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Abstract 

Large aperture astronomical telescopes have a resolution that is limited by the 
effects of the Earth's atmosphere. The atmosphere causes incoming wavefronts 
to become aberrated, to correct for this adaptive optics is employed. This 
technique attempts to measure the incident wavefront and correct it, restoring the 
original image. Conventional techniques use mirrors that are deformed with 
piezo-electric crystals, this thesis uses an alternative technique. Two different 
types of liquid crystal spatial light modulators are used as the corrective 
elements. The advantages and disadvantages of both are assessed in an attempt 
to find which system is the best for astronomical adaptive optics. 
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CHAPTER 1: INTRODUCTION 

Chapter 1: Introduction 

1.1 Introduction 

This thesis combines two areas of research, adaptive optics and liquid crystals. 

Adaptive optics is currently being used in observatories to correct for aberrations 

in the incident wavefronts using deformable mirrors. These aberrations are 

caused by atmospheric turbulence in the Earth's atmosphere and inside the 

telescope dome. In this thesis liquid crystal spatial light modulators (SLMs) will 

be used instead of deformable mirrors. There wil l be two types of liquid crystal 

SLM used; both types have their individual advantages and disadvantages. These 

wil l be explored in three different adaptive optics systems. This thesis does not 

attempt to fully optimise each system, but to demonstrate them as proof of 

principles. 

The concept behind adaptive optics is to have an optical component that can 

move, deform, or change in some way such that the incident light can be 

manipulated to correct for aberrations in real time. The resolution of Earth based 

telescopes' (without adaptive optics) is typically limited to ~ 1 arcsecond. With 

an adaptive optics system it is theoretically possible to restore the resolution to 

the diffraction limit of the telescope using deformable mirrors. Compared to 

liquid crystal SLMs, these mirrors are very expensive, bulky and potentially have 

a smaller number of degrees of freedom. It would therefore be desirable to be 

able to use liquid crystal SLMs instead of deformable mirrors. Adaptive optics 

has other applications apart from astronomy, e.g., in laser welding, satellite 

tracking, and underwater imaging. These applications are briefly covered in 

chapter 3. However, this thesis is mainly concerned with astronomical adaptive 

optics. 

This thesis contains the results of work done with two different types of liquid 

crystal devices and two different types of wavefront sensor. Three complete 
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CHAPTER 1: INTRODUCTION 

adaptive optics systems are presented, in addition to a liquid crystal atmospheric 

turbulence generator. A study of a liquid crystal display device modified to 

produce phase only modulation is also presented. 

1.2 Chapter Contents 

The thesis is broken down into the following chapters: 

• Chapter Two describes liquid crystals. The structures of the molecules are 

explained and why this gives them their unusual properties when in the 

presence of an electric field or light. 

• Chapter Three describes the cause of atmospheric turbulence. The statistics 

of the atmospheric turbulence are explained and the different factors 

affecting it are discussed. Zernike polynomials and their use are introduced. 

Conventional adaptive optics is also described in detail. This includes how 

each component of the system works and the advantages of each part are 

discussed. Binary adaptive optics will be explained. 

• Chapter Four is the first experimental chapter. A liquid crystal SLM that was 

based on display technology was used. The disadvantages of this system will 

be demonstrated. 

• Chapter Five uses 'Binary Adaptive Optics' with a self-referencing 

interferometer. A control algorithm for the system will be developed and 

computer modelling of the system will be described. Correction for an 

aberrated wavefront will be demonstrated. 

• Chapter Six will develop an atmospheric turbulence simulator using a liquid 

crystal SLM. The properties of the system will be experimentally measured 

and compared to the theoretical models. 

• Chapter Seven will use the above turbulence simulator as an aberration 

source for another 'binary adaptive optics' system. This system will use a 

liquid crystal SLM with a Shack-Hartmann wavefront sensor. 

2 



CHAPTER 1: INTRODUCTION 

• Chapter Eight will use the same wavefront sensor as chapter seven but with a 

nematic liquid crystal SLM, allowing full correction of the turbulence. 

Crosstalk between the Zernike modes will be investigated. 

© Chapter Nine summarises the results and conclusions of the above chapters. 

It discusses the future of liquid crystal adaptive optics in astronomy. 

• Appendix 1 describes the Zygo interferometer. This device is used 

throughout the thesis to measure the phase shift produced by SLMs and the 

optical flatness of optical components. 

• Appendix 2 presents a novel idea for the construction of an unpixelated 

liquid crystal SLM. It describes work that was done towards constructing 

such a device. 

This thesis is in effect a study of possible liquid crystal adaptive optics systems 

that could be used in astronomy. 

1.3 Common Acronyms 

ATS Atmospheric Turbulence Simulator 

D M Deformable Mirror 

DSP Digital Signal Processor 

FLC Ferroelectric Liquid Crystal 

LC Liquid Crystal 

PDI Point Diffraction Interferometer 

PSF Point Spread Function 

SLM Spatial Light Modulator 

Table 1.1. Common acronyms. 
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CHAPTER 1: INTRODUCTION 

1.4 Some Commonly Used Mathematical Symbols 

X Wavelength of light. Usually taken as 632.8nm unless otherwise 

stated 

n Liquid crystal director 

Phase 

Path length 

a Variance 

a Zernike amplitude matrix 

B Interaction matrix 

D Telescope diameter 

D> Structure function 

So Greenwood frequency 

ne Extraordinary refractive index 

n„ Ordinary refractive index 

r0 
Fried parameter 

vw Wind speed 

Zj / h Zernike mode 

Table 1.2. Some commonly used Mathematical Symbols. 
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CHAPTER 2: LIQUID CRYSTAL THEORY 

Chapter 2: Liquid Crystal Theory 

2.1 Introduction 

In this chapter, the theory of liquid crystals will be briefly described as well as 

current applications, limitations, and the future potential of liquid crystals. 

2.2 History 

The person usually credited with the discovery of liquid crystals was an Austrian 

botanist named Friedrich Reinitzer. In 1888, he noticed that a substance related 

to cholesterol appeared to have 'two melting points'. At 145°C the substance 

melted into a cloudy liquid and at 178°C this liquid became clear. This discovery 

was followed up by the German physicist Otto Lehmann. He found the 

cholesterol that Reinitzer had been studying had the optical properties of a 

crystal but flowed like a liquid when it was between the two melting points. He 

coined the phrase 'liquid crystal' for the new substance. 

For a long time this new phase of matter was nothing but a scientific curiosity. In 

the late 1960's the first crude displays were built. In the 1970's, the first stable 

liquid crystals with transitional temperatures such that they could be used at 

room temperature were developed. It was this breakthrough that has started the 

explosion in liquid crystal technology we see today. 

2.3 Liquid Crystal Theory 

Most people are aware of the 3 states of matter: solids, liquids, and gases. These 

states, or phases, come about because of the relationship between the vibrational 

energy of atoms and molecules, and the bonding forces holding them together. 

In the solid state molecules are highly ordered and are strongly bonded. The 

molecules are held rigidly and in crystalline solids have a specific orientation. In 

a liquid, the molecules have more vibrational energy, the molecules break away 
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CHAPTER 2: LIQUID CRYSTAL THEORY 

and become free to move around and re-orientate themselves randomly. The 

substance now has much less order, but the bonding forces are still strong 

enough to hold the molecules closely together. Gases have even more energy, the 

attractive forces are no longer strong enough to hold together the molecules and 

they are free to move independently to f i l l the entire container holding them. 

However several other states of matter exist. If a gas is heated further it becomes 

completely ionised and is called a plasma. Between the liquid and the solid 

phases some molecules exhibit a liquid crystal phase. 

Liquid crystals have some properties of both solids and liquids. This is because 

of the shape and rigidity of the molecules. The types of liquid crystal used in this 

thesis have "rod" shaped molecules. The rigidity often comes from benzene 

rings forming the backbone of the molecule (figure 2.1). A unit vector called the 

director, n, is defined as being co-linear with the long axis of the molecule. 

0 

Solid smecticC smectic A nernatic liquid 
I I I I ^ 

60 C 63 C 80 C 86 C temp 

Figure 2.1. An example liquid crystal molecule, 4-n-pentylben-zenethio-4'-n-

decyloxybenzoate. The benzene rings give the molecule its rigidity. This liquid 

crystal exhibits several phases at different temperatures (see below). 

When the molecules are in the solid state they are held rigidly together. The 

molecules will be orientated such as to minimise the free energy. In the simplest 

case, this is when all of the directors are in the same direction. When the 

molecules are heated, they gain enough energy to melt into the liquid crystal 
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CHAPTER 2: LIQUID CRYSTAL THEORY 

phase. The molecules lose their positional order and become free to move 

around. Because of the molecules rigid rod shape the molecules can not easily 

rotate and so they still maintain their orientation. The time averaged direction of 

the director is still in the same direction. If the substance is given further energy 

the molecules overcome this orientational order and the substance becomes a 

normal isotropic liquid. 

2.3.1 T Y P E S O F LIQUID C R Y S T A L 

There are several types of liquid crystal. In the nematic liquid crystal phase the 

molecules are free to flow, but it is energetically more favourable for them to 

orientate themselves in the same direction (i.e., the molecules have orientational 

order, but no positional order) (figure 2.2). In another type of liquid crystal it is 

more favourable for one molecule to align itself to its neighbour with its director 

at a slightly different angle. This has the effect of rotating the director in a helix 

structure (figure 2.3). This type is known as cholesteric or chiral nematic liquid 

crystal. 

I I 
Figure 2.2. A snap shot of the molecules in nematic liquid crystal. On average 

the molecules point in the same direction. 

The other type of liquid crystal based upon a rod shaped molecule is called 

smectic. There are too large a number of subsets of smectic liquid crystals to 
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CHAPTER 2: LIQUID C R Y S T A L T H E O R Y 

cover here, but they are characterised by their molecules having some positional 

order in layers as well as orientational order (see figure 2.4). A type of smectic 

liquid crystal used in this thesis is known as smectic C* or chiral smectic C. The 

molecules are arranged into layers with their directors at some angle (other than 

90°) to the plane of the layer. This angle is the same in all the layers but the 

director outlines a cone as it rotates over a number of layers. The distance it 

takes the director to be rotated 360° is known as the pitch. 

Vi pitch 
• 

A 

JOOooooOO 
A A A 

O00°°°oo 

tfOOooooOOfl 
Figure 2.3. A snap shot of the molecules in cholesteric or chiral nematic. The 

directors are rotated by some angle from one molecule to the next. The distance 

it takes for a 360° rotation is known as the pitch. 
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CHAPTER 2: LIQUID C R Y S T A L T H E O R Y 

VJ W A W \J VJvy u 

Figure 2.4. A snap shot of smectic A. These molecules have positional order in 

regularly spaced layers. 

The liquid crystals described here change their states according to temperature. 

They can exist in more than one of the above states at different temperatures. For 

this reason they are known as thermotropic liquid crystals. An example phase 

diagram is given in figure 2.1 for 4-n-pentylben-zenethio-4'-n-decyloxybenzoate. 

It is not possible for molecules to exhibit both the nematic and the chiral nematic 

state at any temperature but they can have more than one type of smectic state. 

There are other types of liquid crystal based upon circular disk shaped 

molecules. These are known as discotic liquid crystals. They also exhibit 

nematic, chiral nematic and smectic states. Other types exist, some are based 

upon polymers that have display applications; lyotropic liquid crystals are 

important in biology. 

In this thesis we are only concerned with nematic and smectic C liquid crystal 

based devices. 
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C H A P T E R 2: LIQUID C R Y S T A L T H E O R Y 

2.3.2 T H E E F F E C T OF E L E C T R I C F I E L D S ON LIQUID C R Y S T A L S 

The molecules used in liquid crystal applications have an overall neutral electric 

charge. However, certain atoms within the molecules are more electrophilic 

(they attract electrons) than others. This gives the atoms a slight negative electric 

charge. I f a liquid crystal molecule has electrophilic and electrophobic (repels 

electrons) atoms there will be a permanent electric dipole. If these molecules are 

placed in an electric field, the dipole will produce a rotational torque, T, 

T = P x E [2.1] 

where E is the electric field and P is the dipole moment. This torque rotates the 

molecule, aligning its with the electric field. When the electric field is removed 

the molecule will return to its original orientation. 

In practice, a DC field would cause the liquid crystal cell to degrade. An AC 

field is instead applied. When an AC electric field is applied to a molecule, the 

field causes electrons to be displaced within the molecule. This displacement of 

charge causes an induced dipole moment. In an AC field, equation [2.1] would 

have a time average of zero if the dipole was static, but because of the electron 

mobility within the molecule, the induced dipole can flip polarity at the same 

frequency as the applied AC field (~lkHz) giving a non-zero value for T. 

2.3.3 T H E E F F E C T ON L I G H T OF LIQUID C R Y S T A L S 

Elongated molecules have different dielectric constants, and hence different 

refractive indices, for each of their axes. In an isotropic liquid the effect is 

averaged out so the material will be optically isotropic. In crystalline solids, such 

as quartz and in liquid crystals, the refractive index for the whole crystal will be 

different for light entering in different polarisation states. The crystal is 

birefringent. The long axis of the liquid crystal has what is called the 

10 



CHAPTER 2: LIQUID C R Y S T A L T H E O R Y 

extraordinary refractive index, and the two shorter axes have what is called the 

ordinary refractive index (figure 2.5). 

He 

Figure 2.5. The anisotropic rod shaped nature of the liquid crystal molecules 

gives rise to their isotropic refractive indices and the molecules' birefringence. 

The birefringence of the liquid crystal is defined as 

An = n.. - n.. 
e a 

[2.2] 

where ne is the extraordinary refractive index and na the ordinary. It is often 

useful to think of homogenous liquid crystals as being variable linear 

waveplates. 

2.3.4 PHASE SHIFTING BY NEMATIC LIQUID C R Y S T A L S 

Consider a glass cell of nematic liquid crystal with incident light polarised along 

the extraordinary axis. The phase shift, <)), experienced by the incident light 

linearly polarised along the extraordinary axis compared to the phase shift along 

the ordinary axis as it passes through the liquid crystal of thickness d, wil l be 

11 



C H A P T E R 2: LIQUID C R Y S T A L T H E O R Y 

0 = — d An [2.3] 
A. 

where An is the effective birefringence experienced by the light and X is the 

wavelength of the light. An is a function of voltage and is at its maximum when 

there is no electric field across the liquid crystal cell. If an electric field is now 

applied across the cell, the liquid crystal molecules will be rotated. The light will 

experience less of the extraordinary refractive index of the material and the value 

of An will decrease. Hence, the phase shift caused by the liquid crystal material 

will be different. 

Because the liquid crystal is driven by an AC field, it is only possible to drive the 

liquid crystal in one direction. To reset the liquid crystal the electric field is 

removed and the liquid crystal molecules relax to their original orientation. This 

is slow compared to the speed when driven by an electric field and limits the 

speed of nematic liquid crystals to typically 40ms for a "K phase shift in the 

visible. Nematic liquid crystal can be considered as a waveplate with a variable 

retardance. 

The response of the liquid crystal to an applied electric field is non-linear. Figure 

2.6 shows the response of the liquid crystal against potential difference across 

the cell. The vertical axis shows the change in phase shift (in arbitrary units) of 

light passing through the cell. There is a certain threshold voltage, V th, below 

which there is no response. This is important for multiplexing SLMs (see 

Chapter 4). 

12 



CHAPTER 2: LIQUID C R Y S T A L T H E O R Y 

g 
e 

n 

s 
e Vth Voltage 

Figure 2.6. A typical voltage response curve ofnematic liquid crystal. Vth is the 

threshold voltage. The exact units will depend upon the liquid crystal material 

and the cell thickness. 

If the incident light is polarised in the orthogonal direction to the extraordinary 

axis it will not experience any of ne, so there will be no difference in the phase of 

the light that passes through the liquid crystal if there is or is not an electric field 

applied. 

2.3.5 PHASE SHIFTING B Y F E R R O E L E C T R I C LIQUID C R Y S T A L S 

Ferroelectric liquid crystal (FLC) SLMs use smectic C* liquid crystals. If the cell 

containing the liquid crystal is made thin enough, the interaction with the surface 

causes the rotation of the director from layer to layer to be suppressed (see 

figures 2.7 and 2.8). The type of liquid crystal used in these SLMs prefer to align 

their directors parallel to the glass substrates (see figure 2.9). The molecules also 

possess a permanent electric dipole moment. A phase with a permanent dipole in 

the absence of an electric field is called a ferroelectric phase, so this cell is called 

a surface stabilised ferroelectric liquid crystal (SSFLC or just FLC). Two states 

are possible and are shown in figure 2.9. The molecules are arranged in layers 

and these are in the plane of the page. The director is in the plane of the glass 

cell but pointing at some tilt angle (usually 22.5°) to the normal of the page. The 

13 



C H A P T E R 2: LIQUID C R Y S T A L T H E O R Y 

electric polarisation is aligned perpendicular to the director and is in the plane of 

the page. By changing the polarity of the applied electric field the molecules 

rotate round. Looking through the cell, this has the effect of rotating the director 

by twice the tilt angle. This is called the switching angle. This is effectively an 

electronically rotatable waveplate. By suitable configuration of polarisers, the 

FLC SLM can be made to produce either phase modulation or amplitude 

modulation. 

Because the molecules possess a permanent dipole moment and can be driven in 

both directions they have a very fast switching time compared to nematic liquid 

crystals, ~100|4,s. However, they only have two possible states. The 

commercially available Displaytech 10x1 OB FLC has a frame rate of 4000Hz. 

Switching speeds as high as 10MHz have been demonstrated (Liu, 1993). 

Glass substrate 

Ill I III Ml WW 
illII/IIIII I 111 V 2 
/ / / / / / / / II HI i i w 2* 

Figure 2.7. The director in Smectic C* rotates from layer to layer when the 

liquid crystal is not stabilised by the glass substrate. P is the direction of electric 

dipole moment, n is the direction of the liquid crystals director. 

14 



CHAPTER 2: LIQUID C R Y S T A L T H E O R Y 

Glass substrate 

/ / / / / / / / / / / V 2 
mil i ii/i i 
i i / / / n / / ^ 
i / / i i / / i i / / \ f 

n 

Figure 2.8. The director in Smectic C* does not rotate from layer to layer when 

the cell is made thin enough. The glass substrate inhibits the rotation and the 

material becomes 'surface stabilised.' 
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CHAPTER 2: LIQUID C R Y S T A L T H E O R Y 

n 

n 

Figure 2.9 The SSFLC. The layers of smectic molecules are in the plane of the 

page. The director, n , is shown as its projection onto the plane of the page. It is 

at an angle of22.5° to the perpendicular of the page's plane. The application of 

an electric field causes the switching between the two states. 

O F F \ 
P O L 1 

/ O N 

P O L 2 

Figure 2.10. The alignment of the input and output polarisers with reference to 

the switching angle of the FLC needed to attain a phase shift of K when the 

retardance of the device is not K and the switching angle is not 90 °. POL I is 

the input polariser and POL 2 is the output polariser. ON and OFF represent 

the two optical axes of the FLC. 
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CHAPTER 2: LIQUID C R Y S T A L T H E O R Y 

As discussed above, FLCs are birefringent and produce a phase shift by an 

electrically controlled rotation of the optical axis. The device needs to be placed 

between two crossed polarisers, where the axis of the first bisects the two optical 

axes states of the FLC (see figure 2.10). 

The retardance, T, of the FLC is given by 

where d is the thickness of the FLC, A. the wavelength of light, and An the 

birefringence of the liquid crystal. 

The phase shift produced by the FLC can be calculated using Jones calculus. 

There is often an absolute phase term, e1*, in the Jones matrices. Since we are not 

interested in the absolute phase, only the difference between the on and off states 

of the FLC, this is dropped to simplify the mathematics. 

The FLC can be considered as a retarder with its optical axis at angle 9 (the tilt 

angle) to the vertical. The FLC is then represented by W 

e ^ c o s ^ + e ' ^ s h ^ e • 

sin0cos6-e / 2 sinGcosG 
W = [2.5] 

1 sin0cos0-e n sin0cos0 sin 2e + e ! ^cos 2 e 

The incident light is vertically polarised and represented by V 

0 
V = [2.6] 
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and the output polariser is, P 

1 0 
P = [2.7] 

0 0 

The transmitted amplitude, T, is then given by 

T = PWV [2.8] 

2cos0sin0-e / 2cos0sin0 

[2.9] 
0 

for the Displaytech FLC used in this thesis, r=0.67i and the tilt angle, 0, is 

±22.5°. 

So we have a phase shift of ±7t/2 with an amplitude of 0.572. The ± refers to the 

device in either its 'on' or ' o f f mode. So switching from 'on' to ' o f f , a change 

in phase of n is introduced. The transmission is measured in terms of intensity 

and is I-0.572I2 = 33%. 

2.3.6 F L C O P E R A T E D WITH NO POLARISERS 

If we consider the case of an ideal FLC SLM the retardance would be n radians 

and the switching angle 90°. In this case no polariser would be needed in the 

system. We can consider unpolarised light as the superposition of two incoherent 

linearly polarised beams. 

T = - i •0.572- e [2.10] 
0 
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For r = n and G = ±45°, equation [2.5] becomes 

W = 

0 ±i' 

±i 0 
[2.11] 

If we first consider the vertical component of the incident light, V, we get 

T v = WV [2.12] 

±i-

0 

[2.13] 

The Jones's matrix for horizontally polarised light, H, is 

H [2.14] 

so 

T H = WH [2.15] 

0 

[2.16] 

The FLC rotates the polarisation of the light by 90° (as expected for a half 

waveplate with the incident light at 45°). There is still a phase shift of n radians 

between the two states. 
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An alternative method of improving the transmission has been proposed by Neil 

and Paige (Neil, 1994) using the FLC with a quarter wave plate and a mirror in 

the system. The system still requires a polariser but the transmission is increased. 

Warr et. al. (Warr, 1995) increased the throughput of their system by using no 

polarisers with a non-ideal FLC. This left a large DC peak in their diffraction 

pattern for a O/tc grating. To the author's knowledge, there has not yet been any 

assessment of using imperfect FLCs in an adaptive optics system. 

2.4 Applications of liquid crystal SLMs 

The most common applications of liquid crystal SLMs are displays. These are 

usually based upon a slightly modified type of nematic liquid crystal device 

called a twisted nematic liquid crystal (TNLC). This was invented in the late 

1970's and has revolutionised many display applications. A twisted nematic cell 

is made by sandwiching nematic liquid crystal between two glass plates. The 

glass plates have rubbing directions1 90° to each other. This causes a gradual 

rotation of the director through the cell in a helical structure (see figure 2.11). 

Linearly polarised light entering the cell is rotated by this helix and an output 

polariser is placed after the cell 90° to the polarisation of the incident light. This 

gives the maximum transmission. When an electric field is applied to the cell, 

the molecules realign and there is no longer any rotation of the director through 

the cell, and hence no rotation of the polarisation. This gives extinction of light. 

'The "rubbing direction" is the direction in which the director aligns. It can be made by rubbing a 

polymer alignment layer on the glass with a piece of cloth in one direction or by a placing a 

chemical deposit on the glass surface. 
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Figure 2.11. A twisted nematic display. Light enters at the top though a 

polariser. When there is no electric field the molecules rotate the plane of 

polarisation by 90° and it passes through the second polariser that is orthogonal 

to the first. When an electric field is applied there is no rotation and hence no 

transmission of light. 

Colour displays are created by having either dyes in the liquid crystals or 

coloured filters. These produce colour images in a similar way to TVs by having 

red, green and blue pixels. 

Problems caused by addressing large numbers of pixels have been tackled in 

recent years by incorporating thin film transistors (TFT) and other electronics 

into the displays to act as switches for the pixels. Another alternative is to build 

the SLM on a silicon back plane which also acts as the control electronics (for a 

review see (Clark, 1994) and (Johnson, 1993)). 

FLCs are not as commonly used in displays. To generate a grey scale temporal 

multiplexing is used (Landreth, 1992), i.e., to get a 100 grey levels each picture 

frame is divided, temporally, into 100 sub-frames. To get a 25% grey level the 

pixel is switched on for 25 sub-frames and off for 75 sub-frames. The eye 

integrates this making the pixel appear grey. These devices can be made to be 
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very small, with a resolution in excess of 500 lines per inch (Worboys, 1993) 

and are used in applications such as helmet mounted displays. 

Both phase modulators and intensity modulators have been constructed using 

optically addressed liquid crystal SLMs (OASLM) or liquid crystal light valves 

(LCLV) (Efron, 1985 & Moddel, 1987). The liquid crystal is placed onto a 

photoconductive layer. The resistance of the layer is dependent on the amount of 

light incident on it. This alters the electric field across the liquid crystal cell, and 

either gives amplitude or phase modulation (Johnson, 1990) depending upon the 

optical configuration of the device. By a suitable choice of photoconducter the 

device can be used to convert infrared images into visible images. 

All of the devices in this thesis are driven electronically. This is achieved by 

either direct drive or multiplexing. Direct drive SLMs have an electrode 

connected to each individual pixel. When there is a large number of pixels, it 

becomes difficult to individually connect each pixel. Instead, the pixels are 

multiplexed. The pixels are activated by selecting the correct row and column. 
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2.4.1 M U L T I P L E X I N G T H E O R Y 

Y l Y2 Y3 

XI 

X2 

X3 

Figure 2.12. An example of a pixel driven by multiplexing. The dark square 

represents a fully activated pixel and the clear squares partially activated pixels. 

The multiplexing driving method is designed to reduce the number of electrical 

connections required by a liquid crystal SLM with a large number of pixels. 

Consider an array of nine pixels, as shown in figure 2.12. The nine pixels are 

connected with three lines in the horizontal direction ( X I , X2 and X3) and three 

lines in the vertical ( Y l , Y2 and Y3). If we wished to activate pixel (1,1) with a 

voltage Vi we would set row X I to voltage V|/2 and column Y l to -Vi/2, thus 

giving a potential difference of Vi across pixel (1,1). However, pixels (1,2), 

(1,3), (2,1), and (3,1) will also have a potential difference of ±V\I2 across them. 

In the ideal case, V]/2 will be below the threshold voltage of the liquid crystal 

and so it will not be activated in any way. If this is not the case, crosstalk will 

occur. In liquid crystal displays this manifests itself as contrast reduction. 

For a large number of pixels, it is too slow to access each pixel individually so 

instead of the "dot sequential addressing'1'' described above, "line dumping 

addressing" is used. In this case, i f for example, we wanted to address pixels 
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(1,1), (1,3), row X I would be set to V\I2 and both columns Y l and Y3 set to 

- V j / 2 . Then row X2 would be set to V i / 2 and the appropriate voltage placed on 

the columns we would wish to activate. The rows are known as the common and 

the columns as either the segments or simply columns. For a large display, such 

as the GEC 64x64 which w i l l be used in chapter 4, the waveforms being applied 

to the liquid crystal become very complex (see (Hitachi, 1991) for more details). 

This method still has the same crosstalk problem as the dot sequential address 

technique. 

2.5 Summary 

This chapter has covered the basics of liquid crystal theory. The two types of 

l iquid crystal, nematic and FLC, that are to be used in this thesis have been 

described. The effects of an electric f ield and the effects the liquid crystal 

molecules have on light have been described. The next chapter w i l l give a brief 

review of atmospheric turbulence and conventional adaptive optics. 
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Chapter 3: Atmospheric Turbulence and 

Conventional Adaptive Optics 

3.1 Introduction 

In the previous chapter, the essential characteristics of l iquid crystals were 

described. In this chapter, there w i l l be a review of conventional adaptive optics 

and the causes of atmospheric turbulence. Adaptive optics in non-astronomical 

applications and other sources of aberrations that potentially require adaptive 

optics are discussed. 

3.1.1 THE FUNCTION OF AN ASTRONOMICAL TELESCOPE AND 

HISTORY OF ADAPTIVE OPTICS 

The purpose of an imaging telescope is to collect as much celestial radiation as 

possible and focus this into an image with the highest resolution as possible. The 

diameter of the telescope is the fundamental l imit of both of these. The light 

gathering power is dictated by the collecting area of the primary mirror. The 

resolution of any optical imaging device is limited by diffraction. The so called 

Rayleigh criterion defined when two points, separated by an angle OR, can be 

resolved, is given by 

where D is the diameter of the imaging device, in this case the diameter of the 

telescope's aperture, and A, is the wavelength of the incident light. 

Increasing D increases the resolution of the telescope. However, turbulence in 

the Earth's atmosphere limits the resolution to about 1 " which is equivalent to 

D=10-20cm in the visible. This was noticed as far back as Newton, (Newton, 

1704) who in his book Opticks could see no possible solution to the problem: 

0 1.22 D [3.1] 
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"If the Theory of making Telescopes could at length be fully brought into 
Practice, yet there would be certain Bounds beyond which Telescopes could not 
perform. For the Air through which we look upon the Stars, is in a perpetual 
Tremor; as may be seen by the tremulous Motion of Shadows cast from high 
Towers, and by the twinkling of the fix 'd Stars. But these Stars do not twinkle 
when viewed through Telescopes which have large apertures. For the Rays of 
Light which pass through divers parts of the aperture, tremble each of them 
apart, and by means of their various and sometimes contrary Tremors, fall at 
one and the same time upon different points of the Eye, and their trembling 
Motions are quick and confused to be perceived severally. And all these 
illuminated Points constitute one broad lucid Point, composed of those many 
trembling Points confusedly and insensibly mixed with one another by very short 
and swift Tremors, and thereby cause the Star to appear broader than it is, and 
without any trembling of the whole... 

The only Remedy is a most serene and quiet Air, such as may perhaps be found 

on the tops of the highest Mountains above the grosser Clouds. " 

In 1953 Babcock (Babcock, 1953) first proposed using what is now called 

adaptive optics to compensate for the atmosphere and restore the resolution to 

the diffraction l imit 

"If we had a means of continually measuring the deviation of rays from all parts 

of the mirror, and of amplifying and feeding back this information so as to 

correct locally the figure of the mirror to the schlieren pattern, we could expect 

to compensate both for the seeing and any inherent imperfections of optical 

figure." 

Babcock's attempts to implement his idea were thwarted by the technology 

limitations of the time. Adaptive optics was neglected until the 1970's when, the 
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idea was resurrected with limited success (Buffington, 1976; Buffington, 1977; 

Hardy, 1976). A large input to adaptive optics technology occurred at the end of 

the cold war when US military adaptive optics systems became de-classified. 

These systems were designed for observing satellites, as well as focusing laser 

beam direct energy weapons as part of the strategic defence initiative (SDI) or 

"Star Wars." 

In 1989 one of the first civilian astronomical adaptive optics system was 

constructed called COME-ON. This provided correction for a small telescope 

(Rousset, 1990) and later a 3.6m telescope (Rigaut, 1991). Since then a number 

of other systems have been constructed. The upsurge in interest has come about 

because of an improvement in wavefront sensing technology; a shift into the 

infra-red as the wavelength of interest where the aberrations are easier to correct; 

and the use of laser guide stars (Foy, 1985). 

3.1.2 TERMINOLOGY 

It is important to distinguish between adaptive optics and the closely related f ie ld 

of active optics. Adaptive optics is used to compensate for rapidly varying 

aberrations (>=10Hz), whilst active optics is used to correct for deformations in 

the actual telescope. These deformations can arise f rom thermal expansions, 

mechanical strains, etc. in the telescope's optics and structure. They typically 

have a frequency of < l H z . Active optics sometimes uses the telescope's primary 

mirror as a deformable mirror such as in the ESO-NTT and the 10 metre Keck 

telescope. Adaptive optics usually uses a small deformable mirror. 

I f a system employs any feedback it w i l l be called closed loop. I f there is no 

feedback it w i l l be called open loop. 
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3.2 Wavefront Distortions Caused by the Atmosphere 

The Earth's atmosphere is approximately 20km thick. At sea level the 

atmospheric pressure is approximately 105Pa and tends towards zero as height is 

increased. The change in pressure effects the refractive index of the air. This is 

1.0003 at sea levels and tends toward unity with height. As the sun rises and sets, 

turbulence is created in the atmosphere. This comes f rom the differences in the 

heating rates of the Earth's different surfaces (such as water, soil, and rock) 

causing convection currents which mix with air of different regions causing 

eddies. This turbulence is in several layers. I f the turbulence were absent, 

incident light with a plane wave would propagate through the atmosphere 

unaberrated. However, the turbulence causes changes in pressure and hence 

refractive index. These changes in refractive index cause the optical path length 

of light passing through to change (see figure 3.1). Although the changes in 

refractive index are small, the fact that light passes through several kilometres of 

air means that the change in path length is of the order of micrometres when it 

reaches the Earth's surface. 

Incident plane wavefront 
f rom star 

"^---Turbulent atmosphere 

\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ ' 

Aberrated wavefront 

Ground level 

Figure 3.1. As the plane wavefront from the star enters the atmosphere, it 

becomes aberrated. 
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The atmosphere can be characterised by eddy sizes. For the Kolmogorov model 

of turbulence the largest eddies, of size L (the upper turbulence scale), contain 

smaller eddies. The smaller eddies are produced by the larger eddies transferring 

energy into smaller and smaller eddies. The smallest eddy size is /, the lower 

turbulence scale. The size of / is of the order of a few millimetres and is set by 

molecular friction between air molecules. The upper turbulence scale is set by 

the size of the atmosphere and the surrounding geography. There is substantial 

disagreement over the size of L. It ranges f rom a few metres to several 

kilometres (Beckers, 1992). It is likely that the size of L varies f rom one 

telescope location to another. 

The propagation of light through the atmosphere can not be easily modelled. The 

effects are too complex for any numerical or deterministic predictions so 

statistical analysis is used. 

Kolmogorov (Kolmogorov, 1961) studied the statistical rms velocity differences 

between two points in the atmosphere. From this, a velocity structure function 

can be derived. This can be related to the phase structure function which is more 

relevant and is defined as the mean squared phase difference between all points 

in the wavefront which are distance r apart, that is, 

where (j> is phase, r and r+r are positions. It was shown that (Fried, 1965b) 

where r 0 , the coherence length, is a normalising scale. [3.3] is valid over the 

range 

D,(r)=(W + r U ( r ' ) f ) 

Z U r ) = 6.88 rad 
o J 

[3.3] 
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l<r<L [3.4] 

Fried's coherence length, ro, is an important parameter in adaptive optics; it is a 

measure of the severity of the atmospheric turbulence. Fried found that the 

maximum diameter of a telescope before atmospheric turbulence limited the 

performance is given by (Fried, 1965a) 

ro = 0.423k 2 s e c ( ( 3 ) j c 2

n ( h ) d h [3.5] 

where ^ is the total path length through the atmosphere, 0 is the zenith angle, h is 

the height, C n

2(/i) is known as the refractive index structure constant and k=2n/A,, 

where A is wavelength. This is a measure of the strength of the turbulence. 

C*(h) varies with height, geographical location and time (with a period of 

hours). There is no accurate model of C 2 (h) at present although several authors 

have developed approximate models (Hufnagel, 1974; Ulrich, 1988). I f however, 

C 2 ( / t ) is approximated to a constant and P=0, it can be related to ro via 

f ( \ 2 \ 

r 0 =1.68 2n 

y A. J J 

[3.6] 

r 0 can also be defined as the diameter of an aperture over which the wavefront 

phase variance is equal to 1 radians . 

In this thesis r 0 w i l l be taken at (3=0° and A=0.5(0.m unless otherwise stated. Wi th 

these parameters it equals approximately 10 - 20cm. This means that, with no 

correction for the atmospheric turbulence, the 10 metre Keck telescope has the 

same resolution as a 10cm telescope. The atmosphere limits the Keck telescope 

to a 100 t h of its diffraction performance. 
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3.2.1 INTENSITY VARIATIONS 

As Sir Isaac Newton pointed out (see §3.1.1) intensity variations, or 

scintillations, can be seen with the naked eye as star twinkling. In a telescope 

with a larger aperture, this effect is averaged out and it becomes of secondary 

importance. There has been little study of intensity variations for adaptive optics 

and it is usually ignored. It has been suggested that intensity correction may be 

required to image extra-solar planetary systems where the brightness of the 

scintillations of the stars drown out the planet orbiting its barycentre. Love and 

Gourlay (Love, 1996) describe a method using liquid crystals to do this. For 

large telescopes, the phase aberrations are of more importance. 

3.2.2 TEMPORAL VARIATIONS 

The rate of change of the wavefront distortion depends predominantly upon the 

wind velocity. Since the wind is moving with different velocities (magnitude and 

direction) depending upon height, a typical value for vw is hard to define. It is 

usually taken to be between 5 and 20ms"1. 

For a closed loop system to correct turbulence Greenwood (Greenwood, 1977) 

calculated the system must work at frequency o f / 0 or higher, /o is known as the 

Greenwood frequency and is given by 

0.4v 
w f , o 

[3.7] 

3.2.3 TEMPORAL POWER SPECTRUM 

The temporal power spectrum of atmospheric turbulence is given by (Conan, 

1995) 
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dh ( r \ 
f 

\ WJ 

[3.8] 

where / is the frequency and the atmosphere has been approximated to a single 

rigid layer. This model is not valid as /tends towards zero. 

3.2.4 WAVELENGTH DEPENDENCE OF ATMOSPHERIC 

TURBULENCE 

It can be seen f rom [3.5] that ro, and hence atmospheric turbulence, has a 

wavelength dependence (ro A 6 / 5 ) . In the visible, ro is approximately 10-20cm 

but this increases with increasing wavelength. Table 3.1 shows typical values for 

ro and/o for various wavelengths. 

Wavelength / | i m ro /cm /o /Hz 

0.5 20 28 

1.6 81 16 

2.2 118 13 

5.0 317 9 

Table 3.1. Typical values for ro and fo at various wavelengths. The values chosen 

for [3.7] were vw=5ms'' and £=-10km. The wavelengths chosen are viable 

transmission windows in the atmosphere. 

Because of the increase in ro and decrease in/o with A,, it is easier to construct an 

adaptive optics system that works in the infrared. 
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3.2.5 ZERNIKE MODES AND THE REPRESENTATION OF THE 

SPATIAL DISTORTIONS OF THE WAVEFRONTS 

It is often useful to describe the phase aberrations in the atmosphere in terms of 

Zernike polynomials, Z/p.Q), where j denotes the f h polynomial, p is the radial 

co-ordinate in units of the aperture radius, and 8 is the angular co-ordinate. 

Zernike polynomials are an orthogonal set of basis functions that can be used to 

describe monochromatic aberrations found in optics. The phase aberration is 

then 

where Oj is the amplitude of the j Zernike mode. 

The polynomials were originally used to describe the aberrations in standard 

optics where most of the aberrations occur towards the edge. The means that to 

describe the atmosphere, where the aberrations are not at the edge of the 

telescope but uniformly spread over the whole aperture, a large number of terms 

are required. However, most of the power is contained in the low order modes. 

The individual polynomials can be derived f rom an expansion of 

(Kp,e)=yvz,(p,e) [3.9] 

2 e V en; (p^)=V^+T/? ; (p)V2cos(me) m * 0 [3.10] 

Z o d d j (p, 0) = V ^ H * ; (p X/2 sin (ml i6) m*0 [3.11] 

Z y . (p ,0)=V^TTi?„ o (p) m = 0 [3.12] 

where 

33 



C H A P T E R 3: A T M O S P H E R I C T U R B U L E N C E A N D C O N V E N T I O N A L A D A P T I V E O P T I C S 

K ( p ) = t -
.v=0 

(-iy(n-s) 
v n~2s 

n + m ^ n — m^ 
[3.13] 

— s 

n and m are integers, m < n and n-\m\ = even, j is the mode ordering number and 

is a function of n and m. The first few terms are shown in table 3.2. 

Depending upon the exact definition of j the order of the Zernike polynomials 

changes f rom author to author. In this thesis Z 8 is spherical aberration and the 

modes for m=3, n=3 come after this. 
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Azimuthal frequency m 

Radial 

Degree n 

0 1 2 

0 

1 

Z 0 = l 

Piston 

0 

1 Zi=2/xos(0) 

Z 2=2psin(0) 

Tip/t i l t 

2 Z 3 = V3(2p 2 - l ) 

Defocus 

Z 4 = V 6 p 2 sin(26) 

Z 5 = Vop 2 cos(29) 

Astigmatism 

3 Z 6 = V 8 ( 3 p 3 - 2 p ) s i n ( 0 ) 

Z 7 =V8(3p 3 -2p )cos (e ) 

Coma 

4 Z 8 = V 5 ( 6 p 4 - 6 p 2 + l ) 

Spherical 

Table 3.2. Zernike polynomials 

For the j mode corrected by an adaptive optics system, Nol l (Noll , 1976) 

calculated the residual variance, o 2 , and these are shown in table 3.3. 
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Mode Residual Error /radians2 

0 1.0299(D/r 0) 5 / 3 

1 0 .582(D/r 0 ) 5 / 3 

2 0.134(Z)/r 0) 5 / 3 Tip/t i l t removed 

3 0.111 ( D / r 0 f 3 Defocus removed 

4 0.0880(Z)/r 0) 5 / 3 

5 0.0648(D/r 0 ) 5 / 3 Astigmatism removed 

6 0.0587(D/r 0 ) 5 / 3 

7 0.0525(D/r 0 ) 5 / 3 Coma removed 

8 0.0463(D/r 0 ) 5 / 3 Spherical removed 

Table 3.3 Residual wavefront errors after correction ofZernike modes. Mode 0 

is the wavefront error before correction. 

For a large j 

a 2 « 0 . 2 9 4 4 r S / 2 { % j [3.14] 

From table 3.3 and equation [3.14] it is clear that most of the turbulence power is 

concentrated in the first few modes. 

In this thesis, the Strehl ratio is defined as the ratio of the peak intensity of the 

image of a point source to the peak intensity of the diffraction limited image of 

the same point source. For a a 2 « 1 it can be approximated to 

SR = e~°2 [3.15] 
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3.3 Conventional Adaptive Optics 

3.3.1 THE NEED FOR ADAPTIVE OPTICS 

The need for adaptive optics can be see when the imaging of an object, 0(x,y), is 

imaged through the atmosphere's instantaneous phase function <p(x,y). The 

complex amplitude of the atmosphere function is 

A(x,y) = A0e»lx'y) [3.16] 

where Ao is the modulus of amplitude (and is assumed to be constant here). The 

point spread function is then the square modulus of the Fourier transform (FT) of 

A 

P(p,q) = \FT(A(x,y)f [3.17] 

p and q are the spatial frequency co-ordinates. The intensity in the image plane is 

then 

I{p,q) = 0{p,q)®P{p,q) [3.18] 

= FT(FT(0(p,q))FT(P(p,q))) [3.19] 

where ® indicates the convolution operator. 

Because the intensity is the square of the modulus of the complex amplitude 

information about the phase is lost and so the atmospheric phase function can 

not be determined f rom the intensity pattern alone. 
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3.3.2 PHASE CONJUGATION 

Conventional and liquid crystal adaptive optics, both use the principle of phase 

conjugation to perform the correction of the aberrated wavefront. I f we consider 

an incident wavefront with a phase error of a that has been introduced by the 

atmosphere, then the wavefront is represented by 

ae~ia [3.20] 

where a is the amplitude. I f the conjugate of the phase, e+,a, is multiplied by 

[3.20] the phase error is now zero. This phase conjugate is applied to the 

wavefront by changing the optical path length through which the light travels. 

This can be by either deforming a mirror or, for example, by using liquid 

crystals. Using a deformable mirror is the conventional method in adaptive 

optics. In order to apply the phase conjugate is it necessary to have a wavefront 

sensor to measure the phase error. 

3.4 Deformable Mirrors 

Corrective elements for modern telescopes usually fal l into two groups of 

deformable mirrors (DMs): 

• Segmented mirrors such as M A R T I N I (Doel, 1990), ELECTRA (Buscher, 

1997) 

• Continuous face plate mirrors such as COME-ON (Rigaut, 1991) 

The simplest design is the piston only segmented mirror. Each mirror segment is 

driven with one degree of freedom, usually by piezo-electric crystals. The more 

complex variety have 3 degrees of freedom: piston, tip and til t . These mirrors 

more closely f i t the incident wavefront. Both types suffer f rom diffraction and 

energy loss caused by the gaps between each mirror segment. 
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Continuous face plate mirrors consist of a continuous deformable mirror placed 

over driving actuators. There are several different methods of driving such a 

mirror: 

1. Discrete positional actuators. Piezo-electric crystals are placed behind the 

mirror and push or pull the mirror into the desired shape. 

2. Discrete force actuators. These are like the discrete positional actuators but a 

non-contact force such as an electric field drives the mirror. 

3. Bimorph mirrors. A sheet of piezo-electric crystal is bonded to the rear of the 

mirror. Application of an electric field causes the piezo-electric sheet to bend. 

4. Micro-mirrors. These mirrors are semiconductor devices. They are 

manufactured by etching a silicon wafer. They are similar to type 2 above but 

are only ~ l c m across. To the author's knowledge they have not yet been 

implemented in an astronomical adaptive optics system. 

Although there is no optical power loss because there are no segmented elements 

causing diffraction and absorption, these mirrors have a complex influence 

function when an actuator deforms the mirror. This needs to be accurately 

measured. They are also more diff icul t to maintain than segmented mirrors 

where a damaged section can easily be replaced. 

Most types of D M are driven by piezo-electric crystals. These require large 

voltages (=500V) to drive them and consume a lot of power (except in the case 

of micro mirrors). This makes the drive electronics diff icul t to design and 

introduces an unwanted heating effect inside the telescope. The heating effect 

can act as a source of aberrations. 
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3.5 Wavefront Sensors 

Adaptive optics requires a measurement of the wavefront aberration in order to 

apply the conjugate to the phase error. There are two basic methods: direct or 

indirect wavefront sensing. 

Indirect wavefront sensors make no explicit measure of the phase but use some 

other measure that is related to it such as image sharpness (Muller, 1974). It is 

possible to use a trial and error method with the corrector. Examples are hill 

climbing, evolutionary programming and genetic algorithms. In these cases 

random variations are introduced into the corrective element by various methods 

(see (Fogel, 1994) and (Srinivas, 1994) for an overview of evolutionary 

programming and genetic algorithms). The use of such techniques has not yet 

been full addressed for adaptive optics although similar work has been done 

using these techniques to design diffractive optical elements (Yoshikawa, 1997). 

The major drawback is that it can take several hundred generations of solutions 

to reach the optimum. The measurement of how well the device is correcting can 

be assessed, for example, by measuring the peak intensity of the corrected image. 

In multi-dithering techniques, the corrective elements track a temporally varying 

phase delay (O'Meara, 1977). This requires the corrective element to sweep 

through its range, to maximise the intensity of the image, faster than the 

turbulence. By filtering out the high frequency sweeps, the corrector can be made 

to follow the time varying phase variations and keep the image intensity at a 

maximum. 

Image sharpening techniques monitor some sharpness criteria in the image 

(Muller, 1974). They usually vary the phase shift of the corrective element to 

maximise this criterion. Because of the high speed required for both image 

sharpening and multi-dithering they both suffer from limited bandwidth and 

limited photons forming the image. 

40 



CHAPTER 3: ATMOSPHERIC T U R B U L E N C E AND CONVENTIONAL ADAPTIVE O P T I C S 

3.5.1 D I R E C T SENSING AND I N T E R F E R O M E T E R S 

Direct wavefront sensing techniques will be used in the work of this thesis. 

These techniques are usually either interferometric or tilt/focus sensing. One of 

the simplest interferometers is the Michelson interferometer. This type of 

interferometer requires the aberrated beam to be interfered with an unaberrated 

reference beam. This means that the aberration has to be placed inside an arm of 

the interferometer and so it can not be used for atmospheric measurements. 

A modified type is the shearing interferometer. This is based upon a Mach-

Zehnder interferometer with one mirror slightly tilted. Tyson (Tyson, 1991) 

gives a detailed analysis of how shearing interferometers work. Self-referencing 

interferometers offer an alternative. An example of such a device is the point 

diffraction interferometer that will be used in chapter 5 and the theory behind it 

is covered next. 

3.5.2 T H E SMARTT OR POINT DIFFRACTION I N T E R F E R O M E T E R 

The Point Diffraction Interferometer (PDI) is from a class of interferometers 

called common path interferometers. Unlike a Michelson interferometer, where a 

separate unaberrated beam is interfered with the test beam, the PDI uses part of 

the test beam to generate its own reference beam. 
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Figure 3.2. A detail of the PDI aperture. The incident light is focused on to the 

pinhole with a lens. The zeroth order light passes through the pinhole creating a 

reference beam for the higher orders to interfere with. 

The basic design is shown in figure 3.2. The device is similar to a spatial filter. 

Incident light is focused onto a semi transparent mask. The mask consists of a 

transparent pinhole, about the size of the Airy disk of the beam, and this is 

surrounded by a semitransparent screen (transmission -0.1%). A lens behind the 

mask images the resultant interferogram onto a camera. The light from the zeroth 

order passes through the pinhole. This has no high frequencies and so produces 

an unaberrated beam. The rest of the light that passed through the 

semitransparent screen now interferes with the unaberrated beam. 

3.6 The Shack-Hartmann Wavefront Sensor 

A Shack-Hartmann wavefront sensor is another type of direct sensor. It consists 

of an array of lenses (or lenslets) focused onto a CCD camera. The local tilt of 

the wavefront across each of the lens subapertures can be determined form the 

position of the image on the CCD camera. 
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OX 
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Untilted wavefront 

Lenslet Tilted wavefront 

Figure 3.3. A single lenslet of the Shack-Hartmann array. An unaberrated beam 

is represented by the dotted line. The beam with a tilt across it is represented by 

the solid line. The amount of tilt can be calculated from <5x, the displacement of 

the spot on the CCD chip. 

Consider one lenslet (see figure 3.3). When there is no aberration in the incident 

beam, the focus will be exactly on axis with the centre of lens. When a tilt is 

introduced the spot will move off axis. From the measurement of the change in 

position, the tilt of the wavefront over the lenslet can be calculated. Any Zernike 

wavefront aberration can be approximated to a set of discrete tilts. By sampling 

the wavefront with an array of lenslets, all of these tilts can be measured and the 

complete wavefront calculated from this. Because the positions of the spots on 

the CCD camera do not change with the piston term of the wavefront, this term 

can not be measured. Fortunately, global piston is generally not important in 

adaptive optics. 

3.6.1 SPOT CENTROIDING 

To find the centre of the spots on the CCD camera a simple algorithm is used. In 

one dimension, i f /„ is the intensity at pixel n, the position of the spot, P, is given 

by 
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m 

P = [3.21] 
m 

I ' . 
n = i 

over m pixels. The CCD camera image is divided up into a number of search 

squares. The centre of each square corresponds to the unaberrated spot position 

of a lenslet. The position of each spot is calculated and the deviation from the 

centre stored in an array. [3.21] is prone to error in low signal to noise situations. 

A high background noise will cause P to tend towards the edge of the search 

square. The signal to noise ratio in a laboratory can be quite high if a laser is 

used as the light source, minimising this source of error. In a situation with a 

lower signal to noise ratio this algorithm would have to be modified. A simple 

thresholding of all the data improves the accuracy of the system. 

3.6.2 MODES F R O M T I L T S - T H E INTERACTION MATRIX 

The basis functions to be used in this thesis are Zernike polynomials. The total 

number of modes that can be used is limited to J, so the phase, §(x,y), at point 

x,y is approximated to 

j is the mode number and a, is Zernike mode amplitude. The Shack-Hartmann 

measures M spot positions at various discrete points m. The spot centroiding 

algorithm provides the positions of m in the x direction and the y direction. The 

tilt across each aperture is given by 

j 
^(x,y)=y,ajZJ(x,y) 

7=1 

[3.22] 

oZj(xm,ym) 
a ox ox 7=1 m m 

[3.23] 
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()<)) 
dv = 1 ^ 

7=1 

[3.24] 

We can represent [3.23] and [3.24] for all m with a matrix. 

s = Ba [3.25] 

where 

dx 1 

90 

2 

a<i> 
dx A / 

d§ 

By 
3<K 

1 

dy 
2 

90 

[ a y M j 

[3.26] 

a = [3.27] 

and 
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B 

dZ(x,y\ dZ(x, y \ dZ(x, y \ 

dx 
dZ(x, y), 

, dx 
dZ(x, y) 2 

j dx 
dZ(x, y \ 

dx 2 dx 2 dx 

dZ(x, y), dZ(x, y)2 dZ(x,y)j 

dx 
dZ(x, y\ dZ(x,y\ dZ(x, y)j 

dy 

dZ(x, y). dZ(x,y)2 dZ(x, y)j 

dy M d y 

M 

M 

[3.28] 

B can be calculated off line by calculating the differential for each mode in each 

axis for all of the theoretical spot centres. The actual values of element of B 

depend upon the size and shape of the lenslet array. 

The amplitudes of the Zernike modes can be calculated by rearranging [3.25] 

with the pseudoinverse of B. 

a = [ (B T B)" 'B T ]s [3.29] 

The T indicates the matrix transpose. The pseudoinverse of B is also calculated 

off line. 

3.6.3 WAVEFRONT CURVATURE 

Wavefront curvature sensors are similar in nature to Shack-Hartmann wavefront 

sensors except they measure the defocus of a wavefront instead of tilt. Two 

measurements of the image are taken, one each axial side of the lens's focus. By 

comparing the intensities of the two images, the defocus can be calculated. 

Again see Tyson (Tyson, 1991) for a full description. These devices are best 
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used with continuous face plate mirrors because the deformation of the mirror 
closely matches the response of the sensor. 

3.7 Binary Adaptive Optics 

Binary (or half-wave) adaptive optics offers a simpler alternative to conventional 

adaptive optics. Binary adaptive optics was first proposed by Kim et al. (Kim, 

1988) for correcting the distortions introduced into the optical system by the 

SLM itself. They were using an LCTV as a phase-only SLM to write binary 

holograms. The LCTV was not optically flat so they added a binary phase pattern 

to the hologram to partially remove the aberration introduced. A Mach-Zehnder 

interferometer was used as the wavefront sensor. This was also later repeated by 

Tarn et al. (Tarn, 1990) who used a PDI as their wavefront sensor. This system 

also used LCTVs. The draw back with these systems was that LCTVs are based 

upon nematic liquid crystals that are slower than FLCs, and both systems only 

attempt to correct for static aberrations. The idea of binary adaptive optics was 

later re-invented by Love et al. (Love, 1993 & 1995) who proposed using a FLC 

SLM as the corrective element in a real-time adaptive optics system. Love's 

theoretical models were for an atmospheric adaptive optics system using a FLC 

SLM. 

3.7.1 BINARY ADAPTIVE OPTICS T H E O R Y 

When a plane wavefront, sampled by a circular aperture, is focused the resulting 

intensity pattern, the PSF, is the well-known Airy disk. When the plane 

wavefront becomes aberrated, say by passing through the atmosphere, the PSF is 

no longer a perfect Airy disk. Destructive interference reduces the PSF peak 

intensity and spreads the light out thereby blurring the image. The concept 

behind binary adaptive optics correction is not to completely flatten out the 

wavefront to its original form, as in conventional adaptive optics, but to merely 

add half a wave to any part of the light that is out of phase. This reduces the 
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amount of light destructively interfering at the focus and thus partially corrects 

the PSF. 

The algorithm for binary correction is simple: 

When the wavefronts error (modulus X) is greater than half a wavelength apply 

a wavefront correction of half a wave. 

PLCs are well suited to binary adaptive optics because of their bistable nature. It 

has been shown by Love et al. (Love, 1995) that despite only partially correcting 

the wavefront an increase in the Strehl ratio from -0% to 40.5% is achievable. 

3.7.2 BINARY ADAPTIVE OPTICS AND H I G H E R O R D E R 

C O R R E C T I O N WITH F L C S 

Unless several devices are cascaded together in an optical system, it is currently 

only possible to achieve a two state or bistable SLM with FLCs. With the 

suitable configuration of polarisers, FLCs can act as amplitude or phase 

modulators. We are only interested in phase modulation at present. 

The two states required for binary adaptive optics are -nil and 7T./2, which is 

equivalent to saying 0/71 phase shift because we are not interested in the absolute 

phase (nor can it be determined). Up to four cascaded devices have been 

demonstrated by (Biernacki, 1991), (Freeman, 1992) and (Broomfield, 

1995a&b), giving phase shifts of 0, JC/8, 7C/4, 3%/S, nil, 5rc/8, 371/4, and 7rc/8. 

Because polarisers need to be incorporated around each device, the transmission 

of such a system is prohibitively low (Broomfield quotes a 16dB loss). 
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3.8 Non-Astronomical Adaptive Optics Applications 

Non-conventional Earth based non-astronomical applications for adaptive optics 

has so far been limited. This is mainly because of the high cost of such systems. 

There are the possibilities of many more applications. Some of these are 

summarised below. Liquid crystals offer the potential for low cost adaptive 

optics, although they are not suitable for all applications. 

• Space Based Astronomy: Although still an astronomical application this is 

included here because it is not an Earth based system and has different 

requirements. There is some interest in using some sort of adaptive optics in 

the Next Generation Space Telescope (NGST) and in other future space 

telescopes (Kuo, 1994). The Hubble space telescope is diffraction limited but 

it is limited by the relatively small diameter of its primary mirror (2.4m) 

compared to many Earth based telescopes. Placing a larger conventional 

mirror into space would be extremely expensive and maybe technically 

impossible with the current fleet of Space Shuttles. Some of the current 

NGST designs use a primary mirror that folds out like an umbrella. These 

mirrors are generally lower quality and so some sort of adaptive optics will 

need to be incorporated into the system to compensate for this. There is the 

potential of using liquid crystal SLMs for this application. Their lightweight 

and robustness makes them potentially suitable for space applications. The 

system would be an active optics system, so the liquid crystals slow speed 

would not be a disadvantage. 

• Military Applications: A large part of the early work on adaptive optics was 

done by the US military as part of the Strategic Defence Initiative. These 

systems were for ground based satellite observations and laser weapon beam 

propagation through the atmosphere. 

• Laser welding: There is a need to maintain a fine focus of the beam on the 

surface. 
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• Laser Cavity Applications: An adaptive mirror in a laser cavity echelon can 

be used to maintain the correct alignment in the cavity. This is important for 

high power applications where the heating of the laser causes the mirrors to 

warp. In both this application and the previous, the high power nature would 

mean the only corrective device that could be used would be a conventional 

deformable mirror. 

• Under water imaging: The majority of image degradation when imaging 

objects under water comes from scattering from particles in the water. 

Adaptive optics may have some applications when imaging in ultra pure 

water (e.g. in nuclear power stations). 

• Retinal Scanning: When imaging the retina, the resolution is approximately 

that of a cone. To image at finer resolutions adaptive optics will be needed. 

• Optical Storage Devices: CD based systems already use an adaptive optics 

system to maintain focus. It is possible in the future that there will be a need 

to use a complete adaptive system, correcting for several Zernike modes. This 

may be important in next generation systems, post DVD, where the beam wil l 

have to propagate through several layers to reach the desired information, i.e., 

the information is stored in 3 D. 

• Hostile Environment Imaging: There is a potential for using adaptive optics in 

situations where the environment effects the performance of optics such as in 

furnaces. Furnace walls have to be continuously monitored to ensure there is 

no soot build up which reduces the heat transfer efficiency. Normal optics 

will become stressed when exposed to high temperatures; adaptive optics 

could correct for this. 

The following chapters will however concentrate on astronomical applications. 

50 



C H A P T E R 3: ATMOSPHERIC T U R B U L E N C E AND CONVENTIONAL ADAPTIVE OPT ICS 

3.9 Summary 

In this chapter we have reviewed the sources of aberrations from the atmosphere 

and conventional adaptive optics. The statistical Kolmogorov structure of 

atmospheric turbulence has been described. The current state of deformable 

mirrors and the different types of wavefront sensor have also been reviewed. 

Some non-astronomical applications of adaptive optics have been mentioned 

although the application of liquid crystal adaptive optics in this thesis will be 

towards astronomy. 

In the next chapters, the knowledge from the previous two chapters will be used 

when constructing liquid crystal adaptive optics systems. The next chapter will 

first study a custom built nematic SLM and the possibilities of using this in 

adaptive optics. 
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Chapter 4: A Multiplexed Nematic Liquid Crystal 

SLM 

4.1 Introduction 

In this chapter there will be a description of a purpose built 64x64 pixel nematic 

liquid crystal SLM. This device was built by GEC, for Durham University and 

the Defence Evaluation Research Agency (DERA) for a first attempt at liquid 

crystal adaptive optics. This section describes the device, its calibration, and its 

performance. Experimental evidence shows there was a major problem when 

using the device as a phase only SLM because of its drive electronics. 

There are at present several methods used for controlling liquid crystal SLMs. 

These include multiplexing, direct drive, active matrix and optical addressing. 

Most of the current technological drive behind liquid crystal SLMs is for display 

applications. In principle, display technology should be easy to convert to phase 

modulating SLMs. Displays such as LCTVs (liquid crystal televisions) and 

computer monitors require a large number of pixels. Directly driving each pixel 

becomes impossible because of the need to have electrodes going to each 

individual pixel. Multiplexing and active matrix are currently used in large 

displays. Active matrix displays are currently not suitable to be used as phase 

only SLMs for adaptive optics because of their very small f i l l factor (typically 

can be as low as -25%). Multiplexing offers a simple driving technique and so 

this following section sets out to characterise a custom built device. 

4.2 Device Description 

The device was based upon standard display technology. It used a 64x64 pixel 

glass substrate designed for a twisted nematic liquid crystal display. The drive 

electronics are based around the Hitachi HD61203 dot matrix liquid crystal 

column driver and the Hitachi HD61203 dot matrix common driver chips. The 

device was controlled by a Viglen 80386 IBM compatible PC and software 
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written in Microsoft C. To simplify the device's electronics only the column 
voltage could be altered, all the row voltages were identical so in effect the 
device only worked in one dimension. To control the device an array of voltages 
was sent to the computer's digital to analogue converter (DAC) where this was 
converted into a serial signal. This signal was amplified and converted back into 
a digital signal by the liquid crystal drive electronics and fed into the two Hitachi 
liquid crystal driver chips (see figure 4.1). 

ADC 

DAC 00 

LC SLM 

Figure 4.1. The 64x64 SLM's drive electronics block diagram. 

The liquid crystal used in the device was E7 produced by Merck (formerly BDH 

Ltd.). The main difference between this device and commercially available 

devices was that the liquid crystal was not twisted nematic, but parallel aligned. 

This enables phase modulation of light without any rotation of its polarisation 

state. The device specifications are given in table 4.1. 
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Specification Value 

Liquid crystal Merck E7 

Threshold voltage 1.50V 

Birefringence An=0.22 

Cell thickness 25|J,m 

Controllable optical path length 5.5|im 

Total theoretical retardance ~nl 

Theoretical resolution 7 bit, -A/18 2 

Pixel size 400|im 

Inter-pixel spacing 40|xm 

Pixel f i l l factor 90% 

RMS optical flatness (Love, 1994) A/23 

Effective number of pixels 64x1 

Pixel refresh rate 15ms4 

Operating temperature -10°C to +60.5°C 

Response time , for A/2 decay (Purvis, 40ms5 

1993) 

Table 4.1. The specifications of the 64x64 SLM 

Although this device is limited in only being able to be driven in one dimension, 

it is still useful to assess the capabilities of a multiplexed driven liquid crystal 

SLMs for adaptive optics. Multiplexed liquid crystal displays suffer from low 

contrast. A similar problem occurs in phase-only modulation. An experiment 

was set up to investigate this and to calibrate the liquid crystal for phase versus 

voltage applied. The contrast reduction is because of voltage "crosstalk" 

'^638.2nm He-Ne 
2?t=638.2nm He-Ne. This assumes that the response is uniform over the whole dynamic range, 
which it is not. 
3Measured with a Zygo interferometer, 638.2nm He-Ne 
4 This is the speed at which the drive electronics refreshes the S L M . The actual liquid crystal does 
not work at this speed, to relax from IX to OX phase shift took several seconds 
5^=543nm He-Ne 
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between pixels with high applied voltage and pixels with a lower applied 
voltage. 

4.3 Experimental 

4.3.1 V O L T A G E W A V E F O R M MEASUREMENTS 

The exact voltages being applied to the liquid crystal were investigated. Three 

wires were soldered onto the electrical connections of the liquid crystal array on 

columns 22 and 42, and row 32. These were then connected to a cathode ray 

oscilloscope (CRO). The voltage waveform applied to the liquid crystal could be 

measured. By subtracting the voltage waveform from either column 22 or 42 

from that of row 32, the potential difference applied across pixels (32,22) or 

(32,42) could be measured. Several different voltage waveforms were recorded: 

completely off, completely on, half the array on and half the array off, and a 

ramp function across the whole array. The individual traces being applied to 

each particular row and column were also recorded. 

4.3.2 PHASE SHIFT MEASUREMENTS 

In order to quantify the crosstalk, the actual phase shifts were measured. It was 

assumed that if all of the pixels had the same voltage applied, there would be no 

crosstalk between them. Using this assumption a calibration curve for phase shift 

versus voltage could be measured. 

Nematic liquid crystals are birefringent and so can be treated as normal linear 

waveplates but with a variable retardance. When placed between crossed 

polarisers, at an angle that bisects the extraordinary and ordinary axis, the SLM 

modulates intensity. Using this, the phase shift can be measured indirectly. 

When there is a phase shift of (2w+l)7t: the transmitted intensity is at a maximum, 

and a minimum when the phase shift is 2nn, where rc=0,l,2.... It was assumed 

that the retardance of the liquid crystal would always decrease with increased 

potential across the liquid crystal. 
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© 
o oo 

CRO 

Figure 4.2. The experimental set-up to measure the phase shift induced by the 

64x64 SLM. POLl and POL2 are both polarisers at 45 ° and 135° respectively 

compared to the optical axis of the SLM, RET is a liquid crystal retarder, SLM is 

the 64x64 SLM, PD is a photodiode which measures the transmitted intensity, 

and CRO is an oscilloscope. 

The experimental set-up is shown in figure 4.2. An additional liquid crystal cell 

retarder was required and the voltage across it was altered until there was a 

minimum transmission. This was necessary because the retardance of the GEC 

64x64 in its 'off state' was not necessarily nn, where n is an integer. The light 

source was a 5mW 638.2nm He-Ne laser. 

A calibration curve for the SLM was calculated by increasing the voltage applied 

across the liquid crystal and recording the minimum and maximum intensity 

throughput against voltage. 

Once the device was calibrated, the crosstalk could be measured. A fixed voltage 

was applied to one half of the device (columns 1-32) whilst the other half (33-

64) had its voltage varied. First of all a voltage that should have induced a In 

phase shift according to the calibration curve was imposed on columns 1-32. The 

phase shift produced by columns 33-64 was measured as before. This was 

repeated for the voltages equivalent to all possible integer values of n phase shift 

on columns 1-32. If there was no crosstalk between the two halves, the new 

phase/voltage curves generated for columns 33-64 should be identical to the 

calibration curve. 

RET SLM POL2 LASER POLl 
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Next, a known phase shift was imposed on columns 1-32 and the voltage was 

increased on columns 33-64 while measuring the phase shift on columns 1-32. If 

there was no crosstalk there should be no change in the phase shift of columns 1-

32. 

4.3.3 V O L T A G E MEASUREMENTS R E S U L T S 

Figures 4.3 to 4.10 show photographs of oscilloscope traces showing the 

voltages applied to the individual pixels. Note the oscilloscope was set to 5ms 

per division on the time base and 5V per division on the y deflection. 
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Figure 4.3. CRO trace showing the voltage across an individual pixel (32,42) of 

the SLM in the off state. The square wave has an amplitude of-0.IV to -0.5V and 

the spikes are at 3.8V and -3.6V. The period is 30ms. Note the spikes are the 

writing pulses and these correspond to the position of the column that is being 

measured. 
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15ms 30ms 45ms time 

Figure 4.4. CRO trace showing the voltage across an individual pixel when the 

whole device is switched fully on. The square wave is ±2V and the spikes (only 

seen as dots on this plot) are ±15V. The period is 30ms. 
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Figure 4.5. CRO trace showing the voltage applied to a pixel's column 

electrode. The device is switched fully on. The square wave is +2. IV to -13V, the 

spikes are +4V and -15V, and the period is 30ms. 
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15 ms 30ms 45 ms time 

Figure 4.6. The same as figure 4.5 but showing the row voltage only (row 32). 

The square wave is OVto-llV. Note that there are no spikes on this plot. 

Subtracting figure 4.5 gives us figure 4.4. 
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Figure 4.7. CRO trace showing the voltage across pixel (32,22) with a ramp 

function applied across the whole array. The ramp goes from OV to ±2V and the 

spikes are + 10.9Vand -77 V. The waveform is an image of what has been 

applied to the whole array. 
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15ms 30ms 45ms time 

Figure 4.8. The same as figure 4.7 but measured from pixel (32,42). The spikes 

now have values + 6.9V and -7.0V. The spike's position corresponds to the 

position of the column that is been measured. 

• * 

15ms 30ms 45ms time 

Figure 4.9. CRO trace showing the voltage measured from pixel (32,22). A step 

function is been applied to the SLM. Columns 1-32 are fully on and columns 33-

64 are o f f . The waveform goes from +2V to -0.1V to -2.2V to -0.2V. The spikes 

are + 15V and -15V. 
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Figure 4.10. The same as figure 4.9 but measured from (32,42). The waveform is 

identical but the spikes are at +3.8V. 

The figures show how the device was been driven. The position of the spikes on 

the column waveforms correspond to the position of the pixels being driven. 

They are only on the column voltages because this is the signal channel whilst 

the row is the scan. The waveform seen was a result of multiplexing, it was a 

scaled down image of the actual voltage function applied across the whole array. 

The 30ms period of the traces was expected. The frame rate of the device was 

known to be 15ms. The liquid crystal is driven in AC so one frame is positive 

and the next is negative giving a total of 30ms. The spikes are also present when 

the device has 0V applied across it (figure 4.3). 

In conclusion, it can be seen from figures 4.3 to 4.10 that the device was being 

driven by a complex waveform. There was a writing spike corresponding to the 

driven pixel and a large underlying waveform that was produced by the 
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multiplexing. The effect this waveform has on the liquid crystal will be 
discussed in §4.4.4. The next section will show the results of the phase shift 
measurement experiment. 

4.3.4 PHASE SHIFT MEASUREMENT R E S U L T S 

The calibration curve is shown in figure 4.11. The y axis is the value of the spike 

voltage applied to the liquid crystal. It can be seen that there is a 147C phase shift 

when the device is turned from fully on to off. This compares well to the 

theoretical total phase shift mentioned in table 4.1. 
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Phase change measured / pi radians 

Figure 4.11. The calibration graph of the nematic liquid crystal SLM. 

Figure 4.12 demonstrates crosstalk. It shows the phase change measured on 

columns 33-64, whilst the applied voltage on columns 1-32 was kept constant. 

The y axis shows the expected phase shift and the x axis shows the measured 

phase shift. If there was no crosstalk between the two halves of the SLM the 

lines will be identical to the calibration curve. 
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Actual phase shift measured on pixels 33-64 / pi radians 

Figure 4.12. This shows the measured phase shifts produced in columns 33-64 of 

the SLM. A fixed phase shift is applied to columns 1-32 (see the legend). The 

graph shows the expected phase shift on the vertical axis versus the measured 

phase shift on the horizontal axis. The calibration line (CAL in legend) is also 

shown. 
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Figure 4.13. The measured phase shift produced in columns 1-32 of the SLM. 

Columns 1-32 has the expected phase shift applied that is indicated by the 

legend. The phase shift produced by columns 1-32 is shown (x-axis) as the 

voltage is varied across columns 33-64 (y-axis). 
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Figure 4.13 shows a similar experiment but the phase shift was measured on 
columns 1-32 whilst the voltages on columns 33-64 where varied. If there was 
no crosstalk between the two halves of the SLM the lines should be vertical. 

It should be noted that the response time of the system was very slow. It took 

several seconds to reach a stable state. 

For the two graphs in figures 4.12 and 4.13 it is clear that there is significant 

crosstalk present between pixels. For example, if a phase shift of n radians is 

required on columns 1-32 and a phase shift of 14TT is required on columns 33-64, 

the actual applied phase shift is 10ft on columns 1-32 and \2n on columns 33-

64. The actual measured phase shift tends towards some value between the two 

theoretically applied values. 

4.4 Discussion 

The reason for such a large amount of crosstalk error can be seen in figures 4.3 

to 4.10. The spikes seen are the writing pulses that activate the individual liquid 

crystal pixels. The underlying waveform comes from the multiplex process. 

There is a contribution from each pixel to the overall waveform. Only the 

writing spike is above the threshold voltage of the liquid crystal. Ideally only the 

writing spike should effect the liquid crystal, but the underlying waveform 

contributes to the RMS voltage that the liquid crystal experiences and this is 

large enough to switch on other liquid crystal pixels partially and produce 

crosstalk. Because the waveform models the total pattern applied to the whole 

SLM, this waveform has an effect on each pixel. When only a small voltage is 

applied to half of the SLM this will lower the RMS voltage across the other half 

of the SLM and lower the applied voltage to each pixel. 

The writing spike is only 234fis long and so for 14.766ms the liquid crystal pixel 

is undriven and will start to relax. As the number of rows is increased, the 

writing spike will become shorter and so the actual RMS phase shift of the 
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device over one frame will decrease. This limits the number of rows that can be 
driven in a multiplexed display because the contrast of the display decreases. 
This will be similar in phase only SLMs. 

The effect of this partial pixel activation is common to all multiplexed displays 

(Pankove, 1980). If 14TI phase shift is applied to one half of the SLM and Ore 

phase shift applied to the other half, there will be an induced unwanted phase 

shift in the On half, and \4n half will have a reduced phase shift. 

This experiment only looks at the crosstalk between two halves of a 64 pixel 

device. It seems logical to assume that a more complex function on the SLM will 

also have crosstalk effects. This crosstalk reduces the potential use of the device 

as an adaptive optics component when the full dynamic range of the device is 

required. It has however been successfully demonstrated by Love et al. (Love, 

1994) correcting a tilt in a wavefront when the device was placed in a Zygo 

interferometer. He only produced a phase shift of the order of ~1A.. At this level 

the crosstalk will be very small. Love did not investigate any effects of crosstalk 

in his paper. 

Although multiplexing offers an easy way to drive large numbers of pixels it 

should be clear that the current display technology used in this device is not 

adequate to be adapted to phase only modulation. Other driving techniques for 

devices with large number of pixels suffer from poor fill factors because of the 

required electrical circuitry, except for optical addressing techniques. Unless 

optical addressing techniques are employed, it means other authors claims of 

liquid crystal offering a large number of pixels are brought into doubt. By careful 

design Meadowlark has produced a 69 pixel direct drive SLM with a high fill 

factor. This device is reviewed in chapter 6. 
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4.5 Summary 

In this chapter a multiplexed nematic liquid crystal SLM has been assessed for 

its potential as a phase modulator. The device was only a prototype and was only 

driven in one dimension. The device was not intended for use in astronomical 

applications and has not been optimised for speed. The important point that this 

chapter has shown is that the multiplexed driven liquid crystal SLM could not 

accurately cause a desired phase shift over there whole dynamic range and so 

was not very suitable for adaptive optics. For this reason it was decided not to 

continue with the GEC device, but to use standard commercially available 

SLMs. The simplest to use is the FLC device built by Displaytech. This is a 

direct drive device and so does not have the problems associated with a 

multiplexed device. It is the subject of the next chapter. 
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Chapter 5: Binary Correction with a Point 

Diffraction Interferometer 

5.1 Introduction 

This chapter is concerned with using an FLC SLM as a corrective element in an 

adaptive optics system. An FLC SLM is capable of 'binary adaptive optics'. 

This is the simplest method of providing correction with a liquid crystal device. 

The wavefront sensor is a Smartt or point diffraction interferometer (PDI). The 

PDI has been chosen in an attempt to reduce the computational overheads that 

are commonly found in wavefront sensors, e.g. the Shack-Hartmann, and 

shearing interferometer. 

A simple phase unwrapping algorithm is developed and the validity of this is 

confirmed with computer modelling of the PDI/FLC system. The possibilities of 

future improvements are also explored which could make the system into a 

viable high speed adaptive optics system with astronomical applications among 

others. 

5.2 Background 

Binary adaptive optics aims to provide correction for an aberrated wavefront 

where conventional adaptive optics can not. This may be because of the high 

cost of conventional adaptive optics or other factors such as its bulky size and 

computational power requirements. Conventional adaptive optics can be broken 

down into three areas: 

1. Wavefront sensing 

2. Computer/control hardware 

3. Deformable mirrors 
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To produce a low cost system, it is important to carefully balance each part of 

the system. It has already been said that liquid crystals offer a lower cost 

alternative to deformable mirrors. The price of the wavefront sensor and 

computer hardware must also be taken into account. In this thesis all of the real 

time computation will be on an IBM compatible PC with a C40 DSP image 

processor. 

Currently, the most commonly used wavefront sensor in the adaptive optics 

community is the Shack-Hartmann wavefront sensor. Conceptually, this is one 

of the simplest designs, which may partly be the cause of its current popularity. 

However, the optical and conceptual simplicities are offset by the computational 

burden of calculating the phase. In chapters 5 and 6 we will demonstrate that a 

simplified Shack-Hartmann system can be run at a reasonably high speed on a 

single C40 and an IBM compatible PC if several criteria are relaxed. This system 

is still complex and slow compared to that which could be achieved with a 

conventional interferometer. However the need for a reference arm prohibits the 

use of such a sensor. 

The other wavefront sensor commonly used is the shearing interferometer. These 

devices are still, however, computationally expensive and require two 

measurements to calculate the phase. Other more novel sensors exist such as 

wavefront inversion interferometers (Spektor, 1995), but these still require 

complex calculations to determine the wavefronts. 

An example of a conventional Shack-Hartmann system's computational 

requirements is the ELECTRA system at Durham. This uses 9 TMS320C40 

DSPs on a VME bus, a SUN Sparcstation 10 and a Silicon Graphics Indigo-2 

workstation to decode the information from a Shack-Hartmann wavefront sensor 

and to control a 76 element tip/tilt/piston segmented mirror. The price of this 

system will clearly be more expensive than a liquid crystal SLM and so would 

not fulfil the criterion of a low cost adaptive optics system that this thesis sets 
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out to demonstrate. The PDI offers a low cost alternative to the above systems. It 

does not completely determine the phase but this is not important in binary 

adaptive optics. 

5.2.1 STANDARD R E F E R E N C E ARM I N T E R F E R O M E T R I C 

TECHNIQUES 

The potential performance of an F L C SLM in binary adaptive optics systems has 

been demonstrated using conventional interferometers for static correction. 

Thomas (Thomas, 1993) used a 128 by 128 device in a Mach-Zehnder 

interferometer to statically correct for an aberrated piece of glass. Thomas also 

cascades two devices together producing a higher order correction (quarter wave 

correction). This was followed up by Broomfield et al. (Broomfield, 1995a & b) 

with a four level system (eighth wave correction). Both of these systems have 

transmissions that are too low for astronomical purposes. The nematic LCTVs 

system of Kim et al. (Kim, 1988) also worked with a conventional 

interferometer. 

None of the above authors have demonstrated any real time capabilities. They 

only corrected for static aberrations. 

5.3 Theoretical Considerations 

5.3.1 T H E SMARTT OR POINT DIFFRACTION I N T E R F E R O M E T E R 

The theory behind the PDI was described in chapter 3. Because it is a self 

referencing interferometer it is suitable to use in binary adaptive optics with 

astronomical sources. Figure 5.1 shows an example interferogram produced by 

the PDI. The aberration was produced by using a singlet lens that introduced 

spherical aberration into the system, shown in figure 5.2. The square pattern is 

the FLC. Figure 5.3 shows the same interferogram but with some of the F L C 

pixels activated to remove the dark fringe. Figure 5.4 shows an interferogram 

69 



CHAPTER 5: BINARY CORRECTION WITH A POINT DIFFRACTION INTERFEROMETER 

with no spherical aberration but a chequered pattern on the FLC (i.e., half the 
pixels are on and half are off, like a chess board.) 
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Figure 5.1. An example of the PDl's interferogram. The FLC SLM has been 

placed in front of the PDI, hence the square aperture. The FLC's interpixel gaps 

are clearly visible as the dark cross pattern. The dark fringe is produced by an 

aberration introduced into the system to demonstrate the PDI. If there were no 

aberrations present there would be no fringes visible. 

L2 FLC L I PDI 
CCD 

W V 

Figure 5.2. The experimental set-up to produce the sample interferogram in 

figure 5.1. LI and L2 are lenses, FLC is the FLC SLM, PDI is the Smartt PDI 

and CCD is a CCD camera. 
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mm mm 

Figure 5.3. This is the same set-up as in figure 5.1 but with some of the FLC 

pixels activated to remove the dark fringe. 

Figure 5.4. The PDI interferogram of the FLC displaying a chess board pattern. 

This diffracts light out of the central maximum resulting in no reference wave, 

and hence no fringe contrast with the PDI. 

This type of interferometer is potentially useful in astronomy as well as high 

noise environments because of its lack of a reference arm. Smartt et al. (Smartt, 

1975; 1979) proposed several applications for the PDI including the testing of 

telescopes. He used an m=0 star as the light source and placed the PDI at the 

Cassegrain focus. The interferogram could be recorded with normal 

photography. There was no need for image intensifiers despite the PDI's low 

optical transmission. 
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There are several variations of the PDI that are of interest for wavefront sensing 

applications. These can be classed as conventional PDIs and phase shifting PDIs. 

The conventional PDI can be divided into 4 types: 

1. Central field absorption. In this class the transmission function, r(p,9), of the 

filter is give by 

r(p,e)=i, p>R 
[5.1] 

= a, p < R 

where p and 8 are the circular co-ordinates, R is the desired radius of the 

central obstruction, and a is the transmission of this obstruction and usually 

a=0 in this case. 
2. Phase contrast. In this filter the transmission function is 

r(p,e) = i, P>R 

= e'\ p<R 

where <|) is some phase shift between 0 and 271. 

3. Field absorption. (Smartt PDI type) 

7 = a, p > R 

= 1 P<R 

4. Field absorption and phase contrast combination 

[5.2] 

[5.3] 

T = a, p > R 
[5.4] 

= e*\ p<R 

Anderson (Anderson, 1995) considers all four types of PDI and compares their 

fringe visibility, fringe brightness and accuracy. He concludes that the phase 

contrast PDI, with cp=7C, performs best when the incident wavefront has a 

variance of >(27c)2 and little light loss can be tolerated. However, the field 
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absorption PDI has the advantage of been easier to construct and are 

commercially available and so this type has been selected. 

The wavefront can not be completely calculated with any of the above PDIs. 

Phase shifting PDIs have been developed by Kadono et al. (Kadono, 1994) and 

Mercer et al. (Mercer, 1996). Both of these systems use nematic liquid crystals 

to vary the phase of light passing through the field area of the PDI. Although the 

phase can be unwrapped the devices are too slow to be used in astronomical 

applications because of the need to take up to 5 interferograms to unwrap the 

phase. A modified PDI that diffracts light into three separate interferograms has 

been developed (Kwon, 1984) enabling fast unwrapping. It does however need 

three detector arrays and is not light efficient, making it unsuitable for 

astronomy. Completely unwrapping the phase is not needed in binary adaptive 

optics. We are only concerned in finding if part of the wavefront is out of phase 

with the rest. 

5.3.2 PDI /FLC S Y S T E M CONSIDERATIONS 

When the PDI is used in conjunction with the PLC the basic algorithm was: 

If a region of the interferogram is dark add K radians phase shift with the 

FLC pixel that corresponds to that region. 

Several algorithms to determine the threshold value for the intensity have been 

considered. The major difficulty is that both the mean intensity and the fringe 

contrast change depending on the aberrations. An aberration in the incoming 

wavefront will cause the PSF to spread out so less light enters the pinhole. This 

reduces the fringe contrast ratio. This light then passes through the 

semitransparent aperture, but because this has a lower transmission than the 

pinhole the overall intensity of the interferogram drops. We take the familiar 

equation for the intensity of two interfering wavefronts of unequal amplitude Ao 

and aAo, where a < l , 
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/ ( r ) = ( l + a 2 > 0 [ l + Ycos(())(r))] [5.5] 

Here /o corresponds to the intensity associated with Ao alone. The fringe contrast, 

or modulation, is given by 

J = - j [5.6] 
1 + or 

and <|)(r) is the phase difference between the wavefronts. The maximum intensity 

in the interferogram i s / ^ = ( l + a ) 2 / 0 and the minimum is = ( l - a ) 2 / 0 , 

the overall average is (lmax + )/2 = (l + a2 )l0. This value would be the ideal 

threshold, but because the original intensity and the fringe visibility are 

unknown, half of the mean intensity of the interferogram was used instead. From 

our experience this gave the best results. This value has to be calculated for each 

interferogram. Several other values for the threshold were tried but these all 

failed for the reasons to be discussed below: 

1. Consider the case when a fixed threshold is used. In a non-aberrated incident 

wavefront, a % phase shift could be added with the FLC to a number of FLC 

pixels. However, the intensities of the FLC pixels will be dependent on the 

number of pixels activated. If all of the pixels are on, the interferogram will 

look identical to the all off state. This is because both the reference wave and 

the test wavefront have been shifted by n. If half of the pixels are on and half 

are off, there will be zero contrast between the two halves because light wil l 

have been diffracted away from the pinhole of the PDI. There will be a large 

contrast between the on and off pixels when only one pixel is flipped. Ninety-

nine of the pixels will be bright on the interferogram and the out of phase 

pixel will be dark. However i f the intensity halfway between the on and off 

pixels is chosen as the threshold value and a large aberration is introduced 

(atmospheric turbulence for example) the total intensity of the interferogram 
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will be reduced. For certain aberrations the total intensity of the interferogram 

will drop below this threshold value and all of the PLC pixels will f l ip 

continuously and perform no correction. From experimental observations this 

continuous flipping between states happened most of the time. 

2. The next value of the threshold to be considered was taking 4Io as the 

maximum intensity of the interferogram, I n i a x - This would be the brightest part 

of the interferogram and therefore 4/ 0 could be taken to equal 1^ i f a is close 

to 1. In this case, the threshold would be Imw/2. This does however not work 

in practice because of the non-uniform intensity pattern produced by the PDI. 

The interferogram is in fact brighter in the centre and becomes dimmer 

towards the edge. This is because the reference wave of the PDI is not from a 

point source, but a pinhole, so it does not produce a perfectly spherical wave, 

but some other function produced by the diffraction from the pinhole. (This 

effect is further compounded by the Gaussian beam profile of the He-Ne laser 

source.) This means that the FLC pixels around the edge of the SLM will be 

flipped more readily than the ones in the centre. This complication is also 

applicable to model 1. In practice the outer pixels of the FLC were 

permanently flipped. This introduced aberrations in to the beam. The 

assumption that a is close to one also may not hold. 

3. Consider taking the threshold as $Imax, where |3 is some real number in the 

range 0<p<l. In this case, the above problem of pixels flipping around the 

edge of the FLC is reduced by choosing a low value of (3, but this method 

does not work when the fringe contrast is low. If this is the case, the mean 

intensity, 7 , will tend towards 7 ^ , and so all of the interferogram may be 

above the threshold value if a is small and no pixels will be flipped. No value 

of a could be found that was low enough to stop the edge FLC pixels flipping 

and high enough to work in a low fringe contrast situation. 
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4. Consider taking the mean intensity, / , or halfway between the minimum and 

maximum, as the threshold (the argument is similar for both). This algorithm 

will correct for any dark fringes no matter what the fringe contrast is like. I f 

we consider an incident wavefront with a 0 and n phase shift in it, there will 

be a dark and light region on the interferogram. The threshold value will be 

between the two intensities. The FLC will correct the area that is n out of 

phase. The algorithm works in this case. However, i f we now consider a rc/lO 

phase shift instead of n in the incident wavefront, we can see that this 

algorithm will set the threshold to be between the two intensities again. The 

FLC will add TC phase shift to the K/10 region and thus aberrate the beam, so 

this algorithm fails. 

5. We used half of the mean intensity and so the threshold value is 7/2. 

Although this model does not reach a solution in the first frame of correction 

in the author's experience this produced the best correction. 

To validate this assumption and get a clearer understanding, computer 

simulations of the PDI were performed. 

5.3.3 COMPUTER SIMULATION 

Unlike a Michelson type reference arm interferometer, calculating the 

interferogram from the PDI is non-trivial. The total intensity of the interferogram 

and the fringe contrast depend upon the incident wavefront. A highly aberrated 

wavefront will produce a lower fringe contrast and lower total intensity. In our 

system, the correction element is placed in front of the PDI for closed loop 

operation and so diffraction effects from the pixels may further complicate 

matters. 

When the system was run in a feedback loop, the system did not behave as 

originally expected. The device did not correct for a given aberration in the first 
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frame, but it took several frames to converge towards the best solution. A 
computer simulation was carried out to gain a better understanding of how the 
PDI/FLC system was performing the correction. 

The simulation was carried out using Mathcad™. A phase aberration was written 

to an array, representing the incident wavefront. The data was then fast Fourier 

transformed (FFT) to give the amplitude and phase pattern in the PDI plane. An 

amplitude aperture mask representing the PDI was then applied to this and the 

array was again fast Fourier transformed to give an amplitude pattern in the 

interferogram plane. The intensity pattern was calculated from this. From this the 

intensity threshold switching value could be calculated. The array was divided 

into ten sections to represent the FLC pixels. If the mean pixel intensity was 

below the threshold intensity, n radians were added to the initial incident 

wavefront and the simulation re-run. 

5.3.4 COMPUTER SIMULATION R E S U L T S 

Figures 5.5 show the ID simulation results of the correction of 1 wave of 

defocus with some global tilt. Figure 5.5 a(i) shows the initial PSF, figure 5.5 

a(ii), the simulated PDI interferogram, and figure 5.5 a(iii) the wavefront 

incident on the PDI. Figure 5.5 a(iv) shows the reference wave produced by the 

pinhole. This is generated by setting the transmission of the opaque screen 

surrounding the pinhole to zero. In figures 5.5 b(i-iv) the first correction is made, 

in figures 5.5 c(i-iv) the second is made. After the fourth correction (figures 5.5 

e(i-iv)) the simulation returns to the same state as that in figures 5.5 d(i-iv). The 

simulation oscillates between figures 5.5 e(i-iv) and 5.5 d(i-iv) indefinitely. 

The PSFs shown in figures 5.5 a), b), c), and d) (i) are identical to the intensity 

pattern focused onto the PDFs aperture. Ideally, in the case of a non-aberrated 

incident wavefront, the intensity of the light that has passed through the pinhole 

should be equal to the intensity of the light that has passed through the opaque 

screen. This gives the best fringe contrast (y=\ in equation [5.5]). When an 
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aberrated beam, such as in figure 5.5 a (iii) is incident, the PSF spreads out over 

the PDI filter. Because the pinhole and aperture attenuation's are different, the 

total amount of light passing through the PDI will be different to the non-

aberrated case. The contrast ratio will decrease because a different amount of 

light passes through the pinhole and semi-transparent screen. From these figures 

it can be seen that, because of the low fringe contrast in the first frame it is only 

possible for the system to perform a partial correction. The reference wave 

produced by the PDI is severely attenuated. After the first approximate 

correction is made by flipping the correct FLC pixels, the PSF is partially 

corrected (figure 5.5 b (i)) and the reference wave is restored (figure 5.5 b (iv)). 

This continues until the reference wave and PSF are as fully corrected as 

possible. 

It can also be seen from figures 5.5 that under certain circumstances oscillations 

may occur. This happens when there is an intensity slope on the interferogram 

across a region corresponding to an FLC pixel with slightly more than half of the 

intensity under the threshold value. This causes the FLC pixel to flip, correcting 

the phase of that region and so raising the total intensity of the interferogram, 

and hence the threshold value. The intensity slope across the pixel means that the 

mean intensity of the pixel is under the new threshold and the FLC flips again 

back into its original state, and hence the correction oscillates. This is in 

agreement with experimental observations. 
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Figures 5.5 a, b, c, d, e, f(i). The top (a) is the aberrated PSF. The one below (b) 

is the first correction and the next 4 are the following corrections. Figure (d) is 

identical to ( f ) . The vertical scale is normalised intensity, the horizontal is 

distance in arbitrary units. 
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Figure 5.5 a, b, c, d, e,f(ii). The simulated interferograms. The top one (a) is 

the uncorrected interferogram. The horizontal line is the threshold value. The 

vertical scale is the intensity, the horizontal is the FLC pixel number. 
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Figure 5.5 a, b, c, d, e, f (iii). The incident phase screens. The vertical scale is in 

units of waves. The horizontal scale is the simulated FLC pixel number. 
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Figure 5.5 a, b, c, d, e,f(iv). The reference wave created by the PDI. 
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5.4 Experimental FLC/PDI System 

5.4.1 SET-UP 

Figure 5.6 shows the experimental set-up. The FLC was a 10x10 pixel direct 

drive device constructed by Displaytech with 0.885mm x 0.885mm pixels and 

0.115mm inter-pixel spacing. The device was controlled by an 80486 PC with a 

Texas Instrument's C40 parallel processor mounted on a Coreco F/64-DSP 

frame grabber. 

Laser B E 

L I L2 POL BS L3 LA 

Abemtion 
F L C PDI CCD 1 

CCD 2 

Figure 5.6. The experimental set up. L1-L5 lenses, BS beam splitter, POL 

polariser, BE beam expander and spatial filter, FLC ferroelectric liquid crystal 

SLM, PDI point diffraction interferometer. The aberration was generated with a 

Meadowlark Hex69. 

A collimated lOmW polarised He-Ne laser was used for illumination. A 

polariser was placed after the FLC. A beam splitter was used to split half of the 

light to the science camera (CCD2) which measures the PSF of the system. A 

lens focuses the other half onto the PDI's aperture. Doublet lenses where used 

throughout the system to minimise spherical aberrations. 

Aberrations were introduced into the system by placing the Meadowlark Hex69 

nematic liquid crystal SLM in front of the FLC SLM. 
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5.4.2 CONTROL HARDWARE 

A Coreco F/64-DSP board was used for the image processing. Its specifications 

are shown in table 5.1 

Specification Value 

Video memory (VRAM) 2Mbytes 

Digitisation accuracy 8 bit 

Dynamic Memory (DRAM) 1 Mbyte 

Camera * Standard CCIR 

Frame rate * 25 Hz 

Frame size * 768 x 575 (8-bit) 

Image processor TMS320C40 

Display VGA monitor 

Table 5.1. The image acquisition equipment and processor. The frame board 

was capable of interfacing with many different types of CCD camera, values 

indicated by * are user settings and depend on the type of camera. 

The PC was an 80486 DX2 66MHz with 16Mbytes of RAM. See figure 5.7 for 

the systems design. 

F/64 DSP 

HOST PC 

CCD 

Monitor 

SLM 

Figure 5.7. The image processing and control hardware system. 
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5.4.3 CONTROL SOFTWARE 

Two programs were required to control the system: one for the DSP and one for 

the PC. The DSP software was loaded from the PC's MS-DOS command line 

and could only be executed by a function call from the PC software. The image 

processing was performed on the C40. Its results were passed to the PC over the 

computer's ISA bus. The C40 has direct access to the frame grabber's video 

RAM area over the F/64's high speed 32 bit internal bus. Because the image is 

stored in 8 bits, it was necessary for four pixel values to be read every time only 

one is required. This 32 bit word had to be separated into four 8 bit words to get 

the required pixel value. This process took up a considerable amount of C40 

processor time because several functions had to be called and there were a large 

number of pixels on the camera to be processed. 

The system was aligned by writing 100 10x10-pixel squares to the video 

monitor. At the same time, the CCD1 camera was acquiring the image of the 

interferogram and the PLC was slowly flipping each single pixel consecutively. 

The CCD camera was moved until the squares drawn on the screen were 

perfectly aligned with the FLC pixels. 

Once the FLC and camera were aligned, the correction routine could be run. The 

alignment squares were no longer drawn because of the slowness of the routine. 

The PC software then called the DSP routine. The mean intensity was calculated 

by the C40 of each of the regions corresponding to the FLC pixels. This data was 

stored in a one hundred element array and this array was passed to the PC over 

the ISA bus. The PC then calculated the mean intensity and used half of this 

value as the threshold. The threshold value was then compared to the mean 

intensity of each FLC pixel area and a 10 by 10 one bit array was generated 

corresponding to which pixels should be flipped. This array had then to be 

exclusively ORed (XOR) bitwise with the previous screen to calculate the array 

to send to the FLC. To see why we XOR the data with the previous screen 
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consider just one FLC pixel. Initially the FLC pixel is set to zero. I f the 
interferogram region corresponding to that FLC pixel becomes darker then the 
threshold value the FLC pixel wil l be flipped. However, in the next frame this 
pixel must not be turned off just because interferogram is now above the 
threshold. It must be left on until the interferogram area of the pixel becomes 
darker than the threshold again. Table 5.2 contains the logic table of the XOR 
function. 

p D R 

0 1 1 

1 0 1 

1 1 0 

0 0 0 

Table 5.2. P represents the previous pixel value; D is the current thresholded 

result from the interferogram and equals 1 for a dark pixel and Ofor a light 

pixel. P XOR D gives R which was then applied to the FLC array. In the next 

frame P will be set equal to R. 
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Figure 5.8. The flow chart of the control software for the FLC/PDI system. The 

PC and DSP sections are linked via the ISA bus. 

Once the correct array was calculated it was sent to the PC's printer port which 

was connected to the FLC drive electronics. The next frame of the CCD camera 

was then taken and the process repeated (see figure 5.8). 

5.4.4 C O R R E C T I O N R E S U L T S 

Figures 5.9 show the resultant PSFs taken with CCD2. Figure 5.9 a) shows the 

unaberrated PSF. The Strehl ratio is taken as 100% of the maximum intensity of 

the unaberrated PSF. Figure 5.9 b) shows the PSF with an aberration introduced 

into the system. The aberration was a defocus Zernike function with a peak to 

valley amplitude of 0.44A. (632.8 nm) and gave a Strehl ratio of 5%. Figure 5.9 

c) shows a typical corrected PSF. Figure 5.10 shows the actual images of the 
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PSFs. The corrected Strehl ratio was 26%, a five-fold increase. When the 
aberration was removed, the system returned to its initial state (i.e., the FLC 
pixels turned off and the Strehl ratio returned to 100%). 
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Figure 5.9 (a). The unaberrated PSF. The Strehl ratio is defined as being 100% 

at the peak intensity. 
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Figure 5.9(b). The aberrated PSF. The Strehl ratio was 5%. 
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Figure 5.9 (c). The corrected PSF. The Strehl ratio was 26°7t 
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Figure 5.10. The PSF images. The top image is the unaberrated, the middle is 

the aberrated, and the bottom is the corrected. Each image has a renormalised 

intensity. 

The frame rate was 10Hz. It took the system an average of 4 frames to produce 

the best correction. Oscillations of the pixels were sometimes observed. 
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5.4.5 F L C OPTICAL THROUGHPUT 

The optical throughput of the FLC was measured using a non-polarised laser. 

The intensity was measured with a CCD camera. The transmission of the F L C 

with no polarisers was (78±4)%. The throughput of a single polariser was 

(32±2)% and the throughput of the F L C with the two polarisers in place was 

(2±0.5)%. This compares reasonably with the calculated transmission above if 

the transmissions of each component are taken into account. From [2.10] the 

theoretical transmission is 33%, correcting this with the optical transmission of 

each component, the total transmission is reduced to 2.6%. It should be noted 

that the polarisers used to calculate the throughput were of lower quality than the 

polariser in the main experiment which had a quoted transmission of 42%. 

5.5 Discussion 

With the system in a closed loop, it was not possible to stop FLC pixel 

oscillations with our simple algorithm. However, the system still produces a 

five-fold improvement in the Strehl ratio. One way round the oscillations would 

be to run the device in an open loop system. In this configuration, the F L C 

would not be in the same optical arm as the PDI but in front of the science 

camera (see figure 5.6). Since our system has to work towards the best solution it 

is not known how well the FLC SLM would perform in open loop. It would also 

not correct any systematic errors such as optical non-uniformities in the F L C 

SLM. 

Despite the low number of pixels (100) the F L C device has still managed to 

partially correct for an aberration that is typically associated with a telescope of 

size 12ro -1-2 metres (Wang, 1978), where r 0 is the Fried parameter (typically 

10-20cm). Love et al. (Love, 1995) have shown that a 128x128 pixel device 

would be capable of correcting atmospheric aberrations across a telescope of up 

to 40 ro in diameter. Such devices are currently available commercially, although 

their suitability has not been fully investigated. 

92 



C H A P T E R 5: B I N A R Y C O R R E C T I O N W I T H A P O I N T D I F F R A C T I O N I N T E R F E R O M E T E R 

The corrected Strehl ratio of 26% is somewhat lower than the quoted theoretical 
limit of 40.5%. This is to be expected because of the large residual wavefront 
errors caused by the finite size, and the finite number of F L C SLM pixels. 

A major limitation of the FLC SLM used in this experiment was that its 

retardance was neither n nor was its switching angle 90°. This would be needed 

if such a device were to be used for light starved astronomical purposes where a 

high transmission is required. The retardance of our system was 0.6K and it had a 

switching angle of 45° giving a maximum theoretical transmission of 33%, and 

an experimentally measure transmission of 2% (including polarisers). Although 

no company to date has produced a high switching angle FLC SLM, it should be 

easier to control the retardance of future devices by fine tuning the cell thickness. 

If a device with n retardance could be produced, the theoretical transmission 

would be improved to 50% even with a switching angle of only 45°. 

Tip/tilt has not been corrected in this experiment. The PDI could not measure 

large amounts of tip/tilt since the focused beam moved away from the aperture in 

the centre of the PDI mask. Tip/tilt would need to be removed with a mirror 

before the light was corrected by the FLC. This would require an additional 

sensor (such as a quad cell) and so the light throughput of the total system would 

be further reduced. 

5.5.1 PHOTON F L U X 

Liquid crystal devices offer the possibility of a very large number of pixels. 

Monitors in laptop computers have typically 640x480 pixels, although their low 

pixel fill factor and low optical flatness makes them unsuitable for astronomical 

adaptive optics. Displaytech currently offer a 256x256 device with a high fill 

factor (87%) and a frame rate of 3kHz (Ref. Displaytech). This gives a much 

greater number of degrees of freedom than a standard deformable mirror. 
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Increasing the number of pixels to a much larger extent will, however, slow 

down the operating speed of the system. Computation time aside, the number of 

photons from an astronomical source is limited and fixed. If the number of 

pixels is doubled the integration time required is also doubled. The number of 

photons detected per FLC pixel, Ndet, in integration time, T, is given by 

Q-Nl T\ - F x 

where n is the number of pixels, Q is the quantum efficiency of the detector, M 

is the incident number of photons into the interferometer, r\ is the efficiency of 

the PDI, and F is the fill factor of the device. Nj is (Schroeder, 1987) 

Nj = N • D2 • AX - 10~° 4 me [5.8] 

where N=108 is the number of photons per second per metre squared per 

nanometre for a zeroth order AO star at 550nm, AX, is the bandwidth and is 

40nm, m is the stellar magnitude, and £=50% is the efficiency of the system to 

the front end of the interferometer. For a lm telescope, imaging a magnitude 7.7 

star, Nj is approximately 1.6xl06 photons per second. The value of T | depends on 

the incident wavefront and is typically as low as 5% (Love, 1995). Assuming a 

quantum efficiency of 0.8, F=100%, and n=100; A^£/=0.166 photons per frame 

per pixel at the maximum frame rate of 4000Hz. Clearly, the device could not be 

operated at such speed. If we limit the frame rate to that required to correct for 

typical atmospheric aberrations, about 100Hz, we find for at least one photon per 

frame per pixel the maximum number of pixels is 665 or about 25x25. This 

assumes that the transmission of the FLC is 100%. If the current Displaytech 

device is used, the transmission becomes substantially worse. With only 2% 

transmission, the maximum number of FLC pixels for one photon per frame is 

only 13 (or -3x3). 
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Because the number of photons entering the telescope is proportional to the 
diameter of the telescope squared, we can rearrange equation [5.7] to calculate 
the maximum number of F I X SLM pixels usable in a telescope of diameter D 

n<Q - Nj l m e l r e r\ - F • D2 • t [5.9] 
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Figure 5.11. The maximum number of pixels that could be used in a telescope 

versus the diameter of the telescope. The solid line is for r)=5%, the dotted line 

is for 7]= 100%. 

Ni i metre is the photon flux for a 1 metre telescope. If i = 10ms, the number of 

pixels versus telescope diameter is shown in figure 5.11 for both T)=5% and 

r|=100%. It is important to maximise the number of PLC SLM pixels in order to 

reduce the residual wavefront error after correction in order to get as close as 

possible to the maximum corrected Strehl ratio of 40.5%. 

To improve the photon flux the most obvious solution is to increase r\. It should 

be noted that TJ depends on the aberration. For a well corrected aberration r| will 

increase. If the PDI was replaced by a phase contrast PDI the value of r\ would 

increase to -100%, increasing the number of photons 20 fold. 
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The above calculation does not take into account the absorption of the optical 

components in the telescope and any real system would require more than one 

photon to operate. It does show that to run a pixelated adaptive optics system in 

a telescope it is necessary to carefully balance the number of pixels with the 

available light. 

The system could be tested on a telescope system providing the following 

criteria can be achieved: 

• An FLC with 0-K phase shift can be developed with a high transmission. 

• The speed of the system can be increased. 

• The transmission of the PDI can be increased. 

5.5.2 F U T U R E CONSIDERATIONS 

The system is currently limited to 10Hz. This is because of the large amount of 

image data from CCD 1 (figure 5.6) that has to be processed by the C40 

processor chip (768 x 575 bytes of data per frame). If a higher speed camera, 

such as the DALSA used in chapter 7 replaced the CCD camera used, the system 

bandwidth should be improved. This camera has a maximum frame rate of 

838Hz and 128x128 pixels. It should be possible to operate this system at speeds 

in excess of 100Hz, which would be adequate for most astronomical 

applications. This does not however take into account the efficiency of the 

camera, which is quite low, but other similar cameras are available with higher 

efficiencies. 

Because the system takes more than one frame to reach the optimum solution, 

the system will have to be operated several times faster than an aberration. The 

precise speed needed is yet to be determined. The system took four frames to 

reach the optimum correction in §5.4. However, it did partially correct in the 
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first frame. It is unclear how the system will operate in a time evolving situation. 

It is possible that once the system has achieved the correction, any small 

perturbations made to the aberration will be corrected in the next frame. 

If a larger FLC SLMs were to be used in the future this would again slow down 

the system because of the large amount of data. The Coreco F/46 board used in 

this experiment has the capabilities of mounting more C40 chips and so 

increasing its computing power. A cheaper alternative would be to use an array 

of photodiodes instead of a CCD camera to image the interferogram. The 

position of each photodiode would correspond to each F L C pixel. If each 

photodiode was connected to a simple thresholding circuit, the whole system 

could be built to work at the maximum speed of the FLC SLM (4000Hz). In 

reality, for astronomical purposes the limit would be the number of photons 

entering the telescope needed to trigger the photodiodes. 

5.6 Summary 

In this chapter a binary adaptive optics system has been demonstrated using a 

PDI and 10x10 FLC SLM. The technique does not attempt to fully correct an 

aberrated wavefront but still an improvement in Strehl ratio from 5% to 26% 

was achieved. The frame speed of the system was 10Hz and this is currently 

limited by the computer power. A model of the PDI was also developed with a 

suitable threshold value. 

The potential for an F L C SLM with a Shack-Hartmann wavefront sensor is 

discussed in the next chapter. This wavefront sensor is commonly used for 

adaptive optics and does not have many of the problems that have been found 

with the PDI such as the low through-put or the oscillations caused by the PDI's 

unusual characteristics. 

97 



CHAPTER 6: A LIQUID CRYSTAL ATMOSPHERIC T U R B U L E N C E SIMULATOR 

Chapter 6: A Liquid Crystal Atmospheric 

Turbulence Simulator 

6.1 Introduction 

There is a need to test all adaptive optics systems by introducing aberrations into 

the optical beam. This can be achieved in one of three ways: try the system on a 

telescope; use a deformable mirror to introduce known aberrations; or introduce 

unknown aberrations such as turbulence generated by a heating element, a fan or 

a rotating piece of aberrated glass. The first option is naturally the best for an 

astronomical adaptive optics system, but it requires shipping the device to a 

telescope and allocating telescope time which can be difficult and expensive. 

The use of deformable mirrors is very expensive. The third option uses non-ideal 

statistics and is not very controllable. In this chapter we develop a liquid crystal 

based atmospheric turbulence simulator (ATS). This will be used to generate 

aberrations with scaleable Kolmogorov statistics for testing the adaptive optics 

system in chapter 7. It will also be of potential use to the whole of the adaptive 

optics community. 

6.2 Background 

Previous adaptive optics systems using liquid crystals have only concentrated on 

static correction. To introduce an aberration into a system such as this is trivial: a 

piece of non-flat glass can be inserted into the optics, or even the aberration 

introduced by the SLM itself when the SLM is of low optical quality. 

When an adaptive optics system is to work in real time the situation becomes 

more difficult. A method of producing variable aberrations of the correct 

amplitude, phase, and speed is required. A mechanical system could be 

constructed such as a piece of aberrated glass rotated with an electrical motor. 

Although simple this technique would have several problems. The aberrations 

would be cyclic, i.e., they would be repeated after the glass has rotated 360°. The 

98 



CHAPTER 6: A LIQUID CRYSTAL ATMOSPHERIC TURBULENCE SIMULATOR 

motor could introduce large amounts of tip/tilt from mechanical vibrations; a 

problem for liquid crystal correction where tip/tilt stroke is limited. It also will 

not have the correct power spectrum of the desired aberration to be modelled 

unless the glass is specifically made that way. 

A device that could be used to generate a time varying aberration with the 

correct statistics would clearly be useful for testing the performance of an 

adaptive optics system. The statistics to be used in the case of atmospheric 

turbulence are Kolmogorov. To the author's knowledge there has been little 

work on producing simulated turbulence. Most groups use either heater/fan type 

arrangements or expensive deformable mirrors. A second deformable mirror 

only used for laboratory simulation is prohibitively expensive. This chapter 

presents an alternative method using liquid crystal SLMs. 

6.3 Requirements for an Atmospheric Turbulence 

Simulator (ATS) 

Any ATS must fulfil the following criteria: 

1. It obeys Kolmogorov statistics. 

2. It needs to be relatively small. The whole point is that it fits on the optical 

bench. 

3. It should be able to simulate various wind speeds. 

4. It should be able to simulate various values of D/ro. 

5. It should not be cyclic, i.e., the phase screens should not repeat for at least a 

reasonably long time. 

6. It needs to produce the correct Strehl ratio and PSF. 

7. The aberrations should be continuous and have no sharp discontinuities. 

Points 3 and 4 are so that different sized telescope diameters and wind speeds 

can be modelled. 
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6.4 A Liquid Crystal SLM as an ATS 

Of the two possible liquid crystal materials that could be used for an ATS, only a 

nematic device is really suitable. An FLC is considerably faster but will only 

introduce 0/n aberrations into a wavefront. This will not fully test any system 

that provides analogue correction. Nor will it introduce aberrations with the 

correct statistics. It was shown in chapter 4 that the multiplexed 64x64 SLM will 

not produce the correct phase pattern. For this reason a Meadowlark Hex69 

nematic liquid crystal SLM was used. This device is now an 'off the shelf 

package, but it was originally designed for the University of Durham's adaptive 

optics program. 

The concept behind the Hex69 design was for correcting aberrations. Therefore, 

in principle, it should be equally as good at generating aberrations. It is a nematic 

device and capable of giving an analogue response. Love (1997) has shown the 

device does introduce Zernike aberrations into collimated beams well (~A/10 

error), but he did not assess the performance with either a real time aberration, or 

more than one mode. The following sections will attempt to do that. The basic 

principle behind the ATS is to generate simulated phase screens off-line and then 

map them onto the SLM in real time. 

6.5 Meadowlark Hex69 Device Description 

The pixels are in a hexagonal format which is shown in figure 6.1. This format 

allows either a circular aperture or a square aperture. There is total of 69 pixels; 

each is directly driven, i.e., there is an individual electrode to each pixel. The 

liquid crystal material is sandwiched between two layers of optically flat quartz 

with the indium tin oxide (ITO) electrodes deposited and then the pattern 

lithographically etched on the inside surface. The liquid crystal was controlled 

by an AC electric field that could be varied from 0 to 10V in divisions of lmV. 

The potential across each pixel was controlled by a PC. The specifications are 

given in table 6.1. 
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Figure 6.1. The pixel layout of the Hex69. The hexagonals are the liquid crystal 

pixels. The lines coming out of them are the TTO connections. The circle is the 

active area. Note it can also be configured with a square aperture. 
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Specification Value 

Active area 14.7 mm diameter circle or 12.5 mm x 

12.5 mm square 

Pixel size Hexagonal with a maximum diameter of 

2.08mm 

Number of pixels 69 

Transmitted wavefront distortion 0.038 X peak to valley or 0.007 X RMS 1 

Substrate Fused quartz 

Inter-pixel spacing 20Lim 

Pixel fill factor -97% 

Total stroke l.lLtm 

~2X in the visible 

Drive electronics bandwidth 26Hz 

Liquid crystal material Merck E44 

Liquid crystal cell thickness 5.5|im 

Birefringence An = 0.262 

Table 6.1. Hex69 Specifications. 

6.5.1 DRIVING T H E HEX69 

The Hex69 could be controlled by most IBM compatible PCs. The voltage 

waveforms that were applied to the liquid crystal material were generated by a 

Meadowlark SLM2256 Shape-Shifter SLM controller. This could be controlled 

from a PC by two methods. The simplest was via the computer's printer port. 

The second method was to use a digital output board on the PC (N.B. it should 

also be possible to interface the device with a UNIX workstation using this 

method). The printer port provided the simplest method of controlling the device 

and was used for the laboratory based work in this thesis. The drawback was this 

method limits the speed of the device to 38ms per frame. This speed has been 

'^=638.2 nm He-Ne laser. 
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measured using a 33MHz 80386 and a 66MHz 80486 PC and appears to be 

machine independent. Using a digital output board would enable the device to be 

run at higher speeds, however the speed of the liquid crystal would not increase 

so an improvement in speed would only be noticed for small differences in the 

phase shift between each frame. 

6.6 The Hex69 as an ATS 

6.6.1 PHASE S C R E E N GENERATION METHODS 

There are currently several methods of generating atmospheric phase screens. 

Roddier (Roddier, 1990) used a method involving Zernike modes. Although the 

major advantage of this was the high calculation speed of each mode and the fact 

that it produced a circular phase screen that would map onto the Hex69 well. It 

was necessary to produce 400 Zernike modes to obtain an accurate 

representation of the atmosphere. It is also unresolved how to generate a time 

varying phase screen with this method. 

6.6.2 LANE'S F O U R I E R METHOD 

Lane and Glindemann (Lane, 1992) (Glindemann, 1993) produced phase screens 

using a Fourier convolution method. The basic technique can be summarised as 

follows. A square array is filled with random numbers. The array is then scaled 

by the power spectrum of the Kolmogorov turbulence. This is then fast Fourier 

transformed (FFT) into real space to produce the simulated phase screen. To 

achieve the correct statistics for the lower order modes a very large amount of 

data needs to be modelled (>several times the telescope diameter). To reduce the 

need for such large amounts of data to be calculated, lower order Zernike modes 

are added in instead. This technique can be used to generate time evolving phase 

screens. By generating a large rectangular array, an aperture can be moved across 

the array to give the effect of temporal variation. 
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6.6.3 SOFTWARE 

Software written in FORTRAN 77 was provided by Glindemann to calculate the 

phase screens. The data was generated on a SUN SPARC STATION IPC. Two 

thousand frames were generated, taking several hours. To avoid aliasing, the 

data arrays were twice as big as the telescope diameter. Each frame was a 

128x128 floating point array, requiring a total of 125Mb of disk space. The data 

parameters used to generate the screens are shown in table 6.2. 

Parameter Value 

D/r0 1 

Total array size 128x128 4 byte floating point 

Size of aperture data 64x64 4 byte floating point 

Number of elements moved per 2 

frame2 

Number of lower order modes added 7 

Total number of frames 2000 

Table 6.2. The specifications for the atmospheric turbulence screens to be 

generated. 

A value of D/r0= 1 was chosen so that the raw phase could be scaled by a factor 

of (D/r0)5B to simulate any telescope diameter. The wind speed is related to D, 

the number of elements moved per frame Nm, the number of elements in the 

array Ne and the frame speed of the SLM, F. The wind velocity, v*, is the 

distance travel per frame divided by the frame speed. So 

>.=%D 1 [6.1] 

_ _2_ 1 
~ 6 4 ' '38-10 - 3 

2I.e., the frame is shunted to the left of the previous frame by two element/pixels. 
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= 0.822 ms"1 

or about 3km h r " f o r a lm telescope. This is a very still day but it can be 

increased by increasing the value of Nm up to maximum of 64, giving vx= 95km 

hr"1, although at the expense of the correlation between consecutive frames. 

The liquid crystal in the Hex69 SLM is too slow to accurately produce the large 

phase shifts required by the tip/tilt terms when the SLM is running at ful l speed. 

It has been assumed that a real liquid crystal adaptive optics system would have 

a separate tip/tilt mirror, for this reason tip/tilt was not modelled. The generated 

data was separated into individual files and the tip/tilt and piston was removed 

by a least squares fitting program. The mean phase over each of the Hex69 

pixels was then calculated and this was written to a file containing the 69x2000 

pixel values. 

The software supplied with the Hex69 could only handle a maximum of 96 

frames. This would only give 3-4 seconds of turbulence. To use all 2000 frames 

generated new software was developed by the author. This was written in C and 

compiled with a Semantec C++ compiler. This compiler has a 32-bit DOS 

extender option, and unlike ordinary compilers it allows full access the PC's 

RAM instead of the usual 640kb limit imposed by MS-DOS. 

The program had several command line options: the number of frames skipped, 

A; the frame speed, v, the scale, a; and the data file name. The data file was read 

into an array and scaled by the amount a. A was to make the wind speed 

variable, changing it to be more than unity reduced the total number of frames 

available but it was more convenient than regenerating all of the data from 

scratch. The frame speed was limited to a minimum of 38ms. 

The data was converted into voltages by the polynomial measured in §6.7.3. 

Once the data was in the correct format it was sent to the SLM via the 
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computer's printer port. Using this method the only limit on the number of 

screens that can be used was the amount of RAM of the PC. The ATS took 76 

seconds to completely run through all 2000 frames. Once the end of the data was 

reached, the data was run through backwards so that there was no sharp 

discontinuity between frame 2000 and frame 1. 

Zernike modes could also be applied to the device using pre-existing software 

modified for this device by the author. The software calculated the phase over 

each pixel by using the Zernike modes of table 3.2. The phase was then 

converted to voltages using the calibration polynomial. 

6.7 ATS Performance Measurements 

To characterise the performance of the Hex69 as an ATS, both the spatial and 

temporal characteristics of the system need to be measured. This performance 

was measured in three ways: the temporal power spectrum of the phase, the 

Zernike power spectrum and the Strehl ratio. Ideally, the measurements should 

be taken over as many phase screens as possible. To measure the power 

spectrums a Shack-Hartmann wavefront sensor was used. 

6.7.1 T H E SHACK-HARTMANN WAVEFRONT SENSOR 

A Shack-Hartmann wavefront sensor measures Zernike modes in the incident 

wavefront. Because it can completely determine the wavefront (except for the 

piston term) in real time and from one measurement, it is ideal for measuring the 

performance of an ATS. The Shack-Hartmann is also used in many adaptive 

optics systems and will be the wavefront sensor for the systems described in the 

next two chapters. 

The interaction matrix, B, (equation [3.28]) was calculated off line by 

calculating the differential for each mode in each axis for all of the theoretical 

spot centres. The actual values of the elements of B depend upon the size and 
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shape of the lenslet array. Then the pseudoinverse of B was calculated off line. 
These calculations were done with MATLAB™. 

6.7.2 HARDWARE AND OPTICAL SET-UP 

The computer hardware set-up was similar to that described in chapter 5. A C40 

processor was mounted on a frame grabber and hosted in a 486 PC, the set-up is 

shown in figure 5.7. The camera used for the Shack-Hartmann was a DALSA 

CA-D1-0128 with a data rate of 16MHz. The camera had 128x128 pixels and a 

frame rate of 838Hz. The pixels were arranged in a square array, 

2.048x2.048mm in size. This camera was not optimised for low light 

environments, however since a laser was the source there was no shortage of 

photons. 

I 

Laser L I M LA CCD1 

Figure 6.2. The optical set-up of the Shack-Hartmann/Hex69 system. LI, L2, L3 

are doublet lenses, LA is the lenslet array, M is the Hex69 SLM, and CCD1 is 

the DALSA CCD camera. The laser is spatially filtered, beam expanded and 

then re-collimated by LI. 
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Figure 6.3. The approximate sampling of the Hex69 pixels (thin lines) by a 

Shack-Hartmann lenslet (dark line). 

The optical set-up is shown in figure 6.2. A lOmW He-Ne laser was the light 

source. This was collimated and beam expanded to ~2cm diameter. The two 

lenses L2 and L3 demagnify the beam so that at least 3 Hex69 pixels are 

sampled by a lenslet (see figure 6.3). If there were only 2 pixels sampled by the 

Shack-Hartmann it could have only measured tilt in one direction. If there were 

only one pixel there would be no measurement because only the piston of the 

phase would change. 19 lenslets are used to sample the wavefront. The image of 

the spots for an unaberrated beam is shown in figure 6.4. Figure 6.5 shows the 

same spots with 0.5A. of defocus added by the Hex69. 
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Figure 6.4. The Shack-Hartmann spots with no aberrations in the system 

present. 
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Figure 6.5. The Shack-Hartmann spots with 0.5A of defocus introduced by the 

Hex69. 

The specifications of the lenslet array are given in table 6.3. 

Specification Value 

Manufacturer Adaptive Optics Associates (AOA) 

Lenslet Aperture 497u.m 

Focal length 97.0mm 

Number of lenses 60x52 

Pixel shape Hexagonal 

Fill factor >99% 

Table 6.3. The specifications of the lenslet array used in the Shack-Hartmann. 
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The alignment of the system was very critical since the Shack-Hartmann 
typically measured Zernike mode amplitudes with an error of A/100. High 
quality doublets were used for all of the lenses. Any misalignment becomes 
obvious when the Zernike modes are measured although several features of the 
software described below help minimise the problem. 

6.7.3 CALIBRATION OF HEX69 

The calibration of the SLM was made using a Zygo interferometer. Half the 

Hex69 pixels were held at zero volts and the other half were increased over 10 

frames by IV. The Zygo was used to measure the phase shift between the on and 

off pixels. It was assumed that the phase shift would always increase with 

voltage, this assumption removed the 2% ambiguity associated with the Zygo. To 

minimise any error that may be caused by non-uniformities in the Hex69 the 

phase shifts were an average of all the pixels activated. A 6th degree polynomial 

was then fitted to the data using a FORTRAN 77 routine and is shown in figure 

6.6. 

10000 -i 

> 8000-
E 

6000 • 
o> 
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o 
> 2000 • 

0-
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 1.1 1.2 1.3 1.4 

Phase shift /lambda 

Figure 6.6. The voltage versus phase shift response of the Hex69. The 

polynomial fitted is a 6th order with a correlation coefficient, r, of0.998776 

6.1.4 T E M P O R A L RESPONSE OF T H E HEX69 

The temporal response of the Hex69 was measured by taking into account the 

birefringent nature of liquid crystals. I f the incident light is polarised such that its 
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axis of polarisation bisects the ordinary and extraordinary axis of the liquid 

crystal, the SLM will modulate intensity instead of phase. The usual phase shift 

A then appears as a modulation term and the intensity is 

I = IQsm2(y2) [6.2] 

From figure 6.6, the value of A moves through about 1.5 wavelengths, i.e., 

through about 3n radians. Whenever A is an odd multiple of n the intensity is 

maximised, whenever it is an even number of n the intensity is zero. This can be 

seen in figure 6.7. 

A photodiode was connected to a digital storage oscilloscope (DSO) to measure 

the temporal response. The SLM pixels were modulated between two voltages at 

the maximum speed. These voltages corresponded to a known phase shift 

calculated from the calibration curve. The response times are shown in table 6.4. 

The rise time of the liquid crystal was approximately the same for all applied 

voltages (2-3.5ms). 

Phase shift Time /ins 

O-A/2 (rise time) 2 

0-A, (rise time) 2 

A/2-0 (relaxation time) 20 

A.-0 (relaxation time) 40 

Fully on to fully off (relaxation time) 600 

Fully off to fully on (rise time) 3.5 

Table 6.4. The response time of the Hex69. 
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Figure 6.7. Examples of the DSO display. The graphs are the intensity 

transmissions versus time of the liquid crystal when placed between polarisers 

at 45 "and 135 °. The vertical axis is the intensity measured. The left image is the 

Hex69 being turned from fully off to fully on. The horizontal scale is 1ms per 

division so it took about 3.5 ms to fully turn on the SLM. The turning points on 

the graph are when the birefringence of liquid crystal is equal to multiples of m 

The right graph has a horizontal scale of 40ms per division. In this graph, the 

Hex69 was switched on and off at the maximum electronic frame rate of the 

SLM. The lowest horizontal region of the graph is the device in its on state. As 

the device relaxes, the intensity throughput increases until the liquid crystals 

birefringence is wand then it starts to decrease. It took 40ms for the liquid 

crystal to fully relax and 2ms to switch on. 

Figures 6.7 show examples of the DSO display. It can be seen that the maximum 

frame rate of the SLMs electronics was 38ms, however the liquid crystal did not 

necessary correspond to this time. If the phase shift was greater than X the liquid 

crystal took longer to relax than electronics' frame speed. If it was less than X 

then the device was being limited by the drive electronics. 

Clearly, if the SLM only achieves a complete phase shift of a time up to 0.6 

seconds it will be limited in use for adaptive optics. The histogram in figure 6.8 
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shows the phase changes between successive frames of the data to be used for 

the ATS. It can be seen that most of the time the SLM will be limited by the 

drive electronics. 

x 104 

2 

10 

8 

5 20 25 30 0 35 
Phase shift between screens/radians 

Figure 6.8. The histogram of the phase shifts between consecutive frames for 

different values of wind speeds. Solid line 0.7ms'1, dotted 1.4ms'1 .dashed 5.4ms'1 

Figure 6.8 is for D/r0=8.5. In the case of vw=0.70ms"', 84% of all the phase shifts 

would occur within the frame rate of the SLM. In fact 56% would be within half 

the frame length time. In this case, the liquid crystal material does not usually 

limit the ATS and so the frame rate of the device can be assumed to be limited 

by the electronics. 
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6.7.5 SHACK-HARTMANN SOFTWARE 

As in chapter 5, the software was in two parts: the C40 DSP code and the PC 

code. The DSP handled the accessing of the frame buffer, handled the image 

grabbing and calculated the Zernike amplitudes, and returned these to the PC. 

The software for the DSP used the Oculus libraries supplied by Coreco and was 

compiled on a Texas Instruments C40 compiler. The PC software used a 

Microsoft C compiler. 

The PC software acted as the user interface and the DSP code was only run via a 

function call from the PC. There were several options given when the software 

was first run: 

1. Align system 

2. Align and remove static aberrations. 

3. Measure the Zernike modes 

4. Measure the Zernike modes and write them to a file. 

The first option was for the system alignment. The Shack-Hartmann spots were 

displayed on the monitor with the position of the theoretical spots and a dark 

spot displaying the results of the centroiding, i.e., there was a dark spot in the 

centre of the lenslet spot. This was a visual check to ensure the centroiding 

software was working correctly. The positions of the theoretical spots could be 

scaled and moved with the software. The camera was moved until all the Shack-

Hartmann spots were aligned with the theoretical spots. Zernike aberrations were 

introduced onto the Hex69. Large amounts of crosstalk indicated a 

misalignment. 

Once the system was aligned there was still some residual error. This came from 

aberrations in the lenslet array and imperfections in other components. Option 2 

removed this by measuring 30 frames of Zernike modes and then subtracting the 

mean of each of these amplitudes from all subsequent measurements. I f the 

system was disturbed in any way this option needed to be re-run. 

114 



C H A P T E R 6: A L IQUID C R Y S T A L A T M O S P H E R I C T U R B U L E N C E S I M U L A T O R 

Option 3 measured the modes and wrote them to the PC screen. Option 4 also 

measured the modes but wrote them to a file. It did not display any thing on the 

PC or CCD monitors to increase the speed of the system. Figure 6.9 shows the 

software flow chart of the system. 

Start 

Grabhnage *~ 

Centroid spots 

i 
Calc. modes 

*• Align system? 

1 Y 

Draw alignment 
marks 

i 
Write modes to 

screen 
i 

Remove static 
aberration i f 

required 
Write to file 

N 

DSP PC 

Figure 6.9. The software flowchart of the Shack-Hartmann system. 

6.7.6 CALIBRATION OF S Y S T E M 

Each Zernike mode needed to be calibrated. Slight errors in the alignment and 

scaling of the system meant that there was a systematic inaccuracy in each mode, 

this needed to be calibrated out. Once the system was aligned different Zernike 

modes were placed on the Hex69. The first 12 modes were measured with the 

Shack-Hartmann. The amplitudes placed on the Hex69 were -0.5A,, -0.25A., OX, 
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0. 25.. and 0.5?i. By plotting these amplitudes against the measured amplitude a 

calibration line was calculated. This was then added to the PC software so that 

all future measurement would be correct. 

6.7.7 S Y S T E M LIMITS 

The Shack-Hartmann was limited in the largest aberration it could have 

measured by either of two factors: 

1. The lenslet spots moved out of the search area. 

2. The lenslet spots were diffracted by the Hex69 pixels in to more than one 

peak. 

By drawing a box around the search area it was possible to check that the spots 

did not move out side the area. The search areas could have been increased as 

long as they did not overlap. They were however kept as small as possible to 

increase the speed of the centroiding. 

Because the Hex69 is a pixelated device it does cause some diffraction effects. 

When the Shack-Hartmann spots were diffracted badly they did not centroid 

correctly. This placed the limit on how big the aberration could be. In practice 

the limit was -0.8A. for any mode. 

The smallest amount detectable was determined by the noise of the system. This 

came from environmental perturbations, such as vibrations or camera noise. This 

was measured experimentally and the mean RMS noise for all of the modes was 

found to be 0.015A,. The RMS noise for each mode is shown in figure 6.10. The 

noise on modes 1 and 2 (tip/tilt) is larger than the rest. This is likely to come 

from mechanical vibrations in the optical system. 
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Figure 6.10. The RMS noise limit of each mode. 

6.8 Experimental Measurements 

6.8.1 T H E Z E R N I K E POWER SPECTRUM 

The Zernike power spectrum was measured by placing the Hex69 into the 

Shack-Hartmann system. A D/ro = 8.5 was chosen (ro=10cm, Z)=85cm). This 

was large enough to give a good signal to noise ratio with the Shack-Hartmann, 

but not too large to cause the Shack-Hartmann spots to diffract into more than 

one peak. The SLM was run at the maximum frame rate of 38ms (26Hz) and the 

Shack-Hartmann's frame rate was 40Hz. This gave 1.5 Shack-Hartmann frames 

per Hex69 frame. 4252 measurements were made with the Shack-Hartmann and 

the 12 modes each frame generated were written to a file. The RMS for each 

mode was then calculated off line. This was compared to a theoretical model by 

Wang et al. (Wang, 1977). The power spectrum for the first 12 modes is shown 

in figure 6.11. The first two modes are zero because the tip/tilt was removed 

from the data. 
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Figure 6.11. The RMS power spectrum of the ATS. This data was taken over 

4552frames. 

6.8.2 MEASUREMENT OF T E M P O R A L C H A R A C T E R I S T I C S 

The Zygo can not measure any temporally varying phase screen because of the 

time it takes to grab 5 frames in order to unwrap the phase. A conventional 

interferometer could, in principle, be set up with a video camera recording the 

interferogram in real time, but this would not address the problem of the phase 

ambiguity. To measure a varying phase screen one is generally left with the 

option of using a Shack-Hartmann wavefront sensor. 

The data was taken in §6.8.1. Figure 6.12 shows the first 10 seconds of mode 3. 

It can be seen that there was a large variation over time and that there are no 

discontinuities in the data. The wind speed was 0.70ms"1 and D/ra=%.5 (ro=10cm, 

Z)=85cm). The exact value of the windspeed depended upon the value chosen for 

r0. For the same value of D/ro, but with r0=20cm, the windspeed becomes 

1.4ms"1. 
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Figure 6.12. The first 10 seconds of mode 3 (defocus) data taken with the Shack-

Hartmann. The Hex69 ATS provides the aberration source. 

A measure of the temporal performance of the ATS can be obtained by looking 

at the temporal power spectrum. This should compare to the theoretical power 

spectrum of [3.8]. The power spectrum for the phase produced by the ATS is 

shown in figure 6.13. The power spectrum was calculated by taking 4252 frames 

of Shack-Hartmann Zernike data and converting these into phase screens. A 

point was selected in each screen and the data fast Fourier transformed. 

-3 

10 e . s> • a 

-4 
10 r 

\ 
10 

5 10 

0 

8 
10 

10 

10 
10 

- 2 - 1 0 1 

10 10 10 10 

Log Frequency/ Log (Hz) 

Figure 6.13. The power spectrum of the phase produced by the ATS (solid). The 

dotted line shows a -8/3 power law. 
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A defocus Zernike mode was fitted to the raw data produced by the Glindemann 

software. The power spectrum of this raw data was then compared to the 

experimentally measured data produced by the ATS. Both spectrums are shown 

in figure 6.14. It can be seen that the high frequency gradients of the two lines 

follow each other reasonably closely. 

10"3

 t • — • — • — a 

Figure 6.14. The power spectrum of the measured mode 3 (solid line) and the 

power spectrum of the initial data (dotted line) showing that the Hex69 

accurately represents the phase data generated by the Glindemann software. 

6.8.3 STREHL RATIO MEASUREMENTS 

Using the same data as before, the Strehl ratio produced by the ATS was 

measured. This was done by placing the ATS in the path of collimated light from 
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a red polarised He-Ne laser. This was then focused onto a CCD camera by a 

doublet lens. A microscope objective magnified the image of the PSF on the 

CCD camera's image plane. It was assumed that when no aberrations were 

introduced into the system the PSF was diffraction limited. The Strehl ratio was 

defined as being 100% at the peak intensity of this image. 

The CCD camera was connected to an FTEX frame grabber. This frame grabber 

digitises the CCD images with 8 bit accuracy. It however, has more than one 

frame buffer. The TTEX board was programmed to use two frame buffers 

together, giving in effect a 16 bit frame buffer. It was then possible to take up to 

256 8 bit images and store them in one buffer. Adding all the images together 

effectively gives an integrating frame store. It took 0.05 seconds (20Hz) to 

process a single frame. The CCD camera was running at 25Hz so some data was 

lost. 

In the actual Strehl ratio measurement only 200 frames were used (10 seconds of 

data) because there was some damage to one of the frame buffers. With the ATS 

running, the measured Strehl ratio was 17%. 

The theoretical Strehl ratio is commonly defined with equation [3.15]. This 

equation is only accurate for a small o. To calculate the theoretical Strehl ratio 

the data produced by the Lane and Glindemann software was fast Fourier 

transformed and the mean of the 2000 PSFs was taken as the theoretical 

expectation. The theoretical Strehl ratio was 11%. 

6.9 Discussion 

This chapter has developed an ATS using nematic liquid crystals and measured 

it performance. It can be seen from figure 6.11 that the system has approximately 

the correct RMS value of each Zernike mode for the D/r0 value that was 

modelled. The other measure of this was the Strehl ratio. Although this was 

slightly higher than was expected, it is possible that the discrepancy comes from 

the coarse pixelation of the Hex69 device. 
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Figure 6.13 shows a -8/3 power law at high frequency for the phase shifts 

produced by the ATS. This is in good agreement with the expected gradient from 

equation [3.8]. 

The study in §6.7.4 showed that the liquid crystal was fast enough to reach the 

desired phase shift most of the time within one frame. In figure 6.14 it can be 

seen the SLM produces the correct amount of high frequency power. These two 

facts suggest that the slow speed of the liquid crystal was not limiting the ATS. 

The Hex69 SLM is 9 pixels across. When an aberration with a D/r0 of 8.5 was 

used, each Hex69 pixel is approximately modelling one Fried length. It seems 

sensible to suggest that this should be the maximum aberration that should be 

applied to the ATS. There is no clear cut off since the drop in performance will 

be a sliding scale. 

The wind speed the ATS was simulating was chosen to be 0.70ms"1. Since the 

maximum frame speed is fixed, the only way of increasing this speed is to skip 

frames, e.g., only use every second frame, effectively doubling the simulated 

wind speed. This has two effects: it increases the decorrelation between frames 

and it introduces discontinuities between frames. It can be assumed that these 

effects will decrease the accuracy of the ATS. It is not presently known what 

would be the maximum effective speed of the ATS. This will require further 

experimental work. 

The ATS demonstrated has been shown to reasonably model the atmosphere. 

The device can be used in testing adaptive optics systems (in chapter 7 for 

example). Because of the low cost nature of the SLM it will be possible to 

cascade several devices, each representing a layer of turbulence. It should then 

be then possible to provide a good aberration source for testing multiconjugate 

adaptive optics. 
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6.10 Summary 
An atmospheric turbulence simulator has been demonstrated. This has many 

possible applications in testing adaptive optics systems. Now that an 

atmospheric turbulence source has been developed it can be used in the next 

chapter with the Shack-Hartmann wavefront sensor. 
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Chapter 7: Binary Adaptive Optics with a Shack-
Hartmann Wavefront Sensor 

7.1 Introduction 

Chapter 5 demonstrated a binary adaptive optics system using a PDI. Although it 

provided good correction there were still various problems associated with the 

PDI. There was a low optical throughput, pixel oscillations, and the system took 

several frames to reach the best solution. In this chapter a more conventional 

wavefront sensor, the Shack-Hartmann, will be used. The ATS system developed 

in chapter 6 will be the aberration source. 

7.2 Background 

Shack-Hartmann wavefront sensors have become the standard sensor in adaptive 

optics. They are well understood and there is a large amount of literature (see 

(Tyson, 1991), (Beckers, 1993) for examples). They are commercially available 

in 'off the shelf packages as complete systems, with all the necessary analysis 

software (Ref. AOA). However, these commercially available systems are too 

slow for adaptive optics applications (~lHz). It is unlikely that the Shack-

Hartmann should cause the oscillations seen in chapter 5 and the complete 

system should also reach the correct solution in the first frame. It also has the 

advantage that there are many Shack-Hartmann systems already built for 

adaptive optics systems on other telescopes. A laboratory based system could 

easily be modified to use this equipment so that there would be no need to ship 

our wavefront sensor to a telescope. It is not unreasonable to assume that most 

telescopes' Shack-Hartmann cameras will work better with starlight than our 

laboratory camera, which was not optimised for low light. 
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7.3 Experimental System 

7.3.1 OPTICAL SET-UP 

LA CCD! Laser 

Figure 7.1. The optical set-up. LI, L2, L3, L4 are doublet lenses; M is the Hex69 

SLM which was used to generate optical aberrations; WP is a half wave plate; 

BS is a beam splitter; FLC is the Displaytech FLC which provided the wavefront 

correction; POL is a polariser; CCD1 is the Shack-Hartmann CCD camera; 

CCD2 is the science camera; and LA is the lenslet array. L2 and L3 demagnify 

the beam so that the Hex69 pixels map onto the lenslet array. 

The experimental system is shown in figure 7.1. The system is similar to that in 

chapter 6 except for the addition of the FLC system. A polarised lOmW He-Ne 

laser was used so that only one polariser was needed. The laser was polarised 

along the extraordinary axis of the Hex69. The Hex69 acted as the source of 

optical aberrations, the ATS. The system was in open loop because when the 

FLC was tried in a closed loop the inter-pixel gaps of the FLC blocked out some 

of the Shack-Hartmann spots. Unfortunately this made the alignment of the 

system considerably harder. The two lenses, L2 and L3, demagnified the beam to 

the size of the lenslet array, LA. 
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The beam splitter deflected 50% of the light through the PLC arm. The halfwave 

plate was required to rotate the polarisation axis round so that it bisected the two 

optical axes of the FLC. The polariser after the FLC was orthogonal to this axis. 

This light was focused on to a CCD camera which recorded the PSF. 

Figure 7.2. The FLC has approximately the same radius as the Hex69. 

There was a slight discrepancy between the size of the FLC aperture (6.989mm 

maximum radius) and the size of the Hex69 (7.35mm radius). This error was 

small and was ignored. The FLC has a square aperture which fitted inside the 

Hex69s (see figure 7.2). Any light outside the FLC's aperture was absorbed and 

so did not effect the result. 

7.3.2 HARDWARE DESIGN 

The hardware system was similar to that described in chapter 5. The DALSA 

camera was however not available so it was replaced with a standard CCD 

camera. This was the only change to the hardware design (see figure 5.7). 

7.3.3 SOFTWARE DESIGN 

The image acquisition, spot centroiding and Zernike mode amplitude 

calculations were carried out by the C40 DSP (as in chapter 6). The C40 code 

7.35mm 
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had to be altered to work with the CCD camera. The previous method of 
separating the 32 bit words in to the four 8 bit intensity values by grabbing the 
image and copying it into the F/64's RAM would not work. This was because 
the image from the CCD camera was larger than the F/64's RAM. Instead, a 
function call was written to access each pixel directly from the frame buffer. The 
other modification to be made was to the centroiding algorithm. The CCD 
camera did not have square pixels, but pixels with a 3:4 width:length ratio as in a 
TV. The position of the pixels sampled was modified to remove the biasing in 
one direction caused by the rectangular shape of the pixels. The CCD pixels 
were also smaller than the DALSA so the search box area for the centroiding had 
to be increased to 50x50 pixels. 

The PC code was also based on the code from the last chapter. The Zernike 

modes were returned to the PC from the DSP as before. The system was aligned 

and two new options were added: 

1. Correct with diagnostics 

2. Correct without diagnostics 

The diagnostics option caused the measured modes to be printed to the PC 

screen and display the position of the centroid spots on the camera monitor, as 

well as perform the correction of the aberrations. This only had a bandwidth of 

~lHz. Option 2 did not display any information. The bandwidth of the system 

was 6Hz. This is considerably slower than the similar system in chapter 6 

because of the large amount of image data to process, and the slowness of 

accessing each pixel with a function call. If the system was not limited by the 

computation, the fundamental limit would of been that of the camera, 25Hz. 

The correction algorithm was as follows. 
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1. The Zernike modes were calculated by the DSP and returned to the PC over 
the ISA bus. 

2. Each mode was corrected with the calibration gain (that was measured 

chapter 6). 

3. A 10x10 floating point array was created. Each element represented an FLC 

pixel. The phase over each FLC pixel was calculated in turn by summing the 

Zernike modes for that pixel, and were stored in the array. 

4. The modulo 2% of the phase in each element was calculated. 

5. A second array, P, containing the values to be applied to the FLC was used. It 

only contained the values of 0 or 1. The value of each element was 

determined by 

for <Kx>y) modulo 2K >n/2 and <Kx>y) modulo 2TC < 371/2 

otherwise 

[7.1] 

where 

ix,y)=Y,ajZj{x,y) [7.2] 

where Zj was the / h Zernike function in Cartesian co-ordinates x and y, and ay 

was the amplitude. The first 8 Zernike modes were used. This array was then 

changed to the correct format and was passed to the FLC drive electronics 

through the printer port. In the next frame, and every second frame afterwards, 

the results from equation [7.1] were inversed (i.e., passed through a NOT 

function). This ensured that the driving electric field of the FLC was AC, and 

stops the liquid crystal molecules degrading. The use of an AC field has no 

effect on the correction. In binary adaptive optics there is no absolute piston term 

in the phase, so it is impossible to define which part is in phase and which part is 
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out. The addition of % radians to a pixel in frame 1 is equivalent to the addition 
of -71 in frame 2. When using an FLC, one is only concerned with the phase 
difference between on and off pixels not the absolute phase. 

7.3.4 OPEN LOOP CONSIDERATIONS 

The Shack-Hartmann lenslet array used in this system had a hexagonal format. 

There was therefore, a mismatch between the sampling area of the lenslet and 

the FLC pixel areas. The interpixel gaps also posed problems by interfering with 

the spots when the FLC was placed in front of the lenslet array. For this reason 

the device was run in open loop. This presented two problems to be overcome. 

1. There was no feedback. If the device were in a closed loop the system would 

always tend towards the correct solution even if the calibration was not 

accurate. In an open loop system the lack of feedback means that any error in 

the measurement will not be corrected. 

2. The alignment of the system was more difficult. Because of the lack of 

feedback there was no easy way of testing if the system was correctly aligned. 

In a closed loop system, an aberration could be applied to the FLC and 

measured with the Shack-Hartmann. This would have also ensured that the 

FLC was orientated correctly, i.e., it was not back-to-front, upside down, or 

rotated, etc. 

However, the lack of feedback was not critical once the system was aligned 

because of the binary nature of the system. It was expected that any phase 

measurement errors would be less than it radians. Any additional accuracy was 

not needed in this system. 
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7.3.5 ALIGNMENT 

The Hex69 was easier to align then the FLC. Zernike modes could be applied to 

the Hex69 and these were measured with the Shack-Hartmann. Any rotational 

misalignments (in units of 90°) could be corrected in the Shack-Hartmann 

software, for example, if Zernike mode 1 was applied but only mode 2 was 

measured this could be corrected by changing the order of the modes in the 

software. 

The alignment of the FLC was much more difficult. This was done by taking 

advantage of the liquid crystal SLMs' birefringence. By using polarisers at the 

correct angles, the SLMs were used as intensity modulators. The steps involved 

applying a Zernike mode, such as astigmatism, to the Hex69. This was measured 

with the Shack-Hartmann and this measured amplitude was also applied to the 

FLC. A polariser at 45° to the Hex69's optical axis was then placed before the 

Hex69, and one at 135° was placed after. This made the SLM an intensity 

modulator. The orientation of the Zernike mode on the FLC was then checked in 

a similar manner. This was repeated for all modes. The magnification of the 

system can be checked with defocus. A defocus mode applied to the FLC should 

produce a dark ring. The Hex69 and FLC have slightly different sizes so the 

scale factor in the software was altered to compensate for this. 

7.3.6 PREDICTED PERFORMANCE 

The FLC used in this chapter is the same as in chapter 6, so it suffered from the 

same problems of having a small number of pixels. The expected performance of 

the system can however be calculated. The wavefront error after correction 

depends on several factors. Let a 2 be the residual wavefront error after 

correction. This is calculated from 

a2 =a2

W F S + o L +o^m + oLp [7.3] 
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where C W F S is the wavefront sensor error, oCOn is the fitting error of the 
wavefront corrector, Ozem is the residual error from the high order Zernike modes 
not corrected, and atemp is the error from the finite speed of the system. 

An estimate for the wavefront sensor error can be derived from the 

measurements of the Shack-Hartmann noise. The contribution for each mode's 

noise to the total variance was calculated. Software was written to calculate the 

phase at 100 points, corresponding to each FLC pixel. The variance in phase was 

then calculated from the noise at these discrete points. This was calculated to be 

0.0013 radians2. 

It is not possible for any deformable mirror or liquid crystal SLM to completely 

match the aberrations produced by the atmosphere. There will always be some 

wavefront error after correction from the corrector's inability to completely fit 

the wavefront. Hudgin (Hudgin, 1997) developed a formula for the fitting error 

given by 

( \ 
r. 

V r o J 

5A 
[7.4] 

where rs is the distance between actuators and a is called the fitting parameter. 

He calculated various values for a with different types of mirror. For a Gaussian 

response a=0.28, for a pyramidal response a=0.23 and for a piston only 

response, a=1.26. The FLC can be considered to behave like a piston only 

mirror so a=1.26 was chosen, however there is also an additional fitting error 

from the FLCs binary operation. If we consider some phase function over the 

aperture, (|)(x), where x is the two dimensional vector, in binary adaptive optics 

we are only concerned with <|)(x) being in the range of 0 to 2n radians. For a 

(large) normal random distribution, after correction the mean phase is (|)(x) =7t/2 
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and <|)(x) can vary from 0 to % radians. The variance wavefront error from the 

FLC, O~FLC, is 

< C = ( [ < K * ) - * ] 2 } [7.5] 

= 0.824 radians2 

This assumes that <j)(x) varies uniformly between 0 and 2%. Since the FLC can be 

considered to have a piston response with a residual error given by [7.5], the 

total value for acon is 

+ 0.824 [7.6] 

for D/r0 =8.5 and D/rs=\0 for the FLC, [7.6] equals 1.785 radians2. 

The wavefront error from the limited number of Zernike modes corrected is 

given by Noll (Noll, 1976). If the first eight modes are corrected (see table 3.3) 

< „ = 0 . 0 4 6 3 ( % J % [7.7] 

= 1.639 radians 

There was also an error from the finite speed of the corrector system, a t e mp-

Tyson (Tyson, 1991) shows that 

temp 

f \ 
0.4v 

V r o fc J 

[7.8] 
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where v is the wind velocity (taken as 5ms"1) and/ c is the bandwidth of the 
system. If/c=40Hz and r0=10cm, [7.8] equals 0.5 radians2. 

For D/r0=$.5, the uncorrected variance is 4.7 radians2 (with tip/tilt removed). 

The total expected residual wavefront error after correct has been calculated as 

3.92 radians2. 

7.4 Results 

The correction performance was measured in terms of Strehl ratio. The PSFs 

were measured with the CCD 2 camera (figure 7.1). This was used in 

conjunction with the ITEX integrating frame grabber (see chapter 6). 

7.4.1 STATIC CORRECTION 

An example of static correction is shown in figures 7.3, 7.4 and 7.5. An 

aberration was applied to the Hex69. The uncorrected PSF is shown in figure 

7.4, the Strehl ratio was 30%. The corrected PSF is shown in figure 7.5, with a 

Strehl ratio of 48%. This is an improvement in a factor of 1.6. Figure 7.6 shows 

the actual PSF images. 
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Fig 7.3 The unaberrated PSF. 
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Figure 7.4. The aberrated PSF. The Strehl ratio was 30%. 
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Figure 7.5. The corrected PSF. The Strehl ratio was 48% 

Figure 7.6. From left to right, the unaberrated, the aberrated and the corrected 

PSFs. 

7.4.2 REAL TIME CORRECTION 

The ATS system developed in chapter 6 was used as the aberrator for the real 

time correction system. The phase data was scaled to give a D/r0 of 8.5. Because 

of the slow speed of the Shack-Hartmann (6Hz) the wind speed was reduced to 
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an unrealistically slow speed (~lms _ l). The following PSFs were taken with the 
ITEX integrating frame grabber over 200 frames (10 seconds). Figure 7.7 shows 
the aberrated PSF, figure 7.8 shows the corrected PSF. The images are shown in 
figure 7.9. The uncorrected Strehl ratio is 23%. The corrected Strehl ratio is 
33%. A 43% (0.7 fold) increase in the Strehl ratio (compared to a 420% for the 
PDI/FLC system). 
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Figure 7.7. The aberrated PSF. The Strehl ratio was 23°Ii 
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Figure 7.8. The corrected PSF. The Strehl ratio was 33°7t c. 

Figure 7.9. From left to right: the image of the unaberrated PSF, the aberrated 

and the corrected. 

7.5 Discussion 
Another working, low cost, adaptive optics system has been demonstrated. It 

shows partial correction at a speed of 6Hz. The wavefront sensor currently limits 

the speed of the system. It should be possible to replace the CCD camera used in 
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this experiment with the high speed DALSA camera. There is no reason why this 
system should not then work at the frame rate (40Hz) of the Shack-Hartmann 
used in chapter 6. The drop in the frame rate was because of the camera's lower 
speed (25Hz) and large number of pixels to process (768 by 575 compared to 
128 by 128 for the DALSA). The Shack-Hartmann system has been tested on a 
200MHz Pentium system with the DALSA camera; the frame rate of the system 
was then increased to 60Hz. At such frame rates the device is approaching 
speeds that would be useful in astronomical applications. 

In common with the FLC/PDI system in chapter 5, the transmission of the FLC 

is prohibitively low for astronomical applications (2%). However, this system 

does have the advantage of having a more light efficient wavefront sensor. The 

Shack-Hartmann camera was not optimised for low light conditions but such 

systems are in use on telescopes. 

A method of improving the transmission of the FLC would be to operate it at a 

different wavelength so that its retardance was n radians. The theoretical 

transmission of the SLM and the two polarisers (excluding absorption and 

reflections) would then be 50%. The Meadowlark polariser used in this 

experiment has a quoted transmission of 42% in unpolarised light, or an 8% loss 

in polarised light. The expected transmission with the two polarisers and the 

FLC with a retardance of n would then be 33%. Although lossy, it is 

considerably better than the measured value used in this experiment. The 

wavelengths that give it radians retardance for this device are 383nm (in the UV) 

or 1659nm (in the IR). However, if UV light was used the atmospheric 

turbulence would be more severe, and the transmission characteristics of the 

device are not known at either of these two wavelengths. 

The measured correction was lower than the possible increase in Strehl ratio to 

40.5%. Part of this performance drop has been quantified in equation [7.3]. 

There was always some residual error because of the finite capabilities of the 
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system. From [7.3] it can be seen that the greatest contribution to this comes 
from the G c o r r term given by equation [7.6]. In binary adaptive optics there will 
always be the 0.824 factor, however the left hand part of [7.6] (i.e., [7.4]) still 
contributes 0.96 radians2. A modest increase in the number of pixels to say 15 by 
15 would reduce this number by a half. 

The other major quantifiable contribution to the error in correction is from the 

number of Zernike modes used to describe the wavefront. Completely correcting 

the first eight modes still leaves a wavefront variance of 1.639 radians2. This is a 

large fraction of the total residual error and is much larger than the error from the 

finite speed of the system. If the system was to be operated with the high speed 

DALSA camera it is clear that more Zernike modes should be calculated even at 

the expense of system speed. If we consider the frame speed of the system to be 

40Hz, the variance of the system from the temporal residual error is 0.5 radians2 

(from [7.8]). For a ^ m to equal this requires the first 34 modes to be corrected 

(from [3.14]). There is clearly some room in the future for the optimisation of 

the system by balancing the number of modes calculated with the frame speed of 

the system. It should be noted that because only 19 lenslets are used, only the 

first 38 modes could be calculated. Redesigning the optics could increase this, 

but the Hex69 could then no longer be used as the ATS. 

The other possible source of error is from misalignment of the optics. The exact 

contribution this causes is difficult to quantify. The most likely source of error 

comes from the positioning of the FLC in the system. The exact alignment is 

difficult because of the small size of the pixels. In the worse case, the FLC could 

be out of alignment by one pixel. This could cause the Strehl ratio to decrease 

when correction was attempted. 

Using the FLC with a Shack-Hartmann has several advantages over the Smartt 

PDI system in chapter 5. The Shack-Hartmann has a considerably higher light 

efficiency. Except for losses from absorption by the glass components there is no 
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attenuation with the Shack-Hartmann system. The number of photons required 
by a Shack-Hartmann is well documented (Cao, 1994). 

Because of the system's open loop nature there were none of the pixel 

oscillations that were seen with the PDI system, and the solution is found in the 

first frame. This means that the wavefront sensor does not have to be operated as 

fast as the PDI sensor for a given aberration. This also improves the overall light 

efficiency of the system. 

When used in binary adaptive optics the Shack-Hartmann actually provides more 

information than is needed. In binary adaptive optics the only information 

needed is whether a pixel is in or out of phase relative to another pixel. 

However, using the Shack-Hartmann means that the system is easily modified 

for quarter wave correction. This is impossible with the PDI system in chapter 5, 

unless a phase shifting PDI is used. Since these devices rely on nematic liquid 

crystals, they will always be slow compared to what can be achieved with a 

Shack-Hartmann. 

To achieve quarter wave correction with PLCs for astronomy, devices with 

higher switching angles will have to be developed. When used with polarisers, 

PLCs have too low a transmission for astronomical applications. Assuming that 

a high switching angle FLC would have a similar transmission to the 

Displaytech FLC, two cascaded together to give quarter wave switching would 

have a transmission of -0.8 2 = 64%, which is still low but usable. 

With quarter wave switching it is expected that the Strehl ratio improvement in 

an experiment similar to one in this chapter would be better. The maximum 

correction achievable from a binary corrector is 40.5%. It is unlikely that FLCs 

will ever compete with deformable mirrors unless used as at least quarter wave 

correctors. This would enable correction up to a Strehl ratio of 81%. 
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With quarter wave correction [7.6] becomes 

+ 0.206 [7.9] 

2 2 

If we define a system to be well corrected when a <1 radians . This happens 

when r,<0.75 r 0. To achieve a Strehl ratio of 80% we require rs=0.08 r 0. 

Like in chapter 5, the system is limited by transmission. Assuming this problem 

could be addressed the next stage of constructing a future system would be to 

improve the frame speed of the system and calculate more Zernike modes. The 

system could then be tried on a real telescope. 

Until high switching angle FLC materials are developed, it is unlikely that FLCs 

will be of much use in astronomical adaptive optics systems. At present, nematic 

liquid crystal SLMs have two major advantages: their high transmission and the 

ability to fully correct an aberration. 

7.6 Summary 
In this chapter an FLC adaptive optics system with a Shack-Hartmann wavefront 

sensor has been constructed. The real time speed was limited to 6Hz due to 

equipment problems but an increase in the Strehl ratio from 23% to 33% was 

measured. This was a real time measurement over a period of 10 seconds. 

It has been demonstrated in this chapter (and chapter 5) that an FLC does 

provide partial correction in real time. However, their limited throughput makes 

them unsuitable for atmospheric systems at present. For this reason the next 

chapter will describe a nematic liquid crystal SLM which will be used as the 

corrector. Although nematic liquid crystals have a slower speed they have a far 

higher transmission and perform complete analogue correction. 
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Chapter 8: Nematic Liquid Crystal Correction 

8.1 Introduction 

In the previous chapters partial correction by binary adaptive optics was 

demonstrated using an FLC SLM. It was demonstrated that, although some 

correction is performed, the actual Strehl ratio increase is quite low. This is 

because of the low maximum theoretical performance (40.5%), compounded by 

the low number of pixels. For most applications it would be desirable to 

completely correct the wavefront. This enables the Strehl ratio to be completely 

restored and is the usual technique used in adaptive optics with deformable 

mirrors. Full correction is possible, in principle, with nematic liquid crystals 

where the phase modulation is analogue. (The nematic liquid crystal SLM could 

also be used as a binary corrector but offers no real advantage except for it's 

potentially higher transmission- 50%, or 100% if two devices are cascaded). The 

disadvantage of using nematic devices are their lower speeds. 

For a complete correction it is necessary to completely calculate the wave front. 

Both the Zygo interferometer and the Shack-Hartmann wavefront sensor are 

suitable for this. The Zygo can only be used to correct for static aberrations, but it 

does provide a complete wavefront analysis more accurately then the Shack-

Hartmann and can be used as either a zonal or modal wavefront sensor. 

8.2 Background 

Several authors have discussed the possibilities of using nematic liquid crystals 

as correction elements (Bonaccini, 1991), (Dou, 1995), (Love, 1997), (Bold, 

1997), (Amako, 1993). As with the FLC SLM adaptive optics experiments so far, 

these have been static. Nematic liquid crystal SLMs can be thought of as similar 

to segmented mirrors with piston only actuators. Liquid crystal SLMs have the 

potential for having a larger number of pixels compared to current segmented 
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mirrors, but segmented mirrors are typically driven with three actuators giving 
movement in the direction of tip, tilt and piston. This gives them three degrees of 
freedom per pixel/mirror compared to one degree for a nematic liquid crystal 
SLM pixel. This has been addressed with computer simulations by Bonaccini et. 
al. (1991). Their model suggested that to get a good correction (Strehl ratio >0.8) 
26x26 nematic SLM pixels are needed, whereas only 10x10 tip/tilt/piston 
actuators are needed for aZ>=3.5m and r0=0.4m (Z)/r0=8.75). 

8.3 Device Description 

The nematic SLM used in this chapter was the Meadowlark Hex69. A ful l 

description of the device is given in §6.5. 

8.3.1 D R I V I N G S O F T W A R E 

To control the device three programs were used. The first two were for static 

control of the device. These programs could either control individual pixel values 

or added Zernike modes. The third was a modified version of the Shack-

Hartmann software used in §6.7.5 and §7.3.3 and was used to perform the real 

time correction. This program is described below. 

8.4 Static Correction 

To assess how well the Hex69 can shape wavefronts static corrections are useful. 

The wavefront measurements were done with the Zygo interferometer. The Zygo 

produced a data file containing 196 by 226 data points. To locate the Hex69 

pixels on the interferogram a map file was generated. This was done by setting 

the voltages of all the Hex69 pixels to 0V and increasing one pixel until there 

was a dark fringe on the pixel in the Zygo's display screen. This interferogram 

was saved to disk and the process repeated for all the Hex69 pixels. The 69 files 

were then thresholded to determine where the dark pixel was. A calibration file 
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was then produced containing the position of each Hex69 pixel on the 
interferogram. This is shown in figure 8.1 

r 

Figure 8.1. A grey scale representation of the calibration map file. 

Using this map file it was then possible to calculate the phase over any given 

Hex69 pixel from the Zygo, providing the Hex69 was not moved. 

An aberrating piece of glass was placed in front of the Hex69 in the Zygo system 

(see figure 8.2). The phase screen was then measured with the Zygo. This file 

was saved and the required phase shift for each pixel needed to correct the 

aberration induced by the glass was calculated off line. The Zygo calculated the 

Strehl ratios before correction and after correction by Fourier transforming the 

phase data. The improvement is shown in table 8.1. The aberrated and corrected 

wavefronts are shown in figure 8.3 and in figure 8.4. 
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Zygo 

Aberrating glass 

Meadowlark with 
polariser and Control PC 

mirror 

r 

• o o 

Figure 8.2. The Hex69 in the Zygo interferometer. The Hex69 is mounted on top 

of an optically flat mirror and a high quality polariser is placed on top of the 

Hex69. A PC controls both the Hex69 and the Zygo, however the correction is 

not real time. 

Parameter Uncorrected Corrected 

Strehl ratio 63.3% 96.6% 

RMS wavefront error o.i a 0.029A. 

Peak to valley wavefront 

error 

0.48A. 0.2A. 

Table 8.1. The results from correcting a piece of aberrating glass with the Hex69 

and Zygo. 
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Figure 8.3. The left is the uncorrected phase map of a piece of glass. The right is 

the corrected phase map by the Hex69. The pixelation of the Hex69 is clearly 

visible. 
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! 

Figure 8.4. The left graph is the uncorrected phase graph. The right graph is the 

corrected. The sharp peaks on the corrected phase graph are from bad data 

points measured by the Zygo. Ignoring these points will greatly improve the peak 

to valley measurement. 
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The Zygo takes about 20 seconds to process the data and the whole process takes 
of the order of a minute so this is in no way a real time system. It does 
demonstrate the correction ability of nematic liquid crystal SLMs. 

8.4.1 S T A T I C Z E R N I K E C O R R E C T I O N 

To access how well the Hex69 could correct for simulated data, Zernike modes 

were added to the raw measured data with the Zygo. Using this it was possible to 

add imaginary aberrations into the system. The Zygo added various Zernike 

modes to the data and the software attempted to correct them. This was really a 

measurement of how well the Hex69 could generate Zernike modes using the 

Strehl ratio as a measure of performance. 

Various Zernike mode amplitudes were added into the data and the Hex69 

attempted to correct for these. The Zygo measured the mode applied to the Hex69 

and added the software data to this. If the two were exactly conjugate the Zygo 

should measure a flat wave and the Strehl ratio would be restored to 100%. The 

before and after Strehl ratios are shown in figure 8.5 for an amplitude of A/4 and 

figure 8.6 for an amplitude of A/2. The corrected Strehl ratios in figure 8.5 are all 

above 90% (except mode 8), so the residual wavefront variance is less than 0.3 

radians. In this case the Strehl ratio is defined as being the ratio of the measured 

and diffraction limited intensities at the DC term. This is so that the performance 

of correcting tip and tilt could be assessed. 
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Figure 8.5. The aberrated and corrected Strehl ratios from simulated data. The 

amplitude of the Zernike modes was X/4 
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Figure 8.6. The aberrated and corrected Strehl ratios from simulated data. The 

amplitude of the Zernike modes was A/2. Defocus, astigmatism 1, coma 1 and 2 

and spherical are incorrect because the Zygo could not measure the aberration 

produced by the Hex69 due to the coarse pixelation so no reliable results were 

possible for these modes at this amplitude. 

In figure 8.6 the limitation of the correction was not the Hex69, but the Zygo's 

difficulty in measuring coarsely pixelated wavefronts. 
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8.4.2 M O D A L C R O S S T A L K M E A S U R E M E N T S 

Zernike modes of various amplitudes were applied to the Hex69. These were 

measured with the Zygo. The Zygo fits Zernike modes to the data by using a 

least-square-fitting algorithm. The measured modes are shown in figures 8.7 to 

8.15. They were also measured with the Shack-Hartmann in §8.5.3. It can be seen 

that there was considerable crosstalk between certain modes. This happens 

between similar modes, that is, between a low order mode and its higher order 

equivalent. This can be clearly seen when 0.25A. of spherical aberration (mode 8) 

was applied and -0.11 A, of defocus (mode 3) and -0.14A. of high order spherical 

(mode 15) was measured. Only 0.1 IX, of mode 8 was measured. This problem is 

reduced when lower amplitude aberrations are applied. When using the Hex69 as 

a corrector this becomes less of a problem because the effect is mainly seen in 

higher order modes. The actual typical amplitudes of the higher order modes are 

not as big as the low order modes in atmospheric turbulence. 
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Figure 8.7. The Zernike power spectrum of a tilt aberration introduced by the 

Hex 69 of amplitude 0.25 A. 
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Zernike mode 

Figure 8.8. The Zernike power spectrum of a defocus aberration introduced by 

the Hex 69 of amplitude 0.25X. There is some crosstalk into mode 8. 

Zernike mode 

Figure 8.9. The Zernike power spectrum of an astigmatism (mode 4) aberration 

introduced by the Hex 69 of amplitude 0.25X. 
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Figure 8.10. The Zernike power spectrum of an astigmatism (mode 5) aberration 

introduced by the Hex 69 of amplitude 0.25A. There is some crosstalk into higher 

order modes (mode 16). 
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Zernike mode 

Figure 8.11. The Zernike power spectrum of an astigmatism (mode 6) aberration 

introduced by the Hex 69 of amplitude 0.20 A. 
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Figure 8.12. The Zernike power spectrum of a coma (mode 7) aberration 

introduced by the Hex 69 of amplitude 0.25 A. 
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Figure 8.13. The Zernike power spectrum of a mode 8 spherical aberration 

introduced by the Hex 69 of amplitude 0.25 A. There is some crosstalk into 

defocus, higher order spherical (mode 15) as well as other modes. 
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Figure 8.14. The Zernike power spectrum of a mode 9 aberration introduced by 

the Hex 69 of amplitude 0.25 X. There is some crosstalk into mode 18. 
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Zernike mode 

Figure 8.15. The Zernike power spectrum of a mode 10 aberration introduced by 

the Hex 69 of amplitude 0.25X. 

The higher order modes could not be measured with the Zygo unless the 

amplitude of the modes was reduced. The information about crosstalk was then 

lost in the background noise. Figure 8.16 shows the Hex69s Zernike power 

spectrum with no modes applied. 
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Figure 8.16. The Zernike power spectrum of the Hex69 with no Zernike modes 

applied. Note the scale difference when compared with the above measurements. 

8.5 Shack-Hartmann / Hex69 System 

8.5.1 THE SHACK-HARTMANN SYSTEM 

The Shack-Hartmann used in this chapter was the same as in chapter 6. There 

were several differences in the software because the Hex69 was in a feedback 

loop. Twelve modes were calculated by the C40 and returned to the host PC. A 
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simple control algorithm was used to determine the phase shift applied to the 
Hex69. The nth Zernike amplitude applied to the SLM is a„(j) in the / h frame and 
is calculated by 

«„0')= « - 0 - 0 + GAIN, x4 . (y)xQ„ [8.1 ] 

where £,n(j) was the measured mode from the wavefront sensor and Q.n was the 

calibration gain. Q.„ was calculated by applying each Zernike mode with the 

amplitudes of -0.5A, -0.25A., 0.25A. and 0.5k to the Hex69 (as in §6.7.6). A best f i t 

line was fitted to the data and the gradient of this used as Q.n (the intercept of the 

best fi t line was approximately zero and so could be ignored). Using [8.1] filters 

out some of the random noise from the system but no other control loop 

considerations have been made so far. A high value for GAINn would have caused 

oscillations in the system so it was deliberately kept low at 0.25 for each mode. 

This system was only for demonstration purposes so it was not fully optimised. 

8.5.2 SYSTEM ALIGNMENT 

Because the Hex69 was in a closed loop it was easier to align than the open loop 

system in chapter 7. The application of Zernike modes to the Hex69 was 

measured by the Shack-Hartmann. It was important to check that each mode with 

an angular dependency, such as astigmatism and coma, were in the correct 

rotation. From §8.4.2 it can be seen that there was little, i f any, crosstalk between 

low order modes, until spherical (mode 8). This can be used to check the optical 

alignment. If there was a significant amount of crosstalk it indicated that there 

was an alignment error in the system. 

8.5.3 CROSSTALK MEASUREMENTS 

The above crosstalk measurements were repeated using the Shack-Hartmann as 

the wavefront measurement device. The Zygo and Shack-Hartmann use two 
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completely different techniques for measuring the Zernike modes. If crosstalk 
was present in both results, it is more likely to be a real phenomenon and not just 
an error from the Zygo's fitting routine. The data taken was the mean of 100 
Shack-Hartmann frames and is shown in figures 8.17 to 8.26. 
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Figure 8.17. The Shack-Hartmann measured power spectrum of mode 3. 
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Figure 8.18. The Shack-Hartmann measured power spectrum of mode 4. 
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Figure 8.19. The Shack-Hartmann measured power spectrum of mode 5. 
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Figure 8.20. The Shack-Hartmann measured power spectrum of mode 6. 
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Figure 8.21. The Shack-Hartmann measured power spectrum of mode 7. 
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Figure 8.22. The Shack-Hartmann measured power spectrum of mode 8. 
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Figure 8.23. The Shack-Hartmann power spectrum of mode 9. 
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Figure 8.24. The Shack-Hartmann measured power spectrum of mode 10. 
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Figure 8.25. The Shack-Hartmann measured power spectrum of mode 11. 
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Figure 8.26. The Shack-Hartmann measured power spectrum of mode 12. 

It can be see from the above figures that the crosstalk between modes was also 

present in the Shack-Hartmann measurements. The effect of this crosstalk on the 

correction performance will be discussed below. 

8.5.4 THE CAUSE OF THE HEX69'S CROSSTALK 

The source of the crosstalk in the Hex69 does not come from an electrical source 

as in chapter 4, but from the coarse pixelation of the Hex69. It can not reproduce 

the complex waveform of the higher order modes. Many of the high order modes 

place most of the aberration at the edge of the aperture. Since the pixel size of the 

Hex69 is approximately constant over the whole of its aperture, it has more 

difficulty reproducing these higher order modes. 

The crosstalk can be simulated with a computer model. The DC term of the cross 

correlation of two functions gives a measure of the similarity of the two 

functions. Unpixelated Zernike modes are orthogonal functions and so there is a 

zero DC term of the cross correlation. If f j and fi are two functions, the cross-

correlation is given by 

[FT{fx)-FTifjY FT [8.2] 
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where * represents the complex conjugate and FT is the Fourier transform 

function. 

Simulations were carried out using MATLAB™. The SLM was represented by 

100 10x10 pixels. The first 12 Zernike modes were mapped on to the array and 

each was cross correlated with each other. The results are shown in figures 8.27 

to 8.38. The lighter shaded bars show the height of the DC term for 100 pixels 

and the solid bar is for a 400 pixel SLM. 
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Figure 8.27. Mode 1 cross-correlated with the other Zernike modes. 
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Figure 8.28. Mode 2 cross-correlated with the other Zernike modes. 
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Figure 8.29. Mode 3 cross-correlated with the other Zernike modes. 
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Figure 8.30. Mode 4 cross-correlated with the other Zernike modes. 
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Figure 8.31. Mode 5 cross-correlated with the other Zernike modes. 
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Figure 8.32. Mode 6 cross-correlated with the other Zernike modes. 
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Figure 8.33. Mode 7 cross-correlated with the other Zernike modes. 
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Figure 8.34. Mode 8 cross-correlated with the other Zernike modes. 
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Figure 8.35. Mode 9 cross-correlated with the other Zernike modes. 
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Figure 8.36. Mode 10 cross-correlated with the other Zernike modes. 
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Figure 8.37. Mode 11 cross-correlated with the other Zernike modes. 
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Figure 8.38. Mode 12 cross-correlated with the other Zernike modes. 

It can be seen that the positions of the peaks in figure 8.27 to 8.38 agree 

reasonably with those measures in the above two sections. There is some slight 

discrepancy that is likely to be due to the pixel shapes been different in this 

model. By increasing the number of pixels to 20x20, the crosstalk effect is 

generally reduced. Mode 8 (spherical) has a large amount of crosstalk into mode 

3 (defocus). This is likely to come from the similarity between the modes. Both 

are independent of 0, defocus is <*= r2 and spherical is «= r2+r3, where 0 is the 

angular co-ordinate and r is the dimensionless radial co-ordinate. Plotting a cross 

section of these two modes (figure 8.39) shows that they are approximately 

similar in the central region and diverge toward the edge of the aperture. Since 

the gradient at the edge of mode 8 is quite large it is not unreasonable to assume 

that the Hex69 will have difficulty in modelling the edges accurately. This error 

will make modes 8 similar to mode 3 when they are coarsely pixelated. 
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Figure 8.39. A cross section of two Zernike modes. One negative wave of defocus 

{indicated by stars) and a wave of spherical (solid line) are shown demonstrating 

the similarities of the two modes in the central region. 

These crosstalk effects can be minimised when the Hex69 is used as the corrector 

because of two reasons. The system incorporates negative feedback and so any 

added mode will be removed in the next frame. Secondly, the DSP only returns 

the first 12 modes to the PC. The low order modes do not generate large amounts 

of crosstalk. Out of the 12 modes only the first 8 were used and the amplitude 

that could be applied to the Hex69 was limited to ±0.5 waves for each mode. 

8.5.5 LABORATORY TURBULENCE SIMULATION 

To demonstrate a real time adaptive optics system in the laboratory it is necessary 

to introduce randomly varying aberrations, preferably with Kolmogorov statistics. 

This was achieved in chapter 6 by using the Hex69 SLM. However, there is 

currently only one such device at the University of Durham. An alternative 

device was constructed from a cardboard tube about 50cm long with a resistive 

wire inside. There was also a computer cooling fan in the centre of the tube to 

generate further turbulence. Both of these elements could be controlled by 

varying the voltage across them. 
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Figure 8.40. The measured RMS Zernike mode amplitudes of the cardboard tube 

ATS. The solid bars represent the theoretical modes for a D/ro of 10. The white 

bars are the measured modes. 

A thousand frames of the Shack-Hartmann were taken to analyse the performance 

of the atmospheric turbulence simulator. The RMS of the first 12 Zernike modes 

is shown in figure 8.40. Although modes 1 and 2 (tip/tilt) are slightly lower than 

desired and mode 4 (astigmatism) is higher, it quantitatively approximates to 

Kolmogorov statistics. The lower than average tip/tilt is advantageous because in 

a real telescope system there would be a tip/tilt mirror to remove these two terms. 

The solid columns in figure 8.40 show the theoretical Kolmogorov power 

spectrum for D/ro = 10 (Wang, 1978). Figure 8.41 shows 1000 frames of mode 3 

(defocus) measured with the Shack-Hartmann. The temporal characteristics show 

abrupt changes in amplitude. This is qualitatively similar to the atmosphere. 
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Figure 8.41. The first 5 seconds of data for mode 3 (defocus). 

8.5.6 STATIC CORRECTION 

The system was first run with a static aberration added into the optical path. A 

piece of aberrating glass was placed in front of the Hex69. The measured modes 

were written to a file as the correction was performed. The correction of mode 3 

(defocus) is displayed in figure 8.42. It can be seen that it takes 5 frames to 

perform a correction from 0.8 waves to system noise level. The frame rate of the 

system was 15Hz. 

166 



CHAPTER 8: NEMATIC LIQUID CRYSTAL CORRECTION 

0.8 -• 

time/ seconds 

Figure 8.42. A step response of mode 3 for a static correction in closed loop. 

8.5.7 CLOSED-LOOP EXPECTATIONS 

By using equation [7.3] it is possible to estimate the correction achievable with 

the Hex69 and Shack-Hartmann system. It can be assumed that the wavefront 

sensor noise, OWFS, is the same as before. The temporal bandwidth of the 

corrector is taken to be that of the Hex69's electronics frame speed, i.e.,/c=26Hz. 

Equation [7.8] requires the wind velocity but this is however unknown for this 

simulator. However, by visual inspection, the spots of the Shack-Hartmann 

moved at a similar speed to the spots of the Shack-Hartmann used to study the 

ATS in chapter 6. To make an order of magnitude calculation of the wavefront 

variance the wind velocity has been approximated to 5ms"1, so =0.769 

radians2. 

The Hex69 is 9 pixels across, and so for D/ro of 10, CTcorr=1.06 radians2, a has 

been taken as 1.26 again. The residual error after correcting 8 modes is calculated 

from [7.7] and 0 ^ = 2 . 1 4 9 . The total variance is then 3.96 radians2. This is 

approximately the same residual variance calculated in §7.3.6 for the FLC. 

Despite the Hex69s ability to give analogue correction of the wavefront it is 

disadvantaged because of its slower speed contributing to a larger value of cr̂ mp» 
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and its smaller number of pixels contributing to a larger value of G2

CoTI. However, 

the Hex69 does also attempt to correct for a larger D/r0. Using the value of 

£)/r0=8.5 which was used in chapter 7, the total residual variance drops to 3.46 

radians2. So in theory the system should perform better than the system of chapter 

7. 

8.5.8 CLOSED LOOP CORRECTION 

Closed loop correction was then performed. The system was run with the 

simulated turbulence generator. The frame rate of the Shack-Hartmann system 

was 40Hz, although the Hex69 was only run at 26Hz. Because of the cross-talk 

effects and in an attempt to maximise the speed of the system, only the first 8 

modes where used in the correction routine. The PSF measurements were taken 

with the ITEX integrating frame grabber, over a period of 10 seconds. 

Figure 8.43. Real time correction results. The left graph is the uncorrected PSF, 

Strehl ratio = 7%. The right graph is the corrected, Strehl ratio = 12%. 
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Figure 8.44. The uncorrected PSF (left) and the corrected (right). 

Figure 8.43 shows the aberrated and corrected PSFs. These are also shown as an 

image in figure 8.44. The Strehl ratio was increase from 7% to 12%, an increase 

of a factor of 1.7. The full width half maximum was decreased by a factor of 2.2. 

8.5.9 REAL TELESCOPE TRIALS 

The above system (without the turbulence simulator) has been tested on a real 

telescope. The telescope was the 'Vacuum Tower Telescope' (VTT) at Sunspot, 

New Mexico, USA. The telescope has a diameter of 76cm. It was planned to use 

the telescopes tip/tilt mirror in conjunction with the Hex69. Unfortunately the 

tip/tilt mirror would not work on night-time starlight and the Hex69 had to 

correct for tip/tilt itself. Because of the large sweep required in order to correct 

tip/tilt, the Hex69 was too slow to correct for the seeing. It is hoped that in the 

future the device can be tried again with its own dedicated tip/tilt mirror. 

8.6 Discussion 

The above experiment shows that correction using the nematic Hex69 is possible. 

The improvement in Strehl ratio is non-trivial for a first time system. The 

improvement is however lower than the correction achieved in chapter 7. The 

Strehl ratio was increased from 7% to 12% (compared with 23% to 33% in 

chapter 7). However, as a percentage increase this system gives a larger 

improvement (70%, compared to 43% in chapter 7). It is still important to 
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understand where the losses in performance have occurred and where 
improvements in future systems can be made. 

One of the greatest difficulties with this real time correction was the speed of the 

system. This system has not yet been optimised fully. The GAIN„ values for each 

mode were set to 0.25 each. With such a low value it was sometimes difficult 

tracking the aberrations generated by the ATS. Higher values of GAIN„ were 

tried but they tended to cause oscillations in the system. A detailed studied of the 

control system is required to optimise the GAIN values. 

The cardboard tube method of generating turbulence was not very controllable. It 

could not be operated for more than a few minutes before the air flow inside the 

tube became settled and no longer produced a large aberration. The speed of the 

turbulence is particularly difficult to control. Several lengths of tube were tried 

but this had little effect on the controllability of the turbulence. It is well known 

that nematic liquid crystal SLMs have slow speeds so it would be desirable to 

have more control over the simulated wind speed so that the corrections at 

different speeds could be measured. 

It has been shown in this chapter that static corrections can be corrected very well 

with the Hex69. It can be expected that with a few modifications the system can 

be made to perform better. It is not unreasonable to assume that i f the simulated 

wind speed could have been reduced, the Hex69 would have improved the Strehl 

ratio much more substantially than it did. 

The performance should also be improved with the inclusion of a tip/tilt mirror in 

the system. In Kolmogorov turbulence, the first two modes have the most power. 

This required the SLM to sweep through a larger dynamic range. Since the large 

range causes the SLM to slow down considerably, removal of tip/tilt would have 

allowed the Hex69 to correct the higher order modes faster. This idea is in line 
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with other adaptive optics systems such as ELECTRA where a separate mirror 
removes the tip/tilt. 

In conclusion, the system has improved the Strehl ratio of a real time aberration. 

Although the increase in the numerical value of the Strehl ratio was smaller than 

in the system of the previous chapter, the percentage increase was greater and the 

light efficiency of the whole system was considerably higher. A large 

improvement in Strehl ratio was demonstrated using the device statically. It is the 

author's opinion that i f the speed of the real time system can be increased this 

method will provide the best adaptive optics system for astronomical applications 

due to it's higher optical transmission and ability to potentially fully correct for 

an aberration. 

8.7 Summary 

In this chapter a nematic liquid crystal adaptive optics system has been built. The 

wavefront sensor was a Shack-Hartmann sensor. Cross-talk between various 

Zernike modes has been experimentally measured. Both static and real time 

corrections have been demonstrated. 

The next chapter will draw together the conclusions from all the experimental 

chapters and compare the results. It will present the conclusions of this thesis. 
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Chapter 9: Summary and Conclusions 

9.1 Introduction 

The aim of this thesis was to demonstrate working liquid crystal based adaptive 

optics systems. This chapter shall begin by summarising the work done in each 

of the experimental chapters (chapters 4-8). It will then compare each adaptive 

optics system, discussing the merits of each. The final section will discuss 

suggestions for future work. 

9.2 Summary of Results 

9.2.1 CHAPTERS 2 AND 3 

Chapters 2 and 3 gave a basic introduction to liquid crystals, atmospheric 

turbulence and adaptive optics. 

9.2.2 CHAPTER 4 

In chapter 4 a multiplexed nematic device was examined. The device was based 

on standard display technology, slightly modified to be used as a phase only 

modulator. 

The device was capable of giving a IX phase shift, however through a series of 

experiments to measure the phase shift produced by the device, it was discovered 

that there was a large amount of crosstalk between pixels. This crosstalk was 

known to happen in intensity modulating multiplexed displays so an experiment 

was performed to characterise it. It was found that when half ( A ) of the device 

was turned fully on and the other half (B) was turned fully off the actual phases 

shifts measured were 5A, on half (B) instead of OA. and 6A. on half ( A ) instead of 

the expected IX. By looking at the voltage waveforms it was suggested that this 

effect came about from the multiplexing technique. 
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Although the crosstalk effects were less severe when only small differences in 

the voltages were applied to each half, the device was clearly limited in its 

application in adaptive optics. For this reason, no further work was carried out 

on the device. 

9.2.3 CHAPTER 5 

In this chapter, one of the simplest types of adaptive optics to implement was 

tested: 'binary adaptive optics'. This system used an FLC SLM with a PDI as 

the wavefront sensor. Binary adaptive optics only requires the knowledge of 

whether a pixel is in or out of phase. For this reason it is not important to fully 

calculate the phase from an interferogram. 

A computer model of the system was developed to enable an understanding of 

the complexities of the PDI. It was necessary to experiment with several control 

algorithms to obtain the best correction performance. An experimental system 

was constructed and aberrations were applied. The system corrected from a 

Strehl ratio of 5% to 26%. However it took ~5 frames to reach the maximum 

correction achievable. Some pixels oscillated. The optical transmission of the 

system was also extremely low. Both the FLC and the PDI were very lossy. 

9.2.4 CHAPTER 6 

In chapter 6 an atmospheric turbulence simulator (ATS) was developed. This 

was to test the system in the next chapter. Computer generated phase screens 

were produced off line. These were then mapped on to the Meadowlark Hex69 

nematic liquid crystal SLM. A Shack-Hartmann wavefront sensor was 

constructed to test the performance of the device. The RMS of each Zernike 

mode and the Strehl ratio were found to be in reasonable agreement with the 

theoretical expectations. The temporal power spectrum showed an expected -8/3 

gradient on a log-log graph. 
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9.2.5 CHAPTER 7 

In chapter 7 the ATS developed in chapter 6 was used as an aberrator in an FLC 

binary adaptive optics system. A Displaytech 10x1 Ob FLC SLM was used as the 

corrective element and a Shack-Hartmann was the wavefront sensor. The system 

was run in real time producing a Strehl ratio improvement from 23% to 33%. 

The system ran at a speed of 6Hz. Although the wavefront sensor's light 

efficiency was improved, the system was still limited by the lossiness of the FLC 

and the low theoretical expectation. 

9.2.6 CHAPTER 8 

In chapter 8 the FLC was replaced by a Meadowlark Hex69 SLM. This 

improved the transmission of the corrective element to 90%. The system was run 

in real time with a frame rate of 26Hz. An improvement in Strehl ratio from 7% 

to 12% was measured. There was also an analysis of the cross talk between 

Zernike modes generated by the Meadowlark. The static correction of a piece of 

aberrated glass was also performed. This suggested that i f the device was not so 

limited by speed it should be able to correct aberrations very well in a real time 

system. 

The correction results are summarised in table 9.1. Only considering the Strehl 

ratio increase the FLC/PDI system (chapter 5) is considerably better than the 

other two. However, the system has a very poor optical transmission. The FLC 

only allows 2% of light through and the PDI is known to have low transmission 

(although this could be improved by using a phase shifting PDI). The major 

problem with this system is its instabilities and the fact it takes several frames to 

reach the best solution. These factors make it unsuitable for atmospheric 

adaptive optics. 
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System Aberrated 

Strehl 

Ratio 

Corrected 

Strehl 

Ratio 

Percentage 

Increase 

Transmission 

of SLM* 

Wavefront 

Sensor Frame 

Rate 

Notes 

FLC/PDI 5% 26% 420% 2% 10Hz I 

FLC/Shack-

Hartmann 

23% 33% 43% 2% 6Hz 2 

Hex69/ 

Shack-

Hartmann 

7% 12% 70% 44% 40Hz 3 

Table 9.1. A summary of the correction results. 

The second system, the FLC/Shack-Hartmann (chapter 7) had a more light 

efficient wavefront sensor. This system was considerably more stable than the 

PDI system and only took one frame to reach the best correction. The 

transmission of the FLC was still however very low. The system still had a low 

theoretical maximum performance. The maximum theoretical correction with 

binary adaptive optics of a severely aberrated wavefront is 40.5%, when taking 

into account other factors such as the finite number of pixels this is reduced 

further. 

The third system provided the best real time correction. The transmission of the 

device was considerably higher than the FLC. Although the FLC/PDI system 

gave a greater improvement, this system was faster, more stable, and more light 

efficient. It must also be taken into account that this system was attempting to 

Transmission value includes polarisers. 

1 The system took several frames to reach the final solution. The transmission of the PDI was 

very low. The system was prone to becoming unstable. 

2 The slow frame rate is because of a slower camera on the wavefront sensor than the Shack-

Hartmann below. Using the same camera both systems should run at the same frame rate. 50% of 

the light was used by the Shack-Hartmann. 

3 The frame rate of the SLM was limited to 26Hz. 50% of the light was used by the Shack-

Hartmann. 
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correct for an aberration greater and faster than that in the FLC/Shack-Hartmann 

system. Although the speed of the nematic liquid crystal SLM is slower than the 

FLC several options for future work will be discussed later which should make 

the device run slightly faster. For this reason, it is the conclusion that the 

Meadowlark Hex69 SLM with a Shack-Hartmann wavefront sensor is the best 

choice with current technology for a liquid crystal adaptive optics system for 

astronomy. Of the three systems tested, this system has filled the criteria required 

for an atmospheric adaptive optics system the best. 

9.3 Future Work 

9.3.1 MEADOWLARK/SHACK-HARTMANN SYSTEMS 

One of the most important steps in the next stage of the Meadowlark/ Shack-

Hartmann system would be to increase the speed of the system. Several ideas are 

listed below. 

1. Improve the drive electronics. At the moment the Meadowlark SLM is been 

driven through the printer port. This introduces the 26Hz frame speed. If the 

device was driven using a digital interface the bandwidth of the electronics 

should improve. Although the speed of the liquid crystal would not increase, 

it would mean a faster switching speed for phase shifts <k. 

2. Optimisation of the calibration curve. The response time of a nematic liquid 

crystal SLM is non-linear, i.e., a shift for 0 to A/2 takes a different amount of 

time to a shift from X/2 to 7i. By choosing the correct range to be used by the 

calibration curve the liquid crystal will operate slightly faster. 

3. Optimisation of the control loop. The control feedback loop for the system 

has not been optimised. Analysis of the system using linear control theory 

should enable the system gains to be set more accurately allowing the 

Meadowlark to reach the desired correction in less frames. 
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4. Include a tip/tilt mirror. The largest aberrations in Kolmogorov turbulence are 

tip/tilt. These aberrations require the Meadowlark to sweep through a large 

range to correct for them. If the tip/tilt was removed with a tip/tilt mirror, the 

Meadowlark could be used to only correct the higher order modes. These 

modes would require smaller ranges for the liquid crystal and so they could 

then be corrected faster. 

As well as the above improvements the following should be also done. 

1. Optimise the reflectivity of the beam splitter so that as much light as possible 

goes to the science camera and the Shack-Hartmann still works. 

2. Cascade two devices together. The second device should have its optical axis 

orthogonal to the first. There would then be no polariser required and the 

transmission should improve to approximately 81% (assuming 90% 

transmission for both devices.) 

3. A larger number of Zernike modes should be used to control the SLM. This 

will improve the total amount of correction possible. Any loss in computer 

speed could easily be compensated by replacing the 80486 PC with a Pentium 

PC. 

9.3.2 FLC/SHACK-HARTMANN S Y S T E M 

Currently the FLC system is limited by its poor transmission. Until a high 

switching angle device can be developed, PLCs will be of little use in 

astronomy. Once high switching angle device are developed PLCs will enable a 

very fast adaptive optics system. It will probably be desirable to cascade two or 

more devices together to get at least quarter wave switching so that the 

aberration can be more fully corrected. The best wavefront sensor for achieving 

this wil l probably be the Shack-Hartmann. 
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9.3.3 ATMOSPHERIC TURBULENCE SIMULATOR 

Many of the improvements that could be made to the Meadowlark adaptive 

optics system are applicable to this. In addition, the following is recommended 

for further work. 

1. If tip/tilt is to be modelled, use a separate tip/tilt mirror to increase the speed 

of the liquid crystal. 

2. Cascade several devices together to simulate multi-layer turbulence. This 

would be useful for testing multi-conjugate adaptive optics systems. 
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Appendix 1 : The Zygo Interferometer 
The Zygo interferometer is used extensively in this thesis. This appendix briefly 

describes the device. 

A1.1 System Design 

The Zygo is a double pass interferometer. The laser source is a lmW red He-Ne. This 

light passes through a reference plate that reflects part of the light back to the Zygo's 

imaging CCD camera. This is the reference part of the beam. The rest of the light 

passes through to the test object. If the test object is transparent, such as a liquid 

crystal SLM, an optically flat mirror is placed behind the object. This reflects the light 

back into the Zygo where it then interferes with the test beam forming an 

interferogram on the CCD camera. A piezo-electrically controlled mirror can alter the 

path length of the reference beam so that the (modulo 2K) phase can be completely 

calculated. Taking the familiar interference intensity equation 

where IQ and al^ are the intensities of the two interfering beams, y is the fringe 

contrast (see equation [5.6]) and 0 is the phase between the test and reference beams. 

If an additional n/2 phase shift is added to the reference beam (by moving the 

reference plate with pizeo-electric crystals) we now get 

/ ^ ( l + a ^ o O + ycosCe)) [ A l . l ] 

/ 2 = ( l + a 2 > 0 (l-Ysin(e)) [A1.2] 

Two additional shifts of the reference beam by n and 3n/2 radians gives 

/ 3=(l + a 2) 0(l-ycos(e)) [A1.3] 

/ 4 = ( l + a 2 V 0 ( l + ysin(e)) [A1.4] 
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From a single measurement it is impossible to determine 9. The arc-cosine does not 

give a unique solution, in addition a, y and k are usually unknown. However, i f all 

four measurements are made [ A l . l ] , [A1.2], [A1.3], and [A1.4] can be rearranged to 

give 

6 = arctan 
f l -I A 

4 L2 
/ , - / , V i 

[A1.5] 

which does give a unique solution between -K and it radians. I0 and y also cancel. It is 

still impossible to distinguish between 0+0 and 27W+9, where n is an integer. The 

Zygo gets around this by assuming that the phase is continuous across the aperture, 

and adds 2n to any pixels that are discontinuous (over certain threshold) with their 

neighbours. 

Five measurements are taken by the Zygo. The first four have their reference beams 

phase shifted as described above. The fifth is identical to the first and is used to check 

for any environmental perturbations that may have occurred during the measurement. 

The interferograms are processed off line on an IBM compatible PC. 

Al.1.1 T H E Z Y G O PTI SPECIFICATIONS 

The Zygo specifications are given in table A l . l . The resolution is determined by the 

digitisation of the interferogram by the CCD camera frame grabber. The accuracy is 

dependent on the flatness of the optical reference plate. This can be improved by 

subtracting the known aberrations of the reference plate from the test data. 
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Phase measurement resolution X I 2 5 6 

Phase measurement accuracy < A/50 Peak to Valley 

Repeatability X I 1 0 0 to l a 

Data acquisition time ~ Is 

Beam size switchable to 33mm or 102mm 

Light source lmW He-Ne Laser, 632.8nm 

Table ALL The Zygo interferometer specifications 

Al.1.2 Z E R N I K E MODE FITTING 

The Zygo fits up to 36 Zernike polynomials to the data. Each term is fitted by 

minimising the RMS error from a given test phase screen to typically less than 1/50A, 

Any of the Zernike modes can be altered and the measured phase screen regenerated 

with the new Zernike modes. This enables tip/tilt to be removed from the data. Tip/tilt 

is usually due to a misalignment of the interferometer and so is generally removed. 

Al.1.3 DISADVANTAGES OF PHASE SHIFTING I N T E R F E R O M E T E R Y 

The obvious disadvantage of this technique of determining phase is that unless four 

separate interferometers are used, it is not possible to have a fast data acquisition time. 

The Zygo takes about 1 second to take the raw data but about a further minute to post-

process it and write it to disk. This makes real time adaptive optics impossible with 

the Zygo. 

The other disadvantage is when a pixelated device such as the Meadowlark SLM is 

measured, the assumption that the wavefront is smooth and continuous is no longer 

valid. If a large aberration is placed on to the Meadowlark SLM, the Zygo software 

will not unwrap the phase correctly and the result will be completely different from 

the expected phase screen. 
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Al.1.4 ADDITIONAL F E A T U R E S 

The Zygo can store the data in one of three formats: phase data; 36 fitted Zernike 

modes; or raw interferograms. The Zygo software also offers the additional 

possibilities: the calculation of point spread and modulation transfer functions; 

manipulation of Zernike mode coefficients and phase screens; and various data display 

options. 
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Appendix 2: The design of a non-pixeiated SLM 
One of the limits of adaptive optics systems is the limited number of actuators that 

perform the correction. With deformable mirrors this can be limited by the cost and 

the technical demands of constructing such a large number of actuators. In liquid 

crystal SLMs the limit comes from the large number of connections requiring either a 

large dead space between pixels or having to multiplex and so losing accuracy. In this 

appendix a novel liquid crystal alternative is proposed. The device has no pixels to 

speak of, but is more like a continuous face plate deformable mirror. There is also the 

possibility of a very large number of actuators. With 0.5p.m wide electrodes it should 

be possible to achieve an actuator density of ~2*104 per cm2. This would have no 

problems of interpixel dead space, although this calculation does not address the 

problem of how to electrically connect such a large number of electrodes. 

A2.1 Basic design 

The basic idea is to use a resistive layer instead of individual pixels. Starting from the 

top layer there would be 

1. A layer of ITO 1 coated glass. This would be the electrical ground. 

2. Nematic liquid crystal material, with parallel alignment. 

3. An electrically resistive material such as silicon. To this there would be electrodes 

attached at discrete points. 

Because the electrodes are connected by a resistive layer there will be a ramp function 

in the voltage from an electrode with a high voltage applied and an electrode with a 

lower voltage (see figure A2.1) 

1 ITO (or indium tin oxide) is a transparent electrical conducting layer deposited on glass and is used 

for liquid crystal applications. 
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To demonstrate that in a 2 dimensional layer this will work, simulations were carried 

out using Spice. This is an electrical circuit simulation package. The 2 dimensional 

resistive layer was simulated by approximating it to an array of identical 

interconnecting resistors (see figure A2.2) and applying voltages to different points. 

. I 1 

^ ^ " v ^ V 2 

Figure A2.1. The voltage slope across the resistive layer. Vi and \ 2 are applied via 

discrete electrodes. At the top is earthed ITO glass. 

} 

Figure A2.2. An example of the resistive network used as an approximation for the 

simulation of the resistive layer. 

Figure A2.3 shows a contour map of the voltages over the area covered by 4 

electrodes. The voltages applied to the electrodes were 2,4,6,8 volts. 
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Figure A2.3. The voltage profile across an area of the resistive layer. Electrodes are 

in the four corners. 

From figure A2.3, it can be seen that the phase shift caused by the device will be 

continuous, similar to that of a continuous face plate mirror. For this reason it is 

possible that the device would be well suited to be used with a curvature sensor 

wavefront detector, with each electrode lined up with a subaperture of the curvature 

sensor. 

Riza et al. (Riza, 1994) has developed a 1 dimensional liquid crystal lens based on a 

similar idea to this. He applied voltages across strips of a resistive material to create a 

cylindrical lens. Because his device was one dimensional (he could only alter row 

voltages), the construction was simpler because each electrode was at the edge of the 

device. Construction ideas for a 2 dimensional device are slightly harder and are 

discussed below. 

A2.1.1 DESIGN 1 

Several designs were considered for constructing such a device. The first design used 

a 12x12 pin chip holder. Graphite rods (from an automatic pencil) were placed in the 

pins and a layer of acrylic plastic placed on top of this which was the same depth as 
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the graphite rods. The surface of the device was then polished to get it optically flat. A 

resistive layer was then to be deposited on top of this (see figure A2.4). The exact 

material to be used was to be determined. Options included depositing a 

semiconductor on top or painting a layer of conducting glue on and re-polishing. 

LC 

Resitive 
layer 

Graphite 
rods 

Chip holder 

ITO glass 

m i l i u m 
111 ill y u u u u u u u u u u 

^ — Metal pins 

«- Acrylic 

Figure A2.4. The first design. 

Surface Profile / waves 
10 

Figure A2.5. A surface profile of the plastic layer measured with the Zygo 

interferometer. 
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Figure A2.5 shows a surface profile measured with the Zygo. The plastic layer 

deformed under the pressure of polishing the device and so a flat finish could not be 

produced. The device continued to warp for several hours after the device had been 

polished. It became so bad that the Zygo could no longer measure the aberration. 
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Figure A2.6. An Alpha-step profile of the device. Note how the graphite rods protrude 

from the surface by ~2jdm. 

An alpha-step profile was taken over several of the graphite rods (figure A2.6). The 

alpha-step works by dragging a needle over the device and measuring the vertical 

movement of the needle to an accuracy of ~lnm. This showed that the plastic is 

removed much faster than the graphite when the device was been polished. This left 

the graphite rods protruding from the surface by several micrometres. It was clear that 

this device would not have the specifications desired and the design was dropped. 

A2.1.2 DESIGN 2 

The second design to be considered was to deposit aluminium tracks onto a 

semiconductor wafer (see figure A2.7). The wafer would be silicon and had one 

surface oxidised in an oven to resistive silicon oxide. Pits would be etched through the 

silicon oxide. The aluminium tracks would lead from these pits to the electrical 

connections of the device. The thickness of the silicon oxide wafer would shield the 

liquid crystal material from the tracks except for where the pits have been etched 

through to the silicon. The depth of the pits is controlled by the sputtering of boron 
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ions onto the reverse surface of the silicon. When the etching acid reaches the boron, 

it stops. This design has promise but the device was deemed to be too fragile to 

withstand the rest of the construction process (Wood, 1996). 

Si layer 

SO 

- Al electrode 

Figure A2.7. Design 2. The liquid crystal material would go on top of the Si layer. 

The Si02 would shield the liquid crystal from the Al electrodes except at the points 

were pits are etched. 

A2.1.3 DESIGN 3 

The final design was the most promising. The device would be built on a glass 

substrate. This gives a strong, hard and optically flat surface. The aluminium electrode 

tracks are then deposited on to the glass lithographically. On top of this, a layer of 

silicon oxide (or liquid glass) is deposited. Holes are then etched into the layer 

through to the aluminium tracks (with an acid that does not readily attack aluminium), 

and a layer of semiconductor (silicon) is deposited on top of this. The rest of the cell 

can be constructed on top of this, i.e., the liquid crystal layer and ITO glass (see figure 

A2.8). 
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Si layer ITO glass 

L S1O2 layer LC 

f 
9MS 

an 

1 Glass Al electrode 
substrate 

Figure A2.8. Design 3. This design is based on a glass substrate with Aluminium 

tracks on top of this and either Si(?2 or 'liquid glass' acting as the insulator between 

the conducting tracks and the resistive Si layer. 

Out of the three designs, number three seems the most promising. The glass substrate 

is known to be both optically flat and strong enough to construct the rest of the cell on 

top. Figure A2.9 shows a possible design of the aluminium tracks. The squares around 

the edge are 1mm across. These are to connect the device to the drive electronics. 
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Figure A2.9. A possible design for the electrode tracks. The central square area 

would be the active area. The diagonal tracks connect this to the pads around the 

edge. This is so that wires can be connected to the device. 

A2.2 Summary 

In this appendix, an idea for a liquid crystal device with no pixels and the potential for 

a very large number of degrees of freedom has been described. Three methods of 

constructing such a device have been described. The actual construction of such a 

device is outside the realms of this thesis, but such a device will hopefully be built in 

the future. 
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