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CP^ model on a sphere and on a torus 
Ramon Jose Cova Cova 

Ph.D. Thesis, 1997 

Abstrac t 

The work in this thesis is concerned wi th the numerical study of some 

stabili ty and scattering properties of two CP^ models in three dimensional 

space-time: The non-linear 0 (3 ) model and its modified Skyrme version. 

Chapter 3 focuses principally on the Skyrme model on compactified plane, the 

topological sphere. Such model is obtained by supplementing the ordinary 

0 (3 ) lagrangian w i t h both a Skyrme term and a potential term which, in 

the present work, has a rather general form. Under the numerical simulation 

the skyrmions behave stably and scatter either back-to-back or at 90° to the 

in i t i a l direction of motion, depending on the in i t ia l velocity. In the 0 (3 ) l i m i t 

the solitons are no longer stable and scatter at 90° irrespective of the speed. 

In the four th chapter the 0 (3 ) model is studied on a flat torus. Its solitons 

exhibit the usual instability but can be stabilised by the sole addition of a 

Skyrme term to the lagrangian. Scattering at right angles is observed in all 

cases considered, including skyrmions colliding at speeds that would bounce 

them back were they evolving in compactified plane. The periodic 0(3) 

model has no analytic solutions of degree one, so when a field configuration 

that resembles a single soliton is numerically evolved, i t shrinks to become 

inf ini te ly th in . Interestingly, such ansatz may be regarded as a soliton of unit 

topological charge in the context of the periodic skyrmion model. Chapter 5 

closes w i t h a summary and suggestions for future research. 
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Chapter 1 

Introduction 

Elementary particles are described by fields which obey relativistic wave 

equations. These fields have basic properties that follow f rom a postulated 

invariance of the wave equations under certain groups of transformations, the 

symmetry groups. Examples of these symmetries are the independence of the 

laws of physics f r o m the origin of t ime and f rom the position and orientation 

of laboratories in ordinary space. Invariance of the wave equations under the 

groups of t ime and space translations and rotations leads to conservation of 

energy and momentum and angular momentum. 

The most important invariance principle in quantum field theory (QFT) 

is the principle of relativity, which imposes that the equations of motion 

be invariant under the proper orthochronous Poincare group. Wave fields 

are assumed to belong to representations of this group; their space-time 

geometrical nature is thus determined and the fields can only be spinors or 

tensors under the Poincare group (scalars and vectors being tensors of order 
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zero and one, respectively). 

I n addition to their Poincare geometrical nature, there exists a rich variety 

of fields which may be spinors or tensors wi th respect to certain symmetry 

groups related to internal quantum numbers like isospin, flavour, colour, 

etc.. These internal degrees of freedom result f rom the invariance of the 

wave equations under the so-called gauge transformations which act on the 

(gauge) field regarded as an entity in an internal space, such as the group 

SU{2) of phase operator transformations of isospinors. One should bear in 

mind that, whereas the Poincare invariance of the equations of field theory 

is universal, invariance under internal symmetry groups (gauge groups) is 

obeyed by specific models, e.g., quantum chromodynamics (QCD), a SU{3) 

gauge theory that describes the strong interactions. Internal symmetries can 

also be approximate, as in fiavourdynamics. 

Gauge fields play a fundamental role in most unification models, schemes 

where the nuclear interactions are analogous to quantum electrodynamics 

(QED) but w i th consideration to the specific characteristics of a non com

mutat ive gauge group. Such a prosperous idea was introduced by Yang and 

Mil l s ( Y M ) in 1954 [4]. The u t i f i ty of gauge fields lies chiefly in their abihty 

to express underlying relations among forces that appear superflcially to be 

quite distinct. Example of an unification model is the standard model (SM), 

whose gauge group is 5(7(3) x 5/7(2) x U{1). Roughly, the SM is based on 

six leptons and six accompanying quarks in three separate levels of energy 

(generations). I t amalgamates strong interactions, electro-weak theorj ' and 

classical gravitational interactions. The forces reponsable for these interac

tions are transmitted by another set of particles, the gauge bosons (a modern 
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version of Yukawa's bosons). Despite its success, the SM is considered incom
plete since i t has many arbitrary parameters: In its simplest version there 
are over 20, including particle masses and strength of forces. This might be 
an indication that the model is carrying a bit too much baggage. 

Of utmost importance for the formulation of unification models is the 

Higgs mechanism [5, 6] of mass generation for the weak bosons -PF^, by 

siDontaneous symmetry breaking. This phenomenon occurs when the basic 

states of a given system do not enjoy a symmetry of the associated lagrangian. 

The Y M theory did not receive much attention at first, and i t was the dis

covery of the Higgs mechanism in 1966 that awoke interest in i t . 

U n t i l not so long ago, the only means for obtaining numerical quantities 

in field theory was the method of perturbations. This method gives excellent 

results in QED but i t is less useful in low-energy QCD due a to a rising 

coupling constant. Over the past years, however, the development of Y M 

theories has given rise to a promising alternative area of research: Classi

cal non-linear equations that admit non-dissipative non-singular solutions 

of finite total energy; lump-like structures that propagate without diffusion. 

These entities, generically referred to as solitons owing to their 'solitary 

wave' and particle-like behaviour allow to model complicated phenomena 

which lie beyond the scope of linear description. The properties of solitons 

i n the quantum version of these schemes are not analysed through a stan

dard perturbative approach, but via an expansion which is a generalisation 

of the famil iar W K B method in field theory. In this expansion, the quantum 

solitons receive their leading contributions f rom their classical counterparts, 

around which the fluctuations are quantised [7]. 
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The existence of solitons is quite special, since in most equations disper
sion elfects would lead to the breakup or coflapse of a lump. Solitons only 
emerge f r o m equations where diffusion and non-linear effects exactly balance 
each other, permit t ing the travelling lumps to conserve their ini t ia l integrity 
as i f the medium were linear and dispersionless. Furthermore, unlike most 
non-linear theories, the theory of solitons possesses the linear-Hke feature 
whereby two solutions can be combined to produce a th i rd one. Not unnat
urally, the localised nature of soliton-bearing systems, resembling extended 
objects w i t h finite energy such as might be the classical l imi t of hadrons, 
make them candidates to describe elementary particles. Noteworthy is the 
fact that solitons appear i n most theories wi th spontaneous symmetry break
ing. 

The theory of solitons brings together many branches of mathematics, 

v.gr.., topology, differential geometry, group theory and complex analysis. I t 

has applications in many sub-fields in physics, including nuclear and particle 

theory, condensed matter, hydrodynamics and optics. In biophysics solitons 

arise in the description of D N A and protein dynamics [8]. Soliton theory 

illustrates the interaction between physics and mathematics, of how one is 

drawn f r o m one subject to understand the other [9]. I t brings new insight to 

research in technology, affecting related concepts of noise figure degradation 

and information entropy increase. In communication theory, for example, 

the possibility of transmitt ing optical signals over vir tually unlimited lengths 

using soliton-pulse propagation augurs well, and i t certainly checks previous 

engineering knowledge. Much research has been done, and continues today, 

on system topologies, management and communication protocols for solitonic 
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fiber-optic networks, the promised communication highways of the future 
[10]. 

The first recorded observation of solitonic behaviour was made by an 

English shipbuilding engineer on the Edinburgh-Glasgow canal i n 1834, al

though the matter was oficially reported a decade later [11]. I n 1895 Ko-

rteweg and de Vries [12] derived an equation for waves in shallow water, 

taking into account dispersion but ignoring the dissipation of energy. Known 

as K d V , the equation due to these two scientists can be writ ten as 

d d d^ 

I t has the travelling wave solution 

'̂ ' " cosh^ ^(.T — 4/c^t — .To)' ^ "'̂  

where the amplitude 2k'^ is equal to half the speed of the wave. 

For a long t ime solitons were treated as an unimportant piece of exotica 

which one encountered in two-dimensional problems of non-hnear waves. I t 

was supposed that when two such waves collided, they fel l apart; there was 

no basis for considering soliton solutions to be sufficiently general. 

But things took a turn in 1965 when Zabusky and Kruskal [13], studying 

a periodic unidimensional anharmonic lattice whose continuum hmit is (1.1), 

discovered via numerical computations that solitons were not destroyed under 

collisions; they somehow passed through one another, changing places in 

an elastic interaction. The picture was especially curious when two lumps 

collided wi th speeds vl > > v2: The fast, big lump swallows the slow, small 

one and then emits i t again. 
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The theoretical basis for these properties was found in Princeton three 
years later [14] when i t was shown that equations of the K d V type have 
an infini te series of conserved quantities in a class of multi-soliton solutions, 
described by a Schrodinger equation. In 1972 two Russians brought to light 
yet another class of non-linear Schrodinger equations, possessing these same 
properties [15 . 

One of the most powerful methods for solving KdV-l ike equations involves 

mapping the non-linear problem into an inverse linear system which resem

bles the problem of finding the potential of a Schrodinger equation f rom the 

scattering and bound-state data of its solutions, rather than the other way 

around. This procedure, known as the inverse scattering transform [16], can 

be considered as the non-linear analogue of the Fourier transform. Other 

effective techniques for constructing multi-soliton solutions are the Backlund 

transformations [17], whereby multi-solitons are generated via a recursive 

method, and the Hirota method [18], which relies on reducing the given non

linear equation to a bilinear system through a change of variables. 

Now, solitonic solutions of integrable models (those for which meth

ods of finding solutions exist) like (1.1) are constrained by the above-said 

presence of an infini te number of conserved quantities. Such models possess 

a relatively simple dynamics in which, for instance, collisions occur always 

elastically, essentially undergoing no more than a phase shift. This kind of 

models are of enormous interest in soliton theory itself and in several areas 

of science. But in particle physics, where complicated phenomena as particle 

annihilation must be accounted for, integrable models are of very l imited 

relevance. 
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The majority of integrable equations are encountered in unidimensional 
systems, the panorama presenting itself much more involved as we augment 
the dimensionality of space. In (2+1) dimensions (2 space, 1 time) for in
stance, only few integrable systems are known, and none of them enjoys the 
requisite relativistic invariance. Examples of such systems are the Davey-
Stewardson [19] and the Kadomtsev-Petviashvilli [20] equations, which are 
basically simple generalisations of familiar unidimensional equations. The 
I^adomtsev-Petviashvill equation, for example, is a two-dimensional version 
of (1.1): 

Tx^dt''^^''Tx''^d;^-''^''^ii-'' = ''-
Therefore, when the space dimensionality is greater than one, explicit 

solutions of relativistically invariant non-integrable models are mostly re

stricted to static ones and Lorentz transformations thereof. The dynamics of 

such systems is studied using numerical simulations and approximation tech

niques. Possessors of a non-trivial scattering behaviour, whereby a sohton 

and an anti-soliton can collide and annihilate each other producing radiation, 

non-integrable solitons are the ones that seem more suitable to fit into the 

framework of particle physics. 

The properties of higher dimensional solitons are closely related to the 

topological aspects of the gauge fields, instances of more abstract mathemat

ical structures known as connections in fiber bundles. Through topology we 

can usually explain the complexity of these models even without knowing the 

analytic expression of their solutions. This is superlatively important for, as 

already outlined, analytical soliton solutions are certainly not in oversupply. 
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One of the most interesting result is the appearance of conserved quantities 
having no dynamic but purely topological origin. Sohtonic entities bearing 
these so-called topological charges are frequently referred to as topologi
cal solitons. These charges invest the solitons with a stability that prevents 
them from decaying into the basic state(s), and relies on the global aspects 
of the system (its topology). Such global aspects do not depend critically 
on the self-interaction of the system, and so the circumstances that facili
tate the appearance of topological solitons in nature (where they are widely 
observed) is by large and far less restrictive than in the case of integrable 
solitons, which owe their stabihty to the local, delicate details of the govern
ing evolution equations. Such details are exigent, and so the occurrence of 
integrable solitons is scarce. 

A notable example of a topological soliton is the 't Hooft-Polyakov 

monopole (tHP) [21, 22], which dons a fresh look upon the familiar Dirac 

magnetic monopole. It appears in a whole class of models of weak and elec

tromagnetic interactions; absent in the original scheme of Weinberg-Salam, 

the tHP monopole does come about in several of its modifications, e.g., in 

the Georgi-Glashow model. 

Another important concept in soliton theory is that of instantons: Lo

calised finite-action classical solutions of the Euclidean version of the field 

equations of any given model. Classically, instantons in D Euclidean dimen

sions are essentially the same as static solitons of the same model in (-D+1) 

Minkowskian dimensions. This is basically because static solutions involve 

only the spatial coordinates, the Euclidean sub-space of Minkowskian space-

time. Consider for example one scalar field (j) in (2-|-l) dimensions with a 
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Minkowskian action given by 

S^'^ = J d t J dx dy [idtcj>)' - {d,cj>f ~ [dycj^f], (1..3) 

whose static energy denstity is 

= / dx dy [{dAf + {dym- (1-4) 

The point to note is that (1.4) possesses the same structure as the two-

dimensional Euclidean action 

S^EI = / dx, J dx [{d,<f>f + {d,<l>)\ X, = It. (1.5) 

Clearly, the solutions to (1.4) can be formally employed in the model (1.5) 

and vice-versa. Observe en passant that instantons are also localised in the 

time coordinate . 'C4, hence the name 'instanton'. 

In spite of their classical similitude, the impact of solitons and instan

tons on the corresponding quantum theory is very different: Sohtons lead 

to extended-particle states and instantons lead to tunnelling effects that can 

affect the structure of the vacuum state. The contribution of classical in

stantons to quantum effects is proportional to exp(—^^uc)) which cannot be 

substantial unless the action is finite. This and other important features of 

Minkowskian QFT can be conveniently explored through instantons. Such 

methods have been applied in, for example, the problems of a double-well 

potential [23] and a periodic potential [24 . 

Returning to the topological charge, it can be interpreted in a natural way: 

We can imagine the soliton as a subatomic particle carrying the topological 

charge as one of its constants of motion. Among the most successful models 
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which have made use of this appeahng idea is the (3-Fl)-dimensional Skyrme 
model in hadron physics [25]. It deals with an effective theory of pions and 
how to derive baryons and their interactions within such theory. Its soliton 
solutions, the skyrmions, are thought of as classical protons and neutrons 
with the conserved topological charge being the baryon number. This model, 
where just two free parameters are required, leads to qualitative results which 
are in good qualitative agreement with experimental results of nuclear physics 
26]. It is interesting to highlight that solitons in the Skyrme model appear 

directly, by construction. In contrast, solitons within the framework of grand 
unified theories come about as an offshoot: They emerge in the form of 
domain walls, cosmic strings and monopoles through the Kibble mechanism. 

In the beginnig the Skyrme model received relatively short shrift, partly 

because of the advent of QCD: The QFT-notion of a free particle described 

by a cjuantised mode of a linear equation with its interactions being described 

through perturbation theory would not give way. Nevertheless, the Skyrme 

model acquired popularity towards the end of the 70s due to speculations that 

it might serve as a link between QCD and the familiar old theory (valid in the 

low-energy regime) where the inter-baryonic forces occur via the exchange of 

Yukawa TT mesons. In this low-energy regime QCD encounters the difficulty 

of having no small parameter to describe the dynamics of quarks and gluons. 

But in the limit as the number of colours A'̂  tends to infinity, QCD reduces 

to a theory of effective mesons with interactions of order 1/N. Amazingly, 

it transpires that in such a limit baryons may be regarded as solitons of an 

effective meson theory without any further reference to their quark content 

27]. Hence the re-newed interest in the Skyrme model. 
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In 1983 the model was boosted further, when it was shown that its la-
grangian, supplemented with a Wess-Zumino term, reproduces the quantum 
numbers of baryons in QCD [28]. This latter result comes from simply elim
inating a certain discrete symmetry of the skyrmion lagrangian which is not 
a symmetry of QCD. This is most remarkable. 

A scheme that connects the Skyrme model with quarks is the so-called 

hybrid model [29]. It pictures the space in two parts: A very small volume 

with only quarks and gluons interacting perturbatively as dictated by QCD, 

and the rest, large part of the whole containing pions and skyrmions. 

The Skyrme system is just one example of a large family of non-linear 

models known as chiral or sigma models introduced in the 1960s to de

scribe y9-decay and strong interactions where topology played no role [30 . 

The baryons were no longer lumps of energy but were represented in the 

context of quantum theory as non-linear fields themselves. The calculations 

were made utilising the techniques of current algebra. 

Soliton-like structures occur abundantly in the context of sigma models. 

In the plane for instance they bear several properties in common with the 

more involved (3+l)-dimensional Y M schemes. Amongst these properties 

we have conformal invariance, spontaneous symmetry breaking, asymptotic 

freedom and existence of soliton solutions. Obtaining information about the 

quantum field theory of gauge systems in three-space, starting from classical 

solutions of the corresponding, less cumbersome, equations of low-dimensional 

analogues, is one of the ideas behind the study of sigma models. It goes 

without saying that quantum soHtons are the ones to be appHed in particle 

physics but, as mentioned earlier, they are quantised around their classical 
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counterparts. 

Sigma models are interesting by themselves. Known as harmonic maps, 

they represent a rich industry of research in pure mathematics, differential ge

ometry in particular. Besides, as we have been illustrating -and shall continue 

to do as we move on-, there is this ample spectrum of applications of sigma 

models in nature that motivates one's dedication to the subject. For exam

ple, the non-linear 0(3) model has been used in soHd state physics as the 

continrmm limit of the Heisenberg ferromagnet, and also appears to provide 

mechanisms for high-temperature superconductivity [31] and the quantum 

Hall effect [32 . 

In the present thesis we study aspects of the classical theory of two par

ticular sigma C P ' models in (2+1) dimensions: The non-hnear 0(3) model 

and a modified version of it that can be considered as a low-dimensional ana

logue of the Skyrme model in three spatial dimensions. Specifically, we are 

concerned with the stability and scattering properties of the CP^ solitons. 

Being non-integrable, the evolution in time of our CP^ systems must be done 

via numerical simulations, and so a significant proportion of our work is nu

merical. Numerical and graphical: We have included a sizable selection of 

illustrations all along our work. 

Our two CP^ models have links not only with the (3-1-1) dimensional 

skyrmion theory, but also with several other important theories in particle 

physics, like the tHP monopoles and the vortices of the abelian Higgs model. 

Our class of low-dimensional Skyrme models is similar to these extended 

entities in that parameters exist in the lagrangian which determine the size 
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of the extended structures. Moreover, these parameters possess a limit where 
the interaction forces between the particles vanish: This is the so-called 
Bogomolny-Prasad-Sommerfield (BPS) limit for the tHP monopoles and the 
0(3) hmit for the planar skyrmion model. Also, the CP^ models of our 
concern have scattering properties akin to those observed in the said (3+1) 
dimensional systems. 

In the next chapter we review some relevant mathematics for the expo

sition ahead. Using a relatively general expression for the potential energy, 

in chapter 3 we consider the Skyrme model in the usual compactified plane 

or, topologically equivalent, in the two-sphere. In chapter 4 we envisage the 

problem of both the 0(3) and skyrmion model on a torus, a rather unexplored 

format in this context. Chapter 5 closes with a summary, some conclusions, 

and our suggestions for future research. 

Hopefully, our work will be of a small contribution to applied mathemat

ics, soliton theory in particular. And it might perhaps awake some interest to 

extend it to more reahstic (3+1) dimensional scenarios, specially the model 

on the torus laid out in chapter 4. 



Chapter 2 

Soliton theory 

There are non-linear field theories that are integrable in one space-dimension, 

but all their time-dependent solutions cannot be obtained in general. And 

for typical systems in higher dimensions there is no systematic method of 

obtaining even a single non-trivial solution in an analytic form. From the 

standpoint of physics, there is the additional requirement that such theories 

must be relativistically invariant. Thus, in sohton theory we analyse static 

finite-energy configurations and try to obtain as much information as possible 

without explicitly solving the field equations. In so doing, topological tech

niques, a virial-like theorem and a relatively simple completing-the-square 

procedure are of enormous utility. The dynamics of these models is then 

studied via approximations and numerical techniques. 

14 
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2.1 Derrick's theorem 

Consider the class of Poincare or Lorentz-invariant non-hnear scalar field 

theories in a Minkowski space in (D + 1) dimensions {D space, one time): 

D 
Xf^i^X — (x ) ^ { x ' ) \ = 0,1,2,...,D. 

i=l 

And consider those systems described by a lagrangian density of the standard 

relativistic form 

a = l ^t=l 

= C{dJ).{d''$)-U{$), (2.1) 

where 

$={M^^);a = l,2,...,n} 

denotes a vector in the internal space of the fields. The function U is non-

negative and vanishes only at its absolute minima which, without loss of 

generality, we can normalise to zero. The number O is a constant adjustable 

to convenience. 

We are concerned with the possible existence of non-singular solutions 

whose energy density at a given time is finite in some finite region of space, 

and falls to zero at spatial infinity sufficiently fast as to be integrable. Such 

localised energy density has a distinctive lump-like profile usually able to 

propagate without much change in shape. The corresponding field solution is 

a soliton. One should be aware that in the scientific soli ton-community the 

soliton's energy density (the soliton-lump) is frequently dubbed a 'soliton' as 
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well (actually, by antonomasia virtually any lump is referred to as a soliton). 
We shall try to distinguish both usages in this work but, inevitably, our 
propensity to follow the semantically lax, popular trend will be manifest in 
some passages. 

Now let us look at the static situation where the energy as identified from 

(2.1) is (the static energy of this system is just its potential energy) 

V'(< )̂ = cj{dkS).{dk$)cfx + ju{^)d''x 

= Vr{4>) + v S ) . k = l,...,D, (2.2) 

in obvious notation. A static solution of the model (2.1) is an extremum 

condition 6V=0 for (2.2), which leads to the static field equation [take C = 

1/2] 

v V - i f / = 0. (2.3) 
dd 

Let (f)i{x) be a solution to (2.3) and consider the one-parameter family of 

configurations obtained by re-scaling x jx: 

$,{x) = Ul^). (2.4) 

With the help of equation (2.2) we get 

V[U^)\ = ^'-""VriUx)] + r^'vSii^)], (2.5) 

wherefrom 

^V[4>,m = (2 - D)^'-''V,[U^)] - Dr'-''V2[U^)]. (2.6) 

Since (/>I(.T) is a local extremal of V, it must in particular produce 

^V[4>^{x)] 1̂ =1= 0, 
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i.e., 

(2 - D)V,[M^)] = DV2[M^)]. (2-7) 

Inasmuch as both Vi and V2 are non-negative, equation (2.7) precludes 

the existence of non-trivial static solutions for the class of models (2.1) when 

D > 3 (time-dependent solutions are not precluded). This is the content 

of the so-called Derrick's theorem [33, 34]. It allows one to tell solely from 

the form of the lagrangian and the dimensionahty of space whether a given 

theory is a candidate for soliton solutions. If we are seeking soHtons in D > 2 

it is necessary to somehow modify the lagrangian (2.1). 

Research has therefore been carried out for different types of non-hnear 

equations with various possible values of D. We are going to examine some 

of these models below, but first let us acquaint ourselves with how topology 

steps into the soliton scene. 

2.2 Topological considerations 

One of the basic tasks of topology is to learn how to discern non homeo-

morphic figures. With this aim one introduces a class of invariant quantities 

which do not change with homeomorphic transformations of a given figure. 

The study of topological spaces is connected with the resolution of questions 

like: Can one describe a class of invariants of a given manifold?. Does there 

exist a set of integral invariants, fully characterising a given manifold?. In

tegral invariants are in their own way 'quantum numbers' of a manifold (a 

similar problem is envisaged in physics, namely, to characterise a particle 
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having given its special parameters, v.gr., spin, charge, mass). Among such 
tasks is the classification of ?^-dimensional surfaces, compact, connected, ori-
entable and 2-dimensional for example, as those we shall encounter in the 
present thesis. 

The internal degrees of freedom of the field, the soliton field, give rise to an 

internal space whose manifold (the field solutions) can define a non-trivial 

mapping onto the manifold of the 'physical' D-dimensional space. Each 

mapping can be characterised by an integral number which is a conserved 

quantity -associated with the topology of the solutions as outlined above and 

with nothing to do with Noether's theorem-. 

This type of maps is the subject of homotopy theory. Consider two maps 

/ and g from a manifold A/" to a manifold M: 

These mappings are homotopic if they can be continuously deformed one into 

the other: 

r-.jVx [ l , o ] ^ - ^ ^ ^ , 

with the continuous connecting maja T satisfying 

^ ( x , 0 ) = / ( x ) , n^,l)=g{x). 

That is, as the continuous variable t in J^[x,t) varies continuously from 0 to 

1 in the interval [0,1], the function f{x) is deformed continuously into g{x). 

Homotopy is an equivalence relation that partitions the manifold of con

tinuous maps from M to M. into equivalent classes [ / ] . A map from one 
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homotopy sector cannot be continuously deformed into another sector. Ho-
motopy classes are topological invariants of the pair of spaces above, since 
they are unchanged under homeomorphism of Af ov AA. This must be so, for 
homeomorphism is a continuous map itself. In this picture we can think of 
classical time evolution as a homotopy between initial and final state field con
figurations, and visualise [/] as the class of fields conserved as time elapses. 

A classification of topological spaces may be achieved by selecting a stan

dard 'test body' Af and permitting Ai to vary through the family of target 

spaces under study. The sphere Sn, defined by 

71 + 1 
Y^i^k)^ — constant, 
k=i 

is a usual choice for Af. Here So corresj^onds to just two points {xi — 

± constant). Si is a circle or a ring, S2 is a sphere and so on. Another 

interesting, i f less common, choice for jV is the two-torus we shall deal 

with it in chapter 4. 

Homotopy classes can be endowed with a group structure via the opera

tion [ / + g] = [ f ] + [g]. By Trn{A4) we denote the homotopy group associated 

Avith the maps Sn AA. These groups are generalisations of the first ho-

niotopy group or fundamental group 7ri(^\4): It consists of the set of classes 

of closed paths on A4 which are not homotopic to one another. Now. a 

closed path on A4 can be represented as the image of a fixed circle Af = S-i. 

The associated fundamental group 7ri(7M) is then the set of non-homotopic 

maps Si ^-^ M. By replacing the circle by the n-sphere we obtain the 

higher groups 7r„(A^). As an illustration may serve the fundamental group 

7r]^(S'2)=0, which says that on a spherical surface all closed paths are homo-
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topic and can be shrunk to a point (simple connectedness). For the two-torus 
we have 7ri(r2) — Z ® Z, signifying that there exists an infinite number of 
closed paths which are not homotopic to one another. An arbitrary closed 
path on T2 is homotopic to a path passing r times along the parallel of the 
torus and s times along its meridian, and it is labelled by the pair of integers 
{r,s). Note that a path with r = 5 = 0 is contractable to a point. The 
classes 7ri(r2) are relevant, for instance, in characterising general ring-vortex 
configurations in both Higgs and sigma models [35 . 

In the usual event when the target manifold is also a sphere, it can be 

proven that [36] : 
T^n{Sn) = Z, 
7^n{Sm) = 0, n < m , (2.8) 
7r„(5'i) = 0 , n> 1. 

The last two expressions indicate that the homotopy groups involved are 

trivial: Al l maps can be deformed one into the other. The interesting case 

when the group of homotopy classes is isomorphic to the group of integers 

Z means that each homotopy sector can be labelled by an integer: The 

topological charge. A theory with non-trivial topology is said to be stable, 

in the sense that no configuration can evolve out of its original topological 

class. 

The scenario for the expressions (2.8) often emerges in the sigma models 

from demanding that the energy of the fields involved be finite at spatial 

infinity, the localised fields playing the role of the homotopic maps. When 

D > 1 the fields must tend to the same value at spatial infinity, regardless 

of direction. Whence, the spatial degrees of freedom of the fields may be 
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regarded as a one-point compactification 

U {00} = SD, (2.9) 

leading to the maps 

SD ^ Sm. (2.10) 

The homotopy classification is valid for any localised static field configura

tion (the set of which spans the so-called configuration space). The same 

classification holds for localised solutions all right (moduli space), as they 

are subsets of finite-energy configurations. 

In connection with the 0(3) model in (2+1) dimensions we shall study 

the case 5*2 S2 in chapter 3. The pre-image two-sphere comes from 

compactifying 5?2 U {00} = S2 and the target two-sphere is the internal 

manifold where the 0(3) fields live. The associated homotopy classification 

is given by (2.8): 7r2(.S2) = Z. 

At the centre of our interest also hes the CP^ model with periodic bound-

ciry conditions, where the solitons are maps T2 S2. Here, one no longer 

requires a one-point compactification procedure since the system is situated 

in a finite volume from the outset (in this sense, the toroidal model looks 

more physical than the one on the sphere). With regards to the homotopy 

classification of the toroidal model, it is known [37] that the topological index 

associated with T2 t-^ <S'2 is given by the integers excluding ± 1 , meaning that 

the model on the torus possesses no single-sohton solutions. 

In any of the above cases the topological index Q can be computed using 

the expression 

Q = (constant) j {<j)*w), (2.11) 
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where 4>*w is a suitable volume-form on Af. The mapping 

(f>* -.Ad^^M 

is the pull-back map [38] induced by 

<f>:Af^M. 

The constant in (2.11) normahses Q to an integer. Further insight into the 

topological charge, usually called the Brouwer degree in pure mathematics, 

will be gained as we apply it to particular models as we move on. 

A large number of soliton-bearing models can be conveniently considered 

in the context where the target manifold has the structure of a coset space 

39]. The idea is to find a continuous group G of symmetries acting on the 

manifold AA in such a way that, given a point peAA, the action of G over p 

produces the whole of AA. This transitivity property is technically stated as 

ypi,P2 eA4,3g£G\ gpi = P2. 

Given this, a homomorphism between AA and G (or some related group) 

could i^robably be established. However, note that the said procedure will 

yield Ai more than once in general, the aim being to obtain it only once. The 

gist of the matter then hes on the question: When do two elements gi,g2 e G 

yield the same point p oi Ml. Observing that 

9iP = 92? 92^giP = P, 

we realise that the answer is: When 92^gi leaves p unaltered, i.e., when 

h = g2^gi e H{p), the isotropy group of p: 

H{p) = {heG I hp = p}. 
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But h = g2^gi —>• = 5̂ 1, meaning that two elements of G operate on p to 
produce the same point of M iff they belong to the same left coset of G with 
respect to H{p). Now we recall from group theory that G may be partitioned 
into disjoint cosets, with the characteristic -suitable for our objective- that 
every element of G belongs to one and only one left coset of G with respect 
to H{p). This guarantees that M will be obtained only once when acted 
upon by the coset space G/H{p). The identification we desire is then 

M = G/H{p) 

= {gH{p)\geG}, (2.12) 

description independent of the choice of p if, as usual in physics, M is ho

mogeneous. 

The manifold M can now be seen to adopt a variety of forms. Notably: 

• Grassmannian sigma-models in 211211 dimensions [40, 41]: 

SU{7n + n) 
M = 

SU{m) X SU{n) X U{1) 
Gm,n. (2.13) 

They require mn {2mn) complex (real) fields. -The case is known 

as the complex projective space CP" [41, 42, 43]: 

SU[n + 1) 
SU{n) X Uil) 
CP". (2.14) 

M 

• Sn or 0{n) sigma-models [41, 44]: The fields take values on the sphere 

Sn-ii the acting symmetry group being SO{n — 1). Given a point p 
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of the target manifold, the rotations that leave it invariant are those 
about the direction of p itself; so its isotropy group is SO{n — 1). We 
then have 

SO{n - 1) 
= Sn-i. (2.15) 

Other than giving a systematic classification of important solitonic mod

els, the coset description (2.12) permits the calculation of the associated 

homotopy groups in a relatively easy fashion. For example, using the result 

712(0/H) = 7ri(i7), valid when G is both connected [7ro(G) = 0] and simply 

connected [7ri(G') = 0], we obtain from (2.14) 

7r2(CP") = TT,{SU{7l) X Uil)) 

= 7r,{SU{n))®7r,{U{l)) 

= Mm) 
= Z [U{l) = S,l (2.16) 

a special case of (2.8). In particular, since CP^ is isometric to S2, the above 

result for n = 1 applies to 0(3) as well. These two specific models are 

essentially the same. As a generalisation for arbitrary n, however, CP" is 

more appropriate than is 0(n) , by virtue of continuing to give topological 

soliton solutions for arbitrary n in the plane. This is not difficult to infer: 

In two spatial dimensions the case 0{n > 3) produces, from expressions 

(2.10) and (2.15), S2 i-> 5'„>2- Whereupon (2.8) tells us that the associated 

homotopy group is the trivial 7r2(S'„>2) = 0, which cannot accommodate 
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topological objects. On the other hand, the non-trivial CP" result (2.16) 
holds for all n. 

Next, we briefly review some examples of soHtons in various dimensions. 

2.3 Solitons in one dimension 

The simplest models governed by (2.1) involve one single real scalar field 

dwelling in a line. An interesting example is the so-called (f)'^ theory [22, 45, 

46], which plays an important role in gauge theories. It corresponds to a 

Higgs-like function U of the form 

Ui<f>) = ^ ( ^ ^ - ^ ) ^ (2.17) 

where A, m are positive constants. 

The static equation of motion for this system readily follows from insert

ing (2.17) into (2.3). The resulting eciuation is solved by 

IT) 711T 

4>{x) = ±-j=Unh{-^l (2.18) 

solution known as the kink (by convention, the solution with the minus sign 

is frequently referred to as the anti-kink). 

Finite-energy solutions must obey the boundary conditions 

777. 
l im ^{x) ^ (2.19) 

which are the minima of the potential energy. 

The kink provides an example of sjsontaneous symmetry breaking: Its 

lagrangian is invariant under reflections (j) ^ —(f> (the internal degree of 
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freedom of the system) whereas the two fundamental states ±in/VJ. are 
not; rather, they are transformed into one another under reflections. Other 
symmetries of the kink are those involving the parity operation x —x and 
space translations x x + XQ. 

The homotopic maps for this model are the correspondence between the 

two vacuum states (^o) and the points at infinity (a 0-sphere as well). We 

have four topological classes, namely, the kink sector, the anti-kink sector, 

and the two vacua. These sectors are characterised by the pair of indices 

m m m m m ITT- -. r m in 
[ ^ ( - o o ) , ^ ( o o ) ] : [ - - ^ , - ^ ] , [ ^ , - ^ 1 , [ ^ , ; ^ ] , [ - ; ^ > Z 7 X ] -

(2.20) 

The topological index can be defined as the 'charge' 

Q = / _ % „ ( x M . , = (2.21) 

of the conserved 'current' 

lc'' = —^e,^d^cl>{x), ^^, 1^ = 0,1, (2.22) 

where e,̂ ^ is the Levi-Civita pseudotensor. We see that the topological charge 

is ± 1 for the kink and zero for the minima ±m/y/X. The system possesses 

topological stability, in the sense that a kink will not decay into either of 

the minima because it is not homotopic to any of them. Also note that 

(2.21) looks like (constant) J dc/), which is nothing but (2.11) with (j)*iu = dcf) 

a one-form. 

Even though we might not be able to expHcitly calculate the evolution 

of the system, of what happens after, say, a kink and an anti-kink collide. 
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we know that the resulting field configuration will always be within one of 
the four homotopy sectors shown above. For instance, an anti-kink coming 
from the far left and an kink apj^roaching from the far right belong to the 
Q=-l-\-l=0 class, and there will remain after the impact. 

As it actually happens, explicit solutions of the time-dependent (j)"^ model 

are not available. Its dynamics, studied through numerical simulations, in

dicate that the kinks do not retain their shapes under collisions. Also, they 

seem to repel each other when started off at rest, a characteristic present as 

well in (2-1-1) dimensional skyrmions. 

The particle-like nature of (2.18) can be further substantiated by deriv

ing an Einsteinian mass-energy formula between static and moving kinks. 

Since the model is Lorentz-invariant, travelling solutions can be obtained by 

Lorentz-transforming (2.18): 

m , , m X — vt ^ , ^, 
^„ = ± ^ t a „ h ( - ^ - ^ ) , - 1 < „ < 1 . (2.23) 

We emphasise that this solution is not what we mean by an explicit time-

dependent object derived from the ful l equation of motion, moving indepen

dently from other solutions. Now, from ecjuations (2.2) and (2.18) we get 

1 /-oo yco 

n<? )̂ = o / {d^'t>fdx+ / U{4>)dx 
m'^ 1 

= / n r (ix 
2A i - o o cosh'^^x 
2^2771^ 

(2.24) 
3A 

The energy expression for (2.23) is related to (2.24) by the mass-energy 
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formula: 

K ( ^ ) = (2.25) 
V1 — 

A schematic plot of the integrand in expression (2.24) gives a lump of matter 

positioned around x = 0, able to cruise along unscathed upon boosting. 

The (j)'^ model also illustrates what we mentioned in the previous chapter 

about solitons only steming from equations that possess a special, fine balance 

among their terms. If, instead of (2.17), we take the look-ahke {(f)^ -{- a4''^y. 

say, then no soliton solutions are produced. 

Also worthy of remark is the non-perturbative character of the kink: Since 

it is singular when A ̂  0, a QFT-like perturbation expansion in A is no longer 

feasible. As touched on in chapter 1, the quantum theory of solitons resorts 

to a semi-classical expansion that quantises around the classical solutions. 

Amongst other important models in D = 1 appear the KdV (1.1), the 

(9(3) (2.15) [47, 48] and sine-Gordon [49] systems. They are fuUy-integrable 

and have several interesting properties, v.gr.^ possession of an infinite number 

of conserved quantities, presence of inverse scattering transform and Back-

lund tranformations. 

Let us now introduce a useful procedure, first suggested in [50], for con

structing static solutions. By completing squares, the static energy for uni-

dimensional systems can be cast into 

V(<^) = ^ / J^- '^ =̂  \ /2f / (<^)]2 dx T d:,<l>^2U{<j>)dx 

= l r [d.cl> ± j2U{cf>)Y dx IF j2U{i)d<i>. (2.26) 
Z J—oo J(t(—oo) 
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Wherefore the inequality (sometimes referred to as the Bogomolny bound) 

/ ^ ( - c o ) 

which imposes a lower limit to the energy of any static configuration in a given 

homotopy sector Q. The condition for equality minimises V and occurs iff 

V(^) > I / ^ ' " ' ^/m^)dcf>l (2.27) 

5,<^ ± ^ 2 6 ^ = 0, (2.28) 

expression that is often called the Bogomolny equation. It is of first order, 

easier to solve than its parent second order equation. Upon inserting the 

quartic function (2.17) into (2.28) the field (2.18) readily follows. 

Solutions of the Bogomolny equation automatically satisfy the original 

second order equation, but the reverse is not generally true. But for the kink 

model the double implication does hold. The kink, the anti-kink and the 

fundamental states 'saturate' the bound (2.27), and all other Q-sectovs are 

empty. This feature occurs in all Poincare-invariant soliton systems in one 

dimension [51]. 

As applied to one-dimensional situations the artillery of topological tech

niques seems too simple to merit the bother. It is educational, though, to 

display such methods here, for the same ideas apply in more complicated 

scenarios in higher dimensions. 

Finally, note that from (2.6) one derives: 

-^v[$-y{x)] = (2 - D}{i - D)r''vSim + DiD + i ) 7 - 2 - ^ y 2 [ ^ i ( - T ) ] . 

(2.29) 

Taking into account that for D = 1 ecjuation (2.7) gives 

Vi[M^)] = V2[M^)]>0, (2.30) 
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we deduce 

^V[$^ix)] U=,= 2V2[M^)]>0. (2.31) 

Therefore, 7 = 1 corresponds to a minimum of the potential energy and 

hence a soliton in D = 1 is stable. Its finely-balanced scaling behaviour is 

brought forth by equation (2.5): 

V[^^ix)] = 'jVilM^)] + -V2[M^)]. (2.32) 
7 

As we shall see in the next section, the situation is entirely different in 

two spatial dimensions. 

2.4 Solitons in two dimensions 

Derrick's theorem for planar systems entails V2{^-i) = 0, in which case the 

lagrangian (2.1) reduces to 

C = C{dJ).{d^$), fi = 0,1,2. (2.33) 

An illustration is provided by the 0(4) chiral model. It consists of a real 

vector 

f={<f)oJuh,h) (2..34) 

restricted to take values on the 3-sphere S3: 

l4> = <t>l + <bkh^l; (2.35) 

summation over A;=l,2,3 understood. The model is clearly invariant under 

the 0(4) rotation group in internal space. The equation of motion that stems 
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from (2.33)-(2.35) is 

It is customary to take as the basic field the SU(2) quaternion 

(2.36) 

4>o + i<f>3 h + i<f>i J = 

(2.37) 

where TQ is the 2x2 identity matrix and r̂ . are the Pauli matrices. Laborious 

but straighforward manipulation yields 

0 
0 

(5,^).(av) 

in terms of which the lagrangian density (2.33) becomes 

>c = %id,Jd^J-% (2.38) 

with Tr denoting the trace of the matrix. 

Written in this form the invariance of the model under the so-called 

SU{2) X SU{2) chiral transformations is manifest. Since the chiral group and 

the four-dimensional rotations have the same Lie algebra, the 0(4) model is 

equivalently referred to as SU{2) chiral. Noteworthy as well is that upon 

expanding (2.38) around the vacuum, which we can take as equal to TQ , one 

obtains a lagrangian of the Klein-Gordon type: An effective meson model. 

This is in connection with our earlier remark about skyrmions springing from 

a theory of pions. Couched in quantum terminology, the pions would be rep

resented by the fluctuations of the field J around TQ . The lagrangian (2.38) 

is the starting point of the Skyrme model. 
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With regards to the homotopy of the chiral model in two spatial dimen
sions first note that finiteness of the energy compactifies the plane into the 
unit 2-sphere as per (2.10). Since the internal manifold is a 3-sphere we then 
have a trivial homotopy [7r2(;S'3) = 0] wherein no topological extended objects 
can be accommodated. 

Now, the only localised solutions to (2.38) are those corresponding to 

J being anti-hermitian [(j)o = 0], the 0(3) subspace of 0(4) [52]. In this 

case topological solitons do arise because 7r2(5'2) = Z. Consequently, one 

frequently focuses on the 0(3) model from the outset rather than on 0(4). 

An interesting modification of the chiral system is the Ward model [53], 

where we have time-dependent lumps which do not lie in general in an 0(3) 

subspace. This model is integrable but at the expense of destroying the 

relativistic invariance of the pure chiral scheme. Both trivial [53] and non-

trivial (ninety degress) [54] scattering have been observed in the Ward model. 

An important example of a soliton in two spatial dimensions is the vor

tex in the abelian Higgs model, mentioned in the first chapter as possessor of 

interesting similarities with the models dealt with in the present work. Vor

tices illustrate the mechanism for obtaining dual strings from gauge theories 

55] and, upon suitable change of semantics, the vortex system turns into the 

Ginzburg-Landau model [56] in the statistical mechanics of a superconduc

tor placed in a magnetic field. Here the magnetic flux is quantised by the 

topological charge. 

A prototype presentation of the vortex lagrangian is (note the quartic 
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kink-like potential): 

C^orie. = - ] F " ^ F ^ P -f {D^<j>nD"<i>) - ^ ( l ^ r - — ) \ (2.39) 
4 I 7] 

where ^ is a complex scalar field, Fap is the familiar electromagnetic tensor, 

Da is the covariant derivative and 777, rj are constants. The tHP mopole 

model is a non-abelian extension of (2.39). 

The procedure followed to obtain (2.31) can also be applied here. One 

finds 

^V[Ux)] 1^=1= 6 Y 2 [ ^ i ( ^ ) ] = 0, (2.40) 

unveiling the presence of zero modes. From (2.5) we further obtain 

V[U^)] = Vr[U^)l (2.41) 

confirming the scale-free nature of bidimensional sigma models. Wherefore, 

planar solitons have no preferred scale and at the expense of no energy at 

all they can alter their size under small perturbations. In this sense they are 

unstable. In particular, such instabihty occurs in the planar 0(3) model, but 

it is corrected in its Skyrme version. 

Historically interesting is the fact that in the 1960s the quantum version of 

(2.33) interpreted (f)o as the creation operator of a cr-particle and <f) designated 

a pion operator. The name 'sigma' was thus coined for most models of a 

structure similar to (2.38). The notation in terms of sigma and pion fields is 

still widely used. 
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2.5 Solitons in three dimensions 

In accordance with Derrick's theorem non-trivial static solitons in three or 

more spatial dimensions cannot exist for models based upon a lagrangian 

(2.1). Adopting a more general standpoint one can circumvent such a prob

lem, though. For instance, one can permit the interaction of the scalar field 

(f) with gauge fields, idea that leads to monopole theories. Another option is 

to stick to scalar fields, only, and add extra terms to (2.1). This latter idea 

was implemented by Skyrme [25]: He added an extra term to the 0(4) model 

in four-dimensional space-time. The Skyrme lagrangian is given by 

Cskyrme = Cr{dJ).{d''$)-C2[{dJ.d''^y + 

{dJ.dJWld'^l)], = 0,1,2,3, (2.42) 

where the real vector ^ is of the form (2.34). The constants Cj are free 

parameters which in principle can be calculated from QCD; in practice their 

values are fitted by phenomenological considerations. 

In chiral notation the above lagrangian is nowadays frequently written as 

Cskyrme = -^Tr{R,R^) + ^ r r ( [ P „ P.] [P^ P'^], P , = (5^J)J+, 

(2.43) 

where the SU{2) quaternion J is the 3-D analogue of (2.37): 

J = a{x^)To + iT.Tr{x^), K = ( T T I , 7r2, T T S ) . (2.44) 

The unitarity of J is guaranteed by the ordinary ligature on the fields: 

a^ + K^ = 1. (2.45) 
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The routine finite-energy analysis exacts that localised lumps must tend 
to an absolute minimum of the integrand of the potential [using a particular 
choice of the parameters in (2.43)] 

Vskyrme = ' j {\Tr{R,R,) + ^ T r ([P„ Pfc] [P„ Pfc]) } , J,k = 1,2,3, 

(2.46) 

at spatial infinity. Electing the 2x2 identity matrix as the vacuum, the 

finite-energy argument translates into 

lim J{x) = To, (2.47) 

which effectively compactifies 9̂ 3 to a three-sphere. At any given time, finite-

energy fields are maps J : S^,^ whose associated homotopy classification 

is dictated by 7r3(S'3) = Z. 

The topological index for this model is interpreted as the baryon number: 

Qskyrme = J B'£X, 

= 7^2 I '''''Tr{R,RkRi)d'x, (2.48) 

of the topological current [compare with (2.22)], 

= -^e^^-'TiiR.RxR^). (2.49) 

Completing the square in (2.46) we get 

-\j TrY^iR, ± ^eMRk,Ri]Vd'x T Uir^Q^kyrme, (2.50) 

the Bogomolny bound in the present case being 

Vskyrme ^ 127r'̂  Qskyrme\- (2.51) 
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The equality in the above expression occurs iff 

R,±^e,ki[Rk,Ri] = 0, (2.52) 

for which no non-trivial analytic solutions have been found. Its simplest 

numerical solution corresponds to a quaternion J of the form 

J{x) = cos[/( |f I)] + (2.53) 

where the profile function /(|.'?|) is subject to /(O) = T T and /(oo) = 0. It sets 

the skyrmion energy to the value 1.232 x 127r̂ , which exceeds the minimal 

energy in (2.51) [57]. Some scholars [58, 59] have been able to produce a 

value of Vskyrme closer to the minimal value by using instanton holonomies 

to generate skyrmion fields. So, the approximate solution (2.53) is a local 

minimum rather than an absolute one. 

The first application of skyrmions in nuclear physics was the extraction of 

a nucleon-nucleon interaction energy of separated Q = 1 lumps [60, 61], idea 

later extended to Q = 2. The deuteron for instance, being the simplest nu

cleus, has been described as a quantised two-skyrmion by a number of people, 

using very particular approximations [62, 63, 64, 65]. As commented in the 

prolegomena, the i-esults extracted from the Skyrme model are in qualitative 

accord with reality [66]. Approximate skyrmions on a cubic lattice belonging 

to (5=3,4,5,6 have been reported in [67]. And more recently, high-technology 

multi-skyrmion scattering has been investigated using an economical approx

imation based on a solution of the sine-Gordon type [68]. 

The evident progress that has been made in deriving multi-configurations 

in three spatial dimensions bodes well for the longevity of the model, but still 
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the multi-skyrmion problem is very hard to attack. Analytical solutions even 
for the simplest single-soliton case are not available. 

Consequently, one is naturally led to investigate simpler models which 

still possess key features of the four dimensional ones. Through such low-

dimensional analogues one hopes that a better understanding of the under

lying mechanism of soliton dynamics will be attained, thenceforth assisting 

in the analysis of the more reahstic, but too involved, (34-1) case. Skyrme 

himself used a ( l -M) dimensional model (sine-Gordon) [69] as calistenics to 

his (3-f 1) invention [25]. In the present work, we study two tractable, yet 

still rich, skyrmion models in {2+1) dimensions. 

Finally, we present a Derrick-like argument in three spatial dimensions: 

Under dilations x ^x the potential (2.46) goes to 

V[J{jx)] = ^'-'^V^[J{x)] + 7'*-^y,,[J(x)], (2.54) 

where Vi, Vsk denote the first and second terms is the right-hand-side of 

(2.46). Equation (2.54) is the analogue of equations (2.4)-(2.5). Differenti

ating we get 

4-V[J{jx)] = (2 - D)^'-''Vr[J{x)] + (4 - D)^'~''V,k[J{x)]. (2.55) 

Setting the left hand side equal to zero for 7=1 there follows 

(4 - D)V,k{J) = { D - 2)Vr{J), (2.56) 

according to which the existence of solitons in D = 3 is now licit. Note also 

that plugging the value D = 3 into (2.54) we find 

y[J(7x)] = r'V^[J{x)] + 7V,,[J(x)], (2.57) 
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characteristic of a stable lump if we recall the kink result (2.32). 

The whys and wherefores of the additional Skyrme term in the lagrangian 

are clearly to stabilise the solitons. In the pure chiral limit [14^=0], equation 

(2.57) says that for any configuration J the energy can always be decreased 

by dilations 7 > 1. In the limit as the latter goes to infinity the size of the 

lump collapses to zero. But a non-zero Skyrme term gives a minimal value 

of the potential energy equal to 

V^^mmal=2^V,kV^. (2.58) 

There are other important examples of solitons in three spatial dimen

sions, including YIVI instantons, monopoles and dyons, this latter objects 

being carriers of both magnetic and electric charge. 



Chapter 3 

A planar skyrmion model 

3.1 The non-linear 0(3) sigma model 

One of the simplest Lorentz-invariant models in (2+1) dimensions is the 0(3) 

model. It involves three real scalar fields ^(a;^) = {(l)a{x^)., a = 1,2,3} with 

the constraint that V = (a;°, x'', a;̂ ) = {t,x,y) [speed of hght set equal to 

unity] the fields lie on the unit sphere : 

l$=l. (3.1) 

Subject to this constraint, the lagrangian density reads 

1 ^ ^ 

* a=l M=0 

= lidJud'^f). (3.2) 

The model is invariant under global 0(3) rotations in internal space, feature 

disclosed earlier in the coset description (2.15). 

39 



Planar skyrmion model 40 

The dynamics of the 0(3) fields is governed by 

d^dj-{ld,d^$)$=6, (3.3) 

which for the static case reduces to 

V 2 ^ - ( < ^ . V V ) ^ = 0 . (3.4) 

Were it not for the constraint imposed on f , the second term in the left-hand-

side of the above equations would not be present, and the static non-singular 

solutions would be trivial. The condition (3.1) enriches the system, leading to 

finite-energy non-singular solutions: Solitons. Furthermore, the interaction 

of the system is of a pure geometrical nature; it is defined by equation (3.1) 

which determines the curvature of the internal space $. This is a particularity 

of the chiral or sigma models. 

It is straighforward to see that the kinetic and potential energies are given 

by 

Ko(3) = \j{di4>)m)dxdy, (3.5) 

Voi,) = \j{dS).{dS)dxdy [z = l ,2] 

= ^-j{drl\$).{drl~de4>)rdrde. (3.6) 

The problem is completely specified by giving the boundary conditions. 

As usual we take, Vt , 

lim <^(r,^) = < (̂°', (3.7) 

r—>oo 

where the unit vector is independent of the polar angle 9. This condition 

ensures a finite potential energy: In effect, its finiteness demands 
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lim r|V</) = lim (rdM^ + (de(j)y 

^ 0, (3.8) 

which implies (3.7). 

It is interesting to note that the classical vacua [l/o(3)=0] ought to be 

represented by (f)''^^ for all x = {x, y). Since such unit vector can point in any 

direction, we have a continuous family of zero-energy solutions connected by 

0(3) rotations in internal space. As in the kink model described in section 

(2.3), this is an example of spontaneous symmetry breaking. 

The boundary condition (3.7) defines a one-point compactification of 3f?2, 

allowing us to consider (j) on the extended plane 3?2 U {oo}, topologically 

equivalent to ^2^' (the superscript indicating that the sphere refers to com-

pactified plane). Consequently, the field configurations we want are maps 

which, according to (2.8), can be labelled by an integral topological index. 

An expression for this index is readily found by pulling back the differential 

form 

w = <^.(/5W 

= {(j)i,(l)2,^3)-{(^^2Ad(f)3,d(f>3Ad(f>i,d(j)iAd<f)2) (3.9) 

from the internal sphere to the 'physical' sphere via equation (2.11). Using 

coordinates {x,y) in the latter, expansion of lu yields 

pi dx(t>i dy(f)i 

10 = 1)2 dj;(t>2 dy(f)2 

k d ^ h dy(j)3 

dx A dy. (3.10) 
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Relaxing the wedge notation and setting the constant in (2.11) equal to l/47r 
we get 

Qo{3) = y^(,) l { d j X dy^) dx dy, (3.11) 

quantity sometimes called the vi^inding number because it gives the num

ber of times that (f) ranges over the internal sphere as {x,y) ranges over the 

compactified plane once. We can convince ourselves of that by observing 

that (3.9) is nothing but the element of area of the unit sphere 82^^: Ex

panding w in terms of local space polar coordinates in internal space 

and parametrising 

( f ) = (sin t9 cos sin i) sin (p, cos 1 ? ) , 

we find the all familiar 

lu = sint? d-d dip. 

The topological charge now stems from 

hence equation (3.11). Note as well that Qo{3) ii^^Y be considered as the zero 

component of the topological current [compare with equations (2.21)-(2.22) 

and (2.48)-(2.49) 

fc" = e'"'«e''''̂ <^„,a.<^65^<^c, (3.12) 

where e-̂*̂' is the famihar Levi-Civita pseudo-tensor. 
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3.2 CP^ formulation 

It will be propitious to use a formulation of the model where the soliton 

solutions adopt a simple form. This so-called CP^ formulation involves just 

one independent complex field, W, related to the fields (f) via the stereographic 

projection 

W = (f>i + 
l-(i>3 ' 

(3.13) 

Introducing complex coordinates z = x + iy and z = x — iy on the extended 

plane and using the handy notation d^W = W^, 5^(5jVF) = W^^, etc., the 

equation of motion (3.4) becomes 

where W is the complex conjugate of W. 

In terms of W the potential energy and the topological index read 

(3.14) 

0(3) (3.15) 

Clearly 

1 f \WJ'-\W,\' 

{\w\^ + iy 
dxdy. 

Vo(3) = < 

W- ^ 
27rQo{3) + 4 dxdy 

W ^ 
27r[-go(3)] + \^/\2_^ I dxdy 

(3.16) 

(3.17) 

Voi3) >2Tr\Qo (3)1- (3.18) 
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The static solitons or instanton solutions correspond to the equality in 
(3.18): Solutions with Qo(3) > 0 (solitons) and solutions with Qo{3) < 0 
(anti-solitons) obey, respectively, 

W, = 0, W, = 0. (3.19) 

These are nothing but the Cauchy-Riemann conditions for W being an ana

lytic function of z or z [in terms of (/) equations (3.19) read 

dS±<^ii4>^d,4> = ̂ , (3.20) 

clearly simpler than equation (3.4)]. 

The most general static solutions of the planar 0(3) model are of the 

form 

where A is a free parameter. The degree k of the polynomials is numerically 

equal to \Qo{3) • 

For a degree-one soliton, the potential energy density is 

e - 2 ^^<°- ' ' '^ ' (3 22) 

I t possesses a bell-like shape whose maximum value 

^ ™ - - « | A ( a - 6 ) | 2 

is positioned at 

(3.23) 

Zma. = - J ^ . (3.24) 

In any given topological sector the potential energy is minimised when 

one of the Cauchy conditions is satisfied. A solution of (3.19) automatically 
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solves the original second order equation (3.14), but the converse need not be 
true. However, all the static finite-energy solutions of (3.14) are exhausted 
by equation (3.19) [70, 71]. This is a special asset of the CP^ model on the 
sphere which is absent in its generalisation (2.14). The latter possesses static 
solutions like W(z, z) which are non-meromorphic and correspond to saddle 
points of the energy [72]. Furthermore, in the CP^ model itself with periodic 
boundary conditions there are solutions to (3.14) which disobey (3.19). We 
shall have occasion to expand on this matter in chapter 4. 

The simplest one-soliton solution has the form 

W = \ { z - a), 

configuration that has been numerically studied in [73]. When viewed as 

an evolving structure in (2+1) dimensions this soliton is unstable under any 

small perturbation, either expHcit {e.g., by setting the sohton into motion) 

or implicit (as inevitably introduced by the discretisation procedure). This 

behaviour has been seen not only in the full simulation of the model but 

also in the approximation known as the collective coordinate approach [74 . 

The said instability, which eventually collapses the numerical procedure by 

infinitely shrinking or expanding the soliton, is associated with the conformal 

invariance of the 0(3) lagrangian in two dimensions: The solitons can change 

their size at the expense of no energy at all. This statement follows from 

equations (2.40)-(2.41). 

With regards to collisions, two-soliton solutions of the form 

{z-a){z-h) 
W = \{z-a){z-h), X-

z — c 
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have been found to scatter at right angles with the initial direction of mo
tion in the centre of mass frame, the instability taking over a short while 
afterwards [75 . 

Nonetheless, it has been demonstrated [76] that the instability of the 

discretised 0(3) model can be cured by the addition of two extra terms to 

the lagragian. The first one resembles the term introduced by Skyrme in 

his nuclear model in four dimensional space-time, and the second one is an 

additional potential-Hke term. The solitonic configurations of this modified 

model give stable extended structures which repel each other and scatter 

at 90° when sent towards each other with sufficient speed. In the present 

chapter we follow [76] and study a version of such modified, Skyrme-hke 

model, corresponding to a more general choice of the potential term in the 

lagrangian. 

Note that a finite mesh introduces a scale into the model and, by imposing 

appropriate boundary conditions, it is possible to have a stable 0(3) lump on 

the lattice. But of course this is not a very useful scheme from the standpoint 

of a general field theoretical context. 
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3.3 Modified model 

Our modified model corresponds to a lagrangian density 

Csky = -̂ 0(3) 

- ^-eriid'^ldjy - {d^ld''$){dj.dj)] 

- ^-e2[-2Re{X)ct>, - 2Im{X)<j>2 + (1 - |A|̂ )<^3 

+ ( l + | A | 2 ) ] ^ $1,92 6 ^-^, (3.25) 

where jC-o{3) is given by equation (3.2). 

The kinetic and potential energies can be read-off from (3.25): 

Ksky = \ j dxdy{{dtld4)[l + 29,{dJ.dJ+ dyldyfy 

- 29r[{dtldjf+ {dtldy4>f\}, (3.26) 

Vsky = \J dxdy{ da:$.dj + dy4>.dy4> 

+ 29l\{dj.dj){dyldyl) - [ d j . d y l f ] 

+ 92[-2Re{X)<j>^ - 2Im{\)(t>2 + (1 - |A|').^3 

+ (1 + | A | ' ) ] ' } . (3.27) 

It can be verified that the potentials corresponding to the terms 9i and 

92 scale like 

so that the expression resembling (2.57) is 

ysky{kin = K?(3)[^(^)] +7'^/^:[^(-^)] +7"'VeJ^(-^)], (3.29) 



Planar skyrmion model 48 

where the scale-free potential ^0(3) corresponds the pure 0(3) model. The 
^-terms break the conformal invariance and their combined effect stabilises 
the solitons. If the size of the solitons is appropriately chosen, it is now en
ergetically unfavourable for them to change it . Also note that the skyrmion 
lagrangian is no longer 0(3) invariant, but it still respects the requirement 
of relativistic invariance. The 0-i term is the Skyrme-like term and it pre
vents the solitons from shrinking, whereas the 62 term resembles a potential 
that prevents their expansion. Judicious choices of the $2 term, which un
like the Skyrme term is nonunique [77], opens up the possibihty of writing 
different interesting versions of the skyrmion model, a realisation of which is 
our proposition (3.25). The form of the O2 term in our Skyrme lagrangian 
density is precisely the one that will make the field W{z) of degree one in 
(3.21) a solution of the equation of motion (see below). As commented ear
lier on, we are interested in a version of the model in which the most general 
expression for a single-soli ton be a solution. So, a method for obtaining a 
suitable potential term in the planar skyrmion system is to ask oneself what 
the potential should be in order to have the desired soliton configuration as a 
solution of the equation of motion. Upon inserting the field in question into 
the governing static equation, one can work out the required 62 expression, as 
well a,s the relation between the ŝ and the paramenter A, which determines 
the size of the extended structures. 

In the 1^-formulation the lagrangian density (3.25) acquires the form 
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C sky 2 (|M/P + 1) 
99 -

(|M/|2 + 1) 

- {W.Wy-W.Wyr]-A92^j^^^^, (3.30) 

the ensuing equation of motion being 

2W 
0 = Wu - w^^ - Wyy - t J ^ [ ( W ^ ^ ) ' - - m ' ] 

+ P 7 ^ ^ { 2 T 4 - , . H / , V K . + 2W,yW,Wy - 2W,yW.Wy 

- Wu[iW^f + [Wyf] + W^Ai^yf - [W^f] + Wyy[{W,f - [W,)'] 

+ Wu{\W,\' + \Wy\') + M/..(|VF,|2 - \Wy\') + Wyyim' ~ | M^, | ̂  ) 

- Wt.{WtW, + WtW:,) - H/i,(VF,H/ + W,Wy) + M4,(T'F,PK, -f W^.H/,) 
9W 

+ 4 ^ ^ ( f ^ ^ l ^ [ ^ ^ ' + ( ^ - | ^ l ' ) ' ' ^ ' - ^ ] -

For the static case we may write more conveniently 

2WW,W-. 
0 = VF, zz "PF|2 + 1 

4^ _ 

Ignoring anti-solitonic terms like Wz in (3.32), some re-arrangement produces 
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0 = {soiiw.i" - 4^2 |v | ' + [ - ie^iw.yw, , + d2V^]w}w 

+[-4^ i (VF, )^ l^ , , + 0 2 V V = iW~ A)^ (3.33) 
dvV 

from which it is directly checked that the configuration 

W = X ' - ^ , (3.34) 
z — b 

where 
'201/02 

X = ^ —, a, 6eC, (3.35) 
a — b 

solves the equations of motion. The field (3.34) is the familiar general ex

pression for a single CP^ soliton but with A fixed by (3.35). A soliton with 

its size thus fixed we will call a 'skyrmion' [an anti-skyrmion is derived by 

complex conjugation of (3.34)]. As touched on in the introductory chapter, 

theories like the tHP monopoles also have a parameter in the lagrangian 

which determines the size of the corresponding solitons. 

The skyrmion's potential or static energy density E is found by inserting 

(3.34) into 

{\w\' + iy ^ ' {\w\^ + iy 
W - X^ 

whose maximum value is calculated via 

F - P [1 + + ^ 2 | A ( a - 6 ) | ' > 
•'-'max — '^max[^ \ ~y^<^max i T max], 

- o(|A|^ + l ) ^ 
- | A ( a - 6 ) | 2 -

(3.37) 
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Through relation (3.35) it is possible to cast (3.37) into the simpler 

Emax = £maa;(l + 0l£max)- (3.38) 

The position of Emax is still determined by formula (3.24). Observe also that 

in the 0(3) limit where the 6's go to zero we have Emax = £max, equation 

(3.23). 

For the case tackled in [76] one has [put V = 1 instead of V = {W — Xy 

in equation (3.33) 

Emax = 2|A|2 + 8^i|A|'' + 4^2, ^ = y 

the complex coordinate of which is just Zmax = o,-

In order to study processes involving two skyrmions we are going to con

sider fields of the appearance 

T4/ = A i ^ i ± ^ . (3.39) 

z-bz+d ^ ^ 

They do not satisfy identically the field equation (3.32) and hence describe 

two solitons in an approximate manner. For objects of the simpler form 

X(z — a){z — b) it is possible to find a relationship similar to (3.35) such 

that the model actually have static two-skyrmion solutions [78]. Inspection 

of equation (3.33) reveals that such an expression for a configuration (3.39) 

is quite involved to obtain. For instance, the term 

-i0i{w,yw,, + 02v-^ 

in (3.33) gives, with the help of (3.39) [take a — c, b = d e ^ for simplicity], 
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where it is uncertain how to define a relation hke (3.35) so that a two-
skyrmion solution is produced. 

3.4 Numerical procedure 

The fields W are treated as the basic initial configurations, their analytic 

values being used at each lattice site in the discrete approximation of the 

model. After giving some intial speed to the W fields, we pass on to the 

(^-formulation by means of equation (3.13). Then (j) is numerically evolved 

according to the fu l l equation (3.31), written in terms of (/). 

It is quite common for ^3 to have values near to 1, in which case W in 

(3.13) becomes too large for numerical comfort. So in our simulations we 

have preferred, instead of (3.13), the projection 

clearly a more numerically tractable selection. The dynamics of the system 

is unchanged because 

C(W') = C{W). 

Most of the numerical simulations were carried out in the workstations at 

Durham but, when the disk space was full-up, the computers at Universidad 

del Zulia were of key assistance. 

Our simulations employ the fourth-order Runge-Kutta method and ap

proximate the spatial derivatives by finite-differences. The laplacian is eval

uated using the standard nine-point formula. We use double-precision arith-
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metics on a 200x200 {n^ = Uy = 200) lattice with spatial and time steps 
Sx = 8y = 0.02 and ^t=0.005. 

Unavoidable numerical truncation errors introduced at various stages of 

the calculations gradually shift the fields away from the unit sphere (3.1), 

thereby building-up numerical inaccuracies in the evolution equations. So we 

rescale 

every few iterations. The error associated with this procedure is of the order 

of the accuracy of our calculations. Each time, just before the rescaling 

operation, we evaluate the quantity 

H = — 1 

at each lattice point. Treating the maximum of the absolute value of ^ 

as a measure of the numerical error, we found that | ; / | m a x ~ 10~^. This 

magnitude is useful as a guide to determine how reliable a given numerical 

result is. Usage of an unsound numerical procedure like, say, taking 8x < 8t 

in the Runge-Kutta evolution, shows itself as a rapid growth of max|/i|; such 

increase also occurs when the solitons become exceedingly thin. 

We also include along the boundary a narrow strip to absorb the various 

radiation waves, reducing their effect on the skyrmions via the reflections 

from the boundary. The absorption is implemented by setting 
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where the damping function x has the form 

1, i e [ 0 , J i ] , 

X ( j ) = | l - ^ ^ ( l - X o ) , J e[n + l , j 2 - l ] , 

. X o , J e [j2,n^] i x o = 0.95), 

where the absorbing band is small, no more than about 10 % of mesh-points. 

As time elapses, the absorption of radiation manifests itself through a small 

decrease of the total energy, which gradually stabilises as the radiation waves 

are gradually absorbed. The damping device is specially useful when studying 

soliton stability but it is dispensable when considering collision processes. 

For the parameters we have chosen the values: 

a = c = 0.75, b = d = 0.05, , 
9i = 0.015006250, ^2 = 0.1250. ^ 

The global U{1) symmetry of (3.34) has been used to choose A real. From 

(3.35) and (3.41) it follows that A = l , a calculational-friendly number as can 

be inferred from (3.27). 

Noteworthy is the fact that the finite-difference expressions for the deriva

tives of fields like \z and A^^, used in previous works, are exact. This is no 

longer true for our choices (3.34) and (3.39), whose numerical versions are in 

this sense more perturbed. It turns out that this factor has no telling effect 

in the qualitative behaviour of the system. 
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3.5 Results 
3.5.1 Static case 

Firstly consider the situation where the skyrmions have zero initial velocity. 

Our single-skyrmion field is 

a typical picture of which energy density is displayed in the upper half of 

figure 3.1. 

Our simulations show that the energy density corresponding to this soli-

ton evolves only very slighty and does not change its shape. At the initial 

time the amplitude of the energy density has the numerical value of ^ 128.47, 

which quickly re-adjusts and stabilises itself around 129.5. This last number 

agrees very well with the analytical result as calculated from equation (3.37) 

or (3.38)] and (3.41): 

Emax ~ 65.3 + 31.99 + 31.99 = 129.3. (3.43) 

In the lower half of the figure 3.1 a graph showing the stable evolution of 

Emax is exhibited. 

In figure 3.2 we show some pictures of the radiation waves emitted by 

the soliton-hump. They propagate out to the boundary at the speed of light, 

leaving the central region of the lattice essentially free of kinetic energy. The 

smallness of the kinetic energy indicates that our soHton is almost perfectly 

static. This is in fact numerically observed: At the initial time the lump 

of energy is situated at Zma2;=(0.40,0) and by t=10 it has slowly shifted to 
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(0.4013,0). Note that the theoretical vakie of Zmax, as per formula (3.24), is 
precisely (0.40,0). 

Although small enough as to cause no preoccupation in the problem under 

study, the said kinetic energy is considerably larger than the one emitted 

by the solitons of the model with V = 1 in (3.33). This is not surprising 

since our choice of potential leads to a more perturbed, complicated discrete 

representation of the analytic soliton fields than in the V = 1 case. 

A cursory glance at (3.25) shows that by simply equating = = 0 we 

recover the unmodified 0(3) model: 

e}}^lo^'''y ^ ^o(3) (3.44) 

we underline en passant that this limit resembles the BPS limit in the tHP 

monopole theory . 

Our simulations for this limiting case show that (3.42) represents a static 

0(3) solution which behaves stably on the mesh, corroborating the results 

found in [73]. It possesess an oscillating quasi-periodic energy density whose 

amplitude decreases as time goes by, eventually becoming quite small (recall 

there is an absorbing set-up operating along a small band near the edges of 

the grid). However, the source of such stability resides on the scale set by the 

finite net, where the kinetic waves are reflected in such a way as to stabilise 

the hump. In fact, upon effectively moving the boundaries to infinity, the 

discrete 0(3) system is unstable [73]. This kind of lattice-stabilisation is 

clearly of no applicability within a general field theoretical framework. By 

contrast, the skyrmion scheme has an intrinsic scale that renders a stable 

soliton regardless, being therefore alluring from a general perspective. A 
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depiction of the said 0(3) lattice-stabihty is given in figure 3.3. 

Without the absorption arrangement the kinetic waves, rather than pe

tering out as in the previous figure, keep travelling from the soliton-lump 

out to the boundary and inward back again. The energy density in this case 

exhibits a periodic behaviour, with the amplitude of its oscillations being 

about constant in time; the question of stability under these circumstances 

meets with difficulties. Hence the importance of the absorbing band that 

gradually extinguishes the radiation, as seen in figure 3.3. 

We now shift our attention to the approximate two-soliton configuration 

^ ^ - 0 ^ ^ + 0 7 5 
0 - 0 . 0 5 ^ + 0.05' ^ ^ 

which gives two skyrmion-lumps of equal size initially well separated from 

each other (so that they have a minimal overlapping) but still far away from 

the borders of the mesh (thus avoiding reflections from the boundaries as 

much as possible). Since the above field is not an exact solution of the model 

it should undergo some evolution even for t> = 0. 

The energy density corresponding to the ansatz (3.45) at i = 0 is illus

trated in the upper part of figure 3.4. We can see that the amplitude starts 

at a value somewhat bigger than twice the value for a single soliton. As soon 

as the evolution commences the skyrmions shake off some radiation and al

ter their size by getting broader. In so doing, they slowly move away from 

each other, uncovering the presence of a repulsive force between them; this is 

apparent from figure 3.4. During this process the peak E^ax decreases and 

undergoes damped oscillations around the analytical result (3.43); by t ?« 8 

the oscillations are quite small and the energy stabilises near the theoretical 
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value. A feel for this course of events can be developed through figure 3.5, 
where the graph of the maximum of the energy denstity is plotted versus 
time. It is re-assuring that this kind of weak repulsion, also characteristic of 
the kink model described in the anterior chapter, has been observed using a 
collective coordinate method as well [79]. 

By taking a value of the parameter A which does not satisfy (3.35) we 

can introduce explicit perturbations into the system, other than the implicit 

ones brought about by the discretisation procedure. We have checked that 

our skyrmions are indeed stable under all such disturbances. If the initial 

A is much greater (smaller) than the value dictated by (3.35), unity in our 

case, the initial amplitude of the solitons will be manifestly above (below) 

the analytic value (3.43). But the pattern is always the same: Maintaining 

its shape unscathed, the skyrmion-hump corrects its height to around 129.5, 

emitting kinetic waves in so doing. 

In the limit (3.44) we have verified that the repulsion between the lumps 

disappears, and these remain motionless in their initial positions [as in the 

upper half of figure 3.4] throughout the simulation if started oS from rest. 

However, the solitons are now unstable and their energy density increases 

non-stoppingly: Their breadth goes down to the order of the lattice spacing, 

eventually collapsing the numerics. A prototype picture after this time would 

reveal the soliton-lumps not so much thin as blown asunder. 

In the upper half of figure 3.6 we show the said rise of the peak of the 

energy density corresponding to (3.45) in the 0(3) limit. I t is pedagogical to 

compare the unstable behaviour of these two static solitons with the stable 

performance of the 0(3) single-sohton shown in figure 3.3. One may natu-
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rally ask himself why the two lumps, having been given no initial velocity 
either, behave unstably. The answer relies on the fact that the discrete repre
sentation of the two-solitons (3.45) brings forth an extra perturbation which 
spells unfavourably in terms of stability, the boundary-reflected radiation 
being now incapable of balancing things out. This result is very important, 
for if the kinetic waves reflected from the boundary stabilised the two 0(3) 
solitons as in the single-lump case, then it would be necessary to study the 
behaviour of the skyrmion model in an infinite lattice, to make sure that its 
extended objects are stable regardless. But given the actual circumstances, 
such study would be only academic. 



Planar skyrmion model 60 

Emax=128.47; t=0 

Total energy density 

130 

129.5 

E 129 

28.5 

Figure 3.1: Total energy density for one skyrmion at the initial time and the 

evolution of its height. 
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Kinetic energy density 

Kmax=0.000132; t=0.5 

Kmax=0.0000438; t=1.5 

Figure 3.2: The skyrmion-lump shakes off some kinetic energy waves that 

spread out to the boundary at the speed of fight. 
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X 10" X 10" 

Figure 3.3: As the kinetic waves fade away with time we are left with a stable 

pure 0(3) lump on the lattice. 
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Total energy density 

Emax=268.4; t=0 

Emax=134.8; t=8 

Figure 3.4: A repulsive force exists between the two skyrmions. 
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Figure 3.5: Development of the energy density for two skyrmions which start 

from rest. 
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1200 

v=0.2 v=0.3 

E 600 

Figure 3.6: Above: Total energy density corresponding to two pure 0(3) 

solitons with no initial speed. Below: The same 0(3) lumps with difi"erent 

non-zero initial speeds (both curves correspond to head-on collisions that 

lead to scattering at right angles). Comi5are with the stable case shown in 

diagram 3.11. 
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3.5.2 Scattering 

We now study the scattering behaviour of our two-skyrmion field (3.45) for 

different initial velocities. Let us consider head-on collisions. 

There is always an initial burst of radiation as the skyrmion-lumps re

arrange themselves towards their stable size. At small speeds the two humps 

approach each other, but the repulsive force between them results in their 

motion being reversed. This situation can be viewed in figure 3.7, where we 

present some pictures of the total energy density for skyrmions sent towards 

each other along the horizontal axis with a relative initial speed of 0.2; the 

corresponding contour plots are shown in figure 3.8. 

A qualitatively similar behaviour is observed for speeds up to approxi

mately 0.3. For V ^ 0.3 and higher the skyrmions acquire enough kinetic 

energy to overcome their mutual repulsion; during their coUision they form 

a complicated ringish state (at which stage they attain a minimum height 

and hence maximum width) and re-emerge at 90° to the original direction 

of motion in the centre-of-mass frame. The emerging skyrmions are initially 

shrinking but, after they have travelled some distance, they expand once 

more. The final state is achieved after some oscillations of the energy den

sity. In figure 3.9 we present a quartet of 3-D pictures of this 90°-scattering; 

the corresponding contour plots may be seen in figure 3.10. 

The existence of a critical velocity above (below) which the lumps scatter 

at right angles (backwards) is a major difference between the pure 0(3) model 

and its modified Skyrme version: Going to the Hmit (3.44) we have been 

able to confirm that this critical velocity ceases to exist and 90°-scattering 
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occurs as long as u > 0: Events unfold very much like the skyrmion situation 
of figure 3.10 but now the system is no longer stable. The sohton-humps 
continue to grow thin, increasing in height, to eventually break down the 
numerical procedure as an aftermath. In the bottom half of figure 3.6 these 
episodes are illustrated with typical Emax{t) plots. They are to be compared 
with their skyrmion counterpart plots in figure 3.11, which correspond to 
both the back-to-back (180°) and 90° scattering cases already discussed. It 
is noteworthy that a OP-^-Iike scattering behaviour, and the existence of a 
critical velocity as well, are exhibited by some other important soliton models, 
e.g., the 6'^ kink [80] , the vortex model [81] and the tHP monopoles [82]. 

The fact that in our model the radiation emitted by the solitons is rel

atively large (as compared to other versions of the model) is immaterial for 

the modified 0(3) model because the lumps are stable anyway and can be 

studied for as long as necessary. But in the unstable, pure 0(3) scheme, 

such larger perturbation shows itself in a quicker collapse of the numerics, 

making the analysis of scattering processes more difficult to follow. For in

stance, the shrinking of the 0(3) solitons exemplified in figure 3.6 takes place 

significantly faster than fields of the aspect 

I \( u\ { z - a ) { z - h ) 
z — c 

studied in reference [75]. In any case, in all the situations considered the 

collisions are quasi-elastic (in the 0(3) case the quasi-elastic process is as 

long as the numerics runs smoothly). 

For collisions with small but non-zero impact parameter the results are 

not at variance with prognostication: The skyrmion-lumps scatter either 
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bouncing back or at nearly right-angles to the initial direction of motion, 
depending on the velocity. A 90° event is pictured in figure 3.12. In general, 
the larger the impact parameter, the smaller the scattering angle, and the 
more the lumps conserve their identity during the process. 
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Ennax=273.1 
t=0 

Emax=114.4 

t=1.5 

Figure 3.7: Collision featuring two skyrmion-lumps with relative initial ve

locity u = (0.2,0.0). 
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Emax=134.9 

t=2.5 

Emax=139.1 

t=5 

Figure 3.7: Continued. A speed of 0.2 is not big enough to overcome the 

repulsion beetween the lumps and back-to-back scattering occurs. 
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t=2.5 

t=1.5 

0 2 0 2 

Figure 3.8: Contour plots for figure 3.7. 
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Emax=283.7 

t=0 

Emax=89.6 

t=1.5 

Figure 3.9: Two skyrmion-humps in collision course; their relative in i t ia l 

velocity is v = (0.3,0.0). 
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Emax=128.2 

t=2.5 

Emax=144.8 
t=5 

Figure 3.9: Continued. Above the critical value, now the speed leads to 90 

degress skyrmion scattering. 
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t=1.5 

t=2.5 

0 2 0 2 

Figure 3.10: Contour plots for figure 3.9. 
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Figure 3.11: Ampl i tude of the total energy density corresponding to skyrmion 

scattering. A speed of 0.2 (0.3) leads to back-to-back (right angles) scatter

ing. In both cases the lowest Emax occurs at impact time, when the two 

lumps coalesce. Compare w i t h the unstable case of figure 3.6. 
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t=1.5 

t=2.5 

Figure 3.12: Non-zero impact parameter collision between skyrmions. The 

in i t i a l velocity is v = (0.3,0.Of). 



Chapter 4 

CP^ model on a torus 

I n this chapter we study the evolution properties of the non-linear 0(3) 

sigma-model when periodic boundary conditions are imposed. This amounts 

to defining the classical model on a two-dimensional torus, situation that 

looks more physical than the one on the sphere in the sense that the solitons 

are located in a finite volume f rom the outset. In any case, a comparison 

between both the toroidal and the spherical approaches is certainly of inter

est, i f only to check the consistency of the two results. As in the previous 

chapter, we w i l l be concerned wi th the stability and scattering properties of 

the system. 

In the next section we present the 0(3) model on the torus, and explain 

the numerical set up in section 4.2. Solitons of degree one both in the 0(3) 

and its Skyrme version are discussed in section 4.3. The chapter closes wi th 

a study of the scattering situation, section 4.4. 

77 
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4.1 T h e 0(3) model on a torus 

The toroidal 0 (3 ) model is defined as before by a lagrangian density of the 

f o r m 

= lidJUd-h (4.1) 

where in (2+1) dimensions we have 

x" = {x°,x^,x'^) = {t,x,y). 

The field 

is a real vector in internal space and is restricted as usual to lie on the unit 

sphere S^^^: 

U = l . (4.2) 

Let us write (4.1)-(4.2) together in terms of the action 

S = l dxdy I dt[hdj).{d^}) +Q{X^){}.}-1)1 (4.3) 

stressing that (a;,?/) belongs to the two-dimensional torus T2. Extremising 

the action and using (4.2) to eliminate the lagrange multiplier g we get the 

field equation of motion 

{d''d^-ld^dj)$=0, (4.4) 

which for the static case simplifies to 

v V - ( f V V ) < ^ = 0 . (4.5) 
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For any value of t the configurations (j) are maps 

that satisfy the periodic boundary conditions 

^{x+ mLi,y+ nL2) = ^{x,y), (4.6) 

where m , n=0 , l ,2 , . . . and L i , L2 are two primit ive periods. 

Recalling the relationship between {(t>ii4>2T'i>z) and the CP^ inhomoge-

neous coordinates W and W: 

r_^W + W -W+W \W\^-l 
' ^ " ^ | M / | 2 + l ' ' i H / | 2 - f l ' | H / | 2 + l ^ ' ^^-^^ 

the equation of motion (4.5) adopts the form 

where z = x -\- iy and a bar denotes complex conjugate. 

Much as the similari ty of (4.8) wi th its spherical counterpart (3.14) seems 

to be, their solutions are quite different owing to the boundary conditions 

imposed. In terms of W, equation (4.6) is replaced by 

W{z + mil + inL^) = W{z), (4.9) 

our solitons being elliptic functions that may be expressed as [83] 

, y ^ , f ^ ^ ± ^ (4-10) 

w i t h the zeros (o j ) and poles (6j) subject to the constraint 

± a , = ±h,. (4.11) 
i = i j = i 
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The complex number A is related to the size of the soliton and k is the order 
of the elliptic funct ion W: I t is equal to the number of poles (which in turn is 
equal to the number of zeros), each pole/zero counted according to its degree 
of mult ipl ic i ty . The function a{z) is the Weierstrass cr-function. 

Equations (4.10)-(4.11) are valid in the whole plane but, due to the peri

odicity of the system, we can l im i t ourselves to consideration of their values 

wi th in a fundamental cell (FC) delimited by the vertices 

(0,0), ( L i , 0 ) , ( L i , i . 2 ) , (0 ,^2) . (4.12) 

Note that (4.10) is the elliptic analogue of the field (3.21) which expresses 

a rational funct ion as a quotient of two jDolynomials. However, whereas in 

the latter case we can restrict ourselves to fields without poles and take 

W = Xz, the meromorphic nature of (4.10) cannot be dispensed of: Every 

non-constant elliptic function has poles. Indeed, some reflection shows that 

i f W{z) had no poles then i t would be a bounded integral function in FC, 

and hence in the entire plane. By Liouville's theorem such a function cannot 

be but a constant (this theorem states that every integral function whose 

absolute value is always less than a fixed number is a constant). 

The periodic solitons (4.10) have been studied in a variety of contexts. In 

reference [84], for example, they have been used to compute the contribution 

of instantons to the part i t ion function. 

I t is important to bear in mind that a{z) is not an eUiptic function itself 

but satisfies the pseudo-periodicity property [85 

a{z + mLi + inL2) = ( - l ) (™+"+"") exp{^{m-m)[z + l-{mLi+mL2)]} (T{Z). 

(4.13) 
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The role of the selection rule (4.11) is now apparent: Substitution of (4.13) 
into (4.10) yields 

W{z + mLi + inL2) = exp[—(?7i - in){-X! + ^i)] ^ ( ^ ) ) 

which entails the requisite boundary condition (4.9) by virtue of (4.11). 

I n the present work the term 'elliptic funct ion ' denotes a doubly-periodic 

meromorphic funct ion, i.e., a single-valued doubly-periodic analytic function 

whose only possible singularities in a finite part of the plane are poles. In 

the literature, the d-function, the theta functions and other related functions 

are not unfrequently dubbed 'el l iptic ' too. 

Now, the Weierstrass' cr-function is developable in a Laurent series of the 

f o r m 

w here 
«o,o — 1, 

(4.15) 
am,n = 3(m - I - l)am+l,n-l + y(?^ + l)a7n-2,n+l 

- 1(2711 + 3n - l)(4??z - 6n - l)am-i,n, 

i t being understood that ar,s=0 i f either subscript is negative. 

The quantities g2 and gs, known as the invariants in the theory of eUiptic 

functions, can be calculated via 

(4.16) 

the summation being over all pairs n bar m , n = 0. 
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We shall consider a square torus [Li = L2 = L) which corresponds to 
taking 5^3=0 and g2 e^ — { 0 } . In this so-called lemniscate case the expansion 
( 4 . 1 4 ) simplifies to 

( 4 . 1 7 ) 
2~™ / \ 

= (477. + l)!' ' '" '°^^^^™-

The finite-energy configurations we want are harmonic maps f rom the 

two-torus to the two-sphere. Harmonic maps Af i-^ M. where both surfaces 

are compact and orientable have been extensively studied in differential ge

ometry [37 , 8 6 ] . When M = S2 these maps are partitioned into homotopy 

sectors parametrised by an invariant integral index, the Brouwer degree of 

the map. I t is defined as usual by taking a volume-form f rom S2 to M via 

the pull-back map. For a given map W : T2 S2 equation ( 2 . 1 1 ) dictates 

Q(T2) = (constant) [ W*w. ( 4 . 1 8 ) 

Pulling back the Kahler two-form 

we obtain 

upon setting the constant in ( 4 . 1 8 ) equal to I /STT. 

Wri t ing the lagrangian ( 4 . 1 ) as 

^ o ( 3 ) - ( m / p + i)2 ' ^^•^'> 
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we see that the potential energy is given by 

which, in conjuction wi th (4.20) produces 

y(T2) 
^0{3) 

W- 2 

2^Q^T^)+A!r^j^^^dxdy, 

27r[-Q(^^)]+A!r,j^^^dxdy. 

(4.23) 

Our solitons {Q^'^^^ > 0) and anti-soHtons (Q^'^^^ < 0) are respectively 

given by equations: 

W, = 0, = 0, (4.24) 

previously encountered analyticity conditions. 

We have pointed out in the context of the usual CP^ theory (where the 

soliton solutions are harmonic maps f rom sphere to sphere) that the solutions 

to equation (3.19), the analogue of (4.24), are all the static solutions to (3.14). 

This is no longer true wi th in the framework of the toroidal theory. There 

are several kinds of harmonic maps disobeying (4.24) but satisfying (4.8). 

A n example is provided by the solutions to a certain pendulum problem 

in which equation (4.8) becomes the pendulum equation. Interestingly, the 

solutions i n question turn out to be the Gauss maps of certain surfaces of 

revolution (the nodoid and the unduloid) known as Delaunay's surfaces [87, 

88]. Equation (4.8) is the condition for the said surfaces to have constant 

mean curvature. The surfaces of Delaunay also appear as solutions to an 

isoperimetric problem in the calculus of variations, and are relevant in some 

problems of gas dynamics like soap bubbles and stems of plants. A harmonic 
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map which does not solve one of the equations (4.24) is not a holomorphic 
funct ion, and does not represent a min imum of the energy. 

4.2 Bas i c numerical set up 

Heretofore we have discussed the static field configurations. Now we con

centrate on their dynamics, paying particular attention to their stability, 

scattering properties, etc.. As our model is not integrable, the study of the 

evolution of our fields requires numerical techniques. We treat the configu

rations (4.10)-(4.11) as in i t ia l conditions for our evolution, studied numer

ically. Af te r giving some ini t ia l velocity to the W fields, we switch to the 

(^-formulation via equation (4.7), and evolve </) according to the equation of 

motion (4.4). Of course, in the Skyrme version of the model the equation 

employed w i l l be the corresponding skyrmion equation. 

Again we have recourse to the fourth-order Runge-Kutta method and 

approximate the spatial derivatives by finite dilTerences. The laplacian is 

evaluated using three different formulae: The standard 9-point recipe and 

a couple of 13-point laplacians meant to further check our results. One of 

these 13-point operators employs particularly simple coefficients, and i t wi l l 

be educational to derive i t here: 

Rej^lace the x — y plane by a square mesh wi th spatial step a and consider 

a central point 0 surrounded by a dozen of points labelled 1-12 as in the 

schematic plot below 
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11 3 0 1 9. 
7 4 8 

12 

In terms of the central point 0 we have 

= exY>{ad^)(j)o, h = exp(-a5^)^o, 
(f>2 = exp{ady)(f)o, <j)A = ex^{-ady)4>Q, 

(4.25) 

where </ifc represents the function (f){x,y) at point k. Upon Taylor-expanding 

(around i^o) the symmetrical sums 

4 8 12 

j=l j=5 3=9 
(4.26) 

some algebraic manipulation leads to 

{d:CX + dyy)(l)0 = -
Si — S2 Ss 

(4.27) 

where terms of order higher than have been omitted. Clearly, the coeffi

cients entering the calculations are quite simple; our 13-point laplacian can 

be symbolically presented as 

1 
- 1 - 1 - 1 

1 - 1 4 - 1 1 
- 1 - 1 - 1 

1 
(4.28) 

For completeness let us also display the standard 9-point laplacian: 

1 4 1 
4 - 2 0 4 
1 4 1 

6̂ 2̂ (4.29) 
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utilised in the studies of chapter 3 as well. 

Our simulations are carried out i n a 200 x 200 [n^ = n^, = 200) periodic 

lattice w i t h coordinate steps 6x = Sy = 0.02 and St = 0.005. The size of our 

torus is then X = x (Jx = 4. For a square torus the basic network (4.12) 

reduces to 

(0,0), ( L , 0 ) , ( L , i ) , ( 0 , L ) . (4.30) 

Unlike the simulations wi th non-periodic boundary conditions, the imple

mentation of an absorption device in the mesh (4.30) is not required. The 

exception, however, is the single-sohton case of section 4.3, whose particular 

features necessitate, i f only for a short while, a damping set up. 

W i t h the help of (4.15) the coefficients in the expansion (4.17) can be 

computed. The first six are: 

Co = 1 
c i = -0.7878030 
C2 = -0.221654845 
C3 = 9.36193 X 10-3 
C4 = 7.20830 X 10-5 
cs = 2.37710 X 10-5 

(4.31) 

where the simphficating value g2 = I has been used. We have verified that 

the omission of higher terms in the series does not compromise much in 

accuracy. The seventh coefficient, for example, is the negligible 1.97 x 10"'''. 

The numerical truncations errors gradually move the evolving configurar-

ions away f r o m the constraint (4.2). We account for this by rescaling 
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every few iterations. Before the rescaling operation we evaluate the quantity 

—* —* 

• 1.1 = (f).(j) — 1 

which, as i n the simulations of chapter 3, serves as a guide to detect unde

sirable numerical deviations. 

The parameter A in (4.10) has been equated to unity in all our simulations. 

And , for the sake of easiness when checking out results, we have set the 

scale of the total energy so that i t equals the value of the topological charge 

(this has been used in chapter 3 as well). In this way, Etotai=^ for one-

soliton cases and Etotai='2 when two solitons are involved. Note also that 

the relationship VQJI^ = 27r(5^^ '̂ imphes that all our energy density plots are 

basically topological charge density plots. 

To close this section we note that the discretisation of the toroidal model 

introduces more perturbation into the system than in the planar format of 

chapter 3. Comparison of the respective soliton fields in both schemes so 

suggests. But in all processes studied the radiation waves remained quite 

low and the impl ic i t disturbances proved to be immaterial. 

4.3 Sol i tons of degree one 

4.3.1 0(3) case 

From the theory of meromorphic functions we know that the sum of the 

residues Bj w i th respect to the poles situated in a FC (4.30) is given by 
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(suppose for definiteness that there are no poles at the boundary) 

^B, = ̂ J^Ji^)i^, (4.32) 

where f { z ) is an arbitrary eUiptic function. Taking into account the facts 

L+iL rO 
f{z)dz = - / f{z)dz, 

r f{z)dz = - ['^f{z)dz, 
JL+iL Jo 

we note that the integral in (4.32) is zero: 

= 0, (4..33) 

signifying that, unless f { z ) is a constant, i t must have at least either a 

single pole of order two or two simple poles: The simplest non-trivial elliptic 

funct ion is at least of the second order. For supposse that f { z ) possesses 

only a single pole of order one. Then we have 

f i z ) = + Regular part 
z — b 

= Regular part [B = 0 f rom (4.33) 

^ elliptic function. 

But if the single pole b in f ( z ) is of a higher order, two say, we have: 

A B 
^ ( ^ ) = ( ^ I T ^ j l + + ^•'Sular part 

+ Regular part [B = 0], 
( . - 6 ) 
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which is certainly elliptic. 

The above implies that the 0(3) model on the torus possesses no static 

analytic single-soliton solutions. 

This fact may also be understood in the context of differential geometry: 

The harmonic maps M t-> 5*2 ( M an orientable Riemann surface) have holo-

morphic representatives (instantons) of any degree provided that i t is greater 

than the genus of M [37, 86]. Clearly, for M = T2 the Brouwer index of the 

maps must be greater than unity. I t is important to realise that Q "̂̂ '̂ in 

(4.20) is numerically equal to the order k of (4.10) only when the latter is 

greater than one. Thus, an order-one solution carries degree zero, not one. 

Instanton solutions of zero degree on the torus are t r iv ia l . These are not 

to be confused w i t h solutions of the type involved in the Delaunay problem 

described at the end of section 4.1, which also have degree zero. The latter 

are not constant functions since they are not holomorphic. 

In order to study a single sohton-hke configuration on T2, we ignore the 

selection rule (4.11) and take 

Wr{z) = a + 6, (4.34) 
o\z — 0) 

which describes a quasi-periodic soliton that instead of (4.9) satisfies 

W^{z + mL + inL) = exp[y(??2 - in){b - a)]Wi{z). (4.35) 

Were a equal to b in (4.34) the field would be t r iv ia l . The condition 

a ^ b allows the construction, out of Wi, of a (^'^^^=1 sohton. Such a 

periodic configuration may be fabricated by taking a field whose values in 
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the sub-cell of vertices 

(/, 0, ( L - /, / ) , (Z - /, L - / ) , (/, L - l ) , / < i , (4.36) 

are given by (4.34) and in the rest of the fundamental cell (4.30) are given 

by a suitably chosen interpolating function. 

Commence by periodising Wi along the abscissas wi th the help of the 

kink-l ike ansatz 

Wh{x, y) = A{y) tanh[a(x - L)] + 5 ( y ) , 
(4.37) 

xe[L — l,L + l], ye[0,L], 

where i t is important to note that 

'L-l,L + l] = [0,1] U[L-

which keeps us wi th in the basic mesh. For each value of y the kink (4.37) 

w i l l periodise the field (4.34) along the x-axis. 

The complex functions A{y) and B{y) are obtained by demanding peri

odicity and continuity of (4.34) and (4.37): 

W,{l,y) = W,{l + L,y) 

= A{y)Unhial) + Biy) 

= W,{l,yy, (4.38) 

WH{L-l,y) = A{y)t^nh{-al) + B{y) 

= WriL-l,y). (4.39) 
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Substraction and addition of (4.38) and (4.39) entail 

My) W,il,y)-WriL~l,y) 
2tanh(a / ) 

^^y^ ^ W^il,y) + W^iL-l,y)_ 
(4.40) 

Therefore, our horizontally-periodic configuration is 

W^; xe[l,L-l], ye[0,L]-
WH{x,y)^{ (4.41) 

Wh] xe[L-l,L + l], ye [0 ,1] . 

(4.42) 

Next periodise WH along the ordinates wi th the assistance of 

Wy{x, y) = C{x) tanh[^ (y - L)] + D{x), 

. 'ce[0,L], ye[L-l,L + l . 

For each value of x the kink Wy w i l l periodise WH along the y-axis. 

Demands of both periodicity and continuity on (4.41)-(4.42) give 

Wy{x,l) = W,{x,l + L) 

= C{x)Unm3l) + D(x) 

= WnixJ); (4.43) 

Wy{x,L-l) = C{x)tcinh{-/31) + D{x) 

= WH{X,L-1). (4.44) 

Combining (4.43) and (4.44) we find 

, . _ WH{x,l)-WHix,L-l) 
^ ^ ' ' ^ - 2 tanh(^ / ) 

^(^) ^ WHix,l) + VVHix,L-l)_ 
(4.45) 
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I t turns out that the vertical periodisation on WH produces a field Wp 
periodic i n both x and y: 

( WH; ye[l,L-l]; xe [ 0 , ^ ] , 
Wp{x,y) = l (4.46) 

Wy] y e —/, L - t - / ] , a;e[0,Z], 

configuration that represents the periodic one-soliton function that we are 

seeking. 

The values of the parameters entering (4.46) are as follows: For the argu

ments in the kink configurations (4.37) and (4.42) we choose a=/?=20, and 

for the zero and pole of (4.34) we use 

a = (2.05,1.75), 6 = (1.95,2.25); (4.47) 

for the length / we take ten lattice points, so that / = 0.2 <^ L = A. 

We have numerically verified that the construct (446) has Q^-^^^ ?a 0.9999. 

and therefore can be jitstly regarded as a map i—> S2 of degree one. 

Figure 4.1 illustrates the periodisation of 14̂1 for a representative line 

of the fundamental nett, whereas a f u l l picture of both the real and the 

imaginary parts of Wp is exhibited in figure 4.2. 

Recall that our simulations are carried out in the ^-formulation, accord

ing to equation (4.4). The one-soliton configurations therein employed are 

periodic fields î p obtained f rom Wp via (4.7): 

r (Wp + Wp -Wp + Wp m - ^ - l 
= ^ 1 ^ ^ ' ^ W T T ' (̂ -̂ ^̂  

The components of (4.48) have interesting shapes, as shown in figure 4.3. 

I t is apparent f rom the above pictures that the periodisation procedure 

introduces some perturbation along the borders of the lattice in the form 
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of small folds. Under the numerical evolution these disturbances propagate 
towards the centre of the grid and collapse the lump of energy associated 
w i t h the evolving fields. A picture showing the energy density corresponding 
to (4.48) can be appreciated in figure 4.4. As the in i t ia l condition for our 
system we would like to have a field whose energy density resembles a lump 
in the centre and is flat elsewhere, and see to what extent the shrinking of 
the soliton as described above can be reduced. Consequently, in order to 
minimise the effects of the said perturbations we t ry to improve the in i t ia l 
conditions by ironing out the folds. We do this in the spirit of section 3.4 by 
implementing a damping function x that rescales 

dt(l>p xdt(f>p, X < 1, 

throughout a narrow strip along the edges of our cell (4.30). The absorption 

is switched i t off at the t ime (to) when the folds have disappeared. In contrast 

w i t h the soliton-lump of diagram 4.4, the flatness of the new ini t ia l structure 

along the edges can be appreciated in the upper half of figure 4.5. 

We remind that the kinks Wh and Wy, responsible for the periodisation 

of the system, operate around the borders on a strip which is only 10% 

(/ = 0.2) of grid size. We want this to be the case so that the periodised 

soliton (4.46) be only a small modification of the basic Weierstrass field Wi, 

equation (4.34). For values / > 0.2 the kink folds are less pronounced but 

w i l l not disappear unless / occupies a significant proportion of the nett. On 

the other hand, smaller values of / give a greater perturbation at the edges 

of the mesh, perturbation which is then more difficult to deal wi th . 

Our simulations show that during the preparatory stage the total energy 
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undergoes a small decrease, in conformity wi th the absorption that is taking 
place. Once the latter is turned off, the energy settles near the expected value 
of one (recall we have numerically normahsed Etotai = (5^^^^) and remains 
constant un t i l the t ime ( t f ) when the total energy density becomes so spiky 
that the numerical procedure breaks down [see the nether half of figure 4.5 . 
These results do not depend on how the in i t ia l conditions are prepared, nor 
on whether a 9-point or a 13-point nabla-squared operator is used in the 
simulations. In other words, the effects of the kinks on the shrinking of 
our soliton cannot be completely eliminated. Having performed many such 
simulations we are convinced that our results are genuine, i.e., the shrinking 
is genuine and not a numerical artifact. 

4.3.2 Skyrmion case 

Next we look at possible ways to stabilising our periodic construct. Guided 

by the experience wi th the 0(3) model in the compactified plane (where 

stabilisation is achieved by the addition of two extra terms to the lagrangian 

-the Skyrme and the potential terms-) we consider the possibility of adding 

the Skyrme term alone. Adding such a term to the 0(3) lagrangian (4.1) we 

get: 

- ^-^[(d^ldjf -{d^ld^$){dj.dj)l (4.49) 

identical i n fo rm to the (3-|-l)-dimensional (2.42). As already discussed, the 

term in 9i fixes the height of the lumps of energy associated wi th the soliton 
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fields. Since in the present context the system is defined in a finite volume 
f r o m the very beginning, the extended solitonic entities presumably wi l l not 
expand indefinitely. Consequently, unlike the situation in the compactified 
plane, the addition of a 62 term should not be indispensable. Indeed, our 
results support this. 

The equation of motion that follows f rom (4.49) is 

0 = {d^d^ - (i>.d^d^^ 
+ 2d^[d^dJ{d''ldJ) + dj{d^d^.d^$) - d,dj{d'ld^4>) 

- {dJ-dAWld^m- (4.50) 

I n the convenient H^-formulation the lagrangian reads 

AT.) ^ | H ^ t P - 2 | H / . P - 2 | H 4 p 
'-sky (J ^ | ^ | 2 ) 2 

(1 + \WVY 

the corresponding static equation being 

2WWM. 
0 = W,, 

W\'^ + \ 

+ i\w\^+ly [2^^--^^-^^'^ - ^^-(^^y - ^-^^(^-^y 
+ W^MW, + W,MW, - M/„-(|M4p + \W,\') 

Our computations reveal that thanks to the extra term the energy of 

the lump does not increase indefinitely, but instead i t vibrates in a stable 
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manner as t ime goes by. In figure 4.6 we show the evolution of the amplitude 
of the total energy density and the corresponding total energy for the case 
di — 0.001 (greater values of this parameter simply reduce the amplitude 
of the vibrations). Qualitatively similar pictures are obtained for values 
of 9-1 as small as « 0.00015, w i th the ampHtude of the vibrations increased 
accordingly. Smaller values cannot refrain the soliton-hump f rom augmenting 
its height indefinitely and Wp is no longer stable. 

The kinetic energy plots for figure 4.6 are depicted in figure 4.7: In the 

upper section we have the maximum value of the kinetic energy {Kmax) as 

t ime progresses, whereas in the nether half the evolution of the total kinetic 

energy itself (Ktotai) is presented. Due to the already-discussed disturbances 

generated through the periodisation of the field (4.34), the radiation is quite 

big at the beginning. I t then decreases under the action of the absorbing strip, 

which operates during the in te rva l t / - to = 0.8. By this time the radiation is 

small enough and the damping can be switched off; the kinetic waves remain 

remarkably low afterwards, for the rest of the numerical simulation. 

Note that Wp does not exactly satisfy the equation of motion (4.52), for 

the term 

does not vanish. Nevertheless, the smallness of di means that our Skyrme 

model is only a slight perturbation of 0 (3 ) , and hence our periodic one-soliton 

construction is a good, i f approximate, solution. 
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Figure 4.1: The non-periodic field Wi (dashed fine) and its periodised version 

Wp (solid line) along the line y = 2 oi the fundamental cell. 
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10-, 

Figure 4.2: The real (above) and imaginary (below) parts of the periodic 

soliton field Wp. The periodisation procedure creates small folds at the bor

ders. 
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Figure 4.3: The first component of the periodic soliton (j)p. The components 

62 and (f)3 are shown next. 
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Figure 4.3: Continued. The second component of the field <̂p. 
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Figure 4.3: Continued. The th i rd component of the periodic vector 
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Total energy density 

Figure 4.4: Total energy density at the in i t ia l t ime corresponding to the 

periodic field Wp. The folds at the edges, brought about by the periodisation 

procedure, must be ehminated in order to improve the in i t ia l conditions. 
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Emax=121.6 

t=to 

2000 

E 1000 a> 1.2 

Figure 4.5: Above: Total energy density at to=0.8, corresponding to our 

prepared, improved in i t ia l one-soliton configuration. Below: The maximum 

value of the total energy density (Emax) and the total energy vs. t. The 

lump grows infini tely ta l l soon after t / ~ 3.5, and the numerical procedure 

collapses. 
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b 1.2h 

Figure 4.6: Modified 0(3) model for a single-lump wi th 9i = 0.001. Above: 

Peak of the total energy density vs. t. The lump is now stable. Below: 

The corresponding total energy is now conserved throughout the numerical 

evolution. I n both diagrams t runs f rom to=0.8 [compare wi th figure 4.5 . 
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Figure 4.7: Kinetic plots for the single-skyrmion case of figure 4.6. Above: 

Peak of the kinetic energy density vs. t ime. Below: The corresponding total 

kinetic energy. I n both diagrams the large values of the kinetic energy are 

during the preparatory stage ( t=0 to to=0.8). Later on, the kinetic energy 

is derisory. 



CP^ model on a torus 106 

4.4 Solitons of degree 2 
4.4.1 0(3) case 

We now move on to the interesting question of collisions, l imi t ing ourselves 

to two solitons. I t is to be stressed that the preparatory stage devised for 

the pathological single-soliton case of section 4.3 is not required for solitons 

of degree > 2. 

Our in i t i a l two-sohton field is given by a function of the fo rm (4.10)-(4.11) 

w i t h K=2: 

a{z - bi) a{z - 62) 

First consider the situation where the solitons are symmetrically posi

tioned along the horizontal axis and sent towards each other wi th in i t ia l 

relative velocity v = (0.2, 0). We select the zeros and poles to be: 

ai = (0.77,1.95), = (3.25,1.95); 
61 = (1.32,1.95), 62 = (2.70,1.95). ^ ' 

Note that we introduce the in i t ia l velocity into the system by evaluating 

at f = 0 the t ime derivative of equation (4.53) w i th 

(4.55) ai —> fli + vt^ a2 ^ a2 — vt; 
W hi -\- vt., &2 1)2 — vt, 

That is, our in t ia l values of dtW2 \t=o are given by 

d a{z — ai ~ vt) a[z — 02 + vt) ^ 

dt cr{z — 61 — vt) a{z — 62 + vt) 

Our numerical output files indicate that the soliton-lumps gradually shrink 

and then undergo a gradual expansion as they approach one another. They 
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collide at the centre of the grid and transiently merge themselves into a 
ringish structure, where they are no longer distinguishable. A t this point 
they reach their maximum breadth. After coalescing for a moment the humps 
of energy get narrower and narrower as they emerge at right angles to the 
in i t ia l direction of motion. Due to their instability, the shrinking process 
goes on un t i l the solitons get so spiky that the numerical procedure is no 
longer reliable; this occurs for i 6, when max|/x| as defined in section 4.2 
reaches 10~^ and higher. A depiction of this process is presented in figure 
4.8: By ^ = 5 the lumps are re-emerging at ninety degrees wi th respect to 
the in i t i a l direction of motion. About a unit of t ime later, having displaced 
themselves a bit more in opposite senses along the ordinates, their increase 
in height is such that the computational code breaks down. 

A numerically interesting feature of the periodic CP^ model is that the 

scattering can also be observed when the soiitons are sped 'away' f rom each 

other, towards the borders of the net. This is achieved by taking v —v 

i n (4.55). Again, we see scattering at 90°. A representation of this event 

can be viewed in figure 4.9, where the lumps appear in halves. By folding 

edge-to-edge any given picture in figure 4.9, as i f deforming the flat T2 into 

a cylinder, the halves coincide and reiuiite harmoniously. The evolution of 

the corresponding energy densities, total and kinetic, are exhibited in figure 

4.10. Note that the soliton-lumps are depleted of very l i t t l e radiation during 

the quasi-elastic pi-ocess (before the collapse, that is, signalled by the familiar 

unl imi ted growth of the energy). In figure 4.11 the graphs of the total energy 

and the topological charge, for the process of illustration 4.9, are too shown 

as a funct ion of t ime. The case of soliton-lumps colliding at the centre, figure 
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4.8, is also characterised by curves akin to those of figures 4.10 and 4.11. Note 
that this sort of border-scattering is a good way to test the correctness of 
our periodic lattice. 

A typical head-on collision wi th the solitons ini t ia l ly placed along a diago

nal is illustrated in figure 4.12. The in i t ia l state therein presented is achieved 

by the arrangement 

ai = (0.95,0.75), 02 = (3.05,3.25); 
61 = (1.22,1.95), 62 = (2.78,2.05). ^^'^^^ 

Af te r directing the solitons away f rom the centre wi th ini t ia l velocity 

V = \/2(0.1,0.1) -v=0.2-, they colHde at the corner (0,0)=(4,4) and re

appear f r o m (0,4) = (4,0) at right angles to the in i t ia l direction of motion. 

Of course, all four corners are nothing but the same point: There the lumps 

meet, coalesce and scatter off as already explained. Shortly afterwards, the 

instabil i ty of the system manifests itself i n the usual manner, reflected by the 

0 ( 3 ) curve in the graph Emax{t) of figure 4.12. This diagram also includes 

the resulting curve of the stable Skyrme version, described later in subsection 

4.4.2. 

The proceedings for collisions involving a non-zero impact of parmeter 

can be followed in the prototype display of figure 4.13: The extended objects 

come across non-front ally, rather mildly, preserving their integrity. They re

group and get passed each other separated by a certain vertical distance. 

As they do so, the lumps become thinner and thinner in the familiar 0 (3) 

fashion. 

We have also devoted attention to solitons situated in an arbitrary, non

symmetrical way wi th in the network FC. We too found that the solitonic 
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entities scatter at ninety degrees when propelled against one another. In the 
next section we w i l l further elaborate on this case. 

We may interpret the instability of (4.53) under numerical simulations as 

follows: The lumps start off satisfying the selection rule Cii 4-02 = 61 + 62, 

which links them in some manner. Due to inevitable round-off errors during 

the numerical simulation, the field gets perturbed and so i t is only approxi

mately described by the original field configuration. As the perturbation is 

quite small i t w i l l excite mainly the degrees of freedom which are zero modes 

of the original configuration. Thus, in particular, aj and bj w i l l start evolving 

but in order to remain close to the original configuration they wi l l keep the 

constraint unbroken. Such evolution may lead to aj and bj, pairwise, coming 

close together. This corresponds to the sohtons shrinking. To see this note 

that \aj — bj\/2 determines the size of the j - t h sohton. This shrinking is essen

t ia l ly of the same type as the shrinking of the solitons studied in chapter 3. 

We would like to stress that since analytical solutions exist in all topological 

sectors of index > 2, this lack of stability of our two-soliton system is of a 

different nature than the instability of the single-soliton configuration (and 

so non-existence of a one-soliton static solution) discussed in the previous 

section. There the solution does not exist on the lattice or in the continuum; 

here the solutions do exist in the continuum but are unstable and put t ing 

them on the lattice introduces a perturbation which sets off the instability. 

A n alternative explanation is that during the t ime evolution the field may 

no longer obey the relation ai + 02 — bi + b2, and the extended structures 

may begin to move somewhat independently, away f rom the torus. In such 

circumstances, they become unstable and begin to shrink. 
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4.4,2 Skyrmion case 

Let us now consider the Skyrme lagrangian (4.51) as applied to two soli

tons. Frontal collisions along the abscissas corresponding to the arrangement 

(4.53)-(4.54) unfold as in the pure 0(3) scheme. The Skyrme term, however, 

l imi ts the shrinking of the lumps and renders them stable; their motion can 

now be followed for as long as desired. For instance, the skyrmions proceed 

as in figure 4.9 but, after 90° scattering at the lattice point (0,2)=(4,2), they 

continue their journey and collide thrice more, reaching again their t—O po

sitions and going on to repeat this cycle anew, as suggested by figure 4.14. 

This notable multi-scattering phenomenon cannot be observed in the usual 

non-periodic CP^ format. 

A l l four snapshots i n figure 4.14 correspond to coalescing skyrmions, 

shortly before scattering off. The indistinguishability of the lumps, come 

impact t ime, is also apparent f rom figure 4.14: The formation of four peaks 

characterises such occurence. Observe also that the diameter of the ringish, 

volcano-like state that the lumps form when coming together is quite con

siderable, of the order of the lattice length L. This is further illustrated in 

figure 4.15. 

A l l cases analysed in this section correspond to a value of the Skyrme 

parameter equal to 9i = 1/2000, but the same qualitative behaviour is ob

served for values down to ^ 0.00007 (wi th the amplitude of the vibrations 

being accordingly more pronounced). Smaller values of 9i cannot prevent 

the extended structures f rom getting too thin, and lead to the breakdown of 

our computational code. 
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Diagonal skyrmion colhsions (that is, those in which the ini t ia l position 
of the extended objects is along a diagonal in the fundamental cell) develop 
in the same lines of the 0 (3 ) situation sketched in figure 4.12. However, as 
exemplified by the dashed curve in the bottom-right side of that picture, this 
t ime the dynamic, solitonic quasi-particles are not unstable anymore. 

Next consider the collision of two solitons located at arbitrary grid points, 

of which an example is provided by the parameters 

a, = (0.77,1.30), a2 = (3.25,2.70); 
bi = (1.32,1.95), 62 = (2.70,2.05). ^^'^ '^ 

To calculate the velocity that w i l l direct the skyrmions defined by (4.57) 

towards each other, we resort to the plot x ~ y in the superior half of figure 

4.16 and find 

t a n ( C ) ~ 2.09218476, 

where ( is the angle between the lump A and the abscissas. Setting the speed 

V equal to 0.2 and using 

V = 

we obtain 

v = (0.08624827,0.18044732). 

We w i l l however use the cruder approximation 

V = (0.0862,0.1804), v fa 0.2. (4.58) 

whose corresponding impact parameter is very small but non-zero. This wi l l 

be reflected in a scattering angle slighty less than 90° and in the colliding 
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lumps being not completely indistinguishable. When the collision is perfectly 
head-on, the coalescing solitons are not distinguishable and they emerge at 
exact right-angles to the original direction of motion. We have already seen 
this in both scattering cases shown previously. Our choice (4.58) allows to 
trace the path of each individual lump both before and after the impact. 

In the upper-half of figure 4.16 we have two complementary graphs: The 

one in the left-hand-side exhibits the coordinates {x,y) of the amphtude 

Emax as a funct ion of t, whereas the diagram on the right-hand-side plots 

X vs. y. The labels A — E are a guide as to the path followed by one of the 

lumps, the route of the other being given by the corresponding symmetrical 

points: Labelling these points hy A — E, the coordinates of a given point, A 

for example, are related to the coordinates of the corresponding site A by 

XA+X^=L, yA+y^ = L [ i = 4]. (4.59) 

A skyrmion-lump starts at A and after 90° scattering (actually some

what less than 90 degrees, as anticipated) around the centre i t continues its 

itinerary to the position where i t disappears to re-emerge at C. Thence 

the extended structure heads south-east and, having reached point D dXto'^ 

14.5, i t suddenly changes its path to move south-west (point E), unequivo

cally signalling that a second 90° scattering has taken place. Regarding the 

other colliding entity, the one starting at (a;^,2/i) « (1.5,0.9), we can see 

that the said second clash changes its trajectory f rom the north-west to the 

north-east direction. Our numerical simulation terminates at t ^ ~ 30, where 

F denotes the end of the leg started at E. 

A 3-D picture of the above-described second scattering would not be easy 
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to decipher due to the expansion of the skyrmions. For instance, the distance 
f r o m spot D to its counterpart D suggests the formation of a coalescing ring
like state of large periphery. Our numerical files show that at to ~ 14.5 {D 
impact t ime) Emax reaches its min imum value, 0.5623. A n expansion of this 
k ind can be appreciated f rom the dashed, skyrmion curve in the bottom-right 
of figure 4.12 [see also illustration 4.15 . 

Now imagine our flat manifold T2 as the surface of a doughnut in TZa, 

obtained by rotating the circle of radius r and circumference L = A about 

a coplanar line (Z axis, say) that does not intersect i t . The coordinates 

(x = T,y = serve as the angle of rotation of the plane of the circle and 

the angle on the circle itself, respectively. The coordinates {X, Y, Z) of any 

point on the curved torus satisfy the standard equation 

(x/A'2 + y 2 _ + z^ = r \ (4.60) 

where 
X = [i? + rcos(i?)]cos(T), 
Y = [i? + rcos(t?)]sin(T), (4.61) 
Z = rsin(t9). 

The radius r is L/2'ir ^ 0.63662 and the distance f rom the centre of the circle 

to the axis of revolution (Z) is R = 2r. 

The distance d f r o m the origin {X, Y, Z ) = (0,0,0) to a sohton-lump on the 

toroidal surface can be calculated via 

d = VX^TY^TZ^ 
= ryj5 + 4cos{'d). (4.62) 

St i l l refering to the general situation (4.57)-(4.58), f rom our numerical files 

or simply w i t h the help of the top-right graph in figure 4.16, the approximate 
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values of the latitude y = "d can be reckoned. Focusing ourselves on the A-

lump, through formulae (4.61) and (4.62) we can tabulate some useful values 

in the accompanying table: 

d Z d 

A 3.1 (178.4°) 0.01 0.63 
M 2 (114.6°) 0.57 1.16 
D 0.46 (26.3°) 0.28 1.86 
F 2.8 (160°) 0.2 0.7 

Sent f r o m the vicini ty of the centre in the polar illustration of the bottom-

left side of figure 4.16, the skyrmion-lump A moves clockwise and meets its 

anti-clockwise travelling colleague at latitude I^A/ = 114.6° ( M stands for 

'middle ' ) . The /1-soliton, after scattering as explicated earlier, continues its 

clockwise polar-trip, decreasing in latitude. Just going passed the 30° mark 

a second collision occurs: This t ime the lump reverses its t9-direction and 

marches on un t i l the end of the simulated journey at site F, {'dp, dp) — 

(2.8,0.7). The result is a circular trajectory. 

Paying heed to the graph on the lower-half portion of figure 4.16, a sim

ilar analysis follows: Starting f rom around the valley of the curve d{-9), the 

dynamic skyrmion ascends to reach the top [dn = 1.86), after experiencing 

the first 90° event at I9M = 2. The J-path of our extended object is reversed 

due to a subsequent collision: The skyrmion motions downhill, descending 

through the previously transited locus and stops at F, where the simulation 

ushers i n . 

W i t h reference to the situation when the ini t ia l velocity equals zero, we 

recall f r o m chapter 3 that in the non-periodic Skyrme model the solitons 

slighty move away f r o m each other, thus demonstrating the presence of a 
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repulsive force between them. However, on the torus we have found that 
our skyrmions undergo no translation at all as time elapses. This might be 
related to the fact that there is no 62 term in the toroidal model ( i t might also 
be that the net repulsive force on a given lump is zero due to the presence 
of similar entities in neighbouring lattices). In further agreement wi th this 
result is the absence of a critical speed above (below) which the skyrmions 
would scatter at 90° (180°) to the in i t ia l direction of motion. Such a critical 
value was found to be 0.3 in the non-periodic, modified model of chapter 
3. As thoroughly analysed in this now ebbing chapter 4, the toroidal model 
exhibits 90° scattering regardless (we have verified that values smaller than 
the speed of 0.2, employed all througout this chapter, do not show otherwise). 
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Emax=118.2 

Emax=125.3 

Figure 4.8: Total energy density corresponding to 0(3) solitons sent towards 

each other w i t h v = (0.2,0). 
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Total energy density 

Emax=96.16 

t=4.5 

Ennax=169.5 

Figure 4.8: Continued. The extended structures scatter at 90°. They sepa

rate a moment later w i th their heights augmenting unstably unt i l the lumps 

blow asunder. 
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Emax=118.2 

t=0 

Emax=83.37 

t=3.5 

Figure 4.9: Total energy density corresponding to 0(3) solitons moving away 

f r o m the centre w i t h v = (0.2,0). The amphtude of the lumps gradually de

creases as they approach each other, reaching a min imum when they coalesce. 
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Emax=148.8 

t=4.75 

Emax=553.7 

t=5.5 

Figure 4.9: Continued. The solitons scatter at 90°. They become very spiky 

as t ime progresses but, as shown in figure 4.14, this is corrected by merely 

adding a Skyrme term to the lagrangian. 
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Figure 4.10: Graphs corresponding to the scattering shown in figure 4.9. 
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Figure 4.11: Conservation of energy and topological index. The slopes at the 

ta i l of the curves signal the ocurrence of numerical errors as the solitons get 

too spiky. 
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Before (B) After (A) 

# 
• ' \ Skyrme / \ 

Figure 4.12: 0 (3 ) soHtons moving away f rom the centre along the (0,0)-(4,4) 

diagonal (B) . They collide at the corners and scatter at right angles ( A ) . 

When the model is supplemented by a Skyrme term the lumps are stable, as 

shown in the accompanying graph Emaxit) (broken curve). 
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t=0 ; Emax=121.3 t=2 ; Emax=127.1 

# 

t=2.5 ; Emax=137 t=3 ; Ennax=171.2 

Figure 4.13: 0 (3 ) collision for a relatively large impact parameter. The 

in i t i a l velocity is v = (0.3,0.1). 
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t=3.25 ; Emax=213.5 t=3.75 ; Emax=429.1 

i 1 
i 

t=4 ; Emax=720 t=4.25 ; Emax=1390 

i i 

i 1 

Figure 4.13: Continued. Af ter a relatively mi ld scattering the solitons pro

ceed in opposite senses whilst continuing to shrink. 
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Emax=23.92 ; t=11 

(Mr. 

Emax=43.13;t=17.5 

Emax=11.05 ; t=25.5 Emax=24.9 ; t=29 

Figure 4.14: Skyrmion scattering (6*1=1/2000) for v = (0.2,0). After scatter

ing Hke the (9(3) soHtons of figure 4.9, the skyrmions do not collapse but go 

on to coUide at t = 11, 17.5, 25.5 and so for th . In every occasion they scatter 

at right angles. This cycle repeats itself indefinitely. 
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Emax=11.05 

t=25.5 

Figure 4.15: Three dimensional picture corresponding to the second collision 

of the event depicted in figure 4.14. The four peaks characterise the coalescing 

state, where the lumps can no longer be individually recognised. Note also 

that the united skyrmions occupy all the lattice area. 
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Figure 4.16: Trajectories of the position of Emax corresponding to head-on 

scattering of skyrmions arbitrarily situated in the basic cell. The labels A-E 

follow the itinerary of one of the lumps. The polar plot shows Z = rsin(i?). 

The distance d is f r o m the lumps to the origin (0,0,0) of equations (4.58). 



Chapter 5 

Summary 

We have performed a numerical study of some stability and scattering proper

ties of both the non-hnear (9(3) and the Skyrme model in (2+1) dimensions. 

This latter scheme, an extension of the former, is a low dimensional analogue 

of the nuclear skyrmion theory in four dimensional space-time. None of our 

two CP^ systems is integrable, and their evolution in time has been made 

via numerical simulations. 

The 0 (3 ) solitons are not stable because they are invariant under scale 

transformations. Any perturbation causes the solitons' energy density to de

crease (increase) its wid th (height) without l imi t . When the breadth is com

parable to the lattice spacing the numerical code breaks down. A n explicit 

perturbation can be introduced into the system by impinging the sohtons 

w i t h some in i t ia l velocity, but the implici t perturbation inevitably brought 

about by the discretisation procedure suffices to push to the fore the insta

b i l i ty as already explained. 

128 
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The 0 (3 ) lumps have the property of scattering at 90° to the ini t ia l di
rection of motion when sent to collide head-on. Such systems are more per
turbed than the static single-soliton case, but nevertheless their scattering 
can be arranged to happen before the instability takes over. Now, the jud i 
cious addition of extra terms to the 0(3) lagrangian can bring stabilisation 
to the model, a much desired asset for a theory to posses. In the usual case 
where the model is defined on compactified plane, represented numerically 
by a non-periodic lattice, two additional terms are necessary: A Skyrme-like 
(^i) and a potential-like (^2) term. 

In chapter 3 we have exploited the non-uniqueness of the 62 term to 

wri te down a version of the planar Skyrme model w i th a rather general 

potential term. The numerical representation of this model introduces an 

impl ic i t perturbation bigger than previously-studied choices for the ^2-term. 

However, such factor was not of the essence and our results did not differ 

qualitatively f r o m those obtained wi th anteriority, in different versions of the 

model. 

Restricting ourselves to solitons wi th topological charge Q=l and 2, we 

found that the skyrmions are stable; their energy density profiles do not 

change appreciably in shape, nor they shrink or expand unduly wi th the pass

ing of t ime. The single-skyrmion case was almost perfectly static, whereas 

the two-skyrmion situation evidenced a repulsive force between the extended 

objects when started off f r o m repose. Further evidence of this repulsive inter

action is seen in head-on collisions, when the skyrmion-lumps scatter back-

to-back i f the in i t i a l , boosting velocity is not greater than 0.3. Otherwise 

they scatter at 90°. 
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In the 0 (3 ) l i m i t (01=02=0) scattering at 90° takes place for any non
zero in i t i a l velocity, i.e., the soliton-lumps no longer repel each other. This 
is confirmed in the static Q = 2 case where the bell-shaped quasi-particles 
keep st i l l as t ime goes by, before the instability breaks down the numerical 
code. 

I n chapter 4 we considered both CP^ models defined on a flat torus, 

an unexplored scenario in the context of sohton stability/scattering. The 

numerical simulations in this case are carried out in a periodic fundamental 

mesh. 

The toroidal theory possesses the distinctive feature of admitt ing analytic 

soliton solutions of topological degree > 2, only. Analytical solitons in the 

Q = 1 class do not exist, and those in the Q = 0 sector are t r iv ia l . This is 

because the periodic solutions are given by elliptic functions, the simplest of 

which are known to be of the second order. In the language of differential 

geometry, there are no holomorphic harmonic maps of degree one on the 

torus since its Euler number is zero. 

Nonetheless, combining appropriate fields of the kink type wi th a one-

pole quasi-periodic soliton configuration, we have been able to fabricate a 

doubly-periodic meromorphic solution of the 0(3) equation of motion in the 

Q=l sector. But the periodisation procedure unavoidably unsmoothens the 

resulting energy-lumps around the borders of the fundamental cell. I t turns 

out that our ansatz behaves unstably under numerical evolution, shrinking 

faster than its counterpart of chapter 3. Since, unlike the latter, single static 

solitons do not exist in the continuum on the torus, our results suggest that 

the instabil i ty of our periodic construct is intrinsic, rather than occasioned 
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by the numerical method utilised. 

Notably, by supplementing the 0 (3 ) lagrangian wi th merely a di term our 

solitonic anstaz becomes stable, prompting us to claim that i t is a l ici t (5 = 1 

skyrmion on the torus. The sole addition of a Skyrme term also stabifises the 

pure 0 (3 ) solitons i n higher topological classes. The non-necessity of a 02 

term to stabilise the 0 (3 ) solitons is another peculiarity of CP^ on the torus 

which, i n this sense, resembles more closely the hadrionic (3+1) dimensional 

Skyrme model (where no second extra term is needed, either). 

In fur ther contrast w i th the model in compactified plane, two skyrmions 

wi th no in i t ia l velocity showed that the net force between them is null , which 

is most likely linked to the absence of a 02 term in the toroidal model. As a 

consequence, there is no critical velocity below which the toroidal skyrmions 

w i l l bounce back after the impact. This circumstance could be an advantage 

i f one wishes (as in the geodesic approximation) to keep the radiation in 

the system as low as possible whilst studying CP^ scattering. I t would be 

interesting to simulate the evolution of our skyrmions wi th the presence of 

a 02 term, and study their behaviour when started off f rom rest and also in 

connection wi th the existence of a critical velocity. 

Collisions on the torus showed scattering at right angles both in the pure 

0 (3 ) and modified schemes. In the pure model the lumps continue to shrink 

after the colhsion unt i l the numerics collapses; in the stable Skyrme format 

the solitons course through indefinitely. Here, thanks to the periodicity of 

the network, yet another appealing characteristic of the toroidal model was 

observed: Multi-scattering. Indeed, after the first scattering the extended 

structures go on to repeat the quasi-elastic collision-cycle t ime and again. In 
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the pure 0 (3 ) numerical dynamics these events do not occur, for the solitons 
blow up before the encore. 

Another attractive feature is that collisions can also be studied when the 

solitons are sped 'away' f rom each other, boosted to meet one another at the 

borders of the basic grid. The picture is particularly worth viewing when the 

extended entities reach the edges of the nett: Each lump splits in two and 

the four bits (four i n a soliton-soliton coUision) move along the legs of the 

flat torus to later reunite in the subsequent clash and so on. 

W i t h respect to the instability of the toroidal 0 (3 ) lumps for Q > 1, we 

must emphasise that i t is of a different nature than the Q = 1 case. On the 

one hand, in sectors of charge greater than one, where analytical solutions do 

exist, the zeros (aj) and poles (bj) entering the static soliton-field solutions 

are subject to the selection rule 

condition that may not hold at later times. This would lead to the instability 

of the system. However, we favour the view in which the extended structures 

evolve respecting the abovesaid constraint but in such a way that 6,-, 

reducing the breadth of the i-th. lump and hence making i t shrink. In any 

case, the aftermath is that the lumps become too spiky and break down the 

numerical procedure. 

On the other hand, in the Q = 1 case (where no analytic static solution 

exists) there is no such selection rule. As a pedagogical exercise, these two 

kinds of instabili ty can in turn be compared to the situation arising in the 

spherical model. 
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In this thesis we have not considered systems containing solitons of neg
ative degree, i.e., anti-solitons. I t would be worthwhile to invest some 
t ime studying soliton-antisoliton CP^ collisions, where annihilation features 
emerge. Inasmuch as this has already been investigated in the model de
fined in compactified plane [89], i f in simpler discrete versions than ours, we 
suggest to focus efforts on the toroidal model to start wi th . Amongst other 
things, a comparison of the results found in the above reference wi th those 
of the toroidal case would be worth making. 

Regarding the model on the sphere, numerical simulations of the skyrmion 

model in an irregular lattice, e.g.,, in a lattice where the boundaries are 

effectively shifted to inf ini ty, have not been reported in the literature. This 

is something one may like to t ry out, but since the 0 (3 ) two-soliton system 

in a finite grid is unstable whereas the two-skyrmion case is not (evidencing 

that the scale set by the grid is not responsible for the stabilisation of the 

la t ter) , such line of investigation has perhaps only academic, formal value. 

More appealing is the study of a \Q\=l system assembled by combining 

two solitons w i t h one antisoliton for instance, as suggested by Dr. Bernard 

Piette. Such topological class is specially interesting in the toroidal theory 

where a static analytic one-soliton solution by itself is not a possibility. 

Another worthy follow-up to the present work would be to express the pe

riodic soHtons in term of Weierstrass' p{z) function which, unhke our choice 

a(z) , is ell iptic itself and provides an example of a two-soHton solution. I t is 

derived f r o m cr{z), equation (4.14), via 

d da{z)/dz 
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However, note that p{z) is even, and therefore cannot be applied to topo
logical sectors of odd degree. A n alternative to Weierstrass' functions is the 
uti l isation of Jacobian elliptic functions. These have been employed to obtain 
a periodic sine-Gordon field f rom an instanton on the torus [90]. 

We opine that of some attractiveness would also be the problem of re

placing the torus by a manifold Af w i th £f > 1, where g is the genus oi M. We 

know f r o m differential geometry that harmonic maps exist in the following 

cases: 

• I f | g | > ^ + l ; 

• if \Q\ = g and J\f accepts a meromorphic function of degree 2; 

• if \Q\ = g is even. 

The attempt to find and study the dynamics of these soliton candidates 

would be educational, as so would be the possibility of fabricating numerical 

ansatze for the cases analytically ruled out by the above conditions. Our 

success in constructing (chapter 4) a good, approximate soliton of degree 

one on the torus encourages us to purse the matter further. 
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