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3D Velocity-Depth Model Building using 
Surface Seismic and Well Data 

Abstract 

The objective of this work was to develop techniques that could be used to rapidly build 

a three-dimensional velocity-depth model of the subsurface, using the widest possible 

variety of data available from conventional seismic processing and allowing for moderate 

structural complexity. The result is a fully implemented inversion methodology that has 

been applied successfully to a large number of diverse case studies. 

A model-based inversion technique is presented and shown to be significandy more 

accurate than the analytical methods of velocity determination that dominate industrial 

practice. The inversion itself is based around two stages of ray-tracing. The first takes 

picked interpretations in migrated-time and maps them into depth using a hypothetical 

interval velocity field; the second checks die validity of this field by simulating fully the 

kinematics of seismic acquisition and processing as accurately as possible. 

Inconsistencies between the actual and the modelled data can then be used to update the 

interval velocity field using a conventional linear scheme. 

In order to produce a velocity-depth model that ties the wells, the inversion must include 

anisotropy. Moreover, a strong correlation between anisotropy and lithology is found. 

Unfortunately, surface seismic and well-tie data are not usually sufficient to uniquely 

resolve all the anisotropy parameters; however, the degree of non-uniqueness can be 

measured quantitatively by a resolution matrix which demonstrates that the model 

parameter trade-offs are highly dependent on the model and the seismic acquisition. The 

model parameters are further constrained by introducing well seismic traveltimes into 

the inversion. These introduce a greater range of propagation angles and reduce the non-

uniqueness. 
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5-17: Results from the anisotî opic modelUng of Maureen 135 
5-18: Results from the anisoti-opic modelUng of HOD 136 
5-19: Results from the anisotropic modelling of Hidra 136 
5-20: Results from the anisoQ-opic modelling of BCU 137 
5-21: Results from the anisott-opic modelling of Pentiand 137 
5-22: A 3D view of the anisotropic depth model showing all layers and wells 139 
5-23: A 3D view of the depth map for the Pentiand layer 140 
5-24: Migration distance plot over the Elgin field 142 
5-25: Migration distance plot over die Franklin field 143 
5-26: The vertical displacement between die anisotropic depth map and the isotropic map 144 



1.0 Introduction 

1.1 Overview of the Inversion Procedure 

The inversion technique is designed to replace the standard Dix-type inversion schemes 

(Dix, 1955) which currently dominate industrial practice. Al-Chalabi (1994) detailed the 

many approximations used in these standard analytical methods of velocity estimation. 

Velocity heterogeneity, finite offsets and anisotropy all contribute to a systematic 

mismatch between stacking velocity and the vertical root-mean square (RMS) velocity, 

which are assumed to be identical. In this thesis I present a model-based technique 

which allows many of these fundamental problems to be overcome successfuUy. 

The inversion is based around two stages of ray-tracing. The first of these takes the 

picked interpretations in migrated-time and maps them into depth using a hypothetical 

interval velocity field; the second checks the validity of this field by simulating as fully 

as possible the kinematics of seismic acquisition and processing. Kinematic in this 

context means that we are only interested in traveltimes and not in the amphtude or shape 

of the seismic wavelet itself. Specifically, the stacking velocity field, the depth of the 

interpreted surfaces at the wells, and the well seismic traveltimes are modelled. 

Inconsistencies between the actual and the modelled data can then be used to update the 

interval velocity field and the process iterated until convergence. A schematic showing 

the processing sequence is shown in figure 1-1. 

Primarily, the input data consist of: 

• picked interpretations in migrated time, 
• survey design parameters, 
• ful l history of the processing including the time-migration velocity model, 
• stacking velocity field after processing, 
• well trajectories with interpretation markers identified, and 
• picked well-seismic traveltimes. 



The output is a three-dimensional (3D) velocity model and the interpreted surfaces 

mapped into depth. The velocity-depth model is parameterised by these layer boundaries 

and an analytical velocity parameterisation within each layer. The inversion procedure 

can be applied in a layer-stripping technique in which the velocity parameters of the 

shallowest layer are inverted and then fixed before proceeding to the next layer. 

Alternatively, the model parameters within several layers can be inverted for at once. 

INPUT DATA 

4" 
Time Demigration 

Initial Eitimate of 
Interval Velocity Field 

y 
Depth Migration 

Modelling of 3D Acquistion 
and Processing 

Update Interval 
Velocity Field 

Errors between modelled and 
actual data are small? 

Yes 

V 
Final Velocity Depth Model 

Figure 1-1: Overview of the inversion procedure 

The project has required the development of a large source code amounting to some 

45,000 lines (around 700 A4 pages) of C. A great deal of care was devoted to defining 

tiie underiying structure of the application that has been created. This effort, altiiough 

initially time-consuming, has proved worthwhile as new ideas and algoritiims were 

subsequentiy added with littie overhead, and the research progressed very much quicker. 



Figure 1-2: Screen display showing the inversion software platform that has been developed 

A user interface has been designed, and implemented, to make tiie functionality as easily 

accessible as possible (figure 1-2). The algorithms have been designed to be robust 



enough to be used industrially, and many practical issues have been addressed. More 

generally, the project has produced a geophysical development platform that allows new 

research ideas to be tested quickly by providing a flexible set of tools for kinematic 

modelling of data and mapping of data between the different seismic domains. The 

resultant application also provides a very quick and easy way of checking the sensitivity 

of acquisition and processing parameters to the data and how these parameters affect the 

resolution of the model parameters during subsequent inversion. 

1,2 Historical Development of the Project 

The project began with the aim of producing a stacking velocity inversion tool, an early 

prototype of which existed within Elf before the thesis began (Bemard Raynaud and 

Pierre Thore, 1994, personal communication). Early trials of this tool proved it not to be 

flexible enough to deal with real datasets or moderately complex structure. In tiiis 

prototype application, the inversion was very simple and only consisted of a scan over a 

set of constant interval velocities in order to minimize the average error between the 

modelled and actual stacking velocities; and there was no way of incorporating well 

information. Despite this, the approach was potentially promising with some very 

interesting and original concepts, such as the simulation of the D M 0 operator during the 

modelling of the stacking velocities (Robein et al., 1995). It was decided that a new tool 

should be developed that took the best ideas from the prototype and refined and extended 

them in order to produce a useful operational tool. In the first stage of my work, a new 

stacking velocity inversion tool was developed from scratch. The model 

parameterisation and inversion methodology were changed substantially from the 

prototype and original algorithms developed for the domain mapping and ray-tracing. 

These improvements demonstrated that the approach was stable enough to be used with 

real data. 



Stacking velocity inversion is not a concept original to this thesis (Hadley et al., 1988, 

Chiu and Stewart, 1987). In addition, there are several commercially available tools to 

perform stacking velocity inversion: GeoDepth^ and TOMCAD^ are examples of tools 

that include such functionality. The work presented here, however, does contains many 

original aspects, with significant differences in all aspects of the inversion procedure. 

After the development of this new stacking velocity inversion tool, the velocity-depth 

models produced were compared with the depths from the well tops. In some cases, 

particularly in the North Sea, a large discrepancy was noticed. The depths from tiie 

stacking velocity inversion were, in places, found to be more than 10% deeper than those 

predicted from the wells (figure 1-3). This mistie between surface seismic inversion and 

the well logs had already been noted (Banik, 1984) and attributed to anisotropy (the 

variation of propagation velocity with direction) in the overburden, which strongly 

correlated with thick shale intervals. 

To produce a single model that satisfies both the stacking velocities and die well depths, 

the inversion was extended to allow for anisotropy. The algorithm was rewritten to 

jointly invert for the well marker depths as well as the stacking velocities to produce an 

anisotropic parameterisation of the velocity model. With a increased number of model 

parameters the simple scanning technique, used previously, was no longer practical and 

was replaced with a least-squares optimisation procedure. The problem witii this 

scheme, however, is that although a model can be generated that ties both the wells and 

the stacking velocities (figure 1-3), the anisotropic parameters cannot usually be 

uniquely resolved from surface seismic alone. I have studied this non-uniqueness 

1. GeoDepth is a trademark of Paradigm Geophysical 

2. TOMCAD is a trademark of Petrosystems - a C G G company 



through consttiiction of a resolution matrix and it has yielded important insights into 

anisotropic velocity inversion. 

Figure 1-3: Comparison of model building schemes 



In an attempt to further constrain the anisotropy, well seismic traveltimes were added as 

an extra piece of input data. These provide a greater range of propagation angles than the 

surface seismic data alone and help to resolve the non-uniqueness of the inversion result. 

The addition of well seismic traveltimes, however, means that a layer stripping approach 

is no longer suitable and so the inversion scheme was extended to invert for all the model 

parameters at once, in what we term the multi-layer joint inversion. 

1.3 Synopsis 

Chapter 2 describes the mapping of interpreted data between the stack, migrated-time 

and migrated-depth domains, which is essential for the inversion process. The mapping 

procedures are described in tiie context of the inversion and demonstrated using both 

synthetic and real data examples. 

The forward problem of modelling the post-processed data is discussed in Chapter 3. 

The inverse problem is outUned in Chapter 4 with an emphasis on the non-uniqueness of 

the model parameter estimation. Chapter 5 consists of a complete case history using a 

real 3D dataset, and Chapter 6 presents the conclusions of the research as well as 

suggesting proposals for future work. 



2.0 Domain Mapping 

2.1 Overview 

There are tiiree seismic domains that must be considered during the inversion: the stack-

domain, the migrated-time domain and the migrated-depth domain. They are related to 

each other as shown in figure 2-1. After a brief description of each, this chapter explains 

the transformation of interpreted data between the domains. The first stage of the 

inversion is to convert the migrated-tune interpretations into migrated-depth. This 

chapter demonstrates that direct mapping between the time- and depth-migrated domains 

makes commonly invalid assumptions and therefore it is better to perform this mapping 

by first transforming into the stack domain. 

Depth Migrated 
Domain 

Vertical Rays 
Image Rays 

Zero-Offset Rays 

Stack Domain 

Time Migrated 
Domain 

FD Simulation 
Kirchhoff Simulation 

Figure 2-1: The three seismic domains and their relationship to each other 

I also introduce an important original concept that uses the connectivity of data within, 

and between, the domains to ensure the consistency of the mapping and greatiy improve 

its efficiency and stability. Finally, the accuracy of the mapping is demonstrated on a 

variety of real and synthetic datasets. 



2.2 The Seismic Domains 

2.2.1 The Stack Domain 

Basic seismic processing begins by sorting all the traces which have the same source-

receiver midpoint and assigning them to a common midpoint (CMP) gather. Figure 2-2 

shows an example of a CMP gather for a single horizontal reflector with a constant 

velocity isotropic overburden. When the traces in the gather are sorted by source-

receiver offset, h, the reflection produces a coherent event. In this simple case, the 

reflection points are all at the same location (the CMP principle), and the reflected event 

lies along a hyperbola which can be parameterised by the zero-offset traveltime, IQ , and 

the propagation velocity, V, within the layer. 

offset, h_ 

Velocity, V 

Velocity 

time, t 

ei 
aliasinl 

Figure 2-2: Traveltime-qffset relationship for ID earth 

In seismic processing these gathers are routinely analysed by maximising a semblance 

function (Neidell and Taner, 1971). Traces belonging to a common midpoint are 

summed along hyperbolic trajectories defined by a variety of velocities and zero-offset 

traveltunes and the one that produces ttie highest energy of summation is selected. A 

semblance plot is shown on Uie right of figure 2-2. Each point on this plot represents a 

different hyperbola and is coloured depending on the summation energy along it. Due to 

the finite bandwidth of the seismic signal, there is an area of aliasing tiiat makes a 



distinctive 'butterfly' pattern on the semblance plot and the semblance peak itself can 

have a significant widtii, especially in velocity. Often the intersection of the lines that 

define the extent of the aliasing are used to help guide the picking. 

As the earth gets more complicated (figure 2-3), tiie ttaveltune-ofifset curve is no longer 

exactly hyperbolic. The common-midpoint approach breaks down as tiie reflection 

points are no longer at the source-receiver midpoint, and moreover the reflection point 

varies with source-receiver offset, an effect known as reflection-point smearing. Despite 

these effects, a best-fit hyperbola can still be calculated tiiat maximises the summation 

energy along its ttajectory. This hyperbola is parameterised by its mtersection witii the 

zero-offset axis and a parameter with tiie dimensions of velocity, which is referred to as 

the stacking velocity. 

position W offset, h 

VkhiMVi 

Vstack, 

Vstack^ 

I I I I I I I 
depth time, t 

Figure 2-3: Extension to real earth 

It is important to realise that, in general, tiie stacking velocity is not simply related to tiie 

propagation velocity of tiie earth, although in conventional Dix-based inversion schemes 

(Dk, 1955) it is often assumed to be equal to tiie vertical RMS velocity. In some sense it 

depends on tiie velocities within the offset ray fan, but it also contains structural terms. 

The stacking velocity is simply tiie processing parameter that maximizes the summation 

10 



Sort Data into 
CMP gathers 

energy along a hyperbolic trajectory on the CMP gather, although in complex cases there 

remains a fair degree of subjectivity about where to pick, and tiiis manifests itself as 

considerable scatter. 

A stacking velocity field can be generated in 3D by defining a set of stacking velocity 

picks at a number of velocity analysis (VA) locations that specify the best hyperbolic 

approximation to the traveltime-offset curves for the main reflectors on the CMP gathers 

(see for example figure 3-1). 

This field is subsequentiy used to perform normal moveout 

(NMO) corrections, which attempt to remove the offset 

dependence of the traveltime-offset curve by "flattening" 

the reflectors on the gather, prior to stacking together 

(averaging) all the traces with the same midpoint to produce 

a stacked section. The NMO is invariably to zero-offset, 

and the stacked-section is often loosely referred to as a 

zero-offset section. For the purposes of the inversion 

presented here, the two are assumed to be equivalent. This 

stacking procedure is primarily to improve the signal-to-

noise ratio of the data and to reduce the storage size of the 

dataset making it more manageable and quicker to 

manipulate. 

Preliminary 
Stacl(ing Velocity 

Analysis 

NMO 

DM0 

NMO-

Final 
Stacking Velocity 

Analysis 

NMO 

optional 

Stack 

Figure 2-4: Standard processing Flow 

The validity of the stack is of course dependent on the hyperbolicity of the traveltime-

offset curve. Berkhout (1980) presents several examples of structure that cause the CMP 

principle to fail significantiy and reflection-point smearing to be very large. In these 

11 



cases, the redundancy in the data implicitly assumed by the stacking procedure is false 

and a great deal of valuable information is lost. 

The reflection-point smearing and dip-dependency of the stacking velocity field were 

studied by Judson et al. (1978) and led to the, now standard, processing procedure known 

as dip moveout (DM0) (Deregowski and Rocca, 1981). D M 0 is a rebinning process that 

improves the quality of the stack by attempting to map common-offset sections into 

equivalent zero-offset sections (Deregowski, 1986). The D M 0 correction operates under 

many simplifying assumptions about the velocity model and does not usually remove all 

the structural effects from the stacking velocities (see Section 3.2.2). Nevertiieless, the 

CMP principle is generally a much better approximation after D M 0 corrections have 

been applied. 

Although it has long been appreciated that the traveltime-offset curves are significantiy 

non-hyperbolic, standard NMO analysis continues to be used. Alternatives to the 

standard NMO equation have been proposed, such as the three-parameter equation 

(Castie, 1988) which has been demonstrated to improve die stack quality and to make the 

estimation of the stacking parameters more reUable (Thore et al., 1994). The continued 

success of NMO relies on the fact that it works surprisingly well even in fairly complex 

structures with strong lateral variation. In recent years, however, as the maximum 

source-receiver offsets have increased, the effect of the non-hyperbohcity becomes more 

significant. 

Subsurface structure causes the reflection point of an event to be very different from the 

midpoint of the source and receiver that measured it, so the stack section is not a good 

representation of the subsurface geometry and consequentiy is notoriously difficult to 

interpret. The existence of triplications makes picking extremely complicated, especially 

12 



in 3D. The stack domain also contains considerable noise from diffraction events so the 

lateral resolution is poor, making short wavelength events impossible to pick with 

confidence (Whitcombe, 1994). 

2.2.2 The Migrated Domains 

Migration processes attempt to move data from their midpoint (or stack) positions to 

their correct positions in the subsurface. Migration depends strongly upon a velocity 

model of the subsurface; however, in complex areas where migration is most needed, the 

velocity field may be poorly determined. Fortunately, the process of migration generally 

helps to clarify stmcture and makes interpretation much simpler even when the velocity 

model is incorrect, although the events wil l be mispositioned. In other words, migrated 

sections, even when sub-optimal, provide a much more realistic picture of the subsurface 

than the unmigrated stacked section, and correspondingly are far easier to interpret. 

There are two classes of migration operator: depth-migration and time-migration. The 

difference between them arises from the way in which they handle lateral variations in 

the migration velocity model. Depth-migration, the more accurate technique, takes the 

velocity model fully into account, whereas time-migration approximates lateral variation 

in a variety of ways. Due to these approximations, time-migration is considerably 

cheaper to perform than depth-migration and therefore is by far the more commonly used 

migration technique, especially for 3D data. When significant lateral velocity variations 

exist, however, the time-migrated events will be mispositioned. The magnitude of this 

mispositioning and what constitutes significant lateral variation will be discussed later in 

this chapter. Time-migration continues to be widely used because it eases geological 

interpretation witiiout requiring a very sophisticated velocity model. In fact, because 

time-migration is less sensitive to errors in the velocity field than depth-migration, the 

13 



time-migrated section is often more interpretable than a sub-optimal depth-migration in 

spite of the stronger approximations. 

2.3 Mapping between the Stacked and Depth-Migrated Domains 

When a seismic reflection event is recorded at the surface, the time delay between 

adjacent receivers can be used to determine the direction of the best estimate of a local 

plane wave incident at the observation point (figure 2-5). From the geometry of the 

figure, the traveltime gradient with respect to the surface position is simply related to the 

angle of propagation of the plane wave by 

dt_ ^ sine 
dx V 

(2-1) 

where V is the local propagation velocity. The reciprocal of this traveltime gradient is 

the speed with which the event appears to travel along the surface and is referred to as the 

apparent velocity. 

B dx A 
I g surface 

V.dt\ ^ ^ ^ p l a n e wavefront 

Figure 2-5: Calculation of initial direction of propagation from traveltime gradient: the plane wavefront 
hits the surface point A at time dt before it reaches point B, a distance dx away. 

The process of depth-migration attempts to back-propagate the recorded event to find the 

true position of the reflection point. I f we consider a zero-offset event, i.e. coincident 

source and receiver positions, then the time taken for the energy to travel from the 

reflection-point to the receiver (the one-way time) is simply half the source to receiver 
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traveltime. Given a velocity model of the subsurface and the traveltime gradient, which 

from equation 2-1 gives the initial angle of propagation, it is possible to trace a ray down 

from the surface, refracting in accordance with Snell's law, until the one-way traveltime 

is exhausted. 

The end point of this zero-offset ray represents a point on the reflector, and the envelope 

of many of these points represents the topology of the reflector. In isotropic media, 

zero-offset rays meet the reflector at right-angles (the angle of incidence equals tiie angle 

of reflection), and are referred to as normal rays. Each zero-offset ray also gives the local 

dip of the reflector at the end of the ray. This dip information could be used to help 

constrain the reflector geometry. In practice, however, such an approach is expensive 

and it is usually more efficient to fire a large number of closely sampled rays, which 

should be sufficient to ensure the dip of the layers in depth is estimated to the required 

accuracy. This process is commonly referred to as map migration. 

I f the stacked section is assumed to be equivalent to a zero-offset section, then 

interpreted events in the stacked section can be used as the input to map migration. In 

conclusion, this poses a dilemma: to accurately back-propagate post-stack events into 

depth we need interpreted data in the stack domain. However, for the reasons mentioned 

earlier, obtaining such interpreted data is difficult and time-consuming making it 

undesirable in practice. 

2.4 Mapping from the Time-Migrated to the Depth-Migrated Domain 

To avoid the difficulties of picking in the stack domain, interpretation has traditionally 

been carried out in the time-migrated domain. The stacked section is deconvolved and 

time-migrated using a velocity field that is generally based upon a smoothed version of 

the stacking velocities, give or take, as noted by Hatton et al., (1986); "an apparently 
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random few percent to account for the day of the week, the weather, or some other 

whim". The strongest reflectors on this migrated data block are picked, and define 

horizons that describe the major acoustic impedance contrasts. The question then is: 

how can the interpreted input in the time-migrated domain be mapped into depth? 

If the process of time-migration works perfectiy, then all of the energy from a diffraction 

curve is placed at its apex where the time-dip, by definition, is zero. After time-

migration, therefore, the apparent velocity of the event becomes infinite, and with 

reference to equation 2-1 it is clear that a perfectiy time-migrated section can be depth-

migrated by firing rays vertically downwards from the surface. This type of ray is called 

an image-ray (Hubral, 1977). Image-rays should be traced, refracting through the 

velocity model, in exactly the same way as the other zero-offset rays discussed 

previously. The image rays are adding back some of the refraction effect that is partially 

neglected by time-migration. 

I f there is no lateral variation in the velocity model, the image rays stay vertical and die 

depth section is simply related to the migrated-time section by vertical stretching (i.e. the 

time-migration has positioned the events correctiy). It is usual industrial practice to 

produce the depth maps by vertically stretching the time-migrated maps, implicitiy 

making the assumption that lateral variations in the migration velocity model are 

negligible. This is only suitable for gentiy dipping structures with very long wavelength 

velocity variations. The difference between the vertical stretch and the image ray is 

known as the image ray correction. 

The use of image rays assumes that the time-migration operator worked perfectiy In 

cases where lateral velocity variations exist, however, time-migration cannot work 

perfectly even i f the velocity model is known exactiy. In practice, the migration velocity 
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model is far from optimal and tiie combination of these effects strongly limits the 

applicability of image rays. In the next section, therefore, I consider more accurate 

techniques that try to simulate more faithfully the route followed by the actual seismic 

data. 

2.5 Mapping between the Time-Migrated and the Stacked Domains 

Direct mapping from the migrated-time domain to the depth domain makes strong and 

commonly invalid assumptions about die time-migration procedure. The only accurate 

way to perform this mapping is to first transform the time-migrated interpretations back 

into the stacked domain before using normal rays to go into depth. This section explains 

the first stage in this procedure: the link between the stacked and time-migrated domains. 

It is important to realise that the approximations made during time-migration depend 

upon the actual migration algorithm being used. Consequentiy, it is not possible to 

produce a simulation technique that is exactiy valid for all types of time-migration. In 

particular, tiie Kirchhoff and finite-difference operators are shown to give significantiy 

diiferent results in cases where strong lateral velocity variations exist. 

2.5.1 Kirchhoff-iype Time Migration 

In the case where velocity varies only with deptii (i.e. there is no lateral velocity 

variation), the traveltime curve for a diffracting point depends only upon the velocity 

field above the diffracting point. This diffraction curve represents the zero-offset 

response of the point. A perfect migration algorithm would sum the ampMtudes along 

the curve and place the result at the apex (Haged00m, 1954). If the apex is not an acmal 

diffracting point, the values along the curve will not be systematic, i.e. there will be no 

coherency along the curve, and positive and negative values will tend to cancel. 
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Huygens' principle means that a reflector can be thought of as a set of closely spaced 

diffracting points and a reflection as the interference composite of their diffraction 

responses. Thus if reflection events are migrated as i f they were diffraction events then 

they wil l be migrated correctiy This is the basis of diffraction-stack migration schemes 

which simply scan over the stack section summing along diffraction curves defined by 

the migration velocity field. These summation techniques, based on ray theory, were 

refined by Kirchhoff integral theory which made the summation consistent with the wave 

equation by including the effects of spherical spreading and obliquity. These refinements 

are not important for the kinematic discussion presented here. 

A processing operator, such as Kirchhoff migration, can be thought of in terms of its 

impulse response. This response defines the action of die operator on a single sample of 

data (an impulse). The processing procedure often works by application of this response 

to every sample in the seismic domain, and summing the results. Due to destructive 

interference, only a small area of the operator's response contributes significantiy to the 

final image. The significance of this is that the areas of constructive interference can be 

identified directiy i f events are characterised witii a dip as well as a position. In otiier 

words, the region of coherency is positioned where the impulse responses of two points, 

infinitesimally separated along the dip direction, become tangential. 

Throughout the inversion we are dealing with interpreted data and consequentiy these 

dips can be readily calculated. A recurring technique presented in this thesis is to work 

out the kinematic response of the different processing operators as a function of the dip 

and position of the event. This is an important concept and therefore we talk about the 

simulation of the processing operators ratiier than their sttaightforward application. This 

again restricts die discussion to kinematics only. In Kirchhoff-type time migration it is 
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possible to analytically calculate how a given time-dip migrates widi a given migration 

velocity (figure 2-6). The hyperbolic summation trajectory of tiie Kirchhoff operator, 

shown on tiie bottom panel, can be written as 

2 2 . ^(x,-xj' 
(2-2) 

m 

which relates the unmigrated position, (jc^ t^) to the migrated position, (jc„, t„) by tiie 

migration velocity, . The figure also shows how a given time-dip is associated witii a 

unique raypath. 

Position, Xg 

r diffracuon 
point 

/ 

Deijth 

Position, Xo 

i Migration Velocity, \ 
i defined here. \ ^ 

m 

^^ i f f i -ac t ion 
^ ^ u r v e 

zero-offset 
traveltime 

Figure 2-6: Schematic showing how an event with a given time-dip is migrated by the Kirchhoff 
operator 
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Differentiating equation 2-2 with respect to gives the relationships 

* m 
^m= Xs-ts?>s-f (2-3) 

and 

tnt = t,{l-Vl^;'/4)''\ (2-4) 

which give the migrated position and time as a function of the stack position, stack time 

and the stack time dip, = ^ . These equations can be used to model how events 

move when time-migrated. There is an added compUcation in that the migration 

velocity, , is defined at die apex of the migration hyperbola, die position of which 

depends upon the migration velocity used. This means that the solution must be iterative 

unless the migration velocity is constant. The time-migration velocity model is generally 

quite heavily smoothed and so an iterative approach is very stable and converges rapidly. 

A similar approach can be used to back out the effects of time-migration, a process 

known as demigration. Whitcombe (1994) reversed equation 2-3 and equation 2-4 to 

give 

0 0 1 /2 
= + • (2-6) 

These allow an event defined by its time, t^, and time-dip, = ^ — , to be mapped 
ax^ 

from migrated-time back into the zero-offset domain. The new time dip is convenientiy 

given by 
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dx, t,dx^ 

which relates equation 2-3 and equation 2-5. 

In this case the migration velocity to be used in the mapping is known a priori and die 

solution is analytic. This demigration technique is very important as it makes it possible 

to take die real sub-optimal migration velocity field into account and not make 

assumptions based on an idealised view of time-migration. Whitcombe's (1994) 

demigration approach is only strictiy valid for a locally constant velocity field. It is 

easily extended to allow for variable fields which requires the addition of a second order 

term involving the migration velocity gradient. This term is generally small and is only 

significant when the time-dip is high and the migration velocity field is changing rapidly. 

The above analysis is presented in 2D for simplicity, but it is easily extended into 3D as 

the migration response is effectively a 2D operator that works in the plane of maximal 

time-dip. In practice, die migration velocity field is usually generated as a heavily 

smoothed version of the stacking velocity field on a 3D grid. However, as the migration 

velocity is defined at die migrated position, it is far more convenient to provide maps of 

the migration velocity field sampled on to the migrated time-interpretations. This 

interpolation and resampling is done prior to inversion. 

Whitcombe (1994) noted that although these equations only apply to a ICirchhoff time-

migration, they could be applied successfully to migrated sections produced by a finite-

difference algorithm, so long as the migration velocity field remains smoodi and die 

time-dips are not too large. In order to check this claim, I have compared this approach 

to more complex techniques that tty to specifically simulate the kinematics of the finite-

difference operators. 
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2.5.2 Finite-Difference Time-Migration 

Finite-difference solutions to the scalar wave equation based on wavefield extrapolation 

have been pioneered by Claerbout (1970,1971). They are known from both dieory and 

practice to give different results from Kirchhoff migration due to the different 

approximations made during the handling of lateral variations in the velocity model. For 

this reason, techniques have been developed that model the kinematics of finite-

difference operators. The simulation can be done by anisotropic ray tracing eitiier in 

depth (Khare, 1991) or directly in the time-migrated domain (Raynaud and Thore, 1993). 

Finite-difference operators work by a successive redatuming of the seismic data. 

Consider a zero-offset seismic section. The vertical axis is the traveltime and the 

horizontal axis is the source/receiver position. Through use of the wave equation and a 

knowledge of the velocity model, this seismic section can be extrapolated downwards to 

produce the section that would have been recorded i f the sources and receivers had been 

placed, not at the surface as in the physical experiment, but at some finite distance, Az, 

beneath it. Then, just as events at zero time on the original section are by definition at 

zero depdi, events on the redatumed section at zero time will be at a depth of Az. This is 

called the imaging principle. 

Once the redatumed data volume has been calculated the procedure can be applied 

recursively to produce sections at 2Az,3Az and so on. For each of these sections, die 

imaging principle is applied and the seismic data at zero time associated with die 

redatuming depth. In this way the seismic data can be depth-migrated. The commonest 

approach assumes that the velocity is constant within any given Az interval. The step-

length is chosen so as to ensure that this is a good approximation. For diis constant 

velocity case, the downward-extrapolation operator is simply a hyperbola. To explain 
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the simulation of the finite-difference time-migration operator I would first like to use the 

analogy of simulating finite-difference depth-migration by ray-tracing. 

2.5.3 The Link between Ray-TVacing and Finite-Difference Depth Migration 

The concept of using ray-tracing to perform depth-migration is well known and 

understood. Figure 2-7 shows the link between ray-ttacing and finite-difference depth-

migration. The top and bottom panels of the figure show the zero-offset and depth 

domains, respectively. Consider an event in the zero-offset domain characterised by its 

time and time-dip. This event can be back-propagated through a layer of thickness AZ 

with a constant velocity . I f the propagation direction is vertically downwards then 

this takes a time, = AZ/V^. For off-vertical propagation directions the time taken is 

longer and the event maps to a hyperbola which is a function of this direction. When we 

know die time-dip of the event, we know its propagation direction and the mapping is 

uniquely defined. This mapping, when viewed in the depth domain, can be thought of as 

a ray in the sense tiiat it is the ti-ajectory along which energy propagates during die 

downward continuation of the finite-difference process. The procedure is appUed 

recursively until the traveltime of the event is exhausted and the imaging criterion 

satisfied. 

At each stage of the process the time-dip must be recalculated due to refraction of the 

wavefront. When considering how the finite-difference migration will operate on an 

event with a given time-dip, we must again consider how two operator responses 

infinitesimally separated along the time-dip direction will constructively interfere. In a 

horizontally stratified model, without lateral velocity variations, the shape of the finite-

difference operator remains the same within any given AZ interval and, therefore, the 

operators constructively interfere in such a way to keep the time-dip constant throughout 
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the back propagation of the event. When lateral variations exist in the velocity model, 

the shape of die finite difference operator changes as a function of lateral position and die 

constructive interference can occur at a different time-dip. This behaviour, for a given 

event, is exactiy analogous to ray-ti-acing through the velocity model and applying 

Snell's laws at velocity discontinuities to allow for the refraction. The kinematics of 

finite-difference depth-migration, therefore, can be simulated by ray-tracing. 

7=0 

z=0 

2AZ 

3AZ' 

Position 

Stacl( Time 

Position 

Figure 2-7: Simulating finite-difference depth-migration by ray-tracing 

24 



2.5.4 The Link between Ray-Tracing and Finite-Difference Time Migration 

Similarly, the finite-difference time-migration operator can be simulated by ray-tracing. 

The principle is shown in figure 2-8, and helps to give us a real physical insight into the 

difference between time- and depth-migration. In time-migration, the back propagation 

is through a layer with a thickness defined in vertical time, not depth. It is this lack of 

physicality that results in lateral variations not being correctly handled. 

As with depth-migration the back-propagation can be represented by a ray. This ray, 

however, is travelling in the time-migrated domain, and as such is not physically 

meaningful as the dimensions of the vertical and horizontal axis are different. This 

dimensional mismatch effectively introduces a vertical scaling factor that means that the 

ray can be modelled as i f it were travelling in an elliptically anisotropic medium. 

To explain this, consider figure 2-9. The local impulse response of a perfect time-

migration (valid for all dips) is an ellipse with a horizontal axis of length equal to the 

local migration velocity and a vertical axis of length equal to unity. A given time-dip in 

the zero-offset domain maps to a single point on this impulse response. Again, the curve 

joining the stack and migrated positions can be thought of as a ray This ray is in the 

time-migrated domain where the horizontal propagation velocity is the time-migration 

velocity and the vertical velocity is unity, since the traveltime of a vertical ray is 

unchanged by the time-migrated process. The finite-difference time-migration operator 

can be simulated in a similar way to the depth-migration operator but the ray-tracing 

must be done in the time-migrated domain through an elliptically anisotropic velocity 

model. 
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Figure 2-8: Simulating finite-difference time-migration by ray-tracing 

Anisotropic zero-offset migration (Raynaud & Thore, 1993) 
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Figure 2-9: Impulse response of a perfect time-migration operator 
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As a first approximation, the local impulse response of the time-migration operator can 

be assumed to be elliptical, the case for a perfect time-migration algorithm. If more 

accuracy is needed, the actual impulse response of the finite-difference scheme can be 

used instead. Such a refinement is possible but could become computationally 

cumbersome, and anyway the non-ellipticity will only become important for high dips 

and very severe lateral variations which are, in general, beyond the practical limits of 

time-migration (Raynaud and Thore, 1993). 

The difference between time- and depth-migration is often explained by saying that time-

migration simply ignores Snell's law. The above analysis shows that this is not correct in 

the case of the finite-difference operator. Instead, there is still a form of refraction effect, 

but the time-migration follows a modified Snell's law different from that of depth-

migration (Khare, 1991). This simulation technique is very powerful in that it can 

simulate the time-migration or demigration of any approximation to the scalar wave 

equation at a much lower cost. 

2.5.5 Comparison of Kirchhoff and Finite-Difference Simulation on a Synthetic 
Example 

To illustrate the difference between the BCirchhoff and finite-difference time-migration 

simulation techniques, I considered an example of a diffraction point in a simple two-

layer model. A synthetic diffraction curve was computed by ray-tracing from the 

diffraction point. The two layers have constant velocities of 2000 m/s and 3000 m/s and 

are separated by a dipping layer at 27 degrees (figure 2-10), which provides a strong 

lateral velocity variation in the model. Figure 2-11 shows how finite difference time-

migration can be simulated by ray-tracing through an elliptically anisotropic velocity 

model directiy in the time-migrated domain. 
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Figure 2-10: Modelling of a diffraction point through a synthetic two-l^er model 
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Figure 2-11: Simulation ofFD time-migration by anisotropic ray-tracing 

To check the accuracy of the simulation, tiie diffraction curve was convolved with a 

Ricker wavelet to produce a synthetic stacked section, and this stacked section was then 

time migrated using botii Kirchhoff and finite difference algoritiims using a commercial 
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Figure 2-12: Comparison of the simulated and actual time-migration responses for the two4ayer 
synthetic model 
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2D processing package, ProMAX™. The results, together with the simulated responses 

are shown in figure 2-12. 

As expected the time-migration does not correctiy refocus the diffraction point but 

instead produces a so-called 'plume effect' (Bevc et al., 1995). This demonstrates that 

the discrepancy between depth- and time-migration is dip dependent. Also, the migrated 

results are significantiy different depending on which algorithm is used, demonstrating 

the importance of simulating the actual migration operator that was used in cases where 

strong lateral variations exist. The match between the migrations and their simulations is 

almost perfect, and calibrates the plume in terms of the real, geological dip. For 

comparison the results of the vertical stretching and the image ray simulations are also 

shown. 

2.6 Application of Domain Mapping Techniques to the Inversion 

As far as the inversion scheme is concerned, the major application of this work is to back 

out the effects of time-migration on interpreted events and thus obtain interpreted events 

in the stack domain suitable for subsequent ray-trace depth migration. The following 

sections describe the implementation of these techniques to the inversion problem and 

demonstrate their use on real data examples. 

2.7 Demigration of Migrated-Time Interpretations 

To explain the main geophysical processing carried out during the domain mapping, 

consider figure 2-13 which depicts the processing flow for a 2D synthetic syncline. The 

migrated-time interpretations are usually output from seismic interpretation packages as 

regular cartesian grids (top panel). 
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Figure 2-13: Domain mapping from migrated-time into stack-time by demigration 

Using a horizon-consistent time-migration velocity field supphed as input, the time-

migrated interpretation is mapped back into the stack domain, as described in 

Section 2.5. The demigration function associates with each point on the migrated-time 

grid a new position and time-dip in the stack domain, as shown in figure 2-13. The 

interconnectivity of the points in the stack domain is the same as that of the time-

migrated domain. This one-to-one relationship between points in the seismic domains is 

a very useful construct and simplifies the subsequent modelling (see Section 3.2.1) 

The figure shows the well known bow-tie response for the syncline. In the stack domain 

the horizons are generally multi-valued and not uniformly sampled in space. This simple 

example illustrates the added complexity of interpretation in the stack-domain. The 

demigration scheme circumvents these difficulties as the interpreter need not work 

directiy in the stack domain. It is very important, however, that the demigration result be 
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checked against the seismic data to ensure the quality of picking in the time-migrated 

domain. This stack domain is now treated as invariant during the inversion process. 

Often, it is convenient to work on only small parts of the model or with a different grid 

sampling. This means that some interpolation must be carried out prior to the mapping. 

The calculation of the traveltime at a given location is done by means of a bilinear 

interpolation scheme (figure 2-14). Firstly, the grid cell tiiat contains the point is found 

and then the value, V is calculated from the values of the four surrounding grid nodes 

(figure 2-14): 

^ = f i - 7 ^ i r f i - ^ V i + ̂ ^2l + T^rf i - r -V3 + :r^4l (2-8) 
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Figure 2-14: Bilinear interpolation within the grid cells 

This allows the user to define a grid anywhere in the model with any sampling. The 

sampling can also be changed between different layers and between different areas of the 

same layer. This allows a coarser sampling to be used in the smoother areas of the 

model. 

As well as the traveltimes, the demigration procedure requires the time-dips which are 

crucial for the mapping. These are calculated in a two-step process. Firstiy, tiie 

gradients are defined at the grid-nodes using central differencing (top panel of figure 2-

15): the dip at a node is the ratio of tiie time-difference between the previous and next 
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nodes to twice the grid spacing. This approach can be modified to a one-sided 

calculation i f both adjacent grid cells are not defined. Secondly, the variation of the 

time-dips within the grid cells is again calculated by bitinear interpolation. Curvatures 

and higher order derivatives can be found by recursively applying the same algorithms. 

This simple interpolation method is very rapid and ensures derivative continuity across 

grid cell boundaries. The disadvantage is that when there is curvature present, the time 

variation is not exactiy consistent with the time-dips. This can cause instability in tiie 

ray-tracing i f the grid-sampling is too coarse or i f the interpretation maps are not smooth. 

Raw interpretations, especially when generated by automatic picking schemes, contain 

many high-frequency artifacts which cannot justifiably be interpreted given the limited 

bandwidth of the seismic data. In order to ensure lateral continuity between adjacent 

grid cells, it is good practice to select the grid sampling and level of smootiiing so as to 

ensure that the highest frequency is less that half the Nyquist. 

2.7.1 Fault Handling 

A sampled dataset contains complete information about all spectral components up to the 

Nyquist frequency and aliased information about any signal components at frequencies 

higher than the Nyquist. The central differencing approach used to calculate the 

traveltime derivatives is only appropriate when the surface is not changing too rapidly. 

Faults, however, are very high frequency in tiie horizontal spatial coordinates, much 

higher than the Nyquist frequency of tiie grid in most cases. Central differencing 

techniques smooth out the time-dips across the faults and consequentiy smear out the 

extent of each fault's influence. As accurate fault positioning is very important for 

subsequent interpretation of the maps, this smearing is an unacceptable artifact. 
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Figure 2-15: Calculation of time-dips using central differencing. 

Figure 2-15 shows the problem at a fault lip. The time-dip estimated by central 

differencing at the grid cells adjacent to tiie fault is completely wrong and leads to 

significant mispositioning in the domain mapping. To prevent such effects, the positions 

of the faults can be specified accurately as polygons in tiie time-migrated domain. When 

calculating tiie time and time-dip at a given point, only points tiiat are on tiie same side of 

a fault tiiincation are used. This approach is also applicable when the faults have a 

smaller lateral extent than the grid spacing. Points that are inside tiie fault polygon are 

generally removed. 
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This technique is a way of accurately reintroducing events that have higher frequencies 

than the grid's Nyquist frequency The implementation of such a technique is very tiicky 

numerically and great care must be taken to avoid problems witii rounding errors. 

2.7.2 Application to 3D Real Data Example 

To illustrate the accuracy of the demigration procedure, figure 2-16 shows a real 3D data 

example from the North Sea. The top panel shows a cross-section of tiie migrated time 

block with the picked interpretations overiaid. This gives an idea of any possible 

ambiguity in the picking, and shows whether the fault planes are imaged or not. 

Figure 2-17 shows the stack domain for the same 2D cross-section, witii the demigrated 

response overlaid. The match is almost perfect, demonstrating the validity of the 

approach. In this case the data were time-migrated using a finite-difference algorithm 

and demigrated using the Kirchhoff operator. Contrary to tiie synthetic example 

presented in section 2.5.5, the lateral velocity variations are not too great in this example 

and the form of the time-migration simulation used is unimportant. In these cases the 

Kirchhoff approach is used as it is cheaper to perform. 

Figure 2-18 shows a 3D time-migrated interpretation of around 100 km^ from the same 

North Sea example. The structure is caused by salt uplift. The bottom panel shows the 

intersection of this surface with a plane running from west to east across the area. The 

interpretation shown was actually the second picked horizon: the intersection of the first 

with the plane is also shown as a red curve and is fairly flat over the area. Figure 2-19 

shows the demigrated response of the interpretation shown in figure 2-18. This surface is 

fairly complex and there are many areas of triplication around the flanks of the salt. In 

this case, the grid sampling was chosen to be 50m x 50m which means that around 

40,000 points were fi-ansformed. This takes considerably less than a second on a modem 
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workstation. Again, the bottom panel shows the intersection of this demigrated surface 

with the same plane as in figure 2-18. This 2D cross-section is merely for the purposes 

of display since the demigration itself is in 3D. Two zones of tiiplication can readily be 

identified. 
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Figure 2-16: Migrated-time section showing interpretation 
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Figure 2-17: Stack-time section showing demigrated response superimposed 
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Figure 2-18: Migrated-time interpretation from a real 3D North Sea dataset 
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Figure 2-19: The demigrated response of the interpretation 
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2.8 Mapping of the Demigrated Stack Domain into Depth 

Using an estimate of the interval velocity field, the horizon is mapped from the stack 

domain into the depth domain using normal rays. One normal ray is shot for each 

sample in the stack domain (figure 2-20). The initial angle of propagation of these 

normal rays is calculated from the time-dip associated with the point in the stack-domain 

by the demigration operator. In tiiis way, each normal ray fired produces a single point in 

depth. These points will be referred to as crude depth points and tiieir envelope 

represents the topology of the reflector. This shooting procedure is described in more 

detail in section 3.8.2. 

The regularity of the points in the depth domain is indicative of the degree of equivalence 

between the time- and depth-migration. In the case of the synthetic syncline shown here, 

the migration velocity used in the demigration has been chosen to be equal to the 

constant depth-migration velocity. The crude depth points, therefore, move back to tiie 

same lateral positions they had in tiie time-migrated domain and tiie resultant depth 

surface is simply a vertical stretch of the time-migrated model. 

Generally, when the time-migration velocity model is different from tiiat of the deptii 

migration or the process of time-migration does not work perfectiy, tiie crude depth 

points in depth will be irregular. Again, we can take advantage of the connectivity 

relationships between the points and produce a depth surface by 'joining the dots'. The 

rectangular grid cells of the migrated-time domain are mapped into quadrilaterals with 

the same connectivity relationships. I f tiie effective depth-migration velocity differs 

significantiy from the time-migration velocity model, then the final depth surface may 

still have gaps or residual triplications. From the connectivity relationships such zones 
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can be identified and, i f necessary, some interpretative input may be used to select which 

parts of the deptii surface are considered reliable. 

Position 

Stack 
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Figure 2-20: Mapping of the stack-section into depth with nortnal rays 

This has a very important practical consequence when defining the time-migration 

velocity model. It is clear that when time-demigration followed by ray-trace migration is 

used, the migration velocity should be chosen so as to give tiie best image. Scaling of the 

migration velocity model so as to be consistent with the wells is a mistake, and can result 

in some data not being used by the inversion procedure. 
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The perturbation of the crude depth points away from a regular grid also gives a good 

indication of ampHtude anomalies due to the inaccuracy of the time-migration process 

itself. Clustering together of the crude deptii points in an area means that there is an 

amplitude deficiency on the time-migrated section and vice versa. 

2.8.1 Resampling of the Depth Surface onto a Regular Grid 

The subsequent processing of the deptii section requires tiiat the geometi-y is a single-

valued function of lateral position. The geometry is therefore resampled on to a regular 

grid, the extent of which is set equal to the extent of the crude depth points. This 

resampling means that the calculation of depth as a function of lateral position is very 

much quicker. In areas where the deptii surface is multi-valued, the deepest point is 

taken as this is generally thought to be tiie most stable. 

The resampling algorithm is complex. Firstiy, a grid is placed over the extent of the 

crude-depth points, and within each grid cell of this grid a list of the quadrilaterals that 

have some part of themselves inside the cell is generated. These lists then act as look-up 

tables that dramatically speed-up the resampling process. Given the position of a point, 

P, the grid cell that contains it is easily calculated. Then each quadrilateral in tiie cell is 

spUt into two triangles and the point's barycentric coordinates calculated for each of tiie 

triangles. From the barycentric coordinates, (a, p, y ) , which re-express tiie point's 

position as a weighted sum of the triangle's vertices, it is possible to calculate whetiier 

the point lies inside the triangle and, i f so, its point of intersection. 

P is inside the triangle if , and only if, 

0 < a < l , 0 < p < landO<a -hP< 1. (2-9) 
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Once the barycentric coordinates of a point are found, they may be used to interpolate 

any extra properties stored at the triangle vertices, such as the depth or the dip. 

P=aA+BB+7C 

Figure 2-21: The barycentric coordinate system 

2.9 Problems and Limitations with the Technique 

The demigration/remigration procedure described above is limited when the time-

migration velocity model is very poor or the structural complexity is too great. In these 

cases it is not possible to pick a consistent single-valued interpretation. Even in these 

complex areas, however, the techniques can still be applied. Once a velocity-depth 

model has been generated, the seismic data volume can be depth migrated and the depth 

surface found by repicking on the depth-migrated volume. A more optimal stack section 

for the repicked layer can then be found through modelling using normal rays, in a stage 

of depth demigration, and used to calculate the effect of changing the velocity model on 

the depth surface. 

Alternatively, i f the structural complexity means that stacking velocity inversion is 

inappropriate, more conventional focusing analysis velocity updates may be applied and 

the reinterpreted depth layers repicked ready to invert for the lower layers. This is a very 

practical and efficient procedure as it means that even in complex areas the use of more 
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exact and considerably more expensive wave-based methods can be limited, and the 

initial iterations of depth migration should be much closer to the correct velocity model. 

Generally, there may be some spurious crude-depth points that imply a structure that is 

not very geologically meaningful. These points may be due to a poorly determined 

migration velocity field or improperly interpreted time-migrated sections. In some cases, 

the migrated surfaces wil l need reinterpreting in some areas. This stresses the need for 

interaction between the geophysicist and the interpreter i f good results are to be 

obtained. 

2.10 Real Data Example to Map a Well from Depth into Migrated Time 

It is still common practice to interpret seismic data in the time-migrated domain, and 

therefore it is useful to map well trajectories from the depth domain into the time-

migrated domain as an aid to interpretation. This sort of analysis has great practical 

importance as, when tying the well to the migrated time-interpretations, the tie should 

not be made at the well's position in depth, but at the position in the time-migrated block. 

This argument is also important for techniques that require extraction of the seismic 

wavelet at the well position. It is clear that such a mapping requires a velocity-depth 

model that ties the well, i.e. the depth model should be consistent with the well 

information in terms of depth, dip and velocity. 

To accurately map the well trajectory from the depth domain into the time-migrated 

domain, a two-step process is proposed (Sexton and Robein, 1996). Firstly normal rays 

are used to map the well trajectory from the depth domain into the stack domain, and 

then the time-migration process is simulated using either the Kirchhoff or finite-

difference simulation depending on which algorithm was actually used. This mapping 

requires knowledge of the dip of the layer at the intersection of the well, and therefore 
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mapping of the complete trajectory requires knowledge of the dip between the well 

markers. Dip information of this type is, in principle, available from the dipmeter log 

but is very high frequency and it is not a simple procedure to upscale. 

Figure 2-22 shows a depth model with a well-trajectory. A series of normal rays (shown 

in green) is shot from the intersection of the well with the depth surfaces. The image 

rays from points down the well trajectory are also shown. Note that the well trajectory 

intersects the fourth surface in an area of fairly steep dip and therefore the normal rays 

cross a zone of the subsurface which is quite different from that of the image rays. It is 

clear, from this fact alone, that the image-ray technique will produce flawed results in 

this fairly typical salt dome environment. In fact, in this example, the image ray 

correction is in completely the wrong direction. 

Figure 2-22 also shows a comparison of the four mapping techniques for the same 

model. In this example, the dip is only known at the places where the well crosses the 

depth surfaces and these points map to the coloured squares displayed in the time-

migrated domain, shown in cyan for the ICirchhoff simulation and in yellow for the finite 

difference. The fact that these points coincide with the time-migrated interpretations 

from which the depth model is constructed is a good check of the consistency of the 

technique. 

The dip dependence of the time-migrated position means that i f the geological dip 

changes discontinuously down the well, then its trajectory in the time-migrated domain 

wil l also be discontinuous. It is also interesting to note that the Kirchhoff and finite 

difference techniques produce fairly consistent results in this case, as the lateral variation 

of the model in the area crossed by the normal rays is not too severe. Both methods 
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produce the same kink in the well trajectory at the fourth layer, and come back close to 

the vertically transformed well on the fifth layer where the dip is much smaller. 

Again, for comparison, the vertically transformed well is shown in red and the result of 

the image ray mapping is shown in green. These two simpler techniques can be used to 

map the ful l trajectory as the local dip is not needed. It is clear that for the deeper layers 

with appreciable lateral variability the methods can give significantly different results 

(over 1km for the fourth layer). 

The dip of the depth horizons is obviously very important for this procedure. To check 

the sensitivity of the mapping to this dip, a scan can be made of a selection of dips 

around the one predicted by the model. The resultant stack surface can be time-migrated 

to produce a dip-plume, as described in section 2.5.5. I f the modelling has been 

successful, then this dip-plume will have an area of tangency with the time-migrated 

interpretation for the layer. The dip-plume can also be checked against tiie migrated-

time block to ensure the reliability of the mapping (figure 2-23). 

The consistency of the mapping can be checked through use of the connectivity relations 

between the different seismic domains. 
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Figure 2-22; Mapping of a well trajectory from the depth domain into the migrated-ttme domain 
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Figure 2-23: Scanning dips and azimuths: the plume surface superimposed on to the seismic data 
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3.0 The Direct Problem 

3.1 Overview 

Once the seismic interpretations have been converted into depth, the validity of the 

depth-migration velocity field must be checked. This is done by simulating as fully as 

possible the 3-D seismic acquisition and processing and comparing the results of this 

modelling with the actual data. 

There are four potential criteria upon which the quality of the model can be assessed:-

• The consistency of the modelled and actual stacking velocity fields. 

• The consistency of the modelled interfaces and the depth markers defined at the wells. 

• The consistency of the modelled and picked well seismic traveltimes. 

• The consistency of the model parameters with a priori knowledge based on the geol­
ogy and other information from, for example, the well logs. 

This chapter discusses the calculation of the first three of these factors. The use of a 

priori information is left until section 4.3. 

3.2 Modelling the Stacking Velocity Field 

To calculate a synthetic stacking velocity field, a set of offset rays must be generated to 

calculate the traveltime-offset curves and consequentiy the stacking velocity at all of the 

velocity analysis (VA) locations used in the inversion. The actual stacking velocity field 

is provided, by the processor, as a set of picks of stacking velocity against zero-offset 

traveltime as shown in figure 3-1. In tiiis plot, the vertical axis is the stack time and die 

colour of each point represents the value of the stacking velocity. In this example, die 

stacking velocity picks are fairly coarse, spaced at around 500 metres with 20-30 picks at 

each VA location. In modem processing systems, where the stacking velocity picking is 

more automated, the VA locations can be far denser than this and are sometimes picked 
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at every binning position. Other information can be associated with tiie picks, for 

example tiie semblance itself, or some measure of tiie widtii of tiie semblance peak. We 

then use these factors to associate confidence levels in the picks for use as weights in the 

inversion. The widths of the semblance peaks can be surprisingly large, sometimes of 

the order of several hundred meti-es/second, and tiiis means tiiat the stacking velocity 

field can contain considerable scatter. An understanding of tiiese errors is essential in 

deciding how closely the modelled and tiie actual stacking velocity fields should match. 

Position (km) 10 

•9 V 

t 

Xfivin 

ISOOOm/s 

Stacking 
Velocity 

150()m/s 

Figure 3-1: The input to the inversion is a set of stacking velocity picks in 3D 

For the stacking velocity inversion result to be reliable, the stacking velocity picks must 

be made in a horizon-consistent way (i.e. the picks must be made which correspond to 

reflections from the interpreted interfaces used to build the model). This is because 

interpolation of the stacking velocity function, although common, is potentially 

dangerous as the variation is often significantiy non-linear between picks. Fortunately, 

the seismic interfaces that are interpreted usually have large reflection coefficients. This 

means tiiat reflections from tiie interpreted horizons are generally picked during stacking 

velocity analysis. This should never be taken for granted: tiie horizon consistency of tiie 
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stacking velocity picks must be checked during the inversion (see section 3.4). Weights 

are introduced into the inversion to reduce the impact of velocity analyses which are not 

picked horizon-consistently. 

3.2.1 Modelling the Zero-Offset Rays from VA Locations to Reflectors 

Each model considered is the result of a depth migration and is therefore fully consistent 

with the time interpretations. This allows the zero-offset section produced by die 

demigration of the interpreted surface to be used to aid the forward modelling. After 

demigration, the connectivity relations of the points in zero-offset domain allows die 

identification of all the solutions, with their respective times and time-dips, for all the 

zero-offset rays for each CMP. 

This is an important concept that is original to this inversion scheme and solves the non-

uniqueness problem in the subsequent two-point ray-tracing. Figure 3-2 demonstrates 

the idea on the simple 2D synthetic from section 2.6. I f we consider the VA location 

shown in figure 3-2, the demigrated section shows that there are three zero-offset rays 

from the reflector being considered to the VA location. By making use of the 

connectivity relationships between the points, the position of the reflecting point in depth 

can be accurately estimated by interpolation from the positions of the neighbouring 

crude-depth points, which were of course also the neighbouring points in the zero-offset 

section. 

From these relationships, the positions of the first and last nodes of the normal ray are 

fixed. Any nodes on intermediate interfaces are then moved along the interfaces until 

Fermat's Principle is satisfied. This technique is known as ray-bending and the 

algorithm is described in section 3.8.1. Unfortunately, because of the discrete 

parameterisation of the layer geometries and the linearisation assumed by the 
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interpolation procedure, there is no guarantee that this ray is necessary exactly a valid 

zero-offset ray. The reflector node is therefore unfixed and another stage of bending 

ensures the ray is valid. 

Position 

Stack 
WTime 
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Figure 3-2: Prediction of the zero-offset rays from the connectivity of the stack domain 

As well as the position of the reflection point, the ti^veltime is also approximately 

predicted by the stack representation. By checking tiiat the final modelled events are 

consistent with the prediction, the stability of the process is assured. 

This approach is also attractive because it allows die removal of reflections from fault 

planes i f the faults themselves are not imaged, or i f die stacking velocity picking off die 

fault plane is not considered reliable. I f die fault planes are effectively removed from die 
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migrated-time interpretation by introducing fault polygons (section 2.7.1), dien diey are 

also removed from the stack-section and die initial-guess algoridim will not predict a 

zero-offset ray solution. This allows precise control over the events that are modelled 

and drastically improves the stabiUty of the inversion process. 
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F^re 3-3: North Sea example showing the zero-offset ray modelling 

Figure 3-3 shows diis procedure applied to die real case considered in section 2.7.2. The 

bottom panels show west to east cross-sections for bodi tiie stack- and depdi-domains. 

Again, diese 2D displays are merely for convenience and die zero-offset rays diemselves 
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are ti-aced in a fully 3D sense and do not lie in tiie plane. The VA locations with more 

than one solution are highlighted by triangles. 

3.2.2 ModelUng of the Offset Rays 

The normal ray from a VA location to the surface can be used to define an initial estimate 

of the ray-patii of the first of tiie finite-offset rays. The source and receiver positions of 

the offset ray are set fixed at tiieir known positions and tiie reflection point is initially set 

equal to tiie reflection point of tiie normal ray. The intermediate nodes are tiien spaced 

evenly laterally and the depths of all tiie nodes fixed on tiieir respective layer boundaries. 

The nodes of tiie ray are then moved along the layer boundaries using tiie bending 

algoritiim. 

Figure 3-4: Cross-section showing the calculated ray fans 

For subsequent offset rays, tiie initial guess of the raypath is made by exti-apolating tiie 

differences between tiie two previous rays in a form of offset-continuation. This metiiod 

usually gives an excellent initial guess for tiie offset rays which is very important to 

ensure both speed and stability in the ray-tracing. By using the previous rays in this 

fashion, tiie process is considerably quicker and more stable tiian shooting metiiods 

which implicitiy calculate each ray independentiy of tiie otiiers. Anotiier advantage of 

the bending is tiiat the source-receiver azimutii and offset can be set exactiy and no 

subsequent interpolation is required. Figure 3-4 shows the offset ray fans calculated for 

the real 3D model. 
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3.3 Calculation of the Modelled Stacking Velocity from the Traveltime-
Offset Curve 

Once the two-point ray-tracing has generated a ray-fan, the traveltime-offset relationship 

can be used to calculate a modelled stacking field. When working with kinematic data, 

the stacking velocities are most simply calculated by least-squares regression (LSR) in 

the offset-squared / traveltime-squared space. This is unreahstic in diat the far-offset 

traces have a greater influence than the short offset traces. Semblance based techniques 

working in the natural offset-traveltime space do not demonstrate the same bias. Also, 

LSR implicitly assumes that the errors are random and follow a normal distribution. 

This is invalid for most traveltime-offset curves where the deviation from hyperbolic 

moveout is clearly systematic. 

Gaussian-weighted, least-square (GWLS) analysis (Thore et al., 1994) solves these 

problems and is also a good way of removing outiiers which effect the LSR so badly. 

The GWLS analysis works by weighting the distance between measured and computed 

traveltimes by a Gaussian function with a standard deviation a , equal to the period of die 

signal (figure 3-5). 

The energy of summation can be expressed as a sum over offsets thus. 

Offsets _ f 

E = exp 
(•= 1 

(3-1) 

and 

1.2 
4 = ' 0 + 3 ^ (3-2) 

^ Stack 
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where ,is the ti-aveltime modelled by tiie ray-ti-acing at tiie offset and t^^, is tiie 

traveltime for a given offset. A,, calculated by tiie normal moveout equation (equation 3-

2) using tiie current estimates of tiie stacking velocity, Vj ,^^^ , and zero-offset ti-aveltime. 

• Predicted time, t 
• Utodeliedtime,! 

Gaussian 
Wavelet 

Offset 
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fStacl^Time 

Figure 3-5: Calculation of the stacking velocity using Gaussian weighted regression 

The optimum stacking velocity and zero-offset time are found by maximizing E. A 

Gauss-Newton inversion method is used since the partial derivatives of E, with respect 

to tiie stacking velocity and zero-offset traveltime, are analytic. In addition, tiie value of 

tiie function E, when normalised by tiie number of offsets, gives a quantitative measure 

of tiie hyperbolicity of the ti-aveltime-offset curve, and can be tiiought of as a measure of 

stacking quality. 

3.4 Comparison of the Modelled and the Actual Stacking Velocity Field 

Once the stacking velocity at a given VA location has been modelled, it is compared witii 

the actual stacking velocity function picked at the same location. Several parameters can 

be defined tiiat quantify tiiis comparison (figure 3-6). 
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Figure 3-6: Comparison of the modelled stacking velocity with the actual stacking velocity function 

Firstiy, die time difference between the modelled time and die nearest stacking velocity 

pick is calculated and defines a parameter which we call die time-pick error. As die 

modelled zero-offset traveltime is largely independent of die depdi-migration velocity 

(there is some dependence due to non-hyperbolicity of the traveltime-offset curve), die 

time-pick error is symptomatic of how horizon-consistent die stacking velocity picks are. 

This provides a good quality control tool to ensure the stacking velocity picks are in 

agreement widi the time-migrated interpretations. 

Once die nearest pick is found, the difference between the modelled stacking velocity 

and the actual stacking velocity, the V t̂ack n^isfit, can be determined. It is this misfit that 

we are aiming to minimise during die inversion process. 
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As previously mentioned, there can be considerable noise on the stacking velocity picks 

as well as bad picks. This makes it very important to introduce quantitative measures of 

confidence in the picking at the VA location as weighting factors in the inversion. These 

weights are the product of two different functions. The first of tiiese is the ambiguity 

function (figure 3-6), which ensures that i f the modelled result is between two different 

picks then the actual stacking velocity is not known with certainty and therefore has a 

small weight. The second is a time error function, applied to reduce the impact of 

stacking velocity picks that were not made in a horizon-consistent way. The weight is 

decreased until the time-pick error exceeds 50ms. After this point, tiie weight is set to 

zero and the pick is not used in the inversion. 

These properties are stored as inversion results and can be displayed painted on to the 

surfaces in their migrated positions (see case stiidies in Chapter 5 for examples). 

3.5 Simulation of Processing Operators during the Modelling of the 
Stacking Velocities 

During conventional processing, the final stacking velocity analysis is not performed on 

the raw data. A number of processing operators are applied that aim to reduce noise and 

improve the consistency and focusing. As these operators can drastically change the 

stacking velocity field, their action must be accurately accounted for during the 

modelling. This section describes how tiie effects of the most common operators can be 

simulated. 

The simplest way of allowing for processing is to assume each process worked exactiy as 

intended and calculate the stacking velocities for this ideal case. However, it is better to 

simulate tiie kinematics of any processing on the modelled events rather than to assume 

that tiie processing had worked exactiy as intended. This is because most algoritiims are 
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approximate in that they are designed to work in idealised conditions which may not be 

satisfied by the model being studied. Also, to avoid introducing bias, it is better to 

simulate the action of the processing algorithms with the processing parameters that 

were actually used. This means that a number of processing parameters must also be 

provided as input to the inversion. 

3.5.1 Offset Muting 

Generally, shallow long offset data are excluded from the stacking velocity analysis and 

the subsequent stack. Long offset mutes are applied for a variety of reasons (Hatton et 

al., 1986) including; 

• NMO stretch - an undesirable side-effect of the NMO process is wavelet distortion. 
The effect is at its most pronounced when the rate of change of NMO with traveltime 
(rather than the NMO itself) is large. 

• Directivity effects. 

• Dominance of non-reflected arrivals. 

• NMO assumptions. 

• Complex structure. 

A near-offset mute must also be applied i f the near-offset traces are contaminated by the 

direct arrival and/or refracted arrivals. It is usually a function of the water-bottom depth. 

When the traveltime-offset curve is non-hyperbolic, the offset range that is used to 

calculate the stacking velocity is of some importance. Therefore, any muting that was 

applied must be simulated before the stacking velocity is calculated. A time-variant 

mute function can be specified with either a near- or far-offset mute. The importance of 

using the correct mute is very model-dependent. Figure 3-7 shows a plot of the modelled 

stacking velocity as a function of the maximum offset range for a flat layer at a depth of 

2 km, with vertical velocity of 2000 m/s and Thomsen's (1986) anisotropy parameters, 

e = 0.2, and 5 = 0.05 (details of the anisotropy parameterisation are in section 4.4.1). 
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These values are typical of a horizontally bedded shale where the horizontal P-wave 

velocity is observed to be significantly higher (20% in this case) than the vertical. 
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Figure 3-7: Stacking velocity as a function of offset for a flat reflector with anisotropic overburden 

For small offsets the stacking velocity is close to v„^p(0) (Thomsen, 1986): 

v^^,(0) = VoVl + 26. (3-3) 

and the stacking velocity tends asymptotically towards the horizontal velocity (2400 m/s 

in this case) as the offset tends towards infinity: 

ft —> oo 
(3-4) 

This leads to the interesting idea that more information could perhaps be extracted from 

the stacking velocities by picking them with different mute functions. However, within 

practical offset/depth ratios the variation is probably not often large enough to make the 

differences consistently pickable. From figure 3-7 we can see that for this case the 

stacking velocity only varies by 40 m/s within a reahstic offset/depth ratio of about 1. As 
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the offsets continue to get longer (up to 12km in some cases!) such approaches will prove 

fruitful. This sort of systematic non-hyperbolic effect is a strong argument for three-term 

approaches, which I am sure will become increasingly important in future processing. 

The source-receiver azimuth as a function of offset within the bin is also important and 

must be supplied as input. For marine cases, this effect is usually approximated by 

assuming the source-receiver pairs lie in the in-line direction. For land data the situation 

is more complicated as generally the source-receiver azimuth within a bin varies rapidly 

with offset. This variation is shown in what is called a 'spider-diagram' and must be 

specified for each VA location. 

3.5.2 Dip Move Out (DMO) Simulation 

Velocity analysis is now routinely carried out after dip moveout (DMO). This process 

attempts to remove the dip dependence of the stacking velocity field and reduce the 

reflection-point smear to improve the vahdity of the stack (Deregowski, 1986). This 

makes the stacking velocity field more consistent and therefore easier to pick. The DMO 

operator is a "migration" process that attempts to map a finite offset section into an 

equivalent zero-offset section and, when used in conjunction with NMO, it is referred to 

as a partial pre-stack migration or a migration to zero-offset (MZO). 

The DMO operator rebins a data element to a different time and location and 

consequently DMO can considerably change the stacking velocity field. To invert a post-

D M 0 stacking velocity field, therefore, the DMO process must be taken into account 

during the modelling. Consider a modelled event from source S to receiver R with 

offset 2h, midpoint XQ , and traveltime tf^ (figure 3-8). As in a conventional seismic 

processing sequence, the DMO operator is sandwiched between NMO and inverse NMO 

corrections (figure 2-4). The NMO operators modify the traveltime and time-dip but not 
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the binning position of the event. This means that, for accurate simulation, the NMO 

velocity field must also be supplied as an input. Applying NMO to the offset event, 

using the normal moveout velocity V^^j^q , yields a 'zero-offset' time : 

^NMO 

from which the post NMO time-dip is readily calculated 

5̂ 0 _ h^h 
dx tQdx 

If D M 0 is applied to the resulting impulse at {XQ, IQ) on an NMO corrected common-

offset section, with offset 2/r, the impulse response (x^, t^) is defined (Hale, 1991) by 

the ellipse 

This means that D M 0 applied to a single non-zero sample of data yields non-zero 

samples that lie along an ellipse, as shown. This ellipse represents the D M 0 response 

for all dips from -90 to -i-90 degrees. Again, we can calculate the kinematic response for 

a given time-dip. Defining 

Xr, = XQ + AX (3-8) 

equation 3-7 becomes 

to = 0̂ 2 (3-9) 

Consider the D M 0 responses, defined by equation 3-9, of two-points separated by an 

infinitesimal distance from each other along the time dip-direction, i.e. {XQ, t^) and 
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/ 3̂ 0 \ dtQ 
+ 8x, tQ +-^dxj, where ^ is the post-NMO time-dip. The D M 0 corrected 

position of this dipping element will be the tangency point of the envelope of the two 

elliptical DMO operators, i.e. the position where the operators constructively interfere. 
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Operator 
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Common Onset Section 

Post-DMO 
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Figure 3-8: Simulation of the DMO operator: The top panel shows how NMO, DMO and NMO"* 
operate in the common-offset domain. The bottom panel shows the corresponding rays in depth. 

The DMO displacement at this tangency point is shown to be 

AJC = 
\dx) 

,2 .i .2<^' 
tQ + Ah 

^Tx 

(3-10) 
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where the sign of the root is chosen so as to map the event updip. This equation tells us 

how an event of a given time-dip is mapped by the DMO operator and can be used to 

simulate the effects of the DMO operator on the modelled stacking velocity field (Robein 

et al., 1995). 

Finally, the traveltime is corrected with an inverse NMO to give 

ih,) = 4 + (3-11) 
^NMO 

It is this traveltime, tf^ , that is used to calculate the post-DMO modelled stacking 

velocity. 

These equations allow us to simulate precisely the DMO procedure (bottom panel of 

figure 3-8). Firstiy, the zero-offset ray is traced from the V A location to the reflector. 

This zero-offset event is unaffected by DMO. For the first offset ray, the source and 

receiver locations are placed symmetrically around the zero-offset ray, as shown, and the 

internal nodes moved by the bending algorithm. The reflection point of this offset ray is 

displaced updip from the reflection point of the normal ray fired from the midpoint of the 

source-receiver pair. This offset ray, which represents an event with a given offset, time 

and time-dip, then has the DMO operator (equation 3-10) applied to it. The DMO 

operator attempts to rebin the offset ray to a normal ray, shown here as a dashed line, 

witii the same reflection point. It is clear that this normal ray hits the surface some 

distance away from the midpoint. The DMO operator gives us the binning displacement 

relative to the event's source-receiver midpoint: in this case, a distance AJC to the left. 

When we are calculating a post-DMO stacking velocity field we consider all the events 

that are binned at the V A location after the DMO operator has been applied. It is clear 
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tiiat this event, with source and receiver equidistant from the zero-offset ray will not be 

binned at the VA location and therefore does not contribute to the stacking velocity at the 

VA location. What we require, therefore, is not a CMP gather as in conventional stacking 

velocity inversion, but instead what we term a pre-DMO gather, i.e. the set of events that 

wil l be binned at the VA location after the DMO process has been apphed. 

The construction of a pre-DMO gather is iterative. The source and receiver positions are 

moved a distance Ax to the right (to S' and R') and the internal ray nodes re-bent. The 

DMO operator is then iteratively reapplied to this event and any residual corrections used 

to further update the source and receiver positions. In each step, the source and receiver 

positions are moved by the same amount and in tiie source-receiver plane. This means 

that the source-receiver offset and azimuth remain constant. The process converges 

rapidly. 

In a simple case where the overburden velocity is constant, the pre-DMO gather will also 

be a common reflection point, or common-image gather. In this ideal case, the traveltime 

after DMO, but before inverse NMO, will also equal the traveltime of the normal ray. 

Generally, as will become apparent in the examples in section 3.5.3, this will not be the 

case and there will be residual reflection point smear. 

This approach is repeated for each offset that is being modeUed, although for speed the 

initial guess of subsequent offset rays uses the offset-continuation principles explained in 

section 3.2.2. The initial guess, therefore, includes a large proportion of tiie DMO 

correction before the process starts, and this makes this approach both stable and very 

quick to apply. Figure 3-8 is in 2D only, but the approach is fully implemented in 3D. 

This extension is trivial, however, as the conventional DMO operator is a 2D operator 

that operates in the source-receiver plane. 
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3.5.3 Examples of DMO Simulation 

To demonstrate the accuracy of the simulation procedure, a synthetic example (figure 3-

11) with two dipping layers was considered. The dips are 20° and 30° and the 

velocities are constant within each layer at 2000 m/s and 3000 m/s. Common-midpoint 

gathers were generated by ray-tracing in both dip and strike directions. Figure 3-10 

shows a close-up of the gather from the second reflector: the up-dip reflection point 

smearing, in the dip direction, is clearly visible. Stacking velocities were then calculated 

from the traveltime-offset curves. 

Figure 3-9: Synthetic two-layer model showing dip and strike modelling of CMP gathers 

The stacking velocity for reflector 1 in the dip direction is calculated as 2128 m/s. This 

is in perfect agreement with Levin's (1971) formula which gives the stacking velocity, 

^stack' ^ homogeneous model of propagation velocity, V and reflector dip, 9. 
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stack cose 
(3-12) 

Vstack dip 2734ni/s 
Vstack strike 242()ni/s 

Figure 3-10: Close-up of the dip and strike CMP gathers for the second layer 

Vstack dip 2335ni/s 
Vstack strike 242Sni/s 

Figure 3-11: Close-up of the dip and strike pre-DMO gathers for the second layer 
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For reflector 2, the stacking velocity in the dip direction is 2734 m/s, much higher than 

the stacking velocity in the strike direction (2420 m/s). The stacking velocity in the 

strike direction is close to the root mean square (RMS) velocity along the normal ray 

(2440 m/s). 

This dip and strike modelling was repeated after DMO simulation. As expected, for the 

first layer the reflection-point smear is effectively removed, and the stacking velocity 

calculated from the traveltime-offset regression is exactly 2000 m/s. For the second 

reflector, the reflection point is now smeared down-dip (figure 3-11), but the smearing is 

considerably smaller than in the case where no DMO is simulated. Consequently, the 

modelled stacking velocity is 2335 m/s, which is much lower than either the RMS 

velocity down the normal ray or the strike stacking velocity which are 2440 m/s and 

2420 m/s, respectively. Even for this relatively simple case, DMO over-corrects the 

stacking velocity by around 4%, and the post-DMO stacking velocities cannot be 

assumed to be equal to the RMS velocity along the normal ray. 

To check the accuracy of this simulation, a synthetic 2D line in the dip direction was 

calculated using a fully dynamic ray-tracing package different from the one used to 

generate the offset fan. These synthetic data were then processed in the conventional 

way with an NMO correction followed by a F-K constant velocity DMO, inverse NMO 

and finally stacking velocity analysis at the VA location being considered. 

The results of this post-DMO stacking velocity analysis are shown for the first and 

second reflectors in figure 3-12 and figure 3-13. The right panel of these figures is the 

semblance plot; the left shows the NMO corrected gather for the maximum semblance 

pick. 
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Figure 3-12: Semblance analysis on the first reflector ttfter DMO 
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F^re 3-13: Semblance analysis on the second reflector after DMO 

For tiie shallow reflector tiie DMO operator has worked perfectiy: the effect of dip on the 

stacking velocity has been removed and tiie stacking velocity simply equals tiie interval 

velocity in the first layer. For tiie second reflector, however, tiie stacking velocity is 
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estimated as 2345 m/s. The RMS value down the normal rays is also shown on the 

semblance plot in figure 3-13, and it is very clear that the semblance peak is some 100 

m/s lower. The difference between the simulated stacking velocity and the result of the 

real processing is only around 10 m/s, which is negligible given the width of the 

semblance peak during the velocity analysis. This result, therefore, confirms the 

simulation technique can be used to accurately predict post-DMO stacking velocities. 

The results are summarised in the table below: 

Vstack dip after 
D M O simulation 

(m/s) 

Vstack dip after 
D M O processing 

(m/s) 

V R M S down tiie 
normal ray 

(m/s) 

Reflector 1 2000 1998 2000 

Reflector 2 2335 2345 2440 

T A B L E 1. Comparison of D M O simulation and processing 

There are two main conclusions that can be drawn from this simple example. Firstiy, 

DMO does not correctiy remove the effects of dip from the stacking velocity field and 

the difference from this ideal behaviour is large enough to be picked during velocity 

analysis. Secondly, the results of the simulation are in excellent agreement with tiie 

processed values and confirm that the simulation technique can be used to accurately 

predict post-DMO stacking velocities. 

Figure 3-14 shows a comparison of the modelled stacking velocities with and without 

DMO simulation on two layers of a 3D model. The stacking velocities have been 

projected down the normal ray on to the depth surfaces and colour coded. This type of 

display provides a useful diagnostic because it shows the stacking velocity field in its 

migrated position. 

68 



Dip Modelling 

DMO Simulated 

DMO not Simulated 

1900 m/s 2350 
Modelled Stacking Velocity 

Figure 3-14: Comparison of the modelled stacking velocity with and without DMO simulation 

Within the first layer tiie interval velocity was set to be constant at 2000 m/s. The panel 

on tiie right shows the stacking velocities without DMO simulation. As expected, the 

stacking velocities are clearly seen to increase in the areas of dip as predicted by Levin's 

(1971) formula. With DMO simulation, this effect is perfectiy removed and the stacking 

velocities are equal to the interval velocity everywhere. For the second layer, the results 

are more unpredictable. In tiiis case the velocity overburden is not constant due to tiie 

structure of the first layer and a vertical gradient in the second. The constant velocity 

DMO does not work correctiy. 

Figure 3-15 shows a close up of tiie pre-DMO ray fans on one of tiie flanks of tiie second 

layer. The residual reflection-point smear on tiie pre-DMO gatiiers is clearly visible. 

The extent and indeed tiie direction of tiiis smear is dependent on tiie local stiiicture and 

highlight the necessity of an accurate simulation. 
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CMP gathers Pre-DMO Gathers 

Figure 3-15: Comparison of CMP and pre-DMO gathers on the flank 

3.5.4 Simulation of Pre-Stack Time Migration (PreSTM) 

Another processing-step which is becoming increasingly popular is pre-stack time-

migration, or 3D PreSTM. The method was first inti-oduced by Marcoux et al. (1987) 

under tiie name of MOVES. The procedure is assumed to improve tiie (time) imaging of 

steep dips and at tiie same time to yield more accurate velocity information. This is 

because DMO removes some of the dip effects on the stackmg velocities and the time-

migration brings tiie reflections to a more correct position in space. As a consequence, 

stacking velocities are more accurately picked, which is of obvious benefit to the 

inversion. The stacking velocities should also be close to vertical RMS velocities and 

therefore produce better models when used in the inverse Dix formula. 

The assumptions inherent in the process are strictiy only vaUd for homogeneous 

isoti-opic medium. In a similar way to tiie DMO operator, we have developed a model-

based technique which accurately simulates tiie kinematics of PreSTM to predict tiie 

traveltime as a function of offset in a heterogeneous, anisoti-opic 3D earth model. The 

advantages of PreSTM may tiien be evaluated in any realistic situation. 
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PreSTM is a four-step process. Firstiy, NMO-DMO is applied. This attempts to map 

each common offset section into a zero-offset section. Secondly, each of the resultant 

'zero-offset' sections (one per offset) is time-migrated using a 3D post-stack algorithm. 

Thirdly, the initial NMO is removed and a conventional stacking velocity analysis is 

carried out before a final NMO, stack and residual migration are applied to the whole 

dataset. The simulation procedure (Robein et a l , 1997) faithfully mimics tiie kinematics 

of this sequence and is applied in exactiy the same way as the DMO simulation. The 

time-migration operator is simulated by applying the Kirchhoff operator, as described in 

section 2.5.1. 

When simulating PreSTM, the initial estimate of the normal rays is no longer accurately 

estimated by tiie procedure described in section 3.2.1. Instead, tiie demigrated zero-

offset section must be re-time-migrated, although not with the final time-migration 

velocity model that was used in the demigration but with the time-migration velocity 

model that was used in the PreSTM (figure 3-16). In a similar way to before, this time-

migrated section can be analysed to find the number and positions of events that map, not 

to a given zero-offset position as before, but to a given VA location after PreSTM. 

Moreover, the connectivity relationships between the domains give the position of this 

event in both the stack- and depth-domains and therefore, as before, both ends of the 

zero-offset ray can be accurately estimated and the solution to the problem is stable. 

I f tiie PreSTM positions the events perfectiy, although in general tiiis will not be the case, 

then the reflection point will be vertically below the VA location. Another important 

point is that because the velocity analysis is carried out in the time-migrated domain, 

there is much less likelihood of multiple solutions, which can interfere and make picking 

the stacking velocity function problematic. 
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Figure 3-16: Estimation of the zero-offset rays when velocity analysis follows PreSTM 

3.6 Comparison with Well Marker Depths 

Calibration of tiie seismic data witii the wells is a complicated and messy problem. 

Generally, edited sonic and density logs can be used to calculate acoustic impedance 

logs. A time-depth curve is calculated from the integrated sonic log, and tiiis is adjusted 

to tie with the check-shot survey or vertical seismic profiling (VSP) data. Given this 

time-deptii relationship, the acoustic impedance log is converted into vertical time. 
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Comparison of the 3D seismic data with the logs requires knowledge of the seismic 

wavelet. This is either assumed to be zero-phase with some specified frequency content, 

or more commonly nowadays is found by inversion (seismic to well tie). Given an 

estimate of a wavelet, a synthetic seismogram can be estimated at the well position by 

convolution with the acoustic impedance log assuming a ID convolutional earth model. 

The error in the wavelet is calculated by correlation of the synthetic seismogram with the 

seismic data in the vicinity of the well. The phase and amplitude characteristics of the 

wavelet can then be iteratively modified in order to minimize this error. 

After checking the character, and, if more than one well is present, the lateral continuity 

of the resultant wavelet, the best-fit synthetic seismogram is used to identify the main 

seismic events. Correlation of the 3D seismic data with the synthetic seismogram then 

allows calibration and identification of the seismic horizons. The interpreted horizons 

can thus be associated with a vertical time on the synthetic seismogram. The time-depth 

curve at the well is then used to map this point back into depth. In this way, the depth of 

the interpreted horizons is estimated at the wells. 

The well markers, therefore, have two main sources of error. The first is in the 

knowledge of the position of the well trajectory in depth. This is thought to be very 

small in modem acquisition systems. The second, considerably larger, error is the 

association of the seismic horizons with the logs. There are many potential sources of 

error due the assumptions made in method described above, and the quantification of 

these errors is very case-dependent. 
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The input into the inversion is a set of well markers that are 

associated with given interpretations using the horizon name. 

The full well trajectory can also be defined for visualisation 

and mapping the well into migrated-time using vertical 

stretch or image ray techniques, which do not require the 

local time dip. 

Figure 3-17: Definition of wells within the inversion 

3.7 Calculation of Well Seismic Rays 

If well seismic traveltimes have been picked, then this information can also be modelled 

to help constrain the inversion. The ray-tracing is flexible enough to model reflections 

and even multiples as well as direct arrivals, although it is not as common for these 

events to be picked from the well seismic data. The ray-tracing can also be used in an 

interactive way to help identify some of the more complex events. 

Often three-component geophones are used, and so mode-converted arrivals can also be 

considered as these are more commonly observed from the well seismic data, especially 

P-S reflections. Any type of well seismic acquisition can be included although ofi'set 

VSP's and walkaway surveys are most common. An extra interesting feature of this sort 

of modelling tool is that it allows the resolution of different model parameters to be 

tested as a function of acquisition design. 

Practically, the inversion is provided with a set of source positions and receiver positions 

and a look-up table, specifying which receivers were live when a given source was fired. 

Each source-receiver pair also has a picked traveltime associated with it. The interval in 

which a given sub-surface receiver lies is a function of the current model. 
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Figure 3-18: Calculation of well-seismic rays 

Figure 3-18 shows an real data example of well seismic modelling. In this case there are 

two walkways at right angles to each other, shown in orange, and two offset vertical 

seismic profiles (VSP) and a vertical check shot, shown in yellow. A stacking velocity 

offset fan is also shown. 

3.8 Ray-TVacing 

Due to the specialised nature of the problems being solved, in particular the offset ray-

tracing to model the post-processed stacking velocity field, all of the algorithms used in 

the inversion were developed from scratch. There are two basic ray-tracing algorithms 

that are used. The first is a shooting algorithm. Given a starting point and an initial 

angle of propagation, a ray is traced until a given interface is reached or a traveltime is 

exhausted. This function is used for the depth migration code and to calculate the 

Frechet matrix derivatives during the inversion loop. The second is a bending algorithm 

that, given an initial guess at a ray-path, will adjust the ray until Fermat's principle is 
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satisfied. This algorithm can be used to solve the two-point problem, as needed by the 

stacking velocity modelling and the well seismic ray modelling, or to find zero-offset 

rays from a given reflector when the initial propagation direction is not known. 

Given the macro-layer definition of the velocity model, the ray-path can be uniquely 

defined by its intersection with the layers (figure 3-19). These intersections are referred 

to as nodes and are shown as yellow circles. The problem of ray-tracing is the movement 

of tiiese nodes, constrained to lie on tiie depth surfaces, in order to satisfy Snell's law. 

As the interfaces are not described analytically and the anisotropic solution of Snell's 

law is ti-anscendental anyway, tiie problem must be solved by an iterative approach. 

Vi(x,y,z)^l 

c o - i n c i 
nodes 

V2(x,y,2) 

V4(x,y^) 

V5(x,y,z) 

Figure 3-19: Parameterisadon of the rays within the inversion 

The ray-tracing is designed to be as fast as possible given the particular model definition 

used in the inversion. However, this optimisation restricts its use for two main reasons. 

Firsfly, tiie ray signature, i.e. the description of which interfaces tiie ray crosses and in 

which order, must be pre-defined in both tiie shooting and tiie bending algoritiims. For 

the ray shown in figure 3-19 there are 9 nodes, although two are coincident, and tiie 

signature is given by [-1,0,1,2, 3,2,1,0, - 1 ] . This limits the use of tiie algoritiim in 

cases where tiie layer geometries are very complex or multi-valued because the ray 
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signature is not known beforehand as it can change in subsequent iterations. Pinch-outs, 

however, as in figure 3-19, and velocity lenses can be handled by layers of zero 

thickness. 

Secondly, the ray-tracing is extremely rapid because the velocity variation between two 

nodes is assumed to be linear with constant anisotropy parameters. This approximation 

is not as restrictive as it seems at first because the lateral velocity variations can still be 

catered for with a high degree of accuracy, so long as the wavelength of these variation is 

such that the velocity variation over any ray segment is approximately linear. When non­

linear lateral velocity variations exists, the ray-tracing works by first calculating a local 

gradient over the extent of the ray segment. Once the ray has been calculated, tiie 

traveltime calculation can perform a numerical integration to more accurately calculate 

the traveltime allowing for higher order velocity variations if this is deemed necessary 

3.8.1 Bending: The Two-Point Problem 

The traveltime, as a function of the ray node positions, r = {x,y,z), can be 

approximated by its Taylor series expansion around a given position, P: 

Assuming the function t can be locally approximated by a quadratic form, we have 

t(r)'=c-b-r + ^rA-r, (3-14) 

where 

c = t(P) , (3-15) 

b = -7t\p, (3-16) 

and 
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(3-17) 

The matrix VMij, whose components are the second partial derivatives of the function, 

is called the Hessian matrix of the function at point P. 

In the approximation, the gradient of t is easily calculated as 

Vt = Ar-b. (3-18) 

This implies that the gradient will vanish - the function will be at an extremum at a value 

of r , obtained by solving the equation 

Ar = b. (3-19) 

Using an iterative approach, this allows the stationary points of the ray-path's total 

traveltime to be found and thus the ray-paths that satisfy Fermat's principle. Once 

expressions have been found for the traveltime and its first and second derivatives in 

terms of the node positions, the correct ray can be found rapidly using a damped Gauss-

Newton inversion scheme. As the movement of a given node only effects the traveltimes 

through adjacent ray segments, the Hessian matrix is symmetrical and block triagonal. 

Consideration of these symmetry properties means that the amount of calculation 

required to calculate the inverse is drastically reduced, and the solution of the bending 

problem is found simply by row elimination. 

In complex structure, the approximation of the traveltime being locally quadratic with 

respect to the node positions can be significantiy invalid. This leads to instability during 

the inversion and requires that the inversion be damped to prevent problems. Practically, 

this damping is achieved by adding a term to the diagonal elements of the Hessian. By 
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carefully defining the initial ray estimates, the speed and stability of the ray-tracing is 

dramatically improved. 

3.8.2 Shooting 

As the geometry is not defined analytically, the shooting problem is essentially solved by 

bending in a given layer. On entry to the algoritiim, a ray signature is defined. The first 

node of the ray is fixed and initial traveltime slowness vector (or shooting angle) at this 

node supplied as input. The calculation then proceeds node by node. The second node is 

initially placed vertically below (or above) the first on the layer boundary dictated by the 

signature. Then the three-component slowness, due to tiiis vertical segment, is 

calculated at the position of the fixed node (see section 3.9). This slowness value is 

compared with the required slowness, supplied as input, and the position of the second 

node iteratively moved in order to minimize the discrepancy. 

Once this node position is found it is fixed, and the slowness vector in the next layer is 

calculated by calculating the slowness in the new velocity field. This calculation allows 

for the refraction at layer boundaries using Snell's law, which simply states that the 

tangential component of the traveltime gradient to the interface is continuous across it. 

Subsequent nodes are then calculated in the same way. The node movements are initially 

found using a steepest descent algorithm. When close to the solution, however, this is 

modified to include the second-order Hessian terms. Usually, this converges witiiin three 

or four iterations. 

As well as shooting through a pre-defined model, this algorithm is also used for the map 

migration (section 2.3). In addition to the initial ray slowness, a one-way traveltime is 

supplied as input (the demigration operator, section 2.5, defines both). The first node is 

fixed at the surface and the ray traced through the velocity model as before. When the 
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last interval is reached, however, the final interface is not yet defined. The slowness in 

the last interval and the remaining traveltime for the zero-ofl'set ray are then used to 

analytically calculate the crude depth point at the end of the ray. If there are lateral 

velocity variations in the last layer, then an initial lateral gradient is estimated, the ray 

traced, a new-lateral gradient estimated using the resultant ray-path, and the process 

iterated until the ray-path is consistent with the velocity variation along it. 

3.9 Time and Time-Derivative Calculations 

3.9.1 Isotropic Case 

The raypath through an isotropic medium with a velocity gradient (not necessarily 

vertical) is a circle in the plane of the gradient vector, k, and the displacement vector 

between its end-points, d. 

Figure 3-20: Calculation of the ray slowness through a gradient media 

The ray-path lies in the plane ofdandk and so the three-component slowness vector, p, 

at any point along the ray, is also in this plane and can be written as 

where a and p are scalars that must be determined. 

(3-20) 
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The magnitude of the slowness is the reciprocal of the instantaneous velocity, 

(3-21) 

As there is no velocity variation in the direction perpendicular to k the slowness in this 

direction is conserved, and so 

As mentioned earher, the ray-path is circular, and therefore 

(3-22) 

p^d = p^d. (3-23) 

From these constraints, expressions can be found for the slowness at A and B which are 

given (e.g., Williamson and Raynaud, 1995) as; 

and 

PA = 
a 

^AW 
(3-24) 

PB 

2vs 

(3-25) 

which reduce to the more intuitive form p = —r when the gradient is small. 
V d 

The total traveltime change due to the movement of given node is simply the sum of the 

traveltime change in the adjacent ray segments. 
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(3-26) 

The nodes of the ray, however, are constrained to lie on the interfaces, so it is necessary 

to project these slownesses onto their respective interfaces using the vectors, and map the 

three-component slownesses into corresponding two-component vectors. 

The projection vectors are given by 

1 
0 

dx 

and = 

0 
1 

dz 
dy 

(3-27) 

where T T -
dx 

is the gradient of the interface at a given node. These gradients are found by 

a bilinear interpolation of the dip grids, which are precalculated for each interface by 

central differencing of the depth grid when it is created. 

Therefore the two-component slownesses, which give the traveltime change due to a 

node movement along the interface, can be written as 

(3-28) 

and 

(3-29) 

The expressions for the slownesses in equation 3-24 and equation 3-25 can be 

differentiated with respect to the node positions to give the second derivatives matrix. 

Again this Hessian matrix can be projected on to the interfaces, and the 3 x 3 matrices 

reduced to 2 x 2 blocks. This projection requires an estimate of the curvature of the 
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interface at the node position which is calculated by central differencing of the dip 

estimates. 

3.9.2 Anisotropic Extensions 

The problem of ray-tracing through general, inhomogenous, anisotropic media was 

essentially solved by Cerveny (1972). This solution is, however, unnecessarily general 

and tiierefore expensive for the needs of the inversion. 

Shearer and Chapman (1988) show that the projection of a ray in a factorised anisotropic 

medium with Unear spatial velocity variation on to the plane containing the slowness and 

velocity gradient vectors is a segment of the curve given by the intersection of the 

slowness surface and that plane, rotated by n/2 and scaled. In accordance with Snell's 

law, which still holds in anisotropic media, this plane is constant for the ray, as is the 

value of the slowness component normal to the velocity gradient. The "centre" of the 

ray, i.e. the effective origin of the scaled, rotated slowness surface, is located on the plane 

defined by the zero-velocity surface. Paul Williamson (unpublished note, 1996) adapted 

the results of Shearer and Chapman (1988) to calculate the slowness at the end of a given 

ray segment, as required by the ray-tracing technique presented here. Given these 

anisotropic slownesses, the solution of the ray-tracing problem proceeds as before. 

When considering a TIV medium (see section 4.4.1) with a vertical velocity gradient, the 

rays stay in the plane defined by the slowness and gradient vectors. When the velocity 

gradient lies in a direction other than vertical, there is an added complexity. Although 

the phase-slowness vector remains in a plane with the gradient vector, the group velocity 

will, in general, have some component out of this plane resulting in some out-of-plane 

displacement of the ray. A formula for the out-of-plane displacement arising from the 

divergence of the phase and group directions in anisotropic media is also given by 
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Shearer and Chapman (1988). Levin (1990) demonstrated that for anisotropic media the 

application of Snell's law gives a transcendental equation that must be solved iteratively. 

This is because Snell's law involves both the direction and the velocity of ray, but the 

velocity is not known at the outset because it is itself a function of the yet-to-be-

determined ray direction. 

The calculation of the anisotropic Hessian is algebraically daunting, and would produce 

results considerably more compUcated than those for the isotropic case, which is already 

complicated enough. However, since the ray-tracing is iterative it seems probable that a 

damped version of the isotropic Hessian, although incorrect, will suffice. The tests that 

have been carried out confirm this intuitive judgement and show that the ray-tracing still 

rapidly converges for realistic values of the anisotropy. 
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4.0 The Inverse Problem 

4.1 Overview 

Once the modelling is complete, the consistency of the modelled data with the actual 

data must be checked and inconsistencies used to update the model. A standard linear 

inversion technique is presented and applied, although there are complications to the 

analysis because of the different dimensions of the model parameters. Generally, we aim 

to invert for the minimum number of model parameters. This makes the model as simple 

as possible and requires the minimum a priori information. This is important as poorly 

constrained velocity variations are to be avoided. Use of a minimum number of 

parameters also reduces the non-uniqueness of the result, which is a very important part 

of the inversion and is studied through construction of a resolution matrix. 

4.2 Classical Inversion Approach 

A general inversion methodology is available whenever the solution to the forward 

problem is known. If we perturb the model parameters from our initial guess, then the 

corresponding changes in the modelled data can be calculated. In linear inversion 

approaches it is assumed that the relationship between this perturbation and the modelled 

data is linear, and therefore 

Ad = J Am (4.1) 

T 
where: Am = (Amj, A m 2 , A m ^ ) is an m-component vector in the model space 

T 

containing the perturbations of the model parameters, Ad = (A J j , Ad2, Ad^) is an 

n -component vector in the data space containing the corresponding perturbations in the 

modelled data, and / is an n x m matrix that relates the two. 
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An objective function, D, can be defined which quantitatively measures the misfit 

between the modelled and the actual data. The problem is to find tiie set of model 

parameters m that minimize this function: 

2D{m) = [d{m)-d,,f[d{m)-d,,,] (4.2) 

Here d{m) is a column vector with n components containing the modelled data values 

and ^obs is a column vector with n components containing the observed data values. 

Any inversion scheme should consist of two parts. Firstiy, a particular solution, m, that 

minimises D must be found and, secondly, the resolution and error associated with this 

particular solution must be calculated. The objective function can be minimized using an 

iterative Gauss-Newton technique as used in the ray-bending algorithm in Section 3.8.1. 

Differentiating equation 4-2 with respect to the model parameters yields 

VD(m) = f[dim)~d„i,,l (4-3) 

Another stage of differentiation, ignoring higher order terms which are generally much 

smaller near the solution, and much harder to calculate, approximates the Hessian matrix 

V V D ( m ) = / / , (4-4) 

and tiie model updates required to minimize D are then given by 

Am = (WD) VD, (4-5) 

which from equation 4-3 and equation 4-4 are approximated as. 

Aw = ( / j ) ^/M{m). (4-6) 

In order to calculate these updates directiy, the matrix J^J must be non-singular, i.e. m 

of the n equations must be linearly independent. However, if a lack of data means tiiat 
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this is not the case, the inversion will be unstable. In order to study the properties of the 

linearised inverse problem, a singular-value decomposition approach was used (Jackson, 

1972). Following Lanczos (1961) an n x m matrix / can be factorised as 

J = UAV^, (4-7) 

where U isanxn matrix of orthogonal singularvectors that span the data space, V is a 

mxm matrix of orthogonal singularvectors that span the model space, and A is a semi-

diagonal nxm matrix that contains the so-called singular values. Equation4-7 is 

known as a singular-value decomposition. 

The matrix U can be separated into Up and t/p, where Up contains the singularvectors 

with non-zero singular values and UQ contains the singularvectors with zero singular 

values. Similarly, V can be divided into VQ and Vp, and die matrix A can be 

partitioned as 

A = ^ 0 
0 0 

(4-8) 

where A^ is a pxp diagonal matrix that contains the non-zero singular values of / 

arranged in decreasing size. UQ and VQ are referred to as 'null-spaces'. The matrix / 

can be re-expressed as 

/ = UpApVl. (4-9) 

This factorisation is very interesting as it shows that / can be constructed from Up and 

Vp alone. This demonstrates that the linear combinations of data values contained in 

UQ are completely independent of the model parameters, and that the linear 
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combinations of model parameters contained in VQ are totally unresolved by the 

available data. This means that when a singular value is zero, the corresponding singular 

vector in data space cannot be mapped into model space or vice versa. Data vectors or 

model vectors with zero singular values belong to the null space and cannot be resolved. 

When a singular value is not zero, but is small compared with the largest one (i.e. the 

condition number is large), the contribution of the corresponding eigenvectors to the 

solution must be eliminated or attenuated, that is regularised, because the matrix 

inversion may become unstable. 

The use of singular value decomposition to solve inverse problems has been thoroughly 

discussed in the literature (e.g. Aki and Richards, 1980). This analysis can be used to 

T 

check whether the inversion of the matrix J J is stable. From equation 4-9 it is clear 

that 

f j = VpKpUl-UpKpVl (4-10) 

and, because of orthogonality of the eigenvectors in the data- and model-space, we have 

u'^pUp = V^Vp = I and therefore 

/ / = VpAlvl- (4-11) 

The orthogonality also means that the inverse is given by 

i f J)-' = vlAfVp. (4-12) 

Using this approach to solve equation 4-6 is known as the generalised inverse. In 

practice, however, there are two main problems. Firstiy, if some of the eigenvalues are 

small but non-zero, errors in the data could cause strong fluctuations in the solution. One 

way of suppressing these undesirable effects is to use the damped least-squares approach 
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(Levenberg, 1944), which consists in adding a positive constant to the main diagonal of 

the matrix J so that the solution is modified to 

Am = i f j + a I ) ^ / A d { m ) . (4-13) 

The damping factor a ensures the non-singularity of the matrix and also stabilises the 

inversion process. 

The second problem is that model updates calculated using this scheme can be 

unphysical i f the 'nuU-space' corresponds to parameter combinations without clear 

physical meaning. This means that a generalised inversion approach is often 

unsatisfactory. 

4.3 Use of A Priori Information to Constrain the Inversion 

Another, more physical, way of removing the non-uniqueness of a particular inverse 

problem is to add constraints that determine the type of model being sought. Tarantola 

and Valette (1982) proposed a stochastic inverse that exphcitly includes a priori 

information in the inverse problem through covariance matrices Q and of the data 

and parameters, respectively. The objective function is written 

2D(m) = [d{m)-d,t,/c-a\d(m)-d^i,^] + [m~mQfc~^[m-m(,l (4-14) 

where WQ is the a priori solution of the problem. Again, the first term measures how 

well the modelled data matches the real data, and the second term is the distance from 

the a priori set of model parameters and helps to overcome the non-uniqueness of the 

inversion. The observed data are usually assumed to be mutually independent and 

therefore the data covariances can be represented by a diagonal matrix, with values 
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determined by the standard deviations, a,^ ^ „ , a quantitative measure of the accuracy of 

each piece of data: 

a i 0 0 

0 . . . 0 

0 0 a? 

(4-15) 

The a priori model parameter covariance matrix defines the expected deviation of the 

model parameters around the a priori model. So, for example, i f a given model 

parameter is well estimated prior to the inversion, this information can be included by 

specifying a small deviation in the model parameter covariance matrix. Again, this 

matrix is almost diagonal, although some non-diagonal terms may be included to 

introduce constraints that involve linear combinations of parameters. For example, non-

diagonal terms may be used to constrain the ratio of two parameters, e.g 

Ml m2 
1 -n 

2 
-n n 

= {mi - nm2Y (4-16) 

These a priori covariance matrices are not very easy to define and are, of course, heavily 

model-dependent. One independent source of constraint comes from the well logs. For 

example, the vertical gradient, , is often poorly constrained by the seismic and so the 

sonic log can be upscaled to estimate at the wells. Similarly, the petrophysical 

modelling scheme of X u and White (1996) may be used to construct an anisotropic earth 

model at the log scale f rom a standard suite of logs. These predicted anisotropy 

parameters can be upscaled to give parameters for the seismic units (Williamson et a l , 

1997). Despite the fact that the well log data describes the region only in the immediate 

vicinity of the well , i t can still be used as an a priori constraint and thus integrate all 

available data in a rigorous way. 

90 



As before, equation 4-14 can be differentiated with respect to the model parameters to 

give the relations 

VZ)(m) = fc'a[dim)-d,i„] + C-^[m-mQ] (4-i7) 

and, ignoring higher order terms as before, 

V V D ( w ) = / C r f V + C ; V (4-18) 

The model updates can then be calculated using equation 4-5. Iterative application of 

these updates. Am, give us a particular solution, m. 

Am= [ f c - / j + C-^]~\fc-a[d{m)-d^^^]+C-J[m-mQ]) (4-19) 

4.4 Model Parameterisation 

A very important part of any inversion scheme is the choice of model parameterisation 

that is being inverted for, and this should be considered as a strong a priori constraint. 

The method presented here is considerably different f rom the majority of tomographic 

inversion schemes in that the model geometry is not parameterised and inverted for. 

Instead, it is uniquely defined by the zero-offset times and dips, given by the demigration 

of the time-migrated interpretation, and the current estimate of tiie velocity parameters. 

We are, therefore, only inverting for the velocity parameters. 

This approach has the advantage that tiie number of inverted parameters is reduced. 

Also, as the depth surface is not defined parameterically, it is easier to include 

discontinuities caused by faults which cannot easily be handled by spline surfaces or 

other parameteric forms. The disadvantage is that the demigrated zero-offset 

representation of the layers is assumed to be perfect and is invariant tiiroughout tiie 

inversion process. In practice, however, this assumption is not very limiting because it is 

usually valid in areas with moderate enough structure for a post-stack approach to be 
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successfully applied. Also, i f the data were incorrectly interpreted, they can always be 

iteratively reinterpreted, either in time or depth, after improving the migration velocity 

model with the inversion result. 

A layer-based parameterisation is used to define the model in the inversion as shown in 

figure 3-19. This means that the velocity field is defined in a geologically meaningful 

way and gives a good compromise between spatial variabiUty and a restricted number of 

model parameters. The boundaries between layers, defined in depth, are stored on 

regular grids and are calculated, given the current estimate of the model parameters, 

using the depth-migration procedure described in section 2.8.1. 

4.4.1 Anisotropy 

One of the main objectives of this work was to produce a single model that was 

consistent with both the surface seismic and the well data. As described in Chapter 1, 

this required the introduction of anisotropy. Before discussing the exact velocity 

parameterisation it is, therefore, useful to give a very brief overview of anisotropic wave 

propagation. 

Anisotropy is the variation of propagation velocity with direction. I t may be caused by a 

preferred orientation o f anisotropic mineral grains (such as in a massive shale 

formation), preferred orientation of intrinsically isotropic minerals (e.g. flat-lying clay 

platelets), preferred orientation of cracks, or thin bedding of isotropic or anisotropic 

layers (Thomsen, 1986). In lineariy elastic material each component of stress is linearly 

dependent upon every component o f strain (Nye, 1957). This dependency is 

characterised by a fourth order tensor, C,y^;; however, because of fundamental symmetry 

properties of the stress field there are at most 21 independent components. When 

combined with the effects of heterogeneity, such a multitude of parameters w i l l probably 
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always be unresolvable f rom a seismic experiment and so certain symmetries of the 

elastic properties are assumed. The simplest reaUstic form of anisotropy is ti-ansverse 

isotropy (TI), or hexagonal symmetry. Transverse isotropy has a single distinct 

direction, usually taken to be the vertical (TIV medium) with the other two directions 

being symmetrical. T I media require five independent components to describe the elastic 

modulus tensor, and solution of the wave equation yields three independent solutions 

polarised in mutually orthogonal directions. Thomsen (1986), in a ground-breaking 

paper on anisotropy, proposed a set of five such parameters: 

VQ = (C3333/p)^^^ (4-20) 

1 / 2 

Po = (C2323 /P) (4-21) 

e = 'Jllllfm (4.22) 
2^3333 

(Ci i33-I-C2323) - (C3333 - C2323) 
O = z r (4-23) 

^^3333(^^33 ~ ^2323^ 

^212-^2323 (4.24) 
2<̂ 2323 

He demonstrated tiiat by considering the anisotropy to be weak (<20%), but generally 

wi t i i in the realms of seismic exploration, the equations simpUfied considerably and 

presented relatively simple first-order expressions for the phase velocities of the three 

wavetypes. 

In general, the P-wave phase velocity in a weakly T I V medium is given by 

(Thomsen, 1986) as: 

v(e) = Vo(l-i-Ssin^ecos^e-i-esin'^e) , (4-25) 
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where 0 is the phase angle measured from the vertical. From equation 4-25 it is clear 

that e controls the horizontal velocity and that 5 is most influential at around 4 5 ° . 

The S-wave phase velocities are 

and 

VcuO) = p l -H - ? ( e -5 ) s in2ecos^8 
V J 

(4-26) 

V5^(e) = p o ( i + y s i n 2 e ) . (4-27) 

wavevector, I n ^ — 
^ ^ X w a v e f r o n t 

Figure 4-1: Definition of the phase angle, G and the group angle, (jx 

A n interesting effect of anisotropic wave propagation is shown in figure 4-1. It is clear 

that the ray, or group angle, < ,̂ which defines the angle of energy propagation, differs 

f rom the phase angle, 6 , which defines the local direction of the wavefront propagation. 

The group, or ray, velocity as a function of the phase angle (Berryman, 1979) is; 

v((p(e))' = [ v ( e ) ' + (^|^)] . (4-28) 

This means that for anisotropic media the zero-offset rays are not normal to the reflecting 

interface. For isotropic media the wavefront is spherical and the phase and group 

velocities are identical. 
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Traditionally, seismic processing has assumed that wave propagation tiirough the earth 

has been isotropic, despite the fact that most crustal rocks have been demonstrated 

through laboratory measurements to be weakly anisotropic. Kaarsberg (1959) showed 

f rom laboratory measurements that the P-wave velocity was 10-20% higher in the 

direction parallel to the bedding plane than the velocity normal to the bedding plane. 

The reason for this apparent dichotomy between industrial practice and physical reality 

is mainly due to the fact that the most commonly occurring type of anisotropy, transverse 

isotropy, is not usually detectable f rom surface seismic data alone, with the angular 

dependence of the velocities disguised in the uncertainties to the depth of the reflector 

(Thomsen, 1986). This is primarily due to the Umited range of propagation angles found 

in most surface seismic data, which allows more pragmatic approaches, such as scaling 

of the interval velocity function to tie the wells, to work well enough for conventional 

interpretation. There may also be other factors that mask the effects of the anisotropy. 

Lynn et al. (1991) suggest that, in many cases, the effects of anisotropy roughly cancel 

those of heterogeneity. Nowadays, however, the literature is f u l l of examples where 

taking anisotropy into account during seismic processing is demonstrated to be beneficial 

(e.g. Ball , 1995). 

4.4.2 Velocity Parameterisation 

The velocity within each layer is considered to be transversely isotropic with a vertical 

symmetry axis (TIV) . The inversion is primarily concerned with P-wave propagation; 

however, some of the well seismic events can be associated with mode-conversions and 

then S-wave propagation must also be considered. Within each layer, the instantaneous 

velocity field, as a function of tiie position, r = {x,y,z), and the phase angle , 6 , is 

parameterised as: 
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v(r, 6) = (vo-h*:-r-i-v(;c,>'))(l-(-Ssin^ecos^e-i-esin'^e), (4-29) 

where is the vertical P-wave velocity at the origin, k = is a three-

component velocity gradient, and 5,e are Thomsen's parameters. The term v{x,y) 

defines higher-order lateral variation in the velocity field and its form can be chosen with 

considerable flexibility. Currently i t is expressed as a polynomial: 

^ f J . . A 
v{x,y) = ^ X V ^ ' V . (4-30) 

y = 2Vi = o / 

where is the order o f the polynomial expansion. In the inversion these polynomials are 

mapped into Legendre polynomials, which have the advantage of being orthogonal (i.e. 

the integral of the product of any pair of polynomial terms over the region is zero), and 

are hence independent of each other. The inverted Legendre polynomial coefficients are 

then mapped back into the k^j coefficients of equation 4-30. This stablises the inversion 

and reduces numerical problems during computation. 

4.5 Uncertainty Estimation on the Inverted Result 

A n important topic is the estimation of uncertainties on the inversion result. This is a 

very complex problem that is extremely difficult to solve rigorously due to the large 

number of potential sources of error and their complex interaction with each other. 

Broadly speaking, however, the uncertainty on the result has two main components. The 

first is related to the input data, and the second to the methodology itself. We can go 

some way towards addressing the impact of ertors in the input data, as discussed in the 

following sections. Methodology ertors, however, are harder to quantify and tiiis 

problem remains largely unsolved. Ultimately, from a practical point of view we are not 

interested in the uncertainties on the inverted model parameters, but on the final depth 
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maps. The uncertainty on the depth maps can then be mapped into volumetric 

uncertainties in a later stage. 

4.6 Resolution Matrix 

The first source of uncertainty related to the input data is the fact that the data may be 

insufficient to uniquely resolve the model parameters. This means that there are many 

combinations of model parameters that minimize the objective function. Each solution, 

however, may result in significantly different depth maps and volumetric estimations. 

Backus and Gilbert (1968) introduced the concept of the resolution kemel as a measure 

of non-uniqueness. They demonstrated tiiat one way of measuring die resolution is to 

consider perturbing the model away f rom the solution and then seeing how well tiie 

inversion recovers the perturbation. This is the basis for the resolution matrix. 

Consider a perturbation of A m away f rom the true solution, m. The cortesponding 

change in the observed data, Ad^f,^, can be calculated f rom equation 4-1: 

Ad^i,, = J Am (4-31) 

The effect of changing die observed data on the model parameters recovered after 

inversion, Am^, is found by differentiation of equation 4-20: 

Am = - [ f c - ^ J + C-^ffc~^Ad,,,. (4-32) 

Therefore, i f we consider a perturbation in model parameters, AM, away from the 

solution, m, then f rom equation 4-32 and equation 4-31; 

Am, = -{fC-^J + C-^]~\/c-aJ]Am (4-33) 

Am, = AAm. (4-34) 
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This formulates the recovered perturbation, Awi^, as a weighted average of the true 

perturbation with the weights given by the row vectors of A. This weight matrix, which 

is the product of the inverse of the regularised Hessian and the unregularised Hessian, is 

called the resolution matrix. The resolution matrix gives a measure of how badly 

underdetermined the set of equations is. I f it equals the identity matrix, / , resolution is 

perfect and the particular solution is equal to the true solution. The model parameters are 

shown to be uniquely resolved or resolved only in combination with other parameters. It 

is important to realise that, although the kinematic data may not be able to define the 

parameters uniquely, the different solutions may still be differentiable in terms of "image 

quality" during a subsequent depth-migration of the seismic data (especially when pre-

stack). This remains an area for future research. 

To demonstrate the use of the resolution matrix, I considered the inversion of a synthetic 

flat layer at a depth of 2000 metres with an anisotropic velocity overburden 

parameterised by ¥ 0 = 2 0 0 0 m/s, 5 = 0.05, and e = 0.15. A synthetic stacking 

velocity field was modelled at 16 locations uniformly distributed around the area and a 

synthetic well marker created. Figure 4-2 shows the results of inversions of these data 

wiUiout well control (left panel) and with well control (right panel). 

With reference to equation 4-34, each vertical vector of the resolution matrix (shown in 

the centre of each panel) corresponds to a given model parameter, and contains the 

predicted model update after a unity change of that parameter away f rom the solution, 

m. For example, f rom the left panel of figure 4-2 we can see that i f the vertical velocity 

is perturbed f rom the solution by 1.0 m/s, the resolution matrix tells us that we w i l l 

recover only 0.39 m/s back in terms of the vertical velocity, and w i l l change e and 8 by 

0.0002 and 0.0001 and the vertical gradient by 0.0004. The lateral gradients w i l l remain 
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unchanged. Similariy, i f we make a perturbation of 1.0 s"̂  in one of tiie lateral gradients, 

k^,or k^, the inversion recovers the perturbation exactly. 

Due to the different dimensions of the model parameters these vectors are difficult to 

interpret. In order to make the result more presentable, tiiey can be scaled by the Hessian 

matrix to normalise the changes in terms of the cortesponding change in the objective 

function gradient. The resultant mati-ix can then be thought of in terms of the percentage 

of the parameter that is recovered. The rescaled matrices are displayed at the bottom of 

figure 4-2. 

Without wel l control, only three parameters can be determined. The lateral gradients, k^^ 

and ky, are well resolved, but only a single otiier parameter which is a Unear 

combination of the other parameters can be found. In this case, there is no evidence for 

anisotropy f rom the data and the stacking velocity field is not sufficient to recover the 

correct layer depth. The simplest velocity model that fits the data is isotropic with no 

vertical gradient. This gives a layer depth of 2130 metres which is some 6.5% too deep. 

When the well is added, the isotropic and anisotropic components separate out, and we 

observe a V^-k^ trade-off and an e - 5 trade-off. This result agrees with intuition 

because, in this case, the layer depth depends only on the vertical velocity and is 

unaffected by a change in the anisotropy parameters. The addition of the well marker 

depth, therefore, removes the trade-off between the isoti^opic and anisotropic parameters. 

When trade-offs between parameters exist, tiie final solution w i l l depend strongly on tiie 

a priori model and a priori model covariance matrix, , as well as the available data. 
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Figure 4-2: Resolution matrix calculation for a single flat reflector with and without well control 

In this case, the observed e - 5 ti-ade-off is due to adding the constraint (e - 2S)^ to the 

objective function. This gives recovered perturbation the ratio e = 25 . Without this 

constraint, the recovered perturbation would depend on die relative sensitivity of the 

objective function to changes in these parameters. This depends upon the a priori 

deviations on e and 6 defined in the a priori covariance matrix and, very importantiy, on 
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the particular model and data acquisition considered. The stacking velocity field is more 

sensitive to a change in 5 than e and so, without constraint, the majority of the 

perturbation would come back in 5. 

In cases where parameter ti-ade-offs exist, tiie uncertainty can be assessed by producing 

several models by moving along tiie trade-off lines between the different parameters. 

4.7 A posteriori Covariance Matrix 

As well as being insufficient, the input data are also uncertain. The inversion result can 

also help us to assess the effect of this uncertainty of the inverted result by providing the 

a posteriori covariance matrix of the model parameters. This covariance matrix relates 

error bars in the input data to corresponding ertor bars in the inverted model parameters. 

The a posteriori covariance maoix, , is written as; 

= <5m6m^), (4-35) 

but f rom equation 4-19 a perturbation in the data, 5d, can be related to a perturbation 

5m in the model parameters: 

6m = [VVD]~^/c~add , (4-36) 

and therefore 

= <[VVD]-V^C^'6rf5/c^V([VVZ>]- ' )V (4-37) 

As Q = ( 6 r f 6 / ) , 

= [VVD]fc-^J{[VVDY') (4-38) 

101 



Cff,= AH \ (4-39) 

where A is the resolution matrix defined by equation 4-34. 

The diagonal elements of the covariance matrix, C^, contain the model parameter 

variances. For example, i f we invert only the vertical velocity from the flat layer 

synthetic, the covariance matrix contains only a single value which is the variance of 

VO. I f all the other parameters are set to zero, tiien the stacking velocity simply equals 

the vertical velocity. I f we assume a standard deviation, a^^, of 50 m/s on the stacking 

velocity, then the cortesponding standard deviation on VO in this simple case is given 

by, 

f N \ 
a Vs r-, (4-40) 

where N is the number of velocity analysis locations used in the inversion. For the 

synthetic case 16 velocity analysis locations were considered, and therefore Qy^ = 12.5 

m/s. 

The situation is more complex when we invert for two parameters, for example, VO and 

k^. The diagonal elements of the resulting covariance matrix contain the variance on the 

inverted parameters. The off-diagonal terms give the orientation and shape of tiie 

contours of the objective function around m (equation 4-41): 

D ( m ) = Dim) + ^ ( m - m f C f y { m - m ) (4-41) 

The covariance matrix can also be used to generate a probability disti-ibution function of 

the model parameters: 
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P{m-m) <x exp-
\m-m)^c}{m-m) 

(4-42) 

Through use of standard multi-variate Monte-Carlo simulations (e.g. Oliver, 1995) many 

realisations of model parameters, that satisfy the ertor distribution in the data, can be 

generated quickly. For each realisation, we can perform a depth migration and calculate 

the volumetrics f rom the depth maps. More ambitiously, as we can estimate the 

movement of the depth surface at any location due to a change in the model parameters, 

the derivative of the gross rock volume (GRV) with respect to the parameter changes 

may be estimated directiy. Care must be taken, however, because i f the perturbation 

f rom the solution, m, is too large then we may move outside the linear regime described 

by the covariance matrix. This can be checked by modelling and checking the validity of 

equation 4-41. I f there is time to generate enough realisations, the results can be 

displayed as in figure 4-3 and confidence levels associated with particular reservoir 

volumes. 

frequency 
68% 

Cumulative 

\i- ii+o GRV 

Figure 4-3: Measuring the uncertainty on the Gross Rock Volume (GRV) 
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Another, more pragmatic, way of estimating uncertainties is to actually add ertors with 

some pre-defined distribution to the input data and then reinvert. This type of approach 

is valid even when the inversion is strongly non-linear, or when the ertors in the input 

data are large enough to move outside the linear regime described by the covariance 

matrix. 

4.8 Calculation of the Partial Derivatives 

To perform the inversion successfully, we must be able to estimate the partial derivatives 

of the modelled data with respect to each of the model parameters. Specifically, the 

modelled data consists of a stacking velocity field, well marker depths and well seismic 

traveltimes. A l l of these derivatives are shown to have a very similar form and can be 

calculated efficientiy during the forward modelling. Each calculation relies on 

calculating how the traveltime along a given ray-path changes due to a perturbation in 

one of the model parameters. 

For ease of calculation, the derivatives are curtentiy calculated using a straight ray 

approximation, i.e. assuming a locally constant velocity field with constant anisoti-opy 

parameters. Figure 4-4 shows an example of a ray, travelling f rom layer ^ - 2 to layer k 

Initially, we w i l l assume that the overburden velocity field is known and only consider 

the effects of a change in model parameters in the last interval tiirough which the ray 

travels. This calculation is appropriate for layer-stiipping methodologies. Later, we can 

generalise the discussion to calculate the traveltime derivatives of a ray with respect to 

model parameter changes anywhere in the model, as required by the multi-layer 

inversion scheme. 
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Figure 4-4: Calculation of the traveltime partial derivatives 

There are two first-order effects that change the traveltime along tiie ray due to a change 

in model parameters witiiin the layer k (between layer boundaries ^ - 1 and A). 

• change in traveltime along die unperturbed ray, and 

• movement of the interface from k to k', to keep the zero-offset time to layer k con­
stant. 

The figure defines a number of parameters that describe die ray-padi: die phase and 

group angles, 0,([); die ray-padi lengtii, / ; die component of ray slowness normal to die 

interface, p; and the component of displacement of the interface boundary, d, along the 

direction of die zero-offset ray. We can also define die traveltime, r, and die phase and 

group velocity, v,V. 

The indexing of these variables is fairly complex and must be explained. The subscript 

on a variable refers to the ray-padi diat is being considered. I f no subscript is present 

then the variable relates to the original ray for which we are trying to find the traveltime 

derivative. I f a subscript does exist, dien die variable relates to a zero-offset ray (i.e. no 

slowness component in a direction tangential to the layer interface) fired from die 
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intersection of the original ray and the layer interface indicated by the index. These zero-

offset rays are used to calculate how a layer boundary moves due to a change in model 

parameters. 

The superscript on a variable refers to a segment of a ray through the layer indicated by 

the index, i.e. k refers to the interval between k-1 and k. I f no superscript exists then the 

variable describes the whole ray-path. In addition, when describing a slowness, p, an 

additional superscript of tor b is added to distinguish between the top and the bottom of 

a layer interval. This indexing may seem over-elaborate at first sight, but the generality 

is needed when we extend the discussion to a multi-layer inversion. 

For both first-order effects we firstly derive the traveltime change due to a change in 

average phase velocity along the ray, and then analytically relate this phase velocity 

change to the model parameters. 

4.8.1 Change in Traveltime along the Unperturbed Ray 

As we are dealing with straight rays we need deal only with average group velocity along 

k k 

the ray V(q)). The traveltime t for a straight segment of length / is then simply given 

by 

k f 

Therefore, the change in traveltime due to a change in the group velocity is 

(4-44) 

and since the group and phase velocities are related by 

v(e) = y((p)cos((p-0), (4-45) 
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the traveltime derivative with respect to the average phase velocity is 

-.k _k 

Differentiating equation 4-29 with respect to the model parameters yields 

1^ = A(0) (4-47) 

1̂  = VoSin^Gcos^e (4-48) 

^ = vpsin^e, (4-49) 

where: 

A(e) = (1-hSsin^ecos^e-HEsin'^e) (4-50) 

The traveltime changes, therefore, for the unperturbed ray, due to a change in the model 

parameters are given by 

k k 
at -t , k r.k. T = -rCOS((p - e ), (4-51) 

a / _-fV$cos( / -e ' ' )s in2e'^cos20' 
(4-52) 

and 

a / _ - ? V J c o s ( / - 0 * ) s i n V 

ae* A*(e*) 
(4-53) 

As straight rays are being assumed, the traveltime change due to a change in velocity 

gradient can be re-expressed in terms of the change in the average phase velocity, v due 

to changing the gradient parameters k : 
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v(0) = (Vf^ + k-r)A(Q) (4-54) 

dt_ _ dt_ dy_ _ dt 

dki~ dv'dki~ '''dv- ^ 

In a similar way, the traveltime change due to higher order velocity terms can be given as 

the change the traveltime with respect to v multiplied by the change in v with respect to 

the higher order parameter. This makes it very easy to introduce higher order velocity 

terms of many different forms and, as long as the velocity varies slowly enough to keep 

the rays fairly straight, the derivatives should be accurate enough. 

4.8.2 Effect of Moving Interface to Keep Stack-Time Constant 

The second first-order effect which must be taken into account is due to the fact that all 

of the models we build must be consistent with the stack time. In the inversion, 

whenever the model parameters are changed the model is re-depth migrated, ensuring tiie 

depth surfaces are always consistent witii the interpreted time data. This is a strong 

constraint and results in the interface moving as a result of interval parameters changes. 

It means that the traveltime change along a zero-offset ray due to a perturbation in model 

parameters is identically zero. This term is related to the fixed traveltime and fixed 

traveltime-dip criteria of Iverson and Gj0ystdal (1996). 

As a first approximation, we assume that the interface will move along the direction of 

the zero-offset ray shot from die interface, as shown on figure 4-4. This component of 

the traveltime change can then be written as the product of the traveltime change due the 

movement of the interface and the movement of the interface due to the change in model 

parameters: 

a r ^ ^ a ^ ^ . a / ^̂ ^̂ ^ 

^""j a / ^'^i 

108 



The first of these terms is the normal component of the zero-offset ray slowness, p : 

a / v\%i) 

which is simply the reciprocal of the phase velocity. 

The interface change due to a change in the group velocity is 

a / 

ay' ' 
= tl, (4-58) 

A/, = 0 

k 
where tj^ is the traveltime along the zero-offset ray, shown in blue on figure 4-4, from the 

ray segments' intersection with the interface boundary. By shooting a zero-offset ray 

through this last segment and calculating its traveltime, this factor is determined. These 

results can be used to determine die movement of the interface, d'^, due to changing the 

phase velocity as 

•^,k 

^ ^ P - P = 4 c o s ( q ) ^ 0 j ) . (4-59) 

and combining equation 4-57 and equation 4-59 gives 

dt'^ k" k , k „/t, 
^ k k = P ^fcCOS((p^.-0^,). (4-60) 

av (0^) 

As previously, this can be expanded by the chain rule, and we get the traveltime change 

due to the movement of die interface: 

k 
^ = p'\lcos{c?l-e1)A\el) (4-61) 
a y j 

k 
^ = /*4^$cos((p;^-0|^)(sin0|Jcose;^)^ (4-62) 
as 
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and 

— = P ^/t^ocos((pfc-e^)(sm0^) . (4-63) 
de 

4.9 Stacking Velocities 

The change in the stacking velocity, due to a change in the model parameter, my, 

may be re-expressed by the chain-rule to give 

where the summation is over die n offsets used in the stacking velocity calculation. 

The first term, the change in the stacking velocity due to the change in the traveltime of 

one of the offset rays, can be approximated by assuming a linear regression, which 

means that the stacking velocity is an analytical function of die traveltimes, f,- and 

offsets, hi within die ray fan: 

2.2 
1 

and therefore the derivative is given analytically by 

4.10 Well Marker Depths 

Similarly, i f the surface is assumed to move along the zero-offset ray due to a change in 

the model parameters, then the change in depth at the position of the well marker is 

found by shooting a zero-offset ray from the intersection of the well trajectory and the 
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depth surface and using equation 4-59 which gives die displacement of the surface along 

the ray direction. 

4.11 Multi-Layer Inversion 

This approach can be extended to a multi-layer case: the principles remain the same but 

the algebra gets more complicated. Figure 4-5 shows a ray travelling between layer 

interfaces k-1 and k+1. The problem we must solve is to calculate the traveltime change 

along a given raypath due to a change of parameters in a given layer, k. As in the layer 

stripping case, the change has two first order components. The first is the traveltime 

change along the unperturbed ray; the second is the effect of the movement of, not a 

single layer boundary as before, but all the layer boundaries beneath layer, k, in order to 

keep the zero-offset traveltime to the layer boundaries constant. 

A change in the model parameters in layer k changes the traveltime, t , of the ray 

through layer k, but it also perturbs the layer boundaries of layer k and layer k+1 to k' 

and k+1' respectively. The total traveltime change can be written as 

— = —COS((p - 0 (/? V ) + — P • (4-67) 
av V av av 

The first term in equation 4-67 is the traveltime change along the unperturbed ray and is 

of the same form as equation 4-46. As in the layer stripping case, the derivatives are 

calculated using a linear ray approximation, and therefore the phase velocity is assumed 

to be the average velocity over the ray segment. 

The second term relates to the movement of the layer k boundary. As the ray continues 

into layer k+1, a layer boundary perturbation effects the traveltime in both adjacent ray 

segments. With reference to equation 4-56, the traveltime change for both segments, is 
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the product of the derivative of the normal displacement, d , with respect to die phase 

velocity, v , and the component of the zero-offset ray slowness normal to the interface. 

The normal components of die traveltime slownesses are readily calculated as they are 

the reciprocal of die local phase velocities. The derivative is evaluated using equation 4-

58, and simply equals the traveltime of the zero-offset ray shot from the intersection of 

the ray with the layer k boundary up to the layer k-1 interface. This normal ray is shown 

on the diagram in blue: 

^ = 4 • (4-68) 

The third term in equation 4-67 is very similar to the second, and concerns the traveltime 

movement due to layer k+1. The calculation of — r is more complex, but possible 

given the constraint that the zero-offset traveltime to die interface boundaries is constant. 

I f we fire a normal ray, shown here in red, from the intersection of the original ray with 

the layer boundary, k+1, up to layer k-1, then we know that the interface k+1 must move 

so as to leave the traveltime of this ray unchanged. Therefore we can write 

^ ^ ^ ^ = 0 , (4-69) 
av* 

which itself has three terms of a similar form to equation 4-67: 

0 = \ COS ( (P (^^l ) -e (^^l))-H--- i iPik+l)k-P(k+l)k)+-J P 
V av av 

(4-70) 
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The calculation of —)• ' requires another zero-offset ray to be fired from the 
av* 

intersection of layer k and die zero-offset ray from layer k+1. Given diis ray-path, shown 

on the figure in green, the derivative is found as before. 

l a y e r 2 

layer ik-i 
^syzero offset ray recursive 

shooting 

laycr^*: 

layer k+1 

raytr*^-/' 

Figure 4-5: Calculation of the traveltime derivatives for the multi-layerjoint inversion 

Rearranging equation 4-70 gives 
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dd_ (k+1) r.k 

(k+iy 

dd. 
— ^ COS (.(P(̂  + 1) - t'(/t + + —J yP{k + ~ P{k + 

V av 

(4-71) 

and combining equation 4-67 and equation 4-71 gives the required traveltime derivative. 

Generally, when there is more than one layer beneath the layer in which the model 

parameters are being changed, equation 4-67 must be generalised to give 

dt -t , k f,k. 
— = —cos((p - e ) + 
av V 

X Bd , (0 + 
—kyPn(i)-Pn{i) ) 

li = k^^ 

where n is the index of the last layer through which the ray travels. 

Similarly, equation 4-71 becomes 

(4-72) 

_ = - icos((py-Qj) + X - i i P j i -Pji) 
dv pJ Lv / = k^V 

(4-73) 

The terms ^ in equation 4-73 can be found using equation 4-73 itself, and the solution 

av'' 

becomes recursive. Practically, this means that zero-offset rays must also be traced from 

the intersection of all zero-offset rays with the layer boundaries. The recursive nature of 

the solution means the process could become excessively expensive i f the number of 

layers involved in the derivative calculation becomes too large. In order to optimise die 

shooting, a new ray is only fired i f the angle it makes with the interface is significandy 

different from that of existing rays. 

Figure 4-6 shows the rays that must be fired to calculate the change in traveltime along 

the ray from the source to receiver given a change in model parameters within any of die 

layers in the model. 

114 



source 

receiver 

Figure 4-6: Traveltime derivative calculation using recursive ray-tracing 
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5.0 Case Studies 

5.1 Simple Synthetic 

5.1.1 The Model 

A three layer synthetic model was generated in order to test the inversion algorithm 

(figure 5-1) and assess the impact of the different data types on parameter resolution. 

The first layer was flat with an isotiropic velocity overburden. The second layer was also 

flat but the velocity was chosen to be anisotropic with a small vertical velocity gradient. 

The third layer had some mild stiiicture and was strongly anisoti-opic with a sd*ong 

vertical velocity gradient. Second-order lateral velocity variations were included in each 

layer. Figure 5-1 also shows the model parameters as a function of depth at the position 

of the well. 

m/8 epwlon 
ISOO 4000 0 

1500m» 
Mf//A 

I 2000m 

2500m 

F^re 5-1: Three layer synthetic model 

The modelled data consisted of: a stacking velocity field, modelled at 81 VA locations 

spread evenly over die area; well-markers, defined for all three layers; and the modelled 

tt-aveltimes for a walkaway well seismic acquisition, an offset VSP and a vertical VSR 
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Variable amounts of normally distributed noise were added to each of the modelled data 

to produce a noisy dataset which was inverted in addition to a noise-free dataset. 

5.1.2 Layer-Strip Results 

Initially, a layer-ship inversion was carried out using die stacking velocity field and die 

well marker depdis. Starting from a constant velocity model, each layer required du-ee to 

four iterations to converge. The results are shown in figure 5-2 for noise-free and noisy 

datasets. The noisy dataset had Gaussian errors added with standard deviations of 30 m/ 

s for the acmal stacking velocity field and 5 m for the well-marker depdis. Figure 5-2 

also shows the a posteriori standard deviations on the inverted anisotropy parameters due 

this noise estimated from die a posteriori covariance matrix. The resolution matrices for 

the layer-strip inversion are shown in figure 5-3. 

,500 velocity ( m / s ) ^ n_ 30 0 30 

depthj 
(m) 

1500 

2000 

2500 

Key 

Perfect Model 
-Noise Free 
With Noise 

Figure 5-2: Comparison of the layer-strip inversion results with and without noise 

For the first two flat layers the data are msufficient to resolve bodi die vertical velocity 

and die vertical velocity gradient, and can be fitted equally well usmg a wide variety of 
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VO - k^ combinations. The selected solution depends strongly upon the way in which 

the inversion was constrained, and minimizes the distance from the a priori model. 

Similarly, the anisotropy parameters in the first two layers are not resolved 

independently. Within the first layer, the inverted velocity model is isotropic because the 

a priori model was isotropic and all the data could be fitted without introducing 

anisotropy. Within the second layer, the a priori model was also isotropic but anisotropy 

was introduced because it was needed to fit both the stacking velocities and the well 

marker depths, and the contribution of the data misfit to the objective function was 

considerably greater than the contiibution due to violation of the a priori constraints. 

Good 
Resolution 

Poor 
Resolution 

Layer 1 Layer 2 Layer 3 

& 
Layer 1 Layer 2 Layer 3 

Figure 5-3: Resolution analysis after layer-strip inversion 

In the third layer, the correlation of the stacking velocity field and die structure is 

sufficient for the vertical gradient and both anisotropy parameters to be fairly well 

resolved in die case of the noise-free data set. The addition of even a small amount of 

noise, however, destroys this resolution and a posteriori standard deviations on the 

model parameters are correspondingly high. Errors in the well-marker depths, strongly 
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influence the a posteriori parameter deviations because there is no redundancy m these 

data. The lateral gradients and higher order terms (not shown in the resolution analysis) 

are well resolved for all layers, even after die addition of noise. 

5.1.3 Multi-Layer Inversion 

Using die result of the layer-sdip model as an mitial guess, a multi-layer inversion was 

performed using the well seismic data in addition to die stacking velocities and weU 

marker depths (figure 5-4). It required a further four iterations to minimize the objective 

function. Errors having a Gaussian disttibution with a standard deviation of 2 ms was 

added to the well seismic traveltimes for die noisy dataset. The resolution mattices for 

die multi-layer inversion are shown in figure 5-5, 

,500 Velocity ( m / s ) ^ 0 delta Q/o oepsilon%3o 

depthi 
(m) 
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2000 

2500 
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/With Noise 

Figure 5-4: Comparison of multi-k^er inversion results with and without noise 

There are no well seismic receivers within the first layer and consequendy very litde 

additional information about die model parameters in the first layer. In die second layer, 

however, the anisotropy parameters are now fairly well resolved, especially epsilon, due 

119 



to the almost horizontal ray paths present in the well seismic data (figure 5-1). The fact 

that there are several well seismic receivers within the interval also gives us more 

information about the VO - k^ trade-off, as the traveltime difference between receivers 

contains information about the internal velocity structure of the layer. The resolution 

matrix also shows trade-offs between parameters in different layers. Interestingly, 5 in 

the second layer is not resolved independentiy of the anisofi-opy parameters in the first 

layer. Also, in the case of the noisy dataset, the ertor in the well-marker depth, causes 

inter-dependency of the vertical velocity and vertical velocity gradient between die first 

two layers. 

Within the last layer, the parameter resolution is almost perfect for the noise-free data 

and the inverted model is equal to the true model. Also, the resolution is not as badly 

effected by noise and the a posteriori standard deviation on the anisotropy parameters is 

smaller dian after the layer-strip inversion. Again, an ertor on the well-marker depth 

introduces small trade-offs in the vertical velocity and vertical velocity gradient in the 

layer above. 

This simple synthetic example shows that the parameter resolution is very dependent 

upon the structure of the model, the available data and the level of noise. The use of a 

resolution matrix can be used to quantitatively assess die non-uniqueness of the inversion 

result for any given model. Generally, as in this case, the addition of well seismic 

traveltimes is shown to improve parameter resolution. 
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Figure 5-5; Resolution analysis aftermulti-layer inversion 
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5.2 The Elgin/Franklin Fields 

The remainder of this chapter will look at the inversion of the Elgin / Franklin field, a 

real 3D case. Elgin / Franklin is a deep, Upper Jurassic, high-temperature, high pressure, 

gas condensate accumulation located within the U.K. Central Graben of the North Sea 

(blocks 22/30c and 29/5b). In this case study, a large area of 13 x 25 km^ is considered 

(figure 5-6). Six seismic horizons were interpreted from the time-migrated block: Top 

Balder, Top Maureen, Top Hod, Top Hidra, Base Cretaceous Unconformity (BCU) and 

Top Pentland. The data quality for the shallow horizons allowed automatic 3D horizon 

picking followed by manual checking. The BCU and Pentland required manual picking 

and were also heavily faulted (figure 5-6 shows the fault polygons picked on the Pentland 

layer). There was a problem with multiples generated from the Top Hidra and BCU 

events which caused the data quality to deteriorate below the BCU. Each time-migrated 

interpretation was sampled onto a regular grid with a spacing of 50 x 50 m. 

The time-migration velocity field was based upon a smoothed version of the stacking 

velocity field modified by a time-varying multiplier, selected after a series of trials, to 

improve the quality of the image. This field, specified as a three-dimensional grid, was 

sampled on to the time-migrated interpretations to produce horizon consistent maps that 

could be used for the demigration. A Kirchhoff demigration operator was applied, 

despite the fact that finite-difference time-migration was used. This approximation was 

deemed acceptable, as described in section 2.7.2, because the lateral variation in the 

time-migration velocity model was not strong. 

Stacking velocity analysis was carried out approximately every 500 m, at the locations 

shown as dots in figure 5-6. In this case, both D M 0 and a constant velocity pre-stack 

time-migration (2000 m/s) were applied before stacking velocity analysis. This simple 
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time-migration velocity field should not be confused with the final time-migration 

velocity field used to migrate tiie seismic data prior to interpretation. A time-varying 

mute was also applied which gave 4700 m of offset for tiie deepest horizons. 

Block 
22/30C 

Block 
29/5C • 

Block 
29/5B 

crosslink 

inline 
2km 

Figure 5-6: Base map showing the region over which the inversion was carried out and the positions of 
the wells and the fault polygons pickedfor the Pentland layer 

Six-wells were used during tiie inversion. Well 22/30c-8 is approximately vertical and 

wells 22/30C-10 and 22/30c-13 are deviated wells drilled from tiie same surface location. 

Wells 29/5b-4, 29/5b-6 and 29/5b-8 are approximately vertical. Al l tiie wells have 

markers defined for each layer with the exception of well 22/5b-4 which is not deep 

enough to penetrate the Pentiand. Unfortunately, no well seismic data were available. 
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Initially, an isotropic velocity model was built using the stacking velocities but not the 

well markers. Each layer required three to five iterations to converge starting from a 

simple constant velocity initial guess. The depth-migration stage of the inversion is 

relatively quick. In this case, one ray was fired for each node on the time-migrated grids 

which meant that around 130 000 rays were used to depth migrate each layer. This takes 

only a few seconds per iteration for the shallow layers and increases to around half a 

minute for the deepest layer on a one processor workstation ̂  The forward modelling 

of the stacking velocity field is the most expensive part of the inversion. The deepest 

layer takes around 5 minutes per iteration to forward model 2532 ray fans. The last 

layer, therefore, took a total time of around 30 minutes for five iterations. 

As the calculation of the stacking velocity at each VA location is independent, the 

forward modelling is well-suited to parallelisation. Tests on a modem shared memory 

machine, that allows the entire velocity model to be stored in memory accessible to all 

processors, have shown that the speed increase as a function of the number of processors 

is almost linear. This is important when assessing uncertainties in the inverted result as it 

makes it feasible to carry out a number of inversions with different types of constraint 

and model parameterisation. On a 32 processor machine, therefore, the inversion of the 

Pentland layer takes less than a minute. 

An anisotropic model was also produced by including the well marker depths into the 

inversion in addition to the stacking velocity field. The anisotropic ray-tracing is 

approximately five times slower than the isotropic due to the added complexity in the 

traveltime slowness calculation. Correspondingly, the anisofi-opic inversion was five 

times slower than the isotropic. 

1. AH performance figures are based on a Silicon Graphics, Indigo workstation, with a MIPS R4400 CPU 
running at 250 MHz 
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5.3 Isotropic Model 

The isotropic inversion results of each of the six layers, beginning with the shallowest, 

are shown in figure 5-7 through to figure 5-12. These plots show comparisons of the 

modelled and actual stacking velocity, as well as three other properties calculated during 

tiie modelling: the modelled zero-offset time, calculated by Gaussian weighted 

regression from the traveltime-offset curve, the time-pick error, which is the difference 

between the modelled time and the nearest stacking velocity pick, and the weighting, 

which gives a measure of the confidence in the pick (see section 3.4). There is no 

interpolation applied to these properties: instead, the surface is partitioned into regions 

around each of the zero-offset reflection points, and then these regions, the size of which 

depends upon the local reflection point density, are filled with a colour corresponding to 

the property value. This is purely for ease of visualisation and prevents tiie property 

variation from 'looking' smooth. Al l the properties, therefore, are displayed in their 

deptii-migrated position. The resultant depth surface and vertical interval velocity are 

also shown. 

The Balder layer is fairly flat and the variation in the actual stacking velocity is small 

(only around 120 m/s over the entire area). The variations in the actual stacking velocity 

are very high frequency although there is a clear low frequency trend from south to 

north. The modelled stacking velocity field after inversion captures this trend well, and 

the residual misfit is high frequency and low amplitude (the weighted RMS average 

misfit in the stacking velocities is only 20.8 m/s). Due to the lack of structure, the 

modelled stacking velocity field is very similar to the inverted velocity function. The 

top-Balder interface was a strong reflector and was picked horizon-consistentiy during 

the stacking velocity analysis. The time-pick error is correspondingly small and the 

weighting for the vast majority of VA locations high. Third-order velocity variations 
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were considered sufficient as higher order terms failed to significantiy reduce tiie value 

of the objective function. Similarly, the addition of a vertical gradient did not further 

reduce the objective function, although this is unsurprising given the lack of structure. 

The resolution matrix also showed that the vertical velocity gradient was completely 

unresolved by the available data. 

The results of the isotropic inversion are compared with the well-marker depths in 

figure 5-13 and show that, by Balder, the depth surface is already around 250 metres too 

deep (some 7.5%). During routine industrial processing, the well-tie is made by 

applying a vertical stretch factor to the depth surface. Figure 5-14 shows the well-

marker misfits after applying the best average stretch factor (0.925). For Balder, this 

simple correction fits all the wells to within 20 metres. 

The Balder-Maureen interval is very thin (only around 200 m on average) and 

consequently the vertical RMS velocity down to the Maureen is relatively insensitive to 

the interval velocity in the Balder-Maureen interval. The velocity contrast between the 

Balder and Maureen layers is very large (hence the strength of the Balder reflection), and 

there is a strong refraction of rays across the Balder interface. The modelled stacking 

velocity field again capmres the low-frequency trend present in the actual stacking 

velocities and the misfit is high frequency. The depth mistie at the wells has increased 

slightly but is still compensated for by a vertical stretch factor. 

The Hod layer is fairly flat and conformal to the layer above. The modelled stacking 

velocity field is starting to contain some higher frequency events. Given the smootiiness 

of the overburden velocity model, these high frequency events are structural in origin and 

correlate strongly with the dip of the depth surface. This strong structural dependence of 

the stacking velocity field shows that already, at this early stage, the D M 0 and pre-stack 
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time-migration schemes have failed in their objective. Moreover, the presence of these 

high frequency events in the actual stacking velocities shows that the model is 

quantitatively predicting their failure. The weighted RMS error in the stacking velocities 

has increased to 41 m/s but remains predominately high frequency. 

In the Hidra layer, the time-pick error is consistentiy negative over the whole layer, 

suggesting that the stacking velocity analysis was not horizon-consistent and 

consequentiy tiie weighting is low (in fact, reflections from a conformal layer slightly 

deeper than the Hidra were picked). The majority of the modelled times were within 50 

ms of the nearest pick however, and interpolation of the stacking velocity field was not 

deemed necessary. The modelled stacking velocity field is now of considerable 

complexity and is very clearly related to the depth structure. There is also a very strong 

correlation between a low velocity zone on the inverted vertical velocity function and a 

shallow area of the depth structure. Such a feature could also be explained by the 

introduction of a vertical velocity gradient; however, a vertical gradient in addition to the 

lateral variations failed to further reduce the value of the objective function. The weU 

misfits have not increased very much considering the thickness of the interval, 

suggesting the velocity field to be largely isotropic. 

The structure of the BCU is considerably more complex than the layers above and was 

heavily faulted. The fault planes themselves were not imaged well on the seismic data 

and were not interpreted reUably. In the first stage of the inversion, therefore, points that 

were inside the fault polygons were removed and consequently the depth-migrated 

surface contained many holes. These gaps must be filled for the depth-migration of 

deeper layers and to produce a grid of interval velocities for subsequent depth-migration 

of the seismic data. I have devised an automatic procedure that makes use of the 
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connectivity relationships between the points in the depth domain and fills any gaps with 

the smoothest possible surface. As points from within the fault planes were removed 

prior to demigration, zero-offset ray solutions reflecting off the fault-planes were not 

predicted and not traced during subsequent inversion. This speeds up and stabilises the 

inversion. For the deeper horizons the RMS velocity is significantly higher than the 2000 

m/s used for the pre-stack time migration. When combined with the large time-dips 

present on these layers, this means that the velocity analysis was carried out on strongly 

under-migrated data with residual triplications, and consequently many of die VA 

locations still have several solutions. Without pre-stack time migration, however, there 

would be significantiy more zero-offset solutions (around four times as many, in this 

case) and the forward modelling would be considerably slower. 

The Pentland layer was also heavily faulted and reflections from the faults removed 

using the same procedure as described above. Due to the complexity of the Pentiand 

layer and the increase in noise, the stacking velocity field could not be picked horizon-

consistentiy. Instead, stacking velocity picks were made along constant time slices. 

During inversion, therefore, the stacking velocity function had to be interpolated and 

there was no time-pick error. The modelled and actual velocity fields are very similar, 

and although the RMS error in tiie stacking velocities increased to 98.8 m/s, this was not 

considered excessive given the noise and the wide range of stacking velocities over the 

layer. Importantiy, an average vertical stretch factor is no longer sufficient to tie all the 

well markers to the required accuracy (the well 29/5b-8 has an error of nearly 97 m after 

correction). Of course, the well tie could be made by producing a laterally varying map 

of sfi-etch factors, but such a process is highly subjective and strongly non-unique. 

Despite the relief, a vertical gradient could not be resolved from the available data in 

conjunction with lateral variations. 
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Figure 5-7: Results from the isotropic modeMng of Balder 
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Figure 5-8: Results from the isotropic modelling of Maureen 
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Figure 5-9: Results from the isotropic modelling of HOD 
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Figure 5-/0; Results from the isotropic modelling ofHidra 
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Fig^re 5-11: Results from the isotropic modelling of BCU 
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Figure 5-12: Results from the isotropic modelling of Pentland 
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Figure 5-13: Isotropic well misfits at each layer 

22/30-8 22/30-13 22/30-10 29/5b-6 29/5b-4 29/5b-8 

• Balder -12.6006 -7.98486 -12.2327 -3.25317 16.9441 18.7856 
• Maureen -12.606 -3.12939 -16.4075 9.5603 17.0852 5.10547 
• HOD -15.8696 -10.4988 -3.32446 6.00854 14.0762 9.19971 
m Hidra -15.1729 -10.7822 2.64062 37.1411 -25.894 12.0479 
• BCU -12.3457 -13.9951 -10.1377 33.6123 -3.66113 5.87207 
• Pentland -6.51465 -20.0029 45.3101 70.1909 -96.9155 

Figure 5-14: Isotropic well misfits after correction with the averse vertical stretch factor 
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5.4 Anisotropic Model 

An anisotropic model was also built using the stacking velocities and the well-marker 

depths. The results of the inversion for each layer are presented in figure 5-16 tiirough to 

figure 5-21 and the well marker misfits are shown in figure 5-15. For ease of comparison 

tiie colour scales for tiie stacking velocity field have been chosen to be tiie same as for 

the isotropic results. The introduction of anisotropy makes it possible to produce a 

velocity model that is consistent with the stacking velocities and the well marker depths. 

The majority of the well markers are honoured to within 10 m (figure 5-15). This is 

considerably better than the result obtained by vertical stretching of the isotropic model, 

especially for the Pentland layer, where an average vertical stretch was insufficient. The 

improvement over the vertical stretch is possible because tiie wells intersect the depth 

surface at a range of dips and, therefore, a constant set of anisotropy parameters results in 

different propagation velocities for the deptii migration rays around tiie different wells. 
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Maureen 
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Figure 5-15: Anisotropic well misfit at each layer 
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The addition of anisotropy does not improve the fitting of the stacking velocity field as 

measured by the weighted RMS stacking velocity misfit. This suggests that, in this case, 

there is very little information about the anisotropy from the stacking velocities alone. 

Given that the zero-offset traveltime to each layer is not dependent upon the velocity 

field, the modelled traveltime is almost the same for the isotropic and anisotropic case 

(there is some small difference due to the non-hyperbolicity of the traveltime curve), and 

consequentiy the actual stacking velocity field is very similar to that in the isotropic case. 

The inverted anisotropy parameters within each layer are fairly large with the exception 

of the Hod-Hidra interval which has 5 = 0.019 and e = 0.026. Interestingly, this 

interval is a fairly homogeneous chalk layer which the gamma ray well logs shows to 

have a low shale content. Conversely, the other layers with large inverted anisofi-opy 

values contain thick shale beds. This correlation between the level of anisotropy and the 

lithology of the layers is in agreement with the work of Banik (1984) who demonstrated 

that the well misfit after isotropic Dix inversion was strongly correlated with the 

presence of thick shale intervals. Although the stacking velocities in addition to the well 

markers indicate the presence of anisotropy, the resolution matrix shows that both 

anisotropy parameters are not resolved in any of the layers. For this model, a constraint 

of e = 25 (thought to be representative of shale) was imposed to remove the non-

uniqueness and select the required solution. The uncertainty associated with this non-

uniqueness can be assessed by making several models with different constraints. 
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Figure 5-16: Results from the anisotropic modelling of Balder 
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Figure 5-18: Results from the anisotropic modelling of HOD 
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Figure 5-19: Results from the anisotropic modelling ofHidra 
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Figure 5-20; Results from the anisotropic modelling ofBCU 

Vertical Velocity Actual Stacking Vel Modelled Stacking Vei 

2793 m/s 3959 5311 m 7851 2586 m/s 5493 

Average 
RMS Misfit 
120.5 m/s 

I stacking Velocity M s t l l 

• 100 m / l ^•^00 

8 = 0.151 
e = 0.270 

ModritedTlme 

4ia» in« 56S3 

No 
Error 

Time Pick Error 

50 m s so 

Figure 5-21: Results from the anisotropic modelling of Pentland 
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For the shallower layers, the shape of the inverted vertical velocity function within each 

layer is very similar in shape to the isotropic result although the values of the vertical 

velocities are all much smaller. The resolution matrix shows the isotropic and 

anisotropic parameters are resolved almost independently. For the deepest three layers, 

despite the structure, the anisotropy parameters remain poorly resolved and contain 

trade-offs with the higher-order lateral variation velocity terms. This results in the 

changes of shape of the vertical velocity functions between the isotropic and anisotropic 

models in the deeper layers. 

Figure 5-22 shows a 3D view of the inverted anisotropic model in depth. The depth 

surfaces for all six inverted horizons are shown. The Balder, Maureen and Hod layers 

are all fairly flat, the Hidra has some gentle structure and the BCU and Pentland layers 

are heavily faulted. The Pentland layer is very deep with a depth range of 5311 to 7851 

m below mean sea level. The three Elgin wells drilled from the same surface location 

and the three, almost vertical. Franklin wells are also shown. The wells all intercept the 

Pentland layer at its shallowest points. This highlights the difficulty of using information 

from the well logs in order the estimate interval parameters over the entirety of the layer. 

The estimations of the vertical velocity gradient from the well logs, for example, could 

not be expected to be representative of the velocity variation between the BCU and 

Pentland in the areas away from the wells, where the interval thickness is much greater 

and the top Pentland is much deeper. 
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Figure 5-22: A 3D view of the anisotropic depth model showing all layers and wells 
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Figure 5-23: A 3D view ofOie depth map for the PenOand layer showing the quality of the imaging 
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Figure 5-23 shows a 3D view of the Pentland depth surface and demonstrates the quality 

of the depth maps produced by the inversion. The faults are very sharply defined. There 

is an interesting effect to the north-east of the three Frankhn wells, bordering the large 

fault (this fault is shown more clearly in figure 5-22). The fault surface intersects the 

BCU layer, as well as the Pentland, and the zero-offset rays used in the map migration 

must cross this fault. The effect of this is visible in figure 5-23 as a zone of 

discontinuous behaviour referred to as a fault shadow. Imaging in these areas is very 

difficult using ray theory as the velocity model is probably not representative of the true 

velocity variation over the fault. A single stacking velocity offset fan is also shown. A 

strong refraction, due to the large velocity contrast at the Balder interface, is visible. 

Also, as the velocity analysis was after PreSTM, the zero-olfset ray does not leave the 

datum surface from the VA binning location. 

5.5 Comparison of the Isotropic and Anisotropic Models 

The difference between the time- and depth-migration can be assessed visually by means 

of a migration distance plot (figure 5-24 and figure 5-25). These figures show the lateral 

displacement between the time- and depth-migrated domains for both the isotropic and 

anisotropic models at the Pentland layer. The position of the well in the time-migrated 

domain (as discussed in section 2.10) is also shown. Such plots are extremely useful 

quality control tools as they show the areas where the time-migration operator is not 

working well, highlighting areas that may need reinterpretation. Operationally, they are 

invaluable as they show the error that is made by a simple vertical stretch of the time-

migrated interpretations. 
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Figure 5-24: Migration distance plot over the Elgin field showing the lateral displacements between the 
time-migrated and depth-migrated positions at the Pentland level 

The migration distances are not negligible as they are in excess of 500 m in the dipping 

areas. It is also clear that there are significant positioning differences between the 

isotropic and anisotropic models, both in terms of the magnitude of the lateral 

displacement and its direction. In this case, the time-migration velocity model was 

selected very carefully in order to optimise the quality of die time-migrated image. 

Generally, with a less sophisticated time-migration field, the migration distances could 

be much larger. 

In the regions around tiie wells, where tiie dip is smaller, ttie migration distances are still 

not negligible and, moreover, the position of tiie well in tiie time-migrated block is 

different for tiie isotropic and anisotropic models. This shift between the position of the 

well in depth and the time-migrated block was shown to be important in tiiis case. 
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Synthetic seismograms were calculated for each well using an estimate of the seismic 

wavelet and a reflectivity profile calculated from tiie well logs. When the synthetic 

seismograms were compared witii the time-migrated surface seismic data, at the position 

of tiie well's ti-ajectories in deptii, large misties were observed. When the ties are made 

at tiie well's position in migrated-time, tiie mistie is effectively removed. 
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Figure 5-25: Migration distance plot over the Franklin field showing the lateral displacements between 
the time-migrated and depth-migrated positions at the Pendand level 

Figure 5-26 shows the vertical difference between die anisotropic model and tiie 

isotropic model after vertical stt-etching to tie the wells with tiie average sti-etch factor. 

The differences between the isotropic and anisotropic models exceed several hundred 
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metres in some areas. This discrepancy results in a gross rock volume difference of 

almost 8%. 
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Figure 5-26: The vertical displacement between the anisotropic depth map and the isotropic map 
vertically stretched to tie the wells using the average sketch factor of each well 
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6.0 Conclusions and Suggestions for Future Work 

6.1 Conclusions 

Accurate estimation of subsurface interval velocities is essential for both structural 

imaging and reservoir characterisation. The use of a model-based inversion scheme has 

been shown to be significantly more accurate than the analytical schemes that currentiy 

dominate industrial practice. This thesis has demonstrated that such techniques can be 

applied quickly and robustiy enough to be of real operational importance. Generally, in 

order to produce a velocity-depth model that ties both the surface seismic and well data 

the velocity model must be anisotropic. Moreover, the inclusion of anisotropy in the 

model is necessary for optimal seismic imaging and determination of the sfi-ucture away 

from the wells. Unfortunately, however, the anisotropy parameters cannot usuallyobe 

resolved from surface seismic reflection data alone. The addition of well seismic 

traveltimes is demonstt-ated to improve parameter resolution. 

6.1.1 Domain Mapping 

Accurate time to depth conversion requires interpreted zero-offset events. Due to the 

relative insensitivity of a near-offset stack to the stacking velocity field, the assumption 

of equivalence between the stacked and zero-offset domains is surprisingly robust and 

interpreted events in the stacked domain can be assumed to be zero-offset with a high 

degree of accuracy. Interpretation in tiie stacked-domain, however, is extremely difficult, 

especially in 3D, because it is not a good representation of the subsurface structure. Due 

to these problems, interpretation is routinely carried out in the time-migrated domain and 

so, in practice, it is these time-migrated maps that must be converted into depth. 
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Techniques, such as vertical stretch and image ray, that try to directiy relate the time- and 

depth-migrated domains commonly make invalid assumptions about the time-migration 

procedure and are not applicable when moderate lateral velocity variations exist. 

Instead, the demigration of the time-migrated horizons prior to accurate ray-trace 

migration is an attractive way to perform deptii migration. It has the speed of an 

interpretation based approach but does not make strong assumptions about the validity of 

the time-migration velocity model. The approach is limited when the complexity of the 

subsurface is too great or when the time-migration velocity field is too far from the 

optimum. The vaUdity of the time-migration simulation should always be checked by 

comparing the demigrated maps with the stacked seismic section, and the inconsistencies 

may be used to help re-interpret the time-migrated domain when it is deemed necessary. 

This approach is a powerful aid to interpretation and can significantiy reduce the 

uncertainty involved in the interpretation process. This makes interaction between the 

interpreter and the geophysicist essential. 

Due to the different ways in which lateral variations in the migration velocity are 

approximated, it is not possible to define a simulation technique tiiat is exactiy vaUd for 

all time-migration algoritiims. In particular, the Kirchhoff and finite-difference 

algorithms are shown to give significantiy different results when tiiere are strong lateral 

variations. The Kirchhoff operator is simulated analytically and the finite-difference 

operator by anisotropic ray-tracing in the time-migrated domain. The simulations have 

been calibrated against the real processing responses and the kinematics agree perfectly. 

Generally, unless strong lateral velocity variations exist in the time-migration velocity 

model, the Kirchhoff algorithm is used because it is significantiy cheaper to apply. 
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The domain mapping algorithms all depend strongly upon dip. The dips are most easily 

calculated using a central differencing scheme. This approach breaks down, however, 

when the curvature of the surfaces becomes too great. As a rule of thumb, the surfaces 

should be smoothed so as to ensure that the highest spatial frequency is less than half the 

Nyquist frequency of the grid. This means that high frequency events such as faults must 

be explicitiy defined during the interpretation stage. 

An important application of the domain mapping algorithms is the transformation of die 

well trajectory into the migrated-time block. To perform this mapping, a two-step 

process is proposed. Firstiy, normal rays are used to transform die well trajectory from 

deptii into the zero-offset, or stacked domain, and then the time-migration process is 

simulated using either Kirchhoff or finite-difference simulation. It is clear that such a 

mapping requires a velocity / depth model that ties the well. This domain mapping is 

shown to be necessary when calibrating the surface seismic to the synthetic seismogram 

calculated at each well. I f the comparison is made at the position of the well trajectory in 

depth, a significant mistie can be found. 

6.1.2 Forward Modelling 

The accuracy of a given depth-migration velocity model can be assessed by 

kinematically modelling the seismic acquisition and processing and comparing the 

results of this modelling with the actual data. The modelled data consist of a stacking 

velocity field, well seismic traveltimes, and the depths of the interfaces at the positions of 

the wells. The stacking velocity corresponding to a given reflector is found by tracing a 

fan of rays spanning the true range of offsets present in the data. A Gaussian-weighted 

regression scheme is then used to calculate the stacking velocity and stack time, given 

the modelled traveltime-offset curve. This is close to simulating the way in which 
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semblance analysis actually works and is fairly insensitive to outliers which strongly 

effect both linear and hyperbolic regression techniques. The Gaussian-weighted 

regression also gives a measure of the hyperbolicity of the traveltime-offset curve which 

can be used as a quantitative indicator of stacking quality. 

The modelled and actual stacking velocity fields are compared by finding the stacking 

velocity pick that is closest to the traveltime calculated from the Gaussian-weighted 

regression. In order to have confidence in the inversion, the stacking velocity picks must 

be horizon consistent (i.e. reflections from the interpreted interfaces used to build the 

model must be picked during the stacking velocity analysis). Interpolation, although 

common, should be avoided i f possible because the stacking velocity function need not 

vary linearly between picks. Picks tiiat are not horizon consistent should be down-

weighted during subsequent inversion. 

It is essential that the forward modelling procedure correctly simulates the effect of any 

processing operators that have been applied to the data. Assumptions based on ideal 

operator behaviour are shown to not be accurate enough and it is preferable to simulate 

the kinematics of the actual processing operator on the modelled data. In particular, the 

actions of the D M 0 and pre-stack time-migration operators are demonstrated to be very 

accurately modelled by the simulation procedure and, moreover, the differences between 

the simulated results and the operators intended action is found to be large enough to be 

detected during stacking velocity analysis. 

Due to the specialist nature of the problem being solved, especially the modelling of the 

post-processed stacking velocity field, the ray-tracing algorithms for both shooting and 

bending were specifically written and optimised for tiie inversion. This optimisation 

restricts the model complexity for two reasons. Firstiy, the description of which 
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interfaces the ray crosses, and in which order, must be pre-defined. This makes it 

difficult, although not impossible, to include complex geometry, such as multi-valued 

depth surfaces. Secondly, the velocity variation over a given ray segment is assumed to 

be linear with constant anisotropy parameters. Low frequency, non-linear variation in 

the velocity model can be accurately estimated by finding the best local estimate of the 

velocity gradient over a given ray segment. 

In order for the ray-bending algorithm to be stable and fast it is important diat a good 

initial estimate of the ray-path can be found. I f the model is fully consistent witii die 

time interpretation, the end points of the zero-offset rays from the VA location to the 

reflector can be accurately estimated from the connectivity relations within and between 

the time-migrated, the zero-offset and the depth-migrated domains. This also allows the 

classical problem of multiple solutions to be solved efficiently. For the modelling of the 

stacking velocity field, the zero-offset ray-path can be used to predict the first of the 

offset rays and subsequent offset rays are accurately predicted by extrapolating the 

differences between previous rays. 

6.1.3 Inversion 

A least-squares objective function quantitatively measures the misfit between the 

modelled and actual data. The objective function allows for errors in the data by 

weighting each contributory piece of data by its variance. By linearising the problem, a 

particular solution that minimizes the objective function can be found using an iterative 

Gauss-Newton technique. The properties of the linearised inverse problem have been 

studied using a singular-value decomposition. This analysis demonstrates that often 

there are not enough linearly independent relations between the modelled data and the 

model parameters to directiy invert for all model parameters. A physical way of 
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overcoming this problem is to add constraints tiiat determine the type of model being 

sought by adding a term to the objective function that measures the distance from an a 

priori model. The expected deviation around the a priori model is defined by a 

covariance matrix. 

The a priori covariance matrices are not very easy to define and are very case specific. 

An independent source of constraint comes from the well logs. The well information, 

however, is sparse, contains information on velocity variations on a much smaUer scale 

than the seismic, and describes the region only in the immediate vicinity of the well. 

Due to the sparseness and the fact that the wells are usually drilled on structural highs, 

the parameters estimated from the logs may not be representative of the parameter values 

over the entire interval. Despite these difficulties, such information can stiU be used as 

an a priori constraint and all of the available data integrated in a rigorous way. 

The choice of model parameterisation is a very important part of any inversion scheme. 

The method differs from conventional tomography in that the model geometry is not 

parameterised and inverted for. Instead, it is defined by the zero-offset time and time-

dip, given by the zero-offset representation of the layer boundaries, and the current 

estimate of the velocity parameters. The inversion, therefore, only minimises the 

objective function with respect to the velocity parameters. 

The input data are often insufficient to uniquely resolve all of the model parameters and 

there may be many combinations of model parameters that minimize the objective 

function. One way of measuring the non-uniqueness, or resolution, of the inverted 

model parameters is to estimate how the inversion scheme recovers a perturbation away 

from the solution. This is the basis of the resolution matrix. Each column of the 

resolution matrix relates to a single model parameter and contains the estimated 
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parameter updates, required to reminimize the objective function, after a unity change of 

that parameter away from the solution. Interpretation of the resolution matrix is very 

difficult when the model parameters have different dimensions and the results are more 

easily interpreted i f the matrix is scaled by the Hessian matrix. This normalises the 

model parameter changes in terms of the corresponding changes in the objective function 

gradient. The rescaled matrix can then be thought of in terms of die percentage of the 

parameter that is recovered. 

As well as being insufficient, the input data are also uncertain. The a posteriori 

covariance matilx relates errors in the input data to errors in the inverted model 

parameters. The diagonal elements of the matrix contain the model parameter variances. 

The off-diagonal terms give the orientation and shape of the contours of the objective 

function around the solution. The covariance matrix can be used to quickly generate a 

number of model parameter realisations that are consistent with the error distribution of 

the input data. 

In order to apply the inversion scheme to the problem, the partial derivatives of the 

modelled data values with respect to each of die model parameters must be calculated. 

Al l of the derivatives have a similar form and can be very efficiently calculated during 

the forward modelling process itself. Each derivative relies on calculating how the 

traveltime along a given ray-path is effected by a perturbation in one of the model 

parameters. For ease of calculation, the derivatives are calculated using a straight ray 

approximation, i.e. assuming a locally constant velocity field with constant anisotropy 

parameters. 

There are two first-order effects on die traveltime along a given ray-padi due to a change 

in the model parameters. The first is the change in traveltime along the unperturbed ray 
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and the second is the movement of the layer boundaries to keep the zero-offset ti-aveltime 

to all layer boundaries constant. The way in which a given position on the layer 

boundary moves due to a change in the model parameters in estimated by shooting a 

zero-offset ray from the point on the boundary upwards until it crosses all the intervals in 

which the model parameters are being changed. When inverting the model parameters 

within several layers, the solution becomes recursive. 

6.2 Suggestions for Future Work 

6.2.1 Extension of Model Parameterisation 

Currently, the ray-tracing algorithms limit the complexity of the models that can be 

handled by the inversion software. In particular, multi-valued depth surfaces (surfaces 

with more than one depth at a given lateral position) are not allowed. In addition, high 

frequency velocity variations within a given layer interval are not taken into account 

accurately. In future, the ray-tracing functions could be modified to allow inversion in 

more structurally complex areas. These extensions will be more important is the 

inversion is extended to work with pre-stack data (see section 6.2.4). 

In the case studies presented within this thesis, the assumption of constant anisotropy 

parameters within a given layer has proved sufficient to fit the stacking velocity field and 

tie all in the wells. In general, this may not be the case. Indeed, there is no physical 

reason why the anisotropy parameters should be any less spatially variant than the 

vertical velocity. The model parameterisation could be extended, therefore, to allow for 

lateral variation in the anisotropy parameters. Initial trials have shown that low 

frequency variations in the anisotropy parameters have been well approximated by a 

locally constant value over the ray segment. 
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The parameterisation of the anisotropy could also be extended to allow for different 

symmetry systems such as transverse isotropy with a horizontal axis of symmetry (TIH), 

transverse isotropy with a tilted axis, or more complex systems such as orthorhombic 

symmetry. This would allow the examination of azimuthal anisotropy (i.e. the variation 

of velocity with direction in a horizontal plane) which is thought to contain information 

about fracture orientation. 

6.2.2 Three-Term Stacking Velocity Analysis 

The stacking velocity simply describes the best hyperbolic approximation to the 

traveltime-offset curve for given reflection on a CMP gather. As explained in 

section 2.2, the moveout is generally significantly non-hyperbolic resulting in 

degradation of the stacked section. Several authors (for example, Castle (1988), Sena 

(1991), Tsvankin and Thomsen (1994), Alkhalifah and Tsvankin (1995)) have devised 

more complex analytical moveout equations, parameterised by three variables, that are 

shown to better represent the reflection moveout. 

During processing, the optimal parameters can still be found by a semblance analysis 

method, although this must be extended into a higher order space which causes 

significant practical difficulty. Also, the semblance widths on higher order terms tend to 

be extremely large and therefore picks have large error bars. It is hoped that with long 

offset data, however, higher-order velocity analysis will prove fruitful. During inversion, 

the modelled moveout parameters can be calculated easily as the Gaussian-weighted 

regression caii be adapted to work for any analytical moveout expression. 

6.2.3 Multi-Component Seismic Inversion 

Recently, multi-component seismic surveys, in which shear waves (S) are recorded in 

addition to compressional waves (P), have generated a great deal of interest within the oU 
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industry. It is hoped that such surveys will improve both structural imaging and reservoir 

characterisation. 

During the processing of these data, a stacking velocity analysis can be carried out on the 

P-S mode converted arrivals as well as those of the P-P data. These velocity analyses 

could then be inverted at the same time as the P-P wave velocity and could help improve 

resolution of the velocity parameters, especially the anisotropy. This requires some 

further work to simulate different processing operators, such as the common-conversion 

point DM0 operator during the modelling of the mode converted stacking velocity 

which is routinely applied to multi-component data. 

6.2.4 Extension to Pre-Stack Inversion 

It has long been recognised that pre-stack depth-migration itself is a powerful tool for 

validating and building velocity models: the redundancy present in pre-stack data can be 

exploited via the requirement for the consistency of images produced by individual 

migration of different common-offset or common-shot gathers. Therefore the analysis of 

gathers of traces from the migrated volume which correspond to the same lateral position 

(but different offsets or shots), known as common image gathers (CIG), yields 

information about inaccuracies in the current velocity model. If the velocity model is 

correct, the reflections will appear at the same depths in each trace of the gather. 

Residual moveout on the gather is evidence of incorrect velocities. 

Existing methods of pre-stack velocity analysis can be separated into two main classes. 

Firstly, migration velocity analysis (e.g. Faye and Jeannot, 1986, Audebert and Diet, 

1996) techniques are usually based more or less explicitly upon scanning over a range of 

velocities and picking the one that produces the flattest CIGs for reflectors of interest. 

Such approaches can integrate the migration and scanning/focusing operations, but may 
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nonetheless be inefficient when several parameters must be estimated simultaneously, 

e.g. for anisotropy and lateral variation. The second class proceeds by iterative 

tomographic inversion of residuals from CIGs after pre-stack depth-migration (e.g. 

Stork, 1992, Kosloff et al., 1996). Despite the possible cost of picking and iterative 

migration, this route seems likely to be more effective for complex cases. 

The model built during the inversion can be used to create sets of CIGs which differ 

slightly from those described above: at a selected lateral position, a fan'of rays can be 

traced through the model, with the appropriate range of offsets, for each interface, such 

that all the rays reflect at that lateral position. After shooting a zero-offset ray, this is 

achieved by an efficient bending algorithm in which successive rays are initialised using 

the previous ones in a kind of offset continuation procedure. Each ray in a gather is 

characterised by a traveltime and its source and receiver positions. Given this 

information, small sections of the corresponding seismic trace, centred around the 

modelled traveltimes, can be extracted directly from the seismic data volume to create 

gathers associated with each interface at the chosen lateral position. As the model is 

consistent with the initial interpretation, the interpreted reflection event close to the 

centre of the extracted trace segments at near offset. This can be used to help identify the 

phase of the seismic wavelet associated with each reflector. 

For the correct velocity model, the central event in the gather will appear flat across all 

offsets because of the effective subtraction of the ray-trace moveout. These model-based 

image gathers can be used to vahdate the velocity model and calculate velocity model 

updates in places where the gathers are not flat. The traveltime residuals for non-zero 

offsets can either be picked manually or estimated automatically by correlation or 

analysis similar to that suggested by Kosloff et al. (1996). Note that even with a perfect 
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velocity model, only the central part of each gather will appear flat as only the data 

around the ray-trace traveltime is migrated correctly. The inversion scheme presented in 

this thesis could be modified to update the interval velocity model in order to minimise 

the traveltime residuals (Sexton and Williamson, 1998). The use of pre-stack data 

should help to reduce non-uniqueness of parameter estimates, particularly for the 

anisotropy. 
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