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ABSTRACT 

The effect of environmental conditions upon the growth, production and development of river 

phytoplankton was investigated for the feeder rivers to the Humber Estuary. The study was part 

o f the Land Ocean Interaction Study LOIS) and focused upon the Rivers Trent and Yorkshire 

Ouse. 

The influence of physical, chemical and biological factors upon phytoplankton development 

were measured through routine fieldwork and laboratory analyses. During fieldwork 

measurements were collected which complemented measurements collected by LOIS colleagues. 

Data collected in this study included phytoplankton species composition, density and biomass and 

is situ rates o f growth and production. I n situ rates of loss through grazing and respiration were 

also measured. Laboratory investigations concentrated upon the effects of light and temperature 

upon dominant phytoplankton species and were developed to complement fieldwork. 

The project focused around four main aims. These were basically to assess the size and 

composition of phytoplankton maxima in the Trent and Ouse, measure in situ rates of growth and 

production, estimate losses from grazing and to develop models, using the data collected to assess 

the effect o f environmental conditions upon phytoplankton development and autochthonous 

carbon in the Humber Estuary. 

The results showed that phytoplankton dynamics in the Trent and Ouse were controlled 

primarily by discharge, light and temperature. During spring, when conditions were favourable 

for growth, rapid phytoplankton growth and maximum rates of production were observed. 

However, spring floods often interrupted the large phytoplankton popvilations which developed. 

Other factors such as grazing and sedimentation were also considered as potentially important in 

the loss of phytoplankton. The turbid nature of the rivers resulted in a fine balance between 

photosynthetic gain and respirational loss. This temporal change in environmental conditions 

resulted in a temporal waxing and waning of the phytoplankton. This in turn had an impact upon 

the seasonality of the flux of autochthonous carbon to the Humber Estuary. Laboratory 

investigations and development of a photosynthetic model confirmed the importance of light and 

temperature upon phytoplankton development in these rivers. 

In terms of phytoplankton growth and production and the flux of autochthonous carbon, the 

Trent and Ouse were found to be typical of many other European rivers. The study highlighted 

the importance of the Trent as a source of autochthonous carbon to the Humber Estuary. 
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1. INTRODUCTION 

1.1 Preamble 
The transport of particulate and dissolved nitrogen, phosphorus and carbon compounds by rivers 

can result in considerable amounts of material being carried to estuaries and the sea (Meybeck et 

al., 1988). Of all investigations into riverine transit, the flux of carbon has received increasing 

attention over recent years. This may be because it plays such an important role in the carbon 

cycle (Meybeck, 1993; Sedjo, 1993) and has wider implications for riverine and coastal food webs 

and heterotrophic metabolism in estuaries and coastal waters. Once transported to coastal waters, 

burial of carbon within sea sediments may be an important global sink for carbon (Ittekkot & 

Laane, 1991). 

Phytoplankton has been shown to comprise a considerable contribution to riverine Particulate 

Organic Carbon (POC), particularly in larger rivers during spring and summer months (& van 

Zanten, 1988; Tipping et al., 1997) and can be a major source of POC to estuaries (Soetaert & 

Herman, 1995). In larger rivers, this phytoplanktonic source may be more important than the 

contribution by benthic algae or macroph3rtes. This living carbon is often of autochthonous 

origin, having increased in situ during its journey downstream (Reynolds & Glaister, 1993). In 

contrast, transported dissolved organic carbon predominantly derives from allochthonous sources 

(Tipping ^/«/., 1997). 

The growth and development of phytoplankton is controlled by various emdronmental factors 

which are discussed later in this study. The environmental influences upon growth and 

development of phytoplankton populations also affect the flux of autochthonously produced 

carbon transported by rivers to estuaries and coastal waters. To understand the factors 

responsible for governing the production and flux of autochthonous carbon, the factors which 

influence phytoplankton growth and production must be understood. 

1.2 Historical Literature 
Although authors such as Vannote et aL, (1980) have described larger rivers as heterotrophic 

systems, devoid of substantial numbers of phytoplankton, larger rivers do often develop large 

populations of phytoplankton (Kowalc2ewski & Lack, 1971; Descy et al., 1988; Kohler, 1994a). 

Phytoplankton are an integral component of these larger rivers, particularly those of third order 

and above (Reynolds & Descy, 1996) and one of the most important components of lowland 

rivers (Williams, 1972; Whitehead & Homberger, 1984; Kohler et aL, 1993). They are often major 

primary producers of energy and autochthonous organic carbon assimilated by higher trophic 

levels (Forsberg et al., 1993). They play a role in the biogeochemical cycHng of elements such as 

nitrogen, phosphorus and silicon (Nienhuis, 1993; Meybeck ei al., 1988; Admiraal & van Zanten, 
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1988), contribute to the oxygen status of rivers and are an important part of riparian food chains 
(Nusch, 1987). 

Although studies upon river phytoplankton (potamoplankton) have been underway for a 

century (e.g. Schroeder, 1898; Fritsch, 1902) the subject has received less attention than 

phytoplankton of lakes and oceans (Descy et al. 1987, Reynolds & Glaister, 1993). Because of net 

sampHng methods, early studies concentrated mainly upon the composition of larger 

phytoplankton. However, Reynolds and Descy (1996) explain that the theories put forward by 

these early studies and the classic studies by Butcher (1924) and Welch (1952) have been left 

scarcely validated or challenged until quite recently. 

Recent studies have attempted to relate the periodicity and species composition of the 

phytoplankton with environmental and human (i.e. agricultural and urban - Stevenson & White, 

1995) variables. This research has been carried out upon rivers worldwide. The River Blue Nile, 

Africa, was the site of a classic study of the effect of environmental factors, particularly 

hydrological regime, upon phytoplankton development by Tailing and Rzoska (1967). The 

Murray-Darling river system (Walker, 1979), and River Moruya (Potter et al., 1975) have been the 

site of Australian research which includes the effects of temperature, discharge and herbivory. 

River phytoplankton studies conducted in the USA include those for the Rivers Hudson (Cole et 

al., 1991) and Mississippi (Baker & Baker, 1979). Studies into phytoplankton of the Hudson 

concentrated upon the effects of unfavourable and ever changing Hght regime upon 

phytoplankton production while the Mississippi investigations also consider temperature and 

discharge. 

European studies into the effect of environmental conditions upon phytoplankton growth and 

development, particularly in the larger rivers, are numerous. Over fifty years of research has been 

conducted on the Danube, Hungary, and recent studies have added to this research, particularly in 

recent years (Kiss, 1994; Kiss et al, 1994; Schmidt, 1994). The River Meuse, Belgium, has been the 

site of extensive work upon phytoplankton growth and production for over a decade (Descy et al, 

1987; Descy & Gosselain, 1994; Gosselain et al, 1994). The larger French river systems, 

particularly the Seine (BiUen et al., 1994; Garnier et al, 1995) and Sambre (Prygiel & Leitao, 1994) 

have been the focus of phytoplankton research with respect to modelling of phytoplankton 

dynamics. The River Spree, Germany, has received much recent attention in the form of excellent, 

descriptive papers by Kohler (1993, 1994a, 1994b, 1995). Longtitudinal development and 

production are also considered in these studies. Like the Danube and Meuse, the Rhine has been 

the site of intensive phytoplankton research. Development of phytoplankton, particularly with 

respect to irradiance and Ught penetration through the water column was the subject of the study 

by Friedrich and Viehweg (1984). Other studies on the Rhine include the relationship between 
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phytoplankton development and physiochemical parameters (De Ruyter van Steveninck et al., 

1990; Admiraal et al, 1992) and biological activity (Admiraal & van Zanten, 1988). 

British studies include research upon both the small, fast flowing rivers and the larger, slower 

flowing rivers. Holmes and Whitton (1981) studied the development of phytoplankton 

populations with a change in hydrology for four fast flowing rivers; the Tyne, Wear, Tees and 

Swale, in North East England. Other small river investigations consider phytoplankton 

development and water chemistry for the Bure (Moss et al., 1984), hydrology for the Derwent 

0ones & Barrington, 1985) light, water chemistry and hydrology for the Lee (Swale, 1964) and 

light and hydrology for the Wye Qones, 1982). 

Studies upon larger, slower flowing rivers of the United Kingdom have remarked upon the 

large concentrations of phytoplankton which develop. The classic paper by Lack (1971) related 

phytoplankton development in the Thames to physiochemical and biological variables. The 

Thames is perhaps the most intensively studied British river with respect to phytoplankton with 

the research of Kowalczewski and Lack (1971) setting a precedent for this type of research. 

Accounts for the River Severn by Reynolds and Glaister (1993) concentrated primarily upon river 

discharge and retentivity as a control of phytoplankton growth while Swale (1969) includes 

discharge and other environmental factors in her paper. Research into the slow flowing River 

Avon (Moore, 1976) includes data upon attached algae and their role in the recruitment of 

phytoplankton with respect to water velocity.. 

Overall, phytoplankton studies on the Trent and Yorkshire Ouse systems are limited. The 

phytoplankton flora for the Trent was described by Fritsch (1905) based on net samples while 

McCoEin (1995) described the phytoplankton populations in two arms of the Trent near Newark 

based on whole water samples. A description of the seasonal pattern of phytoplankton biomass 

has been carried out for the Trent and Ouse (Marker et al., 1993; Pinder et al, 1997), using 

chlorophyll <2 as a surrogate for biomass. Apart from Skidmore et al (1998), the study of 

phytoplankton dynamics of the Derwent (Jones & Barrington, 1985) is the only known smdy 

concerning phytoplankton of a tributary to the Trent. However, Holmes and Whitton (1981) gave 

a floral account of the phytoplankton of the Swale, the upper part of the Swale-Ouse and an 

overview of the biology of the Flumber rivers has been compiled (Whitton & Lucas, 1997). 

Phytoplankton below the tidal limits of the Ouse (Uncles et al, 1998) have also investigated 

with respect to the development of phytoplankton with respect to water chemistry and light. 

A large number of papers describing the effect of environmental and human impacts exist. 

Most of these explain the growth of phytoplankton in rivers as a function of water chemistry, 

physics and biology. What is not clear is where phytoplankton actually originate. 
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1.3 Sources of phytoplankton 

There is no clear distinction between true phytoplankton species and those which are benthic and 

washed into the water column. Reynolds and Descy (1996) regard algae which can grow in the 

water coliamn as phjrtoplankton with benthic derived species being described as tychoplanktonic 

and those phytoplankton which pass through a benthic survival phase as meroplanktonic. 

Phytoplankton, or at least algae in suspension, may originate from epiHthic, epiphytic or 

epipeUc sources. Algae from the benthos or from macrophyte stems, for example, may become 

detatched and proliferate when in the water column. This is common in smaller, faster flowing 

rivers (Blum, 1954; Kowe et al, 1998) and in larger rivers during flood events (Lack, 1971; Marker 

& Gunn, 1977). Indeed, the river bed and shallows have been implicated as sources of 

phytoplankton for the Rivers HuU (Butcher, 1940) and Danube (Stoyneva, 1994). Phytoplankton 

in rivers may not necessarily originate from an autochthonous source. The phytoplankton may 

originate from reservoirs (Nusch, 1982), flushed lakes (Friedrich & Viehweg, 1984; Reynolds & 

Glaister, 1993) and side arms (Kiss & Genkal, 1993). Reynolds and Glaister (1993) found three 

categories of suspended algae in the River Severn. These were (1) species which had become 

detached, (2) planktonic species from ponds and lakes which did not persist downstream and (3) 

planktonic species which increased downstream. The third category covered those species which 

were autochthonous. They were apparently neither washed from the benthos nor introduced from 

lakes or other impoundments. Where these autochthonous phytoplankton species first originate is 

unclear and a believable theory has yet to arise from the literature. However, Reynolds and Descy 

(1996) suggest that they may arise from either benthic or limnetic sources. Phytoplankton found 

at downstream reaches of larger rivers may be autochthonous, originating from the upstream 

reaches as these species can successfully grow and proliferate in the water column of a river during 

their transport downstream. 

Althoiagh loss of populations to the sea is an inevitable fate of lotic phytoplankton (Reynolds, 

1988), substantial populations can develop, particularly in long, slow-flowing rivers before being 

lost from the system. Recent studies have devoted their attentions towards the growth of 

phytoplankton during downstream transport. The growth of large populations in many rivers 

invokes a paradox. Many rivers appear too short to allow the development of the large 

phytoplankton populations observed within the limits of plausible phytoplankton growth. This 

was coined as 'the paradox of the potamoplankton' (Reynolds, 1988). 

Downstream increase in phytoplankton biomass is a common feature of many larger rivers 

including the Lee, UK (Swale, 1964), Spree, Germany (Kohler, 1994a), Bure, UK (Moss et al 

1984), Meuse, Belgium (Descy and Gosselain, 1994) and the Trent, UK (Skidmore et al, 1998). 

The study of four rivers in N-E England (Holmes and Whitton, 1984) showed a downstream 

increase in phytoplankton abundance in all but the Wear. 
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The downstream increase in biomass is probably largely a result of in situ growth although 

Reynolds and Descy (1996) comment that it is difficiolt to determine to what extent the same 

phytoplankton population with the same growth rate is being sampled if successive downstream 

samples are obtained. Nevertheless, studies made by following a parcel of water downstream 

have demonstrated that in situ growth can occur (Friedrich & Viehweg, 1984; De Ruyter van 

Steveninck^/^/., 1990). 

The downstream growth of phytoplankton is feasible given the in situ growth rates calculated 

from previous research. Growth rates of 0.53 d \ 0.57 d ' and 0.7 d"' were calculated for the 

Severn (Reynolds and Glaister, 1993), Trent (Skidmore et al, 1998) and Rhine (Reynolds & Descy, 

1996 for the Rhine using data of De Ruyter van Steveninck et al, 1992), respectively. Growth rates 

reported for other rivers are somewhat lower, ranging between 0.23 d ' for the Lot (Capblancq & 

Decamps, 1978) and 0.28 d ' for flie Meuse (Gosselain et al, 1994). 

It has been suggested that a series of 'dead zones' are needed along some rivers to allow large 

phytoplankton populations to grow over relatively short river lengths (Reynolds & Glaister, 1993; 

Reynolds, 1994). These dead zones act as storage cells, where phytoplankton concentration and 

rates of growth (Reynolds & Glaister, 1993) are greater than in the main river channel. Given the 

reported maximum, estimated, in situ rates of growth of 0.7 d"' and rates in culture of up to 1.18 d"' 

for centric diatoms (Reynolds, 1984). Skidmore etal (1998) suggest that the calculated growth 

rates in rivers such as the Trent are achievable without needing to invoke the existence of 'dead 

zones'. Even so, downstream increase in phytoplankton biomass usually occurs during spring and 

Slammer when discharge and velocity are low and so a river must be retentive enough to enable a 

high phytoplankton biomass to develop. 

1.4 Chemistry 
Nutrients play a major role in the growth and production of attached micro and macro algae, 

especially in small, upland rivers (Carr & Goulder, 1990; Christmas et al, 1997). However, water 

chemistry is thought to play only a small part in the regulation of potamoplankton in larger rivers 

(Descy & Gosselain, 1994; Reynolds & Descy, 1996) because concentrations exceed the suggested 

limiting concentrations of 5-10 x 10"̂  mol N 1', 3-6 x 10 V o l P 1' (Reynolds & Descy, 1996). 

However, in temperate estuaries evidence of P and N limitation of primary productivity has been 

documented (Doering et al, 1995) as has the increase in colximn productivity with increased 

nutrient loading (D'Avanzo et al, 1996). Silica concentration may also limit growth of centric 

diatoms and so affect species composition. The prevention of the further growth of centric 

diatoms as a result of silica limitation has been documented (Swale, 1969; Kohler, 1994a) though is 

not always the case (Swale, 1964; Jones & Barrington, 1985). Although water chemistry apparendy 

has Httle role in the control of potamoplankton development, anthropogenic, industrial, chemical 
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pollution has been shown to be responsible for low growth rates (Tubbing et al, 1995) and a 

decrease in phytoplankton biomass (Descy, 1995) in the Meuse. 

1.5 Discharge 
The effect of river discharge and velocity has been mentioned previously with respect to overall 

river retentivity. Descy (1993) notes that flood events are the major causes of disturbance of 

biomass and composition of phytoplankton in rivers. An increase m discharge can remove large 

phytoplankton populations from river systems and flush them out to the estuary and to the sea. 

Jones and Barrington (1985) found a negative relationship between numbers of phytoplankton 

cells and discharge at downstream sites but a positive relationship for upstream sites as a result of 

resuspension of benthos. Spring and summer floods often result in a temporary decrease in 

phytoplankton populations although high biomass may retxam if favovirable conditions are 

resumed (Swale, 1964). 

As well as dilution and hydraulic wash out of phytoplankton populations, an increase in 

discharge can result in an increase in tiirbidity. The action of increased turbidity reducing the 

amount of light penetrating through the water column as a result of an increase in discharge is a 

common occurrence in many rivers (e.g. Swale, 1969; Kiss & Szabo, 1975). 

1.6 Light 
The amount of light penetrating through the water column depends upon factors above the water 

surface such as the time of day, year, atmospheric conditions (Kirk, 1994) and attenuation under 

the surface. Non-algal suspended solids (Kirk, 1980) and dissolved substances such as tannins 

(Herrera-Silveira & Ramirez-Ramirez, 1996), humic and fulvic acids (Kirk, 1976; 1980) and 

minerals (Threlkeld & Seballe, 1988) all compete with phytoplankton for light in rivers (Kirk, 

1994). Turbulence in rivers results in an algal cell being exposed to constant changes in amounts 

of Hght (Dokulil, 1994; Smayda, 1980). The light climate of these turbulent, turbid environments 

determines species composition. For example, Reynolds (1994) reports that a high level of 

turbulence and turbidity will favour only spherical and round algal cells, such as centric diatoms. 

The exposure of phytoplankton to an ever changing regime of high and then low Ught has been 

found to either increase or decrease phytoplankton growth and productivity or have no effect at aU 

(Dokulil, 1994). An increase in phytoplankton production in shallow rivers has been observed as a 

reduction in photoinhibition and the mitigation of turbidity induced light limitation (MaUin & 

Paerl, 1992). Indeed, Brunet et al, (1996) found that constant high light caused damage to the 

centric diatom Skeletonema costatum in laboratory studies. The problem in laboratory studies has 

been how to best reproduce the fluctuating light climate to which phytoplankton cells are exposed 

(Descy & Gosselain, 1994). Many studies estimate productivity by assuming a non-turbulent 
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system or static phytoplankton cells. Attempts to recreate the fluctuating light climate (e.g. Mallin 

& Paerl, 1992) may not reproduce the turbulent path of a cell nor the light climate to which it is 

exposed (Descy & Gosselain, 1994). However, an in situ approach, using a containing apparatus 

(Kohler & Bosse, 1998) has attempted to recreate the turbulence and light climate experienced by 

river phytoplankton. 

A further problem facing phytoplankton in deeper rivers is one of how to survive under the 

low water transparency and high mixing depth regime (Cole et ai, 1991, 1992). Indeed, the mixing 

to euphoric depth ratio is often one of the most important factors influencing productivity 

(Grobbelaar, 1989, 1990; Kirk, 1994). Tailing and Rzoska (1966) report that, in order for net 

photosynthesis to occur, the mixing to euphotic depth ratio must not exceed 5. Kirk (1994) 

explains that the critical depth, the depth below which net photosynthesis is not possible, is a 

major factor influencing net column productivity. 

I f the mixing to euphoric depth ratio is exceeded, or the cells are mixed below the critical 

depth, then phytoplankton biomass is lost as a result of increased respirational losses in proportion 

to photosynthetic gain as cells are exposed to a length of time without light. Phytoplankton may 

compensate in some way for this by pre-adaptation to their time in darkness (Kohler, 1993) or 

may be acclimated to low light in the downstream reaches of a river (Cole et al, 1991). 

Another aspect of light, important to the development of phytoplankton.is daylength. Swale 

(1969) explains that the increase in daylength may be the most important factor influencing the 

increase in the spring centric diatom bloom. 

Overall, the literature reflects the view that the success of phytoplankton in rivers depends on 

the mixing and euphotic depth and the length of time the cells are able to stay in the dark before 

net loss occurs. 

1.7 Temperature 
By influencing enzymatic reactions, temperature affects the rate of phytoplankton growth, 

production and respiration. The effect of temperature upon these processes has been well 

documented both in the laboratory and in the field. Laboratory studies have shown that the rates 

of growth and production of phytoplankton generally increase regularly with increasing 

temperature (Chishokn & Costello, 1980; Ojala, 1993) until an optimum temperature is reached, 

after which rates decrease. In the field, high rates of growth and production, coupled with high 

phytoplankton biomass, have been observed during the spring and summer months when 

temperatures increase (Baker & Baker, 1979; Descy & Gosselain, 1994). Centric diatoms are often 

dominant during the spring, when river temperatures are between 10 and 15 °C as they are 

reported to be low temperature adapted species (Kiss, 1994), with optimal rates of growth and 

production (Descy, 1987) at lower temperatures than Chlorophyta. It has been suggested that 
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temperatme controls species succession in phytoplankton populations (Baker & Baker, 1979). 

However, increasing temperature can lead to an overall loss of algal carbon, particularly in turbid 

rivers as the respirarional loss in a turbid environment is exacerbated (DokuHl, 1994; Cole et al, 

1991). An increase in temperature during spring and summer may increase the rate of loss of 

phytoplankton from other loss processes and is discussed later (Section 8.34). 

Low winter temperature normally results in no or very low rates of phytoplankton growth and 

production. However, Kiss (1993) observed a bloom of the centric diatom Stephanodiscus hant^hii 

in the River Danube during winter. This suggests that temperature may not be the primary cause 

of low phytoplankton biomass in winter. 

Low temperature in winter resiolts in low rates of growth and production and so biomass is 

usually low. Increasing temperature, as well as increasing light availability, during spring result in 

an increase in the rates of growth and production, so biomass increases. Maximum temperatures 

during summer may cause maximal rates of both growth and production but the increase in loss 

such as respiration and grazing often leads to a general decline in riverine phytoplankton biomass. 

1.8 Sedimentation 
Although the loss of phytoplankton by sedimentation has been studied extensively in lakes (Rust, 

1982), the additional forces at work in a river (Ryder & Pesendorfer, 1989) make the loss of 

phytoplankton to sedimentation difficult to quantify. Swale (1964) explains that in rivers, 

turbulence will result in reduced loss of phytoplankton by sedimentation and will increase re-

suspension of sedimented cells. Limited studies in the field have shown that sedimentation may 

be important in rivers (Moore, 1976, De Ruyter van Steveninck et al, 1990). Laboratory studies 

have shown that sedimentation increases as channel depth decreases (Reynolds et al, 1990). This 

will have implications for summer populations as river discharge (and so river depth) is usually at a 

minimum during this time of the year. Diatoms are likely to be especially sensitive to 

sedimentation loss given their high specific gravity. Some species of phytoplankton reduce the 

loss to sedimentation by reduction of form (Reynolds, 1984). 

The importance of sedimentation as a loss process in rivers has stiU to be adequately quantified. 

However, it may be that other loss processes are far more important. 

1.9 Grazing 
Much research into the behaviour of zooplankton (Starkweather, 1980; Pourriot, 1977) and their 

interaction with phytoplankton (Bainbridge, 1953; Lair & Ali, 1990) has been conducted, 

particularly for lakes. However, grazing in rivers has still to be quantified adequately and the 

importance properly assessed (Gosselain et al, 1994). However, laboratory investigations and the 
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increasing number of in situ studies are suggesting that grazing could be a major loss process, 
especially during spring and summer. 

Many studies of riverine grazers have identified rotifers, particularly Keratella spp. and Brachionus 

spp. as the most important grazers of phytoplankton in rivers (Garnier et al, 1995; Viroux, 1997). 

However, copepods and cladocerans are sometimes important during summer (Bothar & Kiss, 

1990). Ciliates may be important, especially during summer, as they often represent a large 

proportion of the zooplankton biomass, as seen for the Danube (Bereczky & Nosek, 1994). 

Unfortunately, traditional methods of zooplankton sampling, such as sampUng with a 75-|j,m mesh 

net (Bothar, 1987), probably miss many of the ciliates and smaller rotifers which may be important 

in the grazing of phytoplankton. 

As with phytoplankton, zooplankton is lost from the river system by the unidirectional flow 

towards the sea. To develop large popiilations and exert significant grazing pressure upon 

phytoplankton populations, smaller, faster-growing species are usually more important in river 

systems than larger, slow growing species (Hynes, 1970; Admiraal et al, 1994). Indeed, where 

grazing by zooplankton has been found to be important, it has been most marked through the 

spring and summer months when discharge has been low and temperature high (Gosselain et al, 

1998), conditions which are optimum for both phytoplankton and zooplankton development 

(Admiraal et al, 1994). A number of authors have reported an increase in grazing rate with 

increasing temperature (Bogdan & Gilbert, 1982; Joaquimjusto et al, 1995). Therefore, during the 

spring and summer months, zooplankton grazing may contribute a major loss of phytoplankton 

from the system. 

Grazing by zooplankton may be selective and so influence the species composition of 

phytoplankton. For example, investigating the grazing of green algae by the rotifer Brachionus, 

Schliiter et al (1987) found that there was a switch from a Scenedesmus dominated plankton to a 

Micnadinium dominated plankton as Brachionus could not injest Microactinium. In a different study, 

the rotifer Polyarthra was reported to feed at twice the rate on flagellated cells than on cells without 

flagella and that Keratella and Bosmina found Chlorella unpalatable (Gilbert & Bogdan, 1981). 

Perhaps protozoa are the most underestimated and least understood grazers. This may be 

because problems lie in the sampling methods employed in such studies (as mentioned earlier) or 

that researchers insist that animals so small could never attain biomass high enough to impart 

serious loss on the phytoplankton population. Nevertheless, studies have attempted to analyse the 

importance of this component as a major grazing force. The importance of protozoa may be 

higher in rivers than in lakes as a result of greater turbulence. Experimental work suggests that the 

grazing rate of some non-swimming and weak swimming protozoa increases sigmoidally with 

increased turbulence by increasing the number of encounters with phytoplankton prey (Shimeta et 

al, 1995). The importance of protozoa in the field has also been noted. Phagotrophic 
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microplankton were thought to be responsible for the downstream loss of plankton in the Rhine 
(Admiraal^/<2/., 1994). 

A popular view, adopted by recent studies, is the role of benthic grazers in the loss of 

phytoplankton. The most important taxa in the literature are Dreissenapolymorpha, Unio spp. and 

Anodonta spp. (Kohler, 1995; Roditi et al, 1996; Caraco et al, 1997). Experimental work has shown 

that D. poljmorpha can influence phytoplankton biomass and species composition (Bastviken et al, 

1998). 

Other forms of grazing, reported as being important include that by simuliid larvae (River Wye, 

Uk; Jones, 1984) and larval lampreys (Moruya River, Australia; Potter et al, 1975). Fungal, 

bacterial and viral attack may also be important in the biological loss of phytoplankton, especially 

during summer. Parasitization of centric diatoms by the chytrid fungus, "Rhi^^phidium sp. has also 

been reported (Swale, 1964; Garnier et al, 1995). 

Grazing by benthic filter-feeders, protozoa, parasitism and viral attack are all potentially very 

important sources of loss of phytoplankton during the summer months. They are among the least 

understood and least researched category of grazers. Further studies are required to try and 

understand the dynamics of this potentially important source of algal loss. 

The literature suggests that discharge is the most important factor in the control of riverine 

phytoplankton. Increased discharge leads to a rapid removal of populations from the system. 

Other important impacts upon remaining populations result from an increase in turbulence, lower 

river retentivity and, perhaps more importantiy, decreased light. The combination of high 

discharge, low light and high temperature can lead to adverse conditions and loss of 

phytoplankton through respiration. 

Water chemistry is thought to play a very minor role in potamoplankton ecology except 

perhaps dioring late spring when SiOj-Si concentrations may become limiting to growth. 

Although inconclusive, sedimentation and grazing are though to be important. The literature 

suggests that grazing, particularly the benthic aspect, is potentially very important in loss of 

phytoplankton. It is important that more time is devoted to quantify the impact of sedimentation 

and grazing upon phytoplankton populations in larger rivers. 

1.10 ModeUing 
The environmental factors described above will aU interact to influence the development of river 

phytoplankton which will in turn affect the flux of algal carbon. Workers have attempted to 

model the effects of environmental factors upon phytoplankton development in rivers. The 

RIVERSTRAHLER model (Billen et al, 1994; Garnier et al, 1995) was developed to determine-the 

importance of different environmental factors upon phytoplankton biomass and species 
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composition for the Seine River system. Soetaert and Herman (1995) developed an ecosystem 
model describing the carbon flux in the Westerschelde estuary, Netherlands. Other workers have 
attempted to investigate the importance of environmental variables upon phytoplankton 
development using a multivariate approach (del Giorgio et al, 1991; Stevenson & White, 1995) and 
the influence of seasonality and the trophic status of waters on phytoplankton (Seip & Reynolds, 
1995). 

One branch of modelling has concentrated upon phytoplankton photosynthesis and 

production in rivers. Over 20 models have been formulated to describe the photosynthetic 

response of phytoplankton to irradiance (P vs I response, Baumert, 1996). Of those produced, 

earlier models (e.g. Baly, 1935; Tailing, 1957; Chalker, 1980) did not include the possibility of 

photoinhibition while more recent models make provision for this (e.g. Piatt et al, 1980; Eilers & 

Peeters, 1988). While these models have measured the response of static phytoplankton, dynamic 

models also exist which take into account mixing of phytoplankton populations in turbulent 

systems (Pahl-Wosti & Imboden, 1991). Excellent reviews of the photosynthetic response of 

phytoplankton to irradiance are available (Henly, 1993; Baumert, 1996) 

Using the P vs I response, water depth, water transparency and a measure of surface irradiance, 

models have been developed to estimate column production. A static approach has been used to 

estimate the production of phytoplankton in waters over a range of depths (Fee, 1973, Descy, 

1987; Waisby, 1997). However, models have also been developed that estimate phytoplankton 

production in systems with differing mixing depths (Grobbelaar, 1990). 

1.11 Aims 
The project was designed to complement the overall objectives of the Land Ocean Interaction 

Study (LOIS) project, funded by the Natural Environment Research Council (NERC). The aims 

of LOIS are: 

1) To estimate the contemporary fluxes of momentum and materials into and out of the 

coastal zone. 

2) To characterise key physical and biogeochemical processes that govern coastal 

morphodynamics and the functioning of coastal ecosystems. 

3) To describe the evolution of coastal systems from Holocene to Recent in response to 

changes in climatic conditions. 

4) To develop coupled land-ocean models to simulate the transport, transformation and fate 

of materials in the coastal zone for the next 50-100 years. 
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A full description of the LOIS project can be found elsewhere (Wilkinson et al, 1997; Leeks & 
Jarvie, 1998). 

At the heart of the LOIS project is the Rivers, Atmosphere, Coasts and Estuaries Study (RACS) 

the aim of which was to study land-sea interactions in the coastal zone and the major fluxes by 

way of rivers, estuaries and the atmosphere. This RACS component comprised three integrated 

components: RACS (R-Rivers), RACS (C-Coasts) and RACS (A-Atmosphere). The current 

project was targeted under RACS (R), the objectives of which are: 

1) To determine contemporary land-sea fluxes of water, sediment, biological matter, major 

dissolved constituents, nutrients and selected contaminants. 

2) To identify and characterise key processes governing the fluxes. 

3) To develop models capable of predicting changes in fluxes under future environmental 

changes. 

The overall objective of this particular project was to identify, quantify and model the 

important environmental factors responsible for controlling phytoplankton growth, production 

and loss in the feeder rivers to the Humber Estuary. The project had four main aims: 

1) To quantify the seasonal changes in the size and composition of the phytoplankton with 

particular reference to the Yorkshire Ouse. 

2) To estimate the in situ growth and production rates of dominant phytoplankton species at 

different times of the year in contrasting environments during both the waxing and waning of 

naturally occurring growth cycles. 
3) To quantify the major loss processes, involving grazing and sedimentation. 

4) To develop models to predict the effect of changes in environmental conditions on the 

development of phytoplankton in large river systems and the output of autochthonous carbon 

to the Humber Estuary. 

In view of the importance of the Trent in the transport of phytoplankton carbon to the 

Humber Estuary the focus of the project moved to concentrate upon the Trent system. 
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2 GEOGRAPHICAL BACKGROUND AND SITE 
DESCRIPTION 

2.1 River Trent 
The River Trent is the second largest UK river in terms of mean annual discharge and catchment 

area and the fifth largest in terms of length (Lester, 1975). Draining the Midlands, the Trent rises 

at 290 m above ordnance datum (AOD), (Law et al, 1997) at Biddulph Moor, 11 km north of 

Stoke on Trent (Lester, 1975) then flows 274 km through England from Staffordshire to 

Humberside (Fig. 2.1). 
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Figure 2.1 The Trent and its tributaries. 
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The Trent begins to flow in a south Easterly direction and drops 180 m over the first 32 km. 
Over the remaining 242 km it drops only 90 m. 

The Trent catchment comprises mainly Triassic Bunter Sandstones, Keuper Marls with Jurassic 

Limestone to the South-East and Carboniferous Rocks to the North of the catchment (Jarvie et al, 

1997). The Trent catchment has an area of 8238 km^ and a population of around six million living 

mainly in the larger urban areas of Birmingham, Leicester, Nottingham, Derby and Stoke on Trent 

(Marsh & Sanderson, 1997). Because of use by industry, urban areas and agriculture the Trent is 

more affected by towns and industry than the northern rivers such as the Swale, Ure and Nidd 

which also drain into the estuary (Robson & Neal, 1997; Jarvie et al, 1997; House et al, 1997). 

Water quality in the river is high (class lb) until it reaches Stoke where effluent from industry, 

sewage and agriculture diminish water quality to class 2 (NRA, 1995). Further pollution by Fowlea 

Brooke at Hanley then causes a further drop to class 3 until Stone. The input of the River Sow 

improves the water quality and this, together with self purification, improves water quality until the 

power station at Rugeley (NRA, 1995). The River Tame joins the Trent near Croxall (Fig. 2.1). 

The Tame has been greatiy improved by sedimentation pools at Lea Marston (NRA, 1995). From 

this point the Trent flows in a north easterly direction. The Trent and Mersey canal joins the 

Trent close to where the Rivers Dove and Derwent meet the Trent at Repton and Shardlow 

respectively (Fig 2.1), improving water quality. The Rivers Soar and Erewash join the Trent at 

Sawley and the Trent then flows through Nottingham and towards Newark (Fig. 2.1). Before 

Newark, the river divides into'a main channel that flows through Kelham and South Muskham 

and a navigational charmel which flows through Newark, where the Devon joins (Fig. 2.1). The 

two channels meet again at Crankly Point. The Trent becomes tidal below Cromwell Lock, 8 km 

downstream of Newark and subsequenfly meets the Ouse to form the River Humber at Trent 

Falls (Lester, 1975), having contributed around one-quarter of the total discharge to the H\amber 

Estuary (Law etal, 1997). 

2.11 Trent system sampling sites 

2.111 Rugely 
Rugely (SK049189) is 58.2 km from the source of the Trent. This site was only sampled once; on 

9 May 1996. Samples were taken from a bridge. No light attenuation measurements were made. 

2.112 Burton upon Trent 
Burton upon Trent (SK254221) is 93.3 km from the source. This site was only sampled once; on 

9 May 1996. Samples were taken from a bridge near the centre of town. No light attenuation 

measurements were made. 
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2.113 Cavendish Bridge 
Cavendish Bridge (SK448299) is 124.5 km from the source of the Trent, before the confluence 

with the Derwent. Sampling was conducted from a road bridge. Light attenuation coefficient was 

measured from the river bank, 20 m upstream of the bridge (Fig. 2.2). This site was sampled 

throughout the sampling period. 

Figure 2.2 Trent at Cavendish Bridge. Photo shows view from the bridge. Light attenuation 

was measured at A. 

2.114 Wilford 
Wilford (SK569381) is 144.6 km from the source of the Trent, near the centre of Nottingham. 

Water samples were obtained from a footbridge. Light attenuation was measured firom the river 

bank (Fig. 2.3). This site was sampled between April and October 1995. 
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Figure 2.3 Trent at Wilford. Photo shows downstream view from the bridge. Light 

attenuation was measured at 'A'. 

2.115 Gunthotpe 
Gxanthorpe (SK681437) is 161.2 km from the source of the Trent. Water samples were obtained 

from the bridge, or, during bridge repair, from a jetty owned by the local water skiing club (Fig. 

2.4). The jetty was also used to measure the light attenuation coefficient. This site was sampled 

throughout the sampling period (April 1995 - August 1997). 

Figure 2.4 Trent at Gunthorpe. Photo shows view from jetty where light attenuation 

was measured. The bridge where samples were obtained, upstream of die jetty, is 

shown in the background. 



32 

2.116 Kelham 

Kelham (SK796567) is 183 km f rom the source. Kelham is on the natural arm of the Trent as the 

river divided before reaching Newark (Fig. 2.1). Water samples were obtained from a road bridge 

(Fig. 2.5). Access did not permit measurement o f the light attenuation coefficient. This site was 

sampled between April and October 1995. 

Figure 2.5 Trent at Kelham. Downstream view of river from bridge. 

2.117 South Muskham 

South Muskham (SK778553) is 184.8 km from the source. Like Kelham, this site also is situated 

on the natural arm o f the Trent. Water samples were obtained from a bridge (Fig. 2.6) although 

no light measurements were taken because of restricted access. This site was sampled between 

Apri l and October 1995. 

Figure 2.6 Trent at Soutii Muskham. Downstream view of river firom bridge. 
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2.118 Newark 

Newark (Sk796541) is 184.1 km from the soiarce o f the river, on the navigational arm of the Trent. 

The site was downstream of the confluence with the Devon.. Water samples were obtained from 

a road bridge (Fig. 2.7) between April and October 1995. 

Figure 2.7 Trent at Newark. Upstream view from bridge with the lock system in the 

background. Light attenuation was measured at 'A'. 

2.119 Cromwell 

Cromwell (SK807612) is the tidal limit o f die Trent and is 192.1 km from the source. Water 

samples were taken f rom the end o f the lock wall (Fig. 2.8). Cromwell was sampled throughout 

the sampling period and was the only Trent site to be sampled as part of the LOIS Core sampling 

progratnme. The average depth through the sampling period was 3.5m. 

Figure 2.8 Trent at Cromwell. View of river looking upstream. Light attenuation was 

measured at 'A'. 
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2.1110 Rivet Detwent at Church Wilne 

The Derwent passes through Madock and Derby. The sample site at Church Wilne (SK452314) is 

situated near a water treatment works and 1.9 km upstream of the confluence with the Trent. 

Water samples were obtained from a footbridge (Fig 2.9). Light attenuation was not measured 

because access was restricted. This site was sampled from April to October 1995. 

Figure 2.9 Derwent at Church Wilne. Downstream view from the bridge. 

2.1111 Rivet Soar at Ratclifife on Soar 

The River Soar flows through Leicester and Loughborough. The sample site (SK491289) was 2.1 

km upstream of the confluence with the Trent, just upstream of the Ratcliffe on Soar power plant. 

Water samples were made from a road bridge (Fig 2.10). Poor access, coupled with low river 

depth prevented light attenuation measurement. This site was sampled firom April to October 

1995 and again f rom March to June 1997. 

Figure 2.10 Soar at Ratcliffe on Soar. Upstream view of the river. 
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2.1112 River Devon at Newark 

The Devon was sampled 0.1 km before the confluence with the Trent. The site (Sk787532) was 

near the centre o f Newark and water samples were obtained from a small road bridge (Fig. 2.11). 

Only two Ught attenuation measurements were made as the land access was owned by a local 

boating club and was closed a lot of the time. This site was sampled from April to October 1995. 

Figure 2.11 Devon at Newark. Upstream view showing the build up of hemna minor. 

2.1113 River Tame at Croxhall 

The Tame was sampled once, on 9 May 1996 at CroxhaU (SK188139). The Tame flows through 

Birmingham and Tamworth and meets the Trent 1.1 km downstream of the sampling site. 

Samples were obtained from a bridge. 

2.1114 River Dove at Marston 

The Dove was sampled at Marston (SK235288), 5.7 km from the confluence with the Trent. The 

Dove is a clean river, the only major urban areas it flows through being Ashbourne and Uttoxeter. 

The site was sampled only once on 9 May 1996. Samples were taken from a small bridge. 

2.2 Yorkshire Ouse 

The Ouse, the UK's ninth longest river and thirteenth largest river in terms of mean annual 

discharge is fed by three main tributaries; the Rivers Swale, Ure and Nidd (Fig. 2.12). The Pentiine 

region of the Swale-Ouse system is predominately Carboniferous Limestone and Millstone Grit 

while the Vale o f York comprises mainly Jurassic limestone and clays (Jarvie et al., 1997). The 

Swale-Ouse system differs from the Trent as it drains a predominantiy rural, low populated 
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catchment.. The area has no major historical industrialisation and farming has been restricted to 
mainly rough grazing, sheep and cattie rearing. 

With a catchment area of 3521 km^, the Ouse starts life as the Swale, rising at 500 m A O D in the 

Yorkshire Dales National Park, Northern Pennines. Arkle Beck joins at Grinton and the Swale 

flows south-eastwards through Richmond and Catterick. In the upper Swale, river retenti\'ity is 

low as a result of the steep, narrow Swaledale valley. The Swale-Ouse system is subjected to 

intense flooding during the winter months, with large areas of rural and urban land being 

inundated with water. The Swale remains in a natural state until Brompton on Swale (NRA, 1994), 

after which, engineering work has straightened sections of the channel. Inputs from Cod Beck and 

the River Wiske lower water quality as do effluents from Richmond and Catterick (NRA, 1994). 

The Swale joins the River Ure two km east of Boroughbridge after flowing some 109 km. 

N R. Swale 
KUre 

KNidd Thornton Manor 
Boroughb dge 

Acaster 

R. Trent 

I 30 km 

Figure 2.12 The Ouse and its tributaries 

The Ure also rises in the Pennines at 640 m A O D . The Ure flows in a south-easterly direction and 

flows through Ripon and Boroughbridge (Fig. 2.12). Main tributaries are the Rivers Bain, Cover, 

Burn, SkeU and Tutt. Like the River Swale, the Ure is also prone to flooding. Because of this, 

flood alleviation schemes have been implemented in and around Boroughbridge. The Ure 

becomes the Ouse at the confluence with Ouse Gill Beck, near Linton on Ouse (Fig. 2.12), 25m 

A O D , after travelling 111 km. 
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The Nidd the joins the Ure downstream of the Swale-Ure confluence (Fig. 2.12). The Nidd rises 
on peat bog, 595 m A O D . Three reservoirs; Angram, Scar House and Gouthwaite, partially 
regulate flow at the top o f the river. From here, the river flows in a south-easterly direction over 
Millstone Grit, through the town of Knaresborough. The Nidd flows 97 km before joirung the 
Ouse. The Ouse then flows in a southerly direction, through York, towards the Humber (Fig. 
2.12). The tidal limit is at Nabum Weir. Other tributaries to the non-tidal Ouse include the Rivers 
Foss and Kyle. The tidal Ouse flows through Selby and Goole before meeting the Trent at Trent 
Falls. Tributaries joining this tidal reach include the Wharfe, Aire, Calder and Derwent. The total 
length of the Swale-Ouse is 192 km. 

2.21 Ouse system sampling sites 

2.211 River Swale at Thornton Manor 

Thornton Manor (SE433715) is 11.8 km upstream of the confluence with the Ure. Samples were 

taken f rom a bridge (Fig. 2.13) and Ught attenuation measurements were made from the river 

bank. During late summer, however, light attenuation was not measured as macrophyte growth, 

steep banks and low river depth restricted access. This site was sampled as part of the LOIS Core 

sampling regime. 

Figure 2.13 Swale at Thornton Manor. Picture shows the Swale during a winter flood. Light 

attenuation was measured from the near bank. 
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2.212 River Ure at Boroughbridge 

Boroughbridge (SE395671) is 4.3 km upstream of the confluence with the Swale. Samples were 

taken f rom a road bridge. I f river depth was so low that the benthos would be disturbed by 

sampling f rom the bridge, a sample was taken by wading part way into the river. Light attenuation 

was measured by the weir (Fig. 2.14), 100 m upstream of the bridge as water was deep enough to 

allow accurate readings. This site was sampled as part o f the LOIS Core sampling regime. 

Figure 2.14 Ure at Boroiaghbridge. Upstream view from the bridge showing the weir. Light 

attenuation was measured at A. 

2.213 Rivet Nidd at Skip Bridge 

The site on the Nidd at Skip Bridge (SE482561) is 7.2 km upstream of the confluence with the 

Ouse. Samples were obtained from a bridge supporting the road layby (Fig. 2.15). Light 

attenuation measurements were made from the river bank, 20 meters upstream of the bridge when 

river depth and macrophyte growth allowed. This site was sampled as part o f the LOIS Core 

sampling regime. 

Figure 2.15 Nidd at Skip Bridge. Looking downstream towards the bridge. l i ^ t attenuation 

readings were taken from the near bank. 
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2.214 River Ouse at Clifton 

Between Apri l and October 1995, the Ouse was sampled at Clifton (SE587528), 9.2 km upstream 

of the tidal limit at Acaster Malbis. Samples were taken from a road bridge. Light attenuation 

measurements were not made as the river bank was canalised and very steep. This site was 

sampled as part o f the LOIS Core sampling regime. 

2.215 River Foss at York 

The Foss (Fig. 2.16) was sampled between April and October 1995 at York (SE608525). The site 

is 1.5 km from the confluence with the Ouse. Water samples were taken from a bridge 20 m 

downstream. 

Figure 2.16 Foss at York. View downstream, notice slow flow and shading by trees. The 

bridge where samples were taken can be seen to the centre right of the picture. 

2.216 River Ouse at Nabum/Acaster Malbis 

From Apri l to June 1995 the tidal limit o f the Ouse was sampled at Nabum Weir (SE594445), 

142.4 km from the source. Samples were taken from a wall at the end o f a lock island in the 

middle o f the river channel. Because of problems with light attenuation measurements, from July 

1995, samples and light attenuation measurements were obtained from a jetty at Acaster Malbis 

(Fig 2.17), across the channel from Nabum Weir and 50 m upstream. This site was sampled 

throughout the sampling regime and was sampled as part of the LOIS Core sampling regime. 

The average depth throughout the sampling period was 5.5m. 
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Figure 2.17 Ouse at Acaster taken from sampling jett^. View looking upstream. 
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3 MATERIALS AND METHODS 

3.1 Water collection and storage 

Water samples were taken from a bridge, lock wall or jetty (Sections 2.11 & 2.21). Samples were 

taken by lowering a weighted 1-1 sampling bottie into the top 30 cm of the water column, avoiding 

incorporating the surface scum. Between 2 1 and 3 1 of water were placed into a plastic container 

and mixed well. From this container, samples for chlorophyll a determination, phytoplankton 

species composition and abundance were taken. Samples for chlorophyll a determination were 

placed in 1-1 polycarbonate sample jars and placed in a cool-box in the dark. Samples for the 

determination of species composition were fixed immediately with 1% v / v Lugol's iodine. 

Samples for primary productivity estimations were placed in 25-1 carbuoys and kept out of direct 

sunlight. 

A l l sampling containers were scrubbed with tap water, rinsed with distilled water and then 

rinsed with river water before sampling. 

Between Apri l and September 1995, fortnightiy samples were collected from seven sites on the 

Trent: Cavendish Bridge, Wilford, Gunthorpe, Kelham, South Muskham, Newark and Cromwell; 

plus three tributaries: the Derwent at Church Wilne, Soar at Ratcliffe on Soar and Devon at 

Newark (Fig. 2.1). From October 1995 to June 1997, sampling was continued at three sites. 

Cavendish Bridge, Gunthorpe and Cromwell, but with different frequencies: weekly between April 

and June, fortnightiy in March, July and August and monthly during the remaining months. 

A similar routine was followed for sampling the Swale-Ouse system. Between April and 

September 1995, fortnightiy samples were collected from six sites: the Swale at Thornton Manor, 

Ure at Boroughbridge, Nidd at Skip Bridge, Ouse at Clifton and Acaster Malbis and the Foss at 

York (Fig. 2.12). From October 1995 to June 1997, sampling was continued at four sites, the 

Swale at Thornton Mannor, Ure at Boroiaghbridge, Nidd at Skip Bridge and the Ouse at Acaster, 

but with different frequencies: weekly between April and Jime, fortnightiy in March, July and 

August and monthly during the remaining months. 

In May 1996, when the concentration of phytoplankton chlorophyll a was high, samples were 

also collected further upstream at five sites on the River Trent; Rugely, Burton upon Trent, 

Cavendish Bridge, Gunthorpe and Cromwell, and five tributaries, the Tame at Croxhall, Dove at 

Marston, Derwent at Church Wilne, Soar at Ratcliffe on Soar and Devon at Newark (Fig 2.1). 

3.2 Light attenuation measurement 

The attenuation of photosyntheticaUy available radiation (PAR, 400-700 nm) was determined using 

a pair o f PAR sensors, using the method of Wesdake et al. (1986). Initially, between April 1995 

and July 1996, two SKYE PAR (Sk 280) sensors were used. These sensors were connected to a 



42 

SKYE datalogger, to which a Microscribe microcomputer interface was also connected. However, 
between August 1996 and August 1997, two Macam SDlOlQCos 271 PAR sensors connected to a 
Macam Q102 radiomenter were employed. With both systems, one light sensor was placed above 
the water surface and out o f the shade, to act as a reference to record any difference in the 
incident light while the other sensor was attached to a metal frame attached to a wooden pole 
graduated at 0.1 m intervals (Fig. 3.1). 

Reference sensor 

Figure 3.1 Measurement o f the Ught attenuation coefficient (Kj) . 

The frame was lowered to 0.1, 0.3, 0.5, 0.7 and 0.9 m and the reference and depth irradiance 

reading recorded. This procedure was repeated until at least three sets of readings were obtained. 

The attenuation o f downweUing Hght (K^ was calculated from a linear regression of the natural log 

of corrected irradiance versus depth using the following equation: 

K , (m-») = pnae/gi/z (Eq . 3.1) 

Where I ^ = irradiance at the surface (|j,mol m'^ s"') 

L = irradiance at depth z (^miol m"^ s"̂ ) 

Z = depth (m) (Kirk, 1994). 
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Variation of the attenuation coefficient between replicate readings ranged from 0.29 to 44% 
and averaged 6%. 

3.3 Spectroradiometric measurements 

To measure the spectral quality of underwater Hght, two Macam SR 913 F sensors attached to a 

Macam SR 9910-PC spectroradiometer were used and controlled using a portable computer. One 

sensor was placed above the surface and out o f the shade to measure changes in incident light. 

The other sensor was lowered through 0.25 m depth intervals untiil the river bed was reached. The 

measurement o f Hght between 300 and 700 nm was recorded at 5nm intervals and stored on the 

portable computer. A profile o f depth versus Kght at the recorded wavelengths was constructed 

from these data on three occasions: 11 February, 29 April and 5 June 1997, for the Trent at 

Cromwell and the Ouse at Acaster. 

3.4 Species composition and phytoplankton density 

3.41 Field material 

The method of Lund et al. (1958) was used to quantify phytoplankton density and species 

abundance. A sedimentation chamber was one quarter filled with distilled water and two drops of 

Lugol's iodine added. A sample was shaken and a subsample pipetted into the sedimentation 

chamber. The sample was allowed to setde for at least 24 h to allow very small cells and 

Cyanophyta to sediment. CeU counts were made using a Leitz Diavert inverted microscope. The 

bottom of the chamber was scanned under x 250 magnification to make sure the cells were not 

aggregated locally. The cells were then coimted under x 500 magnification using random staggered 

transects, counting at least 30 fields of view Qones & Barrington, 1985). At least 400 cells were 

counted, giving a counting accuracy of ± 10% with 95% confidence intervals (Lund et al., 1958; 

Kiss & Padisak, 1988). Counts were converted to cell density using the following equation: 

Number of ceUs (ml') = (T.M)/(F.V) (Eq. 3.2) 

Where: . ' 

T = total number o f cells counted 

M = multiplication factor 

F = fields o f view 

V = volume of sample (ml) 



44 

M was calcialated by using the following equation: 

M = (A/E) .V (Eq. 3.3) 

Where: 

A = area o f chamber (mm^) 

E = area o f eyepiece (mm^ 

V = volume o f chamber (ml) 

Cells were identified to species level where possible and at least to genus level using the flora of 

BourreUy (1966,1968,1970), Belcher and Swale (1978,1979), and Tikkanen (1986). Otiier tiian 

diatoms, groups (colonies, coenobia and filaments) were treated as single units. Algal species were 

coded according to the algal coded list of Whitton et d. (1998) which uses an 8-digit code to record 

each species o f algae and provides a standard set o f names and identifying codes. The new list is 

an expanded and improved version o f the earlier algal coded list (Whitton et al, 1978). 

Although centric diatom species were not regularly quantified, preliminary investigations were 

imdertaken to distinguish the dominant species during the spring blooms of 1995, 1996 and 1997. 

Centric diatoms were identified to species level using transmission electron microscopy (TEM). 

CeUs were prepared by burning o f f all organic matter with concentrated hydrogen peroxide (Kiss 

& Padisak, 1988) or a combination of dilute HCL, concentrated H2SO4, saturated oxalic acid and 

potassium permanganate (Hastie & Fryxell, 1970). After the organic matter was removed 

(indicated by frustiiles turning white), traces of chemical were removed by subsequent rinsing with 

distilled water, centrifuging for 10 min at 2500 rpm and the supernatent discarded. Al l samples 

were rinsed at least six times. The rinsed sample was then suspended in a couple of ml of distilled 

water, shaken and a drop placed on a T E M grid and allowed to dry. When dry, the cells on the 

grid were examined using a JEOL 100 CX TEMSCAN combined transmission and scanning 

electron microscope. A t least 50 cells were counted (Kiss, 1986; Genkal & Komeva, 1992) and 

identified to species level using the flora o f Kramer and Lange-Bertalot (1991) with reference to 

Lowe (1975), Hakansson (1986) and Speller (1990). The proportionate count was used to identif)' 

the dominant species during spring blooms and as the procedure was not performed reg\ilarly the 

data have not been presented. 

3.42 Growth experiments 

After mixing the sample, a sub-sample was taken for enumeration and fixed with 1 % v / v Lugol's 

iodine. The sample was shaken and a sub-sample taken with a pipette and placed in a Lund cell 

(Lund, 1959) which had been gravimetrically calibrated to calculate the volume of each field of 
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view. The sample was counted using a Wild Heerbrugg light microscope under x 250 
magnification. At least 200 cells were counted under at least 36 random, staggered fields of view. 
Counts were converted to cell density using equations 3.2 and 3.3 described previously. 

3.5 Chlorophyll a estimation 

3.51 Routine estimation 

Chlorophyll a concentration was determined using overnight extraction with cold methanol 

(Marker, 1994). Methanol was selected following a comparison with ethanol which showed no 

statistical difference between extraction with methanol or ethanol (A. F. H . Marker, pers. comm.). 

A measured volume of sample, usually 1 1, was filtered through a pre-weighed GF/C glass-fibre 

filter using a slight vacuum (not below three atm) to avoid cell damage. Test showed that 

chlorophyll concentrations measured using GF/C filters were not significantiy different compared 

to those measured using G F / F filters (author's unpublished data). After filtration, air was allowed 

to run through the filter paper for 30 s. The filter paper was then allowed to dry sHghtiy in a dark 

cupboard for about ten minutes until the residual water on the filter weighed approximately 5% of 

the weight of the filter. This action was taken to prevent excessive dilution of the solvent during 

extraction. The paper was then folded three times, placed in a snap cap vial, and 10 ml of 100% 

methanol was added to completely cover the filter paper and the top placed on the \ial. The vial 

was left for between 18 and 30 h at 4 °C in the dark. Water was then added to dilute the solvent to 

90 %. The sample was well mixed and the filter paper removed, squeezing as much of the solvent 

back into the vial as possible. The solvent was centrifuged in a covered mbe for 10 min at 3000 

rpm. The clear extract was measured in a Shimadzu UV-150-02 double beam spectrophotometer 

at 665 nm with a reading at 750 nm to correct for turbidity. A blank of 90 % v / v methanol/water 

was used in the reference beam of the spectrophotometer. Either'l-, 4- or 5-cm cuvettes were 

used, depending upon the absorbance of the extract so that absorbance at 665 nm was within the 

range 0.05 to 0.70 to ensure precise measurements (Marker, 1994). 

To correct for phaeopigments, the following further steps were carried out. 0.1 ml of 0.3 M 

HCl (or proportionately more or less depending upon volume of extract in cuvette) was added to 

10 ml extract. The extract was then mixed with a glass rod and left for between 5 and 30 minutes, 

(usually 5 minutes). The acid was then neutralised with the same amount of organic base, 

comprising 3 ml 2-phenythylamine, made up to 100 ml with 100 % methanol. This was mixed and 

the extract read at 665 nm and 750 nm. To calculate the corrected, undegraded chlorophyll a 

concentration the following equation was used: 
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Chlorophyll a concentration (^g 1"') = 
13 (2.667.(A„-AJ).v 

(Eq.3.4) • 

d.V 

Where: 

An = pre-acidified 665 reading - pre-acidified 750 reading 

A^, = post - acidified 665 reading - post-acidified 750 reading 

V = volume of extract (ml) 

d = cell pathlength (cm) 

V = volume o f sample filtered (1) 

13 = absorption coefficient o f chlorophyll a m. methanol 

2.667 = correction coefficient for absorption of acidified chlorophyll a 

Triplicate samples were taken at CromweU and Acaster fiom 30 July 1996. 

On six occasions, samples were taken across the river channel to assess the latitudinal variation 

in chlorophyll a concentration. For the Swale at Thornton Manor (28 June 1995), Ure at 

Boroughbridge (17 July 1995), Ouse at Clifton (1 August 1995; Fig. 2.12) and Trent at Gunthorpe 

(14 August 1995), Kelham (12 September 1995) and Cavendish Bridge (5 June 1996; Fig 2.1), 

triplicate samples were taken f rom three positions across the river; the right bank, the middle and 

the left bank. Samples were taken two minutes apart so that temporal variation could also be 

assessed. Cross-channel variability was not investigated for the Ouse at Acaster or the Trent at 

Cromwell as neither a bridge nor boat was available. 

3.52 Daily estimation 

Between 14 March and 1 July 1997, daily chlorophyll a measurements were taken fiom the Trent 

at Cromwell in order to increase the temporal sampling resolution and assess the day to day 

variation not monitored during weekly sampling. Samples were taken by lowering a weighted 

plastic container of known volume into the top 30 cm of the water column, avoiding the surface 

scum (Section 3.1). This sample was filtered through a 55-mm GF/C filter using field filtering 

apparams. The filter was then placed in a numbered well of a plastic container and placed in the 

freezer. Samples were left for a maximum of three weeks before collection. Upon collection, they 

were placed in the cool and dark during transport. Upon return to the laboratory the filters were 
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analysed for chlorophyll a and phaeopigments using the method of Marker (1994), described in 
Section 3.51. 

3.53 Fluorometric estimation 

To assess the daily cycle of change in chlorophyll a concentration, a Chelsea Instruments 

Aquatracka field fluorometer (Fig. 3.2) was placed in situ in the Trent at Cromwell between 15 

Apri l and 18 June 1997. The fluorometer was programmed to take readings every 15 minutes. On 

each occasion the fluorometer was programmed to switch on but not take readings for the first 

20 s as preliminary tests had shown that the lamp needed around 20 s to warm up before stable 

readings were obtained. After the itiitial 20 s, the fluorometer would record readings every second 

for approximately 15 s. The fluorometer output, in mV, was recorded and stored using a 

Datataker 500 series 2 data-logger and Mitsubishi 1 MB Melcard memory card. The memory card 

was renewed between one and four times a month. Data from the memory card was downloaded 

using a Datataker MCI-01 Memory Card Reader and converted to a Microsoft Excel file. 

13 

Figure 3.2 Field fluorometer used for in situ measurement of chlorophyll a. 
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To keep the fluorometer in working order and obtain reliable readings, during each sampling 

visit, between every one and four weeks, the fluorometer perspex screens were cleaned with a 

sponge and distilled water to remove debris and then calibrated. For calibration, the fluorometer 

was placed in a bucket containing a series of concentrations of river water. The bucket and 

fluorometer were covered with black, plastic sheeting to cut out interference from daylight. Either 

tap water or net concentrated water was added to the sample in the bucket to vary the chlorophyll 

a concentration. Approximately 60 readings (one every second) were taken for each sample and 

between four and ten different chlorophyll a concentrations used per calibration. After readings 

were taken, a sub-sample was taken and placed in a plastic sampling vessel and stored in the cold 

and dark. This was used to determine the chlorophyll a concentration using the method of Marker 

(1994; Section 3.51). 

I n an attempt to understand the influence o f irradiance upon phytoplankton fluorescence, 

experimental work focused upon the fluorometric response of a species of centric diatom; 

Cyclotella meneghiniana and natural Trent river water when incubated at different light levels. For the 

first experiment, C. meneghiniana, obtained from cultures of isolates from the Trent (Section 3.72) 

was incubated in 1-1 glass botdes in a water bath (Section 3.61) at 14.5°C and at five different light 

levels; 19, 80, 109, 411 and 1377 | imol m"̂  s"', for tiiree hours. The irradiance inside each botde 

was measured using a 471 sensor described in Section 3.61. Each bottie was mixed at least once 

every hour. After three hours, the contents o f each of the 1-1 glass botties were poured into a 

plastic container and the fluorometric reading was measvired as described for the calibration of the 

fluorometer above. After each reading, the perspex window of the fluorometer was rinsed with 

distiUed water. A sample was taken from each bottie to measure the chlorophyll a concentration 

according to the method of Marker (1994; Section 3.51). 

For the second experiment, river water, collected from the Trent at Cromwell was incubated in 

the water bath described above at 16°C at 9, 30, 65, 196 and 643 jimol m'^ s"' for either one, three 

or five hours. The irradiance inside each botde was measvired using a 47i sensor (Section 3.61). 

Each bottie was mixed at least once every hour. After incubation, the fluorometric reading of the 

contents o f each bottie was measured and a sample was taken from each bottie to measure the 

chlorophyll a concentration as described above. 
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3.6 Estimation of production 

3.61 Estimation of the P Vs I response curve 

A constant temperature water bath (Steeman-Nielsen & Jensen, 1957) was used for photosynthesis 

vs irradiance (P vs I) incubations. The water bath (148x38x21 cm) was made from dark, opaque 

perspex with a clear perspex window at one end. Water temperature was controlled using a 

Churchill water cooler/heater system which circulated water around the tank and maintained 

temperature within ± 0.2°C (author's unpublished data). Two OMBIS 150 W metal haHde lamps 

were placed outside at one end of the tank, providing a Hght soiirce. Kodak neutral density filters 

were used to reduce irradiance within the tank. Between April and October 1996, the incubation 

irradiance was measured using a Macam SDlOlQCos 27t-probe and Macam Q102 radiometer, 

multiplying the recorded value by 1.25 to correct for submersion (Macam pers. comm.). Later 

investigation, using a Biospherical Instniments QSP-200 47t-probe and QSP 170A meter, showed 

that use of the 27T;-sensor resulted in underestimation of irradiance received by some botdes. This 

was a result of reflection from the tank sides. To resolve this underestimation, later irradiance 

values were measured using the 47t-probe which was calibrated against the Macam SDlOlQCos 

271-probe. EarHer values, obtained using the 271-probe, were converted to corrected values using a 

calibration equation calculated from both 47i and 27t measurements. 

Phytoplankton primary productivity was measured as O j evolution, measured by Winkler 

titration, following the method of Carpenter (1965, 1966), following WOCE precautions and 

calculation procedxares. Incubations took place in 125-ml soda glass botties with volumes 

predetermined gravimetrically. A 25 I field sample was mixed well using a plastic pipe and used to 

rinse each bottie with approximately 30 ml of sample water. Each soda glass bottie was filled 

using a siphon, ensuring that each botde was overfilled by at least three times it's volume to 

displace any atmospheric Oj . The 25 1 field sample was mixed with a plastic pipe after every three 

bottles filled to ensure homogeneity. During the course of sub-sampling, between three and five 

bottles were fixed immediately with 1 ml 3M MnCl followed by 1 ml 8 M NaOH/4 M Nal using 

rapid delivery pipettes with the tip underneath the sample surface to avoid introduction of 

atmospheric O j . These bottles were used to determine the initial O2 concentration. The 

remaining botdes were placed, in triplicate, at different Ught levels, from 10 to 1200 |j,mol m"̂  s ', 

inside the water bath. Triplicate botties were also covered in aluminium foil to measure 

community respiration. Incubation times were in the region 4-8 h in spring and summer. 

Overnight incubations were necessary in winter when phytoplankton biomass was low. After 

incubation, each bottie was fixed, shaken well and the precipitate allowed to settie halfway down 

the bottie. The bottie was shaken again and the precipitate allowed to settie to the bottom third of 

the bottie. 
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A computer controlled Metrohm 665 Dosimat automated burette system (Bryant et ai, 1976; 
WiUiams & Jenkinson, 1982) was used to determine concentration using the Winkler Titration 
method. A 1-ml burette was used to automatically titrate sodium thiosulphate solution to a 
photometric endpoint using a photometer. The photometer used two wavelengths of light: one 
which was adjusted to the absorption maximum of iodine, and the other, independent of the 
contents o f iodine to estimate the transmission at the endpoint of the titration so that titration 
times were shortened. 

Before O2 determination, the bvirette system was flushed between three and four times to 

displace any air bubbles. The sodium thiosulphate solution was standardised before each set of 

titrations by pipetting 10 ml o f the solution into a clean bottie and nearly filUng with distilled 

water. 2.2 ml 5M H2S04was then added followed by 1 ml 3M MnCl followed by 1 ml 8M 

N a O H / 4 M Nal solution. This was then mixed, using a magnetic stirrer, and titrated to the end 

point. The standard was measured at least three times to ensure an accvirate standard 

determination. 

A blank was also determined to correct for O2 present in the Winkler reagents. 1 ml KlOjwas 

pipetted into a clean botde and nearly fiUed with distilled water. 2.2 ml 5M H2S04was then added 

followed by 1 ml 3M MnCl and by 1 ml 8M N a O H / 4 M Nal. This was mixed and titrated to the 

end point. A second 1 ml o f K I O j was added and the liberated iodine again titrated to the 

endpoint. The difference represented the reagent blank. This procedure was repeated at least 

three times to ensure an accurate blank. 

To measure the O2 concentration of each sample, the botde stopper was removed and 2.2 ml 

5M H2SO4 was pipetted into the bottie. The top was replaced, taking care not to incorporate 

bubbles, and the sample shaken until the precipitate had dissolved. The stopper was then 

removed, the botde wiped with a cloth and placed in the photometer section of the Metrohm 

automated burette system. The burette system titrated a predetermined concentration of 

NaS2035H20 solution until the estimated photometric endpoint was reached. Each titration 

typically took 3 minutes. The difference in the concentration of in mg 1' was then used to 

calculate chlorophyll a based rates of net photosynthesis and respiration using the following 

equation: 

Net O2 exchange ((^mol O2 (mg chl af h ') = (((C-I)/t).32)/(chl ^/lOOO) (Eq. 3.6) 
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Where: 

C= O2 concentration o f sample (mg 1') 

I = Initial (pre-incubation) O j concentration (mg 1"') 

t = time duration of incubation (h) 

chl a = chlorophyll a concentration o f sample (mg l ') 

I t was assumed that the majority of O j consumption would arise from phytoplankton. However, 

as the samples were neither screened nor axenic, zooplankton and bacteria would also have 

contributed to respiration. Therefore community respiration was measured and so the resisting 

calculation does not strictiy result in a measurement of net phytoplankton production. However, 

with this in mind we assume that the majority of respiration was contributed by the phytoplankton 

and so we use the term net production from here on. 

The model of Piatt et al. (1980): 

P, = P„ . ( ( l -EXP(-a . ( I /PJ) ) . (EXP(-p . ( I /PJ) ) )+R (Eq. 3.7) 

Where: 

Pj - potential net rate of light saturated photosynthesis i f no photoinhibition was present 

P„ = Hght saturated photo synthetic rate ((imol O j (mg chl d)^ h ' ) 

a = initial slope o f curve (jxmol O2 (mg chl d)mol photon 'm '^ 

I = irradiance (fimol m'̂ s"') 

P = photoinhibition factor (|Jmol O j (mg chl d) ' mol photon'm'^) 

R = respiration rate ({Xmol O j (mg chl «) ' h"') 

was fitted to these data and the Solver application in Microsoft Excel was used to minimise the 

residual sum of squares to estimate the curve parameters a, P, P, and R. This model was chosen 

as i t resulted in the lowest residual sum of squares when compared to other models on all but one 

occasion. 

3.62 Photosynthesis-irradiance-depth-time (PIZT) model 

To estimate the river column productivity over time and depth and to assess the relative 

contribution of environmental factors in controlling river column productivity, a modelUng 

approach similar to that o f Walsby (1997) was used. A spreadsheet (PIZT; Photosynthesis, 

Irradiance, Depth (Z) and Time) calculated photon irradiance at depth intervals o f 0.1 m and time 
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intervals o f 0.5 h. By combining the estimated photon irradiance at the given time and depth with 

the modelled P vs I response (Section 3.61) a daily average rate of photosynthesis was calculated 

for each depth interval (depth-average photosynthesis) and for the column assuming the river was 

of different depth (column-average photosynthesis). 

Total radiation was measured every hour with a pyranometer at Leconfield (TA020435), 90 km 

away f rom Cromwell and 44 km away from Acaster. The average daily irradiance (W m'^ used in 

the model was calculated for the thirty days prior to the photosynthesis measurements to calculate 

an average monthly irradiance. Preliminary investigations showed that a thirty day average resulted 

in a characteristic monthly irradiance response as reported by Kirk (1994). These values were 

converted to PAR (400-700 nm, W m"^ using a ratio of 0.45 (Kirk 1994), which is within die range 

modelled by Baker and Frouin (1987) for different solar angles and atmospheric water vapour 

contents. PAR was converted to (J,mol m " s"' (photon irradiance) using a value of 4.6 |amol 

photon W"' s ' (Morel & Smith 1974, Baker & Frouin 1987). 

The total daily PAR (Q^), averaged over thirty days, was converted to a time-course over 24 

hours assuming that cloud cover was uniform throughout the day. The day of year was used to 

calculate solar declination (5): 

d = 0.39637 -22 .913cos+ 4 .02543s in- 0.3872cos2^ /̂ + 0.052smly/ '(Eq. 3.8) 

where ^ is the day of year expressed as degrees. 

Daylength, N (hours) was calculated f rom the declination (5) and latitude (k): 

iV = 0 . 1 3 3 c o s - ' ( - t a n l t a n ^ ) (Eq. 3.9) 

The diurnal variation in photon irradiance at time t (E) was calculated from: 

E,=QJ N{\ + cos(M) (Eq. 3.10) 

where t is hours from noon. 

The reflection losses for diffuse and direct radiation at the water surface were calculated 

differentiy. The reflection by diffuse radiation was taken to be 6.6% and independent of zenith 

angle, 2 ,̂ (Baker & Frouin, 1987) while reflection o f direct radiation was dependent on 2̂ . The 
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zenith angle in air at different time of day was calculated from the time of day expressed as degrees 

9: 

6^ = 90 - {a sin(sin f sin <5 - cos ; K cos <̂  cos r ) (Eq. 3.11) 

Reflection o f direct radiation for a smooth surface was calculated from zenith angle using 

equations 46 and 47 in Gregg & Carder (1990) assuming a constant wind velocity of 4 m s ' to 

account for the broken surface o f rivers caused by turbulence. 

Although the proportion of diffuse to total radiation wiU vary, particidarly with zenith angle and 

atmospheric clarity, diffuse radiation was taken to be equal to 56% of total radiation throughout 

the day, which is the average values in the model o f Gregg & Carder (1990). 

3.7 Estimation of in situ rates of growth and loss 

3.71 In situ growth and loss estimation 

The exponential rate of change of chlorophyll a concentration with distance (km'') was calculated 

f rom a linear regression o f the natural logarithm of chlorophyll a concentration at three sites on 

the Trent (Cavendish Bridge, Gunthorpe, Cromwell; Fig. 2.1) against distance. Distances of 

sampling sites f rom the source were calculated using 1:25000 Ordnance Survey maps and an 

electronic map measurer. Distances were measured five times and the average recorded. 

The exponential rate o f change o f chlorophyll a concentration with distance was converted to a 

rate o f increase or decrease per day, i.e. rate of growth or loss, by multiplying by the river velocity 

(km d''). River velocity was estimated from the quotient of average daily discharge (m^ d"') and 

cross-sectional area (m^ which were provided by the Environment Agency. Estimates were made 

for Shardlow (SK448300), where the samples for Cavendish Bridge were taken, Colwick 

(SK620399), 10.1 km upstream o f Gunthorpe and for North Muskham (SK808610), 0.75 km 

upstream of Cromwell. 

Cross-sections of the river at Shardlow, Colwick and North Muskham showed the channel to be 

essentially square-sided, so cross-sectional area was calculated as the product of river width and 

depth depending on stage height. A n average velocity was then calculated for the stretch of river 

f rom Shardlow to North Muskham. 

3.72 Isolation of phytoplankton into culture 

Algae to be used in experiments to measure growth rates were isolated from the Ouse and Trent. 

A sample taken in spring was centrifuged to obtain a concentrated number of cells. This 

concentrated sample was mixed with distilled water, centrifuged again and the supernatant 
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discarded. This was repeated four to six times to reduce the number of bacteria present. Single 

cells were isolated using the method of Hoshaw and Rosowski (1973). The cell concentrate was 

then placed on a petri dish and surrounded by up to eight droplets of distilled water. The drop 

containing the cells was observed through a binocialar microscope under x 125 power. A capillar)' 

pipette, produced by drawing a soda glass pipette over a bunsen flame (Guillard, 1973), was used 

to pick up desired cells. The cells were then placed in one of the drops of distilled water. This 

process was repeated, passing cells to other drops of distilled water, until a single desired cell was 

obtained. This cell was placed on a labelled petri dish containing c. 40 ml Chu lOF medium, 

developed f rom the recipe for Chu 10 (Chu, 1942), with twice the stated silica concentration and 

with 1.5 % w / w agar. The petri dish was incubated at 15°C on a 16:8 L:D cycle to allow growth to 

take place. After a colony was established on the dish, the colony was placed in a flask containing 

Chu lOF and allowed to grow xander the conditions mentioned above. Cultures were typically sub-

cultured to fresh flasks once to twice per month. Using this method, two species of centric 

diatom were isolated: Cyclotella meneghiniana Kiitz and Cyclostephanos invisitatus Hohn et HeUerman 

from the Trent and one species of Chlorophyta: Scenedesmus intermedius Chodat firom the Ouse. 

3.73 Rates of growth and respiration as a function of temperature 

Triplicate culture botties were placed in constant temperature water baths at 5, 10, 15 and 20 °C. 

The botties were illuminated from below by eight Philips 58 W fluorescent tubes which produced 

between 75 and 85 jamol m'^ s'* (PAR, measured with a Biospherical QSP-200 471-probe and QSP 

170A meter) for sixteen hours a day, followed by eight hours in the dark. Using this range of light 

levels, the cultures at 5 and 10°C would not grow so Kodak neutral density filters were placed 

above the fluorescent lights to reduce light intensity to between 30 and 40 (J,mol m " s"'. Each 

bottie was aerated by pumping an external supply of air through an aquarium air-stone using a 

Whisper 1000 air-pump. The aeration promoted gas exchange, sample mixing and reduced 

settling o f the diatoms. 

A 1 ml sub-sample was taken every day for samples growing under 15 and 20 °C and every other 

day for samples growing under 5 and 10 °C. This sample was preserved with 0.01 ml Lugol's 

iodine and cells counted using the method described in Section 3.42. Cells were counted until at 

least three events had been sampled during the exponential phase. Growth rate was determined as 

the slope o f the natural log of cell number against time and calculated by linear regression. 

Dxiring the exponential growth phase, material was taken to measure rates of dark respiration 

of the four algal species using the method described in Section 3.61 and using the water baths 

mentioned above. Material was diluted to around 150 |j,g T' chlorophyll a using Chu lOF medium, 

mixed well and then siphoned into 125-ml soda glass botties. Three initial samples were fixed and 
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three further samples were covered in aluminium foil and incubated at the temperature 
experienced during the previous growth experiment, i.e. a species grown at 5 °C would be 
incubated at 5 °C to measure respiration. A sample was also taken to measure chlorophyll a 
concentration (Section 3.51). Samples were incubated for between two and four hours. After 
incubation, oxygen exchange was measured by the Winkler titration method described in Section 
3.61. 

3.74 Grazing rate estimation 

Grazing rates were determined using the method of Landry and Hassett (1982). The method 

measures the change in either cell density or chlorophyll a concentration using a series of dilutions 

of natural river water. The method makes three assiamptions. The first being that growth of 

phytoplankton individuals is not directiy affected by presence or absence of other phytoplankton 

per se. Secondly, the probability of a cell being consumed is a direct function of the rate of 

encounter with consumers. Thirdly, the change in phytoplankton density (P) over time (t) is 

represented by the equation; 

P. = V^e^-^' (Eq. 3.12) 

Where k and g are instantaneous coefficients of population growth and grazing mortality, 

respectively. 

In this study, the change in chlorophyll a concentration was measured. Sample water was 

diluted with the same sample water having passed through a 0.45-|jm membrane filter. Samples 

were diluted in triplicate at 1:0, 3:1, 1:1 and 1:3 iinfiltered:filtered sample. The flasks were then 

placed in an incubator at in situ temperatures at a photon irradiance of around 82 fxmol m'^ s ', 

measured using a Macam SDlOlQCos 271 PAR sensor connected to a Macam Q102 radiometer 

27r-sensor. Initial samples were taken for each dilution and chlorophyll a determined (Section 

3.51). The flasks were incubated for between 24 and 48 h. Each flask was static but was shaken 

manually three times a day. The chlorophyll a concentration of the contents of each flask was 

then determined and the change from the initial noted. The apparent growth rate of each flask 

was determined using the equation: 

Growtii rate = (1 /t).ln(chl aJz\A (Eq. 3.13) 
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Where: 

T = incubation time (d) 

chl = chlorophyll a concentration at end of incubation (|J,g 1") 

chl - chlorophyll a concentration at start of incubation (|J,g 1'). 

The apparent growth rate was plotted against the dilution expressed as a fraction. The 

intercept with the y-axis was estimated as the apparent phytoplankton growth rate (day"'). The 

gradient of the curve was estimated as the grazing rate (day ' ) . 

On occasions, the data fitted a straight Une. However, on other occasions the data were widely 

scattered and on other occasions a positive gradient was shown (Appendix 1). As a result of these 

data the results should be treated with caution. 

3.8 Estimation of phytoplankton carbon flux 

The flvix o f phytoplankton was estimated for the Trent at Cavendish Bridge, Gunthorpe and 

Cromwell (Fig 2.1) and the Ouse at Acaster (Fig. 2.12). Average weekly carbon flux was calculated 

using the concentration o f chlorophyll a and the average weekly discharge of the river at each site 

(measured by the EA) and an estimation o f the carbon to chlorophyll ratio at Cromwell. The 

carbon to chlorophyll ratio was calculated as the gradient of the line of best fit of chlorophyll a 

concentration against POC concentration (LOIS CORE data) as described by Descy and 

Gosselain (1994), for Cromwell only. An estimation of the carbon to chlorophyll ratio was not 

calculated for Cavendish Bridge and Gunthorpe as POC data were not available and not for 

Acaster as no significant relationship between chlorophyll and POC data existed. When a gap in 

chlorophyll a data occurred, data were interpolated to give a value for weekly chlorophyll a 

concentration. The average, weekly phytoplankton carbon flux was then calculated using the 

following equation: 

Flux (mg C wk-') = (chl <2 .RJ.Q (Eq. 3.14) 

Where chl a - chlorophyll a concentration (|ag 1"'; equivalent to mg m"̂ ) 

R ^ - carbon to chlorophyll ratio (mg mg ') 

Q = Discharge m ' wk"' 

Using these data, an annual flux estimate was calculated for aU four sites from June 1995 to 

May 1996 and f rom June 1996 to May 1997. 
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3.9 Computing and statistics 

Data were stored and analysed and models formulated using Microsoft Excel. Microsoft Word 

was used for text and Microsoft Paint application was used to produce diagrams. Variables used 

for correlation and in parametric tests were tested for normality using the Kolmogorov-Smimov 

test function in Minitab 8.0. Data which deviated significantiy from normality (P>0.05) was log 

transformed. Other statistical analysis was performed using Microsoft Excel. 
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4 SPECIES COMPOSITION, ABUNDANCE AND BIOMASS 

4.1 Species composition and phytoplankton density 

4.11 River Trent 

Data were collected in order to assess the seasonal change in the size and composition of the 

phytoplankton popxjlation. Measurements concentrated upon phytoplankton density and the 

composition of the population during periods of rapid increase and subsequent decrease of the 

phytoplankton population. 

A t the tidal limit o f the Trent at Cromwell, phytoplankton density increased as river discharge 

decreased in spring, reaching maximal concentrations o f 45270, 53000 and 39500 individuals ml"' 

on 10 May 1995, 29 Apri l 1996 and 2 June 1997, respectively (Fig. 4.1). High phytoplankton 

density in spring was often interrupted by spring floods (Fig. 4.1). Density declined during 

summer to between 3000 and 6000 individuals ml'^ even though discharge was low (Fig. 4.1) and 

fell to winter minima of 60, 200 and 100 individuals ml"' on 16 October 1995,15 January 1996 and 

20 January 1997, respectively. Winter minima corresponded with an increase in discharge and 

sporadic flood events (Fig 4.1) as well as low temperature and Hght availability. 

For the Trent at Cromwell, 104 taxa were recorded from April 1995 to August 1997; 38 

Bacfflariophyta (Table 4.1), 50 Chlorophyta (Table 4.2), 4 Chrysophyta (Table 4.3), 3 Cryptophyta 

(Table 4.4), 5 Cyanophyta (Table 4.5), 2 Euglenophyta (Table 4.6), 1 Pyrrophyta (Table 4.7), and 1 

Xanthophyta (Table 4.8). The largest proportional contribution of Chlorophya to the 

phytoplankton, dominated by the genera Ankdstrodesmus, Scenedesmus and Chlorella, occurred during 

late svimmer, contributing maxima of 88, 87 and 78 % on 17 October 1995, 16 September 1996 

and 20 May 1997, respectively (Fig. 4.2). Minimal contribution o f Chlorophyta to the 

phytoplankton was recorded during spring with contributions falling to 10, 12 and 12 % on 11 

Apr i l 1995, 15 May 1996 and 13 Apri l 1997, respectively (Fig. 4.2). 

Centric diatoms of the genus Stephanodiscus, Cjclotella and Cyclostephanos comprised the largest 

proportion of the population in spring, with maxima of 83, 81.6 and 81.7 % of the population on 

9 May 1995, 15 May 1996 and 16 April 1997 (Fig. 4.2). Centric diatoms were least important in 

autumn and winter with contributions to the phytoplankton under 1% on 17 October 1995, 23 

September and 15 October 1996. A minimal contribution, during spring, of 16% was recorded on 

20 May 1997. This coincided with a spring flood event (Fig 4.1). Maximal concentrations of 

centric diatoms during spring coincided with spring rninimal concentrations of Si02-Si of 0.04, 

0.01 and 0.21 mg 1"' on 10 May 1995, 14 May 1996 and 15 Apri l 1997, respectively (Fig. 4.3). A 

significant, negative correlation existed between SiOj-Si concentration and centric diatom density 

during spring (r=-0.71, P=0.001, n=24). 
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Table 4.1 BaciUariophyta recorded for the Trent at Cromwell. 

C O D E Genus Species Authority 

13010660 Achnanthes knceokta (Breb.)Grunovl880 

13080010 Asteriomlk formosa Hassall 

12030064 Autacoseira granukta (Ehrenb.) Simonsen 1979 

12060040 Cychstephanos invisitatus (Hohn et Hellermann) Theriot, 
Stoermer etHak. 1987 

12070020 Cychtella antiqua W.Sm. 

12070040 Cyclotella atomus Hust. 1937 

12070142 Cyclotella comta (Ehrenb.) Kiitz. 

12070273 Cychtella kuett^ngiana Thwaites 

12070300 Cyclotella meneghiniana Kiitz. 

12070370 Cychtella pseudostelligera Hust. 1939 

12070400 Cychtella radiosa (Grunov) Lemmerm. 1900 

12070470 Cychtella stelligera Cleve et Grun in Van Heurck 1882 

12070560 Cychtella mltereckii Hust. 1923 

13220000 Cymbella sp. 
13260000 Diatoma sp. 

13260070 Diatoma vulgare Bory 1824 

13460040 Frag-kria crotonensis Kitton 1869 

13500290 Gomphonema olivaceoides Hust. 1950 

13510000 Gyrosigma sp. 

12110080 Mehsira varians Agardh 1827 

12110080 Mehsira varians Agardh 1827 

13580000 Navicuk sp. 

13584250 Namcuk viriduh (Kut2.)Ehrenb._1836 

13610020 Nit'^chia acicukris (Kiitz.) W.Sm. 

13611260 Nit^schia paka (Kiitz.) W.Sm. 

13610000 Nitf^schia sp. 

13760000 Selkphora sp. 

12170020 Skeletonema potamos (Weber) Hasle 1976 

12170020 Skektonema potamos (Weber) Hasle 1976 

12190090 Stephamdiscus hant^schii Grunov in Cleve et Grunov 

12190160 Stephanodiscus minutulus (Kiitz.) Cleve et Moller 1986 

12190200 Stephanodiscus parvus Stoermer etHak. 1984 

12190230 Stephanodiscus tenuis Hust. 1939 

13850010 Sjnedra acus Kiitz. 1844 

13850290 Synedra ulna (Nitzsch) Ehrenb. 1836 

12200120 Thakssiosira guilkrdii Hasle 

12200220 Thakssiosira pseudonana Hasle et Heimdal 1970 

12200280 Thakssiosira weissfloggU (Grunov) Fryxell et Hasle 1977 
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Table 4.2 Chlorophyta recorded for the Trent at Cromwell. 0 
C O D E Genus Species Authority 
17010010 Actinastmm hant^schii Lagerheim 
17040040 Ankistrodesmus fakatus (Corda) Ralfs 
16180150 Chlamydomonas tetra^onia (Bohlin) Ettl 
16180000 Chlamydomonas sp. 
17130000 Chlorella sp. 
27040043 Closterium acutum var. variahik Breb. in Ralfs 1848 
17210030 Coelastrum microporum NageU 
27050000 Cosmarium sp. 
17240010 Crud^enia fenestrata (Schmidle) Schmidle 
17240020 Crudfenia quadrata Morren 
17240030 Crudfetiia tetrapedia (Kirchner) W. et G.S.West 
17250010 Crudffniella apiculata (Lemmerm.) Komarek 
17250030 Crudfeniella rectanfiilaris (Nageli) Komarek 
17300030 Dictyosphaerium pukhellum Wood 
17320020 Didymo^enes pabtina Schmidle 
25010010 Ulakatothrix gelatinosa Wille 
16260010 Eudorina ekgans Ehrenb. 
16330020 Gonium sodak (Dujardin) Warming 
17440020 Granuhqstopsis pseudocoronata (Korshikov) Hindak 
17500090 Kirchneriella suhcapitata Korshikov 
25030010 KoBella hn^iseta (\''ischer) Hindak 
17530040 Lagerheimia senevensis (Chodat) Chodat 
17530070 Lased/eimia wratislaviends Schroder 
17550010 Micractinium pusillum Fresenius 
17560040 Monoraphidium grifjithii (Berk.) Komarek-Legnerova 
17560020 Monoraphidium contortum (Thur.) Komarek-Legnerova 
16470010 Pandorina morum (O.F.Mull.) Bory 
17680030 Pediastrum boryanum (Turpin) Menegh. 
17680050 Pediastrum dupkx Meyen 
17680090 Pediastrum tetras (Ehrenb.) Ralfs 
17820020 Scenedesmus acuminatus (Lagerheim) Chodat 
17820200 Scenedesmus ecomis (Ehrenb. ex Ralfs) Chodat 
17820240 Scenedesmus intermedius Chodat 
17820270 Scenedesmus obliquus (Turpin) Kiitz. 
17820330 Scenedesmus protuherans F.E. Fritsch et Rich 
17820350 Scenedesmus quadricauda (Turpin) Breb. 
17830020 Schroederia phnktonica (Skuja) Philipose 
17840020 Seknastrum gradk ' Reinsch 
16680010 Spermato^opds exsultans Korshikov 
17900020 Sphaerocystis schroeteri Chodat 
27380610 Staurastrum furdiierum Breb. 
24340010 Stichococcus badllaris Nageli 
17930010 Tetraedron caudatum (Corda) Hansg. 
17930030 Tetraedron incus (Teihng) G.M.Sm. 
17930052 Tetraedron minimum (A.Braun) Hansg. 
16760010 Tetraselmis cordiformis (N.Carter) Stein 
16770010 Tetraspora gelatinosa < âucher) Desv. 
17940070 Tetrastrum staurogeniaeforme (Schroder) Lemmerm. 
04100090 Trachelomonas volvodna Ehrenb. 
10350000 Trachychloron sp. 
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Table 4.3 Chrysophyta recorded for the Trent at Cromwell. 

Code Genus Species Authority 
09280020 Dinobryon divergens (Imhof) Lemmerm. 
09380010 Malhmonas acaroides Perty 
09380000 Malhmonas sp. 
09660010 Synura petersenii Korshikov 

Table 4.4 Cryptophyta recorded for the Trent at Cromwell. 

Code Genus Species Authority 
05020000 Chroomonas sp. 
05040050 Cryptomonas ovata Ehrenb. 
05100010 BJjodomonas kcustris Pascher et Ruttoer 

Table 4.5 Cyanophyta recorded for the Trent at Cromwell. 

Code Genus Species Authority 
01020000 Anahaena sp. 
01460000 Merismopedia sp. 
01530010 Osdlktoria agardhii Gomont 
01530160 Osdlktoria limnetica Lemmerm. 
01530000 Osdlktoria sp. 

Table 4.6 Euglenophyta recorded for the Trent at Cromwell. 

Code Genus Species Authority 
04020150 Eugkna viridis Ehrenb. 
04070000 Phacus sp. 

Table 4.7 Pyrrophyta recorded for the Trent at Cromwell. 

Code Genus Species Authority 
06090000 Glenodinium sp. 

Table 4.8 Xanthophyta recorded for the Trent at Cromwell. 

Code Genus Species Authority 
10070010 Centritractus behnophorus Lemmerm. 

Other algal groups contributed little to the phytoplankton over the sampling period. The 

occurrence o f Cryptophytes was sporadic and reached maximal concentrations o f 48% on 30 July 

1996 when the contribution o f Chlorophyta and centric diatoms to the population was low (Fig 

4.2). Cyanophytes contributed a maximum of 11% to the phytoplankton on 23 September 1996. 

Other groups contributed less than 2% to the phytoplankton over the sampling period. 
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Figure 4.3 Temporal change in number o f centric diatoms (brown line) and 

SiOj-Si concentration (black line) for the Trent at Cromwell. 

70000 r 500 

60000 H 
h 400 

50000 H k 350 

\- 300 
40000 ^ 

30000 H 

20000 

k 100 
10000 •\ 

u 
"3 

A M J J A S O N D J F M A M J J A S O N D J F M A M J J A 

1995 1996 1997 
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(blue line) for the Ouse at Acaster. 
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4.12 Ouse 
As discharge decreased at the beginning of each spring, phytoplankton density increased and 

reached maximal concentrations of 49920, 27320 and 62700 individuals ml ' ' on 5 June 1995, 10 

June 1996 and 21 May 1997, respectively (Fig. 4.4). Summer populations declined to around 2000 

to 6000 individuals ml"' and declined further to winter minima of 210, 40 and 60 indi^nduals ml"' 

on 5 December 1995, 21 November 1996 and 21 January 1997, respectively. These minima 

corresponded with high discharge events (Fig. 4.4) and low temperature and low light availability. 

Over the 29 month sampling period, 102 taxa were recorded; 39 BacOlariophyta (Table 4.9), 47 

Chlorophyta (Table 4.10), 6 Chrysophyta (Table 4.11), 4 Cryptophyta (Table 4.12) 2 Cyanophyta 

(Table 4.13), 2 Euglenophyta (Table 4.14), 1 Haptophyta (Table 4.15) and 1 Pyrrophyta (Table 

4.16). Chlorophyta, mainly A.nkistrodesmus, Scenedesmus and Chlorella, usually dominated the 

phytoplankton in sxammer or autumn and the largest proportional contribution to the population 

occurred on 17 October 1995, 3 September 1996 and 10 June 1997 where they contributed 49, 45 

and 51 % of the phytoplankton population, respectively (Fig. 4.5). The least proportional 

contribution o f Chlorophyta to the phytoplankton population occurred during spring with 

contributions faUing to 20, 7 and 14 % on 11 April 1995, 21 May 1996 and 14 April 1997, 

respectively (Fig. 4.5). 

The phytoplankton comprised mainly centric diatoms during spring with maximal contribution 

to the phytoplankton population increasing to 53, 85 and 66% of the popiJation in 22 May 1995, 

21 May 1996 and 29 Apri l 1997, respectively (Fig. 4.5). Centric diatoms of the genus Stephanodiscus, 

Cyclotella and Cyclostephanos dominated during these occasions. Centric diatoms comprised minima 

of 1 and 0% of the population on 1 August 1995 and 21 November 1996, respectively. A 

minimum contribution in summer of 0% was recorded on 3 June 1997 (Fig. 4.5). 

Spring minimum SiOj-Si concentrations o f 0.01, 0.02 and 0.01 mg 1"' corresponded with 

maximal centric diatom concentrations of 49920, 27310 and 62700 individuals ml"' on 22 May 

1995, 21 May 1996 and 29 Apri l 1997, respectively (Fig. 4.6). A significant, negative relationship 

existed between centric diatom abundance and SiOj-Si concentration during the spring months 

(r=-0.63, P<0.01,n=19). 

Other algal groups contributed Httle to the phytoplankton over the sampling period although 

Cryptophytes reached maximal contribution to the phytoplankton of 33% on 21 November 1996 

(Fig. 4.5) and were also important on 13 February 1996 and 21 January 1997 (Fig. 4.5). Other 

groups showed sporadic peaks in their contribution to the phytoplankton but no steady pattern 

was obvious. Amongst these, the best represented were Cyanophytes and Chrysophytes, reaching 

maximal contribution of 14% and 21% respectively on 19 November 1996 (Fig. 4.5). 
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Table 4.9 Bacillariophyta recorded for the Ouse at Acaster. 

C O D E Genus Species Authority 
13080010 Asterionella formosa Hassall 
12030064 Aiilacoseira granulata (Ehrenb.) Simonsen 1979 
13160000 Cocconeis sp. 
12060040 Cjckstephanos invisitatus (Hohn et Hellermann) 

Theriot, Stoermer et 
Hak. 1987 

12070020 Cyclotella antiqua W.Sm. 
12070040 Cycloiella atomus Hust. 1937 
12070142 Cyclotella comta (Ehrenb.) Kiitz. 
12070273 Cyclotella kuett^n^ana Thwaites 
12070300 Cyclotella meneghiniana Kiitz. 
12070370 Cyclotella pseudostelligera Hust. 1939 
12070400 Cyclotella radiosa (Grunov) Lemmerm. 1900 
12070470 Cyclotella stelligera Cleve et Grun in Van 

Heurckl882 
12070560 Cyclotella mlterecM Hust. 1923 
13220000 Cjmhella sp. 
13260000 Diatoma sp. 
13460040 ¥rag.laria crotonensis Kitton 1869 
13470082 Fraglariforma vinscens var. capitata (Ralfs) D.M.Williams et 

lound 1988 
13510000 Gyrosigma sp. 
12110080 Melosira varians Agardh 1827 
13570000 Meridian sp. 
13580720 Namcula confervacea (Kiitz.) Grunov 
13580000 Navicula sp. 
13584250 Navicula viridula (Kiitz.) Ehrenb. 1836 

13610020 Nitt^schia acicularis (Kiitz.) W.Sm. 
13611260 Nitf^schia palea (Kiitz.) W.Sm. 
13610000 Nit^chia sp. 
13660000 Pinnularia sp. 
12170020 Skeletonema potamos (Weber) Hasle 1976 
12190090 Stephanodiscus hant^chii Grunov in Cleve et 

Grunov 
12190160 Stephanodiscus minutulus (Kiitz.) Cleve et Moller 

1986 
12190200 Stephanodiscus parvus Stoermer etHak. 1984 
12190230 Stephanodiscus tenuis Hust. 1939 
13840000 Surirella sp. 
13850010 Sjnedra acus Kiitz. 1844 

13850290 Synedra ulna (Nitzsch) Ehrenb. 1836 

13860022 Tabellaria flocculosa var. asterionelloides (Roth) Kiitz. 
12200120 Thalassiosira guillardii Hasle 
12200220 Thalassiosira pseudonana Hasle et Heimdal 1970 
12200280 Thalassiosira weissfbggii (Grunov) FryxeU et Hasle 

1977 
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Table 4.10 Chlorophyta recorded for the Ouse at Acaster. 

Code Genus Species Authority 
17010010 Actinastrum hantxschii Lagerheim 
17040040 Ankistrodesmus falcatus (Corda) Ralfs 
16180080 Chlamydomonas monadinia Stein 
16180000 Chlamydomonas sp. 
17130000 Chlorella sp. 
16190010 Chhrofpnium elonsatum (Dang.) Dang. 
27040043 Closterium acutum var. variabile Breb. in Ralfs 1848 
27040460 Closterium moniliferum (Bory ) Ehrenb. ex Ralfs 1848 
17190010 Coccomyxa confluens (Kut2.) Fott 
17210030 Coelastrum mcroporum NageU 
17240020 Crudfenia quadrata Morren 
17240030 Crudfenia tetrapedia (Kirchner) W. et G.S.West 
17250030 Crud^eniella rectan^ularis (NageU) Komarek 
17300030 Dictyosphaerium pulchellum Wood 
16260010 Eudorina ele^ans Ehrenb. 
17410010 Golenkinia paudspina W. et G.S.West 
17410020 Golenkinia radiata (Chodat) WiUe 
16330020 Gonium sodale (Dujardin) Wanning 
16350020 Haematococcus pludalis Plot. 
17490020 Keratococcus suedcus Hindak 
25030010 Koliella lonfiseta (\''ischer) Hindak 
17520010 Korshikomlla michaihvskoensis (Elenkin) Silva 
17530010 La^erheiffda chodatii Bernard 
17550010 Micractittium pusillum Fresenius 
17560020 Monoraphidium contortum (Thur.) Komarek-Legnerova 
17640010 Oocystella marssonii Lemmerm. 
17640030 Oocystella solitaria (Wittrock) Hindak 
17640020 Oocystella parva W. et G.S. West 
16470010 Pandorina morum (O.F.MiiU.) Bory 
17680030 PeSastrum boryanum (Turpin) Menegh. 
17680050 Pediastrum duplex Meyen 
17820010 Scenedesmus aculeotatus Reinsch 
17820020 Scenedesmus acuminatus (Lagerheim) Chodat 
17820040 Scenedesmus acutus Meyen 
17820080 Scenedesmus armatus (Chodat) Chodat 
17820200 Scenedesmus ecomis (Ehrenb. ex Ralfs) Chodat 
17820270 Scenedesmus obliquus (Turpin) Kiitz. 
17820280 Scenedesmus ohtusus (Turpin) Kiitz. 
17820350 Scenedesmus quadricauda (Turpin) Breb. 
17840020 Seknastrum gradle Reinsch 
17900020 Sphaerocystis schroeteri Chodat 
24340010 Stichococcus hadllaris Nageli 
17930010 Tetraedron caudatum (Corda) Hansg. 
17930030 Tetraedron incus (Teiling) G.M.Sm. 
17930080 Tetraedron trispnum (Nageli) Hansg. 
04100090 Trachelomonas volvodna Ehrenb. 
17970000 Treubaria sp. 
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Table 4.11 Chrysophyta recorded for the Ouse at Acaster. 

Code Genus Species Authority 
09060000 Chromulina sp. 
09140000 Chrysococcus sp. 
09280020 Dinobtjon divergens (Imhof) Lemmerm. 
09360000 Kephyrvn sp. 
09450000 Ochromonas sp. 
09660010 Synura petersenii Korshikov 

Table 4.12 Cryptophyta recordede for the Ouse at Acaster. 

Code Genus Species Authority 
05020000 Chroomonas sp. 
05040050 Cryptomonas ovata Ehrenb. 
06170000 Peridinium sp. 
05100010 Rhodomonas lacustris Pascher et Ruttner 

Table 4.13 Cyanophyta recorded for the Ouse at Acaster. 

Code Genus Species Authority 
01020000 A.nahaena sp. 
01530000 Oscillatoria sp. 

Table 4.14 Euglenophyta re corded for the Ouse at Acaster. 

Code Genus Species Authority 
04020150 Euglena mridis Ehrenb. 
04070000 Phacus sp. 

Table 4.15 Haptoph3rta recorded for the Ouse at Acaster. 

Code Genus Species Authority 
08010010 ChrysochromuBna parva Lackey 

Table 4.16 Pyrrophyta recorded for the Ouse at Acaster. 

Code Genus Species Authority 
06120000 Gymnodinium sp. 
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4.2 Phytoplankton biomass 

4.21 Chlorophyll a concentration and phytoplankton density 

Chlorophyll a concentration was used as a surrogate measure of phytoplankton biomass using the 

method of Marker (1994; Section 3.51). A significant, positive correlation existed between 

chlorophyll a concentration and phytoplankton density for both Cromwell (r=0.92, P<0.001, 

n=51) and Acaster (r=0.71, P<0.001, n=49; Fig. 4.7). The relationship explained 85% of the 

variation at Cromwell and 50% of the variation at Acaster. The gradient of the line of linear 

regression was used to calculate an average chlorophyll a content per phytoplankton individual of 

2.8 pg chl (2 individual"' at Cromwell, which was twice that at Acaster where individuals on average 

contained 1.4 pg chl a individual"'. This result could be explained by a poorer light climate or 

larger individuals at Cromwell compared to Acaster. 

Phytoplankton biomass in both the Trent and Ouse showed spatial and temporal variation. 

Intra-site variability was checked by comparing the chlorophyll a concentration at three positions 

acr.oss the river at three sites on the Trent and three sites on the Ouse system (Section 3.51). No 

significant difference in chlorophyll a concentration occurred between samples taken at different 

positions o f the channel at Thornton Manor on 28 June 1995, Kelham on 12 September 1995 or 

Cavendish Bridge on 5 June 1996 (Fig. 4.8). However, variation was evident at Boroughbridge on 

17 July 1995, Clifton on 1 August 1995 and Gundiorpe on 14 August 1995. At Boroughbridge, 

the middle o f the river had significantiy higher concentrations o f chlorophyll a than both the left 

(ANOVA, P=0.0015) and right side (ANOVA, P=0.0012; Fig. 4.8) of the river. At CUfton, the 

left side o f the river had significantiy lower concentration of chlorophyll a than the right side 

(ANOVA, P=0.042). A t Gunthorpe, the right side of the river had lower concentrations of 

chlorophyU a than both the middle (ANOVA, P=0.014) and die left side (ANOVA, P=0.029; Fig. 

4.8) o f the channel. 

4.22 Temporal variation in chlorophyll a 

4.221 Trent system 

The concentration o f chlorophyll a in the Trent showed large temporal variation, but a similar 

seasonal pattern each year (Fig. 4.9a). The main period of increase in chlorophyll a occurred 

between March and June as river discharge decreased although at Cavendish Bridge, the most 

upstream site, the maximum of 107 )U,g 1"' occtirred on 16 July 1995 (Fig. 4.9a). Essentially a single 

chlorophyll a maximum occurred each year. This spring peak in chlorophyll a was often disrupted 

by short periods of low chlorophyll 7̂ which corresponded to spring floods (Section 4.25). 



180-1 
70 

• Acaster • Cromwell 

a 120 

10 20 30 40 50 60 70 

Population density (individuals x 10^ 1"*) 

Figure 4.7 Relationship between chlorophyll a concentration and phytoplankton 
population density for the Trent at Cromwell (blue line) and Ouse at 
Acaster (red line). The gradient o f the line o f linear regression was used 
estimate a chlorophyll a content o f 2.8 pg chl a individual"' for Cromwell 

(r=0.92, P<0.001) and 1.37 pg chl a individual"' for Acaster (r=0.71, 
P<0.001). 



71 

3 
c 
o 
G u u 
O o 

O 
1-1 

o 
u 

Ouse 

Thornton Manor 28 June 1995 

10-, 

30 ^ 

25 

20 

15 4 

10 

5 

0 

Trent 

Gunthorpe 14 August 1995 

m/r-0.015 
1/r - 0.029 

Boroughbridge 17 July 1995 

1/m - 0.015 
m / r - 0.012 

Kelham 12 September 1995 

20 n 

15 

CHfton 1 August 1995 

1/r - 0.042 

Cavendish Bridge 5 June 1996 

Left Middle Right Left Middle Right 

Figure 4.8 Spatial variation in chlorophyU a concentration at three sites on the Ouse system 
and three on the Trent system. Three samples were taken from three positions 
across the river channel at two minute intervals (see section 3.6 for full 
explanation). Positions refer to position across channel looking downstream. 
The significance o f difference (ANOVA) is indicated where appropriate. 
L /m=le f t and middle, m/r=middle and right, l / r=lef t and right of channel. 



180-1 

120 

T 
60 

0 I I I i T 

180-1 

120 

I I I I I 

(2) 

a. 

a 180 
<u 
u 
O 
O 
u 

^ 120-1 

O-i 
O 

S 60 
U 

0 + T 

180 - I 

120-^ 

60 4 

1995 

(1) 

I I I I I I 

(3) 

I I I ! 

(4) 

1996 

I I I I 

1997 

180-1 

120-^ 

(5) 
72 

180 

120-1 

0 I I I t I I I I I I ' 

180 - I 

120-^ 

60 4 

I I I I 

(6) 

I I I I 

i I I I 

A J A O D F A J A O D F A J A 

I i~T I ' I I I I I 111 I I I 

A J A O D F A J A O D F A J A 

Figure 4.9a Time series of chlorophyll a concentration for the Trent from April 1995 
to August 1997. Charts are in ascending order of position downstream as 
indicated by panel number (1, Cavendish Bridge; 2, Wilford; 3, Gunthorpe; 
4, Kelham; 5, South Muskham; 6, Newark; 7, Cromwell). 



c o •r) 
u 
C 
u 
u 
G 
O 
( J 

O H 

o 

u 

180 T 

120 4 

73 

60 

I I 1*1 I I I I I I I I I I I I 

-C 180 1 

180 n 

120 

60 

1995 

(1) 

(2) 

I I I 

(3) 

1996 

I i^'^FT \ 

I I I I I I I I I I I 

I I I I I I I 

1997 

I I I I I 

A M J J A S O N D J F M A M J J A S O N D J F M A M J J A 

Figure 4.9b Time series of chlorophyU a concentration for the Trent tributaries from 
Apri l 1995 to August 1997. Charts are in ascending order of position of 
entry o f tributary downstream of the Trent as indicated by panel number 
(1, Derwent; 2, Soar; 3, Devon). 



74 

A t Cromwell, the tidal limit, where the seasonal amplitude was greatest, the annual maxima 

reached 147, 162 and 121 |ag 1"' on 10 May 1995, 4 June 1996 and 2 Junel997, respectively (Fig 

4.9a) at times when river velocity was low (between 0.16 and 0.23 m s"'). The maxima then 

decHned rapidly and were followed by a small peak during July. By August, the concentration of 

chlorophyll a had fallen to 6, 12 and 16 |J,g 1"' on 27 August 1995, 12 August 1996 and 11 August 

1997, respectively (Fig. 4.9a). Annual minima (c. 1.5 fxg 1"') occurred in December or January at all 

sites studied over the winter period. 

The tributaries to the Trent showed a similar pattern in chlorophyll a. The Derwent and 

Devon were only sampled during Apri l to October 1995 whereas the Soar was sampled 

additionally f rom Apri l to August 1997. The Derwent increased from under 20 |a,g 1' to a 

maximum chlorophyll a concentration o f 35 |^g 1"' on 17 July 1995, after which concentrations fell 

below 10 Mg ^' (Pig 4.9b). The chlorophyll « maximum in the Devon reached 53 l ' on 11 April 

1995 then fell below 10 |a.g 1"' until 12 September when there was a secondary peak reaching 24 |^g 

r', after which concentrations again fell below 10)J.g 1' (Fig. 4.9b). During 1995 the Soar had a 

maximum concentration of 73 |J,g 1"' on 22 May which rapidly declined to concentrations below 10 

)lg r' (Fig. 4.9b). During 1997, two maxima were recorded; 69 |J.g 1' on 14 April and 70 ^g T' on 2 

June (Fig. 4.9b). On other dates, concentrations did not increase above 10 |J.g l '. 

Overall, the seasonal pattern in chlorophyll a was similar for both the main river and the 

tributaries. High concentrations of chlorophyll ^^in the Trent system were recorded during spring. 

Concentrations declined during summer and fell to minima during winter. 

4.222 Ouse system 

Chlorophyll a concentration in the Ouse showed a similar seasonal pattern each year (Fig. 4.10). 

During spring, chlorophyll a reached maximum concentrations of 166, 48 and 57 (Jg 1"' on 21 May 

1995, 20 May 1996 and 9 June 1997, respectively, with the concentration at Clifton, 9.2 km 

upstream of Acaster, reaching a maximum of 169 |4.g 1"' on 21 May 1995 (Fig. 4.10). 

Concentrations then declined to between 2 and 7 fxg 1"' in summer at Acaster and down to around 

16 fxg r ' at Clifton with winter minima at Acaster falling below 2 | lg 1"' (Fig. 4.10). 

The seasonal pattern in the Ure and Nidd was similar to that of the Ouse. Concentrations in 

the Ure reached spring maxima of 184, 82 and 55 |Xgl"' on 21 May 1995, 2 July 1996 and 2 June 

1997, respectively (Fig. 4.10). Concentrations then fell in summer to between 1 and 5 fig 1' and 

declined further to winter niinima below l)ag 1"' (Fig. 4.10). 
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Figure 4.10 Times series of chlorophyU a concentration for the rivers of the Ouse system from 
Apri l 1995 to August 1997. Charts are in order of ascending latitude, indicated by 
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Skip Bridge; 4, Ouse at CUfton; 5, Foss at York; 6, Ouse at Acaster). Broken Unes 
refer to secondary y-axis for the Swale and Foss. 



76 

Spring concentrations in the Nidd reached maxima of 153, 96 and 30 )J.g 1"' on 21 May 1995, 
27 Apri l 1996 and 2 June 1997, respectively, and declined in summer to concentrations between 1 
and 4 (Xg 1"' before declining further in winter to below 1 1"' (Fig. 4.10). The seasonal pattern 
was sUghdy different in the Swale with maximum concentrations not exceeding 19 |j.g 1"', almost 
ten times lower than in the other main rivers in this system (Fig. 4.10). During 1995, the seasonal 
pattern was similar to the pattern for other rivers in the Ouse system. A maximiom chlorophyU a 
concentration of 18.8 \Xg 1"' was measured on 16 July 1995 but during 1996, the maximum of 18.7 
l^g 1"' occurred in February during a flood and in 1997, a maximum concentration of 15.6 [ig 1"' 
occurred during June (Fig. 4.10). Minimum concentrations occurred on 24 April 1995, 18 
November 1996 and 21 January 1997 with concentrations faUing below \ \ig 1"' (Fig. 4.10). 
Concentrations in the Foss were also low with a spring maximum of only 8 f i g 1"' on 26 April 1995 
which declined during summer and autumn to concentrations below 5 |Jg 1"' (Fig 4.10). 

4.23 Spatial variation in chlorophyll a 

4.231 Trent system 
A t the time of the annual maximum at the tidal Umit of the Trent at CromweU, chlorophyU a 

concentration increased markedly downstream. The spatial pattern of chlorophyU ^zwith distance 

downstream is discussed fuUy in Section 6.1 

Seasonal monitoring of the tributaries during 1995 showed relatively low phytoplankton 

chlorophyU a concentrations for the Derwent and Devon (Fig. 4.9b), but concentrations for the 

Soar (Fig. 4.9b) similar in magnitude and seasonal pattern for the Trent at CromweU (Fig. 4.9a). 

On the whole, tributaries did not provide a major input of phytoplankton chlorophyU a to the 

main river. 

4.232 Ouse system 
I t is evident that the feeder rivers of the Swale-Ouse, primarily the Ure and Nidd, contributed 

most of the chlorophyU a to the Ouse (Fig. 4.10). Few sites along the Swale-Ouse were sampled. 

This makes the investigation for the evidence of in situ growth of chlorophyU a with distance 

difficult. However, it is hypothesised that concentrations of chlorophyU a in the Ure and Nidd 

were responsible for concentrations found downstream at CUfton and Acaster as concentrations 

carried by the Swale and input from the Foss were smaU. This can be assumed by looking at 

Figure 4.10. This shows that periods of high chlorophyU a at CUfton and Acaster occurred during 

high concentrations in the Ure and Nidd. As concentrations were always low in the Swale and 

Foss during the sampling period (Fig. 4.10) it is assumed that these rivers had a dUution effect 

upon the Ouse rather than contributing great amounts of chlorophyU a. 
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4.24 Relationship between chlofophyll a and discharge 
Figure 4.11 shows the relationship between chlorophyll a concentration and discharge for the 

Trent and the Ouse. Data are categorised into seasonal events. 

For the Trent at Cromwell, chlorophyll a concentration decHned to below 30 )̂ g T' when 

discharge increased to around 60 m^ s"' (Fig. 4.11, top figure). For the Ouse at Acaster, when 

discharge increased to 60 m^ s"' chlorophyll a concentration declined to below 10 )ag 1"' (Fig. 4.11, 

bottom figure). The spring months were dominated by low discharge, high chlorophyll events, 

while the winter months were dominated by high discharge, low chlorophyll events. In contrast, 

low discharge events in summer coincided with low chlorophyll concentration (Fig. 4.11) which is 

discussed later in Sections 5.4 to 5.6. The overall relationship shows a discharge threshold after 

which chlorophyll a increases. For the Trent and Ouse this threshold is approximately 55 and 25 

m, s ', respectively (Fig 4.11). 

4.25 Day to day variation in chlorophyll a for the Trent 

To obtain data o f finer temporal resolution, to include patterns which were missed by weekly 

sampling, a daily chlorophyll a sampling regime was implemented (Section 3.52). Figure 4.12 

shows daily chlorophyll a concentration and discharge at Cromwell. As discharge decreased 

during mid-March to mid-April f rom 51 to 31 m^ s"\ chlorophyll a concentration started to 

increase. Five major floods corresponded with a series of decHnes in chlorophyll a concentrations 

(Fig. 4.12). The first in this series o f floods started on 25 April when discharge increased to a 

maximum of 66 m's"' and chlorophyll a fell from 108 to 32 |J,g 1 \ After this flood chlorophyll a 

concentration started to increase steadily as discharge decreased. Chlorophyll a increased to 121 

|Lig r\ the spring maximum o f 1997, until the second flood started on 6 May, reaching a maximum 

discharge of 131 m^ s'\ causing chlorophyll a to fall to 10 \ig 1"'. Chlorophyll a concentration 

increased sHghtiy to 25 |4.g 1"' until the next flood (starting 19 May) saw discharge increasing to 94 

m^ s"', causing chlorophyll a to decline to 4 p.g 1"'. 

The 19-day gap between the peak of the third flood and just before the start of the fourth 

flood saw a decrease in discharge from 94 to 30 m^ s'\ This respite allowed chlorophyll a 

concentration to increase, sometimes rapidly, with a nine-fold increase from 13 to 118 f t g V over 8 

days. This peak in chlorophyll a declined steadily to 54 |iig 1"'with no apparent increase in 

discharge. 

The fourth flood, which started on 11 June, caused chlorophyll a to decline from 53 to 6 \ig V 

during a flood which saw discharge increase to 95 m'* s"\ The fourth flood was rapidly followed by 

the relatively large fifth flood (starting 21 June), where discharge increased to 220 m^ s"'. 
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Figure 4.13 Calibration curves derived f rom fluorometer readings and calculated chlorophyll a 
concentration for in situ fluorometer deployed at the tidal limit o f the Trent at 
Cromwell, r values ranged f rom 0.95 to 0.99. Inset shows line of best fit for all 
data. Red Une shows maximum chlorophyll a concentration measured manually 

f rom Apri l 1995 to August 1997. 
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During this event, chlorophyll a concentration remained low (< 11 |J.g 1'') apart from two small 
peaks of 34 and 103 |ag on 19 and 21 June, respectively, when discharge fell to between 43 and 

57 m' s-\ 

4.26 Daily variation in chlorophyll a estimated from fluorometty 

A fluorometer was deployed in situ and was calibrated on site during each sampling visit (Section 

3.53). Figure 4.13 shows individual calibration curves with the inset showing all calibration points 

plotted together and the Hne of best fit. A significant relationship existed between chlorophj'U a 

concentration and the mV reading given by the fluorometer, explaining 91% of the variation (Fig. 

4.13, inset). However, individual calibrations were used to calculate chlorophyll a concentration as 

the equation calculated from the pooled data grossly overestimated the chlorophyll a concentration 

on many occasions. Figure 4.14 shows the output of the fluorometer during the period of 

deployment at the tidal limit of the Trent at Cromwell. Fluorometric determination of chlorophyll 

a showed a similar pattern of change and general magnitude to the day to day chlorophyll a with 

an increase in chlorophyll a concentration with decreasing discharge and with maximum 

concentrations interrupted by a series of five floods (Fig. 4.14). Data were not obtained between 

12 May and 20 May 1997 (Fig. 4.14) as the large flood, starting 6 May 1997, damaged the 

fluorometer cable and readings were subsequentiy not logged. 

The greater temporal resolution provided by the fluorometer revealed marked diel variation. 

The pattern of variation consisted of chlorophyll a minima during the early morning and maxima 

during the early evening. For example, on 23 April 1997, chlorophyll a concentration, estimated 

by the fluorometer, increased from a minimum of 63 |̂ g 1"' at 05:00 am to 100 |ag l ' at 18:45 pm 

(Fig. 4.14). 

Laboratory studies focused upon the fluorometric response of phytoplankton at different light 

intensities and incubated at different periods of time. Figure 4.15 shows the fluorometric response 

of Cycktella meneghiniana and river water, both from the Trent after incubation at different 

intensities of light. The response of C. meneghiniana and the populations present in river water 

differed sUghtly. The fluorometric response of C. meneghiniana decHned from the maximum 

response of 79.9 mv (ng chl a)'̂  at 19 f^mol m"̂ s"' until a minimum response of 56.8 mv (fxg chl a)"' 

was measured at 1377 |a,mol m"̂ s ' (Fig. 4.15a), the highest irradiance the cells were incubated at 

over the three hour experiment. The fluorometric response of natural populations incubated at 

five hours was similar to that of C. meneghiniana. There was a continual decrease from the 

maximum value of 26.4 mv (|a,g chl ^t)"' at 65 jomol m"̂ s'' to the lowest value of 20.3 mv (|j.g chl a)"' 

at 643 ^mol m 's ' (Fig. 4.15b). 
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Figure 4.14 Fluorometer estimated chlorophyll a concentration (green line), daily chlorophyll a 
concentration (red line) and discharge (blue line) for the Trent at Cromwell from 8 
April to 3 July 1997. Missing fluorometer estimated chlorophyll a data (12 May-21 
May) are a result of a large flood event which damaged the fluorometer. 
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Figure 4.15 Fluorescence of Cyclotella meneghiniana in culture (top figure; a) and a river sample 
taken from the Trent at Cromwell on 14 August 1997 (bottom figure; b). Cyclotelk 

meneghiniana was incubated for three hours and fluorescence readings taken. 
Samples taken from Cromwell were incubated for either one, three or five hours 
and readings then taken (see section 3.8). Fluorescence xanits (y-axis) are based 
on a chlorophyll a basis. 
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The fluorometric response of the natural population incubated at one and three hours differed 

slightly to the response of C. meneghiniana and natural populations incubated at five hours. The 

fluorometric response of natural populations incubated at one and three hours increased from 22.6 

mv (^g chl fl) ' at 8 \imo\ m'̂ s"' to 26.4 mv (|ig chl «)"' at 65 i^mol m 's"' and from 19.8 mv {\ig chl 

d)'^ at 9 |imol m'̂ s"' to 26.0 mv (|ag chl a)'^ at 65 \imo\ m'̂ s \ respectively (Fig. 4.15b). After 65 

|J.mol m""s \ the fluorometric response decreased continually to 26.4 mv (|j,g chl d)^ at 196 p.mol 

m"̂ s"' and then to 20.1 mv (|J.g chl d)'^ at 643 fa,mol m'̂ s ' for populations incubated at one hour 

(Fig. 4.15b). For populations incubated for three hours, the fluorometric response declined to 

22.5 mv (i^g chl ^)"' at 196 ^imol m ̂ s"' and then 20.3 mv ( îg chl «)"' at 643 |amol m"̂ s"' (Fig. 4.15b). 

The overall response was a decrease in the fluorometric response at the three highest Hght 

levels with increasing incubation time. At the highest incubation irradiance, 643 f^mol m'̂ s"', the 

fluorometric response was very similar, around 20 mv (̂ .g chl d)^ for populations incubated at 

one, three and five hours (Fig. 4.15b). 

The laboratory studies suggest that the general fluorometric response of mixed natural 

populations decreased with an increase in irradiance and incubation time. However, when 

incubated for short periods of time, an optimum fluorometric response was observed at 

irradiances between 50 and 70 \imo\ m"̂ s"'. In situ fluorometric response of phytoplankton 

populations followed a daily pattern of early morning rninima and early evening maxima. The day 

to day fluorometric response followed a similar pattern to daily estimated chlorophyll a 

measurements although fluorometry often overestimated chlorophyll a concentration. This 

suggests that chlorophyll a content of phytoplankon population was not the only factor 

influencing the fluorometric response of phytoplankton. 
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4.3 Discussion 

A large amount of data have been collected concerning phytoplankton species, biomass and the 

periodicity of phytoplankton in the rivers of the Trent and Ouse system. The data show that 

species composition and overall phytoplankton biomass experienced large periodicity. High 

biomass, consisting primarily of centric diatoms was observed in spring and lower biomass, chiefly 

comprising green algae were observed in summer. Biomass minima were observed during winter 

when cell abundance was low. Both rivers showed similar patterns in periodicity although the 

pattern was more marked for the Trent. 

Chlorophyll ẑwas considered an adequate surrogate measure of biomass as a significant 

correlation existed between cell density and chlorophyll a concentration. However, a more 

significant correlation may have been obtained using a calculation of weight or biovolume instead 

of chlorophyll a concentration. 

It was hypothesised that discharge was the controUing environmental variable influencing 

phytoplankton biomass in both rivers. Daily sampling in the Trent showed the importance that 

spring floods had upon the disruption of spring phytoplankton populations. Silica was also 

thought to influence phytoplankton development, primarily that of centric diatoms in the spring. 

However, this must be treated with caution as other factors may also be responsible. 

Daily measurement of biomass using fluorometry offered positive and negative points. On the 

positive side, data of fine spatial resolution was obtained, showing the daily increase and decrease 

in phytoplankton biomass. The negative side was that although calibration of readings against 

chlorophyll a concentration were good, the resialts showed extremely high biomass maxima when 

compared with maxima compared with routine sampling. Laboratory investigations suggested that 

the influence of Ught interfered with the readings although the evidence was not conclusive. 

Spatial variability was evident, particularly in the Trent where downstream increase in biomass 

was observed during spring. Cross channel variability occurred for sites on both the Trent and 

Ouse in summer. This suggested that the rivers were not homogeneous during periods of low 

discharge. 

It is now useful to use this data when investigating phytoplankton and river productivity. The 

development of large popvilations have been proven in the Trent and Ouse, particularly at 

downstream sites. The next chapter investigates phytoplankton production and respiration at the 

tidal limits of these rivers in light of the previous data. The importance of the contribution of algal 

groups to river productivity and the effect of environmental variables upon the production and 

development of algal groups is the main theme considered. 
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4.4 Summary 

1. Abundance of individuals increased as discharge decreased and reached maximal 

concentrations of 53000 and 62700 individuals ml'^ during spring for the Trent and Ouse, 

respectively. Abundance then declined during summer and declined further to winter minima 

during periods of high discharge. 

2. A total of 85 taxa were recorded for the Trent and 82 taxa were recorded for the Ouse and at 

the tidal limits at Cromwell and Acaster, respectively. Chlorophyta comprised the majority 

these taxa. 

3. In both the Trent and Ouse, centric diatoms comprised the majority of the phytoplankton 

population during spring, comprising a maximum of 83 and 85% of the population, 

respectively. Chlorophyta comprised the majority during the rest of the year, particularly 

during late summer, where they made up a maximum of 88 and 51% of the population for the 

Trent and Ouse, respectively. Other algal groups were generally unimportant. 

4. A significant relationship existed between abundance of individuals and chlorophyll a 

concentration. At 2.8 pg chl ̂ 7 individual"', individuals at the tidal limit of the Trent at 

Cromwell contained twice the amount of chlorophyll a per cell than individuals at the tidal 

Kmit of the Ouse at Acaster. 

5. As with phytoplankton abundance, chlorophyll a concentration showed a temporal pattern, 

reaching maximal concentrations of 162 and 166 |a,g 1"' during spring in the Trent and Ouse, 

respectively. Concentrations declined in summer and declined farther in winter to armual 

minima. 

6. The tributaries Ure and Nidd were important as a source of chlorophyll a to the Ouse but 

tributaries were relatively unimportant for the Trent. 

7. A significant relationship existed between discharge and chlorophyll a concentration although 

periods of low flow in summer exhibited lower concentrations than the relationship predicted. 

Daily sampling resulted in finer spatial resolution of data, which highlighted the impact of 

discharge upon chlorophyll a, particularly during spring. 
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8. Fluorometric data provided finer temporal resolution, showing a pattem of early morning 

minima and early evening maxima in chlorophyll a concentration. The difference between the 

daily maxima and rninima was greatest during periods of high chlorophyll a concentration. A 

highly significant relationship between fluorometric readings and chlorophyll a existed, giving 

confidence to the fluorometric data. However, during the chlorophyll a maximum, 

fluorometry greatly overestimated chlorophyll a concentration when compared to manually 

collected data. 

9. Laboratory studies indicated that although fluorometric response of phytoplankton sometimes 

reaches a maximum between 50 and 70 )4,mol m'^ s ', the general fluorometric response of 

phytoplankton decreased with increasing irradiance and increasing exposure time to higher 

irradiance. It was considered that factors, other than chlorophyll a concentration, also 

influenced the fluor9ometric response of phytoplankton. 
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5. P R O D U C T I O N 

5.1 Underwater light climate 

5.11 Attenuation of photosynthetically active radiation (PAR) 

5.111 Trent 

Figure 5.1 shows the time series of Ught attenuation with depth (FCj) for three sites on the 

Trent: Cavendish Bridge, Gunthorpe and Cromwell. Essentially, the attenuation coefficient was 

similar in seasonal pattern and magnitude for the three sites studied with three major peaks in the 

K j value occurring over the sampling period. Maximal of 8.8, 8.9 and 9 m ' on 12 Februar)' 

and 6.6, 4.9 and 5.0 m"' on 20 November were recorded for Cavendish Bridge, Gunthorpe and 

Cromwell, respectively, diuring 1996 (Fig. 5.1). Maximal K j of 2.4 and 2.6 m ' on 6 May for 

Cavendish Bridge and Gunthorpe, respectively, and 5.4 m"' on 2 June for Cromwell occurred 

during 1997 (Fig. 5.1). Measurements during the remaining period ranged from 1.4 to 2.4 m"' at 

Cavendish Bridge, from 1.0 to 2.8 m"' at Gunthorpe and between 0.9 and 2.9 m ' at Cromwell. 

Overall, a downstream pattern in was observed with minimum K j recorded decreasing and 

maximum values increasing with distance downstream. The two peaks in K j for aU three Trent 

sites during 1996 coincided with flood events. The discharge at Cromwell during the events on 12 

February and 20 November 1996 was 159 and 82 m's ', respectively (Fig. 5.1). During 1997, the 

maxima on 6 May 1997 at Cavendish Bridge and Gunthorpe coincided with a flood event 

where the discharge was 96 m^ s"' at Cromwell (Fig. 5.1). In contrast, during 1997, a peak in K j at 

CromweU coincided with a low flow event where discharge was 29 m^ s"' on 2 June 1997 (Fig. 5.1). 

K j minima were measured when discharge ranged from 26 to 56 m^ s ' although there was no 

significant relationship between discharge and K j . There was, however, a significant, positive 

relationship between K j and chlorophyll a concentration for the three sites monitored on the 

Trent when was below 4 m ' (r=0.66, P<0.001, n=96; Fig. 5.3). This suggested that K j was 

controlled primarily by phjrtoplankton density when values of K j were low. The data where K j > 

4 m ', which were not included in the relationship, coincided with high discharge events. Here, the 

attenuation coefficient was probably influenced primarily by non-algal suspended solids 
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Figure 5.1 Time series of attenuation of photosynthetically active radiation (PAR, 400-700 nm) 
for three sites on the Trent. Sites are in ascending order of position down the river. 
Bars show standard deviation. Average daily discharge is shown for Cromwell. 
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Figure 5.2 Time series of attenuation of photosynthetically active radiation (PAR, 400-700 nm) 
for four sites on the Ouse system. Charts are in ascending order of position 

downstream on the Ouse. Bars show standard deviation. Average daily discharge is 
shown for Acaster. 
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5.112 Ouse 

Figure 5.2 shows the time series of the attenuation coefficient for four sites on the Ouse system; 

the Swale at Thornton Manor, Ure at Boroughbridge, Nidd at Skip Bridge and the Ouse at 

Acaster. For the Swale at Thornton Manor, three large peaks in K j occurred. K j maxima of 8.6, 

7.0 and 6.4 m"' were measured on 12 February 1996, 10 February 1997 and 5 May 1997, 

respectively (Fig. 5.2). Two major K j peaks occurred for the other three sites. The flood event of 

12 February coincided with the highest K j measured over the sampling period with values of 5.2, 

7.1 and 11.6 m ' recorded for the Ure at Boroughbridge, Nidd at Skip Bridge and Ouse at Acaster, 

respectively (Fig. 5.2). The major peak in during 1997 occvirred during spring. At 

Boroughbridge on 6 May, at Skip Bridge on 20 May and at Acaster on 5 May 1997, of 4.1, 2.9 

and 7.6 m"\ respectively were recorded (Fig. 5.2). during the rest of the sampling period ranged 

from 0.7 to 4.4 m ' at Thornton Manor, from 0.7 to 2.7 m"' at Boroughbridge, from 0.9 to 2.6 m ' 

at Skip Bridge and from 1.0 to 4.5 m"' at Acaster (Fig. 5.2). 

On the whole, the highest minimum and maximum values were measured for the Ouse at 

Acaster. The highest minimum and maximum values for the tributaries to the Ouse were 

measured for the at Thornton Manor. 

The K j maxima for aU four sites monitored on the Ouse system on 12 February 1996 coincided 

with a flood event where the discharge was 220 m^ s"' at Acaster (Fig. 5.2). On this occasion, the 

highest K j were recorded for each site. Other high K j coincided with flood events where the 

discharge at Acaster was 80 and 90 m^ s ' (Fig 5.2). The K j maxima at Skip Bridge during 1997 

coincided with a relatively low discharge event at Acaster of 22 m'' s"' (Fig 5.2). This may be 

explained by the discharge from the Nidd coming from a different catchment area than from the 

Swale and Ure. As the Swale and Ure are the main tributaries to the Ouse it is expected that the 

pattern of discharge is similar whereas the pattern of the Nidd is different. Minima in K j all 

coincided with relatively low discharge events, between 9 and 49 m^ s"' (Fig 5.2) although there was 

no significant relationship between and discharge. No significant relationship was observed 

between K j and chlorophyll a concentration. This suggested that attenuation of Kght in the Ouse 

system was controlled primarily by non-phytoplanktonic constituents of the rivers, for example, 

dissolved and suspended organic materials. 



12 

10 4 

90 

I 
u 
o u 
c 
o 

•c 
<:« 
P 
G 

i 

4A 

0 140 
I I I I I I 

20 40 60 80 100 120 
Chlorophyll a concentration (|J.g 1"*) 

Figure 5.3 Relationship between attenuation coefficient and chlorophyll a concentration (blue 
circles) for the combined data from three sites on the Trent; Cavendish Bridge, 
Gunthorpe and Cromwell. A significant, positive relationship existed when the 
attenuation coefficient was below 4.0 m"̂  (r=0.66, P<0.001, n=96). Data where 
Kd>4.0 m'̂  were omitted from the analysis (red circles). Bars show standard 
deviationof K j . 
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5.12 Spectroradiometric measurement of the underwater light climate 

5.121 Trent 

The pattern of attenuation of light from 300 to 700 nm showed a similar pattern for the three 

dates when measurements were taken with high K j values in the blue spectrum and low K j values 

in the red spectrum. This indicated that short wavelength radiation including UV-B (280-320 nm), 

UV-A (320-400 nm) and visible blue bands were much more rapidly attenuated than longer 

wavelength bands such as red light in these rivers. Overall, at Cromwell, attenuation over the 

range of wavelengths was greatest on 5 June, intermediate on 29 April and least on 11 Februar)' 

1997. 

On 11 February 1997, the maximum value was 12.31 m ' at 335 nm (Fig. 5.4). On 29 April, 

attenuation reading started at 315 nm and the maximum K j value was 20.05 m"' at 335 nm (Fig. 

5.4). On 5 June 1997, maximum K j was 15.41 m"' where the K j values began at 330 nm (Fig. 5.4). 

A seasonal increase in attenuation can be seen between 650 and 700 nm. Maximal K j values of 

1.04, 2.32 and 3.67 m ' occurred on 11 February, 29 April and 5 June 1997, respectively, at 675 nm 

when chlorophyll a concentration was 5, 47 and 15 |ag 1"̂ ', respectively (Fig. 5.4, inset). A positive 

correlation (r=0.97, P<0.01, n=6) was observed between chlorophyll a concentration and 

attenuation coefficient at 675 nm for the Trent (Fig. 5.5). 

Maximum K j values at 675 during a chlorophyll a maximum and coinciding with low discharge 

events suggest that the attenuation of light in the red section of the spectrum was primarily 

controlled by phytoplankton density. 

5.122 Ouse 

The pattern of attenuation of Hght from 300 to 700 nm showed a similar pattern for the three 

dates measurements were taken with maximal K j values in the blue spectrum and minimum 

values in the red spectrum. Revalues in the blue section of the spectrum showed high seasonal 

variation. 

At Acaster, attenuation over the range of wavelengths was greatest on 11 February 1997. From 

310 to 465 nm, the attenuation was next highest on 5 June 1997 and lowest on 29 April 1997 (Fig. 

5.4). For wavelengths greater than 465 nm, the pattern changed and K j values were at a minimum 

for the three dates sampled on 5 June 1997 (Fig. 5.4). 

On 11 February 1997, the maximum K j value was 26.52 m"' at 335 nm. On 29 April, a 

maximum K j value of 15.09 m"' was observed at 310 nm and a maximum K j of 19.86 m ' at 315 

nm (Fig. 5.4). A seasonal change in attenuation can be seen for the 650 to 700 nm band (Fig 5.4, 

inset). 
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Figure 5.4 Spectroradiometric data for the tidal limits of the Trent at Cromwell (top figure) 
and Ouse at Acaster (bottom figure). Readings were taken over the range 300 -
700 nm on three occasions; 11 February, 29 April and 5 June 1997 (see section 
3.3). Inset shows a section of the data from 660 - 690 nm. 
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Figure 5.5 Relationship between attenuation coefficient and chlorophyll a concentration using 
spectroradiometric data shown in Fig. 5.4 for the Trent (red) and Ouse (blue). The 
attenuation index was calculated from the difference in attenuation between the 
readings at 660 and 675 rmi. 
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A maximum K j value of 3.24 m ' was measured at 660 nm on 11 February 1997 (Fig. 5.4). On 
29 April and 5 June 1997, however, maximal K j values of 2.49 and 1.88 m ' were measured at 675 
nm (Fig 5.4, inset). Attenuation over 300 to 700 nm increased with increasing discharge and there 
was a positive correlation between and chlorophyll a over the 650 to 700 nm band (Fig. 5.5). 
On 11 February 1997, the maximum value over the full spectrum coincided with the lowest 
concentration of chlorophyll a and the highest discharge over the three dates sampled at 5 \lg 1' 
and 115 m^ s"\ respectively. The lowest K j values over the spectra coincided with the lowest 
discharge and the highest chlorophyll concentration over the three dates sampled of 26 m^ s"' and 

49 |j,g r ' , respectively. 

Maximum K j values during high discharge events suggests that the attenuation of light in the 

Ouse was controlled by non-phytoplankton sources, assuming that an increase in discharge would 

result in an increase in non-phytoplankton suspended solids and dissolved, coloured substances. 

The maximum values at 675 on 29 April 1997 suggests that phytoplankton strongly influenced 

attenuation of Ught in the 650 to 700 nm band. 

Overall, for the Ouse at Acaster, there was no evidence of phytoplankton density as a 

controUing factor influencing the attenuation of Hght. Non-phytoplankton suspended solids 

appeared to be the primary variables. The magnitude of the variation between values in the 

blue section of the spectrum (Fig. 5.4) suggests that dissolved substances, particularly humic and 

fulvic acids, also played an important role in Hght attenuation in the Ouse. 

5.2 The photosynthetic response of phytoplankton to irradiance (P vs I) 

5.21 Trent 

The photosynthetic response of phytoplankton was investigated for the tidal limits of the Trent 

and Ouse at Cromwell and Acaster, respectively. River water was incubated in a water bath, in the 

laboratory, at between six and seven light levels, including incubation in the dark to measure 

respiration. Net exchange of Oj was measured using the Winkler technique and the 

photosynthetic response of the phytoplankton to light was modelled according to Piatt et al. (1980; 

Section 3.6). Table 5.1 shows the curve parameters derived from P vs I incubations. The 

temporal change in these parameters is shown as a time series in Figure 5.6. P Vs I curves are 

shown in Appendix 2). 

The rate of P ^ (net) followed a similar seasonal pattern in 1996 and 1997 with highest rates 

observed during spring and early summer, coinciding with chlorophyll a maxima (Fig. 5.6, Table 

5.1). Spring and summer maxima were followed by a decline in late summer and a decline to 

minimum rates in winter (Fig. 5.6, Table 5.1). 
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Figure 5.6 Temporal change in P^(net), respiration rate and chlorophyll a concentration for 
the tidal limits of the Trent (top figure) and Ouse (bottom figure). Data are derivec 
from Tables 5.1 and 5.3 from April 1996 to August 1997. 
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Table 5.1 Curve parameters calculated from P vs I incubations for the Trent at 

Cromwell. As a result of slow rates of oxygen exchange relative to the sensitivity 

limits o f the method o f measurement, data for 10 December 1996 were not fitted 

to the model of Piatt et al. (1980) and so values for P^^ and R were interpolated 

manually. See list of abbreviations for column headings. 

Date P 
max 

R a P \ lb I™ 

16-Apr-96 457 342 34 4.31 0.21 95 2227 328 

21-Apr-96 486 383 20 2.66 0.12 159 3987 571 

30-Apr-96 721 414 18 3.35 0.62 135 1172 401 

lO-May-96 381715 188 13 1.36 953.03 157 401 400 

15-May-96 423 314 40 3.40 0.15 116 2906 397 

22-May-96 818 426 16 2.57 0.63 178 1305 519 

28-May-96 430 254 19 1.87 0.29 156 1483 461 

05-Jun-96 797 488 23 3.06 0.46 174 1733 530 

18-Jun-96 498 311 35 2.04 0.23 187 2183 561 

03-Jul-96 546 403 80 5.15 0.14 109 4015 388 

16-Jul-96 1253 597 133 3.51 0.70 246 1787 640 

30-Jul-96 699 101 134 3.59 2.28 103 307 184 

03-Sep-96 589 201 114 3.01 0.76 142 779 314 

23-Sep-96 2415 187 49 2.35 7.71 121 313 274 

15-Oct-96 113632 91 90 2.05 470.34 133 242 241 

21-NOV-96 62771 23 34 0.99 397.58 93 158 158 

lO-Dec-96 - -94 71 - - - - -
21-Jan-97 -40716 -136 217 2.82 -525.80 105 77 78 

ll-Feb-97 184 118 27 3.96 0.24 44 759 132 

25-Mar-97 468 327 19 3.82 0.33 96 1430 311 

08-Apr-97 458 368 14 2.86 0.13 138 3645 507 

29-Apr-97 440 331 20 3.39 0.20 110 2223 376 

06-May-97 632 446 15 3.02 0.28 158 2283 519 

12-May-97 187982 561 52 3.13 351.48 212 535 532 

20-May-97 265214 109 18 0.74 563.37 198 471 470 

27-May-97 279 214 21 2.28 0.09 112 2980 396 

03-Jun-97 26570 447 31 1.90 37.96 267 700 683 

lO-Jun-97 1465 637 35 2.26 0.80 313 1826 869 

18-Jun-97 5094 533 91 2.41 6.08 296 837 705 

Ol-Jul-97 373 196 57 1.88 0.23 165 1610 438 

ll-Aug-97 265215 584 79 3.07 450.99 241 588 586 
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11.-1 Spring and late summer maximum rates of (net) of 597and 637 | imol (mg chl d)"' h 

were measured on 16 July 1996 and 9 June 1997, respectively (Fig. 5.6, Table 5.1). These rates 

declined during summer to around 100 to 200 [imo\ O2 (mg chl a)h'^ and declined to minimum 

rates during winter where a rninirnum of -136 \imo\ (mg chl d)h"' was measured on 21 

January 1997 (Fig. 5.6, Table 5.1). 

Occasionally, negative rates o f (net) and P̂  were measured (Fig. 5.6, Table 5.1). These 

negative rates showed that no positive production was achieved on these occasions. This may 

have been the result of very high respiration rates compared to production rates, even when light 

was not limiting. High bacterial biomass may have been present, resulting in high rates o f 

respiration. Alternatively, photochemical oxidation may be partiy responsible where negative 

production increases as irradiance increases. 

Respiration rate also followed a similar seasonal pattern during 1996 and 1997 (Fig. 5.6, Table 

5.1). Low respiration rates were measured during spring, which increased rapidly during summer. 

This increase coincided with the decline of the chlorophyll a maxima (Fig. 5.6, Table 5.1). Rates 

decreased again during winter although sporadic increases were observed (Fig. 5.6, Table 5.1). 

During 1996, a niinimum respiration rate of 13 |Jmol O2 (mg chl d) h ' was measured during 

spring on 10 May (Fig. 5.6, Table 5.1). During 1997, apart from a high respiration rate in winter of 

217 )j,mol O2 (mg chl a) ' h"' measured on 21 January, a maximum rate o f 134 jimol O, (mg chl d)" 

^ h"̂  was measured during spring on 30 July 1997 (Fig. 5:6, Table 5.1). A minimum rate of 14 

|J,mol O2 (mg chl d)^^ h"' was measirred during early spring on 6 May 1997 (Fig. 5.6, Table 5.1). 

Overall, maximal rates of P ^ (net) were measured during spring and early summer and 

minimum rates were measured during winter. In contrast, maximum rates of respiration were 

measured during summer and minimum rates were measured during spring although high rates 

were also measured during winter. 

The initial slope of the P vs I curve (a) did not follow any clear seasonal pattern. A maximal 

value of a of 5.15 |J,mol O2 (mg chl d)h"' (}imol photon m'^ s ')'^ was measured on 3 June 1996 

and a minimum value of 0.74 |J,mol (mg chl d)h"' (fimol photon m'^ s"')"̂  was measured on 20 

May 1997 (Table 5.1). During 1997, the maximum value o f a o f 3.96 \imo\ O2 (mg chl d) ' h"' 

()J.mol photon m'^ s'^ was measured in winter on 11 February although values remained high 

throughout spring (Table 5.1). 

The photoinhibition factor (p) also did not follow any clear seasonal pattern. Values ranged 

f rom very low (0.09 \imo\ O j (mg chl d) ' h"' ( j imol photon m"̂  s ')"') to very high (563 jamol O, 

(mg chl d) h"' (i^mol photon m"̂  s"") ', Table 5.1). Although values of (3 are shown in Table 5.1, 

the weighted photoinhibition factor (I^) was used as a clearer representation of photoinhibition 
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(Fig. 5.7, Table 5.1) with a small value of lb indicative of strong photoinhibition. 1 ,̂ 1̂  and the 

irradiance at which the rate of photosynthesis was maximum (L^ followed a similar seasonal 

pattern to P ^ (net) with maximal values occurring during spring and summer and minimum 

values in winter (Fig. 5.7, Table 5.1). A maximal value o f o f 4015 fimol m"̂  s ' was observed on 

3 July 1996 while maximal values of 1̂  and I„ of 246 and 641 | imol m'^ s'\ respectively occurred 

on 16 July 1996 (Fig. 5.7, Table 5.1). Values of 1 ,̂ and declined to winter minima of 77, 44 

and 78 (imol m"^ s \ respectively on 21 January 1997, 11 February 1997 and 21 January 1997, 

respectively (Fig. 5.8, Table 5.1). During the spring of 1997, values of I ^ , 1̂  and I„ increased. A 

maximal 1997 value o f 1̂  of 3645 ^mol m^̂  s ' occurred on 8 April 1997 (Fig. 5.7, Table 5.1). 

Maximal values o f 1̂  and I„ o f 313 and 868 |amol m'^ s'\ respectively, were recorded on 10 June 

1997 (Fig. 5.7, Table 5.1). 

The overall seasonal pattern of I , , suggests that photoinhibition was weakest during spring and 

summer and strongest during winter. The pattern o f Ij , suggests that the phytoplankton utilised 

the Ught more efficientiy during winter and the onset of light saturation occurred at higher 

irradiances during spring and summer where the rate of photosynthesis was at a maximum. 

The pattern of response of some P vs I parameters to environmental variables appear to differ 

depending on the species composition of the phytoplankton. To test whether or not any 

differences were statistically significant linear regressions were calculated for the photosynthetic 

parameters and environmental variables using aU the data and separately for times when the 

phytoplankton population was dominated by either centric diatoms or green algae. A variance 

ratio-test (F-test) was performed to determine whether the two separate regressions gave a 

significandy better fit than a single fit to aU the data (Mead & Curnow, 1983). 

Prmx (net), respiration rate, I,, and I„ showed a significant relationship with temperature. P ^ 

(net) increased with increasing temperature for the whole of the phytoplankton population 

(r=0.61, P<0.001; Table 5.2). There was a significant difference between the relationship between 

Pmax (i^et) and temperature for the whole phytoplankton population and between P̂ ^̂  (net) and 

temperatiire for the times when the population was centric or greens dominated (F-test, P=0.02, 

f=4.6). A stronger relationship was observed between P ^ (net) and temperature when data were 

categorised into occasions when either centric diatoms (r=0.42, P<0.1) or greens (r=0.72, P<0.01) 

dominated the phytoplankton population (Table 5.2). 
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Figure 5.7 Temporal change in 1 ,̂ I „ and I t (see list of abbreviations for descriptors) for the 
tidal limits o f the Trent (top figure) and Ouse (bottom figure). Data are derived 
from Tables 5.1 and 5.3. Data were not available for 10 December 1996 for the 
Trent or between 21 November 1996 and 11 February 1997 for the Ouse. 
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Table 5.2 Coefficients for the correlation between P vs I parameters and environmental 

variables for the Trent at CromweU. See list of abbreviations for column headings. 

Data are shown for the whole population (A), and when populations were 

dominated by centric diatoms (B) and green algae (C). Shaded sections highlight 

significant correlations (not significant, ns; P<0.05, *; P<0.01, **; P<0.001, ***). 

A Pmax(net) R a P lb In , 

Tempetatute r 0.47 0.47 0.13 -0.16 0.56 0.07 0.63 Tempetatute 
P ** ns ns ** ns *** 

Tempetatute 

n 29 29 29 29 29 29 29 

r 0.04 -0.18 -0.34 0.00 0.22 -0.09 0.19 

P ns ns ns ns ns ns ns 

n 29 29 29 29 29 29 29 

Irradiance r 0.47 0.37 0.17 -0.16 0.51 0.14 0.56 Irradiance 
P ** * ns ns ** ns ** 

Irradiance 

n 29 29 29 29 29 29 29 

B Pn,ax(net) R a P h lb 

Temperature r 0.52 0.48 -0.35 -0.30 0.72 0.02 0.83 Temperature 
P * * ns ns *** ns 

Temperature 

n 18 18 18 18 18 18 18 

r 0.24 -0.04 -0.34 -0.06 0.57 -0.29 0.47 

P ns ns ns ns * ns * 
n 18 18 18 18 18 18 18 

Irradiance r 0;17 0.33 -0.51 -0.03 0.46 -0.26 0.47 Irradiance 
P ns ns * ns ns ns * 

Irradiance 

n 18 18 18 18 18 18 18 

C P..ax(net) R a P I . lb 

Temperature r 0.54 0.59 0.40 -0.02 0.53 0.15 0.58 Temperature 
P ns ns ns ns ns ns ns 

Temperature 

n 11 11 11 11 11 11 11 

r -0.28 -0.17 -0.37 0.16 -0.24 -0.05 -0.19 

P ns ns ns ns ns ns ns 

n 11 11 11 11 11 11 11 

Irradiance r 0.66 0.58 0.50 -0.25 0.55 0.41 0.65 Irradiance 
P * ns ns ns ns ns * 

Irradiance 

n 11 11 11 11 11 11 11 

The relationship between respiration rate, I , , and and temperature showed a significantiy 

weaker relationship when expressed for the whole population than when expressed as occasions 

when the population was dominated by centrics or greens. A stronger relationship was observed 

when data were categorised into centric and greens dominance between respiration rate and 
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temperature (F-test; P=0.003, P=2.9), and temperature (F-test; P=0.01, f=5.2) and I^and 
temperature (F-test; P=0.03, P=7.5). 

A significant, positive relationship existed between respiration rate and temperature for the 

centric diatom dominated population (r=0.87, P<0.001; Table 5.2) and during greens dominance 

(r=0.71, P<0.02; Table 5.2). Although the relationship was stronger between respiration rate and 

temperature during centric diatom dominance, higher rates were evident when greens were 

dominant (Fig. 5.6). This suggests that respiration by greens was more responsive than centric 

diatoms to temperature. 

A significant, positive relationship was observed between Ij. and temperature and I„ and 

temperature. This was a direct consequence of increasing P^(net) with temperature as Pn^(net) is 

used to calculate both I , , and I„. 

Overall, rates o f photosynthesis and respiration increased with increasing temperature. 

Populations dominated by centric diatoms or greens showed similar rates of P ^ (net) but higher 

respiration rates with increasing temperature were observed for greens dominated populations. 

There was no significant relationship between the a, P, 1̂ , and temperature during the period of 

study. 

A significant, positive relationship was observed between a and K j , and between ![., and 

irradiance. The value o f a increased with an increase in K j (r=0.37, P<0.05; Table 5.2) for the 

phytoplankton population as a whole. This may indicate that cells may be adapting to the light 

climate. As the K j value increased, indicating a decrease in light penetration, the cells may have 

utilised Ught more efficiendy, as indicated by an increase in a. 

P^^(net) increased with increasing average daily irradiance (r=0.63, P<0.001; Table 5.2) for the 

popiilation as a whole. Even so, a stronger relationship existed between P^^(net) and irradiance 

when data were categorised into events dominated by either centric diatoms or green algae (F-test; 

P=0.02, f=4.7). There was no significant relationship between and P^^(net) and irradiance for 

centric dominated popidations. For populations dominated by green algae, however, P^^(net) 

increased significantiy with increasing irradiance (r.=0.79, P<0.05; Table 5.2). This suggests that 

irradiance had a marked effect upon photosynthesis of green algae but other factors were more 

important in regulating photosynthesis of centric diatoms. 

As with the relationship between and and temperature, the positive relationship observed 

between 1^, and irradiance for populations dominated by green algae was a direct consequence 

of an increase in P^(net) with irradiance. 

A positive relation existed between I ; , and irradiance for populations dominated by green algae 

(r=0.58, P<0.05; Table 5.2) but not for populations dominated by centric diatoms. As a high 

value of lb is indicative of weak photoinhibition, this relationship suggests that green algae exposed 
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to a high light climate were less susceptible to photoinhibition than those exposed to a low light 
climate 

Overall, the irradiance at which maximal Pn^,(net) was achieved increased with increasing 

irradiance. Green algal dominated populations appeared to be more responsive to the increase in 

irradiance than centric dominated populations. 

5.22 Ouse 

Table 5.3 shows the curve parameters derived from data obtained from P vs I incubations 

(Section 3.6). P vs I curves are shown in Appendix 2. The temporal change in the P vs I 

parameters is shown in Figure 5.6. The rate o f P^^ (net) followed a similar seasonal pattern in 

1996 and 1997. Maxtmxim rates of P^., (net) were observed during spring and early summer 

although these maxima did not coincide with chlorophyll a maxima (Fig. 5.6, Table 5.3). Spring 

and summer maxima were followed by late summer decline and winter minima (Fig. 5.6, Table 

5.3). Spring/late summer maximum rates of P^^ (net) of 2019 and 945 )J,mol O j (mg chl d ) h ' 

were measured on 16 July 1996 and 2 June 1997, (Fig. 5.6, Table 5.3). These rates were perhaps 

unrealistically high and outside the range given by Kirk (1994). Rates decHned during late summer 

to aroimd 150 |amol O2 (mg chl d) ' h"' and declined to minimiim rates dioring winter where a 

minimum o f -268 |Llmol O j (mg chl d)h"' was measured on 21 January 1997 (Fig. 5.6, Table 5.3). 

Respiration rates did not follow any clear seasonal pattern during 1996 and 1997 although 

minimum values were recorded during early spring. Respiration rate maxima of 1043 and 1027 

fxmol O2 (mg chl d ) h ' were measured on 11 August 1996 and 9 December 1997, respectively 

(Fig. 5.6, Table 5.3). As these rates appear to be unrealistically high, it is possible that bacterial 

respiration and/or photochemical oxidation were responsible for this high respiration rate when 

chlorophyll a concentration and temperature were low. Respiration minima of 9.8 and 17.5 (imol 

O2 (mg chl d) h"' were recorded during early spring on 22 May 1996 and 29 March 1997, 

respectively (Fig. 5.6, Table 5.3). 

Overall, highest rates o f P^.;(net) were measured dviring spring and minimum rates were 

measured diiring winter. In contrast, maximum rates of respiration were measured during spring 

although there was no clear seasonal pattern during the rest o f the year. 

The initial slope o f the P vs I curve (a) for the Ouse at Acaster did not follow any clear 

seasonal pattern. A maximal value of a of 10.9 |Jmol O2 (mg chl d) h"̂  (|J,mol photon m " s'')"' 

was measured on 18 June 1996. A minimum value of 0.2 |imol O2 (mg chl d)h"' ([̂ mol photon 

m"^ s was measured on 30 Apri l 1996 (Table 5.3). During 1997, the maximum value of a of 5.3 

[imol O2 (mg chl d) ' h ' (|Xmol photon m'^ s ') ' was measured on 3 June (Table 5.3). 



103 

Table 5.3 Curve parameters calculated f rom P vs I incubations for the Ouse at Acaster. As a 

result of slow rates of oxygen exchange relative to the sensitivity limits of the 

method of measurement, data f rom 21 November 1996 to 11 February 1997 were 

not fitted to the model of Piatt et al. (1980) and so values for P^. and R were 

interpolated manually. See list o f abbremtions for column headings. 

Date P s P 
max 

R a P \ lb 
16-Apr-96 69355 260 163 1.74 104.4 336 664 659 
30-Apr-96 455 348 26 3.41 0.2 117 2745 410 
lO-May-96 1451 616 479 10.60 0.8 148 1740 358 
15-May-96 1062 696 10 4.92 0.7 146 1634 464 
22-May-96 201386 632 10 3.21 368.4 203 547 544 
28-May-96 256452 521 143 3.77 534.1 214 480 479 
18-Jun-96 149418 2019 187 10.86 265.2 220 563 552 
03-Jul-96 14915 48 118 1.79 58.4 159 256 252 
30-Jul-96 1758 1298 172 8.12 0.3 202 5051 691 

12-Aug-96 965 -80 1043 5.22 0.0 385 1584 
03-Sep-96 14197 150 148 2.49 42.4 179 335 325 
23-Sep-96 364 138 87 2.35 0.4 133 922 301 
15-Oct-96 11403 -10 282 6.21 92.8 89 123 119 

21-NOV-96 - -48 141 - - - - -
lO-Dec-96 - -268 1027 - - - - -
21-Jan-97 - -190 194 - - - - -
ll-Feb-97 - -11 48 - - - - -
25-Mar-97 780495 95 140 2.86 3495.2 131 223 223 
08-Apr-97 773196 259 35 1.45 1404.5 227 550 550 
29-Apr-97 773197 402 18 1.94 1314.6 225 588 588 

06-May-97 773190 28 42 0.72 2955.1 154 262 262 
12-May-97 773191 353 96 2.70 1710.5 202 452 452 
20-May-97 773191 58 152 1.55 2109.8 232 366 366 
27-May-97 773193 563 31 2.36 1127.0 265 686 685 

03-Jun-97 773192 945 124 5.31 1411.8 224 548 547 
ll-Aug-97 .773190 178 40 1.35 1770.2 190 437 437 

The photoinhibition factor (P) did not foUow any clear seasonal pattern. Values ranged from 

very low (0.2 jomol (mg chl d) ' h ' (pimol photon m"^ s"') ') to very high (534 |amol (mg chl 

d ) h ' (nmol photon m"^ s'') \ Table 5.3). Even though the values of P are shown, the weighted 

photoinhibition factor (1̂ ,) was used as clearer representation o f photoinhibition (Fig. 5.8, Table 

5.3). 

lb, \ and In, all followed a similar seasonal pattern to P̂ ^̂  (net) with maximal values occurring 

during spring and summer and minimum values in winter (Fig. 5.7, Table 5.3). A maximal value of 

lb of 5051 [imol m'^ ŝ  was observed on 30 July 1996 while maximal values o f 1̂  and I„ of 385 and 

1584 jxmol m"̂  s respectively occurred on 12 August 1996 (Fig. 5.7, Table 5.3). Although data 

were not available f rom 21 November 1996 to 11 February 1997, values of lb. It and I„ declined to 
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early winter minima of 123, 89 and 119 |J,mol m ^ s'\ respectively 10 October 1996 (Fig. 5.7, Table 
5.3). During the spring o f 1997, values o f 1 ,̂ 1̂  and !„, increased. A maximal 1997 value of Ij , of 
685 jamol m"^ s~\ recorded on 27 May 1997 (Fig. 5.7, Table 5.3) was over 7 times that of the 1996 
maximiam value. Maximal values of I , , and I ^ of 265 and 686 fimol m'^ s ', respectively were 
recorded on 27 May 1997 (Fig. 5.7, Table 5.3). 

The overall seasonal pattern o f 1̂  suggests that photoinhibition was weakest during spring and 

summer and strongest during winter. The pattern of I , , suggests that the phytoplankton utilised 

the Hght more efficiently during winter and light saturation occurred at higher irradiances during 

spring and summer where the rate of photosynthesis was at a maximum Q.^. 

A relationship between P^, (net) and temperature was the only significant relationship 

observed between the P vs I parameters and temperature (Table 5.4). The relationship was 

stronger for times when centric diatoms dominated (r=0.78, P<0.01) than when greens dominated 

(r=0.36, ns) or for the population as a whole (r=0.57, P<0.01; Table 5.4). This suggests that 

centric diatoms responded to the increase in temperature with an increase in P̂ ^̂  (net) to a greater 

extent than the greens. However statistical analysis (F-test) suggested that there was no significant 

difference between a relationship between P^, (net) and temperature for the whole of the data and 

when data were split into occasions when either centric diatoms or greens dominated the 

population (F-test, P=0.12, f=2.3). 

Only two significant relationships were observed between the P vs I parameters and irradiance 

for the Ouse at Acaster during the study period. The value of the photoinhibition factor (P) 

increased with an increase in the attenuation coefficient (Kj) for the whole phytoplankton 

population (r=0.36, P<0.1; Table 5.4). This was largely a resialt of the relationship when 

populations were dominated by centric diatoms (r=0.66, P<0.05; Table 5.4). This suggests that, 

especially for centric diatoms, photoinhibition increased for cells acclimatised to low Ught 

conditions. 

For the population as a whole, there was a positive relationship between P^^ (net) and 

irradiance (r=0.67, P<0.01, Table 5.4). This relationship suggests that irradiance was important in 

the regulation o f phytoplankton photosynthesis. 
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Table 5.4 Coefficients for the correlation between P vs I parameters and environmental 

variables for the Ouse at Acaster. See list of abbreviations for column headings. 

Data are shown for the whole popvilation (A), and when populations were 

dominated by centric diatoms (B) and green algae (C). Shaded sections highlight 

significant correlations (not significant, ns; P<0.05, *; P<0.01, **; P<0.001, ***). 

A Po,ax(net) R a P lb I» 
Temperature r 0.62 -0.08 0.27 -0.25 0.35 0.24 0.36 Temperature 

P *** ns ns ns ns ns ns 
Temperature 

n 24 24 21 21 21 21 21 

Ka r -0.23 -0.14 -0.28 0.53 -0.29 -0.29 -0.30 Ka 
P ns ns ns * ns ns ns 

Ka 

n 24 24 21 21 21 21 21 
Irradiance r 0.67 -0.09 0.34 -0.24 0.44 0.29 0.44 Irradiance 

P *** ns ns ns * ns * 
Irradiance 

n 24 24 21 21 21 21 21 

B Pmax(net) R a P h lb 
Temperature r 0.71 0.77 0.69 -0.33 0.04 -0.39 0.04 Temperature 

P * * * ns ns ns ns 
Temperature 

n 9 9 9 9 9 9 9 
r -0.02 0.50 -0.07 0.64 0.01 -0.61 0.04 
P ns ns ns ns ns ns ns 
n 9 9 9 9 9 9 9 

Irradiance r 0.53 0.57 0.57 -0.61 -0.17 -0.24 -0.20 Irradiance 
P ns ns ns ns ns ns ns 

Irradiance 

n 9 9 9 9 9 9 9 

C Pmax(net) R a P I . lb I . 
Temperature r 0.65 -0.11 0.08 -0.23 0.56 0.42 0.47 Temperature 

P ** ns ns ns ns ns ns 
Temperature 

n 15 15 12 12 12 12 12 

r -0.23 -0.41 -0.38 0.51 -0.25 -0.28 -0.30 
P ns ns ns ns ns ns ns 
n 15 15 12 12 12 12 12 

Irradiance r 0.74 0.02 0.25 -0.09 0.66 0.49 0.60 Irradiance 
P *** ns ns ns * ns * 

Irradiance 

n 15 15 12 12 12 12 12 

5.3 Respiration rates of algae in culture 

Data collected from the field highlighted the correlation between phytoplankton respiration rates 

and temperature, particularly of green algae in the Trent (Section 5.2). To compare the effect of 

temperature on respiration rates of different groups of phytoplankton, two species of centric 
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diatom and one green alga were grown at four different temperatures and their respiration rates 
measiored (Section 3.73). 

Figure 5.8 shows the respiration rate of Cyclotella meneghiniam, Cyclostephanos invisitatus and 

Scenedesmus intermedius when incubated at 5, 10, 15 and 20°C. Al l three species exhibited an increase 

in respiration rate with increasing temperature (Fig. 5.8). The linear relationship between 

respiration rate and temperature was strongest for C invisitatus (r=0.97, P<0.02), then C. 

meneghiniana (r=0.92, P<0.1) and weakest for S. intermedius (r=0.82, ns). Respiration rates of centric 

diatoms were higher than those for the greens from 5 to 15°C (Fig. 5.8). Although no respiration 

rate was measured for C. meneghiniana at 5°C, the respiration rate of C. invisitatus of 32 j^mol O, (mg 

chl a)"' h ' at 5°C was over twice that of S. intermedius of 15 |J,mol O2 (mg chl ẑ)'' h"' at the same 

temperature (Fig. 5.8). 

Respiration rates of the centric diatoms increased greater in proportion to the greens over 10 

and 15''C. Rates of 54 and 47 f^mol O2 (mg chl dj' h ' at 10°C and 67 and 101 ^mol O2 (mg chl df' 

h'* at 15°C for C. meneghiniana and C. invisitatus, respectively were between three and four times 

those for S. intermedius of 18 and 29 fimol O2 (mg chl d)'^ h"' at 10 and \5°C, respectively (Fig. 5.8). 

Respiration rates for S. intermedius incteased rapidly from 15 to 20°C with over a five fold increase 

from 29 to 161 (Xmol O2 (mg chl d)'^ h'\ The increase in respiration rate from 15 to 20°C was not 

as high for the centric diatoms with Httie over a two fold increase from 67 to 150 |imol O2 (mg chl 

«)•' h'̂  for C. meneghiniana and a small increase from 101 to 117 |J.mol O2 (mg chl tf) ' h"' for C. 

invisitatus. A t 20°C, the respiration rate of S. intermedius was a third higher than that of C. intermedius 

at the same temperature (Fig. 5.10). 

The data suggest that green algae respire at a lower rate than centric diatoms at lower 

temperatures but respiration rate of the green algae increases at a much faster rate than for centric 

diatoms at temperatures above 15°C. This results in higher respiration rates of green algae and 

therefore a higher respiratory loss of carbon in comparison to those of centric diatoms at higher 

temperatiares. 

The higher rates o f respiration exhibited by species in culture, with apparentiy low bacterial 

biomass, when compared to average rates shown in the Trent is discussed fuUy in Section 8.34. 
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Figure 5.8 Respiration rates o f three phytoplankton species, two centric diatoms and one 
Chlorophyta, in culture; Cyclotella meneghiniana, Cyclostephanos inmsitatus and Scenedesmus 
intermedius. Rates were measured in triplicate at four temperatures; 5, 10, 15 and 20''C 
Hori2ontal bars show standard deviation. Problems with growing Cyclotella meneghinia 
at 5°C resulted in no respiration rate being measured at this temperature. The 
maximum in situ respiration rates for the Trent are also shown. 



108 

5.4 Measuring column productivity using the photosynthesis-irradiance-depth-time 
model ( P I Z T ) 

5.41 Trent 

Average daily column production was estimated for the tidal limit of the Trent at Cromwell to 

estimate phytoplankton productivity and trend o f river primary production in order to identify and 

quantify the processes controlling carbon production and flux within the river. Average daily 

column productivity in the Trent followed a similar pattern in both 1996 and 1997 (Fig. 5.9). 

Maximum production rates were observed when centric diatoms dominated the population and 

minimum rates observed when green algae dominated (Fig. 5.9). Rates o f production reached 

spring maxima o f 1081 jamol O2 (mg chl df^ d ' on 5 June 1996 (Fig. 5.9). During 1997, a maximal 

rate o f 1114 ^mol O j (mg chl d)^ d'' was observed on 8 April 1997 (Fig. 5.9). Maximal rates of 

production coincided with temperatures of between 9 and 14 °C, high spring chlorophyll a 

concentrations of between 69 and 100 |ag 1"' and low respiration rates between 11 and 16 |imol O j 

(mg chl d)^ h ' (Fig. 5.9). During late summer, as temperature and the rate of respiration increased, 

the rate o f production declined to annual summer minima of-1954 and -709 (xmol O2 (mg chl d)'^ 

d"̂  on 30 July 1996 and 1 July 1997, respectively (Fig. 5.9). This decHne in production 

corresponded with the rapid decline in chlorophyll a concentration and the switch from a centric 

diatom population to a green algal dominated one (Fig. 5.9). During winter, rates of production 

remained negative and a minimum of -5026 |amol O2 (mg chl ẑ) ' d ' was obsen^ed on 21 January 

1997 which corresponded with a high respiration rate of 217 jimol O2 (mg chl d)^ h ' . However, 

during winter, temperature was low at arovind 4.5 °C and chlorophyll a concentration was around 

1.5 Jilg r ' (Fig 5.9). The low temperature and low chlorophyll a indicate that high respiration rates 

in winter may have been a result of high bacterial activity and not phytoplankton. Results of 

experiments upon respiration rates of phytoplankton in cultxire (Section 5.3) show that rates are 

much lower at between 17 and 32 lJ.mol.O2 ("^g chl <7)"' h"̂  at 5°C in culture than in the Trent on 

21 January 1997. The data for 21 January 1997 may be erroneous as respiration rates on other 

dates during winter at temperatures of between 4.3 and 5.5 °C are only between 24 and 34 |J.mol 

O2 (mg chl d)^ h"\ As a result data for 21 January 1997 were excluded from further analysis. 

Overall, the pattern in average daily column algal production in the Trent was an increase in 

production to maximal rates during spring while respiration rates were relatively low. This 

coincided with an increase in chlorophyll a concentration and a slight increase in temperature. 

As temperature and respiration rate increased during summer, production decreased and 

reached minima during the summer. Production remained low during winter even though 

temperature and, despite one occasion, respiration rates were relatively low. 
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Figure 5.10 Temporal change in average daily areal production and hourly respiration rate 
(top figure) and chlorophyll a concentration and temperature for the Trent at 
Cromwell. Times when centric diatoms (brown) and green algae (green) were 
dominant are shown on the bar at the top of the chart. 
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River productivity, measured as average daily areal production followed a similar seasonal 
pattern to algal production. Spring maxima attained maximal rates of 564 and 249 |Xmol O, m'^ d'' 
on 5 June 1996 and 8 Apri l 1997, respectively (Fig. 5.10). During summer, as temperatxire and 
respiration rates increased, rates of production decreased to atmual siammer minima o f - 7 1 and -
17 lamol O2 m-^ d"' on 30 July 1996 and 1 July 1997, respectively (Fig. 5.10). As witii algal 
productivity, rates of areal production remained low throughout winter. Winter rates ranged from 
between -0.7 and -30 [imol O, m'^ d ' (Fig. 5.10). 

To identify the variables controlling average daily column production, the data were analysed 

with respect to identifying any significant relationships between variables and column production. 

The primary factors linked to average daily column production were chlorophyll a concentration, 

respiration rate, I,., lb, and Pmax(net) as significant relationships were observed between 

production and these variables (Table 5.5). A n F test showed that there was no difference 

between the relationship between production and respiration when expressed for the population 

as a whole or when expressed as populations dominated by centrics or green algae. However, 

significant differences were shown for the relationships between productivity and chlorophyll a 

concentration (F test; F=4.0, P=0.03), 1̂  (F test; F=6.1, P=0.006), lb (F test; F=3.9, P=0.03), I„ (F 

test; F=5.5, P=0.009) and P„^(net) (F test; F=6.45, P=0.005). Even so, for all these variable, die 

most significant relationship existed for the population as a whole. There was a positive, 

significant relationship between production and chlorophyll a concentration (r=0.6, P<0.01; Table 

5.5) for the phytoplankton population as a whole. This indicates that high production resulted in 

the creation of new phytoplankton biomass. 

A significant, negative relationship existed between productivity and respiration rate for the 

population as a whole (r=-0.78, P<0.01; Table 5.5) as well as for populations dominated by centric 

diatoms (r=-0.71, P<0.01; Table 5.5) and by green algae (r=-0.77, P<0.01; Table 5.5). As 

respiration rates increased, as a result of increasing temperature, production rates declined. High 

respiration rates in summer resulted in minimum production rates (Fig 5.10). As temperature 

influences the rate of respiration, temperature would have influenced average daily column 

production indirectiy even though no significant relationship was observed between production 

and temperature (Table 5.5). This was probably a result of an increase in both the rates of 

P^(ne t ) and respiration with increasing temperature (Table 5.2). 

A significant, positive relationship existed between production and 1̂  (r=0.42, P<0.05; Table 

5.5), lb (r=0.49, P<0.01; Table 5.5) and between production and I„ (r=0.39, P<0.05; Table 5.5) for 

the population as a whole. For populations dominated by green algae, significant relationships 

were observed between production and 1̂  (r=0.69, P<0.05; Table 5.5) and production and I„ 
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(r=0.6, P<0.05; Table 5.5). No such relationship was evident for populations dominated by 

Gentries (Table 5.5). 

Table 5.5 Coefficients of correlation between average daily column production and 

environmental variables for the Trent at Cromwell. See list of abbre\'iations for 

column headings. Data are shown for the whole population (A) and when 

dominated by centric diatoms (B) and green algae (C). Shaded sections highlight 

significant correlations (not significant, ns; P<0.05, *; P<0.01, **; P<0.001, ***). 

A Temp. Qs Chi a a R P h lb I™ P™a.,(net) 

r -0.14 0.01 -0.06 0.60 -0.01 -0.03 -0.78 -0.13 0.42 0.49 0.39 0.51 
P ns ns ns ** ns ns ** ns * ** * ** 
n 30 30 30 30 30 30 30 30 30 30 30 30 

B Temp. Qs K, Chl̂ z Ps a R P k lb In, P,™.(net) 

r -0.44 -0.35 -0.41 0.42 -0.21 0.10 -0.71 -0.17 -0.30 0.16 -0.35 -0.21 
P ns ns ns ns ns ns ** ns ns ns ns ns 
n 18 18 18 18 18 18 18 18 18 18 18 14 

c Temp. Qs Kd CM a Ps a R P k lb I . Pmax(net) 

r 0.41 0.43 -0.04 0.45 0.44 -0.07 -0.77 0.62 0.69 0.42 0.60 0.70 
P ns ns ns ns ns ns ** * * ns * ** 
n 12 12 12 12 12 12 12 12 12 12 12 12 

As the parameters 1̂ , 1̂  and !„, are all indicators of phytoplankton response to irradiance, 

relationships evident only for populations dominated by green algae suggest that irradiance was an 

important factor in controlling production, especially for green algal dominated populations. 

Alternatively the data suggest that these parameters were more variable for greens than for 

Gentries. As Ij^ and I„ increased, production increased, suggesting that cells were adapting and 

were able to utilise more Ught when exposed to higher irradiance. However, as both 1̂  and are 

linked to (i^et), the increase in the values with temperature may have been because the rate of 

P^^ (net) increased with temperature. 

A high value of I , , indicates low photoinhibition so an increase in production as I , , increased 

indicated that productivity increased as the burden of photoinhibition decreased. Average daily 

irradiance did not appear to directiy affect production (Table 5.5). However, it influenced 

production indirectiy as positive, significant relationships were observed between I, . , I„ and 

irradiance (Table 5.2) 
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The relationship between production and (net) was also positive and significant for the 
whole population (r=0.51, P<0.01; Table 5.5) and when dominated by green algae (r=0.7, P<0.01; 
Table 5.5). The increase in average daily column production with increasing rates of P ^ (net) are 
to be expected as long as the respiratory burden does not offset production. Irradiance also 
influenced production indirecdy by influencing the rate of P^^ (net). Significant, positive 
relationships were observed between P̂ ^̂ . (net) and irradiance (Table 5.2). 

No significant relationship was observed between average daily column production and 

temperature, irradiance, K^, P„ a or p (Table 5.5). However, as mentioned previously, 

temperature and irradiance may have indirecdy affected production by influencing the P vs I 

characteristics of the phytoplankton. 

The important variables controlling average daily column production are chlorophyll a 

concentration, respiration rate, and P^^ (net). Production increased with increasing chlorophyll a 

concentration and with increased rates of P̂ ^̂  (net). Production increased with decreasing rates of 

respiration. It was considered that temperature and irradiance controlled production indirectiy by 

influencing rates of respiration and P^^ (net) as well as I , , , and I„. 

Factors linked to river production, measured as areal production, were less numerous than for 

algal production. Positive correlations existed only between areal production and chlorophyll a, 

respiration rate and the rate of Pn^(net). F tests suggested that data were not significandy different 

i f expressed for the whole population or when populations were dominated by either centrics or 

greens. A positive correlation existed between areal productivity and chlorophyll a for the whole 

population (r=0.8, P<0.001; Table 5.6) and when dominated by centiics (r=0.69, P<0.01; Table 

5.6). No relationship was observed when populations were dominated by greens. These data 

suggest that algal biomass and production strongly influenced overall river productivity. A 

negative relationship existed between areal production and respiration rate for the whole 

population (r=-0.52, P<0.01; Table 5.6), and when dominated by centrics (r=-0.48, P<0.05; Table 

5.6) and by greens (r=-0.62, P<0.05; Table 5.6). This was a similar relationship observed for algal 

(column) productivity. 

A positive correlation existed between areal production and P^(net) only when green algae 

dominated the population (r=0.59, P<0,001; Table 5.6). This suggests that P^,(net) was only 

important in controlling river production when green algae dominated. However, other factors 

such as respiration rate may have masked the importance of P^(net) for the whole population 

and when centrics dominated. 
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Table 5.6 Coefficients of correlation between average daily areal production and 

environmental variables for the Trent at Cromwell. See list of abbreviations for 

column headings. Data are shown for the whole population (A) and when 

dominated by centric diatoms (B) and green algae (C). Shaded sections highlight 

significant correlations (not significant, ns; P<0.05, *; P<0.01, **; P<0.001, ***). 

A Temp. Qs Kd Chl^ Ps a R P Ik lb In, Pn x̂(net) 

r -0.07 0.10 -0.04 0.80 -0.12 -0.03 -0.52 -0.14 0.27 0.27 0.24 0.33 

P ns ns ns *** ns ns ** ns ns ns ns ns 

n 30 30 30 30 30 30 30 30 30 30 30 26 

B Temp. Qs Kd Chi a Ps a R P k lb I . P„^x(net) 

r -0.12 0.08 -0.19 0.69 -0.11 -0.03 -0.48 -0.08 -0.03 0.00 -0.09 0.01 

P ns ns ns ** ns ns * ns ns ns ns ns 

n 18 18 18 18 18 18 18 18 18 18 18 14 

C Temp. Qs Chi a Ps a R P Ik lb I . Pmax(net) 

r 0.09 0.07 -0.24 0.25 0.50 -0.23 -0.62 0.32 0.54 0.36 0.54 0.59 

P ns ns ns ns ns ns * ns ns ns ns * 

n 12 12 12 12 12 12 12 12 12 12 12 12 

These relationships suggest that phytoplankton production was responsible for influencing 

river productivity. As algal biomass increased, indicated by an increase in chlorophyll a, river 

productivity increased. As algal respiration rates increased, river productivity decreased. These are 

similar relationships observed for coltimn production (Table 5.5). Therefore, factors which 

influenced algal production such as chlorophyll a, respiration and Pmax(net), as well as those which 

indirectiy influenced algal production such as temperatxire and light, by their control over 

phytoplankton, also influenced river production. 

5.42 Ouse 

Average daily coliamn production for the Ouse was sporadic (Fig. 5.13) and did not foUow any 

clear seasonal pattern (Fig. 5.11). However, spring maxima were observed. Rates of 2721 and 593 

l^mol O2 (mg chl a)'^ h'̂ were measured on 15 May 1996 and 27 May 1997, respectively (Fig. 5.11). 

However, the high rate of 2721 \xmo\ O2 (mg chl a)'^ h ' may be considered as unachievable as the 

chlorophyll a concentration on this data was only 6 ixg l'\ The reason for the unrealistically high 

and low rates for the Ouse in unclear. They do however emphasise that these rates must be 

considered with caution. 
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Figure 5.11 Temporal change in average daily column production and hourly respiration rate 
top figure) and chlorophyll a concentration and temperature for the Ouse at 
Acaster. Times when centric diatoms (brown) and green algae (green) were 
dominant are shown on the bar at the top of the chart. 
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There was no clear seasonal pattem for minimum rates of column production. Minima of -1528 
and -6366 |j,mol (mg chl a)'^ h * were measured on 10 May 1996 and 15 October 1997, 
respectively (Fig. 5.11). An unrealistically low rate of —22723 fxmol Oj (mg chl a)'^ h ' was 
measured on 12 August 1996. Consequentiy, data collected on this date were omitted from 
further analysis. 

Area! production rates showed more of a seasonal pattern than for rates of column production. 

Maximal rates were observed in spring. Rates then declined during summer as temperature and 

respiration rates increased (Fig. 5.12). Rates were not calculated during winter from November to 

February as the P vs I data could not be fitted to a P vs 1 model. 

Maximal rates of 536 and 98 p-mol m"̂  d ' were observed in spring on 22 May 1996 and 29 

April 1997, respectively. Rates then declined to seasonal annual minima of -427 and -108 |imol 

O2 (mg chl a)'^ on 12 August 1996 and 20 May 1997, respectively. 

Significant relationships were observed between column production and irradiance, K j , 

respiration rate, 1̂  and 1̂  (Table 5.7). A positive relationship existed between column production 

and average daily surface irradiance for the population as a whole (r=0.47, P<0.001; Table 5.7). 

This was expected as irradiance was seen to influence the rate of Pn^(net) (Table 5.4). 

Table 5.7 Coefficients of correlation between average daily column production and 

environmental variables for the Ouse at Acaster. See list of abbreviations for 

column headings. Data are shown for the whole population (A) and when 

dominated by centric diatoms (B) and green algae (C). Shaded sections highlight 

significant correlations (not significant, ns; P<0.05, *; P<0.01, **; P<0.001, ***). 

A Temp. Qs Ka Chl a Ps a R P I . lb In, Pn,ax(net) 

r 0.28 0.47 -0.15 0.43 0.10 -0.09 -0.77 -0.05 0.70 0.26 0.57 0.47 

P ns * ns ns ns ns *** ns *** ** ns ns 

n 21 21 21 21 21 21 21 21 21 21 21 21 

B Temp. Qs Kd Chl 5 Ps a R P k lb In, P™x(net) 

r -0.02 0.09 -0.70 0.06 -0.34 0.44 -0.43 -0.42 0.56 0.45 0.54 0.48 

P ns ns * ns ns ns ns ns ns ns ns ns 

n 9 9 9 9 9 9 9 9 9 9 9 9 

C Temp. Qs Chl a Ps a R P k lb I™ Pn,a.(net) 

r 0.53 0.57 0.16 0.53 0.35 -0.40 -0.78 0.21 0.62 0.32 0.56 0.39 

P ns ns ns ns ns ns ** ns * ns ns ns 

n 12 12 12 12 12 12 12 12 12 12 12 12 
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A negative correlation was observed between column production and K j when the population 
was dominated by centric diatoms (r=-0.7, P<0.001; Table 5.7). No relationship was observed 
when greens dominated. This suggests that water clarity was important in controlling production 
of centrics. 

A negative relationship was observed between column production and respiration rate for the 

whole population (r=-0.77, P<0.001; Table 5.7) and when green algae dominated (r=-0.78, 

P<0.01; Table 5.7). This suggests that respiration is an important factor controlling column 

production in the Ouse. 

A positive relationship was observed between column production and I, , for the whole 

population (r=0.7, P<0.001; Table 5.7) and when green algae dominated (r=0.62, P<0.05; Table 

5.7) and could be a result of the increase in the rate of P^(net) with increasing temperattire. 

However, for the Ouse there was no relationship between column production and P^ .̂(net) and so 

the relationship with I ^ was possibly real. I f this was the case then the data suggest that the onset 

of light saturation influenced column production. I f so, factors influencing I, . , such as temperature 

also indirecdy influenced column production. 

A positive relationship was observed between column production and 1̂  (r=0.26, P<0.01; 

Table 5.7). This suggests that photoinhibition had a direct effect upon column production. 

However, the turbid nature of the Ouse allows the assumption to be made that photoinhibition 

was of Utde importance here. Overall, the most important factors influencing coltamn production 

in the Ouse were irradiance and respiration. 

Areal production was linked only to chlorophyll a concentration and 1^ (Table 5.8). 

Surprisingly, a negative correlation was observed between areal production and chlorophyll a when 

green algae dominated (r=-0.67, P<0.05; Table 5.8). This was not expected although it suggests 

that an increase in algal biomass resulted in a decrease in river productivity. This may be the result 

of an increase in the algal respiratory burden. 

A positive relationship was observed between areal production and I^for the whole population 

(r=0.44, P<0.05; Table 5.8) and when dominated by centrics (r=0.69, P<0.05; Table 5.8). This 

was also observed for column production and suggests that the onset of Hght saturation was 

important in controlling both river and algal productivity in the Ouse. 

Overall, the important factors controlling riverine production in the Ouse were chlorophyll a 

concentration and I , , , possibly indicating the importance of increased algal biomass and respiration, 

and the onset of Hght saturation. 
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Table 5.8 Coefficients of correlation between average daily areal production and 

environmental variables for the Ouse at Acaster. See Ust of abbreviations for 

column headings. Data are shown for the whole population (A) and when 

dominated by centric diatoms (B) and green algae (C). Shaded sections highlight 

significant correlations (not significant, ns; P<0.05, *; P<0.01, **; P<0.001, ***). 

A Temp. Qs Kd Chl a Ps a R P k lb In, Pn,ax(net) 

r -0.06 0.00 -0.28 0.25 -0.02 0.05 -0.37 -0.06 . 0.44 0.12 0.30 0.23 

P ns ns ns ns ns ns ns ns * ns ns ns 

n 21 21 21 21 21 21 21 21 21 21 21 21 

B Temp. Qs Kd Chl̂ z Ps a R P Ik lb In, P„,a.(net) 

r -0.16 -0.12 -0.50 0.32 0.00 0.15 -0.49 -0.04 0.69 0.16 0.64 0.27 

P ns ns ns ns ns ns ns ns * ns ns ns 

n 9 9 9 9 9 9 9 9 9 9 9 9 

C Temp. Qs Kd Chl a Ps a R P k lb I™ Pn,a.(net) 

r 0.09 -0.20 -0.29 -0.67 -0.18 -0.14 -0.17 0.04 -0.32 0.27 -0.20 -0.24 

P ns ns ns ns ns ns ns ns ns ns ns 

n 12 12 12 12 12 12 12 12 12 12 12 12 

5.5 Modelling of column productivity with changing environmental variables 

5.51 Trent 

5.511 Depth 

The PIZT model was used to predict the seasonal trend in average daily column production in 

response to a change in river depth, K j and respiration rate and when taking into account 

photoinhibition. This was used to test the sensitivity of predicted production in response to 

changes in these selected environmental variables. 

To estimate the change in production as a result of a change in river depth, the depths of the 

river at Cromwell and depths of 2 m and 5 m, approximately 1.5 m shallower and deeper than at 

Cromwell, respectively were placed into the PIZT model. Figure 5.13a shows the estimated 

production at the shallower and deeper depths in relation to the modelled production at Cromwell. 

A maximal seven-fold difference existed between production at Cromwell and when modelled at 

2 m. However, the overall average difference throughout the sampling period was a two-fold 

increase. The difference between production at Cromwell and when modelled at 5 m was similar 

to that when modelled at 2m although with a maximal seven-fold decrease and an overall two-fold 

average decrease during the sampling period. 
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Figure 5.13 Daily average column production calculated using the PIZT model (Section 3.10) 
with a change in environmental variables for the Trent at Cromwell. Production 
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Differences were least during winter and early spring and greatest during late summer (Fig 
5.13a). This indicates that depth was an important factor in primary production especially during 
summer and less important during winter and spring. 

5.512 Photoinhibition 

The PIZT model was modified so that the effect of photoinhibition on production could be 

omitted. The production rates for Cromwell were re-estimated as if photoinhibition had no effect 

upon average daily column production and were compared to rates estimated for Cromwell when 

photoinhibition occurred. Estimates of production when photoinhibition was not included in the 

model had Httie effect upon column producti^aty. Figure 5.13b shows that the seasonal pattern is 

the same as when photoinhibition is included and the rates of production are very similar. Apart 

from an exceptionally high difference on 3 June 1997, differences between the two modelling 

approaches ranged from 0.003 to 15.1 % and averaged only 4.2 %. Differences were greatest 

during early summer of 1997 (Fig. 5.13b). Even so there was no clear pattem and differences 

rarely exceeded 7 %. Figure 5.14 highlights the fact that photoinhibition had only a small effect 

upon column productivity. Even when photoinhibition did have a marked affect upon production 

it was only in the upper part of the water column (Fig. 5.14) and was not a factor which greatiy 

affected total column productivity. 

Although changes in irradiance were not modelled. Figure 5.15 shows an example of how 

average daily column production changed in response to the day to day changes in average daily 

kradiance, assuming a constant P vs I response throughout. There was a positive correlation 

between daily column production and irradiance (r=0.98, P<0.001; Fig. 5.15, inset). Highest rates 

of production were evident when average daily irradiance was highest. However, this does not 

take into account changes in temperature, K j value and rates of respiration and is just an example 

of day to day changes in production whilst this project was concerned with seasonal trends in 

production especially during the times when large phytoplankton populations developed and 

collapsed. 

5.513 Attenuation coefficient 

The PIZT model was also used to estimate production when K j values were fixed at a lower value 

of 1 m"' and a higher value of 4 m '. Figure 5.13c shows the variation in rates of production when 

modelled at a fixed K j value and are compared to modelled production for Cromwell under K j 

values measured in situ. The difference between production for Cromwell and when modelled for 

a Kd of 1 m ' was quite large with a maximum 40-fold increase and an average four-fold increase 

throughout the sampHng period. Differences were greatest during spring and early summer and 

least during winter. 
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Figure 5.14 Example of effect of photoinhibition upon primary production in the upper water 
column for the Trent at Cromwell on 3 September 1996. The corresponding 
response when photoinhibition is excluded, using the PIZT model is shown for 
comparison. 
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When production was modelled using a K j of 4 m ', the water column was heterotrophic for 
much of the year (Fig. 5.13c). The maximal and average differences when compared to in situ 
production at Cromwell under natural conditions were very similar to those when modelled with a 
K j of 1 m"' but with a decrease rather than an increase in production. 

Overall, a change in the value resulted in differences being most marked during the spring 

and early summer where irradiance was high and respiration rate was increasing with an increase in 

temperature. During this period, an increase in the K j value resulted in a decrease in the amount 

of Hght penetrating through the water column. When this was coupled with a high respiration 

rate, the respiratory burden in the water column increased. Differences were less marked during 

winter as winter production was controlled primarily by low irradiance. 

5.514 Respiration rate 

The modelling of column productivity with a fixed respiration rate showed a marked difference in 

average daily column production when compared to the results obtained using data collected in situ 

from Cromwell. A fixed respiration rate of -25 i^mol (mg chl a)~^ h"' was used in the PIZT 

model as this was the average spring respiration rate observed for Cromwell during 1996 and 1997. 

Using this low, spring rate of respiration, positive column production was possible throughout the 

summer and the switch to a heterotrophic system occurred on 21 November 1996 and lasted until 

11 February 1997 (Fig. 5.13d). This is a period of three months compared to nearly seven months 

when compared to column production for Cromwell with in situ respiration rates. Figure 5.16 

shows that when modelled with a fiixed, low respiration rate, a strong relationship exists between 

irradiance and average daily column production. 

High rates of production could be attained during summer i f irradiance was high and the 

respiratory loss was low. However, using in situ respiration rates, production became negative 

during summer and a maximum rate of 1095 |amol O2 (mg chl a)'^ h ' was observed in spring; on 

22 May 1996 (Fig 5.13d). Using in situ rates of respiration, production declined during summer 

(Fig 5.13) as respiration rates increased (Fig. 5.9). Increased rates of respiration were attributed to 

increased water temperature (Table 5.3). 

A maximal 10-fold difference existed between production using in situ and fixed rates of 

respiration with an average one and a half-fold difference over the sampling period. Differences 

were least during spring when in situ rates of respiration were similar to fixed rates. Differences 

were most marked in summer. Large differences were also observed during winter. This may be a 

result of a bacterial activity and is discussed in Section 8.34. 

Overall, increasing rates of respiration with increasing temperature and an increase in the 

attenuation coefficient may be the most important factor resulting in the faU in rates of average 

daily column production and the switch from an autotrophic to a heterotrophic system during 
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summer. River depth and value may also be important in regulating rates of production during 
spring and summer by increasing the respiratory burden of the phytoplankton. The decrease in 
daily irradiance is thought to be important in regulating production during winter as respiration 
rate, depth and K j value are less important during this period. 

5.52 Ouse 

5.521 Depth 

The PIZT model was used to calculate the column production at Acaster using in situ depths and 

depths of 4 m and 7 m; roughly 1.5 m shallower and deeper than the average depth at Acaster 

respectively. The data obtained from the three modelling procedures followed a similar seasonal 

pattern (Fig. 5.17a). Although there was no clear seasonal pattem marked differences were 

evident. When modelled at a depth of 4 m, a maximal 35-fold increase and average two-fold 

increase existed when compared to column production measvured for in situ depths. When 

modelled at 7 m a maximal 13-fold decrease and average 0.9-fold decrease was observed. 

Differences were most marked during spring and summer. Depth was an important factor 

influencing column production, especially during spring and summer. 

5.522 Photoinhibition 

Photoinhibition had littie effect upon column production at Acaster. Figure 5.17b shows how 

close the seasonal pattern of production when no photoinhibition is evident follows the pattern 

when photoinhibition is possible. Differences ranged between 0 and 27 % and averaged only 1.4 

%. This suggests that photoinhibition unimportant in the tiirbid, humic coloured Ouse. 

5.523 Attenuation coefficient 

In addition to column production measurements using in situ values of Kd, estimates were made 

using K j values of 1 and 4 m'\ These were approximately an increase or decrease of 1.5 m"' fiom 

the average in situ value, respectively. 

Again, no clear seasonal pattern existed (Fig. 5.17c). When modelled with a Kd of 1 m"', 

differences when modelled using in situ K j values attained a maximal 30-fold increase and an 

average 1.7-fold increase. When modelled using a K j value of 4 m'', differences attained a 

maximal 41-fold decrease and an average 2.7-fold decrease. Differences were greatest in spring 

and summer and least in winter. This suggests that the attenuation of light was important in 

controlling production in spring and summer but not in winter when other processes may have 

been more important. 
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Figure 5.17 Daily average column production calculated using the PIZT model (Section 3.10) 
with a change in environmental variables for the Ouse at Acaster. Production 
was modelled with changing depth (A), with and without photoinhibition ( B), for 
three different Kd values (C) and with in situ respiration rates and with a constant 
respiration rate (Chart D). 
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5.524 Respiration rate 

Figure 5.17d shows the seasonal pattern of column production using in situ respiration rates and 

when modelled using a fixed spring average rate of 25 |J,mol Oj (mg chl a) ' h"'. The overall effect 

was a shift in the production rate to an overall increase, especially during 1996. Differences a 

maximal 48-fold increase and an average 3-fold increase over the sampled period indicating that 

respiration rate had an important effect upon column production in the Ouse. 

Depth, attenuation coefficient and respiration rate were all important in controlling column 

production. The importance of these factors was most marked during spring and summer when 

conditions were favourable for phytoplankton production. During this period, any change in 

depth, K j or respiration rate would have a dramatic effect upon overall column production. 

5.6 Discussion 

The collated data concerning phytoplankton and river productivity shows patterns similar to those 

shown for phytoplankton abundance and biomass in Chapter 4. Maximum rates of P ^ and 

respiration were higher for the Ouse than for the Trent. However, a clearer seasonal pattem and 

correlation with temperature were e\'ident for the Trent compared with the Ouse. Values of the P 

vs I parameters I , . , 1̂  and I„ were similar for the Trent and Ouse and showed a general seasonal 

patttern of maximal values in spring and lower values in summer and winter. 

Phytoplankton and river production showed a similar seasonal pattem to the P vs I parameters 

P ^ and respiration and these two P vs I parameters were thought to strongly infiience 

production. The clear seasonal pattern for production shown for the Trent was not evident for 

the Ouse. However, apart from one or two unrealistically high values, maximum rates of 

phytoplankton and river production were similar in both rivers. 

Rates of both phytoplankton and river productivity were at a maximum during spring for both 

the Trent and Ouse. This was when rates of production were at a minimium as temperature was 

relatively low and underwater light climate started to improve. These conditions resulted in net 

productivity in the Trent through most of spring. For the Ouse, net production did occur during 

spring and early summer. However, net production was sporadic. 

During summer rates of production decreased in the Trent and Ouse. This pattern was striking 

in the Trent in 1996 as temperature dependent increase in respiration rate and the poor 

underwater Hght climate resulted in negative production in the Trent during summer. Negative 

production also occurred during summer for the Ouse, but again, the pattern was less clear than in 

the Trent. Use of the PIZT model led to the conclusion that respiration was the primary factor 

influencing phytoplankton and river production in the Trent. This was also observed for the Ouse 

although it was hypothesised that other, unknown factors are also important in controlling 

production here. River depth and attenuation coefficient also had marked influence upon 
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production, especially in spring and summer. The importance o f these variables was probably 
their influence upon respiration rates when coupled with temperature. High light attenuation in 
the Trent and Ouse was often observed, especially during flood events and when dissolved humic 
substances entered the system. Attenuation was typically higher in the Ouse than the Trent, 
especially during flood events. Phytoplankton biomass was found to influence light attenuation in 
the Trent while in the Ouse non-algal soKds were considered more important. As a result of the 
turbid nature o f the Trent and Ouse photoinhibition was not considered as important in 
influencing production in these rivers. Increased river depth, low temperature and poor 
underwater light climate, coupled with decreasing insolation were thought responsible for 
niinimum rates of production being observed for both rivers during winter. 

When coupled with data from Chapter 4 i t is evident that maximum production was attained 

when centric diatoms dominated the phytoplankton and minimum rates were observed when 

green algae dominated. Regression analysis suggested that respiration rates of green algae were 

higher than those of cenric diatoms when temperatures exceeded 15°C. I t was therefore 

hypothesised that the switch from a centric diatom dominated population to a green algal 

dominated one was pardy responsible for the switch from an autotrophic to a heterotrophic 

system. This switch was clearly seen for the Trent. However, no explanation was offered to 

suggest why the switch from a centric to a green dominated phytoplankton occurred in the first 

place. 

Once the production rates of Trent and Ouse phytoplankton had been estimated, the next 

stage in the investigation was to estimate growth rates o f in jz/̂ ^ populations and dominant 

phytoplankton species. The production data was to verify as to whether or not estimated growth 

rates were viable. Also, once both production and growth rates were estimated, a more 

comprehensive picture could be attained with regard to phytoplankton development and the 

factors controlling this development. The next stage of work also considers grazing as a loss 

process. 

5.7 Summary 
1. Attenuation was influenced by discharge in both rivers and by chlorophyll a concentration in 

the Trent. Maximtim values of 9 and 11.6 m"' were observed for the Trent and Ouse, 

respectively. These occurred during flood events. 

2. Attenuation of Hght at the red end of the spectrum was influenced by chlorophyll a 

concentration for both the Trent and Ouse. A positive correlation existed between 

attenuation at 675 nm and chlorophyll a concentration. 
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3. Chlorophyll a concentxation and discharge were the most important factors influencing light 
attenuation in the Trent and Ouse. Humic and fulvic acids were also considered as important 
for the Ouse. 

4. Rates o f (net) were maximal in spring and summer (637 jJmol O2 (mg chl r̂)"' h ') and 

minimal in winter (-136 famol O2 (mg chl d)^ h"') for the Trent. No clear seasonal pattern was 

observed for the Ouse. Although, apart from a potentially erronious maximum rate of 

2019 ^mol O2 (mg chl 2̂)"' h"' , a maximum of 945 |a.mol O2 (mg chl 7̂) ' h 'was obser\'̂ ed in 

spring and a minimum of -268 | imol O j (mg chl d)^ h ' i n winter. Rates of Pn^,(net) showed a 

positive correlation with temperature and average daily irradiance. 

5. Rates of respiration were low during spring, falling to minima of 13 and 10 ^.mol O j (mg chl 

tf)"' h ' and increased during stammer to seasonal maxima of 134 and 1043 fimol O j (mg chl a) ' 

h ' for the Trent and Ouse, respectively. A clearer seasonal pattern was observed for the Trent 

than the Ouse. However, for both rivers, a positive correlation was observed between 

respiration rate and temperature. 

6. Respiration rates of algae grown in culttire showed a similar response to temperature to the 

response in situ. Rates increased with increasing temperature and were similar to in situ rates. 

Rates were similar between centric diatoms and a green algal species. However, rates of 

respiration at 20°C were higher than for the centric diatoms. 

7. For the Trent, column and areal production followed a similar seasonal pattern. Maximal rates 

of column production o f 1114 and 2721 fimol O j (mg chl î ) ' d 'and rates of areal production 

o f 546 and 536 j^imol O2 m'^ d 'were observed during spring and early summer for the Trent 

and Ouse, respectively, when temperatures and respiration rates were relatively low. During 

summer, as temperature and respiration rate increased, rates of production declined and 

negative rates were observed. Rates remained low through the winter although this was the 

result of low Hght and temperature. 

8. The most important factors influencing column and areal production were chlorophyll a 

concentration and respiration. Irradiance and temperature were considered as indirectly 

influencing production as a result of their influence upon rates of respiration and (net). 

9. When production was modelled using different values for depth, K j and respiration, maximal 

differences were observed during spring and summer but not for winter. Therefore, i t was 

considered that a change in these variables could have marked effects upon production, 

especially during spring and summer. 

10. As a result o f the turbidity of the Trent and Ouse photoinhibition was not important in 

controlling production in these turbid rivers. 
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6 G R O W T H AND LOSS 

6.1 Downstream growth and loss of phytoplankton populations 
Rates of in situ growth and loss were estimated to comply with objectives 2 and 3 of the overall 

aims of the project (Section 1.11) to assess the seasonal growth and loss of phytoplankton 

populations. In situ rates of growth were calculated for the Trent as change in chlorophyll a with 

distance downstream (Section 3.71). In situ rates of growth and loss were also estimated from 

grazing and production studies (Sections 3.74 & 5.4, respectively). These rates were compared 

with growth rates of'dominant' phytoplankton species in ciilture (Section 3.73). 

Loss rates were estimated from grazing rate studies conducted in the laboratory (Section 3.74). 

Growth and loss estimates concentrated on the Trent as a greater number of sites over a large 

spatial range were sampled. Estimations for the Ouse were restricted to grazing rate estimations 

during 1996. 

A t the time of the annual maximum, chlorophyll a concentration increased markedly 

downstream (Figs 6.1, 6.2, 6.3). During 1995, the first year of sampling, measurements were made 

on changes with chlorophyll a concentration with distance downstream at seven sites over a 63 km 

length o f the Trent; f rom Cavendish Bridge to Cromwell (Fig. 6.1). Between April and Jvily 1995, 

there was a downstream increase in the average chlorophyll a concentration of 51 % (45 to 68 jig 

r \ Fig. 6.1). During the first year of sampHng, this large increase in chlorophyll a with distance 

downstream was greatest on 10 May 1995 with an increase o f 66 % (49.9 to 146.7 |a,g l ' ) . In 

contrast, between August and October there was a downstream decrease of 42 % (19 to 11 |4,g 1"', 

Fig. 6.1). 

The second year of sampling included one survey (9 May 1996) starting further upstream, with 

ten sites (Fig. 6.2) over a 103 km length o f river (Section 3.71). In this case the chlorophyll a 

concentration increased by 293 % (27 to 106 |J,g 1', Fig. 6.2). This showed an exponential rate of 

increase in chlorophyU a concentration with distance of 0.0115 km ' (growth rate of 0.19 d '. Fig. 

6.2). 

Seasonal monitoring o f the tributaries during 1995 showed relatively low phytoplankton 

chlorophyU a concentrations in the Derwent and Devon, but concentrations in the Soar were 

similar in magnitude to the Trent at Cromwell (Fig. 6.1). On the whole, tributaries did not provide 

a major input o f phytoplankton chlorophyll a to the main river, suggesting that increase in 

phytoplankton chlorophyll a downstream was a result o f in situ growth. 
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Figure 6.2 Downstream increase in chlorophyll a concentration at five sites on the Trent 
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biomass maximum, 9 May 1996. The line represents the linear regression of the 
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The study conducted on 9 May 1996 confirmed the low contribution o f the tributaries. 

Chlorophyll a concentrations in the Tame, Dove, Derwent and Devon were relatively low 

(between 16 and 20 |j,g 1') in comparison to the main river (between 27 and 106 fJ.g T') as shown in 

Figure 6.2. However, concentrations in the Soar (108 |a,g 1"') exceeded the interpolated 

concentration of chlorophyU a at the confluence with the Trent (Fig. 6.2). 

The three sites furthest downstream on the Trent sampled on 9 May 1996; Cavendish Bridge, 

Gunthorpe and CromweU (Fig. 6.2), were also sampled in unison throughout 1995, 1996 and 1997. 

The exponent of change in chlorophyU a concentration with distance, and resulting rate of growth 

or loss, (Section 3.71) were calculated for these three sites from Apri l 1995 to June 1997 (Fig. 6.3). 

A similar pattern o f downstream growth in spring existed for aU three years and downstream 

decrease in phytoplankton chlorophyU a in summer and autumn was shown for 1995 and 1996. 

Sampling did not continue into late summer and autumn 1997 so the growth rates during this 

period are not known. In spring, the concentration o f chlorophyU a increased on passing 

downstream at rates o f 0.020, 0.028 and 0.04 km"' in 1995,1996 and 1997 respectively (Fig. 6.3). 

This corresponded with growth rates o f 0.48, 0.59 and 0.70 d"' respectively (Fig. 6.3). In late 

summer and autumn, however, the concentration decreased downstream at rates of 0.030 and 

0.029 km ' in 1995 and 1996, corresponding with growth rates of -0.46 and -0.76 d"', respectively 

(Fig. 6.3). 

Temperature was the main environmental variable influencing the pattern o f downstream 

growth and loss. Figure 6.4 shows the relationship between rates o f growth and loss o f 

phytoplankton chlorophyU a and temperature for the Trent. The population was categorised into 

the times when either centric diatoms or Chlorophyta dominated (i.e. comprised the greater 

proportion o f the population). 

The downstream increase in phytoplankton chlorophyU a when the population was dominated 

by centric diatoms showed a significant positive relationship with temperature (r^=0.57, P<0.01, 

n=21; Fig 6.4). Although no positive relationship existed between downstream growth or loss and 

temperature when the population was Chlorophyta dominated (r"=0.003, n=14; Fig 6.4), most 

data points showed a downstream loss o f phytoplankton chlorophyU a (Fig. 6.4). This suggests 

that downstream growth occurred when the population was dominated by centric diatoms, during 

spring, and downstream loss occurred when dominated by Chlorophyta, during summer. 
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Acaster, respectively during 1996. DUutions were incubated for between 24 and 
48 hours. 
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6.2 Growth of phytoplankton in culture as a function of temperature 
To complement in situ estimations of growth, the growth rates of three species of phytoplankton 

isolated for the Trent and Ouse were estimated in culture at four temperatures and at saturating 

Ught (Section 3.73). Figure 6.5 shows the growth rates o f these three species in culture. AU three 

species exhibit increased growth rates with increasing temperature. The growth rate of Cyclotella 

meneghiniana 'incte2.^td f rom 0.12 d"' at 5°C to 0.75 d"' at 20°C (r=0.96, P<0.01, Q,o=5.69; Fig. 6.5). 

Growth of Cydostephanosinvisitatus mciezscd f rom 0.06 d ' at 5°C to 0.92 d ' at 20°C (r=0.97, 

P<0.001, Q,o=4.91) and growdi o f Scenedesmus intemedius mcxeased from 0.18 d ' at 5°C to 0.81 d"' 

at 20°C (r=0.78, P<0.1, Qio=2.29; Fig. ,6.5). Analysis of the data (ANOVA) showed that there was 

no overaU difference between growth o f any of the species over the 5 to 20°C temperature range. 

However, at 5°C a significant difference existed between growth o f the Chlorophyta {S. intemedius) 

and the two species o f centric diatoms (C meneghiniana and C. invisitatus) with S. intemedius 

exhibiting higher growth rates than both C. meneghiniana (ANOVA, P=0.004) and C invisitatus 

(ANOVA, P=0.002). Interpolation of the data showed that growth rates of a doubling per day 

(0.69 d ') were achieved at simUar temperatures o f 15, 17 and 18°C for C. invisitatus, C. meneghiniana 

and S. intermedius tespectively (Fig. 6.5). This highUghts the simUar growth rate of the three species 

in culture. 

6.3 Growth and loss rates derived from grazing rate estimations 

Growth rates were also calculated when investigating the loss from zooplankton grazing (Section 

3.74). Figure 6.6 shows the estimated growth rates and apparent grazing rates measured as an 

increase or decrease in phytoplankton chlorophyU a. Rates of growth and grazing were closely 

correlated for bof l i CromweU (r=0.92, p<0.001, n=32) and Acaster (r=0.92, p<0.001, n=24), 

shown in Figure 6.7. 

The magnitude and temporal pattern of growth and grazing rates differed between the Trent 

and Ouse. Two grazing and growth peaks occurred at CromweU. On 30 April and 21 May 1996, 

growth rates reached 0.32 and 0.39 d ' respectively while grazing rates showed a similar pattern and 

similar rates and reached 0.35 and 0.37 d"̂  respectively. Grazing and growth both decreased 

between 30 Apri l and 21 May 1996. After 21 May, growth decreased to a minimum of -0.3 d"' 

and grazing to a minimum of -0.62 d ' on 18 June 1996. 

For the Ouse at Acaster, maximal growth and grazing rates of 1.39 and 1.61 d"' respectively 

occurred on 30 AprU 1996. Both growth and grazing rates decreased rapidly to mimima of-1.63 

and -2.2 d"' respectively. Growth rates then steadily increased to 1.0 d ' on 18 June 1996. Grazing 

also increased to 0.26 d"̂  on 28 May but decUned to -0.31 d ' on 18 June 1996 as the growth rate 

increased. 
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Negative grazing rates (Fig. 6.6) were unexpected as it was assumed that i f no grazing occurred 
then a grazing rate with a value of zero would result. These negative rates are discussed in Section 
8.33. Where a positive grazing rate occurred, grazing by zooplankton could account for the loss of 
between 1.3 (16 Apri l 1996) and 44.3 % (21 May 1996) of phytoplankton chlorophyU a for the 
Trent and between 30 (28 May 1996) and 400 % (30 April 1996) of the phytoplankton chlorophyU 
a for the Ouse. A significant negative correlation between grazing and temperature (r=0.4, 
P<0.02, n=32) and a positive correlation between grazing and discharge (r=0.48, P<0.01, n=32) 
existed for the Trent at CromweU. A significant relationship was only observed for grazing rate 
and discharge for the Ouse at Acaster where a negative correlation existed (r=0.37, P<0.1, n=24). 

Relationships between growth rate and environmental variables (calculated from grazing rate 

estimations) were simUar to those observed between grazing rate and environmental variables. For 

the Trent at CromweU, a negative correlation was observed between growth rate and temperature 

(r=0.36, P<0.05, n=32) and a positive correlation (r=0.56, P<0.001, n=32) between growth rate 

and discharge. In contrast, for the Ouse at Acaster, a negative relationship between growth rate 

and discharge was observed (r=0.68, P<0.001, n=24). 

Although data for zooplankton species composition, population density or biomass were not 

avaUable for this study, preliminary investigations showed that rotifers such as Keratella spp. and 

protozoans such as Strohilidium spp. dominated the zooplankton at both CromweU and Acaster. 

Benthic filter feeders may also play an important role in the loss of phytoplankton to grazing. 

Although no quantitative data exists for this subject, large numbers of Unio sp. were found on 

gravel spoU, dredged from the Trent upstream of CromweU. 

6.4 Comparison of growth rates derived from various methods 

Growth rates were also calculated from modeUed rates of phytoplankton production (Section 5.4). 

Figure 6.8 compares these results with growth rates estimated from the grazing rate experiments, 

in situ downstream growth estimates and temperature dependent growth rates of phytoplankton in 

culture. 

Growth rates obtained from aU four methods of estimation showed a simUar pattern (Fig. 6.8). 

For in situ calculations, growth rates increased during spring, reaching simUar maximal values of 

0.33, 0.39 and 0.59 d"' for production modeUed, grazing rate calculated growth and growth 

calculated from downstream changes in chlorophyU a respectively (Fig. 6.8). The growth rates of 

species in culture (Section 6.2) are plotted as a mean of aU three species investigated and are 

plotted at the time of year when the temperatures used in the experiment (5, 10, 15, 20°C) were 

experienced in situ. These represent the maximal rates attainable at nutrient saturation, Ught 

saturation and 16 hours of Ught per day at a given temperature. 
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Figure 6.8 Comparison o f estimated rates o f growth derived f rom different methods; 
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grown in culture for the Trent at Cromwell during 1996. 
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The growth rates of species in culture increased with temperature, but unlike the rates 
calculated from in situ measurements, did not decrease during summer. In fact, they attained a 
maximum growth rate o f 0.83 d"̂  on 18 June 1996 at a temperature of 20"°C (Fig. 6.8). After the 
spring maxima, growth rates decreased during summer and decUned to summer minima of -1.59, -
0.3 and -0.76 d"' for production modeUed growth, grazing rate calculated growth and growth 
calculated from downstream changes in chlorophyU a respectively (Fig. 6.8). Growth rate 
estimates, calculated from grazing experiments, also declined during summer. This was not 
expected as Ught was never Umiting during the grazing experiment incubations. However, growth 
rates calculated from grazing experiments did not decline to levels as low as other in situ 
calculations (Fig. 6.8). This may be because grazing was only measured up to the early summer, 
(18 June 1996). 

Although growth rates calculated by different in situ methods differed sUghtiy, especiaUy during 

summer, rates o f growth during spring were simUar and the simUar pattern of spring maximal rates 

and late summer minima (Fig. 6.8). The fact that the majority of growth rates estimated from in 

situ measurements are lower than the rates obtained for phytoplankton under ideal, laboratory 

conditions (Fig. 6.8) adds confidence to the in situ data. 

6.5 Discussion 
For the Trent at CromweU in situ rates of growth and loss foUowed a simUar seasonal pattern 

throughout the period of investigation. During spring and early summer, rates of growth 

increased, reaching yearly maxima in spring. During this period, the phytoplankton population 

was dominated by centric diatoms. Investigations concluded that the increase in growth rate upon 

journey downstream was correlated with temperature. Laboratory work also showed the increase 

in growth rate of two dominant species of centric diatom with temperature. Therefore, maximal 

rates o f growth in spring were a result of increasing temperature and the abUity of centrics to grow 

rapidly downstream when tempertures increase. 

Rate of growth decreased during late summer and became negative, that is, net loss of 

phytoplankton was evident with journey downstream. During this period phytoplankton 

popvdations were dominated by green algae. During summer, water temperature increased. 

Laboratory studies showed the increase in growth rate of a species of green algae with increasing 

temperature, even when temperatures reached those experienced by in situ populations during the 

rapid decline in phytoplankton biomass during summer. However, no relationship was observed 

between downstream change in phytoplankton biomass and temperature for the green algal 

dominated popidations. I t was concluded that the increase in temperature influenced rates of 

grazing and respiration and these proceses were responsible for the downstream loss of 

phytoplankton f rom the system during summer. 
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Rates o f growth were also negative for the majority of the winter period. This was attributable 
to high discharge and low Ught and temperature resultiung in poor conditions for phytoplankton 
growth. 

Grazing by zooplankton was considered as unimportant apart from a couple of occasions when 

it was responsible for the loss of 44% of the phytoplankton of the Trent and 400% of 

phytoplankton o f the Ouse at their respective tidal limits. Conditions responsible for the growth 

of phytoplankton were considered as equally important for the proliferation of zooplankton. It 

was considered that zooplankton was influenced by the abundance of phytoplankton rather than 

phytoplankton being influenced to a great degree by zooplankton. The importance of protozoa 

and benthic filter feeders were considered and their importance has still to be adequately 

quantified. 

Comparison of growth of phytoplankton using calculations from downstream changes in 

biomass, grazing rate estimations, estimates of production and laboratory work showed a similar 

seasonal pattern and similar rates of growth. I t was concluded that estimates of in situ growth were 

possible when compared to rates o f production for all but the highest rates of growth calculated. 

In situ estimations o f growth were also lower than rates calculated in the laboratory under ideal 

conditions. This added further confidence both in situ estimates of growth and production. 

The last three chapters have been successful in meeting the first, second, third, and to some 

extent, fourth aims o f the project (Section 1.11). I t is now necessary to complement these data by 

estimating the flux of phytoplkankton in the form of phytoplankton carbon to the Humber 

Estuary. ITiis will consider the fourth aim more fuUy and offer a comparison of phytoplankton 

flux f rom the Trent and Ouse to the Humber Estuary. 
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6.6 Summary 
1. During spring, phytoplankton chlorophyll a increased downstream at up to 66% over 63 km in 

1995 and up to 293 % over 103 km in 1996. Apparent growth rates of phytoplankton 

chlorophyll a, moving downstream, reached maxima of 0.48, 0.59 and 0.70 d"' in 1995, 1996 

and 1997, respectively. 

2. During summer, phytoplankton chlorophyll a decreased downstream with maximal rates of 

loss o f 0.46 and 0.76 d"' in 1995 and 1996, respectively. 

3. Temperature was the major environmental factor controlling the rate of growth and loss of 

phytoplankton chlorophyll a during transport downstream. During spring, when the 

population was dominated by centric diatoms, a positive relationship existed between 

temperature and growth rate (r=0.77, P<0.001, n=21). During summer, when the population 

was dominated by Chlorophyta, no significant relationship between temperature and growth 

rate existed. However, downstream decrease in phytoplankton chlorophyll a was mostiy 

evident dviring times of a Chlorophyta dominated population. 

4. Growth rates o f three phytoplankton species in culture showed a significant positive 

correlation with temperature. Growth rates increased up to 20°C, whereas in situ growth rates 

decreased after rivers reached this temperature. Two centric diatoms; Cjdotella meneghiniana 

and Cyclostephanos invisitatus, and one Chlorophyta; Scenedesmus intermedius, all showed similar 

increased rates of growth with temperature. 

5. A close positive relationship existed between estimated rates of phytoplankton growth and 

zooplankton grazing, estimated from grazing rate coefficients for Cromwell (r=0.92, P< 0.001, 

n=32) and Acaster (r=0.92, P<0.001, n=24). Grazing accounted for between 1.3 and 44.3% 

and between 30 and 400% of phytoplankton chlorophyll at Cromwell and Acaster, 

respectively. 

6. Grazing was controlled primarily by temperatvire and discharge. At Cromwell a significant but 

weak negative relationship existed between grazing and temperature (r=0.4, P<0.02, n=32) 

and a positive relationship existed between grazing and discharge (r=0.48, P<0.01, n=32). At 

Acaster a negative relationship between grazing and discharge (r=0.37, P<0.1, n=24) was 

observed. 
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7. Growth rates, calculated from grazing.experiments showed simUar.relationships to 

environmental variables as grazing rates. A t CromweU, growth rate decreased with increasing 

temperature (r=0.56, p<0.001, n=32) and increased with increasing discharge (r=0.56, 

p<0.001, n=32). However, at Acaster a negative relationship was observed between growth 

rate and discharge (r=0.68, p<0.001, n=24). 

8. When compared, in situ apparent rates o f growth calculated from productivity, grazing 

experiments, change in chlorophyU with movement downstream and from species in culture 

showed a simUar pattern and simUar rates of growth in spring. I t was concluded that in situ 

rates of growth estimated during the project were reUable. 
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7. P H Y T O P L A N K T O N CARBON F L U X 

7.1 Estimation of the carbon to chlorophyll ratio 
To estimate the flux o f autochthonous carbon to the estuarine waters of the Humber Estuary the 

flux o f phytoplankton carbon was calculated for the tidal limits o f the Trent and Ouse. These 

calculations would give an overall picture of the importance of phytoplankton to the riverine 

carbon budget as well as providing an estimation of the contribution of phytoplankton carbon to 

the particulate carbon loading to the Humber Estuary. 

The flux o f phytoplankton or 'living' carbon from the Trent and Ouse out to the Humber Estuar)' 

was estimated from discharge, chlorophyll a concentration and an estimation of the carbon to 

chlorophyll ratio of the phytoplankton population (Section 3.71). Estimates concentrated on the 

tidal limits of the Trent and Ouse at Cromwell and Acaster, respectively, as these were the points 

where riverine carbon would enter the tidal section of the rivers. 

A n estimation o f the carbon to chlorophyll ratio was needed to calculate the flux o f carbon 

from the flux of phytoplankton chlorophyll a. Figure 7.1 shows the relationship between 

chlorophyll a concentration and particulate organic carbon (POC) determined according to the 

method of Tipping et al. (1997). A significant relationship existed between chlorophyll a 

concentration and POC for Cromwell (r=0.69, p<0.001, n=104; Fig. 7.1) but no significant 

relationship existed for the Ouse at Acaster. The gradient of the line of linear regression was used 

as an estimate of the carbon to chlorophyll ratio of the phytoplankton popiilation. At Cromwell, 

f rom June 1995 to May 1997, a ratio of 33:1 was calculated (Fig 7.1). As no significant relationship 

existed for Acaster, the value calculated for Cromwell was also used as an estimate of the carbon 

to chlorophyll ratio at Acaster. As no POC data were available for the Trent at Cavendish Bridge 

and Gunthorpe the carbon to chlorophyll ratio calculated for CromweU was also used in 

subsequent calculations of phytoplankton flux for these sites. 

7.2 Time series of phytoplankton carbon flux 
The carbon to chlorophyll ratio was used, along with average weekly discharge for each site and 

chlorophyll a concentration, to calculate weekly and annual phytoplankton carbon fluxes. Figure 

7.2 shows the calculated weekly phytoplankton carbon fluxes for three sites on the Trent; 

Cavendish Bridge, Gunthorpe and CromweU, and one site on the Ouse; Acaster. The average 

weekly discharge for CromweU and Acaster is also shown. 
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Figure 7.1 Relationship betvŝ een suspended chlorophyll a concentration and POC for the tidal 
limits o f the Trent (top figure) and Ouse at (bottom figure) f rom June 1995 to 
May 1997. A carbon to chlorophyll ratio o f 33:1 was calculated for Cromwell 
(r=0.69, P<0.001). 
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Figure 7.2 Weekly phytoplankton carbon flux for the Trent (top figure) and Ouse (bottom 
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For both the Trent and Ouse, three major peak events occurred. At the uppermost site on the 
Trent; Cavendish Bridge, maximal phytoplankton carbon fluxes of 19, 32 and 57 t wk"' occurred 
on 23 July 1995, 28 Apri l 1996 and 11 May 1997, respectively (Fig. 7.2). The flux of 
phytoplankton carbon increased with increasing distance down the Trent. At Gunthorpe, maximal 
fluxes of 33, 33 and 32 t wk ' occurred on 19 July 1995, 3 June 1996 and 19 April 1997, 
respectively (Fig. 7.2). A t CromweU, the tidal limit, maximal fluxes of 45, 43 and 52 t wk"' were 
observed on 3 June 1995, 8 May 1996 and 7 May 1997, respectively (Fig. 7.2). The peaks in 
phytoplankton carbon flux for the Trent occurred during times of low discharge and high 
chlorophyU a concentration in spring (Fig. 7.2). In contrast, at Acaster, two out of the three large 
peaks in phytoplankton carbon flux occurred during high discharge periods during winter (Fig. 

7.2) . Maximal fluxes o f 33, 33 and 20 t wk ' were calculated for 3 June 1995, 17 February 1996 and 

22 February 1997, respectively (Fig. 7.2). The two peaks in February 1996 and 1997 corresponded 

with peak discharge events of 165.9 and 236.2 m^ s"', respectively (Fig. 7.2). 

For the Trent, minimum fluxes of phytoplankton carbon occurred during the autumn and 

winter months. A t CromweU, minimum fluxes o f 1.5, 1.1 and 1.4 t wk ' occurred on 21 October 

1995,17 October 1996 and 22 January 1997 (Fig. 7.2). At Gunthorpe, minimum fluxes of 0.7,1.1 

and 1.3 t wk"' were calculated and at Cavendish Bridge, concentrations of 3, 1.3 and 0.9 t wk"' were 

the minimum fluxes calculated on 17 October 1995, 21 January 1996 and 12 January 1997, 

respectively (Fig. 7.2). For the Ouse, minimum fluxes of phytoplankton carbon were calculated 

during both winter and spring periods. Minimum fluxes o f 0.3, 0.2 and 0.3 t wk"' were calculated 

for the Ouse at Acaster on 21 October 1995, 11 May 1996 and 25 January 1997 (Fig. 7.2). 

7.3 Contribution of phytoplankton carbon to POC 

The contribution of phytoplankton carbon to POC was greatest during the spring and summer 

months in the Trent. Figure 7.3 shows the relationship between phytoplankton carbon 

concentration and POC concentration. During the spring and summer months, the flux of 

phytoplankton carbon increased with increasing POC concentration (r=0.82, p<0.001, n=33; Fig. 

7.3) . However, no such relationship existed for the Trent during the autumn and winter months 

(Fig. 7.3) or for the Ouse at Acaster. This suggests that sources other than phytoplankton carbon 

were more important in the contribution to POC on these occasions. On six occasions, the 

phytoplankton carbon flux was greater than the flux of POC. This is a result of a sUght 

overestimation of the carbon to chlorophyU ratio. 
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For the Trent at CromweU, phytoplankton carbon contributed 77% of aU spring and summer 
POC and 11% of autumn and winter POC during June 1995 to 31 May 1997. Phytoplankton 
carbon contributed to 49% of spring and summer POC for the Ouse at Acaster which was a lower 
contribution than for the Trent at CromweU. The contribution, 11%, o f autumn and winter POC 
was comparable to the Trent at CromweU. 

7.4 Factors influencing phytoplankton carbon flux 

Phytoplankton carbon flux was controUed mainly by the chlorophyU a concentration in the Trent 

and Ouse. ChlorophyU a concentration accounted for 69, 89, 92 and 42% of the variation in 

phytoplankton carbon flux for the Trent at Cavendish bridge, Gunthorpe, CromweU and the Ouse 

at Acaster, respectively (Fig. 7.4). ChlorophyU a concentration was, together with discharge, used 

to calculate phytoplankton carbon flux and so a relationship would be expected. The relationship 

does, however, indicate the influence of both chlorophyU and discharge upon phytoplankton 

carbon flux. A linear relationship, however, was not found between discharge and phytoplankton 

carbon flux at any o f the sites on the Trent. However, a general trend of a decrease in 

phytoplankton carbon with an increase in discharge was shown for the Trent (Fig. 7.4). Discharge 

accounted for only 20% of the variation of phytoplankton carbon flux for the Ouse (Fig. 7.4). 

This suggests that phytoplankton carbon flux was regulated mainly by the concentration o f 

chlorophyU a m the Trent (Fig. 7.4). For the Ouse at Acaster, chlorophyU <7 primarily controUed 

phytoplankton carbon flux, although discharge was also an important factor (Fig. 7.4). The 

combined data of Figures 7.2, 7.3 and 7.4 suggest that large fluxes of phytoplankton carbon 

occurred in the Trent during periods of low discharge and high chlorophyU a concentration, 

during high phytoplankton populations blooms. 

For the Ouse at Acaster, no clear pattern existed although both chlorophyU a and discharge 

appeared to be important in controlling the flux o f phytoplankton carbon. Large fluxes often 

occurred when the concentration o f chlorophyU a was low as a result o f increased discharge during 

large flood events (Fig. 7.2). 

7.5 Annual phytoplankton carbon flux 
Figure 7.5 shows the total phytoplankton carbon flux on an annual basis, calculated for three sites 

on the Trent; Cavendish Bridge, Gunthorpe and CromweU, and the Ouse at Acaster. Flux is 

calculated for two years data; June 1995 to May 1996 and June 1996 to May 1997. For the Trent, 

flux increased on movement downstream during both years. An increase from 571 to 1141 t yr"' 

during the first year (June 1995 to May 1996 ) and from 410 to 967 t yr"' during the second year 

(June 1996 to May 1997) from Cavendish Bridge to CromweU represents an increase of 200 and 

236%, respectively, over the 63 km stretch of river studied. 
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Phytoplankton carbon flux was lower during the second year by between 28, 32 and 15% for 
Cavendish Bridge, Gunthorpe and CromweU was calculated. For the Ouse at Acaster, the flux of 
phytoplankton carbon decreased from 224 to 179 t yr"', a decrease of 20%. 

The annual phytoplankton carbon flux for the tidal limit of the Trent at CromweU was five 

times the flvix at the tidal limit of the Ouse at Acaster during both years (Fig. 7.5). This highUghts 

the importance of the Trent as a source of riverine phytoplankton carbon to the Humber Estuary. 

7.6 Discussion 
The estimation o f the carbon to chlorophyU ratio, however crude (more sophisticated methods 

could have been employed; Section 8.5), aUowed an estimation of phytoplankton flux from the 

Trent and Ouse to the Humber Estuary. The data suggest that autochthonous carbon flux is 

influenced primarily by chlorophyU a concentration and discharge in the Trent and Ouse. 

Maximum flux occurred for the Trent when discharge was low and chlorophyU a concentration 

high. This suggests that high rates of phytoplankton growth and production in spring are 

primarily responsible for high fluxes of autochthonous carbon in the Trent. In contrast, high 

discharge was primarily responsible for autochthonous flux maxima in the Ouse. Therefore, the 

sheer volume of material (i.e. water with low concentrations of chlorophyU d) and not the 

concentration is responsible for autochthonous carbon flux in the Ouse. This highUghts the 

differences in phytoplankton carbon flux dynamics in the two rivers. 

Phytoplankton contributed a maximum of 77% of the POC concentration during spring and 

summer. Maximal contributions o f only 49% were observed for the Ouse. I t can therefore be 

suggested that phytoplankton contribute the majority of the autochthonous carbon flux during 

spring and summer in the Trent. In the Ouse, however, they only comprise half of the flux. 

Therefore other sources of carbon, either autochthonous, such as bacteria and zooplankton or 

aUochthonous must also be equaUy important in the flux of autochthonous carbon for the Ouse. 

A decrease in annual phytoplankton carbon flux was evident during the second year of study. 

The 15 and 20% decrease for the tidal limits of the Trent and Ouse, respectively, is probably a 

result of a decrease in phytoplankton biomass in spring 1997 when compared to spring 1995 and 

1996. During both years the Trent contributed over five times the annual phytoplankton carbon 

flux of the Ouse. This highUghts the importance of the Trent as a source of autochthonous 

carbon to the Humber Estuary. I t also suggests that to concentrate investigations of 

phytoplankton growth and production to the Trent was an astute decision. 
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7.7 Summary 
1. A significant, positive relationship existed between particulate organic carbon (POC) and 

chlorophyll a concentration for the Trent at Cromwell (r=0.69, P<0.001, n=104). The 

gradient of the Une of linear regression gave an estimated carbon to chlorophyll ratio of 33:1. 

N o relationship existed for the Ouse at Acaster so the ratio estimated for the Trent at 

Cromwell was used. 

2. For the Trent, phytoplankton carbon flux was highest (52 t wk"^) during low flow events when 

chlorophyll a concentration was high. For the Ouse, the highest concentrations of 

phytoplankton carbon (33 t wk"^) coincided with high discharge although a relationship 

between chlorophyll a concentration was also evident (r=0.65, P<0.001). 

3. Minimal concentrations o f phytoplankton carbon were calculated during the winter months 

for both the Trent and Ouse although one minimum concentration event was evident during 

the spring at Acaster. 

4. Phytoplankton carbon contributed to 77.3% of the POC during spring and summer for the 

Trent at Cromwell and 48.9% for the Ouse at Acaster. Contribution during the autiimn and 

winter months was lower with values o f 11.5 and 11.4% at Cromwell and Acaster respectively. 

5. Chlorophyll a was the major variable influencing the flux of phytoplankton carbon with 

significant positive relationships existing for both the Trent and Ouse. An increase in 

discharge resiilted in a decrease in the flux of phytoplankton carbon in the Trent but resvilted 

in an increase in the Ouse. 

6. Annual phytoplankton carbon flux passing through the tidal limits of the Trent and Ouse 

during the second year o f sampling decreased by 15% (from 1141 to 967 t yr'') and 20% (from 

224 to 179 t yr'^), respectively, when compared to the first year. 

7. The flux of phytoplankton or 'Hving' carbon passing through the tidal limit of the Trent was 

five times that passing through the tidal Umit of the Ouse. This shows the importance of the 

Trent as a source of riverine carbon to the Humber Estuary. 
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8 Discussion 

8.1 Comparison of the Trent and Ouse with other European rivers 
A large dataset has now been coUected with regards to phytoplankton of the Trent and Ouse. It is 

important to assess to what extent this is typical of other temperate, European rivers. Temporal 

changes in chlorophyU a concentration (4.3) and phytoplankton density (4.2) were similar to those 

reported for other larger European rivers. Maximum chlorophyU a concentration for the Trent 

and Ouse were comparable to larger rivers such as the Thames, Spree and Danube (Table 8.1). 

Table 8.1 Maximal chlorophyU a concentration, phytoplankton density and dominant centric 

diatom species for tiie Trent and Ouse compared to some other European rivers. 

River Max. chl a 

concentration 

Max. ceU 

density (xlO^ 

ceUs m l ' ) 

Dominant taxa Reference 

Thames 100 22.3 Stephanodiscus hant^chii Lack (1978) 

Severn ~ 46 S. hant^schii, Cyclotella 

meneghiniana 

Swale (1969) 

Wye 137 277 C. pseudostelligera Jones (1984) 

Ebro 45 73 S. hant^chii, C. meneghiniana, 

Skeletonema potamos 

Sabater & Munoz (1990) 

Spree 115 S. hant^chii, C. meneghiniana, 

C. radiosa 

Kohler (1993) 

Danube 100 60 Centric diatoms Kiss (1994) 

Ouse 70 - S. hant^chii, C. meneghiniana, Marker et al. (1993) 

Trent 150 14 S. hant^schii, C. meneghiniana, Marker et al. (1993) 

Meuse 60 30 S. hant^chii, Gosselain et al (1994) 

Rhine 140 70 S. hantr^chii, C. meneghiniana, 

S. parvus 

AdmiraaU/«/. (1994) 

Ouse 166 50 S. hantt^schii, C. meneghiniana. This study 

Trent 162 54 S. hantt(schii, C. meneghiniana, 

Cjclostephanos invisitatus 

This smdy 

Concentrations of chlorophyU 2̂ in die Trent were simUar to those reported by Marker et at 

(1993; Table 8.1). However, maximal concentrations reported for die Ouse in 1995 in the present 

study were over twice the maximal concentration reported by Marker et al (1993; Table 8.1). The 
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hydrodynamicaUy responsive nature o f the Ouse system may be responsible for comparatively low 
maxima reported for 1996 and 1997 and is discussed later (Sections 8.21, 8.31). 

Surprisingly, maximum concentrations of chlorophyll a for the Trent and Ouse were over twice 

those reported for the Ebro and Meuse (Table 8.1) which are large European rivers. Maximal 

concentrations o f chlorophyll a were observed during spring and minima during winter (Section 

4.22). However, despite apparentiy favourable growth conditions during summer, chlorophyll a 

and phytoplankton abundance in the Trent and Ouse was much lower than in spring (Sections 4.1, 

4.22, 6.1). This is a common feature o f lowland rivers (e.g. Kohler, 1993; Admiraal et al, 1994), 

although not universal (Kiss, 1994; Baker and Baker, 1979) and is discussed later (Section 8.35). 

Maximal cell densities for European rivers vary greatiy (Table 8.1). Even so, densities for the 

Trent and Ouse were within the limits reported for other rivers (Table 8.1). Surprisingly, low 

phytoplankton density was reported for the Trent by Marker et al. (1993; Table 8.1) even though 

maximum chlorophyll a concentration was similar to that reported for the present study. The 

reason for this is unclear as the dominant species were the same as in the present study (Table 8.1). 

The reason for the large population density recorded for the Wye for a relatively low chlorophyll a 

concentration (Table 8.1) is unclear. The small size of Cyclotellapseudostelligera cells dominating the 

population (Table 8.1) can only partially account for the relatively high density. 

A strong, positive relationship was observed between chlorophyll a concentration and 

phytoplankton density (Section 4.21). As the relationship was highly significant, it was supposed 

that chlorophyll i^was a reasonable estimate of phytoplankton biomass. The variation of the data 

was the result o f the variability in the chlorophyll a content of different species of phytoplankton. 

The chlorophyll a content per cell is dependent upon cell size, physiological state of the cell and 

the environmental conditions imposed upon cells (Kirk, 1994). The chlorophyll a content of 

between 2.8 and 1.4 pg chl a cell ' for the Trent at Cromwell and Ouse at Acaster, respectively 

(Fig. 4.7) was similar to 2.9 pg chl a cell ' found for the Thames (Lack et al. 1978). The chlorophyll 

a content per cell for the Trent at CromweU was twice that calculated for the Ouse at Acaster. 

This may have been the result of populations of larger cells occurring at Acaster than at Cromwell 

although phytoplankton species composition was similar for both Cromwell and Acaster (Section 

4.1). A factor contributing to the difference in chlorophyll a content of individuals may have been 

light adaptation. Cells tend to increase their chlorophyll a content in response to a low light 

regime (Descy & Gosselain, 1994). This is unlikely to have been a factor in the case of the Trent 

and Ouse. The Ouse was on average 2 m deeper than the Trent at the tidal Umits. It was 

therefore more Hkely that cells would use light more efficientiy in the Ouse and therefore have 

higher concentrations o f chlorophyll «per cell. 

The seasonal switch from a spring phytoplankton population dominated by centrics to a 

population dominated by green algae in the Trent and Ouse (Section 4.1) is well documented for 
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other rivers (see Holmes & Whitton, 1981). This switch in algal dominance coincided with a 
decrease in phytoplankton density and biomass (Sections 4.1, 4.22) a switch from net growth in 
spring to net loss in summer (Section 6.1) and a switch fiom an autotrophic to a heterotrophic 
system (Section 5.4). Although no explanation is offered for this switch in dominance, the 
resulting changes in growth and production dynamics are discussed later (Section 8.34). 

Species of centric diatoms recorded for the Trent and Ouse during the chlorophyU a maxima 

are similar for those reported for other European rivers (Table 8.1). The species o f green algae 

recorded for the Trent and Ouse are also similar to those recorded for many other European 

rivers (Reynolds & Descy, 1996). Species of Actinastnim, Chlorella and Scenedesmus were the 

numericaUy dominant components of green algal dominated phytoplankton populations (Section 

4.1). I t appears, therefore, that the dominant species of temperate, Eviropean rivers are 

cosmopoUtan. The similarity of species composition is indicative of a strong selection pressure 

induced by riverine environmental conditions. 

Rates o f production for the Trent and Ouse, expressed on a gross areal basis, were similar to 

other European rivers (Table 8.2). Variation between rivers may be a result of different techniques 

used for measuring photosynthesis. Using different models to estimate column production also 

causes variation in results. SampUng of the Trent and Ouse was frequent; weekly during spring. I t 

was therefore more likely to sample during periods of peak production. Differences also occur as 

different environmental pressures are more important to different rivers. OveraU, chlorophyU a 

concentration, phytoplankton density and production for the Trent and Ouse are similar to those 

reported for other European rivers. 

Table 8.2 Minimum and maximum rates of gross areal production for the Trent and Ouse 

compared to some other Etiropean rivers 

River Gross primary production (g C m""̂  d"') Reference 

Minimum Maximum 

Itchen 0.2 11.7 Butcher (1930) 

Thames 0 4.5 Wetzel (1975) 

Danube 0 4.8 DvUiaUy (1975) 

Loire 0.1 3.9 BiUen etal (1984) 

Meuse 0.1 5.8 Descy e/fl/. (1987) 

Rhine 2.1 3.4 Admiraale/fl/. (1994) 

Ouse 0 5.9 This study 

Trent 0 8.5 This smdy 
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8.2 Growth processes 
8.21 Discharge 

To understand the processes governing the flux of autochthonous carbon in rivers it is necessary 

to comprehend the environmental factors influencing the growth and production o f riverine 

phytoplankton. Growth and production are primarily influenced by discharge, light and 

temperature. For the Trent and Ouse maximal concentrations of chlorophyll a (Section 4.22), 

phytoplankton cell density (Section 4.1) rates o f growth (Section 6.1) and production (Section 5.4) 

were measured during spring when discharge was low. Reduced discharge during spring increases 

river retentivity and reduces dilution of phytoplankton populations. Decreased discharge reduces 

the rate o f hydraulic flushing, an important loss process for all 'potamoplankton' (Reynolds, 1988; 

Pinder et al., 1997). I t has been suggested that discharge is the most important factor influencing 

phytoplankton growth in rivers (Baker & Baker, 1979). Decreased river velocity, rather than the 

actual discharge, increases river retenti\rity, allowing time for phytoplankton to grow. A river must 

flow slowly enough for populations to develop. For example, a velocity of 5 m s ' has been 

suggested as the threshold for the centric diatom Stephanodiscus hantt^chii to proliferate (Swale, 

1969). Low discharge and high river retentivity allow more time for populations to establish and 

develop during their travel downstream. Rapid growth rates exhibited by centrics (Knoechel & 

Kalff, 1978) may explain why they proliferate in spring when discharge and velocity are decreasing 

but not as low as they are in summer. A species with a rapid growth rate will be able to proliferate 

in rivers before being washed out to the estuary as they will have a competitive advantage over 

larger, slower growing species. The downstream increase in phytoplankton populations during 

spring is discussed later (Section 8.24). 

The increased temporal resolution offered by day to day (Section 4.25) and daily (Section 4.26) 

sampling of chlorophyll a showed the importance of hydraulic flushing upon spring phytoplankton 

density. As discharge decreased during the early spring months, chlorophyll a concentration 

increased to yearly maximum concentrations (see also Section 4.24). Spring floods interrupted the 

yearly chlorophyll a maximum as a result of dilution and rapid washout of phytoplankton from the 

river (Section 4.26). However, as discharge decreased, chlorophyll a concentration rapidly 

increased again, often reaching concentrations observed before the flood event (Section 4.26). 

Phytoplankton populations are able to recover from spring floods i f favourable conditions return 

after the flood (Swale, 1969). I t is obvious from the work on the Trent that spring floods are a 

major factor influencing spring phytoplankton development. The stochastic flood events during 

spring imposed an unpredictable climate upon spring phytoplankton populations. Environmental 

conditions rapidly change firom those optimal for growth to those unfavourable for growth and 
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rapidly back again. We suggest that this unpredictable underwater climate favoured the 
development o f some species and not others. 

The spring maxima in phytoplankton density and chlorophyU a concentration comprised 

mainlycentric diatoms (Section 4.1). Centric diatoms also chiefly comprised the spring maximum 

in other temperate rivers (Table 8.1). I t is assumed that centric diatoms are low temperature, low 

Ught adapted species with high growth rates (Reynolds, 1989). They take advantage of and 

proUferate in rivers when conditions are becoming favourable for growth but are not yet 

favourable for other phytoplankton groups such as green algae. Although no thorough detaUed 

analysis of centric diatom species was conducted during this investigation, preliminary work 

identified three species (Table 8.1) as dominant during spring blooms. These species are common 

spring species in many temperate rivers (Table 8.1). They are smaU, with diameters from 4 to 30 

jum and large surface-area-to-volume ratios. The ability of these species to grow rapidly and pre-

adapt to their environment (Reynolds, 1984) gives them a competitive edge over other species. 

Large populations are able to develop before being transported to the sea. I t is interesting to note 

that net growth was only observed in the Trent during spring when centric diatoms dominated the 

phytoplankton (Section 6.1). When the population became dominated by green algae, negative 

growth foUowed. This coincided with a decline in chlorophyU a concentration and rates of 

production (Sections 4.22, 5.4) and is discussed later (Section 8.34). 

Although discharge during spring was low, the water column was usuaUy weU mixed as 

variabiUty studies showed (Section 4.23). Mixing results in decreased rates o f sedimentation of 

phytoplankton ceUs and the re-suspension of ceUs which have sedimented. During spring, as ceUs 

are actively growing, they exhibit low sedimentation rates (Tilman & Kilham, 1976)). Therefore 

only minimal losses of phytoplankton to sedimentation would be expected during spring. 

Mixing also exposes ceUs to an intermittent Ught regime. This is thought to benefit centric 

diatoms (Reynolds, 1994) and is discussed later (Section 8.22). Centric diatoms could theoreticaUy 

dominate throughout the season in deeper, turbid rivers as a result of their competitive advantage 

under these environmental conditions (Reynolds & Descy, 1996). Indeed, centric diatoms may be 

more important in the deeper, more turbid, downstream reaches o f a river whilst green algae are 

more important in the shaUower, less turbid, upstream reaches (Sabater & Munoz, 1990; Descy, 

1987). 

Despite chlorophyU a maxima corresponding with low discharge in spring, winter flood events 

often coincided with an increase in chlorophyU a during winter (Section 4.22). This may have been 

the result o f re-suspension o f benthic diatoms. The re-suspension of benthic material during 

flood events often results in an increase in benthic diatoms in the water column (e.g. Jones & 

Barrington, 1985). However, there was no such relationship observed for the Trent and Ouse. 

A n increased contribution of green algae to the population corresponded with winter floods. This 
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suggests that green algae inhabiting the benthos were washed into suspension. I t fiirther suggests 
that these green phytoplankton species exhibit a meroplanktonic existence; undergoing a benthic 
survival phase. Large proportions of pennate species, described as typically benthic (Reynolds & 
Descy, 1996) found in the Trent and Ouse, such as Navicula, Nit;^chia and Sjnedra were obser\'̂ ed 
during spring and siommer when discharge was relatively low. This suggests that the influx of 
diatoms, particularly pennate diatoms, fiom the benthos was a result of removal by high O j 
production (Moore, 1976) with O j bubbles dislodging benthic communities (B.A. Whitton, pers. 
comm.). 

The evidence suggests that discharge related environmental factors during spring; decreasing 

flow, increasing retentivity and mixing benefits centric diatoms. They have a competitive 

advantage over other species and proliferate during spring. Although a uniform pattern of centric 

diatom waxing and waning exists, the mechanism which favours centrics in spring is unknown. 

During summer, when discharge reached the seasonal minimum, conditions no longer allowed 

centrics to be competitive. This resulted in a loss from the system and other species, particularly 

green algae were able to take over. 

As well as a decrease in hydraulic wash out, re-suspension and dilution of phytoplankton 

populations, decreased discharge improves the underwater light climate. 

8.22 Light 
Once nutrient requirements of phytoplankton are sustained, Hght is the primary factor controlling 

production (Wetzel, 1975). Therefore, the amount o f light available to phytoplankton influences 

primary productivity, the production o f new biomass and the growth of phytoplankton 

populations. 

Other than flood events, when attenuation was high as a result of suspended material, the 

underwater Hght climate in the Trent was primarily influenced by phytoplankton biomass (Section 

5.1). High values of K j , calculated during spring, coincided with large populations of centric 

diatoms (Section 5.11). This phenomenon has also been reported for other aquatic systems (Kirk, 

1994; Jones, 1977). However, development of large phytoplankton populations, particularly 

centric diatom, rarely results in self-shading (Dokulil, 1994). No relationship between K j and 

ph)^oplankton biomass was observed for the Ouse (Section 5.11). I t is considered that dissolved 

humic and fulvic acids, originating from the peaty catchments of the tributary rivers Swale and 

Ure, may have been important in light attenuation in the Ouse. High values of K j coincided with 

occasions when the Ouse was peaty-brown in colour (author's xinpubHshed data). The importance 

of dissolved substances upon the underwater light climate has been well documented in other 

aquatic systems (Kirk 1976, 1980) as has the effect of mineral turbidity (Threlkeld & Soballe, 

1988). 
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Spectroradiomettic investigations (Section 5.12) showed that Ught at the red part of the 
spectnam was least attenuated throughout the year. The high attenuation of blue wavebands in 
both rivers, particularly in the Ouse, is further evidence for a large contribution of humic 
substances to light attenuation. During periods when phytoplankton biomass was high, Kght was 
increasingly attenuated at 675 nm by phytoplankton (Section 5.12). This was the wavelength most 
strongly absorbed by chlorophyll a in vivo. 

Both the Trent and Ouse and the Ouse tributaries experienced an increase in the attenuation of 

light during high discharge events, particularly in winter (Section 5.11). This was probably a result 

o f an increase in non-algal suspended solids originating from aUochthonous and benthic sources 

and has been documented for other systems (Kirk, 1980, 1994). The Ouse system was more 

responsive to floods than the Trent system (D.V. Leach, pers. comm.). This implies that non-algal 

suspended solids were probably more important in attenuating Hght in the Ouse than the Trent as 

they would be incorporated into the water column by the scouring action of floods. Overall, non-

algal ttirbidity is regarded as the primary cause o f light attenuation in turbid systems (Owens & 

Crumpton, 1995; Reynolds & Descy, 1996). 

During spring and summer, reduced discharge resulted in an improved underwater light 

climate. This resulted from decreased turbidity by a decrease in suspended particles (Kiss, 1994), 

so increasing the euphotic depth. Decreased river depth restilted in phytoplankton being exposed 

to higher irradiances for longer periods o f time than in a deeper water colvimn. In addition, the 

daily average and total amount of Hght at the water surface was also increasing. 

Irradiance influenced values o f the P vs I parameters and the shape of the P vs I curve for the 

Trent and Ouse (Section 52). The rate o f P^^(net) was greatest during spring and summer when 

irradiance was high and daylength long and when the phytoplankton population was dominated by 

centric diatoms (Section 5.2). For the Trent and Ouse, the rate of P^(ne t ) increased with 

increasing average daily irradiance. This is a common response (Henley, 1993). High Pn^(net) 

rates imply that phytoplankton attain high rates of photosynthesis for long periods of time (Harris, 

1984). During spring and summer, with decreased discharge and increased irradiance and 

temperature, conditions were ideal for photosynthesis. Therefore, maximum rates of PmaxCî Ô 

were expected at this time of year. 

Rates of P^.((net) also depend upon temperature and species composition (Descy et ai, 1987). 

The small size of Gentries found in this study (c. 5-15 \ssn. diameter; Section 4.1) may account, in 

part, for the high rates of P^(ne t ) when compared to periods when green algae were dominant. 

Banse (1976) explains that rates of P^(ne t ) decrease on a size specific basis as cell size increases. 

As rates of P^^ .̂(net) in this study were expressed on a chlorophyll a basis, size may contribute to 

variation in rates of P„^,(net) between populations dominated by Gentries and green algae. 

Although maximal rates of P^^(net) coincided with dominance by centric diatoms (Section 4.2), 
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green algae often exhibit higher rates of P^(net) 0ones, 1977). 

Rates o f P^^.(net) are also temperature dependent. I t has been suggested that temperature is 

the primary variable controlling PmaxCi^^t) (Baker & Baker, 1979). Even so, increased irradiance 

usually coincides with increased temperature so it is difficxilt to separate the effects of both upon 

fates of P^(net). A combination of cell size, increasing temperature and irradiance resulted in 

maximum rates of P^^(net) during spring. 

No clear relationship existed between a and irradiance for the Trent and Ouse (Section 5.2). 

However, a was positively correlated with K j for the Trent and (3 with K j for the Ouse (Section 

5.2). Values of a increased with increasing K j for the Trent, indicating adaptation to low light. 

Values of a decrease with increasing cell size (Banse, 1976) although no seasonal pattern or 

difference between values o f a and species composition was evident. I t is difficult to relate any 

photo-adaptation of ceUs to environmental factors. Even so, it has been suggested that 

phytoplankton must photoadapt in order to survive in turbid systems where the light climate is far 

from optimal (Reynolds & Descy, 1996). 

Values o f p increased with increasing K j for the Ouse, indicating increased photoinhibition 

with decreasing Ught. This may be a result of experimental design. Samples were taken from the 

turbid water column and transferred to static incubation botties under high light (Section 3.61). 

Incubation o f samples over long periods can result in increased photoinhibition (Takahashi et al., 

1971). I f not a result o f experimental design, increased photoinhibition may be species dependent 

(Harris, 1984) with diatoms being more susceptible than other species (Goldman & Dennett, 

1984). However, there was no clear relationship between values of P and species composition for 

the Trent and Ouse. 

Photoinhibition may be a function of temperature. Although no significant relationship existed 

between p and temperature a significant relationship existed between \ and temperature for the 

Trent. This suggests that at low temperature, photoinhibition is initiated at a lower irradiance. 

This is consistent with the theory that photoinhibition occurs when photon capture exceeds the 

capacity to deal with the energy (Henley, 1993). 

In this study, column production was greatest during spring and early summer when irradiance 

was high and respiration rates low (Section 5.4). Low respiration rates in spring corresponded 

with low temperature and increased euphoric depth. Respiration as a source o f phytoplankton loss 

is discussed later (Section 8.34). Decreased light attenuation and river depth contributed to 

increased average daily column productivity when modelled for the Trent and Ouse (Section 5.4). 

The light climate for a phytoplankton cell during spring improves as surface irradiance and 

daylength increase (Kirk, 1994) and river depth decreases. Increased irradiance results in increased 

rates o f daily column production in other rivers (Kowalczewski & Lack, 1971; Gosselain et ai. 



162 

1994) and estuaries (D'Avanzo et ai, 1995). Increased irradiance should promote gross production 
for phytoplankton populations as a whole (DokulU, 1994), i f surface photoinhibition of cells 
adapted to low Ught is not a major factor (Reynolds & Descy, 1996). Modelling of average daily 
colixmn production when omitting the effect o f photoinhibition showed littie change in actual 
rates o f production in the Trent and Ouse (Sections 5.412, 5.522). This suggests that 
photoinhibition had littie effect on productivity of these turbid, deep rivers. As a result of 
turbidity, depth and mixing in turbid rivers such as the Trent and Ouse, cells are rarely subjected 
to irradiances high enough for photoinhibition to be important (Grande et ai, 1990; MaUin & 
Paerl, 1992). 

Mixing may stimulate rates of production by mitigating Hght limitation in turbid systems 

(Grobbelaar, 1990; Dokulil, 1994; Cole et al, 1992). The euphotic depth to mixing deptia ratio is 

the most important factor influencing production in turbid systems (Grobbelaar, 1985). The ratio 

is usually small in many rivers and the mixing depth is often larger than the compensation depth 

(Grobbelaar, 1990). As a result, cells experience a lot o f time in the aphotic zone. During spring 

and summer, low discharge and high irradiance increases the euphotic to mixing depth ratio and 

phytoplankton are subjected to a greater amount of time in the euphotic zone. Therefore, 

production is less likely to be offset by high respiration rates. 

Gentries dominated during spring (Section 4.1) when maximum rates of column production 

were achieved (Section 5.4). A rapidly fluctuating high then low Ught, experienced during spring, 

may favour centric diatoms (Reynolds, 1994; Reynolds & Descy, 1996). Conversely, intermittent 

mixing o f the water column and the more stable light climate experienced during summer may 

favour green algae and blue-greens (Reynolds, 1994). High densities of blue-greens were not 

observed in either the Trent or Ouse (Section 4.1). This may be the result of river turbidity and 

turbulence suppressing blue-green development, even in summer. Another possibility is that blue-

greens were washed out o f the system before they could attain significant populations. 

The combination of increased irradiance, mixing and a phytoplankton dominated by small 

centric diatoms, coupled with low respiration rates resulted in maximum rates of photosynthesis 

and column production during spring and early summer. 

8,23 Temperature 

A n increase in temperature, experienced during spring and summer resulted in increased rates of in 

situ growth (Section 6.1), growth of phytoplankton in culture (Section 6.2) and production (Section 

5.4). Increased temperature increases rates of chemical reactions up to the optimum temperature, 

after which rates decrease. A n increase in growth and production with increasing temperature has 

been reported in other studies (Reynolds, 1984; Kirk, 1994). Even so, it is difficult to isolate 

temperature as primarily controlling processes as an increase in temperature coincides with 
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increased irradiance, decreased river depth and velocity. Increased temperature also results in 
increased rates of loss such as respiration and grazing as discussed later (Section 8.34). 

Rates o f growth o f three species of algae in cultxare showed an increase up to 20°C; the highest 

temperature tested (Section 6.2). However, in the rivers, when temperatures approached 20°C, 

rates of in situ growth decreased and became negative. This highlights the importance of in situ 

loss processes which species in culture are not subjected to and is discussed later (Section 8.3). 

8.24 Downstream growth 

Downstream rates of change in phytoplankton chlorophyll a were estimated for the Trent (Section 

3.71). Estimates were not made for the Ouse as too few sites were sampled along the length of 

the river to allow suitable data to be coUected. Spring maxima in phytoplankton biomass and 

density in the Trent coincided with an increase in ph)^oplankton chlorophyll a with distance 

downstream (Section 6.1). Downstream increase in phytoplankton density and chlorophyll a has 

been reported for other rivers, for example, the Lee (Swale, 1964), Spree (Kohler, 1994) and 

Meuse (Descy & Gosselain, 1994) to name but a few. Skidmore et al. (1998) relate the spring, 

downstream increase in phytoplankton chlorophyll a in the Trent to in situ growth resulting from 

decreasing discharge and improving Kght quality. The increase in rates of phytoplankton 

production and growth to maxima in spring has been discussed earlier (Sections 8.21, 8.22, 8.23). 

The maximal growth rate reported in this study falls within the previously reported range for other 

rivers (Table 8.3). 

Table 8.3 Comparison o f maximum growth rates reported for the Trent and other European 

rivers 

River Maximiam growth 

rate (day"') 

Reference 

Lot 0.23 Capblancq & Decamps (1978) 

Rhine 0.70 Reynolds & Glaister (1993) 

Severn 0.53 Reynolds & Glaister (1993) 

Meuse 0.28 Gosselain et al. (1994) 

Trent 0.57 This study 

I t has been suggested that a series of 'dead zones' must be present along some rivers to allow 

sufficient time for large phytoplankton populations to grow over relatively short river lengths 

(Reynolds & Glaister, 1993; Reynolds, 1994). I n the Trent, armual maximum growth rates of 0.48, 

0.59 and 0.70 d ' in 1995,1996 and 1997, respectively, (Section 6.1) are equivalent to doubling 
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times of between 1.0 and 1.5 days. These maximal growth rates were produced between mid-May 
and mid-June when daylength was between 15.4 and 16.6 h and river temperature between 10 and 
20 °C. Given the high soluble N and P concentrations in the Trent (House et al., 1997) and 
reported growth rates of centric diatoms in culture of up to 0.92 d"' (Section 6.2), it is possible that 
the calculated growth rates in the field could have been achieved without needing to invoke the 
existence o f 'dead zones'. The study of intra-site variability suggested relative homogeneity of the 
Trent at the sites sampled (Section 4.25) and that 'dead zones' were unimportant here. However, 
the PIZT model predicted growth rates lower than those calculated from downstream increase in 
chlorophyll a, particularly during 1997. This discrepancy may result from dead zones. 

Increase in phytoplankton biomass, resulting from in j'/to growth in spring (Section 6.1) was a 

result o f favourable growth conditions. During spring, river retentivity allowed populations to 

develop before they were eventually washed into the estuary. The underwater light climate 

improved as decreased river depth and suspended sediment load coincided with increased 

irradiance and daylength. Species able to take advantage of these improving conditions, such as 

centric diatoms, rapidly proliferated as they travelled downstream. The evidence for downstream 

growth during spring in the Trent shows that centric diatoms were best suited to riverine 

conditions experienced during spring. 

8.3 Loss processes 

8.31 Discharge 

Loss of phytoplankton from river systems is primarily controlled by discharge, temperature and 

grazing. For the Trent and Ouse, chlorophyll a concentration (Section 4.22), ph)^oplankton 

density (Section 4.1) and rates of growth (Section 6.1) and production (Section 5.4) all rapidly 

declined during summer. Increased rates o f sedimentation with decreasing discharge was possibly 

an important loss process in summer. Sedimentation in rivers is primarily controlled by physical 

factors attributable to turbulence and not by chemical or biological factors as in lakes (Rust, 1982). 

Decreased discharge during summer results in decreased river depth and turbulence. Experiments 

have shown that sedimentation increases as channel depth decreases (Reynolds et al., 1990). 

Diatoms are Ukely to be especially sensitive to sedimentation given their high specific gravity. As 

centric diatoms dominated spring populations (Section 4.1), the rapid decrease in the population 

during summer may have been a result of sedimentation. Decreased turbulence also results in 

decreased re-suspension of cells. This may have resulted in increased rates of benthic grazing 

upon sedimented cells. I f other environmental stresses, for example nutrient limitation or bacterial 

attack contributed to cell scenescence then rates of sedimentation would have been expected to 

increase further. 
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No attempt was made to quantify sedimentation as a loss rate during this study. Attempts to 
estimate rates of sedimentation using trapping techniques (Section 1.8) often overestimate 
sedimentation in turbulent environments (Kozerski, 1994). Even so, sedimentation as a loss is 
particularly likely in summer when river depth and turbiolence are usually at a seasonal minimum. 
The relationship between times when sedimentation rates are likely to be high and the loss of high 
centric diatom populations suggest a Hnk between the two and warrants fiirther investigation. 

In contrast, during winter, increased discharge results in increased re-suspension and decreased 

sedimentation. However, river retentivity decreases and cells are washed out of the system before 

large populations are able to develop. Chlorophyll a (Section 4.22) and phytoplankton densitj' 

(Section 4.1) minima were recorded during the winter for the Trent and Ouse, corresponding with 

high discharge. Rates of growth for the Trent (Section 6.1) and production for the Trent and 

Ouse (Section 5.4) were negative during the winter. The use of the PIZT model showed that an 

increase in depth and K j resulted in low and often negative rates of production (Sections 5.511, 

5.513, 5.521, 5.523) as the respiratory burden was increased. Negative rates indicated a loss o f 

phytoplankton from the system. I f there was no in growth or production of new biomass then 

an external or alternative source must be responsible for winter populations. The most plausible 

source would have been re-suspended cells from the benthos which often contained typical 

phytoplankton species, such as centric diatoms and green algae, undergoing a benthic survival 

stage (Kowe et al., 1997). Meroplanktony would also explain why typical benthic algae, such as 

pennate diatoms were not a major component of re-suspended material during winter flood 

events. 

8.32 Nutrients 

Limiting N and P, suppressing phytoplankton growth and production is common in fireshwaters 

(Doering et at, 1995). Nutrient limitation affecting the growth of benthic and attached algae in 

smaller, upland rivers has also been reported (Christmas et al., 1997). However, concentrations of 

N and P rarely fall to levels where phytoplankton growth and production is limited in larger 

temperate rivers (Reynolds & Descy, 1996). N and P concentrations were always high for the 

Trent Ouse during the period of study an so were unlikely to have ever limited phytoplankton 

growth. However, the fall in silica concentrations in spring with the increase in centric diatom 

density (Section 4.1) was apparendy sufficient to suppress further growth of centric diatoms at the 

tidal limits o f the Trent and Ouse, particularly in 1995 and 1996. Silica limitation of centric diatom 

growth has also been reported for other rivers (Section 1.4). Silica limitation may have imposed 

increased environmental stress upon growing phytoplankton populations. I f they were unable to 

grow actively then rates of sedimentation may have increased. Another stress may be pathogenic 

attack. I f centric diatoms continued to grow under times of silica stress then they may have 
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formed thinner silica frustules. This may have made them more susceptible to pathogenic attack 
and is discussed further later (Section 8.33). However, siHca limitation only occurred over a short 
period. During summer, concentrations increased again and so the silica limitation during spring 
can not explain low numbers of centrics and the continued dominance of greens during summer 
(Section 4.1). 

8.33 Grazing 

Earlier investigations into grazing and ways in which grazing influences phytoplankton biomass 

and species composition have already been discussed (Section 1.9). Regression analysis suggested 

that grazing increased in response to an increase in phytoplankton growth rate and not vice versa 

(Section 6.3). This was concordant with the literature which reports that high zooplankton 

populations coincide with high phytoplankton populations (e.g. Admiraal et al, 1994). 

Apparent negative grazing (Section 6.3) was unexpected. I t was thought that a negative grazing 

rate may have resulted from predation of grazers by predatory zooplankton such as Polyarthra and 

Asplancna. A n alternative theory is that particulate turbidity resulted in reduced grazing rate (A. 

Bothar pers. comm.). As the grazing rate was calculated as the slope of dilution against change in 

chlorophyll a (Section 3.74), increased turbidity in less diluted samples could result in negative 

grazing rates. 

The occurrence o f species of zooplankton common to many European rivers has been 

discussed earKer (Section 1.9). In the Trent, ciHate species such as Strobolidium spp. were dominant 

throughout the spring and summer months. Rotifers, mainly Keratella spp. were also found in 

samples although no Cladocerans or Copepods were found in the Trent or Ouse (Section 6.3). 

During this investigation, only one zooplankton specimen was found for the Ouse; a ciHate 

resembling Strobolidium spp. This suggested that zooplankton grazing pressure was potentially 

greater in the Trent than in the Ouse. 

As with phytoplankton, zooplankton are lost from the river system by the unidirectional flow 

towards the sea. To develop large populations and exert significant grazing pressure upon 

phytoplankton populations, smaller, faster growing species are usually more important in river 

systems than larger, slow growing species (de Ruyter van Steveninck et al., 1992). Discharge 

influences the development o f crustaceans (Bothar & Rath, 1994) although it has been suggested 

that ciliates are unaffected (Bereczky & Nosek, 1993; Nosek & Bereczky, 1994). Even so, in the 

present study, maximal grazing rates were observed during spring and summer. During this 

period, discharge was low and temperature high; conditions which are optimal for both 

phytoplankton and zooplankton development (van Di jk & van Zanten, 1995; Gosselain et al., 

1998). 
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The hydrodynamically responsive nature o f the Ouse when compared to the Trent may explain 
why zooplankton density was low in the Ouse. However, this does not fully explain the lack of 
ciliates in the Ouse system. Increasing temperature, during spring and summer result in increasing 
rates of grazing in many species (Section 1.9). Even though experimental evidence suggests that 
grazing is unimportant in the Trent and Ouse is possible that summer temperatures resulted in 
increased grazing pressure upon the phytoplankton and may be pardy responsible for the rapid 
decline o f spring blooms. 

A misunderstood source of grazing and perhaps the least understood is that from protozoa, 

benthic grazers, fungal, bacterial and viral infection (Section 1.9). Ciliates are considered to be 

important in the Trent as they contributed most of the zooplankton biomass. The importance of 

protozoa has been considered in other studies but never quantified. 

Although chytrid infestation of phytoplankton has been mentioned in previous studies (Canter 

& Lund, 1951), few studies have considered it an important factor in the loss of phytoplankton 

f rom rivers. Although quantitative data is not available for this study, Chytrids were found on 

centric diatom cells in 1995 and 1996 during the centric diatom maxima in spring in both the 

Trent and Ouse. This coincided with low levels o f SiOj-Si (Section 4.1) which is consistent with 

the idea that silica stress made cells more vulnerable to pathogen attack. In this way, bacterial and 

viral attack may have been important. Few studies have also considered the importance of these in 

freshwaters (e.g. Reisser, 1993) although viral attack of marine algae has been more extensively 

studied (Boehme et al., 1993). Pathogenic attack may be a major source of phytoplankton loss, 

particularly under nutrient or other environmental stress and is an area requiring further research. 

The removal of phytoplankton by benthic grazers such as freshwater mussels is an area 

receiving more attention in recent papers (Section 1.9). In the Trent, large numbers of Unio sp. 

were found in dredged spoil, indicating the possible importance of mussels as grazers. Diiring late 

spring and early summer, high temperature, increased sedimentation and decreased turbulence may 

have resulted in more phytoplankton being available to benthic grazers. Benthic grazing remains a 

potentially important source o f phytoplankton loss during summer. Again, this is an area requiring 

more quantitative research. 

Zooplankton are subjected to similar environmental constrains as phytoplankton, particularly 

discharge and temperature (Section 1.9). In the Trent and Ouse, grazing by zooplankton may be 

relatively unimportant when compared to pathogens and benthic grazers. 

8.34 Temperature 

Although not a loss process in itself, temperature can affect rates of loss. Increased temperature 

during summer may result in increased loss of phytoplankton through increased grazing pressure 

(Section 8.33). However, a more significant form of phytoplankton loss could be increased rates 
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of respiration in turbid rivers such as the Trent and Ouse (Section 5.4). The importance of light 
and temperatiare upon phytoplankton growth and production has been discussed earlier (Sections 
8.22, 8.23, 8.34). For the Trent, in jz/* respiration rates increased with temperature (Sections 5.2, 
5.4). A rapid increase in respiration was also observed over 15 to 20°C for three phytoplankton 
species in culture (Section 5.3). During summer, increased temperature corresponded with 
decreased and negative rates o f productivity, particularly in the Trent (Section 5.41). An increase 
in the rate o f respiration was therefore potentially a major factor influencing column productivity. 
Increased rates of respiration also corresponded with a rapid decline in chlorophyll a 
concentration (Section 5.41). 

To compliment data collected in situ, column productivity was modelled using a low, average 

rate o f respiration of 25 ^mol O^ (mg chl «)"' h"' observed during spring when temperatures were 

typically between 12 and 16 °C (Sections 5.514, 5.524). The result was that increased rates of net 

productivity were observed with net productivity continuing throughout the summer. In this 

study, community respiration was measured. Therefore, bacterial, fungal and zooplankton 

respiration was included with phytoplankton respiration. However, respiration rates of 

phytoplankton in culture were similar at 20°C (Section 4.3) to in situ rates (Sections 5.2, 5.3). 

Species in culture were not axenic although bacteria were scarce and no protozoa were present. 

Therefore, most o f the respiration was attributable to phj^oplankton. This theory has also been 

put forward by Dokulil (1994). 

High rates of respiration corresponding with low temperature (Sections 5.2, 5.4) during winter 

are harder to explain. This may have been a result of bacterial respiration although other factors 

such as oxidation of humic substances may be important, especially in the Ouse. 

8.35 Downstream loss 

Downstream loss of phytoplankton during summer and winter can be explained using the 

discussion formiolated above. Phytoplankton chlorophyll a maxima in spring were followed by a 

rapid decline in phytoplankton chlorophyll a hn summer (Section 4.2). This resulted from 

increased rates o f loss from sedimentation, grazing and respiration. 

With decreased discharge during summer, rates of sedimentation, particularly of centric diatoms 

increased (Section 8.31). I f cells were also senescent, rates of sedimentation would increase 

further. With decreased mixing o f the water column, sedimented cells would have had litfle 

opportunity to return to the water coltimn. They would have then been subjected to benthic 

grazing and light limitation. 

Rates of grazing, from zooplankton, benthic animals and pathogens increased with increasing 

temperature (Section 8.33). Therefore, grazing pressure upon phytoplankton, i f important, would 

have increased. As discharge decreased and the rivers become more retentive, zooplankton 
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populations would be able to develop larger populations during their travel downstream so 

increasing the grazing pressure upon phytoplankton. Benthic grazing pressure may have increased 

i f rates o f phytoplankton sedimentation increased downstream during summer. 

Light climate o f the Trent and Ouse became more favourable for phytoplankton growth during 

spring and summer (Section 8.22). However, this was offset by increased rates of respiration 

induced by increased temperattore (Section 8.34). As populations travelled downstream, river 

depth increased. Therefore, cells would have been subjected to longer periods in the dark when 

downstream than when upstream. As a result, the respiratory burden upon phytoplankton 

increased as they travelled downstream. This burden increased with increased temperature during 

summer and increased rates of production would have been offset. The respiratory burden upon 

phytoplankton was particularly marked during summer in the turbid Trent and Ouse (Section 5.4). 

Loss of phytoplankton downstream during summer was probably a result of processes 

responsible for temporal loss of phytoplankton during summer. Evidence produced by this study 

suggests that respiration is a majr loss process. However, theoretically, sedimentation and grazing 

by protozoa and the benthos may contribute a substantial loss. Losses during winter were a result 

of low retentivity and an unfavourable underwater Hght climate, coupled with low temperature. 
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8.4 Short term changes in chlorophyll a 

The in situ fluorometry work at Cromwell (Section 4.26) offered data of finer spatial resolution 

than offered previously by weekly or even daily sampUng. The change in the fluorometric 

response o f phytoplankton was associated with a change in chlorophyll a and hence a growth in 

the phytoplankton population. I t is possible that the fluorometric response measured processes 

other than changes in chlorophyll a. Pigments such as antennae pigments may have contributed to 

absorption of fluorescence (Ernst, 1988) and so influenced the fluorometric response of 

phytoplankton. A more accurate estimate of chlorophyll a content would have been obtained by 

blocking the electon transport chain with CMU or DCMU, offering an explanation of 80% of the 

fluorometric response attributable to chlorophyll a content (Ernst, 1988). Even so, significant 

correlations existed between chlorophyll a concentration and fluorometric response for every 

calibration (Section 4.26) so the current method was deemed suitable. 

Other work has attempted to show the daily pattern of changing phytoplankton chlorophyll a 

concentration. Studies have been carried out for the Rivers Danube (Kiss, 1996) and Welland (D. 

Balbi, pers. comm.). The general pattern shown during this study is one of an early morning 

minimum and an early evening maximum in chlorophyll a concentration. This has also been 

shown in other studies (Kiss, 1996; Harris, 1984). The apparent increase in chlorophyll a during 

the day may have been a result o f growth in response to increased irradiance during the day. Many 

species o f phytoplankton are able to divide twice per day under optimal conditions (see Reynolds, 

1984; Kirk; 1994). Experimental work (Section 4.26) showed an increase in the chlorophyll based 

fluorometric response of phytoplankton with increased irradiance up between 50 and 70 jjmol m " 

s ' (Section 4.26). Over this range, flourometric response decreased with increasing irradiance. 

The fluorometric response was also time dependent. Cells exposed to high light over longer 

periods exhibited a decrease in the fluorometric response. This decrease in fluorometric response 

is difficult to explain as it contradicts the literature. Cell damage and scenescence at higher 

kradiances may result in decreased fluorometric response. 

The fluorometric response o f phytoplankton increases with increasing light and is species 

dependent (^entsch, 1980) and may not indicate an increase in chlorophyll a. A n increase in 

fluorescence also results from nutrient limitation (Yentsch, 1980) although this is urdikely to be the 

case in the eutrophic Trent and Ouse. 

The apparent chlorophyll a maxima during late afternoon or early evening was followed by a 

decrease during the night. The related phenomenon was the 'flattening' of the fluorometric 

response. That is, the fluorometric response increased as chlorophyll a increased althpough it is 

difficult to understand why the signal decreased during the night, indicating loss of biomass, only 

to rise again the next day. One theory is that during the day, when light was favourable and 

photosynthetic rate was high, new biomass production was able to offset loss processes such as 
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sedimentation and grazing. A t night, when photosynthesis stopped and respiration was the 
governing process, not only was respiration adding to the loss but no further biomass was being 
produced. Therefore, loss processes acting together reduced the phytoplankton biomass as they 
continued through the night. 

Alternatively, after photosynthesis during the day, cells may have broken down photosynthetic 

apparatus and used the amino acids elsewhere overnight. The photosynthetic apparatus may have 

been remade in the morning when they were needed (Kirk, 1994). 

A decrease in water temperature overnight may also have contributed to a decrease in 

chlorophyll a (Harris, 1984). The fluorometric response also decreases per xmit chlorophyll a with 

increasing phaeopigment concentration (Yentsch, 1980). As daily phaeopigment data were not 

available it was difficult to say whether or not phaeopigment concentration influenced the 

fluorometric response during this study. 

The fluorometric response of phytoplankton may have been largely a result of physiological 

changes with increasing availability of Hght. However, studies mentioned previously have shown 

that actual chlorophyll a and cell density follows a familiar daily pattern to the one shown in this 

study. Morning minima increased during the day as a result of increased irradiance and cell growth 

and division and the production o f chlorophyll a. The increase continued to the maxima in the 

late afternoon or early evening. During the night, chlorophyll a decreased as a result of loss from 

respiration, grazing and the breakdown and utilisation of photosynthetic material. 

8.5 Phjrtoplankton carbon flux 

A primary aim of this study was to estimate the autochthonous carbon flux to the Humber 

Estuary (Section 1.11). In order to do this, the carbon content of the phytoplankton was 

estimated, and using a measure of the gradient of chlorophyll a vs POC, an average carbon-to-

chlorophyll a ratio o f 33:1 mg mg"' was calcialated (Section 3.8). This was similar to ratios reported 

for other rivers (Table 8.3). 

This method was slightly inaccurate as background POC from non-algal sources was included. 

For a more accurate calcxalation, phytoplankton carbon may have been calculated from volume 

(Smayda, 1978). When using this method, shrinkage of cells when preserving must be accounted 

for (Montagnes et al, 1994). A dilution incubation procedure (GaUegos & Vant, 1996) or 

modelling approach (Cloern et al., 1995) may also have been used. However, the approach taken 

in this study was similar to that for other rivers (e.g. Descy & Gosselain, 1994) and as comparable 

estimates were calculated it was deemed suitable to use this ratio to calculate the phytoplankton 

carbon flux. 
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Table 8.4 Comparison of carbon-to-chlorophyll ratios reported in some riverine studies. 

System Carbon/Chlorophyll a 

(mg mg ") 

Reference 

Oostershelde Estuary 

(Netherlands) 

30 Westeyn & Kromcamp 

(1994) 

River Meuse 37 Descy & Gosselain (1994) 

River Rhine 50 Admiraal & van Zanten 

(1988) 

Humber rivers 50 Tipping (1997) 

River Meuse 40 Descy ^/^7/. (1987) 

River Trent 33 This study 

Maximal carbon fluxes in the Trent corresponded with low discharge and high chlorophyll a 

concentration (Sections 7.2, 7.4). Minimum fluxes corresponded with high discharge and low 

chlorophyll a concentration (Section 7.4). In contrast, for the Ouse, maximal fluxes corresponded 

with winter flood events (Sections 7.2, 7.4). Therefore, it can be deduced that phytoplankton 

carbon flux for the Trent was dominated by chemical, physical and biological processes which 

influence phytoplankton growth and production. However, for the Ouse, discharge and the sheer 

volume of water entering the Estuary was more important in regulating the phytoplankton carbon 

flux in the Ouse. This was because large populations were able to develop in situ in the Trent over 

the spring months (Section 4.22). In contrast, the Ouse was highly responsive to floods and 

although large populations were able to develop they were often rapidly interrupted by floods and 

were not able to re-establish. Even so, phytoplankton carbon accounted for 49% of spring and 

summer POC for the Ouse (Section 7.3). However, the proportion was higher in the Trent with a 

contribution of 77 % during spring and summer (Section 7.3). These figures are comparable to 

other European rivers. During summer, phytoplankton contributed between 15 and 65% of POC 

for the Rhine (Admiraal et al, 1992) and an annual contribution o f 12% for the Humber rivers 

(Tipping et al, 1997) and around 20% for the Westerschelde estuary (Soetaert & Herman, 1995) 

have been reported. 

Phytoplankton were therefore important to the flux of autochthonously produced carbon, 

particularly in the Trent, during spring and summer. In shallower reaches of the Trent and Ouse, 

benthic and macrophytic production may have been more important then they were in oth^r 

systems (Soetaert & Herman, 1995). However, macrophytes and benthic material are rarely 

transported-downstream in quantities large enough to be important in spring and summer, ' -M:, ; 

Phytoplankton was the major contributor of autochthonous POC in the Trent and is importafftia 
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the Ouse during spring and summer. I t is therefore important that the processes regulating 
phytoplankton carbon flux have been identified and quantified and the processes involved have 
been investigated. 

Predicted changes in river discharge in the future indicate an increase in winter discharges in 

northern areas of the U K (AmeU, 1992). This may have Kttie effect upon phytoplankton carbon 

flux in the Trent and Ouse as minima are already experienced in winter (Section 7.2). Flux may 

increase as a result of increased water volume passing through to the Estuary. I f the increase in 

rainfall also occurred in spring, however, fluxes may decrease as phytoplankton development and 

production were hindered by loss processes resulting from increased discharge (Section 8.31). 

Further studies of interest would be to develop a mass balance model to identify and quantify 

different sources o f autochthonously produced carbon from macrophytes and the benthos during 

the year. The importance o f each at different times of the year, at different stretches of the river 

and under varying environmental conditions, could be used to predict changes with predicted 

changes in riverine environmental parameters over the next few decades. 
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9 S U M M A R Y 

1. Although subtle differences exist between the Trent and Ouse, the same processes generally 

had a similar effect upon phytoplankton growth, production and development in both rivers. 

2. During spring , when discharge was low, maximal phytoplankton density was obser̂ red for 

both the Trent (53000 individuals ml"') and Ouse (62700 indi^'iduals mi ' ) . The spring maxima 

comprised mainly centric diatoms, contributing a maximum of 83% of the ph)rtoplankton of 

the Trent and 85% for the Ouse. Centric diatoms were considered able to efficienfly utilise 

the environment experienced during spring. 

3. 85 taxa were recored for the Trent at Cromwell and 82 for the Ouse at Acaster. The majority 

of these taxa were Chlorophyta. Species recorded were similar to those recorded for other 

European rivers. 

4. Maximal chlorophyll a concentrations were also observed for the Trent (162 |ig i ' ) and Ouse 

(166 fag r') diiring spring. Chlorophyll a maxima were often disrupted by floods, especially for 

the Trent. 

5. Maximal rates of column production were evident dtaring spring for the Trent (1114 fimol O j 

(mg chl <?) ' d"') and Ouse (2721 |j,mol O j (mg chl a)"' d ') . During this period, maximum rates 

o f areal production were also observed (546 j imol O, m^ d ' for the Trent and 536 )iimol O j m" 

d"' for the Ouse). Maximum rates were a result o f minimum rates of phytoplankton 

respiration during spring (13 (Xmol O j (mg chl dr)"' h ' for the Trent and 10 jimol O, (mg chl T̂) ' 

h"' for the Ouse). Rates of production were similar to those recorded for other European 

nvers. 

6. A downstream increase in chlorophyll a was evident for the Trent during spring and early 

summer. Estimated rates of phytoplankton growth attained a maximum of 0.70 d"'. Again, 

this maximum rate o f growth was similar to those recored for other European rivers. 

7. Overall, during spring, the Trent experienced a pattern of phytoplankton density, chlorophyll 

a, production and growth maxima. A similar pattern existed for the Ouse although it was not 

as pronounced as for the Trent. Growth and production maxima were attributable to 

favourable conditions of high river retentivity, increasing irradiance, daylength and 
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temperature. Low rates o f loss from sedimentation, grazing and respiration also contributed 
to the maxima. 

8. During Slammer, phytoplankton density decreased for then Trent (3000 to 6000 individuals 

ml"') and Ouse (2000 to 6000 individuals ml"'). This corresponded with a rapid decline in 

cenric diatom density and the switch from a centric dominated population to a green algal 

dominated one. Silica depletion may partiy have contributed to the decline of centric diatoms 

during spring. 

9. Chlorophyll a concentration also rapidly declined during summer for both the Trent (c. 6^g 1"') 

and Ouse (c..2 to 7 (ig 1"'). However, this decline was most marked for the Trent at Cromwell. 

10. The decline in phytoplankton density and chlorophyll a dtiring summer corresponded with 

declining rates o f production. This was more pronounced for the Trent than for the Ouse. 

Rates of column production declined during summer for the Trent (-1954 (J.mol O, (mg chl <?)"' 

d ') and Ouse (-5026 f^mol O2 (mg chl i?)"' d"') as did rates of areal production. However, 

minimum rates of production for the Ouse were thought to be unrealistic and the result of 

unexplained processes. The decline in rates production was a result of a combination of 

increased repiratory burden caused by an increase in temperature and of river turbidity. The 

PIZT model suggested that respiration, river depth and attenuation coefficient were the most 

important factors influencing phytoplankton production in the Trent and Ouse. 

11. A downstream decrease in chlorophyll i2 was observed during late summer. Rates of growth 

estimated f rom this downstream change declined to a minimum of 0.76 d"' for the Trent. This 

phenomenom has been reported for other European rivers and was a reuslt of increasing 

pressure form loss processes such as respiration and grazing downstream relative to upstream. 

12. Loss of phytoplankton populations during summer was considered primarily as a result of an 

increased respiratory burden resulting from increased temperature. Other processes 

considered as being possibly important were sedimentation, benthic grazing and pathenogenic 

attack. Experimental work suggested that the green algae dominating the summer populations 

were more responsive to increased rates of respiration than centric diatoms. This may parfly 

explain the rapid decline in rates of production and growth during summer. However, the 

reason for a switch from a spring population dominated by centrics to a summer population 

dominated by green algae has stiU to be sufficientiy explained. 
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13. Diiring winter, high discharge, low irradiance and low temperatures resulted in a climate 

unfavourable for phytoplankton growth. Phytoplankton density decreased to minima of c. 60 

individuals ml ' ' for both the Trent and Ouse. Minimum concentrations of chlorophyll a were 

also observed during winter with concentrations falling below 2 |ag 1' for the Trent and Ouse. 

14. Although no singular environmental factor can be said to be ultimately important in 

influencing phytoplankton dynamics, the most important factors were discharge, temperature, 

and irradiance. 

15. Phytoplankton was a major source of POC to the Humber Estuary, particularly during spring 

and summer where they contributed a maximum of 77% and 47 % of the POC for the Trent 

and Ouse, respectively. These contributions to the total POC load were similar to other 

European river systems. A rninimiim contribution of phytoplankton to POC was observed 

during winter when they contributed c. 11 % of the riverine POC. 

16. Phytoplankton was the most important factor with regards to autochthonous carbon flux to 

the Humber Estuary in spring and early summer. 

17. The Trent contributed between 967 and 1141 t yr"' of autochthonous carbon to the Humber 

Estuary over the studied period. This was over 5 times the autochthonous carbon flux of the 

Ouse and highlights the importance of the Trent in the flux of autochthonous carbon to the 

Humber Estuary. 
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APPENDIX 1 
APPENDIX 1 - Results of dilution experiements for Cromwell 
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