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Abstract

Non-local forces exist in nature for two reasons. First that the recent
experiments on locality are supposed to be accurate enough. Second that
there is no local theory that can reproduce all the predictions of orthodox
quantum theory which, almost for about a century, have been proved to be
correct experimentally again and again. This thesis concerns both of these.

A brief discussion of the measurement in quantum theory is followed by
two comments which show that the quantum description is frame dependent
and that the collapse of the wave-function of a system may occur without
the relevant measurement being performed. After this the Bohm model and
a modified version of the Bohm model are described.

Next we introduce a new method for obtaining the Bell-type inequali-
ties which can be used for testing locality. We derive more inequalities by
this method than obtained by other existing procedures. Using Projection
Valued(PV) and Positive Operator Valued Measures(POVM) measurements
we have designed experiments which violates one of the Bell inequalities
by a larger factor than existing violations which in turn could increase the
accuracy of experiments to test for non-locality. This is our first result.

After discussing the non-locality and non-Lorentz invariant features of
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Abstract iv

the Bohm model, its retarded version, namely Squires’ model - which is local
and Lorentz invariant - is introduced. A problem with this model, that is the
ambiguity in the cases where the wave-function depends on time, is removed
by using the multiple-time wave-function. Finally, we apply the model to one
of the experiments of locality and prove that it is in good agreement with

the orthodox quantum theory.
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Chapter 1

Introduction

In spite of its great success, orthodox quantum theory has suffered from two
difficulties — the first, which is as old as the theory itself, is the measurement
problem in which a pure state under the time dependent Shrodinger equation
seems to change to a mixed one; and the second one, developed later in
1935, is the Einstein, Podolsky, Rosen (EPR) theorem which suggests that
the wave-function does not give the complete description of the state of a
physical system in quantum theory, or otherwise, without performing any
measurement on a system, the values of two observables with non-commuting
operators simultaneously can be predicted with certainty. Since then many
physicists have studied these issues.

In this thesis, we first review the quantum measurement problem and the
consequences of the collapse of the wave-function which lead to some well-
known paradoxes in quantum theory. The hidden-variable theory of David
Bohm, developed in 1952 as a solution to the measurement problem, and its
contextual dependent feature which blocks the existing no hidden-variable

theorems, will be discussed next. In Bohm model each particle moves on a
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given trajectory, which is determined by the initial conditions of the system.
However in most versions of this model no trajectory can be defined for
bosons. Furthermore, there is no hidden-variable for the spin of a particle.
This was the motivation for generalizing the Bohm model by Squires and
Mackman in 1995. With application of this generalized model to a simple
case we have ended chapter 2.

In chapter 3 the EPR argument and the suggestion of introducing an ex-
tra hidden-variable along with the wave-function for complete description of
a system are explained. However John S. Bell in 1964, based on local deter-
ministic hidden-variable (and later any local) theories deduced an inequality,
and proved that this inequality is violated by the predictions of orthodox
quantum theory. But Bell’s original inequality cannot be used to test non-
locality. In the rest of the chapter a method is introduced for obtaining
Bell-type inequalities. The method is especially applied to the experiments
with two arms and two local variables in each arm. Here the inequalities for
two different cases are deduced: in the first case for each local variable there
are two outputs which we call it 2,2:2,2 case and in the other in each arm
for one of the local variable setting there are three outputs which we call it
2,3:2,3 case.

Two types of measurements, that is, Projection Valued(PV) measurement
and Positive Operator Valued Measure(POVM) measurement are discussed
in chapter 4. Based on the predictions of orthodox quantum theory, the
values of some of the 2,3:2,3 inequalities are calculated using PV and POVM

measurements where these are used for 2 and 3 outputs respectively.
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Hardy’s proof according to which any local hidden-variable theory is es-
sentially non-Lorentz invariant is discussed in chapter 5. That the Bohm
model is generally a non-local theory and at the level of an individual system
is not Lorentz invariant is explained later. The Squires model which is local
and Lorentz invariant is the core of this chapter. This model which is in fact
a retarded version of the Bohm model is applied to one of the experiments of
Aspect et.al. to see to what extent does the model agree with the predictions
of quantum theory.

Finally chapter 6 is a summary of the results obtained.




Chapter 2

Quantum Measurement and
the Bohm model

2.1 The quantum measurement problem

Measurement, even if not one of the fundamental concepts, has a basic role
in physics whose theories are tested via experiments. Two important fea-
tures that we might expect of a measurement are: firstly, if two systems are
identical, that is their initial wave-function is the same and therefore the
same wave-function for all future times, the results of the measurement on
both systems should be the same, secondly, if the state of a system does not
change with time or in a very short time such that the changes of the sys-
tem can be neglected, repeated measurements on the system should give the
same results. It should be noted that here we are assuming error-free mea-
surements. So, for example, if the predicted probability for a measurement
is zero, then the measurement would give no result.

Quantum theory, which is statistical in nature, when applied to a statis-

tical ensemble of identical systems, predicts exact results in accordance with
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the above requirements. If the (error-free) measurements are done on two
statistical ensembles of identical systems, or on one statistical ensemble of
identical systems in such a shoft time that the time evolution of the systems
can be neglected, then exactly the same results are obtained. However in
the case of an individual system, e.g. a one particle system itself, quantum
. theory does not satisfy the first of these requirements.

According to quantum theory, at any given time there corresponds a
state to any physical system. All properties of this physical system which
are called observables are determined from this state via a corresponding
hermitian operator. Orthodox quantum theory says that the wave-function,
which satisfies the Schrodinger equation in non-relativistic quantum mechan-
ics, gives the complete description of the state of a physical system. In fact
von Neumann [vN55] claims that “ One never needs more information than
this: if both system and state are known, then the theory gives unambigu-
ous directions for answering all questions by calculation. ” However in the
case of an individual system, if we do a measurement on the system, the
result of the experiment cannot be determined exactly in advance. Here the
wave-function gives the probability of the outcome of the measurement.

To explain the process of measurement in quantum mechanics, suppose
that before the measurerngaht is done, the wave-function of the system, S, is
¥;(x) and the wave-function of the measurement apparatus is ¥ (y) and
that we are going to measure the observable O with eigen-functions u, and
eigen-values O,. As there is no interaction between the system and the ap-

paratus before measurement, initially the wave-function of the whole system
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is U(x,y,to) = ¥ ()Y} (y); where x, y represent the coordinates of config-
uration space of the system and the measurement apparatus respectively. As
the interaction between the system and the measurement apparatus occurs,
the total wave-function evolves according to Schrodinger equation. Clearly
before the measurement is done there is a probability of |a,|? to get the value
O, for the observable O where a, = (u,|1§).

Now suppose that we do the same measurement on this system in such
a short time that the time evolution of the system is ignored. For such
successive measurements von Neumann’s interpretation gives a mathematical
description for the cases where the result of the two successive measurement
would be the same — the so called the measurement of the first kind [Jau68].

We write the system state

[¥e) = > @)
where the |u,) are a complete set of eigen-states of the observable which is

to be measured. Then the measuring apparatus is designed so that

unitary evolution
2 ) %s") - D aalua)lvn)

i.e. each state |v,) corresponds to a unique “result” for the system. The “col-
lapse” then takes the sum into one state |u,)|v,) with probability P, = |a,|.
This collapse of the wave-function raises another problem — measurement
problem — a pure state has changed to a mixed state, which means that the
quantum evolution is not linear.

Schrédinger cat — Consider a live cat sitting in a box, that could be killed

if a particle strikes it. A source of particles and a beam-splitter is provided
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in this box such that only the transferred beam hits the cat and will kill it.
Now, the source emits one particle. When this particle reaches the beam-
splitter, the wave-function splits to %( |t) +4|r)), with equal probability to
find the particle in |¢) (transfered) state or |r) (reflected) state. Initially the

total wave-function of the system is

¥) = %(lw +ilr)|L)

And the final state is:

1 o1
0) = ﬁltHD) + 2EIT>IL> (2.1)

Where |D) is the state of dead cat and the |L) is the state of the live cat.
As long as there is no observation the probability to find the cat live or dead
is equal. The collapse of the wave-function is postponed and only occurs
when an observation is made and accordingly the system collapses to the
state [t)]D) or [r)|L), and only at this time the predestination of the cat is
determined. It will be alive or dead.

Negative measurement — Consider measuring the z-component of the spin of
a particle, which has only two eigen-states |+) and |—). If the initial state
of the system is |¥) = a|+) + @_|—), and the particle is passed through
a Stern-Gerlach apparatus, then the particle is deflected according to its
spin state, for example with the probability |a,|? ( |a_|? ) it is in the |+)
( |-) ) state and will go up ( down ) toward some point P ( Q ). At this
stage the wave-function has not collapsed yet, because we have not obtained
any information about the system. So the measurement is done only if the

particle interacts with one of the detectors provided at the point P or Q,
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and according to what we said previously, after this the collapse of the wave-
function happens. Now , if a detector is provided at the point Q, and we do
not detect the particle, it means that it is at the point P with the state |+).
Clearly, the wave-function should have collapsed to the state |+). But, really,
have we made a measurement on the system? Of course, not. Because there
was no interaction between the particle and the measurement apparatus -
here the detector at Q. However, this is just the same as the Schrodinger
cat. Instead of looking at the cat to see if it is alive or dead, we may put a
-detector to detect the particle in the reflected wave.

Wigner’s friend — If in the Schrodinger cat experiment, the particle is the
system and the cat which is conscious is the measurement apparatus, and
the effect of the particle is not to kill the cat but only make him aware of its
arrival. Then, from the point of view of the cat, when the particle reaches
him, the collapse of the wave-function happens, say at time ¢,. However for
the observer outside the box the state of the system is still pure, given by
equation (2.1), until at some later time, ¢,,, he knows the results e.g. by
means of asking the cat, then the collapse occurs. It is seen that in the time
interval between ¢, and ¢,, according to the cat the collapse has happened
and so the state of the system is a single term, [¢)|D) or |r)|L), but according
to the observer the state of the system is still the superposition given by the
equation (2.1), because the collapse has not happened yet.

Comment 2.1.1 — One of the consequences of the collapse of the wave-
function is that in quantum mechanics the probability, as a function of time,

in two frames of reference is different. To show this we consider a system of



CHAPTER 2 Quantum Measurement and the Bohm model 9

two non-interacting particles.

If P is an observable of the first particle with eigen-functions (,, and
eigen-values p,, then:

and if @ is an observable of the second particle with eigen-functions &, and

eigen-values ¢, then:

Ql€n) = ¢alén)

Now let’s consider the general case where the two particles are correlated,

so that their wave-functions are entangled. We assume the total state of the

system is:

(¥ (x,y)) = [¥:(2)]d:(y)) + [¢a())|¢:(y)) (22)

where  and y represent the coordinates of configuration space of the two

particles.

Now we expand the states |1, (z)) and |¢, . (y)) as follows:
Y. ( Z 1, 2ym [ Com)

]¢(1 n\Y Z ﬂu 2)n!§n
So the state |¥(z, y)) would become:
By = [Souled] 100 + [ Sowlcl] b)) (3

@) [zﬂmm}ﬂ%(w» [zﬂznm] (2.4
= 3 (CunBun + 2o |Ca) ) (2.5)

m,n
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It is clear that the state |(,,)|€,) is an eigen-state of the operator PQ and we
can expand the state |¥(x,y)) in term of these eigen-states.

Now if we measure the observable PQ of this system, then after the measure-
ment is made, with the probability |a,, 8, + Qomf2.|* We obtain the value pp,
for P and the value ¢, for @ and with the same probability the final state
of the whole system collapses to |(,)|€,). Here we see that as time goes on,

the probability changes as follows:

lalmlgln + (12'r11,/8211,|2 - 1

However, as another possibility we can first measure the observable @ and
then the observable P. In this case the wave-function of the state of the whole

system, with some probability which is easily calculated from equation (2.4),

collapses to (B, |1, () + Ban|[t02(2)))|E,) Where:

N

A= [|ﬁ1n|2<¢1l¢1> + lﬂ2n|2<¢2|¢2> + zm(ﬂfnﬁ2n<¢1|¢2>)r (2'6)

is a normalization constant and then with the probability A*|a, B, + QomBanl?

collapses to (£, so in this case as time goes on, the probability changes as:

|a1m/81n + a2m162n|2 — /\Zlalm/gln + Ol?mﬁan2 — 1

However, as the theory is assumed to be Lorentz invariant, so in any other
frame of reference, if P/Q is measured then the corresponding state should
collapse to the same |(,,)/|£,). But, if the two measurements of P and Q are

space-like separated,! then there is a frame of reference in which the order of

1Here a measurement is considered as an event which take place at some time ¢ and at
some point z in space. :
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measurements 1s reversed, ¢.e. as time goes on, the probability changes as:
|a1m/61'n. + a2m/62nl2 — /‘l’zlalmﬂln + a2mﬂ2n|2 — 1

where:

p= [lonal*(@il¢) + loon|*(¢2]62) + 2R(e, 0 (1] 62))]

o=

2.7)

Is again a normalization constant. It is obvious that A and u are not the
same. So we conclude that the quantum description depends on the frame of
reference. Later when we discuss the EPR experiment, we will see the same
situation.

Comment 2.1.2 - We can show that in some cases if an observable of a
system 1s measured, then the spatial part of the wave-function collapses,
and if the observable can be measured by negative measurement, then the
spatial part of the wave-function collapses to a Dirac delta function. As an
example consider a particle whose z-component o, is to be measured. The
wave-function of the particle consists of two parts, the spatial part ¥(z,t)
and the spin part ¢. The particle is then passed through the Stern-Gerlach
apparatus which is set up properly to measure o,. As shown in figure 2.1
when at time ¢, the z-component of the spin, ¢, is measured at A, the spatial
part of the wave-function is the wave-packet shown by the solid-line. Here
the probability to find the particle at the point A is P,. At the time ¢,, the
wave-packet, shown in the figure by a dashed-line, has moved the distance
vAt where At = t, — ¢, and v is the velocity of the wave-packet. At this
time there is a point X whose distance is CAt from A. At the point B in

the right-hand side of X, the probability to find the particle is P5. Now
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Figure 2.1: The wave-packet of the particle at time ¢, (solid-line) and at time
t, (dashed-line).

if we measure the x-component of tfle spin at this point, then we have two
space-like separated events: the measurement of o, of the particle at point
A and at time ¢, which we call event A; and the measurement of o, of
the particle at point B and at time ¢, which we call event B. As we said
before, due to Lorentz invariance of the theory, the collapses resulting from
the measurements should happen in all frames of reference. Now there is a
frame of reference in which the two events 4 and B are simultaneous. This
means that the z-component and x-component of the spin could be measured
simultaneously with the probability P,P, which violates the uncertainty
principle. So Py should be zero, which in turn means that ¥ (z,t¢,) = 0 for
all the points in the right-hand side of X. This collapse of the spatial part of
the wave-function may be considered as the consequence of the measurement
of the o,, because in fact we should make a position measurement to detect
the particle in the Stern-Gerlach apparatus. But, if we do the z-component

measurement by means of a negative measurement, then we have not detected
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the particle directly. In this case it is even possible to choose At very near to
zero, so that X gets very close to A. As the same argument can be applied
to the points on the left-hand side of A we conclude that the spatial part of

the wave-function should collapse to a Dirac delta function.

2.2 The Bohm model

In the previous section we briefly discussed the problem with measurement
in quantum mechanics. To overcome this difficulty some physicists have
suggested to add an extra nonlinear term in the Schrodinger equation [see
reference [GR90] and the the references therein|, but some have suggested
the revision of the primary concept of quantum theory; among these are the
hidden-variable theory of de Broglie [dB27]? and David Bohm [Boh52], the
so called de Broglie-Bohm model, in which for the complete description of
the state of the system not only the wave-function of the system, but also an
extra parameter is needed. To discuss this model consider the Schrodinger
equation for a one particle system

8w R,

Here the wave-function can be written as:

U = R(x,t) exp[iS(z,t)/h] (2.9)

2I have not seen this reference. It is quoted here from within other references [Boh52]
for historical purposes only.
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where R(x,t) and S(x,t) are both real functions of z and ¢. So the equa-

tion (2.8) splits into two equations of the form:

oR 1,
T o [RV S+ 2VER VS] (2.10)
as B (VS)2 n* VR

E = - ——2m + V(QZ) 5m B (2.11)

If we define the quantum potential Q(x) as:

h* V2R
Q) =~~~ (2.12)
and the momentum p(x) of the particle as
p(x) =VS(x) (2.13)

then the equation (2.11) is the Hamilton-Jacobi equation of the system with

the potential
Ulx) =V(z)+ Q(x) (2.14)
From equation (2.13) one readily finds that

, 1 U*p, ¥ _ .
T = E% (W) (assuming p = ma) (2.15)

where p, is the momentum operator %V and from equation (2.14) it is seen
that the particle moves in the potential field U(x), so from the Newton’s
second law we can write

d*x
dt?

h* V2R
- — . 2.1
m 2m R } (2.16)

= -VU(z)=-V [V(w)
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Moreover in orthodox quantum theory the probability density P(z) is defined

as:
P(z) = R*(z) (2.17)

so the equations (2.10) and (2.12) respectively would become

oP VS
StV (P—m—> =0 (2.18)

Q(w):—@ P 3 p (2.19)

h? [V"’P B 1(VP)2}
From equation (2.15) one finds that the trajectory of the particle depends on
the initial position of the particle — the so-called hidden-variable. So we see
that if the initial wave-function of the system is ¥, then there is a distribution
of the initial positions of the particle and any outcome of a measurement on
the system depends on what trajectory the particle is on.

Up to now we were considering a system of one particle. The general-
ization for a system of many particles is straightforward; but, here we use a
different approach [Squ96] to derive the equations of motion.

Consider a system of N particles with the wave-function ¥(z,, - -, Zsy, t)

where z,, - - -, T, represent the coordinates of the particles in 3N dimensional

configuration space of the system. The probability density is:
p(xlf”astat):I\Il(xla"'axaNut)IQ (220)

and from Schédinger equation:

o [” —h?

o = Z2m

ot —

1

v+ V] v (2.21)
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it can be shown that:

0

ap(acl,-~-,x3N,t):V~J(a:1,~~,x3N,t):0 (2.22)
where
Y1 N
J(z0, -+, Taw, B) :Zm R|T ZV,-\IJ (2.23)

is the probability current. Note that V, is a 3 dimensional vector which
operates on the subspace corresponding to the ith particle. If X = ixi is
the position vector of the system in the 3N dimensional conﬁguratior;:slpace,
then the vector X is the velocity in this space and pX is the rate of flow
of probability at the point X. Now the rate of flow of probability into the

volume element d**X in the positive direction of x; in one unit of time is:

: : _ 0 .
[pxilzi+dzi - pxilzi:l dBN ISJ_zi = <a$1 pxl) d3NX (224)
where
3N
VS, =[] d; (2.25)
J#

is the element of a 3N — 1 dimensional surface. and

3N
"X =[] dz; (2.26)

=1
is the element of 3 dimensional volume. So the total rate of flow of probability

into the unit volume is:

3N 9 N . .
Z-a—;pgfizzvi.px_—_v.px (2.27)

i=1
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which should be equal to the change of probability density in a unit of time,
that is:

Y,
VopX+ =0 (2.28)

From equations (2.22) and (2.28) we have:

pX=J+C (2.29)

where C is an arbitrary 3NV dimensional vector; and

N
Y V.-e,;=0 (2.30)
=1

So the equation of motion for the ith particle is:

) 1 Up, v c;
= 2.31
X mi%(\ll*\Il>+\I/*\Il (2:31)

Neglecting the last term in the right-hand side which is an arbitrary term
the well known equation of motion is obtained.

There are two important features of the Bohm theory which we would
like to emphasize on here. The first is that as the equation of motion (2.15)
shows the Bohmian trajectories do not intersect each other, otherwise at the
point of intersection the velocity cannot be defined uniquely. And the second
is that if initially the relation (2.17) holds for the probability density, then

equation (2.18) guarantees that it holds for all times.

2.3 Contextuality

The question of whether the hidden variable theories can exist in quantum

mechanics was first formulated mathematically by von Neumann [vN55] who,
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based on some assumptions, proved that hidden-variable theories are not
possible. One of his assumptions was:
If'R,S, - are any arbitrary observables and 7, s, - - - are any real numbers,

then the linearity of averages implies:
<TR+s8S+-->=r<R>4+s<S>+--- (2.32)

Although this holds when applied to ensembles with dispersion, it was
shown by Bell [Bel66] that it encounters serious difficulties in the case of
dispersion-free states which is where the hidden-variable theories come in.
To see this suppose that R and S do not commute and the set of hidden-
variables which determine the outcome of the measurement is A. As we are
considering a dispersion-free ensemble, then according to the definition X is
the same for all members of the ensemble and so the resulting values from
the measurement made on each of the members (which is of course an eigen-
value of the corresponding observables) are the same. So the averages on
the the right-hand side of the (2.32) are simply the eigen-values of two non-
commuting observables that are measured simultaneously and this violates
quantum theory. Incidentally, von Neumann uses dispersion-free states in
his proof and this was the motivation for considering the commuting observ-
ables for this purpose. The work of Kochen and Specker [KS67] is the most
important on the subject and two simple examples about this procedure are
introduced by Mermin [Mer90]. Here nine sets of observables are considered
in the Hilbert space of two spin % particles as shown in table 2.1.

As it is seen the observables in each column and row commute with each

other and also the value of each observable can only be £1. Now consider the
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O Oz 01:02;

Ty Oy 01402y

01202y | 01302; | 01,02,
1 1 -1

Table 2.1: Mermin’s nine sets of observables.

multiplication of the operators in the third column. Here the multiplication

of the first and the second operators yields
01102101y02y = Ulzaly02102y = ialziJZZ = _Ulzo2z

which if multiplied by the third operator, 7,,0,,, gives -1. Similar calculations
show that for all other rows and columns, the multiplication of the elements
of each row or column is 1. Also as the operators in each row or column
commute with each other, the above table is still valid if we replace each of
the operators with one of its eigen-values. However we see that it is impossible
to assign values simultaneously to the operators in the above table so that
the whole table is satisfied because some of the elements do not commute.
This reveals that hidden-variables which assign values to operators may not
be possible. However, in the Bohm theory a hidden-variable is assigned to
an operator based not only on the present state of the system but also on
the state of the measurement apparatus. So if a measurement apparatus M
1s set up to measure the set of operators in the first column, the outcome for
o,, would be af‘f . However, if one decides to measure the set of observables in
the first row, one should use a different apparatus M’, because the operators
in the two sets of observables do not commute. As a result a new set of

hidden-variables are assigned to these and in particular o,, observable which
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could lead to a different outcome ', This context dependence is one of the
most distinctive features of Bohm theory and it is in this way that the above
contradiction fails for this theory. Some examples about the contextuality
of Bohm theory has been carried out by Dewdney [Dew92] and Pagonis and
Clifton [PC95] using spin measurement but here we consider the one discussed
by Hardy [Har96].

Figures 2.2 and 2.3 show the scheme of two experiments in which a particle
is free to move in one of the three paths a, b or c. So the states |a), |b) and
|c) are all orthogonal and supposed to be normalized. They form a complete
basis of the 3 dimensional Hilbert space of the system. The initial state of
the system is supposed to be |¥,) = ala) + S|b) + 7v|c) and the reflectivity
of beam-splitters BS1 and BS2 are R, and R,(> R,), so the transmittances
would be T} =1 — R, and T, = 1 — R, respectively. The phase shifters on
the left(right) change the incoming(outgoing) states by a factor +1(—1).

The incoming states in each beam-splitter are orthonormal, so in order

to keep the outgoing states orthonormal the following relations must hold:

1) = VT|0,) +iVR|0,) (2.33)

|1, = VT|0,) +ivVR|O,) (2.34)
where I,, I, and O,, O, are incoming and outgoing states.

With the above assumptions it is seen that the states |d), |e) and |f) are

orthonormal. The same is true for |d), |¢') and |f’). In fact for figure 2.2

with R, = 3 (T, = ) and R, = 1 (T, = 1) we have:
1

|d) = —=(la) +1b) + |c)) (2.35)

S
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/ |
+i -1
7 A
> V V > e
iy BS1 iy
V4 \Vé =
BS2
-

Figure 2.2: The scheme of an experiment in which 3 observables d, e and f
are measured.

le) = —=(~2la) + b} + [¢)) (2.36)

.
- 3

If) = ﬁ(—l@ + o) (2.37)

and for figure 2.3 we have:

1

|d) = ﬁ(l@ + [b) + ) (2.38)
no 1 a) — c

le) = \/é(l ) —2[b) +[c)) (2.39)
no L a) — |

|f) = \/5(| ) —le)) : (2.40)

where due to the presence of the phase shifters all #’s have been omitted from
the above solutions. In both experiments the same observable d is measured,

but the context of the measurement is different in the two schemes. In
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4 -
+1 -i
7 7
- V V ——
,; BSI y
7 \wi
- V V >
BS2
>

Figure 2.3: The scheme of an experiment in which 3 observables d, ¢’ and f’
are measured.

figure 2.2 d is measured along with e and f, while in the figure 2.3 it is
measured along with ¢’ and f'.

Now if the initial state of the system is |¥,) = |a) , the particle would be
reflected or transmitted by the beam-splitter depending on the value of the
hidden-variable which is the initial position of the particle in its wave-packet
in path a. Furthermore, Hardy shows that the the reflected Bohmian trajec-
tories correspond to the initial positions in the back part and the transmitted
Bohmian trajectories correspond to the initial positions in the front part of
the wave-packet. So, as the reflectivity of the beam-splitter in figure 2.2 is
R, = % then for the range of the initial position of the particle in the back
third of the wave-packet proportional to this, the particle is reflected and
the detector in path d would fire. However in figure 2.3 as the reflectivity of

the beam-splitter is greater than R, the particle would certainly be reflected
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into path f’ and the detector in path d would not fire. This experiment
shows that even if the hidden-variable is the same, the value measured for
the same observable in the Bohmian mechanics may differ if the context of
the measurement is changed, and this reveals that the Kochen and Specker
theorems and the similar ones which are based on non-contextuality of the

measurements cannot be applied to Bohm theory.

2.4 A generalized Bohm model

In section 2.2 it was shown that for particles which obey Schrodinger equa-
tion, the guidance relation is given by (2.15) and from the conservation equa-
tion (2.18) it is seen that the relation £ = % guarantees p(z) = |¥(x)|? at
all times and the trajectories of the particles in the configuration space of
the system depends on the initial positions x, which are distributed with
the probability density p(x,) = |¥(z,)|?>. Here of course p must be positive
definite. So, for spin % particles that obey Dirac equation still the above guid-
ance relation is valid because the charge four current 7* = (p, 5) is conserved
and p is always positive definite. However this is not the case for bosons.
Here we are mainly interested in photons, so let’s consider the Klein-Gordon
equation which is the relativistic Schrodinger analogue for spin-less particles.
With A = ¢ =1 it reads:

2
(%— Vimi+ V)T =0 (2.41)

If we consider probability density p and current density 7 as following:

' U ov*
0 \11*8

- 2m0( o Yo (2.42)

0
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7

5 (VT - ¥V (2.43)

j=

then the charge four current j* = (p, 5) is conserved.

However, since the differential equation (2.41) is second order, then both
¥ and %—‘f can be fixed arbitrarily such that in equation (2.42) p becomes
negative. Clearly in such a case the Bohmian trajectories can not be defined

as in equation (2.15).

So for physical systems in which bosons and fermions are correlated, a
model was proposed by Squires and Mackman[SM94] in which they suggested
that for obtaining the fermion probability density, the total probability den-

sity be averaged over boson positions. That is:
(@) = /d3z|\IJ(:c, 2)[? (2.44)

where  and z stands for all of the fermions and bosons positions respectively.

As we said, here it is supposed that there are no trajectories for bosons, so
in this version of the Bohm model, the detection of the bosons depends on the
the positions of the matter particles, that is, fermions. Note that this accords
with the most commonly accepted version of the Bohm model [Bth2, BH93),
since it is well known that it is difficult to define trajectories for bosons. In
fact we would like to emphasize that in the model we are considering here,
there are no beables for bosons and only the wave-function is real. This is
quite different to the original model for bosons proposed by Bohm in which
the beables are the field variables and the wave-functional, which depends on
these field variables, is real (see the above references) . To be more specific,

what we said about the particle position and its trajectories for fermions is
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applied in the same way to bosons but for field variable and its trajectories.
However, even if it does turn out that bosons have trajectories, the discussion
here is still appropriate since the main experimental tests to which we shall
refer are concerned with the determination of a particle (photon) spin, where
there is no spin “hidden-variable”. In this case it is certain that the recorded
value is a property of the hidden-variables in the detectors. In passing it
is worth noting that the word “measurement” in situations of this nature
is somewhat misleading, since it suggests that a previously existing value is
being discovered by the procedure, whereas in fact there is no such value to
be discovered; rather, a value is being created by the experiment.

Using the non-relativistic Schrodinger equation, the above would become:

dp ih 3 -
P ly,. V.U - IV, T 2.4

5 = 5 Ve /d z(U'V. ¥ — IV _U) (2.45)
On the other hand the equation of motion (2.15) should be modified in such

a way that the relation (2.18) holds. This implies that:

dp .
°r . 2.46
5 V. p (2.46)

From the last two equations one obtains:

.1 [[dzT*p U
_ 1 . 2.4
* m§R< [ 20T ) (247)

where p_ is the momentum operator and where on the right-hand side an
additional term (V X ¢)/p with ¢ arbitrary, has been neglected. This is the
generalized equation of motion for Bohmian trajectories if the wave-functions

of fermions and bosons are entangled
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2.5 Simple example — detection of a photon

In this section we shall apply the generalized standard Bohm model to a
simple case of the detection of a photon in one dimensional space. The
photon is emitted in the form of two wave-packets, one going to the left,
#.(z), and the other going to the right, #g(z), from a source which is taken
to be at the origin. The detector is a free particle, with mass m, initially
in a stationary Gaussian wave-packet ,.(X.) which is centered around a
point at a distance D from the photon source and at left-hand side of the
source. The detection occurs by an interaction that we suppose has the
effect that the particle receives some momentum from the photon and then
starts moving due to this momentum transfer and after this process, as we
will see in chapter 5, the particle may be accelerated and gains an average
momentum p.

The initial wave-function of the system is:

|U) = 27 %[$1(2) + fn(2)]hor. (X) (2.48)
where

Yo (X) = (%)1/4 eXP[—%&XQJ (2.49)
and

X=X, -D (2.50)

Here X is the initial position of the center of the wave-packet with respect

to the origin and '\}TE is the width of the wave-packet. After the interaction
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of the photon and the particle, the wave-function of the system becomes:
0) = 272[$u(2)957 (X) + pn(2) 9o (X)] (2.51)

where

ot (X) = (%)1/4 exp [i <%X - 2§;t> - g <X - %tﬂ . (252)

This is the equation of a wave-packet moving in the positive direction of X

in which we have ignored the quantum spreading. The superscript —p means
that the momentum p transferred to the detector is in the left direction.

It is worth to note that due to neglecting the quantum spreading, the
wave-function ¥;7(X) given by (2.52) does not satisfy the free particle Schrodinger
equation but corresponds to a particle moving in the potential field of the
form

V:—%—k%(X—%t)? (2.53)

and is not free in the classical sense. However, in this case, the quantum

potential is

Rla  Rla? P \?
Q=505 (x-21) (2:54)

which exactly cancels the classical potential V. Here the particle is not free
classically, but it is free in quantum sense.

However, the criterion for the approximation made in equation (2.52) to
be good, is determined by inserting this equation in the Schrodinger equation

which yields:

12 2
a 1—a(X—%t> <1 (2.55)

2m




CHAPTER 2 Quantum Measurement and the Bohm model 28

In the examples that we are considering throughout, the particle is an electron
initially in a Gaussian wave-packet with the width of the order of Bohr radius
(Rponr = 5.29 x 107° cm), so a ~ 10'® cm™? and condition (2.55) is fulfilled
if (X — 2¢) remains less than 107 ¢m. As X is measured from the initial
position of the center of the wave-packet and 2 is the velocity of the center of
the wave-packet, this means that as long as our working domain is within the
distances of 1072 c¢m around the center of the wave-packet the approximation
is good. Later when we discuss the retarded Bohm model, we will see that
this indeed happens in the experiments that we are considering.

A similar situation applies if the detector was in the right-hand side of the
photon source, at a distance D from the source, with the initial wave-function

or(Yr). Then we would have

) = 272, (2) + n(2)on (Y) (2.56)
where
a\ /4 1
Yor(Y) = (;) eXP[—iaY"’] (2.57)
and
Y = Yo — D (2.58)

After the interaction of the photon with the particle the wave-function of the

system would be
W) =27 2[u(2)9hon (V) + ¢a(2) 002 (V)] , (2.59)

where

w(Y) = (%)1/4 exp [z‘ (%Y - %ﬂ—t) - % (Y - %t) 2} . (2.60)
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We return now to the case where there is one detector on the left-hand

side of the photon source. From the equation of motion [SM94] we have

X = i de?I’*Z:x\II — _1_ ¢;p*Pi¢gP + UYL ’ (2.61)
m [ d320*¥ m P +|1/)L|2
where
0
= —th— . 2.62
Py = —ihos (2.62)

This leads to
3

1+exp [a%tn&—2X + ;%t)] (2:63)

X =

With the same procedure, for the detector in the right-hand side of the

photon source we have,
Va
m

1+ exp [a%t ( 27V pt)] (2.64)

Y =

From equation (2.63) it is seen that after the interaction, the detector
starts moving; but the asymptotic behavior of this equation determines if it
will continue or will stop recording. The position of the particle, X, at time
t can be found by dividing the time interval [tg, ¢] to IV equal intervals At

and calculating X at each interval as followings:

X=X
t_o{X:;g

X =Xo+32At
t=At

2
_ 2 _ (1
= TrexplaZ A(—2X0)] (i + 0‘1) &
X=Xo4+ (G +a)2At
t = 2At . 2

= m — 1 ).B
X 1+exp|20 2 At(—2X0—01 ZAt)] (2 to +ay) -
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X=Xo+ (3 +20 +a,) At
t = 3At

P
— m — {1 ¥
T 1+exp[Ba EAH—2Xq—(4a1+202) EAL} T (2 tata+ 013) m

N
e 5 030 2
=1
t=NAL . .
X = JT% N = <% + Zai> %
1+exp [Naﬁ—At <_2X0—22(N—i)a.; %At)} =1
=1

In the above equations «;’s are auxiliary parameters used so that the equal-
ities hold. Here we have assumed that NV is very large (in fact N — o0). It
is seen that if X is positive/negative then o,’s are always positive/negative,
so X is strictly increasing/decreasing. And since X is always positive or at
most zero, if it is decreasing then it must approach to zero.3

Thus we see that the detector will record the photon if X, > 0 and will
not record it if X; < 0. This means that the “measurement” is actually not
measuring anything about the “photon”. It is really measuring something
about the detector. There is no property of the actual photon wave which is
being measured. Of course, provided the distribution of initial particles (X,)
in a set of repeated experiments agrees with the quantum probability rule,
so that, according to equation (2.49) there will be an equal number of cases
with X, < 0 and X, > 0, then the photon will be recorded as going to the

right in exactly half of the events.

3In chapter 5 we will see that the numerical calculations also confirm these somewhat
unreliable calculations.
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If the two portions of the photon wave-function going to the left and to

the right are not equal; that is if the initial wave-function of the system is:
0) = (o + %) 72 [ad(2) + B ()] (X) (2.65)

then the velocity of the left detector becomes

. VR
X owlant (X 1 20)] (2.66)

Here as it is expected, if the whole wave-function of the photon is going to
the left/right (that is # =0/ o = 0 ) the detector will/will not record the
photon irrespective of the initial position of the detector.

The same argument is applied to the case where the detector is in the
right with the equation (2.64).

We shall now consider the case where both of the detectors are present.

Here the equations of motion are:
[al” ¥ P + | wszwLJ
[0al” 1927 1” + 1R [,
y

T ltew [—2Z%t(x ~Y)] (2.67)

X:iéﬁ[
m

and

v = Ly
m

[lwwgf’*pyw;p + w;”m;pywﬂ]
1. 11 + e el
i
(2.68)

1+exp [—Qa;’:—lt(Y — X)]
Again from equations (2.67) and (2.68) it is seen that after the interaction,
both of the detectors start moving; but as before the asymptotic behavior

of these equations determines if they will continue or will stop recording.
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The positions of the particles, X and Y, at time ¢ can be found by a similar
procedure; that is by dividing the time interval [to, t] to IV equal intervals At

and calculating X and Y at

X:XO
Y =Y,
P x=52
V=12

(X =Xo+1ZA¢
Y=Y+ 3ZAt

t=At _ = _ (1
X = 1+exp[—2a ZAt(Xo-Yo)] — (5 + al) 7'1;7._
. 3
— m = (1 _
\ Y= 1+exp[—2a £ At(Yo—Xo)] — (2 al) %

(X = Xo+ (% +0a,)2At
Y=Y+ (3 - o) 2AL

X 1+exp[—4af;At(X0—Yo+2a1-T%At)] 2 Ta o m
P

— 0 = l —_ - ) P

L 1+exp[—4afn’—At(Y0—Xg—2a1 %At)] (2 o, &y m

(X =Xo+ (3 + 20 +a,) AL
V=Yp+ (- 20, — o) AL

t = 3At . £ _ (1
X = t+exp[—6a L At(Xo-Yo+(da1+2a2) EAL)] T <§ totat a3) 1r:_z

3

- '
YV = n — (1l _ _ -
{7 7 Thexp[-6aZAY(Yo—Xo—(da1+2a2) EAL)] (2 Gy — @y aa)
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4 N
X =Xo+ (% +> (N - z‘)a,) LAt

i=1

Y=Y+ <g - (N - z‘)ai) ZAY

i=1

t=NAt! X = R— =
1+-exp [—QNa%At (XO—YOHZ(N—i)a,»%At)}

ks
I
TN
N =
+
=
2
SN——

=1

2

N
/= —[(1_
Y= T = (2 ZC&-)
=
l+exp | —2NaZ At YO—XO—QE (N—i)a; ZAt t
\

=1

In the above equations we have used the equality X + Y = £ . Also as
before it is assumed that IV is very large (in fact N — oo). It is seen that if
Xy — Yy is positive/negative then o’s are always positive/negative, so X is
strictly increasing/decreasing and Y is strictly decreasing/increasing. How-
ever, X and Y are always positive or at most zero, so if X or Y is decreasing
then it must approach to zero. The overall result is that if X, — ¥; < 0 then
equation (2.67) shows that the left detector stops moving while the right
detector according to equation (2.68) continues moving. On the other hand
it X, — Y, > 0, the left detector continues moving while the right detec-
tor stops moving. These theoretical predictions are in agreement with the
experimental results, where only one detector will record the photon.

The case where X, — Y; = 0 of course remains ambiguous, as both of the

detectors continue to record the photon.



Chapter 3

N on-IOCality

3.1 EPR and Bell’s theorem

The completeness of quantum theory was seriously criticized by A. Einstein,
B. Podolsky and N. Rosen in 1935 [EPR35] in the form of the so called EPR
theorem. There is no way to escape this conclusion that quantum mechanics
is not complete, unless one abandon local realism, according to which the
probability of the outcome of a measurement on one system does not depend
by any means on any measurement that is done on the other system which
has interacted with it sometime in the past.

The EPR theorem is based on two assumptions, the first is the necessary
condition for completeness of a physical theory which states that “every ele-
ment of the physical reality, must have a counterpart in the physical theory”.
Here, by physical reality we mean objective reality which exists independent
of our mind. The second assumption is the sufficient condition of physical
reality which states that “If, without in any way disturbing a system, we can

predict with certainty (i.e., with probability equal to unity) the value of a phys-

34
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wcal quantity, then there exists an element of physical reality corresponding
io this physical quantity”. From this assumption one immediately concludes
that in quantum theory only the eigen-states of an observable are elements
of physical reality, and of course the eigen-values are the values assigned to
these elements.

The EPR theorem starts with consideration of two systems 1 and 2 which
had interacted in the past. Due to this interaction the wave-function of
the composite system is, in general, entangled and the wave-function of the

correlated systems may be such that it could be expanded in the following

two ways:
T(1,2) =3 ¢ (Der(2) (3.1)
U(1,2) = > v (1er(2) (32)

where 121 (1) and 921 (1) are eigen-functions of two non-commuting hermitian
operators A, and B, on subspace 1 and ¢22(2) and ¢Z2(2) are eigen-functions
of two hermitian operators A, and B, on subspace 2 respectively. For an
example of this situation the interested reader is referred to [EPR35]. It
should be noted that in the example given by EPR, A, and B, do not commute
either, however it is not a necessary condition for this argument.

One would make the following two different measurements on system 2:

I- Make a measurement of the observable A, (corresponding to operator
A,). The wave-function ¥(1,2) then collapses to 171(1)p22(2). So

system 1 is now left in an eigen-state whose eigen-function is ¢1(1)
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and the eigen-value is, say, A21. This means that the observable A, is an
element of reality because, in accordance with the sufficient condition of
the physical reality, without disturbing the system and with probability

equal to unity we have predicted its value, that is A*1.

II- Make a measurement of the observable B, (corresponding to operator
B,). The wave-function ¥(1,2) then collapses to ¥?1(1)p?2(2). With
the same argument as in part (I) it is seen that the observable B, is

an element of physical reality with value , say, AZ:.

Now let’s suppose that the two non-commuting observables A, and B,
are simultaneous elements of physical reality and do have simultaneous val-
ues. As in orthodox quantum theory the prediction of these two values is
not possible simultaneously, so in accordance with the necessary condition
for completeness of a physical theory we conclude that the wave-function
does not give a complete description of the physical reality and that beside
the wave-function there must be some other parameters which enables the
description of two simultaneous reality corresponding to two non-commuting
observables. That is the quantum theory in the present form does not give
a complete description of reality.

On the other hand, if two non-commuting observables A4, and B, are
not simultaneous elements of physical reality then the above argument that
we made about the incompleteness of the quantum theory does not apply.
However, in this case at any time only one of the observables A4, or B, is
an element of reality, but as we saw this depends on the measurement done

on system 2. That is, had we measured the observable A, (B,) then the
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value of the observable 4, (B,) would be A1 (AB1) with probability equal to
unity and there would be a probability less than 1 to know the value of the
observable B, (A,). So the overall result is that the probability of outcome
of a measurement on system 1 depends on the measurement that has been
done on system 2. But how does system 1 know really which measurement
is done on system 27 This is only possible through a non-local interaction
between the two system which must of course act simultaneously. Thus we
are left with non-locality in quantum theory.

Inspired by the work of EPR, in 1964 John S. Bell showed that local
deterministic hidden-variable theories are inconsistent with orthodox quan-
tum theory [Bel64]. He considered a system of two spin 3 particles in the
- singlet state which had interacted with each other sometime in the past and
then separated by a large distance needed to prevent the interaction between
these two particles. Denote the component of the spin of particle 1(2) in a
given direction u by o} (oy) and M}(M}*) the outcome of the measurement
of spin of particle 1(2) in the direction w. If XA is a set of hidden-variables
which (including the wave-function) give a complete description of the state

of the system then from locality definition we have:
M*(\) =+£1 and My(\) ==£1 (3.3)
/ dp()) = 1 (3.4)

where p(A) is the probability distribution of A. So the expectation value of

the observable ofo} would be

£ = [ o) M ()M | (3.5)
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Here Bell’s assumption is that there is a perfect correlation between two
particles, so if for both system we use the same direction a (or if the polarizers

on both sides are parallel) then
Mp(A) = =M} (X) (3.6)

Note that this ideal condition is impossible to fulfill in the real experiments
in which for example the detector efficiency is less than 100% and this makes

Bell’s original theorem untestable.
With the help of (3.5) and (3.6) one can write
£ -5 = — [ DpO)ME)ME) — M) M)
= [ A M) MM ()M () ~ 1]

The upper(lower) bound of the left-hand side is obtained if on the right-hand
side we put M*(A)M!(A) = +1(-1) so

€5 — &2 < [ ()1 = MM () (3.7)
or
&7 —EXI <1+ &7 (3.8)

This is the well known Bell inequality. He then shows that this inequality
is violated under some especial conditions by statistical predictions of quan-
tum theory. After the work of Bell, some other Bell-type inequalities were
derived which were, just as Bell inequality, violated by statistical prediction

of quantum theory but didn’t make use of equation (3.6) so can be tested in
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real experiments [CHSH69, FC72, CH74, CS78]. Among these are Clauser,
Horne, Shimony and Holt (CHSH) inequality which reads [CHSH69):

|E2b 4 £o8' £V _ g2 < 9 (3.9)

Although this inequality was originally derived based on the local deter-
ministic hidden-variable theories but later it was derived with only locality
assumption by Bell.

In the next two sections we develop a new method for obtaining Bell-type
inequalities by which not only the total number of inequalities are increased
but in the next chapter we will show how and the conditions under which

some of them may be violated by orthodox quantum theory.

3.2 Bell-type inequalities
— case 2,2:2,2 outputs

As we pointed out in the previous section the Bell inequalities enable us to
test locality, and this is the motivation for deriving more inequalities which
can be tested and can be violated by quantum theory by a stronger factor,
that is, for example in equation (3.9) the ratio of the value of the left-hand
side (predicted by quantum theory) to its upper bound (2) would become
as large as possible. Our aim in this section is to introduce a method for
deducing a number of Bell-type inequalities some of which were obtained by
Clauser-Horne [CHT74].

Consider a system which consists of two parts far from each other such

that there is no (known) interaction between them. A set of experiments are
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done on each part independent of the other. The scheme of such experiments
are shown in figure 3.1. On the left(right) arm, an experiment is specified by
the parameter setting ¢(j) which we call local variables and for each setting

i(j) there are M,(N,) outcomes.

local variables (parameters)

7 AN
v AY
4 AN
N.
M,; j
outcomes 1 J outcomes
mi -1t Mi settings settings n=Ilt N
J J

i=Ito I Jj=1to J

Figure 3.1: The scheme of the experiments carried out on two parts of a
system with variable settings and outcome on each arm, for deducing Bell-

type inequalities.

Now we define the joint probability p;;*"7 as:

py 7 = The probability that if the local variable on the left arm is set
to % and the local variable on the right arm is set to 7, then the
outcome on the left would be m, and the outcome on the right

would be n;.

In this section we consider the case where ] = J =M, = N, = M, =
N, = 2.

There are totally 16 possible combinations as:

22

21
p12 plZ
21 22
p22 p22

pn PioPL PO Pu P
Pn Py Ph Pi Pn Py
These are not all independent. To reduce the number of independent joint

probabilities, we impose two types of constraints:
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I- As the individual probability distribution on each arm is normalized
then for each setting on two arms, the sum of all joint probabilities add

up to unity:
Spn=1 i=1,2 j=1,2 (3.10)

Note that although the above equation may be derived simply by defin-
ing the joint probability as the product of individual probabilities, we
are not assuming this here. This is the assumption of Clauser-Horne
for objective local theories. We deduce this relation from total possible

combinations as stated above.

The above constraint results in 4 equations:

py o+ e =1 (3.11)
P, +pi; 5+ P, =1 (3.12)
Po+py +py s =1 (3.13)
P+ Py P, + P =1 (3.14)

IT- If the sum of all joint probabilities on one arm, for a particular setting,
e.g. 7 = 1 on the right, is p, the settings and outcomes on the other
arm, e.g. 1 = 1,m = 1 on the left, does not affect this.! This is due
to the assumption of signal locality, that is the experiment on one arm

does not disturb the experiment on the arm instantaneously otherwise

MIf the two parts of the system are not correlated then p is simply the probability of
the outcome on the other arm. )
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the signals would be sent faster than the speed of light. So we have:

Yoppr=Yppr i=1,2 j=1,2 k=1,2 (3.15)

St =gt i=1,2 j=1,2 =12 (3.16)

The above constraints result in 2 groups of equations.

From equation (3.15) we have:

putpy = pnptp; (3.17)
putph = Phtp (3.18)
PutPy = Pntpy (3.19)
Py + Dy = Dyt Dy (3.20)

And from equation (3.16) we have:

Pyt ph = Dyt D

22

pu+D = Dyt

w w
[N ]
[

P+ P = Dyt Dy
P +DPh = Pnt D
Equations (3.11) through (3.14) and (3.17) through (3.24) are not all inde-
pendent. The latter 4 equations (3.21 - 3.24) can be written in terms of the

others.

For example, addition of equations (3.17) and (3.18) results:

Pu D0+ DL+ P =D+ P P 00
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According to equation (3.12) the right-hand side is 1, and by use of (3.13)
and (3.22) we get:

P + P =Py + D5,
which is equation (3.21). So we expect 8 independent joint probabilities and

8 independent quantities can be defined in terms of these?.

To do this let’s define p;;, p/ and pf as followings:

p; = The joint probability that the outcome on both arms is 1 -
for settings ¢ on the left arm and j on the right arm.That is:
pi; =D} 1,7 =1,2 (4 equations) (3.25)
pf = The joint probability that the outcome on the left arm is 1,
whatever the outcome on the right is — for settings ¢ on the
left arm and j on the right arm.That is:
pr =pi +pp i,j=1,2 (2 equations) (3.26)
Similarly,
Py =pi + ,7=1,2 (2 equations) (3.27)

From equation (3.15) and (3.16) it is seen that p” is independent of j, and
pf is independent of 1.

So 4 of the independent quantities are defined from (3.25) as:

P =D D =Dl Do =Dyt Das = Dhy (3.28)

2At this stage we only claim (with no proof) that there are exactly 8 independent
joint probabilities because no other constraints can be found and that none of the 8
quantities that we define below can be written in terms of the others, however this is verified
later when we find non-singular matrices whose dimensions are equal to the number of
independent joint probabilities. Although this type of reasoning seems weak, it is enough
for our purpose here
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and 2 of them from (3.26) as:
p, = pytp;  i=1 j=1
= pptp, i=1 j=2 (3.29)
Py, = Pptpn  1=2 j=1
= Pptpy 1=2, j=2 (3.30)
and the last 2 from (3.27) as:
pp = patp,  i=1 j=1
= pptpn  1=2 j=1 (3.31)
p, = pptp, =1 =2
= pptp, =2 =2 (3.32)
Now we use an algorithm to find the governing relations among p’s. At

this point let’s define yet another double joint probability v*#7¢ as:

.~ v*#7¢ = The probability that

if the setting on the left is set to ¢ = 1, then the outcome on that arm

: 1 if m=1
1sawherea—{0 if m=2 and
if the setting on the left is set to ¢ = 2, then the outcome on that arm

. 1 af m=1

1sﬂwhere[5'—{0 if m=2 and

if the setting on the right is set to j = 1, then the outcome on that arm
. 1 if n=1

is 7 where n = { 0 if n=2 and finally

if the setting on the right is set to 7 = 2, then the outcome on that arm
. 1 of n=1

1s§where§—{0if n=9
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So according to the above definition
o110 __ o 1=1 1=2 i=1 ji=2
¥ —probablhtythat(m:2>&<m= >&<n=1)&<n:2>
Using equation (3.10) it can be shown that
S oy =1 where 0 <y <1 (3.33)

o,8,1,¢

It is worth noting that the definitions of y*#7¢ implicitly implies locality, as
we are assuming that there is a joint probability for two measurement which

are not simultaneous. In terms of 4’s

pll — ,)/1010 _+_ ,)/1011 + ,.)/1110 + ,_yllll
p12 — 71001 + ,YlOll + ,yllOl + ,_Yllll
p21 — 70110 + 71110 + ,YOlll + 71111

p22 — 70101 _+_ ,_)/1101 + 70111 + 71111

pL — 71010 _+_ 71011 + 71110 + ,)/1111 + 71000 + ,leOl + 71100 + ,yll()l
1

for 1=1, 7=1
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pR — ,_yIOlO + 71011 + 71110 + ,y]lll + ,YOOIO + 70011 + 70110 + 70111
1

pR — 70110 _+_ 70111 + 71110 + /Yllll + ,)/0010 + ,)/0011 + ,lelO + ,lell
1

pf — 71001 _+_ ,)/1011 _|_ ,yllOl + ,yllll _+_ ,)/0001 + 70011 _+_ 70101 + ,)/0111

pf — ,)/0101 _+_ ,)/0111 + ,71101 + 71111 + ,70001 + 70011 + 71001 + 71011

In terms of matrices the above relations would be

_H OO o oo OO
O R OO OO OO
=0 O 000 O
OO R O OO OO
O R Ok OOO
O = = OO~ OO
—_m = O = = OO
OO O R OO OoOOD
_ O O OO O
O R O O OO
= = O = OO - =
SO~ PR OOoOOoCO
R O H = -0 KR O
O o = O O
i i e i et T e

T~
S oo o oo oo

0000
0001
0010

0011

Q22

0100

0101

222

0110
0111
1000
1001
1010
1011
1100
1101
1110

1111

R R R S )

Equation (3.34) can be written as p=xT" where p is the column vector

of probabilities, and x is the conversion matrix and I" is the column vector

of 7’s. Provided the matrix x?x is non-singular one can multiply both sides

(3.34)
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of p=xT by tranpose of x, that is x¥, and again multiply both sides by
(xTx)~! to find T in terms of p, and finally construct the possible inequalities

T

from the condition (3.33). However, in our case x*x is singular and so in

the followings we will use another procedure to find these inequalities (see
[Noc95]).
To make the calculations easier let’s introduce some new parametric no-

tations. Equations (3.33) and (3.34), can be written respectively as:

vaﬂ/yt =1 z,,=1 forall ¢ (3.35)
t=1
ry=p, s=1,-,v (3.36)
t=1

Here u = 16, v = 8. Combining the above two equations we get;:

P [ Ty T 00 Ty At
.1 T Tyz 0 To v
: = : i (3.37)
p” 'Z‘vl ‘,L‘u? e :Cvu .u
1 gl
| Tot1r Log22 "0 Togru |
or simply
P=XT (3.38)
If only y of p’s are linearly independent then we may write:
_ Xi{y xy} Xa{y x (u—1y)}
Xt =| o ) ety | 699

1) = of{y x 1}
M{ux1} = ( (= y) x 1} ) (3.40)

P{v+1)x1} = < m{(ffgl;fgx ) ) (3.41)
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where in the above equations the size of the matrices are explicitly shown

inside the braces. If det X, # 0 then3:

X0+ X, =1I, (3.42)

o= X", - X' X, (3.43)
From equation (3.33) one can easily conclude that:

0< zu:l;yt <1 where [,=0,1 (3.44)

t=1

The above equation can be written in the form:

0< L[ <1 ' (3.45)
where L is a row vector whose elements are 0 or 1 and we write it as:

{1 xu} = (r{l x y} {1 x (u-1y)}) (3.46)
From equation (3.45) and (3.40)we have:

0<ro+gr<1 (3.47)
and from (3.43) we have

0<rX I, —rX ' X,7+q7 <1 (3.48)

0<rX'II, +(¢g—rX'X,)7 <1 (3.49)
If we can find r and ¢ such that:

g—rX'X,=0 (3.50)

31f det X, = 0 then other possible y x y matrices deducible from the matrix X may
be used by rearrangement of columns and rows of X (and of course accordingly that of P

and T).
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then
0<rX I, <1 (3.51)

This gives the inequalities among p’s.

For the special case that we are considering the matrix X, is of dimension
8x 8 with y = 8, or 9x9 with y = 9. So from the 8x16 matix in equation (3.34)
(v =8,u = 16), we have to choose those 8x8 matrices which are non-singular
such that equation (3.50) is satisfied for any arbitrary ¢ and r. There are
totally 2304 8 X8 non-singular matrices which were calculated by computer.

One of them, constructed from columns 2, 3, 5, 6, 7, 12, 13 and 14 is:

0 0000100
0000O01T0°1
000O01O0O00O0
0 00100O00Q0
Xi= 0000O0OT1T11 (3.52)
0 0111011
01 001100
|1 001010 1]
det X, =1 (3.53)
and the inverse of X, is:
[ —1 0 0 -1 ]
-1 0 -1 0
0 1 -1 -1 —
X' = -0 (3.54)

O —H OO OO

SO O OO~ OO
SO oo o RO
OO OO OO O

—_— O = O
I
— O
[en N en B aw B
oo oo
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The matrix X, is constructed from the rest of the columns 1, 4, 8, 12, 13,

14, 15 and16 that is:

(000001 11]
0 0001O0O01
001000011
00100O0O0CT1
X2—00011111 (3.55)
001 00O0T1T1
01100111
(01101001
It is seen that for
¢=(01001000) and r=(01101111), (3.56)
equation (3.50) is satisfied and from equation (3.51) we have:
-1 S D — D12 +p21 +p22 - p; - pf S 0 (357)

which is the Clauser-Horne inequality.

For the case of 8 x 8 and 9 x 9 matrices, we have derived 44 and 89
inequalities respectively which are shown in Appendix A. However, note
that the inequality No. 1 is exactly the same as inequality No. 89, the
inequality No. 2 is exactly the same as inequality No. 88, and so on. In
fact the independent inequalities derived by this method are those which
are obtained by considering the 8 x 8 matrices only. These includes all of
the Clauser-Horne-type inequalities derived by Noce [Noc95] plus 4 more

interesting inequalities as the following:
0< —2p, +p; +pf <1 (3.58)

in which a coeflicient of 2 appears.
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3.3 Bell-type inequalities
— case 2,3:2,3 outputs

The method developed in the previous section for obtaining Bell-type in-
equalities can easily be extended to the higher orders. Here we consider the
case where as before, on each arm there are two local variables but for one of
the variables there are two outputs and for the other there are three outputs
that is in figure 3.1 we put I = J = M, = N, =2 and M, = N, = 3 which is
in fact the next simplest case.
With the same definition for p;;'" there would be 25 possible combinations
which are:
Pn Du Pho P

12 13 21 22 23

P, Py Dy Ph Dy P
Pu Do Po Pa Py D
Py Pi Py Py Di P Dy D Do
Imposing the two types of constraints discussed in section 3.2 the inde-

pendent probabilities reduces to 16. Now we define the following new set of

quantities:
Di; = Dl i,j=1,2 (4 equations) (3.59)
pr=3S"pv i,7=1,2 (2 equations) (3.60)
nj
pl=> pr i,j=1,2 (2 equations) (3.61)

Again it can be shown that p; is independent of j, and p is independent of

7.
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From (3.59) we get 4 of the independent quantities as:
Pu=Dy; Puo=Ph; DPu=DPy; Pn=Dy (3.62)
and 2 from (3.60):
pp = patry 1=l g=1
= pptpotp, =1 j=2 (3.63)
P, = Patpy  1=2 =1
= PutPutpn 1=2, j=2 (3.64)
and 2 from (3.61):
pi = putp,  i=1 j=1
= PntPytpn  1=2 j=1 (3.65)
p; = pptp, i=1 j=2

= pptrptp,  1=2 j=2 (3.66)

The other 8 quantities are defined as followiﬁgs:

Py =piy + 1 (3:67)
Py = ol + i (3.68)
P =Py + P (3.69)
e = Pt + iy (3.70)

(31,32)

P = py + 0 (3.71)
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Py =p, + 1y (3.72)
Py = i, + vl (3.73)
ps” = o (3.74)

For this case y*#" is defined as:

v*#7¢ = The probability that

if the setting on the left is set to 4 = 1, then the outcome on that arm

. 1 if m=1

1sawherea:{2 if m, =2 and

if the setting on the left is set to 4 = 2, then the outcome on that arm
1 of my=1

is f where =< 2 f m,=2 and
3 iof m=3

if the setting on the right is set to 7 = 1, then the outcome on that arm

is 7 where n = { ; zj: Zl i ; and finally

if the setting on the right is set to j = 2, then the outcome on that arm

1 if n,=1
is( where ( =< 2 if n,=2
3 if n,=3

As an example, according to the above definition
. L i=1 i=2 j=1 j=2
~'%%! = probability that (m,:l )&<m2:3 )&<n1=2 )&<n2=1>

The 36 gamma’s are:

1111 1112 1113 1121 1122 1123

v g v v v v

,yl?ll 71212 ,)/1213 71221 71222 71223
,.)/1311 71312 ,71313 71321 71322 ,71323
,./2111 ,.y2112 72113 72121 72122 ,},2123
,.),2211 72212 72213 72221 72222 ,.)/‘2223
,.y2311 72312 72313 72321 72322 72323

Equation (3.33) still holds in this case and a similar matrix relation as in

equation (3.34) can be written which reads:
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The above relation can be written as:
P=XT ‘ . (3.75)

where P is the column vector of p’s, I' is the column vector of +’s and
X is the 16 x 25 matrix. Now we can use the same procedure used in the
previous section‘to find Bell-type inequalities for this case. The total number
of independent inequalities in this case add up to 1617 which are listed in
Appendix B. Obviously the case 2,2 : 2,2 is an special case of 2,3 : 2,3 so
the inequalities of 2,2 : 2,2 must be included in the inequalities of 2,3 : 2, 3.
To see this let’s suppose that a 2,2 : 2,2 experiment in which the output 1
for setting 2 on each arm is split into two parts which we label them 1 and

3. Table 3.1 shows how the p’s in the two cases are related to each other.

Case: 2,2:2,2 Case: 2,3:2,3
Pu = Pu — Pu

Pz = D = pn+Dp; — p{®

Pn = D = py+rn — pyY

P2 = Di = pu+ph o tpn — phtY + pihe
pr = pytp — py

p; = putpl = pu+phtpltpn — pp+pi?

pY = py+pi — Py

p; = pu+p, = putpi+pL -+ — pr+p®

Table 3.1: Relation between the quantities of the case 2,2:2,2 (left) and the
case 2,3:2,3 cases (right).

With these relations the equivalent inequalities in 2,2:2,2 and 2,3:2,3 cases

of Appendices A and B are:
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Case 2,3:2,3 Case 2,2:2,2 Case 2,3:2,3 Case 2,2:2,2
No. 1 = No. 1 No. 28 = No. 2
No. 29 = No. 3 No. 32 = No. 4
No. 33 = No. 5 No. 34 = No. 6
No. 35 = No. 7 No. 36 = No. 8
No. 37 = No. 9 No. 38 = No. 10
No. 39 = No. 11 No. 40 = No. 12
No. 41 = No. 13 No. 728 = No. 14
No. 753 = No. 15 No. 763 = No. 16
No. 765 = No. 17 No. 775 = No. 18
No. 782 = No. 19 No. 791 = No. 20
No. 792 = No. 21 No. 799 = No. 22
No. 88 = No. 23 No. 83 = No. 24
No. 873 = No. 25 No. 80 = No. 26
No. 906 = No. 27 No. 908 = No. 28
No. 917 = No. 29 No. 926 = No. 30
No. 933 = No. 31 No. 934 = No. 32
No. 943 = No. 33 No. 950 = No. 34
No. 951 = No. 35 No. 958 = No. 36
No. 963 = No. 37 No. 964 = No. 38
No. 969 = No. 39 No. 976 = No. 40
No. 1587 = No. 41 No. 1588 = No. 42
No. 1591 = No. 43 No. 1592 = No. 44

The extension of the method discussed in the last two sections to the case
3,3:3,3 is especially applicable to the experiments where the detectors are not
perfect but there are some detector inefficiencies. Here, for example, for each
setting the detection of the particle is labeled 1, the non-detection is labeled 2
and the non-detection of the particle due to the inefficiency of the detector is
labeled 3. Of course in 3,3:3,3 case the problem of extracting the non-singular
matrices by computer is the weak point of this method because it takes a

long time and especially for higher orders perhaps it may be impractical,
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though we have never tested that. However, as it was mentioned in the
previous section one of the interesting features of the inequalities obtained
by our method and listed in appendices A and B is that in some of them a
coefficient of 2 appears. Also the independent inequalities deduced by our
method is much more than the other methods. In fact as we said in 2,3:2,3
case we obtain 1617 independent inequalities, whereas the total number of
inequalities obtained by other methods even in 4x4 case is less than this (see
[Noc95]). This increase in the number of inequalities in turn makes it easier
to design experiments in which some of these are violated, hence testing the
non-locality in nature easier.

Although 2,3:2,3 case may be applied to the experiments where on each
arm only one of the detectors is perfect, in the next chapter we will use
Projection Valued (PV) measurements and Positive Operator Valued Mea-
sure (POVM) measurements to show that some of the 2,3:2,3 inequalities are

violated by orthodox quantum theory predictions.




Chapter 4
PV and POVM measurements

The reduction of the state |1) of a system S, in a measurement of one of
its observables, O, is mathematically interpreted as the projection of |¥)
onto one of the basis vectors, |u,), of the N dimensional Hilbert-space of
the system, H(N). Clearly, as we are measuring the observable O, |u,) is
an eigen-state of O and the result of the measurement is the eigen-value o,
corresponding to |u,). However, the probability of getting a specific result
depends on the type of measurement used. In the following two sections we
will discuss two types of measurements: Projection Valued measurements
(PV) and Positive Operator Valued Measure measurements (POVM), and in

the last section we use POVM measurements to test Bell inequalities.

4.1 PV measurements

In a PV type measurement, which is also called von Neumann type, only
the system under consideration is involved in the measuring process. Ob-

viously, here if there is no degeneracy the total number of outcomes of the

58
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measurement is /V, the projection operator is

P, = |u.){u,l, (4.1)
the probability of the result o, is

9 N

Pn = [(u,|9)] with an =1 (4.2)
and as the eigen-states |u,) form a complete orthonormal basis we have

v A

> ua(ul = 1L (4.3)

If there is degeneracy, then there are totally M (< N) possible outcomes and |

the above equations would become respectively:

Bo= )t (44
pm=Slerf  wih Yp=1, (4
> S k)l = 1 (46)

As equations (4.2) and (4.5) show in both cases the mean value of the projec-
tion operators determines the probability of the outcome of a measurement,

hence the name Projection Valued measurement.

4.2 POVM measurements

In a POVM measurement not only the system S but also an auxiliary sys-

tem A is involved in the measurement. The detailed discussion of such a
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measurement can be found in [Per93] and [Har97], however we briefly ex-
plain some of the main points here. The state |¢) of the system A with an
R dimensional Hilbert-space is known before the measurement and there is

no correlation between systems S and A. The state of the combined system

before measurement is:

) = [¥)]¢) (4.7)

If we expand the state |1) in terms of the eigen-states, |u,), of the observable
O, and the state [¢) in terms of the eigen-states, |v,) of the observable of the

system A and denote the unitary evolution of the combined system during

the measurement process with U we get:

) = [¥)e)
= Y a.bu.)lv)

v) |
= Zanb, Zumanlum>”l}0>

S (Z anb,umqm) [} [V,)

m,q

Y 506,00 fu)

where
Unngnr = (0, (| U2, 0,) (4.8)

If we make a PV measurement on the combined system at this stage, the

probability that the system be found in the state |u,)|v,) is:

2

Pimqy = (49)

Z a’n br umqm‘
n,T
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This equation can be written as:

Pimgy = 5{m,q}'<h{m,q}‘¢>|2

(4.10)

where the normalized vector |hi,,,) is a linear combination of |u,,)’s and

Emqy can be found from the last two equations as below:

2
= Eimay |<h{m,q)|¢>|2 =

> a,b,u,,.
n,r

Z aﬂ Z b‘l‘uman
n ™

Z a, Z b, Upgner
n r

The above equality is fulfilled if we choose!

Zbr“mqm = Emuay Pimay [tn) =
Zbrumqm (u.| = \/ Emay (Ppmay |Un) (ua| =
Z Z brumzznr <unl = V g{m»q} <h{m,q)| Z lun><un| =

n

222 brtgr (U] = gy (| T =

n T

Z(bruman)*lu'n> = V g{m,q}lh(m,q}>

n,r .

2

2
= Emay =

(hima| D anlu)
2 " 2
= g{m,q}

Z (P} | Un)

(4.11)

If we multiply each side of the above equation by its complex conjugate

we get:

Emay = Z

n

2

> (b Unger)'

T

(4.12)

1This is only a choice, the general solution would be obtained by equating the real
part of the left-hand side with the real or imaginary part of the right-hand side of equa-

tion (4.8)and vice versa.
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From equation (4.10) it is seen that the probability that the system S to be
found in the state |u,,) after the measurement, is given by the mean value of

the operator:

P= 5{m,q}|h{m,q}><h(m,q}l (4-13)

According to equation (4.12), £, is a positive number and so the eigen-
values of the operator P are always positive, hence the name positive operator
and Positive Operator Valued Measure measurement. Using equation (4.9)
one can show that 0 < &,,,, <1 and

> Emat| himar) (Pmay| = 1 (4.14)

m,q

Using the above equation we immediately conclude that ZE{M} = N. Note
that the total number of possible outcomes in this case:n)%chat is the states
|htm.ay), 15 more than the number of possible outcomes in a PV measurement
which is V.

Up to now we have supposed that there is no degeneracy, however the
extension to the degenerate case is straightforward and is left to the reader.
Below we have shown three schemes of POVM measurements which we will
use in the next section to apply to Bell-type inequalities, case 2,3 : 2,3 but
before that we give a short explanation about two of the devices used in the

corresponding experiments, a polarizing beam-splitter (PBS) and a partially

polarizing beam-splitter (PPBS)
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4.2.1 A Polarizing Beam-splitter

Figure 4.1 shows the scheme of a polarizing beam-splitter. The angle of the

PBS relative to the horizon is 8. If a beam of particles, initially polarized

31 [Jo)s

in

6

Figure 4.1: Scheme of a polarizing beam-splitter.

horizontally, with the state | +), impinges on PBS it is split into two parts,
one polarized horizontally and the other polarized vertically with the state

|$) according to the following relations:

| )1 = cos0 |+34), +sinf |$4); (4.15)
and if initially polarized vertically then

|T)1 = —sing [«4), + cosd | L) (4.16)

where the subscript § means that the state depends on the polarization angle.
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4.2.2 A Partially Polarizing Beam-splitter

A PPBS shown in figure 4.2, is an especial case of the PBS in the sense that

the angle of polarization, 6, is zero here. However, in this case the beam is

_ /
n /

> % >

% 2

Figure 4.2: Scheme of a partially polarizing beam-splitter.

split into two parts later such that in this case we have:

) = aL]e), +bu]0)s (4.17)
1T) — @D+ 8] (4.18)

4.2.3 Non-degenerate PV measurement

The scheme shown in figure 4.3 is a non-degenerate PV measurement with
two outputs which uses a PBS.

In this experiment the state of the system S, which is a particle likely
to be found in either horizontal or vertical polarization, evolves according to

the following equation:

lv) = «afe) + B
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N

4
Y

in ‘ D

0
PBS

Figure 4.3: Scheme of a non-degenerate PV measurement with PBS.

— @ cosl|ry), + asing| L),
—Bsinb|<,), + fcos 8| Ls)s
Here the probability to find the particle in path 2 is:
p, = |acosf — Gsind|?
= &(h|9)I’
Similarly the probability to find the particle in path 3 is:

ps = |asinfd + Bcosb|?
= &l(hal)*

So for outcome 2 we have the state:
|hy) = cos 8] <) — sin6|]) & =1
and for outcome 3 we have the state:

|hs) = sin 6| ) + cos 6| 7) E=1

(4.19)

(4.20)

(4.21)

(4.22)

(4.23)
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As expected it is seen that &£, = £ = 1 which must be in a PV measurement.

4.2.4 Non-degenerate POVM, set up 1

In the experiment shown in figure 4.4 a PBS and a PPBS are used to set
up a POVM measurement with the same system as before. However in this

case there are three outputs. The state of the system S goes under two

A A

in‘ . y R
, — D
1 2 / 4
0

Figure 4.4: Scheme of a non-degenerate POVM with PBS and PPBS.

consecutive evolutions as below:

) = aleh+6h
— acosf| <), + asinb| L), — Bsind|<s,), + Bcosd| L),
— (aa, cosl — Ba, sinf)| ), +

(ab., cos @ — (b, sin0)[1); +

(asin@ + Bcos)|Ls)s (4.24)
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Here we have:

ps = |asind+ Gcosf|’ (4.25)

= &l (4.26)
p. = |aa, cosf — fBa,, sinb)’ (4.27)

= &l(ha)* (4.28)
ps = |ab., cosé — fb, sin b’ (4.29)

= &l(hslD)) (4.30)

where:

b)) = sinf|<) +cosf|]) & =1 (4.31)
he) = cosBl) —sind]]) & = o’ (4.32)
lhy) = cos]o) —sind|]) &= b (4.33)

4.2.5 Non-degenerate POVM, set up 2

Another non-degenerate POVM measurement that we use in the next section
is shown in figure 4.5 which again uses a PPBS and a PBS. However, in this
experiment the particle beam impinges first on PPBS and then on PBS.
Furthermore the PPBS is modified such that for horizontal polarization the

beam is not split and goes totally into path 2.

W) = ale)+ 6D,
— a|e), + Bay| 1), + b ])s
— (acosf — fBa,sinb)|4r,), +

(asinf + Bag cos )| Te)s +
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A N

7

Figure 4.5: Scheme of a non-degenerate POVM with modified PPBS and
PBS.

Bbe| 1) (4.34)

Here we have:
ps = |Bb]° (4.35)
= &l(ha|t))? (4.36)
p. = |acosd — fBaysinb)® (4.37)
= Ef(hP))? (4.38)
ps = |asing + Ba,cosd|’ (4.39)
= &l(hslY)* (4.40)

where:

E = |bf? (4.41)

lha) = |T) - (442)
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&, = cos’0+ |a,|*sin® 0 (4.43)
by = \}E(cos 6l ¢3) — a sin 6| 1)) (4.44)
E = sin®f+ |a;]?cos® f (4.45)
Ihy) = ;é:(smﬂ )+ a cos ] 1)) (4.46)

4.3 POVM measurements and
Bell inequalities

Consider a two photon system with the entangled state:

ale)|e) +AIDIT) (4.47)

where one photon propagates to the left and the other to the right. We
would like to make two series of POVM measurements on this system and
verify if any of the inequalities derived in chapter 3 would be violated. In
all of these experiments there are 2 outputs or three outputs which we have

already discussed in the previous section.

4.3.1 Experimental set up 1

In this experimental set up two settings are available in each arm, where for
setting 1 (with two outputs) a PBS, as shown in figure 4.3, and for setting 2
(with three outputs) a PBS followed by a PPBS, as shown in figure 4.4, are
used. For this set up the corresponding probabilities as defined in section 3.3,

would be as below.
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Setting 1 on the Left and setting 1 on the Right
ale)| )+ DI —
a(cos 07| )5 + sin 07| $6)7) (cos 07| <25) ] + sin 67| T5)7)
+ B(=sinby| )7 + cos 07]16)7) (= sin 0 [«)] + cos 0| 15)7)
= (acos@fcosff + [sinf~sinfF)|<s4)E]3,)R
+ (acosOsin@f — [sindfcosfF)|<o)E| L) R
(4.48)

+ (asinffcosff — [cosfFsinOF)| o) k| <o) R

+ (asindsing® + Bcosfcosd?)To)5[36)5

The probabilities in this case are:

11

pl = |acosOfcosff + [sinfrsinff*? = p!
ply = |acosfsinf} — [sinfcosf? = pi?
p¥ = |asin@fcosff - Pcosbrsinfr)? = p*
p3 = |asinfsinfF + [coshcosbE]? = p?

Setting 2 on the Left and setting 2 on the Right
al ) <) + 81D —

a(cos O] <)y + sin 07| To)5) (cos 07| <36) + sin 67| To)7)

+ B(—sinbf|4)F + cos OF| Lo)E) (— sin OF| ¢24)F + cos OF[ 1)) —
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+

The probabilities in this case are:

33
p22
34
p22
35
p22

43

p22

44

Das
Dy
D
D

55
p22

(csin 6 sin 6}

(aa®, sin 07 cos 6F
(b, sin BF cos 07
(aak,, cos B sin 6

cos By cos0f

(cak o

2762

L R
H2bH2

(aa cos % cos 6
(bt , cos B sin OF
(bt ,af, cos 6% cos 8F
(abk bR , cos 6 cos OF
= |asinffsinfF

= |aaZ,sin 6} cosOf

— R ] L R
= |ab®,sinOF cos b

— L L &3 R
= |aak, cosBf sin 6}

— L R L R
= |aak,a®, cos b~ cos B}

= |oat bR

2762

— L L o3 R
= |abt, cos b sin b!

= |abt,al, cosOf cosF

“276a2

L R
H2bH2

= |ab

cos 0y cos 0F

cos 8y cos 0}

B eost; cosb7) |To)3|Ta)g

fag, cos by sin67) [To)3] )
Bb, cos by sin07) [10)7]42)
pay,,sin0; cos 07) | <)¢1La)3
Bak af , sin0F sin 6F) | )i )R

Bat b"

27642

sin 0% sin 0F) |+3)E| )R
BbE,, sin 0F cos OF) | )5 L) R
BbE af, sin OF sin OF) [<)E| )

BbE bR

4272

sin 62 sin 0F) | <)L <) F

22

+ [cosF cosGF)? S
—  Bak, cos 6F sin F|? = Do
— [BbE, cosbf sin OF|? = py
—  fat,sin6f cosOF|? = p,
+ Bat,af,sinflsinf?? = pi}
+ Pat bR, sin6fsinfF)* = pi
— Pbh,sin6fcosOF]? = pi
+ (b%,af,sinffsin X2 = pil
+ Bb,bR,sinfrsin6FF = p¥
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Setting 1 on the Left and setting 2 on the Right
ale)| <)+ 681D —

a(cos OF| «rg)k + sin 08| T4)E) x

(ak,cos 0F| <)X + b, cos OF| )P + sin 6F| o) F)
+ B(—sin0F| <)L + cosOF|T4)5)

(—a®, sin 0F| )8 — bR sin OF| ) F + cos 67| 14)F)
= (acés gF sin 6 — BsinffcosOF) | <4)5|Ta)F)
+ (aal,cos0Fcosff + [af,sin@fsinff) [<4)z| )k

+ (abf,cos0FcosOF + [bE,sin@fsinff) |<34)5| )

+ (asin@Fsin6F + BcosOFcosOF) |Ta):|Te)E
+ (aa®,sin@fcosF — fat,cosB"sinbF) |$4)k])F
+ (ab®,sinfFcosfF — [bR,cosfFsinb2) |1)k])EF

The probabilities in this case are:

P2 = |acosfFsinff — [sin 6 cos §F|? = p2
P = |aaR,cosf cosbf + faf,sinflsindf° = py
p% = |ab®,cos@FcosfF + [(bE,sinfsinff|* = pi
p¥ = |asin6 sin6f + [cosBF cosOF|* = p2
p¥% = |aa®,sinf"cosff — paf,cosfrsinbf* = pi
p* = |ab®,sinf"cosfF — pPbE,cosfsinbf>? = p3
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Setting 2 on the Left and setting 1 on the Right

al<)| <) + 61D

—

alal,cos 2| <)% + bE, cos 02| ) E + sin 0] | T,) %) x

(cos 0| <>4)5 +sin 0F|To)¥)

B(—ak,sin 0F|<)r — b, sin 0F| <)L + cos | T4)5) x

(=sin 67| <34);" + cos 67| L6)5)

(asin 6% cos OF —
(csin 6f sin A7 +
(aat, cosff cos 7 +
(aak, cosfrsinF —
(bt , cosB% cosF  +

L L o3 R
(abt, cos L sinfF  —

Beos by sinb7) |To)3] ¢)7)

f cos 0y cos 07) |$0)31L0)5
Bak,sin 0 sinGF) | )5 4) 2
fag,,sinb; cosb7) | )¢ Le)s
BbE , sin 0F sin 6F) |<>) | <4) 2

Bbe,, sin by cos ) | <)5[30)S

The probabilities in this case are:

24
24
P
D
Do

53
p21

= |asin#f cosff
= |asin 6 sin OF
= |aat, cosOF cos6F
= |aak, cos6F sin 67
= |abt, cos6F cosO”

— L L o3 R
= |abk, cosBf sin b

21

— [cos B sinOF|? = D
+ [cosBfcosbr|? = py
+ Bat,sinf-sinfR? = pil
— fak,sin@F cos 67> = pi?
+ Bbt,sinfrsinfr]? = pi
— Bbt,sinffcosF)? = p2
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The values of the inequality number 2 in appendix B for 3 sets of param-

eter settings are as followings:

Tnequality = —1.446709 x 102

a =071 B = 071
at, = 033 bt = 0.94
a®, = 050 bR, = 0.87
gr = 0.00 6° = 45.00
or = 15750 % = 90.00

Inequality = 1.028356

a =071 B = 071
at, = 033 bt = 0.94
a?, = 050 bF, = 087
6 = 000 6° = 45.00
g% = 67.50 62 = 180.00

Inequality = 1.198336819

a = 07071067810 8 = 0.7071067810
at, = 0.01 bh, = 0.9999499987
a®, = 0.01 bR, = 0.9999499987
or = 153.00 or = 27.00
g8 = 45.00 62 = 0.00

The maximum violation of the Bell inequalities that we could reach‘for
this case is 1.198336819 which is less than /2 obtained by others(see for
example [CHSH69]. However, we would like to emphasize that as computer
calculations take a long time to verify exactly, even for one of the inequalities
in the 2,3:2,3 case, we have done calculations both by computer and by hand
for some of the inequalities which obviously are not complete. So, in an exact
verification we may find inequalities which are violated with a factor stronger

than /2. Fortunately we have obtained this with the next set up.
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4.3.2 Experimental set up 2

Again in this experimental set up two settings are available in each arm:
for setting 1 (with two outputs) a PBS, as shown in figure 4.3, and for
setting 2 (with three outputs) a modified PPBS followed by a PBS, as shown

in figure 4.5, are used. The corresponding probabilities would be as below.

Setting 1 on the Left and setting 1 on the Right
al ) e)+ 0D —
afcos 07| )y +sin 07| 15)7) (cos OF | )7 + sin 6| 15)5)
+ F(=sinbf[4); + cos 07| 1)7) (= sin 0] <25)] + cos 07| 14)3)
= (acosflcosfF + [sinfrsinf?)[<s4)E|<s,)F
+ (ccosffsin@f — [sinfFcosOF)|<r4)E| L) R
(4.49)

+ (asinflcosff — [cosfFsinfR)|T,)E] )7

+ (asindysing? + Bcoshycosd})|T5)5[3)7

The probabilities in this case are:

p? = |acosffcosff + [sinfrsinf?)? = pi

23 — L o3 R 3 L R|2 f— 12
P2 = |acosfsind® — [sinffcosfr)? = p?
p2 = |asinfcos§f — [cosfrsinf?)? = p*

22

pll

33 — 3 L &3 R L R|2
ply = |asin@sinf* + [cosh”cosbF|
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Setting 2 on the Left and setting 2 on the Right
al<) )+ 8D —

al )10 + Blap 1); + 0L D) EIDF + 051D —
afcos b | 4o); + sin 6;]35)7) (cos 07| <34) + sin 07| 34)7)
+ Bagag(=sind;|<e); + cosb;|Ta)7) (= sin 07| <36)§ + cos 07| 1o)F)
+ Fbyag | D5 (—sin b o) + cos 07| ,)7)
+ Bagby (= sin ;| )5 + cos 0;]34)7) 117

+ Bbpbn D513

= Bopb D103

— Bbyaf,sin 07| 1) x| <) 8

+  Bbraf cos 05| 1)y | Te)E

= Bagpbf, sin 07| 30); | 1)7

+ (acosO; cos O} + Bag,a, sin 0 sin 0F)| <o) %[ <o) F (4.50)
+ (acosfy sin 0] — faf,af, sin 0 cos OF)|<e) | L6) P

+ Bag,bf cos 7 To); | )5

+ (asin6} cos0F — fak,ak, cos 0 sin 6F)| L) E| 34) %

12%12

+ (asinﬁ,fsinm ,Baiz 12 COS@L COS@R)I@,) |i€>?
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The probabilities in this case are:

33
D>,
34
p22
35

Dy,

43

2%

44

p22

45

p22

53

p22

54

p22

55

p22

— |IBbL bR l2

12912
Iﬂbfzag sin 67|

| pbr,af, cos 07|

|ﬂaf2bf2 sin ;|

o cos 07 cos 0 + Bay,ar, sin OF sin %2

L o3 R L R 43 L R|2
la:cos 0y sin 6 — Bay,al sin 6} cos 47|

| ﬂagbfz cos 67|

lasin 8 cos 0F — fBay,al, cos Of sin OF|?

3 L oy R L R L R|2
|lasin 6y sin 0 + Bay,af, cos 67 cos 6F|

(l

I

22

p22

21

Doy

23

2%

12

Dy,

11

P2

13

p22

32

p22

31

p22

33

Dy,
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Setting 1 on the Left and setting 2 on the Right
af ) e)+ 81D —

a(cos O] | ¢p)k + sin 67| L)) x

(cos [ )5t + sin 67 To)5)
+  B(—sin | 3,)% + cos 05| o) L) x

(—af, sin 65 <36) + afy cos 07| To)F + b5 | 1))
= —fbhsinbf| ¢4);| 1)
+ (arcos 67 cos O] + Bal sin §F sin OF)| <o) L[ 434)F
+ (acos Oy sin 67 — fal, sin OF cos OF)| «3,)E| $,) 7
+ 605, cos67]36)711)7
+ (asinff cos; — Baf, cosOf sin OF)| $4)%| 34)
+ (asinf}sin 0] + faf, cos 07 cos 62)| 3,) 5] Lo) B

The probabilities in this case are:

12

p; = |BbLsindp* = p
Pl = |acosBfcosOF + Baf,sind) sin 7> = pi;
pis = |acosf)sinf} — falsinffcosff|* = pi
pi; = |Bbf; cos by’ = p;
Pl = |asinffcosfF — Paf, cos 0y sin 07> = pi
pi; = lasin®sin6f + Baf, cos 07 cos > = pZ
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Setting 2 on the Left and setting 1 on the Right

ale) o)+ 61D —
a(cos | <o)k + sin | 3,)E) x

(cos 07| ¢44); + sin 6] 14)7)

ﬁ(—af2 sin 0F| >,k + az, cos 0;13)F + b;li)é)x

(=sin 0| <35); + cos 0F| 1))
—Bbg, sin 07 1)5] )
Bby, cos 07| 1)7136)7
(arcos Oy cos O] + Bay, sin OF sin 6F) | <35 | <4) ?
(acos B sin OF — Bag,sin 0y cos OF)|«34)%| o)
(asin 07 cos O — fag, cos OF sin 0F)[15)E[ <) R

(usin 62 sin 07 + fa, cos 6 cos 0%)| $a)¢| 1)

The probabilities in this case are:

32

Do

33

p?l

42

p21

43

p21

52

p21

53

p21

= |Bby, sin 67? = Pa
= |Bby, cos OF? = p?
= |acosfy cos 8 + fal,sinfLsinOF2 = piI
= |acosfy sin0] — faf,sinf cosOF)* = pi2
= |asin@; cosd] — faf, cosOf sinfF* = po
= |asindy sin 67 + fay, cos % cosOF|* = p=
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Again in this case the value of the inequality number 2 in appendix B for

7 sets of parameter settings are as followings:

Inequality = —2.089684 x 102

a = 071 B = 071
a, = 033 b, = 0.94
af, = 050 b% = 0.87

ot 67.50 6t = 45.00
fr = 67.50 6F = 67.50

Inequality = 1.018246
a = 071 g = 071

af, = 033 b, = 094
af, = 0.50 b% = 087
0r = 0.00 6 = 45.00

§* = 11250 6% = 90.00

Inequality = 1.192572023

a = 0.7071067810 § = 0.7071067810
at, = 0.1000000000 b5, = 0.9949874371
af = 0.9000000000 b% = 0.4358898944
9r = 135.00 6: = 99.00
g2 = 27.00 02 = 63.00

Inequality = 1.278386383
a = 0.7071067810 B = 0.7071067810

af, = 0.8000000000 b5, = 0.6000000000
af, = 0.6000000000 b% = 0.8000000000
o~ 36.00 0 = 63.00
62 = 144.00 g2 = 117.00

Inequality = 1.282532697
o = 0.7071067810 S = 0.7071067810
af, = 0.8000000000 b5, = 0.6000000000

12
a? = 0.6000000000 bg = (0.8000000000

12
0 = 3529411765 6 = 59.01639345

gF = 138.4615385 6% = 120.0000000

1
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Inequality = 1.499900008

(8 =
afz =
afz
o;
oF =

0.7071067810 f

0.9999 b,
0.9999 b,
45.00 o
135.00 %

Inequality = 1.499999720

(8% =
L —

aw =
R

ai2
L

01

or =

Il

0.7071067810 g

0.99999999 by,
0.99999999 b,
4497751125 05
135.0135014  6F

0.7071067810
0.1414178207
0.1414178207
45.00

135.00

0.7071067810
0.0001414213562
0.0001414213562
45.03377533
134.9730054

Comparing the last two sets it seems that the parameters in the last set

belong to an extremum, and in fact we have tried many other sets near these

values but couldn’t reach higher. Furthermore, although in all the above

seven sets of parameters the Bell inequality is violated by the predictions of

quantum theory, the last two are more interesting as they violate the Bell

inequality by a factor of ~ 1.5 which exceeds /2. This in turn makes the

experimental test of locality, in which there are always some kind of errors,

easier and more accurate. Of course, the increase in the output gates can

be accounted for stronger violation of Bell inequalities which may be the

motivation for considering experiments with more outputs.




Chapter 5

A local and Lorentz invariant
model

5.1 Hardy’s proof of non-Lorentz invariance
of local theories

Aimed at nonlocal hidden-variable theories Hardy [Har92, HS92] used a
gedanken experiment to prove that they are not Lorentz invariant too. Al-
though some authors have criticized Hardy’s argument [CN92, BG94, CH95,
CH96], with the help of non-locality and contextuality of the hidden variable
theories, it is worth discussing this here as in the next sections it will be
shown how Squires local model escapes this argument.

Hardy’s first assumption is the same as EPR sufficient condition for real;
ity except that the disturbance of the system under measurement is allowed.
His second assumption is the necessary condition for Lorentz invariance of
the elements of reality which states: The value of an element of reality cor-
responding to a Lorentz-invariant observable is itself Lorentz invariant.

The scheme of Hardy’s gedanken experiment is shown in figure 5.1 in

82
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which two Mach-Zehnder-type interferometers are used. A positron e (electron
e”) impinges on beam splitter BS1¥(BS1-) and is reflected or transmitted
through the paths u*(u~) or v*(v™) respectively and due to destructive in-
terference goes through the path ¢*(c-) and is detected at detector C+(C-)
only. The two interferometers are then combined such that, in the laboratory
frame of reference both electron and positron reach the detectors at the same
time but if the positron takes the path u* and the electron takes the path

u~ they reach the point P at the same time, ¢5, and are annihilated, that is:
[u)u™) — |7) (5.1)

Also two removable beam splitters BS2* and BS2~ are provided as shown

[)/ ~ d+= D+

BS1t/ % o+ P

BS1-

Figure 5.1: Scheme of Hardy’s gedanken experiment.
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in the figure. The initial state of the system is supposed to be:
|s*)]s7) (5.2)

where (from now on) we are using the convention that the state of each
particle is shown by the path it is in. As the only information available
from the state of a particle at a given time is that if the particle exists in
a given path or not, the state describing the particle does not depend on
any parameter of the frame of the reference. When a beam reaches to a
beam-slitter it is split as:

1

V2

where I, T and R are incoming, transmitting and reflecting states respec-

1) — —=(IT) +1|R)) (5.3)

tively. We will see shortly that due to the configuration already discussed,
the positron(electron) now will be able to reach the detector D*(D~) from
the path d*(d-).

Now let’s define two observables U* as:
U* = |u*)(u*] (5.4)

U+(U-) corresponds to positron(electron) being in path u*(u~) which is the
element of reality here and its value, [U*]([U~]) is 1 if it is in path u*(u~), 0

otherwise. Hardy’s conclusion from reality condition is then:

o
[

—_—~ o~ o~ —
(@3]
(@]

[
oo

U*|u*) = |u*) = [Uf] =1

U0 [uH ) = [uDu)y = [UU]=1

(@]
-~

U0 jut,u™), =0 = [U'U7]=0

it [U[U] =1 then [U*U] =1
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where |u*,u™), is any state orthogonal to |u*)|u~).

Note that with the experiment shown in figure 5.1, the conditional state-
ment (5.8) cannot be applied to nonlocal hidden variable theories which are
context dependent. This is because U* and U~ cannot be measured in the
same context here.

Now, in the laboratory frame of reference F, for times later than ¢, but
before the positron and electron reach the beam-splitters BS2*, the state of

the system evolves as:

[s)s™) — %(iIUW + o) @luT) +v7))

1 . _ . _ _
— (=) Filu) ) Fip)uT) + [vh)eT)) (5.9)
which is orthogonal to |u*)|u™), as at times later than ¢, with probabil-
ity equal to 1 not positron nor electron exist in the corresponding path.

from (5.7), we have:
UtU"]=0 (5.10)

In the F* frame of reference in which positron passes the beam-splitter
BS2*, but electron has not reach BS2- yet, we have:
1
22

In this case, the state of the electron would be |u~) if positron is detected at

[sT)]s7) — (=V2[7) = le)u™) + 2ilc*)u7) +dld*)|u))(5.11)

D* and from (5.5), we have:
[U"]=1 if detection at D* (5.12)

In the F~ frame of reference in which electron passes the beam-splitter

BS2-, but positron has not reach BS2* yet, we have:
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1
[ss™) — == (=V2y) = [ut)]eT) +ifut)ldT) + 2iv*)eT)  (5.13)
2v2
In this case, the state of the positron would be |u*) if electron is detected at

D~ and from (5.5), we have:
[U*] =1 if detection at D~ (5.14)

In the F* frame of reference in which both positron and electron pass the

beam-splitters BS2%, we have:

s )s™) — i(—2|’7>—3IC+)IC‘>+i|c+>|d'>+i|d+)l<3">—|d+)|d‘>) (5.15)

where there is a probability of % that positron be detected at D* and electron
be detected at D=. So from (5.8), (5.12) and (5.14) in these cases where
[D*]=1 and [D~]=1, we have:

1
[UtU"] =1  with probability of 6 (5.16)

which contradicts (5.10). This in turn refutes the assumption of the necessary
condition for Lorentz invariance of the elements of reality that we made
earlier. We end this section by emphasizing that the contexts of measurement
of D* and D~ are different in all the above cases, and because of this as
we stated before this argument cannot be applied to nonlocal theories, for
example in the case of equation (5.15) it is seen that if we measure D* and
get [D¥] = 1 then as U~ cannot be measured in the same context, if we had
measured U~ and got [U~] = 1 this would non-locally effect the outcome
of the measurement of D* which may not result the value [D*] = 1, hence

blocking the argument.



CHAPTER 5 A local and Lorentz invariant model 87

5.2 Non-locality, Lorentz invariance of the
Bohm model

Non-locality is one of the basic and apparent features of the Bohm model
when applied to many-body systems. As was shown in section 2.2, for a sys-
tem with NV particles the equation of motion for a particle is found from (2.31)

which reads:

_ 1 U p, ¥ .
L A7
i mi§R< -y > (5.17)
and the quantum potential Q(z,, - -, Z;y, t) would become:
3N
[
Q(Ila"WxBNat):_?n‘—i:—l}z___ (518)

As it is seen from the above equations, the position of each particle
depends on the other particles’ positions as well. Furthermore, whatever
the classical potential of the system is, the quantum interaction potential
of (5.18) always depends on the positions of all particles of the system. This
means that the position of each particle is instantaneously effected by other
particles of the system, hence the non-locality feature of the theory.

Although the Bohm model reproduces all of the statistical predictions of
quantum theory and still is Lorentz invariant at that level [BHK87, BH93],
due to the non-locality feature, this theory, in which the particle positions
play the basic role becomes non-Lorentz invariant at the level of individual
systems. This can be shown by considering two particles A and B at rest in

a Lorentz frame as in figure 5.2 [BH93].
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t A B

b/

Figure 5.2: Space-like connections influencing past.

In this frame of reference there is an instantaneous interaction between the
two particles at a and b respectively. Now, in another Lorentz frame where
a and b are simultaneous, still there should be an instantaneous interaction
due to quantum potential. With the same argument, as o’ and b’ are simul-
taneous, an instantaneous interaction exist here. However, this is impossible

because the particle a affects its past.

5.3 The Squires model

The non-locality of Bohm model, as was shown in the previous section, arises

because of the instantaneous influence of particles on each other’s positions,
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which in turn results in non-Lorentz invariance of the theory. In other words
in the Bohm model the velocity of signals are infinite. Impressed by this,
Squires [Squ93] proposed a model which is based on the assumption that the
information each particle receives from the other one is carried by a signal
moving with the velocity of light. So, in the equation of motion of each
particle, the posiltions of the others should be determined on the backward

light-cone of the particle, that is, the equation of motion for the ith particle

is given by
1 , T tio),
ml(tl) — —%pl\I}(ml( 11)7x2( 12)’ ) ’ (519)
my \Ij(ml(til)’ (E2(t,-2), e )
where
ty =1t — M’ (5,20)

c
are the retarded times. Here there is an ambiguity in the cases where the
wave-function explicitly depends on time [Squ93|] which can be removed by
using multiple-time wave-function if the duration of the interaction between
particles are zero or simply if the interaction is instantaneous.

We consider N particles which interact with each other only at time
t = t,. The Hamiltonian can be written as the sum of the Hamiltonians of

the individual particles. So,
N
H=) H,. (5.21)
=1
The wave-function of the system before the interaction is

V(g Ty, t) = ﬁUj(O,t)z/Jj(mj,O) , (5.22)
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where 1;(x;,0) is the initial wave-function of the jth particle and,

(5.23)

U;(0,t) = Texp [—% /t drH,(T)
0

is the unitary time evolution operator of the jth system in which 7" stands
for time ordered product.

At time t = t, particles interact with each other instantaneously and in
general at the end of the interaction the wave-functions are entangled. So

after the interaction the wave-function of the system becomes

N
Tz, &y, t) = > ek [J Uik, ) (), to) - (5.24)
k j=1
Now we define the retarded wave-function corresponding to ith particle as
follows:
N
e = Z Ck H U (t?j’ ti) Vi (25, t?j) ) (5.25)
k Jj=1

where t,; is the retarded time as defined in equation (5.20), and &), = 0 if ¢;;
maps into the region before interaction, and ¢, = ¢, otherwise. Note that
before the interaction the state of the jth particle is given by 1, but after the
interaction, in general, there are many different states, 1;,, corresponding to
this particle. So the evolution of ¢; cannot be determined uniquely and this
is the motivation for defining ¢}, as above.

Now the equation of motion for the sth particle becomes

&;(t) = i% (ert*(ml(tﬂ),w?(tn), )P \I/fet(ml(t“),mz(tn),---)) (5.26)

m; wret” (z, (t.1), @, (tiz), ) W2y (1), T2 (ti2), )
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and if there is correlation between bosons and fermions, as was discussed in
section 2.4 in the case of the Bohm model, integration over the positions of

bosons is essential, that is:

fdaz ‘I’?Et‘ (@, (), ®2(ti2), - ) P, ‘I'.-Tet(fl’l(til)> Ty (tia), ) (5.27)
fd3z Uret” (z,(t), T2(ten), - - -) UIH (T4 (8), Ta(tin), - ) .

That the Squires model does not encounter the Bohm model difficulties
is clear. In the case of Hardy’s gedanken experiment as we saw in section 5.1
the contradiction arises because in the frame of reference F'*, where both
positron and electron reach the beam-splitters BS2* at the same time, there
is a probability of detection of positron in D* and electron at D~. However,
this does not happen in Squires model, since if in F'* the events BS2* and
BS2- are space-like separated,! which is a must in Hardy’s argument, each
particle when it reaches the corresponding beam-splitter sees the other one
in its backward light cone and so acts as if the other has not reached its
beam-splitter, thus avoiding the joint detection at D+ and D~ (See [MS95]

for a more detailed explanation on this).

5.4 Photon detection and the Squires model
— type 1 detector

In a system of N particles which interact instantaneously with each other
only at time t,, the distance between each pair of particles depends on time.
Suppose that we are considering the equation of motion for the ith particle.

At time t,, if the jth particle is the nearest one to this particle, then the

1Obviously, here by events BS2* we mean when the positron/electron reaches the
beam-splitters BS2*



CHAPTER 5 A local and Lorentz invariant model 92

time m—:mi—l is the minimum among the others and we denote it by 7.
Now from the definition of the retarded time and the retarded wave-function
in the previous section, it is clear that, for times ¢; < t, + {;'" the retarded
times for all particles would be mapped into the region before the interaction
and it is seen from the equation (5.26) that the equation of motion of sth
~ particle does not depend on the positions of the other particles. This means
that in this time interval, effectively there is only one particle. Physically, this
can be interpreted in the sense that the particle does not receive information
from the others.?

With this in mind, we now reconsider the detection of a photon whose
wave-function consists of two parts, one going to the left and the other to the
right with one detector provided on either side. This was already discussed
in section 2.5, but this time we discuss it in the context of the Squires model.
If the distance between each detector and the photon source, that is D, is of

the order of 1 meter, as in the Aspect et.al. experiments®, then initially the

retarded time, T, is about 107°. The initial wave-function of the system is:

I\II> = 2_1/2[¢L(z) + ¢R(z)]¢0L(X)'¢0R(Y) (5.28)

where as before 1), (X) and 1, (Y) are the initial wave-functions of the left
and right detectors and given by equations (2.49, 2.57) respectively. If the

interaction of the photon and the detectors occurs at ¢, = 0, then for the left

2Qbviously if t7* = 0 this situation would never happen if we assume that the velocity
of a particle is always less than that of light

3In most of the experiments of Aspect et.al. two photons are involved (see [ADR&2]
and the references therein), however, from now on we are considering the one discussed
in [AG90] in which only one photon is used
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detector from equation (5.25)we have:
) = 27 2[¢0(2)957 (X) + e (2)thor () Whon (Y), (5.29)

and from equation of motion (5.27) the velocity of the left detector would

become:

-p ~Pp *
(2 p{fz +Uip, (5.30)
+ [

L

X =1g

m

which is exactly the same as equation (2.61) where there was only one de-
tector present on the left. A similar equation holds for the right detector.
So, if as in section 2.5 we use the wave-function 9,7/ ? given by equa-
tions (2.52/2.60), then the whole analytic arguments we made about these
equations in that section are still valid here. That is, if initially X, is pos-
itive/negative then the left detector will/will not record the photon. Note
that equations(2.52/2.60) differ from the corresponding ones in [Squ93]. This
is due to the fact that the photon wave-function is not contained in the total
wave-function therein.

Before going any further, there is a point about the Squires model which
should be made clear here. In the above example consider the case where both
X, and Y, are positive. So both of the detectors will record the photon. On
the other hand if X, and Y, are both negative, then neither of the detectors
will record the photon. The probability for this to happen is % in each
case, and the total probability adds up to % The reason for this is that for

0 < t < T, practically we are treating the two detectors independently of

each other. So if the duration of the experiment is less than the retarded
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time then, for 50% of the events, quantum theory is violated which is quite
significant here. However, in the next sections we will see that after the

retarded time elapses the wrong events disappear in a realistic experiment.

5.5 Photon detection and the Squires model
— type 2 detector

In this section we will consider the experiment of the previous section but
for times t > T'. As we said before, generally the retarded time 7' is not con-
stant. However, in the experiment of Aspect et.al. that we are considering
here, the distance that each detector particle moves during the experiment
is of the order of the Bohr radius which is much less than the initial dis-
tance between the two detectors which is of the order of a meter. So with
a good approximation we can assume that 7' ~ 107° is constant during the
experiment.

The wave-function of the system after the interaction is given by:

|0) = 272[g0 ()9 (X) + ba(2)9a? (X)) (5.31)

The equation of motion of the left detector from equations (5.27,5.25) would

be:

X = 1lg
m

[awa(t — )Py ()i () + i (¢ = T 91 ()p (t)]
[¥n(t — T [z (@)1 + [t — T [ ()

2
= m - (5.32)
1+ exp [—2a%tX(t) +202(t=T)Y(t —T) + aZsT(2t — T)]
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where the time dependence of the functions X and Y are explicitly shown.

Similarly for the right detector we have:

y o= lp {m(t — T)P 47 py w7 (0) + [y (¢ = TP w;:(t)pm(t)}
m ot — D) [ (O + 7 (¢ = T) [a(t)]
= m (5.33)

1+ exp [—2a;§’;tya) +2a2(t - T)X(t - T) + aZ5T (2t — T)]

If there is no retardation, that is T = 0, then the above equations reduce to
equations (2.67) and (2.68) as expected.

As analytic solutions are not possible for the above equations, we have
solved them numerically for a hundred pairs of initial positions which were
chosen randomly with normal distribution consistent with the Gaussian wave-
packet given in equation (2.49) (see appendix C).

In figures 5.3 and 5.4 we have shown the positions of the left and right
detectors as a function of time for a given pair respectively. In the time
interval 0 < ¢ < T, in all 200 figures obtained, the velocity of the detector
particle tends to zero if the initial position is negative and remains finite if
it is positive. This is in agreement with the analytic argument that we used
in sections 2.5 and 5.4.

At times later than the retarded time, for 99 out of 100 pairs only one
of the detectors (in 52 events, the left one and in 47 events, the right one)
will record the photon and the other one stops recording. For 1 pair of
initial values (X,,Y,;) (No. 76 in appendix C), none of the detectors will
record the photon which may be treated as a wrong result because quantum

theory is violated. However, it is interesting to note that if X, and Y, are
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Figure 5.3: The position of the left detector particle as a function of time in

Squires model with X, = 0.5197 and Y, = —0.4113.

Y®

1 1 L :
3 4 5 6
t

Figure 5.4: The position of the right detector particle as a function of time in

Squires model with X, = 0.5197 and Y, = —0.4113.
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the same then according to the symmetry of the problem it is not possible
to determine which of the detectors should detect the photon and incidently
in this case X, and Y, are nearly the same and both negative. Considering
the limited precisions of the numerical calculations which is inevitable in
computer packages and that these differential equations are very sensitive
to tiny changes, one may wonder that this wrong result may be due to the
errors in calculations. It should be noted that in a symmetric situation
like this, the Bohm model is ambiguous too. For example as we said in
section 2.3 according to the Bohm model the initial position of a particle
in its wave-packet determines if the particle is transmitted or reflected by a
beam-splitter. But if the reflectivity and the transmittance are the same and
the wave-packet is Gaussian, then for the initial position in the center of the
wave-packet the trajectory of the particle is not known. So we may conclude
that here the Squires model is in exact agreement with quantum theory.
Finally, when the particle stops recording, as figure 5.4 shows, the maxi-
mum distance that it moves is of the order of the width of the wave-packet,
so if the particle is bound in an atom it will remain inside that and cannot
get out. But if the particle continues recording, as in figure 5.3, it would be
able to leave the atom and can be accelerated in an electric field. And of
course, as we said before, the time needed for this to happen is more than the
retarded time. In the next section we will make use of this when applying

the Squires model to a realistic experiment.
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5.6 A realistic photo-multiplier and
the Squires model

The experiments of Aspect et.al. are the most important experimental evi-
dence of non-locality. So it seems necessary to discuss the predictions of the
Squires model about these experiments in which photo-multipliers are used
for detection of photons. Figure 5.5 shows the scheme of such an experiment
that we are considering here.

A photon is emitted from the source S. Its wave-function consists of two
parts: one going to the right ¢r(z) and the other to the left ¢,(z). At
the time ¢ = 0 these interact with primary dete.ctors at the same distance

2D ~ 1 meter from the source.

ﬁww(xz) EE<—-— OL(X) @ ¢L(z) @ ¢R( )~.1/)0R ———>00H iR y;
— e

Figure 5.5: The schematic shape of photon detection in a photo-multiplier.

We model the detectors in the following way. The photon strikes a pri-
mary particle detector and gives a very small momentum to a single elec-
tron, initially in a Gaussian wave-packet. The electron will be knocked out
of the atom and will then be accelerated by an electric field, of the order
of 150 V/em [Kle86]. This will give it an acceleration and will reach the
secondary detectors in a time 7 = 4 x 1078 sec. In fact we may approximate
this situation by supposing that the electron wave-packets after interaction

with the photon move with a constant velocity of £ ~ —c (E, ~1 KeV).
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When the electron reaches the secondary detectors we assume it is brought to
rest and that its energy excites some “atoms”. These atoms are modeled by
electrons, again initially at rest in Gaussian wave-packets, which are assumed
to be bound in some potential. After the excitation they spread (decay) by
usual quantum evolution, and N electrons are released.

At t < 0, the initial wave-functions of the primary detectors on the left
and right of the photon source are respectively 1,,(X), ¥or(Y) given by

equations (2.49 and 2.57) and those of secondary detectors are ¢,,(z;) and

’l/}jR (yJ) 3 Where:

a

zbiL(xi):(;)lMexp 1 2

5 (5.34)

?

A similar equation holds for 9;z(y;). In the above equations (X,Y,z,,y;)
are the positions of the electron that are struck in the (left primary, right
primary, left secondary, right secondary) particle detector, measured from
the center of their initial wave-function and as before 1/\/a = Rp,,, is the
width of the Gaussian wave-packets. Also we have assumed that all of the

secondary detectors to be at the same position:
dp=d;jr=d=30cm forall 7,j. (5.35)

Before the photon wave reaches the primary detectors, that is at times ¢ < 0

the total wave-function of the system is:

N N
|0) =272 [p1(2) + SR (2)] [Whor (X)Per (V)] | T] tir(z:) I @DjR(yj)} (5.36)
i1 j=1

After the photon has interacted with the primary detectors but before the
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secondary detectors are affected, that is at times 0 < ¢t < 7 total wave-

function of the system becomes:

%) =27V [6r. (2o (X o (Y) + $r(2)or (X)w [H e me y;} (5.37)

=1

where 9;2(X) and 9;2(Y) are given by equations (2.52) and (2.60) where as

we said we have neglected the quantum spreadings here. Also it should be

noted that these states are not exactly orthogonal to their initial states (2.49)

and (2.57) at t = 0, but their overlap is exp[—m?v?/4k%a] which has the value
exp(—47.31) =~ 0 with the parameters used above.

For ¢ > 7 i.e. when the wave-packet from the primary detectors has

reached the secondary detectors, we have:

Yin(ys) +

,’:]2

wiL (:171)

.

s
Il

—
<
It

—_

|\P> =272 |:¢L( )1/)0L(X d)¢0R( )

=2

alys)| > (5:38)

s

Il
—_

¢R(Z)¢OL( )I/)OR(Y d)H’d)iL(:Ei)

= J
Here we have supposed that the primary detectors are at rest without quan-

tum spreading and

()"

V(o) = ~T—exp {—2%23;3] , (5.39)

with

B= (1 + zh(—t;ﬁ—“> v . (5.40)

Now let’s first examine the prediction of the generalized Bohm model

discussed in section 2.4.
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In the region 0 < t < 7, the wave-function of the system is given by
equation (5.37), and from equation (2.47) or directly from equation (2.67)
and (2.68) we get:

p

X = m 5.41
1+ exp[-2a2t(X -Y)]’ (5:41)

and

ya

¥=1 + exp[—?g;’,’—lt(Y -X) (5:42)

The form of the solution to these equations depends sensitively upon the
initial values, X, and Y;. If for example, X, — Y; > 0 then X becomes large
and Y remains close to Y;. Thus the photon is “observed” at the left detector.

In fact, to a good approximation, in this case,
_ p
X=X+ =t, (5.43)
m
and
Y=Y,. (5.44)

We now consider the second stage of the detection. At times ¢ > 7 the
wave-function of the system is given by equation (5.38), and we find for the

trajectories

i Lt — 1)z, 1
14Tt -T2 1+E’

where

exp (% [i ay? — fj az?D : (5.46)
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and

h?a?
P="% _17x10% sec?. (5.47)
m?

A similar équation holds for y; with E replaced by E~'.

Let us consider the situation as before where X, — Y, > 0 and the left
detector begins to record the photon. At times just greater than 7, the first
two exponentials in (5.46) give a factor which is approximately exp[—2ad?]
where we have used the fact that aX2, etc., are of the order of unity. It

follows that E will be very small unless

[Z ay? =y axf] ~ 2ad? . (5.48)

The first factor here is always smaller than one, so since again az? and ay?

['t?
1+ T2

are initially all of the order of unity, and as the kinetic energy of the primary
particle detector is ~ 1 KeV, in an actual photo-multiplier, N is of the
order of 100. It follows then that F will remain very small, so that the z;
will become large and the y,; will remain near to their original values. Thus,
which detector “flashes” (in this case the left one) will be determined by just
the subtraction of the initial values of the positions of the primary aetectors
(Xo — Y0).

We now turn to the prediction of Squires model. Here the retarded time
between the primary detectors is T, ~ x107° sec.

For t < 0 the wave-function for the left primary detector is given by (2.49)
and the wave-function of the system ¥ is given by (5.36). According to the
equation of motion (5.27) the velocity of this particle detector and similarly

all of the other detector particles are zero, as expected.
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For 0 <t < T, the wave-function of the system is given by equation (5.37)
and the wave-function of the primary detector on the left is given by (2.52).

From equation (5.27) we have for the trajectories:

= (w;;(X )5, %o (X) + Yo7 (X)peztbe? (X )) (5.49)
[or () + [ta (X)? ’

or

. 3
X = m , 5.50
exp (-QaﬁXt + a#’—it?) +1 (5:50)

with a similar equation for Y. For the left secondary detectors we have,

(@) peeis () + 05 (2:) P2, (xi)) iy .
|'¢iL(l'i)|2 + |1,/)iL(:1:i)|2 ’ (5.51)

and similarly 3; = 0. From the above equations again it is seen that each of

the detectors behaves as if the others are not present. After this, as we said
in the previous section only one of the detector particles can leave the atom
and be accelerated in the electric field which we suppose to be the left one.
The velocity of the primary particle detector is very small when it leaves
the atom and it is about %c when it reaches the secondary ones. In this time
interval again the wave-function of the system is given by equation (5.37) and
the equations of motions for primary detectors are given by (5.32) and (5.33).
Using these equations, with the same method used in section 2.5, it can be
shown that still the left detector will continue moving and the right one stops
recording. So from now on we assume X = d and Y = Y, (about the width of
the wave-packet) in accordance with the numerical caculations mentioned in

section 5.5. Of course the secondary detectors will remain at rest as before.
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At time t > 7 the retarded time between the secondary detectors is
T, = 2(D + d)/c which is still about 10~° sec. So for times 7 < t < 7+ T},
where the wave-packet from the primary detectors has reached the secondary
detectors but the secondary detectors do not receive this information from
each other, the wave-function of the system is given by (5.38) and the wave-
functions of the left secondary detectors are given by (5.39). Again using

equation (5.27) we have:

N N
[T weeor vs comgzvor ) + [T 1ol vsex - wpg2 worcx - @y
mX — §R i=1 i=1
N N
H [ (2012 [or, (X)I2 + H v, GO wor (X - @)

i=1 i=1

= 0, (5.52)

and similarly for Y. As the wave-functions of the primary detectors will
remain real, ¥ = X = 0 in later times. However in this time interval, for

secondary detectors we have:

)
14+ (t-7)2 2

Ty = , (5.53)
(1+T@—7)2)"?exp | -2aXd + ad?® — Zlff‘ft TT2 +1
with a similar equation for y;.
Here since z,, and y,, are randomly distributed then clearly
N
al'(t — 7)?
— " 22~ N (5.54)
,;1 +T(t — 7)2 Ty
N 2
(¢t - 'r)
~N 5.55
Z:: 1+ F )2 yko ) ( )

and since X(7) ~ d, so —2aXd + ad’> ~ —ad? and as Y(7) ~ 10~° then

—2aY'd + ad® =~ ad® and the exponential goes to zero for the left secondary
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detector but goes to infinity for the right one, so &, remains finite while g,
approaches zero. So in this case the equation of motion for the secondary

detectors would be:

s Ftl 2 1/2 - =
= TrE™ = %= T (1+r@-1)?) (5.56)
y']- =0 = Yi = Yjo - (557)

At times t > 7 + T, for the left secondary detectors we have:

t—71)I' s
1+4+(t—7)2T"?

;= . ~ , (5.58)
wor(Y ~d)?Wor (O [ ] |08 t~T)|" ] [ s @)l?

k=1 k=1
~ N +1

or (V)P oL (X—ad) [ [ [wer(=Ta) [ ] jvg, (=0)|
k=1 k=1

which after some easy calculations become,

It
. 1+r‘t71 i
<1+Ft2)N/2eX —2ad]X( ]+Z ol [ ) - argt ol 4
e p T2 ye(t JES R

with ¢, =t—7 and ¢, =t — 7 —7T,. Similar equations hold for y;. Again with
the same argument as before it is clear that the left secondary detectors would
continue recording the photon, where the right ones have stopped recording.

In brief, in this section we found that according to Squires model, in the
experiment of Aspect et.al. in the time interval after the interaction of the
photon with the primary detectors but before the secondary detectors are
affected, it is the hidden-variables of the primary detectors which determine
which of them would record the photon. After the interaction of the primary
detectors with secondary ones, it was shown that still the outcome of the ex-

periment depends on the hidden-variables of the primary detectors. However,

(5.59)
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as it was shown in the previous section for each pair of the initial positions
only one of the primary detectors will record the photon and the probability
for this is %, this means that there is an equal probability that the photon
either be detected by the left secondary detectors or.the right one. So for
this experiment the prediction of the Squires model is in complete agreement
with quantum theory.

At the end, it would be nice to give a brief summary of this chapter.
We started with Hardy’s theorem, according to which local hidden-variable
theories should be non-Lorentz invariant too, and that not only the Bohm
model is non-local but also non-Lorentz invariant at the level of individual
systems. It was shown that the Squires model circumvents all of these. We
showed how, if in a system of particles the interaction between the particles is
instantaneous, the ambiguity of the model is removed in the cases where the
wave-function of the system explicitly depends on time and that the incon-
sistency of the model with orthodox quantum theory, considered by Squires,
can be removed with thé use of multiple-time wave-function. Finally, that
the model is capable of giving a correct description of one of the experiments

of non-locality was shown in the last two sections.




Chapter 6

Conclusion

Orthodox quantum theory encounters serious difficulties in the description
of an individual system. The origin of these problems lies in the fact that
the collapse of the wave-function happens only when the observer gains some
relevant information about the system as we saw in the Schrodinger cat and
the Wigner’s friend paradoxes. It is interesting that the sufficient condition
of physical reality which is the backbone of the EPR theorem is in fact the
negation of this, that is as long as the the wave-function collapses all ob-
servers, at all times after this collapse, should be able to predict the relevant
information. Furthermore, we proved in comment 2.1.1 that the quantum
description is frame dependent and also in comment 2.1.2 we showed that,
even if we are not measuring the position of the particle, the spatial part
of the wave-function collapses. This reminds me of a sentence from Euan
Squires that all measurements are really position measurements and, inci-
dentally, the hidden-variable model of Bohm is primarily based on this fact
that each particle moves on a trajectory which is determined by the value of

hidden-variable and the outcome of a measurement in turn depends on this
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trajectory, that is, the position of the particle.

However, the Bohm model is non-local and indeed, Bell in the form of an
inequality proved that orthodox quantum theory violates the predictions of
any local theory. Unfortunately, the original Bell inequality cannot be used
in experiments and since then some other Bell-type inequalities are deduced
with some extra assumptions. We introduced a new method for obtaining
Bell-type inequalities which is based only on the joint probabilities of mea-
surements at different times which in turn implies locality. This method can
easily be extended to the system with any number of local hidden variables or
parameters and any number of outcomes for each parameter, though at the
moment, the time needed for computer calculations is a problem for higher
orders here. The inequalities for two especial cases, 2,2:2,2 and 2,3:2,3, de-
duced by this method, which are more than those obtained by the others, are
listed in appendices. We have also used the PV and POVM measurements
to test the predictions of orthodox quantum theory for the case 2,3:2,3 in-
equalities and it was found that one of these is violated by a factor of 1.5
which exceed that of v/2 obtained by the other experiments suggested for
testing locality and consequently the experiment can be done more easily
and accurately. Many other 2,3:2,3 experiments can be désigned and tested
for violation of any of the inequalities of appendix B.

The Squires model is a local version of the Bohm model. By using the
multiple time wave-function we showed how the ambiguity of the model,
in the cases where the wave-function depends explicitly on time, can be

removed if the interaction between the particles are instantaneous, which
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is most likely in the experiments of non-locality. To see to what extent the
theory is able to predict the outcomes of the experiments in practice, we have
applied the model to a situation like one of the experiments of Aspect et.al.
which are mainly used to test non-locality. The results obtained confirm
that in a sufficiently realistic condition the predictions of the Squires model
is in complete agreement with orthodox quantum theory. However, there is
a criticism about this model which is worth mentioning here. In the example
considered in section 5.5, when a photon is emitted from the source in the
form of two wave-packets moving to the right and the left, the initial position
of the detectors act as the hidden-variables which determine whether the
'photon’ goes to the left or the right. In answer to this, we recall that in
that example we assumed that there are no trajectories for bosons and we
averaged over the positions of the photon. This means that indeed we have
treated the photon just the same as in orthodox quantum theory and it is due
to this fact that both of the detectors initially start recording the photon,
but after a short distance! one of them stops recording. Also, we would like
to emphasize that even if it does turn out that bosons have trajectories, the
discussion we made about the Aspect et.al. experiment is still appropriate
since in such experiments the spin of the particle (photon) is determined,
where there is no spin “hidden-variable”. In this case it is certain that the

recorded value is a property of the hidden-variable in the detectors.

'In the example considered in section 5.5, this distance is of the order of the width of
the wave-packet.




Appendix A

Case 2,2:2,2
Bell-type inequalities

0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0 <
0<
0<
0<

—2pn +p1L+p{2S1

—pu +pf <1

—pi1 + P12 +pf < 1

—p11 —pa +pF +pf <1

—pi1+pi2 —pn — P +py+pr <1
—pi1+pf <1

—pun +pa +pf <1

—pu —pa+pf +py <1

—pi11 —pi2 + P — P2+ 0y +py <1
—pi1—p2—pu+pe+pl +pf <1
—pi1—p2+pl +pf <1

—p11 —pa +pf +pf <1

—pn +pF+pfE <1

+p22 <1

+p21 <1

+p12 <1

—pr2+py <1

—po +p5 < 1

+py <1

+po — P2 +pF <1
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0< —po +pF <1
—po1 + P+ < 1
+pit <1
—pa1 +p5 <1
—pa2 +py <1
+pg <1
+p12 — Poe +p5 <1
—pra — P + 05 +pF <1
0< —pu—pn+pi+pf<1
0< —2pp+ps+pf <1
0< —pu+py+pf<1
0< —2pn+pl+pf<1

< —po1 —pr+pf+pi <1
0< —pn+p5+pf <1

< —p+pf <1
0< —po+pn+pl <1
0<+pF <1
0< —2pip+pf+pf<1
OS—plz—Pzz-i-pf-i-pfSl
0< ~pip+pf +pF <1
0<+pn <1
0<+4pu—pr+py<1
0<+pn—pa+p; <1
0< 4py —pro—Pn — P +pL+p <1
0<+1<1
0 < —pu +p12 +pa +p22—p2L—p§+1§1
0< —pn+pn—ps+1<1
0< —pu+p2—pF+1<1
0<-pn+1<1
0<+p—pr—pr+1<1
0< +piz+pe—pf —p5f+1<1
0< +2p2—pr—py+1<1
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0<—pl+1<1
0<+p2—p—pr+1<1

0< +pa—pf +1<1
0<+pn—py—pf+1<1

0< +pa+pn—pf—pF+1<1
0< +2po —py —pf+1<1
0<+4pp—ps—pf+1<1
0<+2pp—py—py+1<1
0< 4pau+pe—pf—pF+1<1
0<+pro+pn—py—pF+1<1
0< —pra+pe—py+1<1

0< —pk+1<1
0<+4pp—-ph+1<1

0<+pn —py+1<1
0<—ph+1<1

0<+4py —po—pf+1<1
0<+pn—pf+1<1

0< —pa+ppr-—pF+1<1
0<—pf+1<1
0<+pp—pF+1<1
0<+4pp—pf+1<1
0<—p2+1<1
0<—pu+1<1

0< —pp+1<1
0<+pu—pf—pf+1<1
0<+pu+pn—pf—pf+1<1
0<+pu+p2—pf—pf+1<1
0< +pn+pie+pu—pr-—pf—pf+1<1
OS+p11+p12—p21+p22—pf—p§+1Sl
0<+pu+p2—pl—pF+1<1
0<+4+p—pu—pr+1<1
0<+pn-pr+1<1
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0< 4Py — P2 +Dpn+p2—py—pE+1<1
0< +pu+pu—pi—pf+1<1
0<+py—p—-pi+1<1
0<+pu—pf+1<1
0<+2pn —pf —pf+1<1
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Case 2,3:2,3
Bell-type inequalities

0< —2pn +pf +pff <1

i 3 22,21 33
0 < —p11 — p12 — pa1 +p¥ +P(11 %) pgs %) +p (11 Y +p ( ) +P§2) <1

3 31,33 33
0 < —pi —p1z — pa +pF +pf +p(11 b (1 )+p( )<1

11,13 (11,13
0 < —p11 — P12 — P21 + P2 + pf + pf +P( ) — D32 )Sl
0< —pi1— P12 —pa1 +p2a +pF +pf <1

) s s ,13 33
0 < P11 — P12 — Pas +p(11 13) (13 23) +p(11 31) +p§212 21) +pg121 13) +p52 ) S 1

0 < —p11 — p12 — paz + p¥ + pf +p§111 31 _ g321,33) +p§?§3) <1
0 < —pi —pra +pE+p50) <1

0< —p11 —p12 + D% +105121 A3) 5123,23) +p§212’21) +PS1’32) <1
0< —pu—p2t+pf+pf <1

0<-pu-prz+pf+pi<1

11,13 11 31 31,32 11,13 33
0<—pn—p12+p22+p2+pl+p§2) ( )+p( - 52 )—p§2)§1

11 31 31,33 33
0 < —p11 — p12 + pa2 + pf + pf — ( )+p§ ) p§2)§1

3 13,23 22,21 31,32 11,13
0 < —p11 —p12 + P21 — Pao +p§121 ! ) p§2 )+:D§1 )+p§1 )+p§2 ) <1

0< ~p11 —p12 + P21 —paz +pF +pR <1

11,13 11,31 31,32 33
0 < —p11 = pra +po1 +pR +p — plHA 4 p38D) 08 <
11,31 31,33 33
0< —p11 —p12 +par + 0 +pf - Pél )-I-p( ) ( )<1
11,13 13,23 11 31 22,21 31,33
0 < -pi1 —pa1 +pf —pi +p§2 ) p§2 ( )+p( )+p§o <1

0 < —pu1 —pon +pf +pi" " +pf1 <1
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0< —pi1 —pa +pF +pf <1

0 < —p11 — par + P + P+ p5"0 p%l’w) <1

0< —pu1 —pu +pF +p8* <1

0< —piy — poy + pb + pft — pALIS) | pI82) L 0130 (0133)
0< —p1; —pa1 +pF +pf - pgl; 13) «i—p211 13) <1

0< —pn—par +pF +pft <

0< —p11 —ps +p(11 18

1

(13 23)+ (11, 31)+p§212,21)+p§121,13)+pgl,33) <1

P

0<-pnn +p(111 31 +p§212’21) <1

0<-pu+pff<l

0<—pn +pE+p50" <1

0< —pi1 +p£’ —p2 + §121 13) (13 23) + goz 21) (3;1,32) <1

0 < —pi1 +pk + p2220 4 p332) <1

0< —py +pf +pf — " + 5 <1

0< —pi1 + pb + pR + plLitd _ j180) | ,6132) _ 4118 (6L33) <

0< -pn+pF<i1

0< —pu+pt+p5 <1

0 < —pu +pF +pf —pl® + 03 <1

0 S —p11 +p1L _+_p2 p§121 ,13) +p (13 23) +p(11 ,31) p2121,13) _ (31,33) S 1
0 < —pu +pF +pf - pl5" péﬁl A0 4 p1Y) 4 pBY <

0 < —pu +pf +pf —pls" <1

0< —pn +p{“ +p1 pglll 31 <1

0< —pu+pF+plt<i

0< —pu1+pa —Pz + D1

0< ~pu+p2n +sz12 21) +p

3
0 < —p11 +pa1 + pf —Pglll

0 < —pi1+par +pf er(11 5

0< —pn+pu+pf <1

0 < —pit +po1 +pF +pf

L

0 < —p11 +par +pF +pft -

0 < —p11 +pa1 + pF + pff

(11,13) _

(13 23) +p (22 21) +p(31 ,32) +p(11 ,13) <1
(31,32) <1

1)+ 3132)<1

3) p(111 131) +p(31 32) g,sa) <1
11,13 (13,23 11,13

—pls )+ p{ ) - ply ) <1
11,13 11,31 (31,33

p§2 ) p‘(zl ) +P2 ) <1
11,31

pgl ) <1
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—p11 + P12 — pa1 — P22 + 5 +pf <1

0 < —p11 + P12 — P21 — Po2 + pF +pft — p§121 13) +P(11 19 <1
11,31 22,2 31,33 33)
0 < —p11 + p12 — p21 +P¥ — p§ +p§1 )+p 1)+p(1 ) - 22 <1

11,13
0< —pu +pi2 —pa +pF — sz )+p

11,31
0 < —pii+pi2 —pa2+ps +pf — 1’&11 e

11,13 11,31 11,13 33
0 < —p1y + P12 — pa2 +pF +pf —ng ) - 51 )+p§_2 )+sz)§1

—p11 + P12 +p1 <1

(13,23) +p (11 31) gs;) <1

31,32 31,33 33
i ) -5y 4l <1

22,21 31,32
0 < —pn +p1z +pk —pf +;D§ )+p(1 )Sl

3,23
0< —pi +piz +pF —p5"" +p{3* <1

0 < —pu +p12 +pF +pft - (11’13) <1

3 3 33
0 < —p11 +p12 +p22 — D3 +p§111 R +P(22 21) +p ( 153) pfﬁf) <1

3) 13 11,31 11,13 33
0 < —pus +pr2 +po2 + 98 = pl5 Y 4 p{5 +p( o pGtY -l <1

3 31,32 31,33 33
0 < —p11 +piz + pa1 +pF —pélll Y +p (1 ) ng )+pg2)§1

3 3
0 < —pi1 +pi2 + po1 +pF +pf — p%l 13) (111 Y +p§23) <1

22,21 31,32
0 < ~pi1 + P12 + pa1 + P22 — pF +p( )4 (1 )<1

1,13
0 < —p1) + P12 + P21 + P22 +pf — P% )+p

3 13,23 22,21 31,32
19 §2 )+Pg1 )+P§1 )51

13,23 11,13
(329 — gz <1

0< 2p12—p1 +;D2 + 2p;,

0< —2p1s +p(11 13) (13,23)+p(22,21) (11,13)_|_ (31,33) <1

0< —2p1s +p(11 ,13) p(123 23)+ (22 21)+ (31 32)+p(11 ,13) <1

0 < —2p;s + pf +p(11 18) <1

0 < 2p12+p2 +p5121 13)+pgi1 32) (31,33) Sl

(11,13) (13,23) (22 21) +p (31,33) <1

0< —2p12 +p§ +p15 " — P + Doy
0< —2p1a + pb +p§121 13) (13 23) +pgz;2 21)+p(31 32 ¢

0< 2p12+p2 +p2 +p5121 13) (11,13) <1

11,13 31,32 11,13 31,33
0 < —2p1z +pk +pf + P50 4 piat® — plttY — plH) <1
0< —2p12+p1 +p2 <1

0< —piz —p2z = p} + 95 +p Y = pl + P + p{iD 4 p Y <1

3 13,23 22, 21 31,32 11,13 33
0 < —p12 — paz — pF + pk + p3H — pl} )+p( Vo p{332) g pIL1) L p89) < q

11,13 13,23)
0 < —p12 — pa2 — pt +p¥ +2p( ) P(z 4

11,13 13,23 22,21
(11.13) sz )+P1(21 )

22,21) 31,32) 31,33 33
(21‘*‘( gz )+p§2)§1

(3132) ¢

0 < —p12 — P22 — p¥ + pk + 2py, + P31
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0< —pra — pag — p§123 23) | (22,21)4_2 (11,13)+pg§)1,33) <1

0< —p1a —p22 — p§123 28) +p (22 4 2p3s + D3o + 523) <1

0< —p1s — pao _p§123 ,23) +p (22,21) +p(31’32) + 29} (11,13) <1

3 13 33)
0< —p12 —pa2 — pilf %) +p§212 2! +p§11 2 1 2p (11 ) +p( <1

(11,13) (13,23) (22,21) (11,13)_|_p(33) <1

(11,13) (31,33)

0< ~pr2a—p22+Dp15  —DPis + Poy
11,13 13, 23 22, 21 1,13 31 .33
0< —p12 —pa2 +p52 ) p(m +p§1 +p§2 )4+ p§ ( <1

(11,13 13,23 22,21 31,32 11,13 31,33 33
) p{* 4+ p ) 4 pl o i) <1

0< P12—p22+P1 + D3y — Dog

11,13 13,23 29,91 31,32 11,13
0<—P12—p22+P§2 ) - ( )+p§1 )+P§1 )+p52 )51

0 < —p12 — pa2 + p¥ +Pégl 13) <1

0 < —p12 — pa2 + pf +P(11 18 +P(33) <1

0 < —p13 — pag + p& +p§11 32) +p(11 13) ggl,SS) <1

31,33 33
0 < —p12 — P22 +p2 +p§11 42) +p(11 1) p.(qzl ) +P:(32 ) <1
0< —p12 —p22 +p2 +p(11 18 521’33) "‘pé?gs) <1

0 < —pra — pa2 + P + 3" <

0 < —pra — pas + plt + pli11?) 4+ p13) g P31 89 <1

0 < —puz — pas + plt + plA1 19) 4 oL, 32) _ 0139

0 < —p1a — paz + pk — p(123 23) +29(22,21) +p(11’13) + P31 <

0< —piz—p2+p5—p 123 %) +P +P(n 1) 4 (?:’21’33) +P§?§3) <1

[l

0 < —p1o — pas + Pl — (13,23)+ (22,21)+p.(31,32)+ §11,13) <1

,23 ,2 3 32 1113 33
0 < —pi2 —pa2 +p% — p§123 )+p(22 1)+p b )+p )+p( <1

,13 ,23 2 33)
0 < —prz — pas +pk + plhit® — p{1328) 4 502220 | 09 <4

11,13 13,23 22,21 31,33
0S‘P12*?22+P2L+p§2 ) - ( )+Pg1 )+p§2 )51

1,13 13,23 22,21 31,32 31,33) 33

OS—P12—P22+P§+P(12 ) sz )+P§1 )+P§1 ) P(2 4p ( )<1
11,13 13,23 22,21 31,32

0 < —pi2 — paz + P¥ +P§2 .) P§2 ) +p§1 ) +P§1 ) <1

0<—pr2—pa+py+pf <1

33)
0 < —p12 — pa2 + pE + pf +P( <1

31,32 31,33
0 < —p12 — pa2 + p¥ + & +Pé1 ) sz ) <1

31,32 31,33 33
OS—plz—P22+P2 +p2 +p§1 ) - §2 )+p§2)§1

(11,13 11,13 31,33 33
OS’P12—P22+P2 +p2 +P12 - 52 )—sz )+p§2)51

13
OS—p12—p22+p2 +p2 +p§12113) %11)S1
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—p12 — P22 + ¥ +pR +piy Y + 3y
—P12 — P22 +p2 +p2 + Pio

~p12 — pa2 + Y + pF — Py

—P12 — P22 +p1 +pf -

—p1a — paz + 0¥ +pf -

—p1a —pa2 +pr +pH <1
13,23 22,21 31,32

gp{ltit®) _ p13:28) | p@2.21) | p(31.52) g

—-p12 — pf +p¥ —pff +

—p12 — p¥ +pf —pff +

L

—P12 — Py +p2 +pis

L

—P12 — P71 +p2 + Py

L

—P12 — P1 +p2 +pig

L

—P12 — Py +p2 + Dig
—p12 — p¥ + ok + 2p;,

—p12 — pr + p§ + 2pj,
—P12 — pz + Dis
—p12 — P& + Py,
—Piz2 — Pg +p
—pP12 — p2 +p
(13,23)
—P12 — P12
13,23
—P12 — ng )
(13,23)
—P12 — Pjio
(13,23)
—P12 — P19
22,21
—D12 +p§1 )
—Di2 + Py’
—pi2 + P(212 21)
—P12 + Doy
. +p(11 13)
1
—p12 + P( b18) _
11,13
—p12 + P( L18)
(11,13)

—p12 + Py

(11,1
(11,1
(11,1
(11,1
(i,

(11,

(11,13) (31,32) _ g121,13) _ 2p(s
(11,13) +p (31,32) pgl21,13) _ pé:;l,

(11,13) +p§121 ,13) <1
p§121 13)+ (11 13) +p(33) <1

31, 33
Pgo ) +p(2) <1

(11,13)

1,33) +p(33) <1

33§1

(11,13) (13’23)-{-;02)212’21)+pg§1’32)+p§él’33) _pgszs) <1

2p), — P12
3) §123’23)+p22’21)+p(31’32) <1
3 (13,23)+ (22,21)+p(31 ,32) _*_pg 3) <1

3) (22,21) +p (31 32) 5353) <1

+ Doy
3) +p (22 21)+p(31 32) £

13) (13 23)+pg22,21) +p (31 32)

31,33 33
52 ) +P§2 ) <

13) (;3’23)+p§,212’21)+pg°;1’32) <1

— P22

(11,13) p(123 23) (22,21)+ §121’13)+p§321’33) <1

(11,13) (13 23) +p(22 21) 4 (121’13)+2p§321’33) (33) <1
5121 ,13) p§23’23)+ (22,21)+ (31,32)+p(11,13) <1

§121 ,13) p123 23)+p(f>z 21)+p§?i1 32)+ (11 13)+ (31 33) _ g3~3
i (22,21)_|_p(.11,13)+ (31,33) <1

+]9(22 21)+p$’1 ,13) +p(31 33)+p( 3) <1

n (22’21)+p(31’32)+p(.11’13) <1

+p(22 21)+p231 3°)+p(11 ,13) +p (33) <1

+p(121 ,13) +pg321 ,33) —pff <1

(31,32
P2

(13,23
P12
(13,23
Pi2
(13,23

(13 23
— P12

(22,21) +p(u ,13) +p(31 ,33) <1

)+p(11 13) ga) <1

(22, 21)+pg311,32)+ (11,13) <1

)+ (22 21)+p(11 ,13) +p(33) <1

)+ ( +p§121 ,13) +pg321,33) <1
+p(22 21) (31,32)+ (11,13)

)+ (22 21)+p(31 32)+ (11 13) <1

(31 33) +p(33) <1

1
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0< —prz +pl5" 13) <

0< —pra +p(21 113) +p (31 33) 5323) <1

0< —p1s +p§11 18) g311,32) _pgszl,sa) <1

0< —pro+ 255" + 3% - plyY <1
S —Pi2 +p2 <1

< —pi2 +pf +p(33) <1

0< —pis + pk +p(31 32) 5131,33) <1

O< _p12+p2 +p(31 ,32) (31,33) +p§323) < 1

0 < —p12 +p2 _+_p§123 23) (33) < 1

0 < —pp2 + pf +p(13 23) <1

(13,23) | glil,3‘7 p§321 33) g:;s) <1

(13,23) | (31,32) _ pgo;l,ss) <1

0 < —p12 + pR + piy

0 < —p12 + pft + pis

11,13 31,33 33
0 < —p12 + p¥ +P§2 ) p(z )+sz)51

0 < —pia +pf +p§11 18 <1

,33
0 < —pra + pft + plitD 4 plL3D _ 9p188) 4 59 <1

0< —pis + pk +105121 13)+ (31,32) _ (31,33) <1

0< —p12+p2L—p2 +p(11 ,13) p}zs 23)+ (22 21)+ (31 33) <1

0 < —piz +pf — pff +ply"% - p" +p( 2 1 2pf;

0< —pis+pl — pl +p(11 113) p(13,23 (22,21)+ (31,32) <1

0 < —pis +pb — pf _I_pgl 13) p§123 2) 4 (22 2 4 (31 32) +p(321 33)
0< —pis+ph— pglzs ) 4 (22 21)+p(31 3 <

13,23) 2,21
0< —pi2+pk - P§2 +pg1 )+p

0S _p12+p§, p§123 23)+p(22,21)+ (31,32) < 1

I (13 23)+p(22 21)+p(31 32)+p§323) <1

31,33) , (33
G559+ <1

0< —pi2+p3 — 21
0< —p12+p2 +p§212 ,21) +p (31 33) p:(233) <1

22,21 33
0< —pio + % + 57 +p§‘°§1 <1

0< _p12+p2 +pg212 21)+ (31,32) _pgi?) S 1

0< _p12+p2 +p212 21)+p(31 ,32) <1

0< _p12+p2 +p§121 13) (323)+p

3 ,2
0 < —prz +pF + 50 —p3*) 4 p

(22,21) +p§:;3) <1

(22 21) p§2321,33) <1

(31,33) _ g:_izs) <1

pgs) <1
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0 < P12 +p2 +p(11 13) (13,23) +p(22,21) +pg3;1,32) _pg;l,33) _*_pg';B) S 1
OS —-p12+p2L+p(11 ,13) p(123 23)+pg212 21)+p§.'i1,32) S 1

0S _p12+p§+ (11,13) _pgll,lB) <1

0S —p12+P2L+P§121 13) (11 13)+ (31 33) g;S) S 1

0 S ~D12 +p£/ +p(11 ,13) +p 311 32) glzl ,13) _pggl,BB) S 1

0 S —p1a +p§ +p§11 ,13) p(31,32) _p§121,13) _pg323) < 1

0< —pia +p§ +pft —plH¥ <1

0 < —piz +p5 +pf —pB 4 pY) <1

0S _p12+p§+p2 +p(31 ,32) p(121 13) (31,33) < 1

OS —Dro +p§ +p2 +p(31 ,32) p§121,13) _ (31 33) +p§2) < <1

0< —prz +p§ + pf +pp>" - plyttY —pgs) <1

0< —piz +p§ +pf + > - it <1

0 S —D12 +ng +p2 +p(13 ,23) p(31,32) _pg121,13) _pgi’élﬁs) _pg’;B) S 1

0< —p12+p2L+p2 +p(13 23)+p(31 32) (11,13) _ .(31',33) <1

0 < ~pi2 +p§, +p2 +1)5121 13) 5121 13) (31 33) +p§2 ) S 1

0 < —pi2 +pk + pf ‘*'10111 18 (11’13) <1

0 < —pi2 +pk +pf +pl"Y +;D(31 B2 pl —apGh) 4 Y <1

0 S —D12 +p% +p2 +p(11 13) p (31,32) _pg121,13) _pg321,33) S 1

0< —pa+pf <1

0S —P12+p1L+ (31 33) (33) <1

0< —prz +pF +pf - pi <1

0 < —pi2+pf +pf —p"Y +p5Y <1

0< —p1s +p{’ +p2 p§121 ,13) +p(13 ,23) g323) <1

0 < —piz +pF +pft — pl3"" +pP* <1

0 < —pi2 +pf +pf — pi3* +p223) <1

0< —pi2+pf +pff <1

0 S P12 +p22 ‘pf +p2 p2 + 2p(11 13) p(13 23) +p(1 ,21) +p(31 3‘7 < 1
0 S —p1o +p22 —p{“ +p2 pl +2p§121 ,13) pg})S ,23) + 522 ,21) + giil ,32) +p(31 33)
0 < _p12+p22 —p1 +p2 +p§121 ,13) + (22,21)+ gﬁil,SZ) _p§121,13) _pg;ﬁi) S 1

0 < —p12 + pa2 — p¥ + pf + pis

11,13 (22,21 31,32
{ )+p ) 4+ gl )

,13
—pi ) <1

(33)
D22

<1
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0 < —pra + paz — pl, +p§121 13) 513 23) _I_p(zz 21) +1)&121,13) _{_pggl,as) <1
0 < —p1a +p22 — Py +p111 ,13) p(13,23) +p (22,21) +p(11,13) + 9 (31,33) _pgs;s) <1
0 < —p1o + pas — pl +p(11 13) (13 23)+ (22 21) +p(31 32)+p(11 13) ¢
0 < —pis + pas — pl +p(11 ,13) p§123 ,23) +p (22 21)_|_p(31 32)+p§11 13)+pg:;1,33) pg:;s
0< —p12+p22+p§212 21)+ (31 33) (33) <1
0 < ~p12 +p22 +p§:i2 21) +P(31 35 <1
0 < —pia +paz + 9570 + P50 - Y <1
0 < —pua + paa +p(zz ,21) +p (31,32) <1
0< —p12 +p22 +P111 13) <1
0< —p12+p22+p§21 13)+ (31 33) g:;s) <1
0 < —p1a + pas +105121 13 4y, (31,32) _pggl,ss) <1
0 < —p12 +pa22 +P(11 9 +P§?11 %) péig) <1
0 < —p1s + pas + plt +p(13 23) g121,13) _pgs;) <1
0 < —pig +pas + plt + (5> 29) p§121,13) <1
0< —piz+poo + P + 9057 +pl %D - ply" Y —pl Y - pliY <1
0 < —pis +pas + p& +p(13 ,23) +p(31 ,32) pgu 13) gl,sa) <1
0 < —p1s +pos +pb — pF +p (11 13) (13,23) +p§212’21) +pg1,33) <1
0 < —pra + pas + pk — p! +p(n ,13) p§123 23) | (22,21)_,_2 (31,33) _ (323) <1
0 < —p1s + pos + pb — p! +1)921 13) (13 23) +p (22 21) +p§31 ,32) <1
0 < —p1s +pos + pb — pf + §121 13) (13 23) +p(22 ,21) +p(31 32) +p(31 33) 5323) <1
0 < —p12 + P22 + P¥ +P(212 21 p%“ 19) +P§321’33) —ngzg) <1
0 < —p1o + pas + Pk +p(22 21) 11,13) +p (31,33) <1
0 < —pus + paz + pb +p(22 21) +p (31 32) p%l 13) gs;s) <1
0< —p12+p22+p§+p(22 21)+p(31 32) %1,13) <1
0 < —pia +paz + 9% + 90 —plY <1
0 < —p12 +p22 + P +P(121’13) - (11’13) +P G — gs) <1
0 < —p1a + pas + Pk +p(11 ,13) +p(31 32) pg121 113) pg31,33) <1
0 < —pra + paa +p§’+p§2l ,13) +10(31 32) g121,13) _p(ss) <1
0 < —puo +pa2 +pb +pf + p157 — 2p{0Y - p8Y <1
(13,23)

0 < —p12 + po2 + pf + pit + piy”

2pg121,13) <1

<1
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0<L
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<
0<

0<

(13,23) (31,32) (11,13) (31,33) (33) 4

'+ j 25 — 2p;, — P2 — Py’ S
, , 33
(13,29) | (311 32) 21)%121 13) p§321 ) <1

—p12 + P22 +;D2 + pft + P1o

—p12 + p22 + pL + pf + D12

—p12 + D22 +PL <1

—P12 + P22 +P1 +P(31 %) P(33) <1

11,13 13,23 11,13) 33
—p12 + p22 + ¥ + pff - sz ) +p( )~ gz péz ) <1

—p12 + P22 +p1L +p2 pgl ,13) +10(13 23) (11,13) <1
33
—2po1 — pa2 + Py — p§123 23) +p(11 S 22, 21) +p{Lls) 4 39 g

1,31 1,33 33
—2pa1 — p2a + pk + pE +p(1 ) ng )+p§2 V<1

—2pa1 + pl — o+ 2p{3 4 pPP <1

13,23 11,31 22,21 11,13 31,33
—2ps1 + pf — plt - P(z )‘1'10( )+P( )+sz )+Pg2 )31

—2pa1 +p2 +P(11 31) <1

2y + Pl +p(11 31)+ (22 21) <1

13,23 (11,31 11,13) 31,33
—2pa; +p2 +p2 +p§ ) +;D2 - gz pé? ) <1

—2pa1 +p5 +pit <1

_2p21 +p22+p2 —pl +p§11 31)+ (22 21)+p(31 33) 522)3) Sl

—2pa1 + pas + pE +plls ,23) +p(u 31) (11,13) _ (33) <1
(13,23) +p(11 ,31) +p22 21) + 2} (11 13) +p

(9 <1

—p21 — 2p22 — D12 22

—pgy — 2p22 +p2 +p211 ,31) p(11 13) 521,33) +p§2 ) <1

13, 23 11,31 22,21 11,13 33
—par — 2o + pl — P57 4 pl[ g plBA g QIS L B8 <

—Do1 — 2pax + p2 +pl +p§111 31) (31,33) (33) <1

—Do1 — P22 — P} +2p(1131) +p (22 21) +p (11 13) <1

13,23 11 31 31,33
—P21 — P22 — P3 —p§2 )+ { )+p +p§2 )Sl

13,23 11,31 22,21 11,13 33
—D21 — P22 — p§2 )+p§1 )+p§1 )+p§2 )+;D§2 ) <1

13,23 11,31 22,21 11,13 33
—p21 — P22 — ng )+ ( )+P§1 )‘|‘2péz )+P§2)§1

Doy — P22+P§11 31)+ (11,13) < 1

—po1 — p22+p§11 31)+p(22 ,21) +p(11 ,13) <1

(22 21) 21)5121,13)

—po1 — pa2 + pF +p§111 31) p(31 3%) +p( )<

11,31 11,13 31,33 33
—pa1 — p22 + pF +Pg1 )+P§2 ) - gz +P§2)§1

13,23 11,31 31,33
—p21 — p22 + PE +p§2 )+p51 ) - g2 )51

(11,13
—p21 — paz + P +P2 ) <1
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0 < —po1 — pa2 + p¥ — pf + 2p5;
0 < —pa1 — pa2 + p¥ — pf — iy + Py

0 < —pa

0< —pa

0 < —pa2y ~p22 + P35 — P1y )+p

0< —pa

— P22 + D3

— P22 + 3
0 < —pa1 —paz + p5 —;D(13 28) +:D(22 21 + Doy

L (11,31) (22,21) <1

3,23 11,31 22,21 11,13 31,33
L (18,23) ( ) 4 (1 )+p§21)+pg2 )Sl
L_p(13,23) p(22,21) +p§121’13)+p(33) <1

I (13,23)

_p22+p2 - iy +p(‘;2 21)+p‘()})1 13)+2 33) <1

I (13,23 (22,21) (11,13) | (31,33) <1

+ D3

L (13,23)+ (22,21)+p(11,13) (31 33)

33
+p5 ) +pl) <1
+p(11 13) geél,ss) +pg§23) <1
L (13, 23) (22,21) +p§?{1’32) +p§121’13) _p§321,33) + 2p§?§3) <1

(31,32)

™

0 < —pa1 —p22 + 07 — P1y

0< —panr

0< —poy —pa2+p5 —pys +DP51
0 < —po1 —pa2 + P37 — Pig )+;D(

0< —pa

0< —pa1 —

0 < —po1 — paz + p¥ +p5;
0 < —pa1 — pa2 + p¥ + p¥ — pss

0 < —pa1 — paz + p¥ + o — p3y
—p+pr+pE <1

0< —pa

11,31
—pys +pF - + 0 4 pf

L (13, 23)+p(22 ,21) +p(311’32)+p§121’13) <1

— P22+ P — D1

L (13,23) (22,21) (31,32) +p(11,13) +p§33) <1

L (13,23 11,31) (22 21)

+py +p(33) <1

L (13 23) (22,21)+pg121,13)+pg:;3) <1

pa2 + P§ + p; 11 A <1
(11,31) +p (22 21) <1
(31, 33) +p§323) <1

(31,38) 2p§953) <1

0 < —po1 — paz +p¥ +p§+pg9§3) <1

0< —pa1 —
0< —por —

0< —pa —

0 < —pa1 — paz + pL + P& + Py,

0< —par —

0< —pa1 —

0 < —p21 — paz +p¥ + P8 +plsy
—pat+ph+pi<l

0<—pa

0< —pa —

0< —pa _p1 +2py; 7 + D5y

0< —pan
0< ~pa

- P2 — P12
13,23 11,31 22,21 11,13 31,33
-pit - p§2 )+pél )+Pf(z1 )+2p§2 )+Pg2 ) <1

paz + pb + plt + p{313D _ 9p(3188) 4 5(83)

P22 +p2 +p2 +pg?i1 ,32) 2p(31 ,33) + 2p(33 < <1

31,32 31,33
pa2 + pl + p¥ +p( ) péz )S 1

31,32 31,33 33

- Y <1
11,31 11,13 31,33 33

p2 + pf + pf +P§1 ) P( )—p( )+ éz)sl

11,31 3133 33
paz + pf + B+ pY - p5H 4 pY <1

(13,23) +p (11 31) p§121 13) 521,33) <1

ot +2p(u ,31) +pg212,21) <1

(11,31) (22,21)+ (11,13) <1

(13, 23)+p5111,31) +p§2 21)+pg11 13)+ (31 33) <1
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0< —par = pf 405"+ + Y +p5 Y Y <1

0< —par p§123 123) +p (11 31) +10(22 21) (11 13) +p(33) <1

0< —pn +P(11’31) <1

0< —pn +p211 ,31) +p(.11’13) <1

0 < —pn +p5"" +p57 <1

0< —por +p(11 31 L _(22,21) g121,13) <1

0 < —pn +p§23 ,23) +p§111 31) F33) <1

0 < —par +pf + 4" — pH +piY <1

0< —po1 +pf +p§123 123) +p(11 31) 2121,13) _ pgl,gg) <1

0 < —por +pft + 57"+ pHY - pla*Y <1

0<-pn+pf<i

0< —pu +pR+p50" < 1

0 < ~pu +p5 —pl+ 50 + p5P <1

0 < —par +p§ —pf + 5" +p5P 453 <1

0 < —par +p§ —pf +p( 11 A1) 4 222 20 4 (31’33) _ p§33) <1

0< —p91 +p2L —pf +p(11 ,31) +p(22 ,21) ¥p 31 ,33) <1

0 < ~pau +p§ —pft+ 50 4 piHH +p§,311 32) _ 013 <

0 < —po1 +pF — pF +pB1* + pi22 4 pHD - pBY 1 0P <1
0< —pn +p2 _p1 +p (11 31) +p(22 21) +p(31 32) gsés) <1

0< —pan +p2 ~pf +p(11 ,31) +p (22,21) n g:il ,32) <1

0 < —pay +pb — pRt 4+ 2p{tt31) 4 2220 _ p(L13) < q

0< —pn +p2L P1 + 2pgll ,31) +p(22,21) <1

0< —po +p§ —p2 p§123 123) +P§12 ,21) +p (11,13) +p (31 33) <1

0 < —pa +pf —pf - (13’23) _(2 21) +p(11 18 4 (31 33) (33) <1
0< —pa +p2L “Pz p§123 ,23) +p(22 ,21) +p$;1 ,13) + 2p(31 33) g323) <1
0< —pa1 +pk — plt — p1123 ,23) +p(22 ,21) +p(u 13) 4 9 (31 3) <

0 < —pa1 +p2L _pg, p§123 ,23) +p§22 ,21) tp 311 ,32) +p (11,13) <1

0 < —por +pk — pf — p{5*) + P + ply" +p(11 1) 4 plD) <1
0 < —pa +p£’ — p2 p§123 23) (2221) +p(31,32) +p(11,13) +pg321,33) _
0 < —po1 +p5 —pit - pl}f 123) +p (22,21) +p (31 32) +p(11 ,13) +pg321,33) <1

33
sz ) <1
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(13,23 (11,31 22,21 31,33

0< —po1 +pf —pf - p12 )+P )+Pg1 )+p§2 )51
13,23 11,31 22,21 11,13 31,33

0 < —po1 +pf —pf P§2 )+ ( )+p( )+:D( )+P§z V<1
11,31 22,21 31,33) 33

0 < —px +pf — pf +P21 )‘*‘P( )+p( —p§2)<1

T~

0 < —pa1 + Pf —p§123’23)+ (11, 31)+ (22 21)+ 33) <1

0< —pn+pf <1

0< —pu+pk+p5% <1

0< —por + & + 5% - pfY) <1

0 < —pa +p¥ +p(31 33 <1

0 < —pa + p& +p(31 ,32) p(31,33) <1

+p (31,32) (31 33)+p(33 S 1

t~

0< —pa1 +py

0< —pa1 +p5 +P§?i1 52 - p(sa) <1

T~

0< —pa +pF +p57% <1

0 < —par +p% + 5> <1

21) +p 33) <1

21) +p§321’33) _(33) <1

22

(22,
0 < —pa1 + p¥ +p3;

)

0 < —par +pb + p2>

0 < —pa +pf +p(2‘2 21 4 pBL83) <

+pg?i1 32) (31,33) < 1

0 < —pa +pk + 5 +pi?? pé‘? 39 4 ply

(22,21) pg?il,32) _ pg’;S) < 1

0 < —po1 + p +p(22 21)

(33) <1

OS —P21 +p2 +p

0< —pa1 + pF +pg§2 21) g311,32) <1

11,31 11,13
G —plY <

[l

OS —p21 + P35 + Py

0 < —por +pF + 5% <1

11,31
0<—pn +p5 + §11 )+p

0 < —por + 9% + 5% 4+ p5 <1

22,21 11,13
e -l <

0< —par +p2 +p (13 23) +p§111 ,31) p§121,13) _ (33) <1
11,31 11,13 31,33 33
0 < —po1 +pk +pit +p( ) p§ ) p§2 )+p( )_1

0 < —par +p + pft + (5% — Y — pY <1
13,23 11,13 31,33 33

0< —pa1 +p¥ +pf +P§2 Y- gz )_ng )+Pg2)51
13,23 11,13 33

0 < —po1 +pt + pf +p§2 ) pgz )_sz)ﬁl

0 < —par +pb + pf + pl53%) — piit1¥ <1
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L

0 < —pa1 +p3 +p2

0 < —po1 +p¥

0 < —po1 + pf

+ pft
+pf
0 < —pa1 +pf +pf
0 < —po1 + p§ + pf

0< —pa +P2L '+‘P2

0 < —pa1 +pf +pf -

0 < —por +pk +pft
0 < —po1 + pL + pf

0< —pu +pk+pf-

0 < —pa1 +pL + pf

(13,23) (31,32) (11,13) 2p(31,33) <1
22

+ Pis — P22

4 p123 ,23) +p(31 32) 5121,13) _ 2p(31 ,33) n p(33 <1
+ p(;s 28) (31,32) _ pglzl,lii) _ p§321,33) _ pg3é3) <1
+p§23 ,23) +p(31 ,32) pg121,13) _ p.(31’33) <1

+p(13 23) (11,31) _9 %1,13 pgsl ,33) <1
+p§123 ,23) +102111 ,31) pgllzl,IB) _pggl,ss) <1

(11,31) <1
pglll ,31) +p(33) <1

11,31 31,33 33
Pél )+P(1 ) P§2)Sl

(11,31)+ (31,33) <1

(11,31)

31,32 31,33
— Do +P( ) Pg ) <1

0 < —pa1 + pb + pRt — plLbAD | 3132 _ pL9) 4 09 < g

0< —par +P% +p1 Pglll i +P§311 »32) _pg323) <1

0 < —po +pf +pf - piM*Y +p $r <1

0 < —po1 +p§ +pff - P2121 W<

0< —pa1 +p5 +pff <1

0 < —pay + 2 — P+ 295 + p52Y <1

0 < —pa1 + pas — plt — plL29) 4 pl113D) )y pE0 118 g (@199 < 1
0 < —pa1 + pag — pB + pLISD 4 pE22D) 4 1, 3 _ 0

0 < —pos + P22 — 7} R 4 p{1130) | pe22) + p{iLt®) +p(31 3) _ 89 g
0 < —p21 + p22 +P(11 <

0 < —pa1 +p22 +Pg111 31) +P(92 21) <1

0< —p21+p22+p§23 2) | p1131) pg121,13) <1

13,23
0 < —pz1 + p22 +p§2 )+p

0 < —pa1 +paz +p§
0 < —po1 + pa2 + pff
0 < —pa1 +po2 + 5 —
0 < —po1 +p22 + p§
0 < —pa1 +pa2 + 9§ —

0 < —pa1 + paz +p5 —

(11 31) gas) <1

(11,31) p§121,13) _p§321,33) <1

+p§03 ,23) +p
5 1

1 31 22 21 11,13

_p2 p§123 23)+ (11 31)+p(22 91)+p(31 ,33) <1

(22,21) (31 33) (33

+ Dsq <1

22,21 31,33
D2 +P§1 )+P22 ) <1

P2 + Pa1
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0 < —po1 +paz +p¥ — pl +P312 2 213(31 58 9 §323) <1

0 < —pa +po2 + 5 — pf + 577 +2p5%Y - plY <1

0 < ~po1 + paz + 0¥ — pf +p(22,-1) +p (31 32) g;;g) <1
0 < —po1 + paz + p¥ — pf _|_pg21~>21) (31,32) <1
0 < —pa1 + paa + pF — pft + p{222Y +p(31 ) 4 5159 _ 209 < 1

0 < —po1 +pa2 +pk —pR+ 2212,21) +p(31,32) +p 31,33) 3 (33) <1

0 < —pa1 +pae +sz — D2 +p5111 ,31) +pg212 21) (11 13) +p (31 33) p§323) <1
(11,31) +p (22 21)

L

0 < —pa1 +p22 + 3 + (31 3 _ 5353) <1

- pff +py
(11,31) _ (11,13) <1

Sl

0 < —pa1 +pa2 +p7 + sy

(11,31) +p (22 21) (11,13) <1

0 < —pa1 + paz + L + Py — D3s

0 < —po1 + paz +pF +pi52) p§121’13) -p¥ <1

0 < —par +pa2 +pk + 5123 22 _ (11’13) <1

0 S —Da1 + P22 +ng +png ,23) p(ll ,13) +pg§1 ,33) _ 2p

(13,23) _ (11 13) +p (31 33) 5353 <1

(33) <1

0 < —pa1 + pa2 + p¥ + pis

13,23 31,32 11,13 31,33 33
0 < —pat +pa2 +pL +p; ( )+P( - 52 )—ng )—pEQ)Sl
I (13 23) _+_p(31 132) p%l’la) _pga;,ss) <1

0 < —pa1 +p22 +p3 +P15°

T~

OS _p21+p22+p2 +p(13 23)+ (31 32) 5121,13) _2p§1;3) S 1

t~

) , ) 3
0< —pa1 +pas + 5 +p (13 23)+p(31 32) 5121 13)_p523) <1

0 S —Do1 + a2 +p2L+p(23 23)+p(11 31) 5121,13) _pg?éS) Sl

L (13,23)

0 < —po1 +p22 +p3 + P (118 §121’13) - pgeéa‘) <1

+ D3y

(13,23) p§111,31) _ 2pg121,13) (31,33) <1

0 < —pa1 + pa2 + L + pf + 1y — P33

1,13
0 < —pa1 +paz +pF +pF — plp'¥ <1

11,31 22,21 31,33 33
05—p21+2p22—Pz +p:(21 ) §1 )+P32 )—sz)sl

0 < —po1 + 2p2s +p§123 ,23) +pg11,31) _p§121,13) _ (33) <1

1,31
0 < —pa1 + 2p22 +pk — pf +Pgl )‘*‘P

0< —po +2p22+p2 +p(13 ,23) +p§111’31) —2p .(11,13) _ (33) <1

11,13 13,23 22,21 1,32
0< 2pzz—p1+p2+p§2 - §2 )+p( )+p§1 )+P

3 , 22,2 31, 13 31,33 33
0 < —2pas — pb + pb +p§1211) (1323) ( 1)+ ( 3.2)_{_1151211)_1,§2 )+2p52)§1

(11,13) p (13,23) +p(22 ,21) +p(31 ,32) +p (11,13) <1

(22,21) _ (11 13) +p(31 33) (33) <1
Py =

(11,13) p(31 33)+ (33) <1

0 < —2pgy — pF + pk +piy

(11,13) pg123’23)+p(22 21)+p(

1,32 1113 33
0 < —2pss — pF +pk + 3" '+ p : +p5) <1

21
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0 < —2pay — pg’ 2%) + p3y

0< 2p22—p§123 ,23) +p(22,21) +2p(11,13)+2pg3) <1

(22,21) + 28 (11 13) +p(33 <1

0< —2py — p§123 ,23) +p (22,21) % (11 13) +p(31’33) <1
0 < —2pgs — 13 ,23) +p(22 2 % (11 13) +pg:;1 ,33) +p(33) <1

0 < —2p22 — pyy

13,23 22,21 31 32 11, 13 31,33 33
0 < —2px p§2 )+p( ) 4+ ( )+2p( —p§2 )+2p§2)
0 < —2pas p1123 ,23) +p(22 ,21) +p§311 ,32) 2:05121,13) <1

0 < 2p22_p§123 23)+ g212 21)+pgil,32)+2pgl21,13)+pg323) S 1

O< —2pss + B +p(n 13) (31,33) p(ss) <1

0 < _2p22 +p2 +p§121 13) (31 33) +2pé23) <1

0 < —2ps +p2 +p521 13) <1

0 < —2pyy + pf +p§121 19) +p(33) <1

0< —2p22+p2 +p§11 32)+p(11 ,13) 2p(31 33)+Pé33) <1

0 < —2pas + plt +p211 ,32) +p(11 13) (31 33) + 25§ (33 <1

0< 2p22+p2 +p5311 32)+pg?1 13) (21,33) < 1

0 < —2p2s +pf +P§11 32 4 p (11 13 _ (31:33) +p§33) <1

0 < —2pas +pb — p§123 23)+p(22 21)+p§11 ,13) _I_p(zs <1

0 < —2pas +pb — p5" 4+ p5P 4 p5 + 2pY) <1

(13,23) (22,21)+ .(11’13)+p(31’33) <1

0 < —2p2s + p¥ — Dy,
0 < —2pss + pl _p(13 ,23) +p (22,21) +p§121 13) +pg:;1 ,33) +p(33) <1

0 < —2pos + pf — = P2y

0< —2pss +p2L (13 23) +p (22 21) +p(31 ,32) +p(u ,13) —p

0 < —2pss + Pl — p§123 23)+p212 21)+ (31 32)+p(11 13) <1

13,23 22,21 31,32 11,13 33
P§2 )"‘P( ) ( )+p52 )+P§2)§1

0 < —2ps2 +p§ — 21 + P2y

0 < —2pas +pk +pf — p8H* + 5 <1

0 < —2pss + p¥ + Pl — Py S 4 2plY <1

0< —2py+pf +pf <1

0 < —2ps +p2 +p2 +p(33) <1

0< 2p)2+p2 +p2 +pg{;1 ,32) 2p(31,33)+p(33) <1

0 < —2pas +pk +pft +pi3t*D — 2pl3H%) 4 2plY) <1

(13 23) + (22 21) | (31,3z)+2p(11,13) _pé:;l,zs)_i_pgs) <1

<1

(13 23)+ (22 21)+ (31 32)+péu ,13) (31,33) +p§323) <1
(31,33) +2p§323) <1
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0< 2p22+p2 +p2 +p(31 ,32) pgi;l,33) <1

0 < —2pos + pk + pll +p3132) (3133)+ 33)<1

(11,13)

11,13 31,33 33
0 < —2pa +pF +pf —pi5%) + 050 - g2 Y+p) <1
0 < —2pns + pb + pft — p{L1) 4 pILIH _ 6135) | 9 (83 g

0 < —2pps +pF + pf — 57" + Y <1

OS —2p22+p{’+p2 pgl ,13) + (11,13)+p(33) <1

0 < —p2n —pF +pf -

0 < —pa —pf +pf -

(11,13) p(13 ,23) +p(22 ,21) (31,32) +p(11 ,13) <1

+p2
(22, 21)+ (31 32) %1,13)_'_ (33) <1

P + Dig
pE & §11 ,13) p(123 ,23) +p
0 < —pyo — pF + pl — pl +P511 13) (13,23) (22,21) +pg’;l 32) (121,13) +
0 < —pos — p¥ + pk — pl +p§121’13) (13 23) +p (22,21) +p(31 32) (11,13) +p (31,33) <1

0< —pos — p + pb + 1t (11,13) (13 23)+p22 21)+p(31 32) (31 33)+ (33) <1

(31 33) pgazs) <1

0< —pa —pf+p2L+p(11 ,13) p(? 23)+ (22,21) +p$1’32) p(321 ,33) +2p(33) <1

0 < —pas — pb + pb +p(11 13) (13 23) +p22’21) +p§31’32) <1

0 < —pa — pf + ¥ + 1y,

0 < —pas —pF +pt

(11,13) (13 23) +p(92 ,21) +p(31 ,32) +p(33) <1
+p§11 13) p(13 ,23) +p2:;2 ,21) +p(311 32) (11,13) _pgsél,ss) +p (33) <1

(11,13) _ (13,23) p(22,21)+p(31 32)+ (11 13) (31,33 +2p(33) <1

0 < —pas — pb + pb +p(121 ,13) p (13,23) +p(22 ,21) +p(31 ,32) +p (11 13) <1

(11,13) (13,23)+ (22’21)+p£1’32)+p§121’13)+p$3) <1

0 < —p22 — pf + p¥ + Py

0 < —p22 —pF +p¥ +pi;

11,13 22,21) 31,32 31,33
0 < —pa2 —pb +pk +P§ )+p( +P( )~ gz )51

11,13 22,21 31,32 31,33 33
0S'P22—p1L+P§+p( )+ { )+p( ) sz )+P52)§1

0 < —p2o —pf +p§, +p§121 ,13) (22 21) +p .(31,32) _pg323) < 1

(11,13)

+ P

(22,21) (31,32)

0 < —pa2 — pF + 0¥ + pi, +pa P <1

0< —pos —p! +pg111 ,31) +p(22 ,21) +p211 ,13) <1

0 < —pas — pl +p(l1 31)+ (22 21) +p(11 13)+p233) <1

11,31 22,2 11,13 31,33 33
0 < —pa» — Pl + Pl + ‘2 Dpl el - pl) <1
(22 21)

0< —p22—py -l-pg11 31) + pys +p(11’13) +p (31,33) <1

0< —poy—pf +p(11 131) +p (22 21) +p(31 ,32) +p(11 13) g:;1,33) <1

11,31) +p(22 ,21) (31,32) +p(11 ,13) gi;l,BS) +pg.’;3) S 1

0<_p22—p1 +p21 +p

0 S E—— +pg111 ,31) +p (22 21) +p(31 ,32) +p(ll ,13) pgi?) < 1

11,31 22,21 31,32 11,13
0 < —pyz — pF +P( )+p§1 )+p‘g1 )+pg2 )Sl
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0 < —pos —p2 p1123 ,23) +p(22 ,21) + 210(11 ,13) +p(31 ,33) <1

0< —pss — pl _p(123 ,23) +p(zz 21) 2p! (11 13) +p (31,33) +p§33) <1

0 S ~pas — p5123 ,23) + 5212 ,21) +2p

(13,23)+p(22,21)+2p(11,13)+2 (31,33) <1

(11 13) + 2 (31 33) g323) <1

0< ~p22 _pz -
0 < —pgo — plt —p1123 ,23) +p (22 21) +p(31 32) L o §121 13) <1
0 < —pgs — plt — p§123 123) +p(zz ,21) +pg3;1 32) | 2p(n 13) +p (33) <1

(13 23) +p (22 21) +p(31 32) 2p(u 13) 4 (31 33) (323) <1

0 < —poa —pg - + P3a
0 < —pa —p2 p§123 ,23) ~+_p(22 ,21) +p(31 ,32) + 2p! (11 13) +p(31 ,33) <1
0 < —pas p§123 ,23) +p(22’21) +p (11,13) +pg323) <1

0< —pss — (13,23) +p22 ,21) +p(u ,13) 2pg?53) <1

(13 23) (22,21) | §11,13) +p(31,33) <1

0 < —pa2 — 1y +p

13,23 2221
0 < —pa2 — pi5>* + pii>*Y

0< —pos — p§123 :23) +p(22 ,21) + 29 (11 13) +p (33) <1
0< —pys — pg3 ,23) +p (22 21) + 29 (11 13) +2p(33 <1
(13,23) tp (22,21) +2p (11,13)+ (31,33) <1

_l_pé})l ,13) +pg§1 ,33) +p§3§3) <1

0< —pa —p{

3,23
0< Pzz—PUQ )+ p

23 92,2 31,32 11,13 31,33) 33
0< —pa2 — (132)+Pé 1)+p(1 )+pg ) ng + 52)51

(22 2) | 2p(11 ,13) _'_p(Sl ,33) +pg323) <1

0< —pss p(123 23)+ (22,21 +PS1 32)+p(11 ,13) pgil 33)+2p

(22, 21)+p(31 32)+ (1113) <1

(33) <1

3
0< —pas — P\ +pl

0< —pys — pgzs 23)+ (22 21)+ (31 32)+p(11 ,13) +p(33) <1

0 < —pas p§123 ,23) +p (22 21) +p(31 32) 2p(u 13) (31 33) +p(33) <1

(31,32) 2 (11 13) (?51,33) n 2p§?§3) <1

0< —pas _pgs ,23) +p(22 ,21) +

0< —pog — p(123 ,23) +p(22 ,21) (31,32) +2p§121’13) <1
0< —pas —p§123 ,23) +p(22 ,21) +P5311 ,32) 2pg.121’13) +p$3) <1

,21 11,13 33
0 < —pag — p{3%) 4 p{iteD) 4 p(2220 4 pOLID 4 5B <

0< —pa —f—pgl; 13) <1

0< —pas +p(11 ,13) +p(33) <1

0 < —pos +p§21 ,13) +p(31 33) (353) <1
0< —pas +p(11 ,13) +p§31 ,33) <1

0< —pas +pg11 32)+p(11 ,13) pg:;1,33) <1
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31,32 11,13
—pas + ) 4 A1)

0< —pas +p(31 32)+ (11,13)

0 < —pas +p(31 ,32) +p(11 ,13)
0< —ps —+—p(22 ,21) +p(11 ,13)

0 < —ps +p(22 21) +p(11 13)
22
0< —pa +p§1 21)

(22,21)

+p(11 ,13)

(11,13)

—p22 + Psy + Do

0< —pas +p(22 21) +p(31 ,32)
(22,21) +p(31 32)

(22, 21)+ (31,32)

0 < —p2s + py;
0 < =pas + py;

—P22 +p(22 21 + P35
(31,33) +p

(31 32)

0< —py+pf—
0 < —pos +pff — p§31 33)
—p22 +pff <1

0 < —pyy +p2 +p(33) <1

(11,13)

0 < —pa2 + P& + p3, - ps

(31,33) +p§33) <1
pg‘?,s) <1
<1
<1

+p§§>3) <1

+p(31 33) (323) <1

+P§321 ,33) <1

A 9 <
(121,13) _ (31,33) n gss) <1

+p (11,13) (33)<1

— Dy
+p£,“ 1) <
33 <1

+ 2p§23) <1

(31,33)+ (?,3) <1

0 < —paz +pl +ply ™ ~ piH +2pl) <1
0 < —paz +pff +p§§1 <
0 < —p22 + pf +P(11 %) +p(33) <1
< —pos +p2 +p(31 ,32) 2p(31 ,33) +p(33) < 1
(31,32)

0 < —pa2 + pE + p3,

0 < —py2 +pF +P(31 32) _

0 < —p2a + pF +P(31 42 _
(

R

0 < —p2a + pf +p(31 32))+p
31,3
0 < —pa2 +pF +p§11 2 + Dso

0<—p22+p2 +p(31 32)+p

O< _p22+p2 +p(11 31y

0 < —poo +pff +p{5* -

0 < —pa +pF +P(13 28) _

2p(31 33) 2p(33) <1

(31,33) <1
(31 33)+ (33) <1

(11 13) (31 33) +p 33) <1

— 2pyy s
(11,13) 2;Dg321,33) n 2p22 3 <1

11, 13 31,
11,13 3 ,33 33

i + pé%‘” <1
531,33) <1

P 2 < 1
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0 < —paz + pf
0< —pag +pF
0 < —pa + pf
0 < —pa2 + pf
0 < —p22 +pf
0 < —paz + pf
0 < —pas + pff
0 < —paz + pft
0< —p +pf -
0 < —p2 +p1
0 < —pa2 + pft

0 < —pog +pft —

0 < —pga +pft -

0 < —po2 +pft -

0 < —paz +pj
0< —pa2 +pf
0< —pa +p2
0 < —pa +p¥
0 < —pa2 + pf
0 < —pas +p§
0< —pa2+py
0 < —pas +pf
0< —pa2 +pf
0< —pae +pF
0 < —p2 +p¥
0< —pa2 +p§
0 < —p22 + pf
0 < —pa +pf
0 < —pas +pf

0 < —pos +p¥

+p(13 23y (33) <1
+p(13 ,23) <1
+p§13 ,23) +p (31,32) _9 5321,33) <1
+p§23 ,23) +p(31 32) g:;1,33) +p§323) <1
+p§123 23)+p§311 132) pgs;,w) —p§?§3) <1
+p§123 ,23) +p§311 ,32) p§§1’33)§1
_pg111 31)+p(11 ,13) <1
_pg111 31)+p(n’13)+p§?§3) <1
pg111 31)+p§121 ,13) +p§31’33) _pgz) <1
_pglll 31)+p§121 13)+p§321 ,33) <1
_pg111 31)+p(311 32)+pg121 13) (31,33) <1
(11,31)+p(31 3z)+p(11 ,13) pg321 33)+p(33) <1
pg111 31)+p(31 32)+ (11 13) g323) <1
pgll1 31)+ (31,32)+p(11,13) <1
- +p(11 ,31) p§22’21)<1
_pf +p(11 31)+p(22,21)+p(33) <1
- +p(u 31)+ (22,21 +p (31 33) (?33)31
ol +p(11 ,31) +p222 21)+p§§1’33) <1
_p! +p(11 31)+ (22,21)+ gei1,32)_p$1,33) <1
~ p! +p(ll 31)+p522 21) (311,32) _ (31,33)+pg323) <1
_p! +p(11 31)+pg:;2,21) +105311,32) 5353) <1
_pf +pg111 ,31) I (22,21)+ (31,32)<1
—p2 p§123 23)+p(22,21) +p(11 13)+p§321’33) <1
—p2 p§123 23)+p(92 ,21) +p(11 13)+p(31’33)+pg3) <1
—ph pilzs 23)+ (22 21)+p(11 13)+2p(31 ,33) 533) <1
_ph_ p§123 23) | (22,21)+p(11,13)+2p(31,33) <1
—pR - p§123’23)+p(22 21)+p(31 32)+ (11 13) <1
—p2 p§123 23)+ (22 21)+p(31 32)+p(11 13)+p(33) <1
—p2 p§123 23)+ (22 21) + (31 32)+p(11 13)+p(31 ,33) (33) <1
—p2 p§123 23)+p(22 ,21) +P§§1 32)+pg21 13)+ (31 33) <1
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0< —po +pb — p§123 23) (11 31) +p (22 21) +p(31 ,32) +p§121 ,13) +p(33) <1

0S _p22+p£, (13 23)+p(22 21)+p(33) <1

0< —p22+p2L—p§123’23) +p(22,21) + 28 (33) <1

0 S —pas +ng _p§123,23) p(22 ,21) +p (31 33) < 1

0< —pas +pl — (13,23)+p(22 21)+ (31 33)+p(33) <1

L (13,23

22,21 11,13 33
0 < —paz +p7 — pis )+P( )+P§2 )+P52)51

0< —p22+p2L— (13’23)+p(22’21)+p(11’13)+2p532'3) <1
0< —p22+p2L— 13 ,23) +p(2z 21)+p(11 13)+ (31,33) <1

T~

0< —pas + ph —p§123’23) + (22,21)+p(11 13)+p(31 33)+p§ 3) <1
§13’23)+p(22 21)+ (31 32) (31,33)+p(323) <1

0< —peo+pl—p = P22 2

0< —pas +pb — (13 3)+ (22 21)+p(31 32) (31’33)+2p§323) <1

0< —pas +pk — (13 3)+p(22 21)+ (31 32) <1

0< —po + Pk — (13,23)+p(22 21)+p(31 32)+ (33) <1

0< —pos +pk — (13 23)+p(22 21)+p(31 32) (11,13) _ :(2321,33)+ (33) <1

0 < —pas +Pé’ _p§123,23) +p§212,21) +p(31 ,32) +p (11 13) 531,33) + 2p(33) < <1

0< —p22+p2L _ (13,23)4_13(22,21)_'_p(sl,sz)+ (.11’13) <1
0 < ~paz + pb — p{L32%) +p2220) 4 (3182) 4+ p{iLid) g33) <1

0< -p+pl <1

—p22 + p¥ +P5323) <1

0 < —pas + pb +p(31 33) (353) <1

—pao + p¥ +szl /33) <1

0 < —pas + pk +p(31 32) 5351,33) <1

31,32 31,33 33
< —pos + p¥ +pg1 ) Péz )+sz ) <1

0 < —paz +pk + 3% — p3¥) <1

0< _p22+p2 +p(31 ,32) <1

O< __p22+p2 +p(22 ,21) < 1

) 0< —pay +p2 +p(22 ,21) +p(33) <1

0 S _p22+p2 +p§22 ,21) +p(31 ,33) pg~323) —<_ 1

OS _p22+p2 +ng2 21)+p(31 ,33) —<_ 1

0 < —pos + pk +p(22 ,21) +p (31 32) (;21,33) <1
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0 < —pa2 +pk

0 < —py2 +pk

0 < —pao +pk

0 < —pa2 +p

0 < —poy + pk

0 < —paa + p¥

0 < —pyo +p¥

0 < —pa2 +pL

0 < ~pa2 +pk

0 < —paz +pk

0 < —pao +p¥
0< —p22 +p

0 < —pys +pk

0 < —pa2 + p

0 < —pas + pf

0 < —paa + Pk

0 < —p2a + pk

0 < —po +pt

0 < —pas +pL

0 < —paa + pk

0 < —paa +p%

0 < —pos +pk

0< —pos +pf

0 < —pas + p¥

0 < —pao +pf

0 < —pag +pf

0 < —pap +pk

0 < —pao +pk
0 < —pao +pk

0 < —pas + p¥

+p(22 21) +p(sl ,32) p(3l ,33) +p(33) <1
+p(22 21) +p(31 32) g:;s) <1

+p§212’21) +p (31,32) <1

+pft - p:(z111 31) +p (31,32) _pgzy,sz) +p§?§3) <1
+pft = p§121 13) p:(g ,33) +p(33) <1

+p§ - P2121 19) p(31 %) 42 52 ) <1

ol i <

+pft - (11 13)+ (33) <1

+pf - p;él’sg) + p§323) <1

+pf —p5* + 2} <1

+pi <1

+pf +pl) <1

4 pf +p(31 32) g;ms) o (31 33) +p(33 <1
+p2 +p(31 ,32) g121,13) (31 33) +2p (33 <1
4+ pht +p(31 32) §121,13) _pgzl,ss) <1

+p2 +p(31 32) §121,13) _pgl,%) +p$3) <1
+pf +p(31 32) (31,33) +p§33) <1

+pht +p(31 32) (31 3 49 (33) <1

4+ pR +p(31 32) (31,33) <1

4+ pf +p(31 32) (31 3 4, (33 <1

4+ pf +p(13 23) 5121,13) _ (31,33) <1

+pR +p(13 23) (121,13) (31 33) +p(33) <1

4 pf +p§13 23) pgu 13) pgs) <1

4 pht +p§123 23) (}1,13) <1

+plt +piw ,23) +p(31 32) p§121,13) — 2 (31,33) <1
+pht +p(23 ) 4 (3132) _ g121,13) _ 2p(31 ,33) +p(33) <1
4 pf +p(13 ) 4 _(31,32) _ p{i13) _pg321,33 _pggs) <1
4 pf +p(13 ,23) +p(31 32) %1,13) ~p§§1’33’ <1
+pR - 11 3 g

+p7 - p(lll Y +P2323) <1
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0 < —pao +pk + plt = pliT*Y + p31*Y — p3Y <1
< —pys + pk + pft — piH*Y +pg31 ) <1
0 S — P22 +p§/ +p1 pglll ,31) +p(31 ,32) pg31 ,33) < 1
0 < —paz +pl + pft — piit*Y 4 p13D _ pBL39) | 5088 <
0 < —paa +pf + plt = p{i*Y 4+ p{1*) - 533) <1
0 < —pas + pk +pft — pélf 31 +p (31’32) <1
< —pop +pb ~ (11 13) +p (11,13) <1
< —pan +p{, p§121 ,13) +pg2l ,13) +p(33) <1
< —pgg + pF — pliht 4 pILI3) 4 LI _ 63
0 < —po +pF — piHY +p5Y + 50 <1
< —pas +pb +pf - p5HY - pY 4 (Y <1
0 < —pa +pF +plt - §“’13’ —pgl’”) + 2pg323) <1
0 < —paa +pl + pft — p§121 13 <
0< —pas +p} +pf —plY + Y <1
0 < —pos +pf +pff = pl% +pl Y - pl*) 4 p(5Y <1
< —par +pf +pf —p Y +p (“ 1) _ B3 4 oplP <1
< —pa2 +pf +pf - pgl 13) +p (11’13) <1
< —por +pF +pf - pY 4 pGHY 4 <1
< —pa +pf + 08 - pﬁl 19) +p (13 23) pg"“;’“) <1
0< —pa +p{‘ +p2 pglzl ,13) + §123 ,23) (31,33) +p§,‘33) <1
0 < —po +pf +pft — plY + 5% — <33’ <1
0< —py+pl+pf - p§121 ) 4 p (13’23) <1
0 < —pF +p§ — pf +p{3* pﬁg 23) 4 p2220) 4 p3182) <
0 < —pF +pf —pf+pB"1Y = p3>*) 4+ p7 4+ p{1% 45 <1
0 S _pf/ +p —pf +p(11 ,13) pi}ﬁ ,23) +p5212,21) + (31,3?.) + (31,33) _pg323) S 1
0 S __p{, +p2 - ph +p§-121,13) _ (13,23) +p(22,21) +pg11 ,32) +p(31 ,33) < 1
0 < —pF +pk — pf +p{3? — “3 2) 4 p{2221) 4 p132) 4 p(113)
0< —pb +pk — pl +p(11 13) (13 23) +p(22 2 4y (31 ) (11,13) +p (33) <1
0< —pb +pb — pf +p(11 13) (13,23 +p (92 21) +pé 31,32) +p(11 ,13) +p(31 ,33) Pg323) <1
0 S _p{/ +p2 - pl +p(11 ,13) p5123 ,23) + (22 21) +p(31 ,32) pg121,13) +pg’;1,33) _<_ 1
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0< —p{‘+pL pl +p(11 13)+pg212’21)+p53{1’32) 5323) <1
< —pf +pf - pf + 00 +p5 4 ) <1
0< —p1L+p2L pl +p§11 13)+p(22,21)+p(31,32)+p(31,33) B gz) <1
< —p{’+p2L—p2 + 5121 13)+ (22 21)+p(31 39)+p(31 33) gz) <1
< —plL+p2L—p2 +2p§;1 13) (13’23)+p§212’21)+p§,3{1’32) <1
S_pf+sz+p512 21)+ (31 32) <1
< —p{“+p2L+ (11,13) (13 3)+ (22 2 <31’32)—-p§321’33)+p§323) <1
< ——plL+p2L+ (11 13) 5123,23)+ (22,21) +p31 ,32) pg321,33)+2pgz) <1
< —p{‘+p2L+p(11 13) (13,23)+p(22 21)+Pg?{1’32) <1
< —plL+p2L+p(u ,13) - p§123 ,23) (22’21)+pg311’32)+pg?§3) <1
< —p{‘+p£’+p(u 13)+p(22 21)+ (31 32) %1,13)_29%1,33) <1
< —pf+p2L+p§21 13)+p(22 21)+ (31 32) g;1,13)_pg321,33)+pg?§3) <1
< _P1L+P§+P121 13)+ (22 21)+ (31 32) 5121,13)_2)5353) <1
0< —P1L +pl +p121 ,13) +p(22 21) (31,32) _pg121,13) <1
< —PlL‘Fpg +p(11 13)+ g;z 21)+p(31 32) (31,33) <1
< —pb +pk +p§11 13)+p(22 21)+p(31 32) (31 33)+ (33) <1
—Pf+p2 +p(11 13)+p(22 21)+pg311,32) _pg:;3) <1
< —;DlL-l-pg +p111 13)+p(22’21)+p§3{1’32) <1
< —pf +p§11 31)+p(22 ,21) <1
< —pf +p§111 31)+pg22 21)+ 33) <1
0< —pf +pgl1 31)+pg212,21)+pg:;1,33) —p$3) <1
0< —p! +10511,31) n (22’21)+p§321’33) <1
< —pf +p211 31)+p(22 ,21) +p§121’13) <1
0< —p! +pgu ,31) + (22,21)+pgl21,13)+pg323) <1
< —pf +p(11 ,31) +p(22 21)+pgl21,13)+pg:;1,33) _pgz;s) <1
0< —pl +p§11 31)+p(22 ,21) +p(11’13)+p§321’33) <1
< —pf +p(11 31)+p(22 21)+p(31 ,32) p§321’33) <1
0< —pf +p§111 ,31) +p212 21)+p(31 ,32) p§321‘33)+p§323) <1
< —pf +p§11 ,31) p(22 21)+p(31 32) §323) <1
0< —pl +p(11 ,31) +p§212’21) +pgsll,w) <1




137

Appendix B Case 2,3:2,3 Bell-type inequalities
0< —pl +pgu ,31) +p(22 ,21) +p(31 ,32) +p 11 ,13) p§321,33) <1
0< —pl +p(11 ,31) +p222 21) (31,32 +p(11 13) 5321,33) +p§323) <1
0< —pl +p(11 ,31) +p(22 ,21) +p (31,32) +ng21 ,13) pggs) <1
0< —p! +pé11 ,31) +p(22 ,21) +p(al ,32) +p:(2121 ,13) <1
0< _pl " 2p(n ,31) +p (22 21) <1
0<— R pgs ,23) p2212 21)+ gu ,13) +p$1’33) <1
< _p2 pgs 23)+p(22’21)+p.(11’13)+p(31’33)+p(33) <1
0< —pht— p§123 ,23) +p (22 21) +p(u ,13) + 2pt (31 33) gsza) <1
B T P
< —plt — p{53%) 4 p2BA 1 gp(ilt®) 4 p3139)
0< —P2 p§123 2% +P(22 21) + 2pg121’13) +P$1’33) +Pg§3) <1
< —pf = p{5") + p5PP 4 opht) 43t _ pl89 <
0 S _p2 p§123 ,23) + (22,21) + 2p§121,13) + 2pg;1,33) S 1
< _p2 p1123 ,23) +p(22 21)+p(31,32)+ (11,13) <1
< —p2 p§123 ,23) +p(22 ,21) +p(31 ,32) p(u ,13) +p(sa <1
0< —plt - (13 23) +p (22 21) +p(31 ,32) +p(u ,13) +p 31 33) (33) <1
< _p2 p§l23 ,23) +p(22 ,21) +p(31 ,32) +p 21 ,13) + (31 33) < 1
0< —p2 (13,23) +p(22'21)+p§31’32) +2 (11,13) <1
0< —p2 _ (13 23) +p (22 21) +p(31 ,32) +2p(u ,13) +p(33) <1
< _p2 p5123 ,23) +pg212,21) +p§311,32) + 2pglzl,13) +p§321,33) pg;S) < <1
< _p2 p§123 ,23) +pg2l2,21)+p(31,32) +2p§11,13)+pggl,33) S 1
0< —plt — pgz ,23) +p (11,31) +p(212 ,21) +p(11 ,13) _{_pg:;l,sx) <1
0< ~pl +pg212 ,21) +p(n ,13) +p£331 33) gz‘;s) <1
< —pt +p§212 ,21) +pgu ,13) +p§321 ,33) <1
0< —pl +p(22 ,21) +p(11 ,13) + 2p(31 ,33) 5323) <1
0< —pl +p(12’21) +p(11,13) + 28 (31,33) _pgs) <1
0< _pé{+p(12 ,21) +p(31 ,32) +p(n ,13) pgszs) <1
< —pl +pg212 ,21) +p§11 ,32) +p (11 13) <1
0 S —pf +p(22 ,21) +p (31,32) +pgll ,13) +p(?:l ,33) 2pg§:}3) S 1
0< —pl +pg22 21)+p(31 32)+p(11 13)+ (31 33) 5323) <1
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0< —pk +20(121 13) (13,23) +p(22 ,21) (11,13)_|_ (31,33) <1

0< —pt +p(11 13) (13 23) +p(212,)1) +p(31 ,32) +p(u ,13) <1

(22,21) (11,13) +p (31 33) <1

+ Pag

0< p%l 13)+pg22 21)+ (31 32)+ (11 13) <1
(11 13) (

0< —p§123’23) p(22,21)+p22 +])23;3) <1
0< —p§123’23)+ (22 21)+p(11 13)+2p(33 <1

+p§121 ,13) +p(31 ,33) <1

0< pgs 23) (22,21)+p(11,13)+p31,33)+ (33) <1
(11,13) _ (31 33) +p (33) <1

0<— (11 13)+p

0<— (13’23)+p§212’21)

(13 23) (22,21)

0<— +p(31 ,32) + L

(31,32) +pgl21,13) "Pf(qus) i 2p§323) <1

+ D31
0< p§123 23)+p(22 ,21) + 8
0< p(13 23)+pgzl2,21 +pg§1’32)+p§121’13) <1

0 < —p{™) +p{P*) 4 pHD 4 plHY 4 p(Y <1

0<+p5 <1

0< +p(31 33) 5323) <1
0<+pf3 Y <1

0§+p(11’13) <1

0<+p(11 13)+ (33) <1
0<+p(u 13)+p(31 33) (323) <1
O<+p(u 13)+p5321’33) <1
0<+p(31 32) (?;1,33) <1
0< +p(31 32) 2321,33)4_;05323) <1
0 < +p§ (31 32) (33) <1

O<+p(31 ,32) <1

0<_'_10(31 32)+pg121,13)_pg321,33) <1

31,32 11,13 31,33 33
05+p( )+p§2 )_pgz )+p§2)51

0 < +p§ (31 32)+pgl21,13)_pg:;3) <1
O<+p(31 32)+ (11,13) <1
0< +p222 ,21) <1

0<+p(212 21)+ (33) <1

o< 4o <
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0< +p§212’21)+p§?§1’33) <1
0< +p(22’21)+pg121’13) <1

O<+p(22 21)+p(11,13)+p(33) <1

(11,13) (31,33)

0< +p(22 21)+p2 +p22

0< +p(22 121) +p§121 13)+p(31 ,33)
22,21 31,32 31,33

0 < +p{22 4 pl % - pY

0< +p(22 ,21) 48
0< +p(22 21)+p(

0<+p(22 21)+ (31 32) <1

(22,21) (31,32)

0<+py " +py Gote

+P

0< +p(22 21)+p§31 32)+p2

0< +pé22 ,21) +p(31 32)+ (11 13) _

(11,13)

0< +p(22 21)+p(31 ,32) n g121 ,13)

0<+pg11 ,31) <1

O<+p(u 31)+pgz;2,21) <1

O<+p(13 23) 3353) <1

0<+§12323)<1

pgg) <1

<1
<1

(31,32) §321,33) +p(33) <1

31,32) (33) <1
Doz " &

pégél’ss) <1
(321,33) +p$3) <1
) <1

<1

0< +p(13 23)+p(31 33) _ o g:;3) <1

0< +p(13 23)_|_p

O<+p(13 23)+p

0<+p§]§3 ,23) +p (31,32) _pg321,33)

0 49fE 4

0< +p(13 ,23) +p(31 ,32)
0< 4+l <1

0< +p§121’13)+ (31,32) _ (31,33)

0 < +pf — p (11 13)+ 1323) <1
3

0 < +pft - Pglzl 19 + P12

0< +pft— (31,33) +p (33) <1

0§+pf—p(31 ,33) +2p(33) <1
0<+plt <1

(31,32) p(31,33) _
22

31,33 33
G — gQ)Sl

33
P:(zz ) <1

<1

(31 32) 2p(:;s) <1

p(ss) <1

<1

13,23 31,32 31,33
: V4 p - pf3 <1
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0< +pR+pfy) <1

0 < +pft + p{3132) _ gp(3L33) | x05) <
0 < +plt + p{3132) _ 9p(L33) | 9p(33) < 4
0 < +pf +p8t® — pih%) <1

0 < +pft + p3L3) _ p3139) | ,083) g

0 < +pff +p{3>* pélzl’ls) - <1
0< +pf +p(13 23) %1,13) _pgzl,ss) +p$3) <1
0< +pf +p{y"* —piy Y - plyY <1

0 < +p +p(13 ,23) pg121,13) S 1

0 < +pf +p3* —pi* <1

0 < +pk -i-p(13 23) _ (31 33) +p(33) <1

0 < +plt + (i3 _ (33) <1

0 < +plt +p{t3% <1

0 < +pf +p§123 23) +p(31 32) —pél; 13) 2p§?§1’33) <1
0 < +pf +p§123 23) +p(§1 32) (121,13) B 2pé321’33)

0 < +pf +p{y* +pii ) - plp" Y — pl

0 < +pf +p§123 ) 4 (31,32) _ g121,13) _pggl,ss) <1
0 < +pk + p{l323) +p(31 32) _p3133) ¢

0 < +pft + p(L82) 4 p313D) _ 2p(31 ) 4 89 < 1
0 < +pft + piy>* +p§3{1’32) —p5% - plY <1

0 < +ph +p§123 2) 4 (31,32) _pgl,sg) <1

0 < +p2 +p(13 ,23) p(ll ,31) pg.lzl,l:i) _pgzl,33) S 1
0< +pft—pi* <1

0< +pf —pl" ™ + " <1

0 < +pft = pliH* 4 %) — Y <1

0 < +pf —pfit* +p* <1

0 < +pf —p5iH +p5Y <1

OS +p1 _ (11,31) + (11 13) +p(33 < 1

0< +pf— pglll ,31) pg121,13) 4 p(31:39) _p <1
0 < +pft = pitAY 4 pt18) 4 pBL3 <1

+p5) <1

— P <1
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0 < +pft - pfit* + p{3h) — ph% <1

0 < +pft — p{H3) 4 p{i32) _ p13) 4 (80 <1

0 S +p{{_ (11,31) + (31,32) ~pf(fg3) S]_

0 < +pff - (“ W pih® <1

0 < +pff - pélll A4 pl 4l - p5Y <1

0 < +pFt _pglll,Bl) +p(31 32) (11,13) B é?;l’”’) +p§323) <1
0 < +pf - pii"*Y + p{i*Y +p(“ 1) _p3 <1

0 < +plt — p§i* 4+ plihs) 4 pL1 <1

0<+pfi<1

0< +pk—ph +pg22 2) 4y (31,32) <1

0< +pb —pf +p(u 31)+ (22 21)

11,13
gz <1

11,31 22,21 11,13) . (33
0 < +p7 —pft +p21 )+P( ) 52 )+P§2)51
0< +pk — pR +p§11 a4 (22 21) p§121,13) +p(31,33) 3 (33) <1

11,31 22,21
0 < +pk — pft + pi )+p§1 )

OS_'_p:[ZJ_pl +p(11 31)+p.(22,21) <1

11,31
0<+pf —pl +p(1 )

(11,31)

+p (22 21)+

22,2
0 < +pf —pf + 5 P(l Yy

_p(u ,13) +p (31 33) <1

(55 <1

pégzl’gs) -V <1

22

0 < +pb —pf +pgll,31) +p(22,21) +p (31,33) <1
11,31 22,21 31 32 11,13 31,33
0<+pf —pf +Pé1 )+p( )+ ( ) sz )—Pg2 )51

0 < +pf —pf +p§111 3D 4 (22 21) +p(31 32) _ (11,13) _pgzl,ss) +p§323) <1
0< +pf —pf +p?n ,31) +p(22 ,21) +p(?il’32) p§121 13) pggg) <1

0< +p§’ l +P§11 ,31) +p (22 21) +p (31 32) p(11,13) <1

0 < +p§ — pft +p{iH*Y +p(’12 21 (311:3” L) < 1

0 < +pk — pf + p{it3t) 4 p(22:21) +p§311,32) PG | p03)

0< +pk —pf +p(11,31) +pg212,21)+pg;;1,32) _pg?és) <1

0< +pk —pf +p§111 ,31) +p(22’21)+p(31’32) <1

0< +pl —pk - 513,23) (11 31)+p(2z 21)+p(31 ,32) +pg121’13)+p§321’33) <1
0< +pk — plf - (13 23)+ (22 21) pgl,ss) <1

13,23 22,21
0 < +pf —pft - p§2 ) pi ) ¢

13,23
0 < +p¥ — pft — p{3>%

22,21
+p§1 Y+ 2Pg2

31,33 33
p1(22 ) +P§2 ) <1

31,33) _p§323) <1
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0< +pb —pht— p§123 23) +p(22,21) +2p (31,33) <1
0 < +py —p3t - pﬁs 29 +p(22 21) +p(121 13) +p(31’33) <1
0< +pb —plt— pga 123) +p(22 ,21) +p§121 ,13) +p§31 33) +p(33) <1
0< +p2L _p2 _ (13 23) +p(22 ,21) +p(11 ,13) n 2p(31 33) (23) <1
0 < +pl — pR p(123 23) 4 p2221) | (L13) o (8133)
0 < +pk - pft — p507 + 57 4+ pP <1
0 < +ph — pf — p{I32) | pf2220) | 6132 | 63) g
0< +pl —pht— p§123 123) +p(22,21) +p(31,32) +p(31,33) ,(,:;3) <1
0 < +pk — pit — p{5>%) 4+ pi2* 4 pB 4 s <1
0< +pf —pf —py"* +p (22’21) +p3 4 1) <
0 < +pf — pft — p{3* +10(22 21 4 p(3132) y pAL18) 4 09 < g
0 S +p2L _ p2 p:(ll23 ,23) +p (22,21) + (31 32) +p(11 ,13) +p(31 ,33) pg:;:}) S
0 S +pé, _p2 (13 23) + (22 21) +p31 ,32) +p2121,13) +pg321,33) S 1
0 < +py — ps +P222 4 (31’33) - p§§3) <1
0< +pk — pft + 3% 4 p ‘31 % <1
0 < +pk —pft +p8»% 4 2p ‘3‘ 33) _9p39) <1
0< +p2 — pl +p(22 ,21) +2p(31 ,33) pg:;3) <1
0 < +p — pf +piP 4+ p3Y — Y <1
0 < +pk — pf + 83 + 3% <1
O S +p2 _p2 + (22 21) +p(31 ,32) +p(31 33) ng) S 1
0 < +pk —pf +pii + p5T 4 pY - pY <1
0 < +pf - plt + pl3"" p(13 28 4GB 4 p <1
0 < +pk — pf +p0 — p(* 4+ p0PY 4 pH) <1
0< +p2 p§121 ,13) pg212,21) +p:(;§1’33) <1
0 < +pf —plBHtS) 4 pB2 4 p719) <1
0 < +pf — pl5>?¥ +p(22’21) +p8 <1
0< +pk - pglzz 23)+p(22 21) 4 g §‘°§3’ <1

t~

0<+py —

0<+pf -

P12

0 < +pk —p5123’23)+p(22 21)+p(31 ,33) <1

(13’23)+pg212’21)+p(31’33)+ gsés) <1

22

(13,23) +pg212’21) +pgil,32) (31 33) +p (33) <1
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0§+p§‘—p§123’23)+ (22,21) +p(3i1 ,32) pg321,33)+2pg3;3) <1

0§+p§— (13,23)+p(22 21)+ (313 ) < 1

0< +pk - p(123 23) +p(22 2 4 82) (33 <1
0 < +pk - pi* +p{* <1

0< +pk - pélll 3 p(222) oy p8152) <

0< 4ok - B <1

0< +p£’ (11 13) tp 33) <1

0 < +pk - p%l 19 4 10(31 33 _ 3 < q

0< +pb _pg121,13) +p£1’33) <1

0<+py <1

0< +p§ +p5) <1

0 < +p¥ -l—p(s1 33 _ (323) <1
0<+pk+p8% <1

0< +pk +pg311 32) g121,13) ~p <

0 < +pk +p(31 ,32) pg};,ls) _p(31 33) 223) <1
0 < +pk + 5" - pi Y —plY <1

0 < +pk + pl3t3D _ p118) <4

0 < +pk +p(31 ,32) pg?;,ss) <1

0 < +pb +p§?11 32) (31 33) _i_pggg) <1

0< +pb + Lo _ <353> <1

0 < +pk +p8* <1

0< +p2 +p(22 ,21) p§11’13) <1

0< +p +p(22 21) (11 13) +p§2) <1

0 < +pk +p(22 21) p(11 A3 4y (31 33) (353) <1
0 < +pk +p(2212 ,21) p(n ,13) +p(31 3 <

0<+pf +p52 <1

0 < +pk +p§212 21)+ (33) <1

0 < +pf +pii"Y +;o(‘°51 ) pid <1

0 < +pk +p5 + p5Y <1

22,21 31,32 11,13 31,33
O<+p2+p21 )+(1 ) _ (2 )—pgg )Sl
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0 < +pk +p§

0< +p¥ +pgl

0< +pk +p8
0 < +pf +p;

0 < +pf +p}

0< +p¥ +p§

0 < +p¥ +pd

0 < +p¥ +p}
(

0 < +pk +p!

(

0< +pk +p!

(
(
0 < +p7 +p§
(

0 < +pf +p§

0<+pk+p

O<+p2 + D1

0<+p2 + Diy
0<+p2 +

O<+p2 + Pl

0 < +pg +pf -

0< +pf +pf -
0 < +pf + pft
0< +py +pf -
0 < +p§ + pf
0 < +pf +pf -
0 < +p3 +p¥
0 < +pf + pf
0 < +p§ + p¥
0 < +pf +pf
0 < +p§ + pf
0 < +pf + p&
0 < +p§ + pff

(22, 21)+ (31 32)

22,21) (31,32) _

1 + Doy

22,21) pg:i1,32) _ p§121,13)

(31,32) _ (11,13)

22,21) +
(31,33)
1

22’21)+p§311’32) p(31 ,33)

22,21) . (31,32)
1 L 23 -
22 21) +p(31 8 ¢ q

13,23) (11,13)
— P22

13,23 11,13
2 ey <1

13,23 11,13 31,33
13,28) _ (11,19) | (81,39)

13,23)

13,23 31,32
2 ) +pg1 ) -

13,23) n p(31 ,32)

(11,13)
D3

22

13,23) p(11,13)
22

12 +p2

13,23) , (31,32)
2 + P21

(11,13) <1

11,13) +p(31 ,32) p(u 13)
22

(11,13)+ (13,23) _

(31,32)
(11,13)
— P22

11,13)

(11,13 13,23
p12 )+p( )+P

11,13 31,33
A 4

(11 13) p(31 33) 2%

11,13
—pgz )<1

pg121 13)+ (33) <1

(11,13)
Doy -

11,13 31,33
(2 )+p§2 )~

11,13
p( ) _

pgzl,ss) +p(33) <1
- pgés) <1
<1

<1
+p39 <1

(33) <1

-py) <1

2175?53) <1

pg?és) <1
—p5* — Y <1

(31,33) <1

2p(°3) <1

(33) <1

31,33
gz <1

(11,13) <1
(31,32) _

11,13 31,33
gz ) —P( ) <1

22
(33 <1
(33) <1

31,32
+ Pgl )~

+ p(31 ,32)

31,32
+Pg1 ) -

31,32
+ Pgl )

L p(lS 23)

+ p(13 123)

13,23
+p§2 )

(11,13) _9 §321,33) +p$3) <1

pé” 18 gpat 1 2pY <1

(11,13) _ pg31,33) <1

p(121 ,13) pgs; 33)+ (33) <1

11,31 31,32 11,13
gl )+p§1 )“sz )

31,33
—sz ) <1

119 31,33
( ) —sz ) <1

(11 13)

31,33
= 2pys sz )

+ p§323) <1
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0 < +py +p§f +p15
0 < +pf +p§ + 155
0<+py +pff+p
0< +pl+plt+p
0 < +p5 +pf +piy
0<+p5 +pf+pi,
0<+ps +pf+p
0<+pf +pff+p
0 < +pf +p§ + 1y
0 < +pf +pft +pyy
0 < +p5 +pf + 11y
0 < +py +pf +piy
0 < +pj +pi +piy
0 < +pf +pf + Py

0<+pf +pft—p
0<+pf+pf—p
0<+pf +pff—p
0<+py +pff—p
0<+py+pf—p
0 < +pf +pft -

0 < +pk + pft - pf
0<+pf+pff—p
0< +p5 +pi —p
0<+ps +pfi-p
0<+pj +pfi-p
0< +pf +pf—p
0<+py +pff—p
0<+p§ +pff —p
0<+py +pf-p

(13,23)

(13,23)

13,23 11,13

() - 3119 —

(13,23) _ (11,13)

12 D32

(13,23) _ (11,13) _
D3y

(13,23) (11,13)

(23 ,23) + p(Sl 32)

(23 ,23) 4 p(31 32)

(13, 23)+ (31,32)

(13,23) +p(31 ,32)

(13,23) +p (31,32) B

(13,23) | p(31 ,32)

(13,23) (31,32)

+ D3y
(13,23) +p(31 32)

(11,31) _

(11,13)
21 P32
(11,31) _ (11,13)
21 P22

(11,31) _
21

(11,31)
21

glll ) <

2pg121,13)

- pégés) <1

_9 g121,13) <1

(31,33) <1
(31 33) +pg(§)3) <1
p§323) <1
<1
g]él,l.?) _ 2pg:;1,33) S 1
5121,13) _ 2pgs;,sa) +p§:;3) <1
- -0 Y <
~ 29 <
5121,13) B 2pggl,33) <1
pgu,ls) — 2 (31,33) gaés) <1
p(;l ,13) pgil 33) ng) <1
(11,13)

31,33
—sz ) <1

05+p£,+p1 2p§11 31)+ (31 32) <1

<1

+p§?§3) <1
11,13 31,33
gz )+sz )

33
—sz)fl

11,13 31,33
gz ) +P§2 ) <1

e O

(11,31) tp (31 33) _

21
(11,31) , (31,33)
21 + Do

11,31 31,32
gl ) +P( .-

(11,31

(¢ )+p(31 ,32)

21

21

11,31

51 ) +p
11,31 31,32)
TR

11,31
gl )+p

(31,32) _

(31 32)

11,31 31,32
( )+Pg1 ) _

(11,31) +p (31,32) _

(33) <1
<1

5121,13) _p§321,33) < 1

- ) ) <
0 g <1

§121,13) <1

(31,33) <1

_ p(31 ,33) +p(33) <1

p§323) <1
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0 < +py +pff

11,31 31,32
1 Pg1 )+pg1 ) <1

0 < +pf —pl5¥ <1

0<+pl—p (11,13)+ g33) <1

0< +pk— (11 13)+p(31 33) (33) <1

0< +pk - p§121 ,13) +p(sl ,33) <1

0< +ph— pgl 13)+ (11,13) <1

0< +pk — (11 13) + (11 13)+ (33) <1

0< +pk - p§121 13)+pg121,13)+ (31,33)_ (33) <1

0< +pl — (11,13)+ (11,13)+ g31 ,33) <1

0 < +pk — (11 13)+p(13 ,23) p§°)<1

0< +ph _pg121,13) +p%3,23) <1

0.< +pf —piy " + ol +pp Y - 2py) <1

0< +p1L_p§121,13)+p§123,23)+p5321,33) _pgs;) <1

0<+pf <1

0 < +pF + pft — 2pGH1) 4 p11320) <1

0< +pk+plt - p§121 13) (31 33) +p(33) <1

0 +pf o+ pft -3 P 4 2l <1

0 < +pf +pf -p(12“3) <1

0<+pf +pf —piy" + 57 <1

0< +p1 +p2 p(121 ,13) +p (13,23) p§121,13) _ (31,33) <1

0< +pb +plt _p§121 ,13) +p(13 ,23) pglzl ,13) pgeél ,33) +p(33) <1
0< +pF +pk p§121 13)+p(13 23) 5121 ,13) pg:;x) <1

0 < +pk + pF p§121 ,13) +p (13,23) _pg121,13} <1

0< +p1L+p2 p§121 ,13) +p(13 ,23) §321,33) <1

0 < +pF + pi pgn ,13) +p(ls 23) 5321,33)+pg953) <1

0< +pk+ph p§121 13)+ (13,23) _pg323) <1

0 < +pb + pk _p(11,13 +p(13 ,23) <1

0 < +pas — pb + pl — pl +p(11 ,13) p§123 23) (22,21)+p(31,32) <1
0 < +poz — pE + pk — pl +p§121 13) (13 23)+p(22 21)+ (31 32)+p(33 <1
0 < +p2s — pb + pk — ph +p(u ,13) p(123 ,23) +p(zz 21)+p(31 32)+p(31 33) §3§3) <1
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0 < 4poy — pF + pb — pt +p(11 13) (13 23) +p (22 21) +p(31 ,32) +p(31 ,33) <1
0 < +pss —pf +pk —pff + (3" Jr;v(22 2 - plih ) — p3Y <1

0 < +pa2 — p¥ + pk — pl +P1n ,18) +p(22 ,21) +p (31 32) p§121,13) <1

0 < +p2e — pb + pk — pk +p(11 ,13) +p(22,21 +p2911,32) p(191 ,13) +p (31 33) 2p§323) <1
0 < +paz — pb + pk — pl +p§121 13) o (2 ,21) +p(31 32) (11 13) +p(31 33) 5323) <1
0 < +poo _PlL +pL - pf +p§11 ,13) +p§22 ,21) +p (31,32) _pg;;g) <1

0 < +pa2 — pb + pk — pl +p(11 ,13) +p(22 21) (31 32) <1

0 < +pa2 — pF + pk — pff +p{3 "% + p{72Y +p(31 52 4 plat —2plP <1

0 < +pas — p¥ + pk — ph +p(11 ,13) p(22,21) +p(31 ,32) +pg:;1,33) _p§323) <1

0< +pa2 _p{J +p2 +p(u ,13) +p (22,21) +p(31 ,32) p3121,13) _ (31,33) <1

0 < +p22 — pF + p¥ +p121 113) +p (22 21) +p (31 32) p§121,13) _p(31 ,33) +p (33) <1

0 < +p22 — p¥ +05 + 93" +p (22 M 4p (31 2 pt ) pY <1

0 < 4pan __pL +p2 +p(11 ,13) +p§212 ,21) +p (31 32) p§121,13) <1

0 < +pa2 —pi —1-p(11 31 +p§212’21) <1

0 < +paz — pl 4+ P + P55 ) <1

o< o5 4P P B <

0< +pa2 —pf +p(11 ,31) +pg22 21) +pgl,33) <1

0 < +p22 —pi +p(1l 3D 4 g (22’21) +p (31,32) _p(31,33) <1

0 < +pas — pf +p(11 ,31) +20(22 ,21) +p(311 ,32) pgl ,33) +p§23) <1

0 < +pag — p! +p(11 ,31) +p£212 ,21) +pgzl,sz) _ (33) <1

0 < +p22 — p! +P§11 ,31) +1)(22,21) +p (31 32) <1

0 < +p2 — pf — Py + P+ plY 4+ pGHY <1

0 < +pos — pit — p§123 123) +pg212 21) +p(u 18) +p(31 33) +p(33) <1

0 < +p2 — pf — piy"™ + 952 + pY + 2phY — pP <1

0 < +pz — pff — pl"* +p7 +p Y + 2P <1

0 S +Dag — p2 _ (13 23) +p (2 ,21) +pg1,32) +p§121,13) S 1

0 S +p22 _p2 p§123 ,23) (22,21) +p(31,32) +p(11,13) +p(33) <1

0 < +pas —p2 p§123 ,23) +p§212 ,21) +p§11 ,32) +p(11 ,13) +pg§)1 ,33) pg?) <1

0 < +po — pk _p§123 ,23) +p§212,21) Jrpgsll,sz) +p§121’13) +p§321’33) <1

0 < +paz — it + P52 4+ pig®) — p) <1
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0 < +pa2 — i + 522" 4 p{3" <1

(22,21) + 2p§ (31 33) — 2% (33) <1

05+p22 p2 +p5212 21)+2 (31 33) pg33 < <1

(22,21)

0 < +4pa2 — PQ + Py

11,13 31,33 33
(1L19) | @189 _ 039 _ g

0§+p22—P2 Bl 2THE o 2 S o P
22,21 11,13 31, 33
0 < +py — pf +p§1 )+p§2 )+p§ <1

0<+p22—p2 +p212 21)+pgll ,13) +2p

0 < +pa2 —py +p§f’2” +p§§1’13) + 210531’33) - p§323) <1

0 < +pa2 —ps +sz12 2 gp

0 < +p22 — it + 57" 4 p (31 <1

0< +p22——p2 +p§212 21)+p(31,32)+p(31,33) _9 észs) <1

(22, 21)_'_ (31 32)+ (31 33) (323) <1

(31,33) _ o éa;s) <1

(31,32) _ (33) <1

0 < +p2s — pf +py;

0 < +pa2 —pl +p212 ,21) +p(31 32) (11,13) _pg33) < 1

0 < +pa2 — pf + 57" +p8H* 4 p (“ <1

0 < +pa2 — pl +p(zz 21)+ (31,32)+ (11,13)_|_ (31,33)_2 ggs) <1

0 < +pas — pht +p22™ 4 p8

(11, 31) (2 21)+ (31 33) p§323) <1

(31, 32)_|_ (11 13)+ (31 33) 5323) <1

0 < +p22 — P& + 13y
0<+p2 <1

0 < +p2 +P§§3) <1

0 < +pas +p(31 33) (33) <1

0 < +p22 +P( 133) <1

0 < +p2a +pé?il 82) pgl’sg) <1

0< +p22+pgil 32) §321,33)+p§323) S]-

0< +p22+p(31 32) (33) <1

0 < +p22 +p211 32) <1

O < +p22 +pgl2 21) < 1

0 < +pa + 9520 +p5) <1

0 < +poz +p5r %Y +p§§1’33) P <1

0 < +p +p(22 21 §351,33) <1
0 < +pam +p(zz 21) (311,32) _pgl,ss) <1
, 33 33
0 < +paa "HD(ZZ 21 +pg?il ) —pgl ) +p§2 ) <1




Appendix B

Case 2,3:2,3 Bell-type inequalities 149

0< +p22+pg2 21)+p§311 ,32) pgeés) <1

0<+p22+p(22 ,21) +p(31 ,32) <1

0 < +p22+p(13 23) g121,13) _pg?;}) S 1

0< +10224_1)( 3,23) (11,13) <1

0 < +pa +p(13 23) (11 13)+p(31 ,33) 2p§323) <1

0< +ng+p(l3 23) (11 13)_|_p(31 ,33) pggs) <1

0 < +p2s + iy P§2 ) <1

0 < +p2s + 50" <1

0 < +p22+p§123 ,23) +pg?§1 ,33) QPS);S) S 1

0 < +p22+p(13 ,23) ~Jr_p(31 ,33) (33) < 1

0 < +p22+p§123 ,23) +p(31 32) 5121 13) gél,33) _ngEB) S 1
0< +p22+p§13 ,23) + (31,32) p2121 ,13) pg{;l,33) Sl

0 < +p22+p(13 ,23) +p(31 32) g121,13) _2 (33) S 1

0 < +p22+p(13 ,23) +p(31 32) g121,13) p(33) 1

0 < +p22+p(13 ,23) +pg311 32) g;l,33) p(33) <1

O< +p22+p§123 ,23) +p(31 ,32) p§321,33) <1

0 < +paa + P52 4 % — 2plY) <1

0< +p22+P513 23) g?il,BZ) _pg;3) S 1

0< +p22+p(13 23) (11,31) _pglzl,lli) _pé&;B) Sl
0<+p22+p2 +p(13 23) g121,13) _ (31,33) Sl

0 < +p22+p2 +p(13 ,23) pf(2121,13) —Pg?él ,33) _l_pgi’;i) —1

0 < +paz +pF + 905 = plY - plY <1

0 < +p2s +’p2 +p1123 23) (11,13) <1

0_<_+p22+p2 +p§123 23)+p§31 32) p5121,13) _2p531,33) <1
O<+p22+p2 +p(13 23)+pglil,32) _pgl21,13) _zp(gl 33)+p(33 S 1
0< +p22+p2 +p(13 23)+ (31,32) . g121,13) _ngI,SS) _pg:?) Sl
0S +p22+p2 +p5123 ,23) +PSI 32) 5121,13) _pgzl,BB) S 1
0 < +pa +pf — %Y <1

0 < +pa2 + PR — P53 + 5y <1

0 < +po +pf — Y 4+ pl Y -y <1
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0 < +pag + pf!
0 < +p22 +pff -
0 < +p22 +p1
0 < +p22 +pf —

0 < +pap +pft -

0 < +p22 +pf
0 < +pa +p2L
0 < +p2 +P2L
0 < +p22 + p¥
0 < +p22 +P2
0 < +p2 + P
0 < +p2 +pf —
0 < +pas + pf
0 < +pa2 + pf
0 < +pa2 + P
0 < +p22 +pf
0 < +ps2 + P
0 < +po2 +p¥
0 < +p2 +p2
0 < +p2e +pf
0 < +pp2 +pf
0 < +p2 +p£’
0 < +pa2 + p¥
0 < +p22 + p¥
0 < +p2 + pf
0 < +p22 + p¥
0 < +p2 +pj
0 < +p2 +p2
0 < +pas +p¥
0< +pa2 +p2

_pglll 31) (31,33) <1
pglll ,31) +p(31 ,32) pgaé1,33) <1
_pglll ,31) +p(31 ,32) pgl ,33) +p(33) <1
pglll ,31) +p(31 ,32) pg323 <1
pélll ,31) +pg§1 ,32) <1
_pf +p£111 ,31) +p§212’21) _pgn,ls) <1
—pf +p(1l’31) n §212,21) _p(u ,13) +p§§)3) <1
—pf +p§11 31) (22,21) _ §121,13) +p2321’33) _p§323) <1

- pf + Py

_pf +P§1l ,31) +p(92 121) +p(31 132) %1,13) _pgs;,ss) <1

_p! +p(u 31)+ (22 21)+p(31 32) p§121’13) _pghss) +p§2§3) <1
pf +p(11 131) +p(22 21) | (31,32) _pg121,13) _pgzs) <1

—p! +p211 31)+p22 21) +p (31 32) 521,13) <1

_ph - (13 23) p22’21)+pg?§1’33) <1

—pf —p§123’23)+p(22 21)+ (31,33) 2323) <1

_plt - p§123 23)+p§212 21) +2p(31 ,33) p§323) <1

_ph - Pilzs 2) -(22’21)+2P$§1’33) <1

—pht - p§123 23)+p(22 ,21) +p.(31’32) <1

—pl - (13 23)+p22 21) +p(31 32)+p(33) <1

_ph - pga 23)+ (22 21)+p(31 ,32) pg321,33) _pgsés) <1

_pf p§123 23) | (22,21)_*_10(31,32)+ (31,33) <1

—pft - pglll 31)+p(22 21) +p§311 32)+p(31 33) g:;z) <1

—pt +p(22 21) (11 13)+ (31 33) ( )S 1

—pl +p§212 21) (11 13)+ (31 33) <1

—pt +p(22 21) p§121,13) +2p§321’33) — op§ (33) <1

= pl 4 pii ) - bt 4 oplY — pggéa) <1

A <

—pf +p5 + 5 <1

— Dy
-pf +py

(11,31) +p (22 21)

(22,21) 2p(31 ,33)

(11,13) +

+p(22 ,21) +2p (31,33) _9 §323) <1

33
- <1

31,33
sz <1
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0 < +p2o + p§ — ps
0 < +p22 +pf — pf
0 < +p22 +pf — pf
0 < +pa2 +pf — p¥
0 < +py2 +p5 —pi
0 < +p22 +p5 —pf
0 < +p22 +p§ — pf
0 < +po2 +p7 — P}
0 < +pas+pf —
0< +pa2+pf -

0 < +paa +p2 -
0 < +p22 +pE + py;
0 < +p2s + pE +p3;

0 < +pas + p¥ + pyy
0 < +p22 +p5 + p3;
0<+p22+p2 + pa1
0 < +pa +p2 + pai
0 < +pa2 +p% +py;
0 < +p22 + pf +p3y
0 < +p22 + p§ + 3y
0 < +pa2 +p% +pj,

0 < +p22 +p2 + P21

13,23 11,31 31,32 11,13
0<+P22+P2 +P§2 ) p( )+p§1 )_pg2 )

(13,23) 2p(11,13) _pgs) <1

0 < +p2o +p2 + D1
0 < +pa2 + 0k + pys
0 < +pa2 +pE + pis

0 < +p22 +pL + piy

(11,13)

0 < +pa +pL — P(lzl 13

(11,13)+ ga;,ss) <1

31,32 11,13
( ) sz )~

(22,21) (11 13) +p(31 33)

22,21 31,32 11,13
{ ) P§1 )—sz )

22,21 31,32 11,13
( ) p( ) —p§2 )

(13,23) 2p(n 113) p(a;,ss)

13,23 11,13 31,33 33
0 < +p2o + pk +pl57) — 2p501) 4 pEL3Y _ 530 <

13,23) 11,13 33
( p§2 ) —P§2 ) <1

+p(212’“1) +p (31 32) 5121,13) __pg:;s) <1

+p§12 ,21) +p(31 ,32) pg121,13) <1

+p(22 ,21) +pgs;1,32) _pg121,13) +pg:;1,33) _ 2p§323) <1
+p(22 21)+ (31,32) _ngQI,IB)_*_p(Bl ,33) pgzz) <1
+p(22 21) | 31,32) _pgz;s) <1

+p(22 ,21) +P§311 ,32) <1

£ 1 129 ) < 1

22,21 31,32 31,33 33
Bppi2?) g pl3h3) 4 g0 _ p88) <

<1

(11 13) +p(33) <1

)+p(31 33) gz;a) <1

(31,32) _ (11,13) p(31,33) <1

Py — P23
(31,33)+ (33) <1

0 < +paa + p¥ +p§11 ,32) (11,13) (33) <1

31,32 11,13
9 <

— P23 — P22

(22,21) _ (11,13) <1

(22,21) p(11 13)+p(33) <1

33
gz)Sl

) 31,33
(22,21) g121 13) +p§2 ) <1

31,33
—P§2 ) <1

_pggl,33)+pg323) < 1

(22,21) +p (31 32) pgl21,13) _pggz) <1
(22,21) +p(311 32) 5121,13) <1

33
21 _Pg:)) <1

22

(13,23) (11,13) <1

- 2p§3§3) <1
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0 < +p22 + pf
0 < +p2 + pf
0 < +p22 +pg
0 < +pas + pj
0 < +pa2 +p5
0 < +p22 +p§
0 < +p22 +p§
0 < +p22 +pg
0 < +p2 + pf
0 < +p22 +pf
0 < +p22 + pf
0 < +p22 +pf
0 < +p22 +pf
0 < +p22 + p¥
0 < +pa + pf
0 < +po2 + pf
0 < +p22 + pf
0 < +p22 +p2
0 < +p22 + pf
0 < +paz +pg
0 < +pa2 + P
0 < +pa2 +pf§
0 < +pa2 +py
0 < +p22 + p¥
0 < +p2 +P§'
0 < +p22 + pf

0 < +p2a + pf

0 < +pg2 + pF —

0 < +p2 +p1L

0 < +pog +pf —

+p(13 123) pé11,13)
13,23 (11,13
+ P( ) Pzz )
13,23 11,13
+P( ) ngI )

+p(13 23)+ (31,32)

<1

+p (31,33)

n p(31 33)

2p§33

<1

S <1

_ 2pg121,13)

31,33 33
g2 ) pg2 ) <1

+p§13 ,23) +p! 31.1 ,32) 2pg121,13) _pgl,ss) <1

+p(13 ,23) +p(311 32) _ o 2121,13) _ 2p§?;3) <1

+p§123 ,23) +p§31 32} §121,13) _pgz;s) <1

A 4 100 0 ¢
+p(13 ,23) +p (31,32) _ g121,13) _pgl,zs) <1

+p(13 ,23) +p(31 132) §121,13) _ 2p§?§3) <1

+p(ls ,23) p(31,32) —p;(3121’13) _ pg:;s) <1

+p2 +p(13 123) _ 5121,13) _ (31,33) <1

+p2 +p113 28y 2121,13) _p(31 ,33) + gzs) <1

+p2 +p113 ,23) 2135121,13) _pga) <1

+p2 +P§123 ,23) 210&121,13) <1

+p2 +p(13 ,23) +p§1 ,32) 2105121,13) _ 2pg351,33) <1
+p2 +p§123 ,23) +p(31 ,32) 2;Dg121,13) _2p§:;1,33) +p§§3) <1
+p2 +p§23 ,23) +p(31 ,32) 2p§;1,13) _pgl,sa) _pgz;s) <1
+p2 +p§23 ,23) +p(31 ,32) 2175121,13) _pgl,ss) <1

ol - Y <

+p1 pglll 31) (11,13) p(33 <1

+p1 pglll ,31) p(121 ,13) +p(31 ,33) ga;s) <1

+p pglll ,31) p(11 ,13) tp (31 33) < 1

+p1 pglll ,31) +p (31,32) g121 ,13) p£,321’33) <1
+p1 Pglll ,31) +p(31 32) 52121,13) pgl ,33) +p$3) <1
+p1 (11 31) " Sl 32) 5121,13) _pgszs) <1

11,31
+pft - P(1 )+P

11,13
sz <1

(31,32) _

_p(11,13)+p(33) <1

11,13 31,33
P 1 g

11,13
gz ) <1

33
52)51
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(11,13)

(31,33)

0< +pe2+pf —p1p” 7 +py 7 <1

0§+p22+pf p§121 ,13) +p (13 23) (121,13) _pgs;) <1

OS +p22+p{, pgl ,13) +p(13 ,23) p§121,13) S 1

0 S +p22+p1 pglzl ,13) +p(13?3) (11 13) +p(31 ,33) -9 21’53) _<_ 1

0< +P22+P1L _p(u ,13) +p§123 :23) (11 13) +p(31 ,33) pg:;s) <1

0< +p22+p{‘ _p§121 ,13) +p(13 :23) ?53) <1

0S +p22+p1L_p§121,13)+ (13,23) <1

05+p22+p{”— (11,13)+p(13 23)+ (31 33) 9 5323) <1

OS +p22+p1 pglzl ,13) +p13 23)+ (31 33) (:;3) Sl

0_<_+p22+p1 +p2 p§121 ,13) +p (13,23) B (11,13)_ (31,33) <1

OS +p22+p1L+p2 pglzl 13)+p(13 ,23) pgn 13) (31 33)+p(33) <1
OS +p22+p1L+p2 _ (11,13)+ (13,23) _pg121,13) _ng)S 1

0 < +paz + p¥ + pft — p{it1? +p(13 ) _ 1y g

0 < +2pss —plL+p2 —pl +p§121 ,13) +pg212,21) +p(311,32) _p5121,13) _p§323) <1
0 < +2pas — pf +p§ — pl + pG™Y +p30 + p{Y - ) <1

0< +2p22—pf’+p2 _pf +p(u 13)+ (22,21)+ (31,32) _pg121,13)+ (31,33)

0 < +2py2 — pf +p§ — P} +P(21 ) +P(22 2y +p(31 B2 plytY) +p(31 /33)
0 < +2pyg — pt +p(22 ,21) +p$l’33) -—p2323) <1

0 < +2pyy — pk + {22 4 p313%) <

0 < +2pyy — plt + {21 4 9p313) _ 95039 <1

0 < +2p2g — plt +p52 +2p5H" - pY) <1

0 < +2ps2 — p3 +P5212 21 +p(31 32) _ ‘;3) <1

0 < +2pgs — pt + p2*Y 4 33D <1

0 < +2ps2 —py +P§22 21 +P§311 32) +pg31 38 _ :(2323) <1

0 < +2pay — pft 4 p{Z22) 4 p3132) | 6139 69)

0 < +2pas + p153%) — pEtY — p38) <1

0 < +2ps +p( $23) _ (11 13) <1

0< +2p22+p§123 ,28) g]él,lii) +p (31,33) — 2 (33) <1

0 < +2pay + {323 _ p{1113) | (61.33) pgss) <1

0 < +2pg +p§23 123) +p (31 32) _ (121,13) _pgsgl,ss) _pgg) <1

- 2p§3£3) <1
p§323) <1
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0 < +2p9s + pis

0 < +2pos + pﬁs 23)

(13,23)

+ Py

O < +2p22 +p +p2

0 < +2pas + p¥ — pf +p3;

0§+2p22+p§—p2 + Py

0 < +2p2 + pf — pf + 3y

0 < +2py +p¥ — pff + py;

0 < +2pas + p —

0 < +2p32 + p¥ — pft + p3;

0 < +2pss + pk — p + pf;

0§+2p22+p2L—p2 + D51

13,23
+ 52 )

tp (13,23)

0 < +2p22 + p¥

0 < +2pa +sz

13,23
+ sz )

13,23
+ P§2 )

13,23
+ pgz )

13,23
+P§2 )

(13 23)

0 < +2py3 +py
0 < +2p22 +p§
0 < +2py2 +py
0 < +2py2 + p¥

0< +2p2 +pk+p

(13 2)
12

11,13)
sz

0 < +2ps2 + p¥ + py5
0 < +2py + pf —

0 < +2psy + pf — piy

(13.29) | 01.32) _
(31 32)
(31,32) _
(22,21)
(22,21)
(22,21)
(22,21) _
pE+p55 4
(22,21)
(22.21) |

(22,21)

= 2p5y

+ DPa
+ Pa1

+p
(11,13)+ (13,23) _

11,13 31,33
gQ ) —p( )

22 <1

A Y <1

(11,13) _ (33) <1

p(u 13)+ (31 33) (33) <1

(11 13) +p (31 33) <1

<1

<1

(121,13) + 2p§ (31,33 —2p§?§3)

(31 33)
D22

(11,13)
— P22

(11,13)

11,13 33
( ) pgz )

+ 2p

(31 32) _ pg:;s) <1

31,32
+ Pgl ) -

(31,32)

<1

(11,13 (31 33)

— D2 ) + P
11,13 31,33
(2 ) +sz )

<1

2p§323)

31,32
+p§ -

2105121,13) _

- pg‘qés) <1

p(33)

27 <1

(11,13) <1

2p(u 13) pzil 33)

11,13) 31,33
—2p{ptt 4 plHY)

- 2pf) <1

33
Pg2 b <1

(31.32) _ %1,13) _pgl,ss) _pggéa) <1

p(31,32) _ 2p(11,13)

22

_ pgl’%) <1
- 2p§§3) <1

(31,32) _ 2105121,13)

(31,32) _9 %1,13) —p$3) <1

- p5”

11,13
sz <1

(13 23)

(11,13)
12 P22

<1

0< +2p22+p{‘ (11 13) +p§123 23) (11,13)+ §31,33) —2p§323) <1

0 < +2ps + Pl — p§121 13)+p§123 23) (11 13) + (31 33) (33) <1

0 < +pa1 — 2pas — p§123 ,23) pglll 81) g22 21)+P§1l 32)+2 (11 13)+ (33) <1

0 < +pa1 — 2paz + pl — pglll 31 (31 32) +p(11 ,13) pggl,as) i g:és) <1

0 < +pa1 — 2pas + Y — p§123 ,23) (11,31)+ (22’21)—*-;05311’32)+p§121’13)+pg323) <1
0 < +p21 — 2p22 +P2 +p2 - Pglll Y + 231 D - (31’33) +p§?§3) <1

0 < +pa1 — pas _pl + 12 ,21) +p(31 ,32) +p(11 ,13) <1

0 < +po1 — pas — R p§123 ,23) pgl11 31)+ (22 21)+p(31 32)_1_2 (11 13)+p(31 ,33) <1
0 < +p21 — pas p§123 23) g111,31)+p§212,21)+pg?;1,32)_*_pg}zl,w) +p§323) <1
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OS+p21 — Poo _p(13,23) _p(11,31)+ (22,21) +p:(231‘1,32)+2p§121,13)+p§323) —<_ 1
0S +p21 — P22 _p§123 ,23) +p5212 ,21) +p(11 13)+p2323) S 1

0 < +Po1 — Pag — p§123 ,23) +pé212 ,21) +p§121 ,13) + 2p(33) < 1

0 < +po1 — pas _p§123 ,23) +p§212 ,21) +1)221 ,13) +p 31 ,33) <1

0 < +po1 - pas _pgz ,23) _|_p5212 21) | (11,13) + 31,33) +p§323) <1

0 < +po1 — pas —p§123 ,23) +pgzl2 ,21) +pgl1 ,32) +p (11 13) (31,33) +p§323) <1
0 < +Po1 — pas — p 123 ,23) +p(z2 ,21) + g 11 ,32) +p(u ,13) pgl 33) 2p$3) <1

0 < +po1 — p22—p1123 23)+p(22 21)+p(31 32)+ (11 13) <1

13,23 22,21 31,32 11,13 33
0 < +po1 —p22 — P§2 )+Pgl )+Pg1 )+Pg2 )+Pg ) <1

0 < +p21 — paa — (11)31) +p (31,32) +p(11’13) <1

0 < +pa1 —po2 — 11 31) +p (22 2 +p(31 /32) +p(11 ,13) <1
11,31 31,32 31’33 33

0 < +p21 —p22 +P2 pgl ) +p( ) _ ( ) p§2 ) <1

(11,31 31,32 11,13 31,33 33
0 < +pa1 — paz + ¥ P21 )+pg1 )+P§2 ) gz )+p§2)§1

31,33 3
0 < +pa1 — pa2 + P& — szl )+ g23) <1
(33) <1

31,33
0 < +p21 — paz + p§ — Pg2 it 2ps5

0 < +pa —po2 +pR < 1

33
0 < +pa1 — paz + P +P( )<1

0 < +p21 — paz + P& +P§31 32) 2p(31 ,33) +p§323) <1

31,32 31,33 33
0 < +p21 — paz + pi +p§113) 521 )+2p§22)§1

31,32 31,33
0 < +p21 — pa2 + p& +p(1 ) pgz ) <1

32 , 33
0 < +p21 — pa +p2 +p(31 ) gzl 39) +p§2 ) <1

13, 23 11,31 31,32 31,33
0 < +pa1 — paz + Py +P( 51 )+p§1 )—Péz ) <1

11,31 31,32 11,13
0 < +pa1 — po + pt — 252 4 pED) 4 g0 <

2 31,32
0 < +p21 — pa2 +p& —pf ‘HD(212 1)+ ( )<1

0 < +pas —p22+p2L—p2 p§123 23) (11 31)+p(22 21)+p(31 ,32) +p(n 13)+ (31 33) <1

0 < +par —p22+p2L—p§123’23 _ (11’31)+p.(22’21)+p(31’32)+p(33) <1

0 < +pas —p22+p§’—p;(l123’23) (11 31)+ (22 21)+ (31 32) _,_p(u ,13) +p(33) <1

)

11,31 31,32
0 < +p21 ~p22 + 03 —p§1 )+p§1 ) <1

11,31 22,21 31,32
Pg1 )+( )+pg1 )Sl

)

0 < +pa1 —pa2 +p3 —

31,32 1,13 31 33 33
0 < +p21 ~ p22 + p¥ +pF - pélll o +P§11 ) —p§12 )~ ( )+P( ) <1
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0 < +pa1 — paz + p¥ + pf — pyy )+p2
0 < +pa1 — pa2 + pL + pft + Py
0 < 4p21 — pao +p2 +p1 2p21

3 31,3 , 33
(11,31 (31,32) g321 33)_|_pg2)S 1
(13,23) (11,31) +p (31,32) _p§121,13) —p%l’%) <1
11,31) +p (31 32) <1

(22,21) (31,32) <1

0 < +par — PR+ 51

0 < +po — p + p2> 21)+p§311 32) | plli9) <

0 < +pn —pf + Pgll AU i <1

0<+pa—m ‘f‘pgll o +p(22 2 +P(33) <1

0 < +pa1 — plt + 500 4+ p22) 1Y - plY <1

0 < +pa —pf + 95" 4P 405 <1

0 < +pa1 — plt+pSit™ 4+ pi2 4 ph3D 15 <1

0 < £poy — plt 4 pSY) 4 p2220) 4 G132 _ (o1, ) 4 p9) <

0 < +par - pft + 95" +p§f g ply pé”’ <1

0 < +pa — pi +p§111 R |

0 < tpan — plt — pA329) _ 130 | (22, 2) | B8 | 1) L 6139)
0< +po — ! —p§123 23) _(11,31) (22 21)+p(31 32) | gp(1bid) 4 (321,33) <1
0 < +po1 — p§123 23)+ 222 21)+p5121 13)+p2-31’33) <1
0S+;D21—pR— (13:20) | (z221) (11, 19) 4 139 4 09 < g

0 < +pa; — ph _p§123 23)+p(22 21)+pgu 13)+2p(31 ,33) pgSQB) <1

0 < 4pyr = pf — pll339) 4 p2221) | (133) 4 o (139 <

0 < poy — pft — p329) | 2220 | (0032) o ( (11 1) ¢

0 < +pa — pft — p329) | @220 | (613) +p(11,13) 3 <1

0 < +por — pft — pll3) 4 p2221) 4 (17 | 1119) +pg31 ) _ 89 <
0 < pyr — pk — L2 4 p2221) +p(231 ) | 13 | 6199)

0 < +por — plt _pglll 81) | (22 21)+ (31 32)+ (11 13)+ (31 33) pg:;s) <1
0< +py —p (13,23) _p(n 31)+p(22 21)+pg?il’32)+p2121’13)+p(23§3) <1

0< +pos — pélll 31)+ (31,32) <1

0L +pa1 — pglll 31)

+p (31 32) +p§121 ,13) <1

0 < +pa — o5 4 p (22 2) | pBL82) < 1
0 < +por — piy er(22 2 B8 it <1

0<+p2 <1
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0< +par +9570 <1

0 < +po +p(31 ,33)

0 < +par + 55

0 < +pa +P§?il 32)

0< +p21+p§31 132)

0<+p21+p(31 ,32)

0 < +pa: +P§?il 32)

0<+p21+p(22 ,21)

0 < +pn +P§i2 21)

0 <+p21+p(22 ,21)

0 < +pa +p§12’21)

0<+p2 +p222 21)

0 < +poy +p5212 21

0<+p21+p(22 21)

22,2
0 < +pa1 +Pé1 Y

0< +p21+P(13 ,23)
0<+pa+ps—p
0<+p21+p2 +p
0<-+pay +p5+p
0< +pa +pf+p
0<+;D21+;D2 +p
0< +pa +p5 +p
0 < +par + P8 +ppy
0<+pu +pf+p
0< +pn +p8+p
0 < +pa + pE + pis
0<+p21+p2 +p

0 < +p21 + pf — 2py,
0 < +par +P1 2pyy

0§+p21+p1 —-p

pg;?') <1

<1
31,33
pgzl ) <1

pg321,33) +p(33) < 1
pggzs) <1
<1

<1

') <1
+p(31 ,33) pgs:& <1
+p(31 ,33) <1

31,32 31,33
( Pg2 ) <1

+pg’11 ,32) p(31 33)+ (33) <1

+p (31,32 63 < 1

— Do
+p§3113 ¥<1

11,31)

Pg1 )+ 2
(11,31) (31,32) B
21 P21
13,23 11,31 31,32 11,13
(2 = (1 )’*‘Pf(n )—P§2 )
13,23 11,31 31,32
§2 ) - (1 ) +p§1 )
(13,23) _ (11,13) _
12 22
13,23 11,13
gz ) P(z ) -
(13,23) (11,13)
12 D22

(13,23) _ (11,13) <1

(31,32) p§323) <1

P+ <1

—p{Lsd) <
— i <1

(31,33) <1

(31 3) 4 (33) <1

—pfzg) <1

(13,23) (31 32) (11,13)
P32

(31,33)
12 + P —2p <1

3,23 31,32 11,13 31,33 33
(s | e o )_2p< ) <1
13,23 31,32 11,13 31,33 33
{ )+p§1 )—pg2 )—sz )_sz)fl
13,23 31,32 11,13 31,33
gz )+Pgl )‘Péfz )"Pg2 )Sl

(11,31) +p§:i1,32) <1
11,31 31,32 11,13
( )+pg1 )+Pg2 )Sl

§111 ,31) <1
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0§+p21+p{2— (11,31)+ (33) <1

0< +Do1 +p1 _pglll 31)+ (31 33) png) _1

0§+p21+p1 _pg11131 +p (3133 <1

0 < +po1 + pft — pUAY 4+ p13D _ 53138 < 1

11,31) 31,32 31,33 33
0 < +p2; + pF P§1 + ( )~ gQ )‘*'sz)gl

i,
0 < +par +pf —pi"* 4 p ( L3 _p89) <1

0 < +p2; +pft ~ Pgil A1 +P§11 32) <1

0 < +po1 +pk — pft 4 pi222) 4 p(3152) _ p(1113) <4

0 < +po1 +pk — pf 4+ p222) 4 p3152) < g

0 < +po1 + pb — pB pgz 23) (11,31)+ (22,21) (31 32)+ (31 33) <1

0< +pa +pk — pht pglgs ,23) pn ,31) +p (22 21)+p(31 39)+pg11 ,13) +pg§21,33) <1

11,31 22, 21 31,32 31,33 33
0 < +por +pk — plt — p*Y + +p( DG Y <1

0 < +pay +p2L—p1123’23) _p(u 31)+p(22 21)+p(31 ,32) +p(§)3) <1

OS +p21+p§_ (11,31) +pgil,32) _p§121,13) < 1

0§+p21+p2 p(lll 31)+p(31,32) <1

0 < +pa +pk — pglll 131) +p(22 ,21) +p(31 32) 5121 ,13) <1

0 < +por +pk — pg1l1 31)+ (22 21)+ (31 32) <1

13,23 11,31) 31,32 11,13 33
0 < +po1 +p¥ +P( ) P§1 + gl )—p§2 )~ ( )<1

11,31 31,32 11,13 31,33 33
0 < +pa1 + p% + pf —Pgl )'*'Pg ) Pg- ) gz )+P§2)S1

13,23 11,31 31,32 11,13 31,33
0 < +po1 + pt + pf +p§ ’ - gl )+p§1 )_Qsz )_sz )51

13,23 11,31 31,32 11,13 31,33
0 < +pa1 +pf + pf +P§ ) Pg1 )+pgl )—p§2 )—Pg2 )51

0 < +par +p¥ + pft — 2p (11,31) p(31,32)_ (11,13) <1

0S+p21+p2L+pf (11 31)+ (31 32) <1

0<+p21+p22_p1 +p(22 21)+p(31 ,32) <1

13,23 11,31 22,21) 31,32) 11,13 31,33
0 < +p21 +po2 — pf - P§2 ) Pgl )+P( +P( +p§2 )+p§2 )Sl

0 < +pa1 + pas — pl. _pglll 31) (22,21)+ (31,32)+ (31,33)_ g33) <1

0 < +par + pas — pl _pglll ,31) +p22 ,21) +p(31 ,32) +p(u ,13) +p31 33) gs;s) <1

0S +Do1 + paz — ph +p(22 21)+ (31,33) _ (33) S 1

0 € +p21 +pa2 — p3 +p§ 2.21) +p(31 ) <1

0 < +p21 + Pag — pl +pg22 ,21) + 2p(?;l ,33) é323) < 1
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0 < +po1 + paz — Pl +P§212 21) +2p§31 ,33) pgs) <1

0 < +po1 + P22 — P +pg212 2 4 (31,32) 3 (33) <1

0 < +po1 +p22 — 3 +p§12 21 +p (31 52) <1

0 < +pa1 + pag — pl +pé212 ,21) +p(31 32) (31,33 2pgss) <1

0 < +po1 + oo — Pl +p222 ,21) +p(31 32)+p(31 33) §323) <1

0 < +par +p2z — i + P51 <1

0 < +p21 + D22 —Pgl11 o +p (22’21) +p.(31’32) <1

0< +po1 + pos +p( 3,23) (11 31) +p (31 32) pg121,13) _pgzs) <1

0 < +pas +p22+p(13 23) p(u 31)+p(31 ,32) pg:;s) <1

0 < +po1 + Pas +p(13 23) g121,13) _pg;s) <1

0< +p21+p22+p§13 23) (11,13) <1

0 < +pas +p22+p(13,_3) p(n 13) +p(al 33) _ g 5323) <1

0< +1321_1_})224_17( 3,23) (11,13) +p(31 ,33) pSB) <1

0 < +por + Pas +p(ls ,23) +p£1 32) 2121,13) _ 531,33) —p§323) <1

0 < +por + Pas +p( 3,23) -I-pé?l 32) élzl ,13) pgzl,ss) <1

0 < +pay +p22+p(13’“3>+ g:;1,32) _ g;l,lii)_ngl;ﬁ) <1

0< +p21+p22+p§13 23) (31,32) _ 5121,13) _p§323) <1

0 < +po1 + P22 +p2 +p§123 23) (11,31) :I- (31,32) _pg121,13) _p§321,33) <1

0 < +pa1 + paz + pF = 2p5% 4 p (31 ) <1

0 < +po1 + Pas +p2L _pf +p(22 21) 31,32) _pgl;,m) <1

0 < +pa + paz + 0k — pf — p5*) péﬁl A0 4 pl )y pD 4 5 <
0 < +pa1 + paz + P — pgl ,31) +p (22 21) -I-p (31,32) (11,13) +p (31,33) _pgeés)
0 < +pas +p22+p5‘—p2 pg1 31)+ glz 21)+ (31 32) +p(sl ,33) pg?éa) <1
0 < +pat +paa + 0§ — Pl +pf P - plY <1

0 < +por + pas + ph — LD 4 220 | pE132) (L1

0 < +po1 +pos + P54 p (13,23) _pg111,31 +p(31,32) _9 2121,13) _p(;;z) <1
0§+p21+p22+p2[“+pgg \23) (11,31)+ g?il ,32) p§121,13)_p§?53) <1

0< +p21+p22+p2L+p2 +p(13 ,23) p(n ,31) +p (31 32) —2p§121’13) . gzl,&'s) <1
0 < +p21 + P + pL + pf — 2p (11,31) (31,32) _ (11,13) <1

0 < +p21 + 2p22 — D _pglll 31) +p(22,21) +p(31 32)+ (31 33) pé:}zz) <1

<1
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(13,23) (11 31) +p§31 32) (11,13) _ (33) <1

0 < +p21 + 2p22 + Py Dao

0 < +p21 + 2p2o + pk — pf - (11,31) +p(22 21) +p (31 32) p(121 13) +pg§)1 33) (323) <1
O < +p21 +2p22 +p2 +p(13 23 p(lll 31) +pg3il,32) _ 2pgl21,13) _pg323) S 1

0 < +2pn _p22_p§123 23) (11,31 i (22,21)+p§3£1,32)+pg;1,13)+pg323) <1

(11, 31)

0 < +2py1 — p22 + PR — Py +P(31 42 p§321,33) +sz3) <1
0 S +2p21 pl +p512 21) + (31,32) < 1

0 < +2par — plt — p§123 23) (11 31)+p(22 21)+ (31 32) p§121’13)+p§321’33) <1

0 < +2p; — pélll /31) +p§311‘32) <1

0 < +2pgy — pg111 31)+p(22’21)+pg1’32) <1

23 3 31,32 11,13 31,33
(13,23) _ (111 1)_|_pgll )_p( ) ( )Sl

0 < +2ps1 + pf +P1 29 ~ P22

0 <+2pa +pft - 2p(11 31)+ (31,32) <1

0 S +2p21 + pao _p2 p2111 31) +p(22 ,21) +p(31 ,32) +p(31 ,33) (323) S 1

0< +2p21+p22+p§123 ,23) p§11’31)+p(31’32) _pg121,13)_ (33) <1

(11,13) pga,za)_{_ glz 21) +p (31 32)+ 11 ,13) <1

3 13,20 22,21 31,32 11,13 33
0 < +pia — po2 — pF + pk — pf +P§1211) ( )+Pg1 )+P21 )+p§2 )+Pg2)§1

22.2 31,32 31,33 33
0 < +p12 — pas — pF + p& + pi22®W) 4 p(3132) _ pBLI9) 4 508 <

22,2 ,
0 < +p12 — paa — p¥ +p& + p22? 4 132 <1

(13 23) +p (22 21)

0 < +p12 —pa2 —pt +p% — p2 + P1o

(11 13) (31,33) <1

+ 2p; + Doy

0 < +pi1a — pa2 — Py —

0 < +p12 — pas — pli — p§123 ,23) +p(22,z>1 n 2p(u ,13) +p(31 ,33) +p(33 <1
0 < +p1o — pas — plt — p§123 ,23) +p (22,21) +p (31,32) +2p (11,13) <1
0 < +p12 — pog — plf — p§123 ,23) +p(22,21) +p(31 32) | 2% 91 ,13) +p (33) <1

(11,13 (11,13) +pg323) <1

0 < +p12 —p22 — Pi> )+P +P

0 < +p12 — poy — P 4 p(2220) 4 SLIS) | p(8L33) g

3 222 31,32 11,13 31,33 33
OS+P12—P22—P§1211) ( 1)+P( )+sz ) Pg; )+p§2)§1

0 < +p1a — paa — p§121 13) (22 21)+p(31 32)+pg121,13) <1

(11,13) <1

(22,21)

0 < +p12 — p22 + Py

0< +p12 — P22 +P§121 %) +p (33) <1

0< +p12—p22+pggl 32)+ (11,13) B (31,33) <1

3 31,33 33
0 < 4+p12 — D22 +p§‘°i1 52) +p$}1 13) P(gl ) +Pg2 ) <1

11,13 13,23 31,33 33
0 < +p12 — paz + p — plAH1S) 4 p{L328) _ p3LS8) | p89) <1
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0 < +piz — pao + 0 — p(5HY + 1 <1

0< +p12—p22+p2 pglzl 13)+ (13,23) +p (31,32) 2p(31 33)+pgz) <1
0 < +Pr1a — pas +p2 p§121 ,13) +p5123 ,23) +p$l ,32) pg31 ,33) <1

0 S _+_p12 — pao +p2 _ R p§123 ,23) +p5212,21) _l_p(ll ,13) +pg351,33) _<_ 1

0 < +p1z — pas +pb — pg123 123) +p (22,21) +10(11,13) +p.(31’33) +p (33) <1
0 < +p12 — pos +p5 — pf — p§123 ) 4 (22 21) +p (31,82) gn 18

0 < +piz — pa2 +p§ — pf —ply"*? +p(22’2l) I i
0 < +p12 — o + pk — plib1D) 4 p222D) 4 5089 4

0 < +p1a — paz + pk — piH*¥ +p(22 21) +pgs1 3) <1

0 < 4p1a — poz +p¥ — p§121 13) +p§212 21) +p§311’32) pgl 33) +p(33) <1

0 < +p1a — paz + pk — pgl 13 g (22 21) +p§3{1’32) <1

0<+piz—p+pF <1

0 < +p1o — pa + 0¥ +983¥ < 1

0 < +p12 — P2z + p¥ +P§3i1 32) pgsél,gg) <1

0 < +p1a — pos +pF + P — pEH3) 4 i3 <1

0 < +p1a — pos + pb + pft — LIS 4 pl15:29) _ p5121,13) _p(3L3 4 69

0 g +p12 — Pa22 +p2L +p2 _ (11,13) +p§123,23) _pg121,13) <1

(11 13) (13,23)_|_p(31,32) _,(11,13) —%p (31 33)+p(33) <1

0 < +p12 — pa2 + p + pf — pis Do
11,13 (13,23) 31 32) 11,13 31,33
0 < +p12 — pa2 + py + ¥ P§2 )+P + ( ng ) ng ) <1

0 < +prz — pag + pk — plLb1® 4 pILI3) <

0 < +pi2 —po2 +pF — Pglzl 19) +p (11’13) +P-(33) <1

(11, 13) (13,23) p(31 ,33) +p (33) <1

0 < +pi12 — po2 + X + P8 — 2pi, + D15
13 13,23
0 < +p12 — po2 + pf +pt — 2105121 )+ ¢ )<1
22,21 31,32
0 < +p12 —pf +p5 —p} +P51 )+P§ )<1

22,21 31,32
0§+p12—pf+p2 —pf + P57 ) 4 )

11,13 13,23 22 21 31,32
0 < +p12 — p{ + pf — Pl +p§z ) P(z )+p( +( ) <1

0 < +pra — p¥ + pb — pl +p§121 13) (13,23)+ (22,21)+ (31 32)+p(33 <1

11,13
0 < +p12 — pF + 0¥ - pf +p§o )+p21

11,13 22,21 31,32
0 < +pi2 —pf +p% —pk +P§2 )+P(1 )+P§1 )Sl

22,21 31,32 31,33 33
{ )+P~§1 )“P§2 )+pgz)§1

(31,33) p§323) <1

(22,21) +pg?i1,32) _pg2 ) <1

0 < +p12 — pf + % +p3
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0 < +pi1g — pF + pf +p21

0< +pa—pf—p
0< +p2—pft—p
0<+p2—pf—p
0<+pi2—ps—p
0< +pi2—pf—»p
0<+p2—pi —p
0< +p12 —pff -
0<+pi2—pf—p
0<+pi2 —pi+p
0< +p12 —pi +p
0< +pi2 —pf+vp
0< +p12 —pf+p

(2221) (31 2) <1
11,13)
52 +p

§121 ,13) +p(22 ,21) +p (11 13) 2p(31 33)

11,13) 31,32 11,13
§2 +pg1 )‘*'P( ) <1

5121 ,13) +p§22 ,21) +p (31 32) +p(n ,13) +p(31 33)

(13,23)+ (22 21)+pg11 13)+p(31 ,33) <1

(22, 91) (11,13)+ (31,33) <1

+p(22 ,21)

33
P8 <1

5123 ,23) +p (22,21) _i_pgu ,13) +p(31 33) o (3;3) <1
(13,23)_+_p(22,21) +p§11 32) (11,13) <1

§123 ,23) +p§212 ,21) +p§?i1 ,32) +p(11 ,13) +p(33) <1
ézlz ,21) _*_p%l 13) 5321 ,33) pg?,) <1

g212 ,21) +p§11 ,13) +p§31’33) <1

22,21) 1,32
gl +Pg1 )+p

5212 21)+p(31’32) +p (11,13) <1

+ P2

11,13 33
(aL13) _ 63

(22,21) +p(u 13)+ (33) <1

22
(22,21) (31 33) <1

e +p (11 13)+p
+p(22 ,21) +p(31 ,32) +p(11 13)

(31,32) pgl21,13) <1

22,21
+ 022 4 pl
+pip? <1

+p (13,23) (31,33) (33) <1

+ Doy~ Pao
+p(13 23) +p(31,32) _ (:;1,33) <1

13,23 31,32 33
+P§2 )+pg1 ) P(z) <1

) <

p(321 ,33) +p(33) <1

—pgs) <1
<1

31,32 31,33
P < -

(31 33)

33
P < 1

0 < +prz — pll1?
0< +p12 —p§121 19
0< +p12 — p§121 1)
0<+p12 - pﬁl 9
0 < +piz — pis
0 < +piz — piy
0 < +p12 — pis""Y
0 < +pr2 - piY
0<+4p2 <1

0 < +p12 +p(33) <1
0 < +pra + p2132
0 < +p1p + 13D
0 < +prs + pL2
0 < +p12 + p{p >
0 < +p1a + {32
0 < +p1s + 5

0 < +po +p2 -P

+p (31 32) <1

(11,13 (31 33)

13,23
o )+p( ) _

+p(33) <1

33
o3 <1

(31 33) +p(sz) <1
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0 < +p12 + pf
0 < +pia +pf -

0< +p2 +pF -

0 < +p12 + p¥
0 < +pi2 + p¥
0 < +p12 +p¥
0 < +p12 + P
0 < +p12 + p¥
0 < +p12 + p¥
0 < +p12 + P
0 < +py2 + P
0 < +p12 + P
0 < +p12 + P
0< +p12 +p¥
0 < +p12 + p¥

0 < +pia + 05 —

0 < +pi2+pk -

t'*

0< +p12 +p5 —
0 < +p12 + pk

0 < +p12 +P2L—

0< +pia+p% -
0 < +piz +pk -

0 < +pi2 +p% —p;

L

0 < 4+pi2+p3 —

0< +p12 +pF —
0 < +p1z +p5
0 < +p12 + py
0< +p12 +py
0 < +pi2 +p2
0 < +p12 +pk

(11, 13)+ (13,23) <1

— P12

p§121 13)+ (13 23)+p(31 32) _ o 5321’33)+p§;3) <1

p(121 13)+ 13 23)+ (31 32) (31,33) <1
_pf p§121 13)+p(29 21)+ (31 33) <1
_pt —p%l ,13) +p§212 21) 4 g §321 ,33) pg;) <1
_pl - p§121 13)+ (22 21)+p§31 ,32) <1
_pl p(121 13)+p(22 ,21) +p§2{1 32)+p§321’33) _pg:;s) <1
—pR— pggz 23)+p(22 21)+p§31’33) <1
_pB p%s 23)+ (22 21) +p (31 33)+p(33) <1
—pf p§123 23)+pg_12,21) +pgl,s’z) <1
—ph pglzs 23) | (212’21)+p§?il’32)+p$3) <1
_pt +pgzlz 21) | (31,33)_ (33) <1
_pf +pg1221)+p(31 ,33) <1

(22,21)

31,32 33
-pf+py +P( )~ §2)§1

22,21 31,32
—p2+p( )+ (1 )Sl

11,13 22,21 33
p( )+Pg1 )+Pg2)§1

p%l 13)+p(22’21)+ (31,33) <1

(11 13) +p(22 ,21) +p(zi1 ,32) p(31 ,33) +p(33) <1
_pg121 ,13) +p5212 ,21) pg?il,sz) <1
(11,13) +p(13,23) _ (11,13) <1
(11 13) +p(13 23) (11 13) +p(31 33) g323) <1
p§121 ,13) +p§123’23) +p (31,32) _pglzl,ls) _pg321,33) <1
(121,13) +p§123’23) +p(31 32) 5121,13) _pg?és) <1
(11,13) <1
pg121 ,13) +p(33) <1
+pg?i1 ,32) pg11,13) _ (31,33) <1
+p§311 ,32) pgl; ,13) p(31 ,33) +p(33) <1
+p(123 23) g121,13) _pgeés) <1
+p(13 ,28) g121,13) < 1

13,23 31,32 11,13 31,33 33
+p§2 )+p§1 )—péz )—p§2 )—péz)sl
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(13,23) (31,32) _ (11,13) _ pB3133)

0 < +p12 + 0¥ + 115 o
0 < +p12 +pf +pf - p%l 13) +p{i29 _ pate) _ 18 4 p0 <1

0 < +pis +p +pf - pl + 50 - Y <1

0 < +pi2 +p5 +p - p1121 1) +p§13 %) +pgl 42) Pf(z%)l 18) 2pg:;1,33) _i_pé:;s) <1
0 < +pis +pb +pF — pL1D 1 p (13.23) | (31,52) p{iL1) — P <

0 < +p12 +pf _ (11,13) (13,23) <1

0 < +p12 +pf — (“ ¥ +10§13 28 4 p3tss) _ 38 <1

0< +pi2 +pf —pﬁ»m) <1

0 < 4p1p +pb — il 1 pE9) < 1

0 S +p12+p{, _p(ll ,13) +p(13 23) (323) S 1

11,13)
0 < +pi2 +pf p§2 +

2p (11,13 +p§123’23) (31 33) +p(33) <1

(13 23) <1

0 < +pi2 +pF +pf -

3 3,23
0 < +p1a +pF +pft - 51211)+(1 V<1

22, 31,32
0 < +pi2+pa2 —pf + 05 — 3 ‘*‘Pgl 21)+p( 3)<1

(22,21) (31,32) (31,33) _ (33) <1

0 < +p12 +po2 —pF +pf — pf + 13 + Doy’
11,13 22 21 31,32 11,13 33
0 < +p12 + paz — p¥ + pk — p¥ +p§2 )+ ( )+P( ) sz )~ (2)31

11,13
0< +p12 + P22 —pf+P2 - D3 +P§2 )

(11,13) (22,21)+p(11,13) +p§321’33) <1

+p (22 21)+p(31 ,32) pg121,13) <1

0 < +p12 + p22 — Py — P12 22

Pk (11,13) , (22,21) , (11,13) (31,33) (33) o
0 < +p12 +p22 — P35 — Piy + D) +p5y 7+ 2py —- Py <1
0 < +p1s + pas — plt — p§121 13) +p(22 21) +pg31 ,32) +p(11 ,13) <1

(11,13)+ (22 21)+p(31 32)+p(11 13)+p(31 ,33) p(zs) <1

0 < +pi2 +pa2 —pF — 22

0 < 4p12 +p22 —ps +p§212 2 + D3y

(22,21) + (31,33) <1

(31 33) p(2) <1

0 < +p12 + pa2 — pY +p3y

22,21 31,32 33
0 < +p12 +p22 — P +P§1 )+Pg1 )~ 52)51

0< +p12 +p22 — P +P§212 2 4p (31’32) <1

1
0 < +p1z2 +p22 — p%l 3 + pig

0 < +p12 +p22 — pﬁl 19 +p (13 29) +p (31.23) _ (353) <1

(11 13) +p (13,23) +p (31,32) _pgl,as) <1

(13,23) <1

0 < +p12 +p22 —

0< +pr2+p22 — p?gl 19 4 p (13 %) + P31

(13,23) _ (121,13) _pg&;s) <1

(31,32) pg?;s) <1

0 < +p12 + p22 + D1y
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(13,23) (11,13) <1

0 < +p12 + p22 + Py —pbh
0 < 4pia + g+ Y <Y ) ) <1
0 < +p1a + oo +p(13 ,23) +p(31 ,32) p§121,13) _pg31,33) <1

0 < +p12 + poz + pk — p — p§121 113) +p (22,21) +p§21 ,33) <1

0 < +pi2 + paz + p5 — pf - pglol M 4 p + 2p; (31 ® szs) <1

11,13 22,21 31,32
0 < +p12 + pa2 + ¥ — pf — PEQ )+ + Dy )+Pg1 ) <1

2
0S +p12+p22+p%_p2 p§121 13)+ (22,21)+ .(31,3)

22,21 11,13 31,33 33
0 < +p12 + p2z + Pk — pF + P57V —ply" ) plY -p) <1

22 ,21)

31,33 33)
+ Y —ply) <1

0 < 412 + oo + pk — plt + 220 — pi119) 4 6L <
0 < +pra + paa + pk — p + pi222) 4 pl3b 82 _ L) _ P89 <1
0 < 4+p12 + paz + pk — pt + p{32) 4 L 32) _ pb18)

0 < 4p12 + p22 +p2L _ (11,13) +p§13 28) (11,13) <1

OS +p12+p22+p§ p§121 13)+p(13 ,23) p(ll 13)+p(31 33) gI;B) S 1

L (11,13) +p(13 ,23) +p(31,32) (11,13) _ g321,33) <1

0 < +p12 + P22 + 03 21 Das
11,13 13,23 31,32 11,13 33
0 < +p12 + P22 +p5 — pgz )+P( )+p§1 - gz )—p§2)§1
3,23 11,13 33
0§+p12+p22+p§+p(1 - gz )—ng)Sl

t~

0_<_+p12+p22+p2 +p13 ,23) -9 §121,13) Sl

t~

(13,23) | (31,32) _9 5121,13) _ pg:;1,33) (33) <1

0 < +p12 + P22 +p3 +p13° — D3
13,23) 31,32 11,13 31,33
OS+P12+P22+P2L+P( +P( - gz )—p§2 )51

0 < +pi2 + pa2 +pF - 210&121’13) (13’23) <1

0< +p12+p22+p1L—2 (11,13) (13 23)+p(31 33) 2323) <1

3 11,13 33
0 < +pia +p22 +pf — (11 13) +P(1 28) ng ) —ng ) <1

13,23 11,13
0 < +pi2 + pa2 + pf — p§12113)+ ( )—ng I)Sl

22,21 31,32
0 < +2p12 — p¥ + pf — pj +P( )+Pgl )51

0 < +2p1s — pl — p§121 13)+p(22,21)+p(11,13) +p(31’33) <1
0< +2p1s — p& _p§121 13)+ (22 21)+p(31 ,32) +p§11 ,13) <1

0§+2p12—p§121 13)+p§13’23) <1

0 < +2p1 —p%l ,13) +p 13 23) +p (31 32) pggl,as) <1
11,13
0 < +2p12 + p¥ — p& P§2 )+p

11,13
0 < +2p1a + pf — pft sz )+p

22,21) 31,33
( pg2 ) <1

2 31,32
(22,21) pgll ) <1
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0 < +2p1s + pk — p§121 13) +p(13 23) pgu 1) <
11,13) 13,23 31,32 11,13 31,33
0 < +2pi2 +pf — ng gz ) +P§1 ) péo ) Pg2 ) <1

0 < +2p1s + pt —2p§11 13)+ (13,23) <1

0 < 411 — pra — po1 — pas — pE + ph +105121 ,13) p(13 23) +p(22 21) +p§31 32) pggl,m) <1
0< +p11 —p12 —pa — P22 + 5 +pf < 1

2 3
0 < +p11 — pr2 — pa1 — p¥ + p¥ —pt +P(u 19) +P(11 A1) +P(22 21) +P(31 ) ngz ) <1
0 < +p11 — p12 — p21 + P§ — pi +p§11 o +p(22 2D 4p (31 ) pé%"” <1

(31, 11,13)

(11,13) (13,23) _ (11,31)+ (22,21) +p21l 32)_|_pg2 +p2 (33) <1

0< +pii—pri2 —po2—PF + 05 +p12 7 —P1s

0 < +p11 — p1a — pas + pb + plt — (11,31)+ (31,32) (31 33)+p(33) <1
0 < +pi1 — pra — p& + pb — p! +p§121 13)+p(22 21)+p(31 ,32) <1

,13 13,23 22, 21 31,32
0 < +p11 — pra — pb + pb + pAHtS) — p{E329) 4 p222 4 (82 <1

0 < +p1u1 —p12 +P2 <1

(22,

32
0 < +pu — p1z + ¥ — pft + 3y ()

21) | p0132)

0 < +p11 — P12 +p22 — pl +p¥ — pi +p§121 13)+p

(22,21) +p(31 33) _(33) <1

11,31) 22 2 31,32 11,13 33
( ( 1)+p( ) p521) p§2)<1
0<+pu1-—pr2+p2—n +P(11 o + P31

1 13, 1 ,32) 33
0 < +p11 — p12 +pa1 — pF + Pk +:D§121 9 p§2 - ( 131) +p(22 21 er(31 +p§2) <1

0 < +pu1 —p12 +pn +p2 _ pglll ,31) +p(31,32) _ (31,33 +p(33) <1
0 < +p11 — p12 + P21 + P22 —p1 +p2 —pf +p(ll ,13) +p (22 21) +p(31 32) %1’13) <1
0 < +p11 — p12 + P21 + P22 — P1 +p§212 :21) +p(31 ,32) <1

(11,31)

2,21 31,32
0 < +pi —pa —pr +pF —pf +p3 +Pg1 )+ (1 )Sl
11,13 11,31 22,21 31,32 31,33
0 < +p11 — pa1 — pY + p§ — pi +p§2 )‘*'Pg it ( )4 ( ) - (2 )51

11,13 13,23
0 < 4p11 — par — PV +p¥ — bl +p§2 ) p§2 )+

(22,21) p(31,32) <1

(22 21) +p(31 32) (121,13) <1

0 < +p11 — pa1 — Y +p¥ +p3y

11,13 11,31 22,21 31,33
0 < +pu—pa +pk —pf - p§2 )+pgl )+p§1 )+p§2 ) <1

1 22,2
0 < +pu — pa1 +pf — pf +p§ %Y +p5? <1
0<4pn—pn+pf <1

1 3
0 < +pi1 — pa1 + P& +pf — p3 4+ p;

0 < +pu — pF +pk — pR + p2* +p* <1

(13,23) _ (11,13) <1

1,31 22,21 31,32
0 < +pu — pF + ¥ — pf + Py )+p( 4 pih® <1

11, 13 22,21 31,32
0 < +pu1 — pF + pb — pR + p{it 4 p{222) 4 (852 <



(121’13)+p§3§1’33) <1
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0< +p11 — plL +p§ —pf +p§121 ,13) +p 111 ,31) +p§212 ,21) +;D§£1 :32) (11,13) _ p(321’33) <1
0 < +p11 —pF +py —pl +pg1 113) p§123,23) (11 31) +p(?2 21) +p(31 32)
0< 4p —pF +pk —pf +p3(1121 113) pgs ,23) +pgzi2,21) +pgall,sg) <1
0< +pi —pl +pb - pgll1 31) +p§212’21) pgl,az) <1
0 < +p11 —pf + b + 57 +p5H) <1

0< +pi1 —pF — (11 13)_|_p(11 31)+p(22 ,21) +p5121,13)+pgl,33) <1

0<+p11—p1 +p21l 31)+ (22,21) Sl

0<+pn1 £1

0§+p11+p2 p§121 13)+ (13,23) Sl

0S+P11+P2 “Pl p§121 13)+p(22’21)—+— (31,32) <1

0§+P11+p2 pf +pg212 21)+p231 ,32) <1

05+p11+p2 pglll 31)+ (31 32) <1

11,13 13,23 11 31 31,32 " (11,13 31,33
0 < +pu1 +p§ +pf - P§2 )+P( ) ( )+P( ) sz )_pf(z'z )51
0 < +pi1 +pa — p} +pk — pf +p§§221)+p3132)<1
1, 2 31,32 ,13
0 < +pu1 +par — pF +pk — R+ p5 D 4+ pl2) 4 pih 01 <

0 < +p11 +pa1 — pF +p¥ = p& +pyy

0§+p11+p21 _pf+p§_ (11,31)+ (22 21)_+_ 31 ,32) <1

OS +p11 + po1 — pglzl 13)+p 21)+p(31 32) +p(11,13) Sl
0 S +p11 + pa1 — pf +pg212 21)+p(31 ,32) < 1
0§+p11+p21 pglll 31)+ (31,32) <1

(11,13

(13,23 11,31 31,32 31,33
0 < +pi1 +pa1 + pE — piy )+P1 - ( )+p§1 )—P§2 )<1

0 < +pu1 +pr12 — pa1 — pF +P2 P+ pyy
3 3 22,2 33

0 < +pi1 +p12 — pu + Pl — p(lgll )+P(u Y -|-p( 1)+p§2)sl

0 < +p11 + P12 — pa1 + p22 — pr + p¥ — pl +P21221)+P(313 ) <1

0 < +p11 + P12 — por + P22 + D5 — p§121 1) +P (229 10921’13) <1

11,31)
0 < +p11 +p12 — p22 — pf +pk — pi +p§1 +P

0 < 4pi1 +pr2 —p22 —p1" — P12
22, 31,32
0 < +pu +p12 —pl + 0% —pf +pg1 21)+p§1 )51

,32
0 < +p11 + pr2 — pF + pb — plt + p32 4 p33 <1

(11,13) (13,23)

0<+pu+pe—p;p +pp <1

(11, 31) (22,21) +p£z;1,32) (31 33) +p

11, 13 11,31 22,21 11,13 33
plt ( +p( )+p§1 )+p§2 )+p§2)él

(11,13) (13,_3) _ (11,31) +p§212’21)+p§311’32)+p§i1’33) <1

(33) < 1

‘)

(22,21) +p(31 ,32) (31 33) +p(33) <1
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0 < +pu +p1z + 05 — pf — pytY +pP 4 pP <1

11,31 22,21 31,32

0.< +py +puiz +pao = pf +pF —pf =" + P 4 (0 4
,13

0 < +pu +pr2 + paz +p§ — piy "™ + pl;

22,2 31,32
0 < +pi1 +pi2 + pa1 — P22 — pi + pf —P{{"‘Pgl Y +p§11 ) <1

0 < +pi1+piz +pa1 —p22 —pi — pilgl’ls) +p§§2’21) +P§?{1’32) +p§§1’13) <1

11,31 22,21 31,32 31,33
0 < +p11 + P12 + pa1 — pF + pk — pft —Pg1 )+Pg1 ) +Pg1 ) +P§2 )~

: 11,13 13,23 11,31 31,32 33
0 < +p11 +p12 + pa —sz ) +P§2 ) —pél ) +P§1 ) —ng ) <1

22,21 31,32
0 < +2p11 — p& + pk — pft 4+ p222) 4 p{3192) < 1

(31,33)

13,23 11,31 31,32 11,13
( )—Pgl )+P§1 )_sz ) -

pgs) <1

pgszs) <1

33
pgz V<1



Appendix C

Detectors’ Path Behaviour in
Squires Model

This table below shows the initial positions of the left detector, X,, and right
detector, Y,, chosen randomly with normal distribution, and variance % Here
we have used a system of units in which the width of the wave-packet is %,
the retarded time is 1 and the speed of the particle is % The behaviour
of the functions X (¢) and Y (¢) are shown in each row where: 'S.I.’ denotes
that the function is Strictly Increasing and 'I.C." denotes that the function
increases and then goes to a constant. In these calculations the quantum
spreading of the wave-function is neglected and the initial and final time of
the experiment are ¢y = 0 and ¢; = 10 respectively. The summarized results
for the the behaviour of the functions X (¢) and Y (¢) are:
X(t) Y(2)

SI. SI. 0 cases
SI. I.C. 52 cases
I.C. SI. 47  cases
I.C. 1.C 1 cases

TOTAL 100 cases

169



Appendix C  Detectors’ Path Behaviour in Squires Model

170

No.

001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
oL7
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045

O O O O

Xo

.6436218262115580
.0263130941205410
.1948419303864674
.2648707173430180
.3123546604722100
.2494982835959120
.2243535541088562
.1553331203032960
.1319358834491993
.2241248231619876
.2406905366020732
.8204823937367320
.0092209546966400
.6166285820548160
.3163992366835560
.2623298073313570
.0777137139179960
.7163423358070430
.5197429661313680
.4128945938632177
.0100491639695946
.6224487246593830
.0724802554447010
.1883365010985381
.0104208919294711
.9641907559854180
.1513441805503900
.2252593531036281
.4917481442666140
.6935304804910670
.0024352835964493
.TAT9781817678050
.9792220080383430
.1983577361955491
.5512882806615290
.2224194563041156
.8054916869520740
.8113576010341230
.9579046378237150
,8642544247262060
.0237943115256550
.2826916623842408
.0186644684452462
.2875033573444871
.0899250428184499

-0
1
0

-0

-0

o O O

Y,

.8940680095447510
.3691941532550930
.9820635485649480
.4960825261674740
.9060091389585550
.3058695209326853
.1687909106383231
.7124410549214800
.7499717277023700
.1280303141218009
.3957036108520487
.0266609834356590
.4837492624751250
.0151493053756043
.5964007078741950
.0767032010780990
.1672899981425774
.1556617814279840
.4112767449362786
.5589802491021610
.3427628490703934
.0916192236471960
.3328989903057221
.1534794663364975
.8883797022823270
.3643062317601612
.3021465844365968
.1554314449417189
.1915716510433858
.3764161593022508
.6785982142710230
.1697222927701411
.2564691576462179
.1678074244650335
.0863973674031563
.6157964768246660
.1045836785428440
.1147003301457300
.2020730651854815
.2868733041060977
.9888932767787440
.8175488887866760
.3965367276065636
.1597889338522753
.0280648830978698

X(t)

S.IL
I1.C.
1.C.
S.I
I.C.
I.C.
I.C.
S.I
I.C.
1.C.
S.I
1.C.
S.L
I.C.
I.C.
1.C.
1.C.
S.L
S.IL
1.C.
S.I
S.L
S.L
LC.
S.IL
S.L
1.C.
1.C.
S.I
1.C.
S.I
S.L
I.C.
I.C.
L.C.
I.C.
S.L
S.L
S.IL
1.C.
I1.C.
S.I
1.C.
S.IL
S.I.

Y(t)

1.C.
S.I.
S.I
I.C.
S.L
S.IL
S.I
I.C.
S.I.
S.I
1.C.
S.I.
I.C.
S.L
S.IL
S.1.
S.IL
I.C.
1.C.
S.I
1.C.
L.C.
I.C.
S.IL
1.C.
I1.C.
S.I.
S.I.
I1.C.
S.L
1.C.
I.C.
S.I
S.L
S.1L
S.L
I.C.
I.C.
I.C.
S.L
S.IL
1.C.
S.I
1.C.
I.C.
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No.

046
047
048
049
050
051
052
053
054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090

Xo

.2248280222559676
.5844094237106640
.0467138494053981
.0420623941290123
.2176122078363873
.8434909483947080
.9378522460060230
.5616781531690410
.9930571325305290
.7546797835621280
.2895021084148434
.6859622551976630
.3185173265554710
.6941625396639140
.4760466730286680
.3431477551644192
.7495910573666200
.6854640794482640
.7880497194580230
.2452953998624060

0.3396167975632977

.4697934294088040
.0782324375652469
.8046280137323890
.7330999227749740
.5031434127310820
.2090472556817020
.3135762407702964
.3269900232179190
.0572916494420637
.9931233030826920
.6153614370543360
.3361561830523410
.6389967153496700
.4060823394772830
.5395756714603520
.2929051924775828
.5870144782702730
.6119033302808660
.4459953207234020
.3366765912643293
.3874793948941500
.2174088532514760
.2645498464706661
.50156277725545360

-0

-1

i
O = O OO Kk OO

|
o

Y,

.0747040917595300
.0981215511826060
.3315250030442669
.0597822529253390

0.
-1.
-1.

0.

0.
.4015490837125702
.5412052372111770
.1556443076001231
.8245724925036230
.9002586229477280
.2526664621984760
.5412295137959190
.3595763438328746
.1019451132795143
.5149053087124390
.7310201443883560
.3235404301078479
.8205886037949790
.5363944273347490
.6734540820839940
.0338157481451720
.4833973362900590
.0732933116085280
.2459557948725694
.2416569638384280
.0015927122909560
.9928834032209680
.9929365082500910
.8369111509925810
.4474372487046570
.3982890671271010
.3632777222159499
.6876757353238730
.6188434239766420
.3216218252290880
.4407603620778319
.8480131366525330
.5642053624994510
.0287382896383087
.0900530006505290
.2106284118178593

2366396344042972
6336243237494120
1228193554880520
2888016277925924
3440351359863918

X(t)

I.C.
S.I
S.I
S.IL
1.C.
S.I
1.C.
S.I
S.1.
S.L
S.L
I.C.
S.I
S.L
S.IL
S.1.
S.I
S.IL
1.C.
S.I
S.I.
S.L
1.C.
S.I
S.L
I.C.
S.L
L.C.
S.L
I.C.
LC.
I.C.
I.C.
I.C.
I.C.
S.L
I.C.
I.C.
S.I.
I.C.
S.L
I.C.
I.C.
S.I
S.I.

Y(t)

S.I
1.C.
1.C.
1.C.
S.I
1.C.
S.I
1.C.
1.C.
I1.C.
I.C.
S.I
I.C.
I.C.
1.C.
I.C.
I.C.
1.C.
S.L
1.C.
I.C.
I.C.
S.IL
I.C.
1.C.
S.I
L.C.
S.I
LC.
S.IL
L.C.
S.I
S.I
S.IL
S.L
1.C.
S.1
S.L
I1.C.
S.L
LC.
S.IL
S.IL
I.C.
1.C.
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No.

091
092
093
094
095
096
097
098
099
100

Xo

.3985141734449977

0.2701810447533582

=

.1908692356252570

0.0541517619115627

.5231068746984170
.9430236814325800
.7328317002310510
.7304262952928370
.1598904340002017
.1841098254690473

Y,

.9532426063225310
.4230362635798486
.8748285632554070
.0462261155377179
.5363306841855300
.3118827382502801
.8085752346828280
.5520214672382240

0.6919784649415020

.0952933330192840

X(t)

S.I
S.I.
S.IL
S.I
1.C.
1.C.
S.I.
I.C.
1.C.
I1.C.

Y(t)

I.C.
I.C.
I.C.
I.C.
S.I
S.I
I.C.
S.I
S.I
S.I
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