

Durham E-Theses

Probing the star formation history of early-type galaxies in clusters

Terlevich, Alejandro Ivan

How to cite:

Terlevich, Alejandro Ivan (1998) Probing the star formation history of early-type galaxies in clusters, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4864/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or charge, for personal research or study, educational, or not-for-profit purposes provided that:

- a full bibliographic reference is made to the original source
- a link is made to the metadata record in Durham E-Theses
- the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.
Please consult the full Durham E-Theses policy for further details.

Probing the star formation history of early-type galaxies in clusters

by Alejandro Ivan Terlevich

> A thesis submitted to the University of Durham
> in accordance with the regulations for admittance to the Degree of Doctor of Philosophy.

The copyright of this thesis rests with the author. No quotation from it
should be published without his prior written consent and
information derived from it should be acknowledged.

Department of Physics
University of Durham
October 7, 1998
The copyright of this thesis rests with the author. No quotation from it should be published without the written consent of the author an information derived from it should be acknowledged.

Preface

The work described in this thesis was undertaken between 1994 and 1998 whilst the author was a research student under the supervision of Dr Richard Bower in the Department of Physics at the University of Durham.

Some of the work was carried out in collaboration with the following staff: Dr. Richard Bower, Dr. N. Caldwell (Of the Steward Observatory, Tucson, Arizona) (Chapter 2); Dr T. Kodama (of the Institute of Astronomy, Cambridge), Dr R. G. Bower (Chapter 4); Dr Harald Kuntschner, Dr. R. G. Bower (Chapter 5); Dr R. G. Bower (Chapter 6). The major part of the work presented is, however, the author's own work. This work has not been submitted for any other degree at the University of Durham or at any other University.

Certain results have appeared in the following paper:
Bower, R. G., Kodama, T., Terlevich, A. I., 1998, MNRAS, 299, 1193

Abstract

Probing the Star Formation History of Early Type Galaxies in Clusters

by Alejandro Ivan Terlevich

In this thesis, we present a new photometric catalogue of the local Coma galaxy cluster in the Johnson U- and V-bands. We cover an area of $3360 \mathrm{arcmin}^{2}$ of sky, to a depth of $V=20 \mathrm{mag}$ in a $13 \operatorname{arcsec}$ diameter aperture, and produce magnitudes for ~ 1400 extended objects in metric apertures from 8.8 to 26 arcsec diameters. The mean internal RMS scatter in the photometry is 0.014 mag in V , and 0.026 mag in U , for $V_{13}<17 \mathrm{mag}$.

We use this photometric catalogue to place limits on the levels of scatter in the colourmagnitude relation (CMR) in the Coma cluster. We subdivide the galaxy population by morphology, luminosity and position on the sky, and analyse the CMR in each of them. The lowest levels of scatter are found in the elliptical galaxies, and the late type galaxies have the highest numbers of galaxies blue-wards of the CMR. We finds signs of decreased scatter and systematically bluer galaxy colours with increasing projected radius from the center of the cluster, and attribute it to a mean galactic age gradient.

We find that the typical mass of galaxies within clusters can increase by a factor of two through dissipationless merging without destroying the CMR.

We compare the spectral line indices of galaxies in the Coma cluster with their deviation from the mean colour-magnitude relation (CMR). We find that the CMR in Coma is driven primarily by a luminosity-metallicity correlation, however we cannot rule out a contribution from age effects. Colour deviations blue-ward of the mean relation are strongly correlated with the Hydrogen Balmer line series absorption, indicating the presence of a young stellar population in these blue galaxies.

We use a wavelet code to suggest an association between X-ray cluster substructure and 'E+A' galaxy activity in high redshift clusters.

Acknowledgements

I would like to express my sincere thanks to Richard Bower for being the best supervisor in the world ever. Without his incisive thoughts and guidance, this thesis could never have been. I am especially indebted to his superhuman powers of encouragement, even in the face of insurmountable pessimism. I would also like to thank Nelson Caldwell, for showing me what a telescope is, and my other collaborators, Jim Rose, Taddy Kodama and Harald Kuntschner for many invaluable conversations. Others whom I have had invaluable interactions with include Scott Croom, Carlton Baugh and John Lucey. I feel Ian Smail is owed a special vote of thanks. His knowledge of astronomy is surpassed only by his grasp of astronomical politics. I also owe him several pints for what I can only imagine must have been a superbly imaginative letter of recommendation.

All work for this thesis was produced on STARLINK computer equipment installed and maintained by Alan Lotts. Much use was made of the NASA/IPAC Extragalactic database (NED), the Babbage e-print server, and the NASA Astrophysics Data System Abstract Service.

The people who have made the last four years more fun than they had any right to be include Karen Haigh, Geraint Lewis, Steve Hatton, Simon Shaw Scott Kay and Andrew Benson (aka. Terrance and Phillip), Mike Beasley, Dodgy Doddson, Dug Burke, Mike McCartney, Bill Ballinger, Andy Taylor, Frossie Economou, Scary Rachel Johnson, Clanger Chang, Fiona Hoyle, Claire Halliday, Eric Bell, Russell Smith, James Turner, Ed Totten, Karen Brazier, Frazer Pierce, Ana Campos, Michelle Felton, Dave 'pastie' Lee, Roger 'organic' Haynes, Jane Chapman. An extra special thanks is due to Kaff and especially Hayley, for keeping me fed and sane.

My parents hold ultimate responsibility for my actions, and so I'd like to thank them for being brought up properly. I'd especially like to thank them for not sending me too many socks, jumpers or sausages despite the horrid cold weather in the North of Britain, and for not visiting as often as they threatened. I'd also like to congratulate my sister for becoming a doctor before I did. I know she seems to think it's funny.

Contents

Chapter 0 Abstract iii
Chapter 1 Introduction. 1
Chapter 2 Photometry of galaxies in the Coma cluster. 9
2.1 Introduction 9
2.2 Observations 10
2.2.1 Photometric Conditions 13
2.3 Data reduction 16
2.3.1 Galaxy identification, photometry and astrometry 18
2.3.2 Seeing corrections 19
2.3.3 Photometric Calibration 22
2.3.4 Summary of reduction procedure 28
2.4 Quantifying the photometric errors 29
2.5 Estimated total magnitudes 35
2.6 Summary 35
Chapter 3 Environmental dependence of the CMR. 38
3.1 Introduction 38
3.2 Analysis technique 41
3.3 Environmental and morphological variations 46
3.3.1 Morphological dependence of the CMR 49
3.3.2 Luminosity dependence of CMR 53
3.3.3 Environmental dependence of the CMR 54
3.3.4 Gradients 57
3.4 Discussion 61
3.5 Summary 68
Chapter 4 Evolution of the CMR through mergers. 71
4.1 Introduction 71
4.2 Models for the Merger Histories of Galaxies 74
4.2.1 Hierarchical clustering 75
4.2.2 Random mergers 77
4.3 Comparison with Observational Data 79
4.4 Discussion 84
4.5 Summary 85
Chapter 5 The Relation Between the CMR and Spectral Line Strengths. 88
5.1 Introduction 88
5.2 The Data 91
5.2.1 Spectroscopy 92
5.2.2 The photometry 95
5.3 The colour magnitude relation 97
5.3.1 The origin of the colour magnitude relation 98
5.3.2 Colour offsets and line strengths 101
5.4 Discussion 108
5.5 Summary 109
Chapter 6 BO Galaxies and Cluster X-ray Sub-structure. 112
6.1 Introduction 112
6.2 Data Analysis 114
6.2.1 Reconstruction of the source 116
6.3 Comparison with galaxy population 122
6.4 Discussion 124
6.5 Summary 124
Chapter 7 Conclusions and Further Work 126
7.1 Further work 128
Appendix A Tables of Photometry 132
A.1Tables of photometry 132
Appendix B The Biweight Estimators 225
B. 1 Resistance, robustness and efficiency 225
B. 2 The biweight estimator 226
B.2.1 The location indicator 226
B.2.2 The scale indicator 226
B.3Data fitting 226
Bibliography 228

Chapter 1

Introduction

Elliptical galaxies and the bulges of lenticular and spiral galaxies are the most fundamental objects in the universe (apart maybe from stars), yet there is no formation scenario which successfully accounts for their properties.

The 'classical' formation scenario put forward by, e.g., Eggen, Lynden-Bell, \& Sandage (1962), Searle, Sargent, \& Bagnuolo (1973) and Tinsley \& Gunn (1976) proposes that the stars were formed in a single high redshift burst, and have been evolving passively to the present day. This model reflects the 'classical' view of elliptical galaxies, as being made up entirely of old, metal-rich stars.

Much evidence has recently been amassed to support the case not just for the old ages of the stellar populations, but also for their having formed in situ within their present galaxy. The colour-magnitude relation (CMR) for early type galaxies (Faber 1973, Visvanathan \& Sandage 1977, Frogel et al. 1978, Persson, Frogel, \& Aaronson 1979, Bower, Lucey, \& Ellis 1992a, Bower, Lucey, \& Ellis 1992b) forms a scaling relation between a galaxy's colour and its luminosity, with the more luminous galaxies having redder colours than the less luminous ones. Using models for galaxy evolution which predicted empirically calibrated line strength indices and colours, Worthey (1994) formulated his ' $2 / 3$ ' law ($\Delta[\mathrm{Fe} / \mathrm{H}] \sim \frac{2}{3} \Delta \log (t)$), which shows how age and metallicity have a degenerate effect on integrated galaxy colours. This means that the CMR could equally well be driven by age or metallicity effects. Observations of the CMR in high redshift ($z \sim 0.5$) clusters, however, show the cluster CMR must be attributed to a mass metallicity relationship (Dressler 1984, Vader 1986, Kodama 1997, Ellis et al. 1997, Stanford, Eisenhardt, \& Dickinson 1998).

The origin of this mass metallicity sequence arises as a natural consequence of the single burst galaxy formation model, when coupled with galactic winds (Larson 1974, Arimoto \& Yoshii 1987, Franx \& Illingworth 1990). In brief, the amount of metals in a galaxy depends solely on the amount of gas it has processed. If elliptical galaxies formed all of their gas into stars, they should all contain equal amounts of metals (Tinsley 1980, Pei \& Fall 1995). What the galactic (or supernova driven) wind models achieve, is to remove the remaining gas in a galaxy using the energy injected into the inter stellar medium (ISM) mainly by the supernovae. Once the energy injected into the ISM is sufficient to overcome the gravitational potential of the galaxy, the gas is blown away and star formation ceases. This point is reached faster for less massive galaxies, than for more massive galaxies. The supernovae do not just inject energy into the ISM, they also enrich it with metals, thus the more massive galaxies which can hold on to their gas reservoirs for longer during their star formation burst, end up having higher metallicities than the less massive galaxies, and therefore redder colours.

About one third of local cluster elliptical galaxies exhibit peculiarities (for an early type galaxy) such as dust lanes, shells, kinematically decoupled cores or tidal tails (Kormendy \& Djorgovski 1989). Additionally, the colours of early type galaxies become bluer, and the equivalent width of $H \beta$ absorption increases with these signs of disturbance (Schweizer et al. 1990, Schweizer \& Seitzer 1992). These signs of morphological disturbances in local early type galaxies justify a second class of formation scenario, where early type galaxies form out of the dissipative merger of late type galaxies (Toomre \& Toomre 1972, White 1979, Barnes 1988). These scenarios are supported by the hierarchical galaxy formation models (e.g. White \& Frenk 1991, Kauffmann, White, \& Guiderdoni 1993, Cole et al. 1994 and subsequent papers). These semi-analytic models use extended Press-Schecter theory (Press \& Schecter 1974, Bower 1991, Bond et al. 1991) to calculate the evolution of dark matter haloes within a CDM cosmology. They then use simple prescriptions for gas hydrodynamics, stellar evolution, and gas feedback from the stellar component, to model the evolution of a dense gas component (galaxies) within the dark matter haloes. In these models, the morphology of a galaxy is not predefined from the formation of the galaxy (as in the 'classical' model), but depends on the evolutionary history of the galaxy. Such models predict that large
galaxies formed relatively recently ($z \leq 2$) from the gradual merger of smaller galaxies, but their constituent stars form before the final galaxy is assembled, so can be old. The constraints from the slope and scatter in the CM relation (see below) are somewhat loosened by the fact that these models tend to form large galaxies from mergers of large fragments, rather than from a random selection of the fragments available at the earlier epoch (Kauffmann 1996).

In addition to the dynamical evidence for galaxy interactions presented above, there is strong evidence for the evolution of galaxy stellar populations over and above what is allowed by the passively evolving ‘classical' elliptical galaxies. High redshift clusters are known to have a higher proportion of blue galaxies than do local clusters (Butcher \& Oemler 1978, Butcher \& Oemler 1984, Couch \& Newell 1984). Subsequent spectroscopic studies of these 'Butcher-Oemler’ galaxies (e.g., Dressler \& Gunn 1983, Couch \& Sharples 1987, Barger et al. 1996) showed that many of them appeared to have spectra characteristic of the old stellar populations found in ellipticals, with the addition of strong Balmer absorption lines, characteristic of hot, young A stars. These spectra could be modeled by superposing an old stellar population, with a young burst population consisting of no more than 15% of the host galaxy mass, and having an age of not more than 2Gyr. Additionally, Barger et al. (1996) calculated that as many as 30% of the galaxies in their clusters would have undergone one of these bursts in their lifetime. High resolution HST imaging of Butcher-Oemler clusters, has revealed that the blue population is in fact dominated by spheroidal systems, about half of which show signs of recent or ongoing interactions with other galaxies (Couch et al. 1994, Smail et al. 1997, Couch et al. 1998).

A population of these ' $\mathrm{E}+\mathrm{A}$ ' galaxies has been identified in the local Coma and ACO $3125 / 3128$ clusters (Caldwell et al. 1993, Caldwell et al. 1996), although the burst size is much smaller than that in the higher redshift Butcher-Oemler clusters. In Coma, Caldwell et al. associate the 'E+A' galaxies with a group of galaxies around NGC4839 and suggest that their starburst activity was triggered by the passage of the group through the main cluster. Others suggest however that this group has not yet fallen through the Coma cluster (Colless \& Dunn 1996), and that its fraction of ' $\mathrm{E}+\mathrm{A}$ ' galaxies is similar to that seen in local galaxy groups (Zabludoff et al. 1996).

Like the other scaling relations of early type galaxies, i.e. the 'fundamental plane' (Dressler et al. 1987, Djorgovski \& Davis 1987, Bender, Burstein, \& Faber 1992, Saglia, Bender, \& Dressler 1993, Jorgensen, Franx, \& Kjaergaard 1993, Pahre, Djorgovski, \& De Carvalho 1995), the CMR has very low levels of scatter. These low levels of scatter have been used to place constraints on the ages of the stellar populations in the galaxies (Bower, Lucey, \& Ellis 1992b, Bender, Burstein, \& Faber 1993, Renzini \& Ciotti 1993, Bower, Kodama, \& Terlevich 1998). In the case of the CMR, it is assumed that the relation primarily reflects variations in mean galactic metallicity with luminosity, and that the scatter about the relation is caused primarily by age effects. Bower, Lucey, \& Ellis (1992b) considered the constraints imposed upon the single burst galaxy formation model by the observed levels of scatter in local cluster cores (RMS scatter for $(V, U-V) \mathrm{CMR} \sim 0.035 \mathrm{mag}$ in the Coma cluster (Bower, Lucey, \& Ellis 1992a)). Immediately after its creation, a stellar population is extremely blue, but it quickly reddens asymptotically to the colours of its reddest stars. The rate of change of the colour monotonically decreases, but never reaches zero, such that the colour of a stellar population always depends on its age, but its sensitivity declines with time. It therefore follows that there are two ways of creating a population of (single burst) galaxies with low colour scatter. Either they all formed at the same time, or they are very old. Bower, Lucey, \& Ellis considered the first possibility highly unlikely, and so characterised the spread of age in the galaxies by their characteristic collapse times. They concluded that the bulk of stars in these galaxies must have formed by a lookback time of 10 Gyr , corresponding to a median redshift of $z \sim 2$. Interestingly, in a subsequent paper, Bower, Kodama, \& Terlevich (1998) used more realistic models for the star formation histories of cluster galaxies, using exponentially decreasing star formation rates, and realistic timescales for the truncation of that star formation as the galaxies fell into 'clusters'. They found that star formation was permitted at look back times as late as 3 Gyr ago, but that the models were still constrained to have formed the bulk of their stars at large look back times, i.e. the bulk of stars in most of the galaxies are still old, but some of the galaxies can contain stellar populations as young as 3Gyrs.

In addition to constraining the star formation history, the CMR also constrains the merging history of elliptical galaxies. As noted by Ostriker (1980), dissipationless merg-
ing of galaxies tends to average out the colours, thus destroying the slope of the CMR. Dissipative mergers however, could well violate the constraints set up by the CMR scatter, by forming enough new stars in the new potential well formed by the merger, these new stars will have higher metallicities, and hence redder colours than the stars in the merged fragments. Hierarchical models circumvent this problem by forming a correlation between the mass of a galaxy, and the mass of its progenitors (Kauffmann \& Charlot 1998), thus preserving the CMR slope even through dissipationless mergers.

Most of these studies have concentrated on early type galaxies in the cores of rich clusters. Bower, Lucey, \& Ellis (1992b) have shown that the colour magnitude relation on the cores of the Coma and Virgo clusters are identical to within observational uncertainties, however studies of the CMR in Hickson compact groups (Zepf, Whitmore, \& Levison 1991) show increased scatter, as do studies of field ellipticals (Larson, Tinsley, \& Caldwell 1980). Guzman et al. (1992) claim to find a difference in the zero-point of the $\mathrm{Mg}_{2}-\sigma$ relation between the core of the Coma cluster, and a 'halo' population ($>1^{\circ}$ from the core). Abraham et al. (1996) find a $b-r$ colour gradient (using CMR corrected colours) with projected cluster radius in the $z=0.23$ cluster Abell 2390, in the sense that the outer galaxies have bluer colours than the inner galaxies. González used the Worthey (1994) models, to investigate a population of local field ellipticals, and found a striking result: His galaxies have a small range in metallicity, but a large spread in luminosity weighted mean age. This is just the opposite of what is found in similar spectroscopic studies of local rich clusters such as Virgo and Coma (Kuntschner 1998, Kuntschner \& Davies 1998, Mehlert et al. 1998), where the cluster ellipticals seem to be uniformly old and span a range in metallicities. Clearly there is evidence for environmental influence upon the star formation histories of early type galaxies.

In this thesis, we will address the question of environmental effects on the CMR, and on early type galaxy evolution in general. The questions which we wish to address are

1. Can we find any environmental dependence of the CMR within the Coma cluster?
2. How accurate is the suggestion that dissipationless mergers would violate the CMR (Ostriker 1980) in the light of modern 'hierarchical' models for the evolution of structure, which predict much merging of galaxies?
3. If both $(U-V)$ colour and Hydrogen Balmer line strength are sensitive to the age of the stellar populations, can we see this correlation in a sample of galaxies?
4. Is there any correlation between the cluster environment as shown by X-ray images, and the Butcher-Oemler effect?

In chapter 2, we present a new photometric catalogue of the Coma cluster, in the U - and V - bands. The $(U-V)$ colour is sensitive to the presence of young stellar populations. We have a fainter luminosity limit than Bower, Lucey, \& Ellis (1992a), and extend out to over half a degree from the center of the cluster.

We address question 2 in chapter 3 by subdividing the photometry of chapter 2 by morphology, luminosity and position on the sky, and analysing the properties of the CMR in each of them.

In chapter 4 we use the hierarchical merging history from Baugh et al. (1998) and a random merging history model of our own, to attempt to answer question 2 .

In chapter 5, we use the spectra of Caldwell et al. (1993) in conjunction with the model grids of Worthey (1994) and Worthey \& Ottaviani and our photometry from chapter 2 to investigate question 3 . We also look at the feasibility of quick and dirty searches for $\mathrm{E}+\mathrm{A}$ galaxies using U-V colours.

In chapter 6 we use the galaxy classifications of Couch \& Sharples (1987), with our own ROSAT HRI X-ray images, to investigate correlations between cluster X-ray structure and Butcher-Oemler activity in the $z \sim 0.3$ clusters AC1 14 and ACl18.

Conclusions are summarised in chapter 7, where we also discuss possible future work.
Throughout this work, we will assume a value of the Hubble Constant of $H_{0}=$ $100 \mathrm{kms}^{-1} \mathrm{Mpc}^{-1}$.

References

Barger A. J., Aragon-Salamanca A., Ellis R. S., Couch W. J., Smail I., Sharples R. M., 1996, MNRAS, 279, 1
Barnes J. E., 1988, ApJ, 331, 699
Baugh C. M., Cole S., Frenk C. S., Lacey C. G., 1998, ApJ, 498, 504
Bender R., Burstein D., Faber S. M., 1992, ApJ, 399, 462
Bender R., Burstein D., Faber S. M., 1993, ApJ, 411, 153
Bond J. R., Kaiser N., Cole S., Efstathiou G., 1991, ApJ, 379, 440
Bower R. G., 1991, MNRAS, 248, 332
Bower R. G., Kodama T., Terlevich A. I., 1998, MNRAS, 299, 1193, astro-ph/9805290
Bower R. G., Lucey J. R., Ellis R. S., 1992a, MNRAS, 254, 589
Bower R. G., Lucey J. R., Ellis R. S., 1992b, MNRAS, 254, 601
Butcher H., Oemler J., A., 1978, ApJ, 226, 559
Butcher H., Oemler J., A., 1984, ApJ, 285, 426
Caldwell N., Rose J. A., Franx M., Leonardi A. J., 1996, AJ, 111, 78
Caldwell N., Rose J. A., Sharples R. M., Ellis R. S., Bower R. G., 1993, AJ, 106, 473
Cole S., Aragon-Salamanca A., Frenk C. S., Navarro J. F., Zepf S. E., 1994, MNRAS, 271, 781
Colless M., Dunn A. M., 1996, ApJ, 458, 435
Couch W. J., Barger A. J., Smail I., Ellis R. S., Sharples R. M., 1998, ApJ, 497, 188
Couch W. J., Ellis R. S., Sharples R. M., Smail I., 1994, ApJ, 430, 121
Couch W. J., Newell E. B., 1984, ApJS, 56, 143
Couch W. J., Sharples R. M., 1987, MNRAS, 229, 423
Djorgovski S., Davis M., 1987, ApJ, 313, 59
Dressler A., 1984, ApJ, 281, 512
Dressler A., Gunn J. E., 1983, ApJ, 270, 7
Dressler A., Lynden-Bell D., Burstein D., Davies R. L., Faber S. M., Terlevich R., Wegner G., 1987, ApJ, 313, 42
Eggen O. J., Lynden-Bell D., Sandage A. R., 1962, ApJ, 136, 748
Ellis R. S., Smail I., Dressler A., Couch W. J., Oemler J., Augustus, Butcher H., Sharples R. M., 1997, ApJ, 483, 582
Faber S. M., 1973, ApJ, 179, 731
Franx M., Illingworth G., 1990, ApJ, 359, L41
Frogel J. A., Persson S. E., Mathews K., Aaronson M., 1978, ApJ, 220, 75
González J. J., 1993, Ph.D. thesis, Univ. California, Santa Cruz
Guzman R., Lucey J. R., Carter D., Terlevich R. J., 1992, MNRAS, 257, 187
Jorgensen I., Franx M., Kjaergaard P., 1993, ApJ, 411, 34
Kauffmann G., 1996, MNRAS, 281, 487
Kauffmann G., Charlot S., 1998, MNRAS, 294, 705
Kauffmann G., White S. D. M., Guiderdoni B., 1993, MNRAS, 264, 201
Kodama T., 1997, Ph.D. thesis, Institute of Astronomy, University of Tokyo
Kormendy J., Djorgovski S., 1989, ARA\&A, 27, 235
Kuntschner H., 1998, Ph.D. thesis, Department of Physics, University of Durham
Kuntschner H., Davies R. L., 1998, MNRAS, 295, L29
Larson R. B., 1974, MNRAS, 169, 229
Larson R. B., Tinsley B. M., Caldwell C. N., 1980, ApJ, 237, 692

Mehlert D., Bender R., Saglia R. P., Wegner G., 1998, in Untangling Coma Berenices: A New Vision of an Old Cluster, p. 107

Ostriker J., 1980, Comments on Astrophysics, 8, 177
Pahre M. A., Djorgovski S. G., De Carvalho R. R., 1995, ApJ, 453, L17
Pei Y. C., Fall S. M., 1995, ApJ, 454, 69
Persson S. E., Frogel J. A., Aaronson M., 1979, ApJS, 39, 61
Press W. H., Schecter P., 1974, ApJ, 187, 425
Renzini A., Ciotti L., 1993, ApJ, 416, L49
Saglia R. P., Bender R., Dressler A., 1993, A\&A, 279, 75
Schweizer F., Seitzer P., 1992, AJ, 104, 1039
Schweizer F., Seitzer P., Faber S. M., Burstein D., Dalle Ore C. M., Gonzalez J. J., 1990, ApJ, 364, L33
Searle L., Sargent W. L. W., Bagnuolo W. G., 1973, ApJ, 179, 427
Smail I., Dressler A., Couch W. J., Ellis R. S., Oemler J., Augustus, Butcher H., Sharples R. M., 1997, ApJS, 110, 213
Stanford S. A., Eisenhardt P. R., Dickinson M., 1998, ApJ, 492, 461
Tinsley B. M., 1980, ApJ, 241, 41
Tinsley B. M., Gunn J. E., 1976, ApJ, 203, 52
Toomre A., Toomre J., 1972, ApJ, 178, 623
Vader J. P., 1986, ApJ, 306, 390
Visvanathan N., Sandage A., 1977, ApJ, 216, 214
White S. D. M., 1979, MNRAS, 189, 831
White S. D. M., Frenk C. S., 1991, ApJ, 379, 52
Worthey G., 1994, ApJS, 95, 107
Worthey G., Ottaviani D. L.; 1997, ApJS, 111, 377
Zabludoff A. I., Zaritsky D., Lin H., Tucker D., Hashimoto Y., Shectman S. A., Oemler A., Kirshner R. P., 1996, ApJ, 466, 104

Zepf S. E., Whitmore B. C., Levison H. F., 1991, ApJ, 383, 524

Chapter 2

Photometry of Galaxies

in the Coma Cluster.

Abstract

In this chapter, we present a new photometric catalogue of the local Coma galaxy cluster in the Johnson U- and V-bands. We cover an area of 3360arcmin ${ }^{2}$ of sky, to a depth of $V=20 \mathrm{mag}$ in a 13 arcsec diameter aperture, and produce magnitudes for ~ 1400 extended objects in metric apertures from 8.8 to 26 arcsec diameters. The mean internal RMS scatter in the photometry is 0.014 mag in V , and 0.026 mag in U , for $V_{13}<17 \mathrm{mag}$.

2.1 Introduction

For this project we have chosen to study the $(U-V)$ colours of early type galaxies both in the core and in the outskirts of the Coma cluster. Although the colours of the galaxies in Coma have been studied before, both in a wide area (e.g. Dressler (1980); Godwin, Metcalfe, \& Peach (1983)) and with high precision U and V band CCD data (Bower, Lucey, \& Ellis [BLE]), there have been no wide area high precision U and V band studies of the galaxies in Coma. We therefore plan to extend the photometry of BLE to approximately double the distance from the cluster core (taken as being NGC4874), and to fainter limiting magnitudes. The extra coverage and depth will enable us to obtain colours for the abnormal spectrum ' $\mathrm{E}+\mathrm{A}$ ' galaxies of Caldwell et al. (1993) and Caldwell et al. (1996), many of which are to be found in the South West
corner of the cluster around a group of galaxies dynamically associated with NGC4839 (Baier 1984, Escalera, Slezak, \& Mazure 1992, Colless \& Dunn 1996).

Significant advances in detector technology since the work of BLE, allows us to use much larger CCD chips. We have therefore taken tiled images across the coma cluster, giving us almost continuous coverage of the area of the cluster we are interested in. In contrast, BLE targeted individual galaxies. Because of the continuous coverage, our sample of galaxies is more complete than that of BLE, including all of the Godwin, Metcalfe, \& Peach galaxies within our area of sky, but with significantly higher accuracy than the Godwin, Metcalfe, \& Peach data.

We chose to use the Johnson (Johnson \& Morgan 1953) U and V filters because they straddle the $4000 \AA$ break in the spectra of galaxies at low redshift, and are thus very sensitive to the ages of the stellar populations. They are especially sensitive to recent bursts of star formation (e.g. Worthey 1994, Charlot \& Silk 1994)

The photometric data described in this chapter will be used to produce checks on the universality of the colour-magnitude relation (CMR) across the cluster, not just in the core (chapter 3). Its slope and scatter for all morphological types will be used in chapter 4 to place constraints on the merging history of local rich cluster galaxies, and the deviations from the CMR of individual galaxies will be compared to spectral features in chapter 5.

2.2 Observations

The observing runs which provided data for use in this project are summarised in table 2.1. U and V-band observations were obtained in two successive years at the SAO 1.2 m on Mt Hopkins, Arizona. The detector used was a thinned, back-side illuminated, AR coated 2048×2048 Loral CCD, giving us a $10 \operatorname{arcmin}\left(192 h^{-1} \mathrm{kpc}\right)$ field of view. The chip had a read noise of 7 electrons, and a gain of 2.3 electrons per ADU. Because the chip was thinned, it had a very high quantum efficiency in the U band (see figure 2.1). We ran the chip in 2×2 binning mode, effectively re binning four pixels into one on reading out the chip. This introduces no extra noise, nor cuts down on the area of sky covered by the chip, which just behaves as a 1024×1024 device. Although the pixel scale doubles to $0.63 \mathrm{arcsec}_{\mathrm{pixel}}{ }^{-1}$, the chip can be read out four times faster, and the larger pixel size is still small enough to oversample our stellar point spread function, whose FWHM never
fell below $1.7^{\prime \prime}$ for any of our images (figure 2.7). Figure 2.1 shows the response of the camera (filter + CCD) for our wavelength range. The quantum efficiency of the CCD stays high and almost constant right across the U band, giving effective filter responses which approximate the standard shape. The same setup was used for all observations to maintain a common photometric system for the whole dataset.

The observations cover a continuous region covering the South West group around NGC4839, the central parts around NGC4874 and NGC4889 and also a large amount of the North East of the cluster (see figure 2.2). The observations were also designed to cover all of the (Caldwell et al. 1993) and (Caldwell et al. 1996) abnormal spectra galaxies, however inclement weather meant that some were missed towards the extreme SW and NE. The presence of a seventh magnitude star just north of the center of the cluster means that there is a hole in our data there too.

The aims of this project require that we are able to photometer galaxies as faint as 17.5 mag to better than 0.02 mag in both the U and V bands within a 13 arcsec diameter metric aperture. We set this limit to obtain data of comparable quality to that of BLE. These requirements translate to a signal to noise ratio for a 17.5 mag galaxy in a 13 arcsec aperture of 50 . To add a safety margin, we aimed to achieve a signal to noise of 100 for a $V=17.5$ galaxy in a 5 " diameter aperture. We used a modified version of the signal95 program to calculate exposure times of 400 s and 2700 s minutes for V and U band exposures respectively. The signal95 program was modified to take into account the detector characteristics of the Loral CCD camera on the SAO 1.2 m . The 400s V band exposures are short enough that cosmic ray hits on the detector are not a severe problem, but for the 2700s U band exposure, the cosmic ray flux would make taking a single exposure unacceptable. Instead we took three 900 second exposures which were co-added later. Even in these shorter 900s exposures, the sky level was much higher than the read noise, so we suffered no increase in the noise levels by taking multiple images. To reduce any systematic differences in the photometry between parts of the cluster, observations of the central and SW regions were interleaved during the observing runs.

Before sunset on each night, we took a series of 20 to 30 bias frames. These are zero length exposures used to subtract the bias current produced by the CCD pre-amplifier. Each bias image is noisy due to the readout noise of the CCD, so we create a master bias
image by averaging together all of the individual bias frames. Because the CCD is read out one row at a time, the bias current tends to change slightly along rows, but not down columns, so we reduced the noise in the bias image even further by averaging together all of the rows. This produces an map of how the bias current changes across the CCD. In addition to the bias current, a CCD can also have 'dark current', where charge builds up in the pixels over time, even without being exposed to light. The CCD we used has an overscan strip of two columns of pixels at the edge of the detector which are never exposed to light, even with the shutter open. This strip can be used to measure the dark current during each exposure.

The QE of the detector is not constant across its surface. A map of its variation (known as flatfield images) can easily be measured by taking an exposure of a spatially uniform source of light, usually a de-focussed image of the inside of the dome, or the twilight sky. Before sunset on each night, we took dome flats using a tungsten lamp which illuminated a white cloth screen attached to the inside of the dome. During twilight each night, we took sky flats by taking about 15 snapshots of different parts of the sky, and calculating their median to remove any stars from the images. Flats were taken for both the U and V filters. The sky flats were found to be a better match to the variations seen in the actual night sky exposures, so these were used.

During the night, immediately after dusk and before twilight, standard stars from Landolt (1992) were observed over a wide range in airmass. Care was taken to ensure the colours of the stars matched those of our galaxies, typically $0 \leq(U-V) \leq 2$. With our large field of view it was possible to observe many standards simultaneously. To have additional checks on the overall homogeneity of the final photometry, we used large overlaps of ~ 1 arcmin between the actual Coma cluster images, ensuring that the objects in this overlap region were observed in both images. We also took shorter (300s and 100s for U and V respectively) repeated observations of the central parts of the cluster, thus using the galaxies there as 'standard' galaxies. This is particularly important for the U band, as the spectral energy distribution of the standard stars is different from that of the early type galaxies.

Dates	Observer(s)	Usable Nights
20-21 March, 1996	Caldwell	1.5
11-14 April, 1996	Caldwell \& Terlevich	4
9-11 May, 1996	Caldwell	4
1-5 April, 1997	Caldwell \& Terlevich	1.5

Table 2.1. Summary of observing time.

Figure 2.1: Camera spectral response. The dotted line shows the Loral CCD quantum efficiency, the dashed line shows the transmission of the U and V filters. The solid line is the combination of both, showing the effective spectral response of the Loral CCD plus the filters. Because of the relatively flat QE of the CCD, unlike the RCA CCD used by Bower, Lucey, \& Ellis (1992a) which drops off rapidly blue-wards of $\sim 3800 \AA$, the overall response in the U of the system is very close to the ideal shape of the filter.

2.2.1 Photometric Conditions

To calculate the photometric system we used a 4 term transformation equation:-
$m U=U+u 1+u 2 \times X U+u 3 \times(U-V)+u 4 \times T U$
$m V=V+v 1+v 2 \times X V+v 3 \times(U-V)+v 4 \times T V$

Figure 2.2: The distribution of observed images across Coma. All observed galaxies with $V_{16}>18$ are shown as a dot. The large dots show, from left to tight, the positions of NGC4889, NGC4874 and NGC4839 respectively. The dynamical center of the Coma cluster is somewhere between NGC4889 and NGC4874, while the dynamical center of the substructure in the SW comer is NGC4839.
where $m U$ and $m V$ are the measured V and U magnitudes respectively, U and V are the Landolt U and V magnitudes respectively, $u 1, u 2, u 3, u 4, v 1, v 2, v 3, v 4$ are the fit parameters, and $T U, T V, X U$ and $X V$ are the observation time and airmass for the U and V images respectively. We found that by taking out a systematic drift in the photometric zero point with time (the $u 4$ and v 4 terms in the transform equations), we could reduce the residuals of the V fit to below 0.007 mag , however the U band residuals were as high as 0.03 mag . This indicated that none of the data was sufficiently photometric for this project, an indication which was confirmed through the examination of the standard

Figure 2.3: ROSAT PSPC X-ray image of the Coma cluster from White, Briel, \& Henry (1993) on the same axes as figure 2.2.
galaxy observations. We found that after the photometric transformation defined by the standard stars had been applied, there was still a systematic offset in the standard galaxy photometry observed on different nights, and sometimes even on the same nights of up to $0 .^{m} 02$. The method we used to remove these offsets is described in section 2.3.3

Figure 2.4: A mosaic of most of our images of the Coma cluster. We have used the U images as the blue component of the image, the V images as the red component, and the mean of the two as the green component.

2.3 Data reduction

The reduction of the CCD images was carried out using the IRAF codproc program. This program automatically subtracts the readout bias, which it calculates from the bias strip in the image, from the science exposures, the flat field images and the bias images. It then subtracts the bias image from the science image to remove any remaining zero level bias and divides by the normalised flat field image for each filter to calibrate for the relative detector pixel response.

Cosmic ray hits on the CCD detector leave blemishes on the image. Depending on the angle of incidence of the cosmic ray, they either leave a spot or streak of a few or even just one pixel. Because they are formed by a single particle, the pattern of charge they leave on the CCD is very sharp, and easily distinguished from the images of astronomical objects (assuming the pixel scale is properly oversampling the point spread function). We use this sharpness property of the cosmic ray hit to automatically remove them from the images, using the 'qzap' IRAF procedure, written by Mark Dickinson. Firstly the program finds all pixels in an image which are more than five standard deviations deviant from the background level of the image. Cosmic ray hits are then separated from astronomical objects by performing a 'flux ratio' test; If the flux in a pixel is higher than that in its neighbours by more than a given ratio (the flux ratio, ~ 10), it is marked as a cosmic ray, and removed by interpolation. Routines such as this should always be used with extreme caution, if the parameters used by the program (specifically the flux ratio) are chosen without due care, the routine will quietly either remove from the image any sharp object such as the cores of stars, or alternatively, will not remove the fainter cosmic rays. To guard against these possibilities, we checked each image after removing the cosmic rays. We subtracted the cleaned image from the original image to leave a map of what was removed. By comparing this map with the original image, we could tune the flux ratio such that as many of the cosmic ray hits were removed as possible without touching the stars.

The three 900 sec U band exposures were combined into a single image by simply taking the average of the three. The IRAF imcombine task has many features for rejecting parts of an image which do not appear in all of the exposures, presumably a cosmic ray hit. However, if as is the case with our data, the seeing conditions vary even slightly during the exposures, then the flux in the cores of stellar images can vary greatly between exposures, so much so that the flux in the core of the star with the best seeing will get rejected. We found that in every case, the approach outlined above using the qzap routine was more efficient at removing cosmic rays than the imcombine task.

Where the qzap routine finds a cosmic ray. it interpolates the surrounding pixels across it. This works well when the cosmic ray is either in an area of background, or in a smooth gradient, however if the cosmic ray happens to hit too near the center of a star or galaxy,
the interpolation will not work properly, and we mark the object as being suspect during subsequent reduction.

The chip used had a number of cosmetic defects, such as bad columns. A list of the known defects is kept at the observatory and we added some minor ones to it. We removed the defects by interpolating across their smallest dimension. This has the same drawbacks as the removal of cosmic rays, in that it works well in an area of background, or in a smooth gradient, but not otherwise. We therefore also mark objects within 5 pixels of a defect as suspect in the subsequent reduction procedures.

2.3.1 Galaxy identification, photometry and astrometry

Lists of candidate objects were produced using the Sextractorl.2b10 program (Bertin \& Arnouts 1996). It was run on each V image to produce a list of positions, a CLASS_STAR index, describing whether the object is a point source or extended, and a rough (uncalibrated) magnitude. To produce the CLASS_STAR index, Sextractor needs to know the rough seeing FWHM for the image, so this was measured for about 5 stars on each image using the IRAF imexam program prior to running Sextractor. The rough magnitude produced by Sextractor was then used to reject the faintest objects, to avoid confusion and crowding problems later on in the reduction procedure. All objects within 15 pixels (9.45 arcsec) of an edge of the CCD were also rejected. In order to avoid confusion and crowding problems later, the rough magnitude produced by Sextractor was used to reject the faintest objects, along with all the objects within 15 pixels of the edge of the CCD . This gives rise to the sharp cutoff in the V magnitude distribution seen in figure 2.5 .

The list of positions for the galaxies in each image was used by the IRAF phot package to generate fixed aperture magnitudes in a range from $7-24$ pixel radii, corresponding to $8.8^{\prime \prime}-30^{\prime \prime}$ diameter apertures. Phot takes the position of the object given to it, and recalculates the centroid of the object before positioning an aperture around it, thus we were able to use the same positions for both the V and U images in most cases, and if the position was slightly out, phot would automatically correct it. This approach worked well in most cases, but for some pairs of U and V images where the centroids of the objects in the images differed by more than three pixels, an $x-y$ offset between the images was

Figure 2.5: The $13^{\prime \prime}$ diameter aperture magnitude distribution for all the galaxies in our sample for both the U and V bands. When making the list of targets using Sextractor (see section 2.3.1 in main text) we applied a magnitude limit. Although the magnitudes had not been calibrated using the standard stars, and the same magnitude offset was used for each V band image, we still get a sharp cutoff in the V band magnitude distribution of the final calibrated V -band magnitudes.
calculated and applied prior to the U band photometry. The background was measured individually for each object. We used annuli with both 40 and 120 pixel inner radii, and a width of 10 pixels. The background for a galaxy was taken as the median of the pixels within its annulus.

Astrometry for the frames was calculated using the HST guide star catalogue as a source of reference stars. These were identified on our U and V band images, and a plate solution was calculated using the IRAF immatch package. The Guide star catalogue only contains on average about five objects in each of our images, so the RMS scatter in our astrometry was approximately 1 arcsec in each image. This was considered good enough for our purposes.

2.3.2 Seeing corrections

In this discussion, we restrict ourselves to a circularly symmetric PSF. All our measured properties are circularly averaged, so any non spherical symmetry in the PSF, due maybe to poor tracking or focus, would cause only second order effects (Saglia et al. 1993).

The Fourier transform of the PSF can be predicted using atmospheric turbulence theory to be $\exp \left[-(k b)^{5 / 3}\right]$ (Fried 1966, Woolf 1982), where the scaling parameter $b=$ $F W H M / 2.9207006$. As done by Saglia et al. (1993), we generalise this to
$\hat{p}_{\gamma}(k)=\exp \left[-(k b)^{\gamma}\right]$
where γ controls the amount of light in the wings of the PSF. $\gamma=2$ corresponds to a Gaussian profile, while the theoretically predicted value of $\gamma=5 / 3$ gives a more wingy PSF. Lower values of γ produce even larger wings.

Figure 2.6: The distributions of γ parameters obtained by least squares fitting of the profile of the brightest stars in each image to the theoretical seeing PSF described in equation 2.1. γ controls the amount of light in the wings of the PSF. $\gamma=2$ corresponds to a Gaussian profile, while the theoretically predicted value of $\gamma=5 / 3$ gives a more wingy PSF. Lower values of γ produce even larger wings.

We used least square fits of the brightest stellar objects in each image to obtain both γ and b (or the FWHM) for each exposure. Figures 2.6 and 2.7 show a histograms of the distributions of γ and the FWHM respectively for all of the images. Although the values of γ vary from 1.2 to 1.8 , there is very little variation between stars in the same exposure, so we adopt a different γ for each image.

Figure 2.7: The distributions of the seeing FWHM obtained by least squares fitting of the profile of the brightest stars in each image to the theoretical seeing PSF described in equation 2.1.

The Intensity at a radius R from a source $(I(R)$), is then given by the convolution of the surface brightness distribution of the object in the sky $\left(I^{s}(R)\right)$ with the $\operatorname{PSF}\left(p_{\gamma}(R)\right)$.

$$
\begin{equation*}
I(R)=I^{s}(R) \otimes p_{\gamma}(R) \tag{2.2}
\end{equation*}
$$

For stellar objects, we simply take the intensity distribution on the sky to be a delta function, and for galaxies, we use the canonical deVaucoleurs $R^{1 / 4}$ law.
$I^{s}(R)=\left\{\begin{array}{cl}I_{e} \exp \left\{-7.669\left[\left(\frac{R}{R_{e}}\right)^{1 / 4}-1\right]\right\}, & \text { galaxy } \\ L \delta_{D}(R), & \text { star }\end{array}\right.$
where R_{e} is the half light radius, at which $F\left(R_{e}\right)=F(\infty) / 2, I_{e}=I\left(R_{e}\right), \delta_{D}(R)$ is the Dirac delta and L is the luminosity of the star.

To convert the luminosity distributions of an object in the sky into the luminosity distribution of the object on the detector we must convolve with the PSF (equation 2.2).

To seeing correct our objects we require the difference, in magnitudes, of the flux of an object as measured within an aperture of radius R on our detector $(F(R)$), and its flux as
measured within the same aperture on the sky $\left(F^{s}(R)\right)$. To find the flux inside an aperture of radius R , we simply integrate the required luminosity distribution,

$$
\begin{aligned}
F(R) & =\int_{0}^{R} 2 \pi R^{\prime} I\left(R^{\prime}\right) d R^{\prime} \\
F^{s}(R) & =\int_{0}^{R} 2 \pi R^{\prime} I^{s}\left(R^{\prime}\right) d R^{\prime}
\end{aligned}
$$

The seeing correction is then simply $-2.5 \times \log \left[F^{s}(R) / F(R)\right]$ (for stars $F^{s}(R) \equiv L$). As can be seen from figure 2.8 , the value of R_{e} has little effect on the seeing correction, so we simply use $R_{e}=5^{\prime \prime}$ for all of our galaxies.

We use numerical integration techniques to perform both the integrations and the convolutions. The results of which, for a variety of apertures and seeing FWHM are shown in tables 2.2 and 2.3. Both of these tables assume $\gamma=1.47$, the average value for our observations (see figure 2.6).

seeing FWHM	Aperture diameter (arcsec)											
	4	6	8	10	13	16	20	25	32	40	50	60
4.50	0.909	0.564	0.376	0.268	0.176	0.126	0.087	0.060	0.039	0.027	0.018	0.014
4.00	0.789	0.476	0.314	0.222	0.146	0.104	0.072	0.050	0.033	0.022	0.015	0.011
3.50	0.667	0.391	0.254	0.180	0.118	0.085	0.059	0.041	0.027	0.018	0.012	0.009
3.00	0.542	0.309	0.200	0.141	0.093	0.067	0.046	0.032	0.021	0.014	0.010	0.007
2.50	0.418	0.233	0.150	0.106	0.070	0.050	0.035	0.024	0.016	0.011	0.007	0.005
2.00	0.300	0.165	0.106	0.075	0.050	0.036	0.025	0.017	0.011	0.008	0.005	0.004
1.50	0.193	0.106	0.068	0.049	0.032	0.023	0.016	0.011	0.007	0.005	0.003	0.002
1.00	0.104	0.057	0.037	0.027	0.018	0.013	0.009	0.006	0.004	0.002	0.001	0.001

Table 2.2. Table of galaxy seeing corrections based on a galaxy with $R_{e}=5 \operatorname{arcsec}$. To obtain the seeing corrected value, the seeing correction is subtracted from the observed aperture magnitude. We parameterise the profile of the PSF using $\gamma=1.47$, the average γ for our observations. Corrections are show for circular apertures ranging from 4 to 60 arcsec diameters. When seeing correcting our data, we calculated a correction for each image by fitting a FWHM and γ to it from the bright stars.

2.3.3 Photometric Calibration

Upon inspection of the standard stars it became apparent that the conditions during most of the observations were not adequate for high accuracy photometry (see section 2.2.1). Particularly evident when examining the large overlap regions between images and the

seeing FWHM	Aperture diameter (arcsec)											
	4	6	8	10	13	16	20	25	32	40	50	60
4.50	1.093	0.573	0.332	0.214	0.129	0.088	0.060	0.041	0.028	0.020	0.014	0.011
4.00	0.922	0.461	0.263	0.170	0.104	0.072	0.049	0.034	0.023	0.016	0.012	0.009
3.50	0.746	0.357	0.202	0.132	0.082	0.057	0.040	0.028	0.019	0.013	0.010	0.007
3.00	0.573	0.263	0.150	0.099	0.063	0.044	0.031	0.022	0.015	0.011	0.008	0.006
2.50	0.408	0.184	0.107	0.072	0.046	0.033	0.023	0.016	0.011	0.008	0.006	0.004
2.00	0.263	0.120	0.072	0.049	0.032	0.023	0.016	0.012	0.008	0.006	0.004	0.003
1.50	0.150	0.072	0.044	0.031	0.020	0.015	0.011	0.008	0.005	0.004	0.003	0.002
1.00	0.072	0.037	0.023	0.016	0.011	0.008	0.006	0.004	0.003	0.002	0.001	0.001

Table 2.3. Table of stellar seeing corrections. To obtain the seeing corrected value, the seeing correction are subtracted from the observed aperture magnitude. We parameterise the profile of the PSF using $\gamma=1.47$, the average γ for our observations. Corrections are show for circular apertures ranging from 4 to 60 arcsec diameters. When seeing correcting our data, we calculated a correction for each image by fitting a FWHM and γ to it from the bright stars.
repeated observations of certain fields, was a systematic drift in the photometric zero point of up to $.2 m a g$ between images. As these offsets were so readily measurable, we used them to correct the zero points of the individual images to create a consistent photometric system.

The method we used to generate this system is very similar to that used in Maddox, Efstathiou, \& Sutherland (1990) to homogenise the APM galaxy catalogue, however, due to our detector's far smaller size, and its linearity, the assumption that a homogeneous photometric system can be generated merely by adjusting the zero points of each plate individually is more valid. We will now outline our calibration method.

To calculate a set of zero-point offsets for each image the regions of overlap between each pair of images was examined. An object positioned in an area where frames i and j overlap will have magnitudes m_{i} and m_{j} as measured from frames i and j respectively. The actual magnitude for this object is m_{0}, and in the absence of observational errors, these three quantities can be related to each other thus,

$$
\begin{equation*}
\dot{m}_{0}=m_{i}+C_{i}=m_{j}+C_{j} \tag{2.3}
\end{equation*}
$$

where C_{i} is the correction applied to the zero point of image i. If we define

$$
T_{i j}=m_{i}-m_{j}=C_{j}-C_{i}
$$

Figure 2.8: The effect of seeing correcting galaxies of different R_{e} in various apertures. The calculation uses a seeing FWHM of $2.5^{\prime \prime}$ and a γ of 1.47 (the average γ for our observations). The effect of Re on the seeing correction can be seen to be relatively unimportant
as the overlap difference between i and j, then the offset correction for any image can be calculated from the overlap differences and offset corrections of any adjacent overlapping image.
$C_{i_{j}}=C_{j}+T_{i j}, \forall j \subset i$
where $j \subset i$ denotes any pair of images i, j with a valid overlap region, and $C_{i_{j}}$ denotes the C_{i} as calculated from image j. In the absence of observational errors,
$C_{i}=C_{i j}$

However we do have observational errors, so we must apply an iterational approach to determine the C_{i}. Firstly we construct an observed estimate of the $T_{i j}$.
$T_{i j}^{e}=\frac{\sum_{n=1 . . N_{i j}}\left(m_{n_{i}}-m_{n_{j}}\right)}{N_{i j}}$
where $N_{i j}$ is the number of bright objects in the region of overlap between images i and j, and the $m_{n_{i}}$ and $m_{n_{j}}$ are the measured magnitudes of object n in images i and j respectively.

Now we can use a weighted mean of the $T_{i j}^{e}$ to find a value for the photometric offsets :$C_{i}^{n+1}=\frac{C_{i}^{n} W_{i}+\sum_{j \subset i} W_{i j} C_{i_{j}}^{n}}{W_{i}+\sum_{j \subset i} W_{i j}}$
or
$C_{i}^{n+1}=\frac{\left(C_{i}^{n} W_{i}+\sum_{i \subset j}\left(C_{j}^{n}+T_{i j}^{e}\right) W_{i j}\right)}{\left(W_{i}+\sum_{j \subset i} W_{i j}\right)}$
where the C_{i}^{n} are the C_{i} calculated in iteration n, W_{i} is the mean of the weights, $W_{i j}$. These weights were chosen to be proportional to the number of objects used to calculate the $T_{i j}^{e}$, and normalised to be in the range zero to one. :-
$W_{i j}=N_{i j} / 35$
We chose to use the number in the overlap ($N_{i j}$), rather than the inverse of the scatter in the ($m_{n_{i}}-m_{n_{j}}$). With the low number of objects present in our overlaps, the scatter is not always well determined, and can be artificially low for overlaps with low $N_{i j}$, just the opposite of the required behaviour.

This iterative method does not constrain the total photometric offset, it merely ensures the best possible relative photometry of the system by removing as much of the drift in the zero point between images as is possible in a self consistent manner. We therefore arbitrarily re-normalise the C_{i} after every iteration so that they have zero mean.

Equation 2.4 was iterated to find the best set of C_{i}. To measure the progress of the iterations, we construct a measure of the homogeneity of the system after iteration n,
$E^{n}=\sum_{i=1 . . N} \sum_{i \subset j} W_{i j}\left(T_{i j}+C_{i}^{n}-C_{j}^{n}\right)^{2}$
where N is the total number of images for which we are trying to ascertain the $C_{i} \mathrm{~s}$.
We start off with the photometric transformation as defined by the standard stars for the photometric nights (see section 2.2.1), and use these same parameters for the non photometric data. For the V band photometry, setting the $C_{i}^{n=0}=0$, we get $E^{\mathrm{n}=0}=0.39$, while after 7000 iterations $E^{n=7000}=0.0004$. The U band data started off with $E^{n=0}=$ 0.6 , and after 7000 iterations, $E^{n=7000}=0.0006$. After about 7000 iterations, the rate of change of E^{n} has slowed to less than $E^{n} / 1000$ per iteration.
scatter $=0.018$

$$
\text { scatter }=0.011
$$

Figure 2.9: The V and U offsets ($m_{n_{i}}-m_{n_{j}}$) of objects in a region where two images overlap as a function of magnitude $\left(m_{i}\right)$. The offset of each point is the difference between the $13^{\prime \prime}$ aperture magnitude of that object after seeing correction, as measured from two overlapping images. The $T_{i j}^{e}$ for this pair of images is then calculated as the mean of the $\left(m_{i}-m_{j}\right)$. Circles represent extended objects, while the stars represent point sources. Open symbols lie within $5^{\prime \prime}$ of a known defect on the CCD, or within 40 pixels ($25.2^{\prime \prime}$) of the edge of the detector. Crossed symbols are not used in the calculation of the $T_{i j}^{e}$ value, or the RMS scatter about it. The RMS scatters for the U and V images shown here are consistent with the photometric errors. The V band images have seeing FWHM of 3.4 and 2.1 , whilst the U images have seeing FWHM of 2.8 and 2.4, so the lack of difference between the offsets as measured by the point and extended objects, especially in the V band images indicates that the seeing correction (sec. 2.3.2) has worked well.

Obviously much care has to be taken in the measurement of the $T_{i j}^{e}$. We must ensure that effects such as different seeing conditions on the two overlapping images do not cause any systematic offsets. Although seeing conditions are taken into account for each object when measuring the m_{i} (see section 2.3.2), the effect of seeing on objects adjacent to the aperture are not corrected for i.e. more light from an adjacent object will enter the aperture
for images with worse seeing. We therefore measured the m_{i} in various sized apertures, from $8.8^{\prime \prime}$ to $26^{\prime \prime}$ diameter, and using background annuli from $20^{\prime \prime}$ to $100^{\prime \prime}$ diameter with $25^{\prime \prime}$ and $3.2^{\prime \prime}$ widths. If the $T_{i j}$ are well behaved under all measuring conditions, then we simply take the median value. If they are not well behaved, we inspect the region more carefully to ascertain the cause, or we mark the $T_{i j}$ as unreliable. Figure 2.9 shows the V and U offsets ($m_{n_{i}}-m_{n_{j}}$) of objects in a region where two images overlap as a function of magnitude (m_{i}). The $T_{i j}^{e}$ measured from these offsets are shown as solid lines. Extended sources are shown as circles, while point sources are shown as star symbols. The fact that both types of symbols lie on top of each other shows that the seeing correction works well, especially in the V images. One V image has poor seeing (3.4 arcsec FWHM) while the other has moderate seeing (2.1 arcsec FWHM).

To summarise, we can now construct a homogeneous dataset by adding to each magnitude m_{i}, the offset correction for the image in which it was measured $\left(C_{i}\right)$ to obtain the object's corrected magnitude m_{0} (see equation 2.3). This homogeneous photometric system however is only relative. To set the overall photometric offset, we use the fixed aperture magnitudes of BLE. We have new observations of all of the BLE sample, so using these galaxies we can define a transformation between our corrected aperture magnitudes, and theirs,

$$
\begin{aligned}
V_{B L E} & =V+C_{V 1}+(U-V) C_{V 2} \\
U_{B L E} & =U+C_{U 1}+(U-V) C_{U 2} \\
C_{V 1} & =-1.272 \\
C_{V 2} & =0.006 \\
C_{U 1} & =-0.884 \\
C_{U 2} & =0.072
\end{aligned}
$$

where $U_{B L E}, V_{B L E}, U$ and V are the BLE92a magnitudes, and our magnitudes respectively. the C s are the fit parameters, and were determined using 16arcsec diameter aperture photometry for both our magnitudes and those of BLE. While $C_{V_{1}}$ and $C_{U_{1}}$ simply fix our photometric zero point to that of BLE, the $C_{V 2}$ and $C_{U 2}$ define a colour term, and show how our filters differ from theirs. From the low value of $C_{V 2}$, we can conclude that our V band response is similar to that of BLE, but the larger value of the $C_{U 2}$ parameter
indicates that our U band response is not such a good match, probably due to our increased sensitivity to the blue portion of the U bandpass (see fig. 2.1).

2.3.4 Summary of reduction procedure

In the previous sections we have described in detail the steps taken to reduce the data from raw images to corrected magnitudes, however, the overall procedure used is difficult to follow due to the highly detailed nature of the sections. We therefore briefly describe the overall procedure in a less detailed manner below.

- The raw images were bias subtracted and flatfielded.
- Cosmic ray hits were removed from the images.
- Cosmetic defects on the CCD were removed by interpolating across them.
- We co-added the U band exposures into single images.
- Solutions to the photometric transformations were found for the most photometric nights.
- Sextractor was used to find positions for the objects in the images. Objects close to the edges and faint objects were not included in the position lists.
- The seeing conditions for each image were measured from the brightest stars stars in that image.
- We used the IRAF phot package to obtain photometry in $8.8,13,60,20.2,25.2$ and $26 \operatorname{arcsec}$ diameter apertures, with 40 and 120arcsec inner radii background annuli.
- The photometry was corrected for seeing.
- We used the HST Guide Star Catalogue to calculate plate solutions for each image.
- We measured photometric zero point differences between each pair of images with overlapping areas of sky in both the U and V bands. These offsets were used to construct a homogeneous photometric system.
- We compared our photometry with that of BLE to place our photometry into their photometric system.

2.4 Quantifying the photometric errors

Figure 2.10: Histogram of the absolute values of the sums of all the closed loops of $T_{i j}$ with less than five elements, for both the V and U images (see section 2.4 for details). Under perfect conditions, these loops should all sum to zero, so we use their deviation from zero to measure the level of internal inconsistency of our photometric system. Apart from a small crop of loops in the U photometry with sums around 0.05 mag , due to a single image in the SW (sw8) which had problems with scattered light, all of the loops have sums with values of the order of our estimated photometric errors (see figure 2.11).

Figure 2.11: In the three panels, we plot the running mean biweight scatter as a function of V_{13} magnitude, from repeated observations of galaxies in overlapping regions, of our U and V photometry (panels b and c) as measured through circular apertures of $8.8^{\prime \prime}, 13^{\prime \prime}$ and $20.2^{\prime \prime}$ diameter. We also plot the scatter in our ($U-V$) colours (panel a), calculated by adding the scatter from the U and V photometry in quadrature. A bin size of 60 observations was used in calculating the running mean, except at the bright end of the magnitude range, where it was allowed to go down to 6 so as to get values at these extremes. This explains the decreased smoothness of the line at the bright end. These plots show that most of the scatter in our colours comes from the U band photometry. Table 2.4 lists the mean RMS scatter down to $V_{13}=17 \mathrm{mag}$ for all of our apertures.

Figure 2.12: The four panels show the behaviour of the residuals between our 13arcsec diameter aperture photometry and that of BLE. In all cases, the residuals are calculated by subtracting the BLE data from ours, for example, a negative $\Delta(U-V)$ indicates that our colour for a galaxy is bluer than the BLE colour. The Solid and dashed lines show running biweight location and scatter indicators (see appendix B). The running biweights have a bin size of 20 , but this reduces to 10 towards the ends of the lines. In all of the panels, the levels of scatter between our data and that of BLE is entirely consistent with the levels of observational error in both datasets. Panel (a) shows the difference between the $(U-V)_{13}$ colours obtained in this paper and those of BLE, as a function of distance from NGC4874. The overall scatter between our colours and theirs is 0.034mag. This is of the order of both our photometric errors (see figure 2.11) and theirs. Panel (b) shows how our colours compare to the BLE colours as a function of luminosity. Panels (c) and (d) show how our U and V band magnitudes compared with those of BLE. The overall RMS scatter in the residuals for these panels are 0.032 and 0.022 mag respectively. It is important to note that we have only used the BLE data to set an overall photometric offset and colour term for all of our galaxies, neither of which could reduce the level of scatter between the two datasets to these levels if there was something seriously wrong with our dataset. It is also worth noting that the mean difference between our colours and the BLE colours does not depend on the distance from the center of the cluster, indicating that at least out to the maximum radius of the BLE dataset, our photometry has no anomalous drift in the photometric zero point.

Figure 2.13: The (U, V) colour magnitude relation for all objects detected for which Sextractor gives a CLASS_STAR ≤ 0.2. The V are taken from the $25.2^{\prime \prime}$ diameter aperture, as it is more complete than the $26^{\prime \prime}$ aperture. In order to increase the signal to noise in the colour term, the $(U-V)$ are taken from the smallest aperture, the $8.8^{\prime \prime}$ diameter aperture. The colours represent the morphological types of the galaxies from Andreon et al. (1996) and Andreon, Davoust, \& Poulain (1997). Open symbols have no morphological information. The line is a straight forward biweight fit (see Appendix B) to the whole dataset, and follows the ridge-line of the CMR which can be seen to extend down to $\boldsymbol{m}_{V 25.2} \sim 19.5$.

It is vital that, having used observations taken in mostly non-photometric conditions to construct a photometric dataset, that we can independently check the validity of this system. A natural consequence of the image overlap method we used to construct the homogeneous photometric system (sec. 2.3.3) is that we can use the $T_{i j}$ as measured from the overlaps to test for self consistency. We use the fact that, in the absence of observational errors, if we construct a closed loop around several images in the sky, and sum up the $T_{i j}$ offsets from the overlaps around the loop, then the this sum must be zero for any closed loop.

$$
\begin{aligned}
T_{a b}+T_{b c}+\ldots+T_{n a} & =C_{b}-C_{a}+C_{c}-C_{b}+\ldots+C_{a}-C_{n} \\
& =0
\end{aligned}
$$

As an example, a closed loop around the images shown in figure 2.2 could be $T_{15 \rightarrow 16}+T_{16 \rightarrow 9}+T_{9 \rightarrow 8}+T_{8 \rightarrow 15}$

These loops are not allowed to go back on themselves for the obvious reason that $T_{i j} \equiv-T_{j i}$, so the smallest possible loop has three elements, i.e. $T_{15 \rightarrow 16}+T_{16 \rightarrow 9}+T_{9 \rightarrow 15}$ However these loops may suffer from increased scatter owing to the reduced number of objects in overlapping corners (i.e. $T_{9 \rightarrow 15}$) compared to overlapping edges (i.e. $T_{16 \rightarrow 15}$). Under perfect conditions, these closed loops would always sum up to zero, so the deviation from zero of the sum gives shows the level at which the $T_{i j}$ are not self consistent. It is important to note that the $T_{i j}$ are measured directly from the raw data, and the iterative procedure outlined in section 2.3.3 does not alter them (it alters the C_{i}). Therefore these loops give a measure of the quality of the data independent of the photometric calibration procedure.

Figure 2.10 shows the distribution of the absolute values of the sums around all of the closed loops with less than 5 elements for both the U and the V band images. Almost all of the loops come below the 0.02 mag level for both U and V , this level of inconsistency is lower than the level of scatter in the photometry as measured from repeated observations (see fig. 2.11 and below). The small cluster of U loops between 0.04 and 0.06 are due to a single U-band image in the SW corner (sw8) which had problems with what appeared to be scattered light getting around the filter. Although we attempted to remove this as a constant gradient in the image background, it obviously did not work perfectly. The $T_{i j}$ for all of the overlap regions involving this image were given very low weights, so that we could still calculate some sort of calibration for the image, but the non consistency in this image did not propagate to the photometry of the neighbouring images during the iterative procedure of section 2.3.3.
We have shown that we have a self consistent set of $T_{i j}$, but we have not shown what the overall error in our final photometry is. We can use the large number of multiply observed objects (mostly from our overlap regions) to constrain our observational errors. Table 2.4 lists the mean RMS scatter for all objects with $V_{13}<17 \mathrm{mag}$ in all of our apertures, and Figure 2.11) shows how the scatter in the observations of multiply observed objects increases with magnitude for the $8.8,13$ and $20.2 \operatorname{arcsec}$ diameter apertures. The scatter was computed using a running biweight scatter indicator (see appendix B and chapter 3) with a maximum bin size of 60 observations, and a minimum bin size (at the bright end of the dataset) of 6 . The levels of scatter in out 13arcsec apertures are the same as those

Aperture diameter (arcsec)	RMS scatter		
	U	V	$(U-V)$
8.8	0.02303	0.01619	0.02829
12.6	0.02124	0.01364	0.02532
13	0.02258	0.01352	0.0264
16	0.0277	0.01478	0.03145
20.2	0.03036	0.01727	0.035
25.2	0.0359	0.02076	0.04154
26	0.04805	0.02706	0.05528

Table 2.4. This table lists the RMS errors in our photometry for all of our apertures. It was generated using the repeated observations of both stars and galaxies. mostly in the regions of overlap between images. Figure 2.11 shows how the RMS errors vary with magnitude for the $8.8,13$ and 20.2 arcsec diameter apertures. The RMS internal scatter quoted by BLE for their $13^{\prime \prime}$ photometry, which only reaches a magnitude of $V_{13}=16.5$ is 0.025 and 0.015 mag for U and V respectively.
quoted by BLE (0.025 and 0.015 mag for U and V respectively), and they stay constantly low down to $V_{13} \sim 17 \mathrm{mag}$. It should be noted that although table 2.4 shows that the $12.6^{\prime \prime}$ aperture has the lowest RMS scatter in both U and V bands, figure 2.11 shows that fainter than $V_{13} \sim 17$, it is quickly overtaken by the $8.8^{\prime \prime}$ aperture, which is better suited to the smaller sizes of the fainter galaxies.

As a final check on the validity of the calibration, we have compared our photometry with that of BLE (see fig. 2.12). The BLE dataset goes down to $V_{13}=16.5 \mathrm{mag}$, and they quote an RMS internal scatter of 0.025 and 0.015 for the U and V-band photometry respectively. The scatter between our colours and theirs is 0.034 mag , while the scatter between our photometry and theirs is 0.022 and 0.032 mag for the V and U -bands respectively. This is almost exactly what we expect simply by adding the rms internal scatters of our data and theirs in quadrature, and shows that we need no extra source of scatter in our photometry other than that measured through repeated observations of objects. Equally important, given the method used to obtain a uniform photometric system for our data, is the fact that the mean colour difference does not vary as a function of distance from NGC4874 (figure 2.12, panel a), although the BLE data goes out to a much smaller radius than our new data, so we cannot rule out any effects further away from the center.

2.5 Estimated total magnitudes

It will be useful for the analysis we perform in chapter 4 to have total V-band magnitudes for our photometry. This does not have to be as accurate as the colours, so we chose to estimate them by comparison with the BLE total magnitudes. The transformation we used was
$\log _{10}\left(V_{25.2}-V_{T}\right)=a-b V_{25.2}$
where the $V_{25.2}$ are our V-band 25.2 arcsec diameter aperture magnitudes, the V_{T} are the BLE total V-band magnitudes and a and b are the fit parameters. The form of this function was not determined using any analytical prescription for the total magnitude of a galaxy given an aperture magnitude, but simply by visual inspection of the data. We used least squares minimisation to find the best fit parameters ($a=2.65$ and $b=-0.2$), which gave an RMS scatter in the fit of 0.12 mag . The residuals of the fit are shown in figure 2.14.

Figure 2.14: The residuals of the fit between our 25.2arcsec V-band magnitudes ($V_{25.2}$), and the BLE V-band total magnitudes (V_{T}). We use this fit to estimate total magnitudes ($V_{T e}$) from our $25.2 \operatorname{arcsec} V$-band magnitudes (see text for details).

2.6 Summary

- We have obtained images of the Coma cluster which cover $3360 \operatorname{arcmin}^{2}$ in both Johnson U and V bands.
- Although most of the images were not taken in photometric conditions, we have managed to combine them into a single homogeneous photometric system by using the multiple observations of objects in the large overlap regions we allowed ourselves between the images.
- We find the rms internal scatter the photometry of multiply observed objects with $V_{13}<17 \mathrm{mag}$ to be 0.014 mag and 0.026 mag for the V and U -band photometry in $13^{\prime \prime}$ diameter apertures respectively. This is almost exactly the same as the scatter obtained by BLE
- We find no systematic drift in colour between our data and that of BLE with increasing distance from the cluster center
- We have constructed a homogeneous, wide area, high precision photometric dataset with which to investigate the colour-magnitude relation (see figure 2.13) in the Coma cluster.

References

Andreon S., Davoust E., Michard R., Nieto J. L., Poulain P., 1996, Astronomy and Astrophysics Supplement Series, 116, 429
Andreon S., Davoust E., Poulain P., 1997, Astronomy and Astrophysics Supplement Series, 126, 67
Baier F. W., 1984, Astronomische Nachrichten, 305, 175
Bertin E., Arnouts S., 1996, Astronomy and Astrophysics Supplement Series, 117, 393
Bower R. G., Lucey J. R., Ellis R. S., 1992, MNRAS, 254, 589
Caldwell N., Rose J. A., Franx M., Leonardi A. J., 1996, AJ, 111, 78
Caldwell N., Rose J. A., Sharples R. M., Ellis R. S., Bower R. G., 1993, AJ, 106, 473
Charlot S., Silk J., 1994, ApJ, 432, 453
Colless M., Dunn A. M., 1996, ApJ, 458, 435
Dressler A., 1980, ApJS, 42, 565
Escalera E., Slezak E., Mazure A., 1992, A\&A, 264, 379
Fried D. L., 1966, J. Opt. Soc. Am., 56, 1372
Godwin J. G., Metcalfe N., Peach J. V., 1983, MNRAS, 202, 113
Johnson H. L., Morgan W. W., 1953, ApJ, 117, 313
Landolt A. U., 1992, AJ, 104, 340
Maddox S. J., Efstathiou G., Sutherland W. J., 1990, MNRAS, 246, 433
Saglia R. P., Bertschinger E., Baggley G., Burstein D., Colless M., Davies R. L., McMahan J., R. K., Wegner G., 1993, MNRAS, 264, 961

White S. D. M., Briel U. G., Henry J. P., 1993, MNRAS, 261, L8
Woolf N. J., 1982, ARA\&A, 20, 367
Worthey G., 1994, ApJS, 95, 107

Chapter 3

Environmental Dependence

of the Colour-Magnitude Relation.

Abstract

In this chapter we place limits on the levels of scatter in the colour-magnitude relation (CMR) in the Coma cluster. We subdivide the galaxy population by morphology, luminosity and position on the sky, and analyse the CMR in each of them. The lowest levels of scatter are found in the elliptical galaxies, and the late type galaxies have the highest numbers of galaxies bluewards of the CMR. We finds signs of decreased scatter and systematically bluer galaxy colours with increasing projected radius from the center of the cluster, and conclude it to be due to a gradient in the mean galactic ages with projected radius.

3.1 Introduction

The overriding feature of early type galaxies in the cores of clusters is their uniformity. Structurally, early type galaxies are very simple. They can be parametrised using an $R^{1 / 4}$ profile, with an added exponential disk (e.g. Saglia et al., 1997). They obey a set of simple 'scaling relations' which allow their properties to be scaled between galaxies of different luminosities. The 'fundamental plane' (FP) correlations (Dressler et al. 1987, Djorgovski \& Davis 1987, Bender, Burstein, \& Faber 1992, Saglia, Bender, \& Dressler 1993,

Jorgensen, Franx, \& Kjaergaard 1993, Pahre, Djorgovski, \& De Carvalho 1995) of luminosity, velocity dispersion and effective
radius connects a galaxy's overall structure with its dynamics, and has its origin in the virial relation, but departs from the form predicted by the ideal relation by having a shallower slope. The progressive reddening of the integrated colours of elliptical galaxies with increasing luminosity is known as the colour-magnitude relation (CMR) (Faber 1973, Visvanathan \& Sandage 1977, Frogel et al. 1978, Persson, Frogel, \& Aaronson 1979, Bower, Lucey, \& Ellis 1992a, Bower, Lucey, \& Ellis 1992b), despite its being a far simpler relation than the FP (a univariate rather than a bivariate relation), it nonetheless has similarly small levels of scatter.

In this chapter, I will use the high precision wide area photometry presented in chapter 2 to investigate the CMR across a single cluster. Bower, Lucey, \& Ellis (1992b) have shown that the colour magnitude relation on the cores of the Coma and Virgo clusters are identical to within observational uncertainties, however studies of the CMR in Hickson compact groups (Zepf, Whitmore, \& Levison 1991) show increased scatter, as do studies of field ellipticals (Larson, Tinsley, \& Caldwell 1980). It must be noted that these group and field galaxy samples contain data from many disparate sources, therefore there must be an added source of scatter in matching the various photometric datasets onto a single photometric system. Despite this, at least in the sample of Larson, Tinsley, \& Caldwell, the extra scatter seems too large to be accounted by increased observational uncertainties alone, and therefore must be real. In a large area study of the $z=0.228$ cluster A2390, Abraham et al. (1996) detect a gradient in colour, and spectral properties of the galaxies with projected radius, which they attribute to a decrease in the mean age of cluster galaxies with radius.

Further evidence for an environmental dependence of the CMR comes from studies of spectral line indices. Broadband colours are notoriously inefficient at separating the effects of age and metallicity on a stellar population, a degeneracy neatly summarised by Worthey (1994) in his ' $2 / 3$ ' law ($\Delta[F e / H] \sim \frac{2}{3} \Delta \log (t)$). This has led to studies of the stellar populations of early type galaxies in the cores of clusters using spectral line indices chosen to break this degeneracy and disentangle the effects of age and metallicity. Such studies (e.g. (Mehlert et al. 1998, Kuntschner 1998, Kuntschner \& Davies 1998)) show that the CMR is driven by metallicity variations with galaxy luminosity, rather than age, a result supported by photometric studies of the CMR in high redshift clusters
(Ellis et al. 1997, Kodama \& Arimoto 1997, Kodama 1997, Kodama et al. 1998). These studies all point towards the galaxies which make up the CMR in the cores of rich clusters being primarily constituted of uniformly old stellar populations. When González (1993) used these same spectroscopic techniques on early type galaxies in the field, the results were almost exactly the opposite. Rather than a coeval population of galaxies spanning a metallicity range, González found a population with similar metallicity, but with variations of several Gyrs in the luminosity weighted mean age of the stellar populations.

The data presented in chapter 2 extends out to almost the virial radius of the cluster. We therefore expect that on the outer part of the dataset, the galaxies will have only recently fallen into the cluster from the field. Additionally, we also have photometry for the SW corner around the galaxy NGC4839. This group of galaxies has been shown to be dynamically separate from the main cluster (Baier 1984, Escalera, Slezak, \& Mazure 1992, Colless \& Dunn 1996) with an associated peak in the X-ray profile of the cluster (Briel, Henry, \& Boehringer 1992, White, Briel, \& Henry 1993, Vikhlinin, Forman, \& Jones 1994). Whether or not the group has already made one pass through the Coma cluster (e.g. Biviano et al., 1996) or is falling in for the first time (e.g. Colless \& Dunn, 1996), it still retains a large number of 'post-starburst' or 'E+A' galaxies (Caldwell et al. 1993, Caldwell et al. 1996), more consistent with a group, or field population (Zabludoff et al. 1996) than the main body of the cluster.

By measuring the CMR in the three 'environments' of the cluster core, the outer parts of the cluster, and the NGC4839 group, we will be able to determine whether the CMR does have an environmental dependence. Because our entire dataset comprises of overlapping interleaved observations which have been placed into a single photometric system (see chapter 2) we will not encounter the problems of disparate datasets adding to the noise in the data.

3.2 Analysis technique

We ascertained cluster membership using recessional velocities from the NASA/IPAC Extragalactic Database ${ }^{1}$ (NED). Most of the velocities can be attributed to Colless \& Dunn (1996). Galaxies having velocities between $4000 \mathrm{kms}^{-1}$ and $10000 \mathrm{kms}^{-1}$ were taken as confirmed members. From this sample we then removed galaxies with 'bad' photometry. Galaxies were seemed bad, and thus rejected if

- Emission from a nearby object entered the $13^{\prime \prime}$ diameter aperture used throughout this chapter.
- One of the CCD bad columns passes through the galaxy.
- A cosmic ray was removed from part of the galaxy in the V image (Cosmic rays in the U images were less of a problem due to the image being composed of multiple exposures).
figure 3.1 shows snapshots of the V band images of the rejected galaxies. Figures 3.12, $3.13,3.14,3.15$ and 3.16 show snapshots of the V band images of the member galaxies that remain. In all these snapshots, the circle represents our 13arcsec diameter aperture.

Due to the variable conditions encountered throughout the observing runs, we have not attempted to morphologically type our galaxies, but have instead relied upon the morphological classification of Andreon et al. (1996) and Andreon, Davoust, \& Poulain (1997). Even with good conditions, we would not have been able to extend morphological classifications with any accuracy to fainter galaxies. The different colours of the symbols in figures $3.3,3.4,3.5$ and 3.6 correspond to the broad morphological type of the galaxy. The actual morphological types used in these broad classifications are shown in table 3.1, and their frequency in our data is given in table 3.2.

Regression analysis of the colour magnitude relation was performed using the biweight estimator (see appendix B) due to its robustness and resistance in the case of non Gaussian distributions (Beers, Flynn, \& Gebhardt 1990). In this case we are interested in the scatter of the ridge line of the CMR, and do not want to be unduly influenced by the odd blue

[^0]

Figure 3.1: The V band images of the galaxies whose radial velocity puts them within the Coma cluster, but which have been rejected for some reason or another from our sample.The main reason for rejection is from overly close companions. Other reasons include a bad column in the CCD (as in GMP5296), or a cosmic ray, too close to the core of the galaxy to be properly removed. The text in each panel gives the GMP number of each galaxy, and its morphological type (if it has one). The next line gives any other name the galaxy might have as given by NED. If a galaxy has more than one name in NED, only the first one is given. The circle represents the $13^{\prime \prime}$ diameter aperture used to measure the colours and magnitudes throughout this chapter, and the line at the bottom of each panel gives the width of the seeing disk for that image.

Dataset	Morphological types
(5) S0 morph	SA0 SAB0 SB0 diE/SA0 diE/SAB0 unE/SA0
(6) E morph	Epec boE diE unE
(7) Sp morph	SA0/a SB0/a SAB0/a SAB0p SABa S.. Sp SBa Sa

Table 3.1. This table shows what morphological types make up our different morphological datasets. The morphology types are those from Andreon et al. (1996) and Andreon, Davoust, \& Poulain (1997). Table 3.2 shows the frequency of each morphological type in the whole dataset. The datasets that are not shown here (i.e. (iv) $\mathrm{E} \& \mathrm{~S} 0 \mathrm{morph}$) are simply made up by adding the above datasets. Some morphological types (i.e. Andreon's '???' category) aren't in any dataset.
outlier. The biweight is a robust, resistant and efficient location and scale indicator, as is apparent from table 3.4. Here the results of measuring the scatter in various subsamples of the cluster members (see section 3.3) using a straight forward biweight technique are compared to the results of using a biweight technique in conjunction with a single 3σ initial clip of the dataset. The difference in every case is within the 1σ error estimate of the un-clipped method. Using both the clipped, and the unclipped biweight, we can investigate the properties of subsamples of galaxies such as the late type subsample (dataset 7; defined in section 3.3), where we clearly see a well defined CMR ridge-line, but also many blue galaxies. The difference between the clipped and unclipped biweight clearly shows this (see table 3.4).

We not only used the biweight estimator to measure the scatter in the CMR, but by minimising the biweight scatter of the colour residuals, we used it to obtain a best fit CMR to the data (see appendix B for details).

The errors in the best fit relation were calculated by bootstrap resampling of the data. The observational uncertainties in the colour as a function of galaxy luminosity $\left(O_{c}(L)\right)$ are well known for this dataset (see fig. 2.11), so in order to make an estimate of how much of the measured scatter in the CMR is due to observational errors, we defined a mean observational colour scatter thus,

$$
\bar{O}_{c}=\frac{\sum O_{c}\left(L_{i}\right)}{N}
$$

Morphological type	Number of galaxies
No morph	147
???	1
Sp	11
S..	5
SBa	1
Sa	3
SA0/a	6
SB0/a	2
SAB0/a	3
SAB0p	1
Total late type galaxies	32
SA0	42
SAB0	7
SB0	15
diE/SA0	4
diE/SAB0	1
unE/SA0	2
Total S0 type galaxies	71
Epec	1
boE	5
diE	10
unE	10
Total early type galaxies	26

Table 3.2. The frequency of each morphological type in dataset 1 (see table 3.3. This dataset is effectively all confirmed cluster members minus the galaxies deemed 'bad' (see section 3.2. About half of the galaxies have no morphological information. The four subdivisions in this table separate the galaxies into the gross morphological types used throughout this chapter, i.e. no morphology, late type (spiral), S0 and elliptical. When we refer to early type galaxies, we are referring to the $\mathbf{S} 0$ and elliptical galaxies grouped together.
where the L_{i} are the luminosities of the galaxies in the dataset, and N is the number of galaxies. Using this value for the observational errors, a value for the intrinsic scatter in the CMR can be calculated.
$I=\sqrt{\sigma^{2}-\bar{O}_{c}^{2}}$
where σ is the observed scatter of the CMR. The intrinsic scatter as a function of observed scatter, both normalised by the observational errors is shown in figure 3.2.

Figure 3.2: The intrinsic scatter (I) as a function of observed scatter (σ) in the CMR (the solid line, see equation 3.1). Both quantities are normalised by the observational errors $\left(\bar{O}_{c}\right)$. The dashed and dotted lines are the 3σ limits for the cases where the CMR scatter is measured using 25 and 50 galaxies respectively (see equation 3.2).

We are measuring the scatter using N samplings of the distribution, which introduces an extra uncertainty over and above the uncertainty in the fit itself. We constructed a simulation in which we use the same techniques as used for the real data, i.e. specifically using biweight estimators, to ascertain the scatter of a simulated CMR with N galaxies. This simulation was repeated 1000 times for a series of N between 10 and 150 . The results were used to derive the following expression for the limits on the intrinsic scatter (I) given a mean observational error in the colours $\left(\bar{O}_{c}\right)$ and measured scatter σ
$\sqrt{\frac{\sigma^{2}}{1 \pm \frac{n^{2}}{2(N-2)}}-\bar{O}_{c}^{2}}$
where N is the number of galaxies in the CMR, and n is the significance of the limits. The $3 \sigma(n=3)$ limits for the cases of $N=25$ and $N=50$ are shown in figure 3.2.

For example, if we measure the scatter in the $\operatorname{CMR}(\sigma)$ to be ~ 1.3 times larger than the observational colour errors $\left(\bar{O}_{c}\right)$, then the intrinsic scatter is about equal to the observational errors. If we have measured this scatter using 50 points, then the lower limit for the intrinsic scatter is ~ 0.2 times the observational error, however if we measured the scatter using only 25 points, we have no lower constraint on the intrinsic scatter. It should also be noted that the upper and lower limits are not symmetrical about the intrinsic scatter.

3.3 Environmental and morphological variations

Figure 2.13 shows the colour magnitude relation for every extended object in the photometric catalogue outlined in chapter 2. Many of the objects shown will not be members of the Coma cluster, yet despite this, the CMR is clearly visible down to $V_{25.2}=19.5 \mathrm{mag}$. In this chapter, we are interested in measuring changes in the CMR, such as in its scatter or slope, in different parts of the cluster, in different subsets of galaxy morphology, and for different luminosities. We therefore concentrate solely on those galaxies identified as members of the cluster from their recessional velocity, which were not marked as 'bad' (see section 3.2). We have used the galaxies properties, such as morphology, luminosity and position, to define 14 subsets of these 275 member galaxies (see table 3.3 for details).

Figure 3.3 shows the CMR for dataset 1 (all cluster members). The overriding feature of this diagram is the strength of the CMR, it is made up of galaxies of differing morphological types, and from every part of the cluster, yet it extends for almost five magnitudes without deviating from a straight line. Figure 2.13 shows that the CMR actually extends fainter than this in our data, but we have no redshifts for these faint galaxies. Secker, Harris, \& Plummer (1997) have shown that the ($B, B-R$) CMR in dwarf ellipticals in Coma, actually continues down to at least $B \sim 21.5$. Another important aspect of figure 3.3 is in the direction of scatter. There is almost no scatter red-ward of the CMR ridge line, not even at the faint end where the observational errors are greatest, there is however significant blue-ward scatter, most of which is due to the late type population.

In the following sections, we investigate the properties of the CMR in each of the datasets (see figures 3.4, 3.5 and 3.6). We use the techniques described in section 3.2 to ascertain the scatter about the main ridge line of the CMR, as well as the scatter in the total sample. Throughout this chapter we will be using the 13arcsec diameter aperture

Dataset	Description
1	Confirmed members: After rejecting the 'bad' galaxies (see section 3.2), we classify all galaxies from $4000 \mathrm{kms}^{-1}$ to $10000 \mathrm{kms}^{-1}$ as members of the cluster. The velocities were obtained from the NASA/IPAC Extragalactic Database (NED). Most of the velocities can be attributed to Colless \& Dunn (1996). Figures 3.12, 3.13, 3.14, 3.15 and 3.16 show snapshots of the V band images of these galaxies. All of the datasets in this table are subsamples of this dataset.
2	Confirmed members with $V_{13}<17$: A subsample of confirmed members (dataset 1) with the faint tail cut off at the point where the measurement errors in the colours starts to increase (see figure 2.11).
3	All with morphology: All member galaxies with a morphology from Andreon et al. (1996) and Andreon, Davoust, \& Poulain (1997) (see table 3.1).
4	E\&S0 morphology: All member galaxies with an elliptical or S0 morphological type (Early type galaxies) (see table 3.1).
5	S0 morphology: All member galaxies with S0 morphology (see table 3.1).
6	Elliptical morphology: All member galaxies with Elliptical morphology (see table 3.1).
7	Late type morphologies: All member galaxies with late type (spiral and irregular) morphology (see table 3.1).
8	E\&S0 center: Early type galaxies closer to NGC4839 than NGC4874.
9	E\&S0 SW: Early type galaxies closer to NGC4874 than NGC4839.
10	E\&S0 inner: Early type galaxies within 15 ' of either NGC4874 or NGC3849.
11	E\&S0 outer: Early type galaxies further than 15 ' from both NGC4874 and NGC4839.
12	E\&S0 bright: The bright half of dataset 4
13	E\&S0 faint: The faint half of dataset 4
14	Members bright: The bright half of dataset 1
15	Members faint: The faint half of dataset 1

Table 3.3. This table describes how the galaxies in each dataset were selected. All datasets are a subset of dataset 1 .
magnitudes and colours from chapter 2, due to their low photometric errors. The CMR fits to this data are summarised in table 3.4. Table 3.5 shows the results of using the estimated total V-band magnitudes from chapter 2 . The results will be necessary for the analysis in chapter 4 , but will not be used in this chapter.
Table 3.4. Results of regression analysis. For a complete description of each dataset see the main text. The 'fill' and 'clip' columns refer to whether a sigma clipping iteration was added to the regression analysis or not. The 'full' dataset has no clipping applied, while the 'clip' datasets take the results from the regression analysis on the 'full' dataset, apply a 3σ clip and recalculate the regression results. This leads to better rejection of many of the 'blue' galaxies which lie well away from the colour magnitude relation, but these objects should not overly affect the biweight scatter indicator used here anyway, so we show both results. The errors quoted for the slope; intercept and observed scatter, are 1σ bootstrap errors. The mean obs. scatter $\left(\bar{O}_{c}\right)$ is used in calculating the intrinsic scatter (see main text). It is a measure of the mean observational scatter in a dataset given that dataset's luminosity function and the luminosity dependence of the observational errors (see fig. 2.11). The upper and lower limits on the intrinsic scatter are 1σ limits, and are based on the observed scatter, the mean observational scatter and the number of galaxies in the dataset.

Dataset	Number	Slope	Intercept	Observed scatter (σ)				\bar{O}_{c}	Intrinsic scatter (I)	lower limit	upper limit		
	full	clip	clip	clip	full	clip		full	clip.	full	clip	full	clip
(1) All members	275	245	-0.129 ± 0.001	3.39 ± 0.09	0.0744 ± 0.008	0.064 ± 0.005	0.029	0.069	0.057	0.065	0.054	0.072	0.061
(2) $V_{13}<17$	175	159	-0.138 ± 0.003	3.52 ± 0.2	0.0674 ± 0.009	0.0608 ± 0.006	0.025	0.063	0.055	0.059	0.052	0.067	0.059
(3) All with morph	129	120	-0.143 ± 0.004	3.6 ± 0.3	0.0599 ± 0.008	0.055 ± 0.006	0.024	0.055	0.049	0.051	0.046	0.059	0.054
(4) E\&SO morph	97	95	-0.135 ± 0.005	3.48 ± 0.3	0.0552 ± 0.009	0.0536 ± 0.007	0.024	0.05	0.048	0.046	0.044	0.054	0.053
(5) S0 morph	71	69	-0.126 ± 0.006	3.34 ± 0.4	0.0583 ± 0.01	0.0557 ± 0.009	0.023	0.053	0.051	0.048	0.046	0.059	0.056
(6) E morph	26	26	-0.164 ± 0.006	3.91 ± 0.5	0.0438 ± 0.01	0.0438 ± 0.01	0.025	0.036	0.036	0.029	0.029	0.045	0.045
(7) Sp morph	32	25	-0.173 ± 0.01	4.08 ± 0.8	0.0778 ± 0.03	0.0576 ± 0.02	0.025	0.074	0.052	0.064	0.043	0.086	0.063
(8) E\&SO center	78	78	-0.132 ± 0.004	3.43 ± 0.3	0.0517 ± 0.008	0.0517 ± 0.007	0.024	0.046	0.046	0.041	0.041	0.051	0.051
(9) E\&SO SW	19	17	-0.153 ± 0.009	3.77 ± 0.8	0.0735 ± 0.06	0.0576 ± 0.03	0.024	0.069	0.052	0.058	0.042	0.086	0.067
(10) E\&SO inner	55	55	-0.149 ± 0.006	3.71 ± 0.3	0.0542 ± 0.01	0.0542 ± 0.01	0.024	0.049	0.049	0.043	0.043	0.055	0.055
(11) E\&SO outer	42	40	-0.12 ± 0.004	3.23 ± 0.3	0.0412 ± 0.01	0.0399 ± 0.01	0.024	0.033	0.032	0.028	0.026	0.04	0.038
(12) E\&SO bright	49	49	-0.135 ± 0.006	3.49 ± 0.6	0.0461 ± 0.009	0.0461 ± 0.008	0.025	0.039	0.039	0.033	0.033	0.045	0.045
(13) E\&SO faint	49	47	-0.132 ± 0.01	3.42 ± 0.8	0.065 ± 0.02	0.0612 ± 0.01	0.023	0.061	0.057	0.054	0.05	0.069	0.065
(14) members bright	140	128	-0.144 ± 0.004	3.62 ± 0.3	0.0657 ± 0.01	0.0589 ± 0.006	0.024	0.061	0.054	0.057	0.05	0.066	0.058
(15) members faint	136	118	-0.116 ± 0.005	3.16 ± 0.3	0.086 ± 0.02	0.0682 ± 0.008	0.054	0.067	0.042	0.061	0.035	0.074	0.049

Figure 3.3: The colour magnitude relation for all galaxies determined as members of the Coma cluster through having a recessional velocity within $3000 \mathrm{kms}^{-1}$ of $7000 \mathrm{Kms}^{-1}$ (dataset (i)). The magnitudes are estimated total V magnitudes $\left(V_{T}\right)$, whereas the colours are taken from $13^{\prime \prime}$ diameter apertures.Different colour symbols represent different morphological types as determined from Andreon et al. (1996) and Andreon, Davoust, \& Poulain (1997). The solid line shows the best fit to the data using the biweight minimisation technique (see text). The solid line is a best fit to all the data points. The dashed lines show the 1σ and 3σ scatter after a single 3 sigma sigma clipping operation.

3.3.1 Morphological dependence of the CMR

In this section we examine variations in the CMR of galaxies of different morphological types. We use the broad morphological types defined in table 3.1. The dividing lines between the various types is somewhat arbitrary, and we err towards the later morphological types, i.e. we classify a galaxy of type diE/SA0 as S0, and one of type SA0/a as spiral. Because we have both a clipped and unclipped scatter indicator, we can investigate the scatter of the main ridge line of the CMR, and the amount of blue-ward scattering separately. Initially we shall concentrate on the ridge line, using the clipped scatter indicator. Looking at the morphologically segregated datasets ($3,4,5,6$ and 7) in table 3.4, they all have levels of intrinsic scatter indistinguishable within the measurement errors

Figure 3.4: This figure, together with figures 3.5 and 3.6 show the CMRs for each of the datasets defined in the main text. The symbols are the same as those used in figure 3.3, however the dashed lines in these plots are different. They represent the 3σ scatter of the galaxies about the best fit line for the full dataset and for the clipped dataset. Because of the efficiency of the biweight scale indicator used (Beers, Flynn, \& Gebhardt 1990) when dealing with outliers in non-Gaussian distributions, the clipped and non clipped datasets have similar measured levels of scatter for the most part.
($\sim 0.05 \mathrm{mag}$), except for the elliptical galaxies (dataset 6) which has significantly lower levels of scatter (0.036 mag). It is worth noting that our late type galaxy dataset (7), has an indistinguishable CMR ridge-line from the S 0 types. Figure 3.8 shows snapshots of the V band images of these 'red' spirals. All of the galaxies in figure 3.8 are within 3σ of the best fit CMR for dataset 6 , so are included in the clip. Some of the galaxies are borderline SA0/a, however they are the minority, and cannot in themselves explain the low scatter. All of the 'red' spiral galaxies have fainter disks compared to the 'blue'

Figure 3.5: See figure 3.4
spirals in figure 3.7. The 'blue' spirals also seem to be more compact, thus more of the disk component appears in the $13^{\prime \prime}$ aperture marked in the figures. We conclude that these 'red' spirals are 'anemic' (e.g. Van Den Burgh, 1991), and that they have lost their H_{I} gas through interactions with the intra cluster medium.
When we look at the results for the unclipped datasets, a difference between the morphological types appears. The ellipticals are unaffected, having had no galaxies removed by the clipping algorithm, and they still have the lowest intrinsic scatter. The S 0 galaxies only had two galaxies clipped (GMP4945 and GMP4974), so their intrinsic scatter is only marginally increased to 0.053 mag by their presence. The late type galaxies however, had seven galaxies clipped, six of which are very blue compared to the CMR ridge-line. The inclusion of these seven galaxies takes their intrinsic scatter to 0.074 mag , however

Figure 3.6: See figure 3.4
the presence of these blue galaxies is not surprising, as spiral galaxies are almost by definition actively star forming objects. Figure 3.7 shows snapshots of the V band images of these blue spirals, which even with our poor spatial resolution, can be made out to be very obviously late type. Perhaps the most surprising aspect of these galaxies, is not their presence, but the fact that there are only seven of them, out of the 32 late types in our sample.

The only other dataset with large numbers of 'blue' galaxies, is dataset 1 (all cluster members). These blue galaxies are, in addition to the late type galaxies noted above, morphologically untyped. Figure 3.9 shows V band images of all of the galaxies which deviate from the CMR ridge line for dataset 1 by more than 5σ. It is immediately obvious

Dataset	Number		Slope	Intercept	Observed scatter (σ) full	
	full	clip	clip	clip	clip	
(1) All members	267	237	-0.108 ± 0.001	2.98 ± 0.08	0.0774 ± 0.009	0.0665 ± 0.006
(2) $V_{13}<17$	199	178	-0.107 ± 0.002	2.96 ± 0.1	0.0736 ± 0.009	0.0651 ± 0.007
(3) All with morph	127	117	-0.108 ± 0.003	2.98 ± 0.2	0.0643 ± 0.01	0.0585 ± 0.007
(4) E\&S0 morph	95	93	-0.103 ± 0.002	2.9 ± 0.2	0.0589 ± 0.01	0.0572 ± 0.008
(5) S0 morph	69	67	-0.1 ± 0.004	2.87 ± 0.3	0.0635 ± 0.01	0.061 ± 0.01
(6) E morph	26	26	-0.111 ± 0.005	3.02 ± 0.3	0.0468 ± 0.01	0.0468 ± 0.01
(7) Sp morph	32	24	-0.139 ± 0.007	3.45 ± 0.6	0.0846 ± 0.07	0.0546 ± 0.03
(8) E\&S0 center	76	75	-0.0997 ± 0.003	2.85 ± 0.2	0.0553 ± 0.008	0.0533 ± 0.007
(10) E\&S0 inner	53	51	-0.103 ± 0.004	2.93 ± 0.3	0.0597 ± 0.01	0.054 ± 0.008
(11) E\&S0 outer	42	39	-0.0987 ± 0.002	2.82 ± 0.2	0.0453 ± 0.01	0.0394 ± 0.008
(12) E\&S0 bright	48	48	-0.0905 ± 0.003	2.73 ± 0.3	0.0452 ± 0.008	0.0452 ± 0.009
(13) E\&S0 faint	48	47	-0.0958 ± 0.01	2.79 ± 0.7	0.0748 ± 0.02	0.072 ± 0.01
(14) members bright	138	126	-0.104 ± 0.004	2.92 ± 0.2	0.0713 ± 0.01	0.0643 ± 0.009
(15) members faint	130	112	-0.105 ± 0.003	2.92 ± 0.3	0.0859 ± 0.02	0.0684 ± 0.009

Table 3.5. This table shows the regression calculation, using the same method as table 3.4 but using the estimated total V magnitudes (see chapter 2. We have not attempted to calculate the intrinsic scatter, as the errors on the estimated total magnitude are not well defined. These values are not used further in this chapter, but are needed by the analysis of the CMR presented in chapter 4.
that they are predominantly of late type (e.g. GMP4570), although in some cases it is difficult to tell (e.g. GMP3848).

3.3.2 Luminosity dependence of CMR

The last set of datasets are the ones where we segregated the galaxies according to their luminosity ($12,13,14$ and 15). We have separated the early type galaxies dataset (4) into two halves of equal numbers, with the bright half of the galaxies in dataset 12 , and the faint half in dataset 13.Because the members dataset (1) spans a much larger range in luminosity than do the datasets with only morphologically typed galaxies, we split that into two halves too (datasets 14 and 15).

The bright and faint early type galaxies have indistinguishable slope and intercept, however the bright sample has lower intrinsic scatter. This seems to be related to the lower scatter of the outer early type galaxies (dataset 11) compared to the inner (dataset 10), which has more faint galaxies. We cannot tell however, whether the inner galaxies

Figure 3.7: V band images of the spiral type galaxies which lie blue-wards of the measured CMR for spiral galaxies (dataset 7) by more than $5 \sigma_{\text {clip }}$. The circle represents the $13^{\prime \prime}$ diameter aperture used in the measurements of both the colours and the magnitudes for the results in table 3.4. The line in the lower left of each panel shows the width of the seeing disk in each image.
have more scatter because they contain a larger number of faint galaxies, or whether the faint galaxies (dataset 13) have more scatter because they contain more inner galaxies.

The two halves of the complete members dataset, have differing slopes, but this seems to be nothing more than an aperture effect, as the slopes are indistinguishable when measured using the estimated total magnitudes (table 3.5). Although the observed scatter in the faint sample is larger than that of the bright sample, it has twice the mean observational error $\left(\bar{O}_{c}\right)$. Once the difference in the observational errors is taken into account, both the bright and the faint samples have similar values for the intrinsic scatter.

3.3.3 Environmental dependence of the $C M R$

We have also defined subsamples of the cluster members according to their position in the sky. Datasets 10 and 11 contain galaxies which are either within $15 \operatorname{arcmin}$ of NGC4874 or not, respectively, while datasets 8 and 9 contain galaxies which are either nearer to NGC4874 or NGC4839 respectively (see table 3.3). We have restricted ourselves to

Figure 3.8: V band images of the spiral type galaxies which lie within $3 \sigma_{\text {clip }}$ of the CMR for spiral galaxies (dataset 7). The circle represents the $13^{\prime \prime}$ diameter aperture used in the measurements of both the colours and the magnitudes for the results in table 3.4. The line in the lower left of each panel shows the width of the seeing disk in each image.

Figure 3.9: V band images of all of the galaxies which lie more than $5 \sigma_{\text {clip }}$ blue-ward of the CMR for the members dataset (dataset 1). Text and symbols in the plot are as for figure 3.1. Of the galaxies that have morphologies, most are of spiral type, with only one SAO galaxy. Many of the galaxies without morphologies, also exhibit signs of late morphological types.
early type galaxies (ellipticals and S0s) to avoid as much as possible any bias arising from the morphology-density relation within the cluster, although section 3.3.1 showed there to be little variation in the properties of the CMR ridge-line between the different morphological types. The low number of galaxies in the SW sample make it very difficult to measure its scatter, the measured scatter in the full dataset is 0.07 ± 0.06, so we instead concentrate on the scatter in the central and outer samples (datasets 10 and 11). Here we see something unexpected. The outer dataset has less scatter (both observed and intrinsic) than the inner dataset. Although it is only marginally significant, it is just the opposite of what we would expect. Figures 3.5 and 3.6 show the CMRs for these datasets. From them we can see that they both have similar numbers of elliptical and S0 galaxies. There are too few elliptical galaxies in each dataset to be able to measure the scatter reliably for just the ellipticals in each one, but it is possible for the S 0 galaxies. This shows the effect to be unrelated to morphology, with the 41 inner S 0 galaxies having an unclipped observed scatter of 0.0597 ± 0.02 and the 30 outer galaxies having an unclipped observed scatter of 0.0377 ± 0.01. Figure 3.10 shows the luminosity function for both datasets. It shows that the inner dataset has more faint galaxies than does the outer one, but the majority of the galaxies are still in the magnitude range where the photometric errors stay almost constant (see figure 2.11). This is reflected in both datasets having the same mean observational errors (table 3.4).

3.3.4 Gradients

We have used a running biweight to attempt to determine whether the CMR scatter really does decrease towards the outer parts of the cluster. Firstly we excluded the galaxies around NGC4839 group, then we ordered the galaxies according to their projected distance from NGC4874, and calculated running biweight location and scale indicators for the residuals from the CMR ridge line for three datasets, the full dataset (1), the early type galaxy dataset (4) and a dataset of just the S 0 galaxies (see figure 3.11). In all three panels, the $(U-V)$ residuals are calculated using the best fit CMR to the whole data, i.e. $\Delta(U-V)=(U-V)-(m V+c)$

Figure 3.10: The luminosity functions for the inner and outer $\mathrm{E}+\mathrm{S} 0$ datasets (10 and 11). The lined histogram represents the luminosity function for the outer dataset (11) and the outlined histogram represents the luminosity function of the inner dataset (10). Although the inner dataset has more faint objects than does the outer dataset, it is over a region where the observational errors in the photometry are hardly increasing at all, hence the mean observational errors for both datasets is the same (see table 3.4)
such that negative values of $\Delta(U-V)$ imply a galaxy is positioned to the blue side of the CMR ridge line. The m and c above are the slope and intercept of the solution from table 3.4. The first panel, using all the cluster members shows a slight increase in scatter with radius, however this could simply be due to the larger number of blue late types on the outer parts of the cluster. In order to avoid this, we used the early type galaxies dataset. This gets around the problem of faint galaxies by not including any, and similarly avoid the problem of blue late types. This time the scatter remains almost constant, with a

Figure 3.11: The residuals $(U-V)-(m V+c)$ of each galaxy from the best fit CM relation plotted against $\log _{10}$ projected distance from NGC4874 in arc minutes for three of the datasets described in the text. Objects around NGC4839 have been discarded. The thin line shows the running biweight location indicator and the thick line shows the running scale indicator. Both indicators have a maximum binsize of 40 . This reduces to 10 at both ends. The solid straight line is a biweight fit to all of the data, the slope of which (m), and its 1σ bootstrap error is shown in each panel. The data extends out to ~ 30 arcmin from NGC4874. There is some evidence for decreasing scatter with distance in the $\mathrm{E}+\mathrm{SO}$ and the S 0 panels, however it is only marginal and does not seem to be present in the complete cluster members dataset. Both the location indicator and the simple linear biweight fit show a progressive blueing of the residuals from the best fit CMR with increasing projected cluster-centric distance for all three datasets.
very small downward gradient. All three panels also show that the residuals from the CMR seem to getting systematically bluer towards the edges of the cluster. It seems unlikely that this could be an age effect without also incurring an increase in the scatter of the CMR, which leaves two possibilities. Firstly it could simply be a radial drift in our photometric zero points. Although we checked for this against the data of Bower, Lucey, \& Ellis (see figure 2.12), it only extends out to a radius of 15 arc minutes, which is also where this effect begins to be noticeable. We can however make a quick estimate of the expected drift in our photometry. We have on average 20 objects in the overlap regions, with rms photometric errors of 0.026 mag (see table 2.4), which gives an rms colour error between images of $0.026 / \sqrt{20}$. Now to get to a radius of $30 \operatorname{arcmin}$, we need to traverse at least 3 image boundaries, so the error accumulated is $\sqrt{3} \times 0.026 / \sqrt{20}=0.01 \mathrm{mag}$. However, the radius can be calculated in may different directions, and the photometric zero point for each image was indeed calculated in an iterative way such that any errors would dissipate in a two dimensional manner, so the value of 0.01 mag (much smaller than the value of the colour gradient) can be regarded as an upper limit.

An alternative explanation could be that the galaxies in the center of the cluster are being reddened due to intercluster dust. The upper limit on the reddening through dust in the core of Coma, as compared to the field is $E(U-V) \leq 0.08 \mathrm{mag}$ Ferguson (1993). could account for this amount of reddening, it could also add an extra source of scatter to the central parts of the cluster not present in the outer parts. Galaxies behind the cluster would appear both fainter and redder than an identical galaxy in front of the cluster. This would in effect increase the scatter in the CMR, but only in the central parts.
We can make a quick estimate for the contribution of this dust to the scatter in the core of the cluster. Firstly, we imagine we are looking at the core of the cluster down a pencil beam, and we define r as the distance from the core of the cluster down the beam, such that $r=-d / 2$ is the front of the cluster, and $r=d / 2$ is the rear of the cluster. d is the width of the cluster, and is somewhat arbitrary. We also assume that the galaxies and dust have the same isothermal density distribution:
$\delta(r)=\frac{1}{1+\left(\frac{r}{r_{c}}\right)^{2}}$
where r_{c} is the core radius. The amount by which a galaxy at $r=x$ is reddened, is then
$\dot{R}(x)=\alpha \int_{-d / 2}^{x} \delta(r) d r=\alpha r_{c}\left[\arctan \left(\frac{r}{r_{c}}\right)+\arctan \left(\frac{d}{2 r_{c}}\right)\right]$
α is a constant, which we chose in ordrer to satisfy our boundary condition, that we get the required reddening in the center of the cluster, i.e. $R(0)=0.08 \mathrm{mag}$ (Ferguson 1993):
$\alpha=\frac{0.08}{r_{c}\left[\arctan \left(\frac{d}{2 r_{c}}\right)\right]}$
We then calculate the first and second moments of the distribution of $R(r)$:
$\bar{R}=\frac{\int_{-d / 2}^{d / 2} R(r) \delta(r) d r}{\int_{-d / 2}^{d / 2} \delta(r) d r}=\alpha r_{c} \arctan \left(\frac{d}{2 r_{c}}\right)$
and
$\bar{R}^{2}=\frac{\int_{d / 2}^{-d / 2} R^{2}(r) \delta(r) d r}{\int_{-d / 2}^{d / 2} \delta(r) d r}=\frac{4}{3} \alpha^{2} r_{c}^{2} \arctan ^{2}\left(\frac{d}{2 r_{c}}\right)$

The standard deviation of $R(r)$ is then
$S D(R)=\sqrt{\bar{R}^{2}-\bar{R}^{2}}=\frac{\alpha r_{c} \arctan \left(\frac{d}{2 r_{c}}\right)}{\sqrt{3}}=\frac{0.08 \mathrm{mag}}{\sqrt{3}}=0.046 \mathrm{mag}$
It should be remembered that this is a very rough model for the distribution of dust and galaxies in the cluster. The distribution of dust especially is very poorly known. Clearly from the fact that the levels of scatter in this model is greater that that measured for elliptical galaxies, we can say that the dust is either not distributed as an isothermal sphere, or that the limit for dust in the core is lower than the number quoted by Ferguson (1993).

The other possibility for the blueing towards the edges, is a difference in mean galactic age. Using the models for a single burst stellar population of age 10Gyr from Bower, Kodama, \& Terlevich (1998), we find that $d(U-V) / d t \sim 0.03 \mathrm{mag} / \mathrm{Gyr}$. This would make the outer galaxies approximately 2 Gyr younger than the central galaxies. Assuming younger ages for the galaxy population, would make the difference in age between the inside and the outside smaller, i.e. if the galaxies are only 5 Gyr old, the difference in age between the inner and outer galaxies is only 1Gyr. Abraham et al. (1996) find a $(g-r)$ colour gradient with projected radius in the $z=0.23$ cluster Abell 2390 of $m=-0.08$ mag $\log 10\left(r_{p}\right)^{-1}$, which they attribute to an age trend. To compare the Coma colour gradient with that of A2390, we used template early type galaxy spectra to K correct the Coma colours to the redshift of Abell 2390, and to convert them from $U-V$ to $g-r$. We find that the gradient shown in figure 3.11 for early type galaxies, is transformed into $m=-0.024$ mag $\log 10\left(r_{p}\right)^{-1}$, a third of that measured in A2390.

A similar argument to the one above for the increased scatter in the core due to dust also applies in this case. When we look at the core, we also include galaxies in the foreground and background which are not in the cluster core, so are bluer than the core galaxies. This effect is not as large as the dust effect however, because the galaxies behind the cluster are just as blue as galaxies in front of it.

3.4 Discussion

We have placed new limits on the levels of scatter in the $(U, V) \mathrm{CMR}$ of the Coma cluster. The cluster members were split into groups depending on their morphology, luminosity or position on the sky, and the CMR was studied in each of them. We found the properties

Figure 3.12: This figure, together with figures $3.13,3.14,3.15$ and 3.16 show V band images of all of the confirmed member galaxies which have not been rejected (dataset (i)). The galaxies which have been rejected are shown in figure 3.1. The symbols and text in the panels are as in figure 3.1.

Figure 3.13: see figure 3.12

Figure 3.14: see figure 3.12

Figure 3.15: see figure 3.12

Figure 3.16: see figure 3.12
of the ridge-line to be surprisingly consistent between all of these groups. We have also calculated upper and lower limits for the intrinsic scatter in each galaxy sample, taking into account the low number statistics that we are dealing with for some of them. The results are presented in tables 3.4 and 3.5.

We find no variation in the slope of the CMR ridge-line between most of the different morphological types, apart from the late type galaxy sample, which has a marginally steeper slope, even when using estimated total magnitudes (table 3.5). This could be connected to the increased blue scatter we find towards the faint end of the CMR. In the galaxies for which we have morphological types, all of these very blue galaxies are late types. Figure 3.9 shows that even with our poor spatial resolution, which tends to make galaxies look of an earlier type, many of the unclassified blue galaxies are also of late type. The slope also remains constant with luminosity when using estimated total magnitudes, and with position of the galaxies within the cluster, indicating a universal metallicity/mass ratio.

The presence of such a large fraction of early type galaxies on the CMR ridge line, with no increase in the CMR scatter, is at first worrisome, but figure 3.8 shows that our 13arcsec aperture is dominated by bulge light, and that in every case, the galaxies possess only a very faint disk. This could be a low redshift analogue of the trend seen in high redshift clusters by Dressler et al. (1997) who conclude that ellipticals predate the cluster virialisation, but that late type galaxies turn into S0 galaxies upon encountering the cluster.

We find evidence for a colour gradient in the CMR corrected colours with projected cluster distance. Using a naive calculation for the expected slope in the photometric zero points, we conclude that it is at least a 6σ result. The slope of the gradient is approximately one third the size of that found by Abraham et al. (1996) in the $z=0.23$ cluster Abell 2390, who attributed this to a gradient in the mean ages of the galaxies. We also find some evidence for decreasing scatter in the early type galaxies towards the outskirts of the cluster as compared with the central parts. The upper limit for $E(U-V)$ (Ferguson 1993) in the cluster core is approximately equal to the $U-V$ colour gradient observed, however we calculated the increased scatter produced in the CMR by the presence of enough dust in the cluster core to account for the colour gradient, and found that it was greater than the scatter observed in the elliptical galaxies. We therefore conclude that there cannot be
sufficient dust in the cluster core to account for the entire gradient, and some must be due to age.

By comparing the colours with the stellar evolution models of Bower, Kodama, \& Terlevich (1998), we estimate that the maximum age difference between the galaxies in the center of the cluster, and in the outskirts" is 2Gyr. Although younger galaxies have more scatter in their CMRs than old galaxies (Bower, Lucey, \& Ellis 1992b, Bower, Kodama, \& Terlevich 1998), when we look at the core of the cluster, we are also being contaminated by young galaxies in front and behind the cluster.

3.5 Summary

-We placenew limits on the intrinsic scatter of the CMR for elliptical galaxies in the core of the Coma cluster. We find the intrinsic scatter to be 0.036 mag , with a lower limit of 0.029 mag and an upper limit of 0.045 mag .

- We have found no significant variations in the slope of the CMR between different morphological types of galaxy in the Coma cluster,apart from the late morphological type sample, which has a marginally steeper slope.
- We have found no significant variations in the slope of the CMR between different areas of the cluster, i.e galaxies within or without the central 15 arc minutes, and galaxies around the substructure associated with NGC4339 in the SW.
- We find no evidence for a variation of the CMR slope along its length, so long as the magnitude is a total one. When measured from a small aperture, the CMR slope increases at the bright end. We also find no evidence for an increase in the scatter of the CMR ridge-line with decreasing luminosity.
- Most of the galaxies bluewards of the CMR are either known late type galaxies (Andreon et al. 1996, Andreon, Davoust, \& Poulain 1997), or seem to have late type morphologies (see figure 3.9).
- The intrinsic scatter of the CMR ridge-line is the same for S 0 and for late type galaxies ($\sim 0.05 \mathrm{mag}$). The elliptical galaxies have smaller scatter ($\sim 0.035 \mathrm{mag}$).
- We find the scatter for the early type galaxies in the outskirts of the cluster to be marginally smaller than for the early type galaxies in the center. We also find a significant trend for the residuals about the CMR to become bluer with increasing distance from NGC4874. We rule out intra cluster dust as the sole effect, and conclude that there must be a radial gradient in the mean ages of the galaxies.

References

Abraham R. G. et al., 1996, ApJ, 471, 694
Andreon S., Davoust E., Michard R., Nieto J. L., Poulain P., 1996, Astronomy and Astrophysics Supplement Series, 116, 429

Andreon S., Davoust E., Poulain P., 1997, Astronomy and Astrophysics Supplement Series, 126, 67
Baier F. W., 1984, Astronomische Nachrichten, 305, 175
Beers T. C., Flynn K., Gebhardt K., 1990, AJ, 100, 32
Bender R., Burstein D., Faber S. M., 1992, ApJ, 399, 462
Biviano A., Durret F., Gerbal D., Le Fevre O., Lobo C., Mazure A., Slezak E., 1996, A\&A, 311, 95
Bower R. G., Kodama T., Terlevich A. I., 1998, MNRAS, 299, 1193, astro-ph/9805290
Bower R. G., Lucey J. R., Ellis R. S., 1992a, MNRAS, 254, 589
Bower R. G., Lucey J. R., Ellis R. S., 1992b, MNRAS, 254, 601
Briel U. G., Henry J. P., Boehringer H., 1992, A\&A, 259, L31
Caldwell N., Rose J. A., Franx M., Leonardi A. J., 1996, AJ, 111, 78
Caldwell N., Rose J. A., Sharples R. M., Ellis R. S., Bower R. G., 1993, AJ, 106, 473
Colless M., Dunn A. M., 1996, ApJ, 458, 435
Djorgovski S., Davis M., 1987, ApJ, 313, 59
Dressler A., Lynden-Bell D., Burstein D., Davies R. L., Faber S. M., Terlevich R., Wegner G., 1987, ApJ, 313, 42
Dressler A. et al., 1997, ApJ, 490, 577
Ellis R. S., Smail I., Dressler A., Couch W. J., Oemler J., Augustus, Butcher H., Sharples R. M., 1997, ApJ, 483, 582
Escalera E., Slezak E., Mazure A., 1992, A\&A, 264, 379
Faber S. M., 1973, ApJ, 179, 731
Ferguson H. C., 1993, MNRAS, 263, 343
Frogel J. A., Persson S. E., Matthews K., Aaronson M., 1978, ApJ, 220, 75
González J. J., 1993, Ph.D. thesis, Univ. California, Santa Cruz
Jorgensen I., Franx M., Kjaergaard P., 1993, ApJ, 411, 34
Kodama T., 1997, Ph.D. thesis, Institute of Astronomy, University of Tokyo
Kodama T., Arimoto N., 1997, A\&A, 320, 41
Kodama T., Arimoto N., Barger A. J., Arag'On-Salamanca A., 1998, A\&A, 334, 99
Kuntschner H., 1998, Ph.D. thesis, Department of Physics, University of Durham
Kuntschner H., Davies R. L., 1998, MNRAS, 295, L29
Larson R. B., Tinsley B. M., Caldwell C. N., 1980, ApJ, 237, 692

Mehlert D., Bender R., Saglia R. P., Wegner G., 1998, in Untangling Coma Berenices: A New Vision of an Old Cluster, p. 107

Pahre M. A., Djorgovski S. G., De Carvalho R. R., 1995, ApJ, 453, L17
Persson S. E., Frogel J. A., Aaronson M., 1979, ApJS, 39, 61
Saglia R. P., Bender R., Dressler A., 1993, A\&A, 279, 75
Saglia R. P., Burstein D., Baggley G., Bertschinger E., Colless M. M., Davies R. L., McMahan J., Robert K., Wegner G., 1997, MNRAS, 292, 499

Secker J., Harris W. E., Plummer J. D., 1997, PASP, 109, 1377
Van Den Burgh S., 1991, PASP, 103, 390
Vikhlinin A., Forman W., Jones C., 1994, ApJ, 435, 162
Visvanathan N., Sandage A., 1977, ApJ, 216, 214
White S. D. M., Briel U. G., Henry J. P., 1993, MNRAS, 261, L8
Worthey G., 1994, ApJS, 95, 107
Zabludoff A. I., Zaritsky D., Lin H., Tucker D., Hashimoto Y., Shectman S. A., Oemler A., Kirshner R. P., 1996, ApJ, 466, 104
Zepf S. E., Whitmore B. C., Levison H. F., 1991, ApJ, 383, 524

Chapter 4

Evolution of the Colour Magnitude relation through mergers.

Abstract

In this chapter, we address the question of whether the present day galaxies can have formed the bulk of their stars in smaller units, which subsequently merged. We use models based both on random and hierarchical merger scenarios to place limits on the amount of merging that can take place before the scatter in the CMR grows to unacceptable levels. We find that regardless of the model used for merging scenario, the CMR scatter does not increase to unacceptable levels so long as the merging within the cluster does not increase the mass of a 'typical' galaxy by more than a factor of two.

4.1 Introduction

The low levels of scatter in the colour magnitude relation can be used to place important constraints on the star formation histories of its constituent galaxies (e.g. see chapter 5). In the single burst model of galaxy formation, all the stars which will eventually form a galaxy in the present day, form in situ in a single burst. The star formation goes on unchecked until the most massive stars evolve to the supernova phase, injecting energy (and metals) into the inter stellar medium. The amount of time for which this enrichment phase continues depends on the size of the dark matter halo in which the galaxy sits. More massive dark matter haloes can contain the SN ejecta for longer than can low mass haloes,
so the reprocessing of the ISM goes on for longer, building up higher metallicities. This supernova driven wind (or galactic wind) model (Larson 1974, Arimoto \& Yoshii 1987) naturally explains the slope of the CMR as a trend of the mean stellar metallicity as a function of galactic mass.

The young stellar populations start off with very blue colours, but rapidly redden as the hot blue stars evolve off the main sequence. The colour of the population asymptotically approaches the colour of the reddest stars in the galaxy, making the colours of stellar populations are far more sensitive to their age for younger populations than for old ones. It follows that the only way of obtaining a small scatter in the CMR in such models is for either the formation of all of the galaxies to have occurred in some coordinated event, or for all of the galaxies to be so old that the differences in their ages no longer contributes overly to the scatter in the CMR. Bower, Lucey, \& Ellis (1992b) used such a single burst model, together with stellar synthesis models for the evolution of the colours of single burst stellar populations (Bruzual A. 1983). They claimed that the bulk of stars in early type galaxies must have formed over 10Gyrs ago if their formation was only loosely coordinated, i.e. the spread in galaxy formation times was comparable to the characteristic collapse time scale at the epoch of formation. This constraint is not really loosened through the use of more realistic star formation histories, such as ones where the star formation rate (SFR) exponentially decays. Bower, Kodama, \& Terlevich (1998) used the scatter in the CMR to place constraints on such exponentially decaying SFR models. They found that the CMR scatter only weakly constrains the epoch at which star formation ceases, but still requires the bulk of the stars to have formed at large look back times.

Differential evolution of the galaxy colours is not the only mechanism which increases scatter in the colour magnitude relation. About one third of local ellipticals have peculiarities, possibly associated with mergers/interactions (see Kormendy \& Djorgovski (1989)). There is evidence for secondary bursts of star formation in high redshift clusters (e.g. Butcher \& Oemler 1978, Butcher \& Oemler 1984, Couch \& Newell 1984, Couch \& Sharples 1987, Barger et al. 1996), and also in local clusters (albeit much weaker than their higher redshift counterparts) (Caldwell et al. 1993, Caldwell et al. 1996). The UBV colours and $H \beta$ line strengths of local ellipticals are also
correlated with the fine structure index, which measures the amount of dynamical disturbances in the galaxy (Schweizer et al. 1990, Schweizer \& Seitzer 1992). This all points to galaxy interactions and mergers playing an important role in the recent history of early type galaxies in local clusters. It is important here that we distinguish between mergers in which substantial star formation takes place and those that take place between systems consisting only of stars, termed dissipationless merging by Bender, Burstein, \& Faber (1992). Dissipationless merging between galaxies of different mass (and hence colour) will tend to average out the colours of the resultant galaxy, reducing the slope in the CMR. Because galaxies of the same final mass which formed out of a different distribution of fragment masses will have different final colours, dissipationless mergers also increase the CMR scatter. If the merging fragments contain gas, they can form stars in a burst during the merger. This burst will feel the potential of the new galaxy, so as with the supernova wind model above, the new stars will have metallicities (and hence colours) corresponding to the new galaxy's mass. Once this new stellar population ages, they will become redder than the stellar populations of the progenitors, thus reducing the destructive effect of the merger on the CMR. If enough gas is present in the merging fragments, and the merging takes place early enough in the evolution of the cluster (the differential evolution of the stellar population colours still constrains the bulk of the stars to be old), then the CMR will be preserved.

Extended Press-Schecter theory (Press \& Schecter 1974, Bower 1991, Bond et al. 1991) gives a formalism for the merger history of dark matter haloes of the galaxies which end up in a given environment in the present day. By taking this gravitational framework and adding to it simple schemes for gas cooling, star formation and energy and gas feedback from supernova winds, White \& Frenk (1991), Kauffmann, White, \& Guiderdoni (1993), Cole et al. (1994) (and subsequent papers) have developed semi-analytical models for the formation of galaxies. Kauffmann (1996) and Kauffmann \& Charlot (1998) are able to reproduce both the slope and scatter of the CMR in local rich clusters, despite the fact that considerable merging occurs between stellar components to form the final galaxies. This is due to the correlation between a galaxy's final mass, and the mass of its progenitors. In their model, larger galaxies form
from systematically larger fragments than do smaller galaxies, thus preserving the CMR through the merging process.

One of the problems with these semi-analytical models for the formation of structure, is the lack of knowledge we have of many of the processes involved. The least uncertain of the processes involved are the dynamical evolution of the dark matter haloes, and the evolution of the stellar populations. The dynamical behaviour of the gas, and the feedback loops produced through the injection of energy, mass and metals into the gas by the stars is poorly understood, and the results of the models can be greatly modified through a large number of initial parameters which can at the moment only be determined through plausibility arguments.

In this chapter, we will attempt to construct a model for how the CMR evolves through merging in as simple a way as possible. The case in which mergers promote star formation cannot be considered in general terms and a specific model for star formation in galaxy mergers, and the conversion between hot and cold gas phases is required (eg., Kauffmann \& Charlot (1998), Baugh et al. (1998) [BCFL]). So instead, we bypass the poorly understood area of star formation, feedback and gas dynamics by concentrating entirely on dissipationless mergers, and construct our models, where possible, to be insensitive to the choice of any initial parameters we introduce. By investigating the effects of dissipationless mergers upon the CMR we shall attempt to illuminate the general constraints that can be derived regardless of the specific star formation model, and thus determine whether the hierarchical models really do produce low scatter CMRs through their correlated merger histories, or through fine tuning of their star formation processes.

4.2 Models for the Merger Histories of Galaxies

In order to model how the CMR evolves through dissipationless mergers, we allocate galaxies to an initial 'primordial' colour magnitude relation. We assume that the initial relation is exact and that there is no differential evolution of galaxy luminosities and colours. This is clearly an over simplification, but it distinctly separates the effects of the evolution of the stellar population from those due to the merging of galaxies. Under these conditions, the slope of the initial relation is the only parameter connecting the galaxy mass with its colour. We emphasise that this scaling is arbitrary, and that choice
of a steeper initial slope simply re scales the final slope and the final scatter. The key parameter that must be matched is the ratio between the scatter about the average CMR and its slope.

$$
\mathrm{R}=\frac{\text { scatter }}{\text { final slope }}
$$

This ratio is independent of the initial slope in the model. Thus, without knowing the initial slope of the relation, we can use R to place an upper-limit on the importance of dissipationless mergers.

The primordial CMR is evolved to the present day using a merging model. To correctly account for the gravitational evolution of the galaxies' dark matter haloes, and to calibrate the evolution onto a (model dependent) redshift scale, we evolve our pseudo CMRs using merger histories as defined by the simulations of BCFL, we will refer to this as the 'hierarchical' merger model. In order to test the significance of the correlations in the hierarchical model (Kauffmann 1996, Kauffmann \& Charlot 1998), and to test for model dependence of the results, we have also formulated a 'random' merger model in which we remove any mass correlations in the merger history trees.

4.2.1 Hierarchical clustering

In order to generate galaxy merging histories, we use the formalism described in BCFL. This first generates a tree of merging haloes using the Monte-Carlo prescription outlined in Lacey \& Cole (1993). In order to follow the merging history of galaxies, an additional ingredient is required: the merging of galaxies within a common halo. BCFL use the merger time-scales as parameterised by Cole et al. (1994), who argue that the two most important factors governing the probability of a collision between two galaxies occurring within a dark matter halo are:

- Dynamical friction, A galaxy orbiting in a dark matter halo experiences a drag force, causing its orbit to decay and increasing the probability that it will undergo a collision. This process has a time-scale which decreases as the galaxy's mass increases.
- The probability of a merger between two galaxies which do collide, increases with increasing ratio between the internal velocity dispersion of the galaxies involved, to the encounter velocity (White 1976, Aarseth \& Fall 1980), and also to $M_{\text {sat }} / M_{\text {halo }}$,
where $M_{\text {halo }}$ is the mass of the dark matter halo in which the galaxies collide, and $M_{s a t}$ is the initial mass of the halo around the infalling galaxy.

Cole et al. (1994) therefore parameterise the merger time-scale ($\tau_{m r g}$) as a simple scaling law
$\tau_{m r g}=\tau_{m r g}^{0}\left(M_{\text {halo }} / M_{s a t}\right)^{\alpha_{m r g}}$
and fix the free parameters ($\alpha_{m r g}$ and $\tau_{m r g}^{0}$) using N -body/hydrodynamic simulations (Navarro, Frenk, \& White 1995) to $\alpha_{m r g}=0.25$ and $\tau_{m r g}^{0} / \tau_{d y n}=0.5$, where $\tau_{d y n}$ is the dynamical time scale of the halo, defined as half the age of the universe at the time when the halo forms.

Galaxies that have dynamical friction time scales less than the merger time scale of the halo are assumed to merge with the dominant galaxy. Since the dynamical friction time scale is shorter for more massive galaxies, this naturally generates a tendency for large galaxies to form from mergers of massive galaxies. This approach is generic to all hierarchical galaxy formation codes. We use the code of BCFL to produce a list of galaxy fragments and their evolution as a function of redshift. We emphasise that this is only used to produce the initial CMR and to select galaxies to be merged; BCFL's parameterisation of the star formation process is ignored in what follows.

To allow a comparison with local rich cluster CMR data, it is important that we only select merger histories corresponding to galaxies that are found in rich clusters at the final time. We incorporate this requirement by only constructing merger trees for objects bound into a dark matter halo with circular velocity greater than $1000 \mathrm{~km} / \mathrm{s}$ at the final time. In order to reduce computational overhead, also require that the final galaxy has absolute V magnitude brighter than -19 in BCFL's simulations. The final results are unaffected by the cut off since we determine the slope and scatter over only the brightest 4 magnitudes of the simulated CMR (see section 4.3)). We ran some models without the $V=-19$ cutoff to verify this.

Once the galaxy merger tree has been constructed, our approach diverges from the modelling of BCFL. We start by selecting an initial epoch ($z_{\text {form }}$). The galaxy fragments present in the tree $z=z_{\text {form }}$ are given a magnitude scaled to the \log of their total baryonic mass, and a colour according to an initial 'perfect' CMR (ie., colour $=$
slope \times magnitude + offset). As we have already emphasised, the 'colour' we calculate is purely illustrative and serves only to show the effect of mixing the stellar populations. We make no attempt to justify the initial zero-point or slope that is applied. The evolution can then be followed by simply combining the magnitudes and colours of the fragments as they merge to form the final galaxies at $z=0$. At some points in the tree the protogalaxies merge with 'new' fragments (fragments with progenitors that are below the mass resolution of the merger code); in order to be consistent with our dissipationless phenomenology, we do not incorporate these objects in to the merger scheme. In any case, the treatment of these objects is only significant if $z_{\text {form }}>2.5$; At later times, most of the mass which will form the galaxies in the final time step is already present in the merger tree. Each tree leads to the formation of a single galaxy at the present epoch. In order to match the numbers of galaxies in our observational sample the process is repeated in order to generate a realisation of the CMR.
Panels a, b \& c of Figure 4.1 show examples of the present-day CMRs that we derive by this approach. If the relation is established at relatively low redshift, the amount of merging is low enough that little evolution of the initial slope occurs. By contrast, a relation that is established at higher redshift is considerably weakened due to the large number of mergers that have taken place. Despite this, a discernible CMR exists at the present-day even if the initial relation is established at $z>2.5$. We fitted the CMR of the brightest four magnitudes of the relation by using the same biweight scale minimisation method as used for the Coma cluster CMR in chapter 3 (see appendix B for a description of the method). This is shown by a solid line in each of the panels. The robustness of the CMR to merging is surprising. As we show below it is due to the slow rate of mass growth in the hierarchical merger tree at late times.

4.2.2 Random mergers

In order to test the importance of the merger correlations in the hierarchical model, we repeated the Monte Carlo process using randomised merger trees. In order to be able to compare our results directly, we have based the simulation on the same galaxy merger trees used in the hierarchical model to imprint the initial CMR at $z=z_{\text {form }}$. However, rather than merging the fragments as ordered by the hierarchical tree, random

Figure 4.1: Example Monte-Carlo realisations of the present-day colour-magnitude relations produced by the hierarchical clustering model (top row) and the random merging model (bottom row). Details of the procedures used to generate these relations are given in the text. The solid line shows the mean CMR fitted by minimising the bi-weight scatter of the residuals, while the dashed line shows the initial relation, which is the same in all the panels. The three columns correspond to different redshifts at which the initial model CMR is implemented $z_{\text {form }}=0.5,1.8,2.6$ respectively. As can be seen the slope of the relation weakens and the scatter increases as the degree of merging between the initial epochs and the present-day increases. The effect is more marked for a random merging process than for the hierarchical merger model.
fragment pairs (possibly from different trees) are selected at each branch of the original tree. Fragments without progenitors in the hierarchical tree also have no progenitor in the random tree. This approach preserves both the initial mass distribution and number weighted merger rates, but essentially randomises what present day galaxy an object at $z=z_{\text {form }}$ will end up in, thus destroying the mass correlations present in the original trees.

As can be seen from Panels d, e \& f of Figure 4.1, the effect of the random mergers is to more rapidly reduce the slope of the initial tree and to rapidly increase the scatter of the CMR. Although a best fit line can be defined for these models, the slope varies
considerably between different realisations. The data used below have been averaged over thirty realisations of the random merger trees.

4.3 Comparison with Observational Data

We use the scatter in the present day CMR to constrain its formation history, however the scatter that we measure in the simulated CMRs can be made arbitrarily small by reducing the slope of the relation. For example, because we assume a coeval population and no differential colour evolution, initially allocating all galaxies the same colour will lead to a final CMR with zero scatter but also zero slope. The key requirement is therefore that the merging process is able to maintain the ratio between the scatter and slope (R) at or below the observed ratio. This is independent of our initial CMR, and allows us to compare both the models to each other and to real data.

Figure 4.2 summarises how the ratio R varies with $z_{\text {form }}$. In both random and hierarchical models R increases monotonically, however the hierarchical clustering model has a much slower increase of R with $z_{\text {form }}$. We compare these results with our data from the Coma cluster, presented in chapters 2 and 3 . The observed $U-V$ scatter is 0.059 (all galaxies, $V_{T}<17$, see table 3.5) and the observed CMR slope, measured using $U-V$ colours in a metric ($13^{\prime \prime}$) aperture and estimated total V magnitudes, is -0.1 . This gives a ratio of ~ 0.6. It is important to use the slope referenced to a total magnitude rather than an aperture measurement so that this quantity is conserved during the mergers as in the model calculation. However, to preserve a high signal to noise in the data, the colours that we use are taken from fixed size metric apertures, such that larger galaxies will have their colours measured in a smaller (relative to r_{e}) effective aperture than will small galaxies. Galaxies become bluer with increasing distance from the center, so this effect will tend to make smaller galaxies artificially bluer than large galaxies, adding to the CMR slope. We take the correction for this effect from Bower, Kodama, \& Terlevich, who estimate the size of this effect using the elliptical galaxy colour gradients measured by Peletier et al. (1990) (although not all of their early type galaxies are in the cores of rich clusters). Their mean colour gradient is measured in $U-R$ and $U-B$, but it can be converted to a gradient in $U-V$ using the late type stellar colours from Gunn \& Stryker, 1983. BKT find $\Delta\left(\mu_{U}-\mu_{V}\right) / \Delta \log r=-0.178 \mathrm{mag} / \mathrm{dex}$. This can be converted to a
change in aperture colour as a function of radius by integrating over the de Vaucouleurs $r^{1 / 4}$ profile, giving a change in colour of $-0.134 \mathrm{mag} / \mathrm{dex}$. In order to assess the effect of this colour gradient, it is simplest to compare with the observed slope of the colourmagnitude relation plotted in $U-V$ vs. D_{V} coordinates (D_{V} measures the size of the galaxy within which the mean surface brightness is $19.80 \mathrm{mag}_{\operatorname{arcsec}}{ }^{-2}$, Lucey et al., 1991). The observed slope in this parameter space is $0.46 \mathrm{mag} / \mathrm{dex}$ (BLE), which should be compared with the effect expected due to colour gradients of 0.134 (the aperture used to measure the colour remains fixed and therefore the relative size of the aperture is inversely proportional to D_{V}). Thus the colour gradient effect accounts for about 30% of the CMR slope. Including this correction raises the ratio of observed scatter to slope to 0.8 .

We can compare this limit with the simulated models. For the random model, the ratio R is already too large for $z_{\text {form }} \geq 0.9$. For the hierarchical model, R increases less rapidly, so that the constraint on $z_{\text {form }}$ is correspondingly weakened, and the observed limit on R only conflicts with the model strongly for $z_{\text {form }} \geq 2$ (although there is little room for additional sources of scatter once $z_{\text {form }} \geq 1.4$). Quoting these results in terms of redshift is, however, a little unsatisfactory as the redshift evolution of the objects mass is tied to the specific model for dynamical friction and the merger time scale adopted by BCFL in generating the galaxy merger tree. A more useful classification is the factor by which the masses of 'typical' galaxies have increased over the time scale of the simulation. We use the ratio of the mass-weighted mean mass (MWMM) between the final CMR and the 'primordial' CMR as a measure of the amount of mass growth.

> We calculate the MWMM as

$$
\text { MWMM }=\sum M_{g a l}^{2} / \sum M_{g a l}
$$

for all the galaxies in the model, where $M_{g a l}$ is the baryonic mass of each galaxy. We experimented with imposing 'magnitude' limits, but found them to have minimal effect on the results. Thus, the MWMM ratio is simply MWMM $_{z=0} /$ MWMM $_{z=z_{\text {form }}}$

The MWMM is analogous to M_{*} of the Press-Schechter mass function, and provides a measure of the 'typical' stellar mass of the model galaxy population. When setting up the primordial CMR, we assumed a constant mass-to-light along the sequence, so in these models mass and luminosity are directly proportional. It is therefore possible, by

Figure 4.2: The effect of mergers in a hierarchical clustering scenario. The solid line shows the how the ratio between present-day CMR scatter and slope (R) depends on the redshift $z_{\text {form }}$ at which test galaxies are assigned colours according to an exact correlation between colour and magnitude (the 'primordial' CMR). The effect of mergers in an equivalent random merging model is shown by the dashed line. The dotted line shows the present day value of R as measured form the Coma cluster photometry in chapters 2 and 3. See main text for details of how this was corrected for total magnitudes and colour gradients.
assuming a particular M / L ratio for the stellar population, to convert the MWMM into an equivalent luminosity, however, this is not required for the comparison we wish to make. The evolution of the MWMM ratio provides a simple measure of the mass a typical galaxy has gained in the merger process. In the hierarchical tree, this is not equivalent to the number of mergers: as we will see, the mergers at late times (low redshifts) are dominated by the accretion of small objects, which have little effect on the MWMM.

Figure 4.3: The evolution of the MWMM, expressed relative to the $z=0$ value, as a function the formation redshift $z_{\text {form }}$ for the a hierarchical merging model (open dots) and the random merging model (filled dots). Details of the models are given in the text. The lines are fits to the model results. They are used in figure 4.4 to convert from $z_{\text {form }}$ to MWMM ratio

Figure 4.3 shows how the MWMM evolves as a function of redshift for the hierarchical and random models. We first consider the hierarchical case. At low $z_{\text {form }}$, the MWMM ratio evolves only slowly: At these redshifts, a massive cluster has formed with a large dark matter halo, effectively quashing all merging within it (see equation 4.1). While there are still many mergers taking place at $z<0.5$, in the hierarchical merging models, these tend to be mergers which take place in small groups of galaxies which have not yet fallen into the main cluster, so tend to be between two or more small objects, or a large object with a small object. Neither of these processes significantly affect the MWMM. At higher

Figure 4.4: The evolution of the ratio between CMR scatter and slope (R) for the hierarchical galaxy merger model (solid line) and the random galaxy merger model (dashed line). Details of the models are given in the text. This figure is in effect the same as figure 4.2 but with the $z_{\text {form }}$ axis converted into the ratio of the mass weighted mean mass (MWMM) at $z=0$ to the MWMM at $z=z_{\text {form }}$, using the functions plotted in figure 4.3. The MWMM ratio gives a more model independent measure of how R evolves, as unlike z, it does not depend on the dynamical friction and merger time scales used by BCFL in constructing their merger trees. The observed value of R is shown as a dotted horizontal line. It can be seen that both models cross the observed line at similar values of the MWMM ratio.
$z_{\text {form }}$, the dynamics is no longer dominated by a single large dark matter halo, and so equation 4.1 allows merging to take place between more of the objects, and the MWMM evolves far more rapidly.

By contrast, the evolution of the MWMM of the random model is more sensitive to the choice of $z_{\text {form }}$. This is a result of the way in which the random model is constructed from the same galaxy fragments as present in the hierarchical model at the initial epoch.

At low $z_{\text {form }}$, the distribution of fragments is dominated by large objects. While in the hierarchical case, the presence of a massive cluster halo prevents the massive galaxies within it from merging, this is not the case with the random model. Indeed the increased fraction of massive objects at lower $z_{\text {form }}$ encourages mergers between them, contributing heavily to the evolution of the MWMM of the population. It is important to note that Figure 4.3 does not show the evolution of the MWMM for a single realisation, but rather the effect of different starting points for the random merger tree.

To quantify the mass growth factor, both datasets have been interpolated by a smooth relation shown by the thin lines in Figure 4.3. We use this conversion to compare the evolution of the CMR as a function of mass growth. This is shown in Figure 4.4. Despite the large differences in the rate of mass growth, the evolution of the slope to scatter ratio, R, is similar for both the random and hierarchical merger trees. Both curves show steps in the R that result from the non-linear behaviour of the bi-weight scatter estimator. Although the overall impression is one of similarity, the correlations between a galaxy's mass and the mass of its progenitors, inherent in the hierarchical merging model, result in the slightly shallower overall slope of the hierarchical line in figure 4.4. Nevertheless, when compared to the observed value of R, both models set similar limits on the mass growth factor. Although the CMR can be imprinted at higher redshift in the hierarchical tree, this is compensated by the slower growth of mass in this model.

4.4 Discussion

The existence of a strong colour-magnitude correlation in present day clusters (see chapter 3) rules out the possibility that typical cluster galaxies can have grown in mass by a large factor since the formation of the bulk of their stars. Furthermore, the factor of 2-3 that we estimate probably represents an upper limit to the role of dissipationless mergers in the formation of (the majority of) present-day luminous cluster galaxies. It is extremely unlikely that the initial CMR will be completely perfect. Furthermore, we have not allowed for the differential evolution of galaxy colours due to a range in formation epochs and metallicities of the galaxy fragments in the primordial CMR. These effects will tend to make the limit on the degree of merging still more stringent. The constraint can however be weakened if the mergers are not purely dissipationless and are associated
with significant star formation and consequent metal enrichment. This then conflicts with our initial parameterisation of the CMR.

Random merging of the galaxy fragments quickly increases the ratio of scatter to slope to unacceptable levels, meaning that the bulk of stars in these galaxies must have formed at redshifts below unity. Random merging however is not a good description of the evolution of galaxies in clusters. Because the dynamical friction time scale is strongly mass dependant, large galaxies tend to be formed from the merges of other large galaxies. We have incorporated this into our models by using the galaxy merger trees of BCFL, substantially increasing the robustness of the CMR to merging processes. In our hierarchical models, a primordial CMR can be evolved from formation redshifts as high as $z_{\text {form }}=2$ without increasing the ratio of scatter to slope of the CMR above what is observed in rich clusters today, however this more due to the lack of significant merging within the cluster halo at late times (see figure 4.3), than to the correlations of galaxy mass with its progenitor mass. Correlation effects can be seen in figure 4.4, as a slightly shallower slope of the hierarchical model as compared to the random model. It would therefore be an interesting exercise to investigate the predictions of the semi-analytic hierarchical models for the CMR of group and field galaxies, where merging is still prevalent.

We can compare our results with those which examine the evolution of the CMR scatter due to differential evolution of the stellar populations (e.g. Bower, Lucey, \& Ellis (1992b),Bower, Kodama, \& Terlevich (1998)), which find that the bulk of stars must have formed at look-back times greater than $\sim 10 \mathrm{Gyr}$. This is incompatible with the random merger model, where the CMR must have formed after $z \sim 1$, and therefore so must the bulk of its stars. The stellar evolution predictions can, however, be accommodated within the hierarchical merger model. If the bulk of stars formed at high redshift, as required by the stellar evolution models, the galaxies can still have undergone a history of mergers to produce a CMR at low redshift with acceptable levels of scatter.

4.5 Summary

- We place an upper limit on the role of dissipationless mergers upon the evolution of the CMR. We find that, regardless of the model used for galaxy merging, the typical mass
of the galaxies in the cluster cannot increase by more than a factor of ~ 2, without disturbing the CMR to an extent ruled out by observations of local clusters.
- We find that a model which uses an extended Press-Schecter formalism to calculate the merging history of dark matter haloes, coupled with dynamical friction time-scales to model the mergers of galaxies embedded within those haloes, can indeed preserve the CMR from $z \sim 2$ through to the present day, even using purely dissipationless merging. This is mainly due to the lack of major merging events in the cores of rich clusters, so that most of the merging in these models occurs at large look-back times, when the fragments were in small groups.
- We find that the correlations of a galaxy's mass, with the mass of its progenitors, present in the hierarchical models, affects the evolution of the CMR scatter only minimally.

References

Aarseth S. J., Fall S. M., 1980, ApJ, 236, 43
Arimoto N., Yoshii Y., 1987, A\&A, 173, 23
Barger A. J., Aragon-Salamanca A., Ellis R. S., Couch W. J., Smail I., Sharples R. M., 1996, MNRAS, 279, 1
Baugh C. M., Cole S., Frenk C. S., Lacey C. G., 1998, ApJ, 498, 504
Bender R., Burstein D., Faber S. M., 1992, ApJ, 399, 462
Bond J. R., Kaiser N., Cole S., Efstathiou G., 1991, ApJ, 379, 440
Bower R. G., 1991, MNRAS, 248, 332
Bower R. G., Kodama T., Terlevich A. I., 1998, MNRAS, 299, 1193, astro-ph/9805290
Bower R. G., Lucey J. R., Ellis R. S., 1992, MNRAS, 254, 601
Bruzual A. G., 1983, ApJ, 273, 105
Butcher H., Oemler J., A., 1978, ApJ, 226, 559
Butcher H., Oemler J., A., 1984, ApJ, 285, 426
Caldwell N., Rose J. A., Franx M., Leonardi A. J., 1996, AJ, 111, 78
Caldwell N., Rose J. A., Sharples R. M., Ellis R. S., Bower R. G., 1993, AJ, 106, 473
Cole S., Aragon-Salamanca A., Frenk C. S., Navarro J. F., Zepf S. E., 1994, MNRAS, 271, 781
Couch W. J., Newell E. B., 1984, ApIS, 56, 143
Couch W. J., Sharples R. M., 1987, MNRAS, 229, 423
Kauffmann G., 1996, MNRAS, 281, 487
Kauffmann G., Charlot S., 1998, MNRAS, 294, 705
Kauffmann G., White S. D. M., Guiderdoni B., 1993, MNRAS, 264, 201
Kormendy J., Djorgovski S., 1989, ARA\&A, 27, 235

Lacey C., Cole S., 1993, MNRAS, 262, 627
Larson R. B., 1974, MNRAS, 169, 229
Navarro J. F., Frenk C. S., White S. D. M., 1995, MNRAS, 275, 56
Press W. H., Schecter P., 1974, ApJ, 187, 425
Schweizer F., Seitzer P., 1992, AJ, 104, 1039
Schweizer F., Seitzer P., Faber S. M., Burstein D., Dalle Ore C. M., Gonzalez J. J., 1990, ApJ, 364, L33
White S. D. M., 1976, MNRAS, 177, 717
White S. D. M., Frenk C. S., 1991, ApJ, 379, 52

Chapter 5

The Relation Between the

Colour Magnitude Relation

and Spectral Line Strengths.

Abstract

We compare the spectral line indices of galaxies in the Coma cluster with their deviation from the mean colour-magnitude relation (CMR). We find that the CMR in Coma is driven primarily by a luminosity-metallicity correlation, however we cannot rule out a contribution from age effects. Colour deviations blueward of the mean relation are strongly correlated with the Hydrogen Balmer line series absorption, indicating the presence of a young stellar population in these blue galaxies, possibly the result of a burst of star formation in the past 2 Gyr . We also conclude that the CMR corrected $U-V$ colours are an efficient way to search for galaxies with strong Balmer absorption features.

5.1 Introduction

It has been long understood that the colours of early type galaxies are governed primarily by the effects of age and metallicity, which when increased, cause the spectral energy distribution (SED) of a single stellar population to become redder (Renzini \& Buzzoni 1986, Buzzoni, Gariboldi, \& Mantegazza 1992, Buzzoni, Chincarini, \& Molinari 1993, Worthey 1994, Charlot \& Silk 1994). In his ' $2 / 3$ '
law $\left(\Delta[\mathrm{Fe} / \mathrm{H}] \sim \frac{2}{3} \Delta \log (t)\right)$, Worthey (1994) demonstrated how age and metallicity have a degenerate effect on galaxy colours. The colour-magnitude relation (CMR), in which the colours of galaxies become progressively redder with increasing luminosity, and hence increasing mass of the galaxy (Visvanathan \& Sandage 1977) is seen in the cores of rich clusters, in groups, and even seems to be present in field ellipticals (Larson, Tinsley, \& Caldwell 1980). Traditionally, the slope seen in the CMR has been attributed to a mass-metallicity sequence (Dressler 1984, Vader 1986), with the massive galaxies being more metal rich, and thus redder, than the less massive ones. This tendency can naturally be explained by a supernova driven wind model (Larson 1974, Arimoto \& Yoshii 1987), in which more massive galaxies can retain their supernova ejecta for longer than can smaller galaxies, thus being able to process a larger fraction of their gas before it is expelled from the galaxy. Given the degeneracy between the metallicity and age of a stellar population in its broad band colours, it is also possible that the CMR be an age driven sequence, with the smaller galaxies being bluer due to a younger mean age of their stellar populations. An age dependant CMR however neither preserves its slope, nor its magnitude range with time (Kodama 1997, Kodama \& Arimoto 1997). Studies of the CMR in high redshift clusters find that it has a slope comparable to that of the local cluster CMR and there is no sign of a change in its magnitude range (Ellis et al. 1997, Stanford, Eisenhardt, \& Dickinson 1998). This makes an age dependant CMR in clusters highly unlikely. The low levels of scatter in the CMR of cluster cores implies that the galaxies are made up from old stellar populations (Bower, Lucey, \& Ellis 1992, Bower, Kodama, \& Terlevich 1998), as even small variations in the ages of the galaxies would lead to unacceptable levels of scatter in young stellar populations, whereas old stellar populations have a much smaller age dependency in their colours.

So, we have the photometric view of the CMR in clusters. The CMR is a massmetallicity relation, and the majority of the stars within the galaxies formed at high redshift.

The picture begins to look remarkably different when spectroscopy is used. At high redshifts, the fraction of blue galaxies in many of the clusters increases (Butcher \& Oemler 1978, Butcher \& Oemler 1984). Couch \& Sharples spectroscopically
investigated the galaxies in some of these 'Butcher-Oemler' clusters. They split their sample into blue and red galaxies depending on whether they lie on the cluster CMR or not, and associate increased fraction of blue galaxies with either ongoing or recent star formation in early type galaxies. They also found that 11 out of their 73 red galaxies showed enhanced Balmer absorption lines, also indicative of recent star formation, although it is possible that the red $\mathrm{H} \delta$ strong galaxies can be formed by the truncation of star formation. in spiral galaxies.

Spectroscopic studies of early type galaxies in local rich clusters (Caldwell et al. 1993, Caldwell et al. 1996) have shown there to be a population of galaxies with abnormal spectra. They exhibit enhanced Balmer absorption lines, or emission lines, indicative of recent star formation, but with too weak an [OII] line to be classified simply as spiral galaxies. They note the similarity of these spectra with the 'red' H δ-strong galaxies of Couch \& Sharples (1987), and find that of the galaxies associated with the dynamically separate group of galaxies centered on NGC4839 in the SW of the Coma cluster (Baier 1984, Escalera, Slezak, \& Mazure 1992, Colless \& Dunn 1996 and figure 2.3), about $1 / 3$ have abnormal spectra. So spectroscopic studies of local and distant clusters have shown there to be a population of galaxies which appear photometrically old, but which have been forming significant quantities of stars in their recent past (possibly in a massive starburst). In an effort to disentangle age and metallicity effects on stellar populations, Worthey (1994) developed a series of stellar population spectral synthesis models, to show the dependence on age and metallicity of certain spectral features such as the Balmer lines, and various metal lines. In a study of galaxies in the Fornax cluster, Kuntschner \& Davies (1998) used the Worthey (1994) models to show that the elliptical galaxies in the Fornax cluster were uniformly old, and spanned a range in metallicities, however studies of field spheroidals (González 1993, Trager 1997) seem to show just the opposite, with field spheroidals seeming to have a uniform metallicity, but spanning a range in ages, yet still forming a well defined CMR.

In chapter 3 we showed that there exists a possibility that the CMR in the outer parts of the Coma cluster exhibits a systematic blue shift, compared to the CMR in the core, but we could not ascertain whether this was due to cluster dust in the core, or an older mean stellar population in the core galaxies. In this chapter we will look at spectral line
indices and deviations from the CMR in the Coma cluster, using both the Worthey (1994) and Worthey \& Ottaviani (1997) spectro-photometric evolution models and the spectra of Coma cluster galaxies of Caldwell et al. (1993).

5.2 The Data

Figure 5.1: The least squares fit between the Coma galaxies' velocity dispersions from Lucey et al. 1997, and the $13^{\prime \prime}$ aperture V magnitudes from chapter 2 . When correcting the line strengths in this chapter for velocity dispersion, those galaxies without a measured value for σ can have one estimated using their $13^{\prime \prime}$ aperture V magnitudes.

For this chapter, we have used spectra from Caldwell et al. (1993), which we re-sampled to place them into the Lick/IDS system so that we could compare them with the Worthey
stellar population models (Worthey 1994, Worthey \& Ottaviani 1997). Caldwell et al. selected the galaxies from the extensive catalogue of Godwin, Metcalfe, \& Peach (1983), which is drawn from a 2.6 degree square field, centered on the Coma cluster, and is considered complete to $B=20$, corresponding to $M_{B}<-14$. Caldwell et al. (1993) used two criteria to select early type galaxies from the Godwin, Metcalfe, \& Peach (1983) sample. Firstly they fitted the $(b, b-r)$ colour magnitude relation and selected all galaxies whose colours lay within $\pm 0.15 \mathrm{mag}$ of the fit. Secondly, they obtained independent morphologies using KPNO 4m and Palomar Sky Survey plates. Using these morphologies, and those of Dressler (1980) they removed morphologically late type systems from the list, and added some (~ 25) clearly early type galaxies which had failed to be included after the colour cut.

Finally they rejected all galaxies brighter than $B=14.3$, as the large velocity dispersion in these more massive galaxies would make their spectroscopic analysis of the weak lines impossible.

Table 5.1 shows the distribution of Andreon et al. (1996) and Andreon, Davoust, \& Poulain (1997) morphological types for the Caldwell et al. galaxies. Immediately obvious is the fact that 13 of the Caldwell early type galaxies are in fact late types according to Andreon et al. It is hardly surprising they slipped through the net though, as can be seen from figure 5.2, only one of the spiral galaxies lies more than one standard deviation bluewards of the CMR ridge line. It must be noted however that we do not have morphological information for the fainter galaxies in the sample, which is where most of the very blue galaxies reside, however out of the 7 very blue galaxies, only 3 have no morphologies.

5.2.1 Spectroscopy

The Caldwell et al. (1993) spectra were all taken on the KPNO 4m, using the HYDRA multi-fibre positioner. They have a spectral resolution of $3.8 \AA$ FWHM. The fibre aperture is $2^{\prime \prime}$. In order to compare the spectra with Worthey stellar population models (Worthey 1994, Worthey \& Ottaviani 1997), the spectra were re-sampled into the Lick/IDS system by Harald Kuntshner (HK), using calibrations from observations of his on the AAT RGO spectrograph (Kuntschner 1998). This was achieved by artificially

Morphological type	Number of galaxies
No morph	26
$? ? ?$	1
Sp	3
S..	2
SBa	0
Sa	1
SA0/a	4
SB0/a	1
SAB0/a	2
SAB0p	0
SA0	27
SAB0	6
SB0	12
diE/SA0	0
diE/SAB0	2
unE/SA0	0
Epec	1
boE	3
diE	6
unE	

Table 5.1. The Andreon et al. (1996) morphological types for the Caldwell et al. (1993) galaxies, split into the four coarse morphological types used in chapter 3, i.e. unclassified, spiral, S 0 and elliptical. As can be seen, by far the largest group of galaxies is the SOs (48 galaxies) followed by the unclassified (27 galaxies) followed by the late types (13 galaxies) followed by the ellipticals (10 galaxies).
broadening the fluxed spectra using a Gaussian of wavelength dependant width. Because the Caldwell et al. (1993) data does not include any observations of stars in common with the Lick/IDS, the Gaussian used was that of Kuntschner (1998) who used it to correct his $4.5 \AA$ FWHM resolution AAT data to the Lick/IDS system. Both the Kuntschner and the Caldwell et al. spectra cover a similar wavelength range, and unlike the Lick/IDS spectra,

Figure 5.2: The colour magnitude relation for the Caldwell et al. galaxies, plotted in the same style as the CMR plots of Chapter 3 using $13^{\prime \prime}$ diameter apertures. The colour of the symbols represents the morphological type of a galaxy as defined by Andreon et al. (1996) and Andreon, Davoust, \& Poulain (1997). As can be seen from this figure, and from table 5.1, there are quite a few late type galaxies in the early Caldwell et al. sample, however, only one late type galaxy has colours which place it more than one standard deviation bluewards of the CMR ridgeline. The dashed, and dot-dashed lines represent the σ and 3σ of the data as calculated using an unclipped biweight scale estimator (see Appendix B and Chapter 3). Note that some of the galaxies in this figure were rejected from the datasets of chapter 3.
whose spectral resolution degrades notably towards the blue (see Worthey \& Ottaviani (1997) fig. 7) they have a constant spectral resolution over their entire range. HK estimated the errors on the indices from the photon noise of the spectra, so they are likely to be a lower limit. They specifically do not take into account any systematics introduced through the assumptions made in the resampling of the data into the Lick/IDS system, specifically that the KPNO 4m fibre spectrograph has a similar enough spectral response to the AAT RGO long slit spectrograph.

The final step necessary to place the line indices into the Lick/IDS system is to correct the galaxy spectra for velocity dispersion. Velocity dispersion corrections for individual line indices were obtained from Kuntschner (1998), who calculated them by artificially broadening stellar spectra (e.g. Davies, Sadler, \& Peletier (1993)).

The (Caldwell et al. 1993) spectra are not of sufficient resolution to calculate velocity dispersions for our galaxies, so instead we construct a 'Faber-Jackson' relation (Faber \& Jackson 1976) between our our V band $13^{\prime \prime}$ diameter aperture magnitudes $m_{V_{13}}$, and the velocity dispersions (σ) of Lucey et al. (1997). Figure 5.1 shows the correlation between this σ and $m_{V 13}$, which gives a relation of

$$
\log _{10}(\sigma)=5.29-0.202 m_{V 13}
$$

We then used this relation to find values of σ for those galaxies in the Caldwell et al. sample which were not present in the Lucey et al. data.

We use the $H \gamma_{A}$ and $H \delta_{A}$ Balmer line indices (Worthey \& Ottaviani 1997) as age sensitive spectral features. While $H \beta$ is more sensitive to age, it is also affected by nebular emission, which can rapidly fill the absorption feature (González 1993). Higher order Balmer lines are much less sensitive to emission from ionised gas (Osterbrock 1989), making an accurate measurement of the true stellar absorption easier. In order to increase the signal to noise, I have used $H \delta_{A}+H \gamma_{A}$ in the final analysis. The $\mathrm{C}_{2} 4668$ feature is identified by Worthey \& Ottaviani (1997) as a particularly sensitive metallicity feature, however it it is possible that is suffers from over abundance problems in the larger, higher metallicity systems (Kuntschner 1998). Figure 5.3 shows both the relation between $\mathrm{C}_{2} 4668$ and Fe 4383 for the Coma galaxies, and the theoretical relation from the Worthey models. Above a value of ~ 6, the $\mathrm{C}_{2} 4668$ index deviates from the straight line model predictions. A similar effect is seen by Kuntschner (1998) for galaxies in Fornax. However in our data, the Fe4383 index has poorer signal to noise than the $\mathrm{C}_{2} 4668$ index, so we will use both, noting however the discrepancy for the high metallicity galaxies.

5.2.2 The photometry

In order to match the 2 arcsec diameter of the HYDRA fibres used for the spectra, the photometry used the smallest available aperture from the photometry outlined in Chapter 2. The 8.8 arcsec diameter aperture was the smallest aperture which was reliably seeing corrected, i.e. it showed no measurable systematic difference between stellar and galactic magnitudes when measured using differing seeing conditions. It is important to get as good a match as possible between the photometric and spectroscopic apertures, so that

Figure 5.3: The relation between the two metal line indices used in this chapter for the Coma galaxies. The $\mathrm{C}_{2} 4668$ line is easier to measure than the Fe4383 line, however it does seem to suffer from problems of overabundance in the more massive galaxies. This can be seen by the deviation of the galaxies from the theoretical relation for values of $\mathrm{C}_{2} 4668>6$. Different symbols correspond to galaxies with different values of $\Delta(U-V)$, see figure 5.4 for details.
both are measuring the same part of the galaxy. In the case, for instance, of localised bursts of star formation occurring in the galaxy, the large photometric aperture and the small spectroscopic one, could well both be measuring different mixes of stellar populations. This is not a problem for the σ estimates, so 13 arcsec diameter aperture was used for the velocity dispersion correction because it gave the smallest residuals in the fit.

Throughout this chapter, the biweight minimising technique, outlined in appendix B and used extensively in Chapter 3, was used to fit simple straight lines to the data. It was used for its resistance to outlying data points, and its robustness against non-Gaussian
data. This can be seen best in fig. 5.8, the biweight minimisation fit ignores the high $H \delta_{A}+H \gamma_{A}$ points, and fits the mean relation. A least-squares regression fit would have been heavily skewed towards the high $H \delta_{A}+H \gamma_{A}$ points, thus reducing their residuals $\left(\Delta\left(H \delta_{A}+H \gamma_{A}\right)\right)$. In the case of fig. 5.8, these residuals are simply calculated as

$$
\Delta\left(H \delta_{A}+H \gamma_{A}\right)=\left(H \delta_{A}+H \gamma_{A}\right)-\left(m \times m_{V}+c\right)
$$

where m and c are the slope and intercept of the biweight fit respectively.

5.3 The colour magnitude relation

This dataset was primarily selected using its $(B, B-V)$ colour magnitude relation (see (Caldwell et al. 1993), figure 1). Figure 5.4 shows, unsurprisingly, that the colour magnitude relation is also present in our $(V, U-V)$ dataset. What our dataset also shows, is a large number of galaxies deviating blueward of the mean relation towards the faint end, an effect not seen in the $(B, B-V)$ relation of Caldwell et al. In order to trace the position of these blue galaxies in the subsequent figures of this chapter, we adopt a common labelling convention. The symbols used throughout the plots in this chapter reflect a galaxy's position in figure 5.4. No symbols (just error bars) correspond to galaxies that lie either red-ward of the colour-magnitude relation, or are within 1σ of it (see below for the value of σ). Open stars lie between 1σ and 2σ blueward of the relation, and filled stars lie more that 2σ blueward of the relation. Throughout this chapter, unless otherwise stated, when we refer to 'blue' galaxies we are referring to the objects plotted as both open and closed star symbols in figure 5.4, and'red' galaxies are the objects shown only with error bars in figure 5.4. To confuse matters further, where colour symbols are used, the colours refer to the galaxy's morphological type as taken from Andreon et al. (1996) and Andreon, Davoust, \& Poulain (1997), and as defined in figure 5.2. I.e. red symbols represent ellipticals, green symbols represent S0s, blue symbols represent late types, and black symbols have no morphological classification.

The standard deviation of the relation in fig. 5.4 is $\sigma=0.07 \pm 0.01 \mathrm{mag}$. When using the same $13^{\prime \prime}$ diameter aperture photometry as that used to calculate the scatter in chapter 3 (table 3.4), the scatter in the Caldwell galaxies is reduced to $0.066 \pm 0.01 \mathrm{mag}$. This

Figure 5.4: The colour-magnitude relation for the galaxies for which we have the highest S / N spectra, both colours and magnitudes are taken using the $8.8^{\prime \prime}$ diameter apertures. Galaxies which lie between 1 and 2σ blueward of the mean relation are plotted as open stars, while galaxies which lie more than 2σ blueward of the relation are plotted as filled stars. These symbols are used for the same galaxies in all subsequent plots in this chapter. The solid line shows the regression fit to the data, and is used to calculate the $\Delta(U-V)$ index.
is slightly larger than the scatter in the relation for the early type galaxies obtained in chapter 3 , but not significantly so.

5.3.1 The origin of the colour magnitude relation

Although the Caldwell et al. spectra are not ideal for comparing with the Worthey stellar population synthesis models, due to the non ideal way the spectra were resampled into the Lick/IDS system (see section 5.2.1), we have attempted such a comparison using our two

Figure 5.5: The distribution of galaxies in the $\left(\mathrm{C}_{2} 4668, \mathrm{H} \delta_{\mathrm{A}}+\mathrm{H} \gamma_{\mathrm{A}}\right)$ plane, with a model grid of single stellar population models from Worthey $(1994,1997)$. Solid lines trace loci of constant age, from 1.5 to 17 Gyrs . Dashed lines trace loci of constant $[\mathrm{Fe} / \mathrm{H}]$ from -2 to 0.5 . The different symbols correspond to the degree of offset from the colour magnitude relation as shown in figure 5.4. Filled stars represent objects with $\Delta(U-V)<2 \sigma$, open stars represent objects with $2 \sigma \leq \Delta(U-V)<\sigma$, and objects with no symbol represent objects that lie within 1σ of the best fit colour magnitude relation where σ is the standard distribution of the $\Delta(U-V)$. The different symbol colours represent the morphological type of the galaxy as taken from Andreon et al. (1996) and (Andreon, Davoust, \& Poulain 1997) (1997), and as defined in figure 5.2.
most promising metallicity indicators, Fe 4383 and $\mathrm{C}_{2} 4668$. Figures 5.5 and 5.6 show how the galaxies lie on Worthey model grids. In both cases, the blue galaxies which deviate by more than 2σ from the CM relation in fig. 5.4 tend to populate the the low age portion of the grid. This area is entirely populated by star symbols, i.e. blue galaxies, while only six out of the 20 blue galaxies lie on the same part of the Worthey grid populated by the red

Figure 5.6: The distribution of galaxies in the ($\mathrm{Fe} 4383, \mathrm{H} \delta_{\mathrm{A}}+\mathrm{H} \gamma_{\mathrm{A}}$) plane, with a model grid of single stellar population models from Worthey $(1994,1997)$. Solid lines trace loci of constant age, from 1.5 to 17 Gyrs. Dashed lines trace loci of constant $[\mathrm{Fe} / \mathrm{H}]$ from -2 to 0.5 . The different symbols correspond to the degree of offset from the colour magnitude relation as shown in figure 5.4. Filled stars represent objects with $\Delta(U-V)<2 \sigma$, open stars represent objects with $2 \sigma \leq \Delta(U-V)<\sigma$, and objects with no symbol represent objects that lie within 1σ of the best fit colour magnitude relation where σ is the standard distribution of the $\Delta(U-V)$.The different symbol colours represent the morphological type of the galaxy as taken from Andreon et al. (1996) and (Andreon, Davoust, \& Poulain 1997) (1997), and as defined in figure 5.2.
galaxies. Both figures 5.5 and 5.6 imply a young age for the blue galaxies (an effect driven mainly by the $H \delta_{A}+H \gamma_{A}$ index), but they seem to say different things about metallicity effects, especially for the red galaxies which make up the main CM relation. The red galaxies in figure 5.5 appear to span a range both in metallicity and in age, implying a far from simple formation scenario, especially as the more massive galaxies appear to
have the younger ages. We must remember however, that the model grids at these high metallicities are far from secure. Added to this, as discussed above, there appears to be an overabundance problem in the models for galaxies with $\mathrm{C}_{2} 4668>6$ (cf. fig 5.3). If we ignore these galaxies, the span in age and metallicity of the red galaxies is reduced.

Fe4383 does not suffer from the same overabundance effects as $\mathrm{C}_{2} 4668$, however it also has more of an age dependence, producing slightly more degenerate model grids, and has larger errors in our spectra. In figure 5.6, we can see again that the blue galaxies have younger ages than do the red ones, however they no longer exclusively populate the low metallicity portion of the grid. Some of the galaxies are in parts of the plot completely outside the parameter space covered by the model grid, although these are the galaxies with the largest error bars in the Fe4383 data. The red galaxies have a lower spread in metal line strength than they do in figure 5.5, and they do not follow the same trend in age as they did in figure 5.5, however, due to the increased scatter in the Fe4383 data, and the increased degeneracy in the model grid, it is still not possible to say that they follow a single age population model line. This may be due to the lower signal to noise of the Fe4383 index.

It is worth noting that there is some very feeble evidence for morphological segregation in figures 5.5 and 5.6. In both figures all of the elliptical galaxies populate the old portion of the model grids, while the S0s and late type galaxies are spread over the grid. I.e. there are both old and young S0 and late type galaxies, but only old ellipticals.

5.3.2 Colour offsets and line strengths

In section 5.3.1, we showed that the blue galaxies which deviate from the mean CMR have younger luminosity weighted ages than do the red galaxies, giving them enhanced Balmer absorption lines. This poses the question of how effective are photometric searches for galaxies with unusual spectral features, such as increased Balmer absorption in this case.

The three spectral lines we investigate all correlate with host galaxy magnitude (see figures 5.7, 5.9 and 5.8). Therefore, we would expect our blue galaxies to exhibit line strengths which differ from the average simply because they lie predominantly at the faint end of our galaxy distribution. We have eliminated this feature by fitting a simple linear relation between the spectral line strength and luminosity of a galaxy (see figures 5.7,

Figure 5.7: The relation between $\mathrm{C}_{2} 4668$ and V magnitude. The line shows the regression fit used to calculate $\Delta\left(\mathrm{C}_{2} 4668\right)$. Filled stars represent objects with $\Delta(U-V)<2 \sigma$, while open stars represent objects with $2 \sigma \leq \Delta(U-V)<\sigma$, where σ is the standard distribution of the $\Delta(U-V)$.
5.9 and 5.8). This relation can then be used to investigate how individual galaxies' line strength indices differ from the norm at a given luminosity. This approach is directly analogous to that taken with the colour-magnitude relation in chapter 3 , and earlier in this chapter, where the $\Delta(U-V)$ measure was introduced. We therefore define

$$
\Delta(X)=X-\left(C_{X}+M_{X} \times m_{V}\right)
$$

where X is the line index $\left(\mathrm{C}_{2} 4886, \mathrm{Fe} 4383\right.$ or $\left.H \delta_{A}+H \gamma_{A}\right), M_{X}$ and C_{X} are the slope and intercept of the best fit relation, and m_{V} is the V magnitude. Therefore, by comparing

Figure 5.8: The relation between $H \delta_{A}+H \gamma_{A}$ and V magnitude. The line shows the regression fit used to calculate the $\Delta\left(H \delta_{A}+H \gamma_{A}\right)$ index. Filled stars represent objects with $\Delta(U-V)<2 \sigma$, while open stars represent objects with $2 \sigma \leq \Delta(U-V)<\sigma$, where σ is the standard distribution of the $\Delta(U-V)$.
$\Delta(U-V)$ with $\Delta(X)$, we can compare a galaxy's colour offset with its spectral line strength offset.
The $\mathrm{C}_{2} 4668$ relation (fig. 5.7 has a large amount of scatter about the best fit line, however there is still obviously a trend towards higher $\mathrm{C}_{2} 4668$ for brighter galaxies. The $H \delta_{A}+H \gamma_{A}$ relation (fig. 5.8) also works well. The red galaxies make up a relation of increasing $H \delta_{A}+H \gamma_{A}$ with magnitude, while most of the the blue galaxies are deviant from this relation. The best fit was actually calculated using all of the data, but the biweight minimisation algorithm is very good at disregarding the 'tail' of the distribution effectively made up by the blue galaxies. Whether a satisfactory fit can be

Figure 5.9: The relation between Fe4383 and V magnitude. Filled stars represent objects with $\Delta(U-V)<2 \sigma$, while open stars represent objects with $2 \sigma \leq \Delta(U-V)<\sigma$, where σ is the standard distribution of the $\Delta(U-V)$.The solid line is the biweight scatter minimisation fit to all the data. The dashed line is the biweight scatter minimisation fit to only the blue galaxies, the dot-dash line shows the biweight scatter minimisation fit to galaxies with $\boldsymbol{m}_{\boldsymbol{V}}<\mathbf{1 6}$, and the dotted line shows the fit to all the data, using an OLS bisector method (see main text).
made to Fe 4383 is more debatable (fig. 5.9). While there is a trend towards higher Fe4383 for the more luminous galaxies, this trend seems to bifurcate at $m_{V}=16$. This leads to an uncertainty in the slope of the fit of $\sim 30 \%$. Figure 5.9 shows some examples of different fits to the data. The solid line is the biweight scatter minimisation fit to all the data. The dashed line is the biweight scatter minimisation fit to only the 'normal' CMR galaxies, the dot-dash line shows the biweight scatter minimisation fit to galaxies with $m_{V}<16$, and the dotted line shows the fit to all the data, using a method which

Figure 5.10: The residuals of each galaxy from the best fit colour magnitude relation, $\Delta(U-V)$, as calculated using the regression line in figure 5.4, against the $\mathrm{C}_{2} 4668$ line index. Filled stars represent objects with $\Delta(U-V)<2 \sigma$, while open stars represent objects with $2 \sigma \leq \Delta(U-V)<\sigma$, where σ is the standard distribution of the $\Delta(U-V)$. The dashed lines represent the $\pm 1 \sigma$ dispersion of the $\Delta(U-V)$ and the $\Delta\left(\mathrm{C}_{2} 4668\right)$.The different symbol colours represent the morphological type of the galaxy as taken from Andreon et al. (1996) and (Andreon, Davoust, \& Poulain 1997) (1997), and as defined in figure 5.2.
bisects the ordinary least squares fits made by minimising the X and the Y residuals (Isobe et al. 1990, Feigelson \& Babu 1992). It is not possible to say, as was the case with $H \delta_{A}+H \gamma_{A}$ in figure 5.8, that all of the 'blue' galaxies lie away from the main relation defined by the normal galaxies, as both the high and low Fe4383 branches contain 'blue' and normal galaxies. However, in these models, the Fe4383 index does have a higher dependence on age than does the $\mathrm{C}_{2} 4668$ index. Only one out of the seven galaxies with

Figure 5.11: The residuals of each galaxy from the best fit colour magnitude relation, $\Delta(U-V)$, as calculated using the regression line in figure 5.4, against the $H \delta_{A}+H \gamma_{A}$ line index. Filled stars represent objects with $\Delta(U-V)<2 \sigma$, while open stars represent objects with $2 \sigma \leq \Delta(U-V)<\sigma$, where σ is the standard distribution of the $\Delta(U-V)$. The dashed lines represent the $\pm 1 \sigma$ dispersion of the $\Delta(U-V)$ and the $\Delta\left(H \delta_{A}+H \gamma_{A}\right)$, and the dotted line shows the 3σ deviation from the mean $\Delta\left(H \delta_{A}+H \gamma_{A}\right)$ value. The different symbol colours represent the morphological type of the galaxy as taken from Andreon et al. (1996) and (Andreon, Davoust, \& Poulain 1997) (1997), and as defined in figure 5.2.
$\Delta(U-V)<-2 \sigma$ (filled symbols) does not lie on the lower branch, and it is the faintest one, with the largest measurement and systematic errors. It is also the galaxy furthest from the model grid in figure 5.6. We therefore conclude that the lower branch is primarily an age effect, similar to that seen in figure 5.8.

Figure 5.10 shows how the galaxies' deviation from 'normal' $\mathrm{C}_{2} 4668$ line strength and 'normal' colour correlate. Only three of the $\Delta(U-V)<-2 \sigma$ galaxies have $\Delta \mathrm{C}_{2} 4668$
values which lie outside the $\pm 1 \sigma$ range indicated by the dashed lines, The other four filled symbol galaxies lie within $\pm 1 \sigma$ of the mean $\Delta \mathrm{C}_{2} 4668$.

The situation with $\Delta\left(H \delta_{A}+H \gamma_{A}\right)$ is very different. Figure 5.11 shows that all of the filled symbol 'blue' galaxies deviate from the mean $\Delta\left(H \delta_{A}+H \gamma_{A}\right)$ by more than 3σ. The open symbol 'blue' galaxies span a large range in $\Delta\left(H \delta_{A}+H \gamma_{A}\right)$, just over half of them deviate from the mean of the population by over 1σ, and three of them deviate by over 3σ. The open symbol galaxies which have a $\Delta\left(H \delta_{A}+H \gamma_{A}\right)<1 \sigma$ are spread uniformly along the CMR, however all of the galaxies with $\Delta\left(H \delta_{A}+H \gamma_{A}\right)>1 \sigma$ lie at the faint end ($m_{V}>15.8$).
In summary if we take the population of galaxies whose colour deviates by more than 2σ from the mean CMR (the filled symbols), they all have $H \delta_{A}+H \gamma_{A}$ line strengths which deviate by over 3σ from the mean population. Additionally, all galaxies which deviate by over 3σ in $H \delta_{A}+H \gamma_{A}$ from the mean population, lie at least 1σ blue-wards of the mean CMR. This is not true of the $\mathrm{C}_{2} 4668$ line. Only three of the galaxies with filled symbols deviate in $\Delta \mathrm{C}_{2} 4668$ by more than 1σ from the mean.
Figure 5.11 is similar to figures of colour against $\mathrm{H} \delta$ line equivalent width, used by Couch \& Sharples (1987) and Barger et al. (1996) for the high redshift clusters AC114, AC118 and AC103.: They modelled how a short burst of star formation, which converted about 15% of a galaxy's mass into stars and lasted about 0.1 Gyr , would affect its $B-R$ colour, and $(H \delta)$ equivalent line width. They found that at first, during the starburst phase, the colours become bluer and emission fills the $H \delta$ lines (this would move a galaxy towards the bottom left corner of figure 5.11). Once the star formation ceases, the $H \delta$ emission rapidly turns into strong absorption, but the colours remain very blue (this would move the galaxy upwards, towards the top left hand corner of figure 5.11). Barger et al. (1996) referred to this stage as the post-starburst galaxy (PSG) stage, which lasts about $1 G y r$ depending on the exact model. All the time the $E W(H \delta)$ diminishes, and the colours become redder, until the galaxy returns to its original position in the $[(B-R), E W(H \delta)]$ plane after about 2 Gyr .
Although we use $H \delta_{A}+H \gamma_{A}$ instead of simply using $H \delta$, and $U-V$ colours instead of $B-R$, the gross description of how a galaxy would move in figure 5.11 given above is still valid. In addition, we have corrected our colours and $H \delta_{A}+H \gamma_{A}$ for their correlation
with luminosity, which should remove some of the scatter in the diagram as seen by Couch \& Sharples (1987), and make it look slightly more like the theoretical predictions of Barger et al. (1996). What we find, is that there are no galaxies in our sample currently undergoing a burst of star formation ($H \delta_{A}+H \gamma_{A}$ in emission, and blue colours), however, the blue galaxy sample, sits in a the post-starburst portion of the diagram, (blue colours and strong $H \delta_{A}+H \gamma_{A}$ absorption), which ties in with section 5.3.1, and the original results of Caldwell et al. (1993).

5.4 Discussion

We have shown using both the Fe4383 and the $\mathrm{C}_{2} 4668$ indices, that the 'red' galaxies which make up the colour-magnitude relation in the Coma cluster, span a range of metallicities. Whether this is the sole driving force behind the CMR, or whether there is also a correlation between age and mass, we cannot say due to the high noise in the Caldwell et al. spectroscopy, and possible systematics in the way it was calibrated to the Lick/IDS system. We do note however, that if there is a correlation between age and luminosity, our data implies that it is in the sense of the larger galaxies having systematically younger ages. This is the opposite of the trend required to construct a CMR from an luminosity-age correlation, and would require the luminosity-metallicity trend to over compensate for the blue colours from the younger stellar populations in the more massive galaxies. Certainly age variations seem to be ruled out as the sole driving force behind the CMR in the cluster core. It should be noted however, that any trend in age comes form the $\mathrm{C}_{2} 4668$ index, at strengths where overabundance effects mean that it is no longer properly predicted by the Worthey models (see figure 5.3 and Vazdekis et al. 1996, Vazdekis et al. 1997).

Despite the attempts of Caldwell et al. to reject late type galaxies from their sample, a few still seem to have slipped in. We found that the S 0 and late type galaxies span a range in ages, but all elliptical galaxies are old. Of the galaxies which lie on the CMR (the red galaxies) we found no obvious difference between the ages of the early and late types, all of them have old luminosity weighted mean stellar ages. Surprisingly, this includes 11 out of the 13 late type galaxies in the sample, however it must be remembered that the spectra
are taken from a $2^{\prime \prime}$ diameter aperture on the core of the galaxy, so any star formation activity in the disk of the galaxy is not likely to have much effect on the spectrum.

By comparing our CMR-corrected colour-Balmer line strength.plot (figure 5.11), with those of Barger et al. (1996), we can construct an evolutionary history of the galaxies in our sample. We have used different colours and Balmer lines to those of Barger et al., so we cannot directly compare our plot with their models, however the relative shape of the evolutionary track of a galaxy during and after a starburst should remain similar. If we associate the red galaxies in figure 5.11 with the E galaxies in figure 4 (panel a) of Barger et al. (1996), then we can say that our blue galaxies lie in the post-starburst portion of the plot, and that they may have undergone a burst of star formation of up to 10% of the galaxy mass in the last 2 Gyr . This is in agreement with the results of Caldwell et al. (1993).

We have also demonstrated that the use of CMR corrected ($U-V$) colours is an efficient way of searching for post-starburst galaxies. The ($B, B-V$) CMR constructed by Caldwell et al. (1993) for these same objects, shows no sign of our blue galaxies, however we find that only our blue objects have strong Balmer absorption features. In fact all our very blue objects, which deviate bluewards by more than two standard deviations from the CMR colour, have Balmer line strengths that deviate by more than three standard deviations from the red galaxies. If we were to search for the PSB galaxies from scratch, and made a colour cut one standard deviation redward of the CMR, we would find that half of our galaxies had Balmer line strengths that deviate by more than three standard deviations from the mean.

5.5 Summary

- The colour-magnitude relation in the Coma cluster is primarily a metallicity-mass sequence.
- We can find no age contribution to the CMR, however our spectroscopic data is not ideal for this test.
- Elliptical galaxies are old, but the spiral and S0 types span a range in ages. Most of the galaxies in the sample however, are old, no matter what their morphological type.
- The blue galaxies identified from the $(V, U-V)$ colour-magnitude relation are the only ones which have significantly younger stellar populations. They are mainly of S0, late or unclassified morphology.
- The lack of $H \delta_{A}+H \gamma_{A}$ in emission leads us to conclude that none of the blue galaxies seem to be currently undergoing a star formation burst, but most of them could have undergone a burst of star formation within the last 2Gyr.
- The use of the $(V, U-V)$ CMR is a very efficient method for finding cluster galaxies with enhanced Balmer absorption lines, however it is poor at finding galaxies with enhanced metal lines.

References

Andreon S., Davoust E., Michard R., Nieto J. L., Poulain P., 1996, Astronomy and Astrophysics Supplement Series, 116, 429

Andreon S., Davoust E., Poulain P., 1997, Astronomy and Astrophysics Supplement Series, 126, 67
Arimoto N., Yoshii Y., 1987, A\&A, 173, 23
Baier F. W., 1984, Astronomische Nachrichten, 305, 175
Barger A. J., Aragon-Salamanca A., Ellis R. S., Couch W. J., Smail I., Sharples R. M., 1996, MNRAS, 279, 1
Bower R. G., Kodama T., Terlevich A. I., 1998, MNRAS, 299, 1193, astro-ph/9805290
Bower R. G., Lucey J. R., Ellis R. S., 1992, MNRAS, 254, 601
Butcher H., Oemler J., A., 1978, ApJ, 226, 559
Butcher H., Oemler J., A., 1984, ApJ, 285, 426
Buzzoni A., Chincarini G., Molinari E., 1993, ApJ, 410, 499
Buzzoni A., Gariboldi G., Mantegazza L., 1992, AJ, 103, 1814
Caldwell N., Rose J. A., Franx M., Leonardi A. J., 1996, AJ, 111, 78
Caldwell N., Rose J. A., Sharples R. M., Ellis R. S., Bower R. G., 1993, AJ, 106, 473
Charlot S., Silk J., 1994, ApJ, 432, 453
Colless M., Dunn A. M., 1996, ApJ, 458, 435
Couch W. J., Sharples R. M., 1987, MNRAS, 229, 423
Davies R. L., Sadler E. M., Peletier R. F., 1993, MNRAS, 262, 650
Dressler A., 1980, ApJS, 42, 565
Dressler A., 1984, ApJ, 281, 512
Ellis R. S., Smail I., Dressler A., Couch W. J., Oemler J., Augustus, Butcher H., Sharples R. M., 1997, ApJ, 483, 582
Escalera E., Slezak E., Mazure A., 1992, A\&A, 264, 379
Faber S. M., Jackson R. E., 1976, ApJ, 204, 668
Feigelson E. D., Babu G. J., 1992, ApJ, 397, 55
Godwin J. G., Metcalfe N., Peach J. V., 1983, MNRAS, 202, 113

González J. J., 1993, Ph.D. thesis, Univ. Califomia, Santa Cruz
Isobe T., Feigelson E. D., Akritas M. G., Babu G. J., 1990, ApJ, 364, 104
Kodama T., 1997, Ph.D. thesis, Institute of Astronomy, University of Tokyo
Kodama T., Arimoto N., 1997, A\&A, 320, 41
Kuntschner H., 1998, Ph.D. thesis, Department of Physics, University of Durham
Kuntschner H., Davies R. L., 1998, MNRAS, 295, L29
Larson R. B., 1974, MNRAS, 169, 229
Larson R. B., Tinsley B. M., Caldwell C. N., 1980, ApJ, 237, 692
Lucey J. R., Guzman R., Steel J., Carter D., 1997, MNRAS, 287, 899L
Osterbrock D. E., 1989, in Published by University Science Books, 648 Broadway, Suite 902, New York, NY 10012, 1989.

Renzini A., Buzzoni A., 1986, in Spectral Evolution of Galaxies, p. 195
Stanford S. A., Eisenhardt P. R., Dickinson M., 1998, ApJ, 492, 461
Trager S. C., 1997, Ph.D. thesis, Univ. California, Santa Cuz
Vader J. P., 1986, ApJ, 306, 390
Vazdekis A., Casuso E., Peletier R. F., Beckman J. E., 1996, ApJS, 106, 307
Vazdekis A., Peletier R. F., Beckman J. E., Casuso E., 1997, ApJS, 111, 203
Visvanathan N., Sandage A., 1977, ApJ, 216, 214
Worthey G., 1994, ApJS, 95, 107
Worthey G., Ottaviani D. L., 1997, ApJS, 111, 377

Chapter 6

Butcher Oemler Galaxies and

Cluster X-ray Sub-structure.

Abstract

We use a wavelet code to suggest an association between X-ray cluster substructure and ' $\mathrm{E}+\mathrm{A}$ ' galaxy activity in high redshift clusters.

6.1 Introduction

The clusters $\mathrm{ACl14}$ and ACl 18 were targeted by Couch and Sharples (Couch \& Sharples 1987)(CS) for their spectroscopic study of the Butcher-Oemler effect in clusters at redshift 0.3 . As originally stated, the Butcher-Oemler effect (Butcher \& Oemler 1978, Butcher \& Oemler 1984) relates to the increased fraction of blue galaxies in high and moderate redshift clusters. However, spectroscopic studies of high redshift clusters (Couch \& Sharples 1987, Dressler \& Gunn 1983) have subsequently been expanded to also include the appearance, in clusters, of galaxies with unusually high levels of star formation activity or abnormally strong Balmer absorption lines. The latter are commonly referred to as E+A galaxies, since their spectra are well reproduced by adding $10-20 \%$ of A-star light to a normal elliptical galaxy spectrum.
It is tempting to suggest that we are witnessing, in these distant clusters, the epoch at which E galaxies are formed from spirals, or at which star formation in spirals has just begun to fade, converting themselves into S0 types (e.g. Balogh et al., 1998). Unfortunately, this scenario has a number of problems. For example, some of the anomalous spectra are not consistent with the passive fading of a spiral galaxy and require the star formation
to terminate in a strong burst (Poggianti et al. 1999). By combining the colours of the galaxies with their spectroscopic $H \delta$ line strengths, CS were able to plot the evolutionary tracks of the star burst and post starburst galaxies, and thus to classify the galaxies as normal spirals and elliptical, galaxies caught during the starburst phase and post-starburst (PSB) galaxies.

In this chapter, we present high resolution X-ray observations of these clusters. The motivation for these observations is to look at the dynamical state of these clusters. One appealing explanation of the Butcher-Oemler effect is that the population of starburst galaxies is created when a large group of gas rich galaxies is swallowed by the cluster. Possibly the tidal distortion experienced by the group results in frequent interactions between galaxies. These interactions are then likely to result in bursts of star formation. This scenario hass a number of appealing features. The fraction of anomalous galaxies in the highredshift clusters is uncomfortably high given that their unusual spectra and blue colours are short lived ($\sim 1 \mathrm{Gyr}$). If the rate of their creation is approximately constant, then 50% of the present-epoch early-type galaxy population would have been produced since a redshift of 0.4. Such a high fraction of 'young' early-type galaxies appears inconsistent with the existence of a well-defined colour-magnitude relation (Bower, Lucey, \& Ellis 1992). This problem could be considerably reduced if the occurrence of bursts was linked to the infall of galaxy groups and thus sporadic in nature (Abraham et al. 1996) and, perhaps, strongly dependent on redshift. Furthermore, the intermittent infall of the groups could explaining the wide variation in the fraction of blue galaxies between different highredshift clusters. For example, the $0016+16$ cluster (Koo, 1981) shows no excess fraction of blue galaxies, but does have a large population of spectroscopically identified poststarburst ($\mathrm{E}+\mathrm{A}$) galaxies (Dressler \& Gunn 1992).

This chapter can be outlined as follows. Both of the clusters AC114 and AC118 show significant numbers of galaxies that are either caught in the midst of a burst of star formation, or in which star formation has only recently terminated. If it is the case that the Butcher-Oemler effect occurs in sporadic episodes associated with the infall of a large group of gas rich galaxies, then we should still expect to see evidence of the disturbance in the X-ray morphology of the cluster. The test has two stages. Firstly, we wish to establish whether the clusters have smooth, relaxed X-ray profiles without significant
substructure. If the X-ray images reveal the cluster to have multiple components, then we wish to determine whether they are still physically separate systems, or whether they are interacting. In their analysis of the NGC 4839 sub-component of the Coma cluster, Burns et al. (1994) demonstrated that the presence of tails and plumes of gas were signatures of a sub-clump being broken up (and subsequently 'swallowed') by its interaction with the main cluster. We will search for the presence of such features using the wavelet transformation (eg., Grebenev et al., 1995 and references therein). The ability of the transform to separate structures with different spatial scales provides us with a quantitative method for classifying the diffuse structure of these distant clusters.

Finally, we should comment that the data we present here is part of a long term strategy of similar observations of a wide sample of high-redshift galaxy clusters. The reader is cautioned that the conclusions we draw in this chapter are based on observations of only two clusters. Observations of a much wider sample are needed in order to derive general conclusions about the X-ray structure of Butcher-Oemler clusters.

6.2 Data Analysis

The ability to decompose a signal both into spatial and frequency components makes the wavelet transform an ideal tool for analysing structures in the spatial and velocity distribution of galaxies (Slezak, Bijaoui, \& Mars 1990, Escalera \& Mazure 1992, Slezak, De Lapparent, \& Bijaoui 1993, Lega et al. 1995) and in the distribution of X-ray emitting gas in clusters (Grebenev et al. 1995, Rosati et al. 1995, Slezak, Durret, \& Gerbal 1994, Biviano et al. 1996). The reader is referred to the above papers for a detailed explanation of the method. We only include here what is either directly relevant to or different about our analysis of the data.

A wavelet transform is just a convolution of the signal $s(x, y)$ (in this case our image) with a wavelet of a specified scale, $g(x / a, y / a)$. For our case we use a radially symmetric wavelet, so the transformation at scale a can be written as

$$
w(a, x, y)=s(x, y) \otimes \frac{1}{a} g\left(\frac{r}{a}\right)
$$

Figure 6.1: ROSAT HRI image of AC114. This image was smoothed with a $\sigma=10^{\prime \prime}$ gaussian filter. The axes are in pixels. The scale is $2^{\prime \prime} /$ pixel which corresponds to $5.5 h^{-1} \mathrm{kpc} /$ pixel

There are an infinite choice of possible wavelets to use, but we have chosen the radial mexican hat, given by

$$
g\left(\frac{r}{a}\right)=\left(2-\frac{r^{2}}{a^{2}}\right) e^{-r^{2} / 2 a^{2}}
$$

for its insensitivity to gradients and its ability to remove flat components (e.g. Slezak, Bijaoui, \& Mars 1990, Grebenev et al. 1995).

Figure 6.2: The smoothed X-ray image of AC 114 after having the wavelet reconstructed model subtracted. The background appears noisier than in figure 6.1 due to renormalisation of the colourmap after removing the extended emission. The contours show the original data as seen in figure 6.1. Point sources are clearly visible where the core of the cluster used to be.

6.2.1 Reconstruction of the source

In order to allow us to create a reconstruction of the X-ray image, it is first decomposed into a set of wavelet space images corresponding to discrete scale values (i.e. a $2 a 4 a$ etc...) (See figure 6.5).

The wavelet transform transfers scale information in the source image into wavelet coefficient value in the transformed image. If we assume the source is made up from a superposition of Gaussians, then each if these Gaussians is transformed into a three

Figure 6.3: ROSAT HRI image of AC118.. This image was smoothed with a $\sigma=10^{\prime \prime}$ gaussian filter. The axes are in pixels. The scale is $2^{\prime \prime} /$ pixel which corresponds to $5.5 h^{-1} \mathrm{kpc} /$ pixel
dimensional 'ellipsoid' in wavelet space, having a maximum wavelet coefficient ($w_{\max }$) at $\left(a_{\max }, x_{\max }, y_{\max }\right)$.

The values of $w_{\max }, a_{\max }, x_{\max }$ and $y_{\max }$ can be found simply due to the very weak dependance of $x_{\max }$ and $y_{\max }$ on $a_{\max }$. Initially we have a very sparse sampling of wavelet space in a (only $a=30^{\prime \prime}, 80^{\prime \prime}, 130^{\prime \prime}$ and $170^{\prime \prime}$) but that is enough to get initial values for $a_{\max }, x_{\max }$ and $y_{\max }$, then fixing $x_{\max }$ and $y_{\max }$ reduces the problem to the simple task of maximising the one dimensional function $w\left(a, x_{\max }, y_{\max }\right)$. The ellipticity of the Gaussian component in the source image and its position angle (e_{s}, a_{s}) can also

Figure 6.4: As figure 6.2 but showing AC 118 .
be estimated from the ellipticity and position angle of the wavelet coefficients in the $a=a_{\max }$ plane (e_{w}, a_{w}).
The response of $w_{\max }, a_{\max }, x_{\text {max }}, y_{\max }, e_{w}$ and a_{w} was determined empirically from synthetic source images containing single Gaussian whose parameters spanned the whole range on interest. This response function was then inverted and fitted to a simple polynomial to allow the actual source parameters to be determined from the wavelet space parameters.

As the real data is not simply made up of a single Gaussian, an iterative procedure is utilised whereby the Gaussian corresponding to the greatest maximum in wavelet space

Figure 6.5: The transformations of the X-ray image of ac 118 obtained using the ROSAT HRI into wavelet space. The scale of the wavelet used in each case is $a=20^{\prime \prime}, 40^{\prime \prime}, 80^{\prime \prime}$ and $160^{\prime \prime}$ respectively.
is subtracted from the source image, which is then reprocessed to find further subcomponents.

To generate confidence intervals for the models we use the C statistic of Cash (1979) to form a likelihood ratio.

$$
C=2 \sum_{i=1}^{N}\left(e_{i}-n_{i} \ln e_{i}\right)
$$

Here e_{i} is the expected number of counts and n_{i} is the actual number of counts in detector i. The model is simply a function of the parameters of the Gaussians, $\theta_{1}, \ldots, \theta_{p}$. The term $\left(C_{\min }\right)_{p}$ is found by varying all parameters $\theta_{1}, \ldots, \theta_{p}$ until a minimum C is found. Similarly $\left(C_{m i n}\right)_{p-q}^{T}$ is calculated by setting $\theta_{1}, \ldots, \theta_{q}$ to their 'true' values, $\theta_{1}^{T}, \ldots, \theta_{q}^{T}$ and
allowing $\theta_{q+1}, \ldots, \theta_{p}$ to vary until a minimum value of C is found.

$$
\Delta C=\left(C_{\min }\right)_{p-q}^{T}-\left(C_{\min }\right)_{p}
$$

is then distributed as χ^{2} with q degrees of freedom. This allows us to place our detected Gaussians into order of significance.

Figure 6.6: The positions of the CS galaxies superposed upon the wavelet reconstruction of the X -ray image of AC 118 . The axes are in $2^{\prime \prime}$ pixels.

The X-ray images of ACl 14 and $\mathrm{ACl18}$ are shown in Figures 6.1 and 6.3 respectively. Figures 6.6 and 6.7 show the wavelet reconstructions of the X-ray images for $\mathrm{AC118}$ and AC114 respectively with the positions of the galaxies identified by CS superposed. It is immediately obvious that both systems do not conform to a simple ellipsoidal shape. In the

Figure 6.7: The positions of the CS galaxies superposed upon the wavelet reconstruction of the X-ray image of AC 114 . The axes are in $2^{\prime \prime}$ pixels.

Component	X (pixels)	Y (pixels)	Flux (photons)	2σ $\left(2^{\prime \prime}\right.$ pixels)	e	Angle (degrees)
A	124.1	123.0	3991	25.2	0.39	172.6
B	199.0	163.0	1455	15.2	0.50	38.7
C	101.8	161.4	3228	22.7	0.07	162.9
D	181.3	139.0	3300	22.9	0.64	148.9

Table 6.1. Model components of the most significant large structures found in $\mathrm{ACl18}$. The positions of the elements are in $2^{\prime \prime}$ pixels and refer to positions in figure 6.6.

Component	X (pixels)	Y (pixels)	Flux (photons)	2σ $\left(2^{\prime \prime}\right.$ pixels)	e	Angle (degrees)
A	122.4	145.0	2119.1	18.4	0.89	32.4
B	126.0	151.0	267.2	6.5	0.79	60.5
C	151.8	237.5	2531.1	20.1	0.92	93.5
D	79.6	111.0	701.3	10.6	0.97	176.6
E	32.3	148.8	242.3	6.2	0.97	139.1

Table 6.2. Model components of the most significant large structures found in AC 114 . The positions of the elements are in $2^{\prime \prime}$ pixels and refer to positions in figure 6.7
case of ACl 14 , there is a main center to the cluster structure (though this could be mainly due to the point sources visible in figure 6.2), but unsymmetric lower surface brightness features can be seen to extend to the North West and South East. Table 6.2 shows that the components of the wavelet transform that make up the reconstructed image all have high ellipticities The features are strongly suggestive of plumes of gas ejected in a cluster merger.

The morphology of the AC118 cluster is very different. There are two clearly defined peaks of X-ray emission separated by $154^{\prime \prime}\left(424 h^{-1} \mathrm{kpc}\right)$ (see table 6.1). While this clearly indicates that the cluster is a binary system, each of the peaks appears to be individually relaxed, with low values for their ellipticity (table 6.1). The bridge of emission which appears to connect the two components is not picked up by the wavelet transform, figure 6.4 shows what is left of the X-ray image after subtraction of the wavelet reconstructed image shown in figure 6.6, there is no emission between the two maxima. We therefore conclude that the two structures are not yet interacting. There is however some extended emission to the North_East, and South_West of the largest X-ray peak (see table 6.1).

6.3 Comparison with galaxy population

Figures 6.6 and 6.7 show the wavelet reconstructions of the X-ray images for AC118 and AC 114 respectively with the positions of the galaxies identified by CS superposed. The CS spectra only cover the central parts of the cluster. They do not even cover the entire
area of X-ray emission detected by the HRI, despite its high background noise. There are no galaxies at all covering the NW substructure in AC 118 , which is unfortunate given the resemblance the X-ray image has to the local Coma cluster, where Caldwell et al. (1993) associate an enhanced number of ' $\mathrm{E}+\mathrm{A}$ ' galaxies with substructure associated with NGC4339, and visible in the cluster X-ray image (White, Briel, \& Henry 1993; see figure 2.3)

With Caldwell et al. (1993) in mind, we have labelled positions of the cluster galaxies from CS with points showing the classification of the spectra as defined by Barger et al. (1996). They model old elliptical populations which undergo a short (0.1 Gyr) burst of star formation, consuming $\sim 10 \%$ of the galaxy mass, and younger spiral populations which undergo a stronger 20% burst. About 0.2 Gyr after the onset of the burst, they classify the galaxy as a post-starburst galaxy (PSB), and after roughly 0.7 Gyr they are classified as $H \delta$ strong (HDS).

Galaxies can still be in the HDS phase upto 2Gyr after the truncation of star formation. Assuming the incoming galaxies have coherent velocity dispersions of the same order as that of the main cluster ($1947 \mathrm{Kms}^{-1} \sim 2 \mathrm{Mpc}_{\mathrm{Kyr}}{ }^{-1}$ for ACl 18 (CS)) any infalling groups could have been scattered about the main cluster while still being classified as an HDS galaxy. However, Galaxies are classified as SB, or PSB for a much shorted period of time. The arrow in figure 6.6 is $\sim 400 h^{-1} \mathrm{Kpc}$ long, and so shows the maximum possible distance travelled by a SB galaxy. It must be said however that the velocity dispersion of AC118 is very high (c.f. Coma of $\sim 900 \mathrm{kms}^{-1}$), so in many cases, galaxies will move far less than the length of this arrow in $.2 G y r$.

In the case of $\mathrm{AC118}$, the single SB galaxy is further from the NW substructure than the length of the arrow, and so, assuming that the structures are not connected, the galaxy cannot be associated with it. In AC114 (figure 6.7), the SB galaxies are distributed all over the cluster, and could be associated with any of the substructures listed in table 6.2, however the numbers of SB and PSB galaxies in $\mathrm{AC1} 14$ is much higher (7) than the number in AC118 (2). This is possibly associated with the increased amount of substructure and signs of disturbance in AC114.

6.4 Discussion

The wavelet decomposition of the X-ray gas shows signs of substructure in both clusters: they are not simple relaxed systems. AC118 shows immediate evidence of binary structure. AC114 also has a disturbed morphology. But, can we conclude that the ButcherOemler effect is caused by the infall of a large group? Disturbance and plumes seen in $\mathrm{AC114}$, together with its increased number of SB and PSB galaxies are certainly consistent with this picture. The two systems seen in $\mathrm{AC1} 18$ show little sign of disturbance. This suggests that they have only recently encountered each other, or even that they are quite distant from each other, and only appear close in projection.

It is possibly however, that as in the Coma cluster, $\mathrm{AC1} 18$ has a population of PSB/SB galaxies associated with the second peak, which we do not see in the CS data.
Clearly, a larger dataset is needed before we can answer the questions posed in this chapter. In chapter 7 we describe an ongoing project to produce ~ 500 spectra for Abell 1758 ($z=0.28$), covering an area of $10 \times 10 \mathrm{arcmin}$, which corresponds to $1.5 \times 1.5 h^{-1} \mathrm{Mpc}$.

6.5 Summary

- We develop a method to break down X-ray cluster images into Gaussian subcomponents, which we can use to analyse their substructure.
- We attempt to correlate the X-ray substructure in two Butcher-Oemler clusters, AC114 and AC 118 , with their population of starburst and post-starburst galaxies as observed by Couch \& Sharples (1987). Although we note that the cluster with the most disturbed morphology, and the most signs of substructure also has the most SB and PSB galaxies, we cannot correlate any galaxies with any single cluster subcomponent.

References

Abraham R. G. et al., 1996, ApJ, 471, 694
Balogh M. L., Schade D., Morris S. L., Yee H. K. C., Carlberg R. G., Ellingson E., 1998, ApJ, 504, L75
Barger A. J., Aragon-Salamanca A., Ellis R. S., Couch W. J., Smail I., Sharples R. M., 1996, MNRAS, 279, 1
Biviano A., Durret F., Gerbal D., Le Fevre O., Lobo C., Mazure A., Slezak E., 1996, A\&A, 311, 95
Bower R. G., Lucey J. R., Ellis R. S., 1992, MNRAS, 254, 601
Butcher H., Oemler J., A., 1978, ApJ, 226, 559

Butcher H., Oemler J., A., 1984, ApJ, 285, 426
Caldwell N., Rose J. A., Sharples R. M., Ellis R. S., Bower R. G., 1993, AJ, 106, 473
Cash W., 1979, ApJ, 228, 939
Couch W. J., Sharples R. M.; 1987, MNRAS, 229, 423
Dressler A., Gunn J. E., 1983, ApJ, 270, 7
Dressler A., Gunn J. E., 1992, ApJS, 78, 1
Escalera E., Mazure A., 1992, ApJ, 388, 23
Grebenev S. A., Forman W., Jones C., Murray S., 1995, ApJ, 445, 607
Lega E., Scholl H., Alimi J.-M., Bijaoui A., Bury P., 1995, Parallel Computing, 21, 265
Poggianti B., Smail I. R., Dressler A., Couch W., Barger A., Butcher H., Ellis R. S., Oemler A., 1999, ApJ, in press, (astro-ph/9901264)
Rosati P., Della Ceca R., Burg R., Norman C., Giacconi R., 1995, ApJ, 445, L11
Slezak E., Bijaoui A., Mars G., 1990, A\&A, 227, 301
Slezak E., De Lapparent V., Bijaoui A., 1993, ApJ, 409, 517
Slezak E., Durret F., Gerbal D., 1994, AJ, 108, 1996
White S. D. M., Briel U. G., Henry J. P., 1993, MNRAS, 261, L8

Chapter 7

Conclusions and Further Work

In this thesis, we have investigated the star formation history in early type galaxies based on their photometric and spectroscopic properties.
We find the following answers to the questions posed in chapter 1.

1. We find a radial dependence of the CMR corrected colours with projected cluster radius. If interpreted as a gradient in the mean age of the galaxies with projected radius, we conclude that galaxies at a radius of $0.58 h^{-1} M p c$ are on average $1-2$ Gyr younger than those in the cluster core. We calculated the increased scatter produced in the CMR by the presence of enough dust in the cluster core to account for the colour gradient, and found that it was greater than the scatter observed in the elliptical galaxies. We therefore conclude that there cannot be sufficient dust in the cluster core to account for the entire gradient, and some must be due to age. Guzman et al. (1992) also concluded that galaxies in the 'halo' of the Coma cluster had younger mean stellar ages than those in the core, from an offset in their $M g-\sigma$ relation.

We find no dependence of the CMR slope or scatter on galaxy luminosity, implying a constant mass to metallicity ratio for all galaxies.
2. Dissipationless mergers do not destroy the CMR, regardless of the precise merger scenario employed, so long as the typical mass of a galaxy does not increase by more than a factor of ~ 2. We find that hierarchical clustering models can preserve an initial CMR formed before $z=2$, however this is due mainly to the lack of mergers in the models once a large cluster dark matter halo forms, rather than to correlations
between a the mass of a galaxy, and the mass of its progenitors (Kauffmann 1996). This result means that it is still possible to construct elliptical galaxies out of stars which formed at high redshift (as is required by the differential colour evolution models, e.g. Bower, Lucey, \& Ellis 1992), but still have the galaxies merge as is required by models of the evolution of structure in the universe.
3. We find that the CMR corrected $U-V$ colour and hydrogen Balmer line absorption correlate well in our sample, and leads us to two conclusions. Firstly, there are no currently star-bursting galaxies in our Coma sample (using the definition of Barger et al. (1996)). Secondly, the use of $(U-V)$ colours is an efficient way to find galaxies with enhanced Balmer absorption features.

We note that the blue galaxies identified in chapter 5 are also the galaxies with the youngest ages as identified by Worthey (1994) models, and are either S0 or late type systems. All of the elliptical galaxies are old. We also confirm that the CMR in the Coma cluster spans a range in metallicity, but we cannot rule out some correlation between galaxy mass and age (Bressan, Chiosi, \& Tantalo 1996).
4. We find little correlation between the X-ray substructure of AC 114 and $\mathrm{AC1} 18$ with their starburst (SB) and post-starburst (PSB) galaxy population. Although AC114, with more substructure, has more SB and PSB galaxies, the low numbers of galaxies involved, and their lack of spatial coverage, mean that we cannot attribute any significance to it. We plan to address this situation with future observations (see below).

In conclusion, elliptical galaxies in clusters are old, and formed the bulk of their stars in smaller systems, which then merged before the galaxies fell into the clusters in which we now see them. The galaxies on the outer parts of clusters are on average younger than the galaxies in the cores of clusters. From both the properties of the CMR, and the distributions in age and metallicity, S0 galaxies would seem to be more similar to the bulges of late type galaxies in cluster cores than to elliptical galaxies. This could be indicative of a shared evolutionary path (Dressler et al. 1997).

Figure 7.1: Our 28 Ksec ROSAT HRI exposure of Abell 1758 superposed upon an I band image from Smail et al. (1998). The image is 9.7^{\prime} on each side. While both the X-ray and optical images display a binary structure, it can be seen from the fact that the SE galaxy concentration does not correspond to the SE X-ray maximum, but instead seems to be associated with a plume of X-ray emission, that this cluster is in a very disturbed state. This is probably the result of recent large-scale merging.

7.1 Further work

To expand upon the work presented in chapter 6, we propose to observe moderate redshift ($z \sim 0.3$) clusters to obtain both photometry and spectroscopy of large numbers of galaxies out to the virial radius. In order to quantify the role of the overall cluster environment upon the evolution of the individual cluster galaxies, it is vital to use a sample of clusters with a wide variety of X-ray morphologies, from the relatively relaxed (i.e. AC118) to the obviously disturbed (i.e. A1758, see figure 7.1). A large number of spectra over the wide
area of the cluster can be used to identify member galaxies, and by placing each galaxy on a colour- H_{δ} line strength plane (e.g. Couch \& Sharples 1987, Barger et al. 1996), their position in the star formation cycle can be identified, as well as the length of time since the last star formation event.
In their wide area survey of the relaxed cluster A2390, Abraham et al. (1996) show in there to be too few currently star-forming galaxies by a factor of two, to sustain its large population of H_{δ} strong (HDS) galaxies. Observations of clusters with a more disturbed X-ray morphology, including clusters which still retain signs of recent major mergers, will provide direct evidence for the relative importance of at least one triggering mechanism. A surfeit of starbursting galaxies relative to the HDS population in these disturbed clusters would be direct evidence for the role of the overall cluster environment in the triggering of Butcher-Oemler galaxies. Additionally, unless there is a significant delay between the cluster being disturbed and the appearance of starbursts within galaxies, the X-ray substructure in the cluster will also be identifiable with hot-spots of starbursting galaxies, as is the case in the Coma cluster (Caldwell et al. 1993, Caldwell et al. 1996)

At $z=0.3, \mathrm{a} \sim 10$ arc-minute field of view, such as that available from many low dispersion survey spectrographs (i.e. LDSS2 on the William Herschel Telescope) corresponds to roughly $3 h^{-1} \mathrm{Mpc}$ ($h=H_{0} / 50 \mathrm{kms}_{-1} M p c^{-1}$). By using blocking filters designed for use at the redshift of each specific cluster, the multiplicity of such instruments can be tripled. The large area is needed because the lifetime of the starbursts responsible for the abnormal spectra ($\sim 0.5 \mathrm{Gyr}$) is comparable to the crossing time in the core of the cluster. As we found in chapter 6, if we only sample the core, we would not be able to associate any X -ray substructure with a surfeit of starbursting galaxies. I have demonstrated the viability of this technique in a recent observing run. I was able to increase the multiplicity of the LDSS2 instrument on the WHT to 100 slits per mask (c.f. ~ 30), and would have been able to increase it to ~ 130 but for limitations in the mask manufacturing process. I propose to follow up the wide area surveys of these clusters with detailed spectroscopic analysis of the galaxies identified as starburst or post-starburst. Almost half of the high redshift active Butcher-Oemler galaxies appear to be involved in interactions or mergers (Couch et al. 1994, Smail et al. 1997, Couch et al. 1998). However this leaves just over half of the active population which do not, and given its large velocity
dispersion, the cluster environment is probably the last place one would expect galaxygalaxy interactions to occur in large numbers. The many integral field units (IFUs) being built on 8 m class telescopes, such as the Gemini Multi Object Spectrographs (GMOS), will be ideal instruments for investigating these galaxies. The GMOS IFU will have 0.2 arcsec spatial sampling, and a field of view of $6 \times 8.4 \operatorname{arcsec}$. This is ideally suited for galaxies at $0.2<z<0.4$ whose diameters are typically $2-4 \operatorname{arcsec}$. By targeting bright 'old population' galaxies, and ongoing starburst galaxies, the IFU will not only be able to identify what part of the galaxy is undergoing or has undergone a starburst, but will also be able to probe for more subtle signs of past interactions in the 'non-interacting' population. An increased fraction of e.g. counter-rotating cores or counter-rotating discs in this population of galaxies would be a clear indication that in these galaxies too, galactic interactions are triggering the starbursts. By also targeting the 'interacting' population, where there are two galaxies with a modest separation ($>1^{\prime \prime}$), we could use the IFUs to determine whether the pair is a cold bound pair, obviously interacting, or a hot bypass, at most harassing each other (Moore et al. 1996).

There is also a population of E+A galaxies in local clusters (Caldwell et al. 1993, Caldwell et al. 1996), but how do they relate to the high redshift Butcher-Oemler galaxies? The answer to the previous section will provide an important clue. Are the high redshift HDS galaxies preferentially associated with X-ray cluster substructure, as are the E+A galaxies in local clusters? The main difference between the low and high redshift E+A galaxies is in their luminosity. In the B band, a Coma E+A galaxy is on average a couple of magnitudes fainter than its high redshift counterpart (Caldwell et al. 1993). The new Coma data which I present chapter 2 shows no increase in scatter of the colour magnitude relation of early type galaxies in the outer regions of the dataset (~ 0.7 of the virial radius). This is contrary to what is observed by Van Dokkum et al. (1998) in the disky early type galaxies of the $z=0.33$ cluster CL 1358+62, and to the predictions of hierarchical clustering models. Because we do not reach the virial radius of the cluster, it is still possible for the scatter in the CM relation to increase at larger radii than what we have so far probed. Follow up observations in the U and V bands on the outer parts of Coma would finally resolve this problem. By also targeting local compact groups, it will be possible to obtain a comparable number of galaxies in a much poorer environment
to compare with the cluster results. While others have obtained large area photometry of clusters, no one has the wide area, deep U and V band CCD images of local clusters and groups needed for such detailed investigation of the CM relation.

References

Abraham R. G. et al., 1996, ApJ, 471, 694
Barger A. J., Aragon-Salamanca A., Ellis R. S., Couch W. J., Smail I., Sharples R. M., 1996, MNRAS, 279, 1
Bower R. G., Lucey J. R., Ellis R. S., 1992, MNRAS, 254, 601
Bressan A., Chiosi C., Tantalo R., 1996, A\&A, 311, 425
Caldwell N., Rose J. A., Franx M., Leonardi A. J., 1996, AJ, 111, 78
Caldwell N., Rose J. A., Sharples R. M., Ellis R. S., Bower R. G., 1993, AJ, 106, 473
Couch W. J., Barger A. J., Smail I., Ellis R. S., Sharples R. M., 1998, ApJ, 497, 188
Couch W. J., Ellis R. S., Sharples R. M., Smail I., 1994, ApJ, 430, 121
Couch W. J., Sharples R. M., 1987, MNRAS, 229, 423
Dressler A. et al., 1997, ApJ, 490, 577
Guzman R., Lucey J. R., Carter D., Terlevich R. J., 1992, MNRAS, 257, 187
Kauffmanin G., 1996, MNRAS, 281, 487
Moore B., Katz N., Lake G., Dressler A., Oemler J., A., 1996, Nature, 379, 613
Smail I., Dressler A., Couch W. J., Ellis R. S., Oemler J., Augustus, Butcher H., Sharples R. M., 1997, ApJS, 110, 213
Smail I., Edge A. C., Ellis R. S., Blandford R. D., 1998, MNRAS, 293, 124, Provided by the NASA Astrophysics Data System

Van Dokkum P. G., Franx M., Kelson D. D., Illingworth G. D., 1998, ApJ, 504, L17
Worthey G., 1994, ApJS, 95, 107

Tables of Photomerry

Tables of Photometry

Appendix A

 Table A. 1 gives the positions and name of all the objects observed. Where an object has a Godwin, Metcalfe, \& Peach (1983) number (GMP), or a Dressler (1980) number D80, that is shown. One other name a galaxy may have, as reported by the NASA/IPAC extragalactic database (NED) is also reported: The morphology is taken from Andreon et al. (1996) and Andreon, Davoust, \& Poulain (1997). The class star column shows the CLASS_STAR parameters from SExtractor (Bertin \& Arnouts 1996). An point like object is represented by a CLASS_STAR of around 1 , while an extended object has a CLASS_STAR close to zero. To be included in the sample, all objects must have a CLASS_STAR ≤ 0.2.Tables A. 2 and A. 3 contain the actual U and V band photometry respectively. They simply state the object i.d., the GMP number (where an object has one) and the aperture magnitudes in 8.8,13,16,20.2 and 26 arcsec diameter apertures.

筑

$\xrightarrow{\text { RA }}{ }_{(\mathrm{J} 2000)}^{\text {DEC }}$

RA
$-(\mathrm{J} 2000)$

毕
응 ส్สิ
สี

등
comane6-65
coma9-57
coma9-46
comas-67
comal6-63
comal6-24
coma22-23
coma22-42
comal6-55
coma9-20
comane6-37
coma5-43
comal6-54
comal6-45
comal6-104
coma22-74
coma16-2
comal6-89
comal6-82
coma5-68
comane6-33
coma22-59
comal6-64
coma16-13
coma9-24
coma5-45
coma22-48
comal6-12
coma22-44
coma5-49
comal6-83
coma5-18
coma22-49
comane6-62
comas-61
coma22-38
coma9-9
coma16-9
号品

13:00:27.9 27:59:16.3

$\begin{array}{lll}13: 00: 27.0 & 28: 03: 47.1\end{array}$
$\begin{array}{ll}\text { 13:00:27.0 } & 28: 00: 26.2 \\ 28: 00: 31.7\end{array}$

 品
 品
ء
ء

 \(\begin{array}{ll}13: 00: 34.4 & 28: 03: 12.8 \\ & \text { 27:38:15.6 }\end{array}\)

边

contiuned from previous page GMP

 き $コ$గ్ㅄㅇ$$
\cong
$$

coma8－30
coma15－33
comals－112
気

荡

Object	GMP	D80	Other	RA	DEC	Morphology	CStar
				(J2	00)		
comal5-110	2727	170	IC4026	13:00:22.2	28:02:48.9	SB0	0.03
coma25-44	2728	-	-	13:00:22.1	28:14:50.1	-	0.03
coma8-33	2735	-	-	13:00:21.8	27:50:41.4	-	0.01
comal5-5	2736	-	-	13:00:21.7	27:53:54.4	-	0.03
coma4-35	2738	-	-	13:00:21.5	27:48:52.3	-	0.01
coma4-51	2749	-	-	13:00:20.5	27:48:16.5	-	0.01
coma25-51	2750	-	-	13:00:20.4	28:15:41.0	-	0.01
coma21-26	2752	-	-	13:00:20.4	28:04:14.3	-	0.03
coma8-34	2753	-	-	13:00:20.2	27:50:36.3	-	0.03
comal5-72	2755	-	-	13:00:20.2	27:59:37.5	-	0.01
comal5-8	2763	-	-	13:00:19.8	27:54:13.0	-	0.01
coma21-55	2764	-	-	13:00:19.7	28:07:17.6	-	0.02
comal5-82	2777	-	-	13:00:18.9	28:00:33.2	-	0.03
comal5-37	2778	-	RB094	13:00:18.8	27:56:13.2	SB0/a	0.03
comal5-17	2780	-	-	13:00:18.7	27:55:12.4	-	0.01
coma4-53	2783	-	-	13:00:18.6	27:48:55.6	-	0.03
coma21-42	2784	-	-	13:00:18.6	28:05:49.8	-	0.02
comal5-119	2787	-	-	13:00:18.4	28:03:33.3	-	0.03
coma21-30	2790	-	-	13:00:18.0	28:04:44.0	-	0.01
coma21-96	2795	206	NGC4895	13:00:17.9	28:12:09.2	SA0	0.03
comal5-52	2798	121	NGC4898	13:00:17.7	27:57:18.7	???	0.03
comal5-68	2799	-	-	13:00:17.7	27:59:14.9	-	0.03
comat-40	2800	-	-	13:00:17.6	27:47:03.6	-	0.01
coma4-14	2801	-	-	13:00:17.5	27:42:41.2	-	0.02
comal5-123	2805	171	RB091	13:00:17.0	28:03:49.9	SB0	0.03
comal5-9	2808	-	-	13:00:16.9	27:54:15.8	-	0.01
comal5-56	2815	122	NGC4894	13:00:16.5	27:58:02.9	SAO	0.03
comal5-39	2819	-	-	13:00:16.3	27:56:30.0	-	0.00
coma21-83	2825	-	-	13:00:15.8	28:10:14.7	-	0.13
comals-2	2835	-	-	13:00:15.2	27:53:34.3	-	0.02
comal5-94	2838	-	-	13:00:14.8	28:01:32.8	-	0.01
comal5-107	2839	172	IC4021	13:00:14.8	28:02:28.3	SA0	0.03
coma25-28	2849	-	-	13:00:13.9	28:13:57.6	-	0.02
comal5-108	2851	-	-	13:00:13.8	28:02:43.3	-	0.01
coma8-45	2852	-	-	13:00:13.6	27:52:01.7	-	0.02
comal5-111	2856	-	-	13:00:13.4	28:03:11.6	-	0.02
comal5-96	2858	-	-	13:00:13.3	28:01:52.9	-	0.01
coma21-38	2860	-	-	13:00:13.2	28:05:24.6	-	0.01

 RA ${ }^{\text {(J2000) }}$ ———n Morphology

12:59:40.4 27:48:10.3

$12: 59: 38.9$	$27: 52: 17.9$

 12:59:37.2 27:52:13.2

 ず

 ® 용 끌

挡 웇울

品

B

足 e

U 告 U Z

응

䯧

Object GMP D80 Other RA					
				（J20	000）
comasw21－80	4193	－	－	12：58：32．6	27：50：58．6
comal2－51	4200	182	RB243	12：58：31．9	28：02：58．3
comasw21－83	4205		－	12：58：31．7	27：51：09．9
comasw1－11	4206	20	－	12：58：32．1	27：27：22．5
comasw21－103	4207	－	－	12：58：31．5	27：53：02．0
comal8－84	4208	－	－	12：58：31．2	28：10：07．6
comasw16－50	4209	59	RB188	12：58：31．7	27：40：24．3
comasw6－11	4211	－	－	12：58：31．9	27：18：53．1
comasw6－10	4211	－	－	12：58：32．1	27：18：48．4
comasw21－34	4212		－	12：58：31．4	27：46：54．1
comasw6－50	4215		－	12：58：31．7	27：23：41．9
comasw21－84	4216	－	－	12：58：31．3	27：51：19．3
comasw21－115	4217		－	12：58：31．1	27：53：43．8
comasw6－14	4220	－	－	12：58：31．6	27：19：05．0
comasw21－41	4221	－	－	12：58：31．0	27：47：47．2
comasw6．13	4226		－	12：58：31．4	27：18：58．2
comal2－36	4230	161	RB241．	12：58：30．2	28：00：52．8
comasw10－79	4232	－	－	12：58：30．7	27：33：51．5
comal2－65	4238	－		12：58：29．4	28：05：16．2
comasw6－33	4240	－		12：58：30．0	27：21：37．6
comasw21－40	4245	－	－	12：58：29．2	27：47：42．4
comasw21－54	4246	－		12：58：29．0	27：48：52．4
comasw21－101	4247	－	－	12：58：28．8	27：52：50．4
comal2－71	4251	－	－	12：58：28．1	28：05：50．5
comasw10－24	4253	－	－	12：58：28．7	27：27：36．5
comasw10－78．	4255	44		12：58：28．4	27：33：33．3
comasw20－96	4264	－	－	12：58：27．3	27：52：06．1
comasw16－33	4266	－	－	12：58：27．6	27：39：49．4
comasw16－63	4268	－		12：58：27．1	27：42：23．3
comasw10－59	4270	－		12：58：27．2	27：31：26．6
comasw20－33	4271	－	－	12：58：26．9	27：45：28．7
coma 12－60	4275	－		12：58：26．5	28：04：54．6
comal2－29	4277	－	－	12：58：26．0	27：59：54．7
comal8－61	4281	－	－	12：58：25．5	28：07：43．6
comasw16－18	4285	－	－	12：58：25．9	27：37：02．7
comal8－69	4287	－	－	12：58：25．1	28：08：47．6
comasw10－101	4291	－	－	12：58：25．5	27：36：14．2
coma 12－46	4295	－	－	12：58：24．0	28：02：48．5

RA（J2000）${ }^{\text {DEC }}$ Morphology
む

12：58：38．3 27：56：45．2

$\begin{array}{ll}12: 58: 36.8 & 27: 50: 57.7\end{array}$
12：58：36．4 28：06：48．9
12：58：36．7 27：26：17．1
12：58：36．0 28：03：51．3

12：58：35．6 27：31：51．9

㫄

음
contiuned from previous page
Object \quad GMP D8
范

 comasw21－70 cmasw6－23 comaswl1－36 comasw11－48 comasw21－82 comal2－15 comal2－10 coma18－65 coma23－1 comal2－12 comasw21－64 coma18－62 comasw21－79 $\stackrel{?}{7}$ n Cmaw6－73 comasw21－93 comasw6－21 comasw16－24

 ． y
0
0

N
$\stackrel{y}{4}$

 comasw $16-67$
comasw6－38

| Tables of Photometry | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

氙

 $\stackrel{8}{4}$家。

岛

\qquad

\qquad

侖

㐫
\qquad $\stackrel{\infty}{\oplus}$ \vec{N} $\stackrel{\infty}{\infty}$

 $\stackrel{\text { º }}{0}$
$\begin{array}{lll}\text { contiuned from previous page } \\ \text { Object } & \text { GMP } & \text { D80 }\end{array}$
示••••・ネ・••・き
 Object
comasw26－69 comasw26－69
comasw10－5 comasw4－16 comasw15－77 3－59 comasw23－59 comasw19－20 comasw4－45
 comasw19－24 comasw4－51 comasw14－54 comasw23－57 comasw10－13
 comasw4－73
 comasw14－19
comasw19－35 comasw14－26 comasw14－34 comasw 19－34 comasw26－66 comasw14－37 comasw9－54 comasw23－35 comasw26－23 comasw9－69
 3
4
3
3

苟

$\stackrel{\$}{2}$
 comasw4－72
comasw27－25
comasw14－66
comasw14－16
comasw27－16
comasw4－41
comasw23－73
comasw9－75
comasw14－67
comasw27－36
comasw27－32
comasw9－67
comasw14－38
comasw4－13
comasw14－79
comasw18－56
comasw14－51
comasw8－50
comasw14－53
comasw18－66
comasw23－37
comasw3－87
comasw3－65
comasw3－19
comasw18－55
comasw8－38
comasw3－39
comasw3－53
comasw18－24
comasw27－38
comasw18－52
comasw8－51
comasw18－18
comasw19－60
comasw18－48
comasw18－68
comasw3－68
comasw3－91

 13：01：19．2 28：19：07．9

 12：58：47．7 $\quad 27: 43: 24.6$

 $\begin{array}{ll}12: 58: 35.4 & 27: 37: 11.1 \\ 13: 00: 44.4 & 28: 03: 33.5\end{array}$ $\begin{array}{ll}\text { 13：00：44．4 } & \text { 28：03：33．5 } \\ \text { 13：01：30．3 } & 27: 47: 01.7\end{array}$

苟

咼

 Morphology
\qquad

 12：56：25．9 27：41：55．4

 $\begin{array}{ll}12: 56: 20.6 & 28: 03: 02.4\end{array}$

 12：57：45．8 $\quad 27: 51: 15.1$

䔍

身

는
vious page
GMP \quad D80

玉

 $\begin{array}{lll}12: 59: 03.1 & 28: 00: 54.6 & - \\ \text { 12：57：22．6 } & 27: 39: 32.9 & - \\ \text { 12：57：09．7 } & 27: 39: 13.0 & - \\ \text { 13：01：31．2 } & 28: 03: 06.2 & - \\ \text { 12：57：33．2 } & 27: 29: 41.2 & - \\ \text { 12：59：09．6 } & 27: 47: 27.5 & - \\ 13: 01: 43.2 & 28: 02: 00.0 & - \\ \text { 12：57：18．4 } & 27: 36: 03.1 & - \\ 13: 00: 21.1 & 28: 18: 23.1 & - \\ 12: 57: 37.4 & 27: 27: 11.5 & - \\ 13: 01: 21.0 & 27: 59: 24.6 & -\end{array}$
consinead form per
Obiect
comal3－108
comal3－104
comasw14－50
comasw14－45
coma17－70
comasw－39
comasw22－44 comasw22－44
coma17－57 comasw14－11
 comasw9－19 comal7－40
商
 comasw 10－90 comasw10－89 comasw10－88
comasw10－83 comasw 10－83
coma 7－28 comasw10－60 comasw6－31 comasw21－116 comasw 10－57 comasw13－87 comal3－84

 comasw21－108 coma14－66 omasw5－41 13－68

Object	GMP	and aperture magnitudes.				
				Apeture Dia (")		
		8.8	13	16	20.2	26
10	1714	20.273 ± 0.056	20.297 ± 0.076	9.412 ± 0.051		
comal 10.50	1724	21.120 ± 0.122	21.097 ± 0.174	20.983 ± 0.213	21.139 ± 0.332	
ne7.26	1730	18.740 ± 0.016	18.601 ± 0.017	18.409 ± 0.019	18.452 ± 0.023	
com	1745	20.707 ± 0.077	20.541 ± 0.086	20.358 ± 0.101	20.527 ± 0.141	20.582 ± 0.156
comane 3 -69	175	18.122 ± 0.010	17.918 ± 0.010	17.716 ± 0.010	17.726 ± 0.012	
comence-50	1757	19.998 ± 0.044	19.746 ± 0.043	19.505 ± 0.046	19.375 ± 0.049	
comane7-37	1758	95 ± 0.073	± 0.103	20.691 ± 0.138	21.097 ± 0.258	
comalo-1	1764	19.652 ± 0.029	19.612 ± 0.036	19.511 ± 0.044	19.611 ± 0.058	. 33 ± 0.082
comenc3.51	1765	19.508 ± 0.028	19.442 ± 0.032	19.308 ± 0.037	19.428 ± 0.049	
comal0-43	1767	20.109 ± 0.043	0.082 ± 0.055	19.792 ± 0.057	19.578 ± 0.057	. 581 ± 0.061
comal0-36	177	21.145 ± 0.114	21.145 ± 0.159	21.131 ± 0.202	21.240 ± 0.290	20.935 ± 0.203
comme3-80	1777	19.299 ± 0.024	19.385 ± 0.030	19.249 ± 0.037	19.410 ± 0.048	
comal0.61	1780	19.968 ± 0.047	20.014 ± 0.065	19.972 ± 0.091	20.134 ± 0.134	. 589 ± 0.325
comme3.36	1781	18.467 ± 0.013	18.247 ± 0.012	18.042 ± 0.013	18.070 ± 0.015	
comanc7-34	1800	20.495 ± 0.065	20.429 ± 0.082	20.301 ± 0.096	$78 \pm$	
comanc7-15	1805	19.381 ± 0.026	19.386 ± 0.033	19.274 ± 0.040	19.304 ± 0.049	
comane7-23	180	19.977 ± 0.041	20.001 ± 0.055	19.933 ± 0.068	19.981 ± 0.089	
coma 10-45	1807	16.851 ± 0.004	16.727 ± 0.004	16.570 ± 0.004	16.540 ± 0.004	14 ± 0.004
coman 17-30	181	20.488 ± 0.058	20.479 ± 0.078	20.352 ± 0.094	20.444 ± 0.126	20.648 ± 0.171
comal 0.17	1828	19.998 ± 0.039	20.005 ± 0.050	19.872 ± 0.061	19.983 ± 0.080	20.072 ± 0.092
comenc3-47	1841	20.997 ± 0.117	21.112 ± 0.163	21.542 ± 0.309	22.476 ± 0.910	
coma 10	1844	20.481 ± 0.061	20.480 ± 0.078	20.396 ± 0.099	20.402 ± 0.120	20.657 ± 0.169
comene3-17	1833	16.466 ± 0.003	16.317 ± 0.003	16.167 ± 0.003	16.150 ± 0.003	
nnal0.34	185	21.475 ± 0.144	21.497 ± 0.204	21.544 ± 0.276	21.588 ± 0.371	21.061 ± 0.226
coms 10.23	187	19.808 ± 0.034	19.796 ± 0.042	19.669 ± 0.051	19.794 ± 0.069	19.690 ± 0.066
comanes-43	188	20.373 ± 0.057	20.294 ± 0.067	20.180 ± 0.079	20.061 ± 0.086	
comane3.76	1885	18.024 ± 0.009	17.957 ± 0.010	17.845 ± 0.011	17.892 ± 0.014	
comane3-41	1887	20.039 ± 0.044	19.794 ± 0.043	19.529 ± 0.045	19.427 ± 0.049	
comanc3-72	1888	20.742 ± 0.087	21.024 ± 0.143	21.114 ± 0.200	21.160 ± 0.261	
comane7-21	18	19.327 ± 0.025	19.423 ± 0.033	19.362 ± 0.042	19.531 ± 0.059	
comane7.27	1897	20.127 ± 0.049	20.089 ± 0.06	19.969 ± 0.074	20.046 ± 0.098	
comane7. 29	1898	18.931 ± 0.019	18.874 ± 0.022	18.762 ± 0.027	18.834 ± 0.034	
commene3-61	190	20.269 ± 0.058	20.427 ± 0.081	20.314 ± 0.099	20.511 ± 0.139	
comenes3.75	1918	19.815 ± 0.036	19.580 ± 0.037	19.397 ± 0.040	19.348 ± 0.048	
comane3-10	1921	20.340 ± 0.056	20.317 ± 0.069	20.193 ± 0.081	20.166 ± 0.095	
comane3.77	1926	20.906 50.100	21.187 ± 0.147	21.520 ± 0.230	22.854 ± 0.428	
comance-18	1931	18.585 ± 0.015	18.470 ± 0.016	18.287 ± 0.018	18.307 ± 0.022	
coma 17.39	1941	20.120 ± 0.043	20.185 ± 0.058	20.086 ± 0.075	20.211 ± 0.099	20.721 ± 0.172
comal7-50	1953	19.028 ± 0.018	18.928 ± 0.020	18.802 ± 0.024	18.905 ± 0.032	18.831 ± 0.031
comel 10.60	1958	20.009 ± 0.041	20.041 ± 0.058	19.883 ± 0.072	19.913 ± 0.094	19.981 ± 0.114
comal7-72	1960	19.261 ± 0.020	19.252 ± 0.026	19.218 ± 0.032	19.286 ± 0.043	19.203 ± 0.045
comane3-40	1966	19.567 ± 0.030	19.533 ± 0.035	19.391 ± 0.041	19.368 ± 0.047	
comanc3-38	1975	18.507 ± 0.013	18.394 ± 0.014	18.233 ± 0.015	18.262 ± 0.018	
comanc3-46	1977	19.665 ± 0.034	19.794 ± 0.045	19.693 ± 0.056	19.937 ± 0.081	
comalo-53	1986	18.857 ± 0.017	18.576 ± 0.017	18.340 ± 0.018	18.306 ± 0.021	18.169 ± 0.018
comallo-38	1993	20.747 ± 0.075	20.313 ± 0.067	19.810 ± 0.059	19.726 ± 0.065	22.847* 1.606
comal 17.1	199	20.748 ± 0.075	20.767 ± 0.102	20.545 ± 0.114	20.465 ± 0.131	20.613 ± 0.157
comal 17.55	199	19.120 ± 0.019	19.056 ± 0.023	18.887 ± 0.027	18.968 ± 0.034	19.062 ± 0.039
comal7-31	1998	20.799 ± 0.075	20.751 ± 0.096	20.738 ± 0.129	20.825 ± 0.173	21.184 ± 0.265
comal 10.33	2000	16.288 ± 0.003	16.105 ± 0.003	15.924 ± 0.003	15.861 ± 0.003	15.681 ± 0.002
comene7-38	2002	20.212 ± 0.053	20.025 ± 0.060	18.899 ± 0.070	19.850 ± 0.084	
comenc3-63	2016	20.226 ± 0.052	20.295 ± 0.067	20.250 ± 0.086	20.355 ± 0.112	
comane7-22	2019	20.331 ± 0.085	20.241 ± 0.067	20.113 ± 0.	19.919 ± 0.0	

 0
0
H
H
H
0
0

Raw U-band aperture magnitudes. contiuned from previous page

 0.0 ∓ 928
$10 \mp 99 s^{\prime}$
10 ∓ 106

 \qquad
\qquad

GMP	Raw U-band aperture magnitudes. contiuned from previous page				
			\rightarrow -		
	${ }^{8.8} 8$	13	16	20.2	26
2550	.440 ± 0.0	316 ± 0.036	.081 ± 0.040	18.994 ± 0.045	18.294 ± 0.0
2551	65 ± 0.005	16.839 ± 0.004	. 004		
2553	20.333 ± 0.055	20.152 ± 0.061	84 ± 0.067	± 0.08	
2555	$66 \pm$	19.437 ± 0.031	70 ± 0.040	± 0	0.256
2559	278 ± 0.0	16.021 ± 0.003	15.714 ± 0.002	15.677 ± 0.003	
2566	19.789 ± 0.034	9.686 ± 0.038	. 044	19.577 ± 0.055	
2570	20.021 ± 0.042	19.891 ± 0.05	19.739 ± 0.062	± 0	
2571	. 260 ± 0.052	20.350 ± 0.0	20.350 ± 0.097	. 463 ± 0.126	
2577	19.503 ± 0.027	. 552 ± 0.03	19.414 ± 0.046	19.431 ± 0.055	
2584	$17 \pm$	16.918 ± 0.004	1 ± 0.004	16.671 ± 0.005	
2585	18.987 ± 0.017	18.815 ± 0.019	629 ± 0.0	662 ± 0.027	
2587	18.951 ± 0.022	0.031	. $959 \pm$	19.157 ± 0.056	
2591	74 ± 0.02	18.991 ± 0.022	. 800 ± 0.025	± 0	
2593	7 ± 0.129	21.114 ± 0.10	20.782 ± 0.110	± 0.142	
2599	16.354 ± 0	6.161 ± 0.003	15.863 ± 0.003	15.853 ± 0.003	
2603	17.944 ± 0.014	17.797 ± 0.0	17.616 ± 0.015		
260	20.167 ± 0.042	2.014 ± 0.05	9.860 ± 0.060	19.916 ± 0.078	
2506	20.256 ± 0.085	.087 ± 0.086	19.794 ± 0.089	19.591 ± 0.096	
2613	19.977 ± 0.069	19.984 ± 0.078	19.762 ± 0.088	. 749 ± 0	
26	20.546 ± 0.0	. 363 ± 0.07	162 ± 0.080	888	
2615	17.797 ± 0.0	7.601 ± 0.011	17.411 ± 0.012	17.380 ± 0.013	
19	18.261 ± 0.02	9.021 ± 0.021	18.820 ± 0.023	± 0.026	18.711 ± 0.029
2626	19.173 ± 0.019	19.064 ± 0.022	. 915 ± 0.025	.917 ± 0.031	24
2631	19.513 ± 0.026	± 0.031	19.207 ± 0.034	, 35	530 ± 0.023
2633	$18.981 \pm$. 801 ± 0.018	18.615 ± 0.020	18.562 ± 0.023	
2635	19.212 ± 0.095	19.108 ± 0.039	51	18.961 ± 0	
2644	20.327 ± 0.089	± 0.096	19.892 ± 0.099	19.923 ± 0.121	
2647	19.606 ± 0.0	747 ± 0.036	653	19.779 ± 0.055	. 23
2651	17.448 ± 0.005	$13 \pm$.38 ± 0.005	16.962 ± 0.006	006
2654	17.265 ± 0.00	$27 \pm$	16.965 ± 0.005	6.948 ± 0.006	16.910 ± 0.006
2655	20.828 ± 0.073	20.940 ± 0.109	.709 ± 0.12	64	1.960 ± 0
2650	20.562 ± 0.062	. 399 ± 0.0	20.209 ± 0.077	20.299 ± 0.101	0. 583 ± 0.156
2663	20.930 ± 0.081	20.898 ± 0	20.806 ± 0.134	56 ± 0.159	12
2665	20.897 ± 0.0	20.937 ± 0.112	20.799 ± 0.134	67	201
268	20.019 ± 0.043	. 021 ± 0.0	78	19.754 ± 0.092	9.451 ± 0.0
2676	19.583 ± 0.02	19.500 ± 0.032	19.364 ± 0.038	19.446 ± 0.050	. 044
2677	20.240 ± 0.048	20.418 ± 0.072	20.354 ± 0.095	0.461 ± 0.125	135
2679	20.163 ± 0.05	20.017 ± 0.061	19.849 ± 0.074	19.868 ± 0.097	19.802 ± 0.099
2683	18.989 ± 0.017	19.017 ± 0.021	18.765 ± 0.023	18.852 ± 0.029	18.823 ± 0.032
2684	19.270 ± 0.02	19.282 ± 0.026	19.123 ± 0.031	19.286 ± 0.042	9.246 ± 0.045
2685	19.160 ± 0.022	19.147 ± 0.026	19.052 ± 0.031	19.219 ± 0.042	19.271 ± 0.043
2687	20.080 ± 0.042	19.871 ± 0.048	19.680 ± 0.050	19.658 ± 0.058	19.708 ± 0.060
2692	18.962 ± 0.016	18.797 ± 0.017	18.616 ± 0.019	18.607 ± 0.023	18.488 ± 0.022
2694	20.259 ± 0.050	20.290 ± 0.06	20.131 ± 0.080	20.190 ± 0.103	19.636 ± 0.06
2698	19.331 ± 0	19.307 ± 0.043	19.203 ± 0.052	18.353 ± 0.069	1.600 ± 0.06
2711	18.179 ± 0.0	18.309 ± 0.012	18.186 ± 0.014	18.346 ± 0.01	18.493 ± 0.025
2712	20.369 ± 0.057	20.477 ± 0.077	$20.483 \pm$	20.784 ± 0.162	21.366 ± 0.292
2716	20.137 ± 0.059	20.027 ± 0.072	19.825 ± 0.082	20.015 ± 0.119	19.774 ± 0.097
2718	$20.525 \pm$	20.349 ± 0.068	20.303 ± 0.088	20.377 ± 0.117	21.210 ± 0.284
2727	16.946 ± 0.004	16.737 ± 0.004	16.538 ± 0.004	16.478 ± 0.00	16.340 ± 0.04
2728	18.603 ± 0.013	18.461 ± 0.014	18.309 ± 0.015	19.349 ± 0.018	18.359 ± 0.020
2735 2736	19.645 ± 0.041	19.760 ± 0.059	19.631 ± 0.073	19.746 ± 0.098	19.726 ± 0.093
2736	18.624 ± 0.012	$18.519 \pm$	016	18.436 ± 0.020	

Raw U-band aperture magnitudes. contiuned from previous page

[^1]

Raw U-band aperrure magnitudes. contiuned from previous page				
8.8	13	16	20.2	26
19.645 ± 0.053	19.644 ± 0.075	19.617 ± 0.093	19.724 ± 0.136	20.547 ± 0.243
17.983 ± 0.013	17.745 ± 0.014	17.524 ± 0.015	17.466 ± 0.017	17.389 ± 0.018
18.562 ± 0.020	18.414 ± 0.024	18.260 ± 0.028	18.255 ± 0.034	18.313 ± 0.040
16.799 ± 0.005	16.675 ± 0.006	16.532 ± 0.006	16.525 ± 0.007	16.469 ± 0.008
18.468 ± 0.012	18.202 ± 0.011	17.942 ± 0.011	17.844 ± 0.012	
19.620 ± 0.028	19.537 ± 0.033	19.420 ± 0.038	19.402 ± 0.047	
20.391 ± 0.104	20.357 ± 0.132	19.977 ± 0.132	19.583 ± 0.110	19.212 ± 0.087
19.571 ± 0.056	19.462 ± 0.069	19.297 ± 0.079	19.265 ± 0.091	1 ± 0.084
19.215 ± 0.038	19.131 ± 0.048	19.073 ± 0.063		
17.886 ± 0.008	17.844 ± 0.009	17.702 ± 0.010	17.738 ± 0.012	
19.860 ± 0.040	19.718 ± 0.043	19.586 ± 0.048	19.581 ± 0.058	
19.355 ± 0.046	18.999 ± 0.043	18.745 ± 0.047	18.704 ± 0.058	18.420 ± 0.042
16.337 ± 0.004	15.941 ± 0.003	15.679 ± 0.003	15.529 ± 0.003	15.174 ± 0.003
19.081 ± 0.018	19.154 ± 0.024	19.056 ± 0.029	19.177 ± 0.039	
20.392 ± 0.053	20.341 ± 0.067	20.226 ± 0.082	20.328 ± 0.110	
19.262 ± 0.041	18.983 ± 0.043	18.752 ± 0.048	18.765 ± 0.060	18.497 ± 0.048
18.147 ± 0.014	18.040 ± 0.017	17.886 ± 0.019	17.919 ± 0.025	17.976 ± 0.029
19.185 ± 0.037	19.030 ± 0.044	18.661 ± 0.053	18.922 ± 0.068	19.356 ± 0.123
20.275 ± 0.046	20.043 ± 0.050	19.852 ± 0.057	19.831 ± 0.069	
16.526 ± 0.005	16.391 ± 0.006	16.250 ± 0.007	16.227 ± 0.009	16.051 ± 0
19.888 ± 0.039	19.659 ± 0.041	19.511 ± 0.046	19.607 ± 0.054	
16.678 ± 0.005	16.453 ± 0.005	16.251 ± 0.005	16.182 ± 0.006	16.069 ± 0.00
19.439 ± 0.027	19.296 ± 0.029	19.041 ± 0.032	19.241 ± 0.040	
19.599 ± 0.046	19.341 ± 0.052	19.099 ± 0.060	19.099 ± 0.073	19.094 ± 0.083
19.730 ± 0.032	19.447 ± 0.030	19.236 ± 0.032	19.186 ± 0.036	
18.807 ± 0.025	18.733 ± 0.031	18.606 ± 0.036	18.659 ± 0.047	18.853 ± 0.061
20.343 ± 0.054	20.244 ± 0.061	20.078 ± 0.067	20.147 ± 0.082	
18.971 ± 0.019	19.071 ± 0.024	18.979 ± 0.028	19.093 ± 0.037	
16.419 ± 0.004	16.311 ± 0.004	16.175 ± 0.004	16.156 ± 0.005	16.060 ± 0.005
17.535 ± 0.006	17.422 ± 0.006	17.275 ± 0.007	17.290 ± 0.008	
19.451 ± 0.024	19.514 ± 0.031	19.373 ± 0.038	19.449 ± 0.048	
19.717 0.035	19.619 ± 0.039	19.457 ± 0.044	19.523 ± 0.053	
16.762 ± 0.005	16.562 ± 0.005	16.371 ± 0.006	16.290 ± 0.006	16.142 ± 0.008
20.043 ± 0.081	20.087 ± 0.110	19.906 ± 0.133	19.951 ± 0.165	20.584 ± 0.322
16.715 ± 0.005	16.594 ± 0.005	16.454 ± 0.006	16.439 ± 0.007	16.363 ± 0.007
19.466 ± 0.028	19.323 ± 0.030	19.120 ± 0.034	19.087 ± 0.041	
19.491 ± 0.027	19.452 ± 0.031	19.356 ± 0.097	19.433 ± 0.048	
19.531 ± 0.053	19.393 ± 0.065	19.237 ± 0.079		
21.189 ± 0.238	20.919 ± 0.230	20.610 ± 0.238	20.703 ± 0.310	
18.632 ± 0.014	18.449 ± 0.014	18.268 ± 0.015	18.260 ± 0.017	
19.318 ± 0.041	19.264 ± 0.053	19.117 ± 0.063	19.136 ± 0.082	19.360 ± 0.121
20.512 ± 0.065	20.759 ± 0.110	21.084 ± 0.165	21.234 ± 0.328	
20.609 ± 0.071	20.496 \pm 0.070	20.467 ± 0.078	20.696 ± 0.083	19.608 ± 0.028
17.332 ± 0.006	17.213 ± 0.006	17.056 ± 0.007	17.035 ± 0.008	16.908 ± 0.006
18.461 ± 0.011	18.340 ± 0.012	18.174 ± 0.014	18.173 ± 0.017	18.085 ± 0.015
17.647 ± 0.007	17.487 ± 0.007	17.311 ± 0.008	17.265 ± 0.009	17.129 ± 0.008
19.072 ± 0.034	18.907 ± 0.040	18.746 ± 0.046	18.745 ± 0.057	18.447 ± 0.043
17.148 ± 0.005	17.059 ± 0.005	$18.933 \pm \pm 0.005$	16.941 ± 0.006	
19.385 ± 0.029	19.370 ± 0.037	19.208 ± 0.047	19.229 ± 0.061	19.138 ± 0.077
18.496 ± 0.031	19.482 ± 0.035	19.368 ± 0.044	19.484 ± 0.058	
18.388 ± 0.003	16.129 ± 0.003	$15.935 \pm \pm 0.003$	15.864 ± 0.003	15.685 ± 0.003
18.077 ± 0.020	19.098 ± 0.026	18.997 ± 0.031	18.960 ± 0.037	18.459 ± 0.024
20.783 ± 0.082	20.983 ± 0.1	20.788	20.782 ± 0.171	

Raw U-C._ Aperture Dia (")

Raw U-band aperture magnitudes. contiuned from previous page

1

8.8	13	16	20.2	${ }^{26}$
20.663 ± 0.075	20.136 ± 0.025			
20.418 ± 0.051	20.320 ± 0.062	19.885 ± 0.057	19.079 ± 0.034	18.984 ± 0.036
21.442 ± 0.090	20.833 ± 0.086	20.346 ± 0.090	20.069 ± 0.113	
20.605 ± 0.053	20.589 ± 0.071	20.481 ± 0.082	20.368 ± 0.091	20.483 ± 0.125
20.479 ± 0.055	20.511 ± 0.075	20.428 ± 0.102	20.545 ± 0.136	22.130 ± 0.665
21.795 ± 0.177	21.610 ± 0.213	21.843 ± 0.346	22.093 ± 0.563	
16.232 ± 0.003	15.989 ± 0.002	15.738 ± 0.002	15.773 ± 0.003	15.693 ± 0.003
16.548 ± 0.003	16.368 ± 0.003	16.197 ± 0.003	16.153 ± 0.004	
20.787 ± 0.056	20.720 ± 0.084	20.603 ± 0.100	20.585 ± 0.119	
20.884 ± 0.089	20.996 ± 0.139	21.116 ± 0.255	21.316 ± 0.436	
20.074 ± 0.044	20.225 ± 0.067	20.189 ± 0.088	20.316 ± 0.122	5
20.519 ± 0.05	20.491 ± 0.072	20.290 ± 0.08	20.345 ± 0.11	
20.557 ± 0.067	20.507 ± 0.090	20.390 ± 0.114	20.621 ± 0.171	
20.240 ± 0.047	20.328 ± 0.071	20.227 ± 0.091	20.421 ± 0.131	
． 884 ± 0.0	699 ± 0.03	19.494 ± 0.042	19.450 ± 0.051	
20.705 ± 0.068	20.539 ± 0.078	20.328 ± 0.087	2.300 ± 0.106	
20.828 ± 0.066	20.873 ± 0.099	20.834 ± 0.122	20.660 ± 0.123	
131 ± 0	20.260 ± 0.069	0.146 ± 0.0	20.961 ± 0.1	
19.434 ± 0.021	19.101 ± 0.021	18.824 ± 0.024	18.827 ± 0.0	
19.791 ± 0.038	19.808 ± 0.052	19.695 ± 0.063	19.711 ± 0.079	
18.818 ± 0.014	18.932 ± 0.019	18.811 ± 0.024	18.964 ± 0.032	
20.399 ± 0.0	20.539 ± 0.074	20.506 ± 0.097	20.846 ± 0	
20.005 ± 0.047	20.177 ± 0.073	20.078 ± 0.092	20.210 ± 0.127	
7.776 ± 0.007	17.620 ± 0.007	17.465 ± 0.007	17.458 ± 0.008	17.421 ± 0.0
20.288 ± 0.05	20.226 ± 0.07	20.078 ± 0.083	20.107 ± 0.110	19.718 ± 0.073
18.838 ± 0.0	18.663 ± 0.01	18.485 ± 0.017	18.478 ± 0.021	18.367 ± 0.02
20.082 ± 0.043	19.933 ± 0.049	19.786 ± 0.059	19.925 ± 0.082	20.069 ± 0.094
19.869 ± 0.032	19.968 ± 0.044	19.825 ± 0.054	19.850 ± 0.066	19.787 ± 0.071
19.203 ± 0.021	19.320 ± 0.0	19.248 ± 0.037	19.459 ± 0.05	19.560
19.968 ± 0.047	0.	． 836 ± 0.0	19.992 ± 0.100	
18.895 ± 0.019	18.971 ± 0.02	18.863 ± 0.032	19.017 ± 0.043	
20.432 ± 0.072	20.255 ± 0.083	19.973 ± 0.094	19.855 ± 0.108	19.273 ± 0.051
20.090 ± 0.039	78 ± 0.0	961 ± 0	20.10	． $351 \pm$
20.684 ± 0.065	0.453	20.226 ± 0.077	20.270 ± 0.099	
17.026 ± 0.003	16.905 ± 0.004	16.765 ± 0.004	16.768 ± 0.005	679 \pm
20.157 ± 0.046	20.219 ± 0.064	20.097 ± 0.080	20.300 ± 0.1	
310 ± 0	5 ± 0.0	0.	20.768 ± 0.178	
17.831 ± 0.007	17.651 ± 0.007	17.459 ± 0.008	17.430 ± 0.009	
19.945 ± 0.035	19.844 ± 0.043	19.709 ± 0.051	19.754 ± 0.066	19.665 ± 0.07
20.483 ± 0.057	20.268 ± 0.064	± 0	20.1	19.670 ± 0.05
30	19.629 ± 0.036	19.470 ± 0.044	19.565 ± 0.056	
20.530 ± 0.060	20.613 ± 0.084	20.563 ± 0.116	20.694 ± 0.143	
20.637 ± 0.088	20.798 ± 0.138	20.679 ± 0.176	19.472 ± 0.057	17.628 ± 0.0
18.	61 ± 0.0	17.820 ± 0.0	． $881 \pm$	
20.346 ± 0.051	20.145 ± 0.053			
19.550 ± 0.026	19.417 ± 0.030	19.264 ± 0.035	19.307 ± 0.044	
19.541 ± 0.024	19．465 ± 0.029	19.322 ± 0.033	19.302 ± 0.042	\pm
20.238 ± 0.061	20.331 ± 0.087	20.363 ± 0.126	20.768 ± 0.218	
20.488 ± 0.065	20.639 ± 0.098	20.608 ± 0.134	20.712 ± 0.178	
20.567 ± 0.067	20.407 ± 0.081	20.012 ± 0.082	19.392 ± 0.060	
19.918 ± 0	19．975 \pm	19.818 ± 0.06	19.895 ± 0.078	
21.839 ± 0.229	21.712 ± 0.296	21.671 ± 0.368	21.352 ± 0.363	
17.183 ± 0.005	17.127 ± 0.005	17.017 ± 0.005	17.044 ± 0.008	

离

[^2]

$\%$

		응 응 음 움 음 웅 ○○○○oo \# H H H H H H 										$\begin{aligned} & \approx \\ & \stackrel{n}{0} \\ & \text { H } \\ & \text { H } \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$

E

∞

$\frac{8}{8}$

$\stackrel{\otimes}{-}$

Raw U-band aperture magnitudes. contiuned from previous page				
		Apcature Dine (")		
8.8	13	16	20.2	26
17.517 ± 0.006	17.275 ± 0.005	17.044 ± 0.006	16.921 ± 0.00	2 ± 0
18.863 ± 0.016	18.793 ± 0.019	± 0.022	18.686 ± 0.027	
19.958 ± 0.032	19.803 ± 0.038	19.602 ± 0.044	19.670 ± 0.052	19.573 ± 0.048
16.975 ± 0.004	16.760 ± 0.004	16.559 ± 0.004	16.483 ± 0.004	7 ± 0.003
18.387 ± 0	$18.204 \pm$	\pm	18.023 ± 0.015	
16.435 ± 0.003	± 0.003	16.097 ± 0.0	003	15.971 ± 0.0
20.737 ± 0.074	20.697 ± 0.104	20.455 ± 0.125	20.393 ± 0.143	
20.848 ± 0.075	20.809 ± 0.100	20.817 ± 0.136	179	
20.269 ± 0.048	20.257 ± 0.062	20.093 ± 0.074	20.084 ± 0.088	
20.465 ± 0.057	20.401 ± 0.078	20.309 ± 0.105	± 0.154	
20.855 ± 0.044	20.371 ± 0.056	20.116 ± 0.064	20.086 ± 0.076	937 ± 0.068
18.291 ± 0.008	18.186 ± 0.010			
19.692 ± 0.032	19.451 ± 0.034	18.834 ± 0.027	18.061 ± 0.016	
18.917 ± 0.019	18.493 ± 0.016	18.161 ± 0.016	18.119 ± 0.017	17.922 ± 0.013
19.938 ± 0.0	19.907 ± 0.041	19.785 ± 0.049	19.853 ± 0.064	19.953 ± 0.067
17.720 ± 0.007	17.629 ± 0.007	17.476 ± 0.008	17.461 ± 0.009	
19.575 ± 0.027	19.509 ± 0.035	19.423 ± 0.040	\pm	53
18.222 ± 0.010	18.085 ± 0.011	17.875 ± 0.011	17.887 ± 0.013	
19.368 ± 0.024	19.442 ± 0.032	19.363 ± 0.041	19.602 ± 0.057	15 ± 0.077
16.943 ± 0.005	16.800 ± 0.005	16.572 ± 0.005	16.626 ± 0.006	005
20.567 ± 0.071	20.655 ± 0.112.	20.657 ± 0.171	20.601 ± 0.238	0.470 ± 0.189
18.493 ± 0.012	18.377 ± 0.013	18.226 ± 0.015	18.244 ± 0.018	. 186 ± 0.0
20.564 ± 0.077	20.779 ± 0.129	20.896 ± 0.183	21.447 ± 0.393	
20.369 ± 0.048	20.223 ± 0.058	20.055 ± 0.069	20.250 ± 0.106	98 ± 0.091
18.355 ± 0.010	17.997 ± 0.010	17.697 ± 0.010	17.594 ± 0.010	
19.028 ± 0.018	18.904 ± 0.020	18.743 ± 0.023	18.739 ± 0.029	
18.333 ± 0.011	18.181 ± 0.012	18.023 ± 0.013	17.979 ± 0.015	
19.982 ± 0	19.996 ± 0.046	19.878 ± 0.053	19.904 ± 0.062	. 090 ± 0.053
16.629 ± 0.003	16.552 ± 0.003	16.428 ± 0.003	16.440 ± 0.004	16.401 ± 0.004
19.962 ± 0.033	19.999 ± 0.045	19.830 ± 0.055	19.943 ± 0.072	19.875 ± 0.078
19.429 ± 0.0	$19.286 \pm \pm 0.024$	19.050 ± 0.027	18.909 ± 0.030	18.738 ± 0.031
20.196 ± 0.041	20.069 ± 0.048	19.661 ± 0.046	19.243 ± 0.039	18.897 ± 0.035
20.699 ± 0.098	20.717 ± 0.132	20.677 ± 0.171	20.832 ± 0.245	
20.117 ± 0.043	19.951 ± 0.049	19.802 ± 0.058	19.885 ± 0.077	
17.400 ± 0.005	17.120 ± 0.005	16.880 ± 0.005	16.791 ± 0.006	16.556 ± 0.005
18.758 ± 0.015	18.725 ± 0.018	18.619 ± 0.021	18.647 ± 0.027	18.664 ± 0.032
19.731 ± 0.043	19.805 ± 0.058	19.736 ± 0.077	19.941 ± 0.109	
20.119 ± 0.046	20.171 ± 0.063	20.053 ± 0.080	20.175 ± 0.113	20.275 ± 0.122
19.963 ± 0.052	19.825 ± 0.060	19.695 ± 0.072	19.868 ± 0.103	
20.158 ± 0.049	20.202 ± 0.068	20.022 ± 0.079	19.928 ± 0.089	19.512 ± 0.067
20.633 ± 0.060	20.638 ± 0.083	20.567 ± 0.101	20.802 ± 0.137	20.588 ± 0.174
20.477 ± 0.082	20.478 ± 0.108	20.527 ± 0.151	20.558 ± 0.194	
20.201 ± 0.053	20.237 ± 0.072	20.204 ± 0.095	20.288 ± 0.126	19.612 ± 0.072
20.014 ± 0.035	19.857 ± 0.042	19.128 ± 0.050	19.762 ± 0.063	19.695 ± 0.063
19.601 ± 0.035	19.463 ± 0.041	19.365 ± 0.050	19.424 ± 0.065	
17.943 ± 0.008	17.839 ± 0.009	17.703 ± 0.010	17.738 ± 0.012	17.680 ± 0.013
19.572 ± 0.023	19.390 ± 0.026	19.193 ± 0.030	19.190 ± 0.0	18.831 ± 0.028
20.461 ± 0.062	20.616 ± 0.095	20.634 ± 0.138	20.880 ± 0.209	
19.149 ± 0.019	19.074 ± 0.023	18.839 ± 0.025	18.687 ± 0.026	
20.279 ± 0.050	20.054 ± 0.058	19.872 ± 0.063	19.860 ± 0.077	
20.166 ± 0.047	20.118 ± 0.061	20.021 ± 0.075	20.090 ± 0.099	
19.630 ± 0.027	19.731 ± 0.038	19.580 ± 0.048	19.756 ± 0.066	19.593 ± 0.066
8.835 ± 0.016	18.939 ± 0.022	18.828 ± 0.027	18.971 ± 0.03	

Raw U-band aperture magnitudes. contiuned from previous page

26
17.800 ± 0.013

19.789 ± 0.084
17.844 ± 0.013
18.168 ± 0.019
16.671 ± 0.004

16.865 ± 0.005

21.668 ± 0.782
20.792 ± 0.156

19.574 ± 0.065
16.538 ± 0.008

ค
믕
I.
ö
0
in
H
H
$\dot{8}$
$\dot{8}$
H
H

 \qquad

on
0
0
0
0
+0
0
0
0

[^3]

$\stackrel{\stackrel{8}{8}}{\stackrel{1}{0}}$

8.8	13	16	20.2	26
19.623 ± 0.0	19.754 00.039	19.625 ± 0.047	19.771 ± 0.062	19.933 ± 0.081
18.533 ± 0.012	18.416 ± 0.014	18.243 ± 0.015	18.268 ± 0.019	
19.849 ± 0.031	$19.972 \dot{ \pm} 0.043$	19.801 ± 0.051	19.736 ± 0.057	
17.058 ± 0.005	16.901 ± 0.004	16.722 ± 0.005	16.742 ± 0.005	
20.318 ± 0.053	20.343 ± 0.072	20.122 ± 0.082	20.177 0.104	20.178 ± 0.10
19.706 ± 0.037	19.619 0.043	19.463 ± 0.051	19.596 ± 0.071	
19.960 ± 0.047	20.116 ± 0.070	20.089 ± 0.094	20.276 ± 0.129	
17.283 ± 0.005	17.239 ± 0.006	17.132 ± 0.006	17.162 ± 0.007	
20.629 ± 0.079	20.793 ± 0.125	20.806 ± 0.160	20.749 0.182	
19.735 ± 0.031	19.859 ± 0.043	19.757 ± 0.056	19.907 ± 0.076	19.790 ± 0.075
19.408 ± 0.028	19.476 ± 0.039	19.341 ± 0.050	19.494 ± 0.069	
19.548 ± 0.026	19.308 ± 0.027	19.082 ± 0.030	19.001 ± 0.035	
19.374 ± 0.027	19.375 ± 0.037	19.280 ± 0.048	19.423 ± 0.063	
${ }^{21.917} \pm 0.169$	21.956 ± 0.251	21.927 ± 0.326	21.906 ± 0.412	
19.900 ± 0.048	19.997 ± 0.068	19.993 ± 0.094	.143 ± 0.1	
19.340 ± 0.022	19.289 ± 0.028	19.200 ± 0.034	19.261 ± 0.045	
19.388 ± 0.021	19.179 ± 0.023	18.964 ± 0.025	18.951 ± 0.029	
20.499 ± 0.066	20.360 ± 0.076	19.935 ± 0.072	19.740 ± 0.072	19.471 ± 0.058
19.392 ± 0.021	19.152 ± 0.021	18.935 ± 0.023	18.882 ± 0.026	
20.114 ± 0.047	19.966 ± 0.054	19.683 ± 0.057	19.779 0.077	19.421 ± 0.053
${ }^{20.582 \pm 0.065}$	20.362 ± 0.071	20.189 ± 0.083	20.180 ± 0.101	20.668 ± 0.182
19.550 ± 0.034	19.549 ± 0.043	19.375 ± 0.051	19.398 ± 0.063	
20.526 ± 0.069	20.643 ± 0.099	20.561 ± 0.132	20.544 ± 0.171	
20.416 ± 0.052	20.189 ± 0.057	$19.840 \pm 0.057^{\circ}$	19.527 ± 0.052	
19.794 ± 0.028	19.700 ± 0.034	19.578 ± 0.040	19.688 ± 0.054	
20.307 ± 0.047	20.137 ± 0.054	19.909 ± 0.059	19.836 ± 0.068	
17.213 ± 0.005	17.003 ± 0.005	16.776 ± 0.005	16.713 ± 0.005	16.596 ± 0.005
20.552 ± 0.085	20.292 ± 0.091	20.126 ± 0.107	20.164 ± 0.137	
21.058 ± 0.112	21.208 ± 0.199	21.157 ± 0.259	21.463 ± 0.557	
20.899 ± 0.082	20.572 ± 0.088	20.213 ± 0.084	20.138 ± 0.101	
20.085 ± 0.046	20.087 ± 0.058	19.943 ± 0.070	20.063 ± 0.092	20.137 ± 0.113
16.559 ± 0.003	16.410 ± 0.003	16.259 ± 0.003	16.223 ± 0.003	16.105 ± 0.003
19.011 ± 0.018	18.882 ± 0.020	18.743 ± 0.024	18.847 ± 0.031	18.873 ± 0.034
$20.098 \pm \pm 0.043$	19.989 ± 0.052	19.877 ± 0.064	19.886 ± 0.081	
$20.893 \pm \pm 0.110$	20.720 ± 0.134	20.686 ± 0.168	$20.868 \pm \pm 0.261$	
19.251 ± 0.023	19.368 ± 0.032	19.235 ± 0.040	19.325 ± 0.051	
20.990 ± 0.078	21.124 ± 0.120	21.038 ± 0.145	21.052 ± 0.188	
20.381 ± 0.061	20.495 ± 0.098	20.469 ± 0.129	20.680 ± 0.206	20.087 ± 0.107
19.860 ± 0.036	19.912 ± 0.048	19.782 ± 0.059	19.801 ± 0.071	
19.145 ± 0.018	19.026 ± 0.021	18.864 ± 0.025	18.8995 ± 0.031	${ }^{18.963 \pm 0.036}$
19.546 ± 0.027	19.403 ± 0.031	19.183 ± 0.035	19.179 ± 0.041	
19.570 ± 0.029	19.530 ± 0.036	19.424 ± 0.045	19.994 ± 0.064	
20.932 ± 0.096	21.033 ± 0.130	20.868 ± 0.150		
19.207 ± 0.020	19.019 ± 0.022	18.815 ± 0.025	18.787 ± 0.030	
17.556 ± 0.006	17.328 ± 0.006	17.123 ± 0.006	17.121 ± 0.007	
21.048 ± 0.125	20.992 ± 0.166	20.891 ± 0.203	20.971 ± 0.278	
18.123 ± 0.009	17.870 ± 0.009	17.640 ± 0.009	17.570 ± 0.010	
18.885 ± 0.009	18.080 ± 0.008	17.892 ± 0.010	17.872 ± 0.012	
21.659 ± 0.164	21.409 ± 0.188	21.353 ± 0.233	21.586 ± 0.378	22.216 ± 0.739
20.490 ± 0.063	20.350 ± 0.078	20.246 ± 0.094	20.431 ± 0.137	
18.688 ± 0.015	18.342 ± 0.014	18.037 ± 0.014	18.008 ± 0.016	
20.178 ± 0.046	20.271 ± 0.062	20.120 ± 0.075	20.129 ± 0.088	20.014 ± 0.0
\# 0.036	20.017 ± 0.051	20.016 ± 0.067	20.257 ± 0.089	

$\stackrel{1}{8}$

产

ㄹ

8.8	13	16	20.2	26
18.742 ± 0.014	18.541 ± 0.015	18.364 ± 0.016	18.353 ± 0.020	
20.698 ± 0.074	20.374 ± 0.074	20.113 ± 0	20.180 ± 0.104	20.080 ± 0.097
19.092 ± 0.019	19.224 ± 0.026	19.103 ± 0.033	19.210 ± 0.043	． 310 ± 0.05
17.607 ± 0.006	17.407 ± 0.006	17.224 ± 0.006	07	17.093 ± 0.007
19.632 ± 0.027	19.418 ± 0.027	19.189 ± 0.030	19.254 ± 0.037	
20.619 ± 0.086	20.781 ± 0.136	20.760 ± 0.179	20.921 ± 0.261	
19.087 ± 0.019	18.796 ± 0.019	18.571 ± 0.020	18.639 ± 0.026	
21.311 ± 0.126	21.064 ± 0.142	20.902 ± 0.153	21.044 ± 0.214	
20.410 ± 0.049	20.336 ± 0.059	20.216 ± 0.072	20.345 ± 0.100	20.470 ± 0
19.838 ± 0.033	19.852 ± 0.045	19.775 ± 0.056	19.823 ± 0.074	19.616 ± 0.06
20.796 ± 0.111	20.852 ± 0.175	20.836 ± 0.255	21.067 ± 0.431	
20.483 ± 0.066	20.480 ± 0.088	20.317 ± 0.101	20.509 ± 0.141	
20.556 ± 0.071	20.476 ± 0.076	20.324 ± 0.087	20.430 ± 0.124	
20.230 ± 0.045	20.248 ± 0.062	20.184 ± 0.079	20.154 ± 0.095	20.074 ± 0.098
19.972 ± 0.049	20.114 ± 0.071	20.010 ± 0.087	20.134 ± 0.108	
19.989 ± 0.036	20.091 ± 0.047	20.028 ± 0.060	20.164 ± 0.078	
19.883 ± 0.033	19.822 ± 0.040	19.645 ± 0.047	19.692 ± 0.058	
18.809 ± 0.015	18.841 ± 0.019	18.658 ± 0.023	18.712 ± 0.029	18.584 ± 0.028
19.067 ± 0.018	18.911 ± 0.020	18.713 ± 0.022	18.662 ± 0.026	18.601 ± 0.026
19.332 ± 0.023	19.230 ± 0.027	19.111 ± 0.032	19.145 ± 0.041	
21.001 ± 0.087	20.953 ± 0.116	20.865 ± 0.142	20.924 ± 0.191	21.263 ± 0.284
17.081 ± 0.005	17.028 ± 0.006	16.927 ± 0.006	16.955 ± 0.008	
21.740 ± 0.173	21.530 ± 0.211	21.482 ± 0.260	21．424 ± 0.328	
19.454 ± 0.024	19.338 ± 0.029	19.215 ± 0.033	19.155 ± 0.040	
20.466 ± 0.062	20.576 ± 0.092	20.427 ± 0.110	20.383 ± 0.132	
18.917 ± 0.021	19.044 ± 0.029	18.937 ± 0.037	19.126 ± 0.052	
20.404 ± 0.059	20.261 ± 0.070	20.120 ± 0.085	20.103 ± 0.103	
20.447 ± 0.054	20.418 ± 0.071	20.250 ± 0.083	20.334 ± 0.108	
19.255 ± 0.020	19.338 ± 0.025	19.262 ± 0.032	19.441 ± 0.044	
18.631 ± 0.013	18.531 ± 0.015	18.379 ± 0.017	18.451 ± 0.022	
20.125 ± 0.041	20.265 ± 0.058	20.172 ± 0.074	20.180 ± 0.089	
20.121 ± 0.056	20.078 ± 0.073	19.942 ± 0.087	20.048 ± 0.119	
20.428 ± 0.052	20.527 ± 0.071	20.381 ± 0.084	20.457 ± 0.106	20.476 ± 0.142
19.605 ± 0.027	19.527 ± 0.030	19.340 ± 0.036	19.452 ± 0.045	
20.476 ± 0.055	20.554 ± 0.075	20.458 ± 0.095	20.531 ± 0.121	
20.184 ± 0.052				
19.214 ± 0.022	19.018 ± 0.023	18.770 ± 0.026	18.825 ± 0.031	
17.686 ± 0.006	17.527 ± 0.006	17.343 ± 0.007	17.327 ± 0.008	17.249 ± 0.008
20.978 ± 0.097	21.447 ± 0.199	21.961 ± 0.402	23.336 ± 1.850	
19.492 ± 0.023	19.538 ± 0.030	19.459 ± 0.038	19.574 ± 0.051	
20.368 ± 0.053	20.261 ± 0.061	20.053 ± 0.072	20.051 ± 0.087	19.963 ± 0.087
18.118 ± 0.009	17.909 ± 0.008	17.690 ± 0.009	17.617 ± 0.009	
19.612 ± 0.025	19.628 ± 0.032	19.519 ± 0.038	19.556 ± 0.048	
20.691 ± 0.071	20.524 ± 0.082	20.248 ± 0.090	20.388 ± 0.124	
18.710 ± 0.015	18.703 ± 0.018	18.588 ± 0.022	18.638 ± 0.027	
20.049 ± 0.041	20.071 ± 0.058	19.998 ± 0.071	20.051 ± 0.095	
16.544 ± 0.003	16.389 ± 0.003	16.228 ± 0.003	16.186 ± 0.003	
20.674 ± 0.064	20.517 ± 0.079	20.495 ± 0.100	20．507 ± 0.134	20.087 ± 0.103
20.438 ± 0.052	20.269 ± 0.062	20.066 ± 0.074	20.137 ± 0.101	19.966 ± 0.092
20.066 ± 0.042	20.182 ± 0.059	20.143 ± 0.081	20.324 ± 0.113	20.701 ± 0.206
20.153 ± 0.041	20.233 ± 0.057	20.068 ± 0.069	20.208 ± 0.093	
18.406 ± 0.010	18.296 ± 0.011	18.126 ± 0.012	18.148 ± 0.014	
19.118 ± 0.018	19.042 ± 0.021	18.893 ± 0.025	18.913 ± 0.031	18.906 ± 0.034

8.8	13	16	20.2	26
$42 \pm$	22.125 ± 0.3	22.643 ± 0	22.877 ± 1.20	20.876 ± 0.212
354	20.492 ± 0.070	20.504 ± 0.100	20.674 ± 0.131	
019 ± 0.	21.681 ± 0.252	21.480 ± 0.278	20.961 ± 0.222	20.294 ± 0.138
354 ± 0	22.594 ± 0.675	25.054 ± 50.690		21.709 ± 0.303
631 \pm	20.689 ± 0.088	20.496 ± 0.105	0.507 ± 0.12	
． 889 ± 0.211	21.808 ± 0.282	21.343 ± 0.246	21.142 ± 0.262	20.525 ± 0.156
\pm	． 290 ± 0.117	20.142 ± 0.151	20.187 ± 0.195	20.366 ± 0.259
20.791 ± 0.084	20.918 ± 0.128	20.788 ± 0.153	20.586 ± 0.159	19.828 ± 0.085
． 611 ± 0.049	19.737 ± 0.070	19．714 ± 0.092	19.728 ± 0.116	19.181 ± 0.076
59 ± 0.06	$20.686 \pm \pm 0.103$	20.485 ± 0.12	20.434 ± 0.138	20.281 ± 0.131
± 0.1	21.410 ± 0.2	21.590 ± 0.3	21.727 ± 0	21.744 ± 0.499
554 ± 0.071	20.709 ± 0.100	20.597 ± 0.121	20.748 ± 0.	20.692 ± 0
519 ± 0.066	20.547 ± 0.089	20.385 ± 0.106	20.431 ± 0.135	20.317 ± 0
22.603 ± 0.394	21．817 ± 0.288	20.983 ± 0.186	19.597 ± 0.066	
$372 \pm$	21.302 ± 0.177	22.120 ± 0.204	20.716 ± 0.177	215 ± 0.12
205 ± 0.120	20．978 ± 0.136	20.878 ± 0.166	20.959 ± 0.226	20.910 ± 0.224
20.879 ± 0.094	21.261 ± 0.176	21.283 ± 0.245	21.728 ± 0.453	21.036 ± 0.251
20.258 ± 0.048	20.007 ± 0.050	19.635 ± 0.050	19.438 ± 0.050	18.901 ± 0.091
262 ± 0.218	22.067 ± 0.456	22.218 ± 0.697	22.704 ± 1.510	20.953 ± 0.292
352 ± 0.134	21.517 ± 0.200	21.638 ± 0.286	21.692 ± 0.3	
323 ± 0.1	20.941 ± 0.1	20．759 00.158	20.965 ± 0.240	20.481 ± 0.1
22.130 ± 0.277	21.631 ± 0.254	21.374 ± 0.268	21.533 ± 0.396	． 581 ± 6.923
664 ± 0.213	21．397 ± 0.25	21.065 ± 0.274	$20.640 \pm$	7
027 0.10	20.961 ± 0.125	20.965 ± 0.180	21.330 ± 0	
20.876 ± 0.134	20.120 ± 0.097	19.565 ± 0.078	19.056 ± 0.065	
694 ± 0.249	21.220 ± 0.251	21.020 ± 0.259	21.076 ± 0.308	
567 ± 0.030	19.694 ± 0.042	19.533 ± 0.052	19.702 ± 0.072	
19.023 ± 0.017	19.160 ± 0.022	19.035 ± 0.028	19.176 ± 0.036	± 0.0
21.065 ± 0.105	21.069 ± 0.139	21.060 ± 0.188	21.084 ± 0.236	
． 713 ± 0.0	21.059 ± 0.157	1． 331 ± 0.259	22.381 ± 0.842	
20.959 ± 0.096	20.934 ± 0.125	20.773 ± 0.148	20.949 ± 0.219	
20.585 ± 0.064	20.489 ± 0.082	20.426 ± 0.103	20.522 ± 0.144	
21.967 ± 0.218	22.267 ± 0.414	21.804 ± 0.353	21.358 ± 0.311	
20.595 ± 0.069	20.815 ± 0.103	20.878 ± 0.140	21.243 ± 0.302	\pm
21.292 ± 0.115	21.173 ± 0.137	20.870 ± 0.141	21.045 ± 0.201	
21.711 ± 0.170	21.666 ± 0.236	21.376 ± 0.239	21.174 ± 0.259	
18.972 ± 0.017	19.099 ± 0.022	18.987 ± 0.027	19.142 ± 0.036	
20.926 ± 0.107	20.362 ± 0.088	19.836 ± 0.074	19.581 ± 0.073	
21.214 ± 0.113	21.489 ± 0.191	21.706 ± 0.304	22.589 ± 0.863	
20.764 ± 0.077	20.530 ± 0.085	20.339 ± 0.098	20.278 ± 0.105	20.059 ± 0.096
22.031 ± 0.277	22.471 ± 0.600	23.240 ± 1.482	29.256 ± 493.620	
20.466 ± 0.062	20．556 ± 0.091	20.483 ± 0.113	20.504 ± 0.136	20.524 ± 0.172
19．619\＃ 0.029	19.708 ± 0.040	19.579 ± 0.050	19.705 ± 0.069	19.990 ± 0.
21.075 ± 0.108	21.210 ± 0.154	21．436 ± 0.247	21.829 ± 0.441	
19.190 ± 0.021	19.298 ± 0.029	19.178 ± 0.035	19.249 ± 0.045	
21.533 ± 0.161	21.509 ± 0.208	21.665 ± 0.276	21.464 ± 0.32	
22.500 ± 0.349	22.884 ± 0.703	26.965 ± 28.952		
22.143 ± 0.244	22.230 ± 0.378	23.059 ± 0.948	23.353 ± 1.714	
20.424 ± 0.046	$20.223 \pm 0.051^{-}$	20.050 ± 0.059	20.111 ± 0.080	20.351 ± 0.110
19.401 ± 0.032	19.435 ± 0.040	19.097 ± 0.042	18.059 ± 0.019	
21.724 ± 0.142	21.932 ± 0.237	22.007 ± 0.416	21.788 ± 0.810	20.713 ± 0.175
20.468 ± 0.062	20.487 ± 0.084	20．286 ± 0.098	20.559 ± 0.151	
$21.410 \pm$	20.460 ± 0.105	19.787 ± 0.082	19.	

8.8	13	16	20.2	26
21.350 ± 0.140	21.139 ± 0.167	20.934 ± 0.160	20.809 ± 0.177	20.896 ± 0.224
20.146 ± 0.046	19.836 ± 0.046	19.625 ± 0.053	19.683 ± 0.067	19.543 ± 0.060
20.514 ± 0.062	20.673 ± 0.096	20.587 ± 0.125	20.507 ± 0.143	
20．527 ± 0.071	20.587 ± 0	20.522 ± 0	20.631 ± 0.178	
21.895 ± 0.202	21.747 ± 0.253	21.496 ± 0.267	21.547 ± 0.359	20.602 ± 0.167
22.649 ± 0.466	23.317 ± 1.142	25.015 ± 5.578		
21.425 ± 0.145	21.284 ± 0.17	21.187 ± 0.222	21.672 ± 0.43	21.388 ± 0.333
19.706 ± 0.029	19.832 ± 0.042	19.783 ± 0.053	19.929 ± 0.077	
20.775 ± 0.099	19.821 ± 0.059	19.331 ± 0.052	19.306 ± 0.062	
21.899	22.241 ± 0.35	22.588 ± 0.675	23.474	
20.742 ± 0.072	20.544 ± 0.080	20.413 ± 0.098	20.303 ± 0.108	
20.482 ± 0.058	20.532 ± 0.078	20.380 ± 0.097	20.477 ± 0.125	
21.595 ± 0.175	21.069 ± 0.156	20.592 ± 0.136	20.016 ± 0.104	
22.345 ± 0.259	22.927 ± 0.655	25.225 ± 5.780		21.071 ± 0.205
22.055 ± 0.224	21.542 ± 0.204	21.379 ± 0.236	21.221 ± 0.260	
21.598 ± 0.143	21.578 ± 0.197	21.595 ± 0.263	22.057 ± 0.514	
20.506 ± 0.059	20.458 ± 0.075	20.300 ± 0.092	20.444 ± 0.126	
21.320 ± 0.130	21.168 ± 0.159	21.108 ± 0.205	21.541 ± 0.384	
21.215 ± 0.124	21.609 ± 0.243	21.987 ± 0.450	22.832 ± 1.256	22.821 ± 1.317
21.526 ± 0.140	21.329 ± 0.160	20.974 ± 0.136	20.791 ± 0.164	20.641 ± 0.158
22.525 ± 0.394	22.472 ± 0.562	22.787 ± 0.957	24.895 ± 8.927	
18.218 ± 0.010	18.352 ± 0.013	18.233 ± 0.016	18.376 ± 0.020	18.403 ± 0.023
21.904 ± 0.178	21.846 ± 0.215	21.655 ± 0.276	21.517 ± 0.280	
20.438 ± 0.062	20.450 ± 0.087	20.257 ± 0.098	20.060 ± 0.098	
20.457 ± 0.056	20.498 ± 0.077	20.394 ± 0.098		
22.404 ± 0.276	22.985 ± 0.586	22.198 ± 0.511	21.858 ± 0.495	21.073 ± 0.138
21.233 ± 0.112	21.276 ± 0.162	21.221 ± 0.208	21.071 ± 0.229	
20.856 ± 0.081	20.798 ± 0.101	20.399 ± 0.098	19.955 ± 0.079	19.811 ± 0.075
20.325 ± 0.057	20.407 ± 0.073	20.194 ± 0.085		
16.666 ± 0.004	16.329 ± 0.003	16.015 ± 0.003	15.862 ± 0.003	
19.760 ± 0.029	19.820 ± 0.042	19.709 ± 0.053	19.763 ± 0.070	20.039 ± 0.080
22.082 ± 0.258	21.960 ± 0.364	22.113 ± 0.578	22.737 ± 2.019	
24.497 ± 3.874				
21.024 ± 0.087	21.052 ± 0.121	20.930 ± 0.148	20.988 ± 0.193	
20.426 ± 0.052	20.544 ± 0.082	20.665 ± 0.115	20.804 ± 0.173	20.621 ± 0.150
21.625 ± 0.146	21.424 ± 0.176	21.210 ± 0.194	21.604 ± 0.354	
21.052 ± 0.092	20.938 ± 0.117			
21.651 ± 0.167	21.706 ± 0.245	21.895 ± 0.413	23.374 ± 1.880	
18.464 ± 0.014	18.633 ± 0.020	18.522 ± 0.025	18.629 ± 0.032	18.315 ± 0.022
18.944 ± 0.035				
21.236 ± 0.099	21.280 ± 0.138	21.038 ± 0.148	20.982 ± 0.174	
20.419 ± 0.059	20.546 ± 0.087	20.494 ± 0.118	20.393 ± 0.156	
21.367 ± 0.113	21.371 ± 0.157	21.355 ± 0.209	$\mathbf{2 1 . 4 7 2 \pm 0 . 2 9 1}$	
22.113 ± 0.241	22.488 ± 0.477	22.968 ± 0.899		
22.526 ± 0.659				
20.781 ± 0.173	19.990 ± 0.123			
20.785 ± 0.074	20.904 ± 0.110	20.780 ± 0.136	20．948 ± 0.196	
21.747 ± 0.222	21.893 ± 0.349	21.511 ± 0.509	20.557 ± 0.259	
21.852 ± 0.242	22.221 ± 0.492	22.549 ± 0.82	23.186 ± 2.019	
20.683 ± 0.063	20.261 ± 0.059	19.870 ± 0.058	19.731 ± 0.062	19.190 ± 0.043
20.117 ± 0.042	19.890 ± 0.044	19.592 ± 0.047	19.427 ± 0.049	18.976 ± 0.035
22.419 ± 0.297	22.490 ± 0.466	22.995 ± 0.922	22.945 ± 1.208	
22.156 ± 0.225	21.504 ± 0.181	21	21.270 ± 0.249	

景

\％
 ilil少 1 I 11 1 \％ ill 1 1 －产会骨荡 8\％ 欴 镬 든ํํㅇ 范

Raw U－band aperture magnitudes．contiuned from previous page				
		perture Dia		
8.8	13	16	20.2	26
22.733 ± 0.566	23.000 ± 0.715	23.208 ± 1.346		
20.490 ± 0.060	20.639 ± 0.089	20.591 ± 0.12	20.653 ± 0.153	
21.860 ± 0.197	22.104 ± 0.346	． 575 ± 1.55		22.551 ± 0.928
19.766 ± 0.032	19.903 ± 0.047	19.768 ± 0.057	19.828 ± 0.073	
．565 ± 0.06	20.561 ± 0.	20.149	± 0	
20.271 ± 0.096	20.400 ± 0.147	20.286 ± 0.179	20.523 ± 0.279	$77 \pm$
22.972 ± 2.769	22.053 ± 0.806	22.210 ± 1.729		
． 454 ± 0.073	20.762 ± 0.127	20.667 ± 0.163	20.839 ± 0.232	
21.187 ± 0.125	21.331 ± 0.200	21.137 ± 0.229	21.239 ± 0.317	
20.982 ± 0.082	21.195 ± 0.134	21.016 ± 0.157	20.810 ± 0.161	20.842 ± 0.178
22.674 ± 0.462	22.440 ± 0.564	22.711 ± 0.901	23.046 ± 1.677	
21.064 ± 0.102	21.331 ± 0.179	21.385 ± 0.251	21.540 ± 0.370	
20.079 ± 0.041	20.191 ± 0.0	20.008 ± 0.06	20.081 ± 0.079	19.391 ± 0.046
21.122 ± 0.110	20.270 ± 0.071	19.628 ± 0.053	18.933 ± 0.036	
20.467 ± 0.072	20.573 ± 0.104	20.455 ± 0.130	20.275 ± 0.134	
．496 ± 0	20.657 ± 0.0	20.607 ± 0.107	20.844 ± 0.175	21.145 ± 0.231
20.609 ± 0.062	20.651 ± 0.084	20.386 ± 0.095	20.391 ± 0.117	20.272 ± 0.105
20.460 ± 0.075	20.413 ± 0.095	19.523 ± 0.060	19.070 ± 0.048	
20.685 ± 0.083	20.814 ± 0.127	20.790 ± 0.171	21.078 ± 0.275	
21.086 ± 0.122	21.210 ± 0.190	21.185 ± 0.248	20.963 ± 0.258	
20.983 ± 0.079	21.058 ± 0.114	20.935 ± 0.137	20.889 ± 0.166	20.743 ± 0.162
21.109 ± 0.214	20.709 ± 0.208	20.244 ± 0.193	19.813 ± 0.159	
20.134 ± 0.040	20.219 ± 0.056	20.087 ± 0.071	19.918 ± 0.072	19．212 ± 0.039
21.850 ± 0.168	21.685 ± 0.211	21.832 ± 0.251	21.359 ± 0.	

${ }_{2}^{\frac{1}{8}}$

8.8	13		202	
$20.418 \pm$	20.625 ± 0.02	． 561 ± 0.09	20.721 ± 0.124	21.879 ± 0.346
19.267 ± 0.021	19.357 ± 0.028	19.219 ± 0.034	19.330 ± 0.045	± 0.057
20.945 ± 0.091	21.105 ± 0.144	21.148 ± 0.201	21.382 ± 0.315	
20.628 ± 0.071	20.604 ± 0.094	20.360 ± 0.099	20.243 ± 0.114	
21.722 ± 0.171	21.922 ± 0.287	21.752 ± 0.326	21.380 ± 0.29	20.932 ± 0.211
21.257 ± 0.108	19.929 ± 0.046	19.413 ± 0.039	18.999 ± 0.033	18.693 ± 0.028
21.016 ± 0.141	20.682 ± 0.141	20.611 ± 0.180	20.670 ± 0.235	
19.934 ± 0.042	20.046 ± 0.061	943 ± 0.076	． 656 ± 0.072	18.546 ± 0.026
20.848 ± 0.074	20.970 ± 0.113	20.996 ± 0.150	21.421 ± 0.208	
20.781 ± 0.081	20.919 ± 0.115	20.700 ± 0.126	20.751 ± 0.158	． 740 ± 0.
20.816 ± 0.065	20.909 ± 0.096	20.754 ± 0.116	20.759 ± 0.143	． 231 ± 0.097
20.558 ± 0.065	20.700 ± 0.097	20.691 ± 0.132	20.790 ± 0.176	20.704 ± 0.167
20.958 ± 0.090	20.866 ± 0.111	20.796 ± 0.138	20.804 ± 0.175	20.830 ± 0.185
19.886 ± 0.042	20.007 ± 0.058	19.967 ± 0.076	20.133 ± 0.104	19.641 ± 0.061
19.333 ± 0.025	19.543 ± 0.033	19.432 ± 0.042	19.676 ± 0.058	19.945 ± 0.084
22.299 ± 0.342	23.313 ± 1.257			
20.388 ± 0.067	20.361 ± 0.086	20.153 ± 0.106	20.177 ± 0.129	
21.009 ± 0.081	21.009 ± 0.113	20.936 ± 0.130	165	± 0
20.465 ± 0.056	20.630 ± 0.087	20.593 ± 0.112	21.000 ± 0.162	20.179 ± 0.102
20.512 ± 0.049	20.033 ± 0.035	19.520 ± 0.032	19.114 ± 0.026	18.069 ± 0.011
20.601 ± 0.065	20.737 ± 0.107	20.870 ± 0.153	21.498 ± 0.334	0 ± 0.195
21.561 ± 0.378	21.649 ± 0.529	21.521 ± 0.492	21.553 ± 0.737	21.685 ± 1.051
21.042 ± 0.080	21.048 ± 0.115	21.061 ± 0.165	21.257 ± 0.241	22.693 ± 2.049
21.997 ± 0.262	21.704 ± 0.298	21.955 ± 0.473	21.486 ± 0.417	
21.073 ± 0.10	21.051 ± 0.1	94	20	20.588 ± 0.157
21.574 ± 0.139	21.311 ± 0.159	21.331 ± 0.168	21.029 ± 0.202	
20.531 ± 0.054	20.524 ± 0.073	20.379 ± 0.089	20.351 ± 0.106	20.173 ± 0.10
20.703 ± 0.053	$20.485 \pm 0.070^{\circ}$	． 362 ± 0.0	0.424 ± 0.116	． 248 ± 0.089
20.613 ± 0.06	20.209 ± 0.059	19.657 ± 0.049	19.201 ± 0.040	18.823 ± 0.030
19.914 ± 0.039	20.193 ± 0.065	20.241 ± 0.096	20.522 ± 0.148	21.116 ± 0.288
20.956 ± 0.081	21.106 ± 0.127	20.876 ± 0.142	20.838 ± 0.170	
22.071 ± 0.259	22.153 ± 0.406	22.941 ± 1.0		． 074 ± 0.691
20.848 ± 0.078	20.993 ± 0.127	21.056 ± 0.171	21.247 ± 0.30	
21.251 ± 0.107	20.806 ± 0.100	20.736 ± 0.128	20.992 ± 0.202	20.876 ± 0.193
22.302 ± 0.346	21.930 ± 0.461	1．715 ± 0.491	22.597 ± 0.637	
22.218 ± 0.457	22.154 ± 0.658	22.125 ± 0.771	21.912 ± 0.944	
21.119 ± 0.102	20.890 ± 0.115	20.568 ± 0.119	20.163 ± 0.102	19.152 ± 0.039
21.881 ± 0.140	21.485 ± 0.110			
20.568 ± 0.059	20.731 ± 0.090	20.644 ± 0.120	20.777 ± 0.162	24.044 ± 3.429
20.523 ± 0.054	20.573 ± 0.075	20.370 ± 0.090	20.391 ± 0.109	099 ± 0.088
20.766 ± 0.070	20.937 ± 0.113	20.867 ± 0.158	21.016 ± 0.254	21.318 ± 2.740
20.800 ± 0.081	20.458 ± 0.079	20.112 ± 0.078	20.021 ± 0.089	19.303 ± 0.045
22.743 ± 0.455	22.532 ± 0.565	22.249 ± 0.556	22.276 ± 0.761	22.126
20.381 ± 0.051	20.425 ± 0.073	20.360 ± 0.092	20.455 ± 0.129	
20.251 ± 0.046	20.329 ± 0.062	20.239 ± 0.080	20.365 ± 0.106	
21.939 ± 0.186	22.095 ± 0.302	21.770 ± 0.295	21.667 ± 0.344	
19.593 ± 0.024	19.602 ± 0.030	19.497 ± 0.036	19.559 ± 0.044	
19.658 ± 0.028	19.773 ± 0.03	19.640 ± 0.046	19.794 ± 0.061	
17.813 ± 0.008	18.039 ± 0.012	17.831 ± 0.015	18.005 ± 0.019	17.780 ± 0.027
20.691 ± 0.079	20.763 ± 0.111	20.609 ± 0.134	20.682 ± 0.167	
21.156 ± 0.104	21.020 ± 0.121	20.845 ± 0.146	21.004 ± 0.213	
21.428 ± 0.132	21.299 ± 0.163	21.052 ± 0.175	20.935 ± 0.198	
5 ± 0.106	0．845 ± 0.1	20.620 ± 0 ．	20.791 ± 0.	

[^4]$\frac{\overline{8}}{8}$
号 H fil hl hil min
 IUI ～융

合に年品 11 1 If 11 lif 11 fll III 1 mill II
Raw V -band aperture magnitudes. contiuned from previous page

$\stackrel{\infty}{-}$

$\frac{7}{6}$

Raw V-band aperture magnitudes. contiuned from previous page

Raw V-band aperture magnitudes. contiuned from previous page

Stit

Raw V-band aperture magnitudes contiuned from previous page

碞

$$
80
$$

 Wु
o
ㅇ
$\#$
$\#$
$\#$

Raw V-band aperture magnitudes. contiuned from previous page

8.8	13	16	20.2	26
18.056 ± 0.010	18.031 ± 0.013	17.924 ± 0.01	17.999 ± 0.0	31 ± 0
16.663 ± 0.004	16.450 ± 0.00	16.214 ± 0.00	16.154 ± 0.005	16.010 ± 0.006
17.373 ± 0.0	17.238 ± 0.00	, 064 ± 0.00	17.074 ± 0.009	17.034 ± 0.012
15.321 ± 0.001	15.222 ± 0.00	15.062 ± 0.002	0.002	15.012 ± 0.002
17.272 ± 0.00	17.021 ± 0.00	16.776 ± 0.00	16.701 ± 0.006	
17.886 ± 0.0	17.870	17.734 ± 0.012	4 ± 0.01	
19.901 ± 0.049	19.801 ± 0.06	+ 0.06	0.04	18.277 ± 0.02
18.459 ± 0.014	18.372 ± 0.01	18.228 ± 0.021	18.254 ± 0.026	. $077 \pm$
18	88	18.001 ± 0.018		
$16.682 \pm$	16.663 ± 0.00	. 05	16.602 ± 0.006	
18.906 ± 0.022	18.711 ± 0.023	18.521 ± 0.025	29	
18.290 ± 0.014	17.	17.530 ± 0.013	17.500 ± 0.015	17.305 ± 0.01
14.707 ± 0.001	14.346 ± 0.001	4.062	13.947 ± 0.001	13.615 ± 0.001
18.507 ± 0.013	18.568 ± 0.01	. $512 \pm$	$28 \pm$	
19.416 ± 0.02	19.333 ± 0.03	9.247 ± 0.0	19.347 ± 0.0	
17.959 ± 0.010	17.741 ± 0.0	7.498 ± 0.01	17.496 ± 0.01	17.380 ± 0.01
16.922 ± 0.0	16	80 ± 0.005	16.703 ± 0	16.712 ± 0.007
$18.270 \pm$	18.182 ± 0.	. 47 ± 0.	18.105 ± 0.	17.644 ± 0.027
19.226 ± 0.024	$\cdot 19.012 \pm 0.026$	801 ± 0.029	18.787 ± 0.0	
15.029 ± 0.08	14	14.764 ± 0.002	0.003	
18.838 ± 0.02	18.689 ± 0.0	8.530 ± 0.027	18.538 ± 0.033	
15.253 ± 0.00	15.053 ± 0.00	14.837 ± 0.00	14.796 ± 0.00	14.664 ± 0.00
18.994 ± 0.0	18	8.681 ± 0.027	18.770 ± 0.035	
18.431 ± 0.01	18.272 ± 0.017	18.092 ± 0.01	18.118 ± 0.025	18.154 ± 0.03
18.520 ± 0.016	18.271 ± 0.015	18.051 ± 0.016	18.017 ± 0.019	
17.670 ± 0.00	17.615 ± 0.00	7.483 ± 0.0	17.536 ± 0	
19.2	19.163 ± 0.035	19.037 ± 0.041	19.039	
18.285 ± 0.014	18.348 ± 0.017	18.264 ± 0.020	18.329 ± 0.025	
$14.930 \pm$	14.852 ± 0.00	14.697 ± 0.00	14.706 ± 0.001	14.608 ± 0.0
16	16.166 ± 0.003	16.018 ± 0.004	16.051 ± 0.004	
18.904 ± 0.018	18.970 ± 0.026	18.883 ± 0.032	18.973 ± 0.0	
18.782 ± 0.021	18.657 ± 0.023	18.512 ± 0.026	18.581 ± 0.033	
15.221 ± 0.0	0.0	14.836 ± 0.002	14.780 ± 0.002	14.594 ± 0.00
19.698 ± 0.0	. 651 ± 0.0	19.	688	19.733 ± 0.11
15.175 ± 0.001	15.097 ± 0.001	14.944 ± 0.001	14.959 ± 0.002	$14.895 \pm$
18.465 ± 0.015	18.357 ± 0.016	18.176 ± 0.018	178 ± 0.022	
18.541 ± 0.0	18.525 ± 0.022	18.414 ± 0.026	18.5	
18.604 ± 0.018	18.528 ± 0.023	18.366 ± 0.02		
19.158 ± 0.038	19.217 ± 0.054	19.126 ± 0.067	19.252 ± 0.090	
17.430 ± 0.0	17.275 ± 0.00	17.105 ± 0.007	17.125 ± 0.009	
18.307 ± 0.012	18.240 ± 0.015	18.123 ± 0.018	18.170 ± 0.023	18.19
19.129 ± 0.03	19.319 ± 0.05	19.391	19.812 ± 0.	
19.498 ± 0.0	19.421 ± 0.06	19.234 ± 0.077	19.146 ± 0.090	18.083 ± 0.02
15.939 ± 0.002	15.839 ± 0.003	15.664 ± 0.00	15.654 ± 0.004	15.557 ± 0.00
17.354 ± 0.006	17.271 ± 0.008	17.110 ± 0.0	± 0.	16.959 ± 0.00
16.220 ± 0.0	16.106 ± 0.00	15.928 ± 0.0	15.911 ± 0.00	. 778
17.821 ± 0.009	17.674 ± 0.011	17.488 ± 0.012	17.474 ± 0.015	17.328 ± 0
15.692 ± 0.003	15.642 ± 0.002	15.508 ± 0.002	15.545 ± 0.003	
18.814 ± 0.024	18.776 ± 0.034	18.680 ± 0.045	18.709 ± 0.062	18.18
18.966 ± 0.025	18.949 ± 0.02	18.854 ± 0.034	18.943 ± 0.04	
14.818 ± 0.001	14.629 ± 0.001	14.421 ± 0.001	14.384 ± 0.001	14.236 ± 0
17.701 ± 0.009	17.713 ± 0.013	17.569 ± 0.015	17.532 ± 0.019	1
19.878 ± 0.05	19.854 0.06	19.789 ± 0.0	19.979 ± 0	

8

16.055 ± 0.004
Raw V-band aperture magnitudes. contiuned from previous page

${ }_{8}^{8}$

뿍

[^5]

18.619 ± 0.039
Raw V -band aperture magnitudes. contiuned from previous page

8.8	13	16		
16.207 ± 0.0	6 ± 0	15.746 ± 0.003	15.641 ± 0.003	15.206 ± 0.002
17.774 ± 0.0	17.716 ± 0.010	7.573 ± 0.012	17.611 ± 0.015	
19.034 ± 0	86 ± 0	18.699 ± 0.029	18.694 ± 0.036	
15.369 ± 0.002	15.383 ± 0.002	± 0.00	02	. 902
17.046 ± 0.005	16.898 ± 0.005	16.722 ± 0.005	16.728 ± 0.007	
15.001 ± 0.001	$14.860 \pm$	14.686 ± 0.001	. 01	
19.815 ± 0.042	19.694 ± 0.053	19.546 ± 0.061	19.566 ± 0.073	
19.751 ± 0.039	19.706 ± 0.052	9.609 ± 0.	. 80	
19.357	19.330 ± 0.036	19.165 ± 0.042	19.168 ± 0.052	
19.547 ± 0.036	19.551 ± 0.050	9.501 ± 0.065	19.690 ± 0.094	
19.376 ± 0.02	19.369 ± 0.039	19.217 ± 0.047	19.178 ± 0.054	19.130 ± 0
17.360 ± 0.00	17.257 ± 0.006			
18.927 ± 0.02	18.700 ± 0.024	30	0.011	
18.303 ± 0.013	17.962 ± 0.012	17.691 ± 0.013	7.621 ± 0.015	
18.837 ± 0.018	18.793 ± 0.024	18.675 ± 0.029	.733 ± 0.038	059
16.539 ± 0.003	16.488 ± 0.004	. 351 ± 0.004	16.369 ± 0.005	
17.809 ± 0	17.774 ± 0.010	17.647 ± 0	.00 ± 0.015	
17.560 ± 0.007	17.399 ± 0.007	17.213 ± 0.008	17.209 ± 0.010	
18.745 ± 0.018	18.759 ± 0.024	18.680 ± 0.030	18.763 ± 0.039	,
16.660 ± 0.004	16.473 ± 0.004	16.288 ± 0.004	05	5
19.124 ± 0.024	19.174 ± 0.033	19.080 ± 0.041	19.046 ± 0.049	37 ± 0.057
1 ± 0	277 0.007	25	17.152 ± 0.009	7.098 ± 0.009
18.7	775 ± 0.028	18.692 ± 0.035	18.800 ± 0.048	
19.614 ± 0.036	19.544 ± 0.046	$19.424 \pm$	19	19.337 ± 0.068
17.213 ± 0.0	16.953 ± 0.005	16.710 ± 0	16.654 ± 0.006	
17.	17.696 ± 0.	17.536 ± 0.011	17.567 ± 0.014	
16.843 ± 0.01	16.720 ± 0.004	16.544 ± 0.00	16.533 ± 0.006	
18.815 ± 0.019	.838 ± 0.027	25	818 ± 0.	19.080 ± 0.059
0.0	$15.135 \pm$	15.003 ± 0.001	15.043 ± 0.002	15.008 ± 0.002
19.353 ± 0.029	19.382 ± 0.041	19.263 ± 0.050	± 0	
18.283 ± 0.011	18.208 ± 0.014	. 025	17	17.863 ± 0.019
19.584 ± 0.0	$19.415 \pm$	18.901 ± 0.034	18.282 ± 0.024	17.973 ± 0.020
± 0.048	19.469 ± 0.058	19.318 ± 0.069	19.381 ± 0.090	-
19.016 ± 0.021	18.825 ± 0.024	18.644 ± 0.02	18.646 ± 0.035	
16.133 ± 0.002	$886 \pm$	15.646 ± 0.002	15.575 ± 0.003	15.385 ± 0.002
17	17.262 ± 0.00	17.154 ± 0.008	17.220 ± 0.011	17.223 ± 0.01
19.309 ± 0.03	19.410 ± 0.054	19.354 ± 0.070	$19.463 \pm$	17.223 ${ }^{\text {d }}$
19.611 ± 0.038	19.663 ± 0.056	19.588 ± 0.0	19.711 ± 0.095	19.740 ± 0.109
18.995 ± 0.028	18.905 ± 0.034	18.762 ± 0.04	18.82	
18.995 ± 0.025	19.001 ± 0.033	18.892 ± 0.041	18.818 ± 0.047	18.453 ± 0.035
19.690 ± 0.039	19.654 ± 0.052	19.566 ± 0.066	19.672 ± 0.091	19.399 ± 0.07
19.412 ± 0.041	19.316 ± 0.050	19.150 ± 0.058	19.177 ± 0.074	
19.444 ± 0.038	19.300 ± 0.044	19.201 ± 0.05	19.195 ± 0.067	18.628 ± 0.041
18.880 ± 0.017	18.782 ± 0.022	18.568 ± 0.027	18.708 ± 0.034	18.654 ± 0.035
18.251 ± 0.015	18.195 ± 0.018	18.071 ± 0.022	18.132 ± 0.028	
16.732 ± 0.004	16.650 ± 0.004	16.510 ± 0.005	16.555 ± 0.00	. 516 ± 0.00
18.571 ± 0.014	18.399 ± 0.016	18.197 ± 0.01	18.169 ± 0.022	17.9
19.217 ± 0.027	19.282 ± 0.039	19.217 ± 0.081	19.293 ± 0.069	
17.803 ± 0.008	17.883 ± 0.011	17.729 ± 0.013	17.691 ± 0.015	
19.219 ± 0.026	18.833 ± 0.027	18.719 ± 0.030	18.645 ± 0.035	
18.884 ± 0.020	18.886 ± 0.026	18.784 ± 0.033	18.818 ± 0.042	
18.493 ± 0.033	19.547 ± 0.047	19.518 ± 0.063	19.619 ± 0.085	19.465 ± 0.085
18.274 ± 0.012	18.324 ± 0.017	18.237 ± 0.021	18.357 ± 0.029	

Raw V-band aperture magnitudes. contiuned from previous page

言

$\frac{8}{8}$

Object	GMP	Aperture Dia (")				
		8.8	13	16	202	26
comasw 10.11	4568	17.796 ± 0.008	17.764 ± 0.0	$7.602 \pm$	7.5	17.258 ± 0.011
mesese3-4	4569	19.766 ± 0.0	. 630 ± 0.05	19.496 ± 0.069	098	
comesw23-82	4570	17.421 ± 0.0	17.195 ± 0.006	16.968 ± 0.007	16.942 ± 0.008	
mex	4572	19.067 ± 0.029	19.019 ± 0.037	18.891 ± 0.044	18.927 ± 0.057	18.807 ± 0.049
commew15-22	4573	19	. 07	19.791 ± 0.095	128	
comesw10-10	4577	17.931 ± 0.008	$17: 773 \pm 0.009$	17.579 ± 0.010	17.544 ± 0.012	17.252 ± 0.011
comasw4-2	4578	17.442 ± 0.006	17.267 ± 0.007	17.079 ± 0.008	7.081 ± 0.010	12
w10	4579	17	16.776 ± 0	$2 \pm$	16.467 ± 0.005	5
mesw15-29	4580	19.863 ± 0.057	19.840 ± 0.078	19.765 ± 0.1	19.883 ± 0.140	
comexw15	4592	15.917 ± 0.002	15.758 ± 0.002	15.557 ± 0	15.524 ± 0.002	
comesw15	453	18.406 ± 0.013	18.408 ± 0.018	18.319 ± 0.022	. 032	
comesw10-34	4597	16.749 ± 0.003	16.456 ± 0.003	16.120 ± 0.003	7 ± 0.003	15.687 ± 0.003
comew26	4500	18.704 ± 0.015	18.593 ± 0.018	18.422 ± 0.020	18.459 ± 0.026	
comeswis-	1502	17.695 ± 0.007	17.477 ± 0.008	.008	17.196 ± 0.010	
comesu23-66	4506	18.637 ± 0.016	18.511 ± 0.019	023	18.464 ± 0.03	
con	400	19.143 ± 0.045	19.241 ± 0.070	19.153 ± 0.089	19.231 ± 0.115	19.350 ± 0.137
comanw10-86	4609	19.689 ± 0.038	19.626 ± 0.049	19.414 ± 0.056	0.067	
comasw15.	4612	18.256 ± 0.0	18.147 ± 0.014	通 0.016	.043 0.02	
comesem 23	46	20.055 ± 0				
comewis-70	4615	19.617 ± 0.038	19.671 ± 0.055	19.601 ± 0.07	19.761 ± 0.102	
commew 10.9	46	19.880 ± 0.0	76 ± 0	19.784 ± 0.077	19.750 ± 0.092	20.082 ± 0.14
commew15.36	4619	18.758 ± 0.0	18.844 ± 0.026	18.818 ± 0.034	18.985 ± 0.050	
123	4620	19.596 ± 0.046	19.791 ± 0.077	19.860 ± 0.114	20.140 ± 0.183	
comesa 23.8	4622	19.568 ± 0.036	19.539 ± 0.053			
comesw 19	46	18.235 ± 0.0	18.126 ± 0.023	17.961 ± 0.027	7.934 ± 0.032	740 ± 0
comesw19	4626	16.080 ± 0.004	15.942 ± 0.005	15.758 ± 0.005	15.748 ± 0.007	\pm
comaw 10	4628	19.243 ± 0.026	19.029 ± 0.029	18.844 ± 0.034	8.85	18.878 ± 0.043
comenw10-10	4630	17.832 ± 0.0	. 89	17.814 ± 0.014	17.90	. 851
comanw	46	17.622 ± 0.007	17.521 ± 0.008	17.364 ± 0.009	17.377 ± 0.011	
comasw10	4636	19.366 ± 0.033	19.479 ± 0.041	19.226 ± 0.045	19.031 ± 0.046	18.758 ± 0
comeswis	4642	. 721 ± 0.01	18.796 ± 0.0	18.745 ± 0.0	18.86	
comesw10-54	4643	19.408 ± 0.031	.114 ± 0.032	3.861 ± 0.03	. 771 ± 0.0	18.535 ± 0.036
comasw 4.27	4645	19.159 ± 0.028	19.208 ± 0.041	19.145 ± 0.054	19.281 ± 0.081	\pm
comaswio.33	4645	19.308 ± 0.025	19.288 ± 0.033	19.190 ± 0.041	19.206 ± 0.0	19.418 ± 0.069
Comeww 10.32	4646	19.361 ± 0.02	19.281 ± 0.034	19.200 ± 0.04	19.261 ± 0.057	19.225 ± 0.06
comaw 23 -80	4647	18.368 ± 0.012	18.388 ± 0.016	18.303 ± 0.020	18.388 ± 0.026	
comasw23-1	4653	15.406 ± 0.002	15.248 ± 0.002	15.046 ± 0.002	15.017 ± 0.002	
comaw15-87	4655	7.399 ± 0.006	17.272 ± 0.0	17.099 ± 0.008	17.092 ± 0.009	
commw19.25	4656	16.907 ± 0.007	16.802 ± 0.008	6.648 ± 0.00	16.681 ± 0.014	16.676 ± 0
comanw	4657	19.554 ± 0.062	19.623 ± 0.093	19.511 ± 0.100	19.565 ± 0.129	19.616 ± 0
comasw19.51	4659	18.618 ± 0.030	18.580 ± 0.039	18.446 ± 0.048	18.525 ± 0.067	18.592 ± 0
comenw26-38	4660	18.856 ± 0.017	18.895 ± 0.023	18.819 ± 0.029	18.910 ± 0.038	
comesw10.36	4662	19.116 ± 0.022	19.110 ± 0.029	18.970 ± 0.0	19.033	19.123 ± 0.0
comanw 19.4	4664	15.477 ± 0.002	15.410 ± 0.002	15.257 ± 0.003	15.271 ± 0.003	15.228 ± 0
comenx26-69	4666	16.937 ± 0.004	16.758 ± 0.004	16.555 ± 0.004	16.532 ± 0.005	
comesw10.5	4667	19.596 ± 0.039	19.728 ± 0.063	19.702 ± 0.089	19.818 ± 0.126	19.528 ± 0
comam4.16	4669	19.372 ± 0.03	19.409 ± 0.044	19.339 ± 0.058	19.407 ± 0.0	19.363 ± 0.0
commew 15.77	4670	19.548 ± 0.034	19.605 ± 0.048	19.498 ± 0.089	19.238 ± 0.058	
comewa.1	4675	19.700 ± 0.052	19.851 ± 0.086	19.814 ± 0.116	20.102 ± 0.188	19.772 ± 0.1
comenw23-59	4676	19.523 ± 0.032	19.451 ± 0.042	19.309 ± 0.051	18.334 ± 0.064	
comemw19-20	4679	16.172 ± 0.004	15.910 ± 0.004	15.662 ± 0.004	15.588 ± 0.005	15.430 ± 0.00
comesw4.45	4682	18.836 ± 0.020	18.517 ± 0.020	18.247 ± 0.021	18.196 ± 0.025	18.217 ± 0
comaw26-24	4686	18.622	19.622 ± 0	$19.448 \pm$	19.501 ± 0	

$\stackrel{\rightharpoonup}{N}$

[^6]| Raw V-band aperture magnitudes. contiuned from previous page | | | | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| | GMP | | | - Aperure Dia (${ }^{\prime \prime}$) | | |
| | | 8.8 | 13 | 16 | 20.2 | 26 |
| comasw2 | 4821 | 19.865 ± 0.046 | 19.900 ± 0.066 | 19.771 ± 0.081 | 19.766 ± 0.100 | |
| comasw9.41 | 4825 | 18.795 ± 0.021 | 18.626 ± 0.025 | 18.381 ± 0.028 | 789 ± 0.020 | 17.576 ± 0. |
| comesw14-20 | 4829 | 14.639 ± 0.001 | 14.488 ± 0.001 | 14.293 ± 0.001 | | |
| comem 26 | 4833 | 19.725 ± 0.039 | 19.651 ± 0.049 | 19.583 ± 0.064 | 19.700 ± 0.085 | |
| comasw $27-45$ | 4833 | 19.647 ± 0.036 | 19.699 ± 0.050 | 19.630 ± 0.064 | 19.792 ± 0.091 | |
| comasw 19.56 | 4835 | 19.529 ± 0.063 | 19.590 ± 0.092 | 19.479 ± 0.117 | 19.417 ± 0.133 | |
| comesw26-1 | 4837 | 18.092 ± 0.011 | 17.873 ± 0.012 | 17.664 ± 0.013 | 17.639 ± 0.016 | |
| comanw26-13 | 4838 | 18.440 ± 0.014 | 18.386 ± 0.018 | 18.205 ± 0.021 | 18.099 ± 0.023 | |
| comesw4-12 | 4845 | 19.392 ± 0.033 | 19.156 ± 0.036 | 18.943 ± 0.041 | 18.928 ± 0.050 | 18.864 ± 0.049 |
| comaswd-59 | 4846 | 17.708 ± 0.008 | 17.651 ± 0.009 | 17.512 ± 0.011 | 17.563 ± 0.014 | 16 |
| comeswd-29 | 4848 | 18.055 ± 0.010 | 17.926 ± 0.012 | 17.745 ± 0.014 | ± 0.016 | 512土 |
| comasw4-44 | 4851 | 19.090 ± 0.024 | 19.067 ± 0.032 | 18.954 ± 0.040 | 18.970 ± 0.050 | 3.958 ± 0.053 |
| comesw9.70 | 4852 | 17.324 ± 0.005 | 17.304 ± 0.006 | 17.195 ± 0.007 | 17.265 ± 0.010 | . 302 ± 0.013 |
| comasw-22 | 4855 | 856 ± 0.009 | 17.650 ± 0.010 | 17.426 ± 0.010 | ± 0.0 | 0.0 |
| ${ }^{\text {comasw4.72 }}$ | 4858 | 17.795 ± 0.008 | 17.703 ± 0.010 | 17.558 ± 0.011 | 17.611 ± 0.014 | 17.660 ± 0.017 |
| comax 27.25 | 4865 | 19.617 ± 0.033 | 19.541 ± 0.040 | 19.463 ± 0.051 | 19.520 ± 0.065 | |
| comasw14.66 | 4867 | 19.881 ± 0.050 | 19.935 ± 0.072 | 19.802 ± 0.088 | 19.811 ± 0.111 | |
| comawni4 | 4868 | 19.834 ± 0.055 | 19.953 ± 0.085 | 19.923 ± 0.114 | 20.154 ± 0.175 | |
| comasw27-16 | 4869 | 18.990 ± 0.019 | 18.958 ± 0.024 | 18.862 ± 0.030 | 18.946 ± 0.039 | |
| comasw4.41 | 4870 | 2 ± 0.026 | 19.115 ± 0.035 | 19.003 ± 0.044 | 62 | 19.284 ± 0.073 |
| comesw23.73 | 4871 | 18.067 ± 0.009 | 18.117 ± 0.013 | 18.018 ± 0.016 | 18.087 ± 0.021 | |
| comasw. 75 | 4878 | 19.627 ± 0.034 | 6 ± 0.051 | 19.723 ± 0.070 | 19.820 ± 0.095 | 20.181 ± 0.150 |
| comasw14.67 | 4879 | 17.553 ± 0.007 | $17.418 \pm 0.007^{-}$ | 17.256 ± 0.009 | 17.291 ± 0.011 | |
| comasw27.36 | 4880 | 19.067 ± 0.021 | 18.993 ± 0.026 | 18.855 ± 0.030 | 18.877 ± 0.038 | |
| | 4882 | 18.931 ± 0.019 | 18.855 ± 0.023 | 18.723 ± 0.027 | 18.800 ± 0.036 | |
| comosw9.67 | 4887 | 18.639 ± 0.016 | 18.649 ± 0.021 | 18.559 ± 0.027 | 18.681 ± 0.037 | 18.991 ± 0.061 |
| 14.38 | 4888 | 17.535 ± 0.006 | 17.409 ± 0.007 | 17.241 ± 0.008 | 10 | |
| commsw4. | 4893 | 19.225 ± 0.028 | 19.205 ± 0.037 | 7 ± 0.046 | 19.231 ± 0.064 | 19.478 ± 0.089 |
| comaw 14.79 | 489 | . 351 ± 0.028 | 19.445 ± 0.040 | 19.407 ± 0.053 | 19.429 ± 0.072 | 19.48 ± 0.08 |
| comasw18.56 | 4897 | 19.349 ± 0.028 | 19.225 ± 0.034 | 19.063 ± 0.041 | . 09 | |
| comasw14-51 | 49 | 17.840 ± 0.008 | 17.639 ± 0.008 | 7.452 ± 0.00 | 17.450 ± 0.011 | |
| comasw8.50 | 4907 | 15.273 ± 0.001 | 15.190 ± 0 | 15.039 ± 0.001 | 15.063 ± 0.002 | |
| comasw14.53 | 4911 | 19.309 ± 0.028 | 19.103 ± 0.032 | 18.958 ± 0.039 | 18.972 ± 0.049 | |
| comasw18.66 | 4913 | 19.822 ± 0.045 | 19.872 ± 0.064 | 19.796 ± 0.083 | 19.961 ± 0.125 | |
| comaw 23.37 | 49 | 19.559 ± 0.034 | 19.531 ± 0.0 | 19.421 ± 0.057 | 19.515 ± 0.077 | |
| comasw3-87 | 4918 | 15.934 ± 0.002 | 15.775 ± 0.002 | 15.581 ± 0.002 | 15.519 ± 0.002 | 380 0.002 |
| comasw3.65 | 49 | 19.460 ± 0.034 | 19.549 ± 0.049 | 19.502 ± 0.066 | 19.586 ± 0.088 | 19.382 ± 0.074 |
| comasw3.19 | 4276 | 18.614 ± 0.004 | 16.519 ± 0.004 | 16.346 ± 0.005 | 16.334 ± 0.006 | 16.208 ± 0.004 |
| comesw18.55 | 4927 | 19.440 ± 0.029 | 19.484 ± 0.040 | 19.400 ± 0.050 | 19.485 ± 0.065 | |
| comerm-38 | 4928 | 14.530 ± 0.001 | 14.245 ± 0.001 | 13.988 ± 0.001 | 13.895 ± 0.002 | |
| comasw3.39 | 4930 | 19.059 ± 0.023 | 19.102 ± 0.033 | 19.016 ± 0.042 | 19.120 ± 0.057 | 19.264 ± 0.072 |
| comasw3-53 | 4931 | 19.017 ± 0.022 | 19.053 ± 0.030 | 18.968 ± 0.039 | 19.044 ± 0.054 | 19.186 ± 0.075 |
| comasw18-24 | 493 | 16.277 ± 0.002 | 16.058 ± 0.002 | 15.812 ± 0.003 | 15.728 ± 0.003 | |
| comasw27-38 | 4934 | 18.757 ± 0.016 | 18.834 ± 0.022 | 18.752 ± 0.027 | 18.870 ± 0.037 | |
| comenw18-52 | 49 | 18.715 ± 0.016 | 18.630 ± 0.019 | 18.502 ± 0.023 | 18.548 ± 0.029 | |
| comasw8-51 | ${ }^{4937}$ | 17.635 ± 0.007 | 17.517 ± 0.008 | 17.363 ± 0.009 | 17.388 ± 0.012 | |
| comesw18-18 | 4940 | 19.236 ± 0.025 | 19.041 ± 0.029 | 18.851 ± 0.034 | 18.876 ± 0.043 | |
| comasw 19.60 | 494 | 16.055 ± 0.003 | 15.857 ± 0.004 | 15.788 ± 0.004 | 15.812 ± 0.005 | 18.777 ± 0.006 |
| comenw18-48 | 4488 | 19.639 ± 0.039 | 19.345 ± 0.041 | 19.091 ± 0.044 | 19.075 ± 0.054 | |
| Comasw18-68 | 4953 | 17.158 ± 0.005 | 17.029 ± 0.005 | 16.873 ± 0.006 | 16.897 ± 0.007 | |
| comaw3.68 | 4954 | 19.671 ± 0.042 | 19.755 ± 0.065 | 19.684 ± 0.082 | 19.785 ± 0.120 | 18.985 ± 0.180 |
| comenw 31 | 4958 | 17.748 ± 0.009 | 17.547 ± 0.011 | 17.225 ± 0.011 | 17.278 ± 0.014 | 17.138 ± 0.012 |
| comesw14-17 | 4950 | 18.827 ± 0.018 | 18.921 ± 0.026 | 18.830 ± 0.033 | 18.934 ± 0.045 | |

Raw V-band aperture magnitudes. contiuned from previous page
$\left.\begin{array}{rcccc} & & & \text { Apectur Dia }(\prime \prime\end{array}\right)$

Raw V-band aperture magnitudes. contiuned from previous page				
8.8	13	16	20.2	
$17.536 \pm$	17.360 ± 0.007	17.186 ± 0.008	17.193 ± 0.009	
19.706 ± 0.041	19.541 ± 0.048	19.385 ± 0.057	19.406 ± 0.072	$10 \pm$
18.505 ± 0.014	18.593 ± 0.020	18.506 ± 0.02	18.613 ± 0.034	18.671 ± 0.039
16.186 ± 0.002	16.008 ± 0.002	5.810 ± 0.	15.793 ± 0.003	. $06 \pm$
19.158 ± 0.025	18.931 ± 0.028	18.723 ± 0.031	18.727 ± 0.039	
19.451 ± 0.032	19.415 ± 0.042	19.314 ± 0.053	19.401 ± 0.071	
18.129 ± 0.010	17.950 ± 0.012	17.804 ± 0.01	17.877 ± 0.018	
19.295 ± 0.027	19.201 ± 0.034	19.092 ± 0.042	19.170 ± 0.058	
19.379 ± 0.028	19.297 ± 0.035	19.135 ± 0	19.207 ± 0.05	. 406 ± 0.080
18.310 ± 0.012	18.290 ± 0.016	18.167 ± 0.019	18.229 ± 0.025	18.190 ± 0.
19.849 ± 0.056	19.887 ± 0.080	19.830 ± 0.105	19.919 ± 0.140	
19.614 ± 0.036	19.621 ± 0.050	19.543 ± 0.06	19.631 ± 0.081	
19.561 ± 0.034	19.612 ± 0.048	19.497 ± 0.061	19.521 ± 0.076	
19.062 ± 0.022	19.069 ± 0.029	18.990 ± 0.037	19.037 ± 0.048	18.990 ± 0.052
19.615 ± 0.038	19.709 ± 0.057	9.629 ± 0	19.723 ± 0.091	
19.724 ± 0.03	19.818 ± 0.053	19.734 ± 0.067	19.708 ± 0.079	
19.374 ± 0.027	19.300 ± 0.034	19.212 ± 0.043	19.131 ± 0.049	
18.340 ± 0.013	18.357 ± 0.018	18.220 ± 0.02	18.252 ± 0.02	18.249 ± 0.028
17.924 ± 0.0	17.808 ± 0.010	17.629 ± 0.011	17.623 ± 0.01	17.586 ± 0.
18.292 ± 0.011	18.172 ± 0.013	18.050 ± 0.016	18.111 ± 0.02	
19.218 ± 0.025	19.235 ± 0.035	19.133 ± 0.043	19.145 ± 0.0	0.0
15.580 ± 0.002	15.570 ± 0.002	15.454 ± 0.002	15.511 ± 0.002	
19.295 ± 0.028	19.264 ± 0.037	19.128 ± 0.045	19.130 ± 0.05	
17.590 ± 0.006	17.529 ± 0.008	17.389 ± 0.009	17.409 ± 0.011	
19.285 ± 0.027	19.324 ± 0.039	19.178 ± 0.047	18.949 ± 0.047	
18.503 ± 0.014	18.570 ± 0.019	18.499 ± 0.025	18.581 ± 0.033	
19.396 ± 0.031	19.279 ± 0.039	19.110 ± 0.04	19.126 ± 0.05	
19.013 ± 0.02	18.988 ± 0.02	18.845 ± 0.031	18.877 ± 0.039	
18.625 ± 0.014	18.686 ± 0.019	18.617 ± 0.024	18.719 ± 0.032	
17.607 ± 0.006	17.526 ± 0.008	17.393 ± 0.009	17.446 ± 0.011	
19.615 ± 0.033	19.693 ± 0.047	19.569 ± 0.057	19.500 ± 0.066	
18.978 ± 0.021	18.922 ± 0.027	18.804 ± 0.033	18.813 ± 0.041	
19.703 ± 0.042	19.812 ± 0.060	19.759 ± 0.079	19.885 ± 0.111	20.293 ± 0.172
19.565 ± 0.031	19.342 ± 0.033	19.132 ± 0.03	19.091 ± 0.044	
19.653 ± 0.034	19.752 ± 0.049	19.750 ± 0.066	19.919 ± 0.095	
19.598 ± 0.041				
18.686 ± 0.016	18.510 ± 0.018	18.332 ± 0.021	18.382 ± 0.027	
16.545 ± 0.003	16.397 ± 0.003	16.216 ± 0.003	16.220 ± 0.004	16.147 ± 0.004
19.528 ± 0.037	19.612 ± 0.054	19.587 ± 0.071	19.771 ± 0.10	
18.690 ± 0.015	18.714 ± 0.021	18.637 ± 0.026	18.703 ± 0.035	
19.355 ± 0.029	19.300 ± 0.038	19.156 ± 0.045	19.212 ± 0.059	19.107 ± 0.057
16.856 ± 0.004	16.680 ± 0.004	16.468 ± 0.004	16.424 ± 0.004	
18.415 ± 0.011	18.459 ± 0.015	18.370 ± 0.018	18.444 ± 0.024	
19.683 ± 0.040	19.670 ± 0.054	19.561 ± 0.067	19.644 ± 0.090	
17.805 ± 0.008	17.785 ± 0.010	17.667 ± 0.012	17.685 ± 0.015	
18.449 ± 0.013	18.478 ± 0.018	18.387 ± 0.023	18.454 ± 0.030	
15.051 ± 0.001	14.933 ± 0.001	14.759 ± 0.001	14.744 ± 0.001	
18.529 ± 0.014	18.473 ± 0.016	18.325 ± 0.022	18.351 ± 0.028	18.340 ± 0.030
19.364 ± 0.029	19.279 ± 0.037	19.149 ± 0.043	19.201 ± 0.036	19.028 ± 0.056
19.738 ± 0.041	19.871 ± 0.063	19.834 ± 0.084	20.068 ± 0.129	20.321 ± 0.206
19.729 ± 0.038	19.831 ± 0.056	18.780 ± 0.074	19.890 ± 0.101	
17.378 ± 0.005	17.246 ± 0.006	17.079 ± 0.007	17.100 ± 0.008	
17.921 ± 0.009	17.865 ± 0.011	17.735 ± 0.013	17.768 ± 0.0	17.764 ± 0.018

ow

Raw V－band aperture magnitudes．contiuned from previous page
$\left.\begin{array}{ccccc}\hline 8.8 & 13 & 16 & & \text { Apecture Dia．} \\ \hline\end{array}\right)$

ㄷ

$\stackrel{c}{c}$
+
+
$\hat{\omega}$
$\stackrel{\omega}{\circ}$

$\stackrel{\rightharpoonup}{c} \stackrel{\rightharpoonup}{c}$
部总

∞

$\stackrel{H}{+}{ }_{\text {H }}^{\text {H．}}$

ㄷ․․․․․

（
．
$\stackrel{-}{-}$
\qquad

Raw V－band aperture magnitudes．contiuned from previous page				
		Aperture Dia（＂）		
8.8	13	16	20.2	26
19.803 ± 0.047	19.873 ± 0.068	19.791 ± 0.086	19.681 ± 0.096	18.886 ± 0.053
19.881 ± 0.041	19.974 ± 0.063	19.937 ± 0.084	20.106 ± 0.120	
19.918 ± 0.045	19.899 ± 0.061	19.727 ± 0.072	19.504 ± 0.073	19.118 ± 0.059
19.942 ± 0.055	20.080 ± 0.088	20.055 ± 0.123		19.744 ± 0.088
20.050 ± 0.051	20.145 ± 0.076	20.039 ± 0.095	19.993 ± 0.113	
19.809 ± 0.042	19.793 ± 0.056	19.656 ± 0.068	19.743 ± 0.092	19.477 ± 0.075
19.778 ± 0.044	19.796 ± 0.063	19.683 ± 0.079	19.677 ± 0.103	19.433 ± 0.089
19.650 ± 0.034	19.794 ± 0.054	19.650 ± 0.065	19.526 ± 0.072	18.846 ± 0.042
19.142 ± 0.029	19.236 ± 0.044	19.123 ± 0.053	19.077 ± 0.060	18.115 ± 0.024
20.129 ± 0.056	20.309 ± 0.090	20.146 ± 0.107	20.058 ± 0.122	19.416 ± 0.072
19.985 ± 0.047	19.897 ± 0.060	19.789 ± 0.074	19.809 ± 0.094	19.796 ± 0.102
20.068 ± 0.065	20.198 ± 0.102	20.215 ± 0.149	20.495 ± 0.262	20.431 ± 0.202
19.695 ± 0.037	19.729 ± 0.053	19.594 ± 0.064	19.656 ± 0.084	19.429 ± 0.073
19.949 ± 0.049	19.913 ± 0.065	19.853 ± 0.085	19.822 ± 0.103	
19.895 ± 0.046	19.935 ± 0.066	19.916 ± 0.089	19.909 ± 0.110	19.320 ± 0.065
19.688 ± 0.036	19.558 ± 0.044	19.419 ± 0.053	19.475 ± 0.070	19.268 ± 0.062
20.062 ± 0.058	20.280 ± 0.095	20.288 ± 0.131	20.492 ± 0.196	20.507 ± 0.217
19.884 ± 0.045	19.591 ± 0.048	19.308 ± 0.051	19.167 ± 0.055	18.737 ± 0.040
19.729 ± 0.053	19.857 ± 0.091	19.852 ± 0.141	20.062 ± 0.255	19.779 ± 0.139
19.830 ± 0.045	19.912 ± 0.064	19.909 ± 0.086	19.951 ± 0.109	
19.746 ± 0.040	19.500 ± 0.044	19.333 ± 0.052	19.360 ± 0.066	19.271 ± 0.062
20.008 ± 0.049	19.929 ± 0.063	19.730 ± 0.072	19.752 ± 0.092	19.972 ± 0.121
19.978 ± 0.065	19.950 ± 0.083	19.743 ± 0.096	19.456 ± 0.093	18.534 ± 0.035
19.725 ± 0.039	19.785 ± 0.056	19.744 ± 0.074	19.876 ± 0.098	
19.001 ± 0.055	18.313 ± 0.041	17.774 ± 0.035	17.347 ± 0.030	
19.726 ± 0.037	19.802 ± 0.054	19.745 ± 0.070	19.789 ± 0.094	
19.349 ± 0.027	19.497 ± 0.041	19.467 ± 0.055	19.700 ± 0.085	
18.773 ± 0.017	18.871 ± 0.024	18.815 ± 0.031	18.894 ± 0.040	19.204 ± 0.065
19.913 ± 0.047	20.041 ± 0.070	20.052 ± 0.097	20.183 ± 0.135	
19.659 ± 0.043	19.665 ± 0.056	19.659 ± 0.076	19.884 ± 0.114	
19.805 ± 0.040	19.913 ± 0.059	19.869 ± 0.078	19.985 ± 0.107	
18.887 ± 0.019	18.935 ± 0.027	18.849 ± 0.034	18.941 ± 0.046	
19.902 ± 0.045	19.882 ± 0.061	19.727 ± 0.072	19.764 ± 0.093	
19.821 ± 0.044	19.895 ± 0.065	19.854 ± 0.083	20.136 ± 0.119	20.404 ± 0.213
19.862 ± 0.040	19.939 ± 0.057	19.864 ± 0.072	19.995 ± 0.099	
19.509 ± 0.033	19.486 ± 0.044	19.372 ± 0.055	19.386 ± 0.069	
18.690 ± 0.015	18.804 ± 0.021	18.714 ± 0.026	18.875 ± 0.037	
19.715 ± 0.045	19.232 ± 0.039	18.642 ± 0.032	18.380 ± 0.031	
19.893 ± 0.043	20.002 ± 0.063	19.972 ± 0.083	20.174 ± 0.123	
19.558 ± 0.035	19.559 ± 0.046	19.433 ± 0.057	19.448 ± 0.075	19.523 ± 0.100
19.837 ± 0.049	19.931 ± 0.073	19.963 ± 0.102	20.124 ± 0.147	
19.848 ± 0.046	19.915 ± 0.068	19.824 ± 0.089	19.813 ± 0.105	19.833 ± 0.125
19.145 ± 0.024	19.224 ± 0.035	19.156 ± 0.044	19.260 ± 0.059	19.474 ± 0.086
19.971 ± 0.054	20.006 ± 0.074.	19.941 ± 0.094	20.137 ± 0.140	
19.103 ± 0.022	18.598 ± 0.019	18.457 ± 0.023	18.509 ± 0.029	
19.580 ± 0.037	19.606 ± 0.050	19.507 ± 0.062	19.551 ± 0.079	
19.969 ± 0.049	20.109 ± 0.074	20.093 ± 0.097		
19.715 ± 0.037	19.735 ± 0.050	19.661 ± 0.063	19.624 ± 0.075	
19.714 ± 0.038	18.706 ± 0.021	18.525 ± 0.024	18.579 ± 0.032	18.613 ± 0.034
19.220 ± 0.031	19.203 ± 0.040	18.874 ± 0.041	17.723 ± 0.018	
19.997 ± 0.051	20.122 ± 0.075	20.069 ± 0.101	20.095 ± 0.127	19.575 ± 0.097
19.935 ± 0.048	20.042 ± 0.072	10.805 ± 0.080	19.902 ± 0.108	
20.145 ± 0.076	19.904 ± 0.083	19.559 ± 0.083	19.054 ± 0.065	

References
Andreon S., Davoust E., Michard R., Nieto J. L., Poulain P., 1996, Astronomy and Astrophysics Supplement Series,
116, 429
Andreon S., Davoust E., Poulain P., 1997, Astronomy and Astrophysics Supplement Series, 126, 67 Bertin E., Amouts S., 1996, Astronomy and Astrophysics Supplement Series, 117, 393
Godwin J. G., Metcalfe N.., Peach J. V., 1983, MNRAS, 202, 113

Appendix B

The Biweight Estimators

B. 1 Resistance, robustness and efficiency

The notions of resistance and robustness in statistical indicators are central to our decision to use the biweight indicators, so we will briefly define them here. For a more complete definition of these terms, and also of the biweight indicators, see Beers, Flynn, \& Gebhardt (1990) and references therein.

Resistance characterises how an indicator changes when a small part of the data is replaced with new and possibly very different data. A resistant indicator, such as the median will change only a little, while a nonresistant indicator such as the mean will possibly change by a large amount. A resistant indicator is therefore sensitive to the bulk of the data, and not sensitive to the occasional outlier.

Robustness characterises an estimator's insensitivity to the assumed probability distribution of the population from which the data are drawn, i.e. an estimator which assumes a Gaussian distribution at any stage is therefore not robust.

Of lesser importance to us, is efficiency. The efficiency of an indicator refers to the quality of information that can be derived by using it. In data-limited applications, an efficient indicator can produce the required information, where a less efficient indicator may require many times the number of data points to extract an equivalent result.

B. 2 The biweight estimator

The biweight location and scale indicators require an auxiliary scale estimator. In line with Beers, Flynn, \& Gebhardt we use the median absolute deviation (MAD).

$$
M A D=\operatorname{median}\left(\left|x_{i}-M\right|\right)
$$

where M is the median of the sample.

B.2.1 The location indicator

The biweight location indicator is defined as

$$
C_{B I}=M+\frac{\sum_{\left|u_{i}\right|<1}\left(x_{i}-M\right)\left(1-u_{i}^{2}\right)^{2}}{\sum_{\left|u_{i}\right|<1}\left(1-u_{i}^{2}\right)^{2}}
$$

where again M is the sample median and u_{i} is defined by

$$
u_{i}=\frac{\left(x_{i}-M\right)}{c M A D}
$$

The c in the definition of u_{i} is the tuning constant. In keeping with Beers, Flynn, \& Gebhardt, we use a value of $c=6.0$, giving a high efficiency for a broad range of distributions, and effectively excluding all data further than 4 standard deviations from the central location.

B.2.2 The scale indicator

The biweight scale indicator is defined as

$$
S_{B I}=n^{1 / 2} \frac{\left[\sum_{\left|u_{i}\right|<1}\left(x_{i}-M\right)^{2}\left(1-u_{i}^{2}\right)^{4}\right]^{1 / 2}}{\left|\sum_{\left|u_{i}\right|<1}\left(1-u_{i}^{2}\right)\left(1-5 u_{i}^{2}\right)\right|}
$$

where u_{i} is again defined as above, but with the tuning constant $c=9.0$.
Both the scale and location indicator can be run iteratively by replacing M with $C_{B I}$ after the first run, however we found that for our data, this made little difference.

B. 3 Data fitting

In fitting a model to our data, we are ultimately interested in minimising the residuals of the data to our model. It therefore makes sense to define a set of x_{i} such that

$$
x_{i}=Y_{i}-f\left(X_{i}\right)
$$

where the $\left(X_{i}, Y_{i}\right)$ are the data pairs, and $f(x)$ is our model. In this case, we are interested in fitting a straight line, so $f(x)=m x+c$. We therefore want to minimise both the scale and location of the x_{i}. This can be achieved in one simple step by defining a derivative of $S_{B I}$ with effectively a zero median.

$$
S_{B I F I T}=n^{1 / 2} \frac{\left[\sum_{\left|u_{i}\right|<1}\left(1-u_{i}^{2}\right)^{4}\right]^{1 / 2}}{\left|\sum_{\left|u_{i}\right|<1}\left(1-u_{i}^{2}\right)\left(1-5 u_{i}^{2}\right)\right|}
$$

where this time, $u_{i}=x_{i} / c M A D$. Again $c=9.0$.
Setting $M=0$ has the effect if increasing $S_{\text {BIFIT }}$ if the location of the x_{i} differs from zero. If however, the location of the x_{i} is close to zero (what we require), then $S_{B I F I T}$ behaves similarly to $S_{B I}$.

It is then relatively simple to minimise $S_{\text {BIFIT }}\left(m, c \mid x_{i}\right)$ by iteration in the (m, c) plane. To achieve this we use the multidimensional downhill simplex method (Press et al. 1992) with a limiting tolerance of 10^{8}. It is not very computationally efficient, but is easy to implement, and the $S_{B I F I T}$ is computationally cheap. We have yet to encounter a situation where it could not find the minimum of the x_{i}, and therefore fit a function to the (X_{i}, Y_{i}).

References

Beers T. C., Flynn K., Gebhardt K., 1990, AJ, 100, 32
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, in Cambridge: University Press, -c 1992, 2nd ed.

Bibliography

References

Aaronson M., Persson S. E., Frogel J. A., 1981, ApJ, 245, 18
Aarseth S. J., Fall S. M., 1980, ApJ, 236, 43
Abraham R. G. et al., 1996, ApJ, 471, 694
Andreon S., Davoust E., Michard R., Nieto J. L., Poulain P., 1996, Astronomy and Astrophysics Supplement Series, 116, 429
Andreon S., Davoust E., Poulain P., 1997, Astronomy and Astrophysics Supplement Series, 126, 67

Arimoto N., Yoshii Y., 1987, A\&A, 173, 23
Bahcall N. A., 1975, ApJ, 198, 249
Baier F. W., 1984, Astronomische Nachrichten, 305, 175
Balogh M. L., Schade D., Morris S. L., Yee H. K. C., Carlberg R. G., Ellingson E., 1998, ApJ, 504, L75
Barger A. J., Aragon-Salamanca A., Ellis R. S., Couch W. J., Smail I., Sharples R. M., 1995, American Astronomical Society Meeting, 187, 6306

Barger A. J., Aragon-Salamanca A., Ellis R. S., Couch W. J., Smail I., Sharples R. M., 1996, MNRAS, 279, 1

Barnes J. E., 1988, ApJ, 331, 699
Baugh C. M., Cole S., Frenk C. S., Lacey C. G., 1998, ApJ, 498, 504
Beers T. C., Flynn K., Gebhardt K., 1990, AJ, 100, 32
Bender R., Burstein D., Faber S. M., 1992, ApJ, 399, 462
Bender R., Burstein D., Faber S. M., 1993, ApJ, 411, 153

Bertin E., Arnouts S., 1996, Astronomy and Astrophysics Supplement Series, 117, 393
Biviano A., Durret F., Gerbal D., Le Fevre O., Lobo C., Mazure A., Slezak E., 1996, A\&A, 311, 95

Bond J. R., Kaiser N., Cole S., Efstathiou G., 1991, ApJ, 379, 440
Bower R. G., 1991, MNRAS, 248, 332
Bower R. G., Kodama T., Terlevich A. I., 1998, MNRAS, 299, 1193, astro-ph/9805290
Bower R. G., Lucey J. R., Ellis R. S., 1992a, MNRAS, 254, 589
Bower R. G., Lucey J. R., Ellis R. S., 1992b, MNRAS, 254, 601
Bressan A., Chiosi C., Tantalo R., 1996, A\&A, 311, 425
Briel U. G., Henry J. P., Boehringer H., 1992, A\&A, 259, L31
Bruzual A. G., 1983, ApJ, 273, 105
Butcher H., Oemler J., A., 1978, ApJ, 226, 559
Butcher H., Oemler J., A., 1984, ApJ, 285, 426
Buzzoni A., Chincarini G., Molinari E., 1993, ApJ, 410, 499
Buzzoni A., Gariboldi G., Mantegazza L., 1992, AJ, 103, 1814
Caldwell N., Rose J. A., Franx M., Leonardi A. J., 1996, AJ, 111, 78
Caldwell N., Rose J. A., Sharples R. M., Ellis R. S., Bower R. G., 1993, AJ, 106, 473
Cash W., 1979, ApJ, 228, 939
Charlot S., Silk J., 1994, ApJ, 432, 453
Cole S., Aragon-Salamanca A., Frenk C. S., Navarro J. F., Zepf S. E., 1994, MNRAS, 271,781

Colless M., Dunn A. M., 1996, ApJ, 458, 435
Couch W. J., Barger A. J., Smail I., Ellis R. S., Sharples R. M., 1998, ApJ, 497, 188
Couch W. J., Ellis R. S., Sharples R. M., Smail I., 1994, ApJ, 430, 121
Couch W. J., Newell E. B., 1984, ApJS, 56, 143
Couch W. J., Sharples R. M., 1987, MNRAS, 229, 423
Davies R. L., Sadler E. M., Peletier R. F., 1993, MNRAS, 262, 650
De Jong R. S., Davies R. L., 1997, MNRAS, 285, L1
Djorgovski S., Davis M., 1987, ApJ, 313, 59
Dressler A., 1980, ApJS, 42, 565
Dressler A., 1984, ApJ, 281, 512
Dressler A., Gunn J. E., 1983, ApJ, 270, 7
Dressler A., Gunn J. E., 1992, ApJS, 78, 1

Dressler A., Lynden-Bell D., Burstein D., Davies R. L., Faber S. M., Terlevich R., Wegner G., 1987, ApJ, 313, 42

Dressler A. et al., 1997, ApJ, 490, 577
Eggen O. J., Lynden-Bell D., Sandage A. R., 1962, ApJ, 136, 748
Ellis R. S., Smail I., Dressler A., Couch W. J., Oemler J., Augustus, Butcher H., Sharples R. M., 1997, ApJ, 483, 582

Escalera E., Mazure A., 1992, ApJ, 388, 23
Escalera E., Slezak E., Mazure A., 1992, A\&A, 264, 379
Faber S. M., 1973, ApJ, 179, 731
Faber S. M., Jackson R. E., 1976, ApJ, 204, 668
Feigelson E. D., Babu G. J., 1992, ApJ, 397, 55
Ferguson H. C., 1993, MNRAS, 263, 343
Franx M., Illingworth G., 1990, ApJ, 359, L41
Fried D. L., 1966, J. Opt. Soc. Am., 56, 1372
Frogel J. A., Persson S. E., Matthews K., Aaronson M., 1978, ApJ, 220, 75
Godwin J. G., Metcalfe N., Peach J. V., 1983, MNRAS, 202, 113
González J. J., 1993, Ph.D. thesis, Univ. California, Santa Cruz
Grebenev S. A., Forman W., Jones C., Murray S., 1995, ApJ, 445, 607
Guzman R., Lucey J. R., Carter D., Terlevich R. J., 1992, MNRAS, 257, 187
Isobe T., Feigelson E. D., Akritas M. G., Babu G. J., 1990, ApJ, 364, 104
Johnson H. L., Morgan W. W., 1953, ApJ, 117, 313
Jorgensen I., Franx M., Kjaergaard P., 1993, ApJ, 411, 34
Kauffmann G., 1996, MNRAS, 281, 487
Kauffmann G., White S. D. M., Guiderdoni B., 1993, MNRAS, 264, 201
Kodama T., 1997, Ph.D. thesis, Institute of Astronomy, University of Tokyo
Kodama T., Arimoto N., 1997, A\&A, 320, 41
Kodama T., Arimoto N., Barger A. J., Arag'On-Salamanca A., 1998, A\&A, 334, 99
Kormendy J., Djorgovski S., 1989, ARA\&A, 27, 235
Kuntschner H., 1998, Ph.D. thesis, Department of Physics, University of Durham
Kuntschner H., Davies R. L., 1998, MNRAS, 295, L29
Lacey C., Cole S., 1993, MNRAS, 262, 627
Landolt A. U., 1992, AJ, 104, 340
Larson R. B., 1974, MNRAS, 169, 229
Larson R. B., Tinsley B. M., Caldwell C. N., 1980, ApJ, 237, 692

Lega E., Scholl H., Alimi J.-M., Bijaoui A., Bury P., 1995, Parallel Computing, 21, 265
Lucey J. R., Guzman R., Steel J., Carter D., 1997, MNRAS, 287, 899L
Maddox S. J., Efstathiou G., Sutherland W. J., 1990, MNRAS, 246, 433
Mehlert D., Bender R., Saglia R. P., Wegner G., 1998, in Untangling Coma Berenices: A New Vision of an Old Cluster, p. 107
Moore B., Katz N., Lake G., Dressler A., Oemler J., A., 1996, Nature, 379, 613
Navarro J. F., Frenk C. S., White S. D. M., 1995, MNRAS, 275, 56
Osterbrock D. E., 1989, in Published by University Science Books, 648 Broadway, Suite 902, New York, NY 10012, 1989.
Ostriker J., 1980, Comments on Astrophysics, 8, 177
Pahre M. A., Djorgovski S. G., De Carvalho R. R., 1995, ApJ, 453, L17
Pei Y. C., Fall S. M., 1995, ApJ, 454, 69
Persson S. E., Frogel J. A., Aaronson M., 1979, ApJS, 39, 61
Poggianti B., Smail I. R., Dressler A., Couch W., Barger A., Butcher H., Ellis R. S., Oemler A., 1999, ApJ, in press, (astro-ph/9901264)
Press W. H., Schecter P., 1974, ApJ, 187, 425
Press W. H., Teukolsky S. A., Vetterling W. T., Flannery B. P., 1992, in Cambridge: University Press, -c1992, 2nd ed.
Renzini A., Buzzoni A., 1986, in Spectral Evolution of Galaxies, p. 195
Renzini A., Ciotti L., 1993, ApJ, 416, L49
Rosati P., Della Ceca R., Burg R., Norman C., Giacconi R., 1995, ApJ, 445, L11
Saglia R. P., Bender R., Dressler A., 1993, A\&A, 279, 75
Saglia R. P., Bertschinger E., Baggley G., Burstein D., Colless M., Davies R. L., McMahan J., R. K., Wegner G., 1993, MNRAS, 264, 961
Saglia R. P., Burstein D., Baggley G., Bertschinger E., Colless M. M., Davies R. L., McMahan J., Robert K., Wegner G., 1997, MNRAS, 292, 499

Schweizer F., Seitzer P., 1992, AJ, 104, 1039
Schweizer F., Seitzer P., Faber S. M., Burstein D., Dalle Ore C. M., Gonzalez J. J., 1990, ApJ, 364, L33

Searle L., Sargent W. L. W., Bagnuolo W. G., 1973, ApJ, 179, 427
Secker J., Harris W. E., Plummer J. D., 1997, PASP, 109, 1377
Slezak E., Bijaoui A., Mars G., 1990, A\&A, 227, 301
Slezak E., De Lapparent V., Bijaoui A., 1993, ApJ, 409, 517
Slezak E., Durret F., Gerbal D., 1994, AJ, 108, 1996

Smail I., Dressler A., Couch W. J., Ellis R. S., Oemler J., Augustus, Butcher H., Sharples R. M., 1997, ApJS, 110, 213

Smail I., Edge A. C., Ellis R. S., Blandford R. D., 1998, MNRAS, 293, 124, Provided by the NASA Astrophysics Data System
Stanford S. A., Eisenhardt P. R., Dickinson M., 1998, ApJ, 492, 461
Tinsley B. M., 1980, ApJ, 241, 41
Tinsley B. M., Gunn J. E., 1976, ApJ, 203, 52
Toomre A., Toomre J., 1972, ApJ, 178, 623
Trager S. C., 1997, Ph.D. thesis, Univ. California, Santa Cruz
Vader J. P., 1986, ApJ, 306, 390
Van Den Burgh S., 1991, PASP, 103, 390
Van Dokkum P. G., Franx M., Kelson D. D., Illingworth G. D., 1998, ApJ, 504, L17
Vazdekis A., Casuso E., Peletier R. F., Beckman J. E., 1996, ApJS, 106, 307
Vazdekis A., Peletier R. F., Beckman J. E., Casuso E., 1997, ApJS, 111, 203
Vikhlinin A., Forman W., Jones C., 1994, ApJ, 435, 162
Visvanathan N., Sandage A., 1977, ApJ, 216, 214
White S. D. M., 1976, MNRAS, 177, 717
White S.D. M., 1979, MNRAS, 189, 831
White S. D. M., Briel U. G., Henry J. P., 1993, MNRAS, 261, L8
White S. D. M., Frenk C. S., 1991, ApJ, 379, 52
Woolf N. J., 1982, ARA\&A, 20, 367
Worthey G., 1994, ApJS, 95, 107
Worthey G., Ottaviani D. L., 1997, ApJS, 111, 377
Zabludoff A. I., Zaritsky D., Lin H., Tucker D., Hashimoto Y., Shectman S. A., Oemler A., Kirshner R. P., 1996, ApJ, 466, 104

Zepf S. E., Whitmore B. C., Levisọn H. F., 1991, ApJ, 383, 524

[^0]: 1 The NASA/IPAC Extragalactic Database (NED) is operated by the Jet Propulsion Laboratory, Califormia Institute of Technology, under contract with the National Aeronautics and Space Administration.

[^1]: -
 -
 -

 | 7 |
 | :--- |
 | 0 |
 | 0 |
 | 0 |
 | |
 | 0 |
 | 0 |

[^2]:

 シ～～～～～～
 ：－
 ～

 奀會

 言

 ##

[^3]:

 ne
 on
 on
 H
 H
 H.

[^4]: 릉

[^5]:

 $\stackrel{\circ}{8}$

 | \circ |
 | :---: |
 | \circ |
 | 0 |
 | 0 |
 | 0 |

 骨

[^6]:

 ## $\frac{8}{8}$
 Il m fil min lil IIT 1 Ii 1 1 11 11 1 1 1 1 11 11 ~ I 11 II lill

