
Durham E-Theses

Computation of unsteady �ow in turbomachinery

Ning, Wei

How to cite:

Ning, Wei (1998) Computation of unsteady �ow in turbomachinery, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4819/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4819/
 http://etheses.dur.ac.uk/4819/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


University 
of Durham 
School of Engineering 

Computation of Unsteady Flow in Turbomachinery 

Wei Ning 

School of Engineering, University of Durham 

The copyright of this thesis rests 
with the author. No quotation 
from it should be published 
without the written consent of the 
author and information derived 
from it should be acknowledged. 

3 0 SEP TO 

A dissertation submitted for the degree of 
Doctor of Philosophy 

June 1998 



Preface 

This research programme is finally wrapped up and I have enjoyed most of time 

of about 3 years at Durham and two summers at European Gas Turbines, Lincoln. 

Although this thesis represents original work by myself, I have had many help and 

guidance from other people during the course of this study. 

I would Uke first to thank my supervisor and friend, Li He. I am so fortunate to 

have him as my supervisor. My thanks are not only for his very constructive and 

sometimes very critical supervision on this work, but also the way he guided me to look 

at complex engineering problems. Surely I will benefit from his influence for my future 

career. I also appreciate all his time reading and commenting on this thesis. 

I would like to mention some of my colleagues and friends, past and present: Dr 

Jerry Ismael, David Bell and Kenji Sato, I benefited from lively discussions with them 

on CFD and fluid mechanics; David Sims-WiUiams and Mark Tindale, who spent 

several nights digging out English errors in my thesis. 

During this journey, I have always had love and encouragement from my fairdly, 

especially from ray wife, ChunUan Han. I am deeply indebted to them. 

This research was sponsored by European Gas Turbines. I wish to acknowledge 

Roger Wells and Yansheng L i for many helpful discussions. Additional funding for this 

project was from ORS Award to me. 



Abstract 

Unsteady flow analysis has been gradually introduced in mrbomachinery design 

systems to improve machine performance and structural integrity. A project on 

computation of unsteady flows in turbomachinery has been carried out. 

A quasi 3-D time-linearized Euler/Navier-Stokes method has been developed 

for unsteady flows induced by the blade oscillation and unsteady incoming wakes. In 

this method, the unsteady flow is decomposed into a steady flow plus a harmonically 

varying unsteady perturbation. The coefficients of the linear perturbation equation are 

formed from steady flow solutions. A pseudo-time is introduced to make both the 

steady flow equation and the linear unsteady perturbation equation time-independent. 

The 4-stage Runge-Kutta time-marching scheme is implemented for the temporal 

integration and a cell-vertex scheme is used for the spatial discretization. A 1-D/2-D 

nonreflecting boundary condition is applied to prevent spurious reflections of outgoing 

waves when solving the perturbation equations. The viscosity in the unsteady Navier-

Stokes perturbation equation is frozen to its steady value. The present time-linearized 

Euler/Navier-Stokes method has been extensively validated against other well-

developed linear methods, nonlinear time-marching methods and experimental data. 

Based upon the time-linearized method, a novel quasi 3-D nonhnear harmonic 

Euler/Navier-Stokes method has been developed. In this method, the unsteady flow is 

divided into a time-averaged flow plus an unsteady perturbation. Time-averaging 

produces extra nonlinear "unsteady stress" terms in the time-averaged equations and 

these extra terms are evaluated from unsteady perturbations. Unsteady perturbations 

are obtained by solving a first order harmonic perturbation equation, while the 

coefficients of the perturbation equation are formed from time-averaged solutions. A 

strong coupling procedure is applied to solve the time-averaged equation and the 

unsteady perturbation equation simultaneously in a pseudo-time domain. An 

approximate approach is used to linearize the pressure sensors in artificial smoothing 



terms in order to handle the strong nonhnearity induced by the large amphtude of shock 

wave oscillation. The effectiveness of the present nonUnear harmonic method to 

include the nonhnear effects has been consistently demonstrated by calculations of 

unsteady transonic flows. The limitation of the nonhnear harmonic method has also 

been observed in calculations. 

Some numerical efforts have been made to investigate trailing edge vortex 

shedding. The main issue which has been clarified is that a time-independent vortex 

shedding solution can be achieved by solving time-averaged equations with "unsteady 

stress" terms. The effectiveness of the unsteady stresses to suppress vortex shedding 

has been clearly demonstrated, hnportandy, the time-independent solution is very close 

to the time-averaged solution which is generated from unsteady calculations of vortex 

shedding. The unsteady stresses in this investigation are worked out from vortex 

shedding unsteady solutions produced by a multi-block Navier-Stokes solver. The 

characteristics of the unsteady stresses have been analyzed. In this investigation, vortex 

shedding from a circular cylinder and a V K I turbine blade have been considered. 
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Nomenclature 

Roman Symbols 

A Computational volume area; Amplitude; Channel height 

Ainigt Channel inlet height 

C Blade chord 

Cp Gas constant 

c Local sound speed 

Cp Pressure coefficient 

Cf Skin friction coefficient 

C j Amplitude of entropy wave 

C2 AmpUtude of vorticity wave 

C3 Amplitude of downstream running pressure wave 

C4 Amplitude of upstream running pressure wave 

D Blade traiUng edge thickness; Circular cylinder radius; 4th 

order artificial smoothing 

d 2nd order artificial smoothing 

dj i^ Limit value of turbulence mixing length 

e fluid internal energy 

F Flux vector in x direction 

f Physical frequency 

G Flux vector in y direction 

h Streamtube height 

h* throat height of diffuser 

i flow incidence angle 

k Reduced frequency; coefficient of heat conductivity; artificial 

smoothing coefficient 

L Reference length 



M Mach number 

Nb Blade numbers 

n wave numbers 

P pressure 

r Radius 

Re Reynolds number 

S Source term vector 

St Strouhal number 

T Temperature 

t Time 

t ' Pseudo time 

U Reference velocity; Conservative variable vector 

u Velocity in x direction 

"g Grid moving velocity in x direction 

V Viscous term vector 

V Velocity in y direction 

Grid moving velocity in y direction 

w Relative velocity 

X Axial coordinate 

y Tangential coordinate 

Blade or incoming wake pitch 

Greek Symbols 

e A small nondimensional parameter 

Phase angle 

Y Specific heat ratio; Stagger angle 

K Von Karman constant 



Wave length 

\i- Total viscosity 

Laminar viscosity 

Turbulence viscosity 

V Dynamic viscosity 

P Density 

CT Inter-blade phase angle 

5* Boundary layer displacement thickr 

0) Angular frequency; Vorticity 

Subscript 

X Variables in x direction 

y Variables in y direction 

inl Variable at inlet 

exit Variable at exit 

i j Variable at grid point (i,j) 

real Real part of complex number 

imag Imaginary part of complex number 

ref Reference quantity 

out Variable at outlet 

wake Variable in a wake 

Superscript 

n Time-averaged quantity 

( ) ' Unsteady perturbation 

A 

( ) Steady-state quantity 



( ) Unsteady amplitude in complex number 



Chapter 1. INTRODUCTION 

1.1 Unsteady Flows in Turbomachinery 

Unsteady flow is a natural phenomenon in a multistage turbomachine. The 

unsteadiness can be produced for different reasons, the major sources of unsteadiness 

in an axial flow tarbomachine stage are depicted in Fig. 1-1. 

Firstly, the flow is inherentiy unsteady in a gas turbine machine due to the 

relative motion of adjacent stators and rotors. This unsteadiness is essential for a 

machine to do work on a fluid to increase its total enthalpy (Dean, 1959). 

Unfortunately, this stator/rotor interaction also produces aerodynamic loss, and 

undesirable aeroelastic and aeroacoustic consequences, such as blade vibration and 

noise. The bladerow interaction has two sides, wake/bladerow interaction and 

potential interaction. Wake/bladerow interaction is induced by the upstream 

fixed/rotating wakes chopped by a rotor/stator. The potential interaction is caused by 

the local bladerow sensing the nonuniform pressure fields in neighbouring bladerows. 

These two kinds of interactions become stronger as the gaps between bladerows are 

made smaller, consequendy this produces a larger unsteady force on the blades. The 

demand for tighter and shorter engines causes a continuous reduction in the gaps 

between the bladerows. Currentiy, the study of unsteady flows induced by bladerow 

interactions are attracting many engineers and researchers. 

Blade vibrations can also produce unsteady flows in a turbomachine. The 

vibration problems have received intensive attention in design procedures because of 

their dangerous potential to cause a blade or even whole engine failure. 

Aerodynamically induced blade vibration has two kinds: flutter and forced vibrations. 

Flutter is an aeroelastic instabihty, that once initiated cannot be stopped in most 

circumstances. Of all tiie problems that may cause blade failures, flutter is perhaps die 

most serious one. It is widely accepted that the tarbomachinery blade flutter tends to 



be a single-mode phenomenon, unlike the wing flutter in which different modes 

(bending and torsion) couple together. In an engine operation, the blades sometimes 

vibrate in their natural mode, which causes unsteady flows around the blades. I f the 

unsteady flow does work on the blade, the ampUtude of blade vibration will increase 

rapidly, and flutter then occurs. The occurrence of flutter can be judged based on 

whether the unsteady flow around the blade is doing work or damping the blade 

vibration. This is called the Energy Method. In this method, the objective is to predict 

the aerodynamic work or damping on the blade which is caused by the unsteady 

aerodynamic flows around oscillating blades. However, the coupling between 

different structural modes and aerodynamic forces in blade flutter can not be ruled 

out in modem designs where the blade tends to be thinner and more highly loaded. In 

modem axial fans and compressors, flutter can occur over a wide range of operation 

conditions. Figure 1.2 gives a guide to several regions on a axial-flow compressor 

map which are vulnerable to different types of flutter. This guide is evolved from 

engineering experience and understanding of the blade flutter. The aerodynamically 

forced blade vibration is caused by the unsteady nonuniform flows in the bladerow 

induced by the wake/bladerow/potential interactions, inlet distortion, rotating stall, 

and surge etc. In recent years, although considerable progress towards understanding 

blade vibrations has been made, efficiently and accurately predicting flutter boundaries 

and blade forced vibrations is sttU a challenging task because of the complexity of the 

unsteady flow environment. 

TraiUng edge vortex shedding is another major unsteadiness in turboraachinery 

when viscous flow passes a blunt blade trailing edge. This unsteadiness is particularly 

pronounced in turbines where a very thick trailing edge for turbine airfoils is needed 

to accommodate the blade cooling passages. Some experimental works (McCormick, 

Paterson and Weingold, 1988, Roberts and Denton, 1996, Gostelow and Solomon, 

1996) suggest that the wake loss in a turbine is largely due to the formation of a 

vortex street. Denton (1993) estimates that wake loss is typically about 1/3 of the 

profile loss in gas tarbines. Unformnately the detailed mechanism of vortex shedding 



loss production is still not quite clear. One observation is that, when vortex shedding 

occurs, the static pressure just downstream of the trailing edge (base region) is 

usually lower tiian that in the freestream, producing a base pressure loss. Predicting 

the base pressure is an important part of predicting the loss produced by the vortex 

shedding. Because vortex shedding in turbomachines has a small length scale and 

high frequency, the experimental and numerical investigations are difficult and 

expensive. However, understanding and predicting trailing edge vortex shedding is 

important to further reduce the total loss in a mrbine design and is receiving more 

and more attention. A thorough review of experimental studies of trailing edge 

vortex shedding in turbomachniey is provided by a recent publication by CicateUi and 

Sieverding (1995). 

In turbomachinery, unsteady flows can also arise from other sources, such as 

rotating stall, surge, and shock/boundary layer interaction etc. The present study in 

this thesis is concentrated on the unsteady flows induced by blade oscillation and 

trailing edge vortex shedding, and is confined to purely numerical investigations. 

1.2 Aspects of Unsteady Flows in Turbomachinery 

1.2.1 Reduced Frequency 

Among all the parameters for describing the unsteady flows in 

turbomachinery, the reduced frequency k is probably the most important one. It is 

defined as 

k = ^ (1-1) 
U 

where co = 27if and f (Hz) is the physical frequency of the unsteadiness. U is a 

reference velocity, usually taken as the inlet velocity. L is a reference length scale. For 



blade flutter problems, L is usually taken to be the blade chord length, on some 

occasions L is taken to be the blade semi-chord (0.5C). For bladerow interactions, L 

is taken to be blade chord length or blade pitch length. The reduced frequency can be 

interpreted as the ratio of the time taken for a fluid particle to flow past the length of 

a blade chord or pitch to the time taken for the flow to execute a cycle of 

unsteadiness. For small values of the reduced frequency, the flow is quasi-steady, 

while for large values, unsteady effects dominate. The value of the reduced frequency 

is an indicator of the temporal and spatial length scales of the unsteadiness. 

In the early stages of a blade design, the reduced frequency is used as a 

criterion for avoiding the occurrence of the blade flutter. For the first bending mode, 

the design value of the reduced frequency usually should be bigger than 1.0, and for 

the first torsion mode, it usually should be above 1.5. For the unsteady flow induced 

by the blade oscillation, the time scale of the unsteadiness is decided by the blade 

oscillating frequency, the length scale is usually taken to be the blade chord length. 

For the unsteady flow induced by bladerow interactions, the reduced 

frequency is normally one order magnitude larger than the reduced frequency of the 

blade flutter. The time scale of the unsteadiness in bladerow interactions is decided by 

the blade passing frequency, and the length scale is approximately the blade pitch or 

chord. 

For trailing edge vortex shedding, the Strouhal number (St) is used to 

determines the unsteady flow instead of the reduced frequency. The Strouhal number 

is defined as 

St = ̂  (1-2) 
U 

The physical meaning of the Strouhal number is the same as the reduced frequency. 

The length scale for the vortex shedding is the blade trailing edge thickness which is 



much smaller than the blade chord or blade pitch. The very small length scale 

determines that a fine mesh is required to resolve the trailing edge vortex shedding. 

The Strouhal numbers for flows over cylinders are constant (0.18-0.2) over a wide 

range of Reynolds number. The Strouhal numbers of mrbomachinery flows are 

strongly dependent on flow conditions and the blade geometry (Cicatelh and 

Sieverding, 1995). 

1.2.2 Inter-Blade Phase Angle 

The concept of the Inter-Blade Phase Angle (IBPA) was first introduced by 

Lane (1956) in the field of mrbomachinery aeroelasticity. For a blade flutter problem 

in a well-defined ti-avelling wave mode, Lane proposed tiiat all the blades vibrate in 

the same mode (bending or torsion, or those two combined) and same amplitude with 

a phase difference between neighbouring blades. This phase difference is called the 

Inter-Blade Phase Angle (IBPA). This concept is now widely accepted. The possible 

values of the inter-blade phase angle in a flutter analysis are defined by 

a = l H (1-3) 

where N^ is the number of blades and n represents the wave number ( n = 1,2... 

Nb). For a single blade passage as depicted in Fig. 1-3, the steady flow variables on 

the upper periodic boundary ab are identical to those on the lower boundary cd. For 

unsteady flows induced by blade oscillating, the amptitudes of flow variables are still 

identical on both the upper and lower periodic boundaries, but there is a phase 

difference between the upper and lower periodic boundaries. The value of this phase 

difference is the inter-blade phase angle. Due to the inter-blade phase angle, for an 

unsteady flow calculation in turbomachinery, a phase-shifted periodic boundary 

condition has to be applied when the calculation is carried out on a single blade 



passage domain, or the unsteady calculation has to be carried out on a multiple blade 

passage domain. 

Although the inter-blade phase angle was originally introduced for blade 

flutter problems, this concept can also be used to describe the unsteady flows 

induced by bladerow interactions(He, 1996a). For the bladerow interaction, the inter-

blade phase angle is decided by the pitch ratio of neighbouring bladerows. For 

example, for a single compressor stage as depicted in Fig. 1-4, the reference blade 

row has a blade pitch Ypj, the upstream neighbouring bladerow has a blade 

pitch . Assuming that the upstream neighbouring bladerow is moving at a relative 

speed tor, the inter-blade phase angle between the upper periodic boundary and lower 

periodic boundary is: 

a = 2 i t { l - ^ ) (1-4) 
^p2 

Usually the neighbouring bladerows have different blade numbers which results in 

non-zero inter-blade phase angles. Therefore the unsteady flow calculation for the 

bladerow interaction problem has to be carried out on a multiple blade passage 

domain, or shifted periodic boundary conditions have to be appUed if the calculation is 

carried out on a single blade passage domain. The inter-blade phase angle in a 

wake/rotor or potential/bladerow problem can also be worked out by the formulation 

(1-4). 

1.3 Advance of Numerical Methods for Unsteady Flows in Turbomachinery 

In the last two decades, the development and appUcation of numerical 

methods for steady flow analysis has made an enormous impact on the design of all 

types of turbomachines, from transonic axial fans to low speed centrifugal pumps. 



The steady flow solver now has an important role in the toolkit of turbomachine 

designers. However, because of the unsteady nature of turboraachinery flows, 

introducing unsteady analysis in the design system is the key to further improve the 

aerodynamic performance and structural integrity of turbomachines. In recent years, 

considerable efforts have been made on the numerical calculation of unsteady flows in 

turbomachinery thanks to the significant advance of computer power and 

computational techniques. 

1.3.1 NonUnear Time-Marching Methods 

The time-marching method is a revolutionary invention by Moretti and Abbett 

(1966) for the solution of transonic flow problems. Since then, a huge variety of 

numerical schemes based on the time-marching concept have been developed for 

solving steady transonic inviscid and viscous external and internal flows. Nowadays, 

time-marching methods are among the most popular numerical methods used in the 

turbomachinery design system for steady flow analysis in isolated and multiple blade 

row environments. Notable works were those by Denton (1982, 1990), Dawes 

(1988), and Ni (1989). 

The time-marching method has been able to be used for unsteady flow 

calculation from its birth. The extension from a well-developed steady solver to an 

unsteady one is not a daunting task for an experienced CFD developer. In an unsteady 

time-marching calculation, the time domain has a real meaning in which the unsteady 

or time-dependent solution is marched. For a periodic unsteady flow, such as the 

unsteady flow induced by bladerow interaction or blade vibration, the solution must 

be stepped through many cycles of the transient solution until a periodic solution is 

reached. Usually, the time-marching unsteady calculation is much more CPU time 

consuming than its steady counterpart. The high computational cost severely 

constrains appUcations of unsteady flow analysis in turbomachinery designs. 

Nevertheless, significant development of time-marching methods for unsteady 



turbomachine flows has been made in last two decades. This section is dedicated to 

reviewing the advance of the unsteady time-marching methods in three areas: 

bladerow interactions, flutter, and traiUng edge vortex shedding. The term 'nonlinear' 

in the title of this section is used to be distinct from the linear methods. The 

nonlinearity of the unsteady flow is naturally included in the time-marching unsteady 

solutions by directly solving the nonlinear Euler/Navier-Stokes equations. 

1.3.1.1 Bladerow Interactions 

The numerical simulation of bladerow interactions was the earliest motivation 

driving the development of unsteady CFD methods in turbomachinery. In the time-

marching unsteady calculation of bladerow interactions, a key constraint to the 

computational efficiency is the treatment of periodic boundaries. In a steady flow 

calculation, the simple repeating periodic condition is applied by equating flow 

variables at the lower and upper periodic boundaries in a single blade-blade passage 

domain. For an unsteady flow calculation of the bladerow interaction, the simple 

repeating periodic condition no longer exists in a single passage calculation due to 

non-zero inter-blade phase angles. One either has to carry out an unsteady calculation 

on a multiple passage domain which will significandy increase the computation time, 

or unplement a phase-shifted periodic boundary condition in a single passage 

calculation. As far as the computational efficiency is concerned, it is desirable to carry 

out the unsteady flow calculation in a single passage domain. Therefore, developing 

phase-shifted periodic boundaries has played an important role in the development of 

time-marching unsteady methods in turbomachinery. 

A milestone work on unsteady flow calculation by using the time-marching 

method in turbomachinery was made by Erdos et al (1977). In this work, the 

MacCormack(1969) predictor-corrector finite difference scheme was implemented to 

solve the 2-D Euler unsteady equations for calculating the unsteady flows in a fan 

stage. The first phase-shifted periodic boundary condition, the "Direct Store" method. 



was proposed to make the unsteady flow calculation possible in a single blade 

passage. In this method, flow parameters on the periodic boundaries are stored at 

each time step in one unsteady period to update the solutions at the next 

corresponding period. This method was later extended by Koya and Kotake (1985) to 

a three-dimensional calculation of inviscid unsteady flow through a turbine stage. The 

main drawback of this "Direct Store" method is that a large computer storage is 

required in an unsteady calculation. This disadvantage is severe for three-dimensional 

viscous unsteady calculations, particularly for low frequency problems such as blade 

flutter. Furthermore, the solution by using "Direct Store" method has a slow 

convergence rate to get a final periodic solution because the solution procedure is 

heavily influenced by the flow initial guess. 

To avoid the complexity of phase-shifted periodic conditions, Rai (1985) 

developed a 2-D Navier-Stokes solver for the stator/rotor interaction. In this method, 

calculations were carried out in a simple stator/rotor pitch ratio (1:1 or 3:4) by 

modifying the configuration of the rotor in a turbine stage. So the simple repeating 

periodic boundary condition can be used in a calculation. A good comparison of time-

averaged quantities between the calculation and experimental data was achieved. The 

calculated unsteady pressure amplitudes largely depended on how close the 

stator/rotor pitch ratio used in calculation correlated to the real pitch ratio. Rai (1987) 

later extended his techniques to a three-dimensional viscous calculation of bladerow 

interactions. However, the influence of blade configuration modifications on 

unsteady flows needs to be carefully clarified. 

In 1988, a novel phase-shifted periodic boundary treatment, 'Time-IncUned" 

method, was proposed by Giles (1988) in a wake/rotor interaction calculation. In this 

method, the flow governing equations are firstly transformed from the physical time 

domain to a computational time domain. The computational domain is inchned along 

the blade pitchwise direction according to the time lag between neighbouring blades. 

In the computational domain, a direct repeating periodic condition can be 



implemented at the lower and upper periodic boundaries in a single blade passage. 

Compared to Erdo's "Direct Store" method, Gile's method does not need extra 

computer storage. Giles (1990a) also used this technique to calculate the bladerow 

interactions in a turbine stage, an unsteady shock system was captured in the 

calculation. A computer program UNSFLO was developed by Giles(1991a) based on 

the "Time-IncUned" method. This programme is capable of handling many kinds of 

two-dimensional unsteady flows in turbomachinery, such as wake/rotor interaction, 

potential interaction, and flutter. However, this 'Time-IncUned" method also has 

limitations. First of all, the time-inclination angles of the computational plane are 

restricted by the domain-of-dependence restrictions of the governing equations. 

These angles are determined by the pitch ratio of rotor/stator in bladerow interaction 

problems and the inter-blade phase angle in flutter problems. The lower the unsteady 

frequency is, the more severe the restriction is. For low frequency problems, such as 

flutter and some forced response problems, the multiple blade passage calculation has 

to be carried out to relax this restriction, consequendy the computation time will be 

increased significantly (He, 1990a). Secondly, Gile's method was originally developed 

for inviscid flow calculations, but for viscous calculations, some simplifications have 

to be made in the space-time coordinate transformation. These simplifications can be 

justified for high Reynolds number flows (Giles, 1991a), for low Reynolds number 

flows, the validity needs to be justified. 

It should be noted tiiat botii die "Direct Store" and the 'Time-IncUned" 

methods can only handle a single frequency unsteadiness. They are not suitable for an 

unsteady flow calculation in a multi-stage environment because multiple frequencies 

are usually involved. 

During the development of the methods for phase-shifted periodic conditions, 

other efforts have also been made to improve the computational efficiency of time-

accurate unsteady calculations. One approach is to develop efficient time-marching 

implicit schemes in which a much larger time-step can be used compared to the 

10 



expUcit schemes, some contributions are from works by Rai (1985), Krouthen and 

Giles (1988), and Coperhaver, Puterbauch and Hah (1993). Another is to use 

effective multigrid techniques. He (1993) developed a time-consistent two-grid 

method which can considerably speed up the convergence of unsteady calculations. 

This two-grid acceleration technique was successfully used by some researchers in a 

time-marching unsteady calculation for bladerow interactions ( Jung, A. R. et al 

1997). A recent advance in the use of multigrid in unsteady flow calculations in 

turbomachinery was achieved by Amone (1996), in which an efficient time-accurate 

integration scheme proposed by Jameson (1991) was used. In this new scheme, a dual 

time-stepping in the physical tune-domain and a non-physical time-domain is 

introduced. In the physical time-marching, an implicit scheme is used. In the non-

physical time-marching, any efficient accelerating techniques which are widely used 

in steady calculations can be used to speed up the calculation, such as local time step, 

multigrid, imphcit residual smoothing. Although significant progress has been made to 

make time-marching unsteady calculations more efficient in recent years, an unsteady 

calculation still needs weeks running on a powerful workstation (Gundy-Burlet and 

Domey, 1997). This high computational cost hinders the application of time-marching 

unsteady analysis in a routine turbomachine design system. 

As an alternative to the direct unsteady flow calculation, Adamczyk (1985) 

proposed a notable concept of modelling unsteady effects by solving an "average-

passage" Navier-Stokes equation system. In this system, different averaging strategies 

were used to average out the unsteady effects due to random flow fluctuations (due 

to turbulence) and periodic flow fluctuations due to the bladerow interaction. The 

attraction of this concept is that solving an unsteady problem is replaced by simply 

solving a set of averaged equations. The averaged equations can be solved by any 

efficient steady flow solver, while the unsteady effects are included in a time-averaged 

solution. The difficulty in doing so is that averaging produces unknown 

"deterministic stress" terms in the averaged equations due to the nonlinearity of the 

original Navier-Stokes/Euler equations. Extra closure models are required to work 

11 



out all "deterministic stress" terms, similar to the turbulence models for modelling the 

Reynolds stress terms in the Reynolds averaged Navier-Stokes equations. 

Nevertheless, Adamczyk's concept has stimulated many research activities in 

turbomachniery unsteady CFD and some numerical methods have been developed 

(Celestina et al, 1986, Adamczyk et al, 1989, Rhie et al, 1995, HaU, 1997). However, 

all deterministic stiess models so far have not been sufficientiy practical, and the 

development in this area is expected to go further in the near future. 

1.3.1.2 Flutter 

As for bladerow interaction calculations, periodic boundary treatment is also a 

difficulty in unsteady flow calculations for blade flutter analysis. For flutter analysis, 

one has to calculate unsteady flows under all possible IBPAs to find the least stable 

one. For a non-zero inter blade phase angle, phase-shifted periodic boundary 

conditions have to be applied i f the unsteady calculation is carried out in a single blade 

passage domain. Because of the large number of repeated calculations in the flutter 

analysis, there is a stringent requirement for computational efficiency. 

The development of time-marching methods for blade flutter analysis in 

turbomachinery started in the 1980s with a pioneering effort made by PandoM (1980) 

using a finite difference scheme to compute two-dimensional unsteady subsonic flows 

around vibrating blades with tiie same phase. Later PandoM's work was extended by 

Fransson and Pandolfi (1986) using the "Direct Store" method to deal with non-zero 

inter-blade phase angles. A similar attempt was also made by Joubert (1984) and later 

it was extended by Geroljonos (1988) to a first fully three-dimensional unsteady 

inviscid flow analysis for flutter predictions. Because of the huge demand for 

computer storage by using the " Direct Store" method for low frequency flutter 

problems, the application of these time-marching methods was severely constricted. 

Although Giles (1991b) extended his "time-inclined" phase-shifted periodic conditions 

for blade flutter analysis, a multiple blade passage calculation usually has to be carried 
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out due to the strong restriction of inter-blade phase angles in the space-time 

coordinate transformation (He, 1990a). 

To deal with the phase-shifted periodic boundary condition more flexibly, a 

"Shape Correction" method was proposed by He (1990b) in a 2-D time-marching 

solver for unsteady flows around oscillating blades. In this novel method, the periodic 

unsteady flow variables on the periodic boundaries are transformed into Fourier 

components by using a Fourier transformation. Compared with the " Direct Store" 

method, the computer storage is greatly reduced by only storing the Fourier 

coefficients. This method also overcomes the restriction of inter-blade phase angles in 

the 'Time-IncUned" method. Furthermore, the "Shape Correction" method was later 

developed by He (1992) to be able to handle multiple perturbations with a single 

blade passage solution. He (1994a) later extended the 2-D method to a fuUy three-

dimensional time-marching method for inviscid and viscous unsteady flows around 

vibrating blades. The 3-D unsteady viscous solutions were considerably accelerated 

by a two-grid time integration technique developed by He (1993a). 

Due to the potential importance of the fluid and structure interaction for blade 

flutter, the time-marching methods are also used by many researchers for developing 

coupUng methods for blade flutter analyses (Bendiksen, 1991, He, 1994, Marshall and 

Imregun, 1995, Chew et al, 1997). In the coupling method, both the nonlinear 

aerodynamic equations and the structural equations are solved by the time-marching 

schemes, at each time-step the data are transferred between the aerodynamic model 

and the structural model. The inter-blade phase angle at which the instability occurs in 

the coupling methods is a part of the solution, therefore the calculations are normally 

carried out on a multi-passage domain or ideally on a whole annulus. The drawback 

of the coupling methods is the computational cost, not only due to the time-marching 

but also to the coupling between the aerodynamic model and the structural model at 

each time-step. 
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Although the apphcation of time-marching methods for flutter analysis is 

severely restricted by its large CPU time consumption, the active research activities in 

this sector have significantiy improved the physical understanding of blade flutter. For 

example, the works by He (1990b) and Ayer and Verdon (1996) revealed the 

potential importance of the nonlinearity in the flutter analysis due to shock oscillation. 

To handle unsteady flows with strong nonhnearity, the nonlinear time-marching 

methods plays an irreplaceable role. Furthermore, the well-developed time-marching 

solvers provide reUable tools for the validation of other kinds of numerical methods, 

such as time-hnearized methods which will be reviewed later in this Chapter. 

1.3.1.3 Trailing Edge Vortex Shedding 

Although trailing edge vortex shedding is an important part of blade profile 

loss in gas turbines, very few efforts have so far been made to predict vortex shedding 

in turbomachinery using numerical methods. Currently, the most popular methods for 

the prediction of the trailing edge loss are based on analytical models, such as the 

control volume analysis by Denton (1993). However, the base pressure is not 

calculable in the control volume method, therefore die loss due to the trailing edge 

vortex shedding is unlikely to be correctly predicted (Roberts, 1997). There are two 

main difficulties that are hindering the development of numerical methods for vortex 

shedding calculations by solving the unsteady Navier-Stokes equations. The first is 

the large number of mesh points required around the trailing edge to resolve the small 

length scale vortex shedding, which makes the computation prohibitively expensive. 

The second is the fact that vortex shedding is a highly non-isotropic phenomenon, the 

conventional turbulence models such as the mixing length and two-equation models 

are unlikely to predict the wake evolution (CicateUi and Sieverding, 1995) correctiy. 

Although appUcations of some sophisticated turbulence models such as Reynolds 

stress models and Large-Eddy Simulation models (LES) have demonstrated their 

ability to capture the wake mixing process, these models are unfortunately not feasible 

to be used yet. 
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For numerical calculations of trailing edge vortex shedding by using time-

marching methods, an impressive work was done by Currie and Carscallen (1996). In 

this work, quasi-3D Reynolds averaged Navier-Stokes equations are solved by using 

a flux-difference splitting scheme of Roe(1981) in space and an implicit integration 

scheme in time, an extremely fine adaptive unstructured mesh near the blade surface 

and in the wake was used to resolve the boundary layer and the vortex shedding in the 

wake. A combination of k - to and k - e turbulence zonal models (Menter, 1993) was 

used to model the turbulence. The vortex shedding structures and frequencies were 

very well predicted by the calculations under transonic flow conditions. The measured 

total pressure loss coefficients were reasonably predicted by calculations. However, 

the base pressures were poorly predicted, especially at the flow condition with an exit 

Mach number of 1.0. The excessive numerical dissipation in the calculations was 

blamed by the authors for the poor prediction of base pressures even in such a fine 

mesh. 

A recent attempt at the numerical prediction of trailing edge vortex shedding 

was made by Amone and Pacciani (1997). The vortex shedding behind a turbine 

blade, which was extensively tested (Cicatelli and Sieverding, 1996) at von Karman 

Institute(VKI), was numerically investigated. In the calculation, a simple two-layer 

mixing length turbulence model and the Baldwin-Loraax turbulence model (Baldwin 

and Lomax, 1978) were compared for the vortex shedding predictions. The authors 

found that the predicted shedding frequency and flow fluctuations can vary quite a lot 

by using different values of constant Ĉ ,̂ in the Baldwin-Lomax models. This 

suggests tiiat the unsteady calculation of trailing vortex shedding is sensitive to 

turbulence models. Another numerical effort by Roberts (1997) also found tiiat vortex 

shedding predictions are strongly dependent on turbulence modelling. In the work by 

Amone and Pacciani, although an efficient time-accurate integration scheme 

(Jameson, 1991) and a multigrid were used in their calculations, each 2-D calculation 

with 36,113 mesh points still took about 65 hours on an IBM 590 workstation to 

achieve a periodic vortex shedding. Although Currie and Carscallen (1996) did not 
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mention the computational time in the pubhshed paper, it is believed to be incredibly 

long. 

Even if the arguments about the turbulence models are temporally excluded, 

the unsteady calculation of trailing edge vortex shedding is still unlikely to be used in 

turbomachine design systems because it is extremely CPU time consuming. However, 

the major concern of turbomachine designers with regard to vortex shedding is the 

loss produced by the vortex shedding, i.e. the time-averaged effects of the vortex 

shedding rather than its small scale unsteady details. It would be highly desirable to 

develop a numerical method which can produce a time independent ('steady' or time-

averaged) solution in which the time-averaged vortex shedding effects can be 

included. It would be similar to Adamczyk's (1985) concept for handling bladerow 

interactions. The feasibility of this concept will be investigated in this thesis. 

1.3.2 Time-Linearized Harmonic Methods 

As an alternative to the nonlinear time-marching methods, the other kind of 

numerical methods widely used for unsteady flow analysis in turbomachinery, is the 

time-linearized harmonic method. In time-linearized harmonic methods, an unsteady 

flow is decomposed into a steady flow plus a linear, harmonically varying unsteady 

perturbation. The harmonic perturbation equation is a Unear equation with coefficients 

based on the steady flow solution. Although the perturbation equation can only 

handle a single frequency unsteadiness in one solution, the more general solution can 

be linearly composed from the solution of different frequencies. The validity of the 

methods depends on the linearity of the unsteady flow problems. It is widely accepted 

that the onset of blade flutter is a linear aeroelastic phenomenon in most 

circumstances, therefore the time-linearized methods have been widely used for blade 

flutter analysis in turbomachinery. 
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The development of linearized methods for unsteady flows in turbomachinery 

started with the pioneering effort by Whitehead(1970) based on a flat plate analysis. 

In this analysis, the steady flow is assumed to be uniform and axially subsonic. The 

blade thickness and loading are neglected by using a flat plate cascade. The 

perturbation equation based on the uniform steady flow is solved by a semi-analytic 

method. Whitehead (1987) later developed this flat plate analysis into a well-known 

computer program LINSUB which can handle several kinds of unsteady inviscid 

flows around a flat plate cascade, i.e. wake/rotor and potential/rotor interactions and 

blade oscillation. The solution from LINSUB is extremely quick and accurate. 

Although its appUcation is limited due to the flat plate and uniform steady flow 

assumptions, tiiis method provides an invaluable tool to vaUdate other numerical 

methods. 

The second stage in the development of time-linearized methods is the 

development of time-linearized potential methods with notable works by Verdon and 

Caspar (1984), and Whitehead (1982). The important advance in this kind of method 

is that the steady flow is obtained by solving nonUnear potential equations and real 

airfoils can be dealt with in the analysis. The unsteady perturbation is firstiy assumed 

to be harmonically varying and the Unear superposition can be used for unsteady flows 

with different frequencies. To handle transonic flows, shock fitting techniques were 

used in Verdon and Caspar's methods, and a shock capturing technique was used in 

Whitehead's work. Engineering practice (Verdon and Caspar, 1984) has 

demonstrated that time-linearized potential methods are effective in predicting 

subsonic and some transonic flutters. The limitation of Unearized potential methods is 

due to the isentropic and irrotational assumptions of potential flows, for transonic 

problems they are only suitable for flows with weak shocks. 

A significant advance in the time-linearized methods has been made by the 

active development of time-linearized Euler methods in recent years. Actually, the 

time-linearized Euler method was firstiy proposed by Ni (1974). An important idea in 
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Ni's work was to make the perturbation amplitude time dependent in a pseudo time, 

so the perturbation equation can be solved by a conventional steady time-marching 

method. Unfortunately the time-linearized method did not receive much attention 

until a recent development by HaU and Crawley (1989). In HaU and Crawley's work, 

the steady flow solution was obtained by solving the unsteady Euler equations and the 

linear harmonic Euler equations were solved by a fmite element method. This work 

importantiy demonstrated the validity of the linear approximation up to quite 

substantial levels of unsteadiness. In their work, a shock-fitting technique was used 

to handle oscillating shock waves in a transonic duct. Unfortunately shock fitting 

techniques are not practical due to the complex shock system in turbomachniery 

flows. It is preferable to use the flexible shock capturing techniques in the time-

hnearized methods. An important contribution was made by Linquist and Giles (1991) 

to show that shock capturing can be used in the time-linearized Euler methods to 

predict blade unsteady loading correctly provided that the time-marching scheme is 

conservative and the steady shock is sufficientiy smeared. Since then the shock 

capturing technique has been widely used in the time-linearized Euler methods 

(Holmes and Chung, 1993, Hall, Clark and Lorence, 1994). 

Currentiy the time-linearized methods are being actively developed in three 

aspects. The first is to develop the 2-D time-linearized Euler methods into fully three-

dimensional methods (Giles, 1991b, Hall and Lorence, 1992, Marshall and Giles, 

1997). The calculation results by Hall and Lorence (1992) have shown the three-

dimensional effects can be significant for correctly predicting the blade loading. The 

second aspect is to extend the Euler methods to Navier-Stokes methods (Holmes and 

Lorence, 1997). The Navier-Stokes methods are more realistic for the flutter analysis, 

especially for the subsonic stall flutter prediction in which the oscillation of the flow 

separation region is the dominant phenomenon. The third area of interest is to include 

the interaction effects from other blade rows in a single bladerow calculation. A work 

by Buffum (1995) has shown the strong effects of the interaction from other 

bladerows on a blade flutter prediction produced by an isolated bladerow calculation. 
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Preliminary results from a recent study by SUkowski and HaU (1997) have shown that 

"the aerodynamic damping of a blade row in part of a multistage machine can be 

significantiy different than that predicted using an isolated blade row model". 

The main feature of the time-linearized methods is high computational 

efficiency. One reason is that, in the linearized methods a nonUnear unsteady equation 

is decomposed into two equations, i.e. a steady flow equation and a linearized 

perturbation equation. By introducing a pseudo-time technique, the time-linearized 

Euler/Navier-Stokes perturbation equations can be solved by using any weU-

developed time-marching schemes. Another reason is that the phase-shifted periodic 

condition is no longer a difficulty and the solution can be easily realised in a single 

blade passage domain. However, although the time-linearized analyses meet the needs 

of turbomachinery designers for efficient unsteady flow predictions, their limitation 

should not be underestimated. The drawback of the time-linearized methods is that 

nonUnear effects are completely neglected due to the Unear assumption . The 

nonUnear effects can be potentiaUy important in turbomachniery unsteady flows 

associated with the shock oscillation, finite amplitude excitation, flow separation etc. 

1.3.3 Nonlinear Harmonic Methodology 

The strength of the nonlinearity of unsteady flows is represented by the 

difference between the steady flow and tiie time-averaged flow (He, 1996a). A 

typical nonUnear example is a shock osciUating in a transonic duct as shown in Fig.l-

5, the time-averaged shock could be very different from the steady one because the 

time-averaged shock is smeared by the unsteadiness due to shock osciUation. In the 

linear method, the time-averaged flow is identical to the steady flow, therefore the 

unsteady perturbation cannot be predicted correctly if the time-averaged flow is very 

different to the steady one. To handle the shock oscillation in a time-linearized 

Euler/NS method by using the shock capturing technique, the steady shock has to be 

smeared by artificial smoothing to get a better prediction of blade aerodynamic 
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loading (Linquist and Giles, 1991). However, this treatment has httie physical insight 

and cannot be justified for large amplitude shock oscillations which could happen in 

turbomachinery flows (He, 1990b , Ayer and Verdon ,1996). It is highly desirable to 

develop a method which has a high computational efficiency like the conventional 

linear methods, but which can account for nordinear effects Uke the nonhnear time-

marching methods. Recentiy, a novel nonhnear harmonic approach was proposed by 

He (1996a). In tiiis approach, the TIME-AVERAGED flow (instead of steady flow) 

is used to be the base of unsteady perturbations. The nonhnear effects are to be 

included in a COUPLING SOLUTION between tiie time-averaged flow and 

unsteady perturbations. To illustrate this approach in a simple way, a 1-D convection 

model equation is used here: 

The time-dependent flow variable is composed by: 

u(x,t) = u(x)-Ku'(x,t) (1-6) 

where u is the time-averaged quantity, u ' is a periodic unsteady perturbation. 

Substituting equation (1-6) into the equation (1-5), we have: 

^ - h - ^ ( i i u - h 2 u u ' + u'u') = 0 (1-7) 
dt 2 dx 

The time-averaged equation can be obtained by time-averaging equation (1-7): 

^4(^V) = 0 (1-8) 
dx dx 
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Compared to equation (1-5), time-averaging generates an extra term in the time-

averaged equations. This extra term —(u 'u ' ) is a nonUnear term which is simUar to 
dx 

the turbulence (Reynolds) stress term. Here it is caUed "unsteady stress" because it is 

generated by a periodic unsteadiness. 

The unsteady perturbation equation can be obtained by the difference between 

the basic unsteady flow equation (1-5) and the time-averaged equation (1-8), e.g. 

— + -—(2uu ' -hu 'u ' -u ' u ' ) = 0 (1-9) 
dt 2 dx 

However, the equation (1-9) is not readily solvable if a frequency-domain harmonic 

approach is to be used. It is assumed that the unsteady perturbation is dominated by 

the first order term. Then the second order terms in the unsteady perturbation 

equation (1-9) can be neglected. The resultant first order equation is given by: 

— + ̂ (uu') = 0 (1-10) 
dt dx 

The unsteady perturbation equation (1-10) is of the same form as the 

perturbation equation in the conventional time-linearized Euler method. However, 

equation (1-10) is no longer Unear, because the time-averaged variable u is unknown, 

which in turn depends on the unsteady perturbation. Because of the interaction 

between the time-averaged and the unsteady perturbation equations, the nonUnear 

effects due to the unsteadiness can be included in a time-averaged flow and unsteady 

perturbation coupling solution. The coupling solution procedure is the key to this 

nonUnear harmonic approach. 
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The important part of the present work in this thesis is to develop this novel 

nonhnear harmonic methodology into a nonlinear harmonic Euler/Navier-Stokes 

method, and to identify its effectiveness by numerical tests in the calculation of 

unsteady flows around oscillating blades. 

1.4 Overview of Thesis 

The principal objective of the work in this thesis is to develop efficient 

frequency domain Euler/Navier-Stokes numerical methods for unsteady flows around 

oscillating blades. The emphasis is on the development of a novel quasi 3-D frequency 

domain Euler/Navier-Stokes method based on the nonhnear harmonic methodology 

(He, 1996a). 

To start with, a conventional quasi 3-D time-linearized Euler/Navier-Stokes 

method is developed for blade flutter and forced response analysis, as described in 

Chapter 2. In this baseline method, the unsteady flow is decomposed into a steady 

flow plus a hnear harmonically varying unsteady perturbation. Both the steady flow 

equation and the unsteady perturbation equation are spatially discritized using a cell-

vertex finite volume scheme and are integrated using the 4-stage Runge-Kutta scheme 

in the pseudo-time domain. A moving grid is used to avoid the extrapolation of the 

flow variables from the boundary of the grid to the instantaneous location of the 

vibrating blade. At the inlet and outlet boundaries of the computational domain, non-

reflecting boundary conditions are implemented to prevent spurious reflections of 

outgoing pressure, entropy, and vorticity waves back into the computational domain. 

This quasi-3D time-linearized Euler/Navier-Stokes solver is extensively vahdated 

against experimental data and other well-developed numerical methods in the 

calculation of blade flutter and forced response problems, the numerical results are 

presented in Chapter 3. 
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Based upon the developed conventional time-linearized raetiiod, a novel 

nonlinear harmonic Euler/Navier-Stokes method is developed, as described in Chapter 

4, by following the nonUnear harmonic approach proposed by He (1996a). In this 

method, the time-averaged flow (instead of a steady flow in linear methods) is used as 

the base for the harmonic unsteady perturbations. Due to the nonlinearity of the 

momentum and energy equations, the time-averaging generates extra "unsteady 

stress" terms in the time-averaged equations which are evaluated from the unsteady 

perturbation solutions. A strong coupling technique is used to solve the time-averaged 

equations and harmonic perturbation equations simultaneously in a pseudo-time 

domain because of the strong interaction between them. The effectiveness of 

including nonhnear effects by this novel method is assessed in Chapter 5 by 

calculating tiansonic unsteady flows. 

Having achieved the primary objective of this thesis, some efforts are made 

towards a numerical investigation of trailing edge vortex shedding, as presented in 

Chapter 6. The main objective of this work is to investigate the feasibility of 

producing a time-independent solution including time-averaged effects of trailing edge 

vortex shedding by solving time-averaged equations. For either a linear analysis or a 

nonhnear harmonic analysis, a time-independent solution is needed for the base of the 

unsteady perturbations. In this investigation, the time-averaged equations about tiie 

vortex shedding with known unsteady stresses are solved. The unsteady stresses are 

worked out from the vortex shedding unsteady calculation results. The structures of 

die vortex shedding unsteady stiesses are analyzed. In this work, two kinds of vortex 

shedding are considered, one is for a circular cylinder, the other is for a V K I turbine 

blade. 

Finally, this thesis is concluded by Chapter 7 and suggestions for future work 

are also presented. 
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Chapter 2 Time-Linearized Harmonic Method 

In this chapter, the methodology of a quasi 3-D time-linearized Euler/Navier-

Stokes method for unsteady flows induced by blade oscillating and incoming wakes is 

presented. This method is developed from a well-developed 2-D nonhnear time-

marching solver, VIB2D, which was originally developed by He (1994b) for flutter 

prediction by using an aerodynamic and aeroelastic coupling method. He (1997a, 

1997b) later used this programme for rotating stall and partial admission analyses in 

turbomachinery. The emphasis in this chapter is on the derivation of the time-

hnearized Navier-Stokes/Euler perturbation equations and the numerical solutions. 

2.1 Governing Equations 

The integral form of the quasi 3-D unsteady Navier-Stokes equations over a 

moving finite area AA is 

- J | U d A + f J ( F - V J d y - ^ ( G - V )dx]= JjSdA 
AA 

(2-1) 

where 

U = h 
pu 

rpv 
F = h 

p u - p u g 

puu-(-P-puUg 

r ( p u v - p v u g ) 

(pe -HP )u-peUgj 

G = h 

p v - p v g 

p u v - p u v g 

r(pvv + P - p v V g ) 

(pe-i-P)v-pev, 

( 0 

P— 
s = ax 

0 

J . 0 . 
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To close the equation system, a flow state equation is needed to define the pressure P. 

For an ideal gas it is defined by 

P = (Y-1) pe-^p(u^+v^) (2-2) 

The quasi 3-D effects are introduced by allowing specified variations of radius r and 

stream tube height h in the axial direction. Ugand Vgare the grid velocities used to 

accommodate the grid movement due to blade rotating and vibration. The viscous 

effects are introduced by the viscous terms: 

V x = h 

0 

rx xy 

- q x + U T x x + V t x y j 

Vy = h 

0 

^xy 

rtyy 
- q y + U t x y + V X y y j 

where: 

2 .-3u 3v, 2 dv 3u. 
y y = T H ( 2 — - — ) , 

3y dx 
.3u 3v, 

The viscosity is fX = |Li i - l -Ht . The laminar viscosity f i j is obtained from the 

Sutherland's law with a reference viscosity coefficient being calculated from a fixed 

Reynolds number at the inlet flow condition. The turbulence viscosity [ i j is worked 

out by the standard Baldwin-Lomax algebraic mixing length model (Baldwin and 

Lomax, 1978). The coefficient of heat conductivity, k, is related to the viscosity 

coefficient through a Pranti number. 
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The Euler version of governing equation (2-1) for in viscid flows can be easily 

obtained by switching off the viscous terms and Vy. 

2.2 Time-Linearized Perturbation Equations 

The equation (2-1) can be linearized, provided the temporal change of a flow 

variable is small enough compared to the steady value. Assume that the flow can be 

divided into two parts: a steady flow plus a small harmonic perturbation part, i.e. 

U(x,y,t) = U(x,y) + U(x,y)e icot (2-3) 

The detailed form of U can be expressed by 

U = h 

' P ' 
(pu) 

r(pv) 

V (Pe)J 

(2-4) 

Meanwhile, the unsteady grid moving velocities Ug and Vg are also assumed 

to change in a harmonic form. 

Ug(x,y,t) = u (x,y)e""^ v„(x,y,t) = v„ -f-v,(x,y)e icot 

g 'g' 
(2-5) 

For a rotor, Vg is the bladerow rotating speed. 

Substituting the relationships (2-3) to (2-5) into the convective fluxes F and G, and 

neglecting all the 2nd order terms, the complex amplitudes of fluxes F and G can be 

given by 
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F = h 

( p u ) - ( p u g ) 
A „ 

( p u ) ( u - U g ) + ( p u ) u - H P 
A „ 

r [ ( p v ) ( u - U g ) - H ( p v ) u ] 
A „ A 

[(pe)-t- P ] u + [(pe)-H P ] u - (pe) u 

(2-6) 

G = h 

( p v ) - ( p V g ) 
A „ 

( p u ) ( v - V g ) - H ( p u ) ( v - V g ) 
A „ 

r [ ( p v ) ( v - V g ) -H ( p v ) ( v - V g ) -H P] 
A „ A „ 

[(pe)+ P]u + [(pe)+ P]u - (pe) v „ - (pe) v 

(2-7) 

w h e r e the non-conservat ive variable perturbations c a n be w o r k e d out from 

conservat ive var iab le perturbations, i.e. 

„ A 

u = ( p u ) / p - p ( p u ) / p 2 

^2 v = ( p v ) / p - p ( p v ) / p 

P = (Y - l ) { (P~e) - u ( p u ) - V (pv)-H I [u^ + v']p] 

Simi lar ly , the perturbation o f v i scous terms in Eq.(2-1) can be given by 

l inear iz ing the and V y , as 

V , = h 

0 

"xx 

TX xy 

- Q X + UT^^ + VT^y + UT^^ + WZ^yJ 

(2-8) 
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Vy = h 

0 

rtyy 
- Q y + U X x y + VXyy + GXxy + VT 

(2-9) 

where 

2 ^ ,^du dv, 
3' ^ d^'d^' 

d\ 3u, ,9u ^ 3v̂  
By dx' 

, 3 1 , 3T 

In this method, the perturbation of viscosity due to unsteadiness is neglected 

simply by freezing the viscosity to its steady value in the perturbation equations. 

Although the turbulent viscosity perturbation could be obtained by linearizing 

turbulence models, doing so will significantly increase the computation time and 

make the code writing much more complex. Under the Boussinesq approximation, 

the primary role of the turbulence is to provide enhanced diffusivities intended to 

mimic the turbulent mixing. The interaction between the turbulence and the steady 

flow is minor compared to the added diffusivity introduced by the eddy viscosity. The 

vahdity of frozen viscosity in the linear methods has been investigated by some 

researchers (Holmes and Lorence, 1997). In a comparison of predicted unsteady 

pressures from both a frozen turbulence model and a fully hnearized turbulence 

model, only a minor difference was found at an extremely low frequency case ( 

reduced frequency of 0.034), the results are nearly identical at normal blade flutter 

frequencies. 

To linearize Eq.(2-1), the computational grid is also assumed to undergo a 

small harmonic deformation about its steady position, i.e., 
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. — icot ^ . ~ icot x = x + xe , y = y + ye 

The source term S in Eq.(2-1) can also be decomposed into a steady part plus 

a harmonic perturbation, the perturbation part can be given by 

S = 

( 0 ^ 

0 

V 0 , 

(2-10) 

Substituting all the perturbation series into the integral unsteady Navier-Stokes 

equations (2-1) and collecting zero and first order terms, the original equation can be 

divided into two equations: a steady equation and a linearized perturbation equation. 

The steady equation is given by 

f;(F - V , )dy + (G - Vy )dx] = Jj SdA 
AA 

(2-11) 

The integral form of the time-linearized Navier-Stokes perturbation equation is 

^^[(F - V , )dy -KG - Vy )dx (F - V , )dy -KG - Vy )dx] 

= j | (SdA-HSdA)- itD | JUdA-icojJUdA (2-12) 
AA AA AA 

Note that all the variables in both Eq.(2-ll) and Eq.(2-12) are only space-

dependent, time does not appear. The coefficients in Eq.(2-12) are obtained from the 

solution of the steady flow equation (2-11). 
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2.3 Solution Method 

The solution procedure for a time-linearized Navier-Stokes/Euler method is 

straightforward, as depicted in Fig. 2-1. Firstiy a steady flow solution is produced by 

solving the steady Navier-Stokes/Euler equation (2-11). Then, for a flutter problem, 

the grid moving velocities are prescribed according to a blade vibrating mode 

(bending or torsion). Finally for a given frequency and inter-blade phase angle, the 

coefficients in the time-linearized Navier-Stokes/Euler equation (2-12) are formed 

from the steady flow solution and the time-linearized perturbation equation is solved. 

By linearization, solving a time-dependent unsteady problem in the time-domain is 

effectively transformed to solving two steady equations. Therefore, the time-

linearized method normally is much more computationally efficient than the nonlinear 

time-marching methods. 

2.3.1 Pseudo Time Dependence 

In order to fully take advantage of the efficient time-marching methods, a 

pseudo time variable ( t ' ) is introduced to make the steady equation (2-11) and the 

time-linearized perturbation equation (2-12) time-dependent, so Eq.(2-ll) and (2-12) 

can be re-written as 

AA AA 
— JjUdA-h^J(F-VJdy + ( G - V y ) d x ] = JjSdA (2-13) 

and 

^ JJ UdA +jl(F - V , )dy + (G - Vy )dx + (F - V, )dy + (G - Vy )dx] 
Ot AA 

= JJ (SdA + SdA) - io) JJ UdA - io) JJ UdA (2-14) 
AA AA AA 
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Now both the steady equation and linear perturbation equation are hyperboUc 

in pseudo time, any well-developed time-marching scheme can be used to solve them. 

Since only a 'steady-state' solution for steady flow and unsteady perturbation 

amplitude are desired, any efficient acceleration techniques hke local time-stepping 

and multigrid can be used to speed up the convergence of a solution. This pseudo 

time-marching idea was originally proposed by Ni (1974). 

2.3.2 Spatial and Temporal Discretization 

The spatial discretization for both Eq.(2-13) and Eq.(2-14) is made by using a 

cell-vertex finite volume scheme. Consider a H-type mesh consisting of 

I X J quadrilateral cells. For each mesh cell, Eq.(2-13) and (2-14) can be written in a 

semi-discrete form, e.g. for a cell with an index (i,j): 

H A A 

— (UAA)ij = (FLUXi-hFLUXv)ij +(SAA)ij 

= Rij (2-15) 

and 

- ^ ( U A A ) i j =(FLUXi-HFLUXv)ii + (SAA-I-SAA). 
dt •' 

-ico(UAA-hUAA)ij 

= Rij (2-16) 

where 

4 . 
FLUXi =- I [FAy-HGAx] 

1 
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A 4 

FLUXi = - i [ F A y + GAx + FAy + GAx] 
1 

FLUX V = X[Vx Ay + Vy Ax + V^ Ay + Vy Ax] 

The summation is taken along the four boundary surfaces of the cell. The 

fluxes across each surface are evaluated using the flow variables stored at the comers 

of the cell. For viscous fluxes, the first order spatial derivatives are evaluated by using 

the Gauss theorem on auxihary cells (He, 1993). Once the temporal change is 

evaluated, it is equally distributed to the each comer of the cell. 

This cell-vertex finite volume scheme is a spatial second order centre 

difference scheme. There are no even order dissipative terms in the scheme itself. In 

order to suppress the numerical oscillation and capture the steady shock waves in a 

steady flow calculation and the shock impulse in a perturbation solution, a 2nd and 

4th order adaptive smoothing (Jameson et al, 1981) is applied in both streamwise and 

pitchwise directions. So Eq.(2-15) and (2-16) become: 

^ ( U A A ) i j =Ry -H(ajij - ( D J i j - (Dy) i j (2-17) 

and 

^ ( U A A ) y =R,j + ( d j y +(dy)ij - ( D J i j - (Dy) i j (2-18) 

where the d^ and dy are the second order steady artificial smoothing in x and y 

directions, D^ and D are the fourth order artificial smootiiing terms, d^ and dy 
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are the amplitudes of the second order artificial smoothing, D,, and Dy are the 

amplitudes of fourth order artificial smoothing terras. 

For the steady flow equation, d̂ ^ and D^ can be given by 

dx = e f (U,„j - 2 U i j -hUi_,j)AAij / d t ' (2-19) 

Dx =er (Ui+2j - 4 U i ^ , j -h5Uij -4U,_,^+UAA,^ /d t ' 

(2-20) 

where 

(2-21) 

^i+lj 2Pjj -I- Pi_ij 

Pi+lj+2Py+Pi-ij 
(2-22) 

e^ '*)=max{0,(k(^)-ef)} (2-23) 

where k^̂ ^ is the 2nd order smoothing coefficient, typically it is about 1/2. The k̂ "*̂  

is the 4th order smoothing coefficient and about 1/32. dy and Dy can be given 

similarly. 

For the unsteady perturbation equation, d̂ ^ and 0,^ can be given by 

dx = e f ( U i , , j - 2 U , ^ + U i _ , j ) A A i j / d t ' (2-24) 
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Dx = e r ( U i , 2 j - 4 U i , i j -H5Uy -4U,_, j + U^.^j)AA,j / d t ' 

(2-25) 

In order to avoid linearizing the pressure sensor (2-22), here the smoothing 

coefficients for the unsteady amplitudes are frozen at their steady values, effectively 

the unsteady fluctuation of the pressure sensor is neglected. The vahdity of this 

practice for hnear problems is validated by other authors (Linquist and Giles, 1991). 

dy and Dy can be given in a similar manner. 

The pseudo time-marching for both Eq.(2-17) and (2-18) is performed by 

using the 4-stage Runge-Kutta scheme. The formulation of the 4-stage Runge-Kutta 

time marching from time step n to n+1 is: 

U y - « . = u^.» - a , ^ { R j . +(d -H(dy)ij - ( D - ( D y ) y } " ^ " -

(2-26) 

and 

U_.n.cc, ^^^n - a , | ^ { R i j -h(dJij -H(dy)ij - ( D J i j - (Dy) i j}"^«-

(2-27) 

where 

and 

k=l~4 

a o = 0 , a i = l / 4 , a 2 = l / 3 , a 3 = l / 2 , a 4 = l 
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For stabihty of the exphcit time-marching scheme, the size of At' can be 

defined by 

At ' < CFL • min{[min(Ax, Ay) / (Vu^ + v^ + c)]ij} (2-28) 

( i = l , 2 , . . . , I , j = l ,2 , . . . , J ) 

where CFL stands for the Courant-Friedrichs-Lewy number. The stabiUty limit for the 

steady state equation gives CFL < 2^f2 for the 4-stage Runge-Kutta scheme. A 

stability analysis for the time-linearized perturbation Euler equation by Lindquist 

(1991) has shown that the limit of At ' size is very close to the steady state equation. 

In this method, a uniform time step is used in both steady and perturbation solutions. 

To enhance the computational efficiency for viscous flow calculations, the 

two-grid acceleration technique proposed by He (1993a) is used for solving both 

steady and time-linearized perturbation Navier-Stokes equations, although this 

technique was originally developed for speeding up nonUnear unsteady calculations. 

2.3.3 Boundary Conditions 

For a single blade passage domain as shown in Fig. 1-3, there are four kinds of 

boundary conditions, i.e. inlet, outlet, periodic and soUd waU boundary conditions. 

For steady flow calculations, the conventional boundary conditions are 

implemented. At inlet, the total pressure, total temperature and inlet flow angle for 

subsonic flow or inlet Mach Number for supersonic flow are prescribed, and the 

static pressure at inlet is extrapolated from the interior domain. At outlet, the static 

back pressure is given and other flow variables are extiapolated from the interior 

domain. For periodic boundaries, a direct repeating condition is applied on both the 
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upper and the lower periodic boundaries ab and cd, as depicted in Fig. 1-3. On the 

blade surface, zero flux is applied across the finite volume boundaries for inviscid 

flow calculation, either a non-shp wall or shp wall boundary treatment can be chosen 

for viscous flow calculations. For the non-shp wall boundary condition, the velocities 

on the blade surface are set to be zero, and the wall shear stress is evaluated 

according to the local velocity gradients. Usually a very fme mesh near the wall is 

required for the non-shp wall condition to resolve the boundary layer. For shp-wall 

condition, the velocities on the waU are allowed to shp, the wall shear stress for 

turbulent flows is approximated by a log-law formulation (Denton, 1990), as 

t w = ^ £ f P 2 W ^ (2-29a) 

and 

A A 

2 /Re2,Re2 <125 

r^r^r^.n^n 0.03177 0.25614 J" -0.001767-1- ^—-I- ,Re2 >125 

ln(Re2) [ln(Re2)]' 

(2-29b) 

where the subscript "2" represents the mesh point one grid away from the wall and 

A 

Re2 = p 2 W 2 A y 2 / H , 

with W2 = ^U2 +(V2 - Vg)^ . The slip wall condition needs fewer mesh points in the 

near wall region than the non-sUp wall condition, and therefore can save the 

computation time. 
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The boundary conditions for solving the time-linearized Navier-Stokes/Euler 

perturbation equations are much more complex than those for solving steady flow 

equations, and are presented in the following sections. 

2.3.3.1 Phase-Shifted Periodic Conditions 

For a single blade passage, as shown in Fig. 1-3, if the upper boundary ab has 

an inter-blade phase angle (IB PA) a lead to tiie lower boundary cd, a phase-shifted 

periodic condition has to be apphed for solving the perturbation equation (2-16), i.e. 

U " = U 'e"" (2-30) 

where the superscript "u" refers to the upper boundary ab and "1" represents the 

lower boundary cd. The perturbations in the time-linearized Navier-Stokes/Euler 

equations are complex numbers, the real and imaginary parts can be updated by 

m^r^" =\{^l^ +U[eai c o s a - U L a g siuc)"" (2-31a) 

i^ln^r^ =\{VI^+^L sina + uLag cosa)°" (2-31b) 

<-«, 1 Z'-1 \ o I d 

(ULai)"^"' = - K a i +u;',3,cosa-HU;:„,,sina) (2-31c) 

(ULag)"" = ^ ( U U +U™ag cosa-U;^3, s ina )°" (2-31d) 

where the subscript "real" refers to the real part of a complex number and "imag" 

refers to the imaginary part. 
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2.3.3.2 Inlet and Outlet Boundary Conditions 

For an unsteady flow calculation in a finite extent computational domain as 

shown in Fig. 1-3, inlet and outlet boundary conditions have to be properly 

constructed to prevent spurious reflections from far-field boundaries (inlet and 

outlet). Otherwise the outgoing pressure, entropy, and vorticity waves can be 

reflected back into the computational domain to corrupt the solution. The 

development of nonreflecting boundary conditions for nonlinear and linear unsteady 

flow calculations in turbomachinery is active in recent years. A notable nonreflecting 

far-field boundary condition for 2-D Euler equations is made by GUes (1990b). In this 

method, the nonlinear Euler method is Hnearized and the steady flow at inlet and 

outlet is assumed to be uniform. By using the Fourier analysis, the amplitudes of four 

characteristic waves (downstream running and upstream running pressure waves, 

vorticity wave, and entropy wave) can be expressed by the sum of four complex 

amplitudes (pressure, density, velocities in x and y directions) and vice versa. 

According to the characteristics of these four waves, the nonreflecting boundary 

conditions can be constructed at the inlet and outlet boundaries. The error in this 

boundary condition is mainly introduced by the linearization of Euler equations and 

nonuniformity of inlet and outlet steady flows. 

In the present time-linearized Navier-Stokes/Euler method, two kinds of 

nonreflecting boundaries developed by Giles (1990b) are implemented in solving the 

time-linearized perturbation equations, one is die 1-D unsteady boundary condition, 

another is the exact 2-D single-frequency boundary condition. In order to reduce the 

error in the nonreflecting boundaries induced by the wakes in viscous flow 

calculations, the steady flow at outlet is circumferentiaUy averaged to give an 

'uniform' steady flow base for implementing the boundary conditions. 
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To implement the nomeflecting boundary conditions, firstly the transformation 

between the amplitudes of four characteristic waves and amplitudes of pressure, 

density, velocities in x and y directions are given by 

0 0 r 
C2 0 0 pc 0 u 

C3 0 pc 0 1 V 

. 0 -pc 0 K . P . 

(2-32) 

and 

u 
V 

0 

0 

0 

0 

0 

J _ 

pc 

0 

1 1 ^ 
2c' 

1 1 
2pc 2pc 

0 0 C3 

1 1 
2 2 y 

(2-33) 

where C j , C 2 , C 3 , and C4 are the amplitudes of four characteristic waves (entropy , 

vorticity, downstream running pressure, upstream running pressure waves), c is the 

local sound speed. 

In order to handle the forced response problems induced by incoming wakes, 

the transformation relationships of (2-32) and (2-33) at inlet can be re-written as 

0 0 P m l ' 

0 0 pc 0 u - Uinl 

C3 0 pc 0 1 V - Vml 

. 0 -pc 0 K Pinly 

(2-34) 
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and 

0 

u - u inl 

V - V 

P-P. 
inl 

m\J 

0 

0 

0 

0 

J _ 

pc 

0 

1 1 ^ 
2c' 

1 1 
2pc 2pc 

0 0 

1 1 
2 2 y 

(2-35) 

where p^j,, U j ^ j , V j ^ j , and Pĵ , are amplitudes of the prescribed incoming wake 

profile. The incoming wake can be prescribed by different ways such as a simple 

sinusoidal distribution or superposition of different Fourier harmonic components for 

a more accurate expression. For superposition of different harmonic components to 

model a wake, the linear perturbation equations have to be solved for each harmonic 

components. 

According to the characteristics of travelling waves, the 1-D unsteady 

nonreflecting boundary condition for an axial subsonic flow can be given 

At inlet: = 0 (2-36a) 

At outlet: C4 =0 (2-36b) 

The 1-D nonreflecting boundary condition, which ignores all variations in the 

y directions, is very simple and easy to implement, but it is not accurate enough for 

some cut-off conditions (Giles, 1991b). 
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To be more accurate, a two-dimensional nonreflecting boundary condition is 

also implemented in the present time-linearized method. This boundary condition can 

be given by 

At inlet: — 
a 

at' = a 
-c, 

{c-n)X 
(l-fS)(c-v?i) 

{c-ufX' 
(l + S)2(c-v?i) 

C 4 - C 2 

C 4 - C 3 

(2-37a) 

At outlet: 
35, 
at' ̂

 = a 2uX „ 1-S„ 
' ^ 2 + 7 - ^ C 3 - C 4 {c-vX){\ + S) \ + S 

(2-37b) 

where X is the wave length defined by 

cb 
CO 

and 

S = J l - (c^-uQX 
(c-vX)^ 

where h = al^^i^^^^^ is the wave number, a is the inter-blade phase angle and 

'^y pitch is the blade pitch. (2-37a) and (2-37b) can be time-marched in the same 

manner as the interior domain by using the 4-Stage Runge -Kutta scheme, a is the 

relaxing coefficient, choosing a too large value may lead to a numerical instabihty, 

choosing too small value will lead to a poor convergence rate, typically it is to be 

l / A y p i t e h -
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2.3.3.3 SoUd Wall Boundary Conditions 

For solving the time-hnear Euler equations, the perturbations of fluxes are 

simply set to be zero on the blade surface. 

To be consistent with solving the steady Navier-Stokes equations, there are 

two kinds of sohd wall boundary conditions implemented to solve the time-Unearized 

Navier-Stokes perturbation equations, non-sUp wall and sUp-wall conditions. For the 

non-sUp wall boundary condition, the relative velocity perturbations on the soUd wall 

are simply set to zero and the perturbation of wall shear stress is evaluated according 

to the local velocity gradients. 

For the sUp-wall condition, the perturbation of shear stress is obtained by 

linearizing the nonlinear relationship 

' C w = ^ C f p w ^ (2-38) 

to give. 

1 
^w=-[CfPw^+Cf (pw^)] (2-39) 

where Cf can be obtained by the relationship (2-29b) and the Cf can be given by 

Unearizing the relationship (2-29b). 

An interesting issue related to the soUd wall boundary condition is, what 

would happen if a time-linearized Euler perturbation equation is solved based on a 

steady viscous flow field generated by a Navier-Stokes solver? This issue might be of 

practical interest since some linearized Euler methods have been already developed 
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and it would be practically beneficial if these methods can be directly applied based on 

a steady flow provided by a separate well-developed steady viscous flow solver. 

Numerical tests were carried out in the present work by switching off all the viscous 

perturbation terms and solving the Euler perturbation equations based on a viscous 

flow field. The numerical tests show that for some test cases, doing this reveals 

serious convergence problems. This can be explained by comparing the unsteady 

perturbation equations with original unsteady Navier-Stokes equations. The original 

unsteady viscous flow model requires that tangential velocities must be constrained 

either by a non-shp wall condition or by applying a wall shear stress. This constraint is 

effectively lost if the Euler perturbation equations are used for the unsteady part of 

the flow, regardless of the condition applied in the steady viscous flow part. 

Therefore, solving the Euler perturbation equations on the viscous steady flow field 

does not seem reliable. This issue is also discussed in a work by Holmes and Lorence 

(1997). 

2.4 Summary 

In this chapter, a quasi 3-D time-linearized Navier/Stokes method has been 

developed. In this method, an unsteady flow is decomposed to be a steady flow plus a 

harmonically varying small perturbation. By the linearization, the original unsteady 

flow governing equation is divided into two equations: a steady flow equation and a 

linear perturbation equation. A pseudo-tune technique is introduced to make these 

two equations time-dependent. Both the steady flow and perturbation equations are 

spatially discritized by a cell-vertex finite volume scheme and temporally integrated 

by the 4-stage Runge-Kutta time-marching scheme in a pseudo-time domain. The grid 

moving velocities are explicidy included in the original flow governing equations and 

it is easy to handle the moving grids. To prevent spurious reflections of outgoing 

waves, a 1-D/2-D nonreflecting boundary condition is implemented. To enhance the 

computational efficiency, a 2-grid acceleration technique is applied to speed up the 

time-linearized viscous calculations. To be consistent with the solid wall conditions 
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used in the steady flow solver, a sUp-wall boundary condition has been developed in 

solving the Navier-Stokes unsteady perturbation equations. 

By Unearization, solving an unsteady flow equation in a real time-domain is 

effectively equivalent to solving two time-independent equations, therefore the time-

linearized method normally is much more efficient than the nonlinear time-marching 

methods. 
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Chapter 3 Validations for Time-Linearized Method 

A quasi 3-D time-linearized Navier-Stokes/Euler method has been developed 

for unsteady flows in turbomachinery, as described in Chapter 2. In this Chapter, the 

computational results by this time-linearized method for the unsteady flows induced 

by the blade oscillation and unsteady incoming wakes will be presented. In order to 

validate the method, the calculated results will be compared to the numerical results 

produced by other well-developed linear methods, nonlinear time-marching methods, 

and experimental data. The calculations are carried out in two parts: inviscid flow 

calculations for vahdating the time-linearized Euler mediod, and viscous flow 

calculations for validating the time-Unearized Navier-Stokes method. 

3.1 Euler Solutions 

3.1.1 Oscillating Flat Plate Cascade 

The first case for the vahdation on the time-linearized Euler method is made 

by calculating the imsteady flows around an oscillating flat plate cascade. The 

geometry of this cascade is 

Chord: C = 0.076m 

SoUdity: C/Pitch = 1.3 

0 Stagger angle: Y = 30 

and the flow has a Mach number of 0.65 and zero incidence. 

The unsteady flows are introduced by the blade oscillation in a torsion mode 

around its leading edge with 1 degree amplitude and -90° inter-blade phase angle. 

The calculations are carried out under two different reduced frequencies ( based on 
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the blade chord and flow inlet velocity), one is a lower frequency of 0.57, another is a 

higher frequency of 1.714. 

In this flat plate cascade test case, the nonhnear effect is negligible. The 

calculated unsteady pressure jumps as defined later by the present time-Unearized 

Euler method are compared to those generated by a weU-established linear solver 

LINSUB. The programme LINSUB was described by Whitehead (1987) based on a 

semi-analytical linear method and it can handle several kinds of mrbomachine 

unsteady flows in a flat plate cascade induced by the blade osciUation, incoming 

wakes, and inlet or outlet pressure waves. The solution of LINSUB is very accurate 

so that it is widely used to vaUdate numerical methods. The unsteady pressure 

coefficient jump is defined by 

A(Cp) = ( C p ) " - ( C p ) ' (3-1) 

where the unsteady pressure coefficient, c , is defined by 

1_ 
0.5pi„,w\iA, S = n c . . 2 . (3-2) 

where A^ is the amplitude of blade torsion, in this case is given by 1 degree, and the 

superscript "u" represents the upper surface of a reference blade and "1" refers the 

blade lower surface. 

The computational mesh used in the present time-linearized Euler calculation 

is 90x30 and the mesh in axial direction is sUghdy squeezed around the blade 

leading and trailing edges in order to give a better flow resolution. The calculated real 

part and imaginary part of the unsteady pressure coefficient jump for the lower 

frequency case (k=0.57) is compared to the results produced by LINSUB in Fig.3-1, 
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and an excellent comparison has been achieved even at the leading and trailing edges 

of the blade. A similar good comparison has also been obtained for the higher 

frequency case (k=1.714), as shown in Fig.3-2. 

3.1.2 High Frequency Incoming Wakes 

In order to assess the abiUty of the present time-linearized Euler method for 

handling the forced response problems in tarbomachinery, the unsteady flows around 

flat plate induced by unsteady incoming wakes have been calculated. 

In this calculation, the cascade geometry is 

Chord: C = 0.1m 

SoUdity: C / Pitch = 2.0 

Stagger angle: Y = 30^ 

and the steady flow has a Mach number of 0.7 and zero incidence. 

The unsteady flow in this forced response problem is induced by an unsteady 

incoming wake. The wake has a pitch which is 90% of the blade pitch. In the present 

calculations, the unsteady flows induced by the wakes from two different incoming 

angles are considered, one is O'̂ , the other is -30°. For the 0° case, it produces a 

reduced frequency (based on axial velocity and axial chord) of 6.98 . For the -30° 

case, it produces a reduced frequency of 13.96. According to the Eq. (1-4), the pitch 

ratio between the wake and cascade in this calculation produces an inter-blade phase 

angle of -40° . 

The wake in this calculation is prescribed by assuming a uniform static 

pressure, uniform total enthalpy and a simple sinusoidal form of velocity defect across 
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the wake, so the unsteady perturbation amplitude of the incoming wake can be given 

by 

Pin. =0.0 

"inl = A „ V " W + V L C O S ( P ^ , , J 

Vinl = A „ V u L + v L s i n ( P w a k e ) 

where P^^ke is the angle of incoming wake and it is 0° or -30° for current two 

cases. A^ is the amplitude of the wake velocity defect and is given by 1% in the 

calculation. The ampUtude of the wake density, pjj,,, can be worked out by linearizing 

the following nonUnear relationship 

r-ircj-„-i(u^,+vL) 

where T ini is the total temperature and is constant in the wake frame. For the wake 

in this calculation, Pĵ j, is given by 

Pinl =J_.^% ( U i , | U i n . + V i „ l V i „ l ) (3-4) 

where C p is the gas constant and y is the ratio of gas specific heat. is the 

amplitude of the unsteady temperature at the inlet. 

In this vaUdation, the predicted amplitudes of the unsteady pressure coefficient 

jump by the time-linearized Euler method are also compared to the results produced 

by LINSUB. In this calculation the unsteady pressure coefficient is defined by 
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C p = . ^ ^ ^ (3-5) 
PinlWi„,W^f 

where w^̂ f is the velocity which would be induced at the leading edge of the blade by 

inlet wakes (positive up), if the cascade were removed. 

In order to resolve the high frequency unsteadiness, a fine mesh with a size of 

350 X 40 is used in this calculation. For the first case with die wake angle of 0° 

degree, a contour map of the first harmonic entropy is presented in Fig.3-3. The 

contour map of the first harmonic pressure is presented in Fig.3-4. It can be clearly 

seen that the incommg wake propagates downstream. The complex amplitudes of 

unsteady pressure coefficient jump predicted by the present linear method are 

compared with LINSUB in Fig.3-5, and the comparison is good. The computational 

results for the case with wake angle of -30° degrees are given in Fig.3-6 to Fig.3-8. 

It can be seen that the unsteady wake propagation is weU predicted by the presented 

calculation, a reasonable comparison between current calculation and LINSUB is also 

achieved even for the unsteady flow with a very high frequency. For both cases, their 

first harmonic pressure contours suggest that the non-reflection of outgoing pressure 

waves is weU kept at the inlet by applying the 2-D nonreflecting boundary conditions, 

but at the outiet some reflections can be seen. The reason is not quite clear. This 

problem is noted in Giles' computational results as well (Giles, 1990b). 

3.1.3 Fourth Standard Configuration 

To vaUdate the present quasi 3-D time-linearized Euler method in a more 

practical condition, an unsteady flow through an osciUating turbine cascade has been 

calculated. This is the fourth standard configuration in the Aeroelasticity Workshop 

(Boles and Fransson, 1986). In this workshop, nine standard configurations about the 
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unsteady flows around oscillating blades were collected, and experimental data are 

available in the first seven configurations. For each configuration, different numerical 

methods were used to calculate the unsteady flows and the numerical results were 

compared to the experimental data. Because of the difficulty for the experimental 

study of unsteady flows in turbomachinery, especially for the blade flutter, the 

Aeroelasticity Workshop is invaluable for understanding blade flutter and validating 

numerical methods. 

The fourth standard configuration is a case in which a turbine cascade 

oscillated in a bending mode under different frequencies and inter-blade phase angles 

at high subsonic or transonic flow conditions. The cascade in this experiment is an 

annual mrbine cascade and inlet guide vanes were used to induce swirl in the flow to 

produce the prescribed inlet flow angles. The cascade has a stagger angle of 56.6°, 

hub to tip ratio of 0.8, aspect ratio of 0.538, and has 20 blades. In order to produce 

2-D results, the blade profile is the same from hub to tip. In the present numerical 

study, the experimental Case 3 is considered. The flow condition in this case is given 

by 

Inlet flow angle: pi„, = -45.0° 

Inlet Mach number: M^ ĵ = 0.28 

Outlet flow angle: |3„̂ ,j = -71.0° 

Outlet Mach number: M^^ = 0.9 

First, the steady flow is calculated by solving the steady flow equations. 

Numerical tests have shown that a Unear variation of the streamtube height in the 

blade passage with a ratio of 1.1 has to be given to match the experimental time-

averaged static pressure distribution on the blade surfaces. A good comparison 

between the calculated steady isentropic Mach number distribution and experimental 

data is shown in Fig.3-9. 
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Having calculated the steady flow, the unsteady flow due to blade bending in a 

direction nearly perpendicular to the chord Une is calculated by solving the time-

Unearized perturbation equations. The reduced frequency of the blade osciUating is 

0.12 (based on the blade semi-chord and inlet flow velocity). Here the unsteady flows 

under three different inter-blade phase angles, i.e. -90°, 180°, and 90° are 

calculated. The predicted amplitudes and phase angles of unsteady pressure 

coefficients on the blade surface are compared to the experimental data and the 

comparisons are given in Fig. 3-10 to Fig. 3-12. The comparisons have shown that 

the amplitudes in the front part of the suction surface are over-predicted under aU 

three inter-blade phase angles and the trend of phase angle variations is reasonably 

predicted. The reason for the discrepancy between the predicted and experimental 

data is not known and it might be due to the three-dimensional effects in the 

experiment. A three-dimensional linear analysis by HaU and Lorence (1992) of this 

standard configuration has shown marked 3-D effects on the unsteady flow 

calculations, especiaUy on the unsteady ampUtudes, although this standard 

configuration was designed to be a two dimensional test case. Nevertheless, the 

predicted results by the present time-linearized Euler method are very simUar to those 

produced by a nonlinear time-marching method (He, 1990b). 

3.1.4 Tenth Standard Configuration 

In order to vaUdate the present time-linearized Euler method for transonic 

unsteady flows around osciUating compressor blades, the tenth standard configuration 

is calculated. This standard configuration was recentiy proposed by Fransson and 

Verdon (1993), in which a compressor cascade oscUlates either in a torsion or a 

bending mode under different reduced frequencies and inter-blade phase angles. The 

airfoUs of this cascade have a circular arc camber distribution with a maximum height 

of 5% of tiie chord. The thickness distribution is sUghtly modified from a NACA 5506 

airfoil so that the trailing edge is wedged. The cascade has a stagger angle of 45° and 

a pitch/chord ratio of 1.0. The cascade operates in a subsonic flow condition or a 
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transonic flow condition with a weak shock on the blade suction surface. This 

standard configuration was extensively investigated by a time-linearized potential 

method (Verdon, 1993) and nonhnear time-marching methods ( Huff, 1991, Ayer and 

Verdon, 1996). The comparison between the linear results and nonlinear results have 

shown that the nonlinear effects can be neglected in subsonic flow conditions but the 

nonlinear effects associated with the shock oscillation at transonic flow conditions 

could be potentially important. 

In the present work, the transonic flow condition is considered with an inlet 

free stream Mach number of 0.8 and an inlet flow angle of 58°. This flow condition is 

such that there is a supersonic patch on the suction surface of the blade. The steady 

flow Mach number contours at this flow condition are given in Fig. 3-13 and the 

steady isentropic Mach number distribution on the blade surfaces is shown in Fig.3-

14. The supersonic patch and a weak shock at the end of the patch on the blade 

suction surface can be seen. 

The unsteady flow in this case is induced by the blades bending with an inter-

blade phase angle of -90 degree and a reduced frequency (based on the blade chord 

and upstteam velocity) of 1.287. The calculated complex amplitudes of unsteady 

pressure coefficients are shown in Fig.3-15 and the unsteady shock impulse due to the 

shock oscillation can clearly be seen. The present results are compared to the results 

produced by a nonhnear time-marching method (Huff, 1991). The comparison is very 

good except the shock impulse predicted by the present linear method is shghtiy 

higher than that predicted by the nonhnear method. The present results are very 

similar to those predicted by other linear methods (Hall et al, 1994). This calculation 

shows that the time-linearized Euler methods are able to predict the unsteady shock 

impulse well as long as the nonlinear effects of shock oscillating are neghgible. 
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3.2 Navier-Stokes Solutions 

3.2.1 Unsteady Laminar Boundary Layer on Flat Plate 

To vaUdate the present linearized Navier-Stokes method, an unsteady laminar 

flow on a flat plat is nuraericaUy analysed. In this work, a model problem which was 

originaUy analyticaUy studied by LighthUl (1954) is chosen. In this model problem, the 

unsteady incompressible laminar boundary layer is introduced by a smaU periodic 

fluctaation of the main stream velocity about a constant mean value, i.e. 

U = Uo(l + ee"-') (3-7) 

where UQ is the mean velocity of the main stream, e is a smaU nondimensional 

parameter and it is much smaller than 1. This model problem later was investigated by 

Ackerberg and PhiUps (1972) by using a semi-analytic method, and was calculated by 

Cebeci (1977) by solving boundary layer equations using a finite difference method. 

For this model problem, Cebeci found that nonlinear effects are negUgible if e < 0.15. 

To simulate this model problem, the imsteady laminar flow through a channel 

with a length of three times the half height of the channel is calculated by using the 

time-linearized Naiver-Stokes method. The unsteadiness in the calculation is 

introduced by the back pressure oscUlation of a smaU amplitude in a harmonic form 

while holding the inlet flow quantities fixed. To resolve die boundary layer, a fine 

mesh is arranged near the waU so that there are approximately 25 mesh points across 

the boundary layer near the channel exit. The non-sUp waU boundary condition is 

applied in the calculations. In order to reduce the effect of compressibUity of the 

flow, the main stream Mach number in the current investigation is kept to 0.1. The 

Reynolds nimiber in the calculation is 150,000 based on the upstteam velocity and the 

channel length. 
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In the present numerical analysis, the steady laminar boundary is obtained by 

solving the steady flow equations in the channel. The calculated steady laminar 

boundary layer profiles are compared to the analytical Balsius laminar boundary 

solutions in Fig. 3-16. The comparison shows that the laminar boundary layer in the 

present calculation is well resolved. 

Having obtained the steady flow, the unsteady flow is introduced by 

prescribing a small amplitude of back pressure oscillation. I t is noticed that the 

instantaneous main stream flow is uniform and there is no streamwise phase lag in the 

original analytical model. The numerical tests have shown that i f the reduced 

frequency of the excitation is smaller than 2.5, the phase lag in the main stream in the 

present linear analysis can be neglected. The calculated unsteady velocity 

perturbation profiles at three different reduced frequencies are shown in Fig. 3-17. 

The reduced frequency here is defined by cox / U Q . In these figures, the boundary 

layer coordinate is defined by yyjpUo I |Ltx . The comparison with a semi-analytic 

solution by Ackerberg and Phihps (1972) is good, importantly the "overshoots" of the 

real part of the unsteady velocity profiles, where the real part of U / is bigger than 

1.0 (Ue is the velocity on the boundary edge), are captured by the time-linearized 

Navier-Stokes method. The overshoots are produced by the boundary layer thins and 

then thickens as the outer flow speeds up and slows down. When the boundary layer 

thins, the outer inviscid flow is brought closer to the wall producing what appears to 

be a bulge in the perturbation velocity profile. 

Fig.3-18 shows the calculated distribution of unsteady wall stress ampUtudes 

and phase angles with the reduced frequency. The results are in a satisfactory 

agreement with Lighthill's (1954) results for both low and high frequencies, and with 

the numerical solutions by Cebeci (1977). The wall shear stress in Fig. 3-18 is defined 

by X i / X Q , where 
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x = X o + e t i cos(cot + (t)) 

where X Q is the wall shear for Blasius f low. 

3.2.2 Unsteady Turbulent Boundary Layer on Flat Plate 

To check the present time-linearized Navier-Stokes method for unsteady 

turbulent flows, an unsteady turbulent boundary layer on the flat plate is calculated. 

This low speed unsteady turbulent f low has zero mean pressure gradient in the flow 

direction and was experimentally studied by Karlsson (1959) in a boundary layer wind 

tunnel. The mean velocity in the experiment was very low and was about 5.33 m/s. 

The measurements were made at the location where the Reynolds number was about 

3.6 x l O ^ . Here the Reynolds number is based on the free stream mean velocity and 

boundary layer displacement thickness, defined by 

Reg. = U o 5 * / v (3-9) 

where 

dy 

In the experiment, the turbulent boundary layer thickness was about 0.00762 m at the 

measuring section, the local skin friction coefficient, C f , was approximately 0.0034. 

The free stream fluctuations were obtained by a shutter consisting of four parallel 

rotating vanes driven by an electric motor at the exit of the wind tunnel. The unsteady 

boundary measurements were carried out under several frequencies, i.e. 0 (quasi-

steady), 0.33, 0.66, 1.0, 3.3, 2.0, 4.0, 7.68 and 48 Hz. A t each frequency, except 0 
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and 48 Hz, the free stream velocity fluctuation amplitudes varies from about 8% ~ 

34% of the free stream mean velocity. The experiment observed that the nonlinear 

effects were very small, even for fluctuation amplitudes as large as 34 %. The linear 

method can be used to analyse this experimental case. Because only limited 

experimental data for unsteady turbulent boundary layers are available, Karlsson's 

experiment is valuable for vahdating the numerical methods. This test case was 

numerically studied by Cebeci (1977). 

In the present linear analysis by the time-linearized Navier-Stokes method, the 

imsteady flow is introduced by prescribing a back pressure unsteady perturbation at 

the channel exit. A fine mesh is also used to resolve the boundary layer. In the 

calculation, the free stream Mach number is 0.1 and a quite high input Reynolds 

number (based on the channel length and free stream mean velocity) is given to match 

the experimental Reynolds number R C g . . Fig.3-19 gives the calculated turbulent 

boundary layer profile and it is compared to the experimental time-mean data. In 

order to compare with experimental data for unsteady flows, the unsteady 

perturbation equations are solved at three reduced frequencies which are identical to 

the experimental reduced frequencies under three physical frequencies (0.33, 1.0, and 

4.0 Hz). Fig.3-20 to Fig. 3-22 have shown the comparisons between calculated and 

experimental unsteady turbulent profiles in three different reduced frequencies. The 

experiment data have shown that the "over-shoots" of in-phase components of 

velocity fluctuation amplitudes exist in all three frequencies, and the peak of the 

"over-shoot" gets closer to the wall with the increase of frequency. In the region 

close to the wall, the out-of-phase (imaginary part) components are always positive 

for all the frequencies. The comparisons between the calculated results and the 

experimental data show that the unsteady turbulent boundary layers are reasonably 

well predicted. 
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3.2.3 Fi f th Standard Configuration 

This configuration is a subsonic compressor cascade oscillating in a torsion 

mode around its mid-chord under a subsonic flow condition. In the experiment, the 

flow incidences are from 2° up to 6° and the unsteady pressured were measured. 

This standard configuration was numerically investigated by two time-Unearized 

potential methods (Whitehead, 1982, Verdon and Caspar, 1984). In this 

configuration, the viscous effects could be important when the flow has a very high 

incidence. In the time-hnear potential analysis by Verdon and Caspar(1984), the 

calculation had to be carried out at a different flow incidence from the experimental 

one in order to match the experimental data, the reason might be due to that the 

viscous effect was ignored in the calculations. In the present work, the time-hnearized 

Navier-Stokes method is vaUdated by calculating this standard configuration. 

In the f i f t h standard configuration, the blade has a chord of 0.09 m, stagger 

angle of 59 .3° , and zero camber. The flow condition for the present numerical 

calculation is 

Inlet Mach number: M j ^ , = 0.5 

Flow incidence: i = 4° 

The unsteady flow is introduced by blade oscillating in torsion mode around 

its mid-chord with an amplitude of 0.0052 radian under a 180° inter-blade phase 

angle. The unsteady calculations are carried out at two reduced frequencies (based on 

the semi-chord and inlet flow velocity), 0.14 and 1.02. In the calculation, the input 

flow incidence is kept the same as the experimental incidence(4°) and the flow is 

assumed to be fuUy turbulent from the leading edge. The shp-wall boundary condition 

is imposed for solving both the steady and time-linearized Navier-Stokes equations. 
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For the steady flow calculation, the predicted steady pressure coefficients are 

compared with experimental data in Fig. 3-23. Because of the high incidence, i t can 

be seen that the aerodynamic loading concentrates around the blade leading edge. 

For the unsteady flow calculation at the reduced frequency of 0.14, the calculated 

amplitudes and phase angles of unsteady pressure coefficients are given in Fig. 3-24 

and they are in a very good agreement with the experimental data. For the case with 

the reduced frequency of 1.02, the results are shown in Fig.3-25 and it can be seen 

that the amplitudes of unsteady pressure are well predicted, but there is a marked 

discrepancy of phase angles between the calculated and the experimental data, 

especially around the trailing edge on the pressure surface. I t should be noted that the 

present calculation results are very similar to those produced by time-linearized 

potential methods. 

3.3 Summary 

In this chapter, the vahdations of the time-linearized Navier-Stokes/Euler 

method described in Chapter 2, are presented. In the first part, the calculations of 

inviscid unsteady flows in a flat plate cascade induced by blade oscillation and 

incoming unsteady wakes have shown excellent agreements with the results produced 

by a well-established semi-analytical linear method LINSUB. A fair comparison with 

the experimental data is achieved for the calculation of the fourth standard 

configuration, and the 3-D effects are likely to be blamed for the discrepancy. For the 

computation of a transonic compressor oscillating cascade, the comparison of 

computational results between the present time-linearized Euler method and a well-

developed nonUnear time-marching Euler method is very good. For the vaUdation of 

the time-linearized Navier-Stokes method, calculated results for an unsteady laminar 

and a turbulent boundary layer are compared well with analytical solutions, 

experimental data and other numerical methods. Finally the vahdation is carried out 

by calculating the fifth standard configuration using the time-linearized Navier-Stokes 

method, and the results compare reasonably well with the experimental data. 
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I t should be pointed out that all the test cases considered here have no or Uttle 

nonhnear effects. An important issue of the nordinear effects and the vahdity of the 

linear analysis has not been addressed. More test cases concerning this issue wi l l be 

presented in Chapter 4. 
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Chapter 4 Nonlinear Harmonic Method 

As presented in last two chapters, a time-linearized Navier-Stokes/Euler 

method is developed and validated. The main feature of the time-linearized method is 

its high computational efficiency compared to the nonhnear time-marching methods. 

However, the application of the linear methods is restricted to the Unear problems due 

to the linear assumption. Although the onset of flutter in turbomachinery is widely 

accepted to be a linear aeroelastic phenomenon in most circumstances, the nonlinear 

effects with the shock oscillation, finite amphtude excitation, and flow separations can 

be potentially important. The forced response of blade unsteady forces to 

nonuniformity of unsteady flow fields( e.g. incoming wake, potential interaction, and 

inlet distortion etc.) is not necessarily a linear phenomenon. I t is highly desirable to 

develop a numerical method which has a high computational efficiency hke the 

conventional time-linearized methods, while can include the nonlinear effects Uke the 

nonlinear time-marching methods. 

The work in this chapter is based on the nonhnear harmonic approach 

proposed by He (1996a) which is introduced in Chapter 1. The emphasis in this 

chapter is to develop this approach into a new quasi-3D nonhnear harmonic Navier-

Stokes/Euler method in which the nonhnear effects can be effectively included. 

4.1 Time-Averaged Equations 

Compared to the conventional time-linearized method, an important change in 

the nonhnear harmonic method is that the time-averaged flow field (instead of 

steady) is used to be the base of unsteady perturbations. The unsteady flow is 

assumed to be a time-averaged flow plus a small perturbation, i.e. 

U = U + U ' (4-1) 
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where 

U = h 

f P • 

(p'u) 

r(pV) 

V (Pe)) 

(4-2) 

and 

U ' = h 

^ P' ^ 

(pu) ' 

r (pv) ' 

V (Pe)' J 

(4-3) 

where the U is the vector of the time-averaged conservative variables, U ' is the 

vector of the perturbations to the time-averaged variables. The viscous terms can also 

be assumed to be a steady part plus a perturbation. 

Similarly, assuming that the computational grid can be expressed by its steady 

or mean position plus a small perturbations, i.e. 

X = X - l - x ' , y = y - l -y ' (4-4) 

The grid moving velocities are also divided to be a mean part plus a perturbation, i.e. 

U g = U g + U g , V g = V g + V g (4-5) 

Substituting the expression of (4-1), (4-4) and (4-5) into the original nonlinear 

Navier-Stokes/Euler integral equation (2-1), and time-averaging it , the resultant time-

averaged Navier-Stokes/Euler Equation can be given by: 

61 



where 

i [ ( F - V , )dy - K G - Vy )dx + (F 'dy ' ) + (G'dx ' ) - (v ' .dy') - (v'^dx')] 

= J j (SdA -H (S 'dA ' ) (4-6) 
AA 

and 

where 

F = h 

p u - p u . 

( p u - p U g )u P ( p u ) ' u ' - ( p U g ) ' u ' 

r [ ( p ^ - p ^ ) V -f- ( p u ) ' v ' - ( p U g ) ' v ' ] 

( p u - p U g )e + Pu + P ' u ' -I- ( p u ) ' e ' - ( p U g )'e' 

(4-7) 

G = h 

p v - p v 

( p v - p v )u -I- ( p v ) ' u ' - ( p v ) ' u ' 

r [ ( p v - p v g ) v + P -H ( p v ) ' v ' - ( p v g ) ' v ' ] 

( p v - p V g )e -I- Pv + P 'v ' + ( p v ) ' e ' - ( p V g )'e'^ 

(4-8) 

V , = h 

0 

rx 

- q x + U X , , - H V X , y - F u X , , + V X 

(4-9) 

Vy = h | -xy 

rx 

V - q y + U ' C x y + V X ^ - H u ' x ; , - h v ' x ' 

yy 

yy yy / 

(4-10) 
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2 , ^ a u 3v , 2 _ 3v 3u, ,du 3v, 

The non-conservative time-averaged variables in the above equations can be 

worked out f rom the conservative time-averaged variables by following formulations. 

u = p u - p ' u ' / p (4-11) 

v = p v - p ' v ' / p (4-12) 

e = p e - p ' e ' / p (4-13) 

P = ( Y - 1 ) 
1 

pe - | ( p u u + p w ) - ^ ( p u ) ' u ' - ^ (pv) 'v ' (4-14) 

The comparison between the time-averaged equation (4-6) and the steady 

form of the original unsteady equation (2-1) shows that the time-averaging generates 

extra terms. There are two kinds of extra terms, one kind is generated by the 

computational grid movement such as F 'dy ' , the other kind is produced due to the 

nonlinearity of flow governing equations such as (pu) 'v ' , which is similar to the 

turbulence (Reynolds) stress terms. The second kind of extra terms is called "unsteady 

stress" terms in the present work and they only exist in the momentum and energy 

equations. The effects of the "unsteady stress" terms depend on the spatial gradients 

of the unsteady disturbances. 

Normally the amplitude of grid motion in a blade flutter analysis is very small, 

the extra terms produced by grid movement in the equation (4-6) are assumed to be 
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small quantity terms and are neglected in the present method. So the time-averaged 

form of the governing equation can be re-written by: 

: f ; ( F - V J d y - f - ( G - V y ) d x ] = j f S d A (4-15) 
AA 

Comparing the time-averaged equation (4-6) to the steady form of the 

governing equation (2-1), the mass continuity equation remains unchanged, the 

"unsteady stress" terms appear in the time-averaged momentum and energy 

equations. To solve the time-averaged equation (4-15), the extra relationships or 

models are required to make the equation closed, similar to that the turbulence 

models are needed to close the Reynolds-averaged Navier-Stokes equations. I f these 

unsteady stress terms are zero, the time-averaged equation (4-15) is reduced to the 

conventional steady flow equation. 

4.2 First Harmonic Perturbation Equations 

Substituting the equations (4-1), (4-4) , and (4-5) into the original flow 

governing equation (2-1) and then subtracting the time-averaged equation (4-6), the 

unsteady perturbation equation is given by 

|- JJ ( U d A ' + U ' d A ) + jkF - V, )dy' + (G - )dx ' + ( F ' - v ; )dy + (G' - V; )dx' 
Ot AA 

= I J ( S ' d A - S d A ' ) (4-16) 
AA 

where 
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F ' = h 

( p u ) ' - ( p u j ' 

( p u - p U g K + [(pu)' - (pUg )']u + P ' -ipuYu' + (puju' 

r[(p^ - P ^ ) u ' + [(pv)' - (pv J ' ]u - (pv)'u' + (pv. )'u'] 

[pe + P ]u ' + [(pe) ' + P ']u - peu' - (pe)'!!, - (pe) 'u ' - P 'u ' + (pe) 'u ' 

(4-17) 

G ' = h 

( p v ) ' - ( p v g ) ' 

(pv - pvg ) u ' + [ (pv) ' - (pvg) ']!! - (pv) 'u ' + (pvg ) ' u ' 

_ r [ ( p v - p v g ) v ' - f - [ ( p v Y - i p v ^ ) ' ] v + P ' - ( p v ) ' v ' + (pv^YvJ 

[ p i + P ]v ' + [(pe) ' + P ']v - pev; - (pe)'Vg - (pe) 'v ' - P 'v ' + (pe)'v 

and 

(4-18) 

v; = h 
rr 

- q ' x + u ' t , , + v'T 
xy 

+ < x + V < y - u ' ' C ' „ - v ' x ; y ^ 

(4-19) 

V x ' = h 

0 

•xy 

yy 

-q 'v+u't .y-Hv'X yy + < y + V t ' y y - U ' X ; y - V ' x ' y y ^ 

(4-20) 

The complete form of the unsteady perturbation equation (4-16) is not readily 

solvable i f a frequency-domain harmonic approach is to be used. It is assumed that the 

unsteady perturbation is dominated by the 1st order terms. Effectively, the second 

order terms in the unsteady perturbation equation (4-16) are neglected. The resultant 

first order form of fluxes (4-17) to (4-20) can be re-written into 

65 



and 

F ' = h 

( p u ) ' - ( p u g ) ' 

( p u - p U g _ K + [ ( p u ) ' - ( p U g ) ' ] u + P ' 

_ r [ ( p v - p V g ) u ' + [ ( p v ) ' - ( p V g ) ' ]u] 

[pe + P ] u ' + [(pe)' + P']u - p e u ; - (pe)'u^ 

(4-21) 

G' = h 

( p v ) ' - ( p v g ) ' 

(pv - p V g ) u ' + [(pv) ' - ( p V g ) ' ]u 

_r[(pv - ^ ) v ' + [ (pv) ' - ( p V g ) ' ]v -H P'] 

[pe + P]v ' + [(pe) ' + P ']v - pev; - (pe)'Vg ^ 

(4-22) 

v; = h 

- Q x + u ' x , 

0 

+ v 'x 
^ * ""xy 

+ < x + vx ;y^ 

(4-23) 

v; = h 

0 

'xy 

rr yy 

- q ' y + U ' X . y + V ' X y y + UX'.y "h V X '̂  y y y 

(4-24) 

In order to use a frequency domain method, it is further assumed that the 

unsteady perturbation varies in a harmonic mode in time, i.e. 

U ' = Ue" (4-25) 

where U is the vector of conservative variable amphtudes. The moving grid and 

moving velocities have similar harmonic forms. 
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Substituting all the harmonic expressions into the unsteady perturbation 

equation (4-16), the first order harmonic perturbation equation becomes 

i[{F - V, )dy -H (G - Vy )dx + (F - V, )dy + {G-% )dx 

where 

= JJ (SdA + SdA) - io) JJ UdA - ico JJ UdA (4-26) 
AA AA AA 

and 

F = h 

( p u ) - ( p U g ) 

( p u - p U g ) u -I- [ ( p u ) - ( p u ) ] u + P 

r [ ( p v - p V g ) u + [ ( p v ) - ( p V g ) ] u ] 

[ p e -I- P ] u -1- [ (pe ) - i - P ]u - p e u g - ( p e ) Ug ^ 

G = h 

( p v ) - ( p v g ) 

( p v - p V g )u + [ ( p v ) - ( p V g )]u 

r [ ( p v - p v ^ ) V -I- [ ( p v ) - ( p V g ) ] V -1- P] 

[ p ^ + P ] v - H [ ( p e ) - h P ] v - p ^ V g - ( p e ) V g ^ 

V = h 
r x xy 

- q x + U T ^ x x + V X ^ y + U ' ^ x x + V X - x y y 
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V , = h 

0 

-xy 

- Q y + UX 

_ ^ y y _ 

xy + V X y y - m X , y - H V X y y ^ 

Actually the first order harmonic perturbation equation (4-26) has the same 

form as the unsteady perturbation equation (2-12) in the time-linearized method. 

However, the equation (4-26) is only quasi-linear, i.e. the perturbations are linear for 

a given time-averaged flow field. Indeed, i f the time-averaged flow is the same as the 

steady flow, the above first harmonic perturbation equation reduces to the 

conventional time-hnearized perturbation equation. 

4.3 Pseudo T i m e Dependence and Spatial Discretization 

Similar to the time-linearized Navier-Stokes/Euler method in Chapter 2, the 

pseudo-time ( t ' ) is introduced to make both the time-averaged equation (4-11) and 

the first harmonic perturbation equation (4-26) time-dependent. The modified time-

averaged equation and the first order perturbation equation can be given by: 

— JJ U d A +jl(F - V , )dy + (G - Vy )dx] = JJ SdA 
Ot AA AA 

(4-27) 

and 

dt 
- JJ UdA + jUp - V , )dy -f- (G - Vy )dx + (F - V , )dy + (G-% )dx" 

AA 

= JJ (SdA + SdA) - ico JJ UdA - ico JJ UdA 
AA AA AA 

(4-28) 



Now both the time-averaged equation (4-27) and the first order harmonic 

perturbation equation (4-28) are hyperbohc in a pseudo-time domain. They can be 

solved by any time-marchmg integration schemes. 

The cell-vertex finite volume scheme is used again to descretize both the time-

averaged equation and the first order harmonic perturbation equation spatially. To 

suppress numerical oscillations and capture the time-averaged shock and the shock 

unpulse in the calculations, a 2nd order and 4th order adaptive smoothing is used. The 

semi-discrete forms of the time-averaged equation and the 1st order harmonic 

equation are in similar forms as Eq.(2-15) and Eq.(2-16) in the time-hnearized 

method. The only modification in this nonhnear harmonic method is the treatment of 

the pressure sensor in the artificial smoothing terms. The pressure sensor as shown in 

(2-22) is a nonhnear term and its nonlinearity is neglected in the time-linearized 

Navier-Stokes/Euler method. However, its nonlinearity cannot be ignored in the 

cases with strong nonhnear effects, so it is desirable to linearize the pressure sensor. 

However, i t is recognised that an accurate way to linearize the pressure sensor is not 

easy to achieve(Linguist, 1991). In the present work, an approximate approach is 

used to partially linearize the pressure sensor (He, 1997c). The modified form of the 

pressure sensor is given by 

P i _ i j - 2 P y + P i , i j 

Pi_lj-H2Py-HPi^lj 

,Pi+lj ^Pjj +Pi_ij 
+ 0.5^ 

Pi+lj+2Py+Pi+i j 
(4-29) 

I t can be seen that the modified pressure sensor is proportional to the local 

unsteadiness and the time-averaged effects of the nonhnear behaviour of pressure 

sensor can be included. 
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4.4 Coupling Between Time-averaged Flow and Unsteady Perturbations 

So far, the time-averaged equation (4-27) is not closed, the extra relationships 

are needed to work out the "unsteady stress" terms. For a periodically unsteady flow, 

these terms can be direcdy evaluated in terms of the phase and amplitude of the 

unsteady perturbations. For example, u' and v' are two unsteady quantities 

changing in the harmonic forms, i.e. 

u' = A„sin(cot + (t)J 

and 

v' = A^sin(cot + (t)y) 

Time-averaging u'v' over one unsteady period Tor cot = In is: 

1 
u'v' = -f^u'v'dt 

r j i JO 

= A„A^ sin(a)t + ^„ )sin(a)t + (|)Jd(cot) 
2n 

= | A „ A , c o s ( ( j ) „ - < l ) J (4-30) 

where Ay and A^ are the amplitudes of the u' and v'. By using the relationship 

(4-30), the "unsteady stress" terms can be easily worked out if the unsteady 

perturbations are already known. The unsteady perturbations are obtained by solving 

the first order harmonic perturbation equations which the coefficients are formed from 

the time-averaged solution. Therefore, the time-averaged equation and the fmt order 

harmonic perturbation equation interact each other. For solving time-averaged 

equation, tiie extia terms are evaluated from the solution of the fust order 
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perturbation equation, while the coefficients of the perturbation equation are 

evaluated from the solution of the time-averaged equation. Because of this 

interaction, these two equations now cannot be solved separately and a coupling 

procedure has to be used to integrate these two equations in a pseudo-time domain. 

There two kinds of coupling methods can be used, one is the loose coupling, 

another is the strong coupling. In a loose coupling procedure, the time-averaged 

equation and the perturbation equation are solved alternately. For example, a steady 

flow field is firstly obtained by solving the steady equation and the linearized 

perturbation equation is solved on the steady flow. Then the "unsteady stress" terms 

are worked out by unsteady perturbations and they are put into the time-averaged 

equations, the time-averaged flow is generated by solving the time-averaged equation. 

Finally the perturbation equation is solved again on the time-averaged flow base. This 

loose coupling procedure is simple but only suitable for unsteady flows with weak 

nonlinearity. 

For the flow with strong nonlinearity, the strong coupling has to be used. The 

key point is that the time-averaged equation and the first order harmonic perturbation 

equation have to be solved without any hierarchy. In the present work, a strong 

coupling technique proposed by He (1994b) for a fluid-structure coupling is 

implemented to time-march both the tirae-averaged equation (4-27) and the first order 

harmonic equation (4-28) simultaneously in a pseudo-time domain. The final 

converged solution includes a time-averaged flow field and the unsteady 

perturbations. Numerical tests (He, 1994b) have shown that the strong coupling is 

important in terms of solution convergence and accuracy when the interaction 

between two sets of equations becomes strong. 

For the time integration for both the time-averaged equation and the first 

harmonic perturbation equation, again the 4-stage Runge-Kutta time-marching 

scheme is used. The formulations of the this scheme are the same as that introduced in 
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Chapter 2. The strong couplmg procedure by using the 4-stage Runge-Kutta time-

marching scheme for solving the time-averaged and first harmonic perturbation 

equations is illustrated in Fig. 4-1. 

The boundary conditions applied in this nordinear harmonic Navier-

Stokes/Euler method are the same as those used in the time-linearized mediod as 

presented in Chapter 2, the only difference is that the steady flow variables in the 

boundary conditions are replaced by the time-averaged variables. 

4.5 Summary 

In this Chapter, a novel quasi-3D nonhnear harmonic Navier-Stokes/Euler 

method has been developed based on a nonlinear harmonic methodology proposed by 

He (1996a). Compared to the time-linearized method as presented in Chapter 2, the 

nordinear harmonic method has three distinctive features. First of all, the time-

averaged flow is used to be the base of the unsteady perturbations. Due to the 

nonlinearity of original unsteady flow governing equations, time-averaging generates 

extra nonlinear "unsteady stress" terms in the momentum and energy equations. 

Secondly, a strongly coupling method has to be used to solve the time-averaged 

equation and the first order harmonic equation simultaneously in a pseudo-time 

domain. The coupled solution includes time-averaged flow quantities and unsteady 

perturbations. The unsteady stress terms in time-averaged equations are produced 

from the unsteady perturbation solutions, while the coefficients of first order 

harmonic perturbation equations are formed from time-averaged solutions. Finally, for 

the unsteady transonic flows with strong nonlinearity induced by the shock oscillation, 

an approximate method is applied to linearize the pressure sensors in the artificial 

smoothing terms. The time-averaged effects of the nonlinear pressure sensors can be 

included. 
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The solution methods for this nonlinear harmonic method are the same as 

those used in the time-linearized method developed in Chapter 2. It impUes that it is 

very straightforward to extend a well-developed time-linearized Navier-Stokes/Euler 

method into a nonlinear harmonic method. Compared to the linear methods, the extra 

C P U time for the nonUnear harmonic analysis is for evaluation of unsteady stress 

terms and it is relatively small, therefore it is still much more computational efficient 

than the nonlinear time-marching methods. 
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Chapter 5 Validations for Nonlinear Harmonic Method 

5.1 Introduction 

A novel quasi 3-D nonlinear harmonic Navier-Stokes/Euler method has been 

presented in Chapter 4. Compared to the conventional time-linearized methods, the 

fundamental difference is that the time-averaged flow is used to be the base of the 

unsteady perturbations in the nonlinear harmonic analysis. Therefore the nonUnear 

effects can be included in a coupling solution between the time-averaged flow and the 

imsteady perturbations. However, the solution methods of the nonlinear harmonic 

method are very similar to those used in the time-linearized method described in 

Chapter 2. In the present work, both methods are incorporated in the same computer 

code. To do the linear analysis, one simply switches off the extra unsteady stress 

terms in the time-averaged equations, so that the time-averaged equation becomes a 

steady equation and the fu-st order harmonic equation reduces to a time-linearized 

perturbation equation. The vaUdation of the baseline time-linearized code has been 

presented in Chapter 3. Jn this Chapter, the numerical results by the nonlinear 

harmonic method wUl be presented and compared to the numerical results produced 

by the time-linearized method, a nonlinear time-marching method, and experimental 

data. The time-linearized method in this chapter refers to the method described in 

Chapter 2. 

Although the major objective in this chapter is to assess the effectiveness of 

the novel nonlinear harmonic analysis, the limitation of the conventional hnear analysis 

will also be addressed and demonstrated by the numerical results. 

5.2 In viscid Transonic Unsteady Channel Flow 

To test the present nonlinear harmonic Euler method, the unsteady inviscid 

transonic flow through a diverging channel is considered. This case is presented to 
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demonstrate the abiUty of the nonlinear harmonic analysis for capturing the nonlinear 

effects associated with considerably large amplitudes of shock oscillation. To assess 

the nonlinear harmonic analysis, the unsteady flows are also calculated by the time-

linearized Euler method, and a nordinear time-marching Euler method (He, 1990b). 

In the comparison between different numerical methods, the nonlinear time-marching 

analysis is the benchmark of the comparisons because of its good accuracy and 

nonlinear nature. 

The diverging channel considered in the test case has a height of A, and its 

disttibution along the axial direction is given by 

A(x) = A^et 11.10313 -H 0.10313 tanh lO(x-l) (5-1) 

where 

0 < x < l 

(The units may be taken to be any consistent set of units). In the present study, A -^i^^ 

is taken to be 0.2 m. The flow at inlet is supersonic with a Mach number of 1.093. 

The ratio between the exit back pressure, P^^^, and the inlet total pressure, PQ , is 

0.7422, so that the supersonic flow is terminated by a normal shock around the 

location of x = 0.5 m. In tiie calculation, the mesh has 129 x 10 nodes, and tiie mesh 

is slighdy squeezed around the location where x is around 0.5m in order to give a 

good shock resolution. For the calculations by the time-linearized method and 

nonlinear time-marching method, the same channel configuration, flow condition, and 

mesh size are used. A steady flow calculation for this transonic flow is carried out by 

solving the steady flow equations, the steady pressure distribution along the channel 

wall is given in Fig. 5-1. The steady result is compared well with an one-dimensional 

analytical solution as shown in Fig. 5-1. In this test case, two-dimensional effect is 

negligible. 
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The unsteady flow in this test case is introduced by a fluctuation of the back 

pressure at the channel exit in a harmonic form, i.e. 

Pexit=Pexit(l + A„sin27rft) (5-2) 

where A ^ is the amplitude of the back pressure fluctuation, and P^^j, is the steady 

value of the back pressure in the linear analysis and time-averaged value in the 

nonlinear harmonic analysis. In the present calculations, two cases with an amplitude 

A ^ of 1% and 7% are considered in order to produce a smaller amplitude and a 

larger amplitude of shock oscillation in the channel, f in the relationship (5-2) is the 

frequency of the back pressure fluctuation and is 167 Hz in the present calculations. 

The reduced frequency based on the inlet velocity and the channel inlet height is 0.63. 

For the case with an amplitude of 1%, the unsteady flow is calculated by the 

present nonlinear harmonic method. The time-averaged pressure distribution along 

the channel wall by the nonlinear harmonic analysis is presented by marks in Fig. 5.1. 

It can be seen that the time-averaged solution and the steady solution are nearly 

identical. The shock oscillation is very small due to the small amplitude of back 

pressure fluctuation. As introduced in Chapter 1, the nonlinear effect in the unsteady 

flow is represented by the difference between the steady flow and the time-averaged 

flow. In this case, the nonUnear effect is apparently negligible. For the unsteady part, 

the calculated complex amplitudes of unsteady pressure coefficients by both the time-

Unearized method and the nonUnear harmonic method are presented in Fig.5-2. The 

difference between these two analyses is not apparentiy visible. Here the unsteady 

pressure coefficient is defined by 
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This case is also calculated by the nonUnear time-marching method, and the periodic 

unsteady results are Fourier transformed and the first harmonic complex amplitudes of 

the unsteady pressure coefficients are given in Fig. 5-2. It can be seen the comparison 

between these three numerical methods is very good, the shock impulses predicted by 

the linear and the nonlinear harmonic methods are sUghtiy higher than that predicted 

by the nonUnear time-marching method. 

The ampUtude of the back pressure fluctuation is then increased to 7% and the 

shock wave is oscillating at a much larger amplitude in the channel. First, this 

unsteady flow is calculated by the nonHnear time-marching method, the unsteady 

pressure is time-averaged and its distribution on the channel wall is given in Fig.5-3. It 

can be seen that the time-averaged flow field around the shock position is very 

difl'erent from the steady flow, and the time-averaged shock is much smeared due to 

the large amplitude of shock oscillation. The significant difference between the time-

averaged flow and the steady flow suggests the important nonlinear effects. This is 

confirmed by checking the first and second harmonics of the unsteady pressure 

produced by the nonlinear time-marching analysis as shown in Fig. 5-4, it can be seen 

that the second harmonic quantities are not small compared to the first harmonic 

quantities. 

This unsteady flow is then calculated by the nordinear harmonic method. The 

time-averaged pressure distribution is presented in Fig.5-3. The comparison with the 

nonlinear time-marching method shows the excellent agreement and the smeared 

time-averaged shock is very well predicted. It demonstrates that the nonlinear effects 

are well captured by the nonlinear harmonic analysis. The unsteady pressure 

amplitudes by the nonhnear harmonic method are given in Fig.5-5 and compared to 

the results produced by the time-linearized method and the nonhnear time-marching 

method. Because the unsteady perturbation in the hnear method is based on the 

steady flow field, the predicted unsteady shock impulse by the hnear analysis is much 
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higher and narrower than that predicted by the nonUnear time-marching method. The 

comparison between the nonUnear harmonic method and the nonUnear time-marching 

method is considerably improved. It should be noted that the shock wave in the 

nonUnear harmonic method is mainly smeared by the unsteadiness due to the shock 

osciUation. But in the time-linearized Euler/Navier-Stokes methods, the shock waves 

are only smeared by the artificial smoothing (Linquist and Giles, 1990). 

The calculations of this transonic channel unsteady flows have shown that the 

time-linearized method can correctly predict the unsteady shock impulse if the 

nonlinear effects are very smaU. The nonUnear harmonic method can considerably 

improve the results over a linear analysis when the nonUnearity is important. 

5.3 Oscillating Biconvex Cascade 

In order to check the effectiveness of the nonlinear harmonic Euler method for 

unsteady flows in turbomachinery, the unsteady flows around an osciUating biconvex 

cascade are calculated. This case was initiaUy investigated by a nonUnear time-

marching Euler method (He, 1990b) and a strong nonlinear effect due to a remarkable 

shock oscillation under a high pressure ratio was demonstrated in the nonUnear 

analysis. This case is a good test to the present nonUnear harmonic Euler method. 

Although this is an inviscid case, calculations of unsteady transonic flows using the 

Euler equations are particularly useful because they can be used to address the issue 

of nonlinearity associated with shock oscillation without being confused with the 

viscous effects. 

In this test case, the geometry of the biconvex cascade is given by 

Blade chord: C = 0.1524m 

Stagger angle: y = 0° 

Relative thickness: 0.076 (maximum thickness/chord) 
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Sohdity: 1.3 

The flow condition is given by 

Inlet total pressure: Po = lOOOOOpa 

Inlet total temperature: TQ = 288K 

Inlet flow angle: p = 0° 

In the calculations, two back pressure conditions are specified to set up 

distinctively different steady shock positions, one is Pejut / PQ = 0.7, another is 

Pexit / Po = 0.725. For a lower pressure ratio, a fairly strong shock is situated near the 

exit of the cascade passage, while for the higher pressure ratio, there is a weak shock 

just downstieam of the cascade throat. The unsteady flows are introduced by the 

blade oscillation in a torsion mode around its leading edge. The reduced frequency 

which is based on the blade chord is 1.3 in the present investigation. The unsteady 

flows under different torsion amplitudes are investigated in the calculations. 

First, the lower pressure ratio case is investigated. A steady flow solution is 

obtained by solving the steady flow equations. The steady Mach number contour map 

is given in Fig. 5-6 and the steady isentropic Mach number distribution is presented in 

Fig. 5-7. The steady solution confirms that a fairly strong shock with an upstream 

Mach number of 1.3 is situated in the blade passage at about 85% of blade chord. For 

the unsteady flow, the amplitude of blade torsion is given to be 2 degrees. The 

unsteady calculations are carried out by the time-linearized Euler method, nonlinear 

time-marching method (He, 1990b), and the nordinear harmonic Euler method. In this 

lower pressure ratio case, even though the blade torsion amplitude is very big, the 

shock oscillation is confined in a relatively small region, as indicated by the unsteady 

pressure impulses shown in Fig. 5-8. The calculated amplitudes and phase angles of 

the unsteady pressures on blade surface produced by these three methods agree very 
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well. The time-averaged Mach number distributions by the nonUnear time-marching 

and nonUnear harmonic methods are very close to the steady solution as shown in 

Fig.5-7. The computational results for this fairly strong shock case suggest a very 

weak nonlinear effect. Therefore, the conventional time-linearized method should be 

sufficiently adequate for this case. 

The pressure ratio is then increased to 0.725 to push the shock forward. The 

steady Mach contour map is shown in Fig. 5-9. It can be seen that a steady weak 

shock with upstream Mach number of about 1.15 is located at around 65% of the 

blade chord, just downstream of the cascade throat. This can also be seen from the 

steady isentropic Mach number distribution on blade surface as presented in Fig. 5-10. 

In this calculation, a quite smaU artificial smoothing coefficient is used to give a 

sharper steady shock, the smaU oscillation of the steady isentropic Mach number 

distribution before the shock, as shown in Fig. 5-10, is due to the smaU artificial 

smoothing. For the unsteady calculations, the blade torsion amplitude is specified to 

be 0.75 degree. Again, the unsteady calculations are carried out by above three 

numerical methods. The time-averaged Mach number distribution by the nonlinear 

time-marching method is shown in Fig. 5-10. Under this pressure ratio, the time-

averaged flow around the shock is very different to the steady one. The shock 

oscillates in a much wider range around its mean position when the blades are 

oscillated. This smeared time-averaged pressure jump due to the shock oscillation is 

very weU predicted by the nonUnear harmonic method as shown in Fig.5-10. In this 

case, the unsteady shock impulse predicted by the time-linearized Euler method is 

much higher and narrower than that predicted by the nonUnear time-marching 

method. The comparison between the nonUnear time-marching method and the 

nonUnear harmonic method is exceUent. These comparisons demonstrate the 

effectiveness of the novel nonUnear harmonic approach, since the nonUnear time-

marching solutions are normaUy much more time consuming than the frequency 

domain harmonic solutions. In the calculations, it is found that the computational time 
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for a nordinear harmonic analysis is typically 60% more than that for a conventional 

time-hnearized analysis. 

At the same pressure ratio of 0.725, further numerical investigations are 

carried out at a blade torsion amplitude of 2 degrees. From the nonlinear time-

marching calculations, it is found that die unsteady shock behaves very differently 

from that in the case with the torsion amplitude of 0.75 degree. In this case, when the 

blade oscillates, the shock moves to the throat and does not decay into a compression 

wave as expected in a quasi-steady sense. The unsteady inertia makes the shock move 

into the subsonic region. Once entering the subsonic region, the shock has to 

propagate upstream and eventually disappears around the blade leading edge. Then 

the new shock appears again around the throat. The dramatic shock movement can be 

clearly seen from a space-time contour of relative static pressure which was produced 

by the nonlinear time-marching method (He, 1990b). It can also be clearly seen from a 

flow animation which was made by the author on a HP workstation. This remarkable 

shock movement produces very strong nonlinear effects. As a result, the time-

averaged Mach number distribution generated by the nonUnear time-marching method 

is very different from the steady one even in the subsonic region, as shown in Fig.5-

12. Due to the strong nonUnearity, the predicted unsteady pressure by the time-

linearized method is distinctively different to that predicted by the nonUnear time-

marching method, as given in Fig. 5-13. Although a considerable improvement can be 

seen from the results by the nonUnear harmonic analysis, there is a marked 

discrepancy from the nonUnear time-marching analysis. This indicates the limit of the 

appUcabiUty of the present nonUnear harmonic method in die exUeme nonlinear 

circumstances. The limitation arises likely due to the quasi-linear form of the first 

harmonic perturbation equations. Furthermore, in the nonUnear harmonic method. 

only those nonUnear terms due to the production of the harmonics (such as (pu)'v') 

are included, physicaUy they are just part of the nonUnearity. 
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The calculations of unsteady flows around the osciUating biconvex cascade 

suggest whether the shock oscillation in turbomachinery can be modelled by the linear 

method does not much depend on the strength of the shock, whUe the location of the 

shock seems to be crucial. This finding in this study is consistent to what is observed 

in a nonlinear time-marching analysis (He, 1990b). 

5.4 Unsteady Turbulent Flow in Transonic Diffuser 

To check the vaUdity of the present nonUnear harmonic Navier-Stokes method 

for predicting the unsteady turbulent flows, the unsteady turbulent flows in a 

transonic diffuser are numericaUy investigated by the nonUnear harmonic Navier-

Stokes method. This diffuser unsteady flow was experimentaUy studied at 

McDonnell-Douglas and a wide range of time-mean and unsteady experimental data 

are available (Bogar et al, 1983, Sahnon et al, 1983, Sajben et al, 1984). The 

experimental studies included both self-induced and forced oscillations of the diffuser 

flow field. Because of the limited experimental data available for unsteady turbulent 

flows in turbomachinery, this test case has been widely used for the vaUdation of 

numerical methods (Hseih et al, 1984, AUmaras, 1989, He and Denton, 1993). 

The diffuser model is a convergent/divergent channel with a flat bottom and a 

contoured top waU. The definition of the top waU profile can be found in a reference 

by Bogar et al (1983). In the diffuser, the subsonic flow accelerates in the convergent 

part to supersonic, then the supersonic flow is terminated by a normal shock wave 

locating just downstieam of the diffuser throat. In the experiment, several diffuser 

configurations with different exit-to-throat area ratios were investigated. The shock 

and boundary layer interaction may or may not induce the flow to separate on the top 

waU, depending on the diffuser configuration and the Mach number immediately 

before the normal shock ( M ^ ) . In the present study, the diffuser configuration is 

such that it has a throat height, h*, of 44.0 mm , and exit-to throat area ratio of 1.52 
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as depicted in Fig.5-14. For this configuration, if M ^ is less than 1.28, the mrbulent 

boundary layers on both the top and bottom walls are attached, while if M ^ is above 

than 1.28, the shock/boundary layer interaction induces the boundary layer on the top 

wall to separate and die boundary layers on botii walls merge together near the end of 

the diffuser, as depicted in Fig. 5-15. 

In the present numerical investigation, a weak shock case is considered and 

the flow condition is given so that the M^^ is 1.235. To match this flow condition, a 

pressure ratio ( P e x i t / P c static pressure to inlet total pressure) of 0.826 is 

prescribed and the flow is assumed to be fully turbulent at the diffuser inlet on both 

bottom and top waUs. In the previous numerical studies ( Hsieh et al, 1984, Allmaras, 

1989, He and Denton, 1993), a flat plate turbulent profile in the inlet upper and lower 

waU boundary layers was specified and the boundary layer thicknesses were given. In 

the present calculations, no inlet boundary layer thickness is specified. The mesh used 

in the calculations is 122 x 45 as shown in Fig.5-16. In aU the present viscous steady 

and unsteady calculations, the slip-wall boundary condition is specified. 

The steady flow at this flow condition is calculated by the present steady 

solver. A predicted steady Mach number contour map is shown in Fig.5-17 and a 

normal shock can be clearly seen. The boundary layer on both top and bottom walls 

are attached and they do not merge together at the exit of die diffuser. The predicted 

steady static pressure distribution on the top wall by the present steady flow solver is 

presented in Fig. 5-18 and compares weU with the experimental data. It can be seen 

that the shock situates at x / h* of about 1.4, where x is the axial distance from the 

location of the diffuser throat. Meanwhile, an inviscid flow result by the Euler solver 

is also presented in Fig. 5-18, the shock wave predicted by the inviscid calculation is 

located much behind that predicted by the viscous calculations. Apparently, the 

viscous effects are very important to predict diis experimental case correctiy. The 

predicted boundary layer displacement and momentum thickness distributions 
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compare reasonably weU with the experimental measurements on both the top and 

bottom walls as shown in Fig. 5-19. 

In the experiment, two kinds of unsteady flows were investigated: one is a 

natural unsteadiness identified as longitudinal acoustic modes induced by the 

interactions of the shock and diffuser exit, the other was forced unsteady flows 

produced by rotating a tiiangular, prism-shaped rotor partiaUy embedded in the 

bottom wall and driven by a variable-speed motor. The mechanism of the natural 

unsteadiness in this experiment is rather complex. It should be mentioned that no self-

excited unsteady flows have been observed in the present numerical calculations. A 

work by AUmaras (1989) suggested that a very fme mesh near both the top and 

bottom waU boundaries has to be used to resolve the self-excited unsteadiness. The 

interest of the current work in this diffuser case is only on the forced unsteady flows. 

To model the forced unsteady flows, the unsteady flow in calculations is 

introduced by prescribing a static pressure oscillation at the diffuser exit in a harmonic 

form as 

Pexu=Pexit(l + A„sin27tft ) (5-4) 

In the experimental studies, the unsteady pressures were measured by Sajben et al 

(1984) under two forced unsteady frequencies, 300 Hz, 150 Hz. According to the 

experimental measurements, the amplitudes of the back pressure oscillation under 

these two frequencies are 0.0085, 0.011, respectively. Unfortunately the unsteady 

pressure measurements were only carried out downstream of the shock wave, the 

experimental data in the shock wave osciUating region is not available where unsteady 

flow is most active and important. In order to assess the time-linearized and nonlinear 

harmonic methods, the unsteady flows are also calculated by a nonUnear time-

marching method (He, 1994b) and the time-Unearized Navier-Stokes method. 
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For the unsteady flow with a frequency of 300 Hz and the back pressure 

osciUating amplitude of 0.0085, the predicted amplitude and phase distributions of 

the unsteady pressure on the top waU by these three numerical methods are shown in 

Fig. 5-20. In tiiis case, the shock wave just sUghtiy oscillates around its time-mean 

position, the nordinear effect due to the shock oscillation is very smaU. The numerical 

results produced by these three methods compare quite weU and they are in a good 

agreement with the experimental data. 

For the case with a frequency of 150 Hz and the back pressure fluctuation 

amplitude of 0.011, both the experiment and a nonUnear time-marching analysis 

confirm that the shock wave oscillates in a much bigger region compared to the 300 

Hz case. The time-averaged pressure distribution on the top waU produced by the 

nordinear time-marching method is quite different to the steady distribution around 

the shock wave oscUlating region, as shown in Fig. 5-21. The time-averaged shock is 

much smeared by the unsteadiness due to the shock osciUation. This smeared time-

averaged shock wave is very weU predicted by the nonUnear harmonic Navier-Stokes 

method. The predicted amplitude and phase of the unsteady pressure on top waU of 

the diffuser by the time-Unearized, nonUnear harmonic and nonUnear time-marching 

methods are presented in Fig.5-22 and they are also compared to the experimental 

data. In this case, the linear method overpredicts the peak amplitude of the unsteady 

shock impulse by a factor of more than 2 compared to the nonUnear time-marching 

analysis. The comparison between the present nonUnear harmonic method and the 

nonUnear time-marching method is exceUent. Although aU the numerical results 

compare weU to the experimental data, the experimental data are only available 

downstream of the shock wave and do not reveal the important nonUnear behaviour 

of the shock oscillation. 

For the numerical method in turbomachinery, the mesh-dependence is one of 

the major concerns. To investigate the mesh-dependence of the present nonlinear 

harmonic method, a much finer mesh with a size of 245 x 45 is generated as shown in 
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Fig. 5-23. I t can be seen that the mesh points in axial direction around the diffuser 

throat is roughly tripled. The case with the frequency of 150 Hz and the back pressure 

fluctuation amplitude of 0.011 is calculated again by the nonlinear harmonic Navier-

Stokes method. The time-averaged static pressure distribution on the top wall of the 

diffuser is compared to the one obtained with previous coarser mesh, as shown in Fig. 

5-24. The difference between them is very small and acceptable. The comparison of 

the unsteady pressure distributions generated from the coarse and fine meshes are 

good, as presented in Fig. 5-25. This calculation has suggested that the mesh-

dependence of the present nonlinear harmonic method is small. 

5.5 Oscil lat ing Transonic Compressor Cascade 

The final vaUdation for the nonUnear harmonic Navier-Stokes method is made 

by calculating unsteady flows around an oscillating transonic compressor cascade. 

The blade has a biconvex profile and the geometry of the cascade is given by 

Chord (C): 0.0762m 

Maximum Relative Thickness: 2% C 

Stagger Angle: 59° 

SoUdity (C/Pitch): 1.11 

And the f low condition is 

Inlet Mach number: 1.25 

Reynolds number: 1.5 x 10^ 

Incidence: 3° 

Back pressure ratio( P̂ t̂ / Po) ^ 0.5926 
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The f low in the cascade is assumed to be ful ly turbulent from the leading edge. 

The unsteady f low in this case is induced by the blades oscillation in a torsion mode 

around the mid-chord with an amplitude of 1 degree and a reduced frequency of 0.5 

(based on the blade chord and inlet f low velocity), and an inter-blade phase angle of 

180 degrees. In the numerical studies, the unsteady flows are calculated by the present 

nonlinear harmonic Navier-Stokes method, again the results are compared to those by 

the time-linearized Navier-Stokes method, and the nonhnear time-marching method 

(He, 1994b). The mesh used in the calculations is 115x27 , and the shp-wall 

condition is imposed in all the steady and unsteady calculations. 

First the steady f low in this transonic cascade is investigated by using the 

steady Navier-Stokes solver. Fig. 5-26 gives the steady static pressure distributions 

on the blade surfaces. Fig. 5-27 shows the steady Mach number contours. I t can be 

seen that the cascade is subject to a strong passage shock wave near the leading edge, 

typical of a modem transonic fan at a near peak efficiency condition. The amphtude 

and phase angle distributions of the unsteady pressure coefficients on blade surfaces 

predicted by three numerical methods are shown in Fig. 5-28. Again the amplitude of 

the unsteady shock impulse captured by the linear method is much higher than that 

produced by the nonlinear time-marching method, while the present nonlinear 

harmonic and the nonhnear time-marching analyses are in a good agreement. I t 

should be emphasised that for blades oscillating in a torsion mode, a detailed (rather 

than integral) unsteady loading distribution is important for calculations of blade 

flutter characteristics. 

Finally, some comments should be made with regard to the computing time. In 

this cascade case, a nonlinear harmonic solution requires about 1.5 hours CPU time 

on a single SGI R10000 processor, which is about 60% more than that required by a 

pure linear solution. This CPU time consumed by the nonhnear harmonic solution is 

comparable to that by a nonhnear time-marching solution for a single blade passage. 

However, a single passage domain can always be adopted for the nonhnear harmonic 
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method, whilst a multiple-passage domain has to be adopted by conventional 

nonlinear time-marching methods. A numerical test has shown that for an annulus 

with 20 blade passages, the present nonlinear harmonic solution with one harmonic 

disturbance is about 20 times faster that a 20 blade passage nonlinear time-marching 

solution. I t should be mentioned that no acceleration technique is applied in this test 

case. A further speed-up of the nonlinear harmonic solution by a factor of 5 or more 

would be expected i f a multi-grid technique is used. 

5.6 Summary 

In this chapter, the numerical results by the novel nonUnear harmonic Navier-

Stokes/Euler method have been presented. The validity of this method has been 

demonstrated by comparing its numerical results to those produced by the nonlinear 

time-marching method, time-linearized method, and experimental data. Although the 

primary aim of the work is to validate the novel nonlinear harmonic method, the time-

linearized method presented in Chapter 2 is further checked and its limitation subject 

to nonlinear effects has been clearly demonstrated. The nonlinear harmonic method 

can considerably improve results over the linear analysis when the nonlinearity is 

important, due to its capability of capturing the nonlinear effects by the coupling 

between the time-averaged f low and the unsteady perturbations. The numerical tests 

have shown that computational time required for a nonlinear harmonic analysis is 

typically 60% more than that for a conventional linear analysis. Therefore the 

nonlinear harmonic method is still much more efficient than the nonlinear time-

marching method. However, the limitation of the nonhnear harmonic analysis has also 

been observed in the calculations of the unsteady flows in a biconvex cascade. The 

limitation is probably due to the quasi-linear form of the first harmonic perturbation 

equations. 



Chapter 6 Numerical Investigations of Trailing Edge Vortex 

Shedding 

6.1 Introduct ion 

In the last several chapters, the development and vahdation of a time-

linearized Navier-Stokes/Euler method and a nonhnear harmonic Navier-Stokes/Euler 

method have been presented. For both methods, a time-independent ( steady or time-

averaged) f low field is required to be the base for a linear or a nonhnear harmonic 

analysis. However, the time-independent solution cannot be achieved once any self-

excited aerodynamic instabihties occur. Traihng edge vortex shedding is one of the 

self-excited aerodynamic instabihties in turbomachinery occurring when viscous flows 

pass a blade with a blunt trailing edge. Producing a time-independent solution is 

problematic i f the trailing edge vortex shedding is resolved in the calculation. 

Although the time-averaged flow field of a vortex shedding case could be produced 

by solving unsteady Navier-Stokes equations, the calculation is too expensive because 

the vortex sheddmg has a very smaU length and tune scale. Therefore, a natural 

question is: can we produce a time-independent solution which can include time-

averaged effects of trailing edge vortex shedding without carrying out an unsteady 

calculation? Solving the time-averaged equation is probably one of the answers. The 

difficulty in doing so is that extra closure models are required to model the imsteady 

stress terms in the time-averaged equations, just as turbulence models are needed to 

solve the Reynolds averaged Navier-Stokes equations. The modelling issues 

associated with unsteady flows induced by the bladerow interaction and the blade 

flutter have been addressed by some other researchers (Adamczyk, 1985, Giles, 1992, 

He, 1996a). The modelling of trailing edge vortex shedding has not been investigated 

so far. In this chapter, some efforts towards the modelling of vortex shedding wi l l be 

presented. The main issue to be addressed in this work is: can we achieve a time-
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independent solution for trailing edge vortex shedding by solving time-averaged 

Navier-Stokes equations? 

Although this part of the work originally arises from the consideration of a 

linear and nonlinear harmonic analysis for the blade flutter, i t actually concerns a 

general issue in turbomachinery. As introduced in Chapter 1, understanding and 

predicting the trailing edge vortex shedding is of great importance in turbomachinery 

for further improvement of machine performance. Unfortunately, in the current 

turbomachine design systems, trailing edge vortex shedding is usually missed for some 

unavoidable reasons, such as the computational meshes are too coarse, numerical 

schemes are too dissiaptive, or time steps are too big etc. However, as far as a 

turbomachine designer is concerned, i t is highly desirable to take account of the time-

averaged effects of trailing edge vortex shedding in a design procedure. An efficient 

way to do so is to solve the time-averaged equation. But the modelling issues have to 

be addressed before solving the time-averaged equations. Recendy there has been 

increasing interest in modelling rather than calculating unsteady flows for 

turbomachine design (Chen, Celestina and Adamczyk, 1994, Hall, 1997). 

Similar to the nonlinear harmonic approach as descried in the first part of this 

thesis, in this work the unsteady flow induced by vortex shedding is decomposed into 

a time-averaged flow plus an unsteady perturbation. The time-averaged equations can 

be produced by time-averaging the unsteady Navier-Stokes equations, consequentiy 

extra unsteady stress terms are generated in the time-averaged equations. Here the 

unsteady stresses are produced due to trailing edge vortex shedding. Whether or not 

these unsteady stiesses can suppress vortex shedding is the key question. The present 

work starts with unsteady calculations of trailing edge vortex shedding by using an 

unsteady Navier-Stokes solver. The time-averaged flow fields are produced by time-

averaging unsteady results, and the unsteady stiess terms induced by trailing edge 

vortex shedding are obtained. Then the time-averaged equations with known unsteady 
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stresses are solved. The effectiveness of the unsteady stresses to suppress trailing 

edge vortex shedding w i l l be checked from the solution of time-averaged equations. 

In this work, the investigations start with vortex shedding from a circular 

cylinder. Then a case with realistic turbine blading ( V K I turbine blades) is extensively 

examined. 

6.2 M u l t i - B l o c k Unsteady Navier-Stokes Solver 

In the present study, the baseline numerical solver is a multi-block unsteady 

Navier-Stokes solver originally developed by He (1996b) for flows past a set of 

cylinders. This code is used for the unsteady calculation of trailing edge vortex 

shedding in this work. In the code, the flow governing equation is a 2-D imsteady 

Reynolds averaged Navier-Stokes equation. 

The original code can only handle laminar flows. In the present work, a 

turbulence model is implemented for handling turbulent flows. For vortex shedding 

prediction, i t is arguable which turbulence model can or cannot be used. In this work, 

a mixing-length turbulence model in its simplest form is unplemented for turbulent 

flows. In this model, the turbulent viscosity is given by 

^it=piLN (6-1) 

where |co| is the magnitude of the vorticity given by 

0) = 
dy dx 

In the near wall region, the mixing length is given by 
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Imix = K r a i n ( d „ , d i i ^ ) (6-2) 

where K i s the Von Karman constant and is 0.41; d^ is the distance to the wall and 

dji^ is a Umiting value input by the user. In the wake, the mixing length is taken as 

Kdj i^ . I t is recognised that vortex shedding unsteady calculations are sensitive to 

turbulence models (Manna and Mulas, 1994, Amone and Pacciani, 1997). In this 

work, the sensitivity issue wUl be investigated by simply specifying different dj^^ 

values in calculations. 

In order to give a better resolution for the vortex shedding, die solver uses a 

multi-block mesh. In a calculation, the unsteady Navier-Stokes equation is 

simultaneously integrated on each block by using the 4-stage Runge-Kutta time-

marching scheme. A t the end of each fractional time-step, the communication 

between different blocks is carried out by averaging conservative flow variables 

(p, pu, pv, pe) at connecting points of different blocks. For example, the point (i,j) is a 

connecting point between the block I and I I , the updated value of the density at the 

end of each fractional time-step at point (i,j) can be given by 

pr=0.5(pUp;) (6-3) 

where py is obtained from the calculation on block I , and Py is obtained from the 

calculation on block I I at the end of each fractional time step. The unsteady Navier-

Stokes equation is again spatially discretized by a cell-vertex scheme. The details of 

the numerical schemes can be found in Chapter 2. 

6.3 Time-Averaged Navier-Stokes Equation and Solution Method 

The unsteady flow induced by the ti-ailing edge vortex shedding is assumed to 

be a time-averaged flow plus a periodic unsteady perturbation, i.e. 
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U = U -I- U ' (6-4) 

Substituting this expression into the unsteady Navier-Stokes equation and 

time-averaging it over a vortex shedding period, the time-averaged equation can be 

obtained. The form of the time-averaged equation is the same as Eq.(4-6), except in 

this study i t is in a 2-D form. The unsteady stress terms in the time-averaged equation 

are produced by the trailing edge vortex shedding. I t should be mentioned that in the 

time-averaged equation, the unsteady stresses contributed by the random unsteadiness 

(turbulence) are modelled by the turbulence model. The random fluctuation and 

periodic vortex shedding perturbation are assumed to be uncorrelated in a global-

mean sense (Reynolds and Hussain, 1972, Cantwell and Coles, 1983). 

The key to solving the time-averaged equation is to know the unsteady stress 

terms produced by the vortex shedding. The major objective of the present study is to 

investigate the feasibihty of achieving a time-independent solution by solving the time-

averaged equations. The unsteady stress terms in the time-averaged equation are 

obtained f rom unsteady solutions. For instance, the unsteady stress (pu) 'v ' can be 

worked out f rom 

(pu)'v' = — I[pu - pu][v - V ] (6-5) 
Np 1 

where the time-averaged variables pu and v can be obtained by 

_ 1 Np _ 1 Np 
pu = — I p u v = — I v 

Np 1 Np 1 
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where pu and v are instantaneous variables obtained from unsteady calculations; Np is 

the number of time steps in one vortex shedding period, i t can be determined from 

the vortex shedding frequency f and the size of time-step At in an unsteady calculation 

by 

N , = ^ (6-6) 

The vortex shedding frequency f can be obtained by analysing the unsteady flow 

results using a Fourier transformation. 

6.4 Unsteady Calculation o f Tra i l ing Edge Vortex Shedding 

The first step of the present work is to calculate the trailing edge vortex 

shedding by solving the unsteady Navier-Stokes equation. The calculations are 

conducted for flows past a circular cyhnder and a V K I turbine cascade. The time-

averaged flow fields and imsteady stress terms are calculated from the unsteady 

solutions. 

6.4.1 Laminar Vortex Shedding behind a Circular Cyhnder 

In this calculation, the cyhnder has a diameter (D) of 0.2m. The flow has a 

free stream Mach number of 0.27 and Reynolds number (based on the cyhnder 

diameter and free stream velocity) of 3,000. In this case the flow is assumed to be 

f i i l ly laminar. The present calculation is carried out in a domain which is made up by 

two cylinders. In order to avoid the interference of the vortex shedding from the two 

cylinders, the pitch of the computational domain is set to be 6.5D. The mesh in this 

calculation has 4 blocks, the layout of the blocks is shown in Fig.6-1. The mesh in the 

first block is an 0-type mesh with 101x21 points, and the mesh in other three blocks 

is a simple H-type mesh, as shown in Fig.6-2. The mesh has a total of 13,549 points. 
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In order to accelerate convergence of the unsteady calculation, a time-consistent two-

grid technique (He, 1993a) is applied in the first block. 

Fig.6-3 shows an instantaneous static pressure history at point C on the 

cylinder which corresponds to an angle of -45*^. I t can be seen that the unsteady 

Navier-Stokes equation needs to be time-marched about 25 shedding cycles to 

achieve a periodic trailing edge vortex shedding. In this calculation, there are about 

850 time steps in one vortex shedding period. For one shedding period, i t takes about 

415 seconds CPU time on a single SGI RIOOOO processor. Once periodic vortex 

shedding is achieved, the instantaneous static pressure history at point C is analyzed 

by a Fourier transformation and the pressure spectrum is given in Fig. 6-4, i t can be 

seen that the predicted vortex shedding frequency is 90 Hz. This shedding frequency 

is equivalent to a Sti-ouhal number of 0.192. For the vortex shedding behind the 

circular cylinder, the Sd-ouhal numbers can be calculated by an empirical formula 

(Massey, 1983) as 

St = 0.198(1-19.7/Re) (6-7) 

for 250 < Re < 2 X 1 0 ^ . In this investigation, the empirical value of Strouhal number 

is 0.197. The predicted Strouhal number (0.192) by die present unsteady calculation 

is very close to the empirical value. The contours of instantaneous static pressure, 

Mach number and entropy are presented in Fig.6-5 ~ Fig.6-7. I t can be seen that the 

structure of the Von Karman vortex street behind the circular cyUnder has been very 

well captured by the present unsteady calculation. 

Once periodic vortex shedding is achieved, the unsteady solution is time-

averaged over several shedding periods to produce a time-averaged flow field. The 

time-averaged static pressure and entropy contours are shown in Fig.6-8 and Fig.6-9, 

they are symmetiic along the wake centieUne. I t can be seen that vortex shedding is 

averaged out in the time-averaged flow field. Fig.6-10 presents a time-averaged static 
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pressure distribution along the cyhnder surface and the wake centreline. The static 

pressure in the region of separated flow just downstream of the cyhnder (the base 

region) is lower than that in the freestream. This produces a component of the total 

loss known as the base loss. 

As introduced in the last section, to solve the time-averaged equations, it is 

necessary to know the unsteady stiesses. In this work, the unsteady stress terms are 

calculated f rom the present unsteady solutions. The contours of three primary 

unsteady stresses ( ( p u ) ' u ' , ( p v ) ' v ' , (pu ) ' v ' ) are presented in Fig.6-11 to Fig.6-13, 

all the stresses are non-dimensionized by the inlet dynamic head (0.5pi„,u^i ). As 

shown in Fig.6-11, the streamwise normal stiess (pu) 'u ' is symmetric along the wake 

centre and exhibits double peaks near the end of the vortex formation region, the 

stress then decays rapidly along the wake direction. The stress (pu) 'u ' mainly 

remains bimodal throughout the near wake and makes very httie contribution on the 

wake centrehne. The structure of the stiess (pu) 'v ' is quite sunilar to the (pu) ' u ' , 

but i t is anti-symmetric along the wake centre and the two peaks are closer to the 

wake centrehne, as shown in Fig.6-12. For the pitchwise normal stress (pv) 'v ' , as 

shown in Fig.6-13, only a single peak exists on the wake centreline approximately at 

the end of the vortex formation region. 

Generally speaking, the structures of these three unsteady stresses are not very 

complex. AH of the unsteady stresses reach their peak values near the end of the 

vortex formation region, at about x/D ~ 1.0-1.5 (x=0 corresponds to the centre of 

the cyhnder), then decay rapidly with increasing values of x along the downstream of 

the wake. The topologies of these three unsteady stresses predicted by die present 

unsteady calculation are very similar to those produced by an experiment (Cantwell 

and Coles, 1983). In Cantwell and Coles' work, the unsteady flows around a circular 

cyhnder induced by random turbulence and periodic vortex shedding at 

Re = 1.4 X 1 0 ^ were extensively measured. 
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6.4.2 Vortex Shedding f rom a V K I Turbine Cascade 

To investigate the traiUng edge vortex shedding from turbomachine blades, the 

unsteady flow in a V K I turbine cascade is calculated. This cascade consists of 3 low 

cambered two-dimensional turbine nozzle blades. The blade in the middle has a thick 

rounded tiailing edge to accommodate a pressure transducer for the measurement of 

the base pressure. Some blade geometry characteristics are 

Chord: 279.99 [mm] 

Stagger angle: -49.833 [deg.] 

Blade height: 200 [mm] 

Pitch: 195 [mm] 

Trailing edge thickness: 15 [mm] 

The trailing edge vortex shedding from this turbine blade has recendy been 

experimentally studied at V K I (CicatelU, Siverding and Fevrier, 1994, Cicatelli and 

Siverding,1996). This test case has been numerically investigated by some researchers 

(Manna and Mulas, 1994, Amone and Pacciani, 1997). The flow conditions in the test 

were 

Inlet total pressure: 17462 Pa 

Inlet total temperature: 293 K 

Reynolds number: 2.5 x 10^ 

Outlet isentropic Mach number: 0.409 

To calculate tiiis test case, the mesh is required to be careftilly generated. 

There are several important aspects to tiie mesh generation for the vortex shedding 

unsteady calculations in turbomachinery. Firstly, a fine mesh is needed near the blade 

surface and in the wake to resolve the boundary layer and the small length scale 

97 



vortex shedding. Secondly, the mesh needs to minimise as much as possible skewness 

and distortion to give a good resolution of the unsteady flows. Finally, care also must 

be taken to ensure the high degree of uniformity of the mesh near the blade surface 

and in the wake. According to these requirements, a 4-block mesh is generated for 

this V K I turbine cascade. In the first block, an 0-type mesh is generated with a mesh 

size of 271 x 35, there are about 45 mesh points around the trailing edge semi-circle. 

A preliminary calculation shows that there are about 15 points in the boundary layer 

near the trailing edge and the value of y"̂  is about 25 under the test flow conditions. 

In the other three blocks, a simple H-type mesh is generated. The 4-block mesh has a 

total of 41879 points. The layout of blocks of the mesh is shown in Fig.6-14. The 

mesh is presented in Fig.6-15 and an enlarged view of the mesh near the blade trailing 

edge is shown in Fig.6-16. 

Once the mesh is generated, the unsteady flow induced by traUing edge 

vortex shedding is calculated by solving the unsteady Navier-Stokes equations. But 

before we carry out the calculation under die test flow conditions, a low Reynolds 

number laminar vortex shedding from this V K I turbine cascade is calculated. The 

main purpose of doing this is to create a case without any turbulence effects in order 

to avoid any uncertainties due to turbulence models. In this calculation, the Reynolds 

number is specified to be 2.5 xlO"* which is two orders of magnitude lower than the 

test value, the flow is assumed to be fiiUy laminar. After the unsteady Navier-Stokes 

equation is time-marched for about 50 shedding periods, periodic vortex shedding is 

achieved. Each shedding period needs about 1,250 time steps and takes about 2,280 

seconds CPU time nmning on a single SGI RIOOOO processor. The predicted vortex 

shedding Strouhal number (based on the tiaihng edge thickness and downstream flow 

velocity) is 0.235. The instantaneous static pressure and entropy contours in Fig.6-17 

and Fig.6-18 have shown that a rigorous vortex shedding street behind the blade 

traiUng edge is captured. 
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Then this V K I turbine cascade flow under the test flow conditions is 

calculated. In the calculation, the flow is assumed to be fi i l ly turbulent from the 

leading edge of the blade. The turbulence mixing lengtii limit d j j ^ in the turbulence 

model is given to be 2% of the trailing edge thickness. In the calculation, the non-sUp 

wall boundary condition is applied on the blade surface. Numerical tests show that the 

unsteady Navier-Stokes equation must be time-marched tiirough at least 60 vortex 

shedding periods to achieve a good level of periodicity of the vortex shedding from an 

initial 1-D flow guess. There are about 1,200 time steps in one shedding period. For 

each shedding period, i t takes about 2,100 seconds CPU time running on a single SGI 

RIOOOO processor. I t can be seen that the computation time for an unsteady 

calculation of vortex shedding in turbomachinery is very long, even using a 

moderately fine mesh and a very simple turbulence model. 

Fig.6-19 shows the static pressure time traces at points corresponding to 

abscissa S/D of 0.65 and -0.65 on the blade trailing edge, the positions of these two 

reference points can be found in Fig. 6-20. At the same abscissa, the calculation 

suggests that the pressure fluctuation on the pressure surface is higher than that on 

the suction surface, which is consistent with experimental observation (CiateUi and 

Sieverding, 1996). The different vortex shedding intensity on the suction and pressure 

surfaces in cascade flows has also been observed by other researchers (Han and 

Cox,1982). A vortex shedding frequency spectrum by the present calculation is 

shown in Fig.6-21 which suggests the predicted vortex shedding Strouhal number is 

0.245, shghtiy lower than the experimental value of 0.27. The instantaneous contours 

of static pressure, Mach number and entropy in Fig.6-22 to Fig.6-24 have shown that 

a vigorous vortex shedding is obtained by the present unsteady calculations. 

Having achieved periodic vortex shedding, the unsteady flow is then time-

averaged over several shedding periods to give a time-averaged flow field. The time-

averaged isentropic Mach number is compared with the experimental results in Fig.6-

25. The comparison on the pressure surface is very good, but the static pressure on 
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the suction surface around the mid-chord region is overpredicted. The presented 

results are similar to those produced by an unsteady calculation using a standard 

Baldwin-Lomax model (Manna and Mulas, 1994). The base pressure around the blade 

trailing edge is reasonably predicted by the present calculation, as shown in Fig.6-26. 

The time-averaged pressure and Mach number contours are presented in Fig.6-27 and 

Fig.6-28. I t can be seen that the vortex shedding is averaged out in the time-averaged 

flow field. 

Based on the unsteady solution and the time-averaged flow field of this high 

Reynolds number turbulent case, the vortex shedding unsteady stresses are calculated. 

The contours of three major unsteady stiesses ( ( p u ) ' u ' , (pu) 'v ' , ( pv ) ' v ' ) are 

presented in Fig.6-29 to Fig.6-31. The structure of the unsteady stiess (pu) 'u ' is very 

similar to the unsteady stress (pv) 'v ' in the circular cyUnder case. The reason is that 

this V K I turbine blade has quite a high stagger angle, the direction of the velocity v in 

the wake is close to the sti-eamwise direction. The stiess (pu) 'u ' in this cascade flow 

case is more or less symmetric along the wake centre and a peak appears about one 

trailing edge thickness length downstream of the ttailing edge, i t then decays rapidly 

along the wake. Unlike its counterpart in the cylinder case, the stress (pu) 'v ' in the 

cascade flow is not anti-symmetric along the wake centre. The stress (pv) 'v ' is also 

not symmetric along the wake centre. One reason is that the direction of coordinate 

'x ' is not parallel to the wake direction in the turbine flow case, another reason is 

Ukely to be due to the different vortex shedding intensity from the blade suction and 

pressure sides. Nevertheless, the structure of unsteady stresses in the cascade flow is 

similar to those in the cylinder flow. The development of vortex shedding modelling 

in turbomachinery probably can benefit from a lot of studies on the vortex shedding 

behind circular cylinders. 

In order to investigate the sensitivity of die vortex shedding unsteady 

calculation to the turbulence model, a calculation is carried out by specifying the value 
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of d]ij„ to be 10% of the blade trailing edge thickness. The higher value of dy^ 

means bigger viscosity in the boundary layer and wake, and the intensity of the vortex 

shedding is expected to be reduced. Numerical tests have shown that the vortex 

sheddmg disappears in this calculation and a 'steady-state' solution is obtained. Fig.6-

32 and Fig.6-33 present the static pressure and Mach number contours, it can be seen 

that vortex shedding is suppressed due to the large value of dj^^,. However, the 

calculated base pressure around the blade trailing edge is much higher than the 

experimental data as shown in Fig. 6-42, due to the suppression of the vortex 

shedding. This calculation indicates that the unsteady vortex shedding calculation is 

sensitive to turbulence models. 

6.5 Solutions by Solving Time-Averaged Equations 

Periodic vortex shedding behind a ckcular cyhnder and a V K I mrbine blade 

have been achieved by solving the unsteady Navier-Stokes equations, as presented in 

the last section. The unsteady stiesses induced by the vortex shedding are calculated 

f rom the unsteady solutions. In this section, the numerical solutions of the time-

averaged equations w i l l be presented. The unsteady stresses in the time-averaged 

equations are determined directiy from the results produced by the unsteady 

calculations. In calculations for solving the time-averaged equation, the computational 

mesh, flow conditions, time step size, and artificial smoothing coefficients are all kept 

the same as their unsteady calculation counterparts (presented in Section 6.4), the 

only difference is that the unsteady stiess terms are included. 

6.5.1 Circular Cyhnder 

The first attempt is to solve the time-averaged equation for the circular 

cyhnder case. The calculation residual history, as plotted in Fig.6-34, shows that a 

time-independent solution is achieved by solving the time-averaged equations. Here 

the residual is represented by the local maximum velocity residual in the first block. 
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The static pressure contour map is presented in Fig.6-35 and it suggests that the 

vortex shedding is completely suppressed by the unsteady stress terms. The 

comparison between the Fig.6-35 and Fig.6-8 shows excellent agreement. The 

calculated static pressure distribution along the cylinder surface and the centreline of 

the wake is in very good agreement with the time-averaged one produced by the 

unsteady calculation, as shown in Fig.6-10. The entropy contour map in Fig.6-36 

again confirms that vortex shedding is suppressed. This numerical test has 

demonstrated that the vortex shedding can be suppressed by the unsteady stresses and 

a time-independent solution can be achieved by solving the time-averaged equation. 

Importantly this time-independent solution is very close to the time-averaged solution 

produced by the unsteady calculations. 

It is well recognised that vortex shedding can be suppressed in different ways, 

such as excessive artificial smoothing, big time steps etc. In this work, a calculation is 

carried out by solving the original unsteady Navier-Stokes equation with an excessive 

artificial smoothing coefficient. In this calculation, die mesh and flow conditions 

remain the same as those in the unsteady calculation presented in Section 6.4.1, only 

the artificial smoothing coefficients are ten times larger. The residual history of this 

calculation is also shown in Fig. 6-34 and suggests that a steady-state solution is 

achieved. An entropy contour map in Fig.6-37 shows no sign of vortex shedding. 

However, the comparison between the steady static pressure distribution with the 

time-averaged one in Fig.6-10 shows that the large variation of the static pressure in 

the region just downstream of the cylinder is missing due to the suppression of the 

vortex shedding by using the excessive artificial smoothing. 

6.5.2 V K I Turbine Cascade 

The effectiveness of unsteady stresses to suppress the vortex shedding is then 

investigated on the V K I turbine cascade case. In this investigation, the first attempt is 

made on the low Reynolds number laminar flow case. Firstly, the vortex shedding 
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unsteady stresses are calculated from the unsteady solution in the laminar flow case as 

presented in Section 6.4.2. The contour maps of three unsteady stresses ((pu) 'u ' . 

(pu)'v', (pv) 'v ') are presented in Fig.6-38 to Fig.6-40. The structure of these 

stresses shows a remarkable similarity to those in the turbulent case, only the peak 

values of the unsteady stresses in the laminar case are higher. This indicates that the 

random turbulence fluctuations and the periodic vortex shedding fluctuations are not 

correlated in a global-mean sense. The time-averaged equation is then solved with 

known unsteady stresses. The residual history in Fig.6-41 shows that a time-

independent solution is achieved. The predicted static pressure distribution on the 

blade compares very well with the time-averaged one produced by the unsteady 

calculation, as shown in Fig. 6-42. The static pressure and Mach number contour maps 

produced from this time-independent solution demonstrate that the vortex shedding is 

completely suppressed, as shown in Fig.6-43 and Fig.6-44. 

Then a similar attempt is made for the high Reynolds number turbulent flow 

case. The time-averaged equation is time-marched with unsteady stresses produced 

from unsteady solutions in this turbulent flow case. The calculation again shows that 

vortex shedding is suppressed by unsteady stresses. A static pressure and Mach 

number contour maps are presented in Fig.6-45 and Fig.6-46, they are very similar to 

the time-averaged static pressure and Mach number contour maps as shown in Fig.6-

27 and Fig.6-28. The comparison between the calculated static pressure by this 

calculation and the time-averaged static pressure produced by the unsteady 

calculation in Fig.6-25 is good. Importandy, the base pressure around the blade 

trailing edge is well predicted by solving the time-averaged equations, as shown in 

Fig.6-26. 

In Section 6.4.2, a calculation with a d^^, of 10% of the trailing edge 

thickness has demonstrated that the vortex shedding unsteady calculation is highly 

sensitive to the turbulence model. It would be interesting to investigate the sensitivity 
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of the time-independent solution to the turbulence model. To this end, a calculation is 

carried out to solve the time-averaged equation with a djj^ being 10% of the trailing 

edge thickness. The unsteady stresses in this calculation are taken as those produced 

by the unsteady calculation with the value of djjn, of 2% of the trailing edge thickness. 

Again a time-independent solution is achieved in this calculation and the calculated 

static pressure around the trailing edge is plotted in Fig. 6-26. It can be seen that the 

base pressure by this calculation is closer to the experimental data than that produced 

by the unsteady calculation with the value of dj i^ of 10% of the trailing edge 

thickness. It implies that solution of the time-averaged equations appears to be less 

sensitive to the turbulence model than the solutions by solving unsteady equations. 

This could be important and maybe of interest to turbomachine designers, because 

they would like to see that their design methods are less sensitive to turbulence 

models. 

6.6 Summary 

Some modelling issues on trailing edge vortex shedding have been addressed 

in this chapter. The emphasis of this work is to investigate the feasibility of producing 

a trailing edge vortex shedding time-independent solution by solving the time-

averaged equations. To solve the time-averaged equations, it is essential to work out 

the unsteady stress terms. In this investigation, the unsteady stresses are calculated 

from vortex shedding unsteady calculations. 

The work presented in this chapter starts with the unsteady calculation of 

vortex shedding behind a circular cyUnder and a V K I turbine blade by using a multi-

block Navier-Stoke solver. The numerical results have shown the structure and the 

frequency of vortex shedding street can be reasonably well predicted by the present 

unsteady solver. The calculations have demonstrated that the unsteady calculation of 

trailing edge vortex shedding in turboraachinery is very CPU time consuming. The 

104 



numerical tests have also demonstrated that vortex shedding unsteady calculation is 

highly sensitive to the artificial smoothing and turbulence model. 

Based on the unsteady solutions, the time-averaged flow fields about trailing 

edge shedding are calculated. The vortex shedding unsteady stresses are worked out. 

The numerical results have shown that the structures of three major vortex shedding 

unsteady stresses ((pu) 'u ' , (pu)'v', (pv)'v') are not very complex. All of them 

reach their peak values roughly at the end of the vortex shedding formation region, 

and then decay rapidly along the wake direction. The structures of the unsteady 

stresses in the turbine cascade flow are similar to those produced in the circular 

cylinder case, it suggests that the development of the vortex shedding modelling in 

turbomachinery probably can benefit from much easier studies of vortex shedding 

behind circular cylinders. The remarkable similarity of unsteady stress topologies 

between the laminar flow and the turbulent flow impUes that the random turbulence 

fluctuations and the periodic vortex shedding fluctuations are uncorrected in the 

global-mean sense. 

With the vortex shedding unsteady stresses obtained from unsteady 

calculations, the time-averaged equations are solved. Numerical results have shown 

that vortex shedding can be suppressed by the unsteady stress terms and a time-

independent solution can be achieved. Importantly, the vortex shedding time-averaged 

effects are included in time-independent solutions. A numerical test has also indicated 

that solution of the time-averaged equations appears to be less sensitive to the 

turbulence model than unsteady solutions. 
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Chapter 7 Conclusions and Suggestions 

Some numerical investigations have been carried out towards understanding 

and predicting unsteady flows in turbomachinery. The principal part of the present 

work is the development of efficient frequency domain methods for unsteady flows 

around oscillating blades. To start with, a quasi 3-D time-linearized Euler/Navier-

Stokes solver has been developed. Based on the time-linearized method, a novel quasi 

3-D nonlinear harmonic Euler/Navier-Stokes method has been developed. Finally, 

some numerical efforts have been made to address modelling issues on trailing edge 

vortex shedding. The present work is concluded in the following three sections, and 

the chapter ends with a discussion of suggestions for the future development. 

7.1 Time-Linearized Euler/Navier-Stokes Method 

The time-linearized Euler method was originally presented by Ni (1974), 

currently this method and its Navier-Stokes version have been widely used in industry 

to compute unsteady flows in turbomachinery. The main purpose of the development 

of a quasi 3-D time-linearized method in the present work is that this method is the 

baseline method for the development of a nonlinear harmonic Euler/Navier-Stokes 

method. 

In Chapter 2, the development of the quasi 3-D time-linearized Euler/Navier-

Stokes method has been presented. In this method, the unsteady flow is decomposed 

into a steady flow plus a harmonically varying unsteady perturbation. Through the 

Unearization, the original unsteady Euler/Navier-Stokes equation is divided into two 

equations, a steady flow equation and a time-linearized perturbation equation. In the 

time-linearized Navier-Stokes perturbation equation, the viscosity is frozen to its 

steady value, effectively the perturbation of the viscosity is neglected. A pseudo time-

marching technique is introduced to make both the steady flow equation and tiie time-
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Unearized perturbation equation time-independent, so the time-marching method can 

be used. In the present work, a cell-vertex scheme is implemented to discritize the 

steady and perturbation equations in space and the 4-stage Runge-Kutta scheme is 

used to integrate them in the pseudo-time domain. In order to avoid the spurious 

reflection in the far-field boundaries when solving the perturbation equations, l-D/2-

D nonreflecting boundary conditions are applied. A slip-wall boundary condition is 

developed for solving the time-linearized Navier-Stokes perturbation equations. 

The present quasi 3-D time-linearized Euler/Navier-Stokes method has been 

extensively validated, as presented in Chapter 3. An excellent agreement is achieved 

between the present calculation and a well-developed analytic method LINSUB for an 

oscillating flat plate cascade. A satisfactory comparison between the present 

calculation and LINSUB is obtained for a high frequency forced response case 

induced by incoming wakes for a flat plate cascade. Calculated results for an 

oscillating turbine cascade agree reasonably well with the experiment data. A 

calculation for a compressor cascade confums that the time-linearized Euler method 

works weU for transonic unsteady flows provided that the shock wave is sufficiently 

smeared and the shock oscillating amplitude is small. Calculated results for a laminar 

and a turbulent unsteady boundary layers are in good agreement with analytical 

solutions and other well-known numerical results. Finally, a calculation of an 

oscillating compressor cascade with a high incidence shows good comparison 

between calculated results and experimental data. 

7.2 Nonlinear Harmonic Euler/Navier-Stokes Method 

Based on a novel nonhnear approach proposed by He (1996a), a quasi 3-D 

nonlinear harmonic Euler/Navier-Stokes method has been developed, as described in 

Chapter 4. In this method, the unsteady flow is decomposed to be a time-averaged 

flow plus an unsteady perturbation. The time-averaged flow equations are given by 

time-averaging unsteady Euler/Navier-Stokes equations. Due to the nonlinearity of 
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unsteady equations, time-averaging produces extra 'unsteady stress' terms in the 

time-averaged equations. These unsteady stress terms are evaluated from unsteady 

perturbations. The unsteady perturbations are obtained by solving quasi-Unear 

harmonic perturbation equations, while the coefficients of perturbation equations 

come from the solution of the time-averaged equations. Therefore, the time-averaged 

equations and harmonic perturbation equations interact each other. In order to ensure 

a good convergence and accuracy of a solution, a strong coupling method is applied 

to solve the time-averaged equations and harmonic perturbation equations 

simultaneously in a pseudo-time domain. The nonlinear effects are included in a 

coupling solution between the time-averaged flow and unsteady perturbations. The 

solution methods in the present nonlinear harmonic Euler/Navier-Stokes method are 

very similar to those used in the time-linearized Euler/Navier-Stokes method. The 

cell-vertex scheme is implemented for the spatial discretization and the 4-stage 

Runge-Kutta scheme is applied for the temporal discretization. In order to effectively 

handle the strong nonUnearity in the flow field produced by a large amplitude of shock 

wave oscillation, an approximate approach to linearize the pressure sensor in the 

artificial smoothing terms is implemented. 

The effectiveness of the nonlinear harmonic Euler/Navier-Stokes method has 

been checked by calculations of transonic unsteady flows in a divergence duct, a 

biconvex cascade, a transonic diffuser and a compressor cascade. The calculated 

results are compared with a well-documented nonlinear time-marching method, the 

time-linearized Euler/Navier-Stokes method and experimental data. The comparisons 

have shown that the validity of the time-linearized method for unsteady flows is highly 

subject to the strength of nonlinearity in flow fields. A nonlinear harmonic analysis 

can considerably improve the numerical results over a linear analysis when the 

nonlinear effects cannot be ignored. However, the Umitation of the nonlinear 

harmonic method has also been observed from calculations. The limitation is likely 

due to the quasi-linear characteristics of the present nonlinear harmonic method. 

Numerical tests have shown that a nonlinear harmonic analysis typically needs 60% of 
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the CPU time more than that required for a time-linearized analysis, it is still much 

more efficient than a nonlinear time-marching calculation. 

7.3 Numerical Investigations on Trailing Edge Vortex Shedding 

The major issue addressed in this part of work is: can we produce a time-

independent solution by solving time-averaged equations when trailing edge vortex 

can be resolved in a calculation? This issue originally arises from the consideration of 

a time-linearized analysis and a nonlinear harmonic analysis in which a time-

independent solution must be required. Actually it is a general concern in 

turbomachinery. To investigate this issue, the work starts with unsteady calculations 

of trailing edge vortex shedding from a circular cyUnder and a V K I turbine blade 

using a multi-block unsteady Navier-Stokes solver. Based on the unsteady calculation 

results, the unsteady stresses due to trailing vortex shedding are worked out. Finally 

the time-averaged equations with known vortex shedding unsteady stresses are 

solved. Based on the present numerical study, several conclusions can be drawn as 

follows: 

Numerical results have shown that the structure and the frequency of vortex street 

can be well predicted by the present unsteady calculations. However, the unsteady 

calculation of vortex shedding is highly sensitive to the turbulence model and 

artificial smoothing. The numerical tests have also confirmed that the 

computational cost for an unsteady calculation of trailing edge vortex shedding in 

turbomachinery is very high. 

The structures of the three primary unsteady stresses ((pu) 'u ' , (pu)'v', (pv)'v') 

produced by the trailing edge vortex shedding are not very complex. All of them 

reach their peak values roughly at the end of vortex shedding formation region, 

then decay rapidly along the wake. The structures of unsteady stresses generated 

by vortex shedding from the V K I turbine blade are similar to those generated by 
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vortex shedding from a circular cyUnder. The topologies of vortex shedding 

unsteady stresses in a turbulent flow case are very similar to those in a laminar 

flow case, but the peak values of unsteady stresses in the laminar flow case are 

higher. 

• A time-independent solution for vortex shedding can be achieved by solving time-

averaged equations and the unsteady stresses are effective in suppressing vortex 

shedding. Importandy, the time-independent solution agrees with the time-

averaged solution produced by unsteady calculations. Although numerical tests 

have shown that vortex shedding can be suppressed by other approaches, such as 

the excessive artificial smoothing or different turbulence models, the solutions are 

very different compared with time-averaged solutions. A numerical test has 

indicated that the solution by solving time-averaged equations appears to be less 

sensitive to the turbulence model than an unsteady solution. 

7.4 Suggestions for the Future Work 

As far as the time-linearized and nonlinear harmonic method is concerned, 

several outstanding issues need to be addressed in the near future. The first is that the 

validity of freezing the viscosity in the perturbation equations to its steady/tirae-

averaged value should be further checked, especially for very low frequency unsteady 

flows. The second issue is on the linearization of the artificial smoothing. Although an 

approximate approach is implemented in the present nonlinear harmonic method to 

linearize pressure sensors, a more accurate approach is desired to be pursued. This 

might be particularly important for the flow with very strong nonlinearity. The 

another issue is on the acceleration of Navier-Stokes time-linearized and nonlinear 

harmonic analyses. In the present work, a 2-grid technique is applied to accelerate the 

convergence of the linear and nonhnear harmonic Navier-Stokes method. However, 

because the time accuracy is not a concern in a frequency domain method, a more 

efficient multigrid technique is highly preferable to be implemented. Meanwhile, 
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furtiier investigations on mesh-dependence of this nonlinear harmonic method should 

be carried out. 

Many latest numerical and experimental results have demonstiated that the 

3-D effects could be potentially important in the prediction of unsteady flows in 

turbomachinery. The extension of the present quasi 3-D method to a fuUy 3-D method 

should be pursued. From the methodology point of view, the extension work is not 

difficult, it can be done by either extending the present solver to a fully 3-D one or 

developing one from a well-developed fiolly 3-D steady or unsteady solver. However, 

the validation of 3-D methods would be difficult because very few 3-D unsteady 

experimental data are available so far. 

Another area of interest for blade flutter analysis is to include the interaction 

effects from other sources of unsteadiness, such as bladerow interactions, inlet 

distortions etc. In the time-linearized methods, the interaction between different 

unsteady disturbances is completely missed because the unsteady perturbations are 

based on a steady flow field. This interaction could be realised in a solution by the 

nonlinear harmonic method through time-averaged flows. In the nonlinear harmonic 

method, the time-averaged flow can be changed by the unsteady perturbations and 

vice versa in a coupling procedure. The unsteady stresses produced by different 

unsteady disturbances can be summed up to construct a total unsteady stress to put 

into the time-averaged equations. The communication between different disturbances 

can indirectiy build up through time-averaged flows. The investigation in this 

direction is worthwhile to be carried out in the future. For turbomachine designers, it 

is highly desirable to develop a design method which is efficient while it can take 

account of unsteady effects from different disturbances. The nonlinear harmonic 

method is promising to be developed into this kind of design method. 

Trailing edge vortex shedding is one of the most diflicult problems in 

turbomachinery because it has a very small length and time scale. The modelling of 
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the traiUng edge vortex shedding is a completely new way to look at this problem. 

The present work on the modelling issues is important because it has conceptually 

proved that vortex shedding can be suppressed by the unsteady stiesses and a time-

independent solution can be produced by solving time-averaged equations. However, 

how to model these unsteady stresses stUl remains an open question and much more 

effort needs to be made. Luckily the turbomachinery researches can benefit from the 

study on vortex shedding behind cylinders which is much less affected by geometrical 

constraints. Therefore the effort needs to be made to constinict a function in which the 

unsteady stresses are correlated to Reynolds numbers and cyUnder geometry in 

circular cyUnder flows. This function then can be extrapolated from cylinder flows to 

turbomachine flows. At the early stage, all the investigations can be carried out on 

laminar flows in order to avoid any uncertainties of turbulence models. For turbulent 

flows, improved turbulence models such as Reynolds stress models or even the Large-

Eddy Simulation (LES) technique must be implemented to investigate unsteady 

stresses more accurately. The relationship between the unsteady stresses and 

boundary layer characteristics needs to be constructed. 
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Fig. 3-3 Instantaneous First Harmonic Entropy Contour Map 
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Fig. 3-13 Steady Mach Number Contour Map for a Compressor Cascade 
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Fig. 5-6 Steady Mach Number Contour Map in Biconvex Cascade (Pressure 
Ratio: 0.7) 
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Fig. 5-9 Steady Mach Number Contour Map in Biconvex Cascade (Pressure 
Ratio: 0.725, Torsion Amplitude: 0.75 deg.) 
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Fig. 5-16 Computational Mesh for Transonic Diffuser 
(vertical scale enlarged by a factor of 2) 

Fig. 5-17 Steady Mach Number Contours in Transonic Diffuser 
(vertical scale enlarged by a factor of 2) 
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Fig. 5-23 Finer Computational Mesh for Transonic Diffuser 
(vertical scale enlarged by a factor of 2) 
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Fig. 6-5 Contours of Instantaneous Static Pressure around Cylinder 
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Fig. 6-8 Contours of Time-averaged Static Pressure around Cylinder 

Fig. 6-9 Contours of Time-averaged Entropy around Cyhnder 
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Fig. 6-10 Static Pressure Distribution along Line A-B-C-D-E 
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Fig. 6-11 Contours of Unsteady Stress (pu)'u' around Cylinder 

-0.57 

0.57 

Fig. 6-12 Contours of Unsteady Stress (pu)'v' around Cylinder 
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Fig. 6-13 Contours of Unsteady Stress (pv)'v' around Cylinder 



Fig. 6-14 Layout of 4-Biock Mesh around VKI Turbine Cascade 

Fig. 6-15 Computational Mesh around VKI Turbine Cascade 



Fig. 6-16 Enlarged View of Computational Mesh around VKI Turbine Blade 
Trailing Edge 



Fig. 6-17 Contours of Instantaneous Static Pressure around Turbine Cascade 
in a Laminar Flow Case 

Fig. 6-18 Contours of Instantaneous Entropy around Turbine Blade in a 
Laminar Flow Case 
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Fig. 6-19 Static Pressure Time Traces at Blade Trailing Edge 
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Fig. 6-20 Trailing Edge Reference Coordinate of V K I Turbine Blade 
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Fig. 6-21 Unsteady Pressure Frequency Spectrum at Blade Trailing Edge 

Fig. 6-22 Contours of Instantaneous Static Pressure around Blade in a 
Turbulent Flow Case 



Fig. 6-23 Contours of Instantaneous Mach Number around Blade in a 
Turbulent Flow Case 

Fig. 6-24 Contours of Instantaneous Entropy around Blade in a Turbulent 
Flow Case 
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Fig. 6-25 Isentropic Mach Number Distribution on V K I Turbine Blade 
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Fig. 6-26 Static Pressure Distribution around Blade Trailing Edge 



Fig. 6-27 Contours of Time-averaged Static Pressure by Solving Unsteady NS 
Equations ( without Unsteady Stresses ) 

Fig. 6-28 Contours of Time-averaged Static Pressure by Solving Unsteady NS 
Equations (without Unsteady Stresses ) 



Fig. 6-29 Contours of Unsteady Stress (pu)'u' of Turbulent Vortex Shedding 

Fig. 6-30 Contours of Unsteady Stress (pu)'v' of Turbulent Vortex Shedding 

Fig. 6-31 Contours of Unsteady Stress (pv)'v' of Turbulent Vortex Shedding 
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Fig. 6-32 Contours of Static Pressure by Solving Unsteady NS Equation 
( DUmit=10% ) 

Fig. 6-33 Contours of Mach Number by Solving Unsteady NS Equation 
( Dlimit =10% ) 
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Fig. 6-34 Computational Residual History in Circular Cylinder Case 

Fig. 6-35 Contours of Static Pressure by Solving Time-averaged Equations 



Fig. 6-36 Contours of Entropy by Solving Time-averaged Equation 

Fig. 6-37 Contours of Entropy by Solving Unsteady NS Equations with Big 
Artificial Smoothing Coefficients 



Fig. 6-38 Contours of Unsteady Stress (pu)'u' of Laminar Vortex Shedding 
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Fig. 6-39 Contours of Unsteady Stress (pu)'v' of Laminar Vortex Shedding 

Fig. 6-40 Contours of Unsteady Stress (pv)'v' of Laminar Vortex Shedding 
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Fig. 6-41 Convergence History of Laminar Flow Case 
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Fig. 6-42 Isentropic Mach Number Distribution on Blade Surface in Laminar 
Flow Case 



Fig. 6-43 Contours of Static Pressure by Solving Time-averaged NS Equations 
for Laminar Flow Case 

Fig. 6-44 Contours of Mach Number by Solving Time-averaged NS Equations 
for Laminar Flow Case 



Fig. 6-45 Contours of Static Pressure by Solving Time-averaged NS Equations 
for Turbulent Flow Case 

Fig. 6-46 Contours of Mach Number by Solving Time-averaged NS Equations 
for Turbulent Flow Case 


