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A study was made of the ground-living spider communities of a commercial forest, 

using sites at various stages of the management cycle to represent different stages of 

succession. Clear-felling resulted in an increase in the abundance of large polyphagous 

cursorial hunters associated with open habitats, and a corresponding reduction in the 

numbers of small web-building litter species, with a more limited prey range, which 

characterised the later stages of succession. The most important factor in this change 

appeared to be the removal of the canopy, resulting in a modification of microclimatic 

conditions, and degradation of the litter layer. In the first nine years after clear-felling, 

there were clear and relatively rapid changes in community structure associated with 

successional age. The observed changes were considered to be mainly due to the 

increasing vegetation density in this period, which provided both panicular structures 

and a more favourable microclimate for certain species. Associated changes were also 

found in species richness, abundance, diversity and eveness, which increased during 

this period. These attributes decreased into late succession, though the pattern was 

less clear for species abundance, and the oldest sites were less species rich, diverse and 

even than those of eariy succession. In late succession, the rate of community change 

slowed, the most mature sites being very similar in terms of their communities. In 

general, the differences that did exist were not related to the position of the site on the 

successional gradient. It was considered that these differences were not due to a single 

factor, but rather reflected the importance of different factors at each site. 
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L I N T R O D U C T I O N . 

Coniferous afforestation is the greatest single change in land-use currently taking place 

in Great Britain, and in 1996 roughly 1 1 % of the land area of mainland Britain was 

covered with planted forest (Forestry Commission, 1996). The areas most effected by 

commercial afforestation are the upland areas of England, Wales, and particularly 

Scotland, in the sub-montane zone (i.e. below the potential tree-line, varying from 

650m to 300m in the far north-west). Planting has mainly been on acidic base-deficient 

substrata, with vegetation types ranging from dry grassland/dwarf shrub heath, to 

damp grassland and heath or flush bogs and hydrophilous moorland vegetation found 

on deep blanket bog peats (Ratcliffe^ 1986), and in the period from the formation of 

the Forestry Commission in 1919 to 1996 almost 1 million hectares had been planted 

(Forestry Commission, 1996). Of the 12% of semi-natural moorland lost since 1945 in 

six English and Welsh National Parks, 77% had been afforested (Thompson et ai, 

1988). 

The most obvious effect of afforestation is the depletion of the open ground plant and 

animal communities which existed beforehand (Ratcliffe, 1986), though there are less 

direct effects on the surrounding communities. Changes in hydrology associated with 

coniferous afforestation may oiuse a loss o f species in mires and mosses (Butterfield et 

al, 1995), while birds nesting on habitats that border forests are more likely to fell 

victim to predators which inhabit the plantations (Thompson, 1987). However, 

afforestation does have some positive effects. The cycle of management of a plantation 

produces a range o f habitats o f varying age and structure, and hence the overall 



diversity of habitats in the area may be increased (Butterfield et al., 1995). In addition, 

individual species can profit from the habitats provided by plantations. Both the 

chequered skipper {Carterocephalm palaeinon) and the Rannoch looper (Semiothisa 

hrunneata) have benefited from the presence of sheltered rides and margins in 

commercial woodland (Young, 1986), while seed-eating birds such as crossbills (Loxia 

cwviroslra) and siskins {Carduelis spinas) have increased, likely due to the benefits 

they derive from the increase in conifer plantations (Bibby, 1987; Petty et al., 1995). 

In terms of the effect of afforestation on the animal and plant communities of the 

upland habitats which they replace certain groups, particularly the birds (Moss et al., 

1979; Newton, 1983; Bibby, 1987) and plants (Hill & Jones, 1978; Hil l , 1978, 1986), 

have been studied extensively. Research on invertebrate communities has generally 

been on ground living groups such as the Carabidae (e.g. Butterfield, 1992; Butterfield 

et al., 1995) and Araneae (e.g. Downie et al., 1996), though there has been a certain 

amount of research on the major pest species of commercial forests (Young, 1986; 

Speight & Wainhouse, 1989). 

The management of a commercial forest, with its cycle of felling and replanting, 

produces habitats of varying age, from immediately after felling to mature plantation, 

contained within a relatively limited area and as such provides an excellent opportunity 

to study a simplified woodland succession on replicated plots. As a consequence, a 

number of studies have used managed forests to study the processes related to change 

along a successional gradient. Downie et al., (1996), studying the effect of a pasture-



plantation ecotone on ground-living spiders in northern England, found that the 

abundance of spiders was greater in the pasture than in the adjacent plantation, while 

species richness was similar in both habitats. Niemalk' et al., (1996) investigating the 

effect of habitat heterogeneity on the abundance of forest floor invertebrates in the 

southern Finnish taiga, showed that both species richness and abundance were greater 

in the spider communities of early successional habitats than those of mature forest, 

while Pajunen et al., (1995), studying the structure of spider communities in old-forest 

fragments in the same region, found that both species richness and abundance were 

lower in these fragments than in the surrounding managed forest, presumably due to 

the more heterogeneous nature of the latter. In contrast, Coyle (1981) found that 

clear-cutting produced a marked reduction in abundance, and to a lesser degree in 

species richness, in the spider communities of a southern Appalachian forest, though 

the clear-cut communities were more diverse than those of the preceding forest due to 

an increase in species eveness in the former. The observed changes in this case were 

considered to be due to the removal of the forest canopy and reduction in litter depth 

after clear-cutting. Similarly, Mclver et al., (1992), considered that the extent of tree 

cover and litter depth were important factors in determining the occurrence of species 

along a successional gradient in a coniferous forest in western Oregon, and both 

Pajunen et al. (1995) and Niemalai et al. (1996) stressed the importance of tree cover 

in influencing community change. 

In addition to changes in the structure of communities, and associated attributes such 

as species richness and abundance, along successional gradients, the species which 

make up these communities have been shown to exhibit trends in life history, dispersal 



ability, reproductive output and morphological diversity in response to the prevailing 

conditions during succession. Hence both Brown & Southwood (1983) and Brown 

(1985), studying secondary succession in southern England, found that generation time 

in exopterygote herbivores was shorter during eariy succession than in later stages, 

while dispersal ability decreased from early to mid-succession and then increased again 

into late succession. In addition both of these studies found that niche breadth, 

considered in terms of the range of food plants fed upon, decreased along the 

successional gradient. In terms of morphological diversity a number of studies have 

shown that the range of variation in both size and shape increases along the 

successional gradient (e.g. Brown 1982; Brown & Hyman, 1986). 

Spiders are a useful group for investigating the way in which species accumulate in 

differently aged and managed areas (Gibson et ai, 1992). Not only do they occur in 

high densities and have a well known taxonomy, they also have a wide range of 

structural and microclimatic requirements, and as such the structure of their 

communities are sensitive to changes in the physical environment. In addition, they 

also exhibit a range of life-cycle strategies which might be expected to have relatively 

predictable trends along a successional gradient. The purpose of the present study was 

to investigate the changes which occurred in both the structure and attributes of spider 

communities, and the strategies exhibited by their constituent species, along a 

simplified successional gradient, and to this end sites were selected to represent 

various stages in the successional process from recently clear-felled to mature 

coniferous plantation. In addition, the effect o f a habitat boundary on spider 

community attributes, and on the distribution of individual species, was investigated. 



2. STUDY AREAS. 

2.1. Hamsterlev Forest. 

The main part of this study was carried out in Hamsterley Forest in Weardale (national 

grid reference, NZ 0030), approximately 32 km south west of Durham City, and 

covering an area of roughly 2000 ha between 150-425m in the eastern Pennines. 

The underlying geology of the area is largely Millstone grit (roughly 95%), though 

there are small areas of carboniferous limestone, and an igneous intrusion of basalt, the 

Hett dyke, runs roughly east-west across the site. Soils consist largely of typically 

upland types, mainly gleys and brown earths, though there are smaller areas of 

podzols, ironpan and flushed peat. 

The land was purchased by the Forestry Commission in 1927, and initial planting took 

place between this date and 1951, with felling of the first rotation crop beginning in 

the late 1960's. The figures below show the proportional land-use of the forest in 

1992: 

Coniferous woodland 82.5% 

Broad-leaved woodland 8.0% 

Pastures and meadows 4.5% 

Conservation areas 2.0% 

Recreational grassland 1.0% 

Forest rides and roads 2.0% 

(Forestry Commission, 1992) 



2.1.1. Study Sites. 

The approximate location of the 11 sites sampled at Hamsterley Forest are shown in 

Fig. l , while Table 1 gives summary information for each site. Sampling of the spider 

communities at these sites took place in 1992, but assessment of vegetation density 

was not able to take place until 1994. 

(1) Restocked. 

Site 1. 

Situated at the south-eastern edge of Hamsterley Forest, at an altitude of 

approximately 310m, this site was planted in 1928, felled in 1983-84, and replanted in 

1985 with Sitka Spruce {Picea sitchensis). This site had the densest vegetation layer 

of any site sampled (609 touches per 50 quadrats) with 95% cover in 1992. At this 

time the vegetation was dominated by grasses, and this was also the case in 1994, 

when the dominant species were Deschampsia flexuosa (34% of vegetation cover) and 

Holcus lanatus (17%). The soil organic content at this site was 63%. 

Site 5. 

Situated on the south-eastern edge of Hamsterley Forest at approximately 280m, this 

site was initially planted in 1929. Felling took place in 1983-84, and in 1985 the site 

was replanted with Scots pine {Pinus sylvestris). As with Site 1, this site had an 

extensive vegetation layer, which in 1992 covered 100% of the site and was dominated 

by grasses. In 1994 this site had the second densest vegetation layer after 
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Site 1 (420), the dominant plant species being Deschampsia flexuosa (37%), and 

Pteridium aquilinum (35%). The soil organic content at this site was 18%. 

(2) Clear-felled. 

Neighbour Moor Clear-felled (NCF). 

Situated in the south-western part of the forest at approximately 350ra, this site was 

initially planted in 1950, with clear-felling taking place in 1991. In 1992 the herb layer 

was pooriy developed, covering less than 2% of the , site and consisting largely of 

Calluna vulgaris. By 1994 vegetation cover had increased to 38% with a density of 

86. The dominant plant species at this time were Calluna vulgaris (45%) and 

Chamaenerion angustifolium (10%). The soil organic content at this site was 63%. 

Comer Clear-felled 1990 (CCF90). 

Situated in the south-western part of the forest at approximately 380m, this site was 

planted in 1945, with clearance taking place in 1990. The vegetation cover at this site 

in 1992 was 10% and was dominated by Chamaenerion angustifolium. By 1994 

vegetation cover had increased to 74%, with a density of 129. The dominant plant 

species at this site in 1994 was Calluna vulgaris (40%) followed by Chamaenerion. 

angustifolium (18%). The soil organic content at this site was 41%. 

Comer Clear-felled 1989 (CCF89). 

Initial planting at this site, which was adjacent to the previous site, took place in 1944, 

with clear-felling occurring in 1989. In 1992 vegetation cover was 60%, the dominant 
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plant species being Rumex acetosella and various grasses. By 1994, vegetation cover 
had increased to 82%, with a dense structure (398 touches). At this time the dominant 
plant species at this site was Deschampsia flexuosa (54%), followed by Calluna 
vulgaris (25%). The soil organic content at this site was 81%. 

Rigg Clear-felled (RCF). 

Situated roughly in the centre of Hamsteriey Forest at approximately 320m, this site 

was planted in 1940, and in contrast to the previous sites was deforested not as a 

consequence of the normal management cycle of the site, but by windthrow in 

1988/89. In 1992 this site had a vegetation cover of 33%, with the main plant species 

being Calluna vulgaris and various mosses. In 1994 vegetation cover was still only 

68%, and relatively sparse (134 touches). At this time the dominant plant species was 

Deschampsia flexuosa (26%), followed by Calluna vulgaris (22%), and moss cover 

was still high (30%). This site had the highest soil organic content of any site sampled 

at Hamsterley (91%). 

(3) Coniferous plantation. 

Neighbour Moor Old Plantation (NOP). 

Situated in the south-western part of the Forest at approximately 350m, this site was 

planted in 1950 with Norway Spruce {Picea abies), and as with the majority of the 

plantation sites at the time of this study had developed into a dense stand with a deep 

litter layer (85mm) and no herb layer, though a certain amount of complexity was 

provided by dead wood (68 touches). Soil organic content at this site was 90%. 
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Comer Old Plantation (COP). 

This site was situated in the south-western region of Hamsterley Forest at 

approximately 380m. COP was planted in 1945 with Norway Spruce (Picea abies), 

and like the previous site has developed into a dense plantation, precluding the 

development of a herb-layer, though this site had a relatively large amount of dead 

wood, and therefore "vegetation density' was the highest for any of the plantation sites 

at Hamsterley (98 touches). This site had the deepest litter layer of any site sampled 

(95mm). The soil organic content at this site was 72%. 

Rigg Old Plantation (ROP). 

Situated near to the clear-felled site R C F in the centre of the Forest, this site was a 

mature plantation of Sitka Spruce {Picea sitchensis), planted in 1940, and lacking a 

vegetation layer, though again a certain amount of complexity was provided by dead 

wood (68). Soil organic content at this site was 46%. 

Site 2. 

This site, which consisted of a mature plantation of Scots pine (Pinus sylvestris) at an 

altitude of roughly 300m, was planted in 1929 and hence constituted the site with the 

longest period of continuous tree cover in this study. While tree cover was still 

complete, Site 2 was perhaps more open than the other plantation sites, and 

consequently a sparse ground layer was present, consisting largely of mosses. 

However, the overall amount of dead wood was low, and thus density was lower at 

this site than at any other (67 touches). This site had the shallowest litter layer of any 
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of the plantation sites at Hamsteriey (60mm). The soil organic content at this site was 
65%. 

(4) Mixed-woodland. 

Site 6. 

At an altitude of approximately 280m this site was planted in 1970 with Sitka spruce 

(Picea sitchchensis), but suffered a partial crop failure which allowed colonisation by 

birch (Betula sp.), and also sycamore (Acer pseudoplatanus) at the margins. In 1992 

this was an open stand (38% ground cover) containing a number of grass dominated 

clearings, one of which constituted the trapping site. By 1994 the canopy had become 

more extensive, and vegetation cover was down to less than 20%. However, the 

clearings that remained were fairly similar in their floral composition to the situation in 

1992. Vegetation density in these clearings was high (315 touches), the dominant plant 

species being Deschampsia flexuosa (72%) and Calluna vulgaris (9%). The soil 

organic content at this site was 43%. 

2.2. Wilton Moor. 

Wilton Moor (NZ 5718), lies approximately 9 km south-east of Middlesbrough, 

Cleveland, on the Eston Hills, which are a northern outlier of the main sandstone 

massif of the North York Moors, and consist of an east-west lying ridge separated 

firom the moors by a shallow vale. The ridge reaches a high point at 242m, but is 

mostly between 150 to 200ra above sea level. The western part of the hills remains 
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moorland, but the eastern part, on which the study area was situated, has been planted 
with shelter breaks and is down to arable agriculture interspersed with sheep pasture 
(J. Garside pers. comm.). Wilton Moor is part of a larger area of land which was 
purchased by ICI in 1946, the proportional land use of which at the present time is 
given below: 

Agricultural (mainly arable and sheep pasture) 56% 

Coniferous woodland 25% 

Conservation areas 7% 

Recreational 5% 

B road -1 ea ved wood 1 a nd 5 % 

Industrial 2% 

(G. Cansino, pers. comm.) 

The underlying geology of the area consists of both marine and freshwater mudstones, 

sandstones and siltstones of the middle and lower Jurassic. Soils are largely sand and 

clay loams, with areas of deep peat. 

2.2.1. Study Site. 

The study site (Fig. 2) consisted of an area of grassland with a dense sward dominated 

by tussocks of Daclylis gloinerata (47% of vegetation cover) and Festuca sp. (18%), 

running into a plantation of Pinus sylvestris planted in the early 1950's. This latter was 

fairly open in nature, with a vegetation cover of 6%, consisting largely of Rubus sp., 

but with grasses (mainly Festuca sp.) near the habitat boundary. 
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During late 1994, the year before sampling took place, planting of deciduous and 
coniferous tree species, namely Quercus, Betula and Pinus species, had taken place 
within the grassland, though the height of individual plants was less than 30cm at the 
time sampling occurred. However, in early July 1995 the area around each plant was 
treated with a herbicide, and as these plantings took place in a line parallel with the 
boundary between grassland and plantation, this created a strip of almost bare ground 
ruiming across the line of the trapping transect, between the 6m and 7.5m rows (Fig. 
3). Hence while at the beginning of the sampling period, vegetation cover in the 
grassland was 100%, this had dropped to roughly 95% by late August. 
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Fig. 3. Diagram showing arrangement of pitfall traps at Wilton Moor. Rectangle 
marks approximate extent of herbicide 

application during July 1995. 
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3. METHODS. 
3.1. Pitfall Trapping. 

The 11 Hamsterley Forest sites were sampled using ground-sunk pitfall-traps with a 

mouth diameter of 70mm, containing a 4% formalin solution with detergent. Five traps 

were used at each site in a 10m line, individual traps being 2m apart. Traps were 

emptied at roughly three-weekly intervals from May to November 1992. 

The Wilton Moor site was sampled using a total of thirty-nine ground-sunk pitfall-

traps, containing a 4% formalin solution. The traps were arranged in three parallel 

rows, 3m apart, at right-angles to the habitat boundary, with traps within each row 

1.5m apart (Fig. 3). The rows extended to a distance of 9m either side of the habitat 

boundary into the grassland and plantation, with the central trap of each row situated 

on the boundary itself. Traps were emptied at roughly four-weekly intervals firom June 

to September 1994. 

Pitfall-traps have been used extensively to study various attributes of surface active 

arthropod populations, particulariy those of the Araneae and Qirabidae (Topping & 

Sunderiand, 1992). While a number of criticisms have been levelled at this method of 

sampling (e.g. Luff, 1968; Southwood, 1978; Topping & Sunderland, 1992), their use 

has been retained in this study, as they are inexpensive, require minimum supervision, 

and are capable of collecting large numbers of individuals from a wide range of species 

at a number of habitats which can be sampled simultaneously. Particulariy relevant to 
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this study is the fact that pitfall-traps are efficient at catching small Linyphiidae 
(Merrett & Snazell, 1983). In addition, the number of animals caught is independent of 
sampling skill, and gives a reasonable estimate of species composition (Uetz & 
Unzicker, 1976; Merrett, 1983). 

Spiders from all sites were sorted and stored in 70% alcohol. All adult spiders were 

identified to species using Roberts (1985, 1987, 1993) or Lockett & Millidge (1951, 

1953) on the basis of their genitalia. 

For each of the Hamsterley sites, monthly catches were pooled to produce eleven sets 

of species abundance data. Gitches from the Wilton Moor study were pooled to 

produce six discrete sets of data, three each for grassland and plantation, with each set 

representing the pooled data from six traps (two rows), e.g. 9m and 7.5m, 6m and 

3.5m, and so on. Data from the habitat boundary row were not used, as the number of 

replicates was considered insufficient to allow statistical analysis. 

3.2. Vegetation Density. 

Vegetation structure has been shown to have an important influence on the structure 

of spider communities (Rushton et al, 1987; Gibson et aU 1992; Downie et al, 1995) 

and during 1994 the density of the vegetation at each of the Hamsterley Forest sites 

was estimated using a point quadrat method. This entailed placing a wooden rod 

perpendicular to the ground surface and recording each touch by any plant structure, 

either living or dead up to a height of 15cm. This height represents the upper limit of 
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the 'Open-Ground' category of the Terrestrial system (Elton 1966), and was chosen 
because the density of the vegetation in this layer was considered of most relevance to 
ground living spiders. This procedure was carried out a total of 50 times in all for each 
site. In addition, at each point the depth of the leaf litter was also recorded. 

3.3. Data Analysis. 

3.3.1. Ordination. 

Ordination involves the arrangement of sites and/or species along an environmental 

gradient. Detrended correspondence analysis (DCA, Hill, 1979a) in common with 

reciprocal averaging on which it is based, is an indirect gradient analysis method, in 

which environmental gradients are not studied directly, but are inferred firom species 

composition data (Palmer, 1993). 

Log transformed data for all species trapped in numbers exceeding five individuals 

were analysed using the D C A option of the CANOCO computer program (Ter Braak, 

1988), an extension of DECOR AN A (Hill, 1979a). DCA has several advantages over 

other ordination techniques. Unlike reciprocal averaging and principal components 

analysis, it avoids the 'arch-effect' (Gauch, 1982) which is the tendency in these 

techniques for higher axes to be strongly related to the first. In addition, this technique 

allows the analysis of large amounts of data without difficulty, and both species and 

sample ordinations are produced simultaneously, with axes that are rescaled in 

standard deviation units with a definite meaning (Hill, 1979a; Palmer, 1993). 
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However, D C A has come under increasing criticism. Palmer, (1993), for instance, 

considered the detrending algorithm inelegant and arbitrary, and pointed out that 

detrending will destroy any true arch that exists in the data, and both Minchin (1987), 

and 0kland (1990), noted that this method compressed one end of the gradient into a 

tongue. Perhaps the most serious criticisms of D C A involve those situations where it 

has been shown to produce aberrant results. Oksanen (1988), investigated the 

performance of detrended correspondence analysis in situations where the eigenvalues 

of the first two axes were very similar. Under these conditions, random variation in the 

data can cause the order of the eigenvalues to be reversed (Mardia et al., 1982), 

resulting in the ordinations produced by D C A being very variable. This effect, which 

Wilson (1981) termed inconsistency, and Greenacre (1984) called instability, seems to 

arise because the detrending process produces different site scores in relation to one 

another depending on which axis is detrended, so that the two-dimensional 

configuration is susceptible to changes in the first axis (Oksanen, 1988). Investigating 

the effect of varying the number of detrending segments on the resultant DCA 

ordinations, Jackson and Somers (1991) found that the choice of segmentation could 

substantially effect both the configuration of sites, and the magnitude of the higher 

dimension eigenvalues in the resultant ordinations, and suggested searching for 

multiple solutions with small data sets (i.e. < 100-200 samples). However, in this study 

the initial solution was felt to be both interpretable, and presenting sufficient scope for 

further study, and no further solutions were attempted. 
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Ordination then provides an objective, if somewhat arbitrary and inelegant, method of 
graphically summarising multidimensional data sets. While not and end in itself, it is a 
useful starting point for studies of this nature, especially when used in conjunction with 
hierarchical methods such as TWINSPAN, suggesting affinities between sites and 
species which can then be investigated quantitatively at later stages of the study. 

3.3.2. Ciassincation. 

Classification groups sites according to their similarities based on the relative 

abundance of their constituent species. Two Way Indicator Species Analysis 

(TWINSPAN, Hill, 1979b) achieves this in four stages; 

i) An initial ordination of the data. 

ii) This ordination is then split into groups of sites which are deemed similar to one 

another on the basis of the distribution of certain species between them. 

iii) The species used to group the sites in ii) are then used as the basis for a refined 

ordination. 

iv) This ordination is divided on the same basis as ii) to give the final classification. 

Species used to distinguish groups of sites at this stage are indicator species. 

A problem which arises when using species abundance data of this nature is that too 

much emphasis is placed on the numbers of common, or in the case of pitfall-trapping, 

very active, species captured while downgrading the importance of less common, but 

equally constant species. In order to overcome this problem, the use of pseudospecies 
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has been suggested (Hill, 1979b). In this study, pseudospecies were created for each 
species at six, 20, and 99 individuals. These values are arbitrary, but similar levels for 
terrestrial invertebrates have been used elsewhere (Butterfield & Coulson, 1983), and 
were used here to allow comparison with this study. As with the ordination species 
which were captured in numbers not exceeding five individuals were excluded from 
the calculation. 

3.3.3. Guild Distribution. 

In order to assess the interaction of the physical environment at the sites, and the 

lifestyle and mode of prey capture of the spiders present, species were grouped into 

guilds, which are "groups of species exploiting a common resource base in a similar 

fashion' (Root, 1967). Six major guilds were defined (Table 2), based on Post & 

Riechert (1977). These guilds were defined on the basis of hunting method, period of 

activity and for the web building species, web structure. 

3.3.4. Diversity and Species Abundance. 

3.3.4.1. Diversity Indices. 

The study of diversity provides a useful method of concentrating information about a 

community into a readily assimilable form (Morris & Lakhani, 1979), and is of 

theoretical interest in that it can be tied to concepts such as stability, maturity and 

spatial heterogeneity (Hill, 1973) which are particularly relevant to successional 

change. However, caution has been urged when using indices of this nature with 
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pitfell trap data (e.g. Topping & Sunderland, 1992), and in this study, four commonly 
used diversity indices were calculated for each site to evaluate their performance with 
species abundance data derived from pitfall traps. 

(1) Log series a. 

For each site log series a was initially estimated using William's Nomograph 

(Williams, 1947). The final value of the index was then rigorously extracted from the 

equation: 

ST = a loge(l+N/a ) 

where ST = total number of species present at a site, and 

N = total number of individuals at the same site. 

This entailed substituting the value for a obtained from William's Nomograph, solving 

the equation, and continuing this process with successive values of a until the value of 

S obtained equalled that observed in the species abundance data in question. 

(2) Margalef Index. 

The Margalef index is calculated as: 

DMg = (S-l)/lnN 



25 

where S = number of species, and 

N = number of individuals. 

(3) Berger-Parker Index. 

The Berger-Parker index is calculated as: 

d = N n , ^ 

where Nmar = the number of individuals in the commonest species, and 

N = thenumberof individuals in all species combined. 

This index is usually expressed as its reciprocal, so that an increase in the value of the 

index accompanies an increase in diversity (Magurran, 1988). 

(4) Simpson index. 

Initially the statistic C is calculated from the equation: 

C = E(ni(ni-l)/N(N-l)) 
1 

where n; = number of individuals in the ith species, and 
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N = the total number of individuals. 

The index is then: 

0 = 1/C 

Correlation of site rankings produced by the diversity indices, along with those for 

species richness and number of individuals, were compared using Spearman's rank 

correlation coefficient (rs, Rees, 1994). TTiis value was then compared with tabulated 

values of rs to ascertain whether there was significant correlation at the 5% level. 

3.3.4.2. Species Abundance Models. 

The use of species models is advocated by many workers as the only sound basis for 

the examination of species diversity, as a model of this nature provides the most 

complete description of the species abundance data of a community (Magurran, 1988). 

In addition, patterns of species abundance are a more sensitive measure of disturbance 

effects (e.g. clear-felling and subsequent succession) than species richness alone, and 

are less sensitive to sample bias than diversity indices (Magurran, 1988; Tokeshi, 

1993; Pettersson, 1996). Initially, log abundance on rank plots were examined for each 

site. Species abundance data were then tested against the predicted distributions of 

four commonly used species abundance models. 

(1) Geometric Series. 

ni = NCkk(l - k ) ' - ' 
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where k = the proportion of the available niche space occupied by each species, 

ni = number of individuals in the ith species, 

N = total number of individuals, and 

Ck = [1 - (1 - k)^]" \ and is a constant which ensures that Jni = N. 

(2) Logarithmic Series. 

2 3 n 
ax,ax / 2,ax /3,....ax /n 

where ax = the number of species expected to have one individual, 

2 

ax72 = those with two, and so on. 

x is estimated from the iterative solution of: 

S/N = [(l-x)/x][-ln(l-x)] 

where S = number of species, and 

N = total number of individuals. 

Species are generally dealt with in terms of abundance classes, loga being used in this 

case (i.e. the upper limit of each class involved a doubling of the number of species). 
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(3) Log normal distribution. 

S(R)=S^exp-(-a2R2) 

where S(R) = the number of species in the Rth octave to the right and left of the 

symmetrical curve, 

^0; = the number of species in the modal octave, and 

a = (2o2)l/2 = the inverse width of the distribution. 

As with the logarithmic series log2 abundance classes were used for this distribution. 

(4) MacArthur's Broken Stick Model (Random Niche Boundary Hypothesis). 

S(n) = [S(S-1)/N] (1-n/Nf--

where S(n) = the number of species in the abundance class with n individuals, 

S = total number of species, and 

N = total number of individuals. 

As with the logarithmic series and the log normal distribution, species were dealt with 

in terms of log abundance classes. 
2 

Values obtained from these models were compared with those of the species 

abundance data for each site using a x" goodness-of-fit test (Parker, 1983), the value 
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obtained then being compared with tabulated values of x" to ascertain whether the 
expected and observed values differed at the 5% level. 

3.3.5. Border Transition Categories. 

For all species trappjed in numbers exceeding 19 individuals at Wilton Moor, 

significant differences in mean abundance across the transect were tested for using 

single factor Analysis of variance (ANOVA, Zar, 1996). For those species which 

showed significant differences using the initial ANOVA, differences between rows 

were tested using the Tukey honestly significance difference test (Zar, 1996). These 

procedures were also used to analyse changes in species richness, diversity and 

abundance across the transect. Distribution at the guild level was also analysed in a 

similar fashion. 

Species which showed a significant difference in mean catch between rows were then 

assigned to one of the boundary transition categories proposed by Duelli et al. (1990). 

Studying the movement of arthropods between natural and cultivated areas in 

Switzeriand, Duelli et al. (1990) defined six such categories, based on the distribution 

of individuals across a habitat boundary (Fig. 4). When there is no measurable result of 

population exchange between the two habitats, a 'hard edge' transition results (Fig. 

4a), all individuals of a species being recorded in one habitat, with a sharp decline in 

numbers at the habitat boundary. At the other extreme is 'no edge' or 'very soft edge' 

(Fig. 4f), where the individuals of a species are distributed evenly between the two 

habitats in question. Between these two extremes lie various 'soft edge' categories. 

Negative influence (Fig. 4b) represents a situation where a species shows a strong 
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Habitat boundary 

a) Hard edge 

b) Negative influence 

c) Positive influence 

d) Mutual 

e) Ecotone 

f) No edge/very soft 
edee 

Fig. 4. Diagram showing the six types of border transition category 
proposed by Duelli etal. (1990) and based on the same. 
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preference for one habitat over the other, even to the extent of showing a decrease in 
numbers near to the habitat boundary. In the case of positive influence (Fig. 4c), while 
a preference for one habitat is still shown, the species invades the adjacent habitat to a 
greater or lesser extent. In some cases, both of these effects occur at the same time, 
producing a mutual influence (Fig. 4d). The final category, 'ecotone' (Fig. 4e), is found 
where a species occurs in the greatest numbers in and around the habitat boundary. 
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4. R E S U L T S . 

The pitfell survey produced 4797 individuals fi-om 103 species in 13 families. The 

number of species at individual sites ranged from 22 (NOP) to 50 (Site 1), with 

restocked and clear-felled sites consistently richer than sites with well established tree 

cover, (clear-felled/restocked mean = 42.7 ± 3.7, plantation/mixed-woodland mean = 

26.6 ± 4.5, t8=5.4 p<0.001). Number of individuals ranged fi-om 149 (ROP), to 1060 

(Site 5), with clear-felled/restocked sites generally with more individuals than wooded 

sites, though at Site 2 more individuals were trapped than at NCF, CCF89 and CCF90, 

and the latter two also had less individuals than NOP (clear-felled/restocked mean = 

580.3 ± 273.5, plantation/mixed-woodland mean = 262.6 ± 87.3, tg = 2.1 p = N.S.). 

4,1. Ordination. 

4.1.1. Ordination of Hamsteriey sites based on their spider assemblages. 

Fig. 5 gives the site ordination diagram for the eleven Hamsteriey sites based on the 

data for those species trapped in numbers exceeding five individuals. This value was 

chosen because five is the largest value which is not significantly different from zero 

(Butterfield & Coulson, 1983). 

The eigenvalues associated with each of the four axes were 0.402, 0.247, 0.147 and 

0.079. Axes 1 and 2 accounted for 74.17% of the variance in the data set, and 
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therefore Axes 3 and 4 were not considered further. Axis 1 gives a good separation of 
sites. The restocked sites. Site 1 and Site 5, have the lowest scores on this axis, closely 
followed by the clear-felled sites, RCF, CCF89, NCF and CCF90. The plantation sites, 
ROP, NOP, COP and Site 2, and the mixed-woodland Site 6, have the highest scores 
on this axis. The restocked site. Site 1, and the plantation Site 2 have the lowest and 
highest scores respectively on this axis and were therefore least similar in terms of 
species composition, though as a typical species tends to appear, rise to its mode, and 
disappear in about 400 axis units in DCA ordinations (Hill, 1979a), the fact that the 
range of scores on Axis 1 of the current ordination is less than 250 units, suggests that 
these sites still had a number of species in common. 

Axis 2 of the ordination gives relatively little separation of the sites, most being 

grouped centrally. However, Site 6 is well separated from the other sites on this axis, 

while the restocked sites tend to have higher scores than the plantations and clear-

felled sites with the exception of NCF. Site 2 with the lowest, and Site 6 with the 

highest score, constitute the endpoints of the axis, and are therefore least similar in 

terms of their species composition. 

4.1.2. Ordination of Hamsterley species based on their relative abundance 

at the sampled sites. 

Fig. 6 shows the species ordination diagram for the Hamsteriey Forest data. Only 

those species trapped in numbers exceeding 19 individuals have been plotted. Positive 

scores on Axis 1 are found among certain species of the sheet web weavers, namely 

Lepthyphantes alacris, L. tcnehricola, L. ericaceus, L zimmermanni, Tapinocyba 
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1 Drassodes cupreus 
2 Haplodrassus signifer 
3 Clubiona reclusa 
4 Agroeca proxima 
5 Xysticus cristatus 
6 X. sabulosus 
7 Pardosa pullata 
8 P. amentata 
9 P. nigriceps 

10 Alopecosa pulverulenta 
11 Trochosa terricola 
12 Coelotes atropos 
13 Cryphoeca silvicola 
14 Robertas lividus 
15 Ceratinella brevipes 
16 Walckenaeria acuminata 
17 W. cucullata 
18 Dismodicus bifrons 
19 Gonatium rubens 
20 Pocadicnemis pumila 
21 Silometopus elegans 
22 Cnephalocotes obscurus 
23 Minyriolus pusillus 
24 Tapinocyba pa liens 
25 Monocephalus fuscipes 
26 Micrargus herbigradus 
27 Diplocephalus latifrons 
28 Leptothrvc hardyi 
29 Centromerus dilutus 
30 Saaristoa abnormis 
31 Bathyphantes parvulus 
32 Lepthyphantes alacris 
33 L. zimmermanni 
34 L. mengei 
35 L. tenebricola 
36 L. ericaceus 

DR Diurnal running spiders 
NR Nocturnal running spiders 
A M Ambushers 
FW Funnel web spiders 
SL Scattered line weavers 
SW/unlabelled Sheet web weavers 

Fig. 6. - Key to species/guilds. 
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pollens, Centromerus dilutus, Walckenaeria cucullata, Monocephalus fuscipes, 

Diplocephalus latifrons and Saaristoa abnormis, and the two species of funnel web 

spider, Cryphoeca silvicola and Coelotes atropos. The lowest scores are found among 

the remainder of the sheet web weavers and a number of other guilds, namely the 

diurnal running spiders, nocturnal running spiders, ambushers, and scattered line 

weavers. Clubiona reclusa and Lepthyphanles alacris have the lowest and highest 

scores on this axis respectively, and are therefore least similar in terms of their 

distribution. 

The range of scores on Axis 2 is roughly the same as that of Axis 1, though the 

majority of species are grouped about the origin. However, there does appear to be 

some separation of guilds. The diurnal running spiders, with the exception oiPardosa 

nigriceps, have negative scores on this axis, as do the ambushers, Xysticus cristatus 

and X sabulosus, the funnel web spiders, Coelotes atropos and Cryphoeca silvicola, 

the nocturnal running spider Agroeca proxima, and the sheet web weavers Micrargus 

herbigradus, Walckenaeria acuminata, Diplocephalus latifrons, Silometopus elegans, 

Leptothrix hardyi, Lepthyphantes zimmermanni, L. mengei, and L. ericaceus, the 

latter three being particularly close to the origin. Positive scores on this axis are found 

in the nocturnal running spiders Clubiona reclusa and Drassodes cupreus, the 

scattered line weaver Robertus lividus, and the remainder of the common sheet web 

weavers, particularly Pocadicnemis pumila, Minyriolus pusillus and Bathyphantes 

parvulus. The members of the sheet web weavers have widely differing scores on this 

axis, both the species with the lowest {Leptothrix hardyi), and highest (Bathyphantes 

parvulus) scores being of this family. 
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4.1J. Derivation of ordination axes. 

The first axis of the ordination appears to be most closely related to vegetation 

density, as there is a significant negative correlation between this variable and Axis 1 

site scores (rg = -0.65, p<0.05). However, the fact that the relationship is not exact 

suggests that other factors play a more important part at certain sites, and it is likely 

that the main factor in the separation of the clear-felled and restocked sites on the one 

hand, and the plantation sites and the mixed-woodland on the other, was the presence 

of tree cover at the latter, hence the relatively high score of Site 6 on this axis despite 

its dense vegetation. In addition, as few of the common species at the plantation sites 

utilise above ground structures, its seems likely that the apparent link between axis 

score and vegetation density at these sites is spurious, and the relative scores of these 

sites may be linked to some other factor, perhaps litter depth. 

The derivation of Axis 2 of the ordination is more difficult to assess. The lowest 

scoring species on this axis, Leptothrix hardyi and Xysticus sabulosus are typical of 

sites with a high percentage of bare ground (Merrett, 1976), while among the highest 

scoring species, those such as Robertus lividus and Pocadicnemis pumila, are 

associated with woodland or upland sites, or sites with a well develop)ed vegetation 

layer (Lockett & Millidge, 1953; Coulson & Butterfield, 1986; Rushton et ai, 1987). 

This axis may therefore be related to the amount of bare ground or some aspect 

mediated by this, perhaps humidity. Again the relationship between axis score and 

environmental variable is not exact, indicating the influence of other factors at 
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particular sites, and the relative scores of the plantation sites on this axis appear to be 
due to some other factor, perhaps age. 

While a more detailed analysis of species disposition is carried out below, an initial 

consideration of species and site ordination diagrams suggests that, while there is a 

degree of overlap between the sites in terms of their species composition, there were 

clear differences between the communities of the restocked and clear-felled sites on 

the one hand, and the plantations and mixed-woodland on the other. The former were 

characterised by a range of species with negative scores on Axis 1 of the ordination, 

including members of the diurnal and nocturnal running spiders, the ambushers, and 

the scattered line weaver Robertus lividus, and also including a number of sheet web 

weavers, such as Gonatium ruhens, Cnephalocotes obscurus and Dismodicus bifrons. 

The plantation and mixed-woodland sites were characterised by a more limited range 

of species, consisting largely of sheet web weavers, such as Lepthyphantes alacris and 

L. tenebricola, and the funnel web spider Cryphoeca silvicola, with positive scores on 

Axis 1 of the ordination. While the position of the mixed-woodland, Site 6, on Axis 1 

of the ordination implies a close similarity between the community of this site and 

those of the plantations, the high score of this site on Axis 2 suggests that the 

community of Site 6 contains an element more typical of the clear-felled/restocked 

sites, namely the sheet web weavers Pocadicnemis pumila, Minyriolus pusillus and 

Bathyphantesparvulus, and the scattered line weaver i?o£>em lividus, which have high 

scores on this axis. In addition a number of species, the sheet web weavers Ceratinella 

brevipes, Lepihyphantes ericaceus and Saaristoa abnormis, and perhaps the funnel 

web spider Coelotes atropos, appear to show no preference for either the clear-felled 
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and restocked sites on the one hand, or the plantations and mixed-woodland on the 
other. It is apparent from the above description that the sheet web weavers show three 
discrete types of distribution, namely, confined to clear-felled/restocked sites, showing 
no preference for either clear-felled/restocked or plantation/mixed-woodland sites, and 
occurring in greater abundance at the plantation/mixed-woodland sites. 

4.2. Classification. 

4.2.1. Grouping of Hamsterley sites based on their spider assemblages. 

TWINSPAN was used to group sites, and to allow mean catches of individual species 

to be compared between these groups. TWINSPAN classified the 11 sites into four 

Endgroups representing different spider communities. Fig. 7 shows a dendrogram 

based on the results, showing the indicator species at each division, while Fig. 8 

superimposes the TVVINSPAN divisions on the ordination diagram (Fig. 6). 

Initially TWINSPAN divided the sites into two groups, one consisting of the restocked 

and clear-felled sites, the other of the plantation sites and the mixed-woodland Site 6. 

The indicator species for this division is the diurnal running spider Pardosa pullata, 

which occurred in large numbers at both restocked and clear-felled sites. This parallels 

the configuration of the sites on Axis 1 of the ordination diagram (Fig. 8). 
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In dividing the restocked from the clear-felled sites, TWINSPAN identified Pardosa 
amentata as a positive indicator. This species occurred at all sites in both Endgroups, 
but was consistently more abundant at Endgroup 2. 

Endgroup 1 consists of the restocked sites. Site 1 and Site 5, and is clearly separated 

firom the Endgroup 2 sites (NCF, CCF89, CCF90 and RFC) on the ordination 

diagram, the former having the lowest scores on Axis 1, and generally higher scores on 

Axis 2 of the ordination (Fig. 8), though there is some overlap. 

The third division made by TWINSPAN separates the mixed-woodland Site 6 and the 

plantation sites NOP and ROP (Endgroup 3), from the remaining plantation sites, COP 

and Site 2 (Endgroup 4). Both Endgroups have high scores on Axis 1 of the ordination 

diagram (Fig. 8), while Endgroup 3 sites have consistently higher scores on Axis 2. 

However, the arrangement of sites on the ordination diagram implies that the 

Endgroup 3 sites ROP and NOP, and the Endgroup 4 site COP have communities 

which were more similar to each other than they were to those of the other members 

of their Endgroups. ROP and COP in particular have similar scores on both axes, 

while COP is also closer to NOP on both axes than to Site 2, which lies at the extreme 

lower right of the ordination diagram. Site 6 is close to NOP on Axis 1, while being 

well separated on Axis 2. 

4.2.2. Distribution of Common species across Hamsterley sites. 

Table 3 gives the distribution of the 32 commonest species based on the TWINSPAN 

output. Only species trapped in numbers exceeding 19 individuals were included, as 
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these contributed most significantly to the resulting classification, and were the most 
amenable to statistical analysis. Table 4 gives a summary of the data in Table 3, 
showing mean catch per site with standard errors, of each species in each of the four 
Endgroups identified by TWINSPAN. 

The letters A to J indicate groups of species which formed associations (i.e., tended to 

occur together), based on the list of preferentials produced by TWINSPAN at each 

division. 

Associations A to F include those species which TWINSPAN considered more closely 

associated with Endgroups 1 and 2 as a whole, constituting those species on the 

ordination diagram, (Fig. 6) with scores less than zero on Axis 1. These species were 

more consistent, and reached their highest mean catches, at at least one of these 

Endgroups. Of the 23 species in these associations, 11 did not occur at either 

Endgroup 3 or 4, and of the remaining species, only Micrargus herbigradus, 

Haplodrassus signifer, Lepthyphantes mengei and Robertus lividus occurred at more 

than one site in either Endgroup 3 or 4. In addition, only two species, Walckenaeria 

acuminata and Bathyphantes parvulus, occurred at any Endgroup 3 or 4 site in 

numbers exceeding five individuals. 

However, due to the variation in total catch between Endgroups 1 and 2, and the 

relatively low numbers involved in some cases, only two of these species, Xysticus 

cristatus (Endgroup 1/Endgroup 2 mean = 8±2.7, Endgroup 3/Endgroup 4 mean = 0, 

t,= 2.7, p<0.4), and Lepthyphantes mengei (Endgroup 1/Endgroup 2 mean = 5.5+0.8, 

Endgroup 3/Endgroup 4 mean = 0.4±0.3, t,= 2.5, p<0.04) occurred in significantly 
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ENDGROUP 
SPECIES 1 2 3 4 
Clubiona reclusa 10.8±8 0.25±0.3 0 0.5±0.5 
Cnephalocotes obscurus 38±27 1.8±1.8 0 0 

A Drassodes cupreus 5±1 2.8±2.4 0 0 
Pocadicnemis pumila 89.5±38.5 1.3±0.8 1.3±1.3 0 
Minyriolus pusillus 13.5±6.5 0.3±0.3 0.7±0.7 0 
Walckenaeria acuminata 20.5±1.5 2±1.4 0 5±5 
Pardosa pullata 345.5±93.5 53.3±6.2 0.3±0.3 0 
Alopecosa pulverulenla 202±29 64±38.2 0 0 
Gonatium rubens 22.5±3.5 0.8±0.3 0 0 

B Micrargus herbigradus 6±2 1.3±0.6 0 2±1 
Haplodrassus signifer 26±18 4±2.2 0.3±0.3 1±1 
Pardosa nigriceps 44±12 5±2.4 0 0 
Agroeca proxima 7.5±1.5 5.8±4.5 0.3±0.3 0 
Dismodicus bifrons 9±5 3±2 0 0 
Lepthyphantes mengei 4±0 6.3±2.8 0.3±0.3 0.5±0.5 

C Xysticus cristatus 5±4 9.5±3.7 0 0 
Pardosa amentata 12±7 77.8±12.9 0 0 

D Silometopus elegans 2±1 4.5±6 0 0 
Trochosa terricola 3±0 6.8±3.7 0.3±0.3 0 
Xysticus sabulosus 0 8±4 0 0 

E Leptothrix hardyi 0 7.8±6.8 0 0 
Robertus lividus 17.5±11.5 0.5±0.3 2.3+1.5 0 

F Bathyphantes parvulus 19±18 0.3±0.3 4±4 0 
Lepthyphantes ericaceus 3±2 3.5±1.3 1±0.6 4±4 
Saaristoa abnormis 5.5±1.5 2.3+0.6 2±0.6 3.5±0.5 

G Walckenaeria cucullata 6.5±0.5 11.5±4.8 15.7±5.8 11.5±2.5 
Coelotes atropos 0.5±0.5 5.3±4 0.7±0.7 6±3 
Ceratinella brevipes 4.5±0.5 1±0.4 3±2.5 0.5±0.5 

H Centromerus dilutus 0.5±0.5 1.3±0.5 4.7±1.3 2.5±2.5 
Lepthyphantes alacris 1±1 2.5±2.5 17.3+5.3 11.5±2.5 

I Lepthyphantes zimmermanni 7.5±2.5 17±4.3 30±4.5 36.5±15.5 
Cryphoeca silvicola 1.5±0.5 0.8±0.5 5±4 39±35 
Monocephalus friscipes 33±10 19.5±6.1 44±7.6 81±20 

J Tapinocyba pallens 12±6 11.5±4.4 20.7±5.7 38.5±12.5 
Diplocephalus latifrons 0 6.5±3.8 25.7±22.2 11.5±2.5 
Lepthyphantes tenebricola 1±1 2.8±1.1 19±11.5 22.5+0.5 

Table 4. Means (± SE) at each TWINSPAN Endgroup for the 36 species 
trapped in numbers exceeding 19 individuals, 

based on Table 3. 
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greater numbers at Endgroups 1 and 2. This is in addition to the diurnal running 
spiders Pardosa amentata, P. pullata and Alopecosa pulverulenta, which were not 
tested due to their abundance at Endgroup 1 and 2 sites, and their virtual absence fi-om 
those of Endgroups 3 and 4. 

Associations A and B characterised the Endgroup 1 sites, which represented the 

situation nine years after clear-felling, with their dense and extensive vegetation cover. 

Association A includes those species which reached their highest mean abundance at 

this Endgroup, and were trapped at all sites within it. While no species was completely 

confined to Endgroup 1, Cnephalocotes obscurus, Clubiona reclusa and Minyriolus 

pusillus occurred at only one site in Endgroup 2, though the last two species also 

occurred at one site in either Endgroup 3 or 4, and no species occurred at more than 

half of the sites in Endgroup 2, though again two species, Pocadicnemis pumila and 

Walckenaeria acuminata were trapped at one site each in Endgroups 3 and 4. In the 

case of the latter, the abundance of this species at COP in Endgroup 4 was the third 

highest at any site. In addition, Drassodes cupreus was most abundant at RCF in 

Endgroup 2, but was consistent, and had a higher mean catch at Endgroup 1. 

Species in association B were again consistent, and had their highest mean catch at 

Endgroup 1. However, unlike the species in association A, these species tended to be 

consistent, or virtually so, at Endgroup 2. The diurnal running spiders Pardosa 

pullata, the negative indicator for the first TWINSPAN division, and Alopecosa 

pulverulenta, for instance, occurred at all sites in Endgroups 1 and 2, while all of the 

remaining species occurred at at least three Endgroup 2 sites. In all but two cases, 
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Gonatium rubens and Micrargus herbigradus, at least one site involved numbers in 
excess of five individuals, generally RCF, though Pardosa nigriceps also occurred in 
significant numbers at NCF. In addition, Agroeca proxima was most abundant at the 
Endgroup 2 site RCF. 

Association C includes those species which did not show any preference for either 

Endgroup 1 or 2. Xysticus cristatus occurred at all sites within both Endgroups, while 

reaching its highest mean catch per site at Endgroup 2. Lepthyphantes mengei was 

consistent within Endgroup 1, though the numbers involved were relatively small, and 

reached its highest mean catch per site at Endgroup 2. 

Associations D and E include those species which were more closely linked with the 

relatively sparsely vegetated Endgroup 2 sites, which represented the period between 

one and four years after clear-felling. Of the species in association D, two, the positive 

indicator for the second TWINSPAN division, Pardosa amentata, and Silometopus 

elegans, occurred at all sites within both Endgroups 1 and 2, while Trochosa terricola 

was not trapped at CCF90. However, all three species were most abundant at an 

Endgroup 2 site, and had their highest mean catch here. Pardosa amentata in 

particular was consistently more abundant at Endgroup 2 sites, while Silometopus 

elegans and Trochosa terricola were trapped in numbers exceeding five individuals 

only at Endgroup 2. 

Association E includes those species most characteristic of Endgroup 2. Xysticus 

sabulosus and Leptothrix hardyi were the only common species confined to a single 
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Endgroup, though neither species was trapped at all sites in Endgroup 2. X. sabulosus 
was trapped at NCF, CCF90 and CCF89, and L. hardyi at CCF90 and CCF89, though 
both occurred in numbers exceeding five individuals only at CCF89. 

Association F consists of species which were weakly associated with the clear-felled 

and restocked sites as a whole. Both Robertus lividus and Bathyphantes parvulus 

were trapped at both Endgroup 1 sites, and had their highest mean catch at this 

Endgroup. However, both were virtually absent from Endgroup 2, and had a higher 

mean catch at Endgroup 3, largely due to their occurrence at Site 6. Bathyphantes 

parvulus was trapped in significant numbers only at Site 5 in Endgroup 1, and Site 6 in 

Endgroup 3. 

Association G contains those species which showed no clear preference for either 

Endgroup 1/Endgroup 2 sites, or Endgroup 3/Endgroup 4 sites, and t-tests on the 

distribution of these species showed no significant differences between these two 

groups of sites. Of these species, two, Saaristoa abnormis and Walckenaeria 

cucullata, were trapped at all 11 sites, showing the highest mean catches in Endgroups 

1 and 3 respectively. Lepihyphantes ericaceus occurred at all sites in Endgroups 1 and 

2, while reaching its highest mean catch at Endgroup 4, while Coelotes atropos was 

most abundant at the Endgroup 2 site RCF, but was consistently trapped only at 

Endgroup 4, where it also reached its highest mean catch. 

Associations H to J contain those species more closely associated with the 

plantation/mixed-woodland sites of Endgroups 3 and 4. These sites represented 
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mature habitats, from approximately 20 to 50 years after clear-felling, and were 
generally characterised by a pooriy developed, or absent, vegetation layer, though at 
the mixed-woodland. Site 6, vegetation density was the fourth highest overall. What is 
clear is that, while many of these species reach their highest abundance at one of these 
sites, and/or their highest mean catch at one of these Endgroups, only the positive 
indicator for the third TWINSPAN division, Diplocephalus latifrons, did not occur at 
all four Endgroups, being absent from Endgroup 1, and only Ceratinella brevipes, 
Centromerus dilutus, Cryphoeca silvicola and Lepthyphantes tenebricola did not 
occur at any Endgroup 1 or 2 site in numbers exceeding five individuals. 

Significant differences between mean catch per site for Endgroup 1/Endgroup 2 and 

Endgroup 3/Endgroup 4 were obtained for Monocephalus fuscipes (Endgroup 

1/Endgroup 2 mean = 24±5.4, Endgroup 3/Endgroup 4 mean = 58.8±11.8, t, = 2.8, 

p<0.02), Lepthyphantes zimmermanni (Endgroup 1/Endgroup 2 mean = 13.8+3.5, 

Endgroup 3/Endgroup 4 mean = 32.6±5.7, t, = 2.9, p<0.02), Tapinocyba pollens 

(Endgroup 1/Endgroup 2 mean = 11.7±3.2, Endgroup 3/Endgroup 4 mean = 27.8± 

6.7, t, = 2.3, p<0.02), Lepthyphantes alacris (Endgroup 1/Endgroup 2 mean = 2±1.6, 

Endgroup 3/Endgroup 4 mean = 15±3.4, t, = 3.7, p<0.01) and L. tenebricola 

(Endgroup 1/Endgroup 2 mean = 2.2+0.8, Endgroup 3/Endgroup 4 mean = 20.4±6.3, 

tg = 3.1, p<0.02). 

Association H includes those species which were most characteristic of Endgroup 3. 

The negative indicator for the third TWINSPAN division, Lepthyphantes alacris, is 

included in this association for convenience, despite the fact that TWINSPAN 
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considered this species more strongly associated with the wooded sites as a whole than 
any other. This species was trapped at all Endgroup 3 and 4 sites, but reached its 
highest mean catch at Endgroup 3. In addition, this species was trapped at one site in 
each of Endgroups 1 and 2, but only exceeded five individuals at NCF in the latter. 
Centromerus dilutus occurred consistently at only Endgroup 3, where it also reached 
its highest mean catch, and indeed, was not trapped in numbers exceeding five 
individuals outside this Endgroup. Ceratinella brevipes was consistent at only 
Endgroup 1, and reached its highest mean catch here, though it occurred in the 
greatest numbers at Site 6, the only site at which it exceeded five individuals. 

Association I contains a single species, Lepthyphantes zimmermanni, which showed 

no preference for either Endgroup 3 or 4. Tliis species was trapped at all sites 

sampled, and occurred in numbers exceeding five individuals at every site with the 

exception of Site 5 in Endgroup 1, though it was trapped in the greatest numbers at 

Site 2 in Endgroup 4, also reaching its highest mean catch at this Endgroup. 

Association J contains those species which TWINSPAN considered most 

characteristic of Endgroup 4. All five species occurred consistently at the sites of this 

Endgroup, though in the case of Cryphoeca silvicola numbers were low at COP. 

Lepthyphantes tenebricola, Cryphoeca silvicola, Tapinocyba pallens and 

Monocephalus friscipes all reached their highest mean catch at this Endgroup. 

Diplocephalus latifrons was trapped in the greatest numbers at NOP in Endgroup 3, 

where it also reached its highest mean catch, though it was not consistent at this 

Endgroup. 
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4.2.3. The relationship between the classiflcation of Hamsteriey sites and their 

position on the successionai gradient. 

The classification of the Hamsteriey sites by TWINSPAN reflected to some extent 

their relative positions on the successionai gradient. Hence the relatively sparsely 

vegetated clear-felled sites, representing years one to four of succession, were grouped 

in Endgroup 2, while the restocked sites, which represented the ninth year and had a 

dense and extensive vegetation layer, were grouped in Endgroup 1. However, while 

the plantations and the mixed-woodland, representing years 21 to 52 of succession, 

were separated from Endgroups 1 and 2 in the first TWINSPAN division, piaralleling 

their separation on the ordination diagram (Fig. 5), the separation of these sites into 

Endgroups 3 and 4 did not conform to their position on the successionai gradient, 

though a consideration of the data shows that there was very little difference between 

them in terms of their common species. In addition the inclusion of Site 6 in Endgroup 

3 highlights the similarity of its fauna to those of the plantation sites. This is despite 

the fact that, in contrast to these sites, it had a shallow litter layer and dense 

vegetation, again suggesting that tree cover was an important factor influencing the 

structure of spider communities at Hamsteriey. However, the occurrence at Site 6 of 

species such as Pocadicnemis pumila, Minyriolus pusillus, Robertas lividus, and 

particularly Bathyphantes parvulus, which were most abundant at Endgroup 1, 

confirms the implication of the ordination that Site 6 had some species in common 

with the more open sites. 
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4.3. Distrihiition of the six major spider guilds across Hamsterlev sites. 

Fig. 9 shows the distribution of individuals across the 11 sites for each of the six major 

guilds. A major guild in this case was defined as one which contained at least one of 

the common species included in Table 3. 

(a) Diurnal running spiders. 

The diurnal running spiders (Fig. 9a), were trapped in significantly greater numbers at 

the clear-felled/restocked sites of Endgroups 1 and 2 (Endgroup 1/Endgroup 2 mean = 

343±89.5, Endgroup 3/Endgroup 4 mean = 0.4±0.2, tg = 3.5, p<0.01), with the 

greatest numbers caught at the Endgroup 1 sites, particularly Site 5 (652), and RCF in 

Endgroup 2 (353). Table 5 shows the contribution of each major guild to the catch at 

each site. At the clear-felled sites, the diurnal running spiders were caught in greater 

numbers than any other single guild, and at all of these sites, with the exception of 

NCF (46.8%), accounted for over half of all individuals trapped. The highest 

percentage was that at RCF (65.1%), followed by the Endgroup 1 sites. Site 5 and 

Site 1 (61.5% and 58.1% respectively). Values at the remaining sites were 56.1% 

(CCF89), 50.2% (CCF90) and 46.8% (NCF). Table 6 shows the contribution of each 

family to the total number of species at each site, while Table 7 gives the mean 

numbers of species for the major guilds in each of the TWINSPAN Endgroups based 

on Table 6. It is apparent that, though the diurnal running spiders were trapped in 

large numbers at the above sites, the number of species involved was relatively small. 
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Fig. 9. Distribution of individuals between sites for the six major spider 
guilds identified at Hamsterley. 
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ENDGROUP 
GUILD 1 2 3 4 
Diurnal Running Spiders 5.5±0.5 5.5±0.3 0.7±0.3 0 
Nocturnal Running Spiders 7±0 3±1.3 0.7±0.3 0.5±0.5 
Ambus Iiers 1±0 1.75±0.3 0 0 
Funnel web spiders 1±0 1±0.4 1±0.6 2±0 
Scattered line weavers 1±0 0.5±0.3 1±0.6 0.5±0.5 
Sheet web weavers 31±1 27.3±0.6 23±3.6 21.5±2.5 

Table 7. Mean number of species (± SE) for the major guilds 
at each TWINSPAN Endgroup. 
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Despite their dominance at the Endgroup 1 sites in terms of abundance, in terms of 
mean number of species (Table 7) the diurnal running spiders were only the third most 
important guild after the sheet web weavers and nocturnal running at this Endgroup, 
while at Endgroup 2, only the sheet web weavers were more important in this respect. 

(b) Nocturnal running spiders. 

Like the diurnal running spiders, the nocturnal running spiders (Fig. 9b) were trapped 

in significantly greater numbers at the Endgroup 1/Endgroup 2 sites than at the 

Endgroup 3/Endgroup 4 sites (Endgroup 1/Endgroup 2 mean = 20.5±7.8, Endgroup 

3/Endgroup 4 mean = 0.8±0.4, tg = 2.9, p<0.05), with peaks at Site 1 (40), Site 5 (29), 

and particularly RCF (43). On the sites where they occurred, members of this guild 

were often the third most numerous group in terms of number of individuals trapped 

(Table 5), though never approaching the sheet web weavers or diurnal running spiders 

in this respect. The highest contribution of this guild to the total catch occurred at Site 

1 (9.3%), followed by RCF (7.9%), Site 5 (2.7%), CCF90 (2.4%), CCF89 (1.6%), 

ROP (0.7%>), Site 2 (0.5%) and Site 6 (0.5%), again emphasising the preference for 

clear-felled/restocked sites. The number of species of this guild trapped at each site 

(Table 6), closely reflects the above sequence, with the highest numbers found at Site 

1 (7), Site 5 (7) and RCF (6), followed by CCF90 (4), CCF89 (2), ROP, Site 2 and 

Site 6 (all with 1). At the first three of these sites, this guild represented the second 

most abundant guild in terms of numbers of species. In terms of mean number of 

species (Table 7), this guild was most abundant at Endgroup 1, where it was the 

second most important guild in this respect. 
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(c) Ambushers. 

Fig. 9c shows the distribution of individuals belonging to the ambushers. As with the 

previous guild, the ambushers showed a preference for the Endgroup 1/Endgroup 2 

sites (Endgroup 1/Endgroup 2 mean = 11.3±7.8, Endgroup 3/'Endgroup 4 mean = 0, ig 

= 2.9, p<0.02), and were trapped in the greatest numbers at CCF89 (23), NCF (20) 

and RCF (11) in Endgroup 2. In general the contribution of this guild to the total catch 

was low (Table 5). However, at CCF89 (7.4% of ail individuals at this site) and NCF 

(5.5%), this was the third most abundant guild after the sheet web weavers and 

diurnal running spiders. Values at the remaining sites were; RCF (2.0%), CCF90 

(1.4%), Site 1 (0.9%) and Site 5 (0.1%). As with number of individuals, number of 

species (Table 6) was low, though at NCF and CCF89 this guild was the third most 

important in this respect due to the presence of X. sabulosus. The generally low 

number of species involved is reflected in the low mean species per Endgroup (Table 

7), and even at Endgroups 1 and 2, this guild was only the fourth most important 

overall in this respect. 

(d) Funnel web spiders. 

Fig. 9d shows the distribution of the funnel web spiders. Peaks occur at Site 2 (83), 

RCF (18) and ROP (15), though overall the numbers involved are small. Of these, that 

at Site 2 is largely due to the presence oiCryphoeca silvicola (Table 3), while at RCF 

Coelotes atropos is the main species. Overall the distribution shows a preference for 

the wooded sites, though this difference is not significant (Endgroup 1/Endgroup 2 
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mean = 4.7±2.7, Endgroup 3/Endgroup 4 mean = 21.4±15.6, tg = 0.84, p >0.4). This 
largely reflects the distribution of C. silvicola, which accounted for 73.3% of all 
individuals of this guild trapped, and at Site 2, COP and ROP, this was the second 
most abundant guild after the sheet-line weavers (Table 5), largely due to the 
abundance of this species at these sites. In terms of number of species (Table 6) the 
contribution of this guild was low, with the highest mean number of species (Table 7) 
at Endgroup 4. Despite this, at all sites in Endgroups 3 and 4, with the exception of 
NOP, this was the second most important guild after the sheet web weavers in this 
respect. 

(e) Scattered line weavers. 

Fig. 9e shows the distribution of the scattered line weavers. Robertas lividus was the 

only species of this guild trapped in significant numbers during this study, and hence 

the data largely reflects the distribution of this species between sites (Table 3), with 

63.0% of all guild members trapped at Site 1 (29) and the remainder being sparsely 

distributed over both open and wooded sites. The contribution of the scattered line 

weavers to the catch at each site was generally low (Table 5), though at the two sites 

with the lowest catch in terms of numbers of individuals, Site 6 (2.3%) and ROP 

(2.0%), this guild was second and third respectively in terms of abundance. The 

greatest contribution of this guild to overall number of individuals was at Site 1 

(3.0%), due to the abundance of/?, lividus. In terms of numbers of species (Table 6), 

the contribution of this guild to the community was generally low, and mean number 



64 

of species (Table 7) never exceeded one. However, at Site 6 and ROP, this was the 
second most important guild in this respect. 

(f) Sheet web weavers. 

Taken as a guild, the sheet web weavers show little in the way of preference for either 

open or wooded sites (Endgroup 1/Endgroup 2 mean = 194.5±43.1, Endgroup 

3/Endgroup 4 mean = 235.4±34.8, tg = 0.7, p>0.2). Fig. 9f shows that significant 

numbers of this guild occurred at all sites, but with peaks at Site 5 (370), NOP (316), 

Site 2 (308) and Site 1 (273). Table 5 shows that the contribution of this guild to the 

total number of individuals caught was consistently high, and at Endgroups 3 and 4 the 

sheet web weavers were the most abundant guild, with values ranging from 76.1% 

(Site 2) to 99.7% (NOP). At Endgroup 1 and 2 sites, this was generally the second 

most abundant guild, with values ranging from 21.2% (RCF) to 46.8% (NCF). In this 

latter case, this was the dominant guild in this respect along with the diurnal running 

spiders. In terms of number of species (Table 6), this guild was the most abundant at 

all sites, with values ranging from 18 (ROP) to 32 (Site 1). Number of species was 

generally higher at Endgroups 1 and 2, particularly the former, and this is reflected in 

the higher means for these Endgroups (Table 7), though the mixed-woodland. Site 6, 

had the second highest value overall. 

It is apparent that not all of the guilds defined in this study were equally sensitive in 

responding to changes in the environment along the successionai gradient. At one 

extreme, the scattered line weavers were largely represented by one species, Robertas 
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lividus, and the observed pattern was therefore likely due to its particular habitat 
requirements. At the other end of the spectrum, the sheet web weavers were 
represented by more than 70 species, and this guild as a whole appeared to be 
relatively insensitive to changes along the successional gradient, as the large number of 
different lifestyles and habitat requirements involved obscured any picture which may 
have been gained using a smaller and/or more heterogeneous group of species. 
However, subsets of this guild did show patterns of distribution which could be linked 
to successional change, particularly those species most typical of Endgroups 3 and 4. 
The most useful guilds in identifying broad changes along the gradient were the diurnal 
and nocturnal running spiders. The absence of the former from Endgroups 3 and 4, 
and their ubiquity at Endgroups 1 and 2, suggests some link with the closing of the 
canopy, while the increased evidence of the latter at Endgroup 1 implies that the 
increased vegetation complexity at these sites may be important to this guild. 

4.4. Diversity and species abundance. 

4.4.1. Diversity indices. 

4.4.1.1. Ranking of sites. 

Table 8 gives the values for species richness and abundance at each of the 11 

Hamsterley sites, with the values of the four indices calculated. 
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(1) Log series a. 

Values for the log series a ranged from 5.37 (NOP), to 12.97 (CCF90). Endgroup 1 

and 2 sites had higher a values (i.e. were more diverse) than plantation sites, though 

Site 6, the mixed-woodland, had the third highest a value overall (11.37). Within 

Endgroups 1 and 2, the highest a values were attained by CCF90, CCF89 (11.80) and 

RCF (11.31). Index values for Site 1 and Site 5 were 11.18 and 9.53 respectively, 

straddling that of the Endgroup 2 site NCF (10.31). The most diverse of the plantation 

sites with this index was ROP (8.09) followed by Site 2 (7.48), COP (6.70) and NOP 

(5.37). 

(2) Margalef index. 

Overall values of this index ranged from 3.65 (NOP) to 7.13 (Site 1), and as with the 

log series a, Endgroup 1 and 2 sites were more diverse than the plantations. In the 

case of Site 6, however, the value obtained using the Margalef index (6.15) was lower 

than those of the clear-felled and restocked sites. After Site 1 the most diverse site 

using this index was CCF90 (7.04), followed by RCF (6.83), CCF89 (6.62), Site 5 

(6.32) and NCF (6.28). Of the Endgroup 3 and 4 sites. Site 6 (6.15) had the highest 

index value, followed by Site 2 (4.83) and ROP (4.60). Again, the lowest index values 

were those of the plantation sites COP (4.23) and NOP (3.65). 
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(3) Berger-Parker Dominance index 

Reflecting as it does the dominance/eveness component of the species abundance 

data, the ranking of Hamsterley sites based on this index differed markedly from those 

obtained using the log series a and Margalef indices. Values of the reciprocal of this 

index ranged from 5.42 (NCF) to 2.42 (Site 5), higher values indicating a higher 

eveness, and therefore diversity. Generally Endgroup 3 and 4 sites had higher rankings 

using this index, though NCF had the highest value and COP (3.72) the fourth lowest. 

(4) Simpson index. 

Values of the reciprocal of this index ranged from 11.95 (NCF) to 4.59 (Site 5). In 

general, Endgroup 3 and 4 sites were more diverse using this index, though NCF and 

CCF90, representing the earliest stages of succession, were ranked first and fourth 

respectively. Of the Endgroup 3 and 4 sites, the most diverse with this index was the 

mixed-woodland, Site 6, while the least diverse was the oldest of the plantations, Site 

4.4.1.2. Correlation between indices. 

Table 9 gives the results of comparisons between the site rankings produced by each 

of the variables in Table 8 using Spearman's rank correlation coefficient. Species 

richness was significantly correlated with all other variables with the exception of the 

reciprocal Simpson index, the strongest correlation being with the Margalef index 

(p<0.01). In contrast, number of individuals showed significant correlation only with 
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the reciprocal Simpson index (p<0.05). Amongst the diversity indices, the species 
richness indices showed a strong positive correlation with each other (p<0.01), as did 
the dorainance/eveness indices at the same level. However, indices from one group did 
not show any significant correlation with indices from the other. 

Previous studies have shown that diversity indices are often correlated (Magurran, 

1988). Goodman (1975), studying the behaviour of a range of diversity indices, found 

that rankings produced by species richness indices were closely correlated, while the 

same was true for eveness/dominance indices, though the rankings produced by the 

two groups of indices were different. Magurran (1981) observed a similar relationship 

between indices derived from light trap data in Irish woodlands. In general, this study 

is in agreement with these results, the two groups of indices producing different 

rankings, but with the indices within each group closely correlated. However, where 

the results differ from those of Goodman (1975) and Magurran (1981) is in the 

significant negative correlation between the ranking produced by the reciprocal of the 

Berger-Parker index, and that produced by species richness. 

4.4.1.3. The use of pitfall trap data in relation to the calculation of diversity indices. 

While pitfall trapping has been shown to be a useful method for surveying invertebrate 

populations, caution must be observed when using data derived from this method of 

sampling to calculate diversity indices. The assumption when calculating indices of this 

nature from species abundance data is that the resulting value is a representation of 

some aspect of the diversity of the physical habitat, manifested in the sampled fauna 
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(Bullock, 1971). However, Topping & Sunderland (1992) have shown that pitfall trap 
catches do not give a true representation of the relative abundance of species in the 
sampled community, due to the fact that the catch size of individual species is 
influenced by a range of factors which are independent of the actual abundance of the 
species (e.g. Tretzel, 1954; Duffey, 1956; Baars, 1979; Chiverton, 1984). However, in 
the current study the use of diversity indices with pitfell data has been retained, as it is 
the opinion of the author that, as long as the factors which affect the catch are 
appreciated, useful comparisons may still be made using indices of this nature. 

4.4.1.4. The performance of individual diversity indices with the Hamsterley data. 

One of the factors which can effect the catch of a species in pitfell traps is activity rate 

(Tretzel, 1954; Heydemann, 1961). Relatively active species are more likely to 

encounter a trap than sedentary forms, and hence the numbers of the former are likely 

to be overestimated, and the latter underestimated, relative to each other. Bearing this 

in mind, it would seem logical to assume that those indices based on species richness 

would be more satisfactory than those based on the dominance/eveness component of 

diversity when used in conjunction with species abundance data derived from pitfell 

traps, as both the Berger-Parker and Simpson indices are heavily influence by the 

abundance of the commonest species (Southwood, 1978; Magurran, 1988). In this 

study both of these indices tended to give low values for Endgroup 1 and 2 sites, such 

as CCF89, RCF and Site 5, which were each dominated by one species of diurnal 

running spider, which are active hunters and overestimated by pitfell trapping (Delchev 

& Kajak, 1974). This is particularly pronounced in the case of the Berger-Parker 
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index, which is reliant only on the ratio of the abundance of the commonest species to 
total abundance, and as the Endgroup 1 and 2 sites were also the most species rich, 
this accounts for the significant negative correlation between the ranking produced by 
this index and that produced by species richness. While the Simpson index is not so 
dependent on the abundance of the commonest species for its calculation, this effect is 
still apparent in the ranking produced using this method, though it is not as 
pronounced as with the Berger-Parker index. Hence the three lowest ranked sites with 
the Simpson index were Site 5, RCF and CCF90 which were three of the most species 
rich sites in this studv. 

The log series a is one of the most widely used diversity measures, and Southwood 

(1978) considered it an excellent candidate for a universal diversity statistic. It is 

relatively easy to calculate, has good discriminant ability, and is less affected by the 

abundance of the commonest species than other popular indices (Magurran, 1988). 

However, Butterfield »S: Coulson (1983) found that the log series a underestimated the 

diversity of large samples, and overestimated that of small samples, and in the current 

study, while the ranking produced by this index was not significantly correlated with 

number of individuals, the relatively low ranking of Site 5, and relatively high ranking 

of Site 6, did seem to be manifestations of this problem. In the case of Site 6, the low 

catch at this site may well have been due to the sedentary nature of the species making 

up its community, coupled with the high vegetation density. The high catch at Site 5 

was largely due to the abundance of the diurnal running spider Pardosa pullata, which 

made up over 40% of the catch at this site. This species occurred at all Endgroup 1 

and 2 sites, but was most closely associated with Endgroup 1. As this species was 
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likely already abundant at this site, the low vegetation density in relation to Site 1 may 
have resulted in a higher catch, and hence the relatively low diversity of this site may 
be attributable, at least in part, to the trapping method. 

The Margalef index was the most satisfactory of the four diversity measures evaluated 

in this study. Based as it is on the species richness component of the date, this index 

did not suffer to the same extent as the Berger-Parker and Simpson indices from the 

problems caused by the eftect of differential activity rates on the catches of individual 

species. Neither did it appear as prone to the effects of both large and small N values 

which influenced the log series a, though the relatively low ranking for Site 5 using 

this index was perhaps attributable to this effect. 

4.4.2. Species abundance models. 

4.4.2.1. Log abundance on rank plots. 

Fig. 10 shows log abundance on rank plots for the 11 Hamsterley Forest sites. The 

shallowest curves, and hence the most equiteble distributions, are those of the 

Endgroup 1 sites (Sites 1 and 5), while the steepest curve is that of the plantetion site 

NOP, and it is clear from this figure that, in general, the Endgroup 1 and 2 sites had a 

more even distribution of abundance than Endgroups 3 and 4. However, it is difficult 

to discern trends in eveness within each of these groups from this figure. Figs. 11 and 

12 show plots for these sites based on the first TWINSPAN division. Fig. 11 suggests 

that there was a general increase in eveness throughout the period represented by 



74 

u u c j u b b f c o o o ! -
C J ( J a : tr) ( / I ( / ) 

I I - I o (> [i 4' 
o £2: 
i l l 

5 
9 5« 

< 

O 
>> 

!5 

a 
s 

2 

03 
6X) 
S3 
14 W 
s n 
•o 
s 
s 
n 
o 

o 

HONvaNnav qo t 



75 

iZ 

a 

XI 
E 
>> 

1/3 

' v i 

•o 
c a a 
s 
£ 
•a 
s 

tii 
u 
a 
s 

2 
Vl 

e 
"a ex) a 
it y 
s 
C3 

-o 
s 
3 

X 
« 
61) 
o 
o 
o 

exi 

aoNVQNnav o o i 



76 

in 

ex) 
s 

"a 
y 
o 

r § 
bx) 

o 
. in 

as 
a - 3 

X . 
E = 

- ^ - ^ Vi 2 o> & 
E 

Vi S p) _ O 
y in 

a o 
3 
o ^ " • CO 

El exi . 
-D OX) El 0) t 1 C\J 

El 
c 2 

i 1 ^ o 
El «-

^ a 
11 
t 1 CM 

z < c -P 
II a 

^ a 1 1 
a 
^ a 

1 1 CM 

II .s s 
II 
II 

a a OX) a 4) 
II °? a> X II °? y •« e a 

-o s 
3 

< • ^ X 
- a 

0X1 

I 
lO

l O
I 

lO
 

• -

I 
lO

l O
I 

lO
 

- 0) 
r i r i 

- t-- OX) 

aoNVQNnav oon 



77 

Endgroups 1 and 2, though NCF appears to be slightly more even than CCF89 and 
CCF90. Fig. 12 shows that, while Endgroup 3 and 4 sites were generally less even 
than Endgroup 2 sites with the exception of RCF, in terms of the plantation sites, there 
appears to be no pattern in eveness related to successional age, as after NOP, the site 
wi th the least even distribution of abundance appears to be Site 2. 

4.4.2.2. Performance of individual species abundance models with the Hamsterley 

data. 

Table 10 gives values, degrees-of-freedom and probabilities for the fit of each of 

the four models to the observed species abundance data at the 11 Hamsterley sites. 

Graphical representations of these results can be found in Appendix 3. The null 

hypothesis for in each case was that there was no difference between the values 

predicted by these models, and those observed in the species abundance data. 

The least satisfactory of the four models tested was MacArthur's broken stick, which 

did not adequately describe the observed species abundance data at any of the 11 sites, 

and at all sites with the exception of Site 6 provided the poorest description. The 

geometric series performed marginally better, providing an adequate description of the 

data at COP, and the best description at ROP along with the log series. However, at 

the remaining sites it furnished the poorest description of the observed data, and 

overall its performance was inadequate. The two remaining models, the log series and 

truncated log normal, performed fairly well with the data. However, of the two, the 
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log series was more satisfactory, as it performed more consistently, providing the best 

fit to the observed data at 10 of the 11 sites, and at all sites with the exception of 

CCF89 furnished a f i t to the observed data at least as good as that of the truncated log 

normal. 

4.4.2.3. The suitability of goodness-of-fit tests for assessing the f i t of species 

abundance models. 

The inability of goodness-of-fit tests to give a clear distinction between different 

species abundance models has lead to criticism of this method, and some authors, (e.g. 

Lambshead & Piatt, 1985; Hughes, 1986), have recommended inspection of the 

graphical data alone (Magurran, 1988). However, the use of this method is retained 

here, as Magurran (1988) considered that interpretation of results in terms of both 

goodness-of-fit tests and the shape of the species abundance data would in virtually all 

cases provide the best solution to the problem. 

4.4.2.4. The relative merits of the four species abundance models in relation to 

their performance with the Hamsterley data. 

Though species abundance data can be described by one or more of a family of 

distributions (Pielou, 1975), it is usually examined in relation to the four models used 

in this study (Magurran. 1988). These four distributions represent a sequence firom the 

geometric series, with a few dominant species, to MacArthur's broken stick, where the 
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abundance of the species making up the community is more or less equal (Magurran, 
1988). 

In terms of theoretical derivation, the geometric series, log series and broken stick 

distributions arise mainly from consideration of relatively simple systems with only a 

single factor considered to be involved in determining the organisation of the 

community, whereas the log normal would be expected to occur in situations in which 

many factors play a part (May, 1975; Magurran, 1988; Putman, 1994), though Pielou 

(1975) suggested a single resource model for the occurrence of this model in natural 

communities. However, Magurran (1988) considered that it was more useful to 

consider these models as a statistical fit to empirical data, as the hypotheses behind 

them are either unproved or discredited. 

The geometric series is usually found in communities which are species poor or in the 

early stages of succession, where environmental conditions may be harsh (Magurran, 

1988). In this study successional stage and species richness were more or less mutually 

exclusive, the early successional sites being more species rich than those later in 

succession. Overall, the fit of the geometric series to the data was poor, with 

probabilities generally less than 0.001. However, at the plantation sites COP (x" = 

30.4, d.f. = 22, p<0.5>0.1) and ROP (x" = 18.7, d.f. = 23, p<0.9>0.5), which were 

two of the least species rich sites, this model gave a better fit to the observed data, and 

indeed at the latter provided the best fit along with the log series. A t the remaining 

sites, this model had a tendencv to underestimate the numbers of the commonest 

species, and overestimate those of the less common, though at NCF, which 
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represented the first year after clear-felling, this model gave a relatively good 
description of the observed data for all species with the exception of the commonest, 
Pardosa pullata, the numbers of which were underestimated. At the site with the 
lowest species richness, NOP, this model gave a good description of the abundance of 
the common and rare species, but overestimated the numbers of the moderately 
common species Agyneta conigera, Porrhomma pallidum, Centromerus dilutus and 
C. prudens, f)erhaps because the period when they were most abundant lay outside the 
trapping period, or perhaps because, these species were less susceptible to capture 
using pitfall traps. The latter highlights the fact that, as the fit of this model is based on 
the abundance of individual species, it too is susceptible to trapping bias, particularly 
in the case of the commonest species where large differences between the expected 
and observed values for individual species can result in high yj values, and rejection of 
the fit of this model. With the remaining models, where the fit is based on the number 
of species in particular abundance classes, this effect is likely to be less important, as 
the X" values of only one or two abundance classes wi l l be affected 

The log series was first suggested as a suitable descriptor for species abundance data 

by Fisher et al. (1943). Magurran (1988) considered that the geometric series would 

grade into the log series as conditions became less harsh, or as succession proceeds, 

and the two distributions are closely related (May, 1975; Magurran, 1988). In this 

study there was little evidence that the fit of this model improved with site age, though 

the overall fit appeared marginally better at the Endgroup 3 and 4 sites. Bullock 

(1971), studying avian communities in south-east Asia, considered that, while the log 

series and log normal were equally effective in terms of actual f i t to the data, the log 
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series was more satisfactory due to the relative ease of its calculation, its more 
consistent performance, and the overiy flexible nature of the log normal, making it 
prone to spurious fits. Taylor (1978) and Kempton & Wedderbum (1978) considered 
that the log series was a more suitable descriptor of natural communities than the log 
normal, because of its poor fit at the rare end of the spectrum, hence ensuring only 
resident species were considered (Magurran, 1988), and in this study this model was 
generally a poorer fit to the observed data than the log normal for those species with 
between one and four individuals (octaves I and I I ) , though the differences involved 
were relatively small. In general the log series was the most satisfactory of the four 
models tested, providing the best fit to the observed data at all sites with the exception 
of CCF89, though at RCF the fit was still poor (x-= 17.6, d.f. = 7, p<0.05>0.01). 

First applied to species abundance data by Preston (1948), the log normal is the most 

common distribution met with by ecologists in relation to natural communities, and 

May (1975) considered this the most appropriate model for use with species 

abundance data, as it reflects the many processes at work in a community. In addition, 

Magurran (1988) considered that the fact that this model describes more data sets than 

the log series makes it a more suitable means to compare communities. In this study 

the log normal generally gave a good description of the observed species abundance 

data. Probabilities obtained when comparing the expected values firom the truncated 

log normal with the observed species abundance data were the highest found at Site 5, 

CCF90, CCF89, RCF and Site 2. though only at CCF89 was the tit of this model 

better than that of the log series. However as both Bullock (1971) and Magurran 

(1988) have pointed out, the flexibility of this model allows it to be fitted to a wide 
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range of species abundance data. This is due to the fact that the rarer species in a 
community are generally not sampled, and as such, a log normal curve fitted to such 
date wil l be truncated at the left hand side, this point being termed the 'veil-line' 
(Preston, 1948). As the sample size increases, this moves to the left, revealing more of 
the curve, but in relatively small samples, it is difficult to tell whether an observed log 
normal truly represents this situation. The species abundance date at all sites in this 
study have the first term (i.e. the value in the first octave) greatest, so that the 'veil-
line' must lie at, or to the right of the mode, and in these circumstances it is difficult to 
differentiate between the log series and log normal (Bullock, 1971), and many sets of 
species abundance date are described by both of these models (Magurran, 1988). 

Proposed by MacArthur (1957) this model is usually found in rather limited 

communities of closely related species (Magurran, 1988). In this study, despite the 

limited nature of the communities studied, this was the least satisfactory of the four 

models tested, with probabilities generally less than 0.001, and never greater than 0.1. 

In nearly all cases this model greatly underestimated the number of species with one or 

two individuals (octave I ) , with expected values between roughly two and five times 

smaller than observed, though at NCF and CCF89 the underestimation o f number of 

species with between 65 and 128 individuals (octave V I I ) was greater, and at Site 1 

the same was true for species with between 129 and 256 individuals (octeve V I I I ) . 

This model came closest to the observed data at COP (x" = 11.8, d.f. = 6, 

p<0.1>0.05), but was still less successful than the other three models in this respect, 

and at all sites, with the exception of Site 6 where this model was a better fit to the 
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data than the geometric series, the broken stick provided the least satisfactory 
description of the observed data. 

4 .4J . Changes in diversity and species abundance in relation to successional 

age. 

It is apparent that there are clear trends in the attributes of the species abundance data 

along the successional gradient at Hamsterley. In general, species richness, abundance, 

diversity and eveness showed an increase in the first nine years of succession, as 

represented by the sites of Endgroups 1 and 2, in tandem with the increasing 

vegetation density. After this, these attributes tended to show a decline into the late 

successional period as represented by Endgroups 3 and 4, though the pattern was less 

clear in the case of abundance. The plantation sites, which represent the latest stages 

of succession, were less diverse, species rich and even than NCF, which represents the 

situation immediately after clear-felling. However, except for the mixed-woodland. 

Site 6, which was intermediate in terms of richness, diversity and eveness between the 

Endgroup 1 sites and the plantations, the relative values of these attributes in late 

succession did not seem to show any consistent pattern related to age. At the 

plantation sites NOP, COP and ROP, with ages of 41, 46 and 51 years respectively, 

overall abundance o f individuals did show a decrease firom 317 to 149 in tandem with 

age. However, the magnitude of this increase, and the fact that the communities of 

these sites were ven,' similar in other respects, suggests that some factor other than 

successional stage, perhaps site wetness, is responsible. 
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4.5. Border transition categories. 

The Wilton Moor study produced 2274 individuals from 65 species in 9 families. Both 

mean number of species and mean number of individuals per trap were greater in the 

grassland than the plantation, though only in the case of the latter was this difference 

significant (S - grassland mean = 17.7+1.6, plantation mean = 14.7±1.3, t34 = 1.5, p = 

N.S.; N - grassland mean = 67.9±12.1, plantation mean = 39.8±5.1, t34 = 2.1, 

p<0.05). 

4,5.1. Distribution of species richness, diversity and number of individuals 

across the habitat boundary at Wilton Moor. 

Fig. 13 gives a graphical representation of the mean number of species, individuals, 

and species diversity per trap for each row, with standard errors, at each of the six 

rows across the habitat boundary. 

Table 11 gives mean number of species, individuals and species diversity per trap at 

each of the six rows, and shows the results of testing these value with one-way 

analysis of variance (ANOVA) . The values obtained indicate that there was no 

significant difference between the largest and smallest mean values per trap for any of 

these variables, and thus the null hypothesis, that all row means were not significantly 

different at the 0.05 significance level, is accepted for all three. 
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25 T 

M 15 

Row position 

Fig. 13a). Mean number of species at each point on the Wilton Moor 
transect, with standard errors (n = 6). Position of boundary shown. 

Grassland rows 1-3, plantation rows 4-6. 

120 T 

Row position. 

Fig. 13b). Mean number of individuals at each point on the Wilton 
Moor transect, with standard errors (n = 6). Position of boundary 

shown. Grassland rows 1-3, plantation rows 4-6, 
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Row position 

Fig 13c). Mean species diversity at each point on the Wilton Moor 
transect, with standard errors (n=6). Position of boundary shown. 

Grassland rows 1-3, plantation rows 4-6. 
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4.5.2. Distribution of individual species. 

Fig. 14 shows the distribution of the 25 species trapped in numbers exceeding 19 

individuals at Wilton Moor. This value was carried over from the first part of the study 

largely because using a value which constituted 5% of the total number of individuals 

here would have meant including species containing as few as nine individuals, and 

these were not considered amenable to statistical analysis using A N O V A . Table 12 

shows the results of testing the significance of the differences between mean number of 

individuals per trap for grassland and plantation using student's t-test for each of the 

species shown in Fig. 14. Of the 25 species nine, Pacygnatha degeeri, Oedothorax 

retusus, Lepthyphantes tenuis, Bathyphantes gracilis, Pardosa pullata, Erigone 

dentipalpis, Tiso vagans, Alopecosa pulverulenta and Gongylidiellwn vivum, were 

trapped in significantly greater numbers in the grassland, while seven species, 

Lepthyphantes zimmermanni, Ceratinella brevipes, C. hrevis, Diplocephalus 

latifrons, Cryphoeca silvicola, Robertus lividus, and Pelecopsis mengei, were 

significantly more abundant in the plantation. The remaining species showed no 

significant difference in numbers trapped between the grassland and plantation. 

Tables 13, 14 and 15 give the mean number of individuals per trap at each of the sbc 

rows for grassland species, plantation species, and those species showing no significant 

difference between the two habitats, and the results of the initial A N O V A analyses. As 

in the case of species richness, diversity, and number of individuals, the null hypothesis 

for the one-way A N O V A in this case was that all row means were not significantly 

different at the 0.05 significance level. 
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3.5 

1 2 3 4 5 

Row position 

a) Drassodes cupreus 

1 2 3 4 

Row position 

b) Haplodrassus signifer 

1 2 3 4 

Row position 

c) Pardosa pullata 

1 2 3 4 

Row position 

d) Alopecosa pulverulenta 

1 2 3 4 5 

Row position 

e) Cryphoeca silvicola 

1 2 3 4 

Row position 

f) Robertus lividus 

Fig. 14. Distribution of the common species across the Wilton Moor transect, 
with standard errors (n = 6). Position of boundary shown. 

Grassland rows 1-3, plantation rows 4-6. 
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1 2 3 4 5 

Row position 

g) Pacygnatha degeeri 

1 2 3 4 5 

Row position 

h) Ceratinella brevipes 

1 2 3 4 E 

Row position 

i) Ceratinella brevis 

1 2 3 4 5 6 

Row position 

j) Lepthyphantes zimmermanni 

3.5 T ^ 

« 0.5 

1 2 3 4 5 

Row position 

k) Bathyphantes gracilis 

1 2 3 4 

Row position 

I) Silometopus elegans 

Fig. 14. Distribution of the common species across the Wilton Moor transect, 
with standard errors (n = 6). Position of boundary shown. 

Grassland rows 1-3, plantation rows 4-6. 
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i> l.S 

2 3 4 

Row position 

m) Pocadicnemis pumlla 

1 2 3 4 5 

Row position 

n) Oedothorax retusus 

1 2 3 4 

Row position 

o) Tiso vagans 

1 2 3 4 5 

Row position 

p) Gongylldlellum vivum 

1 2 3 , 4 

Row position 

2 3 4 

Row position 

q) Mlcrargus herblgradus r) Diplocephalus latifrons 

Fig. 14. Distribution of the common species across the Wilton Moor transect, 
with standard errors (n = 6). Position of boundary shown. 

Grassland rows 1-3, plantation rows 4-6. 
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2 3 4 

Row position 
1 2 3 4 

Row position 

s) Erigone dentipalpis t) Meioneta saxatilis 

2 3 4 

Row position 

u) Pelecopsis mengei 

o 0.5 

1 2 3 4 

Row position 

v) Bathyphantes parvulus 

1 2 3 4 

Row position 

2 3 4 

Row position 

w) Lepthyphantes tenuis x) Lepthyphantes mengei 

Fig. 14. Distribution of the common species across the Wilton Moor transect, 
with standard errors (n = 6). Position of boundary shown. 

Grassland rows 1-3, plantation rows 4-6. 
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1 2 3 4 

Row position 

y) Lepthyphantes ericaceus 

Fig. 14. Distribution of the common species across the Wilton Moor transect, 
with standard errors (n = 6). Position of boundary shown. 

Grassland rows 1-3, plantation rows 4-6. 
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Of the 25 species distributions analysed, eigiit gave non-significant F values using one­

way A N O V A . Five of these, namely Bathyphantes parvulus, Drassodes cupreus, 

Haplodrassus signifer, Pocadicnemis pumila and Lepthyphantes ericaceus, showed 

no significant difference in mean catch per trap between the grassland and plantation 

using a t-test, while the remaining species, Alopecosa pulverulenta, Gongylidiellum 

vivum and Bathyphantes gracilis were more abundant in the grassland. A l l of the 

plantation species gave significant F values with A N O V A . 

Table 16 represents the results of Tukey multiple comparison tests on the data for the 

17 species which gave significant F values for the initial A N O V A . The null hypothesis 

in this case was that there was no significant difference at the 0.05 level between the 

means of each pair of rows compared. 

Of these species, seven, Pardosa pullata, Pacygnatha degeeri, Erigone dentipalpis, 

Tiso vagans, Oedothorax retusus. Silometopus elegans and Lepthyphantes tenuis 

reached their highest mean catch per trap in one of the grassland rows, and in all cases, 

with the exception of 5. elegans, row means were consistently higher in the grassland 

than in the plantation. However, in no case were all grassland means significantly 

higher than those in the plantation, and surprisingly in two cases, P. pullata and 

Erigone dentipalpis, none of the grassland means were significantly greater than those 

in the plantation. Indeed these two species showed no differences between any means, 

despite the significant result in the initial A N O V A . Five of these species, P. pullata, P. 

degeeri, E. dentipalpis, O. retusus and S. elegans, reached their highest row mean at 
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Species Row ranking 
(ascending order) 

Pacygnatha degeeri 5 6 4 2 3 1 
Oedothorax retusus 5 6 4 3 2 1 
Lepthyphantes tenuis 6 5 4 1 2 3 
Pardosa pullata 5 6 4 2 3 1 
Erigone dendpalpis 4 5 6 2 3 1 
Tiso vagans 6 5 4 2 1 3 
Silometopus elegans 5 3 6 4 2 1 
Lepthyphantes zimmermanni 1 3 2 6 4 5 
Ceratinella brevipes 1 2 3 6 5 4 
C. brevis 1 2 5 3 4 6 
Diplocephalus latifrons 1 2 3 4 6 5 
Micrargus herbigradus 1 2 6 3 5 4 
Cryphoeca silvicola 3 2 1 5 6 4 
Robertus lividus 2 1 5 3 6 4 
Pelecopsis mengei 1 2 3 5 6 4 
Meioneta saxatilis 2 6 1 5 3 4 
Lepthyphantes mengei 5 6 1 2 3 4 1 

Table 16. Representation of the results of the Tukey multiple comparison tests 
on the species in Table 12 which gave significant F values in the initial A N O V A . 

Underlined values showed no significant difference to those values above and 
below them, while values in normal type separated by these values were shown 

to be significantly different. 
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row 1, while T. vagans and L. tenuis reached their highest mean at row 3. No species 
reached their highest mean number of individuals per trap at row 2. 

The remaining species reached their highest mean catch per trap in the plantation, 

though only five of these, Cryphoeca silvicola, Ceratinella brevipes, Diplocephalus 

latifrons, Pelecopsis mengei and Lepthyphantes zimmermanni had consistently higher 

row means in the plantation as opposed to the grassland. Again none of these species 

had plantation means which were all significantly higher than those in the grassland, 

and in the case of Z). latifrons, none were significantly higher. Of these species, seven, 

G. silvicola, R. lividus, C. brevipes, M. herbigradus, M. saxatilis, P. mengei and L. 

mengei reached their highest means per trap at row 4, two, D latifrons and L. 

zimmermanni, at row 5, and one, C. brevis, at row 6. 

4 .5J . Distribution of major guilds. 

As in the ordination/classitlcation section, six major guilds were defined in this part of 

the study, based on the occurrence of one of the 25 species included in Table 13. For 

the most part these guilds were the same as those defined earlier. However, at Wilton 

the ambushers were represented by only five individuals ofXysticus cristatus, and thus 

in this part of the study this guild is replaced by the orb weavers as represented by a 

single species, Pacygnaiha degeeri. Members of this guild generally build complex 

radial webs with sticky threads, and are specialised to catch aerial prey (Lockett & 

Millidge, 1953; Roberts, 1985), though members of this genus only build webs of this 

nature when immature, reverting to a ground living habit as adults (Foelix, 1982). 
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Table 17 gives the results of testing for significant differences between grassland and 
plantation means for each of the six major guilds. In addition to the orb weavers, two 
other guilds were also represented by only one individual, the funnel web spiders 
(Cryphoeca silvicola) and the scattered line weavers (Robertus lividus). The results 
for these two guilds are included in Table 17 for completeness, though the distribution 
of the individual species has been dealt with above. Two guilds, the diurnal running 
spiders and orb weavers, were trapped in significantly greater numbers in the 
grassland, while the funnel web spiders and scattered line weavers were significantly 
more abundant in the plantation. The remaining guilds, the nocturnal running spiders 
and sheet web weavers, showed no significant difference between grassland and 
plantation means. 

Table 18 gives the mean number of individuals per trap at each row position for each 

major guild, as well as the results of an initial one-way A N O V A . Discounting those 

guilds containing only one species, only one of the major guilds, the diurnal running 

spiders, gave a significant F value in the initial A N O V A , though the resulting Tukey 

test only found significant differences between row 1 in the grassland and rows 5 and 6 

in the plantation. 

4.5.4. A discussion of the results of the Wilton Moor study. 

The limited size of this study, and hence the small numbers involved, has limited the 

conclusions that can be drawn from the data. While plots of the variables against row 

position may suggest certain patterns of distribution, these values tend to show little in 

the way of insis tent variation when subjected to statistical analysis using 
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A N O V A . Hence in terms of the distribution of species richness, diversity and 
abundance of individuals, the only statistically significant difference found was that 
mean abundance per trap in the grassland was higher than that in the plantation. This is 
in general agreement with Downie et al. (1996), who found a similar result studying 
the effect of a habitat boundary on spider communities in northern England. At 
Wilton, a large part of the catch in the grassland traps was made up of species such as 
the diurnal running spider Pardosa pullata, the orb weaver Pacygnatha degeeri, and 
the sheet web weavers Oedothorax retusus and Erigone dentipalpis, which have been 
shown, to be particularly susceptible to capture by pitfell trapping (Topping & 
Sunderland, 1992), and thus it seems that the presence of species such as these in the 
grassland has resulted in higher catches here. 

In terms of the disposition of the major spider guilds at Wilton, the distribution of the 

diurnal running spiders, nocturnal running spiders, and sheet web weavers between 

grassland and plantation is comparable to that observed at Hamsterley between open 

and wooded sites. The diurnal running spiders were more abundant at the open sites in 

both parts of the study, likely due to the relatively high temperatures required for egg 

development (Humphreys, 1987). The nocturnal running spiders showed no significant 

difference in their mean abundance between the open and wooded sites at Hamsterley, 

or the grassland/plantation sites at Wilton. In the case of the former this was largely 

due to the uneven distribution of members of this guild between clear-felled and 

restocked sites, while at Wilton, this may have merely been due to the small number of 

individuals involved. In contrast to the other guilds defined in this study, which tended 

to consist of one, or a few closely related species with similar life styles, the sheet web 



107 

weavers constituted a large guild in terms of numbers of species, with a 
correspondingly large range of microhabitat requirements and life styles. Hence the 
lack of a clear preference in this guild for either open or forested sites is not surprising. 

In contrast to these guilds, both the funnel web spiders and the scattered line weaver 

Robertus lividus showed a distribution between grassland and plantation at Wilton 

which was at odds with that observed between open and wooded sites at Hamsterley. 

A t Hamsterley the funnel web spiders showed no significant difference in abundance 

between open and wooded sites, largely due to their uneven occurrence within the 

latter, while at Wilton this guild was trapped in significantly greater numbers in the 

plantation. Similariy, R. lividus, which was also significantly more abundant in the 

plantation at Wilton, was unevenly distributed between the Hamsteriey sites, being 

virtually confined to the restocked sites, and the mixed-woodland Site 6, and showed 

no significant difference in mean catch between Endgroup 1 and 2 on the one hand, 

and Endgroups 3 and 4 on the other. The remaining major guild, the orb weavers, was 

most abundant in the grassland at Wilton, while members were absent from the 

Hamsterley sites in significant numbers. 

In terms of the distribution of individual species at Wilton, the lack of statistical 

significance in the data made it impossible to carry out the main purpose of this part of 

the study, i.e. to assign species to border transition categories as defined by Duelli et 

al. (1990). However, the data has been sufficient to allow meaningful statistical 

comparisons to be made between the abundance of individual species in grassland and 

plantation, and hence to compare these distributions with those found at Hamsteriey. 
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Of the 25 common species at Wilton, 15 were also among the commonest species at 

Hamsterley. In terms of those species showing a preference for the grassland at 

Wilton, only two of these, the diurnal running spiders Pardosa pullata and Alopecosa 

pulverulenta, were also common at Hamsterley, where both species were significantly 

more abundant at Endgroups 1 and 2, which is in agreement with the requirement of 

members of this guild for relatively high daytime temperature for optimum egg 

development (Norgaard, 1951; Humphreys, 1987). Of the remaining Wilton grassland 

species, Pacygnatha degeeri, Erigone dentipalpis, Tiso vagans and Oedothorax 

retusus have been recorded as showing an association with grassland (Luff & Rushton, 

1989; Gibson et al., 1992; Rushton & Eyre, 1992), and as such might be expected to 

shows a preference for habitats with relatively greater solar insolation. The more 

complex vegetation structure in the grassland may be important for Lepthyphantes 

tenuis and Bathyphantes gracilis, as the former has been observed to build webs in tall 

grasses (Duffey, 1968), while Bathyphantes parvulus, which is closely related to B. 

gracilis, builds small webs low down in the vegetation (Duffey, 1956). The remaining 

grassland species at Wilton, Gongylidiellum vivum, is recorded as being associated 

with moss, grass and leaf litter in damp places (Roberts, 1987), and there may also be 

a structural requirement in this species. 

Five o f the seven species at Wilton which showed a preference for the plantation were 

also among the commonest species at Hamsterley. Of these species, four, 

Lepthyphantes zimmermanni, Ceratinella brevipes, Cryphoeca silvicola and 

Diplocephalus latifrons were considered more typical of the wooded sites at 
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Hamsteriey by TWINSPAN, though the last three species did not show significant 
difference between open and wooded sites due to their rather uneven distribution. The 
distribution of these species, is generally consistent with what is known of their 
ecology, as they are associated with woodlands and/or damp or sheltered habitats, and 
are therefore likely adapted to the relatively low temperature and high humidity in the 
plantation as compared to the grassland. Diplocephalus latifrons, for instance, is a 
species closely associated with woodlands (Lockett & Millidge, 1953; Roberts, 1987), 
while Cryphoeca silvicola, and Lepthyphantes zimmermanni also occur in upland 
habitats (Lockett & Millidge, 1951, 1953; Roberts, 1985, 1987). Similarly Pelecopsis 
mengei and Ceratinella brevis, which were not among the commonest species at 
Hamsterley, occur in situations where saturation deficits are also low, the former in 
damp habitats, and the latter in moss or leaf litter (Lockett & Millidge, 1953; Roberts, 
1987). Robertus lividus, which again is a species associated with both woodlands and 
uplands (Lockett & Millidge, 1953; Roberts, 1985), while more abundant at the 
plantation at Wilton, was considered by TWINSP.'^N to be marginally more typical of 
Endgroups 1 and 2 at Hamsterley. This may well reflect a requirement for both humid 
conditions and structural features of the vegetation, hence accounting for its absence 
from the majority of the wooded sites at Hamsteriey. 

The eight remaining species which were common at both Wilton and Hamsteriey 

showed no preference for either grassland or plantation at the former site. Of these, 

only one, the sheet web weaver Lepihyphantes ericaceus, showed a similar 

distribution at Hamsterley, occurring in the centre of Axis 1 of the ordination, and 

being considered by TWINSPAN to show no preference for either open or wooded 
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sites. The remaining species in common, Bathyphantes parvulus, Lepthyphantes 
mengei, Silometopus elegans, Pocadicnemis pumila, Micrargus herbigradus, 
Drassodes cupreus and Haplodrassus signifex, occurred to the left of the Hamsterley 
ordination, and were considered by TAVINSPAN to be more indicative of the clear-
felled and restocked sites. The lack of a preference at Wilton may merely be due to the 
small number of individuals involved in this case. Alternatively, it may be that at least 
some of these sp)ecies have some requirement for structural features of vegetation 
which were generally not provided by the wooded sites at Hamsterley, but were 
present in the plantation at Wilton, which had a relatively well developed herb layer, at 
least near the habitat boundary. Of these species, B. parvulus has been observed to 
build small webs low down in the vegetation (Duffey, 1956), while certain members of 
the genus Lepthyphantes have been shown to use vegetation in a similar manner 
(Duffey, 1968). The remaining species which showed no preference at Wilton, 
Meioneta saxatilis, did not occur at Hamsterley. This species is generally found in low 
vegetation, grass, moss or leaf litter (Roberts, 1987), and was relatively abundant at 
rows 3 and 4, either side of the habitat boundary. However, the lack of significant 
differences using both t-test, and to a large extent A N O V A , makes it difficult to draw 
any meaningful conclusions concerning the distribution of this species. 
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5. D I S C U S S I O N . 

5.1. The use of pitfall traps in community studies. 

While pitfall traps provide a useful method for sampling invertebrate populations, the 

view they give of the relative abundance of the constituent species is somewhat 

distorted due to the selective nature of the trapping method. Topping & Sunderiand 

(1992), for instance, sampled spiders in a field of winter wheat using both pitfall 

trapping and absolute density sampling. They found that the relative abundance of the 

species in pitfall catches was different from that indicated by density sampling. They 

considered that these differences could be due to a number of factors. The most 

important of these was differential activity rates, resulting in a greater chance of 

capture for individuals of more active species, the activity/abundance concept of 

Tretzel (1954) and Heydemann (1961), which itself can be affected by life-cycle stage 

(Tretzel, 1954; Merrett, 1967; Duffey, 1956), availability of food (Griim, 1971; 

Muller, 1984; Chiverton, 1984) or vegetation density (Baars, 1979). In addition they 

considered it conceivable that individual species may be more able to avoid capture 

than others, as has been observed in carabids (Halsall & Wratten, 1988). The 

importance of this in relation to the present study is that the sites representing the first 

nine years of succession, i.e. those grouped in Endgroups 1 and 2 by TWINSPAN, 

were dominated by large numbers of lycosids which are highly active species, and 

hence likely to be overestimated by this method of trapping. 
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5.2. Changes in spider communities during succession. 

Vegetation structure has been cited as the main factor influencing the structure of 

spider communities in a number of studies. Hence Downie et al. (1995), studying the 

spider communities on three summit plateaux in the northern Pennines, found that 

vegetation density was the major factor influencing spider distribution, while a number 

of studies investigating the effect of different management regimes on grassland spider 

communities (Rushton et al., 1987; Luff & Rushton, 1989; Rushton et al., 1989; 

Gibson et al., 1992; Rushton «S: Eyre, 1992;) have found that the change in spider 

communities under different regimes was largely due to the effect of management on 

vegetation structure. 

Previous studies have found that both the abundance, and diversity of spider 

communities are positively correlated with vegetation density (Duffey, 1962a; 

Cherrett, 1964). However, in this current study the site with the denser vegetation 

cover did not necessarily support the most diverse or abundant fauna. In the case of 

abundance, lower catches at sites with higher vegetation density can probably be 

attributed to the decreased efficiency of the trapping method at such sites. Hence Site 

2, which had the lowest vegetation density of any site, had the fourth highest 

abundance, and disaiunting the presence of the highly active diurnal running spiders, 

which accounted for over 50 percent of the catch at Site 1, Site 5 and RCF, the total 

number of individuals trapped was virtually the same as that of the Endgroup 1 sites 

which had the hichest vecetation density of all. 
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In terms of diversity, the most striking discrepancy between diversity and vegetation 
density was at Site 6. This site had the fourth highest vegetation density overall after 
the Endgroup 1 sites and CCF89, but had a lower diversity than any site in either 
Endgroup 1 or 2. The reason for this discrepancy may be related to the different 
microclimate at Site 6 due to the presence of tree cover. Huhta (1971), studying the 
effect of clear-cutting and burning on ground living spider communities in Finland, 
found that clear-felled habitats were characterised by increased solar radiation levels 
in comparison with wooded sites and had correspondingly higher temperatures and 
reduced air moisture content during the day in summer. Hence, of the guilds typical of 
Endgroups 1 and 2 as a whole at Hamsteriey, the ambushers are diurnal hunters typical 
of open habitats, and it seems likely that members of this guild are adapted to the 
relatively high temperature and low humidity found in these situations. In the case of 
the diurnal running spiders their occurrence at these sites is likely to be related to the 
fact that the lycosids require a temperature of around 30 °C for optimum egg 
development (Norgaard, 1951; Humphreys, 1987). While Site 6 was quite open and 
contained a number of clearings, the surrounding trees would tend to cast shade into 
these clearings, and overall the presence of tree cover, with the associated reduction 
in solar radiation levels, would tend to result in a relatively lower temperature and 
higher humidity during the day at this site, and as a consequence, those species more 
typical of Endgroups 1 and 2 were absent. 

Some comment must be made at this point concerning the relatively low scores of 

NCF and RCF on Axis 1 of the ordination in relation to their vegetation density. 
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These sites were ranked eighth and fifth respectively in terms o f their vegetation 
density, but had the fifth and second lowest scores on this axis, and in terms of their 
spider communities showed a similarity to Endgroup 1 sites, mainly in the occurrence 
of certain species of diurnal and nocturnal running spiders. While this may in part may 
have been due to the increased efficiency of the trapping method in catching these 
active species in habitats with sparse vegetation cover, in the case of RCF the 
similarity was particulariy pronounced. Coulson & Butterfield (1986) considered that 
soil wetness was a more important consideration than habitat structure for some 
species, while Mclver et al., (1992) found that site wetness effected the rate of 
succession in spider communities after clear-cutting, with the communities of wetter 
sites coming to resemble those of the preceding woodland more rapidly than those of 
relatively dry sites. As soil organic content is high at RCF, and as this factor has been 
shown to be closely correlated with soil wetness (Downie et al., 1995), it may be that 
the increased suitability of this site for certain Endgroup 1 species, where humidity was 
relatively high due to the dense vegetation cover, allowed them to occur in relatively 
high numbers here. 

In addition to diversity and abundance, a number of studies have found that the 

equitability of the species abundance data rises along the successional gradient. Hence 

both Bazzaz (1975) studying plant succession, and Southwood et al., (1979) studying 

the same in Coleoptera and Heteroptera, found that the eveness of the species 

abundance data increased throughout succession. In this study, the slopes of the rank 

abundance plots for the Endgroup 2 sites, representing the first four years of 

succession, were steeper than those of the nine year old Endgroup 1 sites. However, 
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the slopes of the plots for the late successional sites of Endgroups 3 and 4 were in 
general steeper than those of Endgroups 1 and 2, and indeed the plantation sites ROP 
and COP were the only sites at which the species abundance data was described by the 
geometric series. Butterfield (1992) found a similar decrease in eveness in carabids 
from replanted to plantation sites, while Coyle (1981) found that the spider 
communities of clear-cut areas were more equitable than those of the forest habitats 
which preceded them. To some extent this probably reflects the limited element of the 
spider community studied, i.e. ground living species, but also the homogeneous nature 
of the habitat at these sites. The fit of the species abundance data for ROP and COP 
implies that one factor played an important part in the structure of the communities at 
these sites (Magurran, 1988), perhaps litter depth. 

The importance of tree cover has been discussed above in relation to the relatively low 

diversity of Site 6, and the major distinction between spider communities at 

Hamsterley was between those typical of the wooded sites of Endgroups 3 and 4, 

containing the plantations and mixed-woodland, and the open Endgroup 1 and 2 sites. 

The former were largely characterised by the species in associations H , I and J, 

particularly species such as Lepthyphantes alacris, L. tenebricola and Diplocephalus 

latifrons, while the diurnal and nocturnal running spiders, ambushers and a small 

number of sheet web weavers in associations A to F typified the latter. However, 

while the spider communities of the wooded sites were very similar and showed little 

in the way of consistent differences associated with successional age, there were clear 

differences between the communities of the sparsely vegetated Endgroup 2 sites (NCF, 

CCF90, CCF89 and RCF with vegetation cover between 1 and 60%), representing the 
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first four years of succession, and those of the more extensively and densely vegetated 
Endgroup 1 sites (Site 1 and Site 5 with 95 to 100% cover), which represent the 
situation after nine years. The former were characterised by a relatively small group of 
species in associations D and E, a number of which (i.e. Leptothrix hardyi and 
Xysticus sabulosus) were confined to the sites of this Endgroup. Endgroup 1 was 
distinguished by a relatively larger number of species such as Clubiona reclusa, 
Cnephalocotes obscurus and Pardosa pullata, in associations A and B which, while 
they also occurred at Endgroup 2, were more consistent and/or abundant at Sites 1 
and 5. 

This separation of sites based on their ground cover is in agreement with the findings 

of Merrett (1976), who considered that the amount of bare ground was the most 

useful factor when assessing the change in spider communities on a heathland in 

southern England after burning,. At the Endgroup 2 sites, with their generally sparse 

vegetation cover, the microclimate created appears to be the most important factor in 

the distribution of the species in association E, Xysticus sabulosus and Leptothrix 

hardyi, which were the species most characteristic of this Endgroup. X sabulosus is 

typical of heathland, particularly where the amount of bare ground is high (Lockett & 

Millidge, 1951; Merrett, 1976; Roberts, 1985), and is presumably adapted to tolerate 

conditions of extreme temperature and humidity, while L. hardyi is a stenochronous 

winter mature species (i.e. occurring as an adult and reproducing during this season) in 

the terminology of Schaefer (1987), occurring in the uplands, and on heaths in 

southern Britain (Uickett & Millidge, 1953; Merrett, 1976; Roberts, 1987), and 

presumably requiring the low temperature during winter which these habitats provide 
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to optimise reproductive success (Schaefer, 1976, 1987). This species occurs at a 
number of grazed grassland sites in the northern Pennines, such as Cow Green and 
Grass Common in County Durham and Dun Fell and Moor House in Cumbria 
(Couison et ai, 1984), and as such its adaptation to these habitats makes it pre-
adapted to the conditions found at the eariy successional sites with their poorly 
developed vegetation layer. 

Despite the extreme conditions of temperature and humidity which undoubtedly occur 

at the Endgroup 2 sites, a significant element of the fauna consisted of species in 

associations H, I and J which were more typical of Endgroups 3 and 4. This appears to 

be due to the fact that, while a large proportion of the litter volume at these sites is 

damaged or removed completely during felling and extraction of the crop, sufficient 

remains to provide continuity of habitat for the species inhabiting it. As succession 

proceeds, this litter layer further degrades as illustrated by the reduction in litter depth 

fi"ora 25mm at NCF, to 5mm at CCF89, and a corresponding reduction can be seen in 

the numbers of species such as Monocephalus fuscipes and Tapinocyba pollens. A 

similar decrease in litter living species was found by both Huhta (1971), and Coyle 

(1981) after clear-felling. While this decrease in numbers could be attributed to the 

effect of increasing vegetation density from NCF to CCF89 on trap efficiency, a 

similar pattern has been observed using absolute density measurements (J. Butterfield, 

pers. comm.). A t RCF the process is modified by the fact that this site was created by 

wind action, and hence spared the effects of extraction on the litter-layer. Hence the 

litter-layer at this site was relatively deep (15mm as opposed to 5mm at CCF89) with a 

correspondingly higher abundance of the litter living species. In addition, a number of 
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studies (e.g. Usher et al, 1993; Mader, 1984) have shown that the communities of 
small areas of habitat are often heavily influenced by those of surrounding habitats due 
to their large edge to interior ratio (Downie et al., 1996), and as this site was relatively 
small, and closely bounded on three sides by plantations, it may be that this also played 
a part in the relative abundance o f the litter living species here. 

The higher humidity at Endgroup 1 (Sites 1 and 5 with 95-100% ground cover) has 

already been mentioned above in relation to RCF, and the increased shading and 

humidity offered by the denser vegetation may be of general benefit to the nocturnal 

running spiders, the species of which all showed an increase in abundance and/or 

consistency at Endgroup 1, and particularly Drassodes cupreus and Haplodrassus 

signifer which do not appear to have specialised requirements for vegetation structure. 

As members of this guild are active during the night, when humidity is relatively high 

and temperature relatively low, it is likely they are not adapted to the reverse 

conditions during the day, as there is a close link between habit, and ability to 

withstand extremes of temperature and humidity (Cloudsley-Thompson, 1957; Pulz, 

1987). While they are able to buffer themselves to some extent by spending the day in 

silken shelters which provide relatively stable conditions compared to those outside 

(Humphreys, 1987; Nennvig & Heimer, 1987), this may not be sufficient to protect 

them from the relatively extreme conditions of temperature and humidity they are 

likely to encounter at the Endgroup 2 sites. An exception is RCF, the similarity of 

which to the Endgroup 1 sites in terms of certain species has been mentioned above. 

This site was both wetter than the other sites in its Endgroup, and subjected to more 

shading from the surrounding trees due to its small size, and all of the common species 
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of nocturnal running spiders, with the exception of Clubiona reclusa with its specific 
structural requirements, were relatively abundant here. 

In addition to the more favourable microclimate provided by the vegetation cover at 

Endgroup 1, the increased abundance and/or consistency of certain species at this 

Endgroup appears to be due to the structure o f the vegetation itself. Hence the diurnal 

running spider Pa/'(io5a nigriceps, which was most abundant at Sites 1 and 5, has been 

found to prefer taller vegetation than other members of the genus, regardless of its 

type (Duffey, 1962a), while among the nocturnal running spiders, both Clubiona 

reclusa and Agroeca proximo require specific vegetation structures to which to attach 

their egg-sacs or retreats (Duffey, 1962b; Jones, 1983; Gibson et ai, 1992). The 

increase in the contribution of the sheet web spinners at these sites, both in terms of 

number of species and abundance, was due to the increased evidence of a number of 

species, such as Minyriohis pusillus, Pocadicnemis pumila and Dismodicus bifrons, 

which are typical of well vegetated habitats (Rushton et al., 1987). This suggests a 

requirement for structural features of the vegetation, and indeed, Pocadicnemis 

pumila was also trapped at the structurally complex Site 6. However, a number of 

these species were absent trom this site, suggesting that some other factor may also 

play a part in their distribution. 

Increased vegetation density may be important in other respects. White & Hassall 

(1994), for instance, found that there was a significant increase in the numbers of both 

ambushers and diurnal running spiders with increased vegetation density, and 

considered.that this may have been due to increased prey availability due to the link 
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between structural diversity and plant taxonomic diversity at these sites. However, a 
number of studies have shown that spiders do not show a numerical response to 
increased food supply (Riechert, 1974; Schaefer, 1978; Wise, 1979), and Jocque 
(1981) considered that this was probably because spider populations were limited by 
space. In this study, while the numbers of the ambushers declined, the diurnal running 
spiders did show an increase in numbers from early- to mid- successional habitats in 
tandem with vegetation density. However, this was largely due to the increased 
abundance of certain species, such as Pardosa pullata, P. nigriceps and Alopecosa 
pulverulenta, rather than the entire guild. The association of P. nigriceps with more 
complex vegetation has been discussed above, while P. pullata is a species of moist 
habitats (Vl i jm & Kessler-Geschiere, 1967; Merrett, 1976), and the observed increase 
may be due at least in part to an increase in the extent of favourable conditions at the 
mid-successional habitats for certain species. 

In addition, dense vegetation may reduce mortality in overwintering spiders, as 

Bayram & L u f f (1993) found that overwintering lycosids were more abundant in 

denser tussock forming grasses, perhaps because these provided the most shelter from 

conditions of extreme cold (Luff, 1966; Bossenbroek et al., 1977), while several 

studies (e.g. Edgar, 1969; Hallander, 1970) have suggested that certain species benefit 

from increased litter complexity due to the ability to avoid predation more effectively 

(Uetz, 1991), and this may also apply in the case of increased vegetation complexity. 

Despite the similarity in density of the vegetation layer to Endgroup 1, by the time 

succession had reached the stage represented by Site 6, the species typical of the 
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earlier sites had virtually disappeared. In terms of the diurnal running spiders and 
ambushers, it may be that the relatively small size of the clearing in which trapping 
took place meant that shading from the surrounding trees made the site unsuitable. I f 
this is the case, the absence of the nocturnal running spiders may also imply that these 
species have some requirement for the higher temperatures at the early successional 
sites, perhaps for egg development. 

Alternatively, it may be that these species are unable to colonise the clearings through 

the intervening woodland. While both immature diurnal running spiders and ambushers 

can disperse by ballooning, the behaviour does not appear to be uniformly well 

developed in either group (Duffey, 1956; Richter, 1970). In addition the relatively 

small size of these clearings would limit the size of the population which could be 

supported, and any population which did become established would be prone to 

extinction due to random fluctuation in numbers. 

As a consequence of this, the spider community at Site 6 was dominated by species 

belonging to associations H , I and J, which despite the shallow litter layer at this site, 

had levels of abundance comparable to those at the plantation sites, probably as a 

consequence of generally more favourable conditions of humidity created by the 

almost total tree cover. While the majority of these species were present throughout 

the successional gradient Lepthyphantes alacris and L. tenebricola were absent or 

very uncommon at Endgroup 1. These species have been shown to be associated with 

wooded habitats (Lockett & Millidge, 1953; Huhta, 1971; Pajunen et al., 1995), and 

it may be that they are relatively poor colonists. Diplocephalus latifrons also appears 
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to be more closely associated with wooded habitats (Huhta, 1971), though this species 
was absent from Site 6, and may have some specific microclimatic or strucUiral 
requirement which is only present in the deeper litter of the plantation sites. 

Notwithstanding the presence of the small number of species which were more typical 

of Endgroups 1 or 2, and hence its high score on Axis 2 of the ordination. Site 6 was 

extremely similar to the plantation sites, both in terms of species composition and 

relative abundance, and despite the division of these sites into Endgroups 3 and 4, 

there was relatively little in the way of consistent differences in terms of the common 

species among them. Hence, while the relative scores of these sites on the ordination 

could be considered to represent gradients based on litter depth (Axis 1) and age (Axis 

2), the relative scores were probably largely dependent upon the importance of 

different factors at different sites, rather than a gradient involving the change in one 

factor. The most important factor for Site 6 appears to be its open nature allowing the 

persistence of a vegetation layer and species more typical of Endgroup 1. This was 

likely due to a combination of its relatively young age in comparison to the other sites 

in Endgroups 3 and 4, but also to the presence of deciduous species, as plantations of 

this age would be expected to have a closed canopy (Hil l , 1986). Site 2 was the most 

mature site, and also the only one of the plantation sites with a vegetation layer, and 

hence structure was perhaps important for this site. In the case of NOP, ROP and 

COP, which were particulariy close to each other on the ordination diagram, the 

observed differences may have been due in part to chance, though at NOP the 

common plantation species tended to be more abundant than at the other sites, with 

the exception of Site 2, and as this site had a relatively high soil organic content, and 
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hence water content, it may be that it was generally more suitable for these species. 
Conversely, ROP had the lowest soil organic content of these sites, and the abundance 
of these species tended to be lower. 

5.3. Rate of change of spider communities during succession. 

Ordination techniques provide a useful method for assessing the rate of change of 

communities along a successional gradient (Brown & Hyman, 1986), and this 

technique has been used in this context in a number of studies. Hence Brown & 

Southwood (1987), studying plant succession, found that there was a relatively rapid 

change in the positions of the sites on the first two ordination axes in the first five 

years, but a much slower change after this, while Brown & Hyman (1986) found a 

similar pattern studying succession in Heteroptera. In this study, the relative positions 

of the sites on the ordination diagram do suggest that the rate of community change 

slows as succession proceeds. The plantation sites were closer together on the 

ordination diagram than the Endgroup 1 and 2 sites, despite the fact that the latter 

represent a spread of ages less than half that of the former. Even with the inclusion of 

Site 6, which was clearly separated from the other wooded sites, and structurally very 

different from them, the dispersal of points for Endgroups 3 and 4, representing a 

difference in ages of roughly 40 years, did not differ greatly from that of Endgroups 1 

and 2. 

However, it is difficult to assess the rate of change of communities in the period 

represented by Endgroups 1 and 2, as the catch at these sites was affected by factors 
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such as trap efficiency and site wetness which have been dealt with above. What is 
clear from a consideration of the abundance of the commonest species, which 
contributed most to the site ordination scores, is that the changes in community 
structure along the successional gradient in the period represented by these Endgroups 
were largely due to the effective accumulation of species, and as such this is in 
agreement with Gibson et a I., (1992). 

For instance, of the 11 plant species which formed the initial wave of colonisers 

('primary colonisers') in the communities studied by Southwood et al., (1979), sbc 

species 'though at one time they were all very abundant' had disappeared within 18 

months, and in this time period roughly 20 species had disappeared overall. In 

contrast, of the 23 common spider species present at NCF, representing the first year 

after clear-felling, only two did not occur at either of the nine year old Endgroup 1 

sites, while of the 14 species in associations A and B, which were most closely 

associated with Endgroup 1, seven were not present at NCF. This is certainly related 

to the ability of spiders, in contrast to plants, to seek out suitable microclimatic 

conditions within what may be a generally unsuitable habitat. 

As tree cover increases, extinction begins to play a part in the change in community 

structure, as the species characteristic of open habitats disappear due to the increasing 

unsuitability of the microclimatic conditions. Hence while the average number of 

species per site increased from 40.3 to 47.5 from Endgroup 2 to Endgroup 1, the 

values for Endgroups 3 and 4 were 26.7 and 26.5 respectively. 
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5.4. Changes in the attributes of spider life cycles with succession. 

Brown (1985) considered that the predictions relating to life cycle strategies, arising 

from the successional models proposed by Margalef (1968) and Odum (1969), could 

be divided into three categories, namely the degree of niche specialisation (niche 

breadth), the size of the organism, and the nature of the life-cycle,. 

Niche breadth has often been considered in terms of the range of food taken, and it is 

expected that the range of prey items taken, and hence niche breadth, wil l decrease 

along the successional gradient (Margalef, 1968; Odum, 1969; Southwood, 1977). 

This is due to the fact that in habitats in the early stages of succession resource 

availability is relatively low, and as such an organism cannot afford to overlook 

inferior prey items. However, as succession proceeds resource availability increases, 

leading to selective foraging and specialisation, with correspondingly narrow food 

niche breadths (Pianka, 1981). A number of previous studies have shown that this 

appears to be the case. Hence Brown (1985) found that in Heteroptera the proportion 

of generalist species, in terms of the number of plant species fed upon, declined along 

the successional gradient, while specialist species showed an increase, while Brown & 

Southwood (1983) found a similar decline in niche breadth in the entire exopterygote 

fauna. 

In this study niche breadth, as represented by the range of prey taken by individual 

spider species, does seem to show a general decrease towards the late successional 

stages. Many of the species characteristic of Endgroups 1 and 2, such as the diurnal 
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running spiders and ambushers, are relatively polyphagous, feeding on a wide range of 
insect groups and other spiders (Nentwig, 1986, 1987), while the sheet web spinners, 
such as those which characterise the later stages of succession at Hamsterley, are 
relatively selective feeders (Nentwig, 1980) and at altitude prey largely upon 
Collembola (Otto & Svensson, 1982; Couison & Butterfield, 1986). However, as the 
abundance of many invertebrate groups tends to be decreased by afforestation 
(Butterfield, 1992) this does not appear to be the result of increased prey availability, 
but rather an artefact of the disappearance of the more polyphagous species due to 
reduced vegetation structure and increased tree cover, and the subsequent limited 
spider fauna of Endgroups 3 and 4. 

In terms of the size of individual organisms, it is generally considered that there will 

be a tendency to increase in size along the successional gradient (Odum, 1969). 

However, in this study this does not seem to be the case, as many of those species 

more typical of the earliest stages, such as the nocturnal and diurnal running spiders 

and the ambushers, are larger spiders than the linyphiids which dominate the late 

successional sites. While this again may be as a result of the limited fauna of 

Endgroups 3 and 4 at Hamsterley, a number of recent studies have also found that size 

did not increase along the successional gradient. Hence, Brown (1985) found that the 

Heteroptera of eariy successional habitats were of intermediate size compared with 

those of the later stages, while Brown & Southwood (1987), looking at the changes in 

bird and small mammal communities during succession, found that neither group 

followed the expected pattern. 
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Odum (1969), who was one of the first to put forward this suggestion on the basis of 
successional changes of algae in a laboratory microcosm, was unsure whether the 
relationship between organism size and successional stage was characteristic of 
succession, or merely fortuitous, and Schoener & Janzen (1968) considered that small 
insects would not be liable to exploit habitats early in the successional process because 
they are vulnerable to attack by predators and are more prone to desiccation than 
larger species. However in habitats such as this small size could be considered an 
advantage as it would allow organisms to exploit the smallest areas of suitable habitat. 
Small size could also be an advantage in late successional habitats, as it might be 
expected that the increased competition in these habitats would push species to use 
smaller niches, and it may be that an increase in size is not a general rule along 
successional gradients. 

Related to the size of organisms along a successional gradient, is the degree of 

morphological variation in the community. Previous research has suggested that as 

succession proceeds, so the range of variation, in terms of both size and shape should 

increase. Hence Brown (1982) found that the range of variation in Heteroptera along a 

successional gradient increased, with those in the early successional stages being feidy 

consistent in terms of both size and shape, and Brown (1982) also considered this true 

of the species in Southwood et a I., (1979). In the case of this study, it is certainly the 

case that these factors show the opposite trend, though again this appears to be an 

artefact of the limited nature of the communities at Endgroups 3 and 4. 
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Life-cycles can be considered in terms of the r -K continuum (MacArthur & Wilson, 
1967). In relation to succession, organisms in eariy successional stages, where 
communities are not saturated and populations not at equilibrium (Southwood et al., 
1979), would be expected to tend towards r-selection, developing rapidly, producing 
large numbers of offspring in a relatively short time, and, as these habitats are 
relatively transitory, having a well developed dispersal ability. As succession proceeds, 
organisms would become more K-selected developing more slowly, having relatively 
longer life-cycles, producing their offspring over an extended period, and having a 
relatively pooriy developed dispersal ability (MacArthur & Wilson, 1967; Odum, 
1969; Pianka, 1970; Southwood, 1977; Krebs, 1978; Brown & Southwood, 1983). 
Hence Brown (1985) found that the number of generations per year and proportion of 
bi- or multivoltine species among Heteroptera was greater in the early stages of 
succession than subsequent stages, while Brown & Southwood (1983) found a similar 
pattern with all exopterygote herbivores. In spiders, a number of studies have found 
that eariy successional communities, or similar habitats with pooriy developed 
vegetation structure, tend to be dominated by a relatively small number of linyphiid 
species such as Bathyphantes gracilis, and species of the genera Oedothorax and 
Erigone, which are highly invasive, and are able to produce a number of generations a 
year (Meijer, 1977; Rushton ct al., 1987; Maelfait & de Keer, 1990; Gibson et al., 
1992), though at Hamsterley these species did not make up a significant part of the 
catch at any site. 

In terms of voltinism, a consideration of the monthly catches at Hamsterley, and of 

time of occurrence given in Lockett & Millidge (1951, 1953) and Jones (1983), did 
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not indicate that spiders characteristic of the earlier stages of succession completed 
more generations in a year than those later in the process. Seasonal occurrence of 
adult spiders does show some variation, with the common species at Endgroups 3 and 
4 generally being active for all or most of the year, likely due to the protective nature 
of the leaf litter, while a number of species in Endgroups 1 and 2 have a more limited 
seasonality, usually from spring to autumn. In addition, a number of those species 
which were most characteristic of Endgroup 2 have seasonal occurrences which avoid 
high summer, namely Pardosa amentata, Trochosa terricola andt Xysticm sabulosus. 

Huhta (1971) pointed out that while summer daytime temperatures in clear-felled 

habitats were higher than in the preceding woodland, the increased heat loss at these 

sites due to the removal of tree cover resulted in relatively low night-time and winter 

temperatures. At Hamsterley heat loss is also likely to be higher from the Endgroup 2 

sites (NCF, CCF90, CCF89 and RCF with 1- 60% ground cover) than those of 

Endgroup 1 (Site 1 and Site 5 with 95-100% ground cover), as the dense and 

extensive vegetation layer of the latter is likely to provide a degree of insulation at 

these sites. Hence an important consideration for species at the Endgroup 2 sites 

would be how to survive the relatively low temperatures during the winter months. 

This is certainly of importance for the diurnal running spider Pardosa amentata, as 

Bayram & L u f f (1993) found immatures of this species active during the winter at 

temperatures just above freezing, and considered that this species, and other winter-

active lycosids, probably overwintered in a non-diapausing state, and would therefore 

be susceptible to the effects of low temperature. Immatures of this species have been 

shown to overwinter in the litter-layer (Maelfait & de Keer, 1990), and at Hamsterley 
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are presumably able to utilise the patches of leaf-litter remaining after clear-felling to 
this end. However, while the depth of leaf litter at the Endgroup 2 sites shows a 
decrease from NCF (first year after clear-felling) to CCF89 (third year), the numbers 
of this species trapped showed an increase, despite the increased vegetation density 
and associated decrease in trap efficiency, and it may be that this species was also able 
to utilise the increasing vegetation layer to provide protection during winter, though 
Bayram & L u f f (1993) did not find P. amentata in large numbers in grass tussocks 
during this time. Trochosa terricola gains protection from low temperatures during the 
winter by overwintering in a burrow in the ground lined with silk for extra insulation 
(Engelhardt 1964). This is particularly important for members of this genus, as the 
temperature at which their rate of metabolism becomes too low to allow movement 
(chill-coma, Kirchner, 1987) can be as high as +2.5 °C (Engelhardt, 1964). Under 
these conditions neither feeding nor escape from predators is possible, and an 
important aspect in the choice of overwintering sites for both P. amentata and T. 
terricola, in addition to protection from extreme temperatures, may be that they 
provide protection from predation when temperatures are not low enough to be fatal, 
but are sufficient to induce chill-coma. Lack of ability to feed is perhaps not so much 
of a problem for these species, as spiders are able to go for extended periods of time 
without feeding (Strazny & Perry, 1987), and in addition a number of lycosid species, 
including P. amentata, have been shown to feed during the winter when temperatures 
are high enough to allow activity (e.g. Bayram & Luff , 1993; Aitchison, 1987). 

I could find no information regarding overwintering phase or physiological adaptations 

to low winter temperatures for the ambusher Xysticus sabulosus, though as this 
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species does seem to be closely adapted to habitats with a low percentage of ground 
cover (Merrett, 1976), it might be expected that such adaptations exist. As the 
reproductive period of this species is from late summer to early autumn (Lockett & 
Millidge, 1951; Jones, 1983) it may fall into the category of 'stenochronous species 
reproducing in autumn" (Schaefer, 1987). Many of these species hibernate in the egg 
stage (Schaefer, 1987) which has been shown to be the most resistant stage of many 
spider species to low temperatures, and would thus be the optimal stage for survival 
during freezing conditions (Kirchner, 1987). 

In contrast to the above species, for Leptothrix hardyi low winter temperatures are 

likely to be a pre-requisite, as this species occurs as an adult, and has its reproductive 

season, during the winter months (Merrett, 1976). In another winter-mature linyphiid, 

Stemonyphantes lineatus, males are only able to mate after having been exposed to 

low temperatures for some weeks, and the ovaries of females only develop after 

exposure to cold under short-day conditions (Schaefer, 1976, 1987). However, 

winter-mature species are not necessarily resistant to low temperatures. The linyphiid 

Centromerus silvaticus, for instance, has been shown to have a low resistance to cold, 

and the mortality rate of this species can be high and is directly related to the severity 

of the winter (Schaefer, 1977). It may be that the apparent absence of L . hardyi from 

NCF, where ground cover was less than 2%, was because of the particularly severe 

weather conditions at this site during the winter, though this species has been recorded 

in the northern Pennines at heights up to 520m (Coulson et al., 1984), and it may be 

that some other factor played a part, perhaps unsuitable conditions during the spring 

and summer when this species is immature. Alternatively, as clear-felling took place at 
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this site in late winter 1990-1991, it may be that this site only became available for 
colonisation after the main dispersal period of L. hardyi, though this would depend on 
the exact timing of dispersal, and the rate at which suitable habitat became available 
during the felling process. 

In terms of dispersal, changes in this ability along the successional gradient are 

difficult to assess, as while dispersal by ballooning has been observed in many spider 

families (Duffey, 1956; Richter, 1970; Decae, 1987) the ability varies even between 

closely related species (Duffey, 1956; Richter, 1970) and information on particular 

species is often lacking. The ability is best developed in the Linyphiidae, but while this 

family was dominant in terms of species at all stages of succession, among the species 

most characteristic of Endgroup 2, only three species were members of this family. Of 

these only Lepthyphantes mengei has been recorded as an aeronaut (Duffey, 1956), 

while of the eight other common species of this femily in associations A, B and F 

which occurred at Endgroup 2, references to this behaviour were found for 

Dismodicus bifrons, Micrargus herbigradus, and Cnephalocotes obscurus (Duffey, 

1956; Huhta, 1971). I could find no references to ballooning in the plantation species, 

though this does not mean it does not occur, and as one of the advantages of this sort 

o f dispersal is that it minimises overcrowding (Foelix, 1982) we might suppose that 

the possession of this ability in late successional species, where densities are highest, 

would be advantageous. 

The remaining species characteristic of Endgroup 2 belonged either to the Thomisidae 

or Lycosidae, and while ballooning has been observed for both families, it may not be 
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general, and is not equally well developed in all species. Both Bristowe (1929) and 
Nielsen (1932) reported ballooning behaviour in immature thomisids, the latter of an 
unidentified species, the former in a member of the genus Xysticus, while Duffey 
(1956) did not find any members of this family as aeronauts in grassland. Of the 
lycosids, Richter (1970) considered both Pardosa amentata and the Endgroup 1 
species P. pullata as displaying a poor dispersal capacity, while that of another 
Endgroup 1 species, P. nigriceps, was much better developed. 

An interesting point to come from Richter's study was that, in general, species which 

occurred in widespread and abundant habitats did not show a well developed ability to 

balloon. Hence, while there does appear to be a greater evidence of aeronautic species 

at the early successional in this study, the fact that it is not more evident is perhaps not 

surprising, as the majority of species characteristic of the earlier stages of succession at 

Hamsterley are not pioneers in the strict sense that they are closely adapted to the 

conditions found in these habitats, rather they are probably species which were 

available to colonise them when they became available and are able to tolerate the 

conditions they found. While there is little evidence for the occurrence of the species 

characteristic of Endgroups ] and 2 in the late successional habitats at Hamsterley, 

species such as the diurnal running spiders Pardosa amentata, P. pullata and 

Alopecosa pulverulenta are common and widespread species in Britain (Lockett & 

Millidge, 1951; Jones, 1983; Roberts, 1985), occurring in a wide range of open 

habitats, and populations of these species may occur in woodland rides at Hamsterley. 

The early succes,sional habitats at Hamsterley were generally dominated by Calluna 

vulgaris at the time of trapping, and both the sheet web weaver Lepthyphantes mengei 
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and the diumal running spider Trochosa terricola are associated with habitats of this 
nature (Lockett & Miilidge, 1951; Coulson & Butterfield, 1986). Hence these species 
are probably widespread on the surrounding moorland at Hamsterley, and in this case 
at least Z,. mengei appears to be an accomplished aeronaut. 

Brown (1985), studying Heteroptera, found that the in the early stages of succession a 

higher proportion of species overwintered as adults, and considered that this fact, 

combined with the higher dispersal ability of species at these stages, would allow rapid 

invasion of new habitats and immediate reproduction. Unlike insects, in which 

reproductive and dispersal ability are linked, many spiders are only able to disperse in 

immature stages, and for those species which can disperse as adults, i.e. linyphiids, the 

season when this occurs is limited, again unlike insects. In the case of the linyphiids 

aerial dispersal takes place during the autumn and winter (Foelix, 1982), when many 

members of this family have their reproductive season, which is in essence the same as 

insects overwintering as adults. However, as many linyphiids appear to have their 

reproductive season at this time of year, there seems little point in trying to link this 

characteristic with particular stages of succession. 

In the case of families other than the Linyphiidae, aerial dispersal takes place in the 

immature stages, and hence in order for the life-cycle of a non-linyphiid spider to 

approximate to that of early successional insects, the species in question would be 

required to balloon as a late instar immature. This would allow the shortest possible 

developmental period between arrival at a habitat and the commencement of 

reproduction. Again it is difficult to assess this in the early successional species at 
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Hamsterley due to the lack of information on ballooning behaviour in individual 
sp)ecies, let alone the developmental stage at which it occurs. However, Pardosa 
amentata, which was characteristic of Endgroup 2, begins it reproductive period in 
spring and does overwinter as a late instar immature (Richter, 1970). However, the 
poor dispersal ability of P. amentaia has already been dealt with above, and in 
addition, Richter (1970) found that dispersal ability in this species was best developed 
in young instars, and was absent in sub-adults, which are the most mature stage at 
which this species overwinters. Richter (1970) also investigated the ballooning 
behaviour of the closely related P. purheckensis. This species is not strictly speaking a 
colonist, but is found on mud flats, which are local in their occurrence, and P. 
purbeckensis did show a well developed dispersal ability. In addition, aeronautic 
behaviour occurred more frequently in the later instars of P. purbeckensis than those 
of P. amentata, and in fact was observed in adults of this species. Hence it may be 
that non-linyphiid spider species in early successional habitats wil l be found to be able 
to disperse in later instars than those in more mature habitats. 
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