-law profile. For each model, the appropriate profile is fitted to a x^ of 
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r'/"* + exp r'/' + exp 

SB(ASky) 

No Dxsk 

SB(iiSky) 

Radius r' /^(") Radius r^'*C') 

Fitting Law r 
e 

Ar 
e 

<M>e ^tot RMS / 
1/4 

r ^ + exp 
13.067 0.004 0.047 1.073 

(bulge) 6.532 0.041 19.138 0.01 13.067 0.004 

(disk) N 0 D / S K 

1/3 5.346 0.047 18.874 0.013 13.238 0.006 0.477 256.91 

r 6.532 0.041 19.138 0.01 13.067 0.004 0.047 1.073 

J / 5 r 8.075 0.037 19.446 0.007 12.915 0.003 0.235 84.485 

Fitting Range:- 1.34" to 73.56" Bulge Fraction = 1 ± 0 

Figure 6.1: Parametric fits to a perfect r^-law I D fi{r) profile. See Page 113 for key. 
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r ' / ^ + exp 7-'/'' + exp 

SB(ASky) 

D CM 

SB(ASky) 

Radius r ' ^ - ' C ) Radius r' /^(") 

Fitting Low A<M>, RMS 

1/4 
r ^ + exp 12.997 0.01 1 0.202 16.152 

(bulge) 7,569 0.157 19.501 0.025 13.1 1 0.019 

( disk ) 4.894 0.121 20.946 0.013 15.502 0.066 

J / 3 r 6.537 0.031 19.14 0.007 13.068 0.004 0.049 1.043 

r 8.543 0.022 19.519 0.004 12.865 0.002 0.38 235.736 

1/5 11.284 0.008 19.939 0.001 12.681 0.001 0.577 585.853 

Fitting Range:- 1.34" to 60.79" Bulge Fraction = 0.901 ± 0.018 

Figure 6.2: Parametric fits to a perfect rJ-law I D ^ ( r ) profile. See Page 113 for key. 
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1/4 ' ' 
+ exp 

SB(&Sky) 

0) CV 

SB(C.Sky) 

Radius r ' /^(") Radius r' /^(") 

Fitting Law Mtot ^tot RMS 

1/4 ^ 
r + exp 

13.133 0.015 0.123 6.098 

(bulge) 6.794 0.313 19.327 0.09 13.171 0.008 

(disk) 1.172 0.06 19.148 0.076 16.808 0.186 

4.77 0.063 18.736 0.021 13.348 0.007 0.783 612.768 

5.551 0.059 18.917 0.017 13.2 0.006 0.283 84.247 

6.543 0.057 19.142 0.014 13.068 0.005 0.037 0.736 

Fitting Range:- 1.34" to 8 0 . 9 1 " Bulge Froction = 0.966 ± 0.015 

Figure 6.3: Parametric f i ts to a perfect r ^ - l a w ID / i ( r ) profi le . See Page 113 for key. 
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approximately unity, whilst x^ for the other profiles is of the order of 100 or greater. For 
the first model (Figure 6.1) the input profile is a pure r?. As expected, the combined 
r 4 and exponential profile fitting fails to find a significant disk. The next two models 
(Figures 6.2 and 6.3) are constructed using pure rs and rs profiles respectively. In these 
cases, the two-component fit does attempt to fit an exponential disk to the deviations from 
the r5"-law. The disk luminosities are 10% and 3% of the total luminosities for the r^ and 
rs models respectively (note that a disk fraction of 3% would be below the detection hmit 
for disks using the criterion applied to the real data). The x^ values for these fits, however, 
are considerably greater than those for a pure power-law fit - although it is important to 
consider that such distinctions may not be so significant in real data, especially if the bulge 
and disk profiles diverge significantly from the empirical r* and exponential laws. 

The next three model profiles are built by adding a ID r^-law profile with an exponential 

law. The r ? parameter values are typical of those found for Coma galaxies. To these profiles 

are added three disks of very different luminosities. The results of the profile-fitting is shown 

in Figures 6.4, 6.5 and 6.6. It can instantly be seen by glancing at residual plots (b) and 

(d), that the two-component fit is considerably better than the single power-law fits, and 

this is borne out by the x^ values. The obvious test of whether the two-component fit 

has found the correct minimum is to compare the input and output values. This is shown 

in Table 6.3, which also compares the input and output parameters for the three single 

power-law models. 

It can readily be observed from Table 6.3 that the measured parameters match very 

closely the parameters used to construct the ID profiles. In fact, the differences between 

the input and output parameters, which are due to random errors and inadequacies in the 

profile fitting, are much smaller than the quoted sky subtraction errors. This justifies the 

earlier statement that sky uncertainty is dominant source of error in the fitting of functions 

to surface brightness profiles. Although a typical sky error (~ 0.2%) was used in the 

calculations here, none was added to actual background - hence the close match between 

input and output parameters. 



CHAPTER 6. PARAMETRISING THE SURFACE BRIGHTNESS PROFILE 118 

T-''̂ ^ + exp / / ^ + exp 

SB(tiSky) 

0) o 

a w 

SB(tiSky) 

Radius r' /^(") Radius r' /^(") 

Fitting Low A<M>, Mtot RMS 2 
X 

r ' + exp 12.672 0.02 0.031 0.862 

(bulge) 6.51 0.549 19.134 0.101 13.071 0.074 

(disk) 9.12 0.075 20.749 0.099 13.954 0.1 13 

8.648 0.027 19.304 0.004 12.624 0.003 0.276 255.22 

11.885 0.015 19.768 0.002 12.398 0.001 0.621 481.944 

/ A 16.506 0.058 20.271 0.006 12.187 0.002 0.813 914.939 

Fitting Range:- 1.34" to 73.56" Bulge Fraction = 0.692 ± 0.049 

Figure 6.4: Parametric fits to a perfect two-component r< -\-exp I D / i(r) profile, representing a "typical" 
SO with a medium brightness disk (30% of total). See Page 113 for key. 
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7-'/'' + exp 

SB(ASky) 

(L) O 

SBfASky) 

Radius r'-^-'C) Radius r' /^C") 

Fitting Low Ar^ <M>e A<M>e ^tot RMS 

1 /4 
r + exp 

12.749 0.016 0.026 0.992 

(bulge) 8.388 0.256 19.452 0.036 12.838 0.03 

( disk ) 5.964 0.275 21.373 0.042 15.5 0.142 

1/3 7.208 0.054 19.129 0.01 1 12.844 0.005 0.27 58.107 

r 9.43 0.033 19.513 0,005 12.645 0.003 0.171 153.206 

1/5 12.487 0.013 19.939 0.001 12.461 0.001 0.395 516.551 

Fitting Range:- 1.34" to 80 .91 ' Bulge Fraction = 0.921 ± 0,029 

Figure 6.5: Parametric fits to a perfect two-component r i + exp I D //(r) profile, representing a "typical" 
disky E with a faint disk (8% of total). See Page 113 for key. 
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+ exp r ' / ' ' + exp 

3 in 
CO w 

SB(ASky) 

CO 

SB(ASky) 

1.5 2 2.5 

Radius r''^^(") Radius r'/'^C") 

Fitting Law Ar^ <M>e A<M>, RMS / 

r'-^"* + exp 12.539 0.009 0.026 0.839 

5.254 0.232 19.272 0.058 13.674 0.036 

disk ) 12.705 0.127 20.524 0.028 13.009 0.006 

1/3 15.582 0.033 20.255 0.002 12.296 0.003 0.499 1175.911 

1/4 24.51 0.034 20.925 0.001 11.983 0.002 0.674 1 125.692 

J / 5 r 39.061 0.032 21.632 0.001 1 1.678 0.001 0.774 1439.574 

Fitting Ronge:- 1.34" to 55.26" Bulge Froction = 0.352 ± 0.012 

Figure 6.6: Parametric fits to a perfect two-component r t -\-txp I D / i(r) profile, representing a "typical" 
so/a or Sa with a bright disk (65% of total). See Page 113 for key. 
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Mod 

# 

Law In Out Error 

re re Are 

In Out Error 

(^)e {lJ.)e A(/^)e 

In Out Error 
B B A B 

1 
1 

r 4 
6.541 6.532 0.041 19.141 19.138 0.010 1.000 1.000 0.000 

2 1 
rs 6.541 6.537 0.031 19.141 19.140 0.007 — 0.901 0.018 

3 rs 6.541 6.543 0.057 19.141 19.142 0.014 — 0.966 0.015 

4 1 

exp 

6.541 6.510 0.549 

9.100 9.120 0.075 

19.141 19.134 0.101 

20.750 20.749 0.099 

0.695 0.692 0.049 

5 
1 

r4 

exp 

8.362 8.388 0.256 

5.950 5.964 0.275 

19.450 19.452 0.036 

21.350 21..373 0.042 

0.919 0.921 0.029 

6 r4 

exp 

5.210 5.254 0.232 

12.700 12.705 0.127 

19.260 19.272 0.058 

20.520 20.524 0.028 

0.350 0.352 0.012 

Table 6.3: Comparison of the input and output parameters for the six experimental models. For the 

single power-law models (1 to 3), the input parameters are compared only with the output parameters of 

the appropriate power-law fit. Eff'ective radii are expressed in arc-sec. ^ is the bulge-to-total luminosity 

ratio. 

6.5 Inclination Effects 

A further experiment was conducted to test the effect of inclination on the ID profile of 

a combined r4 bulge and exponential disk galaxy. As was mentioned in Section 6.3, the 

shape of the ID /u(r) profile, as measured from ellipse-fitting, departs from a perfect two-

component model (Equations 6.9, 6.10 and 6.11) as incHnation increases. This is because, 

as the galaxy becomes more edge-on, the projected ellipticity of the flattened disk becomes 

much greater than that of the intrinsically much less flattened bulge component. For an 

oblate ellipsoid, the relationship between projected ellipticity e,, intrinsic eUipticity CQ and 

inclination angle i is given by:-

= 1 - ycos^7+(l^^^eo)2sni^ (6.17) 

Thus the eUipticity of given fitted ellipse will be intermediate between the different projected 

ellipticities of the two components. The pixel flux along this ellipse will thus arise from a 

range of equivalent radii in both components. This will, of course, mainly affect the region 

where the surface brightnesses of the two components are comparable. 
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(a) i=0° 

Disk a 

i=30° 

Disk Q 
(c) i=50° (d) 1=70° 

Disk o. Disk (y^ 

(e) i=B0° (f) x=90° 

Q Bulge Disk Q Bulge Disk 

Figu re 6.7: The six 2D images used to investigate the inclination-effect on fitted parameters. The 
sequence (a) to (f) is one of increasing inclination angle, from face-on to edge-on. The ellipses at the 
bottom corners of each image show the projected ellipticities of the separate components. Note how the 
difference between the bulge and disk projected ellipticity becomes more apparent as the inclination angle 
increases. The intrinsic (edge-on) ellipticities of the bulge and disk components are modelled as 0.35 and 
0.85 respectively. 
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It is important to test the significance of this effect on the fitted parameters. Six 2D 
model images were constructed using the same parameters as model 4 above (a "typical" SO 
with a 30% disk). The inclination of the models were changed from face-on (0°) to edge-on 
(90°) by varying the projected eUipticity of the two components according to Equation 6.17. 
The intrinsic ellipticities of bulge and disk are set to 0.35 and 0.85 respectively, and the 
position angles are equal . The six images are shown in Figure 6.7. Each image is analysed 
with the GALPHOT-hased ellipse-fitting program to produce the ID surface brightness 
profiles. The images had Poisson noise added, but were not convolved by a seeing PSF, so 
the //(r) profiles are equivalent to those of real galaxies which have been deconvolved by 
the algorithm described in Chapter 5. 

Each of the six fj,[r) profiles were fitted by the same set of functions as in the previous 

experiment. The results for the two extreme cases (face-on and edge-on) are shown in 

Figures 6.8 and 6.9 respectively. Ignore the discrepant fi{r) profiles within r = FWHM -

these are a result of the inability of the ellipse-fitting routine to handle steep ^(7-) gradients 

within the central few pixels (this is not a problem for real galaxies, whose ^ ( r ) profiles are 

flattened by seeing in the central region). Of particular interest is the two-component fit. It 

can instantly be seen that the edge-on model is fitted just as adequately as the face-on model 

(the x^ values are greater than 1 in both cases - this is a result of the problem mentioned 

above). The best-fitting parameters for the two-component model have changed somewhat, 

however. Both components are slightly more extended, but with lower surface brightness. 

The disk component is affected more, with the bulge-to-total luminosity fraction increasing 

from ~ 0.7 to ~ 0.8. This is due to an increased amount of bulge light at equivalent radii 

where the disk fight is normally significant. The total luminosity is, of course, conserved. 

Figure 6.10 shows how the fitted two-component parameters (and bulge fraction) vary with 

inclination. Is is apparent that about one-tenth of disky galaxies (those with i;^80°) will 

display systematic errors in their fitted parameters of the order 5-20%. However, these 

errors will be matched by those which result from deviations in real galaxies from a clean 

plus exponential profile - which is independent of inclination. 
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^1/3 8,521 0,028 19,283 0.004 12.635 0.003 0,245 327.454 

^1/4 1 1,514 0,008 19.723 0.001 12.421 0,001 0.594 598.373 

1/5 15.752 0,018 20,203 0.002 12.221 0 0.797 1082.268 

Non —parametric 7.261 0,067 19,006 0,034 12.705 0.02 

Fitting Range; .34" to 80 .91" Bulge Fraction = 0.699 ± 0.041 

Figure 6.8: Parametric fits to a \i{r) profile measured from a made-up 2D r 7 + txp galaxy. This galaxy 
is face-on (see Figure 6.7a) and has a bulge fraction of 0.695. See Page 113 for key. 
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X 
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1/4 10.475 0.05 19.627 0.006 12.531 0.004 0.337 32.916 

1/5 14.941 0.092 20.167 0.009 12.3 0.004 0.587 71.7 

Non-parametr ic 7.621 0.028 19.1 12 0.016 12.706 0.01 

Fitting Range: - 1.34" to 89" Bulge Fraction = 0.817 ± 0.101 

Figu re 6.9: Parametric fits to a ^ ( r ) profile measured from a made-up 2D r" + exp galaxy {edge-on, see 
Figure 6.7f). Compare with the fits to an identical, but face-on galaxy (Figure 6.8). See Page 113 for key. 
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Figure 6.10: Graphs showing the variation of fitted two-component parameters with changing inclination 
(the galaxy model used here is described on Page 123). The plots (a) to (d) show the four measured disk 
and bulge parameters against inclination angle, with the solid-line giving the value of the 'true' parameter. 
Note how the fit diverges at angles greater than 70°. The same plot for Bulge-to-Total luminosity fraction 
is shown in (e). The final plot (f) shows the continuous functions (Equation 6.17) of projected ellipticities 
used to build the six different models. 
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6.6 Fitting a Seeing-Convolved Model 

The experiments above have demonstrated that it is possible to decide whether a galaxy 

is likely to have a disk, by determining v\'hether the /i(r) profile is best fit by a single 

power-law or two-component modeL Using model profiles, the reproduction of the input 

parameters by the fitting routine is remarkably good. Of course, with the deconvolution 

of real galaxy profiles, the fitting is likely to be affected by errors which have not been 

explored here. One complication, the inclination of galaxies, has been looked at. It was 

found that the inclination does not seriously affect the fitted parameters, except for the 

most edge-on galaxies - not more than 10% of the total. However, it is likely that systematic 

errors arising from the deconvolution algorithm will be more serious. 

As a final, more realistic, test of the profile-fitting routine, a model 2D image is convolved 

with a seeing PSF, Poisson-noise added, and then reduced in precisely the same way as a 

real galaxy image. The image is put through the deconvolution routines and the corrected 

^( r ) profile is analysed with the profile fitting routines described above. The model used 

has the same parameters as used in the previous experiment (see model 4 in Table 6.3), 

with an inclination of 50°, and a seeing FWHM of 1.27". The results of the profile fitting 

is shown in Figure 6.11. Note how the deconvolution has smoothed the profile in the outer 

part. The two-component parameters match the input well within the sky uncertainty. This 

demonstrates that the profile of a real seeing degraded galaxy image can be adequately 

recovered after deconvolution. 

6.7 Conclusions 

In this chapter, a method has been developed for fitting and parametrising the surface 

brightness profiles of early-type galaxies. This method thus operates in tandem with the 

technique developed in Chapter 5 to correct the SB (and other) profiles for the effects of 

seeing. It has been demonstrated, using simulated data, that the method is both effective 

and robust. Using a relatively straightforward method, the 'useful' surface brightness data 

for a ground-observed elliptical galaxy (at Coma/Abell 1367 distance) has been extended 

inwards to one or two times the seeing FWHM from the core. Using the improved profiles, 

it is now possible to gleam a great deal more information about the structure of early-type 
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Figure 6 .11: Parametric fits to a ^ ( r ) profile from a made-up 2D seeing-convolved r" -|- ex-p galaxy 
corrected using the deconvolution algorithm. The inclination angle is 50". See Page 113 for key. 
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galaxies from their photometry. The bulge-disk fitting technique, for instance, provides an 
inclination independent method of checking for the presence of a disk component (unlike 
using higher-order terms). 

The next step is to use the profile-fitting procedure on all 153 galaxies of the Coma/Abell 

1367 sample. The results for each individual galaxy are displayed in in Appendix D. The 

statistical results of the profile-fitting for the whole sample are presented and discussed in 

Chapter 7. Note that where repeat images exist for a given galaxy, the deconvolved profiles 

from each image are binned (using a weighted mean) to produce a single set of deconvolved 

profiles with higher signal-to-noise ratio. Of the 153 galaxies in the sample, only 23 were 

not fitted by a two-component model. This adequately demonstrates the range of validity 

of the fitting technique - this range includes all galaxies with a disk component contributing 

more than around 8% of the total light. 



Chapter 7 

Results and Discussion 

7.1 Introduction 

In this chapter, the deconvolution and profile-fitting methods developed in the last two 

chapters are apphed to the sample of 153 galaxies in Coma and Abell 1367. In Section 7.2, 

the bulge-disk deconvolution is compared with the results of two other studies - Dressier 

(1980a) and Sagha et al. (1997). In Section 7.3, the problems of morphological classifica

tion are examined, using the distribution of ellipticities of the different types. Using the 

inclination-independent disk luminosity fraction D / T , calculated from the profile fitting, 

it is possible to identify many of the 'missing' low-inclination SO's which have normally 

been classified as ellipticals. In Section 7.4, the relative merits of the one-component and 

two-component profile models are discussed, along with a demonstration of the correlation 

between profile shape and galaxy size. In Section 7.5, we present the results of an isophotal 

shape analysis for the 153 galaxies, and use these results to strengthen the conclusions of 

the profile fitting. Finally, Chapter 8 sums up the various conclusions about early-type 

galaxy morphology and puts them in the context of galaxy evolution in rich clusters. 

7.2 Two-Component Fitting - Comparisons 

Bulge-to-Total luminosity fraction's have been measured from the surface-brightness pro

files for the whole sample of 153 Coma and Abell 1367 galaxies, following the methodology 

outlined in Chapter 6. The results of the bulge-disk decomposition for individual galaxies 

are displayed as figures in Appendix D, which also includes tables giving the best-fit pa-

130 
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Figure 7.1: A comparison of the bulge-total luminosity fraction's calculated in this study with those 

calculated from the bulge and total magnitudes of Dressier (1980b) for the 111 galaxies in common. The 

comparison is made in two difi'erent ways. In plot (a), the bulge-total magnitude difference (MB — MT) 

is compared (note the quantization of Dressler's data into half-magnitude bins). Plot (b) compares the 

bulge-total luminosity fraction's (B/T). I t can be seen in plot (a) that for a few objects Dressier assigns 

bulges with luminosity greater that the total - these are assumed to have B/T equal to unity in plot (b). 

The open circles represent early-type galaxies, whilst the stars represent spirals and irregulars. The dotted 

line is the line of equivalence between the two axes in both plots. 

rameters of models fitted. It is apparent that while an idealized plus exponential profile 

fit is very appropriate for some early-type galaxies (e.g. NGC 4906), it does not accurately 

portray the shapes of many others (e.g. NGC 4919). 

The results of Dressier (1980a), which show an environmental trend in bulge luminosity, 

were based on 'eyeball' bulge-disk decompositions from photographic plates - both the total 

and bulge magnitudes were estimated by comparison with a 'fly-spanker' (a photographic 

strip with a sequence of exposures of standard galaxies). This is necessarily crude - the size 

of the magnitude bins alone being 0.5 and 1.0 for bulge and total magnitudes respectively. 

Nonetheless, the dearth of extensive bulge-disk deconvolution data in the literature makes 

it interesting to compare Dressler's values for bulge-total magnitude difference with those 

calculated here from a CCD-based bulge-disk decomposition (the comparison is shown in 

Figure 7.1). 

The large errors involved in measuring bulge luminosities are apparent in Figure 7.1. In 
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particular, the scatter in these plots is likely to arise from measurement errors in both data-
sets, and the heavy quantization of Dressler's magnitudes. The RMS measurement error 
in the author's Mb — Mt values is ~ 0.094mag, which is too small to explain the scatter 
here. Also present is a systematical trend in the sense that Dressler's bulge magnitudes 
tend to underestimate the bulge contribution with respect to the author's measurements -
this is particularly true for late-type galaxies. Table 7.1 below gives the mean bulge-total 
luminosity fraction (B/T) for both data-sets, sorted by morphological type. 

The morphological classes used in Table 7.1 are those outlined in Chapter 2 (i.e. E,S,I 

and U). However, the early-type class (E) has divided into two visual classes - Ellipticals 

being those classed E, E/SO by Dressier (1980b), while Lenticulars are those which Dressier 

classed SO, SO/E, SO/a, SBO or later (the 2 Coma cD Galaxies are not included). Table 7.1 

shows good agreement on the average 'bulge' fraction of ellipticals, which both data-sets 

give as around 76±3%. However, for the 51 lenticulars in common, there is a significant 

difference in average bulge fraction - 67% here, but 44% using Dresslers data. In fact, 

there is not a large difference between mean B/T for ellipticals and the mean B/T for SO's 

according to the authors data. This is important because the presence (or absence) of a 

disk component is the main morphological distinction between Hubble's E and SO classes. 

This result, therefore, suggests that the traditional separation of early-type galaxies into 

ellipticals and SO's is an artificial one - based primarily on difference in viewing angles 

rather than any real physical difference between the objects (this possibility will be analysed 

further in Section 7.3). Of course, early-type galaxies with more prominent disks will display 

an 'SO' morphology over a greater range of viewing-angle, which may explain why the mean 

B/T IS nonetheless slightly smaller for those objects classed SO by Dressier. 

A much more recent photometric study of over 700 mainly early-type galaxies in 84 

clusters has been undertaken by the EFAR collaboration (Sagha et al. 1997). This includes 

detailed measurements of photometric parameters from CCD data, including disk-bulge 

luminosity ratio. Unfortunately, the number of Coma galaxies observed by EFAR is not 

large. Of the 32 Dressier galaxies in Coma observed by EFAR, only 21 galaxies were given 

the two-component (bulge and disk) fit. Of these 21 galaxies, only 16 objects are also 

included in the Steel sample. Despite the small number of common objects, a comparison 

between the two data-sets is still worthwhile. 

The photometric fitting procedure adopted by EFAR differs somewhat from that which 
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Table 7.1: Table of mean B/T luminosity fraction's calculated from this study and from the magnitudes 

Morphology Number of (B/T) Error {B/T) Error 

Objects (Steel) A{B/T) (Dressier) A{B/T) 

Elliptical 35 0.79 0.02 0.73 0.05 

Lenticular 51 0.67 0.03 0.44 0.03 

Ear ly-Type 86 0.72 0.02 0.56 0.03 

Spiral 15 0.44 0.07 0.22 0.05 

Irregular 4 0.41 0.21 0.21 0.10 

Late-Type 19 0.44 0.07 0.21 0.04 

Unclassed 6 0.33 0.12 0.35 0.03 

A l l Types 111 0.65 0.02 0.49 0.03 

is used here and hence it is certain to produce some systematic differences between the 

two data-sets. Both methods involve the minimisation of a goodness-of-fit (x^) function in 

order to find the best-fitting parameters. However, EFAR uses circularly averaged surface-

brightness profiles, whereas elliptically averaged profiles (taken from fitted ellipses) have 

been used in this study. This removes one possible source of systematic error from this study 

- circularly averaged photometry of a flattened galaxy is actually an integration of light from 

a range of elliptical isophotes. This means that at a given radius, the measured surface 

brightness will be a function of both the surface brightness along an ellipse of identical 

equivalent radius AND the form of the surface brightness profile in the neighbourhood. Of 

course, the effect is reduced for low-ellipticity galaxies, and 96% of EFAR's galaxies have 

ellipticity less than 0.4 (compared with only about 60% of the early-type galaxies in this 

study). 

Another difference is the treatment of sky brightness level and seeing FWHM. These 

are treated as free parameters by EFAR, to be minimised along with the other profile 

parameters, whereas they are measured and fixed in this study (see Chapter 6). This has 

the effect of reducing the volume and complexity of the parameter-space to be searched. 

In many cases, it is possible to engineer a better fit by arbitrarily shifting the sky level 
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or FWHM and changing the profile. For instance, a galaxy which appears to follow an 
r^' law with the measured sky level will often fit an plus exponential law even better 
(i.e. with lower x^) i f the sky level is reduced. Of course, the measurement of the sky 
background will always have a error - this is accounted for in this study by performing 
the minimisation three times (using the measured sky level, sky plus estimated error and 
sky minus error). The errors on the individual minimised parameters were then calculated 
from the differences between the three minimisations. The large field size of the CCD data 
used in this survey (11.4" x 10.5") makes the accurate measurement of sky level and seeing 
F i y i / M straightforward. This is perhaps not the case with EFAR as some of their data 
was observed with CCD fields of only 2.9" x 1.9". 

The comparison of bulge-disk parameters between EFAR and Steel is shown in Fig

ure 7.2. The 2 cD galaxies have not been included because the sky subtraction errors for 

these objects make a comparison meaningless, leaving a common sample of 14 objects. Fig

ure 7.2(a) shows the comparison between disk-to-bulge luminosity ratio [D/B) for the two 

samples, while Figure (b) shows the residual of D/B plotted against isophotal eUipticity 

£21.5- Figures (c) to (f) show the comparison for the individual bulge and disk parameters 

- EFAR use different parameters to describe the disk component (scale-length and central 

surface brightness), but these are easily converted to the parameters used by Steel (effec

tive radius and effective surface brightness). Note that two of the 14 galaxies (IC 4051 

and NGC 4860) were deemed not to have a significant exponential component by Steel, 

and therefore are not included in the disk parameter comparisons. No attempt is made 

by EFAR to assign uncertainties in the bulge/disk parameters for the individual galaxies, 

hence Figure 7.2 only shows error bars for the authors data. One can assume, however, 

that the measurement errors on the EFAR data are of similar order to those of Steel. 

The considerable scatter (RMS of 33.7%) in the comparison with the EFAR D/B ratios 

does not appear encouraging at first glance. However, it must be remembered that the range 

in D/B is not large for the EFAR sample (typically D/B < 0.5 or D/T < 0.3), whereas 

all galaxies are included in the Steel sample, regardless of morphology. Measurement error 

must account for much of the scatter (note the error bars in Figure 7.2(a) only show the 

authors measurement errors). Given the different methodology of the two studies (circular 

photometry versus elliptical photometry), there must also be some systematic error present. 

However, Figure 7.2(b), which shows D/B residual versus ellipticity does not display any 
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convincing trends - the number of common galaxies is too small and the measurement 
errors too large. Curiously, the galaxy with the greatest disparity between Steel and EFAR 
(NGC 4886) is also the most face-on. The difference in this case is very probably due 
to the background subtraction, as NGC 4886 lies embedded within the halo of cD galaxy 
NGC 4889. The treatment of such objects in this study was to mask out the galaxy in 
question, and then fit the varying background light. If the varying background was due to a 
larger galaxy (as in this case), then GALPHOT can be used to fit and model the unwanted 
galaxy light - otherwise, a spline-fit will suffice. This surface can then be subtracted from 
the original image and a constant added (to avoid negative pixels). The resulting frame 
has a flat background and the target galaxy can be processed as normal (see Chapter 3). 

A much better comparison between Steel and EFAR is seen in the individual scale pa

rameters of the two components, which are matched remarkably well, see Figure 7.2(c)-(f). 

The RMS scatters for the four parameters are as follows: 0.180 (logr,^); 0.908 ((//'')«); 0.099 

(logTg); 0.585 {{jj}')e). Perhaps contrary to expectations, the exponential component seems 

to be recoverable with smaller error than the component. A reasonable explanation is 

that the component, being more centrally concentrated, is more affected by errors in 

the seeing correction than the extended exponential component. Of course, the exponen

tial component fitting is similarly affected by sky subtraction, but this would appear to 

be less significant. In any case, there is a clear and unequivocal correlation between the 

photometric parameters calculated by Steel and EFAR. 

The conclusion, therefore, is that the deconvolution of an early-type galaxy surface 

brightness profile into an A component and an exponential component represents a re-

peatable measurement. What remains to be seen is the physical usefulness of such an 

approach in determining the characteristics of early-type galaxies. 

7.3 The Missing SO Problem 

There has been much speculation over the past few years concerning the nature of SO galax

ies, and particularly their relationship to elliptical galaxies. The use of the C4 coefficient to 

identify pointy or disky elliptical galaxies has led to suggestions that disky eUipticals and 

SO's together form a single class of galaxies (distinct from boxy ellipticals) with a continu

ous distribution of bulge-to-disk ratio - the SO's naturally being the more disk-dominated 
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Figure 7.2: A comparison of disk and bulge parameters between Steel and the EFAR collaboration (Saglia 
et al. 1997). Plot (a) shows the direct comparison of D/B ratio, whilst (b) plots the residual of D/B 
versus ellipticity. The remaining plots (c)-(f) compare the parameters logr^, (/u^)e, logr f and (/i'')e. 
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objects. The viewing angle is thought to be highly significant - van den Bergh (1990) 
pointed out the deficiency of face-on faint SO's in the RSA Catalogue (Sandage and Tam-
mann 1981), arguing that many SO's have been, in fact, misclassified as ellipticals. Rix 
and White (1990) used idealized r^-law bulge plus exponential disk models to demonstrate 
that a disk containing 20% of the total luminosity would be undetectable (in C4) for more 
than half the possible viewing angles. Indeed, even brighter disks would be invisible for 
low inclination angles - such galaxies would inevitably be classified elliptical. 

Jorgensen and Franx (1994, hereafter JF94) used ellipticity measured at isophote gunn r = 

21.85 ( £ 2 1 . 8 5 ) to derive cumulative distributions of apparent ellipticities. It is immediately 

clear from their distribution plots that SO's are generally more flattened than eUipticals, 

and occupy a very differently shaped distribution - avoiding low apparent ellipticities. As 

a comparison (see Figure 7.3(a)), ellipticities have been measured for this study at the 

isophote R = 21.5 (621.5 - calculated by interpolating the elhpticity between the nearest 2 

ellipses from the surface photometry). This is equivalent to £21.85 in JF94. The eUipticity 

data agrees well with JF94, the RMS scatter between the two data-sets being 0.051. This 

scatter, together with an mean offset ( £ 2 i . 5 - £ 2 i . 8 5 ) of 0.037 are somewhat larger than would 

be expected from measurement errors (typically ±0.006 for Steel, JF94 quote ±0.014 for 

their data). The explanation almost certainly lies in seeing effects - the observations of 

JF94 were carried out with greater seeing (~ 2") than this study (~ 1.2"), and therefore 

JF94 measures smaller ellipticities - with variations in seeing contributing to the scatter. 

The ellipticity data has been used to derive distributions of the apparent ellipticities 

for the different morphological types. The division of the early-type (E) class into the 

classical 'Hubble' types or 'visual' classes (E and SO) is extended to the whole data-set. 

The types for Abell 1367 are taken from Butcher and Oemler (1985). The few early-type 

galaxies which remain without a type have been examined by the author and typed E or 

SO depending on the visual existence of a disk. The resulting distributions are shown in 

Figures 7.3(b) and (c). Figure 7.3(b) shows a number distribution of ellipticity, sorted into 

ellipticals, lenticulars, and late-type (S+I) galaxies. The plot compares well with Figure 

3(a) in JF94, and shows clearly the different ellipticity distributions of those early-type 

galaxies classed 'E' and 'SO' according to the normal morphological criterion (the late-type 

galaxies exist across a wide range in £21 .5 , as expected). The absence of face-on lenticular 

galaxies is striking, and is demonstrated well in the plot of the cumulative distribution -
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Figure 7.3: (a) Comparison of Steel's ellipticities (£21.5) with those of JF94 (£21.85)- (b) Number distri
bution of apparent ellipticity, sorted by type, in bins of 0.1 mag. (c) Cumulative Distribution of apparent 
ellipticity - sorted into ellipticals, SO's and all early-type (E plus SO). 
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Figure 7.3(c) (c.f. fig. 3(b) in JF94). Whereas more than half of the ellipticals are more 

face-on than £21.5 = 0.2, this is true for less than 10% of the lenticulars. A Kolmogorov-

Smirnov (KS) test rules out any possibility of the two classes having the same parent 

ellipticity distribution (the probability of getting the same or greater difference between 

the two cumulative distributions given the same parent is 3.2x10"^°!). 

Clearly, the morphological criterion for distinguishing between elliptical and SO galax

ies is strongly dependent upon apparent ellipticity, and therefore inclination angle. The 

relative properties of elliptical and SO galaxies could be studied in a more meaningful way 

if the criterion for separating them is independent of inclination angle. For instance, if 

an early-type galaxy possesses an exponential disk component contributing more than a 

particular fraction of the total light then regard this galaxy as an 'SO', whereas other 

galaxies can be classed 'E'. Although simphstic in the sense that only one criterion is used 

(other criterion might include C4 or kinematic information) this approach has the strength 

that if the disk fraction is calculated by an inclination-independent method, the resulting 

morphological 'classes' will not be degenerate at low apparent ellipticities. An interesting 

exercise, therefore, is to use the values of disk fraction (D/T = 1 — B/T) calculated in this 

study to divide the early-types into two classes. Despite the large measurement errors, and 

systematic errors arising from departures from an -f- exp law, the method of bulge-disk 

segregation outlined in Chapter 6 is independent of inclination. This is demonstrated in 

Figure 7.4, where the bulge fraction is plotted against the apparent ellipticity. 
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Figure 7.4: Plots showing the independence of bulge fraction {B/T) measurements as a function of 

ellipticity (£21.s)- (a) A scatter diagram for all galaxies - the correlation coefficient is -0.18. (b) Weighted-

average B/T measurements (in ellipticity bins of 0.1) against £21.5- The error bars show the standard error 

on the mean - {B/T) is almost constant (~0.65-0.7) with ellipticity. 
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Al l early-type galaxies are re-assigned 'morphological classes' according to disk lumi
nosity fraction D/T. Al l galaxies with D/T greater than 24% are classed E-t-, while all 
galaxies with D/T smaller than 24% are classed E-. The labels E- and E-|- are used instead 
of E and SO to avoid confusion with the 'visual' classes. The value of 24% is not arbitrary 
- it is chosen so that the numbers of galaxies falling into 'photometric' classes E- and E+ 
are identical to the numbers of galaxies in the 'visual' classes E and SO respectively (for 
this sample). The cumulative eUipticity distribution is then plotted for the new classes 
E-f- and E- in Figure 7.5 (c.f. Figure 7.3). I t can be clearly seen that the distributions 
for the two classes are very similar. In particular, there is no shortfall in the number of 
low ellipticity E-|- galaxies (which are equivalent to SO's). There is a slight difference at 
the high-ellipticity end of the distributions where there are several E-|- galaxies with £21.5 
greater than 0.6. This is not surprising, however, as at high inclinations the brighter disks 
of E-f- relative to E- galaxies will have the effect of increasing the apparent ellipticities. 
Despite this small difference, a KS test on the two distributions shows that they are not 
statistically inconsistent with being drawn from the same parent ellipticity distribution 
(the probability of getting a larger difference between the E-(- and E- distributions given 
the same parent is 60.7%). 

Summai'ising, it has been shown that the distribution of ellipticity for visually-classed 

eUipticals and SO's is incompatible with the two classes having the same parent distribution, 

in agreement with the result of JF94. In particular, there is an almost complete lack of 

face-on galaxies traditionally classed as SO. This problem can be remedied by choosing an 

inclination-independent parameter - the disk-fraction D/T - to determine the morphology, 

rather than visual appearance of diskyness, which is biased by viewing angle. 

7.4 Bulge-Disk Model versus Power-Law Model 

The alternative profile shape for early-type galaxies to the plus exponential model is 

a generalised r " single power law (Sersic 1968). D'Onofrio et al. (1994) demonstrated 

that a correlation exists between the size ( r e ) of early-type galaxies and the index n of the 

best fit rn - l aw for the Fornax and Virgo clusters, in the sense that smaller galaxies have 

shallower (smaller n) profiles. Is it not possible that the change in the profile shape is 

directly attributable to the varying strength of an exponential disk component? Generally, 



CHAPTER 7. RESULTS AND DISCUSSION 141 

E - ( D / K 0 . 2 4 ) 

E+ ( D / T > 0 . 2 4 ) 

All Ea r l y - t ype 

0.2 0.4 0.6 

EUipticity e^^ ^ 

0.8 

Figure 7.5: Cumulative distribution of apparent ellipticities for classes E + and E-, selected from 109 

early-type galaxies by a cut-off in measured disk luminosity fraction D/T. 

a brighter disk will produce a shallower (lower n) overall profile - a pure bulge galaxy should 

have = 4, while a pure exponential disk galaxy will have n = 1. 

In order to make a comparison between the two models for the surface brightness profile 

shape, and their relation to galaxy morphology, the single-component power-law index n 

has been measured for all 153 galaxies in the sample. Two different methods have been 

employed, with the final value of n calculated as the average of the two values of n from 

each method. 

Firstly, all galaxies are fitted by a single power law r" , with n taking the values 1, 2, 

3, 4 and 5. The three values of n which give the lowest are then determined and a 

parabola is fitted to these values to approximately calculate the value of n which gives the 

lowest x^-) i-e. the best fi t . This a similar method as Caon et al. (1993), although they 

perform a 3-parameter fit, allowing n to vary. The method which has been employed here 

is convenient because it uses the same software as the two-component fit. 

Secondly, n can be determined from the difference between the effective surface bright

ness ((/^)e) and the surface brightness at (^g) as follows. Suppose the surface brightness's 

(^)e and He are equivalent to flux's (/)e and /g. Given that the effective radius and effective 

surface brightness represent the half-light values for a perfect fit, the total luminosity L 

can be given by:-

L = 2^(/)ere (7.1) 
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Figure 7.6: Graph showing the scatter between the two different measurements of power-law index n, 

using the two methods described in the text. The RMS scatter is 1.16. 

Similarly, it is apparent that the total luminosity is proportional to /g. The constant of 

proportionality is, however, dependent upon the shape of the surface brightness profile, i.e. 

the index n:-

(7.2) 

Equating 7.1 with 7.2:-

(/)e K 
Converting from flux's to magnitudes:-

/"e - (/")e = 2.5 (log kn - log 27r) 

(7.3) 

(7.4) 

The constant A;„ can be calculated by integrating the surface brightness profile from r = 0 

to r = GO. Unfortunately, this can only be done algebraically for a few specific values of n. 

However, by calculating the integral numerically, Caon et al. (1993) have shown that the 

following relation is appropriate in the range 0.5 < n < 16.5:-

logfcn = 0.030(logn)^ + 0.4411ogn-M.079 (7.5) 

Substituting equation 7.5 into equation 7.4 and turning everything around to make n the 

unknown, we finally get a relation between power-index n and difference //e — (A*)e> 

logn = -7.350 + ^^44.661 + 13..333(A<e - {fc)e) (7.6) 
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Figure 7.7: Graph showing the relation for the whole sample (all types) between the D/T luminosity ratio 

(characterising the two-component f i t ) against the power-law index n (characterising the single-component 

fit). The dotted line shows the general trend expected - pure bulges will have n = 4 while pure disks will 

have n = 1. 

Each method of measuring n has advantages and disadvantages. The minimum-^^ 

method has the advantage that a large range of the profile is used for fitting, but is affected 

by seeing and sky subtraction errors in a similar way to the two-component fit. The 

surface brightness method (using difference fx^ — {n)e) is critically dependent upon a single 

measurement of surface brightness (at re), which may suffer from a localised perturbation. 

However, it does also use (^)e which is calculated from aperture photometry (which has 

high signal-to-noise). It can be seen from Figure 7.6 that the scatter between the two 

values of n is considerable [RMS = 1.16). It was therefore decided to reduce the scatter 

by averaging the two values for each galaxy. The resulting value of n will still have a typical 

error of at least ±0.5. A minimum value of n is set at 0.5 (from the range of the relation 

taken from Caon et al. 1993) - only a few late-type galaxies exceed this. A maximum value 

of 71 is set at 5.5, as the profile shapes become degenerate for high n - in fact, no galaxies 

exceed this value. 

If n characterises the single-component r "-law fit and D/T characterises a two-component 

model fit, it is apparent that there should be a correlation between the two parameters, 

even if one or both of the model fits are wholly inappropriate. For instance, an plus 
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exponential model with D/T = 1 (i.e. a pure disk) is identical to an r^-law model with 
n = 1, and similarly an plus exponential model with D/T = 0 (i.e. a pure bulge) is 
identical to an r i - law model with n = 4. By plotting the calculated values of n against 
D/T, this trend is shown in Figure 7.7. The scatter in Figure 7.7 is considerable, but ex
pected. For a given value of D/T the bulge and disk components can have a large variety 
of shapes depending on individual disk and bulge parameters, leading to a range of n values 
if this fit is chosen. However, it is apparent from the plot that a strong correlation exists 
between the two parameters, especially in the range n = 2 to n = 3.5, where the typical 
disk fraction decreases from about 55% to around 10%. The correlation of galaxy shape, 
as defined by n or B/T = 1 — D/T, with galaxy size, as defined by half-light radius or 
magnitude is investigated next, before making a final conclusion about which model gives 
the best representation of early-type galaxies. 

Using the values of n calculated for each galaxy, it is possible to plot the correlation of 

index n against size for the Coma and Abell 1367 clusters. This is shown in Figure 7.8, 

which is directly comparable to Figure 8 in D'Onofrio et al. (1994) which shows a similar 

plot for Virgo and Fornax. The sample is divided by type for clarity. Again, the early-type 

(E) class is divided into the 'visual' classes 'Elliptical' and 'SO'. The trend for eUipticals is 

similar to that of D'Onofrio et al. (1994), although there is no evidence for the bimodahty 

in the distribution which those authors suggest. The magnitude range covered by the two 

studies is similar, although D'Onofrio et al. (1994) go shghtly deeper - to 5 = 14 in Virgo 

(equivalent to 72~16 in Coma) compared to R = 15.6 by this study. The conclusions are 

unaffected, however. The lenticulars cover more or less the same area as the ellipticals, 

although they seem to avoid values of n greater than 4. Predictably, late-type galaxies 

display smaller values of n at all sizes, due to their more dominant exponential disk com

ponent. Figure 7.9 shows the same data, but using total magnitude Mt rather than 7'e as 

the measure of galaxian size. The same trend of increasing n with size is also seen here. It 

is clear from both figures that the universahty of the de Vaucouleurs r^-law does not hold 

for early-type galaxies, whether classed visually as elliptical or SO. Rather, the shape of 

the light profile seems to depend approximately upon the size of the galaxy. 

Given that the light profile shapes of early-type galaxies seem to depend on size, are 

these profiles best described by a two-component or single-component model? In Figure 7.7, 

it was shown that the bulge-to-disk ratio derived from a two-component fit is correlated 
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Figure 7.8: The distribution of power-law index n with non-parametric half-light radius r^, separated 

into the different morphological types (c.f. fig 8, D'Onofrio et al. 1994). The symbols in (d) are the same 

as those in (a) and (b) for ellipticals and lenticulars, with the addition of triangles for the unclassified 

(U) galaxies. The filled symbols in (a),(b) and (d) represent positive (2(T) detections of C4 parameter for 

early-type galaxies. 

with the index n from a single-component r^. Could the trend of n with galaxy size 

displayed in Figures 7.8 and 7.9, and in D'Onofrio et al. (1994), therefore, derive from a 

variation in disk fraction with size/luminosity, in the sense that smaller systems become 

progressively more disk-dominated. In addition to the shape of the surface brightness 

profile, a further indicator of the presence of two photometric components is a positive 

C4 parameter. In Figures 7.8 and 7.9, the symbols for early-type galaxies are filled-in 

where there is a significant detection [2a) of positive C4 (see Section 7.5). Figure 7.8(a) 

clearly demonstrates that smaller galaxies are more likely to have two components - for 

ellipticals smaller than logrg = 0.5, 29% have detectable C4, compared with only 1 out 

of 19 (5%) of those larger than log re = 0.5 When the whole early-type (E) sample is 
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Figure 7.9: The distribution of power-law index n with asymptotic total magnitude Mt, separated into 

the different morphological types (c.f. fig 8, D'Onofrio et al. 1994). The magnitudes are corrected to 

Coma's redshift for Abell 1367 galaxies. The selection magnitude l imit (i?~15.6) is shown by the dotted 

line. The symbols in (d) are the same as those in (a) and (b) for ellipticals and lenticulars, with the addition 

of triangles for the unclassified (U) galaxies. The filled symbols in (a),(b) and (d) represent positive {2a) 

detections of C4 parameter for early-type galaxies. 

examined (Figure 7.8(d), also including U galaxies), these proportions increase to 48% for 

logTe < 0.5, but still only 23% for logrg > 0.5. These figures do seem to indicate increasing 

evidence of disks for smaller (and smaller n) galaxies. 

Given the correlations of bulge-disk ratio with n, and n with galaxy size, one would 

expect a correlation between bulge-to-disk ratio (or bulge fraction) with galaxy size. Fig

ures 7.10 and 7.11 are basically the same plots as Figures 7.8 and 7.9, but with B/T 

luminosity ratio rather than index n as the ordinate. The brightest galaxy in Abell 1367, 

NGC 3862, has not been included in these plots as it possesses a cD-hke extended halo 

which photometrically mimics an exponential disk. It is apparent that B/T shows weaker 
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evidence of a trend with galaxy size than n. This is partly a result of observational scatter 
- a two-component model is harder to fit than a one-component fit. There is some degener
acy as the 4 parameters of the two-component model can produce similarly good fits to the 
profile from different combinations of values. This aside, it can be seen from the two figures 
is that smaller early-type galaxies do indeed become progressively more disk-dominated. At 
any given galaxy size or luminosity, there appears to be an upper limit on the relative size of 
the disk component, if this is how the light profiles are to be interpreted. This upper limit 
increases with decreasing size - for an M = 13 galaxy, the disk can account for up to 30% 
of the total luminosity, while for an M = 15 galaxy, this figure is increased to around 75%. 
The upper limit on disk fraction is larger at all magnitudes for galaxies visually classed SO 
than those classed elliptical. This is not surprising, however, as early-type galaxies with 
very bright disks are more likely to be classed SO, whatever their inclination, whereas for 
less luminous disks it is the inclination angle which is the prime factor in deciding whether 
a galaxy is classed elliptical or SO. 

Summarising, we have seen above that the universality of the de Vaucouleurs r4-lavv 

does not hold for the vast majority of early-type galaxies. The exact shape of the light 

profile seems to be dependent at some level upon the luminosity or radial size of the galaxy. 

The two most commonly used forms for the light profiles of early-type galaxies are the two-

component ri (bulge) plus exponential (disk) model and the Sersic single-component r " 

power law. By fitting both types of profile to early-type galaxies, it has been shown that 

the parameters of the profiles (?̂ , B/T) correlate with the total magnitudes or effective 

radii of the galaxies, in the sense that smaller galaxies tend to have 'diskier' or 'shallower' 

profiles. 

But which profile type is actually the better representation of the surface brightness 

profile of early-type galaxies? Figure 7.12 plots the difference between the x^ fo i ' the two-

component fit and the minimum x^ for the rn-law fit (using n — 1 , 2 , 3 , 4 , 5 ) , against the 

total magnitude and half-light radius. The reduced x^ has been used to take into account 

the differences in the degrees of freedom between the different models. It is calculated as:-

^ - ^ ^ A . A ^ „ e , , ( r , ) ' 

Where n — m is the total degrees of freedom for the fitted model (number of points in the fit 

minus the number of free parameters in the model), while iimeas and fimodei are respectively 
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Figure 7.10: The distribution of bulge-total luminosity ratio B/T with non-parametric half-light radius 

re, separated into the different morphological types. The symbols in (d) are the same as those in (a) and 

(b) for ellipticals and lenticulars, with the addition of triangles for the unclassified (U) galaxies. The filled 

symbols in (a),(b) and (d) represent positive (2(7) detections of 04 parameter for early-type galaxies. 

the measured (i.e. seeing deconvolved) and fitted surface brightnesses at each point. The 

standard deviation on each point is taken as equal to A^meas - the random measurement 

error from the profile-fitting routine (this includes a value equal to 0.2 times the seeing 

correction - this is added in quadrature to the measurement error, to account for errors in 

the deconvolution process, see Chapter 6). 

It is apparent that for the majority of early-type galaxies, whether they have been 

previously classed elliptical or SO, an plus exponential model gives a fit with a lower 

than an r^-law model. In fact, 83% of those galaxies fitted with a two-component model 

generate a better quality fit than a single power-law model. Interesting, the few galaxies 

which show a much better fit for the r^-law (A^^ > 2) are all bright, extended objects. 

The suggestion of D'Onofrio et al. (1994) is that the large, high n, group of eUipticals 
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Figure 7 .11: The distribution of bulge-total luminosity ratio B/T with asymptotic total magnitude Mt, 

separated into the different morphological types. The magnitudes are corrected to Coma's redshift for 
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parameter for early-type galaxies. 

represents a bright family of merged objects. Certainly, this study does not contradict this 

assertion in any way. However, the evidence from the C4 parameters and the relative quality 

(as measured by x^) of the profile fits does not support the assertion that the disk-less rn 

model for early-type galaxies can be extended to smaller ellipticals, which do not appear 

statistically distinguishable from those galaxies which have been traditionally classed SO. 

The x^ statistic has been used here merely as an indication of relative quality-of-fit 

between the one and two component models. The actual values of x^ only have their usual 

statistical meaning if the measured data points are independent of each other and the errors 

are normally distributed. In this case, it is possible to use x^ (non-reduced) to calculate 
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the chi-square probability function Q{0.5[n — m],0.5x^), which gives the probability that 
the minimised chi-square should exceed by chance the value x^- However, the measured 
data presented here has been through a seeing-deconvolution process which has had the 
effect of smoothing the data and reducing the errors. The x^ values obtained are therefore 
systematically smaller than the true values. The difference should be fairly independent 
of which profile model was fitted to the data. A rough estimate of what this difference 
should be can be calculated. Suppose that the deconvolution process has resulted in the 
random error amplitudes being reduced by 50%. One way of estimating the 'true' x^ is to 
add random errors back onto the measured data points. If we approximate all errors as 
normally distributed, then the standard deviation of the 'added' errors required to make 

up the difference will , by adding in quadrature, equal \/0.75 times the standard deviation 

of the quoted errors (i.e. Afimeas)- Adding these errors into Equation 7.7:-

Xtr 2 meas ( n ) ] 
ue ^7 77^2 (7.8) 

Where Ai is picked from a normal distribution of standard deviation cr̂  equal to \/0.75. 

Expanding Equation 7.8:-

(7.9) 

The middle term cancels out because the average of Ai is zero. The first term is just the 

calculated value of x^- The difference between the true and calculated x^ is thus:-

Xiru.' - Xcaic' - E A,' - S i A ! ^ = 0.75 (7.10) 
— ~ i n 

In the impossible situation that the measurement errors in the deconvolved profiles are 

entirely (i.e. 100%) erased, then this difference between the true and calculated x^ values 

increases to 1.0. We can reasonably conclude that a correction constant between 0.75 

and 1.0 needs to be added to every calculated value of x^- Provided that the number of 

points in the fit n is always large - this constant is not dependent on the model fit used. 

The comparison of x^ values for different models, as displayed in Figure 7.12, is therefore 

perfectly valid. 

It could be argued that for the smaller galaxies, the reduced range between the FWHM 

and the sky background means fewer points in the profile fitting, and therefore little chance 

of distinguishing between the different types of profile. This resolution effect is clearly 
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visible in Figure 7.12, whereby the differences in the x^ are reduced for smaller and fainter 

galaxies. However, as a test of whether the profiles of small galaxies can be distinguished, 

a model single power-law profile was made-up (ra-law, re = 3" and Mf = 14.3) and fitted 

with the same one and two-component profiles as the real galaxies. The parameters of 

the model were chosen as being typical of a fainter elliptical in Coma. An r2-law was 

chosen as it intermediate between an and exponential law and thus closely resembles a 

two-component fit. The reduced x^ for the r2-law fit was 1.242 compared with x^ = 3.122 

for the r5" plus exponential fit (the difference is plotted is Figure 7.12 with a star symbol). 

Although the difference is only 1.9, this is greater than the difference (in favour of the 

one-component fit) for any real galaxy smaller than = 4" or fainter than Mt = 14.3. 

One might expect, therefore, that if significant numbers of fainter galaxies (at least to 

Mt = 14.3, as faint as the model profile) were best fit by a single power-law, we would see 

more galaxies with a x^-difference of around 2 (just as can be seen for galaxies best-fit by 

a two-component profile). 
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Figure 7.12: The difference between the quality-of-fit parameter (reduced) for the two-component fit 

and the one-component fit, plotted against half-light radius (a) and asymptotic total magnitude (b), for all 

early-type (E) and unclassified (U) gala.xies. Tlie symbols are the same as those used in figures 7.8 to 7.11. 

The star symbol shows the difference for a made-up model r 2 profile with rg = 3" and M j = 14.3 (to 

demonstrate the resolution between different profiles for faint galaxies). 
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Figure 7.13: A comparison between the isophotal parameter ( 0 4 ) measured by Steel for the Coma cluster, 

and those published by (a) JF94 and (b) Andreon et al. (1996). The error bars in the lower RH corner 

show the typical uncertainties for Steel and JF94 (Andreon et al. do not quote an uncertainty for their 

values). Note that the C4 parameters published by Andreon et al. (1996) are extremum values rather than 

the intensity-weighted mean value ( 0 4 ) computed by Steel and JF94. 
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7.5 Isophotal Shapes 

This study has concentrated upon the detection of disks in early-type galaxies from the 

parameterisation of the surface brightness profile. An alternative method of disk detection 

comes from the measurement of deviations of the isophotes from a perfect ellipse (Carter 

1987, Bender et al. 1989). The basis of this method is the quantification of the residuals 

of surface brightness along an elliptical isophote, in terms of the coefEcients of a Fourier 

expansion (equation 7.11). 
N 

I[$, r) = Io[r) + J2 (cz cos id + s^ sin i9) (7.11) 

A significantly positive 4th-order cosine term C4 indicates a 'lemon'-shaped isophote. If 

a positive C4 parameter persists across a range of isophotal radii, then the most likely 

explanation is that two photometric components of different apparent flattening (i.e. a 

bulge and a disk) are overlapping. The amplitude of the C4 coefficient is highest where the 

two components are of similar surface brightness and the system is edge-on (thus giving 

the largest contrast in apparent ellipticity). In Section 7.3, it was shown that many face-on 

early-type galaxies, which had previously been regarded as disk-less ellipticals due to their 

lack of isophotal distortions, actually possessed relatively strong disks. This was predicted 

by Rix k White (1990), who demonstrated with models that galaxies with 20% disks would 

not show any signiflcant C4 for half the possible viewing angles. 

Morphological studies of the Coma cluster, based on isophotal shapes, have been un

dertaken by JF94 and Andreon et al. (1996, hereafter A96). In order to compare with 

these two studies, and to add further morphological detail to this study, isophotal param

eters have been measured for all 153 galaxies in the sample. Using the GALPHOT-h&sed 

surface photometry routine (see Section 5.3), the higher-order terms C3, 5 3 , C4 and 54 were 

measured as a function of isophotal radius for all the un-deconvolved galaxy images. As 

this study is comparing galaxies with a wide range of morphology (with greatly varying 

profile shapes for the high-order terms), it was decided to follow the method of JF94 in cal

culating an intensity-weighted mean value (and uncertainty) for C4 and the other isophotal 

parameters, rather than the extremum value which is often used. Where repeat images of 

the same galaxy occur, the mean values for the parameters ((cs), ( 5 3 ) , (C4) and ( 5 4 ) ) have 

been averaged. 

Given that the isophotal parameters have been calculated by the author using virtually 
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the same software and averaging method as JF94, one would expect an excellent agreement 
between the two data-sets. The comparison is shown in Figure 7.13(a) and is indeed very 
good. There is strong disagreement for two objects. Dressier 90 and Dressier 146, which 
JF94 claim are both extremely pointed ( ( C 4 ) equals 0.156 and 0.100 respectively), but Steel 
regards as having negligible C4 {{04) equals 0.002 for both objects). Given both the visual 
appearance of Dressier 90, which is not especially pointy, and the extremum value of 0.033 
for C4 quoted by JF94, one must conclude that the mean value of 0.156 is a mistype. The 
reason for the disagreement with Dressier 146, an SBO galaxy, is less clear, but may result 
from an ID problem. These two galaxies aside, the agreement is good with an RIMS scatter 
of only 0.008, which is comparable with the measurement uncertainties for both data-sets. 

A more recent study of isophotal shapes of Coma galaxies, using i?-band photometry, 

was published by A96. The comparison between the measurements of C4 by the author 

and by A96 is displayed in Figure 7.13(b). Unfortunately, the C4 parameter is measured 

differently by A96, who take the extremum value of C4 (or the value of C4 at re if the 

extremum is undefined), instead of the intensity-weighted average value ( ( C 4 ) ) measured 

by Steel. The extremum value of C4 is generally larger than the averaged value. According 

to JF94, the magnitude of ( 04 ) is, in median, 60% of the magnitude of extremum C4. In 

order to compare the C4 data of A96 with the ( C 4 ) data of Steel, the values of C4 have 

been multiphed by 0.6 in Figure 7.13(b) to approximate the averaged values. Despite the 

different definitions of C4, the comparison is quite reasonable, with the RMS scatter not 

much greater than that between Steel and JF94 at 0.010. Part of the sample of A96 was 

taken from digitized photographic plates, and these objects only have C4 quoted to the 

nearest 1% (0.01) - hence the quantisation of some of the C4 values seen in Figure 7.13(b). 

A96 code their isophotal/photometric evidence for a disk component as no (none), ft (faint), 

cl (clear) and st (strong). Using the values of disk fraction D/T measured by Steel, it is 

possible to calculate the average disk fraction for each of the disk classes of A96 - this is 

summarised in Table 7.2. 

It is clear that, despite the high scatter, the trend of the disk fraction is correlated 

with the A96 disk classes. However, it is significant that those galaxies regarded by A96 

as having no detectable disk have a mean disk fraction of 24%, confirming the assertion of 

Rix &6 White (1990) that relatively strong disks can He undetected in face-on galaxies. 

In Figure 7.14, the isophotal parameter ( C 4 ) has been plotted against other parameters 
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Table 7.2: Comparison of the 'disk classes' of A96, calculated from isophotal shapes, with the average 

values of disk fraction D/T calculated by Steel. 

Disk Class Mean Disk Fraction D/T RMS Scatter about Mean D/T 

(A96) (Steel) (Steel) 

none 0.24 0.23 

faint 0.30 0.13 

clear 0.36 0.19 

strong 0.44 0.28 

measured from the data-set - the disk luminosity fraction D/T, the power-law index n, 

the isophotal ellipticity £21.5 and the total asymptotic magnitude Mt. There are two plots 

for each parameter - one displaying the whole sample, the other with just the early-type 

galaxies (E, SO and unclassified) shown. It is apparent from Figures 7.14(b) and (d) that 

while many early-type galaxies have an insignificant ( 0 4 ) term, those with the greatest 

positive values of ( 0 4 ) have intermediate values of shape parameters D/T (~0.4) and n 

(~2.5). This is precisely what is expected from a two component bulge and disk model, 

whereby the greatest isophotal deviations occur where the two components are of compar

ative brightness. In particular, plot (d) shows that for pure 'bulge' galaxies (n;^4) and 

extremely 'disky' galaxies ( n ^ l ) , the ( C 4 ) parameter is not significantly different from zero 

for almost all objects. 

For a fixed bulge-disk ratio, the biggest control on ( C 4 ) is the inclination, and hence 

the apparent ellipticity. Figures 7.14(e) and (f) show how the value of ( C 4 ) increases with 

apparent ellipticity, measured at isophote R = 21.5 (c.f. figure 5b in JF94, who use 

the (c4)-ellipticity plane to define bulge-disk models). Figures 7.14(g) and (h) show how 

(C4) varies with total magnitude. Supporting the evidence from profile shapes, it is quite 

apparent that 'diskyness' increases considerably for fainter galaxies. Using /? = 14 as a 

cut-off, brighter galaxies have an average ( C 4 ) of 0.0027±0.0003, while for those fainter 

than R = 14, this increases to 0.0104±0.0003. Once the disk begins to dominate over the 

bulge, C4 will start to decrease again - this can be seen in Figure 7.14(b) where there are 

no galaxies with (04) > 0.03 for disk fraction D/T greater than a half. It is just possible 

that we are starting to see this effect in Figure 7.14(h). Fainter than i?~14.5, early-type 
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galaxies become so disky that the maximum possible value for ( C 4 ) at a given magnitude is 

decreasing (although the mean ( C 4 ) continues to increase). The plot hints at this possibihty, 

but i t would require a larger sample to prove statistically. 

Summarising, isophotal parameters ((cs), ( 5 3 ) , ( C 4 ) and ( 5 4 ) ) have been measured for all 

153 galaxies in the sample, according to the prescription of JF94. Figure 7.13 demonstrates 

that the authors values agree well wi th the measurements of JF94 and A96. The relationship 

between the (04) parameter, as an indicator of diskyness, and the profile shape parameters 

D/T and n is shown in Figures 7.14(a) to (d). Despite the large scatter (due largely to 

the dif f icul ty in measuring the profile shape parameters), i t is apparent that the qualitative 

behaviour of ( 0 4 ) w i t h shape is consistent wi th the commonly-asserted hypothesis that 

most ell iptical and SO galaxies comprise a population of two component (bulge and disk) 

systems w i t h smoothly varying bulge-to-disk ratio, differentiated in visual appearance by 

viewing angle. I t would be interesting to test this assertion quantitatively by investigating 

the relation between C 4 , D/T and n using model galaxies. The dependence of profile shape 

on galaxy size (see Section 7.4) is also mirrored by the distribution of ( C 4 ) parameter wi th 

total magnitude, see Figures 7.14(g) and (h). 



Chapter 8 

Conclusions 

The main aim of this project, outlined in Chapter 1, was to use surface brightness profiles to 

investigate the dichotomy between disky/non-disky ellipticals and the relationship between 

disky ellipticals and SO's. To this end, extensive software has been developed to deconvolve 

the effects of atmospheric seeing f rom /^(r) and fit parametric models to the profiles. Using 

model galaxies, i t was shown that / i ( r ) can be reproduced to well wi th in the FWHM of 

the seeing point-spread function (Chapters 5 and 6). W i t h the imperfections of real data, 

the deconvolution is less reliable, but nonetheless the inner l im i t for profile-fitting can be 

extended to only 1 or 2 times the FWHM^ representing a vast improvement on un-corrected 

data. 

The seeing-deconvolution and profile-fi t t ing software has been used on a magnitude-

hmited (/?~15.6) sample of 153 galaxies in Coma and Abell 1367. For each galaxy, the 

surface brightness profile has been fitted wi th six different parametric shapes - the standard 

two-component r* plus exponential law, and the one-component Sersic r n-law, wi th values 

of n equal to 1, 2, 3, 4 and 5. Additionally, non-parametric (i.e. model-independent) 

characteristics have been measured f rom both surface and aperture photometry, including 

total (asymptotic) magnitude, half-fight radius/surface brightness and isophotal eUipticity 

(measured at 7? = 21.5). Although the aim of this study is to use the surface brightness 

profile to interpret morphology, the isophotal high-order terms (up to 4th order) have 

also been determined to provide additional morphological detail. This extensive data-set 

(see Tables A . l and A.2 in Appendix A ) has been used to look at various aspects of the 

morphology of early-type galaxies. The principle conclusions which have been reached by 

this study are outlined as follows:-

158 
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1. A two-component plus exponential \a.w fit is better than a single-
component r ? - l a w fit at describing the profiles of early-type galaxies. The 

evidence for this assertion is seen clearly in Figure 7.12, whereby 83% of early-type 

galaxies display a lower (i-e. better f i t ) for the two-component model than the 

single power-law fit. Compare this to the 52% of early-type galaxies in the sample 

which are normally classified as SO. There are, however, two points here to consider. 

Firstly, the fact that there is generally a better fit for the two-component model does 

not necessarily mean that an plus exponential profile is absolutely correct. In fact, 

only a minor i ty of objects have a x'^ less than 2 and some (e.g. NGC 4919) are fitted 

very poorly. I t is fair to say, though, that the two-component plus exponential 

profile fit is a reasonable approximation for a wide range of galaxies. Secondly, a 

good fit to an plus exponential profile does not, in isolation, indicate that there 

are two physical components, i.e. a bulge and a disk. This interpretation can only 

be confirmed by isophotal shape analysis and/or spectroscopy. The author's own 

measurements of isophotal parameter C4 are plotted against profile shape parame

ters D/T and n in Figures 7.14(b) and (d). The C4 parameter displays the greatest 

positive values for intermediate profile shapes (Z) /T~0 .4 , 72~2.5) , This is precisely 

where one would expect to locate two-component galaxies wi th components of similar 

brightness, and hence the greatest C4 isophote deviations. This does suggest that the 

interpretation of a 'bulge' and 'disk' component model is the correct one. 

2. T h e tradit ional division of early-type galaxies into 'E l l ip t i ca l ' and 'SO' 

types is found to be a consequence of the viewing angle, rather than any 

physical difference in morphology. The discovery of faint disks in many eUiptical 

galaxies (Carter 1987, Bender et al. 1989), and the assertion by Rix k White (1990) 

that bright disks may lay undetected in eUiptical galaxies, due to the viewing angle, 

has prompted much speculation over the relation between E and SO galaxies. In par

ticular, van den Bergh (1990) and JF94 have shown there is a deficit of face-on SO's 

and have concluded that many SO's have indeed been classified as ellipticals. In Sec

t ion 7.3, the eUipticity distributions for this sample have been plotted, confirming the 

results of JF94 (who have a similar sample) that the distribution of eUipticals and SO's 

are total ly inconsistent w i th having the same parent eUipticity distribution. As a test, 
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the early-type sample was separated into two classes on the basis of a viewing-angle 
independent parameter (disk fraction D/T, as measured by Steel) rather than on 
visual appearance (which is biased by viewing angle). Those wi th D/T > 0.24 were 
classed E-|- (equivalent to SO) and those wi th D/T < 0.24 were classed E- (equivalent 
to ellipticals). Figure 7.5 shows the cumulative eUipticity distribution of classes E+ 
and E-. Clearly, there is no shortage of face-on disky early-type galaxies - the tra
ditional segregation of early-type galaxies into elliptical and SO classes is largely due 
to the change in visual appearance as a function of viewing angle. Further evidence 
that ellipticals and SO's are morphologically indistinguishable is seen f rom the plots of 
profile-shape parameters (n, B/T) against galaxy size ( M j , rg) - Figures 7.8 to 7.11. 
I t is clear that there is considerable overlap in these plots between the distributions 
for ellipticals and SO's. The SO galaxies do appear to extend into diskier regions 
(smaller B/T, smaller n ) , but this is not surprising - galaxies wi th brighter disks wi l l 
appear disky over a greater range of viewing angle and w i l l , therefore, be more likely 
to be classed SO rather than elliptical. However, the prominence of the disk is only a 
secondary variable in the traditional classification of SO and E - viewing angle is the 
prime variable. What is clear is that the vast major i ty of early-type galaxies possess 
an exponential component containing at least 10% of the total light. 

3. T h e r e is a general correlation (with much scatter) between the size of 

an early-type galaxy and its profile shape - the interpretation being that 

smal ler galaxies are more disk-dominated than larger galaxies. The correla

tions between the profile-shape parameters (n, B/T) against galaxy size ( M i , Vg) are 

clearly displayed in Figures 7.8 to 7.11. In particular. Figure 7.8(d) - which shows 

versus r i / 2 for all early-types - compares well w i th the relationship as found by Caon 

et al. (1993) and D'Onofrio et al. (1994). However, i t has been argued that the best 

model profile for an early-type galaxy is not a Sersic r n- law, but a two-component 

plus exponential law ('bulge' and 'disk'). The correlation of D/T versus size shows 

more scatter than the corresponding plots for n , largely due to the difficulty in mea

suring D/T. Despite this, i t is s t i l l apparent that diskyness increases wi th decreasing 

galaxy luminosity. Confirmation of this trend is seen quite clearly in Figure 7.14(g) 

and (h), which shows the positive scatter in the (04) values increasing dramatically 
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for galaxies fainter than i?~13. 

What k ind of scenario might have produced this correlation we see between the profile 

shapes of early-type galaxies wi th their luminosity or radius? For the densely-populated 

core of Coma, galaxy interactions, including mergers, must have been a highly significant 

factor in galaxy evolution. In a hierarchal model of galaxy evolution, is clear that larger 

galaxies are likely to have undergone more merging than smaller galaxies. D'Onofrio et al. 

(1994) suggests that the degree of merging experienced by a galaxy not only increases the 

size of the galaxy, i t also re-distributes the matter such that the shape of the light profile is 

altered, changing f rom a low-n r i - l a w to a high-n profile. However, i t has been shown that 

the two-component plus exponential profile provides a much better fit to most early-type 

galaxies (although the index n of the Sersic law continues to be useful as an indicator of the 

profile shape). Clearly, we need a scenario whereby the degree of 'diskyness' is dependent 

upon the amount of merging which has taken place. 

Such a scenario was proposed by Bender, Burstein & Faber (1992), who suggest that the 

characteristics of a galaxy are determined by the degree of gaseous dissipation occurring in 

the most recent merger. The first galaxies are formed by gaseous mergers, and are rapidly 

rotating and disky in their morphology. As the mergers proceed, each successive merger is 

increasingly stellar, resulting in larger systems which are slow-rotating and boxy (i.e. no 

disk). This is termed the gas/stellar (OS) continuum. In the core of a rich cluster hke 

Coma, we should see galaxies which have merged along the whole range of GS continuum -

f r o m faint disky systems to bright disk-less systems. The correlations we see between profile 

shapes (and C 4 ) and the size of galaxies do seem to indicate that this is the case. The exact 

proportion of disk-less systems in the sample is hard to estimate, as the profile-fitting 

method in not sensitive to disks smaller than 10% of the total luminosity. The number of 

early-type galaxies in the Coma sample wi th no disks detected is 11, or 13 including the two 

cD galaxies - this is the maximum Umit. The min imum l im i t is just the two cD galaxies. 

Thus the fraction of early-type galaxies in the core of Coma without a disk component is 

in the range 2% to 13%. This agrees wi th the estimation of JF94 that 10% of early-type 

systems are disk-less. 

The evidence of a dichotomy between the disky and the bulk of the disk-less (or weak-

disk) systems does not seem particularly strong, at least f rom the photometry. The dis

tributions of profile shapes and galaxy sizes are continuous across the range of early-type 
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systems. There is, however, a break between the properties of the major i ty of disk-less or 
weak-disk systems which are fainter than i?~12 and the few which are brighter. For this 
sample, of course, the brighter galaxies are the two cD's in Coma (NGC 4874 and NGC 
4889) and the two brightest galaxies in Abell 1367 (NGC 3862 and NGC 3842). These 
objects are distinguished f rom all other early-type galaxies by their great luminosity and 
radial extent ( r j / j > 200" for NGC 4874), and their unusual profile shapes. The fight 
profiles of all four objects indicate vast extended halo's, which mimic a 'disk' component in 
the r? plus exponential fit, but are evidently not disks as they do not produce any positive 
deviation in the C4 isophotal parameter. In any case, the position of these galaxies at the 
bot tom of their clusters potential well indicates that their evolutionary history is likely to 
be very different f r o m that of smaller galaxies. 

A n interesting extension to this project would be to extend the study to different en

vironments - in the cluster halo's and field. Given the gas/stellar continuum scenario of 

Bender, Burstein & Faber (1992), one might expect lower density environments to display 

less evidence of a trend f rom faint /disky to bright/non-disky systems, as merging wiU not 

have proceeded to such a great extent. Unfortunately, the environmental baseline of this 

study was not great. Abel l 1367 is a somewhat different environment to Coma, being less 

rich and less centrally concentrated - however, the sample for this cluster is too small (26 

objects) to make any firm conclusions. In fact, the entire sample of galaxies observed with 

the I N T in March 1994 ( f rom which the sample used here is a small subset) includes a 

much wider range of environments, including fields out to over half the turnaround radius 

( r ~ 3 ° ) of Coma. A t this distance, galaxies wi l l not have yet visited the cluster core, and 

w i l l therefore have had much less opportunity to interact, accrete material or merge. I t is 

hoped that in the future, this study of light profiles of early-type galaxies wi l l be extended 

to the remainder of the I N T March 1994 dataset. 

I t is clear that the study of surface brightness profiles and isophotal parameters can 

provide important information about the morphological structure of early-type galaxies. 

In conjunction wi th data f rom other sources - including kinematics, stellar content and 

high-resolution studies of early-type cores - this information should help us build a picture 

of the evolutionary process, and how i t is affected by the rich cluster environment. 
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Appendix A 

Tables of Photometric and Isophotal 

Parameters 

This appendix contains tables of the photometric and isophotal parameters measured for 

all 153 galaxies in the sample. The data is separated in two tables. Table A . l , comprising 

columns (1) to (12), details the model-independent parameters, including the isophotal 

parameters. Table A.2, comprising columns (13) to (24), gives the parameters derived f rom 

profi le-f i t t ing. In all columns, the parenthesised value after each measurement represents 

the uncertainty on the last significant digit of the measurement (e.g. 0.785(22) means 

0.785±0.022) . The key for each column is as foUows:-

1. The name of the galaxy. For Coma objects, either the Dressier (1980) number is 

given i f available, or the Godwin, Metcalfe k Peach (1977) number otherwise. For 

Abel l 1367 objects, the Butcher k Oemler (1985) number is given. 

2. The broad morphological class of galaxy - E, S, I or U , as detailed in Chapter 2. For 

E galaxies, the letter in brackets gives the traditional (i.e. visual) classification of the 

object - E for eUipticals, L for lenticulars/SO's. 

3. The half-light radius r i / 2 , measured f rom the aperture photometry. Expressed as a 

log of the value in arc-seconds. 

4. The half-fight surface brightness ( ^ ) i / 2 (i-e. average f j , wi th in r i / 2 ) , measured from 

the aperture photometry. 
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5. The total asymptotic magnitude Mt, measured f rom extrapolation of the aperture 
photometry. Erratum - the cosmological (1 + z)'^ surface brightness correction was 
wrongly included in these total magnitude values. Add 0.1 to each magnitude to 
remove this correction. 

6. The surface brightness f J - { r i / 2 ) measured at the half-light radius r^ f rom the surface 

photometry. 

7. The logarithm of the photometric diameter -D19 .23 - the eff'ective diameter (2\/a6) of 

the ellipse enclosing an average surface brightness of i? = 19.23. This is equivalent to 

the photometric diameter Dy measured at V = 19.8 or Z)„ measured at 5 = 20.75. 

Where no value is entered, the galaxy does not reach a average /j, of 19.23 at any 

radius, so no measurement is possible. 

8. The isophotal eUipticity measured at R = 21.5, interpolated f rom the surface pho

tometry. This is equivalent to the el l ipt ici ty of JF94, measured at r = 21.85. 

9. The third-order cosine term of the Fourier expansion of the isophote deviations. Fol

lowing the convention of JF94, these are intensity weighted-means, measured between 

radius Umits of 2xFWHM and the equivalent radius where ^t(r) faUs to R — 23.0. 

10. The third-order sine term of the Fourier expansion of the isophote deviations. 

11. The fourth-order cosine term of the Fourier expansion of the isophote deviations. 

12. The fourth-order sine term of the Fourier expansion of the isophote deviations. 

13. The effective radius rg of a pure exponential-law model fit (in arc-seconds). I f the 

galaxy fitted this law perfectly, r^ would equal the half-light radius 7-1/2• 

14. The effective surface brightness {fi)e of a pure exponential-law model fit. I f the galaxy 

fitted this law perfectly, r^ would equal the half-Ught surface brightness ( ^ « ) i / 2 -

15. As (13) for a pure r 2 - l a w fit. 

16. As (14) for a pure ra-law fit. 

17. As (13) for a pure r4-law fit. 
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18. As (14) for a pure r^-law fit. Note that the eff'ective parameters f rom the ra-law and 
rs-law fits can be found in the tables for individual galaxies in Appendix D. 

19. The index ?i of the best-fitting single-component Sersic 7^"-law. This is calculated 

f r o m an average of two methods, described in Section 7.4. 

20. The effective radius r̂ 'g of the r^ or 'bulge' component of the two-component r? plus 

exponential law fit. I f no significant bulge, no value is shown. 

21. The effective surface brightness (/.i)''^ of the or 'bulge' component of the two-

component r4 plus exponential law fit. I f no significant bulge, no value is shown. 

22. The effective radius r'^^ of the exponential or 'disk' component of the two-component 

r4 plus exponential law fit. I f no significant disk, no value is shown. 

23. The effective surface brightness {(J^y^ of the exponential or 'disk' component of the 

two-component r* plus exponential law fit. I f no significant disk, no value is shown. 

24. The luminosity ratio D/B of the exponential (disk) component to the (bulge) 

component f rom the two-component fit. I f the disk luminosity is zero, then the 

parenthesised number is an upper-limit on D/B. 
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Table A . l : Global (non-parametric) and isophotal parameters for Coma and Abell 1367 galaxies. 
Name Type log r i / 2 

( 0 (2) (3) 
Abell 1656 (Coma) 
D62 E ( L ) 0.646(35) 
D63 E ( L ) 0.563(6) 
D64 E ( E ) 0.739(43) 
DBS E ( L ) 0.667(12) 
D68 E ( L ) 0.771(39) 
D69 E ( E ) 0.806(63) 
D70 E ( B ) 0.650(43) 
D71 E ( L ) 0.545(11) 
D72 E ( E ) 0.522(14) 
D78 E ( E ) 0.983(11) 
D79 E ( L ) 0.751(5) 
D80 E ( L ) 0.748(25) 
D81 E ( E ) 0.832(36) 
D82 S 1.178(13) 
D84 E ( L ) 0.507(11) 
D87 E(B) 0.417(21) 
D88 E ( L ) 0.459(17) 
D89 S 0.637(3) 
D90 u 0.534(16) 
D91 E ( L ) 0.580(16) 
D92 E ( L ) 0.452(10) 
D97 S 1.502(4) 
D98 S 0.596(11) 
D99 S 0.624(6) 

DlOO S 0.454(3) 
DlOl E ( L ) 0.477(7) 
D102 I 0.554(19) 
D103 S 0.599(27) 
D104 E ( L ) 0.501(15) 
D105 E ( E ) 0.787(11) 
D106 E ( L ) 0.339(15) 
D107 E ( E ) 0.586(29) 
D108 E ( L ) 0.423(13) 
D109 U 0.577(7) 
D U O B(L) 0.591(24) 
D i l l B ( L ) 0.743(15) 
D112 U 0.452(9) 
D115 E ( L ) 0.566(15) 
D U 6 E ( L ) 0.607(5) 
D117 B(L) 0.589(4) 
D118 B(B) 0.748(12) 
D119 U 0.404(8) 
D120 E ( E ) 0.418(6) 
D121 E ( E ) 0.601(6) 
D122 E ( L ) 0.515(15) 
D123 I 0.622(3) 
D124 B(B) 0.561(10) 
D12S E ( E ) 0.171(10) 
D126 E ( L ) 0.495(13) 
D127 E ( L ) 0.378(4) 
D128 B(L) 0.276(6) 
D129 E ( B ) 2.303(43) 
D U O B ( E ) 0.490(15) 
D131 E ( L ) 0.723(3) 
D132 E ( L ) 0.449(10) 
D133 E ( E ) 0.531(21) 
D135 E ( E ) 0.464(14) 
D136 B(B) 0.231(7) 
D137 B(B) 0.663(7) 
D142 B(E) 0.134(4) 
D143 E ( E ) 1.277(59) 
D144 E ( L ) 0.702(16) 
D145 E ( L ) 0.697(16) 
D146 E ( L ) 0.787(18) 
D147 S 0.706(21) 
D148 E ( E ) 1.777(32) 
D149 S 0.536(3) 
D150 E ( E ) 0.540(14) 
D151 E ( E ) 0.801(11) 
D152 E ( L ) 0.639(6) 
D153 E ( E ) 0.449(19) 
D154 B(L) 0.737(26) 
D1S5 E ( L ) 0.702(18) 
D156 E ( E ) 0.405(25) 
D157 E ( L ) 0.439(13) 
D158 E ( L ) 0.409(15) 
D159 E ( E ) 0.893(42) 
D160 E ( L ) 0.794(17) 
D161 B ( E ) 0.890(19) 
D162 I 0.643(17) 
D167 B ( L ) 0.812(28) 
D168 E ( E ) 0.644(13) 
D169 I 0.664(8) 
D170 E ( L ) 0.749(27) 
D171 E ( L ) 0.394(21) 
D172 B(B) 0.440(14) 
D173 B ( L ) 0.489(22) 
D174 E ( E ) 0.364(4) 
D175 E ( L ) 0.682(13) 
D176 E ( L ) 0.400(11) 

M, log D i 9 . 2 3 ^ 2 1 . 5 1 ^ 
J 1 2 ] _ 

19.887(120) 
19.942(26) 

20.740(150) 
19.739(42) 

19.822(131) 
19.374(237) 
19.344(156) 
20.027(34) 
18.712(49) 
19.787(43) 
18.971(23) 
20.098(91) 

20.414(132) 
20.131(37) 
18.900(37) 
19.312(68) 
18.300(63) 
18.750(17) 
19.843(53) 
18.401(55) 
18.512(38) 
21.241(18) 
19.038(38) 
20.465(21) 
19.323(17) 
18.767(28) 
19.992(67) 

18.587(103) 
18.606(55) 
19.057(42) 
18.506(55) 
19.634(96) 
19.018(47) 
18.966(28) 
19.695(84) 
19.608(54) 
19.307(31) 
19.621(55) 
19.453(23) 
19.706(20) 
19.314(42) 
18.747(32) 
18.589(24) 
18.372(25) 
19.087(53) 
19.972(17) 
18.654(34) 
17.785(38) 
19.481(42) 
19.379(20) 
18.626(25) 

23.228(145) 
18.302(54) 
19.247(19) 
19.303(38) 
18.402(72) 
19.577(51) 
18.000(26) 
18.868(28) 
17.939(19) 

20.789(218) 
19.056(64) 
19.606(57) 
20.138(57) 
20.021(68) 

21.266(121) 
19.810(18) 
19.220(49) 
19.505(38) 
19.348(25) 
18.901(63) 
20.769(82) 
19.243(60) 
19.319(81) 
18.977(47) 
19.779(46) 

19.452(155) 
19.665(59) 
19.721(71) 
21.509(46) 
19.150(100) 
18.578(47) 
19.593(25) 
19.695(91) 
18.853(77) 
18.520(52) 
18.949(83) 
18.023(20) 
19.065(45) 
18.351(38) 

14.663(56) 
15.134(19) 
15.050(68) 
14.407(27) 
13.972(65) 
13.350(79) 
14.098(60) 
15.304(28) 
14.109(28) 
12.875(21) 
13.222(17) 
14.362(38) 
14.260(50) 
12.245(33) 
14.370(26) 
15.232(40) 
14.010(30) 
13.570(18) 
15.176(34) 
13.505(30) 
14.255(22) 
11.734(19) 
14.060(25) 
15.348(22) 
15.058(17) 
14.387(19) 
15.228(33) 
13.596(38) 
14.106(28) 
13.125(23) 
14.814(28) 
14.710(54) 
14.905(26) 
14.084(19) 
14.744(42) 
13.896(29) 
15.050(23) 
14.794(29) 
14.423(17) 
14.766(17) 
13.578(24) 
14.732(18) 
14.505(19) 
13.369(18) 
14.517(30) 
14.869(17) 
13.854(24) 
14.934(21) 
15.010(31) 
15.496(17) 
15.251(18) 
9.715(71) 
13.858(29) 
13.636(16) 
15.060(22) 
13.751(36) 
15.261(28) 
14.849(19) 
13.556(19) 
15.276(17) 
12.411(80) 
13.553(25) 
14.124(31) 
14.207(37) 
14.497(43) 
10.386(46) 
15.137(17) 
14.526(29) 
13.506(24) 
14.158(19) 
14.660(36) 
15.090(54) 
13.737(38) 
15.296(48) 
14.788(27) 
15.736(35) 
12.990(59) 
13.699(31) 
13.274(30) 
16.298(46) 
13.095(42) 
13.363(26) 
14.276(25) 
13.954(45) 
14.886(34) 
14.323(27) 
14.509(34) 
14.208(17) 
13.659(28) 
14.355(24) 

21.184(125 
21.153(32) 

22.057(187 
20.864(52) 

21.051(159 
20.908(325 
20.780(186 
20.981(48 
19.907(69 
21.292(50; 
20.191(21 
21.490(79 

21.898(163) 
21.003(62 
20.004(51 
20.435(86 
19.637(94 
19.372(25 
20.937(56^ 
19.628(82 
19.830(56' 
22.018(17 
20.166(57 
21.226(28 
20.238(18 
20.037(31 
21.285(66 

20.095(127) 
19.906(75 
20.352(56 
19.794(70' 

20.773(130) 
20.246(50 
20.256(28' 

20.914(116) 
20.866(51 
20.383(31 
20.900(68 
20.784(21 
20.767(25 
20.562(50' 
20.243(34 
19.605(31 
19.607(32 
20.328(53 
20.837(18 
19.747(48 
19.283(38 
20.479(65 
20.469(21 
19.873(26 

24.352(216) 
19.519(69 
20.436(19 
20.665(42 
19.647(104) 
20.817(59 
19.157(35 
20.091(37 
19.051(19 

22.235(307) 
20.581(83 
20.834(76 
21.196(58 
21.100(75 

22.782(139) 
20.798(19 
20.394(51 
20.693(45 
20.491(23 
20.064(70 
21.817(49 
20.326(75 
20.462(94 
20.222(69 
20.813(74 

20.903(211 
20.941(68 
21.171(85' 
22.356(65' 

20.524(128) 
19.825(73 
20.326(46 

20.958(110 
20.212(104 
19.819(57 
20.405(95 
19.176(23 
20.195(59 
19.539(47 

0.757(5) 
0.639(5) 
0.571(5) 
0.804(5) 
0.893(5) 
1.068(4) 
0.920(4) 
0.560(6) 
0.970(4) 
1.133(4) 
1.129(5) 
0.803(5) 
0.799(5) 
1.095(6) 
0.908(5) 
0.692(5) 
1.007(4) 
1.105(4) 
0.636(5) 
1.107(4) 
0.948(4) 
1.128(5) 
0.956(5) 
0.409(7) 
0.721(6) 
0.909(4) 
0.627(5) 
1.065(4) 
0.975(4) 
1.137(4) 
0.841(4) 
0.755(5) 
0.787(4) 
0.954(4) 
0.752(5) 
0.935(4) 
0.729(5) 
0.753(4) 
0.845(4) 
0.728(5) 
1.024(5) 
0.833(4) 
0.911(4) 
1.138(4) 
0.858(5) 
0.647(6) 
1.032(4) 
0.857(4) 
0.710(5) 
0.632(5) 
0.754(4) 
1.298(6) 
1.043(4) 
1.019(5) 
0.730(4) 
1.056(4) 
0.661(5) 
0.864(4) 
1.067(4) 
0.795(4) 
1.102(5) 
1.048(4) 
0.885(5) 
0.794(5) 
0.753(5) 
1.494(5) 
0.620(7) 
0.844(5) 
1.018(5) 
0.904(5) 
0.848(4) 
0.496(6) 
0.999(5) 
0.679(5) 
0.812(4) 
0.504(7) 
1.133(4) 
0.966(5) 
1.055(4) 

1.135(4) 
1.123(4) 

0.775(11) 
0.913(5) 
0.798(4) 
0.940(4) 
0.866(4) 
0.999(4) 
1.033(5) 
0.948(4) 

0.5017(62 
0.5461(37 
0.0180(111 
0.4597(54 
0.5073(79 
0.1120(80 
0.0722(76 
0.6554(50 
0.3570(59 
0.2273(73' 
0.4555(36 
0.3781(84 
0.2392(55 
0.1107(116) 
0.6807(50 
0.0889(65 
0.5474(32 
0.8499(16 
0.5466(40 
0.5411(61 
0.3577(73 
0.3584(139) 
0.6934(19 
0.0442(109) 
0.2441(42 
0.4658(73 
0.3857(51 
0.2758(43 
0.2910(34 
0.0745(55 
0.3045(38 
0.4346(25 
0.5596(25' 
0.0660(92' 
0.3478(62' 
0.3222(57; 
0.2356(48' 
0.3414(55 
0.2063(78 
0.4717(45 
0.1127(65 
0.3287(48' 
0.1791(69' 
0.3672(49' 
0.6455(4l' 
0.4492(44 
0.3459(33 
0.1701(33 
0.5098(37 
0.3744(63 
0.5862(47 
0.1447(84 
0.2885(58 
0.4167(57 
0.4373(63 
0.2414(42' 
0.2206(69 
0.2629(56 
0.1182(51 
0.1488(38 
0.2421(60 
0.1190(127) 
0.4855(41 
0.5041(27 
0.6335(36 
0.3448(33 
0.7528(43 
0.0841(72 
0.0267(95 
0.3522(47' 
0.0293(89 
0.3009(84 
0.2768(58 
0.3304(51 
0.4110(40 
0.5543(37 
0.1130(61 
0.4646(86 
0.1409(64 
0.4445(121) 
0.3436(39 
0.3521(53' 
0.6105(48 
0.2291(35' 
0.2983(60' 
0.1311(40' 
0.4873(72' 
0.2464(47' 
0.2773(36; 
0.5710(26 

0.0041(46) 
-0.0046(39) 
-0.0039(59) 
0.0029(37) 
0.0009(30) 
-0.0015(26) 
0.0019(41) 
0.0022(52) 
-0.0044(29) 
-0.0005(23) 
-0.0007(27) 
-0.0024(50) 
0.0000(33) 
0.0257(88) 
0.0073(50) 
-0.0003(42) 
0.0000(32) 
0.0206(79) 
0.0075(44) 
0.0010(25) 
0.0005(46) 
0.0010(56) 
0.0009(16) 
0.0014(52) 
-0.0063(30) 
0.0019(24) 
-0.0031(48) 
-0.0053(27) 
-0.0018(18) 
0.0006(16) 
0.0023(21) 
0.0026(17) 
0.0018(26) 
0.0024(32) 
-0.0002(38) 
0.0035(30) 
-0.0001(41) 
0.0003(31) 
0.0059(57) 
-0.0060(32) 
0.0012(23) 
0.0025(25) 
-0.0024(24) 
0.0004(17) 
0.0062(35) 
0.0031(33) 
0.0017(15) 
0.0004(23) 
-0.0042(31) 
0.0049(41) 
0.0161(42) 
-0.0019(15) 
-0.0020(24) 
-0.0005(30) 
-0.0015(43) 
0.0007(16) 
-0.0035(40) 
-0.0002(23) 
-0.0020(26) 
0.0010(19) 
0.0001(24) 
-0.0034(27) 
0.0019(30) 
-0.0029(24) 
-0.0001(28) 
0.0014(10) 
0.0004(54) 
0.0000(25) 
-0.0010(25) 
0.0019(23) 
-0.0003(28) 
-0.0069(72) 
0.0010(26) 
0.0023(36) 
0.0022(26) 
0.0040(49) 
-0.0011(14) 
-0.0001(29) 
-0.0015(18) 
-0.0435(147) 
0.0010(13) 
-0.0010(17) 
0.0487(76) 
0.0005(16) 
-0.0031(39) 
-0.0016(16) 
-0.0030(34) 
-0.0015(19) 
0.0011(11) 
-0.0018(21) 

-0.0048(45) 
-0.0037(39) 
-0.0039(60) 
-0.0027(38) 
-0.0002(30) 
-0.0001(26) 
0.0021(41) 
-0.0015(53) 
0.0025(29) 
-0.0020(23) 
0.0011(27) 
0.0003(50) 
0.0043(32) 
-0.0172(89) 
-0.0060(48) 
0.0036(43) 
-0.0088(32) 
-0.0113(80) 
-0.0008(46) 
-0.0003(25) 
-0.0059(46) 
-0.0053(56) 
-0.0007(16) 
0.0000(51) 
-0.0077(29) 
-0.0043(24) 
-0.0017(45) 
0.0005(27) 
-0.0018(18) 
-0.0004(15) 
0.0017(21) 
-0.0008(17) 
0.0023(25) 
-0.0025(32) 
-0.0014(38) 
0.0016(30) 
-0.0005(41) 
0.0012(30) 
0.0106(56) 
0.0048(32) 
-0.0001(23) 
0.0010(25) 
-0.0023(24) 
0.0034(17) 
-0.0026(35) 
0.0001(33) 
0.0000(15) 
0.0020(23) 
0.0072(31) 
-0.0005(41) 
-0.0056(40) 
0.0016(15) 
0.0012(24) 
-0.0009(30) 
0.0028(43) 
-0.0003(16) 
-0.0051(41) 
-0.0050(23) 
-0.0010(26) 
-0.0005(20) 
-0.0007(25) 
0.0014(27) 
-0.0005(30) 
0.0007(24) 
-0.0041(28) 
0.0014(10) 
0.0046(55) 
0.0030(25) 
0.0004(25) 
-0.0001(23) 
0.0011(27) 
0.0091(73) 
0.0033(25) 
0.0021(36) 
-0.0026(26) 
0.0008(49) 
0.0000(15) 
0.0014(29) 
0.0001(18) 

-0.0556(150) 
0.0002(13) 
-0.0007(17) 
0.0111(74) 
-0.0009(16) 
-0.0032(39) 
-0.0046(16) 
-0.0068(34) 
0.0016(19) 
-0.0004(11) 
-0.0050(21) 

0.0168(46) 
0.0161(39) 
-0.0004(60) 
-0.0039(38) 
0.0434(30) 
0.0013(26) 
-0.0002(41) 
0.0336(53) 
0.0145(29) 
0.0016(23) 
0.0052(27) 
0.0074(50) 
0.0021(32) 
-0.0001(89) 
0.0516(48) 
-0.0019(43) 
0.0285(33) 
0.0064(80) 
0.0022(45) 
0.0235(25) 
0.0328(46) 
0.0019(56) 
0.0343(16) 
-0.0076(51) 
-0.0004(30) 
0.0299(25) 
-0.0050(47) 
0.0057(27) 
0.0089(18) 
-0.0025(16) 
0.0012(21) 
0.0012(17) 
0.0209(26) 
0.0018(32) 
0.0182(38) 
-0.0013(31) 
0.0009(41) 
0.0096(31) 
0.0198(58) 
0.0001(32) 
-0.0040(23) 
0.0082(25) 
-0.0040(24) 
-0.0044(17) 
0.0362(36) 
0.0098(33) 
-0.0009(15) 
0.0032(23) 
0.0090(32) 
0.0054(41) 
0.0211(41) 
0.0021(15) 
-0.0053(24) 
0.0087(30) 
0.0139(43) 
0.0023(16) 
-0.0010(40) 
0.0161(23) 
0.0095(26) 
0.0031(20) 
-0.0010(24) 
0.0124(28) 
-0.0001(30) 
0.0024(24) 
0.0072(28) 
-0.0039(10) 
0.0378(55) 
0.0034(25) 
-0.0021(25) 
0.0133(23) 
0.0008(28) 
-0.0008(72) 
0.0050(26) 
0.0018(36) 
-0.0012(26) 
0.0029(49) 
-0.0012(14) 
0.0236(29) 
0.0060(18) 

-0.0190(148) 
-0.0041(13) 
0.0087(17) 
0.0020(74) 
0.0134(16) 
0.0048(39) 
-0.0002(16) 
0.0197(35) 
-0.0001(19) 
0.0005(11) 
0.0345(22) 

-0.0007(45) 
-0.0002(39) 
0.0016(59) 
0.0040(37) 
-0.0022(29) 
-0.0003(26) 
0.0006(41) 
0.0042(52) 
-0.0020(28) 
-0.0001(23) 
-0.0021(27) 
-0.0014(50) 
-0.0028(33) 
-0.0063(87) 
0.0062(46) 
-0.0009(42) 
0.0037(31) 
-0.0057(79) 
0.0036(45) 
-0.0038(24) 
-0.0052(46) 
0.0000(56) 
0.0030(15) 
-0.0064(52) 
0.0017(30) 
-0.0013(24) 
0.0022(46) 
-0.0103(27) 
-0.0038(18) 
0.0001(15) 
0.0068(21) 
-0.0003(17) 
0.0016(25) 
0.0012(31) 
0.0085(38) 
-0.0029(30) 
-0.0031(42) 
0.0041(30) 
0.0154(55) 
0.0028(32) 
0.0031(23) 
-0.0058(25) 
0.0029(24) 
0.0074(17) 
0.0082(35) 
-0.0237(33) 
0.0018(15) 
-0.0016(23) 
0.0015(32) 
0.0043(41) 
0.0118(41) 
0.0015(15) 
-0.0016(24) 
-0.0019(30) 
-0.0014(43) 
0.0003(16) 
-0.0003(41) 
0.0024(23) 
0.0030(26) 
-0.0032(19) 
0.0016(24) 
0.0007(27) 
-0.0055(30) 
0.0042(24) 
-0.0011(27) 
0.0004(10) 
0.0016(54) 
-0.0028(25) 
0.0005(25) 
-0.0036(23) 
0.0004(28) 
0.0010(72) 
0.0010(26) 
0.0013(36) 
-0.0020(26) 
0.0086(49) 
0.0007(15) 
0.0057(29) 
0.0011(18) 

-0.0189(147) 
-0.0011(13) 
-0.0006(17) 
0.0144(76) 
-0.0102(16) 
0.0010(39) 
0.0005(16) 
0.0034(34) 
0.0043(19) 
-0.0102(11) 
-0.0014(21) 
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Table A . l : Continued... 
(^D— 
( 1 0 ) 

- 0 . 0 0 2 0 ( 2 6 ) 
- 0 . 0 0 5 7 ( 4 3 ) 
- 0 . 0 0 2 0 ( 1 1 ) 
0 . 0 0 0 5 ( 3 7 ) 
- 0 . 0 1 9 9 ( 8 6 ) 
- 0 . 0 0 1 5 ( 2 3 ) 
0 . 0 0 2 7 ( 9 4 ) 

- 0 . 0 0 5 1 ( 5 0 ) 
- 0 . 0 0 3 5 ( 3 2 ) 
- 0 . 0 0 5 4 ( 5 0 ) 
- 0 . 0 0 1 1 ( 2 5 ) 
0 . 0 0 0 6 ( 1 7 ) 
0 . 0 2 0 2 ( 9 9 ) 

- 0 . 0 0 2 1 ( 3 6 ) 
0 . 0 0 1 7 ( 1 9 ) 
0 . 0 0 0 0 ( 3 6 ) 
0 . 0 0 1 3 ( 2 9 ) 
- 0 . 0 0 3 0 ( 2 7 ) 
- 0 . 0 0 4 2 ( 8 0 ) 
- 0 . 0 0 1 1 ( 2 6 ) 
0 . 0 0 2 7 ( 8 0 ) 

- 0 . 0 0 0 5 ( 2 7 ) 
- 0 . 0 0 9 3 ( 8 4 ) 
0 . 0 0 2 8 ( 3 2 ) 
0 . 0 0 0 9 ( 4 0 ) 

- 0 . 0 1 4 8 ( 1 9 5 ) 
- 0 . 0 0 5 4 ( 4 6 ) 
0 . 0 0 2 1 ( 1 0 6 ) 
- 0 . 0 0 2 3 ( 5 2 ) 
0 . 0 0 1 1 ( 5 1 ) 

- 0 . 0 0 5 6 ( 7 7 ) 
- 0 . 0 0 0 7 ( 3 0 ) 
0 . 0 0 1 1 ( 3 5 ) 

0 . 0 1 0 1 ( 1 1 0 ) 
- 0 . 0 0 0 4 ( 4 3 ) 

- 0 . 0 0 5 3 ( 1 6 8 ) 
- 0 . 0 0 4 0 ( 8 3 ) 

( H ) 
0 . 0 0 4 9 ( 2 5 ) 

- 0 . 0 0 1 6 ( 4 3 ) 
0 . 0 0 2 2 ( 1 1 ) 
0 . 0 0 0 9 ( 3 7 ) 
0 . 0 9 6 6 ( 8 5 ) 
0 . 0 0 0 0 ( 2 3 ) 
0 . 0 0 1 2 ( 9 4 ) 
0 . 0 0 6 1 ( 4 9 ) 
0 . 0 6 9 0 ( 3 3 ) 
0 . 0 8 1 7 ( 5 1 ) 
0 . 0 0 7 0 ( 2 5 ) 
0 . 0 0 1 8 ( 1 7 ) 

- 0 . 0 0 8 3 ( 1 0 0 ) 
0 . 0 0 9 7 ( 3 5 ) 
0 . 0 2 2 1 ( 1 9 ) 
0 . 0 2 4 3 ( 3 7 ) 
0 . 0 0 3 0 ( 2 9 ) 
0 . 0 6 2 5 ( 2 7 ) 
0 . 0 0 0 0 ( 8 1 ) 

- 0 . 0 0 7 7 ( 2 6 ) 
- 0 . 0 0 2 3 ( 8 0 ) 
0 . 0 1 2 9 ( 2 7 ) 
0 . 0 2 4 5 ( 8 4 ) 
0 . 0 0 3 6 ( 3 2 ) 
0 . 0 0 9 4 ( 4 0 ) 

0 . 0 2 4 2 ( 1 9 6 ) 
0 . 0 0 5 1 ( 4 5 ) 

0 . 0 0 8 4 ( 1 0 7 ) 
0 . 0 0 1 2 ( 5 1 ) 
0 . 0 0 5 4 ( 5 1 ) 
0 . 0 0 4 3 ( 7 6 ) 
0 . 0143 (30 ) 
0 . 0 0 1 4 ( 3 4 ) 

0 . 0 0 4 4 ( 1 1 0 ) 
0 . 0 0 0 0 ( 4 3 ) 

0 . 0 0 3 0 ( 1 6 9 ) 
- 0 . 0 0 7 4 ( 8 3 ) 

—w>— 
( 1 2 ) 

- 0 . 0 0 5 2 ( 2 6 ) 
0 . 0 0 4 4 ( 4 3 ) 
0 . 0 0 1 2 ( 1 1 ) 
- 0 . 0 0 1 8 ( 3 7 ) 
- 0 . 0 2 3 5 ( 8 5 ) 
0 . 0 0 0 3 ( 2 3 ) 
0 . 0 0 7 3 ( 9 5 ) 
- 0 . 0 0 3 5 ( 5 0 ) 
- 0 . 0 0 1 6 ( 3 1 ) 
0 . 0 0 2 3 ( 4 9 ) 
0 . 0 0 3 0 ( 2 5 ) 
0 . 0 0 4 6 ( 1 7 ) 

0 . 0 0 8 4 ( 1 0 0 ) 
- 0 . 0 0 1 6 ( 3 5 ) 
- 0 . 0 0 5 0 ( 1 9 ) 
0 . 0 1 5 1 ( 3 6 ) 
- 0 . 0 2 2 1 ( 3 0 ) 
- 0 . 0 0 4 2 ( 2 6 ) 
- 0 . 0 0 6 1 ( 7 9 ) 
- 0 . 0 0 3 2 ( 2 6 ) 
0 . 0 0 2 5 ( 8 1 ) 

- 0 . 0 0 5 0 ( 2 7 ) 
0 . 0 0 1 1 ( 8 4 ) 
0 . 0 0 1 8 ( 3 3 ) 
- 0 . 0 0 1 5 ( 3 9 ) 
0 . 0 0 6 3 ( 1 9 4 ) 
- 0 . 0 1 1 7 ( 4 6 ) 

- 0 . 0 0 6 8 ( 1 0 7 ) 
0 . 0 0 2 4 ( 5 2 ) 
0 . 0 0 3 1 ( 5 0 ) 
- 0 . 0 0 3 4 ( 7 7 ) 
0 . 0 0 1 6 ( 3 1 ) 
0 . 0 0 5 2 ( 3 5 ) 

- 0 . 0 1 1 0 ( 1 1 1 ) 
- 0 . 0 0 1 7 ( 4 3 ) 

- 0 . 0 0 6 7 ( 1 6 8 ) 
- 0 . 0 0 2 4 ( 8 1 ) 

Name Type 
( 1 ) ( 2 ) 

D177 E ( L ) 
D178 E ( L ) 
D179 E ( L ) 
D180 E ( L ) 
D181 S 
D182 B ( L ) 
D183 I 
D184 3 
D191 S 
D192 S 
D193 E ( E ) 
D194 E ( E ) 
D195 I 
D196 E ( E ) 
D197 S 
D198 E ( L ) 
D199 E ( L ) 
D200 E ( L ) 
D205 S 
D207 E ( E ) 
D208 E ( L ) 
D210 B ( B ) 
D211 S 
D212 S 
D218 E ( L ) 
D220 I 
D224 U 
D225 u 

G2201 E ( E ) 
G2778 B ( L ) 
G2914 S 
G2960 E ( L ) 
G3133 U 
G3298 s 
G3554 E ( E ) 
G3640 U 
G4281 s 
Abell 1367 

B l E ( E ) 
B2 E ( B ) 
B3 S 

BIO B(B) 
B12 I 
B17 E ( E ) 
B22 B ( L ) 
B23 E ( L ) 
B25 S 
B27 E ( L ) 
B28 B ( E ) 
B33 E ( L ) 
B38 E ( E ) 
B41 E ( E ) 
B45 E ( L ) 
B46 B ( L ) 
B52 B ( E ) 
B58 S 
B61 S 
B64 E ( L ) 
B69 E ( E ) 
B76 B ( L ) 
B81 E ( E ) 
B90 E ( L ) 

B107 E ( E ) 
B117 E ( L ) 

1°6 ' - 1 / 2 

(4 ) 

Mi 
(S) (6 ) 

l o g ^ 1 9 . 2 3 

( 7 ) 

^ 2 1 . 6 

(8) 
1^ 

( 9 ) 
0 . 4 4 0 ( 1 0 ) 
0 . 5 6 3 ( 1 1 ) 
0 . 6 8 8 ( 2 0 ) 
1 . 0 6 2 ( 2 0 ) 
0 . 3 7 5 ( 9 ) 
0 . 3 0 4 ( 7 ) 
0 . 8 3 9 ( 4 ) 
0 . 7 3 8 ( 9 ) 
0 . 3 5 2 ( 6 ) 
0 . 5 3 8 ( 4 ) 

0 . 5 2 6 ( 2 0 ) 
0 . 9 6 3 ( 2 6 ) 
0 . 6 0 3 ( 4 ) 
0 . 4 4 4 ( 6 ) 
0 . 5 7 6 ( 9 ) 
0 . 5 4 0 ( 5 ) 
0 . 6 5 4 ( 8 ) 
0 . 2 7 2 ( 8 ) 
1 . 0 6 5 ( 7 ) 

0 . 5 4 5 ( 1 6 ) 
0 . 5 1 7 ( 1 9 ) 
0 . 4 8 8 ( 1 6 ) 
0 . 8 0 0 ( 2 0 ) 
0 . 6 6 8 ( 2 ) 

0 . 6 3 7 ( 1 0 ) 
0 . 9 0 0 ( 1 5 ) 
0 . 4 3 8 ( 1 3 ) 
0 . 4 3 8 ( 3 0 ) 
0 . 6 5 4 ( 2 9 ) 
0 . 6 5 4 ( 5 ) 

0 . 8 4 3 ( 4 7 ) 
0 . 6 1 8 ( 7 ) 

0 . 4 1 4 ( 1 9 ) 
0 . 8 6 3 ( 3 0 ) 
0 . 1 9 7 ( 1 ) 

0 . 9 2 5 ( 1 4 5 ) 
0 . 7 0 0 ( 1 2 ) 

1 9 . 2 0 9 ( 3 7 ) 
2 0 . 1 9 7 ( 3 2 ) 
1 8 . 3 5 6 ( 7 0 ) 
2 1 . 1 0 2 ( 6 2 ) 
1 8 . 6 2 0 ( 3 6 ) 
1 8 . 7 0 0 ( 2 7 ) 
2 0 . 7 4 0 ( 1 8 ) 
2 0 . 8 6 8 ( 3 1 ) 
1 8 . 7 6 4 ( 2 0 ) 
1 9 . 1 0 1 ( 1 8 ) 
1 9 . 2 9 2 ( 6 6 ) 
1 9 . 4 9 4 ( 9 8 ) 
1 9 . 7 6 4 ( 1 8 ) 
1 8 . 9 6 5 ( 2 6 ) 
1 8 . 6 2 8 ( 3 5 ) 
1 9 . 7 3 6 ( 2 2 ) 
1 9 . 4 1 8 ( 2 9 ) 
1 7 . 5 8 3 ( 3 1 ) 
2 0 . 2 3 2 ( 2 4 ) 
1 9 . 0 6 9 ( 5 4 ) 
1 9 . 7 8 7 ( 5 9 ) 
1 8 . 6 4 9 ( 5 9 ) 
1 9 . 6 5 6 ( 5 2 ) 
1 9 . 6 5 3 ( 1 7 ) 
1 8 . 8 1 7 ( 3 6 ) 
1 9 . 7 0 9 ( 4 2 ) 
1 9 . 8 4 3 ( 3 7 ) 
1 9 . 6 9 5 ( 9 6 ) 

2 0 . 2 7 9 ( 1 1 1 ) 
2 0 . 4 4 3 ( 2 2 ) 

2 1 . 3 6 3 ( 1 4 4 ) 
2 0 . 2 9 0 ( 2 5 ) 
1 9 . 6 6 5 ( 6 8 ) 
2 1 . 6 9 3 ( 8 6 ) 
1 9 . 2 0 4 ( 1 5 ) 

2 2 . 3 2 6 ( 5 1 6 ) 
2 1 . 1 5 0 ( 3 6 ) 

1 5 . 0 1 2 ( 2 3 ) 
1 5 . 3 8 8 ( 3 3 ) 
1 2 . 9 1 9 ( 3 3 ) 
1 3 . 7 9 8 ( 4 4 ) 
1 4 . 7 5 0 ( 2 1 ) 
1 5 . 1 8 3 ( 2 0 ) 
1 4 . 5 4 7 ( 1 7 ) 
1 5 . 1 8 2 ( 2 6 ) 
1 5 . 0 0 6 ( 1 8 ) 
1 4 . 4 1 6 ( 1 8 ) 
1 4 . 6 6 7 ( 3 8 ) 
1 2 . 6 8 3 ( 3 6 ) 
1 4 . 7 5 1 ( 2 0 ) 
1 4 . 7 4 8 ( 1 8 ) 
1 3 . 7 5 1 ( 2 2 ) 
1 5 . 0 4 2 ( 1 9 ) 
1 4 . 1 5 4 ( 2 1 ) 
1 4 . 2 2 8 ( 1 9 ) 
1 2 . 9 1 4 ( 2 1 ) 
1 4 . 3 4 9 ( 3 2 ) 
1 5 . 2 0 6 ( 4 1 ) 
1 4 . 2 1 2 ( 2 7 ) 
1 3 . 6 6 1 ( 5 2 ) 
1 4 . 3 1 8 ( 1 7 ) 
1 3 . 6 3 6 ( 2 2 ) 
1 3 . 2 1 6 ( 3 7 ) 
1 5 . 6 5 6 ( 3 4 ) 
1 5 . 5 0 9 ( 5 8 ) 
1 5 . 0 1 6 ( 4 0 ) 
1 5 . 1 7 7 ( 1 9 ) 
1 5 . 1 5 1 ( 9 0 ) 
1 5 . 2 0 6 ( 2 1 ) 
1 5 . 6 0 1 ( 3 4 ) 
1 5 , 3 8 1 ( 6 6 ) 
1 6 . 2 2 4 ( 1 6 ) 

1 5 . 7 0 7 ( 2 1 1 ) 
1 5 . 6 5 5 ( 2 9 ) 

2 0 . 4 3 6 ( 5 2 ) 
2 0 . 9 8 0 ( 5 1 ) 
1 9 . 7 0 8 ( 1 0 2 ) 
2 2 . 2 3 8 ( 7 2 ) 
1 9 . 9 8 6 ( 6 3 ) 
1 9 . 8 1 0 ( 3 8 ) 
2 1 . 7 2 3 ( 2 2 ) 
2 1 . 8 3 7 ( 4 6 ) 
1 9 . 6 8 4 ( 2 2 ) 
1 9 . 9 4 8 ( 2 3 ) 
2 0 . 4 4 5 ( 9 3 ) 

2 1 . 0 2 6 ( 1 1 8 ) 
2 0 . 3 5 4 ( 2 0 ) 
2 0 . 3 2 5 ( 3 3 ) 
1 9 . 8 0 7 ( 2 5 ) 
2 0 . 7 0 6 ( 2 8 ) 
2 0 . 5 3 9 ( 3 6 ) 
1 8 . 8 3 3 ( 2 6 ) 
2 1 . 2 0 0 ( 2 4 ) 
2 0 . 2 4 3 ( 7 4 ) 
2 0 . 8 0 3 ( 6 5 ) 
2 0 . 0 4 1 ( 8 1 ) 
2 0 . 4 3 1 ( 7 7 ) 
2 0 . 6 3 6 ( 1 7 ) 
2 0 . 0 5 4 ( 4 4 ) 
2 0 . 6 1 0 ( 7 5 ) 
2 0 . 7 2 3 ( 3 8 ) 

2 0 . 7 9 8 ( 1 4 5 ) 
2 1 . 8 0 3 ( 1 1 6 ) 
2 1 . 4 6 8 ( 2 3 ) 

2 2 . 4 6 7 ( 2 0 6 ) 
2 1 . 3 4 4 ( 3 0 ) 

2 0 . 9 3 3 ( 1 0 0 ) 
2 2 . 6 9 2 ( 1 1 2 ) 
2 0 . 2 8 0 ( 1 5 ) 

2 3 . 8 2 6 ( 6 6 4 ) 
2 2 . 2 0 8 ( 4 2 ) 

0 . 7 4 8 ( 5 ) 
0 . 5 0 9 ( 5 ) 
1 .220(4) 
0 . 7 4 1 ( 5 ) 
0 . 8 4 1 ( 4 ) 
0 . 7 6 2 ( 4 ) 

0 . 8 0 5 ( 4 ) 
0 . 8 8 6 ( 5 ) 
0 . 8 0 8 ( 5 ) 
1 .193 (4 ) 
0 . 6 2 6 ( 7 ) 
0 . 8 1 8 ( 4 ) 
1 .060(4) 
0 . 6 5 5 ( 6 ) 
0 . 8 9 5 ( 5 ) 
1 .002(4) 
1 .014(6 ) 
0 . 8 9 4 ( 4 ) 
0 . 6 2 2 ( 6 ) 
0 . 9 4 4 ( 4 ) 
0 . 9 2 4 ( 6 ) 
0 . 8 2 3 ( 5 ) 
1 .057(4) 
0 . 9 7 7 ( 9 ) 
0 . 5 1 6 ( 6 ) 
0 . 5 9 1 ( 5 ) 
0 . 6 6 9 ( 4 ) 
0 . 5 1 8 ( 6 ) 

0 . 5 3 1 ( 6 ) 
0 . 5 8 3 ( 5 ) 

0 . 5 0 6 ( 5 ) 

0 . 4 6 3 6 ( 3 3 ) 
0 . 1 1 4 0 ( 6 5 ) 
0 . 5 5 2 5 ( 2 6 ) 
0 . 1 1 8 4 ( 8 5 ) 
0 . 6 6 0 1 ( 9 8 ) 
0 . 1 0 6 6 ( 3 3 ) 

0 . 0 8 5 1 ( 1 2 3 ) 
0 . 3 2 0 3 ( 6 8 ) 
0 . 6 7 6 8 ( 6 4 ) 
0 . 8 2 0 9 ( 3 3 ) 
0 . 1 5 3 6 ( 4 3 ) 
0 . 1 8 3 2 ( 6 4 ) 

0 . 2 0 4 4 ( 1 8 3 ) 
0 . 3 1 6 3 ( 6 2 ) 
0 . 6 4 5 8 ( 3 1 
0 . 4 7 3 8 ( 7 3 ) 
0 . 3 5 8 8 ( 6 2 ) 
0 . 6 0 5 3 ( 9 2 ) 

0 . 3 7 0 2 ( 1 4 3 ) 
0 . 3 8 9 2 ( 4 3 ) 
0 . 3 7 7 6 ( 9 7 ) 
0 . 1 7 3 7 ( 8 6 ) 
0 . 6 1 9 4 ( 6 7 ) 
0 . 4 7 5 0 ( 5 0 ) 
0 . 5 2 4 0 ( 7 4 ) 
0 . 6 8 5 4 ( 5 4 ) 
0 . 2 0 9 1 ( 7 2 ) 
0 . 4 7 1 2 ( 8 2 ) 
0 . 0 2 8 6 ( 8 6 ) 
0 . 3 9 2 9 ( 7 6 ) 

0 . 0 6 9 8 ( 1 1 2 ) 
0 . 4 6 0 3 ( 4 1 ) 
0 . 3 1 4 1 ( 3 7 ) 
0 . 4 9 9 4 ( 6 3 ) 
0 . 0 5 7 1 ( 8 2 ) 
0 . 4 2 3 8 ( 8 5 ) 
0 . 2 8 8 3 ( 7 7 ) 

0 . 0 0 0 9 ( 2 6 ) 
0 . 0 0 2 8 ( 4 3 ) 

- 0 . 0 0 2 2 ( 1 1 ) 
- 0 . 0 0 3 4 ( 3 7 ) 
0 . 0 0 0 3 ( 8 4 ) 
0 . 0 0 1 9 ( 2 3 ) 

- 0 . 0 3 2 3 ( 9 5 ) 
0 . 0 0 1 6 ( 4 9 ) 
0 . 0 0 1 9 ( 3 1 ) 
0 . 0 0 2 9 ( 5 0 ) 

- 0 . 0 0 1 5 ( 2 5 ) 
- 0 . 0 0 0 6 ( 1 7 ) 
0 . 0 3 0 8 ( 1 0 1 ) 
- 0 . 0 0 1 8 ( 3 5 ) 
0 . 0 0 2 5 ( 1 9 ) 

- 0 . 0 0 4 4 ( 3 6 ) 
- 0 . 0 0 0 4 ( 2 9 ) 
0 . 0 0 3 5 ( 2 6 ) 
0 . 0 0 0 7 ( 8 0 ) 

- 0 . 0 0 1 0 ( 2 6 ) 
0 . 0 0 3 9 ( 8 0 ) 

- 0 . 0 0 1 5 ( 2 7 ) 
- 0 . 0 0 7 3 ( 8 4 ) 
- 0 . 0 0 1 8 ( 3 3 ) 
- 0 . 0 0 1 1 ( 4 0 ) 
0 . 0 0 2 0 ( 1 9 5 ) 
0 . 0 0 9 4 ( 4 5 ) 

0 . 0 0 2 3 ( 1 0 7 ) 
0 . 0 0 0 9 ( 5 2 ) 
- 0 . 0 0 2 5 ( 5 0 ) 
- 0 . 0 0 1 3 ( 7 7 ) 
0 . 0 0 4 2 ( 3 1 ) 

- 0 . 0 0 0 5 ( 3 4 ) 
- 0 . 0 0 3 8 ( 1 1 0 ) 
- 0 . 0 0 1 9 ( 4 3 ) 
0 . 0 1 3 2 ( 1 6 9 ) 
0 . 0 0 3 5 ( 8 1 ) 

2 . 1 3 1 ( 3 1 ) 
1 . 7 0 2 ( 5 3 ) 
1 . 1 9 7 ( 2 ) 

0 . 9 3 1 ( 1 6 ) 
0 . 9 9 3 ( 3 ) 

0 . 8 1 1 ( 3 6 ) 
0 . 8 3 7 ( 1 1 ) 
0 . 7 0 9 ( 7 ) 
0 . 8 1 8 ( 4 ) 

0 . 7 6 4 ( 1 0 ) 
0 . 5 8 7 ( 2 ) 

0 . 7 6 8 ( 1 2 ) 
0 . 6 7 2 ( 1 6 ) 
1 . 0 7 7 ( 6 5 ) 
0 . 4 4 3 ( 4 ) 
0 . 5 1 7 ( 3 ) 

0 . 8 8 9 ( 3 0 ) 
0 . 8 1 7 ( 1 ) 
0 . 8 4 7 ( 4 ) 
0 . 4 6 7 ( 3 ) 
0 . 5 3 7 ( 7 ) 
0 . 6 1 8 ( 8 ) 
0 . 6 6 4 ( 5 ) 

0 . 4 1 9 ( 1 2 ) 
0 . 4 9 6 ( 2 8 ) 
0 . 3 7 3 ( 2 ) 

2 3 . 3 0 9 ( 1 0 6 ) 
2 1 . 3 9 9 ( 1 9 8 ) 
2 0 . 1 4 9 ( 1 7 ) 
1 9 . 1 9 5 ( 5 8 ) 
2 0 . 0 7 6 ( 1 8 ) 

1 9 . 3 1 6 ( 1 3 3 ) 
1 9 . 4 5 3 ( 4 0 ) 
1 8 . 7 8 1 ( 2 6 ) 
1 9 . 4 2 7 ( 2 1 ) 
1 9 . 3 6 5 ( 3 4 ) 
1 8 . 6 3 9 ( 1 7 ) 
1 9 . 5 7 2 ( 4 0 ) 
1 8 , 9 1 8 ( 5 5 ) 

2 1 . 0 3 7 ( 2 4 8 ) 
1 8 . 2 5 7 ( 2 0 ) 
1 8 . 5 8 5 ( 1 7 ) 

2 0 . 3 8 9 ( 1 1 3 ) 
2 0 . 6 5 1 ( 1 5 ) 
2 0 . 9 7 8 ( 1 8 ) 
1 8 . 6 0 3 ( 1 8 ) 
1 9 . 1 5 2 ( 3 0 ) 
1 9 . 6 4 6 ( 3 2 ) 
2 0 . 2 2 8 ( 2 3 ) 
1 8 . 8 9 9 ( 4 5 ) 
1 9 . 6 5 4 ( 9 5 ) 
1 9 . 1 0 3 ( 1 7 ) 

1 0 . 6 5 7 ( 5 2 ) 
1 0 . 8 9 3 ( 6 7 ) 
1 2 . 1 6 7 ( 1 6 ) 
1 2 . 5 4 3 ( 2 7 ) 
1 3 . 1 1 8 ( 1 7 ) 
1 3 . 2 6 4 ( 5 1 ) 
1 3 . 2 7 2 ( 2 3 ) 
1 3 . 2 4 0 ( 2 0 ) 
1 3 . 3 4 1 ( 1 7 ) 
1 3 . 5 4 9 ( 2 3 ) 
1 3 . 7 0 7 ( 1 6 ) 
1 3 . 7 3 8 ( 2 7 ) 
1 3 . 5 6 4 ( 3 1 ) 
1 3 . 6 5 7 ( 7 8 ) 
1 4 . 0 4 8 ( 1 7 ) 
1 4 . 0 0 6 ( 1 6 ) 
1 3 . 9 5 0 ( 4 2 ) 
1 4 . 5 7 0 ( 1 6 ) 
1 4 . 7 4 7 ( 1 8 ) 
1 4 . 2 7 2 ( 1 7 ) 
1 4 . 4 7 0 ( 1 8 ) 
1 4 . 5 6 0 ( 2 1 ) 
1 4 . 9 1 0 ( 1 8 ) 
1 4 . 8 1 0 ( 2 4 ) 
1 5 . 1 8 1 ( 4 8 ) 
1 5 . 2 4 2 ( 1 6 ) 

2 4 . 8 1 0 ( 1 0 8 ) 
2 2 , 9 5 6 ( 2 1 9 ) 
2 1 . 4 2 2 ( 1 8 ) 
2 0 . 5 7 6 ( 6 7 ) 
2 1 . 0 1 5 ( 2 1 ) 

2 0 . 7 0 8 ( 1 8 6 ) 
2 0 . 6 9 7 ( 5 6 ) 
1 9 . 8 2 0 ( 3 5 ) 
2 0 . 6 2 5 ( 2 3 ) 
2 0 . 4 6 5 ( 3 7 ) 
1 9 . 8 3 6 ( 1 8 ) 
2 0 , 6 6 5 ( 4 6 ) 
2 0 , 1 1 9 ( 7 8 ) 

2 2 , 6 0 9 ( 3 0 6 ) 
1 9 , 3 4 1 ( 2 7 ) 
1 9 , 7 5 1 ( 2 1 ) 

2 1 , 8 7 9 ( 1 2 1 ) 
2 1 . 1 1 2 ( 1 5 ) 
2 1 . 8 1 7 ( 2 2 ) 
1 9 . 5 5 2 ( 2 5 ) 
2 0 . 6 7 4 ( 3 3 ) 
2 0 . 8 3 5 ( 3 2 ) 
2 1 . 3 7 4 ( 2 7 ) 
2 0 . 2 2 0 ( 6 7 ) 

2 0 . 9 0 0 ( 1 2 8 ) 
2 0 . 0 5 6 ( 1 8 ) 

1 .293(4) 
1 .365(5 ) 
1 .220 (5 ) 
1 .242(4) 
0 . 4 8 4 ( 7 ) 
1 .089(4) 
1 .072(5 ) 
1 .145(4) 
1 .060(5) 
1 .023(5) 
1 .057(4) 
0 . 9 5 9 ( 5 ) 
1 .063(4) 
0 . 8 7 7 ( 5 ) 
1 .015(4) 
0 . 9 9 7 ( 4 ) 
0 . 8 7 3 ( 4 ) 

0 . 9 5 8 ( 4 ) 
0 . 8 5 9 ( 4 ) 
0 . 7 9 3 ( 5 ) 
0 . 6 3 2 ( 6 ) 
0 . 8 1 1 ( 4 ) 
0 . 6 6 6 ( 5 ) 
0 . 7 1 7 ( 5 ) 

0 . 0 4 3 9 ( 5 0 
0 . 1 8 0 3 ( 2 0 

0 . 3 2 2 3 ( 1 0 4 ) 
0 . 0 6 4 6 ( 4 0 
0 . 8 5 0 3 ( 5 3 
0.2001(63^ 
0.3922(60^ 
0 . 7 4 3 2 ( 6 1 
0 . 3 5 0 3 ( 3 1 
0 . 3 8 6 0 ( 5 8 
0 . 2 8 0 9 ( 3 5 
0 . 3 5 2 9 ( 5 9 
0 . 3 8 2 4 ( 3 1 
0 . 0 4 4 8 ( 7 4 
0.3908(32^ 
0 . 4 5 3 0 ( 5 3 
0 . 0 8 3 1 ( 7 9 
0 . 6 7 0 3 ( 4 1 

0 . 4 1 5 7 ( 1 6 8 ) 
0 . 7 1 3 6 ( 4 4 
0 . 3 6 6 4 ( 2 6 
0 . 5 0 0 2 ( 2 0 
0 .0430 (41 
0 . 4 0 0 3 ( 3 0 
0 . 4 2 7 1 ( 3 4 
0 . 6 3 6 1 ( 2 8 

- 0 . 0 0 0 8 ( 1 3 ) 
- 0 . 0 0 0 5 ( 1 1 ) 
0 . 0 0 0 9 ( 6 6 ) 
0 . 0 0 0 3 ( 1 2 ) 

- 0 . 0 3 2 4 ( 2 3 1 ) 
- 0 . 0 0 0 1 ( 1 7 ) 
- 0 . 0 0 1 1 ( 1 8 ) 
0 . 0 0 2 0 ( 2 2 ) 
0 . 0 0 0 9 ( 1 3 ) 
0 . 0 0 0 2 ( 2 1 ) 
- 0 . 0 0 0 1 ( 1 6 ) 
0 . 0 0 2 8 ( 2 4 ) 

- 0 . 0 0 1 1 ( 1 4 ) 
0 . 0 0 0 7 ( 2 5 ) 
0 . 0 0 0 8 ( 1 4 ) 
- 0 . 0 0 0 2 ( 1 4 ) 
- 0 . 0 0 2 1 ( 3 7 ) 
0 . 0 2 6 9 ( 1 0 2 ) 
- 0 . 0 1 1 2 ( 8 2 ) 
0 . 0 0 2 3 ( 2 6 ) 

- 0 . 0 0 2 2 ( 1 9 ) 
0 . 0 0 0 6 ( 1 8 ) 

- 0 . 0 0 2 5 ( 2 3 ) 
0 . 0 0 1 7 ( 2 2 ) 
0 . 0 0 1 4 ( 2 3 ) 
- 0 . 0 0 1 3 ( 2 6 ) 

- 0 . 0 0 0 6 ( 1 4 ) 
0 . 0 0 0 6 ( 1 1 ) 

- 0 . 0 0 2 4 ( 6 7 ) 
- 0 . 0 0 1 1 ( 1 2 ) 

- 0 . 0 3 4 5 ( 2 3 0 ) 
0 . 0 0 0 5 ( 1 8 ) 
0 . 0 0 0 1 ( 1 8 ) 
0 . 0 0 1 7 ( 2 2 ) 
0 . 0 0 0 4 ( 1 3 ) 
0 . 0 0 0 4 ( 2 1 ) 

- 0 . 0 0 0 9 ( 1 6 ) 
- 0 . 0 0 2 0 ( 2 4 ) 
0 . 0 0 0 9 ( 1 4 ) 

- 0 . 0 0 1 4 ( 2 6 ) 
- 0 . 0 0 1 3 ( 1 4 ) 
- 0 . 0 0 1 2 ( 1 4 ) 
- 0 . 0 0 1 4 ( 3 7 ) 
0 . 0 2 4 6 ( 1 0 2 ) 
0 . 0 5 6 9 ( 8 4 ) 
0 . 0 0 4 4 ( 2 7 ) 
- 0 . 0 0 2 2 ( 1 9 ) 
- 0 . 0 0 3 5 ( 1 8 ) 
- 0 . 0 0 0 4 ( 2 2 ) 
- 0 . 0 0 2 2 ( 2 2 ) 
0 . 0 0 1 6 ( 2 3 ) 

- 0 . 0 0 7 2 ( 2 6 ) 

0 . 0 0 0 6 ( 1 3 ) 
- 0 . 0 0 1 1 ( 1 1 ) 
0 . 0 1 2 0 ( 6 6 ) 
0 . 0 0 1 4 ( 1 1 ) 

0 . 0 0 6 3 ( 2 2 6 ) 
- 0 . 0 0 0 7 ( 1 7 ) 
0 . 0 1 6 3 ( 1 8 ) 
0 . 0 0 8 9 ( 2 3 ) 
- 0 . 0 0 1 3 ( 1 3 ) 
- 0 . 0 1 2 3 ( 2 1 ) 
0 . 0 0 9 6 ( 1 6 ) 
0 . 0 2 7 1 ( 2 4 ) 
0 . 0 0 2 8 ( 1 4 ) 
0 . 0 0 1 0 ( 2 5 ) 
0 . 0 0 2 1 ( 1 4 ) 
0 .0080 (14 ) 

- 0 . 0 0 0 1 ( 3 7 ) 
0 . 0 2 0 8 ( 1 0 3 ) 
0 . 0 0 5 7 ( 8 4 ) 
0 . 0 5 2 2 ( 2 7 ) 
0 . 0 0 3 9 ( 1 8 ) 
0 . 0 0 9 1 ( 1 8 ) 
0 . 0 0 4 3 ( 2 3 ) 
0 . 0 1 3 0 ( 2 2 ) 
0 . 0 0 3 8 ( 2 4 ) 
0 . 0 3 3 9 ( 2 6 ) 

- 0 . 0 0 1 2 ( 1 3 ) 
- 0 . 0 0 1 0 ( 1 1 ) 
- 0 . 0 1 0 8 ( 6 6 ) 
- 0 . 0 0 1 0 ( 1 2 ) 

- 0 . 0 3 7 6 ( 2 3 5 ) 
0 . 0 0 1 6 ( 1 8 ) 
0 . 0 0 8 9 ( 1 8 ) 
0 . 0 0 3 3 ( 2 2 ) 

- 0 . 0 0 0 6 ( 1 3 ) 
0 . 0 0 4 3 ( 2 2 ) 
0 . 0 0 3 6 ( 1 6 ) 
0 . 0 0 2 0 ( 2 4 ) 

- 0 . 0 0 3 0 ( 1 4 ) 
0 . 0027 (26 ) 

- 0 . 0 0 3 4 ( 1 4 ) 
0 . 0 1 1 1 ( 1 4 ) 
0 . 0 0 1 1 ( 3 7 ) 

0 . 0 0 5 7 ( 1 0 1 ) 
0 . 0 0 5 1 ( 8 2 ) 
0 . 0 0 2 9 ( 2 6 ) 
0 . 0 0 0 6 ( 1 9 ) 

- 0 . 0 0 9 7 ( 1 8 ) 
0 . 0 0 1 4 ( 2 2 ) 
- 0 . 0 0 1 7 ( 2 2 ) 
- 0 . 0 0 0 4 ( 2 3 ) 
0 . 0 0 0 7 ( 2 5 ) 
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Table A.2: Parameters derived from fi{r) profile fitting for Coma and Abell 1367 galaxies 
3̂ Name 

(13) OIL 
Abell 1656 (Coma) 

_(15]_ _ i i 6 ] _ -liZL (18) _119]_ _(20)_ (21) J 2 2 ] _ (23) 
D / B 

D62 
D63 
D64 
D65 
D68 
D69 
D70 
D71 
D72 
D78 
D79 
D80 
D81 
D82 
D84 
D87 
D88 
D89 
D90 
D91 
D92 
D97 
D98 
D99 

DlOO 
DlOl 
D102 
D103 
D104 
D105 
D106 
D107 
D108 
D109 
D U O 
D i l l 
D112 
D115 
D116 
D117 
D118 
D119 
D120 
D121 
D122 
D123 
D124 
D125 
D126 
D127 
D128 
D129 
D130 
D131 
D132 
D133 
D135 
D136 
D137 
D142 
D143 
D144 
D145 
D146 
D147 

6,10(49) 
4,46(6) 

5.77(62) 
5.25(21) 
6.56(41) 

9.78(136) 
6.78(75) 
4.02(12) 
5.13(35) 
12.17(29) 
8.47(23) 
6.83(21) 
8.31(57) 
14.23(20) 
4.08(22) 
3.55(21) 
5.58(64) 
5.02(16) 
4.16(26) 
5,78(32) 
5.73(62) 

21,13(35) 
4,93(20) 
4,34(7) 
3,06(3) 

4,92(23) 
4.73(37) 
7.97(34) 
4.64(33) 
9.23(22) 
3.35(23) 
4.47(27) 
3.85(18) 
5.36(15) 
5.23(15) 
6.82(17) 
3.81(9) 

4,82(27) 
5,88(10) 
4.35(7) 

7.09(30) 
4.64(6) 
3.38(8) 

5.79(21) 
4.34(16) 
4.71(6) 
4.59(17) 
2.71(14) 
3.54(22) 
2.99(4) 
2.74(3) 

27.19(36) 
4.89(20) 
6.98(6) 

4.34(16) 
5.60(47) 
3.84(17) 
3,18(22) 
9,45(27) 
2,16(9) 

20.94(10) 
20.65(1) 

21.29(13) 
20.30(6) 
20.37(7) 

20.52(2) 
20.09(12) 
20.78(3) 
20.14(4) 
20.93(5) 
21,32(8) 
20.16(1) 
19.67(6) 

20.36(11) 
20.34(20) 
19.12(3) 

20,61(10) 
19,71(9) 

20.72(21) 
20,62(1) 
19.68(5) 
20.63(1) 
19.64(3) 
20.24(6) 

21.16(12) 
20.70(6) 
19.88(13) 
20.39(4) 
19.99(15) 
20.28(10) 
20.24(9) 
20.07(5) 
20.70(5) 
20.50(4) 
20.22(4) 
20.70(9) 
20,61(3) 
20.17(2) 
20.15(7) 
20.46(2) 
19.42(5) 
19.51(7) 
20.06(6) 
20.34(7) 
19.42(6) 

19.71(13) 
20.02(10) 
20.18(2) 
19.78(2) 
20.01(1) 
19.75(8) 
20.15(1) 
20.67(4) 

20.02(16) 
20.54(8) 

20.13(16) 
21,06(5) 
19.50(13) 

20,58(12) 
20.47(1) 
21.00(13) 
19.98(3) 
20.05(9) 

12.40(107) 20.29(10) 
.00(18) 

6.18(27) 
6.22(19) 
5,68(25) 

D148 22,52(117) 
D149 3,64(3) 

4,42(19) 
7,65(10) 
5,49(10) 
4,02(24) 
5,18(21) 
5,95(20) 
3.27(26) 
3.83(37) 
2.98(14) 
9.57(60) 
6.98(36) 
9.55(48) 
4.64(12) 
9.00(67) 
6,72(42) 
5.33(18) 
6.92(41) 
4.50(32) 
4.23(24) 
5.11(33) 
3.50(10) 
5.92(17) 
3.86(22) 

D150 
D151 
D152 
D153 
D154 
D155 
D156 
D157 
D158 
D159 
D160 
D161 
D162 
D167 
D168 
D169 
D170 
D171 
D172 
D173 
D174 
D175 
D176 

5.66(40) 
4.61(4) 

5.52(45) 
5.00(11) 
6.04(34) 

20.83(20) 8.02(109) 20.25(24) 
20.83(17) 5.93(63) 20.31(19) 

3.49(11) 
3.76(23) 
11.21(23) 
7.08(14) 
6.73(19) 
7.99(43) 
17.89(16) 
3.26(13) 
2.96(16) 
4.06(40) 
3.28(10) 
3.45(17) 
4.58(24) 
4.24(40) 

26.19(21) 
3.93(13) 
5.03(2) 
2.88(2) 

3.79(16) 
3.99(28) 
7.36(36) 
3.57(16) 
7.95(16) 
2.48(18) 
4.00(20) 
3.04(11) 
4,57(7) 

4,64(14) 
6,16(11) 
2.94(5) 

4.40(16) 
5.77(6) 
3.91(5) 

6.24(15) 
4.62(1) 
2.71(4) 

4.68(12) 
4.07(9) 
4.92(2) 
3.93(8) 
1.87(9) 

2.84(14) 
2.72(2) 
2.10(2) 

31.37(38) 
3.83(12) 
6.96(5) 

4.16(17) 
4.13(31) 
3.46(9) 

2.05(14) 
8.01(23) 
1.35(6) 

12.19(49) 
7.88(17) 
5.61(16) 
6.52(11) 
5.81(16) 
20.59(50) 

3.69(3) 
4.01(9) 
7,66(8) 
5,56(2) 

3,20(19) 
6.06(16) 
6.59(13) 
2.68(23) 
3.01(25) 
2,43(13) 
8,13(47) 
6,51(26) 
8,53(23) 
4,88(10) 
7,56(40) 
5,07(22) 
3.74(14) 
6.29(33) 
3.80(19) 
3.43(11) 
4.14(23) 
2.40(6) 
6.27(9) 

3.01(14) 

20.52(2) 
20.38(6) 
20.49(4) 
20.54(5) 
19.66(6) 
20.06(1) 
20.07(7) 
20,23(2) 
20,04(3) 

20,05(10) 
20,90(5) 
19,91(6) 

20,27(14) 
20.20(16) 
20.37(8) 

20.30(10) 
20.22(6) 
20.58(8) 
21.78(3) 

20,27(11) 
19,86(12) 
20.04(9) 
20.53(7) 

20,72(13) 
19,92(9) 

20.58(11) 
19.37(6) 
19,77(6) 

19,67(11) 

19.96(6) 
19.20(13) 
20.46(3) 
19.61(4) 
20.69(4) 
21.08(8) 
20.50(1) 
19.00(8) 
19.68(11) 
19.38(22) 
17.87(11) 
19,93(10) 
19.00(11) 
19,78(21) 
21.02(1) 
19.10(6) 
20,64(0) 
19,27(1) 
19,44(9) 

20,53(14) 
20,32(9) 
19.07(10) 
19,83(4) 
18.97(17) 
19.79(9) 
19.47(8) 
19.43(3) 
20.22(5) 
20.04(3) 
19,38(4) 
20,23(7) 
20,29(2) 
19,75(2) 
19.69(4) 
20.13(1) 
18,66(3) 
18,86(5) 
19,70(3) 
20,19(1) 
18,86(4) 

18,52(12) 
19,30(10) 
19,68(2) 
18.88(2) 
20.46(1) 
18.98(7) 
19.91(1) 
20.29(7) 
19.14(16) 
20,04(5) 
18,76(17) 
20,46(6) 
17,97(13) 
20,22(6) 
20,25(4) 
19,99(5) 
20,36(3) 
20,36(4) 
19.60(3) 
19.86(1) 
19.58(4) 
20.02(2) 
19.78(0) 
19.31(12) 
20.99(3) 
19.54(4) 
19.54(17) 
19.39(18) 
19.66(11) 
19.82(10) 
19.94(6) 
20.19(5) 
21.59(3) 
19.74(10) 
19.11(9) 
18.91(10) 
20.11(9) 
20.06(10) 
19.16(8) 

19.90(11) 
18.20(6) 
19.32(3) 
18.86(12) 

5.67(39) 
5,40(3) 
6,08(44) 
5,26(4) 
5,96(34) 

6,66(105) 
5.20(64) 
2.84(12) 
2.40(15) 
11.92(28) 
5.82(12) 
7.71(26) 
8.92(61) 

36.25(36) 
2.41(7) 
2.23(14) 
2.58(27) 
1.67(4) 

2.64(11) 
3.29(18) 
2.69(30) 

67.49(20) 
3.00(8) 
7.43(5) 
2.74(1) 
2.59(13) 
3.26(25) 
7.21(35) 
2.54(9) 
6.60(15) 
1.47(13) 
3.57(19) 
2.16(7) 
3.68(0) 
4.19(16) 
5.89(10) 
1.87(4) 

4.18(11) 
6.24(4) 
3.65(4) 
5.83(7) 
4.96(11) 
1,90(2) 
3,67(8) 
3,99(5) 
6,89(3) 
3,34(3) 
0.97(6) 
2.05(10) 
2.41(2) 
1.33(2) 

68.11(100) 
2.71(10) 
7.76(6) 

4.15(16) 
2.64(23) 
3.18(4) 
0.97(8) 
6.35(24) 
0.56(3) 

17.16(49) 
8.96(12) 
5.56(11) 
8.48(9) 
7.13(10) 

32.08(54) 
4.09(4) 
3.72(2) 
8.97(8) 
6.46(10) 
2.28(17) 
9.57(20) 
5.68(10) 
1.95(21) 
2.15(18) 
1.74(11) 
7.29(49) 
6,76(23) 
8,63(17) 
5,67(13) 
6.63(32) 
3.63(15) 
1.98(11) 
6.15(31) 
3.07(10) 
2.54(2) 
3.16(20) 
1.27(3) 
4.88(5) 
2.03(9) 

20.29(12) 
20.49(1) 
20.90(13) 
19.78(1) 
19.76(10) 
19.58(31) 
19.72(24) 
19.19(9) 

17.86(15) 
20.32(4) 
18.92(4) 
20.68(6) 
21.03(10) 
21.56(2) 
18.02(6) 
18.71(14) 
18.00(25) 
15.86(11) 
19.00(9) 
17.98(12) 
18.39(26) 
22.21(0) 
18.24(6) 
21.09(1) 
18.85(0) 
18.27(11) 
19.75(16) 
20.00(9) 
17.99(8) 
19.12(5) 
17.37(22) 
19.22(11) 
18.37(7) 
18.61(1) 
19.70(7) 
19.64(3) 
17.98(5) 
19.80(5) 
20.14(1) 
19.31(2) 
19.26(2) 
19.95(6) 
17.54(3) 
18.04(5) 
19.36(3) 
20.26(1) 
18.20(1) 
16.55(16) 
18.24(11) 
19.08(1) 
17.46(3) 
21.70(2) 
17.89(8) 
19.84(1) 
19.96(7) 

2.91(41) 
2.45(36) 
3.40(6) 
2.33(4) 

3.06(16) 
5,18(6) 
4,09(26) 
1,93(25) 
3.65(94) 
4.96(0) 

3.38(52) 
4.19(20) 
4.83(6) 
1.75(33) 
2.30(3) 

2.86(50) 
3.99(40) 
1.63(78) 
2.25(2) 
3.11(22) 
4.24(78) 

3.29(212) 
2.44(6) 

0.82(32) 
1.08(47) 
3.17(2) 

3.48(19) 
5.19(21) 
3.27(7) 

3.63(32) 
2.80(47) 
2.45(2) 

2.64(26) 
0.50(50) 
3.04(19) 
2.76(31) 
2.31(16) 
2.78(43) 
2.84(71) 
2.25(17) 
2.77(26) 

2.69(219) 
2.13(23) 
3.19(25) 
2.58(40) 
0.95(45) 
2.26(4) 

4.16(74) 
2.13(29) 
1.80(41) 
2.38(63) 

3.83(147) 
3.68(84) 
2.51(18) 
3.06(70) 

17.81(21) 4.02(102) 
19.63(2) 2.59(38) 
16.62(23) 3.79(127) 
19.62(8) 

16.32(17) 
20.66(4) 
20.22(2) 
19.68(4) 
20.59(2) 
20.47(2) 
20.26(2) 
19.78(2) 
19.10(1) 
20.04(2) 
19.77(4) 
18.22(16) 
21.68(3) 
19.26(3) 
18.47(23) 
18.29(19) 
18.57(14) 
19.33(13) 
19.76(6) 
19.95(4) 
21.57(6) 
19.18(10) 
18.09(9) 

4.15(128) 
3.12(82) 
4.31(12) 
4.90(26) 
2.91(1) 

2.18(11) 
2.19(3) 
5.06(0) 

2.15(35) 
2.25(36) 
2.57(11) 
0.50(50) 
2.64(9) 

2.25(23) 
2.12(5) 
2.45(0) 

3.11(11) 
2.29(32) 
4.67(19) 
3.04(14) 
4.40(6) 

0.93(43) 
4.02(17) 
3.95(94) 

17.01(14) 2.69(162) 
19.77(10) 2.80(30) 
19.25(7) 
18.15(4) 
18.98(14) 
16.30(7) 
18.87(2) 
17.64(12) 

3.10(64) 
2.74(59) 
3.97(55) 
2.50(0) 
2.39(0) 

2.54(14) 

5.37(132) 
1.06(62) 

5.63(173) 
4.97(103) 
6.14(85) 

3.19(224) 
4.03(62) 
4.80(62) 
4.16(5) 

5.73(401) 
5.82(12) 
1.53(107) 
3.96(277) 

34.50(268) 
3.30(116) 
1.00(70) 
2.58(27) 
6.32(32) 
5.87(20) 
2.70(4) 

4.08(44) 
5.08(22) 
5.54(64) 

1.74(85) 
6.36(176) 

5.15(4) 
0.86(61) 
2.70(45) 
2.90(203) 
4.06(64) 

3.04(105) 
3.06(75) 
7.08(414) 
3.61(51) 
6.47(45) 
1.32(85) 
4.12(96) 
1.66(2) 

7.47(53) 
4.88(70) 

1.81(6) 
3.12(82) 
1.26(59) 

2.69(49) 
0.97(6) 

5.76(56) 
1.35(77) 
3.78(83) 
19.36(23) 
2.71(10) 
2.87(8) 
1.06(74) 
3.80(32) 
3.29(8) 
1.79(79) 
6.35(24) 
0.56(3) 

17.16(49) 
1.09(76) 
3.74(95) 
9.95(157) 
5.57(168) 

18.02(1262) 
1.37(38) 
2.77(37) 
7.14(34) 
2.13(70) 
4.08(66) 
1.33(63) 

7.59(165) 
2.45(3) 

4.17(163) 
1.26(70) 
7.29(49) 

6.10(112) 
5.33(368) 

7.58(85) 
8.08(51) 

6.46(116) 
0.96(1) 

3.08(164) 
3.16(20) 
1.71(96) 
4.14(50) 
1.12(78) 

20.63(36) 
18.04(91) 
20.86(49) 
20.45(36) 
20.02(24) 
18.07(123) 
19.31(24) 
21.21(17) 
19.53(13) 
19.05(84) 
18.92(4) 

17.79(53) 
19.65(76) 
22.45(13) 
19.56(77) 
17.05(122) 
18.00(25) 
20.43(15) 
21.84(22) 
17.66(19) 
19.57(31) 
18.81(8) 

20.28(25) 

19.40(89) 
21.02(69) 
21.05(7) 

15.32(127) 
18.39(41) 
17.52(100) 
20.86(21) 
19.25(59) 
19.91(54) 
22.43(66) 
19.58(23) 
20.32(11) 
17.45(129) 
20.46(38) 
18.47(5) 

21.58(18) 
19.26(24) 

18.00(7) 
17.82(51) 
17.77(74) 

18.33(34) 
16.55(16) 
21.46(28) 
19.10(109) 
21.34(64) 
20.21(2) 
17.89(8) 
18.67(5) 

17.77(100) 
18.88(31) 
20.52(9) 

18.53(107) 
19.62(8) 

15.32(17) 
20.66(4) 
16.15(64) 
19.22(39) 
21.71(28) 
20.84(42) 
19.48(48) 
18.08(48) 
19.61(16) 
20.07(6) 
19.65(99) 
20.13(20) 
18.60(63) 
20.90(62) 
19.48(17) 
20.42(81) 
18.11(114) 
19.33(13) 
19.85(28) 
19.17(88) 

19.56(27) 
20.28(15) 

20.24(29) 
17.12(7) 

19.65(104) 
18.98(14) 
17.60(137) 
19.11(20) 

16.70(165) 

6.00(23) 
5.38(19) 
6.46(65) 
5.03(19) 
5.74(47) 

26.08(1755) 
10.72(347) 

3.47(4) 
2.54(6) 

26.65(1865) 

22.33(14) 
21.34(18) 
23.72(36) 
20.96(12) 
22.12(26) 

24.01(243) 
23.73(90) 
20.85(9) 
19.68(19) 

23.44(128) 

10.49(734) 22.25(112) 
17.10(1197) 23.75(104) 
13.54(19) • ' 
3.47(25) 

5.55(307) 

20.68(3) 
20.05(26) 

22.34(103) 

3.35(2) 
3.43(10) 

7.63(157) 
2.00(9) 

46.71(84) 
3.37(6) 
4.34(7) 

3.14(15) 
3.25(9) 
2.66(8) 

13.63(954) 
3.81(60) 

14.99(1050) 
2.68(8) 
4.81(27) 
3.22(19) 
5.18(0) 
6.15(22) 
6.01(16) 

4.65(128) 
4.58(18) 
6.78(12) 
3.31(3) 
7.54(38) 
4.64(6) 
3.33(5) 

7.77(347) 
5.13(23) 
4.71(6) 
4.78(9) 

2.64(4) 
3.15(17) 
2.41(3) 

97.38(244) 

18.49(5) 
20.69(6) 
22.28(91) 
19.56(19) 
22.20(3) 
19.77(7) 
20.63(1) 
20.00(11) 
20.06(19) 
21.34(37) 

22.23(198) 
21.19(58) 
22.43(71) 
19.92(7) 

21.76(15) 
20.63(21) 
20.13(10) 
22.88(33) 
21.40(2) 
21.93(66) 
21.42(7) 
21.19(8) 
20.31(2) 
21.60(5) 
20.46(2) 
20.35(6) 

22.29(110) 
20.83(16) 
20.34(7) 
20.30(5) 

19.93(5) 
20.64(12) 
19.81(8) 
22.68(2) 

8.37(11) 21.00(3) 
6.33(61) 21.47(42) 
1.96(22) 19.09(15) 
3.67(12) 21.07(15) 
1.41(13) 18.95(9) 

11.59(811) 
7.93(3) 
5.56(20) 
5.78(17) 

84.67(5920) 
4.99(7) 
4.50(12) 
8.32(1) 
5.73(6) 
2.86(15) 
7.25(38) 
5.39(6) 
2.77(3) 
2.64(11) 

3.71(129) 

7.13(62) 
17.00(1190) 

4.64(12) 
4.25(46) 
2.76(9) 

5.33(18) 
6.15(42) 
5.75(36) 
3.91(35) 

21.57(120) 
22.13(37) 
20.99(6) 
21.25(5) 
23.04(28) 
21.33(11) 
20.56(9) 
21.52(5) 
20.25(3) 
20.23(5) 
21.85(15) 
20.25(5) 
21.05(31) 
20.18(24) 

22.23(111) 

21.83(7) 
23.18(99) 
21.78(3) 
21.32(78) 
18.91(11) 
20.04(9) 

21.68(12) 
21.76(61) 
20.27(33) 

2.71(16) 19.82(54) 
6.03(17) 20.76(3) 

4.67(146) 20.94(106) 

0.24(8) 
1.24(35) 
0.10(8) 
0.64(6) 
0.13(3) 
0.26(6) 
0.12(3) 
0.73(7) 
0.32(12) 
0.38(30) 
0.00(39) 
0.77(66) 
0.43(36) 
0.79(7) 
0.70(16) 
0.24(14) 
0.00(12) 
1.68(16) 
0.99(20) 
0.11(9) 
0.24(10) 
3.74(3) 
0.59(3) 

oo 
1.87(33) 
0.64(11) 
0.21(9) 
0.43(16) 
0.15(6) 
0.29(25) 
1.04(20) 
0.25(9) 
0.57(9) 

4.48(247) 
0.14(6) 
0.32(3) 
0.20(5) 
0.51(9) 
1.37(12) 
0.63(2) 
0.28(6) 

oo 
0.39(3) 
0.10(2) 
0.98(25) 

CO 

0.56(7) 
0.00(13) 
0.86(18) 
1.33(31) 
1.66(24) 
2.61(6) 
0.00(7) 
1.00(2) 

0.84(42) 
0,22(13) 
0.75(17) 
0.42(26) 
0.00(5) 
0.00(11) 
0.00(5) 
0.77(64) 
0.31(12) 
0.61(6) 
0.73(19) 
0.83(78) 
0.67(11) 
1.11(28) 
0.36(3) 
4.18(66) 
0.45(7) 
1.48(20) 
0.92(16) 
0.30(15) 
0.50(12) 
0.19(7) 
0.00(11) 
0.22(7) 
0.25(21) 

oo 
0.06(6) 
0.41(8) 

CO 

0.24(5) 
0.50(21) 
0.91(18) 
0.00(7) 
0.33(38) 
0.46(6) 
0.35(37) 
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Table A.2: 
Name e 
-AD m . 

Continued. 
J U L 

u¥7 
(19) (20) (21) (22) (23) 

D/B 
(^^) D177 

D178 
D179 
D180 
D181 
D182 
D183 
D184 
D191 
D192 
D193 
D194 
D195 
D196 
D197 
D198 
D199 
D200 
D20S 
D207 
D208 
D210 
D211 
D212 
D218 
D220 
D224 
D22S 

G2201 
G2778 
G2914 
G2960 
G3133 
G3298 
G3554 
G3640 
G4281 

B l 
B2 
B3 

BIO 
B12 
B17 
B22 
B23 
B25 
B27 
B28 
B33 
B38 
B41 
B45 
B46 
B52 
B58 
B61 
B64 
B69 
076 
B81 
B90 

B107 
B117 

3.79(14) 
4.25(12) 
6.95(30) 
10.23(67) 
3.93(18) 
3.19(17) 
6.86(9) 
4.91(9) 
2.63(7) 
3.70(8) 

4.47(39) 
10.24(44) 
3.95(7) 

4.83(14) 
5.32(26) 
3.78(5) 

5.38(15) 
3.77(28) 
11.36(13) 
4.61(27) 
4.05(9) 

5.48(35) 
6.44(25) 
5.37(4) 
5.39(9) 

8.31(23) 
2.90(8) 

3.51(19) 
6.50(46) 
4.96(7) 

7.16(41) 
4.19(11) 
3.50(10) 
6.76(30) 
4.12(17) 

7.60(236) 
4.70(15) 

20.34(7) 
20.79(6) 
19.61(9) 
21.15(7) 
20.17(9) 

20.27(12) 
20.90(2) 
20.87(2) 
19.27(84) 
19.35(2) 

20.28(12) 
20.19(7) 
19.72(3) 
20.73(6) 
19.66(9) 
20.10(2) 
19.99(4) 

19.49(12) 
20.21(2) 

20.02(19) 
20.43(24) 
20.46(12) 
19.83(4) 
20.15(1) 
19.52(3) 
19.96(6) 
20.03(6) 
20.58(9) 

21.61(10) 
20.87(2) 
21.62(6) 

20.56(118) 
20.71(5) 
21.77(3) 

21.02(31) 
22.63(24) 
21.16(4) 

3.32(10) 
3.36(10) 
5.67(18) 
12.24(65) 
2.96(10) 
2.25(11) 
7.12(7) 
5.17(6) 
1.87(5) 
2.82(2) 

3.56(26) 
8.70(27) 
3.29(2) 
4.12(8) 

3.73(13) 
3.69(2) 
4.66(8) 

2.51(17) 
13.61(1) 
3.73(18) 
3.86(11) 
4.46(20) 
6.73(10) 
5.70(1) 
4.59(4) 

7.05(31) 
2.37(6) 

3.16(21) 
6.26(33) 
5.43(5) 

8.00(43) 
4.36(8) 
3.15(8) 

8.49(28) 
4.24(20) 

6.71(275) 
5.27(13) 

19.78(6) 
19.91(6) 
18.97(7) 
21.32(6) 
19.29(8) 

19.10(12) 
20.75(1) 
20.74(2) 
18.24(9) 
18.52(2) 

19.55(15) 
19.70(6) 
19.09(1) 
20.11(4) 
18.65(8) 
19.80(1) 
19.55(3) 

18.43(15) 
20.47(0) 
19.33(9) 
20.05(2) 
19.74(10) 
19.66(2) 
19.98(0) 
18.97(2) 
19.31(9) 
19.22(5) 

20.04(12) 
21.33(8) 
20.81(1) 
21.68(7) 

20.42(60) 
20.19(5) 
21.98(4) 
20.78(5) 

22.11(48) 
21.16(3) 

2.79(10) 
2.17(9) 

4.51(16) 
20.93(123) 

1.93(5) 
1.21(7) 
8.81(8) 
6.52(6) 
1.03(2) 
1.85(2) 

2.58(19) 
8.41(24) 
2.53(2) 
3.46(7) 
2.09(3) 
3.84(1) 
4.20(5) 
1.31(10) 

23.41(20) 
2.84(14) 
3.64(13) 
3.48(12) 
8.23(5) 
7.01(7) 
3.78(3) 

5.34(30) 
1.63(3) 

2.68(22) 
7.02(34) 
7.35(6) 

11.98(68) 
5.35(10) 
2.78(9) 

15.36(32) 
4.81(33) 

5.64(319) 
7.40(21) 

19.06(7) 
18.50(9) 
18.18(8) 
22.05(8) 
17.97(6) 

17.20(15) 
20.88(2) 
20.90(1) 
16.47(16) 
17.23(2) 

18.50(17) 
19.38(6) 
18.20(2) 
19.41(4) 
16.94(4) 
19.57(1) 
19.07(3) 

16.58(18) 
21.28(2) 
18.41(12) 
19.59(7) 
18.86(8) 
19.75(2) 
20.08(2) 
18.26(2) 

18.35(12) 
17.98(3) 

19.33(17) 
21.28(8) 
21.11(1) 
22.18(8) 

20.54(21) 
19.59(6) 
22.78(2) 
20.72(9) 

21.41(89) 
21.52(4) 

2.68(22) 
0.84(34) 
4.19(50) 
2.65(23) 
3.06(74) 
2.59(29) 
2.01(23) 
2.06(33) 
1.91(35) 
1.33(2) 

2.79(29) 
4.98(24) 
0.65(15) 
3.64(11) 
2.39(25) 
1.46(27) 
2.58(23) 

3.26(105) 
1.85(13) 
2.72(11) 
2.10(19) 
3.54(46) 
0.83(33) 
1.14(64) 
3.36(41) 
2.37(87) 
0.97(47) 
2.01(25) 
4.80(34) 
2.10(16) 
2.36(9) 

2.23(18) 
2.78(36) 
2.05(21) 
1.35(80) 
5.18(27) 
2.28(21) 

1.83(26) 
0.64(42) 

3.58(221) 
11.43(589) 

2.15(9) 
1.21(7) 

12.28(65) 
3.95(69) 
3.00(81) 
2.17(6) 

3.91(65) 
8.41(24) 

0.85(60) 
4.03(18) 

3.97(222) 
6.16(3) 
1.71(63) 
1.72(112) 
3.55(44) 
1.54(54) 
1.26(21) 

18.56(25) 
17.74(248) 
17.73(114) 
21.51(58) 
18.94(22) 
17.20(15) 
22.30(8) 

20.54(24) 
20.36(41) 
19.18(21) 
19.90(41) 
19.38(6) 

16.49(105) 
19.72(20) 
21.31(97) 
20.34(2) 

17.47(102) 
17.67(97) 
19.29(32) 
18.44(53) 
16.91(28) 

4.60(56) 21.81(16) 
4.36(14) 20.93(13) 

18.96(1327) 24.02(294) 
13.89(89) 22.68(46) 
3.59(11) 20.79(17) 

1.06(74) 15.61(106) 
3.25(228) 17.47(131) 

2.94(49) 
2.09(146) 
2.56(45) 

10.42(252) 
4.06(51) 
2.27(9) 

3.49(91) 
1.45(102) 
1.83(128) 
5.86(7) 

20.73(17) 
19.18(61) 
20.00(33) 
22.36(28) 
20.55(46) 
19.67(10) 
21.23(25) 
19.98(100) 
18.85(136) 
21.43(3) 

5.98(7) 
5.75(7) 
2.14(3) 
3.56(4) 

3.12(19) 

3.95(7) 
7.15(501) 
4.41(1) 

3.72(14) 
3.76(1) 
1.50(27) 
13.53(3) 
3.46(23) 
4.88(38) 
7.52(72) 
6.44(25) 
5.37(4) 

8.33(583) 
11.68(638) 

2.90(8) 
3.44(12) 

10.74(751) 
5.99(7) 
7.29(35) 
4.54(5) 

3.74(21) 
8.41(51) 
4.39(48) 

23.29(1630) 
5.52(34) 

21.36(4) 
22.02(12) 
19.21(18) 
19.57(6) 

20.66(39) 

19.72(3) 
22.12(199) 

19.73(5) 
20.34(12) 
20.43(3) 
19.10(29) 
20.77(9) 

20.77(86) 
21.40(13) 
21.83(67) 
19.83(4) 
20.15(1) 

21.18(130) 
21.96(164) 

20.03(6) 
20.99(15) 

23.24(114) 
21.70(8) 

22.91(17) 
21.72(632) 
21.85(14) 
22.51(25) 
21.32(9) 

25.59(250) 
22.89(15) 

0.31(9) 
2.47(1342) 

0.09(5) 
0.50(38) 
0.51(13) 
0.00(11) 
0.56(4) 

0.54(12) 
1.46(10) 
1.88(34) 
0.32(15) 
0.00(8) 

C O 

0.39(19) 
1.18(21) 
2.15(42) 
0.34(2) 

0.17(26) 
3.54(70) 
0.25(33) 
0.66(20) 
0.39(19) 

0.37(27) 
0.21(2) 

C O 

1.08(66) 
0.63(53) 
1.15(16) 
0.30(14) 
0.43(30) 
0.36(7) 
1.79(92) 

2.66(156) 
0.33(19) 
0.23(1) 

1387 
30.18(89) 

27.74(116) 
14.93(30) 
11.28(37) 
7.78(20) 
8.57(24) 
8.59(24) 
6.31(17) 
8.38(6) 

6.86(21) 
5.11(4) 

7.45(12) 
6.56(41) 

11.36(103) 
5.54(30) 
4.98(6) 

10.96(72) 
6.86(1) 
6.99(7) 

3.73(14) 
7.09(23) 
5.18(14) 
5.28(7) 

4.58(29) 
3.94(29) 
2.93(6) 

21.23(3) 
20.62(5) 
20.16(2) 
20.18(6) 
19.79(13) 
20.33(5) 
20.16(4) 
19.39(2) 
20.29(1) 
20.02(5) 
19.61(2) 
20.16(2) 

20.01(11) 
21.44(11) 
20.56(13) 
19.79(2) 

21.65(10) 
20.70(20) 
21.00(1) 
19.21(5) 
21.34(6) 
20.46(5) 
20.78(2) 

20.68(12) 
20.54(13) 
19.76(13) 

30.26(66) 
27.30(80) 
15.26(9) 
9.72(23) 
7.22(76) 
7.73(19) 
7.40(19) 
5.32(11) 
8.28(5) 
6.05(7) 
4.31(3) 

6.64(12) 
5.04(23) 
10.35(68) 
3.71(20) 
4.20(3) 

10.29(46) 
9.61(15) 
8.70(3) 
2.60(7) 

6.08(16) 
4.48(6) 
5.09(4) 

3.55(19) 
3.25(19) 
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Appendix B 

Aperture Photometry - Output 

This appendix contains contour plots and graphs showing the aperture photometry and 
extrapolation for all galaxies in the Coma and Abell 1367 samples. See end of appendix 
for explanatory notes. 
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B.4 Unclassified Galaxies - Coma 

216 

Dressier 090 
RB 209 

2 0 " 

Dressier 109 . 
IC 3960 

2 0 " 

B e s t - f i t 

3 -

10 100 

Rad ius r ( " ) 

' ' " " " 1 ' ' " " " 1 '1 -

: / 
Tot.Mag U^ 

= 15.176 • 

Al . . 

± 0 . 0 2 9 " 

< 1 

1 10 100 

1 i i i | : 1 

P 

1 ' ' ' 

B e s t - f i t 

P 

P 

i 
b • 

. . . . 1 

0 

10 100 

Rad ius r ( " ) 

Dressier 112 
GMP 4945 

2 0 " 

I I I 

1 

1 1 

1 1 

1 ' ' ' 

B e s t - f i t 

_ p 1 _ 

9 1 

0 \ 

6 1 
p 

1 a 

1 \ • ° . i . . . 

10 100 

Rad ius r ( " ) 

Rad ius r ( " ) 

Tot.Mc: 

14.072 

± 0.019 

Rad ius r ( " ) 

Tot.Mag U, 

15.055 

± 0.021 

1 10 100 

Rad ius r ( " ) 



APPENDIX B. APERTURE PHOTOMETRY - OUTPUT 217 

Dressier 119 ( f rame 1) 
RB 99 4 

Dressier 119 ( f rame 2) 
RB 99 

10" 

-.0 . Dressier. 224 ( f rame '1>) 
GMP 4043 

J.0" 

Dressier i^4, ( f f t ime 2 > 

B e s t - f i t 

E x p 

t . - I 
V 

/ 
Tot.Mag . 

= 14.719 . 

± 0.018 • 

• . , . J. . . . I . 1 1 

10 100 

Rad ius r ( " ) 

B e s t - f i t 

E x p 
V 

10 100 

Rad ius r ( " ) 

B e s t - f i t 

J 
^ 2 

10 100 

Rad ius r ( " ) 

B e s t - f i t 

a; 
V 

T3 
3 

I ; : 
s 

10 100 

Rad ius r ( " ) 

10 

Rad ius r ( " ) 

100 

' ' ' " ' " 1 ' "1 1 . 

- / 

Tot.Mag J ^ , . 
= 14.717 . 

± 0.017 • 

• • . ' 1 

1 10 

Rad ius r ( " ) 

100 

1 1 ' 1 

f : 
Tot.Mag J / , ' 

= 15.656 \ 

• 

± 0.032 . 

1 1 • 

1 10 

Rad ius r ( " ) 

100 

1 1 1 

-

Tot.Mag 

= 15.64 ^ 

± 0.035 . 

li 1 • 

1 10 100 

Rad ius r ( " ) 



APPENDIX B. APERTURE PHOTOMETRY - OUTPUT 218 

J> . I Dressier 52^ 
' • ^ • • . JGMP<11235 . « 
) ' - • • « , . 

GMP 3133 ( f rame 1) 
«-fc> RB 55 

10" 

f ^ G M P 3133 ( f rame 2) 
• RB 55 

10" 

. GMP .3640 

o o 
o in 

B 
3 
o O o 

a 
3 

S o 

I 

B e s t - f i t 

6 . 

10 100 

Rad ius r ( " ) 

Tot.Mag Jlf, 

= 15.523 

± 0.061 

Radius r ( " ) 

B e s t - f i t 

« in 

1 1 1 ' 

- / 

Tot.Mag M,-

= 15.581 • 

± 0.034 • 

. . . . J...I . . 1 
10 100 

Rad ius r ( " ) 

6 

1 ' ' 1 

B e s t - f i t 

b 

-
p 

t 

0 

V 2 

3 

C 

V 
3 

10 100 

Rad ius r ( " ) 

1)1" 1 1 1 1 1 ' 

b 

9 

B e s t - f i t 

CD 
p 
p 
6 
b . 
CP , o 

§^ h 

. . . 1 

oo*** 
o 

0 
1 . . . 

10 100 

T 2 
V 

O. CO < — 

1 10 

Rad ius r ( " ) 

100 

1 1 1 1 — ' 

Tot.Mag J / , -

= 15.583 • 

± 0.023 • 

' . .1 • 1 1 
1 10 

Rad ius r ( " ) 

100 

' ' " " " 1 ' 1 1 

^ - / ^ _ 

• 1 / . . . . I . 

Tii>t.Mag U,. 

i= 15.706 . 

1 ± 0.207 • 

il i 1 

Rad ius r ( " ) 

10 

Rad ius r ( " ) 

100 



APPENDIX B. APERTURE PHOTOMETRY - OUTPUT 219 

B.5 Early-Type Galaxies - Abell 1367 
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B.6 Late-Type Galaxies - Abell 1367 
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B.7 Irregular or Peculiar Galaxies - Abell 1367 
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NOTES on the figures:-
The left-hand figures show a contour plot of the individual images as subtracted from the 
main CCD fields - the areas shaded grey are ignored in the surface photometry fitting, 
and replaced by a model in the aperture photometry integrations. The contour interval is 
Imag, with the lowest contour representing 23 mag in all plots. The central figures show 
the surface photometry fit at large radii. The two vertical solid lines represent the limits 
of the fit - which is chosen by minimum between an , an and an exponential. The 
dashed line shows the radius of the largest complete eUipse (only i f this is within the outer 
fitting Umit). Beyond the outer fitting hmit (or largest eUipse), the extrapolation from 
the aperture magnitude to total magnitude is calculated assuming the best-fit law contin
ues outwards to infinity. The elliptical aperture photometry curve and total magnitude 
are shown in the right-hand figures (including the half-light fit). The errors are shown by 
dashed lines. Erratum - the cosmological (1 -|- surface brightness correction was wrongly 
included in the total magnitude values in the RH plots. Add 0.1 to each magnitude to 
remove this correction. 



Appendix C 

Surface Photometry - Output 

This appendix contains plots displaying the deconvolved surface photometry for each Coma 
and Abell 1367 galaxy image. These include the surface brightness profile, ellipticity profile, 
position angle profile and centroid profiles. Also shown is the shift from the un-deconvolved 
surface photometry profiles. The figures for repeat frames of individual galaxies are posi
tioned adjacently for comparison. See end of appendix for more detailed explanatory notes. 
Because of limited page space in this thesis, the pages of this appendix con
taining the plots have been stored as a postscript file (AppendixC.ps) on the 
C D - R O M attached to this thesis. 
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C.2 Late-Type Galaxies - Coma 
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C.3 Irregular or Peculiar Galaxies - Coma 
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C .4 Unclassified Galaxies - Coma 
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C.5 Early-Type Galaxies - Abell 1367 
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C.7 Irregular or Peculiar Galaxies - Abell 1367 
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NOTES on the figures:-
These plots display the deconvolved profiles derived from surface photometry, plus the see
ing correction, for each Coma and Abell 1367 galaxy image. The plots for each galaxy 
are shown in vertical strips. Since the deconvolution is performed on all the images, there 
can be more than one set of plots for an individual galaxy - these figures are positioned 
adjacently for comparison (as near as possible). Each vertical strip contains five plots show
ing, from top to bottom, the radial profiles of surface brightness, ellipticity, position angle, 
central X-coordinate and central F-coordinate. In each plot, the circles show the corrected 
profiles, with the attached 'tails' showing the seeing correction from the raw profiles. The 
dotted-lines surrounding each profile represent the error envelopes on the deconvolved pro
files. The inner limit of the plot in each case is the measured FWHM of the seeing PSF, 
which is minimum possible radius where seeing corrections can be deemed reliable. The 
outer limits to the surface brightness plots is defined by the point where the intensity drops 
below 0.75 times the sky measurement error. For the ellipse parameter plots, the outer 
limit is the furthest point at which the surface photometry algorithm is able to fit elhpse 
parameters (from the original image) due to the falling S/N-vatio (beyond this limit, the 
ellipse parameters are fixed as a constant although the surface brightness continues to be 
measured). 



Appendix D 

Parameter Fi t t ing - Output 

This appendix contains plots of the deconvolved surface-brightness profiles for each of the 
Coma and Abell 1367 galaxies, overlaid with the best-fitting and r? -J-exp functions (and 
residuals). Also shown is a table giving details of the best-fitting parameters for the above 
functions (plus r s and r s law fits). See end of appendix for more detailed explanatory 
notes. 
Because of limited page space in this thesis, the pages of this appendix con
taining the plots have been stored as a postscript file (AppendixD.ps) on the 
C D - R O M attached to this thesis. 

D . l Early-Type Galaxies - Coma 

Contents.•-

Dressier 62-69 - pages 309-314 
Dressier 70-79 - pages 315-319 
Dressier 80-88 - pages 320-324 
Dressier 91-92 - pages 325-326 
Dressier 101-108 - pages 327-332 
Dressier 110-118 - pages 333-338 
Dressier 120-129 - pages 339-347 
Dressier 130-137 - pages 348-354 
Dressier 142-148 - pages 355-360 
Dressier 150-159 - pages 361-370 
Dressier 160-168 - pages 371-374 
Dressier 170-179 - pages 375-384 
Dressier 180-182 - pages 385-386 
Dressier 193-199 - pages 387-391 
Dressier 200-208 - pages 392-394 
Dressier 210-218 - pages 395-396 

G M P 2201-3554 - pages 397-400 
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D.2 Late-Type Galaxies - Coma 

Contents: -

Dressier 82 - page 402 
Dressier 89 - page 403 
Dressier 97 - page 404 
Dressier 98 - page 405 
Dressier 99 - page 406 
Dressier 100 - page 407 
Dressier 103 - page 408 
Dressier 147 - page 409 
Dressier 149 - page 410 
Dressier 181 - page 411 
Dressier 184 - page 412 
Dressier 191 - page 413 
Dressier 192 - page 414 
Dressier 197 - page 415 
Dressier 205 - page 416 
Dressier 211 - page 417 
Dressier 212 - page 418 

G M P 2914 - page 419 
G M P 3298 - page 420 
G M P 4281 - page 421 



APPENDIX D. PARAMETER FITTING - OUTPUT 422 

D.3 Irregular or Peculiar Galaxies - Coma 

Contents:-

Dressler 102 - page 423 
Dressier 123 - page 424 
Dressier 162 - page 425 
Dressier 169 - page 426 
Dressier 183 - page 427 
Dressier 195 - page 428 
Dressier 220 - page 429 
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D.4 Unclassified Galaxies - Coma 

Contents:-

Dressler 90 - page 431 
Dressier 109 - page 432 
Dressier 112 - page 433 
Dressier 119 - page 434 
Dressier 224 - page 435 
Dressier 225 - page 436 

G M P 3133 - page 437 
G M P 3640 - page 438 



APPENDIX D. PARAMETER FITTING - OUTPUT 439 

D.5 Early-Type Galaxies - Abell 1367 

Contents:-

Butcher-Oemler 1 - page 440 
Butcher-Oemler 2 - page 441 
Butcher-Oemler 10 - page 442 
Butcher-Oemler 17 - page 443 
Butcher-Oemler 22 - page 444 
Butcher-Oemler 23 - page 445 
Butcher-Oemler 27 - page 446 
Butcher-Oemler 28 - page 447 
Butcher-Oemler 33 - page 448 
Butcher-Oemler 38 - page 449 
Butcher-Oemler 41 - page 450 
Butcher-Oemler 45 - page 451 
Butcher-Oemler 46 - page 452 
Butcher-Oemler 52 - page 453 
Butcher-Oemler 64 - page 454 
Butcher-Oemler 69 - page 455 
Butcher-Oemler 76 - page 456 
Butcher-Oemler 81 - page 457 
Butcher-Oemler 90 - page 458 
Butclier-Oemler 107 - page 459 
Butcher-Oemler 117 - page 460 
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D.6 Late-Type Galaxies - Abell 1367 

Contents:-

Butcher-Oemler 3 - page 462 
Butcher-Oemler 25 - page 463 
Butcher-Oemler 58 - page 464 
Butcher-Oemler 61 - page 465 
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D.7 Irregular or Peculiar Galaxies - Abell 1367 

Contents:-

Butcher-Oemler 12 - page 467 
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NOTES on the figures:-

The figures in this appendix show the results of the profile-fitting algorithms for each 
individual galaxy. Each galaxy was fitting by six different profile models - a combined r? 
plus exponential law and a range of single power-law fits ( r^ , where n = 1,2,3,4,5). 

The results of the two-component fit are shown in the top two plots. The top-left 
plot shows the surface brightness profile with the best-fit model. The sohd line is the 
combined model surface profile, while the two dashed lines show the profiles of the individual 
components. Note that the abscissa is r^, so an law will appear as a straight fine, while 
an exponential law will appear as a convex curve. The ranges of the profile-fitting are also 
shown as dotted lines. The measurement error on each point is shown by the error bars 
(which include an estimated seeing-correction error at low radii equal to one-fifth of the 
seeing-correction). The crosses show the systematic error due to sky measurement error, 
which becomes significant at large radii. The top-right plot show the residual between 
the SB profile and the best-fit two-component model. The key is identical to the surface 
brightness profile plot, except that the individual component profiles (dashed lines) are not 
shown, as they would have little meaning on the residual plot. The scales are chosen such 
that if the galaxy is brighter than the model, the data will appear above the zero-residual 
line, and vice-versa. 

The bottom-left plot also shows the seeing-corrected SB profile, this time overlayed by 
three of the best-fit single power-law profiles. The best-fit law is the solid line (straight). 
The best-fit r s law is the dot-dashed line (convex curve). The best-fit r s law is the dotted 
line (concave curve). For clarity, the best-fit single-exponential and laws are not shown 
here, but their parameters can be found in Table A.2 in Appendix A. The measured SB 
profile and the best-fit r s & r s are also plotted in the bottom-right graph as a residual 
from the best-fit r4-law. It is clear from this plot that most early-type galaxies depart 
significantly from a perfect de Vaucouleurs law. 

Finally, a table of the best-fit parameters for the two-component model and the three 
single power-law models is shown at the bottom of each page. In addition to the effective 
radii, eff'ective surface brightnesses and total magnitudes for each model, two quality-of-fit 
parameters are shown - the RMS deviation from the fit and the reduced x^- Also shown 
for comparison purposes are the model-independent half-light parameters and asymptotic 
total magnitudes taken from the magnitude extrapolation (see Chapter 4). Erratum -
the cosmological (1 -\- surface brightness correction was wrongly included in all total 
magnitude values. Add 0.1 to each magnitude to remove this correction. 


