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Abstract 

On Monopoles in Low Energy String Theory 

and Non-abelian Particle Trajectories 

Azizollah Azizi 

This thesis is mainly concerned with monopoles. First, the existence of monopoles 

and their behaviour in the Yang-Mills-Higgs theories, and in parallel, the instanton 

solutions of the Yang-Mills fields are explained. 

One part of this work is about monopoles and instantons in low-energy string 

theory. A general instanton solution for the heterotic string theory is obtained by 

using the ADHM construction for the classical subgroups of the string gauge group. 

In this direction, the embedding of subgroups and a general formula for the dilaton 

are explained. In the next topic of this part, the H-monopole and its generalisation 

to different subgroups of the string gauge group are discussed. 

In the second part, the motion of the Yang-Mills particles in the Yang-Mills-

Higgs fields are studied. Planar orbits are observed for a particle in a monopole field 

when the Higgs field contribution is neglected. The planar orbits are studied further 

with some numerical analysis of the equations of motion. By regarding the Higgs field 

contribution, a complete set of equations are worked out for the particle and fields. 

In this scenario, the planar motions as well as three-dimensional bounded motions 

are studied. At the end, the force exerted by the non-abelian Yang-Mills-Higgs fields 

on a particle with non-abelian charge is explored. 

I l l 
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Chapter 1 

Introduction 

ijh ^ < i p l 6 

Cjf jl ^1 cOLV 

Know that the cosmos is but one vast mirror, 

and that each atom contains a hundred blazing suns; 

Split open the heart of a single drop of water, 

and see a hundred pure seas flow forth. 

"Shabestari" 



During the last two and a half decades, monopoles have been studied extensively. 

Monopoles are solutions to the Yang-Mills-Higgs fields. The most significant topo­

logical property of monopoles is the quantisation of magnetic charge in the classical 

limit. Monopoles are mostly studied in a time-invariant perspective, which gives a 

three spatial dimensional soliton solutions to the theories. A BPS monopole is a 

solution that minimises energy of the Yang-Mills-Higgs fields. 

Instantons are solutions to the four-dimensional Euclidean Yang-Mills theories, 

which satisfy some conservation laws, and allow classical quantised quantity referred 

to as instanton number. Instantons are the fields solutions that minimise the Yang-

Mills action. 

The BPS monopoles are solutions to the Bogomol'nyi equations, and the instan­

tons are solutions of the (anti)self-dual equations. It is relatively easy to write down 

the Bogomol'nyi equations as (anti)self-dual relations. In this scenario the Higgs 

field is considered to be the fourth spatial component of a five-dimensional pure 

Yang-Mills field and the fourth spatial dimension has no contribution in the fields. 

This simulation makes a motivation to modify the instanton rules and use them for 

monopoles. For example the Nahm modification of ADHM construction is adapted to 

find the general monopole solution of the four-dimensional Yang-Mills-Higgs fields, 

so that ADHM construction gives the rules of finding the general instanton solution 

to the four-dimensional Euclidean Yang-Mills fields. We have reviewed monopoles 

and instantons in chapter 2. 

I t is more obvious to apply the above mentioned procedure for monopoles and instan­

tons in superstring theory which are originally built in a 10-dimensional space-time 
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and then compactified down to 4-dimensional space-time. The idea is that five spatial 

dimensions are compactified in a surface and the remaining 5-dimensional space-time 

is prepared for the instanton and/or monopole solutions. This has been done, and 

some authors have successfully used the instanton approach to form some monopole 

solutions for the heterotic superstring theory. 

In chapter 3 the equations of motion of the fields are explained, and solutions of 

an SU{2) subgroup of the heterotic superstring gauge field (£^8 x -^8 or 50(32)) in 

both instanton and monopole cases are discussed. Then a general instanton solution 

is obtained by applying the ADHM construction which gives a general solution for 

any classical subgroup of the main gauge group. We have explained the embedding 

of subgroups by introducing the Dynkin index of embedding. So for any subgroup 

we may construct the solution in the minimal embedding, and use the index of 

embedding when we are asked to generalise solution to any embedding. 

The i^-monopoles are new objects that behave like a monopole, and appear when 

the anti-symmetric tensor field is compactified down from higher dimensions to 4-

dimensions. The BPS solution of the string field equations is also a if-monopole 

solution. We then explain the relation between the total mass of a H-monopole 

with its charge, from which we may see another Bogomol'nyi bound analogous to the 

relation between the mass and charge of a BPS monopole. 

In the last part of chapter 3 monopoles in the SU(N) subgroups of the heterotic 

superstring gauge group are studied. We discuss the monopole behaviour of the 

SU{3) subgroup in some details and show that the monopole's magnetic charge and 

the charge associated to the anti-symmetric tensor field are of opposite sign. The 

chapter is ended by reviewing the different kinds of monopole and instanton solutions 

in the low-energy superstring theory. 

In chapter 4 we turn to a different usage of monopoles. In the Yang-Mills quantum 

field theories, such as electroweak and QCD, particles are assigned with some charges 

like hypercharge and colour. In QED (an abelian gauge theory) the charge is a 

conserved quantity that is related to the gauge-invariant property of the Lagrangian 
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and expressed by a unique real number. In the non-abelian theories the charge can 

no longer be expressed by a unique real number and might be displayed as a vector 

in the space of the gauge group (space of symmetry). 

Wong extracted the classical equations of a particle with a non-abelian charge 

in a classical Yang-Mills field. The equation of motion of a (non-abelian) particle in 

a (non-abelian) field is the modification of the Lorentz force in the usual electrody­

namics. Now the charge is a vector (in the isospace) and therefore may evolves in 

the time. Wong has given the equation of evolution of the charge isovector, while 

the length of the charge vector remains constant. 

As an application of the Wong equations of motion we consider the ' t Hooft or 

BPS monopoles and launch a Yang-Mills test particle in the field of the monopole. 

The speed and the total angular momentum of the particle and the field are constants 

of motion. We explain the equations of motion and enumerate some results. An 

interesting consequence of this motion is planar orbits. When a test particle is 

launched in the field of the monopole, while the direction of its charge isovector is 

normal to its position and velocity vectors, it will move in the plane normal to the 

charge isovector forever. We have explained the planar motions and the conditions 

for bounded orbits and their stability, and performed some numerical analysis of the 

equations of motion. 

Next, we introduce the Higgs field to exert a force on the particle in addition to 

the monopole force. We have introduced Wong's equations in five dimensions, and 

modified the equations of motion for a particle in the Yang-Mills-Higgs fields. We 

have chosen the extra fifth-dimension to have no contribution in the fields, leaving it 

as a dynamical variable. A close relation between the evolution of the fifth dimension 

and the isospace vectors, the Higgs and non-abelian charge, are observed. Motion 

of a test particle, now in presence of a force from the Higgs field, is studied. Three-

dimensional bounded orbits are observed, and stable planar orbits are allowed . 

Finally we investigate motion of a particle in the Yang-Mills-Higgs field, and 

introduce the generalised Lorentz force by interpreting the components of the fields 

and particle interaction. We show the generalised force shrinks to the usual Lorentz 
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force at large distances where we may interpret the non-abelian fields and particle 

as the usual fields and particle. The thesis is concluded by summarising the results 

in chapter 5. 



Chapter 2 

Monopoles In Gauge Theories 

J ^ J J^J Cf^ iX^ 

Everything seems to have an opposite, 

one appears to be poison the other sweet; 

While you are stuck in the illusion of the sugar and the poison, 

how would you he able to detect the fragrance of the rose-garden of unity? 

"Rumi" 



IVIagnetic monopoles were first introduced by Dirac as a part of modified classical 

and quantum electrodynamics [1]. Magnetic property of a field can be considered as 

dual of its electrical property, ie. they transform under a duality transformation, and 

in the same sense magnetic monopoles can be supposed as electric monopoles com­

panion. However, lack of experimental observation of magnetic monopoles convinced 

many people such as Dirac himself^ to doubt the existence of monopoles. Although 

with the assumption of presence of monopoles some nice properties^ arise, if there 

is no evidence, it is no problem to lay them aside and return to the original theory 

which existed before Dirac's modification. 

In late 60's to early 70's some new non-abelian gauge field theories appeared 

such as SU{2) x U{1) theory of electroweak interactions, SU{3) theory of strong 

interactions, and many unified theories. For the first t ime't Hooft [3] and Polyakov [4 

showed monopole solutions arise in some of these theories. However, these monopoles 

are different from Dirac's. Contrary to Dirac monopoles, these monopoles come from 

theories without modification, and not believing in monopoles would cause the whole 

theory to be turned upside down (ie. they are predictions and their absence requires 

an explanation). On the other hand, the 'tHooft-Polyakov solution has a natural 

interpretation as an extended object, which at large distances provides an explicit 

model of a Dirac monopole, but whose short-distance structure has been modified so 

that it has finite energy [5]. 

We shall start from the 't Hooft-Polyakov model of a monopole and then go 

farther to explain the BPS monopole, and monopoles in other non-abelian gauge 

^Dirac i n a letter to Monopoles Meet ing (1981) had mentioned " I am inclined now to believe 
t h a t monopoles do not exist." [2, page i i i ] . 

^For example: Existence of magnetic monopoles causes quantisat ion of electric and magnetic 

charges at the same t ime. 
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theories. We will explain one of the monopole companions, instanton, to complete 

this introduction for later needs. 

Convention: In this thesis we use the "Natural Units", that is "rationalised 

Gaussian cgs" or "Heaviside-Lorentz" system, with c = h= 1. 

2.1 The ' t Hooft-Polyakov Model of a Monopole 

To show how magnetic monopoles arise in non-abelian gauge field theories, we explain 

the simplest case in which 50(3), the three dimensional rotation group, is the gauge 

group. Based on dependency of gauge fields on the gauge group, an "internal space" 

can be attributed to this gauge group, which we may refer to as "isospace". In 50(3) 

case isospace is a three dimensional space, and we point to these dimensions with 

indices a, 6, c, We choose z^,... for normal 4-dimensional space-time indices, 

and k,... just for spatial coordinate indices. The isospace is an EucUdean space 

while space-time is a Minkowskian space with the metric 

V = diag(-1,1,1,1). (2.1) 

The Lagrangian of a 50(3) gauge field interacting with a Higgs field $ is 

£ = -^F^.F''^-' - i ( D ' ^ # ) « ( D ^ $ ) " - ! / ($ ) , (2.2) 

where are the gauge field strengths: 

F^. = - duAl + ee'""^AlAl. (2.3) 

In the above equation is gauge potential and e is coupling constant. The tensors 

F^^ and $ are defined as -F^^T" and $"T" ^ where T", with a = 1, 2, 3, are generators 

of the gauge group 50(3) (or equivalently SU{2)). The covariant derivative (D^$)" 

^ I t is convenient to make clear some notations here. We use normal vector 5 = ( S i , 52, S3 ) tha t 
is a (gauge independent) vector i n real spatial space, and isovector $ = ( $ - ' , $ - , tha t is a vector 
i n isospace (and each component is a scalar in real space). So in the case of gauge tensor, F^^^ w i t h 
a = 1, 2 ,3, Ffi„ = iF^t^,F^„,F^^) is an isovector. We can also have a "bi-vector" tha t means, i t is a 
vector i n real space i n some sense and an isovector in isospace in some sense. A n example is gauge 
vector po ten t ia l A f , t ha t Ai = {A],A'^,Af) is an isovector and A"" = {A^,A^,A^) is a vector. We 
keep the bo ld characters l ike A i to be a m a t r i x (unless we specify the case). 
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is defined as: 

(B^^)^ = 5̂ $̂ ^ + ee'''"Al<^'. (2.4) 

The last term in the Lagrangian is gauge independent potential V{^), 

V{^) = ^($''$'' - a^)\ (2.5) 

where A and a are arbitrary constants. By using the Euler-Lagrange equation and 

the Lagrangian (2.2) the equations of motion are 

(D.F'^^)" = -ee'^''^«J>''(D''*)'= (2.6) 

(D^.D'^*)'^ = A $ ° ( $ ' ' $ ' ' - a^) (2.7) 

which are supplemented by the Bianchi identity 

(D' ' *F,^r = 0, *F';, = \e,rF^,, (2.8) 

where tensor *F^j, is known as "dual" of the gauge field tensor F^^^. By analogy with 

the electric and magnetic fields, £i and Bi, one can define 

= Fo'', = -F ' ' °^ (2.9) 

Bt = le.j.F'^^'. (2.10) 

The energy density corresponding to the Lagrangian of eq(2.2) is 

£ = ^ [{E^f + {B^r + ( (Do*)") ' + ( (D,*) ' ' ) ' ] + (2.11) 

Notice that £ > 0, and vanishes if, and only if: 

= {B,^r = V{^) = 0. (2.12) 

A field configuration which these equations allow, is called a "vacuum" configuration. 

An example is: 

= 05*3, A'l = 0. (2.13) 

Since £ = 0 is a gauge-invariant condition, any gauge transformation of eq(2.12) will 

also provide a vacuum configuration. 
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A field configuration with ( D ' ' * ) " = V{^) = 0, but F^'i"' not necessarily 
vanishing is called "Higgs vacuum". Actually the finite energy condition enforces 
eqs(2.12) to be satisfied asymptotically at large distances. In particular, this re­
quires = when we consider eq(2.5), which states the Higgs field sweeps the 
surface of a two dimensional sphere of radius a in the isospace. 

The finite-energy non-singular classic solution of eqs(2.6) and (2.7) can be of the 

form [3] (see also [7]): 

A'^'in = J ( r ) | ^ , (2.14) 

>l«(r) = e - ^ | i [ l - / < ^ ( r ) ] , (2.15) 

= —^Hir), (2.16) 

where H{r), J{r), and K{r) are certain functions of the radius r. For a finite energy 

solution, energy density E asymptotically vanishes, then the condition V{^) = 0 at 

large distances implies 

lim ^Hr) = a—. (2.17) 
r->oo r 

Replacing eqs(2.14)-(2.16) with J = 0 (for a pure magnetic field) in eqs(2.6) and 

(2.7), after some algebraic calculations, by applying the appropriate boundary con­

ditions for a finite energy solution, one may find at large distances (see [5])'': 

F"'^ - -—e^^x^xK (2.18) 
er4 

't Hooft introduced a gauge-invariant electromagnetic tensor which reduces to the 

usual electromagnetic field tensor when the scalar field $ has only third component, 

ie. •J)* = a^''^ (see also [15]) 

T^, = F ; , $ « - ^e'''"^l>'^(D^*)''(D,*)^ (2.19) 

I t is more convenient to write JF̂ ,̂  as 

= d.i^^A:) - 5 , ( I > M ; : ) - -e'^'"^^^{d,^''){dAn, ( 2 . 2 0 ) 

"Equivalently one may use eqs(2.15) and (2.16) to find F?- and ( D i $ ) " directly from their 
definitions (note that = V{^) = 0 but {^"f as r -> oo), and then apply the finite 
energy condition on eq(2.11) to find the limiting behaviours of the unknowns H{r) and K{r) (and 
their derivatives). Then using these asymptotic behaviours, the result (2.18) is straightforward [6, 
section 23.3]. 
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where we have used eqs(2.3) and (2.4), and 

" (<|,a$a-)l/2 • (2.21) 

In a gauge field which is a fixed unit vector in three-dimensions, as it had been 

promised, JF^i. is the ordinary electromagnetic field tensor, ie. T^^ = d^Al — d^A^^ . 

Since ( D y * ) " vanishes rapidly as r —> oo, the magnetic part of the field tensor in 

this gauge is given for r —f oo by the first term in eq(2.19). So at large distances 

from the centre of the monopole (le. in the Higgs vacuum) from eq(2.18) and (2.19), 

or equivalently replacing eqs(2.15) and (2.16) in eq(2.20), the magnetic monopole 

property of the solution can be derived: 

^ y^T,, ^ y^'F^^ ^ ( 2 . 2 2 ) 

which looks like magnetic field around a point magnetic monopole with magnetic 

charge g = -^: 

The Dirac's quantisation condition is satisfied: 

where g = and qq = \q = ±.\e is the smallest possible charge which might 

enter the theory {q is electric charge of the charged vector bosons). One of the out­

standing properties of monopoles comes in the simple relation of Dirac's quantisation 

condition: 

where A'' is an integer number. This relation says if there are monopoles in the nature 

(even one) and they follow existing physical theories, then the quantisation of both 

magnetic and electric charges is guaranteed. 

Magnetic charges do not come out of theories similar to their electric compan­

ions. Two noted differences are: Electric currents are Noether's currents that means 

electrical property of fields can be concluded from the symmetry of theory, while 

magnetic property does not come from such kind of symmetries. Actually such as 
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solitons, monopoles are topological objects (next topic) such that their conservation 
laws are automatically exploited from their constructions, and not affected by equa­
tions of motion. The existence and quantisation of magnetic charges depends on 
topological characteristics of the space (or vacuum) that is appointed by boundary 
conditions. The other point is: electrical distribution of particles (eg. charged vector 
bosons) is singular and localised in a point, while in the't Hooft-Polyakov monopole, 
the magnetic distribution is distributed in a portion of space and not singular. 

Dyons 

The monopole solution o f ' t Hooft and Polyakov obtained here is electrically neu­

tral because of the condition J = 0 we entered in the equation (2.14). This is 

not a necessary consequence of the spherical symmetry which was used to obtain 

a solution possessing a monopole behaviour at large distances. Julia and Zee [11 

obtained spherically symmetric solutions with J 7̂  0. The same as the 't Hooft-

Polyakov monopole, the magnetic charge exists and quantised. The electrical charge 

no more vanishes, and arbitrary (at least classically) which can be quantised by some 

proper quantum-mechanical treatment. These solutions with both electric and mag­

netic charges are called "dyons" [12]. A generalised Dirac's quantisation condition 

is established when two dyons of charges {qi,gi) and (§2,^2) are supposed to be in 

interaction 

Qi92 - g2gi ^ 1 ^ n^^^ an integer. (2.26) 
47r 2 ' 

In this work we will treat monopoles in our arguments. 

2.2 Topological Property of Magnetic 
Monopoles 

In the Higgs vacuum (D^^)*^ = 0, therefore from eq(2.19) and eqs(2.6) and (2.8) one 

may show in the Higgs vacuum the Maxwell equations are satisfied: 

a^jr^'^ = 0, and d^*J^^"'^0, (2.27) 
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where is the dual tensor of T^". This is an important conclusion, that is in 

the Higgs vacuum the only non-vanishing component of the gauge field tensor is the 

component associated with the [ / ( I ) group of rotations about $, T^^^ which satisfies 

the Maxwell's equations. In this sense, outside the region of monopole, the 50(3) 

gauge theory is locally indistinguishable from conventional electromagnetic theory. 

Now by considering the global attributes of the Higgs vacuum, we study the 

magnetic flux, 9, through the closed surface S'2^^\ By Maxwell's equations 9 will be 

non-zero only if 8^2'^'^^ surrounds a region which the conditions of the Higgs vacuum 

fails. Then 

9 = L . . ^ - ^ ^ c.(phy) 

•̂2 
= -^<f,,^ e'J'=e«''^|.«(a^|.'')(9'=l>^) dS\ (2.28) 

using eq(2.20) and the fact that the contribution of vanishes by Stokes' theorem. 

Notice that the derivatives 5'$ occurring in eq(2.28) are those tangential to Sj'̂ '̂ '̂ ^ 

so that the magnetic charge within depends only on the value of the Higgs 

field on 52̂ ^̂ ^ For a small increment on the Higgs field * : 

$' = 1 + 5$, $ - 5 $ = 0. (2.29) 

Replacing $' in eq(2.28), keeping the first order terms the integrand of eq(2.28) will 

have an extra term 

which vanishes. Obtaining this result is straightforward. The integral of the last two 

terms in this expression vanishes by Stokes' theorem, and the first term vanishes by 

using the fact that d^^ x 3*̂ $ is parallel to $, and therefore perpendicular to 5$ 

(by using the second relation in eq(2.29)). Consequently a small variation in the 

Higgs field subject to asymptotic Higgs vacuum condition, produces no change 

in the flux, 9. This extends to any change in >̂ which can be built up by small 

deformations. Such a deformation is called a "homotopy". Examples of homotopies 

in the physical context under discussion are: the time development of the change 
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in $ under a continuous gauge transformation, and the change induced by altering 
continuously in the Higgs vacuum. Consequently g is time-independent, gauge-

invariant and unchanged under any continuous deformation of the surface 5 '̂'''̂ ^ 
containing the monopole or monopoles. 

Let us define a current (say magnetic current or a topological current), based on 

the conservative quantity we discussed 

= -—e""''^ t'^^'^d^^dp^^d^^. (2.30) 

Using eq(2.20), it is simple to see the magnetic current comes in the right-hand side 

of a Maxwell equation that is null in the ordinary electromagnetism, ie. dJ'T'^^ = 

A:'' (see eq(2.27). This comes in the analogy with the ordinary Maxwell equation 

d^T'^" = where is the electric current. The magnetic charge density -

__±^ijk^abcgi^aQ3^bgk^c^ and the magnetic charge 9 = / /c" d^x. We see the magnetic 

current depends on the Higgs field only, and moreover, this current is identically 

conserved: 

9 ^ F = 0. (2.31) 

I t is clear that the conservation of the current does not follows from the dynamics 

(or a symmetry of Lagrangian), and this is the fact we mentioned earlier: monopoles 

are topological objects ie. these objects are coming from topological behaviour of the 

fields where are appointed by the non-trivial boundary conditions. 

To see g is quantised, note that we may write 9 = —ivN/e where: 

The number A'' has the geometrical interpretation of being the number of times <i(f ) 

covers the sphere 4" '^ = • {^^f + + {^^f = « '} as f covers 5^̂ '̂ ^ once 

{ie. the number of times 82'^^'' is wrapped about 6*2"'' by the map $ : 5*2''''̂ ^ S's"''). 

Thus A'' must be an integer; it is called by mathematicians the Brouwer degree or 

Poincare-Hopf index of map (some authors refer to N as 'winding' number). To 

show that every integer may realised for suitable $ consider 

$ j ^ ( f ) = a(cos A'cpsin^, siniV(/)sin0, cos0), (2.33) 
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where (r, 6, cp) are spherical polar coordinates. This covers 5 f A ^ times as fcovers 
Si^^""^ once, and yields Â  in eq(2.32). 

We have seen that magnetic charge is topologically conserved and quantised in 

units of 47r/e for topological reasons. Further, since the smallest electric charge that 

we expect on quantising the theory is go = \e we have obtained Dirac's quantisation 

condition (2.25) by topological methods. 

2.3 The BogomoPnyi Bound and BPS monopole 

An important feature of the ' t Hooft-Polyakov monopole solution is that the mass is 

calculable. The mass of these solutions has a lower bound in terms of its electric and 

magnetic charges, first found by Bogomol'nyi [8]. In the Higgs vacuum = 

and {B„^Y = 0, so from eq(2.19) 

= \f%^\ (2.34) 

For any solution the magnetic charge is 

g = j^B-dS =^j^ Bl^^dS' = ~j^ Bf{-D'^)''d\ (2.35) 

where the surface integral is taken in a sphere at infinity. We have used definition 

of B^ from eq(2.22), eqs(2.10) and (2.34) to conclude second surface integral from 

first one. To conclude the volume integral from the surface integral we have used 

divergence theorem, and (D^B^)" = 0 which comes from the Bianchi identity (2.8). 

Similarly using = the definition of E^ from (2.9) and equations of motion 

(2.6), the electric charge is: 

q = i £-dS = - [ E^CD'^yd^r. (2.36) 
Js a Jv 

To see how the covariant derivative has appeared in the volume integrals in eqs(2.35) 

and (2.36), one may suppose a normalised basis T*̂  for the gauge group such that 

tr(T"T'') = C^''^ and consequently 

t r (D, (PQ)) = a,(tr(PQ)) = d,{ii{P^T'^ Q'T')) = (d,{P^Q'^). (2.37) 
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Consider the centre of mass frame of the monopole. The mass of the monopole is 
given by: 

M = j £ d \ = j d ' r [ \ [{Etf + + ((Do*)'')^ + ((D,*)")^] - f ! / ( * ) } 

= \ l d^r [E^ - ( D , ^ ) ' ' sin + \ j dh [B^ - {Hi^Y cos Of 

+a{qsm.9 + gcos 6) 

> a(qsin9 + gcosO), (2.38) 

where we have used eqs(2.35) and (2.36) in the third line. The parameter 9 is an 

arbitrary real angle, and the inequality (2.38) is correct for any angle 9. Then we 

can choose 9 such that optimise the above inequality: 

M > a^q^ + g^. (2.39) 

To obtain the above inequality, simply we can find the maximum value of the function 

f[9) = qsm9 + g cos 9. 

Inequality (2.39) which is known as the "Bogomol'nyi Bound" shows that there 

is a lower bound for the mass of any monopole solution of non-abelian theories [8 . 

In the case o f ' t Hooft-Polyakov monopole, that is a pure magnetic charge {q = 0) 

M > a\g\. (2.40) 

The above procedure has been brought from Goddard and Olive [5] (after Coleman et 

al [9]). Using the value of the magnetic charge \g\ = ^ one can relate the monopole 

mass M to the mass^ of heavy gauge boson Mq = qa = ae: 

471 in ATT ^, u , , 
M >a— = —ae = — = - M „ , (2.41 

e q^ a 

where a (=1/137 for electron) is the fine-structure constant and u = 1 or ^ depend­

ing on whether the charge on the electron is q or |g . It is seen the mass of monopole 

^The masses of particles that would be expected in the theory specified by Lagrangian (2.2), are 
calculated from the Lagrangian in the usual way by recognising that when we expand about the 
vacuum the coefficient of the quadratic term in the boson fields is the square of mass divided by 2. 
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is much larger than the mass of the heavy gauge boson, which itself would be very 
large when its value is estimated in some unified theories. We mentioned in the intro­
duction of this chapter there is no evidence yet for existence of monopoles. The above 
restriction in the mass of monopoles makes the observation of monopoles outside of 
today's experimental power {ie. the required energy for magnetic monopoles pair 
production in laboratories is more than the power of present particle accelerators). 
On the other hand still there is no evidence to say the hypothesis of monopoles is 
wrong, and therefore monopoles are an important and rich concept, and an integral 
part of non-abelian field theories. 

The B P S Monopole 

There is an exact solution which saturates the Bogomol'nyi bound (2.40), constructed 

by Prasad and Sommerfield [10]. In the BPS^ limit we are seeking a solution with 

pure magnetic charge (q = 0) and the mass M = a\g\. Therefore from inequaUties 

(2.38) these equations are required: 

(Do*) ' ' = 0, Et = 0, (2.42) 

y ( * ) = 0, (2.43) 

B^ = ± ( D i $ ) ^ + for ^ > 0, - for g < 0. (2.44) 

The equation (2.43) is realised if the coupling constant A vanishes, although consis­

tently the boundary condition |$ | -> a as r —>• oo is retained as a remnant of V. This 

condition guarantees charges are well-defined and quantised and the mass is finite as 

we described them earlier in this chapter. In this scenario equations of motion (2.6) 

and (2.7) become 

^-Q^Y^y = -ee"'"=$''(D''$)'= (2.45) 

(D^D^$)" = 0. (2.46) 

'BPS stands for Bogomornyi-Prasad-Sommerfield. 
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The zero component of eqs(2.45) is satisfied with eqs(2.42), and eq(2.46) is equivalent 
to the Bianchi identity (D'Bj)" = 0 using eqs(2.44). Therefore remains only to show 

(DjF'^y = -ee''^'<i''{B'^y. (2.47) 

To show this, we can follow this procedure. Put F"*̂ ' = e'^'^B^ = e'̂ '=(Dfc#)" in the 

right-hand side of eq(2.47): 

( D . F ^ r = 6^^'^(D,D,*)'^ = ^e^^'=([D„D,]*)'^ 

1 1 

= [B„ *]'^ = [D,*, ^j-^ 

= ~ee'""'^\r>,^y, (2.48) 

where we have used the identity [ D i , D j ] R = [F i j ,R] , which R is any isovector in 

the same isospace as F^j. 

Equation (2.44) is a first order differential equation version of the Yang-Mills 

field equations (2.6). Replacing the ansatz of eqs(2.15) and (2.16) in eq(2.44) after 

some algebraic calculation one can find 

H{r) = aer coth{aer) - 1 (2.49) 

K{r) = . "J . , (2.50) 
smh(aer-) 

first obtained by Prasad and Sommerfield [10]. The BPS monopole is not localised 

in the same way of the 't Hooft-Polyakov monopole. For the 't Hooft-Polyakov 

monopole we can consider a finite radius Ro (determined by the Compton wave­

length, h/M, of the heavy particles of the theory) such that outside the radius RQ 

the fields configuration become a Higgs vacuum. But in the BPS monopole the fields 

configuration can not touch the Higgs vacuum, while the Higgs field is now massless 

(because we chose A = 0) and long-range. In the BPS monopole, both the Yang-Mills 

and Higgs fields contribute in mass density equally (see eq(2.44) and mass density 

equation (2.11)), while in the 'tHooft-Polyakov monopole (A > 0) the Higgs field 

has no contribution in far distances, where we called Higgs vacuum. For the BPS 
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monopole the mass density is: 

£ = \ [{Bt? + ((D.*)' ' )^] = ((D,*)'^)^ = \ d ' m \ (2.51) 

To show the last step, the same as in eq(2.37) we use a normalised basis T" for the 

gauge group such that tr(T"T'') = C '̂'*, 

t r ( D , # ) 2 = (D,#)"(D,$)*tr(T'^T*) = ( ( (D.*) ' ' )^ 

and then 

= i t r ( D , $ ) ^ = i t r ( D , ( $ D , $ ) ) 

= ^5 . ( t r ($D,* ) ) = -^d, ( ^ t rD , ($ )^ ) 

where we have used eq(2.46) in the second equahty. Using eq(2.16) and the spherical 

coordinates 
^ 1 1 d / ,d 11 d^ ( 

From the above equation and eq(2.49) one can show mass density is finite in the 

origin (= \a^e^), and exponentially decreasing at large distances. The solution we 

have described here is charge one monopole'' that is clearly time-independent. For 

the sectors with N ^ 1 presumably there are solutions that depend on time, similar 

to a two-soliton solution that separate to become two separate solitons while energy 

decreases in this process. The BPS solutions with N 1 static monopoles are 

constructed [17, 18 . 

An useful reformulation of the Bogomol'nyi equations is described in this para­

graph. Imagine an Euclidean 4-dimensional space that has three dimensions as nor­

mal spatial dimensions and the fourth is also as a spatial dimension but different 

from normal spatial dimensions in nature. Indeed the theories in this space are time-

independent, therefore we may use some formal properties of this space if we are 

•^From eq(2.51) or eq(2.52) one can see mass = / S d ^ r = that shows |c,| = ^ or iV = 1. 
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dealing with time-independent solutions. If we make the identification $" = A^, and 

= ( D , * ) ' ' we may write 

Fa0 = l^ap^'F^,, a,P,j,S = l,...A (2.53) 

and recognise the Bogomol'nyi equations, (2.44), as self-dual^ relations in four di­

mensions reduced to three, since no field depends on x^, the fourth spatial dimension 

coordinate. In the next section we will discuss field solutions to four-dimensional 

Euclidean Yang-Mills equations, the Yang-Mills instantons, which satisfy (anti)self-

dual relation (2.53). 

2.4 The Yang-Mills Instantons 

The term "instantons" refer to localised finite solutions of the classical Euclidean 

field equations of a theory (instead of Minkowskian versions we discussed in previous 

sections). Therefore instantons may have some similar concepts as monopoles have. 

In this section we discard the Higgs field, and just consider the SU{2) gauge fields, 

AJ ,̂ with a = 1, 2, 3 and a = 1, 2, 3, 4. To make the notation simpler, it is helpful to 

represent three vector-fields A^, with a matrix-valued vector-field defined by 

A„(x) = ex^Alix), x" = ^ , (2.54) 

where e is coupling constant such as given in eq(2.3), and a"" are the Pauli spin 

matrices. Here x stands for ( . X i , X2, x^, x^), as a four-dimensional spatial vector in an 

Euclidean space with metric 

9c^/5 = 5^0, a, P = 1,2,3,4. (2.55) 

The three matrices in eq(2.54) form the generators of the two-dimensional repre­

sentation of the group SU{2), and satisfy the Lie algebra 

[ ^ a ^ ^ . ] ^ ^ . . c ^ c _ ^2.56) 

*This means the tensor F^p is equal to its dual tensor *F^^ defined in eq(2.8). An "anti-self-
dual" relation is defined the same as self-dual relation (2.53), but with a minus sign in front of 
right-hand side expression. 
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Correspondingly, we define a matrix valued field tensor: 

F,0 = ex''F:^, ' (2.57) 

where 

Fap = daAf} - dpA^ + [ A „ , A ^ j . (2.58) 

Actually with this treatment the coefficient e has been removed from back of the 

bracket in the above equation. 

The Euclidean action is obtained from Minkowskian Lagrangian (2.2), after omit­

ting the scalar field and using the matrix notation for A^. The action is 

S ^ - ^ l c ? ' x t r [ F „ ^ F « ^ ] , (2.59) 

and the Euclidean Yang-Mills equations of motion are 

D „ F ° ^ = a«F"^ + [ A „ , F " ^ ] = 0, (2.60) 

where both equations are invariant under gauge transformation. 

The Yang-Mills instantons are finite-action (in analogous to finite-energy in 

monopoles case) solutions of eq(2.60). To find them one may proceed just as what 

was done in the case of static monopoles in the earlier sections. First of all a bound­

ary condition is needed to be satisfied by any finite-action field configurations. As 

a first step towards this goal, we consider zero-action configuration (In analogous to 

zero-energy configuration in monopole case eq(2.12)). From eq(2.59) we see 5 = 0 if 

and only i f Fap = 0. This allows an infinity of possibilities for the vector-field A ^ . 

Actually Fap = 0 is a gauge-invariant equation, and therefore not only satisfied by 

AQ = 0, but also by any gauge-transformed field obtained from A „ = 0. These fields 

are called "pure gauges", and given by 

A,(x) = Vix)d^[V~\x)], (2.61) 

where lJ{x), at each point x, is any element of the gauge group SU{2) in its 2 x 2 

representation. Turning to finite-action configuration, i t is clear from eq(2.59) that 

Fa/3 must vanish on the boundary of Euclidean space, ie. on the three-dimensional 
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sphere surface 6*3 at r = oo where r = [xl + x^ + xl + .x^)^/^ is the radius of the 
sphere in four dimensions. In fact FQ/J must vanish faster than 1/r^ as r —>̂  00 , and 
this can be obtained if we choose the following boundary condition on A ^ : 

l im A „ = lim \]d^\J-\ (2.62) 
r - » o o r ^ o o " ; V / 

for some U in gauge group SU{2). Comparing with the't Hooft-Polyakov monopoles; 

Far from the monopole centre, the fields configuration should become the Higgs 

vacuum, while in instantons, far from the instanton location, fields configuration 

become pure gauge fields. 

A question is what is similar to the BPS monopoles in instantons scenario. This 

is a good point to think about an exact instanton solution. We borrow Rajaraman 

14] to find a relation similar to eq(2.40) for instantons. We begin with the trivial 

identity 

- I d'x tv[{F^p ± *F^p)^] > 0, (2.63) 

where *F„/j = ^Cap'^^F^s is the dual tensor. Using t r ( F Q ^ F " ^ ) = t r (*F„^ * F " ^ ) , this 

gives 

2e^S = - I d^x t r ( F „ ^ F " ^ ) > ± J d'^x t r (F^^ * F " ^ ) (2.64) 

From these equations we see the absolute minima value of action S occur when 

Fa^ = T*F,^. (2.65) 

Thus, self-dual and anti-self-dual configurations extremise S, and solve the field 

equations (2.60). Of course the absolute minima of S need not be its only extrema. 

Therefore this derivation does not prove that all solutions of eq(2.60) are (anti)self-

dual, but conversely shows the (anti)self-dual configurations are solutions of the 

equations of motion. 

In the BPS monopole, the Bianchi identity was automatically satisfied by as­

sumption of the Bogomol'nyi equations and the equations of motion. Here the simi­

lar thing happens, ie. by choosing (anti)self-dual solutions, both equations of motion 

and Bianchi identity become the same equations. Before going to find a solution 

to (anti)self-dual equation, it is instructive to comment (anti)self-dual solutions in 
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Minkowskian field theories. Looking at "dualising" (*) as an operator, one may 

write the dual of dual tensor 

, 7 ( 5 , KA T P 

= - F , ; , . (2.66) 

Therefore in Minkowskian space the eigenvalue of operator (*)^ is —1, while in 

Euclidean space, **FQ^ = F^p that shows, eigenvalue of (*)^ is 4-1. Hence the 

eigenvalues of dualising operator are ± i for Minkowskian field configurations, and 

± 1 for Euclidean case, that is summarised as: Real (anti)self-dual solutions can not 

exist for Minkowskian field theories (of course in four dimensions). 

Let us now look for some solutions of self-duality (or anti-self-duality) condition 

(2.65). The first attempt was done by Belavin et al [13], and many people have 

contributed in evolution of solutions to (anti)self-dual relation. Following Rajaraman 

14], the 'tHoof ansatz for the gauge field is: 

A, = iE,,3dp{lncf>{x)) (2.67) 

where (f){x) is a scalar function to be obtained, and T,ai3 are the components of an 

anti-self-dual matrix built from Pauli matrices 

0 0-3 -O2 

- ( 7 3 0 0-1 -(72 

- C T i 0 -0-3 

0-1 (72 0-3 0 

(2.68) 

which can be written compactly in the form 

= 7)'^"^a72 a = 1,2, 3 (2.69) 

where 

' - ' ~ \ for P = A. ^^-'^^ 

Replacing the ansatz (2.67) in eq(2.58) to find Fap, and then dualising Fap, duahty 

equation (2.65) can be found as a compact single relation 

^ = 0. (2.71) 
(P 
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where 5^ = dad°'(p. When 0 is non-singular, eq(2.71) reduces to d'^cj) = 0 which 
permits only the trivial solution 0 = constant, leading to = 0; But when singular 
(f){x) are considered we get a non-singular solution for the gauge field^. A general 
form of solution to eq(2.71) is 

0(x) = l + i : r r ^ L ^ , (2.72) 

where and are any real constants^". These solutions when inserted in eq(2.67) 

will yield (after some gauge transformations) A'-instanton solutions. For the instan­

ton solution, Â  = 1, the gauge field is found 

A „ ( : . ) = - 2 ^ E ^ , J ^ l ^ ^ , (2.73) 
X — O -T A 

that is of course a suitable gauge transformation of original A ^ found in eq(2.67). 

In the equation (2.73) E^^ is an element of self-dual matrix 

E , ^ = 7 7 - ^ a 7 2 with r/-^ = = | ^ " ^ f = 1' 2= ^ (2.74) 

The solution (2.73) is non-singular at any point x for any given X ^ 0. One 

may interpret a {— ( 0 1 , 0 2 , 0 3 , 0 4 ) ) as 'location' of the instanton, and can be chosen 

arbitrarily because of the translational invariance of the Yang-Mills equation. Simi­

larly constant A represents the 'size' of the instanton. This freedom is related to the 

scale-invariance of the Yang-Mills system under the scale transformation Xa AXQ 

and AQ —)• AAQ, for any A 7̂  0. The one-instanton solution (2.73) is essentially 

spherically symmetric about the point o, in analogous to the BPS monopole solution 

in previous section. 

When Aa{x) from eq(2.73) substituted into eq(2.58) it leads to field tensor 

Since E^^ is self-dual, so is FQ,^, and clearly localised and finite. Obtaining anti-self-

dual solution is straightforward by interchanging E^^ with E^^ in ansatz (2.67), and 

therefore in eqs(2.73) and (2.75). This solution may be called the anti-instanton. 

''One can examine, as an example, (/>(a:) = j ^ , and shows at a; 7̂  0 and 2; = 0 (singular point of 

(/»), the function ^ vanishes. 

more general solution can be written in the form Y,i'=i^ \x„-'ai„\^' which reduces to eq(2.72) 

where ajw+i 00, XN+I 00 with {XN+I/CLN+I)^ = 1-
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Instanton Number 

In topological aspect of monopoles in previous sections we addressed the quantisation 

of monopole charge to the context of winding number or "homotopy index". The 

same concept arises in instanton case. Let us define the quantity k: 

(2.76) 

where *Fap is the dual tensor. The integral in eq(2.76) does indeed give the homotopy 

index or winding number of S^^^^'^ into S^"""'. To show this, the first step is to write 

the integral as a surface integral over 5*3̂ ^̂ ^ From the defining equation (2.58) one 

may simply find the identity 

(int) 

a „ * F " ^ + [ a „ , * F " ^ ] = 0 . 

Now defining a density correspondence to k 

-16 7r^k{x) = tv[*F^/}F''^' 

= t r [{d^Af} - 5 ^ A J * F " ^ + ( A , A ; 3 - A ^ A „ ) * F ' ^ ^ 

= t r { ( a , A ^ - 9 ^ A J * F " ^ + A „ [ A ^ , * F ^ ^ ] } , 

= t r [ ( 9 , A ^ - a ^ A „ ) * F " ^ - A^dp*F 

= tr [ a , A / F " ^ - dp ( A , * F " ^ ) ' 

(2.77) 

(2.78) 

where the cyclic property of trace as well as eq(2.77) have been used. Next mixing 

the definit ion of dual tensor *Fai3 and eq(2.58), and replacing in eq(2.78) 

-167r'A;(a;) - t r {e"^'^'^ [ (a«A^)(a^A5 + A ^ A ^ ) - ^ ^ ( A . a ^ A ^ + A ^ A ^ A ^ ) ] ^ 

t r je"^-^-^ ^2 da [Apd^As + ^A;5A^A5)] | , (2.79) 

where we have used 

t r e"^^^(a„A; j )A^Aj 
1 

c'^^'^'d^iApA^As) 

which again can be obtained by using the cyclicity of trace and the antisymmetry of 

ga/J75. Thus 

k{x) = daf (2.80) 
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where 
2 

A^d^As + - ApA^As . (2.81) 

Hence 

k = jk[x)d'x = j^^^^^^^]^dS\ (2.82) 

Further, on the surface at inf ini ty S's'̂ ^̂ ', the finite-action configurations have Fq ,^ = 0 

and hence e^^T'^^^A^ = -e^^^-^A^A^. thus 

^ = 2 ^ t r [ A , A , A , ] dS^. (2.83) 

Finally, inserting the asymptotic behaviour (2.61) of the fields A ^ we have 

k = - - ^ idS^e^^^^'tv \{d(}V)V-\d^U)U-'{dsU)U-'] . (2.84) 

Thus, we have wr i t ten the volume integral in (2.76) as a surface integral, wi th the 

integrand directly in terms of the group-element-valued function U on 53'̂ '̂ '̂ ^ corre­

sponding to any given finite-action configuration. 

By definition of SU(2), the matrices U are the set of all 2 x 2 unitary unimodular 

matrices. Such matrices can be wri t ten uniquely in the form: 

U = ^ a « s « (2.85) 

where S4 = I , the unit 2 x 2 matrix, and 

Sj=ia„ J = 1,2,3, (2.86) 

and Ga are any four real numbers satisfying 

E « " « " = l - (2-87) 
a 

The group is thus parametrised by these four real variables a^, subject to the con­

straint (2.87). The group space is therefore the three dimensional surface of a unit 

sphere in four dimensions, which we call i t 53'"'^ The function U is therefore a 

mapping of S^^^^^ into Sg'"*^ 

Notice again the similarity to the discussion of the monopole system in previous 

sections. There, the boundary conditions involved mapping of ̂ 2 into Here, 
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we have the corresponding situation for three dimensional spherical surfaces. Sti l l a 
l i t t l e bi t work is needed to show when integration is done over once, the group 

space ^g'"'^ may be spanned an integral number of times (the proof can be found 

in literature such as [14]). One may explain the subject according to the homotopy 

groups: 

7r„(5„) = Z , (2.88) 

where 7r„(S'„) refers to the homotopy group for the mapping of Sn into 5 „ and Z 

refers to the group of integers. That is, mappings of Sn —> Sn come in a discrete 

in f in i ty of homotopy classes, each characterised by an integer. This is true for all 

positive integers. For the monopole case n = 2 and for instanton case n = 3. Finally, 

the constant - 1 / ( 1 6 TT^) in eq(2.76) has been so arranged that k w i l l be in fact equal 

to this integer. This can be checked by the prototype example 

Ul (X) = ^ ' ' ^ '^7^ '^^ '^ =j:^aSa. (2.89) 

On comparing wi th the general representation (2.85), we see that this gauge function 

corresponds to = Xa- That is, every point on Si^^^^ is mapped on the correspond­

ing point (at the same polar angles) on 53'"'^ Thus the homotopy index k must be 

equal to unity. On inserting eq(2.89) into eq(2.84), a l i t t le algebra yields 

1 r / —12r"\ 
~ 247r2y5r^) \x\^ I ' 

^ /dnx''\x\'^ 

^ I = 1, (2.90) 

where we have used: dS°' — \x\'^ x"" dCl, which is the solid angle element in 

Euclidean four-space, and the total solid angle / dQ in four-space is 2 7r̂ . 

The integer number k that is often called the "Pontryagin index" by mathe­

maticians, is normally known as "instanton number" by physicists. The instanton 

number for self-dual solution we found in eq(2.73) is 

^ = - T T T T / ^ ' ^ t r [ * F „ ^ F " ^ 
16 IT'' J L 

2-

2^ 
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16 

A* f y^dydn 12-2 
7r2 J \ / + A2]4 4 

= 1. (2.91) 

This answer is obviously equivalent to the result of eq(2.90), since the gauge field 

(2.73) behaves as a pure gauge as x —> oo, 

A „ ^ U i ( : c ) a , [ U i ( x ) ] - \ (2.92) 

where U i is the prototype example of eq(2.89). For anti-self-dual solution which is 

known as "anti-instanton" the instanton number is — 1 . 

2.5 Monopoles in Arbitrary Gauge Groups 

In previous sections we found a clear picture of a magnetic monopole associated wi th 

some 5*0(3) (and equivalently SU{2)) gauge theories, wi th a definite internal struc­

ture and calculable mass. T h e ' t Hooft-Polyakov and the BPS monopoles were charge 

one spherically symmetric solutions. Sti l l the problem is established for more general 

solutions other than spherical ones; solutions wi th more than one monopole,ie. sep­

arated monopoles, monopole solutions wi th charge greater than one Dirac's unit, 

or monopoles in the other gauge groups. Much attempts have been done to 

find and discuss magnetic monopoles in different kinds of gauge groups. Actually 

much has been learned about exact (superimposed and separated) multi-monopoles 

in arbi trary gauge theories. The first attack to the problem was to construct some 

exact static finite energy solutions of the equations of motion, in terms of elementary 

functions. The BPS monopole that is a charge one spherically symmetric SU{2) 

monopole, has been generalised to obtain spherically symmetric solutions for larger 

gauge groups, SU{N) [15, 16]. Finding solutions wi th charge two or more are not 

as simple as charge one sectors, but has been done in principle using the twister 

approach [17, 18 . 

At iyah , Drinfeld , Hitchin and Manin [19] constructed a method ( A D H M ) that 

gives "instanton" solution of any self-dual Euclidean Yang-Mills fields. The A D H M 
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construction was originally obtained using algebraic geometry, but can be derived 
and explained in terms of matr ix algebra [20, 21]. Four years later Nahm [22 
adapted the A D H M formalism to self-dual {ie. the BPS monopoles, see eq(2.53)) 
multi-monopoles for arbitrary charge and arbitrary gauge group, which has been 
referred as " A D H M N " construction. In the A D H M N construction the regularity of 
the solution is automatic, and is generalised to gauge groups beyond SU{2). Using 
the A D H M N approach, some solutions have been constructed (or re-constructed). 
Some examples are: Charge two SU{2) monopole solutions wi th axial symmetry 

23], SU{N) axially symmetric solutions [24], SU(N) spherically symmetric solutions 

25] and general solutions of SU{2) for 2-monopoles [26 . 

In large gauge groups like the Es x Eg of "heterotic superstring theory" finding 

analytic solutions is impractical. One can think about monopoles in smaller sub­

groups of these large groups (eg. SU{2) subgroups of E^ x Es). We w i l l discuss 

magnetic monopoles in string theory in next chapter. 

I n this section we describe SU{N) gauge field monopoles in some details. We use 

a natural generalisation of the SU{2) BPS monopoles. Therefore we seek some time-

independent spherically symmetric solution that saturate the Bogomol'nyi bound, 

and satisfy the BPS equations, (2.42)-(2.44). 

2.5.1 Monopoles in SU{N) Gauge fields 

For some convenience we use SU{N+1), ior N > 1. The model we consider here is an 

SU{N + 1) gauge field coupled to a massless scalar field in the adjoint representation. 

The Lagrangian for this theory is 

C = - I F ' ^ ' ^ ' ^ F ; , - i ( D ' ^ $ ) » ( D ^ * ) ^ (2.93) 

where the field strength F^^, and the covariant derivative have similar definitions 

as in section (2.1): 

= d,A:~d.A; + er'"'A''^Al (2.94) 

{D,^r = + er''MJ$^ (2.95) 
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where f'^'"^ are structure constants of the gauge group SU{N + 1) wi th respect to a 

basis T*^ and a,b,c= 1,2,..., N, N + 1. Wilkinson and Goldhaber [27] have given a 

generalised ansatz for the gauge and Higgs fields: 

(T* - M ' ' ( r ) ) 
A , = 

* = 
^ ( r ) 

(6 = 1,2,3), (2.96) 

(2.97) 

where A ^ , M** and * are (three, three and one) (A '̂ + 1) x (A'' - I - 1) matrices. Here 

M ' ' ( r ) and ^ ( r ) are unknown matr ix functions, and T*" are three {N + 1) x {N + 1) 

matrices which generate the maximal embedding of SU{2) in SU{N + 1). Nothing 

depends on time, and A q = 0. The solution is prepared to be spherical symmetric 

and therefore one can look at eqs(2.96) and (2.97) along any axis, say z axis [16]. 

The Bogomol'nyi eqs(2.44) then become 

( D 3 $ ) « , (2.98) 

( D ± $ ) ^ (2.99) 

^3 

Using the ansatz (2.96) and (2.97) the above equations become 

= [ M + , M _ ] - T ^ 
dr 

dM± 
dr 

= t [ m ± , # ; 

(2.100) 

(2.101) 

where T'* (a = 1,2 and 3) the generators of the maximal embedding of SU{2) in 

SU{N + 1) are chosen such that 

diag i / v , i i v - i . . . . , - i j v + i , - i i v ; (2.102) 

I t has been shown [27] that the matr ix functions, M_|_(r) and $ ( r ) , can be taken aŝ ^ 

'/>2 - (f>l 

$ = 
N-1 

(2.103) 

"There are some motivation for this selection. In eq(2.100), is diagonal, and taking an idea 
from ladder operators in quantum mechanics ([J+, J_] = TiJ^ with diagonal), but remind we are 
in a completely classical framework, M+ and consequently M _ can chosen in the same way to have 
a chagonal result from the bracket in right-hand side of eq(2.100). Immediately one can choose $ 
as a diagonal matrix. 
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/ 0 a i 
0 02 

(2.104) 

0 ajsf 

V 0 J 

where cpm and am are real functions of the radius r, and M _ = (M_i_)^. Substituting 

eqs(2.103) and (2.104) into the first order eqs(2.100) and (2.101) the field equations 

become [27, 16 

2 '̂ 0771 _ / n2 = {amy-mm, (2.105) 
dr 

(^-~(f>m-l + (l)m- ^ 0 m + l ) am, (2.106) 
dr 

where l < m < A ^ , m = A ' ' - | - l - m and (f)o = (pN+i = 0. The equation (2.106) can 

be solved [28, 16] by introducing N new functions Qi,Q2 ,QN w i th relations 

am = ^immQm-iQm+iY^^ (2.107) 

0 „ = y j l ^ ^ H ^ , (2,108) 
dr r 

where Qo = Qiv+i = 1; and never vanishes except at the origin. The remaining 

equation (2.105) now becomes a homogeneous differential equation in the Qm.-

Q'mQ'm - QmQm = mrflQm+lQm-U (2.109) 

for m = 1, 2 , . . . , A'". For a useful interpretation of the the solution, one can observe 

the radial magnetic field B 3 is to be wri t ten in the form^^ 

B 3 = 7^diag(Bi , B 2 - B , , . . . , B N - BN-U - B N ) , (2.110) 
2e 

then Bm are given in terms of the Qm by the relation 

Let us look for solutions of eq(2.109). Before going forward, i t is convenient to 

clear the situation of the previously solved problem (ze. SU{2)) when N = 1. In 

^^In fact we are looking along ^-direction, therefore we have to know about B3 as the radial 
magnetic field. Prom eq(2.96) one can see A3 is diagonal and therefore [A3,*] = 0. Now B3 = 
D3* = ^3* = {d/dr)^, which shows magnetic field is diagonal and eq(2.111) is concluded. 
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this case the equation (2.109) becomes Q'^ — QQ" = 1 which clearly has a solution 

Q{r) = ^ sinh(Q;r), where a is an arbitrary. I f this value is substituted in eq(2.108) 

and then eq(2.103), the solution of eq(2.16) wi th eq(2.49) can be concluded in the z-

direction w i t h a = ae. In the rest of this section we suggest A^ > 1. In eq(2.109) wi th 

QQ = QN+I — 1, fov m = 1,2,..., N there are A^ mixed second order differential 

equations w i t h 2A'' parameters. From the exponential behaviour of "sinh" in the 

A^ = 1 case, the ansatz for general case can be of the form [16 

N+l 

Q i = A^! J2 
2=1 

(2.112) 

where the 2A^ -|- 2 parameters ttj and Ai are arbitrary. Actually we included QN+I 

here in the ansatz, and f rom its unit value two extra constraints wi l l appear which 

reduces the arbitrary constants to 2A^ for the moment. Once Qo = 1 and Qi are 

given, the remaining (including QN+I) ™ay be determined uniquely by repeated 

use of eq(2.109). One finds the expUcit form of Q 

Qr. •1) 
m ( m - l ) / 2 

Dm 
n i^^^^n n (2.113) 

where the constants (5m are given by 

iV /m—1 m—1 
n m / X [ k \ j { i \ \ , (2.114) 

Vn=l vfc = l 1 = 1 

and the sum in eq(2.113) is over the (^^^) distinct ways that the integers 1,2, . . . , A'̂ -h 

1 may be defined into two groups Dm and wi th m elements in Dm and m elements 

in Dm- The constraints are 
i V + l 

i=l 

( - 1 ) 
/N+l 

( l /2) iV( iV+l) J-j- ^ . 
\i=l 

(2.115) 

(2.116) 

We are only interested in those solutions which are regular at the origin, ie. those 

for which Qm ^ r"^'^ as r 0. I f we impose this condition for m = 1, i t then follows 

for all m by virtue of the differential equation (2.109). In order that Qi '-^ at the 
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origin, f rom eqs(2.112) we have 

N+l 
= 0, n = 0 , l , 2 , . . . , i V - l 

N+l 

E ^ . « f = 1. 
1=1 

Regarding the at as given, these linear equations have unique solution 

A^Uia, - a^yK 

(2.117) 

(2.118) 

(2.119) 

Note that this choice automatically satisfies the constraint (2.116), and in addition to 

eqs(2.117) and (2.118), E,=t^ ^ ^ a f + ^ = E^=V = 0. So we have an A^-parameter 

solution depending on a i , . . . , aN+i w i th J2AI = 0. Inserting eq(2.119) into eq(2.113) 

the solution becomes 

Qm=pmY: n e"'̂  
Dm \ieDm 

(2.120) 

Since Pm = and J] = 0, these solutions have the property 

Qm{-r) = i-ir'^Q^ir). (2.121) 

The physically interesting solutions are those for real a .̂ To see the behaviour at 

in f in i ty let us first consider distinct w i th a i > Q!2 > • • • > a^+i. Then the 

asymptotic behaviour of the Qm is given by 

lnQm^Y^a,r + Oil). (2.122) 
i = i 

Using eqs(2.108) and (2.111) one can find the asymptotic form of the Higgs and 

magnetic fields 

* ^ - ^ d i a g ( a i , . . . , a w + i ) . 

1 

er'' 

(2.123) 

(2.124) 

where T^ is defined in eq(2.102). 
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2.5.2 Monopoles in SU{3) Gauge fields 

I n this short section we discuss the BPS monopoles in SU{3) gauge fields. Using the 

system of equations (2.109) there are just two coupled equations: 

Q'iQ[-QiQ'l = 2Q2, (2.125) 

Q2Q2-Q2Q2 = 2 ^ 1 . (2.126) 

The solution is 

= 2( / l ie"i ' - - t -A2e"^ ' ' + ^ 3 0 > 

Q2 = 2 (Aie - " ' ' ' + A2e-"2'" + y l3e"" ' ' ' ) , (2.127) 

w i t h 

A = l[{a, - a j ) - \ (2.128) 

ai+a2 + a3 = 0. (2.129) 

We see Qi{—r) = Q2{r) and Qi ~ at the origin. Here there are only two free 

parameters, say ai and 02. To see the behaviour at inf ini ty we choose values of ai 

such that ai > a2 > a^, then 

I n Q i = a i r + 0 (1 ) , (2.130) 

In (52 = -a^r + Oil), (2.131) 

and the asymptotic behaviours of the Higgs and magnetic fields are 

* - - ; ^ d i a g ( « i , a 2 , « 3 ) , (2.132) 
Ze 

B3 - \ T ^ (2.133) 

where = d iag( l , 0, —1). For real at, the Qi can never vanish except at the origin, 

and we have a meaningful solution wi th distinct values of ai (or equivalently distinct 

eigenvalues of the Higgs field at inf in i ty) . A familiar example is the embedding of 

Prasad-Sommerfield solution in SU(3) wi th the values 

ai = 2, a2 = 0, a^ = -2 
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which gives Qi = Q2 = sinh^ r. 

I t remains to think about repeated eigenvalues of the Higgs field, Oj. I f three ai 

are equal, they must be zero and that is not interesting (no monopoles i f the Higgs 

field vanishes in vacuum). I f two of three ai are equal then the coefficients Ai diverge 

f rom eq(2.128). But a tricky way [16] shows in fact the solutions have a finite l imi t . 

For example for {ai, a2, ^3) = (1 ,1 , —2), we can use {ai, a2, a^) = (1 + 5,1 — 5, - 2 ) , 

for small auxiliary parameter 5 that finally goes to zero. Inserting these in eqs(2.127), 

and after the l im i t 5 -> 0 

Q i = ^ [ ( 3 r - l ) e ' - + e-2'-], ^2.134) 

and Q2{'r) = Qi{—r). This is a rescaled version of the 5C/(3) solution of reference 

28]. Here the asymptotic behaviour of Qi and Q2 are different 

I n Q i = r + ln( r ) + 0 ( l ) , In Q2 = 2r + 0 ( 1 ) , (2.135) 

so that asymptotic behaviour of the Higgs and magnetic fields are 

$ ^ l d i a g ( - i - 1 1), B 3 - ^ d i a g ( - ^ , - ^ , l ) . (2.136) 

A similar solution arises wi th Q!2 = as. 

This chapter was an introduction to instantons and monopoles (BPS monopole in 

particular) on some classical gauge groups. In next chapter we w i l l discuss the 

instantons and monopoles in "heterotic string theory". The gauge group of this 

theory is the semi-simple exceptional group x E'g (or 50 (32) ) . These groups are 

too large and complicated to obtain a general solution to the whole gauge group. 

Therefore people make solutions for this theory by picking up subgroups of the main 

gauge group. Once a subgroup of the main gauge group is chosen, one can use the 

results of the solved materials in this subgroup. By the way this is called embedding 

of a subgroup inside the main gauge group. 



Chapter 3 

Monopoles In String Theory 

JLLUJ iZJ<<'l< C^Jj£^ Ij ^ 

cujLfi ^ J j n 

Oneness becomes manifest in multiplicity, 

just as the number one, when counted up, becomes many; 

Although every number has its beginning in the number one, 

there is never an end to the succession of numbers. 

"Shabestan" 



S t r i n g theory is known as a candidate for unifying the fundamental interactions, 

and a promising approach to gather general relativity w i th quantum field theories in 

a unique formalism. This theory wi th these ideal goals is a non-abelian theory and 

might have some soliton solutions. Some sort of instanton and monopole solutions 

have been constructed to the coupled N = A super Yang-Mills supergravity equations 

of motion which arise in the low energy approximation to the heterotic superstring 

compactified down to four dimensions. In this chapter we explain these solutions 

and w i l l find some generalisations of them. 

3.1 Solitons in String Theory 

A "five-brane" is an extended soliton solution to ten-dimensional string theory wi th 

(5 + l)-dimensional translational symmetry. Explicit five-brane solutions have been 

constructed f rom a generalisation of the Yang-Mills instantons in which the four-

dimensional instanton sits in the directions transverse to the five-brane. When such 

objects are compactified to four dimensions, they can be classified by the embedding 

of the core instanton in spacetime and internal space [29]. First we explain the 

supersymmetric solution to the low-energy string theory, f rom which five-brane is 

constructed. 

3.1.1 Supersymmetric Solution to Low-Energy String 
Theory 

Our starting point is "low-energy effective action" of heterotic string theory com­

pactified on a six-dimensional torus.^ The soliton solutions (five-brane and magnetic 

^For importance and derivation of low-energy effective action a good reference is chapters 13-16 
of reference [37]. A newer review can be found in [38]. 

37 
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monopoles) arise f rom the low-energy effective action for the massless fields of the 
heterotic string. A t lowest order in a', the effective action is given by A^ = 1 super 
Yang-Mil l s coupled to supergravity theory in ten dimensions^. In "sigma model" 
variables, the bosonic part is 

5io = ^ / d ^ ' x ^ g e - ^ n R + m f - \H' - ^ « ' T r F % (3.1) 

where K is ten-dimensional gravitational coupling constant. The metric wi th 

M,N = 0 , 1 , . . . , 9 is related to standard Einstein metric, the metric of space-time 

which is considered as a ten-dimensional manifold M, by QMN = e~'^^^9MN, and 

g = I det(5 'Miv) |- The other quantities are: Scalar dilaton, (j); scalar curvature, 

R; antisymmetric tensor field, HMNP', and the Yang-Mills field, F^^j^. The Yang-

Mil ls gauge fields are in the adjoint representation of Es x Eg, or 50(32) , wi th 

the trace conventionally normalised such that the Cartan invariant inner product 

< T " , T ' ' > = ^ T r ( T " T ' ' ) = 5"*. The Bianchi identity that supplements eq(3.1) is 

wr i t t en as 

d F = a ' ( t r R A R - ^ T r F A F ) . (3.2) 

The above equation has been wri t ten in differential form language. The operator d 

which is called "exterior derivative", is a generally covariant operator that is inde­

pendent of the choice of metric. The three-form field H is 

H = dB + a'iu;^-^cvl''), (3.3) 

where B is two-form antisymmetric tensor field, and co^'^ and u>^ are the Yang-Mills 

and the Lorentz Chern-Simons three-forms respectively 

col^ = T r ( A A d A ) + ^ e T r ( A A A A A ) , (3.4) 
o 

2 
LO^ = tr{uj Aduj) +-tr{LO Au! ALO), (3.5) 

o 

where A and to are matrix-valued gauge field and spin connection one-forms, respec­

tively, and A is 'wedge' product. The Bianchi equation (3.2) is concluded f rom eq(3.3) 

^This theory can be dimensionally reduced to give the TV = 4 theory in 3 + 1 dimensions [43]. 
Equivalently, this corresponds to the massless sector after compactifying six internal dimensions of 
the string on a torus. 
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and relations dio^^ = T r ( F A F) and dco^ — t r ( R A R ) where are obtained f rom 
eqs(3.4) and (3.5). Some care must be taken of getting trace f rom gauge field tensor 
and curvature tensor. By definition T r ( F A F ) = F'^ AF ' 'T r (T ' 'T ' ' ) where a and b are 
indices in adjoint representation of EgxEg or 50(32) , and t r ( R A R ) = R^'^'^RN'M' 
where M' and A^' are "tangent space" indices and running f rom 0 to 9. By definition 

= \F^j^dx^ A dx^ and R^'^' = iRMN^'^'dx^ A dx^, where 

= dMA%-d^Al, + ef''''A''^A%, (3.6) 

= i ^ M i v p g e ^ ^ ' e ^ ^ ' . (3.7) 

Using matrix-valued forms, eqs(3.6) and (3.7) can be abbreviated as 

F = d A - | - e A A A , R = da; + a;Aa;. (3.8) 

I n eq(3.7) RMNPQ is the Riemann curvature tensor and wj j f ' ^ ' are spin connections 

1 i\r?i /r ' /„ Ml ^ ATI ^ 1 
UJ = ^ e ^ ^ ' ( a M e j ^ ; ' - « ' ) - ^ e ^ ^ ' ( 9 M e r - 9 ; v e j | ^ ' ) 

-^e^^'e^-^'(a^.epp, - dpe^p,)eC. (3.9) 

A t each point x the set of vielbein e^,{x), M ' = 0 , . . . , 9, is an orthonormal basis for 

the tangent space at that point. Orthonormality means that 

e^^'ejj^, = i ?^^ , or equivalently e^l^.e^^, = VM^N', (3.10) 

w i t h VM'N' being the flat space metric. The indices M , N , . . . are raised and lowered 

w i t h (JMN, the metric tensor of manifold M, while the indices M',N',... are raised 

and lowered w i t h VM'N', the flat space metric tensor. 

The supersymmetry transformations for the fermion fields, to the lowest order, 

are given by 

5x = F M i v T ^ ^ e , (3.11) 

5X = ( 7 ^ a M < ^ - ^ i ^ M 7 v p 7 ^ ^ ^ ) £ , (3.12) 

SIPM = {dM + \n^'f^M'N')s, (3.13) 
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where ^ and ipM are the gaugino, dilatino and gravitino respectively, e is a 
Majorana-Weyl spinor, and fl^i^^' = u^'^' ±H^i^' are generalised spin connections. 
I n the above equations 7 « i J ^ 2 - W n ^ X ^ I M i ^ M - , . . .^M^ ]^ ^j^en [ M i , M 2 , . . . , M„] rep­
resents complete permutations of M i , M 2 , and M„ wi th ' - f ' sign for even 
permutations and ' - ' sign for odd permutations, H^^' = H M N P ^ ^ ' ^ ' a n d 

A supersymmetric solution is one for which there is at least one positive chirality 

spinor e satisfying 

Sx = 5X = 6^M = 0. (3.14) 

3.1.2 Five-Brane Solution 

The five-brane ansatz preserves a chiral half of the supersymmetries and is given by 

29, 31 

F:^ = ±liv^r'^ap''F;„ (3.15) 

Hapj = T{^/9)-'e^p,'d^cP, (3.16) 

9ap = e^'^S^p, V / ? ' = V / 3 ' , (3.17) 

where a, /? , . . . = 1, 2, 3, 4 denote transverse space and a', /?',.•• = 0, 5,6, 7,8, 9 show 

orthogonal indices and ê ^̂ ^ = 4-1. The other components of the gauge field, F ^ T V , 

and the antisymmetric field, HMNP, are set to be zero. The (anti)self-dual equa­

t ion (3.15) (remember eq(2.53)) is the core of the soliton solutions — five-branes 

(instantons) and monopoles. 

Let us return to the five-brane ansatz and check how this ansatz satisfy the 

equations (3.14). In addition to the ansatz (3.15)-(3.17) we define chiral spinors e± 

obeying 

ea^jsr^^'si = ± 4 ! v ^ e ± (3.18) 

ea'0'YS'.'X'r'^'''''''''''e± = ±61 e±, (3.19) 

or equivalently 7^^^''e± = ±{^/g)~^£± and 7056789^_^ _ j jg j .^ g^^^ hereafter g is 

measured in the four-dimensional space denoted by 1, 2, 3 and 4. Using eq(3.18), the 
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definition of 7"^'''^ and the anti-commutator relation { 7 " , 7^} = 2g°'^ one can derive 

capy'r^'e^ = T 3 ! V ^ 7 * £ ± (3.20) 

eap^'r^e^t- = T2l^l^'e±. (3.21) 

The equations (3.18), (3.19) and (3.20) wi th the ansatz (3.16) are enough for dilatino 

equation (3.12) to vanish. The gravitino equation (3.13) can be expanded as 

= due + ^^m'^'^m^n'S - -^HMNpl''''e = 0. (3.22) 

Considering M = a' we get da'£± = 0, and M = a, using eq(3.21) and eq(3.16) 

dae± + ̂ ujr^mn£± + \df}^ £± = 0, (3.23) 

where m,n,... represents 1,2,3,4 f rom the vielbein indices. Choosing e'^{x) = 

g-^(x)gm ĝ j.g constants such that satisfy e^e^^ = d^p and e^e'^" = ^y'"", 

conditions (3.10) are satisfied by regarding eq(3.17). Now using these new basis the 

spin connections can be found simply 

a;™" = dpcP e '̂̂ e^ - d^cP e™e^", (3.24) 

and = Trrme^ e^"- Replacing these equations in eq(3.23), the result becomes very 

simple 

da£± = 0. (3.25) 

Therefore by choosing constant e±, the gravitino equation (3.13) vanish, the next 

step is the gaugino equation (3.11). This equation can be solved by choosing a 

(anti)self-dual gauge field configurations. Replacing eq(3.15) in eq(3.11) and using 

eq(3.21) one can find 6x = —Sx for e±, and therefore = 0 identically. In the above 

derivations, we should know the self-dual fields come wi th the positive chiral spinor, 

and the anti-self-dual fields come wi th the negative chiral spinor, ie. the equations 

are consistent only w i t h these choices. In the ansatz (3.16) the ' - ' sign come wi th 

the self-dual (and positive chiral spinor) case, and ' - f ' sign come wi th the other one. 

Using the metric of eq(3.17), t r ( R A R ) vanishes, and the Bianchi identity shrinks 

to 

d f f = - ^ T r ( F A F ) . (3.26) 
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Using definit ion of tlie exterior derivat ive 'd ' and the ansatz (3.15)-(3.r7) 

dH = ^dsH^B-ydx^ Adx"^ Adx^ Adx"^ 

= IdsH^g^e^'^'^^dx^ A dx^ A dx^ A dx^ 
6 

= ±^d'ie''^)dx'Adx'Adx'Adx' | + J+ (3.27) 

F A F = -^FapF^idx"" Adxl^ Adx'' Adx^ 

= ^FapF^se'^'^'^^dx^ A dx^ A dx^ A dx^ 

= ±-y/gFai3F"'^dx^ Adx^ Adx^ Adx^ 

= 4 F . , F „ , d x ' A < i x ^ A d x . = A d x ' ' I " d u a l , 

In eqs(3.27) and (3.28) we have used sum over indices in 5^ = dSdx^ ^apFap, 

that are now calculated in Euclidean flat space. The Bianchi identity becomes 

d'e"^ =-^[TriF^pF^^)]. (3.29) 

Now we have to find solutions of the (anti)self-dual gauge field and the dilaton 

f r o m eqs(3.15) and (3.29). Equation (3.29) shows the dilaton ^ directly depends 

to the choice of the Yang-Mil ls fields, and the Yang-Mills fields must satisfy the 

(anti)self-duality relations. As we know the (anti)self-dual solutions depend on the 

choice of the gauge group. Therefore f rom now on our construction depends on the 

choice of a subgroup of the main gauge group, as we know working wi th the large 

groups like Eg x Eg and 50(32) is not provided. From the instanton subject in 

section (2.4) we know the solution of (anti)self-dual gauge field for an SU{2) gauge 

group. Therefore, to use this solution we place the gauge field F^^ in an SU{2) 

subgroup of the gauge group. Now using the self-dual solution of section (2.4) one 

may find 

A , = 2 S „ ^ - - ^ ^ (3.30) 

F . , = (3.31) 
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w here 
0 T3 -T2 Ti 

-Ts 0 Ti T2 
T2 - T i 0 Ts 

-Ti -T2 - n 0 J 

(3.32) 

which Ta w i t h a = 1,2 and 3 are generators of an SU{2) subgroup of the gauge 

group. For the anti-self-dual solution EQ,^ is replaced by E^^. Different choices of 

the SU{2) subgroups embedded in Eg x Eg (or 50 (32) ) , affect the calculation. For 

the min imal embedding of SU{2) subgroup [44]^ in Eg x Eg {le. the SU{2) part in 

SU{2) xErC Eg), 

T r ( E « ^ S a ^ ) = 12 • 30 = 360 = T r ( S ^ ^ E „ ; j ) . 

Hence the Bianchi identity becomes 

^2 e2^ = _192a' 
( |x |2- f A2)4-

(3.33) 

3 The minimal embedding of SU{2) in any other simple Lie group G has been studied by 
Bernard et al [44]. They have introduced the SU{2) minimal embedding, is to be the embedding 
that minimise the topological charge 

k = 
1 

327r2 (I) 

where F^^ are the components of the field Fp^ = F^^T". The T^'s form a basis in adjoint 
representation of the Lie algebra associated to the group G with the normahsation condition 
< T ^ J T ' > = ^ j ^ t r ( T " T ' ' ) = where C(G) is the quadratic Casimir operator. The SU{2) 
solution they have considered is the't Hooft solution 

(11) 

which Vp^ are defined in eq(2.70) (see eqs(2.67) and (2.72)). Given three matrices { J " } , a = 1,2,3 
in the adjoint representation of G which obey 

[J^ J"] = i (III) 

or equivalently [J^ J=̂ ] = ±J=^, [J+,J"] = with J± = (J^ ± iP)/y/2, we can easily offer 
a solution in G, Fpy = F^^J", where F^^, a = 1,2,3 are the SU{2) components of the single 
instanton solution obtained by setting A; = 1 in equation (II). The topological charge k' of this 
solution is obtained by the length of any one of the matrices J" 

k' = < r , r >= 
CiG) 

ti{3T) (no sum on a). (IV) 

The minimal SU{2) embedding is the 5(7(2) subalgebra whose generators J" of G have minimum 
length. They have shown the minimum valve of k' is 1, for the SUi2) subgroup generated by 
E-a and [Ea, E-a], where a is a root of maximum length. 



3.2 G e n e r a l Instanton Solution 44 

Final ly the dilaton can be found as 

(3-34) 

where C / I Q is a constant and equal to the value of the dilaton cj) at infinity. 

3.1.3 Five-Brane's Charges 

There are two charges associated wi th the five-brane solution. These are the "in­

stanton winding number" 

where the integral is over a four-dimensional cross section, and the "axion charge" 

Q = - ^ J h , (3.36) 

where the integral is over an asymptotic surrounding the five-brane. These charges 

are both quantised [36] w i t h the minimal allowed values given hy k = 1 and Q = a'. 

For the solution we discussed here these take the values 

A; = 1, Q = 8a', (3.37) 

where = 1 is in agreement w i t h the choice of the minimal SU{2) embedding. These 

five-brane solutions are referred to as "gauge five-branes". The solutions which are 

obtained f rom the upper/lower sign in ansatz (3.15) and (3.16) are known as five-

brane and anti-five-brane solutions respectively. The form of the dilaton is the same 

in both cases, while they have opposite if-charges. 

3.2 General Instanton Solution 

A general solution can be inserted here, le. soliton solutions for the other subgroups 

of the gauge group are considered, associated to the (anti)self-dual relation (3.15). 

When we provide a general (anti)self-dual solution, the only equation remains to be 

solved is the Bianchi identity (3.29). We briefly, without going further to describe 

A D H M construction in details, explain how we can find out a general formula for 

instantons (five-branes) in heterotic string theory. To do this, instead of the simplest 
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case of S'L''(2) C Es x Eg we can choose any classical compact subgroups of the large 
gauge group E^ x Eg (or 50 (32 ) ) . 

3.2.1 A D H M Construction, Briefly 

Suppose G is a simple compact gauge group. Then we can suggest a gauge vector 

potential and the field strength FQ,^ associated to i t , the action S, the Yang-Mills 

field equations, and the (anti)self-dual field configurations that minimise the action 

(and satisfy the Yang-Mil ls equations) as we had in section (2.4). As we said these 

solutions are known as instantons. 

The ADHM"*, construction leads to an expression for the gauge potential of the 

fo rm 

A „ = v t a „ v , (3.38) 

where v ia a matr ix function of the spatial coordinates x (with real, complex or 

quaternionic entries depending on the group considered). The conditions that v has 

to satisfy are normalisation condition, = 1, and certain linear conditions of the 

fo rm v'^A{x) = 0, where A (a;) is a linear function of x = a;"e" where — 1 and 

= la^ (a-', w i th j = 1, 2, 3 are 2 x 2 Pauli matrices). The choice of matrices v and 

A depends on the gauge group G and the instanton number k. For Sp{N), v is a 

{N + k) X N matr ix w i t h quaternion entries depending upon x and A ( x ) = a - f ba; 

where a and b are matrices of dimension [N+k] x k, w i th constant quaternion entries 

(not depending upon x), which carry all the information about the instantons. Then 

A Q is din N X N matr ix of quaternions or 2A'̂  x 2A'̂  matrix wi th complex entries 

(wi th a special condition for the definition of Sp{N) groups, see eg. [46, page 392]). 

For SU{N), V IS <i {N + 2k) X N complex matrix and A ( x ) = (Ai(a ; ) , A2(3;)) where 

Aj (x- ) =9.1 + hjXji (for i,j = 1 and 2) and â  and are complex matrices of 

dimension (iV + 2k) x k. In this case A ^ is a complex N x N matrix. For the 

orthogonal groups a similar formalism may be found in literature. The constructions 

is done in the fundamental representation of the gauge group G. 

''We have expressed the problem very briefly, just to introduce the quantities. For a review of 
ADHM construction in matrix algebra see [47, 20] 
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The two conditions we mentioned in the previous paragraph, are sufficient to 
ensure that Fap = 9aA^ — dpAa + [ A ^ , A ^ ] satisfies the self-duality equation, and 
convince A ( a ; ) ^ A ( x ) , that is a 2k x 2k matrix, is viewed as the tensor product of a 
kxk hermitian matr ix and the unit matr ix I2 . Now in A D H M solution a fundamental 
role is played by the k x k matr ix f , which is defined as 

A t A = l 2 r \ (3.39) 

and a not quite obvious fact states a direct relation between this function f and the 

density tx{Fap^ap) [48 

t r ( F „ ^ F a ^ ) = -d^d'' ln(det f ) . (3.40) 

Using eqs(3.40) and (3.39) i t is simple to see t r ( F „ ^ F „ ^ ) = \d'^d'^ ln(det A ^ A ) , then 

j tv{F^fiFap) dS = j ]^d^d^ ln(det A ^ A ) d^x 

= / i ( i n | . T | V 9 ^ 5 2 l n ( d e t A t A ) . (3.41) 

We have used divergence theorem and the area element of three-sphere, = 

d.Q, I xpx" , in the last equality As \x\ -> co, in the right-hand side of the above 

equation A ^ A b^b |xp and so 

ln(det A t A ) ^ In det(btb) + 4A; In |a;|, 

as b^b is really a 2k x 2k matrix. Using this result in eq(3.41) we obtain —Idn'^k for 

the integral of the right-hand side. Then the instanton number k can be wri t ten as 

A; = - / tr(*F„;jF„^)d''rr;, (3.42) 

when the self-dual field *Fap = Fap is considered (see eq(2.76)). Replacing 2; by x^ 

everywhere in the above rules leads to anti-self-dual solution. 

A simple set of equations for SU{2) ( = 5 p ( l ) ) , solutions of type of section (2.4) 

(wi th S/c degrees of freedom), is obtained by taking 

\^[x)]ij = 5ij{x-ai), i,j = l,...,k 

[M^)]k+l,^ = z = l,...,k (3.43) 
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where A's are all real, and a's are quaternions, ie. = a^^e". For k = 1 {a = ai and 
A = A i ) , A^A = (Ix*^ — - I - A^)l2, therefore the one-dimensional f is 

f = ( | a ; " - a « p + A2)"" \ (3.44) 

where A is the size and a" are the location of the instanton. Replacing eq(3.44) in 

eq(3.40) we obtain 

« . , ) = - 9 6 ^ ^ - ^ , (3.45) 

that is of course gives k = 1 when the integral of eq(3.42) is done.^ Comparing this 

result w i t h the result f rom eq(2.75), we may choose the basis r " = (J°'/2i, a = 1, 2, 3, 

w i t h the commutation relation [r**, r*] = e"-'"^T'^, therefore convention on trace w i l l be 

t r ( r° ' r ' ' ) = - i ^ " * . 

3.2.2 Embedding of Subgroups 

Embedding of a group G inside group G means, finding the subgroups of group G 

which are isomorphic to the group G. When embedding of the group G inside the 

gauge group Es x Es is considered, we need to know how the group G is embedded 

inside the group Es x E^. The gauge group Es x Es is too large and can contain 

many non-conjugate smaller groups as its subgroups. The choice of an embedding 

may affect the calculations, f rom which i t is necessary to know the subgroups' "indices 

of embedding". 

Let us see how the choice of a subgroup can alter the result of calculations. 

Suppose the SU{2) subgroups of a larger gauge group G. Now we may pick up 

three elements of the gauge group G such that satisfy the relation [r* ,̂ T**] = e"'"̂ r'̂ , 

a = 1, 2 and 3 as the definition of SU{2) algebra. For different conjugacy classes we 

can choose three elements of the gauge group G such that they satisfy this certain 

definit ion for the SU{2) algebra. Now the point is: When we take the trace f rom 

these different sets of basis (which any set of them satisfy the same commutation 

^In this construction v is a 2 x 1 matrix of quaternions, v = [q],p = p"e", q = q^e"^ such that 
p" and q" are functions of a;''. Applying the two conditions on v imply five equations with eight 
unknowns. Actually these ambiguities in v correspond to gauge transformations on A^, therefore 
this is nothing to be worried about it. Setting = p'^ = 0 leads to the solutions (2.73) and 
(2.75) of section (2.4). 
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relation), we may get different results. For example, the SU(3) group contains two 
different classes of conjugate SU{2) subgroups. When we use a certain definition for 
the 3U{2) subalgebras, the trace of one of the classes is four times of trace of the 
other one. We may label these two different classes by 1 and 4. These numbers are 
indices of embedding. 

Let us explain the concept of index of embedding in some details. The concept 

of "index of embedding" invented first by Dynkin [50]. Dynkin works are purely in 

abstract algebra. We t ry here to explain the index of embedding in the language 

of mat r ix representations. Consider an orthonormal basis { T " } , a = 1 , . . . , d i m ( 0 ) , 

which dim(O) is the dimension of group 0 , such that satisfy the commutation relation 

T \ T*] = / " * " T ^ (3.46) 

where /"'"^ are structure constants. Suppose the sets of orthonormal basis { T " ' } , 

a = 1 , . . . , d im(O) , i = 1 , . . . , n where n is number of distinct conjugate classes of 

embedding of G in G. Now we consider the trace of each basis 

tr(T, ' 'T^) = c^5°•'' no sum over i, (3.47) 

and introduce the set S = {ci}. Let us call the minimum value of this set Cm = c. The 

Dynk in index of embedding for embedding i is the ratio c^/c, which is an integer by 

considering the Dynkin theorems in the subject of index of embedding [50, pages 130-

131]. 

To go closer to the original definition of index of embedding, we may consider a 

normalisation condition on the basis of the main group 0 , 

t r ( M ^ M ^ ) = (3.48) 

where are the basis of group (5, and A, J5 = 1 , . . . , dim(G'). Now we renormalise 

the min imum value c to become c', t r ( T ^ T ^ ) = c'5"^ Because of this convention 

on the basis of the minimal embedding, we have to change the structure constants 

[ T l , T t ] = r ' " ^ T - . (3.49) 
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Now we rearrange the older basis { T f } of each embedding i, to {T^'^}, such that the 
new basis of each embedding satisfy the new commutation relation (3.49). The index 
of embedding, ji, of the embedding i is defined aŝ  

J^ = ^ , (3.50) 

where = tr(T-°T^") (no sum over a and i). 

How can we relate the concept of minimal embedding to the our physical sub­

jects? We may define a minimal embedding of a subgroup G in a larger group G is 

the embedding which gives the norm of quantity 

I tv{*F,f,F,f,)d'x, (3.51) 

min imum, when we use a definite commutation relation for the Lie algebra associated 

to the subgroup G. We may normalise this quantity for the minimal embedding to 

gain the instanton number k (see eq(3.42)). So for the embedding z, the instanton 

number w i l l be jik, where ji is the index of embedding. 

As we saw, the minimal embedding of each subgroup has the minimum trace 

when we use a unique definition for the algebra associated to the subgroup. In 

principle the minimal embedding of every subgroup O of O are regular subgroups of 

G, and therefore we may choose the basis of minimal embedding of a subgroup f rom 

the basis of the main group. Therefore the trace of the basis of other embeddings 

w i l l be a multiple of the trace of the main group G. 

3.2.3 A General Solution for Dilaton 

The A D H M construction we discussed in this section gives us the gauge fields in 

the fundamental representation of the gauge group G. In the previous section the 

theory of low energy superstring was done in the adjoint representation (which is the 

same as the fundamental representation) of the gauge group, Eg x Eg. Now when 

we consider embedding of G inside the heterotic superstring gauge group, we may 

have more than one choice of conjugate classes. Each of these conjugate classes are 

•̂ The index of embedding in defined as the ratio of the bilinear form on G obtained by lifting 
the value of Killing form on G to the Killing form on G itself [51, pages 140-141]. 
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labeled w i t h an index of embedding which are usually different integers. (But two 
distinct conjugate classes may have the same index of embedding.) 

We normalised the basis of Es x Es such that Tr(T"T'') = 30(5"*. From the 

previous discussion on the Dynkin's index of embedding, for any subgroup G of 

Eg X Es always we find a class of conjugacy wi th the minimum index of embedding, 

1. Each of these minimal embeddings as an independent group, also has a minimal 

SU{2) embedding w i t h the index of embedding 1. The index of embedding of the 

min imal SU(2) of any minimal subgroup of Es x Es has the index 1 in Eg x Es, le. a 

min imal embedding of a minimal embedding is a minimal embedding. Now when we 

clear the situation of a minimal SU(2) subgroup wi th the unit instanton number, i t 

w i l l be straightforward to accept the generalisation to any embedding. 

For a unit instanton number solution the answer of A D H M construction w i l l be 

the same as the ' t H o o f t solution we explained in section (2.4) (see footnote 3 on 

page 43). To pass f rom the solution in an individual SU{2) to a minimal SU{2) 

subgroup, we might lean on components of the fields. Choosing the conventions 

we have explained after eq(3.45), we may define the instanton number as eq(I) in 

footnote 3. Now we consider the minimal embedding of SU{2), and write down the 

instanton number as 

''x 

JTVFAF, (3.52) 
167r2 C{G) 

where C{G) is the quadratic Casimir operator, which is used to normalise the basis 

in the adjoint representation. The equation (3.35) is obtained f rom eq(3.52) when 

we consider Es x Eg w i th C{G) = 30. 

W i t h these treatments we have to bring a factor —1/60 in front of eq(3.42), to 

obtain eq(3.35) and wi th the same reason a factor —60 in front of the right-hand side 

of eq(3.40). Replacing on the Bianchi identity (3.29) we get 

d^e^'f' = -2 a' d^d^ In det f , (3.53) 
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which gives 

g 2 ^ ^ g 2 0 o _ 2 Q , ' a 2 l n d e t f , (3.54) 

that is a compact result for dilaton (j), when f is known by A D H M constructions. 

3.3 Monopoles in String Theory 

In previous section we described instantons in string theory. In this section we discuss 

monopoles in the low-energy superstring theory. Our starting point for constructing 

monopoles is the A'' = 1 super Yang-Mills coupled to supergravity in 10 dimensions. 

This theory can be dimensionally reduced to give the N = A theory in 3 4- 1 di­

mensions. The action is the ten-dimensional action (3.1). There are several kinds 

of monopoles that arise f rom this theory, which have come in the literature''. I n 

this chapter we w i l l work on the BPS monopoles. In this section we w i l l discuss a 

charge one BPS monopole in an SU{2) subgroup of the main gauge group Eg x Eg 

or 5*0(32), but we t ry to explain the theory and find the formulas as far as possible 

wi thout regarding a special subgroup. 

3.3.1 B P S Monopoles in String Theory 

As we know a BPS monopole is a static spherical solution of the Yang-Mills-Higgs 

fields. To build the BPS monopoles in string theory, some treatment beyond the 

method we explained in the previous chapter is applied. As we pointed out in 

section (2.3), we can reconstruct the field equations in a five-dimensional space-time 

configuration, such that the Higgs field plays the role of the fifth component of the 

Yang-Mil ls field, and the spatial fifth dimension has no contribution in the evolution 

of the fields. In eq(2.53) we saw the BPS monopole satisfies the self-dual relation, 

and this motivates us to find a possible way for finding such solutions in the string 

theory. In this construction we suppose five dimensions of the total ten dimensions 

are compactified in a five-torus, and the remaining 1 + 4 dimensions play the role for 

constructing the BPS monopoles in the string theory. 

"̂ We have brought a short review of these monopoles with some references at the end of this 
chapter. 
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As in the previous section, but w i th a different insight, we have a four-dimensional 
spatial space in addition to one time dimension to write down the similar equations. 
Here we adapt the four th component of the Yang-Mills field to be the Higgs field, 
ie. ^ 4 = <I>", and the four th dimension x'^ does not contribute in the evolution of the 
fields—ie. non of the field variables is a function of x'^. This extra dimension that is 
sometimes called "internal dimension", is compactified in a circle ie. S^, and x^ is 
the coordinate along S^. The radius of this circle can be small but non-zero, and 1/R 
is interpreted as the vacuum expectation value of the Higgs field ^ , ie. 1/R = a [45 . 
I n this set-up, calculations are the same as in the previous section, but instead of 
the assumption of the (anti)self-dual instanton configuration in eq(3.31), we assume 
a BPS monopole configuration to solve the self-dual ansatz (3.15), and then replace 
in the Bianchi identity (3.29). 

The BPS monopoles are static monopoles, xe. fields are not time-varying, and 

expressed by the Bogomol'nyi equations (2.42)-(2.44), 

A ° = 0, = ±e'^'' Dfc* , V{^) = 0. (3.55) 

Looking at the equations (2.10), (2.44) and (2.53) i t is easy to see the minus sign 

relates anti-self-dual fields to the negative magnetic charge, while the plus sign relates 

the self-dual fields to the positive magnetic charge. Therefore in ansatz (3.15)-

(3.17), a positive chiral spinor comes wi th a positive charge magnetic monopole, 

and negative chiral spinor e_ comes wi th a negative charge magnetic monopole. 

Replacing f rom eqs(3.55) into the Bianchi identity (3.29) we obtain 

a^e^^ = _ ^ T r ( F ^ ^ F ' ^ + 2F,4F,4) 

= - ^ [ 4 T r ( D . * ) ^ ] 

= - ^ 5 ^ ( T r * ^ ) , (3.56) 

where we have used (Dk^f = ^(D^^^-^D^^), which D ^ ^ = 0 (equation (2.46)), 

and the identity Tr(DfcA) = 5A:(TrA) for any valid A by using the definition of 

covariant derivative D ^ . 
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Now we may write the general solution of dilaton for the BPS monopoles in any 
arbitrary subgroup embedded in the main gauge group. The solution relates the 
dilaton, (f), to the Higgs field, via the relation 

^ g2^o _ ^ T r ( $ 2 _ ^ 2 ) ^ (3 
I D 

where the constants is set such that 0o is the value of the dilaton (j) at inf ini ty where 

$0 is the value of the scalar Higgs field (remember $ —> a as r oo for the SU(2) 

case). For asymptotically fiat space is set to be zero. For the minimal embedding 

(of any subgroup G C Eg x Eg) we may write the above relation in a simpler form 

g 2 ^ ^ g 2 0 a _ 2 « ' ( $ 2 _ $ 2 ) ^ (3.58) 

where $^ = So for the embedding i we may write 

e-^t>^e''C°-2a'j,{^'-^l). (3.59) 

where ji indicates the index of embedding. 

3.3.2 i7-Monopoles 

The only non vanishing components of antisymmetric field tensor are Hij4 which is 

sometimes called iJ(4) field. For the minimal embedding 

H^ij = i l ( 4 ) i j 

= Ti^/9)-'e,,,'d,cl> = ±^e'^'dke"l' (3.60) 

= T2a'e^^'=$"afc$^ (3.61) 

For a minimal SU(2) subgroup of Eg x Eg the BPS solutions for the gauge and 

the Higgs fields are (see eqs(2.14)-(2.16) and (2.49)-(2.50)): 

A'' = 0, A'' = e'"'^[K{r)-l], A''= ^'{r) = ~H{r), (3.62) 

where 

H{r)^arcothiar)-l, K{r) ^ ( 3 . 6 3 ) 
smh(ar) 
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which = (x^)^ + (x^)^ + (x^)^, indices i,j, k = 1,2,3 and b = 1,2, 3. In the above 
equations the Yang-Mil ls coupling constant, e, is set to the unit . In this case the 
dilaton is 

e21> = e'^o_2a'{^-a'), (3.64) 

and the antisymmetric field tensor is 

k 
H,,, = = T2a'e^^'= ^ H{1 - K'). (3.65) 

Asymptot ic behaviour of this only non-vanishing component of antisymmetric field 

tensor is 

Hi^j T2a' a e'^'' — , as r ^ oo, (3.66) 

Where in comparison wi th the Yang-Mills field in eq(2.18) exhibits a monopole 

field, and therefore i t is called "ff-monopole" (and sometimes if(4)-monopole). Since 

H^ij is a gauge invariant field strength of the U{1) field coming f rom B^i in the 

compactification, we see that the BPS gauge monopole is also an if(4)-monopole 

w i t h magnetic charge =F87ra'a. Therefore f rom eqs(3.65) and (3.66) the negative 

i7(4)-charge is relevant to the positive magnetic charge for the self-dual field, and the 

positive i7(4)-charge is relevant to the negative magnetic charge for the anti-self-dual 

field. 

3.3.3 Mass of i?-Monopoles 

Mass of the monopoles have been discussed in this section, are calculated by taking 

into account the tota l energy of the fields, ie. Yang-Mills-Higgs, Antisymmetric 

tensor field, dilaton and gravitation fields. This given by the '00' component of the 

stress-energy tensor in an orthogonal basis, Too(r), which might be calculated directly 

by computing the fields [39, 32]. We calculate the total energy-momentum tensor 

by using the metric (3.17) directly, when the metric is assumed to be asymptotically 

Minkowskian, ie. ê "̂  1 as r ^ oo. We do the calculations in the sigma model 

variables. The four-dimensional metric can be wri t ten as 

V = V + V ) (3-67) 
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so that h^i, vanishes at inf in i ty (however, h^^, is not assumed to be small everywhere). 
Then the exact Einstein equation can be wri t ten as 

R^'^,. - \v,.R^'^\ = -4T,., (3.68) 

where K4 is four-dimensional gravitational coupling constant, and R^^^f^u is the part 

of the Ricci tensor linear in h^^ [49 

2 \dxi^dx- dx^dx- dx^dx^^ dx^dxxj ' ^ ' ' 

The tensor T^ ,̂ in eq(3.68) is the total energy-momentum tensor of matter and grav­

i ta t ion (for a comprehensive explanation see Weinberg [49]). The indices are raised 

and lowered w i t h V's. 

For the monopoles we discussed in this section 

hoo = 0, h,, = {-1 + e'f)5,„ (3.70) 

and, then 

g2^24> Q2^24, 

2 \dx^dx^ dx^dx 

^2g2^ 
(3.72) 

dx'^dx'' 

where the repeated indices are consumed for summation, and the rest of the compo­

nents vanish. So the 00 component of the energy-momentum tensor, ie. the energy 

(or mass) density, is 

roo = - ^ a V ^ . (3.73) 
1 

As we saw a direct relation between the dilaton ip and the Higgs field $ in eq(3.56); 

one can explain the energy density completely based in the Higgs field. 

The mass as a funct ion of r , the distance f rom the origin, is M(r-) = /J" Too(r) d^r. 

Therefore 

M ( r ) = - / ^d'e'U'r 

= -\e'^' f m , , k d \ (3.74) 
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where the integral is done over the volume of the sphere of radius r , and in derivation 
we have used the self-dual solution f rom eq(3.60) to find 

M ( . ) = - | / d F ( , = - l / ^ ^ i f , ) , (3.75) 

The equation (3.74) can be wri t ten as 

2 
2 
4 J 1^4 

where 5^ is a two-dimensional sphere of radius r , and H(^4) is the two form antisym­

metric field. The total mass of the monopole is calculated when the integration in 

eq(3.74) is done over whole space. In the other hand the if(4)-charge, p(4), is defined 

as 

^(4) = L2 (3-76) 

where 5 ^ denotes the two-dimensional sphere at infinity. Therefore the total mass 

is 

M = -4^(4)- (3-77) 
K4 

For the BPS monopole of eq(3.65) 

M = -^e'^' [ d,H4jkd'r 
K4 7]R3 

K4 
(3.78) 

where the last result is concluded f rom the previous line by providing eq(3.66). And 

= - — TTT; I T r F A F , 
30 27ri2y]R3x5i 

= -87rQ;'a, (3.79) 

where in the last line we have used / T r F A F = 480 TT^ for the self-dual solution^, 

and replaced Rhy a = 1/R. For the anti-self-dual case , the equation (3.77) comes 

w i t h positive sign, where the charge is positive. 

^One point is needed to be made clear between the instantons in previous section and here in 
monopole solutions. For the instanton case the integral is taken over IR'', and therefore a calculation 
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The i?(4)-monopole we have discussed, saturate the lower bound of a Bogomornyi 
bound [39]. The equation (3.77) is analogous to the lower bound in eq(2.40) in 
previous chapter. 

3.4 Monopoles in SU{N) Subgroups 

In section (2.5) we described the BPS monopole in SU{N + 1 ) {N > 1) gauge fields. 

In the construction there, we chose T ' ' (a=l ,2 ,3) to be the generators of the maximal 

SU{2) subgroup embedded in the gauge group SU{N+1), such that be a diagonal 

(A^ + 1) X (A^ + 1) matr ix in the fundamental representation of SU{N + 1) (eq(2.102)). 

I n this basis the Higgs field $ is a diagonal matrix w i th null trace. In this section 

we want to describe the situation of i7-monopoles in an SU{N -t 1) subgroup of the 

heterotic superstring gauge group. We explain the simple case, SU(3) C Es x Es in 

some details to show the overall specifications. The other SU{N) subgroups follow 

the rules we w i l l explain for SU{3). 

When the Gell-Mann basis^ is assumed in the fundamental representation of 

SU(3), the matrices A2, A5 and A7 make the maximal SU{2) subgroup of SU{3). To 

see what is happening, we diagonalise A7 such that 

(3.80) 
1 0 0 
0 0 0 

then 

1 / 

V -<P: 

^{h - (f>i)K + \ { h + ^i)K + 4>i)K^ (3.81) 

for minimal embedding of SU{2) subgroup shows / T r F A F = 480TT^ when we use eq(3.34). In 
monopole case the situation is shghtly different, ie. the fourth spatial dimension is compactified in 
a circle of radius R, and the fields do not depend on the coordinate x^. Therefore in integration 
we should know this "internal" dimension is bounded while the other three spatial dimensions are 
unbounded. Then the integration over a four dimensional space is broken down to an integral 
over three dimensions. Using minimal embedding of SU(2) and eq(3.65), the result has the same 
magnitude as in instanton case. 

^Gell-Mann introduced eight traceless Hermitian matrices Ai ,A2, . . .A8 which normally can be 
found in Hterature. As an example see: [46, page 502]. 
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where AJ (/ — 1 , . . . ,8) are the basis of SU{3) in fundamental representation such 
that Ay is diagonal as in eq(3.80). We should mention although we use an SU{2) 
subgroup of SU{3), but this does not mean that we work only in this subgroup. In 
eq(3.81) we see the Higgs field is in the entire SU{3) group (not only in the maximal 
SU{2) subgroup where we have assumed), and this is the same for the magnetic field 
B as i t came in eq(2.110). Here the procedure has been done in the fundamental 
representation, but finally the quantities can be writ ten in any representation. 

Let us go back to the heterotic string gauge group Es x Es- In principle, any 

of the distinct SU(3) subgroups of the gauge group can be chosen, but for practical 

calculation we choose the minimal embedding, ie. the SU{3) part in SU(3) xEe C £^8-

Here SU(3) is in the adjoint representation of Eg x Eg which the matrices have the 

dimensions of 496. The thing we need is the trace of ^"^ to calculate the i/-monopole. 

By choosing the SU(3) minimal embedding 

Tr$2 = 30 = 30 [i(f>if - (/)i02 + i h Y ) , (3.82) 

where the coefficient 30 comes f rom the normalisation condition of the main gauge 

group. The quantities 4>i and (f)2 were found in section (2.5) 

4>i = 'A A 'A 1" ~ 3 (3.83) 

02 = : ~. 'a 1— ; (o.o4l 

where Ai are functions of ttj, and are free parameters wi th a constraint: 

Ax = — ^ 2 = 
( t t i - a;2)(Qfi - a;3)' {a2 - ai){a2 - a^)' 

1 

a-i - Q;I)(Q!3 - Q!2)' 
As = 7 1, r , a i + a 2 + a3 = 0. (3.85) 

Now f r o m eq(3.58) 

^ g20o _ 2a' [({ci>if - + ( ^ 2 ) ' ) - a^] , (3.86) 

where is the valve of ( ^ i ) ^ - ^1^2 + {hf at infinity. For ai > a2 > 0:3, 

a2 = (ai)^ + aia2 + (0:2)^. W i t h ai = 2a and = 0 we have embedding of 
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the Prasad-Sommerfield solution in SU{3) {ie. solution is entirely in the maximal 
SU{2) subgroup of SU{3y°), which is in agreement w i th our result in eq(3.64)^^. 

The antisymmetric field strength Hij^ is 

I4ij 
.2<P 

2 

: f a' e'^' ~ {2Mi - h ' h - (Pih' + 2</)2<^2'), (3.87) 
r 

where dk = d/dx^, prime indicates d/dr and 

Aie-° i ' - + ^e-"^^ + Age-"'''- 2 

dr (Aie^i^ + /lae"^'' + A^ie'^^^'f 

dr " (y4 ie-""- + ^2e-"2'- + ^36-^3 r)2 J.2 

(3.88) 

(3.89) 

Let us see the behaviour of the i / (4) field when r 00. To show this we need 

a convention in order of a's. First assume distinct values for a's {ie. no repeated 

eigenvalues for the Higgs field when treated in the fundamental representation). 

Suppose the order ai > a2 > a^, then 

01 ~ - a i , — — , (3.90) 

J. ^"^2 - 2 
'^^-^"s, (3-91) 

In derivation of the above equations the terms exp(Q;2 — ai)r and exp(Q:3 -

a2)r appears in the two right equations respectively, that vanish faster than ~2/r'^ 

when r —> 00. Therefore 

k 

H,,, - ^ 2a' ( a i - a^) e''" ^ . (3.92) 

Now remains to think about repeated values for a's. The case in which three a's 

are have the same value, ie '0', is not interesting. Then suppose two of three a's are 

i °Wi th this choice as = -2a, and 0̂  = c/ij = -2(ar coth(ar) - l ) / r and in the equation (3.81) 
* has only A7 component. 

^^The charge of this SU{2) embedding is four times of the minimal solution eq(3.64). This agrees 
with the maximal SU{2) embedding of a minimal SU{3) embedded in Es x Es, which makes an 
index of embedding 4. 
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identical, eg. ai = a2 = a and as = —2a. I f we follow the tricky way we mentioned 
in section (2.5)^^ we find (pi and (f)2 in less symmetrical form 

a{3ar + 2)e'̂ '" - 2ae-^'^' 2 

^ (3ar - l)e"'- + e-̂ '̂ '" 

a{3ar - 2)e-«'" + 2ae^''' 2 

(3.93) 

{3ar + l ) e - " ' ' - e 2ar 
+ - . (3.94) 

r 

Following the previous case i t is not difficult to show as r ^ oo, 

/ /4z, ~ T6a'|a|e^^'*—. (3.95) 

Both possible cases eq(3.92) and (3.95) show, the magnetic charge of the monopole 

and the i/4-charge are in opposite signs, and this result is independent of the eigen­

values of Higgs field $ at infinity, where we expected the fields behave as monopole. 

Monopoles in the Other Subgroups 

I n addit ion to the SU{2) and SU{3) subgroups, the group Eg contains other SU{N) 

subgroups of rank eight and less, and the larger group Eg x E^ might have some 

bigger special unitary groups. Similar to the SU{3) subgroup, we can use the results 

of section (2.5) to explain monopoles in the other SU{N) subgroups. 

For the other subgroups, one may use the Nahm construction, which is a mod­

ification of the A D H M construction for the monopole case, to explain the situation 

for a more general solution, as we did wi th the instantons in section (3.2). 

3.5 epilogue 

A t the end of this chapter we enumerate some other kinds of soliton solutions to the 

low-energy string theory that have been come in the literature. 

Several kinds of the five-branes (instantons solutions) arise f rom the low-energj' 

effective action. The neutral five-brane solutions [30, 31] can be obtained f rom the 

^^We select (ai,a2,Q;3) = {a + 6,a - 6,-2a), as 6 is a small arbitrary variable that finally is 
impelled to zero. Inserting these quantities in eq(2.127), using eq(2.128), and after the limit 6^0 
one can see 

and Q2{r)=Qi{-r). 
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gauge five-branes by taking the l imi t of the size of the instanton goes to zero [32 . 
For A = 0 eq(3.30) is gauge equivalent to = 0, and the Bianchi identity (3.26) is 
solved as ê '̂  = ê "̂ " +na'/x"^, which gives /c = 0 and Q = na'. There is also an exact 
solution to the string theory without higher order corrections in a' known as the 
symmetric five-brane solutions [30]. This solution can be obtained by equating the 
connection embedded in an SU{2) subgroup of the gauge group, wi th the SU{2) 
gauge connection Aa so that dH — 0. This solution allows A; = 1 wi th Q = na'. 

Such as the instantons, in the monopole case also several kinds of solutions have 

been assessed: T h e ' t Hooft-Polyakov or BPS monopoles, the Kaluza-Klein or metric 

monopoles [33, 34, 35], and the iy-monopoles [36, 35, 32]. A BPS monopole could 

be derived for string theory compactified to four dimensions on a six torus [39] as we 

explained in this chapter. Based on symmetric five-brane solutions i t is possible to 

find monopole solutions which are exact solutions of string theory [40, 41]. To see 

how monopoles arise f rom instantons, i t is considered that one of the four transverse 

coordinates (eg. x^) has been singled out, and all the field dependence on x'^ projected 

out. By considering this four th coordinate to be periodic wi th some period and 

looking for solutions to the self-dual equation on the space IR^ x 5^, monopoles can 

arise f rom periodic instantons [42], and are known as periodic monopoles. In this 

scenario the BPS gauge monopoles, neutral ff-monopoles and symmetric monopoles 

are constructed [32 . 

Monopoles in general and monopoles in string theory in particular have been 

studied f rom different points of view. Today, one of the most popular subjects 

is the duality in field theories, and in particular in the string theories. (As an 

example, the above mentioned monopoles are predicted by S-duality [38, 53, 52].) 

We did not deal w i th duality in this thesis. For a new review in monopoles and 

electromagnetic duality in supersymmetric gauge theories see [54]. In instanton case 

also some new progress have been provided. A supersymmetric linear sigma model of 

A D H M construction has been prescribed in two dimensions [55, 56]. This is a stringy 

way of constructing the Yang-Mil ls instantons. In this chapter we dealt only wi th 

the 10-dimensional low-energy superstring theory, so there was no chance to test the 
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mentioned stringy way for the sigma-model of string theory in two-dimensions. 



Chapter 4 

Coloured Particle in Monopole 
Field 

Each world is as the pupil of an eye, 

every pupil is itself a whole world; 

You, 0 cross-eyed one, may see two where there is one, 

but I see one where there appears to be two. 

"Rumi" 



C o l o u r e d particles which may be called non-abelian or Yang-Mills particles, are 

particles which carry scalar non-abelian charge (isospin, colour, and such) instead 

of gauge-invariant scalar charge. In this chapter we discuss equations of motion of 

a classical Yang-Mil ls particle in the Yang-Mills fields. First, we review Wong's 

equations of motion for a system of non-abelian particles and fields. Then, we dis­

cuss Wong's equations for a particle in a monopole field and wi l l describe planar 

orbits which arise f rom the equations. Next we generalise Wong's equations in five 

dimensions and explain a particle's motion in a monopole field when the Higgs field 

is counted in the equations. In this reinvestigation of the earlier work, planar orbits 

and non-planar bounded orbits are allowed for a test particle in a BPS monopole 

field. A t the end of chapter we explore a generalisation of the Lorentz force that is 

valid for the Yang-Mil ls particles and fields. 

4.1 Equations of Motion of Yang-Mills 
Particles in Yang-Mills Fields 

I n analogy w i t h an abelian system (a classical point charged particle interacting 

w i t h the electromagnetic field), one can see a rich range of phenomena that oc­

curs in non-abelian systems. Wong proposed a system of equations to describe the 

classical dynamics of such systems (consisting of coloured particles in non-abelian 

fields) by generalising the Lorentz force and Maxwell equations of electrodynam­

ics. The non-abelian particle is characterised by an isovector I (in analogy wi th 

the gauge invariant scalar charge q of an electrically charged point particle) which 

transforms under the adjoint representation of the internal symmetry group of the 

field—le. the gauge group. Consider the interaction between the Yang-Mills field 

64 
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A ^ ( x ) {x = {XQ, Xi, X2, X3) w i th XQ standing for time component and the rest for spa­
t ia l components) and a sp in - | field "^{x) which transforms under the fundamental 
representation of SU{2) w i th generators x"" — I2i (cr" wi th a = 1,2,3 are Pauli 
matrices) satisfying eq(2.56). The Lagrangian density is 

£ = _ ^-i^{d^ + eAlx")-^ - w ' J ' ^ , (4.1) 

where e is coupling constant, m is the mass of particle and 7-matrices are Hermitian 

and satisfy {7^, T } = 25^^ The field strengths F^^ are defined in eq(2.3). The field 

equations are 

{B^F,,r = -e^7,x'''^, (4.2) 

7^(9^ + e x M ; ^ ) * + m * = 0. (4.3) 

This is the usual Dirac-like treatment to find classical equations of motion f rom 

quantum recipe, by regarding the equation (4.3) as a one-particle Dirac equation for 

a coloured particle in a given external field A^. This has been done by Wong [57], 

and the following equations have been formulated^: 

mx, = e F ; , r i ; ^ (4.4) 

r + ee'^^^A'^Fx^ = 0, (4.5) 

where x{r) is the world line of the particle in space-time, r is proper time and 

"dot" denotes differentiation wi th respect to the proper time. The right-hand side 

^The original Wong's discussion has taken place within a Hamiltonian formalism by considering 
the sp in- | fermion field. Instead of spin- | , one may consider a boson field in the presence of an 
external gauge field and the Hamiltonian formalism to find the Wong equations. Or a classical 
Lagrangian formalism may be used to extract out the Wong equations directly. (For the early 
works see [58] and [59]; For a short review and references see [60]). A recent work in the Lagrangian 
is done by authors of reference [60] using both the spin- | and spinless particles. For the spinless 
particles the Lagrangian is 

where X{T) is the particle's path, m is mass of the particle, AJJ is the Yang-MiUs gauge vector, e"-'"^ 
are structure constants of the gauge group and A" are dynamical variables from which the colour 
charge / " are constructed 

and satisfy {A", A*} = 0. The Wong's equations (4.4) and (4.5) are directly found from the above 
Lagrangian by using the Euler-Lagrange equations for x^ and A". 
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of eq(4.4) obviously represents a generalisation of the Lorentz force. In the l imi t we 
are considering a particle is thus described by an internal isovector / as well as its 
space-time coordinates. 

A Yang-Mil ls (coloured or non-abelian) current is carried by a point particle, 

analogous to the electric current in Maxwell electrodynamics, is^ 

Jl[y) = eIr(r)a; , (r)<5( ' ' ) [y ~ X{T)) dr. (4.6) 

where y is an arbitrary point in the space-time, X{T) is the particle's path and 5̂ ''̂  is 

four-dimensional Dirac's Delta function. Hence the field equation (4.2) in classical 

l i m i t is 

(D-^F^,)" = j ; . (4.7) 

The conclusion of this section is: In the classical l imi t , eqs(4.4) and (4.5) together 

w i t h Equation (4.7) completely describe the interaction among a system of non-

abelian particles and non-abelian electromagnetic {ie. Yang-Mills) fields. Taking 

the covariant derivative of eq(4.7) produces^ (D^^J'^)" = 0 that is consistent wi th the 

definit ion (4.6) and eq(4.5). In matrix-valued notation 

0 = D ^ J ^ 

= e l d r ^ ^ B , { l { r ) S % - x { r ) ) ) , 

= e j d r ^ | l ( r ) A _ s^{y _ .^(^)) + e [ A , , I] S^V - x{r))^ , 

= e j d r i ^ - l ^ 6\y - x{r)) + e ^ ^ [ A , , I] 5\y - X { T ) ) ] , 

= e / d r | ^ + e ^ [ A , , I ] | j ^ ( y - x ( r ) ) , (4.8) 

where in the derivation we have used the definition of covariant derivative, symme­

t r y property of Dirac-delta function wi th respect to its both variables and a total 

dr 

f - 5\y - x ( r ) ) + e ^ ^ [ A , , I] 5% - X { T ) ) 

Hn quantum field theory the right-hand side of eq(4.2) is interpreted as current. 
^From Left-hand side of eq(4.7) we have Df'D'^F^^ = ,Ti'']¥= i [ F ^ ^ F ^ ^ ] = 0, where 

we have used the identity we used in page (18). 
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derivative integration. The equation (4.8) vanishes identically everywhere except on 
the path of the particle X{T), SO the quantity between curly brackets vanishes to 
maintain the validity of the equation everywhere, yielding eq(4.5). Therefore the 
consistency between the current definition and the equations of motion is valid. 

The last point is 

= 0, where P = PP, (4.9) 

which is an immediate consequence of eq(4.5). The equation(4.9) shows the isovector 

/ " performs a precessional motion in isospace, ie. the vector P sweeps the surface 

of a sphere in isospace such that the radius of this sphere could be understood as 

norm (absolute value) of charge isovector. Equivalently one can interpret eq(4.9) as 

a conservation law of scalar charge for a non-abelian point particle. 

4.2 Yang—Mills Particles in a Monopole Field 

As an interesting problem, one can consider the interaction between a coloured par­

ticle and a monopole. Soon after discovery of the first monopole in the Yang-Mi l l s -

Higgs theories [3, 4], Schechter [61] investigated the classical motion of a coloured 

test particle in an external field given by the BPS monopole. First we describe the 

Schechter formalism and explain the results, then we study the planar motions which 

are solutions of the problem wi th some numerical results describing orbits at the end. 

4.2.1 Equations of Motion of a Yang—Mills Particle in a 
Monopole Field 

The formalism of Wong can be applied here by adding the Yang-Mills test particle 

to the theory by including the additional term 

-^{rd^ + erAlx'' + rn)<iJ, (4.10) 

to the Lagrangian (2.2). Applying the same treatment indicated in the previous 

subsection, the equations of motion of particle are the same as eqs(4.4) and (4.5) 

w i t h the field equations being those of equations (2.6) and (2.7). Here, a colour test 
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particle w i t h mass m is subjected to an external magnetic monopole field, and the 
contribution of the particle to the evolution of the field is ignored. 

For the ' t Hooft-Polyakov monopoles, replacing the ansatz (2.14)-(2.16) wi th 

J{r) = 0 in eqs(2.3) and (2.4), a direct calculation shows 

î o" = 0, (4.11) 

Ft, = - ^ | - 2 e " ^ ( l - K ) + e ' ^ ' = ^ ( l - i r ) 2 

+ {e'''^ x^x^ + e""^^ x^x'')^{rK' + 2(1 - K))^, (4.12) 

( D , * ) ' ^ = - ^ ^ \ ^ { r H ' - H - H K ) + HK5''^, (4.13) 

where prime indicates d/dr. Using the identity 

eq(4.12) is simplified to 

= ^ | ^ ( ^ ' - - 1) + ^ ^ ' ' ^ " ' } • (4-15) 

For the BPS monopole of section (2.3) 

A""^ = 0, doA'''= do^" = 0, 

er^ sinh(aer-) 

X 
= ^ H , H = aercoth(aer) -1, (4.16) 

which satisfy the Bogomol'nyi equation (2.44). 

A t large distances, K and K' vanish exponentially; f rom ' t H o o f t tensor (2.19), 

the field has the fo rm of a pure magnetic monopole: = \e^^'^Tjk = — ^ . Thus an 

electrically charged particle coupled to an abelian vector potential corresponding to 

would move exactly as a charged particle in a pure magnetic field. 

In a non-relativistic frame, r = = t, using eqs(4.15), eqs(4.4) and (4.5) can 

be wr i t t en in vector notation 

miT = — ^- {v X f^) ( f - / ) -1- ^ X / ) (4.17) 

/ = ^—J^{rx v) X / . (4.18) 
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Define at each point along the trajectory of the particle an orthogonal set of 
vectors, 

r , w = f X V, z — rxw, where v =—-. (4-19) 

Then wi thout loss of generality, non-abelian charge may be writ ten as 

I = ar + (5w + l z , (4.20) 

where f , w and z are unit vectors along the three directions. The coefficients a, (5 

and 7 satisfy 

+ + 7^ = constant, (4.21) 

that is a direct consequence of eq(4.9). Substituting eq(4.20)'into eq(4.18) gives three 

equations for a, /3 and 7: • 

a = -j\w\K/r\ (4.22) 

r 7 • 
P = ^ v - { f x v ) , (4.23) 

rd L, a w K / , „ ,N 
7 = — ~ v - { f x v ) + r—. (4.24) 

Next, using the moving frame (4.19) in eq(4.17) we obtain the ordinary equation of 

motion: 

mv = -;r\w\K'f + ^{r-v)K'z 

[Q; |T?|(K2 - l)+'yr{r-v)K'] w, ( 4 . 2 5 ) 

where we have used 

w X z --- \w\'^f, z x f ^ r ' ^ w , v-z = —\w\'^ 

f x l = —Jrw + Prz, 

w X I = j\w\ f — a\w\ z, 

z x l — -P\w\f+arw, 

v x l = - {/?|itJ| f - [oflwl-I-7(f • ?;)] - I - /?(f • w) i } . ( 4 . 2 6 ) 
r 
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I n addition to | / | , the length of the charge isovector, two other constants of 
motion are obtained f rom the equations of motion (4.17) and (4.18). Mul t ip ly ing 
both sides of eq(4.17) by v, one finds the kinetic energy is constant, so the speed \v\, 
length of the velocity v, is a constant of motion. The other constant is the vector 

_ i l - K ) ( r - l ) 
J = m { f x v ) + KI+ ^-f. (4.27) 

This quanti ty has been verified to be the total angular momentum of the particle and 

the fields. The second and th i rd terms of J correspond to the angular momentums 

associated w i t h the fields of the monopole and the test charge in analogy wi th the 

E X B contribution in the usual monopole case [62]. To show J is constant, one may 

show dJ/dt vanishes by using the equations of motion: 

{r-v)K' 
J = m { f x i l ) + ^-^^^^I + KI 

(v-r){l- K) f f . / ) ( f . iJ)K' 
+ - r + ^ ^ - f - ^ ^ - f 

y-Z ipZ rpO 

( f - l ) ( l - K ) ( f - l ) ( f - v ) ( l - K ) 
+ ^ - ^ 2 - - ' ^ ^ ^ , 4 -r, (4.28) 

where we have used (dK/dt) = {dr/dt)K', and (dr/dt) = {f-v)/r. Replacingm?7and 

/ f r o m eqs(4.17) and (4.18) and using the identity a x (6 x c) = b{a-c) — c{a- b), all 

terms in the right-hand side of eq(4.28) cancel each other, so the result is concluded. 

For small distances near the centre of the BPS monopole, K = aer/sinh(aer) 

~ 1 and K' ~ 0. So f rom eqs(4.17) and (4.18), mv = 0 and / = 0, which show a free 

motion around the center of the BPS monopole. 

Now, we consider the equations for large r . A t large distances K and K' fal l off 

exponentially (see eqs(4.16)), so K{r) and K'{r) are effectively zero for large r. This 

simplifies eq(4.22) to give a = ao = constant, and eq(4.25) to give 

mv = - ^ v X f . (4.29) 

Equation (4.29) is identical to the equation of a charged particle moving in the field 

of a pure magnetic monopole {ie. Dirac point monopole). I t is clear that the motion 

cannot be given by an equation like (4.29) everywhere. 
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Some results may be derived f rom the equations of motion [61]: 

• I n order to have no terms which are not in the direction of w in the right-

hand side of equation of motion (4.25), we require /? = 0. From eq(4.23) and 

then f rom eq(4.24) i t is required 7 = a = 0. Therefore / = 0 and this is a 

contradiction. 

• A t large distances, f rom eq(4.29) one can verify that in addition to the speed 

V, the magnitude of angular momentum / = | / | = \m{f x v)\, the vector 

j = / + tto f and the scalar j • f = ao are constants of motion. 

• The above i tem leads to the well-known result [63] that the particle moves on 

the surface of a cone whose axis (through the origin) is parallel to j and whose 

half-angle is C O S ~ ^ ( Q ; O / J ) . the particle moves towards the origin on the surface 

of the cone unt i l i t reaches the minimum distance rmin = l/mv, and then winds 

its way back out. Actually for distances close to the origin the particle may 

leave the surface of the cone, and does not follow the predicted trajectory. The 

r motion is r = {rl^;„ + v'^t^Y/'^. 

• While a, the component of the isospin vector in the particle's radius vector, 

is constant, eq(4.21) presents a precession of the isospin vector (in isospace) 

around the direction of the particle's radius vector. As t -> ± 0 0 , (3 and 7 drive 

to constant values ie. /3o and 7o (can be seen easily f rom equations of motion). 

From the standpoint of giving a physical interpretation, i t is encouraging that 

asymptotically the particle's charge isospin vector has a fixed orientation as 

the "identity" of the particle. I f at a time io, ^ = 7 = 0, eqs(4.23) and (4.24) 

(remember K = 0 at large distances) show they w i l l stay zero at all times (when 

the condition i ^ ' = 0 is confirmed). Similar to the Higgs field that is radial in 

large distances, and by a gauge transformation can be deformed to a constant 

field say in z-direction [5], here also the same gauge transformation sets the 

isospin vector in z-direction [61]. Therefore eq(4.29) indicates a particle wi th 

electrical charge q = eao, in the field of 'a point monopole wi th charge -47r/e. 

As we told already, at distances far f rom origin the motion is identical to a 
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motion of an electrical particle in a pure magnetic monopole {ie. non-abelian 
property disappears). 

Now we describe some solutions of the equations of motion (4.17) and (4.18). 

Considering a general solution for equations of motion (4.17) and (4.18) is not easy. 

So we explain some specific solutions in some detail. 

I f the particle is launched in a radial direction, while the charge isovector is 

also in i t i a l ly radial, the particle wi l l move uniformly in the radial direction. This 

is the only choice for radial motion. This can be simply seen f rom the equations of 

mot ion (4.17) and (4.18), when f x v vanishes as the condition for radial motion. So 

mv = ^ ( j j X and / = 0. For a radial motion, the acceleration v must be in the 

radial direction, while we see v x I is normal to the radial direction (as we know v 

is radial). So the only possible case is a constant charge isovector / along the radial 

axis, and therefore a uniform radial motion occurs because mv = 0. I f the in i t ia l 

velocity points to the origin, the particle passes through the origin. 

I f the particle is launched in the field (in any direction) while the charge isovector 

is normal to the both in i t ia l particle's radial direction and velocity vector, then 

the particle w i l l move on a plane normal to the charge isovector and the charge 

isovector remains constant (next topic). Under these circumstances radial motion is 

not allowed. We w i l l show bounded orbits are allowed in the planar motion sector, 

while we have not observed bounded motions in the general three-dimensional theory. 

In any case other than the two cases mentioned, the particle wi l l move on a 

spatial curve. A t the end of this section a numerical analysis of the general three-

dimensional equations is described. In the next topic we explain the planar motion 

of a particle in the BPS monopole. 

4.2.2 Planar Orbits 

A planar motion is identified by a conserved vector normal to the plane of motion. 

For non-zero values of position and velocity of a non-uniform motion, the plane of 

motion is normal to f x zT at each time. Therefore, i f in eq(4.25) the component of 

the force in the direction f x v vanishes, a planar motion takes place, provided that 
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the equation of evolution for the charge isovector is valid. 

A quick look at equations (4.22) to (4.25) shows if we put a = 7 = 0 we get 

a = 0, (4.30) 

/? = 0, (4.31) 

7 = - j ^ J - { r x v ) , (4.32) 

mil = ^\w\K'f + ^{r-v)K'z, (4.33) 

where in the last equation there is no component along f x v {ie. v • {f x v) = 0) 

in the right-hand side, and therefore the condition for a planar motion is obtained. 

Using eq(4.33) the third equation becomes 

7 = 0. (4.34) 

The equations (4.30) and (4.34) are consistent with the assumption a = 1 = 0, and 

eq(4.31) becomes 

/3 = constant ^ 0, (4.35) 

which is required for the non-vanishing charge isovector. So the equations of motion 

(4.22)-(4.25) transformed to a new set of consistent equations which has only one 

equation, eq(4.33), to be solved. This equation as we said has no component in the 

direction normal to the position and velocity vectors, and this was the condition 

for the planar motion we mentioned at the beginning of this subsection. So o; = 

7 = 0 implies planar motion. We will show also that the planar motion condition 

necessitates a = 7 = 0. 

To have no term in the direction normal to the plane of motion (as the condition 

for planar motion), we need to equate the coefficient of w in eq(4.25) to zero. So 

eq(4.25) breaks into two separate equations 

mil=^\w\K'f + ^{r-v)K'z (4.36) 

a\w\{K^-l) + lr{r-v)K'= 0, (4.37) 

where the first equation is the same as eq(4.33). With this treatment we are imposing 

an extra constraint on the original equations of motion, and this is not necessarily 
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consistent with the other equations. To show the consistency, we may solve six 
equations out of seven (six original equations of motion plus one constraint because 
of the planar motion condition), and examine the validity of the last one with the 
resulting solution. From eq(4.36), v has no term in the direction f x v, so from 
equation (4.23), /3 = 0, which gives /3 = /?o = constant. Therefore the equation of 
motion (4.36) does not depend on a and /?. But a and /3 through their relations 
depend on r and v 

. = (4.38) 

7 = (4.39) 

where {wl = \ f x v\. So with a solution for f (and v) we have to show the consistency 

of eqs(4.37), (4.38) and (4.39) all together. Replacing a from eq(4.37) into eq(4.39) 

we obtain 
KK' 

7 = - - ^ ^ r , (4.40) 

where we have used f • v = r f . Equation (4.40) is solvable and the solution is 
7 = C i e W ^ - i ) ] , (4.41) 

where ci is a constant. Using eqs(4.37) and (4.41) 

From eqs(4.38) and (4.39) (or equivalently from eq(4.21) and the fact that p is a. 

constant) one may simply find 

a2 + 7 ' = C2^ (4.43) 

where = P — /3Q is another constant. So, finally we have to show the solutions 

(4.41) and (4.42) for 7 and a satisfy eq(4.43). As we see, a solution for, f and v (in 

fact V is enough) is needed to replace for appropriate quantities in (4.42). 

The equation (4.36) stands alone and may be solved independently from the other 

equations. Taking the normal direction to the plane of motion as the ^-direction in 
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a cylindrical coordinate, one can write down the equations of motion in the polar 

plane. We can simply replace { f , w, z} by { f . A;, -9}. In the polar plane 

V = f f + r99, 

a = {r -r9^)f + {2r9 + r9)9, 

(4.44) 

(4.45) 

so eq(4.36) in the cylindrical coordinates is 

(r - r9^) f + (2f9 + r9) §] = p9K' f-(5-K'9. m (4.46) 

A set of two nonlinear differential equations appears 

m{f - r9^) = P9K', 

m(2r9 + r9) = -p-K', 
r 

(4.47) 

which governs the motion of the particle in the polar plane. From the last equation 

one finds 

mr'^9 + pK = j = constant, (4.48) 

Obtaining K' from the former equation of eq(4.47) and replacing in the later one, 

we find 

rr + rr9^ + r'^99 = 0, 

which produce another constant of motion 

y.2 ^ ^202 = ^2 ^ constant. (4.49) 

Both of the constants are in agreement with the overall discussion we had earlier 

about constants of motion. 

Now we can replace r and \w\ = \r'^9\ from eqs(4.48) and (4.49) 

w\ = \r^9\ = 
J-PK 

m 
•2 2 
r = V — 

' j - P K \ 

mr 
(4.50) 

into eq(4.43) 

r\K'f 
1 + (4.51) 



4.2 Yang-Mills Particles in a Monopole Field 76 

to check validity of the extra constraint that was imposed from the planar motion 
condition. In eq(4.51) K — aer/sinh(aer), and C i , C2, m, /?, v, j, a and e are 
constants. This means the coefficient of the constant Ci that is an explicit function 
of r, should be a constant. This can not happen in general. At least numerically, we 
may show the above function of r is not a constant for the solutions we will discuss in 
the next subsection. The only clear possibility is for r = constant, ie. for a circular 
motion. For r = constant, r = 0, so from eq(4.42) o; = 0 and from eq(4.43) (or 
eq(4.41)) 7 = constant, where from eq(4.38) this constant must be zero. Therefore 
Ci = C2 = 0. For the other cases {ie. not necessarily circular motions), eq(4.51) 
necessitates Ci = C2 = 0. So a planar orbit is possible if and only if the charge 
isovector has no component in the plane of motion, that means in the planar motion 
the charge isovector identifies the plane and remains constant. 

4.2.3 Analytic Description of Planar Orbits 

A Lagrangian for the two-dimensional motion discussed above is offered as 

L = T-U = \m{r'' + rH^)+l5eK{r). (4.52) 

The form of the "potential" U = -(59K{r) (with the presence of 6) apparently 

shows the force due to it , is not a central force. For a two-dimensional central force, 

the angular momentum / = is a constant of motion, while here this quantity 

alone is not a constant. As we mentioned before, the total angular momentum of 

the particle and the fields is constant, and expressed in eq(4.48). Another difference 

is: In the central force problem the total energy of the system including the kinetic 

energy of the particle and the potential, T + [/, is a constant of motion, while here 

(in contrast to the angular momentum case) only the kinetic part alone is a constant 

of motion (eq(4.49)). Likewise, it is shown in the central force that only the "inverse 

square law" and "Hooke's law" can make closed stable orbits (known as Bertrand's 

Theorem) [65, section 3-6], while in the present case which is different to these, closed 

orbits are allowed, however, their stability will need to be investigated. Using the 

Euler-Lagrange equations, the equations of motion (4.47) are simply derived from 

the Lagrangian (4.52). 
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To describe the orbits in the plane of motion we may study the one-dimensional 
equivalent of eqs(4.47). As we see from eq(4.49), the kinetic energy {'mv'^/2) is 
a constant of motion. In the usual central forces in fact the mechanical energy 
{mv^/2 + V{r), V(r) is potential energy) is a constant of motion. We may reorganise 
the equations of motion (4.47) to obtain a one-dimensional equation in a standard 
central form. To do this, we may use the original set (4.47) (as is done in classical 
mechanics) or use the first order equations (4.48) and (4.49). Replacing 9 from 
eq(4.48) into the first equation of eq(4.47) 

mr = p — K + mr — 

which gives 

where 

2f dt \ mr j 

dV{r) 
mr = ;—. 

dr 

(4.53) 

(4.54) 

The equation (4.54) is a one-dimensional equation of motion with a force related to 

the potential V{r) on the right-hand side. The first integration of eq(4.54) gives 

E = l - m r ^ + V{r), (4.56) 

which is indeed equivalent to eq(4.49), ie. E = and V{r) = mr'^9'^/2. 

The potential V{r) is a function of r, and through j depends on the initial 

conditions of the motion. To see the shape of the potential V{r) we may simply 

analyse its derivative with respect to r 

V'{r) = - ^ ( j - PK){j -/3K + PrK'). (4.57) 

The derivative V'{r) vanishes if one of its two factors vanishes, ie. K{r) = j/P or 

K(r) — rK'{r) = j/(3. To find the solutions of these equations we may find the points 

at which the constant function j/(5 coincides with the functions K{r) = r/sinh(r) 

a = e 1) or K{r) - rK'{r) - cosh(r)/sinh^(r). Looking at Fig(4.1), for 
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n rc 2 r2 A 6 8 10 12 • 

Figure 4.1: Solutions of V'{r) = 0. 

0 < J < jc (say P = I) there are two solutions for V'{r) = 0, therefore V(r) has two 

extrema at r i and r 2 . The potential V{r) is a non-negative function and V{r) 0 

as r —>• oo. So the two extrema must be a minimum and a maximum respectively, 

ie. -I'l is the minimum and r2 is the maximum. For 0 < j < 1, V{r) is tangent to 

the r-axis at the minimum point r i (because V{r) is also vanishes for j = pK), and 

this is the only point that V(r) touches the r-axis. For 1 < j < j^, V{r) does not 

coincide with the r-axis. For j 1, V{r) —>̂  oo as r ^ 0, but for j = 1 this limit is 

finite and V{r) 0 as r 0 (so r i = 0). For j = jc {r = Vc) there is only a saddle 

point, and for j < 0 and j > jc there is no extremum and V{r) is monotonically 

decreasing. Figure (4.2) shows the possible shapes of V{r). 

For a given j we may discuss the orbit of the particle, subject to the initial 

conditions. The limit value jc may depend on the other constants of theory such 

as a, e and p. To see how jc depends on a and e (instead of setting a = e = 1 in 

last steps), we may consider a and e in K as it came in (4.16). Therefore, we have 

K = aer/sinh(aer) and K — rK' = a^e^r'^ cosh.{aer)/sinh^(aer). If we plot K and 

K — rK' in Fig(4.1) versus aer, we see TC is rescaled, but jc remains unaltered (up 

to the constant factor /?). I t is not difficult to find rg and jc (with a = e = /? = 1) 

Tc = 1.606115299, jc = 1.169230089. (4.58) 

Let see the situation of a motion when j and E (or v) are given. If 0 < j < jc 

but j ^ 1, we have the top-left plot in Fig(4.2). The altitude and latitude of the 
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0<J<j 

Figure 4.2: One dimensional potential V{r) (vertical axis) versus radius r (horizontal 
axis). In the top left plot, the height h is zero for 1 < j < jc-

extrema from the horizontal and vertical axes are related to the constant j. Figure 

(4.3) shows the different possibilities of motion subject to energy E. 

V{r) 

E, 

E2 

E, 

El 

E, 

J5 

rg r i r2 

Figure 4.3: Different possibilities of motion for 0 < j < jc {j I)-

If the particle starts its motion with the energy E4, it will be scattered to infinity 

and can never come closer to the origin than re (see Fig(4.7) in the next subsection). 

A motion with the energy E2 will move on a circle of radius r2 even it starts its 

motion from inside or outside of the radius r 2 . This motion is unstable ie. a small 

perturbation banishes the particle from the radius r 2 . A small perturbation to the 
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left may make a bounded orbit if the perturbed energy is less than E2, while a small 
perturbation to the right sends the particle to infinity even if the energy is less than 
E2 (see Fig(4.8) in the next subsection). A particle with the energy E3 is bounded 
and moves between two radii r^ and 7-4 if it starts the motion in between the two 
radii (see Fig(4.7) in the next subsection), but it will be scattered to infinity if starts 
the motion from r > rs. A particle with the energy Ei moves on a circle of radius 
r i . This is a stable motion (see Fig(4.7) in the next subsection). The situation of a 
particle with the energy E5 is similar to the particle with the energy E4. In Fig(4.3) 
r i and r2 are given by ri and r2 in Fig(4.1) when j is specified. 

For 0 < j < 1, V{r) is tangent to the r-axis at r i , therefore the case with energy 

E^ is inappropriate and Ei lies on the r-axis (so Ei — 0). A stationary particle 

(a particle with E = 0 «e. ro = ^0 = 0) settles in this category and remains at r i 

without moving. So a stable circular motion is possible only for 1 < j < jc-

For 0 < j < ic, a bounded motion is possible \i Ei < E < E^. Using Fig(4.1), 

j = K{r2) - r2K'{r2) = K{r2) + r f ^ l , which gives §2 = -K'{r2)/r2. So E2 = 

(r|H-r2 ^ i ) /2 = 9^/2 = {K'{r2)Y/2, where index 2 shows the value of each quantity 

at r2 . For the minimum value we can do the same. For 1 < j < jc we have 

( i ^ ' ( r i ) )V2 < E < {K'{r2)f/2, and for 0 < j < 1, 0 < E < {K'{r2)f/2. For 

each case radii r i and 7-2 are determined by j , so with j we can describe the overall 

properties of the motion. As a problem we may determine the maximum value that E 

can take for a bounded motion. By equating the derivative of function {K'{r)Y/2 to 

zero, we find r = 1.606115299 that is equal to r^ (see eq(4.58)) and so the maximum 

value of {K'{r)f/2 is E^ = .04799323563. This is not an accident, because in fact 

the energy E is equal to the potential V{r) at the turning points, so at the turning 

points E = V{r) = {j - K)'^/2r'^. Clearly, the maximum value of E for a bounded 

motion occurs when j = jc (see Fig(4.1)). So if i? > Ec we can immediately conclude 

that the motion is not bounded. 

Another point that is worth mentioning is: If the particle is launched into the 

field from r > r^, (for some TYYI ) we remain in the category 0 < j < 1 for bounded 

motions. From Fig(4.1) one can simply see the maximum distance from the origin 
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for a maximum turning point for the category 1 < j < jc occurs in j = 1. Then r^ 

is the non-zero root of K{r) - rK'{r) = 1, which gives r ^ = 2.676073965. Clearly if 

a particle is launched in the field from r > r ^ it will not be bounded if j > 1. So the 

only possibility for a bounded orbit for this particle is 0 < j < 1 (not any motion is 

necessarily bounded). 

Motions with j ^ 1 do not pass the origin at all. For the bounded orbits, a 

particle moves in its path between two circles of radii and r^. In the turning 

points V{r) = E, so r = 0. For 0 < j < 1, in the radius r i (the point which locates 

between the turning points and minimises V{r)) V{r) = 0 (see the top-left plot in 

Fig(4.2) with h — 0), so in this radius ^ = 0 and the orbit must be tangent to a 

radius at this point (see Fig(4.4)). In the radius r i (= OPx = OP2 in Fig(4.4)), 

Figure 4.4: Internal loops are possible for 0 < j < 1. 

^ = 0, but r 7̂  0 (because E ^ 0), so d9/dr = 0. This means at this point the 

direction of variations of r remains unchanged, while the direction of variations of 9 

is changed. Therefore, each time that the particle completes a motion between two 

radii (for example starting from the upper turning point and returning back to the 

point after traveling to the lower turning point), it passes two times from the desired 

point ( r i ) . So the particle makes an internal loop outside the origin {ie. the loop 

does not surround the origin) in each travel. So in a 27r rotation the particle may 

construct several inner loops which are lying on the main orbit around the origin. 
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This case does not happen for 1 < j < Jc because always V(r) > 0. 

This is an important result. For 1 < j < Jc the particle rotates around the origin 

once in every 27v rotation (but not necessarily in a closed orbit). This is similar to 

the Kepler problem in gravitation. This motion definitely can happen only inside the 

region r < as we explained earlier. But for 0 < j < 1 the situation is different. 

In a 2TT rotation, a particle trajectory may form several loops outside the origin (see 

Fig(4.5)). This case may happen anywhere in the plane subject to suitable initial 

values. 

For j ~ 1 (the top-right plot in Fig(4.2)), the situation is the same as 0 < j < 1, 

but here the lower turning point is fixed, r^ = ri = 0 (in contrast to the case of 

j ^ 1 where the lower turning point depends on E). In this case, the upper turning 

point, r4 < r-m = 2.676073965. So in a bounded motion the particle passes the origin 

periodically. In fact this case is settled between the two parts of the previously 

studied case. For 1 < j < a bounded orbit turns around the origin once in each 2ir 

period, and the particle's orbit comes closer to the origin on a point of its trajectory 

when j takes a value closer to one {ie. perihelion becomes shorter). In the limit, for 

j = 1 the trajectory crosses the origin, and in each 2TT rotation, the particle passes 

the origin once. When j takes a (positive) value less than 1, the orbit leaves the 

origin and makes a loop in the opposite side (see Fig(4.5)). 

Figure 4.5: In the left plot j > 1, In the middle one j = 1 and in the right plot j < 1. 
In the three cases particle has started the motion from (0,1) with the same energy, 
E = 0.025. The total angular momentum j are 1.03, 1 and 0.97 respectively. The 
starting point and the origin are marked by black dots. 

For j = 1, r = 0 is an extremum point of the potential V{r), and V{r) is tangent 
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to the r-axis in r = 0. So it is important to study any probable ambiguity at the 
origin. The origin is a turning point, and also the orbit is tangent to a radius at the 
origin. So it is a question to know about the velocity components at the origin. It is 
not difficult to show neither r nor 9 vanishes at r = 0. One may show 

r->0 r->0 

l imr^ = \\m{v''-[^ ' ] \ = v\ (4.59) 

The above limits may look strange, but still v'^ = P -\- r'^9'^ is valid. 

For j = jc (bottom-left plot in Fig(4.2)) a particle with the exact energy Ec has 

a non-stable circular motion in the saddle point, otherwise the particle is scattered 

to infinity. For j < 0 and j > jc the particle is scattered to infinity and there is no 

chance for bounded orbits. 

Finally, if a particle starts its motion from the point (ro, ̂ o) with the velocity 

(ro,^o)j we may calculate the two important constants j and E (or equivalently 

v) and very soon recognise the motion to be bounded or not, and to which of the 

preceding cases it belongs. 

In principle, we have discussed the overall characters and properties of the orbits, 

but the actual equation of the orbit must be obtained by integrating the differential 

equations of motion (4.48) and (4.49). Replacing 9 from eq(4.48) in eq(4.49) we get 

r ; , (4.60) t = ± 

V ^ \y mr 

where the motion is supposed to be started from the initial value ro at time t = 0. 

As i t stands eq(4.60) gives i as a function of r and the constants of integration E (or 

v), j and ro. However i t may be inverted, at least formally, to give r as a function 

of t and the constants. Once the solution for r is found, the solution for 9 follows 

immediately from eq(4.48). At large distances from the centre, K and K' vanish and 

the particle moves in a straight line. Clearly in the areas too close to the center of the 

monopole, K' vanishes as well (but not K), and a free motion is valid. However, in 

the other areas K and K' are important and cannot be ignored. Again using 9 from 
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eq(4.48) and r form eq(4.49) (after some replacement of 9), after some rearrangement 

of variables an integral equation for the orbit of the particle is found as: 

dr 
9-9, 

r dr , , 
= ± , 4.61 

'ro U rnvr \ 

With the presence of the hyperbolic function in the integral, it seems difficult to solve 

it by changing the variables. Instead of the above integral equation for the orbit, 

we may replace dt from eq(4.48) into eq(4.54) and find a second order differential 

equation for the orbit. But non of these help us to find analytic solutions for the 

orbits. So in the next section we present some numerical solutions of eqs(4.47) and 

observe the results we found in the previous pages. 

4.2.4 Numerical Observations 

In this subsection we present some numerical solutions for the set of equations (4.47) 

for planar motions and eqs(4.17) and (4.18) for non-planar motions. We have used the 

Runge-Kutta method (of fourth order) for solving first order differential equations. 

The required programmes are written in the "MATLAB" programming package and 

are explained in the appendix at the end of this thesis. In a planar motion let us 

suppose a particle of unit mass, m = 1, and unit charge, / = /?A;, /3 = -|-1, has been 

launched in the field of a BPS monopole with a = e = 1, from a point (ro, ̂ o), 

with an initial velocity (ro , ^o)- The following results are concluded for the different 

initial values for which we have tested the equations. 

The monopole forces the particle to move on a curve in the plane such that if 

the thumb of right hand stands in the direction of the charge isovector, then the 

sense of closing the rest of fingers shows the direction of rotation of particle. In 

Fig(4.6) particle is launched in four different directions (with the same energy), and 

the particle moves counter-clockwise in each case (the charge isovector is normal to 

the paper plain and outward). This observation is in a great difference with the usual 

scattering of an electric particle in a Maxwell field. If the behaviour of this system 

was like a usual electrodynamics system, the two bottom plots of Fig(4.6) would 

be the mirror images with respect to the x-axis, while here we see one motion is 
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Figure 4.6: Particle is launched from point (1,0) (the dark point in the x-axis) with 
the same speed (0.1842556) in each case. (The number of significant digits in the 
velocity is not crucial; it has been chosen for a better illustration of the plots.) 

bounded while the other one is scattered to the infinity. (Note in the last two plots, 

in spite of the fact that the energy is the same in both cases, j is different so they 

follow the two different models of j-E graphs we explained in subsection (4.2.3).) 

This point can be explained analytically when the condition for the planar motion 

is used in the original equation (4.17). In eq(4;i7) f - / = 0 (for the planar motion), 

so the equations of motion in a compact form is 

K' 
mr = (y X / ) . (4.62) 

The term in the right-hand side of eq(4.62) is the force that is exerted from the fields 

onto the particle. The / = is a vector normal to the plane of motion and in 

the upward direction. So the cross-product of v and / is a vector in the plane of 

motion and always normal to the velocity vector and in counter-clockwise direction. 

Therefore the particle is forced to move counter-clockwise. 

Bounded and unbounded orbits are allowed depending on the choice of initial 

values. Closed bounded orbits may exist for each point in the plane, depending 

on the initial velocity. There are lots of various orbits, circles, Limagon-shapes, 

curves with many loops (loops may surround the centre or not), the simple scattered 



4.2 Yang-Mills Particles in a Monopole Field 86 

0.5 

-0.5 

-1 -0.5 0 0.5 1 

Figure 4.7: For each case motion is started from point (1,0) (the dark point), but the 
initial energy is different for each case. For the circle, initial velocity is 0.2663673990, 
and for the Limagon-shape, the initial velocity is (ro,^o) = (0.1842556,0). 

curves and many other complicated curves. A variety of possible orbits are shown 

in Figs(4.7). For closed orbits the initial conditions are specified. For example, 

in the two top plots of Fig(4.7) that the initial position of the particle is known 

{le. {r,9) = (1,0)), the velocities are specified up to some significant digits. 

Although the circular motions are closed orbits, in general we can not find a 

prescription for closed orbits. By numerical methods and trial and error we may find 

some closed orbits. The top-left plot in Fig(4.7) is an example. 

The figure (4.8) shows an unstable motion around the maximum point for 0 < 

j < jc- In the top-left plot, the particle is launched from point (1,0) with (ro,^o) = 

(0.18427354763893, 0), so it will rotate in a radial direction at r2 = 3.16299356716209. 

This case is calculated only to be compared with the closed top-left plot in Fig(4.7). 

So for any 0 < j < jc {ie. ro and 9o are specified), we can find a value ro and send 

the particle to rotate on the critical radius r2. For smaller or bigger energies, the 

motion will be bounded between two circles, or scattered to infinity, as was explained 

earlier. The bottom-left and top-right plots show these this point. The bottom-right 

plot is another example of a unstable motion. Particle starts the motion from the 
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Figure 4.8: For each case motion is started from point (1,0) (the dark point). The 
plots show stability of the orbits around r2. 

same point as the other three, but j and energy are different. We can compare this 

case with the circular motion in Fig(4.7). 

Numerical Observations For Non-Planar Motions 

Now we explain non-planar motions which are indeed follow the general equations of 

motion (4.17) and (4.18). The computation programmes have been explained in the 

appendix. Suppose the particle is launched in the field from the point (0, 0,10) with 

an initial velocity (0,0, -0.1) while the charge isovector is initially (0,0,1). As we 

explained before the particle moves on the z-direction and passes through the origin 

on an enough time. Now suppose instead of launching the particle in the ^-direction, 

launch it from the point (0,1,10). So the initial conditions are as before unless an 

impact parameter is taken into consideration. Of course with these initial conditions 

the particle moves on a curve which is no longer planar. The top two plots in Fig(4.9) 

show the orbits for the above mentioned two cases. 

Instead of considering an impact parameter in the above case, that leads to a 

non-planar motion, any small deviation in the initial velocity in the normal direction 

to the plane or in the charge isovector in the plane causes non-planar orbits as 



4.2 Yang-Mills Particles in a Monopole Field 88 

10 

5 

0 

-5 

-1 -1 -1 -2 

10 

5 

0 

-5 

-1 -2 0.4 -0.1 

Figure 4.9: Spatial orbits. 

well. Examples for these two cases are the bottom plots in Fig(4.9). In the right 

plot particle is launched from (0,0,10) with the velocity (0,0.01,-0.1) and charge 

isovector (0, 0,1); and in the left plot from (0, 0,10) with the velocity (0, 0, -0.1) and 

the charge isovector (0,0.1,1). 

By changing the initial values we may collect a wide range of spatial orbits. 

Organising these plots to get some useful results are not straightforward, and in 

addition needs a long time for each computation. As an example, the following 

observation may lead us to the idea of standard one-dimensional potential we ex­

plained in the section on planar motion. In the continuation of the top two plots 

in Fig(4.9) we can increase the impact parameter. Note that the particle reflects 

back in the z-direction, when we put (0, 2,10) for the location of particle and the 

other initial values are unchanged. Now we can decrease the impact parameter and 

then play with it by adding and subtracting the earlier values to find a plot such 

that the particle stays around the xy-plane (at least for a while). We may continue 

this procedure to get a better and better result. In Fig(4.10), the left plot is the 
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Figure 4.10: Non-stable motion. 

three-dimensional orbit and the right one shows the time variation of z component. 

This plot is resulting from the same initial values as the two top plots in Fig(4.9), 

but with impact parameter 1.95265 (ze. (0,1.95265,10) for the initial location). The 

particle has a small oscillatory motion along the z-axis close to the xy-plane for a 

while. We may increase duration of the delay around the xy-plane for a longer time 

by changing the value of impact parameter to a better value. 

Based on the observation we explained in the last paragraph, one may compare 

this situation with the unstable extremum points in the one-dimensional potential 

model we explained for the planar motions (see Fig(4.8)), but in a three-dimensional 

context. So if this is like an unstable extremum, there might exist a stable analogue 

of the one-dimensional potential in the three-dimensional context. If a minimum 

exists for the general potential model, a stable planar motion would be allowed. 

This means, stability of planar motion might be possible it', if some small normal 

perturbations disturb the planar motion, the orbit should stay bounded around the 

plane. In the next topic we analyse this problem in some detail. 

I t is proper here to say a word about the scattering problem. With the above 

results from the numerical works, we see the scattering depends on many parameters 

is not as simple as in the two-dimensional central force problems. We may keep the 

initial conditions of the problem unchanged but alter the impact parameter. As the 

impact parameter changes, the plane spanned by the initial and final velocity vectors 

changes. So it is needed to introduce three scattering angles instead of one which 
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is used in the usual two-dimensional scattering problems. Even in two-dimensional 
planar motions the scattering of the particle is not symmetric with respect to the 
positive and negative values of the impact parameter (see the two bottom plots 
in Fig(4.6)). The problem of scattering in three-dimensional motions is a separate 
problem, so we skip i t here. 

4.2.5 Stability of Planar Motions 

The conditions for planar motion look too strong and therefore the stability of planar 

motions may be very weak. This means, if a little deviation in the quantities perturbs 

the planar motion in the normal direction to the plane, the particle will leave the 

plane and be scattered to infinity. Because the perturbations are generally in three 

dimensions, we should use the general equations of motion (4.17) and (4.18). So, let 

us first find the required equations for perturbations in three dimensions. 

Suppose small perturbations in f and / in the form 

f — > r + e, I—>I + 5, (4.63) 

where e and 5 are small quantities. For the other quantities we will have 

•• '-, e* • r* 
V—vv^-e, V—>v + e, I—>I + S, r—> r-\ , (4.64) 

where in the last one we have kept only the first order approximation. Replacing the 

unperturbed quantities in equation of motion (4.17) and (4.18) with the perturbed 

quantities from the right-hand side of the above relations, we find 

me — ^ !(-{; X e)(r • / ) - I - (e X r )(r • / ) 

+ (w X f ) ( r • 5) -I- (?T X f ) (e • / ) | 

47^2 _ 2rKK' - f r'^K" - ZvK' - 4 
r3 

i e - f ) { v x f ) { f - l ) 

K' r - • - ^ rK" - K' 
+ — |(^;x<5) + ( e x / ) } + (e"--f ) ( ^ ' x / ) , (4.65) 

S = -—^ l^{ex v) X 1 + ( f x e) X 1 + ( f x v) X 5 • 

- ^ i ^ — ^ l i l ^ ( e • r) [ ( f x v) X l] , (4.66) 
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where in derivation we have ignored the second order perturbations and used the 
unperturbed equations (4.17) and (4.18). 

Now for the planar motion case, where we have suggested to make a small per­

turbation in the space, we have 

-rK' -I 
me = r4 

• {v X r){r -6) + {v X f ) (e • / ) 

+ ^ [{vx5) + (e'̂ x / ) } + ^^^3 {vxl){e-r), (4.67) 

5 = ^—J^[{rxv)xH{I-e)v-{I-'e)r], (4.68) 

and we have used f-I = v-I = 0. Only the terms in the second row of eq(4.67) can be 

derived from the planar equation of motion (4.62), and the remaining terms in both 

equations have appeared by considering the general three-dimensional equations of 

motion. 

Cylindrical coordinates are suitable to write down the equations for each com­

ponent separately. We may write 

e = erf + eo9 + z, 

S = S^f + Sg9 + S,z. (4.69) 

So 

'e = (e^-eee)f + {i0 + 9er)9 + i,k, 

S = {5r ~ 95e)f + {5e + 9Sr)e + 5,k, (4.70) 

and 

r = (eV - 9eg - 29ig - 9^er)f + {eg + hr + 29er - 9hg)9 + e,k. (4.71) 

Replacing from eqs(4.69)-(4.71) in eqs(4.67) and (4.68), and using I = j5k {P = 

constant), r a n d v in the polar plane (plane of motion) one may find a complete set 

of six linear differential equations for six unknown perturbation components 

mk = [p^kg^- PK"9er^K'96\f 
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f K' rK" -K' K' • 1 -
+ -P—kr - (5 rer + P—9eg - —fd, 6 

[ r r r ) 

( - rK' -1 • 1- K^ • K' 1 -
+ -P Be, + d6r + —fSe k, (4.72) 

1-K 
'S = \^—^i-/3re, + Pre,-r'9Sg)y 

i^^^{P9e, + r9Sr)^e, (4.73) 

where in the left-hand side we may replace e and S from eqs(4.71) and (4.70), and 

write down equations of motion for each component. In the first instance we find 

= 0, so 

= constant. (4.74) 

Therefore for small perturbations the total component of the charge isovector in the 

normal direction to the plane of motion, P + S,, remains constant. For example, if 

initially the perturbation of the charge isovector takes place in the plane of motion, 

this perturbation remains in the plane when the perturbation is small. 

Let us choose an auxiliary variable a = e 

a = a^r -I- agO + a^k, 

= [ar - 9ag )r + {ag + 0ar)9 + a^k. (4.75) 

Now we can write nine first-order differential equations for the perturbations (let us 

set m = 1) 

ir = 9eg + ar, 

eg = -9er^ ag 

rK" ~k' • ( K' •\ 
Or = P 9er+[p— + 9 ae + K'e5z, 

r \ r ) 

rK"-k'. ( K ' .\ K'.^ 

K^-rK' -I • l - K \ ^ K' . ^ 
Oz = -P 5 Bez + 95r + —r6g 

5r = P ^ ^ r e z - P ^ ^ a z + K95g, 
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5g = p L ^ 9 e , 

= 0. 

K95r, 

Equivalently we may write the above set of equations in matrix form 

S = MS 

where 

S = er eg ez <Jr Og 

{T stands for the transpose), and 

M ( f , f ) = 

• iT 

(4.76) 

(4.77) 

(4.78) 

0 9 0 1 0 0 0 0 0 

-9 0 0 0 1 0 0 0 0 

0 0 0 0 0 1 0 0 0 
l3{rK"-K')e 

r 0 0 0 ^ + 9 
r 

0 0 0 K'9 
P(rK"-K')f 0 0 r 0 0 0 0 K'r 

T 

0 0 0 0 0 r 
K'f 

r 0 

0 0 
P (l-/<'2)r 

0 0 r 0 K9 0 

0 0 Pii-K)e 
r 0 0 0 -K9 0 0 

0 0 0 0 0 0 0 0 0 

(4.79) 

The matrix M which is a function of the variables f and f is implicitly a function 

of time t. I f M was a constant matrix with eigenvalues and eigenvectors Ri^ the 

solution of the linear differential equation (4.77) would be Yll=i Ciexp(Ait)^ , where 

Ci are constants. But now the solution cannot be as simple as this, because the 

eigenvalues of the matrix M are functions of time. The only chance for solving 

the equations in this way is for circular motions when r and 9 are constants and f 

vanishes. For example for the circular motion of Fig(4.7), r = 1, = 0, r = 0, 

9 = 0.2663673990 and /? = 1 the eigenvalues of M are 

0.4420586021, -0.4420586021, 0.5092646668, -0.5092646667, 

0.2351894807Z, -0.2351894807^, 0, 0, 0. 
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We have used the "MAPLE" programming package to calculate the above values. 
Using the MAPLE package we can find the eigenvectors as well. Now We need initial 
values of the perturbation quantities to determine the constants Q. Suppose in the 
circular motion, instead of starting the motion att = 0 exactly from the point (1, 0, 0) 
in the plane of motion, start the motion from (1, 0, 0.001) and the other initial values 
of the circular motion do not alter. So we have set an small perturbation only in the 
^-direction (normal to the plane of motion) ie. S{t = 0) = [0, 0, 0.001, 0, 0, 0, 0, 0, 0]^. 
Equating S{t = 0) = J]i=i CiRi, the constants Ci are found. Let us study the result 
for one of the perturbation's components, eg. e, 

ez = 0.0005111498065 e^-^™^^^^* + 0.0005111498062 e-"™^'^^^^' 

- 0.00002229961276°-^^^^^^^^°^^^ 

Clearly the first exponential term in the right-hand side of the above equation in 

spite of its small coefficient, diverges as t —)• oo. Therefore we can judge the circular 

motion under study is not stable. 

An analytic solution of the set of equation (4.76) (or equivalently (4.77)) are not 

available, so we may examine the equations of perturbation by numerical methods. 

We can study any solution in the plane, with some small values for perturbation 

quantities. Suppose a list of data of position and velocity of a planar motion is 

available. So we may use the data and the set of equations (4.76) and a numerical 

method such as the Runge-Kutta method (or even simpler methods) for computing 

the differential equations. It is more convenient to calculate the data of planar motion 

in a procedure and at the same time compute the perturbation quantities for each 

set of {r,9,r,9). The required programme is given in the appendix (see parts PO 

and P5). We have studied the problem with different choices of the perturbation 

quantities for different planar solutions, and the results are the same as above. Indeed 

if the initial perturbation in the charge isovector being in the ^-direction, or the initial 

perturbation in f and u being in the plane of motion, the motion will stay planar. The 

stable and unstable planar motions (for perturbations in the plane) were discussed 

earlier. 
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4.3 General Equations of Motion in Five 
Dimensions 

In the previous section we described the motion of a coloured test particle in which 

the colour was coupled only to the Yang-Mills field, and the non-relativistic real space 

motion at large distances was stated to be the same as for an electric point particle 

in a Dirac point monopole field. Feher has given a reinvestigation for a classical 

motion of a coloured test particle in the Prasad-Sommerfield monopole field. He has 

considered coupling the particle to both the Yang-Mills and the Higgs fields, and 

proved the existence of bounded orbits at non-relativistic limit at large distances. 

He has used the Wong equations and regarded the Higgs field as the fifth component 

of a Yang-Mills vector field in five dimensions [64, page 46] (see also the conventions 

before eq(2.53)), interpreting the motion in the fifth direction as providing an effective 

mass of the particle. In Feher's article [66] the limit of non-relativistic motion is 

unclear, so the claim to have found bounded orbits at far distances is questionable. 

Feher has supposed an affine parameter on the path of the particle in the five-

dimensional manifold to write down the Wong's equations. Then he has reformulated 

the equations by using the proper time parameter as the projection of the affine 

parameter in the four-dimensional space-time path of the particle, and interpreted 

the mass as the derivative of the proper time by this affine parameter. The formalism 

of Feher is not too clear and not a natural generalisation of the four-dimensional 

Wong's equations. We have searched the literature but we have not found any other 

work in this direction. Therefore we have reformulated the problem again. 

In this section we want to rebuild the equations of motion of a coloured particle 

in a non-abelian Yang-Mills-Higgs field in a five dimensional space-time in a natural 

way. The Lagrangian regarding to the Kinetic part of the fields (with the usual 

definition) is: 

- ^ F ^ ' ^ ' ^ F ; ^ - ^(D''$)'^(D^*)". (4.80) 

This field system can be regarded as a pure Yang-Mills system over a five dimensional 

flat space-time M.^, for which the corresponding connection is invariant with respect 
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to translations of the fifth coordinate. We suggest the fifth coordinate, say here, 
as an internal but dynamical coordinate so that no field variables depend on this 
internal coordinate. So the Lagrangian (4.80) can formally be written in pure Yang-
Mills fields in five-dimensions in a compact form: 

£ / = - ^ F ' ^ ^ ^ i ^ ^ B , (4.81) 

where A,B,... — 0,1, 2, 3 and 5 denote indices in the five dimensional space-time, 

and 

FIJ, = dAA% - dBA\ e r'^A\A% (4.82) 

is the gauge field strength which /'̂ '"^ are the structure constants, and e is the coupling 

constant of the particle with the Yang-Mills-Higgs field. We have defined the Higgs 

field as the fifth component of the Yang-Mills field: 

= Al (4.83) 

F% = d.Al-d.Al + er^^AlAl^iD.^Y, (4.84) 

where = 0,1, 2, 3 shows the usual four-dimensional space-time indices, and a shows 

the isospace indices — that is = 1, 2,3 for SU{2) as the gauge group. Now we enter 

the particle into the field equations by adding the term 

£p = - # ( 7 ^ a ^ - f e 7 ' ^ A ^ x " + m)«', (4.85) 

to the Lagrangian (4.81): 

C = AF^'^^FXB - ^{l^dA + el^A\x" + H * - (4-86) 

In the above equations 1^ are Dirac gamma matrices, with 7^ = 'yO-yi-ya-yS 'pj^g 

equation (4.85) is the five-dimensional analogue of the equation (4.10). Comparing 

these two equations with each other, the extra term 

-^-(7^95 + e 7^$ V ) * = - e # 7 ^ $ V * , 

appears in our generalisation, which indicates the interaction between the particle 

and the Higgs field [67, 68, 69]. The Lagrangian (4.86) in five-dimensions is analogous 
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to the Lagrangian (4.1) in four-dimensions. The equations of motion are essentially 
similar to Wong's equations in four-dimensions. The five dimensional motion of a 
particle in this pure Yang-Mills field is governed by the following Wong equations: 

J2 A J B 

~ + er'"'^A\F = 0, (4.88) 
ar dr 

where is the charge isovector. 

The fifth dimension is a dynamical variable, so the evolution of this internal 

coordinate (x^) is governed by 

dr^ dr 

= - e ^ i p ^ ^ y r . (4.89) 
ur 

For the components of the real four dimensional space-time the equations of motion 

are 

dr'^ dr 
dr^ dr" 
dr dr 
dr" dr^ 

= e ^ F ' ^ ^ r - f e ^ ( D ' ' * ) " r . (4.90) 
ar dr 

In Feher's work an extra term appears in the right-hand side of eq(4.90) which 

comes from the difference between the affine parameter in the five dimensions and 

four dimensions. The Wong equation for non-abelian charge I in five dimensions, 

(4.88), can be expanded as 

dr ar ^ ar 

which in comparison with eq(4.5) in four-dimensions, contains an extra term regard­

ing to the Higgs field. Multiplying both sides of eq(4.91) by we obtain the same 

result as in eq(4.9): 

'- = 0, so Fr = constant, (4.92) 
dr 
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which indicates conservation of the length of charge isovector. I t is in this sense that 
non-abelian charge is conserved. 

The field equations which arise from the Lagrangian (4.86) are: 

D B F ^ ^ = J-^, (4.93) 

where 3^ are current due to the coloured particle(s). In the matrix representation 

AB = A%T'', * = $'^r", FAB = F^ST\ BB = ldB + e[AB, ] (4.94) 

where T°- 's are generators of the gauge group and 1 is the unit matrix of the same 

dimension as the T"' 's. For F ^ B (or equivalently $ and A ^ ) one may simply show'* 

the identities 

D^D^F^^ = 0, (4.95) 

BAFBC + 'DCFAB + T^BFCA = 0. (4.96) 

From eq(4.95) and eq(4.93) the conservation of the coloured (non-abeUan) current 

3^ is given 

D ^ J ^ = 0. (4.97) 

Expanding eq(4.93) the fifth^ and the space-time components of the current are: 

= D B F ^ ^ = D^F^'' = - D ^ D ^ * , (4.98) 

= D B F ^ ^ = D^F"'' + DsF''^ (4.99) 

The last term in the right-hand side of eq(4.99) is simplified by our initial principles: 

DsF''^ = [As , F'^% (a5F''5 = 0) 

then 

J / ' = D^F'"^ + [$ , D''*], (4.100) 

"•See footnote 3 on page 66, but for indices run in five-dimensions to prove eq(4.95). The Bianchi 
identity (4.96) is a direct consequence of the definitions (4.82), FAB = 5>IAB - 9 B A ^ -|-e[Ayi, A B ] , 
and covariant derivative (4.94). 

5When the potential ViA^) = T/($ ' '$°) ^ f ($ '$ ' ' -a^)^ is considered in the Lagrangian (4.86), 
the fifth component of current wil l be: 
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that shows the usual current in the four-dimensional space-time has a contribution 
from the Higgs field. 

For a non-abelian point particle with charge I , the current can be defined in five 

dimensions in the normal way as in Wong's work in four dimensions (see eq(4.6)) 

3^{y) = e I dr I ( r ) S'{y - x( r ) ) , (4.101) 

where X{T) is the location (world-line) of the charged particle in the five-dimensional 

space-time, y is an arbitrary point in the space-time, and 5 is the Dirac delta-function. 

The consistency between the above definition and the equations of motion is valid. 

This was explained in eq(4.8) for four dimensions, but the same argument could 

apply in five dimensions. 

The equations (4.89), (4.90), (4.91) and eqs(4.98) and (4.100) completely describe 

the motion of a coloured particle in the non-abelian Yang-Mills-Higgs field. It is 

possible to find a first integral of eq(4.89). The right-hand side of eq(4.89) can be 

expanded as 

and then eq(4.89) can be written 

dr^ dr dr 

Multiplying both sides of eq(4.91) by one can show 

J Ta J^n 
^ „ a ^ ^ ^ a x _ .^^^ (4103) 

dr dr 

which i f substituted in eq(4.102), we have 

^ d X ^ _^ d ^ ^ , _ ^ ^,dl ^ _^ _^^^ajay (4 ^04^ 

dr^ dr dr dr 

From this equation we obtain a first order differential equation for the internal coor­

dinate 
dr^ 

m — = - e ^ V ' - f / i , (4.105) 
dr 
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where h is the constant of integration, which is indeed a constant of motion^. This 
equation presents a relation for the internal component of the particle's momentum. 

The constant, h, in eq(4.105) depends on the initial orientation of the two isovec-

tors and the initial value of dx^/dr. For example, in the field of the't Hooft-Polyakov 

monopole if the particle starts the motion from the rest, dx^/dr = 0, in the Higgs 

vacuum ($ = a r ) , and if the particle's charge isovector lies in the radial direction, 

the constant will be ea/, where / is the norm of the charge isovector which is al­

ways constant. I f the particle starts the motion while the charge isovector lies in 

a tangential direction, then the constant will be zero. Regardless of the constant, 

the equation (4.105) shows the internal component of momentum is proportional to 

the projection of the Higgs field on the direction of the particle's charge isovector, 

and the proportionality factor is -e / , ie. the particle's charge. One can replace 

dx^/dr from eq(4.105) in eqs(4.90) and (4.91) to obtain a complete set of equations 

independent of the internal coordinate. 

The equations of motion become simpler with some interesting consequences if 

we use a BPS magnetic monopole as the source of the Yang-Mills-Higgs field. In 

the next section we will turn to that. 

4.4 Particle in the Field of a BPS Monopole 

In this section we use the procedure described in the previous section and apply the 

conditions of the BPS monopole for a test particle. With a test particle we mean: 

relative to the monopole, the particle is so small in mass and charge such that the 

resulting perturbation due to the particle can be ignored. Therefore the particle has 

no contribution in the evolution of the fields, and we ignore the current J in the left-

hand side of field equations (4.98) and (4.100). Thus the BPS monopole conditions 

(2.42)-(2.44) satisfy the field equations, and we can use solution (4.16) for the fields. 

^As the fields are independent of the fifth dimension a;̂ , in a Lagrangian approach, as we 
explained in footnote 1 page 65, in five dimensions dL/dx^ vanishes. Therefore dL/dx^ = mx^ + 
g( j ,a ja constant, in agreement with eq(4.105). So the momentum conjugate to x^, h, is a 
constant of motion. 
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4.4.1 Motion of a Test Particle in the BPS monopole 
Field 

The equations (4.16) satisfy the field equations, and in a non-relativistic framework 

the equations of motion (4.90) and (4.105) become: 

"^1^ = e—^;^^ + ep(D,*)' ' /^ (4.106) 

mp = -e^^T + h, (4.107) 

where we have substituted r by t = 3;°, dropped the equation for and defined 

dx^ 
p = - . (4.108) 

The constant h depends on the initial conditions as we explained after its introduction 

in eq(4.105). A force due to the Higgs field has appeared in the equation of motion, 

eq(4.106), beyond the usual Lorentz force. The equation of evolution of the charge 

isovector (4.91) becomes: 

d T°- dr^ 
^ + e e'̂ "̂  ^AlF + e p e"̂"̂  = 0. (4.109) 

(Jib CLL 

By replacing î Ĵ, (D^*)", and from eqs(4.15) and (4.16) into eqs(4.106)-

(4.109), the equations in a convenient form are'' 

mt; = evxET-epB^r 

= ^ (K^ - rK' - l ) [{v x f ) - P f ] + y[{vx I ) - pi] , (4.110) 

mp = ( f - l ) + h , (4.111) 

/ = - — ^ { r x v ) x l - — [ r x l ) , (4.112) 

where the magnetic field is 

= le^^'F^ = -{D^^r - ^ A ' ^ i K ' - rK' - l ) + rK'6'^^ . (4.113) 

As before, the energy and the total angular momentum are constants of mo­

tion. Using the general equation in five dimensions (4.87), multiplying both sides by 

''For conventions on notation see footnote 3 page 8. 
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dx^/dr, one can simply find 

d_ 
d^ 

1 (dx^V -m —— 
2 V dr 

0 

which implies 

E = -mv^ -h -mp^ = constant. (4.114) 

Here, v is velocity of the particle {v = \v\), and p is defined in eq(4.108). The vahdity 

of relation (4.114) can be checked directly by using the equations of motion (4.107), 

(4.110) and (4.112) to show 

mv • V + mpp = 0. 

Another constant is J, the total angular momentum of particle and fields defined in 

eq(4.27) 

J^mirxv)+KI + ^^—-^^^^^r. (4.115) 

The same as before replacing from eqs(4.110) and (4.112) in eq(4.28), after some 

algebra, all terms cancel each other to imply J = 0 and so 

J = constant. (4.116) 

As we are working in the classical framework, one may think about some hidden 

conserved quantity such as the Lenz vector in the Kepler problem (inverse square 

law of force). However none has been found. 

In the first view, we find the equations (4.110) and (4.112) are too complicated to 

be solved. Therefore we consider the asymptotic behaviour of the equations at large 

distances. Because of the dilferent behaviour of K and K' with H at large distances 

we may consider two cases. At large distances K{r) and K'{r) vanish exponentially, 

and 5" = —{x"'/er'^)f. I f r is not too much bigger than 1, H{r) —> aer — 1, and if 

r > > 1, then 1 might be ignored and so H = aer. So at large distances (but not too 

far) eqs(4.110) and (4.111) become 

mv = —[rxv+pr\, (4.117) 

/ a\ 
p = -eaa + h+- ]/m. (4.118) 

V r J 
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where as before we have defined the charge isovector as 

I = af + Pw + lz, (4.119) 

in an orthogonal moving frame along the particle trajectory: 

( d f \ 
f , w = f x v y =-r , z = f x w , (4.120) 

V / 
where hatted letters denote the unit vectors along each axis. Evidently the coeflfi-

cients a, P, and 7 satisfy 

J ^ ^ ^^2 ^ ^2 ^ ^2)1/2 ^ cOUStaut. (4.121) 

From eq(4.112) after a little algebra we find 

« = - ^ 7 , (4.122) 

. ^ I^I^^PJLX,^ , = (4.123) 

[ w r j m \ r j 

f v • w pH ] ^ K\w 

- ' w - \ ^ ^ ^ " -

These equations, by using the asymptotic behaviours of K and H at large distances, 

and using the asymptotic equation (4.117), become 

d; = 0, (4.125) 

a aer — 1 
P = 

7 = -
a aer — 1 

mr^ r 

7 , (4.126) 

P, (4.127) 

where p has the asymptotic value in eq(4.118). From eq(4.125), obviously a = ao is 

a constant. 

For this asymptotic case, using eqs(4.117) and (4.125), the length of the angular 

momentum / = |m( f x v)\, the total angular momentum vector j = I + agf, in 

addition to j • f = ao are constants of motion (in agreement with eq(4.115)). From 

eqs(4.117) and (4.118) one may simply find m{v'^ +p'^)/2 is also a constant of motion 

(see eq(4.114)). I f j = j j | = 0 so / = ao = 0, then particle moves uniformly in a 
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radial direction (or stays at rest). For j ^ 0, the motion will take place on a cone 
with the axis j and the half-angle cos~^(Q!o/j). 

We may compare the forces on the right-hand side of the asymptotic equation 

(4.117) with forces due to certain point objects sitting at the origin. From the 

components of the isovector charge / , only a (that is a constant) has appeared in 

the equation of motion, eq(4.117). Therefore we may assume only ea portion of the 

particle's charge, el, participates in the motion at large distances 

mv = — r ( ? ; x f ) + ^ -r + —-r. (4.128) 
mr^ mr* 

The first term in the right-hand side of eq(4.128) is a force due to a point magnetic 

monopole. Comparing to eq(4.29) the second and the third terms are forces exerted 

from the scalar Higgs field on the coloured test particle. The second term corresponds 

to the force due to an electric point charge on the test particle and the third term 

has the characteristic of a spherical charge distribution of total charge zero. At 

close distances the force from the fields on the particle are so complicated, and at 

far distances the dominant terms are those in the right-hand side of eq(4.128). For 

r > > 1 the dominant forces are the first and second terms in the right-hand side of 

eq(4.128). 

For too large distances, ze. r > > 1, where the Higgs field asymptotically becomes 

$ = af, (4.129) 

we may neglect 1 in the term aer — 1, and rewrite the equations of motion (4.117), 

(4.118) and (4.125)-(4.127) 

oi 
mv = — [ f x v + p f ] , (4.130) 

^ i-eaa + h) 
m 

a = 0, (4.132) 

P = eapj, (4.133) 

7 = -eapp. (4.134) 
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which now p is a constant and /? and 7 have a simpler forms. In this approximation 
(too large distances) /, a and j (so j • f ) are constants of motion (the same as in 
the large distances approximation). Now p is a constant, so from eq(4.130) + 
ap/r = constant (that can be obtained by expanding E = m{v^ + p ^ ) / 2 = constant 
at large distances using eq(4.118) and then dropping the order of and redefining 
p as in eq(4.131)). 

The equations (4.133) and (4.134) provide a precession motion for the charge 

isovector / , around the radial direction of the particle in the isospace 

P{t) = \/P - Q;2 sm{aept + QQ), 7(^) = \/P - cos{aept + QQ), (4.135) 

where is a constant. The charge isovector moves around a circle of radius {P — 

with a constant angular frequency uj = aep. Therefore p measures how fast 

the charge isovector moves around in the isospace, when the particle travels its path 

in the real space. So p which was defined as the velocity in the fifth-spatial direction 

(eq(4.108)) appears as the velocity of the charge isovector in its precession around 

the particle's radial direction (note, ae has the dimension of (length)"^). 

4.4.2 Solutions of the Equations of Motion 

In section (4 .2) we observed planar motions and bounded and we presented numerical 

works in two and three dimensions. There, the only force on the particle was the 

force from the monopole and a force from the Higgs field on the particle was not 

considered. In the first subsection of this section we explained the equations of 

motion containing the Higgs and the particle interaction as well as the monopole 

force, and in this subsection we search for the solutions. 

Planar Motions 

It is interesting to know if the planar motions occur here exactly in the same context 

as before. As we said before, in a planar motion r x v is always normal to the plane of 

motion, so in the equations of motion the coefficient of to = f x v was set to zero and 

we found some consistent solutions. Using the moving frame (4.120) the component 
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of eq(4.110) in it)-direction is 

a(K^ - rK' - 1) , ̂ , K' 
\w\ 

K' 
{a\w\ + 7 ( f • v)) pP. (4.136) 

For a planar motion this coefficient must identically be equal to zero, so 

{K^ - 1) \w\a + r^K'pp + rK'{f-v)j = 0. (4.137) 

Under these considerations the equations of motions (4.110) and (4.122)-(4.124) 

become 

mv = 

a 

P. 

7 

and p is unchanged 

-rK' -I K\ ^ a 
5 poL+ -IT [w p -rpa) 

K' 

H — - fpl]z, 

Kw 

pH 
r 

Kw 

7, 

a (3, 
r 

mp 
H 

— a + h. 
r 

(4.138) 

(4.139) 

(4.140) 

(4.141) 

(4.142) 

Let us first examine the above equations at large distances. At large distances 

where K and K' vanish, eq(4.137) necessitate a = 0. Replacing this result in 

eq(4.138) shows the particle move on a straight line at large distances (see also 

eq(4.117)). Also at large distances p is a constant and (5 and 7 have a precessional 

motion (if p ^ 0), which are compatible with the asymptotic behaviour of equations 

we studied before. 

In fact eq(4.137) is an extra equation and might not be consistent with the 

equations of motion (4.138)-(4.141) in general. But it might be consistent with 

equations of motion under some circumstances. Finding the conditions where this 

extra equation might be consistent with the others does not seem to be easy. Looking 

at eq(4.137), one may choose a = /3 = 7 = 0 which is of course a contradiction (while 

/ is a non-zero vector). One acceptable possibility isQ! = 7 = p = 0 which causes 
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eq(4.137) to vanish identically. From the equation (4.142) the condition p = 0 is 

equivalent to h = 0. So 

a = j = h = 0, (4.143) 

are conditions for planar motion subject to the validity of equations of motion. Re­

placing from eq(4.143) in eqs(4.138)-(4.141) we obtain exactly the planar equations 

of section (4.2). So the planar motion and indeed the bounded orbits are allowed in 

this regime as well. Because the equations of planar motion are the same as before 

we skip their solutions in this section. The stability of planar motion must be studied 

independently. In the previous case we stated the planar motions are not stable, but 

in this case the Higgs field might play a role to keep the particle close to the plane 

and does not let it scatter to infinity. I have not checked this problem. 

A proper question is, under what circumstances the force from the Higgs field 

on the particle fails, ie. the generalised equations of motion we found in this section 

shrink to the equations of motion we found for the particle in section (4.2) (which 

were feeling only a force from the monopole and not from the Higgs field). In fact it 

is not possible to ignore the Higgs and the particle interaction in general. It is clear 

that equations (4.17) and (4.18) are obtained from the equations of motion (4.110) 

and (4.112) if p set to zero which exerts an additional constraint. Setting p = 0 

occasions a = hr/H, then from eq(4.22) we find 7 and from eq(4.24) p. So we may 

replace a, /9 and 7 in eqs(4.23) and (4.25) to find two parallel equations which are 

too complicated (and I think they are not consistent in general). A possible case 

(may be the only one) is the mentioned planar motion, which means in the specified 

planar motions the Higgs interaction has no contribution. 

Radial Motions 

A radial motion is possible if initially the charge isovector and the particle velocity 

are radial. In this case from eq(4.112) the charge isovector remains constant, a = I 

and /3 = 7 = 0 and from eq(4.110) 

mr = — 
J.2. 

[K^-1)P, (4.144) 
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where p = —IH/r + h. In the previous case (the monopole interaction only), the 

right-hand side of eq(4.144) was vanishing {p = 0) and the particle had a uniform 

radial motion, and could pass through the origin. The equation (4.144) shows a 

different situation. 

Assume the particle is moving along a radial direction say z-axis. From eq(4.114) 

we may write 

E 1 .2 
-mr 

where 

V{r) -mp m 

V{r), 

'~IH{T) 
h 

(4.145) 

(4.146) 
2 • 2 

is the one-dimensional potential, and r (is the variable along the 2;-axis and) takes 

both negative and positive values. The time-derivative of eq(4.145) leads to eq(4.144). 

Regardless of mass, a, e and / , the potential V{r) depends on the constant h. The 

figure (4.11) shows the different shapes of V{r) with respect to the different values 

of h. (To see these results one may equate V^'(r) to zero and find the roots, that are 

h > 1 

0<h<l h = 0 

Figure 4.11: One dimensional potential V{r) (vertical axis) versus r (horizontal axis). 
For a given h, the mirror image of V{r) with respect to the vertical axis gives ^ ( r ) 
for —h. 

indeed the roots of p = 0, and follow the instructions after eq(4.57).) For a negative 
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value of h, V{r) is the mirror image of the the potential for —h, with respect to the 

vertical axis. 

From Fig(4.11), i f \h\ > 1, the particle may be repelled back (before reaching 

the origin, just at the origin or after passing the origin), or just passes through the 

origin depending on the energy E. For 0 < \h\ < 1, in addition to the mentioned 

possibilities for \h\ < 1, bounded motions are also possible (in the h = 0 case, the 

particle just passes or is bound). 

E El 

\ E2 

E3 

Figure 4.12: Different possibilities of motion for 0 < / i < 1. 

Referring to Fig(4.12), For E > Ei the particle passes through the origin and 

travels to infinity. For Ei < E < E3, such as E2, the particle is repelled back 

(even before reaching the origin or after passing through the origin) in its trajectory 

and travels to infinity. For 0 < E < E3 the orbit is bounded and the particle 

oscillates along the 2;-axis. For h = 0 the oscillation is symmetric with respect to 

the origin (the origin is the equilibrium point). But in the other cases the origin is 

not the equilibrium point (center of the oscillatory motion) and the amplitude of the 

motion on the two sides of the origin are not equal (even not equal either side of 

the equilibrium point). And, on top of all, for the energies less than E4, the particle 

oscillates only on one side of the origin. At the equilibrium point p = 0, the position 

of equilibrium (with respect to the origin) depends on the constant h. For larger \h\, 
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the location of the equilibrium point is more distant. 

The role of h in the radial motion is similar to the role of j in the planar motion. 

As the orientation of the charge isovector and the Higgs field are fixed in the radial 

motion, the constant h depends only on the initial starting point, ro, and the initial 

value of p, po. The initial value of p, po, is a free parameter in the radial motion 

and i t must be determined by the overall theory of motion. From eq(4.145) one may 

write an integral equation for t and r, similar to eq(4.60). 

t = ± r . (4.147) 
Jro ^2E/m - [-IH{r)/r + h]^ 

Three-Dimensional Bounded Orbits 

We studied the planar and radial motions in the last pages. In both cases, bounded 

orbits were allowed. Suppose a particle is moving in a bounded orbit in a plane, 

say xy-plane, so that the charge isovector is normal to the plane of motion along 

the z-axis. Regardless of the motion in the plane, suppose the particle has also a 

motion in the 2;-direction such that the particle can oscillate in the ^-direction. This 

is a motivation to believe, if we mix the initial condition of the both motions, we 

may get a bounded motion in three dimensions. Of course, we do not say that the 

result motion is superposition of the two mentioned motions. I t is clear that the 

equations governing the motion {ie. eqs(4.110) and (4.112)) are not linear, therefore 

the superposition of the solutions is not necessarily a solution. The above motivation 

is correct only for the starting point, and for the other instants we must follow the 

equations of motion. Let us examine an example by numerical solution. Under 

these circumstances, the planar motion condition requires h — 0. For example, with 

h = 0, if the particle is launched into the fields with the initial values [fo,'i;o,/o] = 

[1, 0, 0], [0.1, 0, 0], [0, 0,1]], the result is a bounded planar motion in the xy-plane 

(see plot bottom-left in Fig(4.7)). If the particle is launched in the field with the 

initial values [[0, 0, 0], [0, 0, 0.1], [0, 0,1]], the result is a symmetric bounded oscillation 

along the z-axis around the origin. So we expect, if the particle is launched with the 

initial values [[1, 0, 0], [0.1, 0, 0.1], [0, 0,1]], the result being a bounded orbit in three 
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dimensions. By chance it is right. Using the three dimensional equations of motion 

(4.110) and (4.112), a numerical analysis as we have explained in the appendix (see 

parts PO and P3) confirm the claim as it is plotted in Fig(4.13). We have tested 

Figure 4.13: Bounded orbit in three dimensions. 

the motion for a remarkable amount of time (10000 units of time), and numerically 

result is obtained. 

One result which we may get quickly from the above discussion is the stability 

of the planar motions. In fact it is sensible to understand the stability of the planar 

motions in the new scenario (compare with the results of section (4.2)). When 

small perturbations normal to the plane of motion disturb the motion, there is a 

vertical force to keep the motion oscillating close to the plane so that the pattern 

of planar orbit stays unchanged. So involving the Higgs field interaction makes a 

significant difference. In section (4.2) the Higgs field interaction was ignored, so 

the planar motions were not stable (in the sense of vertical perturbations). (Note in 

Fig(4.13) the changes in the planar motion is not small, but still the projection of the 

three-dimensional orbit in the xy-p\a,ne follows the same pattern as the pure planar 

motion has (see plot bottom-left in Fig(4.7)).) We have checked the stability of the 

planar motions by considering small perturbations in any of the motion's parameters. 
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numerically by using the general equations of motion (see the appendix, part PO and 

P3 for programmes.) 

In general the closed orbits are unknown in the non-planar motions. For example 

if we start the motion from the initial values [[1, 0, 0], [0, 0.2663673990, 0], [0, 0,1] 

and h = 0, we obtain a closed circular motion, and if we start the motion from 

[0, 0, 0], [0, 0, 0.1], [0, 0,1]] we obtain a symmetric radial oscillation. The motion with 

initial values [[1, 0, 0], [0, 0.2663673990, 0.1], [0, 0,1]] forms a bounded orbit such that 

the intersection of the orbits with xy-axis is bounded between two circles, and the z-

direction has an oscillatory motion along the z-axis with the domain changes between 

a minimum and a maximum periodically (see Fig(4.14). If the equations of motions 

Z 0 

Figure 4.14: The left plot shows the variation of z-direction versus time, the middle 
one shows the intersection of the motion in the xy-plane, and the right plot shows 
the three-dimensional orbit. 

were linear we might say, the superposition of two closed orbits are closed if the ratio 

of periods of two motions being a rational number. But in our case the equations of 

motion are not linear, so we are not able to use this theorem. We might play with 

the parameters to gain a closed orbit in three dimensions. Studying the bounded 

and closed orbits needs an analytic description of the equations of motion, which is 

not available here. 

With / i = 0 we may choose any combination of the initial values (not only 

a combination of the planar and radial motions initial values) and test the equa­

tions of motion by numerical computations (see the appendix for programmes). The 

bounded orbits are observed for difl'erent kinds of combinations of the initial val-
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ues. Of course for many initial values we cannot expect a bounded orbit. For 

non-zero h's the combination of initial values is too sensitive and for most of them 

the orbit is unbounded. But still for some initial values bounded orbits are ob­

served. An example is [[1, 0, 0], [0.1, 0, 0], [1, 0,1]] with h = 0.5. Now the initial values 

[1, 0, 0], [0.1, 0, 0], [0, 0,1]] with h = 0.5 is neither a planar motion nor a non-planar 

bounded motion, but when i t mixed with an oscillatory motion in the i-direction, 

the resulting three-dimensional motion will be bounded. 

9.9999 

9.9998-^ 

9.9998 

X 10 

-1 -10 

Figure 4.15: Three-dimensional motion at large distance. 

At far distances particle moves on a surface of a cone (see page 104). The figure 

(4.15) shows the orbit for an initial values [[10,10,0], [0, - 0 . 1 , 0], [0, 0,1]] with h=l 

in 200 units of time. The variations on x and z are small and of the order lO""* (the 

unusual ticks in the vertical axis is badly managed by 'MATLAB', and means the 

variations in this axis is of order 10"''). The particle which has started the motion 

with an initial velocity in the negative y-direction, moves along the y-direction almost 

uniformly. 

4.4.3 The Force Law 

In this subsection we consider further the force on a non-abelian particle in a BPS 

monopole field configuration (B^ = ± D i $ , AQ = 0, V{^) = 0) which we studied 

in the previous subsection. We shall show the force has the form of a 'generalised' 
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Lorentz force. In the next section we explore a generalised force law for the complete 

Yang-Mills-Higgs fields. 

Looking at the first equality in eq(4.110), if we suppose eP as electric charge 

of the particle (in non-abehan sense), then eP v x is a magnetic force due to 

a magnetic field B°- on the particle, and eP pB°- may be interpreted as an electric 

force due to an electric field p on the particle (regardless of the notation B" that 

is used for magnetic field). 

We may explain the above concept of generalisation and make it clearer. In the 

usual electrodynamics, the Coulomb law states that the force of an electric field E 

on an electric charged particle with the charge q is qE, and the Lorentz law states 

that the force of a magnetic field B on an electric charged particle with the charge q 

is qv X B, where v is the velocity of particle. Now we change the mode to the non-

abelian fields and particles. Assume a field in the space and a non-abelian test 

particle with charge isovector in this field. The particle feels only the component 

of the magnetic field that is projected along its charge isovector. Let us choose a 

unit vector h along the charge isovector (remember in the isospace) 

Y = qh, (4.148) 

where q = \Y\ = constant is the charge of the particle. Now the effective magnetic 

field the particle feels is 

n^ = B^•h, (4.149) 

or equivalently V. = B'^h'^. Now we can write down the equation of motion of the 

particle, eq(4.110), in a familiar form (for positive magnetic charge): 

mil=qvxn+pqn, (4.150) 

where here q = el. 

The equation (4.150) ia a generalisation of the Lorentz force. Comparing with 

the usual electrodynamics two major differences show themselves in eq(4.150). The 

first difference is: In eq(4.150), rather than a term analogous to the usual Lorentz 

force (first term in the right-hand side), there is another term that is similar to the 
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Coulomb force in the usual electrodynamics. We should remember that this new 
term is originally different from the Coulomb force. The Coulomb force is regarded 
as the zeroth component of the Yang-Mills fields, which in our discussions has been 
ignored (remember we are working in stationary fields with AQ = 0), but here the 
origin of the Coulomb-like force is the Higgs field. The coefficient p in the front 
of the Coulomb-like force contains some information about the interaction of the 
Higgs field and the charge isovector. We will show how this generalised equation 
reduces to the normal Lorentz force when the field and particle can be regarded as 
non-abelian field and particle. The second diff'erence is: In the usual Lorentz force, 
the force vanishes if and only if the non-vanishing magnetic field and the particle's 
velocity become parallel. But in the non-abelian case it might happen that neither 
of the particle's velocity or the non-abelian magnetic field vanish, nor the particle's 
velocity and the magnetic field (in any sense, either in the non-abelian form or 
in the Higgs gauge-invariant form Bi (see eqs(2.19) and (2.20))) are parallel, but the 
force vanishes. This happens when the projection of the magnetic field along the 
charge isovector vanishes ie. TL = 0. 

We can define a usual (say abelian) particle in general as a non-abelian particle 

whose charge isovector is fixed in the isospace ie. 

= q6''\ (4.151) 

Now when the charge isovector Y takes a radial direction in the isospace, we can 

transform its direction to the 3-direction by a proper gauge transformation^. This 

happens for both the charge isovector and the Higgs field simultaneously when both 

the isovectors take radial direction in a part of the space. A good example is the 

regions too far from the core of the fields, where we found the equations of motion 

asymptotically. 

^ At each point (r, 6,(j)) in the real space, the direction f in the isospace rotates to the 3-direction 
with the gauge transformation 

U = cos - +iz- asin-, z'= 

where cr" are Pauli sigma matrices. 
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Suppose Y = qf {q = e/) and $ = af in the asymptotic case. So charge isovector 
has no components in the directions normal to the radial direction, and therefore 

= 7 = 0. In this case our definitions of B and V. overlap, and the equation of 
motion (4.150) transforms to eq(4.130) (for self-dual case): 

mv = ^[{v X f ) + p f ] , p — {-eal + h)/m. (4.152) 

Both of the isovectors can be rotated by a gauge transformation to lie in the 3-

direction by a gauge transformation, where we expect to have the usual abelian 

electrodynamics laws. By the rotation, the particle will be the usual particle that 

defined in eq(4.151), and the electromagnetic field becomes the usual one (see expla­

nations after formula (2.21) in page 11). In addition, in the usual space that we are 

talking about, there should be no trace of the free parameter p which is related to 

the extra dimension. So we may have p = 0, and set the constant h 

h = eal. (4.153) 

Now eq(4.152) is reverted to the proper usual Lorentz force. The differences between 

the generalised force and the usual Lorentz force we enumerated before automatically 

disappear, because the factor p vanishes and the extra term in the generalised force 

is gone. Also the Higgs field and the charge isovector have become parallel, therefore 

the second difference we mentioned can no more happen. 

In general we need 13 initial values (x^(io), i'^ito) and P{to)) to determine 

solutions of the equations of motion. In the non-relativistic framework these are 11 

values which 9 of them are normal ones (position, velocity and charge isovector initial 

values in the three-spatial dimension) that is indeed needed to solve the equations 

(4.106) and (4.109). The other two initial values are connected to the internal fifth 

dimension x^. Because neither the fields nor the equations of motions depend on 

the internal direction, therefore the initial starting point in the x^-direction is not 

important. But dx^/dt (the time-variation of internal direction) which was called p 

is very important. The constant h appeared as a constant of integration and includes 

the information about the initial orientation of charge isovector and the Higgs field, 
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and the initial value of ie. po. To obtain the usual electrodynamics law from the 
generalised ones, we need the condition (4.153) to be valid. 

4.5 General Force Law for a Coloured Particle 
in the Yang-Mills-Higgs Fields 

Now we can consider a general force law by considering the general Yang-Mills-

Higgs fields in four dimensions. In fact the general equation in a Lorentz invariant 

form is eq(4.90) when we replace dx^/dr = p from eq(4.105). This general equation 

has a companion that describes the evolution of (say) the generalised charge (charge 

isovector). The generalised force of a Yang-Mills-Higgs field on a coloured particle 

(in a non-relativistic framework) is off"ered as: 

mv = qE + qvxB+pqG, (4.154) 

where 

q = \Y\, (4.155) 

p = {-^ - Y + h)/m, (4.156) 

r = -F'^^'Y'' = -E' -Y, (4.157) 
q q 

Zq q 

= - {Ti'^Y = F , (4.159) 

which Y is the particle's charge isovector, v is the particle's velocity, F°- are the 

Yang-Mills field tensors, is the Higgs scalar field and / i is a free parameter. We 

have defined 

Gi = (4.160) 

where is the covariant derivative. The indices i,j = 1,2,3 and a = 1,...,N, 

where A'' is the dimension of the gauge group. Therefore the vectors like Y and 

E'^ are vectors in A/'-dimensional isospace, while vectors like £ are vectors in three-

dimensional real space. The fields £ and B are the effective electric and magnetic 
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fields that particle feels from the Yang-Mills fields, and Q is another effective field 
that particle feels from the scalar Higgs field. In the 't Hooft-Polyakov monopole 
field configuration, Q vanishes in the Higgs vacuum (outside of the monopole radius), 
while in the BPS monopole Q does not vanish in the finite distances. 

To find out a similarity between £ and Q we suppose a time-invariant Yang-

Mills-Higgs field. With this condition we may write 

= F o j = 9oAj - 5iAo + [Ao, A^̂  

= -(9iAo - [Ai , Aô  

= - D , A o . ( 4 .161 ) 

In the non-relativistic framework, we may decide to call AQ as a scalar field 

E , = - D , * , (4.162) 

in analogy with E — — V(/> in the usual electrostatics. The equations (4.160) and 

(4 .162) show the similar definitions for two components of the Yang-Mills-Higgs 

field. But the role of these two fields are not the same in the motion of a particle 

when exposed to the fields. This is because the role of two fields in spite of similarity 

in the equations, are not the same in origin. The Yang-Mills field is assumed to 

be generated by matter while the Higgs field that is a scalar field is attributed to 

the vacuum. The connection between the particle and the scalar Yang-Mills field is 

the particle's charge q. But in the case of the Higgs field, this connection is pq. In 

absence of AQ, and for the case of w = 0, there still might be a force from the Higgs 

field on the particle ie. pqG. For the ' t Hooft-Polyakov monopole at large distances 

this force is negligible. But, for the BPS monopole at large distances, this force is 

zero only if the Higgs field and the charge isovectors are parallel. 



Chapter 5 

Summary 

JJLXJ j j j J J jl ^ J^jji JAA 

The centre of every circle itself becomes a circle -

see as it changes, now centre, now circle; 

Were you to remove a single atom from its place, 

the whole cosmos would collapse and fall into rum. 

"Shabestari" 



In chapter 2 we explained two topological objects of the Yang-Mills fields, 

monopoles and instantons. Each of these solutions carries a conserved current which 

is not obtainable from symmetries of the fields Lagrangian. The charge associated 

to these solutions are classically quantised. Monopoles are solutions of the four-

dimensional Minkowskian Yang^Mills fields. The importance of the Higgs field in 

monopole solutions is essential. Instantons are solutions of the four-dimensional Eu­

clidean Yang-Mills fields. In monopole solutions, the finiteness of the fields' energy 

and in the instantons, finiteness of the action are desired. Both solutions are con­

sequences of the boundary conditions and satisfy a lower bound. The lower bound 

for the monopole case gives the Bogomol'nyi equations from which we get the BPS 

monopole, and in the instanton case gives the (anti)self-dual equations. Monopoles 

and instantons have been studied by many authors and generalised to arbitrary Lie 

groups. 

String theory is a well-known non-abelian theory. The heterotic superstring theory 

has a very large symmetry group {Eg x Es or 50(32)) and is originally formulated in a 

ten-dimensional space-time. We studied the low-energy heterotic superstring theory 

in ten-dimensions that is compactified in a six-torus, and become a four-dimensional 

theory. 

A supersymmetric solution to the ten-dimensional theory is known. The five-

brane solution is a supersymmetric solution of the fields. In this solution an (anti)self-

dual equation plays a central role, from which the five-brane solution is known as 

instanton solution. We used the known SU{2) instanton solution in the five-brane 

ansatz and solved the equations for the dilaton, and introduced two charges associ-
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ated to the five-branes, the instanton number and the axion charge — that former is 
associated to the Yang-Mills fields and later to the anti-symmetric tensor field, H. 

The heterotic superstring gauge group, x Es, is a semi-simple exceptional 

group. A general instanton solution for this large group is not provided. The well-

known A D H M construction gives a rule to find the general instanton solution for 

classical groups. Although we are not able to provide a general instanton solution 

to Eg X Eg, we are able to study the instanton solution in the classical subgroups 

of Eg X Eg. The solution we mentioned in the last paragraph was in fact an SU{2) 

instanton solution. There we supposed the instanton to lie in one of the SU{2) 

subgroups of Eg x Eg, ie. in the minimal one. 

Any larger group may contain some non-conjugate versions of a subgroup. The 

instanton solution of a group when is embedded in Eg x Eg, may give different 

results. This means i f we calculate the instanton number for different embedding of 

an instanton solution of a subgroup, we may receive different answers. For this reason 

we studied the embedding of subgroups, using the Dynkin index of embedding. We 

are able (at least theoretically) to use A D H M construction to formulate a general 

solution for the minimal embedding of each classical subgroup of Eg x Eg and then, 

using the index of embedding, generalise the solution for any arbitrary embedding 

of the subgroup. 

Any subgroup of Eg x Eg has an embedding of index 1, which we call i t minimal 

embedding. Based on our discussions in chapter 3, for any minimal subgroup G of 

£^8 X Eg we may choose a collection of elements of the basis of Eg x Eg and form a 

basis for G. So the normalisation condition for the basis of Eg x Eg and a minimal 

embedding are the same — which gives the index 1. For any subgroup we may 

define commutation relations of these chosen bases. Based on these commutation 

relations we may pick up some arbitrary collections of the elements of Eg x Eg to 

make an orthonormal basis for any arbitrary embedding of subgroup G. The ratio of 

the normalisation constants of any arbitrary embedding and the minimal embedding 

is the desired index of that embedding. A general solution for the dilaton were 

presented. 



S u m m a r y 122 

Monopoles are solutions to the ten-dimensional low-energy string theory com-
pactified on a six-dimensional torus. The same as instantons we presented a general 
solution of the dilaton for a BPS monopole for any embedding of any arbitrary 
subgroup of Es X Es-

The i7-monopole that is a consequence of compactification of the ten-dimensional 

theory to the four dimensions, is a solution wi th the monopole behaviour at infinity. 

Using a method f rom the general relativity, instead of calculating any individual 

component of the the stress-energy tensor, we calculated the total energy (mass) 

of the i7-monopole, and found a relation between the mass and the charge of H-

monopole (in analogy to the BPS monopole). 

We did not go further to use A D H M N construction to explain the generalised 

monopole solution of any arbitrary subgroup of E^x Es- We explained the spherical 

symmetric BPS monopole in any SU{N) subgroup of Es x Eg. We examined an 

SU{3) solution and calculated the iif-monopole and observed the BPS-charge and 

i7-charge are always in opposite signs. 

The next topic dealt w i th was that of a coloured particle in a monopole field. After 

explaining the Wong equations of motion, we explained motion of a test particle in 

a monopole field. We proposed the force due to a monopole on a charged particle, 

and enumerated the behaviour of the motion at large distances. The speed, v, and 

the to ta l angular momentum of the field and particle, J, were global constants of 

motion. A t large distances particle moves on a cone and i f i t moves toward the origin, 

i t w i l l t u rn backward on the cone surface at a minimum distance, i f particle does 

not come too close to the origin to violate the asymptotic behaviour. Clearly, the 

particle leaves the surface of the cone i f i t enters the areas close to the centre of the 

monopole. 

I n contrast to the point monopoles which support only the conical orbits, the 

planar orbits are allowed for the BPS monopole. Simply, when the particle starts its 

mot ion in a plane normal to the charge isovector, i t w i l l stay in the plane forever. 

We obtained the equations of motion of the particle in the plane and studied the 
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orbits in some details. We described the orbits of a particle in the planar motion 
by regarding the standard one-dimensional potential model. So we may explain the 
orbi t of a particle i f we know the particle's energy and the total angular momentum 
j. The bounded orbits as well as unbounded orbits are allowed. We have shown 
for energies larger than a specified energy, the particle does not bind. Also the 
bounded orbits are allowed only i f 0 < j < jc- Because of presence of a hyperbolic 
term in the equations, an analytic solution for the equations is not provided, instead 
some numerical solutions of the equations presented. Various orbits (two and three 
dimensional) are illustrated in the figures of section (4.2). 

As an interesting result, the particle follows a direction like the right-hand laws 

in the usual electrodynamics. When the particle is launched in the field, in a plane 

normal to the particle's charge isovector (say plane of the paper), i t moves on a 

curve counterclockwise i f the charge isovector is normal to the plane of paper and 

upward. This is the force law in the planar motions. A result of this force law is 

the loops which do not circulate the origin. A circular motion is a good example 

of an attractive force such as gravity. When particle moves away from the origin 

the attractive forces appear, and the orbits show this point clearly. But when the 

particle moves toward the origin, a repulsive (anti-gravity) force appears and the 

particle moves away f rom the origin and perhaps create a loop outside the origin. 

The speed stays constant during the motion. 

The stabili ty of the planar motion in three-dimensional context was another 

subject we studied. Although a bounded planar motion might be stable in the plane 

when a small perturbation disturb the motion in the plane, but i f such a perturbation 

disturb the motion normal to the plane, is the planar motion stays planar or quasi-

planar? We showed in fact the planar orbits can not be stable in this manner. So i f 

even a small perturbation occur normal to the planar motion, the perturbation w i l l 

grow and finally the particle scatters to infinity. 

When a particle is launched in a monopole field, the Higgs field is already has 

taken into account. But we did not consider a force f rom the Higgs field on the 

particle individually. Actually, existence of a monopole is due to both the Yang-
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Mil ls and the Higgs fields. So in fact the Higgs field has had its contribution in 
the force on the particle via the monopole. The main problem is, i f the Higgs field 
itself can interact directly wi th the particle. But how we can enter the force due to 
the Higgs field on the particle. We mentioned a work done by another author. His 
procedure was not a natural generalisation of the Yang-Mills forces in a particle, and 
contains a term associated to the mass of particle which is not constant even in a non-
relativistic classical l imi t . The mass depends on the other dynamical components of 
motion. I t is quite complicated to have a clear interpretation of the motion at large 
distances. 

To solve this problem, we started by generalising the Wong equations in a five-

dimensional space-time. Our motivation was the frequently repeated point: simula­

t ion of the Higgs field as the fifth component of the Yang-Mills field, to make a pure 

five-dimensional Yang-Mil ls theory. We did not use the four-dimensional classical 

Wong equations to write the five-dimensional ones, but we instead used the gen­

eralised five-dimensional quantum model, based on the generalised five-dimensional 

Dirac equation (to be studied in direction of the Klein-Gordon theories), to extract 

out the classical equations of motion. The fifth dimension is suggested to be a dy­

namical variable, while its contribution to the fields are not considered. Therefore 

some extra terms associated to the dx^/dt were added to the equations of motion. 

The equations and variables are independent of itself. 

We observed, dx^/dt is in fact an internal variable, ie. this variable is only a 

funct ion of isovectors, the Higgs field and charge isovectors. We had called the extra 

dimension, x^, an internal dimension, which is now sensible in the same way as 

the space of symmetry (isospace) is called internal space. These definitions have 

different meanings. But at this stage we see a close relations between these concepts. 

The time-variation of the internal direction, x^, is related to the field and particle 

internal (isospace) vectors. I f we replace dx^/dt in the equations of motion, i t gives 

a completely four-dimensional equations, which contain terms corresponding to the 

Higgs interaction w i t h the particle. The only remnant of the fifth-dimension in the 

equations is the free parameter h, that depends on the in i t ia l value of dx^/dt. 
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The asymptotic behaviour of the equations of motion of a test particle in the 
BPS monopole field shows two extra terms corresponding to an electric point charge 
and an electric charge distribution, due to the Higgs field interaction, in addition to 
a point monopole interaction. A t very large distances, speed of the particle in the 
fifth direction (internal direction), is related to the precession frequency of the charge 
isovector in the isospace. This result confirms the close connection of the internal 
direction and the isospace (internal space) we stated before. 

As before a particle was launched into the fields and the orbits were studied. Pla­

nar motions can happen the same as before. The radial motion is in a big difference 

f rom the previous case. In the monopole force only, the particle may travel along a 

radius uniformly, but in this case (monopole + Higgs interactions) the particle no 

more travels uniformly and more interesting that i t can oscillate along an axis even 

in one side on the origin. We have explained this problem wi th some details. Also 

in contrast to the previous case the planar motions are stable in this regime, and 

the bounded spatial orbits which are not observed in the previous case, have been 

observed here. Some orbits are illustrated in section (4.4). 

As before, i f the particle is far enough f rom the origin of the fields, the fields and 

the particle behave as the usual non-abelian fields and particle. A t this stage we 

should set ^ = 0 to resolve the trace of the extra ( f i f th) dimension in the theory (or 

vice versa). So, asymptotically wi th h = 0 and radial charge isovector the charge and 

the Higgs field transfer to the usual particle and electromagnetic field by a suitable 

gauge transformation. 

Exploring the force f rom the Yang-Mills-Higgs field on a coloured particle was 

our last subject. When a coloured particle is launched in the Yang-Mills-Higgs field, 

the particle feels the fields by its charge isovector as its sense of smell. So only the 

projection of the fields in the direction of the charge isovector comes into account. 

For example, i f the direction of the charge isovector lies in the direction normal to 

the force field due to the Higgs field, the particle feels no force f rom the Higgs field. 

Therefore we may measure the components of the fields in direction of the charge 

isovector and write down the equations of motion independent of the internal space 
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(isospace). 

The scalar Higgs field plays a role like a scalar field due to an electric charge. A 

difference is; the coupling constant of the particle and the electric scalar field is the 

particle's charge (that is a constant), while in the Higgs field the coupling constant 

is a funct ion of the Higgs field itself (this reminds us of the Brans-Dicke theory in 

the general relativity [49, page 157]). This is a generalised form of the Lorentz force, 

for a Yang-Mills-Higgs field in the classical l imi t . 



Appendix 

This appendix includes the programmes in the " M A T L A B " programming package 

(version 4.2). For solving the differential equations we have used the Runge-Kutta 

Method (of four th order), which is found in literature (eg. [70, page 1040]). For a set 

of three second-order differential equations we may define six first-order differential 

equations. So for three-dimensional motions such as equations of motion (4.17) and 

(4.18) for the Yang-Mil ls case (monopole only), and (4.110) and (4.112) for the Yang-

Mills-Higgs case (monopole + Higgs field contribution), nine first-order differential 

equations are considered. For the set of two equations (4.47) in the planar motion 

we need only four first-order differential equations. 

PO 

The main programme "comput .m" contains the ini t ia l values and the loop procedure, 

and must be run in the " M A T L A B Command Window" 

c l e a r , echo o f f , h o l d o f f , fo rmat compact, fo rmat long 
7. 
dim = 9; 
y i = [0 1 10 0 0 - . 2 1 0 0 ] ; 
t i = 0; 
t f = 200; 
nsteps = 200000; 
X = ze ros (ns t eps+1 ,d im) ; 
x ( l , : ) = y i ; 
h = ( t f - t i ) / n s t e p s ; 
t = t i + h * [ 0 : n s t e p s ] ' ; 
I 

f o r i = l : n s t e p s 
y = x ( i , : ) ; k l 
y = x ( i , : ) + 0 . 5 * h * k l ; k2 

°/o number of equat ions . * 
% i n i t i a l va lues . ** 
°/o i n i t i a l t ime va lue . 
% f i n a l t ime va lue . 
% number of s teps . 
y, X i s an a r ray w i t h "nsteps+1" rows 
% cind "dim" columns f o r s t o r i n g da ta . 
% s t eps ' s i z e . 

d i f f e q ( y ) ; 
d i f f e q ( y ) ; 
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y = x ( i , : ) + 0.5*h*k2; k3 = d i f f e q ( y ) ; 
y = x ( i , : ) + h*k3; k4 = d i f f e q ( y ) ; 

x ( i + l , : ) = x ( i , : ) + h * ( k l + 2*(k2 + k3) + k 4 ) / 6 ; 
end 
p l o t 3 ( x ( : , l ) , x ( : , 2 ) , x ( : , 3 ) ) ; 7, *** 

The above procedure is wri t ten for the general three-dimensional equations. In the 

above programme y i is used for in i t ia l values [.TQ, yo, ZQ, V^O, Vyo, V^Q, I^O, lyo, ho]: and 

dim shows the number of first-order equations. The function d i f f eq which is called 

in the main programme, contains the differential equations of motion. 

P I 

For the Yang-Mil ls case we use eqs(4.17) and (4.18), so d i f f e q . m is: 

f u n c t i o n C v e c ] = d i f f e q ( y ) 
y„ ra = e = a = 1 
7. 

R = y ( l : 3 ) ; 
V - y ( 4 : 6 ) ; 
I = y ( 7 : 9 ) ; 
7. 

r = norm(R); 
K = r / s i n h ( r ) ; 
KK - ( s i n h ( r ) - r * c o s h ( r ) ) / ( s i n h ( r ) ) "2 ; 7. = K' 
7. 

VV = (K~2 - r*KK - 1 ) * c r o s s ( V , R ) * d o t ( R , I ) / r " 4 + K K * c r o s s ( V , I ) / r ; 
I I = (1 - K ) * c r o s s ( c r o s s ( R , V ) , I ) / r " 2 ; 
vec = C V , V V , I I ] ; 

P2 

For the planar motion there are only few changes to the programme comput.m (see 

PO). I n the line *, the number of the first-order equations is dim = 4; . In the line 

**, the in i t i a l values y i are four values for [ro, ̂ o, '̂ o, ^o]- Instead of plot t ing in a three-

dimensional Cartesian frame, p l o t ( x ( : , 1 ) . * c o s ( x ( : , 2 ) ) , x ( : , 1 ) . * s i n ( x ( : , 2 ) ) ) ; 

is replaced in the line 

For the planar motion eq(4.47)) is used and the function d i f f e q . m is: 
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f u n c t i o n C v e c ] = d i f f e q ( y ) 
7o m = e = a = 1, be ta = 1 
I 

r = y d ) ; 
KK = ( s i n h ( r ) - r * c o s h ( r ) ) / ( s i n h ( r ) ) " 2 ; % = K ' , (K = r / s i n h ( r ) ) 
I 

r r = y(4)*KK + y ( l ) * y ( 4 ) - ^ 2 ; 
t t = ( - y ( 3 ) * K K / y ( l ) - 2*y(3 )*y(4 ) ) / y ( l ) ; 
vec = [ y ( 3 ) , y ( 4 ) , r r , t t ] ; 

P3 

For the Yang-Mills-Higgs case eqs(4.110) and (4.112) are used and the function 

d i f f e q . m is: 

f u n c t i o n [ v e c ] = d i f f e q ( y ) 
% m = e = a = 1, 
h = 0 . 5 ; % we should s p e c i f y a number, h = I _ r ( t O ) H ( r O ) / r O + pO. 

°/o h = 0 i s used f o r p lana r mot ions . 
1 
R = y ( l : 3 ) 
V = y ( 4 : 6 ) 
I = y ( 7 : 9 ) 
1 
r = norm(R); 
K = r / s i n h ( r ) ; 
KK = ( s i n h ( r ) - r * c o s h ( r ) ) / ( s i n h ( r ) ) "2 ; 7„ = K' 
H = r * c o t h ( r ) - 1; 
p = - H * d o t ( R , I ) / r " 2 + h ; 
7. 

VV = (K~2 - r*KK - 1 ) * d o t ( R , I ) * ( c r o s s ( V , R ) - p * R ) / r - 4 + . . 
K K * ( c r o s s ( V , I ) - p * I ) / r ; 

I I = (1 - K ) * c r o s s ( c r o s s ( R , V ) , I ) / r - 2 - p * H * c r o s s ( R , I ) / r - 2 ; 
vec = [ V , V V , I I ] ; 

P4 

For a better understanding and checking of the equations of motion, these plots are 

useful: p l o t ( t , x ( : , i ) ) for i f rom 1 to dim, p l o t ( x ( : , i ) , x ( : , j ) ) and 

p l o t 3 ( x ( : , i ) , x ( : , j ) , x ( : , k ) ) for i , j and k f rom any set of { 1 , 2 , 3 } , { 4 , 5 , 6 } 



A p p e n d i x 130 

and { 7 , 8 , 9 } . For the two-dimensional motion which is wri t ten in the polar plane, 

appropriate substitution of coordinates might be used. 

To check the correctness of constants of motion such as \I |, \v\, J, m{v'^ +p^)/2, 

and so on, for the appropriate set of equations, we may run a programme subsequent 

to the main programme comput .m in the M A T L A B Command Window. For | / |, \v 

i t is quit simple to run a line in the command prompt: 

p l o t ( t , s q r t ( x ( : ,7) .~2 + x ( : , 8 ) . ~ 2 + x ( : ,9) . ~2)) for the charge isovector and 

p l o t ( t , s q r t ( x ( : ,4) .'•2 + x ( : , 5 ) . " 2 + x ( : , 6 ) . ' ~ 2 ) ) for the speed. For / we 

may run this programme: 

R = x ( : , 1 : 3 ) ' 
V = x ( : , 4 : 6 ) ' 
I = x ( : , 7 : 9 ) ' 
r = s q r t ( d o t ( R , R ) ) ; 
J = z e r o s ( 3 , n s t e p s + 1 ) ; 
7. 

K = r . / s i n h ( r ) ; 
L = c r o s s ( R , V ) ; 
a lpha = d o t ( I , R ) . / r ; 
7. 

f o r i = l : 3 
J ( i , : ) = L ( i , : ) + K . * I ( i , : ) + a l p h a . * ( 1 - K ) . * R ( i , : ) . / r ; 

end 
p l o t ( t . s q r t ( d o t ( J , J ) ) ) 7o must be a s t r a i g h t l i n e 

For m('t;^ +p'^)/2 the below programme might be used (note ra = 1;): 

R - x ( : , 1 : 3 ) ' 
V = x ( : , 4 : 6 ) ' 
I = x ( : , 7 : 9 ) ' 
7c 

h = 0 ,5 ; 7o the value of h must be s p e c i f i e d here . 
r = s q r t ( d o t ( R , R ) ) ; 
H = r . * c o t h ( r ) - 1; 
p = - H . * d o t ( R , I ) . / r . " 2 + h ; 
7. 

E = p . * p / 2 + d o t ( V , V ) / 2 ; 7, m = 1 
p l o t ( t , E ) °h must be a s t r a i g h t l i n e 

For the constants at large distances such as | m ( r X ' y ) | , and so on, some 
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appropriate programmes like the above ones can help. For the planar motion we 
need to substitute the Cartesian coordinates wi th the polar ones. 

To show the accuracy of computations, in addition to plot the constants, we may 

compare the maximum and the minimum of the computed values for each constant. 

For example we may execute max(E)/min(E) after we run the above programme for 

E. A better result (1 for this example) is gained when we increase the value of nsteps 

in the main programme. 

P5 

To test the first-order perturbation in the planar motion, the main procedure is 

the same as comput.m in part PO w i th only few changes. The equations of per­

turbat ion should come along the equations of the planar motion in the function 

d i f f e q . m . In each step that a value for the planar motion variables are calcu­

lated, the corresponding perturbation quantities are calculated. So we may add 

the differential equations of perturbation to the procedure of planar motion in part 

P 2 . The required changes to comput.m are: dim = 13 in line *, and ini t ia l values 

ro, Oo, ro, 6*0, Cro, (^eo, e^o, o-ro, creo, ĉ ô, ̂ ro, ̂ eo, 4o] line **. 

f u n c t i o n [ v e c ] = d i f f e q ( y ) 
7 m = e = a = 1; be ta = 1; 
r = y d ) ; 
K = r / s i n h ( r ) ; 
KK = ( s i n h ( r ) - r * c o s h ( r ) ) / ( s i n h ( r ) ) ~ 2 ; % K' 
KKK = - 2 * c o s h ( r ) / s i n h ( r ) " 2 + 2*r*cosh(r ) ~ 2 / s i n h ( r ) "3 - r / s i n h ( r ) ; 7. K ' ' 
7 

r r = y(4)*KK + y ( l ) * y ( 4 ) - 2 ; 
t t = ( - y ( 3 ) * K K / y ( l ) - 2*y(3 )*y(4 ) ) / y ( l ) ; 
7 

er = y ( 4 ) * y ( 6 ) + y ( 8 ) ; 
e t = - y ( 4 ) * y ( 5 ) + y ( 9 ) ; 
ez = y ( 1 0 ) ; 
s r = ( r * K K K - K K ) * y ( 4 ) * y ( 5 ) / r + ( K K / r + y ( 4 ) ) * y ( 9 ) + KK*y(4 )*y (13) ; 
St = - ( r * K K K - K K ) * y ( 3 ) * y ( 5 ) / r - 2 - ( K K / r + y ( 4 ) ) * y ( 8 ) + K K * y ( 3 ) * y ( 1 3 ) / r ; 
sz = - ( K ^ 2 - r * K K - l ) * y ( 4 ) * y ( 7 ) / r " 2 + ( l - K - 2 ) * y ( 4 ) * y ( 1 1 ) / r + K K * y ( 3 ) * y ( 1 2 ) / r ; 
d r = ( l - K ) * y ( 3 ) * y ( 7 ) / r " 2 - ( 1 - K ) * y ( 1 0 ) / r + K * y ( 4 ) * y ( 1 2 ) ; 
d t = ( l - K ) * y ( 4 ) * y ( 7 ) / r - K * y ( 4 ) * y ( 1 1 ) ; 
dz = 0; 
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7. 
vec = [ y ( 3 ) , y ( 4 ) , r r , t t , e r , e t , e z , s r , s t , s z , d r , d t , d z ] ; 

Instead of the line *** in comput .m we plot any appropriate two or three-dimensional 

plots. Note the values computed in this procedure are in the cylindrical coordinates. 

Af t e r running the programme we may plot any of the perturbation components wi th 

respect to the t ime to see the result. We may increase the time when the plots do 

not show a divergence. 
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