
Durham E-Theses

Finite and in�nite element method applied to water

wave di�raction problems

Baghbani, Alireza

How to cite:

Baghbani, Alireza (1999) Finite and in�nite element method applied to water wave di�raction problems,
Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4856/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4856/
 http://etheses.dur.ac.uk/4856/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


University 
•f Durham 

The copyright of this thesis rests 
witli the autlior. No quotation 
from it should be published 
without the written consent of the 
autlior and information derived 
from it should be acknowledged' 

Finite and Infinite Element Method 
Applied to Water Wave Diffraction Problems 

Alireza Baghbani 
(M.Sc, B.Sc.) 

A thesis submitted for the degree of Doctor of Philosophy 
in the Faculty of Science, University of Durham 

School of Engineering 

The University of Durham, U K 

May 1999 

2 3 AUG 1999 



11 

To Lucy and my daughter 



I l l 

Acknowledgements 

I acknowledge w i t h thanks the invaluable help and advice received from my supervi

sors Dr David Gregory-Smith and Professor Peter Bettess of School of Engineering. 

Professor Bettes and his wife Jackie kindly allowed me to adopt their wave program 

and mesh generators for the purpose of my research. 

I extend my gratitude to Professor Grant Hearn for his advice on hydrodynam

ics, Dr Raj Subramani for his mesh plott ing program, Dr Christos Atalianis and 

Professor and Mrs Bettess for their code of analytical solution for elliptical cylin

der diffract ion problem, Dr Phil Clark for his wave programs and mesh generator, 

h im, Dr Edmond Chadwick and Dr Omar Laghrouche for their help and useful 

discussions on different aspects of the infinite element method and Dr Woodford 

for his help on computer programming. I would also thank Dr Rob de Jue for 

his collaboration on developing the analytical solution and the mesh generator for 

mult iple body diffraction problem and for his invaluable discussions on different 

mathematical aspects of the research. 

I would like to thank the secretarial and I.T.S. staff of the school of Engineering 

at Durham University, as well as the Department of Marine Technology at the 

University of Newcastle upon Tyne for their help and support during my PhD. 

I benefited f rom support, advice and discussions wi th friends and colleagues 

especially Professor and Mrs Batho, Professor Mike Petty, Mrs Christine Ramshaw, 

M r Ehsan Mesbahi, Miss Suzan Duxbury, Dr HoUie Marsden, Miss Nicky Fry, Mr 

Alan Proctor, Dr Fiona O'Carroll, Mr Jonathan Hartland and Mr Dave Bell. 

I acknowledge the Minis t ry of Culture and Higher Education of Iran for the 

part ial financial support of this research. 

Finally, I am deeply indebted to my parents and my daughter for their invaluable 

moral support and patient. 



IV 

Declarat ion 

The material contained wi th in this thesis has not previously been submitted 

for a degree at the University of Durham or any other university. The research 

reported wi th in this thesis has been conducted by the author unless indicated 

otherwise. The copyright of this thesis rests wi th the author. No quotation f rom 

i t should be published without his prior wri t ten consent and information derived 

f r o m i t should be acknowledged. ©1999 , Alireza Baghbani 



Fin i t e and Infinite Element Method 

Appl i ed to Water Wave Diffraction Problems 

AUreza Baghbani, Ph.D. Thesis, 1999 

Abstrac t 

In this work, three types of infinite elements are developed to solve the problem of 

linear water wave diffraction by objects in a 2D unbounded domain. The infinite 

elements, which model the far field wave potential stretching to infinity, are coupled 

to conventional finite elements, which model the near field wave potential. This 

coupling greatly economises the finite element analysis. 

The original mapped infinite element, due to Zienkiewicz et al [102], is improved 

to model objects of large aspect ratio more economically. This infinite element 

(Type 1) can now be used on the exterior of an ellipse (or other shapes) rather 

than a circle circumscribing the object. The element is validated by solving the 

problem of diffract ion of water waves by an ellipse wi th different angles of wave 

incidence. The results are compared wi th their equivalent analytical solutions and 

the errors are very small being less than 1.0%. 

The wave envelope approach, due to Astley et al [9], is employed to develop 

a simple mapped wave envelope infinite element. The element mass, stiffness and 

damping matrices are derived f rom first principles using the weighted residual ap

proach. This element (Type 2) can also be used on the exterior of any shapes. 

The element is validated by solving the problem of wave diffraction by circular and 

elliptical vertical cylinders for different angles of wave incidence. The results are 

compared w i t h their equivalent analytical solutions and again the errors are very 

small. 

The problem of wave diflJ'raction by multiple objects is also considered. A new 

wave envelope mapped infinite element (Type 3) is developed to tackle such a 

problem. Examples involving diffraction of water waves by arrays of circular and 

elliptical cylinders are solved. For circular cylinders, the results are compared with 

their equivalent analytical solutions which show excellent agreement. 

A comparison is made between the three types of infinite elements by solving 

the diffract ion of waves by circular and elliptical vertical cylinders. The results 

show that all three types of infinite elements can give accurate results in the near 

field for a given single diffract ing object. Type 1 would be a preferable choice in 

situations where computing resource is the main concern and reliable solutions are 

required only in the near field. Type 2 or 3 would give very accurate solutions both 

in the near and far fields. Type 3 is the most suitable choice for modelling any 

number, shape and configuration of bodies. 
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Chapter 1 

Introduction 

Continuum problems may be modelled by a set of diflFerential equations subjected to 

some boundary conditions. These equations can be solved to obtain the solutions. 

The best way obviously is to solve them analytically. However, as this is not 

possible in the majority of practical cases, experimental and numerical techniques 

are the only way to tackle such problems. Experimental studies are expensive and 

time consuming and are advisable either to validate a numerical model or to solve 

problems that are not solvable otherwise. Various numerical techniques have been 

developed, over years, such as the Finite DiflFerence Method (FDM), Boundary 

Element Method (BEM) and Finite Element Method (FEM). 

In some cases the domain of interest is unbounded. Although this is not phys

ically the case, in the numerical solution process, it is convenient to assume that 

the domain extends to infinity. One example of this is the interaction of fluid with 

structures, such as ships or oil rigs, located in an open water. This is one of the 

practical problem faced by the offshore industry where it is required to predict the 
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environmental loads including wind, current and wave loads applied to the struc

tures. The wave effect by far is the largest one on most offshore structures (see 

the standard texts, e.g. Morgan [85]) and so will be considered here. The fluid 

(water) will be assumed incompressible and inviscid (no viscosity) and the flow will 

be assumed irrotational (no vorticity). 

When an incoming wave is incident upon object(s), its pattern changes which 

is often called wave diffraction or scattering. This in turn exerts some forces on 

the object(s) and the resulting movement of the objects generates some additional 

waves radiating away from the objects. This is often called wave radiation (see 

e.g. Wu and Eatock Taylor [112]) but will not be considered here as the objects 

will be assumed stationary. The amount of the change due to the presence of the 

objects and so the resulting forces depend on the characteristic length of the objects 

relative to the wave length. Guidelines are given by different authors (e.g. Hogben 

and Standing [66], Garrison [57], Mei [84]) as the distinction is necessary because 

of the limitation of fundamental assumptions; invisid fluid and linear irrotational 

(potential) flow (see chapter 2). For small objects the change is small and so 

the wave diflFraction effect is negligible and viscous effect (due to flow separation) 

becomes dominant. Morison's equation [86] can be used to estimate the wave 

forces (see e.g. Morgan [85]) but this will not be considered here. Morison's 

equation is based on the assumption that wave forces can be written as the sum 

of drag and inertia forces. The drag forces are due to wave fluid velocity and the 

inertia forces are due to wave acceleration. For an oscillatory wave flow the drag 

forces are dominated by the separation of flow behind the diffracting object and 
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formation of large vortices. The exception in this case is when the ratio of the 

incident wave amplitude, A, over the object diameter, D, is small. As Morgan 

85] points out, when A/D < 0.75 the wave flow is not unidirectional long enough 

for a substantial vortex flow to develop, and so the drag forces are very small, 

and the inertia forces are dominant. In this case, the potential flow diffraction 

theory can be used to predict the wave forces with confidence. For large objects 

the pattern of an incoming wave is changed significantly by the presence of the 

object(s) and so diffraction effects become dominant and diffraction analysis must 

be carried out, which will be considered in this research. Wave diffraction analj'sis 

is also referred as calculation of wave loads on large bodies in standard text books. 

The analysis involves the solution of a non-linear boundary value problem (see 

chapter 2). Although, much of current research has been focused on the non

linear wave diffraction problems (e.g. Eatock Taylor [52] or Greaves et al [62]), 

the present model will only be applied to the linear wave diffraction problem for 

the sake of simplicity, firstly to test the proposed numerical model and secondly 

because linear solutions can be applied to a wide range of large bodies, such as 

ships, barges, offshore platforms, harbours and so on. 

Diffraction analysis can also provide information for many other purposes such 

as determining the location and type of objects, determining ocean depth and 

locating schools of fish. The present numerical model will be developed only for 

linear water wave diffraction by large fixed vertical bottom mounted structures, 

such as oil rigs, located in the middle of an ocean with a gradually varied water 

depth (The model will only be validated for constant depth). 
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Two main classes of numerical methods that have been applied to water wave 

diffraction problems are the FEM and the BEM which are very similar in their 

computational steps. In the FEM, the governing equation is transformed into inte

gral equations defined over the entire fluid domain. The domain is then subdivided 

into subdomains and the integrals are calculated over them numerically by the use 

of some known functions (see chapter 4). In the BEM, however, the governing 

integral equation defined only on the boundary and therefore the full 3D domain 

is reduced to a 2D one to be subdivided into subdomains as in FEM. A review of 

these techniques is given by different authors, e.g. Mei [84] or Bando et al [17 . 

The BEM has been widely used by practitioners both in industry and research 

in solving wave diffraction problems, because of its computational efficiency since 

only the boundary rather than the entire domain needs to be meshed. Examples 

of applications of the method are given by Faltinsen and Michelsen [56], Garrison 

57], Kormeyer et al [75]. There are however areas of potential difficulties, such 

as the problem of irregular frequencies (see John [72]) in using the method. More 

importantly, the BEM becomes expensive for modelling wave diflfraction by objects 

of complex shapes or by multiple objects because of its dense unsymmetric matrix 

structure. Recent research has been focused on the development of higher order 

BEMs to tackle complex shape of the diffraction objects more efficiently. Examples 

are papers by Liu et al [79], Eatock Taylor and Chau [54], Eatock Taylor and Teng 

53], Teng and Eatock Taylor [96 . 

The FEM, on the other hand, has the capabiUty of modelling both objects of 

complex shapes and multiple objects very easily and does not suffer the problem 
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of irregular frequencies. On the other hand, it is widely accepted that in the 

finite element analysis of wave problems at least ten nodes per wavelength are 

needed to model the oscillatory variation of the wave potential with reasonable 

accuracy. Hence, a prohibitively large number of elements and so a large amount 

of computing time is needed to model the entire domain. Various techniques have 

been suggested to tackle such problems. Some of them are, truncation (e.g. Harari 

and Hughes [63] or Thompson and Pinsky [97]), dampers (e.g. Bando, Bettess 

and Emson [18]) matching to a far field analytical solution (e.g. Ghen and Mei 

40] or Bai and Yeung [16]), coupled finite and boundary element and the infinite 

element method. A good survey of these techniques is given by Zienkiewicz, Bettess, 

Ghiam and Emson [104]. Truncation and different boundary conditions imposed on 

the truncating surface to replace the radiation boundary condition at infinity are 

discussed and compared by Shirron [94]. Some recent works on unbounded domain 

problems (e.g. by Athanassoulis [12]) were presented in a symposium dedicated to 

these type of problems [58 . 

A marriage between the two techniques (FEM and BEM) appeared to be an 

efficient solution to the problem of wave diffraction in general. In this process the 

entire domain is subdivided into two regions. The finite region, which surrounds 

the diffracting object(s) of any shape(s), is modelled with FEM, while the outer 

infinite region is modelled with BEM. This technique has been called Coupled 

Finite and Boundary Element Method (e.g. Zienkiewicz et al [105, 106] or Zietsman 

and Eatock Taylor [110]), Hybrid Method (e.g. Atalianis [10]) or Locahsed Finite 

Element Method (e.g. Eatock Taylor and Zietsman [55] or Zietsman [109]). 
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The infinite element method is perhaps most naturally coupled with the finite 

element method to tackle unbounded problems. This is because the philosophy and 

computational details associated with their use are very similar. In this process the 

conventional finite elements, which model the near field potential, are coupled to the 

infinite elements which model the wave potential stretching to infinity. The infinite 

element is stretched to infinity in one or more directions and the shape function is 

chosen with a prior knowledge of the behaviour of the solution in the far field. In 

this sense, the infinite element method is similar to the method of matching to a 

far field analytical solution. As the analytical solution in the far field is not always 

known, the behaviour of the solution is guessed and incorporated into the shape 

function. 

The debate over whether FEM or BEM is superior for modelling unbounded 

wave problems has been longstanding. Practitioners who used both methods such 

as Burnett [36], Demkowicz [49] or Shirron [94] concluded that F / IEM is typically 

more efficient than the BEM. For detailed discussion the reader is referred to the 

above references. The development of infinite elements is reviewed below. 

Infinite elements can be generally classified to three groups, as decay function, 

mapped and wave envelope infinite elements. 

For decay function infinite element, the finite domain is extended to infinity in 

one or more directions by multiplying the conventional finite element shape func

tion by a decay function (Ungless [98], Anderson and Ungless [2], Zienkiewicz and 

Bettess [107], Bettess [34, 33]). To increase the accuracy of the infinite element 

for a particular problem, the decay function must be chosen such that it models a 
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realistic behaviour of the far field solution. Therefore for wave problems, an extra 

term of the form exp{ikr) is added to the shape function to model the harmonic 

variation of the wave potential (Bettess and Zienkiewicz [35]). Although the re

sulting element matrix remains symmetric, which is of interest, the determination 

of the resulting integral expression becomes complicated and a special integration 

scheme is required (see the above reference). This type of infinite element has been 

applied to many unbounded problems. A good survey of the literature is given 

in a book by Bettess [28]. By the separation of variables in different directions, 

the radial (or infinite) direction integration can be carried out analytically which 

greatly economises the infinite element (Burnett [36]). The integration in other 

directions are carried out using the standard Guass-Legendre numerical scheme. A 

recent convergence study of this infinite element (Shirron [94]) shows the element 

gives very accurate solutions only in the near field. 

The frequency dependent characteristic of the finite/infinite element mesh is a 

disadvantage of this method. For shorter waves a finer mesh in the circumferential 

direction is required. A frequency-independent infinite element (Yang, Kuo and 

Hung [99]) can tackle such problems. 

For mapped infinite elements, special geometry mapping functions are used to 

map a finite to the infinite element (Zienkiewicz et al [104], Beer and Meek [19]) 

(see section 5.2). By mapping the conventional finite element shape function, a new 

polynomial is obtained which decays to zero at infinity (see the above references 

and also Zienkiewicz, Emson and Bettess [103], Pissanetzky [91]). Similar to the 

first group, an extra term is added to the shape function (Bettess, Emson and 
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Chiam [31]) to model the harmonic behaviour of the wave potential (see section 
5.3). Again, a new integration scheme is required to calculate the element integrals. 
A much simpler finite to infinite mapping procedure is introduced (Marques and 
Owen [81]) which makes the finite and infinite element methods more similar. For 
two dimensional wave problems, the shape function of the above reference [31] 
was modified to consider a more correct rate of attenuation of wave amplitude 
towards infinity by multiplying the original shape function by an extra term, i.e. 
\fr (Zienkiewicz, Bando, Bettess, Emson and Ghiam [102]). More accurate results 
were achieved. This is another successful attempt to use a shape function that 
models the behaviour of a particular problem more realistically. The mapped 
infinite elements have been used on the exterior of a circle circumscribing the 
diffracting objects. Burnett [36] pointed out that, for diffracting objects with large 
aspect ratio, such as a submarine, the element becomes ineflficient. 

A new idea of choosing a special weighting function to simplify the infinite 

element formulation generated a new class of elements. This can be applied to 

both decay function and mapped infinite elements. In the residual equation the 

weighting functions may be chosen to be the complex conjugate of the shape func

tions. This eliminates harmonic terms from the element integrals and therefore 

makes possible the use of the Gauss-Legendre numerical scheme in the calculation 

of these integrals. This method, the so-called wave envelope approach, originated 

in the study of in-duct acoustical propagation by Astley and Eversman [9]. The 

method was then used to solve acoustic wave radiation and scattering problems 

8, 6]. It was extended to model unbounded wave type problems by Bettess [29 . 
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Unfortunately the simple model equation used by Bettess to test the theory dis
played rather simple behaviour towards infinity. Astley pointed out that in real 
unbounded wave problems an extra term, the line integral at infinity, omitted by 
Bettess, must be included. Astley went on to develop infinite wave envelope ele
ments for acoustic applications [5 . 

The method was then used to solve progressive wave examples by Bettess and 

Chadwick [26]. I t was later used to model bounded domain problems by choosing 

the governing equation for the wave envelope (and phase) rather than for the 

potential by Chadwick and Bettess [37]. This reduces the size of the mesh and 

consequently enhances the economy of the model since the limitation of ten nodes 

per wavelength no longer exists. Chadwick and Bettess later presented a new 

infinite element using the above idea to model short wave diffraction problems [38 . 

Shirron [94] presented a wave envelope version of Burnett infinite element and 

called these two types of infinite elements as unconjugated and conjugated infinite 

elements. In the unconjugated (Burnett's) formulation, the weighting function 

(test function in their terminology) is chosen to be the same as the shape function, 

whereas in the conjugated version, it is a complex conjugate of the shape function. 

He compared unconjugated and conjugated infinite elements against each other 

and against the other boundary conditions and concluded that the unconjugated 

formulation gives more accurate solutions in the near field but the solutions be

come very inaccurate for the far field. Whereas the conjugated infinite element 

gives accurate solutions both in the near and far fields. Following Burnett, Gerdes 

59] also used the idea of the separation of variables and applied wave envelope 
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approach to Helmholtz and Laplace equations. He carried out a convergence study 
of the method which shows the reliability of the wave envelope infinite element. 
He used the infinite elements on the exterior of the circumscribing sphere. This re
sults in computing inefficiency in modeling objects with large aspect ratio. Astley 
3] recently developed a spheroidal axisymmetric mapped wave envelope infinite 

element for acoustic scattering which oflPers a more efficient element compared to 
the above reference. Oslon and Bathe [89] applied the infinite element to transient 
problems. More recently, Astley [4] applied the wave envelope infinite element 
method to transient acoustic problems. Zienkiewicz and Taylor pointed out that 
"Unfortunately the method has not been fully tested for surface waves and it is 
possible that there will be unforseen diflficulties" [101 . 

1.1 Aim of the thesis 

The aim ^ of this study is therefore to develop a series of infinite elements to be used 

in conjunction with the conventional finite elements to solve the problem of linear 

water wave diffraction by large objects, in particular large offshore structures. 

• The first objective, from Burnett [36], is to improve the existing mapped 

infinite element, due to Zienkiewicz et al [102], so that it can model objects 

of large aspect ratio, say a submarine, more economically. 

^The original aim of the research was to develop and insert the new infinite elements into 3D 
non-hnear wave programs, FEMWV3 and FEMWV5, of Dr. P Clark and Prof. P Bettess [43]. 
After detailed comparison with the analytical solutions and the other 3D linear wave programs, 
WAVE and WAVEM, of Prof. P Bettess, Mrs. J Bettess, Mr H Kara and Mr S Karaiosifidis, the 
non-linear codes appeared unrehable for this work and therefore the new infinite elements were 
inserted to a 2D wave program, SMAWAVE, of Prof. Peter Bettess and Mrs. Jackie Bettess. 
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• The second and the main objective, from Zienkiewicz and Taylor [101], is 
to apply the idea of the wave envelope approach, due to Astley [9], to sur
face waves to develop a simple and efficient infinite element which produces 
accurate solutions in the far field as well as the near field. 

• As the global matrix resulting from this method is unsymmetric, the third 

objective is to amend the existing unsymmetric solver (Hood [67]) and to 

insert it into the wave program. 

• The fourth objective is to code some existing analytical solutions to be the 

basis of validation of the infinite elements. 

• The final objective is to develop a finite/infinite element mesh generator to 

solve the problem of wave diffraction by multiple objects. 

A number of assumptions have been made to simplify the problem. They are 

explained in chapter 2. Three main assumptions have been to ignore the non-linear 

and viscous effects and to reduce the problem to two-dimensions with gradually 

varying water depth. The governing equation then become the well known Mild-

Slope wave equation subjected to the natural and radiation boundary conditions. 

As was mentioned above, the model developed in this thesis can solve the lin

ear wave diffraction by large objects in a gradually varying water depth. However, 

the model was validated only for problems with constant water depth as all the 

analytical solutions presented in this thesis had been developed for water of con

stant depth. In the time available it would not have been possible to code other 

analytical solutions to validate the model for varying water depth problems. 
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1.2 Plan of the thesis 

In the next chapter the mathematical description of the problem of wave diffraction 

by objects is given. The governing equation and the relevant boundary conditions 

are explained. Assumptions and limitations of the present study are outlined. By 

making some assumptions, the general model is simplified to a two-dimensional 

model. 

In chapter 3 the analytical solutions of the problem for constant water depth for 

some simple shape of the diflFracting objects are discussed. These are the diffraction 

of water waves by a vertical circular cylinder, by a vertical elliptical cylinder and 

by arrays of vertical circular cylinders. 

In chapter 4 the problem is solved for any arbitrary shape and configuration 

of the diffracting objects by using the coupled finite and infinite element method. 

Various parts of the method are explored. The finite and infinite element matrix 

equations are derived from the basic principles using the weighted residual ap

proach. A simple procedure is introduced for developing infinite elements for other 

unbounded problems. 

In chapter 5 other aspects of infinite elements, which depend on the type of 

elements, are explored. Finite to infinite geometry mapping procedure is explained 

both for I D and 2D. The mapping functions for diflFerent infinite elements are 

derived. The construction of the basic shape and weighting functions for an infinite 

element is explained. The procedure is explained for improving mapped infinite 

element taken from the literature. The development of two other new infinite 
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elements is then given. Extension to 3D is outlined. 

In chapter 6 different example problems involving the diffraction of water waves 

by objects in water of constant depth are solved in order to validate the three types 

of infinite elements. The results are compared with their equivalent analytical 

solutions. The errors are calculated and plotted. A comparison is made between 

the three infinite elements. 

Finally in chapter 7 the discussion of the results and the advantages and disad

vantages of each infinite element is given, concluding remarks are made and further 

research is discussed. 



Chapter 2 

Mathematical Formulation of the 

Problem 

2.1 Introduction 

The mathematical formulation which describes the problem of diffraction of surface 

water waves is given in this chapter. Later this will be solved to achieve the required 

solutions. First the general formulation (i.e. three-dimensional) is described. This 

will then be restricted to two-dimensional formulation which will be solved using 

the finite/infinite element method. 

An arbitrary body is subjected to incoming plane waves of heading 9j, amplitude 

A and angular frequency u). A Cartesian coordinate system {x,y,z) is fixed at the 

still water level, with coordinate z pointing vertically upwards. Definition sketches 

of the problem are given in Figures 2.1 and 2.2. 
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A number of assumptions were made to simplify the formulation as follow: 

• The f lu id is assumed to be ideal, i.e. inviscid (no viscosity), incompressible 

and homogeneous; 

• the flow is irrotational which leads to a potential formulation: 

• there is no underlying current (see e.g. Ki rby [74]); 

• the flow is simple harmonic in time; 

• waves are of small amplitude, i.e. the wave amplitude is much smaller than 

the wavelength so that the wave slope is small which leads to a linearised free 

surface boundary condition; 

• a constant gravity force field exists; 

• the structures (diffracting objects) are assumed large, stationary and rigid 

w i th impermeable surfaces; 

• the sea bed is assumed to be rigid, impermeable and frictionless (see e.g. 

Zienkiewicz et al [101] , page 265); 

• the surface tension is negligible (see e.g. Sarpkaya [92], page 22); 

The f in i te / inf in i te element model given in chapter 4 can be used to solve the prob

lem of wave diffract ion by objects of any shape and size. However, to maintain the 

inviscid fluid assumption, the characteristic diameter of the diffracting object (D), 

must be significant compared to the incoming wave length (L) and amplitude (A). 
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Guidelines are given by different authors (see e.g. Morgan [85] or Sarpkaya and 

Isaacson [92]) as: 

D 
L 

> 0.2 {ka > 0.27r) (2.1) 

where k is the wavenumber and a is radius ( = D / 2 ) of the diffracting object. In 

the above range the diffraction effects become dominant, rather than the viscous 

effects in which case Morison equation [86] can be used to calculate the wave effects 

(see e.g. the above referrences). The exception is that when A/D < 0.75 the wave 

forces can be predicted by the potential flow diffraction theory regardless of the 

parameter D/L (see chapter 1). Hence the present model can also be used in this 

case. 

litude A, wave 
Still water level 

"H, surface elevatiQi 

Z/2, half a wavelength 

d, water depth 

Object 

Sea bed 

Figure 2.1: x-z Definit ion sketch and coordinate system 
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injinity 

Incident waves 

Object ( F Q ) 

Figure 2.2: x-y Definit ion sketch of the boundary value problem 

2.2 Governing equation 

The governing equations can be derived f rom the fundamental laws of conservation 

of mass and momentum. This is given by number of authors (see e.g. Lamb [76]). 

For an inviscid and incompressible fluid (water), the conservation of mass gives [76 

du dv dw 

dx dy dz 
= 0 (2.2) 

where u, v and w are the velocity component in x, y and z directions respectively. 

By assuming the flow to be irrotational, the velocity can be defined as the gradient 

of a scalar $ 

u = dx' 

5 $ 

dy' 
w (2.3) 
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By substitution, equation (2.2) leads to a linear second order differential equation, 
known as the Laplace equation 

(92$ r^2^ 

where V is the gradient operator in three dimensions and $ is often called the 

velocity potential. 

The conservation of momentum upon integration wi th respect to the space 

variables leads to the Bernoulli equation (Lamb [76]) 

where p is the total pressure, p is the water density, g is acceleration due to grav

i ty and t is time. The first term on the right hand side, gz, is the hydrostatic 

contribution and the rest is the hydrodynamic contribution to the total pressure. 

2.3 Boundary conditions 

The boundary conditions must be applied to obtain a unique solution to the gov

erning equation. The boundaries involved in the problem are: 

• air-water interface (free surface) 

• water-sea bed interface 

• water-body interface 
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• surface at inf in i ty (radiation surface) 

2.3.1 Free surface condition 

A t the free surface a kinematic boundary condition can be applied. This ensures 

that the fluid particles at the boundary move only tangentially and never cross i t . 

By assuming that the wave steepness is small (small amplitude wave theory), the 

non-linear terms can be omitted giving (see e.g. Berkhof [20]) 

where i] is the free surface elevation which is an unknown. Therefore another 

condition is sought for this boundary. By taking the atmospheric pressure as zero 

at the free surface and assuming that the motion is slow a linearised dynamic 

condition can be achieved f rom the Bernoulli equation (2.5) giving 

g dt 

The above two equations can be combined by eliminating 77 to give the equation 

^ + - ^ = 0 (2.8) 
oz g ot 

Now i f the problem is periodic, i.e. 

$ = (/)exp(-iwf) (2.9) 
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then equation (2.8) becomes 

| ^ + ^ ^ = 0 (2.10) 
dz g 

2.3.2 Sea bed condition 

The boundary condition for a fixed, rigid and impermeable sea bed can be writ ten 

as (see e.g. Berkhof [20]) 

d<j> ^ d<j>did + r]) ^ dcj>d{d + v) 

dz dx dx dy dy 

2.3.3 Natural boundary condition 

Since the structures (diffracting objects) are assumed to be stationary, imperme

able and rigid, the natural boundary condition is that the velocity on the solid 

boundaries is zero, that is 

(9<l> 

where n is the outward normal to the surface. 

2.3.4 Radiation boundary condition 

The diffract ing bodies are subjected to incoming plane waves which may be diffracted 

by and reflected f rom the objects and refracted in the vicinity of the objects and 
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then radiate away towards infinity. Therefore, the radiation boundary condition, 
which is applied at the surface at infinity, must be applied to the radiated part of 
the wave. This may be considered by applying the Sommerfeld radiation boundary 
condition [95] to periodic problems. This may be writ ten as 

l i m f ^ - z i t^ , ) = 0 (2.13) 
r ^ o o \ dr 

where m is the dimension of the problem, i is the square root o f - 1 , r is the radius 

and is the radiated part of the velocity potential (see section 2.4). 

Zienkiewicz and Newton [108] developed the condition for transient problems, 

for plane waves giving 

Now i f the problem is periodic, equation (2.9), then the equation becomes 

d(t)s 

dn 
ik(j)s = 0 (2.15) 

This plane wave form of the boundary condition wi l l become more accurate as the 

radius, r, increases. 

For further details of the wave equations and boundary conditions, the reader is 

referred to standard texts (see e.g. Lamb [76]). The radiation boundary condition 

is applied to the radiated part of the wave, whereas the other boundary conditions 

are applied to the total wave. Therefore, i t is necessary to separate the wave 
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into incident and radiated waves. This is explained by a number of authors. One 
explanation is given by Bettess and Zienkiewicz [35]. An outline is given below. 

2.4 The incident and scattered waves 

The free surface, sea bed and the natural boundary conditions are applied to the 

to ta l wave whereas the radiation condition must be applied to the radiated part of 

the wave. Therefore, the linearization of the problem permits the velocity potential 

to be separated into two parts as 

(j) = + cl>s (2.16) 

where 0 is the total velocity potential, (/>/ is the incident velocity potential and 

is the scattered velocity potential. The incident wave is deflned by some known 

functions and the scattered wave is the unknown which includes diffracted and 

reflected waves f rom fixed objects and refracted waves due to varied water depth. 

The incident wave is a known function satisfying the governing equation as well 

as the boundary conditions. In this work this is chosen to be a monochromatic 

plane wave. This is given by number of authors (e.g. Sarpkaya and Isaacson [92 

or Chen and Mei [40]) as 

'-^Z{z)exp{ikrcos{e-9i)) (2.17) 
2LO 
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which can be rewritten as 

= - ^-7~^Z{z)exp{ik{xcosei+ ysmei)) (2.18) 
ZU! 

where the depth function, Z(z), is given by (see e.g. Sarpkaya et al [92]) 

coshkd 

g is acceleration due to gravity, d is the water depth, co is the wave angular fre

quency, H ( = 2A) is the wave height defined as the vertical distance between a 

wave crest and its trough, 6i is the angle of wave incidence, the anticlockwise angle 

f rom the positive x axis in x — y plane and k is the wavenumber derived f rom the 

linear dispersion relation. This relation can be derived f rom the combined linear 

free surface boundary condition equation and the incident wave equation as (see 

e.g. [92]) 

to^ = gkta^nhkd (2.20) 

2.5 Wave other parameters 

For a given wave frequency, w, the wave number must be calculated f rom the 

above equation 2.20. Then the other wave parameters can easily be found. The 

wave celerity, c, is given hy c = u/k and the wave group velocity, Cg is given by 



C h a p t e r 2: Mathemat i ca l Formulat ion of the Prob lem 24 

Cg = nc where n is given by (see e.g. Newman [87]) 

The wavelength is given by L = 271/k, the wave period is given by T = 27r/w and 

the wave frquency is given by / = UI/2TT. 

2.6 Simplified formulation (2D) 

In some practical engineering cases, say large offshore structures, the diffracting 

objects are usually selected to be vertical cylinders extending f rom the sea bed to 

above the free surface. Therefore, the incident waves are scattered in x — y plane 

which allows separation of depth, z, variation f rom the velocity potential giving 

(see e.g. Sarpkaya et al [92]) 

^{x,y,z) = Z{z)<Pix,y) (2.22) 

where Z{z) is the depth variation function given by equation (2.19). A new govern

ing equation can then be sought to express the velocity potential for two-dimensions 

which is as follows. 

The propagation of periodic, small amplitude (linear) surface gravity waves over 

a variable depth sea bed of mi ld slope is governed by the Mild-Slope wave equation 

which was first derived by Berkhoff [22, 21] using the governing equation (2.4), the 

linear free surface boundary condition, equation (2.10), and the sea bed boundary 
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condition, equation (2.11), as 

V {cCgV(j)) + '^uj^ = 0 (2.23) 
c 

in Q, where 

is the unbounded two-dimensional (x-y) domain, 

V is the gradient operator in two dimensions, [ ^ , ^ 

0 is the time independent complex velocity potential at the free surface, 

u is the angular frequency, 

c is the wave celerity, 

Cg is the wave group velocity, 

and g is acceleration due to gravity. 

For shallow water {kd < T T / I O ) kd is small and so tanhkd = kd and sinh2A;d = 

2kd, therefore n = 1, equation (2.21), and so the wave group velocity ĉ , = c = \/gd, 

then the equation reduces to the linear shallow water wave equation as 

2 
V (dV0) + '^(j) = 0 (2.24) 

where k is the wavenumber and d is the water depth. 

For constant depth this reduces to the Helmholtz equation 

V V + ^'(/' = 0 (2.25) 

where is two-dimensional Laplace operator. 
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As the free surface and sea bed boundary conditions are explicitly satisfied in 
the above wave equation the only boundary conditions that need to be applied 
are the natural and radiation boundary conditions. The incident wave function 
for two-dimensions is derived simply by omiting the depth function f rom equation 
(2.18) giving 

= -l^exp{ik{xcosei+ ysmei)) (2.26) 
2uj 

2.7 Physical variables 

Once the solution, velocity potential function 0, has been found, all physical quan

tities of interest can be computed, e.g.: 

The harmonic free surface elevation can be found using equation (2.7) giving 

V{x,y) = Re[—^] (2.27) 
9 

The linear hydrodynamic pressure is given by 

Pd = ipu}(i) = pgr] (2.28) 

By dividing the vertical cylinder into j sections, the sectional hydrodynamic hor

izontal force can be found by integrating the pressure over the section j of the 
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surface of the diffract ing object giving 

r2v 
Fj = - Pdfirde (2.29) 

^0 

where n is the normal to the surface. The overturning moment is given by 

/•o 
M = I Fj{z + d)dz (2.30) 

J—d 

The tota l horizontal force is then given by 

F = f Fjdz (2.31) 
J—d 

The horizontal diffract ion coefficient is given by 

= ^ (2^32) 

where Fk is Froude-Krylov force which is the hydrodynamic force in the absence of 

any diffract ing object [92]. I t can be calculated by equation (2.28) and (2.31) by 

simply using incident potential (f)i instead of cf). 

The time dependent physical variable, say for surface elevation, can be simply 

found by equation (2.9) giving 

ri{x,y,t) = Re[—(j) exp{—iwt)] (2.33) 
9 
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and the phase angle can be found by 

phase = avctanl^^^f},] (2.34) 
Im{(p) 

were Re and Im denote the real and imaginary parts of the variable respectively. 

2.8 Summary 

The mathematical description of the problem of linear water wave diflFraction was 

given in this chapter. The governing equation and relevant boundary conditions 

were described. The assumptions and so restrictions of the present model were 

mentioned. By an assumption the formulation was transformed to two-dimensions 

allowing simplification in mesh generation later in the numerical solution chapter 



Chapter 3 

Some Analytical Solutions 

3.1 Introduction 

I n this chapter, analytical solutions for problems of water wave diffraction by some 

objects of simple shape are given. First, the special case of wave diffraction by a 

circular cylinder and then by an elliptical cylinder are discussed. Finally, the solu

t ion for the more practical problem, i.e. multiple circular cylinders wave diffraction 

problem, is presented. These analytical solutions firstly give some insight into the 

wave diffract ion problem and more importantly later w i l l be used to establish the 

accuracy of the numerical method described in this thesis. 

3.2 Wave diffraction by a circular cylinder 

Circular pi l ing is a very common structural element in maritime structures, such 

as offshore platforms, shore protection and harbours. The problem of diffraction 



C h a p t e r 3: Some A n a l y t i c a l Solutions 30 

of plane water waves f rom a vertical bottom mounted circular cylinder was first 

presented by Havelock [64] for the special case of infinite depth and later by Mac-

Camy and Fuchs [80] for finite depth. They found a very good agreement wi th the 

experiments performed in a wave channel by Morison [86]. Therefore this prob

lem may help to establish the accuracy of the other analytical solutions as well as 

the numerical method. A n outline of the mathematical solution by MacCamy and 

Fuchs [80] is given below. 

I t was pointed in section 2.4 that the incident wave equation (2.26) is a solu

t ion to the two-dimensional boundary value problem. The cylinder of radius a is 

assumed to lie along the z axis (see Figure 2.1) and plane waves are incident from 

the negative x direction (61/ = 0, see Figures 2.1 and 2.2). The equation then may 

be wr i t ten as 

= exp(2/;;a;) = - ^-^^ exp{ikr cos 9) (3.1) 
2LO 2U) 

where r and 9 are cylindrical polar coordinates. The exponential term of this 

equation may be expanded as an infinite series of Bessel functions [1 

^i = -'-^f:t^eMkr)cos{n9) (3.2) 
n=0 

where Jn{kr) is Bessel function of the first kind and n*'̂  order (see Apendix D) , 

£o = 1 and £n = 2 for n = 1, 2,3,.... When programming the solution, the series 

can be truncated when sufficient accuracy has been obtained. Six terms have been 

used in this study which gives accuracy to four significant figures. 
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A similar expansion which satisfies the governing equation (2.25) as well as the 

radiation boundary condition equation (2.13) may be wri t ten as [80] 

2LO 
J^^^'enB^Hnikr) cosine) (3.3) 
n=0 

where Hn{kr) is Hankel function of the first kind and n-th order (see Apendix D) 

given by 

Hr,{kr) = Ukr) + iYn{kr) (3.4) 

where Yn{kr) is Bessel function of the second kind and n-th order (see Apendix D) . 

The only unknown in equation (3.3) is the coefficient i?„. By considering that 

the diffract ing object has a circular cross section, the natural boundary condition, 

equation (2.12) and (2.16) may be wri t ten as 

'd(l>i' 'd(t)s 
dr r=a dr 

(3.5) 

By differentiating equations (3.2) and (3.3) wi th respect to r and substituting into 

the above equation, the coefficient can be obtained as 

j ; ( f ca ) 

The tota l velocity potential thus may be writ ten as the sum of incident and 
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diffracted waves 

tf^niUkr) - ^^^H^{kr)]cos{ne) (3.6) 

This is given by MacCamy and Fuclis [80] w i t l i a different notation^ Tlie surface 

elevation can then be computed by using equation (2.27). 

A plot of real and imaginary parts of incident, diffracted and total velocity 

potential around the circular cylinder at the sti l l water level {z = 0) are illustrated 

in Figures 3.1, 3.2 and 3.3. The real and imaginary parts of surface elevations 

around the cylinder are also illustrated in Figure 3.4. The radius of the cylinder, 

the water depth, the acceleration due to gravity and the wave number are all chosen 

to be equal to one unit and the wave height is chosen to be equal to two units. 

3.3 Wave diffraction by an elliptical cylinder 

The ellipse can represent a large variety of shapes f rom a circular cylinder, to a hull, 

to a long th in breakwater. I t is therefore a very useful test case for the numerical 

method. In this section the mathematical solution of the problem of diffraction 

of plane water waves by a bot tom mounted elliptical cylinder in shallow water of 

constant depth is presented. This was originally given by Chen and Mei [39] for the 

^This solution was coded by Orphanidou under supervision of Prof. P. Bettess at the Depart
ment of Marine Tech., University of Newcastle Upon Tyne [88]. In this work, the solution was 
also coded by Excell to test and validate the FORTRAN code written by Orphanidou. 
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Real 
Imaginary 

/V^ngle, degre 

Figure 3.1: Incident velocity potential around the circular cylinder (radius. 7̂  = 1 
uni t ) 

imaginary 

Figure 3.2: Analyt ical diffracted velocity potential around the circular cylinder (r 
= 1 unit) 



Chapter 3: Some Analytical Solutions 34 

Imaginary 

Figure 3.3: Analyt ical total velocity potential around the circular cylinder (r = 1 
uni t ) 

imaginary 

Angle, degrees 

Figure 3.4: Analyt ical total surface elevations around the circular cylinder (r = 1 
uni t ) 
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case of a floating bodies and coded by AtaUanis [11] ^. A fu l l explanation of the 
problem is given by Atalianis [10]. An outline of the mathematical solution given 
by Chen and Mei is first given below. The solutions then are checked against the 
existing solutions by MacCamy and Fuchs [80] presented in the previous section by 
assuming equal semi-major and semi-minor axes lengths for the elliptical cylinder. 
A n example problem is finally solved and the solutions are plotted. 

This problem is similar to the previous problem except that the diffracting 

object is an elliptical cylinder and therefore the natural boundary condition can no 

longer simply be expressed as equation(3.5) . Thus the elliptical coordinate system 

is employed. The governing equation for shallow water wi th constant depth is 

the Helmholtz equation (2.25) which in eUiptical coordinate system can be writ ten 

(Chen et al [39]) 

r\2 I o2 1 
+ + 2g(cosh 2C - cos 2r])^ = 0 (3.7) 

where ^ and 77 are the elliptical co-ordinates and q = {kh/2)'^, k is the wavenumber 

for shallow water k — uj/\/gd and h = [a? — 6^)^/^ where a and b are the lengths of 

the semi-major and semi-minor axes. 

The exponential term of the plane incident wave equation (2.26) can now be 

^This code was developed under supervision of Prof. P. Bettess at the Department of Marine 
Tech., University of Newcastle upon Tyne, UK, 1990. 

^Further work was necessary to produce satisfactory surface elevations around the cylinder 
which was carried out in collaboration with Mrs J. Bettess under supervision of Prof. P. Bettess 
at Durham University, UK, 1995. 
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expanded by using an infinite series of Mathieu functions (Chen et al [39]) 

g ( _ i ) n ^ ^ a ) ( ^ ^ q)ce,r,{9j, q) 

(3.8) 

2^ 

+ ( - l ) " z M c S + i ( e , g)ce2„+i(?], q)ce2n+i{ei, q) 

+ i-lTiMs^^n+i{C,q)se2n+i{v,Q)se2n+i{0i,q) 

+ ( - l ) " + ' M s S + 2 ( e , q)se2n+2{v, q)se2n+2{0i, q) 

where ce„(77, q) and se„(r7 , g) are the periodic Mathieu functions and Mc\^\S,, q) and 

Ms^^\^, q) are the radial Mathieu functions (see Appendix D) . When programming 

the solution, the series can be truncated when sufficient accuracy has been obtained. 

Thirteen terms has been used in this study which gives accuracy to four significant 

figures. 

A similar expansion which satisfies the governing equation (3.7) may be writ ten 

for the diffracted wave as (Chen et al [39]) 

= f:{-irAc2nMc?^{C,q)ce2n{v,q)ce2n{di,q) 

+ {-l)''iAc2n+lMc^2n+l{(,q)ce2n+l{V,q)ce2n+l{0l,q) 
(3.9) 

+ ( - l )"zAs2„+iMs2+i(^ ,g)se2„+i(?] ,g)se2„+i(^/ ,g) 

+ ( - l ) "+Ms2n+2Msg+2(^ . q)se2n+2{V, q)se2n+2{0l, q) 

where and Ms^^ are again the radial Mathieu functions (see Appendix D) 

and give outgoing waves and so satisfy the radiation boundary condition. Ac and 
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As are some sets of coefficients which can be found using the natural boundary 
condition, equation(2.12). This in elliptical coordinate system can be writ ten 

(3.10) 
[ d a 

By differentiating equations (3.8) and (3.9) wi th respect to { and substituting into 

the above equation, the coefficients can be obtained as 

AC2n — 
M'cg(eo ,9 ) 

M ' 4 n V i ( e o , g ) Ao 271 + 1 

As2n +1 

As 2n+2 — 

M ' c £ + i ( 6 , 9 ) 

M ' 4 S + i ( 6 , 9 ) 

M'4l2(eo,g) 

A comparison between the solutions produced by the present method for an el

l ipt ical cylinder of unit aspect ratio (b/a — 0.99999) and the equivalent solutions 

produced by the method described in section 3.2 is illustrated in Figure 3.5. The 

agreement between two methods is very good, the difference being less than l.OE-5. 

A plot of incident, diffracted and total velocity potential around the elliptical cylin

der {b/a = 2) at the st i l l water level {z = 0) for zero angle of incidence {6j = 0) are 

illustrated in Figures 3.6, 3.7 and 3.8. A plot of the surface elevations around the 

cylinder are also illustrated in Figure 3.9. The water depth, the acceleration due 

to gravity and the wave number are all chosen to be 1 unit and the wave height is 
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chosen to be 2 units. 

1 

(p 3^ 60 ^90 120 150 180 210 240 27(f 300 330 360 

c 
s 
o a. 
>. o _o 
0) 

> 

-1.5 

MacCamy-Real 
MacCamy-lmaginary 
Chen-Real 

4 Chen-Imaginary 

Angle, degrees 

-2 

Figure 3.5: A comparison between Chen and MacCamy analytical methods (angle 
of incidence, 6*/, = 0°, aspect ratio, b/a = 2) 
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Imaginary 

30 •, 60 0 300 ,•330 360 

Figure 3.6: Incident velocity potential around the elliptical cylinder {9j 
b/a = 2) 

= 0°, 

- Rea l 
• Imaginary 

30 qo 90 1.20 150 180 210 240 270 3d0 330 360 

Anglo, degrees 

Figure 3.7: Analyt ical diffracted velocity potential around the elliptical cylinder 
(01 = 0", b/a = 2) 
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Real 

Imaginary 

50 180 2 

Angle, degrees 
240 2 

Figure 3.8: Analyt ical total velocity potential around the elliptical cyhnder [Oi 
0°, b/a = 2) 

Figure 3.9: Analyt ical surface elevations around the elliptical cylinder {9j 
b/a = 2) 

0°, 
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3.4 Wave diffraction by multiple circular 
cylinders 

A n offshore structure, such as an oil rig, consists of a number of legs on which some 

form of structure is mounted. Therefore, the diffraction of water waves by arrays 

of circular cylinders may help to test the numerical method which in turn can be 

used to solve the problem for any shape of the diffracting objects. 

A number of attempts were made to solve the problem one of which is given by 

Linton and Evans [78]. Their theory is widely accepted as correct. However their 

wave contours showed a lack of the expected symmetry. This was also reported by 

Bettess and Bettess [27] and Baghbani [13]. For the present work, their analytical 

solution was programmed in Maple. This gave satisfactory answers and symmet

rical wave elevations. In this section, an outline of the mathematical solution [78 

is presented which w i l l be shown that i t recovers the analytical solution given by 

MacCamy and Fuchs [80] for a special case of wave diffraction by a single circular 

cylinder. The other example problems are then solved and the results are plotted. 

Consider an array of bot tom mounted vertical circular cylinders which are 

located in the middle of an ocean and are subjected to a plane wave which makes 

an angle of 6i w i t h the x axis as shown in Figure 3.10. By assuming there are no 

diffract ing objects in the water, the only contribution to velocity potential is f rom 

the incident wave which is given by equation (2.26). The equation is now rewritten 

to express the incident velocity potential in terms of local polar coordinates {rj,9j) 
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r 

J': 

jth cylinder 

/ Incident wave direction 

1th cylinder 

Figure 3.10: Plan view of multiple cyhnders diffraction problem 

associated wi th the j t h cylinder as [78 

igH_ 
' 2uj 

I j exp{ikrj cos{9j - 9i)) (3.11) 

where I j is a phase factor associated wi th the j t h cylinder given by 

I j = exp(iA;(xj cos 9i + yj sin 9i)) (3.12) 
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where Xj and i/j are the coordinates of the centre of j t h cylinder. Similar to section 

3.2, the exponential term of the equation (3.11) can now be expanded by using an 

infini te series of Bessel function [61, 78] giving 

= - ' - ^ I j E Jnikr,) exp{in{n/2 - 9, + 9j)) (3.13) 
71=0 

A similar expansion which satisfies the governing equation (2.25) as well as the 

radiation boundary condition equation (2.13) is now sought for the diffracted part 

of the wave. This for the cylinder j may be expressed as [78 

zgH 
2LO 

J2BiHr^{kr,)exp{in9,) (3.14) 
n=0 

where are some sets of coefficients which can be found using the natural bound

ary condition on cylinder j . As the cylinders are assumed to have circular shape 

the natural boundary condition, equation (2.12), can be wri t ten as 

(3.15) 
'd(t)s' 

dr r=aj dr 

where aj is the radius of cylinder j . By differentiating equations (3.13) and (3.14) 

w i t h respect to r and substituting into the above equation, the coefficient can be 

obtained as 

m a , ) 
H'nika,) 

(3.16) 

The incident wave is diffracted by a cylinder and produces a diffracted wave 



Chapter 3: Some Analytical Solutions 44 

which travels towards other cylinders. Therefore, each cylinder is subjected to 

different waves. A f u l l explanation of all the possible interactions is given by 

Mclver and Evans [82] and Linton et al. [78]. A general form for the diffracted 

wave radiating away f rom the cylinder j is given as [78 

' 2uj 
EAiBMkr,)eM^ne,) (3.17) 
n=0 

The total velocity potential can then be computed by adding the incident and 

diffracted components 

(3.18) 

where A'' is the number of cylinders. In order to compute the coefficients A{, the 

natural boundary condition on the cylinders can be wri t ten as 

(3.19) 
d(f)s 

dr r=ai dr 
r=ai 

for I = 1,...,N, where a; is the radius of cylinder /. As Linton et al [78] showed, 

by using the Bessel addition theorem, differentiating equations (3.13) and (3.17) 

w i t h respect to r and substituting into the above equation, an infinite systems of 

equations can be obtained 

N oo 

+ E E exp{i{n - m)a,i)Hr,^m{kRji) = h exp(zm(7r/2 - 9,)) 
j=l n = - o o 

(3.20) 
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for / — 1,...,N and m = —oo, ...,co. As Linton et al [78] stated " i n order to 
evaluate the constants A[^ the infinite system is truncated to an A^(2M-|-1) system 
of equations in N{2M + 1) unknowns" 

N M 

+ E E ^iBi exp{i{n - m)aji)Hn-m{kRji) = / ; exp(im(7r/2 - 9i)) 
j=l n=-M 

(3.21) 

for / = 1,...,A^ and m = —M,...,M. This set of equations can be expressed 

as a matr ix equation which can be solved to evaluate A^^. This was done using 

Maple and the solutions were computed by equation (3.18) for different number of 

cylinders. Greater accuracy may be achieved by increasing M. In this work, M is 

taken to be six which gives accuracy to four significant figures. 

The above equation is now solved for a single cylinder (A'̂  = 1). The centre of 

the cylinder is taken to be at the origin {xi = 0, yi — 0) and the angle of incidence 

{9i = 0) chosen to be zero. The incident wave equation wi l l then become the same 

as equation(3.1). The coefficients are then found as 

Al = -z"^ (3.22) 

Substituting this into equation (3.17) gives the same values for the diffracted part 

of the wave as MacCamy and Fuchs [80]. Therefore, the total wave predicted by 

this method for a single circular cylinder is exactly the same as MacCamy and 

Fuchs's. 
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3.4.1 Example problems 

Wave diffraction by a single cylinder 

The problem of of wave diffraction by a single circular cylinder standing in shallow 

water of constant depth is solved. The radius of the cylinder is one unit and the 

angle of incident wave (^/, see Figure 3.10) is taken to be zero. The water depth, 

the acceleration due to gravity and the wave number are all chosen to be equal 

to one unit and the wave height is chosen to be equal to two units. A contour 

plot of real and imaginary parts of the surface elevations around the cylinder is 

illustrated in Figures 3.11 and 3.12. 

Wave diffraction by a pair of cylinders 

Now two cylinders of radius one unit are standing in shallow water of constant depth 

{d — 1 uni t) and subjected to a plane wave of zero angle of incidence {9i = 0, see 

Figure 3.10). The interaction effects of the two cylinders on the wave pattern may 

be seen by plot t ing the surface elevations around the cylinders. A contour plot ^ 

of real and imaginary components of the surface elevations is shown in Figure 3.13 

and 3.14. Again, the water depth, the acceleration due to gravity and the wave 

number are all chosen to be equal to one unit and the wave height is chosen to be 

equal to two units. 

''Solutions at nodal points were calculated by the Maple program and then these solutions 
were used to generate contour plots. Unimap software package was used for contour ploting. 
Slight unsymmetry can be seen from the Figure 3.12 which is an artifact of the contouring. 

^ Small boxes that appear on some plots are an artifact of the contouring. 
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Figure 3.11: A contour plot of analytical total surface elevations around the circular 
cylinder, real part 

3.5 Other analytical solutions 

In all the analytical solutions presented in this work , it is assumed that the water 

depth is constant. However, in real engineering problems this may not always be 

the case. The programmer then has to check his software for more general prob

lems. Homma [69] gave an analytical solution for the problem of wave diffraction-

refraction by a circular island with a parabolic bottom. Further work is required 

to program this mathematical solution to be used to test the numerical method. 

Another useful test problem is the problem of wave diffraction by a break water. 

This is a useful test, because a singularity occurs at the tip of the breakwater. In 

this research, the mathematical solution given by Penney and Price [90] is coded 

using FORTRAN and the solutions on the breakwater are plotted (Baghbani [13]). 
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Figure 3.12: A contour plot of analytical total surface elevations around the circular 
cylinder, imaginary part 

3.6 Summary 

Some analytical solutions for the problems of water wave diffraction by some simple 

shape of the diffracting objects were presented in this chapter. The existing FOR

TRAN program for the problem of wave diffraction by a circular cylinder was first 

checked and modified to be the base of other problems. Then the existing FOR

TRAN program for the problem of wave diffraction by an elliptical cylinder was 

modified and debugged to give correct velocity potentials and surface elevations 

by comparing with other existing solutions. Finally, the problem of wave diffrac

tion by multiple circular cylinders were discussed and programmed in Maple. The 

predicted solutions for all cases were plotted to be the basis of comparison for the 

solutions predicted by the numerical method. 
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Figure 3.13: A contour plot of analytical total surface elevations around two cylin
ders, real part 
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Figure 3.14: A contour plot of analytical total surface elevations around two cylin
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Chapter 4 

Coupled Finite and Infinite 

Element Solution 

4.1 Introduction 

Problems of diffraction of water waves by some scatterers of simple shape were 

treated analytically in Chapter 3. In real engineering problems the shape of the 

scatterer may be very complex, as in a submarine, for which no such analytical 

solution is available so far. In this chapter, a method based on coupling of Finite 

and Infinite Element Methods (F/IEM) is given to tackle such problems. The 

differential governing equation, for given boundary conditions, is solved using this 

method. The mathematical base of the method is explored and the implementation 

of the FORTRAN program is described and a flowchart is given. 

The Finite Element Method (FEM) is one of the well-known numerical tech-
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niques for solving boundary value problems. However, as it is still not a well-known 
procedure to combine the finite and infinite element methods, some details are given 
which are pertinent to this study, so as to make the material self-contained. For 
further details of the FEM, the reader is referred to standard texts (see e.g. Hueb-
ner [70] or Zienkiewicz and Taylor [100, 101]) and for further details of lEM the 
reader is referred to standard texts (see e.g. Zienkiewicz and Taylor [100] or Bettess 
28]). 

In F / IE analysis of wave problems, the domain of interest is divided by lines, 

surfaces or volumes (depending on the dimension of the problem) into a finite num

ber of nonoverlapping subdomains which are called elements (finite and infinite). 

The solution is then approximated within each element by suitable interpolation 

(shape) functions in terms of a finite number of unknown parameters. In this work, 

the unknown parameters are the velocity potentials at a finite number of points 

on the edge of the element which are called nodes. The element matrix equa

tions for the unknown parameters are then established. The boundary conditions 

are imposed. The relations for individual elements are combined into a system 

of equations for all the unknown parameters by using the assembling procedure. 

By this method, the original continuum domain problem, which results in infinite 

degrees of freedom, is transformed into a problem with finite degrees of freedom. 

The assembled matrix equation is then solved and the solutions are found. The 

physical quantities of interest are then computed. 

The F / IEM procedure employed in this work may be summarized as: 

• Discretize the domain: The unbounded solution domain, Q, is subdivided 
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into two regions, Qi and ^2, with a common boundary F as shown in Figure 
4.1. The finite region Qi being the vicinity of the structure where physical 
features are of interest for the analyst. The infinite region O2, although, is not 
physically important, but has to be considered so as to model mathematically 
the problem correctly. Quadrilateral finite elements are used in the region f^ i 
and a ring of infinite elements are used to model the infinite region 02- The 
number of finite elements in the radial direction and the number of elements 
in the circumferential direction and so the number of nodes is a matter of 
engineering judgment. In general, when the element size becomes smaller, the 
number of nodes becomes larger which in turn result in the larger number of 
degrees of freedom for the model. Thus the discretization error of the field 
variable decreases and so more accurate solutions can be obtained. In wave 
analysis, it is widely accepted that ten finite element nodes per wavelength 
give reasonably accurate solutions. 

• Select interpolation (shape) function: The shape function represents the vari

ation of the velocity potential over the element. For finite elements, this is 

selected to be a quadratic polynomial which can be easily differentiated and 

integrated. For infinite elements, however, this is very complex and is selected 

to be a combination of a polynomial, a decay function and a complex expo

nential (harmonic) function. This will be discussed in detail later in Chapter 

5. 

• Find the element matrices: Having established the finite and infinite ele

ment model, the element matrix equations can be determined. There are 
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different ways of doing this task. Other researchers, such as Chen and Mei 
40], Bai and Yeung [16], Bettess and Zienkiewicz [35], Eatock Taylor and 

Zietsman [55] and Wu and Eatock Taylor [113], used the variational prin
ciple to derive the element matrix equations. In this study, a more general 
approach, the weighted residual approach is employed to derive the element 
matrix equations. In this process, the weighting function is selected to be 
the same as the shape function for the finite element and this is the Bubnov-
Galerkin method. For the infinite element, the weighting function is taken to 
be either the same as the element shape function or multiples of the complex 
conjugate of it . This gives different types of infinite element which will be 
discussed in detail later in Chapter 5. 

• Impose the boundary conditions: Before the element matrix is ready to be 

assembled to the global matrix, the possible contributions due to the bound

ary conditions are calculated and are added to the element matrix and its 

right hand side vector. Two boundary conditions must be considered, the 

natural and radiation boundary conditions. The first one, which means zero 

velocity on the diffracting object(s), has no contribution to the element ma

trix equation. The latter is imposed on a boundary away from the object(s). 

The first condition is applied to the total wave, whereas the latter is applied 

to the diffracted wave. Therefore the field variable must be changed at some 

boundary to maintain these conditions. This change in turn brings the inci

dent wave into the formulation and adds two other contributions to the right 

hand side of the element matrix equation. These are explained later in this 
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chapter. 

• Assemble the element matrices: The element matrix equations which ex

press the behaviour of the elements are combined to form a system matrix 

expressing the behaviour of the entire domain. The infinite elements matrices 

are assembled into the system matrix exactly as are the other finite elements 

matrices. The FE assembling procedure is fully explained in standard texts 

(see e.g. Huebner [70] or Zienkiewicz and Taylor [100, 101]) and will not be 

repeated here. 

• Solve the global matrix equation: The assembling process gives a matrix 

equation containing a set of simultaneous equations. These are solved to 

obtain the nodal velocity potentials. As the element matrix resulting from 

two (out of three) infinite elements developed in this study are unsymmetric, 

the system matrix becomes unsymmetric. An appropriate (symmetric or 

unsymmetric) solver is employed to solve the matrix equation. 

• Compute the physical features of interest: Having calculated the nodal 

velocity potentials, the other physical quantities of interest may be calculated. 

The main concern of this study is the prediction of the free surface elevations 

around the diffracting objects. Computation of the other physical features, 

such as pressure or force, is straight forward. 
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Incident wave direction 

Figure 4.1: Definition sketch of the boundary value problem 

4.2 Weighted residual approach 

In this section by employing the weighted residual approach and applying the 

integration by parts the weak form of the governing equation will be obtained. 

This will be the basis of the finite and infinite element solution. 

As was discused in section 2.6, the fluid is governed by the Mild-Slope equa

tion (2.23). By applying the weighted residuals approach for the boundary value 

problem, equation (2.23) can be written 

IIWV {cCgV(f>s) dxdy + W^to^(f)sdxdy = 0 (4.1) 

where W is a weighting function. Integration by parts may now be employed to 

obtain the weak form of the above equation. Integration by parts in two dimensions 
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can be written as (Huebner [70]) 

11 u{V.v)dQ = j>u{v.n)dY - j j v.Vud^l (4.2) 
n r n 

where u and v are functions of x and y in the Cartesian coordinate system and n 

is the normal vector to the boundary surface. Equation (4.1) may now be written 

as 

11 VWcCgV4>dxdy - I I W^u^(f)dxdy - ^ WcCg^dT = 0 (4.3) 
n n r 

This equation includes the weak form of the governing equation (2.23) as well as 

the boundary conditions which form the basis of finite/infinite element approxima

tions to the wave diffraction problem. The last term is a line integral along the 

boundaries of the domain which brings the boundary conditions into the formula

tion. The free surface and sea bed boundary conditions are explicitly satisfied in 

the governing equation. The natural boundary condition is zero velocity on the 

surface of the diffracting object(s), equation(2.12), and therefore the line integral 

on the object(s) vanishes. When the velocity is not zero then the line integral 

must be considered. This is explained by number of authors such as Bettess and 

Zienkiewicz [35], Eatock Taylor and Zietsman [55] and Wu and Eatock Taylor [113 . 

The line integral must also be evaluated on the outer surface of the domain (Foo, 

see Figure 4.1). This brings the radiation condition into the formulation. Having 

discretized the domain, the second and third terms of the above equation give the 

stiffness and mass matrices for the individual elements respectively. 



Chapter 4: Coupled Finite and Infinite Element Solution 57 

The fluid domain, fi, is now subdivided into two regions, Q.i and 9.2- In region 
Qi, which surrounds the diffracting object(s) (see Figure 4.1), due to zero velocity 
on the object(s), the line integral disappears from equation (4.3) giving 

j I VWcCgV(j)dxdy - I I W^uj^(l)dxdy = 0 (4.4) 

In region ^2 , equation (4.3) can be written as 

I I VWcCgS/(j)dxdy - H W^oj^4>dxdy - | WcCg^dF = 0 (4.5) 
0 2 Too 

where the line integral brings the radiation matrix into the formulation. 

4.3 Development of finite element matrix 

equation 

The determination of the finite element matrix equation is discussed here ^ The 

fluid in region Qi is now divided into finite elements. The velocity potential, (p, at 

a given point inside a finite element can be found by interpolating in terms of its 

nodal values by using the finite element shape functions as 

4> = EP^^^ (4-6) 

^The finite element matrix equation was already coded to the SMAWAVE program by Prof. 
P. Bettess and his wife Mrs J. Bettess using the variational functional given by Bettess and 
Zienkiewicz [35]. An alternative and a more general approach is to use the weighted residual 
approach which is developed by the author for this study. 
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where (pi is the value of (f) at the z*'* node in the finite element. Pi is the corresponding 
finite element shape function and n is the number of nodes used in the finite 
element. Substituting this into equation (4.4) and taking the weighting function 
to be the same as the finite element shape function [W = P) gives 

(I[ {VPfcCgVPdxdy - / / P'^^Pdxdy)(l>'' = 0 (4.7) 

where e is the finite element number, Q,'^ is its area, P is a vector of finite element 

shape functions and (f>^ is a vector of nodal variables, (pi, for the element. The 

above equation in a matrix form can be written as 

A^0^ = (K'^ - a;2M'̂ )</)^ = 0 (4.8) 

where A*̂  is the element matrix and is the element stiffness matrix. 

0"= 

If {VFfcCgVPdxdy (4.9) 

and M'^ is the element mass matrix 

W^llp^^Pdxdy (4.10) 

The element shape functions are expressed in local coordinate system, ^ — 77, giving 

VP(...) = J-^VP(e,,) (4.11) 
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were J ^ is the inverse matrix of the jacobian matrix, J, given below and VP(^^^) 

can be expanded as 

dPi 
di df] 

dP2 dP2 
dr} 

dPn dPn 

(4.12) 

and therefore the element stiffness and mass matrices in the ^ — 77 coordinate system 

need to be written as 

= ( V P ) ^ J - ^ c C g J - i V P | J | d^dri (4.13) 

+ 1 / • + ! 

M'= I I P ^ ^ P J d^dri 
-1 J-i c 

(4.14) 

These integrals can now be easily calculated using the Gauss-Legendre numerical 

integration scheme which gives 

m nj 

1=1 j=i 

(4.15) 

ni nj 

M ^ = EEPte , . . ) fPte , . . ) | J« . . . ) l^ .^ . 
i=i j=i ^ 

(4.16) 
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where and Wj denote Gauss-Legendre weights, ^i and r]j denote the integration 

points and ni and nj are the number of integration points in two directions. The 

details of the numerical integration scheme are given in standard texts (see e.g. 

Lewis [77]). In the above equations J is the determinant of J . 

J = 

n dPi 

(4.17) 

Xi and j / i are Cartesian coordinates of node z, and Pi are the mapping functions 

taken to be the same as finite element shape functions. The construction of finite 

element shape functions is explained in standard texts (see e.g. Zienkiewicz [100 

or Huebner [70]). 

4.4 Development of infinite element matrix 

equation 

In this section, the infinite element matrix equation will be derived. As will be 

explained in section 4.6, the field variable changes from total to diffracted wave 

potential for the infinite elements. Substituting equation (2.16) into the governing 

equation (2.23) gives 

V {cCgV{(Pi + </.,)) + -^uj\(Pi + < ,̂) = 0 
c 

(4.18) 
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this can be rewritten as 

V {cCgV(f>i) + -^Lo^j + V {cCgVcl>s) + ^ w V . = 0 (4.19) 
c c 

As was explained in section 2.4, the incident wave potential, is a solution to 

the governing equation and therefore the terms involving 0/ in the above equation 

vanish giving 

V (cc^V^,) + ^ w V . = 0 (4.20) 

The field variable is now the diffracted wave potential, rather than the total wave 

potential. The total velocity potential at each point then is the sum of known 

incident and computed diffracted waves. 

The infinite element matrix equation is now derived. The weighted residuals 

equation derived above, equation (4.5), is used but with the field variable now 

being the diffracted wave, (j)s- In this process, the concept of shape, weighting and 

mapping functions is used by analogy with the finite element procedure. These 

functions, however, are more complicated and will be discussed later in Chapter 

5. The fluid in the infinite region, is now subdivided into a ring of infinite 

elements. For individual infinite elements, (f)s can be approximated using a set of 

infinite element shape functions, Ni, as 

n 
Y.Nr<l>sr (4.21) 
1=1 
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where (psi is the value of (ps at the i * ' ' node in the infinite element and n is the number 
of nodes used in the infinite element. Substituting this equation into equation (4.5) 
gives 

( / / {V^YcCgVNdxdy -Lo^ll W^^Ndxdy - ^ W^cCg~dr)(f>, = 0 

(4.22) 

dn 
0= r i . 

where 11̂  is now the area of individual infinite elements and 4>l is a vector of an 

infinite element's nodal variables, (pgi- The above equation in a matrix form can be 

written as 

A''.^^' = (K'= - u^W - R'')<P'; = 0 (4.23) 

A*̂  is now the infinite element matrix and is the element stiffness matrix, 

= / / ( V W ) ^ c c 3 V N dx dy (4.24) 

is the element mass matrix as 

M' = I I W ^ ^ N dx dy (4.25) 

and R'̂  is the element radiation or damping matrix as 

= / W ^ ^ c ^ ^ d F (4.26) 

where N and W are vectors of the infinite element shape and weighting functions. 
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respectively. These functions are derived in Chapter 5. 

The shape and weighting functions are expressed in a local coordinate system 

^ — 77, therefore the element matrices need to be rewritten in this coordinate system 

giving 

= {VWfr^cCg3-'VN\3\d^dr) (4.27) 
J —1 J —1 

M'= 1'^'l^^'w'^^N\J\d^dri (4.28) 

where J is the Jacobian matrix, J ^ its inverse and IJI its determinant. 

J = 
dMj v^n dMj 

Y^n dMi dM^ 
(4.29) 

Xi and Hi are Cartesian coordinates of node i, n is the number of nodes, and Mi are 

the corresponding mapping functions. The construction of these functions depends 

on the type of the infinite element being employed in the model and therefore will 

be explained later in chapter 5. 

Three types of infinite element are developed later in Chapter 5 and are called 

Type 1, Type 2 and Type 3 infinite elements (Type 1 has only been improved to 

tackle more general problems, see section 5.4). For the Type 1 infinite element, the 

weighting function is the same as the shape function. The resulting element matrix 

is symmetric but the Gauss-Legendre numerical scheme can no longer be used 

to compute the element integrals and a new integration scheme is required. Full 
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explanation of development and computation of the Type 1 infinite element matrix, 

A^, is given elsewhere (see Zienkiewicz et al [102, 100]) and will not be repeated 

here. For Types 2 and 3 infinite elements, the weighting functions are chosen to be 

multiple complex conjugates of the shape functions (see Chapter 5), therefore, the 

harmonic terms from the element integrals are eliminated. The resulting integrals 

have a polynomial form (though they are complex). This makes possible the use of 

the standard Gauss-Legendre numerical scheme in the calculation of these integrals 

as was explained in equations (4.15) and (4.16). 

4.5 Finite and infinite elements coupling 

Infinite element shape functions are chosen such that the finite and infinite elements 

are compatible at the outset (F boundary, as shown in Figure 4.1). This is fully 

explained in section 5.3.3. Therefore the infinite elements are coupled to finite 

elements just as are finite elements to other finite elements. 

4.6 Inclusion of the boundary conditions 

The inclusion of the boundary conditions into the finite/infinite element model is 

discussed in this section ^. As was explained in Chapter 2, the natural boundary 

condition is in terms of the total wave potential whereas the radiation condition 

is in terms of the diffracted wave potential. Therefore, at some boundary in the 

2This was already coded to the SMAWAVE program by Prof. P. Bettess and his wife Mrs J. 
Bettess. I t was altered to suit the present study. An explanation is given here in detail for easy 
access. 
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domain the field variable must be changed from the total wave potential, 4>, to the 
diffracted one, 4's- This boundary can be chosen anywhere between the boundary 
of the object attached to the finite element, F^, and the outer boundary of the 
infinite element F ^ inclusive (see Figure 4.2). As the present finite/infinite model 
has been developed for the Mild-Slope wave equation, the water depth can gradually 
vary over the domain. In this study the incident wave is taken to be a plane wave, 
therefore for problems with varying water depth, Fc (see Figure 4.1) must be placed 
outside a domain where the water depth varies so that the incident wave remains 
a plane wave. For example, if the water depth varies everywhere then Fc must be 
placed on Foo-

The change in the variable has two effects on the model. Firstly it gives rise 

to a line integral which brings the incident wave into the formulation. Secondly, it 

leads to a contribution to the right hand side vector. In order to clarify the effects 

of the change, F^ will now be taken, as an example, to be the inner edge of an 

exterior finite element as shown in Figure 4.2 (F^ is the elemental part of Fc in 

Figure 4.1). The two effects will be explained below. 

Consider the equation (4.4) with the total wave, (p, being its field variable. Some 

algebra (see Appendix B) leads to the following equation 

I I VWcCgV(psdxdy - I I W^uj^^sdxdy = ^VFcc^ ( ^ d y - ^ d x 

(4.30) 

where f2i2 is a part of i7i where the field variable has been changed from (j) to (j)s-

The left hand side of the above equation is exactly the same as the equation (4.4) 
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Figure 4.2: Definition sketch of finite/infinite element coupling 

with the field variable now being the diffracted wave, (ps- Hence with the same 

procedure as before, the equation (4.30) in a matrix form can be written as 

(4.31) 

where A*̂  is again the finite element matrix, K*̂  and are again the element 

stiffness and mass matrices defined already by equations (4.9) and (4.10). is the 
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element right hand side vector due to the incident wave defined as 

where 4>i is a vector of nodal incident wave potentials, ^i, and P is now a vector 

of shape functions for a line element on the edge of the finite element located on 

the boundary (see Figure 4.2). The explanation of how the calculation of the 

line integral is carried out is given below. 

4.6.1 Calculation of the line integral due to the incident 

wave 

The calculation of the right hand side vector is discussed in this section"'. In equa

tion (4.32) 0/ is the incident wave potential defined by equation (2.26), therefore 

its derivatives can be derived as 

= ik cos Oi(j)i 
dx 

dy 
^ = iksm9r(j)i (4.33) 

^This was already coded to the SMAWAVE program by Prof. P. Bettess and his wife Mrs J. 
Bettess. I t was altered to suit the present study. An explanation is given here in detail for easy 
access. 
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In the finite element process, the nodes in the ^ - plane may be mapped into 
corresponding nodes in the x - y plane by the use of the shape functions as 

2 = 1 

n 

y = EP^i^'V)y^ (4.34) 
1=1 

For the line element located on the edge of the element (see Figure 4.3) the shape 

functions are only functions of rj giving 

3 
X = J2Pi{r])xi 

2=1 

3 
y = Y,Pi{r,)yi (4.35) 

Individual terms of the shape function Pi{r]) can be written as 

P i (77) = 0.5v{v-l) 

P2{v) = ii + v){i-v) 

P,iv) = 0.577(77 + 1) (4.36) 

Now dx and dy may be written as 

dy = ^dv = E ^ y ^ d v = fy{v)dv (4.37) 
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Figure 4.3: Definition sketch of a finite element and its local co-ordinate sj'stem 

Substituting equations (4.33) and (4.37) into equation (4.32) gives 

bj = ikccg J Pi [cos 9ify{ri) - sin 6ifx{r])] (f^ijdi] (4.38) 

/ = 1, 2, 3 and j = 1, 7, 8 for the present node numbering as shown in Figure 4.2. 

These integrals can now be easily performed using the Guass-Legendre numerical 

integration scheme as explained above. 

4.6.2 Change of the variable - contribution to the right 

hand side vector 

The second effect of the change of the variable on F^ (see Figure 4.2) boundary to 

the model is discussed here On this boundary, there are two types of variables, 

(p on the interior, and (f)^ on the exterior (see Figure 4.2). The nodal variable on 

this boundary must therefore be transformed to a unique value, say (j). This results 

in a new solution vector as well as a new right hand side vector for the element 

matrix equation. 

' 'This is given by Zienkiewicz ([101], page 629-630) and was already coded to the SMAWAVE 
program by Prof. P. Bettess and his wife Mrs J. Bettess. I t was altered to suit the present study. 
An explanation is given here in detail for easy access. 
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The element matrix equation derived for the exterior finite element, equation 

(4.31), can be expanded as 

an ai2 • .. ai8 ^ s l hi 

^21 ^22 • •• 0.28 (/>s2 h2 

^31 ^32 • • 038 0s3 h 

041 042 • • 048 054 K 

051 0-52 • • 058 bs 

0.62 • • 068 (t>s& be 

071 an • • 078 (f>s7 bj 

Ogl as7 .. • 4>sS bs 

(4.39) 

Nodes 1, 7 and 8 (according to the present node numbering scheme, see Figure 4.2) 

are located on boundary and therefore their variable must be changed from (ps 

to (j). The equation (2.16) may be rewritten as 

<Ps = (p (4.40) 
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Substituting this into equation (4.39) and rearranging the matrix equation gives 

a n ai2 . •• ^1 h (an + au + ai8)(l>n 

^21 022 • •• 2̂8 (I>s2 b2 (a21 -1- 0,27 + a28)(l>12 

« 3 1 0'32 • • fl38 (psS h ( f lS l + O37 -I- ^38)0/3 

041 042 • • ^48 ^sA 
— 

bA 
+ 

(041 + 047 + a48)(/'/4 

^51 0-52 • • 0-58 4>s5 h (asi -t- 057 + a58)(t>i5 
(4. 

agi CJ62 • • ^68 be (aei -1- 067 -1- a<i8)(t>i& 

0-77 • • 078 b7 {an + 077 + a78)(t>i7 

as7 •• • 0,S8 4>8 bs (081 + 087 + a88)(l)l8 

As can be seen, the element matrix has remained the same, but the solution vector 

as well as the right hand side vector have been altered. The solver therefore pro

duces (f) for the nodes located in the interior of Fc and 0̂  for the others. Therefore 

tpr has to be added to the latter nodal values to achieve the final velocity potential, 

0 everywhere. 

4.7 Solving the global matrix equation 

Individual finite and infinite element matrices and their right hand side vectors are 

calculated and assembled to the global matrix equation leading to a linear system 

of equation 

(4.42) 
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where m is the total number of nodes used in the F/IE mesh, A is the global 
matrix, ( f ) is the global solution vector and b is the global right hand side vector 
defined as 

ne ne ne 

A = J2A^ 0 = E</>'̂  b = E b ^ (4.43) 
e = l e= l e= l 

where ne is the total number of finite and infinite elements used in the mesh. 

The matrix, A*̂ , resulting from Type 2 and Type 3 infinite elements, equations 

(4.23), are unsymmetric, resulting in an unsymmetric matrix for the global matrix 

equation. An unsymmetric frontal solver was presented by Hood [67, 68] to solve 

such a matrix equation. Since the element matrix and right hand side vector entries 

produced in the present work are complex numbers, the solver has been suitably 

modified (Appendix C) to deal with such problems. 

4.8 Implementation 

First the key operation structure of the finite/infinite element program is given 

below. Then a simple procedure for developing an infinite element routine, which 

can be inserted into an existing FE code, is given. 

The structure of key operations of the F / I E code may be summarised as follows: 

• Initialise problem independent matrices, vectors and variables. 

• Read and store problem dependent data including finite/infinite element mesh 

data 
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• Do for all elements 

Call appropriate (finite or infinite) element routine to generate element 

matrix (A^) 

Call routines to generate the right hand side vector (b*̂ ) 

• End Do 

• Assemble them into the global matrix equation 

• Call the solver and find the nodal solutions 

• Compute and output nodal free surface elevations 

• Stop 

The description of an infinite element routine may be summarised as follows: 

• Initialise element matrix and its right hand side (r.h.s.) vector 

• Get wave parameters 

• Given the coordinates of the nodes, calculate the radii of internal nodes of 

the element and their angles (roi, 9i) 

• Do for all Gauss-Legendre integration points in 77 direction (4 points) 

Get integration weights and points {wj,rij) 

Calculate ro{r]j),6{r]j) 

Do for all Gauss-Legendre integration points in ^ direction (8 points) 

Get integration weights and points {wi,(i) 
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Call appropriate routine to generate mapping functions derivatives 

Calculate Jacobian matrix, its determinant and its inverse matrix 

Call appropriate routine to generate shape functions and their deriva-

tives (N, f , f ) 

Call appropriate routine to generate weighting functions and their deriva-

«ves (W, f : . ^ ) 

Calculate the global shape and weighting functions derivatives ( ^ , ^ ) 

Calculate element mass and stiffness matrices (K^ and M^) 

Calculate element damping matrix (R*̂ ) 

• Calculate element matrix (A*̂  = - u^M" -

• End 

For developing a new infinite element, the routines which generate the mapping, 

shape and weighting functions and their derivatives must be up-dated. 

4.9 A technique to test an element routine 

Different techniques have been suggested to test the infinite element routines (see 

e.g Bettess [32]). With the development of advanced mathematical computer soft

ware, the easiest and safest way to test a numerical routine is probably to calculate 

the element integrals and so element matrices using these mathematical software. 

For most cases the integrals can be performed analytically. In this work the Maple 
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mathematical software was used. Having produced the same element matrices with 
the FORTRAN routine, it was then inserted to the main program. 

4.10 Summary 

In this chapter the problem of diffraction of water waves by some arbitrary shape 

of diffraction objects located in open water with gradually varying depth is solved 

using a coupled finite and infinite element method. Although the water depth 

can vary, the boundary, at which the field variable changes from the total to the 

diffracted wave potential must be set outside the region of varying water depth. 

The incident plane wave can then be applied at this boundary. In this technique, 

conventional finite elements, which model the near field potential, are coupled to 

infinite elements which model the far field potential stretching to infinity. The 

mathematical base of the model is fully explained in a simple way. A straight 

forward procedure is introduced for developing new infinite elements which can be 

used to model other unbounded boundary value problems. 



Chapter 5 

Different Types of Mapped 

Infinite Elements 

5.1 Introduction 

The coordinates of nodes of a finite element are expressed in its local coordinate 

system {(, rf) (see Figure 4.3). The element is then mapped to the global coordinate 

system {x, y) in order to cover a more general shape of the domain and sometimes 

curved boundary domains. In the local-global coordinate mapping process, the 

mapping functions are selected to be the same as the finite element shape functions. 

A full explanation of this can be found in standard texts (see e.g. Zienkiewicz [101 

or Huebner[70]). An outline is given in section 4.6.1, equation (4.34). 

In the local-global mapping process, the mapping functions may be selected in 

such a way that the mapped element covers a large part of the domain stretching 
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to infinity in one direction. This new type of element is called a mapped infinite 
element and was first introduced by Zienkiewicz et al [104] and by Beer et al 
19]). The infinite element covers a large part of the physical domain, and at the 

same time it only produces one element matrix equation which is assembled into 
the global matrix equation. This in terms of computing resources means that a 
large part of the domain is being modelled using more or less the same amount of 
resources as for a single finite element. The question then arises how the behaviour 
of the field variable can be modelled within this large domain by the use of the 
shape functions. This is fully explained in section 5.3. 

Just as different types of finite elements can be generated, different types of 

infinite elements can be produced depending on their parent finite elements. New 

types of infinite element may also be produced depending on how the shape and 

weighting functions are adopted which in turn depends on the differential equations 

governing the problem and the relevant boundary conditions. Three types of infinite 

element are explained later in this chapter. The finite to infinite geometry mapping 

procedure is explained below. 

5.2 Finite to infinite geometry mapping 

5.2.1 One dimensional 

Consider a one-dimensional quadratic finite element as shown in Figure 5.1-a. This 

element may be mapped from its local coordinate to the global coordinate which 

extends to infinity in the x direction as shown in Figure 5.1-b. This local to global 
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a) • ^=0 

b) 
O 

Figure 5.1: Finite to infinite geometry mapping 

mapping may be written as 

78 

(5.1) 

where Qi{C) are the special mapping functions given by Marques and Owen [81] 

for a quadratic element as 

Qi(0 

Q2{i) 

Q3(0 

-2e 

= 0 (5.2) 
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A n explanation of these mapping functions is also given by Bettess [28]. The 
corresponding nodes in the two coordinate systems may be identified as 

^ = —1 X = Xi 

^ = 0 X = X2 

^ = + 1 ^ a; = oo (5.3) 

where xi and X2 are the coordinates of the nodes 1 and 2 as shown in Figure 5.1-b. 

5.2.2 Two dimensional 

Now consider a two dimensional quadratic finite element as shown in Figure 4.3. 

The element is now mapped to a new element which is stretched to infini ty in 

the radial direction (see Figure 5.2 ). Therefore, for the { direction, the finite 

to infini te mapping functions are employed. For the rj direction, the conventional 

finite element shape functions are employed. Similar to finite element procedure, 

the local global coordinate mapping can now be writ ten as 

X = ^M,{^,r])xi 
1=1 

y = EM^{^,r^)y^ (5-4) 
i= l 
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where 

80 

(5.5) 

where i = 1,...,9, j = 1,2,3, k = 1,2,3, Pk{T]) are the quadratic finite element 

^ y 

Infinity 

Infinite element 

Finite element 

O 

Figure 5.2: Fini te / inf in i te element coupling and 9-node infinite element (Type 2) 
node numbering scheme 

shape functions in the 77 direction given by equation (4.36), and Qj(0 the 

finite to infinite geometry mapping functions given by equation (5.2). In order to 

derive the individual terms, a node numbering scheme must be adopted. Two such 

schemes are used in this study. The first is the 9-node element as shown in Figure 
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5.2 and the corresponding mapping functions are 

Qi{0P2iv) = 

Q2{OP2iv) = 

1 - ^ 2 

1-C2 

1 - { ' 2 

1 - ^ 2 

-2e 

1 -e 

1 + e 
1 -e 

){l-rj){Tj + l ) 

(5.6) 

and the mapping functions for nodes 3, 4, and 5 are zero. 

A new infinite element w i l l be presented in section 5.8 to model multiple body 

diffract ion problems. For this element, the nodes at the infinite edge of the element 

are no longer required. A new node numbering scheme is adopted and shown in 

Figure 5.3. The corresponding mapping functions are (Bettess [28]) 
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/ " Infinity 

Infinite element 

Finite element 

O 

Figure 5.3: Fini te / inf in i te element coupling and 6-node infinite element (Type 
1/Type 3) node numbering scheme 

Mx(e,r?) 

Q2{0PM = 

^2(0^2(^7) = 

Qi{0P2{v) = 

1 - ^ 2 

) o ( ^ - l ) 1 - ^ ' 2 

1+e 
1-e 

1 - ^ 2 

1 - ^ 2 

-2e (5.7) 
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The derivatives of the mapping functions can now be easily obtained as 

-Pkin) 

^ . Q , f l ^ (5,3, 

and substituted into equation (4.29) to calculate the Jacobian matrix. 

5.2.3 Extension to three dimensions 

The mapping functions for a three dimensional element are simply derived by mul t i 

plying the mapping functions of the two dimensional element by the corresponding 

finite element shape function for the th i rd , the ( , direction giving 

M^[^.vX) = QAi)Pk{r})Pi{0 (5.9) 

where Pi(C) are the conventional finite element shape functions for C, direction. 

5.3 Construction of the shape and weighting 

functions 

As was explained above, element shape functions are used to model the behaviour of 

the field variable over the element. The diffracted wave behaves harmonically and 

its amplitude decays to zero at infinity. Therefore the shape functions of an infinite 

element which may cover many wavelengths must have these two characteristics. 
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The infinite element shape functions must also satisfy the compatibility criteria 
w i t h the finite element shape functions at the interface. 

5.3.1 Amplitude decay 

I n the mapped infinite element concept, the parent finite element shape functions 

are mapped to obtain the infinite element shape functions. Consider a quadratic 

one dimensional finite element shape function (The shape function of node 1 of the 

element shown in Figure 5.1-a) 

P(0 = - 0 . 5 ^ ( 1 - 0 (5.10) 

By choosing X2 = 2x1, the finite to infinite geometry mapping, equation (5.1), may 

now be rewritten as [102 

r = i ^ - e = l - ^ ( ,11) 

where ro = X2 - Xi = Xi (see Figure 5.1-b). Substituting equation (5.11) into 

equation (5.10) gives 

r.2 n r ) = + ^ (5.12) 

Therefore, in using a quadratic polynomial as a parent shape function in the infinite 

direction, a decay of r"^ and r"^ is achieved for the resulting shape function. 

As was explained in section 3.2, Hankel functions of the first kind and mth 
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order, Hm{kr), are solutions of the two-dimensional wave diffraction problems. For 
zero order (m=0) and large values of r, the function may be approximated as 
(MacCamy et al [80]) 

HQ{kr) ^ ar-^l'^ exp{ikr) (5.13) 

where a is a constant. Hence, for two dimensional problems the amplitude of 

the diffracted wave may decay approximately as r"^/^. Therefore, an appropriate 

infini te element shape function may be achieved (see Appendix E) by mult iplying 

the shape function, equation (5.12), by a factor of r^''^, giving 

A^(r) = P{ry/^ (5.14) 

where N{r) is the infinite element shape function. 

5.3.2 Harmonic variation 

To model the harmonic variation of the diffracted wave, a periodic term of the form 

exp{ikr), see again equation (5.13), is introduced to the shape function giving 

N{r) = P(r)r^/2 exp{ikr) (5.15) 
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5.3.3 Compatibility of the Finite and Infinite elements 

The infinite element models the potential of the far field and the finite element 

models the potential of the near field. In order to maintain continuous behaviour 

between these two fields, the shape functions of finite and infinite elements must 

be continuous at the interface, where ^ = - 1 and r = TQ. T o acheive this, the 

absolute value of the infinite element shape function must be unity and the phase 

must be zero. Therefore the appropriate shape function becomes 

N{r) = P ( r ) i^-j exv{ik{r - ro)) (5.16) 

Substituting equation (5.11) into this equation gives the shape function in the local 

coordinate system 

f 2 V^^ ( l + f \ 
^{i) = P{i) exp ikr^-^ (5.17) 

For two dimensional elements for which the element is stretched to infini ty in the 

^ direction, the T] variation must be introduced to the shape function giving 

( 2 V''^ ( 1 4 - £ \ iV(e,^)=P(e,^) e x p U A ; r o - 4 (5.18) 

By assuming that the infinite elements are used on the exterior of a circle, the radii 

of inner nodes of an element become constant, Tq. The derivatives of the shape 
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funct ion w i t h respect to and rj can then be writ ten as 

dlV_fdP_ P i2kroP\ ( 2 f 

~ U e 2 ( 1 - 0 ( 1 - ov I r ' ° 
(5.19) 

ON dP ( 2 1 + A 
^ = ^ I -z exp ikro-—- (D.20) 

This is the final mapped infinite element formulation which is given by Zienkiewicz 

et al [102, 101] and other references (e.g. Bettess [28]) wi th a different notation. 

5.3.4 Weighting functions 

The weighting functions are a set of arbitrary functions that need to be introduced 

when applying the weighted residuals approach, equation (4.5). The weighting 

functions can be taken to be the same as the shape functions which leads to the 

mapped infinite element formulation given in the above references (see also section 

5.4). The standard numerical scheme can no longer be used to calculate the element 

integrals, equation (4.23). A new integration scheme is presented to calculate the 

integrals (see the above references). Alternatively, the weighting functions can 

be chosen to be the complex conjugate of the shape functions resulting in a new 

type of infinite element (which has been called the mapped wave envelope infinite 

element). This eliminates the exponential terms f rom the element integrals and 

hence the standard Gauss-Legendre numerical scheme can be used to calculate the 

infini te element integrals, equation (4.23). The shape and weighting functions of 
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this t j 'pe of infinite element are fu l ly explained in sections 5.6 and 5.8. 

5.3.5 Extension to three dimensions 

The shape function for a three dimensional element, stretched to infini ty in ^ direc

t ion , is simply derived by mult iplying the function of the two dimensional element 

by the corresponding finite element shape function for the th i rd , C, direction giving 

S{^,V,0 = m.v)P{0 (5.21) 

where P{() are the conventional finite element shape functions for ( direction. 

5.4 Mapped infinite element for elHptical meshes 

(Type 1 infinite element) 

The original mapped infinite element presented by Zienkiewicz et al [102, 100] and 

others (e.g. Bettess [28]) is intended to be usable for solving diffraction of waves by 

any shape of diffract ing object. From equation (5.20) i t can be noticed that when 

taking the derivative of the shape function wi th respect to 77, the term involving 

the variation of ro (i.e. ^ ) is being neglected. This implies that the radii of all 

infini te elements, roi, are assumed to be constant (in the above reference's notation 

Ai = 2roi are assumed to be constant). As Burnett [36] pointed out, this implies 

that the 'radial ' sides of all infinite elements emanate f rom a single point. In 

other words, the original infinite elements must be used on the exterior of a circle 
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circumscribing the object as shown in Figure 5.4. Since the fluid region between the 

Inwnite el ements 

nite dlemehts 

Diffracting object 

Figure 5.4: A circular mesh of finite and infinite elements (Type 1) for elliptical 
cylinder (b/a=10) 

circumscribing circle and the object is modelled wi th the finite elements, the total 

number of elements would become very large for an object of large aspect ratio to 

maintain the l imi ta t ion of at least ten finite element nodes per wavelength. This is 

computationally ineflficient and so expensive particularly for shorter wavelengths, 

which is contrary to the primary goal of introducing the infinite elements. A remedy 

would be to reformulate the infinite element so that i t can be used on the exterior 
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of any shape, say an ellipse, circumscribing the object as shown in Figure 5.5. The 
radial sides of the infinite elements now emanate f rom their vir tual sources located 
on the semi-major axis of the ellipse. 

Infiniite dlerheitts 
iFiikei eltmfiit 
Diffracting object 

Figure 5.5: A n elliptical mesh of finite and infinite elements (Type 1) for elliptical 
cylinder (b/a=10) 

In this work, an investigation was carried out to test the original infinite element 

for elliptical meshes in which the elements are used on the exterior of an ellipse. 

This revealed that significant errors were associated wi th the original formulation 

when the computed results were compared wi th the analytical solutions. This error 

was considered to arise f rom the variation in ro which had been neglected in the 

original formulation. Therefore a modification to the original infinite element was 

to produce a more accurate mapped infinite element for any shape of the diffracting 

object. 

Two methods of carrying out this modification were employed. The first method, 

termed approach 1, was to use the averaged value of the lengths of the radial sides 

of all infinite elements used in the mesh as a constant value for ro in the formula

t ion of equations (5.18), (5.19) and (5.20)). This surprisingly gave very accurate 

results. Because, so far, there is no theoretical justification for this behaviour, a 

second method, termed approach 2, was used which considered the variation of the 

radii of infinite elements in the i] direction. Approach 2 is explained below. 
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5.4.1 New shape function 

The new shape function can be wri t ten as 

N{r)^P{i^n) exp(2A;[r(e,77)-ro(77)]) (5.22) 

where P(^ , 77) is a conventional quadratic finite element shape function and r is the 

radial distance measured f rom 'vir tual ' sources at point A, B and C (see Figure 
3 

5j2) given by the mapping as 

r ( { , . ) = f5M 5 = 1 - ^ (5.23) 
r(^,?7) 

By substituting r f rom this equation into equation (5.22), the shape function in 

the local coordinates (^, rj) can be wri t ten as 

( 2 V'^ ( l - f f \ 
N{i.ri) = P{i.ri) y—, exp U A ; r o ( 7 7 ) ( 5 . 2 4 ) 

I t can be seen that the shape function behaves asymptotically as (1/r)^/^ exp(zA;r). 

A plot of the real and imaginary parts of the shape function over an element and 

the domain are illustrated in Figures 5.6 and 5.7. 

Note that for two dimensional infinite elements which are used on the exterior 

of a shape other than a circle, ro is no longer a constant, as originally given by 

Zienkiewicz et al, equations 5.11 and 5.18, but is a function of ?]. The new mapping, 

equation 5.23, which considers the variation of ro in the 77 direction is used by 

diflferent researchers (e.g Astley and Coyette [6], Cremers and Fyfe [46]. In the 
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Figure 5.6: Variation of real (bold line) and imaginary parts of a Type 1 infinite 
element shape function over an element 

present thesis, quadratic finite elements have been employed and therefore the 

infini te elements have quadratic variation in the T] direction. In equations 5.22 

onwards, ro(?7) for quadratic variation in r] is therefore given by 

roiv) = Y.Pr{v)n = Pi{v)ri + P2{v)r2 + P^iv^s 
i=i 

(5.25) 

where Pi{r]) are the finite element shape functions in the 77 direction given by 

equation (4.36), r i , r2 and rs are equal to O3C, O2B and O i A as shown in Figure 

5.2. 



C h a p t e r 5: Different T y p e s of Mapped Infinite Elements 93 

0.2 

0.1 

- o . H i 

-0 .2 

Figure 5.7: Variation of real (bold line) and imaginary parts of a Type 1 infinite 
element shape function over the domain 

The shape function derivatives can be writ ten as 

dN 

dN 
dr] 

'dP 
+ 

P 
+ 

i2kroP \ 1/2 

2(1-0 ( 1 - o v v i - e . 

'dP ik{l + ^)Pdro\ ( 2 ^ 

^977^ (1-e) drj)\r^i^ 

exp 

exp ikr{ (5.26) 

Comparing ^ in the above equation and the one in the original formulation, 

equation 5.20, i t can be seen that an extra term has been added to the derivative 

of the shape function. I t can also be seen that in all the new equations ro is now a 

funct ion of r] rather than being a constant. The term ^ can be derived f rom the 
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equation 5.25 as 

^ = (5.27) 
dv ~{ dr] 

5.5 Radiation or Damping matrix for 

Type 1 infinite element 

The calculation of the line integral which gives the radiation or damping matrix 

for this infinite element is fu l ly explained elsewhere (Astley et al [7]). The con

t r ibu t ion to the line integral f rom its upper l imi t is undefined. The difficulty is 

resolved by the authors by neglecting the undefined term altogether. Although 

this is diff icul t to be justified mathematically, i t gives results which compare well 

w i t h the analytical solutions both in the original work (Zienkiewicz et al [102, 100]) 

for circular meshes and in this thesis for elhptical meshes. A simple justification is 

that the exponential term has been added to the infinite element shape functions 

to consider the harmonic behaviour of the wave amplitude over the element (see 

section 5.3.2). A t inf ini ty the wave amplitude no longer has harmonic variation 

and so the term involving exponential term at inf ini ty may as well be discarded 

f rom the formulation. 
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5.6 Mapped infinite wave envelope element 
(Type 2 infinite element) 

5.6.1 Introduction 

In the process of finite and infinite element analysis, the weighting function is 

adopted to be the same as the shape function. For infinite elements this leads to 

a complex integration procedure (see e.g. Zienkiewicz et al [102]). A remedy is 

to use the complex conjugate of the shape function as the weighting function so 

that the exponential terms cancel f rom the element integrals leaving a polynomial 

funct ion to be integrated over the element. This is the so-called wave envelope 

approach which was first introduced by Astley [9]. In this section the appropriate 

shape and weighting functions are presented for a 2D Lagrangian element (9-node) 

for the analysis of water wave diffraction problems. The calculation of the Radia

t ion /Damping matr ix for this infinite element wi l l also be fu l ly explained. 

5.6.2 Shape and weighting functions 

The base shape function is chosen so that i t takes the value unity where i t is 

coupled to the finite element (at { — - 1 ) , decays to zero at inf ini ty (at ^ = +1) and 

incorporates an outward travelling wave-like term. The procedure of constructing 

any infini te element shape function is explained in section 5.3 and in Appendix 

E. For this infinite element, the shape function is adopted to decay more rapidly 

(compared w i t h the Type 1 infinite element) so that the line integral remains 
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integrable (see the discussion, section 7.2). A n appropriate shape function (see 
equation E.5) may therefore be ̂  

/ r (n) \ 
^ ^) w T " ^ ^ ^ ^ [ ^ ( ^ ' - '"«(^)]) (5.28) y[^, V)J 

where P(^ , ??) is a conventional quadratic finite element shape function and r is the 

radius given by the mapping, equation (5.23), and ro is given by equation (5.25). 

By substituting r f rom equation (5.23), the shape functions in local coordinates 

rj) can be wri t ten as 

N{t V) = P{^, V) exp z ^ r o ( 7 7 ) - 4 (5.29) 

I t can be seen that this shape function behaves asymptotically as ^ e x p ( ? / c r ) . A 

plot of the real and imaginary parts of the shape function over an element and the 

domain are illustrated in Figures 5.8 and 5.9 which show that this infinite element 

shape function decays more rapidly than the Type 1 infinite element shape function. 

Following Astley [9, 8, 5], the weighting function is chosen to be the complex 

conjugate of the shape functions so that 

W{r) = P{C, v) exp {-ik[r{^, v) - roiv)]) (5.30) 

By substituting r f rom equation (5.23), the weighting function in local coordinates 

^The idea of similar shape function was suggested to the author by Dr. Phil Clark [44]. 



C h a p t e r 5: Different T y p e s of Mapped Infinite Elements 97 

Figure 5.8: Variation of real (bold line) and imaginary parts of a Type 2 infinite 
element shape function over an element 

(^, T]) can be wri t ten as 

1/2 

exp -ikro{r]) (5.31) 

The shape and weighting functions derivatives then can be writ ten as 

dN 

dW 

dN 
dr] 

dW 
di] 

'3P P , ^ 2 . . o P U l - n ^ / ^ ^ ^ p ^ 1 + e 

'dP_ _ P _ i2kroP \ / I - A ' ^ ^ 

2 ( 1 - 0 ( i - e ) v V 2 j 
exp —i/cro 

+ 
^977 ( 1 - 0 dr]J \ 2 ^ 

'dP_ _ ^A:(l + O P a r o ^ / l - Q 

9̂7] ( 1 - e ) 

exp ikfQ 

1/2 

exp —•j/cr, i+e (5.32) 
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Figure 5.9: Variation of real (bold line) and imaginary parts of a Type 2 infinite 
element shape funct ion over the domain 

The term ^ can be calculated by equation 5.27. These equations can then be 

substituted into equations (4.27) and (4.28) to calculate the element stiffness and 

mass matrices. The exponential terms cancel when calculating the element inte

grals. Therefore the Gauss-Legendre numerical scheme may be used to calculate 

these integrals. The calculation of the element radiation matrix is explained below. 

5.7 Radiation or Damping matrix for 

Type 2 infinite element 

As was shown in section 4.4, this term, which is a line integral along the infinite 

boundary, arises when applying the integration by parts to derive the weak form of 
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the weighted residuals equation. This term wi l l now be calculated in two different 
ways, using infinite mapped wave envelope elements shape and weighting functions 
directly and using the radiation boundary condition discussed above (section 2.3.4). 
The former does not use any assumptions in calculating the radiation boundary 
condition contribution to the element matrix. 

5.7.1 Direct approach 

Since nodes 3, 4, and 5 are located at the infinite boundary (Figure 5.2), (pg can 

now be approximated by using a set of infinite mapped wave envelope element 

shape functions, Ni 

5 

^s = Y.^^^s^ (5.33) 
i=3 

Substituting this into equation (4.26) gives 

r dN-

Rtj = J ^^^^9^dr (5.34) 

where i and j=3, 4 and 5 and Ni and Wj are the infinite element shape and 

weighting functions given by equations (5.28) and (5.30) (subscripts omitted for 

simplification). The parent Lagrangian finite element shape function P in these 

equations can be wri t ten as 

P{(,v) = P*iv)P"iO (5.35) 
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For the line element located at the infinite edge of the infinite element, this can be 
wri t ten as 

P{i,v) = P*{v)Pz{0 (5.36) 

where P* is the finite element shape function for a quadratic line element in the ri 

direction given by equation (4.36) and P3 is the finite element shape function for a 

quadratic line element in the ^ direction (i.e. shape function for node 3 in Figure 

5.1). P3 is therefore 

p;'(e) = 0.5^(1 + 0 (5.37) 

Substituting finite to infinite geometry mapping equation (5.23) in this gives 

P" ( r ) = l - ^ + ^ (5.38) 

and its derivative is 

dP" _ 3ro 4rg 
dr 

(5.39) 

The equation (5.36) can be rewritten as 

P = P*(77)P"(r) (5.40) 
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and similarly equations (5.28) and (5.30) as 

/ j . \ 1/2 
A^(r) = P*P" l^-jj exp {ikir - tq)) (5.41) 

and 

W{r) = P*P" i^-^j exp {-ikir - ro)) (5.42) 

Considering equation (5.41), ^ can be writ ten as 

d n ^ dr - ^ [dr 2r^'^^ ) [ r ) 

(5.43) 

I f the outer boundary is assumed to be circular, then 

dr = rde (5.44) 

Substituting this and equations (5.43) and (5.42) into equation (5.34) and taking 

into account that at inf ini ty r tends to oo gives 

= I P*^cCgikrQP*d9 (5.45) 

This is a new radiation boundary condition contribution to the element matrix 

which resulted directly f rom integration by parts by using the wave envelope infinite 

element theory. I t w i l l be shown later (section 5.7.2) that the same matrix can be 
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achieved by using the radiation boundary condition. 

In the above equation 9 is the anticlockwise angle f rom the horizontal axis (x) 

(see Figure 5 .2) and can be interpolated along the edge of the element using P* 

3 

9 = J2 P^Or = 0.577(77 - 1)^1 + (1 - 77)(1 + 77)^2 + 0.577(77 + 1)^3 
1=1 

(5.46) 

where 9i, ^2 and ^3 are the angles at 77 = — 1 , 0 and + 1 . Therefore d9 can now be 

wr i t ten as 

3 Qp* 
d ^ ^ H -^^^dr] = [(77 - 0.5)^1 + 277^2 + {V + 0.5)9s]di] (5.47) 

i= i di] 

Now the final matr ix resulting f rom the line integral at the infinite boundary of the 

infini te element, or the radiation matrix, can be writ ten as 

+1 

= I P*^cCgikro{rj)[{ri - 0.5)9, + 277^2 + iv + 0.5)9s]P*dr] 

(5.48) 

These integrals are evaluated using the Gauss-Legendre numerical scheme. 

5.7.2 Using radiation boundary condition 

The radiation boundary condition due to Zienkiewicz and Newton [108], equation 

(2 .15) , can be rewritten as 

^ = ^k<l>s (5.49) 
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Substituting this and equation (5.33) into (4.26) gives 

R« = 1 W^cCgikNdT (5.50) 

Now by substituting equations (5.41), (5.42) and 5.44 into this gives 

R ' ^ = j P*'^cCgikrQP*d9 (5.51) 

^ oo 

which is exactly the same as equation (5.45). 

5.8 Mapped infinite wave envelope element for 

multiple body diffraction problems 

(Type 3 infinite element) 

5.8.1 Introduction 

The problem of wave diffraction by arrays of diffracting bodies is an important 

problem in many scientific and engineering disciplines, such as the offshore industry. 

The analytical solution of the problem was presented for circular diffracting bodies 

in section 3.4. In this section, a new infinite element is presented which can be 

used to solve the problem of wave diffraction by arrays of bodies wi th arbitrary 

shapes. The definition sketch of the problem is illustrated in Figure 5.10. 

The governing equation obviously remains the same, but the boundary condi-
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Incident wave direction 

Figure 5.10: Definit ion sketch of multiple body diffraction problem 

tions must be reconsidered. Comparing the above definition sketch and the one 

given for a single diffract ing body, Figure 2.2, i t is obvious that the radiation 

boundary condition remains also the same. The only difference here is that the 

natural boundary condition must be applied to multiple bodies rather than a single 

body. However, by placing the Fc boundary (see section 4.6) outside the diffracting 

objects and considering that the velocity on the objects is assumed to be zero (see 

section 2.3.3) this boundary condition has no contribution to the finite and infinite 

element model. Therefore, the overall modelling remains the same. 
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5.8.2 Shape and weighting functions 

The shape function is now chosen in such a way that i t can model the correct rate 

of attenuation of the wave amplitude towards infinity. The weighting function is 

then adopted such that the line integral at the infinite boundary vanishes so that 

the outer boundary of the infinite elements is no longer required to be a circle 

(equation (5.44)). As usual, the base shape function is chosen so that i t takes the 

value unity where i t is coupled to the finite element (at = - 1 ) , decays to zero at 

in f in i ty (at ^ = +1) and incorporates an outward travelling wave-like term. As was 

explained above (see equation 5.13), for 2D water wave problems, the amplitudes of 

the diffracted waves decay approximately as Therefore, an appropriate shape 

funct ion can be chosen the same as the Type 1 infinite element shape function 

given by equations (5.22) and (5.24). 

A n appropriate weighting function is adopted based on multiples of the complex 

conjugates of the shape functions so that 

W{r) = P { ^ , n ) i - ^ exp{-zk[r{^,v)-rom (5.52) 

which behave asymptotically as (1 / r ) ^exp(- 'iA;r). This ensures that the element 

radiation matr ix (R^ in equation 4.23) vanishes (see section 5.9). 

Substituting r f rom equation (5.23), the weighting function in local coordinates 

(^, rj) can be wri t ten as 

'^{L^) = P[Lri)\~^ exp (5.53) 
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The weighting function derivatives can then be writ ten as 

dW (dP 2P z2A;roP\ / I - A ' ( 1 + A ^ ^ U - W - ( W F J M e x p ^ - . . . o ^ j 

dW (dP ik{l + ^)Pdro\ fl-iY ( , 1 + A , , 
= ^ T-i 7 ^ ' ^ ^^P -«^^o i r (5.54) 

dr] \drj {1 - ( ) dr] J \ 2 J \ l - H 

These equations and equations 5.24 to 5.26 can now be substituted into equations 

(4.27) and (4.28) to calculate Type 3 infinite element stiflFness and mass matr i

ces. W i t h the present choice of weighting function, although the radiation matrix 

vanishes, the element matr ix st i l l becomes unsymmetric. The exponential terms, 

again, cancel when calculating the element integrals as in section 5.6.2. Therefore 

the Gauss-Legendre numerical scheme may be used to calculate these integrals. 

5.9 Radiation or Damping matrix for 

Type 3 infinite element 

I t can easily be seen that the radiation matrix resulting f rom the line integral 

vanishes (R"^ = 0 in equation 4.23) leaving the element matrix to consist of only 

stiffness and mass matrices (i.e. A'̂  = K*̂  — co'^M.^). This can be proved both wi th 

the direct approach presented in this work and the boundary condition given by 

Zienkiewicz and Newton [108 . 
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5.9.1 Direct approach 

Now consider the term at infinity, equation (4.26), which requires the calculation 

of 1 ^ . Considering equations (5.22) and (5.40), this can be writ ten as 

dN dN 
fa = P* 

dn dr 

f d P - P* , „ A / 7 - \ V 2 

(5.55) 

Substi tuting this and equation (5.52) into equation (4.26) gives 

r rr, fdP" P" \ / r n \ 3 / 2 
P*^ccgik —- + — + ikP" - P*dr (5.56) 

J \ dr 2r ) \ r J 

Note that P* and P" are the finite element shape functions in 77 and ^ directions 

respectively as explained in equations (5.35) to (5.40). A t inf ini ty r tends to 00 

and therefore the line integral is equal to zero. The radiation boundary condi

t ion therefore is implied in the formulation wi th the present choice of shape and 

weighting functions. This is another advantage of this (Type 3) infinite element. 

5.9.2 Using radiation boundary condition 

Substituting the shape and weighting functions into equation (5.50), the line in

tegral calculated using the radiation boundary condition due to Zienkiewicz and 

Newton [108], gives 

^ I P*^ccgik(^'^y\*dr (5.57) 
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which is obviously zero as r tends to infinity. 

5.10 Summary 

In this chapter, three types of two-dimensional infinite element, for the analysis 

of water wave diffraction problems are given. First the original mapped infinite 

element is further improved so that i t can model the diffraction of waves by large 

aspect ratio bodies more economically. A simple explanation is given to jus t i fy why 

the undefined term of the line integral can simply be ignored to give satisfactory 

results. Then a new infinite element is developed using the so-called wave envelope 

approach which leads to a much more simple formulation. Hence the element inte

grals can be integrated by a standard integration scheme such as Gauss-Legendre 

numerical integration scheme. The shape and weighting functions for the element 

are given. The calculation of the line integral for this element is given in detail. 

Then a th i rd infinite element is developed to model the diffraction of water waves 

by arrays of objects more accurately. The shape and weighting functions for this 

element are chosen such that the line integral becomes zero. The extension to 

thr three-dimensional formulation is outlined. Table 5.1 illustrates the shape and 

weighting functions for the different types of infinite elements and Table 5.2 shows 

the asymptotic behaviour of these functions. 
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Table 5.1: Shape and weighting functions for different infinite elements 

infini te element shape function weighting function 

Type 1 N = P{^f-'expik{r-ro) W = P{f-J'>-'expzk{r-ro) 

Type 2 A^ = P(ni)0.5 expzA;( r - ro ) W = P { f f ' e x p - i k { r - r o ) 

Type 3 N = P{^J'expikir-ro) W = P { f ) ' e x p -ikir-ro) 

Table 5.2: Asymptotic behaviour of difi'erent infinite elements shape and weighting functions 

infinite element shape function weighting function 

Type 1 W ^ r"°-^ exp ikr 

Type 2 jY ^ j , - i . 5 expz/cr W ~ r"^'^ exp —ikr 

Type 3 ^ j,-o.5 expi/cr W ^ r~^-^ exp —ikr 



Chapter 6 

Results and Comparison 

A n application of finite/infinite element analysis of wave diflFraction is in the pre

diction of waves on the surface of water. Also i t can be used to predict the wave 

pressure or forces acting on diffracting objects. Three types of infinite elements 

have been developed in this work which are as follows: 

T y p e 1: Improved mapped infinite element for elliptical meshes (described in 

section 5.4 and by Bettess et al [24, 25]) 

T y p e 2: Mapped infinite wave envelope element (described in section 5.6 and 

by Baghbani [14]) 

T y p e 3: Mapped infinite wave envelope element for multiple body diflFraction 

problems (described in section 5.8 and by Baghbani et al [15]) 
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As a test for these new infinite elements, example problems were solved involv
ing water wave diffraction by 

• A circular cylinder 

• A n elliptical cylinder 

• A n array of circular cylinders 

The analytical solutions are presented in sections 3.2, 3.3 and 3.4 respectively. 

F in i te / inf in i te element ( F / I E ) solutions on the diffracting objects were com

pared to their analytical (Theory) equivalents, and their relative errors are eval

uated and plotted. The error is defined as 

^^\Va[_M^lOO (6.1) 

where rja is the analytical surface elevation, rj is the surface elevation calculated 

by the finite/infinite element model and A is the incident wave amplitude. The 

other comparison is based on the contour plot of the real and imaginary parts of 

water surface elevations in the vicinity of cylinder(s) for the finite/infinite element 

and their equivalent analytical solutions ^ A l l the given parameters were made 

dimensionless by using a dimension of the diffracting object. The resulting free 

surface elevations are divided by the incident wave amplitude in order to obtain 

the non-dimensional surface elevations {T]/A). 

^The Unimap software package was used for contour plotting. Small boxes that appear on 
some plots are an artifact of the contouring 
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6.1 Finite and infinite element mesh design 

I n designing a mesh of finite and infinite elements three criteria were considered. 

First at least ten finite element nodes per wavelength were used both in the ra

dial and circumferential directions to model the oscillatory behaviour of the wave 

reasonably accurately. Secondly the mesh was designed such that the finite ele

ments remained approximately square. In other words, the lengths of the sides 

of the finite elements remained approximately equal and less than one fifth of the 

wavelength. Finally sharp corner elements were avoided. These ensured that the 

errors resulting f r o m finite elements were minimised so that the accuracy of the 

different infini te elements could be examined. Three types of meshes were used in 

this work, circular, elliptical and square meshes. The existing mesh generators [24], 

which generate circular and elliptical meshes for single body diffraction problems, 

were modified to generate the required finite and infinite element meshes for this 

study. I n this work a new mesh generator was also developed using Maple to gen

erate square meshes of finite and infinite elements for arrays of circular or elliptical 

cylinders. 

6.2 Results for Type 1 infinite element 

The element was originally tested for some special cases of wave diffraction prob

lems [102]. I n this work, first the problem of wave difl^raction by an elliptical 

cylinder was solved using circular and elliptical meshes. Two approaches, 1 and 

2, described in section 5.4 to improve the infinite element for the latter meshes 
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were tested. Then other example problems were solved using the robust approach, 
approach 2, for this infinite element. 

A n elliptical cylinder standing in open water wi th a plane surface wave incident 

upon i t was analysed. The non-dimensional parameters for this problem were as 

follows: 

b/a=2 

d/a=l 

01 = 0^ 30° and 90° 

ka = l {> 0.2^) 
where 

b is Semi-major axis length of the ellipse 

a is Semi-minor axis length of the ellipse 

A is The incident wave amplitude 

d is The water depth 

Oi is Angle of the incident wave 

k is The wave number 

This problem was solved using two types of meshes, circular and elliptical 

meshes. They are illustrated in Figures 6.1 and 6.2 respectively. 

First the original (Zienkiewicz et a/'s [102]) formulation, equation (5.18), was 

examined. Figures 6.3 and 6.4 show the comparison between the numerical and 

analytical solutions on the surface of the cylinder for both real and imaginary parts 

of the free surface elevations. The relative errors are shown in Figures 6.5 and 6.6. 

As can be seen the elliptical mesh gives larger errors. 

Two approaches were presented in section 5.4 to improve the formulation of 
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Figure 6.1: Circular mesh of finite and Type 1 infinite elements for elliptical cylin
der, b/a=2 

Figure 6.2: A coarse elliptical mesh of finite and Type 1 infinite elements for 
elliptical cylinder, 6/a=2 (Meshl) 

the mapped infinite element for elliptical meshes. Approach 1 was examined first. 

The real and imaginary parts of relative errors are shown in Figures 6.7 and 6.8 

respectively. Case a is the Zienkiewicz et a/'s [102] formulation and case b is 

approach 1. As can be seen the results of the elliptical mesh using approach 1 

improved and this mesh now gives better results than the circular mesh. 

Approach 2, which is a robust formulation of the mapped infinite element for el

l ipt ical meshes, was then examined. The real and imaginary parts of relative errors 

are shown in Figures 6.9 and 6.10 respectively. As can be seen, the elliptical mesh 

again gives better results than the circular mesh. From here onwards, approach 2 
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Figure 6.3: Real part of the surface elevations {rj/A) on elliptical cylinder as a 
funct ion of angle around the cylinder (6/a = 2, ^/ = 0°) 

was then used to solve other example problems. 

The mesh design in the circumferential direction was then considered. A mesh 

of finite and infinite elements, Meshl , is illustrated in Figure 6.2 and the other 

mesh, Mesh2, in which the infinite elements are located at a greater distance f rom 

the cylinder, is illustrated in Figure 6.11. The relative errors are shown in Figures 

6.12 and 6.13. As can be seen the errors for Mesh2 are larger than the ones for 

Meshl . This unexpected tendency resulted f rom not using an adequate number of 

finite element nodes (at least 10 nodes per wavelength) circumferentially. In the 

next example problem this is investigated. A revised mesh wi th 24 elements in 

the circumferential direction was then constructed. The coarse and fine mesh are 

illustrated in Figures 6.14 and 6.15. The relative errors are shown in Figures 6.16 

and 6.17 which show that the errors decrease to less than 0.1 percent for the fine 
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Figure 6.4: Imaginary part of the surface elevations on elliptical cylinder as a 
funct ion of angle around the cylinder {b/a = 2, 9i - 0°) 

mesh. 

The analysis was repeated using the coarse mesh, Figure 6.14, for angles of 

incidence of 30 and 90 degrees and results are shown in Figures 6.18, 6.19, 6.20 

and 6.21. As can be seen f rom these figures the errors are small being not greater 

than 0.25 percent. 
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Figure 6.5: Comparison of errors in real part of the solutions produced by two 
types of mesh (b/a = 2,01 = 0°) 
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Figure 6.6: Comparison of errors in imaginary part of the solutions produced by 
two types of mesh {b/a — 2,6i = 0°) 
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Figure 6.7: Comparison of errors in real part of the solutions produced by two 
types of mesh {b/a = 2, 6'/ = 0") 

K E Y 

c i r c u l a r me s h 

e l l i p t i c a l m e s h - a 

e l l i p t i c a l m a s h - b 

c i r c u l a r me s h 

e l l i p t i c a l m e s h - a 

e l l i p t i c a l m a s h - b 

c i r c u l a r me s h 

e l l i p t i c a l m e s h - a 

e l l i p t i c a l m a s h - b 

- i . o h 

A n g l e - d e g r e e s 

Figure 6.8: Comparison of errors in imaginary part of the solutions produced by 
two types of mesh (b/a = 2, Oj = 0°) 
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Figure 6.9: Comparison of errors in real part of the solutions produced by two 
types of mesh {b/a = 2, 9} = 0°) 
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Figure 6.10: Comparison of errors in imaginary part of the solutions produced by 
two types of mesh {b/a = 2, 6i = 0°) 
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Figure 6.11: A mesh of finite and Type 1 infinite elements for elliptical cylinder, 
b/a=2 (Mesh2) 

1.0 

- . 5 

- 1 . 0 1-

/ 1 

K E Y 

M e s h l 

M e s h 2 

M e s h l 

M e s h 2 

M e s h l 

M e s h 2 

A n g l e - d e g r e e s 

Figure 6.12: Comparison of errors in real part of the solutions on the cylinder 
produced by Meshl and Mesh2 {b/a = 2,9i = 0°) 
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Figure 6.13: Comparison of errors in imaginary part of the solutions produced by 
Meshl and Mesh2 {b/a = 2, ^/ = 0°) 

Figure 6.14: Coarse mesh of finite and Type 1 infinite elements for elliptical cylin
der, b/a—2 



C h a p t e r 6: Resu l t s and Compar i son 122 

Figure 6.15: Fine mesh of finite and Type 1 infinite elements for elliptical cylinder, 
b/a=2 
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Figure 6.16: Comparison of errors in real part of the solutions on the cylinder 
produced by coarse and fine meshes (5/a = 2, 0/ = 0°) 
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Figure 6.17: Comparison of errors in imaginary part of the solutions on the cylinder 
produced by coarse and fine meshes {b/a = 2, Oj = 0°) 
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Figure 6.18: Real and imaginary part of surface elevations on elliptical cylinder as 
a funct ion of angle around the cylinder {b/a = 2, 9i = 30°) 
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Figure 6.19: Errors in the real and imaginary parts of the solutions on on the 
cylinder {b/a = 2,9i = 30°) 
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Figure 6.20: Real and imaginary part of surface elevations on elliptical cylinder as 
a funct ion of angle around the cylinder (b/a — 2, Oj = 90°) 
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Figure 6.21: Errors in the real and imaginary parts of the solutions on the cylinder 
{b/a = 2,9i = 90°) 



C h a p t e r 6: Resu l t s and Comparison 126 

6.3 Results for Type 2 infinite element 

In this section two problems were solved using Type 2 infinite elements. First 

the basic problem of wave diffraction by a circular cylinder was solved and the 

solutions were compared wi th their analytical equivalents presented in section 3.2. 

Secondly the problem of wave diffraction by an elliptical cylinder was solved and 

the solutions were compared wi th their analytical equivalents presented in section 

3.3. For the latter case, the problem was solved for different angles of incidence 

and different aspect ratios. 

6.3.1 Problem of wave diffraction by a circular cylinder 

A circular cylinder w i th radius a standing in open water wi th a plane surface wave 

incident upon i t was analysed. The parameters for this problem were as follows: 

d/a=l 

9i = 0" 

ka=l 

A coarse mesh of finite and infinite elements is illustrated in Figure 6.22. I t con

sists of one ring of finite elements and one ring of infinite elements (24 elements 

circumferentially). The infinite elements are located at a half length of the radius 

away f rom the object. 

Figure 6.23 shows the comparison between the numerical and analytical solu

tions on the surface of the cylinder for both real and imaginary parts of the free 

surface elevations. Figure 6.24 shows the relative errors around the cylinder which 

for the real part are not more than 0.4 percent and for the imaginary part are not 
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Figure 6.22: A coarse mesh of finite and Type 2 infinite elements for circular 
cylinder, a = l 

more than 0.5 percent. This shows that the model gives very accurate results even 

for such a coarse mesh. 
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Figure 6.23: Real and imaginary parts of the surface elevations on circular cylinder 
as a function of angle around the cylinder, a=l 

6.3.2 Problem of wave diffraction by elliptical cylinders 

An elliptical cylinder standing in open water with a plane surface wave incident 

upon it was analysed. The parameters for this problem were as follows: 
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Figure 6.24: Errors in the real and imaginary parts of the solutions around the 
cylinder, a = l 

b/a=2 
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ka=l 

A coarse mesh of finite and infinite elements is illustrated in Figure 6.25 which 

again consists of only one ring of finite and one ring of infinite elements (24 elements 

circumferentialy). The real and imaginary parts of the numerical solutions are 

compared to their analytical equivalents in Figure 6.26. The relative errors for real 

and imaginary components are plotted in Figure 6.27. As can be seen the errors 

are not greater than 2.2 percent for the real part and not more than 1.3 percent for 

the imaginary part. A revised mesh was constructed with the infinite elements 

being located reasonably far from the diffracting object (i.e. at a distance close 

to the half length of the semi-major axis of the ellipse) to achieve more accurate 

results. The finer mesh of finite and infinite elements (three rings of finite and 

one ring of infinite elements) is illustrated in Figure 6.28. The relative errors for 
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Figure 6.25: A coarse mesh of finite and Type 2 infinite elements for elliptical 
cylinder, &/a=2 

Imaginary A F/^EM 
F/IEM 

3$0 

Figure 6.26: Real and imaginary parts of the surface elevations on elliptical cylinder 
as a function of angle around the cylinder {h/a = 2, 6i = 0°) 

the real and imaginary parts are shown in Figure 6.29 which shows that the errors 

decrease and are now not more than 0.25 percent. 
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Figure 6.27: Errors in the real and imaginary parts of the solutions on the waterline 
nodes {h/a = 2, = 0°) 

Figure 6.28: A fine mesh of finite and Type 2 infinite elements for elliptical cylinder, 
Va=2 
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Figure 6.29: Errors in the real and imaginary parts of the solutions on the cylinder 
{h/a = 2,01 = 0") 

Next the infinite element was tested for different cases of elliptical cylinder 

diffraction problem. The above problem was solved with the new following param

eters: 

b/a=3 

d/a=l 

9i = 0°, 30°, 45° and 90° 

ka=l 

A mesh of finite and infinite elements is illustrated in Figure 6.30. The real and 

imaginary parts of the numerical solutions are compared to their analytical equiv

alent in Figure 6.31. The relative errors for real and imaginary parts are plotted in 

Figure 6.32. As can be seen the errors are slightly greater than before (however not 

greater than 0.7 percent). Since the aspect ratio of the ellipse increased from 2 to 

3, the number of elements used in the circumferential direction (24) needs to be in

creased to maintain the same accuracy. A contour plot of the free surface elevations 
around the cylinder is shown in Figures 6.33 and 6.34 for real and imaginary parts 
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respectively. An example of a three-dimensional view of the free surface elevations 
is also shown in Figures 6.35 and 6.36 for real and imaginary parts respectively. 

The same analysis was repeated for angles of incidence of 30, 45, and 90 degrees 

and results are shown in Figure 6.37 to 6.48. Figures 6.32, 6.38, 6.42 and 6.46 

demonstrate that the accuracy of the method remains almost the same for the 

different angles of incidence. 
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Figure 6.30: 
(6/a=3) 

Mesh of finite and Type 2 infinite elements for elliptical cylinder 
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Figure 6.31: Real and imaginary parts of the surface elevations on elliptical cylinder 
as a function of angle around the cylinder {b/a = 2>,9i — 0°) 
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Figure 6.32: Errors in the real and imaginary parts of the solutions on the waterline 
nodes {h/a = 3,01 = 0°) 
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Figure 6.33: A contour plot of the non-dim. free-surface elevation around the 
cylinder, real part {b/a = 3, 6i = 0°) 
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Figure 6.34: A contour plot of the non-dim. free-surface elevation around the 
cylinder, imaginary part (b/a — 3, Oj = 0°) 
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Figure 6.35: A three dimensional perspective view of the non-dim. 
elevation, real part {h/a = 3, 9i = 0°) 
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Figure 6.36: A three dimensional perspective view of the non-dim. free-surface 
elevation, imaginary part {h/a = 3, dj — 0°) 
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Figure 6.37: Real and imaginary parts of the surface elevations on elliptical cylinder 
as a function of angle around the cylinder {b/a = 3, Oj — 30°) 
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Figure 6.38: Errors in the real and imaginary parts of the solutions on the cylinder 
{b/a - 3, ^/ = 30°) 
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Figure 6.39: A contour plot of the non-dim. free-surface elevation around the 
cylinder, real part {h/a = 3, ^/ = 30°) 
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Figure 6.40: A contour plot of the non-dim. free-surface elevation around the 
cylinder, imaginary part {h/a — 3,6i = 30^) 
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Figure 6.41: Real and imaginary parts of the surface elevations on elliptical cylinder 
as a function of angle around the cylinder {b/a = 3, 6i — 45°) 
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Figure 6.42: Errors in the real and imaginary parts of the solutions on the cylinder 
{b/a = 3,01 = 45°) 
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Figure 6.43: A contour plot of the non-dim. free-surface elevation around the 
cylinder, real part {b/a = 3, 6j = 45°) 
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Figure 6.44: A contour plot of the non-dim. free-surface elevation around the 
cylinder, imaginary part {b/a = 3, 9i = 45°) 



Chapter 6: Results and Comparison 141 

1.5 

Real 

« 0.5 

w -0.5 H Angle, degrees 

c 
o 

-1 ^ 

-1.5 H 

270 

Theory 
Theory 

• F/IEM 
A F/IEM 

^OO 

Imaginary 

^ A A A A A A * ^ 

Figure 6.45: Real and imaginary parts of the surface elevations on elliptical cylinder 
as a function of angle around the cylinder {b/a = 3, Oj = 90°) 
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Figure 6.46: Errors in the real and imaginary parts of the solutions on the cylinder 
{b/a = 3,91 = 90°) 
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Figure 6.47: A contour plot of the non-dim. free-surface elevation around the 
cylinder, real part {h/a = 3,01 = 90°) 
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Figure 6.48: A contour plot of the non-dim. free-surface elevation around the 
cylinder, imaginary part {b/a = 3, 9i = 90°) 
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6.4 Results for type 3 infinite element 

In this section three test problems were solved using Type 3 infinite elements. 

First the basic problem of wave diffraction by a circular cylinder and then by an 

elliptical cylinder were solved and the solutions were compared with their equivalent 

analytical solutions presented in sections 3.2 and 3.3. Finally the problems of 

wave diffraction by arrays of circular cylinders were solved and the solutions were 

compared with their equivalent analytical solutions presented in section 3.4. 

6.4.1 Problem of wave diffraction by a circular cylinder 

A circular cylinder with radius a standing in open water with a plane surface wave 

incident upon i t was analysed. The parameters for this problem were as follows: 

d/a=l 

^7 = 0° 

ka=l 

A coarse mesh of finite and infinite elements is illustrated in Figure 6.49. I t con

sists of one ring of finite elements and one ring of infinite elements (24 elements 

circumferentially). Figure 6.50 shows the comparison between the numerical and 

Figure 6.49: Mesh of finite and Type 3 infinite elements for circular cylinder, a=l 

analytical solutions on the surface of the cylinder for both real and imaginary parts 
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of the free surface elevations. Figure 6.51 shows the relative errors around the cylin

der which for the real part are not more than 0.4 percent and for the imaginary 

part are not more than 0.8 percent. 
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Figure 6.50: Real and imaginary parts of the surface elevations on circular cylinder 
as a function of angle around the cylinder, a=l 

6.4.2 Problem of wave diffraction by elliptical cylinders 

An elliptical cylinder standing in open water with a plane surface wave incident 

upon it was analysed. The parameters for this problem were as follows: 

b/a=2 

d/a=l 

ka=l A coarse mesh of finite and infinite elements is illustrated in Figure 6.52 which 
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Figure 6.51: Errors in the real and imaginary parts of the solutions on the cylinder, 
a=l 

Figure 6.52: A coarse mesh of finite and Type 3 infinite elements for elliptical 
cylinder, b/a=2 

again consists of only one ring of finite and one ring of infinite elements (24 ele

ments circumferentially). The real and imaginary parts of the numerical solutions 

are compared to their analytical equivalents in Figure 6.53. The relative errors 

for real and imaginary components are plotted in Figure 6.54. As can be seen the 

errors are not greater than 2.6 percent for the real part and not more than 1.8 per

cent for the imaginary part. The infinite elements were next located reasonably 

far from the diffracting object (i.e. at a distance close to the half length of the 
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Figure 6.53: Real and imaginary part of surface elevations on elliptical cylinder as 
a function of angle around the cylinder {b/a=2, 9i = 0°) 
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Figure 6.55: A fine mesh of finite and Type 3 infinite elements for elliptical cylinder, 
h/a=2 

semi-major axis of the ellipse) to achieve more accurate results. A finer mesh of 

finite and infinite elements (three rings of finite and one ring of infinite elements) is 

illustrated in Figure 6.55. The relative errors for the real and imaginary parts are 

shown in Figure 6.56 which shows that the errors decrease and are now not more 

than 0.4 percent and 0.6 percent for the real and imaginary parts respectively. 

The infinite element was then tested for different cases of elliptical cylinder diffrac

tion problem. The above problem was solved with the new following parameters: 

I Oi = 0", 30° and 90° 

6/a=4 

A mesh of finite and infinite elements is illustrated in Figure 6.57. The real and 

imaginary parts of the numerical solutions are compared to their analytical equiv

alent in Figure 6.58. The relative errors for real and imaginary parts are plotted 

in Figure 6.59. As can be seen the errors are slightly greater than before (however 

not greater than 1.5 percent). Since the aspect ratio of the ellipse increased from 

2 to 4, a larger number of elements are needed in the circumferential direction to 

maintain the same accuracy. A contour plot of the free-surface elevation around 
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Figure 6.56: Errors in the real and imaginary parts of the solutions on the cylinder 
(Va=2, Oi = 0^) 

is shown in 6.60 and 6.61 for real and imaginary parts respectively. 

The same analysis was repeated for angles of incidence of 30 and 90 degrees. 

Results are shown in Figure 6.62 to 6.69. Figures 6.59, 6.63 and 6.67 demonstrate 

that the accuracy of the method remains almost the same for the different angles 

of incidence. 
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Figure 6.57: A mesh of finite and Type 3 infinite elements for elliptical cylinder, 
b/a=A 
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Figure 6.58: Real and imaginary parts of the surface elevations on elliptical cylinder 
as a function of angle around the cylinder (6/a=4, Oj = 0°) 
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Figure 6.60: A contour plot of the non-dim. free-surface elevation around the 
elliptical cylinder, real part {b/a = 4, Oj = 0°) 
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Figure 6.61: A contour plot of the non-dim. free-surface elevation around the 
cylinder, imaginary part {b/a = 4, $i = 0°) 
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Figure 6.62: Real and imaginary parts of the surface elevations on elliptical cylinder 
as a function of angle around the cylinder {b/a—4, 9j — 30°) 

10 

8 

6 + 

-6 

-8 + 

-10 

;Real 

• Imaginary 

gle, degree 
360 

Figure 6.63: Errors in the real and imaginary parts of the solutions on the cylinder 
{b/a=4, 01 = 30°) 
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Figure 6.64: A contour plot of the non-dim. free-surface elevation around the 
elliptical cylinder, real part (6/a — 4, Oj = 30°) 
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Figure 6.65: A contour plot of the non-dim. 
cylinder, imaginary part {b/a - 4, 9j = 30°) 
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Figure 6.66: Real and imaginary parts of the surface elevations on elliptical cylinder 
as a function of angle around the cylinder {b/a=4, Oj = 90°) 
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Figure 6.67: Errors in the real and imaginary parts of the solutions on the cylinder 
(6/a=4, Oi = 90°) 
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Figure 6.68: A contour plot of the non-dim. free-surface elevation around the 
eUiptical cylinder, real part {b/a = 4, Oj = 90°) 
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Figure 6.69: A contour plot of the non-dim. free-surface elevation around the 
cylinder, imaginary part {b/a = 4, Oi = 90°) 
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6.4.3 Problems of wave diffraction by arrays of cylinders 

As was explained in chapter 1 and section 2 .1, wave diffraction effects (compared 

with viscous effects) become important when the dimension of the diffracting object 

is large enough to alter the pattern of the incoming waves. It is widely accepted 

that when ka = 2a7r/L > 0.27r the diffraction effects become dominant (see e.g. 

Sarpkaya et al [92], page 9-10). However, for a large ka (small wavelength) the 

minimum number of finite element nodes required to model the problem accu

rately increases. So in the following example problems a mesh of finite and infinite 

elements was first used to solve the problem for a small ka (< 0.27r) to test the 

general accuracy of the model. I t must be emphasized that for small ka the viscous 

effect is dominant and so it must be taken into account for a real problem. How

ever, the present model has only been developed for wave diffraction problems. The 

same mesh was then used to solve the problem for a large ka (> 0.27r) to illustrate 

the effect of wave diffraction by the objects. A finer mesh should be used to obtain 

more accurate results but was not possible in this research due to the constraints. 

In this section, problems of diffraction of water waves by arrays of vertical 

circular and elliptical cylinders were solved. The finite and infinite element model 

was first fully tested for diffraction of wave by a pair of circular cylinders with 

different angles of wave incidence. First the angle of incidence, Oj, (see figure 3.10 ) 

was taken to be zero degrees. The predicted free surface elevations on the cylinders 

were compared with their equivalent analytical solutions presented in section 3.4 

and the errors were plotted. Then a contour plot of surface elevations around 

the pair of circular cylinders predicted by F/IE was compared with the equivalent 
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analytical solutions for angle of wave incidence of 0, 30 and 90 degrees. A problem 
of wave diffraction by an array of 4 (2 by 2) cylinders was then solved to test the 
model for more scattered geometry of objects. A real problem of wave diffraction 
by an array of 6 (2 by 3) circular cylinders was then solved. Finally an example 
problem of diffraction of waves by a 1 by 2 array of elliptical cylinder was solved. 

Pair of cylinders 

In this section, two vertical neighbouring circular cylinders with radius a standing in 

shallow water with a plane wave incident upon them were analysed. The parameters 

were as follows: 

d/a=l 

01 = 0", 30" and 90° 

A;a=0.2 

A mesh of finite and infinite elements which consists of 284 elements (1003 nodes) 

is illustrated in Figure 6.70. First the angle of wave incidence was chosen to be 

zero (see figure 3.10). The real and imaginary parts of the numerical solutions 

on the first (left) cylinder were compared to their analytical equivalents in Figure 

6.71. The relative errors for real and imaginary parts are plotted in Figure 6.72 for 

the first cylinder. As can be seen the errors are small being not greater than 0.5 

percent for the real part and not more than 0.6 percent for the imaginary part. The 

same results are illustrated in Figures 6.73 and 6.74 for the second (right) cylinder 

which show that the errors are small being not greater than 0.35 percent for the 

real part and not more than 0.45 percent for the imaginary part. Contour plots of 

real and imaginary parts of the F/IE free surface elevations around the cylinders 
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are shown in Figures 6.76 and 6.78 and their equivalent analytical solutions are 
shown in Figures 6.75 and 6.77. A good agreement between the analytical and 
F/ IE solutions can be observed . 

The same problem was then solved for different angles of wave incidence (30 and 

90 degrees). The contour plots of the real and imaginary parts of the analytical and 

F / IE solutions are shown in Figures 6.79, 6.80, 6.81, 6.82, 6.83, 6.84, 6.85 and 6.86. 

A good agreement between the analytical and F/IE solutions can be observed. 

The same mesh, Figure 6.70, was then used to solve the problem for a larger 

ka (> 0.27r) with the following parameters: 

d/a=20 

di = 0° 

ka = 2 

Contour plots of real and imaginary parts of the F/IE free surface elevations around 

the cylinders are shown in Figures 6.88 and 6.90 and their equivalent analytical 

solutions are shown in Figures 6.87 and 6.89. The figures show that unlike the 

previous example the pattern of the incoming wave has been significantly altered 

by the presence of the cylinders. The agreement between the analytical and F/IE 

solutions is reasonable but not as good as before. More finite element node;s are 

needed to achieve a better agreement. 
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Figure 6.70: Mesh of finite and Type 3 infinite elements for double cylinder, a = l 
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Figure 6.71: Real and imaginary part of non-dim. free-surface elevations on the 
first cylinder as a function of angle around the cylinder {ka = 0.2, Oj = 0°) 
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Figure 6.72: Errors in the real and imaginary parts of the solutions on the surface 
of first cylinder {ka = 0.2, = 0°) 
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Figure 6.73: Real and imaginary part of non-dim. free-surface elevations on the 
second cylinder as a function of angle around the cylinder {ka = 0.2, 6i — 0°) 
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Figure 6.75: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinders, real part of analytical solutions, (A:a = 0.2, Oj = 0°) 
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Figure 6.76: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinders, real part of F / I E solutions {ka — 0.2, Qi = 0°) 
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Figure 6.77: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinders, imaginary part of analytical solutions (A;a = 0.2, ^/ = 0°) 
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Figure 6.78: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinders, imaginary part of F / I E solutions {ka = 0.2, 6i = 0°) 
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Figure 6.79: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinders, real part of analytical solutions {ka = 0.2, Oj = 30°) 
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Figure 6.80: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinder, real part of F / I E solutions {ka = 0.2, OT = 30°) 
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Figure 6.81: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinders, imaginary part analytical solutions {ka = 0.2, 6i = 30°) 
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Figure 6.82: A contour plot of the non-dim. free-surface elevations around pair of 
cylinders, imaginary part F / I E solutions {ka = 0.2, Oj = 30°) 



Chapter 6: Results and Comparison 166 

IB ABOVE 1.02 

Bi 1.00- 1.02 
0.98- 1.00 

^B 0.96- 0.98 

Bi 0.94- 0.96 

1̂ 0.92- 0.94 

Bi 0.90- 0.92 
0.88- 0.90 
0.86- 0.88 
0.84- 0.86 
0.82- 0.84 • BELOW 0.82 

Figure 6.83: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinders, real part of analjiiical solutions {ka = 0.2, Oj = 90°) 
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Figure 6.84: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinder, real part of F / I E solutions {ka = 0.2, Oi = 90°) 
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Figure 6.85: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinders, imaginary part analytical solutions {ka = 0.2, 6i = 90°) 
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Figure 6.86: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinders, imaginary part F / I E solutions {ka = 0.2, 9i = 90°) 
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Figure 6.87: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinders, real part of analytical solutions {ka = 2, 9i — 0°) 
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Figure 6.88: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinders, real part of F / I E solutions {ka = 2, 9i = 0°) 
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Figure 6.89: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinders, imaginary part of analytical solutions {ka = 2, 6i = 0°) 

Figure 6.90: A contour plot of the non-dim. free-surface elevations around a pair 
of cylinders, real part of F / I E solutions {ka = 2, 9i = 0°) 
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2 by 2 array of cylinders 

A 2 by 2 array of equally spaced vertical circular cylinders (four identical cylinders 

w i t h radius a) standing in shallow water w i th a plane wave incident upon them 

was analysed. The parameters were as follows: 

d/a=l 

Oi = 45° 

/ca=0.2 

A mesh of finite and infinite elements which consists of 464 elements (1613 nodes) 

is il lustrated in Figure 6.91. Contour plots of real and imaginary parts of the 

analytical free surface elevations around the cylinders are shown in Figures 6.92 

and 6.94 and their equivalent F / I E solutions are shown in Figures 6.93 and 6.95. 

A good agreement between the analytical and F / I E solutions can be observed. 

The same mesh, Figure 6.91, was then used to solve the problem for a larger 

ka {> 0.27r) w i t h the following parameters: 

d/a=20 

Oi = 45° 

ka = 2 

Contour plots of real and imaginary parts of the analytical free surface elevations 

around the cylinders are shown in Figures 6.96 and 6.98 and their equivalent F / I E 

solutions are shown in Figures 6.97 and 6.99. The figures show that unlike the 

previous example the pattern of the incoming wave has been significantly altered 

by the presence of the cylinders. The agreement between the analytical and F / I E 

solutions is reasonable but not as good as before. More finite element nodes are 

needed to achieve a better agreement. 
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Figure 6.91: Mesh of finite and Type 3 infinite elements for 2 by 2 array of cylinders, 
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Figure 6.92: A contour plot of the non-dim. free-surface elevations around the 
cylinders, real part of the analytical solutions (A;a = 0.2, 6i = 45°) 
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Figure 6.93: A contour plot of the non-dim. free-surface elevations around the 
cylinders, real part of F / I E solutions {ka = 0.2, 6i = 45°) 
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Figure 6.94: A contour plot of the non-dim. free-surface elevations around the 
cylinders, imaginary part of analytical solutions {ka = 0.2, 9i = 45°) 
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Figure 6.95: A contour plot of the non-dim. free-surface elevations around the 
cylinders, imaginary part of F / I E solutions {ka = 0.2, Oj = 45°) 
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Figure 6.96: A contour plot of the non-dim. free-surface elevations around the 
cylinders, real part of the analytical solutions {ka = 2, 9j = 45°) 
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Figure 6.97: A contour plot of the non-dim. free-surface elevations around the 
cylinders, real part of F / I E solutions {ka = 2, 6i = 45°) 



Chapter 6: Results and Comparison 175 

Figure 6.98: A contour plot of the non-dim. free-surface elevations around the 
cylinders, imaginary part of analytical solutions (A;a = 2, ^/ = 45°) 

-2.5 

Figure 6.99: A contour plot of the non-dim. free-surface elevations around the 
cylinders, imaginary part of F/IE solutions {ka — 2,9i — 45") 
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2 by 3 array of risers 

A 2 by 3 array of equally spaced vertical circular risers (six identical cylinders with 

radius a), associated with a British Gas jacket structure in the North Sea [27], 

standing in open water with a plane wave incident upon them was analysed. The 

parameters were as follows: 

Incident wave amplitude A=4 m 

Water depth d=20 m 

Wave frequency w=1.0 rad/s 

Angle of the incident wave 9i = 0° 

Acceleration due to gravity ^=9.81 m/s^ 

Risers radius, a=0.36 m 
The corresponding nondimensional parameters are: 

d/a=55.556 

^a=0.038 

A mesh of finite and infinite elements which consists of 524 elements (1663 nodes) 

is illustrated in Figure 6.100. Contour plots of real and imaginary parts of the 

analytical free surface elevations around the cylinders are shown in Figures 6.101 

and 6.103 and their equivalent F/IE solutions are shown in Figures 6.102 and 6.104. 

A good agreement between the analytical and F/IE solutions can be observed (note 

that the key to the real part of the F/IE solutions is different from the one to the 

analytical solutions). 

For this real industrial problem the actual, rather than dimensionless, values 

of the free-surface elevations have been plotted. As can be seen the incident wave 

shows hardly any diffraction by the presence of the risers because the diffraction 
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parameter is very small {ka = 0.038 < < 0.27r ). Also ^ = 0^2 > ^-^^^ Hence 

for design purposes the viscous effect, which is dominant in this case, should be 

considered. 

The same mesh, Figure 6.100, was then used to solve the problem for a larger ka 

(= 0.72 > 0.27r). Contour plots of real and imaginary parts of the non-dimensional, 

analytical free surface elevations around the cylinders are shown in Figures 6.105 

and 6.107 and their equivalent F/IE solutions are shown in Figures 6.106 and 6.108. 

The figures show that unlike the previous example the pattern of the incoming wave 

has been significantly altered by the presence of the risers. The agreement between 

the analytical and F/ IE solutions is reasonable but not as good as before. A'lore 

finite element nodes are needed to achieve a better agreement. A three-dimensional 

view of the F/ IE free surface elevations is shown in Figure 6.109 and 6.110. 

Figure 6.100: Mesh of finite and Type 3 infinite elements for 2 by 3 array of risers, 
a=0.36 
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Figure 6.101: A contour plot of the free surface elevation around the cylinders, real 
part of the analytical solutions {ka = 0.04, Oj = 0°) 
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Figure 6.102: A contour plot of the free surface elevation around the cylinders, real 
part of F / I E solutions {ka = 0.04, Oj = 0°) 
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Figure 6.103: A contour plot of the free surface elevation around the cylinders, 
imaginary part of analytical solutions (A;a = 0.04, 9i = 0°) 
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Figure 6.104: A contour plot of the free surface elevation around the cylinders, 
imaginary part of F/IE solutions {ka = 0.04, 6i = 0°) 
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Figure 6.105: A contour plot of the non-dim. free surface elevation around the 
cylinders, real part of the analytical solutions {ka = 0.72, 9i = 0°) 

Figure 6.106: A contour plot of the non-dim. free surface elevation around the 
cylinders, real part of F/IE solutions (A;a = 0.72, Oj = 0°) 
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Figure 6.107: A contour plot of the non-dim. free surface elevation around the 
cylinders, imaginary part of analytical solutions {ka = 0.72, 6i = 0°) 
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Figure 6.108: A contour plot of the non-dim. free surface elevation around the 
cylinders, imaginary part of F/IE solutions {ka = 0.72, 6i = 0°) 
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Figure 6.109: A three dimensional perspective view of the non-dim. free surface 
elevation, real part of F / I E solutions {ka = 0.72, Oj — 0°) 

Figure 6.110: A three dimensional perspective view of the non-dim. free surface 
elevation, imaginary part of F / I E solutions {ka = 0.72, Oj = 0°) 
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1 by 2 array of elliptical cylinders 

Finally the problem of wave diffraction by multiple elliptical cylinders was consid

ered. This can represent a number of enginering problems such as a pair of hulls. 

A 1 by 2 array of elliptical cylinders standing in shallow water with a plane wave 

incident upon them was analysed. The parameters were as follows: 

d/a=l 

9i = 45° 

A;a=0.2 

A mesh of finite and infinite elements which consists of elements 328 (1031 nodes) 

is illustrated in Figure 6.111. Contour plots of real and imaginary parts of the 

F / IE solutions are shown in Figures 6.112 and 6.113. 

Figure 6.111: Mesh of finite and Type 3 infinite elements for 1 by 2 array of elliptical 
cylinders, b/a=S 
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Figure 6.112: A contour plot of the non-dim. free-surface elevation around the 
cylinders, real part of F / I E solutions {h/a = 3, ka = 0.2, di = 45") 
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Figure 6.113: A contour plot of the non-dim. free-surface elevation around the 
cylinders, imaginary part of F / I E solutions {b/a = 3, ka = 0.2, 9i = 45") 
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6.5 Comparison of results obtained by three types 
of infinite elements 

Three types of infinite elements, developed in this work, have been validated in 

the above sections. In this section, a comparison is made between the elements 

by solving example problems involving wave diffraction by circular and elliptical 

cylinders standing in shallow water with a plane wave incident upon them. The 

reason for choosing a shallow water problem is that the analytical solution for the 

elliptical cylinder problem given by Chen and Mei [39] is for this case. The wave 

diffraction parameter is selected to be small {ka < 0.27r) to minimize the errors 

resulting from finite elements, so that the three types of infinite elements can be 

compared correctly. The problem parameters were as follows: 

d/a^l 

01 = 0" 

ka=0.2 

First the problem of wave diff'raction by a vertical circular cylinder of radius one 

unit was analysed using the three types of infinite elements. Coarse meshes of 

finite and infinite elements are illustrated in Figures 6.114 and 6.115. The real 

and imaginary parts of the relative errors in the calculation of surface elevations 

on the cylinder are plotted in Figure 6.116 and 6.117. The Type 1 infinite element 

appears to give the best results. 
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Figure 6.114: Mesh of finite and 6-node (Type 1/Type 3) infinite elements for 
circular cylinder 

Figure 6.115: Mesh of finite and 9-node (Type 2) infinite elements for circular 
cylinder 
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Figure 6.116: Comparison of errors in imaginary part of the solutions produced by 
3 types of infinite elements 
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Figure 6.117: Comparison of errors in real part of the solutions produced by 3 
types of infinite elements 
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Next the problem of wave diffraction by a vertical elliptical cylinder of aspect 
ratio 2 was analysed using the three types of infinite elements. Coarse meshes of 
finite and infinite elements are illustrated in Figures 6.118 and 6.119. The real and 
imaginary parts of the relative errors in the calculation of surface elevations on the 
cylinder are plotted in Figure 6.120 and 6.121. Again the Type 1 infinite element 
appears to give the best results. 

Finally the aspect ratio of the ellipse was chosen to be 10. Coarse meshes of 

finite and infinite elements are illustrated in Figures 6.122 and 6.123. The real and 

imaginary parts of relative errors in the calculation of surface elevations on the 

cyhnder are plotted in Figure 6.124 and 6.125. Again the Type 1 infinite element 

appears to give the best results. The finer meshes are illustrated in Figures 6.126 

and 6.127. The real and imaginary parts of the relative errors in the calculation 

of surface elevations on the cylinder are plotted in Figure 6.128 and 6.129 which 

show that all three types of infinite elements give more or less the same results. 
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Figure 6.118: A coarse mesh of finite and 6-node (Type 1/Type 3) infinite elements 
for elliptical cylinder, h/a=2 

Figure 6.119: A coarse mesh of finite and 9-node (Type 2) infinite elements for 
elliptical cylinder, h/a=2 
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Figure 6.120: Comparison of errors in real part of the solutions produced by 3 
types of infinite elements {b/a=2, Oj = 0°) 
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Figure 6.121: Comparison of errors in imaginary part of the solutions produced by 
3 types of infinite elements {b/a=2, 9j = 0") 
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Figure 6.122: A coarse mesh of finite and 6-node (Type 1/Type 3) infinite elements 
for elliptical cylinder, hi a—10 

Figure 6.123: A coarse mesh of finite and 9-node (Type 2) infinite elements for 
elliptical cylinder, 6/a=10 
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Figure 6.124: Comparison of errors in real part of the solutions produced by 3 
types of infinite elements (6/a=10, Oj = 0°) 
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Figure 6.125: Comparison of errors in imaginary part of the solutions produced by 
3 types of infinite elements (6/a=10, Oj = 0°) 



Chapter 6: Results and Comparison 193 

Figure 6.126: A finer mesh of finite and 6-node (Type 1/Type 3) infinite elements 
for elliptical cylinder, b/a=10 
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Figure 6.127: A fine mesh of finite and 9-node (Type 2) infinite elements for ellip
tical cylinder, b/a=10 
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Figure 6.128: Comparison of errors in real part of the solutions produced by 3 
types of infinite elements {b/a—10, Oj = 0°) 
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Figure 6.129: Comparison of errors in imaginary part of the solutions produced by 
3 types of infinite elements {b/a—10, Oj = 0°) 
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A comparison between the three types of infinite elements and CPU time of 

an HP series 730 workstation for solving the above example diffraction problem 

(ellipse with 10:1 aspect ratio modelled with a coarse mesh) can be found in the 

following table. As can be seen, for a given problem, the Type 1 infinite element 

method uses the least CPU time compared to the other types. 

height 

Different infinite elements CPU time 

Type 1 2.2 seconds 

Type 2 7.3 seconds 

Type 3 7.5 seconds 

6.6 Summary 

In this chapter, three types of infinite elements developed in this work have been 

validated using some special cases of wave diffraction problems for which analyti

cal solutions exist. The predicted water surface elevations are compared with their 

equivalent analytical solutions. The errors in the calculation of the surface eleva

tions on the diffracting objects have been calculated and plotted. A comparison 

is made between the contour plots of surface elevations predicted by F/IE models 

and their equivalent analytical solutions. Finally a comparison is made between 

the three types of infinite elements based on the errors and the CPU time in solving 

an example of a single body diffraction problem. 



Chapter 7 

Discussions, Concluding Remarks 

and Further Research 

7.1 Introduction 

The aim of this thesis has been to develop a series of infinite elements to be used in 

conjunction with conventional finite elements to solve the problem of wave diffrac

tion by objects, in particular off"shore structures. The first objective has been to 

improve the existing mapped infinite element, due to Zienkiewicz et al [102], so that 

it can model objects of large aspect ratio, say a submarine, more economically. The 

main objective has been to apply the idea of the wave envelope approach, due to 

Astley et al [9], to surface waves to develop a simple and efficient infinite element 

which gives accurate solutions both in the near and far fields. 

A number of assumptions have been made to simplify the problem. They are 
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explained in chapter 2. Three main assumptions have been to reduce the problem 
to two-dimensions and to ignore the nonlinear and viscous effects. The governing 
equation has then become the well known Mild-Slope wave equation subjected to 
the natural and radiation boundary conditions. 

The problem has been solved using the coupled finite and infinite element 

method. The unbounded solution domain has been divided into finite and infinite 

regions. Conventional finite elements have been used in the first region and infinite 

elements have been used in the latter region. Three types of infinite elements have 

been developed in this thesis. 

Analytical solutions were presented in the literature for some special cases of 

water wave diffraction problems. They have been employed to validate the accu

racy of the results produced by the infinite elements. Al l the analytical solutions 

presented in this thesis had been developed for water of constant depth and so the 

infinite elements have only been validated for the constant depth cases. If the time 

had been available it would have been possible to code other analytical solutions 

to validate the model for varying water depth problems. 

7.2 Discussion of the results 

The mapped infinite element presented originally by Zienkiewicz et al [102] is in

tended to be usable for solving diffraction of waves by any shape of the diffracting 

objects. It was assumed that the infinite elements were used on the exterior of 

a circle circumscribing the object. As Burnett [36] pointed out, for objects of 
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large aspect ratio this is computationally very inefficient which is contrary to the 
primary goal of introducing the infinite element. A remedy would be to use the 
infinite elements on the exterior of an ellipse circumscribing the object. However, 
as can be seen from Figures 6.5 and 6.6 the original formulation causes errors which 
will be more pronounced for objects with large aspect ratio, say 10. Therefore two 
approaches have been given in this thesis to remove the errors associated with the 
original formulation. The results illustrated in Figures 6.7 and 6.8 show that ap
proach 1 gives very accurate results. I t is very simple and easy to be inserted into 
existing codes, but it requires an assumption which is difficult to justify mathemat
ically. As can be seen from Figures 6.9 and 6.10 approach 2 gives a robust solution 
to the problem reported by Burnett [36]. Therefore using approach 2, the mapped 
infinite element (Type 1) can now be applied to solve problems involving diffraction 
of waves by objects with large aspect ratio more economically. The solutions have 
been examined only for those located on the diffracting object. The parallel to 
Shirron's study [94] indicates that this formulation might produce very inaccurate 
solutions in the far field. 

The next step was to develop a more simple infinite element (compared to the 

Type 1 infinite element) so that the complicated integration procedure would be 

avoided and at the same time would give accurate solutions both in the near and 

far fields. Furthermore, it can be used to model diffraction of waves by multiple 

bodies. Two more types of infinite elements emerged from this process. 

The three types of infinite elements have then been validated and the discussion 

of their results is as follows: 
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Type 1 infinite elements appeared to give the best, i.e fastest and most ac
curate, results for a single circular and elliptical cylinder diffraction problems for 
solutions that are located on the diffracting object. This supports the comparison 
of unconjugated and conjugated infinite elements given by Shirron [94] (see chapter 
1 ). I t is faster, because, unlike Type 2 and Type 3, the resulting infinite element 
matrix is symmetric and hence only the half upper triangle of both finite and infi
nite elements matrices need to be calculated, stored and assembled into the global 
matrix equation which is solved to give the solutions. Therefore, a much smaller 
amount of computing resources are required to do the whole analysis. The reason 
for it being most accurate (for the solutions in the near field) is probably that a 
more correct rate of attenuation of wave amplitude towards infinity, i.e. has 
been inserted into the shape and weighting functions. 

The drawback of this infinite element, however, is that the computation of the 

element integrals, which involve complex exponential terms, is very complicated. 

The standard numerical integration schemes cannot be used to calculate these 

integrals and a new integration scheme is required (see e.g. Zienkiewicz et al 

102]). Furthermore, this infinite element is very similar to Shirron's unconjugated 

infinite element [94], for which Shirron found that no reliable information about 

the solution can be achieved in the far field (i.e. outside the finite element domain). 

The Type 2 infinite element solves the above problems by taking the weighting 

function to be the complex conjugate of the shape function so that the exponen

tial terms cancel from the element integrals. Hence the standard Gauss-Legendre 

numerical scheme can be used to calculate the element integrals. Also this infi-
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nite element is very similar to Shirron's conjugated infinite element [94], for which 
Shirron found that the solutions computed by the infinite element are accurate 
both in the near and far fields. The natural choice of the shape and weighting 
functions would be to use the Type 1 shape function and its complex conjugate. 
However as the line integral resulting from the integration by parts becomes un
defined (see Appendix F), the shape and weighting functions are chosen such that 
the integrals, including the line integrals, are integrable (A similar problem was 
reported by Gerdes [59]). Hence the shape functions of some of the nodes decay 
like and the others decay like Therefore the wave amplitude decays as a 
function of these two functions (see Appendix E)^. 

Results shown in Figures 6.120 and 6.121 show that for a single body diffraction 

problem, the errors are less than 0.2% but are slightly bigger than the ones using 

Type 1 infinite elements. This supports Shirron's finding [94]. The reason probably 

is that the shape function decays to zero more rapidly compared with Type 1 infinite 

elements. However, for a larger aspect ratio, Type 2 gives as accurate a result 

as Type 1 as shown in Figures 6.124 and 6.125. The disadvantage of this infinite 

element is that the element matrix is unsymmetric leading to an unsymmetric global 

matrix equation. This in turn means that more computing resources are required, 

compared to the Type 1 infinite element, to store and solve the global matrix 

equation. The Frontal solver employed in this study is slow. Other unsymmetric 

solvers, such as GMRES [23, 93], may be employed to decrease the computing time. 

^However, the most accurate infinite element can be developed by choosing different shape 
functions for the different nodes of the element so that all the shape functions decay like and 
at the same time the element line integrals remain integrable (see Appendix E). 
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The other drawback of this infinite element is that when formulating the element 
the outer boundary of infinite elements is taken as a circle. This could lead to some 
errors for problems in which this assumption can not easily be satisfied, such as 
the diffraction of waves by an array of diffracting objects. Thus a new, Type 3, 
infinite element has been developed. 

For the Type 3 infinite element the shape function is chosen to be the same as 

the Type 1 infinite element shape function so that a slower rate of attenuation of 

wave amplitude towards infinity is considered. The weighting function is adopted 

such that the radiation matrix resulting from the line integral vanishes. Therefore 

the outer boundary of the infinite element is no longer required to be a circle. This 

infinite element, therefore, offers a more general solution to the wave diffraction 

problems. The only disadvantage of this infinite element is that the element ma

trix is unsymmetric which is similar to the situation for Type 2 infinite elements. 

Figures 6.120 and 6.121 show that the errors are slightly larger than the ones by 

using Types 1 and 2 infinite elements. As the shape function is chosen to be the 

same as the Type 1 shape function, this perhaps suggests that the selection of the 

weighting function, believed to be arbitrary, can also affect the solutions. Hence 

care must be taken when applying the method to other unbounded problems. 

A drawback of all the three types of infinite elements is that the infinite element 

matrices are frequency-dependent and so the size of circumferential side (both inner 

and outer edges) of the elements must follow the usual rule of ten finite element 

nodes per wave length. This defect, as an example, is investigated for Type 1 

infinite elements as is shown in Figures 6.2, 6.11, 6.12 and 6.13. 
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7.3 Concluding remarks 

The new infinite elements presented in this thesis can now be used to solve the two-

dimensional problem of diffraction of linear water wave by objects very accurately 

and economically. They have been validated using some known analytical solutions. 

This thesis will enable researchers as well as software engineers to use the new 

infinite elements in conjunction with conventional finite elements to solve their 

unbounded wave problems easily and economically. These ideas may be applied to 

other scientific and practical unbounded problems. The following recommendations 

may be made for using and developing infinite elements: 

• Care should be taken in selecting both the shape and weighting functions for 

the infinite elements. A prior mathematical or experimental knowledge of the 

behaviour of the solution would help in this process. 

• As the infinite elements are stretched to infinity in the radial direction, the 

size of the element in the circumferential direction requires the usual rule of 

ten finite element nodes per wavelength. 

• A coarse mesh of finite and infinite elements gives good results. To get the 

best results Type 2 and 3 infinite elements should be placed at least half a 

length of the object away from it . However, this is not definitive and needs 

more investigation. 

The results presented in chapter 6 show that the new infinite elements developed 

in this thesis can be used to solve the problem of wave diffraction by objects of any 

shape with some confidence. They show that all three types of infinite elements 
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can give accurate results for a given single diffracting object with less than 1.0% 
error for solutions on the object. Type 1 would be a preferable choice in situation 
where computing resource is the main concern and the reliable solutions are only 
required for the near field. Type 2 or 3 would be preferable choices when reliable 
solutions are required both in the near and far fields. Type 3 is the most suitable 
choice for modelling any number of arrays of individual geometries, number and 
configuration of bodies very accurately. 

7.4 Further research 

Although all three types of infinite elements presented here can now be used to solve 

problems of water wave diffraction with some confidence, there remain certain areas 

which would particularly benefit from further investigation. Recommendations for 

further research are listed below: 

• The work should be extended to calculate other physical quantities of interest, 

particularly the hydrodynamic forces. This would make possible a more direct 

comparison between the numerical and experimental results. 

• Although the finite/infinite element model has been developed for gradually 

varying water depth problems, it has only been validated for constant water 

depth problems. Therefore, further investigation is required to verify the 

model for problems with variable water depth. 

• Trials should be conducted to investigate the accuracy of the solutions away 

from the diffracting objects, for all 3 types of infinite elements. 
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• A detailed comparative study is required to indicate in a wide variety of 
situations which of the infinite elements is most suitable. 

• The application of the model to non-linear wave (steep wave) diffraction 

problems is another desired area for future research. 

• Further work is required so as to employ a faster unsymmetric solver, such 

as GMRES. This would be more essential for a 3D model using Type 2 or 

Type 3 infinite elements. 

• The extension of the infinite element to three dimensions is theoretically 

straight forward. More general problems can then be tackled. The sea bed 

friction effects (linear or nonlinear) can then be considered. Furthermore, 

floating bodies, such as a ship, may also be modelled. 

• A demanding task for research would be to investigate the interaction of waves 

and current which makes the model more practical. This is mathematically 

straight forward. An extra term needs to be added to the governing equation 

(see e.g. Kirby [74]). 

• Another direction for the research would be to develop a 3D infinite element 

to include the evanescent modes as well as the propagation modes which 

would offer the possibility of smaller three-dimensional meshes of elements, 

resulting in computational economies. 

• There are many other scientific or practical problems with unbounded domain 

that can be solved using coupled finite and infinite elements, such as geo-

mechanical or aerospace engineering problems. 
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Appendix A 

Notation 

Below is a list of symbols used in this thesis. A l l the matrices and vectors are 

shown by bold symbols. Some symbols have been used to represent more than one 

quantity. 

A finite or infinite element (F / IE ) matr ix 

A wave amplitude 

Acn, Asn coefficients of the Mathieu functions 

A^^, Bji coefficients of the diffracted wave series 

a, b ellipse semi-major and semi-minor axis length 

Uij, bj element matr ix and right hand side vector entries 

Ch diffraction coefficient 

c wave celerity 

Cg wave group velocity 

cen{r},q), se„(?7, q) periodic Mathieu functions of n^^ order 

d water depth f rom the sti l l water level to the sea bottom 

e element number 

exp exponential function 

Fj, F hydrodynamic force at point j and the total force 

Ffc hydrodynamic Froude-Krylov force 

g acceleration due to gravity 

H wave height 

h interfocal distance of the ellipse 

Hn{kr) Hankel function of first kind of n^^ order 

I j phase factor associated wi th the j t h cylinder 

i square root of -1 or node number 

J Jacobian matr ix 

| J | determinant of the Jacobian matrix 



A p p e n d i x A : Notat ion 217 

Jn{kr), Yn(kr) Bessel functions of first and second kind and of n*'' order 

K , M , R EE or IE stiffness, mass and radiation matrices 

k wave number 

L wave length 

M hydrodynamic overturning moment or number of terms 

used in series 

Mcn{i, q), Msn{^, q) radial Mathieu functions of n^^ order 

M j ( ^ ) , M i ( ^ , 77) I D and 2D infinite element mapping functions for i^'^ node 

m number of dimensions or number of nodes per element 

A'' number of diffracting objects 

A^j(^, 77), Ni{r) infinite element shape functions for i " * node 

n outward normal to the surface or number of nodes per 

element 

ne total number of elements in the finite/infinite element mesh 

, Pi P*{ri), Pi ( r ) finite element shape functions for i^^ node 

p total pressure 

hydrodynamic pressure 

q = [kh/2)'^ parameter of the Mathieu functions 

Rji distance between the centres of objects j and / 

ro radial distance between the inner node of an infinite 

element and its vi r tual source 

r, 9 polar coordinates 

T wave period 

t t ime 

u, V, w velocity components in the x, y, z directions 

x,y,z Cartesian coordinates 

Xj, yj local coordinates of object j 

Z{z) wave potential depth variation function 

Wi{^, T ] ) , Wi{r) infinite element weighting functions for i * ' ' node 
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77, T]a free surface elevations (numerical and analytical) f rom the sti l l water level 

^, rj elliptical coordinates or element local coordinates 

£ error in the numerical calculation of the free surface elevation 

aji angle between Rji and positive 

LJ wave angular frequency 

Q unbounded two-dimensional (x-y) domain 

O i finite two-dimensional region circumscrbing the object(s) 

infini te two-dimensional region circumscrbing 17i 

F boundary between finite and infinite elements 

Fo boundary of diffract ing object 

Too outer boundary of infinite elements 

Fc a boundary where the field variable changes 

$ t ime dependent velocity potential 

$s t ime dependent diffracted velocity potential 

(j) t ime independent total velocity potential 

(j)i t ime independent incident velocity potential 

(j)s t ime independent diffracted velocity potential 

p water density 

V gradient operator in two or three dimensions 

01 angle of wave incidence f rom the positive x-axis 



Appendix B 

Variational Formulation for Finite 
Elements 

The weighted residuals equation for the governing equation over the Qi region is 

given by equation 4.4 as 

I I VWcCgVcpdxdy - | | w'^iJc^dxdy = 0 ( B . l ) 
ni ni 

Since the weighting function, W, is arbitrary, i t may be taken as W = dcp, so that 

the above equation is equivalent to the variational statement 

dU{(l>) = 0 (B.2) 

where 

m ) ^ \ l l {cCg{Vct>f - co'^<t>'^ dxdy (B.3) 
Hi 

Now following the procedure which was first given by Bettess and Zienkiewicz [35], 

the field variable w i l l be changed f rom the total wave potential, 4>, to the diffracted 

wave potential (pg- As a result a line integral arises which brings the incident wave 

into the formulation. As was explained in section2.4, the wave can be separated to 

the incident and scattered wave (equation (2.16)) 
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substituting this into the equation (B.3) gives 

n(< )̂ = ^ l l (cc,(V0; + (t>sf - u j ' ^ i h + 0.)') dxdy (B.4) 
ni2 

Expansion gives 

n{<P) = l l l {cc,V<j>j - u'''-^4>]) dxdy + 

(^cCgV4>l-LJ^^(l>l^ dxdy + I I {cCgV(l)iV(j),-uj^^-^cj>jcj>^ dxdy (B.5) 

where O12 is the region between Fc and F where the field variable is changed to 

(j)s. The first term involves only the known incident wave which is not subject to 

variation and thus is discarded. By theorem: 

u{Vv) = y{uv) - vVu (B.6) 

Taking u — and v = <f)s, the last term of equation (B.5) can be wri t ten as 

I I cCgV{V^f(ps)dxdy - I I (cCgV^(f)T + dxdycps (B.7) 
ni2 ni2 

As was explained in section 2.4, the incident wave is a known function which 

satisfies the wave equation and hence the last term is zero. By Green's theorem: 

/
f r ( dv du \ (udx + vdy) = Jjl^^^-g-^^d.iy (B.8) 

Taking M = — | ^ and f = f^ , the first term of equation (B.7) can be writ ten as 

// ̂ ^^^^ + = / (-^'" + ̂ '^) ^̂  '̂  
^12 Tc 

Therefore the functional for finite elements becomes: 

U{^) = / / ^ [cCg{Vct>sr-u;''jcj>l^ dxdy + / c c , ( ^ d y - ^ d x ) 
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Following the above procedure, the variational statement, equation B.2, gives 

/[{VWcCgV(Ps - u;^^4>s)dxdy = i WcCg ( ^ d y - ^ d x 
J J c J \ ox oy J 

flu ( B . l l ) 

The first integral gives the finite element matrix equation and the second integral 

brings the incident wave into the formulation. 



Appendix C 

Unsymmetric Complex Frontal 
Solver (UCFS) 

Abstract 

^ A n unsymmetric frontal solution program was presented by Hood [67, 68] to be 

used for the solution of unsymmetric matrix equations. The modified program is 

given to deal w i t h situations when the matrix entries are complex numbers. This 

arises in certain application of the finite/infinite element method to unbounded 

problems. The global node numbering of the F / I E mesh can now be in an arbitrary 

manner. Different types of elements may also be used in the mesh. The original 

program has been parameterised so that i t can be used for a mesh wi th any number 

of nodes or elements. The solver is fu l ly validated using random numbers and using 

an existing symmetric frontal solver. 

C . l Introduction 

A linear system of equations arises f rom finite element analysis as 

(C. l ) 

where A is a large matrix, X is the solution vector, b is the right hand side vector 

and m is the tota l number of nodes used in the analysis. The matrix A is a sum 

^This work was carried out as part of the PhD research under supervision of Prof. P Bettess 
and was prepared as a report for the School of Engineering, University of Durham. 



Appendix C : Unsymmetric Complex Frontal Solver ( U C F S ) 223 

of individual finite element matrices 

A = E A ^ (C.2) 
e=l 

where e is the element number and n is the total number of elements. The vectors 
X and b are also a sum of coresponding solution and right hand side vectors 

X = f^X^ b = f]b" (C.3) 
e = l e = l 

The global matrix, A, resulting from wave diffraction analysis using the finite 
elements in conjunction with the wave envelope infinite elements is unsymmetric. 
The entries of the matrix and its right hand side vector are complex numbers. 
Therefore the solver, presented by Hood [67, 68], is modified to solve this kind 
of matrix equation. A new facility was inserted into the program to deal with 
cases where node numbering is not in ascending order. The solver was first tested 
thoroughly using random numbers and also against the existing symmetric frontal 
solver. I t was then inserted into the finite infinite element wave diffraction code. 

C.2 Pre-front 

The pre-front parameters are defined and fully explained in the original paper by 
Hood [67]. Some parameters, such as mesh data or matrix entries, are generated 
by the main program. For testing the solver, these values are generated by a NAG 
random data generator. The assembly of the element matrices and the right hand 
side vectors is then done by the solver itself. 

C.3 Testing for random data 

The subroutine ABFIND is written to generate or read the element matrix and 
the right hand side vector for each element. The entries for each equation are then 
inserted into the correct location of the global right hand side vector according 
to the mesh node numbering scheme. The method of Bettess and Bettess [30 
was used to test the solver. CALLs to a NAG subroutine generate random values 
for element matrix entries and the global solution vector entries. First the global 
solution vector, X I is generated in pre-front. Then the element matrix is multiplied 
by the appropriate solution vector for the element according to the global node 
numbering of the element to get the right hand side vector. Then using this right 
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hand side vector and the element matrix, the matrix equation is solved to get the 
new solution vector X2. Different test problems were solved. The difference vector, 
D X = X2-X1, had entries around lOE-15. 

C . 4 Node numbering scheme 

The code was originally [67] written in such a way that the node numbering has to 
be in complete ascending order. As this is not practical for finite element programs 
the code was amended to work for any kind of node numbering. The only limitation 
is that the number of nodes given to the solver has to be set to the biggest node 
number used in the mesh. 

C.5 Parameterizing the solver 

The solver was set to work for only 70 nodes and 120 elements. It was desirable to 
get the solver to work for any number of nodes and elements. The code then was 
parameterised to work for any degrees-of-freedom and any number of elements. 

C.6 Complex numbers 

The entries of the element matrices and the right hand side vectors produced by 
the wave finite element program are complex numbers. Whereas the original solver 
works only for real numbers. It was necessary to modify the code to work for wave 
problems. The code was then tested for complex numbers. The procedure is almost 
the same as in section C.3. The only difference is that complex random entries for 
the solution vectors and the element matrices have to be created. Several example 
problems were solved. The difference vector DX has the entries of around (lOE-15, 
lOE-15). 

C.7 Testing against symmetric frontal solver (SFS) 

A Symmetric Frontal Solver, due to Irons [71], was already working with the wave 
program succesfully. So the final test was to insert CUFS into the main wave 
program and solve an example problem using both SFS and CUSF. The velocity 
potentials and wave elevations produced by both solvers were the exactly the same. 
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The complex unsymmetric solver given here can be inserted to other programs 
with some confidence. 

C.8 The FORTRAN code 

Note that all lines, including statments, continued lines and so on, are printed from 
the first column by LATEX. 

PROGRAM CHOOD 
C 
C***Test program for the Complex Version of P. Hood Unsymmetrical 
C Frontal Solver. 
C 
C (C) Alireza Baghbani, Peter Bettess - November 1996 
C 
C NELL : element number. 
C NBN(NELL) : Number of nodes for element NELL. 
C NCN(NELL) : Number of degrees of freedom for element NELL. 
C NOP(NELL,JMP) : Element conectivity data. 
C JMP : Varies from 1 to the number of nodes per element. 
C NE : Total number of elements. 
C NH : Total number of nodes. 
C NP : Total degress of freedom. 
C MDF(I) : number of degrees-of-freedom at node I . 
C IDF : number of degrees-of-freedom at the node. 
C NEMAX : Maximum number of elements. 
C NMAX : Maximum number of nodes. 
C NBNMAX : Maximum number of nodes per element. 
C IDFMAX : Maximum number of degree-of-freedom. 
C 
C 

INTEGER NEMAX, NMAX, NBNMAX, IDFMAX, DFMAX, NCNMAX 
C 
C***Problem dependent parameters. 
C 

PARAMETER (NEMAX=120, NMAX=200,NBNMAX=9,IDFMAX=3) 
PARAMETER (DFMAX=IDFMAX*NMAX,NCNMAX=NBNMAX*IDFMAX) 

C 
INTEGER N D l , NLP,NLR, NBN, NE, NH, IMP, JMP, MWGA, IDF, NGN 

1, NP, I , NGOD, NOP, NOPP, MDF, NTRA 
GOMPLEXne BC, R l , XX1,DXX,SK,ESTIFM 
DOUBLE PRECISION TEM, G05CAF 
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DIMENSION 
1 NOP(NEMAX,NBNMAX) ,NOPP(NMAX) ,MDF(NMAX) 
2,NC0D(DFM AX) ,BC(DFMAX) ,R1 (DFMAX) ,XX1 (DFMAX) 
3,SK(NMAX*NMAX),ESTIFM(NCNMAX,NCNMAX) 
4,NBN(NEMAX),NCN(NEMAX) 

C 
c 
C***Open the files 
C 

N D l = 1 
NLP = 9 
NLR = 4 

C 
0PEN(1,F0RM='UNF0RMATTED',STATUS='SCRATCH') 
0PEN(2,F0RM='UNF0RMATTED',STATUS='SCRATCH') 

C 
C***Channel 4 is the input channel 
C 

OPEN(NLR,FILE='hood.dat') 
C 
C***Channel 9 is the output channel 
C 

OPEN(NLP,FILE='hood.res') 
C 
C***Read in the necessary variables for test case, or bring them in from 
C the FE code. 
C 

READ(NLR,*)MWGA, NE, NH 
WRITE(NLP,6001)MWGA, NE, NH 

C 
C***Specify degrees-of-freedom for each node. 
C 

DO 11 1=1, NH 
IF(MWGA.NE.O) THEN 
MDF(I) = 1 
ELSE 

C 
C***Insert your own maximum DOF for this problem instead of 3. 
C 

MDF(I) =3 
ENDIF 
IDF = MDF(I) 
NOPP(l) = 1 
N0PP(I+1) = NOPP(I) + MDF(I) 

11 CONTINUE 
C 
C***Read in element conectivity data, or transfer it from FE code. 



Appendix C : Unsymmetric Complex Frontal Solver ( U C F S ) 227 

C 
DO 19 NELL = 1,NE 
READ(NLR,*) NBN(NELL),(N0P(NELL,JMP),JMP=1,NBN(NELL)) 

19 CONTINUE 
C 
C***Write this data to output file. 
C 

WRITE(NLP,6002) 
DO 40 NELL=1,NE 
WRITE(NLP,6007)NELL,NBN(NELL),(NOP(NELL,JMP),JMP=1,NBN(NELL)) 

40 CONTINUE 
C 
C*** Calculate total DOF, assuming DOF is equall for each node. 
C 

NP = NH * IDF 
C 
C*** Calculate DOF for each element. 
C 

DO 111 NELL = 1, NE 
NCN(NELL) = NBN(NELL) * IDF 

111 CONTINUE 
C 
C*** Initialize boundary condition and the asociated vectors. 
C 

DO 10 I=1,NP 
BC(I) = (O.ODO,O.ODO) 
NCOD(I) = 0 
R1(I) = (O.ODO,O.ODO) 

10 CONTINUE 
C 

NTRA = 1 
C 
C*** Read in initial solutions or create initial solutions using NAG 
C random data generator. 
C 
C*** Initialize nag random generator. 
C 

CALL G05CBF(0) 
TEM = l.ODO 
DO 275 IR0W=1,NP 
N = IROW 
XX1(N)= DCMPLX( G05CAF(TEM),G05CAF(TEM)) 

C READ(NLR,*) XXI(N) 
275 CONTINUE 

NELL = 0 
C 
C***Solve the equation using Complex Unsymetric Frontal Solver. 
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C 
GALL GFRONT(NEMAX,NMAX,NBNMAX,IDFMAX,DFMAX,NGNA/[AX 

1 ,NP,NH,NE,NBN,NGN,ND1,MWGA,NELL,NTRA,NLP 
2 ,N0P,N0PP,MDF,NC0D,BG,R1,SK,ESTIFM,XX1) 

G 
C*** Compare the calculated solutions with the itroduced ones. 
G 
G a) For all nodes 
G 

WRITE(NLP,6003) 
DO 15 1= 1, NP 
DXX = X X I (I) - SK(I) 
WRITE(NLP,6004)I,XX1 (I) ,SK(I) ,DXX 

15 CONTINUE 
C 
G 
G***b) element by element. 
G 

DO 37 I = 1, NE 
WRITE(NLP,422) I 
WRITE(NLP,6011) 
DO 38 J=1,NBN(I) 
IMP=ABS(NOP(I,J)) 
DXX = XXI( IMP) - SK(IMP) 
WRITE(NLP,6010)J,IMP,XX1(IMP),SK(IMP),DXX 

38 CONTINUE 
37 CONTINUE 

422 FORMAT(/72('- ')/ , 'ELEMENT NUMBER = ',15) 
100 CONTINUE 

6001 FORMAT(/ ' Problem parameters ' / 
1 , 'MWGA = ', 16/ 
3 ,'Total No. of Elements = ',16/ 
4 ,'Total No. of Nodes = ',16/) 

6002 FORMAT(/ 'ELE. NO., NO. of nodes per elemet. Node numbers ') 
6003 FORMAT(// 'Node NO. — Int. Sols. — Comp. sols.— 

lDIFFERENGE',/72('- ')/) 
6004 FORMAT(I5,5X,2D10.2,2D10.2,2D10.2) 
6007 FORMAT(10I5) 
6010 FORMAT(2I5,1X,2D10.2,1X,2D10.2,2D10.2) 

STOP 
END 

G 
SUBROUTINE GFRONT(NEMAX,NMAX,NBNMAX,IDFMAX,DFMAX,NCNMA}< 

1 ,NP,NH,NE,NBN,NGN,ND1,MWGA,NELL,NTRA,NLP 
2 ,N0P,N0PP,MDF,NC0D,BG,R1,SK,ESTIFM,XX1) 

C 
G 
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C FRONTAL ELIMINATION ROUTINE USING FULL PIVOTING 
C 
C***Reference: P.Hood, Frontal Solution Program for Unsymmetric matrices 
C ,International Journal for Numerical Methods in 
C Engineering, Volume 10, pages 379 to 399, 1976. 
C 
C***C0MPLEX*16 version of the solver. 
C 
C***(C) Alireza Baghbani, Pete Bettess NOVEMBER 1996. 
C 
C 
C 

INTEGER NEMAX, NMAX, NBNMAX,IDFMAX, DFMAX, NCNMAX 
COMPLEXne BC, R l , SK, ESTIFM 
C0MPLEX*16 EQ, PVKOL, QQ, AA 
C0MPLEX*16 FAC, PIVA, PIVOT, RHS,CZERO,CONE 
INTEGER KDEST, NK, LHED, KHED, KPIV, LPIV, JMOD 
INTEGER I , IDF, I I , IR, IRR, J, 

1 K, KG, KH, KK, KPIVR, KPIVRO, KR, KRO, KROW, KRW, KT, 
2 L, LC, LCO, LCOL, LDEST, LH, LK, LL, LPIVC, 
3 LPIVCO, 11, M, MWGA, N, 
4 NBN, NCN, NCRIT, NE, NELL, NERROR, NH, NLAST, NLASTl, 
5 NLP, NN, NODE, NP, NTRA 

INTEGER NOP, NOPP, MDF, NCOD 
DIMENSION 

1N0P(NEMAX,NBNMAX),N0PP(NMAX) ,MDF(NMAX) ,NCOD(DFMAX) ,BC(DFI\ 
2,R1 (DFMAX) ,XX1 (DFMAX) 
3,SK(NMAX*NMAX),ESTIFM(NCNMAX,NCNMAX) 
4,NBN(NE),NCN(NE) 

DIMENSION 
1LDEST(NCNMAX),KDEST(NCNMAX),NK(NCNMAX),AA(NCNMAX,NCNMAX; 
2EQ(NMAX,NMAX),LHED(NMAX),KHED(NMAX),KPIV(NMAX),LPIV(NMAX), 
3 JMOD (NMAX) ,QQ(NMAX) ,PVKOL(NMAX) 

C 
CZERO = DCMPLX(0.0D0,0.0D0) 
CONE = DCMPLX(1.0D0,1.0D0) 

C 
C PREFRONT 
C 

NCRIT = NMAX - 30 
NELL = 0 

D WRITE(NLP,400) 
IF(NTRA.EQ.O) GO TO 14 

C 
C FIND LAST APPEARANCE OF EACH NODE 
C 

NLAST = 0 
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DO 12 I = 1, NH 
DO 8 N = 1, NE 
DO 4 L = 1, NBN(N) 
IF(NOP(N,L).NE.I) GO TO 4 
NLASTl = N 
IF(NLAST.NE.NLASTl) GO TO 3 
NERROR = 1 

G WRITE(NLP,416) NERROR, N 
STOP 

3 CONTINUE 
NLAST = N 
L I = L 

4 CONTINUE 
GG WRITE(NLP,404) I , NLAST 

8 CONTINUE 
IF(NLAST.EQ.O) GO TO 12 

C 
N0P(NLAST,L1) - -N0P(NLAST,L1) 
NLAST = 0 

12 CONTINUE 
D WRITE(NLP,408) 
G WRITE(NLP,412) (N,(N0P(N,L),L=1,NBN),N=1,NE) 
D DO 315 N = 1, NE 
D315 WRITE(NLP,412) N,(N0P(N,L),L=1,NBN(N)) 
G 
G ASSEMBLY 
C 

14 CONTINUE 
LGOL = 0 
KROW - 0 
DO 17 I = 1, NH 
DO 16 J - 1, NH 
EQ(J,I) = CZERO 

16 CONTINUE 
17 CONTINUE 
18 CONTINUE 

NELL = NELL + 1 
GALL ABFIND(NEMAX,DFMAX,NGNMAX,NBNMAX 

1 ,NP,NH,NE,NBN,NCN,ND1,NELL,NLP 
2 ,N0P,NG0D,BC,R1,AA,XX1) 

N = NELL 
KG - 0 
IF(MWGA.EQ.O) GO TO 21 
DO 20 I = 1, NBN(N) 
NK(I) = NOP(N,I) 

20 CONTINUE 
GO TO 23 
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21 CONTINUE 
DO 22 J = 1,NBN(N) 
NN = NOP(N,J) 
M = lABS(NN) 
K = NOPP(M) 
IDF = MDF(M) 
DO 122 L = 1, IDF 
KG = KG + 1 
I I = K + L - 1 
IF(NN.LT.O) I I = - I I 
NK(KG) = I I 

122 CONTINUE 
22 CONTINUE 
23 CONTINUE 

C 
D WRITE(NLP,490)(NK(I),I=1,NP) 
C 
G SET UP HEADING VECTORS 
C 

DO 52 LK = 1, NGN(NELL) 
NODE = NK(LK) 
IF(LCOL.EQ.O) GO TO 28 
DO 24 L = 1, LCOL 
LL = L 
IF(IABS(NODE).EQ.IABS(LHED(L))) GO TO 32 

24 CONTINUE 
28 LGOL = LGOL + 1 

LDEST(LK) = LGOL 
LHED(LGOL) = NODE 
GO TO 36 

32 CONTINUE 
LDEST(LK) = LL 
LHED(LL) = NODE 

36 CONTINUE 
IF(KROW.EQ.O) GO TO 44 
DO 42 K = 1, KROW 
K K = K 
IF(IABS(NODE).EQ.IABS(KHED(K))) GO TO 48 

42 CONTINUE 
44 CONTINUE 

KROW = KROW + 1 
KDEST(LK) = KROW 
KHED(KROW) = NODE 
GO TO 52 

48 CONTINUE 
KDEST(LK) = K K 
KHED(KK) = NODE 
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52 C O N T I N U E 
D W R I T E ( N L P , 4 2 0 ) K R O W , L C O L 
D W R I T E ( N L P , 4 2 4 ) 
C W R I T E ( N L P , 4 2 8 ) ( K H E D ( K ) , L H E D ( K ) , K = 1 , N M A X ) 
D W R I T E ( N L P , 4 2 8 ) ( K H E D ( K ) , L H E D ( K ) , K = 1 , N P ) 
D W R I T E ( N L P , 4 3 2 ) 
D W R I T E ( N L P , 4 2 8 ) ( K D E S T ( K ) , L D E S T ( K ) , K = 1 , N C N ( N E L L ) ) 

I F ( K R O W . L E . N M A X . A N D . L C O L . L E . N M A X ) G O T O 54 
N E R R O R = 2 
W R I T E ( N L P , 4 1 7 ) N E R R O R 
S T O P 

54 C O N T I N U E 
D O 57 L = 1, N C N ( N E L L ) 
L L = L D E S T ( L ) 
D O 56 K = 1, N C N ( N E L L ) 
K K = K D E S T ( K ) 
E Q ( K K , L L ) = E Q ( K K , L L ) + A A ( K , L ) 

56 C O N T I N U E 
57 C O N T I N U E 

D W R I T E ( N L P , 4 3 6 ) N E L L 
C C W R I T E ( N L P , 4 4 0 ) ( ( E Q ( I , J ) , J = 1 , N M A X ) , I = 1 , N M A X ) 
C 
D D O 3 1 3 I = 1 , N P 
D 3 1 3 W R I T E ( ' N L P , 4 4 0 ) ( E Q ( I , J ) , J = 1 , N P ) 
D W R I T E ( N L P , 4 6 0 ) 
D D O 3 1 4 I = 1 , N P 
D 3 1 4 W R I T E ( N L P , 4 4 1 ) I , R 1 ( I ) 

C 
I F ( K R O W . L T . N C R I T . A N D . N E L L . L T . N E ) G O T O 1 8 

C 
C F I N D O U T W H I C H M A T R I X E L E M E N T S A R E F U L L Y S U M M E D 

C 
60 L C = 0 

D O 64 L = 1, L C O L 
I F ( L H E D ( L ) . G E . O ) G O T O 64 
L C = L C + 1 
L P I V ( L C ) = L 

64 C O N T I N U E 
I R = 0 

K R = 0 
D O 68 K = 1, K R O W 

K T = K H E D ( K ) 

I F ( K T . G E . O ) G O T O 68 

K P I V ( K R ) - K 
K R O = l A B S ( K T ) 
I F ( N C O D ( K R O ) . N E . l ) G O T O 68 
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IR = IR + 1 
JMOD(IR) = K 
NGOD(KRO) = 2 
Rl(KRO) = BG(KRO) 

68 CONTINUE 
G 
C MODIFY EQUATIONS WITH APPLIED BOUNDARY CONDITIONS 
C 
D WRITE(NLP,448) LG, KR 
CG WRITE(NLP,428) (LPIV(K), KPIV(K), K=1,NMAX) 
D WRITE(NLP,428) (LPIV(K), KPIV(K), K=1,NP) 

IF(IR.EQ.O) GO TO 71 
D WRITE(NLP,456) 

DO 70 IRR = 1,IR 
K = JMOD(IRR) 

D WRITE(NLP,428) K 
K H - IABS(KHED(K)) 
DO 69 L = 1, LGOL 
EQ(K,L) = CZERO 
LH = IABS(LHED(L)) 
IF(LH.EQ.KH) EQ(K,L) = GONE 

69 CONTINUE 
70 CONTINUE 
71 CONTINUE 

IF(KR.GT.O.AND.LG.GT.O) GO TO 72 
NERROR = 3 
WR1TE(NLP,418) NERROR 
STOP 

72 CONTINUE 
D WRITE(NLP,460) 
D WRITE(NLP,464) (I,R1(I), I =1,NP) 
C 
C SEARCH FOR ABSOLUTE PIVOT 
C 

PIVOT = CZERO 
DO 76 L = 1, LC 
LPIVC = LPIV(L) 
DO 74 K = 1, KR 
KPIVR = KPIV(K) 
PIVA = EQ(KPIVR, LPIVG) 
IF(ZABS(PIVA).LT.ZABS(PIVOT)) GO TO 74 
PIVOT = PIVA 
LPIVGO = LPIVG 
KPIVRO = KPIVR 

74 CONTINUE 
76 CONTINUE 

G 
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C NORMALISE PIVOTAL ROW 
C 

KRO = IABS(KHED(KPIVRO)) 
LCO = IABS(LHED(LPIVCO)) 

D WRITE(NLP,452) KRO, LCO, PIVOT 
IF(ABS(PIVOT).LT.1.0E-08) WRITE (NLP,476) 
DO 80 L = 1, LCOL 
QQ(L) = EQ(KPIVRO,L) / PIVOT 

80 CONTINUE 
RHS = Rl(KRO) / PIVOT 
Rl(KRO) = RHS 
PVKOL (KPIVRO) = PIVOT 

D WRITE(NLP,468) 
D WRITE(NLP,440) (QQ(L), L = 1, LCOL) 
C 
C ELIMINATE THEN DELETE PIVOTAL ROW AND COLUMN 
C 

IF(KPIVRO.EQ.l) GO TO 104 
KPIVR = KPIVRO - 1 
DO 100 K = 1, KPIVR 
KRW = IABS(KHED(K)) 
FAC = EQ(K,LPIVCO) 

D WRITE(NLP,480) FAC 
PVKOL (K) = FAC 
IF(LPIVCO.EQ.l.OR.FAC.EQ.CZERO) GO TO 88 
LPIVC = LPIVCO - 1 
DO 84 L = 1, LPIVC 
EQ(K,L) = EQ(K,L) - FAC * QQ(L) 

84 CONTINUE 
88 IF(LPIVCO.EQ.LCOL) GO TO 96 

LPIVC = LPIVCO + 1 
DO 92 L = LPIVC, LCOL 
EQ(K,L-1) = EQ(K,L) - FAC * QQ(L) 

92 CONTINUE 
96 Rl(KRW) = Rl(KRW) - FAC * RHS 
100 CONTINUE 
104 IF(KPIVRO.EQ.KROW) GO TO 128 

KPIVR = KPIVRO + 1 
DO 124 K = KPIVR, KROW 
KRW = IABS(KHED(K)) 
FAC = EQ(K,LPIVCO) 

D WRITE(NLP,480) FAC 
PVKOL (K) = FAC 
iF(LPIVCO.EQ.l) GO TO 112 
LPIVC = LPIVCO - 1 
DO 108 L = 1, LPIVC 
EQ(K-1,L) = EQ(K,L) - FAC * QQ(L) 
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108 CONTINUE 
112 IF(LPIVCO.EQ.LCOL) GO TO 120 

LPIVC = LPIVGO + 1 
DO 116 L = LPIVG, LGOL 
EQ(K-1,L-1) = EQ(K,L) - FAG * QQ(L) 

116 CONTINUE 
120 Rl(KRW) = Rl(KRW) - FAG * RHS 
124 CONTINUE 
128 CONTINUE 

G 
C WRITE PIVOTAL EQUATION ON DISC 

WRITE(NDl) 
1 KR0,LG0L,LPIVG0,(LHED(L),QQ(L),L=1,LC0L), 
2 KR0W,PIV0T,KPIVR0,(PVK0L(K),KHED(K),K=1,KR0W) 

DO 129 K = 1, LGOL 
EQ(K,LGOL) = CZERO 

129 CONTINUE 
DO 130 K - 1, LCOL 
EQ(KROW,L) = CZERO 

130 CONTINUE 
D WRITE(NLP,480) FAG 
CG WRITE(NLP,440) ((EQ(I,J),J=1,NMAX),I=1,NMAX) 
D WRITE(NLP,440) ((EQ(I,J),J=1,NP),I=1,NP) 
D WRITE(NLP,460) 
D WRITE(NLP,464) (I,R1(I),I=1,NP) 
G 
G RE-ARRANGE HEADING VECTORS 
G 

LGOL = L C O L - 1 
IF(LPIVGO.EQ.LGOL-l-l) GO TO 136 
DO 132 1 = LPIVCO, LGOL 
LHED(L) = LHED(L+1) 

132 CONTINUE 
136 CONTINUE 

KROW = KROW - 1 
IF(KPIVR0.EQ.KR0W+1) GO TO 144 
DO 140 K = KPIVRO, KROW 
KHED(K) = KHED(K-f 1) 

140 CONTINUE 
144 CONTINUE 

D WRITE(NLP,420) KROW, LGOL 
D WRITE(NLP,424) 
CG WRITE(NLP,428) (KHED(K),LHED(K),K=1,NMAX) 
D WRITE(NLP,428) (KHED(K),LHED(K),K=1,NP) 
C 
C DETERMINE WHETHER TO ASSEMBLE, ELIMINATE OR BACK SUBSTI
TUTE 
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C 
IF(KROW.GT.NCRIT) GO TO 60 
IF(NELL.LT.NE) GO TO 18 
IF(KROW.GT.l) GO TO 60 
LCO = IABS(LHED(1)) 
KPIVRO = 1 
PIVOT = EQ(1,1) 
KRO = IABS(KHED(1)) 
LPIVCO = 1 
QQ(1) = CONE 

D WRITE(NLP,452) LCO, KRO, PIVOT 
IF(ABS(PIVOT).LT.1.0D-08) WRITE(NLP,476) 
Rl(KRO) = Rl(KRO) / PIVOT 

C 

C 

C 

WRITE (NDl) 
1 KRO, LCOL, LPIVCO, LHED(l) , QQ(1), 
2 KROW, PIVOT, KPIVRO, PVKOL(l) , KHED(l) 

CALL BACSUB(NMAX,DFMAX,NCNMAX 
1,NP,NH,ND1,NLP,N0PP,MDF,NC0D,BC,R1,SK) 

400 FORMATC Node NLAST') 
404 F0RMAT(1X,2I5) 
408 FORMAT(/ / ' Nodal Numbering'/) 
412 FORMAT(9I5) 
416 FORMAT(/ ' NERROR = ' , I5//I5, 

1 ' The element has more than one node with the ' / 
2 ' same node number'/) 

417 FORMAT(/ ' NERROR = ',15// 
1 ' The difference NMAX - NCRIT is not suflficiently large'/ 
2 ' to permit the assembly of the next element — ' / 
3 ' either increase NMAX or lower NCRIT'/) 

418 FORMAT(/ ' NERROR = ',15// 
1 ' There are no more rows fully summed, this may be due to —' / 
2 ' 1. Incorrect coding of NOP or NK arrays ' / 
3 ' 2. Incorrect value of NCRIT. Increase NCRIT to permit ' / 
4 ' whole front to be assembled'/) 

420 FORMAT(/ ' KROW = ',15,' LCOL = ',15/) 
424 FORMAT(/ ' KHED LHED ') 
428 FORMAT(2I6) 
432 FORMAT(/ ' KDEST ',' LDEST ') 
436 FORMAT(/ ' EQ Matrix Element No. = ',16/) 
440 FORMAT(20F5.2) 
441 FORMAT(I5,20F5.2) 
448 FORMAT(/ ' LC = ',15/' KR = ',15/' LPIV ',' KPIV' / ) 
452 FORMAT(/ ' Pivotal Row = ',14,' Pivotal Column = ',14, 

1 ' Pivot = ',E16.8) 
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456 FORMAT(/ ' JMOD'/) 
460 FORMAT(/ ' Right Hand Vector'/) 
464 FORMAT(I5,E16.8) 
468 FORMAT(/ ' Pivotal Row ' / ) 
476 FORMAT(/ ' Warning - Matrix Singular or 111 Conditioned ') 
480 FORMAT(/ ' FAG = ',E16.8) 
490 FORMAT(/ ' NK(I) = ',1015) 

RETURN 
END 

C 
SUBROUTINE BACSUB(NMAX,DFMAX,NGNMAX 

1 ,NP,NH,ND1,NLP,N0PP,MDF,NC0D,BG,R1,SK) 
C 
C 
G Back substitution for ful l pivoting 
G 

INTEGER NMAX, DFMAX, NCNMAX 
G0MPLEX*16 PVKOL, QQ , BG, R l , SK, GASH, PIVOT,GZERO 

G DOUBLE PRECISION PVKOL, QQ , BG, R l , SK, GASH, PIVOT 
INTEGER KDEST, NK, LHED, KHED, KPIV, LPIV, JMOD 
INTEGER NOPP, MDF, NG0D,NP,NH,ND1,NLP 
INTEGER I , IDF, J, K, KPIVRO, KRO, KROW, 
1 L, LGO, LCOL, LPIVGO 
DIMENSION 

1 LDEST(NGNMAX) ,KDEST(NGNMAX) ,NK(NGNMAX) 
2 ,LHED(NMAX),KHED(NMAX),KPIV(NMAX),LPIV(NA/IAX), 
3 JMOD (NMAX) ,QQ(NM AX) ,PVKOL(NM AX) 

DIMENSION 
1 NOPP(NMAX),MDF(NMAX),NGOD(DFMAX),BG(DFMAX) 
2,R1 (DFMAX) 
3,SK(NMAX*NMAX) 

C 
C Back substitution 
C 

CZERO = DCMPLX(0.0D0,0.0D0) 
C 

DO 4 I = 1, NP 
SK(I) = BG(I) 

4 CONTINUE 
DO 32 IV=1,NP 
BACKSPACE N D l 
READ (NDl) 

1 KR0,LG0L,LPIVC0,(LHED(L),QQ(L),L=1,LG0L), 
2 KROW,PIVOT,KPIVRO,(PVKOL(K),KHED(K),K=1 ,KROW) 

BACKSPACE N D l 
D WRITE(NLP,404) 
D WRITE(NLP,408) KRO, LCOL, LPIVCO 
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D WRITE(NLP,408) (LHED(L), L = 1,LC0L) 
D WRITE(NLP,412) (QQ(L), L = 1, LCOL) 

LCO = IABS(LHED(LPIVCO)) 
IF(NCOD(LCO).GT.0) GO TO 24 
GASH = CZERO 
QQ(LPIVCO) = CZERO 
DO 16 L = 1, LCOL 
GASH = GASH - QQ(L) * SK(IABS(LHED(L))) 

16 CONTINUE 
SK(LCO) = Rl(KRO) + GASH 
GO TO 32 

24 CONTINUE 
NCOD(LCO) = 1 

32 CONTINUE 
D WRITE(NLP,416) 

DO 36 L = 1, NH 
J = NOPP(L) - 1 
IDF = MDF(L) 

D WRITE(NLP,420) L, (SK(J+I), I = 1, IDF) 
36 CONTINUE 

404 FORMATC Tape Contents') 
408 FORMAT(10I5) 
412 FORMAT(5E16.8) 
416 FORMATC Results') 

C 420 F0RMAT(I5, 6E18.9) 
420 F0RMAT(I5, 12F7.2) 
RETURN 
END 

C 
SUBROUTINE ABFIND(NEMAX,DFMAX,NCNMAX,NBNMAX 

1 ,NP,NH,NE,NBN,NCN,ND1,NELL,NLP 
2 ,N0P,NC0D,BC,R1,ESTIFM,XX1) 

C 
C Routine to give an element matrix, fixed bondary 
C condition and force vector (rhs). 
C 

INTEGER NEMAX, NBNMAX,DFMAX, NCNMAX 
C0MPLEX*16 BC, R l , ESTIFM,XX1,TXX1 
INTEGER NOP, NCOD 
INTEGER NP,NH,NE,NBN,NCN,ND1,NELL,NLP 
DOUBLE PRECISION HARVEST, G05CAF 
INTEGER IROW, JCOL 
DIMENSION 

rNOP(NEMAX,NBNMAX),NCOD(DFMAX),BC(DFMAX) 
2, R1 (DFM AX) ,XX1 (DFMAX) ,TXX1 (DFMAX) 
3, ESTIFM(NCNMAX,NCNMAX) 
4, NBN(NE),NCN(NE) 
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C 
HARVEST = l.ODO 

C 
C*** Initialize nag random generator. 
C 

CALL G05CBF(0) 
C 
C***Process all columns and rows. 
C 

DO 200 IROW = 1, NCN(NELL) 
DO 100 JCOL = 1, NCN(NELL) 

C 
C***Generate random element matrix using NAG. This will be calculated by 
C the FE codes as well as right hand side vector, when inserting the 
C the solver as a subroutine to the FE program. 
C 

ESTIFM(IROW,JCOL) = DCMPLX(G05CAF(HARVEST),G05CAF(HARVEST)) 
C 

100 CONTINUE 
200 CONTINUE 

C 
DO 260 IR0W=1,NCN(NELL) 

C 
N = ABS(NOP(NELL,IROW)) 

C 
C*** Store corresponding solution for this element in a vector. 
C 

TXXl( IROW) = X X I (N) 
C 

260 CONTINUE 
C 
C***Multiply element matrix by the initial solution vector to get the 
C right hand side vector, BC() 
C 

CALL MATMUL(ESTIFM, NCNMAX, TXX1,NCNMAX , EC, NCNMAX, 
NCN(NELL) 

1, NCN(NELL)) 
C 
C*** Assemble the right hand side vector. 
C 

DO 265 IR0W=1,NCN(NELL) 
N = ABS(NOP(NELL,IROW)) 
R1(N) = R1(N) + BC(IROW) 

265 CONTINUE 
C 
C*** Set NCOD(I) to unity if node I has fixed boudary condition. 
C 
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D WRITE(NLP,6001)NELL 
C DO 11 IR0W=1,NCN(NELL) 
C IF(BC(IROW).NE.O.dO)NCOD(IROW)=l 
C 11 CONTINUE 
C 
C 6001 FORMAT(//'Element Number = ',15) 

RETURN 
END 
SUBROUTINE MATMUL(A, lA, B, IB, C, IC, L, M, N) 

C *** Subroutine MATirx MULtiplication 
C ***(c) Peter and Jacqueline A. Bettess, 1986 
C 
C PURPOSE : 
C Post multiplies matrix A by matrix B to give matrix C. 
C 
C HISTORY : 
C Written June 1986. 
C Modified by Christine Barbier, August 1989. 
C Modified by Alireza Baghbani, October 1996 
C (B and C are column vectors). 
C 
C ARGUMENTS IN : 
C 
C A : Matrix A. 
C lA : First dimension of matrix A. 
C B : Matix B. 
C IB : First dimension of matrix B. 
C IC : Number of rows in C. 
C L : Number of rows used in A and C. 
C M : Number of columns used in B and C. 
C N : Number of columns used in A and rows used in B. 
C 
C ARGUMENTS OUT : 
C 
C C : Product matrix, C = A * B 
C 
C 

C0MPLEX*16 A, B, C 
INTEGER lA, IB, IC, IL, IN, L, M, N 
DIMENSION A(IA,IA) , B(IB), C(IC) 

C 
C***process rows in A and C 
C 

DO 30 IL = 1, L 
C 

C(IL) =(0.0D0,0.0D0) 
C 
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C***form inner product 
C 

DO 10 IN = 1, N 
C(IL) - C(IL) + A(IL,IN) * B(IN) 

10 CONTINUE 
30 CONTINUE 

RETURN 
END 

C.9 Test Example 

A test example is solved. The mesh data is read from a data file which consists 
of 3 elements and 17 nodes. Each node is assumed to have 1 degree-of-freedom. 
The initial solution vector and the element matrix entries (all complex numbers) 
are generated by NAG random data generator. The node numbering is not in a 
complete ascending order. The total number of nodes is set to the bigest node 
number in the mesh (=27). Two types of elements are used in the mesh (8-node 
and 9-node elements). The solution produced by the solver and the difference with 
the introduced ones are given element by element. 

Example data file: 
1 3 27 
8 1 2 3 9 15 14 13 7 

9 3 5 6 12 18 17 15 9 11 

8 13 14 15 21 27 26 25 19 

Results: 
Problem parameters 
MWGA = 1 
Total No. of Elements = 3 
Total No. of Nodes = 27 

Element number 

NO., Node NO. -

1 
Int. Sols. Comp. Sols. Difference 
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1 1 .80D+00 .23D+00 .80D+00 .23D+00 .14D-14 -.23D-14 
2 2 .37D+00 .23D+00 .37D+00 .23D+00 -.32D-14 -.14D-14 

3 3 .88D+00 .47D-01 .88D+00 .47D-01 -.89D-15 -.21D-16 
4 9 .35D+00 .49D+00 .35D+00 .49D+00 .56D-16 .28D-15 

5 15 .90D+00 .43D+00 .90D+00 .43D+00 -.lOD-14 .17D-14 

6 14 .40D+00 .62D+00 .40D+00 .62D+00 -.56D-15 .21D-14 

7 13 .39D-01 .23D-01 .39D-01 .23D-01 .40D-15 -.12D-14 

8 7 .64D+00 .69D+00 .64D+00 .69D+00 .12D-14 -.llD-15 

ELEMENT NUMBER = 2 
NO., Node NO. Int. Sols. -

1 3 .88D+00 .47D-01 
5 .39D-01 .58D+00 
6 .95D+00 .62D+00 
12 .89D-01 .54D-01 
18 .64D+00 .45D+00 

6 17 .24D+00 .62D+00 
7 15 .90D+00 .43D+00 
8 9 .35D+00 .49D+00 
9 11 .78D+00 .87D+00 

Comp. 
.88D+00 
.39D-01 
.95D+00 
.89D-01 
.64D+00 
.24D+00 
.90D+00 
.35D+00 
.78D+00 

Sols. — 
.47D-01 
.58D+00 
.62D+00 
.54D-01 
.45D+00 
.62D+00 
.43D+00 
.49D+00 
.87D+00 

Difference 
.89D-15 -.21D-16 

.15D-14 

.40D-14 

.28D-15 

.16D-14 

.14D-15 
-.lOD-14 
.56D-16 

.llD-15 

.17D-14 

.lOD-14 
-.28D-15 
.26D-14 
.17D-14 
.28D-15 

-.29D-14 -.48D-14 

ELEMENT NUMBER = 3 
NO., Node NO. Int. Sols. — Comp. Sols. Difference 

1 13 .39D-01 .23D-01 .39D-01 .23D-01 .40D-15 -.12D-14 

2 14 .40D+00 .62D+00 .40D+00 .62D+00 -.56D-15 .21D-14 

3 15 .90D+00 .43D+00 .90D+00 .43D+00 -.lOD-14 .17D-14 

4 21 .60D+00 .46D+00 .60D+00 .46D+00 .44D-15 -.61D-15 

5 27 .93D+00 .44D+00 .93D+00 .44D+00 -.18D-14 -.12D-14 

6 26 .82D+00 .62D+00 .82D+00 .62D+00 .22D-15 -.78D-15 

7 25 .24D-01 .71D+00 .24D-01 .71D+00 -.97D-16 -.89D-15 

8 19 .86D+00 .13D+00 .86D+00 .13D+00 .36D-14 .15D-14 



Appendix D 

Some Useful Functions 

There are some functions that satisfy the wave equations and the relevant boundary 
conditions for some simple shape of the diffracting objects. Some of these are used 
in chapter 3 to give the analytical solutions for the problem. Al l these functions 
need to have two certain characteristics to describe the physical behaviour of wave 
propagation. They have harmonic (sinusoidal) behaviour and decay as they travel 
outwards from the pole. Therefore these functions are a function of cos or sin 
functions 

W{r) — /(cos(r)) or W{r) = g{sin{r)) (D.l) 

or a combination of / and g. The solutions for the wave equation and its boundary 
conditions are complex for real values of r. An example of the complex function is 

cos(r) + sin{r) and its plot is given below: 

Figure D . l : solid line is cos(r) and dashline is sin{r)) 
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The waves travel outwards and decay to zero at infinity due to media damping. 
The decay or damping function varies depends on the material in which the waves 
travel and the dimension of the problem. Plots of two example functions are given 
below: 

0.6^ \ 
\ 

0 . ^ ' 

0.4 

o.a-

0.3h 

\ 
\ 
\ 

1 \ 
\ 

\ 

20 40 60 80 100 
r 

Figure D.2: solid line is 1/r and dashline is l / \ / r ) 

So another term has to be added to the wave function giving 

W{r) = f{r)d{r) (D.2) 

Plots of two example functions are given below: 

100 

Figure D.3: solid line is cos{r)/r and dashline is sin{r)/r) 

From the literature we can find some functions that behave as above. Some 
of them are Bessel, Hankel and Mathieu functions. Bessel and Hankel functions 
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0.4-

0.2 

-0,+ 

Figure D.4: solid line is cos{r)/y/r and dashline is sin{r)/^/r) 

satisfy the wave and boundary conditions when the solid boundary has a circular 
cross section. Mathieu functions satisfy these equations when this is an ellipse. 
They are given in standard text books (see e.g. Abramowitz and Stegun [1]). A 
brief description of these functions and their plots is given here for easy access as 
well as visual understanding of the wave functions. 

D. l Bessel functions 

The Bessel function of the first kind of order n is one of above mentioned functions 
(Abramowitz and Stegun [1], page 227) 

oo _ - | m „ 2 m 

for large value of r this gives (Abramowitz and Stegun [1], page 228) 

Ur) ^ y ^ c o . ( r - - ^ ) (D.4) 

The Bessel function of the second kind of order n is one of the other functions 
that satisfy the requirements (Abramowitz and Stegun [1], page 238) 

K(a;) = -r^—\Jn{^) cosnTT - J-„(a;)l (D.5) 
sinn-K 
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0.8H 

o.a-. 

- 0 . + 

Figure D.5: Bessel function of the first kind of order 0 and 1 (solid line is Jo, 
dashline is Ji) 

D.2 Hankel functions 

As was mentioned above, the solutions for wave equations are complex for real 
values of r. For this reason a linear combination of Bessel functions of the first and 
second kind is used as 

(D.6) 

where H^^ are called Bessel functions of the third kind of order n or the first 
Hankel functions of order n. 

As can be seen from Figure D.8, the absolute value of the first Hankel function 

of zero order decays like ^l^firr. 

D.3 Mathieu functions 

Mathieu functions satisfy the wave equation and the boundary conditions when 
the difi'racting body has an elliptical cross section. The mathematical properties 
of these functions are given by Abramowitz and Stegun ([1], page 721-744). Plots 
of these functions are given below: 
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0.5h 

Figure D.6: Bessel function of the second kind of order 0 and 1 (solid line is Yq, 
dashline is Yi) 

o.a-

0. 6f-

0.4H 

o.a-

Figure D.7: Hankel function of the first kind of order 0- solid line the real and 
dashline is the imaginary part 
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Figure D.8: Solid line is \H^^^\ and dash line is 2/^/^rr 
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Figure D.9: Even Periodic Mathieu Functions (ce), order 0-5, g = 1 

i I ! • \ 

io" 2C' jo° >co' '̂ :c° son rĉ  =ĉ  

Figure D.IO: Odd Periodic Mathieu Functions (se), order 0-5, (j 
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Figure D . l l : Radial Mathieu Function of the first kind (Mc^^^) 

Figure D.12: Derevetive of the Radial Mathieu Function of the first kind 
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qv25 

Figure D.13: Radial Mathieu Function of the second kind (Ms^^^) 
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Figure D.14: Radial Mathieu Function of the third kind {Ms^^^) 



Appendix E 

A Note On the Construction of 
Infinite Element Shape Functions 

The construction of an infinite element shape function was explained in section 
5.3. As was explained there, the diffracted wave amplitudes for 2D problems decay 
approximately as l / \ / r . In that section, it was concluded that in using a quadratic 
polynomial as a parent shape function in the infinite direction, the amplitude decay 
of ^ was achieved. Therefore the base function was multiplied by a factor of ^/r to 
achieve a decay of Now consider shape functions of a quadratic one dimensional 
finite element (Figure 5.1). 

Pi(0 = - 0 . 5 ^ ( 1 - 0 

^2(0 = (1 + 0 ( 1 - 0 

^3(0 = 0.5^(1 + 0 (E-1) 

The finite to infinite geometry mapping is given by equation (5.11) as 

e = 1 - ^ (E.2) 
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Substituting this into equation (E.l) gives 

r 

r r 
4ro ^ 4 r | 

2 

P 3 ( r ) - l - ^ + ^ (E.3) 
r 

Now if Pi or P2 is taken as the base function, then an appropriate infinite element 
shape function may be achieved by multiplying the finite element shape function 
by a factor of -y/r, giving 

Af(r) = P(r )v / f (E.4) 

where A''(r) is the infinite element shape function. However, if P3 is taken as the 
base function, then an appropriate infinite element shape function may be achieved 
by multiplying the finite element shape function by a factor of r"^/^, giving 

N[r) = P{r)^ (E.5) 

Equations (E.4) and (E.5) are the base functions for Type 1 and Type 2 infinite 
elements respectively. Therefore, in using either of the infinite elements, only some 
of the shape functions decay as 

Perhaps, the most accurate method would be to use different factors for diff'erent 
nodes so that all the shape functions of the infinite element decay like A 
similar procedure was employed by Astley tt al [7] to explain the calculation of the 
radiation matrix for Type 1 infinite elements. However, in the above reference's 
formulation a troublesome term, an exponential term of the form expi2A;r, appears 
in the formulation. This term becomes undefined as r tends to infinity. The 
upper limit of the integral was ignored to overcome this problem. Although the 
results produced by this method are very satisfactory, there is no mathematical 
justification for this. Fortunately, in using the the wave envelope approach the 
troublesome term disappears from the formulation thus giving the most accurate 
and mathematically justified infinite element. 

By adding the harmonic term (see section 5.3.2) and applying the finite and 
infinite element compatibility criteria (see section 5.3.3) the final shape function 
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for the Type 2 infinite element would then become 

N(r) = P(-y^^expik{r-ro) (E.6) 
r 



Appendix F 

Radiation Matrix for Pre-Type 2 
Infinite Element 

A natural way of developing wave envelope mapped infinite elements for wave 

diffraction problems seems to be to use the usual mapped infinite element shape 

function as its shape function and the complex conjugate of it as the element weight

ing function (this element termed here as Pre-Type 2 infinite element). However, 

these shape and weighting functions lead to undefined radiation matrix integrals 

which are explored below. 

Consider the radiation matrix, equation (5.34) 

I W^cc.^dF (F.l) 
re 

oo 

The usual mapped infinite element shape function is given by equation (5.22) as 

N{r) = P i - f l ^ exp ik{r - r^) (F.2) 

Using the wave envelope approach the weighting function is the complex conjugate 

of the shape function so that 

Wir) = F ( - ) ^ / 2 exp -ik{r - r,) (F.3) 

1̂  in equation (F.l) is given by equation (5.55) as 

dN ON (dP P ..r^frVl^ s 
— ft; — = — + — + — exp ik{r - ro) (F.4) 
dn dr \dr 2r / Vro/ 
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where P is the finite element shape function and this for the nodes which are 
located at the infinite edge of the element can be written as 

p=p*{n)p:{i) (F-5) 

where P* is the finite element shape function for a quadratic line element in the 77 
direction given by equation (4.36) and P3 is the finite element shape function for a 
quadratic line element in the ^ direction (i.e. shape function for node 3 in Figure 
5.1). -P3 is therefore 

P;(0 = 0.5^(1 + 0 (F.6) 

Substituting finite to infinite geometry mapping equation (5.23) to this gives 

F"(r) = l - ^ + ^ .(F.7) 

and its derivative as 

3rn 2r, 

dP" ^ 3ro 4rg 
dr 

(F.8) 

The equation (F.5) can be rewritten as 

P = P*{ri)P\r) (F.9) 

and similarly equation (F.3) can be rewritten as 

Wir) = p*FHLfn exp -ikir - r^) (F.IO) 

and equation (F.4) as 

dN dN ^JdP" P" w A / r - y ^ ' w ^ ^ — = P* + +ikP - expzA;r- ro dn or \ dr 2r J Vro/ 
( F . l l ) 

Substituting equations (5.44), (5.47), (F.7), (F.8), (F.IO) and ( F . l l ) into equation 

(F. l) gives 

+1 
R = 

-1 
/ P * r [ - r 2 + ( - ^ - 62k)r + 13ikro]P*f{v)dv (F.12) 
J ro 2ro 

where f{r])dr] — dd as given in equation (5.47). At infinity r tends to infinity and 
therefore the line integral is undefined. The same result was achieved by calculating 
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the line integrals using Maple mathematical software. 


