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Abstract 

This thesis discusses the efficient and accurate generation of self-similar traffic for ATM networks. 

ATM networks have been developed to carry multiple service categories. Since the traffic on a number 

of existing networks is bursty, much research focuses on how to capture the characteristics of traffic 

to reduce the impact of burstiness. Conventional traffic models do not represent the characteristics of 

burstiness well, but self-similar traffic models provide a closer approximation. Self-similar traffic models 

have two fundamental properties, long-range dependence and infinite variance, which have been found 

in a large number of measurements of real traffic. Therefore, generation of self-similar traffic is vital for 

the accurate simulation of ATM networks. 

The main starting point for self-similar traffic generation is the production of fractional Brownian 

motion (FBM) or fractional Gaussian noise (FGN). In this thesis six algorithms are brought together so 

that their efficiency and accuracy can be assessed. It is shown that the discrete FGN (dFGN) algorithm 

and the Weierstrass-Mandelbrot (WM) function are the best in terms of accuracy while the random 

midpoint displacement (RMD) algorithm, successive random addition (SRA) algorithm, and the WM 

function are superior in terms of efficiency. Three hybrid approaches are suggested to overcome the 

inefficiency or inaccuracy of the six algorithms. The combination of the dFGN and RMD algorithm was 

found to be the best in that it can generate accurate samples efficiently and on-the-fly. After generating 

FBM sample traces, a further transformation needs to be conducted with either the marginal distribution 

model or the storage model to produce self-similar traffic. The storage model is a better transformation 

because it provides a more rigorous mathematical derivation and interpretation of physical meaning. 

The suitability of using selected Hurst estimators, the rescaled adjusted range (R/S) statistic, the 

variance-time (VT) plot, and Whittle's approximate maximum likelihood estimator (MLE), is also cov­

ered. Whittle's MLE is the better estimator, the R/S statistic can only be used as a reference, and the VT 

plot might misrepresent the actual Hurst value. 

An improved method for the generation of self-similar traces and their conversion to traffic has been 

proposed. This, combined with the identification of reliable methods for the estimators of the Hurst 

parameter, significantly advances the use of self-similar traffic models in ATM network simulation. 
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Chapter 1 

Introduction 

The rapid growth of Internet and Intranet usage has led to an increasing number of multimedia appli­

cations being integrated into existing networks. This information is no longer restricted to local area 

networks (LAN), but flows throughout the world. Multimedia applicadons generate bursty connection­

less data that is very different from the telephone traffic in conventional telecommunicadon networks. 

To integrate this connectionless data into exisdng telecommunication networks, Integrated Service Digi­

tal Network (ISDN) and its advanced version, Broadband Integrated Service Digital network (B-ISDN), 

have been proposed [Sta92]. 

ISDN and B-ISDN are unified network technologies and networking techniques that are necessary in 

order to provide transmission and switching for diverse applications, with varying traffic characteristics, 

over interconnected networks. Synchronous Optical NETwork (SONET) and Asynchronous Transfer 

Mode (ATM) are two technological developments which have helped the implementation of such net­

works. The former provides very high speed transmission systems while the latter concerns issues of the 

utilization of networks and of the quality of services (QoSs). 

SONET provides the standard for interconnection of heterogeneous devices that may use optical 

interfaces. One of the main requirements of SONET is to prepare for the future sophisticated service 

offerings and support the broadband ISDN ATM transmission technique [Sta92]. The main delay occurs 

in ATM switches rather than in the transmission channel. Moreover, all operation, administration, and 

maintenance of B-ISDN are based on the design and implementation of management functions of the 

ATM protocol. The major effort of B-ISDN is focused on the implementation of ATM management 

functions [IT93a, Onv95]. 

1.1 ATM Networks and Control Issues 

ATM is a method of statistical muUiplexing in which the units of information are fixed size entities called 

cells. The switching method is referred to as cell switching. Because small fixed-size calls can be used 

as a common information unit among voice, data, video, and other services, ATM is considered to be 

able to carry multiple-type traffic, which satisfies the objectives of a high-speed network. 

Supported by the cell-based switching, the behavior of traffic in an ATM network can be considered 
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on several levels: network (or subscription) level; call level; burst level; and cell level as shown in 

Fig. 1.1 [CPL+94,De 95,GSV95,Gin96]. At the network level, the concern is with the connections and 

disconnections of traffic sources, as well as the number of calls. At the call level, a call or session lasts 

for the duration of the connection between the end users. A call in turn can be partitioned into a sequence 

of alternate burst and silent periods. During the burst period, a stream of ATM cells is emitted at regular 

intervals, while no cells are launched during the silent periods. An important attribute of each level is its 

time scale which is governed by the mean interarrival time of entities at that level during an active period 

in the upper level. 

The characteristics of the traffic in ATM networks require to be identified. International Telecom­

munication Union - Telecommunication Standardization Sector (ITU-T) classifies traffic into four main 

classes [IT93b]: constant bit rate (CBR) service; variable bit rate (VBR) service; connection-oriented 

service, and connectionless data transfer. However, this classification does not satisfy the demand for 

capturing the characteristics of traffic from different applications, especially the VBR traffic. Recently 

the ATM Forum traffic management working group has completed the TM4.0 specification, according to 

which five service categories have been identified [For96,Gin96,PP97]. The service categories are distin­

guished as being either real-time or non-real-time. The real-time traffic is closely related to the original 

B-ISDN service classes, therefore they are easier to model. Non-real-time traffic more closely reflects 

the majority data transfer and L A N interconnection requirements. The non-real-time traffic fluctuates 

and makes the design, operation, maintenance, and management of ATM networks very difficult. 

The real-time and non-real-time traffic in an ATM network may be bursty. A bursty source generates 

cells at a peak rate during its active periods and possibly no cells during its inactivity. Since an ATM 

network can support a large number of bursty traffic sources, statistical multiplexing can be used to 

gain bandwidth efficiency, allowing more sources to share the bandwidth. However, if a large number 

of bursty sources are active simultaneously, network congestion can occur. To provide the end-to-end 

Quality of Service (QoS) for bursty traffic is one of the most important and challenging issues in the 

design of broadband networks. 

Such different classes of traffic may require deterministic or statistical bounds on various QoS param­

eters, such as throughput, cell loss, cell delay, and jitter. These parameters represent performance objec­

tives expected from the system for the duration of a connection. The QoS which includes call-blocking 

probability, cell loss rate, cell delay, and cell-delay variations, is used as a measure of performance of 

these control functions. In the ATM forum specification six QoS parameters are identified to fit a network 

performance objective [For96]. Half of them are required to negotiate between the end-systems and the 

networks, while the others are not necessary. 

QoS is one of the main reasons for controlling and monitoring network traffic flow. A network can 

be decomposed into physical, control, and transmission components or layers. Control layers involve 

multiplexing, demultiplexing, traffic control, congestion control, and error control. A framework for 

managing and controlling traffic and congestion in ATM networks is formed by the following func­

tions or their combinations: Network Resource Management (NRM); Connection Admission Control 

(CAC); Feedback control; Usage/network parameter control (UPC/NPC); and priority control [IT93c]. 

Other means of traffic and congestion control have been made in the Traffic Management 4.0 document: 
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Figure 1.2: Layered traffic control strategy. 

Connection Admission Control; Usage parameter Control; Selective Cell Discarding; Traffic Shaping; 

Explicit Forward Congestion Indication; Resource Management using Virtual Paths; Frame Discard; and 

Available Bit Rate (ABR) Flow Control [For96]. 

These traffic control mechanisms can be divided into three categories: NRM; CAC; and Rate-Based 

Control (RBC) [GSV95]. The traffic control strategy is illustrated in Fig. 1.2. NRM involves virtual 

path (VP) bandwidth and buffer allocadon. CAC includes routing and virdaal channel (VC) bandwidth 

allocation to determine the rejection or acceptance of calls. RBC which covers leaky bucket, window or 

credit based control, priority control, traffic shaping, and UPC/NPC, is therefore concerned with all the 

control schemes for preventing or reacting to congesdon. 

1.2 Motivation and Objective 

Engineering and modeling are the two main technologies for designing, evaluating, and managing telecom­

municadon networks [HTL92]. In order to meet performance objecdves and to utilize the capital de­

ployed in the network efficiently, these engineering guidelines require to be based on a solid foundation 

of knowledge about the network and its traffic. Similarly, both analytical and simulation models are 

currently used to compare alternative implementation strategies for new services and to evaluate network 

performance. Again, in order to assess network strategies, integrity, and performance reliability, models 

should be based on realisdc assumpdons about the network and its traffic. 

Modeling is the means to present the characteristics of the traffic, through two types of understanding: 

concrete causal understanding and abstract statisdcal understanding [Nor95b]. The fornier aggregates 

several elementary models to build a total traffic model, while the latter uses a stochastic model with 

some essendal statistical properties to represent the total traffic. These two understandings are required 

to represent the characteristics of real traffic. 

Non-real-dme traffic is difficult to handle because of its burstiness. The integration of different types 

of traffic into a single network is a challenge for the design of, the operating of, the administration of, and 

the maintenance of the network. Appropriate control schemes must be implemented to meet the users' 

QoS requirements and to optimize the udlization of network resources. Traffic modeling is a fundamental 

issue for designing and evaluating the performance of control mechanisms. 
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In order to provide a high quality of service and to maximize the utilization of networks, a number 

of traffic models are used to attempt to capture the characteristics of different types of service. Most 

of the traffic models are based on Poisson and Markov processes, in which the current state is derived 

from the previous state. However, a great number of traffic measurements indicate that sampling data 

exhibits a very strong correlation with previous sampling data, therefore the conventional traffic models 

are difficult to model the traffic. 

Recently, self-similar traffic models, which are initiated by the observation of the Ethernet traffic 

measurement, have been found suitable for modeling the strong correlated phenomenon. These models 

are based on the self-similar stochastic processes whose second-order stochastic processes exhibit long-

range dependence (LRD). The models use an addition parameter, the Hurst parameter, to identify the 

degree of correlation whereas the other models require a greater number of parameters as the degree of 

dependence increases. Not only is self-similar nature discovered in the Ethernet traffic, but it also exists 

in VBR video and World Wide Web (WWW) transactions. Therefore, self-similar traffic models might 

be the better method to present all categories of traffic and still use only a small number of parameters. 

After understanding self-similar traffic models, its mathematical derivation can be used to analyze 

the queueing behavior of ATM networks and the generated self-similar traffic traces can be used for 

ATM network simulations. Therefore, the study of self-similar traffic modeling will be a key foundation 

into further investigation of ATM networks, in particular traffic control and congestion control. The flow 

chart of the reasoning behind the use of self-similar traffic models is depicted in Fig. 1.3. 
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Figure 1.3: Motivation. 
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Simulation and analysis are the two key disciplines used in the research and development of control 

mechanisms for ATM networks. Traffic modeling is fundamental to both and has been chosen as the 

main area of research. Of the traffic models, self-similar traffic models are chosen for further study 

because they are believed to fit real traffic much better than others. 

The thesis documents work which has been undertaken in understanding the mathematical founda­

tion of self-similar traffic. Therefore, the existing algorithms for generating FBM or FGN samples are 

evaluated, three novel hybrid approaches to produce fractal samples are introduced, and finally the mod­

els to transfer the FBM processes to self-similar counting processes are appraised. A thorough stiidy of 

these issues is required before self-similar traffic can be generated quickly and accurately for further use. 

1.3 Outline of the Thesis 

The main body of the thesis is divided into 5 chapters. A critical review of the state-of-the-art of traffic 

modeling in telecommunication networks is covered in Chapter 2. In addition, several traffic measure­

ments are introduced to support the use of self-similar traffic models. Thereafter, six criteria are used to 

examine self-similar traffic models. 

The self-similar stochastic process and its incremental process, the second-order self-similar stochas­

tic process, are the theoretical basis for self-similar traffic modeling. Before introducing the self-similar 

stochastic process, its deterministic version, fractals, and the properties of self-similarity are introduced. 

Then, the definition and properties of a random version of self-similarity are discussed. Three models 

for self-similar phenomena, fractional Brownian motion (FBM) processes, fractional autoregressive in­

teger moving average (FARIMA) processes, and chaotic maps are explained and evaluated. Three Hurst 

estimators, the R/S statistic, the variance-time (VT) plot, and Whittle's maximum likelihood estimator 

(MLE), together with a graphical technique for goodness-of-fit, the Q-Q plot, are introduced before using 

them to examine the quality of fractal samples. Al l this material is covered in Chapter 3. 

After building the basis of the mathematical material for self-similar processes. Chapter 4 intro­

duces six algorithms for generating FBM or its second order process, fractional Gaussian noise (FGN). 

They are the discrete FGN (dFGN) algorithm, the fast FGN (fFGN) algorithm, the random midpoint dis­

placement (RMD) algorithm, the successive random addition (SRA) algorithm, Whittle's approximate 

approach, and Weierstrass-Mandelbrot (WM) function. In addition, all these algorithms are appraised by 

the estimators and the Q-Q plot. 

Based on the algorithms introduced in Chapter 4, three hybrid approaches are introduced in Chap­

ter 5. The RMD, SRA algorithms and the WM function are incorporated with the dFGN algorithm to 

generate FBM or FGN samples on-the-fly, to attempt to reduce the computational effort of the dFGN 

algorithm and to attempt to improve the accuracy of the RMD and SRA algorithms. The estimators and 

Q-Q plot are used to examine these approaches and find out which combination scheme of these hybrid 

algorithms is the most suitable. 

After generating the FBM and FGN traces, the transformation from self-similar sample traces to self-

similar traffic is investigated in Chapter 6. In this chapter, two different models, the marginal distribution 

and storage models, are used to generate self-similar traffic traces. Then, the estimators are used again 
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to examine the models. 

Finally, the conclusions of the thesis and further work are stated in Chapter 7. A more complete 

descriptive survey of traffic models is covered in Appendix A. In Appendix B, the derivation of the 

dFGN-i-WM algorithm is discussed. Appendix C is a simple application of the fractal traces in which 

several definitions of burstiness are used to measure the degree of burstiness of the fractal streams. The 

last part. Appendix D, tabulates the computational time and estimated Hurst values of algorithms in 

Chapter 5 and models in Chapter 6. 



Chapter 2 

Traffic Models for ATM Networks 

ATM is designed as a fixed cell length and non-synchronous transmission scheme. The design allows 

for a very flexible transmission of information at every CBR or VBR up to the link rate. It is important 

for network engineering and modeling to know the relevant statistical characteristics of a large range of 

ATM sources. 

In ATM networks voice, data, and video are the three main types of traffic [CPL"'"94,Onv95]. Because 

of the variety of cell streams generated by various ATM sources, several proposals for traffic models have 

emerged with the emphasis on simplicity, realism, and accuracy. Often these traffic models have been 

used to evaluate network performance or to generate virtual traffic for network simulations. Self-similar 

traffic models are considered to be the most appropriate ones in this thesis. 

This chapter justifies the chosen self-similar traffic models which form the focus for the following 

research. The main body consists of three parts. Sec.2.1 gives a brief overview of the traffic models, 

Sec. 2.2 outlines several measurements of real traffic, and Sec. 2.3 is an examination of self-similar 

traffic models. 

2.1 A Brief Review of Traffic Models 

Analysis and simulation are the two major techniques used to understand the behavior of a network. 

Traffic models are the fundamental basis of both techniques. Many traffic models have been proposed to 

capture the characteristics of different traffic services. This state-of-the-art survey is based on [CPL'*'94] 

and [FM94] with a number of additions. Fig. 2.1 illustrates the set diagram of Markov-based processes 

and is based on the relationship of the stochastic processes characterized by different kinds of depen­

dency among their random variables. The diagram is based on [Kle75], but with the newly developed 

traffic models added. A fuller survey of traffic models with more complete references can be found in 

Appendix A. 

Point process, counting process, and interarrival time process are three equivalent processes by which 

a traffic source in continuous time sense can be model-led and described. The point process concerns the 

time instances when arrivals occur. The counting process deals with the cumulative number of arrivals 

in a specific time. As its name implies, the interarrival time process is a non-negative sequence that 
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records the length of time intervals separating a specific arrival from a previous one. Discrete-time traffic 

processes are applied when the time is slotted. 

Poisson and Bernoulli processes are the two simplest renewal models in continuous time and dis­

crete time, respectively. The regeneration property makes the renewal processes popular because the 

mathematical expressions become simpler and will usually hold in more general situations. 

The general modulated deterministic process based on finite state machines describes the behavior of 

the cell generation [CPL+94]. The ON/OFF model is a more popular model which regularly incorporates 

other models to describe the behavior of traffic sources. 

Markov-modulated models use an auxiliary Markov process which is evolving with time. A Markov-

modulate Poisson process (MMPP) is the most commonly used Markov-modulated model [Onv95, 

Sai94]. It has been applied to voice and video traffic. An interrupted Poisson process (IPP) is the 

simplest MMPP in which only two states are used. Often, an IPP regards as an ON/OFF model with 

two independent exponential distributions to alternatively turn on and turn off a queueing system. In the 

modulated state, with a state transition rather than the state itself, the transition-modulated processes are 

governed by a transition matrix. 

Markov and Markov-renewal processes are used to reflect the characteristics of burstiness because 

their interarrival time process is coixelated. Phase-type (PH) renewal processes have an absorbing state 

and reach this state within finite value [Neu79,Sai94]. A variation of a phase-type process, a Markovian 
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arrival process (MAP), uses a probability vector instead of the absorbing state [LMHN90,Sai94]. Semi-

Markov processes release the restriction of Markov process in which the state must transfer to another 

state from the current state [CPL+94,Sai94]. 

Different from the Poisson- and Markov-based processes, fluid flow models view traffic as a stream 

of fluid, characterized by a flow rate [CPL'''94, GSV95]. These models are restricted to the cases where 

the individual units are very small in relation to a chosen time scale. This concept is important not 

only because of its simplicity but also it's benefits in simulations. The fundamental assumption of the 

fluid-flow models is that the sources are bursty with the ON/OFF type. An extension of the fundamental 

model is the multi-minisources model in which a single fluid-flow model aggregates many identical 

independent ON/OFF sources. Moreover, if there are two classes of ON/OFF sources, the superposition 

of muki-minisources can form a two dimensional Markov chain. 

Originally, diffusion processes were used to model the state space of Brownian motion. The dis­

continuous arrival and service processes in queueing systems can be approximately derived as diffusion 

processes. Reflection and absorption or jump are the two boundary conditions that have been proposed 

to model cell streams [RK94,GMF96,GM097]. 

Autoregression is a technique developed to predict and estimate time series [SMRA89, Onv95]. 

Therefore, an autoregressive (AR) model has been proposed to predict the next samples based on cur­

rent and previous samples in a time series. Simple autoregressive and autoregressive moving average 

(ARMA) models have been proposed to model video traffic [GCM0091]. Transform-expand-sample 

(TES) models have been proposed to fit both marginal and autocorrelations of empirical records for 

video traffic [FM94]. 

The packet-train model was proposed to model the measurements of token ring traffic [JR86]. For a 

single connection of a pair of stations the traffic between them can be viewed as several trains. A preset 

value is used to distinguish the start of a train. Sometimes, it is also viewed as an ON/OFF model but has 

a more practical application. 

Another measurement-based modeling, self-similar traffic models have been proposed to model Eth­

ernet traffic [LTWW94]. From the measurement it is apparent that the traffic on different time scales 

exhibits burstiness while conventional models look smooth on a large time scale. Moreover, the same 

phenomenon has been observed in an analysis of VBR video traces. 

Increasing evidence shows that non-real-time traffic is bursty. To identify the degree of burstiness is 

an important issue for traffic modeling. The mathematical presentation of burstiness is very complicated. 

The shape of the marginal distribution and the autocorrelation function of interarrival time processes are 

the two major effects of burstiness [Sai94, EW94, Onv95]. However, the definition of burstiness is not 

unique. The ratio of peak-to-average traffic rate is adopted by ITU-U as its definition. The coefficient 

of variance is a more precise measure. In addition, the peakedness measure and the index-of-dispersion 

measure are two further definitions. Based on the recently discovered self-similar nature of Ethernet 

traffic the fractal correlation dimension has been proposed. 
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2.2 Which Traffic Model is More Appropriate? 

A number of studies on virtual circuit switch networks, token ring networks, Ethernet, ISDN, and 

CCSN/SS7 indicate that the conventional Poisson based traffic models are not suitable for modeling 

real traffic. Twelve of these measurement studies are summarized below: 

• Marshall and Morgan [MM85] analyzed a week's worth of data traffic on a DATAKIT Virtual 

Circuit Switch network at AT&T Bell laboratories. They calculated the interarrival and service 

time distribution by conventional first two-moment approximations. However, they also argued 

that the assumption will fail if the arrival process is not a renewal process. 

• Gusella [Gus90] analyzed the behavior of the Ethernet local-area network in an environment of 

diskless workstations running the UNIX operating system. He concluded that a system built around 

diskless workstations is highly interactive, and short-term network utilization is more likely to 

affect users' behavior than long-term average utilization. This means that the traffic on Ethernet 

generated by diskless workstation is highly bursty. 

• Fowler and Leland [FL91] analyzed congestion management through the measurement of Ethernet 

at the Bellcore Morristown Research and Engineering Center [LW91]. They found that the enor­

mous time range over which data traffic is bursty means that it does not have a simple recurring 

pattern over a period of days, weeks, or months. Furthermore, the comparison of the peak to mean 

ratio and the index of dispersion of Poisson and observed data are very different. 

• Meier-Hellstern et al [MHWYH91] monitored eight ISDN data users with Digital Subscriber Line 

(DSL) and analyzed the traffic data. The researchers argued that the interaixival histogram can 

be modeled as three different states with different distributions. The first two interarrival states 

exhibit the gamma distribution and the third state can be modeled with Pareto distribution. 

• Heyman et al [HTL92] analyzed a 30-minute sequence of real-video teleconference data. In their 

study the number of cells per frame is a gamma (or negative binomial) distribution, rather than 

normal distribution. In addition, neither an autoregressive model of order 2 nor a two-state Markov 

chain model is sufficient because they do not model correctly the occurrence of frames with a large 

number of cells. The authors suggested a multi-state Markov chain model is sufficiently accurate 

for use in traffic study. 

• Paxson [Pax94] analyzed 2.5 million TCP connections and found that log-extreme or log-nomial 

distributions are better to model the observed data with individual protocols. However, although 

these models come close to describing the distribution, they are not statistically exact. Therefore, 

the models fits subsamples rather than ruling out simple hourly, daily, or weekly patterns in the 

parameters. 

• More than 150 million SS7 messages have been collected by Duffy et al on SS7 signaling links 

[DMRW94]. The distributions of call holding times exhibit a heavy-tailed nature. Such distribu­

tions can be lognormal, Weibull, and Pareto. Therefore, SS7 traffic at the message level exhibits 
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LRD and therefore call holding times may be best described using heavy-tailed distributions with 
possibly infinite variance/mean. 

• Leiand et al [LTWW94] used four data sets collected during the period from 1989 to 1992. The 

shortest collecting period was more than 20 hours, while the longest one was 47.91 hours. In their 

paper the authors explored the self-similar phenomenon of the Ethernet traffic. In addition, self-

similar traffic models are developed as parsimonious models to capture the bursty feature of data 

networks. 

• Garrett and Willinger [GW94] analyzed a 2-hour long empirical sample of VBR video. They 

found that tail behavior of the marginal bandwidth distribution can be accurately described by 

heavy-tailed distributions. The autocorrelation of VBR video sequence decays hyperbolically, i.e., 

LRD. Therefore, VBR video can be modeled using self-similar processes. 

• Paxson and Floyd [PF95] collected and analyzed a larger number of traffic traces from wide-

area networks. They found that user-initiated TCP session arrivals are well-model-led by the 

Poisson process with fixed hourly rates, but the other connection arrivals deviate considerably 

from Poisson. Thus, they suggest that the Poisson-based modeling of wide-area traffic for all but 

user session arrivals should be abandoned. 

• Beran et al [BSTW95] analyzed 20 large sets of actual VBR video data, generated by a variety of 

different codecs and presented through a wide range of different scenes. They concluded that LRD 

is an inherent feature of VBR video traffic; that is, VBR video traffic is independent of scene, such 

as video phone, video conference, motion picture video, and codec. 

• Crovella and Bestavros [CB96] collected the network traffic from the World Wide Web in which 

the traffic arises as the result of file transfers in a closed system. Once the data was tested, it was 

found that the traffic was self-similar with a Hurst value of 0.82. 

From the history of measuring different kinds of traffic, there is strong evidence to indicate that 

the conventional Poisson-based processes are not adequate to model the traffic on any network. Even 

in traditional telephone call holding times it has been recognized that the exponential approximation 

seriously underestimates the actual numbers of very long calls. 

Leiand et al in their pioneering and subsequent papers [LTWW94, WTSW97] illustrate a pictorial 

diagram to exhibit the self-similar phenomenon, which is cited as Fig. 2.2. The diagram is divided into 

five rows, each with a different time scale and three columns. The right hand column illustrates actual 

Ethernet traffic, and the middle and left hand ones are synthetic traces generated with traditional and 

self-similar traffic models, respectively. 

Most of the traffic models described in Sec. 2.1 are related to the family of Poisson or Markov 

processes which are known as short-range dependent, except for the packet-train and self-similar traffic 

models. Of the two exceptions the packet-train traffic model is a concept rather than an analytical model. 

Thus, self-similar traffic models are believed to be the one which can most accurately capUire the nature 

of traffic on networks and also provide a rigorous mathematical derivation. 
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2.3 Do Self-Similar Traffic Models Meet the Criteria of Traffic Models? 

Some important criteria for selecting a traffic model are given in [CPL+94]. These criteria are accuracy, 

generality, stability, analytical tractability, parameterization, and number of parameters. All of these are 

based on the work of conventional queueing theory. Self-similar traffic models will be examined and the 

applicability of the criteria stated. 

2.3.1 Accuracy/Close to Reality/Physical Meaning 

A traffic model will work as a tool for analysis or simulation of ATM networks when its statistical 

characteristics are consistent with real traffic. However, this argument is only an ideal concept. There 

are still several characteristics that have not yet been well defined, including burstiness and QoS, in ATM 

networks. Self-similar traffic models are extracted from the phenomenon of measurement of real traffic. 

The measurement shows that traffic exhibits burstiness no matter what time scale is used to collect the 

data. In conventional traffic models the traffic will become smooth when a large time scale is taken to 

measure the traffic as in the middle column in Fig. 2.2. 

To expand the scope of the criterion previously referred to a 'accuracy' to encompass 'closeness to 

reality' and 'physical meaning' allows a more significant representation of traffic models to be made. 

Self-similar traffic models, by derivation, are closed to reality and carry more physical meaning, and 

therefore an potentially more accurate description of real traffic. 

2.3.2 Generality 

The majority of conventional queueing models are designed for specific sources. Although a number 

of traffic models can be extended to fit the requirements of traffic sources, this can cause complicated 

and intractable problems. Self-similar traffic models are able to cover a large family of traffic streams 

so that their various characteristics can be preserved. Many traffic measurements exhibit the self-similar 

phenomenon, thus, self-similar traffic models are more general than other traffic models. 

2.3.3 Usability for Simulation/Statistical Stability 

To facilitate simulation study, traffic models are required to have statistical stability. Statistical stability 

is tested through a period of time, which is proportioned not only to the highest level of resolution in time 

but also to the number of different states of the model. If the highest resolution and the number of states 

are directly proportional to time, they can be reasonably expected to be statistical stability. Otherwise, 

model parameters still could be produced if accompanying by measures of statistical certainty. The self-

similar stochastic process does not have a hnear proportional relationship, but it follow a power law. In 

many measurements, traffic exhibits heavy-tailed distributions, such as Pareto and Weilbull distributions, 

rather than Poisson distribution. This feature coincides with the self-similar phenomenon. 
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2.3.4 Analytical Tractability 

An appropriate traffic model should keep the usage of computational resources to a reasonable level. 

Fast-growing networks or the superposition of sources always requires numerical computation and causes 

the increases in resource consumption. Due to large volume and complexity with actual traffic, a sim­

ple traffic model is hard to obtain. Therefore, approximate methods need to be used to help solve the 

problems. Approximate methods should retain the consumption of the computational resources to an 

acceptable level. However, their results need to satisfy the requirement of accuracy. The commonly-used 

approximate approaches include iteration methods, aggregation methods, and matrix analytical methods. 

In the majority of cases, the preservation of analytical tractability of resultant queueing or perfor­

mance problems dominates the development of traffic models. Therefore, in the statistical sense, few of 

the resultant models have been tested against real traffic to demonstrate how well they work. Self-similar 

traffic models do not have the attractive properties which the conventional queueing models have. Until 

now, little research has covered the analysis of queueing behavior with self-similar traffic models. More­

over, the suitability of evaluating the models with this criterion is still unknown, and may need further 

investigation, which is beyond the scope of this thesis. 

2.3.5 Method of Model Parameterization 

All traffic models must be parameterizable to describe their statistical characteristics. Even though the 

parameters of the models can be directly measured, it is unlikely to be obtained without any bias. To 

reduce the degree of biased estimation, several equations can be employed, which include the mean, 

variance, autocovariance, and probability distribution of the models. Autocorrelation is added by some 

researchers as an extra statistical measure to provide sufficient parameterization information. Others 

think that it is a key parameter that influence network performance. The Hurst parameter derived from 

the autocoiTelation of self-similar time series is provided as an index to help describe the degree of 

correlation in self-similar traffic models. A number of Hurst estimators are described in Sec. 3.5, although 

some of them are approximate methods, they still provide ways to obtain the Hurst value of the fractal 

samples efficiendy. 

2.3.6 Number of Parameters 

The number of the parameters used is directly related to the complexity of the model. More parameters 

increase the dimension of the problem considerably when the size of the networks or the number of cell 

streams increase. Limiting the number of parameters is a critical requirement in traffic modeling. 

Normally, when the size of the networks or the number of sources increase, the number of parameters 

of the family of the Poisson or Markov processes will increase significantly. Various iteration algorithms 

have been proposed to overcome the parameter problem, but the computational time is increased dramat­

ically. For self-similar traffic models, only one more parameter, the Hurst parameter, is added. Therefore, 

the self-similar traffic model is a parsimonious model. 
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2.4 Summary 

CBR services have been studied since the renowned pioneering telephone engineer A. K. Erlang first 

investigated telephone traffic. There is no argument about the suitabihty of the Poisson process in the 

oldest telecommunications territory. However, technological advances have brought more data traffic into 

telecommunication networks. ATM is used to integrate various services into telecommunications. Un­

derstanding the incoming traffic is fundamental to designing, operating, and maintaining ATM networks. 

Therefore, traffic models are a fundamental basis for the discrete-event simulations and the analytical 

modeling of communications systems. 

A great number of traffic models have been proposed to attempt to capture their underlying mech­

anisms. Different types of VBR service have different approaches which can be used to express their 

characteristics. Traffic burstiness is the most important issue as it destroys the assumption of time in­

dependence. Data applications normally use simple or compound Poisson processes to represent traffic 

behavior For VBR voice sources IPP, IBP, and MMPP are commonly used to imitate the behavior of 

VBR voice sources. At present, the majority of research concentrates on compressed video traffic. A 

great number of traffic models, including the IPP, MMPP, ARMA, have been proposed to model the VBR 

video traffic. 

There is increasing evidence that VBR data is bursty in different applications. Although many re­

searchers accept the use of the Poisson-based processes (or the more generalized Markovian processes) 

to model the data applications, it is very difficult to capture the characteristic of the traffic in ATM net­

works. Many sophisticated models, including MMPP, SMP, PH renewal process, and MAP, have been 

proposed to deal with the characteristics. However, almost all of them are too complicated to handle 

when the number of sources increases. 

The packet train and self-similar models are the two which extract the characteristics of networks 

from the observations of Ethernet and token ring network. However, the packet train model is a con­

cept, in which the critical value to indicate the start and end of trains is not well-defined, rather than a 

rigorous mathematic model. Thus, self-similar traffic models are more appropriate not only because the 

models can match many traffic measurements but also because they have more rigorous mathematical 

foundations. 

Self-similar traffic models have been chosen for further study because they can fit the findings of a 

number of traffic measurements well. Furthermore, self-similar traffic models have been tested through 

six commonly-used criteria. Their failure is in one of these, analytical tractability, might harm the users' 

perception when considering the theoretical derivation. However, to date no evidence has been drawn 

that such a failure definitely spoils their fit in practical cases. It is noted that this criterion is based on 

the development of Markov-based processes, so it might not be an important assessment for self-similar 

models. Therefore, the above evaluation supports the view that self-similar traffic models are more 

appropriate than the others. 

In the next chapter, the mathematical foundation of self-similar traffic models and the models for 

self-similar phenomena are oudined. The tools for assessing the fractal samples are also introduced. 
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Figure 2.2: Pictorial proof of Self-Similar traffic models - actual Ethernet traffic (left column), synthetic 

trace generated from an appropriately chosen traditional traffic model (middle column), and synthetic 

trace generated from an appropriately chosen self-similar traffic model with a single parameter (right 

column). 



Chapter 3 

Self-Similar Stochastic processes 

Although traffic models based on Poisson processes are believed to work well in representing traffic 

behavior in telephone systems, they fail to handle the burstiness of multimedia applications. Several 

models have been introduced to help resolve this problem. In the last chapter, self-similar traffic models 

have been highlighted as being more appropriate. It is not only for the reason that they fit the actual 

measurements well, but also that they satisfy most of the criteria for traffic modeling. 

This chapter explains the mathematical foundation on which self-similar traffic models are based. It 

justifies the models as an accurate representation of the self-similar phenomena for the further investi­

gation which follows. The chapter is divided into five main parts. Sec. 3.1 introduces the fundamental 

issues about fractals and self-similarity. In Sec. 3.2, the derivation of the Hurst parameter and its relation­

ship with random fractals are discussed. In Sec. 3.3, self-similar stochastic processes and their properties 

are explained. In Sec. 3.4, three models for self-similar phenomena are presented and evaluated. Finally, 

the discussion is focused on three chosen estimators and the introduction of a visual assessment tool. 

3.1 Fractals and Self-Similarity 

Before introducing the properties of self-similarity, fractals should be discussed first. Fractal dimension 

provides a method to measure the size of a fractal or how similar two different fractals are. Once fractal 

dimension has been discussed, the concept of self-similarity is introduced. 

3.1.1 Fractals 

The inventor of the term fractal attempted to provide a definition. Benoit B. Mandelbrot offered the 

following tentative definition of a fractal in 1983 [Man83]: 

A fractal is by definition a set for which the Hausdorff-Besicovitch dimension strictly ex­

ceeds the topological dimension. 

This definition requires a definition of the terms set, Hausdorff-Besicovitch dimension, and topological 

dimension. The latter is always an integer However, the definition is too strict to fit many newly-

discovered fractal structures, especially the chaotic phenomena of dynamic systems. A looser definition 
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is required, therefore Mandelbrot has produced another tentative definition, proposing the following 
[Fed88]: 

A fractal is a shape made of parts similar to the whole in some way. 

Although Mandelbrot has tried to give a neater and more complete characterization of fractals, a precise 

definition is still lacking. The second definition contains the fundamental feature that has been noted in 

experiments, a fractal looks the same whatever the scale. 

One of the most famous applications of fractals is in solving the problem of how long the coastline of 

Britain is. A British map using different rules of measurement produce different lengths for the British 

coasdine. Another well-known example is described in Richarson's article [Ric61]. The lengths of the 

common frontiers between Spain and Portugal, or Belgium and Netherlands, as reported in their neigh­

bor's encyclopedias, differ by 20%. Richardson had studied empirically the variation of the approximate 

length, L(e), where £ is the yardstick length. In his study the nature of turbulence involves a self-similar 

cascade. There are two constants, called F and D, such that one needs roughly Fe~^ intervals of length 

e, leading up to the length 

L ( e ) ~ F e ' - ^ . (3.1) 

The value of the exponent D seems to depend on the coastline and the yardstick length and to be inde­

pendent of the method chosen to estimate the length of the coastline. The discovery gives the idea of 

scaling although later research has shown that the relation is not so simple. 

3.1.2 Self-Similarity 

As the latter definition of fractals mention, a fractal is a shape which looks similar to the whole in some 

way. There should be a way to measure the degree of complexity by evaluating how fast length, surface, 

or volume increases if it is measured with respect to smaller and smaller scales. Before going further, the 

term 'self-similar' should be defined first [PJS92]: 

A structure is said to be (stricdy) self-similar if it can be broken down into arbitrarily small 

pieces, each of which is a small replica of the entire structure. 

This definition is only a pictorial idea. In order to measure the degree of self-similarity, Mandelbrot 

defined the self-similar dimension [Man83]: 

Definition 1 Given a self-similar structure, there is a relation between the reduction factor s and the 

number of pieces a into which the structure can be divided; and that is 

a=\ls'^^ (3.2) 

or equivalendy 

D, = loga/ log(lA). (3.3) 

D is called the self-similarity dimension. • 
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However, not all self-similar structures are fractals, such as a line segment, a square, or a cube. Each one 
can be broken into small copies which are obtained by similarity transformations. 

The definition provides a concept rather than a measure. Several measuring methods have been 

proposed to bring the concept to reality. The compass dimension is the simplest one. The relation 

between the power law of length measurement using different compass settings and the self-similarity 

dimension of a fractal curve is very simple. The compass setting method uses different yardsticks to 

compass a measured polygon. First, simply choose appropriate units of length measurements such that 

the factor d in power law become unity 

" = 7 ' (3-4) 

where u is the length with respect to compass setting s. Taking logarithms, we obtain 

logH = d - log- . (3.5) 
s 

On the other hand, taking the logarithm on the power law a = 1 /D\ where a denotes the number of 

pieces in a replacement step of the self-similar fractal with scaling factor s, is 

loga = Z),-log^, (3.6) 

The connection between length u and number of pieces a is that at scaling factor 5 = 1 we measure a 

length M = 1. Therefore, when measuring at some other scale s, where the whole object is composed of 

a small copies each of size s, then a total length of a times s is measured as 

u = a-s. (3.7) 

After deriving the relationship of self-similar dimension and the exponent factor d can be expressed 

as 

Ds^\+d. (3.8) 

3.2 Fractal Records in Time 

Many natural observations are recorded in time series. For example, the records of temperature vary 

erratically on both the short- and the long-term time scales. In addition, the discharge of rivers, rainfall, 

and thickness of tree rings can be analyzed by an exponent H - the Hurst parameter [Hur51,Fed88]. 

Hurst was a civil engineer who spent his lifetime studying the problem of water reservoirs of the 

Nile. He invented a new statistical method, the rescaled range analysis (R/S analysis), as a result of his 

recording of the discharges of Lake Albert over 60 years to determine the design of an ideal reservoir. 

An ideal reservoir never overflows or empties. In any given year /, the reservoir will accept the influx 

X{t) from the lake, and a regulated volume per year, E[X{x)], will be released from the reservoir The 

average influx over the period of x years is 

E[X,] = \f^X{t). (3.9) 
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The average should equal the volume released per year from the reservoir. Let Y{t) be the accumulated 
departure of the influx X{t) from the mean E[XT:] 

y(r,T) = X{^(« ) -£ [^x]} - (3.10) 
«=i 

The difference between the maximum and the minimum accumulated influx X is the range R. The range 

is the storage capacity required to maintain the mean discharge throughout the period. The explicit 

expression for R is 

R{T) = max F(f,T) - min ¥(1.1), (3.11) 
l<r<x l<'<t 

where t is a discrete integer-valued time and T is the time-span considered. Clearly, the range depends 

on the time period x considered and as expected the range R increases with increasing x. 

Hurst investigated many natural phenomena, such as river discharges, mud sediments, and tree rings. 

He used the dimensionless ratio R/S, where S is the standard deviation. The use of this dimension-

less ratio permits the comparison of observed ranges of various phenomena. The standard deviation is 

estimated from the observations by 

S={lt{^it)-E[X,]}yf\ (3.12) 
^ t=i 

Hurst found that observed rescaled range, R/S, for many records in time is very well described by the 

following empirical relation: 

R/S={T/2f. (3.13) 

The Hurst exponent H is more or less symmetrically distributed about a mean of 0.73 with a standard 

deviation of about 0.09. Hurst's observation is remarkable considering the fact that in the absence of 

long-run statistical dependence, R/S should become asymptotically proportional to x'/- for records gen­

erated by statistically independent processes with finite variances. The formula is given by 

/?/5= (TCx/2)'/2. (3.14) 

3.3 Self-Similar Stochastic Processes 

From the pictorial illustration of measurement of Ethernet traffic in Fig. 2.2, the scale invariant or self-

similar feature is drastically different from conventional telephone traffic or the currently considered 

stochastic models for packet traffic. The use of self-similar stochastic processes is one method to model 

self-similar features. The following presentation is based almost entirely on the work of Cox and Leland 

et al [Cox84,LTWW93,LTWW94]. 

Self-similar stochastic processes are invariant in distribution under judicious scaling of time and 

space. They are important in probability because of their connection to limit theorems and are of con­

siderable interest in modeling. Self-similar phenomena appear in geophysics, hydrology, physics, chem­

istry, turbulence, economics, and communications. It is related to an a-stable distribution with 0 < a < 2, 
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where a is the index of stability of a distribution. An a-stable stochastic process is a random element 
whose finite-dimensional distributions are a-stable, which are preserved under convolution and approx­
imate the distribution of normalized sums of i.i.d random variables making them useful in modeling the 
contribution of many small random effects [ST94, WTE96]. 

3.3.1 Definition 

A stochastic process is an uncountable infinity of random variables, one for each sampling time t [BJ76, 

BD91]. For a specific t, X{t) is a random variable with distribution 

F{x,t)=P{X{t)<x}. (3.15) 

The function F{x,t) is called the first-order distribution of the process X{t). Its derivative with respect to 

X 

/ ( ' . ' ) = ' - ^ (3.16) 

is the first order density ofX{t). The second-order distribution of the process X{t) is the joint distribution 

F{xuX2;tut2) = P{X{ti) <XuX{t2) <X2} (3.17) 

of the random variables X{t\) and X{t2). The corresponding density equals 

J[X\,X2,ti,t2) = 5—3 . (3.18) 
dx\dX2 

For the determination of the statistical properties of a stochastic process, knowledge of the function 

F(xi , - - ,x„;t\,--- is required for every Xi,ti and n. However, for many applications, only certain 

averages are used. 

Let X = {X, : r = 0,1,2, • • • } be a discrete-time wide-sense stationary stochastic process. Its auto-

covariance at lag k is given by Ya.- = Cov[t + k,t], and variance = yo, so autocorrelation at lag k is 

Pk — Ik ho- The spectral density (power spectrum) function of this process is 

k=—oi 

PA- = r e^'"^S{(»)d(xy. (3.20) 

Therefore, the autocovariance and the spectral density function are equivalent specifications of second-

order properties. 

For each m = 1,2, • • •, let X^'"^ denote a new time series obtained by averaging the original series X 

over non-overlapping blocks of size m, replacing each block by its mean. This is, for each m = 1,2, • • •, 

is given by 

X , ^ ' " ' - ( X A „ + , + --- + X , J / m , k=l,2A--- (3.21) 

Note that the new time series defines a second-order wide-sense stationary process with autocovariance 

function Ŷ '̂ ,̂ variance o^, = YQ''^ and associated variance sequence [a|]f'") = Varf'\ 
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A well known internal correladon has been proved by Yule [Yul45] that with a\ = 

< = + ,-̂ 2 S ("• - = - + 1 1 1 . (3.22) 

Directly we can obtain 

yk=\-yHk'ol), (3.23) 

where denotes the central second difference operator applied to a function f{k), i.e., V-(/(A;)) = 

f{k + 1) - 2f{k) + f { k - I). Thus a specification of the sequence X is equivalent to one of {y^} or of 

5((o). The autocovariance can be calculated as 

YJ") - l/lV^k^Var^"^) (3.24) 

which can be re-expressed in terms of the {Y*} by Eq. (3.22). In particular, the autocorrelation p["'̂  of 

the average process can be deduced from Eq. (3.24). The most important special case is the lag one 

autocorrelation 

p^;"^=2Var^"^/Var('"^-l. (3.25) 

Processes, called stochastic processes with short-range dependence, satisfy the following essentially 

equivalent properties: 

5-1 Sr=oY't is convergent; 

S-2 5(0) < oo; 

5-3 a ,̂ is for large m asymptotically of the form a^/m; 

5-4 the average process {x/ ' "^} tends to second order pure noise as m oa. 

These properties are forms of second-order strong mixing, and moving average processes, which means 

these kind of processes have rational power spectral densities. 

Conversely, processes with LRD are expressed by the following properties: 

L-1 XYA- is diverge; 

L-2 5(co) is singular near co = 0; 

L-3 moj„ —> '=o as m —> oo. 

More precisely, these properties can be represented as follows, with 0 < (3 < 1: 

L ' - l a s / : o o , Y/t ~ y*"*^; 

L'-2 asco^0,5(co) ~5 ' (0- ( i -P) ; 

L'-3 as m ^ oo, a2 ~ V'm-P. 
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Y ' , 5 ' , and V' are connected by simple relations. 

In addition, at least in theory there are other possibilities to study processes which contrast with those 

with short-range dependence. The insertion of slowly varying functions into the asymptotic forms would 

have a relatively minor effect. Another possibility arises from a local behavior of 5(co) near co = 0 of the 

form 

+ 1/2[1 +cos(Vco)]5',(o-P (3.26) 

with 0 < Pi,p2 < / ^2,S\,S'2,k > 0. It follows from Eq. (3.24) and (3.25). 

L'-4 

pW ^ 1/2V2(^2-P)c^ 1/2(2-p)( l - |3)^-P, (3.27) 

p("') ^ 2 ' - P - l 7^0, asm^oo, (3.28) 

For a large k, Eq. (3.27) derives from the asymptotic equivalence of differencing to differentiation. 

All processes satisfying properties L ' - l - L'-4 are termed stochastic processes with LRD of index 

p. From a direct statistical point of view, their salient feature is perhaps that the variance of a mean 

decreases more slowly than the reciprocal of sample size. From an heuristic point, the averaged process 

{X/'"^} takes a non-degenerated correlated structure as m °°. 

The properties of L'-4 can be called asymptotic second-order self-similarity. 

Definition 2 The process {X,} is called exactly second order self-similar if, for ̂  = 1,2, • • •, 

p, = l/2V2(fc2-P) (3 29) 

where p[,'"̂  = p̂ - and CT^, = a^m~P, i.e., the process and the average process [xl'"^} have an identical 

correlated structure. • 

However, the definitions of self-similarity do not apply to continuous time because the relation a | = 

o /̂:~P cannot hold for arbitrarily small k i f the process itself is to have finite variance. If a process merely 

concerns a large value of k, i.e., the asymptotic version of self-similarity, failures in the self-similarity 

property s&k^O are of no concern. I f the exact self-similarity is concerned, it is in effect necessary to 

regard {X{t)] as the (improper) derivative of a process {Y{t)}, i.e., to work with 

rtn+t 

Y[t)= / X{u)du. (3.30) 
Jtu 

For example, i f {X{t)] is the formal derivative of Brownian motion, so that {Y{t)] itself is Brownian 

motion, the self-similarity of {Y{t)} is expressed through the property that {m'^l-Y{mt)] and {Y{t)] 

have the same variance. For the more general definition {m^-^~^Y{mt)} and {^ ( f )} should have the same 

variances. Here Y{t)/t is one value, starting at to, of the process {X{t)} averaged over the period t. The 

parameter 1 — (̂3 is termed the Hurst coefficient and denoted by H where the parameter 1 -f- is called 

the Hausdorff-Besicovitch dimension and denoted by D. 
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3.3.2 Properties of Self-Similar Processes 

A stochastic process with LRD must satisfy L'-A, i.e., it can be characterized by an autocorrelation that 

decays hyperbolically as the lag increases. Thus, it implies X*:"/*: = °°- This result implies the fact, while 

high-lag correlations are all individually small, their cumulative effect is of importance and gives rise to 

features which are drastically different from those of conventional stochastic processes. 

In the frequency domain, LRD manifests itself in a spectral density that obeys a power-law behavior 

near the origin. From property L'-2, LRD implies that XytY*: is divergent (property L ' - l ) . This means its 

spectral density tends to - | - oo as the frequency co approaches 0 (l//-noise). Heuristically, LRD manifests 

itself in the presence of cycles of all frequencies and in the power law of magnitude, and displays features 

suggestive of non-stationarity. In addition, self-similar processes provide a theoretical explanation and 

interpretation of the empirical law. Hurst effect. 

From a statistical point of view, the most salient feature of the self-similar process is that the variance 

of the arithmetic mean decreases more slowly than the reciprocal of the sample size, i.e., it behaves like 

^"P for some (3 G (0,1), instead of like k^^ for the processes whose aggregated series converge to second-

order pure noise. From property L'-3, V is slowly varying at infinity, that is, \\m,^„V'[tx)/V[x) = 1 for 

all X > 0. The consequences of the slowly decaying variances for classical stadstical tests and confidence 

or prediction intervals can be disastrous, since usual standard errors are wrong by a factor that tends to 

infinity as the sample size increases. 

The majority of conventional stochastic models have the property that their aggregated processes 

tend to second-order pure noise (property S-1). The result is that the covariances will eventually 

decrease exponentially, the continuity of the spectral density function at the origin will eventually show 

up, the variances of the aggregated processes will eventually decrease as and the rescaled adjusted 

range will eventually increase as For finite sample sizes, disdnguishing between those which are 

asymptotic and those corresponding to self-similar process is problematic. For time series with hundreds 

of thousands of observations, parsimonious modeling becomes a necessity due to the large number of 

parameters needed when trying to fit a conventional process to a truly self-similar model. Although it is 

possible for traditional models to represent self-similar model, the number of parameters tends to infinity 

as the sample size increases. By using FGN and FARlMA{p,d,q) processes, the number of parameters 

is at most four. 

3.4 Models for Self-Similar Phenomena 

To model the self-similar phenomena, there are two approaches, stochastic models which are based on 

self-similar processes and deterministic models which use nonlinear chaotic maps. A finite approxi­

mation of a continuous sum of the Gauss-Markov process is often suggested to manifest the presence 

of a multilevel hierarchy of the underlying mechanisms to account for the self-similarity. However, in 

practice it is very hard to represent the multilevel hierarchies of the underlying mechanisms as well as to 

show why its presence should contribute to self-similar behavior Therefore formal mathematical models 

have been used to represent the self-similar phenomena. Two such models are discussed below: one is 
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the exactly self-similar FGN; the other is the asymptotically self-similar FARIMA process. In addition, 
capturing the deterministic self-similarity from fractals with the usage of chaotic maps to model traffic 
is introduced. 

3.4.1 Fractional Brownian Motion 

The exactly self-similar FGN or FBM is very important because it is the unique self-similar Gaussian 

process with the self-similar index H, also because the various a-stable self-similar processes with index 

H reduce to it when setting a = 2, and because it has been widely applied, particularly in the context of 

LRD. FBM has two different representations: moving-average and harmonizable. These two representa­

tions are inherent in the properties of a-stable processes [ST94]. 

A FGN X = {X/f^ : /: = 0,1,2, • • • } is a stationary Gaussian process with mean p = E[Xk], variance 

= E[{Xk - p ) ^ ] , and autocorrelation 

Pk = l/2i\k+\\'"-Ikf^-^lk-ll-"), k=l,2,3,--- (3.31) 

From the form of Eq. (3.27) above formula is very easy to be expressed as 

Pk^H{2H-])\k\'~"-- (3.32) 

as —> o ° with 0 < H < ]. The resulting aggregated processes X("''(m = 1,2,3,• • •) all have the same 

distribution as X, for all 0 < / / < 1. Thus, FGN is exactly second-order self-similar with Hurst parameter, 

H, as long as 1/2 <H <\. 

FBM is one of the models to represent self-similar processes that have been proposed to model the 

real-world traffic. Its definition and properties are stated below. 

Definition 

When considering a one-dimensional Brownian motion in which a particle moves on a line, the moving 

step-length r| of the particle is given by a Gaussian or normal probabihty distribution [MN68, Man83, 

Fed88,ST94]. In practice it is impossible to observe a Brownian motion with infinite resolution. Rather 

than observing the particle in continuous time, the particle position can be observed only at intervals 

bx, where b is an arbitrary number. The increments of the particle position constitute an independent 

Gaussian process with ^[r i ] = 0 and a variance of £[ri'] = 2Dt with t = hx, where D is the diffusion 

coefficient. This results in the Brownian record looking 'the same' under a change of resolution. Such a 

result is termed a scale invariance or symmetry of the Brownian record. 

The scaling property of Brownian motion changes the probability density as follows: 

= b'l\,x = bx) = h-'l''p{^,x). (3.33) 

This equation shows that the Brownian random process is invariant in distribution under a transfonnation 

that changes the time scale by b and the length scale by b^l^. The probability distribution for the particle 

position B{t) is also found by the methods used above and can be written as 

P{b'l^[B[bt)-B{bt^)]]=b-'I^P{B[t)-B{to)}. (3.34) 
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The position of a Brownian particle is a random function of time t. Consider a normalized independent 
Gaussian random process { r | } . Let the increment in the position of the Brownian particle be given by 

B{t)-B{ta)^r\\t-tQ\^, t>tQ, (3.35) 

for any two time epochs,; and fo- Here H = \/2 for ordinary Brownian motion. 

The generalization of the random function B{t) can be easily derived by changing the parameter 

/ / = 1/2 to any real number in the range (0,1). In [MN68], Mandelbrot and Ness proposed to designate 

FBM, Bnit), a family of Gaussian random functions, in which B{t) is ordinary Brownian motion and H 

is a parameter satisfying Q <H <\. The exponent / / is a moving average of the past increments of B[t) 

which is weighted by the kernel function [t — s)^~^l~. The fundamental concept of FBM is that the span 

of interdependence between their increments can be said to be infinite. 

Let CO be the set of all values of a random function and t represent time with 0 < f < oo . The ordinary 

Brownian motion, S(f,co), is a real random function with independent Gaussian increments such that 

6(?2,co) — 5(fi,co) has zero mean and variance |/2 — T h e stochastic process FBM, fi//(r,co), is defined 

as follows: 

Definition 3 Let H be such that 0 < H < 1, and let bo be an arbitrary random number The following 

random fimction co) is called a reduced fractional Brownian motion with parameter H and starting 

value bo at time 0. For t < 0,B{t, co) is defined by 

5;^(0,co) = bo, (3.36) 

BnitM-BHiOM = r(//-1-1/2) l'ji'~'')dB{t'M.. (3.37) 

(and similarly for t < 0), where the function K{u) is defined as follows: 

K{t-t') = \ „ (3.38) 
^ [ ( r - f ' ) ^ - ' / 2 i f O < r ' < r . 

• 
The kernel vanishes quickly as t' - > — o o to allow the expression to properly define the random function 

5//(;,co). It is more convenient to use B^it) to represent /?//(?,co). The kernel function K{t) is depicted 

in Fig. 3.1. In this diagram Fig. 3.1 (a) depletes the kernel function with ^ < H < \ and Fig. 3.1 (b) 

illustrates a number of the chosen Hurst values between 0 and }j. 

In Fig. 3.2, the FBM fi//(f) and its increments, FGN, G/y(f), are shown as a function of time, using 

BH{0) — 0. Different Hurst values are illustrated in the diagrams. In the first row the trace is generated 

with H — 0.5, while the second and third rows are H = 0.7 and H = 0.9, respectively. The left column 

shows sample traces of FBM, the right column shows the corresponding sample traces of FGN processes 

The data shown in this figure is generated by the discrete fractional Gaussian noise (dFGN) algorithm 

which is introduced in Chapter 4. 
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(a) i < W < (b) 0 < W < 

Figure 3.1: The kernel function of FBM with different Hurst values. 

Properties 

Because it is a model that represents self-similar stochastic processes, FBM and its increments inherit 

the properties of self-similar stochastic processes, i.e., the process has (i) its autocorrelation funcdon 

decaying hyperbolically as the lag increases, (ii) its spectral density tending to 4-°<= as the frequency 

approaches 0 (l//-noise), and (iii) its variance of the arithmetic mean decreasing more slowly than 

the reciprocal of the sample size. As a result of these properties Mandelbrot and Wallis refer to this 

phenomenon as the Joseph effect, an illusion to the biblical figure Joseph who faced long periods of 

plenty followed by long periods of famine [Man69]. 

In addition, FBM is derived from ordinary Gaussian noise so its FGN inherits the scaling property. 

When the time scale changes by a factor b, the kernel function is shown as K{bt — ht) = b'^~^l-K[t - i), 

where bt = t'. Thus, the following can be obtained 

Gnit) = BH{bt)-BH{0) = b^'lBHit^-BHiO)]. (3.39) 

Besides the preceding properties, there are several other remarkable and important properties [MN68]. 

First, as FGN is a stationary stochastic process the standard deviation of G//(?) can be stated as follows: 

E[GH{t + T)]=E[BH{t + T)- BH{t)Y = T'" VH (3.40) 

where 

V„ = [T[H+ll2)]-^{j\\-s)"-'l^-{-s)"-'r-fds+^]. (3.41) 

Although Eq. (3.40) produces the result that 5/y(r) is mean square continuous, the characteristics of 

the sample paths are still unknown. Mandelbrot and Ness show that almost all sample paths of Bn{t), 

0 < H < I are continuous and almost surely not differentiable. The ordinary Brownian motion also 

has the same difficulty of no derivative. Thus, FGN is evolved to give meaning to the concept of the 

derivative of FBM. 

Furthermore, FGN is a stationary Gaussian sequence with mean zero and variance E[Gjj{t)] = 

E[Bjj{l)] = a^. Let Y(^) = £[G//(0)G//(^)],A: G Z, denote its autocovariance function and {S{X),-n < 
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Fig 
(e) FBM (H=0.9) (f) FGN (H=0.9) 

ure 3.2: FBM and FGN generated by the dFGN algorithm with M = 100, n = 10. 
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X<n} denote its spectral density function. Its autocovariance function and spectral density function can 
then be expressed as follows [MN68,Cox84,LTWW94,ST94] 

2 
y{t) = ^{\t+l\^f^-2\t\^" + { t - l f " ) , t e Z (3.42) 

where C2(//) = i j j r m ^ y ' ' - Thus, f o r / / ^ 1/2, 

Y ( ^ ) ~ clH{2H-l)k^"-^ ask->oo^ (3.44) 

S{1) ~ agC2-2(/ / ) |^ | ' -2 '^as^^0. (3.45) 

From these two approximations when 1/2 < / / < 1 the Y(^) tends to zero so slowly that Zr=-~Y(^) 

diverges (LRD) and S{X) diverges at the origin (l//-noise). Therefore, as expected, FGN has the funda­

mental properties of self-similar stochastic processes. Thus, FGN can be view as an idealization or as a 

reasonable first approximation of a more complex structure. 

3.4.2 Fractional Autoregressive Integer Moving Average Model 

Autoregressive moving average (ARMA) processes are often used for modeling empirical time series 

which can be defined in terms of linear difference equations with constant coefficients. When a given 

set of observations exhibits non-stationary or has not a rapidly decreasing autocorrelation function, au­

toregressive integrated moving-average (ARIMA) processes transform the data to a new series with the 

properties. A long memory process can be approximated by an ARMA process, however, die order of 

polynomials required to achieve a reasonably good approximation may be so large as to make parame­

ter estimation extremely difficult. Thereafter, Fractional ARIMA (FARIMA) was introduced by [GJ80] 

and [Hos81], independendy. The new version of the ARIMA processes extend the order of transforma­

tion polynomial from a nafiaral number to a positive real number. 

A process {X^ : k — 0,\,2,---} is said to be an ARIMA{p,d,q) process, where p and q are nonnega-

dve integers, with d G (—0.5,0.5) if {Xk} is stationary and satisfies the difference equations, 

m^''^k = Q{B)Zt, (3.46) 

where {Z,} is white noise and (j),© are polynomials of degrees p,q respectively. The ARIMA{p,d,q) 

process with J G (-0.5,0.5) is also caWed FARIMA{p,d,q). In Eq. (3.46), is thed"' order difference 

operator. The first order operator is defined as follows: 

V = X , - X , _ , = ( ] - B ) X „ (3.47) 

where B is the backward shift operator, 

BXt = Xk-i. (3.48) 
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Polynomials in B and V are manipulated in precisely the same way as polynomial functions of real 
variables. Thus, 

( d \ 
V^ = ( l - f i ) ^ ' x , = X {-Bf (3.49) 

k \ k ) 

with (̂ O(-l)* = ^{-d + k)/{T{-d)T{k + \)). The polynomials of <}) and 6 with the and </'' degrees 

are written as 

^{z) = \-(^\z (3-50) 

and 

0{z) = l + Qz+--- + %z''. (3.51) 

For a FARIMA{p,d,q) process it has been shown that if the solution [Xk] is causal and invertible then 

its autocorrelation function {pk] satisfies, for d^O, 

Pt-CA:^ '^- 'asA:->oo, (3.52) 

where C > 0 [ B D 9 1 ] . 

FARlMA{p,d,q) processes are more flexible with regard to the simultaneous modeling of the short-

term and long-term behavior of a time series than FGN, mainly because the latter, with only three param­

eters /v,a^, and H, is not capable of capturing the wide range of low-lag correlation structures which are 

encountered in practice. However, FARIMA processes are highly dependent on the orders of polynomi­

als. It is unlike FBM which has more physical meaning and several fast approximations. Moreover, the 

two additional parameters, p and q, make this model more flexible but also difficult to be used in prac­

tice because two more parameters need to be estimated. In addition, many of the asymptotic relations 

stated in Sec. 3.5 holds for finite sample sizes because FGN is the increment of the self-similar process 

FBM [TTW95]. 

3.4.3 Chaotic Maps 

Chaos can be found in the trajectories of a dynamic system. There is no general definition for chaos, 

but mathematicians agree that for the special case of iteration of transformations there are three common 

characteristics of chaos: sensitive dependence on initial condition; mixing; and dense periodic points 

[Dev87,PJS92,Bar93,KJ94,ESP94,BL97,RBL97]. The link between fractals and chaos theory is that 

fractals are simple rules for generating infinite complexity, but a complexity which is bounded within its 

attractor. Chaotic maps are simple dynamic systems whose time evolution is described by a knowledge 

of the initial state and a set of dynamic laws. 

Let / ( • ) be a one-dimensional nonlinear systems in which the state variable x„ evolves over time 

according to the iterative function, x„+i = / ( A „ ) . If the initial value is decided, then the trajectories of the 

dynamic system can be determined. When using the system to model traffic sources, assume an aiTival 

(or a batch of arrivals) is generated while the state x„ is in an active period which is decided by a pre-given 
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Active Silent 

Figure 3.3: A simple example of a chaotic map. 

threshold d. For every iteration this dynamic system w i l l issue an arrival (or batch of arrivals) while x,, 

locates in the active interval. Fig. 3.3 illustrates an example of how the iterative dynamic system works. 

In this diagram the initial state x\ hits the dynamic system F{x\) on y\. Then, let yi = X2 and repeat the 

iteration. When x,, is less than the threshold value d, an arrival is generated. The multi-threshold scheme 

is also considered as an alternate to the simplified active/silent approach. In this proposal every interval 

decides it own rule on how many arrivals wi l l be generated. 

The above example illustrates that the selection of dynamic systems wi l l insensitively affect the re­

sults. Two of the simplest classes of chaotic maps, piecewise linear segments and intermittency maps, 

have been discussed in [ESP94]. The Bernoulli shift is a particularly simple dynamic system with piece-

wise linear segments, which is defined as follows: 

^11+\ — fix,,) — 
' f , 0<x„<d, d 

"fEj, d < x „ < l . 
(3.53) 

This dynamic system has been used to show that the invariant density of this map is uniform. Let the 

state x„ exceed the threshold as the active interval, then the probability of generating an arrival is 1 - J. 

Therefore, the active and silent periods are geometrically distributed. While the piecewise segments fonn 

a linear system, the intermittency maps are nonlinear. Let the system be defined as follows: 

j x„ + cx';; + &, 0<x„<d, 
x„+\ = f[x„) = •{ I (3.54) 

{ \ - d ) ' 

where c = (l — E — d)/d"'. The long term process of this deterministic nonlinear case has been shown to 

be related to the heavy-tailed property of fractals. 

Although chaotic maps can be used to generate self-similar traffic directly, there are still several 

problems associated with them. First, different chaotic maps leads to different traffic streams. In some 

cases the trajectories w i l l converge to a certain value, called an attmctor. Sometimes, the trajectories are 
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periodic. Tiien, the trajectories are seemingly random rather than stochastic. When the initial value is 
decided, the whole trajectories can be determined. Finally, the relation between the similarity dimension 
and the key parameter of stochastic self-similarity, the Hurst parameter, is still vague. Although in some 
cases the similarity dimension is equal to the reciprocal of the Hurst parameter, the similarity dimension 
is not uniquely defined. 

3.5 Statistical Analysis Tools for Long-Range Dependence 

To estimate the self-similar parameter or the intensity of LRD in a time series, various methods, such 

as the V T plot, differencing the variance method, absolute values of the aggregated series, Higuchi's 

method, residuals of regression, the R/S statistic, periodogram method, modified periodogram method, 

correlogram method, variogram, and Whittle's approximated maximum likelihood estimator (MLE) , are 

available [Ber94,TTW95]. 

Almost all of the estimators are heuristic and make use of the samples themselves, their variance, 

correlation, and periodogram. The R/S statistic, the V T plot, periodogram method, and Whittle's ap­

proximate M L E are the most commonly used estimators. The former three estimators are all heuristic 

approaches while the last one uses a more rigorous mathematical derivation. In practice, the periodogram 

method can not use whole samples for the regression in the frequency domain because the approxima­

tion only holds for frequencies close to the origin, referring to the L'-2 property of self-similar stochastic 

processes. Whittle's approximate M L E is also based on periodogram and obtains the Hurst values by 

minimizing a log-likelihood function. Therefore, the periodogram method is not included in this thesis. 

In addition to previously discussed estimators, the Q-Q plot is used to visually assess the goodness-of-fit 

of sample traces. 

3.5.1 The Q-Q Plot 

The Q-Q plot is a graphical technique that is commonly used to visually assess goodness-of-fit and esti­

mate location and scale parameters. The method is based on the following sample observation [MS86]: 

Let 

Y(i)<Y^2)<---<Y^„) (3.55) 

be the order statistics f rom n identically independent distributed (i.i.d.) observations and let F{x\iJ,o) be 

the corresponding accumulated probability function (cdf) where / j and a are unknown location and scale 

parameters, respectively. 

Since / j and a are location and scale parameters, the cdf can be expressed as 

F ( x | A / , a ) = G ( ^ ) = C(z), (3.56) 

where z= {x — ij)/o is referred to as the standardized variable and G{z) is the cdf of the standardized 

random variable. Thus, the expectation of the ith order observation is 

=iJ + a£[Z(,)] =ij + ami (3.57) 
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where Z(,) is the ith order statistic f rom the standardized distribution and m, = £[2 , ] . In the probability 

case, the n i . i .d. observations are uniformly distributed on [0,1]. For a fixed p G (0,1), the pth population 

quantile f o r X is QF[P), where 

QF{U) = F - \ u \ p , o ) = M { x : F{x\p,a) > «} , 0 < m < 1, 

and F ' is the inverse function of F . Hence, 

QF{P) =IJ + CQG{P) =P + OG-\P). 

(3.58) 

(3.59) 

The order statistic A'(,) can be regarded as an estimate of its mean, or of the p\h quantile of F{X\IJ.(5), 

where p is an appropriate probability. 

In constructing a probability plot, the Xj,) is on the y-axis and its mean m,- is on the x-axis. When 

the sample is extracted f rom the cdf F (x | / j , a ) , the points w i l l tend to fit on a straight line with intercept 

H and slope a. The quantiles solve the difficulty of computing the mean of the order statistics because 

F (x | ^ , a ) is easy to invert. 

3.5.2 The R / S Statistic 

The R/S statistic was developed by the famous hydrologist Hurst who investigated the question of how to 

regulate the flow of the Nile river [Hur51,Fed88,Ber94]. The problem he studied was how to determine 

the design of an ideal reservoir based upon the given record of observed discharges from Lake Albert. 

Suppose a capacity of an idea reservoir for the time span between t and t + k. To simplify matters, assume 

the time is discrete and no storage losses. The capacity of the reservoir at time t + k h the same as the 

initial time t. Let X, denote the inflow at time / and Yj = X/=i the cumulative inflow up to time j. The 

ideal capacity can be shown to be equal to 

Rit.k) = max 
0<i<k 

mm 
0<i<k 

(3.60) 

R{t,k) is called the adjusted range. In order to study the properties that are independent of the scale, 

R{t,k) is normalized by 

Sit,k) 
\ 

l+k 

/=f+i 
(3.61) 

where X , . ^ = / t " ' A:,. The ratio 

R/S = 
S{t.k) 

(3.62) 

is called the rescaled adjusted range or R/S statistic where R{t,k) is the adjusted range and S{t^k) is the 

standard deviation. 

I f an F G N process intends to estimate its degree of the Hurst parameter, the R/S analysis is a heuristic 

graphical approach. However, Eq. (3.60) should then be modified as 

R(t,k) = max 
0<i<it 

.i=i 
— max 

0 < / « : 
(3.63) 
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As A: —> the rescaled adjusted range represents the relation 

E[R{t,k)lS{t,k)]r^ck". (3.64) 

Given a sample of n observations { X , } , subdivide the whole sample into non-overlapping blocks 

and compute the rescaled adjusted range for each block. Thus, for a given value o f t h e r e are as many as 

ink R/S-statistic values. Next, plotting \og{R[t,k)IS{t,k)) against log^, the R/S plot is formed. Use the 

plotting samples draw a straight line to fit all the data. The slope drawn is the estimated Hurst parameter. 

3.5.3 The Variance-Time Plot 

From a statistical point of view, the most salient feature of self-similar processes is that the variance of 

the arithmetic mean decreases more slowly than the reciprocal of the sample size [LTWW94, Ber94]. 

This fact means that its behavior has for some (3 6 (0,1) rather than / i " ' for the processes whose 

aggregated series converge to second-order pure noise, where H = I — (3/2. In fact, a specification of the 

autocorrelation function satisfying the assumptions of L R D processes has the property 

Var[Xn]--cn^"-^, (3.65) 

where c > 0. 

Therefore, the following method for estimating the Hurst parameter is suggested: first divide the 

sample path { X , } into a sufficient number of sub-series of length k, said Xj{k), where ; = 1,2, - • • ,111^. 

The length of sub-series could be any integer in the range 2 < k < n/2. Xj{k) is the sample mean of the 

j t h sub-series and the overall mean 

X = ml' X ^ y W - (3.66) 
j==\ 

Then, for each k calculate the sample variance of the sample means Xj{k){j = 1,2, • • • .nik): 

Using \oga^{k) against \ogk the V T plot is obtained. Finally, drawing a least squares line to fit the 

sample points, the slope is (3 and the value of the Hurst parameter is obtained. 

3.5.4 Whittle's Approximate M L E 

While the R/S statistic and the V T plot tests focus on the time domain, the Whittle's approximate estima­

tion examines the properties in the frequency domain. Maximum likelihood estimates (MLE) are based 

on the periodogram. Suppose all parameters except Var{X) and H of a sample of a self-similar process 

X are known. Let /(A.; 9) be the power spectrum of X when normalized to have unit variance, and I{X) 

be the periodogram of X. To estimate H, find 9 that minimizes the following equation: 

^(e) = r 4 2 ^ d \ (3.68) 
J-K . • m e ) 
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where 6 is a vector, (a^,//,e3, • • • ,9;.) in which 63, • • • ,9^ model the short-range dependence structure 
of the process. After deriving Eq. (3.68), an approximate M L E of 0 is obtained by minimizing the 
log-likelihood function [Ber94] 

l^wiQ) = \ogf{X,Q)dX+ (3.69) 
271: J-n n 

with respect to 0. In Eq. (3.69) x is the vector of random variables of a joint distribution function, x' is 

the transpose of the vector x, and A is the covariance matrix of the distribution function. 

For statistical robustness Whittle's M L E faces two problems: one is caused by its derivation from 

Gaussianity; and the other is due to its assumption of a commonly encountered model spectrum. The 

first can be overcome by transforming the data to obtain the desired marginal distribution. There are 

several proposals to cope with the second problem, such as estimating H from the periodogram ordinates 

at low frequencies or bounding the periodogram at high frequencies. In practical usage for large data 

sets, the method of aggregation is an alternative and efficient way to tackle the problem. It has been 

proved in [Ber94, LTWW94] that FGN can be modeled by the aggregated process X^'") [m > 1) defined 

as 

ii,k 

= / n - ^ L - ' / 2 ( m ) X {X-i-E[X,]), ; e {1 ,2 , • • • , [ ^ H } , (3.70) 
, = ( j - l ) m + l 

for a sufficiently large m. Therefore, the reasonable aggregated size ni is chosen such that the sample 

size of the corresponding series X^'"^ is not less than about 100. 

3.6 Summary 

Self-similar traffic models are based on an essential property, self-similarity, which is an aspect of frac­

tals. A fractal is a structure that has a non-integer value of dimension. There are a considerable number 

of practical interpretations which attempt to capture the fractal phenomenon. Self-similarity is a very 

important phenomenon which illustrates deterministic fractals. It is often explained as being equivalent 

to the existence of a multilevel hierarchy of underlying mechanisms. 

The Hurst parameter plays the key role in moving fractals f rom a deterministic version to a stochastic 

version. Hurst measured the difference between the maximum and minimum accumulated influx of a 

reservoir during a sampling period. After normalizing by standard deviation, the rescaled statistic value, 

R/S, is found to be proportional to a power law with an exponent, the Hurst exponent H. 

By using the Hurst exponent to represent the degree of self-similarity, self-similar stochastic pro­

cesses attain three important properties: its autocorrelation function decays hyperbolically as the lag 

increases; its spectral density appears as a pulse at the origin; and its variance of the arithmetic mean 

decays more slowly than the reciprocal of the sample size. 

In order to deal with fractal properties of packet traffic (i.e., with properties such as self-similarity) 

L R D , infinite variance, and fractal dimensions observed in actual packet traffic measurements, two major 

approaches, self-similar processes and deterministic models using nonlinear chaotic maps, have been 

considered. Both methods emphasize the need for models with a small number of parameters, where 
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every parameter can be given a physically meaningful interpretation, and the ability to generate synthetic 
traffic easily and quickly. 

Self-similar stochastic processes can be represented by exactly self-similar models, such as fraction 

Gaussian noise, and asymptotically self-similar models, such as F A R M A processes. These two pro­

cesses can be used to fit hour-long traces of the Ethernet traffic very accurately. Associated with FGN is 

F B M , which is simply the integrated version of FGN, i.e., a F B M process is simply the sum of FGN. F B M 

supports many fundamental properties and it can more easily interpret the physical meanings. To gen­

erate fractal traffic, it is necessary to understand the foundation of FBM/FGN and generate FBM/FGN 

samples. A t times, there are indications of a particular short-range dependence structure in the traffic 

measurements, in which case asymptotically self-similar models are more appropriate. Asymptotically 

self-similar processes, such as the F A R I M A processes, are more suitable for the prediction of bursty 

incoming data on networks but are more difficult to use because of their additional parameters. Unlike 

F B M and F A R I M A , chaotic maps are used to generate traffic directly. However, the usage of dynamic 

systems tend to generate deterministic results rather than stochastic ones. 

In order to measure the Hurst parameter, three Hurst estimators have been introduced for use in the 

accurate assessment of F B M samples and fractal traffic. There are a great number of Hurst estimators. 

Most of them are derived f rom the fundamental properties of the self-similar stochastic process. The 

three most commonly used estimators have been described. The R/S statistic makes use of the scaling 

property in self-similarity. The V T plot derives from the properties of LRD. Whitde's M L E takes account 

of the optimization of the logarithm of the periodogram. In addition, a visual assessment tool has been 

presented to test whether the generated fractal samples are Gaussian. 

In the next chapter, the investigation focuses on how the algorithms generate F B M sample traces and 

their evaluation. 



Chapter 4 

Algorithms for Generating Fractional 
Brownian Motion 

The self-similar stochastic process is a mathematical model which is used to represent the characteristics 

of the various types of traffic. This process is very difficult to analyze due to its continuous and non-

differentialable characteristics. In a similar way to ordinary Brownian motion and Gaussian noise, the 

increments of the self-similar process form a stationary process with L R D . The F B M and the FARIMA 

models can be used to represent these processes with LRD. It has been proved that F B M processes are 

more appropriate because they need fewer parameters and convey more physical meaning. 

This chapter discusses the algorithms which generate F B M samples. It consists of five major parts. 

Firstly, six algorithms whose function is to generate F B M sample traces are introduced. Secondly, assess­

ment of their efficiency and accuracy is carried out using time consumption, the three Hurst estimators, 

and the Q-Q plot, respectively. Thirdly, comparisons of these algorithms are provided. Fourthly, a further 

look at the effect of changing the parameters of the dFGN algorithm are studied. Finally, the discussion 

is focused on the suitability of using the V T plot. 

4.1 Simulation Algorithms 

A great number of algorithms have been proposed for generating F B M or FGN samples. Most of them 

are derived f rom the definition and properties of the F B M processes. Some are incorporated with 

other techniques, such as the important sampling technique [HDLK95a] and the wavelet transforma­

tion [Fla92]. The number of customers in an M / G / o ° queue asymptotically represent the self-similar 

process [Cox84, LTWW94, PF95]. Different approximation of the definition of the F B M processes has 

used to generate more accurate simulations with H < 0.5 [RP94]. 

In this section six algorithms, which has been divided into three types, are chosen for further investi­

gations. The discrete FGN (dFGN) and fast FGN (fFGN) algorithms directly are derived from the defini­

tion of the F B M processes. The random midpoint displacement (RMD) and successive random addition 

(SRA) algorithms generate interpolated samples using the scaling property. The Weierstrass-Mandelbrot 

( W M ) function and Whittle's approximate approach generate samples in the frequency domain rather 
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than in the time domain. 

4.1.1 The d F G N Algorithm 

From the definition of F B M the discrete version of F B M (dFBM) can be approximately expressed as 

[MW69] 

g „ ( ^ ) - g ^ ( 0 ) ^ ^ ^ ^ | ^ ^ ^ ^ X K{k-'-)G{iMn), (4.1) 

where G(i , I / n ) is a discrete random Gaussian variable with mean zero and variance 1 /n. The kernel 

function K is given in Eq. (3.38). Using the scaling property the Gaussian random variable can be 

expressed asG(/ , l / /z) = n ~ ' / ^ G ( / ) . HereG(j) is a discrete time random variable with mean zero and unit 

variance. Actually, for every unit time interval a dFBM process divides the time unit into n subintervals. 

The subsamples of the whole time scale are still Gaussian random variables with mean zero but the 

variance changes f rom unity to 1/n. Nevertheless, the dFBM process makes the sum go to infinity A 

slight modification to the kernel is used to make the sum convergent. 

Due to the long-memory property of the F B M process, any calculation of BH must use a finite number 

of terms. The increment of F B M is considered and the sums can cover a range M in the integer time /. 

Thus, the discrete approximation is 

1 / 
«„ (* ) -«„ (* - . ) = F(^7TW, 

This equation is referred to as the discrete-time fractional Gaussian noise (dFGN). Every calculation of 

the dFGN is effected by the kernel function in which the last n Gaussian random variables multiply the 

factor {k— ^ ) ' ^ " ' ^ ^ , whereas the Gaussian random variables with indexes from n{k — M) to n{k— 1), 

multiplying the factor {[k — ^ ) ^ ~ ' / ^ — (—^) ' ^~ ' ^^ )} - With a change of the summation variable and a 

rearrangement of terms the discrete F B M increments are given by 

GH{k)=ABH{k) = BH{k)-BH{k-\) 

±{i)"-^IMnk-i) 
n-" 

r ( / / + i / 2 ) 1=1 
,i(M-\) 1 

+ I {{n + if-'l'~ -{i)"-'l'-]G{nk-n-i)\. (4.3) 

With the procedure given in Eq. (4.3) a sequence of the dFGN may be generated from a sequence of 

Gaussian random variables. This is a sliding average over the Gaussian process with a power-law weight 

function. Since only M integer time steps are included in the summation it follows that for integer times 

t » M, the increments wi l l become independent Gaussian processes. It is clear that the algorithm is 

inefficient since the sums of nM terms have to be evaluated for each increment in BH. 

4.1.2 The Fast Fractional Gaussian Noise Algorithm 

The dFGN algorithm is based on finite weighted moving averages in which the number of Gaussian 

variables to average is roughly proportional to the size of the desired sample. It is obvious that this 
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approximation produces a practical drawback. Mandelbrot proposed a different faster FGN generator in 
1 9 7 1 [ManVl] . In this algorithm he made use of Markov-Gaussian processes to construct FGN sample 
traces. The procedure is derived f rom Eq. ( 3 . 4 5 ) , the autocovariance function of FGN. 

The f F G N process Gfiit) consists of a finite sum of Markov-Gauss processes approximating the 

autocovariance function of FGN. A sample trace G[j{t) with sample size n can be constructed as the sum 

of a high frequency Markov-Gauss term Xi,{t,H) and a low frequency term Xi{t,H) which is a weighted 

sum of a number A^(T) of independent Markov-Gauss processes. In this algorithm two new parameters, 

the base B > 1 and the quality factor Q are introduced. The low frequency term is defined as 

N(n) 

X,{t,H)=J^WkX{t,H\MG), ( 4 . 4 ) 
k=\ 

where X{t,H\MG) is the Markov-Gauss process of variance 1 and covariance q, with c = exp(—6~"). 

Wk is the weighting function given as 

where r (x ) is the gamma function. The term N{n) satisfies 

N{n) = \\og{Qn)l\ogB\ ( 4 . 6 ) 

in which [•] is the ceiling function. To define the Markov-Gauss process a sequence of ordinary Gaussian 

variables Gk{t), with mean zero and univariance, are required to generate a sample path from r = 1 to 

t = n. The Markov-Gauss process is defined as follows: 

X ( l , c , | M G ) = G , ( l ) , ( 4 . 7 ) 

X ( 2 , Q | M G ) = Q X ( 1 , Q | M G ) + ( 1 - 4 ) ' / 2 G , ( 2 ) , 

X{t,Ck\MG) = Q X ( t - l , Q | M G ) + ( l - 4 ) ' / 2 G , ( r ) , 

Each sample point requires N{n) terms of weighted Markov-Gauss processes. As - ) • 1 and Q^°°, 

the value of N{n) increases and the quality of the low frequency approximation improves. To minimize 

its approximating error Mandelbrot compiled a table to evaluate the quality factor Q. From this it was 

found as / / = 0 . 9 5 it is better to choose the quality factor Q > 14 .6 . In addition, it was recommended to 

use a base, B, of 2, 3, or 4 . 

The high frequency term Xi,{t,H) is defined as 

X,{t,H) = 2 ^ ^ - ^ - 1 + X Wkil - Ck) - ' ^ ^ 3 ^ ^ ^ ' ^ ^ ' I ( 4 . 8 ) 

This term uses the recommended Markov-Gauss process, its variance, depending on H and S,and its 

correlation of lag. However, when / / —̂  1 , Eq. ( 4 . 8 ) can be reduced to 
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Figure 4.1: A two-stage example of the R M D algorithm. 

4.1.3 The Random Midpoint Displacement Algorithm 

The random midpoint displacement (RMD) method was originally developed for computer graphics 

[FFC82, Vos85a, Vos85b, Vos88,Sau88,PJS92,LEWW95]. The idea is derived from a generating tech­

nique that N . Wiener applied to generate ordinary Brownian motion. One of the important properties of 

the R M D algorithm is that it can be generalized to several dimensions usefully. Two facts help in the 

design of this approximation algorithm. The first is that F B M is self-similar The second is that a formula 

exists for the conditional expectation of BH{t),0 <t < 1, knowing BH{0) = 0 and Bn{\) = 1, 

E[BM{t)\BH{l)] = l/2{t'" + ^ - \ t - l n . (4.10) 

When t = 1/2, the right-hand side becomes 1 / 2 independent of H. The concept of the R M D method 

is to recursively subdivide the interval and construct the values of the process at the midpoints from the 

values at the end points. 

I f a process Y, is to be computed n times within r = [0,1], then the computation starts by setting 

YQ = 0 and sets Y\ as a sample of a Gaussian random variable. Next Xi is constructed as the average of 

YQ and Y\, i.e. j{Y\ +Yo) plus a displacement. Fig. 4.1 shows the first two stages of implementation of 

this algorithm. Executing this procedure recursively n times, a sample trace with 2" points is obtained. 

I f Y, were truly a F B M process, then the midpoint displacement Y,j±b — for the interval [a,b] would 

be independent of the increment Yt, - Ya over the whole interval. The displacement would be a Gaussian 

random variable with mean zero and its variance would follow the scaling property. 

Considering a simple F B M its mean square increment for points separated by a time Af = 1 is a~. 

Applying the scaling property the value can be expressed as - 5//(0)|"] = ^'^ • Cf̂ - For conve­

nience let fi//(0) = 0, the positions at r = ± 1 are chosen as samples of a Gaussian random variable with 

variance a^. Given these initial conditions, one defines the midpoints at 

5 ; / ( l / 2 ) = ^[5; , (0) + B / / ( l ) ] + D , , (4.11) 
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where D\ is a Gaussian random offset with zero mean and variance in order to satisfy the condition 
that the increments f rom 0 to 1/2 must follow the expression, 

E[\BH{t2)-BH{ti)\-]'^\t2-ti\^". (4.12) 

Therefore, 

<'5 = | ^ - ^ = | ^ [ l - 2 » - ) . (4.13) 

The first term describes the variance of Eq. (4.12) while the second term represents the fluctuations 

already in 5 / / ( I ) — J5//(0) because of the previous stage. As / / —> 1, CT| —̂  0, no new fluctuations are 

added at smaller stages, and 5 / / ( f ) remains a collection of smooth line segments connecting the starting 

points. A t the second stage, BH{1/4) = l / 2 [ f i / / ( 0 ) - t -B/^( l /2)] + Z)2 and fi//(3/4) = l / 2 [ f i w ( l / 2 ) 4-

Bnil)]+ D'2 where the displacements D2 and have the same statistical characteristics. Their variance 

can be expressed as 

< ' H | ^ - ! ^ = ^ [ l - 2 - - l . (4-14) 

Therefore, at the nth stage the length scale has decreased to 1/2" and a random Gaussian offset D„ is 

added to the midpoints of the (n — l ) t h stage with variance 

< ^ n = ( ^ [ l - 2 ^ " - ' ] = 2 - ^ X - , (4.15) 

As expected for a F B M , at length scale r = 1 /2" one adds randomness with mean square variations 

varying as r^^. After rearranging Eq. (4.15) we can obtain 

a„ = 2-"Vl - 22^-2a = 2 - ' ^a„_ i (4.16) 

Following the relation it is more convenient to set the initial value 

ao = \ / l - 22/^-2CT. (4.17) 

The first two stages in the random midpoint technique are depicted in Fig. 4.1 where fi//(l) is gen­

erated by ordinary Gaussian noise and Bfi{0) is chosen as 0. This concept is easy to implement using 

a recursive method which accelerates the simulation speed. Therefore, to generate A' points of sample 

traces requires only O(A^) operations. 

Although the process does produce a fractal, Mandelbrot criticized the sample paths generated by the 

R M D algorithm as not stationary for all H [Man82,Man83]. When a point at time r, is fixed, its value 

does not change in any later stage. The following stages which occur after the stage determining time 

ti produces two independent parts: one is r > and the other is t < t,. This violates the basic property 

that the requirement of F B M is that the samples should be correlated, rather than independent, with 

H ^ 1/2. Consequently, points generated at different stages have different statistical properties in their 

neighborhood. In spite of its mathematical failings, the speed of midpoint displacement, and its ability 

to interpolate an existing curve make it a useful fractal algorithm for a number of apphcations. 
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4.1.4 The Successive Random Addition Algorithm 

For the R M D algorithm, when the value at a point is determined it remains fixed. Only half of the 

sample points are determined more accurately at each successive stage. To overcome the shortcoming of 

the R M D algorithm, R. Voss proposed the successive random addition (SRA) algorithm in which offsets 

are added to all the points which have been generated, not just the midpoints [Vos85a, Vos85b, Vos88, 

Sau88,Fed88]. 

Assuming that BH{0) = 0 and B / / ( l ) can have a value that is generated by Gaussian random variable 

with variance a^, then the midpoint sample BH{1/2) can be expressed as 

BH{1/2)-BH{0) = -{BH{\)-BHm+D(,y (4.18) 

a? . = a 2 ( l - 2 2 ^ ^ - 2 ) 2 - 2 ^ . (4.20) 

In continuous time the whole sample trace can be divided into infinite bisections, so the displacement 

Z)(i) is aggregated by infinite displacements which are Gaussian random variables with zero mean and 

variances that are derived in the R M D algorithm. Therefore, the offset can be expressed as 

D(,) = Y^Dk, (4.19) 
k=\ 

where are Gaussian random variables with mean zero and variance o\. The variance of D(i) is 

(1) 

From Eq. (4.19) the relation of the variance can be expressed as 

a 2 ) = X a | . (4.21) 
A-1 

From the same procedure the variance of the nih stage is 

ol^ = ± ^ l = a\\-2'"-^)2-''^". (4.22) 
k=n 

From Eqs. (4.21) and (4.22) the variance can be expressed as 

a2 = 2-2'^a2_,. (4.23) 

Therefore, it is more convenient to set the initial value as 

a 2 ^ a 2 ( l - 2 2 « - 2 ) ( ] - 2 - 2 « ) . (4.24) 

In some texts, the above equation is simplified to 

a l ^ o ^ \ { \ - 2 ^ " - \ (4.25) 

The process of the SRA algorithm is illustrated in Fig. 4.2. 

In addition, Voss also generalized the algorithm with a factor 0 < r < 1. In the R M D and SRA 

methods the resolution improved by the factor r = \/2 \n each stage. For the generalized algorithm 

between two endpoints there are \/r sample points generated. At nth stage a random displacement D„ 
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Figure 4.2: The process of successive random additions. 

would be added to all interpolated points. The variance of the displacement D„ is proportional to {r")-". 

The additional parameter r w i l l change the appearance of the fractal. The feature of the fractal controlled 

by r has been termed the lacunarity. 

Based on the ideas of the R M D algorithm, the aggregated displacement must be the same as Eq. (4.15) 

above, i.e. 

(4.26) 
k=n 

However, when the derivation of the generalized algorithm is carefully examined, the variance of the 

displacement A i is oversimplified. Even at the first stage the variance of Bniky) -BH{0) should be 

related to the factor k, that is, the kth points counted from the origin w i l l be generated in this stage. 

The displacement of higher stages wi l l be more complicated because they relate to the lower stage. For 

example, at the second stage the sample Bnir^) can be expressed as 

BHinr + r^)^kr[BH{{n+\)r)+BH (nr)] + D2 • (4.27) 

As the factor of Bn{nr) cannot totally be eliminated; the generalized algorithm is not considered to be of 

use in this study. 

4.1.5 The Weierstrass-Mandelbrot Function 

Because of the scale-invariant property of F B M , its Fourier transform should be scale-invariant. Fur­

thermore, its Fourier coefficients should satisfy the appropriate power law in its statistical aspects. In a 

midpoint displacement process generated by the R M D or SRA method, every stage increases the high­

est spatial frequency by a factor l/r = 2. Thus, both are related to the W M function which is non-

differentiable [BL80, Man83, Vos85a, Fed88, Vos88, Kor92, HS93, AIi96]. This function deals with the 

frequency domain property of F B M . 

Brownian motion may also be considered as the cumulative displacement of a series of independent 

jumps. A pulse at time causes a jump of magnitude A, (a Gaussian random variable) in ordinary 
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Brownian motion B{t). The response to each pulse, AiP{t — r,), has the form of a step function with 
P{t) = 1 for r > 0 and P(t) = 0 for r < 0. Thus, B{t) can also be written as the sum of the independent 
cuts at random (Poisson distributed) times t, 

oo 

B{t)= X ^iHt-t,)- (4.28) 

The time coordinate t may be replaced with angular position 0 on a unit circle. The Brownian motion 

must be periodic, i.e. 5(0) = B{e + 2n). In this case B{t) = jQ_^G{Q')dQ'. The P(0) corresponds to half 

circles, P(9) = 1 for 0 < 9 < 7i and P{d) = 0 for 7i < 0 < 27t, and Brownian motion on a circle becomes 

the summation of independent 'half-circles' uniformly distributed in 9,. So, B{Q) can be expressed as 

oo 

5 ( 9 ) = X ^<^(e-e,). (4.29) 

Consider a collection of independent pulses occurring at random times tj corresponding to an average 

rate 1 /%. Each pulse produces the profile AiP{t —1\). The random function, B{t) = J^AiP{t — r,), wi l l 

then have a spectral density 

5 ( c o ) o c i £ [ A 2 ] | / ' ( c o ) | 2 , (4.30) 

where P(co) is the Fourier transform of P{t), and P(co) = / P { t ) e x p { i ( £ ) t } d t . For ordinary Brownian 

motion, each excitation by the white noise G{t) produces the step function response P{t) with P{t) <>= I/co 

and 5(co) l/co^. With a suitable power-law choice of P{t), one can generate an approximation to F B M 

with any H. 

A n alternative way to direcdy generate F B M is to construct a random function with the desired 

spectrum. Since ordinary Brownian motion and F B M is scale-invariant, their Fourier transforms should 

also be scale-invariant. Thus the statistics of their Fourier coefficients should satisfy the appropriate 

power law. I t has been shown that the distributions of the Fourier coefficients are both independent and 

Gaussian complex-valued random variables [HS93]. In addition, the phases of the Fourier coefficients 

are uniformly distributed over the interval [0,27c]. 

The W M function is such a continuous function which is non-differentiable and possesses no scale. 

The W M function is defined as 

oo 

W{t)= X b"" (1 - e'^'"'''"') e'*" > (4-31) 
,l= — oo 

where 0 < / / < 1 is the Hurst parameter, b is a parameter with the range (0,1), and (|)„ is an arbitrary 

phase. The function was extended by Mandelbrot based on the original Weierstrass function. The orig­

inal version does not include the terms for n < 0 which add small spatial frequencies and large scale 

fluctuations. Whereas the frequencies b~" form a 'Weierstrass spectrum' spanning the range zero to in­

finity in a geometric progression, Eq. (4.31) involves a linear progression of frequencies. The phases (})„ 

can be chosen to make W exhibit deterministic or stochastic behavior 

For the stochastic case, let (j)„ be a set of random variables of the range 0 to 2n. Then, W{t) is 

the sum to infinity of many contributions which have random phases, and so is a Gaussian random 
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function. However, the W M function involves many summations which makes the algorithm hard to use 
in practice. Although upper and lower thresholds can be set to eliminate this difficulty, this algorithm is 
still very time consuming. A better solution is to make use of the Fourier transform. Thus, an alternative 
form of the W M function can be expressed as 

W{t)= Anb"'^exp{2nib-"t + i<S?„), (4.32) 
n=—oa 

where A„ is a Gaussian random variable with the same variance for all ii. In this alternative version W{t) 

is related to the random midpoint displacement and successive random addition methods when h= ]/2. 

In order to generate F B M traces the infinity many summation should be truncated. Therefore, another 

form of the W M function to present F B M processes can be written as: 

N 

= I ^ . e x p ( % , ) , (4.33) 
/i=0 

where S„ are Gaussian random variables with mean zero and variance a,^. The variance can be 

obtained as follows. Let 5g^ ( / ) be the spectral density of Bnit) and B}^{f,T) be the Fourier transform 

of a specific sample of 5 / / ( f ) for 0 < ; < 7, 

B n i f J ) = I: rBH{t)txp{2nift)dt, (4.34) 
/ Jo 

then 

SBAf)^T\BH{f,T)\"asT^^. (4.35) 

A n alternative characterization of the time correlations of RB„ (T) is given by the 2 point autocorrelation 

function 

RBM=E[BH{t + %)BH{t)]-E[Bj,{t)]. (4.36) 

Rsfj (x) provides a measure of how the fluctuations at two times separated by x are related. In many cases 

/?B„(x) and SBHH) are related by the Wiener-Khintchine relation 

RB„ (x) = rSB„ i f ) cos(27i/x) d f . (4.37) 
Jo 

For certain power laws for 5 ,̂̂  ( / ) , / ?B„(X) can be calculated exacdy. Thus, for 

SB„ i f ) - with 0 < (3 < 1, (x) oc xP-1. (4.38) 

Moreover, RB^, (x) is directly related to mean square increments of F B M 

E[\BH{t + x)-BH{t)\'^] = 2{E[BUt)-RB„m. (4.39) 

SBH °= 1 / f ^ approximately corresponds to /?B„(X) x'"P and 2// = (3 - 1 based on Eqs. (4.39) and (4.12). 

From the above derivation, it is known that 

5 « , , c . ] / / P = l / / / ^ + ' = „ - ( 2 ^ + i ) . (4.40) 

Thus, the variance aj, of S„ is proportional to the spectral density SB„{f). 

Based on above derivation, F B M sample traces can be easily generated by making use of discrete 

Fourier transform through the following procedure: 



Simulation Algorithms 45 

1. Generate independent random phases (j)], (j)2, • • • from uniform distributions with range [0,2n]. 

2. Generate the amplitude |6„ | f rom normal distributions with mean 0 and variance proportional to 

' ~ 2 / / (negative values are acceptable here, or alternatively take the absolute value of the normal 

variates). 

3. Form the spectral {|5„|exp(/(j)„)}. 

4. Apply inverse Fourier transform to the above spectrum to obtain a complex-valued discrete-time 

F B M process, Bnin). 

5. Finally take the real part of J5//(«). 

In this algorithm, it is better i f the size of sample traces is 2" in order to make use of the fast Fourier 

transform. Thus, its computational complexity is 0{NlogN). 

4.1.6 Whittle's Approximate Approach 

This algorithm is derived f rom Whittle's M L E [Ber94,Pax95]. Suppose the power spectrum of an FGN 

process / ( X ) is known, then a sequence of complex numbers, Z[i], corresponding to the power spectrum 

can be constructed. Z[i] is the sample trace of the FGN in the frequency domain. The inverse discrete 

Fourier transform (DFT) can be used to obtain Gn[i]- As Gfi[i] has the power spectrum of FGN in 

which the autocorrelation and the power spectrum form a Fourier pair, Gnii] is guaranteed to have the 

autocorrelation properties of an FGN process. 

For an F G N process the difficulty with this approximate method is to obtain an accurate /(?L) [Ber94]. 

The spectral density of X, is given by 

oo 

f{'k)=2cf{l-cosl) £ \2nj + l\-^"-\Xe[-K,K] (4.41) 

with Cf = Cf{H,o^) = -a'^r{2H + l){2Tiy^ sin{nH) and = Var[G//(r)]. After rearranging this equa­

tion can be expressed as 

f{l)=A{Xm-^"-'+B{l)] (4.42) 

for 0 < / / < 1 and —n <X<n, where 

A{X) = 2o-sin{nH)r{2H + \){\-cosX), (4.43) 

B{X) = j;^[{2nj + Xr^"'^ + i2Kj-X)-'-"-']. (4.44) 

Without loss of generality, let the variance of the FGN process be unity. 

The main problem with using Eq. (4.42) to compute the power spectrum is the infinite summation 

in the expression of B{X), for which no closed form is known. Paxson developed a general method for 

approximating this summation [Pax95]. The term B{X) can be approximated as 

B{X) ^ a'( + b'i + ai + bi + ai ^ b ^ ^ 3 + ^ 3 + ^ 4 + ^ 4 ^ (4 45) 
871/7 
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where 

Uk = 2Kk + 'k, bic = 2Ttk — X, 

d = -2H-\, d' = -2H. 

When using the approximate method there are several things that should be noted. The magnitude 

of Z[i] is an independent exponential random variable with a mean of one, while its phase is a uniform 

random variable. Because the sample paths in the time domain are real numbers, the real part of power 

spectrum is an even function while the imaginary part is an odd function. Thus, when generating the 

sample trace in the frequency domain, the number of samples should be even. All that is required is to 

generate half of the samples as seeds, called Z'[k] for k — 1,2,-••n/2 if the whole sample path has n 

samples. Then, expand the sequence to the whole sample path following the rule 

' 0, i f i = 0, 

Z[i] = I Z'[i], if 0 < / < n/2, and (4.46) 

Z'[n-j], i f / i / 2 < / < / ! . 

Applying the inverse DFT to {Z[i]} the sample trace in time domain is obtained. To make use of the 

inverse FFT it is more convenient to let the size of samples be an integer of power of 2. 

4.2 Results of Computation and Estimation 

Based on the algorithms stated in the previous section which generate FBM or FGN traces, the quality 

of their generated self-similar samples is another important issue. The Q-Q plot is used to visually 

assess their goodness-of-fit and the three estimators, the R/S statistic, the VT plot, and Whittle's MLE, 

are applied to estimate the Hurst value of the generated traces. In addition, the computational speed is 

the key issue for simulation performance. The comparison of their computational speed is covered in 

Sec. 4.2.1. 

In Sec. 4.2.2 to 4.2.7 the numerical results of the algorithms are examined using the Q-Q plot, the 

R/S statistic, the VT plot, and Whittle's MLE, individually. All the sample traces are generated with a 

selected random seed but with different algorithms and Hurst parameters. 

Because all the generating algorithms are derived from the Gaussian random variables or their fre­

quency version, the exponential distribution for magnitude and the uniform distribution for phases, the 

marginal distribution of the sample paths must be normal or near normal. Using the Q-Q plot to evaluate 

the sample paths the probability plot should fit a straight line with the normal distribution. 

In each subsection the same sample traces used to illustrate the Q-Q plot are employed again to plot 

the pox plots of the R/S statistic, the VT plot, and Whitde's MLE with different aggregation levels. For 

the Q-Q plot, the dots are calculated by the quantile and the straight line is the quantile values of the 

associated normal distributions. For each pox plot of the R/S statistic all the dots are calculated results, 

the solid line is the regression of the dots, and the dashed line is the target results. Similarly, the dots in 

the diagrams of the VT plots are the calculated results and the solid and dashed lines are the regression 

and reference lines whose slopes indicate the Hurst values. For the plots using Whittle's MLE with 
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different aggregation levels, which ranges from 1 to 200 in steps of 10, the solid line is the results and 
the dashed lines along the solid line are the upper and lower 95% confidence intervals. The dots lines in 
the plots of Whittle's MLE with aggregation levels are targeted Hurst values. 

For each algorithm four different Hurst parameters, H = 0.5,0.7,0.9, and 0.99 are chosen to exam­

ine its goodness-of-fit. Although all these three estimators can extract the Hurst parameter from FGN 

samples, two of them, the VT plot and the R/S statistic, are point estimators. Only Whittle's MLE in­

corporates an interval estimate. Therefore, a set of twenty different random seeds is chosen to examine 

the range of the Hurst values. Table 4.1 - 4.6 list the results of algorithms with three different estimators. 

For each algorithm three different Hurst parameters are chosen to generate FBM or FGN traces. The 

sample traces are estimated by the R/S statistic, the VT plot, and Whittle's approximate MLE. Twenty 

sample traces generated by the chosen Hurst parameter and algorithm are tested. This provides their 

mean Hurst value and 95% confidence interval. Also, the maximum and minimum Hurst values of the 

twenty traces are listed in each table. In addition, for each algorithm, a figure of the results is illustrated 

with the random seed. 

The following subsections will discuss the numerical results of the algorithms of Sec. 4.1, individu­

ally. In addition, the computational effort of the algorithms is compared. 

4.2.1 Computational Effort 

In network simulation, especially the high speed or large scale networks, computational efforts is a very 

important issue. It could take a whole day to simulate several seconds of real-world network traffic. 

To simulate such a system, traffic generation might therefore be a problem. Hence, the complexity of 

the algorithms will be a very important benchmark for them. It has been shown that the complexity of 

the dFGN algorithm is the worst with 0{N^). The complexity of other algorithms are listed as follows: 

the fFGN algorithm is 0{N\ogN), the RMD algorithm is 0{N), the SRA algorithm is O(A^), the WM 

function is 0{NlogN), and Whittle's approximate approach is 0{N\ogN). As the last two algorithms 

generate random values in the frequency domain, their major efforts are the Fourier transformation. 

Among the techniques of Fourier transfonn, the fast Fourier transform is the best choice because of its 

complexity equal to 0{N\ogN), however, the sample size should be restrict as a power of 2. 

Despite the complexity of the algorithms having been fully revealed, the different approaches will 

cause slightly different computational efforts. Their mean computational times are depicted in Fig. 4.3. 

The computational time is measured by generating sample paths with 2'^ = 32768 sample points on a 

SUN SPARC-5 clone. Every algorithm has been run more than 80 times to obtain a mean computational 

time. For the dFGN algorithm, the truncated parameters M and n are set to be 700 and 10, respectively. 

In other words, every time interval is subdivided into ten sub-intervals and every sub-interval is a Gaus­

sian random variable with zero mean and variance l / n . The current sample point is dependent on 700 

previous samples. For the fFGN algorithm, the base B is equal to 2 and the quality factor Q is 20. 

From Fig. 4.3, it is obvious that the dFGN algorithm is the worst case. The RMD which has the 

best performance is five hundred times faster than the dFGN algorithm. The SRA algorithm is a little 

bit slower than the RMD algorithm although they have the same complexity order. All sample points on 
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Figure 4.3: Mean computational time of algorithms to generate 32768 sample points. 

stage n in the SRA algorithm have to add displacements while the sample points in the RMD algorithm 

just add one displacement to newly generate samples. The third best result is the WM function in which 

the major computational effort is to apply the fast Fourier transform. Although Whittle's approximate 

approach also uses the fast Fourier transform to generate sample traces, it needs two random distributions 

to generate the spectrum, an exponential distribution for magnitude and a uniform distribution for phase. 

The fFGN algorithm is marginally better than the dFGN algorithm, although its complexity order is the 

same as the fast Fourier transform. 

In addition, a very important issue should be mentioned here. In network simulation normally people 

are unaware how many events will occur during the simulation period before running it. Therefore, it is 

more convenient to generate sample points on-the-fly, i.e. when the simulation system requires an event, 

it requests an event from the traffic generator. However, most of the algorithms need to decide the size 

of sample paths in advance. One exception is the the dFGN algorithm. The RMD and SRA algorithms 

bisect the time interval, recursively. The size of sample points must be power of 2 to determine how 

many times bisection occurs. For the WM function and Whittle's MLE approach the sample points 

are generated in the frequency domain, before making use of the Fourier transform. Hence, they are 

restricted by the Fourier transform. Furthermore, the best performance is obtained by using the fast 

Fourier transform which constrains the size to an integer of a power of 2. Even using the discrete Fourier 

transform the size also needs to be determined in advance. The fFGN algorithm requires a number N{T) 

of independent Markov-Gauss processes, where N{T) = |'log(2r)/logfi] is dependent on the size of 

sample paths, T. An alternative way is to cascade several generating sub-traces. However, it will violate 

the basic concept of LRD because any two sub-traces are independent. Thus, only the dFGN algorithm 

can generate the sample points on-the-fly. 

4.2.2 The dFGN Algorithm 

For the dFGN algorithm two more parameters, the cover range M and subintervals n, must be set as well 

as the Hurst parameter. Here, the cover range is set to 700, while the subintervals are 10. In Fig. 4.4 (a)-

(d) the Q-Q plots show that the samples of the dFGN algorithm fit the straight line very well. Therefore, 
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Figure 4.4: The Q-Q plots of the sample traces generated by the dFGN algorithm. 

the samples of the dFGN algorithm shows a goodness-of-fit to the normal distribution, with no significant 

difference when the Hurst value is changed. For the pox plots of the R/S statistic in Fig. 4.5, the values 

are all lower than the expected Hurst value except for the short-range dependent case, H = 0.5. The solid 

line in each diagram indicates the Hurst value with its slope, whereas the dashed line is the slope of the 

target Hurst parameter. These four diagrams shows that the higher the hurst parameter, the worse the 

results. The VT plot of Fig. 4.6 exhibits very poor results when the Hurst parameter is set to H = 0.9 

and 0.99. Similar to the lines drawn in the pox plots of the R/S statistic the solid line refers to the value 

while the dotted line exhibits the reference value. 

However, the results using Whittle's MLE with aggregation levels in Fig. 4.7 (a) - (d) leads to a very 

different conclusion. For all four sub-diagrams the results (solid lines) fit the target Hurst values (dotted 

lines) very well. The two dashed lines either side of the results are the upper and lower bounds of the 

95% confidence interval. As expected the larger the aggregation level, the wider the confidence interval. 

This effect is caused by the size of every subsample trace. When a sample trace is divided into more 

sections, then they become aggregated. Therefore, the Hurst values are extracted from an increasing 

smaller size of samples. When comparing these four diagrams the aggregation level seems to be less 

affected by the results for higher parameters. In the short-range dependent case, H = 0.5, the Hurst value 

gradually parts from the reference line, which is the target Hurst value. When H = 0.9 the line of result 

perfectly matches the reference line, even when the aggregation level increases. 

When investigating the change of Hurst parameter under the selected random seed. Fig. 4.8 shows 

that the results using Whittle's MLE fit the target relatively accurately, where the Hurst parameter varies 
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Figure 4.5: The pox plots of the R/S statistic of the sample traces generated by the dFGN algorithm. 
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Figure 4.6: The VT plots of the sample traces generated by the dFGN algorithm. 
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Figure 4.7: The Hurst values using Whittle's MLE of the sample traces generated by the dFGN algorithm. 

from 0.5 to 0.99. In this diagram the two dashed lines along the 'Whitde' line are the upper and lower 

bounds of the 95% confidence interval. The results using Whittle's MLE always are slightly smaller than 

the target Hurst values except for the values near H = 0.5. The results using the R/S statistic and VT plot 

with varying Hurst parameter are higher than the target value when the Hurst value is below H = 0.65. 

When the Hurst parameter increases, the results using the R/S statistic and the VT plot are significantly 

worse than the target values. When the Hurst parameter increases, the results using the VT plot increase 

more slowly than they ought to do. Certainly this is just one selected case, therefore it does not mean that 

every different random seed produces the same results. However, it is a good representation with which 

to understand the results of the three estimators. 

In Table 4.1 the analytical results using R/S statistic show the Hurst values which tend to approach 

the middle value, that is, the Hurst values are slightly larger than the lower target Hurst value of 0.5 and 

less than the higher Hurst value of 0.9. The analytical results using the VT plot indicate that all the mean 

Hurst values are always lower than the target values. The higher the target Hurst value, the bigger the 

difference between the estimated and target values. At the minimum VT plot the values of a number 

of the traces are incredibly low. Significantly better results are shown when Whitde's MLE is applied 

for testing. Although slightly lower mean values are highlighted in the table when the Hurst parameter 

increases, the spanning range is very small. 

From Table 4.1 it is apparent that the results using Whitde's approximate MLE of sample traces with 

different random seeds are very close, while the results of the other two estimators have wider range. 

Thus, the 'Whitde' line of the other diagrams which generate by traces with different random seeds are 
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Hurst Parameter Mean Maximum Minimum 95% CI 

R/S Statistic 

0.5 0.5229874 0.571484 0.473914 0.04725129 

R/S Statistic 0.7 0.6963354 0.762712 0.640453 0.07079152 R/S Statistic 

0.9 0.8145762 0.920307 0.731274 0.1004692 

VT Plot 

0.5 0.4636087 0.577534 0.273516 0.1519283 

VT Plot 0.7 0.581953 0.689953 0.374229 0.1563825 VT Plot 

0.9 0.6556407 0.757554 0.447867 0.1537915 

Whittle's MLE 

0.5 0.5010981 0.5071886 0.4935096 0.007292475 

Whittle's MLE 0.7 0.6902205 0.6973568 0.681748 0.007543267 Whittle's MLE 

0.9 0.8902595 0.8979258 0.8809194 0.007938308 

Table 4.1: Analytical results of the dFGN algorithm with M = 700 and / i = 10. 

0 
very close to the 'Whittle' line in Fig. 4.8. However, this situation is not suitable for the R/S statistic and 

the VT plot. In addition, the results of these twenty random seeds with the three estimators are depicted 

in Fig. 4.9. The meaning of the curves is shown on the legend beside the diagram. It is apparent that the 

results using Whittle's MLE form an almost straight line, while the results of the other two estimators 

fluctuate more, especially, the results using the VT plot. Some of the results are much lower than the 

target values. 

4.2.3 The fFGN Algorithm 

In the simulations of the fFGN algorithm two additional parameters, the base and the quality factor, 

are chosen above the necessary minimum values to reduce the approximate errors to an acceptable level. 

Here, the base is set toB = 2 and the quality factor is g = 20. The diagrams of Fig. 4.10 are the graphical 

results of estimators and goodness-of-fit test. Examining the Q-Q plot of the fFGN algorithm visually, 

all diagrams look very impressive, but when the Hurst value increases the results become less accurate. 

The results using the R/S statistic in Fig. 4.11 and the VT plot in Fig. 4.12 are always less than the target 

Hurst values. The results using Whittle's approximate MLE are shown in Fig. 4.13. Unlike the results 

in Fig. 4.7 the results with different aggregation level change quite significantly. For H = 0.9 and 0.99 

even the bounds of the 95% confidence intervals do not cover the target Hurst values. 

When examining the values of the selected random seed, the R/S statistic and the VT plot exhibit 

nonlinear phenomena shown in Fig. 4.14 with different Hurst parameter ranging from 0.5 to 0.99. In the 

VT plot of Fig. 4.14, the results initially decline, before increasing very quickly, and finally showing a 

decrease in the speed of growth. The results using the VT plot become concave with the minimum value 

near H — 0.53. The curve of the R/S statistic begins with a very low result, then quickly approaches the 

target Hurst value, but never goes beyond the target value. Thereafter, the speed of growth decreases. In 

this case all the results of the three estimators are always lower than the target values. In comparison the 

results using the Whittle's MLE are the best. 

Table 4.2 lists the mean results and the maximum and minimum values of the results with the set 

of random seeds. For the R/S statistic the mean values are higher than the target values when the Hurst 
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Figure 4.8: The estimated results of the dFGN Figure 4.9: The estimated results of the dFGN 

algorithm with different Hurst parameters. algorithm with different random seeds. 
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Figure 4.10: The Q-Q plots of the sample traces generated by the fFGN algorithm. 
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Figure 4.11: The pox plots of the R/S statistic of the sample traces generated by the fFGN algorithm. 
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Figure 4.12: The VT plots of the sample traces generated by the fFGN algorithm. 
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Hurst Parameter Mean Maximum Minimum 95% CI 

R/S Statistic 

0.5 0.5284779 0.603229 0.442435 0.08410934 

R/S Statistic 0.7 0.6986941 0.779765 0.625321 0.09483915 R/S Statistic 

0.9 0.8337986 0.982923 0.721598 0.1467674 

VT Plot 

0.5 0.4767081 0.564843 0.370747 0.1077152 

VT Plot 0.7 0.6399548 0.779318 0.501531 0.138547 VT Plot 

0.9 0.7824212 0.887265 0.632559 0.1453562 

Whittle's MLE 

0.5 0.4992075 0.5042979 0.4951112 0.005738461 

Whittle's MLE 0.7 0.6388327 0.6431055 0.626492 0.006628082 Whittle's MLE 

0.9 0.8135772 0.8204282 0.8008241 0.008007577 

Table 4.2: Analytical results of the fFGN algorithm. 

parameter is set to 0.5. For H = 0.7 the mean result using the R/S statistic is almost the same as the 

target value. The mean result with H = 0.9 is smaller than the target value. The mean result using the 

VT plot with different Hurst parameters is always lower than the target value. When examining the mean 

results using Whittle's MLE, they are all lower than the target values. However, the mean value is very 

close to the target value when H = 0.5. The results illustrated in Fig. 4.15 are similar to those of the 

dFGN algorithm. The varying range of the R/S statistic and the VT plot are very wide. The values using 

Whittle's MLE almost form straight lines with three different Hurst values. 

4.2.4 The RMD Algorithm 

Similar to the previous two algorithms the third rows of Fig. 4.16-4.19 depict the graphical results of 

the Q-Q plot, the R/S statistic, the VT plot, and Whittle's MLE with aggregation levels, respectively. 

When H = 0.99 the Q-Q plot is not as good as those of / / = 0.5,0.7, and 0.9. Therefore, the marginal 

distribution of the sample path is not so close to a normal distribution as those of H = 0.5,0.7, and 0.9. 

The results using the R/S statistic in Fig. 4.17 are an improvement when the Hurst parameter increases. 

However, when the Hurst parameter is set to 0.99, the estimation does not increase in line with the Hurst 

parameter. For the VT plot all four diagrams exhibit a better result, although the values are higher than 

the expected Hurst values. When H = 0.90 the result is almost the same as the target value. The graphical 

results using Whittle's MLE with aggregation levels reveal that for the case H = 0.7 the expected Hurst 

value is better than those of / / = 0.5,0.9, and 0.99. For H = 0.5 the result is higher than the expected 

value, while for H = 0.9 and 0.99, the results are lower than the target values. 

Table 4.3 shows the results of the fastest generating algorithm. When H = 0.5, the mean results of the 

three estimators are very accurate. Comparing their differences between the maximum and the minimum 

values, the R/S statistic exhibits a wider range, almost reaching 0.2. In the case when H = 0.7, the 

mean result using the R/S statistic shows a better result, as the other two estimators have smaller values. 

However, the difference between the maximum and minimum values for the R/S statistic and reaches 

0.28. When examining the case of H = 0.9, where the difference between the maximum and minimum 

values is more than 0.3, the ranges of the VT plot are very large as well. The difference between the 
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Figure 4.16: The Q-Q plots of the sample traces generated by the RMD algorithm. 
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Figure 4.17: The pox plots of the R/S statisdc of the sample traces generated by the RMD algorithm. 
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Figure 4.18: The VT plots of the sample traces generated by the RMD algorithm. 
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Figure 4.19: The Hurst values using Whittle's MLE of the sample traces generated by the RMD algo­
rithm. 
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Hurst Parameter Mean Maximum Minimum 95% CI 

R/S Statistic 

0.5 0.5060301 0.613618 0.411083 0.09530388 

R/S Statistic 0.7 0.6750333 0.831404 0.547873 0.1329722 R/S Statistic 

0.9 0.8081523 0.962106 0.645051 0.1568099 

VT Plot 

0.5 0.5000288 0.596461 0.418949 0.11478450 

VT Plot 0.7 0.6664359 0.770398 0.577834 0.11946620 VT Plot 

0.9 0.7983201 0.912801 0.716241 0.111282 

Whitde's MLE 

0.5 0.5003984 0.5070395 0.4943967 0.006301853 

Whitde's MLE 0.7 0.6568086 0.6644614 0.6503493 0.0068355 Whitde's MLE 

0.9 0.8260991 0.8354866 0.8184894 0.007784678 

Table 4.3: Analytical results of the RMD algorithm. 
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Figure 4.20: The estimated results of the RMD Figure 4.21: The estimated results of the RMD 

algorithm with different Hurst parameters. algorithm with different random seeds. 

maximum and minimum results of H = 0.5,0.1 and 0.9 are 0.18,0.19, and 0.19, respectively. The results 

span nearly 1/3, 1/4 and 1/5 of the target values. 

When examining the results of the chosen case, the 'R/S' line approaches the ideal line significantiy 

better than the other two estimators in Fig. 4.20. In this case the results using the VT plot are always 

larger than the target values, while the results using Whittle's MLE are almost always lower than the 

ideal values. When the Hurst parameter is near 0.5, the results using Whittie's MLE fit the target value 

very well. However, the gap between them gradually increases while the Hurst parameter increases. 

The results using the VT plot are poor when the Hurst parameter is less than 0.9, with the result being 

significantly worse than the other two when the Hurst parameter is between 0.5 and 0.75. The result 

using Whittle's MLE is the worst case when the Hurst value is larger than 0.75. This result conflicts 

somewhat with the results in Table. 4.3. When comparing with Fig. 4.21 the results using the VT plot 

with the selected random seed are the biggest values among the results with H = 0.7 and 0.9. Thus, the 

results in Fig. 4.18 (b) and (c) mislead the visual conclusion. When H = 0.9 the result using the R/S 

statistic in Fig. 4.17 (c) exhibits a similar situation because the result is the third highest Hurst value 

among the twenty random seed. Thus, the selected random seed has misled the result in Fig. 4.20. 
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Figure 4.22: The Q-Q plots of the sample traces generated by the SRA algorithm. 

4.2.5 The SRA Algorithm 

In Fig. 4.22 the diagrams are the graphical results of the goodness-of-fit test. The Q-Q plots of the SRA 

algorithm exhibit a good match between the scattering dots and the straight lines. There are no significant 

difference between these four diagrams. The R/S statistic in Fig. 4.23 (a) exhibits a very good result so 

that the result and reference almost form a line. When the Hurst parameter increases, the values using 

the R/S statistic are become worse. For the short-range dependent case, H = 0.5, shown in Fig. 4.24, 

the result using the VT plot is very close to the target value. However, the results gradually part from 

the target values when the Hurst parameter increases. The graphical results using Whittle's MLE with 

aggregation levels are shown in Fig. 4.25. As with the results using the R/S statistic and the VT plot, the 

result with / / = 0.5 is the best. In particular, the results of the aggregation levels are larger than 100 and 

they almost overlap the reference line. However, when the Hurst parameter increases, the curve exhibits 

a greater fluctuation. 

The mean results of the improved version of the RMD algorithm with twenty different random seeds 

are listed in Table 4.4. For H = 0.5 the mean result using Whittle's MLE fits the ideal value very 

well while the result using the R/S statistic is larger and the VT plot is smaller than 0.5. Both of the 

mean results using the VT plot and Whittle's MLE are significantly less than the ideal Hurst value as 

H = 0.7, but the mean result using the R/S statistic is almost the same as the target value. When the 

Hurst parameter is set to 0.9, the mean result using the VT plot and the Whittle's MLE Have the largest 

and smallest gaps from the ideal value, respectively. However, on examining the difference between the 
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Figure 4.23: The pox plots of the R/S statistic of the sample traces generated by the SRA algorithm. 
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Figure 4.24: The VT plots of the sample traces generated by the SRA algorithm. 
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Figure 4.25: The Hurst values using Wiiittle's MLE of the sample traces generated by the SRA algorithm. 

Hurst Parameter Mean Maximum Minimum 95% CI 

R/S Statistic 

0.5 0.5248448 0.6055 0.40269 0.09540525 

R/S Statistic 0.7 0.6906526 0.800206 0.571149 0.1103252 R/S Statistic 

0.9 0.8177981 0.924826 0.709179 0.1079923 

VT Plot 

0.5 0.4877391 0.6131 0.385542 0.122876 

VT Plot 0.7 06525558 0.784003 0.529708 01305931 VT Plot 

0.9 0.7826029 0.901727 0.658293 01256757 

Whittle's MLE 

0.5 0.5004327 0.5063703 0.4942849 0.005954368 

Whittle's MLE 0.7 0.656582 0.6637814 0.6505239 0007289917 Whittle's MLE 

0.9 0.8255724 0.8335734 08181622 0.009336806 

Table 4.4: Analytical results of the SRA algorithm. 
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Figure 4.26: The estimated results of the SRA Figure 4.27: The estimated results of the SRA 

algorithm with different Hurst parameters. algorithm with different random seeds. 

maximum and minimum values for all cases, Whittle's MLE shows the best result, no matter whether 

0.5, 0.7, or 0.9 is chosen. 

Similar to the previous algorithms, the results are depicted in Fig. 4.26. The results are obtained from 

the sample traces which are generated with the selected random seed and the changing Hurst parameters. 

In this case all curves are very close to being ideal when the Hurst parameter is less than 0.9. When 

the Hurst parameter is near 0.5, the results using Whittle's MLE fit the target values quite well, but the 

gap between the ideal value and the result gradually increases. The results using the R/S statistic almost 

match the 'Whitde' line until H = 0.9. For the VT plot, the results gradually approach the ideal values, 

but turn away when the Hurst value is larger than 0.75. The results with different random seeds are 

depicted in Fig. 4.27. For this algorithm the results using the R/S statistic and the VT plot fluctuate, 

whereas those for Whittle's MLE are very stable. 

4.2,6 The Weierstrass-Mandelbrot Function 

The W M function works very differently from the previous algorithms because it operates in the fre­

quency domain whereas the previous algorithms operate in the time domain. The analytical results of 

sample traces are listed in Table 4.5. As usual, the mean value using the R/S statistic is initially higher 

than H — 0.5. Thereafter, it fits H — 0.7 quite closely. Finally, the mean value is lower than H = 0.9. 

For the VT plot all three different average values are significantly lower than the ideal Hurst parameters. 

When the Hurst parameter is set to 0.9, the mean results using the VT plot are lower than 0.7. Their 

95% confidence interval is also very wide. The results using Whittle's MLE show that the mean values 

approach the target values when the Hurst parameter increases, while the mean value is higher than the 

ideal value of H = 0.5. 

In Fig. 4.28 the results of the Q-Q plot are illustrated. Al l the scattering dots fit the straight lines very 

well. The worst case is where the Hurst parameter is 0.99. However, there is no significant difference 

between the line and dots. Fig. 4.29 - 4.31 depict the graphical results of the three estimators. The results 

using the R/S statistic and the reference line almost overlap for the first two diagrams, but when the 

Hurst parameter is set to 0.9 and 0.99, the values are very different from the target values. Similar to 
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Hurst Parameter Mean Maximum Minimum 95% CI 

R/S Statistic 

05 0.5313647 0.588743 0.436694 0.08337487 

R/S Statistic 0.7 0.6787349 0.772595 0.543583 0.1146415 R/S Statistic 

0.9 0.8022376 0.986783 0.653322 0.1422364 

VT Plot 

0.5 0.4066917 0.657202 0.274087 0.1866828 

VT Plot 0.7 0.547818 0.782897 0.416097 01881712 VT Plot 

0.9 0.6696327 0.867137 0.553776 0.1753955 

Whittle's MLE 

0.5 0.5270633 0.5334061 0.5214302 0005938396 

Whittle's MLE 0.7 0.7136446 0.7199629 0.7079022 0.006028589 Whittle's MLE 

0.9 0.906207 0.9125305 09005111 0.00606219 

Table 4.5: Analytical results of the WM function. 

previous algorithms the results using the VT plot, shown in Fig. 4.30 (c) and (d), fit poorly with the target 

values when H = 0.9 and 0.99. In Fig. 4.31 the graphical results using Whittle's MLE with aggregation 

levels illustrate that the higher the Hurst parameter is, the better the curves fit. The first three diagrams 

show that the values fluctuate with different aggregation levels. Where there is the highest degree of 

self-similarity results show a good degree of stability and fits the reference line relatively well. 

When investigating the chosen random seed over the Hurst parameter range, the 'Whittle' line, shown 

in Fig. 4.32, approaches the ideal line very closely, especially when the Hurst parameter is larger than 

0.9. At H = 0.5 the results are the worst case, but then gradually approach the ideal value. In fact, 

this interval is the main concern of researchers because the observed real-world traffic with high load 

exhibits high Hurst values. With this selected random seed, the results using the VT plot are the worse 

case. The 'VT' line is always lower than the ideal values, especially, at high Hurst values. At first the 

curve of the R/S statistic gradually parts from the ideal values, but near H = 0.8 it suddenly takes a sharp 

turn and becomes considerably worse. When the Hurst parameter is close to 0.5, the analytical result is 

larger than the ideal value. However, it gradually decreases and crosses the ideal line. After that, the gap 

between them increases more quickly. Due to the above attributes the results using Whittle's MLE are 

the best ones. As with the previous algorithms, the results of the twenty different traces are illustrated in 

Fig. 4.33. 

4.2.7 Whittle's Approximate Approach 

As with the W M function this algorithm also generates samples in the frequency domain which are 

then transfered into the time domain using the inverse Fourier transform. This algorithm is derived 

from Whittle's MLE. At first an approximation is developed to simplify the computational effort of the 

estimator, then it is easy to follow the concept to generate samples by using the approximation estimator. 

Fig. 4.34 - 4.37 are the graphical results of the chosen traces with H = 0.5,0.7,0.9, and 0.99. The 

Q-Q plots of Whittle's approximate approach in Fig. 4.34 exhibit very different traces. The quantiles of 

the traces still fit the normal distribution very well, but at both ends there are quantiles that are extremely 

distant from the normal distribution. This divergence is caused by the generating algorithm. Whittle's 
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Figure 4.28: The Q-Q plots of the sample traces generated by the WM function. 
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Figure 4.29: The pox plots of the R/S statistic of the sample traces generated by W M function. 
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Figure 4.30: The VT plots of the sample traces generated by the WM function. 
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Figure 4.31: The Hurst values using Whittle's MLE of the sample traces generated by WM function. 
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function with different Hurst parameters. function with different random seeds. 

Hurst Parameter Mean Maximum Minimum 95% CI 

R/S Statistic 

0.5 0.5163246 0.567309 0.472479 0.05854247 

R/S Statistic 0.7 0.6717431 0.737292 0.601846 0.07967137 R/S Statistic 

0.9 0.7804224 0.890397 0.680413 0.1060564 

VT Plot 

0.5 0.5065585 0.633498 0.318915 0.1740812 

VT Plot 0.7 0.6584451 0.776776 0.52292 0.1451696 VT Plot 

0.9 0.7946734 0.89281 0.69618 0.1225351 

Whittle's MLE 

0.5 0.5717692 0.5769492 0.5673334 0.005265109 

Whittle's MLE 0.7 0.7517701 0.7569672 0.7471196 0.005442897 Whittle's MLE 

0.9 0.926514 0.931481 0.9218944 0.005398148 

Table 4.6: Analytical results of Whittle's approximate approach. 

approximate approach generates the samples in the frequency domain using an exponential distribution 

for magnitude and uniform distribution for phase. Unlike other algorithms they use normal distributions 

with transformations to generate FBM or FGN sample traces. Even the WM function still uses normal 

distribution to generate the magnitude part of the samples. For the pox plot of the R/S statistic in Fig. 4.35 

the results and the reference line of the last two diagrams almost match when H = 0.9. However, the 

slopes of the result and the reference line have diverged again when H = 0.99. The VT plot in Fig. 4.36 

exhibit very poor results, making it one of the two worst cases in our simulations. The results of the 

diagrams are almost 0.2 less than the target values. Finally, examining Whittle's MLE with different 

aggregation levels in Fig. 4.37, the results of H = 0.9 exhibit a very close match while the other three 

diagrams do not fit the reference lines very well. When the Hurst value is set to give the highest degree 

of self-similarity in our study, the results are even lower than the results with H = 0.9. 

The selected case over the range H = 0.5 to 0.9 the analytical result is illustrated in Fig. 4.38. In 

this diagram the 'VT' line is much lower than the ideal line. Unfortunately, the selected case is one 

of the two worst cases of the twenty traces with different random seeds. When H = 0.5 the analytical 

result is the worst one, the results of H = 0.7 and H = 0.9 are the second worst case in the twenty 
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Figure 4.34: The Q-Q plots of the sample traces generated by Whittle's approximate approach. 
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Figure 4.35: The pox plots of the R/S statistic of the sample traces generated by Whittle's approximate 

approach. 
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Figure 4.36: The VT plots of the sample traces generated by Whittle's approximate approach. 
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Figure 4.37: The Hurst values using Whittle's MLE of the sample traces generated by Whittle's approx­
imate approach. 
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Figure 4.38: The estimated results of Whitde's Figure 4.39: The estimated results of Whittle's 

approximate approach with different Hurst pa­

rameters. 

approximate approach with different random 

seeds. 

different simulations. However, the other traces maintain similar slopes without significant difference 

except at their point of origin. As usual, the results using the R/S statistic is larger than the ideal value 

near H = 0.5 and then smaller than the ideal value near H = 0.9. There is a sharp turn in the curve 'R/S' 

near 0.85. In this case the results using Whittle's MLE are the best. The 'Whittie' line exhibits a very 

weird phenomenon. At the beginning the analytical value is near 0.6 rather than the target value H = 0.5. 

Then the line gradually closes to the ideal values. As the Hurst parameter is reaching 0.9 the 'Whittle' 

line approaches the target values very quickly. When the Hurst parameter is around 0.95 the 'Whittle' 

line exhibits a dramatical change. It decreases very quickly as the Hurst parameter increases. 

The mean analytical results of the twenty traces with different random seeds are listed in Table 4.6. 

When H = 0.5 the mean results using the R/S statistic and Whittle's MLE are higher than the expected 

value. For this case the mean result using the VT plot approaches the target value more accurately. 

However, its difference between the maximum and minimum values remains quite large. While the 

mean result using Whittle's MLE is still much higher than the target value, H = 0.7, that using the R/S 

statistic is lower than 0.7. In the case ofH^ 0.9 the mean result using Whittle's MLE remains larger than 

the target value, and the mean result using the R/S statistic is slightly lower, while the mean result using 

the VT plot shows the worst result. The values with different random seeds are illustrated in Fig. 4.39. 

The results using the R/S statistic and the VT plot are still highly dependent on the random seeds. 

4.3 Comparisons of the Estimation Results 

In Sec. 4.2 the estimated Hurst values of the algorithms have been examined individually using three dif­

ferent Hurst estimators. In this section comparisons between them will be investigated. The comparisons 

of the results are based on the means and 95% confidence intervals in Tables 4.1 - 4.6 and goodness-of-fit 

test. Therefore, the three diagrams, Fig. 4.40 - 4.42, are illustrated by the values listed in above tables. 

The asterisk, circle, and star marks represent the Hurst parameters, H = 0.5,0.7, and 0.9, respectively. 

Al l the marks are the mean results of sample paths with the twenty different random seeds which were 

applied to the six algorithms. The barlines across the marks are the 95% confidence intervals. In addi-
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tion, the Q-Q plots of the selected traces, with all algorithms illustrated, are used to evaluate the quality 
of fit of the normal distribution. 

4.3.1 Comparisons of the Q-Q Plot 

The Q-Q plots of the sample paths with different algorithms and different Hurst parameters are discussed 

in Sec. 4.2. For the dFGN algorithm, different Hurst parameters do not significantly affect the results 

which still match the normal distribution. The Q-Q plots of the fFGN algorithm still match the straight 

line relatively well. However, when the Hurst parameter increases, the tails of the scattering dots grad­

ually part from the reference line. For the RMD algorithm, the scattering dots match the reference line 

well when H = 0.5, but becomes increasingly worse when the Hurst parameter increases. For the SRA 

algorithm the scattering dots of the Q-Q plots match the reference line very closely. The Q-Q plots of 

the W M function exhibit very good quality. For Whittle's approximate approach most of the scattering 

dots match the reference line relatively well. However, due to its different generating methodology the 

tails of the Q-Q plots are further away from the reference line. 

When examining all the Q-Q plots, the majority of the results exhibit a relatively close fit. Of them 

all four Q-Q plots of the dFGN algorithm match the reference line very well. The results of the WM 

function are marginally worse than those of the dFGN algorithm. The quality of the fFGN algorithm is 

slightly worse than that of the SRA algorithm. The quality of the RMD algorithm is significantly worse 

than the improved version. The quality of Whittle's approximate approach is very hard to detennine 

because of its parted tail. 

4.3.2 Comparisons of the R/S Statistic 

The mean values and 95% confidence intervals of the twenty Hurst values by the R/S statistic is depicted 

in Fig. 4.40. When examining the bottom row of marks whose original Hurst parameter is set to 0.5, 

all the six marks are higher than the expected value. The mean result of the RMD algorithm has the 

best result, i f the effect of the confidence interval taken into consideration. The dFGN algorithm has 

the shortest bar line, while the W M function has a slightly better mean value. In point of fact, for 

H = 0.5 the results of the dFGN, fFGN, RMD and SRA should be very similar because the algorithms 

merely retrieve the samples from one or many Normal-distributed random samples. The aggregation 

of random variables makes them different. For instance, the dFGN algorithm retrieves / i = 10 samples 

from a Gaussian random number generator with old ( M - l)n substates to generate a new sample. The 

SRA algorithm successively adds weighted samples retried from a random number generator. The WM 

function generates samples with normal and uniform distributions. Thus, the result using the R/S statistic 

still can maintain the accuracy and stability well. 

With H = 0.7, almost all of the results fit the reference line very well in comparison to the two Hurst 

parameters, H = 0.5 and 0.9, especially the dFGN and fFGN algorithms whose mean results are on 

the reference line. In comparison the dFGN algorithm is significantly better than the fFGN algorithm 

because its confidence interval is much shorter than that of the fFGN algorithm. The mean result of the 

SRA algorithms just slightly part from the reference line. However, its confidence interval is much wider 
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Figure 4.40: The analytical results using the R/S statistic for all algorithms. 

than the W M function whose mean value is the worst case in the six algorithms. The mean results of 

the RMD algorithm and Whittle's approximate approach are the worst two, although their mean values 

are slightly better than that of the W M function, their confidence intervals are much wider than the WM 

function. 

On the top row of Fig. 4.40 the mean results with H = 0.9 are illustrated. The dFGN and fFGN 

algorithms exhibit the best two fits. Although the fFGN algorithm has the best mean result, its confidence 

interval is significantly worse. The mean result of the SRA algorithm is slightly better than the dFGN 

algorithm, but its confidence interval is wider. The confidence interval of the WM function is very short, 

but its mean value is the worst of the algorithms studied. The RMD algorithm is probably the worst one 

because it has the widest confidence interval and its mean result does not have significant difference from 

the W M function. 

The overall examination of the algorithms with the R/S statistic exhibits that the dFGN algorithm 

has the best result. Although its mean values of the three different Hurst parameters are not as good as 

some other algorithms, its confidence intervals are always shorter than the others. The mean values of 

the fFGN algorithm are best when the Hurst value is set to 0.7 and 0.9. However, its confidence intervals 

are much wider than those of the dFGN algorithm. The result of Whittle's approximate approach is the 

worst case when compared with other algorithms because its mean values are the worst or near worst 

case. In addidon, its confidence intervals are very wide, especially when H = 0.9. The results of the 

SRA algorithms highlight that its mean values with higher degree of self-similarity are better than the 

RMD algorithm. It is also better than the W M function due to its more accurate mean values when the 

Hurst parameter is 0.7 and 0.9. 

In addition, almost all of the six algorithms exhibit that the mean values with H = 0.7 are more 

accurate than the cases of the H = 0.5 and 0.9. The mean values with H = 0.5 are always larger than 

the target Hurst value. For H = 0.1 the dFGN , fFGN, and SRA algorithms are reasonably accurate. 
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Figure 4.41: The analytical results using the VT plot for all algorithms. 

However, all the mean values with H = 0.9 are much smaller than the target values. Their confidence 

intervals become wider as the Hurst parameter increases. 

4.3.3 Comparisons of the Variance-Time Plot 

In Fig. 4.41 the analytical results of the six algorithms using the VT plot are illustrated. The RMD 

algorithm exhibits the best result when H = 0.5. Its mean value is very close to the reference line 

H = 0.5 and its confidence interval is also the shortest. The mean values of the dFGN, fFGN algorithms, 

and Whittle's approximate approach are also very near the reference line, but when examining their 

confidence intervals the dFGN algorithm is better than the other two, while the fFGN algorithm is better 

than Whittle's approach. For the confidence intervals, those of the SRA algorithm are much shorter than 

the fFGN algorithm, but their mean values do not approach the reference line as close as those of the 

fFGN algorithm. Thus, it is very difficult to distinguish which of them is better. Certainly, the worst case 

is the W M function. Its mean value is as low as H = 0.4 and its confidence interval spans almost from 

H = 0.2 to H = 0.6. 

As with the case of H = 0.5 the result of the RMD algorithm exhibits the best performance not only 

at its mean value but also its confidence interval when H = 0.7. The mean value of Whitde's approximate 

approach is slightly better than that of the SRA algorithm but the reverse is the case for the the confidence 

intervals. The mean result of the fFGN algorithm is significantly better than that of the dFGN algorithm 

and the W M function. For the W M function both its mean and confidence interval are the worst case. Its 

mean value is near H = 0.55 which is much lower than the Hurst value expected. 

When examining the top row of Fig. 4.41 there is no mean value larger than H = 0.8. As with the 

previous two Hurst parameters the best is the RMD algorithm because its mean value is the closest to 

H = 0.9 and its confidence interval is also the shortest one. The result of Whittle's approximate approach 

is ranked second. Its mean value is slightly better than those of the fFGN and SRA algorithms and its 

confidence interval is also a little bit shorter. As with the previous two cases the mean value of the WM 
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function is very poor because it is lower than H = 0.7. In addition, its confidence interval covers a wide 
range from H = 0.5 to H = 0.75. However, the mean value of the dFGN algorithm is even worse than 
that of the W M function. 

From above comparisons the RMD algorithm has the best performance no matter which Hurst pa­

rameter is used. The mean values of the RMD algorithm are the closest to the expected Hurst values 

in comparison to those of the other algorithms, although the mean value is still far from the expected 

Hurst value where H = 0.9. Whittle's approximate approach would be the second choice. Al l its mean 

values are only marginally worse than those of the RMD algorithm. It is also the only algorithm whose 

confidence intervals become shorter as the Hurst parameter increases. In Fig. 4.41 it is very difficult to 

distinguish between the performance of the fFGN and SRA algorithms. For H = 0.9 the mean value of 

the SRA algorithm is better than that of the fFGN algorithm, but its confidence interval is wider than that 

of the fFGN algorithm. For H = 0.1 the performance of the fFGN algorithm certainly is better than that 

of the SRA algorithm both of the mean value and the confidence interval. For the case of H = 0.5 the 

mean value of the fFGN algorithm is better but it has a wider confidence interval. Finally, it is apparent 

that the performance of the W M function is the worst; no matter which Hurst parameter is used its mean 

values are the worst ones and the confidence intervals are the widest. The dFGN algorithm is just a little 

better than the W M function. 

Although the results of the algorithms with the VT plot are evaluated in above paragraph, it is difficult 

to be totally sure that the RMD algorithm is the best one and the WM function and the dFGN algorithm 

are the worst ones. This is because their confidence intervals are so wide, which may mislead people. 

Also, where H = 0.9, all the mean values are significantly lower than the reference line. For the WM 

function and the dFGN algorithm their mean values are even lower than H = 0.1. Because the estimator 

makes some instinctive approximations to simplify the calculation, it might be oversimplified when the 

Hurst parameter is high. 

4.3.4 Comparisons of Whittle's Approximate M L E 

Compared to Figs. 4.40 and 4.41 the diagram in Fig. 4.42 has very small confidence intervals. All the 

confidence intervals are very small, which makes the comparisons very simple. For H = 0.5 the dFGN, 

fFGN, RMD, and SRA algorithms lie on the reference line. The WM function is worse than the previous 

four algorithms but is better than Whittle's approximate approach. This result is to be expected because 

the W M function and Whittle's approximate approach generate samples in the frequency domain and 

then transform to the time domain rather than generate in the time domain directly. These algorithm 

use a uniform distribution to obtain the arguments and either a Gaussian distribution or an exponential 

distribution to obtain the modulus. The process of inverse Fourier transform also causes distortions. 

The other four algorithms directly retrieve samples from Gaussian random number generators and apply 

some weighting and additive operations. 

When the Hurst parameter increases to 0.7, the confidence interval slightly increases. However, it 

is small enough not to affect the work of comparisons. From Fig. 4.42 it is apparent that the dFGN 

algorithm is the best one, with the W M function better than the other four algorithms. The fFGN and 
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Figure 4.42: The analytical results using Whittle's MLE for all algorithms. 

the RMD algorithms have almost the same mean values, and these are closer to the reference line than 

Whittle's approximate approach and the SRA algorithm. 

On the top row of Fig. 4.42 the mean value of the WM function is the closest one to the reference 

line H = 0.9 while the mean value of the dFGN algorithm is slighdy worse. The mean value of Whittle's 

approximation approach can be ranked third. Again, the results of the fFGN and SRA algorithms have 

almost the same mean values, and the worst one is the SRA algorithm. 

Manifestly, the dFGN algorithm has the best performance under Whitde's MLE, while the WM func­

tion is only slightly worse. Whittle's approximate approach is worse than the previous two, although the 

algorithm is directly derived from Whittle's MLE. There is no significant difference between the fFGN 

and RMD algorithms whose mean values are better than Whittle's approach when H = 0.5 but worse 

when H = 0.7 and 0.9. Here, Whittle's approach ranks third because the higher Hurst parameter plays 

a more important role in network applications. Finally, the SRA algorithm is the worst, however, the 

difference between the SRA and RMD algorithm is insignificant. The results do exhibit a very inter­

esting phenomenon; the four algorithms which generate samples in the time domain have a lower Hurst 

values than the reference lines when the Hurst parameter is beyond 0.5. For the algorithms generating 

their samples in the frequency domain the mean values are always higher than the reference lines and 

gradually tend to the reference lines when the Hurst parameter increases. 

4.4 Changing the dFGN Algorithm Simulation Parameters 

In the dFGN algorithm two parameters control the quality of simulation. From the definition of the 

FBM (Definition 3) the difference between two time epochs is obtained from the integration of ordinary 

Gaussian noise weighted by the kernel function. The range which the integral covers is from —<» to the 

current time, t. It means that current position is affected by any event occurring before. To simulate FBM 

or FGN one needs to approximate the integral representation. This creates two types of approximation 
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Figure 4.43: Comparisons of the statistical analytical results of the dFGN algorithm with different subin-

tervals and covered ranges. 

errors, a 'low frequency' one due to the truncation of the limits of integration, and a 'high frequency' 

error caused by replacing the integral to a summation. The number of covered range M determines the 

'low frequency' error and the number of sub-states, n, affects the 'high frequency' error 

In simulations previously carried out, the number of covered states is set to M = 700 and the number 

of sub-states in a state is set to « = 10. These values are adopted shown in the original paper [MW69]. If 

the two values increase, the quality of simulation will be improved. Thus, if the number of covered states 

is M = 1000 and the number of sub-states is renewed as n = 30, the number of samples retrieved from 

ordinary the Gaussian random number generator will increase from 7,000 to 30,000 to generate a single 

sample. This causes the average simulation time of 32768 samples to increase from 753.6 to 1506.9 

seconds. Fig. 4.43 illustrates the results of the original and improved simulations under the selected 

random seed. In all diagrams the dotted lines show the target Hurst values, and all the diagrams show the 

results using the previously chosen random seed. 

The first diagram shows the results using the R/S statistic. The result of the short-range dependent 

case shows that the longer the simulation the better the results. When the Hurst parameter increases, 

these two results gradually converge. However, the curves gradually drift away from the reference line. 

Previous analysis using the R/S statistic is highly dependent on the chosen random seed. Thus, it is 
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Hurst Parameter Mean Maximum Minimum 95% CI 

R/S Statistic 

0.5 0.5362565 0.600374 0.450645 007791316 

R/S Statistic 0.7 0.7064376 0.793117 0.644358 0.07476778 R/S Statistic 

0.9 0.8234968 0.948899 0.729946 0.1082109 

VT Plot 

0.5 0.4597866 0.609787 0.33634 01341218 

VT Plot 0.7 0.5990193 0.747038 0.481609 0.1309809 VT Plot 

0.9 0.6900486 0.830467 0.587867 0.12259 

Whitde's MLE 

05 0.4996168 0.5042672 0.4942388 0.005619327 

Whitde's MLE 0.7 0.6963732 0.7014564 0.6902849 0.006162258 Whitde's MLE 

0.9 0.8979003 0.9038126 0.8905684 0.00625812 

Table 4.7: Analytical results of the dFGN algorithm with M = 1000 and n = 30. 

difficult to gauge what effect the simulation time has upon the results. 

Fig. 4.43 (b) shows the results using the VT plot. Where the longer simulation time significantly im­

proves the results. As the Hurst parameter increases, the more the longer simulation improves. However, 

a large gap between the reference line and the 'VT-long' line still exists when the Hurst parameter is 

large. Due to the variation of the results in the VT plot it is difficult to conclude that the longer simula­

tion will improve the results. The only thing guaranteed is that the result is always less than the expected 

value as the Hurst parameter approaches to 1. 

The results using Whittle's MLE is shown in Fig. 4.43 (c). In this diagram the reference line is not 

shown because the lines are very close to the ideal values. The 'Whittle-long' line shows that the longer 

simulation time using the dFGN algorithm improve the results. The results improve more as the Hurst 

parameter increases, however, the improvement is not so significant. 

In addition, the set of twenty random seeds were also tested using simulation to examine their affect. 

Table 4.7 lists the results of the three estimators with different Hurst parameters. Comparing Table 4.1 

and 4.7, the results using the R/S statistic do not improve when H = 0.5 and 0.7 and the differences 

between the maximum and minimum values become worse. For H = 0.9 the difference between the 

maximum and minimum values does not improve, although the mean value is more accurate. The mean 

results using the VT plot move toward the expected Hurst values, except at H = 0.5. However, all the 

mean values are sdll significantly lower than the expected values. Meanwhile, among the twenty sample 

traces there are 8, 6 and 7 results which are worse than the shorter simulations with H = 0.5,0.7 and 0.9, 

respectively. There were 3 random seeds which generated worse results no matter what Hurst parameter 

was. For Whitde's MLE all the mean results improve and the confidence intervals are smaller 

4.5 Empirical Evaluation of the Estimators 

From previous analysis in Sec. 4.3 the results using the VT plot and Whittle's MLE lead to conflicting 

conclusions. In addition, the results using the VT plot exhibit very low mean values, especially the 

mean values of the dFGN algorithm and the W M function which are much lower than those for the other 
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algorithms. However, these results are the best two with Whittle's M L E . In addition, the results using 
the V T for all algorithms have very wide confidence interval, but those using Whittle's M L E are very 
small. The R/S statistic somewhat similar to that of the Whittle's M L E . The mean values from the dPGN 
algorithm gives the best result. 

As far as it is known, the V T plot uses some simple approximation to reduce the calculation effort, 

but Whittle's approximate M L E has a more rigorous mathematical derivation. Due to its mathematical 

complexity and difficulty an empirical study was used to examine the reliability of these two estimators. 

In Fig. 4.9, 4.15, 4.21, 4.27, 4.33, and 4.39 all results obtained from a set of twenty different random 

seeds are illustrated representing the six algorithms, individually. 

From the results with different random seeds the results using the R/S statistic and the V T plot are 

highly dependent on the random seeds. For the R/S statistic the results tend to be higher than the ideal 

value when the Hurst parameter is set to H = 0.5 and tend to be lower than the target value when the 

Hurst parameter is H = 0.9. Of the algorithms the results using the R/S stadstic, the R M D algorithm and 

Whittle's approximate approach all fluctuate significantly more than the others. When examining their 

ranges the dFGN algorithm and the W M function produce a smaller span. In addition, the R/S statistic 

results magnify their range when the Hurst parameter increases. 

The results using the V T plot are worse than that using the R/S statistic. The V T plot results tend to a 

little bit lower than 0.5 when the Hurst parameter is set to H = 0.5. When the Hurst parameter increases, 

the results using the V T plot become lower than the setting of the Hurst parameter. The ranges of each 

of the algorithms using the V T plot do not have significant difference for the different Hurst parameters. 

The results of the W M function and the dFGN algorithm exhibit a larger spanning range in comparison 

to the other algorithms. 

The results using Whittle's M L E exhibit a significantly better performance. For each algorithm all 

results for different Hurst parameters tend to be a straight line, which means the changing of random 

seeds do not affect the estimation significantly. Unlike the R/S statistic and the V T plot, the estimator 

has a more rigorous mathematical derivation. It uses an optimization technique with goodness-of-fit 

statistic instead of simple and instinct approximation. Thus, the results using Whittle's M L E should be 

more reliable than the other two estimators. 

The dFGN algorithm is directly derived from the definition of F B M . The summation which was 

substituted an integral causes 'high frequency' and i o w frequency' errors. I f the larger covered range 

and sub-states are used, the errors w i l l reduced. From Sec. 4.4 the results using Whittle's M L E improves 

slightly, as was expected, when the parameters is changed from M = 700 and n= lOto M = 1000 and 

n = 30. However, the results using the R/S statistic do not show that any improvement in Fig. 4.43 (a). 

The results using the V T plot exhibit improvement in Fig. 4.43 (b) but the results shown in Fig. 4.9 

show that the results are very chaotic and there are three random seeds which always make the results of 

longer simulations worse than those of shorter ones. Thus, the V T plot results illustrate that not all the 

cases arrive at the same conclusion. In Fig. 4.43 (c) the results using the Whittle's M L E are significantly 

improved. 

From the above discussion it has been shown that the V T plot might mislead the results of estimation 

of F B M or its increments, the FGN. Fig. 4.44 shows the V T plots for the dFGN algorithm, the SRA 
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algorithm, and the W M function, using the Hurst parameters of 0.5 and 0.9. They are selected because 
the dFGN algorithm and the W M function present the best results using Whittle's M L E but the worst ones 
using the V T plot and the R M D algorithm exhibits the best performance using the V T plot but almost 
the worst one using Whitde's M L E . For each algorithm the graphical results with two Hurst parameters, 
H = 0.5 and 0.9, are shown. 

A l l the diagrams are chosen f rom different random seeds. The criterion of choosing the random seeds 

is to use the random seeds which are most similar to their average values. For instance, the Fig. 4.44 

(c) is the 11th random seed for H = 0.5 in Fig. 4.21. Fig 4.44 (d) is the 17th random seed for H - 0.9 

in Fig. 4.21. When examining the graphical results with H = 0.5, the result of the R M D algorithm fits 

the reference line quite well while that of the dFGN algorithm is slightly separated. However, for the 

result of the W M function the slope of the result and reference line are quite different. From the V T 

scattering dots in Fig. 4.44 it can be seen that the W M function has a nonlinear tail while the others are 

quite straight. 

When H = 0.9 all the three algorithms exhibited do not fit the reference line in a tolerable range. 

A l l the slopes of the results are quite different f rom those of the reference lines. When comparing these 

three diagrams on the right-hand side, to argue that the results of the R M D algorithm ares better than 

the other two does not convey any significant meaning. When looking at the scattering dots of the three 

diagrams on the right hand side, all the curves have nonlinear tails. The result for the R M D algorithm 

is better than either of the other two algorithms because the curve does not have such a heavy nonlinear 

tail. I f the scattering dots chosen are not larger than 2.5, the slope of the line formed by the dots wi l l 

be significandy better than the results across the whole range. In other words, the shorter the time 

interval picked, the better the results exhibited. However, shorter time intervals mean the correlation 

with previous samples w i l l be restricted to a short range. Therefore, the characteristics of L R D wil l 

diminish. Although log{Time) = 2.5 can be set as a threshold to estimate the Hurst parameter, it might 

change f rom case to case. How to find an appropriate threshold is a difficult issue. 

When comparing the diagrams on both sides no matter which algorithm is used, the higher Hurst 

parameter w i l l cause a more sharpened bend on the tail. The sharpened bends lead to a higher correlation 

with previous samples. From this point of view i f the scattering dots form a straight curve, the analytical 

traces have less correlation with the samples themselves. Thus, the R M D algorithm produces the worst 

samples. This conclusion coincides with the analysis of the R M D algorithm in Sec. 4.1.4. When the 

sample is determined, it w i l l be fixed and w i l l not change throughout the simulation. This result is that 

the first half of the sample traces are independent of the second half of the sample traces. I f the Hurst 

parameter is low, the correlation of the samples is sdll small. The drawbacks of the R M D algorithm 

is not significant, however, the disadvantages of the R M D algorithm wi l l be magnified when the Hurst 

parameter increases. 

From above discussion it can be concluded that the V T plot is not a suitable estimator for estimating 

the self-similar processes or the L R D processes. The esdmator cannot reflect the strong correlation of 

the sample paths when the Hurst parameter is high. Although the estimator uses the exponent 2H — 2 

to capture the characteristics of the strong dependence, it does not consider variances of the aggregated 

length of the samples that w i l l significantly change as the Hurst parameter increases. 
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Figure 4.44: Comparisons of the graphical results of the dFGN algorithm, the R M D algorithm, and the 

W M function with the V T plot. 
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The results for the R/S statistic always have large confidence intervals, although their mean values 
do somewhat reflect the actual Hurst values. Therefore, it is only suitable for use as a reference. 

Although the results of the statistical analysis indicate that Whittle's M L E is a good estimator, it 

is still hard to use in practice. Aggregation levels have been proposed to solve one of the problems 

in statistical robustness. However, the larger the aggregation level is, the wider the confidence interval 

becomes. It is very difficult to use this to estimate the Hurst parameter in an on-line operation. Using a 

long memory to store a large amount of samples can extract more accurate Hurst values. However, it is 

almost impossible to have such a large memory for a single parameter Therefore, Whittle's M L E is a 

good indicator of the quality of the F B M and FGN samples. 

4.6 Summary 

In this chapter six algorithms for generating F B M or FGN have been introduced. The dFGN algorithm 

is derived f rom the discrete version of the definidon of F B M . This algorithm generates FGN by us­

ing massive ordinary Gaussian noise samples. The f F G N algorithm produces samples of FGN through 

Markov-Gaussian processes. The R M D algorithm simply generates the trace by recursively interpolating 

the mid points with a displacement. Due to the drawbacks of the R M D algorithm, the SRA algorithm 

was proposed to eliminate the independence between the first and last half of sample traces. Both algo­

rithms generate traces of F B M . The W M function is an algorithm which generates traces in the frequency 

domain before transforming the samples to the time domain. The final result is a trace of F B M . Finally, 

Whittle's approximate approach was derived from the development of Whittle's M L E . It also generates 

the samples in the frequency domain with exponential and uniform distributions and then transforms 

them into the time domain. The trace in the time domain is a time series of FGN. 

When considering computational effort it has been shown that the R M D algorithm is the fastest 

algorithm, while the dFGN algorithm is the most time-consuming. Although the SRA algorithm has the 

same computational complexity as the R M D algorithm, it cannot recursively generate the samples. For 

the W M function and Whittle's approximate approach the major computational effort is due to the inverse 

fast Fourier transform. The complexity of the f F G N algorithm is 0{NlogN), the same as the inverse fast 

Fourier transform. However, to generate a sample requires more operations with the Markov-Gaussian 

process. 

After generating sample paths, three estimators have been used to estimate their Hurst parameters. 

In addition, a visual assessment tool, the Q-Q plot, has been used to visually assess the goodness-of-fit 

of the algorithms. The Q-Q plots show that the larger the Hurst parameter is, the worse the algorithms 

fit the normal distributions. However, for the dFGN algorithm and the W M function their Q-Q plots 

are indistinguishable to the eye f rom the normal distribution. The Q-Q plots of the SRA algorithm are 

slightly better than those of the f F G N algorithm and much better than those of the R M D algorithm. The 

Q-Q plots of Whittie's approximate approach are very hard to compare with the other algorithms because 

of their weird tails. 

Using the R/S statistic, the V T plot, and Whittle's M L E to estimate self-similar time series, the 

comparative results have proved to be varied. Comparing the results using the R/S statistic, all estimated 
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ones tended to be higher than the expected value when the Hurst parameter is near 0.5. In contrast, 
the results tend to be lower than the Hurst parameter, as it tends towards 1. Using the R/S statistic, the 
dFGN algorithm exhibits the best result, while the f F G N algorithm is slightly worse because of the wider 
confidence intervals. Whittle's approximate approach is the worst, with the R M D algorithm only slightly 
better than the W M function. Using the V T plot the R M D algorithm exhibits the best result, while the 
W M function and the dFGN algorithm are the worst ones. However, when Whittle's M L E algorithm is 
applied, the dFGN algorithm and the W M function are the best two algorithms. 

Assessment with the V T plot suggests that the dFGN algorithm is one of the worst while in contrast 

the assessment results using Whittle's M L E and the R/S statistic suggest that the dFGN algorithm is the 

best algorithm. Such a difference leads to an investigation into the effect of changing parameters for the 

dFGN algorithm. This work suggests that usage of Whittle's M L E could help to estimate the Hurst value 

more accurately. When examining the diagram of the V T plot, the image of the scattering dots forms a 

curve with a nonlinear tail as the Hurst parameter increases. With such a sharpened nonlinear tail the 

estimator tries to fit a straight line around the scattering dots. Thus, the estimator is misrepresenting the 

Hurst values. The results using the R/S statistic are always underestimated when the Hurst parameter 

tends to 1 and overestimated when the Hurst parameter nears 0.5. In addition, the results are highly 

dependent on the sample traces. Therefore, it can only be used as a reference. Whittle's M L E is a good 

estimator that can fu l ly reflect the real Hurst value. However, it is not suitable for practical operations. 

Although the dFGN algorithm has the best results except for the V T plot, its massive computational 

time w i l l restrict its widespread use. Furthermore, it also has the advantage that it is the only algorithm 

that can generate samples on-the-fly. For other algorithms the number of samples must be decided before 

simulation. Although researchers can cascade several different traces into a whole trace, the sub-traces 

are independent of each other. The W M function is a compromise as its results are better than those 

of the other algorithms (except for the V T plot) and its simulation time is significantly shorter than 

that of the dFGN algorithm. However, the major disadvantage is that the algorithm must decide the 

number of samples in advance. The R M D and SRA algorithms are two algorithms which can be used for 

generating self-similar samples. Their simulation speed is the most attractive issue. Although the results 

and computational speed of the SRA algorithm are slightly worse than the R M D algorithm, it overcomes 

the independent disadvantage of the R M D algorithm. For simulation, the f F G N algorithm and Whittle's 

approximate approach have been shown to be of far less value. 

The R M D and SRA algorithms have computational efficiency but cannot generate samples on-the-fly. 

In terms of quality, the sample traces generated by them cannot accurately reflect the Hurst parameter 

The W M function is also a fast algorithm which generates good quality samples, especially when the 

Hurst parameter tends to 1, but the size of samples must be decided before simulation. The dFGN 

algorithm can generate high quality samples on-the-fly, but its simulation time is the greatest. In the next 

chapter several hybrid algorithms are proposed to retain the useful properties, to shorten the simulation 

time, and hopefully to improve the relative quality of samples. 



Chapter 5 

Hybrid Approaches for Generating 

Fractional Brownian Motion 

From the previous chapter, i t is known that the dFGN algorithm is the only one which can generate sam­

ples on-the-fly. The dFGN and the W M function are the best in terms of accuracy while the R M D , the 

SRA algorithms and the W M function are the top three in term of efficiency. Since the R M D and the 

SRA algorithms iteratively bisect the entire sample traces from two known endpoints, they can easily 

be incorporated into the dFGN algorithms. The W M function also can be incorporated with the dFGN 

algorithm. These characteristics lead to three hybrid approaches, which can hopefully create new algo­

rithms with both improved accuracy and efficiency, and the ability to operate 'on-the-fly'. These new 

algorithms are developed in Sec. 5.1, Sec. 5.3, and Sec. 5.5, respectively, while the evaluations of their 

sample traces are carried out in Sec. 5.2, Sec. 5.4, and Sec. 5.6. 

5.1 The dFGN Endpoints with Interpolated RMD Subtraces 

The dFGN algorithm is directly derived f rom the definition of fractional Brownian motion. It is a moving-

average procedure that aggregates M x n Gaussian random variables with a kernel function to generate 

one sample o f fractional Gaussian noise. The kernel function is decided by the Hurst parameter. The 

higher the Hurst parameter, the stronger the samples correlate. Therefore, the larger the range M and the 

more detailed the substates n, the greater the increase in accuracy of the samples to reflect the properties 

of L R D . However, the computational time increases rapidly. 

The idea of the R M D method is to recursively subdivide the intervals and construct the values of 

the process at the midpoint using the values at the endpoints. I f a process Y, is to be computed n times 

between 0 and 1, then the computation starts by setting Fo = 0 and sets Y\ as a sample of a Gaussian 

random variable. Next, F i is constructed as the average of YQ and Yi, i.e., j {YQ + Yi) plus a displacement. 

Executing this procedure recursively n times, a sample trace with 2" points is obtained. I f Y, were truly 

an F B M process, then the midpoint displacement Y,j±h - (y„ + Yb)/2 for the interval [a,b\ would be 

independent of the increment Yt, - Y^, over the whole interval. The displacement would be a Gaussian 

random variable with mean zero and a variance which follows the scaling property. 
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© samples generated by dFGN 

© samples generated by R M D 

Figure 5.1: A two-stage of the dFGN-i-RMD algorithm with 2 levels of depth. 

The performance of the R M D algorithm is rather attractive, but has low accuracy in capturing the 

target Hurst values. In contrast, the dFGN algorithm can be close to the Hurst value, but its inefficiency 

prevents its widespread use. Since the R M D algorithm interpolates the trace between two endpoints, it 

is reasonable to generate a subtrace between two endpoints given by the dFGN algorithm. 

Without loss of generality let the position of the origin at time 0 be 0. Generating increments using 

the dFGN algorithm, say X i , the first two end F B M samples, YQ and Yi, are obtained. Then, applying the 

R M D algorithm with pre-given levels of depth, n, the subtrace {Yi}, for i= ,l,is generated. By 

using the dFGN algorithm again X2 is produced. The third position of the F B M process is Y2 = X\ +X2. 

The R M D algorithm can make use of Y[ and Y2 to generate another subtrace {Yj}, for i = 1 + + 

^ , • • • ,2. Repeating this procedure, every iteration generates 2" samples of the F B M sample path. The 

procedure is depicted in Fig. 5.1. 

In accordance with the hybrid approach. Fig. 5.2 illustrates F B M and corresponding FGN processes 

produced by the dFGN, R M D , and hybrid algorithms with H = 0.7. The results f rom the hybrid algorithm 

is for 5 levels of depth; that is, for every iteration a subtrace with 32 samples is generated. The dFGN 

and hybrid algorithms evaluate their trace with n = 10 and M = 700, i.e., the range covers 700 time 

units and every time unit is divided into 10 subintervals. On the left-hand column three traces of F B M 

are illustrated while their second-order self-similar processes, the traces of FGN, are depicted in the 

right-hand column. 

The drawback of the massive computational effort required for the dFGN algorithm is alleviated in 

the combination of the dFGN and R M D algorithms because of the speed of the R M D algorithm. The 

sample size of this hybrid algorithm is constrained by the R M D algorithm because its number of samples 

must be a power of 2. The average computational time for the hybrid approach with five different levels 

of depth and the dFGN and R M D algorithms are depicted in Fig. 5.3. Between the results of the dFGN 

and R M D algorithm five different hybrid approaches are indicated by 'Hybr id - l ' , 'Hybrid-7', 'Hybrid-

3 1 ' , 'Hybrid-255', and 'Hybrid-1023'. The symbol of 'Hybrid-jc' means that between two endpoints 

there are x samples generated by the R M D algorithm, i.e.,x+ 1 = 2", where n is the levels of depth. 

The hybrid approach significantly reduces the computational effort. The computational time is ob-
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Figure 5.2: F B M and FGN traces of the dFGN, R M D and dFGN-HRMD algorithms with H = 0.7. 
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Figure 5.3: Mean computational time of the dFGN+RMD algorithm to generate 32768 sample points. 

tained by more than 180 simulations for each algorithm. The dFGN algorithm takes 360 seconds more 

to generate 32768 samples while the RMD algorithm takes less than one second. For the dFGN+RMD 

algorithm with one level of depth, the samples generated by the dFGN and RMD algorithms are equally 

mixed. Its computational time is less one half that of the dFGN algorithm. The dFGN+RMD with 10 

levels of depth is less than twice the computational effort of the RMD algorithm. The detailed average 

computational time of each algorithm with different Hurst parameter settings are compiled in Table D.l . 

5.2 Statistical Analysis of the dFGN+RMD Algorithm 

In Sec. 3.5, three estimators, the R/S statistic, the VT plot, and Whittle's approximate MLE, are in­

troduced and used to examine the algorithms which are introduced in Sec. 4.1. Similarly, the hybrid 

approach is also examined by the three estimators. Although the VT plot is not an accurate estimator, 

it is popular and easy to apply. Therefore, it is still used as a reference to the accuracy of the hybrid 

approach. In addition to the estimators, the Q-Q plot is also used to examine the goodness-of-fit of the 

generated samples to normal distribution. 

5.2.1 The Q-Q Plot 

Although the hybrid approach combines two different algorithms, it still aggregates Gaussian random 

variables to generate samples. The higher the levels of depth are, the less the Gaussian samples are 

aggregated. In Fig. 5.4 the hybrid approach with six different levels of depth is depicted in order to 

evaluate the goodness-of-fit with normal distribution. The diagrams Fig. 5.4 (b), (c), (d), (e), (f), and (g) 

are depicted with 1, 3, 5, 7, 9, and 10 levels of depth. The first and last diagrams are the Q-Q plot of the 

dFGN and RMD algorithms. All of the diagrams show the sample traces with a selected random seed 

and the same Hurst value, H = 0.99. 
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Figure 5.4: The Q-Q plot of the sample traces generated by the dFGN, R M D and dFGN-i-RMD algo­

rithms with H = 0.99. 
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Comparing the diagrams the dFGN algorithm exhibits the best result for goodness-of-fit. The Q-Q 
plot of the hybrid approach with 1 level of depth exhibits a better result than the R M D algorithm. The 
hybrid approach with 3 levels of depth and the R M D algorithm have almost the same quality while the 
hybrid approach with 5 levels of depth is slightiy worse. The Q-Q plot of the hybrid approach with 7 
levels of depth exhibits an acceptable quality. When the levels of depth in the hybrid approach increased 
to 9 and 10, a serious distortion of the normal distribution is exhibited. Thus, the Q-Q plots suggest that 
the usage of the hybrid approach is best with no more than 7 levels of depth. In turn, this means that the 
subtraces, generated by the R M D algorithm, between two endpoints generated by the dFGN algorithm, 
do not require more than 127 samples. 

5.2.2 The R/S Statistic 

The R/S analysis is a heuristic graphical approach that can be used to estimate the Hurst parameter of an 

F B M process. The detailed discussion of the R/S statistic is found in Sec. 3.2 and Sec. 3.5. The estimated 

Hurst value is directly extracted f rom the slope of the regression line of the R/S values. 

The results using the R/S statistic are demonstrated in Fig. 5.5. The solid line is the regression line 

and its slope is the Hurst value, the dotted line in each diagram is the reference line that represents the 

target Hurst parameter. A l l the sample traces that have been selected for these diagrams use H = 0.9 

with the same random seed is the same as for the sample traces generated by the Q-Q plots. The results 

using the R/S statistic exhibit chaotic behavior. It is very difficult to extract a simple rule to demonstrate 

the variety of the results. The R M D algorithm is closest to the expected Hurst parameter almost the same 

as the simulation result. However, the hybrid approach with 10 levels of depth, which was the closest 

case with the R M D algorithm in Fig. 5.5 (g), does not exhibit a significantiy good result. The result in 

Fig. 5.5 ( f ) , even exceeds the theoretical limitation / / = 1.0. The result for the hybrid-1 combination is 

more for either the dFGN or R M D algorithms alone. 

The chaotic results using the R/S statistic make it difficult to decide which case is better. One possible 

explanation for the spread of results is the selection of the random seed values. From the study in 

Chapter 4 the R/S statistic is highly dependent on the selection of random seeds. Although the different 

combinations of the hybrid approach are generated from the same random seed, the mixing rates permute 

the sequences of the Gaussian random variables. Thus, it is almost impossible to predict the trend of the 

results using the R/S statistic. 

5.2.3 The Variance-Time Plot 

The V T plot is another heuristic estimator in which a regression line is extracted from the plot of log­

arithmic variance versus logarithmic time interval. The slope of the regression line is equal to 2 - 2H. 

The estimator is derived f rom the property of FGN by which the variance of two different samples of 

F G N follows the scaling property. The detailed derivation of the estimator is stated in Sec. 3.5. 

The results using the V T plot are illustrated in Fig. 5.6. The diagrams are illustrated being the same 

sample traces as the Q-Q plots. A l l the sample traces are generated with the same random seed and the 

highest degree of self-similarity in our simulation, H = 0.99. As with previous figures, the first and last 
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diagrams are generated by the dFGN and R M D algorithms. The diagrams with the hybrid approach are 

procured with 1,3,5,7,9, and 10 levels of depth. In these diagrams, the best result is neither the case of 

the dFGN algorithm nor that of the R M D algorithm. The hybrid approach with 9 levels of depth exhibits 

the best result. However, when the level of depth increases or decreases one step, the value drops sharply 

away f rom the target value. There is only one case, the level of depth of 3, where the value is worse 

than the dFGN algorithm. A number of the higher levels of depth are even better than that of the R M D 

algorithm. However, the results still vary. Furthermore, the V T plot is also highly dependent on the 

selection of random seed. Therefore, it is difficult to select which case is more accurate. 

From Fig. 5.6 (e)-(h), the dots suggest a polynomial regression rather than linear regression. In 

property L'-4, Sec. 3.3, the approximation of the autocorrelation is proportional to the lag k with a simple 

power law. With theoretical approximation, the factor (3 is equal to 2 — 2H. In practice, taking infinite 

samples to produce the variance-time plot is impossible. The simplification and truncation lead to the 

approximation error and produce the non-linear regression results. Using nonlinear curves (polynomial 

regression) to fit the dots would lead to great difficulty in finding the relationship between the curve 

and the Hurst parameter. Therefore, it is impractical to use nonlinear curves to fit the results of the 

variance-time plot. 

5.2.4 Whittle's Approximate M L E 

While the R/S and V T tests focus on the time domain, the Whittle's approximate estimator examines 

the properties in the frequency domain. Whittle's M L E extracts the Hurst value by minimizing a log-

likelihood function. This estimator is derived through a rigorous mathematical derivation rather than a 

heuristic approach. The detailed discussion of Whittle's M L E is stated in Sec. 3.5. 

The results using Whittie's M L E with aggregation levels is depicted in Fig. 5.7. As with the pre­

vious figures for the other estimators the first and last diagrams are the results of the dFGN and R M D 

algorithms. Between them are the sample traces generated by the different levels of depth. The sample 

traces used are the same as those analyzed by the V T plots, generated with a selected random seed and 

the Hurst parameter , H = 0.9. The initial result of the hybrid approach in Fig. 5.7 (b) is even higher 

than the target Hurst value H = 0.9. However, the mean value quickly drops below the target value when 

the aggregation levels are greater than 30. In Fig. 5.7 (c) the hybrid approach with 3 levels of depth is 

illustrated. The values with different aggregation levels are almost along the reference line, the target 

value H = 0.9. When the levels of depth increase, the initial values gradually drop below the reference 

value. When the levels of depth are greater than 5, the values are mostly lower than those of the R M D 

algorithm except for the initial values. Thus, these results suggest that the hybrid approach is preferred 

when the level of depth is less than 5. 

The results with a fixed Hurst parameter above are followed by a study of the relationship of the level 

of depth at different Hurst parameters. The first row of diagrams in Fig. 5.8 are the values of sample 

traces generated with H = 0.5. Similariy, the other rows of diagrams depict the results obtained from 

different Hurst parameters, H = 0.7, 0.9, and 0.99. The right-hand side of the diagram illustrates the 

results of the Hurst approach with 1 - 5 levels of depth while the other side depletes the results obtained 
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f rom the sample traces with 6 - 10 levels of depth. A l l the sample traces are generated with a selected 
random seed. 

In Fig. 5.8 (a) and (b) the curves portray a chaotic deployment over the range from 0.38 to 0.54. 

Surprisingly, the worst case is the hybrid approach with 1 level of depth. In this case, not only is the 

simulation time the longest but also, the results with different aggregation levels are not as accurate as 

expected. When the aggregation level increases, the values drop sharply. For other cases, the results 

fluctuate without any significant increasing or decreasing trend. However, the majority of the results in 

these two diagrams are lower than the target Hurst parameter. When examining the whole traces as one 

aggregation level, the curves in Fig. 5.8 (a) are around H = 0.5 while the curves in Fig. 5.8 (b) are lower 

than the target value. 

On the second row of Fig. 5.8 the result using Whittle's M L E with aggregation levels are illustrated 

for H = 0.7. In the left hand diagram the results of the hybrid approach with one level of depth still 

exhibit the worst case when the aggregation levels are greater than 100. A l l the curves in Fig. 5.8 (c) and 

(d) are all less than H = 0.1, the target value. For H = 0.9 in Fig. 5.8 (e) and (f ) , the curves in these two 

diagrams f o r m two different groups. When the level of depth is less than 4, some of the results attain 

the target values. When the level of depth is larger than or equal to 4, the values are never higher than 

H = 0.9. The curves in diagram (f) illustrate that all the results are significantly inadequate. 

In the case of H = 0.99 the curves in Fig. 5.8 (g) are much neater than the other diagrams. A l l 

curves approach the target value, H = 0.99, significantly well when the aggregation level is less than 50. 

However, comparing these curves in this diagram the 'Hybrid-1 ' is still the worst case of the five. When 

examining the last diagram the curves cover a much wider range. A l l the curves in Fig. 5.8 (h) exhibit 

a similar phenomenon in that all of them show a sharp drop. For the 'Hybrid-63' and 'Hybrid-127' the 

sharp drop occurs when aggregation level is set as 80. For 'Hybrid-255' it occurs at 40. For 'Hybrid-511' 

the drop happens when aggregation level is 10. When the level of depth is set as 10, i.e., 'Hybrid-1023', 

the curve drops immediately. Actually, when examining diagram (f) the curves also slightly drop but not 

as significantly. 

This situation might be caused by the inaccuracy of the R M D algorithm. When the level of depth 

increases, the R M D algorithm dominates the hybrid sample traces. When the Hurst parameter is still low, 

the result f rom the R M D algorithm are still acceptable. However, when the Hurst value increases, the 

results f rom the R M D algorithm are highly inaccurate. While the aggregation level is small, the samples 

generated by dFGN algorithm still retain their effect. However, as the subtraces become shorter, so the 

samples generated by the dFGN algorithm become fewer. For instance, when the level of depth is 10 

and the aggregation level is 10, every subtrace contains about 3277 samples. In each subtrace only three 

samples are generated by the dFGN algorithms. Although the same proportion of samples are contained 

in the whole sequence, the samples generated by the dFGN algorithm contain only 3 strongly correlated 

samples in each sequence. Therefore, it indicates that the hybrid approach with the higher level of depth 

must be used very carefully. 

In Fig. 5.8 the ' H y b r i d - l ' curves in (a) and (c) are the worst cases for H = 0.5 and 0.7. However, 

when a different random seed is used, the situation changes. Therefore, when the Hurst parameter is 

lower, the results are more sensitive to the random seeds. In addition, when examining the same level of 
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Figure 5.9: The estimated results using the R/S statistic with different Hurst parameters. 
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Figure 5.10: The estimated results using the V T plot with different Hurst parameters. 

depth for all Hurst parameters, all the curves looks similar. This feature is especially true in the left-hand 

side column where all the curves have a similar fluctuating trend. The range of the / / = 0.7 is larger than 

for those of H = 0.5 and 0.9. For H = 0.99 the trend is maintained but is minimized, and is not affected 

by the choice of random seed. 

5,2.5 Compar i sons of Different Combination Schemes 

In above section the Q-Q plot, the R/S statistic, the V T plot were applied to examine the sample traces 

generated with a selected random seed. The effect of changing the Hurst parameters for the three esti­

mators are illustrated in Fig. 5.9 - 5.11. In Fig. 5.9 the left-hand side of the diagram depletes the result 

of the hybrid approach with level of depth from 1 to 5 while the right-hand side illustrates the results 

with levels of depth f rom 6 to 10. Although the R/S statistic is a random-seed sensitive estimator, it can 

still be a reference for the Hurst parameter. The curves in the diagrams are not smooth, especially in the 

case of the curves extracted f rom the sample traces with higher levels of depth which show sharp turns 

between 0.85 to 0.95. The curves on the left-hand side of the diagram exhibit significantly lower results 

as the Hurst parameter increases, while the curves on the right of the diagram display chaotic behavior. 

The 'Hybr id -5 i r curve is even higher than unity when the Hurst parameter is around 0.85 and 0.9. The 

'Hybrid-63' curve has a deep drop when the Hurst parameter is higher than 0.9. Although the curves in 

Fig. 5.9 are obtained f rom the same selected random seed, the curves obtained by other random seeds 

indicate a similar trend. Therefore, the diagrams suggest that the level of depth should not exceed 5. 
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Figure 5.11: The estimated results using Whittle's approximate M L E with different Hurst parameters. 

The diagrams of Fig. 5.10 illustrate the results using the V T plot. Unlike the curves of the R/S 

statistic, the curves produced by the V T plot are much smoother. However, the curves are still chaotic. 

The values for the different levels of depth are very different when the Hurst parameter is near 0.5. When 

the Hurst parameter approaches unity, none of the results exceed the target value. 

The results using Whittle's M L E with changing Hurst parameters are depicted in Fig. 5.11. As with 

the previous two estimators the hybrid approach with 1 to 5 levels of depth is depicted in left-hand side 

of the diagram while the other levels of depth are illustrated on the right hand side. When the Hurst 

parameter is near 0.5, all the curves fit the target value very well. When the Hurst parameter increases, 

the curves gradually disperse. For the curves, 'Hybr id - l ' , 'Hybrid-3', and 'Hybrid-7', the values reach 

0.99 when the Hurst parameter is more than 0.95. For 'Hybrid-15' the result is also greater than the target 

value when H = 0.95. The curves on the left hand side are under the target values between H = 0.55 

to 0.85. The curves on the right hand side exhibit significantly worse results. The results are always 

lower than the target values between 0.6 to 0.95. A l l the curves in both diagrams are concave. Thus, 

to prevent under and over estimation, the 'Hybrid-31' and 'Hybrid-63' algorithms are the better choice 

with 'Hybrid-3r being slightly better than the 'Hybrid-63'. 

The mean results of the hybrid algorithm with different levels of depth and the dFGN and R M D 

algorithms are illustrated in Fig. 5.12. The data for this diagram is compiled in Table D.7. The scattered 

symbols are the mean values of the estimated results. The bar lines on the scattered symbols are their 

95% confidence intervals. The three dotted lines on these figures are the reference values, H = 0.5,0.7, 

and 0.9. 

The mean results using the R/S statistic are depicted in Fig. 5.12 (a). The bottom row contains the 

results obtained f rom the sample traces generated with H = 0.5. In this case the R M D algorithm still 

exhibits the best result. A l l the mean results of the hybrid approaches are worse than those of either the 

R M D or the dFGN algorithm. When H = 0.7 the hybrid algorithm with 1 and 8 levels of depth exhibit 

very accurate results. F o r / / = 0.9 the hybrid approach with higher level of depth exhibits a more accurate 

mean value. When examining the confidence intervals the range slightly increases then decreases. Thus, 

the figure suggests that the higher level of depth, the better the results. However, this conclusion leads 

to a controversial argument because a higher level of depth w i l l cause worse results. For example, when 

referring to Fig. 5.9 the hybrid approach with higher level of depth has a sharp turn near H = 0.9. In 
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Figure 5.12: Mean estimated Hurst values of the dFGN+RMD algorithm. 

Fig. 5.12 (a), the mean results with highest Hurst parameter is 0.9. Therefore, the figures are misleading. 

Fig. 5.12 (b) depicts the mean results using the V T plot, along with the confidence intervals for the 

dFGN, R M D , and hybrid algorithms. However, f rom the previous analysis, the V T plot has been found 

to be a poor estimator as it attempts to fit a straight line to nonlinear scattered dots. Thus, the results 

using the V T plot are used as a reference rather than a conclusion. 

The mean results of the sample traces with Whittle's M L E are illustrated in Fig. 5.12 (c). A l l the 

mean values are on the reference line when H = 0.5. The mean results with H = 0.7 exhibit a gradually 

decreasing trend f rom the left hand side to right hand side, the mean results also exhibit a very insignifi­

cant improvement when the level of depth is higher than 5. The 'Hybrid-255' and 'Hybrid-1023' do not 

exhibit a significant improvement. When H = 0.9 the 'Hybr id - l ' is the only case whose mean result is 

over the reference line. 

5.3 The dFGN Endpoints with Interpolated SRA Subtraces 

Similar to the R M D algorithm, the SRA algorithm generates interpolated samples between two end-

points but attempts to overcome the shortcoming of generating independent subtraces. Therefore, the 

SRA algorithm can more easily be incorporated with the dFGM algorithm that produces endpoints to 

generate F B M samples. However, the SRA algorithm changes existing samples at every iteration. For 

the generated samples, the addition of the Gaussian random variables with different variance followed 

by Eq. (4.22) w i l l not affect the two cascade subtraces. The two endpoints generated by the dFGN algo-
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rithm need to add extra Gaussian value by each iteration as well. The endpoint between two subtraces 

doubly adds Gaussian random variables. Actually, the original design of the SRA algorithm was for the 

generation of samples from a whole flat axis. Adding extra Gaussian random variables to endpoints is 

necessary. To incorporate tiie dFGN algorithm with the SRA algorithm it is not necessary to add the 

extra Gaussian values to the endpoints. Therefore, the two endpoints for a subtrace are fixed. Cascading 

subtraces can smoothly form a F B M trace. 

It is better for the sample size of the SRA algorithm to be an integer power of 2 of the level of 

depth. Although a generalized version has been proposed to produce samples with arbitrary size, it is 

too simplified to generate good sample traces. The average computational time of the dFGN, SRA, and 

dFGN-hSRA algorithms are depicted in Fig. 5.13. All the simulations generate 32768 samples. There 

are at least 60 simulations for each algorithm to obtain the average computational time. The two outer 

bars of this figure are the average computational time of the dFGN and SRA algorithms. Between them, 

algorithm 'Hybrid-x' means that x samples generated by the SRA algorithm are interpolated between 

two end points generated by the dFGN algorithm. All the detailed computational times are shown in 

Table D.2. The worst case of the hybrid algorithm is about twice as fast compared to the dFGN algorithm. 

The computational time of the dFGM-i-SRA algorithm with 10 levels of depth is slightly less than twice 

that of the S R A algorithm. Thus, the hybrid algorithm significantly reduces the computational effort of 

the dFGN algorithm, but still retains the advantage of the 'on-the-fly' operation. 

5.4 Statistical Analysis of the dFGN+SRA Algorithm 

The generated samples of the dFGN+SRA algorithm are examined by the Q-Q plot, the R/S statistic, 

the V T plot, and Whittle's M L E in the following sections. The final part of this section discusses the 

statistical estimated results of the hybrid approach. 
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Figure 5.14: The Q-Q plot of the sample traces generated by the dFGN-i-SRA algorithm with H = 0.99. 

5.4.1 T h e Q - Q Plot 

The dFGN-i-SRA algorithm cascades subtraces generated by the SRA algorithm with the endpoints pro­

duced by the dFGN algorithm. Both of the fundamental algorithms are based on ordinary Gaussian 

random variable with weighted variances. The distribution of the hybrid approach must fit normal dis­

tribution. Four different combinations of the dFGN and SRA algorithms have been used to visualize the 

goodness-of-fit with the Q-Q plot as shown in Fig. 5.14. The dots are the quantile of the sample traces. 

The diagonal line is the ideal quantile of the normal distribution. I f the dots fit the line closely, the sam­

ples are fol lowing the normal distribution. The sample traces are generated with the same random seed 

but with different combination schemes. It can be seen that the values of quantile in all diagrams fit the 

normal distribution well. Comparing with the Q-Q plots in Fig. 5.4 for the dFGN-i-RMD algorithms, the 

dFGN-i-SRA algorithm exhibit much better results. 

5.4.2 T h e R / S Statistic 

The pox plot of the R/S statistic of the hybrid algorithm is illustrated in Fig. 5.15. A l l the dots shown 

in the diagrams are obtained by applying Eq. (3.64). The solid line is the result of the regression and its 

slope is the Hurst value. The dotted line in each diagram is the reference line that represents the target 

Hurst parameter. In Fig. 5.15 (a) the dots are generated from a sample trace generated by the dFGN+SRA 

algorithm with 1 level of depth, i.e., between two endpoints produced by the dFGN algorithm only one 

sample is generated by the SRA algorithm. In this case, the result is significandy different from the 



statistical Analysis of the d F G N + S R A Algorithm 100 

• : . i . i - H l l M ! i 
U H " : ! I ' 

1 i 1 1 1 1 1 r-
2 . 0 2 . 2 2 . 4 2 . 6 2 .8 3 . 0 3 . 2 3 .4 3 .6 

l o g f T i f n e In te rva l ) 

(a) Hybrid-l 

I 1 1 1 1 1 1 r 
2 . 0 2 . 2 2 . 4 2 . 6 2 . 8 3 .0 3 .2 3 . 4 3 .6 

l o g ( T i m e In te rva l ) 

2 . 0 2 . 2 2 .4 2 . 6 2 . 8 3 . 0 3 . 2 3 .4 3 . 6 

l o g f T i m a In te rva l ) 

(b) Hybrid-7 

I I I 1 1 1 i [ -
2 . 0 2 . 2 2 .4 2 . 6 2 .8 3 . 0 3 . 2 3 .4 3 . 6 

l o g f T i m e In ten /a l ) 

(c) Hybrid-31 (d) Hybrid-255 

Figure 5.15: The pox plots of R/S statistic of the sample traces generated by the dFGN+SRA algorithm 

with H = 0.9. 

target Hurst value, H = 0.9. The second diagram Fig. 5.15 (b), in which the samples are generated by the 

dFGN+SRA algorithm with 3 levels of depth fits the reference line well. However, as the level of depth 

increases further, the results gradually become worse. 

5.4.3 T h e Var iance -T ime Plot 

The same sample traces which are estimated by the R/S statistic are now used with the V T plot, and are 

depicted pictorially in Fig. 5.16. The dots in every diagram are obtained by applying Eq. (3.67). The 

slope of the dotted line is 2 — 2/ / by which the target Hurst parameter is represented. The solid line is the 

regressive result. The Hurst value can be obtained from the slope of the solid line. The dots calculated 

by the V T plot exhibit very different behavior in each of the four graphs. The dots in Fig. 5.16 (a) 

and (c) form convex curves while the dots in (d) form a concave curve. In Fig. 5.16 (b) the dots form 

more of a straight line. Thus, this value has better results than the other cases. However, the V T plot 

cannot accurately represent the Hurst parameters. From the previous analysis, the diagrams of the V T 

plot suggest that a threshold value may help to obtain a more accurate result. Fig. 5.16 (d) is a counter 

example, which illustrates that the slope of the dots, for values of log(Time) less than 2.5, is even worse 

than the result for the whole range. 
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Figure 5.16: The V T plots of the sample traces generated by the dFGN+SRA algorithm with H = 0.9. 
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Figure 5.17: Analytical results of the dFGN+SRA algorithm by Whitde's M L E with different aggrega­

tion levels. 
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Figure 5.18: Estimated Hurst values of the dFGN+SRA algorithm with different Hurst parameters. 

5.4.4 Whittle's M L E 

The same sample traces as used in the previous two subsections are examined by Whittle's M L E with the 

aggregation levels shown in Fig. 5.17. As with the previous estimators, the dotted lines in these diagrams 

are the reference Hurst value, H = 0.9. The solid lines are the results with different aggregation levels. 

The two dashed lines in each diagram are the upper and lower bound of 95% confidence intervals. A l l the 

diagrams in Fig. 5.17 show that the values remain the same as the aggregation level changes. However, 

all the results are significantly different f rom the target Hurst values. Even the upper bounds of the 95% 

confidence intervals never reach the reference lines. On comparing these four graphs the results gradually 

approach the reference lines with greater levels of depth. It means that the more levels of depth used in 

this hybrid algorithm, the more accurate the results. 

5.4.5 Compar i sons of Different Combinat ion Schemes 

Fig. 5.18 depicts the values using selected random seed which is chosen to investigate the effect of the 

changing Hurst parameter. In this figure, three different estimators are illustrated with different diagrams. 

A l l the symbols of the curves are represented in the legend. A dotted straight line, which does not appear 

in the legend, is the reference line which is used to represent the desired Hurst values. The result using 

the R/S statistic with different combination schemes is shown in Fig. 5.18 (a). In this diagram, only 

two combination schemes, the ' H y b r i d - l ' and 'Hybrid-7' curves, exhibit accurate results when the Hurst 

parameter is / / = 0.5. The other three schemes cannot generate accurate sample traces. When the Hurst 
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Figure 5.19: Mean estimated Hurst values of the dFGN+SRA algorithm. 

parameter increases, the result of the 'Hybrid-1 ' scheme gradually departs from the reference line. Only 

the result of the 'Hybrid-7' scheme fits the reference line well. 

Fig. 5.18 (b) illustrates the results using the V T plot. As with the results using the R/S statistic, the 

' H y b r i d - r and 'Hybrid-7' curves are the two best combination schemes. When the Hurst parameter is 

lower than 0.7, the ' H y b r i d - l ' curve fits the reference line reasonably well. However, it gradually parts 

f rom the reference line. Although the 'Hybrid-7' curve gradually departs from the desired values i f the 

Hurst parameter is larger than 0.8, it is the closest curve to the reference line. The 'Hybrid-1023' scheme 

is the worst case in this diagram. The curve starts from 0.27 and finishes at 0.74 as the Hurst parameter 

is set f rom 0.5 to 0.99. 

Unlike the previous two diagrams, the 'Hybrid-7' scheme is the worst case when using Whittle's 

M L E in Fig. 5.18 (c). A l l the curves in this diagram are below the reference line, with the best results 

for the sample traces which are generated as short-range dependence, then they gradually depart from 

the desired Hurst values. The 'Hybrid-1023' scheme exhibits the best result by Whittle's M L E while the 

'Hybrid-255' curve is only a litde worse. The 'Hybr id - l ' and 'Hybrid-3r curves form another group 

but are significantly worse than the best two schemes. 

From previous study the R/S statistic and the V T plot have very wide confidence intervals. Only 

Whittle's M L E offers a concise result. Fig. 5.19 depicts the mean values of the dFGN, SRA, and 

dFGN+SRA algorithms and their confidence intervals. Table D.8 records the data shown in Fig. 5.19. 

Three separate diagrams are presented in order to compare the results of the three estimators in this fig­

ure. A l l these diagrams contain three dotted lines which indicates the desired Hurst values, H = 0.5,0.7, 
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and 0.9. The symbols of the star, asterisk, and hexagon represent the mean results of the sample traces 
with H = 0.5,0.7, and 0.9, respectively. The barline on the symbols are their 95% confidence intervals. 
The values displayed in this figure are obtained from twenty different sample traces. The text on the 
X-axis indicates the testing algorithm. The text of 'Hybrid-x' means that the sample traces are generated 
by the dFGN algorithm with l o g 2 ( x + 1) levels of depth. 

The results using the R/S statistic for this hybrid algorithm are illustrated in Fig. 5.19 (a). When 

examining the bottom row of the diagram {H = 0.5), the mean results of the 'Hybrid-31' and 'Hybrid-

255' schemes are the worst two. The others have almost the same results in terms of quality, although two 

of them are under the reference line, while the other three are over it. When considering their confidence 

intervals, the dFGN algorithm still has the shortest barline while the 'Hybr id - l ' , 'Hybrid-7', and 'Hybrid-

1023' scheme are significantly better than the SRA algorithm. For the cases with the asterisk symbol the 

dFGN, SRA, and 'Hybr id-1 ' cases lie on the desired reference line. The other four combination schemes 

are considerably worse than them. At the top of this diagram, all of the mean values are inaccurate. The 

' H y b r i d - l ' and 'Hybrid-7' schemes are the best two, but their confidence intervals are slighdy wider than 

the dFGN and SRA whose mean results are slightly worse than the best two hybrid schemes. From this 

diagram, the dFGN+SRA algorithm with the level of depth less than 3 can generate good quality sample 

traces. 

The bottom row of Fig. 5.19 (b) displays the mean results using the V T plot and their confidence 

intervals with H = 0.5. The ' H y b r i d - l ' and 'Hybrid-7' schemes are the best two except for the SRA 

algorithm when the sample traces are generated with short-range dependence. When the Hurst parameter 

increases to 0.7, the mean result of the 'Hybrid-7' scheme is better than that of the SRA algorithm. The 

top row of the diagram shows that the 'Hybrid-7' scheme is the best result. Therefore, this diagram 

suggests that the dFGN+SRA algorithm with 3 levels of depth should generate the best quality of fractal 

samples. However, this suggestion is not reliable because the V T plot is a poor estimator as has been 

shown in our previous study. 

I t has been shown that Whittle's M L E is the best estimator among the three chosen estimators. The 

results using Whittle's M L E is illustrated in Fig. 5.19 (c). In this diagram, all the confidence intervals are 

so small that they can be ignored. For the 'star' symbols, the dFGN, SRA, and 'Hybrid-1023' exhibit the 

best three results while the others are lower than the reference line. For H = 0.1 and 0.9 only the dFGN 

case exhibits accurate results. The hybrid algorithm with different combination schemes are worse than 

the SRA algorithm. 

According to the above discussion, the analysis of the results using the R/S statistic indicate that 

lower levels of depth can generate better fractal sample traces. In contrast, the dFGN+SRA algorithm 

with higher levels of depth produces a better quality of sample traces when examining the samples with 

Whittle's M L E . Actually, the lower levels of depth in the dFGN+SRA algorithm wi l l produce larger 

approximation errors. From the derivation of the SRA algorithm, the basic assumption is that the F B M 

trace are of infinite resolution. The successive additions of the Gaussian random variables with weighted 

variance w i l l be seriously truncated by the lower levels of depth. Ideally, for each sample, there should 

be infinite Gaussian random variables added to it. However, there are at most 10 weighted Gaussian 

random variables that have been added to the samples in the dFGN+SRA algorithm with 10 levels of 
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depth. To generate 32768 samples of fractal traces needs at the most 15 times of addition. Therefore, 
using the dFGN+SRA algorithm w i l l not generate any sample traces that are more accurate than using 
the SRA algorithm. 

Although the approximation error of the SRA algorithm can easily be overcome, it still suffers a 

more fundamental problem which means that this algorithm wi l l not be better than the R M D algorithm. 

Initially, the SRA algorithm was proposed to overcome the shortcomings of the R M D algorithm and 

there was an expectation that it would produce better quality sample traces. In the R M D algorithm, a 

sample w i l l not change once it is fixed, whereas the SRA algorithm continues changing the value of 

a sample by adding extra Gaussian random variables. Although the value of this sample changes, the 

sample is still independent f rom other samples. For every iteration, the SRA algorithm adds an extra 

value to each existing sample and newly generated sample. The extra Gaussian random variables are still 

independent. Thus, the samples are independent of each other. According to this discussion the SRA 

algorithm never generates fractal samples which are better in terms of quality in comparison to the R M D 

algorithm. 

5.5 The dFGN Endpoints with Weierstrass-Mandelbrot Subtraces 

In Chapter 4, the dFGN algorithm and the W M function are the two algorithms which generate the 

highest quality F B M or FGN sample traces. The dFGN algorithm is derived from the definition of 

F B M . I t is a moving-average algorithm which can generate samples on-the-fly. The only drawback of 

this algorithm is its massive computational time. The W M function is originally a continuous non-

differentiable function that has the same properties as F B M . It represents the properties of F B M in the 

frequency domain. Thus, to generate F B M samples using the W M function, there is a requirement to 

transform the random samples in the frequency domain to the time domain. Making use of the fast 

Fourier transform (FFT) is the most economical method to deal with this transformation. Using a hybrid 

of the W M function with the dFGN algorithm may reduce the computational effort and produce a better 

quality of fractal samples. 

To combine these two algorithms is a difficult problem because the dFGN algorithm generates sam­

ples in the time domain while the W M function produces random samples in the frequency domain. The 

R M D and SRA algorithms were easily incorporated with the dFGN algorithm. These two algorithms 

generate samples by interpolating two existing samples with a number of weighted Gaussian random 

variables. This same method cannot be used to combine the dFGN algorithm and the W M function. 

To deal with this problem the samples generated by the dFGN algorithm become the major part of a 

subtrace, while the samples generated by the W M functions can be viewed as the fluctuations of the sub-

traces. The difference of two endpoints w i l l cause a monotonic increasing or decreasing function within 

them. 

Let Bnit) be a F B M process whose values at two time epochs are known. Assume that S//(f) = a 

and Bnit + T)=b. Without loss of generality, let the time epoch t be 0. So, B//(0) = a and Bh{T) = b. 
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Figure 5.20: Mean computational time of the dFGN+WM algorithm to generate 32768 sample points. 

The variance of the F B M process can be expressed as 

E[\BHiT)-BHm^] = a^ = {b-a)\ (5.1) 

Then, the F B M process between these two time epochs is 

Bnit) = j{b~a) +BHiO)+BH,wM{t), with 0 < r < 7, (5.2) 

where BH,wM{t) is the fluctuating part of the subtrace. The magnitude part of the W M function follows 

Gaussian random variables while the phase part follows an exponential distribution. Therefore, the 

variance of the magnitude part must be revised. After derivation (see Appendix B), the variance of a 

Gaussian random variable is 

N 

4W = 4)'"<^'-dnb-af]/J^n-
n=l 

1-2H 

N 

/ I = l 

1-2H 

(5.3) 

(5.4) 

The comparison of the computational times of the dFGN algorithm, the W M function, and the 

dFGM+WM algorithm is illustrated in Fig. 5.20. The two outer bars of this figure are the results of the 

dFGN algorithm and the W M function. Between them, the results of different combination schemes of 

the dFGN+WM algorithm are depicted. Similar to the previous hybrid approaches, algorithm 'Hybrid-x' 

indicates that x samples generated by the W M function are placed within two end points generated by the 

d F G N algorithm. The results shown in Fig. 5.20 are the average values of at least sixty simulations for 

each algorithm. Every simulation generates 32768 samples. The average computational time of the W M 

function is slightly less than 3 seconds while that of the dFGN algorithm is about 120 times more. The 

worst case of the hybrid algorithm is about half of the computational time of the dFGN algorithm. The 

'Hybrid-1023' scheme is the best of the dFGN+WM algorithm in which the average simulation time is 

23% more than the W M function. Therefore, the hybrid approach significantly reduces the disadvantage 

of the dFGN algorithm. 
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Figure 5.21: The Q-Q plot of the sample traces generated by the dFGN+WM algorithm with H = 0.99. 

5.6 Statistical Analysis of the dFGN+WM Algorithm 

The simulation results of the dFGN+WM algorithm are examined by the Q-Q plot, the R/S statistic, the 

V T plot, and Whittle's M L E . First, the Q-Q plot is used to examine the goodness-of-fit of the simulation 

samples. Then, the pox plot of the R/S statistic, the plot of variance versus time, and Whittle's M L E with 

aggregation levels are applied to extract the Hurst values from the simulation results. In the final part of 

this section, many simulations with the same combination scheme and Hurst parameter are used to test 

the robustness of the algorithm. 

5.6.1 T h e Q - Q Plot 

The dFGN algorithm generates samples by adding together weighted Gaussian random variables with a 

weighting function. Therefore, its samples should fit the normal distribution. Although the W M function 

generates its samples in the frequency domain, the magnitude part is based on Gaussian random variables 

and its phase is a uniform distribution. After transformation, the samples in the time domain become 

a normal distribution as well. Four different combination schemes of the dFGN+WM algorithm are 

examined by the Q-Q plot with normal distribution as shown in Fig. 5.21. The dots in these diagrams 

are their quantile values. The reference line in each diagram represents the ideal quantiles of normal 

distribution. A l l the diagrams exhibit that the samples fit a normal distribution well. For the 'Hybrid-31' 

and 'Hybrid-255' schemes, most of the samples fit the reference line accurately, but a sample point is 

distant f rom the reference line in the left bottom comer. However, this sample wi l l not affect the matching 
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Figure 5.22: The pox plots of R/S statistic of the sample traces generated by the dFGN+WM algorithm 

with H = 0.9. 

of a normal distribution. 

5.6.2 T h e R / S Statistic 

The same selected random seed as previous subsections is used to generate samples with H = 0.9. Their 

R/S statistic results are illustrated in Fig. 5.22. The dots shown in these four diagrams are obtained by 

the calculation of rescaled adjusted range. The solid line is the regressive result of the dots while the 

dotted line is the desired Hurst value. The slope of these two lines are the Hurst result and the ideal Hurst 

value, respectively. Fig. 5.22 (a) illustrates the result of the dFGN+WM algorithm in which the sample 

generated by the dFGN algorithm follows the sample generated by the W M function, and vice versa. 

For the 'Hybrid-7' scheme the samples generated by the dFGN+WM algorithm accurately fit the desired 

Hurst value, as shown in Fig. 5.21 (b). When the size of the interpolated W M sample increases, the result 

decreases dramatically. In Fig. 5.22 (d), the dots of the R/S results are scattered over the diagram and its 

regressive result is almost zero, a line parallel to the x-axis. 

5.6.3 T h e Var iance -T ime Plot 

The same sample traces analyzed in the R/S statistic are examined by the V T plot as well, shown in 

Fig. 5.23. Four different combination schemes are tested in this figure. The dots in these diagrams 

represent the calculated results. The Hurst values of these sample traces can be obtained from the slope 
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Figure 5.23: The V T plots of the sample traces generated by the dFGN+WM algorithm with H = 0.9. 

of the regressive line, (3, following the relationship, p = 2 - 2/ / . The dots in the 'Hybrid-31' and 'Hybrid-

255' schemes form nonlinear curves while the other two form straighter curves. The 'Hybrid-7' and 

'Hybrid-255' cases are two which fit the reference line reasonably accurately, especially in comparison to 

the other two schemes. From previous analysis the 'Hybrid-255' scheme is not so reliable, therefore this 

might mislead the result. The dots of the 'Hybrid-255' scheme form a nonlinear curve. The regressive 

line cannot very well match the dots, so the real Hurst value might change from case to case. 

5.6.4 Whittle's M L E 

Fig. 5.24 depicts the results using Whitde's M L E with different aggregation levels. The solid line rep­

resents the point estimated result using Whittle's M L E . The two dashed lines in each diagrams are the 

upper and lower bounds of 95% confidence intervals of the solid line. The dotted lines in this figure are 

the desired Hurst parameter, H = 0.9. In Fig. 5.24 (a) the result is almost parallel to the reference line, but 

the value is significantly lower than the desired Hurst value. The result of the 'Hybrid-7' scheme fits the 

reference line when the aggregation level is low, but the result decreases dramatically as the aggregation 

level increases. The results of the 'Hybrid-3r scheme shown in Fig. 5.24 (c) are much higher than the 

desired Hurst value when the aggregation level is low and then they decrease quickly as the aggregation 

level increases. For the 'Hybrid-255' scheme, the result is always much lower than the target Hurst value, 

H = 0.9. The curve in Fig. 5.24 (d) fluctuates and decreases as the aggregate level increases. The point 

result is even lower than 0.2 i f the aggregation level is larger than 130. 
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Figure 5.24: Analytical results of the dFGN+WM algorithm by Whittle's MLE with different aggregation 

levels. 

5.6.5 Comparisons of Different Combinations 

The effect of changing the Hurst parameter from short-range dependence to LRD is illustrated in Fig. 5.25. 

Three diagrams are used to present the results using the R/S statistic, the VT plot, and Whittle's MLE 

with different combination schemes. The meanings of the lines are indicated in the legend. The reference 

dotted line not shown in the legend is the target Hurst value. 

The curves shown in Fig. 5.25 (a) are not similar Curve 'Hybrid-255' and curve 'Hybrid-1023' 

slightly increase, then dramatically decrease as the Hurst parameter increases, to the extent that the values 

are even less than 0. This result violates the fundamental definition of FBM whose Hurst parameter must 

be in the interval (0,1). Of the other three curves, the 'Hybrid-7' scheme exhibits the best result, which 

is almost along the reference line. The value using the R/S statistic with 'Hybrid-7' scheme is slightly 

larger than the target value when the Hurst parameter is less than 0.9, thereafter the result is less than the 

target Hurst value. Although curve 'Hybrid-1' exhibits better results while the Hurst parameter is less 

than the 0.65, thereafter it continuously departs from the reference line. 

In Fig. 5.25 (b) the results using the VTplot shows that the 'Hybrid-7' scheme is again the best result. 

Although the 'Hybrid-1' and 'Hybrid-31' schemes have more accurate results when the Hurst parameter 

is less than 0.7, the line quickly decreases as the sample traces have a high degree of self-similarity. The 

results using Whittle's MLE are shown in Fig. 5.25 (c). Curve 'Hybrid-155' and curve 'Hybrid-1023' 

are much lower than the reference line. Moreover, the results of the 'Hybrid-255' and 'Hybrid-1023' 
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Figure 5.25: Estimated Hurst values of the dFGN+WM algorithm with different Hurst parameters. 

schemes even decrease when the Hurst parameter is in excess of 0.8 and 0.9, respectively. Among the 

other three schemes, curve 'Hybrid-7' once more exhibits the most accurate result. 

The mean results of the three estimators and their 95% confidence intervals are illustrated in Fig. 5.26. 

In these three diagrams, the symbols of the star, asterisk, and hexagon represent the mean results of 

H — 0.5,0.7, and 0.9, respectively. The barlines on the symbols are their 95% confidence intervals. The 

three dotted lines are the target Hurst values, H = 0.5,0.7, and 0.9, respectively. The two ends of these 

diagrams are the mean results of the dFGM algorithm and the WM function. Between them are the 

dFGN+WM algorithm with different combination schemes. 

For the mean results using the R/S statistic in Fig. 5.26 (a) the mean results of the dFGN algorithm 

and the W M function with H = 0.5 are better than other schemes. The mean results of the dFGN+WM 

algorithm with H = 0.5 dramatically increase as the size of the interpolated W M samples increase. The 

mean results of the 'Hybrid-255' and 'Hybrid-1023' are even higher than 0.7. The confidence intervals 

of the hybrid algorithm gradually increase. For H = 0.7, most of the mean results are on the reference 

line except for the 'Hybrid-1023' scheme. For H = 0.9, the mean results of the 'Hybrid-!' scheme is 

even better than that of the dFGN algorithm. When the size of interpolated W M samples increases, the 

mean result of the dFGM+WM algorithm decreases dramatically. The worst cases are the mean result 

of the 'Hybrid-255' scheme and the 'Hybrid-1023' scheme. These last two combination schemes of the 

dFGN+WM algorithm are not worth considering. 

Fig. 5.26 (b) illustrates the mean results using the VT plot. For H = 0.5, the results of the 'Hybrid-

r , 'Hybrid-7', and 'Hybrid-3r schemes gradually approach the target Hurst parameter. Those of the 
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Figure 5.26: Mean estimated Hurst values of the dFGN+WM algorithm. 

'Hybrid-255' and 'Hybrid-1023' schemes sharply increase and are significantly more than the desired 

value. The result of the 'Hybrid-1023' scheme even reaches 0.7. Normally the mean results of the 

dFGN+WM algorithm with H = 0.1 increase as the size of subtraces generated by the W M function 

increases. The exceptional case is the 'Hybrid-31' scheme in which its mean result is lower than those 

of the 'Hybrid-7' and 'Hybrid-1023' schemes. The maximum mean result is located on the 'Hybrid-7' 

scheme which has the best result to fit the target Hurst value, 0.9. Overall, the 'Hybrid-7' scheme of the 

dFGN+WM algorithm exhibits the best result. However, the analytical results cannot fully reflect the 

actual Hurst values from the previous analysis. In addition, the confidence intervals of all mean results 

are very large. It might mislead the result of the Hurst parameter if there is only one trace. 

The mean results using Whittle's MLE are depicted in Fig. 5.26 (c). The mean results of the dFGN 

algorithm with the three Hurst parameters fit the reference lines very well. The 'Hybrid-1' scheme of the 

dFGN+WM algorithm with H = 0.7 is just slighdy less than the target Hurst value. For the short-range 

dependence, the mean result is higher than the target Hurst value while that of H = 0.9 is much smaller 

than its target Hurst parameter. The 'Hybrid-7' scheme of the dFGN+WM algorithm is slightly worse 

than the dFGN algorithm and almost the same as the WM function. Its mean values almost lie on the 

reference lines for each Hurst setting. For the 'Hybrid-31' scheme the mean results are much worse 

than those of the 'Hybrid-7' scheme. Its mean results of H = 0.7 is higher than the reference line and 

its 95% confidence interval is significantly larger in comparison to the confidence intervals of the dFGN 

algorithm and the W M function. The mean result of H = 0.9 is much lower than the reference line and its 

confidence interval is so huge that this combination scheme is not worth concerning. The mean results of 
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the 'Hybrid-255' and 'Hybrid-1023' schemes are all near 0.5. Their confidence intervals are too large to 
be of value. Therefore, the 'Hybrid-7' scheme of this hybrid algorithm is the only combination scheme 
that is worth using to generate FBM samples. 

A thorough investigation of the various effect has led to an understanding of the reasons why some 

of the results are useful and other are disappointing. The namre of the mechanism used has an effect on 

the outcome. To improve the situation would require a totally different approach and is an avenue for 

further research. 

When comparing the dFGN+RMD and the dFGN+WM algorithms, the computational time of the 

dFGN+RMD algorithm is slightly better than that of the dFGN+WM algorithm. The dFGN+RMD al­

gorithm with 5 levels of depth is the best choice of this hybrid algorithm, while the 'Hybrid-7' scheme 

is the best choice of the dFGN+WM algorithm. Thus, the dFGN+RMD algorithm is the best solution 

for the aspect of computational effort. When examining the results of these two hybrid algorithms with 

Whittle's MLE from Table D.7 and Table D.9, the dFGN+RMD algorithm is more accurate as / / = 0.5, 

but the dFGN+WM algorithm has better results as H = 0.7 and 0.9. However, when comparing these 

two hybrid approaches with the 'Hybrid-7' scheme, the results of the dFGN+WM algorithm do not show 

any improvement. Therefore, the dFGN+RMD algorithm is the best choice to generate FBM samples 

fast, accurately, and on-the-fly. 

5.7 Summary 

The investigation of the hybrid approaches has demonstrated that the simplest combination scheme can 

reduce by about half, the simulation time of the dFGN algorithm. A higher level of depth will signif­

icantly reduce the computational time further. When the level of depth is set as 5, the simulation time 

of the dFGN+RMD algorithm is reduced to about 3^ of that of the dFGN algorithm. The computational 

effort is just less than twice the simulation time of the RMD algorithm if the level of depth is 10. The 

dFGN+SRA and dFGN+WM algorithms also significantly reduce the computational effort. 

The statistical analysis shows that 5 levels of depth is the most appropriate setting for the dFGN+RMD 

algorithm. The results of the Q-Q plots indicate that the sample paths are not sufficiently close to the 

normal distribution if the level of depth is higher than 7 is used. When the level of depth is larger than 

5, the results using Whittle's MLE for the hybrid are worse than that of the RMD algorithm. Fig. 5.8 

shows that with a higher Hurst parameter, a level of depth larger than 5 will have a sharp drop when the 

aggregate level increases. In addition, the mean results using Whitde's MLE also indicate that for a level 

of depth larger than 5 there is no significant improvement in approaching the reference line when the 

Hurst parameter is set as 0.7 and 0.9. 

From the analysis of the dFGN+SRA algorithm, it is found that the SRA algorithm does not overcome 

the disadvantage of the RMD algorithm. The analytical results of the dFGN+SRA algorithm are much 

worse than those of the dFGN+RMD algorithm, especially when the level of depth increases. 

For the dFGN+WM algorithm, the 'Hybrid-7' scheme is the only case which is worth considering. 

However, when comparing it to the similar scheme of the dFGN+RMD algorithm, this algorithm does 

not significantly improve the accuracy while being slower. Thus, the dFGN+RMD algorithm with 5 



Summary 114 

levels of depth is the best choice to generate fast and accurate samples on-the-fly. 
Several algorithms and their hybrid approaches have been investigated in the previous and current 

chapters. The dFGN algorithm has proved to be the best one in terms of quality while the RMD algorithm 

is good in terms of speed. Their combination represents a way to reduce the computational effort and 

improve the quality of traces. In addition, the hybrid algorithm can generate samples on-the-fly. It can 

be used for a long-term network simulation which has fractal inputs. 

In the next chapter, the marginal distribution model and the storage model are introduced and applied 

to generate fractal traffic to enable further investigation to be carried out. 



Chapter 6 

Generating Self-Similar Traffic 

The previous chapters have focused on the generation of FGN or FBM traces. For network simulations, 

the counts of arrivals must be non-negative and integer. However, FBM is not such a stochastic process. 

Transformations must be carried out to convert the self-similar stochastic process to self-similar traffic. 

The marginal distribution model and the storage model are two models which can transform the FBM or 

FGN samples to self-similar counting processes. 

This chapter is divided into four parts. Sec. 6.1 and Sec. 6.3 introduce the marginal model and the 

storage model, respectively. Sec. 6.2 and Sec. 6.4 examine their numerical results using three Hurst 

estimators. 

6.1 The Marginal Distribution Model 

The marginal distribution model makes use of the invariant property of transferring a distribution to an­

other distribution in which several characteristics of the original samples remain the same. Al l the FGN 

traces can be modeled by the normal distribution, therefore the Q-Q plot has been used to examine the 

generated samples. Using the marginal distribution model for the transformation from a normal distri­

bution to an arbitrary distribution will maintain the degree of correlation of the samples. Exponential, 

gamma, and Pareto distributions are applied to generate self-similar traffic streams. 

6.1.1 Arbitrary Marginal Distribution 

Let Gnit) be a normalized fractional Gaussian noise, i.e., zero mean, unit variance. For each epoch of 

Gn{t), Gnik] can be modeled by a normal distribution. Let FN{X) be the marginal cumulative probability 

function. Let Fy(y) be a marginal cumulative probabihty function corresponding to a process Y[k\. The 

process Y[k] can be generated by 

Y[k] = Fy\FN{GH[k])), k=\,l,---, (6.1) 

with the desired marginal cumulative probability function Fy[y] from G//[/:]. 

For real applications there are two possible methods to model the cumulative probability function 

FY{y). It can be obtained either by modeling an empirical distribution using parametric mathematical 
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functions or by inverting the empirical distribution from traffic measures. The invariance property the 
marginal cumulative distribution Fyiy) has the same Hurst parameter as FG{X) [PJS92,ST94,HDLK95b]. 

The self-similarity with the addition of some 'small scale structural assumptions', consisting of a 

sequence {ti,n\),{t2,n2),-• • > where the f, are interarrival times and the are number of arrivals, can be 

generated by the following procedure introduced in [DS96]: 

1. Generating fractional Gaussian noise Gf/[^] with zero mean and unit variance. 

2. Mapping the random variable Gnik] to an arbitrary distributed random variable Y[k] by letting 

Y[k] = Fy-'iFN{GHm (6.2) 

where FN is the cumulative distribution of the standard Gaussian and /y"' is the inverse of arbitrary 

distribution. 

3. Computing the interarrival arrivals for the time interval kx<t<{k + l)x by letting the number of 

arrivals be 

mk (6.3) 

I f the time scale is significandy small, every time interval can either have one or zero arrival, however, 

this method is not efficient. It is reasonable to select an appropriate time scale depending on the arrival 

rate and the requirements of the simulation. Furthermore, the arrivals which occur during a time interval 

can be assumed to follow a uniform distribution. More elaborate small scale models may be chosen, such 

as the Poisson processes with the mean rate calculated by the generated packets and the time interval 

length. For different data traffic, packet sizes can use the mean sizes or incorporate with some other 

random distributions from the real data measurements. 

6.1.2 Exponential Distribution 

The simplest distribution for generating self-similar traffic is an exponential distribudon [DS96]. Let 

A^(;) be the total number of arrivals put on the network in the time interval [0,t). I f N{t) has stationary 

increments and E[N{1)] < oo, then E[N{t)] = E[N{l)]t. Let E[N{1)] = X, the 

E[N{t)] = h. (6.4) 

The constant is the traffic rate measured in arrivals per unit time. Here, the unit of arrivals could be bit, 

byte, frame, etc. The counting process N{t) must be a non-negative integer and non-decreasing. Assume 

that Y{t) = N{t) — Xt is an LRD process, then the counting process N{t) is also a self-similar process. 

By the scaling property, N{t) = Y{t) + Xt has the same distribution as / ^ K ( l ) - f ^ which has the same 

distribution as y ( l ) , except for a dilation and a shift. 

In self-similar traffic models the distribudon of Y{t) is popularly chosen as a Gaussian random vari­

able. However, Gaussian distributions violate the non-decreasing requirement for N{t) because any 
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Gaussian random variable assumes negative values with positive probability. The difference between 
two epochs of N{t), 

N{t + x) - N{t) = Y{t + x)- Y{t) + Xx, (6.5) 

has the same distribution as the Gaussian random variable x^F( l ) + Xx. Therefore, the exponential 

distribution is a distribution that follows the non-negative and non-decreasing requirements. 

To apply the algorithm described in Sec. 6.1.1 consider an exponential distribution with mean jj = Xx. 

The probability density function of the exponential distribution is 

fE{x)=pe-^, (6.6) 

and its corresponding cumulative probability function is 

P{x) = FE{x) = l-e-^^. (6.7) 

Therefore, the inverse of the exponential distribution can be expressed as 

Fi'{x) = -iu]og{l-P{x)). (6.8) 

Fig. 6.1 illustrates the generated self-similar traffic. The results displayed left, middle, and right 

columns use different Hurst parameters of H = 0.5,0.7, and 0.9, respectively. These traffic traces are 

generated with X = 1000 and T = 0.001. Different grey levels of these diagrams indicate the same 

segments of traffic on these different time scales. The bottom row of the diagrams shows the outcomes 

of the simulations. The lower middle row illustrates the 0.01 time unit, i.e., every ten outcomes of the 

synthetic traces are summed as a single outcome. For different Hurst parameters the diagrams exhibit 

very different results. In Appendix C the measurement of the burstiness of self-similar traffic generated 

by the model is discussed. 

6.1.3 Gamma Distribution 

From the measurement of different traffic sources considerable evidence indicates that the arrival traffic 

could be modeled by Gamma distribution. Meier-Hellstem et al monitored eight ISDN data users [MH-

WYH91]. The authors found that the interarrival histogram can be modeled by three different distribu­

tions within different states. Two of them exhibit gamma phenomenon. Heyman et al analyzed a long 

sequence of real video conference data [HTL92], and discovered that the number of cells per frame is 

a stationary stochastic process with a gamma distribution rather than a normal distribution. Garrett and 

Willinger analyzed a two-hour long empirical sample of VBR video [Gar93,GW94]. They revealed that 

the gamma distribution matches the data very well except in the extreme tail. 

A random variable X has a gamma distribution if its probability density function is of form [JK70, 

Pap91, HTL92, PFTV92, GW94] 

P . W - ' ' ' ^ ' ^ ' 7 ; T | ' ' - ^ ' ^ . > 0 , p > 0 , . > y A > 0 . (6.9) 
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Figure 6.1: Synthetic traces generated by the marginal distribution model with exponential distribution 

on four different time scale. 
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= 0.6 

Figure 6.2: The probabihty density and cumulative distribution functions of gamma distribution with 

different shape parameters. 

The standard form of the distribution is obtained by putting P = 1 and y = 0, given 

The exponential distribution can be obtained by setting 5 = 1. The quantity 

r(s) = rfe-'dt 
Jo 

(6.10) 

(6.11) 

is sometimes called an incomplete gamma function. Parameter s and X are called the shape and scale 

parameters, respectively. The cumulative distribution function of gamma distribution is 

!ot'-'e-'dt 
Fr{x) = Pr[X <x] = (6.12) 

The mean and variance of the distribution a.re.s/X and s/X"^, respectively. When s is an integer, a gamma 

random variable is the sum of s i.i.d. exponential random variables. In Fig. 6.2 the probability density 

and cumulative distribution functions are depicted with different shape parameters. The curves with 

s = 1 are the same as the exponential distribution while the others are the aggregated distributions with j 

independent and identically exponential distributions. 

The discrete version of a gamma distribution is negative binomial distribution whose probability 

density function is defined as [JK92, HTL92] 

P[X = x] = 
k + x- 1 

/ V , ^ = 0,1,2,---, (6.13) 

where 0 < p < l,q = \ — p, and ^ > 0. The mean and variance of this distribution are 

and a'- = ^ ( i ^ . (6.14) 
P p^ 

When k is an integer, a negative binomial random variable is the sum of k i.i.d. geometric random 

variables with success probability p. 

There is no direct formula to calculate the inverse cumulative marginal distribution of the gamma 

distribution because no closed form of the gamma function exists . The easiest way is to obtain the 
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results from its discrete version, the negadve binomial distribution. When the cumuladve normal function 
is applied to achieve the probability, the obtained value is the success probability p in the inverse function 
of the cumulative negative binomial distribution. The scale parameter ^ is the same as the parameter k 
in the negative binomial random variable. It can be obtained from the measurements of empirical data, 
such as 5 = 3.006 for video teleconference traffic, 8 or 6 for ISDN data, 19.75 for interframe VBR video 
data, or 8.0 for MPEG video data [HTL92,Gar93,GW94]. 

Similar to the traffic traces depicted in Fig. 6.1, the traffic traces generated by the marginal distribu­

don model with the gamma distribudon is demonstrated in Fig. 6.3. Different grey levels indicate the 

same segments of traffic on the different time scales. All the traces are generated with 5 = 3,A, = 1000 

and t = 0.001 unit of dme. The left, middle, and right columns show H = 0.5,0.7, and 0.9, respectively. 

6.1.4 Pareto Distribution 

Increasing evidence illustrates that many traffic sources are heavy-tailed, i.e., the variance of the observed 

data is infinity. Pareto distribudon follows this type of distribudon. In [MHWYH91] the tail part of 

the gathered ISDN data is modeled by this distribution. The analysis of interframe VBR and MPEG 

video data found that the extreme tail of the log-log graph of complementary cumulative distribution 

fits Pareto distribudon [GW94]. It also plays an important role both in TELNET packet interarrivals 

and in the size of FTP data bursts [PF95]. A synthetic trace generated by an ON/OFF source with 

Pareto ON- and OFF-periods is practically indistinguishable from the real traffic trace, while the traffic 

generated by the ON/OFF source with the exponential distribution appears in a more or less uniform 

manner [TWS97]. In addition, the heavy-tailed distribudon has been proposed to model telephone call 

holding dmes [DMRW94]. 

Pareto distribution is named after an economist, Vilfredo Pareto, who investigated the distribution of 

income over a population [JK70, Am83]. It has been used to model the sizes of asteroids, islands, cities, 

extinction events, and also flood frequency analysis [Man63,BR95,MRR97a, MRR97b]. The classical 

form of the distribution is 

F/>(x) = 1 - ;c>a, (6.15) 

where the scale parameter k and Pareto's index of inequality (or known as the shape parameter) a are 

positive. The corresponding probability density function is expressed as 

/p(;c) = a r t « - ' . (6.16) 

The mean and variance of the Pareto distribution are given by 

p = ak/{a-\), i f a > l , (6.17) 

and 

o^ = ak^{a-\)-^a-2)-\ i f a > 2 (6.18) 

Therefore, the distribution has an infinite mean if a < 1 and infinite variance if a < 2. In fact, this 

phenomenon coincides with the infinite variance hypothesis that Mandelbrot proposed to account for the 
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Figure 6.3: Synthetic traces generated by the marginal distribution mode with the gamma distribution on 

four different time scale. 



The Marginal Distribution Model 122 

Shape = 0.7 
Shape = 0.9 

Shapa = 1.7 

Shape = Z1 

Q- 0.4 

Figure 6.4: The probability density and cumulative distribution functions of the Pareto distribution with 

different shape parameters. 

erratic variability of the sample variances without giving up stationarity [Man69]. Fig. 6.4 illustrates the 

probability density and cumulative distribution functions. All the curves have a different shape parameter 

but the same scale parameter. A: = 10. 

Zipf distribution is the discrete version of the Pareto distribution [Fel71,Am83,JK92]. Its probability 

function is 
;C-(P+1) 

(6.19) 
T1(P+1)' 

where ri(-) denotes the Riemann zeta function and p > 0. Very often it is called the Riemann zeta 

distribution. Similar to the Pareto distribution, its moment is infinite if the order of moments is larger 

than p. The use of this distribution has been connected with the counting of letters in linguistics and 

the number of insurance polices held by individuals. In engineering applications it is used to model the 

amount of CPU time consumed by an arbitrary process [L086] and the sizes of ISDN data [MHWYH91 ]. 

In practice, the measures of inequality can be obtained by several methods [Am83]. Most of the 

measures are well defined if the parent population has an infinite mean. The simplest way to measure 

the shape parameter is to take the survival function of Pareto distribution, i.e., 1 — Fp{x). Then, simply 

applying the logarithm to both sides, the slope of the plotting curve of the logarithmic survival function 

versus logarithmic x is the scale parameter. A number of measurements of real traffic traces have been 

undertaken. For instance, the shape parameter of the extreme tail of ISDN data is 0.96 [MHWYH91]. 

The index of the inequality of interframe video data is 11.2 and the shape parameter of the MPEG video 

data trace is 0.85 [GW94]. 

In addition, the Pareto traffic model has been proposed to model Ethernet traffic traces [Gor95, 

GH97]. While self-similar traffic models represent the block packet count, the Pareto model is used 

to model the marginal interarrival time distribution. The relationship of the shape parameter and the 

Hurst parameter can be formulated as 

( l - | -a) /2 , 0 < a < 1, 

H=< ( 3 - a ) / 2 , l < a < 2 , (6.20) 

1/2, a > 2 . 



The Marginal Distribution Model 123 

The mterarrival times of three Ethernet traffic traces are analyzed to check the fit of the Pareto model. 

Their shape parameters are 1.16,1.10 and 1.10, respectively. 

As with the two previous distributions, the synthetic traffic trace of the marginal distribution model 

with the Pareto distribution is shown in Fig. 6.5. Similar to the previous traffic traces, different grey 

levels indicate the same segments of traffic on the different time scales. The left column illustrates the 

short range dependent traffic trace while the middle and right column are LRD traffic traces with H = 0.7 

and 0.9, respectively. 
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Figure 6.5: Synthetic traces generated by the marginal distribution mode with the Pareto distribution on 

four different time scale. 
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6.2 Numerical Results of the Marginal Distribution Model 

In the following subsections the effects of the transformation from the FGN samples to self-similar traffic 

with the marginal distribution model are investigated. The changing of different parameters, such as the 

Hurst parameter, the shape parameter in gamma and Pareto distributions, will be smdied. All the self-

similar traffic traces are generated from the FGN samples that are produced by the dFGN algorithm with 

M = 1000 and n = 30. With the FGN traces, the distortion of the Hurst parameter in generating FGN 

traces can be minimized. 

6.2.1 Exponential Distribution 

The most attractive property of the exponential distribution is that its mean is associated with the arrival 

rate and time scale. Therefore, the 'small scale structural assumptions' can be applied easily with the 

distribution. The results of the estimators, when the change of the Hurst parameter is applied, is displayed 

in Fig. 6.6. The results using the R/S statistic with t = 0.0001 are not available because there are traces 

in which the slopes of the R/S plots cannot be evaluated (see Table D.12). The curves of the R/S statistic 

are nonlinear, especially when the time scale is smaller than 0.1. The results using the VT plot exhibit 

significandy smooth curves. However, for time scales smaller than 0.001 the curve is not as smooth as 

the others. For both estimators, the results are significandy lower than the target values. The curves of 

Whittle's MLE exhibit significantly better results although there exists distortions when transferring the 

traffic traces from the FBM traces. When the time scale decreases as low as t = 0.0001, the curve is 

significantly lower than the target Hurst value as the Hurst parameter increases. 

The mean arrival rates of the output of the marginal distribution models with the exponential dis­

tribution is depicted in Fig. 6.7. The values and their 95% confidence intervals of the generated traffic 

traces are listed in Table D.4. Al l the traffic traces are generated with 1000 arrivals per unit tiine. With 

different observed time scales, the confidence intervals increase as the Hurst parameter increases. For 

the observed time scales, 1.0,0.1, and 0.01, the mean rates are reasonably accurate when compared with 

the input rate, while those of the observed time scale of 0.001 are slightly smaller. All of them are ac­

ceptable, although the mean rate of high self-similar traffic traces are about 20% higher than the input 

rate. However, the mean rate of the smallest observed time scale, 0.0001, is significantly smaller than 

the input rate. Therefore, the small scale strucmral assumptions cannot apply to the cases where there is 

less than one arrival per observed time slot. 

6.2.2 Gamma Distribution 

To present the characteristics of network traffic the average arrivals during an observed time slot t can 

be expressed as st/X. Thus, the small scale structural assumption can also be applied to the marginal 

distribution model with the gamma distribution. The arrival rate is 1000 arrivals per unit time. Generating 

traffic traces with a gamma distribution gives the mean output arrival rates depicted in Fig. 6.8. In 

this diagram, for the time scale larger than 0.001 the mean arrival rates of different shape and Hurst 

parameters show no significant differences. For H = 0.5 and 0.7, the mean output rates are almost the 
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Figure 6.6: The results of the marginal distribution model with the exponential distribution. 

same as the input 1000 arrivals per unit time. However, in the case of the highest degree of self-similarity, 

the rate is about 5% to 10% higher than the input. The bar char shows that the mean arrival rates decrease 

as the shape parameter increases. Al l the values shown in Fig. 6.8 and their 95% confidence intervals are 

recorded in Table D.5. In addition, two more shape parameters, s = 2 and 4, also be found in Table D.5. 

The relationship of the Hurst parameter and shape parameter is shown in Fig. 6.9. The associated data 

of part of the diagram is compiled in Table D.IO and Table D . l l . In Table D.IO, the mean, maximum, 

and minimum results of the exponential distribution are shown, while those of the gamma distribution 

with 5 = 3 are recored in Table D . l l . The left column of diagrams is generated with r = 1.0 while the 

lower row is with t = 0.001. For the R/S statistic, the mean results increase as the shape parameter 

increases. However, almost all of them are between 0.6 and 0.8. Al l the 95% confidence intervals 

are very wide. The confidence interval is shortened as the observed time slot decreases and the shape 

parameter increases. However, no matter what observed time slot and shape parameter are set, none of 

the mean results can accurately present the target Hurst parameter 

The mean results using the VT plot show no significant difference between the different shape param­

eters and observed time slots. In Fig. 6.9 (c) and (d) all the traffic traces with the same Hurst parameter 

but different shape parameters and observed time scales are very close to the results. However, in both di­

agrams none of the mean values are over 0.7. For H = 0.9 even the confidence intervals are significantly 
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lower than the target value. 

For the results using Whittle's MLE, the confidence intervals are very small, so they can be ignored, 

see Fig. 6.9 (e) and (f). When the traffic traces are uncorrected all the mean results are on the reference 

line, H = 0.5. When the Hurst parameter is set as 0.7 and 0.9 the mean values of the larger observed time 

slot have better results than the other two estimators. For the observed time t= 1.0 the values gradually 

approach to the reference lines when the shape parameter increases. In contrast, the results part from the 

reference lines when the shape parameter increases for t = 0.001. 

A selected random seed is used to generate FGN sample traces with different Hurst parameters. Then, 

transferring the traces to traffic streams with the marginal gamma distribution model with different shape 

parameters, the arrival rates and results with the three Hurst estimators can be illustrated in Fig. 6.10. 

All the traffic traces are generated with the observed time slot t — l.O and 1000 arrivals per unit time. 

From Fig 6.10 (a) most of the arrival rates are under 1040. Increasing the Hurst parameter results in the 

arrival rate increasing. However, the shape parameter has the opposite effect. When the shape parameter 

increases the arrival rate reduces to a lower value. 

In Fig. 6.10 (b) all the results using the R/S statistic are less than 0.73. When the shape parameter 

is near 1, i.e., the exponential distribution, the result carries from 0.4 to 0.58 and its curve exhibits two 

concave points. For the larger shape parameter the surface exhibits a simpler concave curve. When s = 5 

the result changes from 0.62 to 0.73 and the minimum value locates near H = 0.7. Thus, the curves with 

different shape parameters are quite flat. Therefore, the R/S statistic could not represent the input Hurst 

parameters. 

The results using the VT plot and Whittle's MLE are illustrated in Fig. 6.10 (c) and (d), respectively. 

In both cases the shapes are very smooth. In Fig. 6.10 (c) the results with fixed Hurst parameter slightly 

increase when the shape parameter increases. However, the change is not significant and becomes smaller 
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Figure 6.8: Output rate of the marginal distribution model with the gamma distribution with s = 3. 

as the Hurst parameter increases. Although the shape of the VT plot is smooth, the results are far less 

than the target values. The maximum value in this diagram is located on H — 0.99 and s = 1 with the 

value 0.7. The results of Whittle MLE approach the target Hurst parameters far better. When fixing 

the Hurst parameter the result increases as the shape parameter increases. However, the change is not 

so significant when the traffic traces are uncorrelated or nearly uncorrelated. From Fig. 6.9 (c) and this 

diagram it is shown that the increase in the shape parameter leads to better results. 

Based on the analysis of the marginal distribution model with the exponential and gamma distribu­

tion, the R/S statistic is not suitable for the estimation of the traffic traces. The R/S statistic extracts the 

slope of the pox plot of the range versus the standard deviation. The difference between the maximum 

and minimum values of traffic traces will highly affect the result of the estimator In addition, when 

the Hurst parameter is near 1 the exponential distribution is not appropriate to generate the traffic traces 

because the output rate will be significantly higher than the setting rate. 

Furthermore, the small scale structural assumption has some limitations. The observed time scale 

should not be smaller than the arrivals occurring during a time slot. If there is an arrival on average during 

an observed time slot, the distortion of the Hurst effect will increase with the higher shape parameters. 

Therefore, to obtain high quality self-similar traffic streams an appropriate observed time scale must be 

chosen in which there are at least one arrival per observed time slot. 

6.2.3 Pareto Distribution 

The Pareto distribution is a heavily-tailed distribution. Its mean and variance exist only if its shape 

parameter is greater than 1 and 2, respectively. It is not appropriate to be incorporated with the small scale 

structural assumption. In theory, the mean and variance of this distribution is expressed in Eqs. (6.17) 

and (6.18). However, in practice the simulation results vary with the shape parameter. In Table 6.1 the 
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Figure 6.9: The mean Hurst values of the marginal distribution model with the gamma distribution. 
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(a) Arrival Rate (b) The R/S Statistic 

(c) The VT Plot (d) Whittle's M L E 

Figure 6.10: The arrival rate and estimated Hurst values of the marginal gamma distribution model with 

different Hurst parameters and shape parameters. 

combination of the scale and shape parameters are related to the unit arrival rate. For different Hurst 

parameters the output rate of the traffic traces is highly dependent on the shape and Hurst parameters. 

For H = 0.5 and 0.7 the rate increases as the shape parameter increases but it decreases as H — 0.9. 

None of the output rates of the different shape and scale settings fit well with the theoretical mean rate. 

Therefore, investigating this model is not appropriate to set a fixed arrival rate. All the traffic traces in 

the following study are generated with a fixed scale parameter k=\0. 

The relationship between the results and the shape parameter is demonstrated in Fig. 6.11. From 

these three diagrams it is apparent that all the curves are non-tractable. In Fig. 6.11 (a) the results using 

the R/S statistic with a = 1.5 and 2.5 have peak values near H = 0.7. When the Hurst parameter is 

near 1 both of the results are lower than 0.2. For a = 0.5 the estimate results are almost under 0.2. The 

results using the VT plot are very low as well. The results using the VT plot are significantly lower than 

their target Hurst values. All the curves in Fig. 6.11 (b) fluctuate considerably, thus they do not convey 

any reasonable information. The results using Whittle's MLE in Fig. 6.11 (c) with a = 0.5 exhibits no 

correlation when the Hurst parameter is lower than 0.8. All of the results are close to 0.8 when the 

Hurst parameter is near 1. From these three diagrams none of the results can represent the original Hurst 
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Shape Scale Output Rate 

Parameter Parameter H = 0.5 H = 0.7 H = 0.9 

1.2 1/6 0.748 ± 0.29 0.738 ± 0.29 25.78 ± 72.2 

1.6 3/8 0.959 ± 0.042 0.956 ± 0.057 3.308 ± 3.04 

2.0 1/2 1.232 ± 0 . 0 1 5 1.231 ± 0 . 0 2 6 1.965 ± 0 . 5 1 

Table 6.1: Output rate of marginal Pareto distribution model with fixed input rate. 

Shape 

Parameter 

Ideal 

Rate 

Hurst Parameter Shape 

Parameter 

Ideal 

Rate 0.5 0.7 0.9 

0.5 oo 271x10^ ±147x10^ 247x10^ ±171x10^ 501x10^ ±271x10^ 

1.5 30 29.63 ± 1.90 29.52 ± 2.03 141.5 ± 174.7 

2.5 16.67 16.65 ± 0 . 1 5 16.64 ± 0 . 4 1 22.17 ± 3.29 

Table 6.2: Output rate of the marginal distribution model with the Pareto distribution. 

settings. 

Af te r examining the relation of the shape and Hurst parameters the mean output rate of the traffic 

traces are listed in Table. 6.2. The second column lists the theoretical mean of the traffic traces. For the 

shape parameter a = 0.5 the theoretical mean value is infinity. The first row of the output rate is very high 

and in addition their confidence intervals are very large. Thus, it matches the theoretical assumption well. 

When a = 1.5 and 2.5 the output rate of H = 0.5 and 0.7 are very close to the ideal values. However, for 

H = 0.9 the output rate are larger than the expected values. Especially, when a = 1.5 the mean output 

rate is almost five times the ideal value. 

This analysis shows that the marginal distribution model with the Pareto distribution is not suitable 

for generating the self-similar traffic traces. Although the FGN traces show high quality of self-similarity, 

the output traffic streams are highly distorted by the transformation. Even the results using Whittle's 

M L E and the target Hurst parameters are significantly different. 

As with previous study, twenty different values of random seed are applied to examine the statistical 

robustness of the results with three Hurst estimators. The mean results and their 95% confidence intervals 

are illustrated in Fig. 6.12. A l l the symbols of the star, asterisk, and hexagon are the mean Hurst results. 

The barlines on top of the symbols are their 95% confidence intervals. The three dotted lines in each 

graph are the target Hurst parameters, H = 0.5, 0.7, and 0.9, respectively. The associated data is compiled 

in Table D. 12. 

For the R/S statistic all the mean results fail to represent actual Hurst values. The mean results with 

a = 0.5 and 1.5 are significantly lower than the desired Hurst values. The mean results with a = 0.5 

are very close to zero as the Hurst parameters are 0.5 and 0.7. Although the mean results with a = 2.5 

show a better result, the mean values are significant higher and lower than the target Hurst parameters, 

H = 0.5 and 0.9, respectively. 

The mean results using the V T plot in Fig. 6.12 (b) are significantly lower than the target Hurst values 

as the samples are not uncorrelated. The confidence intervals with H = 0.9 and a = 01.5 are significantly 
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Figure 6.11: The results of the marginal distribution model with the Pareto distribution. 

large. I t almost covers the whole range f rom 0 to 1. Although the mean values of H = 0.5 are very close 

to the target Hurst value, the other results suggest that the V T plot cannot accurately represent the actual 

Hurst values. 

The mean results using Whittle's M L E are depicted in Fig. 6.12 (c). A l l the mean results are signif­

icantly lower than the desired Hurst values, except in the case of H = 0.5. The confidence intervals of 

H = 0.9 are significantly large. It has been shown that Whittle's M L E is the most accurate estimator 

Therefore, f rom this study it is apparent that the model cannot generate accurate traffic traces. 

6.3 The Storage Model 

After revealing the fractal nature of bursty data, a number of research studies have been undertaken to 

transform the self-similar stochastic process to self-similar traffic. Although the marginal distribution 

model is mathematically perfect, it does not convey any physical interpretation. The difficulties in trans­

forming the self-similar stochastic process to self-similar traffic is due to the characteristic of the traffic 

stream being a counting process rather than a continuous-time stochastic process. The incorporation 

of a fluid flow model was first proposed by Norros in [Nor94] in which the arrival traffic consists of 

fluid bursts with Poisson arrivals. Based on Norros' proposal, more precise models, mainly collabo-
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Figure 6.12: The mean Hurst values of the marginal distribution model with the Pareto distribution. 

rating with the ON/OFF models, have been proposed to interpret the self-similar phenomenon in data 

traffic [WTSW95, Pra95, BRSV96, HRS96, WTSW97]. 

The fol lowing derivation is almost entirely based on the work having been done in [WTSW97] and 

[TWS97]. First, suppose that there is a single source that emits a burst occasionally. Let {W{t),t > 0}be 

the workload process of the source. In the O N period, there is a burst generated by the source while there 

is nothing emitted during the OFF period. The workload process is a stationary binary time series, i.e., 

W{t) is equal to 1 or 0 according to whether the source is in the O N or the OFF period. The length of 

the O N and OFF periods fol low independent distributions and might have different distributions. The 

ON/OFF model is a strict ON/OFF process, i.e., the OFF period must be followed by an ON period, and 

vice versa. 

Suppose that there are M i . i .d. sources. Let W'^'"\t) be the workload process of the in"' source. 

The superposition or cumulative counting process at time t is Xm=i W^"'\t). The aggregated cumulative 

arrival counts in the interval [0, Tt) can be expressed as 

.Ti M 
WM{Tt)= i'£W^"H'^))du, (6.21) 

where T is a factor to gain the scaling time. Based on the findings of the self-similar nature of Ethernet 

traffic the distributions of the ON/OFF periods must have infinite variance syndrome ( the 'Noah Ef-
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feet') or heavy-tailed behavior when T ^ °° and M °° [Man69,TWS97]. Evidence indicates that this 
hypothesis of the derivative is appropriate. 

The analysis of token-ring traffic shows that the distribution of interarrival times is highly skewed 

to the right (i.e. with a long tail on the right) [JR86]. The ISDN packet traffic has an extreme tail 

that can fit wi th Pareto distributions with infinite mean [MHWYH91] . In [DMRW94], the analysis of 

CCSN/SS7 data traffic indicates that the call holding time is a heavy-tailed distribution. In [PF95], the 

analysis of 24 wide-area traces claims that the Poisson-based processes fai l to model them due to the 

heavy-tailed behavior. The file size and transmission times of the World Wide Web are due to heavy-

tailed distributions [CB96, CTB97]. In addition, a series of papers reveal that Ethernet traffic or L R D 

V B R video data use stochastic processes with slow decaying variance to model the measuring datasets 

[LTWW93, LTWW94, BSTW95, Pru95, Wil95, EGW94, ENW96, EPW95, LWTW94, WTLW95] . 

According to the observed evidence let fi{x),Fi{x), and Fi{x) = l — Fibe the probability density, 

cumulative distribution, and survival functions, respectively, of an ON period, respectively. Similarly, 

f i {x), F2 {x), and F2 (x) correspond to an OFF period, / i i , , yU2 and ol are the mean lengths and variances 

of the O N and OFF periods. As a heavy-tailed distribution, assume that 

either F i (x) ~ / i ; c~" 'L | (x) with 1 < a j < 2 or < 0° 

and 

either Fzix) ~ kx'^-^Lzix) with 1 < a2 < 2 or < 

w h e r e > 0 is a constant and Ly(;t) < 0 is a slowly varying function at infinity, i.e., lim.v->ooLy(rx)/L;(x) = 

l f o r a n y r > 0 . Therefore, L;(x) could be asymptotic oraconstant, \ogx, ( l o g x ) " ' , etc. The mean lengths 

jji and /Ji must be finite but the variance and are infinite when aj < 2. Therefore, Fi and F2 could 

have a Pareto distribution in which the index j is 1 for an ON period, and 2 for an OFF period. 

For convenience, let aj = lj{T{2 - aj))/{aj) when 1 < < 2. For the case of < 0°, let aj = 

2,Lj = I, and ay = a j . Let 

A = l i m / « 2 - « ' - ^ (6.22) 

Let afjjj, be the normalized factor which can be expressed as 

^ W ^ y . f O < A < » . 

i f A = 00, 
(^„+A'2)3r(4 -a™i„) ' 

where a = tti = aa. Similarly, the limiting constant L = L2 i f 0 < A < 0°, and L = L\ i f A = 00 or i f 

A = 0. The derivative leads to the following conclusion [WTSW97]: 

For large M and T, the aggregated cumulative arrival process {WM{Tt),t > 0} behaves 

statistically like 

T M - ^ t + T"^L{T)Ma:iMt) (6.24) 
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where H = {3 — a„„„ ) /2 . More precisely, 

(WM{Tt)-TM-^t) 

where X l i m means convergence in the sense of finite-dimensional distributions. 

Instinctively, Eq. (6.24) is composed of two parts: the mean level and the fluctuations. The mean 

level decided by 7 M ( ^ i / ( / j | +/J2))t provides the main contribution for large T and M. It determines the 

'quantity' of the traffic trace. The fluctuations, involved with the fractional Brownian motion a^j^,BH(0 

scaled by a lower order factor r ^ L ' / ^ ( r ) M ' / ^ , control the 'quality' part of the traffic trace. The storage 

model has been pictorially proved in Fig. 2.2 (c) which is illustrated by 500 ON/OFF sources with 

tti = a2 = 1.2 simulated on a parallel processing machine with 16384 processors [WTSW95,WTSW97, 

TWS97]. 

Although the above derivative covers the gap between the counting processes and self-similar traffic 

models, it involves handling too many unknown parameters, such as how large T and M should be, what 

the slowly varying functions Lj{x) are, etc. In [TG97], it has been shown that Lj{x) is a constant rather 

than a slowly decaying function. Therefore, a Pareto distribution might be the best candidate to model 

the ON/OFF sources because of its heavy-tailed property. However, it is still too complicated to handle. 

Next, the analysis provides a very attractive model that can be used to analyze the queueing problems. 

From the simulation aspect a simpler model that does not involve so many unknown factors requires to 

reviewing. In [Nor94, Nor95b, Nor95a], Norros proposed a storage model which could interpret the 

physical meaning of self-similar traffic models. With a fractional Brown motion Buit), a stationary 

storage process can be expressed as 

A{t)=mt + s/aniBH{t), ; G (-00,00) (6.26) 

The model involves three parameters, the mean rate, the variance coefficient, and the Hurst parameter, 

m,a, and H, respectively. 

Norros interpreted the storage model as a fluid burst model in which the burst length has infinite 

variance but the interarrival times follow an exponential distribution with arrival rate "k. Similar to the 

storage model incorporated with the heavy-tailed distribution ON/OFF model the first part of Eq. (6.26) 

characterizes the quantity of the traffic while the second part involved with H and a characterizes the 

quality of the traffic. 

In this model the only unknown parameter is the variance coefficient. From the observation of the 

fluid burst model, Norros claimed that a is independent of X. When H = \/2 the variance coefficient is 

the index of dispersion (variance over mean) of A{t) for large t. When H > \/2 the variance coefficient 

is determined by three factors: r^^~' giving an interesting expression for a's dependence on the burst 

transmission rate r, a factor of the form C^^ where C is a constant, and the truncated distribution of 

the burst size. However, when comparing Eqs. (6.24) and (6.26) it is more appropriate to interpret the 

storage model as aggregation of many ON/OFF sources with heavy-tailed distributions. Therefore, the 

quantity parts can be obtained as in = {/Ji /(/vi +H2))M. For the quality part the variance coefficient can 
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be treated as 

am^T^^ML{T)Gl^. (6.27) 

Therefore, a is determined by the number of sources M, the time factor T, the limiting constant L, and 

the normalization factor o\^/m. 

Fig. 6.13 illustrates the generated self-similar traffic. The results displayed left, middle, and right 

columns use different Hurst parameters of H = 0.5,0.7, and 0.9, respectively. These traffic traces are 

generated with X= 10 and a= \ . Different grey levels of these diagrams indicated the same segments 

of traffic on these different time scales. The bottom row of the diagrams shows the outcomes of the 

simulations. The lower middle row illustrates the 0.01 time unit, i.e., every ten outcomes of the synthetic 

traces are summed as a single outcome. For different Hurst parameters the diagrams exhibit very different 

results. 

6.4 Numerical Results of the Storage Model 

The fol lowing simulations of the storage model are based on Eq. (6.26). Although Eq. (6.24) has more 

rigorous mathematical derivation, there are several unknown factors, such as L(- ) , which make it too 

complicated to handle. However, it is very useful for analysis in order to understand the queueing be­

havior or the network performance. Here, the major concern is to generate a high quality of self-similar 

traffic traces that can be applied to network simulations. 

To generate the self-similar traffic traces the arrival rate is set as 1000 arrivals per unit time; i.e, 

m = 1000. A l l the F B M traces are generated by the dFGN algorithm with M = 1000 and n = 30. The 

choice of the F B M traces is due to reducing the effect of the inaccuracy of the Hurst estimation. The 

output rate of the traffic traces generated by the storage model with the above settings is illustrated 

in Fig. 6.14. Table D.6 compiles the numerical data of the diagrams in accompany with their 95% 

confidence intervals. There are five different variance coefficients, a = 200,400,600,800, and 1000. As 

expected increasing the variance coefficient causes an increase in the output rate, also the higher the 

Hurst parameter, the larger the output rate. These results are due to the truncation of negative counts of 

arrivals. 

Five different variance coefficients are applied to examine the Hurst values of the traffic traces in 

Fig. 6.15. In this figure the mean results and their 95% confidence intervals are depicted with different 

variance coefficients a = 200,400,600,800, and 1000. The associated data of this diagrams is compiled 

in Table D.13. With the same Hurst parameter the results using the R/S statistic gradually decrease as the 

variance coefficient increases. However, the different Hurst parameters do not change when the variance 

coefficient is fixed. In addition, the confidence intervals of the results using the R/S statistic are very wide 

and become even wider as the variance coefficient increases. In Fig. 6.15 (b) and (c) the results using the 

V T plot and Whittle's M L E are not affected by the change of the variance coefficient at / / = 0.5. When 

H — 0.7 and 0.9 the results gradually decrease as the variance coefficient increases. However, the change 

is so small that can be ignored. 
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Figure 6.13: Synthetic traces generated by the storage mode on four different time scale. 
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Figure 6.14: Output rate of the storage model. 
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The effect of the variance coefficient and Hurst parameter in the storage model is illustrated in 

Fig. 6.16. A l l the traffic traces analyzed in this figure are generated by the dFGN algorithm with the 

same random seed but different Hurst parameters and variance coefficients. The first diagram depicts the 

count of truncated events, i.e., the negative number of arrivals in 32768 samples. The counts increase as 

the Hurst parameter and the variance coefficient increases. When H = 0.99 and a = 1000 there are 8559 

negative arrivals. The counts of events with negative arrivals causes the output rate of the traffic traces 

to be considerably higher than the input rate in Fig. 6.16 (b). The highest output rate, 1313.29, occurs at 

H = 0.99 and a = 1000. 

The results using the R/S statistic, the V T plot, and Whittle's M L E are depicted in Fig. 6.16 (c), (d), 

and (e), respectively. The shape of the results using the R/S statistic exhibit a nonlinear surface. For 

the variance coefficient less than 40 the results using the R/S statistic are very high and do not change 

as the Hurst parameter changes. For higher Hurst parameters changing the variance coefficient exhibits 

nonlinear curves. However, for higher variance coefficients changing the Hurst parameter exhibits more 

tractable curves. In comparison to the results using the R/S statistic those using the V T and Whittle's 

M L E are far smoother In spite of being smooth, the results using the V T plot do not fit the target 

Hurst parameters. The results increase as the variance coefficient decreases. The values using Whittle's 

M L E exhibit significantly better results because they fit the ideal Hurst values well. The changing of 

the variance coefficients do not affect the results while the Hurst parameter is near 0.5. However, as the 

Hurst parameter increases, the smaller variance coefficient show a better result. 

In this model the results using Whittle's M L E fit the target Hurst values very well no matter what the 

variance coefficient is. However, another problem is raised when the traffic traces are applied to examine 

queueing behavior and network performance. In Fig. 6.17 three different traffic traces are depicted. A l l 

the traffic streams are generated with the same FGN sample trace whose Hurst parameter is 0.9 but with 

different variance coefficients. The traffic traces in the first diagram are generated with a = 1. The 

second and third diagrams are generated with a = 500 and 1000, respectively. From the diagrams it is 

apparent that the traffic streams are very different. The arrival rate of the three traffic traces are 1000.48, 

1079.49, and 2282.29, respectively. The corresponding results using Whittle's M L E are 0.899, 0.887, 

and 0.879. Although the results sHghtly decrease as the variance coefficient increases, the difference 

between them are not significant. Such different traffic traces with almost the same results might cause 

the misuse of this model. 

Two possibilities create this situation. First, Whittle's M L E might not be appropriate to estimate the 

Hurst parameter Secondly, the Hurst parameter cannot ful ly represent the fluctuations of the traffic. The 

first cause is not very convincing because Whitde's M L E has a very rigorous mathematical derivation. 

Secondly, the Hurst parameter concerns the correlation of samples not the values. Although the traffic 

traces in Fig. 6.17 are quite different, the samples themselves have a similar degree of correlation. The 

term <5\^ in Eq. (6.24) might be the key factor which affects the fluctuation of the traffic traces. The 

study of this problem is a candidate for further research. 
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(a) Discard Event Count (b) Arrival Rate 

(c) The R/S Statistic (d) The V T Plot 

(e) Whittle's MLE 

Figure 6.16: The arrival rate and estimated Hurst values of the storage model with different Hurst pa­

rameters and variance coefficients. 
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Figure 6.17: Traffic traces generated by the storage model with different variance coefficients. 

6.5 Summary 

In this chapter two models to transform the F B M processes to self-similar traffic have been investigated. 

The marginal distribution models use the invariant property to transform the non-integer, non-positive 

F B M samples to self-similar traffic with an arbitrary distribution. The models have been studied using 

an exponential, a gamma, and a Pareto distribution for the transformation processes. The distributions 

are obtained f rom the traffic measurements. 

The results of the exponential and gamma distributions can be discussed together, because the expo­

nential distribution is a special case of gamma distribution. Using these two distributions, the small scale 

structural assumptions can be applied to restrict arrivals to either one or none in an observed time slot. 

Investigation of the mean arrival rate of the traffic traces generated by the models with the gamma distri­

bution shows that the output rate increases as the Hurst parameter increases. When the shape parameter 

of the gamma distribution increases, the output rate decreases. Therefore, a better result in terms of the 

accurate output rate is obtained as a larger shape parameter is used. 

For the marginal distribution models with the gamma distribution, the V T plot and the R/S statistic do 

not give a good representation of the degree of self-similarity. The results of the V T plot are significantly 

lower than the Hurst settings, while the results using the R/S statistic shows almost constant values as the 

Hurst parameter changes. The values using Whittle's M L E exhibits a more reasonable result. However, 

i f the observed time scale is too small, the results using Whittle's M L E is significantly lower than the 

target Hurst parameters. 

The investigation of the marginal distribution model with the Pareto distribution shows that the dis­

tribution is not suitable for generating self-similar traffic. None the results accurately represent the actual 

Hurst values. This distribution has been proved in [TWS97] to be more appropriate for the modeling the 

ON/OFF traffic sources than their aggregated self-similar traffic. 

The storage model has a more plausible physical interpretation and mathematical derivation. The 

model can be derived from the aggregation of many ON/OFF traffic sources with heavy-tailed distribu­

tions. It can also be seen as a fluid burst model to interpret real traffic. A concise version of the storage 

model was chosen for investigation because it has few parameters. In this model the traffic consists of 

two main parts: the mean level and the fluctuations. The former provides the mean arrival rate of the 

traffic while the latter controls the 'quality' of the traffic. The fluctuations are obtained from the F B M 

processes scaled by a weighting function of which the variance coefficient is the main parameter The 
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effect of the parameter was investigated. 

For this transformation the output rate of the generated self-similar traffic traces increases as the Hurst 

parameter and the variance coefficient increases. The result using the R/S statistic cannot represent actual 

Hurst parameters because this estimator is highly affected by the mean level of the traffic traces. The 

results using the V T plot are not affected by changing the variance coefficient, and are significantly lower 

than the actual Hurst settings. The results using Whittle's M L E accurately represent the desired Hurst 

parameters. In addition, the results are not significantly affected by changing the variance coefficient. 

The mean rates of the traffic traces are the only factor to consider of the value of variance coefficient 

because of the truncations of negative arrivals. 

This exhaustive analysis has shown that the storage models is the preferred transformation producing 

accurate results. The marginal distribution models with the gamma distribution is a good transforma­

tion that could be used with care. I t has been shown that the marginal distribution models with the 

Pareto distribution is not suitable for generating self-similar traffic because of its highly distorted Hurst 

parameter 



Chapter 7 

Conclusions and Suggestions for Future 
Work 

Asynchronous Transfer Mode (ATM), high-speed, cell-relay networks are likely to be used as the back­

bone of B- ISDN for the interconnection of enterprise networks composed of several LANs. Traffic 

modeling plays an important role in research because it is fundamental to the analysis and simulation 

of A T M networks. A great number of traffic models have been proposed to represent the traffic charac­

teristics of different service categories. Most of them either cannot fully represent real traffic or must 

use complicated approaches. Thus, self-similar traffic models have been proposed as a unified model to 

capture the characteristics of various types of traffic. 

To date, most of the research in this area has focused on the effect on ATM network mechanisms 

of the traffic models. Very few studies concentrate on the generation of high quality self-similar traffic. 

Although some research has covered the high-speed generating algorithms, this work has not been com­

pleted. This thesis has not only looked into the theoretical derivation of self-similar traffic models but 

also investigated their suitability in practice. In addition, some novel algorithms to generate self-similar 

traffic with high efficiency and accuracy for ATM networks have been proposed. This work has filled a 

gap in the study of self-similar traffic models. During the investigation, several conclusions have been 

drawn and some possible areas for future study identified. These are detailed below. 

7.1 Conclusions 

7.1.1 Survey of Traffic Modeling 

There are two major categories of traffic models: those with short-range dependence and those with 

long-range dependence (LRD) . Most conventional traffic models are from the former category while 

the recently proposed self-similar traffic models are the latter. Many real traffic measurements exhibit 

either strong correlation within the samples or infinite variance of their interarrival processes. While 

self-similar traffic models represent the aggregated traffic with L R D (the Joseph effect), the packet-train 

(ON/OFF) traffic models represent interarrival time series with heavy-tailed behavior (the Noah effect, 

infinite variance syndrome). 
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Self-similar traffic models have been tested against the six main criteria for traffic modeling. They 
have been found to satisfy five of the requirements: accuracy or closeness to reality or physical meaning 
of real traffic; generality of models for various types of traffic; usability for simulation or statistical 
stability; method of model parameterization; and small number of parameters. Only one of the criteria, 
analytical tractability, is not fulfilled at this stage of study. In fact this criterion, mainly concerned in the 
development of conventional traffic models, is not overly useful for self-similar traffic. 

In conclusion, self-similar traffic models are more appropriate for the representation of the charac­

teristics of bursty traffic because of the L R D and infinite variance of traffic. These models can satisfy 

most of the criteria of traffic modeling, except that of analytical tractability. 

7.1,2 Foundations of Self-Similar Traffic Models 

The stochastic and deterministic models are the two approaches to model the self-similar phenomena in 

time series. The former are based on the self-similar stochastic processes while the latter use chaotic 

maps in dynamic systems. Although the chaotic maps directly generate self-similar traffic, the gen­

erated samples are pseudo-random rather than stochastic. Therefore, the chaotic maps are very effi­

ciency because of their direct generation of self-similar traffic, but are hard to use as models for network 

analysis. They are not appropriate for the modeling of stochastic processes but are understood to be 

efficient models for network simulation. There are two methods which can be used to represent the self-

similar stochastic processes: the exactly self-similar F G N processes and the asymptotically self-similar 

F A R I M A processes. The latter has two more parameters which make the models more flexible. How­

ever, two additional parameters increase the complexity of the models. The F G N processes are not only 

truly random and use fewer parameters, but also have closer physical interpretations. For these reasons, 

this study concludes that the F G N processes can be used to represent the self-similar phenomena more 

accurately and efficiently. 

Many estimators have been proposed to obtain the Hurst parameter Most of them are derived from 

the properties of the self-similar stochastic processes. After a thorough review of these estimators, three 

were selected as a benchmark to evaluate the generated samples because they were considered to be the 

best representations of the full range of estimation techniques. The simplest one is the variance-time 

plot which directly approximates from the property: the variance of the arithmetic mean decreases more 

slowly than the reciprocal of the sample size. Many other estimators are based on the same property 

but with modifications. The rescaled adjusted range statistic is based on the important scaling property 

of fractal samples. Whittle's approximate maximum likelihood estimator obtains the Hurst value by 

optimizing the logarithmic function of the periodogram. This estimator has a more rigorous mathematical 

derivation in comparison to other estimators. 

In conclusion, the study of the self-similar stochastic processes indicates that the F G N processes are 

the most suitable models to represent self-similar traffic. In addition, three commonly-used estimators 

and a visual assessment tool can serve as the benchmark of the accuracy of the generated fractal samples. 
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7.1.3 Algorithms for Generating F B M and F G N samples 

A preliminary selection process identified six algorithms which could be used to to generate the FBM 

and FGN sample traces. The dFGN and fFGN algorithms are directly or approximately derived from the 

definition of the FBM processes. These two algorithms generate the FGN samples while the RMD and 

SRA algorithms use the scaling property to generate interpolated FBM samples. The WM function and 

Whittle's approximate approach generate FBM and FGN samples in the frequency domain rather than 

the time domain. 

Of these algorithms the RMD algorithm is the fastest sample generator while the SRA algorithm 

is only slightly slower. The main computational effort of the W M function is the inverse FFT, so its 

computational time is slightly worse than the SRA algorithm. The dFGN algorithm is the worst in terms 

of speed, but is the only one which can generate the samples on-the-fly. 

Al l the algorithms generate samples aggregated with weighted Gaussian random variables, so their 

results follow the normal distribution. The Q-Q plot of their samples should fit the normal distribution. 

The dFGN algorithm and the W M function proved to have the best two results, with their sample traces 

fitting the normal distribution accurately. The SRA algorithm is slightly better than the fFGN algorithm 

but significantly better than the RMD algorithm. The Q-Q plot of the Whittle's approximate approach is 

the worst fit. 

The results using the R/S statistic and the VT plot show that the 95% confidence intervals of the 

mean results of twenty different estimated values are very wide. The dFGN algorithm has the best result 

and Whittle's approach is the worst using the test of the R/S statistic. In contrast, the result of the 

dFGN algorithm with the VT plot is one of the worst cases. The confidence intervals of the results using 

Whittle's MLE are significantly small, therefore can be ignored. With this estimator, the dFGN algorithm 

is the best one while the W M function is only slightly poorer. The fFGN, RMD, and SRA algorithms are 

significantly worse than the best two but slightly better than Whittle's approach. 

In conclusion, the investigation of the algorithms for generating FBM or FGN samples shows that 

the dFGN algorithm and the W M function are the best two in terms of quality, while the RMD algorithm, 

the SRA algorithm, and the WM function are superior in terms of speed of computation. Of these, the 

dFGN algorithm is the only one that can generate samples 'on-the-fly'. 

7.1.4 Three Novel Algorithms for Generating F B M Samples 

In order to attempt to overcome the problem of computational time associated with the dFGN algorithm, 

three novel hybrid algorithms were suggested and investigated. 

The combination of the dFGN and RMD algorithms reduces the original computational time of the 

dFGN algorithm up to 50%. A scheme with 5 levels of depth is the best combination in that it signifi­

cantly reduces the computational time and retains accuracy within a reasonable range. The combination 

of the dFGN and SRA algorithms was never better than the dFGN-i-RMD algorithm because of its ap­

proximation errors. 

The dFGN-i-RMD and dFGN-l-SRA algorithms generate interpolated samples between two endpoints. 

The combination of the dFGN algorithm and the WM function uses a different approach by viewing the 
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sample traces as two parts: the main level and the fluctuations. The former is decided by the dFGN 
algorithm while the latter is determined by the WM function. It was found that the best combination 
scheme of the hybrid algorithm is to generate 7 WM samples between 2 dFGN endpoints. 

Comparison of the dFGN+RMD and dFGN+WM algorithms shows that the former is a better hybrid 

approach. The accuracy of the best combination scheme of the dFGN-t-RMD algorithm is slightly worse 

than that of the dFGN-i-WM algorithm. However, the computational time of the dFGN+RMD algorithm 

with the best combination scheme is significantly faster than that of the dFGN+WM algorithm. The 

best overall scheme is the dFGN+RMD algorithm. This hybrid algorithm is better than the other hybrid 

approaches that were developed. 

7.1.5 Models for Producing Self-Similar Traffic 

The marginal distribution model and the storage model are two models which are used to convert the 

FBM sample traces into self-similar traffic. The marginal distribution models make use of the invariant 

property to convert the FGN samples from the normal distribution to a desired distribution. Three distri­

butions, the exponential, gamma and Pareto distributions have been used to examine the effect of their 

parameters and the appropriateness of the distributions themselves. From simulations, the numerical 

results show that the marginal gamma distribution models with higher shape parameters produce more 

accurate sample traces. The marginal distribution models with Pareto distributions are not suitable for 

generating self-similar traffic. 

The storage models show that many aggregated ON/OFF traffic models with heavy-tailed distribu­

tions can generate self-similar traffic. These models have more physical meaning. The mean level and 

fluctuations are the two terms used to control the quantity and quality of self-similar traffic traces. The 

latter is controlled by the variance coefficient while the former is determined by the arrival rate of the 

traffic. In simulations the numerical results suggest that the smaller variance coefficients generate more 

accurate traffic traces and produce fewer events whose arrival counts are negative. However, a smaller 

variance coefficient might not fully reflect the fluctuations of real traffic. The choice of an appropriate 

variance coefficient is still an open research topic. 

On balance, of the two models used to transform the FBM samples to self-similar traffic, the storage 

model with an appropriate variance coefficient is a better approach. 

7.1.6 Suitability of Using Hurst Estimators 

Further studies, initiated by the contradictory results obtained between the VT plot and the other two 

estimators, when changing simulation parameters of the dFGN algorithm, suggest that the Whittle's 

MLE is an accurate Hurst estimator while the other two estimators cannot accurately obtain the Hurst 

values. In particular, the VT plot misrepresents the Hurst values as the Hurst parameter approaches one. 

Numerical results from the estimation of self-similar traffic suggest that the use of the R/S statistic 

cannot accurately reflect the Hurst value of the traffic traces. The R/S statistic obtains the Hurst values 

from the range of the influx over a period of time. The mean level of the storage model controls the 

quantity of traffic, thus the results using the R/S statistic are highly affected by the mean arrival rate. 
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Of the three Hurst estimators, it has been shown that the VT plot is not suitable for estimating the 

Hurst parameter, while the R/S statistic can be used as a reference, only Whittle's MLE can obtain 

accurate Hurst values from fractal samples and fractal traffic. 

7.2 Future Work 

Self-similar traffic models offer promise for providing parsimonious descriptions of the essential features 

of packet traffic, but analytical tractability of the ensuing traffic models for performance analysis remains 

largely an open problem. This field of research is still in its infancy. In addition, the use of self-similar 

traffic modeling has theoretical problems as well as the problems of practical implementation. 

7.2.1 Mathematical Aspects 

Estimation of the Hurst parameter varies with trace generation techniques. Of them. Whittle's MLE is the 

best estimation technique, but it requires a large buffer to store samples. For greater statistical robustness, 

aggregation of samples have been proposed. However, the confidence intervals of the results significantly 

increase as the aggregation level increases. Further work needs to be done to identify accurate, efficient, 

and reliable estimators for each technique. 

Another fundamental problem of self-similar traffic is that of the stationary property of second-order 

self-similar stochastic processes. The increments of a self-similar stochastic process form a stationary 

stochastic process. When using self-similar stochastic processes to model traffic with LRD the sample 

traces must be long due to the slow-decaying property. However, the arrival counts of real traffic cannot 

be stationary. In spite of explaining the basic problem with local Gaussian random processes in [Man69, 

Ber94], the model of self-similarity still attracts massive debate about this problem. 

7.2.2 Engineering Aspects 

The main objective of traffic analysis and modeling is to try to gain a good understanding of the ac­

tual dynamics of network traffic and to make use of this knowledge when designing, managing, and 

controlling existing or future networks [Res97]. The analysis of real traffic can lead to different results 

depending on the samples gathered. This has previously been a serious problem in the traffic characteris­

tics. A full understanding of mechanisms and effects of different protocols becomes possible because of 

the improvements of techniques. Strong evidence indicates that there exist such underlying mechanisms 

of real traffic. Then, the design, management, and control of dynamic networks can be developed as the 

hierarchical nature of networks are able to model by structural models rather than black box models. 

In engineering practice, the significance of the discovery of the self-similar nature of network traffic 

depends on whether or not features such as LRD have measurable impacts on queueing perfonnance 

and traffic engineering. Self-similar traffic can impact on a wide range of traffic management related 

areas, including network dimensioning, quality of service, overload control, call admission, and error 

monitoring. There is considerable scope for further research on highly relevant problems of practical 

interest. 
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Considerable recent research has focused on the modeling and analysis of queueing systems driven 
by fractal traffic flows. There are several aspects to this research: reproducing the statistical behavior 
of packet traffic parsimoniously; investigation of the statistical impacts of self-similarity by means of 
trace-driven simulations; analysis of self-similar traffic models; and fast generation and simulation with 
self-similar traffic [EPW95]. 

In this thesis, the work focuses on how quickly self-similar traffic traces can be generated while still 

accurately representing the Hurst parameter An improvement for generating FBM/FGN sample traces 

has been suggested but further investigations require to be undertaken. The RMD and SRA algorithms 

suffer from the criticism of generating independent subtraces within a single sample trace. In addition, 

the W M function can accurately represent the Hurst parameter when the degree of self-similarity is high. 

Although the dFGN+WM algorithm has been proposed to combine on their respective advantages, the 

results shown were not as good as expected. A different method of combining the W M function with the 

dFGN algorithm is worth investigating. Other hybrid approaches are also worth investigating. 

As mentioned in Chapter 1 the development and design of a control mechanism is one of the most 

important issues for ATM networks. However, while most applications of fractal models in science and 

engineering have been based on empirical findings, they have almost exclusively focused on the models' 

powerful descriptive capabilities; their engineering implications and analysis have been largely ignored, 

mainly because fractal models are generally viewed as very difficult to analyze. The success of self-

similar traffic models in teletraffic theory will not only depend on how well they describe actual network 

traffic, but also will depend to a large degree on the ability to use the models in network analysis and 

control. 

The measurement of real traffic is another important issue. In Chapter 2, several measurements from 

ISDN, Ethernet, LAN, and VBR traffic have been summarized. Recently, the measurements from BT's 

Switched Multimegabit Data Service (SMDS) and Frame Relay networks have been found to be fractal 

nature as well [MA97]. However, the impact of many different existing or newly launched protocols 

and networks require further investigation. In addition, the traffic of individual source-destination pairs 

needs to be specified. The appropriate distributions and their parameters which fit the measured data are 

important to support the practical usage of traffic models. 

Recently several works have dealt with the analysis of an ATM queueing system and the general 

problem of the relevance of self-similar traffic in practice [Ana95, AZN95, DLRT95, D095, EGW94, 

EWP94,EW94,ENW96,MS97b,MS97a,LTG95,PM96,RE96,TG97, VKH96]. However, none of these 

studies make use of the derivative of the storage model from many ON/OFF traffic sources with heavy-

tailed distribution, which provides a rigorous mathematical development and therefore might play an 

important role in analysis and modeling of queueing systems. 



Appendix A 

An Overview of Traffic Models 

Based on [CPL+94] and [FM94] with other newly developed models this review brings together a sum­

mary description of traffic models. Such models are developed in two fundamental ways: either as part 

of any analytic model, or to drive a discrete-event simulation. All the models proposed are represent the 

characteristics of real-time and non-real-time traffic, such as voice, data, compressed audio and video 

traffic. Almost all of the models are based on conventional stochastic processes, the family of Poisson 

and Markov processes. 

A.l General Description of Traffic Modeling 

The simplest traffic model is a traffic source consisting of the single arrival of discrete entries. The math­

ematical presentation is a point process, formed by sequences of arrival instants T\,T2,...,T„... obtained 

from the initial trial TQ = 0 on the time axis. Counting and interarrival time processes are two different 

equivalent descriptions of the point process [Cin75]. Let a counting process {A'(0};°Lo represent, for 

each t the cumulative number of arrivals up to time /. N{t) must satisfy the following conditions [RS95]: 

1. A^(/) > 0 . 

2. N{t) is integer valued. 

3. I f j < ^ t h e n A ^ ( 5 ) < A^(0-

4. For s < t, N{t) — N{s) equals the number of events that have occurred in the interval {s,t). 

Thus, it is a continuous-time, non-negative integer-valued stochastic process. 

An interarrival time process is a non-negative random sequence {/4«},7=|, where An = T„ - T^-i is 

the length of the time interval separating the nth arrival from the previous one. These three descriptions 

of stochastic process are based on the equality of events: 

{N{t) =n}^{Tn<t< T„+i} = {f^Ak<t< X (A.l) 
k=i k=\ 

since T„ = 'Z'k=\^ic- Except for particular addressing, {An} is assumed as a stationary sequence and its 

common variance is finite. 
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However, the arrivals may contain more than a single unit at a certain instant T„. This kind of traffic 
for batch arrivals is called compound traffic. To describe compound traffic as an interarrival process, it 
can be represented by a non-negative random sequence {fi„}"^i where S„ is the number of units in the 
batch at arrival instant 7̂ ,. 

Discrete-time traffic processes are applied when the time is slotted. From the mathematical aspect, 

the random variables A,, can assume only integer values, or the random variables A', change their values 

at integer time instant In addition, the workload is a general concept describing the amount of work 

{Wn} brought to a system by the n''' arriving unit; it usually assumes independent interarrival times and 

batch sizes. 

A.2 Renewal Traffic Models 

The mathematical simplicity makes the use of renewal models popular. Renewal models have an im­

portant property that in Markov chains and Markov processes if the initial state is /, then the time of 

successive entrances to that state /; and this fact in turn enables us to obtain many of the limiting results. 

This 'regeneration' property makes the mathematical expression simpler and may hold in more general 

situations. In a renewal traffic process, the random variables {A„} are i.i.d. taking result in [0,°°). Later, 

a new random variable sequence {Z„} was introduced, where ZQ = AQ — Q,Z\ = A ] , Z 2 = A\ - f A 2 , 

The stochastic process {Z„,n E N + {0}} is called a renewal process or regenerative process. Unfor­

tunately, very few cases still keep this property when superimposed other renewal processes. Although 

the simplicity of mathematical analysis makes renewal models broadly used, there is a severe modeling 

drawback that the autocorrelation function of {A,,} vanishes identically for the nonzero lags. It makes 

the renewal process hard to be applied to the burst phenomenon in broadband networks. 

A.2.1 Poisson Processes 

Poisson and Bernoulli processes are typical renewal processes applied for continuous and discrete time, 

respectively. An arrival process {N{t),t > 0} is called a Poisson process i f the following three axioms 

hold [Cin75]: 

1. for almost t, each jump of N{t) is of unit magnitude; 

2. for any t,s >0, N{t + s) - N{t) is independent of N{u) where u < t; 

3. for any t,s>0, the distribution of A'̂ (/ + s)- N{t) is independent of t. 

The counting process satisfies the probability function 

P{yV(0=«} = ^ e x p ( - ^ 0 , (A.2) 

and the number of arrivals in disjointed intervals is statistically independent. Equivalently, this renewal 

process whose interarrival times {A,,} are exponentially distributed with rate parameter X: 

P{An <t} = l - exp{-Xt). (A.3) 
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The aggregation of several independent Poisson processes simply sum the rate parameters of each 
process with the same distribution. In addition, the independent incremental properties renders the Pois­
son process a memoryless process. Thus, it greatly simphfies queueing problems involving Poisson 
arrivals. 

A.2.2 Bernoulli Processes 

Instead of occurring on a continuous time scale, the Bernoulli process is a stochastic process {A' , ,}"^! 

with success probability p provided that 

1. A^i, 7 2 , . . . are independent, and 

2. P{Nn = 1} = P,P{Nn = 0} = 1 - /7 for all n. 

Applying the definition to cell streams means that there is a cell arrival with probability p, and no cell 

arrival with probability q at each time instance. From the definition of the Bernoulli process the corre­

sponding number of arrivals is binomial, 

P{Nk^n}= p"{l-pf-", (A.4) 
\ n J 

where 0 <n<k. The interarrival distribution is geometric with parameter p: 

P{An = j} = p{\-py, (A.5) 

where j is a non-negative integer. Therefore, this process is also known as a geometric process. With the 

same property of the Poisson process, the Bernoulli process is also memoryless. 

The extension of the Bernoulli process with batch arrivals is also a renewal process. In this case, 

the number of arrivals at a time instant may be greater than 1. Let P/^ denote the probability that Ic cells 

arrive at a given time instant. Then, the number of arrivals is independent of the past, preserving the 

memoryless property of Bernoulli process. 

A.3 General Modulated Deterministic Traffic Models 

The General Modulated Deterministic Process (GMDP) is derived from finite state machine (FSM) hav­

ing A' states [CPL+94, Sai94]. In each state, cells are generated with constant interarrival time di, where 

the index i indicates the state. Let X, be the number of the cells which are emitted in state /. X,- may 

have a general discrete distribution fi{k) = P[Xi = k]. The GMDP could include silent states where no 

calls are generated, and the duration of these states may also have a general discrete distribution. The 

changing states of the state machine are governed hy aNxN transition matrix P = [pij], where pij is the 

probability that at the end of its sojourn time in state /, the source moves to state i ^ j. Fig. A . l is a 

GMDP example with three-state FSM. 
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Figure A . l : A three-state FSM example of the general modulated deterministic traffic model. 

Figure A.2: The state diagram of an ON/OFF traffic model. 

A.4 ON/OFF Traffic Models 

The ON/OFF traffic model, which is also known as talk-spurt/silent model, burst/silent model, or spo­

radic models, was proposed by [Gru82,HL86,SW86]. It is a two states Markov model which alternates 

between phases of ON and OFF. Within an ON state, cells are emitted with a constant interarrival time. 

Originally, the model was introduced in the continuous-time domain; that is, the burst and silent duration 

as well as the cell distance within the ON state are continuous-time variables. In this case the sojourn 

times in both states have a negative exponential distribution with mean l/XpN for ON state and I/XOFF 

for OFF state. Fig. A.2 is the state transition diagram of this two phases traffic model. Other interar­

rival time distributions and characteristics of this model can be found in different research work, such 

as [HL86] and [SW86]. 

Similarly, this model is also used in the discrete-time domain, where the minimum cell distance T and 

the silent duration are integer multiples of a basic time unit, which is usually the cell transmission time. 

The sojourn time in the OFF state and the number of cells in an ON state have a geometric distribution. 

Therefore, the model is a special case of a two-state Markov modulate deterministic process with one 

silent state. 

A.5 Markov-Modulated Traffic Models 

Markov-modulated models introduce the very important idea that an auxiliary Markov process is evolv­

ing in time and its current state controls the probability law of the component state space [MH89, HL86, 

FM94, LL92, Onv95, Sai94]. Let M = {M{t),t > 0} become a continuous-time Markov process, with 

state space E = {l,2,...,m}. Now assume that M is in state k, the probability law of traffic arrivals is 

completely determined by k, and this holds for every \ <k<m. Thus, the probability law for arrivals is 

modulated by the state of M. This modulating process can be far more sophisticated than continuous-time 
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b) IPP (a) MMPP 

Figure A.3: State transition diagram of the Markov modulated Poisson process and the interrupted Pois­

son process. 

or discrete-time Markov processes, but such models are far less analytically tractable. 

A.5.1 Markov-Modulate Poisson Process 

The Markov-modulated Poisson process (MMPP) is the most commonly-used Markov-modulated model, 

and has been extensively used to model various ATM traffic sources, such as voice and video, as well as 

characterizing the superposed traffic [HL86, SKY91, CPL+94, Sai94]. MMPP combines the simplicity 

of the modulating Markov process with that of the rnodulated Poisson process. It has the property of 

capturing both the time-varying arrival rates and correlations between the interarrival times. An MMPP 

is a doubly stochastic Poisson process. The arrivals occur in a Poisson manner with a rate that varies 

according to a k-state Markov chain, which is independent of the arrival process. Fig. A.3(a) depicts a 

general MMPP state transition diagram. In this diagram, ^, denotes the arrival rate of state / and qij is 

the transition probability from state / to state j. Therefore, MMPP can be used in a number of ways, for 

instance, as a single traffic source with a variable rate. It can be quantized into a finite number of rates 

and each rate would give rise to a state in a Markov modulating process. 

In addition, the superposition of MMPPs is also an MMPP. As the number of component processes 

increases, the number of states of the superposed process increases exponentially. To reduce the complex­

ity of solving queues with large number of arrival streams, the superposed process may be approximated 

by a simpler process that captures important characteristics of the original process as closely as possible. 

The simplest model that has the potential to approximate an MMPP accurately with large number of 

phases is the two phase MMPP. Then, the problem is reduced to choosing the parameters of the two-state 

MMPR 

First, consider the simplest Markov modulated Poisson process, the Interrupted Poisson process (IPP) 

or 2-state MMPP. Fig. A.3(b) illustrates the state transition diagram of a general IPP. In cooperating with 

the ON/OFF traffic model the IPP is alternatively turned on for an exponentially distributed period of 

time and turned off for another independent exponentially distributed period of time. During the active 

(ON) period, the interval times of traffic are exponentially distributed, while no traffic are generated 

during the silent (OFF) period. Al l processes are assumed to be mutually independent. Let l / o / i , I / 0 5 , 
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and X be the average duration of the active and silent periods, and the packet-generation rate during the 
active period, respectively. Then, the probability distribution function of the active period, silent period, 
and the interarrival times of packets during the active period are exponentially distributed. The two-state 
Markovian ON/OFF process in active and silent periods, and Tt^, can be obtained by 

TlA = Os/iGA + <^s) T^S = (^s/{<^A + Os) (A.6) 

While the IPP models concentrate on the continuous-time Markov process, the Interrupted Bernoulli 

Process (IBP) is its discretized version. In this case time is slotted, in each slot length the arrival occurring 

time is equal to the cell time in the medium. A slot is either in an active state or in a silent state. A slot in 

an active state contains a cell with probability a and no cell with probability 1 — a, while no cells arrive 

in a silent state. 

A.5,2 Transition-Modulated Process 

A variation of MMPP on the state modulated idea, which is, instead of a state itself, a state transition, and 

is called transition-modulated processes [CPL+94]. Let M = {M{t),t > 0} be a discrete-time Markov 

process on the positive integers. State transitions occur on slot boundaries, and are governed by an m x m 

Markov transition matrix Q — [Qij]. Let B„ denote the number of arrivals in slot n, and assume that the 

probabilities P{Bn = k\Mn = i,Mn+\ = j} = tij{k), are independent of any part state information. Notice 

that these probabilities are conditioned on transitions, (M„,M„+i), of M from state M„ to state M„+i 

during slot n. Furthermore, the number of traffic arrivals during slot n is completely determined by the 

transition of the modulating chain. Markov-modulated traffic models can be obtained if tij{n) = ti{n) 

depends only on the state / of the modulating chain in slot n, but is independent of its state j in the next 

slot/ t+ 1. 

A.6 Markov and Markov-Renewal Traffic Models 

Compared with renewal traffic models, Markov and Markov-renewal traffic models can be used to reflect 

the characteristics of burstiness, because they depend on the interarrival sequence {A,j} with nonzero 

autocorrelations. Markov and Markov-renewal processes are derived from a Markov chain defined as 

[Cin75,Ros84]: A stochastic process {Tn,n G + { 0 } } provides that 

P{Tn+X=mJu-Jn]^p{Tn-,X^j\Tn} (A.7) 

for all i EE and nEN, where £" is a countable state space. The process moves from one state to another 

with random sojourn time in between. If the sojourn times are all exponentially independent of the next 

state, the process becomes a Markov process. It can be mathematically represented as: a stochastic 

process {X(t),t > 0} with state space E provided that for any t,s>0 and j € E, 

P{X{t + s) = j\X{u),u<t} = P{X {t + s)\X{t)}. (A. 8) 

For fixed i, j EE the function P{X{t + s) = j\X{t) = i} = pij is called the transition function, pij is the 

probability that a system stays in state / and then jumps to state with the parameter A., of an exponential 
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distribution which depends on the state / alone, and the family of pij forms a matrix called the transition 
matrix. The discrete-time version of Markov model can be defined for the process {A,,} in terms of a 
Markov transition matrix P = [pij] where / and ; signify two successive arrivals separated by / and j idle 
time slots. Thus, pij is the probability of j idle slot occurring when given the previous one with i-slot 
separation. 

Markov-renewal traffic models are the super class of the processes that have been examined. The 

stochastic process (X, T) = {{Xn,Tn),n eN + {0}} is said to be a Markov-renewal process with space 

space E provided that 

P{X„+i = j,Tn+i - Tn =An+i < r | X o , X i , T Q , 7 , , 7 ; , } = P{Xn+i = j,An+l < t\Xn}, (A.9) 

for all neNJ eE, and t>0.lt means a Markov chain {Xn} with associated jump times {7,,} changes its 

states from the state {Xn, Zi) to next state (A'„_|_|, 7;,+ i) depending on current state X,„ but not on previous 

states nor previous jump times. 

A.6.1 Phase-Type Renewal Process 

An important renewal process occurs when the interarrival times have the characteristic of phase type 

[Neu79,LMHN90,Res92,FM94,Sai94]. A continuous-time Markov process C = {C{t),t > 0} has state 

space (0,1,2, • • • ,m). This set of states is said to be closed when it cannot attain any outside state from 

any state in it. An absorbing state is a state forming a closed set by itself [Cin75]. Phase-type interarrival 

times can be modeled as the time with a finite value to be absorbed by state 0, and when all other states 

are transient. Consider a (m+ 1)-state Markov process {X{t),t > 0} with m transient states and one 

absorbing state. Its generator is of this form 

Q = 
T T* 

0 0 
(A. 10) 

where T is a m x m matrix, with Tu < 0, Tij > 0, for / j and such that T" ' exists. 0 is a row vector 

of zeros. Moreover, the states 1, • • • ,n are all assumed to be transient. Since the row sums of Q equal 

zero, the column vector T* has non-negative entries and satisfies 7e-I-T* = 0, where e = (1,• • • , 1)'. 

The initial distribution a of {X{t)} is denoted by (a,a„,+ i ) , where a is a 1 x n sub-stochastic vector 

The distribution of hitting time T = mf{t > 0,X{t) = m+\} is called a continuous phase-type (PH) 

distribution. A renewal process where the inter-renewal times have a PH-distribution is called a PH-

renewal process. The superposition of a Poisson process and a PH-renewal process have been studied as 

queues with background input (the Poisson process) and burst input (the PH-renewal process with group 

arrivals). The family of PH-renewal processes are relatively tractable traffic models. However, it seems 

there are very few traffic sources with this property. 

A.6.2 Markovian Arrival Processes 

Similar to the PH-renewal process the Markovian arrival process (MAP) is a subset of the semi-Markov 

process and is well-suited for matrix-analytic and numerical investigations [LMHN90, CPL+94, Sai94]. 
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The major difference between the PH-renewal process and MAP is that the new state of the PH-renewal 
process is chosen according to the probability vector a which is independent of the state from which 
absorption occurred. 

A Markov process on the state space E = {],••• ,m+]}, where { 1 , • • • ,m} are transient state and 

{m+l} is absorbing. The arrival process is a Markov process until absorption. The epoch of absorption 

corresponds to an arrival in the arrival process. The Markov process is then instantaneously restarted 

in a transient state, where the selection of the new state is allowed to depend on the state from which 

absorption occurred. Therefore, the MAP is a semi-Markov arrival process whose transition probability 

matrix is of the form 

P{Xn+ i = j , L„+ i=k,T„+i<t\X„ = i} = f exp{DQu)duDk, (A. 11) 

Jo 

for k> \ ,t >0, where L„ is the number of arrivals of each transition, and the metrics Dk,k> 1 are 

nonnegative and the matrix DQ has nonnegative off-diagonal elements. MAP is defined as a Markov 

renewal process with a transition probability matrix of the stated particular form [Neu92]. Thus, a MAP 

could be a renewal or non-renewal process. Its formulation includes Poisson processes, phase-type re­

newal processes, and others as special cases. It also has the attractive property that the superposition of 

independent MAP traffic streams form a single MAP traffic stream. 

The discrete-time batch Markovian arrival process (D-BMAP) has been proposed for representing a 

VBR source at the cell-level [Ran94]. In addition, D-BMAP has also been used in speech recognition 

referred to as a hidden Markov process. However, the process is governed by an unobservable process 

modeled by a Markov process. Any processing which relies on detailed statistical information about the 

arrival streams can be difficult. Another difficulty of this model is that the parameters of this model must 

estimate online instead of being obtained in advance. 

A.6.3 Semi-Markov Processes 

The semi-Markov process releases the restriction that the Markov process must take a transition from the 

current state to other state, possibly back to the same state. Therefore, the sojourn time of the Markov 

process in a state is geometrically distributed. The semi-Markov process permits an arbitrary distribution 

of time so the process may remain in a state [Kle75,GK89,CPL+94,Sai94]. 

A semi-Markov process (SMP) is defined as a step linear process S = {S{t),t > 0}. For a fixed 

reahzation of the Markov chain 5„ = /„,/i > 1, of duration t\,t2 - t\,t3 - hr • • > where S{t) = S,„ if 

t E [/,;_!,;„), the sojourn of S{t) in the states ii,i2,i3,--- are independent. Moreover, each one of these 

variables depends only on the state in which the process is at present and on the next state. Its distribution 

functions 

P{t, - tn-1 < x\S, = i,S„+ i = j } = Eijix),n>\, (A. 12) 

are defined to achieve generality where it is assumed that fo — 0. Let [pij] be the transition matrix, then 

the transition probability 

P,j{x)^p,jE,j{x). (A. 13) 
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Figure A.4: State transition diagram of the semi-Markov process. 

I f at a given instant the process arrives at the state /, then with probability Pij{x), the next transition of 

the process will occur during a period of shorter than x and will proceed to the state j. The function 

Pj{x) = 'LjPiji^) is the distribution function of the time until the next transition of the process. 

The semi-Markov model in Fig. A.4 which is a two phases process was proposed by Berry [Ber90]. 

The normal and active phase generates cells with interarrival distributions Go and G\, respectively. The 

idle states /o , / i , -- ,/w generate no cells, po is the probability to transit from idle state /Q to normal 

state HQ. The cell arrival time within a burst is drawn from distribution Go so that the interarrival times 

are generated with a probability 1 - q^. Similarly, there is a transition from idle state 1Q to active state 

H\ with probability 1 — po and the interarrival time within a burst is drawn from the distribution G\. 

ri,i= 1, • • • ,N control the mean returns to state //,. For active state Hi the state either re-enters to state 

IQ with probability qi or passes through idle state 7i to state H2. 

A.l Fluid-Flow Traffic Models 

The fluid traffic model views traffic as a stream of fluid, characterized by a flow rate [CPL+94, FM94]. 

These models are appropriate to cases where individual units are numerous relative to a chosen time scale. 

In the B-ISDN context of ATM, all packets are fixed-size cells of relatively short length; in addition, the 

high transmission speeds render the transmission impact of an individual cell negligible. 

Although an important advantage of fluid models is their conceptual simplicity, important benefits 

also accrue from a simulation model of fluid traffic. For example, if one simulation distinguishes between 

cells, then every cell needs an event to identify them and there will consume a vast amount of CPU time 

and memory. In contrast, a fluid simulation would assume that the incoming fluid flow remains constant 

over a much longer time period. Traffic fluctuations are modeled by events signaling a change of flow 

rate. 

Apparently, a fluid-flow model for non-bursty sources is useless, since in this case it is only the cell-

level behavior that conveys information about the source activity and the information would be removed 

by the fluid-flow simplification. 

A.7.1 Fluid-Flow Approximation of O N / O F F Traffic Models 

Typical fluid-flow models assume that sources are bursty of the ON/OFF type [GSV95]. While in the 

OFF state traffic is switched off, whereas in the ON state traffic arrives deterministically at a constant 
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Figure A.5: State transition diagram of the multi-minisource process. 

rate X. For analytical tractability the duration of ON and OFF period are assumed to be exponentially 

distributed, as the simple assumption of the ON/OFF traffic model in Sec. A.4. 

A,7.2 Multi-Minisource Traffic Models 

The multi-minisource model represents the superposition of M identically independent ON/OFF traffic in 

a single fluid-flow model [CPL+94]. The pictorial representation of this model is illustrated in Fig. A.5. 

The model is based on a (M + I)-state continuous-time Markov chain describing the number of sources 

which are currently active. The arrival rate in state / is given by iX. The cell interarrival time within a 

slot is deterministic and equals!/(iX). 

A.7.3 Aggregate Multi-Minisource Traffic Models 

The multi-minisource traffic model assumes that all traffic streams are identically independent traf­

fic [CPL+94]. The superposition of two classes of ON/OFF traffic models can be modeled as a two-

dimensional Markov chain depicted in Fig. A.6. Each class consists of N, , / =1 ,2 , independent and 

identical ON/OFF traffic with parameters a,, P,, and Xj. 

A.8 Diffusion Traffic Models 

The prototype for diffusion processes is the Brownian motion [Dyn65,IM65,Bre68,Fel71,Fre83,Pap91, 

Res92]. A normalized Brownian motion B{t) is a stochastic process on a probabihty space with proper­

ties: 

L B(0) = 0 , 

2. B{-) is continuous, and 

3. for 0 < / | < /2 < • • • < t,i-i < tn, the increments 

B{ti),B{t2)-B{ti),---,B{t„)-B{t„-i), (A. 14) 

are independent and normally distributed, with means 0 and variances ?i,?2 — ^ij •"" ,t„ — tn-\. 

Imagine a continuous path process {X{t),t > 0} which, given that it is a state x of its state space, adds 

an increment which is normal distribution with mean iu{x) and variance (;c). A method to think about 

such a process is through stochastic differentials: 

dX{t)^fiiX{t))dt-\-GiXit))dB{t), (A. 15) 
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Figure A.6: State transition diagram of the aggregate multi-minisource process. 

so that the change in the process at time t results from a drift of /j{X{t)) and a Brownian increment 

with variance c^{X{t)). Then, X{t) is a one-dimensional diffusion process. The extension of multi­

dimensional diffusion process {X(r)} , said M-dimensional, can be easily derived from above equation, 

rfX(0=A'(X)-X(0 + x /V(X)-^B(0 , (A. 16) 

where B{t) is a M-dimensional Brownian motion with zero mean and the covariance matrix /5(z), in 

which / is the M X M identity matrix and 6(r) is the impulse function. The corresponding mean and 

variance matrices, /j{X) and V(X), are singular. 

The discontinuous arrival and service processes in queueing models can be approximately derived 

as diffusion processes. The waiting time of jump processes has the Kolmogorov's backward equation, 

which can be observed in Brownian motion when the particles gain an elastic force. In addition, a more 

easily solved equation, Kolmogorov's forward equation, can be obtained formally by the Chapman-

Kolmogorov equation (the continuous-time expression of the Markov property). 

P{t + s)=P{t)P{s). (A. 17) 

However, the forward equation exists only while the particles are not defective. This nature of the process 

is determined by additional boundary conditions. 

Two boundary conditions have been proposed for modeling cell streams. The reflecting boundary 

is used to characterize the traffic from superposition of a homogeneous set of ON/OFF sources and the 

behavior of the superposition of the A' Markov-modulated rate processes with M states [RK94]. Another 
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boundary condition, absorbing or jump, was proposed to obtain the lower and higher bounds of cell loss 
ration estimation [GMF96, GM097]. In this application the ON/OFF sources are supposed as the input 
of the queues and the two bounds are obtained with finite and infinite length of queues. The diffusion 
models have long been used in queueing theory to model traffic and service. The computational effort 
are more attractive for more detailed traffic representations. 

A.9 Autoregressive Traffic Models 

Autoregressive models use the previous random variables within a time window stretching from the 

present into the past to obtain the next random variable through an explicit function [SMRA89, FM94, 

Sai94,Onv95]. The traffic of VBR-coded video is particularly suitable for the traffic models. Because the 

amount of data transmitted per frame varies due to interframe coding, the data rate varies in a continuous 

manner. 

A.9.1 Linear Autoregressive Traffic Models 

The simplest form of linear autoregression scheme is called AR(p), where p is the order of regression 

[BJ76,HTL92]. The autoregression function is 

p 
Xn=aQ+Yu^rXn-r + &n^n>0, (A. 18) 

where X q , are prescribed random variables, the Ur are real constants, and the e„ are zero mean, 

i.i.d. random variables, called residuals, are independent of the X^. From Eq. (A. 18) the recursive form 

obviously shows the next random variable in {Xn,n +{0}} is generated from the previous one via 

the equation. This simplicity makes AR schemes popular candidates for modeling autocorrelated traffic. 

For instance, a simple AR(2) model has been proposed to model VBR video traffic [HTL92]. More 

elaborate models can be constructed out of AR(p) schemes combined with other schemes. Although au­

toregressive models are typically used to fit the empirical autocorrelation function, they cannot generally 

fit the empirical marginal distribution. Therefore, they are mostly used in the simulation studies, but not 

are suitable for use in numerical or analytical studies of queueing models. 

A.9.2 Autoregressive Moving Average Traffic Models 

The Autoregressive Moving Average (ARMA) model is proposed to take into account recorrelation that 

the covariance in the bit streams of video sources is obtained to further recorrelate at lags. In addition to 

capturing two correlations, the autocovariance function dose not vanish for lags k^Q and the utilization 

of queue will affect the correlation of the arrival process [GCM0091, Sai94]. 

The duration of the interval is generally a fraction of a frame duration, in order to preserve frame and 

scene correlations. Line correlations are not preserved if the interval is longer than a line duration. The 

number of cells in the n''^ interval is modeled by the recursive relation 

X, = g{oZi_,n + Yi + V , ) , with |a| > 1. (A. 19) 
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Figure A.7; Block diagram of the ARMA traffic models. 

In this formula, F, is a sequence of correlated Gaussian random variables with zero mean and variance 

Cy, which models frame correlations. The scene and frame correlation are modeled by a sequence of 

correlated Gaussian variables, Z,, which has zero mean and variance a | . White noise is modeled by v,, a 

sequence of uncorrelated Gaussian random variables with mean zero and variance a j . The function g{-) 

is a zero memory non-linear (ZMNL) operator which transforms the Gaussian distribution /( \^) to the 

required distribution of f { X ) seriously affecting the autocorrelation structure of the random variables, 

V, . It is evident that the arrival rate in the n''' interval depends only on the arrival rate of the previous 

{n — m)''' interval. 

Characterizing the arrival statistics of ATM cells using the ARMA model is a three-step procedure: 

step measurement, parameter estimation, and transfer function. Fig. A.7 depicts the block diagram of the 

ARMA traffic model. Therefore, the ARMA arrival processes can be used in Monte Carlo simulations 

to estimate the probability-distribution function of the queueing delay and the mean and variance of the 

interdeparture time seen by an arrival rate. However, these models cannot be used in the numerical and 

analytical analysis of queues. 

A. 10 Transform-Expand-Sample Traffic Models 

Other modeling approaches, called transform-expand-sample (TES) models, have been proposed to fit 

both marginals and autocorrelations of empirical records simultaneously [HvI94]. The empirical TES 

models are based on the assumption that there exist some stationary time series. The model satisfies 

three fidelity requirements: the marginal distribution of the model should fit its empirical counterpart; 

the leading autocorrelations should approximate their empirical counterparts to a reasonable lag; and the 

same path realizations generated by simulation should be tractable by the empirical records. The first 

two are precise quantitative requirements, whereas the third is a heuristic qualitative one. 

TES processes are divided into two sub-processes: TES'^ and TES~, where the superscripts mean 

positive and negative lag-1 autocorrelations of TES processes, respectively. The two stochastic sub-

processes are called background and foreground sequences. Background TES sequences are described 

as: 

+ _ f/o, 0, 

< t / , t i + V „ > , n > 0 , 
u- = n even. 

1-U+, n odd. 
(A.20) 
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Figure A.8: Packet-train traffic model. 

In these functions, Uq is a uniform distribution in [0,1); {V„,n G A' + IO}} is called the innovation 

sequence that is a sequence of i.i.d. random variables, independent of Uq, and the operator < x> is 

module-1 function. Background sequences play an auxiliary role. The real target is the foreground 

sequences shown as: 

X+ = Z)([;+), X - = D { U - ) , (A.21) 

where D is a transformation from [0,1) to the reals, called a distortion. The background sequences are 

all Markovian stationary and uniform distribution between [0,1), regardless of the probability law of the 

innovations {V,,}. However, the transition function {U'^} is time invariant while {U~] is time dependent. 

The inversion method transforms any background uniform variants to foreground ones with an arbitrary 

marginal distribution. 

The empirical TES modeling methodology takes advantage of this fact which effectively decouples 

the fitting requirements of the empirical distribution and the empirical autocorrelation function. Because 

the former is automatically guaranteed by TES, one can concentrate on fitting the latter 

A . l l Packet-Train Traffic Models 

The packet-train model was proposed by Jain and Routhier [JR86] with the measurement of a token ring 

network at MIT. The model considers an individual connection between two end nodes, A and B. All 

packets on the individual connection are either from node A or node B. With a predefined time interval, 

the maximum allowed intercar gap (MAIG), any interpacket period is larger than MAIG that the previous 

packet is declared to be the end of the previous train. The time between the end of the previous train and 

the beginning of this train is defined as the intertrain time. Fig. A.8 illustrates the concept of this model. 

This model is sometimes also referred to as the ON/OFF model with a more detailed breakdown. All 

the traffic on a network can be aggregated with each connection on the network. However, this model 

suffers a shortcoming because it is very hard to decide the MAIG value. In addition, it is closer to a 

concept than an analytical model. Therefore, it is more suitable for use in simulations. 

A.12 Self-Similar Traffic Models 

A number of researchers observing the practical network traffic under high-quality and high-resolution 

traffic measurements, have revealed that the packet traffic appears to be statistically self-similar [LW9], 

LWTW94]. The similar phenomenon is observed in an analysis of a few million of the observed frame 
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data generated by VBR video services [BSTW95]. A self-similar (or fractal) phenomenon exhibits struc­
tural similarities across all time scales. 

Self-similarity manifests itself in a variety of different ways: a spectra density that diverges at the 

origin (1 / / " — noise ,0 < a < 1); a non-summable autocorrelation function (indicating LRD); and a 

variance of the sample mean that decrease (as a function of the sample size n) more slowly than i /n. 

The key parameter characterizing these phenomena is the so-called Hurst parameter, H, which is 

design to capture the degree of self-similarity in a given empirical record as follows [Hur51]. Let {>'yt}lLi 

be an empirical time series with sample mean Y{n) and sample variance S^{n). The rescaled adjusted 

range, or R/S statistic, is given by R{n)/S{n) with: 

k _ k 
R{N) = max{Y,{yi-y{n)) : I < k < n} - miniJ^iVi - Y {n)) : 1 <k<n}. (A.22) 

i=i (=1 

It has been found empirically that many naturally occurring time series appear to obey the relation: 

£[ /? (n) /S(«) ]^n^ , n large, (A.23) 

with an H typically about 0.73. On the other hand, for renewal and Markovian sequences, it can be shown 

that the previous equation holds with H = 0.5, for large n. This discrepancy, generally referred to as the 

Hurst phenomenon, is a measure of the degree of self-similarity in time series, and can be estimated from 

empirical data. 

A. 13 Traffic Burstiness 

In broadband networks traffic burstiness is an important issue when the traffic of new services, such 

as compressed video, file transfer, etc., pour into the networks. Burstiness can be presented by the 

arrival points {!„} when they appear to form visual clusters; i.e., {A,,} is shown as a relatively long 

interarrival time following several relatively short ones. The mathematical presentation of burstiness is 

very complicated. The shapes of the marginal distribution and autocorrelation function of {A,,} are two 

major sources of the cause of burstiness. In particular, the strong positive autocorrelations are the most 

important effect of burstiness. 

Several commonly-used definitions try to model burstiness [EW94,Sai94,FM94,Onv95]. The ITU-T 

definition is presented as 'the ratio of the peak-to-average traffic generation rate.' However, this definition 

is too crude to measure and has the backward of the dependence on the interval length utilized for rate 

measure. The coefficient of variance is a more precise measure of burstiness, which is defined as the 

ratio of standard deviation to mean, q = Var[A,i]/E[An], of interarrival intervals. However, similar to 

the ITU-T definition it only take account of the first-order properties of traffic. 

Another two traffic models for burstiness, the peakness measure and the index-of-dispersion measure, 

do consider the second-order properties, temporal dependence, in traffic. The index of dispersion for 

counts (IDC) is the function / c ( t ) = Var[N{x)]/E[N{x)] where x is a given length of time interval. Since 

the number of arrivals is related to the sum of interarrival intervals, the numerator of the IDC includes 

the autocorrelations of {An}. Similar to the concept of IDC but more involved, the peakedness is defined 
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as the square coefficient of variance of the interarrival times of intervals. Assume that the traffic stream 
{An} is offered to an infinite server group consisting of independent servers with common service time 
distribution F. Let S be the equilibrium number of busy servers. The peakedness is the functional 
Za[P] = Var[S]/{E[S])^, which maps a service time distribution to a real number 

In addition, according to the discovery of self-similar phenomenon the fractal correlation dimension 

has been proposed as a measure of distributions [EW94]. Fractal dimensions do not directly provide 

information about the size of a set, but about how non-uniform mass is distributed within the set. The 

correlation measure C{t) of a point set is defined as the fraction of the numbers of pairs of points which 

are less than a distance t apart. I f there are M arrivals, C{t) can be expressed as 

M M 1 

(A.24) 

where C,y is 1 or 0 depending on whether the arrival points indexed / and j are within t of each other 

Therefore, C{t) can be stated as the probability of a pair of arrivals that occur within a time interval t. 

The correlation dimension is then defined as 

D , = h m ^ . (A.25) 
1^0 logr 



Appendix B 

Derivation of the dFGN+WM Algorithm 

Let Bfiit) be a FBM process. Two certain time epochs, 0 and T, of this process are known. Assume 

BH{0) = a, BH{T) = b. The variance of these two time epochs are known as E[\BH{T) ~ BH[0)\-] = 

= {b — a)^. The process can be divided into two terms: the contant increasing part and the fluctuations. 

Thus, the FBM process can be expressed as 

BHit) = ^{b-a)+BH{0) + BH,WM{t), with 0 < f < 7. (B.l) 

Let BH,wM{f, T) be the spectrum of the FBM process, 

1 
BH,WM{f,T) = 7f BH,wMit)eM-jWt)dt. (B.2) T Jo 

Therefore, the FBM process Bnit) can be expressed as 

/

CO 

BH,WM{fJ)^MjWt)df 

= Y^BH,WM{nJ)expij2n-t) (B.3) 

The variance of the FBM process can be represented as 

E[\BH{t)-BH{0)\'] = E[\j{b-a)+BH,wM{t)\^] (B.4) 

= E[i^fib-a)^ + !^{b-a)BH,wM{t) 

+ - a)Bl^^{t) + fi«,wAf(OfiH,WM(0] (B.5) 

= {^)Hb-a)^ + E[\BH,wM{t)\'~] (B.6) 

For the discrete-time implement, [0, T] is divided into subintervals. Then, the discrete version of the 

FBM process can be expressed as 

Bnik) = ^{b-a)+BHiO)+BH,wM{k),k = 0,---,N. (B.7) 

Similarly, the variance of the discrete-time FBM process is 

E[\B„{k)-B,iO)\'] = {lf"o' = {l^f"{b-af 

= {^)-{b-af ^EWBH^wMn^ 
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Thus, 
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1 ^ k 
BH,WM{nJ) = - 2^BH,wM{k)exp{-j2nn~) (B.9) 

^ k 
BH.WMik) = 2^BH,wM{n,T)exp{j2nn-) (B.IO) 

N k ^ k 
E[\BH,wM{k)\^] = £[( X BH,WM{n, T) e x p ( ; 2 7 r / z - ) ) 5 ^ , W A ^ T ) exp( - ;2 j i /^ ) ) ] (B. 11) 

n=l /=1 

The above equation can be divided into two parts. Ifn^l, then 

E[BH,WM{nJ)&xp{j2%nlf)B*f,„i^{l,T)exp{-j2nl^)] = 

E[BH,WM{n,T)txi>{j2nnlf)]E[B*H,yi^{l,T)exp{-j2nll^)] = 0 (B.12) 

I f n = /, then 

E[BH,wMin,T)exp{j2Kn^)B*H,WM&M-nnn~) = E[\BH,wM{n,T)\-] 

= CkE[\BH,wMihT)f]n-'-^" 

= a}(A:)/z-'-2/^ (B.13) 

Thus, 

o}{t) = [{^rc'-{^)Hb-a)']/l^-^-'^dt. (B.14) 

Finally, the variance of the magnitude part of spectrum of the FBM process is 

- < ^ ' [ i ^ r - i ^ f ] / i n - ^ - ' " (B.15) 



Appendix C 

Measurements of Burstiness of Self-similar 
Traffic 

As mentioned in Appendix A there is increasing evidence to show that the non-real-time traffic is strongly 

correlated and bursty. Although many definitions of burstiness try to describe the characteristics of bursty 

traffic, it is too complicated to be represented by simple mathematical formula. From the simulations in 

Chapter 6 the fractal traffic streams normally exhibit more fluctuating pictorial graphs with higher Hurst 

parameters. In this appendix three different definitions, the peak-to-mean ratio (PMR), the average burst 

length, and the squared coefficient of variation (CSQ) are used to examine the fractal traces generated by 

the marginal distribution model with exponential distribution. Meanwhile, from the results an appropriate 

definition can be identified to represent the burstiness of self-similar traffic. 

C. l Bursty Measurements 

Various definitions try to characterize the burstiness behavior Three widely used measures, the peak-

to-mean ratio (PMR), the burst length, and the squared coefficient of variation (CSQ), will be discussed 

in this section [Onv95, EW94]. The ITU-T defines the term burstiness as corresponding to the ratio of 

peak-to-average traffic generating rate, i.e., the PMR. 

C.1.1 Peak-to-Mean Ratio 

The PMR is calculated by taking the ratio of peak rate to average rate over specified peak and average 

rate measurement intervals. The PMRs are widely used as measurement of burstiness. Higher PMR 

indicates increasing burstiness. The difficulty in using peak rates lies in the interpolation of a statistic 

which is not well behaved. The choice of measurement and reporting intervals will affect the peak levels. 

The peak level measurements can not be directly used by standard queueing models in which the average 

or percentile delays and throughput form the basis of service criteria and requirements. Furthermore, the 

measurements of peak levels are inefficient. 

For packet trunks, the service time depending on the length of the packet, the PMR is computed by 

taking the peak byte count over the specified interval to the average byte count. To simplify the counts 



Bursty Measurements 167 

of the packets instead of bytes can be used. This assumption does not lose its generality because for 
different applications the mean packet sizes are different. To obtain the PMR with byte counts is to 
multiply the mean packet size with the PMR with packet counts. 

C.1.2 The average Burst Length 

The definition of average burst length is related to the ON/OFF traffic model which is also known as the 

packet train model [JR86]. Jain and Routhier who proposed this model collected the packet data on a 

token ring network at MIT. The packet train model is based on the traffic which communicates between 

two distinguished sources. Depending on a pre-given time interval, if no packet is sent between this pair 

of sources, the previous train is declared to have ended and the next packet is declared to be the first 

packet of the next train. The model is depicted in Figure A.8. 

Based on this model the intertrain time is the OFF period while the time between two OFF periods 

is the ON period. Although the ON/OFF model is based on a pair of sources, the same concept can be 

used to model the burst length for aggregated sources. Based on a pre-defined time gap if the interarrival 

time of two successive packets is large or equal to the pre-defined value, the interarrival (intertrain) time 

is the OFF period and the burst length is defined as the ON period, that is, the time interval between two 

OFF periods. However, the longer burst length does not indicate the higher burstiness. In contrast, the 

more fluctuations the traffic traces indicate the shorter the burstiness length. 

The average burst length can be directly used as the input of standard queueing to predict average 

delays and throughput. In addition, the burst lengths depend on the choice of the reporting intervals. 

C.1.3 Squared Coefficient of Variation 

The squared coefficient of variation (CSQ) of the interarrival time process is another broadly used mea­

sure of traffic burstiness. I f X is the packet interarrival time random variable with mean E[X] and variance 

a\, then the squared coefficient of variation is defined as the ratio of the variance and the square of the 

mean: 

The CSQ can be directly used as the input of two moment queueing approximations to estimate the 

mean delays and queue lengths. Nevertheless, the CSQ can not calculate on-line network measurements 

because it is derived by the interarrival time. The larger CSQ corresponds to higher burstiness. For 

a standard Poisson process its mean and variance are both equal to the arrivals rate multiplying the 

observed time interval, so its CSQ is equal to 1. 

However, there is a potential impact due to the basic property of self-similar processes. Self-similar 

processes have infinite variance, which means that the measure of the CSQ will increase unboundly as the 

observation interval increases, rather than converge to a constant value. Thus, CSQ can be an arbitrary 

value because it depends on its observation interval. 
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(a) Compound Poisson 

10 20 30 40 50 60 70 80 
Time 

(b) Self-Similar (H=0.5) 

90 100 

0 10 20 30 40 50 60 70 80 90 100 

(c) Self-Similar (H=0.7) (d) Self-Similar (H=0.9) 

Figure C. l : Traffic traces of compound Poisson process and self-similar process. 

C.2 Simulation Traffic Analysis 

In the previous section, three metric benchmarks have been introduced and will now be used to examine 

the traffic traces generated by the compound Poisson process and the self-similar processes with different 

Hurst parameters. The traffic traces used as inputs for simulation in this study are generated by the 

method described in Chapter 6. 

Figure C.l depicts the generated traffic streams. Figure C.l.(a) is generated by a compound Poisson 

process in which there are 10 sources and the mean arrival rate of every source is 15 packets per unit of 

time. The other three graphics are generated by the above algorithm with the aggregated mean arrival 

rate of 150 packets per unit time but different Hurst parameters. Al l the traffic traces have 100 unit of 

times. For the self-similar traffic traces the time interval % is chosen as 0.01 unit of time. From the 

diagrams the higher the Hurst value is, the more fluctuation the traffic stream exhibits. 

The CSQ of the traffic trace is a burst measurement related to the first two statistical moments, mean 

and variance. Figure C.2 illustrates the results of the CSQ analysis where the inputs are the previously 

generated traffic traces. The compound Poisson process has the same result as the theoretical property 
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Figure C.3: The average burst length. 

in which the CSQ value should be equal to 1. In addition, the self-similar traffic trace with H — 0.5 has 

almost the same result as the compound Poisson process. Although the observations of the diagrams of 

the compound Poisson process and the self-similar process with H — 0.5 depicted in Figure C.l seem 

very different, their statistical characteristics are very similar In particular, the self-similar process with 

the Hurst parameter equal to 0.5 is the only case where the self-similar process has finite variance. The 

self-similar process with H = 0.5 is the same as the ordinary Brownian motion and the random process 

of its increments is called ordinary Gaussian noise, whose statistical characteristics can be represented 

by two commonly used moments, mean and variance. In this case its increments are independent. This 

traffic trace is generated from the FGN with zero mean and unit variance and regulated by a negative 

exponential function. Thus, its CSQ should be the same as the regular Poisson process. 

In theory the self-similar traffic traces which have higher Hurst values, 0.5 < / / < 1.0, then their 

variances are infinity. That means the CSQ values will not converge. In this figure the two self-similar 

traffic traces with higher Hurst parameter converge to a constant value when the observed interval in­

creases. It is caused by the algorithm which maps FGN into the traffic trace. In this algorithm the traffic 

traces are generated from FGN by regulating with the negative exponential function. This procedure 

of mapping the self-similar process into a counting process will shape the infinite variance into a fixed 

constant. However, the higher Hurst value still indicates the larger CSQ. 

The expected burst length versus the OFF period threshold is depicted in Figure C.3. The compound 

Poisson trace and the self-similar trace with H = 0.5 have almost the same results. The smoother the 

trace is, the shorter the mean interarrival time is. In this case the appropriate OFF period threshold 

can be chosen as 0.1. However, the threshold value varies between different arrival rates. Different 

applications have different arrival rates. Thus, how to chose an appropriate threshold is very difficult in 

practical terms. In addition, the average burst length only relates to the first order moment of statistical 

characteristic while the second order moment, variance or correlation, plays a more important role in real 

traffic. 

Using the traffic traces as inputs the PMR is computed by taking the peak arrival rate over 0.1 to 10 

unit of time. Figure C.4 illustrates four subfigures of the four different traffic traces with 0.1 observed 
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Figure C.4: Block mean to whole trace mean ratio with 0.1 unit time interval. 

interval. Figure C.4.(a) is the result of the compound Poisson traffic trace. Figure C.4.(b) - (d) are the 

consequences of the self-similar traffic traces with the Hurst parameters, 0.5,0.7, and 0.9, respectively. 

The maximum value of each subfigure is their peak-to-mean ratio with 0.1 unite of time interval. 

From these figures the block mean to whole trace mean ratios of the compound Poisson traffic trace 

and the self-similar traffic trace with H = 0.5 slightly fluctuate around 1, no matter what time interval 

is taken. When the Hurst parameter increases, the dynamic range of the ratio increases. However, the 

larger the time interval is, the smother the ratio is. The PMR of the four traffic traces with different time 

intervals is listed in Table C.2. In this case the appropriate time interval can be chosen as 0.1 unit time. 

Thus, a carefully chosen time interval for the PMR can give information on queueing behavior If the 

rate measurement interval is too small, the PMR is too peaky and does not capture the low frequency 

burst. I f the interval is too long, even the low frequency variations are smoothed out to a misleadingly 

low value. 

Self-similar traffic models are proposed to model packet data. Long-range dependence can be char­

acterized by a parameter that describes the magnitude of fluctuations and the Hurst parameter H which 

describes the decay in the autocorrelation. For conventional traffic models which exhibit short-range 

dependence the autocorrelation in the time series of counts are nonexistent or decay exponentially with 
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0.1 Unit Time 1.0 Unit Time 10.0 Unit Time 

Compound Poisson 

Self-Similar (H=0.5) 

Self-Similar (H=0.7) 

Self-Similar (H=0.9) 

1.72233 1.21888 1.04665 

2.10005 1.36165 1.04325 

4.64818 1.89969 1.21324 

7.26819 3.1368 1.95367 

Table C.l : The PMR of the traffic traces with different time intervals. 

the lag. These processes have been shown to have H = 0.5. For self-similar processes with long-range 

dependence the autocorrelation is 

y ( / f c ) ~ c / t - ( 2 - 2 / / ) (C.2) 

for asymptotic lag k and 0.5 < H < 1. Using this measure, the larger the Hurst parameter indicates the 

burstier the traffic. 

C.3 Summary 

Although there are several approaches to capfiire the characteristics of burstrness, none of them can 

be fully accepted. Conventional traffic models have tried to capfiire it, but, they suffer the problem 

of inaccuracy or too many parameters. Self-similar traffic models can use fewer parameters to model 

the packet traffic. The Hurst parameter is the key indicator of long-range dependence processes with 

0.5 <H < 1. Conventional traffic models use H = 0.5. 

The PMR, average burst length, and CSQ are the three commonly used benchmarks. The PMR 

makes use of the process of interarrivals. The burst length metric is devoted to the ON/OFF model. The 

CSQ is a measure with the mean and variance of the interarrival process. Analyzing the traffic traces 

generated by compound Poisson process and the self-similar processes with different Hurst parameters, 

the larger the Hurst parameter indicates the higher the degree of burstiness. 

Although all three metric benchmarks can be used to indicate the degree of burstiness, in practical 

usage they still suffer problems. It is necessary to chose an appropriate time interval for the PMR. If the 

interval is too long, even the low frequency burst will be smoothed. If the interval is too small, the PMR 

is too peaky and the effect of the low frequency burst may be lost. The average burst length is affected by 

the choice of OFF period threshold. I f the threshold chosen IS too small or too large, the average burst 

length cannot be distinguished. Although the CSQ can distinguish the degree of burstiness very well and 

quickly, it cannot operate on-line measurement. 

Although the larger Hurst parameter indicates a burstier model, the relationship between them is 

still unclear. In addition, there are other benchmarks for measuring the burstiness which have not been 

examined, such as the index of dispersion for counts (IDC), peakedness, correlation dimension, etc. 

These will be the subject of further study. 



Appendix D 

Tables of Computational Time, Output 
Arrival Rates, and the Hurst Estimation 
Results 

This appendix complies three computational time tables of the three novel hybrid algorithms in Chapter 5, 

three output arrival rates of the transforming models, and seven tables of the estimated results of the 

hybrid algorithms in Chapter 5 and the transforming models for self-similar traffic in Chapter 6. 

D.l Table of Computational Time 

This section tabulates the computational times of the hybrid algorithms. For each table the upper and 

lower rows are the results of the two original algorithms. Between them, the results of different com­

bination schemes are tabulated. Al l the results are obtained from at least twenty simulations of each 

algorithm with each Hurst parameter setting. The measured scale is in second. Table D . l shows the 

results of the dFGN, RMD, and dFGN-i-RMD algorithms. Table D.2 shows the computational time of 

the dFGN, SRA and dFGN-nSRA algorithms. The results of the dFGN algorithm, the W M function, and 

their hybrid approach are tabulated in Table D.3. 

D.2 Tables of Output Arrival Rates 

This section compiles the output arrival rates of the transforming models in Chapter 6. Table D.4 tabu­

lates the mean arrival rates and their 95% confidence intervals of the marginal distribution models with 

the exponential distribution. Table D.5 records the output mean arrival rates of the marginal distribution 

models with the gamma distribution. Table D.6 lists the output arrival rates of the self-similar traffic 

streams generated by the storage models. 
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Algorithm Hurst Parameter Algorithm 

0.5 0.7 0.9 

dFGN 395.973 ± 17.80941 339.947 ± 8.918893 338.3165 ± 5.028307 

Hybrid-1 191.4736 ±4.802936 166.8595 ±5.147197 166.9199 ± 3.998776 

Hybrid-7 49.38212 ± 1.414637 42.7595 ± 1.356706 42.535 ± 1.06458 

Hybrid-31 12.81488 ±0.3708887 11.3045 ±0.3390075 11.27275 ± 0.2258736 

Hybrid-511 2.3075 ±0.1192629 2.219875 ±0.1257719 2.227625 ±0.1451815 

Hybrid-1023 1.277125 ±0.1229052 1.341375 ±0.1065235 1.33475 ±0.1154287 

RMD 0.7553333 ±0.1556106 0.734625 ±0.1112659 0.7478333 ±0.1261012 

Table D . l : Average computational time in seconds of different combination schemes of the dFGN+RMD 

algorithm. 

Algorithm Hurst Parameter Algorithm 

0.5 0.7 0.9 

dFGN 395.973 ± 17.80941 339.947 ± 8.918893 338.3165 ± 5.028307 

Hybrid-1 197.1191 ± 3.25762 171.6371 ± 2.623185 171.7443 ± 2.89168 

Hybrid-7 51.1254 ± 1.396938 44.9493 ± 1.083579 44.8978 ± 1.464038 

Hybrid-31 13.8776 ±0.4788871 12.4733 ± 0.4638044 12.4511 ±0.4027214 

Hybrid-255 3.1691 ±0.1843511 3.1014 ± 0.1428945 3.0898 ± 0.09597877 

Hybrid-1023 2.063 ± 0.09874946 2.1704 ±0.09868735 2.1668 ±0.08481355 

SRA 1.126417 ±0.4843563 1.112214 ±0.485692 1.1492 ±0.4579411 

Table D.2: Average computational time in seconds of different combination schemes of the dFGN-i-SRA 

algorithm. 

Algorithm Hurst Parameter Algorithm 

0.5 0.7 0.9 

dFGN 395.973 ± 17.80941 339.947 ± 8.918893 338.3165 ± 5.028307 

Hybrid-1 197.825 ±0.09071445 173.054 ±0.06275867 173.0545 ± 0.0889078 

Hybrid-7 51.615 ±0.04946203 45.863 ± 0.07084026 45.886 ±0.1026159 

Hybrid-31 14.743 ± 0.04501043 13.7635 ± 0.0477037 13.755 ±0.04946203 

Hybrid-255 4.1025 ± 0.05502533 4.5045 ± 0.06921618 4.497 ± 0.05796886 

Hybrid-1023 3.23 ± 0.05507125 3.7925 ± 0.002440789 3.8155 ±0.08683695 

W M 3.05 ±0.7301767 2.8905 ± 0.622944 2.900656 ± 0.2752822 

Table D.3: Average computational time in seconds of different combination schemes of the dFGN-i-WM 

algorithm. 
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Observed Hurst Parameter 

Time 0.5 0.7 0.9 

1.0 999.9034 ± 12.28178 1000.499 ± 44.02559 1200.653 ± 185.1612 

0.1 999.8930 ± 12.27422 1000.490 ± 44.02604 1200.625 ± 185.1691 

0.01 999.5118 ± 12.18654 1000.066 ±44.15394 1199.793 ± 185.3497 

0.001 959.2439 ± 13.72048 960.1988 ±47.67838 1160.938 ± 190.7987 

0.0001 67.57234 ± 8.464469 66.46729 ± 13.58390 283.4779 ± 104.0720 

Table D.4: Output rate of the marginal distribution model with the exponential distribution. 

Shape Observed Hurst Parameter 

Parameter Time 0.5 0.7 0.9 

1.0 999.9290 ± 8.4541 1000.24 ± 32.3588 1107.156 ± 133.11 

0.1 999.9271 ± 8.4471 1000.236 ± 32.352 1107.153 ± 133.11 

2.0 0.01 999.8785 ± 8.3980 1000.257 ± 32.312 1107.019 ± 133.18 

0.001 983.5525 ± 9.7153 983.6565 ± 34.693 1077.676 ± 140.62 

0.0001 4.394532 ± 2.2161 4.913330 ± 2.2118 55.80139 ± 27.59 

1.0 999.9378 ± 6.7957 1000.142 ± 26.787 1073.081 ± 109.70 

0.1 999.9361 ± 6.7919 1000.143 ± 26.784 1073.083 ± 109.69 

3.0 0.01 999.9420 ± 6.8885 1000.128 ± 26.794 1073.12 ± 109.776 

0.001 1004.487 ±7.2810 1004.365 ± 28.842 1057.524 ± 115.50 

0.0001 0.3204321 ± 0.5306 0.3051759 ± 0.5489 11.26099 ±7.6524 

1.0 999.9420 ± 5.8253 1000.092 ± 23.359 1055.444 ± 95.568 

0.1 999.9338 ± 5.8236 1000.087 ± 23.352 1055.443 ± 95.572 

4.0 0.01 999.9558 ± 5.9164 1000.195 ± 23.306 1055.405 ± 95.594 

0.001 1019.440 ± 6.4407 1018.897 ± 24.935 1052.171 ± 100.19 

0.0001 0.02906438 ±0.1799 0.0152588 ±0.13374 2.258301 ± 2.6281 

Table D.5: Output rate of the marginal distribution mode with the gamma distribution. 

Variance Hurst Parameter 

Coef. 0.5 0.7 0.9 

200 1001.444 ±4.756994 1001.387 ± 21.02250 1009.838 ± 84.65158 

400 1014.853 ±6.591091 1014.884 ± 28.38523 1044.513 ± 110.2697 

600 1035.395 ± 7.960251 1035.602 ± 33.19263 1084.954 ± 127.2003 

800 1058.613 ± 9.096699 1059.003 ±36.86211 1125.510 ± 140.5151 

1000 1082.704 ± 10.06144 1083.229 ± 39.88767 1164.804 ± 151.8021 

Table D.6: Output rate of the storage mode. 
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D.3 Tables of the Hurst Estimation Results 

This section lists seven tables whose data has been illustrated as the comparisons of the estimated results 

of the algorithms and models described in Chapter 5 and Chapter 6. All the tables contain three categories 

of values which obtain from the estimation using the R/S statistic, the VT plot, and Whittle's MLE. For 

every estimation, twenty different values of random seeds are applied to generate the sample traces with 

three different Hurst parameter settings, H = 0.5, 0.7, and 0.9, respectively. For each Hurst parameter 

setting and estimator, the mean, maximum, and minimum estimated results are listed. 

The first three tables are related to the hybrid algorithms developed in Chapter 5. Table D.7 records 

the estimated results of the sample traces generated by the dFGN+RMD algorithm. Table D.8 shows the 

estimated results of the sample traces generated by the dFGN+SRA algorithm. Table D.9 tabulates the 

estimated results of the sample traces generated by the dFGN+WM algorithm. 

The last four tables demonstrated the estimated results of self-similar traffic generated by the marginal 

distribution models or the storage models. The corresponding diagrams of the tables to present their com­

parisons are depicted in Chapter 6. Table D.IO shows the estimated results of the self-similar traffic traces 

generated by the marginal distribution model with the exponential distribution. Table D. 11 records the 

estimated results of the self-similar traffic traces generated by the marginal distribution model with the 

gamma distribution. Table D.12 shows the estimated results of the self-similar traffic traces generated 

by the marginal distribution model with the Pareto distribution. The final table, Table D.13, records the 

estimated results of the self-similar traffic traces generated by the storage model. 
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