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Abstract

Unsteady flow analysis has been gradually introduced in turbomachinery design
systems to improve machine performance and structural integrity. A project on

computation of unsteady flows in turbomachinery has been carried out.

A quasi 3-D time-linearized Euler/Navier-Stokes method has been developed
for unsteady flows induced by the blade oscillation and unsteady incoming wakes. In
this method, the unsteady flow is decomposed into a steady flow plus a harmonically
varying unsteady perturbation. The coefficients of the linear perturbation equation are
formed from steady flow solutions. A pseudo-time is introduced to make both the
steady flow equation and the linear unsteady perturbation equation time-independent.
The 4-stage Runge-Kutta time-marching scheme is implemented for the temporal
integration and a cell-vertex scheme is used for the spatial discretization. A 1-D/2-D
nonreflecting boundary condition is applied to prevent spurious reflections of outgoing
waves when solving the perturbation equations. The viscosity in the unsteady Navier-
Stokes perturbation equation is frozen to its steady value. The present time-linearized
Euler/Navier-Stokes method has been extensively validated against other well-

developed linear methods, nonlinear time-marching methods and experimental data.

Based upon the time-linearized method, a novel quasi 3-D nonlinear harmonic
Euler/Navier-Stokes method has been developed. In this method, the unsteady flow is
divided into a time-averaged flow plus an unsteady perturbation. Time-averaging
produces extra nonlinear “unsteady stress” terms in the time-averaged equations and
these extra terms are evaluated from unsteady perturbations. Unsteady perturbations
are obtained by solving a first order harmonic perturbation equation, while the
coefficients of the perturbation equation are formed from time-averaged solutions. A
strong coupling procedure is applied to solve the time-averaged equation and the
unsteady perturbation equation simultaneously in a pseudo-time domain. An

approximate approach is used to linearize the pressure sensors in artificial smoothing



terms in order to handle the strong nonlinearity induced by the large amplitude of shock
wave oscillation. The effectiveness of the present nonlinear harmonic method to
include the nonlinear effects has been consistently demonstrated by calculations of
unsteady transonic flows. The limitation of the nonlinear harmonic method has also

been observed in calculations.

Some numerical efforts have been made to investigate trailing edge vortex
shedding. The main issue which has been clarified is that a time-independent vortex
shedding solution can be achieved by solving time-averaged equations with “unsteady
stress” terms. The effectiveness of the unsteady stresses to suppress vortex shedding
has been clearly demonstrated. Importantly, the time-independent solution is very close
to the time-averaged solution which is generated from unsteady calculations of vortex
shedding. The unsteady stresses in this investigation are worked out from vortex
shedding unsteady solutions produced by a multi-block Navier-Stokes solver. The
characteristics of the unsteady stresses have been analyzed. In this investigation, vortex

shedding from a circular cylinder and a VKI turbine blade have been considered.
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Nomenclature

Roman Symbols
A Computational volume area; Amplitude; Channel height
A Channel inlet height
C Blade chord
C, Gas constant
c Local sound speed
Cp Pressure coefficient
Ct Skin friction coefficient
¢y Amplitude of entropy wave
C, Amplitude of vorticity wave
Cs Amplitude of downstream running pressure wave
Cy Amplitude of upstream running pressure wave
D Blade trailing edge thickness; Circular cylinder radius; 4th
order artificial smoothing
d 2nd order artificial smoothing
djim Limit value of turbulence mixing length
e fluid internal energy
F Flux vector in x direction
f Physical frequency
G Flux vector in y direction
h Streamtube height
h" throat height of diffuser
1 flow incidence angle
k Reduced frequency; coefficient of heat conductivity; artificial

smoothing coefficient

L Reference length



M Mach number
N, Blade numbers
wave numbers
P pressure
r Radius
Re Reynolds number
S Source term vector
St Strouhal number
T Temperature
t Time
t’ Pseudo time
U Reference velocity; Conservative variable vector
u Velocity in x direction
u, Grid moving velocity in x direction
A" Viscous term vector
v Velocity in y direction
Vg Grid moving velocity in y direction
w Relative velocity
X Axial coordinate
y Tangential coordinate
Y1, Y Blade or incoming wake pitch
Greek Symbols

A = © ™

A small nondimensional parameter

Phase angle
Specific heat ratio; Stagger angle

Von Karman constant




» a © <

e

Subscript

Wave length

Total viscosity

Laminar viscosity

Turbulence viscosity

Dynamic viscosity

Density

Inter-blade phase angle

Boundary layer displacement thickness
Angular frequency; Vorticity

Variables in x direction

Variables in y direction

Variable at inlet

Variable at exit

Variable at grid point (i,j)

Real part of complex number
Imaginary part of complex number
Reference quantity

Variable at outlet

Variable in a wake

Time-averaged quantity

Unsteady perturbation

Steady-state quantity



()

Unsteady amplitude in complex number



Chapter 1. INTRODUCTION

1.1 Unsteady Flows in Turbomachinery

Unsteady flow is a natural phenomenon in a multistage turbomachine. The
unsteadiness can be produced for different reasons, the major sources of unsteadiness

in an axial flow turbomachine stage are depicted in Fig.1-1.

Firstly, the flow is inherently unsteady in a gas turbine machine due to the
relative motion of adjacent stators and rotors. This unsteadiness is essential for a
machine to do work on a fluid to increase its total enthalpy (Dean, 1959).
Unfortunately, this stator/rotor interaction also produces aerodynamic loss, and
undesirable aeroelastic and aeroacoustic consequences, such as blade vibration and
noise. The bladerow interaction has two sides, wake/bladerow interaction and
potential interaction. Wake/bladerow interaction is induced by the upstream
fixed/rotating wakes chopped by a rotor/stator. The potential interaction is caused by
the local bladerow sensing the nonuniform pressure fields in neighbouring bladerows.
These two kinds of interactions become stronger as the gaps between bladerows are
made smaller, consequently this produces a larger unsteady force on the blades. The
demand for lighter and shorter engines causes a continuous reduction in the gaps
between the bladerows. Currently, the study of unsteady flows induced by bladerow

interactions are attracting many engineers and researchers.

Blade vibrations can also produce unsteady flows in a turbomachine. The
vibration problems have received intensive attention in design procedures because of
their dangerous potential to cause a blade or even whole engine failure.
Aerodynamically induced blade vibfation has two kinds: flutter and forced vibrations.
Flutter is an aeroelastic instability, that once initiated cannot be stopped in most
circumstances. Of all the problems that may cause blade failures, flutter is perhaps the

most serious one. It is widely accepted that the turbomachinery blade flutter tends to




be a single-mode phenomenon, unlike the wing flutter in which different modes
(bending and torsion) couple together. In an engine operation, the blades sometimes
vibrate in their natural mode, which causes unsteady flows around the blades. If the
unsteady flow does work on the blade, the amplitude of blade vibration will increase
rapidly, and flutter then occurs. The occurrence of flutter can be judged based on
whether the unsteady flow around the blade is doing work or damping the blade
vibration. This is called the Energy Method. In this method, the objective is to predict
the aerodynamic work or damping on the blade which is caused by the unsteady
acrodynamic flows around oscillating blades. However, the coupling between
different structural modes and aerodynamic forces in blade flutter can not be ruled
out in modern designs where the blade tends to be thinner and more highly loaded. In
modern axial fans and compressors, flutter can occur over a wide range of operation
conditions, Figure 1.2 gives a guide to several regions on a axial-flow compressor
map which are vulnerable to different types of flutter. This guide is evolved from
engineering experience and understanding of the blade flutter. The aerodynamically
forced blade vibration is caused by the unsteady nonuniform flows in the bladerow
induced by the wake/bladerow/potential interactions, inlet distortion, rotating stall,
and surge etc. In recent years, although considerable progress towards understanding
blade vibrations has been made, efficiently and accurately predicting flutter boundaries
and blade forced vibrations is still a challenging task because of the complexity of the

unsteady flow environment.

Trailing edge vortex shedding is another major unsteadiness in turbomachinery
when viscous flow passes a blunt blade trailing edge. This unsteadiness is particularly
pronounced in turbines where a very thick trailing edge for turbine airfoils is needed
to accommodate the blade cooling passages. Some experimental works (McCormick,
Paterson and Weingold, 1988, Roberts and Denton, 1996, Gostelow and Solomon,
1996) suggest that the wake loss in a turbine is largely due to the formation of a
vortex street. Denton (1993) estimates that wake loss is typically about 1/3 of the

profile loss in gas turbines. Unfortunately the detailed mechanism of vortex shedding




loss production is still not quite clear. One observation is that, when vortex shedding
occurs, the static pressure just downstream of the trailing edge (base region) is
usually lower than that in the freestream, producing a base pressure loss. Predicting
the base pressure is an important part of predicting the loss produced by the vortex
shedding. Because vortex shedding in turbomachines has a small length scale and
high frequency, the experimental and numerical investigations are difficult and
expensive. However, understanding and predicting trailing edge vortex shedding is
important to further reduce the total loss in a turbine design and is receiving more
and more attention. A thorough review of experimental studies of trailing edge
vortex shedding in turbomachniey is provided by a recent publication by Cicatelli and
Sieverding (1995).

In turbomachinery, unsteady flows can also arise from other sources, such as
rotating stall, surge, and shock/boundary layer interaction etc. The present study in
this thesis is concentrated on the unsteady flows induced by blade oscillation and

trailing edge vortex shedding, and is confined to purely numerical investigations.

1.2 Aspects of Unsteady Flows in Turbomachinery

1.2.1 Reduced Frequency

Among all the parameters for describing the unsteady flows in
turbomachinery, the reduced frequency k is probably the most important one. It is
defined as

k=—0 (1-1)

where w =2xnf and f (Hz) is the physical frequency of the unsteadiness. U is a

reference velocity, usually taken as the inlet velocity. L is a reference length scale. For



blade flutter problems, L is usually taken to be the blade chord length, on some
occasions L is taken to be the blade semi-chord (0.5C). For bladerow interactions, L
is taken to be blade chord length or blade pitch length. The reduced frequency can be
interpreted as the ratio of the time taken for a fluid particle to flow past the length of
a blade chord or pitch to the time taken for the flow to execute a cycle of
unsteadiness. For small values of the reduced frequency, the flow is quasi-steady,
while for large values, unsteady effects dominate. The value of the reduced frequency

is an indicator of the temporal and spatial length scales of the unsteadiness.

In the early stages of a blade design, the reduced frequency is used as a
criterion for avoiding the occurrence of the blade flutter. For the first bending mode,
the design value of the reduced frequency usually should be bigger than 1.0, and for
the first torsion mode, it usually should be above 1.5. For the unsteady flow induced
by the blade oscillation, the time scale of the unsteadiness is decided by the blade
oscillating frequency, the length scale is usually taken to be the blade chord length.

For the unsteady flow induced by bladerow interactions, the reduced
frequency is normally one order magnitude larger than the reduced frequency of the
blade flutter. The time scale of the unsteadiness in bladerow interactions is decided by
the blade passing frequency, and the length scale is approximately the blade pitch or
chord.

For trailing edge vortex shedding, the Strouhal number (St) is used to

determines the unsteady flow instead of the reduced frequency. The Strouhal number

is defined as

St=

fD
T (1-2)

The physical meaning of the Strouhal number is the same as the reduced frequency.

The length scale for the vortex shedding is the blade trailing edge thickness which is



much smaller than the blade chord or blade pitch. The very small length scale
determines that a fine mesh is required to resolve the trailing edge vortex shedding.
The Strouhal numbers for flows over cylinders are constant (0.18~0.2) over a wide
range of Reynolds number. The Strouhal numbers of turbomachinery flows are
strongly dependent on flow conditions and the blade geometry (Cicatelli and
Sieverding, 1995).

1.2.2 Inter-Blade Phase Angle

The concept of the Inter-Blade Phase Angle (IBPA) was first introduced by
Lane (1956) in the field of turbomachinery aeroelasticity. For a blade flutter problem
in a well-defined travelling wave mode, Lane proposed that all the blades vibrate in
the same mode ( bending or torsion, or those two combined) and same amplitude with
a phase difference between neighbouring blades. This phase difference is called the
Inter-Blade Phase Angle (IBPA). This concept is now widely accepted. The possible

values of the inter-blade phase angle in a flutter analysis are defined by

c=—"—— (1-3)

where N, is the number of blades and n represents the wave number ( n = 1,2...
N, ). For a single blade passage as depicted in Fig. 1-3, the steady flow variables on

the upper periodic boundary ab are identical to those on the lower boundary cd. For
unsteady flows induced by blade oscillating, the amplitudes of flow variables are still
identical on both the upper and lower periodic boundaries, but there is a phase
difference between the upper and lower periodic boundaries. The value of this phase
difference is the inter-blade phase angle. Due to the inter-blade phase angle, for an
unsteady flow calculation in turbomachinery, a phase-shifted periodic boundary

condition has to be applied when the calculation is carried out on a single blade



passage domain, or the unsteady calculation has to be carried out on a multiple blade

passage domain.

Although the inter-blade phase angle was originally introduced for blade
flutter problems, this concept can also be used to describe the unsteady flows
induced by bladerow interactions(He, 1996a). For the bladerow interaction, the inter-
blade phase angle is decided by the pitch ratio of neighbouring bladerows. For
example, for a single compressor stage as depicted in Fig. 1-4, the reference blade

row has a blade pitch Y,,, the upstream neighbouring bladerow has a blade

pl>
pitch Y, . Assuming that the upstream neighbouring bladerow is moving at a relative
speed wr, the inter-blade phase angle between the upper periodic boundary and lower

periodic boundary is:

Y,
c=2n(l-— 1-4
Y,

Usually the neighbouring bladerows have different blade numbers which results in
non-zero inter-blade phase angles. Therefore the unsteady flow calculation for the
bladerow interaction problem has to be carried out on a multiple blade passage
domain, or shifted periodic boundary conditions have to be applied if the calculation is
carried out on a single blade passage domain. The inter-blade phase angle in a
wake/rotor or potential/bladerow problem can also be worked out by the formulation

(1-4).

1.3 Advance of Numerical Methods for Unsteady Flows in Turbomachinery

In the last two decades, the development and application of numerical
methods for steady flow analysis has made an enormous impact on the design of all

types of turbomachines, from transonic axial fans to low speed centrifugal pumps.



The steady flow solver now has an important role in the toolkit of turbomachine
designers. However, because of the unsteady nature of turbomachinery flows,
introducing unsteady analysis in the design system is the key to further improve the
aerodynamic performance and structural integrity of turbomachines. In recent years,
considerable efforts have been made on the numerical calculation of unsteady flows in
turbomachinery thanks to the significant advance of computer power and

computational techniques.

1.3.1 Nonlinear Time-Marching Methods

The time-marching method is a revolutionary invention by Moretti and Abbett
(1966) for the solution of transonic flow problems. Since then, a huge variety of
numerical schemes based on the time-marching concept have been developed for
solving steady transonic inviscid and viscous external and internal flows. Nowadays,
time-marching methods are among the most popular numerical methods used in the
turbomachinery design system for steady flow analysis in isolated and multiple blade
row environments. Notable works were those by Denton (1982, 1990), Dawes

(1988), and Ni (1989).

The time-marching method has been able to be used for unsteady flow
calculation from its birth. The extension from a well-developed steady solver to an
unsteady one is not a daunting task for an experienced CFD developer. In an unsteady
time-marching calculation, the time domain has a real meaning in which the unsteady
or time-dependent solution is marched. For a periodic unsteady flow, such as the
unsteady flow induced by bladerow interaction or blade vibration, the solution must
be stepped through many cycles of the transient solution until a periodic solution is
reached. Usually, the time-marching unsteady calculation is much more CPU time
consuming than its steady counterpart. The high computational cost severely
constrains applications of unsteady flow analysis in turbomachinery designs.

Nevertheless, significant development of time-marching methods for unsteady




turbomachine flows has been made in last two decades. This section is dedicated to
reviewing the advance of the unsteady time-marching methods in three areas:
bladerow interactions, flutter, and trailing edge vortex shedding. The term ‘nonlinear’
in the title of this section is used to be distinct from the linear methods. The
nonlinearity of the unsteady flow is naturally included in the time-marching unsteady

solutions by directly solving the nonlinear Euler/Navier-Stokes equations.

1.3.1.1 Bladerow Interactions

The numerical simulation of bladerow interactions was the earliest motivation
driving the development of unsteady CFD methods in turbomachinery. In the time-
marching unsteady calculation of bladerow interactions, a key constraint to the
computational efficiency is the treatment of periodic boundaries. In a steady flow
calculation, the simple repeating periodic condition is applied by equating flow
variables at the lower and upper periodic boundaries in a single blade-blade passage
domain. For an unsteady flow calculation of the bladerow interaction, the simple
repeating periodic condition no longer exists in a single passage calculation due to
non-zero inter-blade phase angles. One either has to carry out an unsteady calculation
on a multiple passage domain which will significantly increase the computation time,
or implement a phase-shifted periodic boundary condition in a single passage
calculation. As far as the computational efficiency is concerned, it is desirable to carry
out the unsteady flow calculation in a single passage domain. Therefore, developing
phase-shifted periodic boundaries has played an important role in the development of

time-marching unsteady methods in turbomachinery.

A milestone work on unsteady flow calculation by using the time-marching
method in turbomachinery was made by Erdos et al (1977). In this work, the
MacCormack(1969) predictor-corrector finite difference scheme was implemented to
solve the 2-D Euler unsteady equations for calculating the unsteady flows in a fan

stage. The first phase-shifted periodic boundary condition, the “Direct Store” method,



was proposed to make the unsteady flow calculation possible in a single blade
passage. In this method, flow parameters on the periodic boundaries are stored at
each time step in one unsteady period to update the solutions at the next
corresponding period. This method was later extended by Koya and Kotake (1985) to
a three-dimensional calculation of inviscid unsteady flow through a turbine stage. The
main drawback of this “Direct Store” method is that a large computer storage is
required in an unsteady calculation. This disadvantage is severe for three-dimensional
viscous unsteady calculations, particularly for low frequency problems such as blade
flutter. Furthermore, the solution by using “Direct Store” method has a slow
convergence rate to get a final periodic solution because the solution procedure is

heavily influenced by the flow initial guess.

To avoid the complexity of phase-shifted periodic conditions, Rai (1985)
developed a 2-D Navier-Stokes solver for the stator/rotor interaction. In this method,
calculations were carried out in a simple stator/rotor pitch ratio (1:1 or 3:4) by
modifying the configuration of the rotor in a turbine stage. So the simple repeating
periodic boundary condition can be used in a calculation. A good comparison of time-
averaged quantities between the calculation and experimental data was achieved. The
calculated unsteady pressure amplitudes largely depended on how close the
stator/rotor pitch ratio used in calculation correlated to the real pitch ratio. Rai (1987)
later extended his techniques to a three-dimensional viscous calculation of bladerow
interactions. However, the influence of blade configuration modifications on

unsteady flows needs to be carefully clarified.

In 1988, a novel phase-shifted periodic boundary treatment, ‘“Time-Inclined”
method, was proposed by Giles (1988) in a wake/rotor interaction calculation. In this
method, the flow governing equations are firstly transformed from the physical time
domain to a computational time domain. The computational domain is inclined along
the blade pitchwise direction according to the time lag between neighbouring blades.

In the computational domain, a direct repeating periodic condition can be



implemented at the lower and upper periodic boundaries in a single blade passage.
Compared to Erdo’s “Direct Store” method, Gile’s method does not need extra
computer storage. Giles (1990a) also used this technique to calculate the bladerow
interactions in a turbine stage, an unsteady shock system was captured in the
calculation. A computer program UNSFLO was developed by Giles(1991a) based on
the “Time-Inclined” method. This programme is capable of handling many kinds of
two-dimensional unsteady flows in turbomachinery, such as wake/rotor interaction,
potential interaction, and flutter. However, this “Time-Inclined” method also has
limitations. First of all, the time-inclination angles of the computational plane are
restricted by the domain-of-dependence restrictions of the governing equations.
These angles are determined by the pitch ratio of rotor/stator in bladerow interaction
problems and the inter-blade phase angle in flutter problems. The lower the unsteady
frequency is, the more severe the restriction is. For low frequency problems, such as
flutter and some forced response problems, the multiple blade passage calculation has
to be carried out to relax this restriction, consequently the computation time will be
increased significantly (He, 1990a). Secondly, Gile’s method was originally developed
for inviscid flow calculations, but for viscous calculations, some simplifications have
to be made in the space-time coordinate transformation. These simplifications can be
justified for high Reynolds number flows (Giles, 1991a), for low Reynolds number
flows, the validity needs to be justified.

It should be noted that both the “Direct Store” and the “Time-Inclined”
methods can only handle a single frequency unsteadiness. They are not suitable for an
unsteady flow calculation in a multi-stage environment because multiple frequencies

are usually involved.

During the development of the methods for phase-shifted periodic conditions,
other efforts have also been made to improve the computational efficiency of time-
accurate unsteady calculations. One approach is to develop efficient time-marching

implicit schemes in which a much larger time-step can be used compared to the

10



explicit schemes, some contributions are from works by Rai (1985), Krouthen and
Giles (1988), and Coperhaver, Puterbauch and Hah (1993). Another is to use
effective multigrid techniques, He (1993) developed a time-consistent two-grid
method which can considerably speed up the convergence of unsteady calculations.
This two-grid acceleration technique was successfully used by some researchers in a
time-marching unsteady calculation for bladerow interactions ( Jung, A. R. et al
1997). A recent advance in the use of multigrid in unsteady flow calculations in
turbomachinery was achieved by Amone (1996), in which an efficient time-accurate
integration scheme proposed by Jameson (1991) was used. In this new scheme, a dual
time-stepping in the physical time-domain and a non-physical time-domain is
introduced. In the physical time-marching, an implicit scheme is used. In the non-
physical time-marching, any efficient accelerating techniques which are widely used
in steady calculations can be used to speed up the calculation, such as local time step,
multigrid, implicit residual smoothing. Although significant progress has been made to
make time-marching unsteady calculations more efficient in recent years, an unsteady
calculation still needs weeks running on a powerful workstation (Gundy-Burlet and
Dorney, 1997). This high computational cost hinders the application of time-marching

unsteady analysis in a routine turbomachine design system.

As an alternative to the direct unsteady flow calculation, Adamczyk (1985)
proposed a notable concept of modelling unsteady effects by solving an “average-
passage” Navier-Stokes equation system. In this system, different averaging strategies
were used to average out the unsteady effects due to random flow fluctuations (due
to turbulence) and periodic flow fluctuations due to the bladerow interaction. The
attraction of this concept is that solving an unsteady problem is replaced by simply
solving a set of averaged equations. The averaged equations can be solved by any
efficient steady flow solver, while the unsteady effects are included in a time-averaged
solution. The difficulty in doing so is that averaging produces unknown
“deterministic stress” terms in the averaged equations due to the nonlinearity of the

original Navier-Stokes/Euler equations. Extra closure models are required to work
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out all “deterministic stress” terms, similar to the turbulence models for modelling the
Reynolds stress terms in the Reynolds averaged Navier-Stokes equations.
Nevertheless, Adamczyk’s concept has stimulated many research activities in
turbomachniery unsteady CFD and some numerical methods have been developed
(Celestina et al, 1986, Adamczyk et al, 1989, Rhie et al, 1995, Hall, 1997). However,
all deterministic stress models so far have not been sufficiently practical, and the

development in this area is expected to go further in the near future.

1.3.1.2 Flutter

As for bladerow interaction calculations, periodic boundary treatment is also a
difficulty in unsteady flow calculations for blade flutter analysis. For flutter analysis,
one has to calculate unsteady flows under all possible IBPAs to find the least stable
one. For a non-zero inter blade phase angle, phase-shifted periodic boundary
conditions have to be applied if the unsteady calculation is carried out in a single blade
passage domain. Because of the large number of repeated calculations in the flutter

analysis, there is a stringent requirement for computational efficiency.

The development of time-marching methods for blade flutter analysis in
turbomachinery started in the 1980s with a pioneering effort made by Pandolfi (1980)
using a finite difference scheme to compute two-dimensional unsteady subsonic flows
around vibrating blades with the same phase. Later Pandolfi’s work was extended by
Fransson and Pandolfi (1986) using the “Direct Store” method to deal with non-zero
inter-blade phase angles. A similar attempt was also made by Joubert (1984) and later
it was extended by Gerolymos (1988) to a first fully three-dimensional unsteady
inviscid flow analysis for flutter predictions. Because of the huge demand for
computer storage by using the “ Direct Store” method for low frequency flutter
problems, the application of these time-marching methods was severely constricted.
Although Giles (1991b) extended his “time-inclined” phase-shifted periodic conditions
for blade flutter analysis, a multiple blade passage calculation usually has to be carried
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out due to the strong restriction of inter-blade phase angles in the space-time

coordinate transformation (He, 1990a).

To deal with the phase-shifted periodic boundary condition more flexibly, a
“Shape Correction” method was proposed by He (1990b) in a 2-D time-marching
solver for unsteady flows around oscillating blades. In this novel method, the periodic
unsteady flow variables on the periodic boundaries are transformed into Fourier
components by using a Fourier transformation. Compared with the “ Direct Store”
method, the computer storage is greatly reduced by only storing the Fourier
coefficients. This method also overcomes the restriction of inter-blade phase angles in
the “Time-Inclined” method. Furthermore, the “Shape Correction” method was later
developed by He (1992) to be able to handle multiple perturbations with a single
blade passage solution. He (1994a) later extended the 2-D method to a fully three-
dimensional time-marching method for inviscid and viscous unsteady flows around
vibrating blades. The 3-D unsteady viscous solutions were considerably accelerated

by a two-grid time integration technique developed by He (1993a).

Due to the potential importance of the fluid and structure interaction for blade
flutter, the time-marching methods are also used by many researchers for developing
coupling methods for blade flutter analyses (Bendiksen, 1991, He, 1994, Marshall and
Imregun, 1995, Chew et al, 1997). In the coupling method, both the nonlinear
aerodynamic equations and the structural equations are solved by the time-marching
schemes, at each time-step the data are transferred between the aerodynamic model
and the structural model. The inter-blade phase angle at which the instability occurs in
the coupling methods is a part of the solution, therefore the calculations are normally
carried out on a multi-passage domain or ideally on a whole annulus. The drawback
of the coupling methods is the computational cost, not only due to the time-marching

but also to the coupling between the aerodynamic model and the structural model at

each time-step.
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Although the application of time-marching methods for flutter analysis is
severely restricted by its large CPU time consumption, the active research activities in
this sector have significantly improved the physical understanding of blade flutter. For
example, the works by He (1990b) and Ayer and Verdon (1996) revealed the
potential importance of the nonlinearity in the flutter analysis due to shock oscillation.
To handle unsteady flows with strong nonlinearity, the nonlinear time-marching
methods plays an irreplaceable role. Furthermore, the well-developed time-marching
solvers provide reliable tools for the validation of other kinds of numerical methods,

such as time-linearized methods which will be reviewed later in this Chapter.

1.3.1.3 Trailing Edge Vortex Shedding

Although trailing edge vortex shedding is an important part of blade profile
loss in gas turbines, very few efforts have so far been made to predict vortex shedding
in turbomachinery using numerical methods. Currently, the most popular methods for
the prediction of the trailing edge loss are based on analytical models, such as the
control volume analysis by Denton (1993). However, the base pressure is not
calculable in the control volume method, therefore the loss due to the trailing edge
vortex shedding is unlikely to be correctly predicted (Roberts, 1997). There are two
main difficulties that are hindering the development of numerical methods for vortex
shedding calculations by solving the unsteady Navier-Stokes equations. The first is
the large number of mesh points required around the trailing edge to resolve the small
length scale vortex shedding, which makes the computation prohibitively expensive.
The second is the fact that vortex shedding is a highly non-isotropic phenomenon, the
conventional turbulence models such as the mixing length and two-equation models
are unlikely to predict the wake evolution (Cicatelli and Sieverding, 1995) correctly.
Although applications of some sophisticated turbulence models such as Reynolds
stress models and Large-Eddy Simulation models (LES) have demonstrated their

ability to capture the wake mixing process, these models are unfortunately not feasible

to be used yet.
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For numerical calculations of trailing edge vortex shedding by using time-
marching methods, an impressive work was done by Currie and Carscallen (1996). In
this work, quasi-3D Reynolds averaged Navier-Stokes equations are solved by using
a flux-difference splitting scheme of Roe(1981) in space and an implicit integration
scheme in time, an extremely fine adaptive unstructured mesh near the blade surface
and in the wake was used to resolve the boundary layer and the vortex shedding in the
wake. A combination of k —wand k - € turbulence zonal models (Menter, 1993) was
used to model the turbulence. The vortex shedding structures and frequencies were
very well predicted by the calculations under transonic flow conditions. The measured
total pressure loss coefficients were reasonably predicted by calculations. However,
the base pressures were poorly predicted, especially at the flow condition with an exit
Mach number of 1.0. The excessive numerical dissipation in the calculations was
blamed by the authors for the poor prediction of base pressures even in such a fine

mesh.

A recent attempt at the numerical prediction of trailing edge vortex shedding
was made by Amone and Pacciani (1997). The vortex shedding behind a turbine
blade, which was extensively tested (Cicatelli and Sieverding, 1996) at von Karman
Institute(VKI), was numerically investigated. In the calculation, a simple two-layer
mixing length turbulence model and the Baldwin-Lomax turbulence model (Baldwin
and Lomax, 1978) were compared for the vortex shedding predictions. The authors
found that the predicted shedding frequency and flow fluctuations can vary quite a lot

by using different values of constant C, in the Baldwin-Lomax models. This

suggests that the unsteady calculation of trailing vortex shedding is sensitive to
turbulence models. Another numerical effort by Roberts (1997) also found that vortex
shedding predictions are strongly dependent on turbulence modelling. In the work by
Amone and Pacciani, although an efficient time-accurate integration scheme
(Jameson, 1991) and a multigrid were used in their calculations, each 2-D calculation
with 36,113 mesh points still took about 65 hours on an IBM 590 workstation to

achieve a periodic vortex shedding. Although Currie and Carscallen (1996) did not
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mention the computational time in the published paper, it is believed to be incredibly

long.

Even if the arguments about the turbulence models are temporally excluded,
the unsteady calculation of trailing edge vortex shedding is still unlikely to be used in
turbomachine design systems because it is extremely CPU time consuming. However,
the major concern of turbomachine designers with regard to vortex shedding is the
loss produced by the vortex shedding, i.e. the time-averaged effects of the vortex
shedding rather than its small scale unsteady details. It would be highly desirable to
develop a numerical method which can produce a time independent (‘steady’ or time-
averaged) solution in which the time-averaged vortex shedding effects can be
included. It would be similar to Adamczyk’s (1985) concept for handling bladerow

interactions. The feasibility of this concept will be investigated in this thesis.

1.3.2 Time-Linearized Harmonic Methods

As an alternative to the nonlinear time-marching methods, the other kind of
numerical methods widely used for unsteady flow analysis in turbomachinery, is the
time-linearized harmonic method. In time-linearized harmonic methods, an unsteady
flow is decomposed into a steady flow plus a linear, harmonically varying unsteady
perturbation. The harmonic perturbation equation is a linear equation with coefficients
based on the steady flow solution. Although the perturbation equation can only
handle a single frequency unsteadiness in one solution, the more general solution can
be linearly composed from the solution of different frequencies. The validity of the
methods depends on the linearity of the unsteady flow problems. It is widely accepted
that the onset of blade flutter is a linear aeroelastic phenomenon in most
circumstances, therefore the time-linearized methods have been widely used for blade

flutter analysis in turbomachinery.
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The development of linearized methods for unsteady flows in turbomachinery
started with the pioneering effort by Whitehead(1970) based on a flat plate analysis.
In this analysis, the steady flow is assumed to be uniform and axially subsonic. The
blade thickness and loading are neglected by using a flat plate cascade. The
perturbation equation based on the uniform steady flow is solved by a semi-analytic
method. Whitehead (1987) later developed this flat plate analysis into a well-known
computer program LINSUB which can handle several kinds of unsteady inviscid
flows around a flat plate cascade, i.e. wake/rotor and potential/rotor interactions and
blade oscillation. The solution from LINSUB is extremely quick and accurate.
Although its application is limited due to the flat plate and uniform steady flow
assumptions, this method provides an invaluable tool to validate other numerical

methods.

The second stage in the development of time-linearized methods is the
development of time-linearized potential methods with notable works by Verdon and
Caspar (1984), and Whitehead (1982). The important advance in this kind of method
is that the steady flow is obtained by solving nonlinear potential equations and real
airfoils can be dealt with in the analysis. The unsteady perturbation is firstly assumed
to be harmonically varying and the linear superposition can be used for unsteady flows
with different frequencies. To handle transonic flows, shock fitting techniques were
used in Verdon and Caspar’s methods, and a shock capturing technique was used in
Whitehead’s work. Engineering practice (Verdon and Caspar, 1984) has
demonstrated that time-linearized potential methods are effective in predicting
subsonic and some transonic flutters. The limitation of linearized potential methods is
due to the isentropic and irrotational assumptions of potential flows, for transonic

problems they are only suitable for flows with weak shocks.
A significant advance in the time-linearized methods has been made by the

active development of time-linearized Euler methods in recent years. Actually, the

time-linearized Euler method was firstly proposed by Ni (1974). An important idea in

17



Ni’s work was to make the perturbation amplitude time dependent in a pseudo time,
so the perturbation equation can be solved by a conventional steady time-marching
method. Unfortunately the time-linearized method did not receive much attention
until a recent development by Hall and Crawley (1989). In Hall and Crawley’s work,
the steady flow solution was obtained by solving the unsteady Euler equations and the
linear harmonic Euler equations were solved by a finite element method. This work
importantly demonstrated the validity of the linear approximation up to quite
substantial levels of unsteadiness. In their work, a shock-fitting technique was used
to handle oscillating shock waves in a transonic duct. Unfortunately shock fitting
techniques are not practical due to the complex shock system in turbomachniery
flows. It is preferable to use the flexible shock capturing techniques in the time-
linearized methods. An important contribution was made by Linquist and Giles (1991)
to show that shock capturing can be used in the time-linearized Euler methods to
predict blade unsteady loading correctly provided that the time-marching scheme is
conservative and the steady shock is sufficiently smeared. Since then the shock
capturing technique has been widely used in the time-linearized Euler methods

(Holmes and Chung, 1993, Hall, Clark and Lorence, 1994).

Currently the time-linearized methods are being actively developed in three
aspects. The first is to develop the 2-D time-linearized Euler methods into fully three-
dimensional methods (Giles, 1991b, Hall and Lorence, 1992, Marshall and Giles,
1997). The calculation results by Hall and Lorence (1992) have shown the three-
dimensional effects can be significant for correctly predicting the blade loading. The
second aspect is to extend the Euler methods to Navier-Stokes methods (Holmes and
Lorence, 1997). The Navier-Stokes methods are more realistic for the flutter analysis,
especially for the subsonic stall flutter prediction in which the oscillation of the flow
separation region is the dominant phenomenon. The third area of interest is to include
the interaction effects from other blade rows in a single bladerow calculation. A work
by Buffum (1995) has shown the strong effects of the interaction from other

bladerows on a blade flutter prediction produced by an isolated bladerow calculation.
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Preliminary results from a recent study by Silkowski and Hall (1997) have shown that
“the aerodynamic damping of a blade row in part of a multistage machine can be

significantly different than that predicted using an isolated blade row model”.

The main feature of the time-linearized methods is high computational
efficiency. One reason is that, in the linearized methods a nonlinear unsteady equation
is decomposed into two equations, i.e. a steady flow equation and a linearized
perturbation equation. By introducing a pseudo-time technique, the time-linearized
Euler/Navier-Stokes perturbation equations can be solved by using any well-
developed time-marching schemes. Another reason is that the phase-shifted periodic
condition is no longer a difficulty and the solution can be easily realised in a single
blade passage domain. However, although the time-linearized analyses meet the needs
of turbomachinery designers for efficient unsteady flow predictions, their limitation
should not be underestimated. The drawback of the time-linearized methods is that
nonlinear effects are completely neglected due to the linear assumption . The
nonlinear effects can be potentially irﬁportant in turbomachniery unsteady flows

associated with the shock oscillation, finite amplitude excitation, flow separation etc.
1.3.3 Nonlinear Harmonic Methodology

The strength of the nonlinearity of unsteady flows is represented by the
difference between the steady flow and the time-averaged flow (He, 1996a). A
typical nonlinear example is a shock oscillating in a transonic duct as shown in Fig.1-
5, the time-averaged shock could be very different from the steady one because the
time-averaged shock is smeared by the unsteadiness due to shock oscillation. In the
linear method, the time-averaged flow is identical to the steady flow, therefore the
unsteady perturbation cannot be predicted correctly if the time-averaged flow is very
different to the steady one. To handle the shock oscillation in a time-linearized
Euler/NS method by using the shock capturing technique, the steady shock has to be

smeared by artificial smoothing to get a better prediction of blade aerodynamic
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loading (Linquist and Giles, 1991). However, this treatment has little physical insight
and cannot be justified for large amplitude shock oscillations which could happen in
turbomachinery flows (He,1990b , Ayer and Verdon ,1996). It is highly desirable to
develop a method which has a high computational efficiency like the conventional
linear methods, but which can account for nonlinear effects like the nonlinear time-
marching methods. Recently, a novel nonlinear harmonic approach was proposed by
He (1996a). In this approach, the TIME-AVERAGED flow (instead of steady flow)
is used to be the base of unsteady perturbations. The nonlinear effects are to be
included in a COUPLING SOLUTION between the time-averaged flow and
unsteady perturbations. To illustrate this approach in a simple way, a 1-D convection

model equation is used here:

du 1duu
+— =

LA 1-5
ot 2 ox (1-5)

The time-dependent flow variable is composed by:
u(x,t) =ux)+u’(x,t) (1-6)

where u is the time-averaged quantity, u’ is a periodic unsteady perturbation.
gea q y p yp

Substituting equation (1-6) into the equation (1-5), we have:

Ju” 134
— -—_ 7 r__r7 — 1_
o +zax(uu+2uu +uu)=0 (1-7

The time-averaged equation can be obtained by time-averaging equation (1-7):

Jud 0 —
—+— ()= 1-8
ox +ax(uu) 0 (1-8)
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Compared to equation (1-5), time-averaging generates an extra term in the time-

averaged equations. This extra term é—-( u’) is a nonlinear term which is similar to
X

the turbulence (Reynolds) stress term. Here it is called “unsteady stress” because it is

generated by a periodic unsteadiness.

The unsteady perturbation equation can be obtained by the difference between

the basic unsteady flow equation (1-5) and the time-averaged equation (1-8), e.g.

aa“t +—;—§(2ﬁu'+u’u’—W)=O (1-9)

However, the equation (1-9) is not readily solvable if a frequency-domain harmonic
approach is to be used. It is assumed that the unsteady perturbation is dominated by
the first order term. Then the second order terms in the unsteady perturbation
equation (1-9) can be neglected. The resultant first order equation is given by:

ou” o

Z () = 1-1
o (@) =0 (1-10)

The unsteady perturbation equation (1-10) is of the same form as the
perturbation equation in the conventional time-linearized Euler method. However,
equation (1-10) is no longer linear, because the time-averaged variable U is unknown,
which in turn depends on the unsteady perturbation. Because of the interaction
between the time-averaged and the unsteady perturbation equations, the nonlinear
effects due to the unsteadiness can be included in a time-averaged flow and unsteady
perturbation coupling solution. The coupling solution procedure is the key to this

nonlinear harmonic approach.
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The important part of the present work in this thesis is to develop this novel
nonlinear harmonic methodology into a nonlinear harmonic Euler/Navier-Stokes
method, and to identify its effectiveness by numerical tests in the calculation of

unsteady flows around oscillating blades.

1.4 Overview of Thesis

The principal objective of the work in this thesis is to develop efficient
frequency domain Euler/Navier-Stokes numerical methods for unsteady flows around
oscillating blades. The emphasis is on the development of a novel quasi 3-D frequency
domain Euler/Navier-Stokes method based on the nonlinear harmonic methodology

(He, 1996a).

To start with, a conventional quasi 3-D time-linearized Euler/Navier-Stokes
method is developed for blade flutter and forced response analysis, as described in
Chapter 2. In this baseline method, the unsteady flow is decomposed into a steady
flow plus a linear harmonically varying unsteady perturbation. Both the steady flow
equation and the unsteady perturbation equation are spatially discritized using a cell-
vertex finite volume scheme and are integrated using the 4-stage Runge-Kutta scheme
in the pseudo-time domain. A moving grid is used to avoid the extrapolation of the
flow variables from the boundary of the grid to the instantaneous location of the
vibrating blade. At the inlet and outlet boundaries of the computational domain, non-
reflecting boundary conditions are implemented to prevent spurious reflections of
outgoing pressure, entropy, and vorticity waves back into the computational domain.
This quasi-3D time-linearized Euler/Navier-Stokes solver is extensively validated
against experimental data and other well-developed numerical methods in the
calculation of blade flutter and forced response problems, the numerical results are

presented in Chapter 3.
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Based upon the developed conventional time-linearized method, a novel
nonlinear harmonic Euler/Navier-Stokes method is developed, as described in Chapter
4, by following the nonlinear harmonic approach proposed by He (1996a). In this
method, the time-averaged flow (instead of a steady flow in linear methods) is used as
the base for the harmonic unsteady perturbations. Due to the nonlinearity of the
momentum and energy equations, the time-averaging generates extra ‘‘unsteady
stress” terms in the time-averaged equations which are evaluated from the unsteady
perturbation solutions. A strong coupling technique is used to solve the time-averaged
equations and harmonic perturbation equations simultaneously in a pseudo-time
domain because of the strong interaction between them. The effectiveness of
including nonlinear effects by this novel method is assessed in Chapter 5 by

calculating transonic unsteady flows.

Having achieved the primary objective of this thesis, some efforts are made
towards a numerical investigation of trailing edge vortex shedding, as presented in
Chapter 6. The main objective of this work is to investigate the feasibility of
producing a time-independent solution including time-averaged effects of trailing edge
vortex shedding by solving time-averaged equations. For either a linear analysis or a
nonlinear harmonic analysis, a time-independent solution is needed for the base of the
unsteady perturbations. In this investigation, the time-averaged equations about the
vortex shedding with known unsteady stresses are solved. The unsteady stresses are
worked out from the vortex shedding unsteady calculation results. The structures of
the vortex shedding unsteady stresses are analyzed. In this work, two kinds of vortex
shedding are considered, one is for a circular cylinder, the other is for a VKI turbine

blade.

Finally, this thesis is concluded by Chapter 7 and suggestions for future work

are also presented.
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Chapter 2 Time-Linearized Harmonic Method

In this chapter, the methodology of a quasi 3-D time-linearized Euler/Navier-
Stokes method for unsteady flows induced by blade oscillating and incoming wakes is
presented. This method is developed from a well-developed 2-D nonlinear time-
marching solver, VIB2D, which was originally developed by He (1994b) for flutter
prediction by using an aerodynamic and aeroelastic coupling method. He (1997a,
1997b) later used this programme for rotating stall and partial admission analyses in
turbomachinery. The emphasis in this chapter is on the derivation of the time-

linearized Navier-Stokes/Euler perturbation equations and the numerical solutions.

2.1 Governing Equations

The integral form of the quasi 3-D unsteady Navier-Stokes equations over a

moving finite area AA is

9 ﬂUdA+§J(F—Vx)dy+(G—Vy)dx]= [[SdA (2-1)
atAA AA
where
p pu-—pu,
+P-
U=n P" F=p| P P
pv r(puv — pvug)
pe (pe+P)u-—peu,
vV—pv 0
PV =PV, 5h
puv —puv, P—
G=h S=| ox
r(pvv+P—pvv,) 0
(pe+P)v—pev, 0




To close the equation system, a flow state equation is needed to define the pressure P.

For an ideal gas it is defined by
1
P= <v—1>(pe—5p<u2 +v2)) (2-2)

The quasi 3-D effects are introduced by allowing specified variations of radius r and

streamtube height h in the axial direction. ugand vgare the grid velocities used to

accommodate the grid movement due to blade rotating and vibration. The viscous

effects are introduced by the viscous terms:

0 0
T T
V,=h a Vy,=h >
rTxy I‘Tyy
—(x tUTzx + VTyy —(y +UTzy +VTyy
where:
T = 2pe -2 ETEXAL p 1 2y
o3 ox dy ¥ 3 dy ox = ¥ dy Jx
oT dT
=-k—, =-k—
9= 5% YTy

The viscosity is w=pu;+W,. The laminar viscosity p; is obtained from the

Sutherland’s law with a reference viscosity coefficient being calculated from a fixed

Reynolds number at the inlet flow condition. The turbulence viscosity p, is worked

out by the standard Baldwin-Lomax algebraic mixing length model (Baldwin and
Lomax, 1978). The coefficient of heat conductivity, k, is related to the viscosity

coefficient through a Prantl number.
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The Euler version of governing equation (2-1) for inviscid flows can be easily

obtained by switching off the viscous terms V, and V.

2.2 Time-Linearized Perturbation Equations

The equation (2-1) can be linearized, provided the temporal change of a flow
variable is small enough compared to the steady value. Assume that the flow can be

divided into two parts: a steady flow plus a small harmonic perturbation part, i.e.
U(x,y,t) = U(x, y) + U(x, y)e ™ (2-3)
The detailed form of U can be expressed by

P
(pu)
r(QV)
(pe)

U=h (2-4)

Meanwhile, the unsteady grid moving velocities ug and v, are also assumed

to change in a harmonic form,
U (%Y. ) =T (xy)e'™,  v,xy0 =V, +7,(x,y)e' (2-5)

For a rotor, Qg is the bladerow rotating speed.

Substituting the relationships (2-3) to (2-5) into the convective fluxes F and G, and
neglecting all the 2nd order terms, the complex amplitudes of fluxes F and G can be

given by
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(pw-(pu,)
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1
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(V) (pv,)

A

E\pu)(V - vg) + (pu)(o - Og) (2_7)

HEVIE - Fy)+ (V)T —7,) + B]

h
1l
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A
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where the non-conservative variable perturbations can be worked out from

conservative variable perturbations, i.e.

~ A
i = (pu)/ p-p(pu)/ p*
~ A
V=(v)/p-ppv)p*
~ ~ e R 1 . o
P =(y-D{(pe)—u(pu)-v (pv)+5 [42 + 1P}

Similarly, the perturbation of viscous terms in Eq.(2-1) can be given by

linearizing the V, and Vy, as

0

- %

V, =h 2 (2-8)
ITyy

—Qy +UTgy + V’cxy +07T,, + O%xy
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2. 9 . . 2. 9% 9i . .3 o
200 Wy oz 2509V du oz _g0uL v
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- k2, -k
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In this method, the perturbation of viscosity due to unsteadiness is neglected
simply by freezing the viscosity to its steady value in the perturbation equations.
Although the turbulent viscosity perturbation could be obtained by linearizing
turbulence models, doing so will significantly increase the computation time and
make the code writing much more complex. Under the Boussinesq approximation,
the primary role of the turbulence is to provide enhanced diffusivities intended to
mimic the turbulent mixing. The interaction between the turbulence and the steady
flow is minor compared to the added diffusivity introduced by the eddy viscosity. The
validity of frozen viscosity in the linear methods has been investigated by some
researchers (Holmes and Lorence, 1997). In a comparison of predicted unsteady
pressures from both a frozen turbulence model and a fully linearized turbulence
model, only a minor difference was found at an extremely low frequency case (
reduced frequency of 0.034), the results are nearly identical at normal blade flutter

frequencies.

To linearize Eq.(2-1), the computational grid is also assumed to undergo a

small harmonic deformation about its steady position, i.e.,
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The source term S in Eq.(2-1) can also be decomposed into a steady part plus

a harmonic perturbation, the perturbation part can be given by

S=| ox (2-10)

Substituting all the perturbation series into the integral unsteady Navier-Stokes
equations (2-1) and collecting zero and first order terms, the original equation can be

divided into two equations: a steady equation and a linearized perturbation equation.

The steady equation is given by

§IL(E -V, )dg + (G -V, )dR] = i SdA @-11)

The integral form of the time-linearized Navier-Stokes perturbation equation is

§L(F -V, )d§ +(G -V, )dk + (F~ V, )dy +(G - V, )dx]

= [[(SdA +8dA) - io [[0dA -ie [[OdA  (2-12)
Ak AA Ak

Note that all the variables in both Eq.(2-11) and Eq.(2-12) are only space-
dependent, time does not appear. The coefficients in Eq.(2-12) are obtained from the

solution of the steady flow equation (2-11).
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2.3 Solution Method

The solution procedure for a time-linearized Navier-Stokes/Euler method is
straightforward, as depicted in Fig.2-1. Firstly a steady flow solution is produced by
solving the steady Navier-Stokes/Euler equation (2-11). Then, for a flutter problem,
the grid moving velocities are prescribed according to a blade vibrating mode
(bending or torsion). Finally for a given frequency and inter-blade phase angle, the
coefficients in the time-linearized Navier-Stokes/Euler equation (2-12) are formed
from the steady flow solution and the time-linearized perturbation equation is solved.
By linearization, solving a time-dependent unsteady problem in the time-domain is
effectively transformed to solving two steady equations. Therefore, the time-
linearized method normally is much more computationally efficient than the nonlinear

time-marching methods.

2.3.1 Pseudo Time Dependence

In order to fully take advantage of the efficient time-marching methods, a
pseudo time variable (t”) is introduced to make the steady equation (2-11) and the
time-linearized perturbation equation (2-12) time-dependent, so Eq.(2-11) and (2-12)

can be re-written as

i, f GdA +§[(F - V,)dy +(G - V,)dk] = [[SdA (2-13)
ot” Aa AA
and

—a% j[ﬁdA+§J(f7—\~/x)d9+(G = V,)d& + (F - V,)d§ + (G - V,)dx]
AA

= [[(SdA +8dA) - i [[UdA -iw [JUdA  (2-14)
AA sA AA
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Now both the steady equation and linear perturbation equation are hyperbolic
in pseudo time, any well-developed time-marching scheme can be used to solve them.
Since only a ‘steady-state’ solution for steady flow and unsteady perturbation
amplitude are desired, any efficient acceleration techniques like local time-stepping
and multigrid can be used to speed up the convergence of a solution. This pseudo

time-marching idea was originally proposed by Ni (1974).
2.3.2 Spatial and Temporal Discretization

The spatial discretization for both Eq.(2-13) and Eq.(2-14) is made by using a
cell-vertex finite volume scheme. Consider a H-type mesh consisting of
Ix J quadrilateral cells. For each mesh cell, Eq.(2-13) and (2-14) can be written in a

semi-discrete form, e.g. for a cell with an index (i,j):

A A

d ~ - A

=R; (2-15)

and

d

" (0AA); = (FLUX1+FLUXy); +(SAA +5AA);

~io(UAA + UAA);

ll
N

(2-16)

where

A

4 . ~
FLUX| = -3[FAy + GA%]
1
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A 4 R
FLUX v = Y[V, Ay + V, AX]
1
~ 4 ~ . ~ . A aA
FLUX1 = =Y [FAy + GAx + FAy + GAX]
1

~ 4 - - N N
FLUXv=Y[V,Ay+ VyAf( + Vi Ay + V, AX]
1

The summation is taken along the four boundary surfaces of the cell. The
fluxes across each surface are evaluated using the flow variables stored at the corners
of the cell. For viscous fluxes, the first order spatial derivatives are evaluated by using
the Gauss theorem on auxiliary cells (He, 1993). Once the temporal change is
evaluated, it is equally distributed to the each corner of the cell.

This cell-vertex finite volume scheme is a spatial second order centre
difference scheme. There are no even order dissipative terms in the scheme itself. In
order to suppress the numerical oscillation and capture the steady shock waves in a
steady flow calculation and the shock impulse in a perturbation solution, a 2nd and
4th order adaptive smoothing ( Jameson et al, 1981) is applied in both streamwise and

pitchwise directions. So Eq.(2-15) and (2-16) become:

d ~ = A . . .

v (UAA); =Ry +(d,)y +(dy)y; —(Dy)y —(Dy); (2-17)
and

d ~ =« - - - - -

v (UAA); =Ry +(d, )y +(dy) —(Dy)y —(Dy); (2-18)

~

where the d, and &y are the second order steady artificial smoothing in x and y

directions, f)x and ﬁy are the fourth order artificial smoothing terms. ax and &y
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are the amplitudes of the second order artificial smoothing, ﬁx and ﬁy are the

amplitudes of fourth order artificial smoothing terms.

For the steady flow equation, ax and ﬁx can be given by
d, =P (0,,,; -20; +0,_;)AA /dv’ (2-19)

]5 (4)(U1+21 4U1+11 + 56 4U i-j t i'2j )AAU /v’

(2-20)
where
eg?) - k(2)9§j2) | (2-21)
o [Py — 2B, + B 222
’ ,ij + 2Pij + Pi_lj |
el = max{0,(k® —e(?)) (2-23)

where k® is the 2nd order smoothing coefficient, typically it is about 1/2. The k¥

is the 4th order smoothing coefficient and about 1/32. ay and ISY can be given

similarly.
For the unsteady perturbation equation, d . and 15x can be given by

dy = (2)(Ul+1] 261,;’ +ﬁi—1j )AAij /dv (2-24)
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ﬁx — 81(14)(614—2] _461"’1] +5fjlj _4fji—1j + fji_zj )AAJJ /dt,
(2-25)

In order to avoid linearizing the pressure sensor (2-22), here the smoothing
coefficients for the unsteady amplitudes are frozen at their steady values, effectively
the unsteady fluctuation of the pressure sensor is neglected. The validity of this

practice for linear problems is validated by other authors (Linquist and Giles, 1991) .

Eiy and ﬁy can be given in a similar manner.
The pseudo time-marching for both Eq.(2-17) and (2-18) is performed by

using the 4-stage Runge-Kutta scheme. The formulation of the 4-stage Runge-Kutta

time marching from time step n to n+1 is:

7 n+o T o A 5 1 1 = A n
U, "% =Uij =0y E{RU +(dx)ij +(dy)ij _(Dx)ij _(Dy)ij} e

(2-26)
and
oo 0 AR 4 T ) (B — (B ).y
ij - Vij akAA{ ij (x)ij+( y)ij ( x)ij ( y)ij}
(2-27)
where
k=1~4
and

o,=0, a,=1/4, a,=1/3, o;=1/2, o, =1
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For stability of the explicit time-marching scheme, the size of At’ can be

defined by

At’ < CFL - min{[min(A%, Ay) / (V&% + % +8));) (2-28)

(i=1,2,.,L j=1,2,..,7)

where CFL stands for the Courant-Friedrichs-Lewy number. The stability limit for the
steady state equation gives CFL <2+/2 for the 4-stage Runge-Kutta scheme. A
stability analysis for the time-linearized perturbation Euler equation by Lindquist
(1991) has shown that the limit of At” size is very close to the steady state equation.

In this method, a uniform time step is used in both steady and perturbation solutions.

To enhance the computational efficiency for viscous flow calculations, the
two-grid acceleration technique proposed by He (1993a) is used for solving both
steady and time-linearized perturbation Navier-Stokes equations, although this

technique was originally developed for speeding up nonlinear unsteady calculations.
2.3.3 Boundary Conditions

For a single blade passage domain as shown in Fig.1-3, there are four kinds of

boundary conditions, i.e. inlet, outlet, periodic and solid wall boundary conditions.

For steady flow calculations, the conventional boundary conditions are
implemented. At inlet, the total pressure, total temperature and inlet flow angle for
subsonic flow or inlet Mach Number for supersonic flow are prescribed, and the
static pressure at inlet is extrapolated from the interior domain. At outlet, the static
back pressure is given and other flow variables are extrapolated from the interior

domain. For periodic boundaries, a direct repeating condition is applied on both the
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upper and the lower periodic boundaries ab and cd, as depicted in Fig.1-3. On the
blade surface, zero flux is applied across the finite volume boundaries for inviscid
flow calculation, either a non-slip wall or slip wall boundary treatment can be chosen
for viscous flow calculations. For the non-slip wall boundary condition, the velocities
on the blade surface are set to be zero, and the wall shear stress is evaluated
according to the local velocity gradients. Usually a very fine mesh near the wall is
required for the non-slip wall condition to resolve the boundary layer. For slip-wall
condition, the velocities on the wall are allowed to slip, the wall shear stress for

turbulent flows is approximated by a log-law formulation (Denton, 1990), as

S DU
T, =5cfp2w§ (2-29a)
and
A A
2/Re2,Rez <125
¢ = (2-29b)

A
0001767+ 2177 025614 oo 5125

In(Rez2) [In(Re2)]?

where the subscript “2” represents the mesh point one grid away from the wall and

A

Rez =p,W,Ay, /|,

with W, = J U3 + (¥, = ¥,)? . The slip wall condition needs fewer mesh points in the

near wall region than the non-slip wall condition, and therefore can save the

computation time.
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The boundary conditions for solving the time-linearized Navier-Stokes/Euler
perturbation equations are much more complex than those for solving steady flow

equations, and are presented in the following sections.

2.3.3.1 Phase-Shifted Periodic Conditions

For a single blade passage, as shown in Fig.1-3, if the upper boundary ab has
an inter-blade phase angle (IBPA) ¢ lead to the lower boundary cd, a phase-shifted

periodic condition has to be applied for solving the perturbation equation (2-16), i.e.

~

U =U'e (2-30)

where the superscript “u” refers to the upper boundary ab and “1” represents the
lower boundary cd. The perturbations in the time-linearized Navier-Stokes/Euler

equations are complex numbers, the real and imaginary parts can be updated by

(@)™ = %(ﬁ;‘ea, + 0% coso = Ul sina) (2-31a)
(O™ = %(ﬁgmg + 0L sin6+ Ol cosa)™ (2-31b)
(Ula)™™ = %(ﬁ'ml +0%, coss+ U, sin 0')0ld (2-31c)
(Ulnag )™ =—;—(ﬁ:mg +0,, cosa—TY, sin o)°"i (2-31d)

where the subscript “real” refers to the real part of a complex number and “imag”

refers to the imaginary part.
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2.3.3.2 Inlet and Outlet Boundary Conditions

For an unsteady flow calculation in a finite extent computational domain as
shown in Fig.1-3, inlet and outlet boundary conditions have to be properly
constructed to prevent spurious reflections from far-field boundaries (inlet and
outlet). Otherwise the outgoing pressure, entropy, and vorticity waves can be
reflected back into the computational domain to corrupt the solution. The
development of nonreflecting boundary conditions for nonlinear and linear unsteady
flow calculations in turbomachinery is active in recent years. A notable nonreflecting
far-field boundary condition for 2-D Euler equations is made by Giles (1990b). In this
method, the nonlinear Euler method is linearized and the steady flow at inlet and
outlet is assumed to be uniform. By using the Fourier analysis, the amplitudes of four
characteristic waves (downstream running and upstream running pressure waves,
vorticity wave, and entropy wave) can be expressed by the sum of four complex
amplitudes (pressure, density, velocities in x and y directions) and vice versa.
According to the characteristics of these four waves, the nonreflecting boundary
conditions can be constructed at the inlet and outlet boundaries. The error in this
boundary condition is mainly introduced by the linearization of Euler equations and

nonuniformity of inlet and outlet steady flows.

In the present time-linearized Navier-Stokes/Euler method, two kinds of
nonreflecting boundaries developed by Giles (1990b) are implemented in solving the
time-linearized perturbation equations, one is the 1-D unsteady boundary condition,
another is the exact 2-D single-frequency boundary condition. In order to reduce the
error in the nonreflecting boundaries induced by the wakes in viscous flow
calculations, the steady flow at outlet is circumferentially averaged to give an

‘uniform’ steady flow base for implementing the boundary conditions.
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To implement the nonreflecting boundary conditions, firstly the transformation

between the amplitudes of four characteristic waves and amplitudes of pressure,

density, velocities in x and y directions are given by

and

T <t 21 O

i

[w] O:::"‘

o

0 0
0 pc
pc 0
-pc 0
1
() —_
282
0o L
2pc
— 0
pc
o 1
2

;—ap—no;_‘

a2 SRS BN =2 S o ]

(2-32)

(2-33)

where ¢;, C,, ¢, and €, are the amplitudes of four characteristic waves (entropy ,

vorticity, downstream running pressure, upstream running pressure waves). ¢ is the

local sound speed.

In order to handle the forced response problems induced by incoming wakes,

the transformation relationships of (2-32) and (2-33) at inlet can be re-written as

0

Y.
56 0
¢ 0
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and

1 1
_ () — —
55, ¢? 2%2 2 |-
iy | | © ° % Tmmle
N ~ml — pc pc ~2 (2-35)
V= Vi 0 — 0 0 Cs3
l'S_i;inl pc 1 1 64
o 0o - =
2 2

where P, U, Vi, and B, are amplitudes of the prescribed incoming wake
profile. The incoming wake can be prescribed by different ways such as a simple
sinusoidal distribution or superposition of different Fourier harmonic components for
a more accurate expression. For superposition of different harmonic components to
model a wake, the linear perturbation equations have to be solved for each harmonic

components.
According to the characteristics of travelling waves, the 1-D unsteady

nonreflecting boundary condition for an axial subsonic flow can be given

At inlet: (2-36a)

fEIRAN
]
[

At outlet: ¢, =0 (2-36b)
The 1-D nonreflecting boundary condition, which ignores all variations in the

y directions, is very simple and easy to implement, but it is not accurate enough for

some cut-off conditions (Giles, 1991b).
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To be more accurate, a two-dimensional nonreflecting boundary condition is
also implemented in the present time-linearized method. This boundary condition can

be given by

(A L —C;
At inlet: o C, |=a (C—_P)}i—é“, -c, (2-37a)
ot’| _ 1+ S)(C-VA)
i C-a)?a .
2 /A ~ C4 - c3
A+S)°(c-VA)
At outlet: 9 =0 — A2u7L c, + 1-5 ¢, —¢, | (2-37b)
ot’ €c-vA(A+S) 1+S

where A is the wave length defined by

cb

>
I
|

and

S= 1_(62_1’:12))\’2
CE70%

where b=0/Ay . is the wave number, ¢ is the inter-blade phase angle and
AY pien 18 the blade pitch. (2-37a) and (2-37b) can be time-marched in the same

manner as the interior domain by using the 4-Stage Runge -Kutta scheme. o is the
relaxing coefficient, choosing a too large value may lead to a numerical instability,
choosing too small value will lead to a poor convergence rate, typically it is to be

1/ AYpitch .
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2.3.3.3 Solid Wall Boundary Conditions

For solving the time-linear Euler equations, the perturbations of fluxes are

simply set to be zero on the blade surface.

To be consistent with solving the steady Navier-Stokes equations, there are
two kinds of solid wall boundary conditions implemented to solve the time-linearized
Navier-Stokes perturbation equations, non-slip wall and slip-wall conditions. For the
non-slip wall boundary condition, the relative velocity perturbations on the solid wall
are simply set to zero and the perturbation of wall shear stress is evaluated according

to the local velocity gradients.

For the slip-wall condition, the perturbation of shear stress is obtained by

linearizing the nonlinear relationship

T, = -;-cfpwg (2-38)
to give,
A -
~ _ 1. 2, A 2
TW - 'Z'[Cf pW2+ Cf (pr)] (2‘39)

where C; can be obtained by the relationship (2-29b) and the €; can be given by

linearizing the relationship (2-29b).

An interesting issue related to the solid wall boundary condition is, what
would happen if a time-linearized Euler perturbation equation is solved based on a
steady viscous flow field generated by a Navier-Stokes solver? This issue might be of

practical interest since some linearized Euler methods have been already developed
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and it would be practically beneficial if these methods can be directly applied based on
a steady flow provided by a separate well-developed steady viscous flow solver.
Numerical tests were carried out in the present work by switching off all the viscous
perturbation terms and solving the Euler perturbation equations based on a viscous
flow field. The numerical tests show that for some test cases, doing this reveals
serious convergence problems. This can be explained by comparing the unsteady
perturbation equations with original unsteady Navier-Stokes equations. The original
unsteady viscous flow model requires that tangential velocities must be constrained
either by a non-slip wall condition or by applying a wall shear stress. This constraint is
effectively lost if the Euler perturbation equations are used for the unsteady part of
the flow, regardless of the condition applied in the steady viscous flow part.
Therefore, solving the Euler perturbation equations on the viscous steady flow field
does not seem reliable. This issue is also discussed in a work by Holmes and Lorence

(1997).

2.4 Summary

In this chapter, a quasi 3-D time-linearized Navier/Stokes method has been
developed. In this method, an unsteady flow is decomposed to be a steady flow plus a
harmonically varying small perturbation. By the linearization, the original unsteady
flow governing equation is divided into two equations: a steady flow equation and a
linear perturbation equation. A pseudo-time technique is introduced to make these
two equations time-dependent. Both the steady flow and perturbation equations are
spatially discritized by a cell-vertex finite volume scheme and temporally integrated
by the 4-stage Runge-Kutta time-marching scheme in a pseudo-time domain. The grid
moving velocities are explicitly included in the original flow governing equations and
it is easy to handle the moving grids. To prevent spurious reflections of outgoing
waves, a 1-D/2-D nonreflecting boundary condition is implemented. To enhance the
computational efficiency, a 2-grid acceleration technique is applied to speed up the

time-linearized viscous calculations. To be consistent with the solid wall conditions
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used in the steady flow solver, a slip-wall boundary condition has been developed in

solving the Navier-Stokes unsteady perturbation equations.

By linearization, solving an unsteady flow equation in a real time-domain is
effectively equivalent to solving two time-independent equations, therefore the time-
linearized method normally is much more efficient than the nonlinear time-marching

methods.




Chapter 3 Validations for Time-Linearized Method

A quasi 3-D time-linearized Navier-Stokes/Euler method has been developed
for unsteady flows in turbomachinery, as described in Chapter 2. In this Chapter, the
computational results by this time-linearized method for the unsteady flows induced
by the blade oscillation and unsteady incoming wakes will be presented. In order to
validate the method, the calculated results will be compared to the numerical results
produced by other well-developed linear methods, nonlinear time-marching methods,
and experimental data. The calculations are carried out in two parts: inviscid flow
calculations for validating the time-linearized Euler method, and viscous flow

calculations for validating the time-linearized Navier-Stokes method.
3.1 Euler Solutions
3.1.1 Oscillating Flat Plate Cascade
The first case for the validation on the time-linearized Euler method is made

by calculating the unsteady flows around an oscillating flat plate cascade. The

geometry of this cascade is

Chord: C=0.076m
Solidity: C/Pitch=13
Stagger angle: v =30°

and the flow has a Mach number of 0.65 and zero incidence.

The unsteady flows are introduced by the blade oscillation in a torsion mode
around its leading edge with 1 degree amplitude and —90° inter-blade phase angle.

The calculations are carried out under two different reduced frequencies ( based on
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the blade chord and flow inlet velocity), one is a lower frequency of 0.57, another is a

higher frequency of 1.714.

In this flat plate cascade test case, the nonlinear effect is negligible. The
calculated unsteady pressure jumps as defined later by the present time-linearized
Euler method are compared to those generated by a well-established linear solver
LINSUB. The programme LINSUB was described by Whitehead (1987) based on a
semi-analytical linear method and it can handle several kinds of turbomachine
unsteady flows in a flat plate cascade induced by the blade oscillation, incoming
wakes, and inlet or outlet pressure waves. The solution of LINSUB is very accurate
so that it is widely used to validate numerical methods. The unsteady pressure

coefficient jump is defined by
A =()" - () (3-1)

where the unsteady pressure coefficient, €, is defined by

~ p
c, = 3-2
P05p, WinA -2

where A is the amplitude of blade torsion, in this case is given by 1 degree, and the
superscript “u” represents the upper surface of a reference blade and “1” refers the

blade lower surface.

The computational mesh used in the present time-linearized Euler calculation
is 90x30 and the mesh in axial direction is slightly squeezed around the blade
leading and trailing edges in order to give a better flow resolution. The calculated real
part and imaginary part of the unsteady pressure coefficient jump for the lower

frequency case (k=0.57) is compared to the results produced by LINSUB in Fig.3-1,
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and an excellent comparison has been achieved even at the leading and trailing edges
of the blade. A similar good comparison has also been obtained for the higher

frequency case (k=1.714), as shown in Fig.3-2.
3.1.2 High Frequency Incoming Wakes

In order to assess the ability of the present time-linearized Euler method for
handling the forced response problems in turbomachinery, the unsteady flows around

flat plate induced by unsteady incoming wakes have been calculated.

In this calculation, the cascade geometry is

Chord: C=0Im
Solidity: C/Pitch =2.0
Stagger angle: v =30°

and the steady flow has a Mach number of 0.7 and zero incidence.

The unsteady flow in this forced response problem is induced by an unsteady
incoming wake. The wake has a pitch which is 90% of the blade pitch. In the present
calculations, the unsteady flows induced by the wakes from two different incoming
angles are considered, one is 0° , the other is -30°. For the 0° case, it produces a
reduced frequency (based on axial velocity and axial chord) of 6.98 . For the —30°
case, it produces a reduced frequency of 13.96. According to the Eq. (1-4), the pitch

ratio between the wake and cascade in this calculation produces an inter-blade phase

angle of —40°.

The wake in this calculation is prescribed by assuming a uniform static

pressure, uniform total enthalpy and a simple sinusoidal form of velocity defect across
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the wake, so the unsteady perturbation amplitude of the incoming wake can be given

by

P, =00

inl

~ ~2 2

Uiy = Ay Uiy + Vi cos(Bye)
~ ~2 ~2 .

Vit = A/l + Vi sin(B,..)

where B, is the angle of incoming wake and it is 0° or —30° for current two
cases. A is the amplitude of the wake velocity defect and is given by 1% in the
calculation. The amplitude of the wake density, p,,, can be worked out by linearizing

the following nonlinear relationship

P
Pin = il lml (3-3)
Y (CPT inl _E(Uil +Vil ))

where T"ini is the total temperature and is constant in the wake frame. For the wake

in this calculation, p,, is given by

~ Y lsinl P N
Pint =2 (Wip Wiy + Vi Vi) (3-4)
Y-1C,T,

where C, is the gas constant and Y is the ratio of gas specific heat. ’i‘.m, is the

amplitude of the unsteady temperature at the inlet.
In this validation, the predicted amplitudes of the unsteady pressure coefficient

jump by the time-linearized Euler method are also compared to the results produced

by LINSUB. In this calculation the unsteady pressure coefficient is defined by
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~

c, = P (3-5)

P A &
PintWint W res

where w_, is the velocity which would be induced at the leading edge of the blade by

inlet wakes (positive up), if the cascade were removed,

In order to resolve the high frequency unsteadiness, a fine mesh with a size of
350 x 40 is used in this calculation. For the first case with the wake angle of 0°
degree, a contour map of the first harmonic entropy is presented in Fig.3-3. The
contour map of the first harmonic pressure is presented in Fig.3-4. It can be clearly
seen that the incoming wake propagates downstream. The complex amplitudes of
unsteady pressure coefficient jump predicted by the present linear method are
compared with LINSUB in Fig.3-5, and the comparison is good. The computational
results for the case with wake angle of —30° degrees are given in Fig.3-6 to Fig.3-8.
It can be seen that the unsteady wake propagation is well predicted by the presented
calculation, a reasonable comparison between current calculation and LINSUB is also
achieved even for the unsteady flow with a very high frequency. For both cases, their
first harmonic pressure contours suggest that the non-reflection of outgoing pressure
waves is well kept at the inlet by applying the 2-D nonreflecting boundary conditions,
but at the outlet some reflections can be seen. The reason is not quite clear. This

problem is noted in Giles’ computational results as well (Giles, 1990b).
3.1.3 Fourth Standard Configuration

To validate the present quasi 3-D time-linearized Euler method in a more
practical condition, an unsteady flow through an oscillating turbine cascade has been
calculated. This is the fourth standard configuration in the Aeroelasticity Workshop

(Bolcs and Fransson, 1986). In this workshop, nine standard configurations about the
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unsteady flows around oscillating blades were collected, and experimental data are
available in the first seven configurations. For each configuration, different numerical
methods were used to calculate the unsteady flows and the numerical results were
compared to the experimental data. Because of the difficulty for the experimental
study of unsteady flows in turbomachinery, especially for the blade flutter, the
Aeroelasticity Workshop is invaluable for understanding blade flutter and validating

numerical methods.

The fourth standard configuration is a case in which a turbine cascade
oscillated in a bending mode under different frequencies and inter-blade phase angles
at high subsonic or transonic flow conditions. The cascade in this experiment is an
annual turbine cascade and inlet guide vanes were used to induce swirl in the flow to
produce the prescribed inlet flow angles. The cascade has a stagger angle of 56.6°,
hub to tip ratio of 0.8, aspect ratio of 0.538, and has 20 blades. In order to produce
2-D results, the blade profile is the same from hub to tip. In the present numerical
study, the experimental Case 3 is considered. The flow condition in this case is given

by

Inlet flow angle: B, =—45.0°
Inlet Mach number: M, =0.28
Outlet flow angle: B, =-71.0°
Outlet Mach number: M, =0.9

First, the steady flow is calculated by solving the steady flow equations.
Numerical tests have shown that a linear variation of the streamtube height in the
blade passage with a ratio of 1.1 has to be given to match the experimental time-
averaged static pressure distribution on the blade surfaces. A good comparison
between the calculated steady isentropic Mach number distribution and experimental

data is shown in Fig.3-9.
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Having calculated the steady flow, the unsteady flow due to blade bending in a
direction nearly perpendicular to the chord line is calculated by solving the time-
linearized perturbation equations. The reduced frequency of the blade oscillating is
0.12 ( based on the blade semi-chord and inlet flow velocity). Here the unsteady flows
under three different inter-blade phase angles, ie. —90°, 180°, and 90° are
calculated. The predicted amplitudes and phase angles of unsteady pressure
coefficients on the blade surface are compared to the experimental data and the
comparisons are given in Fig. 3-10 to Fig. 3-12. The comparisons have shown that
the amplitudes in the front part of the suction surface are over-predicted under all
three inter-blade phase angles and the trend of phase angle variations is reasonably
predicted. The reason for the discrepancy between the predicted and experimental
data is not known and it might be due to the three-dimensional effects in the
experiment. A three-dimensional linear analysis by Hall and Lorence (1992) of this
standard configuration has shown marked 3-D effects on the unsteady flow
calculations, especially on the unsteady amplitudes, although this standard
configuration was designed to be a two dimensional test case. Nevertheless, the
predicted results by the present time-linearized Euler method are very similar to those

produced by a nonlinear time-marching method (He, 1990b).
3.1.4 Tenth Standard Configuration

In order to validate the present time-linearized Euler method for transonic
unsteady flows around oscillating compressor blades, the tenth standard configuration
is calculated. This standard configuration was recently proposed by Fransson and
Verdon (1993), in which a compressor cascade oscillates either in a torsion or a
bending mode under different reduced frequencies and inter-blade phase angles. The
airfoils of this cascade have a circular arc camber distribution with a maximum height

of 5% of the chord. The thickness distribution is slightly modified from a NACA 5506

airfoil so that the trailing edge is wedged. The cascade has a stagger angle of 45° and

a pitch/chord ratio of 1.0. The cascade operates in a subsonic flow condition or a
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transonic flow condition with a weak shock on the blade suction surface. This
standard configuration was extensively investigated by a time-linearized potential
method (Verdon, 1993) and nonlinear time-marching methods ( Huff, 1991, Ayer and
Verdon, 1996). The comparison between the linear results and nonlinear results have
shown that the nonlinear effects can be neglected in subsonic flow conditions but the
nonlinear effects associated with the shock oscillation at transonic flow conditions

could be potentially important.

In the present work, the transonic flow condition is considered with an inlet
free stream Mach number of 0.8 and an inlet flow angle of 58°. This flow condition is
such that there is a supersonic patch on the suction surface of the blade. The steady
flow Mach number contours at this flow condition are given in Fig. 3-13 and the
steady isentropic Mach number distribution on the blade surfaces is shown in Fig.3-
14. The supersonic patch and a weak shock at the end of the patch on the blade

suction surface can be seen.

The unsteady flow in this case is induced by the blades bending with an inter-
blade phase angle of -90 degree and a reduced frequency (based on the blade chord
and upstream velocity) of 1.287. The calculated complex amplitudes of unsteady
pressure coefficients are shown in Fig.3-15 and the unsteady shock impulse due to the
shock oscillation can clearly be seen. The present results are compared to the results
produced by a nonlinear time-marching method (Huff, 1991). The comparison is very
good except the shock impulse predicted by the present linear method is slightly
higher than that predicted by the nonlinear method. The present results are very
similar to those predicted by other linear methods (Hall et al, 1994). This calculation
shows that the time-linearized Euler methods are able to predict the unsteady shock

impulse well as long as the nonlinear effects of shock oscillating are negligible.
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3.2 Navier-Stokes Solutions

3.2.1 Unsteady Laminar Boundary Layer on Flat Plate

To validate the present linearized Navier-Stokes method, an unsteady laminar
flow on a flat plat is numerically analysed. In this work, a model problem which was
originally analytically studied by Lighthill (1954) is chosen. In this model problem, the
unsteady incompressible laminar boundary layer is introduced by a small periodic

fluctuation of the main stream velocity about a constant mean value, i.e.

U=U,(1+ee"") (3-7)

where U, is the mean velocity of the main stream, € is a small nondimensional

parameter and it is much smaller than 1. This model problem later was investigated by
Ackerberg and Philips (1972) by using a semi-analytic method, and was calculated by
Cebeci (1977) by solving boundary layer equations using a finite difference method.

For this model problem, Cebeci found that nonlinear effects are negligible if £ <0.15.

To simulate this model problem, the unsteady laminar flow through a channel
with a length of three times the half height of the channel is calculated by using the
time-linearized Naiver-Stokes method. The unsteadiness in the calculation is
introduced by the back pressure oscillation of a small amplitude in a harmonic form
while holding the inlet flow quantities fixed. To resolve the boundary layer, a fine
mesh is arranged near the wall so that there are approximately 25 mesh points across
the boundary layer near the channel exit. The non-slip wall boundary condition is
applied in the calculations. In order to reduce the effect of compressibility of the
flow, the main stream Mach number in the current investigation is kept to 0.1. The
Reynolds number in the calculation is 150,000 based on the upstream velocity and the

channel length.
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In the present numerical analysis, the steady laminar boundary is obtained by
solving the steady flow equations in the channel. The calculated steady laminar
boundary layer profiles are compared to the analytical Balsius laminar boundary
solutions in Fig. 3-16. The comparison shows that the laminar boundary layer in the

present calculation is well resolved.

Having obtained the steady flow, the unsteady flow is introduced by
prescribing a small amplitude of back pressure oscillation. It is noticed that the
instantaneous main stream flow is uniform and there is no streamwise phase lag in the
original analytical model. The numerical tests have shown that if the reduced
frequency of the excitation is smaller than 2.5, the phase lag in the main stream in the
present linear analysis can be neglected. The calculated unsteady velocity
perturbation profiles at three different reduced frequencies are shown in Fig. 3-17.

The reduced frequency here is defined by wx/U,. In these figures, the boundary
layer coordinate is defined by ym . The comparison with a semi-analytic
solution by Ackerberg and Philips (1972) is good, importantly the “overshoots” of the
real part of the unsteady velocity profiles, where the real part of U/ U, is bigger than
1.0 (U, is the velocity on the boundary edge), are captured by the time-linearized
Navier-Stokes method. The overshoots are produced by the boundary layer thins and
then thickens as the outer flow speeds up and slows down. When the boundary layer

thins, the outer inviscid flow is brought closer to the wall producing what appears to

be a bulge in the perturbation velocity profile.

Fig.3-18 shows the calculated distribution of unsteady wall stress amplitudes
and phase angles with the reduced frequency. The results are in a satisfactory
agreement with Lighthill’s (1954) results for both low and high frequencies, and with
the numerical solutions by Cebeci (1977). The wall shear stress in Fig. 3-18 is defined

by 1t,/7,,where
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T=1T, +£T, cos(t+ )
where T, is the wall shear for Blasius flow.

3.2.2 Unsteady Turbulent Boundary Layer on Flat Plate

To check the present time-linearized Navier-Stokes method for unsteady
turbulent flows, an unsteady turbulent boundary layer on the flat plate is calculated.
This low speed unsteady turbulent flow has zero mean pressure gradient in the flow
direction and was experimentally studied by Karlsson (1959) in a boundary layer wind
tunnel. The mean velocity in the experiment was very low and was about 5.33 m/s.
The measurements were made at the location where the Reynolds number was about
3.6 x10° . Here the Reynolds number is based on the free stream mean velocity and

boundary layer displacement thickness, defined by

RCS: = Uos* /V (3-9)

where

In the experiment, the turbulent boundary layer thickness was about 0.00762 m at the
measuring section, the local skin friction coefficient, ¢, , was approximately 0.0034.
The free stream fluctuations were obtained by a shutter consisting of four parallel
rotating vanes driven by an electric motor at the exit of the wind tunnel. The unsteady
boundary measurements were carried out under several frequencies, i.e. 0 (quasi-

steady), 0.33, 0.66, 1.0, 3.3, 2.0, 4.0, 7.68 and 48 Hz. At each frequency, except 0
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and 48 Hz, the free stream velocity fluctuation amplitudes varies from about 8% ~
34% of the free stream mean velocity. The experiment observed that the nonlinear
effects were very small, even for fluctuation amplitudes as large as 34 %. The linear
method can be used to analyse this experimental case. Because only limited
experimental data for unsteady turbulent boundary layers are available, Karlsson’s
experiment is valuable for validating the numerical methods. This test case was

numerically studied by Cebeci (1977).

In the present linear analysis by the time-linearized Navier-Stokes method, the
unsteady flow is introduced by prescribing a back pressure unsteady perturbation at
the channel exit. A fine mesh is also used to resolve the boundary layer. In the
calculation, the free stream Mach number is 0.1 and a quite high input Reynolds
number (based on the channel length and free stream mean velocity) is given to match

the experimental Reynolds number Re.. Fig.3-19 gives the calculated turbulent

boundary layer profile and it is compared to the experimental time-mean data. In
order to compare with experimental data for unsteady flows, the unsteady
perturbation equations are solved at three reduced frequencies which are identical to
the experimental reduced frequencies under three physical frequencies (0.33, 1.0, and
4.0 Hz). Fig.3-20 to Fig. 3-22 have shown the comparisons between calculated and
experimental unsteady turbulent profiles in three different reduced frequencies. The
experiment data have shown that the “over-shoots” of in-phase components of
velocity fluctuation amplitudes exist in all three frequencies, and the peak of the
“over-shoot” gets closer to the wall with the increase of frequency. In the region
close to the wall, the out-of-phase (imaginary part) components are always positive
for all the frequencies. The comparisons between the calculated results and the

experimental data show that the unsteady turbulent boundary layers are reasonably

well predicted.
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3.2.3 Fifth Standard Configuration

This configuration is a subsonic compressor cascade oscillating in a torsion
mode around its mid-chord under a subsonic flow condition. In the experiment, the
flow incidences are from 2° up to 6° and the unsteady pressured were measured.
This standard configuration was numerically investigated by two time-linearized
potential methods (Whitehead, 1982, Verdon and Caspar, 1984). In this
configuration, the viscous effects could be important when the flow has a very high
incidence. In the time-linear potential analysis by Verdon and Caspar(1984), the
calculation had to be carried out at a different flow incidence from the experimental
one in order to match the experimental data, the reason might be due to that the
viscous effect was ignored in the calculations. In the present work, the time-linearized

Navier-Stokes method is validated by calculating this standard configuration.

In the fifth standard configuration, the blade has a chord of 0.09 m, stagger
angle of 59.3°, and zero camber. The flow condition for the present numerical

calculation is

Inlet Mach number: M, =0.5

Flow incidence: i=4°

The unsteady flow is introduced by blade oscillating in torsion mode around
its mid-chord with an amplitude of 0.0052 radian under a 180° inter-blade phase
angle. The unsteady calculations are carried out at two reduced frequencies (based on
the semi-chord and inlet flow velocity), 0.14 and 1.02. In the calculation, the input
flow incidence is kept the same as the experimental incidence(4°) and the flow is
assumed to be fully turbulent from the leading edge. The slip-wall boundary condition

is imposed for solving both the steady and time-linearized Navier-Stokes equations.
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For the steady flow calculation, the predicted steady pressure coefficients are
compared with experimental data in Fig. 3-23. Because of the high incidence, it can
be seen that the aerodynamic loading concentrates around the blade leading edge.
For the unsteady flow calculation at the reduced frequency of 0.14, the calculated
amplitudes and phase angles of unsteady pressure coefficients are given in Fig. 3-24
and they are in a very good agreement with the experimental data. For the case with
the reduced frequency of 1.02, the results are shown in Fig.3-25 and it can be seen
that the amplitudes of unsteady pressure are well predicted, but there is a marked
discrepancy of phase angles between the calculated and the experimental data,
especially around the trailing edge on the pressure surface. It should be noted that the
present calculation results are very similar to those produced by time-linearized

potential methods.

3.3 Summary

In this chapter, the validations of the time-linearized Navier-Stokes/Euler
method described in Chapter 2, are presented. In the first part, the calculations of
inviscid unsteady flows in a flat plate cascade induced by blade oscillation and
incoming unsteady wakes have shown excellent agreements with the results produced
by a well-established semi-analytical linear method LINSUB. A fair comparison with
the experimental data is achieved for the calculation of the fourth standard
configuration, and the 3-D effects are likely to be blamed for the discrepancy. For the
computation of a transonic compressor oscillating cascade, the comparison of
computational results between the present time-linearized Euler method and a well-
developed nonlinear time-marching Euler method is very good. For the validation of
the time-linearized Navier-Stokes method, calculated results for an unsteady laminar
and a turbulent boundary layer are compared well with analytical solutions,
experimental data and other numerical methods. Finally the validation is carried out
by calculating the fifth standard configuration using the time-linearized Navier-Stokes

method, and the results compare reasonably well with the experimental data.
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It should be pointed out that all the test cases considered here have no or little
nonlinear effects. An important issue of the nonlinear effects and the validity of the
linear analysis has not been addressed. More test cases concerning this issue will be

presented in Chapter 4.
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Chapter 4 Nonlinear Harmonic Method

As presented in last two chapters, a time-linearized Navier-Stokes/Euler
method is developed and validated. The main feature of the time-linearized method is
its high computational efficiency compared to the nonlinear time-marching methods.
However, the application of the linear methods is restricted to the linear problems due
to the linear assumption. Although the onset of flutter in turbomachinery is widely
accepted to be a linear aeroelastic phenomenon in most circumstances, the nonlinear
effects with the shock oscillation, finite amplitude excitation, and flow separations can
be potentially important. The forced response of blade unsteady forces to
nonuniformity of unsteady flow fields( e.g. incoming wake, potential interaction, and
inlet distortion etc.) is not necessarily a linear phenomenon. It is highly desirable to
develop a numerical method which has a high computational efficiency like the
conventional time-linearized methods, while can include the nonlinear effects like the

nonlinear time-marching methods.

The work in this chapter is based on the nonlinear harmonic approach
proposed by He (1996a) which is introduced in Chapter 1. The emphasis in this
chapter is to develop this approach into a new quasi-3D nonlinear harmonic Navier-

Stokes/Euler method in which the nonlinear effects can be effectively included.
4.1 Time-Averaged Equations

Compared to the conventional time-linearized method, an important change in
the nonlinear harmonic method is that the time-averaged flow field (instead of

steady) is used to be the base of unsteady perturbations. The unsteady flow is

assumed to be a time-averaged flow plus a small perturbation, i.e.

U=U+U 4-1)
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where

g OV
r(pv)
(pe)

(4-2)

and

’

p

T
r(pv)’
(pe)’

(4-3)

where the U is the vector of the time-averaged conservative variables, U’ is the
vector of the perturbations to the time-averaged variables. The viscous terms can also

be assumed to be a steady part plus a perturbation.

Similarly, assuming that the computational grid can be expressed by its steady

or mean position plus a small perturbations, i.e.

X=X+x", y=y+y’ (4-4)

The grid moving velocities are also divided to be a mean part plus a perturbation, i.e.

(4-5)

Substituting the expression of (4-1), (4-4) and (4-5) into the original nonlinear
Navier-Stokes/Euler integral equation (2-1), and time-averaging it, the resultant time-

averaged Navier-Stokes/Euler Equation can be given by:
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$[(F-V,)dy + (G -V, )dx + (F'dy’) + (G'dx") — (v dy’) — (v} dx")]

= [[(SdA +(S"dA") (4-6)
AA
where
. mm
Fop (PUZPUETPTOUMGULI g
r[(pu—pu,)v+(pu)’ v’ —(pu,)v’]
(pu— E)E +Pu+Pu’ +(pu)e’ - (pu,)’e’
ey
_ (Pv—pv, )T+ (V)0 —(pv, )W’ ws
tl(pv—pv IV+P+(pv)'v = (pv,)'v']
(pv—pv,)E+PV+PV +(pv)'e’ —(pv,)'e’
and
0
V,=h o 4-9
x ﬁxy ( - )
—q, + 0T, +ﬁxy +u'T, + VT
0
V, =h i 4-10
y ﬁ:yy (4-10)
—q, + 0T, + VT, +u'Ty, + V1),
where

62



The non-conservative time-averaged variables in the above equations can be

worked out from the conservative time-averaged variables by following formulations,

u=[pu-pv’)/p (4-11)
v=[pv-pv]ip 4-12)
e=[pe-pe’|/p 4-13)

P=(y- 1)[&—%@%&% L Gpuw —%(pv)'v'] (4-14)

The comparison between the time-averaged equation (4-6) and the steady
form of the original unsteady equation (2-1) shows that the time-averaging generates
extra terms. There are two kinds of extra terms, one kind is generated by the
computational grid movement such as Wy' the other kind is produced due to the
nonlinearity of flow governing equations such as W which is similar to the
turbulence (Reynolds) stress terms. The second kind of extra terms is called “unsteady
stress” terms in the present work and they only exist in the momentum and energy
equations. The effects of the “unsteady stress” terms depend on the spatial gradients

of the unsteady disturbances.

Normally the amplitude of grid motion in a blade flutter analysis is very small,

the extra terms produced by grid movement in the equation (4-6) are assumed to be
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small quantity terms and are neglected in the present method. So the time-averaged

form of the governing equation can be re-written by:

§[(F-V)dy+(G-V,)dx]= [[SdA (4-15)
AA

Comparing the time-averaged equation (4-6) to the steady form of the
governing equation (2-1), the mass continuity equation remains unchanged, the
“unsteady stress” terms appear in the time-averaged momentum and energy
equations. To solve the time-averaged equation (4-15), the extra relationships or
models are required to make the equation closed, similar to that the turbulence
models are needed to close the Reynolds-averaged Navier-Stokes equations. If these
unsteady stress terms are zero, the time-averaged equation (4-15) is reduced to the

conventional steady flow equation.
4.2 First Harmonic Perturbation Equations
Substituting the equations (4-1), (4-4) , and (4-5) into the original flow

governing equation (2-1) and then subtracting the time-averaged equation (4-6), the

unsteady perturbation equation is given by

a% [[(UdA” + U"dA) +§S[(F—Vx )y’ +(G -V, )dx’ + (F' = V)dy + (G’ —V;)di]
AA

= [[(S’dA-SdA") (4-16)
AA

where




(pu), - (pug),
(pu—puyu’ +[(pu)’ ~ (pu, YT +P’ ~(pu)'u’ + (pu,)'v’

F, = h o ~vs — g 7.7
fl(pv—pvu’+[(pv) = (pv,) Tu—(pv)'u" +(pvy)'u’]
[pe+Plu’ +[(pe)” + P'Tu—peu;, —(pe)'T, — (pe)'u’ —P'u’ +(pe)’u
(4-17)
(pv) = (pv,)’
G =1 (pv=—pv u’ +[(pv) = (pv, ) Tu—(pv)u"+(pv,)'v’
- rl(pv —pv )V +[(pV)" = (pv, ) TV + P’ = (pv)'v' + (pv,)'V’]
[pe+PIv' +[(pe)’ +P’'IV —pev; —(pe)'V, —(pe)’'v' =PV’ +(pe)'v,
(4-18)
and
0
"=h s 4-19
Vx - I'T;y ( - )
—q,+uT,, + v"_cxy +ut’, +V1:;y -u'ty, - V"C;y
0
'c;y
V. =h ) (4-20)
l"‘ny
—-qy +u'T, + VT + 0T + VT —uTy, - VT

The complete form of the unsteady perturbation equation (4-16) is not readily
solvable if a frequency-domain harmonic approach is to be used. It is assumed that the
unsteady perturbation is dominated by the 1st order terms. Effectively, the second
order terms in the unsteady perturbation equation (4-16) are neglected. The resultant

first order form of fluxes (4-17) to (4-20) can be re-written into
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In order to use a frequency domain method, it is further assumed that the

unsteady perturbation varies in a harmonic mode in time, i.e.

U’ = Uel® (4-25)

where U is the vector of conservative variable amplitudes. The moving grid and

moving velocities have similar harmonic forms.
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Substituting all the harmonic expressions into the unsteady perturbation

equation (4-16), the first order harmonic perturbation equation becomes

§s[(ﬁ ~V,)d§+(G - V,)d% + (F-V,)dy + G - V, )di]

= [[(SdA+SdA)-io [[UdA-iw [[UJA  (4-26)
AA AA AA

where
(pu)-(pu,)
fopl  PU-PUT+I(PW-(pu,)Tu+P
rl(pv—pv,)d +[(pv) (pv )Ju]
[pe +Plu+ [(pe)+ P]u peu - (pe) u,
(PV) (PV )
Gopl  BVRYIEHIV- (v,
r[(pv PV, )v +[(pv) (pv v+ P]
[pe +P]v+ [(pe)+ P]v pev - (pe) v,
and

0
T

XX

<
]
=

* rT,,
=G, +UT,, + VT, +TT,, + VT,
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0
T

V,=h i
Ity

—q, +UT,, + VT, +UT,, + V1,

Actually the first order harmonic perturbation equation (4-26) has the same
form as the unsteady perturbation equation (2-12) in the time-linearized method.
However, the equation (4-26) is only quasi-linear, i.e. the perturbations are linear for
a given time-averaged flow field. Indeed, if the time-averaged flow is the same as the
steady flow, the above first harmonic perturbation equation reduces to the

conventional time-linearized perturbation equation.
4.3 Pseudo Time Dependence and Spatial Discretization

Similar to the time-linearized Navier-Stokes/Euler method in Chapter 2, the
pseudo-time (t”) is introduced to make both the time-averaged equation (4-11) and

the first harmonic perturbation equation (4-26) time-dependent. The modified time-

averaged equation and the first order perturbation equation can be given by:
o . — o — _
— JJ UdA +§[(F -V, )dy +(G - V,)dx]= [[SdA (4-27)
ot AA AA

and

_aa? ] UdA +§[(F - V,)d§ + (G - V,)d& + (F - V,)dy + (G - ¥, )dx]
AA
= [ (SdA +SdA) - i [| UdA - io [[ TdA
AA AA AA

(4-28)
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Now both the time-averaged equation (4-27) and the first order harmonic
perturbation equation (4-28) are hyperbolic in a pseudo-time domain. They can be

solved by any time-marching integration schemes.

The cell-vertex finite volume scheme is used again to descretize both the time-
averaged equation and the first order harmonic perturbation equation spatially. To
suppress numerical oscillations and capture the time-averaged shock and the shock
impulse in the calculations, a 2nd order and 4th order adaptive smoothing is used. The
semi-discrete forms of the time-averaged equation and the Ist order harmonic
equation are in similar forms as Eq.(2-15) and Eq.(2-16) in the time-linearized
method. The only modification in this nonlinear harmonic method is the treatment of
the pressure sensor in the artificial smoothing terms. The pressure sensor as shown in
(2-22) is a nonlinear term and its nonlinearity is neglected in the time-linearized
Navier-Stokes/Euler method. However, its nonlinearity cannot be ignored in the
cases with strong nonlinear effects, so it is desirable to linearize the pressure sensor.
However, it is recognised that an accurate way to linearize the pressure sensor is not
easy to achieve(Linguist, 1991). In the present work, an approximate approach is
used to partially linearize the pressure sensor (He, 1997¢). The modified form of the

pressure sensor is given by

~

0 =I5 —2P, +Ei+1j|+0_5 fmj ‘25' +E
|Pi—1j +2P; +Pi+1j| P +2P; + Py

i-1j i-1j

F
= (4-29)

It can be seen that the modified pressure sensor is proportional to the local
unsteadiness and the time-averaged effects of the nonlinear behaviour of pressure

sensor can be included.
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4.4 Coupling Between Time-averaged Flow and Unsteady Perturbations

So far, the time-averaged equation (4-27) is not closed, the extra relationships
are needed to work out the “unsteady stress” terms. For a periodically unsteady flow,
these terms can be directly evaluated in terms of the phase and amplitude of the

unsteady perturbations. For example, u’ and v’ are two unsteady quantities

changing in the harmonic forms, i.e.

u =A,sin(wt+¢,)
and

v =A,sin(ot+¢,)
Time-averaging u’v’ over one unsteady period Tor ot =27 is:

.7

1
u'vi=— OTu’v’dt

=~ [T ALA,sin(@L+ 0, )sin0t + 9, )d(@1)
T
=AU, cOs(0, ~0,) (430

where A, and A, are the amplitudes of the u” and v’. By using the relationship

(4-30), the “unsteady stress” terms can be easily worked out if the unsteady
perturbations are already known. The unsteady perturbations are obtained by solving
the first order harmonic perturbation equations which the coefficients are formed from
the time-averaged solution. Therefore, the time-averaged equation and the first order
harmonic perturbation equation interact each other. For solving time-averaged

equation, the extra terms are evaluated from the solution of the first order
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perturbation equation, while the coefficients of the perturbation equation are
evaluated from the solution of the time-averaged equation. Because of this
interaction, these two equations now cannot be solved separately and a coupling

procedure has to be used to integrate these two equations in a pseudo-time domain.

There two kinds of coupling methods can be used, one is the loose coupling,
another is the strong coupling. In a loose coupling procedure, the time-averaged
equation and the perturbation equation are solved alternately. For example, a steady
flow field is firstly obtained by solving the steady equation and the linearized
perturbation equation is solved on the steady flow. Then the “unsteady stress” terms
are worked out by unsteady perturbations and they are put into the time-averaged
equations, the time-averaged flow is generated by solving the time-averaged equation.
Finally the perturbation equation is solved again on the time-averaged flow base. This
loose coupling procedure is simple but only suitable for unsteady flows with weak

nonlinearity.

For the flow with strong nonlinearity, the strong coupling has to be used. The
key point is that the time-averaged equation and the first order harmonic perturbation
equation have to be solved without any hierarchy. In the present work, a strong
coupling technique proposed by He (1994b) for a fluid-structure coupling is
implemented to time-march both the time-averaged equation (4-27) and the first order
harmonic equation (4-28) simultaneously in a pseudo-time domain. The final
converged solution includes a time-averaged flow field and the unsteady
perturbations. Numerical tests (He, 1994b) have shown that the strong coupling is
important in terms of solution convergence and accuracy when the interaction

between two sets of equations becomes strong.

For the time integration for both the time-averaged equation and the first
harmonic perturbation equation, again the 4-stage Runge-Kutta time-marching

scheme is used. The formulations of the this scheme are the same as that introduced in
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Chapter 2. The strong coupling procedure by using the 4-stage Runge-Kutta time-

marching scheme for solving the time-averaged and first harmonic perturbation

equations is illustrated in Fig. 4-1.

The boundary conditions applied in this nonlinear harmonic Navier-
Stokes/Euler method are the same as those used in the time-linearized method as
presented in Chapter 2, the only difference is that the steady flow variables in the

boundary conditions are replaced by the time-averaged variables.

4.5 Summary

In this Chapter, a novel quasi-3D nonlinear harmonic Navier-Stokes/Euler
method has been developed based on a nonlinear harmonic methodology proposed by
He (1996a). Compared to the time-linearized method as presented in Chapter 2, the
nonlinear harmonic method has three distinctive features. First of all, the time-
averaged flow is used to be the base of the unsteady perturbations. Due to the
nonlinearity of original unsteady flow governing equations, time-averaging generates
extra nonlinear “unsteady stress” terms in the momentum and energy equations.
Secondly, a strongly coupling method has to be used to solve the time-averaged
equation and the first order harmonic equation simultaneously in a pseudo-time
domain. The coupled solution includes time-averaged flow quantities and unsteady
perturbations. The unsteady stress terms in time-averaged equations are produced
from the unsteady perturbation solutions, while the coefficients of first order
harmonic perturbation equations are formed from time-averaged solutions. Finally, for
the unsteady transonic flows with strong nonlinearity induced by the shock oscillation,
an approximate method is applied to linearize the pressure sensors in the artificial
smoothing terms. The time-averaged effects of the nonlinear pressure sensors can be

included.
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The solution methods for this nonlinear harmonic method are the same as
those used in the time-linearized method developed in Chapter 2. It implies that it is
very straightforward to extend a well-developed time-linearized Navier-Stokes/Euler
method into a nonlinear harmonic method. Compared to the linear methods, the extra
CPU time for the nonlinear harmonic analysis is for evaluation of unsteady stress
terms and it is relatively small, therefore it is still much more computational efficient

than the nonlinear time-marching methods.
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Chapter 5 Validations for Nonlinear Harmonic Method

5.1 Introduction

A novel quasi 3-D nonlinear harmonic Navier-Stokes/Euler method has been
presented in Chapter 4. Compared to the conventional time-linearized methods, the
fundamental difference is that the time-averaged flow is used to be the base of the
unsteady perturbations in the nonlinear harmonic analysis. Therefore the nonlinear
effects can be included in a coupling solution between the time-averaged flow and the
unsteady perturbations. However, the solution methods of the nonlinear harmonic
method are very similar to those used in the time-linearized method described in
Chapter 2. In the present work, both methods are incorporated in the same computer
code. To do the linear analysis, one simply switches off the extra unsteady stress
terms in the time-averaged equations, so that the time-averaged equation becomes a
steady equation and the first order harmonic equation reduces to a time-linearized
perturbation equation. The validation of the baseline time-linearized code has been
presented in Chapter 3. In this Chapter, the numerical results by the nonlinear
harmonic method will be presented and compared to the numerical results produced
by the time-linearized method, a nonlinear time-marching method, and experimental
data. The time-linearized method in this chapter refers to the method described in

Chapter 2.

Although the major objective in this chapter is to assess the effectiveness of
the novel nonlinear harmonic analysis, the limitation of the conventional linear analysis
will also be addressed and demonstrated by the numerical results.

5.2 Inviscid Transonic Unsteady Channel Flow

To test the present nonlinear harmonic Euler method, the unsteady inviscid

transonic flow through a diverging channel is considered. This case is presented to
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demonstrate the ability of the nonlinear harmonic analysis for capturing the nonlinear
effects associated with considerably large amplitudes of shock oscillation. To assess
the nonlinear harmonic analysis, the unsteady flows are also calculated by the time-
linearized Euler method, and a nonlinear time-marching Euler method (He, 1990b).
In the comparison between different numerical methods, the nonlinear time-marching
analysis is the benchmark of the comparisons because of its good accuracy and

nonlinear nature.

The diverging channel considered in the test case has a height of A, and its

distribution along the axial direction is given by
1
AX) = Ay {1.103 13+0.10313 tanh[lO(x —5)]} (5-1)

where

0<x<1

(The units may be taken to be any consistent set of units). In the present study, A

is taken to be 0.2 m. The flow at inlet is supersonic with a Mach number of 1.093.

The ratio between the exit back pressure, P,,, , and the inlet total pressure, Py, is

0.7422, so that the supersonic flow is terminated by a normal shock around the
location of x = 0.5m. In the calculation, the mesh has 129 x 10 nodes, and the mesh
is slightly squeezed around the location where x is around 0.5m in order to give a
good shock resolution. For the calculations by the time-linearized method and
nonlinear time-marching method, the same channel configuration, flow condition, and
mesh size are used. A steady flow calculation for this transonic flow is carried out by
solving the steady flow equations, the steady pressure distribution along the channel
wall is given in Fig. 5-1. The steady result is compared well with an one-dimensional
analytical solution as shown in Fig. 5-1. In this test case, two-dimensional effect is

negligible.
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The unsteady flow in this test case is introduced by a fluctuation of the back

pressure at the channel exit in a harmonic form, i.e.

P

exit

=P, (1+A,, sin 27ft) (5-2)

where A, is the amplitude of the back pressure fluctuation, and P, is the steady

value of the back pressure in the linear analysis and time-averaged value in the
nonlinear harmonic analysis. In the present calculations, two cases with an amplitude

A, of 1% and 7% are considered in order to produce a smaller amplitude and a

m

larger amplitude of shock oscillation in the channel. f in the relationship (5-2) is the
frequency of the back pressure fluctuation and is 167 Hz in the present calculations.

The reduced frequency based on the inlet velocity and the channel inlet height is 0.63.

For the case with an amplitude of 1%, the unsteady flow is calculated by the
present nonlinear harmonic method. The time-averaged pressure distribution along
the channel wall by the nonlinear harmonic analysis is presented by marks in Fig. 5.1.
It can be seen that the time-averaged solution and the steady solution are nearly
identical. The shock oscillation is very small due to the small amplitude of back
pressure fluctuation. As introduced in Chapter 1, the nonlinear effect in the unsteady
flow is represented by the difference between the steady flow and the time-averaged
flow. In this case, the nonlinear effect is apparently negligible. For the unsteady part,
the calculated complex amplitudes of unsteady pressure coefficients by both the time-
linearized method and the nonlinear harmonic method are presented in Fig.5-2. The
difference between these two analyses is not apparently visible. Here the unsteady

pressure coefficient is defined by

g == (5-3)
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This case is also calculated by the nonlinear time-marching method, and the periodic
unsteady results are Fourier transformed and the first harmonic complex amplitudes of
the unsteady pressure coefficients are given in Fig. 5-2. It can be seen the comparison
between these three numerical methods is very good, the shock impulses predicted by
the linear and the nonlinear harmonic methods are slightly higher than that predicted

by the nonlinear time-marching method.

The amplitude of the back pressure fluctuation is then increased to 7% and the
shock wave is oscillating at a much larger amplitude in the channel. First, this
unsteady flow is calculated by the nonlinear time-marching method, the unsteady
pressure is time-averaged and its distribution on the channel wall is given in Fig.5-3. It
can be seen that the time-averaged flow field around the shock position is very
different from the steady flow, and the time-averaged shock is much smeared due to
the large amplitude of shock oscillation. The significant difference between the time-
averaged flow and the steady flow suggests the important nonlinear effects. This is
confirmed by checking the first and second harmonics of the unsteady pressure
produced by the nonlinear time-marching analysis as shown in Fig.5-4, it can be seen
that the second harmonic quantities are not small compared to the first harmonic

quantities.

This unsteady flow is then calculated by the nonlinear harmonic method. The
time-averaged pressure distribution is presented in Fig.5-3. The comparison with the
nonlinear time-marching method shows the excellent agreement and the smeared
time-averaged shock is very well predicted. It demonstrates that the nonlinear effects
are well captured by the nonlinear harmonic analysis. The unsteady pressure
amplitudes by the nonlinear harmonic method are given in Fig.5-5 and compared to
the results produced by the time-linearized method and the nonlinear time-marching
method. Because the unsteady perturbation in the linear method is based on the

steady flow field, the predicted unsteady shock impulse by the linear analysis is much
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higher and narrower than that predicted by the nonlinear time-marching method. The
comparison between the nonlinear harmonic method and the nonlinear time-marching
method is considerably improved. It should be noted that the shock wave in the
nonlinear harmonic method is mainly smeared by the unsteadiness due to the shock
oscillation. But in the time-linearized Euler/Navier-Stokes methods, the shock waves

are only smeared by the artificial smoothing (Linquist and Giles, 1990).

The calculations of this transonic channel unsteady flows have shown that the
time-linearized method can correctly predict the unsteady shock impulse if the
nonlinear effects are very small. The nonlinear harmonic method can considerably

improve the results over a linear analysis when the nonlinearity is important.
5.3 Oscillating Biconvex Cascade

In order to check the effectiveness of the nonlinear harmonic Euler method for
unsteady flows in turbomachinery, the unsteady flows around an oscillating biconvex
cascade are calculated. This case was initially investigated by a nonlinear time-
marching Euler method (He, 1990b) and a strong nonlinear effect due to a remarkable
shock oscillation under a high pressure ratio was demonstrated in the nonlinear
analysis. This case is a good test to the present nonlinear harmonic Euler method.
Although this is an inviscid case, calculations of unsteady transonic flows using the
Euler equations are particularly useful because they can be used to address the issue
of nonlinearity associated with shock oscillation without being confused with the

viscous effects.
In this test case, the geometry of the biconvex cascade is given by

Blade chord: C=01524m
Stagger angle: v=0°
Relative thickness:  0.076 (maximum thickness/chord)
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Solidity: 1.3

The flow condition is given by

Inlet total pressure: P, =100000pa
Inlet total temperature: T, = 288K
Inlet flow angle: B=0°

In the calculations, two back pressure conditions are specified to set up

distinctively different steady shock positions, one is P, /P, =0.7, another is
P.... / P, =0.725 . For a lower pressure ratio, a fairly strong shock is situated near the

exit of the cascade passage, while for the higher pressure ratio, there is a weak shock
just downstream of the cascade throat. The unsteady flows are introduced by the
blade oscillation in a torsion mode around its leading edge. The reduced frequency
which is based on the blade chord is 1.3 in the present investigation. The unsteady

flows under different torsion amplitudes are investigated in the calculations.

First, the lower pressure ratio case is investigated. A steady flow solution is
obtained by solving the steady flow equations. The steady Mach number contour map
is given in Fig. 5-6 and the steady isentropic Mach number distribution is presented in
Fig. 5-7. The steady solution confirms that a fairly strong shock with an upstream
Mach number of 1.3 is situated in the blade passage at about 85% of blade chord. For
the unsteady flow, the amplitude of blade torsion is given to be 2 degrees. The
unsteady calculations are carried out by the time-linearized Euler method, nonlinear
time-marching method (He, 1990b), and the nonlinear harmonic Euler method. In this
lower pressure ratio case, even though the blade torsion amplitude is very big, the
shock oscillation is confined in a relatively small region, as indicated by the unsteady
pressure impulses shown in Fig. 5-8. The calculated amplitudes and phase angles of

the unsteady pressures on blade surface produced by these three methods agree very
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well. The time-averaged Mach number distributions by the nonlinear time-marching
and nonlinear harmonic methods are very close to the steady solution as shown in
Fig.5-7. The computational results for this fairly strong shock case suggest a very
weak nonlinear effect. Therefore, the conventional time-linearized method should be

sufficiently adequate for this case.

The pressure ratio is then increased to 0.725 to push the shock forward. The
steady Mach contour map is shown in Fig. 5-9. It can be seen that a steady weak
shock with upstream Mach number of about 1.15 is located at around 65% of the
blade chord, just downstream of the cascade throat. This can also be seen from the
steady isentropic Mach number distribution on blade surface as presented in Fig. 5-10.
In this calculation, a quite small artificial smoothing coefficient is used to give a
sharper steady shock, the small oscillation of the steady isentropic Mach number
distribution before the shock, as shown in Fig. 5-10, is due to the small artificial
smoothing. For the unsteady calculations, the blade torsion amplitude is specified to
be 0.75 degree. Again, the unsteady calculations are carried out by above three
numerical methods. The time-averaged Mach number distribution by the nonlinear
time-marching method is shown in Fig. 5-10. Under this pressure ratio, the time-
averaged flow around the shock is very different to the steady one. The shock
oscillates in a much wider range around its mean position when the blades are
oscillated. This smeared time-averaged pressure jump due to the shock oscillation is
very well predicted by the nonlinear harmonic method as shown in Fig.5-10. In this
case, the unsteady shock impulse predicted by the time-linearized Euler method is
much higher and narrower than that predicted by the nonlinear time-marching
method. The comparison between the nonlinear time-marching method and the
nonlinear harmonic method is excellent. These comparisons demonstrate the
effectiveness of the novel nonlinear harmonic approach, since the nonlinear time-
marching solutions are normally much more time consuming than the frequency

domain harmonic solutions. In the calculations, it is found that the computational time
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for a nonlinear harmonic analysis is typically 60% more than that for a conventional

time-linearized analysis.

At the same pressure ratio of 0.725, further numerical investigations are
carried out at a blade torsion amplitude of 2 degrees. From the nonlinear time-
marching calculations, it is found that the unsteady shock behaves very differently
from that in the case with the torsion amplitude of 0.75 degree. In this case, when the
blade oscillates, the shock moves to the throat and does not decay into a compression
wave as expected in a quasi-steady sense. The unsteady inertia makes the shock move
into the subsonic region. Once entering the subsonic region, the shock has to
propagate upstream and eventually disappears around the blade leading edge. Then
the new shock appears again around the throat. The dramatic shock movement can be
clearly seen from a space-time contour of relative static pressure which was produced
by the nonlinear time-marching method (He, 1990b). It can also be clearly seen from a
flow animation which was made by the author on a HP workstation. This remarkable
shock movement produces very strong nonlinear effects. As a result, the time-
averaged Mach number distribution generated by the nonlinear time-marching method
is very different from the steady one even in the subsonic region, as shown in Fig.5-
12. Due to the strong nonlinearity, the predicted unsteady pressure by the time-
linearized method is distinctively different to that predicted by the nonlinear time-
marching method, as given in Fig. 5-13. Although a considerable improvement can be
seen from the results by the nonlinear harmonic analysis, there is a marked
discrepancy from the nonlinear time-marching analysis. This indicates the limit of the
applicability of the present nonlinear harmonic method in the extreme nonlinear
circumstances. The limitation arises likely due to the quasi-linear form of the first
harmonic perturbation equations. Furthermore, in the nonlinear harmonic method,

only those nonlinear terms due to the production of the harmonics (such as (pu)’'v’)

are included, physically they are just part of the nonlinearity.
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The calculations of unsteady flows around the oscillating biconvex cascade
suggest whether the shock oscillation in turbomachinery can be modelled by the linear
method does not much depend on the strength of the shock, while the location of the
shock seems to be crucial. This finding in this study is consistent to what is observed

in a nonlinear time-marching analysis (He,1990b).
5.4 Unsteady Turbulent Flow in Transonic Diffuser

To check the validity of the present nonlinear harmonic Navier-Stokes method
for predicting the unsteady turbulent flows, the unsteady turbulent flows in a
transonic diffuser are numerically investigated by the nonlinear harmonic Navier-
Stokes method. This diffuser unsteady flow was experimentally studied at
McDonnell-Douglas and a wide range of time-mean and unsteady experimental data
are available (Bogar et al, 1983, Salmon et al, 1983, Sajben et al, 1984). The
experimental studies included both self-induced and forced oscillations of the diffuser
flow field. Because of the limited experimental data available for unsteady turbulent
flows in turbomachinery, this test case has been widely used for the validation of

numerical methods (Hseih et al, 1984, Allmaras, 1989, He and Denton, 1993).

The diffuser model is a convergent/divergent channel with a flat bottom and a
contoured top wall. The definition of the top wall profile can be found in a reference
by Bogar et al (1983). In the diffuser, the subsonic flow accelerates in the convergent
part to supersonic, then the supersonic flow is terminated by a normal shock wave
locating just downstream of the diffuser throat. In the experiment, several diffuser
configurations with different exit-to-throat area ratios were investigated. The shock
and boundary layer interaction may or may not induce the flow to separate on the top
wall, depending on the diffuser configuration and the Mach number immediately

before the normal shock (Mg, ). In the present study, the diffuser configuration is

such that it has a throat height, h” , of 44.0 mm , and exit-to throat area ratio of 1.52
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as depicted in Fig.5-14. For this configuration, if M, is less than 1.28, the turbulent
boundary layers on both the top and bottom walls are attached, while if M, is above

than 1.28, the shock/boundary layer interaction induces the boundary layer on the top
wall to separate and the boundary layers on both walls merge together near the end of

the diffuser, as depicted in Fig. 5-15.

In the present numerical investigation, a weak shock case is considered and

the flow condition is given so that the M, is 1.235. To match this flow condition, a
pressure ratio (P, /P,, exit static pressure to inlet total pressure) of 0.826 is

prescribed and the flow is assumed to be fully turbulent at the diffuser inlet on both
bottom and top walls. In the previous numerical studies ( Hsieh et al, 1984, Allmaras,
1989, He and Denton, 1993), a flat plate turbulent profile in the inlet upper and lower
wall boundary layers was specified and the boundary layer thicknesses were given. In
the present calculations, no inlet boundary layer thickness is specified. The mesh used
in the calculations is 122 x 45 as shown in Fig.5-16. In all the present viscous steady

and unsteady calculations, the slip-wall boundary condition is specified.

The steady flow at this flow condition is calculated by the present steady
solver. A predicted steady Mach number contour map is shown in Fig.5-17 and a
normal shock can be clearly seen. The boundary layer on both top and bottom walls
are attached and they do not merge together at the exit of the diffuser. The predicted
steady static pressure distribution on the top wall by the present steady flow solver is
presented in Fig. 5-18 and compares well with the experimental data. It can be seen
that the shock situates at x/h” of about 1.4, where x is the axial distance from the
location of the diffuser throat. Meanwhile, an inviscid flow result by the Euler solver
is also presented in Fig. 5-18, the shock wave predicted by the inviscid calculation is
located much behind that predicted by the viscous calculations. Apparently, the
viscous effects are very important to predict this experimental case correctly. The

predicted boundary layer displacement and momentum thickness distributions
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compare reasonably well with the experimental measurements on both the top and

bottom walls as shown in Fig. 5-19.

In the experiment, two kinds of unsteady flows were investigated: one is a
natural unsteadiness identified as longitudinal acoustic modes induced by the
interactions of the shock and diffuser exit, the other was forced unsteady flows
produced by rotating a triangular, prism-shaped rotor partially embedded in the
bottom wall and driven by a variable-speed motor. The mechanism of the natural
unsteadiness in this experiment is rather complex. It should be mentioned that no self-
excited unsteady flows have been observed in the present numerical calculations. A
work by Allmaras (1989) suggested that a very fine mesh near both the top and
bottom wall boundaries has to be used to resolve the self-excited unsteadiness. The

interest of the current work in this diffuser case is only on the forced unsteady flows.

To model the forced unsteady flows, the unsteady flow in calculations is
introduced by prescribing a static pressure oscillation at the diffuser exit in a harmonic

form as

P =P (1+ A, sin27ft) (5-4)

exit
In the experimental studies, the unsteady pressures were measured by Sajben et al
(1984) under two forced unsteady frequencies, 300 Hz, 150 Hz. According to the
experimental measurements, the amplitudes of the back pressure oscillation under
these two frequencies are 0.0085, 0.011, respectively. Unfortunately the unsteady
pressure measurements were only carried out downstream of the shock wave, the
experimental data in the shock wave oscillating region is not available where unsteady
flow is most active and important. In order to assess the time-linearized and nonlinear

harmonic methods, the unsteady flows are also calculated by a nonlinear time-

marching method (He, 1994b) and the time-linearized Navier-Stokes method.
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For the unsteady flow with a frequency of 300 Hz and the back pressure
oscillating amplitude of 0.0085, the predicted amplitude and phase distributions of
the unsteady pressure on the top wall by these three numerical methods are shown in
Fig. 5-20. In this case, the shock wave just slightly oscillates around its time-mean
position, the nonlinear effect due to the shock oscillation is very small. The numerical
results produced by these three methods compare quite well and they are in a good

agreement with the experimental data.

For the case with a frequency of 150 Hz and the back pressure fluctuation
amplitude of 0.011, both the experiment and a nonlinear time-marching analysis
confirm that the shock wave oscillates in a much bigger region compared to the 300
Hz case. The time-averaged pressure distribution on the top wall produced by the
nonlinear time-marching method is quite different to the steady distribution around
the shock wave oscillating region, as shown in Fig. 5-21. The time-averaged shock is
much smeared by the unsteadiness due to the shock oscillation. This smeared time-
averaged shock wave is very well predicted by the nonlinear harmonic Navier-Stokes
method. The predicted amplitude and phase of the unsteady pressure on top wall of
the diffuser by the time-linearized, nonlinear harmonic and nonlinear time-marching
methods are presented in Fig.5-22 and they are also compared to the experimental
data. In this case, the linear method overpredicts the peak amplitude of the unsteady
shock impulse by a factor of more than 2 compared to the nonlinear time-marching
analysis. The comparison between the present nonlinear harmonic method and the
nonlinear time-marching method. is excellent. Although all the numerical results
compare well to the experimental data, the experimental data are only available
downstream of the shock wave and do not reveal the important nonlinear behaviour

of the shock oscillation.

For the numerical method in turbomachinery, the mesh-dependence is one of
the major concerns. To investigate the mesh-dependence of the present nonlinear

harmonic method, a much finer mesh with a size of 245 x 45 is generated as shown in
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Fig. 5-23. It can be seen that the mesh points in axial direction around the diffuser
throat is roughly tripled. The case with the frequency of 150 Hz and the back pressure
fluctuation amplitude of 0.011 is calculated again by the nonlinear harmonic Navier-
Stokes method. The time-averaged static pressure distribution on the top wall of the
diffuser is compared to the one obtained with previous coarser mesh, as shown in Fig.
5-24. The difference between them is very small and acceptable. The comparison of
the unsteady pressure distributions generated from the coarse and fine meshes are
good, as presented in Fig. 5-25. This calculation has suggested that the mesh-

dependence of the present nonlinear harmonic method is small.
5.5 Oscillating Transonic Compressor Cascade
The final validation for the nonlinear harmonic Navier-Stokes method is made

by calculating unsteady flows around an oscillating transonic compressor cascade.

The blade has a biconvex profile and the geometry of the cascade is given by

Chord (Cj: 0.0762m
Maximum Relative Thickness: 2% C
Stagger Angle: 59°
Solidity (C/Pitch): 1.11

And the flow condition is

Inlet Mach number: 1.25
Reynolds number: 1.5x10°
Incidence: 30

Back pressure ratio( P, / Py): 0.5926
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The flow in the cascade is assumed to be fully turbulent from the leading edge.
The unsteady flow in this case is induced by the blades oscillation in a torsion mode
around the mid-chord with an amplitude of 1 degree and a reduced frequency of 0.5
(based on the blade chord and inlet flow velocity), and an inter-blade phase angle of
180 degrees. In the numerical studies, the unsteady flows are calculated by the present
nonlinear harmonic Navier-Stokes method, again the results are compared to those by
the time-linearized Navier-Stokes method, and the nonlinear time-marching method
(He, 1994b). The mesh used in the calculations is 115x27, and the slip-wall

condition is imposed in all the steady and unsteady calculations.

First the steady flow in this transonic cascade is investigated by using the
steady Navier-Stokes solver. Fig. 5-26 gives the steady static pressure distributions
on the blade surfaces. Fig. 5-27 shows the steady Mach number contours. It can be
seen that the cascade is subject to a strong passage shock wave near the leading edge,
typical of a modern transonic fan at a near peak efficiency condition. The amplitude
and phase angle distributions of the unsteady pressure coefficients on blade surfaces
predicted by three numerical methods are shown in Fig. 5-28. Again the amplitude of
the unsteady shock impulse captured by the linear method is much higher than that
produced by the nonlinear time-marching method, while the present nonlinear
harmonic and the nonlinear time-marching analyses are in a good agreement. It
should be emphasised that for blades oscillating in a torsion mode, a detailed ( rather
than integral) unsteady loading distribution is important for calculations of blade

flutter characteristics.

Finally, some comments should be made with regard to the computing time. In
this cascade case, a nonlinear harmonic solution requires about 1.5 hours CPU time
on a single SGI R10000 processor, which is about 60% more than that required by a
pure linear solution. This CPU time consumed by the nonlinear harmonic solution is
comparable to that by a nonlinear time-marching solution for a single blade passage.

However, a single passage domain can always be adopted for the nonlinear harmonic
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method, whilst a multiple-passage domain has to be adopted by conventional
nonlinear time-marching methods. A numerical test has shown that for an annulus
with 20 blade passages, the present nonlinear harmonic solution with one harmonic
disturbance is about 20 times faster that a 20 blade passage nonlinear time-marching
solution. It should be mentioned that no acceleration technique is applied in this test
case. A further speed-up of the nonlinear harmonic solution by a factor of 5 or more

would be expected if a multi-grid technique is used.

5.6 Summary

In this chapter, the numerical results by the novel nonlinear harmonic Navier-
Stokes/Euler method have been presented. The validity of this method has been
demonstrated by comparing its numerical results to those produced by the nonlinear
time-marching method, time-linearized method, and experimental data. Although the
primary aim of the work is to validate the novel nonlinear harmonic method, the time-
linearized method presented in Chapter 2 is further checked and its limitation subject
to nonlinear effects has been clearly demonstrated. The nonlinear harmonic method
can considerably improve results over the linear analysis when the nonlinearity is
important, due to its capability of capturing the nonlinear effects by the coupling
between the time-averaged flow and the unsteady perturbations. The numerical tests
have shown that computational time required for a nonlinear harmonic analysis is
typically 60% more than that for a conventional linear analysis. Therefore the
nonlinear harmonic method is still much more efficient than the nonlinear time-
marching method. However, the limitation of the nonlinear harmonic analysis has also
been observed in the calculations of the unsteady flows in a biconvex cascade. The
limitation is probably due to the quasi-linear form of the first harmonic perturbation

equations.
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Chapter 6 Numerical Investigations of Trailing Edge Vortex
Shedding

6.1 Introduction

In the last several chapters, the development and validation of a time-
linearized Navier-Stokes/Euler method and a nonlinear harmonic Navier-Stokes/Euler
method have been presented. For both methods, a time-independent ( steady or time-
averaged) flow field is required to be the base for a linear or a nonlinear harmonic
analysis. However, the time-independent solution cannot be achieved once any self-
excited aerodynamic instabilities occur. Trailing edge vortex shedding is one of the
self-excited aerodynamic instabilities in turbomachinery occurring when viscous flows
pass a blade with a blunt trailing edge. Producing a time-independent solution is
problematic if the trailing edge vortex shedding is resolved in the calculation.
Although the time-averaged flow field of a vortex shedding case could be produced
by solving unsteady Navier-Stokes equations, the calculation is too expensive because
the vortex shedding has a very small length and time scale. Therefore, a natural
question is: can we produce a time-independent solution which can include time-
averaged effects of trailing edge vortex shedding without carrying out an unsteady
calculation? Solving the time-averaged equation is probably one of the answers. The
difficulty in doing so is that extra closure models are required to model the unsteady
stress terms in the time-averaged equations, just as turbulence models are needed to
solve the Reynolds averaged Navier-Stokes equations. The modelling issues
associated with unsteady flows induced by the bladerow interaction and the blade
flutter have been addressed by some other researchers (Adamczyk, 1985, Giles, 1992,
He, 1996a). The modelling of trailing edge vortex shedding has not been investigated
so far. In this chapter, some efforts towards the modelling of vortex shedding will be

presented. The main issue to be addressed in this work is: can we achieve a time-
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independent solution for trailing edge vortex shedding by solving time-averaged

Navier-Stokes equations?

Although this part of the work originally arises from the consideration of a
linear and nonlinear harmonic analysis for the blade flutter, it actually concemns a
general issue in turbomachinery. As introduced in Chapter 1, understanding and
predicting the trailing edge vortex shedding is of great importance in turbomachinery
for further improvement of machine performance. Unfortunately, in the current
turbomachine design systems, trailing edge vortex shedding is usually missed for some
unavoidable reasons, such as the computational meshes are too coarse, numerical
schemes are too dissiaptive, or time steps are too big etc. However, as far as a
turbomachine designer is concerned, it is highly desirable to take account of the time-
averaged effects of trailing edge vortex shedding in a design procedure. An efficient
way to do so is to solve the time-averaged equation. But the modelling issues have to
be addressed before solving the time-averaged equations. Recently there has been
increasing interest in modelling rather than calculating unsteady flows for

turbomachine design (Chen, Celestina and Adamczyk, 1994, Hall, 1997).

Similar to the nonlinear harmonic approach as descried in the first part of this
thesis, in this work the unsteady flow induced by vortex shedding is decomposed into
a time-averaged flow plus an unsteady perturbation. The time-averaged equations can
be produced by time-averaging the unsteady Navier-Stokes equations, consequently
extra unsteady stress terms are generated in the time-averaged equations. Here the
unsteady stresses are produced due to trailing edge vortex shedding. Whether or not
these unsteady stresses can suppress vortex shedding is the key question. The present
work starts with unsteady calculations of trailing edge vortex shedding by using an
unsteady Navier-Stokes solver. The time-averaged flow fields are produced by time-
averaging unsteady results, and the unsteady stress terms induced by trailing edge

vortex shedding are obtained. Then the time-averaged equations with known unsteady

90




stresses are solved. The effectiveness of the unsteady stresses to suppress trailing

edge vortex shedding will be checked from the solution of time-averaged equations.

In this work, the investigations start with vortex shedding from a circular
cylinder. Then a case with realistic turbine blading (VKI turbine blades) is extensively

examined.

6.2 Multi-Block Unsteady Navier-Stokes Solver

In the present study, the baseline numerical solver is a multi-block unsteady
Navier-Stokes solver originally developed by He (1996b) for flows past a set of
cylinders. This code is used for the unsteady calculation of trailing edge vortex
shedding in this work. In the code, the flow governing equation is a 2-D unsteady

Reynolds averaged Navier-Stokes equation.

The original code can only handle laminar flows. In the present work, a
turbulence model is implemented for handling turbulent flows. For vortex shedding
prediction, it is arguable which turbulence model can or cannot be used. In this work,
a mixing-length turbulence model in its simplest form is implemented for turbulent

flows. In this model, the turbulent viscosity is given by

M = ploy oo (6-1)

where |o| is the magnitude of the vorticity given by

ou ov

ol =150 3

In the near wall region, the mixing length is given by
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1. =kmin(d,,dy,) (6-2)

mix

where Kk is the Von Karman constant and is 0.41; d is the distance to the wall and

d;., is a limiting value input by the user. In the wake, the mixing length is taken as

lim
Kkd;,, - It is recognised that vortex shedding unsteady calculations are sensitive to
turbulence models (Manna and Mulas, 1994, Arone and Pacciani, 1997). In this
work, the sensitivity issue will be investigated by simply specifying different d,,

values in calculations.

In order to give a better resolution for the vortex shedding, the solver uses a
multi-block mesh. In a calculation, the unsteady Navier-Stokes equation is
simultaneously integrated on each block by using the 4-stage Runge-Kutta time-
marching scheme. At the end of each fractional time-step, the communication
between different blocks is carried out by averaging conservative flow variables
(p, pu, pv,pe) at connecting points of different blocks. For example, the point (i,j) is a
connecting point between the block I and II, the updated value of the density at the

end of each fractional time-step at point (i,j) can be given by
pi™ =0.5(0j +pj) (6-3)

where p;. is obtained from the calculation on block I, and pinI is obtained from the

calculation on block II at the end of each fractional time step. The unsteady Navier-
Stokes equation is again spatially discretized by a cell-vertex scheme. The details of

the numerical schemes can be found in Chapter 2.

6.3 Time-Averaged Navier-Stokes Equation and Solution Method

The unsteady flow induced by the trailing edge vortex shedding is assumed to

be a time-averaged flow plus a periodic unsteady perturbation, i.e.
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U=U+U" (6-4)

Substituting this expression into the unsteady Navier-Stokes equation and
time-averaging it over a vortex shedding period, the time-averaged equation can be
obtained. The form of the time-averaged equation is the same as Eq.(4-6), except in
this study it is in a 2-D form. The unsteady stress terms in the time-averaged equation
are produced by the trailing edge vortex shedding. It should be mentioned that in the
time-averaged equation, the unsteady stresses contributed by the random unsteadiness
(tarbulence) are modelled by the turbulence model. The random fluctuation and
periodic vortex shedding perturbation are assumed to be uncorrelated in a global-

mean sense (Reynolds and Hussain, 1972, Cantwell and Coles, 1983).

The key to solving the time-averaged equation is to know the unsteady stress
terms produced by the vortex shedding. The major objective of the present study is to
investigate the feasibility of achieving a time-independent solution by solving the time-
averaged equations. The unsteady stress terms in the time-averaged equation are

obtained from unsteady solutions. For instance, the unsteady stress (pu)’v’ can be

worked out from

Np

POV = —— Sipu—pullvv] 6-5)
Np 1

where the time-averaged variables pu and V can be obtained by
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P
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where pu and v are instantaneous variables obtained from unsteady calculations; N > is

the number of time steps in one vortex shedding period, it can be determined from
the vortex shedding frequency f and the size of time-step At in an unsteady calculation

by

N, =— (6-6)

The vortex shedding frequency f can be obtained by analysing the unsteady flow

results using a Fourier transformation.

6.4 Unsteady Calculation of Trailing Edge Vortex Shedding

The first step of the present work is to calculate the trailing edge vortex
shedding by solving the unsteady Navier-Stokes equation. The calculations are
conducted for flows past a circular cylinder and a VKI turbine cascade. The time-
averaged flow fields and unsteady stress terms are calculated from the unsteady

solutions.

6.4.1 Laminar Vortex Shedding behind a Circular Cylinder

In this calculation, the cylinder has a diameter (D) of 0.2m. The flow has a
free stream Mach number of 0.27 and Reynolds number (based on the cylinder
diameter and free stream velocity) of 3,000. In this case the flow is assumed to be
fully laminar. The present calculation is carried out in a domain which is made up by
two cylinders. In order to avoid the interference of the vortex shedding from the two
cylinders, the pitch of the computational domain is set to be 6.5D. The mesh in this
calculation has 4 blocks, the layout of the blocks is shown in Fig.6-1. The mesh in the
first block is an O-type mesh with 101x 21 points, and the mesh in other three blocks
is a simple H-type mesh, as shown in Fig.6-2. The mesh has a total of 13,549 points.
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In order to accelerate convergence of the unsteady calculation, a time-consistent two-

grid technique (He, 1993a) is applied in the first block.

Fig.6-3 shows an instantaneous static pressure history at point C on the
cylinder which corresponds to an angle of —45%. It can be scen that the unsteady
Navier-Stokes equation needs to be time-marched about 25 shedding cycles to
achieve a periodic trailing edge vortex shedding. In this calculation, there are about
850 time steps in one vortex shedding period. For one shedding period, it takes about
415 seconds CPU time on a single SGI R10000 processor. Once periodic vortex
shedding is achieved, the instantaneous static pressure history at point C is analyzed
by a Fourier transformation and the pressure spectrum is given in Fig.6-4, it can be
seen that the predicted vortex shedding frequency is 90 Hz. This shedding frequency
is equivalent to a Strouhal number of 0.192. For the vortex shedding behind the
circular cylinder, the Strouhal numbers can be calculated by an empirical formula

(Massey, 1983) as

St=0.198(1-19.7/Re) (6-7)

for 250 < Re < 2x10°. In this investigation, the empirical value of Strouhal number
is 0.197. The predicted Strouhal number (0.192) by the present unsteady calculation
is very close to the empirical value. The contours of instantaneous static pressure,
Mach number and entropy are presented in Fig.6-5 ~ Fig.6-7. It can be seen that the
structure of the Von Karman vortex street behind the circular cylinder has been very

well captured by the present unsteady calculation.

Once periodic vortex shedding is achieved, the unsteady solution is time-
averaged over several shedding periods to produce a time-averaged flow field. The
time-averaged static pressure and entropy contours are shown in Fig.6-8 and Fig.6-9,
they are symmetric along the wake centreline. It can be seen that vortex shedding is

averaged out in the time-averaged flow field. Fig.6-10 presents a time-averaged static
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pressure distribution along the cylinder surface and the wake centreline. The static
pressure in the region of separated flow just downstream of the cylinder (the base
region) is lower than that in the freestream. This produces a component of the total

loss known as the base loss.

As introduced in the last section, to solve the time-averaged equations, it is
necessary to know the unsteady stresses. In this work, the unsteady stress terms are

calculated from the present unsteady solutions. The contours of three primary

unsteady stresses ((pu)’u’, (pv)’v’, (pu)’v’) are presented in Fig.6-11 to Fig.6-13,
all the stresses are non-dimensionized by the inlet dynamic head (0.5p,,uz, ). As

shown in Fig.6-11, the streamwise normal stress W is symmetric along the wake
centre and exhibits double peaks near the end of the vortex formation region, the
stress then decays rapidly along the wake direction. The stress (—m mainly
remains bimodal throughout the near wake and makes very little contribution on the
wake centreline. The structure of the stress W is quite similar to the W )
but it is anti-symmetric along the wake centre and the two peaks are closer to the
wake centreline, as shown in Fig.6-12. For the pitchwise normal stress W as
shown in Fig.6-13, only a single peak exists on the wake centreline approximately at

the end of the vortex formation region.

Generally speaking, the structures of these three unsteady stresses are not very
complex. All of the unsteady stresses reach their peak values near the end of the
vortex formation region, at about x/ D = 1.0~1.5 (x=0 corresponds to the centre of
the cylinder), then decay rapidly with increasing values of x along the downstream of
the wake. The topologies of these three unsteady stresses predicted by the present
unsteady calculation are very similar to those produced by an experiment (Cantwell
and Coles, 1983). In Cantwell and Coles’ work, the unsteady flows around a circular

cylinder induced by random turbulence and periodic vortex shedding at

Re = 1.4x10° were extensively measured.
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6.4.2 Vortex Shedding from a VKI Turbine Cascade

To investigate the trailing edge vortex shedding from turbomachine blades, the
unsteady flow in a VKI turbine cascade is calculated. This cascade consists of 3 low
cambered two-dimensional turbine nozzle blades. The blade in the middle has a thick
rounded trailing edge to accommodate a pressure transducer for the measurement of

the base pressure. Some blade geometry characteristics are

Chord: 279.99 [mm)]
Stagger angle: -49.833 [deg.]
Blade height: 200 [mm)]
Pitch: 195 [mm]
Trailing edge thickness: 15 [mm]

The trailing edge vortex shedding from this turbine blade has recently been
experimentally studied at VKI (Cicatelli, Siverding and Fevrier, 1994, Cicatelli and
Siverding,1996). This test case has been numerically investigated by some researchers
(Manna and Mulas, 1994, Amone and Pacciani, 1997). The flow conditions in the test

wEre

Inlet total pressure: 17462 Pa
Inlet total temperature: 293 K
Reynolds number: 2.5%10°

Outlet isentropic Mach number: 0.409

To calculate this test case, the mesh is required to be carefully generated.
There are several important aspects to the mesh generation for the vortex shedding
unsteady calculations in turbomachinery. Firstly, a fine mesh is needed near the blade

surface and in the wake to resolve the boundary layer and the small length scale
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vortex shedding. Secondly, the mesh needs to minimise as much as possible skewness
and distortion to give a good resolution of the unsteady flows. Finally, care also must
be taken to ensure the high degree of uniformity of the mesh near the blade surface
and in the wake. According to these requirements, a 4-block mesh is generated for
this VKI turbine cascade. In the first block, an O-type mesh is generated with a mesh
size of 271x 35, there are about 45 mesh points around the trailing edge semi-circle.
A preliminary calculation shows that there are about 15 points in the boundary layer

near the trailing edge and the value of y* is about 25 under the test flow conditions.

In the other three blocks, a simple H-type mesh is generated. The 4-block mesh has a
total of 41879 points. The layout of blocks of the mesh is shown in Fig.6-14. The
mesh is presented in Fig.6-15 and an enlarged view of the mesh near the blade trailing

edge is shown in Fig.6-16.

Once the mesh is generated, the unsteady flow induced by trailing edge
vortex shedding is calculated by solving the unsteady Navier-Stokes equations. But
before we carry out the calculation under the test flow conditions, a low Reynolds
number laminar vortex shedding from this VKI turbine cascade is calculated. The
main purpose of doing this is to create a case without any turbulence effects in order
to avoid any uncertainties due to turbulence models. In this calculation, the Reynolds
number is specified to be 2.5x10* which is two orders of magnitude lower than the
test value, the flow is assumed to be fully laminar. After the unsteady Navier-Stokes
equation is time-marched for about 50 shedding periods, periodic vortex shedding is
achieved. Each shedding period needs about 1,250 time steps and takes about 2,280
seconds CPU time running on a single SGI R10000 processor. The predicted vortex
shedding Strouhal number ( based on the trailing edge thickness and downstream flow
velocity) is 0.235. The instantaneous static pressure and entropy contours in Fig.6-17
and Fig.6-18 have shown that a rigorous vortex shedding street behind the blade

trailing edge is captured.

98



Then this VKI turbine cascade flow under the test flow conditions is
calculated. In the calculation, the flow is assumed to be fully turbulent from the
leading edge of the blade. The turbulence mixing length limit d;;, in the turbulence
model is given to be 2% of the trailing edge thickness. In the calculation, the non-slip
wall boundary condition is applied on the blade surface. Numerical tests show that the
unsteady Navier-Stokes equation must be time-marched through at least 60 vortex
shedding periods to achieve a good level of periodicity of the vortex shedding from an
initial 1-D flow guess. There are about 1,200 time steps in one shedding period. For
each shedding period, it takes about 2,100 seconds CPU time running on a single SGI
R10000 processor. It can be seen that the computation time for an unsteady
calculation of vortex shedding in turbomachinery is very long, even using a

moderately fine mesh and a very simple turbulence model.

Fig.6-19 shows the static pressure time traces at points corresponding to
abscissa S/D of 0.65 and -0.65 on the blade trailing edge, the positions of these two
reference points can be found in Fig. 6-20. At the same abscissa, the calculation
suggests that the pressure fluctuation on the pressure surface is higher than that on
the suction surface, which is consistent with experimental observation (Ciatelli and
Sieverding, 1996). The different vortex shedding intensity on the suction and pressure
surfaces in cascade flows has also been observed by other researchers (Han and
Cox,1982). A vortex shedding frequency spectrum by the present calculation is
shown in Fig.6-21 which suggests the predicted vortex shedding Strouhal number is
0.245, slightly lower than the experimental value of 0.27. The instantaneous contours
of static pressure, Mach number and entropy in Fig.6-22 to Fig.6-24 have shown that

a vigorous vortex shedding is obtained by the present unsteady calculations.

Having achieved periodic vortex shedding, the unsteady flow is then time-
averaged over several shedding periods to give a time-averaged flow field. The time-
averaged isentropic Mach number is compared with the experimental results in Fig.6-

25. The comparison on the pressure surface is very good, but the static pressure on
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the suction surface around the mid-chord region is ovcrpredicted. The presented
results are similar to those produced by an unsteady calculation using a standard
Baldwin-Lomax model (Manna and Mulas, 1994). The base pressure around the blade
trailing edge is reasonably predicted by the present calculation, as shown in Fig.6-26.
The time-averaged pressure and Mach number contours are presented in Fig.6-27 and
Fig.6-28. It can be seen that the vortex shedding is averaged out in the time-averaged

flow field.

Based on the unsteady solution and the time-averaged flow field of this high

Reynolds number turbulent case, the vortex shedding unsteady stresses are calculated.

The contours of three major unsteady stresses ((pu)’u’, (pu)’v’, (pv)’v’) are

presented in Fig.6-29 to Fig.6-31. The structure of the unsteady stress (pu)’u’ is very

similar to the unsteady stress (pv)’v’ in the circular cylinder case. The reason is that
this VKI turbine blade has quite a high stagger angle, the direction of the velocity v in
the wake is close to the streamwise direction. The stress (pu)’u’ in this cascade flow
case is more or less symmetric along the wake centre and a peak appears about one
trailing edge thickness length downstream of the trailing edge, it then decays rapidly

along the wake. Unlike its counterpart in the cylinder case, the stress (pu)’v’ in the

cascade flow is not anti-symmetric along the wake centre. The stress W is also
not symmetric along the wake centre. One reason is that the direction of coordinate
‘x’ is not parallel to the wake direction in the turbine flow case, another reason is
likely to be due to the different vortex shedding intensity from the blade suction and
pressure sides. Nevertheless, the structure of unsteady stresses in the cascade flow is
similar to those in the cylinder flow. The development of vortex shedding modelling
in turbomachinery probably can benefit from a lot of studies on the vortex shedding

behind circular cylinders.

In order to investigate the sensitivity of the vortex shedding unsteady

calculation to the turbulence model, a calculation is carried out by specifying the value
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of dy, to be 10% of the blade trailing edge thickness. The higher value of d;,
means bigger viscosity in the boundary layer and wake, and the intensity of the vortex
shedding is expected to be reduced. Numerical tests have shown that the vortex
shedding disappears in this calculation and a ‘steady-state’ solution is obtained. Fig.6-
32 and Fig.6-33 present the static pressure and Mach number contours, it can be seen
that vortex shedding is suppressed due to the large value of d;,. However, the
calculated base pressure around the blade trailing edge is much higher than the
experimental data as shown in Fig.6-42, due to the suppression of the vortex
shedding. This calculation indicates that the unsteady vortex shedding calculation is

sensitive to turbulence models.

6.5 Solutions by Solving Time-Averaged Equations

Periodic vortex shedding behind a circular cylinder and a VKI turbine blade
have been achieved by solving the unsteady Navier-Stokes equations, as presented in
the last section. The unsteady stresses induced by the vortex shedding are calculated
from the unsteady solutions. In this section, the numerical solutions of the time--
averaged equations will be presented. The unsteady stresses in the time-averaged
equations are determined directly from the results produced by the unsteady
calculations. In calculations for solving the time-averaged equation, the computational
mesh, flow conditions, time step size, and artificial smoothing coefficients are all kept
the same as their unsteady calculation counterparts (presented in Section 6.4), the

only difference is that the unsteady stress terms are included.

6.5.1 Circular Cylinder

The first attempt is to solve the time-averaged equation for the circular
cylinder case. The calculation residual history, as plotted in Fig.6-34, shows that a
time-independent solution is achieved by solving the time-averaged equations. Here

the residual is represented by the local maximum velocity residual in the first block.
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The static pressure contour map is presented in Fig.6-35 and it suggests that the
vortex shedding is completely suppressed by the unsteady stress terms. The
comparison between the Fig.6-35 and Fig.6-8 shows excellent agreement. The
calculated static pressure distribution along the cylinder surface and the centreline of
the wake is in very good agreement with the time-averaged one produced by the
unsteady calculation, as shown in Fig.6-10. The entropy contour map in Fig.6-36
again confirms that vortex shedding is suppressed. This numerical test has
demonstrated that the vortex shedding can be suppressed by the unsteady stresses and
a time-independent solution can be achieved by solving the time-averaged equation.
Importantly this time-independent solution is very close to the time-averaged solution

produced by the unsteady calculations.

It is well recognised that vortex shedding can be suppressed in different ways,
such as excessive artificial smoothing, big time steps etc. In this work, a calculation is
carried out by solving the original unsteady Navier-Stokes equation with an excessive
artificial smoothing coefficient. In this calculation, the mesh and flow conditions
remain the same as those in the unsteady calculation presented in Section 6.4.1, only
the artificial smoothing coefficients are ten times larger. The residual history of this
calculation is also shown in Fig. 6-34 and suggests that a steady-state solution is
achieved. An entropy contour map in Fig.6-37 shows no sign of vortex shedding.
However, the comparison between the steady static pressure distribution with the
time-averaged one in Fig.6-10 shows that the large variation of the static pressure in
the region just downstream of the cylinder is missing due to the suppression of the

vortex shedding by using the excessive artificial smoothing.
6.5.2 VKI Turbine Cascade
The effectiveness of unsteady stresses to suppress the vortex shedding is then

investigated on the VKI turbine cascade case. In this investigation, the first attempt is

made on the low Reynolds number laminar flow case. Firstly, the vortex shedding

102




unsteady stresses are calculated from the unsteady solution in the laminar flow case as

presented in Section 6.4.2. The contour maps of three unsteady stresses ((pu)’u’,

(pu)’v’, (pv)’v’) are presented in Fig.6-38 to Fig.6-40. The structure of these
stresses shows a remarkable similarity to those in the turbulent case, only the peak
values of the unsteady stresses in the laminar case are higher. This indicates that the
random turbulence fluctuations and the periodic vortex shedding fluctuations are not
correlated in a global-mean sense. The time-averaged equation is then solved with
known unsteady stresses. The residual history in Fig.6-41 shows that a time-
independent solution is achieved. The predicted static pressure distribution on the
blade compares very well with the time-averaged one produced by the unsteady
calculation, as shown in Fig.6-42. The static pressure and Mach number contour maps
produced from this time-independent solution demonstrate that the vortex shedding is

completely suppressed, as shown in Fig.6-43 and Fig.6-44.

Then a similar attempt is made for the high Reynolds number turbulent flow
case. The time-averaged equation is time-marched with unsteady stresses produced
from unsteady solutions in this turbulent flow case. The calculation again shows that
vortex shedding is suppressed by unsteady stresses. A static pressure and Mach
number contour maps are presented in Fig.6-45 and Fig.6-46, they are very similar to
the time-averaged static pressure and Mach number contour maps as shown in Fig.6-
27 and Fig.6-28. The comparison between the calculated static pressure by this
calculation and the time-averaged static pressure produced by the unsteady
calculation in Fig.6-25 is good. Importantly, the base pressure around the blade
trailing edge is well predicted by solving the time-averaged equations, as shown in

Fig.6-26.

In Section 6.4.2, a calculation with a d;, of 10% of the trailing edge

thickness has demonstrated that the vortex shedding unsteady calculation is highly

sensitive to the turbulence model. It would be interesting to investigate the sensitivity
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of the time-independent solution to the turbulence model. To this end, a calculation is
carried out to solve the time-averaged equation with a d;;,, being 10% of the trailing
edge thickness. The unsteady stresses in this calculation are taken as those produced
by the unsteady calculation with the value ofdy;,, of 2% of the trailing edge thickness.
Again a time-independent solution is achieved in this calculation and the calculated
static pressure around the trailing edge is plotted in Fig. 6-26. It can be seen that the
base pressure by this calculation is closer to the experimental data than that produced
by the unsteady calculation with the value of d;,, of 10% of the trailing edge
thickness. It implies that solution of the time-averaged equations appears to be less
sensitive to the turbulence model than the solutions by solving unsteady equations.
This could be important and maybe of interest to turbomachine designers, because
they would like to see that their design methods are less sensitive to turbulence

models.

6.6 Summary

Some modelling issues on trailing edge vortex shedding have been addressed
in this chapter. The emphasis of this work is to investigate the feasibility of producing
a trailing edge vortex shedding time-independent solution by solving the time-
averaged equations. To solve the time-averaged equations, it is essential to work out
the unsteady stress terms. In this investigation, the unsteady stresses are calculated

from vortex shedding unsteady calculations.

The work presented in this chapter starts with the unsteady calculation of
vortex shedding behind a circular cylinder and a VKI turbine blade by using a multi-
block Navier-Stoke solver. The numerical results have shown the structure and the
frequency of vortex shedding street can be reasonably well predicted by the present
unsteady solver. The calculations have demonstrated that the unsteady calculation of

trailing edge vortex shedding in turbomachinery is very CPU time consuming. The
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numerical tests have also demonstrated that vortex shedding unsteady calculation is

highly sensitive to the artificial smoothing and turbulence model.

Based on the unsteady solutions, the time-averaged flow fields about trailing
edge shedding are calculated. The vortex shedding unsteady stresses are worked out.

The numerical results have shown that the structures of three major vortex shedding

unsteady stresses ((pu)’u’, (pu)’v’, (pv)’v’) are not very complex. All of them
reach their peak values roughly at the end of the vortex shedding formation region,
and then decay rapidly along the wake direction. The structures of the unsteady
stresses in the turbine cascade flow are similar to those produced in the circular
cylinder case, it suggests that the development of the vortex shedding modelling in
turbomachinery probably can benefit from much easier studies of vortex shedding
behind circular cylinders. The remarkable similarity of unsteady stress topologies
between the laminar flow and the turbulent flow implies that the random turbulence
fluctuations and the periodic vortex shedding fluctuations are uncorrelated in the

global-mean sense.

With the vortex shedding unsteady stresses obtained from unsteady
calculations, the time-averaged equations are solved. Numerical results have shown
that vortex shedding can be suppressed by the unsteady stress terms and a time-
independent solution can be achieved. Importantly, the vortex shedding time-averaged
effects are included in time-independent solutions. A numerical test has also indicated
that solution of the time-averaged equations appears to be less sensitive to the

turbulence model than unsteady solutions.
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Chapter 7 Conclusions and Suggestions

Some numerical investigations have been carried out towards understanding
and predicting unsteady flows in turbomachinery. The principal part of the present
work is the development of efficient frequency domain methods for unsteady flows
around oscillating blades. To start with, a quasi 3-D time-linearized Euler/Navier-
Stokes solver has been developed. Based on the time-linearized method, a novel quasi
3-D nonlinear harmonic Euler/Navier-Stokes method has been developed. Finally,
some numerical efforts have been made to address modelling issues on trailing edge
vortex shedding. The present work is concluded in the following three sections, and

the chapter ends with a discussion of suggestions for the future development.

7.1 Time-Linearized Euler/Navier-Stokes Method

The time-linearized Euler method was originally presented by Ni (1974),
currently this method and its Navier-Stokes version have been widely used in industry
to compute unsteady flows in turbomachinery. The main purpose of the development
of a quasi 3-D time-linearized method in the present work is that this method is the

baseline method for the development of a nonlinear harmonic Euler/Navier-Stokes

method.

In Chapter 2, the development of the quasi 3-D time-linearized Euler/Navier-
Stokes method has been presented. In this method, the unsteady flow is decomposed
into a steady flow plus a harmonically varying unsteady perturbation. Through the
linearization, the original unsteady Euler/Navier-Stokes equation is divided into two
equations, a steady flow equation and a time-linearized perturbation equation. In the
time-linearized Navier-Stokes perturbation equation, the viscosity is frozen to its
steady value, effectively the perturbation of the viscosity is neglected. A pseudo time-

marching technique is introduced to make both the steady flow equation and the time-
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linearized perturbation equation time-independent, so the time-marching method can
be used. In the present work, a cell-vertex scheme is implemented to discritize the
steady and perturbation equations in space and the 4-stage Runge-Kutta scheme is
used to integrate them in the pseudo-time domain. In order to avoid the spurious
reflection in the far-field boundaries when solving the perturbation equations, 1-D/2-
D nonreflecting boundary conditions are applied. A slip-wall boundary condition is

developed for solving the time-linearized Navier-Stokes perturbation equations.

The present quasi 3-D time-linearized Euler/Navier-Stokes method has been
extensively validated, as presented in Chapter 3. An excellent agreement is achieved
between the present calculation and a well-developed analytic method LINSUB for an
oscillating flat plate cascade. A satisfactory comparison between the present
calculation and LINSUB is obtained for a high frequency forced response case
induced by incoming wakes for a flat plate cascade. Calculated results for an
oscillating turbine cascade agree reasonably well with the experiment data. A
calculation for a compressor cascade confirms that the time-linearized Euler method
works well for transonic unsteady flows provided that the shock wave is sufficiently
smeared and the shock oscillating amplitude is small. Calculated results for a laminar
and a turbulent unsteady boundary layers are in good agreement with analytical
solutions and other well-known numerical results. Finally, a calculation of an
oscillating compressor cascade with a high incidence shows good comparison

between calculated results and experimental data.

7.2 Nonlinear Harmonic Euler/Navier-Stokes Method

Based on a novel nonlinear approach proposed by He (1996a), a quasi 3-D
nonlinear harmonic Euler/Navier-Stokes method has been developed, as described in
Chapter 4. In this method, the unsteady flow is decomposed to be a time-averaged
flow plus an unsteady perturbation. The time-averaged flow equations are given by

time-averaging unsteady Euler/Navier-Stokes equations. Due to the nonlinearity of
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unsteady equations, time-averaging produces extra ‘unsteady stress’ terms in the
time-averaged equations. These unsteady stress terms are evaluated from unsteady
perturbations. The unsteady perturbations are obtained by solving quasi-linear
harmonic perturbation equations, while the coefficients of perturbation equations
come from the solution of the time-averaged equations. Therefore, the time-averaged
equations and harmonic perturbation equations interact each other. In order to ensure
a good convergence and accuracy of a solution, a strong coupling method is applied
to solve the time-averaged equations and harmonic perturbation equations
simultaneously in a pseudo-time domain. The nonlinear effects are included in a
coupling solution between the time-averaged flow and unsteady perturbations. The
solution methods in the present nonlinear harmonic Euler/Navier-Stokes method are
very similar to those used in the time-linearized Euler/Navier-Stokes method. The
cell-vertex scheme is implemented for the spatial discretization and the 4-stage
Runge-Kutta scheme is applied for the temporal discretization. In order to effectively
handle the strong nonlinearity in the flow field produced by a large amplitude of shock
wave oscillation, an approximate approach to linearize the pressure sensor in the

artificial smoothing terms is implemented.

The effectiveness of the nonlinear harmonic Euler/Navier-Stokes method has
been checked by calculations of transonic unsteady flows in a divergence duct, a
biconvex cascade, a transonic diffuser and a compressor cascade. The calculated
results are compared with a well-documented nonlinear time-marching method, the
time-linearized Euler/Navier-Stokes method and experimental data. The comparisons
have shown that the validity of the time-linearized method for unsteady flows is highly
subject to the strength of nonlinearity in flow fields. A nonlinear harmonic analysis
can considerably improve the numerical results over a linear analysis when the
nonlinear effects cannot be ignored. However, the limitation of the nonlinear
harmonic method has also been observed from calculations. The limitation is likely
due to the quasi-linear characteristics of the present nonlinear harmonic method.

Numerical tests have shown that a nonlinear harmonic analysis typically needs 60% of
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the CPU time more than that required for a time-linearized analysis, it is still much

more efficient than a nonlinear time-marching calculation.

7.3 Numerical Investigations on Trailing Edge Vortex Shedding

The major issue addressed in this part of work is: can we produce a time-
independent solution by solving time-averaged equations when trailing edge vortex
can be resolved in a calculation? This issue originally arises from the consideration of
a time-linearized analysis and a nonlinear harmonic analysis in which a time-
independent solution must be required. Actually it is a general concern in
turbomachinery. To investigate this issue, the work starts with unsteady calculations
of trailing edge vortex shedding from a circular cylinder and a VKI turbine blade
using a multi-block unsteady Navier-Stokes solver. Based on the unsteady calculation
results, the unsteady stresses due to trailing vortex shedding are worked out. Finally
the time-averaged equations with known vortex shedding unsteady stresses are
solved. Based on the present numerical study, several conclusions can be drawn as

follows:

e Numerical results have shown that the structure and the frequency of vortex street
can be well predicted by the present unsteady calculations. However, the unsteady
calculation of vortex shedding is highly sensitive to the turbulence model and
artificial smoothing.  The numerical tests have also confirmed that the
computational cost for an unsteady calculation of trailing edge vortex shedding in

turbomachinery is very high.

e The structures of the three primary unsteady stresses ((pu)’u’,(pu)’'v’,(pv)’v’)
produced by the trailing edge vortex shedding are not very complex. All of them
reach their peak values roughly at the end of vortex shedding formation region,
then decay rapidly along the wake. The structures of unsteady stresses generated

by vortex shedding from the VKI turbine blade are similar to those generated by
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vortex shedding from a circular cylinder. The topologies of vortex shedding
unsteady stresses in a turbulent flow case are very similar to those in a laminar
flow case, but the peak values of unsteady stresses in the laminar flow case are

higher.

e A time-independent solution for vortex shedding can be achieved by solving time-
averaged equations and the unsteady stresses are effective in suppressing vortex
shedding. Importantly, the time-independent solution agrees with the time-
averaged solution produced by unsteady calculations. Although numerical tests
have shown that vortex shedding can be suppressed by other approaches, such as
the excessive artificial smoothing or different turbulence models, the solutions are
very different compared with time-averaged solutions. A numerical test has
indicated that the solution by solving time-averaged equations appears to be less

sensitive to the turbulence model than an unsteady solution.
7.4 Suggestions for the Future Work

As far as the time-linearized and nonlinear harmonic method is concerned,
several outstanding issues need to be addressed in the near future. The first is that the
validity of freezing the viscosity in the perturbation equations to its steady/time-
averaged value should be further checked, especially for very low frequency unsteady
flows. The second issue is on the linearization of the artificial smoothing. Although an
approximate approach is implemented in the present nonlinear harmonic method to
linearize pressure sensors, a more accurate approach is desired to be pursued. This
might be particularly important for the flow with very strong nonlinearity. The
another issue is on the acceleration of Navier-Stokes time-linearized and nonlinear
harmonic analyses. In the present work, a 2-grid technique is applied to accelerate the
convergence of the linear and nonlinear harmonic Navier-Stokes method. However,
because the time accuracy is not a concern in a frequency domain method, a more

efficient multigrid technique is highly preferable to be implemented. Meanwhile,
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further investigations on mesh-dependence of this nonlinear harmonic method should

be carried out.

Many latest numerical and experimental results have demonstrated that the
3-D effects could be potentially important in the prediction of unsteady flows in
turbomachinery. The extension of the present quasi 3-D method to a fully 3-D method
should be pursued. From the methodology point of view, the extension work is not
difficult, it can be done by either extending the present solver to a fully 3-D one or
developing one from a well-developed fully 3-D steady or unsteady solver. However,
the validation of 3-D methods would be difficult because very few 3-D unsteady

experimental data are available so far.

Another area of interest for blade flutter analysis is to include the interaction
effects from other sources of unsteadiness, such as bladerow interactions, inlet
distortions etc. In the time-linearized methods, the interaction between different
unsteady disturbances is completely missed because the unsteady perturbations are
based on a steady flow field. This interaction could be realised in a solution by the
nonlinear harmonic method through time-averaged flows. In the nonlinear harmonic
method, the time-averaged flow can be changed by the unsteady perturbations and
vice versa in a coupling procedure. The unsteady stresses produced by different
unsteady disturbances can be summed up to construct a total unsteady stress to put
into the time-averaged equations. The communication between different disturbances
can indirectly build up through time-averaged flows. The investigation in this
direction is worthwhile to be carried out in the future. For turbomachine designers, it
is highly desirable to develop a design method which is efficient while it can take
account of unsteady effects from different disturbances. The nonlinear harmonic

method is promising to be developed into this kind of design method.

Trailing edge vortex shedding is one of the most difficult problems in

turbomachinery because it has a very small length and time scale. The modelling of
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the trailing edge vortex shedding is a completely new way to look at this problem.
The present work on the modelling issues is important because it has conceptually
proved that vortex shedding can be suppressed by the unsteady stresses and a time-
independent solution can be produced by solving time-averaged equations. However,
how to model these unsteady stresses still remains an open question and much more
effort needs to be made. Luckily the turbomachinery researches can benefit from the
study on vortex shedding behind cylinders which is much less affected by geometrical
constraints. Therefore the effort needs to be made to construct a function in which the
unsteady stresses are correlated to Reynolds numbers and cylinder geometry in
circular cylinder flows. This function then can be extrapolated from cylinder flows to
turbomachine flows. At the early stage, all the investigations can be carried out on
laminar flows in order to avoid any uncertainties of turbulence models. For turbulent
flows, improved turbulence models such as Reynolds stress models or even the Large-
Eddy Simulation (LES) technique must be implemented to investigate unsteady
stresses more accurately. The relationship between the unsteady stresses and

boundary layer characteristics needs to be constructed.

112



BIBLIOGRAPHY

Ackerberg, R. C. and Philips, J. H., (1972), “ The Unsteady Laminar Boundary Layer
on a Semi-infinite Flat Plate due to Small Fluctuations in the Magnitude of the Free-
Stream Velocity”, Journal of Fluid Mechanics, Vol. 51, Part 1

Adamczyk, J. J., (1985), “ Model Equations for Simulating Flows in Multstage
Turbomachinery”, ASME Paper 85-GT-226

Adamczyk, J. J., Celestina, M. L., Beach, T. A, and Bamnett, M., (1989), “
Simulation of Three-Dimensional Viscous Flow Within a Multistage Turbine”, ASME
Paper 89-GT-152

Allmaras, S. R., (1989), “ A Coupled Euler/Navier-Stokes Algorithm for 2-D
Unsteady Transonic Shock/Boundary Layer Interaction”, GTL Report # 196,

Massachusetts Institute of Technology

Amone, A., (1996), “ IGV-Rotor Interaction Analysis in a Transonic Compressor
Using the Navier-Stokes Equations”, ASME paper 96-GT-141

Amone, A. and Pacciani R., (1997), “ Numerical Prediction of Trailing Edge Wake
Shedding”, ASME Paper 97-GT-89

Ayer, T. C. and Verdon, J. M, (1996), “ Validation of Nonlinear Unsteady
Aerodynamic Simulator for Vibrating Blade Rows”, ASME Paper 96-GT-340

Baldwin, B. S. and Lomax, H., (1978), “ Thin Layer Approximation and Algebraic
Model for Separated Turbulent Flows”, AIAA Paper 78-257

113



Bendiksen, O. O., (1991), “ A New Approach to Computational Aeroelasticity”
AIAA Paper 91-0939

Bogar, T. J.,, Sajben, M., and Kroutil, J. C., (1983), “ Characteristic Frequencies of
Transonic Diffuser Flow Oscillations”, AIAA Journal, Vol. 21, No.9

Bolcs, A. and Fransson, T. H., (1986), “ Aeroelasticity in Turbomachines
Comparison of Theoretical and Experimental Cascade Results”, Communication du

Laboratoire de Thermique Appliquee et de Turbomachines, No. 13, Lausanne, EPEL.

Buffum, D. H., (1995), “Blade Row Interaction Effects on Flutter and Forced

Response”, Journal of Propulsion and Power, Vol.11, No.2

Cantwell, B. and Coles, D., (1983), “An Experimental Study of Entrainment and
Transport in the Turbulent Near Wake of a Circular Cylinder”, Journal of Fluid
Mechanics, Vol. 136, pp.321-374

Caspar, J. R. and Verdon, J. M., (1981), “ Numerical Treatment of Unsteady
Subsonic Flow Past an Oscillating Cascade”, AIAA Journal, Vol.19

Cebeci, T., (1977), “ Calculation of Unsteady Two-Dimensional Laminar and
Turbulent Boundary Layers with Fluctuations in External Velocity”, Proceeding of
Royal Society (London), Vol. 355

Celestina, M. L., Mulac, R. A., and Adamczyk, J. J., (1986), “A Numerical

Simulation of the Inviscid Flow Through Counterroting Propeller”, ASME Paper 86-
GT-138

114



Chen, J. P, Celestina, M. L. and Adamczyk, J. J., (1994), “ A New Procedure for
Simulating Unsteady Flows Through Turbomachinery Blade Passages”, ASME Paper
94-GT-151

Chew, J. W. and Marshall, J. G., (1997), “ Part-Speed Flutter Analysis of a Wide-
Chord Fan Blade”, Proceeding of the 8th International Symposium on Unsteady

Aerodynamics and Aeroelasticity of Turbomachines, Stockholm

Cicatelli, G. and Sieverding, C. H. (1995), “ A Review of the Research on Unsteady
Turbine Blade Wake Characteristics’, AGARD PEP Symposium on Loss

Mechanisms and Unsteady Flows in Turbomachines, Derby, U.K.

Cicatelli, G. and Sieverding, C. H., (1996), “The Effect of Vortex Shedding on the
Unsteady Pressure Distribution Around the Trailing Edge of a Turbine Blade”,
ASME Paper 96-GT-39

Copenhaver, W. W., Puterbauch, S.L., and Hah, C., (1993), “ Three-Dimensional
Flow Analysis Inside Turbomachinery Stages with Steady and Unsteady Navier-

Stokes Method”, ISABE 93-7095

Currie, T. C. and Carscallen, W. E., (1996), “Simulation of Trailing Edge Vortex
Shedding in a Transonic Turbine Cascade”, ASME Paper 96-GT-483

Dawes, W. N., (1988), “ Development of a 3D Navier-Stokes Solver for Application
to all Types of Turbomachinery”, ASME Paper 88-GT-70

Dean, R.C.Jr., (1959), “On the Necessity of Unsteady Flow in Fluid Machines”,
Trans ASME Journal of Basic Engineering, Vol. 81, No.24

115



Denton, J. D., (1982), “ An Improved Time Marching Method for Turbomachinery
Flows”, ASME Paper 82-GT-239

Denton, J. D., (1990), “ The Calculation of Three Dimensional Viscous Flow
Through Multistage Turbomachines”, ASME Paper 90-GT-19

Denton, J. D., (1993), “Loss Mechanisms in Turbomachines”, 1993 ASME IGTI
Scholar Award Paper

Erdos, J.1., Alzner, E., and Mcnally, W., (1977), “Numerical Solution of Periodic
Transonic Flow Through a Fan Stage”, AIAA Journal, Vol.15, No.11

Fransson, T. H., (1984), “ Numerical Investigation of Unsteady Subsonic
Compressible Flows Through an Oscillating Cascade”, ASME Paper 86-GT-304

Fransson, T. H. and Pandolfi, M., (1986), “ Numerical Investigation of Unsteady
Subsonic Compressible Flows Through an Oscillating Cascade”, ASME Paper 86-
GT-304

Fransson, T. H. and Verdon, J. M., (1993), “ Panel Discussion on Standard
Configurations for Unsteady Flow Through Vibrating Axial-Flow Turbomachine
Cascades”, in Unsteady Aerodynamics, Aeroacoustics, and Aeroelasticity of
Turbomachines and Propellers, H. M. Atassi, ed., Springer-Verlag, New York, pp.
859-889

Gerolymos, G. A., (1988), “ Numerical Integration of the 3D Unsteady Euler
Equations for Flutter Analysis of Axial Flow Compressors”, ASME Paper 88-GT-255

Giles, M. B., (1988), “ Calculation of Unstcady Wake Rotor Interaction”, AIAA
Journal of Propulsion and Power, Vol.4, No.4

116



Giles, M. B., (1990a), “Stator/Rotor Interaction in a Transonic Turbine”, AIAA
Journal of Propulsion and Power, Vol.6, No.5

Giles, M. B., (1990b), “Nonreflecting Boundary Conditions for Euler Equation
Calculations”, AIAA Journal, Vol. 28, No.12

Giles, M. B. and R., Haimes, (1991a), “ Validation of a Numerical Method for
Unsteady Flow Calculations”, ASME paper 91-GT-271

Giles, M. B., (1991b), “Flutter and Forced Response Analysis Using the Three-

Dimensional Linearized Euler Equations”, a private communication, MIT

Giles, M. B., (1992), “ An Approach for Multi-Stage Calculations Incorporating
Unsteadiness”, ASME Paper 92-GT-282

Gostelow, J. P. and Solomon, W. J., (1996), *“ Some Unsteady Effects on Flows over
Blading”, IMechE conference paper, S461/010/96

Gundy-Burlet, K. L., and Domey, D. J., (1997), * Physics of Airfoil Clocking in a
Axial Compressors”, ASME Paper 97-GT-444

Hall, E. J., (1997), “ Aerodynamic Modeling of Multistage Compressor Flowfields -
Part 2: Modeling Deterministic Stresses”, ASME Paper 97-GT-345

Hall, K. C. and Crawley, E. F., (1989), “Calculation of Unsteady Flows in
Turbomachinery Using the Linearized Euler Equations”, AIAA Journal, Vol.27, No.6

Hall, K. C. and Lorence, C. B., (1992), “ Calculation of Three-Dimensional Unsteady
Flows in Turbomachinery Using the Linearized Harmonic Euler Equations”, ASME

Paper 92-GT-136

117




Hall, K. C., Clark, W. S. and Lorence, C. B., (1994), “A Linearized Euler Analysis of
Unsteady Transonic Flows in Turbomachinery”, Journal of Turbomachinery, Vol.

116

Han, L. S. and Cox W. R,, (1982), “ A Visual Study of Turbine Blade Pressure Side
Boundary Layer”, ASME Paper 82-GT-47

He, L., (1990a), “ Unsteady Flows Around Oscillating Turbomachinery Blades”,
Ph.D Thesis, Department of Engineering, University of Cambridge, September 1990

He, L., (1990b), “An Euler Solution for Unsteady Flows Around Oscillating Blades”,
ASME Journal of Turbomachinery, Vol.112, pp.714-722

He, L., (1992), “A Method of Simulating Unsteady Turbomachinery Flows With
Multiple Perturbations”, AIAA Journal, Vol. 30, No.12

He, L., (1993a), “ A New Two-Grid Acceleration Method for Unsteady Navier-
Stokes Calculations”, AIAA Journal of Propulsion and Power, Vol.9, No. 2

He. L. and Denton, J. D., (1993b), * Inviscid-Viscous Coupled Solution for Unsteady
Flows through Vibrating Blades, Part 1. Methodology”, Journal of Turbomachinery,
Vol. 115, No.4

He, L. and Denton, J. D., (1994a), “ Three-Dimensional Time-Marching Inviscid and
Viscous Solutions for Unsteady Flows Around Vibrating Blades”, ASME Journal of
Turbomachinery, Vol. 116, pp.469-476

He, L., (1994b), “Integration of 2-D Fluid/Structure Coupled System for Calculations
of Turbomachinery Aerodynamic/Aeroelastic Instabilities”, Journal of Computational

Fluid Dynamics, Vol.3, pp.217-231

118




He, L., (1996a), “ I. Modelling Issues for Computation of Unsteady Turbomachinery
Flows” in “Unsteady Flows in Turbomachinery” , VKI Lecture Series 1996-05

He, L., (1996b), unpublished work, University of Durham

He, L., (1997a), “ Computational Study of Rotating Stall Inception in Axial-Flow

Compressors”, Journal of Power and Propulsion, Vol.13, No.1

He, L., (1997b), “Computation of Unsteady Flow Through Steam Turbine Blade
Rows at Partial Admission”, IMechE Journal of Power & Energy,Vol.211, Part A

He, L., (1997¢c), a private communication, University of Durham

Hesieh, T., Wardlaw, A. B. Jr., Collins, P., and Coakley, T. J., (1984), “ Numerical
Investigation of Unsteady Inlet Flow Fields”, AIAA Paper 84-0031

Holmes, D. G. and Chung, H. A, (1993), “2D Linearized Harmonic Euler Flow
Analysis for Flutter and Forced Response”, in Unsteady Aerodynamics,
Aeroacoustics, and Aeroelasticity of Turbomachines and Propellers, ed. Atassi,

H.M., Springer-Verlag, New York

Holmes, D. G. and Lorence, C. B., (1997), “Three Dimensional Linearized Navier-
Stokes Calculations for Flutter and Forced Response”, Proceeding of the 8th
International Symposium on Unsteady Aerodynamics and Aeroelasticity of

Turbomachines, Stockholm, Sweden

Huff, D. L., (1991), a private communication, NASA Lewis Research Center

119



Jameson, A., Schmidt, W. and Turkel, E., (1981), “Numerical Solutions of the Euler
Equation by Finite Volume Method Using Runge-Kutta Time-Stepping Scheme”,
AIAA Paper 81-1259

Jameson, A., (1991), “ Time Dependent Calculations Using Multigrid with
Application to Unsteady Flows Past Airfoils and Wings”, AIAA Paper 91-1597

Joubert, H., (1984), “ Supersonic Flutter in Axial Flow Compressor”, Proceeding of
the 3rd Symposium on Unsteady Aerodynamics and Aeroelasticity of Turbomachines

and Propellers, Cambridge, U K.

Jung, A. R., Mayer, J. F. and Stetter, H., (1997), “ Prediction of 3D-Unsteady Flow
in an Air Turbine and a Transonic Compressor Including Blade Gap Flow and Blade
Row Interaction”, ASME Paper 97-GT-94

Karlsson, S. K. F., (1959), “ An Unsteady Turbulent Boundary Layer”’, Journal of
Fluid Mechanics, Vol.5, pp. 622- 636

Koya, M. and Kotake, S., (1985), * Numerical Analysis of Fully Three-Dimensional
Periodic Flows Through a Turbine Stage”, Journal of Engineering for Gas Turbines

and Power, Vol. 107

Krouthen, B. and Giles, M.B., (1988), “ Numerical Investigation of Hot Streaks in
Turbines”, AIAA Paper 88-3015

Lane, F., (1956), “ System Mode Shapes in Flutter of Compressor Blade Rows”,

Journal of Aeronautical Sciences, Vol. 23, No. 1

120



Lightwill, M. J., (1954), *“ The Response of Laminar Skin Friction and Heat Transfer
to Fluctuations in the Stream Velocity”, Proceedings of the Royal Society (London),
Vol. A224

Linquist, D. and Giles, M. B., (1991), “ On the Validity of Linearized Unsteady Euler
Equations with Shock Capturing”, AIAA Paper 91-1958

Linquist, D., (1991), “ Computation of Unsteady Transonic Flowfields Using Shock
Capturing and the Linear Perturbation Euler Equations”, Ph.D thesis, Gas Turbine

Laboratory, Massachusetts Institute of Technology

MacCormack, R. W., (1969), “ The Effect of Viscosity in Hypervelocity Impact
Cratering”, ATAA Paper 69-354

Manna M. and Mulas, M., (1994), “ Navier-Stokes Analysis of Trailing Edge Induced
Unsteady Flow in a Turbine Blade”, VKI Lecture Series 1994-06

Marshall, J.G. and Imregun, M., (1995), “ A 3D Time-Domain Flutter Prediction
Method for Turbomachinery Blades”, Proceeding of International Symposium of
Aeroelasticity and Structural Dynamics, Manchester, Royal Aeronautical Society,
42.1-42.14

Marshall, J. G. and Giles, M. B., (1997), “Some Applications of a Time-Linearized
Euler Method to Flutter & Forced Response in Turbomachinery”, Proceeding of the
8th International Symposium on Unsteady Aerodynamics and Aeroelasticity of

Turbomachines, Stockholm, Sweden

Massey, B. S., (1983), “ Mechanics of Fluids”, 6th edition, Van Nostrand Reinhold
(UK)

121



McCormick, D. C., Paterson, R. W. and Weingold, H. D., (1988), “Experimental
Investigation of Loading Effects on Simulated Compressor Airfoil Trailing-Edge
Flowfields”, AIAA Paper 88-0365

Menter, F. R., (1993), “Zonal Two-Equation K — Turbulence Models for
Aerodynamic Flows”, AIAA Paper 93-2906

Morreti, G., and Abbett, M., (1966), “ A Time-Dependent Computational Method
for Blunt Body Flows”, AIAA Journal, Vol. 4, No. 12, pp. 2136-2141

Ni, R. H., (1974), “Nonstationary Aerodynamics of Arbitrary Cascades in
Compressible Flow”, Ph.D thesis, Stevens Institute of Technology, June 1974

Ni, R. H., (1989), “ Prediction of 3D Multi Stage Flow Field Using a Multiple Grid
Euler Solver”, AIAA Paper 89-0203

Pandofi, M., (1980), “ Numerical Experiments on Unsteady Flows through Vibrating
Cascades”, Proceeding of the 2nd Symposium on Unsteady Aerodynamics and

Aecroelasticity of Turbomachines and Propellers, Lausanne, Switzerland

Rai, M. M., (1985), “ Navier-Stokes Simulations of Rotor-Stator Interaction Using
Patched and Overlaid Grids”, AIAA Paper 85-1519

Rai, M. M., (1987), “Unsteady Three-Dimensional Navier-Stokes Simulations of
Turbine Rotor-Stator Interaction”, ATAA Paper 87-2058

Reynolds, W. C. and Hussain, A. K. M. F., (1972), “ The Mechanics of an Organised

Wave in Turbulent Shear Flow”, Part 3. Theoretical Models and Comparisons with

Experiments, Journal of Fluid Mechanics, Vol.54, pp. 263-288

122



Rhie, C. M., Gleixner, A. J., Spear, D. A., Fischberg, C. J., and Zacharias, R. M.,
(1995), “ Development and Application of a Multistage Navier-Stokes Solver - Part I:
Multistage Modelling Using Bodyforces and Deterministic Stresses”, ASME Paper
95-GT-342

Roberts, Q. D. H and Denton, J. D., (1996), “Loss Production in the Wake of a
Simulated Subsonic Turbine Blade”, ASME Paper 96-GT-421

Roberts, Q. D. H, (1997), “The Trailing Edge Loss of Subsonic Turbine Blades”,
Ph.D dissertation, University of Cambridge, October 1997

Roe, P. L., (1981), “ Approximate Riemann Solver, Parameter Vectors, and

Difference Schemes”, Journal of Computational Physics, Vol.43, No.2

Sajben, M., Bogar, T. J. and Kroutil, J. C., (1984), “ Forced Oscillation Experiments
in Supercritical Diffuser Flows”, AIAA Journal, Vol.22, No.4

Salmon, J. T., Bogar, T. J. and Sajben, M., (1983), “ Laser Doppler Velocimeter
Measurements in Unsteady, Separated, Transonic Diffuser Flows”, AIAA Journal,

Vol.21 ,Nol2

Silkowski, P. D. and Hall, K. C., (1997), “ A Coupled Mode Analysis of Unsteady
Multistage Flows in Turbomachinery”, ASME Paper 97-GT-186

Verdon, J. M. and Caspar, J. R., (1984), “ A Linearized Unsteady Aerodynamics
Analysis for Transonic Cascades”, Journal of Fluids Mechanics, Vol. 149

Verdon, J. M., (1993), * Unsteady Aerodynamic Methods for Turbomachinery
Aeroelastic and Aeroacoustic Applications”, AIAA Journal, Vol. 31, No.2, pp. 235-
250

123



Whitehead, D. S., (1970), “ Vibration and Sound Generation in a Cascade of Flat
Plates in Subsonic Flow”, A.R.C. R&M, No. 3865

Whitehead, D. S., (1982), “ The Calculation of Steady and Unsteady Transonic Flow
in Cascades”, University of Cambridge, Department of Engineering Report CUED/A-
Turbo/TR 118

Whitehead, D. S., (1987), “ Classical Two-Dimensional Methods”, AGRAD Manual
on Aeroelasticity in Axial-Flow Turbomachines, Unsteady Turbomachinery

Aerodynamics, Vol.1, AGRAD-AG-298

124



Inlet Distortion

V Flutter or
Forced Vibration

- Potential Interactlon

Wake/Bladerow
Interaction

5) Trailing Edge

a Vortex Shedding
Y,

Fig. 1-1 Sources of Unsteadiness in Turbomachinery



Constant Wheel\
Speed Line

Pressure Ratio

Flow Rate

I. Subsonic/Transonic Stall Flutter

II. Choke Flutter

III. Supersonic Stall Flutter

IV. High Backpressure Supersonic Flutter

V. Low Backpressure Supersonic Flutter

Fig. 1-2 Blade Flutter Boundaries on Compressor Performance Map




Exit B.C

Solid Wall B.C.

Inlet B.C

Periodic B.C.
Steady: Direct Repeating
Unsteady : Phase-Shifted

C

Fig. 1-3 A Single Blade-Blade Passage Computational Domain

_ Reference Bladerow

I Yp2 Ypl

Relative Moving —

Upstream Bladerow

Fig. 1-4 A Single Blade-Blade Passage Computational Domain for a Stage




Steady

Time-Averaged

—— e - - — = — =,

P(1+Am)

(Am is the amplitude)

Fig. 1-5 Shock Oscillation due to Back Pressure Variation



|

Steady Flow
Calculation
Flutter Analysis Forced Response Analysis
Specify Blade Vibrating Specify Incoming Wake
Mode or Pressure Wave
Input IBPA, k Input IBPA, k

Solving Time-Linearized
Perturbation Equations

Fig. 2-1 Solution Procedure of a Time-Linearized Ananlysis



- Present Cal.

@ Linsub
-20—

Real Part

0 20 40 60 80 100
X/C

30T

20

10—

Imaginary Part

-10 I T I l |
0 20 40 60 80 100
X/C

Fig. 3-1 Imaginary and Real Parts of Unsteady Pressure Coefficient Jump for
an Oscillating Flat Plate Cascade ( k = 0.57)



Real Part

Present Cal.
0 Linsub

0 20 40 60 80 100
X/C

60 —

40

20

Imaginary Part

0 20 40 60 80 100
X/C

Fig. 3-2 Real and Imaginary Parts of Unsteady Pressure Coefficient Jump for
an Oscillating Flat Plate Cascade (k =1.714)






o
._8_. 4 O Linsub
3 Present Cal.
D 1
o
-8
11}
-12 T T | R
0.0 0.2 0.4 0.6 0.8 1.0
X/C
8_

M

Imag[DCP]

Fig. 3-5 Unsteady Pressure Coefficient Jump for a Flat Plate Cascade
( Incoming Wake Angle: 0 degree )







a
&)
E_?_, ® Linsub
8 — Linear Euler
T 4
0]
-8 I I | I 1
_ 0.0 0.2 04 0.6 0.8 1.0
X/C
8_
D
o
&)
a
i)
4+
E
-4 I | 1 I !

Fig. 3-8 Unsteady Pressure Coefficient Jump for a Flat Plate Cascade
( Incoming Wake Angle: -30 degree )



1.6 ' ' ' |

Calculated (Suction Side)

= = = Calculated (Pressure Side)
A Experiement (Suction Side)
0 Experiment (Pressure Side)

—_
N
I .

o
|

Isentropic Mach Number
o
il

E] 4
“-@-E}-m--m--er‘ﬂrm

0.0 | | |
00 025 05 075 1.0

X/C

Fig. 3-9 Isentropic Mach Number Distribution for a Turbine Cascade



40 | £ 1

= == Predicted (Pressure Surface)
== Predicted (Suction Surface)

30 A Experiment (Suction Surface) -
@  Experiment (Pressure Surface)

Amplitude[Cp]

360 i 1 1 i
8" 180 — o ’,,-a'
T o -[L_,o’
Q2 -d‘m-"---‘-
g9 -
)
%)
g "——J
T 180T a— . - B
) a 4
-360 | I T T
0.0 0.2 04 Q0.6 0.8 1.0
X/C

Fig. 3-10 Amplitude and Phase of Unsteady Pressure Coefficient Distribution
for a Turbine Blade ( IBPA = -90 deg.)



1 |

40 : :

- = Predicted (Pressure Surface)

e Predicted (Suction Surface)
4 Experiment (Suction Surface) -
a  Experiment {(Pressure Surface)

w
)
|

Amplitude [Cp]
)
(=)
|

,~
F \‘
10— \ A A I'd I
~‘—----—A-- --" A
D\Q/—-’\
. u} o
0 T T T T
0.0 0.2 0.4 0.6 0.8 1.0
X/C
360 1 I 1 I
8‘, 180 Jrep——
= u] -
o S TS . TPy
[ -
<
1)}
»
2 -
& 180 = — N-
-360 l T T T
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 3-11 Amplitude and Phase of Unsteady Pressure Coefficient Distribution
for a Turbine Blade ( IBPA = 180 deg.)




Phase Angle [deg.]

Fig. 3-12 Amplitude and Phase of Unsteady Pressure Coefficient Distribution

] 1 ! L

40
= = Predicted {Pressure Surface)
=== Pradicted (Suction Surface)
—_ 30 4 Experiment (Suction Surface)
8— o Experiment (Pressure Surface)
ry
S 20 -
=
£
< 10 -~
\ 7 N\
\s---_--:\“.s_’:/f
i . —_—
0 — - T
0.0 0.2 0.4 0.6 0.8 1.0
X/C
360 1 1 { 1
180 -
0
-180—
-360 T I I T
0.0 0.2 0.4 0.6 0.8 1.0
X/C

for a Turbine Blade ( IBPA =90 deg.)



ay’

Fig. 3-13 Steady Mach Number Contour Map for a Compressor Cascade
1 6 I ] | |

—_
n
I
T

&
~
7
T

Isentropic Mach Number
o
(00}
I
|

o
o

| l l [
00 02 04 06 08 1.0

X/C
Fig. 3-14 Isentropic Mach Number Distribution on a Compressor Blade




40 l : |
— Present Cal.(Suction Surface)
= = - Present Cal. (Pressure Surface)

o Huff (Suction Surface)
= 20— & Huff (Pressure Surface)
o,
fe
[
a Pressure Surface
3 o- SO
o o o
° Suction Surface
- =20 | l I I
0.0 0.2 0.4 0.6 0.8 1.0
Distance Along Chord
30 L 1 ! 1
e
1S3
=
[
.
P
«©
£
()]
g Pressure Surface
= -10 -
-20 | | | l

0.0 0.2 0.4 0.6 0.8 1.0
Distance Along Chord

Fig. 3-15 Real and Imaginary Parts of Unsteady Pressure Coefficient
Distribution on a Compressor Blade




1.2

1.0 MMEE e R
0.8 o
0 0  Blasius
Ulle 0.6 f‘ Present Cal.
0.4

0.2
oot
0 1 2 3 4 5 6 7 8
Similarity Length

Fig. 3-16 Steady Velocity Profile in a Laminar Boundary Layer on Flat Plate



(a) wx/U, = 0.5

10

Imagjnary Part
Real Part

€]

Boundary Layer Coordinate
——r
J

0 |
05 00 05 10 15
U/lJe

o  Ackerberg & Philips
— Present Cal.

(b)ox/U, =1.5 (c) wx/U, =25
10
10
T
E g < 5
gl 2 3 < a
g s 2 T
s | B 82 :
E £ o g
5 g E
g 6 T
© f g 8
8 ©
5 2
>
4 |
24—
3 2
o V] 3
\ S \
2 o / 2 0\
o / ° /
0 o g/
0

05 00 05 10 15

UlJe 05 00 05 10 15

U/Ue

Fig. 3-17 Unsteady Velocity Profiles in a Laminar Boundary Layer on Flat
Plate



6
M Cebeci
----- Lighthill Low
—-—- Lighthill High
] - Prasent Cal.
o 4
©
3
=
?
2
p--B--2
0 T | | I

0.0 0.5 1.0 1.5 2.0 2.5
Reduced Frequency

50 y
- = E._.J

40— 2
g M Cebeci
% 30 = Present Cal.
= —-— Lighthill High
§ ----- Lighthill Low
8 20
o

10

0 I I |

0.0 0.5 1.0 1.5 2.0 25
Reduced Frequency

Fig. 3-18 Amplitude and Phase of Unsteady Shear Stress on Flat Plate




1.0

0.75 oS
[0]
[ © Experiment
0.5 ( = Present Cal.

0.25

wu0

0.0
0.0 0.2 04 0.6 0.8 1.0

Y/Boundary Thickness

Fig. 3-19 Steady Velocity Profile in a Turbulent Boundary Layer on Flat Plate

1.2
J e b
8 in-phase
0.8
© Test Data, Ampiitude 28.2%
g 0.4 & TestData, Amplttude 20.2%
< < X Test Data, Ampittude 14.7%
& & [ % %
0.0 g = Present Method
qut-of-phase
04
0.0 0.2 0.4 0.6 0.8 1.0
Y/Boundary Thickness

Fig. 3-20 Unsteady Velocity Profile in a Turbulent Boundary Layer on Flat
Plate ( f = 0.33 Hz)



1.2 %
2| s |z
A in-phgse - i
0.8
L)
2 04
3
out-of-phase
0.0 P *
a
0.4
0.0 0.2 0.4 0.6 0.8 1.0
Y/Boundary Thickness

® Test Data,Amplitude 29.2%
A Test Data Ampiitude 202%
X Test Data Ampitude 14.7%

e Prosant Method

Fig. 3-21 Unsteady Velocity Profile in a Turbulent Boundary Layer on Flat

Plate (f=1.0 Hz)

1.2 =
g é NRY b d l
2 ¢ é o
0.8
[}
2 04
3
0.0 g =8 o g
0.4~
0.0 0.2 04 0.6 0.8 1.0
Y/Boundary Thickness

@ TestDats, Ampiitude 28.2%
A Test Data, Ampiitude 20.2%
X TestData, Ampiltude 14.7%

== Present Linear Method

Fig. 3-22 Unsteady Velocity Profile in a Turbulent Boundary Layer on Flat

Plate (f=4.0 Hz)




0.8

I I I
1 [0 Experiment (Suction Surface)
\ X Experiment (Pressure Surface)
'| Prediction (Suction Surface)
1 = = Predict (Pressure Surface)
0.4
’ 1
N
\
X x4
X‘x X [
AR XXX 1
Q. bl -~
0.0 ———ﬁg“’m‘“ 2 s
O T o om0
|
-0.4
O
-0.8

00 02 04 06 0.8
X/C

1.0

Fig. 3-23 Steady Pressure coefficient Distribution on a Compressor Blade



20 T

\ 0 Test, Suction Surface

\ X Test, Pressure Surface

15 —— Pradiction, Suction Surface
= = Pradcition, Pressure Surface

10

Amplitude[Cp]

TR

0
0.0 0.2 0.4 0.6 0.8 1.0
X/C
180 —=mr=n —E
/ p
]
|
= 90 ;
Q |
_‘§' |
[®)]
&)
n
©
o
e
-180 = S B
0.0 0.2 0.4 0.6 0.8 1.0
X/C

Fig. 3-24 Amplitude and Phase of Unsteady Pressure Coefficient Distribution
on a Compressor Blade (k =0.14)



20
| | |
[0 Test, Suction Surface
X Test, Pressure Surface
__ 15 0 = Present, Suction
Q \ = == Present, Pressure Surface
O,
[+}]
S 10
%.
£
<
5
. 0
U]
R
0 X |
0.0 0.2 04 0.6 0.8 1.0
' X/C
180
- o
o el g
= 90 PP 3 <
Q P X X
d P y x
B P e X
o 0 > Ple
< Lr X
[¢]
0
4]
X 90
} O o u
Y o | i
— B—
-180

0.0 0.2 0.4 0.6 0.8 1.0
X/C

Fig. 3-25 Amplitude and Phase of Unsteady Pressure Coefficient Distribution
on a Compressor Blade (k =1.02)



l
l l

Time-Averaging 1st Harmonic
n+1/4

Time-Averaging 1st Harmonic
n+1/3

Time-Averaging 1st Harmonic
n+1/2

Time-Averaging 1st Harmonic

n+1

Fig. 4-1 A Strong Coupling Procedure for Nonlinear Harmonic Method in the
4-Stage Runge Kutta Scheme



0.8
5 e |
% . Steady
= ‘ o  Nonlinear Harmonic
g ------- Analytical
)
»
o
(a1

0.2

0.3 0.4 0.5 0.6 0.7

Channel Position, X

Fig. 5-1 Steady and Time-averaged Static Pressure Distribution in Diverging
Channel (Back Pressure Variation Amplitude : 1%)



© Nonlinear Time-Marching
6 — Time-Linearized Method
fc ----- Nonlinear Harmonic Method
a
1S
= 93
(O]
m f
-3
0.3 0.4 0.5 0.6 0.7
Channel Position, X
6
4 v
a
O,
&
g 2

-

0.3 0.4 0.5 0.6 0.7
Channel Position, X

Fig. 5-2 Real and Imaginary Parts of Unsteady Pressure Coefficients in
Diverging Channel (Back Pressure Variation Amplitude : 1%)



0.8 : :
0.6 —— Steady
------- Nonlinear Time-marching
p/ PO ©  Nonlinear Harmonic
0.4 — —
0.2 | I I
0.3 0.4 0.5 0.6 0.7

Channel Position, X

Fig. 5-3 Steady and Time-averaged Static Pressure Distribution in Diverging
Channel (Back Pressure Variation Amplitude : 7%)




4 I )

— First Harmonics
----- Second Harmonics

Real[Cp]

0.0 0.2 0.4 0.6 0.8 1.0
Channel Position, X

1
1
1 e
0 ] ”- S~
~r < >

Ml

1

1

]

[}

1

1

1

[}

[}

U
N .

imag[Cp]

0.0 0.2 0.4 0.6 0.8 1.0
Channel Position, X

Fig. 5-4 First and Second Harmonics of Unsteady Pressure Coefficients in a
Diverging Channel ( Back Pressure Variation Amplitude: 7%)



10

© Nonlinear Time-Marching
—— Time-Linearized Method

----- Nonlinear Harmonic Method

()]

Real[Cp]

0.4 0.45 0.5 0.55 0.6
Channel Position, X

6
4 /\
E \
S g
o it
2 3
E y
)
< M
0 —tooooe
0.4 0.45 0.5 0.55 0.6

Channel Position, X

Fig. 5-5 Real and Imaginary Parts of Unsteady Pressure Coefficients in
Diverging Channel (Back Pressure Variation Amplitude : 7%)






15 @ Nonliear Time-Marching [ |
a — Linear
o 1 || Nonlinear Harmonic
gk '
210
[/}
c
>
G
Q
g 5
£
E u
0
0.0 0.2 0.4 0.6 0.8 1.0
Distance Along Chord
200
9
100 i
&
o
L
g
5 0 R
k] q
©
S
g -100
o
-200

0.0 0.2 0.4 0.6 0.8 1.0
Distance Along Chord

Fig. 5-8 Amplitude and Phase of Unsteady Pressure Coefficients on Biconvex
Blade ( Pressure Ratio: 0.7)







60 T ]
Linear

® Nonlinear Time-Marching
----- Nonlinear Harmonic

40

Amplitude of Unsteady Cp

i
0.0 0.2 0.4 0.6 0.8 1.0

Distance Along Chord

360
3

180
=)
«
e
2
) 0 q
5
1]
&
S -180
o

-360

0.0 0.2 0.4 0.6 0.8 1.0
Distance Along Chord

Fig. 5-11 Amplitude and Phase of Unsteady Pressure Coefficients on Biconvex
Blade ( Pressure Ratio: 0.725, Torsion Amplitude: 0.75 deg. )



1.2

1.0

o |
0!
> |
0.8
O Nonlinear Time-marching
0.6—F— - Nonlinear Harmonic )
I
0.0 0.2 0.4 0.6 0.8 1.0
Distance Along Chord

Fig. 5-12 Steady and Time-averaged Mach Number Distribution on Biconvex
Blade ( Pressure Ratio: 0.725, Torsion Amplitude: 2 deg. )



2]
(@]

-—— Linear
O®  Nonlinear Time-Marching
----- Nonlinear Harmonic

A
(@]

N
o
2

Amplitude of Unsteady Cp

0.0 0.2 0.4 0.6 0.8 1.0
Distance Along Chord

360
&

180
)
5]
2
n
c 0 b
":5 (R
Q
©
8 180
a

-360

0.0 0.2 0.4 0.6 0.8 1.0
Distance Along Chord

Fig. 5-13 Amplitude and Phase of Unsteady Pressure Coefficients on Biconvex
Blade ( Pressure Ratio: (.725, Torsion Amplitude: 2 deg. )









1.0

- O

0.75—+ /,o”{

ol
/6 - == |nviscid Calculation
- \/iscous Calculation

O Experiment

P/PO
o

o

|
4

0.25

0.0

X/h*

Fig. 5-18 Steady Static Pressure Distribution on Top Wall of Transonic
Diffuser




0.2
. -==- Cakulation (Bottom Wall)
S —— Calculation (Top Wall)
8 0.15 4 Experiment (Bottom Wall)
_E © Experiment (Top Wall)
E
= 0.1
[-]
£
]
S 0.05-
s£o
K]
[a}
0.0
0
0.1
"£ ---- Calkulation (Bottom Wall)
g 075— — Calcuiation (Top Wall)
@ 4 Experiment (Bottom Wall) o
% © BExperiment (Top Wall) -
= °
= 0.05+
£
=]
€
]
E 0.0254
Q
=
0.0 T 1 T T I |

Fig. 5-19 Steady Boundary Layer Displacement Thickness and Momentum
Thickness Distributions on Top Wall of Transonic Diffuser



0.2

Linear Method
- ==~ Nonlinear Harmonic Method
O Experiment
0.15 = Nonlinear Time-Marching
)}
©
2
= 041
E
<
1
0.05 i
N
: o
0.0 O o e )
0 2 4 6 8
x/h*
400
300 T
i
i
2 E
& 200 N
a |
]
100 i x\
i ©
i k
5 \
O . 1‘)
0 2 4 6 8

Fig. 5-20 Amplitude and Phase of Unsteady Pressure Coefficients on Top Wall
of Transonic Diffuser ( f = 300 Hz, Amplitude: 0.0085 )




1.0
0.75 ==
o |
a
Q Steady
5 -~-- Nonlinear Time-Marching
0.5 1 g ® Nonlinear Harmonic
0.25
0 2 4 6
x/h*

Fig. 5-21 Steady and Time-averaged Pressure Distribution on Top Wall of
Transonic Diffuser ( f = 150 Hz, Amplitude: 0.011 )



0.4

0.3

Amplitude
o
N

h et o3

|

0 2 4 6 8
x/h*
300 Linear Method
----- Nonlinear Harmonic
O  Experiment
. *  Nonlinear Time-Marching
5 200 H
1)
T H
@ ot
7] HR
8 !
a 100 TN
0 : M"-
0 2 4 6 8
x/h*

Fig. 5-22 Amplitude and Phase of Unsteady Pressure Coefficients on Top Wall
of Transonic Diffuser ( f = 150 Hz, Amplitude: 0.011 )






o
N

0.3
Q
k=)
=
£ 0.2
£ /h
/ \L
0.1 I,L ]
HASS
0.0 /! M mm—— -
x/h*
300
\ Linear, Mesh 122x45
| \ ===~ Nonlinear Harmonic, Mesh 122x45
i 1\‘ ~— = Nonlinear Harmonic, Mesh 245x45
<)
S 200 Ly
S I
emg’ M []
3 A
: I
a. 100 !{
]
.t
I
0 L

x/h*

Fig. 5-25 Amplitude and Phase of Unsteady Pressure Coefficients on Top Wall
of Transonic Diffuser with Different Meshes ( f = 150 Hz, Amplitude: 0.011 )



0.8

v
w

0.4

[ f/

SS

00 02 04 06 08 1.0
X/C

Fig. 5-26 Steady Pressure Coefficient Distribution on a Compressor Blade

Fig. 5-27 Steady Mach Number Contours in a Compressor Cascade
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Fig. 6-6 Contours of Instantaneous Mach Number around Cylinder

Fig. 6-7 Contours of Instantaneous Entropy around Cylinder
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Fig. 6-13 Contours of Unsteady Stress (pv)’v” around Cylinder









Fig. 6-17 Contours of Instantaneous Static Pressure around Turbine Cascade

in a Laminar Flow Case

Fig. 6-18 Contours of Instantaneous Entropy around Turbine Blade in a

Laminar Flow Case
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Fig. 6-22 Contours of Instantaneous Static Pressure around Blade in a
Turbulent Flow Case



Fig. 6-23 Contours of Instantaneous Mach Number around Blade in a
Turbulent Flow Case

Fig. 6-24 Contours of Instantaneous Entropy around Blade in a Turbulent
Flow Case
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Fig. 6-31 Contours of Unsteady Stress (pv)’v’ of Turbulent Vortex Shedding
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Fig. 6-33 Contours of Mach Number by Solving Unsteady NS Equation
( Dlimit =10% )
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Fig. 6-35 Contours of Static Pressure by Solving Time-averaged Equations
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Fig. 6-36 Contours of Entropy by Solving Time-averaged Equation

Fig. 6-37 Contours of Entropy by Solving Unsteady NS Equations with Big
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Fig. 6-38 Contours of Unsteady Stress (pu)'u’ of Laminar Vortex Shedding
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Fig. 6-40 Contours of Unsteady Stress (pv)’v’ of Laminar Vortex Shedding



Unsteady Calculation

Log10IResiduall

Solving Time-averaged Eqs

-4

I

0 30000 60000
Time Steps

Fig. 6-41 Convergence History of Laminar Flow Case

0.6 : ‘
O Unsteady NS Egs
— — Time-averaged Eqgs
(ob]
g ) f;‘:‘}.."-‘ R R AL T Y G R
= 0.4 -
o
[&]
]
=
L
g o2 -
<
TR -
<®
0.0 1 T | |
0.0 0.2 0.4 0.6 0.8 1.0

Fig. 6-42 Isentropic Mach Number Distribution on Blade Surface in Laminar
Flow Case



Fig. 6-43 Contours of Static Pressure by Solving Time-averaged NS Equations
for Laminar Flow Case

Fig. 6-44 Contours of Mach Number by Solving Time-averaged NS Equations
for Laminar Flow Case



Fig. 6-45 Contours of Static Pressure by Solving Time-averaged NS Equations
for Turbulent Flow Case

Fig. 6-46 Contours of Mach Number by Solving Time-averaged NS Equations
for Turbulent Flow Case




