
Durham E-Theses

Data re-engineering using formal transformations

Mortimer, Richard Eric

How to cite:

Mortimer, Richard Eric (1998) Data re-engineering using formal transformations, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4833/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4833/
 http://etheses.dur.ac.uk/4833/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Data Re-engineering

using

Formal Transformations

Richard Eric Mortimer

Ph.D. Thesis

Centre for Software Maintenance

Department of Computer Science

University of Durham
Tlie copyright of this thesis rests
witli the author. No quotation
from it should be published
without the written consent of the
author and information derived
from it should be acknowledged.

1998

Abstract

This thesis presents and analyses a solution to the problem of formally re-

engineering program data structures, allowing new representations of a program to

be developed. The work is based around Ward's theory of program transformations

which uses a Wide Spectrum Language, WSL, whose semantics were specially devel­

oped for use in proof of program transformations. The re-engineered code exhibits

equivalent functionality to the original but differs in the degree of data abstraction

and representation.

Previous transformational re-engineering work has concentrated upon control

flow restructuring, which has highlighted a lack of support for data restructuring in

the maintainer's tool-set. Problems have been encountered during program trans­

formation due to the lack of support for data re-engineering. A lack of strict data

semantics and manipulation capabilities has left the maintainer unable to produce

optimally re-engineered solutions. It has also hindered the migration of programs

into other languages because it has not been possible to convert data structures into

an appropriate form in the target language.

The main contribution of the thesis is the Data Re-Engineering and Abstrac­

tion Mechanism (DREAM) which allows theories about type equivalence to be rep­

resented and used in a re-engineering environment. DREAM is based around the

technique of "ghosting", a way of introducing different representations of data, which

provides the theoretical underpinning of the changes applied to the program. A sec­

ond major contribution is the introduction of data typing into the WSL language.

This allows DREAM to be integrated into the existing transformation theories within

WSL.

These theoretical extensions of the original work have been shown to be practi­

cally viable by implementation within a prototype transformation tool, the Main­

tainer's Assistant. The extended tool has been used to re-engineer heavily modified,

commercial legacy code. The results of this have shown that useful re-engineering

work can be performed and that DREAM integrates well with existing control flow

transformations.

n

Acknowledgements

I would not have been able to produce this thesis without the help and support

of a number of people. I thank Professor Keith Bennett for his help, guidance and

supervision throughout the course of the research for this thesis.

The academic content of this thesis was influenced by a number of different

people. Tim Bull, Brendan Hodgson, Zhaohui Luo, Eddy Younger and Martin Ward

provided numerous hours of stimulating discussion into the formal and practical

aspects of program transformation in WSL.

Ron Cain and Pete Collins at the IBM United Kingdom Laboratories provided

assistance during the case studies and the staff at Software Migrations Ltd. provided

help with and information about the FermaT program transformation tool.

During the course of the research the staff and students at the Centre for Soft­

ware Maintenance provided numerous opportunities for taking a much wider view

of computing research. Special thanks go to Malcolm Munro, Liz Burd and Peter

Biggs.

I gratefully acknowledge the financial support from IBM (UK) Ltd. and the

Engineering and Physical Sciences Research Council.

The final preparation of the thesis would not have been possible without the help

of Jill Munro and my colleagues at Sun Microsystems.

I could not have completed this thesis without an opportunity to relax and

unwind in the company of my many friends at Durham Amateur Rowing Club and

The Graduate Society. Special mention must go to Iwan Jones, Ros Martin, Andrew

Adams, Jed and Allie Gargan, Clyde Burgess, Jim Dulling, Chris Cooper, Richard

Dodson, Anna Hindhaugh and Dr. Mike Richardson.

Finally, may I extend my warmest thanks to Deborah Robson who has provided

endless encouragement, help and support over the past few years. I will never be

able to fully repay the debt I owe her.

This thesis has been produced using WT^, xfig and XEmacs.

m

To Eric, Mary and Sarah.

Contents

1 Introduction 1

1.1 Statement of the Problem 2

1.2 Motivation 3

1.3 Statement of Contribution 4

1.4 Criteria for Success 5

1.5 Thesis Outline 6

2 A Perspective on Software Maintenance 9

2.1 The Software Lifecycle 10

2.2 Aspects of Software Maintenance 11

2.3 Legacy Code 12

2.4 Re-engineering 13

2.4.1 Source Languages 17

2.4.2 Re-engineering Techniques 19

2.4.3 Formality of Re-engineering 20

2.5 Summary 22

3 Transformation Systems 24

3.1 What are Formal Transformations? 25

3.2 Re-engineering using Transformations 27

3.2.1 Refinement 28

3.2.2 Abstraction 29

3.2.3 Restructuring 30

3.3 Transformation Systems 30

3.4 Data Re-engineering 36

I V

Contents v

3.4.1 Theoretical Work 36

3.4.2 Transformational Work 39

3.4.3 Proof-Oriented Work 40

3.5 Summary 44

4 The Maintainer's Assistant 45

4.1 Theory and Implementation 46

4.1.1 WSL and Transformations 47

4.1.2 A ^ X 4 W S L 52

4.1.3 The User Interface 53

4.1.4 Analysis of the Maintainer's Assistant 53

4.2 Adding Data Typing to WSL 55

4.2.1 Available Types 56

4.2.2 Data Type Semantics in WSL 60

4.2.3 Using a Shallow Embedding 68

4.2.4 WSL Data Type Syntax 69

4.2.5 Mapping the Syntax onto the Underlying Semantics 76

4.3 Summary 80

5 Data Transformation in D R E A M 81

5.1 Overview 81

5.2 Types of Transformation 84

5.2.1 Changing Data Representation 85

5.2.2 Changing the Relationship between Logical Data Objects . . . 86

5.2.3 Changing the Scope of Data 87

5.2.4 Introducing Data Subtypes 88

5.3 Data Expression Refinement Relations 90

5.4 Data Type Equivalence Theories 92

5.5 Ghosting 94

5.5.1 Theory 95

5.5.2 The DREAM Data Transformation 100

5.5.3 Ghosting as an Algorithm 106

5.5.4 Revised Ghosting Mechanism 110

Contents vi

5.5.5 Using Ghosting to Implement Data Transformations 112

5.6 Summary 113

6 The Prototype Tool 115

6.1 Introduction 116

6.2 Extending the Transformation Engine 117

6.2.1 DREAM Transformation Module 119

6.2.2 Data Type Modules 122

6.2.3 Data Type Equivalence Modules 126

6.2.4 User Interface 128

6.3 Implementing the tool 130

6.3.1 Abstract Syntax Changes 130

6.3.2 Testing the Changes 136

6.3.3 Adding Modules 137

6.3.4 Ghosting (DREAM Module) 139

6.3.5 Ghosting User Interface 143

6.3.6 Code Summary 143

6.4 Summary 145

7 Data Types and Type Equivalence 147

7.1 Data Type Theories 148

7.1.1 Integers 149

7.1.2 Records 155

7.2 Data Type Equivalence Theories 159

7.2.1 Integer Equivalence Theory 160

7.2.2 Record Equivalence Theory 164

7.2.3 Ghosting Example 165

7.3 Other Data Types 172

7.3.1 Discrete Types 172

7.3.2 Real Numbers 176

7.3.3 Sets 177

7.3.4 Abstract Data Types 179

7.3.5 Static Arrays 180

Contents vii

7.3.6 Dynamic Types 184

7.4 Summary 188

8 Results 190

8.1 Case Study One — Data Reverse Engineering 191

8.1.1 Analysing the Code 191

8.1.2 Reverse Engineering the Code 194

8.1.3 Reverse Engineering Summary 198

8.2 Case Study Two — Automated DREAM 200

8.2.1 Translation and Pre-processing 201

8.2.2 Transformation 206

8.2.3 Analysing the Program 218

8.2.4 Transformation Summary 220

8.2.5 Case Study Summary 222

8.3 Criteria for Success Revisited 223

8.3.1 Data Types in WSL 223

8.3.2 Data Transformations using DREAM 226

8.3.3 Data Re-engineering using Formal Transformations 228

8.4 Summary 231

9 Conclusions 233

9.1 Meeting the Criteria 234

9.2 Further Work 238

A A Review of the Maintainer's Assistant 241

A . l Accomplishments 241

A. 1.1 Code Restructuring 241

A. 1.2 Multiple Source Languages 246

A.1.3 Formally Defined Semantics 247

A. 1.4 Practical Experience 247

A.2 Deficiencies 248

A.2.1 Data Typing 248

A.2.2 Data Abstraction and Modularisation 250

A.2.3 Translation from/to Source Languages 250

Contents viii

A.2.4 Selection of Appropriate Transformation Strategies 250

A.2.5 Backtracking Facilities 252

A.2.6 Unsupported Language Constructs 252

A.2.7 The Laws of Arithmetic 253

A.2.8 Poor Code Modularisation Support 254

A.2.9 Multi-Layer Software (libraries) 254

List of Tables

3.1 A Summary of Transformation Systems 35

3.2 Data Re-engineering Methods 42

4.1 Transformation Groupings 53

4.2 Analysis of the Maintainer's Assistant 54

4.3 Data Type Categories 57

4.4 Common Data Types 59

4.5 Advantages and Disadvantages of Different Embeddings 64

4.6 The Pros and Cons of Type Binding 74

4.7 Data Typing Components of WSL 75

5.1 Truth Table for the Proof of Ghosting 105

6.1 Source Code Summary 143

6.2 Hardware and Software Environment 144

6.3 Execution Times of Transformations 145

7.1 Operators upon Discrete Type Ranges . 152

7.2 Integer Operators 153

7.3 The Semantics of Integer Addition 153

7.4 Operators for Record Types 157

7.5 Integer Transformation Relation 163

7.6 Time Transformation Relation 167

7.7 Common Discrete Types 173

7.8 Discrete Type Transformations 175

7.9 The Properties of Real Numbers 176

7.10 Array and List Accesses 186

I X

List of Tables x

7.11 Transformation of Dynamic Data Types 187

7.12 Data Types and Transformation Theories 188

8.1 Case Study One — Data Structure Summary 192

8.2 External Functions/Procedures for IBM/370 Assembly Code 204

8.3 Variable Summary in the Case Study 206

8.4 Type Equivalence Theories used during the Case Study 207

8.5 Summary of DREAM Module Testing 212

8.6 Operations on Integers which Represent Boolean Flags 214

8.7 Case Study Two — Summary 221

8.8 Re-engineering of Integer Variables 229

9.1 Summary of the Criteria for Success 235

List of Figures

3.1 A Program Transformation 27

3.2 Data Reification Operations 37

3.3 Morgan's Law 1.3 38

4.1 The WSL Data Model 66

4.2 Composite Type Semantic Extensions 68

5.1 The Ghosting Process 82

5.2 The Data Expression Refinement Relation 92

5.3 The Interleaving of Ghosted and Original Assign-Use groupings . . .109

6.1 The Extended Tool Architecture 118

6.2 The Interfaces to Type Modules 123

6.3 The Interfaces to Type Equivalence Modules 127

6.4 The MA User Interface 129

6.5 Composite Name Usage Analyser 133

6.6 Backward Compatibility for Language Parsing 135

6.7 The Control Flow of WSL Statements 142

7.1 Mapping ASCII Characters onto Integers 174

7.2 Mapping from Integers to Boolean Values 174

7.3 Converting a Set into an Array of Boolean Values 179

7.4 Adding Three Elements to the Beginning of an Array 182

7.5 Transforming a Single Dimensional Array into a Two Dimensional

Array 183

7.6 From an Array to a Dynamic List 186

X I

List of Examples

4.1 Definitional Semantics of Data Types 77

4.2 Definitional Semantics of Composite Data Types 79

4.3 The Relationship between Type-Value Pairs and Atomic Descriptions 79

5.1 An Example of Ghosting 97

6.1 Type Definition Construct — Abstract Syntax Definition 131

6.2 Changes to Pattern Matching Constructs 132

6.3 Module Implementation in Lisp 138

6.4 Module Calling Interface 139

6.5 The do-ghosting Interface 140

6.6 A4£TAWSL Ghosting Constructs 141

7.1 Integer Type Declaration 151

7.2 Record Type Declaration 156

7.3 Year 2000 Date Transformation 161

7.4 Time — The Initial Code 166

7.5 Time — Step 1: New Types and Variables Added 166

7.6 Time — Step 2: Assignments to Ghost Variable Introduced 168

7.7 Time — Step 3: Equivalence Assertions Introduced 169

7.8 Time — Step 4: Source Variable Uses Ghosted 170

7.9 Time — Transformation Complete 170

7.10 An Array which is Used to Represent a Dynamic List 185

8.1 Creating Explicit Data Structures 195

8.2 Subtyping Variables 195

8.3 Introducing Abstract Data Types 197

8.4 Conversion into a Specification 198

8.5 Translation of IBM/370 Code into WSL 202

xii

List of Examples xiii

8.6 Local Variables for Transformation Evaluation 205

8.7 Assigning an Out-of-Range Value to cc 210

8.8 Assign-Use Testing 211

8.9 Ghosting Flag Variables 216

8.10 An Undetected Valid Assign-Use Relationship in an Action System. . 217

A . l Calculation of the Maximum Value in an Array 243

A.2 Removal of Dead Code 244

A.3 Movement of Statements 244

A.4 Introducing Procedures to Code 245

A.5 Adding Parameters to Procedures 246

A.6 An Assignment Statement as Added by the Maintainer's Assistant . . 246

Chapter 1

Introduction

Computer software is an inherently complex product which must conform to very

high standards of precision to operate correctly. Many examples of the failures of

high profile systems are widely reported in computing literature. The reasons for

these failures are varied but usually stem from seemingly trivial errors in the coding

or system design.

Many solutions to these problems have been proposed which tackle a wide variety

of issues such as: management of software projects; better software languages and

tools; and methods for mapping high level descriptions of systems into executable

code. None of these issues is sufficient to ensure success and a combination of

techniques is usually necessary. Individual excellence is still important for each

technique, however, if the chances of errors are to be minimised. This thesis examines

one such area, that of formal methods, specialising in the area of data re-engineering.

This provides a tightly focussed area of research which makes i t feasible to perform

a comprehensive examination of relevant issues and problems.

A formal method is defined by Lano [61] as

"the use of mathematical notation to describe both the requirements

and the design of software systems in a precise manner".

In other words mathematical symbols and formulae are used to describe the

operation of the software. This allows arithmetic laws to be used to show consistency

between different parts of the code throughout the various stages of development.

This use of mathematical notation in well-defined frameworks brings about the name

formal methods.

Chapter 1. Introduction

Mention of the name formal methods often evokes reactions that they are very

abstract and therefore do not apply well to the practical tasks of software develop­

ment and maintenance. Hall [49] challenges many of these arguments stating that

"some of the beliefs about formal methods have been exaggerated and have acquired

almost the status of myths". The key to the successful application of formal meth­

ods is the realisation of their limits and the resulting use of them along with other,

traditional methods of software maintenance.

Reverse engineering is an area which can benefit significantly from the use of

formal methods. The scale of many software maintenance projects makes human

understanding and redevelopment difficult. Tool support is therefore essential to aid

the process by tracking information, checking that changes made to the software do

not aflFect other parts of the system and by automation of low-level clerical tasks.

In particular i t is desirable to have a formal means which allows verification that

changes have been made successfully. A full discussion of these issues is provided in

chapter 2.

Data presents a number of problems for the maintainer when considered in the

realm of an executable program. At this level the abstract relationships between high

level data elements is blurred because these relationships are embedded within the

program's instructions. Abstract data structures may also have countless numbers

of ways in which they can be implemented. These are further differentiated by

subtle diff"erences in the semantics of individual variables and their data types. This

makes the identification of data structures and extraction of them from the program

difficult.

1.1 Statement of the Problem

This thesis uses formal methods to address the problems of data re-engineering.

Data re-engineering is defined as "the change in representation^ of program data

to aid the maintenance process while still providing equivalent functionality during

program execution". These changes in representation include the following three

^Data representation is the form of coding used to represent a real-world value within the
computer. This includes primitive representations such as integers and strings as well as more
complex representations such as structures and algebraic specifications.

Chapter 1. Introduction

types of data transformation:

• Abstraction — representation of the data in terms which are more abstract

than the original. This means that the data representation does not map di­

rectly onto a directly-executable form. It may involve representation in terms

of more abstract data structures such as lists and stacks or in terms of the

actual relationships between different data objects, e.g. set theoretic descrip­

tions.

• Refinement — this is the opposite of abstraction and involves the introduc­

tion of more concrete representations of the data. That is the data format is

closer to an executable machine version.

• Restructuring — a change in the representation without a change in the level

of data abstraction. This is the simplest form of manipulation and involves

the use of different data concepts, e.g. integers and floating point numbers, to

represent a piece of data.

The main thrust of the problem is the integration of theories of data type equiv­

alence and refinement relationships into existing theories for the specification of

program control flow behaviour. The important part of this is the harnessing of the

relationships to allow machine checked conversion of program representation into

functionally equivalent versions which are suitable for the maintainer's needs. This

thesis focuses upon reverse engineering^ and code migration^ activities, continuing

the extensive software maintenance research which has already been performed at

Durham.

1.2 Motivation

This interest in data re-engineering stems from previous work done on the ReForm

project investigating the use of formal program transformations during software

^Reverse engineering is the recovery of design information and high level program code from
low level code[32], typically assembly code.

^Code migration is the conversion of code from one specific language/machine into a form
suitable for use in another environment.

Chapter 1. Introduction

maintenance. This work is well reported in the literature by Ward [88], Bull [23]

and others. The work concentrates upon the manipulation of program control flow

to allow restructuring of legacy code thus recovering implicit uses of common pro­

gramming paradigms such as conditionals, loops and subroutines. A full discussion

of the theory and tools which demonstrate this work can be found in chapter 3.

The conclusions of ReForm included the realisation that the ability to restruc­

ture data was lacking and that this was significantly hindering other restructuring

work. The properties of the data representations were not sufficiently well specified

within the WSL language"* and associated theories, both of which were developed

for the explicit purpose of program transformation. The tools which implemented

this theory did not, therefore, permit formal manipulation of data. This meant that

the properties of particular data types could not be used to aid restructuring and

that the ad-hoc machine implementations of data reasoning were not sufficiently

well developed for reverse engineering purposes.

For example, without data type information it is difficult to differentiate between

numbers which are stored as discrete or real values because of differences in the

precision and accuracy of each representation. Other examples, at higher levels of

abstraction, include situations where the semantics of complex data structures can

only be determined when their exact form is known.

1.3 Statement of Contribution

This thesis shows how correctness preserving program transformations can be used

for data re-engineering. The work builds upon previous successful work in the pro­

gram reverse engineering area and extends a number of tools and theories to cope

successfully with data reasoning. The main areas of contribution are:

• Typed WSL has been defined. I t extends the WSL language to include explicit

data typing. The extended language, typed WSL, allows data types to be

defined and bound statically to variables in a program. This involves changes

•^WSL is a custom designed language used in the ReForm transformation work. Code which is
being transformed is first translated into WSL using a simple one-to-one mapping. The transfor­
mation is performed on the resulting WSL and the final version is translated into a suitable target
language.

Chapter 1. Introduction

to the transformation meta language, MSTAWSL allowing type information to

be included within the existing transformation system.

• The DREAM (Data Re-Engineering and Abstraction Mechanism) has been

developed to allow theories about data equivalence to be harnessed and inte­

grated into a program transformation environment. DREAM is based upon

the technique of "ghosting" which was originally used by Owicke to aid pro­

gram verification [45]. It provides a way of converting assignments-to and

uses-of a variable into equivalent assignments-to and uses-of another. The use

of ghosting for data transformation was first proposed by Ward [92] in his

derivation of the Schorr-Waite graph marking algorithm.

Ghosting uses ghost variables which "mirror" the values held within a vari­

able. The ghost variable has values assigned to it which are equivalent to the

original variable although they may have differing data types/representations.

These equivalent values can then be used in place of the original effectively

changing the representation of the data.

• A prototype transformation tool has been developed to demonstrate the use

of DREAM in practical re-engineering situations. This is based on the Main-

tainer's Assistant [23] transformation tool and has been developed in a way

which complements and enhances the existing coding practices which are used

within the WSL and METAWSL^ languages.

1.4 Criteria for Success

The contributions presented above must be judged to determine how well they per­

form as a solution to the maintenance problems set out earlier. The following ques­

tions present a set of criteria which cover the main aspects of the work. These criteria

provide a basis for examining the success of the thesis. The questions have been di­

vided into three groups which correspond with the different aspects of contribution

shown above.

^MSTAWSL is an extension of WSL developed by Bull [11] to aid the implementation of a
program transformation system

Chapter 1. Introduction

• Data types in W S L

- Can typed WSL represent a full range of data types which may be en­

countered in common programming languages?

- Is the set of data types that may be represented in typed WSL extensible?

- Does typed WSL have a detrimental effect upon Ward's transformations?

• Data transformations using D R E A M

- Is data transformation possible for a full range of data types?

- How easy is it to add new data transformation theories?

- Do data transformations rely upon control flow transformations?

• Data Re-engineering using Formal Transformations

- Can DREAM perform all of the classes of transformation which are nec­

essary for re-engineering?

- Does DREAM scale to practical re-engineering tasks?

- Does DREAM complement existing software maintenance activities?

The answers to these questions will be discussed in chapter 8.

1.5 Thesis Outline

The remainder of this thesis describes the research in detail.

Chapter 2 examines the work in the wider context of software engineering and

maintenance. I t highlights the large proportion of a software product's lifetime

which is spent in maintenance and shows some of the key management, technical

and process-oriented problems which are encountered. Legacy code is highlighted as

a key area which is vital for re-engineering. Techniques which are used to maintain

legacy code are examined along with the different aspects of legacy code which can

be maintained.

Chapter 3 looks at formal program transformations and shows how they can be

used during software maintenance. I t goes on to highlight a lack of research in the

Chapter 1. Introduction

field of data transformation and looks at some of the methods which are currently

used to re-engineer program data.

Chapter 4 focuses upon the Maintainer's Assistant transformation system. I t

examines Ward's [88] WSL transformation language and the semantic theory upon

which it is based. The transformation engine is also examined in detail and a number

of accomplishments/deficiencies are highlighted (full details of these can be found

in appendix A) . A key deficiency which is identified is the lack of support for data

transformation.

The second half of the chapter presents extensions to the WSL language which

result in the typed WSL language. This is used as the basis for the data transfor­

mations which are presented within this thesis.

Chapter 5 examines the different data transformations which can be performed

and then uses the typed WSL language to develop DREAM. The central part of

DREAM is a data transformation which separates the change of data representation

from the transformation of a program. This allows a generic data transformation to

be used to transform data of any type providing that a suitable data type equivalence

theory is available.

Chapter 6 shows how the Maintainer's Assistant transformation engine has been

extended to allow representation of typed data and to provide an implementation

of the DREAM data transformations.

Individual data types and type equivalences are examined in chapter 7. The

chapter concentrates upon the integer and record data types and we demonstrate

how the types can be described in a form which is suitable for use during data

transformation. These types are then used to show how type equivalence theories

are constructed and a number of examples of their use for data transformation are

given. The chapter also outlines how the semantics of a number of other data types

may be represented and transformed in typed WSL.

Chapter 8 presents the results of two case studies which were performed using

DREAM to reverse engineer substantial amounts of commercial source code. The

first case study examines the overall reverse engineering of a portion of code. This

was performed by hand and shows how transformations can be used to recover the

design of that code. The second case study uses the extended transformation engine

Chapter 1. Introduction 8

to examine the practical aspects of DREAM. Specific examples of data transfor­
mations are identified and the tool is used to perform these. The final part of the
chapter re-examines the criteria for success which has been set out in chapter 1. It
uses the results of the case studies and the work presented in the other chapters to
answer the questions which have been posed.

Chapter 9 summarises the contents of the thesis and uses the criteria for success

to show that this thesis has presented a novel contribution to the field of data re-

engineering. The thesis closes with a number of ideas for further work which will

continue the research into data re-engineering using formal transformations.

Chapter 2

A Perspective on Software

Maintenance

Software maintenance is a major activity for companies involved in computer tech­

nology. This chapter presents a perspective on the maintenance activity which shows

how re-engineering can be used as an effective vehicle for reducing the costs, risks

and time-scales involved. In particular the effective use of tools, which are based

upon formal theories of program structure, can help the engineer to understand and

restructure code without affecting the operation of the program.

The chapter begins with an examination of the software lifecycle which shows

that maintenance is a key component in this process. This leads into the identifi­

cation of three key areas: management, process and technical. The work presented

in this thesis can be used to help solve some of the software maintenance problems

found in these areas. The biggest gains are realised in the technical area where

formal restructuring tools can be used to improve the accuracy of work and ensure

that seemingly trivial details are not ignored.

Software re-engineering is discussed in the second half of the chapter. This

technique is a vital component of the work presented here allowing legacy soft­

ware, old code which performs vital portions of a companies computing work, to

be examined and converted into different forms for future re-implementation and

re-documentation. Re-engineering is performed upon a number of different types

of systems which are written in many different programming languages. The ap­

plication of this varies from project to project: some use the results as an aid to

Chapter 2. A Perspective on Software Maintenance 10

understanding the original system; whereas others use the results to directly re­
implement the system in a new language or on a new computing platform.

The chapter concludes that re-engineering is a key component of software main­

tenance providing significant benefits in a number of areas. Formal tool support is

especially attractive because it reduces the reliance upon human effort to achieve

complete, correct results. These tools can perform much of the general housekeep­

ing and analysis work which forms a large portion of re-engineering. This allows the

maintainer to focus upon the overall result rather than upon minor details.

2.1 The Software Lifecycle

The lifetime of a software system often covers many years and in many cases expands

to cover a number of decades. This includes a number of distinct phases [15, 67]

which can be summarised as:

• Development — where the software is specified, designed, written and tested.

• Commissioning — when the system is brought into service. This often

involves the replacement of an existing automated or manual system.

• Maintenance — the software is modified to meet new requirements and to

correct errors found within it .

• De-commissioning — at the end of its useful life the system must be phased

out. There is often a changeover period where the commissioning stage of the

replacement system is performed alongside the de-commissioning of the old

system.

The majority of the lifetime of a system is spent in the maintenance phase.

Only a small proportion of this lifetime is spent in the other phases: development

typically takes between one and five years; commissioning and de-commissioning may

be done overnight or over a number of months depending upon the complexity of

the changeover and the risks involved in performing it . I t is not surprising therefore

that studies have shown that the maintenance costs of the system can be up to 80%

of the total cost of the system [64, 65]. This is clearly a major proportion of the

overall expenditure on the system and is therefore a major target for cost savings.

Chapter 2. A Perspective on Software Maintenance 11

Unfortunately research into software maintenance is not as popular as the need
for i t may suggest. Schneidewind [77] notes that in 1987 the IEEE Transactions on
Software Engineering did not receive sufficient numbers of good submissions to fill
a special issue on software maintenance.

Fortunately recent years have seen an increase in interest in software mainte­

nance research. The annual International Conference on Software Maintenance is

flourishing with 42 papers, out of over 85 submitted, being included in the 1997 con­

ference [54]. There is a journal devoted to software maintenance [12] and a yearly

European workshop [79, 80] which focuses upon industrial aspects of software main­

tenance. Each year this workshop attracts a number of industrial and academic

participants who share practical and theoretical experience with each other.

2.2 Aspects of Software Maintenance

There are many different aspects of software maintenance work which, when com­

bined together, have a significant impact upon the success of a project. Three key

aspects which occur in most projects are:

• Management issues — how resources are arranged and coordinated to pro­

vide the correct tools and capabilities at the right time, ensuring that projects

keep to cost and schedule.

• The process of maintenance — arranging individual tasks into an order

which minimises wasted effort and ensures that the results are consistent with

the goals and with appropriate standards.

• Technical aspects — key software engineering techniques and associated

knowledge which underlies the work being performed.

Each of these areas has a large number of component parts which are potential

areas for in-depth research. The sheer scale of each area makes general research

very diflficult and specialisation into a small area is necessary if sensible results are

to be produced. This thesis specialises in the technical area looking at the recovery

of program structure from legacy code.

Chapter 2. A Perspective on Software Maintenance 12

The technical aspects of software development and maintenance are perhaps the
most researched area. Common goals within this field are to develop new languages,
tools and techniques which help to provide more concise and less error-prone access
to computer technology. This research is often done in conjunction with work from
the other research areas mentioned above bringing some process and management
issues directly into the engineer's working environment as part of the standard way
of operation.

One example of this is the use of self-documenting code [58, 94] where comments

within the program can be turned into documentation for modules, routines and

procedures. The comments are therefore part of the standard program and can be

changed at the same time as changes are made to the code.

Another important technical aspect of software maintenance is that of compat­

ibility with previous versions of a program. I t is rare that a program is replaced

wholly throughout an organisation and previous versions must still be supported

by systems which interact with the original. There are a number of approaches to

solving this problem. A direct solution is to add code into the systems to determine

which version of the interface they are using and then take appropriate action based

upon this.

2.3 Legacy Code

The previous section has shown that software maintenance encompasses many dif­

ferent aspects which are all inter-related and form substantial research areas within

their own right. The remainder of this chapter primarily focuses upon the technical

aspects of maintenance giving an overview of individual areas which bring challeng­

ing research opportunities. Readers interested in pursuing the management and

process areas further are directed towards an excellent introduction by Capretz [28 .

Legacy code is a category of code which receives much attention during main­

tenance. There is no single precise definition of a legacy system and the name has

derived from the fact that the software tends to be quite old and has been handed

down as a legacy from previous generations of software engineers. Legacy code tends

to be costly to maintain because it is written in old low level languages and has very

Chapter 2. A Perspective on Software Maintenance 13

poor (if any) documentation. In many cases it may be that the code was designed
to run on machines which are no longer available or are expensive to run.

I t is not unusual to find that legacy code is central to a companies operation and

thus cannot easily be replaced. Bennett [24] presents the following as being typical

reasons for continued use of legacy systems:

• The software represents, however inconveniently, years of accumulated experi­

ence and knowledge which is unavailable elsewhere;

• The manual system which was replaced by the software no longer exists, so

systems analysis must be undertaken on the software itself;

• The software may actually work well and its behaviour may be accurately

understood but since a replacement system may not initially work as effectively,

some features of the legacy system may be worth recovering;

• Users of legacy code could be exploiting undocumented "features" and side

effects, so it may be important to retain these features; and

• Users may prefer an evolutionary, rather than a revolutionary, approach.

When it does finally become necessary to make substantial changes to legacy

systems a company must take steps to ensure that these changes do not unduly

affect their business.

2.4 Re-engineering

When legacy systems approach the end of their life they are often replaced by a new

system which performs the functions of the old system. This new system may be

a direct replacement of the old, providing the same functionality, or it may involve

substantial changes to the way in which the system operates, such as using graphical

user interfaces. Whichever of these upgrade paths is taken it is vital that the new

system replicates the behaviour of the old in a well defined manner. Slight differences

in processing can cause major deviations from the expected results.

Chapter 2. A Perspective on Software Maintenance 14

In order for the re-development to be successfully performed the old system must
be sufficiently well understood. A thorough understanding enables each possible pro­
cessing scenario to be taken into account allowing corresponding new behaviours to
be specified. This process of re-development is known as re-engineering. Chikofsky
and Cross [32] define it as

"the examination and alteration of a subject system to reconstitute

it in a new form and the subsequent implementation of the new form".

The important factor in this definition is that the original system is used as a

basis for design and development of the new one. The key to the success of re-

engineering projects is therefore the extraction of appropriate information from the

original program. Re-engineering activities upon the original code take a number of

different forms, including:

• Code migration — the most direct approach for re-engineering is to re­

implement the original system on another platform or in another language.

This is known as code migration or "porting". The reason for performing

this type of operation is generally to allow the program to be run in a different,

often more up to date, environment while retaining the exact semantics of the

original system.

Typical examples of this include Sneed's [78] work on migration from COBOL

to 00-COBOL and the work of Software Migrations Ltd. [91] who convert

from assembly code to a number of high-level languages.

• Reverse engineering — a less direct approach is to use the old system to ex­

tract information about the design, structure and operation of a program. This

is then used as an aid to re-development using traditional methods. Chikofsky

and Cross [32] note that typical operations include:

- identification of the system's components and their inter-relationships;

and

- creations of representations of the system in another form or at a higher

level of abstraction.

Chapter 2. A Perspective on Software Maintenance 15

Examples of this type of work come from the field of de-compilation where
object/assembly code is converted back into the original source language, e.g.
REDO [18] and Lake & Blanchard [60] who use a number of techniques to
recognise and extract common patterns of code which are produced by com­
pilers.

Other work in this area, e.g. ReForm [43], allows reverse engineering of any

assembly program. These programs include hand written assembly code which

may have many programmer specific characteristics. The code is restructured

into a high level representation of the original using sophisticated techniques

which manipulate the form of the code rather than just by using pattern

matching.

• Program understanding — a less direct use of the old system is to use

the code to gain a better understanding of its operation without necessarily

changing the code itself. The code contains precise details about how data

is used and information about the business rules that the system implements.

Understanding the code can help to clarify these enabling design documents to

be retrospectively produced. In many cases the program understanding work

will only concentrate upon the overall structure of the code although a few

parts of the program may be examined in greater detail.

The tools and methods for aiding program understanding use a number of dif­

ferent techniques for presenting and extracting information from source code.

Some present the code verbatim allowing easy traversal of subroutine calls and

data dependencies within the program. The code can often be annotated by

the maintainer to record interesting details about the program. Recent work

in this area includes Vifor 2 [76], ReThree C++ [13] and MuMMi [66] all of

which use world wide web browsers as a base for program display.

Other tools present the code in a variety of different formats which highlight

different aspects of the program. The information which is presented often

includes details about the structure-of or relationships-between different parts

of the program. The presentation of the data often includes visual metaphors

such as call graphs and dependence trees [16, 26]. More recent work is investi-

Chapter 2. A Perspective on Software Maintenance 16

gating the aspect of three dimensional graphics; a good summary of this work
can be found in Young's survey [97].

The above examples exhibit a common theme which involves using information

from the original source code to aid future work. Tool support for these operations

is desirable to reduce the costs and timescales involved during re-engineering. This

thesis concentrates upon theoretical aspects of tool support for these activities, in

particular for reverse engineering. It examines how existing formal techniques can

be extended to deal with program data structuring information. A full examination

of these existing techniques is presented in chapter 3.

Legacy code is a prime target for re-engineering because very little of the original

design information is generally available and correct performance of the replacement

system may be crucial for future success. The code which is being re-engineered can

be examined from two main viewpoints:

• Information oriented — concentrating upon information which is processed

by the program and stored within its data files. This typically involves deriv­

ing the relationships between data objects and converting these into different

storage forms, e.g. relational databases, flat files, etc.

• Source code oriented — involving a primary emphasis upon the source

code. Identifying the order in which operations are performed to process the

information which is presented as input to the system.

The former is more oriented towards business process re-engineering focusing

upon the information that a company holds. The latter is concerned with the actual

program itself and is more relevant to the work presented within this thesis. I t

involves an examination of both the control and data structures present within the

code to determine the actual operation of the software.

Note the distinction between information and program data: information is the

data when viewed from the point of view of the business; and program data is

viewed in relation to the execution of the program. The lifespan of the information

will generally be greater than that of the program data which is limited to the

execution time of the program. The following discussion is restricted to the area

Chapter 2. A Perspective on Software Maintenance 17

of source code oriented re-engineering. Further details about information oriented
analysis is available in the literature, e.g. Yang & Bennett [95 .

2.4.1 Source Languages

Source code re-engineering is performed upon a number of different programming

languages each of which have their own characteristics and demand diflferent capabil­

ities from re-engineering tools. Languages which are closer to the machine architec­

ture, such as binary and assembly formats, typically require reasoning about the low

level interaction with the machine. Higher level languages require less machine spe­

cific information but may rely upon characteristics of particular data types. Typical

re-engineering operations upon these classes of languages are described below.

• Binary code — the object code for a particular machine. This often has very

little information about the structure of the program and does not conform to

structured programming conventions. Much of the code being re-engineered

in this way is often legacy code where the original source code has been lost.

This type of problem has been approached by Bowen et al. [18] as part of the

REDO project examining the de-compilation of code to reproduce the original

source.

More recent interest in this type of re-engineering has centred upon retargeting

binary object files onto other platforms. Sun Microsystems [84] have developed

compatibility libraries which allows virtually any code written for Solaris 1.x

to run on Solaris 2.x based systems. Work by Cifuentes at the University of

Queensland [33] takes a more general view of this examining retargeting onto

other machines with different processor architectures. This is done by convert­

ing each machine instruction in the object file into an equivalent instruction

for another machine. The result is a new object file which runs natively on

the other machine.

• Assembly language — a large amount of assembly code is still in use to­

day. Many organisations are taking steps to re-engineer this code into higher

level languages. Some are attempting to do this using a very low level ap­

proach utilising tools to convert the code. Others are extracting the design

Chapter 2. A Perspective on Software Maintenance 18

and then re-implementing using traditional software development techniques.
The ReForm project [43] concentrates upon the former type of method and
has developed methods for the recovery of high level descriptions of legacy
assembly code.

Problems occur when performing these operations because programming short­

cuts such as macros have to be taken into account. These can severely change

the structure of a program from a simple, easily decipherable, version into a

complex structure which has many side effects and is difficult to understand.

• Legacy languages (C O B O L & Fortran) — many organisations see the

code written in these languages as a major problem. This arises from a com­

bination of the relatively unstructured aspects of the language (i.e. lack of

subroutines in COBOL) and decreasing use of these languages for new soft­

ware engineering tasks. The latter means that educational establishments are

not teaching older languages as part of their standard curriculum and there­

fore the numbers of software engineers and application writers who understand

these languages is declining.

Re-engineering of software written in these languages concentrates upon con­

version into newer languages such as C and Ada. This allows structured pro­

gramming concepts to be introduced into software as part of the re-engineering

work. Sward [85] reports work in progress developing a formal solution to this

problem when applied to legacy Fortran systems. The Fortran code is con­

verted into 00-Fortran with suitable classes and methods being extracted for

key data items. Similar work was also performed on the REDO project [63

converting COBOL into Z++, an object oriented version of Z.

• C , Ada, Modula-2, Pascal — these newer languages have not yet achieved

legacy status. There is very little work aimed at re-engineering from these

languages although much of the work mentioned above is targeted at re-

implementation into this category of language.

Research into the maintenance of these languages tends to concentrate upon

methods for understanding code to aid the tasks of defect correction and func­

tionality extension. This research is not directly related to this thesis although

Chapter 2. A Perspective on Software Maintenance 19

the theoretical methods presented within this thesis could be used to pro­
vide a solid formal foundation. Many methods of program understanding are
based around heuristical processes which recognise common scenarios present­
ing them as possible interpretations of the program.

• Object-oriented languages — these languages have rapidly become a popu­

lar choice for systems implementation. As such the main focus of re-engineering

research in this area has been focussed upon converting procedural programs

into data-oriented versions.

Al l of the above language categories provide a number of challenging problems

for data re-engineering. This thesis focuses upon assembly languages to help in the

development of the research. The use of assembly languages is especially beneficial

because i t allows previous work upon control flow re-engineering to be extended to

allow the data to be manipulated using similar techniques.

Assembly languages have a number of features which are useful for ease of work­

ing. The code is easy to read and convert into a format which can be manipulated

using tools. Each instruction usually performs one purpose with well defined side

effects and a behaviour which can be seen to be equivalent to the representation

within the transformation system. This is in contrast to languages like C and Ada

which have a number of simple constructs (i.e. loops and conditionals) but also have

a number of attributes which can be applied to these to make the behaviour much

more complex.

Conceptually binary code is produced using a direct mapping from assembly

code. Thus it would be simple to use the binary code for re-engineering purposes.

Unfortunately binary object code often has linking and other machine specific in­

formation included which distorts the view of the code. This can be processed

reasonably easily but it is difficult to visually inspect the results of re-engineering

to ensure that they are true representations of the original code.

2.4.2 Re-engineering Techniques

The re-engineering tools and projects described in the previous sections use differ­

ing approaches to achieve their goals. Each varies in the amount of complexity,

Chapter 2. A Perspective on Software Maintenance 20

formality and change in the program's semantics. Some perform very direct changes
using a simple translation from one language to another. Other systems use very
sophisticated restructuring to present the final code in an appropriate, efficient way.
These different techniques are presented below along with a brief description of their
characteristics.

• Direct conversion — this is the simplest method of conversion which in­

volves a statement by statement translation and does not necessarily take the

language features of the source and target systems into account.

• Stepwise conversion — where a small amount of restructuring is performed

on local areas of code. This would typically involve the translation of a small

portion of assembly code into loops and conditionals.

• Adding procedures and modules — involving the identification and ex­

traction of modules from the source code. Analogous operations can be per­

formed upon data to recover/improve structure.

• Event driven — many systems are being converted from procedural into

event driven paradigms which requires the separation of systems into areas

which are related to different actions and events. This type of work may include

the conversion of text-based user interfaces into window-based systems.

• Full restructuring — the integrated restructuring of many system aspects

has been attempted by a few projects and tools, e.g. ReForm [93, 90] and

REDO [62, 63]. These combine many aspects of the first three methods into

one.

This thesis continues previous work on the ReForm project extending the re­

structuring methods for program control flow to include support for data structur­

ing. This allows the properties of program data to be used to aid the re-engineering

process.

2.4.3 Formality of Re-engineering

Correctness and the ability to reproduce results are key factors during re-engineering.

The final result needs to have a well known relationship to the original system to

Chapter 2. A Perspective on Software Maintenance 21

allow planning for testing and introduction of the new system. The use of formal
techniques brings a solid theoretical underpinning into this process.

They provide an auditable trail from basic axioms about program structure and

behaviour to the theories which are used to manipulate the program. This allows

the consistency of each theory to be checked and gives a deterministic description

of the behaviour of the theory.

The use of formally defined re-engineering methods does not guarantee the cor­

rectness of program manipulations. Each theory depends upon the correctness of

the axioms that i t is derived from. I f these axioms are not entirely correct then the

theory may fail under certain circumstances. This is not necessarily a bad thing

provided that the possibilities are explored in advance.

Ensuring absolute correctness has costs in terms of capital expenditure, effort and

elapsed time. These have to be weighed against the needs of a project. For instance,

the control systems of an aircraft may require absolute correctness whereas failure

of a digital watch under certain extreme circumstances may not justify increased

expenditure.

Not every re-engineering method uses formal techniques as a basis for correctness.

The following three point scale shows how projects can be classified according to the

degree of formality that they use. Each method will lie somewhere on a scale from

methods which are based upon heuristics and therefore have very little formality, to

methods which use a ful l theory to perform the changes.

• Informal — has little, if any, formal theory underlying the method and relies

on general rule-of-thumb heuristics. These are often shown to work in practice

but many depend upon adherence to certain programming standards or other

generally accepted ways of working. The aim of these systems is to aid the

re-engineering process using an interactive approach.

• Semi-formal — this type of method is based upon some formal theory but

is not worked through in detail to a final solution. The links between method

and theory have often been shown to be valid by peer scrutiny and possibly

by a limited number of worked examples.

• Formal — these methods are based almost entirely upon a solid theoretical

Chapter 2. A Perspective on Software Maintenance 22

foundation and the details of the method have been worked through from
the key fundamental concepts. Note, however, that as mentioned earlier the
theoretical foundation is often not worked through to a full implementation
because of time constraints and the lack of theoretical definitions of languages.

One place where formality cannot easily be used is the actual correction of an

error or the addition of new functionality. This requires user input to ensure that

the corrections are made. The correctness and consistency of the new version can

then be checked using the original machine and textual versions of the specification.

2.5 Summary

Software maintenance forms a large proportion of a software system's cost and con­

tinues over most of the lifetime of a product. It is essential that a high quality

product can be maintained over a number of years to ensure that the product does

not get left behind by new technologies and requirements that affect its operation.

Problems which have affected maintenance over the years still remain and show

no sign of being eradicated completely, if at all. In many cases systems are becoming

more complex because of the distributed nature of new operating environments and

the ever increasing number of programming languages that are being used.

In this chapter we have identified the need for re-engineering of computer systems

and have examined techniques which are being used to aid the maintainer's tasks.

These techniques have ranged from:

• simple one-to-one conversion of program statements which allow programs to

be re-engineered quickly but produce inefficient code because the features of

the target languages and architectures cannot be fully utilised; to

• complex restructuring systems which ensure that the code is in a format which

can fully utilise the target system capabilities. This work often takes much

more time and involves more support for the maintenance activities.

The latter is seen as a key technique but benefits from the use of formal techniques

to ensure that the re-engineered system performs correctly without any unexpected

changes in the program's semantics. In particular there is a need to be able to

Chapter 2. A Perspective on Software Maintenance 23

manipulate both program statements and data structures. In the next chapter the
use of formal transformations within the re-engineering process will be examined.

Chapter 3

Transformation Systems

Re-engineering can take up a large portion of software maintenance budgets requir­

ing considerable effort to ensure that the correct results are produced. The subtle

complexity of software means that many minor details must be checked to ensure

that side effects from changes to the program do not unduly affect the operation of

the program.

In the previous chapter formal tool support was shown to be desirable because

it takes much of the effort and risk away from maintenance activities. This chapter

examines formal program transformations which provide a way of solving many of

the problems which have been identified.

Transformations allow a program to be restructured into a form which makes

future maintenance easier. They are often used to clean up heavily modified areas

of code which have lost much of their clear, consistent, use of data and control

flow paths. Transformations can also be used to isolate specific areas/aspects of the

program which are to be modifled. This makes the replacement or modiflcation of

that code much easier and reduces the risk of unwanted side-effects.

The first part of this chapter presents an overview of how transformations work

and describes how they are represented in theory. The effects of transformations are

divided into three categories: refinement, abstraction and restructuring. These help

to classify the effect that the transformation has upon the program semantics.

A detailed analysis of the practical aspects of transformation systems is pre­

sented. A number of key features are highlighted which affect the usefulness of the

system. These factors will be taken into account during prototyping work later in

24

Chapter 3. Transformation Systems 25

the thesis.

Data is one major aspect of programs that is typically overlooked in transforma­

tion systems. This is especially true for software maintenance where the main effort

has been aimed at re-engineering low-level, typically assembly language, code.

The second part of this chapter looks at data re-engineering in detail. It includes

an examination of a number of different techniques for performing re-engineering.

These techniques are not limited to program transformations and include both prac­

tical and theoretical work.

This chapter concludes that data re-engineering is a desirable feature in trans­

formation systems for software maintenance. This must be integrated with con­

trol flow transformations to allow full exploitation of the data semantics during

re-engineering.

3.1 What are Formal Transformations?

Formal transformations are a means of describing semantic equivalence and refine­

ment relations between two program fragments. A program can be restructured by

applying the transformation relation to the initial program. This produces a mod­

ified program whose structure is defined by a combination of the transformation

relation and the original program. The resulting program will typically differ by one

or more aspects of syntactic representation or execution characteristic.

The transformation relation does not necessarily map every possible program

fragment onto an equivalent fragment. The transformation mapping may only be

valid for a restricted set of programs which have certain characteristics. These char­

acteristics determine whether the code exhibits the specific behaviour that the trans­

formation is manipulating. Without this behaviour the resulting program would not

function correctly.

Preconditions are used to guard each transformation application ensuring that

the code has the appropriate characteristics to guarantee the correctness of the

transformation. These may require that certain statements, e.g. gotos, do not occur

in the program fragment, or that a variable has a specific range of possible values.

Chapter 3. Transformation Systems 26

The transformation is described formally as

T : P <-> F '

providing that

{MP)AMP)A...Afn{P))=true

In this description P is the initial program fragment and P' is the final output

from the transformation. The program fragments can be described in any suitable

logic. Chapter 4 details the logic used to describe the semantics of programs in the

Maintainer's Assistant. The remainder of this chapter will assume that a suitable

logic is available without going into specific details.

/ i () • • • fn{) are functions which take program fragments and return a boolean

truth value depending upon the characteristics of the fragment. These functions are

the preconditions of the transformation and must evaluate to true for i t to be valid.

The proof of the transformation is done by showing that relation T always holds

when the preconditions are true, i.e.

(/ i (P) A MP) A . . . A U{P)) =^ VaUd{T)

Valid is a function, in the logic used to define programs, that determines whether

all possible mappings between program fragments in T are equivalent^

The structure of the initial program fragment P can be included as an appli­

cability condition to the transformation. This provides an assertion to say that

the program actually has an appropriate structure as required by the transforma­

tion. The applicability conditions can then be used as part of a pattern matching

procedure for automated application of transformations.

Patterns provide a convenient way to describe the effect of a transformation,

figure 3.1 shows an example of this. The transformation reorders a conditional

statement by inverting the boolean condition which is evaluated at the start of the

^Note that in this general description of transformations, equivalence also includes refinement
operations.

Chapter 3. Transformation Systems 27

block. The pattern contains placeholders for the boolean condition, B, and two
sequences of statements, SI and S2.

if (B) if {Not{B))
then SI ^ then S2
else S2 ~ else Si

fi fi

Pattern 1 Pattern 2

provided that applicability conditions / i () , . . . , /«() hold.

Figure 3.1: A Program Transformation

The resulting program fragment, pattern 2, has the original B replaced by

Not{B) and the two sequences of statements swapped. The applicability condi­

tions for this particular transformation are trivial, requiring that statements and

boolean objects are properly formed constructs. The proof is correspondingly sim­

ple using the definition of conditionals which states that the execution of each branch

is determined by the truth value of the boolean expression.

Other transformations require more complex applicability conditions which re-

fiect uses of particular variables or the use of constructs which cause the flow of

execution to change, i.e. loop exit and goto statements. The presence of these

within speciflc fragments of code may cause different control flow paths to be taken

or may corrupt the values held within particular memory locations.

3.2 Re-engineering using Transformations

Transformations are useful for re-engineering work because they provide the capa­

bility to restructure code with confidence that the semantics of the program will not

change. Much of the effort required in re-engineering is directed towards preparation

for the modification. This involves restructuring the code to either understand it or

to isolate the specific functionality which is being changed.

Formally proven transformations provide a means of using formal methods with­

out needing to understand the proof techniques involved. There is a clear separation

Chapter 3. Transformation Systems 28

between the proof-of and the use-of transformations. The theory is encompassed in
a clear description of the change that is to be made to the program. This descrip­
tion can be coded to produce a transformation engine which provides support for
the maintainer.

The effect of changes to the program are generally broken down into three cat­

egories: refinement, abstraction and restructuring. This classification is especially

useful for re-engineering transformations because it provides a way to describe the

effect that the transformation has upon the program's semantics. Each of these

three categories is examined in the following section and some important issues are

discussed.

3.2.1 Refinement

Refinement is a key concept in formal methods application. It is the means by

which a specification is transformed into a more precise form. This involves the

introduction of more specific statements about how operations are performed rather

than just what is performed. Refinement is often described in terms of levels of

abstraction. A program is said to be refined when an abstract program is replaced

by a less abstract program which performs the same task as the original. The

new version specifies the behaviour of the program in more precise terms than the

original. This results in a different description of either the algorithms or data items

present within the program. The new description is presented in terms of concepts

which are closer to the machine representation of the program and therefore are

nearer to a directly executable implementation.

Non-determinism can be used to describe how refinement affects a program's

semantics. Non-determinism occurs because the specification allows a number of

possible outcomes for an operation or allows the operations to be performed in a

number of different ways. These all satisfy the specification and an implementation

is free to use any of the possible methods. Refinement of these non-deterministic

programs constrains the behaviour of the program down into a subset of the original

behaviour. The final result must still satisfy the specification but does not have to

allow all possible behaviours that were present in the original.

I t may be thought that refinement is not relevant to software maintenance activ-

Chapter 3. Transformation Systems 29

ities because refinement is used to perform forward engineering activities. Mainte­
nance and re-engineering activities are not limited to reverse engineering, however,
and contain a substantial amount of development activity to implement new features
in code.

3.2.2 Abstraction

Abstraction is another term which is usually used in the concept of forward engi­

neering, e.g. Meyer [69]. I t is used to describe the design of a system in terms of

components which have correspondence with either real-world objects or common

implementations of high-level data structures. In this context abstractions are devel­

oped to make the implementation of a system easier by separating the design of the

system into smaller components which reflect natural structure within the concepts

that the system is implementing.

The work presented here uses the same definition of abstraction but re-interprets

i t in terms of reverse engineering where abstractions are produced from existing code

which implicitly contains possible abstractions. Analysis of large amounts of legacy

code has shown that there are often a number of potential abstractions which can

be recovered from the code. Work such as RE^ [34, 27], Ident [26] and Griswold

et al. [46] have used a number of techniques for analysing code to identify these

abstractions.

Abstraction is the reverse of refinement involving the crossing of abstraction

boundaries from less to more abstract. There is one key difference between the

two, abstraction cannot weaken the specifications which govern the operation of the

program. If this were the case then the operation of the abstracted code could exhibit

different characteristics to the original. This would be a clear breach of correctness

for the program and could result in the program being reverse engineered into a

specification which allowed the program to perform a totally different function.

The key to useful abstraction work in a formally-based system is to define the

properties of the program which must remain unchanged after transformations have

been applied. Other properties can then be changed to restructure the program in

the desired manner. One example of this includes specifying that the printed output

from the program must be unchanged but that the time taken to produce the result.

Chapter 3. Transformation Systems 30

the program's time efficiency, may change. Alternatively constraints may be placed
upon memory usage, instruction set usage or data type usage.

3.2.3 Restructuring

The two previous categories of transformation have considered the change in the

level of abstraction of program data. Restructuring covers the other areas where the

data is converted to a different representation at the same level of abstraction. This

means that the code retains the same form with the differences being in the use of

different operations upon the data.

Restructuring of control fiow may include transformation of loops to isolate in­

variants or to unravel initial or final iterations. These operations may make further

simplifications of the program possible or may allow complex cases to be separated

from simpler operations.

Data restructuring involves the change of the representation of a piece of data.

For instance, a number which is represented as an unsigned value may be restruc­

tured into a signed representation. Alternatively the representation of an integer

may be changed to allow different ranges of values to be stored, e.g. from 16-bit to

32-bit integers.

Transformations which perform restructuring operations are not limited to exe­

cutable languages which have a direct representation in the machine. Restructuring

can also be usefully applied to specification languages to change the characteristics

of the description of the program.

Refinement, abstraction and restructuring when combined into a series of trans­

formations allow complex maintenance tasks to be performed. The use of transfor­

mation techniques allows the maintainer to concentrate upon the strategic aspects

of the changes to the code rather than upon general "housekeeping" tasks.

3.3 Transformation Systems

The successful use of transformations for re-engineering requires that a usable trans­

formation environment is provided which complements and extends the maintainer's

Chapter 3. Transformation Systems 31

normal work practices. Maximum productivity is gained when the system presents
information at appropriate times and performs as much work as possible without
user intervention.

A number of transformation systems have been developed. These are not only

for software maintenance, but for other areas including software development. Each

system has characteristic features which affects its suitability for use in the envi­

ronment which it is intended for. The following section examines these areas with

regards to their applicability to transformations for re-engineering programs.

Languages which are transformed — re-engineering involves a number of dif­

ferent programming languages. Some projects may deal entirely with one language;

others may involve migration from one language into another; yet others may deal

with a number of different source and target languages. I t is important that a trans­

formation system is capable of handling a sufficient range of languages to allow these

types of projects to be performed.

The exact languages used varies from system to system ranging from specification

languages down to low level languages such as assembly code. Systems which have

formally defined semantics tend to work with a very limited number of languages

which are often custom designed for ease of transformation proof. Non-formal trans­

formation systems tend to work with wider ranges of languages although individual

transformations are not usually transferable between languages.

Automatic transformation — many transformation engines, e.g. the Main­

tainer's Assistant [23] and ZAP [41, 42] are able to make suggestions about which

transformation should be applied to a particular piece of code. Some, particularly

those which form parts of compilers, perform this totally automatically and do not

require any user interaction. This approach is made possible because transforma­

tion applicability constraints can be checked to determine which transformations are

valid. Some form of weighting algorithm is usually applied to choose between any

transformations which are applicable at the same time.

Other systems are interactive and allow the user to guide transformation. These

vary in their degree of automation. In the simplest methods the user selects a piece

of code and the transformation engine suggests valid transformations. At higher

Chapter 3. Transformation Systems 32

levels of sophistication heuristics are used to perform common sequences of trans­
formations automatically. Even higher levels may involve the analysis of programs
to search for best case solutions, e.g. Griswold et al. [46]. The more sophisticated
approaches typically involve greater amounts of computation but utilise program
analysis techniques to reduce the search space.

Size of the transformation catalogue — most transformation systems have

a catalogue of transformations which allows the storage and retrieval of individ­

ual transformations. The catalogue serves as a basis for searching for particular

operations and ensuring that appropriate transformations are applied.

The number of transformations which are available affects the usability of a

system. If the catalogue is too restricted then useful work is limited because either

too many small steps will have to be applied or some essential steps may not be

available. The converse is also true, too many transformations makes the selection of

appropriate operations difficult and places too great a strain upon the transformation

systems implementation.

Re-engineering transformation systems are typical of this requiring a well bal­

anced set of transformations to ensure that maximum advantage is gained. I t is

therefore necessary to take care when developing the set of transformations and it

is best to use an expert who can use his knowledge of the subject domain to include

strategically important and the most frequently used transformations. Ward [89

supports this, saying that a domain expert is essential to develop the most appro­

priate catalogue of transformations.

I t is also necessary to ensure that the set of transformations is complete, provid­

ing a comprehensive set of operations which cover any transformation requirement.

Some less common transformations may have to be built up from the repeated ap­

plication of simple transformations.

User extensibility — a transformation system is not necessarily limited to the

catalogue of transformations which are supplied with it . User extension may be

desirable to allow new transformations to be added. These may take one of two

forms:

Chapter 3. Transformation Systems 33

1. Those which are found to be necessary for continued work or desirable to
incorporate new types of transformation. In a formally based system these
would have to be proved by the user.

2. "Super transformations" which combine the effects of a number of simpler

transformations into a commonly used transformation. This may involve the

use of heuristics to guide transformation and would require some form of "glue"

language to allow the combination of individual transformations and the un­

winding of failed sequences.

The capability to extend the transformation catalogue is especially useful in

maintenance work when new patterns of coding are discovered or when changing to

different source and target languages.

Efficiency of operation — efficiency can be a prime factor in the operation

of any computer system and transformation engines must be designed with this in

mind. Much of the implementation of the transformation engine involves traversing

programs checking that transformation applicability conditions hold. Automatic

systems have extra efficiency requirements because they have to perform searches to

find suitable candidate program fragments to transform.

The transformation approach can therefore have a high order of complexity.

Transformation engines must utilise innovative implementations to reduce this com­

plexity and, therefore, give reasonable performance when working with medium to

large scale transformation projects.

An example of this is Semantic Design's use of combined control and data flow

graphs for internal representation of the program [9]. This allows an easier search

of the program for dependencies and even allows some reordering transformations

to be performed with almost no computation overhead. This storage method does

not directly represent the textual structure of the program. If two consecutive

statements do not depend upon each other they will not have any control or data

inter-dependencies and can therefore be reordered in the textual structure of the

program.

Applicability conditions provide an opportunity for increasing the efficiency of

the transformation search engine. Some conditions may be easier to compute than

Chapter 3. Transformation Systems 34

others, relying upon static properties of the program. These properties can be
cached within the internal structure of the program and used whenever necessary.
A careful ordering of applicability checks can ensure that these static checks are made
before more complex dynamic ones. This ensures that search time is minimised thus
increasing efficiency.

Formal or informal — transformation systems do not have to be based upon

formal theories to provide a useful method of re-engineering programs. Informal

systems can be developed based upon similar transformation operations. These

do not have ful l proofs which show that they do not change the semantics of the

program.

An informal system may be designed to get the transformation correct 99% of

the time. In the remaining 1% of cases the program may be too complex or may

have subtle features which invalidate the result. The reasoning behind this is that

it is better to perform most of the work automatically leaving a small amount of

work to be done by hand. In many cases the transformation engine may be able

to determine that the transformation may not produce a correct result. Lake and

Blanchard's work [59] takes this approach and their tool flags assembler code which

it determines is probably going to be converted incorrectly.

There is a tradeoff to be made between informal and formal transformation

systems. In general i t is much quicker to develop an informal system. Confidence in

the results will be gained after testing and after experience using the system on real

projects. Formal transformations may take longer to develop but provide a much

greater degree of confidence in the results and give a solid formal underpinning which

can be used to examine any suspected errors.

Individual transformation systems take different approaches for each of the as­

pects discussed above. The choices usually depend upon the type of work that the

system is designed to perform, e.g. forward engineering or reverse engineering. Ta­

ble 3.1 summarises a number of transformation systems, it is based around a similar

table presented by Bull [23, figure 3.2] but has been extended to include recent work

(identified by appropriate citations).

Chapter 3. Transformation Systems 35

Name of
System

Type of
Transform

Catalogue
Size

Automatic
or User-
Driven

Languages Formal?

SETL Spec. —>
Code

N/A Automatic Very-High-
Level

No

RAPTS Spec. ->
Code

Small Automatic Specification Yes

TAMPR Code
Code

Small Automatic Lisp ->
FORTRAN
+
Intermediate

Yes Lisp ->
FORTRAN
+
Intermediate

Restructur-
izer

Code
Code

Small Automatic COBOL +
Intermediate

No

ZAP Code
Code

Small Mostly
Automatic

Lisp Yes

SAFE Informal
Spec. —>
Formal
Spec.

N/A Automatic Specification No

T I Spec. —>•
Code

User-
Extensible

User Driven Wide
Spectrum

No

GLITTER Spec, —>
Code

User-
Extensible

Semi-
Automatic

Wide
Spectrum

No

PSI Dialogue —>
Code

Large User Driven Standard
Languages

No

CHI Dialogue
Code

Large User Driven Wide
Spectrum

No

CIP Spec. —>
Code

Large User Driven Wide
Spectrum

Yes

DEDALUS Spec. —>
Code

Large User Driven Lisp No

Hildum and
Cohen's
Work

Code ->
Code

User-
Constructed

N/A User-
Dependent

No

Kozaczyn-
ski's
Work

Code
Spec.

User-
Constructed

Automatic COBOL No

Maintainer's
Assistant

Spec. <r^
Code

Large User Driven Wide
Spectrum

Yes

Refine [22] Various User-
Constructed

Semi-
Automatic

Vcuious No

Sward's
Work [85]

Code -)•
00-Code

Being
Developed

Semi-
Automatic

Fortran Yes

Grundy's
Work [48]

Algebra ->
Algebra

User-
Extensible

User-Driven Algebra Yes

Table 3.1: A Summary of Transformation Systems

Chapter 3. Transformation Systems 36

A lot of the early work in transformation systems concentrated upon forward
engineering. More recent work has started to apply transformation techniques to
re-engineering. These tend to concentrate upon control flow transformation and
only manipulate data when necessary. The next section examines existing data
re-engineering work.

3.4 Data Re-engineering

Most of the transformation systems examined in the first half of this chapter concen­

trate upon program control fiow rather than upon aspects of data structuring and

representation. This is mainly because control flow has historically been the major

focus in programming. More recently data has come into the forefront of computer

technology. Object-oriented programming and abstract data types have been used

to break the structure of a program down into manageable chunks.

In this section a number of different techniques for data manipulation are pre­

sented. These are not limited to transformational or software maintenance tech­

niques but represent the range of technology which can be used to manipulate data.

For the purposes of this discussion the work is grouped into three categories:

• Theoretical work — which uses various techniques to manipulate the data.

These are generally reported as "text book" techniques although other work

uses these techniques practically.

• Transformational work — which uses transformations to manipulate the

data representations.

• Proof-oriented work — using goal-based techniques to show that data ma­

nipulations are valid.

Each category shows the range of work which is performed. Specific examples

are given where appropriate.

3.4.1 Theoretical Work

There are a number of major pieces of theoretical work which have been infiuential

in the development of data re-engineering. Ideas from these have been used in other

Chapter 3. Transformation Systems 37

work which has taken a more practical approach.

Data reification — reification is a term used to represent

"the transition from abstract to concrete data types and the justification

of the transition (Jones [57])"

I t has been applied widely in research on the Vienna Development Method,

V D M . Data Reification is used to refine specifications into implementable versions.

Andrews [3] gives the following example of the typical operations performed using

reification.

Abstract
Data
•Sets

•Sequences
•Maps

Data
Representation

•Scalars
•Arrays

•Structures
•Pointers

Figure 3.2: Data Reification Operations

The links between abstract and concrete types are described using retrieve

functions. These are based upon the premise that the relation between abstract

and concrete representations is one-to-many (a particular abstract type has many

implementations). Reversal of the retrieve function is not generally possible because

machine implementation limits constrain the behaviour of general abstract types.

In some cases reversal is possible, especially for composite types which have

definite representations. Finding the specific instances of a type within a program

does however prove to be difiicult.

The refinement calculus — a major piece of work in the area of program refine­

ment is Morgan's refinement calculus [71]. This work is based around a wide spec­

trum language which allows the semantics of both executable and non-executable

constructs to be specified consistently.

Morgan notes that executable programs are characterised by the use of assign­

ment commands which denote that a specified value is given to a particular variable.

Chapter 3. Transformation Systems 38

This command is deterministic and is used as the basis for one of Morgan's primi­
tive refinements, figure 3.3. This refinement states that as a result of the refinement
then all occurrences of w will have been replaced by E. That is, the specification
W : [pre, post] can be replaced by code w := E. Also note that the inclusion of x in
the specification allows variables which are not assigned to in the code.

assignment
If pre ^ post[w\E] then

w,x[pre,post] C w := E.
•

Figure 3.3: Morgan's Law 1.3 [71

Data refinement is done by the introduction of concrete variables which im­

plement the more abstract variables. These are introduced into the program using

primitive variable introductions and are linked to the abstract variables using invari­

ants. The properties of the program can then be rewritten in terms of the concrete

variable using the invariant as a link between the two.

Data normalisation — data normalisation is a technique used extensively in

database environments. I t allows dupUcated copies of specific pieces of information

to be removed from a database and reduces the complexity of the relationships

between different database tables.

There are a number of diff"erent levels of data normalisation. These are described

as normal forms which specify the allowable relationships between different data

items. The initial work in normalisation was performed by Codd [37] and consisted

of three normal forms. Subsequent work has extended the number of normal forms.

Different works in the area use diff"ering definitions of each form. Further information

on these can be found in Date's "An Introduction to Database Systems" [39 .

The relationships between different normal forms are well defined and a number

of techniques can be used to convert the tables within the database from one form

to another.

Chapter 3. Transformation Systems 39

3.4.2 Transformational Work

There is little work in the program transformation field which has primarily ad­

dressed the maintenance of data structures. A small number of transformations are

used which lie on the boundary between data structure and control fiow manipu­

lation. These tend to be transformations such as "rename variable", "create local

variable" and "replace variable with expression". Each performs simple changes to

the program by moving assignments and uses of data around the program. They

do not generally affect the values stored within data locations. Doing this would

require knowledge of the semantics of the data values and their uses. For this reason

existing transformation systems tend to treat the data as "black box" units which

cannot be opened but may be transfered to different areas of the program. This ap­

proach has stemmed from early maintenance transformation work which needed to

limit semantic and computation complexity. It also fitted in with the main aims of

restructuring existing programs which tended to be written in assembler and other

low level languages.

More substantial work has been performed using program transformations for

the development of software. In this work the specification of the program is usually

transformed into a more concrete form and the representation of data is changed into

a description in terms of directly implementable data types. The transformations

are not necessarily used to create the final program implementation but are used to

produce a design which can be used by a programmer.

The Munich CIP project [7, 8] is one such example. I t is based around a wide

spectrum language, CIP-L. This work develops the software in a number of stages [6 .

These start from a formal problem specification, which then passes through in­

termediate recursive solutions and is finally transformed into iterative procedural,

machine-oriented programs.

An example given in [6] shows the development of an iterative implementation

of a routine to determine whether graphs contains cycles. The implementation

of this routine uses primitive high level data types, e.g. sets, which were defined

within the original specification. The main development of the program was done

using transformations which introduced control fiow constructs such as recursion

and iteration.

Chapter 3. Transformation Systems 40

Recently practical re-engineering work using data transformation has been per­
formed by Xinotech [55]. This company is using transformations as the solution to a
number of problems including year 2000 and European currency conversions. There
is very little information available about the technical aspects of this work but their
advertising documentation claims to handle a wide number of legacy languages, in­
cluding COBOL. The work appears to be based upon pattern matching of common
representations of particular features of programs and data.

3.4.3 Proof-Oriented Work

Proof-oriented techniques are the traditional way of applying formal methods. They

differ from transformational techniques because the final result is initially selected

using informal techniques, e.g. heuristics. A proof is then constructed to show that

the final goal is a correct representation of the original program. The proof may

take a number of steps and may involve a number of sub-goals which reduce the

complexity of the proof. These types of proof are similar to proofs in mathematics.

Maintenance research includes a considerable amount of data re-engineering work

done using proof-oriented techniques. The REDO project is well reported and pro­

vides some of the most comprehensive data re-engineering in the field. The REDO

work [63, 21, 20] examines the extraction of data structure from legacy programs and

shows how COBOL code can be reverse engineered to produce specifications in Z++.

The data restructuring aspects of this revolve around the identification of groups of

data items which can be used to form abstract data types. The work includes the

fundamental theoretical steps which are needed for extracting data groupings from

the original program.

Program development using proof-oriented techniques has been well researched.

This work has generally been used for development of initial specifications into

forms which are almost directly implementable. The final stage of implementing

this has often been performed by hand to ensure that efficient implementations are

produced. Newer work, e.g. RAISE [47] and B [1, 61], is starting to use automated

code generation techniques to provide a more complete development environment.

Chapter 3. Transformation Systems 41

Refinement in Z — Z [74, 82], along with VDM [56, 14], was at the forefront
of the surge in interest in formal methods. Z is built around set-theoretic concepts
which are used to represent changing relationships between data items. Specifica­
tions represent the changes in these relationships as the program is executed.

Refinement in Z consists of the re-expression of data items in terms of other more

implementation specific data items and more explicit specification of the operations

upon this data. The correctness of the refinement steps is shown in two ways:

• Data representations are changed by specifying an invariant which describes

the relationship between new and old versions. This is then used to show that

the new form can be deduced from the original.

• Refinement of the relationships between data items is done in a similar way.

In this case explicit invariants are not needed because the original definition

acts as an invariant. Algebraic laws are used to show that the new relationship

is a correct refinement of the original.

Z has been used successfully in a number of projects. One of the most prominent

was in the specification of a significant portion of the IBM CICS product [73] during

a major redevelopment operation. The specification describes the behaviour of in­

dividual subsystems and helps to specify the interfaces between subsystems. These

specifications were refined to form detailed designs of the final code.

R A I S E and B — the RAISE method [47] and more recently the B Method [1, 61

have examined a more implementation-oriented approach to refinement. Both meth­

ods include the ability to represent executable constructs within system specifica­

tions. This allows greater scope for refinement from abstract specifications down

into representations which are directly related to the implementation language con­

cerned. RAISE and B are conceptually similar to each other, only B will be described

in detail in this document.

B is centred around the Abstract Machine Notion, AMN, which encapsulates

data, its relationships (invariants), initialisation constraints and operations upon

that data. Abstract machines can be nested, a machine may use, or extend, another

allowing hierarchies to be formed. These combine to produce detailed specifications

of the fu l l system.

Chapter 3. Transformation Systems 42

a o S s s

s s s s s s
a
o

a
m

0)

CO
O

O

I

.9

CO

s s s s

s s s s s

'a

0̂

s s s s

s

s

s

s

s

s

a
o
i—I

s s s s s

s IS
1^

CO

O

oi
05
a
'So i=!
0)

I

Q
c<i
CO

i

Pi
s S S s s s

0 5
CO

I o

CO

o
c

oi

CO,

o

M

a
O

Q

10

o
o

co"
CD,

o
Q
H

00

.]>-.

I n

CD

Q
>

CD

Chapter 3. Transformation Systems 43

Refinement is performed within an implementation of a specific machine. In
this context implementation involves importing extra, more implementation specific,
modules and introducing extra internal data items. Relations between the new
objects are specified and proof techniques are used to show that the refinements are
correct.

The use of the AMN allows stepwise refinement to be brought into a context

which is suitable for use in industrial system development from specification down

to implementation. IBM [52] has performed preliminary trials using the B-Method

to specify and develop a substantial portion of their CICS transaction processing

system. They report that the trials produced usable low level designs of the code but

found that the implementation produced required a substantial amount of manual

re-coding to perform efficiently.

This section has presented a number of different techniques for performing data

re-engineering. Table 3.2 summarises these highlighting three aspects which are

relevant to this thesis.

The first aspect shows the types of data re-engineering which can be performed

by each technique. I t is quite clear from the table that only a small proportion

of these techniques are oriented towards performing abstraction. This represents a

general emphasis upon forward engineering and highlights the need for more work

on support for reverse engineering.

There is a more even emphasis upon the different phases of program development.

Most work allows the crossing of abstraction boundaries but a significant number

do not allow machine implementations to be produced/manipulated. They tend to

work towards producing designs which have clear equivalences with an executable

form and the actual conversion to/from an executable form is done by hand. This

ensures that efficient implementations can be produced which take advantage of

aspects which are obvious to the programmer but not to the machine.

The final aspect is the type of each piece of research. This is split between

practical techniques which are used to aid the engineer on a day-to-day basis and

theoretical techniques which are primarily aimed at providing the underlying theory

for use in practice. The split between these is fairly even. Overall there is a fair

Chapter 3. Transformation Systems 44

balance of emphasis in the techniques but there is a slight lack of detailed work in
the area of re-engineering of practical code.

3.5 Summary

Formal transformations are presented as a key technique for use during software

maintenance. They allow code to be restructured to "clean up" after a number

of years of modifications or to prepare for future maintenance. The transforma­

tions have well-defined effects upon the semantics of the program ensuring that the

program's behaviour is changed as expected.

A number of key factors which affect the usefulness of transformation systems

were examined. These highlight the need for flexibility in the catalogue of trans­

formations which are available and for efficiency of operation to minimise intrusion

into the maintainer's work.

The chapter shows that there is a lack of research into data transformation.

Many methods of data re-engineering exist but they are not very compatible with

the transformational approach to maintenance. The next chapter examines the

Maintainer's Assistant, a transformation system developed at Durham, in detail. I t

highlights the need for data transformation in the tool and the chapter looks at the

changes which are required to enable data to be represented fully within the system

and its associated languages.

Chapter 4

The Maintainer's Assistant

This chapter examines one particular transformation system, the Maintainer's As­

sistant, in detail. The Maintainer's Assistant was developed with the aim of aiding

re-engineering, providing many of the program manipulation features discussed in

the previous chapter. It does however lack data manipulation facilities which makes

it an ideal base for the research presented in this thesis.

The chapter begins with an introduction to the theory behind WSL, the lan­

guage around which the Maintainer's Assistant is based. This is accompanied by

the examination of some of the main aspects of the transformations, and their im­

plementation, which are relevant to the thesis.

The achievements and deficiencies of the Maintainer's Assistant work are sum­

marised and show that WSL lacks data typing constructs. Without these it is

difficult to represent and reason about the properties of program data making i t

infeasible to develop transformations for data re-engineering.

The second part of the chapter shows how data typing can be added to the WSL

language. Different options are considered and a solution is presented which allows

an extensible type system to be implemented. The system is based around a tax­

onomy of data types which groups individual types according to general properties

of their semantics. These groups are: elementary types, composite types, structural

types and dynamic types.

Data type semantics are incorporated within the WSL language using a shallow

embedding. This allows data type theories to be imported axiomatically into the

language without reproof in terms of the WSL semantics. The properties of these

45

Chapter 4. The Maintainer's Assistant 46

data types are then treated as primitive assumptions in WSL. These theories are
then used to reason about any operations which involve data items of that type.
Use of a shallow embedding does not invalidate the correctness of existing WSL
transformations and also allows new types to be added when necessary without
reproof of the transformations. These are major advantages over the use of a deep
embedding.

Syntactically data types are assigned statically to variables in a similar manner

to that found in many programming languages, e.g. Ada. Each variable holds values

which belong to its own type. Types are defined statically within the program and

are derived from the base data type from whose semantics they take their meaning.

Each type definition can constrain the range of values which may be held within a

variable. This provides extra information for use when transforming the data.

4.1 Theory and Implementation

The Maintainer's Assistant was developed, as part of the ReForm project [10], to

explore the feasibility of program transformation for software maintenance tasks.

The main aim of the work was to provide support for reverse engineering of code,

particularly for the migration of assembler code to higher level languages. The

work is based around Ward's theory of program refinement and transformation [88

which uses a custom designed domain specific language, WSL. This is designed to

allow easy, efficient proof of program transformations as well as to represent the

source code that is to be re-engineered. The theory and practice of the Maintainer's

Assistant is divided into three sections:

• W S L and Transformations — the core theory behind the transformation

system. Al l code is first translated into WSL from the source language. The

WSL is then transformed. Once transformation is complete the WSL is trans­

lated back into a target language.

• A ^ r ^ W S L — MSTAWSL is the domain specific language used to describe the

implementation of transformations. I t was developed by Bull [23] specifically

for the Maintainer's Assistant.

Chapter 4. The Maintainer's Assistant 47

• The User Interface — the user interface is designed to aid the maintainer
in the selection of appropriate transformations and to hide many of the imple­
mentation details of the transformation engine.

Each of these is discussed in the following sections.

4.1.1 WSL and Transformations

Ward's [88] theory of transformations is based around the language WSL. This

language was designed specifically for program transformation and has semantics

which are designed to aid transformation proof.

WSL is a wide spectrum language which is capable of representing both

directly executable, imperative statements and specifications of execution behaviour.

Both of these may be mixed within one program allowing stepwise transformation

between program representations at diflterent levels of abstraction. This is especially

useful for re-engineering because it allows a specification to be produced from legacy

code without a change in programming language.

Executable programs are represented in WSL using a Pascal like syntax which

includes a wide variety of common statements such as:

• Assignments,

• Conditionals,

• Bounded and unbounded loops,

• Subroutines,

• Action systems (for representing goto statements) and

• Local variables.

Specifications of program behaviour are represented using atomic descriptions.

These allow the eflFect of a program to be described using a predicate which specifies

the relationship between the input and output set of variables.

Chapter 4. The Maintainer's Assistant 48

Semantics

Each of the WSL constructs are defined in terms of a small kernel language^ Def­

inition of the WSL constructs in this way means that they inherit the combined

semantics of the kernel constructs that they are composed of. Transformations can

then be produced which describe changes to the WSL constructs but are proved

using the underlying kernel's semantics.

The semantics are expressed as weakest preconditions using formulae of infinitary

logic. A weakest precondition [40] for a given program 5 with final state R is

denoted WP{S,R). This states the weakest condition, on the initial state, that

guarantees that the program fragment will terminate in output state R.

The use of infinitary logic, which is an extension of first order logic, is necessary

to represent a general (non-terminating) loop in the language. Infinitary logic allows

infinitely long formulae to be used within proofs. These formulae simulate the effect

of infinite iteration and their uses makes proof of transformations involving loops

easier because the maintainer does not need to supply suitable invariants which

describe the effect of the loop.

The semantics of a programming language describe the changes which are made

to the state of a program, i.e. variables, after execution of a series of instructions.

In WSL this is done using Back's notion of an "atomic description" [4]. An atomic

description is written as

<a ; i , . . . , a ; „ > / < y i , . . . , y„> : [Q

and consists of three parts:

• < x i , . . . ,Xn> — a list of variables whose values are changed as a result of

execution of the description. I f any of these do not already exist then they are

introduced into the state of the program.

• < y i , . . . , ? / „ > — a list of variables which are removed from the state of the

program after execution of the atomic description.

^In actual fact the kernel language is part of WSL but for this paragraph it is best to think of
the kernel as a separate language.

Chapter 4. The Maintainer's Assistant 49

• [Q] — ^ condition which must be true when execution completes.

The important feature of an atomic description is the fact that there is no concept

of how the state of the program is changed. The statement specifies what the state

will be after execution but any method can be used to produce the correct result.

I f there are multiple states which satisfy the condition then any of these is equally

valid, i.e. the choice of result is non-deterministic. If no states satisfy the condition

then the atomic description does not terminate and the program is said to abort.

Atomic descriptions allow temporary variables to be introduced into the program

state. This is necessary to allow intermediate values, which are not given in the

specification of a program, to be used in implementable versions of the program.

An example of the use of temporary variables is in a block where local variables are

defined for use within it but then cease to exist at the end of the block.

Each WSL construct has its semantics defined in terms of atomic descriptions.

These are connected together using sequence, non-deterministic choice and recursion

constructs. These constructs use infinitary logic to describe how the semantics of

individual atomic descriptions are related. Describing the semantics of every WSL

statement is beyond the scope of this thesis; instead only assignment and assertion

statements will be examined in detail. These are central to the proofs of data

equivalence and refinement which are presented in the next chapter.

Assignment — assignments are the main type of statement which change the

state of a program^. An assignment replaces the value of the variable on the left

hand side of the construct with a value which satisfies the expression on the right

hand side of the program.

The semantics of assignment are defined as the sequential composition of two

atomic descriptions as follows:

<z>/<>: [z - x + y];
X := X + y =

<x> / <z>: [x — z

^Specifications also change program state but are not needed for the purposes of this discussion.

Chapter 4. The Maintainer's Assistant 50

The first atomic description introduces a temporary variable z whose value sat­
isfies the condition part of the atomic description. The second one removes z from
the state space and replaces the original value of x with the value of z produced in
the previous stage (using the condition x = z).

Two stages are required to describe the semantics of an assignment because

execution of an atomic description results in a state that satisfies the condition (after

variables have been added-to the state space). I f the assignment, e.g. x := a; + y,

involves uses of the original value of the variable (which is also to be assigned-to)

then a single condition would be recursive and would assert that the new value

is used rather than the original. For example, the assignment above would have a

condition oi\x = x-\-y\ which would only be satisfied when y — At other times the

statement would be equivalent to an abort and the program would not terminate.

Assertion — assertions are closely related to assignments but they do not cause

any changes to the program state. They assert that a condition is true when the

statement completes execution. I f the condition cannot be satisfied, e.g. false, then

the assertion is equivalent to abort and it does not terminate. In cases where the

condition is satisfied the assertion acts as a skip statement.

An assertion is written as

{{x = y)] = <>/<>:[x = y

Here there is no change in the program state (no variables changed or removed)

and the condition {x = y) must be true if the program terminates. The condition

in the assertion can be any boolean expression of infinitary logic.

Assertions are useful in a transformation environment because they allow prop­

erties about the program state to be stated explicitly. The information contained

within the assertion can be moved around the program to places where it can be

used to aid the application of a transformation.

Chapter 4. The Maintainer's Assistant 51

Values

Each variable within a program holds one value at any particular point in time.

A collection of the values of all variables at that particular time is known as the

state of the program. Atomic descriptions describe how this state changes when

constructs/programs are executed. Transformations do not generally reason about

specific individual states. Instead they are defined for a range of possible states

which have some property in common. This makes a transformation more general

and applicable in many situations.

To make this description of transformations possible values are described as

formulae of infinitary logic which represent their abstract or physical properties.

From this it follows that variables in WSL programs are capable of representing any

value which can be described by a formula in infinitary logic. Sets of possible values

can also be described in this logic allowing generalisation of the state of a program.

The formulae which describe these possible values are used in the condition part of

atomic descriptions to specify the final state of the program after execution of that

atomic description. These formulae are often written in terms of the initial state of

the program thus providing an ordering of statements during execution.

If the initial values are such that the atomic description's condition cannot be

satisfied then the program is in error and will not terminate. At first sight it seems

that this is not desirable for a programming language because non-termination is

usually considered to be an incorrect behaviour. The possibility of non-termination

is not necessarily bad for a language designed for software maintenance however

because the aim is to preserve the original behaviour of the program. If the program

originally did not terminate then it is acceptable to transform the program into an

abort statement.

Proof of transformations in WSL is done in the manner described in section 3.1.

Each construct within the program fragment is mapped onto its kernel language

semantics. These are then used to show that the transformation does not corrupt

the semantics of the initial program fragment.

To make the proof easier a number of lemmas are used which describe useful

properties of the program and allow considerable proof reuse. These include lemmas

Chapter 4. The Maintainer's Assistant 52

which state that i f two program fragments do not use or assign to common variables
then they are independent and do not depend upon each other. Full details about
the proof of transformations and the semantics of WSL can be found in Ward's
thesis [88 .

4.1.2 A^r^WSL

Implementation of the transformations is done in a variant of WSL called Al f r^WSL.

This language is an extension of WSL containing all of the statements in the core

language plus extra ones for representing, manipulating, traversing and querying

WSL programs. The use of MSTAWSL brings two major advantages to the imple­

mentation of the transformation engine:

1. The transformations are implemented in a language which is independent of

any particular programming language or machine and

2. I t is possible to transform the implementation of the transformation during

future maintenance.

Implementation consists of conversion from the theoretical representation into a

machine representation. Efficiency is a key requirement in this process, a transfor­

mation must take the minimum amount of processing time because repeated applica­

tion of transformations can cause exponential growth in processing time. A^r^WSL

helps constrain the amount of work required to produce efficient and concise trans­

formations by providing a number of constructs which perform the operations that

are most commonly used during transformations. Development time can then be

concentrated upon making these efficient.

To aid the maintainer in the selection of suitable transformations the Maintainer's

Assistant is able to check applicability conditions for a number of transformations.

These are targeted upon a user selected area of code and the system is able to present

a list of applicable transformations which will make similar changes to the program.

The applicability tests are used to guard the main transformation code. They

do not guarantee that application of the transformation will succeed but reduce

the likelihood of failure substantially. The main code is responsible for checking

the remaining transformation preconditions. These are typically those which take

Chapter 4. The Maintainer's Assistant 53

substantial amounts of processing time, and can signal that the transformation has

failed. I f the transformation fails then any changes that have already been made by

the transformation are unwound leaving the program in its initial state.

Further details about A ^ r ^ W S L and its innovative use in the implementation

of a transformation engine are given in Bull's thesis [23 .

4.1.3 The User Interface

The user interface plays a major role in the usefulness of the transformation system.

It helps the maintainer by providing easy access to the program which is being

transformed and helps in the selection of appropriate transformations.

Transformations have been grouped according to the effect that they have upon

the program. Each transformation is centred around a key component of the program

fragment being transformed. This takes the emphasis away from incidental details

of the transformation and focuses upon the primary effect of the transformation.

The groupings are shown in table 4.1. They make it easier for a novice maintainer

to use the Maintainer's Assistant by cutting down the search space when choosing

a suitable transformation.

Type Description
Move Moving constructs around the program.
Join Join adjacent constructs forming a composite construct.
Use/Apply Use or apply the construct to neighbouring constructs.
Reorder Rearrange the order of statements or expressions.
Rewrite Rewrite the current construct in a different form.
Insert Insert a new construct into the program.
Simplify/Delete Simplify or remove constructs.
Multiple Perform an action many times.
Complex Complex restructuring operation.

Table 4.1: Transformation Groupings

4.1.4 Analysis of the Maintainer's Assistant

Over a number of years a large amount of practical experience of using the Main­

tainer's Assistant, and its commercial counterpart FermaT [81], has been collected.

Chapter 4. The Maintainer's Assistant 54

This highlights a number of areas where the tool excels and also shows a few places

where it lacks functionality. A summary of these findings is shown in table 4.2; more

detail on each aspect can be found in appendix A.

Accomplishments
Code
Restructuring

The rearrangement of a number of program
constructs including gotos, loops and procedures.

Program Editing An editor allows errors to be corrected or changes
made to the program during transformation.
These are recorded in an audit trail.

Multiple Source
Languages

Code originally written in a number of different
languages has been transformed.

Formally
Defined
Semantics

WSL has formally defined semantics which are
used to show correctness of program
transformations.

Practical
Experience

The transformation tools have been used in a
number of practical situations and the results have
shown that the theory is correct.

Deficiencies
Data Typing This is desirable to represent exact semantics of

diff'erent data objects and to separate the
behaviour of logically different activities.

Data
Abstraction

Data abstraction is a key factor in software
engineering activities.

Language
Translators

These are not formally defined and insert a weak
link into transformation work.

Selecting
Transformations

The order of transformation application is a key
factor in the success of the technique.

Backtracking In some cases a simple Undo/Redo facility is not
enough.

New Language
Constructs

WSL cannot easily represent language constructs
such as exceptions.

Data Reasoning Stricter reasoning about laws of arithmetic etc. is
required.

Modularisation The system cannot handle modules and libraries
very well.

Table 4.2: Analysis of the Maintainer's Assistant

From this summary we conclude that the Maintainer's Assistant has achieved the

primary goal of enabling useful restructuring of legacy code in a wide variety of pro­

gramming languages. The system does this using formally defined transformations

which have been demonstrated to be correct in a number of practical situations.

One area which needs further work is the need for increased rigour and formalism

Chapter 4. The Maintainer's Assistant 55

in the area of data manipulations. This recurs under a number of different headings
in the table and involves the following problems.

• The current theory and transformation system does not provide suf­

ficient control over data structures and relies upon translators to en­

sure that data structuring is preserved — the translators insert markers

into the program to represent the data types. This information is used after

transformation when the program is being translated into the target program­

ming language.

• In many cases existing transformations may violate data structure

properties because the inbuilt knowledge about the properties of

data operators assumes that they are used upon certain data types

— if a program uses a data type which has semantics of operators which

differ from those of common data types, e.g. integers, then the transformation

system will not be able to recognise this and take appropriate action.

This lack of data transformation support is the subject of this thesis and is

covered in detail in the remainder of the thesis.

4.2 Adding Data Typing to WSL

The first stage in addressing the re-engineering of data using formal transformations

is to ensure that the transformation language can represent program data in sufficient

detail. This allows the transformation engine to explicitly annotate the program with

the information that is needed to reason about data. I t also makes the language

more like current programming languages, e.g. Ada, Modula-2, C, C-l—1-, which have

strongly typed representations.

Note that unlike other programming languages the use of data types to allow type

checking during compilation is not a primary consideration in WSL. The transfor­

mation system assumes that programs which are being transformed are already type

correct and any discrepancies are taken to be part of the program's semantics.

The addition of types into WSL can be broken down into three components:

Chapter 4. The Maintainer's Assistant 56

• Available types — the types which are representable within the language.
These must provide a complete set of types which are used in both program­
ming and specification languages.

• Semantics — the semantics of the data types need to be integrated with the

semantics of existing WSL constructs. This makes proof of transformations

possible.

• Syntax — the syntax of the standard WSL language needs to be extended

to allow data types to be explicitly associated with values and variables.

The following sections examine each of these points in detail. The set of types

required is identified using a taxonomy of data types. This classifies types into

groups which represent the semantics of the values stored and their typical uses

within a program.

Integration of syntax and semantics is explored by examining different strategies

and evaluating them to ensure that the existing language and transformations are not

unduly affected by the changes. I t is also important that the resulting programming

language is capable of representing code in a form that maintainers can work with.

4.2.1 Available Types

Many different data types are provided by programming languages. These data

types provide a way of describing the set of possible values that an instance of that

data type could assume. Each data type has a number of operations associated

with i t which allow manipulation of data instances and reasoning about them. Each

language is designed with the needs of different domains in mind and as such each

language provides data types which differ subtly from those provided by similar

languages.

Implementation constraints also affect the semantics of data types due to word

sizes, arithmetic operations and memory allocation policies. I f transformation of

data types is to be feasible then it is necessary to be able to cope with the varying

demands of different environments while still providing a stable platform around

which to base work.

Chapter 4. The Maintainer's Assistant 57

Many languages allow subtyping of data types to create logically distinct in­

stances of a type which inherit the properties of the original type but are treated as

diflFerent types when describing the semantics of the program. This enables separa­

tion of the program into a number of segments which represent the logical design of

the program.

A Taxonomy of Data Types

There are a number of primitive data types which form an elementary group of

types within a language. These are combined together by other types which allow

the representation of groups of values. These groupings have two semantic properties

which are of interest for our data transformations:

1. number of components — the grouping may have a static number of com­

ponents (fixed at compile time) or the number of components may vary dy­

namically.

2. naming of components — a particular component may be accessed via a

static name, i.e. a record component, or it may be accessed via a dynamic

name which is computed at runtime, i.e. array elements.

These properties of groupings affect data transformation because they influence

the ease with which a specific transformation may be shown to be valid. In general

data types with static properties are easier to transform because the properties can

be determined without extensive analysis of the program.

Number of Naming of
Category Primitive Components Components

Static Dynamic Static Dynamic
Elementary /
Composite / /
Structural / /
Dynamic / / /

Table 4.3: Data Type Categories

For the purposes of this thesis four categories of data type are defined. Table 4.3

shows how these categories correspond to the semantic properties. Each category is

Chapter 4. The Maintainer's Assistant 58

also discussed below:

• Elementary types — these are the most basic that occur within programs

and are the types which are commonly found as primitives within programming

languages. They are used to describe individual aspects of a logical entity.

Examples include: discrete types (including integers), real numbers and sets

in Pascal.

• Composite types — these allow grouping of individual variables together to

form a new object which can be used as a single entity. The structure of the

data is therefore represented in a more manageable format which provides ba­

sic functionality for data abstraction. The most common example within this

category is the record (structure) where the components are usually instances

of elementary types or of other composite types. Programs often provide sub­

routines to allow controlled access to composite data.

The static nature of composite type semantics makes it possible to apply con­

trol flow transformations to each component of the data type individually. This

requires special support from the WSL semantics. Sections 4.2.2 and 4.2.5

show how this is allowed as part of the definition of typed WSL semantics.

• Structural types — structural types differ from composite types because

they have component names which are computed dynamically. The most com­

mon example of this data type is the static array. Note that a static number

of components is important because it provides a fixed range of items which

can be accessed.

• Dynamic types — a dynamic type is more semantically complex than the

other types because it is not generally possible to determine if a particular

component exists at any point in time. If a component which does not exist is

accessed then the semantics of the data may be undefined. Types with either

static or dynamic naming are included within this type category because the

dynamic number of components has more effect upon the data type's semantics

than component naming semantics. Common examples of these data types are

dynamic arrays and lists.

Chapter 4. The Maintainer's Assistant 59

Table 4.4 lists common data types and shows which categories each type lies

within. This grouping has been extracted from an analysis [72] of a number of

common programming and specification languages, including: Ada, Modula-2, C,

C++, Java, Pascal, Lisp, VDM, Z and B.

Data Format Category Data Format
Elementary Composite Structural Dynamic

Bit / X X X
Integer / / X X
Boolean / X X X
Enumeration / X X X
Character / X X X
Real — Fixed / — X X
Real — Float / — X X
Set (in Pascal) / X X X
Array — X / /
String — X / /
Record — / X X
Tuple — / X X
List X X X /
Tree X X X /
Graph X X X /
Relation X X X /
C-Union X X X X
C-Pointer X X X X
First-class function X X X X
Object-oriented class X X X X

Key:
/ Denotes that a type is available in that category.

Denotes that the type could reasonably be expected
to appear in that category, but in practice it is not
usually found there.

Denotes that the type is not found in that category.

Table 4.4: Common Data Types

Some data types may appear in more than one category. This is because the

data may have more than one possible interpretation which governs the operations

which may be performed upon that data value. A typical example is an integer

which is treated in many languages as a number, an array of bits or a truth value.

These may often be mixed together, especially in C or assembly code, to reflect the

Chapter 4. The Maintainer's Assistant 60

current needs of the programmer. This is seen by Hatton [51] as laziness on the
programmer's part, leading to error-prone code. However, there are a number of
occasions where the representation of these data values must be mixed, especially
when interfacing directly with hardware.

The last four entries in table 4.4 represent data types whose semantics are com­

plex and are therefore not fully represented within our classification. The c-union

is complex because it allows its components to share the same storage. This means

that an assignment to one component may affect the value stored within another.

The c-pointer is complex because i t does not represent a particular value but merely

allows a value to be identified by dereferencing the pointer.

A first-class function is one which may be stored as a primitive data value. This

is not supported by the WSL kernel language. An object-oriented class is complex

because data type inheritance introduces problems for static determination of the

exact type of an object. This means that it is not possible to statically determine

which instance of a method (subroutine) should be called at a particular point within

the program. Support for both of these would require significant extensions to WSL.

Each of these data types presents difficulties which are not easily overcome. This

thesis will concentrate upon the core data type categories and will not examine the

other data types further.

4.2.2 Data Type Semantics in WSL

The semantics of WSL needs altering to accommodate the semantics of the data

types described above. This is a crucial prerequisite for successful data transfor­

mation and i t must be done in a manner which minimises the effect upon existing

transformation work. The main factors which affect the choice of a method for

extending the WSL semantics are listed below:

1. The introduction of data typing should have a minimal effect upon

the original theory — our goal is to extend the previous work rather than

to redevelop i t .

2. The set of data types should be extensible — to make the system as

flexible as possible it is desirable that new data types can be added easily to

Chapter 4. The Maintainer's Assistant 61

support new source and target languages.

3. Reuse of data type theories is desirable — it is sensible to use other

peoples' theories about type properties. There is little point in the reproof of

complex data type theories.

4. Future work may involve the integration of a theorem prover with

the Maintainer's Assistant — any transformations and theories about data

types could be checked during transformation to ensure correctness.

These factors are taken into account in the remainder of this chapter when a

suitable method of adding data typing to WSL is discussed. The extended language

is known as typed W S L and we begin by examining how data typing affects the

values which are stored within a variable.

Values in Typed W S L

Typed WSL has a different model of data values to that of untyped WSL. In typed

WSL the entire set of possible values is segmented into a number of disjoint sets.

These subsets group together values which share common properties and provide

the basic description of a data type in typed WSL.

The set of values which represent data types are deliberately disjoint because

the physical characteristics of data types make logically equivalent values distinct

when used on a physical computer. For instance, an integer which is represented as

a floating point number does not have the same binary representation as an integer

represented as a two's complement value. The use of disjoint sets of values is also

beneficial because i t allows the data types to be integrated into WSL using a shallow

semantic embedding. This gives extra flexibility for the addition of new data types

and is discussed fully on page 68.

As a consequence of the disjoint nature of sets of data values it is not possible

to compare the semantics of one data type directly with those of another. Instead

equivalence of data type semantics is shown by demonstrating that two expressions

produce equivalent output. Both expressions must produce output of the same type

and need only produce equivalent results for the possible ranges of input values

associated with a specific instance of that expression.

Chapter 4. The Maintainer's Assistant 62

This model of type equivalence presents the data type as a "black box" whose
semantics can only be judged against other data types by comparing the output for
a given input. This corresponds to Ward's [88] model of program transformations
where the fragment of code which is transformed is taken to be a "black box". The
inside of the box can be transformed at will providing that there is no visible change
in the operation of the program outside of the box.

The typed model of WSL data is represented in Ward's original untyped model by

encoding individual data values as a value-type pair (full details of this can be found

on page 65). The type serves to differentiate between different sets of values. This

allows a countably infinite number of different types whose set of component values

may also be countably infinite. The typed model can be shown to be representable

in Ward's untyped value model using Godel numbers [87]^.

Data Types

Data types serve to constrain the values which may be stored within particular

variables. The data type specifies the properties of values and as such acts as an

invariant^ over all of the values of that type. This means that each atomic description

will contain appropriate type invariants for those variables which are assigned-to

within the operation.

An assignment statement is therefore described as

<z>/<>: [{z = x + y)^{z^ Z)];

<x> / <z>: [(a; = z) A (x e Z)'

In this example the assignment is to an integer variable and the assigned values

are constrained to be members of the set of integers (z G Z). The type predicate can

^ Godel numbers allow any countably infinite set of values to be represented distinctly from
any number of other countably infinite sets of values. This requires an infinite number of possible
combinations (values) but this is still countably infinite and therefore fits into Ward's model of
data values.

^The invariant serves to identify the set of values to which an individual type belongs. This is
necessary to retrieve the value from the unique data value which has been encoded using Godel
numbers.

Chapter 4. The Maintainer's Assistant 63

take any appropriate form and may be any valid expression in infinitary first-order
logic.

In typed WSL programs the type predicate will be composed of a number of

individual parts. These are generated from the type theory and the syntactic com­

ponents of the language. The components of the predicate include:

• The resulting type — showing the type to which the result belongs.

• The general description of the result — a description of the result of the

expression in general. This serves to identify the legal return values^ of the

particular type.

• Subtype constraints — more specific constraints for a particular subtype

which is derived from a base type.

This approach to type definition allows reuse of type theories while allowing

introduction of more specific information for particular program fragments.

Embedding Data Type Theories

The principal change required to the theory of WSL is to incorporate the data type

theories into the existing semantics. Melham [68] and others [17, 19] describe two

approaches to this: deep embedding and shallow embedding. These differ in the

degree to which the semantics of the two are intertwined.

• Deep embedding involves the definition of both the syntax and the semantics

of the embedded theory within the host language. This makes the embedded

theory become part of the host's semantics and allows proof of new theorems.

• By contrast shallow embedding only involves the immersion of the syntax of

the embedded theory within the host language. Any theorems about properties

of the embedded theory are imported into the host language and used as though

they are primitive definitions.

Boulton et al. [17] and Bowen & Gordon [19] discuss advantages and disadvan­

tages of each method. These have been summarised in table 4.5. When viewed in

^The return values will all belong to one data type.

Chapter 4. The Maintainer's Assistant 64

our context within WSL a deep embedding would involve the definition of individual

data types in terms of the kernel language semantics. Equivalence of these structures

could then be proven using the semantic definitions.

Alternatively the use of a shallow embedding would involve the proof of the data

type properties outside of WSL and these would have to be imported along with

their related equivalence theorems. The transformations would then rely upon the

correctness of these.

Advantage Disadvantage
Deep Allows reasoning about classes of

programs.
Setting up semantic functions can
involve a lot of work.

Shallow The WSL-to-data type interface
handles the mapping between
programs and their semantics.

Mechanised proof of the combined
system is not possible — the
system is less secure.

Shallow The WSL-to-data type interface
handles the mapping between
programs and their semantics.

It is not possible to state
generalised theorems about the
embedded types.

Table 4.5: Advantages and Disadvantages of Different Embeddings

The criteria presented above (on page 60) supports the use of a shallow embed­

ding to bring the data types into the periphery of WSL because it minimises the

impact of data types upon the language. The main disadvantage of this is the lack

of direct proof of theories of data types within WSL. Upon further examination,

however, shallow embeddings have already been used within the existing implemen­

tation of the transformation engine and the design of the language tends towards

this type of approach.

The current (untyped) transformation engine uses a symbolic mathematics and

logic module to provide reasoning about data values. This embodies primitive knowl­

edge about common operators such as associativity and commutativity and also al­

lows evaluation of expressions using constants wherever possible. The module does

not consider the limits of data types and is therefore limited in usefulness. For exam­

ple, it assumes that integers are unbounded and therefore overflow and wrap-around

semantics cannot be taken into account.

Chapter 4. The Maintainer's Assistant 65

This model of data properties is in practice an implicit use of a shallow embedding
within' the language. It provides a proxy for the theorems which govern the behaviour
of primitive data operations. Bull [23, section 5.14] acknowledges the need for proof
of these theorems stating that a more formal version is necessary for high degrees
of confidence in the implementation. Currently the transformations trust that the
symbolic maths routines produce correct responses to requests for verification of
assertions about the equivalence of data items.

The design of WSL itself tends towards the use of a shallow embedding because

it does not deal directly with the contents of data locations treating them as though

they are black boxes whose equivalence is known.

Extending the W S L Data Model

The addition of data type semantics into WSL requires three main changes to the

underlying semantic definition.

• The first is a change to the model which is used to represent the data space

within the language. This involves the association of a data type with every

value within the language which makes it feasible to check the correctness

of operations and transformations which originally made explicit assumptions

about data type properties.

• The second change is to use these type associations to represent the shallow

embedding of data types within the language.

• The third is to extend the name to variable mapping semantics to allow com­

posite types to be represented in the embedded semantics. This is not strictly

necessary but it allows the individual components of a composite data type to

be re-engineered using the original WSL control fiow transformations.

The state space of a WSL program consists of a number of variables which have

a value, or one of a set of values^, assigned to each. Conceptually this consists of

two relations: env and store (see figure 4.1).

®In a non-deterministic program the precise value which is assigned to a variable may not be
defined.

Chapter 4. The Maintainer's Assistant 66

The env function represents the mapping between a variable name and a storable

location, the 1-value. The result of applying this function returns a value which can

be used on the left-hand side of an assignment statement. This 1-value can then

be used to retrieve the value stored at that location, the r-value. The r-value is

retrieved using the store relation. This returns the actual data value which is stored

within the variable. I t may then be stored in another location or used as an argument

to a subroutine.

store

Name

Storable
Location

l-value Value

r-value

Figure 4.1: The WSL Data Model

Semantically, types are introduced into the environment as part of the r-value.

This is done by redefining the r-value as the Cartesian product of a data value and

its type;

r—value ::— value x type.

Subroutines and operators are now passed a number of these value-type pairs as

their parameters. The type is used during execution to select the correct version

of the operation^ and the value is used as a parameter to the operation. During

transformation the type is used to select appropriate semantics for the operation.

These semantics are then used to determine whether the transformation is valid.

This use of value-type pairs makes the data type of parameters to subroutines

explicit. This is different to the original scheme where the data type was implicit.

^Note that in practice selection of the correct operation is made at compile time, i.e. it is a
static binding.

Chapter 4. The Maintainer's Assistant 67

Note that WSL is not intended for software development and therefore does not
benefit from the abihty to check for consistent use of data types at compilation
time. I t does however benefit when transformation of data is performed because i t
allows direct checking of type semantics rather than the original implicit assumptions
that the semantics were appropriate to the operation.

Composite Data Types

A composite type is composed of a number of statically named components. Each

one of these components is independent of the others (except by virtue of their

grouping) and in principle it could be transformed using WSL's control fiow trans­

formations. Unfortunately the use of a shallow semantic embedding makes this

difficult because a WSL data object is treated as an indivisible entity. This means

that an assignment to one component of the composite type would have to be written

as

X := coinp.assign{x,coinp-nanie, value);

instead of

x.comp-name := value;

In the former case the comp.assign function takes the original value of x and

changes the value of component comp-name to a new value. This is a self-referential

assignment to x and WSL does not understand that this is actually just changing

one component of x.

To alleviate this problem it is necessary to extend the variable naming mecha­

nism by adding an extra level of indirection into the semantics. This is done using

definitional transformations which ensure that the underlying transformation theory

is not invalidated. Figure 4.2 shows the new data model. In this model the names

which are used in the transformation theory are not directly available at the syntac­

tic level. Instead a new class of name (name*) is defined. This can be used in two

ways:

1. to map onto a primitive name (via the id{) function) or

Chapter 4. The Maintainer's Assistant 68

comp_select

store Name*
Storable
Location

Name

l-value Vaue

r-value

Figure 4.2: Composite Type Semantic Extensions

2. to map onto another name*, via the compselecti) function, when used in

conjunction with a component name.

This allows a tree of names to be constructed. Each node of this tree identifies

either a unique variable or a group (subtree) of other variables. Only the leaf nodes

in the tree are allowed to map onto a semantic name and there are no circularities

in the tree. This latter fact ensures that composite types cannot be recursive and

prevents the representation of dynamic data types using this method. Section 7.3.6

shows how dynamic data types can be represented in typed WSL.

The 1- and r-values of individual components of a composite type can be re­

trieved using the 1-select and r-select constructs. The former returns the variable

name associated with the component and the latter returns the value that a specific

instance of the component contains.

4.2.3 Using a Shallow Embedding

The shallow embedding of type semantics now comes into play with all theories

about data values and their equivalences being defined as axioms which are refer­

enced by the type portion of the r-value pair. These axioms are imported from the

external proofs of the data type theories and used as primitive facts by data trans­

formations. The net result is that the semantics of the data types are separated

from the transformation theory although the axiomatic definitions of the data type

properties must be expressed in terms of the infinitary logic that the WSL theory is

Chapter 4. The Maintainer's Assistant 69

based upon.

The r-value represents data values which correspond to a particular data type

theory. These values may be arbitrarily complex as required by the theory. In

particular dynamic types, those which represent dynamic data structures, have a

model of their environment built into the type theory. This contains memory models

which denote the storage model present within the theory of the data type. This

neatly separates the potentially complex model of dynamic types from the WSL

theory making proof of both easier.

A side benefit of using a shallow embedding is that type theories do not have

to be fully proven before transformation work can be performed. This gives some

degree of leeway in the choice of balance between formality and practicality.

I t is not the intention of this thesis to show proofs of each data type but merely

to describe them in sufl&cient detail for the underlying principles to be clear (see

chapter 7).

4.2.4 WSL Data Type Syntax

The syntax of data typing constructs plays a major role in the eflPectiveness of data

transformations. Syntax is closely related to the language's semantics and provides

the bridge between theoretical concepts and practical programming concerns. I t

constrains the effect of changes to the program and helps to provide a program

structure that the maintainer can understand.

Each syntactic construct maps onto a semantic description of the program which

describes the effect of the execution of that construct. This mapping can be arbi­

trarily complex but must ensure that there is only one possible meaning for each

program. Note that the reverse is not necessarily true because the same semantics

can be represented in more than one way.

WSL's syntax has been extended using a static data typing mechanism which

binds individual variables to a data type. Each variable can only hold values of a

specific type and may only be used in expressions which accept input of that type.

Data types are derived from primitive type categories. This allows subtyping to

create logically distinct data types allowing the use of primitive types for different

purposes within the program.

Chapter 4. The Maintainer's Assistant 70

Many constructs within the language have changed to allow the data type syntax
to be represented. These changes include:

• the addition of a type definition operator;

• binding of variables to types whenever a new variable or formal parameter is

declared;

• explicit typing of all operator parameters;

• explicit type conversion where types do not match;

• selection of components for composite types and

• a construct which defines the types of external variables.

Each change has been made after careful consideration of a number of factors

which affect the mapping of syntax onto the underlying syntactic program represen­

tations. These factors have been expressed as two questions which guide the choice

of type binding operators:

• How should types be declared? — should a type be declared to allow

reuse of that type or should it be declared each time it is used?

• When and how are types bound to values? — this defines the lifetime of

the binding of a type with a value. Should the type be: bound dynamically as

execution proceeds; bound once when a variable is declared; or bound statically

when the program is compiled? What syntactic mechanism is used to show

the binding?

Each question has been answered after consideration of the needs of transfor­

mation implementations and user requirements. When transformations are imple­

mented the transformation engine must be able to efficiently extract data typing

information from the program that is being transformed. This requires extensions

to MSTAWSL and the code which implements transformations needs to be able to

look in well defined places for the data typing information.

The user of the transformation system is affected by the syntax of the language.

I t should resemble common programming languages to make it easier to understand

Chapter 4. The Maintainer's Assistant 71

the concepts present within the language. If constructs do not resemble similar ones
in other languages the user may find it difficult to work effectively with WSL.

How should types be declared?

Declaration of types is a primary requirement for introducing data typing into WSL.

It allows an explicit definition of the properties of a particular data value. These

properties are represented by the general category of the data type, for example

integers, real numbers or records, and specific constraints upon the range of values

within the base category.

Each value needs to be associated with one of these types and there is typically a

large amount of repetitive use of each type. To reduce this repetition it is convenient

to give each specific type a name. This name is then used wherever the full type

definition is needed, making the program less complex and providing a basic method

of determining the equivalence of data types.

Type declarations have been added to WSL to provide the mapping between

names and specific data types. These declarations occur in where statements and

are declared in a similar manner to procedures and functions. The data type is given

a type-name which can be used within the where block.

The syntax of the actual data type in the declaration depends upon the base

type category. In general it consists of the type category name and an appropriate

representation of the constraints upon the types within the category. This loose

definition of type expression syntax makes extension of the set of available types

easy.

The siting of type declarations within a where block has a number of advantages

for implementation of transformations it provides a well-defined location where the

details of any type can be found and allows reuse of much of the A^r<4WSL code

which searches for procedures and functions.

Another benefit of the use of type declarations is that it provides a convenient

means by which subtypes may be declared. The subtypes are used to provide extra

information during transformation. They constrain the range of values which may

be held within a variable further than the base type theory. This may make it easier

to determine if a specific transformation is applicable.

Chapter 4. The Maintainer's Assistant 72

When and how should types be bound to values?

Transformations must be able to determine the types of individual values within the

program. This allows reasoning about the properties of these values and the subse­

quent use of this information to determine the result of a transformation. Values are

generally stored within variables providing a means to represent the program state.

The type of a variable is therefore a primitive concern of a data transformation.

Extraction of this type from the program is an important operation which must be

efficient and easy to perform.

Types may be bound to values in a number of ways. Two possibilities for this

are: association of types directly with values and allowing variables to hold values

of only one type. The former is known as dynamic typing and is used extensively in

languages such as Common Lisp [83]. Conversely variables could be given a static

type and may then only hold values of that type. This is used in languages such as

Ada [2] and Modula-2 [38] which have strong data typing models.

There are a number of ways of representing both dynamic and static type binding

within the syntax of the language. These are presented below along with an analysis

of their suitability for use in typed WSL.

• Associating a type with each value — this method associates a type with a

value whenever the value is mentioned within the program. The value may then

be assigned to variables or used as a parameter to functions and procedures.

Each value must be associated with a type allowing explicit determination of its

properties. Use of this method introduces a large amount of extra complexity

into the code and would be appropriate for a dynamic typing scheme. I t

does, however, have a very clear mapping onto the underlying semantics of the

language.

• Associating types with some values — not every value needs a type

associated to i t . Those operations which retain the type of a value, or only

read the value, do not change the type and are unnecessary. This removes a lot

of the extra complexity present in the previous method but makes processing of

the code to determine the type of a value more difficult. The type associations

are not placed at fixed places within the code which means that the execution

Chapter 4. The Maintainer's Assistant 73

flow of the code must be traced to find the correct type.

• Associating types with values at declaration points — another variant

of the explicit association of types with values is when the type must be stated

in the first assignment to a variable (i.e. at the definition). This makes the

association occur at a deterministic place and ensures that each variable has a

specific type. Problems occur in WSL when functions are considered because

the return value of a function is defined by the type of the expression that it

contains. The return type of the function would therefore be hidden within

the function definition.

• Associating types with variables — an alternative approach is to intro­

duce an explicit type binding construct which binds variables to specific types.

This gives a deterministic place where the type of a specific variable can be

retrieved. The type binding is explicitly stated for each variable declaration

and formal parameter to a subroutine. This means that subroutines become

specific to a particular type. Some programs may become semantically incor­

rect using this scheme if they overload subroutine parameters with different

data types. This is a minor problem and most, well-behaved, programs do not

utilise this capability. Those programs which do can be converted by defining

a "union" type which allows variables to have any appropriate type.

• Associating types using statements — some languages, e.g. Common

Lisp, allow types to be associated with variables using statements. These

statements are usually placed at the beginning of blocks and declare the type

of a variable from that point onwards. In Common Lisp this is an annotation

for the compiler and allows optimisation of any subsequent commands. Using

this method i t is not easy to find the type of a particular variable but it allows

the language to be amended easily because the only addition to the language

is a new category of statement.

• Using assertions^ to associate types — This is similar to the previous

entry and involves virtually no change to the language. The only change is

* An assertion is a type of statement whose successful execution ensures that the program state
satisfies a specified boolean condition.

Chapter 4. The Maintainer's Assistant 74

the addition of a new assertion condition which explicitly states the type of a

variable. This suffers from the problems discussed above but fits well into the

transformation system because assertions are designed to carry information

around the program.

Binding Binding Link with Auto­
Method Class underlying Syntax Legible mation

semantics
Type Value (all) dynamic / / / XX / /
Type -> Value (some) dynamic / / / —
Type ^ Value (decl) static / X / /
Type Variable static / / / /
Statements both — / X X
Assertions both — / / X X

Key: / / = Very Good, / = Good, — = Average, X = Poor, XX = Bad

Table 4.6: The Pros and Cons of Type Binding

Each of the methods presented above have a number of strengths and weaknesses.

Table 4.6 summarises these showing how well each fits in with various aspects of the

transformation system. Many provide suitable solutions for use in a transformation

environment but association of types with variables has been chosen for implemen­

tation of data typing in WSL. It provides a static data typing environment which is

similar to that used in many programming languages. Use of this method provides

a direct relationship between variables and their associated types which can be re­

trieved easily from the program when necessary. These changes to the language do

affect a number of transformation implementations but their correction is simple.

Type equivalence in WSL is defined as simple textual equivalence of the types'

definitions. No attempt is made to infer any internal equivalences as this would

mean that data types could no longer be treated as black-box entities.

Table 4.7 shows the syntax of the changed language constructs and two new

constructs which represent external variables and data type conversions. External

variables are those variables which form the program's interface with the outside

world. Data type conversions are used to ensure that a program remains type-

correct when transforming data.

Chapter 4. The Maintainer's Assistant 75

Component Appearance
Type Declaration begin

$statement$
where

type $type_name$ = Stype-defnS.
end

Variable Declaration var < var : $type-name$:= $expn$ >:
$statement$

end
General Expression [e- <var : $typej:iame$:= $expn$ >;

$statement$: $expn$ -e]
General Condition [c- <var : $type^ame$:= $expn$ >;

$statement$: $condition$ -c]
Procedure Definition proc $name$(var : $tvpe^ame$

var var : $type-name$) =
$statement$.

Function Definition funct $name$(var : Stvpe^ameS) =
$expn$: $type^ame$.

External Variables external < var : Stvpe^ameS >:
$statement$

end
Component Selection var .$comp^ame$
Type Conversion &c$type^ame${$expn$)

Table 4.7: Data Typing Components of WSL

Chapter 4. The Maintainer's Assistant 76

The typed constructs include place holders for type names {$type^ame$) and
type definitions {$type-defn$). Type names are simple text strings which uniquely
identify a type at any point within the program and type definitions represent a
specific type category and the constraints for its associated data type. Examples of
these will be given in chapter 7.

4.2.5 Mapping the Syntax onto the Underlying Semantics

At this point both the syntax and underlying semantics have been defined. The

final section of this chapter shows how these are linked together to represent the

semantics of the syntactic elements of the language. The links are made using

definitional transformations which map each typed syntactic unit onto the original

WSL syntax. In this original format all data values are associated with a data type,

as described in section 4.2.2. The definitional mapping is done in three stages:

1. Type declarations are expanded to rewrite all occurrences of a type name with

the corresponding type definition.

2. Variable declarations and typed constructs are replaced with their untyped

counterparts and each occurrence of a variable is replaced by a typed version.

3. Assignments to variables with a composite type are expanded into parallel

assignments to the variable which corresponds to each component of the type.

This is an additional step which is specifically for composite types and i t will

be discussed separately.

The result of the mapping is a WSL program with all of the data values (expres­

sions) replaced with value-type pairs. The original WSL transformations then treat

these as primitive data values. The symbolic maths and logic unit is modified to

handle these but the remainder of the system is unaffected.

Example 4.1 shows how the first two stages of the mapping is performed. These

convert between the new and old syntax. Version A shows an outline program which

uses the new typed WSL language. This has a typed local variable block which uses

a data type declared within a where block.

Chapter 4. The Maintainer's Assistant 77

begin
var < var : $type-name$:= $expn$ >:

var := $expn$
end

where
type StypsjiameS = $type_defn$.
$dennition$

end

Version A — Typed WSL program

begin
var < var : $type_defn$:= $expn$ >:

var := $expn$
end

where
$definition$

end

Version B — After Step 1
(Type Declarations Expanded)

begin
var < var := {$expn$ x $type_defn$) >:

var •- {$expn$ x $type_defn$)
end

where
$deRnition$

end

Version C — After Step 2
(Typed Variables Expanded)

Example 4.1: Definitional Semantics of Data Types

Chapter 4. The Maintainer's Assistant 78

In version B the where block has been expanded to replace each occurrence of
the type name, $typej2ame$, with the type definition (in bold type).

The final step (version C) rewrites the typed local variable block replacing all

expressions (r-values) with an expression-type pair which represents the typed data

values. The program is now represented in the original (untyped) program format

which can be transformed using standard program transformations.

Composite Data Types

Example 4.2 shows the third step of the semantic transform where composite

variables are mapped onto the individual variables that they contain. Version C is

the output from the first two stages of the transform where the type definition and

expression are tuples with one entry per element of the composite type. Version D

shows the program with the $type-defn$ and $expn$ placeholders replaced by the

type's definition. Version E shows the expanded form of the variable declaration

and assignment. Each component of the type has been expanded into an equivalent

operation on the variable which corresponds to that component.

Composite types may contain components which are of a composite type. This

means that the transform has to be applied recursively until all of the composite

types have been expanded into their component variables. This does not result in

the possibility of unbounded expansion because a composite type is not allowed to

have a component which has the same type as itself.

Individual statements can now be rewritten in terms of atomic descriptions as

shown in example 4.3. In this note that each of the atomic descriptions' conditions

contain the type predicate which represents the properties of the data type. This is

not strictly necessary because the second step is a straight assignment and the value

of tmp will already conform to the type predicate. It is included because it serves

to remind that the value has a particular type.

In the example the type definition predicate is written in terms of the value of

the expression {expn or tmp) to show that it is associated with that value.

Chapter 4. The Maintainer's Assistant 79

var < var : $type.defn$:= $expnj >:
var := $expn^$

end

where $type-defn$ = { {$namei$,$type.defni$),
. . . J

{SnameJ, $type.de{nj)) and
$expn$ = {$expnj,... , $expnj)

Version C — After Step 2 (in example 4.1)

var < var : { {$namej, Stype.defnJ),

{$namen$, $type.defnj))
:= {$expn,J,... Jexpn^J)>:

var := {Sexpn^J,... , Sexpn^^S)
end

Version D — Type Definitions and Expressions
Expanded

var <var.$namei$: $type-defnj := Sexpn^J,
• • • 1

var.$namen$: $type.defnj := $expn^J >:
<var.$namei$:= $expn^J,

• • • 5

var.$name2$:= $expn^^$ >
end

Version E — After Step 3
(Composite Types Expanded)

Example 4.2: Definitional Semantics of Composite Data Types

, ^, <tmp> / <>: \(tmp — expn) Atype.defn(expn)]:
var := (expii x type^defn) =

<var>/<tmp>: [{var = tmp) A type-defn{tmp)

Example 4.3: The Relationship between Type-Value Pairs and Atomic Descriptions

Chapter 4. The Maintainer's Assistant 80

4.3 Summary

The Maintainer's Assistant has been identified as an ideal candidate for further work

on data re-engineering program transformations. It has a strong track record for

performing control flow restructuring and has well understood and carefully defined

semantics. The transformation system currently lacks the ability to restructure data

and the transformation language, WSL, is not capable of representing data typing

information.

This chapter has shown how the ability to represent data typing can be added

to WSL. Data types have been classified into four categories: elementary types;

composite types; structural types and dynamic types. These represent the different

semantic uses of data within a program.

WSL's syntax and semantics have been extended to provide a statically typed

language which can be transformed in a similar way to the original WSL. These ex­

tensions have been made by rewriting all the values (expressions) within the language

as a value-type pair. The type is used to determine the exact properties of the data

value and to provide information for use during transformation. The next chapter

shows how this can be used to implement data re-engineering transformations.

Chapter 5

Data Transformation in D R E A M

Data re-engineering has been identified as a key capability for software maintenance

because it is important to be able to restructure program data thus complementing

control flow manipulation capabilities. Chapter 3 showed that program transforma­

tion systems typically tend to lack the ability to re-engineer program data. Chapter 4

looked at one transformation system, the Maintainer's Assistant, and showed how

the capability to represent data type information can be added to the transformation

language, WSL.

This chapter uses the resulting typed WSL language to develop formal trans­

formations for data re-engineering. The techniques used for control flow transfor­

mation are combined with the semantics of typed WSL to produce DREAM (the

Data Re-engineering and Abstraction Mechanism). This provides a powerful way of

manipulating program data which is suited to the needs of software maintenance.

5.1 Overview

DREAM provides a transformation mechanism which can be used to change the

representation of program data. It is based around the technique of ghosting whose

suitability for use during data transformation was demonstrated by Ward [92] in his

derivation of an efficient iterative implementation of the Schorr-Waite graph marking

algorithm.

This thesis extends Ward's [88] work by development of a data expression

refinement relation which describes the correspondence between an original and

81

Chapter 5. Data Transformation in DREAM 82

final (ghost) representation of the data. This relation describes a refined, or equiv­

alent version of an expression which has the desired change in data format. Note

that the data format change may correspond to a data refinement, abstraction or

restructuring operation. Multiple data expression refinement relations are collected

together into a type equivalence theory which describes transformations between

specific data types.

Ghosting involves the introduction of new, ghost variables into the program.

The ghost variables are introduced to replace the variables which are to be trans­

formed. Assignments are made to these ghost variables using values which are a

refinement-of or equivalent-to those values assigned to the original variables. The

equivalence between the values contained within the variables is shown formally at

all places where the original variable is used. Once this equivalence has been demon­

strated transformations are used to replace the expressions involving the ghost vari­

able with expressions involving the original variable throughout the program. This

brings about the desired change in the data representation.

Source Source

Ghost I Ghost

Ghost
Code

Intermediate
Code

Step A

StepB

Each box within the diagram represents the scope of ghosting within the program.
The horizontal lines within the boxes are lines of code where the variables in

question are mentioned. The thick lines are assignments to a variable and the thin
lines represent uses of the variable. The solid and dashed lines represent either the

source or ghost variable which are named at the top left-hand corner.

Figure 5.1: The Ghosting Process

Chapter 5. Data Transformation in DREAM 83

Figure 5.1 shows a pictorial representation of a program which is being ghosted.
I t shows how a source variable is replaced by a ghost variable. To illustrate this fur­
ther consider the following example: the program initially uses two "real" numbers
(the source variables) to represent a complex number. A transformation is invoked
to replace these reals with an abstract type. The first stage of this transformation is
to introduce a new variable, the ghost, which has the appropriate "complex" type. A
type equivalence theory is now used to define a mapping between the two reals and
the complex number. This mapping is used to introduce assignments to the ghost
variable at all places where the original reals are assigned to (step B in figure 5.1).
Expressions which will replace the original uses of the source variables are now de­
veloped and a data expression refinement relation is used to show that these are
equivalent to the original. At this point the expressions involving the ghost variable
replace those of the source variables completing the change in data representation.
After this has been performed the source variables can be removed from the program
because they are no longer used.

The transformation mechanism is developed with the aim of allowing four basic

types of data manipulation to be performed. These types of transformation are:

• Changing data representation — to represent data using a diff'erent data

type which has equivalent^ semantics to the original format. This may involve

refinement, abstraction or restructuring of the data type representation.

• Changing the relationship between logical data objects — to allow

the use of a variable for a number of diff'erent purposes. For example, during

graph traversal a data location may be used to mark that the current item has

been visited and to store the location of the previous node that was visited.

• Changing the scope of data — making data visible at different points

within the program. This allows data hiding and encapsulation to be intro­

duced. Note that scope is a syntactic device but it can be a very important

tool during data re-engineering.

• Introduction of subtypes — to constrain the values held by variables into

^The use of the word "equivalent" here includes refinement operations.

Chapter 5. Data Transformation in DREAM 84

a subset of the allowable values for the parent type. This allows more pre­
cise reasoning about a type and allows the introduction of logical distinctions
between diff'erent uses of a data type.

The data transformation mechanism is extended to allow all of the transforma­

tion types listed above to be performed. This involves removing the requirement

to completely replace variables with their ghosted equivalent. To do this the ex­

tended ghosting concentrates upon ensuring that the ghosted portion of the original

variable's scope satisfies the expression refinement criteria. The remainder of this

chapter examines the data transformation mechanism, its theory and the operation

of ghosting in detail.

5.2 Types of Transformation

The primary aim of this thesis is to investigate the transformation of program data

representation to aid re-engineering. This involves not only transformations which

allow data representation to be altered but transformations which affect the rela­

tionship between program code and the data. To perform this re-engineering the

capability to manipulate the following is required:

1. the representation of the data;

2. the relationship between program data objects and

3. the lifetime/scope of each data item.

The work presented in this thesis does not directly concentrate upon the re­

lationship between data representation and control flow. The application of data

transformations may allow changes to the control flow structure of the program but

they are side effects and are not the primary purpose of this research.

The three capabilities identified above are combined with a fourth, introduction

of data subtypes, to make up four basic types of transformation which are needed

for successful data re-engineering. Each of these are examined below and they are

drawn together into a powerful transformation tool which allows data re-engineering

to be performed.

Chapter 5. Data Transformation in DREAM 85

Introduction of data subtypes is a subset of the transformations which change
the data representation. They are treated separately because they introduce explicit
information about the properties of data. This explicit information is used by the
transformation engine when it is determining the validity of individual transforma­
tions.

5.2.1 Changing Data Representation

The main category of data transformation involves making changes to the data rep­

resentation. These transformations allow substantial re-engineering of the program

which includes performing refinement and abstraction operations upon the imple­

mentation of data structures. The knowledge that is required to make these changes

is encapsulated within theories of equivalence between the source and target data

types (see section 5.4).

These theories make use of data type information to show that a change in

representation is correct. This information constrains the behaviour of the source

and target variables and therefore allows equivalence theories to concentrate upon

the specific properties of the allowable data values.

Typed WSL allows extra information about data values to be represented within

the program. Each data type definition may place constraints upon that particu­

lar instance of a parent type. These constrained data types, known as subtypes,

are used to make checking of individual transformations easier. Section 5.2.4 de­

scribes the category of data transformations which allow subtype information to be

introduced into a program.

The transformations which make changes to data representations act upon data

types from each of the four data type categories described in chapter 4. They are

not limited to changing representations between types in one category but also allow

changes from one category to another. Changing to another category is appropriate

where data implementations have hidden structure or where a variable could have

static or dynamic behaviour. Possible transformations include:

• Converting to a different primitive format — for example, changing

from an integer representation to an enumeration.

Chapter 5. Data Transformation in DREAM 86

• Splitting into subcomponents — breaking a value down into constituent
parts. For example, when converting from elapsed seconds into elapsed hours,
minutes and seconds.

• Changing data groupings — restructuring abstract data types. For exam­

ple, to move a variable out of a record structure.

• Static to dynamic structures — for example, changing a fixed size array

into a dynamic array.

• Converting to abstract dynamic structures — removing explicit dy­

namic data types, e.g. pointers, and replacing them with abstract dynamic

data types such as lists and sets.

• Turning structures into relations — extracting the abstract entity that

a data structure implements. For example, to replace a hash table with a

relation between the key value and the elements contained within the hash

table.

The exact set of transformations which are required depends upon the circum­

stances of a particular re-engineering task. Migration of assembly code to a high

level language will typically require transformations which allow data structures to

be extracted whereas those involving the reverse engineering of an implementation

into a specification would require operations on higher level data types. Section 7.3

examines some of these transformations.

5.2.2 Changing the Relationship between Logical Data Ob­

jects

A variable may be used for a number of different purposes within a program. Each

purpose represents a specific logical data object which may be manipulated sep­

arately or as part of a combined group. Typical scenarios include: cpu register

variables which hold temporary values and variables whose value has two different

meanings depending upon the context that it is used in. An example of the latter

is a pointer which may be accessed to find the object that it references or it may be

used to determine i f there is an object which is referenced by it , i.e. if the pointer

Chapter 5. Data Transformation in DREAM 87

is null. These logical uses of a data item can be manipulated to separate, or join,
them making the structure more appropriate to the maintainer's needs.

Separation of the contexts that a variable is used within requires the introduction

of a new variable which holds values appropriate to one of the contexts. Once this

transformation has been performed the two contexts/variables are distinct and may

be manipulated independently, possibly with changes in the scope of the variable

or simplification at the places where the variable is accessed. It also allows the

separation of side eff'ects from the actual operation that is provided by a function or

procedure. For example, in C integers are used as boolean values. A value which is

not zero is treated as being "true" which could be used by programmers where i t is

not appropriate. I f a program is changed without taking account of this side eff'ect

the program could become erroneous.

There are cases where the joining of two variables is desirable. This is the reverse

of the separation operation described above but is potentially harder to perform

because of the possibility of interaction between the original two contexts/variables

when they are stored in the same location. I f an undesirable interaction occurs and

the uses of the two variables interfere with each other then the transformation will

fail. This type of operation is commonly applicable when optimising a program for

memory usage. For example, two variables may have very similar uses/meanings

and using the same value to represent both would save memory.

5.2.3 Changing the Scope of Data

Manipulation of scope is a powerful transformation tool which is based around the

syntactic representation of the program. Scope allows data values to be used and

referenced only at specific places within the program. Changing the scope of a data

item can aflFect the efficiency of execution by allowing memory usage to be limited

and by allowing local variables to be placed in cpu registers. Another major use for

scope is to provide facilities for data encapsulation and hiding.

The transformations presented in Ward's theory provide functionality for making

changes to the scope of data. They allow local variables to be introduced and allow

the scope of these local variable blocks to be changed. They also allow the parameters

to functions to be manipulated. This provides a sufficient range of transformations

Chapter 5. Data Transformation in DREAM 88

which manipulate scope. It is desirable, however, that these scope operations can
be integrated with the other data transformations to provide a single comprehensive
data transformation facility.

5.2.4 Introducing Data Subtypes

Subtypes allow the explicit description of the properties of the values which may

be held within a variable. These properties aid both the maintainer and the trans­

formation engine to understand the program and ensure that the application of a

transformation is valid. Formally a subtype s (which may hold any member of the

set of values S) of type t (set of values T) is defined as

s<t= SCT

Here the symbol "<" is used to denote a subtype. This notation has been

borrowed from type theoretic research [29] but the semantics of data types in typed

WSL are not based upon this research.

The effects of transformations which introduce data subtypes can be grouped

into two categories:

1. Those which provide explicit distinction between values which are used to rep­

resent different logical values in a program, e.g. an integer could have subtypes

which represent time and weight. These subtypes have the same data prop­

erties, e.g. addition/subtraction operations, as each other but their different

names distinguish them from each other.

2. More complex use of subtypes allow the properties of variables to differ. This

means that information about the use of a variable can be contained within

the data type definition and subsequently used during the application of other

transformations.

Use of subtype introduction transformations is desirable in all types of program.

Legacy programs generally require a large amount of restructuring. Their original

languages do not typically allow expression of much data typing information. In

Chapter 5. Data Transformation in DREAM 89

these cases introduction of subtypes is useful to make the program easier to under­
stand.

In cases where legacy programs have undergone initial re-engineering or where

programs were originally written in languages with more expressive data typing

information the use of subtyping for logical data type separation may not be as

important. In these cases subtype information is introduced to aid future trans­

formation. This makes explicit information, about the range of data values which

are held in a particular variable, directly available to the transformation engine. I t

removes much of the need for the transformation engine to analyse programs to find

this information.

Four types of data transformation have been identified. Together these provide a

comprehensive data transformation capability but to allow these to be combined they

must be based around a common underlying transformation mechanism. This mech­

anism must be compatible with the previous transformation research at Durham.

It must integrate into the theory of transformations and must be implementable

within the transformation engine with a minimal amount of change. The major

aspects which must be considered are:

• Providing a unified data transformation system — the maintainer

should be able to perform different data transformations using a single mech­

anism which hides the details of individual operations.

• Maintaining the transformation approach — data transformation should

be performed in a similar manner to existing transformations.

• The catalogue of data transformations should be extensible — there

are many different data types and the transformation system should be capable

of being extended to allow these.

• Minimise theoretical changes — the transformations already proven rely

upon complex reasoning about their effects upon a program. Minimal changes

to the theory will ensure that existing work is not invalidated.

• Minimise changes to the transformation engine — changes to the trans­

formation engine are undesirable because of the complexity and size of the code

Chapter 5. Data Transformation in DREAM 90

which must be changed.

• Efficiency is important — the transformations should be executed effi­

ciently and have deterministic time performance. In particular it is important

that each transformation will terminate and will not enter infinite loops.

These factors are taken into account in the remainder of this chapter and in the

next chapter which describes the implementation of the data transformations.

5.3 Data Expression Refinement Relations

The previous section identified transformations which change data representation

as being the main component of data re-engineering work. These transformations

involve changing the data types which are used to implement individual variables and

the formal theory which describes the transformations must be able to demonstrate

that the semantics of the program are not altered.

This section defines a data expression refinement relation which describes

the relationship between source and ghost expressions. This will be used during

ghosting to show the correctness of a particular transformation (see section 5.4).

Note that the use of the term "refinement" describes the effect of the transforma­

tion upon the semantics of the program. The changes to the representation of the

data will actually involve refinement, abstraction and restructuring as described in

section 3.2.

WSL uses a "black box" model of program operation to perform transformations.

A program fragment which is transformed must have identical behaviour after trans­

formation but may change the internal ways in which the program is implemented.

Chapter 4 defined typed WSL in a similar manner describing the semantics of data

types using a "black box" approach. A data type is treated as a black box whose

semantics can only be compared with those of another type when the values of both

types are used. This use is central to data expression refinement relations.

Chapter 5. Data Transformation in DREAM 91

We will define the relation in terms of two expressions

f{x) and g{y)

where x is the source variable of type M ,

y is the ghost variable of type A'',

f{x) is the source expression and

g{y) is the ghost expression.

These expressions both return values of the same type (this allows the values to

be compared). The expressions are allowed to exhibit a degree of non-determinism

in their output. This means that for a particular input value the expression may

return any one of a number of values. The exact one which is returned is chosen

non-deterministically. This behaviour is captured by defining functions f{x) and

g{y) which represent the sets of values which may be returned for a particular input.

These are defined as

f i x) = {p\p = fix)} and

g{y) = {Q\Q = 9{y)}

The data expression refinement relation is shown in figure 5.2. This states that

for all of the values of x and y which are defined to be equivalent (by relation h)

then the output of giy) is a refinement of fix). That is giy) produces a subset of

the values that fix) produces for equivalent inputs.

In addition to this i f the source expression, fix), terminates (i.e. it produces a

value) then the refined expression must also terminate. This is required by Ward's

definition of transformation semantics and is described by

a m = 0) ^ (/ » = 0))

In general, the relation " / i " does not have to describe the relationship between

Chapter 5. Data Transformation in DREAM 92

3h:M^N»

\fx, y{x,y)eh =^ {{g{y) C / ») A {ig{y) = 0) = (/ » = 0)))

where h is the desired relationship between source and ghost types.

Figure 5.2: The Data Expression Refinement Relation

all possible values of the source or ghost types. I t need only describe the relationship

between those source and ghost values which may occur at the place in the program

where the relation is used.

5.4 Data Type Equivalence Theories

Data expression refinement relations will be used at specific places within a pro­

gram to show that ghosting transformations are correct. These relations are specific

instances of more general theories which are used to describe data representation

changes. These more general theories are named data type equivalence theo­

ries. Note that the use of the word "equivalence" is not technically correct because

the theories could also describe data refinement and abstraction. We choose the

word "equivalence", however, because it is in common use to describe relationships

between similar items.

Data type equivalence theories define mappings between source and ghost data

representations. These mappings do not have to be one-to-one but could be one-

to-many or many-to-one depending upon the type of representation change which

is being described. For example, the abstract form of a variable may represent an

error as a simple "true" or "false" value. The corresponding concrete form of this

may use more descriptive error codes to enable debugging and tracing of the error.

In this case the type equivalence theory would represent a one-to-many relationship.

I t is not immediately obvious how a many-to-one relationship can be used without

affecting the semantics of the program because compressing many states into one

loses information within the program state and means that incorrect output could

Chapter 5. Data Transformation in DREAM 93

be produced. In practice there are a number of situations where this operation is
possible. The first of these is where the information content of a variable is not fully
used. For example, consider the error code scenario described above; when reverse
engineering this program it would be possible to change the descriptive error codes
back into a boolean value because the program does not depend upon the extra
information.

This last example may not be applicable in many re-engineering situations be­

cause the transformation is being performed using the implemented program as the

base for reasoning. In the implemented program the error codes may form part of

the output which is visible to the outside world. In this case the error codes cannot

be re-compressed because the black box behaviour of the program would be altered.

The solution to this problem is to redefine the program's output to separate the

output which is critical to the operation of the program and other output which is

not important for the aims of the re-engineering task. This latter form of output

can then be removed from the program and this would make the transformation

possible.

These mappings highlight an important diff'erence between program semantics

and data semantics. The data used within a program can be restructured, abstracted

and refined without necessarily imposing similar changes upon the semantics of the

program. In particular, i t is possible to abstract data while maintaining program

equivalence or refinement.

Benefits of a Shallow Embedding

The use of a shallow semantic embedding of data types into WSL allows many

diflFerent data types and equivalence theories to be used during the maintenance of

one single program. The equivalence theories link individual data types and can be

separated into three categories:

1. Reasoning about expressions with the same base type.

2. Reasoning about expressions with different base types but with type theories

which were proven in the same embedded logic.

Chapter 5. Data Transformation in DREAM 94

3. Reasoning about expressions with different base types which were not proven
using the same embedded logic.

The first two of these are straightforward because the type theories have the same

basic axioms. This means that showing equivalence is performed by direct reference

to the base theory. Of course this proof of equivalence may involve a large amount

of extra proof if the already proven laws do not describe the desired relationship.

The latter case is more difficult because there is no way to show formal equiva­

lence of the data values due to their differing basic axioms. A solution which may be

adopted is to use informal equivalences which describe simple relationships between

the two types. This makes transformation possible while still providing some degree

of confidence that the transformations are correct.

Chapter 7 shows how the semantics of individual data types can be defined in

typed WSL and shows how equivalences between these are demonstrated.

5.5 Ghosting

Ghosting provides a transformation mechanism which is used to implement DREAM

data transformations. I t is based around the concept of ghost variables which was

first proposed by Clint [35, 36] to aid the verification of coroutine correctness. In

his work ghost variables are added to a program using "virtual statements" which

are ignored by the compiler but are used during theorem proving to store useful

intermediate results.

The transformations presented within this thesis use ghost variables to allow

the representation of data to be changed. Ghost variables are introduced into the

program to hold values of the target type. At this point the ghost variables are

unused and therefore they may have any desired values assigned to them. In practice

assignments are introduced at all points where the initial variable is assigned to.

Once all of the assignments to the "source" (initial) variable have been mirrored by

one to the "ghost" (final) variable then the two variables have equivalent values at

all points within the program and the uses of the source variable can be replaced by

uses of the ghost variable. This operation is known as ghosting. At this point the

source variable becomes redundant (it is no longer used) and the assignments to it

Chapter 5. Data Transformation in DREAM 95

can be deleted from the program and the variable removed.

This approach is different to Clint's initial work because in our work the ghost

variables actually become used whereas in Clint's work the variables only ever hold

extra information which is useful for theorem proving. His variables never become

part of the program's output state.

Ghosting was chosen as a data transformation mechanism for this research be­

cause of similarities with the existing transformation mechanisms which are used

within WSL. Ghosting allows the data to be transformed in a number of stages

which perform distinct changes to the program. These stages are performed incre­

mentally (much like control flow transformation application) to produce a combined

effect. I t is possible to change the exact details of each of the steps to produce

specific results. This is in contrast to proof-oriented techniques which require proof

of specific changes to a program.

The key novel component which allows ghosting to be used to perform data re-

engineering is the use of a data expression refinement relation in the application of

a general data transformation. This allows the use of data type equivalence theories

without needing to prove specific transformations for each equivalence theory. Typed

WSL provides the framework which allows ghosting and equivalence theories to be

integrated easily.

An example of the use of ghosting within a transformation environment is given

by Ward [92] in his derivation of an efficient implementation of the Schorr-Waite

graph marking algorithm. In his work ghost variables are used to refine data struc­

tures from abstract lists and stacks into a concrete implementation which has an

efficient use of data. The results of this work provided the initial impetus for explo­

ration of the use of ghosting for data re-engineering.

The aim of this thesis is to examine the use of ghosting for data transformation.

I t is not the aim of this thesis to compare ghosting with the other data re-engineering

mechanisms which were presented in section 3.4.

5.5.1 Theory

Ghosting provides the central mechanism for performing DREAM data transforma­

tions. The success of this relies upon the semantic correctness of changes which are

Chapter 5. Data Transformation in DREAM 96

made to the program. I t must be possible to prove that a ghosting transformation
does not unduly change the program's semantics. This is done by examining each
step of the transformation and by confirming its validity. The steps which must be
considered are:

1. Introduce a new "ghost" variable to the program.

2. Add assignments to the ghost variable at each point that the original variable

(the "source") is assigned to.

3. Gather information about the contents of source and ghost variables at the

point where the source variable is used. This information will be used in the

next step to show that the variables are equivalent.

4. Perform the DREAM ghosting transformation operation and replace the uses

of the source variable with uses of the ghost variable. This uses the information

gathered in the previous step to show that the uses of the variables are actually

equivalent.

5. Remove assignments to the source variable.

6. Remove the source variable from the program.

Example 5.1 shows each step of this operation when applied to a simple program.

The theory of each step is described below and is shown to fit into the theory of

typed WSL. Note that the example shows a simple case where the ghost variable

has the same type as the source variable. In a more complex case where the types of

source and ghost variables differ the assignments-to and uses-of the variable would

use appropriate expressions which produce equivalent values although they have

differing types. The validity of this is demonstrated by use of the data expression

refinement relation.

Step 1 — Introducing a New Variable

The semantics of transformations which introduce new variables into a program are

well understood. Ward's theory provides transformations which allow this operation

to be performed.

Chapter 5. Data Transformation in DREAM

var
< source : int := 5 > :
source := z
retval:= source

end

Initial Program

97

var
< source : int := 5,

ghost : int :— undef >:
source := z
retval := source

end

var
< source : int := 5,

ghost : int := 5 >:
source := z;
ghost := z;
retvai:= source

end

Step 1: Introduce Ghost Variable
(Choice of type by Maintainer)

Step 2: Introduce Assignments
to Ghost

var
< source : int := b,

ghost : int := 5 >:
source := z;
ghost := z;
{(source = z)};
{(ghost = z)};
retval := source

end

var
< source : int := 5,

ghost : int := 5 >:
source := z;
ghost := z;
{(source = z)};
{(ghost = z)};
retvaJ := ghost

end

Step 3: Gather Information to
show equivalence

Step 4: Perform Ghosting Change
by transformation

var
< source : int :— 5,

ghost : int := 5 >:
ghost := z;
retval:— ghost

end

var
< ghost : int := 5 >:
ghost := z;
retvai := ghost

end

Step 5: Remove Assignments
to Source

Step 6: Remove Source Variable

Example 5.1: An Example of Ghosting

Chapter 5. Data Transformation in DREAM 98

It is important to remember that in typed WSL variable declarations have types
associated with them. A type must be supplied as part of the variable introduc­
tion transformation and should be appropriate to the desired result of the ghosting
operation.

Step 2 — Introducing Assignments to the Ghost Variable

Assignments to the ghost variable can be freely introduced into the program. They

do not affect the semantics of the program because the ghost variable is not (initially

at least) used. Assertion and assignment introduction transformations allow these

to be inserted into the program.

The expressions which are used to assign values to the ghost variables require

careful development. There is no definitive rule to specify the form that these should

take but they must be provably equivalent to the source assignments to allow the

next step to be performed. A careful mixture of maintainer and heuristic guided

development of these expressions is required.

Step 3 — Gathering Information to allow Equivalence to be Demon­

strated

The central part of the ghosting transformation requires that the source and ghost

variables are equivalent at all of the places where the source variable is used within

the program. To show this information about the values assigned to the variables

must be collected and made available at the appropriate places. This information

is gathered in two ways: type and subtype information provides basic information

about the variables and constrains the values which could be held in the variables;

assertions provide the remainder of the information which is gathered from the places

where the variables are assigned to.

The data type information is static within the program and requires very little

effort to extract i t . This is the reason for presenting "introduction of subtypes" as

a basic form of data transformation. The presence of this information removes the

need to perform expensive analysis of the program every time a data transformation

is performed.

Assertions provide the link between the assignments-to and uses-of the variables.

Chapter 5. Data Transformation in DREAM 99

The previous stages were free to introduce any assignments to the program. There
were no checks to ensure that these provided equivalent values because the "black
box" nature of WSL programs does not depend upon values which are not used.
The next stage corrects this and provides the theoretical link between the source
and ghost variables.

Step 4 — Performing the Ghosting Transformation

The ghosting transformation involves replacing an expression involving the source

variable with an equivalent (or refined) expression involving the ghost variable. The

validity of this is shown by reference to:

• the relevant data type theories;

• an equivalence theory which links the two types in general terms and

• the assertions generated in the previous stage.

A suitable replacement expression must be generated which uses the ghost vari­

able in a manner which is the same as the original use of the source variable. There

is no definitive form for this new expression and selection of an appropriate one

may involve maintainer guidance or the use of heuristics. The relationship between

source and ghost expressions will vary. In simple cases where the source and ghost

types are similar the expressions may be almost identical but in more complex cases,

where the representation of the data is being changed the replacement expressions

could differ substantially.

Theoretically the new version of the program must be shown to be a refinement-of

or equivalent-to the original version. This is done by appealing to the data expression

refinement relations introduced in section 5.3. At this point it is important to note

the difi"erence between the refinement/equivalence of expressions demonstrated in

the data expression refinement relation and the refinement/equivalence of program

fragments which determines the correctness of the transformation. The former allows

reasoning about the values produced by expressions but it does not describe the

changes in program state which are performed by execution of a program fragment.

For this reason a new transformation theory is needed to provide the link between

data expression refinement/equivalence and program refinement/equivalence.

Chapter 5. Data Transformation in DREAM 100

The transformation theory allows the ghosting to be performed in any case where
it can be shown that the ghost expression is a refinement of the source expression.
This provides a distinction between type equivalences and program transformations
allowing new data type theories to be developed in isolation from the transformation
engine. This is made possible by the use of shallow semantic data type embedding.
The transformation theory is fully discussed in section 5.5.2.

Step 5 — Removing Assignments to the Source Variable

After the roles of the two variables have been reversed it becomes possible to remove

the assignments to the source variable. The variable is no longer used within the

program allowing statement deletion transformations to remove the assignments.

Step 6 — Removing the Source Variable

Removal of the source variable can be performed easily because it is no longer

referenced within the program. It is even possible to combine this step with the

previous one because the "remove variable" transformation allows removal of the

variable i f i t is only assigned-to and therefore not used within the program.

5.5.2 The D R E A M Data Transformation

The DREAM data transformation is used to perform the ghosting transformation

(step 4). I t replaces source expressions with ghost expressions in any WSL statement

provided that the expressions can be shown to be equivalent to each other or that

the ghost expression is a refinement of the source expression. The general form of

the data transformation is

I f 3h:M^N»

Vx, y. [{x, y)eh =^ {{-g{y) C / ») A ({giy) = 0) = (/» =0)))]

then Su Sifix)); S2 Q S,; 5(^(t/)); ^2

This states that whenever the data expression refinement relation can be shown

Chapter 5. Data Transformation in DREAM 101

to be true at a point where the source expression, / (x) , is used within the program
then that program can be replaced with an equivalent (or refined) version which
uses the ghost expression, g{y). Note that assertion information is used to show
that the data refinement relation holds. A fully worked example of this is shown in
section 7.2.3.

Showing Equivalence of W S L Programs

Ward's theory [88] demonstrates equivalence and refinement using weakest precon­

ditions. These are used to show that the semantics of two atomic descriptions^ have

a suitable relationship between each other during a transformation. The weakest

precondition of an atomic description is defined by Ward as

WP{<x>/<y>: [Q],R) = 3x.QAyx.[Q R

This weakest precondition is separated into two parts:

• 3x.Q — this specifies that the atomic description will not terminate if there

is no assignment which satisfies Q. That is the weakest precondition is false

(Dijkstra's [40] "law of the excluded miracle") if the atomic description does

not terminate.

• \/x.[Q R] — this part specifies that any assignment of values to x which

satisfy Q must also satisfy R. In other words for a specific condition on the

final state R any program which terminates (satisfies Q) will also satisfy that

condition.

Equivalence and refinement are demonstrated by appealing to the weakest pre­

conditions and showing that they are equivalent (or that one implies the other for

refinement). That is

^Atomic descriptions were introduced in section 4.1.1

Chapter 5. Data Transformation in DREAM 102

WP{Sa, R) = WP{St„ R) — Sb is equivalent to Sa (Sa = Sb)

and

WP{Sa, R) =^ WP{Sb, R) ~ 56 is a refinement of 5a (5a Q Sb)

These conditions which demonstrate the validity of a transformation are shown

to be true using the laws of infinitary logic and the laws of individual embedded

data types (expressed in infinitary logic).

Use of embedded data types does not invalidate the semantics of existing WSL

transformations. Any transformations which were proven using the untyped WSL

language are still valid because all of the original laws are still valid. The addi­

tion of data typing actually makes it possible to prove a wider range of program

transformations which rely upon the semantics of individual data types.

Proving the D R E A M Data Transformation (Ghosting)

First consider the program fragment which is to be ghosted. The result of the

program is the set of possible final states, R, which may be produced by execution

of the program fragment, 5 . Ward's theory states that for a transformation to be

valid (i.e. equivalence or refinement) the following must be true.

WP{Sa,R) =^ WP{Sb,R)

where 5 a is the source program and

Sb is the ghosted program.

The ghosting operation takes place at points where an expression is used within

the program. These occur in any statement where the source variable is mentioned in

the atomic description's condition, i.e. most frequently in assignments and assertions.

The proof of equivalence for each statement is performed in a similar manner and

only the proof of equivalence for assignment statements is shown here.

Chapter 5. Data Transformation in DREAM 103

Consider the semantic expansion of the assignment statement described in sec­
tion 4.1.1. This is described as a two step instruction which consists of an assignment
to a temporary variable, imp, followed by assignment of the temporary value to the
variable which will hold the result. The first step performs the assignment of the
variable and the second step merely serves to ensure that there are no circularities
in the evaluation of the expression (see section 4.1.1). This second stage is a degen­
erate version of the original assignment and proof of the first step serves to show its
correctness.

Let be tmp := f{x)

and Sb be tmp := g{y)

Here an expression involving the source variable is described as f{x) where x is

the source variable which has possible initial values such that x e M. This set of

values is shown by assertion derived from the places where values may have been

assigned to the variable. A similar expression, g{y) can be provided for the ghost

variable y which has values such that y e N. This corresponds to the following

transformation (in terms of WSL statements).

{{x e M) } ; {{x G M) } ;

{{y e N)}; E {{y G A^)};

tmp := f{x); tmp := g{y);

To show that this transformation is correct we must prove that

WP{<tmp>/<>:[tmp = f{x)],R) WP{<tmp> /<>: [tmp = g{y)], R)

Note that the assertion statements, data type assertions and type equivalence

invariants have been excluded from this proof. They are contained within the data

expression refinement relation presented in section 5.3.

Chapter 5. Data Transformation in DREAM 104

The conditions within the weakest preconditions are rewritten using set notation
as described earlier to produce

WP{<tmp>/<>:[tmpE f{x)],R) =^ WP{<tmp>/<>: [tmp e g{y)], R)

This is then expanded using Ward's definition of WSL semantics to produce

3tmp • (tmp G f{x)) A V^mp • (tmp E f{x)) =^ R =>

3tmp • {tmp G g{y)) A \/tmp • [{tmp G g{y)) R

Now using the relationship between source and ghost expressions presented in

section 5.3 case analysis can be performed on the relationship between f{x) and

g{y). Initial analysis shows that either

f{x) = (DAg{y)^$

or

/»^0A^(2/)^0

Using this the existential part of the weakest precondition formula can be sim­

plified. In the first case, where the sets are empty, this gives

false A ytmp • [{tmp G f{x)) R] = ^ false A ytmp • [{tmp G g{y)) =^ R

which simplifies to

false false

which is trivially true.

Chapter 5. Data Transformation in DREAM 105

In the second case where the sets are non-empty the condition is rewritten as

true A ytmp • [{tmp G f{x)) = ^ R] true A ytmp • [{tmp e g{y)) =4> R]

which simplifies to

ytmp» [{tmp G f{x)) R] \/tmp» [{tmp G g{y)) R

To demonstrate that this is valid we use the truth table shown in table 5.1. This

shows that the transformation can only fail if tmp G f{x) is false but tmp G g{y) is

true. The data expression refinement relation allows us to show that this can never

occur because g{y) C f{x).

tmp G f{x) tmp G g{y) R A B C
F F F T T T
F F T T T T
F T F T F F
F T T T T T
T F F F T T
T F T T T T
T T F F F T
T T T T T T

where A = {tmp G f{x)) ==> R

B = {tmp G g{y)) => R and

C = ytmp • [{tmp G f{x)) R ytmp • [{tmp G g{y))

Table 5.1: Truth Table for the Proof of Ghosting

This proof demonstrates that the technique of ghosting performs valid transfor­

mations which may be applied at any place within a program where the state is

changed. Successful application of the transformation requires that:

• suflficient information is available about the values held in both source and

ghost variables;

Chapter 5. Data Transformation in DREAM 106

• the relationship between source and ghost variable is known to allow checking

of the equivalence of the values held in each and

• that the ghost expression is a refinement of the source expression.

This information is gathered within the DREAM ghosting framework.

5.5.3 Ghosting as an Algorithm

The theoretical view of ghosting shows that data transformations can be applied

using a number of Ward's transformations and semantic knowledge from the typed

WSL language. This provides a flexible approach but has a number of limitations

and problems which must be addressed before i t can be used to practically implement

the ful l range of ghosting transformations. They are as follows:

1. The desired relationship between the source and ghost variables

must be known — this guides the production of suitable expressions and

ensures that sufficient information is available.

2. Application of ghosting to the entire scope of a variable limits ghost-

ing's flexibility — in particular transformations which allow separation and

merging of logically distinct variable uses would not be possible.

3. Assertions must be moved around the program from assignment

statements to the places where variables are used — the assertions

must be moved down all control flow paths and this involves the use of a large

number of computationally expensive transformations.

4. From a transformation eflSciency viewpoint it is desirable to reduce

the number of passes over the program — passing over the program

a number of times requires temporary information to be stored within the

program tree and uses a large number of position movement instructions.

Each of these points is examined below and their effect upon the ghosting trans­

formation is discussed. They are used to make ghosting more suitable for the pur­

poses of data transformation.

Chapter 5. Data Transformation in DREAM 107

Relationship between Source and Ghost Variables

Knowledge about the desired relationship between the source and ghost variables is

vital to the success of a ghosting transformation. In many cases it is not possible

for the transformation system to determine the relationship which should be used.

For instance if an integer value is being split into a record containing a number

of integer values whose combined result is equivalent to the source value then the

formula which governs this relationship must be specified explicitly.

Similar problems may also arise in less complex situations where integers are

being converted into enumeration values. Here the mapping between the two needs

to be determined to ensure that each and every integer is assigned an appropriate

name.

Information about these relationships can be provided in two ways:

1. Implicitly by the type equivalence theory and

2. Explicitly by the maintainer.

The information provided by the equivalence theory generally cannot provide all

of the information required to make meaningful transformations. I t encapsulates the

basic knowledge about how two variables could be related but it is not practicable

to provide all of the knowledge necessary for a full transformation. Inclusion of full

knowledge within the equivalence theory would either make it too specific to one

particular transformation instance or make the theory too complex to implement

and prove to be correct.

The information provided explicitly by the maintainer fills in the gaps in the

implicit knowledge from the equivalence theory. It specifies the precise relationship

between the source and ghost variables making formal proof of equivalence possible.

Each equivalence theory will require its own specialised format of information which

depends upon the exact structure of source and ghost types along with the types of

relationship that the theory supports.

Theoretically the relationship between the source and ghost variables is described

by an invariant. This must be consistent with the theories of each type and is asserted

to be true throughout the area of code which is being ghosted. This assertion is used

during the proof of the data expression refinement relation.

Chapter 5. Data Transformation in DREAM 108

Automatic choice of suitable relationships/invariants is a complex task. It would
be very difficult to perform this on arbitrary programs but in situations which are
well understood it is possible to use heuristics to select appropriate transformations.
An example situation where it may be possible is in the conversion of assembly
language code into a higher level language. In assembly code registers have specific
formats and are typically used for a limited number of specific purposes. Charac­
teristics of each can be recognised and the appropriate transformations are applied
to perform a suitable operation.

The Scope of the Ghosting Transformation

The theoretical description of ghosting involves the introduction of the ghost variable

into the program and requires that ghosting is performed throughout the whole scope

of the variable. This limits the usefulness of the transformation. Specifically it does

not allow implementation of transformations which merge and split logically different

uses of a variable and those which involve a change of scope.

Data re-engineering transformations are not fundamentally concerned with re­

placement of variables but are concerned with changing the types which are used

to represent data values. Ghosting is a suitable mechanism which can be used to

perform these operations but there is no requirement to use the entire theory of

ghosting. I f a subset of i t is sufficiently powerful for the requirements of data re-

engineering then this can be used instead.

Analysis of the use of the complete theory of ghosting shows that it is unneces­

sarily restrictive for two reasons:

1. Variable introduction and variable removal transformations are primitive oper­

ations in the theory of WSL. These can be carried out constructively without

reference to the theory of ghosting. Ghosting can then use these variables

instead of having to introduce them into the program itself.

2. The ghosting operation does not have to replace all assignments-to/uses-of

a variable. The theory only requires ghosting of all assignments which af­

fect the variables' value where a specific use occurs. The correctness of this

point is demonstrated by the proof of individual DREAM transformations in

section 5.5.2.

Chapter 5. Data Transformation in DREAM 109

The central aspects of the ghosting operation are those which involve generating

assertions which are used to show that the two variables have equivalent values

and which involve using these to rewrite the usage of the source variable with an

equivalent expression involving the ghost variable. This involves passing information

about the values contained within variables between assignments and uses.

Y •

Valid Assign-Use Relationship

Interleaving of merged variables X and Y

Illegal Assign-Use Relationship

Key

Lifetime of Ghost Variable

o Assignment to Variable

• Use of Variable

Assign-Use Relationship

Figure 5.3: The Interleaving of Ghosted and Original Assign-Use groupings

Figure 5.3 shows an example of this and demonstrates how a transformation

which merges two variables together may fail. This figure represents the value stored

in one variable over a period of time. In the first case the values assigned to the vari­

able and its uses (marked X and shaded) do not interleave with the new assignment-

to and use-of the source variable. In the second case there is an interleaving and the

second use of the original value would fail because the variable would contain the

value introduced during the ghosting.

Changing the emphasis on ghosting to concentrate on the assign-use relationships

allows more fiexibility in the type of ghosting operation that can be performed. I t

makes i t possible to implement the whole range of data transformations using one

mechanism which in turn makes i t much easier to provide a consistent interface to

each type of data transformation.

Chapter 5. Data Transformation in DREAM 110

Movement of Assertions around the Program

The description of ghosting on page 95 showed that assertions are the key to demon­

strating that a ghosting transformation is valid. The information held within the

assertion is used to show that expressions containing the source variable can be

replaced by those containing the ghost variable.

Unfortunately moving assertions around the program is expensive in terms of

computation eff'ort. Movement of the assertion from one point within the program

to another may take a large number of transformations. The assertions must be

propagated down every possible path in the program until it is certain that they

cannot possibly be used. This is complicated by the need to merge assertions at any

point where control flows rejoin, e.g. after each branch of a conditional statement.

I t is also complicated by the use of external procedure calls^ past which assertions

cannot be moved because of the unspecified behaviour of the call.

The information carried by the assertion is essential to the transformation and

therefore cannot be ignored. A solution which increases efficiency is to not add the

assertions to the program but to hold the information within the transformation

code and ensure that this information is updated at control fiow branches and joins.

This does not affect the theory but makes implementation more efficient.

The Number of Passes over the Program

In its original form ghosting requires a number of passes over the area of code which is

being transformed. These allow increasing amounts of information to be added to the

program to enable the ghosting to take place. Reducing the number of passes during

the transformation is a desirable solution which saves wasted computation time and

also allows the assertion information caching described above to be implemented.

5.5.4 Revised Ghosting Mechanism

The discussion above has highlighted a number of changes to the ghosting trans­

formation mechanism. These result in a new definition which is more suitable to

^External procedure calls allow calls to arbitrary pieces of code (which is not in the program
being transformed). These calls perform unspecified operations and consequently the state of the
program is unknown after they have finished executing.

Chapter 5. Data Transformation in DREAM 111

data transformation. The new form consists of a single pass over the program which
performs the following operations:

1. Inserts ghost assignments wherever an assignment to the source variable oc­

curs.

2. Records the assertions which are generated while adding ghost assignments.

These must be properly combined with other assertions whenever passing over

control flow joins.

3. Verify that the expressions involving the source and ghost variables are equiv­

alent at all points where the source variable is used.

4. Generate appropriate uses of the ghost variable and replace the use of the

source variable with it .

As part of these operations the transformation must also check that the assign-

use relationships between the source and ghost variables are not violated. This may

be slightly complicated because the transformations are no longer tied to the scope

of the variables. There may be assignments-to or uses-of the variable outside of

the transformation scope which may interfere with the transformation. One likely

scenario is that the first use of the source variable within the scope may occur before

an assignment has been made to it within the scope. In this case the transformation

is invalid and i t will fail.

The ghosting transformation must also account for the fact that the source and

ghost variables may have a diff'erent scope within the program. This is generally not

a problem because both variables must exist at the boundaries of the area of the

program which is being transformed. However, there are situations where a variable

may temporarily go out of scope within the transformation area. For instance, if a

local variable or a procedure parameter is declared with the same name as either

the source or ghost variable then this causes a change in scope. In these situations

the general rule is that any assignments-to/uses-of the source variable will cause the

transformation to fail. Extra care must be taken to ensure that variable aliasing is

taken care of. I f a variable is passed as an actual parameter to a function it may be

renamed and used within recursive calls to the same piece of code.

Chapter 5. Data Transformation in DREAM 112

Further details about how the ghosting algorithm is implemented within the
Maintainer's Assistant are discussed in chapter 6.

5.5.5 Using Ghosting to Implement Data Transformations

Ghosting has been developed into a very ffexible transformation mechanism which

is capable of performing many different data transformation operations. This sec­

tion shows how each of the data transformation categories can be performed using

ghosting.

• Changing data representation — this category of data transformation is

the principle transformation which is used for DREAM data re-engineering.

The ghosting transformation mechanism is directly applicable and requires no

special action to be taken although the type of the ghost variable must be

supplied and the desired relation between source and ghost variables must be

identified.

• Changing the relationship between logical data objects — these trans­

formations place some of the greatest demands upon the ghosting theory. They

require the checking of scope and assign-use relationships between the original

ghost variable and the source variable.

• Changing the scope of data — a change in the scope of data is easily

performed by introducing the ghost variable with an appropriate scope. The

ghosting operation will then ensure that all of the data accesses are correct

taking the differences in scope into account.

• Introducing subtypes — this transformation can be performed straight­

forwardly using ghosting. The primary operation performed by the transfor­

mation is to change the type of the variable to a different subtype. This is

handled easily using the semantics of one data type. Ghosting does require the

introduction of a new (ghost) variable into the program but in principle this

is not needed because only the type is changed and not the variable name. In

practice the transformation can hide the introduction of the new variable by

replacing the source variable directly with the ghost variable.

Chapter 5. Data Transformation in DREAM 113

Each of these data transformations can also be performed in conjunction with
the others to produce complex effects upon the program data representation. For
instance a change of scope may be combined with a merging of variables.

5.6 Summary

This chapter has described DREAM (the Data Re-Engineering and Abstraction

Mechanism) which provides a transformation mechanism which allows program data

to be manipulated. An important part of this is the use of the ghosting technique

which provides the underlying formal basis of the transformations.

Four categories of data transformation have been identified. These allow a com­

prehensive range of manipulations to be applied to program data producing a re­

structured version of the original. The transformations allow not only the repre­

sentation of the data to be altered but also allow its relationship with the program

scope and other variables to be changed.

Ghosting allows the original implementation of the program data semantics to

be replaced by an equivalent version which differs in user selectable ways. Ghost

variables are added to the program which have the desired new data format and

properties. The DREAM data transformation is then used to replace all of the uses

of the original variable with equivalent versions which are represented in the new

manner. At the end of the transformation the original version no longer infiuences

the output of the program and can be removed.

The key to the proof of these DREAM transformations is the use of a data

expression refinement relation which allows any use of the source expression to be

replaced by a target expression without any further knowledge about the structure

of the program. The validity of this transformation step is proved in section 5.5.2

for any atomic description. This means that the transformation is valid for all WSL

statements because their semantics are all defined in terms of atomic descriptions.

The algorithm used to implement DREAM transformations has been analysed

and modified to provide a ful l support for a number of types of data transformation.

This allows the whole range of data transformations to be performed using a single

transformation mechanism.

Chapter 5. Data Transformation in DREAM 114

This chapter has addressed the theoretical aspects of data transformation but
has not examined the practical details of implementing the transformations within a
transformation tool. There are a number of aspects of implementation which must
be considered including:

• How should the transformations be integrated into the transformation system?

• How easy is i t to extend the transformation tool to allow new data types and

equivalence theories to be used?

• What extra A ^ r ^ W S L statements are needed to implement data transforma­

tions?

• Is i t possible to present a similar user interface for both control flow and data

transformations?

These practical issues are covered in the next chapter which describes how the

Maintainer's Assistant has been extended to allow data transformation to be per­

formed.

Chapter 6

The Prototype Tool

Putting the theoretical aspects of DREAM into practice involves developing an

implementation which integrates the theory with algorithms which automatically

select appropriate ways of applying the transformations. This allows most data

transformations to be performed with little user intervention (except for the initial

choice of transformations). Some of the more complex transformations may, however,

require more user guidance to ensure that the desired^ results are produced. One of

the benefits of heuristic application of algorithmic solutions is that they allow the

efficiency of the transformation application to be bounded rather than relying upon

exhaustive application of the theory to produce a final, optimal result.

The main practical extension to the theory is the automatic generation of ap­

propriate ghost assignments and expressions during the transformation. This is

combined with an implementation of the ghosting procedure which collects infor­

mation about source and ghost variables. I t is done in a manner which bounds the

execution overhead involved by making compromises which limit searches in the pro­

gram. I t is possible to supplement this information by the introduction of assertions

at points where extra reasoning is required. The low level details of data trans­

formation application are taken care of by the user interface. The transformation

engine automatically determines which transformations are suitable at a particular

point and allows the maintainer to apply these.

^This does not imply that undesired results are semantically erroneous; it merely states that a
different (but correct) result would be produced.

115

Chapter 6. The Prototype Tool 116

6.1 Introduction

The Maintainer's Assistant is used as a prototype platform to examine the feasi­

bility of automating data transformations using the theory and practical aspects

introduced in the previous chapters. The main aim of the extensions to the ex­

isting tool is the integration of data and control flow transformations to provide

a combined maintenance environment. This is achieved by extending the tool to

incorporate typed WSL and by use of the ghosting transformation mechanism to

provide the DREAM data transformation capabilities.

These extensions to the Maintainer's Assistant are implemented in a modular

manner which complements the original design of the tool. The modules are self

contained with well documented interfaces to the other parts of the system. The

new modules are:

• D R E A M — which performs the ghosting transformation ensuring that the

appropriate rules are observed. This is responsible for ensuring that the correct

type theories are used to generate assignments and expressions.

• Data types — which represent the semantics of individual data types allow­

ing simplification of expressions and extraction of type information from the

program. The data types module contains a number of sub-modules which

provide information for individual data types. The interfaces to these sub-

modules are structured to provide a common way of describing each type.

• Type equivalence — which contains the information about the relationship

between expressions which are used during ghosting. I t is also responsible

for producing suitable equivalent expressions given the ful l details of the re­

quired transformation. There are sub-modules for individual instances of type

equivalence theories.

In addition to these new modules a number of changes are required in other

parts of the transformation engine. The most important change is the introduction of

typed WSL constructs, as presented in table 4.7 on page 75, and the addition of extra

AisTAWSL statements to provide the capability to extract data type information

from the program. DREAM also requires some changes to the user interface to

Chapter 6. The Prototype Tool 117

allow selection of ghosting transformations and identification of the variables which
will take part in the transformation.

The next section describes the design of these extensions to the transformation

engine which provide the data transformation environment. Section 6.3 describes

the implementation of the changes to the transformation engine giving details of

the steps taken to add data typing constructs to WSL. It also describes how these

changes were tested to ensure that the existing control flow transformation were

unaff"ected by the addition of data types.

6.2 Extending the Transformation Engine

The implementation of the transformation engine separates its functionality into

a number of subsystems which provide support services allowing programs to be

transformed. The structure of the system is shown in figure 6.1 with the unshaded

boxes forming the original transformation engine.

The system is based around an abstract representation of the WSL language

("xlang" in the diagram) which specifies the format of constructs. This internal rep­

resentation is produced automatically from the file "table" which describes the syn­

tax in less implementation specific terms. The "support" module uses this language

description to provide an internal program storage facility which holds programs

while they are being transformed. The internal representation of a program is ma­

nipulated by the "data", "pattern" and "meta" modules. These provide A^r^WSL

statements which allow efficient reasoning about programs and the searching of pro­

grams to find suitable program fragments. In addition to this there is a "maths"

module^ which allows basic simplification of expressions.

The "lang" module provides executable versions of each WSL construct. These

are used together with the MSTAWSL constructs to implement individual transfor­

mations. A program editor, "editor", is provided which allows changes to be made

to programs when bugs are found or i f extra functionality is being introduced into

the program which is being transformed.

DREAM data transformations require that capabilities to represent and reason

The maths module has been replaced in the enhanced version of the Maintainer's Assistant.

Chapter 6. The Prototype Tool 118

O

>
• ™
>

• ™

>. — -
I
Q

s

e
o •-a

.2

2

I
00

H
a

eg

X

+j o <v

<

Pi
-u
X

H
a;

pi
bp

Chapter 6. The Prototype Tool 119

about data types and their associated theories are added to the Maintainer's Assis­
tant. These are then used to implement the ghosting transformation and to replace
the original mathematics and logic packages. The extensions to the Maintainer's
Assistant have been separated into three new modules (shown as shaded boxes in
figure 6.1). The "types" and "type equivalence" modules have been designed to
allow new types and theories to be added to the transformation engine with min­
imal effort. To aid this, each data type and equivalence theory must provide a
well-defined set of interface procedures. The transformation engine uses these in a
manner which is appropriate to the transformation being performed. The DREAM
module implements one transformation but due to the amount of code required to
implement it and the distinct nature of the transformation it has been placed into
a separate module.

6.2.1 D R E A M Transformation Module

This module is responsible for coordinating the application of DREAM transforma­

tions. I t implements the algorithms presented in the previous chapter providing a

single transformation which can make use of any type equivalence theory to perform

individual ghosting transformations.

A secondary function of the module is to aid the maintainer in the selection of

suitable transformations. Information about source and target variables is used to

produce a list of transformations which would be applicable, in general, for their

respective types. This operation is not part of the main transformation code and

involves searching the type equivalence modules to find suitable equivalence theories.

Implementing the D R E A M Transformation Algorithm

DREAM transformations have two major constituent operations: adding assign­

ments to the ghost variable and using the ghosting transformation to replace uses of

the source variable with uses of the ghost variable. These operations are performed

under strict control to ensure that the semantics of the program are unchanged.

Application of the algorithm has been separated into three stages:

1. Initial phase — identification of the exact transformation required and check­

ing of the source and ghost variables' state at the entry point to the area of

Chapter 6. The Prototype Tool 120

code which is being transformed.

2. Main phase — systematically performing the transformation by identifying

all affected program statements and taking appropriate action at those points.

3. F inal phase — checking validity of final variable states and recovering from

any transformation error conditions which may have occurred.

These stages are applied in sequence and the transformation is only guaranteed

to be successful i f all three stages complete.

The initial phase — before the transformation is performed its parameters are

checked to ensure that they are legal given the currently selected program fragment.

This involves checking that the source and ghost variables exist and that the equiv­

alence theory and user supplied invariant are valid. These checks do not guarantee

that the transformation will succeed but ensure that there are no configuration errors

which may cause incorrect action to be taken.

The main phase — the main phase of the transformation involves following pos­

sible control flow paths gathering information about the values held in the source

variable and instructing the type equivalence modules (see section 6.2.3) to produce

appropriate assignments and expressions involving the ghost variable. In the process

of doing this, assign-use interleavings between the source variable and the original

ghost variable (before the transformation started) are checked. I f any of these op­

erations fail then processing in this phase finishes and the final phase is responsible

for unwinding any changes which have already been made to the program.

Control flow paths are traversed because they represent the order of execution

of the program. This is done for four distinct reasons:

1. to gather assertions about the contents of the source variable —

these are collected at points where the source variable is assigned-to and from

assertions which explicitly state the value of the variable. The structure of

these assertions is specific to each data type and the collection of them is

performed by the appropriate data type module (on behalf of the ghosting

module).

Chapter 6. The Prototype Tool 121

2. to insert (ghosted) assignments to the ghost variable — each assign­
ment to the source variable requires an equivalent assignment to the ghost
variable. This is generated by the appropriate type equivalence module and is
inserted by the ghosting module.

3. to perform the ghosting transformation on the uses of the source

variable — uses of the source variable are replaced by suitable uses of the

ghost variable (they are produced by the type equivalence module).

4. to check that assign-use relationships are valid — the DREAM ghosting

mechanism allows the ghost variable to be used for different purposes (see

section 5.5.3) but checks must be made to ensure that these different uses do

not invalidate the transformation.

Processing of the control flow paths is performed by ensuring that paths are

examined in the order that they would be executed. This involves a breadth-first

traversal of the program fragment with careful checks to ensure that when control

flows join all branches which reach that point have been examined.

Loops and other statements which have iterative/recursive calls to themselves

must be treated specially. At the entry/re-entry points to these areas the automat­

ically generated assertions about source variable values must contain the union of

the values for every nth iteration, i.e. the limit value. This can be calculated to

varying degrees of accuracy: the least accurate is to assume that the variable may

hold any value which is valid for the data type; a more accurate way is to process

the loop/construct once and determine whether the assertion at re-entry is more re­

strictive than that at initial entry. If it is then the initial assertion can be used. This

process could be repeated ad infinitum but the prototype implementation attempts

one iteration and if that fails then the least accurate case is used.

The final phase — the final phase checks for any invalid assign-use interleavings

which occur after the scope of the transformation. I f these occur or if the transfor­

mation has failed for some other reason then the changes made to the program are

unwound and the error is reported to the maintainer.

Chapter 6. The Prototype Tool 122

The application of the transformation relies heavily on data type modules and
equivalence modules. These provide information in a standard format to make the
DREAM transformation module truly generic. Intermediate information about the
source or ghost variable which is specific to one particular data type is stored in
assertions which are specific to that type. The ghosting module treats these as
black boxes and delivers them back to the data type modules at appropriate points.

6.2.2 Data Type Modules

Data type modules represent the syntax and semantics of individual data types.

They are responsible for providing knowledge and reasoning about operations in­

volving specific data values. This knowledge may be used during ghosting to extract

appropriate type information from the program or it may be used for simplification

of expressions during other transformations^.

There are a potentially unlimited number of type modules. These correspond to

the type categories which are used within the program (see section 4.2.1). Each data

type is mostly independent of others although there may be dependencies for com­

posite types which contain values which are of other data types. Even though data

types may be dissimilar they are all used in a similar manner within the transforma­

tion system. This characteristic makes it possible to simplify the addition of many

different data types to the transformation engine by defining a common interface for

the operations which each data type must provide.

The Data Type Module Interface

The interface to each data type module is shown pictorially in figure 6.2. Each type

category is given a unique name which is used to distinguish it from other type

categories within the transformation system. This name is then used to allow the

transformation engine to retrieve the details of this type from the full collection of

data type theories held within the system.

The structure of the data type interface has been developed to reflect the needs

of the transformation engine. I t does not provide an exhaustive range of possible

^This is a replacement for the symbolic maths and logic modules which were present in the
original version of the Maintainer's Assistant.

Chapter 6. The Prototype Tool 123

Type Category Name

Blank Assertion (t)

Assert Union (t,a,b)

Get Assert (t,v,e)

Match Assert (t,v)

Simplify Expression (t,e)

Key:
t - information about types.

a,b - type assertions,
e - expression,
v - variable.

Figure 6.2: The Interfaces to Type Modules

operations upon the data but could be extended if necessary to cope with the re­

quirements of future work. Note that the operation of individual interface functions

should be considered in association with the description of the prototype implemen­

tation of the DREAM module which is discussed in section 6.2.1. The relationship

between these interfaces and the type theories is discussed in the next chapter when

a number of example type theories are introduced.

• Type Category Name — the type category name provides a way to identify

the data type and is used internally to identify the appropriate set of routines

for the variable under analysis.

• Blank Assertion — blank assertions represent the entire set of data values

which may be stored within an individual variable. The assertion takes type

and subtype information into account but does not assume anything about

what has been assigned in previous statements. This provides a starting point

for reasoning about variables before any assignments to it have been processed.

• Assert Union — when the control flow of a program rejoins after a branch

construct the potential values of the variable after each branch, represented as

Chapter 6. The Prototype Tool 124

assertions, must be combined to form an assertion which contains the set of
all of these values.

• Get Assertion — this routine constructs an assertion which represents the

possible values returned by an expression given details of the input to that

expression, i.e. its parameters. The expression could be a constant value or

it could be a function call. The result returned will typically have varying

conciseness depending upon how well the values of the input are known. This

routine is typically used to analyse the values assigned to variables.

• Match Assertion — each data type has differing formats for assertions. This

function examines a given assertion and determines if it is appropriate to the

current variable which is being transformed. If so, it extracts any useful infor­

mation from the assertion for later use. Note that the calling transformation

(i.e. the DREAM module) is responsible for storing and using the information.

• Simplify Expression — this operation is the replacement for the function­

ality of the symbolic maths and logic unit which has been replaced in the

new version of the transformation engine. The interface to these replacement

functions is similar to that in the untyped transformation tool and is used to

perform simplification on a supplied expression. Simplification could involve

calls to other type modules to allow sub-expressions with diflFering types to be

simplified.

This interface does not directly refiect the structure of the semantic theory of a

particular data type. The semantics are hidden within the type module and are used

to show the correctness of any manipulations which are performed. In particular the

"simplify expression" interface relies on many heuristics to guide the simplification

process. The semantics are also used in the type equivalence modules which are

discussed later.

Data Type Syntax

Each data type has its own individual syntax to represent the characteristic prop­

erties of that type. These syntactic elements are used in a limited number of places

Chapter 6. The Prototype Tool 125

within a program as shown in section 4.2.4. This makes it possible to allow modular
extension of the syntax of the WSL language as well. The internal, abstract syntax
representation of the program is especially easy to extend because its already mod­
ular structure allows many different constructs to be used at one particular position
within the syntax. Implementation difficulties for this are discussed in section 6.3.1.

Extensions to MSTAWSL

Data type information is stored in a number of different places around the program

and the existing AisTAWSL instructions are not sufficient to provide simple methods

of accessing this information. Two extensions have been made to A^r^WSL to

alleviate these difficulties:

• A n extended ©Fol low/©Return — the original ©Follow and ©Return

constructs allowed a transformation to temporarily move from the current

point in the program (which must be a subroutine call) to the definition of

that subroutine. This makes the description of a transformation more concise

by removing the need to write code to find, and move to, the appropriate

definitions. These instructions have been extended to provide a similar capa­

bility which moves from uses of type names (i.e. in variable declarations) to

the declaration of that type (in a where statement) and vice-versa

• Extended data extraction/caching — MSTAWSL provides constructs

which return information about the program such as the variables which are

used or assigned-to within the current construct. New constructs have been

added which provide information about the data types which are declared at

a point within the program and about the binding of types to specific vari­

ables. This information is cached and can be retrieved easily with no execution

overhead.

These extra constructs provide comparable functionality to that provided in the

original version of the Maintainer's Assistant. They make it easier to extract data­

type information from the program and to remove the need to write repetitive code

which is not directly related to the transformation being implemented. Other as-

Chapter 6. The Prototype Tool 126

pects of the addition of data typing into the transformation engine are discussed in
section 6.3.1.

6.2.3 Data Type Equivalence Modules

Equivalence modules are responsible for determining the exact semantics of the

ghosting transformation and for ensuring that appropriate assignments and use-

expressions are produced for the ghost variable. This involves checking that the

semantics of the data expression refinement relations are used properly and also

involves reporting errors to the ghosting control module (DREAM).

The equivalence modules are designed to be self-contained providing assignments

and expressions which conform to the data expression refinement relations which

are used in the DREAM transformation theory. To do this the interfaces presented

below are supplied with information about the context of each individual ghosting

operation. This context has two parts: (1) the detailed invariant between source

and ghost variables which is supplied by the maintainer (this complements the part

of the invariant which is implicit in each equivalence theory); (2) information from

the program about the values which may be stored within each variable at the point

in the program where ghosting is being performed. This information is collected

by the DREAM transformation module which is responsible for ensuring that the

appropriate interface routines are called when necessary.

The Type Equivalence Module Interface

Equivalence modules are integrated into the Maintainer's Assistant in a similar way

to the type modules. A number of well-defined routines are used to provide access

to reasoning about the applicability of particular ghosting operations. Equivalence

modules depend upon source and target data type modules to provide reasoning

about the types which they represent.

Each equivalence module (figure 6.3) is identified by the source and target type

categories that i t applies to. This allows easy retrieval of appropriate theories within

the transformation system and provides a basic method for filtering out inappropri­

ate type categories. More precise filtering is performed using the exact definition of

each type — the properties of an equivalence relation may not be suitable for use

Chapter 6. The Prototype Tool 127

Source
Category

Target
Category

Types Compatible? (st, tt, i)

Assignment Body (st, tt, sa, a, i)

Use Body (st, tt, sa, ta, e, i)

Key:
st - source type.
tt - target type.
i - invariant.

sa - source assertion.
ta - target assertion.
a - assignment.
e - expression.

Figure 6.3: The Interfaces to Type Equivalence Modules

and may prohibit further transformation. A final check on applicability is made at

each place where assignment or use conversions are made.

• Source &i Target Type Categories — the source and target categories are

used to determine if a particular theory is applicable for consideration in the

current conversion. Finer grained checking of applicability is performed using

the definition of particular data type instances and assertions about the current

values stored in the source and ghost variables (see the following functions).

• Types Compatible? — this function determines if the conversion between

the specified variables is valid. I t uses the equivalence invariant and the precise

definition of data types to ensure that the conversion is feasible. This is not

a definitive answer to the question of compatibility but is used in a similar

manner to the applicability conditions of control flow transformations. The

flnal check on applicability is performed during transformation whenever the

next two routines are called.

• Assignment Body — this produces an assignment to the ghost variable

which is equivalent to the given assignment to the source variable. The ghost

assignment need not be valid for any input condition but must be valid for all

values which may be presented as input to the assignment's expression at that

point within the program. Decisions about the structure of the assignment are

Chapter 6. The Prototype Tool 128

guided by the invariant and by heuristics which choose between possible, valid

alternatives.

• Use Body — this performs a similar operation to the assignment-body func­

tion above but produces an equivalent expression which uses the value stored

within the ghost variable rather than that stored within the source variable.

One type equivalence theory may be represented by more than one equivalence

module. I t may be convenient to implement the ghosting operation for a specific

subcategory of the equivalence theory rather than implementing a general equiva­

lence module which may require very complex heuristics to allow the simple cases to

be handled. An example of how an equivalence theory is used by the transformation

engine is given in section 7.2.

6.2.4 User Interface

The DREAM, data type and type equivalence modules provide the core functionality

necessary to perform data transformations. The user interface provides a simple

method for applying these data transformations.

Figure 6.4 shows the extended user interface which encapsulates the raw data

transformations making i t easier to select and apply transformations. The figure

shows the main transformation window and the data transformation (ghosting) di­

alog box. The latter allows the maintainer to select the source and ghost variables

from the program window and allows a search for applicable transformations to be

initiated.

Source and ghost variables are identified by selecting the declaration of an ap­

propriate variable and then clicking on the "Set Source" or "Set Target" buttons

in the dialog box. The code to be transformed is selected by dragging the mouse

over the code which is then highlighted in reverse video. When the "Ghost" button

is pressed the applicable transformations are presented in a menu (not shown) and

when the maintainer selects the desired transformation from the menu it is invoked

and progress/error messages appear in the message sub-window (in the top half of

the main window).

The user interface removes the need to understand the entire ghosting process.

Chapter 6. The Prototype Tool 129

D iXlfna Version S.OOO-REM

Fi le Options Edit Metrics Info Help

y

><++span)
1

>(++span)
2

>(++span)
3

Menu Bar

Progress Window

Transformation
Buttons

Undo Redo Redo Demo Start |5top||Repla!j

(Re)Move||join||Use/ftppla||Reorder||Reuirite||lnsert||Slmpllfa/DeIete||Multiple||Complex]|Data|[fl^

STATEMENT ASSIGN (2 1 1 1)

begin
var <time: int_32\=0, newtime: daytime\=0>: Current

Selection

STal endvar
where

type daytime==(hours: int_32, minutes; int_min) end
type int_32==[8-232] end
type int_min==[0-59] end end

Pretty Printed
Program

Data
Transformation

Dialog Box

3 Ghosting

Source Variable

IriME Z
V

Set Source

Target Variable

Î EUTIME A
z

Set Target

1 Ghost...IIReset] Close 1

Figure 6.4: The MA User Interface

Chapter 6. The Prototype Tool 130

The labour intensive peripheral tasks involved in performing data transformations
are handled by the system allowing the maintainer to concentrate upon selection of
suitable transformations.

6.3 Implementing the tool

Implementation of these extensions to the Maintainer's Assistant required consid­

erable planning. The changes to WSL affect many aspects of the transformation

engine even though they involve only minor changes to the language itself. In ad­

dition to this a staged introduction of type/equivalence modules and the DREAM

transformation routine was required. I t was impractical to expect that all of the

changes could be implemented and tested together. To make the extensions feasible

the following implementation plan was used:

• Add the typing constructs to WSL's abstract syntax — this involved

extending the language definition and making associated changes to the rest

of the transformation engine.

• Testing the extended transformation engine — to verify that the addi­

tion of data typing has not unduly affected the operation of the transformation

engine.

• Adding support for type/equivalence modules — providing the module

interfaces specified in the first part of this chapter.

• Implementing the D R E A M module and providing the user interface

— using the typed language and type/equivalence modules to provide ghosting

data transformations.

The issues encountered during the implementation are discussed below.

6.3.1 Abstract Syntax Changes

The main change which affects the original transformation system is the extension

of WSL's abstract syntax. These extensions are shown in chapter 4 (table 4.7) and

Chapter 6. The Prototype Tool 131

are implemented by adding extra entries into the transformation engine's language

description table (file "table.clisp").

Syntax
Definition

Example

(Put_Frame_Lf!
'(Type (AKO Definition)

(Type.X (Type.Name Type.Defn))
(Ins/Del? (No 2))
(Blank (Type $Type_Name$ $Type_Defn$))))

type $Type.Name$ = $Type.Defn$.

Example 6.1: Type Definition Construct — Abstract Syntax Definition

Example 6.1 show the entry for a type definition. This entry states that the

construct is called a "Type" and has a number of properties. These properties define

the constructs structure and specify its relationship with other statements. The a-

kind-of, AKO, field announces the construct is a specific instance of a definition and

therefore may appear within a where construct. The "TypeJC" field specifies the

type definition's subcomponents which in this case are a name and a type description.

The "Ins/Del?" field specifies that no extra subcomponents can be added and that

the minimum number of subcomponents is two^. Finally the "Bleink" field gives a

prototype entry which is inserted as a placeholder when the Maintainer's Assistant

program editor is used to add a new type definition.

The other data typing constructs are added to the language in a similar way

and once this is complete the transformation engine can store typed WSL programs.

Unfortunately this does not mean that the transformation engine operates correctly

upon typed programs. This requires further changes as described below:

Parsing programs — the Lisp part of the transformation engine^ uses two pro­

gram representations: the internal and external formats. The internal format is a

direct representation of the program as stored, and manipulated during transforma­

tion. This contains a large amount of cached information about the program which

is used by the transformation engine. In contrast the external representation has

''The Ins /Del? field is mainly used for constructs which contain variable numbers of other
constructs, e.g. lists of statements. It is not an important field for type definitions.

^Remember that the implementation of the transformation engine is separated into the main
Lisp part and the graphical user interface which is implemented in C.

Chapter 6. The Prototype Tool 132

none of this information and is used during the dialogue with the graphical user

interface.

Problems arise when parsing the external representation because the transfor­

mation engine does not use a look-ahead mechanism to determine the format of the

next construct. Instead it relies on the "Ext_Spec_Type" (external specific type)

routine to determine the format. This routine uses heuristics to make a choice be­

tween possible alternatives and is very prone to disruption due to changes in the

language.

At numerous times during the extension of the transformation engine these

heuristics had to be "adjusted" to ensure correct parsing. This often caused great

difficulty because it is not easy to identify the exact cause of the problem or its

solution.

Pattern matching — many of the existing transformations rely upon pattern

matching and template filling A^r.4WSL constructs to recognise specific code frag­

ments and to replace these with their transformed versions.

The typed language syntax affects some of the operations which match program

fragments containing the typed constructs, var and where blocks were the worst

affected because these contain the main changes to the syntax.

Untyped Version
A ^ r ^ W S L (Var ((Table

(LMatchJ Assignment ((">?" V) (">?" E)) Empty)))

)
Matches Var := $Expn$
Typed Version
A^r^iWSL (Var ((Table

([_Match_] Assignment
((Typed.Var (~>?~ V) (~>?~ N)) (~>?~ E)) Empty)))

)
Matches Var : $TypeJ^ame$:= $Expn$

Example 6.2: Changes to Pattern Matching Constructs

Example 6.2 shows an untyped var pattern match and its corresponding typed

version. The pattern match statement is matching a variable name, and the expres-

Chapter 6. The Prototype Tool 133

sion that is assigned to it , for subsequent use during a transformation. The untyped

version does not work in typed WSL because the program contains a name-type pair

in place of the original name entry. The typed version has been modified to match

the name-type information and store it away for future use.

Each of the six hundred and three control fiow transformations had to be exam-

pled and modified, i f necessary, to take these changes into account. This was done

by visual inspection and manual change. Section 6.3.2 describes the tests which

were performed to validate that these changes had been made correctly.

Composite names — chapter 4 described the definitional extensions to WSL

which allow composite variables to be accessed either as a single entity or as a num­

ber of individual entities. This capability is added to the transformation engine by

introducing the 1-select and r-select components as described in chapter 4. This

change is completed by extending the variable assignment/use analyser (vua.iter),

and hence the [-Used,]/[-Assigned.] Aisr^WSL constructs. This allows the trans­

formations to determine if specified variables are used or assigned-to within the

currently selected program segment.

a.J a.k

>/ ' . , 0 /

Names are Disjoint Names are NOT Disjoint

I I Composite Variable

Single Variable

Figure 6.5: Composite Name Usage Analyser

Chapter 6. The Prototype Tool 134

These extensions involve making the analyser store the ful l variable name (includ­
ing all component names) and then making the comparison routines check whether
two names have any part of the name space tree in common. Figure 6.5 shows two
cases which may occur. On the left-hand side a.j and a.k are disjoint because they
do not have any variables in common. The right-hand side shows a case where the
two are not disjoint because a.j contains the variables in a.j.y.

Expression simplifier — expression simplification in typed WSL is separated

into individual routines for each data type. One routine is provided by each type

module to simplify its own expressions. At the moment these type simplification

routines are very primitive and do not handle a full range of possible situations. This

is not due to technical, or theoretical difficulties but merely reflects a lack of time

for implementation/testing. This is not seen as a major obstacle to the evaluation

of DREAM transformations because simplification is not an inherent part of the

ghosting operation. Note that the original expression simplifier is provided for the

universal type "any" which is described below.

Backward compatibility — the typed WSL transformation engine no longer

recognises untyped WSL programs. This makes it difficult to transform any un­

typed WSL code and makes testing more difficult (see below). To work around

this problem we provide a backward compatibility parsing mode. In this mode the

external representation parser automatically converts untyped WSL into a typed

version. In this version all variables are given the type "any" which represents the

semantics of the original data. Any simplification of expressions which contain this

type is done by the original expression simplification routines.

Figure 6.6 shows an example of the same program being transformed in both the

untyped and typed versions of the Maintainer's Assistant. Note the use of the type

"any" in the typed version.

User interface — the user interface has also been extended to allow pretty print­

ing and parsing of the extended constructs. This involved adding extra entries into

the output format tables which describe the layout and typesetting of each construct

in the table.clisp file. Changes were also required to the lex/yacc parser which reads

Chapter 6. The Prototype Tool 135

in

in
CO

0)

O A) 0) O lU 01

m i l l
i i i i i i
S S 5 S 5 S
c* c* c" c"

llllll
o ;u ̂ |o 12 2 2
o "o "o "o "o

IB 1̂

I
1
o

X!

o 0- ,

O

1- i

i i i l I I

>

C3
D

a
S o U

03

O
G3

m

CO
0)

Chapter 6. The Prototype Tool 136

the pretty printed representation of the program.

This presents a problem during the dynamic loading of new data types because

the user interface requires re-compilation to introduce new components. This is not

practical during a transformation session and needs some rework in future versions

of the program.

6.3.2 Testing the Changes

At this stage the transformation engine has been extended to allow representation of

typed WSL programs and all of the control fiow transformations have been modified

to work as before. The system does not yet include the module structure to allow ad­

dition of new types/type equivalences (although hooks for expression simplification

are in place) and the DREAM (ghosting) module has not been added.

The operation of the transformation engine needs testing to ensure that the

changes described above have been performed successfully. This testing was per­

formed in two stages:

1. Small, worked examples — the Maintainer's Assistant is supplied with a

number of sample WSL programs whose transformation is described in the user

manual [53]. These examples were performed as per the manual to ensure that

the transformations worked as documented. Whenever a problem was found its

root cause was investigated and corrections were made to the transformation

engine. Similar transformations were also examined to ensure that the same

problem was not also present in those.

2. Assembler restructuring — once the simple examples were working as

documented a larger example was attempted. This was actually the assembly

code module which is used for case study two in chapter 8. During the test

the raw translated code (from assembler to WSL) was pre-processed, prior to

data transformation, using the " f ix_assembler" compound transformation

(see section 8.2.1). This transformation was developed as part of the initial

Maintainer's Assistant research to aid in the removal of many of the idosyncra-

cies found in assembly code. Execution of the transformation takes a number

of hours and involves the use of many different transformations.

Chapter 6. The Prototype Tool 137

This test highlighted a number of problems which had not been caught in the
previous stages and also highlighted two bugs in the original version of the
Maintainer's Assistant. The first was due to incorrect simplification heuristics
which cause unbounded expansion of an expression. This made the trans­
formation execute for a long time (approximately 1 day!) and it eventually
failed when Lisp's internal stack space was exhausted. The second problem
was with the transformation of action systems (they allow gotos to be repre­
sented). The transformations were not recognising calls to other actions which
occurred within certain constructs, e.g. loops, and were incorrectly transform­
ing these. This type of construct was a feature of the case study code and had
not been encountered in previous code.

Once the transformation was executing to completion arbitrary parts of the

transformed program were compared with the original assembler code to con­

firm that the restructured program was functionally equivalent. This often

involved some restructuring on paper to confirm equivalence of the two.

These tests highlighted a number of problems with the addition of data typing

into the language. It is believed that the current version of the control flow trans­

formations now operate in the same manner as the original except for the bug fixes

described above. Future results will , however, be monitored to ensure this.

6.3.3 Adding Modules

The introduction of data type and type equivalence modules to the transformation

engine involved the implementation of new code. These modules are only used by

the DREAM module (except for expression simplification which is not yet fully

implemented) and hence they have very little impact upon the rest of the system.

As a result these modules do not require the same degree of integration testing as

the code described above. The development of the type and equivalence modules

was mainly done using a rapid prototyping model where functionality was tested

against the desired result almost immediately.

A prime objective of the type and equivalence modules was to allow dynamic

loading on demand thus making extension of the system easy. This was done using

Chapter 6. The Prototype Tool 138

the Lisp dynamic program model which allows new program fragments to be loaded

dynamically. Sections 6.2.2 and 6.2.3 described the interfaces for each of the routines

which make up a type module and an equivalence module. The code which represents

these routines was contained in a number of Lisp functions each of which corresponds

to a particular interface definition. When a type/equivalence module is loaded into

the system a small initialisation routine is called which adds this data into a global

list of modules. The unique name of the module, as described in sections 6.2.2

and 6.2.3, is then used to retrieve the module's code when necessary.

Join two assertions together to form the union of the two
Parameters
A,B - Int e r n a l Representations of the assertion

(defun GHOST_Discr-Assert_Union (A B Type)
(Range.Add A B))

;; Derive a range assertion from the item aind i t ' s type
(defun GHOST_Discr-Get_Assert (Item Type Name)

(Let ((Table (LMatchJ Expression
((->?- Fn) (~>?~ El) (~>?~ E2))
Empty)))

(Cond ((Eq ([_Get_] Fn Table)
'+)

(Range_Add ...)
)

(; Other operators

)
(T
' N i l))))

;; The i n i t i a l i s a t i o n routine to i n s t a l l the integer type module.
(defun GHOST_Integer-Init 0
(GHOST-Types_Add_Type 'Integer

#'GHOST_Integer-Blank_Assert
#'GHOST.Integer-Assert.Union
#'GHOST_Integer-Get_Assert
#'GHOST_Integer-Match_Assert
#'GHOST_Integer-Simplify_Expression))

Example 6.3: Module Implementation in Lisp

Example 6.3 shows a cut down version of the integer type module with outline

Chapter 6. The Prototype Tool 139

code for some interfaces. At the bottom of the example is the initialisation function
which adds the module into the global module lists.

(defun GHOST_Get_Assert (Item &key My.Name My.Type)
(f u n c a l l (GHOST-Types-Get.Assert (Get (Get_Type_Category My_Type)

GHOST-Types_Type-List))
Item My_Type My_Neune))

(GHOST_Get_Assert
(Second (Args 7.1temy.))
:My_Naine ([_Get_] Src.Name Table)
:My_Type ([_Get_] Src.Type Table))

Example 6.4: Module Calling Interface

DREAM accesses a modules routines by calling a global function (shown in

example 6.4) which corresponds to the desired interface. One of the parameters

that is passed to this is the unique identifier for the module. These allow extraction

of the module's code from the global list of modules.

6.3.4 Ghosting (DREAM Module)

The ghosting algorithm was described in detail in chapter 5 and the design of its

implementation was given in section 6.2.1. In this section we describe the implemen­

tation process itself and show how the final ghosting transformation was developed.

The first stage of development was concentrated upon the main ghosting routine

do-ghosting. This implements the main phase (see section 6.2.1) of the algorithm

and care was taken to ensure that any testing performed at this stage did not rely

upon any errors being caught in the initial phase.

The do-ghosting routine takes five parameters as shown in example 6.5. The

first two of these are the names of the variables which are being transformed; the

third is the type equivalence theory which is being used and the final two are infor­

mation about the variables, e.g. assertions etc.

The routine transforms the currently selected program fragment and is designed

to be re-entrant. It can therefore be called to ghost sequences of statements, e.g. in

a where construct, which are subcomponents of the currently selected statements.

After transforming a sequence of statements the do-ghosting routine returns up-

Chapter 6. The Prototype Tool 140

(defun do-ghosting (source-var
ghost-var
equiv-theory
source-goodies
ghost-goodies)

)

Example 6.5: The do-ghosting Interface

dated source and ghost goodies values which can be combined with corresponding

values at entry to the routine.

The action performed by do-ghosting for each statement within its scope is

dependent upon each particular statement. Development of this routine started

with support for the assignments-to/uses-of the source/ghost variables. This was

followed by support for basic control fiow constructs, e.g. conditionals and progressed

to support for more complex statements such as loops and action systems^.

Some of the semantically complex statements such as loops and action systems

proved difficult to implement because the input to the area is a combination of the

initial input and the result of every iteration of the loop/action system. In the

current implementation this processing has been restricted to finding the output

from the first iteration and if i t is a subset of original input then that original input

is used. Otherwise the worst case input for that type is used. This saves processing

time at a potential loss of accuracy.

This processing becomes more complicated when considering statements which

may cause a change of control flow mid-way through a particular loop iteration or

action. The loop exit, action call and procedure call statements are all examples of

this and may cause a temporary, or permanent change to the control flow. These are

handled by decomposing the blocks which contain them into a number of sub-blocks

which are bounded by the statements which cause the control flow transfer. The

ghosting operation is performed individually on these sub-blocks and the results

of this is combined by the parent block, i.e. loop, action system, or subroutine

definition.

^Action systems are used to represent code containing goto statements.

Chapter 6. The Prototype Tool 141

In general the parent block must propagate the output of a particular sub-block

to the input of any block where the transfer of control may be passed. This is

made difficult because procedure and action calls may be mutually recursive and it

is generally not possible to determine statically the extent of these calls.

The current implementation takes the most basic approach to this and assumes

that all calls are mutually recursive and therefore each sub-block is treated as though

it may be preceded by any other sub-block and followed by any other. This is in line

with Ward's [88] semantic definition of action systems and subroutine blocks which

uses non-deterministic choice and recursion^.

This approach means that individual sub-blocks must be shown to preserve

assign-use relationships between variable assignments and uses. In our prototype

work this is acceptable because valid assign-use relationships which are not handled

by this method can be handled by applying Ward's control flow transformations to

restructure the program into a form which can be handled. For an example of this

problem and its solution see section 8.2.2 on page 215.

Figure 6.7 shows the control flow of the main constructs which are handled by the

do-ghosting routine. Changes to the flow of control are denoted by dotted lines.

The solid lines represent the statements which are executed. Assign-use relationships

are checked between the points where control flow branches occur.

Once the main do-ghosting routine had been implemented the code which per­

forms the initial and final phases was added. This was built into the @Ghost

METASN^IJ construct (example 6.6) which provides the maintainer's interface to

data transformations. This routine is invoked with parameters specifying the source

and ghost variables and the name of the equivalence theory which is to be used.

Construct Description
©Ghost(Source, Ghost,

Eq ui valen ce-TheoryJd)
Invokes Transformations.

[Ghost?] (Source, Ghost) Returns a list of applicable
transformations.

Example 6.6: MSTAWSL Ghosting Constructs

'^Remember that tail recursion can be converted trivially into an iterative system.

Chapter 6. The Prototype Tool 142

Compound Statements

Composite Statements : 5*-
• ^ '

Loops

Exit

Main Block

Subroutine Blocks
p Procedures

J

- 5 * . • ^

5»—. =»

Action System - A Actions

Key:
Statement Execution
Control Flow Transfer

Figure 6.7: The Control Flow of WSL Statements

Chapter 6. The Prototype Tool 143

At many places during the ghosting routine calls are made to the type and type

equivalence modules. These were done in the manner described in the previous

section using either the type of the current variable or the equivalenceJheoryJd to

select the appropriate module.

6.3.5 Ghosting User Interface

The final stage of the implementation was to provide the ghosting dialogue box

in the user interface. This required a small amount of Xwindows code to display

the box (shown in figure 6.4 on page 129) and also required implementation of the

[Ghost?] AASTAWSL statement. This calls the Types-Compatible? interface of

individual type equivalence modules to determine whether it is applicable. I t then

passes this information to the transformation engine using part of the control flow

transformation dialogue code. At this point a list of applicable transformation is

presented to the user and then a corresponding @Ghost call is made when the user

selects a transformation.

6.3.6 Code Summary

Data typing and data transformation capabilities have been added into the Main­

tainer's Assistant transformation engine. Table 6.1 summarises the changes which

have been made to the original source code in order to perform this. The table

shows the number of lines in the source files including comments. A more precise

method of computation is not feasible due to the structure of Lisp code which uses

brackets as statement/expression terminators.

Subsystem Lines of Code Subsystem
Added Changed Total

Transformation Engine (MA) 1400 3500 153709
Transformations (MA) 1000 1100 127486
User Interface (Xma) 300 300 56973
Ghosting (MA) — new 14789 n/a 14789
Total 17489 4900 352957
(percentage) 4.9% L4%

Table 6.1: Source Code Summary

Chapter 6. The Prototype Tool 144

Table 6.2 details the hardware and software environment which was used during

the extension of the tool. The development and testing was performed using the

UNIX operating system.

Aspect Description
Lisp Interpreter/
Compiler

Gnu Common Lisp (gel), version 2.2
with locally developed patches for dynamic program
image dumping on Solaris 2.4.

C Compiler gcc, version 2.7.2.
OSF/Motif Sun Common Desktop Environment (CDE) Motif.
X Windows X11R6.1
Hardware Sun SPARCstation-20 with 256 Mb memory

(multi-user).
Operating System Solaris 2.4.
Compile Time — MA

Xma
38 minutes (typical). Compile Time — MA

Xma 1 minute 40 seconds (typical).
Executable Size — MA

Xma
10.59 Mb. Executable Size — MA

Xma 1.13 Mb.

Table 6.2: Hardware and Software Environment

Typical data transformation timings are shown in table 6.3. These were taken

while performing the transformations which are described in section 8.2. The trans­

formations were performed over varying scopes to show how the size of code which

is being transformed affects execution time.

The table shows the results of performing two data transformations (ghostings)

over the entire scope of the program. To simulate the eff'ect of transforming a

smaller program a number of actions/procedures were successively removed from

the program. In each case the number of assignments/uses which remained in the

program is shown. The transformation time grows rapidly as the size of the program

grows. This is due to the extra analysis which must be performed on the larger

program. The Xma timings do not vary significantly. This is because the user

interface does not take part in the ghosting itself. The memory size does not tend

to vary significantly. I t is believed that this is due to the operating systems memory

allocation characteristics which tends not to recover significant amounts of memory

from the heap.

Chapter 6. The Prototype Tool 145

Transformed Program M A X m a
Size C P U time Memory C P U time Memory

(mm:ss) (Mb) (mm:ss) (Mb)
Initialisation 0:02 11 0:01 6
Loading File 1:15 18 0:09 14
7250 lines

37 changes 5:14 18 0:01 14
12 changes 5:01 18 0:02 14

4100 lines
20 changes 1:54 18 0:01 14
9 changes 1:49 18 0:02 14

2294 lines
16 changes 0:47 18 0:01 14
9 changes 0:44 18 0:02 14

1145 lines
16 changes 0:21 18 0:02 14
0 changes 0:20 18 0:01 14

Table 6.3: Execution Times of Transformations

The implementation of typed WSL and ghosting is still in the prototype stage.

The core functionality has been provided but some ancillary functions, such as ex­

pression simplification, have been left for future work. The use of the prototype tool

for practical data transformation is examined in chapter 8.

6.4 Summary

DREAM data transformations are incorporated into the Maintainer's Assistant in a

manner which complements the original modular design and user interface look and

feel. The major factors in this prototype are:

• D R E A M transformation module — this module concentrates knowledge

about ghosting transformations and ensures that DREAM transformations are

applied correctly and do not change the semantics of a program.

• Modular data type and equivalence theories — the use of a standard

interface definition for data type modules and data equivalence modules makes

it easy to add new data transformation functionality to the system. These

modules assure correctness of the data transformations.

Chapter 6. The Prototype Tool 146

• User interface — the user interface removes the need for the maintainer to
understand the inner workings of the transformation engine.

The implementation of these changes to the transformation engine has been

discussed. I t has shown that the addition of data transformation facilities to the

Maintainer's Assistant is possible although there were some issues which had to be

overcome before the typed version of the transformation engine would perform the

same transformations that were available in the untyped version.

The next chapter examines the type and type equivalence theories which are

necessary to perform data transformation using the DREAM. It shows how these

are used within the tool and evaluates the operation of the tool during data trans­

formation.

Chapter 7

Data Types and Type Equivalence

Chapters 4, 5, and 6 have shown how data transformation is performed in typed WSL

using DREAM. In this chapter specific data type theories and data type equivalence

theories are presented. These theories are not part of the original work that is

central to this thesis but serve to illustrate the requirements of theories for data

transformation. In particular they demonstrate the properties of a theory which are

required for the data to be transformed.

This chapter concentrates upon two data types: integers and records. The former

is an elementary data type whose values are indivisible (this theory of integers has

no concept of bitwise manipulation). The latter is a common form of composite

type which has a number of statically named components. Composite values can be

referenced either as a whole or as individual components. This behaviour is allowed

by the semantics of typed WSL which are described in section 4.2.2.

For each data type an outline of an axiomatic definition of its properties is given.

This shows how the type is defined and how the properties of some of the type's

operators are represented. For both of these types a brief outline is given which

shows how the type theories are represented in the transformation engine's data

type modules.

Section 7.2 shows how the integer and record data type theories are used in

the generation of data type equivalence theories. An equivalence theory uses the

semantics of the source and ghost variable's types (i.e. records and integers) to show

that individual data expression refinement relations are valid. These data expression

refinement relations are a central part of the ghosting transformation operation and

147

Chapter 7. Data Types and Type Equivalence 148

provide the justification for the correctness of the transformation. The proof of these
relations is demonstrated using two examples: one for integers and one for records.

To illustrate how these data type and equivalence theories are used in practice

an example is presented which shows how the transformation engine transforms a

single integer into a record which contains two integers. In this example the original

integer represents an elapsed number of minutes and the record represents the same

value as elapsed hours and minutes.

Finally section 7.3 outlines how other common data types can be represented and

transformed in typed WSL. Examples from each of the four data type categories

(elementary, composite, structural and dynamic) are presented. These do not go

into the same amount of detail as is presented in the first half of the chapter but

illustrate how the same techniques can be used for other data types.

7.1 Data Type Theories

The data type model which has been added into WSL is based around a shallow

semantic embedding. This allows a data type theory to be introduced as a number

of axioms which allow the properties of that data type to be described and rea­

soned about. These axioms must be written as formulae of infinitary logic^ to allow

integration with the WSL semantics and transformation theories.

This model of a data type represents values as atomic units which cannot be de­

composed by the transformation theory. This means that all of Ward's [88] original

transformations are still valid and also leaves scope for the proof of new transforma­

tions which use the axiomatic definition of the data type to prove transformations

which combine control flow and data manipulation. These transformations are not,

however, examined further within this thesis.

In addition to this model of data types the semantics of typed WSL have been

extended to allow direct representation of composite data types. This makes the

statically named components of these visible to the WSL control flow transforma­

tions. I t , therefore, enables statements which use/assign-to individual components

of these types to be transformed using Ward's transformations.

^ Infinitary logic is used to describe the semantics of WSL.

Chapter 7. Data Types and Type Equivalence 149

Other type categories which do not have static component names, i.e. structural
and dynamic types, cannot use this semantic extension. Therefore accesses to the
individual components of these cannot be transformed using the original control flow
transformations.

The general description of an assignment in typed WSL is

x : = f (. . .)

where / (. . .) is an expression which returns a value which has an appropriate type

for variable x. This value may be arbitrarily complex and for data types which

contain a number of distinct components it would contain an appropriate grouping

of values. For assignments to individual components of a compound data type,

e.g. to an entry in an array, the expression will generally take the original value of

variable x as one of its parameters and modify that value in such a way that only

an appropriate component is changed.

7.1.1 Integers

The integer is a common form of elementary data type. It is available in most pro­

gramming languages and is used where exact values are required, e.g. for counting

loop iterations. This is in contrast to real numbers which provide inexact repre­

sentations although the range of values that real numbers can represent is much

wider. DiflFerent programming languages/computer architectures provide many dif­

ferent variations of the integer data type. These variations reflect diff'erences in size

(number of bits) and differences in the semantics of the operators that act upon the

integers. In many cases the machine architecture/processor that the programs run

upon (especially for assembly code) can make a large contribution to the semantics

of these data types.

Transformation of integer variables requires care to ensure that subtle properties

of the variables and their associated operators do not cause the semantics of the

program to be changed. In particular, care has to be taken with overflow conditions;

some implementations just wrap around when this occurs, while others remain at

the most positive, or most negative, value. In many situations the implicit properties

Chapter 7. Data Types and Type Equivalence 150

of the program ensure that overflow cases do not occur but this is often not checked
explicitly except in languages such as Ada where exceptions are raised if integer
values go out of range. Note that exceptions are not considered further in this thesis
because the WSL language does not contain an exception construct.

This section presents the syntax and semantics of integers as developed for use

within typed WSL. These are used to develop transformation theories for integers

and an example is given to show how the theories are used in practice. This theory

is defined in an axiomatic manner and proofs which demonstrate the consistency of

all integer constructs are not shown. This approach has been taken because the data

type theories are not the central part of the thesis^ and time constraints precluded

development/use of a more rigorous theory.

Describing the data type

Integer types are described by the range of values that can be held within a specific

instance of the data type. These ranges are then used to describe the behaviour

of the data type and its operators. The theory presented below does not take the

physical representation of the values into account and as such it cannot be used to

reason about integers in terms of bit representations.

Integers can be conveniently represented by enumerating all of the possible values

that can be contained within an instance of the type. This is done using a set

enumeration which is written as

discrete-typedef ::— {VQ, v i , . . . , •y„_i, Vn}

A shorthand notation is defined which allows a description of these ranges to be

abbreviated. This is written as

discrete_type_group(^;s,^;e) ::= {vg,... ,Ve} where Vs < Vg

Example 7.1 shows how an integer type declaration is written in typed WSL.

Ranges are accessed, manipulated and compared by the new A^r^WSL con­

structs shown in table 7.1. Most of the definitions shown in the table are just com-

Hhe DREAM data transformation technique in chapter 5 is the central part of the thesis.

Chapter 7. Data Types and Type Equivalence 151

type This-Type = [vs - Vg],

where Vg represents the starting value and

Vg represents the final value in the range.

Example 7.1: Integer Type Declaration

mon set theoretic operators but the range constructors extract information from the

program as follows:

• The type_range constructor returns the range which is specified within its

parameter's type declaration.

• range-of computes the value held within the specified variable at the current

point within the program. In theory this involves finding the ranges of all of the

previous assignments to the variable and returning their combined range. The

computation required to do this is non-trivial due to the MSTAWSL internal

program representation's structure which does not contain any direct links to

the previous assignment. To work around this problem the DREAM module

keeps track of the assignments to the source variable (see section 6.2.1), thus

providing information for this variable directly. I f the values for any other

variables are required the current implementation does not search for them it

merely returns the entire range of the variable's type. Potential solutions to

this problem are discussed in section 9.2.

• The make_range operator is defined to be discrete-type-group{s, e). In other

words it returns the range which contains all of the values which are specified

by the discrete type group.

These discrete type range operators (table 7.1) will be used in the following pages

to describe the semantics of the integer data type.

Chapter 7. Data Types and Type Equivalence 152

Construct Definition Description
Constructors — return a range
type-range f t) The defined range of the type.
range-offx) The range of values in the specified

variable.
makej-angefs, e) Make a range containing all of the

integer values from s to e.
Selectors — return an integer
start fa) min(a) Return the first (lowest) value in the

range a.
finishfa) max(a) Return the (highest) last value in the

range a.
Operators — return a range
range_addfa, b) aU b Add range a to range b.
range-subtractfa, b) a \ b Subtract range b from range a.
range_intersection(a, b) a n b Return the intersection of ranges a and b.
Boolean Operators — return a boolean value
rangeJncludesfa, b) a C b Whether range a includes range b.
range_excludes(a, b) a n b = 0 Whether range a excludes range b.
rangeJntersectsfa, b) anb7^0 Whether range a intersects with range b.
range_equals(a, b) a = b Whether range a equals range b.
range_emptyfa) a = 0 Whether range a is empty.

where a and b are discrete type ranges,

t is a type name,

a; is a variable name and
s and e are integers.

Table 7.1: Operators upon Discrete Type Ranges

Chapter 7. Data Types and Type Equivalence 153

Integer Operators

A number of operators for integer types are included in the theory. These do not

provide an exhaustive set of values but cover some of the more frequent operators.

The following are defined:

Operator Description Operator Description
+ Addition — Subtraction
* Multiplication / Integer Division

mod Modulus ** Exponentiation
< Less than > Greater than
= Equals <> Not equals

Table 7.2: Integer Operators

Operator Semantics

Table 7.3 shows how the semantics of individual operators are defined. Specifically, i t

shows the semantics of the addition operator, , where the semantics of overflow

are defined as truncation to the value nearest to the actual result, i.e. the most

negative or positive. This means that the result of the addition always lies within

the range of the data type. These properties of the operation are described using

pre- and post-conditions.

Expression funct "+"fX„ : t.X,: t) : t
Input Ranges: R„ = range-offX)

Rh = ranse-oi(Xh)
Rf = type_rangefi)

Precondition: range_includesfi?„, Rt)A
range-includes (i?f„ Rf)

Output Range
(Postcondition)

(Rn = (make-range(fstartfi2„) -I- startfi?/,)),
ffinishfi?J + finishfi?,)!) n R,))

Table 7.3: The Semantics of Integer Addition

The output range (or postcondition), Ro, shows how the output relates to the

input. In this case the output range lies within the possible sums of the target's

range. The characteristics of this implementation force the result to lie within the

Chapter 7. Data Types and Type Equivalence 154

range of the functions return type and hence the output range is the intersection of
the widest possible range and the range of values for the type.

If the definition of the plus operator treated overflow as having wrap-around

semantics then the postcondition formula would need amending to account for this.

The overflowed values would be converted to values in the lower (or upper) part of

the range.

Exception semantics could also be defined for this operator but this is currently

not possible in WSL because the language does not provide an exception mechanism.

The other integer operators have similar semantic definitions. These definitions

are used to prove common properties of integer expressions such as commutativity

and associativity. Note that each of these properties has a given precondition about

the input's range over which it is valid. The semantics are also used by the type

equivalence theories to show that particular transformations are valid. An example

of this use is given in section 7.1.2.

Integer Type Module

The integer data type module is implemented using the interface described in sec­

tion 6.2.2 (and shown in figure 6.2 on page 123). The type module represents the

properties of the integer operators which have been semantically defined above. It

does not, however, attempt to act as a theorem prover and derive new properties

from the existing ones. This limits the type module's operation to those pre-proven

properties but this is not seen as a major limitation because the same technique was

used successfully in the untyped WSL implementation of the Maintainer's Assistant.

The module is conceptually separated into two groups of routines:

• Blank-Assertion, Assert_Union, Get-Assert and Match-Assert — these

manipulate assertions about integer ranges which are extracted from the pro­

gram. The assertions are used to represent the sets of values which may be

stored within a particular variable. This information is used by the data type

equivalence modules to show that equivalence relations, and hence transfor­

mations are valid.

For example, the get.assert routine may be called to generate an assertion

for an expression which consists of an addition operator. The routine would

Chapter 7. Data Types and Type Equivalence 155

use the semantics of "+" , which were defined earlier, to calculate the output
range for the operator. This value would then be returned to the caller (i.e.
the DREAM module) which would use this value appropriately.

The use of these assertion interfaces for each data type theory allows the

theory to define an assertion format which is relevant to it . This means that

the transformation engine can learn the format of the assertions for new types

without re-implementation.

• s impl i fy .express ion — this provides the replacement for the functionahty

of the symbolic mathematics and logic modules which were used in the original

Maintainer's Assistant. The expression which is passed to it as a parameter

is simplified using the semantic properties of integers. This simplification is

guided by heuristics which choose a specific simplification if more than one

rule matches.

The implementation of these modules does not have a direct correspondence with

the data type theory but there is sufficient similarity in the implementation to allow

the correctness of the implementation to be verified by inspection.

7.1.2 Records

A record is a common method of grouping which allows a number of related objects to

be referenced as a single unit. Each object within the record can also be referenced as

an individual entity which allows operations to be performed upon the components of

these types. The semantics of composite types are therefore formed by combination

of the semantics of its components. This section shows how the semantics of records

are represented in typed WSL.

Describing the data type

The primary function of a composite type is to store its individual components'

values and to allow them to be retrieved from the data object. To allow this each

component must be uniquely identified within the record. The type definition defines

this as an ordered list of component .name-type pairs. Note that a composite type

must have a static name. Types with dynamic names fall into the structural type

Chapter 7. Data Types and Type Equivalence 156

category. Records fall into the composite type category and can take advantage of
the typed WSL semantics (as defined in chapter 4) to map each component onto a
unique WSL variable. The semantic definition is written as

record-type ::= { { c i , t i) , (c2, ^ 2) , • • • , (c n , ^ n)) -

A record is defined (in a WSL program) using a corresponding ordered list of

component names and types (see example 7.2). This information maps directly onto

the semantics described above.

type This-Type = (cj : ai, C2 : ^2, C3 : ^3)-

where C i , C2 and C3 are component names,

ti, t2 and are type names.

Example 7.2: Record Type Declaration

One limitation upon the components of record types is that their constituent

components may not include the current type which is being defined. I f this was

allowed then the record would be recursive and the static nature of composite types

would mean that objects of that type would be infinite in extent. This restriction is

enforced by most programming languages which allow static composite types. An

exception to this would be a lazy functional language which only evaluates enough

of the data structure to allow it to perform a particular operation.

Record Operators

In general there are very few operators which are specific to all record subtypes. This

is because records are not generally meaningful in their own right but instead are

usually associated with a particular context, e.g. abstract data types. The operators

which act upon these abstract type records are usually defined as subroutines within

the program.

The theory of record types which is presented here only defines the operators

which are shown in table 7.4. This is consistent with the operators provided in many

programming languages. The theory does, however, diff'er from some languages, e.g.

Chapter 7. Data Types and Type Equivalence 157

C, because the typed WSL assignment operator assigns to each individual component

of a record whereas the equivalent operation in C must be done using a bitwise copy.

Each of the record constructs is described below and we show how they are defined

in terms of typed WSL's semantic framework.

Construct Abbrev. Description
Constructors — return a record value
aggregate(ui,... ,Vn) A value for the specific type generated by

aggregation.
Operators — return the component's l-/r-value
l-select(c„, x) X.Cji Retrieve the 1-value of component c„ from

object X to allow assignment to it.
r-select(c„, x) Retrieve the r-value of component c„ irom

object X .
Statements — no return type
Assignfx, v) X : = V Assign to all components of x from record v
Boolean Operators — return a boolean value
Equalsfx, v) The corresponding components of two records

are equal.
Others are usually defined in specific cases.

where x and y are record variables,

C i . . . c„ are component names,

V is a record value and
vi.. .Vji are component values.

Table 7.4: Operators for Record Types

Aggregation — aggregation allows the construction of a record value. It is de­

scribed in terms of the record's individual components and enforces the rule that all

components must have a corresponding value. Semantically the aggregation opera­

tor creates an ordered list of expressions each component of which corresponds to a

component in the record definition.

aggregate ::= (V Q , v i , . . . , V n - i , ^ n)

When the typed WSL semantic transformations are applied (as shown in sec­

tion 4.2.5), the list will be expanded into individual value-type pairs which will be

Chapter 7. Data Types and Type Equivalence 158

used appropriately.

L-Select — this construct allows direct assignment to a particular component of

the record. I t has a direct semantic mapping onto the typed WSL semantic operator

of the same name.

R-Select — this performs a complementary operation to 1-select. It allows the

value of a particular record component to be used directly within a program.

Assign — assign is not strictly a record construct; it is actually the primitive

typed WSL construct which expands semantically into a parallel assignment to each

component of the record as follows

X : = V = (x.Co : = V . C Q , x .C i := v . C i , . . . , x.c„ := y.c„)

In terms of 1-select and r-select is written as

< 1-select(cn, x) := r-select(cn, v),

l-select(ci,x) := r-selectfci, v),

1-selectfc„,x) := r-select(c„, v) >

The semantics of typed WSL enforce the rule that the types of the left-hand

side and right-hand side must be the same. The value on the right-hand side could

therefore be generated from another variable or from an aggregation construct.

Equals — The equals operator specifies that all components of one record are

equal to those of another record. The semantics of this are defined as:

X = 7 = (x.Co = 7-Co) A (x .Ci = y .C i) A . . . A (x.c„ = y.cj

This assumes that all of the component types of the record have equals operators

defined.

Chapter 7. Data Types and Type Equivalence 159

Record Type Module

The record type module differs from the integer type module (an elementary type)

because it must be capable of handling information about all of the record's compo­

nents. This makes the record type module dependent upon the type module of its

individual components and it calls upon these modules to provide assertions and to

simplify expressions.

• Blcink-Assertion, Assert_Union, Get_Assert and Match_Assert — the as­

sertions which are produced/manipulated by these routines consist of lists

of assertions which describe the current properties of each component of the

record. Each sub-assertion is generated by calling an appropriate routine from

the component's type module.

The Get-Assert routine uses the definitions of any record operators. These

describe how the assertion is to be formed in more detail. This may cause

the routine to call the Get-Assert routine for a subexpression of the main

expression.

• simplif y-expression — this performs the simplification of any record type

operators and may invoke the simplify routines of component type routines.

The implementation of the record type module is particularly straightforward

because of the relatively small number of operators which are defined for it .

So far in this chapter we have demonstrated how type theories can be constructed

in typed WSL and have outlined how these can be used in the implementation of

type modules. We will not go into more detail about the description of data type

theories in this thesis but we will use the theories to show how type equivalence

theories are developed and how they are implemented.

7.2 Data Type Equivalence Theories

Data type equivalence theories are used to demonstrate that a data expression re­

finement relation (see section 5.5.2) is valid at a specific point within the program.

Chapter 7. Data Types and Type Equivalence 160

The validity of this relation allows the ghosting transformation to be performed at
that point. This, in turn, allows the representation of the data to be transformed
and therefore allows a program to be re-engineered.

DREAM separates the data transformation into three stages:

1. Generating assignments to the ghost variable which are equivalent to the ex­

isting assignments to a source variable;

2. Propagation of the assertions which show the equivalence of the assignments

to the places where the variables are used and

3. Use of this assertion information to generate an equivalent expression which

uses the ghost variable rather than the source variable. If this expression can

be generated then the data expression refinement relation is shown to be true

and the ghosting succeeds.

The relation between the source and ghost variables is governed by an invariant.

This invariant is used to generate the ghost variable assignments from the source

assignment and is then combined together with an assertion about the range of

values which could have been assigned in the source assignment. The assertion

is propagated to the places where the source variable is used (with a potential

merging of assertions whenever two control flow paths join). The invariant part

of the assertion is then used to generate a suitable use for the ghost variable and

the data expression refinement relation is proven for this specific relation. In this

section we show how the truth of the data expression refinement relation can be

demonstrated for both integer and record types. The final section of this chapter

shows how these theories are applied in the transformation engine.

7.2.1 Integer Equivalence Theory

To demonstrate how an integer equivalence theory is proven we will use a small

example where the representation of a year value between 0 and 99 is to be trans­

formed to values between 1900 and 1999. This is a likely scenario given the current

problems regarding the year 2000.

Let us say that we wish to replace the integer variable "oldyear" with the integer

Chapter 7. Data Types and Type Equivalence 161

variable "newyear" using an invariant of

newyear = oldyear + 1900

This would correspond to the data transformation shown in example 7.3 assuming

that we know that the function inputQ returns values from 0 to 99.

begin begin
yar < oldyear : value yar < newyear : value

:= inputQ >: •= {input{) + 1900) >:
output{oldyear + im^); ^ output{newyear)\

end ~ end
where where

type value = [0 - 10000]. type value = [0 - 10000 .
end end

Example 7.3: Year 2000 Date Transformation

The transformation must guarantee that the transformed program provides the

same set of possible values to the outputQ routine. The first stage of doing this

is to replace the assignment to newyear with an assignment to oldyear according

to the invariant. The semantics of integers are used to show that this can be done

by proving that the newyear variable can hold all of the possible values which

correspond to oldyear^s value.

At this point an assertion is generated which states that

{oldyear G { 0 , . . . , 99}) A {newyear = oldyear + 1900)

This assertion is then moved using Ward's transformations to the point in the

program where oldyear is used.

A new expression which corresponds to a use of oldyear is generated by rear­

ranging the invariant to produce the original value of oldyear from the newyear

variable. In this case the expression is

newyear - 1900

Chapter 7. Data Types and Type Equivalence 162

This will eventually be simplified using the integer type theory rules to produce
the simple expression presented in example 7.3.

To show that this ghost expression can replace the source expression we must

show that a corresponding data expression refinement relation is true. In this case

the relation is

3h : integer ^ integer •

^oldyear, newyear • {oldyear, newyear) € h

[{g{newyear) C /{oldyear)) A [{g{newyear) = 0) = [/{oldyear) = 0)))

where /{oldyear) is {p\p = oldyear},

g{newyear) is {q \ q = newyear — 1900} and

h = {(0,1900), (1,1901),... , (99,1999)}.

The relation h specifies the range over which the ghosting must be true and is

determined from the assertion about the source variable's possible values and the

invariant. In this case i t is the set of equivalent years.

The truth of the data expression refinement relation is shown using the semantics

of the integer data type and standard mathematical reasoning techniques. The truth

could be proven by case analysis but in this case it is easier to use the invariant to

rewrite g{newyear) to be

{q\q = {oldyear + 1900) - 1900}

This simplifies to oldyear and hence the relation can be shown to be true.

In some cases the transformation may fail because there may not be a suitable

inverse of the invariant relation over the possible range of source values. For instance,

if we were transforming example 7.3 in the reverse direction, e.g. from a four digit

year to a two digit year, and we defined an invariant of

newyear — oldyear mod 100

then it would not be possible to generate an inverse relation if the range of the

Chapter 7. Data Types and Type Equivalence 163

oldyear variable spanned more than 100 years.

The DREAM theory of data transformation ensures that the proof of the data ex­

pression refinement relation is sufficient for the data transformation that it describes

to be performed.

Integer Type Equivalence Module

Type equivalence modules are implemented in a similar manner to the data type

modules. They provide only two interfaces: assignment-body and use_body. These

use the supplied invariant to select an applicable equivalence relationship; this in

turn allows an appropriate assignment-to/use-of the ghost variable to be generated.

If no equivalence relationships are applicable then the equivalence routine signals to

the DREAM module that the transformation has failed.

Invariant Xg — Xg + C

Input Ranges: Rg = tvDe-rangefXj)
= range_offXj

Assignment: Xg Xg + C
Expression: X g - C
Validity
Condition:

ranKeJncludesfmake-rangefstartfi?.,) + C, Validity
Condition: &msh(R^ + C),Rr,)

Table 7.5: Integer Transformation Relation

Proof of the data expression refinement relation by the transformation engine is

generally non-computable. For this reason we adopt a similar approach to that used

to describe the properties of individual data type operators. A general invariant

is used to describe a particular representation change. This is used to produce an

applicability condition for the use of this relation and if the condition is satisfied

the specified assignments and uses can be used to replace the source variable. For

example, the transformation from a two to a four digit year, which has been presented

in this section, uses the invariant

newyear = oldyear + 1900

and its equivalence relation can be generalised as shown in table 7.5.

Chapter 7. Data Types and Type Equivalence 164

This states that the ghosting transformation is valid if the range of the ghost
variable's type {Rg) includes the entire range of the source variables possible input
values (shifted along by C). The rule also states what the ghost assignments and
expressions will be in this case.

7.2.2 Record Equivalence Theory

Proof of record type equivalences is performed in a similar manner to that used for

elementary types. I t is slightly complicated however because the value of a record

variable is made up of a number of individual components. This means that the

source and target expressions /{x) and g{y) are described in terms of the whole

record. Proof of the equivalence relation is shown by demonstrating that it is valid

for all possible combinations of individual values.

The source and target assignments/expressions do not necessarily have to use

all of the components of the records which are being transformed. For instance,

it is likely that one component of the source record is assigned-to or used within

the scope of the ghosting. In this case the equivalent expression, g{y), would be

described in terms of a corresponding component in the target expression.

Common transformations for record types include those which add and remove

components from the record. Adding a component could use an invariant of

(x.ci = y.c^) A {x.C2 = y.c^) A (x.Cs = y.cj

where x has as a record type with components C i , C2, C3 and

y has as a record type with components Ca, ĉ , Cc, c .̂

This operation would be valid in all cases because the new component will not

be used initially and therefore i t will not affect the output of the program.

The converse, removing a component, is only possible if that component is not

used within the scope of the ghosting. It is not immediately obvious how this

equivalence is proven because it seems that there is no mechanism in the theory

for showing that components are missing. The answer to this is, however, simple

because the invariant does not have an inverse if the value of the missing component

Chapter 7. Data Types and Type Equivalence 165

is used. This means that there is no suitable equivalence relation to prove and hence
the ghosting transformation is not valid.

The proof of a record type equivalence relation/record transformation is not

shown in the thesis because it is performed in a similar manner to that for inte­

ger transformation. For the same reasons record type equivalence modules are not

described here either.

7.2.3 Ghosting Example

The data type theories and type equivalence theories demonstrated above are used to

allow data transformation using the ghosting technique. In this section an example

is presented which shows how the theories are combined in practice to perform data

transformation. The example shows how the representation of elapsed time can be

changed from a number of minutes into a record consisting of hours and minutes.

During the description of this transformation a number of features are identified

which shows how the formal transformation theory can help to avoid potential re-

engineering errors.

The initial code is shown in example 7.4 and has been carefully designed to show

only the essential components for this transformation. In particular, it does not

show why the time value is used or any intermediate steps between assignments and

uses. The transformation examples are presented using the six steps of ghosting

given in chapter 5 on page 97.

The example transformation will replace the "time" variable by a "daytime"

record which contains "boms" and "minutes" fields. The structure of these is shown

in step 1 (example 7.5) where the replacement type and variable have been intro­

duced. The relationship (invariant) between the old and new data representations

is

time = (newtime.iiours x 60) -I- newtime.minutes

The data expression refinement relation which describes this invariant is shown

in table 7.6. This has been derived in a similar manner to the theories described in

Chapter 7. Data Types and Type Equivalence 166

begin
external < h : int32, m : intmin >'•

var < time : int32 •= 0 >:
time := {{h x 60) + m);
print("hours: ",

(time 60),
minutes: ",

(time mod 60))
end

end
where

type int32 = [0 - {2^^ ~ 1) .
type intmin = [0 - 5 9] .

end

Example 7.4: Time — The Initial Code

begin
external < h : mt32, m : intmin >

var <time : int^^ '•— 0,
newtime : daytime :— [0,0] >:

time := ((ii x 60) + m) ;
priiit("hours: ",

(time -=- 60),
", minutes: ",
(time mod 60))

end
end

where
type daytime = {hours : int^i, minutes : intmin)-
type mt32 = [0 - (2^2 _
type intmir, = [0 - 5 9] .

end

Example 7.5: Time — Step 1: New Types and Variables Added

Chapter 7. Data Types and Type Equivalence 167

Invariant -^s — {^ga X C) + Xgb

Input Ranges: R. = range_offX,)
Rgn = tYX)ejcanse(Xg„)
Rgh = tyvejran&eiXgh)

Assignment: < ^ S a • = Xg/C',
Xg(, := Xg mod C

Expression: iXgaXC)+Xgb
Validity
Condition:

ranEeJncludesfmake-rangefO, C), Rgh)/\
range_includes(make_ranKefO, ((finishfi?,)/C) x C)),Rgn)

Table 7.6: Time Transformation Relation

table 7.5; further proof is not shown here.

The invariant is then used to introduce assignments to the ghost variable which

are equivalent to the source variable's assignments. Example 7.6 shows the program

after these have been introduced. Note that the assignments to newtime.hours and

newtime.minutes have been simplified in the example from the raw substitution

described by the transformation relation. For instance, newtime.hours has been

simplified from

newtime.iiours := {{h x 60) -|- m) 60;

to

newtime.iiours := h;

This simplification relies heavily upon the properties of both h and m because

their ranges determine whether the arithmetic simplifications are possible. In the

case above the division can be rewritten, using the law of integer distributivity over

, into two division operations whose results are then summed together. This is

written as

iiewtime.iiours :={{hx 60) ^ 60) + (m ^ 60)

The first part of the resulting addition can be simplified to i i using the laws of

identity, i.e. {X x C)/C = X. The simplification of the second part depends upon

Chapter 7. Data Types and Type Equivalence 168

begin
external < h : intz2, m : intmin >

var <time : int32 •= 0,
newtime : daytime := [0,0] >:

time := {{h x 60) + m);
newtime.iiours := h;
newtime.minutes := m;
print{ "hours : ",

(time-^ 60),
", minutes: ",
(time mod 60))

end
end

where
type daytime = {hours : intz2, minutes : intmin)-
type mt32 = [0 - (2=̂ ^ _ i)]^
type intmin = [0 - 59].

end

Example 7.6: Time — Step 2: Assignments to Ghost Variable Introduced

the range of m. In our example the m variable is limited to values between 0 and

59 which means that the result of m 60 is always 0. I f the range of the variable

extended beyond 59 then the division could not be simplified further.

This situation highlights the benefit of using a formal tranformation technique

because manual introduction of the new representation may have resulted in this

complication being overlooked and the expression being simplified anyway. In gen­

eral the transformation engine will tend to err on the side of caution and will not

simplify expressions unless it is sure that it is possible.

Example 7.7 shows the program with assertions added which state the range

of the source variable and state that the source and ghost variables are equivalent.

This assertion is a by-product of the assignment introduction because the equivalence

theory guarantees that this is correct for the ghost assignment.

The assertion is then moved to the places where the source variable is used. In

this case the operation is trivial but i t could involve moving the assertion along many

possible control flow paths until a use is found. The assertion movement could be

interrupted in a number of ways:

1. i f the source variable is re-assigned at a point between an assignment and use

Chapter 7. Data Types and Type Equivalence 169

begin
external < i i : mt32, m : intmin > '•

var <time : mt32 := 0,
newtime : daytime := [0,0] >:

time := ((ii x 60) + m);
newtime.hours := h;
newtime.minutes := m;
{range Jncludes(range-of(time), type-rangefmt-^?)) A

(time = (flewtime.hours x 60) -I- uewtime.minutes)};
priiit("hours: ",

(time 60),
", minutes: ",
(time mod 60))

end
end

where
type daytime = {hours : ints2, minutes : intmin)-
type mt32 = [0 - (2^^ _
type intmin = [0 - 59].

end

Example 7.7: Time — Step 3: Equivalence Assertions Introduced

then the current assertion cannot be propagated any further and a new ghost

assignment/assertion is generated;

2. i f the ghost variable is assigned-to then the equivalence assertion cannot be

propagated further and the transformation fails.

At this stage the ghosting transformation is completed by replacing uses of the

source variable with equivalent uses of the ghost variable. Example 7.8 shows the

program after the uses have been transformed. These uses have been simplified

in a similar way to the assignments leaving just uses of the iiours and minutes

components.

Example 7.9 shows the final result of the transformation when the source variable,

its assignments and the assertions have been removed. This represents both steps 5

and 6 as shown in the description of ghosting in chapter 5.

Chapter 7. Data Types and Type Equivalence 170

begin
external < h : mt32, m : intmin >'

var <time : mt32 := 0,
newtime : daytime := [0,0] >:

time := ((ii x 60) -I - m);
newtime.hours := h;
newtime.minutes :— m;
{range-includes(range-of(time), type_range(mt39)) A

(time = (newtime.hours x 60) -I- newtime.minutes)};
print("hours: ",

newtime.iours,
", minutes: ",
newtime.minutes)

end
end

where
type daytime = {hours : int32, minutes : intmin)-
type mt32 = [0 - (2^^ _ ly ^
type intmin = [0 - 5 9] .

end

Example 7.8: Time — Step 4: Source Variable Uses Ghosted

begin
external < h : mt32, m : intmin >•

var < newtime : daytime :== 0 >:
newtime.hours := h;
newtime.minutes := m;
prjnt("hours: ",

newtime.hours,
minutes: ",

newtime.minutes)
end

end
where

type daytime = {hours : intz2, minutes : intmin)-
type mt32 = [0 - (2^2 - l) .
type intrr,ir, - [0 - 5 9] .

end

Example 7.9: Time — Transformation Complete

Chapter 7. Data Types and Type Equivalence 171

Issues Raised

Study of the example presented above has highlighted a number of important issues

which characterise the DREAM data transformation method. These are:

1. Highlighting errors/code dependencies — the introduction of an assign­

ment to the newtime.hours variable highlighted the potential for a dependency

upon the m variable. I f m (input minutes) could introduce values which are

outside of the range of minutes in an hour (i.e. 60 or greater) then the assign­

ment to newtime.hours would be drastically different. This feature of the code

could easily be a coding error or it could be a deliberate dependency which

a maintainer may have missed and consequently introduced an error into the

program. The use of formal data transformations automatically takes this into

account by removing the potential for these subtle mistakes.

2. Refinement is also possible — the time transformation example used an

equivalence relationship between the old and new representation. In some

cases it would be possible to use refinement relations which take away repeated

information from the data. For instance, an angle measurement may originally

have represented the total distance turned (i.e. there could be more than one

rotation) but the variable representing this may only be used to measure the

current angle travelled around a circle. The transformed variable could then

hold the original value modulo 360 degrees.

3. Different complexities of transformation theory are possible — a

transformation theory does not have to handle every possible relationship be­

tween source and ghost variables. It is acceptable to use simple theories for

basic cases such as direct integer to integer conversion but more complex the­

ories are needed if there is a more complex relationship between new and old.

The transformation theories must, however, be able to recognise the limits of

their capabilities.

4. User input is important for meaningful restructuring — if the invariant

used in the ghosting example above had been slightly different, e.g.

Chapter 7. Data Types and Type Equivalence 172

time = (newtime.hours x 59) -I- newtime.minutes

then the final representation of the data would have been different. The main

change is that the ghosted assignments/uses would not simplify as they did in

the example. This would have resulted in a semantically equivalent program

but the program may not be any more meaningful.

The integer and record data type and type equivalence theories which have been

presented here will be used in section 8.2 as the basis for evaluating the automated

application of DREAM transformations.

7.3 Other Data Types

In the remainder of this chapter we will consider a number of other data types

which are commonly found in programming languages. An overview is given which

shows how their semantics would be described in WSL and which shows some of the

transformations which may be performed upon these types. No attempt is made to

fully specify these types. This is left for future research.

7.3.1 Discrete Types

Discrete types are ones whose values can be precisely enumerated (although there

may be infinitely many of these values). Section 7.1.1 presented a theory for the

integer data type which is a common discrete type. There are many other discrete

types which share similar properties and which can, therefore, be described and

transformed in a similar manner, i.e. in terms of a set of possible values. Common

discrete types are shown in table 7.7.

Equivalences between discrete types are described in terms of mappings between

individual values in the source and ghost types. These mappings do not have to

map to/from every possible value but do have to provide a mapping for all of the

values which may be stored within the source variable.

Chapter 7. Data Types and Type Equivalence 173

Data Type Description
Integers Described in section 7.1.1.
Bits A subclass of integers which contain only the values zero and one.

These are commonly referred to in terms of groups of them which
make up the machine representation of data, e.g. bytes.

Characters These are very common in programming languages and a number
of different groupings/encodings exist. Examples include: ASCII
and EBCDIC.

Enumerations Enumerations are used to represent program specific discrete
types. They allow names to be defined which represent individ­
ual states. There may often be an ordering associated with the
members of an enumeration. This allows comparison of members
using relational operators, e.g. "<" and ">" . Many languages
allow the implementation of an enumeration to be specified ex­
plicitly by defining a mapping between names and numbers.

Boolean A boolean value represents the true and false logical values which
are used in boolean algebra.

Table 7.7: Common Discrete Types

In many cases the equivalence mapping will be one-to-one. For example, the

ASCII character encoding maps each character onto an integer. Part of this encoding

is shown pictorially in figure 7.1. A transformation could use this equivalence relation

to convert the storage of a character to an integer, or vice-versa. Another example

may involve a transformation from the EBCDIC encoding into the ASCII encoding.

In this case not every EBCDIC character has an ASCII equivalent and any variable

which stores one of the unmapped characters would cause the transformation to

fail. The transformation would also fail i f the source program performs an integer

comparison of the codes for the two characters. The ghost program would not be

able to do this operation because the ordering of the characters in the two encodings

is different.

I t is possible to have a many-to-one mapping as shown in figure 7.2. In this

example the source program encodes a boolean value as an integer: zero represents

a false condition and non-zero represents a true condition. A transformation may

be used to change the integer representation into a boolean representation. This

mapping is valid provided that the original program does not perform any operation

which distinguishes between any of the non-zero values.

A many-to-one transformation is actually a data abstraction operation. The

Chapter 7. Data Types and Type Equivalence 174

A 65 A 65

B 66 B , 66

C 67 C 67

D 68 D 68

E 69 E 69

F 70 F 70

Character Integer

Figure 7.1: Mapping ASCII Characters onto Integers

4 True 4 True

Integer Boolean

Figure 7.2: Mapping from Integers to Boolean Values

Chapter 7. Data Types and Type Equivalence 175

transformation is hiding some of the implementation detail of the program. Note,

however, that in terms of program output the transformation is actually an equiva­

lence relation because there is no observable difference in the final output state.

One-to-many transformations can be performed in a similar manner to those de­

scribed above. These correspond to the reverse of the many-to-one transformations

and are used to refine the implementation of data. A typical example of this would

be a refinement of false into a non-zero number whose exact value reflects the rea­

sons for failure of a particular operation. A transformation which is used to perform

this type of operation will need some form of manual/heuristic guidance to help it

to determine what the correct value should be.

Finally many-to-many equivalence relations are possible. These allow arbitrary

mappings between source and ghost types. Note that in a mapping of this nature

the equivalence relation is actually mapping a group of source values onto a group of

ghost values. Any one of the values in a particular group is equivalent to any other

within that group.

Table 7.8 lists some of the type equivalences which could be used between discrete

type variables. Equivalences between discrete types and other categories of type will

be discussed when the appropriate types are introduced.

Type Transformation
Integer Subtype to different integer ranges. Integer

Change the representation of an integer, e.g. 00, . . . , 99 is trans­
formed to 1900, . . . , 1999.

Bits Convert bits into integers. Bits
Convert to boolean values.

Characters Convert to integer representation and vice-versa. Characters
Convert between ASCII, EBCDIC and other encodings.

Enumeration Convert the use of integer constants into enumeration types.
Boolean Convert an integer boolean, e.g. in C, into a logical boolean. Boolean

Encode an error code into a boolean which signals a reason for
failure.

Table 7.8: Discrete Type Transformations

In each case the ghosted program must be type correct. That is a ghost expression

must have the same type as the corresponding source expression. For instance, if a

character is replaced by an integer representation and the original program uses the

Chapter 7. Data Types and Type Equivalence 176

original character as input to a character printing routine then the ghosting must

replace the original character with an expression which converts from the integer

into a character.

7.3.2 Real Numbers

Another commonly occuring elementary data type is the real number. This allows

the representation of inexact quantities as opposed to the exact quantities which are

represented by discrete types.

There are two main representations of real numbers: fixed point and fioating

point. The former represents numbers with a fixed exponent and the latter has a

variable exponent which means that the type may hold a wider range of values.

Typically, however, this means that the implementation of floating point arithmetic

is much more complex than that of fixed point.

Property Description
Range of values The maiximum and minimum values which

could be stored within the variable.
Precision The accuracy of a particular representation.
Error The maximum difference between actual (real

world) and stored numbers.

Table 7.9: The Properties of Real Numbers

Table 7.9 shows the properties which may be used to describe a real number.

These place a bounds upon the range of values which may be stored within the data

type and describe the accuracy of the representation. Note that error is represented

separately because the error value is cumulative over multiple arithmetic operations

whereas precision is not.

The semantics of real number operators are described in terms of these properties

and describe the relationship between input and output values.

Transformation of real numbers may involve conversion between difl^ering rep­

resentations of the same type, e.g. single and double precision values. I t may also

involve conversion between one form of real number and another. In some situations

it may also be possible to convert between real numbers and integers.

Chapter 7. Data Types and Type Equivalence 177

These transformations involve checks to ensure that a new representation does
not change the bounds of errors to such an extent that the output from the program
changes. For instance, checking for a value of zero is usually done by checking that
the value lies within certain bounds. A decrease in precision may cause more error
to be introduced into a calculation which may cause the result to be recorded as
zero when it would previously have been non-zero. These types of situation could
have possibly disasterous consequences and should be detected by the equivalence
theories.

Transformation of the real numbers is inherently difficult due to their complex

semantics. Any transformation which is performed will generally require a significant

amount of information about the values which are stored within it . This places limits

upon the transformation of real number types because of the stringent criteria which

are involved. But i t does not necessarily prohibit transformation.

7.3.3 Sets

The set is another primitive data type which is used to represent groups of values.

A set is defined in terms of the individual values which may be held within it. The

properties of a set are described in terms of the values that the set may, or may

not contain at a particular moment in time. This then allows reasoning about the

properties of set operators.

Transformation of sets may involve a number of changes including:

• changing the values which are contained within the set into equivalent values;

• splitting a set into two distinct subsets and vice-versa;

• replacing the set representation with an implementation of it .

Each of these is discussed below.

The values which are contained within a set may be replaced with other values

which represent the same state. This is analogous to the transformations which were

described for discrete types and involves the same steps of reasoning. For example,

a set of characters, "a" to "z", may be transformed into a set of integers, " 1 " to

"26". This diflFers from the discrete type transformations, however, because the

Chapter 7. Data Types and Type Equivalence 178

transformation must be a one-to-one equivalence due to the fact that sets cannot
contain multiple occurrences of the same value.

A set may also be split into two distinct sets whose combined content is equivalent

to those of the original. This is done by defining which values belong to each set in

the new representation. In general any set can be transformed in this way because

the contents of the original set can be recovered by computing the union of the new

sets.

Transformation of sets may involve the conversion between set data types and

their implementation. A set implementation may be represented in a number of

different ways: the set may be represented as an array of boolean values where

each element of the array corresponds to a particular value which may be contained

within the set. If the boolean value which corresponds to a particular member of

the set is true then that value is contained within the set.

Figure 7.3 shows the mapping between a set and an array of boolean values. This

mapping is described by the invariant

(xeS) = (A[x] = l)

where x is a member of the set S and

A is the array which corresponds to set S.

When using this invariant an assignment which uses a set union operation would

be replaced as follows:

< A[xi] := 1,

S : = S u { x i , . . . ,Xn} =

A[xn] := 1 >

Conversely an array assignment would be transformed into a set operation as

follows:

A[x] :=0 = S--Sn{x}

Chapter 7. Data Types and Type Equivalence 179

Set Boolean Array

Figure 7.3: Converting a Set into an Array of Boolean Values

This transformation may not be appropriate if a set may contain a wide range of

values. In this case another possible representation is to store the actual set values

in an array.

7.3.4 Abstract Data Types

The record data type was presented in detail in section 7.1.2. It has a static number

of components which are accessed via static component names. Many programming

languages provide some form of record data type and often allow the production of

abstract data types using the record as a base for the storage of the type's com­

ponents. To accompany this a number of subroutines are often defined to provide

operations upon the abstract data types.

Abstract data types can be represented in typed WSL in two ways:

1. in an implemented form where subroutines are used to manipulate the data

and

2. in an abstract form where the abstract data type is a WSL data type in its

own right.

The former way of describing the data type uses the record data type's semantics

and the semantics of the individual components of that record. Individual opera-

Chapter 7. Data Types and Type Equivalence 180

tions upon the data values are represented using subroutines which perform specific
operations.

The latter method encapsulates the semantics of the data in a data type theory

and allows reasoning about the data type as a whole rather than as individual

components. It also allows the semantics to be described in an abstract way without

reference to the control flow semantics of WSL.

A typical abstract data type is the complex number. This has two components,

the real and imaginary parts and has a number of associated arithmetic operators

such as "+" and "x". The semantics of these are defined in terms of arithmetic

which involves both the real and imaginary components.

These two types of representation of the complex number provide a way to re-

engineer a program to remove the specific implementation of the data type and

to replace it with an abstract version which has well known properties. This will

generally make the program much easier to understand because the complexity of

the data manipulation is contained within the data type definition rather than in

program code. It also provides more opportunities for transformation of the data

types into other formats because type equivalence theories can be generated using

the semantics of the data type.

7.3.5 Static Arrays

The static array is a common structural data type. It contains a fixed number of

components which all have the same data type. Each component of the array is ac­

cessed via a unique identifier which may be computed dynamically during program

execution. The semantics of an array are described in a similar way to those of

records although the dynamic computation of component names means that WSL

control flow transformations cannot determine whether two accesses to array com­

ponents are referencing the same component.

The properties of a particular array at any one moment in time are described in

terms of the contents of individual components. Typically this information will not

be precise because it is not generally possible to statically determine the index value

which is used in any particular assignment. In many situations, however, it will be

possible to show that the value of the index expression has not changed between an

Chapter 7. Data Types and Type Equivalence 181

assignment and use.

Many transformations of the representation of specific arrays do not require that

the contents of the array are known precisely. They simply require that one storage

location is mapped onto another location in the ghost program. This ghost location

must not be assigned-to from any other part of the program.

The simplest transformations of arrays involve extension or restriction of the

length of the array. The former case is trivial in most cases because the addition

of the extra entries does not aflFect the entries which are already present. One

foreseeable situation where this may not be possible is if the array has an operator

which calculates a value, e.g. a checksum, based on all of the values in the array.

If the operator is used on an extended array then a different checksum may be

returned. For this reason the transformation would fail.

Restriction of the array's length involves showing that the removed components

are not assigned-to/used in the source program. If this can be shown then an

equivalent array with less components can be introduced.

In both the extension and restriction cases the invariant used to define the trans­

formation would have the form

yx: tx»ix e Rg) =^ (a[x] = b[x])

where a and b are the source and ghost arrays,

tx is the type of the array subscript and

Rg is the range of subscripts where the ghosting is valid.

In most programming languages it would only be possible to add/remove ele­

ments at the end of an array because the subscripts are natural numbers, i.e. the

integers from 0 upwards. If addition/removal of elements from the start or middle of

an array is necessary then this can be performed using a slightly different invariant

which has the form

Chapter 7. Data Types and Type Equivalence 182

Vx : • (x e Rg) =^ (a[x] = b[f (x)])

where f (x) is a function which maps the source array's elements

onto the ghost array's elements.

Figure 7.4 shows the mapping between array components where

f (x) =x + 3

is used as the invariant. This adds three elements to the beginning of the array

shifting the original values further up the array. Of course the ghost array must

have an extra three entries for the transformation to succeed.

Original Array Extended Array

Figure 7.4: Adding Three Elements to the Beginning of an Array

It is also possible to add extra entries into the middle of the array using the same

technique. In this case the function must have a discontinuous range which does not

include the subscript values which are being added.

Chapter 7. Data Types and Type Equivalence 183

Another possible transformation is to reverse the order of the entries in the array.

This can be done using an invariant of

f (x) c - X

where c is the number of elements in the array

assuming that the array subscripts begin at 0.

So far we have only examined the mapping of arrays onto similar arrays. It is

also possible to map a single dimensional array onto a two dimensional array and

vice-versa. Figure 7.5 shows an example of this mapping where the invariant

x[(j X c) + j] =y[i][j[

is used. This transformation is only possible if array b has at most c entries in the

dimension which is indexed by variable j . Both arrays must also begin at index 0.

If this is not the case then the multiple elements in the source array will be mapped

onto one element of the ghost array causing the transformation to fail.

Original Array (x) Extended Array (y)

Figure 7.5: Transforming a Single Dimensional Array into a Two Dimensional Array

Another transformation which may be desirable is to transform an array of

records into a record of arrays. This changes the emphasis of the variable group-

Chapter 7. Data Types and Type Equivalence 184

ings and allows each array to be transformed individually to take advantage of any
structure which is inherent in one particular collection of values. An inverse trans­
formation is also possible.

7.3.6 Dynamic Types

Dynamic types differ from composite and structural types by virtue of having vari­

able numbers of components. This means that the data type must provide mech­

anisms for creating and destroying components at arbitrary places within the pro­

gram. It must also provide a means by which links between individual values can be

represented. These links can be changed at any time to reflect the changing state of

the data.

Representation of this type category is not easy in the WSL language (both

untyped and typed versions). This is because the language is carefully defined to

provide static variable scope and to ensure that an assignment to one variable does

not result in a change to any other.

The approach which is adopted is to represent the whole of the dynamic data as

a single value in a typed WSL program. Any change to a particular part of the data

is then described as a change to the whole data value. An assignment of the whole,

or a part of the value to a variable, results in a new copy of the entire data structure.

This is distinct from the original value and any change to the new structure does

not result in a change to the original.

The definition of a dynamic data type may be performed in any suitable way.

One method which is applicable in a number of situations is to use a recursive

definition where a data value contains other instances of the same data type. One

example would be

type T = recursive(x : integer, j : T).

where T is a recursive type,

X is a value which is contained within the type instance and

J is a recursive instance of the type.

Chapter 7. Data Types and Type Equivalence 185

The component "7" is the central part of this recursive definition and may con­
tain another instance of the type or may contain a "null" entry which represents the
end of the recursive structure.

This thesis does not go into detail about the transformation of these data types

but we present one example which will give the reader an idea of how a program

which contains dynamic data types may be restructured.

Example 7.10 shows the definition of a record which contains an integer com­

ponent and a static array. The integer is used to provide the index into the array.

A possible transformation of this data structure would be to transform it into a

dynamic list

begin

where
type contents = array (1 . . . 100) of integer.
type group = recordfitems : contents,

index : integer,
last: integer).

end

Example 7.10: An Array which is Used to Represent a Dynamic List

Figure 7.6 shows the mapping between the record and dynamic list structure. In

this the first element of the array forms the head of the list and the rest of the array

is contained within the tail of the list. This is repeated for successive elements of

the list.

The structure of the list does not allow access to elements which occur earlier

than the current point within the list, i.e. each sublist does not contain a reverse link

to its parent. In order for a transformation from an array representation into a list

representation to be valid the accesses to the array must be performed in a manner

which maps onto this. One way in which this may be done is shown in table 7.10.

In the array representation the index component represents the head of the list

and the last component denotes the last value in the list. The program must enforce

the rule that S.index <= S.last because if this were not the case then it would be

possible to access values which are beyond the end of the list.

In general, the array accesses must be shown to preserve an invariant which

Chapter 7. Data Types and Type Equivalence 186

Array List

Figure 7.6: From an Array to a Dynamic List

Array Access List Access Description
Assignments
S.index := S.index + 1 G := tail{G) Move to the next item in the list.
< S.item[S.last] := v;

S.last := S.last + 1>
G := append(G, v) Append a new item onto the end

of the list.
Expressions
S.items[S. index] head{G) The value at the head of the list.
S.items[S. index + 1] head{tail{G)) The second value in the list.
Conditions
S.index = S.last is.empty{G) Is the list empty (null).

where S is the source variable of type "group",

G is the ghost variable of type "T",

V is an integer value and

in all cases S.index <= S.last.

Table 7.10: Array and List Accesses

Chapter 7. Data Types and Type Equivalence 187

describes the list properties. This invariant is derived directly from the recursive

type definition which states that a valid list can be either "null" (empty) or is a

concatenation of an element and another valid list.

Similar transformations may be performed for other dynamic data types. Ta­

ble 7.11 summarises these.

Data Type Description
Tree A tree differs from a list because each node in the tree has two

siblings. This means that the tree invariant must be demon­
strated for both subtrees.

Graph A graph is much more complex than a list or a tree because
there is no restriction as to the links between diff'erent items in
the graph. This makes it much harder to identify any structure
in the graph. It is, however, possible to use an invariant to
recognise a graph providing that all updates to the graph can
be shown to either preserve the structure of the graph or to be
a base case which trivially satisfies the invariant.

Relation A relation represents mappings between two sets of values.
There are a number of diff'erent sub-categories of relations such
as: functions, partial functions, onto relations and surjective
functions. Programs may represent these in a number of dif­
ferent ways; common methods include: arrays of records which
contain the mappings' source and target elements; arrays where
the subscript is the source element and lists which contain the
individual mappings.

Dynamic Array Dynamic arrays are similar to static arrays although the size of
a dynamic array may change during program execution. There
is a definite potential for transformation between these data
types although the transformation from a dynamic to a static
array must ensure that there are suflftcient components in the
latter.

Strings Many different varieties of strings are found in programming
languages. Strings have many properties in common with both
static and dynamic arrays. In some cases it may also be possible
to treat a string as an elementary data type where the string
represents an abstract name.

Table 7.11: Transformation of Dynamic Data Types

The most important aspect of dynamic data type transformations involves en­

suring that any accesses to the data do not extend past the limits of the dynamic

data structure. In general, this reasoning is not trivial and the examination of these

issues is left for future research.

Chapter 7. Data Types and Type Equivalence 188

7.4 Summary

This chapter has examined data type and type equivalence theories. These are

used to perform data transformation in DREAM and their availability is, therefore,

essential for data re-engineering work. Table 7.12 summarises the data types which

have been examined. These are grouped according to their type categories and a

check against table 4.4 on page 59 reveals that most of the common data types which

were introduced there have been examined.

Type Category
Elementary

Composite

Structural
Dynamic

Data Type
Discrete

Real Number

Set

Bit
Integer
Boolean
Enumeration
Character
Fixed Point
Floating Point

Record
Abstract Data Type
Tuple
Static Array
List
Tree
Graph
Relation
Dynamic Array
String'̂

Table 7.12: Data Types and Transformation Theories

The types which have not been examined: c-unions, c-pointers, first-class func­

tions and object-oriented classes were all identified in chapter 4 as being unsuitable

for transformation using DREAM.

The main focus within this chapter was on the integer and record data types.

Examples have been presented which show how the semantics of these can be repre­

sented within typed WSL. Type equivalence theories have also been presented which

show how integers and records can be transformed both individually and together.

string may also by a structural type.

Chapter 7. Data Types and Type Equivalence 189

These theories form a basis for the experimental work which is presented in the next
chapter.

Chapter 8

Results

In this chapter we present experiments which have been performed to show that

DREAM data transformations can be used in practical re-engineering situations.

The first part of the chapter presents the results of a case study which examines

the use of DREAM for reverse engineering commercial legacy code. This case study

shows the steps which are necessary to transform the source code into a higher

level representation. The reverse engineered code is compared with the original

design documents for the code and is shown to correspond to the original design.

These results have been verified by members of IBM's staff who have confirmed

that DREAM data transformations would provide a useful tool during software

maintenance.

The second part of the chapter looks at the automation aspects of the transfor­

mation work and describes the experiences which were encountered during use of the

extended Maintainer's Assistant. These extensions to the tool have been evaluated

in a second case study where the tool was used to re-engineer aspects of the data

in a large assembly code module. This case study highlighted some of the practical

aspects of applying the ghosting transformations.

The final part of the chapter re-examines the criteria for success which was

presented in chapter 1. It draws upon the work presented in this and other chapters

to answer the questions which were posed.

190

Chapter 8. Results 191

8.1 Case Study One — Data Reverse Engineering

In this section we take a step back from the theoretical aspects of DREAM data

transformations and look at re-engineering from the maintainer's perspective. The

reverse engineering of a substantial amount of source code is examined to identify

typical aspects of data that need re-engineering and to identify the transformations

which are useful for performing this. The case study was performed by hand without

the aid of a transformation engine. No attempt has been made to give rigorous formal

arguments for the correctness of the transformations used here but an outline of the

reasoning that is required is given where appropriate.

The case study experiments were performed upon a substantial section of code

which forms part of a large commercial software product. It is written in the PL/X

language and for reasons of confidentiality specific examples cannot be given. The

analysed code is a complete subsystem of the software product and has been subject

to maintenance over a number of years. The subsystem was re-developed from a

previous version as part of a major re-engineering initiative some years ago. This

re-developed code was originally specified in Z and a document exists which de­

scribes the refinement/development performed to convert between the specification

and executable source code. This makes the code an excellent subject for this case

study because the results can be checked back against the original design.

To make the case study realistic it was performed in relative isolation from the

developers of the product and used the source code, in PL/X, as the basis for ex­

perimentation. The study examined the data present within the program and the

operations which are applied to that data. A number of data objects and associ­

ated operators were analysed in more detail and their implementation was reverse

engineered back towards the original specification.

8.1.1 Analysing the Code

The code which was analysed during the case study covers 370 pages of listing,

specification and text. This contains approximately 4000 lines^ of source code which

is made up of a number of modules. These modules interact with each other through

^This is an approximate figure because an electronic copy of the code was not available.

Chapter 8. Results 192

shared data structures which are protected by read/write locks .̂ There are five

major examples of these shared data structures each of which is composed of a

number of smaller structures. PL/X uses a layered form of data structuring which

forms a hierarchy of data objects providing a limited amount of data encapsulation.

The data structures are therefore explicitly defined and this provides many clues

to the uses of each data item. The data structure hierarchies are summarised in

table 8.1 which shows the number of sub-structures and data objects at each level

in the hierarchy.

Level Number Description
1 5 Subsystem data structures
2 11 Data structures

13 Data objects
3 2 Data structures

46 Data objects
4 2 Data objects
Total 18 Data Structures

61 Data objects

Table 8.1: Case Study One — Data Structure Summary

At a number of places throughout the data structure definitions, certain fields are

inherited from elsewhere and, therefore, have a common format across the whole of

the system. These are inherited textually (from header files) within the code provid­

ing standard components for use by external routines. The hiding of the context of

these data objects would be desirable because they add no useful information (they

provide audit and debugging information) to the subsystem being re-engineered and

a global type definition would make it easier to control the data items.

The data structures are instantiated many times throughout the lifetime of the

system at a number of different points within the code. One main (static) data

structure acts as the base of these dynamic data instantiations and holds pointers to

the relevant parts of the dynamic structures. In subroutines and blocks a number of

local variables are used to hold temporary values or to reference parts of the dynamic

data structures.

^The system has a number of concurrently executing threads.

Chapter 8. Results 193

The dynamic data structures are changed in response to stimuli from the system
environment. The code ensures that the system uses the data values in a synchro­
nised manner and that the structures remain intact. These represent examples of a
number of common data paradigms such as lists, trees and hash tables.

Individual data elements are strongly typed and hold a number of diff"erent types

of values. These data types include:

• integers (binary and fixed point),

• characters,

• bit fields and

• pointers^.

There is no use of floating point arithmetic within the program.

The language allows data items to be "respecified" within local blocks. This

temporarily gives a variable a different type which allows access to the same machine

representation in a number of different ways. This is undesirable because it makes the

code harder to understand and makes the semantics of the data value more difficult

to define. In practice this did not cause a problem within this module because the

data items in question are only accessed as one format. When examined globally

the data items are found to provide a small amount of storage for the routine which

creates (and owns) the data item. This would pose a problem for re-engineering of

the whole program.

The code contains 84 constants which are used within the code to define limits

for data ranges and to enumerate the values of particular data objects. Fifty nine

of these constants are used to enumerate status codes and errors. They are grouped

into five classes and would be better implemented as enumeration types whose names

are the only attribute which are visible to the programmer. The other constants are

mainly strings although there are also a few integer values.

^Remember that these are not being covered in detail in this thesis.

Chapter 8. Results 194

8.1.2 Reverse Engineering the Code

Detailed reverse engineering using data transformations was performed by hand upon

a small segment of the code (approximately 80 lines). This showed how transforma­

tions would be used in practice and allowed assessment of the ease with which data

could be transformed. The target set for the reverse engineering of this code was to

abstract the data structures and therefore provide a more meaningful representation.

The code was selected because it is very self-contained (it does not use many

external routines) and i t uses a wide variety of different data types. Its main purpose

is to search a dynamic list structure to find a specific entry.

This fragment of code is executed very frequently within the system and its

control flow structure has been heavily optimised. This involves ensuring that the

most frequently used control flow paths do not perform any operations which are not

necessary. Before the data could be restructured these control flow optimisations

were removed to make the program's eff'ect upon the data explicit.

For example, when the code begins to examine the list it first checks to see if the

entry at the head of the list is the one that i t is looking for. If so i t does not bother

to initialise a number of variables which are used during traversal of the list. When

this optimisation is present the values of the variables cannot be determined if the

optimised path is taken. This makes reasoning about the data difficult and hinders

transformation.

Once these optimisations had been removed the data structures were transformed

with the aim of reverse engineering them to produce abstract versions of the original

representation. This was performed in the following steps:

1. Create explicit structures — the PL/X data structures needed restructur­

ing to produce a number of logical groupings which reflect the meaning of the

data. These groupings still form the same basic data structures but can then

be individually manipulated by transformations.

Example 8.1 shows this type of transformation for an employee information

record whose components can be separated into two distinct groups: personal

information about the employee and information about the employees length

of service with the company. This latter information is separated into a sub-

record which would allow it to be abstracted at a later date.

Chapter 8. Results 195

begin

where
type employee =

recordfempJd : integer,
name : string,
sex : char,
joined : time,
last.payrise : time,

end
•)•

begin

where
type employee =

record(empJd : integer,
name : string,
sex : char,
info : empJiistory,
. . .) .

type empJiistory =
recordf/oined : time,

last.payrise : time).
end

Example 8.1: Creating Explicit Data Structures

2. Subtype variables — variables were examined to identify their use within

the program and subtypes appropriate to these uses were introduced.

begin
var < my.empJd

: integer := 0 >:
mj_empJd
:= get_emp_num();

print{my-empJd);

end
where

end

begin
var < my.empJd : id := 0 >:

my.empJd := get.empmumQ;

print{my.empJd);

end
where

type id = [0 - 60000 .
end

Example 8.2: Subtyping Variables

A common form of this type of transformation is shown in example 8.2. Here

the transformation has analysed the assignments to the m7_empJd variable

and determined that only values between 0 and 60000 are assigned to it . In

this example the variable is assigned either 0 or the return value of function

get.empjmm. The latter is known to return values between 1 and 60000 (from

its definition).

Another example where subtyping can be performed is on the values which

Chapter 8. Results 196

represent string lengths. These can be constrained to represent the possible

string lengths which may be used.

3. Create abstract data types — the structures and subtyped entities can

now be transformed into new representations involving primitive abstract data

structures. Linked lists were very common within the code; these were char­

acterised by the operations which manipulated the links between individual

items. The abstract types use operators which reflect the manipulations that

can be performed upon them, i.e. adding an item to the end of a linked list, and

these are handled in a similar way to the addition and subtraction operators

for integer types.

Example 8.3 shows a typical transformation. Here a list which was imple­

mented using pointers has been converted into an abstract list type which has

a number of procedures/functions associated with it . In this example the list

retains the concept of the current element that is being examined. As such

the empJd() and name{) function implicitly return values associated with the

current element.

The theory needed to perform this type of transformation has not been covered

in this thesis. Preliminary ideas for the theory can be found in section 9.2 which

describes possible further work.

4. Convert to specifications — a final stage in the reverse engineering of the

code involves converting from implementable types into specifications of the

relationships which these types represent. This involves recognition that a

linked list, whose contents are identified by a single key value, is actually just

an implementation of a mapping relation.

Example 8.4 shows the final result when the list abstract data type which is

shown in example 8.3 is converted into a partial function between employee

identifiers and employee details. In the example the loop which finds the

desired value in the list has been replaced by a function call to print out the

name for the appropriate employee.

This type of transformation has not been covered in detail in this thesis because

it requires combined transformation of both control flow and data structures.

Chapter 8. Results 197

begin
var <my.empJd : id := 0,

this : emp.ptr := get.empJist{) >:
my.empJd := iny_emp_num();
while (this.empJd ^ my.empJd) do

tiijs := this.next;
od
print{my.empJd);
print{this.name);

end
where

type emp.ptr = pointer empioyee.
type employee = record(empJd : id,

name : string,
sex : char,
info : empJiistory,
next : emp.ptr).

type empJiistory = record(/'oined : time,
last-payrise : time).

type id = [0 - 60000].
end

begin
var <my.empJd : id := 0,

this : empJist := get.empJistQ >:
my.empJd := m7_emp_num();
while {empJd{this) ^ my^empJd) do

this := next{this);
od
print{my.empJd);
priiit(name(tliis));

end
where

type empJist = list employee.
type employee = record(empJd : id,

name : string,
sex : ciiar,
info : empJiistory).

type empJiistory = recordiioined : time,
last.payrise : time).

type id = [0 - 60000.
end

Example 8.3: Introducing Abstract Data Types

Chapter 8. Results 198

begin
var Kmy.empJd : id := 0,

employees : empjcel := get.empjceH) >:
my.empJd := my_emp_iium();
print{my^empJd);
print{employees{my.empJd).name);

end
where

type empjcel = empJd -+> employee.
type employee = recordfempJd : id,

name : string,
sex : char,
info : empJiistory).

type empJiistory = recordijoined : time,
last.payrise : time).

type id = [0 - 60000].
end

Example 8.4: Conversion into a Specification

This combined reasoning is beyond the scope of DREAM but is a logical

progression for future work.

These transformations were performed without the aid of the transformation

engine. Each transformation performed has been carefully examined to ensure that

a suitable implementation of each data type theory would allow the re-engineering

to be performed with automated assistance (except for those noted as further work).

8.1.3 Reverse Engineering Summary

This case study has examined the possibilities for reverse engineering the data con­

tained in a substantial portion of code from a large commercial software system.

Investigation of the code was performed without initial knowledge of the code's

function and with only a little knowledge of the underlying system. This provided

a maintenance environment which is similar to that which may be encountered by

a maintainer who has just started working upon a particular software product.

The results of the reverse engineering were checked by cross comparison with

original design documentation. This showed that they were consistent although

there were a few differences in the grouping of some data items which were caused

Chapter 8. Results 199

by a misunderstanding of the purpose of the data. Some other diff'erences were found
but these were traced to modifications made to the code after the design had been
performed. The design document had not been updated to include these.

During the reverse engineering a number of aspects of the code/data were iden­

tified as being candidates for data re-engineering. These included:

1. The data types used within programs are typically implementation types, such

as integers, rather than application derived types (subtyping);

2. Constants are used to represent logical states rather than using enumeration

types;

3. Data is often split up in source code; logically it should be aggregated;

4. Properties of data are often implicit, for example, that the program relies on

integers represented in 16 bits;

5. Low level data types, such as pointers, are used to implement high level types,

e.g. lists and trees;

6. Data and the code operating upon it are disjoint (however, we are not address­

ing the problem of recognising modules here);

7. Data is often used for several purposes in the same program;

8. Data is often badly used in terms of its scope. Typically scope is not limited

to the area were data is applicable.

Staff at IBM's laboratories were consulted to confirm that the analysis of the code

and results of transformations were consistent with their experiences with the code.

They confirmed this and stated that the types of operations which are available

in DREAM would be useful for their practical re-engineering projects. They did,

however, express a desire for a more abstract form of transformation application

than is currently provided in DREAM. In particular they were keen to be able to

apply a transformation directly upon a variable without having to introduce ghost

variables to hold the final result. This aspect is discussed further in section 9.2.

Chapter 8. Results 200

8.2 Case Study Two — Automated D R E A M

In this section the application of data transformations using the enhanced transfor­

mation engine is examined. The tool is used to transform the data which is present

in a substantial piece of legacy code from a large software system. The aim of the

case study is to examine the practical use of the DREAM data transformation and

to demonstrate that the current implementation gathers sufficient information from

the program to allow transformations to be completed. Note that the case study is

not aimed at testing the completeness/flexibihty of the implementation of data type

and type equivalence theories.

This case study was performed in conjunction with IBM (UK) Ltd. who provided

access to their code and whose employees helped in the selection of a suitable piece

of code. For reasons of confidentiality this section does not provide any specific ex­

amples from the code. I t does, however, provide similar examples when appropriate.

Selection of the source code was made towards the end of the three year period

of study and involved visits to IBM's site to talk with the personnel responsible for

maintaining individual sections of code. After initial discussions four code modules

were selected as potential candidates for re-engineering. Al l of these had been heavily

modified over a number of years and are destined for substantial re-engineering in

future releases of the software products. Two modules were written in IBM/370

assembly language and two in the PL/X language (they were also designed to run

on IBM/370 based machines). After examination of these modules it was decided

to rule out the PL/X code because a suitable PL/X to WSL translator was not

available^. The two remaining assembly code modules both used a large number

of diflFerent data structures and had a number of interesting features. Only one

of these was fairly self-contained (the other was responsible for transferring data

between modules without manipulating it) and was chosen for the case-study.

The remainder of this section is separated into four parts:

• Translation and pre-processing — where the translation of the source code

from assembly language into WSL is described. This includes a description of

the assumptions which were used to make the re-engineering possible.

There was not enough time to develop a translator.

Chapter 8. Results 201

• Transformation — a summary of the re-engineering which was performed
including specific examples of the transformations which were performed.

• Search techniques — the data transformations could only be applied after

the code had been examined to find suitable transformation possibilities. This

section describes the search techniques which were used during the case study.

• Summary — a summary of the observations about the operation of the

transformation engine and transformation techniques.

8.2.1 Translation and Pre-processing

Before any transformations could be performed the assembly code needed translation

into WSL and a number of aspects of the code needed manual adjustment to make

the data self-contained within the module rather than it being part of a larger

system.

The translation from IBM/370 assembly language into WSL was performed using

a translator which is part of the FermaT [81] transformation tool^. This translator

was chosen because i t is a mature tool which has been used to translate a large num­

ber of assembly modules as part of FermaT's use for commercial software migration

activities. This translator does not transfer explicit data typing information into

the WSL program (remember FermaT uses untyped WSL); section 8.2.2 shows how

this information can be introduced using suitable data type equivalence theories.

Translation is an inherently informal procedure because there is no formal def­

inition of the semantics of the IBM/370 family of processors. For this reason the

translator is designed to perform a direct translation between the source language

and WSL. This allows the correctness of each step to be validated by manual inspec­

tion. The output of the translator is therefore generally three or four times larger^

than the original source code and contains many extraneous constructs (see below).

These are removed during an initial transformation stage using the " f ix_assembler"

transformation. This transformation embodies heuristic knowledge about transfor­

mations which are known to be effective at simplifying the translator output. In

^FermaT is the commercial equivalent of the Maintainer's Assistant.
^This information was provided during informal discussions with the FermaT developers.

Chapter 8. Results 202

particular the transformation aims to remove assignments-to/uses-of the cpu's in­
ternal registers and to introduce the control fiow constructs, e.g. conditionals/loops,
which are an implicit part of the code structure.

actions a.OOOOOO :

a.000146 ~
if (a[!xf address.of (vari)] = immi)

then cc := 0
elsf (a[!xf address-of (vari)] < immi)

then cc := 1
000146 CLI var_ l , imin.l else cc := 2 fi

= call a.00014a.
00014a BE l a b e l . l aMOUa =

if (cc = 0) then call iabeii fi
call a.OOOMe.

iabeii

endact ions

Assembly Code Raw Translated WSL

Example 8.5: Translation of IBM/370 Code into WSL

Example 8.5 shows the result of the translation of a number of typical IBM/370

instructions. These instructions are described in terms of the internal registers of the

cpu and of accesses to the system's memory. In the example a compare instruction

has been converted into an explicit assignment to the condition codes register, "cc".

The value of the register is then used in the next instruction to determine if the

control flow should branch to the named location.

Note that each assembly language instruction is represented as an action within

an action system. Most actions are given a name which corresponds to their address

in the assembler output (shown as 000146 and a.000146 in the example). The

flow of control is stated explicitly as an action call after each instruction has been

executed. The f ix_assembler transformation uses Ward's [88] transformations to

transform the individual actions into conditionals and loops; for more information

see section A. 1.1.

Chapter 8. Results 203

The translator treats data accesses as references to an array of data values, "a",
which represent the entire memory of the machine. It makes the assumption that
these accesses are well-behaved and that a named memory location is only accessed
via that name rather than by the dereferencing of an arbitrary pointer at some place
within the program. Addresses may still be manipulated within the program but
these accesses are assumed to refer to other memory locations than those which
are explicitly named. This technique is used within this case study because it has
been proven to be effective in previous transformation work [23]. The use of a more
formal technique would require complex reasoning about pointers (which is beyond
the scope of this thesis) and would require the implementation of a new translator.

During translation instructions which load the address of a variable into a register

are converted into a format of

rO := bcf address.of (variabie_name)

where rO is the register variable, and bcf address-of () is a pseudo function which

returns the variable's address. The f ix_assembler transformation uses this to trans­

form an access to

a[!xf address-of (variable-name)

into a direct access to the variable "variabiejiame". The f ix_assembler trans­

formation will not translate any memory accesses which involve arithmetic with

these addresses because it is not generally possible to determine the exact variable

that these are referring to.

The assembler code has a number of instructions/operands (see table 8.2) which

have no equivalent in untyped WSL. The translator represents these in the program

as external functions/procedures. These do not have formally defined semantics

although they may only affect the values which are stored in specified variables.

In particular the external procedure may only modify the variables which are ex­

plicitly named as parameters in a call to i t . An external function is not allowed

to have any side-effects but may return any value. In typed WSL many of these

functions/procedures would become operators in specific data type theories such as

Chapter 8. Results 204

those for packed decimal, bitwise arithmetic and characters.

Instruction W S L Representation Description
o i v_int, c_in t Ixf oi {Vint, Cint) Bitwise OR with immediate

operand.
n i v_int, c_int !xf bit.and (vi„t, Cint) Bitwise AND with immediate

operand.
tm v _ i n t , c_in t bd tm {Vint, Cint) Bitwise test under mask.
oc v_char, c_char |xf oc (V c / i a r , CQ/KU-) Logical OR with character

constant.
icm v_char, c_char hdicm {vchar, Cchar) Insert character under mask.
cvb r !xf cvb (r) Convert from packed decimal

into binary.
cvd r !xf cvd (r) Convert from binary into

packed decimal.
ap v_dec, v_dec M a p {vdec, Vdec) Add packed decimal numbers

together.
mp v_dec, v_dec !xf mp (Vdec, Vdec) Multiply packed decimal

numbers together.
six v_dbl, c_shift bdsll {vdbucshift) Shift left logical.
s r l v_dbl, c . sh i f t bcf srJ {vdbi,cshift) Shift right logical.

where Vint is an integer variable,

Vchar is a character variable,

Vdbi is a double word variable,

Vdec is a packed decimal variable,

r is a CPU register,

Cint is an integer constant,

Cchar is a fixed length character sequence constant and

cshift is a shift value.

Table 8.2: External Functions/Procedures for IBM/370 Assembly Code

After translation and initial restructuring the program now references a number

of untyped named variables. There are still accesses to the memory array which

could not be resolved by the translator. Manual inspection of the code revealed

that most of these involved some form of dynamic address calculation. No further

attempt was made to convert these into variable accesses because these variables

were not found to be necessary for the purposes of the case-study.

Chapter 8. Results 205

Each of the variables in the program has an external scope due to the fact that
the case study code forms part of a larger system. WSL's semantics do not allow
transformation of the representation of these external data items because that would
constitute a change to the output of the program. Therefore, for the purposes of this
case study any variable which is to be transformed is converted into a local variable.
This local variable has a scope which extends across the whole program as shown in
example 8.6. The change to the program is made by manually editing the WSL code.
This operation would not be acceptable in general if the aim was to re-engineer the
case study code and then to replace the original code with the new version. If the
data representation had been transformed then the implementation of new and old
would be inconsistent. For the purposes of this case study, however, this editing is
acceptable because we are interested in showing the feasibility of transformation.

begin
yar <cc : any := 0,

Bags : bits := 0 >:
begin

actions start. :
start. =

endactions
where

proc namei(var) =

end
end

where
type bits = [0 - 255 .

end

Example 8.6: Local Variables for Transformation Evaluation

Example 8.6 shows the general structure of the code which has been translated

and pre-processed. The outermost statement in the program is a where block

which holds the type definitions which are used in the declaration of the typed

variables which are to be transformed. These variables are declared in the var

block along with the variable for the condition codes register. Inside this block is

another where which contains an action system and a number of procedures which

Chapter 8. Results 206

have been extracted by the "f ix.assembler" transformation. The action system

contains the actions which represent the main flow of control within the program.

Examination of the assembly output listing reveals that a number of the WSL

variables are actually constants which are defined in other modules. This has not

been reflected in the WSL code because the translator did not have access to the

other modules or the output listing. A number of these constants are important for

some of the transformations described in the next section. In particular they are

often used as bit masks for masking/setting flags which are contained within integer

words. These constant values were manually expanded in the source program when

necessary to allow transformations to be performed.

8.2.2 Transformation

At this point the program is ready to undergo data transformation. The initial 179

pages (9390 lines) of assembly code have been converted into 3510 lines of WSL code.

This code contains over 700 variables (including constants) as shown in table 8.3.

The table shows that a number of variables are only assigned-to or used. These

variables are exclusively used to interface with the other parts of the system.

Variable Number
Assigned to 310
(but not used) 60
Used 550
(but not assigned to) 300
— of which constants 160
Total Data Items 610

Table 8.3: Variable Summary in the Case Study

Transformation of the code is based upon the integer and record types described

in section 7.1. These are supplemented by the "any" type which is used for the

untyped variables in the translated WSL code. Table 8.4 shows the type equivalence

theories which were used during the case study and gives a brief description of their

meaning/uses. Further details of these theories will be given at appropriate places

within the following pages.

Chapter 8. Results 207

Theory Name Description
integer-2-integer Subtype integers into a new range.
any-2-integer Convert a variable of type "any" into a variable of type

"integer".
aiiy-2-member Move a variable of type "any" into a record.
integer-2-member Move a variable of type "integer" into a record.
integer-2-bitrec Convert an integer which holds a number of fiags into a

record of bit values.

Table 8.4: Type Equivalence Theories used during the Case Study

In particular note the any-2-integer theory which allows conversion of untyped

variables into integer variables. This theory only allows transformation of variables

which are exclusively assigned-to using integer constants/expressions. Use of the

theory allows the initial untyped program to be converted into a program which

uses specific data types.

The examples below demonstrate how the operation of DREAM transformations

was evaluated. The first examples show how the operation of various aspects of the

DREAM module were tested to confirm that they were performing in the man­

ner described in chapter 6. The other examples show more specific applications of

transformations within the program.

In general the implemented data type and type equivalence modules were devel­

oped to a stage where they were good enough to perform the individual transforma­

tions which were applied. In particular the integer type theory does not attempt to

provide reasoning about every possible integer expression. The equivalence theories

which involve records were hard-coded for transforming into specific fields because

the prototype DREAM module/user interface does not currently allow details of

specific invariants/record fields to be supplied by the user.

Testing the D R E A M Module

Section 6.2.1 described the main phase of the DREAM module as consisting of four

distinct operations upon the code. These were:

1. To gather assertions about the contents of the source variable;

2. To insert (ghosted) assignments to the ghost variable;

Chapter 8. Results 208

3. To perform the ghosting transformation on the uses of the source variable and

4. To check that assign-use relationships are valid.

These operations are performed in parallel during traversal of the control flow

paths of the program. The module's traversal algorithm was described in sec­

tion 6.3.4 and is designed to handle the following categories of statement:

• Terminal statements (which cannot be separated into component statements);

• Compound statements;

• Choice constructs and

• Recursive (and iterative) constructs.

The implementation does not handle all possible examples of these statements;

it concentrates upon those which are typically found in implemented code rather

than in specifications. In particular it does not handle non-deterministic choice and

general expression/conditions''. Each of the constructs which are supported had

been tested individually during its coding but in this case study combinations of

these were tested to ensure that they are treated correctly when combined. The

case study also aims to show that useful transformations can be performed given

the limitations which are placed by the implementation.

To test the operation of the DREAM module it was desirable to test the transfor­

mations using a variable which is assigned-to/used at many places during the code.

This makes it more likely that errors/limitations will be found. The condition codes

variable, "cc", proved to be a very good choice for this purpose. I t is used widely

throughout the code (because the f ix_assembler transformation was not able to

remove 220 occurrences of this variable) and it has very well understood properties

(i.e. the values and assigning expressions are well known).

The approach taken was to test the transformation of this variable from type any

'̂ A general expression/condition is one which may have side effects.

Chapter 8. Results 209

to a new variable, ncc, of type integer. These tests were performed in two parts:

1. testing the interfaces to the type and type equivalence modules —

by varying the parameters of the transformation to induce failures and check

that diff'erent versions of valid/invalid transformations work as expected.

2. testing the checking of assign-use relationships — this involved intro­

ducing assignments-to/uses-of the ghost variable into the code prior to trans­

formation. Checks were made to ensure that the transformation correctly

reported errors in the assign-use relationships during ghosting. This test also

involved validation of scope checking to ensure that scope was handled cor­

rectly.

Details of these tests are given below and the results are summarised in table 8.5

on page 212.

Type and Type Equivalence Interface Testing

This test shows that the DREAM module is correctly interfacing with the data type

and type equivalence modules. The purpose is to ensure that the correct calls are

made to type modules to collect and manipulate assertions and that this information

is correctly passed on to the type equivalence modules. The type equivalence module

uses the information to check that the production of a ghosted assignment/use is

possible. Finally this assignment/use is added to the program at the appropriate

position.

The integer data type module was used during this transformation. I t generates

assertions for the expressions shown in table 7.2 on page 153 plus the IBM/370

specific instructions shown in table 8.2 on page 204.

The type equivalence module is used to replace any assignments to the source

variable (cc in this case), which use one of the above expressions, with the same ex­

pression (but this has type "integer"). This replacement is returned to the ghosting

module for insertion into the program. Uses of the source variable are then replaced

by uses of the ghost variable. Both assignments and uses are only carried out if the

assertions show that the replacement values are representable in the target variable.

Chapter 8. Results 210

To ensure that the system was performing this transformation correctly a number
of different scenarios were tried. These included:

• range restriction of "ncc" to 0 to 3 — this is the basic case which cor­

responds to the values which may be stored in the IBM/370 condition codes

register. A l l assignments to "cc" are known to satisfy this transformation.

• excessive restriction of range (i.e. 0 to 2) — in this case the transforma­

tion (correctly) failed reporting that some values, which would be assigned to

"ncc", were outside of its range.

• changing the values that are assigned to "cc" (i.e. assign 4) — in this

case the program was edited, as shown in example 8.7, to include assignments

which include values out of the range 0 to 3. In this case the transformation

fails because the new variable cannot represent the original values.

if (vari = 0) if (vari = 0)
then cc := 0 _ then cc := 0
else cc := 3 ~ else cc := 4

fi; fi;

Original Program Edited Program

Example 8.7: Assigning an Out-of-Range Value to cc

• using a less restrictive range for the new variable (i.e. 1 to 65535) —

in this case the new variable can hold all possible condition code values and

should succeed.

Al l of these tests operated as expected except when the erroneous statement was

written within a loop which contains exits from multiple levels of nesting. This is a

limitation of the implementation and is discussed later.

Assign-Use Testing

Assign-use testing was performed in a similar way but involved the introduction of

assignments-to/uses-of the "ncc" variable into the original program. This caused

failures, as described in section 5.5.3, due to interleaving of the original and ghosted

Chapter 8. Results 211

values which are stored in ncc. Example 8.8 shows a possible situation which may
occur. This is typical of the situations that were being tested.

if (x = y) if = j)

then cc :— 0; then < ncc := 0, cc := 0 >;
ncc := 10; , ncc := 10;

else cc := 3 fi else < ncc := 3, cc := 3 > fi
if (cc = 0) if {ncc = 0)

then pnnt{x) fi then print(x) fi

Source Program Invalid Ghosting

Example 8.8: Assign-Use Testing

Assign-use testing also includes checks to ensure that the scope of variables is

handled correctly when local variables/formal procedure parameters are defined.

These tests are difficult to evaluate on assembly code because there is no use of

local variables and very little use of parameters in procedures. Testing was per­

formed, however, by introducing local variable blocks which redefined the cc and

ncc variables. The transformations were checked to ensure that these were handled

correctly.

These tests were carried out over a wide variety of different transformation scopes

within the program as shown in table 8.5. Only one problem was found during the

tests which was due to an unforeseen limitation of the DREAM module's implemen­

tation. The implementation does not correctly take account of exits from multiple

levels of nesting, e.g. from an exit(2) statement which leaves the two innermost

loops. The DREAM algorithm incorrectly propagates the assertions at this point to

the end of the innermost loop rather than to the end of the outermost loop.

Once these tests had validated the tool's implementation a number of data struc­

tures were transformed to verify that the DREAM technique is capable of transform­

ing common data structures which are found in the code.

Creating Record Structures

The raw assembly code has no concept of explicit data structuring (although the

code's design does). A very useful technique was to introduce data structures into

Chapter 8. Results 212

Scope of Transformation Result Scope of Transformation
Modules Assign-Use

Compound Statements / /
Conditionals / /
Loops / a / a

Local Variable Blocks / /
Where Blocks (Subroutines) / /
Action Systems / /

Problems with exits from multiple levels of nesting.

Table 8.5: Summary of DREAM Module Testing

the program using the record data type.

Performing the transformation into static data structures involved two steps:

1. creating a new structure with appropriate members — the format

of the new structure was found by analysing the program (as described in

section 8.2.3) to determine possible groupings. This was time consuming but

information was generally found in the places where data is defined. It was

also found in individual chunks of code where a number of variables were

assigned-to.

2. successively transforming individual values into the record — each

variable which corresponds to a record component was transformed using the

any-2-member and integer-2-member transformations. During this proce­

dure the transformation engine checked the scope of the old and new variables

to ensure that they are compatible with each other. This checking was gen­

erally not necessary in the assembly code because there are very few local

variables.

The any-2-member and integer-2-member transformations allow a variable to

be ghosted into a record component of the same type. The semantics of this trans­

formation are trivial because the source and ghost data types are equivalent.

Integers Containing Flags

Analysis of the code revealed some variables which each held a number of boolean

flags. These typically represented specific system states or options which had been

Chapter 8. Results 213

requested by a calling routine. The values in these variables were usually set/cleared
using the "bit_and" and "oi" (or-immediate) external functions. Individual values
were tested using the "tm" (test-under-mask) external function which sets the con­
dition codes register appropriately.

A type equivalence theory, "integer-2-bitrec", was developed specifically for

this type of use of the integer data type. The theory converts an integer containing

an eight bit value into a record which contains a separate component for each bit.

This uses the invariant

S = {G.bitr X 128) + (G.bitg x 64) + {G.bit^ x 32) + (G.bit4 x 16) +

{G.biti X 8) + (G.bit2 x 4) + (G.biti x 2) + G.bifco

where S is the source variable and

G.bitn is the component which is used to store the target bit.

This is used to describe the relationship between the source and ghost. The

theory behind this is similar to that for the example which is given in section 7.2.3

although in this case the ghost type has eight components. Each component in it

represents a single bit in the byte which is manipulated by the bitwise operators.

Table 8.6 shows the assignments/expressions which may be produced by this

equivalence theory when a source assignment/use needs ghosting. Note that the

bit.and and oi assignments may involve constants which have more that one bit

set. In this case the ghost assignment will involve parallel assignment to each ghost

variable whose corresponding bit is being set/cleared. This is not shown in the table

for reasons of clarity.

The type equivalence theory was applied to the program using ghosting to trans­

form the flags into appropriate record structures. Example 8.9 shows the results of

ghosting a typical example from the code. In the ghosted code the bitwise opera­

tions have been replaced by direct assignments to the ghost variables. Note that

the test-under-mask comparison is still present in the code. This is because the

result of the ghosting has not yet been simplified. In this case simplification of the

Chapter 8. Results 214

o

u u
w

p

a

.1

I H

CO

o

CP

O

0 03

1 i
bp ^

o
.S

o

o a

fi "

ce

fi
O

fi ^

O cfi

3 ^
03

fi
O

03

cc

IS

I t

O
a> o
O O)

-f i ^

0̂ . 3

CO -tJ
_g fi

-o

•X-

-o

T3

I

-fi

J3

O O <V X>
<v o
S-I fi o
CO

o ^
o3

g fi
fi 2
biO

< 'S

<50
CM

+

+

X

+

u

c

u

to

o

' 1

8
^ 1

CO
(4 -1

SI

u
"1
W

'1
ll
D O
!-(

l l

CO

CO
CD

T3

o
a

I ID
W a a u

• . — I

CO
O

. f i

o

cfl

01

u
01

X)

I
O)
w
cc

fi
o3
CO
fi
O

O

• r - l

o
fi
o
CO
!D

-fi
CO

CP
J3

-73

o
(P
SH

<P
-f i

fi <v fl o a,

o

IS

fi
03
CO
fl
O O u
CP
hO
(P

-fi
CP

CO

I

o
PQ
-u
fi
(P
(O
CP

&

-fi
o

QJ
hO
(P

fi
o
CO
fi
O

O
CD
00

<a

CM

- t J
c« a o

l U
0)
;-i

1 ^

fi
a

'co
CO

o
Cm

CO

-Q

CO

O
co"

CO
Cm

CO

Chapter 8. Results 215

comparison

M tm {{G.biti X 2) + G.bito, 2) ^ 3

results in the new comparison

G.biti 7̂ 1

The prototype implementation of this theory is limited to working with hard-

coded component names. This limitation can be removed in the future but is not

important for the purposes of this case-study.

This use of the integer data type occurs a number of times within the program.

Three of these were transformed using the tool and the others were analysed by hand

to ensure that they did not have any different assignments/uses which would cause

the ghosting to fail. In a number of these other cases the flag representation differed.

Some flags were contained in multiple bits to allow multiple flag values (as opposed

to boolean values). In one case the top four bits of the value were used to hold a

"transaction type" code and the lower four bits were encoded as boolean flags. A

similar equivalence theory could be constructed to allow this type of variable usage

to be ghosted — the top four bits would be placed in one variable rather than in

four separate variables.

Logical Subtyping

During analysis of the code it was noted that a number of variables were used for

similar purposes within the program. These were candidates for logical subtyping

where the type of the variables is changed to an equivalent subtype which has a

diflFerent name. This does not cause a change in representation but serves to make

the variable's purpose explicit.

The integer-2-integer and any-2-any equivalence theories were used to ghost

these variables into a new subtype. This subtype has the same properties as the

source variable's type. This means that the equivalence theories are always able to

generate ghost assignments/uses. The transformation could, however, fail due to

invalid assign-use relationships within the scope of the ghosting.

Chapter 8. Results 216

begin
var <cc : any := 0, S : bits := 0,

G : bitarray := [0, 0] >:
S := !xf oi (S,l);
if ((!xf (S,2)) = 3)

then S :=bd bit.and {S, (255 - 2)) fi;
if (S = 0)

then cc := 0
else cc := 1 fi

end
where

type bite = [0 - 255 .
type bitarray = record(biti : bit,

bit2 : bit).
type bit = [0 - 1].

end

Source Program

begin
var <cc : any := 0, S : bits := 0,

G : bitarray := [0, 0] >:
G.biti := 1;
if ((M tm (((G.bita x2) + G.biti), 2)) = 3)

then G.biti := 0 fi;
if (((G .bit2 X 2) + G.biti) = 0)

then cc := 0
else cc := 1 fi

end
where

type bits = [0 - 255].
type bitarray = recordfbiti : bit,

b i t 2 : bit).

type bit = [0 - 1].
end

Transformed Program

where S is the source variable and

G is the ghost variable.

Example 8.9: Ghosting Flag Variables

Chapter 8. Results 217

Invalid assign-use relationships did occur on a number of occasions because the
source variable was not assigned to before it was used in a particular action^. The
assignment to the variable was typically in another action and was followed by a
call to the first action. In this scenario the assign-use relationship is actually valid
but is not detected by the DREAM transformation implementation. Example 8.10
shows a typical case where this occurs. The variable "a" is used in action "x" which
is called by action " j " after an assignment to "a".

actions 7 :
X = actions y :

print{a). ^ y =
y = ~ a := 10; print{a).

a := 10; call x. endactions
endactions

Example 8.10: An Undetected Valid Assign-Use Relationship in an Action System.

The implementation of the transformation engine restricts the checking of assign-

use relationships to sequences of statements which cannot exit prematurely due to

calls to other routines or loop exits (see section 6.3.4). In an action system this

means that each action, i.e. x or y in the example, must have correct assign-use

relationships. In addition to this an action which contains a call to another action

must have correct assign-use relationships in the sequences of statements at either

side of the action. This is because the call causes a transfer of control flow outside

of the action.

In the example shown it is possible to allow the ghosting to succeed by replacing

the call to action x with the code in that action and then by deleting the action.

This is done using the "expajid_action_call" control flow transformation followed

by use of the "delete-unused-action" transformation. The process is complicated

if action x is called from many other places within the action system because these

calls to i t must be expanded before the action can be removed.

An alternative solution to the one shown above is to ensure that the variable, a,

has a valid value at entry to the action system. When this is the case all assign-use

^Remember that an action is contained within an action system and is used to represent goto
statements.

Chapter 8. Results 218

relationships within the action system will be valid. In this case study an assignment
to the source variable can be added before entry to the action system if the variable
is actually providing input from another module. This cannot be done automatically
because i t involves manual examination of the assembler source code to ensure that
this is the case.

While performing this case study these problems were encountered a number of

times. Similar problems were also encountered with loops and procedure calls. The

problems were not limited to only this type of transformation but its occurrence is

not mentioned in the other examples to make their explanations clearer.

8.2.3 Analysing the Program

The transformations which are described above would not have been possible without

considerable effort being placed into analysis of the code. This analysis helped to

identify suitable transformation options and to verify that the transformation system

had correctly performed the transformations.

During analysis of the code four main sources of information were used:

1. assembler source code listing — this provided a reference against which to

compare both the pre-processed WSL version of the code and the transformed

data. The comments in the source code were very useful because they provided

information about the meaning of individual variables and constants.

2. assembler output listing — the assembler output provided a slightly dif­

ferent view of the source code. In particular it contained cross reference infor­

mation which related assembler labels (variables and constants) to the lines

on which they are used. The listing also showed the values of constants which

was very useful for identifying the variables which represented bit flags.

3. pre-processed W S L code — the pre-processed WSL code was useful be­

cause the control flow was much more structured. This made visual inspection

of the code much easier because the uses of particular variables could be traced

more easily than in the equivalent assembler code.

4. I B M / 3 7 0 texts — a number of text books which describe the IBM/370 series

machine were very useful. They provided help in understanding the effects of

Chapter 8. Results 219

specific instructions. The books which were consulted include: Chapin [31],
Tuggle [86] and Yarmish [96 .

This information was examined manually by inspecting printed and electronic

copies of i t . Examination of the electronic information was made easier by the use

of search utilities which are found as standard on Unix systems, e.g. grep. The

XEmacs editor was also very useful because it allowed the search utilities to be used

in conjunction with an editor to visit the areas highlighted during searches.

The METASNSL statements provided by the transformation engine were also very

useful during the analysis of the program because they allowed information to be

retrieved from the program very quickly. In particular the [.Variables-], [_Used_]

and [-Assigned-] family of commands allowed variable usage information to be

extracted from the program. These commands return lists of variables which are

present, used or assigned-to within a specified area of the code — further information

about these can be found in Bull's thesis [23].

The names of variables provided clues about the meaning of a variable or about

the variables which were related to i t . Most variables had a short (less than eight

characters) mnemonic name which was not meaningful in itself but by examination

of the program's comments the purpose of the variable could usually be determined.

Many variables which had similar meanings had similar names. For example, the

fiag variables which are described on page 212 usually had a name similar to "sysflg"

where "sys" is the meaning of the variable and "flg" identifies that it is a flag. The

constants which are related to this flag would typically have a name which began

with "sys". This was then followed by four or flve characters which identified the

meaning of the flag.

Records could often be identified in a similar manner. The flrst part of the name

would reflect the name of the record instance and the latter part would reflect the

particular field that the variable represented.

This use of variable naming conventions during program analysis is very program

specific. In this program the developers/maintainers have been very disciplined in

the use of consistent names. The search techniques which were employed in this

case study may not be as effective on code which is developed by less disciplined

engineers.

Chapter 8. Results 220

Another technique which proved useful was a search for all uses of a particular
language construct. Many instances of the same variable usage involved assignments
and expressions which used similar constructs. A search for all "test-under-mask"
expressions would often find many of the uses of the flag concept. Variable subtyping
was also highlighted in this way.

8.2.4 Transformation Summary

In addition to validating the operation of the transformation tool in a well un­

derstood environment (the uses of the cc variable) the transformation of different

features of the data has been examined. Table 8.7 summarises the transformations

which have been performed. The main emphasis of this transformation has been on

the integer and record data types. It is noted that there was very little use of integer

arithmetic in the code except for logical bitwise operations and the manipulation

of pointers. This reflects the fact that the code forms part of an information man­

agement system rather than a scientific computation program. Many of the uses of

integers in the code were to hold values passed from other parts of the system. I t

was not generally possible to restrict the ranges of these variables' types because the

range of input from the other parts of the system could not be determined.

Introduction of records and logical subtypes was easier to perform, however,

because these do not affect the values stored within the variables. They do, however,

make the re-engineered code easier to understand because items which are related

to each other are explicitly marked. This makes the grouping information easily

available to future maintainers.

Successes

• The transformations can restrict the range of a variable's type to reflect the

values which are actually stored within i t . This has been shown by restriction

of the type of the condition codes register.

• Monolithic assembler data structures can also be re-engineered to produce

structures which represent the logical entities present within the program. This

does, however, require a considerable degree of user intervention to search for

Chapter 8. Results 221

Transformation Number Description
Identified Transformed

Flag Variables 31 3 Converting from a
bitwise representation of
flags into a record of bit
values.

Records 13 X 6 entries
14 X 4 entries

8 Transforming individual
variables into records
which contain groups of
variables.

Subtypes 15 groups 4 Introducing logical
subtypes which reflect
the variable's use within
the program.

Condition Codes unknown unknown Evaluating the
operation of the
transformation module.

Table 8.7: Case Study Two — Summary

suitable groupings.

• Addition of new type equivalence theories was found to be easy although the

theories used in the case study are very primitive and can only cope with a

limited number of cases. In particular the in teger-2-bi t rec theory must be

edited to allow use of different component names for the bit record.

• I t was easy to extend the type theories to handle new expressions which were

not originally covered. In particular the properties of the IBM/370 bit manip­

ulation operators were added easily.

Deficiencies

• The main prerequisite for DREAM transformations is knowledge about the

inputs to the code that is being re-engineered. At times it proved difficult

to re-engineer something towards the end of a routine because the variables

which are assigned before i t needed re-engineering flrst.

• Action systems also proved to be problematic, especially when there were large

numbers of them which could call each other. This made assign-use relation

Chapter 8. Results 222

checking fail unnecessarily because of restrictions about where valid assign-use
relations could occur. Similar problems also occurred for loops and procedures.

• Procedure parameters which alias other parameters proved to be a slight prob­

lem. This can be worked around in many cases by expanding the procedure

call using its deflnition. Note, however, that these problems were not encoun­

tered in the assembly code because procedure parameters are not normally

used in this code.

• The internal representation of the program which is being transformed does

not represent the flow of data values very well. I t was originally designed for

control flow transformations and needs extending to allow more efficient data

transformation. Possible ways of doing this will be discussed in section 9.2.

• The time taken for transformation application increases considerably as the

size of the program increases. This is in part due to the transformation engine's

internal program representation and due to inefficiencies in the prototype tool.

The analysis of the results of this automated data transformation case study

show that DREAM is capable of performing constructive re-engineering although a

number of aspects require further work.

8.2.5 Case Study Summary

This case study has evaluated the use of the prototype DREAM data transforma­

tion tool with the aim of showing that the implementation performs correctly upon

practical code and that data re-engineering can be performed using these transfor­

mations.

The operation of the data transformations was verified by repeated transforma­

tion of the condition code variable, "cc", under differing circumstances. These tests

showed positive results although one situation was identified where the implemen­

tation failed to handle exits from multiple levels of loop nesting.

The data in the code was re-engineered using six basic type equivalence theories

which allowed data types to be introduced; variables to be grouped into logical

subtypes; data structures to be introduced and allowed variables which contain a

Chapter 8. Results 223

number of flags to be converted into a record containing individual variables for each
flag.

The main aim of the case study was to highlight the good and bad features of the

automated application of DREAM transformations. These cover different aspects

of the technique and range from the ability to perform useful restructuring through

to the efficiency of the transformation engine.

8.3 Criteria for Success Revisited

At this point in the thesis we have presented the DREAM technique for performing

data transformation and have presented the results of two case studies which have

examined the use of DREAM for re-engineering the data which is present in com­

mercial software. In addition to this chapter 7 introduced a number of data types

and showed how they may be represented and transformed.

This section analyses the results and presents answers to the questions which

were posed in chapter 1 regarding the criteria for success.

8.3.1 Data Types in WSL

Typed WSL has been defined to allow the explicit representation of data typing

within a program that is being transformed. I t is important that this language

allows the representation of a wide variety of data types and that the typed WSL

constructs do not have a detrimental effect upon Ward's [88] original control flow

transformations.

Can typed W S L represent a full range of data types which may be en­

countered in common programming languages?

The ability to represent a full range of common data types is an important factor

which governs the suitability of typed WSL for data transformation. I f the language

cannot represent a data type then it is not possible for that type to be transformed

using DREAM. Chapter 7 examined the representation of data types within the

language. In particular, the integer and record data types were examined in detail

to show the steps involved in adding specific types to the language. In addition to

Chapter 8. Results 224

this the chapter also described how other types could be represented in typed WSL.
These included examples from each of the four data type categories (elementary,
composite, structural and dynamic) which were identified in chapter 4.

The main feature of data values in typed WSL is that they are indivisible entities

which cannot be decomposed by WSL transformations. This isolates control flow

from data semantics and, therefore, allows data types to be developed in isolation

from the semantics of WSL. Unfortunately, this also means that the language cannot

represent data types which require any aspect of control flow to describe them. In

particular, this means that first-class functions (those which can be passed as data

values) cannot be represented in typed WSL. For similar reasons it is difficult to

represent data types which allow inheritance of methods (subroutines).

Data types whose operators may raise exceptions, e.g. those in the Ada [2] pro­

gramming language, are also precluded from representation in typed WSL. When

an exception is raised the program transfers its control flow to a suitable error han­

dler which performs an appropriate action. This behaviour could be captured by

adding checks around each use of an operator but these cannot be transformed in

conjunction with the data representation.

Two other data types: c-unions and c-pointers have not been represented in

typed WSL. This is not due to limitations in the typed WSL data model but is due

to the complex semantics of these data types.

In summary, typed WSL can represent most common data types although those

which involve interaction between control flow and data values cannot be repre­

sented.

Is the set of data types that may be represented in typed W S L extensible?

A key requirement for the successful transformation of a number of different pro­

gramming languages is the ability to extend the range of data types which may be

represented in typed WSL. This allows representation of the specific semantics of a

data type that is used in a particular language/machine.

Typed WSL allows data types to be added without requiring any changes to

the transformation theory/engine. This is made possible by the use of a shallow

embedding of data type semantics within WSL. I t allows a data type to be introduced

Chapter 8. Results 225

as a set of axioms which describe the properties of the data. These Eixioms do not
conflict with the semantics of WSL and, therefore, cannot affect the semantics of
control flow transformations.

Addition of these data types into the transformation engine is correspondingly

simple. The well-defined interface to data type modules means that a new data type

module need only provide routines which implement these interfaces. Once this has

been performed the data types may be used within typed WSL programs.

Does typed W S L have a detrimental eflfect upon Ward's transformations?

Ward's transformations [88] are the original untyped WSL transformations which

allow control flow restructuring. The Maintainer's Assistant was developed to pro­

vide automated support for these transformations. One of the aims of this thesis is

to allow data transformations to be performed in the same environment as control

flow transformations.

Typed WSL has a minimal effect upon the semantics of the original transforma­

tions because it is defined in terms of the original WSL language. This means that

every typed WSL program maps onto a program which is composed entirely of un­

typed WSL constructs. Any transformation which requires expression simplification

is, however, affected because this is now performed using the simplification rules of

specific data types rather than using the general rules which were originally used.

This does, however, turn out to be beneficial because the use of specific data type

properties allows the simplification of features which are specific to one particular

data type.

The typed WSL semantic extensions also allow composite types to be trans­

formed as both individual variables and as a whole group. This adds to the capa­

bilities of the control flow transformations because it is now possible to transform

and simplify individual components, when appropriate, as well as transforming the

whole structure as if i t were an abstract data type.

The effect of these language changes upon the transformation engine (the Main­

tainer's Assistant) were examined in chapter 6. This showed that the extensions

to the language do affect the implementation of transformations in a number of

ways. While these changes are conceptually simple they have a significant impact

Chapter 8. Results 226

due to the amount of code which must be modified and re-verified. These changes
have been made successfully and the updated control flow transformations have been
used during case study work.

8.3.2 Data Transformations using DREAM

DREAM provides a transformation mechanism which allows program data to be re-

engineered. These questions cover the direct use of the mechanism without reference

to the possible applications of the transformations.

Is data transformation possible for a full range of data types?

Earlier we demonstrated that a complete range of data types can be represented

within typed WSL. It is desirable to be able to transform variables which are in­

stances of these data types during re-engineering. Chapter 7 examined this issue by

concentrating upon the transformation of both integer and record data types. The

chapter demonstrated how the proof of these transformations is performed within

the DREAM environment.

The chapter also examined some transformations which may be performed on

other data types in typed WSL. The proof of these other transformations was not

examined in detail but similar techniques to those used for integers and records are

needed. In general, the transformation is based around an invariant which describes

the relationship between source and ghost representations. This is then used to

produce the ghosted assignments/expressions and to prove that these are a correct

transformation of the data.

How easy is it to add new data transformation theories?

Transformation theories are represented in the transformation engine as type equiv­

alence modules which encapsulate the theory in two routines which generate new,

equivalent (or refined) versions of the uses-of/assignments-to the source variable.

The new versions are produced by an appropriate, often heuristic, method but

ghosted uses of the source variable must be shown to satisfy the data expression

equivalence relation presented in section 5.3.

Chapter 8. Results 227

Addition of a new data transformation theory is separated into two parts:

1. Developing the theory — using the theories of source and target types to

prove the desired relationship between the two. This is a highly skilled task

requiring knowledge of both the data types and proof techniques.

I t is possible to develop a new type equivalence theory without excessive formal

proof. In these cases the theory developer should take care to ensure that the

relationship between source and ghost types is reasonably simple. This makes

it possible to validate the relationship by inspection and informal argument.

2. Implementing type equivalence modules — equivalence modules turn

the theory into a form which is usable within the transformation system. This

stage requires knowledge of the intended use of the transformations and a

number of different type equivalence modules may be implemented for one

theory. These would provide transformations which use different aspects of

the equivalence theory. Some may provide support for only the simple cases

of a particular theory.

Once the modules have been created i t is a simple task to load the modules into

the transformation engine (in the same way that type theories are loaded). Thus,

development of new transformation theories is a task which must be undertaken by

a person with suitable skills. However, once the theories and equivalence modules

have been developed it is easy to load the module into the transformation engine to

allow the transformations to be applied.

Do data transformations rely upon control flow transformations?

The use of ghosting and the data expression refinement relation divorces data trans­

formation away from control flow transformation. It allows changes in data repre­

sentation to be described without reference to the semantics of WSL. This simplifies

the proof of both the ghosting transformation and data changes. It also provides

an opportunity to reuse existing data type theories which have been developed by

other members of the formal methods community.

Application of data transformations does, however, rely upon the control flow

of the program to identify the flow of data through the program. This makes it

Chapter 8. Results 228

possible to determine which values may be held in a variable at a particular point
in time. This information is then used to demonstrate the validity of the expression
refinement relation before the ghosting transformation can be applied.

During the case studies a number of problems were encountered due to these

control flow dependencies. The transformation engine is not capable of reasoning

fully about the control flow of constructs which cause changes to the sequential flow

of instruction execution. I f assignments-to/uses-of data are within these constructs

then the tool may not be able to analyse the program properly and will not, therefore,

be able to perform the ghosting transformation. The solution to this is to restructure

the program, using control flow transformations, into a form which can be handled

by the ghosting transformation.

This highlights an important feature of DREAM because control flow and data

transformations can be freely mixed within a re-engineering session without any

change of transformation environment.

In summary, the theory of data transformations does not rely upon control flow

transformations but the application of transformations does involve some use of

control flow transformations. This makes it possible to perform automated reasoning

about the validity of a ghosting transformation in specific cases.

8.3.3 Data Re-engineering using Formal Transformations

DREAM data transformations have been developed for use during re-engineering.

I t is important that they allow this to be performed.

Can D R E A M perform all of the classes of transformation which are nec­

essary for data re-engineering?

Chapter 3 identified refinement, abstraction and restructuring as the three types

of change which may be made to a program during re-engineering. These describe

the eff"ect that a transformation has upon the representation of data in terms of its

relationship with the implementation of the program.

In chapter 7 we examined a number of different transformations upon data types.

The chapter showed examples of refinement, abstraction and restructuring for a

number of common data types. This demonstrates that it is indeed possible to

Chapter 8. Results 229

perform each of these three activities using DREAM. No attempt was made to

show that every possible combination of data type/re-engineering operation can

be performed. I t is, however, reasonable to conclude that other combinations are

possible because similar techniques for describing the mappings between source and

ghost data types have been used throughout chapter 7.

Transformation
Operation

Description

Refinement A boolean error code is converted into an integer
which contains a reason for failure.

Abstraction An integer is converted into an array of flags.
Restructuring Change the representation of an integer, e.g. 00,

. . . , 99 is transformed to 1900, . . . , 1999.
Relationship between Objects A time value is converted into hours and minutes

(and vice-versa).
Scope of Data Scope has been manipulated as part of the

DREAM implementation verification.
Introducing Subtypes The IBM/370 condition codes variable has been

subtyped to a range which is suitable for its pos­
sible values.

Table 8.8: Re-engineering of Integer Variables

In addition to these transformations, which change the representation of data,

chapter 5 identified another three types of data transformation. These capture

changes to the relationship between program code and data. The implementation of

the ghosting algorithm has been specifically designed to allow these transformations

to be performed in conjunction with changes to the data representation. Table 8.8

shows examples of each transformation type which have been performed on integer

variables during the case studies.

This shows that i t is possible to perform examples of each data transformation

category. I t does not guarantee that each of these will be applicable for every data

type but chapter 7 showed that similar operations could be performed on other data

types. I t is therefore reasonable to conclude that DREAM can perform many of the

transformations which are necessary for the re-engineering of data.

Chapter 8. Results 230

Does D R E A M scale to practical re-engineering tasks?

The data type theories presented in chapter 7 examined data transformation in

small, controlled environments. The case studies presented in sections 8.1 and 8.2

have taken the same basic data type theories and applied them to medium-sized

examples of code which were taken from a large, commercial software product.

The results of the case studies show that the data transformations can perform

similar re-engineering operations to those shown for small scale code. The case

studies did require some additions to the type equivalence theories to allow extra

operators which are present in the case study code to be handled. This highlights

the need for more research into the basic data type and type equivalence theories

but does not represent a limitation of the work presented within the thesis.

One problem with the use of DREAM transformations was the difficulties which

arise when trying to determine the flow of data within a program. Ghosting requires

that whenever a change in representation is made all of the possible sources of assign­

ment to the variable which is being ghosted must have been examined. Constructs

with complicated control flow semantics, i.e. loops, procedures and action systems,

present a challenge when trying to perform this. The current implementation adopts

a very simplistic view of these and performs very little analysis of the program. With

more development the transformation could be made to recognise a number of com­

mon scenarios and, therefore, require less use of control flow transformation prior to

data transformation.

Despite these limiting factors in the current implementation DREAM does allow

practical data re-engineering to be performed.

Does D R E A M complement existing software maintenance activities?

Chapter 2 identified three aspects of software maintenance: management, process

and technical. These are all essential for successful program re-engineering. This

thesis has examined the technical aspects of data re-engineering using formal trans­

formations. I t concentrates upon the primitive transformation operations that are

necessary to bring about changes to data representation.

Code migration, reverse engineering and program understanding were all identi­

fied as diflferent forms of re-engineering. Previous research, e.g. Ward et al. [91, 43],

Chapter 8. Results 231

has used formal transformations as an aid to these activities. DREAM extends their
work by allowing data to be manipulated in a similar manner.

The case studies have highlighted the need for the development of compound

data transformations which combine primitive ghosting operations to perform the

changes that the maintainer may want to make. For instance, the maintainer may

want to change the type of a variable and does not want to have to deal with the

introduction of ghost variables into the program.

DREAM does require some external assistance to identify suitable transforma­

tions to apply in particular situations. The case studies confirmed this although it

may be possible to automate a substantial amount of re-engineering in well known

situations such as initial transformation of assembly code.

In summary, we see that DREAM does complement software maintenance activ­

ities although further work is required to put DREAM into a form which provides

the transformations required for these.

8.4 Summary

This chapter has examined the practical application of DREAM transformations and

has used the results of this to examine the criteria for success which was proposed

in chapter 1.

The practical application of DREAM was examined in two case studies:

1. The first examined the overall use of DREAM in a ful l reverse engineering

situation. I t examined the use of data transformations to recover a high level

description of the program and its data. The results of the case study showed

that this is possible using DREAM.

2. The second case study examined the practical application of data transforma­

tions using the extended transformation tool. This showed that the data type

theories presented in chapter 7 do scale to practical re-engineering although

program control fiow complexity does make application of the transformations

difficult.

The criteria for success examined the achievements of the thesis. It took into

account the results from this chapter and the work presented in previous chapters.

Chapter 8. Results 232

The next chapter takes these results and draws conclusions about the success of the
thesis.

Chapter 9

Conclusions

This thesis has focussed upon the maintenance of computer software specialising

in the problem of re-engineering program data. DREAM has been developed to

integrate theories of data type equivalence into a formal program transformation

environment. DREAM allows variables to be replaced by others which differ from

the original in one or more aspects while still ensuring that the program produces

the same output.

WSL, the transformation language, has been extended to form "typed WSL".

This is achieved by the use of a shallow semantic embedding which allows the se­

mantics of the data type to be separated from those of WSL. A data expression

refinement relation is defined which allows the description of the relationship between

source and ghost expressions. This relates the values produced by both expressions,

under given input conditions, and is used to show that the ghost expression is se-

mantically equivalent-to or a refinement-of the source expression.

The transformation theory is put into practice by extensions to the Maintainer's

Assistant. These provide a modular approach to the implementation of data trans­

formations. The DREAM module provides a generic data transformation which uses

the semantic knowledge provided by type and type equivalence theories. This allows

new data types and transformation theories to be added with minimal effort (apart

from proving them!). Heuristic knowledge can be built into the implementation of

the theories to provide guidance in the selection of appropriate transformation ac­

tivities. This reduces the need for user intervention. The style of DREAM data

transformation complements existing control flow transformations by taking care

233

Chapter 9. Conclusions 234

of the small details while allowing the maintainer to concentrate upon the tactical
issues of re-engineering.

Chapter 8 evaluated the use of the DREAM data transformation technique in a

re-engineering environment and examined the criteria for success. Table 9.1 sum­

marises the answers to this which were judged against the results of the case studies

and the work presented earlier in the thesis. In the remainder of this chapter conclu­

sions are drawn based upon these results and ideas for further work are discussed.

9.1 Meeting the Criteria

The most important question to consider when judging the success of the thesis

is whether it has achieved the aims of allowing "data re-engineering using formal

transformations". The criteria for success has judged this by examining the results

of case studies. These were performed with the aim of showing that DREAM data

transformations will scale to use on medium sized programs. The results show

that the transformations do allow useful re-engineering to be performed although

there are problems due to the difficulties involved in analysing complex control flow.

This analysis is required to demonstrate the validity of data expression refinement

relations.

The criteria for success shows that the WSL language extensions have proved

remarkably successful. They allow a wide variety of types to be added to the lan­

guage without the difficulty involved in reproving the correctness of existing WSL

transformations. This adds a great deal of flexibility into the data transformation

environment and provides a separation between the theories of WSL and individual

data types. This separation makes it possible for theories about data types to be

developed by individuals who know very little about the program transformation

domain.

I f the semantics of data types had been specified directly in infinitary logic^ the

introduction of individual data types would have been more difficult. It would have

been necessary to specify each data type in terms of infinitary logic rather than

importing a data type from another semantic environment. Use of infinitary logic

^Infinitaxy logic is used to describe the semantics of WSL.

Chapter 9. Conclusions 235

Criteria Summary
Can typed WSL represent a ful l range
of data types which may be
encountered in common programming
languages?

Most common data types can be
represented but those which involve
use of control flow semantics cannot be
represented.

Is the set of data types that may be
represented in typed WSL extensible?

New data types can be added into the
transformation engine easily provided
that suitable data type theories are
available.

Does typed WSL have a detrimental
effect upon Ward's transformations?

Typed WSL does not affect Ward's
transformations and allows extra
reasoning about specific data types'
semantics.

Is data transformation possible for a
ful l range of data types?

Transformation of integer and record
data types has been examined in
detail. Other data types have been
examined to demonstrate that
transformation is possible.

How easy is i t to add new data
transformation theories?

New transformation theories must be
properly developed but adding them
into the transformation system is
simple.

Do data transformations rely upon
control flow transformations?

Control flow transformations are
necessary to restructure complex
control flow. This allows ghosting to
be performed.

Can DREAM perform all of the classes
of transformation which are necessary
for re-engineering?

Data reflnement, abstraction and
restructuring transformations have
been demonstrated for WSL data
types.

Does DREAM scale to practical
re-engineering tasks?

The case studies have shown that
DREAM can be successfully applied in
practical re-engineering situations.

Does DREAM complement existing
software maintenance activities?

DREAM provides an underlying
mechanism by which software
maintenance techniques can make
changes to program data.

Table 9.1: Summary of the Criteria for Success

Chapter 9. Conclusions 236

would, however, have made it possible to reason about both data types and control
flow simultaneously.

I t is unfortunate that more time was not available for development (or impor­

tation) of theories for a wider variety of data types. This is obviously beneficial

for performing complete data re-engineering tasks but is not justified given that the

aim of this thesis was to investigate "the integration of data type equivalence and

refinement relationships into existing theories for the specification of program con­

trol fiow behaviour". The main contribution provided to this is the theoretical link

between the two rather than the individual data type theories themselves.

The data type examples and case studies have shown that DREAM can be used

to perform data refinement, abstraction and restructuring transformations. These

transformations can be performed upon types from each of the four type categories

which were identified in chapter 4. The reasoning which is required in order to

show the validity of data transformations is likely to become more complex when

transformation of dynamic data types is studied in depth.

The use of a static data type binding mechanism was one of the major decisions

in chapter 4. This makes i t possible to determine the type of a specific variable with

minimal analysis of the program. A dynamic binding would have required analysis

which is much more complex for even the simplest of data transformations.

The ease with which data typing was introduced into WSL reflects upon the

actual power of the language and its suitability for use in formal environments. The

Maintainer's Assistant provides an excellent base upon which to implement DREAM

and data typing. Most of the infrastructure required for data transformation was

already present within the system and new features were often just implemented as

extra aspects of the original support routines. This does not mean that the prototype

implementation was without its problems. Often subtle assumptions in the original

implementation would cause considerable difficulty when adding new features.

One of the biggest problems which has still not been resolved is the difficulty

in finding the previous/next accesses to a variable. The current implementation

of DREAM requires that the control flow of the program is followed to find the

appropriate points in the program where the variable is accessed. This cannot be

fully solved by keeping track of the values in the source and target variables because

Chapter 9. Conclusions 237

the values assigned to these may be created from other variables whose value is
not known. Subtyping does help to alleviate some of these problems but does not
provide all of the information about specific values when necessary.

This problem is caused by the control flow centred internal representation of a

program which is used by the Maintainer's Assistant. At times it seemed that it

would have been better to abandon the Maintainer's Assistant framework in favour

of a new one specifically targeted at data transformation. This would have made the

implementation of data transformations easier but would have removed the support

for control fiow transformation which has proved to be essential in the evaluation

of the work. The integration of control flow and data transformations is also one of

the prime aims of the thesis and a division in the practical aspects of control and

data transformation would not have been productive.

The use of the ghosting technique to provide a basis for data transformation

has made proof of the transformation theories much easier. It concentrates the

proof upon the essential change to the program while still allowing more complex

changes to be made. These changes are built up using repeated application of

individual ghosting transformations. The result of this is flexibility in transformation

at the user's level — as well as performing restructuring the transformation can also

allow scope to be changed and a variable's logical uses to be separated. On the

downside the changes to the program are composed of a number of individual data

transformations and detailed analysis of the groupings which can be performed has

not been carried out (see "further work" below).

In summary, this thesis has presented and demonstrated the use of a powerful ad­

dition to the WSL transformation environment. It allows data to be transformed in a

similar way to control flow thus extending the range of transformations significantly.

The thesis has not examined every possible category of data type and there are a

number of limiting factors in the implementation of DREAM data transformations.

These are all aspects which can be addressed in future research.

Chapter 9. Conclusions 238

9.2 Further Work
The possible directions for further work which are presented below are split into

three areas: data types and equivalence theories; transformation groupings and

the transformation engine. The possible research for each area is examined with

reference to other relevant work where appropriate.

Data Types and Equivalence Theories

I t is desirable to introduce a number of new data equivalence theories to allow

transformation of many extra data types. There are a number of ways to pursue

this area of research. The most basic is to develop new theories speciflcally for WSL

taking existing research into account and identifying the most important aspects for

re-engineering transformation work.

One possibility would be to develop theories for transformation of dynamic data

structures (e.g. using pointers or an equivalent mechanism) by modelling the state

space of the dynamic structure. This state space would be wholly contained (at

least theoretically) within the value stored in a WSL variable. Assignments to these

variables would consist of an entire description of the state space. This description

would most likely be produced by modifying an input to the expression in a well

defined manner. This modification is very similar to the concept of the "schema" in

Z. Re-engineering of these structures would involve recognising invariants in a vari­

able's values, i.e. that the pointers are always manipulated in a way which maintains

a linked list. Recent work by Moller [70] provides a suitable starting point for this

research.

Instead of developing new theories for DREAM transformations another ap­

proach would be to reuse the work which has been performed by a number of groups

around the world. The theorem proving community has developed a number of

theories for individual data types such as integers, real numbers and recursive struc­

tures. This work on the HOL [44, 50], PVS [30] and other theorem provers could be

integrated directly into the transformation engine to provide access to suitable theo­

ries. Work by Pratten [75] is currently investigating methods for providing common

interfaces between theorem provers and systems which make use of their theories.

A third approach is to utilise and adapt the data engineering facilities provided

Chapter 9. Conclusions 239

in many of the formal program development methods, e.g. the B Method [61], Z [74,
52] and RAISE [47]. This would provide access to a large number of theories for
high level and abstract data types. DREAM transformations could be used to help
to recognise individual instances of these and to re-engineer the legacy code into
suitable representations which could then be re-implemented using an appropriate
formal development method.

Another vein of research would be to investigate the integration of control flow

and data type semantics. This could be done by extensions to the control flow

semantics which allow data types to have specific effects upon control fiow, e.g.

exception handling. An exception could be handled in a similar way to a loop

exit statement where control flow automatically jumps to the end of a block. I t

may be possible to represent this extension using a similar method to that used to

add composite types into WSL (see section 4.2.2). This would allow the data type

to represent a small aspect of control flow (the exception mechanism) while still

allowing continued use of a shallow semantic embedding.

Transformation Groupings

DREAM data transformations perform low level changes to the structure of a pro­

gram's data. The transformation captures the central part of the manipulation, e.g.

changing the representation, but the maintainer is expected to perform any extra

operations. For example, if the maintainer wishes to change the type of a variable a

new variable must be introduced into the program; DREAM is then used to change

the representation of the data by ghosting the variable into the new variable; as a

final stage the original variable is removed and the new variable is renamed to have

the same name as the original. Further research could investigate these typical op­

erations and develop "super-transformations" which provide complete restructuring

operations. This is a similar approach to the idea of "compound transformations"

which was used by Bull [23] in the development of transformations which perform

a large amount of initial restructuring of code which has just been translated from

other languages.

Chapter 9. Conclusions 240

Transformation Engine

The transformation engine requires further work to provide a more efficient method

for tracing accesses to individual variables. This would make it easier to find the

expressions which are used to produce the values which are assigned to the source

and ghost variables. The current implementation makes this operation very difficult

to perform and in most cases the entire range (the worst case scenario) of the input

variable's value is used rather than values which are specific to individual cases.

Afer.AWSL could be extended to provide new constructs which find the appro­

priate ranges/values and, therefore, make description of individual transformations

much easier. This alone would not make the transformations any more efficient be­

cause the Afer^WSL constructs would only perform the same actions as would be

performed in the transformation body. A suitable approach for research would be to

adapt the transformation engine's internal abstract data representation to introduce

links from one use/assignment to all of the possible subsequent/previous ones which

could be affected-by/affect that use/assignment. This could involve significant addi­

tional overheads in the memory used by the transformation engine. Ideas presented

by Baxter [9] and the techniques used in compiler code optimisation algorithms may

be useful to help alleviate these problems.

Appendix A

A Review of the Maintainer's

Assistant

This appendix presents a summary of the accomplishments and deficiencies of the

Maintainer's Assistant tool and theories. These have been identified from practical

experience and from comparison with other systems and tools.

A . l Accomplishments

The development of the Maintainer's Assistant has involved the development of a

number of solutions to key problems. Many of these problems cause considerable

difficulty in the re-engineering process and the solutions discussed in the following

pages represent a significant advance in the available technology.

A. 1.1 Code Restructuring

An important aspect of the Maintainer's Assistant is its code restructuring capa­

bilities. Code restructuring involves the change of code structure into another

form which satisfies some criteria as defined by the maintainer. This could involve

abstraction of code to make it resemble the real world objects that it represents or

a change from an iterative to a recursive algorithm.

To-date the Maintainer's Assistant has been mainly used for restructuring code

written in low level programming languages such as assembly languages. Therefore,

development of the tool has been directed towards the provision of facilities that

241

Appendix A. A Review of the Maintainer's Assistant 242

are necessary for work with that code. This development has been demand driven
according to the needs of potential users which provides a good basis for ensuring
that the tools are useful and tackle real-world problems. One problem with this
approach, however, is that there has been no attempt to follow an overall strateg}^
for development to coordinate the various options and maintain a clear set of aims.

Machine language code typically uses a very basic set of data types and has a

number of instructions which act upon data items or control the flow of execution.

The low level nature of this code means that the overall effect of code is often not

apparent, especially when coupled with the need to refer to data objects and code

fragments by memory or register addresses rather than by meaningful names.

The control flow of code is often very difllicult to follow because jumps are made

to locations in other parts of the program. Code can also be repeated a number

of times if it has been inlined by the programmer to improve efficiency. Looping

structure is often not apparent and appears as a number of jumps which criss-cross

backwards and forwards past each other.

The solutions which have been developed to aid the removal of the problems

described above can be summarised under the following headings:

• Action Systems,

• Loops,

• Separation of Unrelated Code,

• Creating Procedures,

• Adding Parameters to Procedures,

• Program Editing (Error Correction).

The restructuring is performed using the WSL language (see section 4.1) which

was developed specifically for program transformation work. This requires trans­

lation of code from the source language, e.g. assembly code, into WSL. For more

details about this see sections 8.2.1 and A.1.2.

Appendix A. A Review of the Maintainer's Assistant 243

Action Systems

A program written using labels and jumps can be translated directly into an action

system which allows emulation of goto statements^ Machine code is represented

as a series of actions each of which equates to the code between jumps to different

parts of the program. This is just as incomprehensible as the original machine code

transformations allow the action system to be converted into a series of nested loops

and conditions. The control flow of the code is then much easier to understand.

Loops

Loop restructuring is important because it allows the basic structure of an algorithm

to be changed. Sometimes there is a need to convert between recursive and iterative

versions of a code fragment. These conversions and their inverse cannot only affect

the clarity of the algorithm but can also affect the efficiency of its execution.

An example of loop restructuring is provided in the situation where the first

iteration of a loop is handled differently to the others because it does not have

an initial context upon which to base subsequent operation, see example A . l . A

loop which searches an array to find the minimum value contained within the data

structure can be used to demonstrate this. The first time that the loop is executed

the minimum value is undefined and if not treated specially could cause an invalid

result.

X := 0;
while (x < 6) do

if {{x = 0) V {data[x] > max))
then max := data[x] fi;

X := (x + 1) od;

max := data[0];
x : : - l ;
while (x < 6) do

if {data[x] > max)
then max := data[x] fi;

X := (x + 1) od

Example A . l : Calculation of the Maximum Value in an Array

^The semantics of an action system are very similar to the use of continuations in other lan­
guages' semantic definitions.

Appendix A. A Review of the Maintainer's Assistant 244

Separation of Unrelated Code

When reverse engineering code it is typical to find that code which performs one

task has been interleaved with code for another unrelated task. The statements for

each task may not effect the result of the other although at some point in the future

the result of a code fragment may depend upon the combined result of these two. I t

is desirable to separate the code for each fragment from that of the other.

{ (^ > 0)};
x : = (x + 7); { (^ > 0)};
i f (x > 5) = x : = (x + 7);

then resuit := itemi resuit := iteml
else result := iteni2 fi;

Example A.2: Removal of Dead Code

A special case of this is the removal of dead code from a program, example A.2.

Dead code does not aff"ect the result of the program. This is usually because the

result of a computation may be overwritten by that of a later one. The code can

therefore be safely removed without affecting the semantics of the program.

A number of transformations allow movement of statements around the program.

The most basic ones allow the execution order of two statements to be swapped

provided that one statement does not effect the result of the other. A more complex

example is the swapping of two assignments when one uses the result of the other in

the calculation of its own result. To do this the value of the first assignment must

be accounted for and replaced in the right hand side of the other assignment.

x:={y + 4); ^ z (4 + (2 x y)) ;
z:={x + yy, x:={y + 4)

Example A.3: Movement of Statements

The Maintainer's Assistant also makes i t possible to move statements into and

out of conditionals and loops. This is slightly more complex because of the need to

ensure that the semantics of the program are not aff"ected along all possible execution

paths. Ward's theory [88] allows this to be performed with minimal effort.

Appendix A. A Review of the Maintainer's Assistant 245

Creating Procedures

Procedures are a basic concept in modern programming languages. Producing them

involves the grouping of statements, which perform a desired operation, into a unit

which can be called by its name. Whenever this name is encountered in the code the

statements making up the procedure are executed. This makes a program easier to

comprehend but in general makes it less eflScient to execute because of the overhead

of passing parameters and storing return addresses. The technique of inlining is

used to replace the occurrences of a procedure call with the statements making up

the body. In many of the older languages this was done using macro pre-processing.

while (x ^ 50) do
X := (x-l-1);
if ((x mod 7) = 0)

then X := (x -I-1) fi;
calculate{x var result);
y:={y + 1) od;

begin
while (x ^ 50) do

jnc(var);
if ((x mod 7) = 0)

then inc{ var) fi;
calculate{x var result);
7 (y + 1) od

where
proc inc(var) = x : = (x-l-1).

end;

Example A.4: Introducing Procedures to Code

When source code is maintained it is common to find that the bodies of proce­

dures are interspersed around the program and it is desirable to collect these back

together into named procedures which aid program understanding. The Maintainer's

Assistant allows identification of groups of statements that may be converted into

procedures. These can then be attached to a block of code thus giving the procedure

a scope. At any point thereafter it is possible to replace any other occurrences of

the body of the procedure with a call to the procedure.

Adding Parameters to Procedures

To make the use of a procedure more generic parameters are often added. The

procedure then operates on the parameters specified in the call rather than on the

global variables which relate to the named variables within the procedure.

Appendix A. A Review of the Maintainer's Assistant 246

The use of a simple transformation allows a procedure to be parameterised mak­

ing its use more general. For example a procedure which added one to the variable

X would now be able to add one to any variable.

begin
while (x ^ 50) do

inc{ var);
if ((x mod 7) = 0)

then inc(var) fi;
calculate{x var result);
y:={y + l)od

where
proc inc(var) = x :— (x + 1).

end;

begin
while (x ^ 50) do

inc{ var x);
if ((x mod 7) = 0)

then inc(var x) fi;
calculate{x var result);
inc(var y) od

where
proc inc(var z) = z :— {z + 1).

end

Example A.5: Adding Parameters to Procedures

Program Editing (Error Correction)

An essential part of software maintenance is the editing of the source code to correct

errors or implement new functionality. The Maintainer's Assistant provides a full

program editing tool which allows individual statements to be changed or deleted

and new code to be added. The tool shows which constructs are valid at any partic­

ular position. To add a construct to the program the user simply has to highlight the

insertion position and then select the construct which is to be inserted. The Main­

tainer's Assistant automatically places position markers wherever extra parameters

are required, see example A.6.

var := $expn$

Example A.6: An Assignment Statement as Added by the Maintainer's Assistant

A. 1.2 Multiple Source Languages

One of the major advantages of the Maintainer's Assistant is its ability to represent

programs written in a number of different source languages. Because the Main­

tainer's Assistant is based around the WSL language this is done by translating the

Appendix A. A Review of the Maintainer's Assistant 247

code from the source language into WSL. The tool can then be used to maintain
the code. At the end of the maintenance process the WSL code is translated back to
the source language or into another programming language. Currently translators
exist for a number of languages including IBM/360 assembly language, COBOL, C
and Jovial.

WSL is capable of representing both executable and specification languages thus

making the process of transformation easier. Use of many formal methods is hindered

at the stage where the formal specification must be converted into an executable lan­

guage or vice-versa. At this point the specification typically describes the algorithm

and needs relatively minor changes for i t to become executable. During the pro­

cess of conversion from specification language to executable language there is the

possibility that errors may be introduced. The Maintainer's Assistant avoids this

problem as a result of the use of the wide spectrum language WSL.

A. 1.3 Formally Defined Semantics

WSL has formally defined semantics which are based around general specifications

and an imperative kernel language. Transformations are proven using weakest pre­

conditions expressed as formulae in infinitary logic. This provides assurances that

the transformations that are applied to the program guarantee that the semantics

remain unaltered.

A number of programming languages, e.g. Pascal and the Spark Ada subset,

also have formally defined semantics. WSL has a major advantage over these lan­

guages when used for program transformations; it was designed to make the proof of

transformations relatively easy. Therefore, development of transformations is much

quicker in WSL. Other languages can be transformed using these transformations

by translating the original source code into WSL. This removes the need for a large

amount of redevelopment effort which would be necessary to redevelop transforma­

tions for these other languages.

A. 1.4 Practical Experience

The Maintainer's Assistant and its commercial counterpart FermaT have been used

on a wide range of projects [23, 81] involving a number of different source and target

Appendix A. A Review of the Maintainer's Assistant 248

languages. The results from these projects show that the transformation theory is
valid and that real benefit can be gained from the use of program transformations.
The main uses of the tools have been as an aid to program understanding and to
perform migration from one language to another.

A.2 Deficiencies

The Maintainer's Assistant has a number of areas where further development work

is needed. These fall into three categories: (1) the tasks which have not yet been

performed due to time pressures; (2) the developing needs of the computing industry;

and (3) problems with the skills needed to use the system. The main deficiencies

are:

• Data Typing,

• Data Abstraction and Modularisation,

• Translation from/to source languages,

• Selection of appropriate transformation strategies,

• Backtracking facilities,

• Unsupported Language Constructs,

• The Laws of Arithmetic,

• Poor code modularisation support,

• Multi-Layer Software (libraries).

A.2.1 Data Typing

Data typing involves the classification of the data objects to reflect the possible

values that can be represented by that object. The use of composite data types, e.g.

arrays, allows the structure of data to be described and allows the representation of

abstract objects which resemble the real-world items that they represent.

Appendix A. A Review of the Maintainer's Assistant 249

The use of data typing presents a number of advantages in different types of
software engineering development work. Two categories which are easily identified
are those of forward and reverse engineering. The main advantage of using data
typing for forward engineering is that it helps to reduce the occurrences of errors.
Data types make it easier to spot incorrect type usage and a considerable amount
of automatic error checking can be done by compilers. Use of composite types allow
logically related data items to be referred to as one item.

When reverse engineering a system the detection of errors becomes less important

because the code will typically have been working correctly for a considerable amount

of time. New code structure becomes one of the primary aims and this does not

require the provision of explicit data typing.

The provision of data typing during reverse engineering is important however

under the following conditions:

1. To allow reasoning about conditions within the language which allow control

flow manipulation. For example to allow determination of data values which

aflfect conditional branch instructions.

2. When the maintainer needs to consider data structure and produce abstrac­

tions of data it is vital that this can be represented concisely within the lan­

guage. I f the machine does not have a standard definition of data types it

becomes very difficult to write transformations which will perform sensible

operations upon the data.

3. It is also important that the maintainer is able to view the code in a form that

is similar to other computer languages. This makes the process of program

understanding easier.

The current typing system in the Maintainer's Assistant does not provide any

specific types. Instead all variables have a universal type which allows a number

of different types to be stored within that variable. These may contain primitive

objects such as integers, characters or composite objects such as strings, sequences or

trees. Any properties of these types must be explicitly stated within the program as

a series of assertions. This makes the code look more complicated than it actually is

Appendix A. A Review of the Maintainer's Assistant 250

and means that appropriate assertions must be supplied whenever necessary, rather
than using implicit properties of objects.

There are also potential performance overheads associated with the existing

method of representing types using assertions. The tool cannot be optimised to

deal with the common types found in programs because there is no standard defini­

tion of their properties which can be appealed to.

A.2.2 Data Abstraction and Modularisation

When performing software maintenance it is desirable to be able to group data

objects and the code that performs operations upon them into modules. This is

a common practice when developing software and allows abstract thought about

the real life objects that the data represents. Common concepts in the software

engineering field are those of abstract data types and object orientation. Support

for these is missing in the Maintainer's Assistant.

A.2.3 Translation from/to Source Languages

Work with the Maintainer's Assistant requires that the code which is being trans­

formed is represented in the WSL language. This presents a problem for maintainers

of code which has been developed in other languages. Before the Maintainer's As­

sistant can be used upon this code i t must be translated into WSL. At the present

moment the translators that are available have not been formally proven to be cor­

rect, therefore providing a potential source of errors in the conversion process. I t will

not, however, be possible to give a formal definition of the translation unless both

source and target languages are formally specified. This presents a major prob­

lem because in general i t is necessary to rely on conventional software validation

techniques.

A.2.4 Selection of Appropriate Transformation Strategies

Before a maintainer can successfully start to apply transformations and make the

code more understandable he must have an idea about his goals. The primary goal is

to make the code more structured and to remove many of the implementation details

Appendix A. A Review of the Maintainer's Assistant 251

while still retaining 100% functional equivalence. This revolves around standard
software engineering techniques such as modularisation. The maintainer however
needs to understand how transformations can be used to implement these techniques
and to have a knowledge of which transformations are available.

When attempting to transform a program into a different form the maintainer

must plan the general direction in which the transformation should be done. A series

of steps must then be identified which will progress in that general direction. Some of

the steps required are often counter-intuitive because they require that complexity is

temporarily increased in order for subsequent steps to be able to remove underlying

complexity.

The identification of these steps is therefore a complex task. The probable out­

come of each step must be known along with an idea of what preconditions each

step demands. This requires that the maintainer must be reasonably experienced

before he can start doing productive work.

Bull [23, page 206] reports that case studies using the Maintainer's Assistant

in practical case studies at IBM Hursley showed that most users could become

proficient with basic transformations in under two weeks. However, the use of other

transformations, predominantly those relating to loops, takes longer to master due

to the need for greater understanding of the underlying mathematical theory.

In his thesis. Bull [23, page 212] also notes that the Maintainer's Assistant lacks

facilities to assist the user in selecting appropriate transformations. The areas he

identifies where help could be given are:

• The system could suggest a number of possible "next step" transformations.

• The use of a "jittering" mechanism similar to that used by the T I (Transforma­

tional Implementation) System [5]. The jittering system modifies a program to

allow a transformation, which fails due to a technical detail, to be performed.

• An additional class of transformations which uses knowledge of programming

goals. For example "divide and conquer", recursion removal and backtracking.

• A system to allow a user to build up his own catalogue of compound transfor­

mations which consist of frequently used combinations of existing transforma­

tions.

Appendix A. A Review of the Maintainer's Assistant 252

A.2.5 Backtracking Facilities

Linked with the problems of user knowledge is the problem of correcting minor

flaws in a transformation strategy which occur at an early point in the development.

These flaws often mean that a later transformation cannot be applied because a

precondition is not met. The solution is to unwind the transformation steps, correct

the flaw and reapply the subsequent transformations.

Currently the Maintainer's Assistant allows the engineer to undo transformation

steps and maintains a history of the unwound steps. A redo facility is available to

allow retracing of the steps if the sequence of transformations is unwound too far.

Unfortunately if a transformation is applied at the place where the flaw occurred

the history of the unwound steps is lost. Therefore the unwound steps have to be

manually recorded and reapplied in order for the flaw to be corrected.

A.2.6 Unsupported Language Constructs

A problem that becomes apparent when trying to handle some of the more advanced

languages available is the lack of support for certain language constructs. The major

examples of this category include:

Exceptions — Error handling constructs which are associated with specific blocks

within a program. They do not affect the logical control fiow of a program

unless an error condition occurs. These constructs are found in a number of

languages such as Ada, Java and C+-I-;

Pointers — Pointers are found in many languages and are used to allow the

dynamic creation and destruction of objects at runtime;

Temporal Constraints — Many programs for real-time systems require that

time constraints are met for successful execution. The ability to reason about

these constraints is useful in these cases;

Concurrency — This is an important concept in multi-tasking environments and

often allows a program to be split into a number of simple subsystems which

communicate whenever necessary.

Appendix A. A Review of the Maintainer's Assistant 253

Self-modifying Code — I t is very difficult to handle this type of code because
the program is represented as data and it can be difficult to determine exactly
when a part of a program is being changed^.

A lack of these constructs can be tolerated in many cases, but the current pop­

ularity of Ada, Java and C++ suggests that exceptions in particular should be

considered. Pointers are a particular problem because their semantics are difficult

to formalise, but their use is very wide spread in programs. There are no plans

to tackle pointers rigorously at the moment, an intermediate solution using human

intervention is planned to solve the problem. The importance of correct execu­

tion in safety critical systems requires that any system designed to maintain these

treats temporal constraints and concurrent aspects rigorously. Current research by

Younger [25, 98] is addressing the latter two problems.

A.2.7 The Laws of Arithmetic

The Maintainer's Assistant uses a symbolic mathematics and logic module to provide

reasoning about the arithmetic and logical conditions present in expressions within a

program. These provide a very basic level of functionality which includes elementary

cases only. More complex reasoning about complex mathematical functions is not

easy. I t often requires a large amount of user interaction and in many cases it is not

feasible to produce the desired results.

Another problem with the mathematics module is that the expressions provided

have not been formally specified and their correctness relies only on testing. This

is obviously not acceptable when reasoning with correctness preserving transforma­

tions.

When examined closely it is apparent that the lack of strong data typing hinders

the mathematics and symbolic logic package. The system cannot make judgements

on the type of the values stored in data objects and, therefore, cannot reason properly

about the result of the expression. This is another factor which makes the inclusion

of typing within the language desirable.

^This problem is even difficult to overcome in microprocessors which have separate instruction
and data caches. A write to the program code must be followed by cache flushing instructions to
ensure that the next execution of the changed instructions will be performed properly.

Appendix A. A Review of the Maintainer's Assistant 254

The preferred way to add rigorous support for this logic is to use a theorem
prover for reasoning instead of the logic package. This can take standard theories
for various types and allows their use whenever necessary.

A.2.8 Poor Code Modularisation Support

WSL provides a limited amount of support for code modularisation. Procedures

and functions can be attached to code blocks making them visible only within the

block. There is no facility for collecting procedures and functions together into

related groups which provide operations of a similar class or type. The functions

which are attached to a block are visible to all sub-blocks and there is no concept of

hiding within the program tree. Thus it is diflBcult to identify which components are

needed in which block. The addition of these concepts to WSL will make it easier to

represent the program in abstract terms which can be related to real world objects.

The collection of procedures and functions into a block is known, in Ada, as

packages. Packages also allow the definition of types and variables to be incorpo­

rated. This allows packages to be used to represent abstractions of operations and

objects. These packages are then explicitly included into code blocks when they

are needed. This reduces the number of concepts which are available implicitly and

therefore helps to make program understanding easier.

A related problem occurs in languages where different modules of the program

can be stored in different files. This is not addressed in the Maintainer's Assistant

where everything must be stored in the main file. The lack of support for this

has the disadvantage that the Maintainer's Assistant cannot easily represent the

relationships between files. To do so would require that all of the files are combined

into one file before transformation work is done. This makes i t difficult to perform

re-engineering in the large.

A.2.9 Multi-Layer Software (libraries)

The approach to subprogram modularisation is made more complex when the in­

troduction of standard libraries is considered. These appear in most systems and

range from operating system facilities through mathematical libraries to vendor sup­

plied software such as database engines. In almost all of these cases the source code

Appendix A. A Review of the Maintainer's Assistant 255

will not be available for use during maintenance and if available would describe the
operations in terms of low level operations. For example, when using file system
primitives i t is not necessary to know where individual bits are stored on the disk
and how the disk controller can be used to access the data. Instead only the contents
of the file are important.

The Maintainer's Assistant allows library subprograms to be introduced as exter­

nal procedures and functions. These externals have an undefined effect on the state

of the program and therefore their use is of limited benefit. For usable reasoning

about external library subprograms the properties of the library units are needed.

These could be described as a specification or as a relatively abstract piece of WSL

code.

Bibliography

1] J. R. Abrial, S. T. Davis, M. K. O. Lee, D. S. Neilson, P. N. Scharbach, and

I . H. S0rensen. The B Method. BP Research, Sunbury Research Centre, U.K.,

1991.

[2] Ada Joint Program Office. Ada Reference Manual. Ada Joint Program Office,

ISO/IEC 8652:1995(E) edition, 1995.

3] D. Andrews. Data Reification and Program Decomposition, volume 252 of Lec­

ture Notes in Computer Science, pages 389 - 422. Springer-Verlag, 1987.

4] R. J. R. Back. Correctness Preserving Program Refinements, volume 131 of

Mathematical Centre Tracts. Mathematisch Centrum, 1980.

5] R. Balzer, N. M. Goldman, and D. S. Wilde. On the transformational program­

ming approach to programming. In Proceedings of International Conference on

Software Engineering. IEEE Computer Society, 1976.

6] F. L. Bauer, B. MoUer, H. Partsch, and P. Pepper. Formal construction by

transformation—computer aided intuition guided programming. IEEE Trans­

actions on Software Engineering, 15(2), 1989.

7] F. L. Bauer and the CIP Language Group. The Munich Project CIP, Volume I:

The Wide Spectrum Language CIP-L, volume 183 of Lecture Notes in Computer

Science. Springer-Verlag, 1985.

8] F. L. Bauer and the CIP System Group. The Munich Project CIP, Volume II:

The Program Transformation System CIP-S, volume 292 of Lecture Notes in

Computer Science. Springer-Verlag, 1987.

256

Bibliography 257

9] I.D. Baxter. An overview of a (transformational) design maintenance system.
In Proceedings of 1st UK Program Transformation Workshop, Durham, 1996.

10] K.H. Bennett. Automated support of software maintenance. Information and

Software Technology, 33(l):74-85, 1991.

11] K.H. Bennett, T. Bull, and H. Yang. A transformation system for maintenance

- turning theory into practice. In Proceedings of International Conference on

Software Maintenance. IEEE Computer Society, 1992.

12] K.H. Bennett and N. Chapin, editors. Journal of Software Maintenance : Re­

search and Practice. Wiley, 1997.

13] P.J. Biggs. ReThree-C+H a reverse engineering, redocumentation and reuse

tool for CH—I-. http://www.dur.ac.uk/~dcs3pjb/re3-cpp.html.

14] D. Bjorner, C.B. Jones, M. Mac an Airchinnigh, and E.J. Neuhold, editors.

VDM '87, VDM - A Formal Method at Work, volume 252 of Lecture Notes in

Computer Science. Springer-Verlag, 1987.

[15] B.W. Boehm. A spiral model of software development and enhancement. Com­

puter, 21(5):61-72, May 1988.

16] C. Boldyreff, E.L. Burd, R.M. Hather, R.E. Mortimer, M. Munro, and E.J.

Younger. The AMES approach to application understanding - a case-study. In

Proceedings of International Conference on Software Maintenance, pages 182-

191. IEEE Computer Society, 1995.

17] R. Boulton, A. Gordon, M.J.C. Gordon, J. Harrison, J. Herbert, and J. Van

Tassel. Experience with embedding hardware description languages in HOL. In

Proceedings of the IFIP TC10/WG10.2 International Conference on Theorem

Provers in Circuit Design: Theory, Practice and Experience, pages 129-156.

North-Holland/Elsevier, 1992.

18] J.P. Bowen and P.T. Breuer. Decompilation. In H. Van Zuylen, editor. The

REDO compendium: reverse engineering for software maintenance, pages 131-

138. Wiley, 1993.

Bibliography 258

19] J.P. Bowen and M.J.C. Gordon. Z and HOL. In Proceedings of 8th Z User
Meeting (ZUM '94), Workshops in Computing series. Springer-Verlag, June
1994.

20] P.T. Breuer and J.P. Bowen. Decompilation — the enumeration of types

and grammars. ACM Transactions on Programming Languages and Systems,

16(5):1613-1647, 1994.

21] P.T. Breuer, K.C. Lano, and J.P. Bowen. Understanding programs through

formal methods. In H. Van Zuylen, editor, The REDO compendium: reverse

engineering for software maintenance, pages 195-223. Wiley, 1993.

22] W. Brew. Reengineering Your Software for the Millennium. Reasoning Systems

Inc., 3260 Hillview Avenue, Palo Alto, CA 94304, 1996.

23] T .M. Bull. Software Maintenance by Program Transformation in a Wide Spec­

trum Language. Ph.D. Thesis, University of Durham, 1994.

24] T .M. Bull and K.H. Bennett. The work of the Durham Centre for Software

Maintenance. Technical report, Department of Computer Science, University

of Durham, 1995.

25] T .M. Bull, K.H. Bennett, E.J. Younger, and Z. Luo. Bylands: Reverse engi­

neering safety-critical systems. In Proceedings of the International Conference

on Software Maintenance. IEEE Computer Society, 1995.

26] E.L. Burd, M. Munro, and C. Wezeman. Analysing large COBOL programs:

The extraction of reuseable modules. In Proceedings of International Conference

on Software Maintenance, pages 238-243. IEEE Computer Society, 1996.

[27] G. Canfora, A. Cimitile, and A. De Lucia. Specifying code analysis tools. In

Proceedings of International Conference on Software Maintenance, pages 95-

103. IEEE Computer Society, 1996.

28] M.A.M. Capretz. A Software Maintenance Method Based on the Software Con­

figuration Management Discipline. Ph.D. Thesis, University of Durham, 1992.

Bibliography 259

29] L. Cardelli. A semantics of multiple inheritance. Information and Computing,
76(2/3), 1988.

30] V.A. Carreno and P.S. Miner. Specification of the IEEE-854 floating-point

standard in HOL and PVS. In J. Alves-Foss, editor, Proceedings of HOL-

95: International Workshop on Higher Order Logic Theorem Proving and its

Applications, pages 1-16, September 1995.

31] N. Chapin. 360 programming in assembly language. McGraw-Hill, 1968.

32] E.J. Chikofsky and J.H. Cross. Reverse engineering and design recovery: A

taxonomy. IEEE Software, 7(1), 1990.

33] C. Cifuentes and V. Malhotra. Analysing code. In Proceedings of International

Conference on Software Maintenance, pages 340-349. IEEE Computer Society,

1996.

34] A. Cimitile, A. De Lucia, and M. Munro. Identifying reusable functions using

specification driven program slicing: A case study. In Proceedings of Interna­

tional Conference on Software Maintenance, pages 124-133. IEEE Computer

Society, 1995.

35] M. Clint. Program proving: coroutines. Acta Informatica, 2:50-63, 1973.

36] M. Clint and C. Vicent. The use of ghost variables and virtual programming

in the documentation and verification of programs. Software—Practice and

Experience, 14(8):711-734, 1984.

37] E.F. Codd. Normalized database structure: A brief tutorial. In Proceedings of

ACM SIGFIDET Workshop on Data Description, Access and Control, 1971.

38] B.J. Cornelius. Programming with TopSpeed Modula-2. Addison-Wesley, 1991.

39] C.J. Date. An Introduction to Database Systems, Fourth Edition. Addison

Wesley, 1986.

40] E. W. Dijkstra. A Discipline of Programming. Prentice-Hall, 1976.

Bibliography 260

41] M.S. Feather. Zap program transformation system: Primer and manual. Tech­
nical report. Department of Artificial Intelligence, University of Edinburgh,
1978.

42] M.S. Feather. A Program Transformation System. Ph.D. Thesis, University of

Edinburgh, 1979.

43] R.J. Gadd. ReForm — from assembler to Z using formal transformations. In

Proceedings of 4th European Software Maintenance Workshop, Durham, 1990.

44] M.J.C. Gordon and T.F. Melham, editors. Introduction to HOL — A theorem

proving environment for higher order logic. Cambridge University Press, 1993.

45] D. Cries and S. Owicki. An axiomatic proof technique for parallel programs.

Acta Informatica, 6:319-340, 1976.

46] W.G. Griswold, M. I . Chen, R.W. Bowdidge, and J.D. Morgenthaler. Tool sup­

port for planning the restructuring of data abstractions in large systems. Soft­

ware Engineering Notes, 21(5):33-45, November 1996.

47] The RAISE Language Group. The RAISE Specification Language. The BCS

Practitioner Series. Prentice Hall, 1992.

48] J. Grundy. A window inference tool for refinement. In C.B. Jones, B.T. Den-

vir, and R.C.F. Shaw, editors. Proceedings of the 5th Refinement Workshop,

Workshops in Computing. Springer-Verlag, 1992.

49] A. Hall. Seven myths of formal methods. IEEE Software, 7(5):11-19, 1990.

50] J. Harrison. Constructing the real numbers in HOL. Formal Methods in System

Design, 5(1/2):35-59, July 1994.

51] L. Hatton. Safer C developing software for high-integrity and safety-critical

systems. McGraw-Hill, 1995.

52] J.P. Hoare. Application of the B-method to GIGS. In M.G. Hinchey and J.P.

Bowen, editors, Applications of Formal Methods, Series in Computer Science,

pages 97-124. Prentice-Hall, 1995.

Bibliography 261

53] B.M. Hodgson. The Maintainer's Assistant - User Guide - version 2. Durham
Software Engineering Ltd., August 1993.

54] Proceedings of International Conference on Software Maintenance, 1997.

55] Xinotech Research Inc. Enterprise-Wide Automated Software and Data Re-

engineering with the Xinotech Technology. Xinotech Research Inc., 1997. Infor­

mation from http://www.xinotech.com/.

56] C. B. Jones. Systematic Software Development using VDM. Prentice-Hall, 1986.

57] C.B. Jones. Systematic Software Development using VDM, 2nd Edition.

Prentice-Hall, 1990.

58] D.E. Knuth. Literate Programming. Center for the Study of Language and

Information, Stanford University, 1992.

59] T. Lake and T. Blanchard. Reverse engineering of assembler programs using

a TDF-based intermediate language. In Proceedings of European Workshop on

Software Maintenance, Durham, 1995.

60] T. Lake and T. Blanchard. Reverse engineering of assembler programs: A

model-based approach and its logical basis. In Proceedings of Working Confer­

ence on Reverse Engineering, pages 67-75. IEEE Computer Society, 1996.

61] K. Lano. The B Language and Method - A Guide to Practical Formal Develop­

ment. Springer-Verlag, 1996.

62] K.C. Lano. Z-|—h, an object-oriented extension to Z. In J.E. Nicholls, editor, Z

User Workshop, Oxford, pages 179-185. Springer-Verlag, 1990.

63] K.C. Lano, P.T. Breuer, and H. Haughton. Reverse engineering COBOL via

formal methods. In H. Van Zuylen, editor. The REDO compendium: reverse

engineering for software maintenance, pages 225-248. Wiley, 1993.

64] J. Leonard, J. Pardoe, and S. Wade. Software maintenance — Cinderella is still

not getting to the ball. In Proceedings of lEE/BCS Conference on Software

Engineering, pages 104-106, 1988.

Bibliography 262

65] B.P. Lientz and E.B. Swanson. Software Maintenance Management. Addison
Wesley, Reading, MA, 1980.

66] R. McCrindle. The reality of the virtual maintainer. In Proceedings of European

Software Maintenance Workshop, Durham, 1996.

67] J.A. McDermid and P. Rook. Software development process models. In J.A. Mc-

Dermid, editor. Software Engineer's Reference Book, chapter 15. Butterworth

Heinemann, 1991.

68] T. Melham. Using recursive types to reason about hardware in higher order

logic. In G.J. Milne, editor, The Fusion of Hardware Design and Verification—

Proceedings of the IFIP WGIO.2 Working Conference, pages 27-50. North-

Holland, 1988.

69] B. Meyer. Object-oriented Software Construction. Prentice Hall, 1988.

70] B. Moller. Calculating with pointer structures. In R.S. Bird, editor. Proceed­

ings of IFIP TC2/WG2.1 Working Conference on Algorithmic Languages and

Calculi. Chapman and Hall, 1997.

71] C. Morgan. Programming from Specifications, 2nd Edition. Prentice-Hall, 1994.

72] R.E. Mortimer and K.H. Bennett. Maintenance and abstraction of program

data using formal transformations. In Proceedings of International Conference

on Software Maintenance, pages 301-310. IEEE Computer Society, 1996.

73] M. Phillips. CICS/ESA 3.1 experience. In J.E. NichoUs, editor. Proceedings of

Z User Workshop, pages 179-185. Springer-Verlag, 1990.

74] B. Potter, J. Sinclair, and D. T i l l . An introduction to formal specification and

Z. Prentice-Hall, 1991.

75] C.H. Pratten. An introduction to proving AMN specifications with the HOL

theorem prover. In H. Habrias, editor, Proceedings of International Conference

on: Putting into practice methods and tools for information system design,

Nantes, 1995.

Bibliography 263

76] V. Rajlich and S.R. Adnapally. VIFOR 2: A tool for browsing and documen­
tation. In Proceedings of International Conference on Software Maintenance,
pages 296-300. IEEE Computer Society, 1996.

77] N.F. Schneidewind. The state of software maintenance. IEEE Transactions on

Software Engineering, SE-13(3):303-310, 1987.

78] H.M. Sneed. Object-oriented COBOL recycling. In Proceedings of European

Software Maintenance Workshop, Durham, 1994.

79] Black hole or buried treasure — 8th European Software Maintenance Workshop,

Durham, 1994.

80] The year 2000 and related issues — European Software Maintenance Workshop,

Durham, 1997.

81] Software Migrations Ltd. An Introduction to FermaT. Durham, 1995.

82] J.M. Spivey. The Z Notation: A Reference Manual, 2nd Edition. Prentice-Hall,

1992.

83] G.L. Steele. Common Lisp: the language, 2nd edition. Digital Press, 1990.

'84] Sun Microsystems. SunOS 2.x to 1.x Binary Compatibility Package. Sun Mi­

crosystems, 1996. Part of the Solaris(tm) documentation.

85] R.E. Sward. Extracting functionally equivalent object-oriented designs from im­

perative legacy code. In Proceedings of the NASA Reuse Workshop, September

1996.

86] S.K. Tuggle. Assembler language programming: systems/360 and 370. Science

Research Associates, Inc., 1975.

87] J. van Heijenoort. From Frege to Gddel: a source book in mathematical logic,

1879—1932. Harvard University Press, 1967.

88] M.P. Ward. Proving Program Refinements and Transformations. D.Phil. Thesis,

Oxford University, 1989.

Bibliography 264

89] M.P. Ward. Language-oriented programming. Software - Concepts and Tools,
15(4):147-161, 1994.

90] M.P. Ward. Reverse engineering through formal transformation. The Computer

Journal, 37(9), 1994.

91] M.P. Ward. Program analysis by formal transformation. The Computer Journal,

39(7), 1996.

92] M.P. Ward. Derivation of data intensive algorithms by formal transformation

- the schorr-waite graph marking algorithm. IEEE Transactions on Software

Engineering, to appear.

93] M.P. Ward, F. W. Calliss, and M. Munro. The use of transformations in "the

maintainer's assistant". In Proceedings of International Conference on Software

Maintenance. IEEE Computer Society, 1989.

94] R. Wiener. Software Development using Eiffel: There is life other than C++.

Prentice Hall, 1995.

95] H.J. Yang and K.H. Bennett. Extension of a transformation system for main­

tenance - dealing with data-intensive programs. In Proceedings of International

Conference on Software Maintenance, pages 344-353. IEEE Computer Society,

1994.

96] R. Yarmish. Assembly language fundamentals, 360/370 OS/VS DOS/VS.

Addison-Wesley, 1979.

97] P. Young. Software visualisation in cyberspace. Ph.D. Thesis Proposal, Uni­

versity of Durham, 1996.

98] E.J. Younger, Z. Luo, K.H. Bennett, and T.M. Bull. Reverse engineering con­

current programs using formal modelling and analysis. In Proceedings of Inter­

national Conference on Software Maintenance, pages 255-264. IEEE Computer

Society, 1996.

