
Durham E-Theses

Dry degradation processes at solid surfaces

Ohesiek, Susanne Maria

How to cite:

Ohesiek, Susanne Maria (1998) Dry degradation processes at solid surfaces, Durham theses, Durham
University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4817/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4817/
 http://etheses.dur.ac.uk/4817/ 
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk


DRY DEGRADATION PROCESSES AT SOLID 

SURFACES 

The copyright of this thesis rests 
with the author. No quotation from 
it should be published without the 
written consent of the author an 
information derived from it should 
be acknowledged. 

Susanne Maria Ohsiek 

PhD Thesis 

University of Durham 

Department of Chemistry 

December 1998 

2 3 AUG 1999 



Meinen stets geduldigen Eltem in Dankbarkeit 



Abstract 

Polymer surfaces were modified by exposure to a silent discharge plasma, by 

exposure to UV radiation and by chemical functionalisation. Additionally, the silent 

discharge treatment of alkali halide disks was investigated. 

Employing XPS and IR, the silent discharge treatment of poly 

(phenylmethylsilane) and poly (cyclohexylmethylsilane) thin films was found to 

resuh in the formation of a carbonaceous SiOx layer. Oxidation occurred faster and 

to a larger degree in the case of the aromatic polysilane. 

A XPS study of the UV irradiation of poly (phenyhnethylsilane) thin films in 

the presence of CCI4 vapour revealed the formation of a chlormated silicon species. 

The analysis of aged samples showed that this initially formed product was unstable 

in moist air. 

The silent discharge treatment of alkali halide disks (KCl, KBr, KI) was 

studied in ambient air, as well as in dried and humidified gases (artificial air. He, N2, 

O2). IR and XPS were used as analytical methods, hi most cases nitrate and 

halogenate were formed upon treatment in air. Depending on the reaction conditions 

treated K I disks sometimes showed the presence of nitrite as an additional or as the 

main product. In oxygen atmospheres halogenate was formed as the exclusive 

product. Treatments m the remaining atmospheres did not lead to product formation. 

The presence of water vapour in the feed gas increased the amount of product. 

Changes in the IR spectra of the nitrate species upon storage in a desiccator and after 

exposure to heat were found and monitored. 

Pentafluoropropionic anhydride was tested for its suitability as a vapour phase 

labelling reagent for hydroxyl groups on polymer surfaces. Derivatised films were 

analysed by XPS and IR. Using Polyvinyl alcohol as a model polymer the reaction 

proceeded fast and quantitative. Moreover, the cross-reaction with a number of 

polymers containing functionalities other than hydroxyl was studied. The reaction 

with nylon 6,6 was investigated in detail. 

The vacuum photodegradation of polyethersulfone upon irradiation with the 

f i i l l and a selected part of a Hg (Xe) lamp spectrum was studied. The volatile 

products were identified with in-situ quadrupole mass spectrometry. Monitoring the 

intensities of some products in subsequent irradiation phases provided evidence for a 

crosslinking process. In samples irradiated with the complete lamp spectrum 

crosslinking occurred faster. Additionally, the XP spectra of the corresponding 

samples revealed a stronger modification which became most obvious in the presence 

of a reduced sulfiir species. 
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Chapter 1 

Chapter 1: An introduction to silent discharges 

1.1 Introduction 

This chapter wi l l provide a short introduction into plasmas in general and will 

then focus on the discussion of silent discharges, a special type of electrical 

discharges relevant for the present work. In the text the terms plasma and discharge 

wil l be used as equivalents. 

1.2 Definition of plasma and other important terms 

A plasma can be defmed as a gaseous complex that may be composed of a 

multitude of constituents. These include electrons, ions of either polarity, gas atoms 

and molecules in various excited states as well as light quanta \ This state can be 

generated by the application of energy to matter, where the latter is most often present 

as a gas. The energy required has to be larger than the ionisation energy of the matter 

under consideration and can be provided in the form of thermal or electrical energy, 

as Shockwaves or as laser pulses .̂ 

Each volume element of a plasma contains an almost equal number of positive 

and negative charge carriers such that the plasma as a whole appears neutral and is 

therefore referred to as quasi-neutral. This term is still valid in the case of a local 

excess of one type of charge carrier leading to the development of a space charge 

because the amount of excess charge carriers is small compared to the total amount of 

charged particles. Quasi-neutrality is the prerequisite for the build-up of high charge 

carrier densities within the plasma which would otherwise be prevented because of 

mutual repulsion 

The amount of charge carriers ni with respect to the amount of neutral 

particles n contained in a plasma is called the degree of ionisation (a = ni/n) .̂ 

A l l plasma constituents have an individual kinetic energy distribution. 

Applying statistical thermodynamics the average energy value of each plasma particle 

can be expressed in terms of a temperature I f the temperatures of all the plasma 

constituents are approximately the same the plasma is called an equilibrium plasma. 
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This type of plasma is often observed at high temperatures and is therefore also 
referred to as a hot plasma. 

A complete thermodynamic equilibrium can, however, only be established 

when the energy exchange processes prevail over processes which consume or supply 

energy These conditions can be met in extended volumes of a hot gas like in a 

fixed star. On earth, these conditions cannot be realised because the dimensions of 

laboratory plasmas are relatively small. As a consequence of the small plasma 

volume radiation of the plasma can escape without being absorbed. This energy loss 

has to be compensated from external sources. These conditions only allow the 

development of a local thermodynamic equilibrium and plasmas of this type are 

therefore called Local Thermodynamic Equilibrium (LTE) plasmas 

In plasmas which are not in local thermal equilibrium (non-LTE plasmas), the 

electrons have a much higher kinetic energy or temperature than the heavy 

constituents. In most electrical discharges, for example, plasma formation is due to 

external electric fields acting upon both electrons and ions. Due to their small weight 

electrons are accelerated faster acquiring higher energies than the heavy ions ^ As a 

consequence electrons undergo frequent collisions with the other plasma constituents 

thereby transferrmg most of the energy from the external field to the particles. Only a 

small amount of heat is transferred in the collisions between electrons and gas 

particles or solids in contact with the plasma. Additionally, the electron densities in 

such plasmas are usually low. Due to these reasons, non-LTE plasmas are also called 

cold plasmas .̂ 

1.3 Plasma chemistry '̂̂  

In a plasma a row of elementary reactions occurs simultaneously during which 

the plasma constituents are created, destroyed or transformed into other species. 

Each process requires a minimum amount of energy which is dependent on the nature 

of the gas(es) involved. Moreover, a reaction and its rate are determined by the 

probability or cross-section of the particular process at a given energy. Finally, the 

form of energy used to generate the plasma state exerts an important influence on 

both type and frequency of elementary reactions. In electrical discharges for example 

electron collisions are the preferential method of energy transfer. The combination of 
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all elementary reactions represents the overall mechanism of the plasma process. The 
knowledge of the single processes and their characteristics are important for the 
theoretical modelling and the control of the whole plasma process. 

la lonisation A + e A"" + 2e 

A i + e -> A2"' + 2e 

lb Dissociative lonisation AB + e A^ + B + 2e 

2 

2b 

Excitation A + e -> A* + e 

AB + e ^ AB* + e 

e + AB e + (AB)* -> e + A + B 

3a Radiative Recombination A"̂  + e -> A + hv 

3b Dissociative Recombination e + AB^ (AB)* ^ A* + B 

3c e + AB^ ^ (AB)* + M AB + Mkm 

3d A^ + B~ -> AB + hv 

3e A"" + B" + M ^ AB + Mkin 

3f A"" + B~ ^ A + B 

4a Electron Attachment e + A -> A~ + hv 

4b Dissociative Attachment AB + e A + B~ 

e + AB ^ (AB)~* + M ^ AB" + Mkin 

5a Penning Dissociation S* + AB ^ A + B + S 

5b Perming lonisation S* + AB ^ AB^ + e + S 

6a Charge Transfer Ŝ  + A -> S + A^ 

S+ + AB S + AB^ 

6b Dissociative Charge Transfer S"" + AB S + A + B^ 

6c Symmetric Charge Transfer A + A^ ^ A* + A 

Tab. 1 Important elementary reactions in plasmas 

Elastic and inelastic collisions are distinguished; both types of particle 

interaction are important for the development and the maintenance of the plasma 

state. Elastic collisions are characterised by an exchange of kinetic energy between 

the collision partners whilst the sum of the kinetic energy remains the same; an 
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excitation of the target does not take place. In inelastic collisions, however, a part of 
the kmetic energy transferred to the target is used to increase its internal energy 
resulting in an excitation of the particle. This can lead to dissociation, ionisation, and 
the formation of metastables or radicals. Table 1 summarises the most important 
elementary reactions. 

lonisation (la) which corresponds to the complete removal of a bound 

electron from an atom, requires electron energies higher than the ionisation energy of 

the gas in question. This is why only the high energy electrons of the electron energy 

distribution can cause this reaction to occur. lonisation potentials for different gases 

have values in the range of 8-25 eV. For a particular molecule or atom the cross-

section for ionisation passes through a maximum at energies corresponding to three 

to five times the ionisation energy value. Ionised molecules can additionally be 

rotationally and vibrationally excited, the latter of which can lead to their dissociation 

(lb). Product ions formed with sufficiently high vibrational energy can again 

dissociate further. 

Excitation is the result of a collision process with an energy transfer 

corresponding to the difference between the ground and an excited state of the target 

molecule or atom. A comparison of excitation and ionisation shows that excitation 

processes do not only have a lower appearance potential but also a steeper excitation 

curve (plot of cross-section versus electron energy). Therefore, the "fast" plasma 

electrons cause excitation rather than ionisation of neutral particles. 

Contrary to its photochemical equivalent, plasma excitation is not restricted 

by quantum-mechanical selection rules such that "forbidden" transitions occur in 

plasmas. Particles excited to allowed states can return to their ground state by 

spontaneous emission of light quanta in the UV and VIS region, the latter of which 

accounts for the plasma glow. Since the lifetime of those excited species is very short 

(10'^ - 10'̂  s) their participation in additional chemical reactions is very unlikely. 

Radiative decay is not a possible relaxation route for particles excited to forbidden 

states. Due to their increased lifetime the exact value of which is dependent on 

parameters like the pressure and the nature of the gas, those states are termed 

"metastable". The deexcitation of particles in metastable states is possible following 

a second collision which causes a transfer to an allowed state for spontaneous 



Chapter 1 

emission. A second pathway involves the transfer of energy to a molecule which can 
then dissociate (Penning dissociation, 5a) or be ionised (Perming ionisation, 5b). 

Molecules can be excited electronically, rotationally and vibrationally. 

Vibrational excitation is especially important for plasma chemistry because it can 

lead to dissociation which is a source of reactive atoms or radicals (2b). In 

comparison to radiative decay the dissociation of an excited molecule into neutral 

fragments proceeds very fast (10''^ s) and is therefore the more probable reaction to 

occur. 

Recombinations (3a-f) are reactions which result in the neutralisation of 

positive charge carriers either by the uptake of an electron or the combination with a 

negative ion. The different types of recombination depend on the nature of the 

collision partners, the velocity of the particles and the pressure of the neutral gas. 

Recombinations of atomic ions and electrons are accompanied by the 

emission of electromagnetic radiation (3a). Dissociative recombination of molecules 

(3b) occurs preferably at low charge carrier density. In this case the neutral particles 

produced in the reaction can ensure the conservation of energy and momentum. 

Increased pressure and /or higher charge carrier densities are the favoured conditions 

for three-body collisions according to (3c). The additional collision partner M can be 

an atom or a molecule which carries away the excess energy of the process in form of 

kinetic energy, thereby heating up the plasma. 

Similar observations are made in the recombination of oppositely charged ions 

(3d-f). At very low pressures, the process occurs as a two-body reaction (3d) whereas 

at pressures > 0.1 mtorr a three-body reaction occurs (3e). Recombinations of ions 

can also occur as a charge transfer process (3f). 

Although the formation of positive ions is prevalent in most cold plasmas, 

negative ions can also be formed. This occurs by the attachment of low energy 

electrons of a few electron volts to neutral particles. The amount of energy released 

during this process is called electron affinity (EA). It is a measure of the stability of a 

negative ion and therefore its lifetime in the plasma. Electron attachment reactions 

can be expected for plasmas ignited in gases with high EA values, for example gases 

containing electronegative elements like oxygen or halogens. The importance of 

negative ions for a plasmachemical process increases with increasmg electronegative 

character of the gas and increasing pressure. 
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Attachment can occur according to different mechanisms which are 
influenced by the way in which the energy developed in the process is carried away 
(4a-c). In the first case which is especially observed in atoms, the reaction energy 
corresponding to the sum of the EA and the kinetic energy of the electron is emitted 
in the form of radiation. Due to the energy distribution of the electrons it appears as a 
continuum (4a). Electron attachment to molecules is often followed by dissociation 
(dissociative attachment, 4b). The excess energy is distributed as kinetic energy 
between the two fi'agments. The cross-sections for this process have maxima at 
electron energies between 0 and 1 eV and in the energy range between a few eV and 
the ionisation potential, respectively. At higher pressures where the collision 
frequency is increased and three-body reactions are more probable, the large 
vibrational energy of the molecules can be transferred to a third collision partner and 
the molecules do not dissociate (4c). 

Some collisions between heavy particles in multicomponent systems involve a 

direct transfer of internal energy from one collision partner to the other with none or 

only a small amount of the original internal energy being transformed into kinetic 

energy. These processes represent a possibility to activate non-reactive atomic or 

molecular plasma particles, hi Penning processes metastables dissociate or ionise 

molecules according to (5a) and (5b). These reactions occur under the condition that 

the excited states of the activating particle S* are energetically higher than the 

dissociation and ionisation potential of the target, respectively. 

Reactions can also be activated by a charge transfer process between particles 

differing in their ionisation potentials (6a). Asymmetric processes involving atoms 

are less frequent, hi contrast, those involving molecules often have high cross-

sections especially at low electron energies. Depending on the difference between the 

internal energy of the activating particle and the ionisation potential of the substrate, a 

charge transfer can be accompanied by other processes like the excitation of the 

product ion which can cause its dissociation (6b). Charge transfer can also take place 

between an ion and a neutral particle of an identical type. Although equation (6c) 

shows no obvious difference in the particles before and after this symmetrical charge 

transfer, the collision results in a slower ion and a faster neutral. 
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1.4 Silent discharge plasmas 

1.4.1 Definition and characteristics 

A silent discharge (also called dielectric barrier discharge or barrier discharge) 

is a quasi-neutral, non-equilibrium plasma with a low degree of ionisation which is 

usually run at high pressures .̂ Its characteristics are summarized in table 2. 

Pressure range 0.1 - 10 bar 

Electric fields 0.1 - lOOkV/cm 

Average electron energy 1 - 10 eV 

Electron density lO'^cm-^ 

Degree of ionisation 10-^ 

Tab. 2 Characteristics of silent discharges '̂̂  

1.4.2 Set-up 

A silent discharge set-up consists of two electrodes which are separated by a 

gap and in between which there is at least one dielectric layer Depending on 

the application, several geometrical arrangements have been used employing 

different types of dielectric materials such as glass, quartz, ceramics, polymers or 

enamel Preferred configurations are planar or armular discharge gaps 

Figure 1 shows possible arrangements of the dielectric for the example of plane-

parallel electrodes 
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Fig. 1 Possible arrangements of the dielectric in a silent discharge set-up 10 

1.4.3 Properties of the silent discharge 

The application of a suitable voltage to a silent discharge set-up results in the 

electrical breakdown of the gas filling the gap. The gas between the electrodes is no 

longer an insulator and charge transport takes place. Due to the presence of the 

dielectric the discharge is composed of many cylindrical microdischarges or 

filaments of nanosecond duration 5,13-15 The discharge as a whole is therefore 

inhomogeneous in nature. In practice, the discharge conditions are often chosen such 

that most of the charge transport occurs via electrons. At the dielectric the discharge 

channels spread into surface discharges which have a larger diameter than the 

original filaments The exact dimensions of the siuface discharges depend on 

the experimental conditions. Each microdischarge charges up a small segment of the 

barrier area where the charge is not distributed evenly over the afifected area but 

decreases with increasing distance from the discharge centre Depending on the 

polarity of the set-up two types of surface processes can be distinguished '•'"•'^-'^ 

which are schematically shown in figure 2. 
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+ U 

Fig. 2 Development of a microdischarge in dependence of the polarity of the set-up 10 

ff the barrier is the anode of the set-up (figure 2, right) electrons travel 

towards the dielectric through the microdischarge channels. Each filament builds up 

a negative charge on the dielectric segment which it strikes. Electrons subsequently 

passing through the same channel are deflected towards the side such that the 

microdischarge is broadened into a fimnel shape in the vicinity of the barrier. 

Photographs of such discharges taken through transparent dielectric materials show 

diffuse spots The negative charge accumulating on the dielectric area affected by a 

microdischarge creates an electric field which locally reduces the applied field and 

finally causes the microdischarge to terminate 

hi cases where the dielectric is the cathode of the set-up (figure 2, left) 

electrons in the microdischarges are accelerated towards the powered electrode by the 

influence of the applied field. The positive charge each filament leaves behind on the 

dielectric causes a potential difference with respect to the regions of the dielectric 

which are not affected by a microdischarge. The difference finally becomes large 

enough to ignite discharges along the dielectric surface through which electrons are 

fed into the microdischarge while a fiirther positive charge is built up on the 

dielectric. Optically, the surface discharges appear as strongly branched channels 

which meet m a centre Their diameter is larger than that of the surface 

discharges developed when the dielectric represents the anode As in the first 

case, the charge accumulating on the dielectric increasingly weakens the applied field 
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until the microdischarge cannot longer be sustained and is extinguished The 
characteristics of the surface discharges in dependence of the polarity can be 
observed both in single microdischarges and in set-ups continuously operated with 
voltages comprised of successive positive and negative half cycles 

During their passage through the microdischarge channels the electrons 

accelerated m the electrical field initiate plasmachemical processes in collisions with 

gas particles. The properties of the microdischarges determine which of the 

muhitude of simultaneous elementary reactions take place in a gas or a gas mixture. 

Therefore, the experimental conditions for a particular silent discharge application 

have to be optimised such that the desired reaction is favoured and undesired 

reactions are reduced to a minimum. The term "discharge strength" often used in this 

context refers to the amount of charge transferred through a discharge channel, a 

strong microdischarge being a filament through which a large charge is transported. 

The properties of the filaments can be influenced by experimental factors like 

the characteristics of the feeding circuit, the nature and the thickness of the dielectric, 

the gas pressure, the gas composition and the gap spacing 

The rise time of the applied voltage influences the temporal and local 

distribution of the microdischarges. I f the voltage increases slowly with respect to 

the lifetime of the microdischarge, filaments are ignited and extinguished randomly 

with respect to time and location as long as the voltage is increased and the field is 

sufficiently high to cause breakdown ^\ Under these conditions the dielectric is not 

charged up simuhaneously and pronounced surface discharges can develop. Each 

microdischarge gives rise to a short current pulse which can be measured as a needle 

like signal '°. The opposing field built up by the charge deposition on the dielectric 

finally terminates the microdischarge. Since a remaining charge on the barrier 

weakens the field strength on the location where the microdischarge had taken place, 

the ignition of another filament at the same place is prevented until the charge has 

been reduced. Subsequent microdischarges therefore strike other locations on the 

dielectric such that the filaments are distributed over the whole discharge area over a 

certain amount of time 

I f steep voltages (kV/ns range) are applied, the breakdown of the gas results 

in the simultaneous formation of many parallel microdischarges. The charge 

transport during the whole discharge phase takes place via the microdischarge 

10 
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charmels initially developed; subsequent microdischarges are not ignited 
Depending on the characteristics of the applied voltage pulse the duration of a 
discharge phase is in the range of tens to hundreds of nanoseconds '°. Due to the 
more homogeneous nature of the discharge approximately all segments of the 
dielectric are charged up sunultaneously. Thereby the occurrence of extended surface 
discharges is prevented The measured current is the sum of the currents of all the 
microdischarges and therefore a lot larger than in the former case 

The properties of the dielectric determine the amount of charge that can be 

deposited on the barrier. The amount of charge transferred through a microdischarge 

chaimel is proportional to the dielectric constant of the dielectric material and 

inversely proportional to the dielectric thickness 

A decrease in pressure leads to more numerous filaments with increasingly 

large diameter . At the same time the overall appearance of the discharge becomes 

more and more diffuse until at sufficiently low pressures the filamentary structure is 

replaced by a glow discharge 

The gas properties determine which elementary reactions take place at a 

certain electrical field value and have therefore an influence on the characteristics of 

the respective microdischarges. Microdischarges in electronegative gases have a 

much shorter lifetime transferring a smaller charge than those ignited in inert gases 

This is due to the tendency of electronegative gases to undergo electron attachment 

which represents a powerfiil electron loss pathway in addition to recombination 

processes which prevail in inert gases. 

An increase of the gap width results in the concentration of the discharge to a 

few bright microdischarge channels with pronounced surface discharges The 

optical appearance charge measurements and mathematical simulations ^ 

show that the charge transported over a single filament increases with increasing gap 

width, hi cases where slowly increasing voltages are applied the concentration of the 

discharge can already be observed at small gap widths whereas the use of fast 

rising voltages allows the discharge to be kept more homogeneous over larger gap 

spacings 

11 
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1.5 Applications of silent discharge processes 

1.5.1 Ozone generation 

The oldest but still most important application of silent discharges is ozone 

production for fresh and waste water treatment as well as for industrial bleaching and 

oxidation purposes Both dry oxygen and dry air can be used as feed gases for 

large ozoniser installations ' . Numerous possible elementary reactions contribute to 
o 

the overall plasma process in both gases . In comparison with pure oxygen, air as a 

mixture of gases represents, however, the more complex system. Only the key 

reactions wil l be considered in the following description. Excited molecules will 

appear in the respective equations marked with an asterisk. 

1.5.1.1 Ozone generation from oxygen 

Two reaction phases can be distinguished in the context of ozone formation in 

oxygen-fed silent discharges The first phase occurs durmg the charge transport of 

the microdischarge and hence lasts only a few nanoseconds Electron impact 

processes are dominant during this period. The following reactions are regarded as 

the most important ones in oxygen: 

e + O 2 -> e + OiCA^Su^) ^ e + 2 0(^P) (1) 

e + O2 ^ e + 0 2 ( B X ' ) ^ e + 0 ( T ) + O ( ' D ) (2) 

e + O3 ^ e + O 2 + O (3) 

Oxygen dissociation can proceed via two reaction pathways. These involve 

oxygen molecules in two different excited states as shown in equations (1) and (2). 

Since the energy thresholds for the first step of eq. (1) and (2) are 6.0 and 8.4 eV, 

respectively the ideal electron energy for obtaining oxygen atoms is in the range 

o f 6 - 9 e V ^ ' l I f ozone molecules are already present in the gas volume subjected to 
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the discharge treatment, they can dissociate according to pathway (3) upon electron 
impact. 

During the subsequent reaction phase the intermediates created in the 

microdischarge form stable products within microseconds These are for oxygen: 

O 2 + O + M <^ O3* + M o O3 + Mkin (4) 

O + O + M ^ O 2 + Mkin (5) 

O + O 3 * ^ 2 O2 (6) 

Ozone molecules are formed in a three-body collision according to (4). M is 

a third collision partner carrying away the excess energy of the product molecule 

which is initially formed in a vibrationally excited state ^•''•'2'̂ '*. After theu' 

formation in the extinguished microdischarge channels the ozone molecules difiuse 

until they are evenly distributed in the gas volume. 

In order to obtain an optimum ozone yield the microdischarges have to be 

adjusted such that their strength is neither too strong nor too weak. The medium 

discharge strength represents a compromise between conflicting requirements 

concerning the efficiency of the conversion of oxygen atoms and oxygen molecules 

to ozone on the one hand and the efficiency of oxygen molecule dissociation on the 

other Too strong microdischarges result in the formation of too many oxygen 

atoms with respect to oxygen molecules present. In this case the efficiency of the 

conversion of oxygen atoms to ozone is reduced by oxygen atoms taking part in the 

undesired side reactions (5) and (6). In weak microdischarges those side reactions 

are negligible but these conditions favour an increased proportion of the energy to be 

transported by ions. Since ions do not take part in oxygen molecule dissociation and 

thus do not contribute to ozone formation, an energy transport via ions represents a 

loss which reduces the efficiency of oxygen molecule dissociation and consequently 

the overall efficiency of ozone formation. 

In a volume of feed gas which is exposed to many successive 

microdischarges, the efficiency of the individual microdischarges with respect to 

product formation is gradually reduced as the gas is enriched with ozone because 
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ozone destruction processes described in equations (3) and (6) gain importance. 
Finally, a saturation concentration is reached where ozone producing and loss 
processes initiated by a microdischarge are balanced 

The saturation concentration drops with increasing temperature. This 

behaviour can be explained with the fact that reaction constants of (4) and (6) and to 

a lower extent the constant of reaction (5) are dependent on temperature. With 

increasing gas temperature the equilibrium of reaction (4) is shifted towards the left 

side ("thermal ozone destruction") and ozone destruction according to (6) is 

increased .̂ ft is therefore important to prevent the gas from heating up during silent 

discharge treatment. This can be achieved by efficient external cooling of the 

ozoniser and the choice of the appropriate discharge conditions. Feeding the 

energy into the gas via many parallel microdischarges is more favourable than 

allowing the discharge to concentrate on a few strong filaments with large surface 

discharges. The latter conditions lead to the development of local temperature 

maxima which give rise to a high rate of thermal ozone destruction 

1.5.1.2 Ozone generation from air 

In air, the energy of the discharge electrons is distributed among nitrogen and 

oxygen. The discharge chemistry therefore involves both oxygen and nitrogen 

species Apart from oxygen (1,2) and ozone (3), nitrogen molecules are subject 

to electron impact during the microdischarge phase. The following additional 

elementary reactions have to be considered: 

e + N 2 ^ e + 2 N (7) 

e + N 2 ^ e + N 2 * (8) 

A large part of the input energy is initially stored in excited states of nitrogen 

molecules (8) Several metastable states are possible with threshold energies 

between 6.17 and 11.9 eV In the subsequent reaction phase the following 

processes involving nitrogen compounds occur in addition to reactions (4) to (6): 
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reactions of metastable nitrogen molecules: 

N2* + O2 -> N2 + 2 0 (9) 

N2* + O2 ^ N2O + O (10) 

N2* + O2 ^ 2 NO (11) 

reactions of nitrogen atoms: 

N + O2 ^ NO + O (12) 

N + O3 -> NO + O2 (13) 

N + NO ^ N2 + O (14) 

N + NO2 ^ N2 + O2 (15) 

nitrogen oxide transformation reactions: 

O + NO + M NO2 + M (16) 

O + NO2 NO + O2 (17) 

NO + O3 -> NO2 + O2 (18) 

NO2 + 0 3 ^ NO3 + O2 (19) 

NO2 + O + M ^ NO3 + Mkin (20) 

NO + NO3 ^ 2NO2 (21) 
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N O 2 + NO3 N O 2 + O2 (22) 

O + NO3 ^ N O 2 + O2 (23) 

N O 2 + NO3 + M <^ 2 N2O5 + Mkin (24) 

O + N2O5 ^ 2 N O 2 + O2 (25) 

In air the two reaction steps of ozone formation cannot be linked as strictly to 

the discharge and the reaction phase as in the case of oxygen. Oxygen atoms are not 

only produced directly by electron impact dissociation of oxygen molecules during 

the current flow of the microdischarge but there are also substantial indirect sources 

of atomic oxygen in the reaction phase. Those involve nitrogen atoms (12,14) and 

nitrogen metastables (9,10) of sufficient energy These processes are also the 

reason why in air the ozone yield obtained is larger than can be expected from its 
* 8 13 

oxygen mole fraction ' . A fiirther difference of ozone production in oxygen and air 

consists in the time scale of ozone formation. Mathematical simulations of a 

microdischarge in air and in oxygen revealed that ozone production proceeds faster in 

oxygen where the maximum ozone concentration is reached after approximately 10 

seconds. The maximum ozone concentration in air is reached after 10 seconds. 

The differences were attributed to the small partial pressure of oxygen in air 

Beside ozone, nitrogen oxides are formed as stable products of the discharge 

treatment of air. Due to their different formation pathways and their different 

influence on the overall plasma chemistry, N2O and the other nitrogen oxides which 

wil l be referred to as NOx in the following discussion (NOx = NO, NO2, NO3, N2O5 

and under certain experimental conditions HNO3) can be distinguished. 

N 2 O is almost exclusively formed via nitrogen metastables (10) At the 

temperatures usually present in ozonisers it is inert and exerts no influence on ozone 

formation In contrast, NOx formation proceeds under consumption of ozone 

and atomic oxygen. The discharge conditions determine which chemical reactions 

are favoured and therefore which products are obtained. Those can be either both 

nitrogen oxides and ozone or only nitrogen oxides ("ozoneless mode, discharge 

poisoning"). 
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NOx production starts with atomic nitrogen which forms at first nitrogen 
oxide, NO, in reactions with oxygen (12) or ozone molecules akeady present in the 
gas (13). In the presence of sufficient ozone, pathway (13) is dominant NO is 
then further oxidised to higher nitrogen oxides in the transformation reactions. 
Within the transformation cycle, the sum concentration of the nitrogen oxides remains 
unchanged since reactions (14) and (15), the only possible destruction pathways in 
the reaction phase, only gain importance in the absence of ozone; otherwise NO and 
NO2 preferably react with ozone according to reactions (18) and (19). 

Under normal operation conditions (presence of ozone, moderate temperature 

and microdischarge strength) all nitrogen atoms are finally converted to N2O5 because 

the equilibrium of reaction (24) is shifted to the right hand side and thus provides an 

effective removal of NO, NO2 and NO3 In this case, N2O5 and N2O are the only 

nitrogen oxides detected in considerable amounts in addition to ozone '̂̂ '̂̂ 2. Their 

proportion corresponds to about 1% of the respective ozone yield Reaction (24) 

is important because even small concentrations of the low nitrogen oxides can have a 

strongly detrimental effect on ozone yield since they take part in catalytic chains 

leading to ozone destruction and atomic oxygen recombination, respectively. These 

chains consist of combinations of nitrogen oxide transformation reactions as can be 

seen below: 

O + NO2 ^ NO + O2 (17) 

NO + O3 NO2 + O2 (18) 

sum O + O3 ^ 2 O2 

NO2 + O3 -> NO3 + O2 (19) 

O + NO3 ^ NO2 + O2 (23) 

sum^^: O + O3 ^ 2 02 

O + NO + M ^ NO2 + M (16) 

O + NO2 ^ NO + O2 (17) 

sum^'^: 0 + 0 ^ 0 2 
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NO2 + O + M ^ NO3 + Midn (20) 
O + NO3 NO2 + O2 (23) 

sum^^: 0 + 0 O2 

An uicrease in temperature changes the discharge chemistry as follows The 

amount of NO produced according to reaction (12) increases, the ozone destruction 

processes accordmg to (3), (6), (18) and (19) are favoured and the equilibria (4) and 

(24) are shifted to the left side. This means that at the same time less ozone is 

formed and a higher proportion of ozone is consumed by the respective destruction 

reactions. By the shift of reaction (24) the gas volume is enriched with NO, NO2 and 

NO3 and the catalytic cycles gain more importance. The more often these cycles are 

passed through the more ozone is lost. In the most extreme case all ozone molecules 

are consumed and N2O5 disappears such that the lower nitrogen oxides together with 

N2O are the only product of the discharge ' ' . This phenomenon is referred to as 

discharge poisoning and can be recognized by a colour change of the processed gas 

from colourless to brown (NO2) 

1.5.1.3 The influence of humidity 

Several authors have observed a reduction in ozone yield when the feed gas 

(oxygen or air) contained moisture Both changes in the discharge physics and 

in the discharge chemistry have been discussed as possible reasons for this 

phenomenon. 

Studies carried out in moist air '^''^ revealed that under these conditions the 

discharge is composed of fewer but more intense microdischarges. The discharge 

channels appeared brighter, bumt continuously and transferred a larger charge than 

the corresponding microdischarges in dried feed gas. Furthermore, an increase in the 

diameter of the surface discharge was found for microdischarges ignited in the 

presence of water vapour These observations were taken as evidence for a 

frmdamental change of the discharge mechanism. Hirth assumed that a conducting 

aqueous layer was formed on the dielectric in which ions from the glass (which 
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served as the dielectric in the study) and nitric acid produced in the discharge (see 
below) are dissolved. Permanent discharges were thought to be developed because 
the charge is distributed by charge conduction in the conductive layer thus preventing 
the self termination of the microdischarge by charge build - up The lower ozone 
yield was explained by the reduction of the volume affected by the reactive plasma 
within the system and the thermal ozone loss due to the temperature increase in the 
few remaining strong discharge chaimels 

Comparing the behaviour of moist and dried oxygen, Labrenz could only 

partly confirm the fmdings described above. Irrespective of whether a slowly 

increasmg or a steeply increasing voltage was applied to the ozoniser, a lower ozone 

yield was found following the treatment of the humid feed gas. Measuring the 

absorbance across the gap, an increase in the ozone concentration in direction of the 

dielectric was found. This observation was made both when dried and moist feed gas 

was used. The drop in ozone concentration in the vicinity of the dielectric which 

could have been expected in the case of the moist feed gas as a consequence of the 

surface conductivity suggested by Hirth could not be observed. This led to the 

conclusion that in this system the increase in surface conductivity is at least not the 

only reason leading to the decrease in ozone yield. The author considers the 

change of plasma chemistry in the presence of humidity as the major factor. 

The presence of water vapour as a further gaseous component of the feed gas 

increases the number of possible elementary reactions contributing to the plasma 

chemistry. A simplified numerical calculation of the temporal evolution of various 

neutral species in humid oxygen ^̂ '̂ ^ and humid air has been reported. Due to the 

assumptions made in their calculations the authors consider their model to be 

applicable up to a relative humidity of 35 %. LUce nitrogen and oxygen molecules 

water molecules dissociate upon electron impact, the latter forming hydrogen and 

hydroxyl radicals as a primary product. H O 2 radicals and H2O2 are products of the 

reactions between the primary radicals formed in the dissociation step or of the 

reactions between those radicals and secondary products Of the products 

mentioned, only H 2 O 2 is stable. In oxygen, an increasing water content is assumed to 

lead to the formation of a larger proportion of hydrogen peroxide with respect to 

ozone In humid air, the formation of the water related species was found to be 

delayed in comparison to the corresponding reactions in humid oxygen. Quantitative 
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statements concerning these products are not given H2O2 is, however, assumed to 
be formed in non - negligible amounts both in moist air and moist oxygen. 

In air, the presence of humidity also affects the formation of the nitrogen 

oxides. It was found that while NOx production does not change with rising moisture 

content, the N2O production decreases slowly with increasing humidity 

Dependmg on the humidity, a mixture of N2O5 and HNO3 (water content 10-300 ppm) 

or exclusively HNO3 (water content > 300 ppm) was detected. Nitric acid is formed 

according to: 

N2O5 + H2O 2 HNO3 (26) 

Since N2O5 is continuously removed by this elementary reaction, the 

equilibrium of reaction (24) has to be re-established by producing fiirther N2O5. 

This, in turn, reduces the concentration of NO2 and NO3 and thereby prevents 

discharge poisoning. This beneficial effect of water vapour does, however, not 

outweigh the loss in ozone yield 

1.5.2 Excimer lamps 

The operation of barrier discharges under suitable conditions in rare gases, 
OS! 

halogens or rare gas-halogen mixtures as well as in mercury vapour and mercury 

vapour-rare gas mixtures gives rise to the formation of excimers, excited 

molecular complexes which do not possess a stable ground state .̂ Due to their 

inherent instability excimers dissociate within nanoseconds and emit their excitation 

energy as a narrow band radiation in the VIS / UV or VUV region. The emitted 

radiation is dependent on the properties of the particular molecule and the radiation 

for the wide range of known excimers covers wavelengths between 50 and 600 nm 

On the basis of this principle novel high intensity VUV and UV radiation 

sources have been designed which can be used complementary or as an alternative to 

existing sources depending on their respective wavelength. The flexibility in the 

geometrical configuration of the barrier discharge and the variety of wavelengths 

available due to different filling gases and gas mixtures allows the construction of 

large area and high spectral purity lamps which are tailored for a specific 
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photochemical application Excimer lamps have been tested for purposes of polymer 
photooxidation and etching the photodissociation of organometallic precursors ^̂ '̂ ^ 
and photoassisted chemical vapour deposition 

1.5.3 Flue gas treatment 

Since barrier discharges offer the possibility of processing large amounts of 

gases at atmospheric pressure they have been tested as a means of waste gas 

treatment. The toxins undergo reactions with the species created in the discharge. 

Removal proceeds most often via oxidative pathways involving atomic oxygen and 

hydroxyl radicals formed from the moist air or moist oxygen background. Examples 

include the processing of SO2/NOX mixtures produced in coal combustion plants ^̂ '̂ ^ 

(ultraviolet radiation exerts an additional beneficial effect) as well as the treatment of 

volatile organic compounds like C2HCI3 and CH2O Both oxidation and 

reduction processes are involved in the remediation of nitrogen oxides from diesel 

exhaust Optimum efficiency of the respective processes can be achieved by 

choosing the appropriate plasma conditions. The treatment results in mixtures of 

new stable products some of which are non-toxic and can be released into the 

atmosphere. Others can be washed out and possibly isolated as byproducts of 

economical mterest. Harmful products, however, require additional processing steps 

which may be so complicated that they limit the scope of the treatment as has been 

found in the case of formaldehyde 
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Chapter 2: Fundamentals of the experimental techniques 

2.1 Introduction 

This chapter gives a brief introduction to the analysis techniques used in this 

work. Those include bulk (Transmission In&ared Spectroscopy), surface sensitive 

(Attenuated Total Reflection Infrared Spectroscopy) and surface specific (X-Ray 

Photoelectron Spectroscopy) techniques for the analysis of solids (chapters 3-6) as 

well as Mass Spectrometry for the monitoring of the volatile species evolved during 

the photodecomposition studies (chapter 7). 

2.2 Infrared Spectroscopy 

2.2.1 General 

The infrared (IR) region comprises the wavelengths between 7.8 x 10"̂  and 

10 cm (12800-10 cm'*) in the electromagnetic spectrum Upon absorption of 

radiation in this energy range molecules can reach vibrational levels of higher energy. 

Gases show a fine structure caused by rotational transitions whereas in solids the free 

rotation of the molecules is restricted. An appropriate model which describes the 

vibrational behaviour of molecules is that of the anharmonic oscillator. Most of the 

signals observed in IR spectra are due to transitions to the first excited vibrational 

level and are referred to as frandamental vibrations. Transitions to higher levels, so 

called overtones can occur as well but their probability is small such that they usually 

appear in the spectra as signals of low intensity. The same applies to combination 

bands which are caused by the coupling of two or sometimes three fundamental 

vibrations ̂ . 

Apart from the quantum conditions which defme the location of the resonance 

energies the occurrence and intensity of absorption bands is dependent on the dipole 

moment of the molecules: Only those vibrations which involve a simultaneous 

change in the dipole moment are IR active since the changing charge distribution 

accompanying the vibration creates an altemating electric field which can interact 

with the electric field component of the incident radiation .̂ The larger the change in 
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the dipole moment the more effective the energy transfer from the IR photon to the 
molecule and the larger the signal intensity 

Molecular vibrations can either lead to a movement along the bond axis 

(stretchuig) or to a change in the bond angle between bonds with a common atom 

(bending). The latter can again be differentiated into in-plane (scissoring, rocking) 

and out-of-plane (wagging, twisting) vibrations For a particular group, the 

stretching signal appears at a higher wavenumber than the bending band because the 

forces which try to conserve the bond angle are smaller than the forces which act 

against changes in the mteratomic distance .̂ The spectra show band shaped signals; 

interactions of the molecules in the liquid or solid state can play a role in both band 

broadening and peak position. 

The region in which the most important fiindamental vibrations occur and 

thus most informations about the structure of molecules can be obtained is limited to 

a wavenumber range of 4000 - 400 cm'' This area falls into two reghnes. At 

wavenumbers between 4000 and 1250 cm'' localized vibrations take place in which 

the shift of a certain group of atoms is much bigger than the shift of all the other 

atoms Characteristic absorption bands of fimctional groups and of double and 

triple bonds are situated in this area. Each bond has its own frequency. The 

vibrations, however, are not completely uncoupled from the neighbouring atoms, the 

resonance frequency is dependent to a certain extent on the chemical environment which 

on the other hand can help to assign bands .̂ In the region from 1250 to 400 cm'' 

molecule vibrations occur, all atoms have the same shift and informations which are 

characteristic of the molecule as a whole can be obtained ("fingerprint region") 

2.2.2 Attenuated Total Reflection (ATR) 

Attenuated Total Reflection (ATR) which is also termed hitemal Reflection 

Spectroscopy (IRS) is a technique which is based on the phenomenon of total intemal 

reflection. In the measurements a sample of refractive index Us is brought into close 

contact with a prism or an intemal reflectance crystal of refractive index Uc where 

Uc > ns. A beam of light passing through the reflectance element such that it arrives 

at the element-sample interface at an angle 9 which is higher than the critical angle 6c 

is totally reflected back into the reflection element. Some radiation of the totally 
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reflected beam penetrates a small distance into the sample where absorption at the 
characteristic frequencies of the sample takes place. The totally internal reflected 
beam is therefore attenuated m the wavelength regions which correspond to the 
respective absorption bands. The penetration depth depends on the wavelength of the 
radiation m the refractive element Xr, the angle of incidence 0 and the refractive 
indices of the sample and the crystal, iis and nc, repectively according to 

2 1 1 0.5 { 271 [ sm " e - (us/uc)' ] } 

Due to this wavelength dependence sampling depth varies through the spectrum. 

Typical values for dp are between 0.25 and 4 (xm ^ such that ATR is a surface 

sensitive technique whereas transmission spectra provide information about the bulk 

of a sample. ATR and transmission IR spectra are similar with respect to the 

positions of the characteristic bands and the same correlation charts can be used for 

their mterpretation. The wavelength dependence of dp leads, however, to differences 

in the relative intensities of the signals. In ATR spectra the signals at longer 

wavelengths appear more intense than in the corresponding transmission spectra .̂ 

A variety of experimental set-ups are possible; both single and multiple 

reflections can be employed. In the latter case, attenuation takes place at each 

reflection resuhing m an amplification of absorption '. There are a number of 

chemically inert infrared transmitting materials with high refractive index which can 

be used as reflecting elements The method is applicable to the study of a large 

variety of samples including nontransparent materials like fabrics, fibers and opaque 

materials 

2.3 Mass Spectrometry 

Mass Spectrometry uivolves the separation and subsequent detection of ions 

according to their mass-to-charge ratio. Mass spectrometers are operated under UHV 

conditions and consist in principle of three parts: an ion source, a mass separation 

unit and a detector. There are several methods by which molecules can be ionised, 

separated and detected. The respective method of choice depends on the particular 
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system to be studied. Only the techniques relevant for this work which are electron 
impact ionisation and separation of ions in a quadrupole mass filter will be described 
below. 

2.3.1 The Quadrupole Mass Filter 8-11 

In a quadrupole mass filter, 4 rods of either circular or hyperbolical cross-

section are arranged in parallel. Opposing rods are electrically connected together. 

The voltage applied to the two pahs of rods consists of an alternating component of 

radiofrequency (rf) V ( V = VQ COS CO t) which is superimposed on a direct component 

U. Upon application of the vohage, neighbouring rods are oppositely charged, the 

voltage on the positive electrodes being + (U + VQ COS CO t) and the voltage of the 

negative electrodes - (U + Vo cos co t). Thereby, a high frequency field is created 

which causes ions entering the assembly to vibrate. By choosing the appropriate 

values for U and V only ions of a certam mass-to-charge ratio have a stable trajectory 

with small amplitude and can reach the detector, usually an electron multiplier. 

Other ions follow unstable paths and are fmally lost by either collision with the rods 

or by escapmg through the spaces between them. A mass scan is taken by 

simuhaneously varying U and V such that both the ratio UA^ and the frequency stay 

constant. 

Quadrupoles are popular because they are compact, robust and reasonably 

priced. Their main disadvantage consists in the loss of sensitivity with increasing 

mass and generally their low mass resolution. Mass resolution and sensitivity in 
• 8 

quadrupole instruments are roughly inversely proportional . 

2.3.2 Electron Impact lonisation 

Electron Impact lonisation is the most widespread ionisation method for samples 

which can be introduced into the mass spectrometer in gaseous form. Ions are generated 

by exposing the vapourised sample molecules at a reduced pressure to a beam of 

thermally emitted electrons from a filament like that schematically shown in figure 1. 

27 



Chapter 2 

Filament F 

Electrons 

Repeller R 

to Analyser 

and Detector 

Extractor Plate E 
Collector C 

Fig. 1 Schematic of an Electron Impact ion source according to (sample molecules 

entering the assembly perpendicular to the electron beam are omitted for clarity) 

Electrons thermally emitted from filament F pass through narrow slits in 

plates a and b. A is held at a small positive potential in order to attract the electrons. 

The electrons are then accelerated towards the ionisation chamber by a large potential 

drop between F and b where the magnitude of the potential drop determines the 

electron energy. The small dimensions of the slits in plates a and b serve the purpose 

of collimating the electron beam. A further focussing of the beam can be achieved 

by applying a magnetic field in direction of the beam 

Inelastic collision processes between electrons and sample molecules lead to 

the formation of mostly singly charged positive ions. These are extracted from the 

ionisation chamber by a small potential difference between the repeller R and 

extractor plate E and subsequently focussed to the entrance of the analyser after 

passing a strong electric field between g and h Negatively charged ions are 

removed by the repeller. The electrons finally reach a collector C which is also 

called a trap. The stability of the ionising current is ensured by an electronic 

feedback system between the trap current and the heating current of the filament 

Ions striking the detector after passing the separation unit give rise to a signal, 

the so called ion current. The signal intensity is proportional to the number of 

incident ions. The ion current is dependent on the sample pressure in the ionisation 
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chamber, the electron current, the ionisation cross section of the molecules, the 
effective pathlength of the electrons in the chamber and the efficiency of the 
extraction of ions In a spectrum ion currents are plotted versus the mass - to 
charge ratios. 

The appearance of a spectrum for which electron impact is employed as the 

ionisation method depends on the energy of the bombarding electrons. Below a 

certain threshold value, the ionisation energy, which is typically between 7 and 15 eV, 

no ionisation occurs '^. As the energy is increased, the formation of the parent 

molecular ion (pmi) according to : 

M + e M^ + 2e 

is observed. Negative and doubly charged positive ions are formed as well but 

usually to a lower extent. The probability of parent molecular ion formation and 

therefore the observed signal intensity increases at first with increasing electron 

energy. In collisions with electrons of even higher energy content sufficient energy is 

transferred to the sample molecules that bond dissociation becomes possible and 

fragment ions are formed. In some cases the appearance of fragment ions is 

accompanied by a concurrent loss in pmi intensity or even the complete 

disappearance of this signal. The frequency of fragmentation processes again 

increases with electron energy until at energy values over 40-50 eV the relative 

intensities of the fragments are not fijrther affected by small changes in energy. Mass 

spectra are, therefore, often recorded above this threshold, usually at electron 

energies of 70 eV, to ensure good reproducibility and optimum ion yield at this 

energy '^. 

2.4 X-Ray Photoelectron Spectroscopy (XPS) 

2.4.1 Principle 

XPS (also called Electron Spectroscopy for Chemical Analysis, ESCA) is a 

surface specific analysis technique which is based on measuring the energy of 

photoelectrons emitted from a sample when it is irradiated with soft x-rays. Knowing 

29 



Chapter 2 

the radiation wavelength of the x-ray source, hv, and measuring the kinetic energy, 
Ekin, of the emitted electrons, the binding energy BE of the states, from which the 
electrons are detached can be calculated according to : 

Eki„ = h v - B E - ( t ) s p ( - S ) (1) 

(t)sp is the spectrometer work function. In the case of non-conducting samples the 

additional term S has to be introduced to equation (1). It represents a correction for 

the bmding energy shift to higher values caused by the build-up of positive charge in 

the specimen following photoelectron loss. Since the shift is unpredictable and varies 

from sample to sample corrections are carried out relative to a binding energy 

standard. The hydrocarbon signal arising either from carbon present in the sample or 

from adventitious hydrocarbon is often used for this purpose 

2.4.2 Surface sensitivity 

Contrary to the fairly high penetration depth of the exciting x-radiation, the 

photoelectrons can travel only short distances in solid samples before losing part or 

all of their energy in melastic scattering processes. Only electrons originatmg in the 

top few atomic layers of the solid can escape with their original kinetic energy and 

contribute to the photoelectron peak. Electrons from deeper layers contribute to the 

background after having suffered ineleastic collisions. This phenomenon is the 

reason for the surface sensitivity of the technique Inelastic scattering is dependent 

on the matrix through which the electrons travel and the kinetic energy of the 

electrons and can be described according to ̂ ': 

I(x) = Ioe-^^^°^^'^^^'^'^) (2) 

where IQ is the original photoelectron intensity, I(x) the mtensity after travelling 

through a material of thickness x, 0 the angle of emission with respect to the surface 

normal and X the so called inelastic mean free path (IMFP), a material and energy 

dependent factor which describes the average distance that an electron can travel in a 

material before melastic scattering takes place The dependence of the IMFP on 
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the kinetic energy has been empirically determined to show following proportionality 
for Ekin > 50 eV: 

^ - ( E k m ) (3) 

Theoretical calculations suggested an energy dependence close to ( E kin i^'- 95% of 

the mtensity measured m a photoelectron peak is due to the contribution of electrons 

detached from within a distance of 3X within the sample ^'. It can be seen from 

equation (3) that the sampled depth varies for photoelectrons detached from different 

energy levels of the same atom. Equation (2) on the other hand shows that the 

sampled depth of a particular core level varies with the angle of emission 9 '̂''̂ .̂ 

Both phenomena can be used for non-destructive depth profiling within the limits of 

a few monolayers ̂ '. 

2.4.3 Instrumentation 

Electron 
Analyser 

Detector 

Computer 
X-Ray 
Source Sample 

Electron 
Lenses 

Fig. 2 Schematic of XPS set-up after ^° (UHV environment omitted for clarity) 
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Figure 2 shows the schematic set-up of a XPS instrument. The whole system 
is operated in an ultra high vacuum (UHV) environment in order to avoid surface 
contamination of the sample and energy loss of the photoelectrons by collisions with 
gas molecules on their way to the analyser '^'24.26,27 j j ^ ^ x-radiation is produced by 
the bombardment of the anode with thermally emitted electrons from a filament 
giving rise to a source spectrum in which the principal x-ray line appears together 
with less intense x-ray lines (satellites) on a broad continuum called Bremsstrahlung 
The choice of the anode material is guided by its stability under prolonged electron 
bombardment, its thermal conductivity which assures effective cooling and both the 
energy and the linewidth of its characteristic radiation. The energy of the 
characteristic radiation should be high enough to detach photoelectrons from most 
core levels in order to provide sufficient information and the linewidth of the 
characteristic radiation should be small because it contributes to the linewidth of the 
observed photoelectron peak. The most common anode materials which fulf i l those 
criteria are Mg (1253.6 eV, FWHM: 0.7 eV) and A l (1486.6 eV; FWHM: 0.85eV) 

21,28 

An aluminium window which attenuates the low energy Bremsstrahlung 

whilst transmitting the characteristic x-ray lines is placed between the source and the 

sample. Additionally, the window prevents the sample from being changed by stray 

electrons, heating effects and by any contamination originating in the source 

region ^ ' • ^ ' ^ ' ^ l 

Energy analysis of the emitted photoelectrons is achieved by an analyser. The 

most popular analyser type for XPS instruments is the Concentric Hemispherical 

Analyser (CHA) which consists of two hemispheres of radius ri and arranged in 

parallel. Electrons can enter and leave the analyser through input and exit slits of 

width wi and W 2 . Application of a voltage to the plates results in the build-up of an 

electrical field in which the electrons are deflected. For a given voltage, only 

electrons with a certain energy content can travel through the analyser in a path close 

to the mean radius to and pass the exit slit to reach an electron multiplier. The energy 

resolution of such a set-up can be described by the following equation ^ :̂ 

(AE /E) = [(wi+W2)/2ro] + 
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with a = angle at which the electrons enter the analyser with respect to the axis. It 
can be seen from the equation above that the resolution AE is improved i f the electron 
energy E is low. Therefore, electrons are retarded prior to their entrance to the 
analyser. This is usually achieved by an electron optical lens. Its design depends on 
which of two possible recording modes is employed. In the first one, called Fixed or 
Constant Analyser Transmission (FAT/CAT) a scan is taken by varymg the lens 
potential. At each step of the scan only electrons of a certain initial kinetic energy are 
focussed to the analyser which is held at one particular pass energy. In the second 
mode, Fixed or Constant Retard Ratio (FRR/CRR) the lens potential is fixed and 
therefore retards the incommg electrons by a certain percentage such that they are 
focussed to the analyser entrance with a spread of energy. Continuous variation of 
the analyser voltage allows the recording of a spectrum 

Energy resolution can be given in terms of absolute resolution AE and the 

relative resolution AE / Eo where AE is the full width at half maximum (FWHM) of 

the peak and EQ is the kinetic energy at the peak position. The absolute resolution is 

therefore independent of the location of the peak in the spectrum whereas the relative 

resolution is always related to a particular kinetic energy. Spectra recorded in FAT 

mode have constant absolute resolution whereas those obtained in FRR mode have 

constant relative resolution . 

2.4.4 Spectral Interpretation 

2.4.4.1 Main features in the spectra 

In an XPS spectrum, the photoelectron intensities or counts are plotted versus 

kinetic or binding energy '^. For each element the principal x-ray line of the source 

produces a unique set of photoelectron signals with approximately constant line 

positions. The spectrum reflects the number and the approximate energy of the 

occupied orbitals in an atom under consideration Both loosely bound valence 

and tightly bound core electrons can be detached. lonisation, however, can only 

occur in energy levels with a lower binding energy than the energy of the incident 

radiation The characteristic line positions are the basis for qualitative elemental 

analysis. A l l elements apart from hydrogen and helium can be detected 
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Most of the photoelectron lines associated with one energy level appear as a 
doublet. This can be explained with the coupling of the spin angular momentum s of 
the unpaired electron left behind after electron removal from a completely filled 
orbital with the orbital angular momentum 1 to the total angular momentum j G ^ 1 + 
s). Since there are two possible values for s (± Vi), two values for j corresponding to 
two different energies are obtained in cases where 1 > 0 (p,d,f levels) 2° '25.27 

Therefore, all levels except s-levels show a doublet structure. The relative intensities 
of the doublet components corresponds to the ratio of the degeneracies (2j + 1) of the 
states ^\ 

The linewidth of the photoelectron peak (expressed as FWHM) is determined 

by the width of the exciting x-ray line A Ep, the natural width of the core hole A En 

and the analyser resolution AEa and can be expressed by the following equation ̂ :̂ 

A E = (AEn ^ + A Ep ^ + AEa )̂ 

AEa is an instrumental constant when the analyser is operated in CAT mode but 

varies across the spectrum when FRR mode is employed. The natural line width of 

the core hole depends on the core hole's lifetime before it is filled in a relaxation 

process (see 2.3.4.3). This lifetime x has no fixed value but is related to the energy by 

the uncertainty principle according to AE = h/x where h is Planck's constant 

2.4.4.2 Chemical shifts 

Non-equivalent atoms of the same element in a solid give rise to core level 

peaks which differ in their binding energies. These variations in the binding energies 

are called chemical shifts. Atoms can be non-equivalent with respect to their 

chemical environment, their formal oxidation state or their lattice site. As a general 

rule, the BE of a particular core level increases with increasing oxidation state of the 

element under consideration. In cases where the formal oxidation state is the same 

the core level BEs of the central atom increase with the electronegativity of the 

attached groups or atoms The more electronegative substituents are attached to an 

atom under consideration the larger is the observed shift. Therefore, chemical shifts 

not only depend on the nature but also on the number of the substituents In a 
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simple model these shifts are ascribed to the electrostatic screening of the core 
electrons by the valence electrons which increases as a bond to electron withdrawing 
substituents is formed and decreases upon attachment of electron donating 
substituents. Photoelectron ejection is therefore hindered in the former case and 
requires more energy causmg the signal to appear at high BE while the situation is 
opposite in the latter case. Strongly electronegative substituents cause secondary 
shifts in atoms adjacent to the primary shifted atom. Those are smaller than the 
primary shifts Chemical shifts therefore provide mformation about the chemical 
state(s) in which an element is present on a sample surface. The overall energy range 
covered by the shifts varies from element to element. 

Core level shifts are not always very specific, that means, different groups 

give rise to a similar chemical shift. This may lead to broad imresolved signals 

especially in the case of multifiinctional surfaces which in tum renders the 

identification of the chemical species difficult. To overcome those difficulties 

mathematical procedures have been developed to resolve the spectral envelopes into 

the individual contributions Another approach consists of the chemical 

derivatisation of functional groups on a sample surface prior to XPS measurements. 

A range of reagents can be employed to label the most common chemical 

functionalities. Most of them contain several halogen atoms per reacting molecule 

which allows a sensitive and unambiguous identification of a functional group ̂ '. 

2.4.4.3 Additional features in the spectra 

In addition to the principal photoelectron lines a number of additional features 

can be observed m XPS spectra. 

Apart from the principal x-ray line the weaker x-ray lines ("satellites") 

contained m the spectrum of an unmonochromatized source give rise to photoelectron 

peaks as well. Those satellite lines are separated from the main photoelectron peak 

by a characteristic amount of energy and their intensity corresponds to a defmed 

fraction of the principal feature's intensity 

A de-excitation process followmg ionisation leads to the occurrence of Auger peaks. 

The core hole remaining in a sample atom after photoemission can be filled by an 

electron from a higher orbital. The excess energy can either be emitted as x-ray 
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fluorescence or be used to remove a second electron giving rise to a signal in the XP 
spectrum (Auger process). The two relaxation processes compete. In the case of K 
shell vacancies the preferred decay mechanism depends on the atomic number of the 
element. For heavier elements x-ray fluorescence is the major de-excitation route 
whereas lighter elements (especially those with atomic number <12 ) tend to relax 
by the Auger process Irrespective of the atomic number of the element, the 
emission of an Auger electron is the preferred decay mechanism for vacancies in the 
L, M , N etc. shell 

Shake-up satellites are a result of a reorganisation process of the valence 

electrons during photoemission. While core level ionisation occurs there can be a 

simuhaneous excitation of a valence electron to a higher unfilled energy level. The 

amount of energy required for this transition is not available for the core electron 

leaving the target atom resulting in a signal at the high binding energy side of the 

main photoelectron peak The spacing between main signal and satellite offers 

information about the valence energy states of the system under consideration 

Shake-up features are often observed in the spectra of transition element compounds 

and in some organic substances In the analysis of polymers they have a qualitative 

analytical importance because they generally appear in systems containing 

unsaturation but are especially pronounced in the C (Is) spectra of aromatic 

polymers. This allows saturated and unsaturated polymers which only contain carbon 

and hydrogen to be distinguished 

It is possible that the valence electron is completely removed during the 

reorganisation process. This process is referred to as shake-off Unlike shake-up it 

does not lead to sharp features but to rarely discernible broad shoulders on the 

background on the high BE side of the parent photoelectron peak 

2.5 Quantification 

The intensities of XPS signals can be used to derive quantitative information 

about a sample surface. A rigorous treatment shows that the peak intensity of a 

photoelectron signal is dependent on a multitude of factors some of which are 

instrument related while others are characteristic of the sample. Those factors are: 

the characteristic x-ray flux on the sample surface, the surface roughness, the 
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photoelectric cross-section for the ionisation of the respective core level by a photon 
of energy hv, the analyser transmission and detector efficiency for the photoelectron 
of Ekin, the asymmetry factor for emission from the particular core level at photon 
energy hv (this factor describes the dependency of the photoelectron cross-section on 
the relative directions of photon incidence and photoelectron emission ^ ' ) , the 
distribution of atoms of the type of interest in the matrix with depth z, the IMFP of 
the photoelectron from the particular element with E kin in a matrix M and the angle 
of emission 9 

Practically, the use of sensitivity factors has proved to be a simple and useful 

approach for quantification although it involves crude assumptions. Sensitivity 

factors ensure the normalisation of core level intensities with respect to the intensity 

of a chosen reference level. The quantification is based on the comparison of the 

relative intensities thus obtained. Sensitivity factors can either be calculated 

theoretically from known values of the factors listed above or be experimentally 

determmed by measuring appropriate standards. In the latter case the peak area 

obtained for a particular core level is related to the area of a reference core level 

contained m the same sample. The sensitivity factor is the number with which the 

peak area of the core level of interest has to be multiplied in order to obtain the 

correct stoichiometry with respect to the reference level area '^'^'. 
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Chapter 3: 

Silent discharge oxidation of Poly (cyclohexylmethylsilane) and Poly 

(phenylmethylsilane) thin films 

3.1 Introduction 

Polysilanes are polymers in which organic substituents are attached to an 

inorganic linear backbone composed exclusively of silicon atoms. Since soluble 

polysilane homopolymers and copolymers have become available they were found to 

have interestmg properties both from the theoretical and from the practical point of 

view Their general properties include inertness towards oxygen at normal 

temperatures, only mild susceptibility towards hydrolysis and good thermal stability 

In contrast, they show a high lability towards UV light as well as sensitivity towards 

electron beams, y and x-radiation A summary about the photochemistry of 

polysilanes wil l be given in chapter 4.2. 

Depending on their particular properties polysilanes find practical use as 

radical initiators for organic polymerisation reactions, resist and contrast 

enhancement materials for the microelectronics industry, nonlinear optical materials, 

charge conductors, photoconductors and precursors for silicon carbide ceramics ̂ *'''̂ . 

In the present chapter the reaction behaviour of two model polysilanes in an 

atmospheric pressure air plasma wil l be investigated. 

3.2 Background 

Reports about air plasma treatments of polysilanes are not known. The 

studies on polysilane behaviour in pure oxygen plasmas described in the following 

paragraphs are the most closely related investigations. 

Contrary to carbon based materials which are continuously attacked and 

finally form volatile products upon exposure to an oxygen plasma, organosilicon 

polymers form an involatile silicon dioxide-like "SiOx" layer .̂ It is inert against 

chemical etching and can only be eroded by physical sputtering. Once this layer is 

formed it protects any underlying material from being etched .̂ The formation of the 

layer is independent of whether the silicon atoms are integrated into the polymer 
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backbone or present in the pendant groups .̂ A minimum silicon percentage is, 
Q 

however, required in order to obtain a continuous coating , a silicon content of 8-10 

weight % in a polymer is regarded to be adequate for the formation of a suitable layer .̂ 

The formation mechanism of SiOx layers is not understood so far '°. As could be 

expected the treatment of polysilanes in low pressure oxygen plasmas has been 

reported to result in the formation of a SiOx layer ''2''.9 . ' i .i2 plasmas were 

operated under RIE (Reactive Ion Etching) conditions. 

Depending on the operating conditions an oxygen plasma has different 

characteristics and involves different etch mechanisms. Pressures lower than 100 

mtorr, typically even below 20 mtorr are representative for Reactive Ion Etching 

(RIE) conditions. In this case chemical etching by the activated species generated in 

the plasma and physical sputtermg of high energy ions occur sunultaneously 

enhanced by the synergistic effect between these two factors While chemical 

etching is an isotropic process, sputtering introduces a directional component to the 

process. The low pressures are required for the ions to gain sufficient energy while 

passing through the high potential of the plasma sheath without colliding with other 

gas particles. Such ions strike the surface with normal incidence and cause a material 

removal in vertical direction. At higher pressures ion bombardment is less important 

and chemical etching prevails. 

Oxygen plasmas operated under R E conditions are employed for pattem 

transfer in multilayer lithography. Polysilanes are especially suited for a positive 

bilayer process because they combuie two advantageous properties - photosensitivity 

and etch resistance In the process a thin layer of polysilane is spincoated on top 

of a thick carbon based planarizing layer which in turn covers the substrate. 

Irradiation, mostly through a mask, causes chain scission of the polysilane in the 

exposed areas. The low Mw material thus formed can either be washed away with a 

suitable solvent in a wet development step or in some cases be directly volatilized 

using the appropriate polymer and irradiation conditions. In the RIE step the exposed 

carbon containing material is transformed into volatile compounds. Ion 

bombardment supports the product desorption m vertical direction and ensures the 

undistorted replication of the pattem into the substrate. At the same time the 

polysilane left on the surface forms a SiOx layer, the etch rate of which is 
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considerably smaller than that of the planarizing layer. This etch resistant layer 
prevents the covered carbon material from being removed. 

Since the interest of the studies was focussed on the suitability of polysilanes 

for a bilayer process, the experiments were mostly evaluated using the SEM data of 

the patterns obtained. Miller et al. ^ report qualitative results of the XPS analysis of 

the oxidised surface of poly (di-n-pentylsilane). Apart from a significant decrease in 

the C (Is) signal intensity and a corresponding increase in the O (Is) signal intensity 

the Si (2s) environment of those films appeared shifted towards higher binding 

energy by about 3 eV. 

A detailed investigation on the oxidation of poly (cyclohexylmethylsilane) 

and poly (phenylmethylsilane) in a r f oxygen glow discharge at varying discharge 

powers was reported A plateau in the elemental concentrations was reached 

afready at powers lower than 5 W. The aromatic polysilane reached its limiting 

elemental percentages at lower discharge powers and was oxidized to a lower degree 

compared to the aliphatic polymer. Depth profiling of treated films with Ar* ions 

revealed that the aromatic polysilane forms a thicker oxidized layer than the aliphatic 

polysilane. This finding was fiirther supported by the appearance of siloxane species 

in the FTIR spectra of treated poly (phenylmethylsilane) films while in the case of 

poly (cyclohexylmethylsilane) no difference in the corresponding spectra of treated 

and untreated polymer samples was found 

In the following chapter the susceptibility of an aromatic substituted and an 

aliphatic substituted polysilane towards oxidation in a silent discharge operated in air 

is investigated. The properties of this type of atmospheric pressure discharge have 

already been described in chapter 1.4. The structures of the two model polymers 

chosen for the study, poly (cyclohexylmethylsilane), PCHMS, and poly 

(phenylmethylsilane), PPMS, are given in figure 1. Both polysilanes are structurally 

identical apart from the former containing a saturated 6-membered ring whereas the 

latter has a phenyl substituent. Studying the two polymers therefore allows the 

influence of the polymeric structure in the reactions to be compared and contrasted. 

It has been pointed out that the silicon content is the determining property governing 

SiOx build-up in oxygen plasmas under R E conditions whereas the polymer structure 

is irrelevant. The structure of the polymer to be etched is thought to gain more 
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importance at higher pressures .̂ Differences in the reaction behaviour of the two 
model polysilanes can therefore be expected. 

Si 

CH3 

PPMS 

— Si — 

CH3 

PCHMS 
n 

Fig. 1 Structures of the two model polysilanes 

Modified films were analyzed immediately after silent discharge treatment by 

X-Ray Photoelectron Spectroscopy (XPS) as well as by Transmission and Attenuated 

Total Reflection (ATR) Infrared Spectroscopy. 

3.3 Experimental 

3.3.1 Silent discharge set-up 

The silent discharge treatment of the samples was carried out in a dielectric 

barrier discharge cell a schematic of which is shown in figure 2. In the present study 

it was operated at 3 kHz and 7.7 kV with an electrode gap of 3 ± 0.05 mm. A double 

layer of polyethylene served as the dielectric material to cover the lower electrode. 

Both electrodes were made of aluminium (top diameter 4.5 cm, bottom diameter 3.5 

cm). They were chemically polished and then degreased using isopropanol prior to 

use. 
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Fig. 2 Schematic of the silent discharge set-up 

PCHMS and PPMS (ABCR) fihns were spincoated onto PET substrates 

(12fj,m PET, Hoechst) from 2% weight per volume solutions in toluene. The samples 

were then placed on the dielectric and treated for treatment times varying between 5 

and 120 seconds. The discharge in the gap appeared as a homogeneous, faint purple 

glow. 

3.3.2 Analysis 

X-Ray photoelectron spectroscopy (XPS) characterization was carried out on 

a Kratos ES300 X-ray Photoelectron Spectrometer equipped with an 

umnonochromatized Mg Ka X-Ray source and a cylindric hemispherical analyzer 

(CHA) operating in the fixed retarding ratio (FRR, 22:1) mode. Photo-emitted 

electrons were collected at a take-oflf angle of 30° from the substrate normal. Data 

accumulation and analysis were carried out employing in-house software. All 
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bindmg energies were referenced to the adventitious hydrocarbon component '"̂  the 
bindmg energy of which was taken to be 285.0 eV 

For the measurements the samples were mounted on a degreased stainless 

steel sample holder using double sided sticky tape. The probe to which the sample 

holder was attached was wiped with isopropanol prior to insertion into the 

spectrometer. Instrumentally determined sensitivity factors for unit stoichiometry 

were taken as being C ( I s ) : Si (2p): O (Is) = 1 : 1.02 : 0.62. 

Infrared spectra were collected on a FTER Mattson Polaris instriiment. Thin 

polysilane films were spin coated from 2% weight per volume solutions in toluene 

either onto KBr discs (transmission measurements) or onto strips of polyethylene 

film (ATR measurements). Both types of samples were exposed to the silent 

discharge for 30 seconds. After the treatment the ATR samples were mounted'into a 

KRS-5 crystal sample holder. An incident beam angle of 45° was used which 

resulted in 14 internal reflections. Typically, 100 scans were acquired at a resolution 

of 4 cm "\ 

3.4 Results 

3.4.1 XPS 

Within the limits of the instrument's sensitivity no other elements than 

silicon, oxygen and carbon could be detected either in treated or untreated films. 

Since XPS excludes any hydrogen content analysis both polysilanes give rise to 

identical stoichiometrics in the untreated coating, table 1. 

%C %Si %0 

Theoretical PPMS / PCHMS 87.5% 12.5% 0% 

Experimental PPMS 85.2 ±0 .6% 13.3 ±0.4% 1.6 ±0 .3% 

Experimental PCHMS 85.6 ± 0 . 3 % 12.6 ± 0.2% 1.8 ±0 .3% 

Tab. 1 Elemental composition of the untreated PPMS and PCHMS fihns 
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In both untreated polysilanes shown in figures 3 and 4 the main C (Is) peak is 

centred at a binding energy of 285.0 eV and can be assigned to C-H, C-C and C-Si 

environments In the case of PPMS, an additional C (Is) component around 

291.9 eV having an area of 6.1 ± 0.6 % of the main C (Is) peak and exhibiting a 

Gaussian profile of different FWHM can be observed. This feature can be attributed 

to 7c-7r* shake-up fransitions accompanying core level ionization of the aromatic rings 

The predominant type of Si (2p) core level environment appears at 100.4 eV for 

PCHMS and at 100.6 eV for PPMS, which is characterisfic of the -[(R')Si(R^)]n-

structure figures 5 and 6. A shoulder at 102.1 eV in the case of PCHMS and at 

102.5 eV in the case of PPMS is discernible (about 12% of total Si (2p) peak area), 

which can be attributed to siloxane moieties. These can originate from the polysilane 

production process by Wurtz Coupling ^' or slight surface oxidation of the films 

during their preparation. The binding energy of the corresponding O (Is) signal 

located at 532.8 eV for PPMS and 532.5 eV for PCHMS supports the assumption of 

the presence of siloxane linkages, figures 7 and 8. 

The change of elemental composition of the PPMS and PCHMS films as a 

function of exposure time to the silent discharge is shown in figures 9 and 10. It can 

be seen that oxygen is incorporated into the sample surfaces. At the same time, the 

silicon content increases while the carbon content decreases suggesting that a SiOx 

layer is buift up on the sample surfaces. The treatment very rapidly reaches the 

depths accessible by XPS; a plateau in the respective elemental concentrations is 

reached after approximately 60 seconds. The aromatic polysilane oxidizes at a faster 

rate to yield a higher silicon content at the surface compared to its aliphatic 

counterpart. Table 2 compares the elemental compositions of both polymers at the 

maximum treatment time of the present study, 120 seconds. 

%C %Si % 0 

treated PPMS 19.8 ± 1.7% 21.7 ± 1.0% 58.4 ± 1.3% 

treated PCHMS 25.6 ± 1.0% 18.1 ± 1.0% 56.2 ± 0.4 % 

Tab. 2 Elemental composition of PPMS and PCHMS fihns after 120s silent 

discharge treatment 
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Fig. 3 C (Is) XP specfra of PPMS fihns as a fimction of silent discharge treatment time 
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Fig. 4 C (Is) XP spectra of PCHMS films as a fimction of silent discharge treatment time 
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Fig. 5 Si (2p) XP spectra of PPMS films as a fimction of silent discharge treatment time 
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Fig. 6 Si (2p) XP specfra of PCHMS films as a fimction of silent discharge treatment time 
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Fig. 7 O (Is) XP spectra of PPMS films as a fimction of silent discharge treatment time 
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Fig. 8 O (Is) XP spectra of PCHMS films as a fimction of silent discharge treatment time 
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Fig. 9 Elemental composition of PPMS films as a fimction of silent dischaige treatment time 
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Fig. 10 Elemental composition of PCHMS films as a function of silent dischaige treatment time 
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The envelopes of the spectra of the elements (figures 3-8) provide more 
details about the chemical changes occurring during the silent discharge treatment. 
Attenuation in the C (Is) peak is observed in conjunction with the emergence of an 
oxidized component at higher binding energy, which can be taken as a convolution of 
>C-C02- (285.7 eV), >C-0- (286.6 eV), >C=0 / -0-C-O- (287.9 eV), -0-C=0 
(289.0 eV), and -0-CO-O- (290.4 eV) functionalities This oxidized shoulder 
passes through a maximum at 30s treatment time for PPMS. Since the aliphatic 
polymer does not show this behaviour the maximum in the oxidized components 
could be due to reactions of the aromatic rings. A possible explanation could be the 
initial formation of an aromatic ozonide followed by subsequent further oxidation. 

At the same time the Si (2p) peak gains intensity and shifts by approximately 

3.4 eV for PCHMS and 3.5 eV for PPMS towards higher binding energy. The shift 

reflects the transition of the Si atoms into a new chemical envirormient, the Si (2p) 

binding energy of which corresponds well to those reported for Si02 and SiOx thin 

films The shape of the silicon envelope of the aromatic polysilane changes 

more quickly than that of its aliphatic counterpart signifying faster oxidation. 

The binding energy of the O (Is) signal in the treated samples is centred at 

about 533.3 eV in agreement with the BEs of oxygen in Si02 '̂''̂ ^ and remains nearly 

constant with increasing treatment time. A simultaneous reduction in FWHM 

signifies, however, that the oxygen environments are becoming more homogeneous. 

This observation holds for both polymers. 

3.4.2 hifi-ared Spectra 

hi figure 11 the ATR-IR spectra of untreated and 30 s silent discharge treated 

PPMS are compared. Figure 12 shows the corresponding spectra of PCHMS films. 

Since changes upon treatment are observed at lower wavenumbers only the 

wavelength region beween 400 and 2500 cm'' is shown in the figures for reasons of 

clarity. The absorbances of the polymers at the higher wavenumbers are, however, 

included in tables 3, 4 and 5. Apart from being surface sensitive, the ATR technique 

was chosen because an additional, intense signal at about 1370 cm"' appeared in the 

transmission ER spectra of silent discharge treated polysilane samples spin coated 

onto a KBr disc. This absorbance is not related to a modification of the polysilane 
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but is due to a nitrate species formed as the product in the reaction of the KBr disc 
with the nitrogen containing gaseous components generated in the silent discharge. 
This and other reactions of alkali halide discs in silent discharges wil l be described in 
detail in chapter 5. 

The ATR-IR spectra of both polysilanes contam contributions fi-om the 

imderlying polyethylene substrate ^̂ '̂ ^ which are summarized in table 3. This is a 

resuh of the greater sampling depth of the ATR method compared to XPS The 

absorbances of untreated PPMS ^̂ '̂ ^ and PCHMS "'^'^ are compiled in tables 4 and 5. 

Frequency [cm"' ] Assigimient 

2916.6 CH2 asymmetric stretching 

2849.0 CH2 symmetric stretching 

1474 / 1464 CH2 bending 

1365 CH2 waggmg 

731/719 CH2 rocking 

Tab. 3 Important absorbances of Polyethylene '̂''̂ ^ 

Frequency [cm"' ] Assignment 

3067,3048,3024, 3011 aromatic C-H stretches 

2958 asymmetric stretch in Si-CHs 

2895 symmetric stretch in Si-CHs 

1426 C-C- ring stretch and C-H bending 

1246 CH3 bending in Si-CHa 

1098 in plane deformation of the ring and Si-C stretch 

781 CH3 rockmg in Si-CHs 

754 out of plane bending of the ring C-H bonds 

696 ring C-C bending 

669 Si-C stretching 

463 out of plane C-C ring bending 

Tab. 4 Characteristic IR signals of PPMS ̂ '̂̂ ^ 
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Frequency [cm"' ] Assignment 

2921 asymmetric CH2 stretching 

2846 symmetric CH2 stretching 

1447 CH2 bending 

1244 CH3 bending in Si-CHa 

995 C-C stretching 

771 C-C rocking in Si-CHs 

745 CH2 rocking 

694 asymmetric Si-C stretching 

662 S5anmetric Si-C stretching 

Tab. 5 Characteristic IR signals of PCHMS 33,34 

Silent discharge treatment of PPMS samples caused an enhancement in the 

absorbances between 999 and 1067 cm"' whereas the treatment of PCHMS produced 

an increase in signal intensity in the 1017- 1094 cm"' region. These signals can be 

attributed to Si-O-Si stretches in siloxanes and / or Si-O-R (aliphatic) stretches 

Furthermore, the absorbances in this wavenumber range correspond to those reported 

for the structural components (certain types of rings or molecular complexes) in 

substoichiometric SiOx films Weak absorbances at 1728 cm"' and 1645 cm"' 

(PPMS) and 1736 cm"' and 1639 cm"' (PCHMS) were also observed which are due to 

carbonyl functionalities and water or >C=C< stretching fi-equencies respectively '̂'. 

3.5 Discussion 

It has been mentioned in chapter 1.5.1 that numerous chemical processes are 

taking place simultaneously within a silent discharge m air such that it represents a 

complex oxidizing medium. Lti addition, there is still not a good understanding of the 

reactions of species created in the discharge with the sample surface. Since no 

nitrogen signal could be detected in the treated films nitrogen species do not seem to 

play an important role in the reactions on the polysilane surface. There are three 

oxygen species with pronounced oxidising properties which are likely to play a role 

in the oxidation of the films: 
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1) atomic oxygen, the precursor in ozone formation 

2) ozone, the main and longest lived product of the silent discharge 

3) hydroxyl radicals formed from the moisture of the ambient air 

It is possible that all three factors contribute to product formation but is diflBcult to 

separate them. Additionally, an influence of other factors like the radiation emitted 

in the discharge on the modification process is conceivable but it is difiBcult to 

estimate their extent. 

The reaction with ozone can be an important pathway although it is not an 

exclusive reaction route. It has been reported that most of the ozone is formed in the 

vicmity of the dielectric Therefore the position of the sample on the dielectric 

ensures that the f i lm is exposed to a maximum concentration of ozone. No 

experimental data have been reported yet on the reactions of polysilanes with ozone. 

Since the reaction behaviour of polysilanes has been often deduced from the 

behaviour of small silane compounds it is likely that the silane reactions with ozone 

can serve as a model for the polymer. Generally, silanes have been found to be more 

reactive towards ozone than then carbon analogues. Si-Si and Si-phenyl bonds in 

small silanes react readily upon contact with ozone while the corresponding reaction 

of the Si-alkyl bond proceeds considerably slower. The reaction products are 

monomeric and oligomeric siloxanes ' Assuming that the polysilanes undergo 

similar reactions, ozone msertion into Si-Si bonds under formation of siloxane 

linkages occurs m both model polymers. The faster reaction of the aromatic polymer 

would correspond to the rapid reaction behaviour observed in the small silanes. This 

reaction uhimately resuhs in the loss of the phenyl ring. It is assumed that the ring is 

oxidised but it has not been established whether the rmg is first oxidised and 

subsequently split off or vice versa The observation of the highly oxidised 

shoulder in PPMS at 30s treatment time would support the former pathway. 

The process caimot stop at this stage because the observed fmal silicon 

environment appears at a higher BE than a siloxane. The siloxanes thus formed can 

therefore only be an mtermediate which is subsequently fiirther oxidized by the 

reactive species in the plasma. 

Since transmission IR reveals Si-0 moieties in both treated films, it appears 

that in the present study the thickness of the oxidized layers is larger than those in 

reference 12 where the oxidized PCHMS layer did not give rise to additional signals. 
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Presumably the films in the low pressure plasma are densified by some degree of ion 
bombardment. 

3.6 Conclusions 

Silent discharge treatment of PPMS and PCHMS thin fihns results in the 

rapid formation of a carbonaceous SiOx surface layer. The oxidation proceeds faster 

and more completely in the case of the aromatic polysilane. 
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Chapter 4: 

Study on the reactions of poly(phenylmethylsilane) upon irradiation 

in the presence of CCI4 

4.1 hitroduction 

While chapter 3 was concerned with the reaction behaviour of polysilanes in a 

plasma the present chapter is focussed on a photochemical aspect, namely, the 

reactions of irradiated polysilane films in the presence of CCI4 vapour. Only the 

reactions of poly (phenylmethylsilane), PPMS, are studied. 

4.2 Background on the photochemistry of polysilanes 

Due to a a conjugation of the polymer backbone enabling a-a* electronic 

transitions to occur '"̂  polysilanes show an absorption maximum in the UV region 

despite bemg formally saturated The position of the absorption maximum is 

dependent on the nature of the substituents as well as on the length and the 

conformation of the polymer chain '' "̂̂  The relaxation fi-om the excited state can 

proceed both via radiative and nonradiative transitions, the latter of which cause the 

scission of the Si-Si bonds ^ thus resulting in a reduction of the polymer chain length ''^''. 

Concurrently, the absorption maximum is shifted towards lower wavelengths 

(bleaching) as soon as the chain contains less than about 50 monomer units 

The reduction in molecular weight suggests that the degradation of 

polysilanes mainly results in chain scission, simultaneous crosslinking occurs to a 

much lower extent and is relatively more important in polysilanes with pendant 

aromatic substituents '̂ '̂ '̂  Photodegradation is observed both in polysilane solutions 

and solid films The photoefiiciency for scission and crosslinking, however, is 

considerably lower for solid films of a particular polysilane than in the respective 

solutions of similar optical density This was ascribed to the reduced mobility of 

the cham ends due to solid-state cage effects ''^ in the films. Furthermore, 

crosslinking was found to be more pronounced in solid state samples compared to 

solutions. This is shown by a smaller scission-to-crosslinking ratio in the solid films .̂ 
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Most information about the reactive intermediates involved in the photolysis 
of polysilanes has been obtained from the analysis of product mixtures formed in 
exhaustively irradiated solutions in the presence of suitable trapping reagents 
(MeOH, triethylsilane, chlorinated hydrocarbons) Three possible reaction 

pathways were discussed on the basis of those mechanistic studies: 

1) substituted silylene extrusion and chain abridgement: 

- S i R R ' - S i R R ' - S i - R R ' - % :Si RR ' + -Si RR' -SiRR'-

2) Si-Si bond homolysis and formation of polysilyl radicals: 

hv 
Si R R'- Si R R'- Si-R-R'- ^ -R R' S i . + . Si R R'- Si R R' 

3) formation of persistent silicon radicals via 1,1 reductive elimination and 

production of cham silylenes: 

hv 
- Si R R'- Si R R'- Si-R-R'- ^ -Si R2 R' + :Si R'- Si R R'- (a) 

or-SiRR'2 + :SiR-SiRR'-

:S iR-SiRR' -S iRR' - ^ Si R R ' = SiR-Si RR'- (b) 

S i R R ' = S iR-S iRR ' - + . S i R R ' - S i R R ' - ^ - Si R R'-SiR - (Si R R')3- (c) 

The first two reactions are well known pathways in the degradation of both 

acyclic and alicyclic low molecular weight oligosilanes. Silylenes and silyl radicals 

are formed in independent and competing reactions The third reaction is 

regarded to be of minor importance. It is taken as the possible formation route of a 

persistent silyl radical the structure of which corresponds formally to one formed by 

simple cleavage of the Si-C bond. The experimental evidence, however, precludes 

this reaction pathway. The detection of a trialkylsilyl product on the other hand 

supports the reaction sequence 3 (a)-(c) 

65 



Chapter 4 

Photodegradation is observed in the whole absorption range of a polysilane 
under consideration .̂ Further studies revealed, however, a wavelength dependence 
for the formation of reactive intermediates. Evidence for the formation of both 
silylenes and silyl radicals was found upon irradiation at wavelengths of about 250 nm. 
The amount of silylene trapping product decreased gradually with increasing 
wavelength and was not observed at irradiation wavelengths > 300 nm such that 
under these conditions radicals are the only intermediates during photodegradation .̂ 

The intermediates undergo further reactions to form stable products. Silyl 

radicals can recombine or disproportionate whereas silylenes undergo intramolecular 

insertion reactions .̂ 

The products of disproportionation are a silane and a silene: 

2 - R R ' S i . ^ - R R ' S i - H + R R ' S i = CR"2 
I I 

CHR2" CHR2" 

The latter being an unstable molecule goes on to react further, for example, by adding 

solvent molecules or forming dimers " . 

Little is known about the intermediates mvolved in the photodegradation of 

solid films and it is unclear whether the mechanism found for solutions applies in 

this case. Siloxane, silane, silanol and carbonyl bands identified in IR spectra of 

polysilane films irradiated in air were interpreted as evidence for radical 

mtermediates. A rapid oxidation of silylenes in ah was suggested to lead to cyclic 
Q 

siloxanes which were detected by mass spectrometry . The same report found 

silylenes to be the major volatile product of vacuum irradiations, a fmding that could 

not be confirmed in a later similar study '^. 

It is known that silyl radicals abstract chlorine from chlorinated alkanes in 

solution .̂ A similar reaction of silyl radicals formed fi-om solid polysilane films 

upon irradiation has not been mentioned yet in the literature. It was the aim of the 

following study to investigate the reactions occurring on solid polysilane surfaces 

upon irradiation m CCI4 containing vapour. 
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4.3 Experimental 

Carbon tetrachloride, CCI4, (BDH, chromatography grade) and poly 

(phenylmethyl)silane, PPMS (ABCR), were used for the study. Thin PPMS films 

were spin coated onto strips of LDPE (ICI) from a 2% w/v solution in toluene. Prior 

to use the PE substrates were ultrasonically cleaned for 30 seconds in IPA (Isopropyl 

alcohol) and dried in air. CCI4 was degassed in repeated freeze and thaw cycles. 

4.3.1 Experimental set - up 

PPMS films were placed mto a glass sample holder and transferred into a 

glass reactor fitted with a quartz window, a needle valve gas inlet (Edwards LV lOK), 

a Pirani Pressure gauge (Edwards PR lOK) and a rotary pump (Edwards Speedivac) 

attached to a liquid nitrogen cold trap, figure 1. A l l joints in the set - up were grease 

free. The pump exhaust was placed into the fiime cupboard to avoid possible dangers 

with accidental phosgene production. 

Quartz Window 

to Cold Trap ' ^ Vapour Inlet via 
and Pump ( . /^"^—, 1 Needle Valve 

\ 
Sample Holder 
with Polymer Viton 
Sample 0-Ring 

Fig. 1 Schematic representation of the glass reactor 

The radiation was provided from an Oriel 200 W high pressure Hg (Xe) lamp 

operated at 100 W. This lamp emits intense emission lines in the near UV, VIS and 

IR region on an otherwise continuous spectrum. 
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4.3.2 Leak Rate 

Leak rate and flow rate were determined assuming ideal gas behaviour and 

thus the ideal gas law was employed: 

pxV = nxRy.T 

where p = gas pressure, V = volume of the reactor, n = number of moles, R = 

universal gas constant and T = absolute temperature. 

I f a reactor fed by a continuous flow of gas is isolated from the pump and the 

pressure increase Ap and the tune interval required for the observed change m 

pressure At are measured the leak rate can be approximately calculated according to '̂ •''*: 

Fv « — X — 
RT At 

with p in atm, t m min, V in cm^ and T in K, R= 82.06 atm cm^ mol"' K"' and using 

Avogadro's Law according to which a mole of gas at standard conditions (T = 273K, 

P = latm) occupies a volume of 22414 cm^ ''^ the above equation can be rewritten as: 

V Ap , 
« — X X 22414 [cm^ /mm] 

RT At -' 

After placing the sample in front of the window of the reactor the set-up was 

evacuated to base pressure (4x10 "̂  torr) and the leak rate was determined. This was 

achieved by sealing the reactor off from the pump and measuring the time that 

elapsed until a certam pressure increase had taken place. I f the value was acceptable 

(better than 1.5 x 10 "̂  cm^/min) CCI4 vapour was admitted to the reactor such that a 

pressure of 2 xlO"' torr was attained. The flow rate was estimated to be 1.1 cm^/min. 

During this time the light of the lamp was kept out of the set-up by a shutter placed in 

front of the wmdow. Treatment tune was started by the removal of the shutter and 

fmished by placing the shutter back in the optical path. The monomer supply was 

then stopped and the apparatus evacuated. After bringing the set-up back to 

atmospheric pressure with nitrogen, and flushing the reactor with the gas for about 2 
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minutes to allow possible radicals which were not saturated to react in the absence of 
oxygen, the sample was removed from the reactor and immediately transferred into 
the XP spectrometer. The respective measurements were carried out under the 
conditions described in section 3.3.2. 

In order to find out about the ageing of treated films selected samples were 

stored for 3 and 28 days respectively in an ambient atmosphere in the dark before 

being evaluated. 

4.4 Results 

4.4.1 XPS of fresh samples 

The spectra of PPMS films exposed to CCI4 vapour for 30 minutes without 

simultaneous irradiation were essentially like those of untreated PPMS films. A 

chlorine uptake was not observed. 

A time study was carried out for the irradiation of PPMS films in the presence 

of CCI4 vapour keeping all other experimental parameters constant. Figure 2 shows 

the elemental composition of the treated films plotted against irradiation time. The 

incorporation of chlorme into the surface is accompanied by a loss in carbon content; 

whereas the silicon content remains nearly unchanged. Besides chlorine there is also 

an increasing amount of oxygen present in the analysed films. The surface 

composition reaches a saturation value after a treatment time of about 450 seconds. 

The main features of the PPMS XP spectra were already described in section 

3.4.1. Treated samples show a slight reduction in the C (Is) shake-up intensity with 

increasing treatment time. No additional component is observed in the C (Is) spectra 

within the sensitivity range of the instrument. This excludes the presence of 

significant amounts of oxidized carbon moieties or chlorinated carbon environments 

which both would appear towards higher BE of the hydrocarbon component, figure 3. 

The Si (2p) spectra of the treated films show the most obvious change in the 

photoelectron peak shape, figure 4. Initially, additional contributions on the high BE 

side of the original peak appear, these gain intensity at higher treatment times. The 

whole signal appears broadened and is shifted towards higher binding energy as the 

treatment time becomes longer. This observation suggests that the changes induced 
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by the treatment occur on silicon centres. Since the Si (2p) signal is still broad even 
after the longest exposure time it can be concluded that the treatment does not result 
in the formation of a uniform silicon environment. Two elements are incorporated 
into the films, chlorine and oxygen. It can therefore be assumed that both silicon-
chlorine and silicon-oxygen environments are present on the surface and contribute 
to the Si envelope. Both elements cause a shift towards higher BE which increases 
with increasing number of atoms attached to Si Additionally, the overall range of 
BE shifts is not very large in both cases. Therefore, the particular contributions to the 
Si (2p) spectra cannot be attributed unambiguously and so the signals are presented 
as unfitted spectra. 

CI (2p) XP spectra were fitted as Gaussian peaks with fixed FWHM (fiill 

width at half maximum) using a Marquardt minimisation computer programme, 

figure 5. The CI (2p3/2) component of the appearing chlorine signal is centred at a 

binding energy of 200.4 eV. Since the untreated film does not show a chlorine signal 

the spectra of the treated samples only are included in the figure. 

The O (Is) environment appears at a binding energy of 532.5 eV which is 

characteristic of a siloxane environment 

4.4.2 XPS of aged samples 

%C1 %Si %C % 0 

directly after treatment 8.0 ±0.1 11.0±0.6 76.3 ± 1.7 4.7 ± 1.1 

after ageing in moist air 

for 3 days 

3.4 ± 0.4 11.6+1.1 74.8 + 0.8 10.3 + 0.1 

after ageing in moist air 

for 28 days 

1.3 + 0.1 11.25 ± 1.2 70.9 + 2.3 16.6 ± 1.1 

Tab. 1 Change in composition of a 10 min treated sample with time exposed to moist air 

In table 1 the composition of samples each treated for 10 minutes but 

measured immediately after treatment and after ageing for 3 and 28 days respectively 

are compared. The aged samples show a loss of chlorine and a strong uptake in 

oxygen which suggests that the chlorine species which were present initially are not 
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stable in ambient air. Apart from the C (Is) spectrum of the sample aged for 28 days 
which shows a slight shoulder on the high binding energy side due to oxidized carbon 
moieties the other XP signals in the aged samples do not show a difference with 
respect to their shape and their position compared to the ftesh sample, figures 6-9. 

4.5 Discussion 

5 Since there is only a small amount of information about the intermediates 

formed upon the irradiation of solid polysilane films no definitive explanation can be 

given for the observations made in the study; however, the following tentative 

explanation is proposed: 

The exposure of polysilanes to UV radiation is known to lead to silicon-

silicon bond homolysis resulting in the formation of silyl radicals ^ Under the 

present conditions those radicals can undergo four reactions: 

1) recombination due to the cage effect 

2) reaction with the chlorine species present in the vapour. 

3) disproportionation 

4) attack of aromatic substituents leading to crosslmking 

Recombination leads to the 'repair' of the polymer chain. It cannot be 

detected and therefore the extent of this process cannot be estimated. Since the 

reaction takes place in the solid state where the mobility of the chain ends is 

restricted it is, however, likely to occur. 

There are two possible pathways which might lead to the formation of the 

chlormated species: the reaction with photodissociation products of CCI4 and 

abstraction of chlorine atoms from CCI4 molecules. CCI4 is photosensitive and 
18 

absorbs continuously in the near UV starting below about 250 nm . A study by 

Davis et al. of the gas phase photochemistry of CCI4 vapour upon UV irradiation 

revealed a dependence of the species generated on the wavelength where the degree 

of fi-agmentation of the molecule increases with the energy content of the radiation 

These observations were confirmed by trapping experiments Under the 
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experimental conditions of the present study only one of three processes foxind in the 
studies mentioned above could be relevant. This reaction is: 

CCI4 ^ C C I 3 . + C I . (1) 

The other fi-agmentation processes would require radiation of higher energy. 

Stable products formed from the intermediates in (1) are CI2 and C2CI6. Since the 

present experiments were carried out at shorter irradiation times and considerably 

lower pressure than the photodissociations in the literature a significant contribution 

of process (1) seems to be unlikely although it cannot be entirely ruled out. The 

initially formed silyl radicals therefore most probably abstract a chlorine atom from 

CCI4 molecules similar to the reaction m solutions. The product of this reaction are 

chlorosilanes with lower molecular weight compared to the starting material. The 

XP spectra lend support to the formation of chlorinated silicon functionalities. 

Disproportionation leads to the formation of Si-H fimctionalities and initially 

to silenes which subsequently react, for example, by dimerisation. XPS cannot detect 

changes caused by the formation of these products because they are not associated 

with easily discernible BE shifts, therefore, the role of this process cannot be 

assessed with the information available. The same is true for possible crosslinking 

reactions. 

The ageing observed in the films after storage in moist air can be explained as 

follows: Small chlorosilanes are known to be susceptible to hydrolysis, the initial 

product being a silanol which subsequently condensates under formation of a 

siloxane bond ^' according to: 

>Si-Cl + H2O ^ s i - O H + HCl 

2 >Si-OH >Si-0-Si< + H2O 

The Si-0 bond thus formed is thermodynamically more stable than the original Si-Cl 

bond, the bindmg energies being 112 kcal/mol (469 kJ/mol) and 93 kcal/mol (389 

kJ/mol), respectively The reactivity of a chlorosilane towards hydrolysis 

decreases with increasing bulk of its substituents The loss in chlorine and the 
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simultaneous uptake of oxygen suggests that a similar process is taking place in the 
samples when stored in moist air. The condensation step is only likely in cases where 
2 chain ends carrying hydroxyl groups meet. Comparing the loss of chlorine and the 
gain of oxygen in the ageing samples the oxygen uptake is larger than can be 
expected from the reaction sequence described above. In the samples aged for three 
days the additional amount of oxygen can probably be explained by a steric hindrance 
of the condensation step. The oxygen content of the samples aged for 28 days is that 
high that there must be an additional oxidation process. The reduction in the shake-
up intensity and the appearance of a slight shoulder on the high BE side of the 
respective C (Is) XP spectra suggest that there is also a certain degree of oxidation in 
the carbon species which is not immediately obvious in the freshly treated samples. 
This reaction could possibly account for the discrepancy in the oxygen uptake. 

It is conceivable that the oxygen detected in freshly treated films is due to the 

hydrolysis of easily accessible Si-Cl bonds during transfer of the sample into the 

spectrometer. This undesired reaction could be avoided by handling of the samples 

in an inert atmosphere or by carrying out the reaction in-situ which could probably 

lead to more conclusive results. Furthermore, complementary measurements with 

other experimental techniques could provide more mformation about the reaction 

pathways of the intermediates involved in the treatment, like disproportionation (IR) 

or crosslinking (GPC). 

4.6 Conclusions 

The irradiation of PPMS films in the presence of CCI4 vapour leads initially to the 

formation of chlorinated silanes. They are sensitive to moist air and degrade upon 

exposure to this atmosphere. The hydrolysis is characterised by a loss of chlorine 

and an uptake of oxygen. The appearance of small amounts of oxidized carbon 

species is observed after long ageing intervals. 
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Chapter 5: 

Studies on the silent discharge treatment of alkali halide discs 

5.1 Introduction 

It was aheady mentioned in chapter 3 that KBr discs are modified upon 

exposure to a silent discharge plasma. In the following chapter more detailed studies 

of this phenomenon are described. Apart from the reactions of KBr the behaviour of 

KCl and K I was studied as well. 

5.2 Background 

5.2.1 Plasma treatment of alkali halides 

The reaction behaviour of alkali halides upon exposure to plasmas has not 

been widely researched. 

The remote oxygen plasma treatment of NaCl crystals resulted in the 

formation of surface layers of NaClOs which was proved by the appearance of the 

product's characteristic IR band No reaction was observed upon exposure of NaCl 

crystals to remote nitrogen and helium plasmas and to ozonized oxygen. The 

formation of nitrate species when air was used as a feed gas in the experiments was 

mentioned but not fiirther investigated. 

An XPS study of in-situ oxygen glow discharge treated KCl did not show the 

formation of chlorate. In this case the formation of a higher oxide was observed. 

This compound was unstable at elevated temperature and in vacuum and decomposed 

into a stable oxide with time .̂ 

5.2.2 Reaction of alkali halides with nitrogen oxides 

Reactions of alkali halide aerosols with HNO3, N2O5 and NO2 traces present 

in polluted air have met a great interest in atmospheric chemistry. Alkali halide 

aerosols mainly consist of NaCl but also contain a small proportion of NaBr. They 

are formed in the troposphere, the layer up to about 12 km above the earth's surface ,̂ 
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by the wavemotion of the ocean '̂̂  and in the stratosphere, the layer comprismg the 
altitudes between about 15 km and 50 km ,̂ as a resuh of volcanic eruptions 
Some of the volatile reaction products formed in the aerosol - nitrogen oxide 
reactions are potential photochemical chlorine and bromine sources respectively and 
might therefore have an influence on the ozone balance in the atmosphere -̂̂ -'O-'̂ .''* 

A number of model studies employing different experimental techniques and 

conditions have been carried out in which the reactions of one of the nitrogen oxides 

mentioned above with a halide in the form of single crystals, dry or slightly wet 

powder or as an aerosol were examined Most of the studies concerned NaCl and 

NaBr, the most important constituents of natural halide aerosols. In some cases the 

reaction behaviour of the corresponding potassium salts was investigated as well. 

The reactions of the chlorides were found to follow equations (1) - (3): 

MCI (s) + HNO3 (g) ^ HCl (g) + MNO3 (s) (1) 

MCI (s) + N2O5 (g) -> CINO2 (g) + MNO3 (s) (2) 

MCI (s) + 2 NO2 (g) ^ CINO (g) + MNO3 (s) (3) 

The formation of nitrite was excluded in all three reactions hrespective of 

whether NaCl, the halide used in this particular study, reacted with N2O5, HNO3 or 

NO2 both the position and the appearance of the product IR bands were identical. 

This indicates the formation of an identical product as shown in the equations listed 

above. Contrary to the slowly reacting hydrogen chloride formed in reaction (1), 

nitrylchloride, CINO2, and nitrosylchloride, CINO, formed in reactions (2) and (3), 

are examples of photochemically very active chlorine compounds Most studies 

were therefore focused on obtaining kinetic data for reactions (1) - (3) the 

comparison of which allows the importance of these reactions for atmospheric 

processes to be assessed. 

Reactions (1) and (3) were reported to follow the stoichiometry given 

by their equations. With regards to reaction (2), Livingston et al. '° observed a 1:1 

ratio of N2O5 and CINO2 only in the presence of sufficient surface chloride and in the 

case of complete mixing of the reactants. Fenter et al. ^ found a less than unity yield 
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for the reaction. Since their investigations did not lead to the identification of an 
additional volatile product, the authors attribute this observation to a secondary 
process like the binding of N2O5 molecules to the salt surface in a state that does not 
immediately react ^ . 

Bromides partly follow the same reaction schemes as those described above 

for the chlorides. While NaBr undergoes a reaction with HNO3 corresponding to 

equation (1) forming a stoichiometric amount of HBr the reports about the 

equivalent of reaction (2) are controversial where the concentration of the reactants 

seems to play an important role. For the reaction of N2O5 with NaBr Fmlayson-Pitts 

et al. observed the formation of nitrylbromide, BrNOi, only in the case of reaction 

times in the minute range followed by analysis of the gaseous products with IR. At 

shorter reaction times and mass spectroscopic detection only the decomposition 

products BrNO, Br2 and NO could be identified. A similar study employing mass 

spectroscopy (MS) carried out later for both KBr and NaBr ^ confirmed the absence 

of BrNOi but found Br2 as the only volatile bromine species together with nitrous 

acid, HNO2. The formation of nitrosylbromide, BrNO, in the reaction of NaBr with 

NO2 corresponding to pathway (3) was confirmed by a combination of FTIR and MS 

measurements 

Water vapour was found to exert an important influence on the morphology 

and chemical properties of the nitrate layer formed on the one hand and the reactivity 

of the sah on the other. 

I f dried halides react with nitrogen oxides in the absence of water vapour the 

nitrate is formed as a thin overlayer which covers the surface completely. As soon as 

a saturation of the surface is reached a further reaction is prevented This type of 

nitrate is metastable and is assumed to have a structure significantly different from 

the bulk nitrate. The exposure of the metastable nitrate to even small amounts of 

water vapour leads to the recrystallisation to the stable bulk nitrate structure. This 

process is thought to occur via a water induced surface dissolution of the nitrate m a 

"quasi-liquid layer" on the sample surface in which nitrate mobility is substantially 

enhanced and which is supersaturated with respect to the stable form of the nitrate. 

The bulk-type nitrate therefore starts to precipitate firom the quasi-liquid layer. 

Isolated crystallites can be obtained by evacuating the adsorbed water from the 

sample surface Thereby new alkali halide is exposed which can possibly react 

87 



Chapter 5 

further. In cases where powders were not dried prior to the reaction the stable nitrate 
was formed immediately 

The differences in the structure of the two nitrate forms are reflected in their 

photochemical properties. While the metastable nitrate did not undergo a 

photoreduction to nitrite upon exposure to UV light, the recrystallised nitrate showed 

this reaction thus reacting like bulk nitrate from which this reaction is well known. 

Experimental evidence for the two nitrate forms and the transformation of the 

metastable into the stable form upon exposure to water vapour was obtained in 

studies employmg DRIFTS (Diffuse Reflectance Infrared Fourier Transform 

Spectroscopy), XPS and TEM (Transmission Electron Microscopy). The 

phenomenon was observed independently of the sample preparation method In 

the first case the two forms of nitrate could be identified by their different band 

positions in the respective refiectance IR spectra TEM pictures provided the 

optical proof for both the smooth surface structure of the metastable surface nitrate 

formed under dry reaction conditions and the growth of nitrate crystallites 

accompanied by the simultaneous regeneration of unreacted halide upon exposure to 

water vapour The size of the microcrystallites was found to enlarge with 

increasing water vapour pressure . With the help of XPS the saturation of the 

sample surface under dry reaction conditions could be confirmed The XP spectra 

recorded after the exposure of the metastable nitrate films to water vapour, revealed 

an increase in the chlorine content and a corresponding decrease in the nitrogen and 

oxygen percentage respectively on the sample surface. This observation is in 

• 8 

accordance with the recrystallisation process . A change in the peak shape of the O 

(Is) signal with exposure time to water led to the identification of hydroxyl 

functionalities in addition to the nitrate environment. The hydroxide ions were 

thought to be the product of dissociation processes of water molecules adsorbed at 

defect sites resulting from the surface roughening during the nitrate formation step. 

The hydroxide ions were assumed to enhance the water uptake during the course of 

the reaction ̂ . 

Those hydroxide ions play an important role in an explanation given for the 

increase in reactivity observed when the powder used in the experiments was not 

heated prior to the reaction with HNO3 A similar increase in reactivity was found 

in the reaction of NaCl with N2O5 .̂ Both observations suggest an influence of 
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adsorbed water. In the latter case the enhancement in reactivity was explained with 
the possible hydrolysis of N2O5 yielding HNO3 as the product 

In a detailed study of the HNO3 reaction with NaCl in a Knudsen cell ^' it was 

found that in the case of the reaction of „wet" halide powder there was an initial 

rapid reactant uptake followed by a slower, constant uptake. In dried powders, on the 

other hand, the initial HNO3 uptake was significantly lower. Corresponding to the 

HNO3 uptake there was a simultaneous development of HCl. These results suggested 

the existence of two kinds of sites holding surface water. The hydroxyl ions formed 

in the dissociation of water molecules at defect sites were thought to be the centre of 

the more reactive sites. The hydroxyl ions were believed to be surrounded by water 

molecules due to their polarity and the formation of hydrogen bonds I f HNO3 

molecules are taken up into this water cluster the hydroxide is neutralised and the 

cluster acidifies. Once it is sufficiently acidified HCl starts to degas from the cluster. 

By the removal of the hydroxide the centre of the cluster is lost. As a consequence 

the binding of the water molecules to the surface is weakened and they finally desorb. 

The less reactive sites were not further specified. The water associated to these sites 

was thought to be sufficiently strongly adsorbed that it takes up HNO3 and degasses 

HCl without desorbing 

Literature evidence for the reactions of nitrogen oxides with alkali iodides and 

for the reactions of dinitrogenmonoxide, N2O, with alkali halides could not be found. 

The formation of oxidized halogen species was not reported in the studies of the 

reactions of nitrogen oxides with alkali halides 

The reaction of an alkali halide with a gas mixture was mentioned by 

Kogelschatz who observed the deterioration of the NaCl windows of an IR cell 

upon contact with silent discharge treated air. The absorption peak at 7.4 fx (1351 cm ' ' ) 

which could not be attributed to one of the gaseous products (O3, N2O5, N2O) formed 

by the treatment of dry air was assumed to be due to NaNOs. A further analysis of 

the product, however, was not carried out. 

5.3 Experimental 

Potassium bromide (SpectrosoL®, BDH), potassium chloride (SpectrosoL®, 

BDH) and potassium iodide (99.99+ %, Aldrich) were used in this study. The sahs 
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were treated in the form of discs pressed from weighed amounts of dried alkali halide 
powder such that the thickness of the discs was 0.5 mm. For reasons of comparison 
with the literature values XP spectra of KCIO3, KBrOs, KIO3, KNO3 and KNO2 were 
recorded from analytical grade powders. 

Two experimental set-ups were used: the standard set-up which was aheady 

described in chapter 3.3.1 and a flow cell, a schematic of which is shown in figure 1. 

Aluminium was the electrode material in both set-ups. The dielectric material, 

however, differed. The standard set-up used two layers of polyethylene foil whereas, 

in the case of the flow-cell, the bottom of the glass vessel represented the dielectric. 

The gap width in the standard treatments was 3 mm, in the cell treatments 4 mm. 

The same power supply was used for both set-ups. For the measurements m the 

standard set-up the discharge was supplied with a voltage of 7.7 kV whereas the cell 

set-up had to be operated with 11 kV in order to obtain a stable discharge. Due to 

these differences the results obtained with the two set-ups can only be compared 

qualitatively. 

The discharge cell was integrated in a set-up as shown in figure 2. The 

advantage of this arrangement is that it offers the opportunity to study reactions m 

gas surroundings other than ambient air. Additionally, it is possible to investigate the 

influence of humidity in the feed gas on the reactions by using either dried or 

humidified feed gases. The feed gases for the cell in the present study were: oxygen, 

nitrogen, helium and artificial air (BTCA 74), all produced by BOC. The water 

bubbler contained deionized water and the drying column was filled with molecular 

sieve. The latter was dried in an oven prior to use. The bubbler at the cell outlet was 

filled with glycerol and served the purpose of controlling the flow speed of the gas. 

Nitrile 0-rings, mitially used instead of Viton 0-Rings, were not found to be a 

suitable seal for the flow cell since they became brittle even after a short exposure to 

ozone containing gas. 
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Prior to each use the top electrode was cleaned with IPA. In cases of 

electrode corrosion the electrode was polished with Brasso®, rinsed with water, dried 

and degreased using IPA. 

Treatments in the standard set-up were carried out by placing the disc on the 

dielectric and subsequently switching the discharge on for the time required. In the 
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second set-up the sample was placed on the bottom of the cell and the set-up was 
assembled. Prior to treatment, the set-up was purged with the respective feed gas for 
12 minutes in order to provide defined reaction conditions. 

The treated discs were analysed immediately after treatment by XPS or 

Transmission-IR measurements both under the conditions described in chapter 3.3.2. 

After being measured by IR some of the samples treated in the standard set-up were 

stored in a desiccator and the measurement was repeated after certain time mtervals. 

Other samples were transferred into an oven in order to find out about the behaviour 

of the products upon their exposure to higher temperatures (145 and 192° C). 

ATR - IR spectra of the deposited materials on the polyethylene dielectric 

were collected on a Mattson Polaris FTIR spectrometer equipped with a Golden Gate ™ 

Single Reflection Diamond ATR set-up (Greaseby-Specac). In a measurement, 64 

scans were taken for the background and 32 scans were taken for the sample at a 

resolution of 4 cm"'. 

5.4. Results 

5.4.1 Treatments in the standard set-up 

5.4.1.1 General observations 

Even during short treatment times in the standard set-up K I discs developed a 

brown colour which rapidly faded to light yellow when the discharge apparatus was 

switched o f f In the case of the KBr discs a pale yellow colour and a bromine smell 

were observed only at high treatment times. No observation of this kind was made in 

the case of KCl. The surfaces of treated discs had an opaque appearance which 

suggests that surface roughening had taken place. 

The appearance of the discharge in the gap was slightly inhomogeneous with 

strongly luminous discharge channels centred at the edges of the discs. These 

filaments burnt over extended times. The inhomogeneity became increasingly 

obvious with longer treatment times. Only moderate electrode corrosion was 

observed on the top electrode after the treatment. 
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5.4.1.2 IR 

In figure 3 the IR spectra of a KCl, a KBr and a K I disc each treated for 600 

seconds are compared. For reasons of clarity the spectra are focused on the 

wavelength range between 600 and 2000 cm"'. A l l the three salts under consideration 

form two kinds of products: a nitrate species and an oxidized halogen species of the 

general formula XO3" (X = CI, Br, I). Signals related to the nitrate species appear a t« 

1377.3 (a'; shoulder)/!352.2 cm'' (a; asymmetric stretching, strong), 833.3/825.6 cm 

(b, b'; out of plane bending, medium) and 1766.9 cm"' (c; combination band of 

symmetric stretching and in plane bending, very weak) which is in reasonable 

agreement with the literature values ^̂ "•̂ .̂ The strong and medium nitrate 

absorbances do not appear as a single sharp signal but in most cases as a broad 

envelope, separated less often into two distinct signals. This suggests that the nitrate 

is present in more than one form which absorb at slightly different wavenumbers. 

There is a general trend that in the asymmetric stretching region the contribution of 

the component at higher wavenumbers increases with increasing treatment time. In 

comparing the three halides, K I is the sah in which the contribution of the high 

wavenumber component is largest, followed by KBr and KCl. The 825.6 cm"' 

contribution of the out of plane bending signal (b') gams intensity simultaneously 

with the high wavenumber component of the asymmetric stretch (a'). Irrespective of 

the treatment time the treated K I discs additionally show a nitrite signal centred at 

1253.8 cm"' (d). The absorbances of oxidized halogen species appear at 981.8/972.2 

cm"' (e) for chlorate, 792.8 cm"' (f) for bromate and at 736.9 / 752.3 cm"' (shoulder) / 

798.6 (weak) cm"' (g) for iodate The tendency to form oxidised halide species 

increases in the order CIO3" < BrOs" « lOs". Furthermore, the treatment causes the 

loss of water from the sample surface which is obvious from negative water signals 

in the spectra. 

5.4.1.3 Peak areas as a function of treatment time 

The area of the asymmetric stretching vibration, the most intense absorbance 

in the IR spectrum of nitrate, was integrated and taken as a semiquantitative measure 

for the amount of nitrate formed. Figures 4 a-c show those nitrate peak areas 
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obtained in a time study of the three salts. The treatment time was varied between 30 
and 600 seconds. Although there is a big scattering in the experimental data a 
saturation behaviour can be observed for KBr and KCl. For K I the saturation 
behaviour is not as obvious as in the case of the other salts. 

A similar evaluation of the oxidised halogen species was not attempted 

because the transition of the bromate and iodate absorbance into the 825.6/833.3 cm"' 

signal of nitrate would have rendered the integration too inaccurate. In the case of 

chlorate the peak areas were too small to obtain meaningful results from the 

integration of the respective areas. The optical appearance of the spectra, however, 

showed already that the amount of oxidised halogen species in samples treated for 

the same treatment times varied strongly. This observation is true for all the salts 

under consideration. 

5.4.1.4 XPS 

After being exposed to the X-radiation of the Mg Ka source samples of all 

three salts showed the formation of colour centres. KBr samples had a blue colour 

upon removal from the spectrometer, KCl had tumed pink and K I faint blue-green. 

Table 1 summarizes the binding energies of the standards and the untreated halide 

sahs. The BEs are in reasonable correspondence to the values reported in the 

literature. The BEs of Br (3d5/2) in KBr03 and of iodine I (3d5/2) in K I and KIO3 

appear, however, at slightly higher values (0.5-0.8 eV) in the present experiments. 

The oxygen signal observed in the untreated KI , KCl and KBr discs is most probably 
Q 

related to hydroxide ions formed by the hydrolysis of water molecules at defect sites . 

A selection of treated samples (30, 60, 120, 600 seconds) of the three halides 

was measured by XPS but a complete tune study using this analytical technique was 

not carried out. The XPS data provide more evidence for the formation of the nitrate 

and the oxidised halogen species. The N (Is) signal appears for all the salts studied 

at a BE of 407.6 ±0 .2 eV, figure 5. This value lies between that measured for the 

standard sample and the corresponding data of bulk nitrate reported in the literature 

on the one hand and the value found by Laux et al. (407.2 eV) ^ for surface nitrate on 

the other. Although a small nitrite signal appears in the IR spectra of treated K I 

samples a nitrite signal cannot be detected in the corresponding XP spectra. It is 

possible that the amount of nitrite is not sufficient to give rise to a signal which can 
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unambiguously be distinguished from the spectral background. The same 
explanation can be given for the absence of a chlorate signal in the CI (2p) XP 
spectra of treated KCl discs. The bromate and the iodate signals of treated KBr and 
K I samples appear at the expected BE values of 75.3 ± 0.2 eV (Br (3d5/2)) and 624.5 
± 0 . 1 eV (I (3d5/2)), respectively, figure 6. The amount of halogenate formed 
increases in the order Br03~ « I03~ confirming the findings of the IR spectra. 
Concemmg the amount of halogenate produced in samples of a particular halide 
treated for the same treatment time, the XPS measurements also confirm the 
scattering already found m the IR analysis. 

Sample K(2p3/2) N ( l s ) 0 ( l s ) Reference 

KNO3 293.5 ±0.1 407.9 ±0.1 533.4 ±0.1 29 

KNO2 293.4 ±0.1 404.0 ±0.1 532.9 ±0 .1** 30 

Sample K(2p3/2) CI (2p3/2) 0 ( l s ) Reference 

KCl 293.2 ±0.1 198.7 ±0.05 531.7 ±0.2* 29 

KCIO3 293. 4 ±0.05 206.7 ± 0.05 532.8 ±0.05 31 

K(2p3/2) Br(3d5/2) 0 ( l s ) 

KBr 293.2 ±0.1 69.1 ±0.1 531.9 ±0.05 * 31 

KBr03 293.3 ±0.1 75.5 ±0.1 531.7 ±0.2 32 

K(2p3/2) I(3d5/2) 0 ( l s ) 

K I 293.3 ±0.1 619.8 ±0.1 531.7 ±0.05* 31 

KIO3 293.0 ± 0.2 624.7 ± 0.2 530.9 ±0.3 30 

* hydroxide component 
** water component 

Tab. 1 Binding Energies of the standards 

The O (Is) envelope of the treated samples falls into two distinct regions, 

figure 7. No attempt was made to fit the spectra with all the possible components. 

The contribution on the high BE side which appears at a bmding energy of 533.1 ± 

0.2 eV represents that of the nitrate oxygen. An additional contribution to this signal 
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due to adsorbed water cannot be excluded .̂ Apart from the oxygen of the XOf 
group, the low B E component can contain contributions of hydroxide ions formed in 
the dissociation of water molecules at defect sites on the sample surface .̂ Due to 
their small B E difference these two components of the oxygen photoelectron signal 
are likely to overlap. 

The halogenate component X O 3 " in the CI (2p) spectra of treated KCl discs 

was too small to be detected. Therefore, the small shoulder centred at a BE of about 

531.5 eV in the corresponding O (Is) spectra can be attributed to hydroxide, hi 

treated KI and KBr discs the signal of the halogenate, XOs", has to be taken into 

account as a second contribution. The comparison with the respective halogen 

spectra, figure 6, which show a large contribution of halogenate, suggests that in the 

case of KBr and KI the major component of the low BE oxygen peak is that due to 

XOs". hi accordance with the halogen spectra the intensity of this enviroimient is 

larger in the case of treated KJ discs than in the case of treated KBr samples. 

Within the measuring accuracy both the BE and the peak shape of the K (2p) XP 

spectra are not affected by the modification on the sample surface. The presence of 

aluminium on the sample surfaces could not be detected. 

While IR measurements only allow the determination of the sum of the 

products, the two sides of the discs can be analysed separately using XPS. 

Measuring the side which had not faced the discharge, the same products as those 

detected on the top side, were identified on KBr discs silent discharge treated for 120 

seconds. These findings show that the modification takes place on either side of the 

discs. 

5.4.1.5 Change of the nitrate IR signals upon storage in a desiccator 

In a further experiment a KCl sample treated for 120 seconds was measured 

using IR directly after treatment and the analysis of the same sample was then 

repeated after certain storage intervals in a desiccator, figure 8. Figures 9 and 10 

show the corresponding spectra for BG3r and KI. In order to illustrate the changes 

more clearly the spectra are shown on an expanded scale for the asymmetric stretch 

region of the nitrate ion. In all three cases a change of the peak shape as a function of 

storage time becomes obvious, a contribution at the high wavenumber side (a') either 
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Fig. 9 IR spectra of a KBr disk silent discharge treated for 120 seconds in the standard 

set-up as a function of storage time in a desiccator 
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Fig. 10 IR spectra of a KI disk silent discharge treated for 120 seconds in the standard 

set-up as a function of storage time in a desiccator 
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appears (KCl) or intensifies (KBr and KI). Difference spectra reveal an increase of a 
component at 1377.3 cm"' (a') and a decrease of a contribution at 1352.2 cm"' (a) for 
all the salts studied. Within the measurhig accuracy, the area of the envelope remams 
constant during the experiment which suggests that one species on the sample surface 
is transformed into another. 

The nitrate absorption at 833.3/825.6 cm"' follows a similar pattem as the 

asymmetric stretchmg vibration, though in this case it is the lower wavelength 

component that gains intensity with increasing storage time. The peak positions of 

the oxidised halogen species remain unchanged. The same applies to the location of 

the nitrite signal present only on treated KI discs. Smce the peak shifts are 

accompanied by a loss of water, water seems to play an important role for the 

explanation of this phenomenon. 

5.4.1.6 Change of the nitrate IR signals upon exposure to higher temperatures 

In order to find out about the changes introduced on the sample surfaces when 

the water is completely removed the treated discs were exposed to a temperatvire of 

192 °C. This treatment resulted m changes in the peak position and the shape of the 

nitrate asymmetric stretching and out of plane bending signal as well. The changes 

induced by this treatment, however, are not uniform as ui the case of the storage in 

the desiccator described in the preceding section. Figures 11 a-c each show the 

spectrum of a 10 minute silent discharge treated disc before and after heat treatment 

(1 hour). Figure 11a contains an additional spectrum of a treated KCl disc exposed 

to heat for 2 days. The IR spectra are again focused on the wavenumber range of the 

asymmetric nitrate stretching vibration. 

After exposure to heat the main nitrate signal of treated KCl discs appears as 

a broad envelope consisting of a large contribution on the low wavenumber side and 

an additional, remarkably sharp peak at 1394.6 cm"' (ax), figure 11 a. In addition to 

this new signal, difference spectra show a decrease of the initially pronounced 

component at 1352.2 cm"' (a) and an increase in a contribution at 1369.5 cm"'. The 

absorbance located at 833.3 cm"' is mitially not shifted. A drying time of 1 hour does 

not cause a change in the nitrate peak areas. After storing the same sample for a 

further two days in the oven the sharp absorbance at 1394.6 cm'' (ax) is the largest 
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signal in the spectrum and only a small contribution of the origmal absorbances at 
lower wavenumbers remains. The out of plane bending vibration now appears as a 

doublet with contributions at 833.3 and 841.0 cm'V At the same time, the area of the 
nitrate asymmetric stretching signal is reduced with respect to its initial area but not 
to such an extent that the loss can be explained with the volatilisation of the lower 
wavenumber component. Thus, it seems that at least some of the nitrate species 
originally contributing to the low wavenumber absorbances must have been 
transformed into the nitrate species absorbing at higher wavenumbers. 

Contrary to treated KCl discs which require a long storage time in the oven 

for the transition of the nitrate species to occur, the corresponding nitrate species on 

KBr and KI samples are transformed within one hour. The asymmetric stretching 

vibration of treated KBr samples shows a complete shift to a single sharp signal 

centred at 1383.0 cm"̂  (ay), figure 11 b, and the out of plane bending absorbance 

appears at 837.2 cm"'. In contrast to the other two halides studied, the nitrate 

asymmetric stretchmg signal of treated KI samples appears shifted to a lower 

wavenumber after heat treatment, the peak initially located at 1379.2 cm"' (a') being 

shifted to 1371.5 cm"' (az), figure 11c. There is a simultaneous shift of the out of 

plane bendmg absorbance initially centred at 825.6 cm"' towards the opposite 

direction of a wavenumber of 837.2 cm"'. The position of the nitrite signal at 1253.8 cm"' 

is not affected by the heat treatment. 

The halogenate peak positions are not shifted in the case of chlorate and 

iodate; bromate appears as a signal with a sharp maximum at 794.2 cm"'. While the 

areas of iodate remain unchanged within the accuracy of the integration procedure, 

those of bromate and chlorate are reduced after the treatment. 

The exposure of a 120 second silent discharge treated KBr disc to 145 °C did 

not lead to considerable changes in the nitrate peak shape in time intervals during 

which the treatment at 192 °C had caused the signals to shift completely. 

5.4.1.7 Deposits on the PE surface 

After the treatment of the KI discs the surface of the PE foil of the standard 

set-up was covered with a brown deposit at the location where the disc had been 

placed. This deposit could be easily wiped off with a tissue sprayed with IPA. Both 
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the PE film covered with deposit and the surface of the wiped PE foil were measured 
employmg ATR-IR and XPS. For reasons of comparison PE foils on which KBr and 
KCl discs had been placed during treatment were also analysed although they did not 
show a visible change on their surface when the treated discs were removed. In all 
cases the treatment time was 600 seconds. 

Figure 12 shows the ATR-IR spectra of the deposit on PE after KI treatment 

and after wiping the foil with IPA. In addition to the characteristic absorbances of 

PE (see section 3.4.3) the IR spectrum of the deposit contains signals at 3420.0, 

1709.0 and 1643.5 cm"' (x) as well as a conspicuous broad signal at 781.2 cm"' (*). 

Despite the absence of potassium, the XP spectrum of the deposit reveals the 

presence of iodine m a high oxidation state, the I (3d5/2) component appearing at a 

binduig energy of 625.5 eV. The small additional component located about 3.5 eV 

towards the lower binding energy side of the main signal is most probably due to 

iodine. It is not possible to establish whether iodine is already present on the sample 

surface or whether it is formed in a decomposition process fi-om the primary iodine 

compound under x-ray exposure, a difficulty reported to be often encountered in XP 

spectroscopy of iodine compounds Since an alternative metal cation could not be 

detected in a XPS widescan, only which cannot be identified by this technique 

remams as a possible counterion. This observation suggests the presence of iodic 

acid (HIO3) on the surface of the PE foil. The broad and unresolved ER signal at 

781.2 cm"' is in the region of the iodate absorbance. There are, however, no further 

similarities to the spectra of treated KI discs in which the absorbances are sharp and 

correspond well to the KIO3 reference spectrum in the literature . Although the 

mam absorbances of HIO3 are located within the wavelength range of the broad 

signal ^̂ '̂ ^ an unambiguous identification of HIO3 from the IR spectra is not possible. 

The spectrum does, however, also not represent a contradiction to this attribution. 

The C (Is) XP spectrum consists of an envelope with contributions at higher 

BE of the main C-H peak at 285.0 eV due to the presence of oxidised carbon species. 

Since iodic acid has no IR absorbances m the area of the three remaining signals '̂̂ '̂ ^ 

and smce these absorbances are located in an area typical for carbonyl and hydroxyl 

groups, these signals are attributed to oxidised carbon species Furthermore, the 

presence of unsaturated products is also possible The products absorb. 
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however, at slightly different wavelengths than those obtained by direct silent 
discharge treatment of a PE sample, which is shown as the top spectrum in figure 12. 

Both the m. (figure 12, middle) and the XP spectra of the wiped PE foil 

correspond to those of the untreated polymer. Thus, the deposit is removed in the 

wiping step. A spectrum of untreated PE is not mcluded in figure 12 in order to keep 

its information content clear. 

Apart from the XP signals already mentioned a small nitrogen signal which 

could be due to traces of nitric acid was detected as a fiirther component of the 

deposit on PE after K I disc treatment. 

The ATR-IR spectra of the PE foils after KBr and KCl treatment show no 

additional signals except those of oxidised carbon species. In both cases there are no 

deviations in the peak positions from those of silent discharge treated PE. Wipmg 

with IPA leads to the removal of the oxidised species. Apart from the presence of the 

high B E shoulder of the oxidised carbon moieties, only small amounts of bromine 

together with traces of nitrogen are detected in the XP spectra of PE foil on which the 

treatment of KBr had taken place. PE films which had served as the dielectric for 

KCl treatment show only oxidised carbon species but neither a chlorine nor a 

nitrogen signal when analysed with XPS. 

5.4.2 Treatments in the flow cell 

Ambient air, the feed gas of the standard set-up, is a complex mixture with 

varying amounts of water vapour. In order to provide more defined reaction 

conditions for the treatments in air and to study the reaction behaviour of the 

potassium halides in gases other than air experiments were carried out in the cell set

up. 

5.4.2.1 General observations 

In the flow cell the discharge consisted of a homogeneous glow as long as 

dried feed gas was used. As soon as the feed gas was passed through the water 

bubbler the discharge changed its appearance and became similar to that described 

for the standard set-up. The extent of discharge concentration to the edges of the 
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discs, however, was considerably stronger in this instance, leading to pronounced 
electrode corrosion. It became obvious on the top electrode in form of a more or less 
complete white ring of the disc diameter. This white material is most probably due 
to alimiinium oxide . The changes in the discharge appearance were observed 
independent of the type of feed gas. 

Since the set-up is closed colour changes of the samples during the treatment 

could not be seen. 

5.4.2.2 IR and XPS 

I f not mentioned otherwise, the treatment time in the cell experiments was 

600 seconds at a "flow speed" of the feed gas of 80 gas bubbles/minute. The analysis 

of the treated samples was carried out with transmission IR. Samples treated in 

humidified oxygen and humidified air atmospheres were additionally analysed with 

XPS. Table 2 summarizes the most important qualitative results obtained in the 

measurements. 

Gas Nitrate Nitrite 
Oxidized halogen 

species 

Dried air + * — + * 

Dried oxygen — — + * 

Humidified air: KCl, KBr 

K I 

-1- — Humidified air: KCl, KBr 

K I trace -1- + 

Humidified nitrogen trace — — 

Humidified oxygen — — -1-

Humidified helium — — — 

* small amount 

** detected only by IR 

Tab. 2 Qualitative overview over the products formed in the cell experiments (+ 

denotes the presence, - the absence of a component) 
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Irrespective of the type of feed gas used, water was lost from the sample 
surfaces in treatments with dried feed gas, whereas an uptake of water was found in 
the case of experiments carried out in the presence of humidified feed gas (signal h in 
figures 13 and 15). As far as the products are concemed there are some differences 
between the results obtained m the standard set-up and m the cell set-up when air is 
used as the feed gas. In most cases nitrate and the oxidised halogen species are 
formed on the KCl and KBr discs as a consequence of the plasma exposure. 
Sometimes the halogenate is, however, not detected by IR following treatments in 
dried feed gas. Different results are obtauied in the IR and XPS analysis of KCl and 
KBr samples treated m humidified air. While the IR spectra show the presence of the 
halogenate in both salts where the amount of chlorate formed is smaller than that of 
bromate, the halogenate signals are missing m the corresponding XP specfra. KBr 
thus shows a different behaviour compared to the treatments in the standard set-up. 

The peak positions in the IR spectra of the products obtained in the cell are 

comparable to those of the products obtained in the standard set-up. Figure 13 shows 

a comparison of the IR spectra of the three salts after silent discharge treatment in the 

cell set-up usmg humidified air as the feed gas. Cell treatments in humidified air 

resuh in the formation of a considerably larger amount of both products than cell 

treatments in dried air. This observation suggests a strong influence of water vapour 

on the modification of the discs. 

In KCl and KBr samples treated in humidified air, the N (Is) XP signals, 

figure 14, and the O (Is) envelopes appear at a slightly lower BE than the equivalent 

signals of samples treated in the standard set-up. 

KI shows the largest differences of the three halides in comparison to its 

behaviour in the standard set-up. A comparison of the IR spectra of a KI sample 

treated in dried air and a KI sample treated in humidified air is shown in the lower 

half of figure 13. Using dried air, nitrate is the only nitrogen containing product 

detected, whereas the treatment in humidified air resufts predominantly m the 

formation of nitrite. Since the nitrate asymmetric stretching signal is likely to 

overlap with a broad nitrite signal ' the nitrate out of plane bending signal at 

833.3/825.6 cm"' is taken as the band indicative of nitrate on these samples. Since 

this signal is hardly discernible from the spectral background it can be assumed that 

only traces of nitrate are present in KI discs treated m humidified air. The 
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Fig. 13 IR spectra of alkali halide disks after 600 seconds silent discharge treatment in 
the cell set-up using air as the feed gas 
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corresponding XP spectra confirm this suggestion. Usmg this technique only nitrite 
is detected, the N (Is) signal appearing at a BE of 403.7 + 0.08 eV, figure 14. In 
addition to the nitrogen species the formation of iodate is observed after freatments m 
dried and humidified air. As in the case of the other two halides studied, the amount 
of the products mcreases when the treatment is carried out in humidified feed gas. 

A time study in which KBr discs were treated in dried air for treatment times 

between 5 and 15 minutes while keepmg the flow speed of the gas constant (80 

bubbles/minute) did not lead to reproducible amounts of both products. In another 

row of experunents in which KBr discs were treated for 10 minutes while the flow 

speed of humidified air was varied from static conditions (0 bubbles/minute) to a 

flow speed of 200 bubbles/minute, the scattering of the data obtained was also too 

strong to derive a meaningful trend. 

Treatments in an oxygen atmosphere result in the exclusive production of the 

oxidized halogen component. Figure 15 compares the IR. spectra of the three halides 

obtained after treatments in humidified oxygen. As in the case of air, the product 

yield is considerably enhanced when the treatment is carried out in humidified feed 

gas, which shows that the influence of water vapour is not limited to the treatments in 

air. An example of the treatment of KI in dried and humidified oxygen is shown in 

the lower half of figure 15. The order in the amount of halogenate formed in the 

three halides corresponds to that found in air: lOs" > BxOf > C\Of. The same 

conclusion can be drawn from the halogen XP spectra of samples treated in 

humidified oxygen, figure 16. In contrast to the experiments in air the treatment of 

KCl samples in humidified oxygen causes the formation of sufficient chlorate to give 

rise to a small XP signal. It appears as a weak shoulder at a BE of about 206.7 eV on 

the high BE side of the main CI (2p) environment which is due to chloride. A 

nitrogen signal is absent in the XP spectra of samples of all three halides treated 

under those conditions. 

In order to find out whether water vapour in the presence of an inert gas leads 

to the production of the halogenates, the safts were treated in humidified helium. The 

only change observed after this treatment consists m the uptake of water. Treatments 

in humidified nitrogen lead to the formation of very small amounts of nitrate on the 
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Fig. 15 IR spectra of alkali halide disks after 600 seconds silent discharge treatment in 
the cell set-up using oxygen as the feed gas 
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Fig. 16 Halogen XP spectra of alkali halide disks after 600 seconds silent discharge 

treatment in the cell set-up using humidified oxygen as the feed gas 
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three sahs under consideration. This fmding suggests that water is not a significant 
oxygen source for the formation of N-oxides. 

5.5 Discussion 

In comparison to the model reactions in 5.2.2 which describe the reactions of 

an alkali halide with a single nitrogen oxide, the conditions of the silent discharge 

treatments are much more complex because both the reactions with a gas mixture and 

the influence of the plasma on the sample surface have to be taken into account. The 

findings of the model reactions can therefore only be taken as a guideline for the 

interpretation of the results obtamed in the silent discharge treatments. 

Combining the information of chapters 1.5.1.2 and 5.2.2 the nitrate species 

formed during the silent discharge treatment of alkali halide discs in air can be 

explained with the reaction of the sahs with the nitrogen oxide mixture produced in 

the plasma. During the experiments a discharge poisoning which would have been 

obvious in a colour change of the processed gas to brown was not observed. The low 

nitrogen oxides which are produced in considerable amounts only under these 

conditions are therefore unlikely to play an important role m the formation of the 

nitrate species. N2O and N2O5, the latter being transformed into HNO3 m the 

presence of humidity, are the predominant N-0 products formed under normal 

operation conditions in the silent discharge. Since a reaction of N2O with alkali 

halides seems to be unlikely HNO3 remains as the most likely reactant to form the 

nitrate species. It is difficult to establish which nitrogen species reacts in the case of 

the cell treatments in dried air. N2O5 is produced in the gas volume. Since the discs 

are prepared in ambient air and are not dried prior to the treatment their surface is 

covered with a layer of adsorbed water (see below). It is therefore possible that N2O5 
is transformed into HNO3 upon contact with this layer before reacting with the 

halide. 

The possibility that the volatile products of the reactions take part in the 

discharge chemistry cannot be excluded but it is difficuh to assess their influence on 

the overall plasma process. Information concerning this question could probably be 

obtained by including the products in question and their elementary reactions into 

existing computer simulation programs for the N2/ O2/ H2O system. Such an analysis 
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would be especially interesting in the case of the K I discs which show the strongest 
modification after the treatment. It is also the only halide on which nitrite is detected 
as an additional product and its formation could possibly be related to a change m the 
discharge chemistry. 

Since the presence of HNO3 has not been mentioned to cause the formation of 

halogenates despite it being a powerful oxidant, oxygen species must be responsible 

for halogenate formation. Possible candidates are ozone, atomic oxygen, hydroxyl 

radicals and hydrogen peroxide. The latter two species are only formed in gas 

environments containing water vapour. A contribution of all species together cannot 

be completely excluded. 

It has been reported that the ozone yield is drastically reduced in cases where 

ozonisers are fed with humid feed gas (section 1.5.1.3). Since more oxidised halogen 

species is, however, produced in experiments carried out in the presence of water 

vapour, ozone is very unlikely to be the key oxidant in these experiments. This 

assumption can also be made for the reactions in the absence of water vapour because 

ozone was found not to react with dried NaCl ' 

The decrease in the amount of halogenate products from iodate to chlorate 

reflects the electronegativities of the halogens which follow the order EN (CI) < EN 

(Br) < EN (I) where the difference is larger between bromine and iodine than 

between chlorine and bromine Iodine as the most electropositive of the three 

elements has therefore the strongest tendency to form bonds with the electronegative 

oxygen and hence produces the largest amount of XO3". 

Irrespective of the experimental conditions, reproducibility in the amount of 

the products could not be achieved except for the amounts of nitrate formed m the 

standard set-up which allowed at least a trend to be determined. There are two 

possible reasons for the scattermg of the data in the experiments using the standard 

set-up. These are the varying humidity of ambient air and varying amounts of defects 

on the discs. The humidity influences the discharge chemistry and thus the 

composition of the reacting gas mixtiire which might lead to the formation of varying 

amounts of products. Defects are centres of high reactivity in the reactions of the 

halides with nitrogen oxides N-oxides are therefore very likely to react at those 

sites. Suice the chemical reaction is accompanied by the formation of new surface 
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defects it is conceivable that variations in the number of defect sites initially 
present on the sample surface fmally lead to variations in the amount of products 
obtained. Defect sites may be introduced to the discs during sample preparation. It is 
not possible to give a statement concerning their number. The literature only 
provides the information that the pressure exerted on the alkali halide powder during 
disc preparation causes the formation of "single crystal like" discs via cold flow. The 
similarities and differences between the discs and single crystals, however, are not 
fiirther described 

In the cell experiments with dried feed gas the variations in the amount of 

defects on the sample surface are likely to play the key role in the development of 

irreproducible resuhs. In this case the small amount of products has also to be taken 

into account which causes a comparatively large error in the evaluation. In the cell 

experiments in which humidified feed gas was used, an extreme discharge 

concentration on the edges of the discs was observed. It is therefore possible that the 

inhomogeneity of the discharge led to variations in the composition of the treated gas 

and thus to the variations in the amount of the products formed. 

Both longer treatment times in the standard set-up and the storage in the 

desiccator represent experimental conditions which cause an increase in the 

intensities of the 1377.3 cm"' (a') component of the asjonmetric stretching and the 

825.6 cm"' (b') component of the out of plane bending vibration in the IR spectra. 

This observation suggests that there is an increase in the same product in the two 

processes. A tentative explanation can be given in terms of the model developed by 

Beichert and Finlayson-Pitts for the reaction of HNO3 with NaCl It assumes that 

the adsorption of water molecules fi-om humid air leads to the formation of a surface 

adsorbed water layer on the salt surface. As a first approximation this layer is 

considered to possess the characteristics of a saturated solution of the respective 

halide Nitric acid is taken up in this layer. The more HNO3 molecules are 

dissolved the lower the pH and the higher the concentration of the nitrate ions. Once 

the layer is sufficiently acidified HCl, one product of the reaction, degasses from the 

layer. NaN03, the other product of the reaction, is precipitated onto the salt surface 

as soon as its solubility m the layer is exceeded. Applying this model to the present 

experiments the absorbances at 1377.3 cm"' (a') and 825.6 cm"' (b') can be attributed 
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to crystalline KNO3 while those appearing at 1352.2 cm'̂  (a) and 833.3 cm"' (b) are 
due to dissolved nitrate. It can be assumed that supersaturation of the adsorbed water 
layer and the ensuing crystallisation of KNO3 occurs in both cases named above. The 
reason for the supersaturation is, however, different. As the treatment time increases 
more nitrate is dissolved in the the surface layer. Once the saturation is reached 
precipitation of potassium nitrate starts and nitrate subsequently introduced to the 
layer is also precipitated. This explains the increasing contribution of the 
absorbances related to the crystalline nitrate form to the IR spectra with increasing 
treatment times. Vogt and Finlayson-Pitts ^ have made a similar observation in the 
reaction of NaCl with NO2. With increasing extent of the reaction the authors found 
the development of a signal which they attributed to growing NaN03 
microcrystallites. 

Comparing the asymmetric stretching signals m the IR spectra of samples of 

the three halides treated for the same treatment time, the contributions of the 

crystalline nitrate form increases in the order: KCl < KBr < KI . This could be 

explained by the influence of the halide dissolved in the water layer on the 

precipitation of the nitrate. Generally, the solubility of a salt in an aqueous solution 

is reduced in the presence of another salt which contains ions of the salt to be 

precipitated This is due to a shift of equilibrium towards the insoluble compound. 

In the present case the equilibrium to be considered is: 

K"" (aq) + NO3" (aq) o KNO3 

The solubilities of K I , KBr, KCl and KNO3 in cold water are 7.7; 4.5; 3.7 and 1.3 mol/1 

(127.5; 53.5; 27.6 and 13.3 g/100 cm^) respectively K I therefore forms the most 

concentrated solutions and is able to provide most potassium ions to shift the 

equilibrium towards the formation of the precipitated nitrate, thus giving rise to a 

large proportion of the high wavenumber component in the asymmetric stretching 

signal. This is, however, only valid assuming that K I exerts the major influence on 

the precipitation and the other products, KIO3 and KNO2 only play a minor role. In 

the case of the desiccator experiments the loss of water leads to a concentration of the 

solution and thereby causes the formation of crystals which manifests itself in the 

spectra as a shift towards the absorbances at 1377.3 and 825.6 cm''. 
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There is a remarkable match between the nitrate peak positions observed after 
heating the treated discs and the literature values reported for the absorbances of 
nitrate in solid solutions of the respective alkali halides This suggests that the heat 
treatment does not cause a separation of nitrate crystals from the halide host as has 
been observed in the literature for a drying process without the application of heat ^''^ 
but rather an uicorporation of the nitrate in the lattice. 

The analysis of the deposit on the PE dielectric suggests the presence of iodic 

acid, HIO3. The formation of this oxyacid in the reaction of elemental iodine with 

ozone in the presence of water vapour has been described in the literature This 

study does not, however, suggest a reaction mechanism according to which the 

product is formed. In the absence of humidity the reaction of iodine and ozone using 

oxygen as the carrier gas results in the formation of an iodine oxide, the 

stoichiometry of which was determined as I4O9 Iodine oxides were also 

suggested to be formed as the anode deposit in the corona discharge treatment of 

iodine in dry a i r I 4 O 9 is known to be sensitive towards moisture and to hydrolyse 

formmg HIO3 and I2 ''^. The hydrolysis is accompanied by colour changes from 

yellow to brown or dark purple . 

These results can be taken as the basis for an explanation of the observations 

made in the present experiments. The formation of iodine as an intermediate is 

obvious from the brown colour which the K I discs adopt during treatment. It is 

conceivable that some of these iodine molecules escape from the surface and react 

with the ozone produced in the discharge. Thus, I4O9 may be formed as a primary 

product which subsequently hydrolyses to the products mentioned above. The iodine 

formed in this process may account for the brown colour of the deposit, while the 

simultaneously formed HIO3 is described in the literature as a colourless, crystalline 

solid 

Compared to the literature values the I (3d5/2) BEs determined for both 

iodine and for iodic acid in the XP spectra of the deposit are too high. The BE 

difference of the two signals corresponds, however, to the expected value. The 

possibility that periodic acid, H5IO6, which contains iodine in a higher oxidation state 

than HIO3, is the product can be ruled out because the I (3d5/2) BE of this compound 

is reported to be comparable to that of HIO3 Additionally, the I-O stretches in the 
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ER spectra of this compound should appear at lower wavenumbers than those 
observed in the spectra of the deposit The deviation of the BEs is most probably 
due to referencing difficulties. The optical appearance of the deposit on the foil 
already suggests that the film might not cover the substrate evenly. It is therefore 
possible that the sample surface consists of different regions which acquire a 
different charge during the XPS measurement such that a steady state static charge 
which is required to accomplish a meaningful charge referencing is not built up 

The corresponding acids HXO3 of chlorine and bromine cannot be isolated 

and are only stable in solutions ^' and could therefore not have been part of the 

respective deposits even i f a halogen product had been detected. 

It is known fi'om the literature that the exposure of carbon based polymers 

to corona discharge plasmas gives rise to simultaneous surface oxidation and chain 

scission of the polymer backbone. The so called Low Molecular Weight Oxidised 

Material (LMWOM) thus formed was fiirthermore reported to be soluble in alcohols 

It can therefore be assumed that the oxidised carbon species detected in the spectra of 

PE foils which had served as the dielectric during the salt treatment, are due to the 

formation of LMWOM. This product is removed in the subsequent wiping step with 

IPA which explains the observation that the spectra of wiped films only show the 

features of the untreated polymer. 

5.6 Conclusions 

The silent discharge treatment of KBr and KCl discs m air leads in most cases 

to the formation of nitrate and the respective halogenate. KI , the most reactive of the 

three halides studied, also forms small amounts of nitrite in addition to the other two 

products when the treatment is carried out in the standard set-up. Cell treatments of 

K I samples in humidified air lead to the production of nitrite as the major nitrogen 

containing product, whereas in dried air nitrate is formed. In an oxygen atmosphere 

the halogenate is formed exclusively. Both in air and in oxygen environments the 

amounts of halogenate decrease in the following order: IO3 ~ > BrOs ~ > C103~. 

Treatments in humidified helium do not result in a modification of the samples while 

treatments in humidified nitrogen lead to the formation of traces of nitrate on the 

discs. Treatments in the presence of humidified gases generally give rise to the 

formation of larger amounts of products. Nitrate and nitrite are due to the reaction of 
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the salts with the nitrogen oxides produced in the discharge, whereas the halogenate 
species is a result of the reaction with oxygen species. 

The reactivity of K I is also reflected in the formation of a brown deposit on 

the PE dielectric of the standard set-up during treatment. Apart from oxidised carbon 

species formed by the oxidation of the PE foil this deposit consists of a mixture of 

iodme and iodic acid, the decomposition products of an initially formed moisture-

sensitive iodme oxide. In contrast, the corresponding PE foils after KCl and KBr 

treatments contain almost exclusively LMWOM due to the modification of the 

polymer. 

For each of the salts under consideration the peak shapes of the nitrate 

asymmetric stretching and out of plane bending signal in the IR spectra of discs 

treated in the standard set-up change with treatment time. This change is related to 

the processes occurring in the water layer formed on the sample surface by 

adsorption of water molecules contained m humid air. The layer is assumed to have 

the properties of a saturated alkali halide solution. In the course of the reaction the 

layer becomes supersaturated with respect to potassium nitrate which leads to the 

precipitation of this compound. The contributions of the nitrate in the dissolved and 

in the crystalline form absorb at slightly different wavenumbers in the spectra. The 

proportion of the crystalline component mreases with increasing treatment time 

leaduig to the observed changes m the peak shape. 

Comparing the spectra of samples of the three halides treated for the same 

treatment time, the amount of nitrate in the crystalline form decreases in the 

foUowmg order : K I > KBr > KCl. This observation is due to the differences in the 

solubilities of the salts, K I being the most soluble compound causes the largest shift 

of the precipitation equilibrium towards crystal formation. 

Stepwise changes in the IR peak shapes due to an increase in the contribution 

of the crystalline form are observed when treated samples are stored for increasing 

time intervals in a desiccator. This can be explained with the concentration of the 

surface "solution" due to a gradual loss of water from the surface, which leads to the 

precipitation of nitrate crystals. 

Heat treatment of silent discharge treated discs leads to the formation of a 

solid solution of KNO3 in KX (X = CI, Br, I). Contrary to the desiccator experiments 

different IR peak positions are observed for the three halides studied. 
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Chapter 6: 

Investigation of the suitability of pentafluoropropionic anhydride as 

a reagent for the chemical derivatisation of hydroxy! groups on 

polymer surfaces 

6.1 Introduction 

In XPS analysis the presence of hydroxyl groups on multifimctional surfaces 

is often proved by derivatisation with trifluoroacetic anhydride (TFAA) ''^. This is 

achieved by exposing the sample to TFAA vapour prior to the XPS measurement. In 

the spectra subsequently recorded the hydroxyl groups initially present are replaced 

by the reaction product, a fluorinated ester. The aim of this chapter is to investigate 

the suitability of the higher homologue of TFAA, pentafluoropropionic anhydride 

(PFPA), for the labelling of hydroxyl groups. Since PFPA has a higher fluorine 

content than TFAA its use would promise a higher sensitivity of the labelling 

reaction. 

6.2 Background 

The range of core level chemical shifts caused by different functional groups 

on polymer surfaces is not always sufficient to distinguish the functionalities present. 

This is especially true for muhifunctional surfaces, for example, for samples 

containing several carbon-oxygen or carbon-nitrogen species. The spectra of such 

samples consist of a broad unresolved envelope rather than distinct signals 

A popular way to gain information about the species contributing to a 

photoelectron envelope is the application of mathematical peakfitting procedures. 

These suffer from the disadvantage that then result can be ambiguous '"''. Using this 

method it is also difficult to separate the contributions of functionalities which give 

rise to very similar chemical shifts like hydroxyl, ether, peroxide and epoxide groups 

Another approach consists of chemical derivatisation also called labelling or 

tagging of functional groups .̂ In this case the specific reactivity of a functionality 

towards a suitable reagent which contains an element or a molecular species not 

present in the original surface is used to identify and quantify this particular moiety 

130 



Chapter 6 

Ideally, a new element introduced to the surface should have a high cross section for 
XPS such that even small amounts of the fiinctionality of interest can be easily 
detected '••̂ . Fluorinated compounds are often used for this purpose. The sensitivity 
of the reaction can be further increased by using reagents which replace the original 
functional group in a ratio higher than 1:1 .̂ Compared to liquid phase labelling, 
vapour phase derivatisations have a number of advantages In vapour phase 
derivatisations low molecular weight components possibly formed by a treatment like 
exposure to a plasma are prevented fi-om being washed off. Moreover, the reaction 
of the labelling product with a solvent is avoided and the reorganisation of the 
surface species is minimised. This, however, requires both the labelling reagent and 
possible undesired side products of the reaction to be sufficiently volatile which is 
not always the case .̂ The reaction itself should not only be fast, quantitative and 
homogeneous throughout the XPS sampling depth but also selective for the 
functional group under consideration In cases where a washing step is involved 
in the procedure stability of the derivatisation product against the solvent in question 
is an additional requirement'. Finally, the product of the labelling rection should be 
stable towards vacuum and x-radiation and i f the sample has to be exposed to air 
prior to transfer to the spectrometer it should be reasonably stable against 
atmospheric gases as well. A number of reagents have been employed for the 
derivatisation of different functional groups '"^. Most of them do not fulf i l l all the 
requirements listed above but rather represent a compromise between the conditions 

Generally, not all reactions which proceed stoichiometrically in solution are 

automatically found to be appropriate surface labellmg reactions .̂ Steric and 

thermodynamic factors were made responsible for this fmding For halogen 

containing reagents it was also discussed that the reactivity of the labelling molecules 

towards reaction sites in partially derivatised samples may be disturbed in the 

presence of already formed reaction products ̂ . 

6.3 Experimental 

Pentafluoropropionic anhydride (PFPA) (99.9%, Fluorochem, Aldrich) was 

used as the main reagent in the labelling experiments. Trifluoroacetic anhydride 

(TFAA, Aldrich) and Heptafluorobutyric anhydride (HFBA, Aldrich) were employed 
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as additional labelluig reagents for nylon 6,6. The anhydrides were used without 
further purification. The purity of the reagents was controlled with '^F NMR; TFAA 
contained a minor amount of trifluoroacetic acid. 

For the measurements m which the reaction of the model polymer with PFPA 

was studied (6.4.1) thm films of Polyvmylalcohol (PVA, Mw 115000, Aldrich) were 

spin coated onto glass slides from a 1 % w/v solution in deionised water. For the 

sensitivity measurements, m which the covering of both sides of the substrate was 

more practical, films of the following polymers were dip coated from solutions onto 

glass slides: Polystyrene (PS, Mw 280000, Aldrich, 2 % w/v in toluene), 

polymethylmethacrylate (PMMA, medium molecular weight, Aldrich, 4 % w/v in 

toluene), polyethylene oxide (PEG, Mw 200000, Polymer Laboratories, 1 % w/v in 

chloroform), Polyacrylic Acid (Aldrich, My = 450.000, 1.5 % w/v m methanol). Spin 

coated or dip coated PVA samples were dried for at least 3 hours, dip coated samples 

of the remaining polymers were dried for at least 1 hour in a vacuum oven at 45 °C 

before measurement or derivatisation. 

In order to avoid a contribution of the substrate to the ATR-IR spectra, PVA 

granules were pressed mto a disk which was subsequently treated and measured. 

Samples of Polysulfone (Westlake Plastics Company), Polyethylene (LDPE, 

ICI), nylon 6,6 (Goodfellows) and Polyetheretherketone (PEEK, ICI) were cut from 

polymer sheets. The sample strips were ultrasonically cleaned in cyclohexane for 30 

seconds and dried in air. Both polymer films on glass slides and cleaned polymer 

strips were transferred to the sample tube of the labelling apparatus. A schematic of 

this apparatus is shovra in figure 1. The set-up was fitted with a rotary pump 

(Edwards Speedivac ED 50) attached to a liquid nitrogen cold trap; pressure 

measurements were carried out with a Pirani gauge (Edwards). The labelling 

reagents were degassed by subjecting them to repeated freeze and thaw cycles prior 

to use. 

Diethylether (99,5%, especially dried, BDH), n-hexane (AnalaR, BDH) and 

chloroform (AnalaR, BDH) were used m the solvent washing experunents of treated 

films. 
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Fig. 1 Schematic of the labelling rig 

In a typical experiment the apparatus was first evacuated keeping Youngs tap 1 

of the monomer tube containing the labelling reagent shut. After the base pressure 

(3x10 torr, leak rate < 3x10 cm ̂ /min, see chapter 4.2.2) was reached, Youngs tap 2 

was closed and the monomer tube was opened allowing the vapour of the reagent to 

expand into the vacuum and to saturate whilst keeping Youngs tap 3 towards the 

sample closed. Control experiments showed that 2 minutes are sufficient to reach an 

equilibrium vapour pressure. After that the sample was exposed to the reactant 

vapour by opening Youngs tap 3. The time of the reaction was measured fi"om when 

this tap was opened. After a set reaction time, the monomer tube (Youngs tap 1) was 

closed and the apparatus was pumped out again to base pressure by opening Youngs 

tap 2. The sample tube was sealed and taken off the apparatus after venting the 

remaining set-up. 

The samples were evaluated by XPS and ATR-IR either directly or after 

washing for 30 seconds in a beaker containing 25 ml of the respective solvent. For 
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the ageing studies of N-fluoroacylated nylon 6,6, treated samples were stored for a 
set time in moist air prior to ATR-IR analysis. 

XPS measurements were carried out as described in chapter 3.3.2. 

Instrumentally determined sensitivity factors are 0.62 for O (Is), 0.74 for N (Is) and 

0.46 for F (Is) with respect to a value of 1.00 for C (Is). Peak fits for the XP spectra 

were obtained using a Marquardt minimisation computer programme. The 

components are assumed to have a Gaussian peak shape with fixed FWHM (full 

width at half maximum). ATR-IR spectra were collected according to the procedure 

given in section 5.3. 

6.4 Results 

6.4.1 Esterification of hydroxyl groups 

The first step in the study was to check whether the labelling reagent 

undergoes the desired reaction which is the esterification proceeding according to 

scheme 1: 

- h C H , — C H i - C F 3 - C F 2 C \ 

OH 
+ o 

C F 3 - C F , - C ^ 

o 

- ^ C H . — C H + r 

0 ^ 
1 + CF , - C F C ^ 

CF 2-CF 3 

Scheme 1 Equation of the labelling reaction of PVA with PFPA 

Polyvinylalcohol (PVA) which contains hydroxyl groups bound to a saturated carbon 

backbone was chosen as a model polymer. 
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6.4.1.1 XPS 

The XP spectra of the underivatized PVA samples are in agreement with 

those reported in the literature ,̂ figure 2. Two envirormients contribute to the C (Is) 

spectrum; these are the -CH2- groups appearing at a binding energy of 285.0 eV and 

the >CH-OH signal centred at 286.6 eV. A small additional component observed at 

higher binding energy is probably due to carboxyl groups .̂ The ratio between the 

two main carbon moieties is not exactly 1:1, the hydrocarbon environment is always 

observed with a slightly higher intensity compared to the hydroxyl envirormient. The 

reason for this fmding is most probably the accumulation of adventitious 

hydrocarbon on the sample surface. The O (Is) signal is sharp and located at a 

binding energy of 532.6 eV. Fluorine is not present in the surface of untreated PVA 

samples. Due to the presence of the carboxyl impurity the elemental composition of 

the films shows a higher oxygen content than expected, table 1. 

%C % 0 

theoretical value 66.6 33.3 

experimental value 63.9 ±0.4 36.1 ±0.4 

Tab. 1 Elemental compositions of untreated PVA film 

After the PFPA treatment the C (Is) envelope appears very complex due to 

the introduction of carbon fluorme Imkages and the ester carbonyl functionality, 

figure 2. Since the envelope is broad there is a transition of the low BE -CF2- and -CF3 

Mg Ka 3,4 satellites into the main photoelectron signal. Only the high BE components 

are presented as fitted data ui the figure because it is difficult to fit the contributions 

to the remaining part of the spectrum unambiguously especially in the case of partly 

derivatized surfaces. In this case, there are contributions of the satellites, 

adventitious hydrocarbon / the -CH2-CHOH group of unlabelled PVA, the P - shifted 

-CH2-CH-OCOC2F5 environment of the product ester, the >CH-OH group of 

unlabelled PVA and the >CH-OCOC2F5 moiety of the ester (in order of increasing 

BE). The difficulty in separatuig the adventitious hydrocarbon / -CH2-CHOH (if 

present) component from the -CH2-CH-OCOC2F5 environment in a unique 
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Fig. 2 C (Is) XP spectra of PVA films as a function of exposure time to PFPA vapour 
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meaningful fit could additionally lead to erroneous results in binding energy 

referencing. Therefore, the C (Is) bindmg energy of the -CF3 component was taken as 

the reference point assuming its value to be 293.5 eV as found in the case of the 

corresponding TFAA ester With respect to this point the -CF2- and >C=0 

environment appear at binding energies of about 291.3 and 290.0 eV respectively. 

The high binding energy part of the envelope gains intensity with increasing 

treatment time. 

Changes are also observed in the appearance of the O (Is) signal which is 

broadened due to an additional oxygen environment. The F (Is) peak is centred at a 

binding energy of 688.8 eV. 

Figure 3 shows the elemental composition of PVA films as a function of 

exposure time to PFPA vapour. The sample surfaces are derivatized quickly and a 

plateau is reached after a treatment time of about 5 minutes. Table 2 compares the 

elemental composition of PVA samples treated for 30 minutes with the theoretical 

value which can be expected fi-om the ester structure. 

%C % 0 %F 

theoretical value 41.7 16.7 41.7 

experimental value 40.8 ±0.6 19.4 ±0.1 39.8 ±0.4 

Tab. 2 Elemental composition of the ester 

The saturation value obtamed for the product ester does not correspond 

exactly to the theoretically expected value. This is most probably due to the presence 

of the carboxyl groups in the untreated polymer which disturb the stoichiometry and 

are not labelled in the reaction. They are responsible for the lowering of the fluorine 

percentage and the relatively mcreased amount of oxygen. 

6.4.1.2 ATR-IR 

The ATR-IR spectra of untreated and PFPA treated PVA samples also show 

the transformation of PVA into the ester, figure 4. The respective assignments for 

the signals are given in tables 3 and 4. 
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Fig. 3 Elemental composition of PVA films as a fiinction of exposure time to PFPA vapour 
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Peak Wavenumber [cm ' ] Assignment 

a 3290.8 0-H stretching 

b 2939.7 asymmetric stretching in CH2 

c 2905.0 symmetric stretching in CH2 

d 2839 (shoulder) C-H stretching 

e 1419.7 CH2 bending 

f 1323.3 combination C-H and OH bending 

g 1236.6 C-H wagging 

h 1141.9 symmetric C-C stretching 

i 1086.0 C-0 stretching 

j 918.2 CH2 rocking 

k 833.3 C-C stretching 

Tab. 3 Characteristic absorbances of PVA ""'^ 

Peak Wavenumber [cm Assignment 

1 1776.6 C=0 stretching 

m, n, 0, p 1302.0, 1211.4,1194.0, 1147.7 C-F stretching 

q,r 1026.2, 839.1 C-C stretching 

s 733.0 C-F deformation 

Tab. 4 Absorbances of the PVA ester with PFPA 14 

Washing of the treated samples with diethylether resulted in the partial removal of 

the product, whereas no change in the IR spectra was observed after washing with n -

hexane. Halving a treated sample and measuring one half directly after treatment and 

the other half after being stored for 42 hours in moist air did not result in significantly 

different spectra which suggests that the ester is sufficiently stable in a normal 

atmosphere. 
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6.4.1.3 Selectivity of the labelling reaction 

In order to examine the selectivity of PFPA for the labelling reaction of 

hydroxyl groups, polymer samples containing functionalities other than hydroxyl 

were treated in the same manner as the PVA samples. Their structures are listed m 

figure 5. The reaction of nylon 6,6 will be treated seperately in chapter 6.4.2. Within 

the detection limits of XPS a widescan of the untreated polymers did not reveal the 

presence of other elements than those expected fi"om the respective polymer 

structure. A treatment time of 15 minutes was chosen for these experiments. The 

standard treatment led to the adsorption of varymg amounts of fluorine moieties. 

Since the exposure to heat at 45°C and reduced pressure could not establish 

reproducible results a washing procedure of the samples had to be carried out. The 

solvent chosen for this purpose was n-hexane. It neither dissolves the product ester 

nor the polymers concerned. The results are listed in table 5. 
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Fig. 5 Structures of the polymers used m the sensitivity experiments 
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Polymer %C % 0 %S %F 

PE (theor.) 100 - - -

PE (exp.) 99.2 ± 0.2 0.8 ± 0.2 - -

PE -PFPA 99.1+0.4 0.9 ±0.4 - -

PS (theor.) 100 - - -

PS (exp.) 99.4 ±0.1 0.6 ±0.1 - -

PS - PFPA 98.3 + 0.8 1.4 ±0.5 - 0.3 ± 0.3 

PEO (theor.) 66.6 33.3 - -

PEO (exp.) 63.5 ±0.8 36.5 ±0.8 - -

PEO - PFPA 55.6 ±0.7 33.9 ±0.1 - 10.7 ±0.8 

PMMA (theor.) 66.7 33.3 - -

PMMA (exp.) 69.4 ± 0.6 30.6 ±0.6 - -

PMMA - PFPA 70.9 ± 0.7 28.5 ±0.6 - 0.8 ±0.1 

PAA (theor.) 60 40 - -

PAA (exp.) 64.9 ± 0.6 35.1 ±0.6 - -

PAA - PFPA 62.1 ±0.9 37.4 ±0.8 - 0.6 ±0.1 

PEEK (theor.) 86.4 13.6 - -

PEEK (exp.) 86.7 ± 0.4 13.3 ±0.4 - -

PEEK - PFPA 83.9 ±0.6 13.4 ±0.9 - 2.8 ±0.3 

PSF (theor.) 84.4 12.5 3.1 -

PSF (exp.) 82.6 ± 0.5 14.1 ±0.4 3.3 ±0.1 -

PSF - PFPA 72.8 ±3.5 16.7 ±2.4 2.4 ±0.3 8.2 ± 1.4 

Tab. 5 Results of the selectivity experiments 

Since PFPA is a higher homologue of TFAA it can be expected that both 

compounds show a similar reaction behaviour. Therefore, a selectivity study of 

TFAA is taken as a rough guide for the discussion of the results. 

Contrary to the TFAA study where only PAA and Polyvinyhnethylketone 

(PVMK) showed a small degree of cross-reaction, a trace of fluorme is detected in 

the present study in all the samples except PE even after the washing procedure. For 

PS, PMMA and PAA the amount of fluorine observed is low compared to that found 
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for the PVA ester. The surfaces of the other polymers studied, however, are enriched 
with fluorine. In the selectivity study of the TFAA reaction carbonyl groups were 
found to show the highest rate of cross reaction. In this case polyvinyhnethylketone 
was used as the model polymer. Despite this observation the amount of fluorine 
detected for PEEK in the present study seems to be too high considering the low 
number of carbonyl groups present in this polymer. 

Smce the behaviour of PSF was not studied in the TFAA investigation a 

comparison is not possible. A chemical reaction of polysulfone with PFPA can be 

considered to be unlikely Although the contribution of a reaction with an impurity 

cannot be ruled out, physisorption could be predominant in this case because the 

polymer sheet had a surface structure which might have faciliated adsorption. A 

support for this assumption can be the observation that ATR-IR spectra of both 

treated and imtreated PSF samples show a weak signal at 1776 cm''. This is most 

probably due to a combination band of the p-substituted aromatic rings rather than a 

reaction product with possibly present hydroxyl groups. 

In contrast, the ATR-IR spectra of treated PEO samples contain signals due to 

the >C=0 and C-F stretches of the ester as well as an additional signal at 1689.7 cm 

The >C=0 and C-F stretches are an indication for the presence of hydroxyl groups in 

the untreated polymer. Since PEO has only a very low concentration of reactive 

hydroxy end groups '^ there must be another source of this fimctionality. 

6.4.2 The reaction with Nylon 

The reaction of nylon 6,6 with TFAA in XPS labelling experiments has been 

mentioned previously but this was not fiirther investigated and no spectra were 

reported The respective bulk organic reaction has been described in the literature 

the product of the process being the N-trifluoroacetylated polyamide formed 

according to reaction scheme 2 (X = CF3): 
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Scheme 2. Equation of the fluoroacylation of nylon 6,6 

The product was reported to be sensitive towards the attack of nucleophiles 

like amines, alcohols and water. Most polyamides undergo this reaction. Apart fi-om 

being quantitative and proceeding without degradation of the polymer chain the 

reaction yields a product which is in contrast to the original polyamides soluble in 

many common organic solvents. The combination of these properties makes the 

reaction a convenient method to determine the molecular weights of polyamides with 

Gel Permeation Chromatography (GPC) 

The mterestmg reaction of nylon 6,6 was studied in detail with three 

anhydrides contaming fluorine substituents with increasing chain length: 

trifluoroacetic anhydride (TFAA), pentafluoropropionic anhydride (PFPA) and 

heptafluorobutyric anhydride (HFBA). 
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6.4.2.1 General observations 

Upon treatment with all three anhydrides the nylon 6,6 films changed their 

appearance fi"om opaque to transparent and were considerably softened tending to 

stick to the glass walls of the sample tube. Washing of the samples with diethylether 

changed the colour of the treated films from transparent to white, whereas washing 

with chloroform resulted in opaque fihns similar to the starting material. The 

products of all three reactions have in common that they are insoluble in ether and 

soluble in chloroform. 

6.4.2.2 XPS 

Figure 6 shows the C (Is) spectra of untreated nylon 6,6 and of nylon 6,6 

films after 15 minutes exposure to the vapour of the respective labelling reagent. The 

C (Is) envelope of untreated nylon 6,6 contains contributions of the following 

environments -̂ 285.0 eV (-CH2-), 285.6 eV (-CH2-CO-NH-), 286.2 eV (-CO-NH-

CH2-) and 288.1 eV (-CH2-CO-NH-). The N (Is) and O (Is) signals appear at 

binding energies of 399.9 eV and 531.5 eV, respectively. The elemental composition 

of the untreated nylon 6,6 is given m table 6. A wide scan showed the presence of 

carbon, oxygen and nitrogen only, no other elements were detected. 

%C % 0 % N 

theoretical value 75.0 12.5 12.5 

experimental value 77.4 + 0.4 12.7 ±0.3 9.8 ±0.3 

Tab. 6 Elemental composition of untreated nylon 6,6 

The most obvious change in the C (Is) XP spectra of the treated nylon 6,6 

samples are the new signals on the high BE side. Due to the presence of -CH2-

groups which remam unaffected by the presence of the strongly electron withdrawing 

substituent referencing to the hydrocarbon component is possible. For all three 

samples the >C=0 component is centred at a binding energy of 289.0 eV. The -CF2-

component appears at 291.3 eV (PFPA) and 291.4 eV (HFBA) respectively. The 
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Fig. 6 C (Is) XP spectra of nylon 6,6 fihns before and after treatment with TFAA, PFPA 
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binding energies of the -CF3 groups are observed at values of 293.3 eV (TFAA), 
293.5 eV (PFPA) and 293.6 eV (HFBA). The experimentally determined intensity 
ratio of the >C=0 and -CF3 environments in TFAA treated nylon 6,6 is 2 : 1.1 (theor. 
2 : 1 ) , the corresponding ratio >C=0 : -CF2-: -CF3 in PFPA and HFBA is 2 : 1 : 1.1 
(theor. 2 : 1: 1) and 2 : 2 : 1.1 (theor. 2 :2 :1 ) respectively. 

The elemental compositions of the modified films, table 7, correspond well to 

the theoretically expected values for the N-fluoroacylated products shown in scheme 

2. Within the range of the experimental error the composition of treated films does 

not change upon ether washing. Chloroform washed samples, in contrast, show a 

loss in fluorine due to product removal. 

%F %C % 0 % N 

TFAA (theor.) 21.4 57.1 14.3 7.1 

TFAA (exp.) 21.6 ±0.4 56.1 ±0.3 14.7 ±0.1 7.8 ±0.1 

PFPA (theor.) 29.4 52.9 11.8 5.9 

PFPA (exp.) 30.0 ±0.3 52.2 ± 0.6 11.8±0.3 6.1 ±0.1 

HFBA (theor.) 35 50 10 5 

HFBA (exp.) 35.2 ±0.8 49.0 ± 0.6 10.4 ±0.1 5.5 ±0.2 

Tab. 7 Calculated and experimentally determined elemental composition of the N-

fluoroacylated nylon 6,6 films 

6.4.2.3 ATR-IR 

Figure 7 shows the ATR-IR spectra obtained for samples treated under the 

same conditions as those measured with XPS. The spectrum of untreated nylon is in 

agreement with the literature showing bands characteristic of a secondary amide 

table 8. 
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Peak Wavennmber [cm"'] Assignment 

a 3292.7 N-H stretch 

b 3074.7 overtone amide U absorption 

c 2933.9 asymmetric C-H stretch 

d 2860.6 symmetric C-H stretch 

e 1631.9 amide I band involving C=0 and C-N 

stretch and N-H bending 

f 1535.4 amide n band involving C-N stretch 

and N-H bending 

g 1273.1 amide HI band with contibutions of C-

N stretch and N-H bending 

h 686.7 N-H deformation out of plane 

Tab. 8 Characteristic absorbances of nylon 6,6 

The spectrum of the treated samples is entirely different from that of the 

starting material suggesting that the modification takes place up to the sampling 

depth of the ATR technique. The signals related to the secondary amides have 

disappeared foUowmg the treatment with the reagents. The products of all three 

anhydrides show spectra which are similar in the region of the group frequencies but 

show different patterns in the fingerprint region, figure 6 and table 9. The C-F 

stretches of samples containing both -CF3 and - C F 2 - groups appear as a series of 

intense bands in the region of 1250 - 1000 cm and carmot be assigned in detail 

because they are difficult to separate and no correlation rules can be set up 24,25 

Peak TFAA PFPA HFBA Assignment 

i 2945.5 2943.6 2941.6 asynmietric C-H stretching 

j 2864.5 2868.3 2868.3 symmetric C-H stretching 

k 1712.9 1712.9 1711.0 C=0 stretching 

1 1080.2, 

1147.7,1114.9 

1213.3,1195.9, 
1159.3,1122.6, 
1095.6,1028.1 

1209.4,1190.2, 

1120.7,1062.8 

C-F stretching modes 

Tab. 9 Absorbances of the modified nylon 6,6 spectra 
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Although washing with diethylether causes a change in the colour of the 
treated nylon 6,6 samples, the ATR-IR spectra of the films show no difference 
compared to the spectra of unwashed samples. The product formed in the labelling 
reaction therefore seems to be insoluble in diethylether. The spectra of chloroform 
washed samples, on the other hand, contain contributions of both the product and the 
untreated polymer which means that parts of the product must have been dissolved. 
This assumption was confirmed by the observation that after evaporation of the 
chloroform used in the washing procedure a white solid was obtained. The IR 
analysis of this material carried out a day later revealed that it was pure nylon which 
indicates the instability of the initially formed product towards moist air. Both the 
solubility of the product in chlorinated hydrocarbons and its reaction with moisture 
are in line with the properties reported for the N-fluoroacetylated nylon by 
Schuttenberg and Schulz . 

The decomposition behaviour of the N-fluoroacylated nylon 6,6 samples in 

ambient air was subsequently studied in detail. Figures 8, 9 and 10 show ATR-IR 

spectra of TFAA, PFPA and HFBA treated nylon 6,6 films (treatment time: 15 

minutes) after varying storage times in air. In all cases the >C=0 band at about 1713 cm'' 

disappears gradually and the carbon-fluorine stretches change their appearance and 

decrease in intensity. At the same time, the features characteristic of nylon 6,6 (the 

amide I and n doublet and the N-H stretch) appear again. A shoulder on the >C=0 

signal is observed at 1782.3 cm'' in the case of TFAA and at 1776.6 cm'' in the case 

of PFPA and HFBA. These • signals can be attributed to trifluoroacetic acid 

pentafluoropropionic acid and heptafluorobutyric acid respectively suggesting 

that these compounds are formed in the decomposition process and remain trapped in 

the polymer matrix. It is most obvious from the respective spectra taken after 9 hours 

storage in air that there is a difference in the decomposition speed of the three 

products. The TFAA product is almost completely transformed into nylon. The 

spectrum only contams a small >C=0 contribution of the fluoroacetylated product. It 

appears as a weak shoulder on the low wavenumber side of the signal of 

trifluoroacetic acid. The spectrum of the PFPA product shows an intermediate 

behaviour. The >C=0 signal of the fluoroacylated product is still clearly visible 

together with a small acid peak on its high wavenumber side and intense amide I and 

amide n contributions of nylon on its low wavenumber side. The slowest progress in 
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the decomposition is found for the HFBA product. While the amide I and amide n 
signals in the spectra of the other two products have a higher intensity than the 
products' >C=0 peak, these signals have an almost equal intensity in the 
corresponding spectrum of the HFBA product. The attachment of fluorine containing 
substituents with increasing chain length to nylon 6,6 surfaces therefore leads to an 
increasing stabilisation of the product against hydrolysis. It is conceivable that this is 
due to the accumulation of carbon-fluorine species which renders the attack of water 
molecules more and more difficult. 

6.5 Discussion 

Although the carboxyl species present in the model polymer renders the exact 

measurement difficult the results suggest that the expected esterification takes place 

quantitatively. As far as the reaction with PVA is concerned the reaction proceeds 

quickly. The derivatisation of other samples containing hydroxyl functionalities 

might take longer depending on their respective structure. Although XPS 

measurements at varied take-off angles were not carried out the ATR-IR spectra of 

the ester suggest that homogeneous labelling takes place even to a larger depth than 

accessible with XPS. Furthermore, the product ester was found to be sufficiently 

stable in ambient air. 

In the selectivity experiments it is difficult to distinguish the contributions of 

physisorption, reaction of impurities possibly present in the commercial polymers 

and true cross-reaction. This applies especially to PSF, PEO and PEEK. Therefore it 

is not possible to come to a conclusion conceming the selectivity of PFPA towards 

the functionalities contamed ui these polymers. It is conceivable that n-hexane used 

as the solvent in the present study was not suited to remove all the material adsorbed. 

The use of other washing solvents perhaps with a slightly higher polarity and the use 

of defmed polymer standards could provide a more complete picture about the 

selectivity of PFPA in labelling reactions. 

With respect to the practical application of PFPA derivatisation the 

requirement of a washing procedure is a big disadvantage. As already mentioned in 

6.2 the use of a solvent can cause changes on the sample surfaces. Those mclude the 

removal of low molecular weight material which might be present on the sample 
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surface, reorganisation at the surface and undesired reactions with the solvent. Al l 
these changes are sources for erroneous results. Additionally, the solvent cannot be 
used in the case of polymers which dissolve in the washing reagent. 

Li the present study only the reaction of PFPA with a polyamide was studied. 

TFAA, the lower homologue, was not only found to react with polyamides but also 

with amme groups and polyurethanes Polyurethanes reacted much slower 

than polyamides It can be assumed that PFPA undergoes similar reactions. In 

the presence of nitrogen species PFPA is therefore most probably not sufficiently 

specific as a labelling reagent because it reacts with too many fimtionalities. As a 

consequence PFPA derivatisation is only suited for surfaces composed of carbon and 

oxygen. This finding represents a further limitation to the labelling method in 

addition to the washing step. 

6.6 Conclusions 

PFPA effectively undergoes the desired reaction with hydroxyl functionalities 

in the model polymer. It is selective towards ester and carboxylic acid groups. No 

firm conclusions can be drawn regardmg the cross-reaction with the fimctionalities 

contained in PSF, PEO and PEEK. Further studies with defined polymer standards 

are required to elucidate this question. 

Due to the tendency of PFPA to adsorb, solvent washing of the samples is 

required. The washing procedure represents a drawback of the method because it can 

lead to changes in the sample and thus to errors in the results. 

A cross-reaction with a polyamide, nylon 6,6, takes place. The polymer 

reacts quantitatively with TFAA, PFPA and HFBA to give a N-fluoroacylated 

product which is unstable towards moist air. The stability of the product increases 

with the length of the fluorinated chain attached. Due to the likely reaction with a 

number of nitrogen containing fiinctionalities PFPA labelling can only be applied in 

the derivatisation of surfaces containing carbon - oxygen species. 
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Chapter 7: 

In-situ mass spectrometric study on the vacuum photodegradation 

of Polyethersulfone 

7.1 Introduction 

Polyethersulfone (PESF, figure 1) is a representative of the polysulfones, a 

group of poljoners containing the sulfone group. Polysulfones possess a number of 

favourable properties ''^ including high transparency, high toughness and rigidity 

over a broad range of temperatures (from -100 to +180 °C), high resistance against 

thermal oxidation, flame resistance, good electrical isolation properties and resistance 

towards mineral acids, alkalis, lubricants, detergents and alcohols. They can, 

however, be attacked by chlorinated and aromatic solvents as well as by ketones. 

Their properties make polysulfones candidates for demanding engineering purposes 

in the electronic, car and plane industries. 

O 

Q - s - Q - o - -

o 

Fig. 1 Chemical Structure of Polyethersulfone (PESF) 

7.2 Background 

The most common polysulfones are bisphenol A polysulfone (PSF) and 

polyethersulfone (PESF). Despite their thermal stablity these polymers are known to 

suffer rapid degradation by exposure to sunlight leading to yellowing and a 

deterioration of the mechanical properties. In solutions both polysulfones show an 

absorption maximum at about 270 nm ^ whereas their respective films absorb at 

wavelengths below 320 nm In contrast to other polymers whose absorbance is 

due to impurities introduced into the polymer during preparation or processing, the 
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two polysulfones possess a chromophore, the diphenylsulfone moiety Upon 
irradiation the absorbance of the film gradually shifts towards higher wavelengths up 
to the VIS region. This shift is held to be responsible for the discoloration of 
irradiated films to yellow-brown '̂'̂  and is thought to be due to the formation of a 
conjugated Ti-electron system .̂ Yellowing is found both in air and in inert 
atmosphere .̂ In practice, this behaviour can be used as an intensity monitor for UV 
radiation from both the sun and artificial light sources .̂ This is achieved by relating 
the degree of degradation of the polymer film to the incident dose of radiation by 
measuring the change in its spectroscopic properties. 

The degradation of polysulfones both in air '̂"̂  or oxygen ^' '° ' ' ' and in inert 

atmosphere (nitrogen) ^''^''^ as well as in vacuum '̂̂ ''̂  has been investigated with a 

number of techniques. Most of the studies were carried out using bisphenol A 

polysulfone (PSF) as the model polymer. Although slightly different in chemical 

structure (see chapter 5, figure 5) and reactivity ' its reaction behaviour can give 

valuable hints for that of PESF, the subject of the present study. In addition, it is 

difficult to compare the individual studies because the experimental conditions vary 

considerably. An overall degradation mechanism was not established in any of the 

studies. The following paragraphs wil l be limited to the review of the 

photodegradation studies. 

In their investigation of PSF and PESF degradation at wavelengths > 290 nm 

employing gel permeation chromatography (GPC) Kuroda et al. ^ found that the 

degradation of both polymers proceeds via simultaneous chain scission and 

crosslinking. Later studies showed the dependence of the scission to crosslinking 

ratio on the reaction temperature where crosslinking was the predominant reaction at 

higher temperatures ^''^. The deceleration of the degradation observed in the later 

stages of the irradiation was linked to the formation of a phenol moiety by a 

photorearrangement process. The appearance of 0-H stretches in the IR spectra of 

PESF films irradiated in nitrogen which became more intense with increasing 

treatment time was taken as evidence for the presence of these stabilizing species ̂ . 

The authors summarized their results for both polymers in a mechanism which relies 

on the scission of the C-S bond as the initial step, scheme 1. The breakage of the 

ether linkage was regarded to be much less likely .̂ Since the number of SO2 

molecules formed per crosslinking point was found to be small, SO2 formation was 
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considered to be only a secondary reaction. A mechanism for this process was not 
suggested '•̂ . 

Munro and Clark reported a XPS study on the degradation of PSF in a 

nitrogen atmosphere and in vacuum at wavelengths > 290 nm '^. The irradiation 

resulted in an overall reduction of the sulfur content. The most striking change 

observed in the irradiated films in both atmospheres, however, was the appearance of 

a reduced sulfur environment which was attributed to the presence of an organic 

sulfide. Further experiments suggested that the sulfide species was only formed in 

polymers containing aromatic rmgs. Additionally, the XP spectra of irradiated fihns 

showed a reduced contribution of the ether component to the C (Is) envelope which 

signifies that scission of the ether linkages had occurred. Allen and Mc Kellar 

presented other spectroscopic evidence for the scission of the phenyl-oxygen bond '*"'''. 

There is only scarce information about gaseous degradation products of 

polysulfones. Kuroda et al. who investigated the degradation behaviour of both PSF 

and PESF only mention the formation of gaseous products stating that SO2 is then-

main component; a detailed analysis, however, is not given ^''^. 

Mass spectral data are available for the sum of the gaseous products evolved 

during 500 hours of irradiation with a sun lamp from a PSF sample sealed in an 

evacuated quartz tube .̂ The products obtained were then expanded into a mass 

spectrometer. Hydrogen, carbon monoxide and carbon dioxide were detected along 

with methane, benzene, oxygen, carbonyl sulfide and sulfur dioxide in the product 

mixture. The carbon oxides were thought to arise from aldehydes and carboxylic 

acids already present in the polymer as impurities as it was thought to be unlikely that 

these were due to oxygen developed from the polymer during irradiation. The 

authors assume a mechanism in which random chain scission of all bonds occurs 

except the breaking of the aromatic C-C and C-H bonds. 

The aim of this chapter was to study the volatile photodegradation products m 

the mass range m/z > 50 in order to obtain further information about the mechanism 

and temporal aspects of the degradation process. The in-situ detection used in the 

mass spectrometry experiments offers the advantage that the gaseous degradation 

products are detected as they are evolved. The probability for secondary reactions of 

the products between their development and their detection is therefore reduced. 
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Furthermore, it is less likely that solid products escape detection by deposition on the 
walls of the vessel. 

7.3 Experimental 

The photodegradation experiments were carried out in a UHV chamber, a 

schematic of which is shown in figure 2. The base pressure of the apparatus was 

3x10"^ torr. 

Sapphire 
Window 

Sample 

Fast Insertion 
Lock 

Needle Valve 
4 

to DifiEusion Pump 

> Gate Valve 

Lenses 

Quartz / 
Window 

Baratron Gauge 

Fig. 2 Schematic representation of the in-situ MS set-up (QMS head situated out of 

plane of paper) 

Volatile degradation products evolved during irradiation were detected using 

a VG SX 200 quadnipole mass spectrometer. The ions were created by electron 

impact, 70 eV. The instrument was interfaced with a PC; experimental data were 

registered and analysed employing in-house software. 
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The radiation source was the Oriel high pressure Hg (Xe) lamp described in 
chapter 4.3.1. In the present experiments it was operated at 200 W. The sample was 
irradiated through a sapphire window with a cut-off wavelength between 141-161 
imi. In some experiments, a Czemy-Tumer type monochromator (Model 7300 
grating monochromator. Applied Photophysics) was placed between the lamp and the 
window to filter out undesired components of the lamp spectrum. The radiation 
passing the monochromator was then focussed onto the sample usmg two 
planoconvex fused silica lenses (f =10.2 cm, Ealing Electrooptics and f = 10 cm 
Comar). The chosen wavelength on the monochromator was 307 nm, an intensity 
maximum of the lamp, the bandwidth of the transmitted radiation was 46,5 nm 

Thin stripes of polyethersulfone (Westlake Plastics Company) were 

ultrasonically cleaned for 30 seconds in cyclohexane and dried prior to insertion into 

the spectrometer. The samples were attached to a stainless steel sample holder using 

stainless steel screws in order to avoid the use of double sided adhesive tape which 

could have possibly caused unwanted contributions to the spectra by outgassing. 

A calibration of the instrument's mass scale was carried out prior to each 

experiment using the signals of the residual gases (water, carbon monoxide, carbon 

dioxide) in the mass range < m/z = 50 whereas for the higher mass range signals of 

Perfluoro tri n-butylamme appearing at m/z = 50, 69, 100, 119, 131, 150, 169, 176 

and 181 were employed as mass markers. The mass scale in the range between two 

signals of the mass marker was extrapolated linearly by the computer programme. 

After the base pressure was reached the experiment started with a 30 minute 

irradiation phase of the chamber walls in order to remove adsorbed species. Light 

admission to the chamber was achieved by removing a shutter otherwise placed in 

front of the window. During the cleaning procedure the sample was held back from 

the light. After finishmg the irradiation and pumping away the products of the 

cleaning step the sample was positioned in the centre of the chamber and tumed to an 

angle as shown in figiore 3. 
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to QMS 
4 

Fig. 3 Arrangement of the sample with respect to the light source and the QMS entrance 

The pump had to be throttled in order to increase the residence time of the 

products and allowing them to be detected. This was done by closing the gate valve 

between pump and chamber and subsequently opening it again by 5 full tums. Then 

data acquisition started. 

Qualitative and quantitative information were obtained in separate 

experiments each requiring an undegraded sample. In both cases the experimental 

conditions were approximately the same but a different kind of information was 

registered with the computer programme. The first step consisted of the irradiation 

of samples while scanning the mass spectra in the mass range available. Relevant 

signals were chosen on the basis of these initially recorded mass spectra. In the 

second step the amounts of those masses developed from a PESF sample in 

consecutive irradiation phases were monitored. This was achieved by recording a 

profile composed of 270 data points for each particular mass during each irradiation 

phase. A data point corresponding to the intensity of the mass under consideration 

was recorded every 10 seconds such that one profile describes an overall time of 45 

minutes. In a profile the actual irradiation time which lasts 10 minutes (60 scans) is 

sandwiched between two phases in which the sample is not exposed to light. Those 

phases last 10 minutes at the beginning and 25 minutes at the end and constitute the 

baseline for the subsequent evaluation by integration of the area. The duration of the 

second phase was chosen to be longer because in some cases a tailing off of the 

signal intensity was observed after the irradiation time was finished. Light admission 

and exclusion were achieved by using the shutter as described above. 

After the removal from the mass spectrometer some of the degraded samples 

were transferred to a different sample holder and inserted into the XP spectrometer so 

as to find out about possible changes in their surface composition. The XP spectra 

were recorded under the conditions described in section 3.3.2 and peakfitted as 
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described in section 6.3. In this case the sensitivity factors for unit stoichiometry 
were taken as being: C (Is): O (Is): S (2p) = 1.00 : 0.62 : 0.55. 

7.4 Results 

7.4.1 Qualitative information from the mass spectra 

The irradiation of the samples while recording the mass spectra provides 

qualitative information about the volatile products. Since a product mixture is 

obtained the spectra contaui many contributions which are difficuh to assign. In the 

low m/z region particularly several fragmentation processes may contribute to a 

single signal. 

From the polymer structure and the reports in the literature, certain products 

are likely to be formed. These include sulfur dioxide, diphenylsulphone and 

diphenylether which represent structural units in the polymer. Biphenyl and 

dibenzofiirane are fiirther possible products. The former is the product of the 

recombination of two phenyl radicals after the extrusion of SO2 and the formation of 

the latter can be assumed from the degradation mechanism suggested by Kuroda et 

al.^. The fragmentation pattems of those compounds, except SO2, are given in table 1. 

The main signals only are listed here. 

m/z 

* * ^ 17 

<5H5> 
* * ^ 17 

ego 
* * ) 17-19 

218 100 % 

188 

187 

186 

185 

184 

171 36.0 

170 266 

169 9.7 63.9 
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168 5.1 482 

155 50.2 

154 6.5 % 386 

153 14.5 % 106.1 

152 17.3 % 76.3 

151 21.2 

142 69 

141 4.55 % 104 

140 18 

139 1.88% 121 

128 10.1 

125 384 % 

115 27.7 14.1 

114 13.7 

113 13.7 

109 

94 11.8 

93 3.1 % 

92 

87 10.6 

84 45.1 

77 190 % 114.5 39 

76 72.3 

75 9.2 

74 9.4 

71 15.1 

70 12.4 11.1 

69 13.8 

65 15.1 

64 28.1 

63 11.5 20.7 19.4 

62 10 
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51 96.5 20.6 

50 20.6 

39 30.3 10.8 

Tab. 1 Fragmentation Patterns of important degradation products 

* intensity definition: "scale of relative intensities is defined by assigning a value of 

100% to the parent peak" 

** intensity definition: "peak heights are expressed as parts per 1000 of total ion 

beam without isotope correction"'^ 

*** no information available for m/z < 77 

The most conspicuous signal that appears as soon as the radiation reaches the 

PESF sample is that at m/z = 64. Together with another signal at m/z = 48 this signal 

is related to SO2 a volatile degradation product mentioned by others A 

signal at m/z = 60 is due to COS which has also been identified in an earlier 

polysulfone degradation study .̂ It is formed in a reaction between CO and SO2 

according to '̂''*: 

CO + SO2 ^ COS + O2 

Furthermore, there is evidence for all the compounds listed in table 1. Other signals 

are observed in addition to those the fragments, the attribution of these is not 

straightforward. Comparing the peak intensities obtained at the same gain for m/z = 

125 and 170 taken as representatives for diphenylsulfone and diphenylether 

respectively it can be seen that diphenylsulfone is only formed in minor amounts. 

This observation together with the detection of SO2 as the main volatile product 

suggests that the sulfone bond is the favourite site for bond breaking rather than the 

ether linkage. This is in agreement with the findings reported by Kuroda et al. ̂  

The overlap of its most important signals at m/z = 154 and 153 with 

fi"agments of diphenylsulfone as well as a lack of other intense peaks characteristic of 

the compound renders the identification of biphenyl difficuh. Considering the 

fragmentation pattern of diphenylsulfone in table 1 and taking the decrease in 

sensitivity of the quadrupole filter towards higher masses into account the peak 
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intensity of m/z = 1 5 4 should be much smaller than that of m/z = 125 i f only this 
compound were present. In the irradiation experiments, however, the signal intensity 
at m/z = 154 is considerably larger than that of m/z = 1 2 5 when both signals are 
recorded at the same gain. This observation suggests that biphenyl is formed as a 
reaction product and that it constitutes the largest contribution of the signal at m/z = 154. 

During the time of a typical experiment (hv^ax = 90 minutes) a delayed 

appearance of a further compound in the mass range accessible with the present set

up was not observed. 

7.4 .2 Quantitative information from the profiles 

7.4.2.1 Profiles obtained with the fiill lamp spectrum 

After chosing intense, characteristic m/z values for the compounds of interest 

fovind in the first step, profiles of these masses were recorded by subjecting a sample 

to a row of consecutive irradiation phases. The areas of the profiles representing the 

amount of the respective volatile product were integrated and plotted against 

treatment time. Examples are given in figures 4 - 6 for m/z = 60 , 64, 125, 154, 168 

and 170 representative of COS, SO2, diphenylsulfone, biphenyl, dibenzofiarane and 

diphenylether respectively. The profile areas of all the products monitored decrease 

with increasing exposure time to light. The largest decrease in profile area is 

observed between the first and the second irradiation phase; the decrease in peak area 

becomes slower in later stages of the degradation. In an experiment in which 9 

instead of 7 irradiation phases were monitored a continuation of this trend was 

observed. The corresponding pressure increase, Ap, accompanying product 

desorption during irradiation is in line with the findings for the profile areas. In the 

first irradiation period an increase in pressure from 3x10 " torr to 1.5x10" torr was 

observed upon light admission to the sample. During later irradation phases, the 

pressure difference became gradually smaller signifymg that less products were being 

evolved. In the last irradiation phase the pressure only mcreased from 3x10'^ to 

7x10"^ torr. 

Within the set time mtervals none of the monitored masses showed a delayed 

increase in peak area. Such behaviour would have been conceivable for biphenyl and 
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Fig. 4 Profile areas of masses 60 and 64 as a function of irradiation time (hv unmonochi.) 
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Fig. 5 Profile areas of masses 125 and 154 as a function of uradiation time (hv unmonochr.) 
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Fig. 6 Profile areas of masses 168 and 170 as a fiinction of irradiation time (hv unmonochr ) 
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dibenzofurane which are both primary products. After their formation they could 
have initially remained on the sample surface before being desorbed. 

Comparing the profiles obtained at the begirming and at later stages of the 

degradation a reversal of the profile shape can be observed for masses 60 and 64. 

Figure 7 shows this behaviour taking m/z = 64 as an example. In contrast, no 

reversal in the profile shape is observed for masses 125, 168 and 170, figure 8 shows 

the profiles of mass 168. Mass 154 has an intermediate behaviour, the top of the 

profile recorded during the first irradiation phase is almost linear. This change 

probably reflects a fast crosslinking process occurring on the sample surface which 

allows small fragments to escape easier. The differences in the tailing-off of the 

profiles of masses 64 and 168 are due to the dependence of pumping speed on the 

mass of the products. 

In the irradiation experiments where the whole lamp spectrum was used the 

beam hit both the sample surface and the chamber walls. During irradiation product 

species adsorbed to the chamber walls were therefore desorbed in addition to the 

products evolved fi-om the sample. Profiles obtained by irradiating the empty 

chamber after fmishing the experiment reveal a desorption tendency of adsorbed 

compounds for all the masses monitored except 64 and 60. The proportion of the 

desorbed product with respect to the amount measured in the irradiation experiment 

varies for the different products and is found to increase in the order 154 < 168 < 170 

< 125. In the case of mass 125 the desorbed amount could be as much as 50% of the 

total amount of product measured. Therefore a direct comparison of the temporal 

behaviour of the different products is not possible. In order to avoid this problem 

experiments in which the lamp radiation was passed through a monochromator were 

carried out. Using this set-up the beam could be focussed directly onto the sample. 

7.4.2.2 Profiles obtained with monochromatised light 

Compared to the irradiation of PESF with the unfiltered spectrum the use of 

monochromatised light led to the development of considerably less volatile products. 

The signals in the m/z range > 150 were very weak. Within the instrument's 

sensitivity no other masses than those found in the experunents using 

unmonochromatised light could be detected. Due to the small amount of the 
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Fig. 7 Change of the profile shape of mass 64 as a function of irradiation time (hv unmonochr.) 
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Fig. 8 Change of the profile shape of mass 168 as a fimction of irradiation time (hv unmonochr.) 
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products profiles of masses 168 and 170 could only be recorded during the initial 
irradiation phases, in later stages of the degradation the reduced amount of product 
did not allow the registration of further profiles. Profiles of the less intense signals 
125 and 154 could not be recorded at all. In contrast, the development of products 
with smaller m/z values could be monitored for all the irradiation steps, figure 9 
showmg the corresponding plots for masses 60 and 64. The difference in pressure 
caused by the irradiation of the polymer was also low, during the first irradiation 
phase only an increase from 5.5 x 10"' to 6.5 x 10"' torr was observed. 

The observations concerning the development of SO2 do not change 

drastically when changing from irradiation with the full lamp spectrum to that with a 

small band of wavelengths. The area of the profiles gradually decreases in both 

cases, the decrease in the first case being, however, stronger than in the second case. 

Additionally, the changes in the shape of the profiles are not as pronounced as in the 

case of the sample exposure to the full lamp spectrum, figure 10. A reversal of the 

profile shape is not observed. This could be related to a slower build-up of the 

crosslinked layer which may be due to the lower overall irradiance that the sample is 

exposed to under these conditions. Lower temperatures due to the filtering out of the 

IR component of the lamp spectrum may play an additional role m this process. The 

nearly linear profile obtained for COS might be related to a corresponding change in 

CO development. Using the monochromatised light the irradiation of the empty 

chamber before and after treatment of the films led only to the detection of a small 

signal at m/z = 94. 

7.4.3 XPS 

The elemental composition of untreated polyethersulfone films is in good 

agreement with the theoretical value, table 2. Independent of the type of radiation 

used in the experiments irradiated films generally show a reduction in sulfur and 

oxygen content whereas the carbon content is increased. These findings suggest that 

irradiation gives rise to a loss of sulfur and oxygen from the sample surface. The 

degree of modification observed in the fihns irradiated with unmonochromatised 

radiation is, however, much larger than in films exposed to monochromatised light. 

This result could have already been expected from the the optical appearance of the 
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Fig. 9 Profile areas of masses 60 and 64 as a function of irradiation time (hv monochr.) 
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Fig. 10 Change of the profile shape of mass 64 as a function of irradiation time (hv monochr.) 
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films: PESF samples irradiated with unmonochromatised light showed an intense 
discoloration to yellow-brown, whereas, films degraded with monochromatised 
radiation only had a slight yellow colour. 

%C %S % 0 

untreated PESF (theoretical) 75.0 6.2 18.8 

untreated PESF (experimental) 74.5 + 0.3 6.0 + 0.1 19.6 ±0.3 

hv unmonochromatised 70minuteS 79.7 ± 1.1 5.1 ±0.2 15.3 ±0.9 

hv monochromatised 70 miuutes 76.1 ±0.6 5.4 ±0.1 18.5 ±0.8 

Tab. 2 Elemental composition of untreated and treated PESF films 

The XP spectra of untreated and treated polyethersulfone, figures 11-13, 

provide more mformation about the changes occurring on the sample surface. There 

are three contributions to the envelope of the C (Is) spectrum of untreated PESF: 

firstly, C-H at a binding energy of 285.0 eV, secondly the C-S environment at 285.6 eV 

and finally the C-0 contribution of the ether linkage at 286.7 eV 21,22 The 71-71* 

shake-up typical for the presence of the aromatic ring is observed at a BE of 291.9 eV 

and exhibits a different FWHM compared to the other components of the main 

carbon signal. 

The O (Is) peak appears as a doublet with contributions fi-om the oxygen 

atoms contained in the sulfone group and those contained in the ether moiety at a 

binding energy of 532.3 eV and 534.0 eV respectively Since there are twice as 

many oxygen atoms attached to sulfiir atoms in the sulfone groups than are 

sandwiched between two aromatic rings in the ether groups of the polymer backbone 

the ratio of the peak areas should be 2:1. The experimentally determined ratio of 

1.84 ± 0.02 : 1 is, however, slightly lower than this theoretical value. 

The S (2p) signal can be resolved by peakfitting to a 2:1 doublet, the S (2p3/2) 

contribution being centred at 167.8 eV which is typical for the sulfone environment 

While the shape and the position of the XP signals in PESF samples 

irradiated with monochromatised light remain nearly unchanged, the appearance of 

the corresponding signals of films exposed to unmonochromatised radiation is 

considerably ahered: The shoulder, initially present on the high BE side of the C (Is) 
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Fig. 11 C (Is) XP spectra of untreated and irradiated PESF films 
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envelope, appears less pronounced and reduced in intensity which suggests a 
reduction in the amount of ether groups. Additionally, there are further contributions 
of low intensity on the high BE side of the main carbon signal. These might be due 
to a slight surface oxidation which is probably caused by the short exposure of the 
samples to ambient atmosphere during the transfer from the MS to the XP 
spectrometer. The small binding energy difference of the environments contributing 
to the C (Is) signal with respect to the resolution of the spectrometer does not allow 
the spectra of the treated samples to be fitted unambiguously. Therefore these are 
presented as unfitted data. 

The positions of the O (Is) peaks in both kinds of treated samples remain 

constant. The O (Is) envelope of PESF films irradiated with unmonochromatised 

light appears slightly broadened signifying a less homogeneous surface composition. 

The intensity ratio of the oxygen atoms contained in a sulfone enviroimient with 

respect to those contained in an ether environment in the O (Is) envelope is reduced 

from 1.84 : 1 in the untreated samples to 1.76 : 1 and 1.29 : 1 in samples exposed for 

70 minutes to monochromatised and unmonochromatised light, respectively. A 

sample measured after 90 minutes irradiation time with unmonochromatised light 

showed an even lower ratio. This reduction reflects the loss of SO2 from the 

irradiated PESF surfaces. 

The most striking change in the S (2p) XP spectra of samples degraded with 

unmonochromatised light is the appearance of a reduced sulfiir environment. A 

similar species has been observed m a previous investigation on the photodegradation 

of PSF The complete sulfur envelope consists of two well separated parts, one at 

a slightly higher (approximately + 0.4 eV) and one at a lower BE of the original 

sulfone environment. Fitting the low BE environment as one component with a 

doublet structure the S (2p3/2) contribution is centred at a BE of 163.9 eV. The 

FWHM values of the spectra of the untreated and treated samples are not 

significantly different. This suggests that in both parts of the envelope there can be 

only contributions of species with a very similar or even identical chemical shift. 

Thus, an overlap of a multitude of species as found in the case of the thermal 

degradation of polyethersulfone HTA in the presence of oxygen '̂̂  is not observed. 

The sulfur envelope of PESF samples hradiated with monochromatised light is 

slightly broadened; the formation of the reduced sulfiir species is not observed. 
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7.5 Discussion 

The irradiation of PESF films leads to a complex degradation process. Not 

all the details of this process could be probed with the equipment available for the 

present study. This is the case with the volatile products in the m/z range less than 

50 and greater than 180. Within the accessible mass range products already known 

(COS, SO2) as well as new products (diphenylsulfone, biphenyl, diphenylether, 

dibenzofurane) can be identified. These higher molecular weight products, which are 

solids, show a strong tendency to be adsorbed at the chamber walls. This behaviour 

probably explains why these compounds escaped detection in the earlier gas analysis ̂ . 

Contributions of fragments of two or more different compounds to one signal cannot 

be excluded. There is also a possibility that parts of the products detected are formed 

in fragmentation processes of initially larger degradation products. It would therefore 

be interesting to study PESF degradation employing a mass spectrometer offering a 

larger mass range and which ideally also allows the separation of the volatile 

products prior to analysis. 

The gradually decreasing amount of products obvious from the temporal 

development of the profile areas could be due to two processes. The first is a 

chemical reaction leading to the formation of a product which possesses stabilizing 

properties and thus decelerates the degradation as it has been suggested by Kuroda et 

al. .̂ The second possibility is a crosslinking process at the sample surface which 

increasingly hinders the escape of volatile components as the mesh size of the 

network becomes smaller. A combination of these two factors is conceivable as well. 

The observation that the bulkier products do not show a reversal in profile shape as a 

function of irradiation time like the smaller masses suggests, however, that a fast 

crosslinking process is the more likely factor responsible for the decrease of the 

products, although the other pathway cannot be entirely ruled out. 

Differences in the irradiance on the one hand and thermal effects on the other 

are likely to be the two most important factors accounting for the differences 

observed in the experiments with monochromatised and unmonochromatised 

radiation. Passing the lamp spectrum through the monochromator and the two lenses 

has two effects: the irradiance of the transmitted radiation is reduced and the 

contributions of the lamp spectrum other than the chosen wavelengths (including 
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those m the IR region) are filtered out. The reduction of the irradiance causes the 
initiation of less reaction steps while the lack of thermal energy precludes an increase 
of the mobility of the chain ends. This means that in the experiments using 
monochromatised radiation not only are less radicals formed on the sample surface, 
but these radicals are more likely to recombine due to a cage effect. This might 
explain the smaller crosslmking speed observed in the experiments using 
monochromatised light. 

A straightforward explanation for the formation of the solid products 

remaining on the sample surface cannot be given because several reaction pathways 

are possible some of which are outlined in scheme 2. Additionally, some of the 

primary products are likely to take part in further photoreactions upon prolonged 

irradiation No literature evidence could be found for the direct photoreduction 

of sulfones. 

R-SO2-R 

hv 

|R-S02'| + R« 

(1) 

R « + SO, 

(2) H-abstr. 

RSO,H 2̂  

*3 

(3) 

R-S02-S02-R 

(4) 
recombination 
(mesomeric 

form) 

R» 

RSO3H + R-S-SO2-R 
L R-R 

hv 

RS02* + I'SR 

O2 O 
R-S -O- S-R 

R-SO2-O-SO2-R 

+ 

R-S-SO2-R 

*2 

R-S-S-R 

Scheme 2 Possible reactions on the sample surface 

Extrusion reactions of sulfiir dioxide from sulfones (1) are well known. 

Practically this reaction is a popular synthetic route for the formation of C-C bonds 26 
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The energy required for this process can be provided thermally or photochemically 
The detection of sulfiir dioxide in the mass spectra and the reduction in the intensity 
of the sulfone contribution to the O (Is) XP spectrum of degraded films show that 
SO2 extrusion is an important process in the photodegradation of PESF as well. The 
observation of Yamashita et al.^ that the amount of SO2 evolved per crosslinking 
pomt m PESF degradation is very small, however, suggests the occurrence of at least 
one additional degradation pathway. 

Sulfonyl radicals can also recombine to form bis-sulfones (3) or abstract 

hydrogen atoms to form sulfinic acids (2) Sulfinic acids especially aliphatic 

ones are unstable and disproportionate even under exclusion of air Simple 

aromatic sulfinic acids disproportionate faster than those protected by bulky 

substituents. The process can be accelerated by an increase in reaction temperature 

The products are a thiolsulfonate and the corresponding sulfonic acid (2). Pathway 

(4) describes the formation of a sulfonic anhydride and a thiolsulfonate via an 

unstable sulfinyl sulfonate intermediate 

Sulfur environment BE range 

R-S-SO2-R 164.0 - 164.2 eV 

R-S-S-R 163.5 - 164.2 eV 

R-S-H 163.2- 164.1 eV 

R-S-R 163.4- 164.2 eV 

R-S-SO2-R 168.2 - 168.8 eV 

R-SO2-O-SO2-R 169.0 eV 

Tab. 3 BE ranges for sulfur environments according to Lindberg et al 23 

Table 3 lists the BE ranges for some of the sulfur environments in question. 

They were obtained from the measurement of model compounds. In the 

corresponding study the S (2p) doublet was not resolved but it was fitted as one peak 

Applying the same procedure, the high and the low BE environments in the spectra of 

the PESF films degraded with unmonochromatised light are found at BE values of 

168.5 eV and 164.2 eV, respectively. From the reported values the -S-SO2-

environment of the thiolsulfonate could contribute to the high BE component of the 
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S (2p) spectrum. In the case of the -SO2-O- environment the study only reports the 
BE of one compound. A range of compounds could possibly include smaller values 
such that the anhydride cannot be excluded as a possible product. According to 
pathway (2), sulfonic acids could also contribute to the envelope at higher BE with 
respect to the original sulfone environment. Free sulfonic acids degrade rapidly upon 
storage which might be the reason why XP spectra of these compounds are not 
reported in the comprehensive study of organic sulfur compounds mentioned above ^^ 
Therefore the contribution of the sulfonic acid to the present spectra cannot be 
estimated. Reports about BE values for bissulfones, the fourth possible contribution 
to the high BE environment could not be found in the literature. 

The BE range reported for the -S-SO2- environment agrees with the 

experimental data of the low BE component of the present study. The same applies 

to the sulfur environments in R-S-S-R which is a possible degradation product of the 

thiolsulfonate. These compounds are thus two possible contributions to the low BE 

component of the S (2p) XP spectrum of PESF samples irradiated with 

unmonochromatised radiation. 

From the photochemistry point of view, the product gases COS and SO2 could 

theoretically also play a role m the formation of the reduced sulfur environment. 

COS has an absorption maximum at 223 nm ^̂ '̂ '̂  and dissociates upon irradiation 

into CO and sulfur atoms which can insert into olefmic double bonds forming 

thiiranes, cyclic thioethers, and thiols Typical binding energies observed for 

these compounds are included in table 3. Assuming the mechanism in scheme 1 to 

be valid, the olefinic moieties required for this reaction would have been present on 

the sample surface. This pathway can be considered unlikely because of the low 

partial pressure of COS and the comparatively low irradiance of the lamp in the 

required wavelength region. The same applies to SO2 which has three absorption 

bands in the near UV A triplet species is thought to be the species that causes the 

chemical reactions The reaction product with olefms are sulfinic acids, aromatic 

compounds react as well, but the product was not identified Considering the low 

partial pressure of SO2 developed m the experiments and the low quantum yield 

reported for sulfinic acid formation this reaction is also unlikely to contribute to a 

large degree to the formation of the reduced sulfur species. 
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The possible overlap of the XP signals does not allow an unambiguous 
identification of the products formed in the reactions of the sulfur species on the 
surface of PESF films irradiated with unmonochromatised radiation. Since a whole 
reaction sequence is likely to occur the peak intensities carmot be used to support a 
reaction stoichiometry. In order to find out more details about the products and the 
processes involved in their formation further studies including the application of 
other analytical methods would be required. This is also true for the samples 
irradiated with monochromatised radiation where one S (2p) environment is found at 
a BE of 168.3 eV. 

Differences in irradiance and thermal energy were already suggested to be the 

reason for the different crosslinking velocity observed for samples irradiated with 

monochromatised and unmonochromatised light. The same factors might also be the 

reason why the reduceid sulfur species is only observed in PESF films irradiated with 

unmonochromatised radiation. Due to the change in the reaction conditions, the rate 

of the reaction is probably so much reduced in the case of the irradiation with 

monochromatised light that the reduced sulfur species cannot be formed within the 

reaction time monitored. The observation of Munro and Clark who obtained the 

reduced S-species in the irradiation of PESF films with light of wavelengths > 290 nm 

(Hg medium pressure lamp, pyrex filter), rules out the alternative explanation that the 

formation of the reduced sulfur species requires radiation wavelengths < 290 nm. 

7.6 Conclusions 

Irradiation of PESF samples in vacuum leads to complex chemical processes 

which are reflected in the development of volatile products and in the modification of 

the solid films. Degradation is observed both upon exposure to the full and to a 

selected part of the Hg (Xe) lamp spectrum. SO2, COS, dibenzofurane and 

diphenylether are the main volatile products of the reaction; biphenyl and 

diphenylsulfone are also identified. These findings provide experimental evidence 

for the breakage of the C-0 as well as of the C-S bonds. The respective product 

intensities show that bond breaking occurs more often at the sulfone groups than at 

the ether linkage. For both types of radiation used the rate of the degradation 

decreases with increasing treatment time which mainly reflects a crosslinking 
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process. The differences observed in the experiments with monochromatised and 
unmonochromatised light are probably due to different irradiances and thermal 
conditions, frradiation with unmonochromatised radiation leads to the development 
of larger quantities of volatile products and a stronger modification of the polymer 
fi lm. The corresponding XP spectra show the presence of a reduced sulfur species 
which is not detected upon irradiation with monochromatised radiation. The 
processes which occur on the sample surfaces are complex and further studies are 
required to identify the reaction products unambiguously and to elucidate the 
pathways involved in their formation. 
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