
Durham E-Theses

Analysis of safety critical plc code against IEC 1508

development techniques

Williamson, Louise M.

How to cite:

Williamson, Louise M. (1998) Analysis of safety critical plc code against IEC 1508 development

techniques, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4777/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4777/
 http://etheses.dur.ac.uk/4777/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Analysis of Safety Critical PLC Code Against

lEC 1508 Development Techniques

Louise M. Williamson

MSc Thesis

Centre for Software Maintenance

Department of Computer Science

University of Durham

The copyright of this thesis rests
with the author. No quotation
from it should be published
without the written consent of die
audior and information derived
from it should be acknowledged.

September 1998

1 1 MAY 1999

ABSTRACT

The aim of this thesis is to assess the appHcabiHty of recommended software

development techniques defined in lEC 1508 [8] to PLC (Programmable Logic

Controller) code developed for offshore oil platforms. The draft standard lEC 1508

contains specific recommendations which have the objective of improving the safety

characteristics of safety critical code. The recommended techniques could have one of

the fol lowing characteristics with regard to offshore PLC code:-

• They are already used in the development of code.

• They could be used in the development of the code.

• They could not be used due to the application domain.

• They could not be used due to the specific programming environment analysed.

I t was the aim of the thesis to characterise a subset of the lEC 1508 techniques into the

above categories. The analysis was requested by the Health and Safety Executive

(HSE) Offshore Division.

The analysis has been performed using two major case studies, taken from live

industrial safety-critical systems operating on a North Sea Oil Platform; they both

comprise 300K lines of code in total. Both systems were written in three high level

PLC languages. I t was decided to translate the code into one language, so the analysis

was undertaken in terms of a single language. A translator has been written, and a

number of static analysis tools, therefore allowing all the code to be analysed.

The key twenty two recommendations f rom lEC 1508 have been selected, and the case

study systems correspondingly analysed, using a modified Goal Question Metric

(GQM) approach as a unified framework.

The overall analysis method has been found to be successful in supporting the detailed

analysis of lEC 1508 recommendations. The thesis presents detailed conclusions on

each analysed technique, as well as more general observations on the PLC code.

ACKNOWLEDGEMENTS

This thesis is based on the work that I did as part of ROPES (Review of Offshore

Programmable Electrical Systems) at the University of Durham, funded by the Health

and Safety Executive (HSE) Offshore Division. The code was supplied by Kvaerner

pic through Stirling Taylor.

This work could not have been completed without input f rom a number of people, to

whom I am very grateful. Guidance, advice and comments came f rom Prof. Keith

Bennett my supervisor and Norman Turner the HSE co-ordinator.

The discussions and help f rom members of the department were invaluable, especially

the 'lodgers' and 'lofters' . A special thanks must go to Liz for proof reading the thesis,

Mark for the slicing tool, James and Antony for being there when needed and all the

help they gave me.

The thesis would never have been written without all the encouragement, nagging and

support f rom my family and friends.

i n

DISCLAIMER

This thesis has not been submitted to any university for a degree.

COPYRIGHT

The copyright of this thesis rests with the author. No quotation from it should be

published without their prior written consent and information derived f rom it should be

acknowledged.

IV

CONTENTS

1. I N T R O D U C T I O N 1

1.1 PROJECT A I M S 2

1.1.1 Translation 3

1.1.2 Analysis 5

1.1.2.1 Program slicing 6

1.1.2.2 Graph tool analysis ; 7

1.1.2.3 Transformations V

1.1.2.4 Frequency of variable usage 7

1.1.2.5 Variable usage 7

1.2 CRITERIA FOR SUCCESS 8

1.3 THESIS STRUCTURE 8

2. G E N E R A L B A C K G R O U N D 1 0

2.1 SAFETY CRITICAL SYSTEMS 10

2.1.1 Characteristics of An Ideal Safety Critical System 14

2.1.2 Accidents - Why Do They Happen 16

2.1.3 Why Computers? 17

2.1.4 1EC1508 18

2.1.5 Developing Safety Critical Systems 19

2.1.6 Fault Prevention 20

2.1.6.1 Safety Analysis 21

2.1.6.2 Fault Avoidance 21

2.1.6.3 Fault Detection 22

2.1.7 Fault Tolerance 22

2.1.7.1 Failure Detection 23

2.1.7.2 Failure Containment / Damage Assessment 23

2.1.7.3 Fault Recovery 24

2.1.7.4 Fault Repair 24

2.1.8 Fault Avoidance and Fault Tolerance 24

2.1.9 Summary 25

2.2 PLCs 25

2.2.1 Structure of a PLC 26

2.2.1. \ CPU (Central Processing Unit) 27

2.2.1.2 Memory 27

2.2.1.3 I/O 28

2.2.1.4 Programming Port 28

2.2.2 Relay Ladder Logic (RLL) 29

2.2.5 IEC1131-3 30

2.2.3.1 Sequential Function Chart 32

2.2.3.2 Instruction Lists 33

2.2.3.3 Structured Text 34

2.2.3.4 Ladder Diagrams 36

2.2.3.5 Function Block Diagrams 36

2.2.4 lEC 1131-3 and Safety Critical Code 37

2.3 TRANSLATORS 38

2.3.1 Why Translate

2.3.2 How to Translate ^9

2.3.3 Build an Automatic Translator 40

3. T R A N S L A T I O N 43

3.1 SIEMENS LANGUAGES 44

3.1.1 Modularity 44

3.1.2 Variables 45

3.1.3 Sequential Function Charts 47

3.1.4 Continuous Function Chart 50

3.1.4.1 Interlocks 51

3.1.4.2 Math Blocks 52

3.1.5 Compilation Order -52

3.1.6 Math Language

3.2 W S L (W I D E SPECTRUM L A N G U A G E) 53

3.3 M A P P I N G D O C U M E N T 54

3.4 B U I L D T H E TRANSLATOR 56

3.4.1 Math Language Translator 56

3.4.1.1 SFC translation 57

VI

3.4.1.2 C F B translation 58

3.4.1.3 Entire program 58

3.5 RESULTS 58

4. T H E C O D E 60

4 . 1 N E S T E D STATEMENTS 6 9

4 . 2 C O D E MISUSE 7 0

4 . 3 V A R I A B L E U S A G E 7 0

4.3.1 ESD Variables 71

4.3.2 F&G Variables 73

4 . 4 T I M E 73

4 .5 S F C 7 4

4 . 6 C O N T R O L FLOW OF T H E CODE 7 5

4 . 7 S U M M A R Y 7 8

5. A N A L Y S I S 79

5 .1 C O D I N G S T A N D A R D S 8 1

5.1.1 Goal 81

5.1.2 Definition of Technique 81

5.1.3 Questions 82

5.1.4 Metrics 82

5.1.4.1 What layout standards can be identified in the ESD and F & G code before

translation? 82

5.1.4.2 What standards could be identified after translation of the code? 82

5.1.4.3 Were nested conditional statements allowed and i f so to what level? 83

5.1.4.4 What is the size of procedures? 83

5.1.4.5 Is the timer usage consistent? 83

5. i. 5 Conclusions 83

5.2 L I M I T T H E USE OF POINTERS 8 4

5.2.1 Goal 84

5.2.2 Definition of Technique 84

5.2.3 Questions 84

5.2.4 Metrics 84

5.2.4.1 Where have pointers been used? 84

vu

5.2.4.2 Where has the hardware been directly referenced by address? 84

5.2.5 Conclusions 85

5.3 L I M I T T H E U S E OF RECURSION 86

5.3.1 Goal 86

5.3.2 Definition of Technique 86

5.3.3 Questions 86

5.3.4 Metrics 86

5.3.4.1 Where has recursion been used and how could it have been better used? 86

5.3.5 Conclusions 57

5.4 No D Y N A M I C OBJECTS OR VARIABLES 87

5.4.1 Goal 87

5.4.2 Definition of Technique 87

5.4.3 Questions 57

5.4.4 Metrics 88

5.4.4.1 Are dynamic objects used? 88

5.4.4.2 Are dynamic variables used? 88

5.4.4.3 How does not using them improve safety features? 88

5.4.5 Conclusions 88

5.5 No U N C O N D I T I O N A L JUMPS 89

5 .5 .7 Goal 89

5.5.2 Definition of Technique 89

5.5.3 Questions 89

5.5.4 Metrics 89

5.5.4.1 How and where are GOTO jumps used? 89

5 .5 .5 Conclusion 90

5.6 L I M I T T H E USE OF INTERRUPTS 90

5.6.1 Goal 90

5.6.2 Definition of Technique 90

5.6.3 Questions 90

5.6.4 Metrics 91

5.6.4.1 How are interrupts used? 91

5.6.4.2 Do values change during an execution? 91

v i u

5.6.4.3 How does not using interrupts improve verification, assessment and

maintenance? 92

5.6.5 Conclusions 92

5.7 L I M I T T H E SIZE OF MODULES 93

5.7.1 Goal 93

5.7.2 Definition of Technique 93

5.7.3 Questions 93

5.7.4 Metrics 94

5.7.4.1 Is the function of the modules well defined? 94

5.7.4.2 What is the communication between modules? 94

5.7.4.3 What is the size of the modules (equated to math blocks)? 94

5.7.4.4 Does every module have only one entrance and exit point? 95

5.7.5 Conclusions 96

5.8 U S E I N F O R M A T I O N H I D I N G / ENCAPSULATION 96

5.8.1 Goal 96

5.8.2 Definition of Technique 96

5.8.3 Questions 97

5.8.4 Metrics 9 7

5.8.4.1 Is information hiding supported by APT? 97

5.8.4.2 How many units are global variables normally used in? 97

5.8.4.3 Are global variables read and written in multiple units? 98

5 .5 .5 Conclusions 99

5.9 U S E VERIFIED MODULES 100

5.9.1 Goal 100

5.9.2 Definition of Technique 100

5.9.3 Questions 100

5.9.4 Metrics 100

5.9.4.1 Was code reused? 100

5.9.4.2 Was code written so it could be reused? 100

5 .9 .5 Conclusion 101

5.10 U S E A STRONGLY TYPED PROGRAMMING L A N G U A G E 101

5.10.1 Goal 101

5.10.2 Definition of Technique 101

IX

5.10.3 Questions 101

5.10.4 Metrics 102

5.10.4.1 Is it a strongly typed language that was used? 102

5.10.4.2 Were there any instances of code that would not have compiled using a

strongly typed language? 102

5.10.4.3 Would a strongly typed language have aided maintenance by preventing

erroneous code being included? 103

5.10.4.4 Were variables declared and not used? 103

5 . 7 0 . 5 Conclusions 105

5 . 1 1 U S E A SAFE SUBSET OF T H E PROGRAMMING L A N G U A G E 105

5 .77 .7 Goal 105

5.11.2 Definition of Technique 7 0 5

5 . 7 7 . 5 Questions 105

5.11.4 Metrics 106

5.11.4.1 What is the subset of the language and how do the removed techniques

improve safety? 106

5.11.4.2 Which error prone parts would the author have removed if possible? 107

5.11.4.3 Was it possible to tell which were error prone parts? 108

5.11.5 Conclusions 7 OS

5 . 1 2 DIFFERENT P R O G R A M M I N G LANGUAGES USED 108

5 .72 .7 Goal 108

5.12.2 Definition of Technique 7 0 9

5.12.3 Questions 7 7 0

5 . 7 2 . 4 Metrics HO

5 . 1 3 C F C S 1 1 0

5.13.1.1 Is the language fully and unambiguously defined? 110

5.13.1.2 Is the language problem oriented? 110

5.13.1.3 Does the language provide:- 110

5.13.1.4 Does the language encourage:- I l l

5.13.1.5 Features which make verification difficuU should be avoided including:-. I l l

5.13.2 Conclusions

5 . 1 4 SFCs 1 1 2

5.14.1.1 Is the language fully and unambiguously defined? 112

5.14.1.2 Is the language problem oriented? 113

5.14.1.3 Does the language provide:- 113

5.14.1.4 Does the language encourage:- 113

5.14.1.5 Features which make verification difficult should be avoided including:-. 114

5. i ^ . 2 Conclusions 115

5.15 M A T H L A N G U A G E 115

5.15.1.1 Is the language fully and unambiguously defined? 115

5.15.1.2 Is the language problem oriented? 115

5.15.1.3 Does the language provide:- 115

5.15.1.4 Does the language encourage:- 116

5.15.1.5 Features which make verification difficult should be avoided including:-. 117

5.15.2 Conclusions 777

5.16 APT T O O L 118

5.16.1.1 Is the language fully and unambiguously defined? 118

5.16.1.2 Is the language problem oriented? 118

5.16.1.3 Does the language provide:- 118

5.16.1.4 Does the language encourage:- 118

5.16.1.5 Features which make verification difficult should be avoided including:-. 119

5.16.2 Conclusions 779

5.17 D E S I G N EASILY A N A L Y S A B L E PROGRAMS 120

5.17.1 Goal 720

5.77.2 Definition of Technique 720

5.17.3 Questions 720

5.17.4 Metrics 720
5.17.4.1 What is the size of modules and are they small? 120

5.17.4.2 The number of paths through a program is dependent on branching and loops

121

5.17.4.3 Are parts of the program decoupled? 122

5.17.4.4 Where are complex calculations used as the basis of branching and could

this be changed? 122

5.17.4.5 Branching based on input parameters? 122

5.17.4.6 Do math blocks use predominately global or local variables? 122

5.77.5 Conclusions 7 2 i

5.18 U S E D A T A FLOW A N A L Y S I S 123

XI

5.18.1 Goal 7 2 J

5 . 7 5 . 2 Definition of Technique 123

5.18.3 Questions 124

5.18.4 Metrics 124

5.18.4.1 Were all variables written to and read from? 124

5.18.4.2 Some internal procedures should not be used in the same CFB 126

5 . 7 5 . 5 Conclusions 126

5 . 1 9 U S E CONTROL FLOW A N A L Y S I S 127

5 . 79 .7 Goal 127

5.19.2 Definition of Technique 127

5.19.3 Questions 127

5.19.4 Metrics 128

5.19.4.1 What does the procedural control flow look like? 128

5.19.4.2 What is the control flow within the code? 128

5.19.4.3 Does the SFC control flow program look like the SFC diagram? 128

5 . 7 9 . 5 Conclusions ^ 2 9

5 . 2 0 U S E STRUCTURED BASED TESTING 1 2 9

5 . 20 .7 Goal ^ 2 9

5 . 2 0 . 2 Definition of Technique 7 2 9

5.20.3 Questions 130

5.20.4 Metrics 131

5.20.4.1 Statement testing 131

5.20.4.2 Branch testing 131

5.20.4.3 Compound condition testing 132

5.20.4.4 L C S A J - (linear code sequence and jump testing) 132

5.20.4.5 Data flow testing 133

5.20.4.6 Call graph testing 133

5.20.4.7 Entire path testing 134

5 . 2 0 . 5 FAT (Factory Acceptance Tests) : 134

5.20.6 Conclusions 135

5 . 2 1 U S E F M E C A 135

5 .27 .7 Goal 135

5.21.2 Definition of Technique 135

x n

5.21.3 Questions 136

5.21.4 Metrics 136

5.21.4.1 Use FMECA with the PLC code? 136

5.21.4.2 What information can be obtained? 137

5 . 2 7 . 5 Conclusions 137

5 . 2 2 U S E SOFTWARE F A U L T TREE ANALYSIS 138

5 .22 .7 Goal 138

5.22.2 Definition of Technique 7 5 S

5.22.3 Questions 7^0

5.22.4 Metrics 140

5.22.4.1 Can a software fault tree be built for a math block? 140

5.22.4.2 Can a software fauh tree be built for a math block? 146

5.22.4.3 Can the whole program be combined? 146

5 . 2 2 . 5 Conclusions 7 4 7

5 .23 A S U M M A R Y OF T H E RESULTS 148

5.23.1 Insisted On By The Compiler 148

5.23.2 Not Insisted On By The Compiler But Were Used 148

5.23.3 Techniques Supported By The Language And Used 148

5.23.4 Techniques Supported By The Translated Code 148

5.23.5 Techniques Supported By The APT Code And Extra Information 149

5.23.6 Techniques Not Supported By The APT Tool 149

5.23.7 Techniques That Could Be Used With Difficulty 149

. C O N C L U S I O N 150

6 . 1 C R I T E R I A FOR SUCCESS 152

6 .2 FURTHER W O R K 156

6.3 S U M M A R Y 156

x i u

ACRONYMS 157

R E F E R E N C E S 159

APPENDIX I BNF FOR WSL 163

APPENDIX II GRAMMAR FOR T H E MATH LANGUAGE 168

APPENDIX HI MAPPING DOCUMENT 174

APPENDIX IV W E I G H FUNCTION IN E A C H OF T H E FOUR l E C 1131-3

LANGUAGES 250

XIV

TABLE OF FIGURES

R G U R E 2 : 1 W A T E R F A L L M O D E L 1 3

F I G U R E 2 : 2 P L C M E M O R Y A L L O C A T I O N [5] 2 8

F I G U R E 2 :3 L A D D E R L O G I C D I A G R A M 2 9

F I G U R E 2 : 4 G R A P H I C A L REPRESENTATION OF A N CHARACTER D R A W N S F C 3 3

F I G U R E 2:5 A N E X A M P L E OF INSTRUCTION LIST 3 4

F I G U R E 2 : 6 E X A M P L E O F STRUCTURED T E X T [4 1] 3 5

F I G U R E 2 :7 A L A D D E R D I A G R A M W I T H POWER RAILS, L INKS, COILS A N D CONTACTS 3 6

F I G U R E 2:8 L A D D E R LOGIC D L \ G R A M 37

F I G U R E 2 : 9 F U N C T I O N B L O C K D I A G R A M E Q U I V A L E N T TO FIGURE 2:8 3 7

F I G U R E 2 : 1 0 D E F I N I T I O N OF B N F S Y N T A X USED 4 0

F I G U R E 2 : 1 1 D L \ G R A M OF A COMPILER [4 5] 4 1

F I G U R E 3 :1 SCREEN PRINT OF T H E UPPER L E V E L OF A PROGRAM A L L O W I N G VARL\BLES

A N D UNITS TO B E DECLARED 4 6

F I G U R E 3 :2 SEQUENTIAL F U N C T I O N C H A R T 4 7

F I G U R E 3:3 M A I N S F C FROM T H E F & G CODE 4 9

F I G U R E 3 :4 M A I N S F C F R O M T H E E S D CODE 5 0

F I G U R E 3:5 A C F C F R O M T H E F & G CODE 5 1

F I G U R E 4 : 1 N U M B E R OF LINES OF W S L CODE 6 0

F I G U R E 4 : 2 N U M B E R O F F & G G L O B A L VARIABLES 6 1

F I G U R E 4 :3 N U M B E R OF E S D G L O B A L VARIABLES 6 1

F I G U R E 4 : 4 N U M B E R OF F & G VARIABLES G L O B A L TO ONE U N I T 6 1

F I G U R E 4 : 5 N U M B E R OF E S D VARIABLES G L O B A L TO O N E U N I T 6 1

F I G U R E 4 : 6 G R A P H SHOWING N U M B E R OF C F C S I N E A C H U N I T OF T H E F & G PROGRAM . 63

R G U R E 4 : 7 G R A P H SHOWING N U M B E R OF C F C S I N EACH U N I T OF T H E E S D PROGRAM.. 6 4

F I G U R E 4 :8 G R A P H SHOWING N U M B E R OF C F B S I N E A C H U N I T OF T H E F & G PROGRAM . 6 5

F I G U R E 4 : 9 G R A P H SHOWING N U M B E R OF C F B S I N EACH U N I T OF T H E E S D P R O G R A M . . 6 6

F I G U R E 4 : 1 0 G R A P H SHOWING T H E N U M B E R OF LINES OF CODE I N EACH U N I T I N T H E F & G

PROGRAM 6 7

XV

F I G U R E 4 : 1 1 G R A P H SHOWING T H E N U M B E R OF LINES OF CODE I N EACH U N I T OF T H E E S D

PROGRAM 68

F I G U R E 4 : 1 2 T A B L E SHOWING T H E A V E R A G E N U M B E R OF LINES OF CODE I N T H E C F B S . 6 9

F I G U R E 4 : 1 3 T A B L E SHOWING T H E L E V E L OF NESTING OF CONDITIONAL STATEMENTS I N

T H E CODE 6 9

F I G U R E 4 : 1 4 C H A R T SHOWING T H E M A X I M U M L E V E L OF NESTED CONDITIONAL

STATEMENTS I N E A C H C F B 7 0

F I G U R E 4 : 1 5 G R A P H SHOWING VARL^^BLE USAGE FOR E S D G L O B A L VARIABLES 7 1

F I G U R E 4 : 1 6 E S D USAGE OF VARIABLES DECLARED G L O B A L TO UNITS 7 2

F I G U R E 4 : 1 7 G R A P H SHOWING V A R L ^ B L E USAGE FOR F & G G L O B A L VARIABLES 7 3

F I G U R E 4 : 1 8 A C T I O N SYSTEM TRANSLATED INTO A NESTED D O LOOP 7 4

F I G U R E 4 : 1 9 K E Y TO (F IGURE 4 : 2 0) A N D T H E CONNECTION TO FIGURE 4 : 2 1

(E N L A R G E M E N T A T T H E TOP A T T H E CENTRE OF T H E PICTURE) 7 5

F I G U R E 4 : 2 0 C O N T R O L FLOW D L \ G R A M OF T H E F & G PROGRAM 7 6

F I G U R E 4 : 2 1 C O N T R O L F L O W D L \ G R A M O F T H E F & G S F C 7 7

F I G U R E 5 : 2 2 D L \ G R A M DEMONSTRATING HOW T H E INPUTS A RE USED B Y T H E P L C 9 2

R G U R E 5 :1 T A B L E SHOWING T H E A V E R A G E N U M B E R OF LINES OF CODE 9 5

F I G U R E 5 :2 E S D N U M B E R O F UNITS E A C H V A R I A B L E WAS READ OR WRTITEN I N 9 8

F I G U R E 5:3 E S D N U M B E R OF UNITS EACH V A R I A B L E WAS READ I N 9 8

F I G U R E 5 :4 E S D N U M B E R OF UNITS E A C H VARLVBLE WAS WRTTTEN I N 9 8

F I G U R E 5:5 F & G N U M B E R O F UNITS E A C H V A R I A B L E WAS READ OR WRITTEN I N 9 8

F I G U R E 5:6 F & G N U M B E R OF UNTTS E A C H V A R L \ B L E WAS READ I N 9 8

F I G U R E 5:7 F & G N U M B E R OF UNTTS E A C H vARL^kELE WAS WRITTEN I N 9 8

R G U R E 5:8 T A B L E SHOWING T H E B O O L E A N S T H A T A RE ASSIGNED AS FLAGS 102

F I G U R E 5:9 T A B L E SHOWING TYPES A N D QUANTTTIES OF VARIABLES N O T USED 104

F I G U R E 5 : 1 0 T A B L E SHOWING TYPES A N D QUANTTIIES OF E S D U N I T V A R U B L E S T H A T

WERE N O T USED 104

F I G U R E 5 : 1 1 E S D CODE VARIABLES N O T WRITTEN A N D READ 1 2 4

F I G U R E 5 : 1 2 E S D V A R I A B L E S DECLARED I N UNITS T H A T WERE N O T READ OR WRITTEN 125

F I G U R E 5 : 1 3 F & G CODE N O T WRITTEN A N D READ 125

F I G U R E 5 : 1 4 T A B L E SHOWING T H E APPROXIMATE N U M B E R OF TIMES EACH OF T H E K E Y

WORDS WERE USED I N T H E PROGRAMS 131

XVI

FIGURE 5 : 1 5 TABLE SHOWING THE APPROXIMATE NUMBER OF STATEMENT TESTS 131

FIGURE 5 : 1 6 T A B L E SHOWING THE APPROXIMATE NUMBER OF BRANCH TESTS 132

FIGURE 5 : 1 7 TABLE SHOWING THE APPROXIMATE NUMBER OF COMPOUND TESTS 132

FIGURE 5 : 1 8 TABLE SHOWING THE APPROXIMATE NUMBER OF L C S A J TESTS 133

RGURE 5 : 1 9 TABLE DEMONSTRATING NUMBER OF F A T TESTS 134

FIGURE 5:20 TEMPLATE OF AN ASSIGNMENT SOFTWARE FAULT TREE 139

FIGURE5:21 TEMPLATE OF A FUNCTION SOFTWARE FAULT TREE 139

FIGURE 5:22 TEMPLATE OF AN 'IF-THEN-ELSE' SOFTWARE FAULT TREE 139

FIGURE 5:23 TEMPLATE OF A WHILE LOOP SOFTWARE FAULT TREE 139

FIGURE 5:24 A N ASSIGNMENT STATEMENT 141

FIGURE 5:25 PACK_BITS FUNCTION 141

FIGURE 5:26 A N IF STATEMENT 141

FIGURE 5:27 A SOFTWARE FAULT TREE FOR THE DIGITAL OUTPUT = TRUE AS THE HAZARD

ONLY ENTERING ONE MATH BLOCK 142

FIGURE 5:28 CODE OF THE E S D W H I L E LOOP 144

RGURE 5:29 HAZARD I N WHILE LOOP 145

XVll

1. INTRODUCTION

Computers are an integral part of today's society. Software is inherently complex and

must perform to very high standards if it is to operate correctly. However there are

many reports of failures of industrial scale applications in the computer literature. [1]

The most serious of these failures are perhaps those that occur in life threatening, safety

critical, systems which are the concern of this thesis. The size and diversity of

problems that software solves ensures that failure will be an ever increasing problem.

"Many solutions have been proposed which tackle a wide variety of issues such

as: management of software projects; better software languages and tools; and methods

for mapping high level descriptions of systems into executable code" [2] . This thesis

spans development solutions and translation technology for safety critical systems using

Programmable Logic Controllers.

The three main software engineering topics discussed in this thesis are:-

1. Safety Critical systems

"A system is safety critical i f failure of the system would result in loss of human

life, personal injury or significant material loss" [3] . It is normally accepted from a

software engineering point of view that the software is safety critical i f failure of the

software would result in the loss of human life.

2. PLCs

"A Programmable Logic Controller(PLC) is an electronic device that controls

machines and processes. It uses a programmable memory to store instructions and

execute specific functions that include On/Off control, timing, counting, sequencing,

arithmetic and data handling"[4]. A PLC "is in essence a device that is specifically

designed to receive input signals and emit output signals according to the program

logic"[5]. PLCs were developed as basic computers that could replace relay circuits.

As such they were developed so they could be programmed in a similar way to the

design of a relay circuit. "It was possible to use them to take over all of the logic

functions from relays and replace hundreds of relays with a more compact, solid-

state unit." [5]

3. Translation Technology

A translator is "a program which converts statements written in one language to the

format of another programming language"[6].

1.1 PROJECT AIMS

PLC systems are widely used in safety-critical and safety-related applications.

Hardware reliability can be predicted by recognised techniques [7]. With respect to

software reliability the situation has been less clear. The operating systems are given

extensive onsite testing due to their use in many sites. The application software is

normally developed for only one application so has had much less testing. In

recognition of this, Standard lEC 1508[8] has defined the concept of Safety Integrity

Levels (SILs), for PES-based systems (Programmable Electronic Systems). The SILs

are organised as a series of levels of increasing rigour. Discrimination between levels is

expressed in terms of the average time expected between failures (i.e. the system does

not perform within its defined specification). SIL 1 is the least rigorous level while SIL

4 is the level of highest rigour.

For each SIL, recommendations are made in lEC 1508 for highly recommended,

recommended and not recommended techniques which can be employed to achieve the

SIL. These techniques include specification methods, design methods, programming

techniques, languages and quality assurance techniques. Hence the system designer will

decide the SIL, based on an analysis of the application and its domain, and then

IEC1508 should list a selection of appropriate development techniques along with

techniques that are deprecated. The concern of this thesis is entirely with the developed

software and not the specification or hardware decisions.

A selection of techniques associated with SILs 1,2 or 3 were then analysed with respect

to two different systems. The techniques were chosen on their relevance to the data

available. The analysis was performed to identify if the technique:-

• had been used

• could have been used

• could not be used due to the application or the programming environment

The code that was analysed for this thesis is the Factory Acceptance Testing (FAT)

source code for the safety systems that have been operational on a North Sea Platform

for over two years. The code was the BSD (Emergency Shut Down) code and F&G

(Fire and Gas) code on the platform. It was written using Siemens APT (Application

Productivity Tool, version 1.6) which is designed to run on a PLC on the platform. The

F&G and the BSD code were run on different PLCs. The code was developed using the

three languages supported by the Siemens APT. It was chosen as it is thought to be

representative of BSD and F&G systems on other oil platforms.

The project was divided into two separate parts - translation and then analysis of the

code.

1.1.1 Translation

The code was translated from three languages to one language. The translation was

beneficial for two reasons; the translation provided much useful data and the resulting

code was in one language for the analysis. The PLC languages that were translated

were:-

1. Sequential function charts (SFC)

2. Continuous function charts (CFC)

3. Math language

Three languages posed problems for analysis of and reasoning about PLC programs,

because tools and methods would need to be developed for all three representations. It

was thus decided to use a common single representation to ease analysis. The choice

made was to use WSL, a Wide Spectrum Language with formal semantics, designed

and used at Durham [9]. This had several potential advantages:-

1. The representation would allow a single 'language of discourse' i.e. one

representation for all subsequent analysis based on IEC1508 recommendations

2. Tools need only be built for the one language -WSL - not three languages, and there

were tools already in existence for manipulating WSL.

3. Defining a mapping document from the informally defined PLC languages to the

formally defined WSL would highlight any language problems e.g. omissions,

contradictions, ambiguity etc.

4. The suitability of WSL for representing PLC code could be assessed.

WSL is a Wide Spectrum Language (see section 3.2 for more detail), which is a high

level language. It supports externally defined functions and procedures without needing

them to be included in the code. None of the variables have a specific type nor do they

have to be pre-declared. The fact that declaration of variables is not required enables

blocks of code from within a program to be manipulated by MA (Maintainers

Assistant). MA is a tool produced locally at Durham for aiding restructuring of code

written in WSL.

WSL supports a construct known as an action system which takes code that contains

GOTOs and makes each GOTO jump a block of its own. In reverse engineering it is

necessary to deal with code as it is and not in ideal format. So representing GOTOs in a

form for restructuring is mandatory. The action system construct avoids the problems

of continuation semantics which are not suitable for transformation based analysis tools.

The two pictorial languages (SFCs and CFCs) were translated into WSL to provide the

structure and the framework of the program. The SFC was represented as an action

system, while the CFC was represented as function calls from each unit to CFB

(Continuous Function Block) procedures. CFBs are similar to procedures and are

located in the CFCs. When the PLC is compiled by the Siemens APT system the

ordering of each of the CFBs is automatically generated. Unlike most text based

languages the programmer cannot specify the ordering of CFBs or CFCs. Once

compiled, the code runs in that order until recompiled. The translated code was only

generated once and not in all the possible different orderings. The CFBs, CFCs and

SFCs were maintained as procedures. The code internally within the CFBs and SFCs

retained their internal ordering.

The translated BSD and F&G code was too large to be handled by the tool MA so it

was necessary to partition the code. The code was sliced procedurally (see 1.1.2.1)

along an output variable. A record of the dependent variables was stored so the output

could be deemed dependent on the set of input variables. A list of the procedures

relating to a CFB was maintained and then these were reassembled to form the sliced

code.

1.1.2 Analysis

The second phase of the project was the analysis of the code.

IBC1508 defines a set of highly recommended techniques for each SIL level. The

analysis was to assess the extent to which the highly recommended techniques (for SIL

1,2 or 3) were effective, considering in particular the BSD and F&G PLC software from

the offshore platform. This involved assessing whether the technique could have been

used, was used, or why it was not used. It was also beneficial to see i f the technique

could theoretically affect the safety of the system. Only techniques recommended for

SIL 1,2 or 3 were analysed as SIL 4 was regarded by the HSB as inappropriate for

software systems on an offshore platform. The code was chosen because it was felt by

the HSE that the two systems were representative of other ESD and F&G PLC systems

on Offshore Platforms.

It was not feasible to undertake dynamic analysis of the software. So the problem was

expressed in terms of the static analysis of the PLC code. It was decided that the set of

IEC1508 analysed techniques should be analysed using a unified framework to answer

the following questions:-

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any of the safety features?

During the analysis process, the code, in both its original format, and WSL was used.

During the translation process valuable information was obtained including names and

types of variables, number of CFCs, number of CFBs and lengths of blocks of code etc.

The analysis was structured so that the above two questions could be answered for each

technique. Various further questions about the code were used to answer the two main

questions. The final conclusions made were regarding the viability of the technique and

whether it would aid the development of safety critical ESD and F&G PLC systems on

Offshore Platforms.

To perform the analysis on the code, data collection techniques were used. These

included:-

1.1.2.1 Program slicing

Program slicing was used to slice the code along an output variable. Al l the inputs that

were dependent on an output were recorded and all of the procedures that were relevant

to the output were put into the sliced code. [10] The number of inputs on which an

output was dependent could then be studied. A slicing tool was developed to assist the

analysis process.

1.1.2.2 Graph tool analysis

Graph tool analysis was used so that call graphs of the code could be drawn. Call

graphs were also drawn of the SFCs to demonstrate the structure and to demonstrate

that the translation agreed with the SFC description.

1.1.2.3 Transformations

A transformation is the re-ordering of code so that the meaning and overall outcome of

the code remain the same but the syntax or form is different. This is beneficial if it

enables easier understanding of the meaning of the code. Subsets of the code were

transformed using MA to determine how the code could have been restructured and to

determine if it made the code more understandable. In the case of nested conditional

statements experiments were undertaken as to how they could be transformed.

1.1.2.4 Frequency of variable usage

One in ten global variables were studied to see in how many units the variables had

been read, written and used. The programs were divided into units which are

equivalent to modules.

1.1.2.5 Variable usage

All the variables were analysed (automatically) to determine which ones had been read

but not written, written but not read, and not used. This was done using the information

provided by the intermediate representation used within the slicing tool.

1.2 CRITERIA FOR SUCCESS

The top priorities of the thesis were:-

1. To identify key highly recommended techniques from SIL 1,2 or 3 that can be

analysed using the data available.

2. To analyse the code to assess the feasibility of using the technique with the specific

safety critical PLC code.

3. To identify the general characteristics of the BSD and F&G PLC code on an offshore

platform.

The secondary priorities of the thesis were to determine:-

1. I f a single language could be used to replace the three PLC languages.

2. I f any language deficiencies were identified in the PLC languages.

3. I f it is helpful to perform analysis in this way and what the benefits and problems

were.

1.3 THESIS STRUCTURE

Chapter 2 introduces the three main subjects areas around which the project was

developed. These were:-

2.1 Safety critical systems

2.2 PLCs

2.3 Translators

Chapter 3 discusses phase one of the project. An introduction to the source and target

languages is given. The chapter gives an overview of how the source language is

mapped onto the target language. The final part of the chapter describes the result of

building the translator.

Chapter 4 summarises the characteristics of the code that was analysed. This includes

the numbers, types and usage of variables. The number of units (modules) and the

number of functions in each unit. The length of the code, the types of statements used

and the level of nesting of the conditional statements. Control flow diagrams of the

code can also be found in this chapter.

Chapter 5 discusses phase two of the project; it details all the analysis that was

performed on the code against lEC 1508 (section 2.1.4 gives an introduction to lEC

1508). The safety critical techniques are discussed separately within the chapter. Each

technique is defined, the analysis process described and then the conclusions were

discussed.

Chapter 6 compares the achievements of the project against the criteria for success

from section 1.2.

2. GENERAL BACKGROUND

The three software engineering areas that are used during this thesis are now discussed.

2.1 Safety Critical systems

2.2 PLCs

2.3 Translation Technology

2.1 SAFETY CRITICAL SYSTEMS

"The use of software in safety critical applications has grown rapidly in the last decade

and continues to increase. Prominent applications such as railway signalling, nuclear

power stations, chemical plants and fly by wire aircraft"[ll] and the ESD or F&G

system on a North Sea Oil platform, are all high prominence examples of safety critical

systems. "A system is safety critical i f failure of the system would result in loss of

human life personal injury or significant material loss." [3]

A more general definition of a "safety critical system is one that has at least one safety

critical service"[12]. A "service is judged to be safety critical in a given context if its

behaviour could be sufficient to cause the control equipment to inflict or prevent the

equipment from inflicting, absolute harm on resources for which the organisation

operating the system has responsibility"[12].

A safety critical system does not necessarily involve computers, but the safety critical

systems discussed here required computer software. Many safety critical systems were

in use before the wide spread availability of computers. The PLC (section 2.2) replaced

relays and hardwired circuits. A computer system though can only be safety critical i f

it reacts with the outside world. "Safety critical software is any software that can

directly or indirectly contribute to the occurrence of a hazardous system state" [13].

Where "safety critical systems must strive to maintain safe behaviour even in the

10

presence of failures of system components and when the behaviour of the environment

deviates from that expected"[14]. "Software on its own cannot cause harm - only when

it is embedded in a system and put into use can it be hazardous" [15].

An accident is "an incident with detrimental consequences (due to insufficient control

of one or more hazards)"[16]. An incident is "a significant occurrence or event with

potential detrimental consequences"[16]. A hazard can be defined as "a source of

energy, or combination of factors that can lead to an accident if inadequately

controlled"[16].

An accident can also be defined as "an undesired and unplanned (but not necessarily

unexpected) event that results in (at least) a specified level of loss"[17]. An accident

should be avoided if at all possible, an incident though is acceptable but not desirable,

where an "incident is an event that involves no loss (or only minor loss) but with the

potential for loss under different circumstances" [17].

There are two different types of safety critical systems. The first is primary safety

critical software, which is "software embedded in a hardware system used to control or

monitor some other process. Malfunctioning of such software can result directly in

human injury or environmental damage"[17]. The BSD and F&G systems studied are

both primary safety critical software. Secondary safety critical software is very

difficult to identify and is "software which can indirectly result in injury"[17]. A

design tool used in a safety critical system's design or a database storing records

important to a safety critical system, are both examples of secondary safety critical

software.

A system provides safety for the users and those around only i f there is "freedom from

accidents or losses" [13]. Often when manufacturing is involved extra safety aspects

are thought to be too difficult or too expensive to implement until they are insisted upon

by standards or laws. A prime example is that children used to become stuck in fridges

because they could not be opened from the inside but manufacturers insisted it was not

possible and too expensive to implement it otherwise. A law was passed that fridges

11

had to be able to be opened from the inside so magnets were used, which was cheaper

than the previously used latch.

There are many standards in existence that cover all forms of safety critical system

development. They include:-

• l E C 1508 Functional safety: safety related systems[8]

• UK MoD 00-56 Safety management requirements for defence systems containing

programmable electronics [18]

• MIL-STAN 882C System safety program [19]

• MISRA Motor Industry Software Reliability Association Report 2:

Integrity [20]

• STANAG Safety design requirements and guidelines for munition related

safety critical computing systems [21]
[22] (lEC 1508 will be discussed in more detail in 2.1.4)

Standards are in existence to ensure that those who would be affected by a system are

safe. Without standards it is easier to justify cost cutting exercises that are detrimental

to the system safety.

When developing safety critical software it is important to remember that the entire

system has to be built with safety in mind during the whole life cycle. Safety has to be

given a priority by the entire development team. "One way management can

demonstrate true commitment to safety goals is through assignment of resources" [13].

This commitment has to be demonstrated during the life of the system as well as during

its development. Lord Cullen's report into the Piper Alpha disaster observed "The

safety policy and procedures were in place: the practice was deficient" [23].

"System safety deals with systems as a whole rather than with subsystems or

components"[13]. It is easy as a software engineer to think only of software but

"software does not harm directly; but only as part of an overall system; it is important

to assess the software contribution to and responsibility for; overall system safety" [22].

12

At all times during the development of the system, safety should be considered. In the

waterfall life cycle model (Figure 2:1) it would be from the specification phase to the

maintenance phase.

Specification

Design

Implementation

Testing

Maintenance

Figure 2:1
Waterfall Model

It is much easier and more reliable to plan safety originally than to tag it on at the end.

"Barly detection of errors significantly reduces the cost of the production process" [14].

This implies that "Requirements analysis plays a vital role in the development of safety

critical systems since any faults in the requirements specification will corrupt the

subsequent stages of system development" [24]. The "early phases in the development

life-cycle, such as requirements and specification, are extremely relevant for

dependability. It is crucial to identify hazards early in the design process, then to take

appropriate design measures to eliminate or control these hazards"[14]. Many errors

that percolate through to the final product can be traced back to an incorrect

specification.

13

2.1.1 Characteristics of An Ideal Safety Critical System

A safety critical system must be safe, should be available, reliable, dependable and run

in real time. The system has to be tolerant of hardware, software and human errors or

faults. The software should be free of errors. The system should be true to the

specification and the specification should be correct. (All terms are described below.)

Safety is the state of a system that cannot cause any harm. In ideal situations all safety

critical systems should always be safe. The system would be intrinsically safe "when

there is no possibility of it causing or failing to prevent absolute harm"[12]. But in a

safety critical system the possibility of harm will be there so engineers strive for

engineered safety which is "when a system has been designed to minimise risk or to

reduce it to an acceptable lever'[12]. A safe system is one that will produce the correct

output or that an incorrect output will be detected[25]. A safe system has an acceptable

amount of risk where risk is a function that identifies the chances of a hazard occurring,

and what the probability is of the hazard leading to an accident. This is known as the

ALARP (As Low As Reasonably Possible) principle - where the cost of reducing the

risk is too great in comparison to the amount of risk reduced.

Reliability is a measure of the delivery of a proper service even i f parts of the system

are failing, or there should be no delivery of the service at all. Output of the system is

correct, and the output that is being delivered at a time of failure is as specified. [26],

[25]. A system cannot be 100% reliable, so it is up to the designer to determine what an

acceptable level of reliability is and try and measure it. Reliability is also defined as

"the probability that a piece of equipment or component will perform its intended

function satisfactorily for a prescribed time and under stipulated environmental

conditions" [13].

Availability is defined as a measure of the service being delivered irrespective of

whether it is giving a correct or incorrect output. [26] Safety is not possible without

reliability and availability, as a safe system is required to be correct and always

functioning.

14

Dependability is the property that allows the system to be relied upon to provide a

continuous, reliable and safe system that will be available for an acceptable amount of

the time. [26]

Correctness is defined as the system behaves exactly as it is specified to behave. This

implies that a correct system will not necessarily be dependable or safe. It will only be

dependable i f the specification is correct and error free. [26]

Many safety critical systems are required to run in real time. "A real time computer

system may be defined as one that controls an environment by receiving data,

processing it and returning the results sufficiently quickly to affect the functioning of

the environment at that time"[27]. The real time factor is crucial as safety critical

environments often use computer systems to enable high speed reaction times. An

aeroplane system that took even an hour to detect a faulty engine would be worthless.

The software should be error free where an error is the divergence of the state of the

system from that expected or required of it, (adds two numbers rather than subtracts, or

in a case statement does not consider an important case etc.). In theory it is possible to

make software error free, with respect to a specification. This is very difficult; so

failing fault free software, the system should be fault tolerant, of both hardware and

software faults. A fault tolerant system is one that is resistant to faults in the system

and can continue producing correct output. A fault is "a defect in the system which

may, under certain operational conditions, contribute to a failure"[16]. A fault can lead

to an error but the system should be designed in such a way that the error can be

prevented or removed. Being fault tolerant enables the system to provide a dependable

service even i f there are faults in the hardware or software.

A safety critical system is one that could cause irrecoverable harm to persons or

property. The aims of safety critical software is for it to be dependable, run in real

time, be error free or at least fault tolerant. The system should also deliver a continuous

service that is free from failures [26].

15

2.1.2 Accidents - Why Do They Happen

an Accidents are often dependent on the safety culture within an industry, or

organisation. The safety culture "is the general attitude and approach to safety reflected

by those who participate in that industry: management, workers and government

regulators. Major accidents often stem from flaws in this culture especially (1) over

confidence and complacency, (2) disregard or low priority for safety, or (3) flawed

resolution or conflicting goals."[13]

Although accidents are often preceded by warning signs that are ignored they do tend to

fall into one of the following categories :-

1. Human error - humans make mistakes either omissions where something is not

done, i.e. testing was not carried out on all the data. Or commissions where a

human does something but wrongly. In the Bhopal accident "employers were

apathetic about routine mishaps and about the value of emergency drills"[13].

2. Unpredicted combinations of events- accidents often happen when events occur in

an unexpected sequence of events, or there are multiple faults. Al l the faults

individually may have been catered for but when they combine it is more difficult to

prepare for them.

3. Worn out components - i f the hardware fails then there is likely to be an accident.

The hardware in safety critical systems should be regularly checked for faults.

4. Poor or incorrect design- i f the design is wrong then even i f the system is correct

with respect to the design accidents will still happen. Examples of poor design can

be in user interfaces where not enough information is provided to the operator.

Alternatively where a designer has made incorrect assumptions e.g. in a nuclear

power station the dial relating to a control switch was out of sight at the switch.

16

5. Complexity- as systems get more complex humans can no longer understand them

and as understanding decreases, so the chances of faults entering the system

increases.

"A common thread in most accidents involving complacency is the belief that a system

must be safe because it has operated without accident for many years"[13]. "There is

an awful sameness about these incidents, they are nearly always characterised by lack of

forethought and lack of analysis and nearly always the problem comes down to poor

management"[23], was stated by Tony Barrell an expert in offshore safety.

2.1.3 Why Computers?

"Hardware backups, interlocks and other security devices are currently being replaced

by software in many different types of systems, including commercial aircraft, nuclear

power plant and weapon systems. Where hardware interlocks are still used, they are

often controlled by software"[13]. Some of the reasons for replacing hardware systems

and human controllers with software systems are that "software does not exhibit

random wear out failures as does hardware"[13]. The computer can control and read a

device with greater frequency and accuracy than a human. It does not make mistakes

due to tiredness. Computer control systems can perform calculations faster than their

human counterparts, and speed can be very important in safety critical systems.

The software replacement is not all beneficial because software is not always as reliable

as the mechanical parts it is replacing. We make better software today by using tools

but the size and complexity is also increased.[28] "Many basic mechanical safety

devices invented long ago are tested, cheap, reliable and failsafe, and they are based on

simple principles of physics"[13]. This is unlike the craft of building software which is

based on trial and error[28].

17

2.1.4 IEC1508

l E C 1508 is a draft standard that is aimed at improving the safety of systems built in

conjunction with Programmable Electrical Systems (PES). The standard identifies

many ways of creating safe code. One important feature identified in lEC 1508 is its

use of SILs (safety integrity level). "Safety Integrity (SI): The probability of a safety

related system satisfactorily performing the required safety functions under all the

standard conditions within a stated period of time The higher the level of safety

integrity of the safety related systems the lower the probability that the system will fail

to carry out the required safety functions." [8]

"Safety Integrity Level (SIL): One of four possible discrete levels for specifying the

safety integrity requirements of the safety functions to be allocated to the safety related

systems. Safety integrity level 4 has to be the highest level of safety integrity; safety

integrity level 1 has the lowest" [8]. It has been suggested that no computer system

should be expected to be SIL 4 and most should not be required to be SIL 3. I f a

system needs to be of SIL 4 (and sometimes SIL 3) then there should be a hardwired

system around the software system so the entire system is not totally dependent on

software.

lEC 1508 provides a number of definitions including:-

"Fault: The cause of an error is a fault (e.g. hardware defect, software defect) which

resides, temporarily or permanently in the system.

Error: An error is that part of the system state which is liable to lead to failure. A

failure occurs because the system is erroneous.

Failure: A system failure occurs when the delivered service deviates from the intended

service. A failure is the effect of an error on the intended service" [8].

18

lEC 1508 also suggests many techniques that are recommended, highly recommended

and not recommended so the SIL can be reached. This is done by listing all the

techniques and stating how recommended they are for each level. A complaint about

lEC 1508 is that there is "little or no guidance on how to assess whether the desired

levels of integrity have actually been achieved" [22].

"Safety critical systems (scs) normally need to be certified for use, and this certification

is usually done on the basis of a safety case. A safety case presents a reasoned

argument that a system meets its safety requirements and will be safe for use" [29]. A

safety case is something that is written to prove for an authorising body that the system

is safe to be put into operation. "The purpose of a safety case is to present the

argument that a system, be it physical or procedural, is acceptably safe to operate.

Safety cases will ultimately be specific to a particular system"[30] Kelly also

suggested that patterns emerge about what should be put into a safety case. There will

always be specific evidence that has to be included and known when developing a

safety case; the ordering and layout, etc. will generally be the same. [30] How lEC

1508 was followed would be put into the safety case. "The argument within the safety

case is normally based on engineering judgement rather than strict formal logic. This is

generally supported by some form of probabilistic risk assessment"[31].

"For safety critical systems it is essential that various aspects of the dependability of the

complete system e.g. probability of failure per unit time, either be assessed or predicted

before deployment"[32].

2.1.5 Developing Safety Critical Systems

When developing a safety critical system the aim is to remove as much complexity as

possible since "complexity is a source for design faults. Design faults are often due to

failure to anticipate certain interactions between a systems components"[28]. The

system should be made as reliable as possible, but care has to be taken because

19

"software reliability can be increased by removing software errors that are unrelated to

system safety thus increasing reliability while not increasing safety at air '[13].

As many faults as possible should be removed from the code. It is rarely i f ever

possible to remove all the faults. Similarly it is not possible to remove all the hazards

from a system and have it still perform beneficial work. The desire therefore is to

provide a system that can deal with and counteract the hardware hazards. "A hazard is

a state or set of conditions of a system (or an object) that, together with other conditions

in the environment of the system (or object) will lead inevitably to an accident"[13].

Before a system is commissioned the risk should be reduced as much as possible.

"Risk is the hazard level combined with (1) the likelihood of the hazard leading to an

accident (sometimes called danger) and (2) hazard exposure or duration usually

the most likely hazards are controlled but hazards with high severity and (assumed) low

probability are dismissed as not worth investing resources to prevent"[13].

The methods of providing safety in a safety critical system is divided into two parts,

fault prevention and fault tolerance. Fault prevention is an "attempt to ensure that a

computer system is, and remains free from faults"[33]. Potential faults are avoided and

those that are present are removed before the system becomes operational. The second

approach is fault tolerance and "accepts that an implemented system will not be

perfect, and that measures are therefore required to enable the operational system to

cope with the faults that remain or develop"[33].

2.1.6 Fault Prevention

Fault prevention is used in all of the stages of the waterfall and other development

model and is divided into the following methods:-

L Safety Analysis

2. Fault Avoidance

3. Fault Detection

20

2.1.6.1 Safety Analysis

This is required very early on in the development process. It is required to identify the

safety critical parts of the system. It can identify statistics and levels of safety for the

design. This method can be used to set targets for the reliability and availability of the

system. Safety analysis is also used after the implementation phase to estimate the

likelihood of failure and what the impact of failure is likely to be. [16]

There are various methods of safety analysis including:-

i . Hazard analysis

i i . Fault tree analysis

i i i . HAZOP analysis

iv. Safety assurance.

2.1.6.2 Fault Avoidance

Fault Avoidance is used to avoid faults being introduced into the process rather than

relying on removing them later. This method should be used in three of the waterfall

stages, specification, design and implementation. This method minimises the design

faults and "it is generally accepted that a higher quality and cheaper product can be

produced if design faults can be avoided altogether rather than removing them

later"[16].

Some of the methods of fault avoidance are:-

i . Formal Methods - VDM, Z

i i . Quality Assurance

i i i . Structured Programming

iv. Walk throughs

21

2.1.6.3 Fault Detection

Faults can be introduced during the design and implementation of the system, so it is

beneficial for them to be removed as soon as possible. This involves techniques of

identifying the fault and then removing them. [16] Care has to be taken to assess the

impact of fault removal as it is essential not to introduce more faults. Software does not

wear out with time (unlike hardware) but maintenance can introduce faults. [28]

Methods of fault detection are:-

i . Testing

i i . Inspections and walk throughs

i i i . Prototyping

iv. Verification and Validation

2.1.7 Fault Tolerance

In fault tolerance it is accepted that there will be faults in the delivered system and so a

method of dealing with these faults must be built into the design of the system. When a

fault has occurred in the running system there is a four tier process that has to be

performed by the system so that normal running can recommence. There is an accepted

method of performing fault tolerance which consists of the following:-

1. Failure Detection.

2. Failure Containment and Diagnosis.

3. Fault Recovery.

4. Fault Repair.

[33]

22

2.1.7.1 Failure Detection

Once the system has been completed there will still be faults present. [34] There will

also be random hardware failures. To reduce the effect of these faults, the fault has to

be identified by the system. These faults are normally revealed by additional run time

checks to detect errors.

There are various methods of carrying out these checks including:-

i . Redundancy - hardware, software

i i . Control flow checks

i i i . Self testing

iv. Plausibility checks

2.1.7.2 Failure Containment / Damage Assessment

Once a failure has been detected in a system then the fault should be contained. Errors

tend to propagate from where they originate (known as the domino effect). An ideal

software failure would lead to human intervention but in many cases this is impractical.

This is known as fail safe. Most modern systems are fail operational which is where

the computer has to continue running the system for a limited length of time. An

example would be an aeroplane system where the pilot cannot take over entirely nor can

the aeroplane stop flying. The closer a system is to a fail safe system the easier it is to

design and implement. [12] The system must also identify which parts of the system

have been affected by the failure. [17]

Methods of failure containment are:-

i . Defensive programming

i i . N-version programming (diversity)

i i i . Redundancy - voting

iv. Return to manual operation

23

2.1.7.3 Fault Recovery.

"The system must restore its state to a known 'safe' state. This may be achieved by

correcting the damaged state (forward recovery) or by restoring the system to a known

'safe' state (backward error recovery). Forward error recovery is more complex"[17].

2.1.7.4 Fault Repair.

Fault repair "involves modifying the system so that the fault does not recur. In many

cases, software failures are transient and due to a peculiar combination of system inputs.

No repair is necessary as normal processing can resume immediately after fault

recovery."[17]

2.1.8 Fault Avoidance and Fault Tolerance

With all the above methods the aim is to have simplicity, intelligibility and traceablity.

These reduce the complexity of the system, as complexity makes it more difficult to

understand which increases errors.

It is also accepted that the "human factor issues which encompass all aspects of human

involvement are always the weakest link in the chain"[35]. This includes the

human involved with the design, fault tree analysis, maintenance and the end user

interacting with the interface. The "very high standards of reliability can only be

achieved through application of fault prevention and fault tolerance; despite the

application of fault prevention, complex systems will always be affected by faults"[33].

"Glitches in computer programs are annoying when they cost an hour's work. In

critical applications such as telephone networks, nuclear power plants or missile

guidance systems, insidious faults can spell disaster. Since even the best proof cannot

pinpoint the extent of vulnerability the use of computers should be restricted

wherever safety is a primary consideration"[34].

24

2.1.9 Summary

A computer system can never be made 100% safe. The hardware can fail, the software

can fail or the operator can fail. "Problems in human machine interactions have been

identified as a major cause in safety critical computer systems"[36]. Safety cannot

always be a key design feature since "safety acts as a constraint on the possible system

designs"[13]. An important factor that should be noted is that "carrying out an

operation in a particular way for many years does not guarantee that an accident cannot

occur. Yet informal risk assessments appear to decrease quickly when there are no

serious accidents" [13].

In conclusion it is interesting to note that "an engineer once compared designing a new

passenger ferry or an aeroplane to throwing knives in a circus act. I f everything works

that is fine, that's what you are paid for. But one fatal slip-up and your knife throwing

days are over"[37].

2.2 P L C S

"A Programmable Logic Controller (PLC) is an electronic device that controls

machines and processes. It uses a programmable memory to store instructions and

execute specific functions that include On/Off control, timing, counting, sequencing,

arithmetic and data handling"[4]. It "is in essence a device that is specifically designed

to receive input signals and emit output signals according to the program logic" [5].

PLCs were developed as basic devices that could replace relay circuits. As such they

were developed so they could be programmed in a similar way to the design of relay

circuits. "It was possible to use them (PLCs) to take over all of the logic functions from

relays and replace hundreds of relays with a more compact solid-state unit"[5].

PLCs are much easier to change and maintain than the counterpart hardwired relay

system, even so "many PLC systems are designed for one off applications in process

25

control and industrial plant applications. They are bespoke and often need changing as

the plant is upgraded"[38].

Today PLCs have taken over much of the logic functions from relay circuits in machine

and control applications. The PLC is more compact, cheaper, more reliable, easier to

identify faults and to perform maintenance on than the relay circuit. Also it is much

easier to change the logic of code than of a hardwired system. [5] The great benefit of

the PLC is that "nowadays PLCs have outgrown their rather limiting name, and can do

many things that logic relay circuits cannot, such as text handling, sophisticated

communications and mathematics"[39].

It is normal to design a PLC in such a way that, should there be a power failure, the

logic will return the system to a safe mode. A safe mode is a state where the system

cannot allow an accident to occur even though the system has failed, e.g. turn on

sprinklers in case of a fire when it is not possible to detect i f there is a fire. When PLCs

are used in safety critical applications this is even more important and it is normal for it

to be taken one step further. There is often a relay circuit hardwired around the PLC

software so i f there is a failure the hardwired system can prevent an accident from

occurring and take the application to a safe mode. This is the practice in many

industries, oil platforms or modern cars that are 'drive by wire'.

2.2.1 Structure of a PLC

A PLC consists of 6 parts:-

• CPU (Central Processing Unit)

• Memory

• Power supply

• Analogue input and output cards

• Digital input and output cards

• Programming port

26

There are two types of PLCs. One type is the 'brick' which has a specific number of

I/O ports and cannot be extended. The other type is the 'bus' which is built on a rack

so more I/O cards can be continually added and hence the number of I/O ports can be

increased.

2.2.1.1 CPU (Central Processing Unit)

The CPU enables the communication between the input, output, memory and the

programming terminal. The user's program (which is stored in memory) is executed

one rung of the ladder at a time (see 2.2.2) Background programs such as timers are

also run at the same time effectively in parallel. The CPU executes all of the user's

program and then returns to the start of the program.

2.2.1.2 Memory

There are two types of PLC memory and in each part is stored the following:-

• In ROM (Read Only Memory) is the system program which is basically the

operating system.

• In battery protected RAM (Random Access Memory) are the:-

• PLC variables which are system variables and cannot be seen by the user

• User's program; this can be changed by input from the programming

terminal. Often once the program is finalised the program is copied onto

EEPROM (Electrical Erasable Programmable Read Only Memory)

• User variables, which contain the results of calculations.

27

System program ROM

System variables

Battery -

User program protected

RAM

User variables

Optional read

User program only memory

area EEPROM

User fixed data

Figure 2:2
PLC Memory Allocation [5]

2.2.1.3 I/O

Inputs and outputs are either analogue or digital. The analogue inputs are always read

into a buffer at the start of each execution. In some systems this is also true with digital

inputs, in other systems the digital input is read in from the hardware as and when

required. Reading the inputs into the buffer means that they are consistent throughout

the life of a scan, this is one execution of the program as the PLC operating system

continually loops the program.

2.2.1.4 Programming Port

The programming port is used to download the software onto the PLC since programs

are often written using PC packages.

The response time of a PLC is taken to be the time taken between a rung being executed

and then re-executed.

28

2.2.2 Relay Ladder Logic (RLL)

PLCs were originally coded using Relay Ladder Logic. "A ladder logic program is

written in graphical notation and is directly equivalent to the circuit diagram that would

be used to interconnect a set of relays to perform the same function". [39] Ladder logic

is drawn as a ladder, the power rails are vertical bars on the left hand side and right

hand side of the diagram (see Figure 2:3). The link between the power rails can either

be on or off and represents the flow of power. The left hand rail is on at all times. A

vertical link represents an or with the horizontal link that it is joining. The state of the

vertical link is copied to all horizontal links on the left hand side of it. Contacts will

take the value of the left hand side, and it with itself and pass the value to the right

hand side link. Coils will take the value of the link for themselves and then copy the

value to the left side. I f power reaches an output then it is turned on while the power is

reaching it. The output can either be a hardware device or an internal variable.

Input A) Input B

Input A and Input B gives output L

Input D) Input E 1

Input D and Input E gives output M or
Output L gives output M

Figure 2:3
Ladder Logic Diagram

29

In Figure 2:3 input A and input B produce the output L. Input D and input E will give

the value of output M or output L will give the value of output M. The logic of the

system is as follows :-

L = (A and B)

M = (D and E) OR (L)

which implies M = (D and E) OR (A and B)

The ladder diagram is the program that is executed by the PLC. It reads the inputs and

affects the outputs.

When dealing with relay circuits the current flowed and outputs (valves, coils etc.) were

all effected simultaneously. With ladder logic each rung is executed sequentially so this

can cause ordering and delay problems. It may require an entire loop of the program

before an output that is dependent on an input is changed. Care also has to be taken

about the ordering; it may require more than one loop of execution of the logic before

an internal variable is actually set by the operating system.

Due to the delay that can occur preventing inputs from being read some PLC systems

allow interrupts. Where code can be written to execute immediately inputs are

changed. Interrupts introduce problems; i f they occur too frequently code may be

starved. Interrupt driven code may overwrite non interrupt driven code.

2.2.3 IEC1131-3

Since ladder logic was first conceived, manufactures have all developed their own

syntax and semantics for programming PLCs. Languages have developed from RLL to

high level languages of both textual and graphical format. In many cases it is possible

to program the code in more than one PLC language. This has increased the problems

for system developers, since with each new system developed requiring a different type

of PLC, the programmer has to learn a new language. Also code cannot be easily

understood by programmers of differing languages.

30

l E C 1131 was introduced as a standard to attempt to counteract these problems. The

aim was to generate an 'open system' for PLC programming that would allow:-

• Lessen the training time

• easier online support and maintenance

• reduced errors and thus improved safety

• flexibility to tackle a wide range of monitoring and control problems.

In some circles it is also felt that this should be taken further and provide portability

between development environments and maybe in the future portability between PLCs.

[40]

lEC 1131 defines the syntax and semantics of five PLC languages. The high number of

languages described is due to the diversity of PLC languages that were on the market

prior to lEC 1131.[31] The standard defines a program as a "logical assembly of all the

programming elements and constructs necessary for the intended signal processing

required for the control of a machine or process by a programmable controller

system"[41]. The f i f th language is SFC (Sequential Function Charts) and defines how a

program written by a combination of the other programming languages can be

combined to one program. The other languages are:-

• Instruction lists (IL)

• Structured text (ST)

• Ladder diagrams (LD)

• Function block diagram (FBD)

IL and ST are both text based languages while LD, FBD and SFC are graphical

languages.

Al l of the diagrams and text are made up of characters. Identifiers can be characters (at

least one), numbers and the underscore. There are defined keywords which are not

allowed as variables. The literals of the language are Boolean, reals, integers, character

31

strings and time. The integer can be represented in either base 2, 8, 10 or 16.

Predefined and user defined types are made up of the above literal types. The access of

a variable is assigned when declared i.e. global, externally changed only, constant etc.

In all the languages a function is defined as something that when executed yields one

external data value and contains no internal state information. Functions are defined

graphically or texturally, dependent on the language. A function may have many inputs

but only one output.

A l l the languages have the same functionality and constructs that can be represented in

one language can be represented in all of the others. They all have the same common

functions that are pre-declared. They are combined to form a program by using the

SFC.

An informal review of each of the languages is now given.

2.2.3.1 Sequential Function Chart

The SFC is written using a combination of the other languages. "The SFC elements

provide a means of partitioning a programmable controller program organisation unit

into a set of steps and transitions interconnected by directed links. Associated with each

step is a set of actions, and with each transition is associated a transition condition"[41].

A step is either active or inactive so the state of the program can be defined by which of

the steps are active. Execution of an SFC always starts at an initial step. Each step

contains zero or more actions. Actions are instructions in IL, statements in ST, rungs

in LD or a collection of networks in FBD or an SFC.

"A transition represents the conditions where by control passes from one or more steps

preceding the transition to one or more successor steps along the corresponding directed

link."[41]. Each transition contains a single Boolean condition written in either LD, IL,

FBD or ST. The transitions provide divergence where the highest priority true

transition is followed, convergence, or parallel execution (all the transitions must be

32

true for parallel execution to converge). Convergence and divergence of parallel

execution is represented by a parallel line. A step remains active and continues to

execute until a transition condition from a step becomes true. The flow of control is

from the bottom of one step through a transition to the top of the next step.

Start step

Divergence Start step

Path a

Path,

Parallel

Execution

Path b

b t h b

one path

one path

Convergence

Figure 2:4
Graphical representation of an character drawn SFC

2.2.3.2 Instruction Lists

An IL is composed of a sequence of instructions. Each instruction begins on a new line

and contains an operator with optional modifiers (e.g. not) and one or more operands

separated by a comma dependent on the operator. The instruction may be preceded by

a label followed by a colon (:). The label can be jumped to by putting the name as the

operator. A function block can be called using the same method. A comment is an

optional extra at the end of each line. With most operators the result of the previous

operation provides the first operand of that operation.

33

Label Operator Operand Comment

START: LD % I X 1 (* PUSH BUTTON *)

ANDA^ % M X 5 (* NOT INHTOITED *)

ST %QX2 (* FAN ON *)

Figure 2:5
An example of instruction list.

A definition of Figure 2:5 would be given as:-

set current result to be equal to operand % I X 1

new current result = old current result and not % M X 5

store result in location % Q X 5

i.e.

% Q X 2 = % I X 1 and not % M X 5

2.2.3.3 Structured Text

This is a textural high level language that allows:-

• assignments

• case / i f statements

• for loops

• while loops

• repeat loops

• exits (from loops)

• function calls with returns.

Figure 2:6 gives an example of the structure of each piece of code scanned in from lEC

1131-3 [4 1] .

34

Table 56 - ST Jajiga^9 slatern'ents

No. St4lomi9nt typO/n«f<»ranc<i > Examploa

1 A > B ; CV :.,,CV*1 ; C :^ SlN(X):

2 Function blackiflvoaal^ CM&_TMR(IN;> 141X5. PT T#3»0ms);
A :i» CMO^TMR.O :

3 HETURH ^,a,2.2} RETURN;

4 D > B*e -4'A*C ;
IF D < 0.0 THEN NROOTS > 0 ;
ELSIF D - 0.0 THEN

NROOTS :« 1 ;
Xt - B/ (Z.O'A);

a . s E
NftOOTS;-2;
XI > (-e+SC!RT(D))/(2.0-A);

ENDJF;

G CASe^3.3.a.9) TWl-BCD TO INTfTHUMBWHEEL) ;
TW EftFtoS v O ;
CASE TW OF

1.S : OlSPtAY:-OVEM TEMP ;
21 OlSPtAYMOT(JR_Sf»eeD;
3 : DISPLAY:- GROSS TARE :
4.e., 10: DJSPLAY > STATUS (TW-4):

ELSE DISPLAY > 0 ;
TW_ERaOR;«1 ;

END CASE ;
QWlOO s- lffr_TO_BCD(DISPLAY) ;

6 : POB {3:3.2.4> J > 101 1
POB 1 :- 1 TO 10* BY 2 DO

if WORDSfll- 'KeY'THBJ
J r .) ;
EXIT;

ENOJFi
eND_,FOR;

7 VWILE (3-9.Z.4) J 1 :
WHILE J <- 100 a, WOROS[J1 o 'KEY' DO

J > J+S i
END_WHILE:

e REPEAT (a,a.2.4)
REPEAT

J > J+2 :
UNTIL J - 101 OR WORDS! - 'KEY'
6Nt>_REPEAT:

9 EXIT (8.^^.4) EXIT :

10 Empty 5Ut«m(»At ;

OTE - H tt» EXIT *t«t«i«i»irt {9) H *vppon»a, Iheis It shall be «opport*d ter «ll o< Kwaflon
liitam*trt* (FOfl, WHILE, REPEAT) whfch ar« supported In the lmp4etneti«allofl.

Figure 2:6
Example of structured text [41]

35

2.2.3.4 Ladder Diagrams

The principle of ladder diagrams is as described in 2.2.2 although the diagrams are

defined using characters. "A ladder diagram enables the programmable controller to test

and modify the data by means of standardised graphic symbols. These symbols are laid

out in networks in a manner similar to a 'rung' of a relay ladder logic diagram. LD are

bound on the left and right by power rails." [41] Power flow is from left to right. A

function block diagram can also be put on the rung of a ladder.

closed

Figure 2:7
A ladder diagram with power rails, links, coils and contacts

2.2.3.5 Function Blocl< Diagrams

Signals flow from the output at the right hand side of a function to the input of the left

hand side of the next function block. Each function is a box with inputs on the left

hand side and one output on the right hand side and has no side effects. The

functionality of the function is described within the block. Outputs can only be joined

together via blocks i.e. they cannot be connected.

Ladder logic diagrams can be converted into function block diagrams. Figure 2:9

shows the equivalent function block diagram of the ladder logic diagram in Figure 2:8.

36

key
auto one two drive

+ 1 I + i / i i / i () + -I I- open
I man I I " ' ^ l - ^lose
+ 1 I + I -()- coil

Figure 2:8
Ladder logic diagram

+ +
auto-I O R I-
man -1 I

+ +

key

I + +
I input- 1 name I - output

I I ' W l + + *"P"^- ' '
I I I = I

o n e — o l I I 1—drive
two —-o I I I I

+ + + +

o not

Figure 2:9
Function block diagram equivalent to Figure 2:8

lEC 1131-3 also defines the grammars of the language in its appendix, and examples of

all the functions. [41] Appendix IV provides an example of the weigh function in each

of the lEC 1131-3 languages, but not the formal semantics.

2.2.4 lEC 1131-3 and Safety Critical Code

When dealing with safety critical code it is felt by Maisey [42] that the language

definition should be strict. After his study he felt that "none of the (lEC 1131)

languages has been specifically designed for safety critical applications"[42]. He felt

that all the languages were close to the application domain which is important. Much of

the definition of the language though was by example many of which were "unclear,

ambiguous, contradictory or lacking"[42]. lEC 1131 "concentrates on the syntax of the

language, but is often less definitive about their semantics. This may lead to problems

of ambiguities and implementation differences" [31].

37

Maisey's studies indicated that the languages had the following characteristics.

• They supported modularization but allowed side effects

• Al l apart from IL were relatively easy to understand (which is beneficial)

• They did not support traceability

• Checkability was lacking due to

• lack of strong typing

• lack of parameter checking

• lack of boundary checking

• Analysability was lacking due to direct addressing of hardware.

[42]

"Another limitation of lEC 1131-3 is its basis in global variables Global

variables are not the best way of providing for communications between functions or

PLCs." [40]

2.3 TRANSLATORS

A translator is "a program which converts statements written in one language to the

format of another programming language"[6].

2.3.1 Why Translate

Code is translated for a variety of reasons; the main reason though is to compile it.

Compiling occurs when the code is translated from a high level language to machine

readable format so that the code can be executed. Code can also be translated from one

language to another language; so new compilers for different languages can be used that

are more efficient without having to manually rewrite the source code to obtain the

benefit of the new compiler. Code is translated so that tools that are available for one

language can be used on the code. Building a translator can be more cost effective and

38

beneficial than recreating a large analysis tool base that is language dependent. The

translation technology is a well researched and developed technology.

2.3.2 How to Translate

Code is translated from the source language to the target language. A thorough

understanding of the languages, syntax and semantics has to be gained before

translation can commence.

Syntax of a language is the "structural or granmiatical rules that define how the

symbols in a language are to be combined to form words, phrases, expressions, and

other allowable constructs" [43]. Semantics of the language are the "relationships of

symbols or groups of symbols to their meanings in a given language"[43].

The grammar of a language is defined by a set of rules identifying how a sentence

(expression) can be built. Just as in English a sentence contains various types of words

in a set order, so does a programming language. So the translator can automatically

translate the code. One method of describing the grammar of a language is by using

BNF (Backus Naur Form)(see Figure 2:10). The semantics can be described in terms of

the target language.

Once the languages are defined a 'mapping document' can be written. A mapping

document is a document that formally defines all the constructs of the source language

and then the associated constructs of the target language. This is normally done using

natural language, examples and a formal definition of the language. The mapping

document (Appendix IV) uses BNF to define the syntax of language; BNF "is a

syntactic metalanguage commonly used as notation for presenting language

generation" [44].

The grammar defines legal expressions, and how they can be built from a top down

approach.

39

e.g.

<assignment> ::= <variable> ' :=' <expression>

An assignment (non terminal) is built up of an expression which is a non

terminal followed by an ":=" then an expression which is also a non terminal.

I f a non terminal can produce two or more legal expressions then they are

divided by a '1' which means or.

Expression in [] brackets are optional

Expressions in {} brackets are optional and recursive i.e. there can be more

than one of them.

Expression in <> are non terminals

Terminals are in ' ' marks

Figure 2:10
Definition of BNF syntax used

A non terminal is an expression which can be expanded further, whereas a terminal

cannot be expanded any further i.e. it is there in that format.

Grammars that are used in automatic translators have to be 'unambiguous', they are

sentences that can only be decomposed in one way when working from left to right

along a production rule. "A sentence (or expression) is unambiguous if only one

canonical parse exists for that sentence. Computer languages must be defined so that all

sentences in the language are unambiguous"[44].

2.3.3 Build an Automatic Translator

Building a compiler is divided into two parts. The first is the front end which is

responsible for the analysis of the structure and semantics. The second part is the back

end which generates the target language and performs the optimisation see Figure 2:11.

With a translator from one high level language to another an intermediate representation

40

of the code such as a tree may not be required. In this case the front end and back end

can be combined. A tree would be necessary if the structure and layout of the target

language were significantly different from that of the source language.

F r o n t
end

Back
end

Source
language

L e x i c a l
a n a l y s i s

S yntax
a n a l y s i s

I n t e r m e d i a t e
language

T
rmed
code
;imii

I n t e r m e d i a t e
code

o p t i m i s e r

Code
g e n e r a t o r

T a r g e t code
o p t i m i s e r

T a r g e t
language

Figure 2:11
Diagram of a Compiler [45]

The lexical analysis identifies all the tokens sequentially in the code. A token is a

keyword, a variable, or an operator. "A keyword is a reserved word and may not also

be used as a programmer chosen identifier"[46] in most languages. The lexical analyser

was a C program, that identified all the tokens. This was done by looking them up in a

symbol table and then passing the syntax analyser the token, its type and any value

associated with it. e.g. a keyword 'then' would only have to return type 'THEN' (which

41

is assigned an integer value) a variable 'hello' would have a type and the name

associated with it.

The syntax analysis identifies i f the stream of tokens form a valid sentence including

type checking of variables. Then the semantic analysis is performed to build the

translated code. There are tools available such as 'YACC (Yet Another Compiler

Compiler) and BISON that allows the grammar of the language to be represented.

Associated with each terminal and non terminal is the action to be taken to produce the

target language. The compiler compiler then automatically generates the code that can

be used to translate the source language.

A translator can parse a representation of the code one or more times. A one parse

translator has a simple intermediate representation whereas a two or more parse

translator will have a more complex representation. The greater the number of parses

the longer translation tends to take but it should result in improved optimisation.

42

3. TRANSLATION

The translator was built with the aim of translating all the code automatically from the

three PLC languages into WSL. This was to be done so the translation could be

completed in considerably less time than would have been required for the operation to

be performed manually. The translation is also easily repeatable if performed

automatically. The process was divided into the following six stages:-

1. Define the source language

2. Define the target language

3. Write the mapping document defining how the source language maps to the target

language.

4. Build the translator

5. Translate the code

6. Test the translation

The source languages were the Siemens languages used on the Siemens TI PLC using

the APT (Application Productivity Tool). The grammar used by the BISON translator

is located in Appendix I . The target language was WSL (Wide Spectrum Language),

the grammar can be found in Appendix I I . The formal semantics of the language can

be found in [9]. The mapping document was written using natural language, formal

grammars and examples and can be found in Appendix I I I . Translation of PLC

languages into WSL had not been previously undertaken, so new research had to be

carried out at this stage. The remainder of this chapter provides an introduction to the

source and target languages, it also summarises the remainder of the six stages of

translation.

43

3.1 SIEMENS LANGUAGES

The programs studied in this project were written using the Siemens T I PLC using the

APT. The tool predates lEC 1131-3, so the languages are described below, paying

attention only to the functionality used by the studied code.

The programs were written using a combination of the following three Siemens APT

languages.

• Sequential function chart (SFC)

• Continuous function chart (CFC)

• Math language (Structured text)

SFCs and CFCs are both graphical languages while math language is a text based

language. The math language can only be used within one of the other two languages.

The code is developed to run on one PLC.

3.1.1 Modularity

Al l the code written in each of the languages combines to make the program. The

program can be divided into units, which are similar to modules. The SFCs and CFCs

can be built in each of these units, the code is normally divided into units on the basis of

the hardware functionality e.g. fire zones in the F&G system. In both samples of

analysed code each unit contains at least one CFC, but only one unit contains a SFC.

The two graphical languages contain blocks into which the math language is coded.

This in effect compartmentalises the code into modules and procedures.

44

3.1.2 Variables

Variables can be declared in one of two ways, within the math language text or

externally to the programming languages within the environment. Variables declared in

a math language block are defined in the declaration section at the beginning of the

code. They are local to that math block and can only be of the following types: integer,

real, timer. Boolean, or arrays of the above except timers.

The remainder of the variables are declared in tables provided by the environment. The

variables are declared in tables within a unit and are global to all CFCs and SFCs within

that unit or in tables outside all the units in which case they are global to the entire

program. Variables declared in the tables can be given a hardware address so they can

be accessed externally, ie via a data link. The types of variables that can be declared in

the tables are: Analogue and Digital I/O, Word I/O, Valves, Integers, Reals, Flags,

Booleans, Timers, Arrays (of a variety of types). Text, Recipes and other types that

were not used in the analysed code.

45

-lU/90 12:24

[>rogram
name

LOUISE

Unit
name

PROGIMI D

CONFIG
CONTROL [] Configuration for coapile
OBJECT [] Successfully coiipiied progran

TABLES
10 I 1 I/O synbolic nunc table
NODULE [] Nodule definition table
DEUICE [] Device definition Ubie
DECLARE [I Declaration table
RECIPE I] Recipe usage table
SUBROUTINE I 1 Subroutine table

UNITS

Tables for
declaring

L/variables in

AAA_UER [] SoftHare version log.
DIA6S [] Systea diagnostics.

^IIA [] Process bay - Cellar deck
FZ IIB [] Uellbay - Cellar deck / Nezz
FZ_11C [1 U t i l i t y area - Cellar deck.
FZ.llD [1 Fire puiip roan A.
FZ_11E I 1 Fire punp rooM B.
FZ_11G [1 CCR. a CER.

A
Description

V of unit

Figure 3:1
Screen print of the upper level of a program allowing variables and units to be declared

As can be seen from Figure 3:1 the variables are declared in one of the following tables.

Input / Output

Devices

Declare

Recipes

both analogue and digital

input and outputI/0 is supported

a device is an object that uses a collection of I/O points to monitor

and manipulate a field device

this is the table in v̂ îich most variables are declared, integers, flags,

arrays, timers etc.

user defined structures (records) for associating numerous variables

of possibly different types to a single variable.

The CFCs, SFCs and CFB (a block within a CFC) do not call each other directly. The

only interaction between blocks and charts is via global variables i.e. parameter passing

is not allowed. It is possible though to affect vŝ ether a SFC or CFB is on and hence

46

able to execute on the current loop of the code, this is possible because each CFB or

SFC is treated as a variable name that can either be on or off.

3.1.3 Sequential Function Charts

Pictures are easier to understand than text. The charts also provide an overview of how

the code interacts. SFCs are used to specify a sequence of events during the control

process. These charts are made up of steps and transitions. "Each step can contain one

or more commands, each transition contains one conditional expression."[47] Parallel

branches are steps that execute concurrently; as such more than a single branch can be

followed at a given time (parallel branches were however not used in the analysed

code). A selection branch allows a choice to be made as to which branch to follow.

The first transition that is true indicates the path that should be followed. Transitions

are tested from left to right. Figure 3:2 gives an example of a SFC.

1 1

S2

Sn
Step,

numbered as
drawn not
executed

Transition,
numbered as

drawn not
executed

1̂ 5

S5

Figure 3:2

Sequential Function Chart

The charts are drawn using the picture icons supplied; each of the boxes are steps while

a transition is the line between the steps. A step can contain a math language program

or it can be empty. A transition contains a math language condition that i f true allows

47

the next step to be called. I f all the transitions from a step are false the active step is re-

executed. (The active step is the one that has control at any given time.)

Actions and steps are either predefined or written in the math language. Note that this

is similar to the lEC 1131-3 sequential function chart and as such branching (i.e.

decisions are made) and then convergence of the code are allowed which is in effect

providing a conditional statement. Loops can be written by drawing a transition to end

above a previously executed step.

The code in each step is divided into an initial part (optional) and a body part. The

initial part of the code is always executed once, but the body of the code may not

necessarily be executed. This is because transitions from the active step are tested after

the initial section and then again after each execution of the body section.

The SFCs in the BSD and F&G code have a safe SFC associated with them. A safe

SFC is associated with one SFC and it has a Boolean expression associated with it. I f at

any point during the execution of the main SFC the safe SFC has been activated and the

expression becomes true, the execution of the main SFC is stopped and the safe SFC

takes over execution. After the safe SFC, flow of control passes to a predefined

position in the main SFC - often towards the end. Before the main SFC completes its

final step the safe SFC has to be deactivated so that it cannot be called while the main

SFC is not executing. This enables the code to be skipped which may be dependent on

external interaction with the code such as a manual opening of a valve that the code

within the SFC will check is shut. This would cause problems if the code was to be

executed at the given time.

Figure 3:3 and Figure 3:4 are the main SFCs in the F&G and BSD code

48

iStart Node

Transition

Diverging
transition

lEnd Node

Converging
transition

Figure 3:3 Main S F C from tiie F & G code

49

Figure 3:4
Main S F C from tiie ESD code

1.1.1 Continuous Function Chart

A CFG consists of CFBs; in the defined language they may have inputs and outputs and

can be connected via lines drawn on the chart The contents of 45 blocks are predefined

and the meanings cannot be changed. The sub language that was used in the analysed

code only had two types of blocks: mathblocks and interlocks, neither of >^ch were

predefined. The CFBs used were defined by the programmer using math language.

50

Figure 3:5 is an example of a CFC containing only interlock CFBs.

^ ^ ^ ^

^^Sî Hjl ^l^^uo^ ^ T ^ ^ o ^ ^ j T ^ ^ o ^ ^ ^ ^ o ^ ^I^BtL^UJ

^ ^ ^ ^ b ^ ^ ^ ^ b ^ ^n^^^ ^|f^^2 ^ j T ^ u o ^ ^i^^a^

^ T j ^ ^ H ^ ^ ^ ^ n j ^ ^ ^ U ^ ^ ^ ^ U J ^ ^ ^ U j J ^ ^ W L U ^

• ^ ^ ^ ^ ^ • ^ ^ ^ ^ ^
CF 3o Fty le
int< irlo

^ ^ ^ ^ 1 1 . / ^ ^ ^ ^ 1
r — /

^

/
^ ^ ^ ^ ^ ^ ^ ^

> 1 1 1
1 ^ ^ ^ ^ ^ ^ ^ ^ 1 ^ ^ ^ ^ ^ ^ ^ ^

I

I
I

1 ^ ^ ^ ^ ^ ^ ^ ^
I
I

1 ^ ^ ^ ^ ^ ^ ^ ^

Figure 3:5
A C F C from tlie F & G code

1.1.1.1 Intertocks

Interlocks are used extensively in the F&G and ESD PLC logic. An interlock contains

math language (see 3.1.6); it has no inputs or outputs. It cannot be turned on/off from

within the code. It is continually on i.e. available to be executed. The interlock begins

51

executing as soon as the controller is in run mode. Interlocks are given either high or

low priority. The priority indicates execution order, all high priority CFBs are executed

before low priority ones. An interlock can be compiled to either Relay Ladder Logic

(RLL) or special function program (SFPGM); RLL executes faster. There is a subset of

math language that cannot be compiled into the Relay Ladder Logic. The first time

each interlock is run it can be initialised and then the initialising code is not executed on

further iterations.

3.1.4.2 Math Blocks

A math block is similar to an interlock except that it can have inputs and outputs and

many are predefined so cannot be coded directly. Some types of mathblocks can be

turned off from within the code, although the mathblocks used in the analysed code

cannot be. The mathblocks are connected via outputs of one block being the input of

another. The mathblocks that were used did not have any inputs or outputs, so were

stand alone, and were all of the same type with no predefined functionality, i.e. the

functionality was defined by the programmer using math language.

3.1.5 Compilation Order

Unlike most programs the order that code is executed cannot be specified. Al l the code

is executed once before any part is re-executed in the PLC loop. Code that is declared

within a unit may not necessarily remain together at compile time. Bven code that is

declared within a CFC may not remain in a block after compilation. Once compiled

though, the execution order remains the same. The ordering of the code is as follows:-

• high priority interlocks

• SFC

• CFB math blocks / low priority interlocks

52

3.1.6 Math Language

The Math Language is a text based language for performing mathematical calculations.

It can be used in the step of a SFC, the transition of a SFC or in the interlock or

mathblock of a CFC. As with the structured text of the lEC 1131-3 it is made up of

expressions that are valid combinations of terms (constants or variables) and operators.

The language is strongly typed.

The main statements used in the code are conditional statements and assignments. The

assignments allow both mathematical expressions and /or Boolean algebra. A number

of calls are made to the APT defined functions and procedures. There is only one while

loop in the ESD code. There is no concept of pointers although specific hardware

addresses can be written to and read from directly. Some of the predefined variable

types have more than one variable attached to them e.g. analogue inputs and timers see

mapping document Appendix I I I .

Each math language block can have an initial part. Within a SFC step the initial part is

executed during the first run through the step every time the SFC is run. Within a CFB

the initial part is executed only the first run through the block after the controller is

switched on, it is never executed again.

3.2 WSL (WIDE SPECTRUM LANGUAGE)

WSL is a text based language and "is designed in such a way as to support the forward

development of programs by stepwise refinement from a specification, or the reverse

engineering of an executable program to a specification, within the same language. It

contains both high level specification constructs and executable statements, and allows

these to be combined within the same program." [48]

53

"The meaning of WSL programs is mathematically defined by formally specifying the

semantics of WSL statements. Because of this formalism, transformations can be

mathematically proven to preserve the meaning of programs" [48].

WSL was developed for transforming legacy systems. It contains both high level and

low level constructs. It contains statements which include loops, assignments,

conditional statements and procedure calls. There is no concept of a type being

associated with any of the variables. Sub sections of code can be used in conjunction

with the transformations. A more detailed language introduction can be found in Ward,

[9].

Appendix I I contains a copy of the grammar for WSL while a copy of the semantics

can be found in [9].

3.3 MAPPING DOCUMENT

The mapping document can be found in Appendix I I I . The first task of writing the

document was to identify from the manuals how the hardware and the programming

environment worked. Then to identify i f the translation would be possible. This

involved being able to automatically identify all the individual blocks of the code,

CFCs, CFBs, SFCs - steps and transitions. The variable's information including: name,

type and scope. Extracting the variable information was difficult as it was all stored in

binary files.

The next task was to decide how to layout the final WSL program as two graphical

languages and one text based language had to be converted into a single text based

language. Each of the blocks in the graphical languages were represented by procedural

calls.

Every construct in the math language used had to be defined in BNF and then in the

corresponding WSL form. This was often problematical as the math language was not

formally defined and in some places it was ambiguously defined i.e. how the flags

54

worked. Another problem was that not all of the desired constructs were available in

WSL e.g. there is no XOR function in WSL. Variables such as timers were difficult to

represent as WSL does not have any concept of time. The math language functions and

procedures were often not supported within WSL so a decision had to be made as to

whether a function/ procedure had to be written for each of them. A decision was taken

to declare them as external functions/ procedures that had an unknown meaning within

WSL.

Translating the internal workings of the SFC was then defined. This was not

automatable as there was no obvious way automatically to understand the graph. Each

of the individual steps and transitions could be automatically translated and then the

ordering of the steps and transitions had to be supplied manually. The re-execution of

steps and the decision making process at transitions was complex to map to text. This

was performed by putting the SFC into an action system and re calling the step if the

transitions failed.

The mapping document was beneficial as it identified all the constructs that had to be

included in the parser. Once the mapping document was written developing the parser

and mapping document became an iterative process. When the parser was tested it

identified flaws in the understanding of both the math language and WSL. The hardest

part of writing the mapping document was when there was no obvious equivalent

construct in WSL to a PLC construct. The two major examples of this were timers and

the SFC. The timers were problematical since WSL lacked time information and the

ability to represent background processing. The SFC was difficult as the graphics

represented information that was not possible to represent directly in WSL, so as close a

representation as possible was used.

The easier part of the mapping document was that no intermediate representation of the

code was required since the syntax of the math language and WSL were similar enough

to provide a direct mapping. The math language also had a relatively small number of

constructs to define in WSL. The number of different variable types was high and,

many of them had elements and commands associated with them, all of which had to be

55

defined in BNF and WSL. The syntax was not formally defined so in some instances

definitions were identified from examples in the code. Mapping the CFCs was straight

forward as only three types of CFBs were used and they were all distinct. The SFC

was, as described above, not easy.

Mapping to WSL was reasonably difficult as many of the constructs were not typical of

text languages such as the math language or Pascal.

Eg a := b or c had to be translated to a := if (b or c) then true else false

The lack of variable declaration and variable type in WSL was difficult to relate to, but

it meant that it was possible to map all the variables into WSL which may not have

been possible in other high level languages. The SFC was also possible to map into

WSL by using the action system construct.

3.4 BUILD THE TRANSLATOR

The translation took place in two phases: the SFC was translated to an action system

(see mapping document Appendix III) and the mathblocks were individually translated

and then the whole code was assembled.

3.4.1 Math Language Translator

BISON was used to write the translator to translate the math language. A C program

was written to perform the lexical analysis and identify the tokens. The tokens were

identified from a look up table. As each new variable was identified it was added to the

symbol table for use at a later date. The variables that were declared in tables were

stored in files as there were too many to be stored in memory. The grammar of the

language was entered into BISON to perform the syntax checking. Corresponding to

each grammar rule a piece of code is written to describe how to generate the target

language. BISON automatically generates a C program to perform the syntax checking

and to generate the translated code. The size of some of the statements (conditional

56

statements especially) meant that conventional grammar development in BISON was

not always possible.

There were two major problems encountered when building the parser. The first was

that the last statement of a block in WSL did not end with a The parser had to be

defined having a first and other statements declared in the parser and if there was

another statement in the block then the ';' had to be inserted. The second problem

involved storing the long conditional statements and assignments in memory. Since

some of the statements were too long they were all written to the file immediately on

parsing; this was not possible for statements using XOR as XOR was not a primitive in

WSL. The operands had to be passed to a locally declared function in WSL but this

was not possible i f the operand had already been printed to file. The solution was for

the parser to fail to parse the XOR function and a different parser used to parse these

mathblocks. The major problem during the translation process was memory shortage

using both a PC with 16M of memory and the UNIX box.

3.4.1.1 SFC translation

The SFC in stored as a single file with each step beginning with a '̂ Sx where x

represents a number. Each of the transactions start with a '^Tx. The first stage was to

separate the file so each step is contained in a different file. Each of the files were then

translated using the math language translator, the steps are entire math programs and the

transaction are conditions. The next part of the translation involved building the action

system this involved building the translated steps into an action system. The splitting

up of the file and translating each of the files was controlled by a Perl script. The

building of the action system was controlled by a C program. The order of the steps

had to be supplied manually to the C program.

57

3.4.1.2 CFB translation

Each of the math blocks were translated using the translator and stored in a file of the

math block name in the directory with the name of the CFC in a directory of the unit

name. This was controlled by another Perl program that would call the translator and

supply it with the mathblock name and the name of the output file.

3.4.1.3 Entire program

All information about variables, names of units, SFC, CFCs and CFBs was obtained.

Then the SFC was translated, then each of the individual CFBs were translated before

the entire program was assembled. Each of the individual mathblock procedures were

inserted in turn as was the SFC block. This whole procedure was automated with a Perl

script.

3.5 RESULTS

The translation was performed in its entirety. The translation identified some very long

statements. It also identified an instance where a variable had the same name as a

keyword. There was some trouble understanding how the PLC code should be written

from the manual but this was sorted by using examples from the code.

The translation process collected a list of variable names and types. Each CFB was

translated into WSL and stored in its' own file. A list of variables that were used

incorrectly was stored as was the a list of CFBs that had failed to parse. I f the block

had failed to parse then either there was an error in the parser or the math language,

both were identified using the parser, the first were fixed the second analysed, faults

included assigning Booleans using the commands to assign flags.

58

The translation process was performed in about 7 stages. This was so stages could be

debugged and developed individually and also so they could be performed on demand.

The variable information for each of the systems was only extracted once from the

binary files. It was necessary only once to identify the names of unit's, CFCs, CFBs

and their types. The WSL could be rebuilt in a different manner without re-translating

the code. Since the ESD and F&G code were long each task took hours rather than

minutes e.g. translating all the math language would take a day. The other advantage

of staged translation was that the parser could be changed to provide useful data, and

the whole translation process was not necessary. Data that was collected included

number of lines of code in each math block, maximum level of nesting of conditional

statements, where variables of a specific type were used. Calculations performed

during parsing of the number of if, else and elsif branches provided the number of test

cases that would be required for analysis in 5.20. Changing the parser was also used to

determine i f and where various parts of the math language had been used.

The final WSL contained one action system and a high number of procedure calls. The

ESD and F&G code looked quite similar in layout and structure.

59

4. THE CODE

The translation of the code generated much analysis material. The actual translation

required identification of all the variables and their types. The number and length of

each of the CFC and CFBs could be calculated. The translation also enabled much

analysis to be performed on the code. This chapter identifies the general characterises

of the ESD and F&G code on the offshore system.

The number of lines of WSL code (including blank lines) is given in Figure 4:1.

ESD F&G

With Comments 199,431 88,607

Without comments 99,757 51,171

Figure 4:1
Number of lines of WSL code

Both of the code samples were predominately CFCs situated in units. These CFCs

contained CFBs most of which were interlocks although a few were of type mathblock.

There is one main SFC and one safe SFC in each piece of code in the self test unit.

The code contained two types of global variables, those global to the entire program or

those global to a unit. Locally declared variables in the math blocks can only be of the

type integers, reals, Booleans, arrays or timers.

The F&G system has 3958 global variables and 35 variables that are global to the units.

Of these variables 529 are input variables and 168 are output variables, hence 3296 are

internal variables: although some of these have user defined hardware addressed so can

be changed externally. The ESD system has 4413 globally variables and 5899 variables

that are declared global to the units. Of these variables 1567 are input variables and

1047 are output variables, hence 9792 are internal variables. The quantity of each type

of variable is detailed Figure 4:2 to Figure 4:5.

60

Fire and Gas system

Tvno Number
i '

analogue input 201
Boolean 1698
Boolean arrav 48
recipe 3
digital flag 96
digital input 325
digital output 67
recipe 58
DO 10 array 41
fast timer 17
integer 1235
integer array 13
real 3
recipe 131
slow timer 14
word input 3
word output 5
single valve 29
dual valve 2

Figure 4:2

Tvoe ' Number

Boolean 35
Figure 4:4

Number of F & G variables global to one unit

Number of F & G global variables

ESD system

1 vnc Number

analogue input 229
Boolean 9(W
Boolean array 68
digital flag 364
digital input 1337
digital output 682
DOlO array 19
flag 478
integer 259
integer array 2
slow timer 4
text 59
text array 1
word input 1
word output 1

Figure 4:3
Number of ESD global variables

ffvoe Number

Boolean 3487
Boolean array 19
DO 10 array 44 i '
flag 663
integer 884
integer array 4
real 5
slow timer 51
text 100
text array 1
recipe 5
recipe 55
recipe 71
recipe ^3
recipe 10
word input 6
word output 4

Figure 4:5
Number of ESD variables global to one unit

61

The ESD code has 38 units. 1 main SFC with 1 safe SFC connected to it. There are 184

CFCs containing 1990 CFBs of which 1253 are high priority interlocks, 734 low

priority interlocks and 7 active mathblocks. The F&G code has 55 units. 1 main SFC

with 1 safe SFC connected to it. There are 263 CFCs containing 1791 CFBs of which

1789 are high priority interlocks and 2 are active math blocks. Math language was used

to provide the functionality of the CFBs and the steps in the SFC.

The math language statements that were used are:-

• Assignment statements

• Conditional statements

• While loop

• Procedural and function calls (APT defined procedures and functions)

• Comments

Although while loops were available they were only used once in the ESD system and

not at all in the F&G system. This was unusual for a large application in a 'normal'

domain. Even small pieces of code tend to have a high number of loops. Analysing

code is theoretically easier the less loops that it contains.

Following are graphs giving CFC and unit information. Graphs Figure 4:6 and Figure

4:7 demonstrate the number of continuous function charts per unit. The graphs Figure

4:8 and Figure 4:9 show the number of CFBs per unit. Notice how the number of CFBs

is dependent on the number of CFCs that are situated in each of the units. There is a

high correlation between the number of CFBs and the number of lines of code in each

of the units, this is demonstrated by graphs Figure 4:10 and Figure 4:11.

62

F&G count of CFC per unit

10 12

Figure 4:6
Graph showing number of C F C ' s in each unit of the F & G program

63

E S D count of C F C per unit

YELL SD

W DOG

UTI.S

TEST SEP

SOFT PB

SELFTEST

REtil C

RED SD

PROC SD

OP ALM

MOL BP MP

M C INJ

LP SEP

LP c or
HYD POWR

HP2 COMP

HPl COMP

HP SEP

GLYCOL R

GLYCOL C

FLOWLME

FLASH

FDB SYS

F UP

ELEC BO

DX XFER

DEC R

DIAOS

D F GAS

CYR TOP

C SUBSEA

C SERV

AW 6 10

AW 21 24

AW 16 20

AW I I 15

AW 1 5

10 12 14

Figure 4:7
Graph sliowing number of CFC's in eacli unit of the ESD program

64

F&G count of C F B per unit

S^TEST

M1SC_CPC

UX3,Y_SD

LOO.UAOD

LOO_SWtll

LOO^SP.C

LOO.PISO

LOO.PAO)

L0Q_HE1J

LOO^CVA

LOa_FWRM

LOO.FT^O

LOQ_DRIL

F2.FL0T

FZ_55A

FZ_S4A

FZ_S3A

FZ_52A

FZSI

F2.51A

F2_14A

F Z . H L

FZ_IJK

FZJ3J

FZ_UF

FZ.UE

F2_I3D

FZ_13C

FZ_11B

FZ_I3A

FZ_I2L

FZ^12K

FZ I2H

FZ_I20

FZ_12F

FZ^I2E

FZ_I2D

FZ_12B

F2_I2A

FZ. I IT

FZJIS

FZ^IIQ

F Z U M

F Z J I L

F Z J I K

FZ_11J

F 2 _ l l H

F Z J i a

F Z J I E

FZ_UD

F Z . l l C

F Z J I B

FZ_I1A

OIAOS

AAA.VER

20 40 60 80 100 120 140 160 180

Figure4:8
Graph showing number of CFB's in each unit of the F&G program

65

E S D count of C F B per unit

YELL_SD

W_DOG

UTILS mm
TEST^SEP •
SOFT_PB

SELFTEST

REINJ_C L
RED_SD 1

PROC_SD 1
OP.ALM 1
OIL_EXP

MOL_BPMP
•

M_C_INJ

LP_SEP

LP_C_OT

HYD_POWR

HP2_C0MP

HPl_COMP

HP.SEP

0LYCOL_R

GLYCOL_C

FLOWLiNE

FLASH

FDB_SYS

F_UP 1
ELECJSO

DX_XFER

DISC_R

DIAOS

D_F_GAS 1 • i i
i CYR_TOP 1 • • • 1 1

C_SUBSEA 1 1
C_SERV •

AW 6_10 1

AW_21_24
j

AW I6_20 j
i

AW_11_15 1

AW_1_5

100 200 300 400 500 600

Figure 4:9
Graph showing numlier of CFB's in each unit of the ESD program

66

F G count of lines of code per unit

STEST

MlXCfC

UXJ^Y.SD

LOO_UAOD

LOO_SWTR

LOO_»_C

UXJ^PISO

LOO.PAOD

LOO_HEU

LOO.C»A

UX},FWRM

LOO,FP_0

UXl.DRIL

FZ_FLOT

FZ.SSA

FZ.54A

FZJJA

F2_S2A

F2_51B

FZ_S1A

FZ_I4A

FZ_I3L

FZ.IJK

FZ_13J

FZ_33F

FZ.lJE

F2_I3D

FZ.IJC

Fi:_l3B

FZ_13A

FZ.12L

FZ_12K

FZ_12H

FZ.I20

F2_12F

R!,12E

FZ_I2D

FZ_12B

FZ.12A

FZ,UT

FZ_IIS

F Z J I Q

FZ_1IM

F2_IIL

FZ^l IK

FZ_11J

FZ_1IH

F2_110

FZ . I IE

FZ_nD

FZ_11C

F2_IIB

F2_1IA

MAGS

AAA.VER

2000 4000 10000

Figure 4:10
Graph showing the number of lines of code in each unit in the F&G program

67

E S D countof lines of code per unit

YELL SD

W DOO

TEST SEP

SOFT PB

SELFTEST

REM! C

RED SD

PROC SD

OP ALM

O L EXP

MOL BPM>

M C MJ

LP C GT

HYD POWR

HP2 COItV

HPl COM'

HP SEP

GLYCOL R

GLYCOL C

FLASH

FDB SYS

F UP

ELEC BO

DX XFER

DBC R

HAGS

D F GAS

CYR TOP

C SUBSEA

C SERV

AW 6 10

AW 21 24

AW 16 20

AW I 3

5000 10000 15000 20000

Figure 4:11
Graph showing the number of lines of code in each unit of the ESD program

68

Data about the number of lines of code in each of the CFB is given in Figure 4:12. This

was interesting as much of the start code was taken up by comments. The majority of

the code is less than 100 lines long which is in keeping with the suggestions in lEC

1508. [8]

ESD F&G

Maximum length of CFB 373 344

Minimum length of CFB 6 8

Average length of CFBs 49 41

no. CFBs 1 ^ 50 lines 59 732

no. CFBs 1 ^ 100 lines 1902 929

no. CFBs 100 ^ 200 lines 18 119

no. CFBs 200 ^ 300 lines 39 9

no. CFBs over 300 lines 2 2

Figure 4:12
Table showing the average number of lines of code in the CFBs

4.1 NESTED STATEMENTS

The code is mainly conditional statements many of which are nested. The maximum

level of nested conditional statements is four in the F&G code and three in the ESD

code (see Figure 4:13). A high proportion of the code has only one level of nesting

although in the F&G code a third of the CFBs have up to four levels of nesting (see

Figure 4:14).

Nest Level ESD F&G

0 43 51

1 1367 856

2 554 192

3 26 -

4 - 692

Figure 4:13
Table showing the level of nesting of conditional statements in the code

69

E S D nest level of each unit F&G nest level of each unit

30 0

4 M

U i • / I m ^

3

Figure 4:14
Chart showing the maximum level of nested conditional statements in each CFB

4.2 CODE MISUSE

It was noted that in some instances Booleans were assigned to by using the command

defined for assigning to flags. This was identified as the translator had to be changed to

succeed in parsing the code. In the user manual it is declared that a Digital flag can be

used anywhere that a Digital output could be used. It would have to be assumed

therefore that a Boolean can be used where a flag can be used.

4.3 VARIABLE USAGE

Most variables were declared as global variables in both samples of code. It was

expected that all variables declared would be written to and read except inputs vMch

should be read only and outputs should be write only. This was not the case, many

types of variables were not read or not written and some were even not used. During

translation it was not possible to identify variables that had been declared as constants

so this accounts for some of the identified read only variables.

The graphs Figure 4:15 to 4:17 below demonstrate how the declared variables were

used. They are divided by type and then the percentage that were not used, not read, not

written, and all variables were represented graphically.

70

4.3.1 ESD Variables

Usage of E S D declared variables

100%

80% 4-

60% i

40% 4-

20% i

• Not used
B Not read
• Not Written
• Other

Al B BA DF Dl DO DX F I lA ST T TA Wl WO

Figure 4:15
Graph showing variable usage for ESD global variables

In Figure 4:15 the inputs were all read only or they were not used. Many of the outputs

were read and written to. None of the declared text and text array variables were used

although text was indicated in the C&E charts.

A high proportion of the integers were not read, while over half of the BA(Boolean

arrays) were not used. Some of the rest of the variables were read only, write only or

not used.

71

Variable usage of E S D variables global to a unit

•^4ot
DNotread
•NolWittlan
•Other

m g >g u.

Figure 4:16
ESD usage of variables declared global to units

Figure demonstrates that most of the recipes were read only, this could either mean that

they were used as constants or incorrectly. The word inputs were read only or not used.

The word outputs were all write only. Again the text and text array variables were not

used. The reals, slow timers and DX (DO 10 Arrays) seemed to have been used as

expected, while the rest were read only, write only or not used.

72

4.3.2 F&G Variables

Variable usage F&G global variables

gNotUSWl

B Not iwd
gNot Written
• Other

Figure 4:17
Graph showing variable usage for F&G global variables

Error! Reference source not found.4:12 demonstrates that the recipes were read only

or not used which again suggests that they might have been used as constants. Al l of

the inputs were read only, A^iiile a high proportion of the output variables were read and

written. The rest of the variables were read only, write only, not used, and used as

expected. There were 35 Booleans declared global to one imit, of these 3 were read

only,

4.4 TIME

The time facility was used in both samples of code to obtain the hour of the day. Twice

a day at a specific time the SFC was executed. The SFC contained the code for

checking the hardware and software were still operational.

73

4.5 SFC

The SFC was used to perform hardware and software checking on the oil platform. The

translation was complicated due to the options at the end of each step, which transition

to follow or for the step to remain active. When the safe SFC became active the fact

that the active step in the main SFC remained active could not be mapped in WSL.

This was not an analysis problem as activation of the safe SFC was determined by a

CFB and not an input or during SFC execution.

The translation of the SFC was into an action system which contained GOTO jumps

within conditionals, which in turn were transformed into a nested do loop, (see Figure

4:18) The other option would have been for each step to be converted to an until loop

with a break out to the safe SFC. This would however have then risked loosing the

functionality of the APT SFC because control could not be returned to the main SFC in

a different step. Results highlighted it was easier to understand the graphical layout of

the SFC (Figure 3:3 and Figure 3:4) than the WSL code in either form of

transformation.

do do

i f (%action = mi l)

if Action block

set %action to block to call next

f i exit(l)

elsif (%action = mi2)

f i

od od

Figure 4:18
Action system translated into a nested do loop

74

The F&G SFC was checked to determine if an infinite loop could occur in one of the

steps. This was not possible as the transition condition was set at the end of each step,

either a Boolean to true, or a timer which after a set time would become true.

4.6 CONTROL FLOW OF THE CODE

The control flow of the code is relatively simple. The control flow diagrams of the

F&G code are located in Figure 4:20 (the CFCs and CFBs) and Figure 4:21 (the SFC).

Figure 4:19 is the key to Figure 4:20. The ESD had a slightly more complicated control

flow diagram because it had to be divided into 3 parts, 'high interlocks', 'low

interlocks' and 'active mathblocks'. The F&G code mainly consisted of 'high

interlocks' and two CFBs that were of type 'active mathblocks'.

Unit name
(with contents
of unit below)

Continuous
Function block

SFC should be
connected to
here

Continuous
"Function Chart

Figure 4:19
Key to (Figure 4:20) and the connection to Figure 4:21

(enlargement at the top at the centre of the picture)

Figure 4:20 gives the overview of the program and is too small to be able to read the

detail. The main part is at the top and calls the high priority interlocks, then the SFC

and then the two active mathblocks. The diagram is divided into groups of units, the

unit name at the top and the columns underneath represent a CFC. Each of the blocks

in the CFC represent a CFB. The unit that is considerably larger than the rest is the one

that contains the two active mathblocks.

75

Figure 4:20
Control flow diagram of the F&G program

76

Figure 4:21
Control flow diagram of the F&G SFC

77

In Figure 4:21 each box is either the initial or the main part of a step, while the lines are

all the possible transitions between the steps. Including the jumps to the safe SFC

which is found in the bottom left hand comer. Notice how the return from the safe SFC

is to a specific step in the main SFC.

4.7 SUMMARY

The ESD and F&G code consisted of units which were programmed mainly using CFCs

with a main SFC and a safe SFC in the self testing unit. The code is predominately '

conditional statements' many of which are nested, assignments and procedure/ function

calls. There is one while loop in the ESD code and none in the F&G code. The code

consists of many variables of 17 different types (valves were not used in the ESD code).

Most of the variables that are used are global, most of the ESD units contain variables

that are global to only one unit. While only one F&G unit declares variables that are

global to it.

78

5. ANALYSIS

The main reason for translating the PLC code as described in chapter 3 and identifying

the characteristics of the code as described in chapter 4 was to analyse the code. lEC

1508 is a draft standard that will be used when building safety critical programmable

electrical systems(PES). lEC 1508 identifies highly recommended (HR) techniques

that could be used when developing software to each of the four SI levels. Techniques

that will aid in the development of a specific type of PES for a specific task may not

necessarily aid in the development of a different type of system. The analysis was

performed on a subset of the HR techniques defined for SIL 1,2 or 3 to determine if

they would be beneficial when developing code for ESD or F&G Offshore Oil Platform

applications using PLC languages. Techniques that were highly recommended only for

producing SIL 4 software were not analysed, as it is felt by the HSE that software

systems should not be built to that reliability and that too much dependence would be

put on them. A subset of the HR techniques was studied as it was not possible to

analyse all of the techniques using only the data available. The criteria for choosing a

technique was whether it was possible to analyse it using the data available. Al l the

analysis was static as it was not feasible to perform dynamic analysis on the code.

Each technique was analysed individually in a similar manner. So the remainder of this

chapter deals with each technique individually. A summary of the final results is given

at the end of the chapter. The aim was (subjectively) to describe for each technique:-

• i f it had been used

• i f it could have been usefully used

• i f it could not have been usefully used due to the programming environment

• i f it could not have been usefully used due to the application

This information could then theoretically be used when deciding development

techniques for the development of other ESD and F&G PLC systems on Offshore Oil

Platforms. The analysis was performed using a GQM (Goal, Question, Metric)

79

approach, identified by Basil and Rombach [49]. The theory was to identify a goal; the

goal in each case was to use the technique for building the code sometimes with a

reason i f supplied by lEC 1508. Basil and Rombach then state that i f the relevant

questions are asked the metrics can be defined based on how to obtain the answers to

the questions. The questions that were asked in each case were:-

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

In some cases it was not feasible to identify quantitative metrics so qualitative metrics

were set. Each technique is discussed under the following headings:-

• Goal

• Definition of technique

• Questions

• Metrics (and the analysis of each metric)

• Conclusions

They were discussed in the following order:-

Those addressing coding standards

5.1 Coding Standards

5.2 Limit the use of pointers

5.3 Limit the Use of Recursion

5.4 No dynamic objects or variables

5.5 No unconditional jumps

5.6 Limit the use of interrupts

5.7 Limit the size of modules

5.8 Use information hiding / encapsulation

5.9 Use verified modules

80

Those addressing programming languages

5.10 Use a strongly typed programming language

5.11 Use a safe subset of the programming language

5.12 Different programming languages used

5.13 CFCs

5.14 SFCs

5.15 Math Language

5.16 APT tool

5.17 Design easily analysable programs

Those addressing analysis techniques

5.18 Use data flow analysis 5.21 Use FMECA

5.19 Use control flow analysis 5.22 Use software fault tree analysis

5.20 Use structured based testing

Definitions of the technique are from lEC 1508 unless otherwise stated. [8]

5.1 CODING STANDARDS

5.1.1 Goal

Use coding standards to ensure a uniform design of documents and code, to enforce

egoless programming.

5.1.2 Definition of Technique

The minimum rules that should be adhered to should be defined. A definition of the

coding standards should be applied which include modularisation and encapsulation (if

using 0 0 (object oriented) programming).

81

5.1.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

5.1.4 Metrics

5.1.4.1 What layout standards can be identified in the ESD and F&G code

before translation?

Both programs have comments at the top of each block of code; the ESD comments

tend to be longer. They both have conmients on each line with assignments and other

statements. Indentation was used in both programs, the F&G indentation was stricter

and all indents are 5 spaces, the ESD indentation is less structured so the F&G code

layout looks neater.

There is a variable naming convention that is followed by both programs that include

the following and much more:-

• Recipes end with a _R

• Valves or digital inputs end with a _D

• Variables that are connected have the same beginning with a different last 2 letters.

5.1.4.2 What standards could be identified after translation of the code?

Much of the translated code looks very similar; there are pieces of code where the

layout of many of the procedures is almost identical and only the names of the variables

are different. This would suggest that the layout pattern, style, and coding had been

reused, with variables that performed a similar function.

82

5.1.4.3 Were nested conditional statements allowed and if so to what

level?

Nested conditional statements were used in both pieces of code. The level of nesting

that was used in the BSD code was less than that of the F&G code. Figure 4:14 is a

chart showing the level of i f nesting. When transformations were performed on the

nested conditional statements, they were difficult to remove, and it did not aid the

understanding of the code. The nested conditional statements tended to be dependent

on only one or two conditions. Lengthy conditions tended to be located in non nested

statements.

5.1.4.4 What is the size of procedures?

The size of the various procedures is discussed in 5.7, but they tended to be of

manageable length.

5.1.4.5 Is the timer usage consistent?

Timers are used consistently through out the code. In both the BSD and the F&G

program timers are set by using the 'delay' command in the SFCs and set by changing

their values in the CFCs.

5.1.5 Conclusions

It is obvious that coding standards have been used. The F&G level of nesting was

immediately identifiable. The convention of having related variables with a similar

name was beneficial during the understanding of the code. Being able to immediately

identify the type of a variable and what it is connected to is also beneficial.

Standards can be used when developing BSD and F&G code on Offshore Platforms.

The safety should be increased because it improves understandability and readability,

especially during analysis or modification.

83

5.2 LIMIT THE USE OF POINTERS

5.2.1 Goal

Limit the use of pointers to allow ease of development, verification, assessment and

maintenance.

5.2.2 Definition of Technique

"A pointer is a data item that specifies the location of another data item." [43] They can

be used for example in linked lists.

5.2.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

5.2.4 Metrics

5.2.4.1 Where have pointers been used?

Using pointers is not allowed in the programming language. Hardware addresses can

be read or written directly as desired.

5.2.4.2 Where has the hardware been directly referenced by address?

It is possible using the APT to address specific parts of the hardware; this is identified

by a percentage sign followed by the type and then hardware address. In the F&G

code this has been used in two CFBs, in one CFC they contained where identical

individual lines of code have been used to write directly to 'status words'. The status

word locations have not been given a variable name. Al l references to status words

occur in just one unit. When this was commented upon, writers of the program

declared they were reading from the hardware address.

84

The BSD has the same two blocks of code in the same named unit, CFC and CFB. The

BSD code though also has other references to 'status words' in a CFB in a different

unit. One CFB also has approximately 280 assignments to hardware values that are of

type Boolean and they are being assigned the value of a 'flag'. The hardware locations

could not be correlated to the hardware values of any of the variables. There were also

instances identified where variables with different names, scope and in some cases type

were assigned the same hardware address. This technique is known as aliasing and is

considered an unsafe practice.

5.2.5 Conclusions

Pointers cannot be used with the APT system which should have improved the ease of

development, verification, assessment and maintenance. Direct addressing of hardware

is still allowed although it should be possible to remove it and declare the variables with

their hardware address. By declaring variables instead of writing directly to the

hardware valuable information may be lost i.e. the maintainer need not necessarily

realise the address of the variable.

The absence of pointers is a well-accepted safety feature as it removes instances of

multi referencing, dynamic memory allocation. Pointers also tend to lead to confusion

as to what is assigned what value. Variables though have been allowed to alias the

same hardware address which will introduce a similar confusion.

85

5.3 LIMIT THE USE OF RECURSION

5.3.1 Goal

Limit the use of recursion to allow ease of development, verification, assessment and

maintenance.

5.3.2 Definition of Technique

Recursion is defined as either "1) A process in a software module calls itself or 2) the

process of defining or generating a process or data structure in terms of itself."[43]

e.g.:-

proc A

{

call proc A

}

Mutual recursion is defined as A calls B and B calls A.

5.3.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

5.3.4 Metrics

5.3.4.1 Where has recursion been used and how could it have been

better used?

Recursion is not supported by the APT system.

86

5.3.5 Conclusions

The APT system did not use recursion which implies that the BSD and F&G system can

be developed without it. It has been suggested that lack of recursion improves safety as

it removes an area of memory management, and space allocation that tends to be error

prone. It can cause timing difficulties as during analysis the length of a cycle cannot be

calculated.

5.4 NO DYNAMIC OBJECTS OR VARIABLES

5.4.1 Goal

Use coding standards to prevent the use of certain language constructs. Do not use

Dynamic objects or Dynamic Variables.

5.4.2 Definition of Technique

Dynamic is "pertaining to an event or process that occurs during computer program

execution; for example dynamic analysis, dynamic binding." [43]

A dynamic object allows the type of the parameters to be passed to a functions to be

declared at run time. A dynamic variable are variables whose type can be declared at

run time.

5.4.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

87

5.4.4 Metrics

5.4.4.1 Are dynamic objects used?

Dynamic objects were not supported by the APT system.

5.4.4.2 Are dynamic variables used?

Dynamic variables were not supported by the APT system.

5.4.4.3 How does not using them improve safety features?

By not having dynamic variables and objects the memory management is easier for the

compiler and programmer and so less likely to introduce faults. Implicit type casting at

run time can also lead to programmer confusion, but this is only used when flag

commands were used to assign to Booleans.

5.4.5 Conclusions

Dynamic variables and objects are not supported by the APT and this implies that ESD

and F&G code can be written without the use of dynamic objects and variables.

Dynamic objects are a well known source of subtle and difficult to find errors which

may occur long after initial commissioning. The fact that they are not used should

increase safety by improving memory management resulting in a reduction in the

number of errors in the executing code.

5.5 NO UNCONDITIONAL JUMPS

5.5.1 Goal

Use no unconditional Jumps to allow an ease of development, verification, assessment

and maintenance.

5.5.2 Definition of Technique

An unconditional jump is a "jump that takes place regardless of execution conditions"

[43] e.g. GOTO jumps.

5.5.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

5.5.4 Metrics

5.5.4.1 How and where are GOTO jumps used?

GOTOs were not part of the math language definition.

The SFC graphical language allows transitions from one step to another, which would

be a 'GOTO' but not an unconditional jump because the jump was dependent on the

transition condition being true.

89

There is no defined movement between the CFBs in the CFCs. At compile time they

are put into a sequential order by the compiler so although there is no ordering defined

by the user there is no jumping either since it is a compiler defined order.

5.5.5 Conclusion

GOTOs are not a necessary part of ESD and F&G programming and the APT does not

support them. Although the SFC allows GOTOs they are not unstructured jumps. By

preventing GOTOs omissions and commissions should be prevented. The code should

have a clearer defined structure, which appears to have occurred in the analysed code.

5.6 LIMIT THE USE OF INTERRUPTS

5.6.1 Goal

Limit the use of interrupts to allow ease of development, verification, assessment and

maintenance.

5.6.2 Definition of Technique

An interrupt is - "1) the suspension of a process to handle an event external to the

process 2) to cause the suspension of a process 3) Loosely an interrupt request." [43]

The aim is to consider the interrupts that are explicitly introduced by the software being

programmed and not i f there are any interrupts in the operating system, since the

operating system is not part of the analysis of this study.

5.6.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

90

5.6.4 Metrics

5.6.4.1 How are interrupts used?

Hardware interrupts are not used in the code. Software interrupts can be used in the

code and are within a defined structure. Bxecution can move from the main SFC to the

safe SFC if the safe transition condition is true. Both the BSD and F&G code were

written so the transition condition was set in a CFB and not in the SFC. If the transition

condition is false at the beginning of the SFC it is false for the whole SFC. During the

end steps of the SFC the safe transition condition is set to false so in future iterations

the safe SFC would only be called if the variable was reset to true. This removed all

forms of interrupts.

5.6.4.2 Do values change during an execution?

The value of all the inputs is read into the buffer at the beginning of each loop. Even if

the input values change this is not made known until the next loop through the code.

This is a hardware design implemented by the controller that prevents inconsistent input

readings throughout the code. Note that all the internal variables change when written

to including the values of the timers. Timers are background processes and can time

out during one iteration of the code. By reading inputs into a buffer they need not

interrupt the code when they change. At set points during execution there are checks

that a variable value has changed before execution continues; especially in the SFCs.

91

r

Copy input v a l u e s
i n t o the b u f f e r

Perform ladder l o g i c ,
c a l c u l a t i n g outputs
and timer v a l u e s ,
u s i n g input values
s t o r e d i n b u f f e r

Figure 5:22
Diagram demonstrating how the inputs are used by the PLC

5.6.4.3 How does not using interrupts improve verification, assessment

and maintenance?

The absence of interrupts means that the code executes sequentially. There is

consistency through the code and all the code will be executed at least once before any

part is executed a second time. The code when it is compiled does not remain in the

same order. This means that the order cannot be tested but by removing interrupts it is

known that every block of code will be executed and not starved.

5.6.5 Conclusions

ESD and F&G code do not need interrupts as demonstrated by the sample code

although the facility is available in the SFC. By keeping the ordering consistent the

tasks should run on time as no task is going to be starved. Consistent input readings

will mean all the code reacts to the same values. It also forces the designers to a

92

conservative style of real time design. This illustrates a benefit of PLC code;

scheduling real time constraints can be programmed without the use of interrupts.

5.7 LIMIT THE SIZE OF MODULES

5.7.1 Goal

Use limited size modules in order to minimise the complexity of a system by:-

• limiting the parameter number

• only having one exit and entry point

• having a fully defined interface

5.7.2 Definition of Technique

A module is "2) A logically separate part of a program" [43]. A module should have a

well defined task or function to ful f i l . This provides coherence within the module

(coherence in a module should be strong). The connections between the modules

should be limited and strictly defined.

Modules should communicate via interfaces; the global variables that are used should

be well structured and their access controlled and their use justified. Al l interfaces

should be well documented. An interface should contain the minimum number of

parameters for the necessary functions; this is typically five.

Sub programs should be built providing several levels of modules, of which the sizes

should be restricted to two to four screens. Bach module should have a single entry and

exit point and the modules should hide information from the enviroment.

5.7.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

93

5.7.4 Metrics

5.7.4.1 Is the function of the modules well defined?

I f a module is taken to be a unit then it is defined to be a page of a C&E chart; each of

which relates either to a function (e.g. Red Shut down) in the ESD code or a platform

area (e.g. fire gas zone 11 A) in the F&G code. The CFB in the CFCs generally relate to

the manipulation of one or more variables. The CFB will then be the name of the

variable that is to be set. To this effect the function of the modules in the CFCs is well

defined. The function of the SFC is to perform the self checking routines and to

sequentially check that they have been carried out.

5.7.4.2 What is the communication between modules?

The communication between units is via globally declared variables which are known

as intertrips. The majority of the variables that are declared are global. There is also no

communication within units as the CFBs and SFCs are not directly called. None of the

tested variables were used in all of the units. (See 5.8 for the analysis of when, and

where and how the variables were used.) The SFC calls one step to be executed then

the next; they are always declared in the specified order and do not return to the calling

step but move down the diagram.

There is no interface between user defined functions and procedures, so no parameters

passed. There are APT defined functions and procedures which were used.

5.7.4.3 What is the size of the modules (equated to math blocks)?

The size of the units vary, see Figure 4:6 to Figure 4:11 for the number of CFB and

CFCs located in each of the units. The number of lines in each of the CFBs was

calculated including comments. There are 50 lines of code within four screens.

94

In the BSD program only 53 CFBs were shorter than 50 lines. In the F&G program

there were 732 CFBs that were shorter than 50 lines of code. The BSD code had 2020

CFBs while in the F&G code there were 1791 CFBs. An interesting fact though was

that the average length (lines of code including comments) was:-

ESD F&G

49 41

Figure 5:1
Table showing the average number of lines of code

This demonstrates that the average length of a CFB was less than the recommended

four screen lengths. Although most of the CFBs, as demonstrated in Figure 4:12 were

greater in length than the IBC 1508 recommended four screens. This indicates that a

large number of the CFBs must have neen very short hence less than the recommended

two screens length.

The SFC diagram in the F&G code covers 3 pages while the BSD diagram is on two

pages. This is within the recommended length and since it was pictorial it was easier to

understand than four screens of code. (See Figure 3:3 and Figure 3:4) Bach step

contained textural code, so all the information was not provided by the picture.

5.7.4.4 Does every module have only one entrance and exit point?

The CFCs do not have a single entry and exit point because the CFBs are compiled into

an arbitrary order; it is not even necessary that the CFBs within the chart will remain

together. After compile time there will be one exit and entry point for the entire piece

of code written within a loop.

The CFBs have two entry and two exit points; on the first iteration of the code the entry

point is the declaration section, the 'INIT' part of the code is then executed and the exit

point is then before the 'BODY' part of the code. On future iterations the entry point

is at the 'BODY' and the exit point is at the end of the block.

95

The SFC has only one entry point into the main SFC and the safe SFC. There can be

many exit points from the main SFC; in the F&G program there are two while in the

BSD program there are four. The safe SFC is called from any of the steps in the SFC

and it returns to a specific step in the main SFC which is not necessarily the calling

step. This means that after execution of a safe SFC the re-entry point to the main SFC is

known, and as such allows SFC steps to be skipped.

5.7.5 Conclusions

The APT supports the code being divided into modules, of a relatively small size that

map to the environmental conditions. This technique has been successfully used and as

such should aid safety as the code is not a large single document but one of manageable

sized chunks for analysis.

5.8 USE INFORMATION HIDING / ENCAPSULATION

5.8.1 Goal

Use information hiding / encapsulation to increase the readability and maintainability of

the software.

5.8.2 Definition of Technique

Information hiding is "a software development technique in which each module's

interfaces reveal as little as possible about the module's inter workings and other

modules are prevented from using information about the module that is not in the

module's interface specification." [43]

Encapsulation is "a software development technique that consists of isolating a system

function or a set of data and operations on those data within a module and providing

precise specifications for the module." [43]

96

Data that can be globally accessed can be incorrectly changed, and all the code would

then have to be revalidated. Information hiding reduces these difficulties i f one module

has to be changed then only one module has to be re validated.

5.8.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

5.8.4 Metrics

5.8.4.1 Is information hiding supported by APT?

Information hiding is not supported in the conventional sense by the APT. It allows the

code to be divided into CFCs and CFBs but there is no formal interface between them.

Al l information passed around the program is via global variables.

5.8.4.2 IHow many units are global variables normally used in?

One in ten variables were analysed to provide the following data. The results listed

below show the number of units that each variable was used, read and written in. The

BSD sample variables demonstrated more clearly that the variables were read in one

unit and written in another.

It should be noted that the F&G system does not have unit defined global variables.

The variables sampled in the F&G code were used in a maximum of 3 units (see Figure

5:5), while in the BSD code the variables sampled were used in up to 7 units (see Figure

5:2).

It was interesting to note that some units contained local variables of the same name.

Some of the local variables also had the same name as global variables.

97

5.8.4.3 Are global variables read and written in multiple units?

Of the variables sampled there were instances of variables being both read and written

to in more than one unit. The summary of the number of units that global variables

were read and written in is provided in Figure 5:2 to Figure 5:7. The data is slightly

inaccurate as it was taken from the translated code and flags in the translated code were

assigned to in every block that they were used in, as that was seen as the best method of

mapping the On itoction.

ESD code

250

200

_ 150

^ 100

50

0
CM CO * lo

units

160
140
120
100
80
60
40
20
0

n in
units

180
160
140
120

•s 100
1 80

60
40
20
0

C4 n « I

unltB

Figure 5:2
ESD number of units each

variable was read or written i
F & G code

Figure 5:3
ESD number of units each

variable was read in

Figure 5:4
ESD number of units eacii

variable was written in

350

Figure 5:5
F&G number of units each

variable was read or written in

Figure 5:6
F&G number of units each

variable was read in

Figure 5:7
F&G number of units each

variable was written in

98

The BSD code demonstrated a number of instances where variables were read in one

unit and written to in a different unit. This is demonstrated in Figure 5:2 to Figure 5:4.

The data also demonstrated that variables tended to be written to in one or two units,

often read in more and in many cases different units. This information has not been

supported by software fault tree analysis which often indicates internal variables (not

outputs) only being written to in one block.

The F&G code demonstrated a large number of variables that were read in one unit and

written to in two units. The unit in which the variable was read was normally one of

the ones it was written to. There are also a number of instances where the variables are

read in one unit and written to in a different unit. It was not analysed how many of the

CFBs within a unit the variables were used in. The F&G variables sampled were used

in a maximum of 3 units. See Figure 5:5 to Figure 5:7.

5.8.5 Conclusions

Information hiding and encapsulation was not an option available with the APT. A

greater level of programming discipline was therefore required to not use variables in

all of the units. Of the 392 F&G variables tested 283 were used in only one unit and the

rest in a maximum of 3. In BSD, 377 global variables were sampled and 225 of them

were used in only 1 unit but the rest were used in up to 7 units.

Encapsulation aids safety as it reduces the chances of read write conflicts between units

but it was not available in the APT system.

99

5.9 USE VERIFIED MODULES

5.9.1 Goal

Use a library of trusted or verified modules to avoid continually having to revalidate

code

5.9.2 Definition of Technique

Well defined PBS (Programmable Electrical Systems) consist of hardware and software

components and modules that are distinct and interact in a clearly defined way. In

many PBS there are parts of the code that can be reused, which requires less

revalidation.

5.9.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

5.9.4 Metrics

5.9.4.1 Was code reused?

It is believed that all the code was written from scratch, as it is the first time that the

PLC software was used. The SFC layout, structure and design were similar in the BSD

and F&G code. They both had the same sort of language constructs and they both

mainly used interlocks and similar sorts of functions. They both used SFCs in the self

test units.

5.9.4.2 Was code written so it could be reused?

The code was written in a style that could potentially be reused. There was a self test

unit in both pieces of code developed in a similar style. The units were divided partly

100

in terms of plant layout and partly in terms of function. Other platforms may have

similar designs but each of them is unique. Also within the CFBs much of the code

looked identical with just 1 or 2 variables replaced. This suggests the existence of

informal or formal coding standards.

5.9.5 Conclusion

It is not easy to develop for reuse, because there is no method of encapsulating code to

perform just one function. Theoretically reuse is possible. It is hindered by the

dependence on global variables but there were definite similarities between the two

samples of code. Reuse of previously verified code reduces the need of re-verification

but increases the problem of identifying if 2 functions have the same functionality..

5.10 USE A STRONGLY TYPED PROGRAMMING LANGUAGE

5.10.1 Goal

Use a strongly typed programming language which will permit a high level of checking

by the compiler to reduce the probability of faults.

5.10.2 Definition of Technique

User defined types can be formed from basic programming types, and strict checks are

enforced at compile time to ensure that the correct type is used.

5.10.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

101

5.10.4 Metrics

5.10.4.1 Is it a strongly typed language that was used?

The manual [50] identifies the language as being a strongly typed language but it

allowed Booleans and flags to be interchanged. It also did not insist on the

recommendations that were made within the user manual. (See 5.11.4.2)

5.10.4.2 Were there any instances of code that would not have compiled

using a strongly typed language?

Variables that were declared to be of type Booleans were assigned using the command

to assign a flag throughout the F&G code. This should not have caused a problem

because flags have values of true and false, but they are assigned differently from

Booleans.

Unit Boolean
FZ_11B WSL_XS_20201
FZ l i e WSL_XS_20215
FZ_11J WSL_XS_20217
FZ_1 IJ WSL_XS_20218
FZ_1 IJ WSL_XS_20263
FZ_1 I M WSL_XS_20202
FZ 12G WSL_XS_20213
FZ_12H WSL_XS_20260
FZ_13F WSL_XS_20214
FZ_13L WSL_XS_20206
FZ 13L WSL_XS_20259
FZ 51A WSL_XS_20212
LOG PAGD WSL_XS_20261
LOG_PISO WSL_XS_20209
LOG_UAGD WSL_XS_20262
LOG_Y_SD WSL_XS_20203

Figure 5:8
Table showing the Booleans that are assigned as flags

Had the language been a strongly typed language the above Booleans would not have

been able to be assigned the value of a flag.

102

5.10.4.3 Would a strongly typed language have aided maintenance by
preventing erroneous code being included?

In the math language timers can be started using the DELAY command or by setting

the values of the timer. Both options could be used on the same timer but this is not

recommended by the manual [51] - only one should be used. Two methods would make

it more difficult during maintenance to identify the method used with individual timers.

With the code supplied the SFCs used the DBLAY command and the CFBs did not use

the DELAY command. Turning an individual timer on by two different methods was

not used.

5.10.4.4 Were variables declared and not used?

Some global variables were declared and not used. A language that identified these

may have proved useful as it may have identified code that had not been written. In the

case of the BSD code all the text variables that were declared were not used but the

C&E charts still identify textural output. The text variables had the same hardware

address as an integer array; it is believed that the array was used to copy the text values

into another integer array. Even digital inputs and outputs had been declared and not

used; so were pieces of hardware made redundant or was the code omitted? The F&G

system had 2 out of the 3 Word inputs that were declared but not used.

103

ESD F&G

Type Quantity Type Quantity

B 14 A I 2

BA 44 B 12

D I 148 BA 32

DO 25 DUAL_LIM 1

F 7 I 11

I 12 lA 7

T 59 SING_LIM 1

TA 1 VSS 1

WI 2

Figure 5:9
Table showing types and quantities of variables not used

The F&G system had less variables declared globally to units, this might have been the

reason that all of the variables declared at unit level were used. The ESD system

though did have variables declared at the unit level that were not used. All the text

variables declared at the unit level were also not used see Figure 5:10.

Type Quantity

B 57

F 34

I 243

T 1000

lA 1

TRIP_HH 4

TRIP_LL 1

W I 4

Figure 5:10
Table showing types and quantities of ESD unit variables that were not used

104

5.10.5 Conclusions

Strongly typed languages may not have allowed any of the above to occur; the Booleans

would have to have been declared as flags. Allowing variables of different types to

have the same hardware address seems to mean that the language was not as strongly

typed as it could have been.

Not allowing the above would remove the possibility of ambiguity and omissions but

decreases flexibility. Code could potentially be written using a stronger typed language

which could help to prevent omissions, detectable and undetectable errors. Enforcing

the correct use of timers aids maintenance. A strongly typed programming language

which the APT seemed to supply reduced the chances of careless mistakes with similar

variable names being allowed unchecked.

5.11 USE A S A F E SUBSET OF THE PROGRAMMING LANGUAGE

5.11.1 Goal

Use a subset of the language to reduce the probability of introducing programming

faults and increase the probability of detecting faults.

5.11.2 Definition of Technique

Examine the language to determine the constructs that are error prone or difficult to

analyse, especially using static analysis methods. A subset of the language should be

defined to exclude these techniques.

5.11.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

105

5.11.4 Metrics

5.11.4.1 What is the subset of the language and how do the removed

techniques improve safety?

Overview

The top level of the program did not have any SFCs or CFCs; all of the code was in

units. The main and safe SFC that was included in both programs was put in the

'SELFTEST' ('S_TEST') unit. It was CFCs that were predominately used in both the

ESD and the F&G code.

CFCs

Within each of the CFCs only the interlocks and math blocks were used. All of the

math blocks were active so they could not be turned off, and interlocks cannot be turned

off. The math blocks were not given any inputs (although this is allowed) and

interlocks cannot be given any inputs. Hence none of the connection possibilities

between the CFBs were used nor were any of the other CFB types which include:-

• Pieces of hardware types

• Maths functions e.g. divider, summer, subtractor

Al l of the coding that required interaction of variables was written in the math

language.

SFCs

Most of the SFC functionality was used. Parallel execution was not used which is

beneficial since it is easy to write invalid programs. Only the local safe SFCs were

used and not either of the other two types. Using any safe SFCs would have made the

exit conditions more confusing. The F&G SFC did not use any loops although the ESD

SFC had one loop, (see Figure 3:3 and Figure 3:4) Also the condition to call the safe

SFC was set outside the SFC, within a CFB.

106

SSABORT command was not used. This stops the execution of all the relevant SFCs.

It would mean that it may not have been known where in the cycle the program had

reached.

Math language

Al l of the math language was used apart from the printing. There was only one while

loop used. Some of the APT defined procedures and functions were used. No piece of

code that could only be compiled to SFPGM was used.

5.11.4.2 Which error prone parts would the author have removed if

possible?

In 5.18 the example is cited of a function that according to the manual can only be

compiled to RLL and a function that can only be compiled to SFPGM used in the same

CFB. Since most of the code was compiled to RLL then the author would probably

have excluded all functions and procedures that were compile only to SFPGM to

prevent this sort of fault from occurring. This was reported to Siemens and the APT

development team issued the following statement:

"The APT Engineering organization has reviewed the manuals and has confirmed that

the definition of BITS_TO_INT function is described incorrectly. Page 11-16 of the

APT Programming Reference manual states in the first sentence that this function is

"available only in SFPGM for Series 505 controllers." This limitation is incorrect. The

function is available in both SFPGM and RLL. We have entered DT7265A into our

APT Configuration Management and Problem Tracking system to document the

incorrect statement in the manual. This Development Task (DT) will be incorporated

during the next manual update cycle."

107

5.11.4.3 Was it possible to tell which were error prone parts?

In some parts of the user manual it was difficult to comprehend what was the meaning

of the definitions. These included:-

• When the on command on a flag turned off.

• What parallel execution was - SFC predominately.

• How often the input values were read by the program

• What control errors are

• Whether the parameter types were checked

• Whether there is boundary checking on arrays

5.11.5 Conclusions

It is possible to use a subset of the APT language. The ESD and F&G code did not

require all of the available features. Defining a subset should simplify static analysis

performed on the code, which in turn should lead to safer code.

Using only a subset of the code improves the understandability of the constructs. The

safety that it should provide is the removal of omission and commission, and the

analysis should be more likely to identify detectable and undetectable errors.

5.12 DIFFERENT PROGRAMMING LANGUAGES USED

5.12.1 Goal

Use a programming language with a defined subset of language to produce easily

verifiable code with the minimum of effort.

108

5.12.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

5.12.4 Metrics

This goal is used against the three programming languages used by the APT, CFCs,

SFCs and the math language, then the APT system as a whole is studied. The results

are in 5.13 to 5.16 respectively.

5.13 C F C S

5.13.1.1 Is the language fully and unambiguously defined?

There is confusion about the order the CFBs are compiled into and whether they remain

within the CFCs at compile time. The semantics are also never formally defined.

5.13.1.2 Is the language problem oriented?

The language is problem oriented in as much as it allows a different chart to be built for

each piece of hardware, or each function that is required to be performed on the

platform.

5.13.1.3 Does the language provide:-

• Block structure

The entire programming language is made up of blocks. The CFC is divided into

interconnecting CFB (Continuous Function Blocks); the sub-language used only had

distinct CFBs.

110

• Run time checking and array boundary checking

Arrays are not stored or used directly by the CFCs.

• Parameter checking

No parameters are passed so there is no requirement for parameter checking.

5.13.1.4 Does the language encourage:-

• Use of small and manageable modules

It is possible to have many CFCs in a program, each of which can be divided into

CFBs. It is easier to maintain control of the CFC if it is all displayed on one screen.

The F&G and ESD code's largest CFC corresponded to 2 screens, which was 50

CFBs.

• Restriction of access to data in defined modules

Restriction of data is not possible since variables cannot be declared as local to an

entire chart. Variables can be declared as local to the block which means that

information cannot be accessed elsewhere otherwise they are global to a unit or all

the code.

• Definition of variable sub ranges

Variables are not declared within the CFC. They are declared as part of one of the

other programs.

• Any other type of error limiting construction

The subset of blocks used did not take inputs and outputs and the math blocks were

set so that they could be turned off.

5.13.1.5 Features which make verification difficult should be avoided

including:-

• Unconditional jumps (excluding sub routine calls)

Each of the blocks are distinct entities and there is no connection between them,

apart from the ordering which is decided at compile time.

I l l

• Recursion

This is not possible. Each block is executed once before any block is repeated.

• Pointers, heaps or any type of dynamic variable or object

These are not possible.

• Interrupt handling at source code level

This is not supported.

• Multiple entries or exits of loops, blocks or sub programs

The blocks in the chart are distinct and can only be entered at one point, but the

blocks of the charts are ordered at compile time and the ordering can be changed

each time, so the entry point to the chart effectively changes.

• Variant records or equivalence

There are no records stored in the CFCs

• Procedural parameters

There are no procedures, so procedures cannot be passed as parameters.

5.13.2 Conclusions

Many of the characteristics required for an IBC 1508 language were found in the subset

of CFC language that was used with the ESD and F&G code. The possibility of only

using a much smaller subset was available, which enabled less confusion and greater

rigidity over the characteristics of the code.

5.14 S F C S

5.14.1.1 Is the language fully and unambiguously defined?

It was unclear how parallel execution within the steps worked; also none of the

language was formally defined.

112

5.14.1.2 Is the language problem oriented?

A different chart could be created for different functions or pieces of hardware.

5.14.1.3 Does the language provlde:-

• Block structure

The entire programming language is made up of blocks (steps). The chart is made

up of steps that are joined together by transactions. This means that the code in each

of the blocks can be quite small. In each of the steps there is math language text.

• Run time checking and array boundary checking

Arrays are not stored or used directly by the SFCs.

• Parameter checking

No parameters are passed so there is no requirement for parameter checking.

5.14.1.4 Does the language encourage:-

• Use of small and manageable modules

There can be any number of steps to an upper limit of 500 combined together and

even any number of SFCs i f necessary. The SFC in the BSD code fitted onto two

screens while the F&G SFC fitted onto three screens. Since all the steps are joined

by transactions which can be the 'true' transaction the steps can be as small as

desired.

• Restriction of access to data in defined modules

Variables cannot be declared as local to an entire chart, variables can be declared as

local to the step which means that information cannot be accessed elsewhere.

• Deflnition of variable sub ranges

Variables are not declared within the SFC they are declared as part of the math

language in the step or as part of the programming environment of the APT. So

variable sub ranges are not relevant to SFCs.

113

• Any other type of error limiting construction

Although the language supports parallel processing of steps the sub language did not

use parallel processing. The ESD SFC had one loop back to previous steps, but the

F&G did not. The sub language did not use SSABORT of the safe step which meant

the whole SFC could not be stopped in an unknown state.

The language encourages code that is divided into sequential blocks and it allows

implicit delays where the code loops until the exit transition becomes true. Care has

to be taken that the exit transition does become true, as this could potentially be a

danger of the language.

5.14.1.5 Features which make verification difficult should be avoided

including:-

• Unconditional jumps (excluding sub routine calls)

Jumps are made from one step to the next but they are dependent on the transition

condition being true so they are not unconditional jumps.

• Recursion

This is not possible.

• Pointers, heaps or any type of dynamic variable or object

This is not possible.

• Interrupt handling at source code level

This is not supported

• Multiple entries or exits of loops, blocks or sub programs

There is only one entry step in an SFC. There are no multiple entrances to the steps

in the SFC. The exit depends on which step is to become active next and hence

which transaction is to be followed. The transition to the safe SFC can become true

at any time so the active step is postponed. This was programmed so if the safe SFC

was going to become active in a pass it occurred as soon as the safe SFC was turned

on or not at all. When the safe SFC has finished the active step is stopped and the

114

return step becomes active. There is more than one final step in the SFC. The BSD

SFC has four while the F&G SFC only has two.

• Variant records or equivalence

There are no records stored in the SFCs

• Procedural parameters

There are no procedures, so procedures cannot be passed as parameters.

5.14.2 Conclusions

Many of the characteristics required for an lEC 1508 language were found in the subset

of the SFC language that was used with the BSD and F&G code. The program proved

that a subset of the language could be used. It was possible to create loops in steps, and

loops in the SFC that did not exit.

5.15 MATH LANGUAGE

5.15.1.1 Is the language fully and unambiguously defined?

There is ambiguity defining turning an 'on' flag automatically off. The language is not

formally defined but defined in natural language with examples in the manual.

5.15.1.2 Is the language problem oriented?

It is similar to Pascal so it is oriented round assignments and conditions.

5.15.1.3 Does the language provide:-

• Block structure

The language does not support a block structure, but the language is expected to be

within a block of another language.

115

• Run time checking and array boundary checking

There is run time checking.

• Parameter checking

Parameters are passed to the math language defined procedures.

5.15.1.4 Does the language encourage:-

• Use of small and manageable modules

The size of a block of math language is dependent on the amount of information that

is to be processed in that block and that is dependent on the design of the CFC and

the SFC so the actual block size is progranuner and designer dependent.

• Restriction of access to data in deHned modules

Variables can be declared within the block which means that these variables can only

be accessed in the blocks. Most of the variables are declared globally outside the

math block in which case the data is accessible to any of the blocks. Only Booleans,

integers, reals, timers or arrays can be declared within the block.

• Deflnition of variable sub ranges

Variables declared within the block cannot be given a sub range although they can be

given an initial value.

• Any other type of error limiting construction

The manual does not encourage the use of while loops, and there is only one while

loop in the ESD code and none in the F&G code.

The compiler has allowed Booleans to be used as flags in more than one instance in

different blocks of code (see 5.10).

116

5.15.1.5 Features which make verification difficult should be avoided
including:-

• Unconditional jumps (excluding sub routine calls)

No unconditional jumps are allowed in the math language code.

• Recursion

This is not possible.

• Pointers, heaps or any type of dynamic variable or object

These are not possible.

• Interrupt handling at source code level

This is not supported

• Multiple entries or exits of loops, blocks or sub programs

Each block is entered at the start and either the initial code or the main body of the

code is executed depending on whether it is the first loop of the execution or later

ones. The exit is when the last statement of code in either the initial part or the main

part is executed.

• Variant records or equivalence

There are no records stored in the CFCs

• Procedural parameters

There are no procedures, so procedures cannot be passed as parameters.

5.15.2 Conclusions

Many of the characteristics required for an IBC 1508 language were found in the subset

of Math language that was used with the BSD and F&G code. It was possible to use a

subset of the language and avoid all the problem areas identified in IBC 1508.

117

5.16 APT TOOL

5.16.1.1 Is the language fully and unambiguously defined?

Al l the languages and their interactions are defined apart from the parts cited 5.13 to

5.15. The ordering of the of the entire system is not clearly defined.

5.16.1.2 Is the language problem oriented?

It allows the code to be divided into units with respect to the functional units of the

platform.

5.16.1.3 Does the language provide:-

• Block structure

Code can be divided into units which then allows the use of one or more

programming language, which themselves are divided into blocks.

• Parameter checking

Parameters are not passed between the various parts of the programs.

5.16.1.4 Does the language encourage:-

• Use of small and manageable modules

The facility is provided to divide the code into units and then to divide each of the

units into one or more programs written as either CFCs or SFCs.

• Restriction of access to data in deflned modules

Most of the variables declared within the APT are global; in the F&G code the

majority are global to the entire program, while with the ESD about half are global

to the entire program while the other half are declared as global to the entire contents

of one unit.

118

• Definition of variable sub ranges

Variables cannot be declared to have sub ranges.

• Any other type of error limiting construction

5.16.1.5 Features which make verification difficult should be avoided

including:-

• Unconditional jumps (excluding sub routine calls)

These are not allowed in any of the languages supported by the APT.

• Recursion

This is not allowed in any of the languages supported by the APT.

• Interrupt handling at source code level

This is not supported

• Multiple entries or exits of loops, blocks or sub programs

The SFC starts at the beginning and finishes at one of the end steps,(see 5.14) The

CFCs are reordered at compile time and each CFB is executed in an order in a loop.

• Variant records or equivalence

Recipes are records in which every part has to have a declared type.

• Procedural parameters

User defined procedures (CFCs, CFBs, SFCs) could not be called.

5.16.2 Conclusions

Many of the characteristics required for an IBC 1508 language were found in the subset

of languages that were used with the BSD and F&G code. The system allowed safer

subsets to be used. There is the potential problem of not knowing the ordering of the

system. It is possible to build SFCs that do not terminate. On the whole most of the

accepted problem areas are avoided either by the APT or the subset of the language.

119

5.17 DESIGN EASILY ANALYSABLE PROGRAMS

5.17.1 Goal

Design programs so analysis is easy and feasible and the program is fully testable.

5.17.2 Definition of Technique

Programs should be designed so that they are easy to analyse using static analysis

techniques. To do this structured programming methods should be followed - these

include:-

• Module control flow should be composed of small structured components

• Modules should be small

• Number of possible paths through a program should be small

• Program parts should be decoupled

• Complex calculations should not be the basis of branching / looping decisions.

• Branch and loop decisions should be related to the module input parameters

• Boundaries between different types of meanings should be simple

5.17.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

5.17.4 Metrics

5.17.4.1 What is the size of modules and are they small?

I f a module is taken to be a unit then size can be calculated by looking at the number of

lines of code in the unit, the number of CFCs or the number of CFBs in each unit. The

number of lines of code can vary depending on the length of statements, most of which

120

were no longer than a screen width or were moved onto the next line. See graphs

Figure 4:6 to Figure 4:11.

The BSD code is divided into 38 units, each containing between 1 and 14 CFCs. Most

of them have between 4 and 7 CFCs which could be considered small. The lines of

code per unit and the number of CFBs relates directly to the number of CFCs per unit.

Only two of the units have over 5000 lines of code and one of them has 17000 lines

which is much higher than the others. This same unit has a high number of CFBs and

the highest number of CFCs. So this unit could not be called comparatively small.

The F&G code is divided into more units and there are fewer lines of code compared

with the BSD code. This mostly suggests that the units are smaller than those in the

BSD system. There are 55 units each having at least 1 CFC and at most 11; many of

them have 7 CFCs. The number of lines of code in each unit relates directly to the

number of CFBs per unit and not strongly correlated the number of CFCs per unit. The

maximum lines of code in a unit is 8000 although many of them have under the 2000.

The F&G program has smaller units than the BSD program; both programs have one

unit that is considerably larger than the others. Most of the units though are relatively

small, without being so small that there would be hundreds of units; which is thought to

increase complexity.

5.17.4.2 The number of paths through a program is dependent on

branching and loops

The BSD code contains only one while loop which either does not execute, or

terminates in 450 cycles or less see Figure 5:28 for the code. The number of paths

through a conditional statement is dependent on the level of nesting which is a

maximum of 4. The number of ' i f , 'else' and 'else i f branches is analysed in 5.20.

The actual number of paths through the entire piece of code is a factorial of the number

of mathblocks in the code, since the ordering of the CFBs is unknown. This is because

121

it is determined at compile time and so could be different each time it is compiled;

although it probably isn't as there is a system for determining execution order at

compile time.

5.17.4.3 Are parts of the program decoupled?

The CFBs and CFCs are not decoupled because they are all dependent on global

variables that are dependent on other parts of the program.

5.17.4.4 Where are complex calculations used as the basis of branching

and could this be changed?

There are no complex calculations although in some instances the branching is

dependent on long combinations of and's and or's. Conditional statements that are

multi lines long could be regarded as complex logical expressions. There was limited

functionality within a branch i f the conditional had been complex. This indicates a

value that was dependent on many others, often tracing back to inputs.

5.17.4.5 Branching based on input parameters?

There are no input parameters in the code studied. Therefore the branching conditions

cannot be based on input parameters. Some of the math blocks can take inputs but in

the code studied they have not been used. Code is easier to analyse if parameter passing

is not allowed because the origination of variables does not need to be tracked, or where

variables were passed from. Global variables though, which were used within the

system, can be just as hard to analyse.

5.17.4.6 Do math blocks use predominately global or local variables?

In the F&G system only one unit has its own set of global variables declared. All the

rest use global variables and the variables declared within the CFBs. The F&G code

has 3989 global variables while the ESD code has 4413 global variables and 5899

variables that are declared global to only one unit. The ESD math blocks use a mixture

122

of global and unit global variables in the code. Many of the CFBs declare their own

local variables.

5.17.5 Conclusions

The code is written in relatively small modules which allow a modest number of paths

through each block. There are a large number of paths through the program since the

CFB order is determined by the compiler. Variables that are used are declared globally

either to a unit or the whole program. The declaration of variables is external to the

code within the APT tool.

Input parameters have not been used. The major difficulty of the static analysis would

therefore be to prove that the ordering of the CFBs is immaterial. The code that was

written had CFC names that were often similar or contained the unit name so most of

the CFC could be joined to a unit by their name. This was a great help during static

analysis.

5.18 USE DATA FLOW ANALYSIS

5.18.1 Goal

Use data flow analysis to detect poor and potentially incorrect data structures

5.18.2 Definition of Technique

Data flow: " the sequence in which data transfer, use, and transformations are

performed during the execution of a computer program". [43]

Combines information from control flow analysis with information about which

variables are read or written in different parts of the code. Variables that are important

to identify are those that are:-

• written more than once without being read - omitted code

• written but never read - redundant code

123

5.18.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

5.18.4 Metrics

5.18.4.1 Were all variables written to and read from?

The code could not be checked for variables read and then written and vice versa since

the ordering of the CFBs is not predefined. Variables that were written to but never

read could be an indication of redundant code. Variables that were read and never

written to could be an indication of omitted code, or, alternatively,variables that have

been used as constants. The variables listed below do not include variables that were

not used only the variables that have not been written to but have been read and vice

versa. It would be expected for inputs to be read and not written to and outputs to be

written to but not read, but this was not always demonstrated.

Not Written Not Read
Type Quantity Type Quantity

Dl 1189 DF 6
A! 229 DO 474
Wl 1 BA 5
BA 1 B 33
DF 1 1 232
B 89 lA 2
1 4

Figure 5:11
ESD code variables not written and read

Of the variables declared globally to the ESD system all the inputs that had been used

were read only. The digital flag (DF) is treated as an output so it is interesting that it

was read but not written. Most of the digital flags that were used were written to and

read - 378 while only 6 of them were just written to. 183 of the digital outputs were

124

both read and written to. While only 11 of the 259 declared integers were read and

written to.

Not Written Not Read
Type Quantity Type Quantity

Wl 2 WO 4
B 625 B 851
BA 9 BA 8
1 3 DX 2
lA 1 1 58
TRIP ALL 5 lA 2
TRIP HH 51
TRIP_LIM 71
TRIP LL 92
TRIP LLL 10

Figure 5:12
ESD variables declared in units that were not read or written

Of the variables declared as global to one unit in the ESD system, the inputs and

outputs were either used as expected or not used at all. 17 of the 19 BA (Boolean

arrays) that were used were not read and written to, this can be seen in Figure 5:12

which demonstrates that 9 were not written to and 8 were not read from. The BSD

recipes that were not written to could have been used as constants, since they did not

contain any inputs only integers and reals.

Not Written Not Read
Type Quantity Type Quantity

Dl 325 DF 56
Al 199 WO 4
Wl 1 DO 12
C O D E L L 3 1 128
B 11 lA 4
DUAL LIM 57 B 337
DX 2
1 267
lA 1
SING LIM 130
ST 1

Figure 5:13
F&G code not written and read

125

Of the global variables in the F&G system, all the inputs used were read and not written

to. The recipes consist only of integers and reals (not inputs) so it could be that they

were used as constants. Of the integer arrays only 1 was read and written to. The

number of outputs used was not equal to the number write only so some of them must

have been read.

There were 35 Booleans declared local to a unit and three of them were not written to.

The three not written to were declared as false.

This analysis has identified the possibility of large amounts of redundant or omitted

code.

5.18.4.2 Some internal procedures should not be used in the same CFB

The analysis identified procedures that should not be used in the same CFB. This has

been resolved and they can in fact be used together since the manual was out of date,

(see 5.11.4.2)

5.18.5 Conclusions

Data flow analysis proved to be useful. It demonstrated an overview of the whole

program which would aid understanding i f the workings of the entire program are not

understood. It demonstrated where the functions / procedures may have been used

incorrectly but in fact were not.

The information about variables was very interesting; the study revealed that of the

4413 global variables declared in the ESD system many were not used as expected by

analysis or not at all. There were 3958 global variables declared in the F&G system

many of which were not used as expected. This analysis of the code indicated that there

could be redundant and omitted code in both of the programs. On further investigation

it was demonstrated that many of the variables not written to were used as constants, or

126

a connection to a data link. It did identify three variables that had been used incorrectly

which in itself proved the benefit of the technique.

Since the data analysis has proved useful on the BSD and F&G code it would be

assumed that it could be used beneficially on other BSD and F&G systems.

5.19 USE CONTROL FLOW ANALYSIS

5.19.1 Goal

Use Control flow analysis to detect poor and potentially incorrect program structures.

5.19.2 Definition of Technique

Control flow :- "The sequence in which operations are performed during the execution

of a computer program" [43]. Control flow should identify code which does not follow

good programming techniques. A directed graph can then be created and analysed. It

should identify :-

• inaccessible code e.g. due to unconditional loops

• knotted code - poorly structured programs can only be reduced to a knot composed

of several nodes.

5.19.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

127

5.19.4 Metrics

5.19.4.1 What does the procedural control flow look like?

Figure 4:20 and Figure 4:21are control flow diagrams of the F&G code.

The procedural control flow is as expected from the APT top level layout. Figure 4:20

• the main program calls the init parts of all the CFBs

• then the main parts for the high interlocks,

• then the SFC (which is shown on a separate diagram Figure 4:21)

• then the two mathblocks.

This is quite a straight forward control flow graph that does not show complicated flow

of control in the code. The graphs were drawn from the translated code.

5.19.4.2 What is the control flow within the code?

A graph was not drawn of the internal structures of the code, although this is possible.

The code consisted of GOTO type jumps in the SFC and from a hand performed

analysis of the F&G SFC there was no code that was inaccessible. Within the main

body of the code there were conditional statements that were nested up to four levels.

(See Figure 4:13) The only while loop in the ESD code can be located in one of the

CFBs. It was studied to ensure that it would terminate.

5.19.4.3 Does the SFC control flow program look like the SFC diagram?

The SFC chart demonstrates identical control flow to the control flow diagram of the

SFC part of the translated code. They both show the same information; this would

suggest that the SFC programming language shows a higher level of abstraction than

WSL and so should prevent incorrect programming structures.

128

5.19.5 Conclusions

Control flow diagrams can be drawn of both the top level and the lower levels of the

code. The top level diagram did not increase the information about the program

structure. It gave information about the size and numbers of units, and number of CFBs

at a glance for maintenance etc.

The control flow diagrams of the individual pieces of code may have indicated more

information about where complicated and inaccessible code could be located. Since the

code consisted mainly of conditional statements a study of the values of the conditionals

has greater likelihood of locating the omitted and complicated code than a control flow

diagram.

Control flow analysis of the overall layout of procedures and units is not necessary with

graphical languages.

5.20 USE STRUCTURED BASED TESTING

5.20.1 Goal

Use structured based testing to apply tests which exercise certain subsets of the program

structure.

5.20.2 Definition of Technique

Testing is based on the analysis of the program, where a large fraction of selected

program elements are executed. Below is the main selection of subsets that are of

differing vigour:-

129

• Statement testing

Each statement is tested once. In the case of a conditional statement then only one of

the paths will be tested. Loops have to be entered at least once.

• Branch testing

All branches of every condition should be tested, i.e. the then, else if, and the else

branches should all be executed at least once.

• Compound condition testing

Every condition in the conditional i.e. those parts linked by 'and' and 'or' should be

tested as true and false.

• LCSAJ - (linear code sequence and jump testing)

Testing all sequences of code between jumps, or between the start of the program

and the start of a jump, or the end of a jump and the end of the program.

• Data flow testing

The test paths are selected by their data usage, i.e. a path where a variable is both

written to and read.

• Call graph testing

The test path is so that every function that is used is executed

• Entire path testing

Test all possible paths through the code.

• FAT's (factory acceptance testing)

The tests are performed by checking that each line of the C&E chart is executed

correctly.

5.20.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

130

5.20.4 Metrics

5.20.4.1 Statement testing

Most of the code is in 'conditional statements'. The level of nesting of the code can be

up to four levels i f there is an outermost 'else' or 'else i f then none of the inner levels

of the ' i f branch are necessarily tested.

F&G code ESD code

if 8102 6742

else 4190 2353

else if 12 1128

Figure 5:14
Table showing the approximate number of times each of the key words were used in the programs

I f the number of conditional statements are taken as a maximum approximation of the

number of statement tests and the number of conditional statements minus the

maximum number of nest levels in each math block is taken as a minimum number of

statement test cases then Figure 5:15 gives an approximate number.

minimum maximum

F&G 4057 8102

ESD 6742 3753

Figure 5:15
Table showing the approximate number of statement tests

5.20.4.2 Branch testing

This increases the number of test cases in the code in comparison to statement testing.

It is believed that all the test cases should be accessible.

131

Branch Testing

F&G 12,304

ESD 10,245

Figure 5:16
Table showing the approximate number of branch tests

5.20.4.3 Compound condition testing

Compound testing represents a large increase in the number of test cases but could

prove very useful since many of the conditions are based on more than one conditional.

Some of the condition statements are based on a long string of combined conditional.

Testing that they work correctly would be beneficial since they are the parts of the code

that are most likely to lead to confusion because of there length.

Compound Testing

F&G 15,694

ESD 21,586

Figure 5:17
Table showing the approximate number of compound tests

5.20.4.4 LCSAJ - (linear code sequence and jump testing)

The ESD code only has one while loop and the F&G code has no while loops, so unless

the SFCs and CFBs are included as jumps there would be very little benefit to this form

of testing.

Each of the SFC steps should be considered to start and end with a jump, but some of

them wil l need to be tested twice as the first loop may contain different code to the

future loops. So executing each step the once would mean that some of the code is not

executed.

132

Using this method each of the CFBs could be treated as individual identities and so the

ordering of them would not have to be fixed. Since the ordering is fixed at compile

time the start and the end of each of the CFBs could be considered as a jump.

LCSAJ Testing

F&G 12,304

ESD 10,245

Figure 5:18
Table showing the approximate number of LCSAJ tests

Note all the block of code between the conditional statements would have to be added to the value

in Figure 5:18 and the number of CFBs and Steps in the program..

This testing would seem to fi t in with this sort of program although there is only one

explicit loop in the code.

5.20.4.5 Data flow testing

Data flow testing would be similar to taking a slice through the code and follow a

variable being written to and read from. The study in 5.8 indicated that each of the

variables were used in a small number of units. This would mean that a high number of

the variables would have to be traced through the code to gain a reasonable coverage. It

has also been identified that there is a high degree of interaction between variables. It

would also be relatively difficult to identify variables that do not overlap and to obtain

distinct blocks of code e.g. for the F&G code most slices seem to go into the SFC.

5.20.4.6 Call graph testing

Enforcing that all of the function and procedure calls are carried out would require a

level of testing between that of branch testing and compound condition testing. This is

due to the fact that in many of the condition statements contain function calls. This is

133

probably easier to obtain than the compound condition testing and it provides more test

cases than the branch testing.

5.20.4.7 Entire path testing

Entire path testing would be impossible for these systems. It is even more difficult than

with a normal large program because the ordering of the CFBs is undefined. This

implies that every possible combination of ordering of the CFBs would have to be

tested along with every combination of every path through each of the CFBs and the

SFC.

5.20.5 FAT (Factory Acceptance Tests)

Many PLC systems are tested presently by using FATs. These are performed by

relating directly to the C&E chart. For each input the outputs are all checked for

correctness. This sort of testing covers all the cases for which the program is specified,

but it does not necessarily check any of the redundant parts of the code, or self checking

parts.

ESD F&G

Number of inputs 327 426

Test cases for inputs 868 489

Test cases for intertrips 162 320

Number of outputs 486 376

Number of intertrips 161 265

Figure 5:19
Table demonstrating number of FAT tests

The F&G C&E charts specified quite a high amount of voting whereas the ESD C&E

charts did not specify any voting. In some cases in the ESD C&E charts the on and the

off value of an input were considered rather than just the on value.

134

5.20.6 Conclusions

There seem to be considerably less test cases for the FAT than other forms of testing.

But the FAT test should perform at least the statement testing in each test since every

CFB is executed in every block. The FAT may not test the SFC as that can be turned

off.

The more testing that is performed the greater the level of safety. Testing does not

identify all of the software faults especially as it is not possible to perform entire path

testing. The compound condition testing will force the greatest number of test cases.

Branch testing should probably be the minimum test coverage considered and not

statement testing.

LCSAJ testing seems to be ideal for this sort of code since it allows each step in a SFC

and each CFB in a CFC to be tested individually. Although interface testing between

the CFBs and the SFC would also have to be performed.

5.21 U S E F M E C A

5.21.1 Goal

Use FMECA (Failure Mode and Effects Criticality Analysis) to rank the criticality of

component failure which could result in injury, damage or system degradation through

single point failures.

5.21.2 Definition of Technique

FMECA's are similar to FMEA's (Failure Mode and Effects Analysis) with more

information requiring identification.

FMEA is performed on the hardware normally after the detailed design stage once the

hardware and interactions between them have been defined. The method is to identify

135

for each piece of hardware, in the system, the reasons why it might fail, and then

identify their failure modes, i.e. the frequency of this specific type of failure. This is

normally calculated by the manufacturer. (Care should be taken though since this could

be the average and the actual value may be much lower. Also the value obtained by the

manufacturer will be under a specific set of test conditions.) The seriousness of a failure

should then be assessed e.g. critical.

The FMECA part then identifies what can be done to prevent the seriousness of the

failure, i.e. the redundancy and the fail safe design requirements that are needed. It also

requires making a note of what has been done to prevent the seriousness of the failings.

[13]

5.21.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

5.21.4 Metrics

5.21.4.1 Use FMECA with the PLC code?

FMECA can be used with these programs, except the ESD and F&G code both have a

high proportion of inputs and outputs which would make the analysis long and tedious.

It is not known from the code and the C&E charts whether they use the same type of

hardware which would reduce the amount of work to be performed. The information

about the number of inputs, outputs, valves (and hence hardware devices) is from the

code which means that the redundancy identified in this sort of analysis has already

been added.

It would be assumed that all hardware parts used would have their failure rate frequency

calculated. The F&G system has a total of 728 known hardware devices while the ESD

has a total of 2260. Each of these would require a table to be created for them

136

identifying how they can fail, the frequency of the failure, the seriousness of the failure,

what can be done to prevent the failure. I f it were to say take an hour to perform the

analysis on each piece of hardware it would take 3,000 hours. Working a 35 hours

week would give 85 weeks worth of work. The original estimation could be inaccurate

and it may take more or less time and it will take less time with experience.

5.21.4.2 What information can be obtained?

The information that can be obtained is the location and type of failures that are likely

to occur and how to guard against them. If the mean time of failure is very low then

either the piece of hardware can be changed, or less dependency put on it, i.e. redundant

hardware and spare parts should be easily available during maintenance of the system.

FMECA will identify, on average, how frequently an individual piece of hardware will

fail, and not evaluate it in conjunction with any other items of hardware. It will identify

where the safety problems are likely to arise and how they can be fixed, but not how

hardware failures are likely to interact.

5.21.5 Conclusions

Although the amount of hardware that is required for this system is large the analysis

identifies important information. It gives information about where the failures are

likely to be found and how to improve the safety. I f this information is then studied in

conjunction with the layout of the hardware and where and how it is used rather than

just the single point of failures it would provide very useful information about how to

obtain the safest hardware configuration. This is because "it can be used to identify the

redundancy and fail safe design requirements, single point failure modes, and inspection

points and spare part requirements." [13] Analysis can be used with hardware in the

system and should provide hardware system safety.

137

5.22 USE SOFTWARE FAULT T R E E ANALYSIS

5.22.1 Goal

Use software fault tree analysis (SFTA) to perform an analysis of events that will lead

to a hazard or a serious consequence.

5.22.2 Definition of Technique

A starting event is the immediate cause of a hazard; the analysis is performed from

branch to root along a tree path, using logical 'and' and 'or' operators between nodes if

more than one follow a node. Fault tree analysis was originally developed for

identifying problems with hardware but is now being developed for software.

Fault trees can be applied to software but "the analysis is used for verification, as the

code must have already been written to generate the trees"[13]. The other benefit of

software fault trees is that theoretically much of the process can be automated.

Software fault trees can be used with the pre written software for two methods. The

first is to check the internal values of the code, i.e. an array is never out of range, or a

variable cannot reach a dangerous value. The other method is to relate the code to a

hazard to prove that the hazard cannot occur i.e. an output is not assigned false when it

should be true (normally dependent on input). Building a software fault tree is labour

intensive but it looks at high level faults and not at specification.

The technique is similar to that used in hardware fault trees; a hazardous event is

identified and is made the top (root) event. For example a hazard could be variable x

being equal to 10, and then the code is followed down the tree until it is proved that x

can not be made equal to 10. The tree is built directiy from the code and as such is a

representation of it. As branches on the tree are developed that can not possibly occur

they are no longer considered. With SFTA it is the loops that cause problems; each

iteration of the loop can be studied, which may lead to very large or infinite trees. The

other option is to prove the tree by induction in which case the following have to be

proved:-

138

• hazard cannot occur if there is no iteration

• hazard cannot occur if there is 1 iteration

• hazard cannot occur if there is n +1 iterations

I f the second two statements can be drawn as identical trees apart from n then the tree

can be shown to not cause the desired hazard by induction. [52] The software fault tree

analysis condition of a hazard is believed to be the weakest pre condition of that

hazard. A software fault tree is preferable though because it gives more detailed

information. Nancy Leveson defined the templates of trees found below.

Assignment cause;
event

Change in value
c a u s e s event

Exception
c a u s e s
event

1
Operand

evaluation
c a u s e s event

Figure 5:20
Template of an assignment software fault tree

F(p1,p2,p3..)
causes event

Evaluation of
parameters

causes event

Execution of F
with p1, p2, p3...

causes event

Failure of F
causes event

Figure 5:21
Template of a function software fault tree

Event in
IF_THEN_ELSE

Condition T R U E , Condition Condition F A L S E ,
THEN part evaluation E L S E part

causes event causes event causes event

Condition T R U E
before

I F _ T H E N _ E L S E
statement

THEN part
causes
event

Condition F A L S E
before

IF_THEN_ELSE
statement

E L S E part
causes
event

Condition T R U E
before

I F _ T H E N _ E L S E
statement

Condition F A L S E
before

IF_THEN_ELSE
statement

Wnile statement
causes event

Statement
executed n times

Statement not
executed

Condition false
before wttile

statement

Condition tme
before while

statement

nt" Iteration
causes event

Event before
wttile statement

Figure 5:22
Template of an 'if-then-else' software fault tree

Figure 5:23
Template of a while loop software fault tree

[131

139

5.22.3 Questions

1. Is this technique possible to use with the provided PLC code?

2. Does it give information about any safety features?

5.22.4 Metrics

5.22.4.1 Can a software fault tree be built for a math block?

A software fault tree can only be built for any math block if it is possible to build a sub

fault tree for all of the statement types found within the code. A template has been built

for all the statement types apart from:-

• Edge function (defined in the math language)-due to it requiring previous knowledge

• Timers - as the trees do not hold time information

• While loop - too much iteration to template.

The edge function has to become an end node within a tree. The timers can sometimes

be analysed and the while loop can be analysed. Two examples of analysed math code

have been included in the code the first one is to determine if the digital output value

PAHH_14320IS = true (Figure 5:27) and the second is to see if an array in the while

loop can go out of range (Figure 5:29). Before the trees could be built a template for

each type of statement has to be built a selection are included give in Figure 5:24 to

Figure 5:26.

140

Value = ?

X and y = ?

T3
C
<

x = ? y = ?

Figure 5:24
An assignment statement

IntageM = ?

pack_blts(
Boolean_Array1) = ?

Boolean_Array1(1) = Boolean_Array1[21
next bit of ?

Ttils part may be
optional

Boolean_Array1(nl '
ntti bit of ?

Figure 5:25
Pack bits function

Must be present

it condition = tme

H condition = false elsit(1)condition = true

What is ttying to be
proved

Must be present

JTTL
if condition = false alsif(1)condition = false elsil(2)condition = true

if condition = false elsit(1)condition = false elsif(2)conditlon - false

Figure 5:26
An if statement

141

o <

43
20

IS
 =

 tr
ue

0_
LL

 =
 t

ru
e

43
20

IS
 =

 tr
ue

0_
LL

 =
 t

ru
e

I
Q.

m m

o u

tr
ue

II "O —,
m
Q

"s; o
_g C -D

o

in to
I 0 ••= _ i • c 5

1 '—' 1 1 1 §

o

E

§
exi
B

•c
s
B
O

"B
bi
A
N
C«

in u
2 2 9

s
o

b

u
la

3

I

Building the tree for the CFB that contained the while loop was more difficult than for

the one containing the digital output. Building trees with functions, conditional

statements and assignments is a case of filling information into a template.

The math block corresponding to the fault tree below (without comments)

Integer: x;

Integer: y;

Begin

Init

I : = l ; { new_array index }

counter := 1; { Counts the number of alarms detected }

Body

x : = l ; { Number of tags in FIRST_UP_LST }

y : = i ; { Increment to array_text location }

WHILE ((x <= 450) AND (counter < 50)) LOOP { Check all ID_TAG locations }

{ until 50 alarms detected }

IF (ID_TAG[x]) THEN { I f tag is in alarm }

MARK_TAG[x] := true; { This tag already accounted for}

counter := counter + 1 ; \ Increment alarm counter }

time_fup[I] := : array_time[l]; { Pick up the current time }

time_fup[I+l] = array_time[2] { Pick up the current time }

time_fup[I+2] = array_time[3] { Pick up the current time }

time_fup[I+3] = array_time[4] { Pick up the current time }

time_fup[I+4] = array_time[5] { Pick up the current time }

time_fup[I+5] = array_time[6] { Pick up the current time }

time_fup[I+6] = array_time[7] { Pick up the current time }

time_fup[I+7] = array_time[8] { Pick up the current time }

143

new_array[I] := array_text[y]; { Copy the text by copying the }

new_array[I+l]

new_array[I+2]

new_array[I+3]

new_array[I+4]

new_array[I+5]

new_array[I+6]

new_array[I+7]

new_array[I+8]

new_array[I+9]

new_array[I+10]

new_array[I+ll]

new_array[I+12]

new_array[I+13]

new_array[I+14]

= array_text[y+l]

= array_text[y+2]

= array_text[y+3]

= array_text[y+4]

= array_text[y+5]

= array_text[y+6]

= array_text[y+7]

= array _text[y+8]

= array_text[y+9]

:= array_text[y+10]

:= array_text[y+ll]

:= array_text[y+12]

:= array_text[y+13]

:= array_text[y+14]

{ integer value }

IF (counter < 50) THEN

I := I + 15; { Increment the new_array index }

{ ready to write the next tag }

ELSE

I := 1; { Reset new_array index }

ENDIF;

ENDIF;

X : = X + 1; { Increment the ID_TAG index }

y := (((x - 1) * 15) + 1); { Increment the array_text index}

END LOOP;

Figure 5:28
Code of the ESD While loop

144

Mark_Tag[>450]

hazard before
while loop

X = = 1

y = = 1

hazard not in
this CFB

look In next

not go Into
while loop

counter >= 50
or x>450

true before while

statements in
loopexecuted n

times

c
<

loop statements
cause hazard

X ^, <= 450 and
counter^, < 50

values tnie
before while

ID_TAG[x„.,] = false ID_TAG[x^,] = false

Mark_tag[X^,] = true
Hazard

cannot occur
here

Y = (X„-1)*15+1 counter„ = counter. + n

counter„ < 50 = true counter„ < 50 = false

1=1+15

Y = ((X-1)*15)+1

1 = 1+15

+ n -1

Y=((X-1)*15)+1

Hazard has not occured in the while loop

Figure 5:29
Hazard in while loop

145

It can be seen from the above examples that although it is possible to perform the SFTA

on an individual CFB the variables in blocks are dependent on variables defined

elsewhere. Building trees over more than one block is considered in section 5.22.4.3.

Each case of a conditional statement has to be considered so if a tree goes through a

'multi' branched 'conditional statement' with a high number of conditions then the tree

will be large.

5.22.4.2 Can a software fault tree be built for a math block?

The code in each step of the SFC is math language and so is treated as above. The only

problem with the SFC is that after each step has been analysed the transitions can cause

looping problems. This is because each transition into the step and each transition out

of the step has to be analysed to determine if the step could be on its n"̂ re-execution.

This leads to relatively large and complex trees but it was possible to build the software

fault tree for both the BSD and F&G SFC. There are 10 templates that are associated

with building the tree for the SFC, and the actual trees covered three pages of A3.

In the F&G code most of the slices through the code demonstrate some sort of

dependency on the SFC. For the trees to be used they would ideally be automated and

it is not possible to automate the transitions of the SFC, the advantage though is that the

tree for the transitions only need be built once as it can be reused.

5.22.4.3 Can the whole program be combined?

The examples above have demonstrated that SFTA on a single CFB or SFC is not

sufficient, the remainder of the code has to be considered. The method of joining

blocks would be to treat them as sequential pieces of code since only the piece of code

relevant to the node are used the tree can just continue. I f a variable in a node at the

end of a block is assigned to in more than one block then a tree has to be built for each

of the blocks that the variable has a value assigned to it. Analysis so far has not

demonstrated any instances of this occurring.

146

5.22.5 Conclusions

SFTA can be performed on the code supplied. Loops are generated in the tree through

numerous executions of the code. Since the BSD code has only one specific while loop

and the F&G none, the SFTA should be easy to perform; it is not that simple though

due to the SFC, timers and edge function. Another issue is also the fact that the whole

system is developed in a loop. This sort of code would be ideal for SFTA had all the

code been written using CFCs. Although it is not too difficult to build a tree for the

SFC it just has to be performed manually.

The trees provided much information about the code when they were drawn, such as

hardware addresses that were assigned to more than one variable and potential looping

of code.

The advantage of this technique is that it does not compare the code to the specification

which could be erroneous but to the hazardous events and whether they can be

performed. Although this technique in many parts can be automated more information

about the code can be obtained by doing it manually using the templates. A template

has to be designed for each type of statement supported by the language.

147

5.23 A SUMMARY OF THE RESULTS

5.23.1 Insisted On By The Compiler

• No pointers

• No recursion

• No dynamic variables

• No dynamic objects

• No unconditional jumps

• No programmed interrupts

5.23.2 Not Insisted On By The Compiler But Were Used

• Coding standards

• limiting module size (although some CFBs were still relatively long)

5.23.3 Techniques Supported By The Language And Used

• Strongly typed programming languages

• A defined subset of CFCs

• A defined subset of Math language (Structured text)

• A defined subset of SFCs (none of the languages used had all the recommended properties.)

• Designing easily analysable code.

5.23.4 Techniques Supported By The Translated Code

• Control flow analysis

• Data flow analysis

148

5.23.5 Techniques Supported By The APT Code And Extra

Information

• Software fault tree analysis

5.23.6 Techniques Not Supported By The APT Tool

• Reuse of verified modules

• Information hiding and encapsulation

5.23.7 Techniques That Could Be Used With Difficulty

• FMECA - due to the high number of hardware devices

• Structure based testing - entire path testing is not possible, although statement path

and branch testing may have proved possible.

149

6. CONCLUSION

The BSD and F&G code were successfully translated into WSL. Analysis was then

performed on the code against a selection of IBC 1508 HR development techniques.

The code that was translated was the FAT code for an Offshore Oil Platform. This

code has been operational for at least 2 years. It was written using Siemens TI high

level languages; CFCs, SFCs and math language. The languages were automatically

translated into WSL using a number of programs. Perl scripts were used to determine

variable types, names of CFBs and the ordering of the translation and building of the

code. A C program was used to build the SFC equivalent in WSL and a YACC parser

was built to translate each block of math language. Prior to building the parser every

construct in the SFC, CFC and math language languages had to be identified, defined as

precisely as possible and then defined in WSL (see mapping document Appendix HI).

The languages were translated into the following constructs:-

• SFC An action system

• CFC A procedure containing only procedure calls to each CFB, which in turn

were procedures.

• Math language The equivalent text based structure in WSL.

During development of the mapping document and parser every construct had to be

defined in WSL. This was performed by identifying the representation that closely

mapped the PLC languages in WSL. The judgement was based on the knowledge of

the languages that was available, since no formal semantics of the PLC languages were

available. During the analysis phase of the thesis, some minor problems with the WSL

representation were identified, although the syntax and semantics were technically

correct. Analysis would have been easier i f a different representation had been used for

a number of the constructs. These included:-

150

• There was an 'init' procedure in the WSL representation of the SFC but none of the

analysed code actually made use of this facility. Also the fact that the active step in

the main SFC remains active during execution of the safe SFC until control returns

to the main SFC was not represented in WSL. This fact though was recognised

implicitly for use during the analysis.

• There was an extra procedure at the end of each block in which flags had been used

to check if the flags had been turned 'on'. Only the 'clear' and 'latch' commands

were used, not the 'on' command. Therefore the data collected regarding which

unit's variables were read and written to was slightly inaccurate.

• The time representation within the timers was difficult to analyse both from the PLC

and WSL code as only static and not dynamic analysis was performed.

The key characteristics of the BSD and F&G code were identified and are summarised

below:-

• The number of lines of code (including blank lines but not comments) was 199,431

for the BSD system and 88,607 for the F&G system.

• The BSD system had 38 units while the F&G code had 55 units.

• Most of the variables declared in the systems are global variables. Since there was

no parameter passing, all data transfer was via global variables. The analysis of a

subset of the global variables identified that they were predominately used in one or

two units to a maximum of seven in the BSD code and three in the F&G code.

• Variables were not used exactly as expected but most when analysed by the company

supplying the code had been used correctly.

• The CFCs consisted of two types of distinct CFBs, the active math blocks and

interlocks.

• The SFC consisted of steps and transitions. The transitions demonstrated

convergence and divergence but no parallel execution.

• The math language constructs that were used were: assignment, conditional

statements, while loop, APT defined procedures and functions, comments.

151

• The conditional statements were nested to a maximum of four levels. A high

proportion of the blocks had four levels of nesting in the F&G code. The majority of

the blocks in the BSD code had a maximum of one or two levels of nesting.

• There was only one while loop in the analysed code and that was in a CFB in the

BSD code.

The analysis of the code was performed against 22 of the HR development techniques

for producing SIL 1,2 or 3 software. The techniques were analysed to determine

whether:-

• They had been used

• They could have been used

• They could not have been used due to the applications

• They could not have been used due to the programming environment

Many of the analysed techniques could have been used or had been used. There were

some techniques that could not have been used due to either the applications or the

programming environment used.

6.1 CRITERIA FOR S U C C E S S

The BSD and F&G code were automatically translated and analysed; but was the

project successful? This can only be determined by analysing the criteria for success

(section 1.2).

152

The top priorities of the thesis were:-

1. To identify key highly recommended techniques from SIL 1,2 or 3 that can be

analysed using the data available.

The techniques that were chosen were dependent on the data available for analysis. The

data available was the BSD and F&G code, the C&B charts and the APT programming

environment. The analysed techniques addressed the following:-

• Coding techniques (e.g. limit the use of pointers, use information hiding)

• Programming languages (e.g. use a strongly typed language, use a safe subset

of the PLC language)

• Analysis techniques (e.g. use structured based testing, use software fault tree

analysis)

2. To analyse the code to asses the feasibility of using the technique with the specific

safety critical PLC code.

Each of the designated techniques of IBC 1508 were analysed with respect to the code.

Bach technique was analysed individually although some of the data could be used for

multiple techniques. The techniques were divided into the following categories after

analysis:-

• techniques insisted on by the compiler

• techniques not insisted on by the compiler but used

• techniques supported by the translated code

• techniques supported by the APT tool and extra information

• techniques supported by the APT tool

• techniques that could be used but only with difficulty

The techniques that were insisted on by the compiler were development techniques that

analysis easily identified could be used. Those that could only be used with difficulty

153

were harder to perform the analysis on, to determine if they could be used. All the

techniques that were analysed were performed or calculations performed to determine

how they could be used, as with the different number of test cases.

The GQM approach was a useful basis for analysis as it meant that each technique was

analysed using a similar structure. The method also allowed data transferral between

the techniques being analysed.

3. To identify the general characteristics of the BSD and F&G PLC code on an offshore

platform.

These were discussed in detail in chapter 4 and a summary is given above.

The secondary priorities of the thesis were to determine :-

1. I f a single language could be used to replace the three PLC languages.

The three languages were translated into the one text based language -WSL. Two of

the original languages were graphical languages, while the third was a textural

language. The source and target languages were all high level languages. The

randomness of the compilation order of the CFBs was lost during translation.

2. I f any language deficiencies were identified in the PLC languages.

None of the PLC languages were formally defined hence they had to be formalised

before translation could commence. There were sections of the PLC language definition

that were confusing. These included:-

• Execution order

• Parallel execution within steps of an SFC

• When an on flag was automatically set to false

• How frequently input variables were read

154

The languages allowed the same hardware address to be assigned to more than one

variable - a form of aliasing. The languages also enabled Boolean arrays to be

converted to integers and back within blocks of code. Both these can cause

maintainability and understandability problems in safety critical code.

3. I f it is helpful to perform analysis in this way and what the benefits and problems

were.

The analysis identified much data about the code and the techniques that were analysed.

This data could then be used in association with other similar applications. Many of the

problems that occurred during analysis of the code were due to the sheer size and

quantity of data that was generated and manipulated. The size of the BSD and F&G

programs were very memory intensive both during translation and analysis. Also WSL

was not ideally suited to being the target language. WSL does not have any concept of

time or of variable type. Some of the primitive programming constructs of the math

language were not available in WSL; this probably would have been true for any target

language. An example would be:-

A := B or C was converted to A := if (B or C) then true else false

The analysis was beneficial to the company that wrote the code as it identified variables

that had been used but not read, and variables that had been read but not written. This

according to IBC 1508[8] implied omitted or redundant code. When the variables were

analysed by the company three of the variables had been used incorrectly. The analysis

was also beneficial to Siemens as it identified an error in the documentation of the math

language specification, which is in the process of being remedied.

It therefore can be concluded that all the criteria for success have been met.

155

6.2 FURTHER WORK

I f further work in the field was to be performed, it would be interesting to analyse some

of the techniques in more detail, especially software fault tree analysis. It would also be

interesting to be able to analyse more of the techniques identified in lEC 1508 for

developing safety critical code.

Another avenue of further work would be to analyse another similar safety critical

application. This would identify the characteristics specific to the analysed system and

those general to similar applications.

6.3 SUMMARY

In summary all the criteria for success have been met. The BSD and F&G PLC code

were successfully translated and analysed against lEC 1508. The key characteristics of

the code were identified, and tools were developed to aid the analysis.

156

ACRONYMS

A I Analogue Input

ALARP As Low As Reasonably Possible

APT Application Productivity Tool

B Boolean

BA Boolean Array

BCD Binary Coded Decimal

BNF Backus Naur Form

C&B Cause and Bffect Charts

CFB Continuous Function Block

CFC Continuous Function Chart

CODBLL Recipe

CPU Central Processing Unit

DF Digital Flag

D I Digital Input

DO Digital Output

DUAL_LIM Recipe

DX DO 10 Array

EBPROM Blectrical Erasable Programmable

BSD Emergency Shut Down

F&G Fire and Gas

FAT Factory Acceptance Test

FBD Function Block Diagrams

FT Fast Timer

GQM Goal Question Metric

HAZOP Hazards and Operability Analysis

HR Highly Recommended

HSB Health and Safety Executive

I Integer

I/O Input / Output

l A Integer Array

157

IBC 1131-3 Programmable controllers Part 3: Programming languages

IBC 1508 Functional safety of electrical/ electronic/ programmable electronic

safety related systems

I L Instruction Lists

LD Ladder Diagrams

M A Maintainers Assistant

0 0 Object Oriented

PC Personal Computer

PBS Programmable Electrical System

PID Proportional Integral Derivative

PLC Programmable Logic Controller

R Real

RAM Random Access Memory

RLL Relay Ladder Logic

ROM Read Only Memory

SCS Safety Critical System

SFC Sequential Function Chart

SFPGM Special Function Program

SFT Software Fault Tree

SFTA Software Fault Tree Analysis

SI Safety Integrity

SIL Safety Integrity Level

SING_LIM Recipe

ST Structured Text

ST Slow Timer

VDD Dual Valve

V D M Vienna Development Method - a formal method

VSS Single Valve

W I Word Input

WO Word Output

WSL Wide Spectrum Language

YACC Yet Another Compiler Compiler

158

R E F E R E N C E S

[I] J. McDermid, "Introduction and Overview to Part I I , " in Software Engineer's

Reference Book, J. McDermid, Ed.: Butterworth Heinmann, 1991.

[2] R. Mortimer, "Data Re-Bngineering Using Formal Transformations," in

Computer Science. Durham: University of Durham, 1998.

[3] A. T. Bertztiss, "Safety Critical Software - A Research Agenda," International

Journal of Sotfware Engineering and Knowledge Engineering, vol. 4, pp. 165-

181, 1994.

[4] "Systems Challenge ~ Microcontrollers," .

http://www.industrialtechnology.co.uk/micro2.htm, 1996.

[5] K. Clements-Jewery and W. Jeffcoat, The PLC Workbook Programmable Logic

Controllers Made Easy: Prentice Hall, 1996.

[6] A. Chandor, J. Graham, and R. Williamson, The Penguin Dictionary of

Computers.

[7] IBC, "lEC 16708 Analysis Techniques for Dependability - Reliability Block

Diagram Method," .

[8] IBC, "Draft lEC 1508 - Functional Safety of Electrical/ Electronic/

Programmable Electronic Safety Related Systems.," 28/9/96.

[9] M . P. Ward and K. H. Bennett, "Syntax and Semantics of the Wide Spectrum

Language MetaWSL," : submitted to IEEE transactions on Software

Engineering, 1998.

[10] F. Tip, "A Survey of Program Slicing Techniques," Journal ofPrgramming

Languages, vol. 3, pp. 121-189, 1995 September.

[I I] "The Safety Critical Systems Club," :

http://www.cs.ncl/research/csr/clubs/scsc.html, 1998.

[12] J. McDermid, "Issues in the Development of Safety Critical Systems," in Safety

Critical Systems, Current Issues Techniques and Standards, F. Redmill and T.

Anderson, Eds.: Chapman and Hall, 1993, pp. 16 -42.

[13] N. Leveson, SafeWare : System Safety and Computers. Reading, Mass.:

Addison-Wesley, 1995.

159

[14] M . Wilikens, M . Masera, and D. Vallero, "Integration of Safety Requirements in

the Initial Phase of the Project Lifecycle of Hardware/ Software Systems An

Experience Report Based on the Application of lEC 1508," in SAFECOMP 97,

P. Daniel, Ed. University of York: Springer, 1997, pp. 83-108.

[15] J. Penny, "DO 178B - Time for a Change?," Safety Systems the Safety Critical

Sytems Club Newsletter, vol. 7, pp. 4-6, 1998.

[16] P. G. Bishop, "Dependability of Critical Computer Systems 3," , vol. 3. London:

Elsevier Applied Science, 1990.

[17] I . Sommerville, Software Engineering, Fourth ed: Addison-Wesley, 1992.

[18] M . o. D. (U.K), "Safety Management Requirements for Defence Systems

Containing Programmable Electronics.," in Second Draft Defence Standard 00-

56, August 1996.

[19] D. o. D. (U.S), "System Safety Program Requirement. Military Standard MIL-

STD 882C," , January 1993.

[20] M . I . S. R. A. (U.K), "Development Guidelines for Vehicle Based Software," ,

November 1994.

[21] NATO, "Safety Design Requirements and Guidelines for Munition Related

Safety Critical Computing Systems. Standardization Agreement STANAG

4404," .

[22] P. A. Lindsay, "A Systematic Approach to Software Safety Integrity Levels," in

SAFECOMP 97, P. Daniel, Ed. York: Springer, 1997, pp. 70 -82.

[23] B. B. C. Education, "Disaster Piper Alpha," .

http://www.bbc.co.uk/education/disaster/piper.htm, 1998.

[24] R. A. Delemos and T. Anderson, "Analysis of Timeliness Requirements in

Safety Critical Systems," Lecture Notes in Computer Science, vol. 571, pp. 171-

192, 1991.

[25] N. H. Vaidya and D. K. Pradhan, "Fault-Tolerant Design Strategies for High

Reliability and Safety," IEEE Transactions on Computers, vol. 42, October

1993.

[26] J. Bowden and V. Stavridou, "Safety Critical Systems, Formal Methods and

Standards," Software Engineering Journal, vol. July 1993, pp. 189-205, 1993.

160

[27] J. Martin, "Design of Real-Time Computer Systems", Prentice Hall, New Jersey

1967.

[28] H. Thane, "Safe and Reliable Computer Control Systems: an Overview," in

SAFECOMP 97, P. Daniel, Ed. York: Spriner, 97, pp. 25 - 36.

[29] S. P. Wilson, J. A. McDermid, P. M. Kirkham, C. H. Pygott, and D. J. Tombs,

"Computer Based Support for Standards and Processes in Safety Critical

Systems," in SAFECOMP 97, P. Daniel, Ed. York: Springer, 1997, pp. 197 -

209.

[30] T. P. Kelly and J. A. McDermid, "Safety Case Construction and Reuse Using

Patterns," in SAFECOMP 97, P. Daniel, Ed. York: Springer, 1997, pp. 55 - 69.

[31] N. Storey, Safety Critical Computer Systems: Addison-Wesley Longman, 1996.

[32] J. C. Knight and L. G. Nakano, "Software Test Techniques for System Fault-

Tree Analysis," in SAFECOMP 97, P. Daniel, Ed. York: Springer, 1997, pp.

369 - 380.

[33] T. Anderson and P. A. Lee, Fault Tolerant Principles and Practice. London:

Prentice Hall Int, 1981.

[34] B. Littlewood and L. Singinc, "The Risk of Software," Scientific America, vol.

1267, pp. 38-43, November 1992.

[35] B. Malcolm, "The JFIT Safety Critical Systems Research Programme, Origins

and Intentions," in Safety Critical Systems, Current Issues, Techniques and

Standards, F. Redmill and T. Anderson, Eds.: Chapman & Hall, 1993, pp. 41-

63.

[36] A. M. Dearden and M. D. Harrison, "Using Executable Interactor Specifications

to explore the Impact of Operator Interaction Errors," in SAFECOMP 97, P.

Daniel, Ed. York: Spriner, 97, pp. 138-147.

[37] B. B. C. Education, "Disaster Our Technology Just Can't Go Wrong," .

http://www.bbc.co.uk/education/disaster/essay.htm, 1998.

[38] K. H. Bennett and L. M. Williamson, "Understanding PLC code," submitted to

IEEE nt. Workshop on Program Comprehension, 1999, 1998.

[39] D. Hedley and R. G. Kirsopp, "The Testing of Ladder Logic Programs for PLCs

(Programmable Logic Controllers)," EuroSTAR'93, pp. 25-28, 1993 October.

161

[40] B. Tinham, "Open Control will lEC 1131 Provide an Answer," C&I, vol. 1996,

pp. 31-32, 1996 October.

[41] lEC, "lEC 1131_3 Programmable Controllers - Part 3: Programming

languages," .

[42] D. J. Maisey, "How Suitable are the ffiC 1131_3 Languages for Safety Critical

Software," High Integrity Systems, vol. 1, pp. 351-357, 1995.

[43] IEEE, "IEEE Standard Glossary of Software Engineering Terminology,"

http://hexham. dur. ac. uk/ieee/610_12.html, 1983.

[44] C. S. French, Computer Science, 4 ed. London: DP Publications Ltd.

[45] J. P. Bennett, Introduction to Compiling Techniques A First Course Using ANSI

C, LEX and YACC: The McGraw-Hill International, 1990.

[46] Terrance W. Pratt and M. V. Zelkowitz, Programming Language Design and

Implementation, 3rd ed.

[47] Siemens, "SIMATIC TI505 Programming Reference Manual (4.x)," .

[48] E. Younger, "BYLANDS Program Transformations," .

http ://w w w. dur. ac.uk/~dcs 1 ej y/By lands/.

[49] V. R. Basili and H. D. Rombach, "The TAME Project: Towards Improvement-

Oriented Software Environments," IEEE Transactions on Software Engineering,

vol. 14, pp. 758-773, 1988 June.

[50] Siemens, "SIMATIC APT Programming Manual (4.2.1 and 4.3)," .

[51] Siemens, "SIMATIC APT Programming Reference (graph/math) Manual (4.2.1

and 4.3)," .

[52] J. R. Taylor, Fault Tree and Cause Consequence Analysis for Control Software

Validation: Riso National Laboratory, DK-4000 Rosilde, Denmark, 1982.

162

APPENDIX I

BNF FOR WSL

163

NON-TERMINALS

program

statement_sequence

statement

a_or_x_proc_call

proc_call_type

a_proc_call

x_proc_call

actuaLparameters

actual_parameters_with.

var

actual_parameters_with_

optional_var

assert_statement

assignment

assignment_sequence

Assignment_option

Action_system

action_sequence

Action_option

Call_statement

conmient_statement

if_statement

(statement sequence)? <EOF>

statement (";" (statement)?)*

(a or X proc call I assert statement I assignment I

comment statement I action system I call statement

I i f statement I loop statement I skip statement I

var statement I where statement I while statement I

procedure call)

proc call type

("!" I "!p")a proc call

"!xp" X proc call

name actual parameters with var

name actual parameters with var

"(" (expression ("," expression)* ")" I ") ")

"(" (expression ("," expression)*)? "var" (ival (

" ," lval)*)?")"

"(" (expression ("," expression)+)? ("var" Wa] ((

"," Ival)+)?)? ")"

" I " condition " I "

"<" assign ((" , " assign)+)? ">"

assign ("," assign)*

assignment option ((" , " assignment option)+)?

(assignment)?

"actions" ":" name ":" action sequence

"end_actions"

action option ((" . " action option)+)?

(action)?

"call" name

("comment" I "#")":" <STRING>

"if" condition ("then" I "->") statement sequence (

"elsf' condition ("then" I "->") statement sequence

164

loop_statement

procedure_call

skip_statement

var_statement

where_statement

while_statement

proc_formal_parameters

formaLparameters

formal_parameters_with_

optional_var

expression

expression_or_condition

logical_or_condition

logical_and_condition

relational_condition

relational_op

)* ("else" statement sequence)? "fi"

"do" statement sequence "od"

name actual parameters with var

"skip"

"var" assignment":" statement sequence "end"

"begin" statement sequence "where" (definition)*

"end"

"while" condition loop statement

"(" (Ival ("," Ival)*)? "var" (iya] ("," ival)*)?

")"

"("(Ival ("," Ival)*)?")"

"(" (lyal ("," Ival)*)? "var" (Ival ("," M l)*)?

")"

expression or condition

logical or condition

logical and condition ("or" logical and condition

)*

relational condition ("and" relational condition)*

set in condition (relational op set in condition)*

set_in_condition

Set_union

setjntersection

concat_expression

"xor_bit"

"or_bit"

"and_bit"

set union ("in" set union)?

set intersection (("\\" I "W") set intersection)*

concat expression ("AV concat expression)*

adding expression ("++" adding expression)*

165

adding_expression

add_op

multiplying expression (add op

multiplying expression)*

: = " - I - "

multiplying_expression

mult_op

:= power expression (mult op power expression)*

. _ «*<<

power_expression

Funct_call_slice_expressi

on

Slice_values

slice_range

segment_specifier

primary

"/"

"mod"

"div"

funct call slice expression ("**"

funct call slice expression)?

primary (actual parameters I slice values)?

"[" slice range "] "

expression

(".." I " , ") expression

(name I (" [" expression "]")+ I"(" expression ")" I

mw or X function call"(" expression (","

expression)* ")" I "if" condition "then" expression

"else" expression " f i " I "abs" "(" expression ")" I

"frac""(" expression ")" I "int""(" expression ")" I

"sgn""(" expression ")" I "max""(" expression (","

expression)* ")" I "min" "(" expression (","

expression)* ")" I "powerset" "(" expression ")" I

" { " expression "1" condition " } " I "array" "("

expression "," expression ")" I "head" "(" expression

")" I "tail""(" expression ")" I "last" "(" expression

")" I "butlast""(" expression ")" I "length" "("

expression ")" I "reverse" "(" expression ")" I

number I "-" primary I <STRING> I "not" primary I

"true" I "false" I "integer""?""(" expression ")" I

"even" "?""(" expression ")" I "odd" "?" "("

166

mw_or_x_function_call

mw_function_call

x_function_call

number

condition

Ival

Name

definition

proc_definition

funct_definition

assign

action

expression ")" I "MyVect" "?" "(" expression ")"

"set" "?" "(" expression ")" I "name" "?" "("

expression ")" I "empty" "?" "(" expression ")" I

"subset" "?""(" expression "," expression ")" I

"member" "?""(" expression "," expression ")" I

"sequence""?" "(" expression ")")

(mw function call I x function call)

"@" name ("?")?

("!xf"l"!f"l"!xc")nanie

<integer>

expression or condition

name (slice values)?

("%")? <IDENTIFIER>

proc definition

funct definition

"proc" name proc formal parameters "=="

statement sequence "."

"funct" name formal parameters "==" (

statement sequence ":")? expression "."

Ival ":=" expression

name "==" statement sequence

167

APPENDIX II

GRAMMAR FOR THE MATH LANGUAGE

168

The grammar rules that were used in the BISON parser for the math language

translator follows. The word sin capitals are tokens, the other words can be expanded

further. /* ? */ is a comment.

mathblock: /* empty */ I declarations BEGIN main I declarations BEGIN main

I MATH PRAGMA ' (' " " RLL '"' y';' declarations BEGIN main

IMATH declarations BEGIN main ;

main:INIT initialisation body Istatements ;

declarations: /* empty */ I declarations declaration ';'; declaration: /* empety */

I BOOLEAN ':'b_variables constant I INTEGER ':'i_variables constant

I REAL ':'r_variables constant

I BOOLEAN RETENTIVE ':' b_variables constant

I TIMER FAST ':'f_variables t_constant

I TIMER SLOW ':' s_variables t_constant

I ARRAY '(' INT '.".'INT y OF a_type ;

a_type: BOOLEAN ':'ba_variables constant I INTEGER ':'ia_variables constant

I REAL ':' ra_variables constant

I BOOLEAN RETENTIVE ':' ba_variables constant;

var : 11 R I D I I DO I B I W I I WO I BA I lA I T I DX I RA I TA I F I A I I FTI ST I DF ;

b_variables: var lb_variables ','var ;

i_variables: var li_variables ','var ;

r_variables: var lr_variables ','var ;

ba_variables: var lba_variables ','var ;

ia_variables: var lia_variables ','var ;

ra_variables: var lra_variables ','var ;

f_variables: var lf_variables ','var ;

s_variables: var ls_variables ','var ;

169

constant: /*empty */ I ':' '=' val;

t_constant:/* empty * / l ' : "= 'NUM ' , 'NUM ','bool ', 'bool; val: NUM I bool;

initialisations: /*empty */ IINIT initialisation ;

initialisation: statement V i n i t ;

init: /* empty */ I init statement';';

body: /* empty */ I BODY statements ;

statements: /* empty */ lfirst_statement';' statementjist; first_statement: assignment

I if_statement I while_loop ;

statementjist: /* empty */ I statementjist statement';'; statement: assignment

I if_statement I whilejoop ;

assignment: value ':"='p_exp I f_value I t_value I t_value ':"='p_exp

I recipe ':"='recipe I r_value ':"='p_exp I r_value I A I ':"='p_exp

I A I '.'ai_value ':"='p_exp I v_value I v_value ':"='p_exp I sfc_value

I sfc_value ':"='p_exp I procedure ;

sfc_value: unit '.'ABORT I unit ' . 'ENABL ;

unit: S_TEST I SELFTEST ;

time: PROGRAM '.'IHOUR ;

r_value: recipe '. 'RTU Irecipe '.'INUSE Irecipe '.'DSTBL Irecipe '. 'DRDY

Irecipe '.'STATUS Irecipe ' . 'L_LIMIT Irecipe ' . 'H_LIMIT Irecipe ' . 'LL_LIMIT

Irecipe ' . 'HH_LIMIT Irecipe ' . 'BAD_XMT_LIM Irecipe ' . 'HI_LIM

Irecipe ' . 'XMT_LOW Irecipe '. 'XMT_HIGH Irecipe '.' OPTIC_LO

Irecipe '.'OPTIC_HI Irecipe ' . 'HIHI_LIM I UNLOCK '('recipe y

I CLEAR '(' recipe y I SELECT '(' recipe y;

recipe: TRIP_ALL I TRIP_LLL I TRIP_HH I TRIP_LL I TRIP_LIM I CODELL

I SING_LIM I D U A L . L I M ;

170

f_value : LATCH '(' flag y I CLEAR '(' flag y I ON '(' flag y;

flag :F I DF ;

e_flag :DF I F ;

value : 11 R I DI I DO I B I W I I WO I BA I BA '['exp T l lA I lA '['exp T I T text

I T '[' exp TI DX I DX '[' exp TI RA I RA '[' exp TI TA I TA '[' exp TI e_flag ;

text: /* empty */ I ' . 'TEXTl I '.'TEXT2 I '.'TEXT3 ;

ai_value: FTAU /* which can be assigned*/1 RAW I SRV ;

t_value: DELAY timer Itimer '.' TCC Itimer '.' TCP Itimer '.' ENABL Itimer '.' RESET

Itimer'. 'TOUT;

timer: FT I ST ; v_value: valve ' . 'CMMD I valve '.'OPENC I valve '.'CLSC

I valve '.' OPND I valve '.' CLSD I valve '.' TRVL I valve '.' OSL I valve '.' CLS

I valve '.'FTO I valve '.'FTC I valve ' . 'FAILD I valve '.'CLSTO

I valve '.'OPNTO I valve '.'DSBLD I valve '.'LOCKD I valve '.'NRDY

I valve '.'MOPEN I valve '.'OURDO I valve '.'OURDC I valve '.'STATUS

I valve '.' VFLAG I valve '.' OTCP I valve '.' OTCC I valve '.' CTCP

I valve '.' CTCC I LOCK '(' valve TI UNLOCK '(' valve y I OPEN '(' valve y

I CLOSE '(' valve y I RESET '(' valve y;

valve: VSS I VDD ; exp:value I t_value I time I sfc_value I A I I A I ' . ' ai_value I v_value

I r_value I NUM I bool!'(' exp y I exp '-I-' exp I exp '-' exp I exp '*' exp I exp '/' exp

I INCREMENT 11 DECREMENT 11 exp MOD exp I exp AND exp

I exp OR exp I exp XOR exp I NOT exp I exp '*"*' exp I exp '<' exp

I exp '<"=' exp I exp ^ ' exp I exp ">"=' exp I exp '=' exp I exp '<">' exp I function ;

p_exp:value I t_value I time I sfc_value I A I I A I ' . ' ai_value I v_value I r_value I NUM

I bool I'C p_exp y I p_exp '-I-' p_exp I p_exp '-' p_exp I p_exp '*' p_exp

I p_exp '/'p_exp I INCREMENT 11 DECREMENT 11 p_exp MOD p_exp

I p_exp AND p_exp I p_exp OR p_exp I p_exp XOR p_exp I NOT p_exp

I p_exp '*"*'p_exp /* I p_exp '<'p_exp I p_exp '<"='p_exp I p_exp '>'p_exp

I p_exp *>"=' p_exp I p_exp '=' p_exp I p_exp '<">' p_exp */ I function ;

171

procedure: UNPACK_BITS '('exp ','exp y I PACK_BITS '('exp ','exp y

I BCDBIN '(' exp ',' exp T I BIT_ASSIGN '(' exp ',' exp ',' expT

I BITCLEAR '(' exp ',' exp y I BITSET '(' exp ',' exp y

I LOAD_ARRAY '(' exp ',' exp T ;

function: BITS_TOJNT '(' exp y I BITTEST '(' exp ',' exp y I EDGE '(' exp y ;

c_function: BITS_TO_INT '(' exp y I BITTEST '(' exp ',' exp y I EDGE '(' exp y ;

bool: TRUE I FALSE ;

whilejoop: WHILE condition LOOP statements END LOOP ;

if_statement: IF condition THEN statements endif;

endif: ENDIF I ELSIF condition THEN statements endif I ELSE statements ENDIF

condition: c_exp ;

bracket: c_exp ;

c_exp: c_value I c_t_value I time I sfc_value I A I I A I ' . ' ai_value I c_v_value

I c_r_value I NUM I bool I'C c_exp')' I c_exp'+' c_exp I c_exp'-' c_exp

I c_exp'*'c_exp I c_exp'/'c_exp I INCREMENT 11 DECREMENT I

I c_exp MOD c_exp I c_exp AND c_exp lc_exp OR c_exp

I bracket XOR bracket I NOT c_exp I c_exp'*"*' c_exp I c_exp'<' c_exp

I c_exp'<"='c_exp I c_exp'>'c_exp I c_exp^"='c_exp I c_exp'='c_exp

I c_exp'<">' c_exp I cjunction ;

c_v_value: valve '.' CMMD I valve '.' OPENC I valve '.' CLSC I valve '.' OPND

I valve '.' CLSD I valve '.' TRVL I valve '.' OSL I valve '.' CLS I valve '.' FTO

I valve '.' FTC I valve '.' FAILD I valve '.' CLSTO I valve '.' OPNTO

I valve '.' DSBLD I valve '.' LOCKD I valve '.' NRDY I valve '.' MOPEN

I valve '.' OURDO I valve '.' OURDC I valve '.' STATUS I valve '.' VFLAG

I valve '.' OTCP I valve '.' OTCC I valve '.' CTCP I valve '.' CTCC

I LOCK '(' valve ')' I UNLOCK '(' valve ')' I OPEN '(' valve ')'

I CLOSE '(' valve ')' I RESET '(' valve ') ' ;

172

c_t_value:/* DELAY timer I * / timer '.'TCC Itimer '.'TCP Itimer '. 'ENABL

Itimer '.'RESET Itimer '.'TOUT ;

c_r_value: recipe '. 'RTU Irecipe '.'INUSE Irecipe '.'DSTBL Irecipe '.'DRDY

Irecipe '.'STATUS Irecipe ' . 'L_LIMIT Irecipe ' . 'H_LIMIT Irecipe ' . 'LL_LIMIT

Irecipe ' . 'HH_LIMIT Irecipe ' . 'BAD_XMT_LIM Irecipe ' . 'HI_LIM

Irecipe ' . 'XMT_LOW Irecipe ' . 'XMT_HIGH Irecipe '.'OPTIC_LO

Irecipe '.' OPTIC_HI Irecipe '.' HIHI_LIM I UNLOCK '('recipe ')'

I CLEAR '(' recipe y I SELECT '(' recipe y;

c.value : 11 R I D I I DO I B I W I I WO I BA I BA '['exp TI lA I lA '['exp TI T text

I T '[' exp TI DX I DX '[' exp TI RA I RA '[' exp TI TA I TA '[' exp TI e_flag ;

173

APPENDIX III

MAPPING DOCUMENT

174

1. PLC APT OVERVIEW 179

1.1 INTRODUCTION 179

1.2 BUILD ROUTE 180

1.3 HARDWARE 180

2. STATIC DOS STRUCTURE OF F I L E STORAGE 181

2.1 CFC FILE STRUCTURE 184

2.2 SFC FILE STRUCTURE 185

3. PROGRAM LAYOUT 185

3.1 PROCEDURE CALLS IN WSL 191

4. MATH LANGUAGE ^ WSL 192

5. LAYOUT 192

5.1 DECLARATIONS 194

5.2 INIT 196

5.3 BODY 196

5.4 COMMENTS 197

5.5 TYPES 198

5.5.1 Integers 199

5.5.2 Reals 200

5.5.3 Booleans 201

5.5.4 Flags 202

5.5.5 Timers (type ST or FT) 204

5.5.6 Arrays 206

5.5.7 Input/Output 209

5.5.8 Devices 211

5.5.9 Recipes 217

5.5.10 Hardware 227

5.6 PROCEDURE CALLS 221

5.6.1 UNPACK_BITS (Boolean array , variable) 227

5.6.2 PACK_BITS (Boolean array, variable) 222

175

5.6.3 BCDBIN (variable, variable) 222

5.6.4 BIT_ASSIGN (variable, integer, expression) 223

5.6.5 BITCLEAR (variable, integer) 224

5.6.6 BITSET (variable, integer) 224

5.6.7LOAD_ARRAY(input variable, array) 225

5.7 FUNCTION CALLS 225

5.7.1 BITS_TO_INTS (array variable) 225

5.7.2 BITTEST (variable , integer) 226

5.7.3 EDGE (expression) 226

5.7.4 ABS(expression) 227

5.8 TIME 227

5.9 ASSIGNMENTS 228

5.10 CONDITIONALS 230

5.11 WHILE LOOP 232

6. TABLE INFORMATION FOR DECLARING VARIABLES 233

6.1 MATH BLOCK TYPE 235

6.2 COMMENTS WITH UNITS AND PROGRAMS 236

7. S F C ^ WSL 236

7.1 MATH LANGUAGE ASSOCIATED WITH SAFE STATE SFCS 245

7.1.1 SSENTRY (label) 246

7.1.2 SSRETURN (label) 246

7.1.3 SSDEFINE '. 247

7.1.4 SSTRIGGER (identifier) 247

7.1.5 SSARM (Safe State SEC name) 247

7.1.6 SSDISARM (Safe State SEC name) 248

7.1.7 SSABORT 248

7.1.8 Translation of the commands 249

REFERENCES 249

176

TABLE OF FIGURES

Figure 2:1 BNF form of the directory structure 182

Figure 2:2 DOS file structure demonstrating key words 182

Figure 2:3 The directory tree of an APT program 183

Figure 2:4 A sample graphic file 184

Figure 3:1 Sample layout of the entire program 190

Figure 3:2 An example WSL procedure calls 191

Figure 5:3 Assignment format in Math language and WSL 193

Figure 5:1 Different orderings of keywords in a math block 194

Figure 5:2 Declarations in Math language and WSL 195

Figure 5:3 INIT in Math language and WSL 196

Figure 5:4 Body in Math language and WSL 197

Figure 5:5 A math block comment and the WSL comment 198

Figure 5:6 Integers defined 199

Figure 5:7 Integer operators 200

Figure 5:8 Reals defined 200

Figure 5:9 Real operators 201

Figure 5:10 Booleans defined 201

Figure 5:11 Boolean operators 202

Figure 5:12 Integer operators 202

Figure 5:13 BNF form of flag assignment 203

Figure 5:14 A sample end piece of code of a math block containing flags 203

Figure 5:15 BNF form of a timer assignment 205

Figure 5:16 The timer set function 206

Figure 5:17 Array assignment , 207

Figure 5:18 Text assignment 208

Figure 5:19 Analogue Input assignment 209

Figure 5:20 VSS assignment 213

Figure 5:21 VDD assignment 217

Figure 5:22 Accessing a recipe element 217

177

Figure 5:23 Recipe usage 220

Figure 5:24 Binary storage of integers 221

Figure 5:25 UNPACK_BITS procedure call 222

Figure 5:26 PACK_BITS procedure call 222

Figure 5:27 BCDBIN procedure call 223

Figure 5:28 BIT_ASSIGN procedure call 223

Figure 5:29 BITCLEAR procedure call 224

Figure 5:30 BITSET procedure call 224

Figure 5:31 LOAD_ARRAY procedure call 225

Figure 5:32 BITS_TO_INT function 225

Figure 5:33 BITTEST function 226

Figure 5:34 EDGE function 226

Figure 5:35 ABS function 227

Figure 5:36 Time expression 227

Figure 5:37 Assignment format in Math language and WSL 228

Figure 5:38 WSL constant declaration 228

Figure 5:39 Assignment format in Math language and WSL 229

Figure 5:40 I f statement in an assignment 229

Figure 5:41 Conditional format in Math language and WSL 230

Figure 5:42 xor function defined 231

Figure 5:43 While loop format in Math language and WSL 232

Figure 6:1 Types of Variable declarations 234

Figure 7:1 syntax of an SFC 238

Figure 7:2 syntax of unitname extensions 239

Figure 7:3 Initial i f statement before a piece of code 240

Figure 7:4 An SFC to converted WSL 245

Figure 7:5 Safe state SFC commands 249

178

1. PLC APT OVERVIEW

1.1 INTRODUCTION

"A program in the APT is that portion of the process that can run on a single controller.

The actual size of the program depends on controller memory size, safety

considerations and other characteristics of the process line." [1]

The code that will be translated is written using three different languages using the APT

system. Only the code that was used in the two programs (ESD and F&G) will be

discussed in this mapping document. The code was written using three programming

languages which combine together at compile time to produce RLL.

The continuous function blocks can be of type interlock, which has high or low priority

or math blocks - only the active type was used; which means that they cannot be turned

off.

179

1.2 BUILD ROUTE

When the software is compiled it is ordered depending on the block type and is in the

following order:

1. System Logic (APT usage)

2. Interlocks (high priority)

3. SFC controllers

4. SFC transitions

5. SFC Steps

6. Flags

7. Device logic / CFB activation logic

8. CFB math logic / interlocks

end of each scan

9. APT generated RLL subroutines

It is not known if the units are kept together, but for the purpose of this translation it

will be assumed that they are. This should aid in the understanding of the translated

code.

1.3 HARDWARE

The hardware of the controller has many features - these include:-

• the RLL program is stored in memory.

• interrupt I/O allows for fast reactions to external events *

• it supports a redundant remote base controller *

• immediate I/O updates allows the application program to access an I/O point

multiple times during a scan.

• cyclic RLL allows the creation of an additional RLL program that runs

independently to the main program.

180

• it allows external subroutines that can be written in a high level language (although

ESD and F&G code does not seem to have used this function.)

• has PID (proportional integral derivative) loops for batch control

• the CPU contains a real time clock that contains a 2 digit year, month, day of month

and day of week. The hour, minutes, second, tenth and hundredth of a second. This

information can all be read by the program, only the hour though is actually

accessed.

• The translated code does not use these faciHties. The inputs are read into a buffer at the start of

each cycle and that value is then used for the cycle.

2. STATIC DOS STRUCTURE OF FILE STORAGE

The programs that are written using the APT are stored as a directory tree structure in

DOS. The programs are all stored in a directory called "program"; the leaves of this

directory are the programs that are within the APT in this configuration. On moving

into the directory of one of the programs there is a sub directory called "units". Within

"units" there is a leaf directory for each of the units that have been declared within the

program, (a unit is basically dividing a program into modules). Within a unit there can

either be CFCs (continuous function charts) or SFCs (sequential function charts) or

both. There are many sub directories but the important ones are "cfc" and "sfc" which

contain the charts that are used to write the program.

In the "cfc" directory there is a directory for each of the CFCs implemented in the unit.

Within the directory there is a file called "graphic" which gives the positioning and

number of CFB (continuous function blocks) that are found within that CFC. The math

language that is contained in the blocks is stored in individual text files with an

extension ".mth" for the commented version and ".mt_" for the non-commented

version. These are called by the same name as the CFB in the program.

It should be noted that the programs stored within the APT at a given time can be

totally unrelated.

181

Directory structure in BNF form

<pathname> ::=

program\<progname>\units\<unitname>\<chart>

<chart> ::= cfc\<cfcname>\textfile

I sfc\<sfcname>

<progname> ::= <identifier>

<unitname> ::= <identifier>

<cfcname> ::= <identifier>

<sfcname> ::= <identifier>.sfc

<cfcname> ::= graphic I <identifier>.mth I <identifier>.mt_

Figure 2:1
BNF form of the directory structure

Program

ProgA Units — I - Uniti

Unit2

ProgB Units

Units

Uniti

Unit2

Units

C F C

S F C

C F C

L - S F C

C F C

L- S F C

CFC1

C F C 2

- C F C 3

I— C F C 4

CFC1
C F C 2

Figure 2:2
DOS file structure demonstrating key words

182

Directory PATH listing

Volume Serial Number is 0837-18EF

C:.

+—UNITS

+—TESTl

+—SFC

+—CFC

I +—CHARTA

+—PRR

+—DEBUG

+—TEST

+—SFC

+—CFC

+—CHART 1

+—CHART2

+—CHART3

+—PRR

+—DEBUG

+—PGMSUB

+—PGMSFC

+—PGMCFC

+—PRR

+—MAKE

+—DEBUG

+—SYMTABLE

+—MAITT

Figure 2:3
The directory tree of an APT program

183

2.1 C F C FILE STRUCTURE

ESD and F&G code only used Interlocks and Math Blocks. This implies that each

block can be individually translated into a WSL procedure since each block contains a

math language piece of code, (many of the CFBs that were not used have predefined

meaning.) The CFB names can be determined from the file names in DOS. The file

"graphic" in the CFC directory identifies the number of CFB, its type, its name and its

position on the screen. I f connecting CFBs had been used then the positions of the

interconnections would also be included in this file. The math language files are stored

as ".mth" files with comments and .mt_ without any comments. I f the block of code

contains no comments then it is not stored in mth format. When the APT creates the

mt_ file it also includes abbreviations about the code.

File "graphic"

5 5 indicates that there are 5 CFB.
51 0 720 PI35051 51 indicates it is of type interlock
51 120 720 PI35053 27 (where the 51 is would indicate a math function)
51 240 720LI35039 two numbers after the 51 are the screen position of
51 360 720LI35042 the CFB.
51 480 720 LI35033 Last item on the line is the CFBs name in ASCII

Figure 2:4
A sample graphic file

Each CFB stored in a separate file will be translated individually into a WSL, then the

files will be combined as procedures into one piece of code. The type of CFB is either

a high interlock, low interlock or an active mathblock. Al l the math blocks that have

been used are active, which means that they cannot be disabled.

184

The initial part of each of the CFBs will be called first and then the main part of the

CFC will be called on the second and future loops around the program.

2.2 S F C FILE STRUCTURE

Al l the code is stored in one file "sfc_name.sfc" this file needs to be divided into

individual steps so that it can be translated, and then translated code recombined in

WSL format. The SFC information is stored within the SFC directory in its' unit

directory. The splitting of the code into steps and the translation was managed by Perl

scripts. The recombination of the SFC after translation was more complex and required

human intervention so a C program was developed to perform this task.

3. PROGRAM LAYOUT

High priority interlocks are executed before SFCs, other CFBs and devices: low priority

interlocks and math blocks are executed after the SFC. (High level interlocks are

commonly used for internal validation checks.) The ordering of the high priority

interlocks is arbitrary and can not be defined. The random ordering will be maintained

by using procedure calls to units and procedure calls to SFCs, CFCs and CFBs. This

will allow the procedures to be moved if desired. I f the code had been inserted into the

main body then the block like structure would have been lost. The method of

determining high and low priority is defined in 6.1

There is a main procedure of the program in WSL that calls each type of block, this

then calls all the units and they in turn call all the relevant blocks. The original function

templates were generated by a program that walks around the directory tree structure in

DOS. The initial procedures called each of the units in the order that they are stored in

DOS. Each of the units will call the relevant CFBs identified within the sub

directories.

185

The main procedure calls a set of functions, which in term calls the CFBs that are stored

within the units so that the procedures do not become to long. The main procedures

are:

• init_high_interIock(var)

• init_low_interIock(var)

• init_active_mathblock(var)

• body_high_interlock(var)

• sfc(var)

• body_low_interlock(var)

• body_active_mathbIock(var)

initial part of the high priority interlocks

initial part of the low priority interlocks

initial part of the active math blocks

body of the high priority interlocks

the SFC in each program

body of the low priority interlocks

body of the active math blocks

The last four functions calls are in a loop since they will be expected to execute

continually. At the end of the code there is a procedure that is called after every time a

timer is used. This is to simulate the changing of the value due to an external device.

Following is the initial block of code for the translated WSL program. Note italics are

comments to aid the reader and do not appear in the code.

Var

FALSE := 0,

TRUE := 1,

the constants that are used as array elements for some of the translated variable

types.

Flags

LATCH := 1,

ON := 0,

186

Timers

RESET := 1,

ENABLE := 2,

TCC := 3,

TCP := 4,

TOUT := 5,

Inputs

RAW := 1,

SRV := 2,

FTAU := 3,

valves

CMMD := 1,

OPENC := 2,

CLSC := 3,

OPND := 4,

TRVL := 6,

OLS := 7,

CLS := 8,

FTO := 9,

FTC := 10,

FAILD := 11,

CLSTO := 12,

OPNTO := 13,

DSBLD := 14,

LOCKD := 15,

NRDY := 16,

MOPEN := 17,

ORRD := 18,

CLSD := 19,

187

VFLAGS := 20,

OTCP.-21 ,

OTCC := 22,

CTCP := 23,

CTCC := 24,

Recipes

RTU:= 1,

INUSE := 2,

DSTBL := 3,

DRDY := 4,

STATUS := 5,

UNLOCK := 6,

CLEAR := 7,

SELECT := 8,

L_LIMIT := 9,

H_LIMIT := 10,

L L _ L I M I T : = 11,

HH.LIMIT := 12,

BAD_XMT_LIM := 13,

HI_LIM := 14,

XMT_LOW := 15,

XMT_HIGH := 16,

OPTIC_LOW := 17,

OPTIC_HI := 18,

HIHI_LIM := 19:

begin

comment: "Flags";

comment: "TIMER";

comment: "ANALOGUE INPUT";

comment: "VSS AND VDD2";

188

comment: "RECIPIES";

comment: "start of code";

Initialising the CFBs

init_high_interlock(var);

init_low_interlock(var);

init_active_mathblock(var);

do

comment: "do loop that will run continually for the whole program. ";

body_high_interlock(var);

sfc(var);

body_low_interlock(var);

body_active_mathblock(var)

od;

comment: "end of the continual loop and the program"

An example of the rest of the code

where

proc init_high_interlock(var) ==

begin

unit 1 (var);

unit2(var)

where

proc unit 1 (var) ==

begin

cfc_cfb(var)

where

proc cfb_cfc(var) ==

189

end

end

proc init_low_interlock (var)

The procedure to represent the counting down of time by the timer.

proc timer_set(var timer) ==

comment:" this procedure simulates the behaviour of a timer";

i f ((timer[RESET] = TRUE) and (timer[ENABL] = TRUE)) then

timer[TCC] := timer[TCC] - 1 ;

comment:"the timer is counting down"

elsf ((timer[RESET] = TRUE) and (timer[ENABL] = FALSE)) then

timer[TOUT] := TRUE;

comment:" timer remains inactive but TCC value remains

where it was "

else

timer[TCC] := timer[TCP];

timer[TOUT] := FALSE;

comment:" timer remains inactive and tout remains false. "

f i ;

i f (timer[TCC] = TRUE) then

timer[TOUT] := TRUE

f i .

end;

comment: "now the end of the constants being declared"

end

Figure 3:1
Sample layout of the entire program

190

3.1 PROCEDURE CALLS IN WSL

The units and CFBs are internal procedure calls where no value is passed. The

procedures/ functions that are supplied by the APT were mapped as external procedure

or function calls. Internal procedures and functions are also used. With a procedure

there must be the keyword var present. Before var is the list of variables that do not

change value during the procedure and after var are those variables that do change

value.

The external procedure and function call is a WSL feature that allows the assumption

that the procedure / function is declared in another part of the code. This feature is so

that subsets of the code can be read into Maintainers Assistant the transformation tool.

This was used for all procedures and functions that are pre defined by the APT. Below

are all the possible procedures / function calls that were used in the translated code.

Internal Procedure /function Call

procedure_name(nochangel, nochange2 var change 1)

function_name(var_list)

External Procedure / function Call

!p procedure_name(var)

!f function_name()

Internal Procedure Declaration

proc procedure_name(var) ==

proc procedure2(var) ==

Figure 3:2
An example WSL procedure calls

191

4. MATH LANGUAGE ^ WSL

The statement types and ordering are similar in the math language and WSL: both

languages have comments, assignment and conditionals. The differences arise with the

fact that WSL does not have types, and has no concept of Booleans, timers, flags and

variables that can contain more than one variable.

Keywords and variables in the math language are not case sensitive, i.e. 'LATCH' or

'latch' are identical. Variables in the APT languages are allowed to start with a number

but in WSL they are not so all WSL variables will be converted to capitals with WSL_

placed in front of them. The keywords in WSL are lower case letters.

5. LAYOUT

All of the math blocks (steps in SFCs) follow a strict layout of the program including

keywords to define structures. The math block was translated into a WSL procedure,

split up into body and init. The mathblock is set up so that if there is only a body

portion and no initial part then the BODY word omitted. I f there is no body but an

initial part then the INIT keyword is used and not the BODY keyword. If both parts are

included then both words are used.

At the top of an SFC step there is the keyword MATH before any of the math language,

all the statements before this keyword are executed in parallel. The keywords

PRAGMA "RLL" indicate that the program is to compile to ladder logic but they do not

force compilation. The compile type is forced by the types of functions that are used

and i f functions that cannot be compiled to RLL are used then the code will not be

compiled to RLL. Al l math language statements start with the keyword BEGIN.

192

Math block layout WSL procedure layout

<mathblock> ::= [PRAGMA {"RLL"};]

[<Declarations>]

BEGIN

[INIT

<initialisations>]

[BODY

<body portion>]

e.g. e.g.

{A low priority interlock called A} proc low_int_A() ==

PRAGMA ("RLL"); comment: "Comment at top of CFB";

Begin comment: "PRAGMA { " R L L " } ; " ;

I_200 := (hs_20405); comment: "Begin ";

I_201 := (hs_20405);

I_200 := (hs_20405);

IF NOT (Red_test_ovr) THEN I_201 := (hs_20405);

A := B;

C :=B; if not (Red_test_ovr = 1) then

ENDIF; A :=B;

C :=B

f i

Note that this is the format for the body part f

the code if there is an initialisation then it will

go in a different procedure.

Figure 5:3
Assignment format in Math language and WSL

193

BEGIN BEGIN BEGIN BEGIN

body portion INIT BODY INIT

initialisations body portion initialisations

BODY

body portion

Figure 5:1
Different orderings of keywords in a math block

In a CFB the INIT part of the code is executed once and only once. In a SEC the INIT

part of the code is executed once each time through the SFC, but only once per time the

step is active. The CFB INIT and MAIN parts are translated into different procedures

and so are called separately.

5.1 DECLARATIONS

Declarations occur at the top of a function block and the variables are local to that

function block. Only variables of type Boolean, retentive Boolean, integer, real, array

or a timer (fast or slow) can be declared in the declaration section; they may be

initialised. Arrays can be of any of the above types except timers. Retentive Booleans

are not used within the analysed code. The other method of declaring variables is in

tables and are global to either the entire program or an entire unit. The format of tables

is discussed in chapter 6.

WSL does not support typed declarations and variable types so this part will be

converted into comments. Variables in the math language can be of no more than 12

characters and must be at least one character long. They can contain an underscore and

must contain a letter, unusually though they can start with a number. Al l variable

names and types were added to a symbol table, for type checking and manipulation of

the code.

194

Math block Declarations

<declarations> ::= <declaration> ;

{<declaration>;}

<declaration> ::= <type> : <variable>

{,<variable>} [:= constant]

I TIMER <ttype>: <variable> {,<variable>}

[:= <int> <int> <bool> <bool>]

I ARRAY (<num> .. <num>) of <type> :

<variable> {<variable>} [:= <constant>]

<type> ::= integer I Boolean retentive I

Boolean I real

<ttype> ::= fast I slow

The timer information, the first integer is the

current value of the timer, the second integer

is the preset value of the timer, the first

Boolean enables the timer while the fourth

resets the timer.

e-g

Boolean: button;

Integer: count;

Integer: count 1;

WSL Declaration

WSL does not support typed

declarations so the declaration in PLC

format will be inserted as a comment.

e.g.

comment: " Variable declaration

information as in the math language."

comment:" Boolean: button";

comment:" Integer: count";

comment:" Integer: countl ";

Figure 5:2
Declarations in Math language and WSL

195

5.2 INIT

The math language code in the initial part of the block is only executed on the first

iteration. It can contain any statements that the body of the code can contain.

Math block INIT WSL procedure

<initialisations>::= <initialisation>

{<initialisation>}

<initialisation> ::= <variable> := <constant>

<constant> ::= <Boolean> 1 <integer> 1

<real>

e.g. e.g.

INIT proc cfc_cfb 0 ==

A : = 3 ; A : = 3 ;

B:=2; B:=2

Figure 5:3
INIT in Math language and WSL

5.3 BODY

The body of the code is executed on all executions of the loop after the initial one. The

body is either empty or a list of statements; these statements are comments,

assignments, procedures or conditionals.

196

Math block Body WSL procedure

<body portion> ::= <statements>

<statements> ::= <statement> {<statement>}

<statement>::=< comment> 1 <assignment

statement>

1 < procedure statement> 1 <conditional>

1 <function statement>

1 <command statement> l<while>

e.g. e.g.

proc cfc_cfb 0 ==

this procedure is called from within

BODY the procedure representing the units

IF (A = 1) THEN if (A = 1) then

A : = 3 ; A :=3;

B:=2; B:=2

ENDIF f i

Figure 5:4
Body in Math language and WSL

5.4 COMMENTS

PLC comments become WSL comments but since the WSL delimiters are "" all " were

converted into a double ' which will look like " . This should avoid confusion between

" and ' already in the conmient.

197

Keywords that are no longer required are maintained by putting them into comments.

This will be performed on the following words:

• PRAGMAC'RLL");

• BEGIN

• INIT

• MATH (only used in SFC)

The comments about variables, CFB, units and the program can only be determined

from the database file see chapter 6

Math block comment WSL comment

<comment> ::= " { " <characters> " } " <comment> ::= comment: "<characters>"

1 (* <characters> *)

e.g. e.g.

{ This is a comment} comment: "This is the comment"

or

(* This is a comment *)

Figure 5:5
A math block comment and the WSL comment

5.5 T Y P E S

There are five types that can be declared in the CFB; integers, reals, Booleans, arrays,

flags and timers. The rest of the variables are declared in tables outside the main

programming environment and are stored in binary files see chapter 6.

198

5.5.1 Integers

Integers are one of the basic types in the math language; they use 16 bit words and 16

bit intermediate arithmetic. This means that the values of the integers are between -

32768 and 32767. There are various operations allowed with integers all of which are

also allowed in the WSL language.

Math language for integers

<integer>::= <sign> <unsigned integer> I <unsigned integer> I

#2# <base 2 integer> I #16# <base 16 integer> I

<sign> #2# <base 2 integer> I

<sign> #16# <base 16 integer>

<sign> ::= + !-

<unsigned integer> ::= <digit> {<digit>}

<digit>::=OI 1 I 2 I 3 I 4 I 5 I 6 I 7 I 8 I 9

<base 2 integer> ::= <2digit> {<2digit>}

<2digit> ::=0 1

<base 16 integer> ::= <16digit> { <16digit>}

<16digit> ::= <digit> l A I B I C I D I E I F

Figure 5:6
Integers defined

199

Math language integer operators WSL operators

Increment INCREMENT a Increment a = a+ 1

Decrement DECREMENT a Decrement a = a - 1

Multiply * Multiply *

Division / Division /

Modulus MOD Modulus mod

Addition + Addition +

Subtraction - Subtraction -

Logical AND AND Logical AND and_bit

Exclusive OR XOR Exclusive OR xor_bit

Logical OR OR Logical OR or_bit

Figure 5:7
Integer operators

5.5.2 Reals

The value of a real is between -9.223372E'" to 9.223372E'", although a value between

-2.710501E"* to 5.42101 IE '" except 0.0 gives a control error. Although there is no

declaration in WSL the assignment of real values is possible in WSL. When arithmetic

is performed using real numbers the answer is always a real number.

Math language for reals

<real> ::= [<sign>] <unsigned integer>.unsigned integer> [E <sign>]

<unsigned integer>]

Figure 5:8
Reals defined

200

Math language real operators WSL operators

Power ** Power **

Multiply * Multiply *

Division / Division /

Addition + Addition +

Subtraction - Subtraction -

Figure 5:9
Real operators

5.5.3 Booleans

There is no such thing as a Boolean in WSL; this means that they are assigned integer

values 0 or 1. The convention is to assign true the value 1 and false the value 0. In

conditional statements in PLC a Boolean can be just a variable. For a conditional

comparison in WSL this will have to be converted to the following:-

• variable = false

• variable = true.

Since true and false are assigned values at the top of the WSL code. Booleans in the

math language have the operators XOR, OR, NOT, AND although there is no such

thing as Booleans in WSL, in conditionals, AND, OR and NOT are allowed. There is

no equivalent of an XOR in WSL but it maps to the equation (a XOR b) to ((a or b)

and (not(a = b))).

Math language for and Boolean

<Boolean> ::= <true> I <false>

<true> ::= 1 I on I true

<false>::=Oloff Ifalse

Figure 5:10
Booleans defined

201

Math language Boolean operators WSL operators

Logical NOT NOT Logical NOT TRUE xor_bit

Logical AND AND Logical AND and_bit

Logical OR OR Logical OR or_bit

Logical XOR XOR Logical XOR xor_bit

Figure 5:11
Boolean operators

Relational operators are allowed with integers, reals and Booleans the result is a

Boolean.

Math language integer operators WSL operators

less than < less than <

less than or equal <= less than or equal <=

greater than > greater than >

greater than or equal >= greater than or equal >=

equal = equal =
not equal <> not equal <>

Figure 5:12
Integer operators

5.5.4 Flags

Flags have the value of either on (true) or off (false). Al l the references to a flag are

logically connected and the value of the flag can only be set in one place in the

compiled program. The commands used to assign the flags are:-

• Clear - false - sets the value to false and remains false.

• Latch - true - sets the flag to on until there is a clear command

• On - true - sets the flag to on while the SFC/ CFB is active

When a flag is set to 'On' it remains true while the block is still active. At the end of a

CFB or Step it is turned off and does not automatically come 'On' again when the block

202

becomes active. In the case of an SFC the flag is 'On' while the step is active and false

once the step becomes inactive. In the case of a safe SFC being called while the flag is

'On' the flag remains true until control returns to the main SFC and the previous step is

then set inactive. (See 7 for information about SFCs)

Math language flag assignment WSL assignment

<f_assign> ::= LATCH (<flag_variable>) <f_assign> ::= <flag_variable>[LATCH]

1 CLEAR (<flag_variable>) := TRUE ;

1 ON (<flag_variable>) <flag_varibale>[ON] := TRUE

1 <flag_variable>[LATCH] :=

FALSE ;

<flag_varibale>[ON] := FALSE

1 <flag_varibale>[ON] := FALSE

e.g. e.g.

LATCH (var3) var3[LATCH] := TRUE;

var3[LATCH] := TRUE

Figure 5:13
BNF form of flag assignment

At the end of each mathblock the flags that have been used have to be tested to see if

they have been turned on. I f this is the case they have to be turned back off using the

following WSL code. This is forced by the APT compiler so it was inserted with each

procedure. A list of all flags used in the block was stored by the translator so as to be

able to insert the code at the end of the WSL block.

i f ((WSL_DFI_11 A02_HR[LATCH] = FALSE) and

(WSL_DFI_11 A02_HR[ON] = TRUE)) then

WSL_DFI_11 A02_HR[ON] := FALSE;

f i

Figure 5:14
A sample end piece of code of a math block containing flags

203

5.5.5 Timers (type ST or FT)

A timer allows a delay to be set up within a SFC step or a CFB. They are either fast or

slow and count down at that specific rate from the preset value. Timer values change

during the execution of the program. When used in the SFC they have to run faster

than the execution cycle of the program.

There are various values and keywords associated with timers; they are:-

• DELAY :- starts the timer counting as soon as the step is active and sets current

value = preset value and .tout to false

• .TCC :- is the current timer count (i.e. current value) (read only integer)

• .TCP :- preset value count (for slow timer 0.1 * value) (read / write integer)

• .ENABLE :- indicates the timer has been activated (read / write Boolean)

• .RESET :- becomes false to indicate the current counter is reset to the preset

value, true indicates that the timer can be activated if .enable is set to true, (read

/write Boolean)

• .TOUT :- true when current counter = 0 false when current counter ^ 0 (read

only Boolean)

DELAY is used to set the timer counting which is done as soon as the step is active.

For the timer to start counting the .reset and .enable values must both be true.

When .reset is false the current timer count .tec equals the preset false, .tout remains

false and the timer remains inactive.

When .reset is true and .enable is false the timer becomes inactive, but .tec is not reset

and .tout remains true. To manipulate the timers either the delay command can be used

or the extension can be manipulated directly. The method of setting a timer should be

consistent through the life of a timer.

204

Math language timer assignment/ WSL assignment

conditional

<timer_assignment> ::= DELAY <timer_assignment> ::= !P DELAY

(<timer>) (<timer>)

1 <timer>.tcc 1 !P TCC (<timer>)

1 <timer>.tcp 1 !P TCP (<timer>)

1 <timer>.enabl 1 !P ENABLE (<timer>)

1 <timer>.reset 1 !P RESET (<timer>)

1 <timer>.tout 1 !P TOUT (<timer>)

if last 5 are being assigned a value then of the if last 5 are being assigned a value then of the

format:- format:-

<timer>.enabl := bool <timer> " [" enabl "] " := bool

e.g. e.g

DELAY (timer_3) !P DELAY(timer_3,null,R)

i f (timer 3.tec) if (!PTCC(timer 3,null,R)

timer_5.reset := true !P RESET(timer_5,true,W)

Figure 5:15
BNF form of a timer assignment

After each time a timer is read or written to during the code in the WSL there is a

procedure call to timer_set which will emulate the behaviour of the timer counting

down. This procedure is declared at the end of the code.

205

proc timer_set(var timer) ==

comment:" this procedure simulates the behaviour of a timer";

if ((timer[RESET] = TRUE) and (timer[ENABL] = TRUE)) then

timer[TCC] := timer[TCC] - 1 ;

comment: "the timer is counting down"

elsf ((timer[RESET] = TRUE) and (timer[ENABL] = FALSE)) then

timer[TOUT] := TRUE;

comment:" timer remains inactive but TCC value remains

where it was "

else

timer[TCC] := timer[TCP];

timer[TOUT] := FALSE;

comment:" timer remains inactive and tout remains false. "

f i ;

i f (timer[TCC] = TRUE) then

timer[TOUT] := TRUE

f i .

Figure 5:16
The timer set function

5.5.6 Arrays

An array is an indexed collection of values that can be referenced as a whole or

individual value. Boolean, integer and real arrays can be assigned in the declaration

section, the rest must be declared in tables see chapter 6. Arrays can be assigned as a

whole e.g. arrayl := array2 in this instance the whole array will be copied so the array's

must be the same size and of a compatible type.

206

Math language array assignment WSL assignment

An array can be assigned to equal another

array ;-

<array> ::= <name> [' [' number']'] <array> ::= <name> [' [' number']']

array := array

Note the arrays are of the same size

array := array

array [n]

the nth bit of the array will be accessed for

array [n]

assignment or reading

e.g.
e.g

array 1 := array 2

array2 [2] := true

array3[10] := array4[4]

array 1 := array 2

array2 [2] := true

array3[10] := array4[4]

Figure 5:17
Array assignment

5.5.6.1 Integer Array (type lA)

An integer array is an indexed collection of integers, they are indexed 1 —> 7 if there are

7 items in the array.

5.5.6.2 Boolean Array (type BA)

A Booleans array is an indexed collection of Boolean values, i.e. assigned true or false.

207

5.5.6.3 DO10 Array (type DX)

A DO 10 array is a Boolean array with length 10 that is translated to PCS as a DO 10 tag

type.

5.5.6.4 Text Array (typeTA)

This is an array of text variables, each element is 30 characters longs and is primarily

used for PCS tags. Assignment to the text is not allowed in the coding and must be pre

assigned. The array can only be assigned by literal values. Although variables of this

type were declared they were not used.

5.5.6.5 Text (type T)

Text is similar to an array but it is a string variable that will contain text and is 1,2 or 3

fields long. Each field contains 30 characters of text. Text can not be written and

assigned during the program although text can be copied from one text string to the

other. Although variables of this type were declared they were not used.

Math language text assignment WSL assignment

<text_assign> ::= <text_variable> . textl <text_assign> ::= <text_variable>[l]

1 <text_variable> . text2 1 <text_variable>[2]

1 <text _variable> . text3 1 <text_variable>[3]

1 <text_variable> [<int(ll2l3)>]

e.g. e.g

array2.textl := array3.text2 array2[l] := array3[2]

array_4[2] :=array_5[l] array_4 [2] : = array_5 [1]

Figure 5:18
Text assignment

208

5.5.7 Input/Output

There are six types of inputs and outputs that are used in the code.

5.5.7.1 Analogue Input (type Al)

These inputs are used for measuring flow meters, pressure transmitters, etc. The

analogue input contains 4 different values that can be read, one of which can also be

written to:-

• name

• name.RAW

• name.SRV

• name.FTAU

- filtered real value (read only)

- integer input in module form (read only)

- raw scaled value real pre filter (read only)

- time constant rate for filter (read/ write) real or integer

The filter was not used in the translated code.

Math language Analogue input WSL assignment

expression

<ai_assign> ::= < ai> <ai_assign> ::= <ai> " [" 0 "] "

1 <ai> . RAW 1 <ai> " [" RAW "] "

1 <ai>. SRV l<ai> " [" SRV "] "

1 <ai>. FTAU 1 <ai> " [" FTAU "] "

e-g- e.g

i f (analouge_in.RAW < another_variable) if((analogue_in[RAW])< another_variable)

Bitassign(analouge_in,6,var) !p Bitassign(analogue_in[0], 6, var)

(Bitassign functions are discussed in 5.6)

Figure 5:19
Analogue Input assignment

209

5.5.7.2 Digital Input (type Dl)

A digital input is a signal from a field input; it reflects the status of field equipment. A

digital input is a read only Boolean and so can be on or off. It is treated as a Boolean

except it cannot be assigned, (see 5.5.3)

5.5.7.3 Digital Output (type DO)

The digital output changes the on / off state of field equipment. It is treated as a read /

write Boolean (see 5.5.3)

5.5.7.4 Digital Flag (type DF)

The digital flag is a read/ write Boolean that can be used any where that a digital output

would be used. Al l the references to a digital flag are logically connected, and the flag

state is set in one place in the compiled program. The variables are manipulated as

flags in both PLC and WSL code, (see 5.5.4)

5.5.7.5 Word Input (type Wl)

The word input is a read only integer, that can be treated as an integer (see 5.5.1); it

does not contain any scaling or special processing.

5.5.7.6 Word Output (type WO)

This is an integer signal from the controller to the process control device. It is treated

as a read / write integer (see 5.5.1).

210

5.5.8 Devices

There are two types of devices that were used in the fire and gas system, both of which

were assigned to.

5.5.8.1 Single drive/ single feedback valve (type VSS)

The VSS device is either open or closed, and is controlled by a single discrete signal

with one discrete feed back signal. The two types of VSS devices are energise-open

and energise-close.

There are various values and keywords associated with the VSS:-

• .CMMD open / close command Read only Boolean

• .OPND opened Read only Boolean

• .CLSD closed Read only Boolean

• .TRVL traveling Read only Boolean

• .OLS open feedback Read only Boolean

• .CLS closed feedback Read only Boolean

• .FTO fail to open Read only Boolean

• .FTC fail to close Read only Boolean

• .DSBLD forced to manual mode Read / Write Boolean

» .LOCKD locked (auto mode) Read / Write Boolean

» .NRDY not ready Read / Write Boolean

» .MOPEN manual open Read / Write Boolean

• .OVRD override feedback Read / Write Boolean

• .STATUS device status Read / Write Boolean

• .VFLAGS device status Read only integer

* .OTCP open timer/counter preset Read / Write integer

• .OTCC open timer/ counter current Read / Write integer

• .CTCP close timer/ counter preset Read / Write integer

211

• .CTCC close timer/ counter current Read / Write integer

The commands that are used with this valve are:-

• LOCK place in auto mode

• UNLOCK place in manual mode

• OPEN open valve

• CLOSE close valve

• RESET clear feedback override and/or issues open/close command after .FTO or

.FTC is true.

I f the energize-open valve is open (.MOPEN = true), the control signal (.CMM) is set to

true. I f the desired state is closed (.MOPEN = false) the .CMMD bit is set to false.

The feed back signal (.OLS) should be true when the valve is open and false when the

valve is closed.

I f the desired state of the energize-close valve is open (.MOPEN = true), the control

signal (.CMMD) is set to false. I f the desired state is closed (.MOPEN = false) the

.CMMD bit is set to true. The feedback signal for the energize-close valve (.CLS)

should be set to false when the valve is open and true when the valve is closed.

I f the CLEAR CMMD on FTO or FTC option is selected, the .CMMD bit changes to

false when the .FTR becomes true. The .CMMD bit remains false until the RESET

command is issued. The RESET command issues an OPEN/ CLOSE command that

turns on the .TRVL bit. The OPEN/ CLOSE alarm timer starts counting down when

the RESET bit goes false. The clear command was not used and the .FTR ending was

not listed in the endings that can be used with the valve in the manual.

212

Math language VSS expression WSL assignment

<vss_assign> ::= <vss> . CMMD <vss_assign>::=<vss> " [" CMMD "] "

1 <vss>.OPND 1 <vss>"["OPND "] "

1 <vss>.CLSD 1 <vss>"["CLSD "] "

1 <vss>.TRVL 1 <vss>"["TRVL "] "

1 <vss>.OLS 1 <vss>"["OLS "] "

1 <vss>.CLS 1 <vss>"["CLS "] "

1 <vss>.FTO 1 <vss>"["FrO "] "

1 <vss>.FTC 1 <vss>"["FTC "] "

1 <vss>.DSBLD 1 <vss>"["DSBLD"]"

1 <vss>.LOCKD 1 <vss>"["LOCKD "] "

1 <vss>.NRDY 1 <vss>"["NRDY"]"

1 <vss>.MOPEN 1 <vss>"["MOPEN "] "

1 <vss>.OVRD 1 <vss>"["OVRD "] "

1 <vss>.STATUS 1 <vss>"["STATUS "] "

1 <vss>.VFLAGS 1 <vss>"["VFLAGS"]"

1 <vss>.OTCP 1 <vss>"["OTCP "] "

1 <vss>.OTCC 1 <vss>"["OTCC "] "

1 <vss>.CTCP 1 <vss>"["CTCP "] "

1 <vss>.CTCC 1 <vss>"["CTCC "] "

1 LOCK (<vss>) 1 !p LOCK (<vss> var)

1 UNLOCK (<vss>) 1 !p UNLOCK (<vss> var)

1 OPEN (<vss>) 1 !p OPEN (<vss> var)

1 CLOSE (<vss>) 1 !p CLOSE (<vss> var)

1 RESET (<vss>) 1 !p RESET (<vss> var)

e.g. e.g

UNLOCK (XS_20001_D) !p UNLOCK (XS_20001_D var)

XS_20001_D.MOPEN := XS_2 XS_20001_D[MOPEN] := XS_2

Figure 5:20
VSS assignment

213

5.5.8.2 Dual drive/ dual feedback valve (type VDD)

The VDD device is either open or closed and is controlled by two discrete signals with

two discrete feedback signals. The two control signals consist of an open signal

(.OPENC) and a close signal (.CLSC), which are both normally false.

There are various values and keywords associated

.OPENC open command

.CLSC close command

.OPND opened

.CLSD closed

.TRVL traveling

.OLS open feedback

.CLS closed feedback

.FTO fail to open

.FTC fail to close

.FAILD failed (both feedback bits are true)

.CLSTO close timeout

.OPNTO open timeout

.DSBLD forced to manual mode

.LOCKD locked (auto mode)

.NRDY not ready

.MOPEN manual open

.OVRDO override open feedback

.OVRDC override closed feedback

.STATUS device status

.VFLAGS device status

.OTCP open timer/counter preset

.OTCC open timer/ counter current

.CTCP close timer/ counter preset

.CTCC close timer/ counter current

with the VSS:-

Read only Boolean

Read only Boolean

Read only Boolean

Read only Boolean

Read only Boolean

Read only Boolean

Read only Boolean

Read only Boolean

Read only Boolean

Read only Boolean

Read only Boolean

Read only Boolean

Read / Write Boolean

Read / Write Boolean

Read / Write Boolean

Read / Write Boolean

Read / Write Boolean

Read / Write Boolean

Read / Write Boolean

Read only integer

Read / Write integer

Read / Write integer

Read /Write integer

Read / Write integer

214

The commands that are used with this valve are :-

• LOCK place in auto mode

• UNLOCK place in manual mode

• OPEN open valve

• CLOSE close valve

• RESET clear feedback override and/or issues open/close command after .FTO or

.FTC is true.

I f the desired state is open (.MOPEN = true), the .OPENC bit is set to true. The

.OPENC bit remains true until either the open feed back signal is true or the open alarm

time expires; then .OPENC is set to false.

I f the desired state is closed, the .CLSC bit is set to close the valve. The .CLSC bit

remains true until either the close feedback signal is true or the close alarm expires;

then .CLSC is set to false.

The only command that is used is the reset command. That is used in the INIT part of

the CFBs that deal with the valves so they are all unlocked at the start of the code.

The RESET command issues an OPEN/CLOSE command that turns on the .TRVL bit.

The OPEN/CLOSE alarm timer starts counting down when the RESET bit goes false.

The two feedback signals consist of an open feedback signal (.OLS) and a closed

feedback signal (.CLS). The .OLS bit should be true when the valve is open; otherwise,

it should be false. The .CLS bit should be true when the valve is closed; otherwise it

should be false.

215

Math language VDD expression WSL assignment

<vdd_assign> ::= <vdd_assign> ::=

<vdd> .OPENC <vdd> "["OPENC "] "

l<vdd>.CLSC l<vdd>"["CLSC "] "

1 <vdd>.OPND 1 <vdd>"["OPND "] "

1 <vdd>.CLSD 1 <vdd>"["CLSD "] "

1 <vdd>.TRVL 1 <vdd>"["TRVL "] "

1 <vdd>.OLS 1 <vdd>"["OLS "] "

1 <vdd>.CLS 1 <vdd>"["CLS "] "

1 <vdd>.FTO 1 <vdd>"["FTO "] "

1 <vdd>.FTC 1 <vdd>"["FTC "] "

1 <vdd>.FAILD 1 <vdd>"["FAILD "] "

1 <vdd>.CLSTO 1 <vdd>"["CLSTO"]"

1 <vdd>.OPNTO 1 <vdd>"["OPNTO "] "

1 <vdd>.DSBLD 1 <vdd>"["DSBLD"]"

1 <vdd>.LOCKD 1 <vdd>"["LOCKD "] "

1 <vdd>.NRDY 1 <vdd>"["NRDY"]"

1 <vdd>.MOPEN 1 <vdd>"["MOPEN "] "

1 <vdd>.OVRD 1 <vdd>"["OVRD "] "

1 <vdd>.STATUS 1 <vdd>"["STATUS "] "

1 <vdd>. VFLAGS 1 <vdd>"["VFLAGS"]"

1 <vdd>.OTCP 1 <vdd>"["OTCP "] "

1 <vdd>.OTCC 1 <vdd>"["OTCC "] "

1 <vdd>.CTCP 1 <vdd>"["CTCP "] "

1 <vdd>.CTCC 1 <vdd>"["CTCC "] "

1 LOCK (<vdd>) 1 !p LOCK (<vdd> var)

1 UNLOCK (<vdd>) 1 !p UNLOCK (<vdd> var)

lOPEN (<vdd>) 1 !p OPEN (<vdd> var)

1 CLOSE (<vdd>) 1 !p CLOSE (<vdd> var)

1 RESET (<vdd>) 1 !p RESET (<vdd> var)

216

e.g. e-g

UNLOCK (XV_16061_D) !p UNLOCK (XV_16061_D var)

XV_16061_D.MOPEN := TRUE XV_16061_D[MOPEN] :=TRUE

XV_16061_DD := XV_16061_D.FTO XV_16061_DD := XV_16061_D[FTO]

Figure 5:21
VDD assignment

When declaring valves the time that is takes for them to change state is also declared.

This should prevent valves that are opening from being closed and vice versa.

5.5.9 Recipes

A recipe serves as a user defined storage place for a set of related values that have

different data types. The recipe (similar to a struct in C) allows the variables to be

accessed in the following way:-

recipe_name. recipe_element := variable

or

recipie_name := recipe_ name

Figure 5:22
Accessing a recipe element

The extensions associated with the recipes are:-

• .RTU Request to unlock

• .INUSE Data is in use

• .DSTBL Data is stable

• .DRDY Data is ready for use

• .STATUS Recipe status

Read/

Read/

Read/

Read/

Read / write

write

write

write

write

Boolean

Boolean

Boolean

Boolean

Boolean

217

The commands associated with the recipes are:-

• UNLOCK / CLEAR Makes the recipe available for data

• SELECT Makes data from one recipe available to the other.

Recipes have been used in both the ESD and F&G system. To make the translation

possible the user defined recipes are being used as though they are part of the language

definition. Each recipe has its own collection of recipe elements and they are as

follows:-

5.5.9.1 Elements associated to Trip_all recipe (ESD)

• L_Limit Real

• H_Limit Real

• LL_Limit Real

• HH_Limit Real

• Bad_xmt_lim Integer

5.5.9.2 Elements associated to TripJII recipe (ESD)

• L_Limit Real

• LL_Limit Real

• Bad_xmt_lim Integer

5.5.9.3 Elements associated to Trip_hh recipe (ESD)

• HH_Limit Real

• Bad_xmt_lim Integer

5.5.9.4 Elements associated to TripJI recipe (ESD)

• LL_Limit Real

• Bad_xmt_lim Integer

218

5.5.9.5 Elements associated to Tripjim recipe (ESD)

• LL_Limit Real

• HH_Limit Real

• Bad_xmt_lim Integer

5.5.9.6 Elements associated to CODELL recipe (F&G)

• hi_lim Real

• xmt_low Integer

• xmt_high Integer

• optic_lo Real

• optic_high Real

5.5.9.7 Elements associated to SING_LIM recipe (F&G)

• hi_lim Real

• xmt_low Integer

• xmt_high Integer

5.5.9.8 Elements associated to Dualjim recipe (F&G)

• hi_lim Real

• h i h i j i m Real

• xmt_low Integer

• xmt_high Integer

Each of the recipe elements will be turned into an item in an array. The following

language definition will only show the PLC functions used in the ESD or F&G code

and the Trip_all extensions because they are all translated using the same theory.

219

Math language recipes WSL

<recipe> ::= < recipe_name> <recipe> ::= < recipe_name>

1 <recipe_name> .RTU i <recipe_name> "["RTU "] "

1 <recipe_name>.INUSE 1 <recipe_name>"["INUSE"]"

1 <recipe_name>.DSTBL 1 <recipe_name>"["DSTBL"]"

1 <recipe_name>.DRDY 1 <recipe_name>"["DRDY"]"

1 <recipe_name>.STATUS 1 <recipe_name>"["STATUS"]"

1 UNLOCK(<recipe_name>) 1 !p UNLOCK(<recipe_name> <var>)

1 CLEAR (<recipe_name>) 1 !p CLEAR(<recipe_name> <var>)

1 SELECT (<recipe_name>) 1 !p SELECT(<recipe_name> <var>)

1 <recipe_name>.L_LIMIT 1 <recipe_name>"["L_LIMIT "] "

1 <recipe_name>.H_LIMIT 1 <recipe_name>"["H_LIMIT"]"

1 <recipe_name>.LL_LIMIT 1 <recipe_name>"["LL_LIMIT"]"

1 <recipe_name>.HH_LIMIT 1 <recipe_name>"["HH_LIMIT"]"

1 <recipe_name>. 1 <recipe_name>"["

BAD_XMT_LIM BAD_XMT_LIM"]"

e.g. e.g

IF(PT_13180 >= IF((PT_13180) >=

PT_1380_R.HH_LIMIT) (PT_1380_R [HH_LIMIT]))

IF(PT_13180<= IF((PT_13180) <=

PT_13180_R.LL_LIMIT) (PT_13180_R[LL_LIMIT])))

Figure 5:23
Recipe usage

220

5.5.10 Hardware

Hardware addresses can be read and written to directly; these are treated in the same

way as variable names are. Hardware addresses in WSL and the APT languages are a

variable name except they start with a percentage sign.

5.6 PROCEDURE CALLS

Procedure calls are predefined operations that are available from within the math

language and count as a statement. These operations will be represented as external

procedure calls.

Only those procedures used in the ESD and F&G code are discussed.

Note

most significant bit least significant bit

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

0 0 0 0 0 0 0 0 1 0 0 1 1 0 0 1

second row demonstrates the number 153

Figure 5:24
Binary storage of integers

5.6.1 UNPACK_BITS (Boolean array , variable)

This procedure is only used in RLL and shifts a specified number of bits from an

integer into a Boolean array. The number of bits moved from the integer to the array is

determined by the size of the declared array.

221

Math Language Procedure call WSL

UNPACK_BITS (<Boolean_array> , !p UNPACK_BITS (<integer> var

<integer>) <BoOlean_array>)

Figure 5:25
UNPACK_BITS procedure call

5.6.2 PACK_BITS (Boolean array, variable)

This procedure is used only in RLL and shifts the values in the Boolean array into an

integer variable. The size of the array will determine the number of bits that can be

moved into the integer variable.

Math Language Procedure call

PACK_BITS (<Boolean_array> ,

<integer>)

WSL

!p PACK_BITS (<Boolean_array> var

<integer>)

Figure 5:26
PACK_BITS procedure call

5.6.3 BCDBIN (variable, variable)

The BCDBIN procedure converts a binary coded decimal (BCD) value into an integer.

The first variable in the parenthesis contains the four-digit BCD value to be converted,

the second variable is the integer where the result is to be stored.

222

Math Language Procedure call

BCDBIN (<bcd_value> , <integer>)

WSL

!p BCDBIN (<bcd_value> var <integer>)

Figure 5:27
BCDBIN procedure call

5.6.4 BIT_ASSIGN (variable, integer, expression)

The BIT_ASSIGN procedure sets the individual position of an integer based on the

result of a Boolean expression

The first value in the parenthesis is an integer that contains the bit that is to be set

depending on the Boolean expression. The integer is treated as a binary value with the

most significant bit as the number 1 bit and the least significant as the 16* bit. The

second value in the parenthesis specifies which bit is to be changed (so is a number

between 1 and 16). The Boolean expression evaluates to true or false and depending on

the answer will be how the significant bit of the variable will be set.

Math Language Procedure call WSL

BIT_ASSIGN (<variable> , <integer> , !p BIT_ASSIGN (<integer> ,

<bool_expression>) <bool_expression> var <variable>)

Figure 5:28
BIT_ASSIGN procedure call

223

5.6.5 BITCLEAR (variable, integer)

The BITCLEAR procedure resets a specified bit in an integer variable to false, off (0).

The first variable in the parenthesis is the integer that contains the bit to be reset. The

integer value represents which bit is to be reset; the value must be a number between 1

and 16.

Math Language Procedure call

BITCLEAR (<variable> , <integer>)

WSL

!p BITCLEAR (<integer> var <variable>)

Figure 5:29
BITCLEAR procedure call

5.6.6 BITSET (variable, integer)

The BITSET procedure resets a specified bit in an integer variable to true, on (1).

The first variable in the parenthesis is the integer that contains the bit to be set. The

integer value represents which bit is to be reset; the value must be a number between 1

and 16.

Math Language Procedure call

BITSET (<variable> , <integer>)

WSL

!p BITSET (<integer> var <variable>)

Figure 5:30
BITSET procedure call

224

5.6.7 LOAD_ARRAY(input variable, array)

The LOAD_ARRAY procedure assigns a value to the elements of an array.

The input variable and the array elements must be of the same type. The value of the

input variable is assigned to each of the elements in the array.

Math Language Procedure call

LOAD_ARRAY (<variable> , <array>)

WSL

!p LOAD_ARRAY (<variable> var <array>)

Figure 5:31
LOAD_ARRAY procedure call

5.7 FUNCTION CALLS

A function appears on the right hand side of an assignment statement or in a Boolean

expression i.e. it returns a value. Al l functions are translated to an external function

call.

5.7.1 BITS_TO_INTS (array variable)

The BITS_TO_INTS function moves an array of 16 Boolean variables into an integer

value. Within the Boolean array true is 1 and false is 0. Element 1 of the array is the

most significant bit.

Math Language function call

BITS_TO_INTS (<booLarray>)

WSL

!f BITS_TO_INT (<bool_array>)

Figure 5:32
BITS_TO_INT function

225

5.7.2 BITTEST (variable , integer)

The BITTEST function checks the status of a specified bit. The variable is the integer

which contains the bit that is to be checked (the most significant bit is numbered as

number 1 the least significant bit is the 16* bit). The integer value specifies which bit

in the binary equivalent of the number is to be tested. I f the tested bit is 1 then true is

returned otherwise 0 is returned.

Math Language function call

BITTEST (<variable> , <integer>)

WSL

!f BITTEST (<variable>, <integer>)

Figure 5:33
BITTEST function

5.7.3 EDGE (expression)

Edge is a Boolean function that detects the change from false to true in the value of a

Boolean expression. The variables in the parentheses are monitored to detect the first

time that the expression changes from false to true. When this change has been

detected the returned value of the function is true and remains true for one scan of the

controller.

Edge stores temporary variables each time it is used. It performs an edge on the

variables since last time an 'edge' was performed on it and not since the last time the

current 'edge' was performed on the variable.

Math Language function call WSL

EDGE (<expression>) !f EDGE (<expression>)

Figure 5:34
EDGE function

226

5.7.4 ABS(expression)

ABS is a function that returns the positive values of an expression. Note that it is also a

function supplied in WSL.

Math Language function call WSL

ABS (<expression>) abs (<expression>)

Figure 5:35
ABS function

5.8 TIME

The controller contains the date and time which can be accessed by the program. The

only part of the time that is accessed by the translated code is the hour past midnight

which is stored as a read only integer. This means that the controller clock can not be

set from the program.

Math Language time expression

X := program_name . IHOUR

WSL

x : = I fTIME (var)

Figure 5:36
Time expression

227

5.9 ASSIGNMENTS

Numerical assignments map as would be expected in the following way:

Math language assignment WSL assignment

<assignment assignment> ::= <assign>

<assign> ::= <variable> := <value> ; <assign> ::= <variable> := <value>

<value> ::= <Boolean> <compound booeanl> 1

<real> 1 <compound real> 1 <integer> 1

<compound interger>

e.g.

X45 := 1;

X44 := True;

e.g.

X45 := 1;

X44 := TRUE

Figure 5:37
Assignment format in Math language and WSL

When an assignment is Boolean value of true or false it has to be assigned as an integer

value of 0 or 1. Rather than changing the Boolean assignment to 1 for true and 0 for

false two global WSL constants will be declared.

FALSE := 0;

TRUE := 1;

Figure 5:38
WSL constant declaration

The assignment of Booleans in WSL can now remain identical to the assignment in

PLC. True and False were not case sensitive in the APT languages but they are case

228

sensitive in WSL. Variables with special methods of assignment are discussed when

the variables are defined, below are two such examples.

Math language flag / timer assignment WSL flag / timer assignment

clear (firstup_set) firstup_set[LATCH] := FALSE

firstup_set[ON] := FALSE

timer_name.ENABL := TRUE timer_name[ENABL] := TRUE;

timer_set(var timer_name)

Figure 5:39
Assignment format in Math language and WSL

Conditionals on the right hand side of an assignment statement are not allowed in WSL

so they are translated to an if statement on the right hand side that will return true or

false.

Math language conditional assignment

a:= (b = c)

WSL conditional assignment

a:= if (b =c) then TRUE else FALSE f i

Figure 5:40
If statement in an assignment

The equality operators that cause this sort of assignment are '= ' , '< ' , '<=', '> ' , '>=',

'<>' i.e. anything that would create a Boolean result.

229

5.10 CONDITIONALS

The conditional in math language is an if statement of the following format:-

Math language conditional WSL conditional

IF (<Boolean expression>) THEN if (<Boolean expression>) then

<statements> <statements>

{ ELSIE (<Boolean expression>) THEN { elsf (<Boolean expression>) then

<statements>} <statements>}

[ELSE <statements>] [else <statements>]

ENDIF; f i

e.g. e.g.
IF (X45) THEN if (X45=l) then

X45 := True; X45 := True

ELSIE (X44) THEN elsf (X44= 1) then

X21 := X34; X21 :=X34

ENDIF; f i

Figure 5:41
Conditional format in Math language and WSL

Note the missing ';' at the end of the WSL conditional, this is because in WSL a ';'

joins two statements whereas in most languages it indicates the end of a statement.

230

The Boolean expression will have to be translated from the PLC format:-

X454 OR X3524 OR X234

to the WSL format:-

(X454 = TRUE) or (X3524 = TRUE) or (X234 =.TRUE)

There can be any number of ELSIF statements in both languages. There can also be

nesting of i f statements and this frequently occurred.

The xor logical operator is not declared in WSL so it is translated to a function call that

returns true or false.

Xor function call

xor (a,b)

Xor function deflned

funct xor(x,y) ==

if (x = y) then 1

else 0

f i

Figure 5:42
xor function deHned

231

5.11 WHILE LOOP

While loops are allowed within the math language and are of the following format:-

Math language conditional WSL conditional

WHILE (<Boolean expression>) LOOP while (<Boolean expression>) do

<statements> <statements>

END LOOP; od

e-g- e.g.

WHILE (X45) LOOP while (X45 =1) do

X45 := True; X45 := True;

X21 :=X34; X21 := X34

END LOOP; od

Figure 5:43
While loop format in Math language and WSL

232

6. TABLE INFORMATION FOR DECLARING VARIABLES

Variables in the APT language can contain numbers, letters and the '_'; they can be up

to 12 characters long and must contain a letter. Since the APT variables can start with a

number and WSL variables cannot all of the variables will have WSL_ prefixed to the

beginning of their name.

Most of the declarations within the APT are in the tables. The scope of the variables

declared in the table are dependent on the position of the table. A table in a unit means

the variables are global to only the SFCs and CFCs in that unit. Variables declared in

the higher level i.e. the program level are global to CFCs and SFCs in all units.

Al l of the variable information is stored in two binary files. There is one file called

App.d2 in the database directory which contains all the variable information about all

the programs within the APT at a given time. It also includes information about

previous programs because it does not seem to delete the information properly. The

format of this variable information is as foUows:-

hex variable name type of declaration e.g. "INT_DEC" key letter initial e.g. " I "

comments initial value PLC address.

e.g.

* M TIGER INT_DECL I This is a tiger 5 Automatic

I f the value is a constant then the hex number 4 before the letter 'A ' of Automatic is 01.

233

Type of Declaration Key letter

Boolean B

Integer I

Real R

Flag F

Text T

Integer Array lA

Real Array RA

Boolean Array BA

DO 10 Array DX

Text Array TA

Slow Timer ST

Analogue Input A I

Digital Flag DF

Digital Input DI

Digital Output DO

Word Input W I

Word Output WO

Valve single drive / single feed back VSS

Valve Dual drive /dual feed back VDD

Templates - user defined

Figure 6:1
Types of Variable declarations

This information is stored in an arbitrary order and the number of spaces between the

information seems to be arbitrary. The solution will be to search for the variable name

so that the information about the variable can be obtained.

A list of the program name, units, CFB and variables is stored in the file called

object.xrf. There is an object.xrf file for each of the programs that are declared. This

can be found at path:-

234

\APT\PROGRAM\ESD_A\OBJECT.XRF

This contains a list of the unit name and then the name of the item that it is storing. The

difference between the math blocks and variables cannot be determined but the math

blocks can be identified from the graphic file (see 2.1). The units are declared as unit

name then item name (also obtainable from directory names). So the variables are the

names that follow a unit name and are not units or CFB. This information can then be

used to identify the type of variable from app.d2. The unit name has to be maintained

as this will indicate the globality of the variables and they have to be declared within

their units. The global variables have the hex value 0007010000 or 1000000028 before

the variable name. The information about recipes is stored in app.dS.

6.1 MATH BLOCK TYPE

The type of an interlock can be determined using a similar method, a high priority

interlock should be run before a SFC and a low priority interlock should be after the

SFCs. App.dl in the database directory stores the information about the type of math

block. This includes the name of the CFC that it belongs to, the comment of the math

block (this is the only place that this information is stored) and whether it is high or low

priority. The information stored with the math block gives the type of the math block

which is active since all of the used math blocks are active.

Format of storing this information:-

name of CFB Keyword type key number type comment name of CFC hex

keyword

235

e.g.

W_DOG_0 STNDMATH 27 comment CFCname *M ACTIVE OUS

PHASE_1 INTRLOCK 51 comment SELFTEST hex HIGH

PHASE_2 INTRLOCK 51 comment SELFTEST hex HIGH

Al l of the files listed above are fixed length files.

6.2 COMMENTS WITH UNITS AND PROGRAMS

App.dl stores the program name and comment the programmer supplied with the

program in following format:-

hex Program_name PRG comment hex

The first writing after the PRG is comment and then the comment continues until there

is a specific hex character. App.d2 stores the comments with the units, the comments

are the letters after the unit name until there is more hex which is not printable text.

7. S F C ^ WSL

A SFCs name can have up to 8 alpha numeric characters; the name includes at least one

letter and may contain an underscore. The name cannot begin with a number.

The SFC diagram will be converted as a whole into WSL. Each of the steps will be an

action system. An action system is a facility in WSL that allows pieces of code

containing GOTOs to be translated Although the SFC does not explicitly have GOTOs

depending on the transition options the control of the program could move to one or

more different steps. The best way to map this will be via action blocks as there are

very powerful transformations to remove the GOTO jumps in action systems. The

236

transitions out of the action system will be an if statement (which will test on the

transition condition) and jump to the next step/ action system. I f none of the conditions

of the transitions (if else if statement) are true then control will go to the start of the

action block. There will be two action blocks for each step, the INIT part which is

executed at least once and then the main part which is executed zero or more times.

The action system will retain the same number as the step; these are numbered SI to

S500 (not in execution order but in coded order). The number is Ix for the initial

action system and Ax for the main body of the action system. The code that is written

within the safe SFC in the body of the step is put into a block as a procedure call; the

name of the procedure is Sx and ISx for the initial part of the step. The name of the

transition was retained in the first parse of the document to get the layout. When the

math language was translated and inserted the name of the transition was no longer

required but for reference purposes it was stored as a comment.

Where there is a choice of transitions the ordering is maintained from the left to right.

Once the transition has been made there will be an action call to the step that is in that

transition. The code does not contain parallel steps although the code does contain

statements that are executed in parallel. It is understood that code executed in parallel

is executed sequentially in an indeterminate order. This is located before the MATH

keyword in each of the steps.

SFCs can be of two types normal and safe state SFCs. A safe state SFC once it has

been turned on interrupt's its local SFC and takes over control as soon as a trigger

condition becomes true. This is mapped by an extra condition in the transaction to

enable a break out into the safe state SFC which is built into the same action system.

237

BNF form of a S F C

<SFC> ::= <name> <start step> <transition> {transition} {step} <end step>

- L t
<transition> :=

Non BNF rules

1. Steps must be separated by transitions

2. O 8 Alpha characters

3. there are constraints on loops

4. there must be a step before a transition.

<sfcl> control enters at start step and exits at 1 or more end steps possibly at a later

time.

<transionl> if transition is true goto next step if false re-execute the previous step.

<transition2> if left hand side branch true more to that step if right hand side step is true

move to the step on right hand side otherwise repeat the previous step.

<transition3> i f transition on left hand side and right hand side are both true then move

to the next transition

<transition4> not implemented

<transition5> not implemented

WSL

A step will be converted into a WSL action block

A transition will be converted into an if statement at the end of the action block and a

goto statement to move to the required action block.

Figure 7:1
syntax of an SFC

238

There are two extensions associated with the main SFC in each of the units. These are

the .enabl and the .abort extension and they allow all of the SFCs within a unit to be

turned off. When the program is originally downloaded the .enabl extension is set to

true and the .abort is set to false.

During the running of an SFC it can be halted and will not run again until reset. In other

parts of the code the SFC can be reset or stopped so that it will not run again until it is

turned on. I f unitname.ENABL is set to false then all the currently active steps in the

SFC become inactive. I f the unitname.ABORT is set to true then the SFC will become

inactive. The execution does not resume until the enabl command is set to true, if the

.abort command is set to false only, the SFC does not resume execution.

S F C unitname extensions WSL unitname extensions

<extension> := <unitname> '.' ENABL

1 <unitanme> '.'ABORT

<extension> := <unitname> ' [' ENABL '] '

1 <unitanme> ' [' ABORT '] '

e.g e-g

self test, abort := TRUE WSL_SELFTEST[ENABL] := TRUE

Figure 7:2
syntax of unitname extensions

I f a controller looses power then all the units become inactive and remain inactive until

the power returns. When the power returns each unit / program starts at the initial step

of the main SFC; except for specifically set safe state SFCs.

An SFC can be turned off from elsewhere in the code, by giving the variable within the

unit the value of false. As such at the top of each SFC there will have to be a test to see

if the code should be run or not and this will be in the form of:-

239

i f ((unitname[ENABL] := TRUE) and (unitname[ABORT] := FALSE)) then

sfc code

f i

Figure 7:3
Initial if statement before a piece of code

It should be noted that an entire action system is thought of as one statement.

Normal S F C

WSL

begin

if ((normal[ENABL] = TRUE) and

(normal[ABORT] = FALSE))

then

WSL_safe[ARM] := FALSE;

actions: M i l :

MIl==IMSl(var);

if (normal[ENABL] = FALSE) then

call z

elsf ((sstrigger = TRUE) and

(WSL_safe[ARM] = TRUE))

then call safe

elsf ((MTl = TRUE))

then call MI2

elsf ((MT2 = TRUE))

then call MI3

else call M A I

f i .

MAl==MMSl(var);

if (normal[ENABL] = FALSE) then

call z

240

elsf ((sstrigger = TRUE) and

Safe S F C (WSL_safe[ARM] = TRUE))then

call safe

elsf ((MTl = TRUE)) elsf ((MTl = TRUE))
SI then call MI2

1
T1

1

elsf ((MT2 = TRUE)) then call MI3

S2
else call M A I

f i .
1

T2
1

S3 MI2==IMS2(var);

if (normal[ENABL] = FALSE) then if (normal[ENABL] = FALSE) then

call z

elsf ((sstrigger = TRUE) and

(WSL_safe[ARM] = TRUE))then

call safe

elsf ((MT3 = TRUE))

then call MI4

else call MA2

f i .

MA2==MMS2(var);

if (normal[ENABL] = FALSE) then

call z

elsf ((sstrigger = TRUE) and

(WSL_safe[ARM] = TRUE))then

call safe

elsf ((MT3 = TRUE))

then call MI4

else call MA2

f i .

MI3==IMS3(var);

241

if (normal[ENABL] = FALSE) then

call z

elsf ((sstrigger = TRUE) and

(WSL_safe[ARM] = TRUE))then

call safe

else call MA3

f i .

MA3==MMS3(var);

if (normal[ENABL] = FALSE) then

call z

elsf ((sstrigger = TRUE) and

(WSL_safe[ARM] = TRUE))then

call safe

else call MAS

f i .

MI4==IMS4(var);

if (normal[ENABL] = FALSE) then

call z

elsf ((sstrigger = TRUE) and

(WSL_safe[ARM] = TRUE))then

call safe

else call MA4

f i .

MA4==MMS4(var);

if (normal[ENABL] = FALSE) then

call z

elsf ((sstrigger = TRUE) and

(WSL_safe[ARM] = TRUE))then

call safe

242

else call MA4

f i .

safe==ISSl(var);

if (normal[ENABL] = FALSE) then

call z

elsf ((ST 1 = TRUE))

then call SI2

else call Asafe

f i .

Asafe==MSSl(var);

if (normal [ENABL] = FALSE) then

call z

elsf ((ST 1 = TRUE))

then call SI2

else call Asafe

f i .

SI2==ISS2(var);

if (normal[ENABL] = FALSE) then

call z

elsf ((ST2 = TRUE))

. then call SIB

else call SA2

f i .

SA2==MSS2(var);

if (normal[ENABL] = FALSE) then

call z

elsf ((ST2 = TRUE))

then call SI3

243

else call SA2

f i .

SI3==ISS3(var);

if (normal[ENABL] = FALSE) then

call z

else call SA3

f i .

SA3==MSS3(var);

if (normal[ENABL] = FALSE) then

call z

else call MI3

f i .

end_actions

f i

where

proc IMSl(var) ==

proc MMSl(var) =

proc IMS2(var) ==

proc MMS2(var) =

proc IMS3(var) ==

proc MMS3(var) =

proc IMS4(var) ==

proc]VIMS4(var) =

proc ISSl(var)==

proc MSSl(var) ==

proc ISS2(var) ==

proc MSS2(var) =

244

proc ISS3(var) ==

proc MSS3(var) ==

end

Figure 7:4
An SFC to converted WSL

The SFC will be translated in three stages. The first stage will be to split up the

document into individual files and procedures; these will then individually be translated

using the parser. The layout of the code will then be translated and the WSL

procedures inserted at the correct point.

7.1 MATH LANGUAGE ASSOCIATED WITH SAFE STATE SFCS

A safe state SFC is a special SFC that is designed to interrupt the execution of an SFC,

this is so that an emergency procedure can be performed. Or so that special processing

can be performed that is out of normal flow of control. There are three types of safe

state SFCs the ESD and F&G code uses the second type following.

1. A level safe state S F C which is designed to interrupt the processing of a main or

subordinate SFC. A level safe state SFC can only interrupt another safe state SFC

that has a lower priority.

2. A local safe state SFC which is designed to interrupt the processing of a single SFC

or and of its subordinates.

3. A subordinate safe state SFC which is called by another safe state SFC.

Although an SFC can have more than one local safe state SFC only one of them can be

active at any point in time.

245

There are 7 math commands that are related directly to the use of safe state SFCs. All

but SSABORT are used in the sample code.

• SSENTRY this is the point in the normal SFC of re-entry after the safe state SFC

has finished executing.

• SSRETURN is the return point from the safe state SFC.

• SSDEFINE sets which SFC the safe state SFC is local to.

• SSTRIGGER the Boolean which when true calls the safe state SFC.

• SSARM indicates when to start looking for SSTRIGGER = TRUE to call the safe

state SFC.

• SSDISARM indicates when to stop looking for SSTRIGGER = TRUE to call the

safe state SFC.

• SSABORT stops all the SFCs

7.1.1 SSENTRY (label)

SSENTRY is written in a step of the main SFC (and there must be only one connected

to each label) indicating where the control is to return to once the safe SFC has finished.

SSRETURN is the command that returns the control to the main SFC at the

corresponding label. The command will be converted into a comment in WSL.

7.1.2 SSRETURN (label)

This command transfers the program execution from the safe SFC to the step identified

by the corresponding SSENTRY command (i.e. with the same label). When the

SSRETURN command is executed the previously active step in the main SFC and the

safe SFC are deactivated and the step containing the SSENTRY is activated. The

command will be converted into a comment in WSL.

246

7.1.3 SSDEFINE

Used in the initial step of the safe state SFC, and every initial step must contain one and

only one. It defines the type of safe state SFC and with the case of a local safe state

SFC it defines which SFC it is local to. The command will be converted into a

comment in WSL.

SSDEFINE LOCAL TO sfc_name

This command will also be converted to a comment, as the calling action system will

know which safe state action to call.

7.1.4 SSTRIGGER (identifier)

This command specifies the condition that triggers the execution of a main safe state

SFC. I f the trigger condition becomes true while the safe state SFC is disarmed then

the condition is ignored. I f the trigger condition becomes true when the safe state SFC

is armed then the control of the program passes to the initial step safe state SFC. The

identifier is a Boolean, a flag or a digital input.

7.1.5 SSARM (Safe State SFC name)

This command 'arms' a safe state SFC and thus makes it possible for the safe state SFC

to interrupt the execution flow if the trigger value becomes true. Once armed the safe

state SFC will continually monitor the trigger for when it should interrupt the flow of

control.

247

A safe state SFC starts executing when:-

1. Safe state SFC is armed

2. SFC executing is a normal SFC

3. A trigger condition becomes true.

SSARM remains in effect until SSDISARM is called. The math language code is

converted into WSL code see below.

7.1.6 SSDISARM (Safe State SFC name)

This command 'disarms' a safe state SFC and thus it no longer monitors the trigger

condition, and the safe state SFC can no longer perform an interrupt. SSDISARM takes

precedence over SSARM

7.1.7 SSABORT

This command suspends all SFC execution in the current unit.

248

7.1.8 Translation of the commands

P L C safe state S F C commands WSL safe state SFC commands

<sfc. _commands> :- SSENTRY <label> <sfc_commands> :-

comment: "SSENTRY <label>"

1 SSRETURN <label> 1 comment: "SSRETURN <label> "

1 SSDEFINE LOCAL OF 1 comment: " SSDEFINE LOCAL OF

<sfc. .name> <sfc_name>"

1 SSTRIGGER <identifier> 1 comment: " SSTRIGGER <identifier>"

1 SSARM <safe_sfc_name> 1 comment: " SSARM <safe_sfc_name>" ;

safe_sfc_name ' ['ARM'] ' := FALSE

1 SSDISARM <safe_sfc_name> i comment: " SSDISARM <safe_sfc_name>";

safe_sfc_name ' ['ARM'] ' := TRUE

Figure 7:5
Safe state SFC commands

REFERENCES

[1] Siemens, "SIMATIC APT programming manual (4.2.1 and 4.3),"

249

APPENDIX IV

WEIGH FUNCTION IN EACH OF THE FOUR lEC 1131-3

LANGUAGES

250

F=.i Funclion WEIGH

ExampSe functiesn WEEQH provides Iha functions of 8CD-to-b(nafy conversion o(a gross-
wetgtit Snput from a scale, the binary fniogor subtraction of ft tftre weight which has been
previously converted mi stored In the memofy of the programmable controller, and the
conversion of lh9 riesurilng net weight back lo BCD forrii, e.g., for an output display. The
*EN' Input is usdd to indicate fiiat the scale i$ road^ to perform the weighing operation.

The 'ENO' output indicates that an appropriate command exists (e.g., trom an oporator
pushbutton), the scale is In proper condttion for the weight lo be read, and each function
has a corroci result.

A textual form of the declaration of this function is:

F ^ n t C n O M H E I C H : KOTO (* SCO • B C O d . d « }

VJUlJMPOr {* «SM" i n p u t i » UB»d to indic»t« 'mctX* «r*Mly" *)
i » l ^ _ < ; « B » n d : BOCL >
qxoniijittigb^ ; wyPS) (* BCD Mcoded •]
't:»r«__w*lgtit : t>»t ;

Ttie body of funclion WEIOH in the lU language is:

LO Wdigh ĉ-ammand
JMPC • WEIGH. NOW
ST ENO (• No W6igwiig. 0 lo "EHO- •)
RET

W6EGH„N0W: LD
BCD TO INT
SUB t«.f»_»«HglH
INT_TO_BCO

The body of function WEIGH In tiie ST language is[

13? "•igbt_*«!!»>«J>d TBBM

Figure 1

Page 157 of lEC 1131-3 the weigh function [1]

251

An oquivalont graphical docfaratloni of fursî tion WEIGH is;

_ + -
mmti J

B O O I i — - Iweigh^ccmnancE jict^^weight | —-WORD

I N T - " - i t a r e _ v e i g h t , i

The tuncllon body Irt ttia LD language Isr

1 1 »CD_ 1 1 r H T _ 1 .)
1 weiglrs_C£Kaiftand | TO>_INT 1 1 SOB 1 1 T O ^ B a > 1 KNO '

1 3 „ ^ _ „ „ | E K : E H O l -
1 1 1

- J E N E H O I -
! 1

— I E N mo\ () -+
1 1 1

1 1 1
1 gEoss^we i ^ S i t — 1 1 -

1 1
- ! 1-

1 1 •
— 1 1 •—net^^Keight 1

1 4-— + 1 1 + . " 1
I: t a r e ^ w e i g h t -• — - -- 1 1 1

1 1

lunclion body in Uid FBD languago Is:

+-—'—-"+
1 BCD_ 1 4 - — " — + 1 i j r r _ J
1 T O ^ I H T 1 1 SUB 1 1 TOJiCD 1

weigh_caam!iaod 1 eh iEBO | — - J S J * K M O l — ' l E i J B K O i — E K O

gro33_^Meight 1 1"" -5 1 1 j — i t s t w e i g h t

*" + i- 1 . . ^ - ^ — +

t.«iE<! weight—""""""""""- -I 1
4 - +

Figure 2
Page 158 of lEC 1131-3 the weigh function [1]

REFERENCES

[1] lEC, "lEC 1131_3 Programmable controllers - Part 3: Programming languages,"

252

