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Abstract. 

Twistor Theory of Immersions of Surfaces 

in Four-dimensional Spheres and Hyperbohc Spaces 

Helen Linda Fawley 

Let f : S ^ S'^ he a.n immersion of a Riemann surface in the 4-sphere. The thesis 

begins w i t h a study of the adapted moving frame of / in order to produce conditions 

for certain naturally defined l i f ts to SO(5)/U(2) and S0(5) /T^ to be conformal, har­

monic and holomorphic wi th respect to two different but naturally occuring almost 

complex structures. This approach brings together the results of a number of authors 

regarding l i f t s of conformal, minimal immersions including the link wi th solutions of 

the Toda equations. Moreover i t is shown that parallel mean curvature immersions 

have harmonic l i f ts into SO(5)/U(2). 

A certain natural l i f t of / into CP^, the twistor space of 5"*, is studied more care­

f u l l y via an explicit description and in the case of / being a conformal immersion this 

gives a beautiful and simple formula for the l i f t in terms of a stereographic co-ordinate 

associated to / . This involves establishing explicitly the two-to-one correspondence 

between elements of the matr ix groups Sp(2) and S0(5) and working w i t h quater­

nions. The formula enables properties of such l if ts to be explored and in particular 

i t is shown that the harmonic sequence of a harmonic l i f t is either finite or satisfies a 

certain symmetry property. Uniqueness properties of harmonic l i f ts are also proved. 

Finally, the ideas are extended to the hyperbolic space and after an exposition of 

the twistor fibration for this method for constructing superminimal immersions 

of surfaces into H'^ f r o m those in S"' is given. 
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C H A P T E R 1 

Introduction 

The recent intensive investigation of minimal immersions of surfaces in spheres was 

ini t iated by the work of Calabi in the late 1960's [13]. He studied minimal immersions 

of the 2-sphere in S'^'^ by associating to each immersion a holomorphic curve in the 

homogeneous Kahler manifold S0{2m -|- l)/U{m). Using complex analysis on these 

holomorphic curves gives rise to a complete classification of all minimal 2-spheres in 

an n-sphere in terms of holomorphic 2-spheres in complex projective space. Calabi 

was also able to produce a formula for the area of such minimal surfaces. 

This work was extended by Chern [14, 15], who associated to a minimal immersion 

/ : 5^ -> 5"̂ ™ a holomorphic curve $ : 5'̂  ^ CP^"" called the directrix curve. This 

curve is rational and real isotropic. He exploited properties of this curve to study 

min imal immersions of S"^ in 5"* and spaces of constant curvature in general. Using 

these ideas, Barbosa [2](1975) was able to improve Calabi's result to show that the 

area of / is a mult iple of iir and together wi th invariants of the directrix curve this 

gave rise to examples w i t h a prescribed area. Barbosa also obtained a r igidi ty theorem 

showing that isometric minimal immersions / i , / 2 : S'^ —> S'^" differ by a rigid motion 

of the ambient space 5^™. 

Throughout the 1980's a number of mathematicians and physicists worked more gen­

erally on a similar analysis of harmonic maps (branched minimal immersions) of 



1. INTRODUCTION 

surfaces into Riemannian symmetric spaces. In each case, this was done by associ­
ating to each harmonic map a holomorphic curve in a suitable homogeneous Kahler 
manifold, and progress was made on harmonic maps of 5'̂  into CP" (Eells-Wood) 
18], corhplex Grassmannians (Wolfson) [30]. This was later extended by Uhlenbeck 

through the study of harmonic 2-spheres in U(n) and compact Lie Groups in general 

;28;. 

By studying almost complex curves in and associated holomorphic maps into the 

complex hyperquadric Qs, Bryant [10] showed that every Riemann surface occurs as 

a min imal surface in (wi th a finite number of branch points). Further, by applying 

Calabi's techniques to the twistor fibration vr : CP^ —>• he was able to prove that 

any compact Riemann surface may be conformally and harmonically immersed in 

the 4-sphere [11]. The proof of this result has two important components: first of 

all , for a Riemann surface M ^ , one shows that i f (j) : ^ CP^ is a horizontal, 

holomorphic curve then ircf) : —> 5"̂  is a superminimal immersion and conversely, 

every superminimal immersion $ ' : Af^ —> 5"* is of the form ircj) where ^ is an essentially 

unique horizontal, holomorphic curve in CP^. Bryant then derives a 'Weierstrass' 

formula showing how to produce </>(/, g) f rom any pair of meromorphic functions ( / , g) 

on M ^ , to conclude that T r ( f ) { f , g ) is conformal and minimal (indeed superminimal). 

A useful and powerful tool in the study of harmonic maps into CP" is the harmonic 

sequence of harmonic maps derived in a particular way f rom the given one. Wolfson 

introduced this concept in his study of harmonic maps into complex Grassmannians, 

but the original idea goes back to Laplace. For a Riemann surface M , the harmonic 

sequence of a harmonic map (j> : M ^ CP" neatly characterises the properties of that 

map, and this approach includes the case of harmonic maps into 5" via stereographic 

projection to RP" and inclusion in CP". For conformal minimal immersions of S"^ 

into C P " the harmonic sequence is finite and is essentially the Frenet frame of an 

9 



1. INTRODUCTION 

associated holomorphic curve. In the case of minimal immersions of S'^ into S'", this 
curve is the directrix curve discussed above. This approach features strongly in the 
work of Bolton and Woodward [4, 5, 6, 8 . 

Bells and Salamon [17] (1984) studied conformal and harmonic maps of a Riemann 

surface M into an oriented Riemannian 4-manifold N via the twistor space of A'̂ . In­

stead of considering the natural almost complex structure J i (integrable i f N is ±-self-

dual) they used a different (never integrable) almost complex structure J2 obtained 

f r o m J i by reversing the orientation along the fibres. This provided a parametrisation 

of conformal and harmonic maps and showed that there is a bijective correspondence 

between such maps and (non-vertical) J2-holomorphic curves X/J : M —y S±, where 

S± are fibre bundles over iV of unit eigenvectors of the Hodge *-operator acting on 

yy2 rpjy^ This gives a twistorial description for all conformal and harmonic maps into 

A'''' and leads to the distinguishing of special classes. Although the J2-holomorphic 

curves are somewhat more difficult to deal wi th , this approach encompasses many 

of the previous results. For example, i f tj; is Ji- and J2-holomorphic then i t is hori­

zontal and projects to a real isotropic harmonic map, such as Bryant's superminimal 

immersions mentioned above. Further, Fells and Salamon used the twistor bundle 

CP^ —> 5"* to produce examples of harmonic maps into CP^. 

Much of the above work has been unified in the monograph of Burstall and Rawnsley 

12], who study harmonic maps of into an inner symmetric space N. I t is shown 

that such maps correspond to holomorphic curves in a certain flag manifold which is 

holomorphically embedded in the twistor space of N and this enables stable harmonic 

2-spheres to be completely classified. 

The connection between harmonic maps of surfaces into CP" and S'" and solutions of 

the Toda equations has been the subject of increasing attention since a Lie algebra 

formulat ion of the Toda equations was given almost simultaneously by Adler, Kostant 

10 



1. INTRODUCTION 

and Symes in the late 1970's [1 , 24, 27]. They showed that for each simple Lie algebra 
there is a corresponding Toda system and that knowing the solutions of this system 
is equivalent to knowing the weight structure of the fundamental representations of 
the Lie algebra. Two particular forms of the Toda equations, open and affine, can 
be formulated for each Lie algebra and the solutions to both may be interpreted in 
terms of special types of harmonic maps into G / T . These have been investigated and 
classified by Bolton, Pedit and Woodward [5, 9]. This theory forms part of a larger 
programme to study the relation between integrable systems and harmonic maps into 
symmetric and related spaces (see for example [20]). 

This thesis is one step on the way to a unified description of these ideas and includes 

extensions to immersions other than minimal ones into S"*. The work is organised as 

follows: 

Chapter 2 gathers some background material on defining natural l i f ts of immersions 

/ : 5 —> 5"*, the relevant harmonic sequence theory and some remarks on complex 

curves. Chapter 3 defines l if ts of / to the homogeneous spaces S0{5)/K in terms of 

the adapted moving frame of / . This approach enables the l if ts and their properties 

to be studied in a unified way and conditions for such l if ts to be conformal and to be 

harmonic are derived. For K - U(2) , this gives rise to holomorphicity results and in 

particular two theorems of Eells-Salamon are proved directly. For K = T , i t is shown 

that this framework is an excellent one in which to see the l ink between harmonic 

maps / and solutions of the so(5)-Toda equations. Further the l i f t of an immersion 

w i t h parallel mean curvature in 5"* into SO(5)/U(2) is shown to be harmonic. 

In chapter 4, twistor l i f t s of / to CP^ are studied and an explicit formula for the l i f t is 

produced, which has a simple fo rm in the case where / is conformal. This is achieved 

using the twistor fibration TT : CP^ —> 5^, finding the correspondence between Sp(2) 

and S0(5) , identifying CP^ = Sp(2 ) /U( l ) x Sp( l ) and working wi th quaternions. 

11 



1. INTRODUCTION 

Chapter 5 uses the formula for the l i f t to examine some properties of l i f ts of conformal 

immersions. Some examples are given which demonstrate the equivariance of the 

l i f ts and the condition for harmonicity is derived. Holomorphic l if ts are studied and 

found to be unique and harmonic l i f ts which are not holomorphic are found to have 

harmonic sequences wi th a particular symmetry property. In particular this shows 

that all conformal harmonic l if ts are either superminimal or superconformal maps 

into CP^. The 'positive' and 'negative' l i f ts of [17] are easily seen using the methods 

of chapter 4. 

In chapter 6, these ideas are extended to immersions of surfaces into H'^, a four-

dimensional hyperbolic space. I t is shown that there is an entirely analogous de­

scription of the twistor fibration for i J^ and the l if ts into the homogeneous spaces 

of S 0 ( l , 4 ) to that of the S'̂ '-case. Further, superminimal immersions in H'^ may be 

constructed f rom those in 5"* via a 'twistor transform' and an algorithm analogous to 

that of Bryant. 

Finally, Chapter 7 is an appendix which contains the conventions regarding the 

quaternions, H " and the groups Sp(n) used in the thesis. 

12 



C H A P T E R 2 

Background IMaterial 

This chapter sets out the background material which wi l l be required in the sequel. 

For a Riemann surface S, section 2.1 gives the natural way in which hfts of immersions 

/ : 5* —> 5"̂  to homogeneous spaces S0{5)/K are described in terms of the adapted 

frame associated to / , the spaces S0{5)/K being viewed as different generalised 

fiag manifolds. The equivariance of such l if ts under the actions of isometries and 

conformal transformations is discussed in section 2.1.2. The definition of a harmonic 

map appears in section 2.2 and in more detail in 2.2.1. The theory of harmonic 

sequences is given briefly in 2.2.2 and contains many definitions and results which 

w i l l be required in the later chapters. Section 2.3 discusses Ji- and J2-holomorphic 

curves and in particular shows how to recognise such curves in CP^. Let us begin 

w i t h the following definition: 

Definit ion 2.1. A differentiabh mapping f of a manifold M into another manifold 

N is called an immersion if dfp : TpM —> Tff^p^N is injective for every point p of M. 

2.1. L i f t s of Immers ions / : 5 —»• 

2.1.1. F l a g Manifolds . A t each point p 6 5, the tangent bundle to S"* restricted 

to S (considered at the point p) splits as 

Tf^p)S^ = TpS ® NpS 

13 



2. BACKGROUND MATERIAL 

where T^S is the tangent space and Ap^" the normal space to S in S'^ and both TpS 

and NpS are 2-planes. Since / is normal to 5"* in we write 

^' = {f{v)]®T,S®N,S 

where { / } is the fine in determined by / . 

Now choose oriented orthonormal bases 61,62 for T^S and 63,64 for A^p^ so that 

ei , 62, 63, 64 gives the standard orientation on S"*, i.e. 

= { / } ® span{ei, 62} ® span{63, 64} . 

Thus given any f : S S'^, there is an adapted orthonormal frame 

^ = ( / 161 1 6 2 1 6 3 1 6 4 ) e S0(5) 

and this frame defines a local l i f t of / to S0(5). In general, the frame cannot be 

chosen globally since a basis has been nominated on each of the 2-planes TS and A'̂ S'. 

However, the frame F is unique up to rotations in these planes, giving a global h f t 

of / into S0(5) /T^ . Hence, there is a naturally defined global h f t of / into each of 

the homogeneous spaces S 0 ( 5 ) / A ' , where K C S0(5) is a subgroup of maximal rank. 

This means that K is one of T^, U(2), S0(2) x SO(3),SO(4). For any such K, the 

inclusion T C K induces a projection ax : S0(5) / r^ S0{5)/K. Thus given a l i f t 

f : S ^ SO(5 ) / r2 we have a map / = axf : S ^ S0(5) /A" . Also, S 0 ( 5 ) / A : for 

K = r^ , S0(2) X S0(3) or U(2) is a complex manifold and CTA' is complex analytic 

for A: = SO(2) X SO(3) or U(2) (see [23]). 

The homogeneous spaces S0(5 ) /A' may be identified as different types of generalised 

flag manifolds. Their elements are given in terms of different descriptions of as 

orthogonal direct sum decompositions of oriented subspaces. In each case S0(5) acts 

on the flags and K is the stabiliser of a typical flag. 

14 



2. BACKGROUND MATERIAL 

For example, in the case of S0(5)/T^ the elements are direct sums of oriented sub-

spaces 

R^ = L®Vi®V2, d i m L = 1, d i m K - = 2 (̂  = l , 2 ) 

w i t h the orientation induced on by those on L, Vi and V2 agreeing wi th the standard 

one. For SO(5)/U(2) the decompositions are of the fo rm 

R^ = L®V, d i m l = 1, d i m V = 4 

w i t h V having an orthogonal complex structure compatible wi th the metric and ori­

entation. This is a particularly interesting case since, as wi l l be shown in Chapter 4, 

SO(5)/U(2) may be identified wi th the total space of the bundle of orthogonal almost 

complex structures on S"* and also wi th the space of maximal isotropic subspaces of 

C^ (see [2]). 

For SO(5)/SO(2) X S0(3) the decompositions are of the form 

R^ = W®W^, dimW = 2. 

Finally, for SO(5)/SO(4) the decompositions are of the fo rm 

= X © y , dimL = 1, d i m V = 4 

and SO(5)/SO(4) = S\ 

Note that the projection maps ax may now be understood in terms of 'forgetting' 

certain properties. For example, i f {L,Vi,V2) £ S0(5)/r^ then both Vi and V2 

have a natural orthogonal complex structure and hence so does V = Vi ® V2- The 

projection (7u(2) : S0{5)/T^ ^ SO(5)/U(2) sending (1,^1,^2) to {L,V) 'forgets' the 

decomposition of V. 

From the discussion above i t is now clear how the l if ts may be identified. For f : S ^ 

s o ( 5 ) / r 2 î ĵ ĝ 

f{p)-{{m},T,{S),Np{S)) 

15 



2. BACKGROUND MATERIAL 

and the others can be immediately wri t ten down f rom this. In particular note that 

the msip g : S SO(5)/SO(2) x S0(3) which is given by g{p) = {Tp{S),Tp{S)^) is 

just the Gauss map of / : 5 —> 5"*. 

Since Sp(2) is the universal cover of S0(5), the above discussion may be rewritten 

in terms of homogeneous spaces of Sp(2). In particular, i t wi l l be shown in Chap­

ter 4 that SO(5)/U(2) = Sp(2 ) /U( l ) x Sp(l) and i t is also not hard to show that 

S0{5)/T^ - Sp(2)/r2 and SO(5)/SO(4) = Sp(2)/Sp(l) x Sp( l ) . 

There are a number of different ways of describing these l i f ts , and in the sequel, 

Chapter 3 w i l l consider the description in terms of the moving frame while Chapter 

4 w i l l focus on the use of quaternions in determining an explicit formula for the l i f t . 

2.1.2. Equivar iance of L i f t s . The group S0(5) acts on and hence on 5"* as 

a group of isometries. Also ([7]) S0(5) acts on CP^ as the group of holomorphic 

isometries which preserve the horizontal distribution. 

Let f : S ^ S'^ and let / denote the l i f t of / to S0{5)/T^. Suppose g € S0(5) and 

look at the l i f t of g f . This is the flag given by 

{{9f}®T'^S®N'^S) 

w here T^'^S ® N^-^S denotes the decomposition of ( g f ) ^TS'^ w i th respect to the map 

g f . Bu t this is just g applied to the flag 

{{f}®TfS®N^S) 

or, i n other words, g f . So the new l i f t is obtained by applying g to the original l i f t 

and this is expressed neatly as gf = gf for g 6 S0(5). 

Now suppose that there exists an isometry h of S such that f{h{p)) = gf{p) for 

g G S0(5) . Then gf = gf imphes that the same symmetry is exhibited by the l i f t 

16 



2. BACKGROUND MATERIAL 

and vice-versa. For example, / has a 2-fold symmetry i f and only i f / has a 2-fold 
symmetry. Examples of immersions and their l i f ts which have S0(3)-symmetry and 
which have 5'^-symmetry are given in Chapter 5. 

Now, the group S O ( l , n ) is defined as 

SO{l,n) = {Ae GL(n + 1, M) | = /a,„} 

where hn = 

V 

- 1 
\ 

In j 
. I t is the conformal group of S*" ^, taking (n — 2)-spheres 

to (n — 2)-spheres. S O ( l , n ) acts as 

/ 

V 

t 

u A 

where t G R, x, u, u G M" , taking 

\ / 

Ax + u 
v.x -)-1 

This is a conformal transformation and all conformal transformations are of this form. 

26] 

I f ^ G S 0 ( l , 5 ) then i t is again the case that gf = gf i.e. applying a conformal 

transformation and then l i f t ing gives the same result as applying the conformal trans­

formation to the l i f t . 

2.2. H a r m o n i c Maps and M i n i m a l Immersions 

Consider a smooth map ^ : M —> TV between the manifolds M and A'̂  and suppose 

M is compact. There are two interesting variational problems for such maps: 

(1) I f (TV, h) is a Riemannian manifold wi th metric h then under each immersion 

(/), M inherits a metric ( j ) * h and we ask when M is a minimal submanifold of A'' 

17 



2. BACKGROUND MATERIAL 

- that is, when ^ is a minimal immersion. This is the case when is a. critical 
point of 

V{<l>) = j d V { f h ) 
JM 

[dV{(j)*h) is the volume element for ( i ) * h ) for which the condition is given by 

the Euler-Lagrange equations, tva,ce{n{(f))) = 0. 

(2) I f M and A'̂  are each equipped wi th their own metric, we can ask when ^ is a 

harmonic map between these Riemannian manifolds. This is the case when ( j ) 

is a critical point of the energy functional 

E{(l)) = j \d(f)\^dvolM-
JM 

The condition is again given by the Euler-Lagrange equations, which are equiv­

alent to traceV(f(/i = 0. 

These cpestions are about two quite different properties of (f). However, i f ̂  : ( M , g) —> 

(N, h) is an isometric immersion then (f) is harmonic i f and only i f i t is minimal [16]. 

Moreover, i f d im M = 2 and ^ is a conformal immersion then ^ is harmonic if and 

only i f i t is minimal [8 . 

2.2.1. Unders tanding \/d(f). Suppose (f) : M N is a, smooth map between 

Riemannian manifolds, so that </> is harmonic i f and only i f traceVcZ^ = 0. Now, 

V # -TM^TM-^TN w i th 

(V(^(^ ) (X,Y) = { S I x d ( t > ) Y , X,Y eTM 

and V represents the connection on the bundle H o m ( r M , <f>*TN). The dilferential d ( j ) 

may be thought of as a section of this bundle and since there are connections on TM 

and (f)*TN (the latter being induced by the connection on TA'^), V is the connection 

induced by these. Indeed, 

18 



2. BACKGROUND MATERIAL 

where V-^ , V''^ denote the Levi-Civita connections on M and respectively. Also, i f 

( j ) is isometric then V d ( f ) is precisely the second fundamental form of (f>. 

2.2.2. H a r m o n i c Sequences. A harmonic map <f) : S ^ CP" possesses a series 

of related harmonic maps . . . ( ^ _ 2 , ( j ) - i , ( f > o , ( f ) i , ( j ) 2 . • • called the harmonic sequence of 

(f> = 4)Q. I t is by studying this sequence that many other interesting properties of (f) 

may be uncovered. A brief overview of this theory is given below. For further details 

the reader is directed to the papers of Bolton and Woodward [4, 6, 8 . 

Let ( j ) : 5 ^ CP" be a map of a Riemann surface S into CP". W i t h respect to a local 
. . . d d 

complex co-ordinate z on S, and wri t ing 5, d for the partial derivatives — and — 

respectively, the condition for <̂  to be harmonic may be writ ten as 

( V 5 # ) ( 5 ) = 0 

i.e. 

v r ( # ( 5 ) ) - ^ ^ ( v f 5 ) = o . 

But since 5 is a Riemann surface, v | 5 = 0 and the condition is 

v f " 5 < / . = 0. (2.1) 

The key lies in interpreting harmonic maps in terms of line bundles as follows: let 

L CP" denote the tautological line bundle whose fibre over x G CP" is the hne 

X C C""*"̂ . Then there is a bijective correspondence between maps ^ : 5 —̂  CP" 

and smooth complex line subbundles of 5 x C""*"̂  given by (j) <j)*L. The other 

basic ideas involved are the expression of (2.1) as a holomorphicity condition and 

the use of some complex variable theory. Then via particular holomorphic and anti-

holomorphic bundle maps one builds a sequence of line bundles [Li] and each is 

given by Li = (j)*L for some uniquely determined 4>i : S CP". Moreover each is 

harmonic. 
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The theory of harmonic maps (f> : S —y CP'^ includes that of harmonic maps / : 

—> of surfaces into 5"". For, i f TT : 5" MP" is stereographic projection and 

i : RP" CP" is the inclusion map, then 4> = iirf is harmonic i f and only if / is 

harmonic. 

The local description goes as follows: Suppose that (j) : S CP" is a harmonic 

map and suppose that (j) is linearly f u l l , which means that the image of (j) is not 

contained in any proper projective complex linear subspace of CP". Locally, write 

(j) = = [ /Q] where /o is a C""'"^\{0}-valued function and suppose that /o is chosen 

to be a holomorphic section of LQ = ^ g i . Then maps (j)p are defined inductively by 

(pp = [fp] where 

- ^ = / p - , l + ^ l 0 g | / p | / . 

12 
P I 

d-z l /p - iP 
fp-i. 

Each of the maps (f)p is harmonic, is related to ^p+i in a simple way and by 

construction, ( /p+i , /p) = 0. 

Note: i t can be shown that i f (j)o = [/o] w i th /o not a holomorphic section of LQ then 

the condition for (f)Q to be harmonic is given locally by 

dzdz I / o r dz ifordz'^'^ dz -

for some /J- E C. However, i t is true that there always exists a function X{z,z) such 

that A/o is a holomorphic section of the bundle. 

I f ^ 
Define 7p = ^ ^ (if (f>p is ± -ho lomorph ic then set ^p^i = 0). Then for a conformal 

Jp 
harmonic map, (see [6] for the non-conformal version) the metric induced by (j)p is 

given by 

d4 = ( j p - i + j p ) \ d z 
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The curvature of (/>p is 

K{<j>,) = K, = - l ^ l o g F , , F, = ^ (7p- i + 7 P ) . (2.2) 

The Kahler angle is a function ^ : 5" ̂  [0, TT] defined by 

(f>*u} = cos 6dA 

where u is the Kahler fo rm on CP" and 6 essentially measures by how much ( f ) : S ^ 

CP" fails to be holomorphic. The Kahler angle 6p corresponding to (f)p is given by 

( t a n i ^ , ) ^ = ^ . (2.3) 

There are globally defined forms 

Fp = 7p|c?z|̂  and Up+k,p = Up+k,pdz'' 

w i t h 

_ ifp+kjp) 
Up+k,p — f 2 ' 

Jp 

Then the fact that ^ ^_ = ^ „ gives rise to the unintegrated Pliicker formulae 
dzdz dzdz 

log 7p = 7p+a - 27p + 7p_i 

so that any two consecutive F-invariants of a harmonic map determine all the F-

invariants for that map and for fixed G N, the F-invariants together wi th the set 

{C/ i ,o , . . . , Uk,o] determine {J/^+i,?, • • • , Uq+k,q] for all 5 G Z [6'. 

Congruence T h e o r e m [6]. Let S he a connected Riemann surface. Let tp, tp • S 

CP" be harmonic maps with F _ i = f _ i , Fo = f o - U t̂ p.o = t̂ p,o for p = 2,... ,n + 1 

then there exists a holomorphic isometry g o /CP" such that ip = gij>. I f i p is linearly 

full then g is unique. 

This theorem says that up to a holomorphic isometry of CP" a harmonic map is 

determined by the invariants F _ i , FQ and [ /2,o, • • • ) ^^n-i-i,o-
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Definit ion 2.2. A harmonic map (p : S CP" is k-orthogonal if k consecutive 

elements of the harmonic sequence are mutually orthogonal. 

Therefore, a harmonic map is conformal i f and only i f i t is 3-orthogonal. 

Propos i t ion 2.3. [5] / / some k consecutive elements in a harmonic sequence are 

mutually orthogonal then every k consecutive elements are mutually orthogonal. 

In particular, i f { f p + 2 , f p ) = 0 for some p (i.e. (f>p is conformal), then ( / p + 2 , / p ) = 0 

for all p and every element (pp in the sequence is conformal. 

I n all cases, (/) is at most (n + l)-orthogonal and there are two ways in which this case 

can arise: 

The simplest case is that in which the harmonic sequence has finite length and thus 

reduces to the Frenet frame of a holomorphic curve. This is the case where the 

Up+k,p are zero for all p. A harmonic map wi th such a harmonic sequence is said 

to be superminimal (or pseudo-holomorphic [6], [13] or complex isotropic [18]) and 

the harmonic sequence has exactly n + 1 elements i f (j) is f u l l . These are mutually 

orthogonal w i t h the first a holomorphic curve and the last an anti-holomorphic curve. 

For example, every harmonic map of S"^ into CP" is superminimal. 

Definit ion 2.4. A map 6:3-^ CP" is called real isotropic if -Trr-'^rT = 0 
Oz" oz'^ 

k. 

Then cf) is superminimal i f and only i f (j) is harmonic and real isotropic. 

I f the harmonic map <f> is {n + l)-orthogonal but is not superminimal then (j) is said 

to be superconformal. 

Note that every harmonic map (j) : S CV^ and every conformal harmonic map 
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( j ) : S CP^ is either superminimal or superconformal. However, in general the 

sequence is infini te in both directions and, apart f rom consecutive elements being 

orthogonal by construction, there are no orthogonality properties. 

Case . Suppose / : 5 ^ 5" and let (j) ^ iwf : S ^ CP". Then (j) is harmonic 

and linearly f u l l i f and only i f / is harmonic and Hnearly f u l l . The harmonic sequence 

{/p} of c;̂  is constructed in the manner described above and this is said to be the 

harmonic sequence of / . Also, / is called A;-orthogonal if (j) is A;-orthogonal in the 

sense of definition 2.2. 

Since ( / , / ) = 1 and / is real, the sequence of sections {/p} may be chosen in a 

particularly nice way. For, 

S O that taking fo = f gives fo as a global holomorphic section of LQ. Induction using 

equations (2.2) shows that 

j p 

Propos i t ion 2.5. [6] / / / is [2k — l)-orthogonal for some k < + 1 then f is 

2k-orthogonal. 

Thus for f : S S'^'^, i f / is (2m -|- l)-orthogonal then / is superminimal. A 

harmonic map into S'^"^ is said to be superconformal i f i t is 2m-orthogonal but not 

superminimal. Notice that this is not just a t r iv ia l modification of the CP" case 

since, for n = 2m, the harmonic sequences which arise f rom linearly f u l l / are not 

orthogonally periodic. 

There are two types of superconformal harmonic maps into 5^"*, namely those which 

are linearly f u l l in S'^" and those which are Hnearly f u l l in a totally geodesic 5^"^"^ 

in S^"^. In the latter case, the harmonic sequence is orthogonally periodic. Notice 

23 



2. BACKGROUND MATERIAL 

that any conformal harmonic map / : 5 — 5 ^ or 5"* is either superconformal or 

superminimal and so is every almost complex curve / : 5 —> 5^ [5]. For example, 

the Veronese surface in S'^ is superminimal and the Clifford torus is a superconformal 

surface in S^. These examples are studied in detail in Chapter 5. 

2.3. Complex Curves 

2.3.1. Horizontal and Vert ica l Subspaces. Let Z he & Kahler manifold equipped 

w i t h an orthogonal complex structure J (orthogonal means that J preserves lengths) 

and consider a fibration 
Z < Y 

X 

over a real manifold X w i th fibre Y, a complex submanifold so that TT is a Riemannian 

submersion. Then at each point p ^ Z, the tangent space TpZ (a complex vector 

space) decomposes as the orthogonal direct sum of two pieces: 

TpZ = Hp® Vp. 

Hp is called the horizontal subspace and Vp the vertical subspace. In particular, 

assuming each 1^ is a complex submanifold, Vp = TpYp where Yp = 7 r ~ V ( p ) is the 

fibre over 7r(p). 

Now dir : TpZ —> r,r(p)^ maps Hp isomorphically, indeed isometrically, onto TT^[P)X. 

[Hp is a complex vector subspace of TpZ and Vp = ker(c?7rp)). Also ii JH = J\HJ, and 

Jy = J\y^ then the complex structure J sphts as 

J = JH® JV-

2.3.2. C o m p l e x C u r v e s . A map ^ between a Riemann surface {S,J^) and an 

almost complex manifold [Z, J^) is complex analytic i f its differential d(l) : T^S —*• 
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T^[x)Z is a complex hnear map, that is ([17]) 

d(t>oJ^ = J^o d(j). (2.4) 

Given any complex structure J on Z , ^ is said to be a complex curve i f (2.4) holds. 

Recall that there is an orthogonal complex structure J = Ji = JH®JV on Z and that 

Ji is integrable on Z. Now define J2 = JH ® {-Jv)- Then J2 is an orthogonal almost 

complex structure on Z but J2 is not integrable [16]. When ^ is a complex curve wi th 

respect to the almost complex structure Ji we say that (j) is J,-holomorphic. Note 

that (j) is J i- and J2-holomorphic i f and only ii (f> is a horizontal, holomorphic curve 

17 . 

2.3.3. Z = CP^. Let [v] he a point in CP^. Tangent vectors to CP^ at [v] correspond 

to linear maps f r o m spanju} to span{u}"''. Suppose we have a curve a : I ^ CP^, 

a(t) = [z{t)] w i th cx[to) = [-^(^o)] = [v]. Then 

a'ito) ^ zito) ^ z'ito) - ^-^^^T^z{to). 
z\to)\ 

Thus given tp : S CP^ wri t ten locally as ip{x,y) = [(p{x,y)] then 

( A ) = : ^(..,) « M^,y) - . ) (2.5) 

and so on. 

I n this context i t is useful to think of a complex manifold as a real manifold wi th an 

automorphism J on each tangent space. For example, C^" = R^" ® C = V'^ ® V~ 

where V"*" and V~ are the ±z-eigenspaces respectively and identifying V'^ w i th C" 

gives Jv = iv, that is, J is equivalent to multiplication by i. I t is usual to identify 

TCP" ^ r ( i ' ° )CP" (r(^'°) is the -t-2-eigenspace of Ji (or J2)) . 

Finally, note that the complex curve condition (2.4) is d%lT^^''^^S) C T^^'^^Z. {T^'^'^^S = 

TS). 
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2.3.4. How to Recognise a J i -holomorphic C u r v e in CP^. Let z = x + iy he 

a local complex co-ordinate on 5* and let : TS TS act as 

\ d x j dy' \ d y ) dx' 

Suppose (j) : S ^ CP^ and write dcj) — — where $< is the linear map described 
\OtJ 

in (2.5) above. Then the left and right hand sides of (2.4) are given by 

and 

respectively, so that ( f ) is Ji-holomorphic i f and only i f 

$^ + i^y = 0 

or, alternatively. 

/ . - ^ / - o , f = [<l>]. 

2.3.5. How to Recognise a Jz-holomorphic C u r v e in CP^. Since TCP^ = 

H ®V splits as a direct sum of horizontal and vertical subspaces, a vector u G TCP^ 

may be decomposed into horizontal and vertical components as u = UH + uy. Then 

Ji{u) = JI{UH + uv) = JH{UH) + Jv{uv), 

J2{u) = J2{UH + Uv) = JH{UH) - Jv{uv) = JI{UH - Uv) = J i (u ) , 

say, so that knowing how to obtain u f r om u means that i t is only necessary to use the 

complex structure J\ and the projections onto the horizontal and vertical subspaces 

in calculations. To this end, note that at the point [p] G CP" ,̂ the vertical subspace 

Vp = Hom{[p] , j [ p ] } and so 

{u,p) , {u,jp) . { u j p ) . 
uv = + ^JP = ^ j p . 
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This gives 

{u,jp) . 
UH = u - uv = u riT^JP 

and 

u = UH - uv = u - 2 jp. 
\pr 

Notice that u corresponds to the linear map where 

9t: (p^ (pt U|2~*^ ~ 2 jcp. 

Let z, J'^, ^ , d(p be as in section 2.3.4 above. Then the left and right hand sides of 

(2.4) w i t h J^ — J2 are given by 

and 

respectively. Also, 

J2 0 dcP = J2($x) = J l i k ) = 
\0x 

o j ' { ^ ] = - d < p ( ^ ] ^ - ^ ^ 
\dy \dx 

and 

so that (p is J2-holomorphic i f and only i f 

J2 0d(P — = J2{^y) = Ji{%) = 1% 

These conditions expand to give 
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Note that i f </> = [1 , z i , ^2, ^3], the equations (2.6) hold i f and only i f 

Zlz - Z2zZ3 + Z3,Z2 = 0 

^ 3 . = ^ ^ ( . - X . 3 + . - 2 ) . 

In particular, i f ( j ) is Ji-holomorphic {zj- = 0, j = 1,2,3) and J2-holomorphic then (j) 

is horizontal. Moreover, any two of these properties imply the th i rd . 

J2-holomorphic curves arise as the l i f ts of conformal, harmonic maps (minimal im­

mersions). Indeed, a result of Eells-Salamon (theorem 3.12) shows that there is an 

essentially bijective correspondence between J2-holomorphic curves and conformal, 

min imal immersions. Also, proposition 3.4 gives the conditions on the moving frame 

of / : S' —> 5"* for the l i f t to CP^ to be J2-holomorphic. The results in section 5.5.1 

give the implications of J2-holomorphicity for the harmonic sequence. 
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Lifts by IVIoving Frames 

In this chapter, the l i f ts of / : 5 —> 5"* to different homogeneous spaces of S0(5) 

are studied. The chapter begins wi th the theory of moving frames followed by some 

discussion on maps into homogeneous spaces of Lie groups. The focus then falls 

particularly on the case of S0(5), where i t is discovered that, owing to metric con­

siderations, i t is in fact better to consider this in the wider context of S0(6). In 

section 3.4, the moving frame is used to define hfts to SO{Q)/K and to explore the 

harmonicity and conformality conditions for these l i f ts . Section 3.5 illuminates these 

conditions for l i f ts to SO(5)/U(2) and also derives the J i - and /2-holomorphicity 

conditions for such l i f t s . These alford straightforward proofs of two results of Eells-

Salamon (theorems 3.12, 3.14). Section 3.6 focuses on the above conditions for l if ts 

to S 0 ( 5 ) / r ^ and 3.7 shows that the moving frame description is a useful context in 

which to demonstrate the fink wi th solutions of the so(5)-Toda equations. Further 

results appearing in section 3.8 include the remark that harmonic / : 5 ^ S"* has 

harmonic l i f t s to SO(5)/U(2) and S 0 ( 5 ) / r ^ Moreover, the l i f t into SO(5)/U(2) of 

an immersion w i t h parallel mean curvature is harmonic. 
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3.1. Moving Frames 

First note that the following conventions on indices w i l l be used 

0<a,b,...<n 

l < z , j , . . . < 2 

• r , 5 , . . . G { 0 , 3 , . . . ,n}. 

Let Ca and 0^ be smooth fields of dual orthonormal frames and co-frames (one-forms). 

Let X : S" —> N'^ be an immersion of the surface S in an n-dimensional manifold 

TV C R"-+^ and choose the frame field ea(p), p E S such that ei(p),e2(p) are the 

tangent vectors and eo(p), e3(p),... , e„(p) are the normal vectors wi th eo(p) normal 

to N in E " + \ Then, restricting to 3,0'' = 0 and 

dx = e^ei + eh2. (3.1) 

The first fundamental form, or metric, is given by 

i = ds^^ dx.dx = [oy + {ey 

and the area fo rm is 9^ AO"^. 

The rate of change of the moving frame in the directions Ca gives rise to 1-forms w^^ 

such that 

dea = wleb. (3.2) 

X 
Let F = (eo . . . e„) , w i th CQ = — , be an orthonormal frame for the immersion 

X 

X : S ^ N cindlet A = F'^dF be the matr ix of 1-forms {w\^). Notice that 

wl = Cb.dea = d{ea.eb) - de^.e^ = -w"^ 

so that in particular wl = 0 for all a and A is a skew-symmetric matr ix. Also, since 

span{e3, . . . , e„} = N{S) and dco G TS, = 0. 
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Applying the exterior differential operator d to equation (3.1) and using the fact that 

= 0 gives 

0 = d{dx) = d{e''ea) = dd^ea - A dta 

= dO'^Ca - r A w'.eb by (3.2) 

= {d6^ - r A wl]ek. 

Similarly, 

0 = d{dea) = d{w%) = dw^^eb - ^ deb 

= dw^^Cb - wlA dec 

= {dwi-wl/\wl}eb 

and the resulting equations 

de'' + wiA0'' = 0 (3.3) 

dw^^ + WIAWI = 0 (3.4) 

are called the structure equations for the submanifold x{S) of A'̂ . Some of these 

equations are given particular names. Equations (3.3) wi th the value of b restricted 

to {0 ,3 , . . . ,n} are called the symmetry equations; 

Equations (3.4) are categorised depending as (a, 6) is restricted to ( i , i ) , (r, s) or a 

mixture (r, i) and 

dwl + A iWĵ  = 0 Gauss equation on S 

dwl + wl Awl = 0 Gauss equations on A'̂ S' 

dwl + u^l Aw^ = 0 Codazzi-Mainardi equations. 

Futhermore, the equations (3.4) are precisely the integrability conditions required to 

ensure the existence of an orthonormal frame field C Q , . . . , e„ such that dca = lo^efc 
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and equations (3.3) are the conditions which ensure that dx — 6°'ea can be integrated 

up to give a co-ordinate neighbourhood for a surface wi th metric {9^Y -\- {O'^y. 

Now suppose that w^^ = h'^a-O^ for real coefficients h\^ - so that w'l{ei) = / i * , - and in 

particular the Ai = A(ei) are real matrices given by 

A- = F-'dF{ei) = F - \ { F ) = (hi). 

{w'^ A r ) ( e „ e , ) = wi{e,)6\e,) - wi{e,)6^{e,) 

= hl8^,-hi^8,, (3.5) 

the symmetry equations imply 

^ 1 2 ~ ^ 2 1 ! ^ 1 2 ~ ^ 2 1 ) ^ 1 2 ~ ^ 2 H - - - ( • • ^ • ^ ) 

Also, hli = eb.ei{ea), so that 

hoi = eb.e,{eo) = ê .ê  = ^i , , - . (3.7) 

In the same way that for a curve on a surface in particular 1-forms are related to 

the notions of geodesic curvature, normal curvature and geodesic torsion, the 1-forms 

( i f ^ ) in higher dimensional cases also have a geometrical significance. Indeed, the 

Levi-Civi ta connection for the target manifold TV is given by the matr ix of 1-forms 

(lo^) where equations (3.3) hold. Restriction to (w'j) over S gives a connection V*"" 

over S - in fact, V*''" = V'^, the uniquely defined Levi-Civita connection corresponding 

to the metric on S induced f rom that on TV. Then the submatrix (wl), 3 < r,s < n 

gives a connection V""*" on N{S). Recall that for surfaces immersed in R^, the second 

fundamental fo rm H is defined by 

U = —de^.dx 

32 



3. LIFTS BY MOVING FRAMES 

where 63 is normal to the surface in R^. By analogy, here we take the scalar product 

of —dcr w i t h dx; 

(3.8) 

Thus the h^- are none other than the components of E in the direction ê . In view 

of this discussion, the matr ix of 1-forms has a geometrical interpretation as: 

/ 

V 

t 
I 

I ^tan u 

n y nor 

\ 

Finally, i t is useful to calculate V^Cj in terms of the coefficients hi-. Since 

^ ^ • ^ j = + for i , j = 1, 2 

then 

and 

«u = (Ve,ej-,ei) = {w-{ei)ek,ei) = w]{ei) = h]^, 

bij = (Ve.ej,e2) = (wj(ei)efc,e2) = w]{ei) = h]^ 

(3.9) 

3.2. Maps into Homogeneous Spaces 

Let G be a semi-simple, compact Lie group wi th Lie algebra g. Let X £ Q and 

consider two subspaces of g: 

gx = { K e g : [ X , F ] = 0} 
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and 

g^^ = {Z ^Q:Z = ad{X)Y for some Y E g}. 

Then gx is the kernel of ad{X) and = Imao?(A') = ad{X)g. 

C L A I M . Let g be semi-simple. Then with respect to a positive definite Ad-invariant 

inner product, the spaces gx and g^ are orthogonal and g = gx (B Q'^ • 

P R O O F . See [19 . 

There is a subgroup Gx corresponding to g^, 

Gx^{geG\ Ad{g)X = X } 

and gx is the Lie algebra of Gx- Then, by the Orbit-StabiHser Theorem, 

G/Gx = Ad{G).X = {Ad{g).X\g G G). 

I n particular liY eG, the projection G G/Gx takes Y to Ad{Y).X G G/Gx-

I t is natural to embed G/Gx ^ g, where g is the Lie algebra of G, via gGx i—> 

Ad(g)X and carry out all calculations in the Lie algebra. (Thus, since g is a vector 

space, we can think of G/Gx ^ for some k.) So, for a map of S into G/K, i f 

K = Gx for some X the inclusion of G/K = G/Gx in g simplifies all the calculations. 

So the question is, given K, how to choose X so that Gx = K1 The requirement is 

to choose an X for which the stabiliser g^ is 1̂ , the Lie algebra of K. The different 

conjugacy classes < X > give rise to different subgroups K = Gx and, clearly, 

different representatives X give different embeddings of G/Gx in g-
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(o —a 0^ 
> 

< a 0 0 1 a e K 

0 

As an example, take G = SO(3), and choose X = (i o e so(3). Then 

50{3)x = { r eso(3) I [X,Y] = 0} 

so(2). 

Thus S0(3)x = S0(2). Then 

SO(3)/SO(3)x 

The Lie algebra so(3) is identified wi th via the correspondence 

/ 

^ 0 a b 
•> 

—a 0 c 1 a,6, c G R ' C so(3) 

^-b -c 0̂  

0 z y 

—z 0 X 

—y —X 0 

\ / \ 
X 

y 

and [A, A\ corresponds to a A a. In particular 

/ 

0 

0 - 1 0 

1 0 0 

0 0 0, 

The S0(3)-orbit of (0,0,1) in R^ is 5^ (notice the stabihser of (0,0,1) is S0(2)) . 

Therefore SO(3)/SO(3)x = SO(3)/SO(2) = S^. Further examples follow in section 

3.3. 

In order to look at the properties of a map cf) : M ^ N = G/K it is necessary to 

use a suitable metric on G/K. I t is natural to use a G-invariant metric, of which 

there are many choices. Perhaps the most natural is that given by the Ki l l ing form 

on the Lie algebra g. In the case of K = T , the maximal torus of G, this metric is 

not Kahler, although there are plenty of choices of G-invariant metrics which are. To 
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obtain a G-invariant metric on G/T, choose an Ad(T)-invariant metric ( , ) on g and 

define a metric on M = G / T by 

{Zr,Z,)x = {Ad{g-')ZuAd{g-')Z2) 

where ^ 1 , ^ 2 G TxM, X = Ad{g)H € g for some particular g E G and a regular 

element H G t Every G-invariant metric on G/T is so obtained [9 . 

3.3. T h e G = S O ( 5 ) Case 

Recall (section 2.1) that an immersion / : 5 S"* gives rise to an orthonormal 

frame F G SO(5) and that there are naturally defined l if ts of / into the homogeneous 

spaces S0{5)/K. The thesis is concerned in particular w i th the maximal subgroups 

K = U(2) and T^. 

I t is well-known (and w i l l be shown in Chapter 4) that the homogeneous space 

SO(5)/U(2) may be identified wi th C P ^ Despite the fact that CP^ is a symmet­

ric space, its representation as the quotient SO(5)/U(2) is not, in the sense that 

(SO(5),U(2)) is not a 'symmetric pair' (there is no involutive automorphism of 

S0(5) which has U(2) as fixed subalgebra [22]). However, recall that the inclusion of 

S0(2m - 1) in S0(2m) induces a map S0(2m - 1) /U(2m - 1) SO(2m)/U(2?72) 

and that this is in fact a bijection. Then 

SO(5)/U(2) ^ SO(6)/U(3) 

and (S0(6) , U(3)) is a symmetric pair. Thus i t is more convenient to work in the 

context of G = SO(6), and indeed the S0(6)-invariant metric induced by the inclusion 

of S0(6) /U(3) in the Lie algebra so(6) is then the standard Fubini-Study metric on 

C P ^ 

The Lie algebra so(6) spHts as 50(6) = f © m, where t is the Lie algebra of K and m 
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is the orthogonal complement of t in so(6). Now, 

so(6) = {X E M(6; R)\X + X'= 0} 

and th inking of such matrices in terms of 2x2 blocks gives straightforward descriptions 

of the decompositions of so(6) for different K. To this end, describe an so(6)-matrix 

as (Bpq) for p,q E { 1 , 2 , 3 } , where each Bpq is a 2 x 2 block in which p labels rows 

and q columns. 

Let K = T. Then so(6) decomposes as so(6) = t ® m where 

the diagonal blocks Bpj, of A G so(6) are each of the form (AJ) , A G R, 

and so these blocks belong to t, the Lie algebra of the maximal J = 

torus. 

• the remaining 2 x 2 blocks Bp,, p 7̂  make up the complement m. (Notice 

that this gives d i m m = 12.) 

A n element H — diag{Ai J, A2 J, A3 J } G t is regular when Ai,A2,A3 are distinct real 

numbers and for such i / , so(6)/f = t. 

Let K = U(3). Then 50(6) decomposes as so(6) = u(3) ® m where 

since t C u(3), the diagonal blocks Bpp (see above) form part of the u(3)-

component of X G so (6). 

the off-diagonal blocks Bpg, p ^ g, of the form split as 

a -It d —b-\-c 

b — c a -\- d 

37 

u(3)-component 



3. LIFTS BY MOVING FRAMES 

and 

m-component. 
a — d b-\- c 

b + c —a + dj 

Counting independent entries shows that here d im to = 6. 

Notice that H = diag{ J, J, J} is a regular element of u(3) since the stabiliser of such 

an H i n so(6) is u(3). 

3.4. Descript ion of Li f t s into SO{5)/K 

Let F : U S0(5) be an adapted orthonormal frame for the immersion / : 5 —> 5"*. 

By the remarks in section 3.3 and an abuse of the notation, let us also write F for 

V 

\ 
the composition of F w i th the inclusion of S0(5) in S0(6). 

Then the l i f t s (f> : S S0{6)/K are given by 

(j) = FHF-^ = Ad{F)H C so(6) 

where < 
H = diag{Ai J, A2 J, A3J} when K = T, 

H = diag{ J, J, J } when K = U(3). 

Moreover, tangent vectors to SO{Q)/K at the point are described by d(j) and 

d<f> = Ad{F){[F-^dF,H]) e Ad{F)xn. (3.10) 

Wri te d 

and A-

= Ad{F)[A, H] where, as in section 3.1, A is the matr ix of 1-forms F ^dF 

A{ei) = F-^dF{ei). Now, A has the form 

/ 0 0 

p aJ -Q' 

0 Q bj 
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G M so that for i = = 1,2, 

f 0 0 \ 

Pi aiJ -Q\ (3.11) 

[ 0 

^0 wl^ 

In fact i t is clear that 

P = 

/ 

so that Pi = 
0 wl) 

and Q = 

' o hi- f o On 

y ' h t 'hi J 

(by (3.7)) 

so that (5J 

Also a = wj and 6 = give = / i j • and bi = h^- respectively. 

Let H = diag{Ai J, A2 J, A3J} for some A^ G R. Then 

( 0 -XI 0 ] 

X. 0 (3.12) 

[ 0 Y 0 J 
where 

X, = A i P i J - A2JP. and Y = ^2Q^J - A s J ^ (3.13) 

3.4.1. H a r m o n i c L i f t s . Recall that a map (j) is harmonic i f and only if traceVrf^ = 

0. By section 2.2.1, (j) is harmonic i f and only i f 

2 
M ^ ) E { [ A , [ A , i ^ ] ] + [e.[A,),H] - [ A ( v f . e O , i I ] p = 0. (3.14) 

i=i 

Here tan denotes the projection onto m = TiS0{6)/K. Calculations using (3.11), 

(3.12) and (3.9) show that 

' XjP, - PIX, a^Xj J ptYt 
i i 

- XIQ\ 

UiJ Xi X,Pl - P,Xj + YIQ, - Q% hYlJ - a.JYl 

^ QiXi \iPi kJYi - aiYiJ - Q.Yl 
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{ ' -e , (XO* 0 

e^{Ai),H] = e.{X,) 0 

[ 0 0 

and 

[A{vle,),H] = Y.[^i,A,,H] 

/ 

V 

0 0 

h],X, + h l x . 0 

0 hhYi + hJ,Y, 0 

Applying these results to (3.14) produces the conditions on the frame for (f) to be 

harmonic. 

T h e o r e m 3.1. The map </>: 5" —> SO{Q)/K given by <f) = FHF"^ is harmonic if and 

only if all of the following hold: 

(1) Y.U{hl.JX. + e,(X,) - h]^Xr ~ h^X,}^ = 0 

(2) J:lAQ^x^-YP,r^o 

(3) EliihhJY ~ hlY,J+e,{Y) - hlY, - hhY,}-^ = 0 

where 5o(6) = ! © m and Xi, Yi, Pi, Qi are as in section 3.4, 

3.4.2. Conformal L i f t s . I t is also interesting to compute the conditions on the 

coefficients h^^ for the l i f t s to S0(5) / r and SO(5)/U(2) to be conformal maps. First, 

note that (j) : S —> G/K is conformal i f for all p G 5 and all vi, V2 G TpS, 

{d(l)p{vi),d4>p{v2))^p) = X{vi,V2)f (3.15) 

where A is a scalar funct ion and ( , ) denotes the inner product induced on G/K 

f r o m the K i l l i ng fo rm on g, i.e. 

{A,B) = trace (ad(A) &d{B)) 
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and for the classical groups this is equal to —trace(i4-B), up to multiplication by a 

scalar. 

Let TS = span{e'"ei,e'^e2} and recall (3.10) that d<f) = Ad{F)[F-'^dF, H] for a suit­

able H. Then the left hand side of (3.15) becomes 

{dcj>{e.),d<i>{e,)) = e'^{Ad{F)[A,HlAd{F)[A,,H]) 

1 
-e^"' trace {[Ai, H][Aj, H]) 

and the right hand side reads 

A(e'"ei,e'^e2) = Ae2-6,,. 

By (3.12), 

{ - X I X , 0 XlYj 

0 -X,X] - Y f Y , 0 

0 -YY-

and 

- trace ([A-, H][A,, H]) = trace { X l X , + X,X] + F/F , -f- K.F /} 

f r o m which straightforward calculations give 

trace {[A^, H][Ar, H]) = A^ + A^ + {\2hl^ + \^h{^f + {X2h\^ - X^hl^f 

+ {X2h\i - X^ihlif -\- [X2h\i + Aa/zji)^, 

trace ( [A2 , H][A2, H]) = A^ + A^ + {X^h^, + \^h\^f + {\2h\2 - A3/i?2)' 

+ {\2h\,-\,h\,f + {\2h\, + \,hl,)\ 

trace {[A^,H][A2,H]) = {Xj + \l){hl^{hl, + hl^) + ht^{hti + /^^2)) 

-2X2Xsih',,ht2-hl2htr). 

Then ( f ) is conformal i f and only i f both 

t r a c e ( [ A i , i f ] ^ ) = A = trace([A2, 77]^) 

tT<ice{[Ai, H][A2, H]) = 0 
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are satisfied, which gives the following 

T h e o r e m 3.2. Let ( f ) : S ^ SO{Q)/K for K = T, f/(3) be given by (j) = EHP-^ with 

H = diag{XiJ, A2 J, A 3 J } . Then <j) is conformal if and only if 

{hUh',, + h',,) + hUhU + hU))^ 

(Al + A i ) ' 
2A2A3 

(A^ {huh,, ^22^11)-

3.5. L i f t s to S O ( 5 ) / U ( 2 ) 

These ideas w i l l now be studied in the particular case of l if ts into the homogeneous 

space S0(5 ) /U(2 ) . 

3.5.1. H a r m o n i c L i f t s to S O ( 5 ) / U ( 2 ) . First suppose that K = U(3), so that 

Ai = A2 = A3 = 1 and Xi = [Pz, J ] , Y^ = [Qi,J]- For ease of notation, we wi l l study 

the entries of the matr ix traceVc?/ in terms of the 2 x 2 blocks Bpg-. 

2 2 

B21 = Y.MPr, J] + J]) - E h'r^iPk, j]y 
i=l k=l 

= hli 

= 0. 

^0 1̂  

\ 1 » / 
12 

^-1 0^ 

0 1 
hi 

^ 1^ 
-hi 22 

0 - 1 

t=l 

2 

= E 
^hlM^ + hhhl {2hl, - ht,)hl - i2hl, + ht,)hl) 

V 

= E 

htM. + ht.hh C^ht, + hl,)hl, - {2ht, - hl^)hl 

' I h\.hl,-h\,hl, -hl,hl, + hl,hl} 

4 = 1 -hlM^ + h\,hli -h\,hl, + h\,hl, 

42 



3. LIFTS BY MOVING FRAMES 

So for this block in the matr ix to have zero m-component we require 

hl2{hti-ht2)-ht2{hl,-hl,) = 0 
(3.16) 

K2ih^^-hl,)-hUhl,-hl,) = 0. 

But these are precisely two of the Gauss equations on N{S) and so always hold. 

Finally, 

B32 = jz{hJ[Q^, J] - a . [Q„ J] J + e , ( [g„ J]) - E ^l[Qk. AT 
k=i 1=1 

2 
I \ 

—Si r. 

y r^ S^ 

I \ 
Ti Si 

\Si - r , k=i ^s, - r , j 

where Ti = h\^-\- h\i and = / i j i — / i f S o for this block in the matrix to have zero 

m-component we require 

e i ( r i ) + 62(7^2) - / i i i ( 5 i + ^2) - h\2[s2 - ri) - h^^si - hj2S2 = 0 
(3.17) 

e i ( 5 i ) + 62(52) - /Jii(52 - r i ) + / i i2(5i + r2) + h^-^ri + h^^^-^ = 0-

By the Codazzi equations, these conditions simplify somewhat, giving rise to the 

following Theorem: 

T h e o r e m 3.3. The lift to S0(5)/U{2) of an immersion / : 5" —> 5"* z's harmonic if 

and only if the equations 

ei{hl, + hl2) - e2iht, + h\2) - hUh\, + hU - hUh\, + hl^) = 0 

ei{h\, + hl2) + ^2{h\, + hi,) - f hl,{h\, + hl2) - hUKi + h\2) = 0 
(3.18) 

hold. 

3.5.2. Holomorphic L i f t s to S O ( 5 ) / U ( 2 ) . By the decomposition given at the 

end of section 3.3, observe that an element of m is of the fo rm 

/ -X' 

X 

z R 
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where 

X = 

I \ 
-y X 

X y 
Z = 

I \ 
-w z 

z w 
R 

I 

I \ 
r s 

ys - r j 
(3.19) 

and so an element of m is determined by a six-tuple (r, 5, x, y, to). Also, (r, 5) 

describes the part of m which is tangential to the fibres whereas {x,y,z,w) belongs 

to the horizontal subspace. The almost complex structure J i acts on m as 

Ji{r,s,x,y,z,w) = {-s,r,-y,x,-w,z) (3.20) 

and the almost complex structure acts as 

J2(r, 5, X, y, z, w) = {s, - r , -y, x,-w, z) (3.21) 

Let be the complex structure on S acting as J^(ei) = 62, J^ie,) = -e\ on an 

orthonormal basis 61,62 for TS. 

Propos i t ion 3.4. (1) The lift f : S SO{5)/U{2) is Ji-holomorphic if and only 

r, = —Si and s, = ri. 

(2) The lift f : S ^ SO{5)/U{2) is J2-holomorphic if and only if 

= S i and s, = —ri, 

(3.22) 

(3.23) 

wi ith r, = h\i -\- h\i and Si = h^- - h\-. 

P R O O F . By (2.4), / is J^-holomorphic i f and only i f 

df{e2) = Jk{df{e,)) 

or, equivalently in matr ix notation, 

[A2,H] = h[A,,H]. 
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Now, i n terms of the characterisation in (3.19), 

[A^,H] w ( r i , 51 ,0 , -1 ,0 ,0 ) 

[A2 , i J ] <^( r2 ,32 ,1 ,0 ,0 ,0) 

so that by (3.20), (3.21), 

J i [ A i , i f ] = ( - 5 i , r i , l , 0 , 0 , 0 ) and J 2 [ A i , / f ] = ( ^ i , - n , 1,0,0,0). 

Hence the results. 

• 

These results w i l l be used to give straightforward proofs of theorems 3.12 and 3.14 

which are due to Eells-Salamon [17]. 

3.5.3. Conformal L i f t s to S O ( 5 ) / U ( 2 ) . In the SO(5)/U(2) case, the conditions 

on the frame for (f) to be conformal are expressed concisely in terms of the coefficients 

Tj and Si. Indeed, setting Ai = A2 = A3 = 1 in theorem 3.2 gives the result of corollary 

3.5. 

C o r o l l a r y 3.5. The lift f : S SO{5)/U{2) is conformal if and only if 

{h',, - ht2Y + {h\2 + hUf = {h\2 - h',,f - f {hl2 + hUf 

{hi, + h\,){hl, + h\,) + {h\, - hUm, - hU) = 0 

or, in the notation of section 3.5.1, 

rj +sl = rl + si, nsi + r2S2 = 0. 

3.6. L i f t s to S O ( 5 ) / T 2 

Now let K — T^ be the maximal torus of S0(6). Then is a regular element 

of t i f and only i f Ai,A2,A3 are distinct real numbers. In this case, so(6) splits as 

50(6) = t ® m, where m = r/S0(6)/T'^. Thus, by the discussion at the end of section 
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3.3, for each X G 5o(6) the t-component of X consists of the three 2 x 2 blocks along 

the diagonal and the remaining (off-diagonal) blocks form the m-component. 

Recall (section 3.4.1) that / : 5 -> SO(6) / r3 is harmonic i f and only if (3.14) holds. 

We now study the m-component of the matr ix t raceVd/ in 2 x 2 blocks: 

^21 = jlih'uJX, + c,{X,) - X: h^Xu) 
i=i 
2 

k=l 

= EihliX2 - hl,X, + e,(XO - h^X, - h^,X,} 
i=l 

= 0 

since the Xi are constant matrices. 

Bs^=i:{Q.x,-YP} 

2 

= E i-l yX^ihtMi + hlM.) 2X2ihtM^ - htMi) + Hh^hl + hlM^)) 

I - - ^ ^ - - - A 

E 
i-\ 

'Mh'uSu + hlM) '^HhlM^ - hh^u) + Hh\A^ + ^2.^20 

^\i{h\^8u + h\^82.) 2X2iht,S2^ - ht^6u) + Xs{hl^6u + hl^,] 

Applying the Gauss equations and using the fact that Ai,A2,A3 are distinct real 

numbers shows that this component is zero i f and only i f 

+ h 22 0 
(3.24) 

^11 "I" ^2 2 ~ 0-

Finally, 

B32 = EihhJY. - hl^YJ + e,{Y) - E h^^yk}. 
i=l k=l 

This block gives rise to four equations which simplify via the Gauss equations to 

A2{e2(/i?i + hi,) - hUhU + h'22)) + h{e,{hU + ht,) + ht,{hl, + h^,)} = 0 

X3{e2{hl, + hi,) - ht2{hU + ht2)] + X2{ei{hU + h',,) + htAh',^ + hi,)] = 0 

X2{e2{ht, + h'22) + hUh\, + hi,)} - X^{e,{hl, + A^^) - h^hU + h\2)] = 0 

A3{e2( / in + h'„) + hl,[h\, + hi,)] - X2{e,[h\, + hi,) - hUh\, + h^,)] = 0. 
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These calculations and the fact that A i , A2, A3 are considered to be distinct real num­

bers, establish the following result: 

T h e o r e m 3.6. The lift to SO{Q)/T^ = S0{5)/T^ of an immersion f : S SUs 

harmonic if and only if 

/i?i + /»22 = 0 = / l i i + /l22, 

that is, if and only if f : S ^ S'^ is itself a harmonic map. 

3.7. L i n k w^ith the Toda Equat ions 

A n important and much studied case is that in which / : 5 —> S"* is conformal and 

harmonic. Such maps give rise, via their l i f ts into S0(5)/T'^, to solutions of the Toda 

field equations for S0(5). The salient features of this theory w i l l now be presented 

and i t w i l l be shown that the formulation of the h f t in terms of the moving frame is 

ideal as i t enables the key results to be read off f rom the matrices. The work in this 

section follows that of Bolton, Pedit and Woodward [5] and of Bolton and Woodward 

9] and the reader is referred to these papers for details and proofs. 

For any simple compact Lie group G, G / T is a Kahler manifold and an m-symmetric 

space for some m. This means that at each point p of G/T there is a geodesic 

symmetry of G/T of order m having p as an isolated fixed point. The symmetry 

comes f r o m a canonically constructed automorphism r (the Coxeter automorphism) 

of the Lie algebra and m is one plus the height of the highest root of g. Under the 

action of T the complexification g^ splits as a direct sum 

gC = Mo®...®Mm-l 

where each is the ^/j-eigenspace of T , ^ = ex^{2-Ki/m). Then ij) : S ^ G/T 

is said to be r-adapted i f di/>{T^'^S) lies in the subspace Mi of g^ and satisfies the 
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non-degeneracy condition that for each p E S and all non-zero v G T^'°S, dij}p{v) is 

cychc ([5]), except perhaps for a discrete set of points p. 

Any r-adapted map ip : S ^ G/T has an essentially unique local framing F : S ^ 

G whose Maurer-Cartan equations can be wri t ten as the Toda field equations for 

G. Thus, there is a bijective correspondence between solutions of the affine g-Toda 

equations and r-adapted maps : S ^ G/T. 

The key result [5] is that superconformal, harmonic maps f : S 5'^" have r-adapted 

Hfts into S0(2m -F 1)/T and conversely, if f : S ^ S0(2m + 1) /T is r-adapted then 

K o f : S ^ S'^'^ is superconformal harmonic. This wi l l now be illustrated in the 

S0(5)-case. 

The Lie group S0(5) has rank 2 and the Lie algebra so(5) has positive roots 

o'l, 0-2, 0-2-0-1, a i + a2 

of which o-i and a, — cr\ are simple. The highest root is o-i -j- a, w i th height 3. Let 

us express the matr ix X G so(5)'^ as Bpq for 1 < 5 < 3 where 521,-831 ^ C^, 

Bpq G M2(C) for 2 < p, g < 3 and Bpq = —B^^. Then the root spaces corresponding 

to the positive roots are described by the following basis elements, all other blocks 

Bpq consisting entirely of zeros in each case: 

g"̂  : B; 21 

Q"'-'' : B32 = 

[ 1 ^ 
-BI2, g"= : ^ 3 1 = = -P\3. 

rv 
(1 

= - ^ 2 3 ) g • ^ 3 2 — 
1 —I 
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Then the direct sum g+ of the positive root spaces consists of matrices of the form 

/ —a ia -b lb 

a —c ic 

—ia -d id 

b c d 

-lb ~ic —id 

\ 

Now, dil) = Ad[F){A,H\ e Ad{F)m and r^'°5 = span j ^ j = span{ei - 162}. So 

di;{T^'°S) = # ( e i - 262) = [Aj - iA2, H . 

By (3.12), 

{[Ai-iA2,H])2i 
Ai —1X2 

—iXi —A2 

and ([Ai — 2 ^ 2 , H])2,2 has the form 

/ 
(3.25) 

A2(/ii2 - ^^22) + - ^Kl) -^2(/«?i - th\^) + A3(/i^2 - ^^22) 

A2(M2 - ^h\2) - Hh\i - ih\2) - H K i - ^h\2) - Hh\2 - ^hl2)I 

Let / be a superminimal immersion. Then / is harmonic and real isotropic (section 

2.2.2) so that 

~ ^2 2 — ^12 

Thus / being superminimal implies that B 3 2 has the form 

/ 
A zA 

-^A A 

that is, d(f>{T^''^S) C [g^] which means that is holomorphic. Conversely, if •0 is 

holomorphic, / is real isotropic and harmonic, that is to say, superminimal. 
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The automorphism r is conjugation by the matrix diag(l, J, -I2) and { = exp(—) = i. 

The i-eigenspace Mi is given by 

and Ml consists of matrices of the form 

/ —a ia \ 

a -b —c 

—ia -lb —ic 

b lb 

c ic J V 

Now ip : S G/T is r-adapted when d(j)(T^'°S) C [A^i] and satisfies the non-

degeneracy condition. Using (3.25), this is the case if and only if / is conformal 

and harmonic but not superminimal (i.e. / is superconformal) that is, such / has a 

T-adapted Hft to SO(5)/r2. 

The following theorem is due to Black [3]: 

Theorem 3.7. Let : S G/T be T-adapted. Then 

(1) if) is harmonic. 

(2) For every closed subgroup K, T C K C G the projection an'tp : S ^ G/K is 

harmonic. 

Moreover, tp and <JA"0 are equiharmonic, that is to say, harmonic with respect to any 

G-invariant metric on G/K. 

By a T-holomorphic map we mean a r-adapted holomorphic map and in this case there 

is a bijective correspondence between solutions of the open so(5)-Toda equations and 

r-holomorphic maps tj) : S S0(5)/r^. 
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On the other hand, when / is superconformal then is r-adapted and together with 

a non-singularity condition (amounting to requiring dif) to have a non-zero component 

in each of the root spaces which make up A^ i ) this case gives a bijection with solutions 

of the affine so(5)-Toda equations. (Such ?/) is called r-primitive). 

3.8. Some Further Results 

Let / denote the hft of / to SO(5)/U(2) and / the l i f t of / to SO(5)/r2. 

Corollary 3.8. / / / is a harmonic map then both f and f are harmonic maps. 

PROOF. Since / is a harmonic map into S'^ if and only if 

^11 + ^22 = 0 = / i l l -|- /i22) 

the result follows easily from Theorems 3.3 and 3.6. 

• 

Corollary 3.9. / / / has parallel mean curvature, then f is harmonic. 

PROOF. Recall that the mean curvature vector oi f is H where 

(sum over r = 0,3,4 and i = 1,2). H is said to be parallel if 

S/j^H = 0 for all X 

(V"*" denotes the connection on the normal bundle). Now, 

v ; / i ^ e , = e,(/ i^)e. + / i ^ V ^ e , 

= e i ( / i I Je , + / i [ , < ( e j ) e , 

- e,{hl^ + hl2)e3 + ej{hti + /i^2)e4 + {h^i + hlMj^i + ( ' ^ i i + ^22)^4^63 
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so that / has parallel mean curvature vector if and only if 

ei{hl, + hl,) = hUhU + h\,) 

e2{h\,^hl,) = hUK, + hU) 

62(^^1 + /i22) = -^32( / i l l + ^22)-

Applying these conditions to the equations (3.18) gives the result. 

Example 3.10. All tori in C S"^ of the form 

f i x . y ) = (0 , r i cos — , r i sin — , r 2 cos — , r 2 s i n —) , r? + r | = 1 
r i r i r2 r2 

have constant mean curvature in and thus have parallel mean curvature vector in 

s \ 

Now suppose that / is a conformal immersion. Then f^ and fy have the same length 

and are orthogonal so that we may take 

ei = e"""/̂ , 62 = e""fy where e"^ = \f^\ = \fy . 

d d 
Also ei e"'̂  — , 62 e"'̂ — and using / i ^ • = e6.e,(eo) gives the coefficients as: 

ox ay 

h\-^ = -e~'^Wy, h\2 = e~'^Wx 

hl^ = 6-^64.63., /i^2 = e-"e4.e3, (3.26) 

^11 — ^ ^j-fxxi hi2 — ~ 6 ej.fxyi h22 — ~ 6 ( j = 1,2). 

Then, when / is conformal, the Hft / is harmonic if and only if 

{e4.4>)x + {ez4)y = e"'(Ae4 - Be^)4 

{es4), - (e4.<^), = e"(Ae3 + ^ 6 4 ) . ^ 

where cj) = f^^ + fyy, A = 2/1^2 + ^32 .̂nd B = 2/iJi + hj^. 
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Remark 3.11. If J is given by J(ei) = 62, /(es) = 64, then the second equation of 
(3.27) is obtained from the first by applying J. 

Conditions (3.23) and the coefficients (3.26) afford a straightforward proof of the 

following result of Eells-Salamon [17]: 

Theorem 3.12. The lift f : S S0(5)/U{2) is J2-holomorphic if and only if f is 

conformal and harmonic. 

P R O O F . Suppose / is conformal. Then conditions (3.23) hold if and only if 

e4-fxx + &2,-fxy = e3-fxy - &4-fyy 

^4-fxy ~ ^3-fxx = ^3-fyy + ^4-fxy 

if and only if 

e3.{fxx + fyy) = 0 

&4-{fxx + fyy) = 0 

that is, if and only if / is harmonic. 

• 

Recall (from section 2.2.2) that a map / : 5" —> 5"* is real isotropic if fz-fz = 0 (f is 

conformal) and fzz-fzz = 0. 

Lemma 3.13. The following properties of f are equivalent: 

(1) fzz.fz. = 0, 

(2) iZ"(ei, ei) — -ZZ"(e2, 62) and 2II{ei, 62) are a conformal basis for NS, 

(3) The coefficients h^^ satisfy the equations 

(hli - hl,f + {h\, - hUY = i{{hUY + {hUn (3-28) 

/ ^ ? 2 ( / ^ ? i - ^ 2 2 ) + ^ i 2 ( ^ n - / ^ 2 2 ) = 0. (3.29) 
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P R O O F . 

(1) ^ (2): I f e i = — , 62 = — then 
dx dy 

^ ( e i , ei) = - i f x x . f ) f , n{e2, 62) = fyy - { f y y . f ) f , 

^ ( e i , 62) = fxy 

f d d \ 
a n d / , , = i7 — , — . Then 

\az oz) 

= - «e2,ei - Z62) 

= ^( J (e i , 61) - 17(62, 62) - 2z77(ei, 62)) 

so that fzz-fzz = 0 if and only if both 

|i7(6i, 61) - i7(62, 62)P = 4|i7(6i, 62)r 

( i7(ei ,ei)- i7(e2, 62) 177(61,62) 

hold, that is, if and only if / / ( 6 1 , 61) - //(e2, 62) and 27/(6i, 62) are a conformal basis. 

(2) ^ (3): Recall 

i7(6i,6i) = /i^i63 + / i t i e 4 , 

II{e2, 62) = /i22S3 + h22&i^ 

77(ei, 62) = / i i j^s + h\2&i-

Then computing the lengths |7/(6i, 61) — 77(62, 62)^ , |2//(ei, 62)^ and the inner prod­

uct (i7(6i,ei) — 77(62, 62)).77(ei, 62) shows easily that (2) and (3) are equivalent. 

• 

Theorem 3.14. [17]. Let f : S ^ S'^ be a conformal map. Then f is real isotropic 

if and only if the lift f : S 50(5)/7/(2) is Ji-holomorphic. 
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PROOF. Suppose first that the l i f t / is Ji-holomorphic. Then, by (3.22), 

^2 2 ^12 ~ ^12 ^ 1 1 

and hi 2 — hi 2 = ^12 + ^ 1 1 -

Thus, /if 1 — /if 2 = 2/i^2 h'^i ~ ^22 = "2/1^2 so that 

ihii-hi2r+{hti-ht2f=mi2Y+{hun 

and / i ? 2 ( ^ i i ~ ^ 2 2 ) + KiiKi ~ ^ 2 2 ) = 0-

Then by lemma 3.13 fzz-fzz = 0 and together with conformality this means that / is 

real isotropic. 

Conversely, suppose that / is real isotropic. Then in particular fzz-fzz = 0 so that by 

lemma 3.13, i7^(ei, ei) - Jl{ei-, 62) and 2E{ei, 62) are a conformal basis for NS and it 

follows that not both of /i^2) '^12 zevo. Suppose h^2 ^- Then in (3.29), 

'^{hli-hl2) = -{htl-ht2) 
"12 

and substituting into (3.28) gives 

{hi,-hi2Y = i{ht2y. 

Thus 

{hli-hl2) = ±2/1^2 

(hti - hl2) = T2/i?2-

(The choice of sign here just corresponds to the choice of orientation on •$"*.) Com­

paring with (3.22) shows that the l i f t of / is Ji-holomorphic. 

• 
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CHAPTER 4 

L i f t s b y Q u a t e r n i o n s 

In this chapter it is shown that the l i f t of an immersion / : 5 ^ 5"* to the twistor 

space CP'̂  may be obtained explicitly by formulating everything in terms of quater­

nions. Section 4.1 elucidates the correspondence between elements of S0(5) and 

elements of the universal cover Sp(2) in that it is shown how P G Sp(2) gives a ma­

trix P G S0(5) (proposition 4.1) and, more importantly, vice versa (theorem 4.3). 

Thus, the adapted frame of / may be thought of as an element of Sp(2). Twistor 

theory appears in sections 4.2 and 4.3 and the specialisation of this for the 5"'-case 

and in terms of quaternions is found in sections 4.4 and 4.5. The identification of 

CP^ with Sp(2)/U(l) X Sp(l) now makes it a straightforward matter to write down 

the hft of / into CP^ (corollary 4.8). In the case that / is a conformal immersion 

this gives rise to a particularly beautiful and simple formula for the l i f t , involving a 

stereographic co-ordinate q associated to / (theorem 4.11). 

4.1. Explicit Relationship Between Sp(2) and SO(5) 

It is well known that Sp(2) is the universal cover of S0(5). The following sections make 

this correspondence explicit and a standard epimorphism taking elements of Sp(2) to 

elements of S0(5) is given. It seems more difficult to discover the correspondence in 

the opposite direction but it turns out to be simply a matter of setting up a good 
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notation and carrying out some linear algebra using quaternions. 

4.1.1. The Epimorphism a : Sp(2) —>• SO(5). First, recall that a quaternion is 

naturally expressed in the form a -f 6j , where a and b are complex numbers and that 

this gives rise to a description of the quaternions as certain matrices in M2(C) via 

the correspondence 

(a + bj) 
a —b 

^b -aj 

Then elements of Sp(2) are thought of as U(4)-matrices by identifying 

/ \ 

Pi P2 

P̂3 PA^ 

(Pl) (Ps) 

(P2) (P4) 

(note the 'transpose' which occurs here). Indeed, Sp(2) is the subgroup of U(4) which 

preserves the left quaternionic vector space structure on = and defining 

J 

-1 

1 

-1 

1 

(4.1) 

this is expressed formally as 

Sp(2) = { A G U(4) : J A = AJ}. 

I t is useful to identify the spaces Skew(4; C) and via the correspondence 

I^Ptj-et A ej 
i<j 

0 -Pl2 -Pl3 -Pl4 

Pi 2 0 -P23 -P24 

Pis P23 0 -P34 

Pl4 P24 P34 0 
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The group U(4) acts on 0 as a group of isometrics and so induces an action of 

Sp(2) on /\^C^. Observe that Sp(2) fixes J = ei A 62 + 63 A 64 and as a result takes 

the orthogonal complement W = span{6i A 62 -|- 63 A 64}-'- into itself. 

Now, W has an orthonormal basis given by 

Fi = - ^ ( e i A 62 - 63 A 64) 

1 
î 2 = ; ^ ( e i A 6 4 - e 2 Aes) ^3 = ^ ( e i A 64 + 62 A 63) (4.2) 

F4 = - ^ ( e i A 63 + 62 A 64) ^5 = ^ ( e i A 63 - 62 A 64). 

Let * be the Hodge star operator, with *^ = 1. Then, extending * to be conjugate 

linear rather than complex linear, it is easy to check that *Fk = Fjt for all A; = 1 , . . . , 5, 

that is, that {Ft} is a real basis for W which corresponds to the basis {Xk} of 

Skew(4; C) with 

/ 

V2 

-1 

,X2 = 

/ 
- i 

1 i 

7 2 - i 

1 
. 1 ] 

1 -1 

1 

. 1 

( 
- i 

1 - i 

i 

I ' 

, ^ 5 = -

/ -1 / -1 

1 1 

7 1 1 

V -1 

(4.3) 

The standard epimorphism a : Sp(2) S0(5) is given as follows: 

I f / I 6 Sp(2), then the columns of the corresponding matrix a{A) = A € S0(5) are 

given by 

Ak = A.Xk = AXkA\ for = 1 , . . . , 5, 

where Ak is thought of as a vector in by taking as the entries the coefficients of 

the expression of Ak as a linear combination of the Xj. 
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This formulation gives rise to the following proposition: 

Proposition 4.1. Under the standard epimorphism a : 5^(2) —> S0{5), the elements 
/ \ 
Pi P2 

P = ± of Sp{2) map to the element P 6 5(9(5) where 
[P3 P.) 

( \Pl\'-\P3\' 2piP3 

p = 2piP2 PlP4 piip4 PliP4 Pikp4 

\ +P3P2 -P3ip2 -P3iP2 -P3kp2 

PROOF. Let = «/= + bkj, so that 

ai -bi as -O3 

P = 
/ \ 
Pi P2 

P3 P4 

e U(4). 
bi di 63 as 

^2 ~^2 4̂ —̂ 4 

62 ^2 4̂ 4̂ V / 

Then the columns of P = a{P) are given by calculating P^ = PXkP^ for each 

= 1 , . . . ,5. It is convenient (and more illuminating) to think of = ReR" = R ® e 

and to express column vectors in the form where r G R and 5 € H. Thus, for 

example. 

Pi = 
\ai? + W'\a3?-\b3? 

2{dia2 + bih) + 2{aib2 - d2bi)j 

\ 
(4.4) 

| P i P - | P 3 P 

2piP2 

Similarly, writing the remaining columns in this way gives 

P, 

P4 = 

I - s\ 

2Re(aia3 + ^163) 

^ P1P4 + P3P2 ^ 
/ \ 
2Re(6ia3 - aib^) 

^ P1JP4 - P3]P2 ^ 

,P3 
^2lm{aia3 6163)^ 

P\ip4-P3iP2 I 

''2Im(6ia3 - 0163)^ 

Pikp4-p3kp2 j 
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P = {Pi 

4. LIFTS BY QUATERNIONS 

\P.) = 

\P\? - bap 2piP3 

2^1P2 Piip4 PljP4 PikpA 

+P3P2 -P3iP2 -P3JP2 -P2,kp2 ^ 

• 

4.1.2. The Inverse of the Map a . Given a matrix P in Sp(2), the epimorphism 

a produces the corresponding matrix in SO(5). It will now be shown how to invert 

this correspondence, that is, how to produce from the element P of S0(5) the related 

covering element(s) in Sp(2). 

Let the given matrix P G S0(5) be written in the form 

/ 
P = 

Xo Ao Bo Co Do 

X A B c D 
(4.5) 

where Xo, Aq, . . . , i^o e R, X , A , . . . , D G H . Then the columns of P are orthonormal 

vectors with respect to the standard inner product on so that, for example, 

0 = = AQBO + Re{AB). (4.6) 

If X denotes the quaternion given by 
X 

1 + X , 
•, define unit quaternions a — A — AQX. 

b = B - BQX, C = C - Cox, d = D - DQX. Then 
'Ao\ (Bo^ Re(ab) and similarly 
.AJ \B^ 

for all other pairs. It is clear that if any four columns (rows) of an SO(5) matrix 

are given then the remaining column (row) is uniquely determined by orthogonality, 

unit length and determinant conditions. This fact is expressed neatly in terms of 

quaternions as: 

Proposition 4.2. ab + cd = 0. 
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Theorem 4.3. The matrix P G 5(9(5) corresponds to the following matrix in the 
covering space Sp{2), up to sign: 

y—wax wa J 

where w = d ib jc -\- kd and = |iwp(l -F |xp). 

P R O O F . First note that P is indeed an Sp(2) matrix, since the rows are of unit length 

and are orthogonal under the standard HP inner product (see appendix). Proposition 

4.2 and the fact that a, b, c, d are unit quaternions and Re(a6) = 0 give 

iwa = i(d -\- ib-\- jc -\- kd)a 

= i{l -\- iba -(- jca ^- kda) 
(4.7) 

= ibb -\- ab + kdb -f jcb 

= wb. 

In a similar way, jwa = wc and kwa = wd. In order to prove the theorem, it is 

enough to show that a(P) = P. Set 

w wx wax wa 

Then straightforward calculations show 

1 - I x | 2 
V 

05 

2pip2 = X, 

PlP4 + P3P2 ^ A , , Plkp4- P3kp2 = D. 
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Finally, 

2piP3 = 
2wxaw 

A 2 
2_ 

" A 2 

——(Re(i/;xaio) + {wxaw)ii -f {wxaw)jj + {wxaw)kk) 

[Re{wxaw) — Ke(wxawi)i — Ke{wxawj)j — Ke{wxawk)k) (4.9) 

= - 2 ^ ( R e ( a ; a ) + Re{xb)i + Re{xc)j + Re{xd)k) 

= {Ao + Boi + Coj + Dok). 

• 

JUSTIFICATION FOR PROPOSITION 4.2. Suppose the matrices 

/ 
Xo Ao Bo Co Do 

X A B c D 

\ 
and 

b i P - b a P 2piP3 

2piP2 Plpi PliPi PlJP4 Pi kp4 

+P3P2 -P31P2 -p3jP2 -P3kp2 ^ 

correspond for some p i , . . . , p4 G H satisfying 

Pip + b2p = 1 = bap + b4p , P1P3+P2P4 = 0. 

Then p-3 = implies baP + b4p = ^ = 1 so that biP = b4P and \p2 
P4 

b i biP 
P3p. Comparing corresponding matrix entries shows biP~baP = 0̂ giving l - fAo 

2biP and 2piP2 = X whence p2 = = Pi a;- Thus ps = -p4X. 
2biP 

Now, 

A = P1P4 + p3P2 = PlP4 - x{piP4)x, 

B = piip4 + P32P2 = Pi«P4 - x{p-i_ip4)x etc. 

Z + xZx 
C L A I M : U Z = Y - xYx for quaternions Y , Z then Y = 

1 - 1x1 

(4.10) 
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For, 

Z = Y - x Y x ^ Y ^ Z ^xYx 

^Y = Z + xYx 

=^Y = Z + x(Z + xYx)x = Z + xZx + \x\'^Y 

Y{1 ~ \x\^) ^Z + xZx. 

Thus, 

A -\- xAx a 

and similarly,pizp4 = 2 ' = _^ 2 ' P'^^P'^ = i f .12 • Equation (4.12) 

implies pi = ap4 and substituting gives 

db _ dc dd 

But 

db „ . P4ip4P4^P4 acac? co? 

so that a6 -|- cc? = 0 is a compatibility condition on the columns. • 

4.2. Twister Space 

Let iV be a 2m-dimensional Riemannian manifold with a fixed orientation. At each 

point a; G A ,̂ let Z^ denote the space of orthogonal complex structures on the 

tangent space T^N which are compatible with both metric and orientation. Then 

Z = U3;eAf 'Z'x is a fibre bundle over A'̂ . The projection TT : Z A'̂  is a Riemannian 

fibration associated to the orthonormal frame bundle of N and the fibre of TT is the 

symmetric space SO(2777)/U(m). Z is called the twistor space of A'̂  and -k : Z —* N 

the twistor fibration [12 . 

Now suppose that Â  = 5^'", a 2m-dimensional sphere. Then Â  =S0(2m-f 1)/S0(2m) 

and since 7r : Z —>• Â  has fibre S0(2m)/U(m), the twistor space of 5̂ ™ is ,Z =S0(2m-|-
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1)/U(m). 

4 . 3 ! Harmonic Maps and Horizontal, Holomorphic Curves 

This section will illuminate the correspondence between superminimal harmonic maps 

S S'^"^ and horizontal, holomorphic curves in S0(2m + 1)/U(m). 

Definition 4 . 4 . A subspace V{x) C C '̂"+^ is called a maximal isotropic subspace if 

dimV{x) = m and v.v = 0 for all v G V{x). 

Given a superminimal harmonic map 4> : S ^ 5^™, form the harmonic sequence 

V'o, • • • 5 V'2m with iprn = •0 = iT^4'- Then, for each x G 5*, 

Vix) = span{V'o(x), • . . , V'r . - i (x)} C C^™+i 

is a maximal isotropic subspace and V{x) G 7m(C^'"+-^), the space of maximal isotropic 

m-planes in C^™+i. Notice also that for each u G V, [v] G Q2m-i where 

g 2 m - i = {[^0,.• • , ^ 2 ™ ] e cp2™ \x', + ... + xl^ = 0}. 

C L A I M . /m(C^'"+-^) C (7rm(C^'""'"^) as a complex submanifold in a natural way. 

C L A I M , /^(e^+i) ̂  S0{2m + l)/U{m). 

PROOF OF C L A I M : Use the Orbit-Stabihser Theorem. S0(2m + 1) rotates rn-

planes into m-planes and since S0(2m + 1) is an orthogonal group the action pre­

serves the dot product. Also S0(2m -|- 1) acts transitively on / m ( C ? " + ^ ) . Let 

V G /m(C^'"''"^)- Then the elements taking V to itself make up the subgroup U(m). 

• 
Thus, a superminimal map (f) : S 5̂ ™ gives rise to a map ^ : S ^ S0(2m-|-l)/U(?Ti) 

v ia 

{x) = V{x) 
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and with 

p : S0(2m + 1)/U(m) ^ S0(2m + 1)/S0(2m) = 5^" 

is the canonical projection which means p{V) = ey where Cey — {V®V)^ in C^™+i. 

Proposition 4.5. The map ^ is (1) holomorphic and (2) horizontal. 

P R O O F . 

(1) Let T/jp = [/p] for each p. Then the harmonic sequence of 4> looks (locally) like 

/o, • • • , /2m with 

dz 
dU_ 
d-z |/p_ 

" - fp+l + ^ l o g | / p | V p 

As a map into Grm(C^"^"^^) <̂  is given by 

/o A . . . A / „ _ i . 

But 

| : ( / O A . . . A / „ _ I ) = | | A / I A . . . A / „ _ I + . . . + / O A . . . A / „ _ 2 A ^ ^ 
d dz 

0. 

(2) To show that ^ is horizontal, check that 
\OZ, 

d(f> 
dz. 

| - ( / o A . . . A / ™ _ i ) = | ^ A / i A . . . A / „ _ i + . . . + / o A . . . A / „ _ 2 A % ^ 
dz dz dz 

= A(/o A . . . A Jm-i) + (/o A . . . A fm-2 A / „ ) 

and 

So 

— ( / o A . . . A 
(/oA...A/„_l)-L 

= /o A . . . A /m_2 A / „ 

'^^[d'z. 
/ o A . . . A / „ _ 2 A / „ p | / „ 

| / o A . . . A / „ _ i | 2 
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• 

Conversely, suppose that ^ is holomorphic and horizontal and for each x E S, let 

^{x) = V{x) and e ' ^+ i = { / } ® y e y . Then 

dV C { / } ® y (horizontality) (4.13) 

BV C V (holomorphicity) (4.14) 

Now, f.v = 0 for all v G V{x) so that 

d(f.V) = df.V = 0 

and / . / = 1 gives d f . f = 0 so that 

a / e y. (4.15) 

Then acting with 5 and 3 on (4.15) and its conjugate respectively give 

d d f e d v c { / } ® y by (4.i3) (4.16) 

ddf E{dV)<Z{f}®V by (4.13) (4.17) 

so that ddf e { / } and / is harmonic. 

Further, df is isotropic since df eV (by (4.15)) and using (4.14), 

ddf edVCV 

shows that B'^f is isotropic, and so on by induction. Thus / satisfies the isotropy 

requirements to be superminimal. 

2m This is known as the twistor description of superminimal harmonic maps 5 —> 5 

4.4. The 5^ Case 

Setting m equal to 2 throughout the above discussion gives the twistor space of 

S"* as SO(5)/U(2) and a correspondence between superminimal surfaces in 5"* and 
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horizontal, holomorphic curves in SO(5)/U(2). However, this low dimensional case is 

especially interesting as the fact that the dimension of 5 as a surface in 5^ is the same 

as the codimension of S means that there is a natural way to construct a 'twistor' l if t 

into SO(5)/U(2) of any immersion / : 5 ^ 5"*, irrespective of it being superminimal 

or not. This construction is given below. 

Suppose / : 5* 6"* is any immersion. Then at each point x G S, the tangent space 

to 5̂ * decomposes as 

where T^S is the tangent space to 5 at a; and the normal space at x. Choose 

an oriented, orthonormal basis 6 1 , 6 2 for T^S and 6 3 , 6 4 for so that 61 , 62 , 63 , 64 

gives the standard orientation on 5'*. Then (definition 4.4) span{6i + 2 6 2 , 6 3 + ^64} is 

a maximal isotropic subspace of the complexification of R^. So for any f, this is 

how to construct 

^ : 5 ^ SO(5)/U(2). 

Further, there is a natural identification of SO(5)/U(2) with the complex projective 

space CP^ and there are several (non-trivial!) ways of seeing this. One way to 

proceed is to obtain both SO(5)/U(2) and CP^ as homogeneous spaces of Sp(2) and 

then show that these are the same. Since Sp(2) is the universal cover of SO(5), 

SO(5)/U(2) = Sp(2)/U(l) X Sp(l). On the other hand, recall Sp(2) C U(4) and that 

U(4) acts on CP^ as a group of isometries. Then Sp(2) acts transitively on CP^ - as 

the restriction of the U(4) action. Moreover, the stabiHser of [1,0,0,0] is 

z 0 
\zeC, \z\^ = 1 , 5 6 M , |gp = 1 I = 5^ X Sp(l). 

Thus, the twistor space of 5"* is CP^ and the bundle TT : CP^ ^ S"' is precisely the 

twistor fibration of Penrose. The next section shows how S'^ may be identified with 
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HP^ and that as a consequence the twistor fibration is expressed neatly in terms of 

quaternions. 

4.5. The Twistor Fibration for 5* 

Recall first the Hopf fibration 

TT: \ {0} ^ ep^ 

given by (qi,q2) ^ [?i,?2]- Here HP is regarded as a left H-module so that [qi,q2 = 

q[,q'2] if and only if there exists g G IH \ {0} such that {q[,q'2) = 9(91,92)- (The 

reader is referred to the appendix for details on H", Sp(n) and the conventions used 

in this section and subsequently.) Also there is a diffeomorphism of HP^ with 5"* 

under which [91,92] € HP^ corresponds to 

V 9i9i + 9292 / 

Taking co-ordinate neighbourhoods a;+ , x_ : H —> 5"* with 

the standard metric on S"* is given by 

4 4 

{qq + i y {q'q' + ^r 

In terms of these local co-ordinates TT : HP \ {0} MP^ is 

7^(91,92) = 9r^92 = 9 if 917^0 

and 7r(gi, 52) = 92~̂ 9i = 9' if 92 7^ 0. 

Now dq — qi^dq2 — qi^dqiqi^q2 and the differential d-w at (91,92) is described by 

dT^{puP2) = 9rV2 - 9r^pi9r^92-
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The fibre of TT through the point (91 ,^2) is given by 

keidn = {{pi,P2)\qi^P2 - qi^Piqi\2 = 0} 

There is an H-valued bilinear form on EP defined by 

((Pl,P2),(9l,g2)) = 4(pigi +P2?2) 

and this gives rise to a metric on KP defined by 

l(?i,g2)P = 4(|?ip + k 2 n . (4 .18) 

The horizontal subspace at the point (91 ,^2) is the orthogonal complement, with 

respect to this inner product, of the fibre M{qi, ^ 2 ) - {^{qi, 92))"'' is mapped bijectively 

onto ^,^(,1,92)5"' - indeed more is true: 

C L A I M . With respect to the metric (4 .18) on HP and the standard metric on S'^, the 

differential d-K maps (IH(gi,(/2))"'" isometrically onto r^(?i,92)'̂ '* when \qi\'^ + | g 2 p = 1-

P R O O F OF C L A I M : Suppose | g 2 p = 1- Then {M{qi,q2)y 

and 

qi 92 

qi\' \q2\\ 
,2 / \qi\ , m 4 A M ^ + 

, qi\'^ 
4IAP 

Also, 

J L qi ?2 \ \ _ i _ i Agi _ i 
(̂ TT A - , = - 9 i --q^ -q^ q2 

\ V k i l m v j ) 12^ qi^ 
qi^M2 

9 1 ^ 9 2 ^ 
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so that 

dlT X 91 92 
0 ' 

,91 92 ' 

i 9 i r ' i A n 9 2 P 

T(9I,92) M i l 

4|Ap 

91PI92P 

1911192̂  

• 

Now identify HP with via the identification of HI with given by 

q [z,w) \f q = z + wj. 

Then TT : HP \ {0} ^ ^'^ and indeed TT\S7 factors through CP^ to give : CP^ 

5"̂  = HP^ with 

or, equivalently, 

7rsi[zo, Zi,Z2, Z3] = 

7r54 [Zo, 01 , 22 , Z3] = [Zo + Zii, Z2 + Z3j 

'2{zo - zrj){z2 + Z3j), |zoP + \zi\' - 1^2^ - \Z3\'\ 

\zo\' + \zi\' + \Z2\' + \Z3\'' ) 

'2{zoZ2 + Z1Z3), 2{zoZ3 - Z1Z2), l̂ oP + l^iP - k2p - ksP^ 
Z o ' + z r ^ + Z 2 ' + ŝP 

Thus if : \ {0} ^ CP^ is defined by 

P{Z0 + Zij, Z2 + Zsj) = [zo, Zi,Z2, Z3 

we have a commutative triangle of fibrations 

\ {0} 

ir i CP' 

and if CP ' is given the standard Fubini-Study metric then p\sT, TTS'^ and 7r|57 are 

Riemannian submersions. 
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Furthermore the set of complex structures on T„(g^^q^)S'^ , (91,92) € •5'̂  may be iden­

tified with 7r^4^7r(gi,(72). For on {qi,q2) x (IHI(5i,^2))''" there is a canonical complex 

structure derived by considering (]HI(gi, 52))''" as a left C-vector subspace of C*. Then 

since the differential d-Kf^q^^q^) maps this space isometrically onto ^^(gi.gj)^'^ it follows 

that TT^(qi,q2)S^ inherits a complex structure compatible with the metric. It is not hard 

to show that all such complex structures on 7 (̂91,92)-5"* are so obtained and that two 

are the same if and only if (9^,92) = ^ (̂91,92) , 1^ E (where Tr{q[,q'2) = ''"(91,92))-

Thus 7r54 : CP^ S'^ is the bundle of almost complex structures on 5"*. 

Consider a tangent vector v to CP^ at the point p. Thus {v,p) = 0. The fibre at 

p is given as the projective space of span{p, pj'} so the condition for horizontality is 

{v,pj) = 0. Thus for h{z) to be a horizontal curve, the condition is 

But {h,hj) = 0 so the condition is 

{h',hj)=0 

and if h = (ZQ, Zi, Z2,23), horizontahty is given exphcitly by 

zodzi — zidzo + Z2dz2, — Z2,dz2 = 0. 

The horizontal distribution on CP^ is a holomorphic 2-plane bundle. Let us use local 

co-ordinates again. This time suppose ^ 0 and write = — {a = 1,2,3). Thus 

we have a co-ordinate neighbourhood on CP^ given by 

( 6 , 6 , 6 ) ^ [^0,21,22,^3] = [1 ,6 ,6 ,6^-

In terms of this the Fubini-Study metric is given by 

, , ^ (1 -F S 6 6 ) s ^ 6 4 c . - madi,){T.uu) 
( i + S 6 6 ) ^ 
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4.6. Results of Bryant 

By studying the geometry of the twistor fibration TT : CP' —*• 5"*, Bryant [11] proved 

that if ^ : —> CP' is a horizontal, holomorphic curve then ^(f) : M'^ ^ S'^ 

is a superminimal immersion (may have branch points) and conversely, that every 

superminimal / : 5"* is of the form Trcf) where ( f ) is an essentially unique 

horizontal, holomorphic curve (j) : —CP ' . Further, there is a Weierstrass type 

formula which produces horizontal, holomorphic curves in CP' from meromorphic 

functions on M^. 

Theorem 4.6. Let be a connected Riemann surface and let f , g he meromorphic 

Junctions on with g non-constant. Let ^ ( f , g ) : C P ' be defined by 

$ ( / , . ) = [ ! , / - 2 ^ ^ , . , 2 ^ ] . 

Then ^ { f , g ) is a horizontal, holomorphic curve in C P ' . Conversely, any horizontal, 

holomorphic curve $ : —> C P ' is either of the form ^{f,g) for some unique 

meromorphic functions f , g on M or ^ has image in some <CP^ C C P ' . 

Use of the Riemann-Roch theorem shows that for a compact Riemann surface / and 

g can be found which make $(/ , f l ' ) an immersion. This implies that any compact Rie­

mann surface can be conformally and minimally (in fact superminimally) immersed 

in 5^ 

4.7. The Lift to C P ^ 

Let / : 5* ^ 5"* be given by f{z) - {Xo{z),... , ^ 4 ( 0 ) ) with z a local complex co­

ordinate on 5' and let a : 5"* —> R'* denote stereographic projection from (—1,0,0,0,0) 

onto = e. Then ao f = — = 9 G M, where X = A'l + A2?; + A3J + X^k. 
1 + A Q 
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Now, the adapted frame of / is of the form 

/ 

for mutually orthogonal unit vectors 

^ 0 Ao Bo Co Do 

X A B c D 

'Ao 
, A 

'Do' 
, D , wi th 

span < 

4 

\ = NS. 

Then in the notation of section 4.1.2, x = g and theorem 4.3 gives the following: 

Theorem 4.7. An immersion / : 5" —> 5"* lifts to F E Sp{2) where 

/ 

I w wq 

^ ^—waq wa 
with w = a + ib + jc + kd and = \w\'^{l + |gp). 

Using this Sp(2)-description of the frame, it is now a straightforward matter to write 

down the twistor l i f t of / into CP^. Let the l i f t be denoted by / and by an abuse of 

the notation, write [zo + Zij, z^ + Zzj\ to mean [ZQ , ^ i , ^2, -̂ s] € CP^. Then 

/ = [1,0]F = {w,wq\ e CP^ 

In fact, this expression for the hft of / can be simphfied; 

Corollary 4.8. The twistor lift of an immersion / : 5 —> 5^ is given by 

f = [a + ib, {d + ib)q] G CP^ 

Ao' 
where q = a o f , a — A — Aoq, b = B — Boq and 

A 
'Bo' 
.B , 

® H are an 

orthonormal basis for TS. 

P R O O F . It is enough to show that w = A(a -f ib) for some A G C, or, in other words. 

that w[a - f ib) is a complex number. 
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Clearly, w{a -\- ih) commutes with all real numbers and by 4.7, 

iw[a -\- ih) — iw[a — hi) = iwa — iwbi 

= {-whi + wa)i (4-19) 

w (a -|- ib)i 

so that w{a -\- ih) commutes with complex numbers and so is itself a complex number. 

• 

4.8. Lifts of Conformal Immersions / : 5 —»• 5'* 

4.8.1. Conformal Maps. The map f{z) is said to be conformal if and only if 

{ f z , f z ) = 0, that is, if and only if l/^p = |/yp and fx-fy = 0, z = x + iy. In order 

to obtain results about the twistor l i f t of / , it is useful to determine the condition 

placed on q = ( + r]j by the requirement that / is a conformal immersion. Since 

stereographic projection a of 5"* onto R'^ is a conformal diffeomorphism, it holds that 

( / „ / , ) - 0 if and only if {{a o / ) „ {a o / ) , ) = 0. 

If / = iXo,X) C M e e , then 

f Xi + iX2 X3 + iX4\ . ^ ^2 m>4 

and 

{{(^ o f ) „ {a o f)s) = iiCVz), ( 6 , Vz)) = 6 6 + VzVz 

giving the following; 

Lemma 4.9. An immersion / : S" —> S"* is conformal if and only if (zCz + Vz'qz = 0; 

where f corresponds via stereographic projection to q — ^ + rjj ^ M. 
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4. LIFTS BY QUATERNIONS 

4.8.2. The Moving Frame. In the case where / : 5 5"* is a conformal map, 
fx f 

it is natural to choose ei, 62 in the frame to be ei = - j - and 62 = - j - since the 
\jx Jy 

tangent vectors f^ and fy are orthogonal (and also of the same length). This will 
enable an explicit formula for the l i f t to be found in the conformal case, and to this 

fAo\ 
end, the vectors ei = 

\AJ 
quaternionic co-ordinate q. 

fAo\ (Bo\ 
end, the vectors ei = and 62 = will now be determined in terms of the 

\ A \ B 

(l-\q?,2q\ 
In the notation of section 4.1.2, identify / = — ''— = ( X Q , A') so that 

V 1 + 9 ' / 

(Ao,A) = A = 1 ( x , ^ , A g . 
Jx Jx 

Then differentiating gives 

y {l-\q\% ( l - | 9 n i 9 l ^ _ -2 |9 l^ 
i + igp (i + m ' (1 + 1 9 I T ' 

'^qx 2g|g|2 2{q^ - qq^q) 

1 + I9P ( i + k P ) ' ( i + kP) ' 

and 

|2 

= 4- qx\ 
(1 + 19^)^' 

whence 

Similarly, 

Notice that \f^\'^ = \fy\'^ if and only if Î ^̂ P = |9yP-
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4.8.3. Explicit Description of the Lift. By corollary 4.8, the vectors ei ~ . 

(B \ 
and 62 = are enough to determine the l i f t of / to CP'. Given (4.21) and (4.22), 

B 

or equivalently. 

" = ^ - ^ ° ' = l 9 . | ( l + l9P)- |9. | ( l + l9P)' 
^ q^ - qqxq + (9^9 + 99^)9 

l9 . | ( i + l9l^) 
^ qx_ 

qx 

_ [qz + qz) 
Qj — 

(4.23) 

qx 
(4.24) 

Similarly, 

Thus 

6 = P - P o 9 = — = (4-25) 
qy 9x1 

, + r 6 = ^ ^ = 2 i ^ (4.26) 
9x " 9x 

and the conformal version of theorem 4.7 is 

Corollary 4.10. A conformal immersion f : S ^ S* lifts to F G Sp{2) where 

qz 9J9 

_ 9 £ 9 x 9 9£9£ 

V 19x1 |9x| / 

with f = ( a n d A ' = |?-,|(1 + I9P)' and e'' G C. 

Taking [1, 0]P (or applying (4.26) to corollary 4.8), the explicit formula for the l i f t to 

CP' in the conformal case is now clear. 

Theorem 4.11. The twistor lift f : S ^ CP' of a conformal immersion f : S ^ S'^ 

is given by 

f{z) = [6 , - 7 / , - , U + V-zV. l-zV - r]-zl] (4.27) 
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where q = ^ -\- rjj is the quaternion obtained by the stereographic projection of f to 

It is important to check that this beautiful formula for the l i f t is in fact well-defined. 

There are two areas of potential difficulty, firstly it is conceivable that both the 

functions 6 and 77̂  are zero and secondly, that this l if t is defined only for the particular 

choice of quaternionic co-ordinate (stereographic projection). 

Although it is true that both 6 and r/̂  could be zero, the functions ^ j , r / j , 1)2 

cannot all be zero (for then q would have to be constant). Suppose, without loss of 

generality, that 6 is non-zero. Then by the conformality condition, 6 can be replaced 

wherever it occurs by 6 = — 7 ^ , in which case (4.27) becomes 
6 

-n-z, — + VzV, — T - v - n-zi 
Cz 

Thus, the l i f t may be wriiten equally well in terms of 6, Vz as 

J] = 6, Vzi - ^zv, v^T] + 

and no difficulties are encountered when 6 and rj^ are zero. 

In the notation of section 4.1.2, for the vectors ^̂ ^̂  and ° to corre-
V 2pip2 / V^/ 

spond, there are two choices; 

X X 
either P2 = Pi ^ , y or Pi = P2- tt-

Suppose the underlying immersion / is conformal. Then the first case gives the lif t 

.f]q = [6, -Vz, 6^ + VzV, ^zv - Vsl 

X 
with q = — = ^ r]j. The second case gives [/] in terms of the quaternionic 

1 + Ao 
co-ordmate q — —• — p-\- t] as 

1 — Ao 
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The co-ordinates q and q are related in that 

|9P = = A. say, and p = r = -AT?. (4.28) 
19 

Then it is enough to show that j " ^nd — a r e the same. Now, 
6 - ' / f 

-77.(^,-/9 + T j f ) = X%{U + Vzfi) by (4.28) 

and 

W z T - T,p) = -x^^.iCzV - v-zO 
= ^^VziVsV + CzO by (4.28) and conformality. 

So the two choices are equivalent and the l i f t does not depend on whether stereo­

graphic projection is from the North or South pole of 5"*. 

Applications of the formula (4.27) are discussed in the next chapter. The lifts are 

produced and investigated for certain examples and, more generally, the formula is 

used to find the conditions for harmonic lifts. This leads to an interesting observation 

for the harmonic sequence of a conformal, harmonic l i f t . 
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CHAPTER 5 

Examples and Applications 

The formula obtained in chapter 4 for the l i f t of an immersion / : S" —> 5"* into 

CP' will now be put to use in examining some properties of such lifts. Section 5.1 

gives some examples which display the equivariance of lifts as discussed in section 

2.1.2. In particular, the S0(3)-symmetry of the Veronese surface (5.1.1), the lif t of 

the Clifford torus gives a torus in CP' (5.1.2) and an example with S'^-symmetry 

(5.1.3) are given. After some notation (section 5.2) to describe the differentiation of 

quaternion products, the harmonicity condition for the l i f t is derived (section 5.3). 

Section 5.4 studies holomorphic hfts in detail, confirming that they project to real 

isotropic maps into 5"* and moreover showing that such lifts are unique. Section 5.5 

studies the harmonic sequence of a harmonic l i f t / and it turns out that when the lif t 

is harmonic but not holomorphic, the harmonic sequence has a particular symmetry 

(called j-symmetry). Such harmonic maps in CP' project to conformal maps into 

S"* and j'-symmetric lifts are unique. Studying the harmonic sequence reveals that 

when the l i f t is conformal it is automatically 4-orthogonal. Also, the comparison 

of the harmonic sequence of the Clifford torus with that of its l i f t shows (perhaps 

surprisingly) that the maps are not congruent, but they are closely related. 

Finally, section 5.7 discusses positive and negative lifts to CP' ([17]) and shows that 

these both arise naturally from the Sp(2)-description of the moving frame of / . This 
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gives rise to a straightforward proof of a theorem of Eells-Salamon. 

5.1. Examples 

5.1.1. The Veronese Immersion. Let / : 5^ —> 5"* be given by 

f{xi, X2, X3) = V3{~^{2xl - x \ - X 2 ) , a : i X 3 , X2X-i, \^{x\ - x\),XxX2). 

Using the stereographic co-ordinate z = \ and writing = M ® C ® C, / 

takes the form 

1 

1 + a;3 

[1 - 4|2p + |^ |^2^/3(l - |^| ')^,2^/3^'). 

(y -\- wj) 
Stereographic projection from 5^ to HI via {t,v,w) — — produces 

V3(( l - \z\'}z + ^ ' j ) , 

and 

- _ ^ / 3 ( l - 2 | z n ^ ^/3(l - 21^12)̂ 3 

(1 _ |^ |2 + | ^ | 4 ) 2 ' (1 _ 1̂ 2 +1^4)2-

Then / is conformal {^z^z + VzVz = 0) so that the formula for the l i f t may be used to 

give 

/(^) = [6, -Vz, 6( + VzV, (zv - Vzl 

= [ l , - ^ ^ ^ / 3 0 , ^ / 3 ^ ' ] . 

(5.1) 

Computing the harmonic sequence of / shows that the invariants 7p (p = 0,1,2) 

are all constant and by the formulae 2.2, 2.3 this tells us that the l i f t has constant 

curvature and constant Kahler angle. Indeed, it has been shown in [4] that, more 

generally, each tf^p in the harmonic sequence of the Veronese immersion 

m = [ 1 . 
n n' 

\ z 
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has constant curvature and Kahler angle. Also, Calabi's result [13] tells us that (up 

to holomorphic isometries of CP") il){z) is the only linearly f u l l holomorphic curve in 

CP" of constant curvature. 

There is a particularly nice way to observe these facts which moreover constructs all 

linearly f u l l ip : S'^ CP" of constant curvature and Kahler angle. The method is 

given below for the CP"̂  case, but the general case is entirely similar. 

First note that the group of isometries of CP^ has two components - namely the 

holomorphic and the anti-holomorphic isometries. The identity component (the holo­

morphic isometries) is just PU(4) = U(4) /Z(U(4) ) where Z(U(4)) consists of the 

scalar matrices A / , A G 5^. 

Suppose : S'^ —> CP^ is linearly f u l l and has constant curvature and constant Kahler 

angle. Then by the Extension Theorem of Bolton-Woodward [6] there exists for each 

h e SO(3) a corresponding g € PU(4) such that 

ijjh = gip 

and moreover, (f) : S0(3) —> PU(4) taking h to g is & homomorphism. This is used to 

construct all examples as follows: 

SU(2) acts on C^ and hence on the th i rd symmetric tensor power ^^(C^) of C^ (i.e. 

the subspace of (C^)®^ which is invariant under the action of the symmetric group ^ 3 

given by 

( T ( e , j 0 ® 6 ,3) = e< , ( i j ) (g) e^^^^) ® ea{i,))-

S^{C^) has dimension 4 and ^^(C^) = C*. These actions of SU(2) give a homomor­

phism Sp : SU(2) SU(4). Let e i , 62 be the standard basis for C^ and consider the 
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following unitary basis of S^{<C?) = 0: 

ei = ei ® ei ® ei , 62 = - 6 2 (8) 62 ® 6 2 , 

63 = ® ei (g) 62 + ei (g) 62 0 ei + 62 ® ei (g) e j ) , 

64 = - ^ ( 6 1 (g) 62 0 62 + 64 ® 61 (g) 61 + 62 (g) 62 ® 6 1 ) . 
v 3 

Let A € SU(2) be given by 

whence A61 = a6i + /3e2 and ^ 6 2 = - ^ e i + 0:62. So A acts on S^{C^) by acting on 

the basis { e i } . For example, 

Ae i = A ( 6 i 0 61 (g) 6 1 ) = (a6i + /?62) (g) (aei + ^ 6 2 ) ® (aei + ^ 6 2 ) 

= Q^ei - ^^62 + v^a^^es + V3al3% 

and so on. Then A = (Aei | Ae2 | Ais \ ^ 6 4 ) is given by 

a 
\ 

v ^ « 2 ^ -\/3a;92 ( | a | 2 _ 2 | ^ | > - ( 2 | « P - I ^ P ) ^ 

^/3a/?2 v/Sa^^ (2|6.p - | ^ p ) ^ ()ap - 2 |^P)a ^ 

Then w i t h J as in (4.1), i t follows that J A = Aj, so that A e Sp(2). Thus 5^ is a 

homomorphism : SU(2) —> Sp(2), and via the double covers SU(2) —> S0(3) and 

Sp(2) S0(5) the following diagram commutes. 

SU(2) 

2:1 

S0(3) 

Sp(2) 

2:1 

S0(5) 

giving rise to a representation of S0(3) in S0(5) and hence a (non-standard) action 

of S0(3) on 5"*. 
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The orbi t of [^^(e^)] is the Veronese immersion and f r o m this description the S0(3)-

symmetry is clear. The remaining columns (the orbits in CP^ of 6 2 , 63 and 6 4 ) give 

the other elements of the Frenet frame of the Veronese immersion. 

Note that the map is obtained in terms of the standard complex co-ordinate z on 5^ 

by choosing 

A = 
( 1 - f | z p ) l 

G SU(2) (5.2) 

and the Veronese surface is then the orbit of the point [1,0,0,0 . 

R e m a r k 5.1. More generally, for : 5^ —> CP", use 5'"'(C^) to describe the map 

</) : S0(3) ^ PU(n + 1). The orbits in CP" of 

[ 5 " ( 6 ^ ) ] , . . . , [ 5 " ( 6 r ' ® e ^ ) ] , . . . , [ 5 " ( e ^ ) ] 

are the elements of the Frenet frame and taking A as in (5.2) above gives [5'"(e")] as 

[ 1 , 
1̂ 

'n z \ . . . ,2"] e CP". 

5.1.2. T h e Cl i f ford Torus . Consider the torus / : ^ 5^ C 5"* given by 

f { x , y ) = ^(0,cos2^a; ,s in2v^a; ,cos2\ /2?/ ,s in2\ /2?/) 
v 2 

Then 

and 

1 / ^ / 2 ^ ( ^ + ^ ) ^ ^ V ^ ( . - . - ) A 

v 2 V / 
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Now / is conformal (check ^ ^ ^ j + rj^fj^ = 0) so that the formula may be used to 

produce the l i f t of / to CP ^ 

'/(^, ^)] = [6, -Vz, 6^ + v-zv, CzV - Vzl 

^ [-V2iC, v^v, y ^ m ' - \v\% V2{i - z)Cv] 

= [V2, V ^ z e ^ ( ( l + - (1 - 0^-), (1 - ^)e'^^i^ + ^"), (1 + z ) e ^ ( ^ " % 

In general, / is not a holomorphic section of the bundle but there exists A £ C such 

that A / is a holomorphic section. Here, multiplication by 

1 / ( l + ^) ^ ( l - ^ ) - ^ 
2V2 V2 V2 

shows that [ / ] may be wri t ten as 

[ / ] = [ e^^ -^uo ] , 

where 

D = ^ d i a g ( - ( l + z), (1 + ^) , - ( 1 - z), (1 - z)), Uo = ^ ( 1 , ^, ^ ) . 

Then D € U(4) and |uop = 1. 

W i t h the l i f t in this fo rm, i t is now a straightforward matter to check that / is 

harmonic and to write down the harmonic sequence of / . For, 

and 

( A , / ) = ( Z ) e ^ - ^ U o , e ^ - ^ ^ o ) 

= {Duo,uo) 

(since D commutes wi th e^^"^^). By computation, {Duo,Uo) = 0. Thus 

dz-Dz-r T^uz-Uz'-

/ i = De Uo 
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and 

dz 

so that / is harmonic. 

The elements of the harmonic sequence { f p ] are given by 

and since D'^ = —/, i t is clear that this sequence is orthogonally periodic of order 4. 

5.1.3. 5^-Symmetry . Let f : ^ S"^ he given by 

f { x , y , w ) = ^ ] . {2{aoa^{l + wf'+'^+-a2as{l-wf'+'^){x + i y f \ 
A i + A2 

2(aoa2(l - f w f ' ~ a^asil - w f ' ) { x + lyf'^^', A j - A2) 

where the aj are non-zero complex numbers and the kj are positive integers satisfying 

A;2aia2 = —(2A;i + k2)aoa3 w i th 

A i = |aop + |a3p(l - ^2^^+*=% 

A2 = | a i p ( l + wf'-^'^il - w f ' + |a2p(l + w f ' (1 - 10)'^+'^ 

X + iy 
W i t h respect to the stereographic co-ordinate z 

m = - 4 ^ ( 2 M i + «2a3kP<'^+ '= ' )^ '^ 
A i + A2 

1 + w 

2(aoG2 - aiaskP'^O^^'^''^ A i - A2) 

w i t h 

A i = |aoP + laaPkP^'^-^'^', A2 = ( k i p + | a 2 p k P ' ^ ) k P ' ' 

k2aia2 = —{2ki + k2)aoa3. 

Stereographically projecting / onto H gives the co-ordinate q and 

q = - ^ ( ( a o a i + a2a3kP^'^+'^^)^'=^ + (^0^2 - a^as\z\''')z'^+'''j) = ^ + rjj. 
A i 
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Then differentiating wi th respect to z and z gives 

= Aaofli^'^'"^ 

7,- = -Aa3ai|^p('=^-i)z'=i+^2+i 

where 

A = h\aof - A;2|a2n^p('=^+^^) - {k, + k^)\a^f\zf^''''^'''^ 

= + k2)W\' + k,\a,\'\z\''' - k,\a^\'\zf'^^^'^) 

and i t is clear f r o m these that ^^^^ - f 77̂ 77̂  = 0 and / is conformal. Thus the formula 

may be applied to produce the l i f t of / into CP^. 

Observe that 

z^^-\l,,7^,) = A'(ao,a3^''^+'^), A' = Aail^l^^' '--^). 

Also, 

l-zr]~ri-zl=\'a,z'^^^'-

f=[ao,asz''^+'\a,z'\a,z'^+'^]. 

and 

Then / is holomorphic and is also horizontal. The horizontality and the fact that 

f(e'^^z) = a{e'^^)f{z) for a diagonal matr ix a show that / has ^^-symmetry. The 

equivariance of the l i f t under the S0(5)-action on 5"* and CP^ shows that the under­

lying map / : 5 —> 5̂ * is also an S'^-symmetric immersion. Moreover, since the hf t / 

is harmonic, the equivariance extends to the harmonic sequences of / and / [7 . 
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5.2. Some Notation 

In the work which follows, we w i l l shortly encounter the problem of how to differentiate 

a product of two quaternions wi th respect to the complex co-ordinate z (or z). The 

dif f icul ty arises because, for complex ^, zj = J2, so that the effect of moving the 

d ( d \ 
— — through the first factor to apply i t to the second is more complicated to 
Oz \uzj 

describe. I n fact, to dilferentiate the second factor i t is necessary to split the first 

factor into its C and C j components. 

Let Pi ,p2 G H wi th p i = a - f hj, a, 6 G C. Differentiating the product pip2 yields 

d f s 5pi dp2 dp2 
oz Oz Oz Oz 

which w i l l be represented in the sequel in the following way: 

N O T A T I O N . {piP2)z = PizP2 + {piP2)[z] where {piP2)[z] = « (P2J + &i(p2s), {pi = a + bj). 

Furthermore, the complex components of pi w i l l be wri t ten as a = (pi)^ and b = 

{p^f^ so t h a t p i = (pi)C + (p i )C^i . 

L e m m a 5.2. / / / is conformal then {qz<l)[z] = 0. 

PROOF. {qzq)[z] = izqz - Vzjqz = 66 + VzVz-

• 

5.3. H a r m o n i c L i f t s of Conformal Immersions 

The formula for the l i f t to CP^ which was obtained in the previous chapter wi l l now 

be put to use in studying properties of the l i f t . In particular, i t is interesting to 

see when the l i f t is a harmonic map into CP^ and, further, when i t gives rise to a 

holomorphic curve in CP^. 
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Propos i t ion 5.3. Suppose f : S S'^ is conformal and let u = . Then 
161̂  + \Vz\^ 

f is harmonic if 

l^z\f\' + m j , ) - { f z , f ) } = 0. (5.3) 

P R O O F . Let / = (q^^q^q). Differentiating gives 

h = {qzz,qzzq + {qzq)[z])-

But {qzq)[z] = 0 (by lemma (5.2)) so that 

f z = iqzz,qzzq) = i^{qz,qzq)-

Thus, the fo rm of f z is rather special in that 

f-z = vf + l^jf (5.4) 

where 

{q-z,q;f i k f ) 

\ f ? 

and 

{qzzTzT^ _ ^zzVz - VzzCz 

Now, / is a harmonic map into CP^ i f and only i f 

fz-z - ^-h^f-z - = « / (5.5) 

for some a G C. But differentiating (5.4) w i th respect to z gives 

( A ) . = / ^ . ; 7 + A + f % f ) 

V Jz J 

so that for (5.5) to hold, the coefficient of j / must be zero, that is, 

A ^ z i / r + M { ( / , A ) - ( / z , / ) } = o. 

• 
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R e m a r k 5.4. In terms of the complex co-ordinates ^ V the condition (5.3) is given 

by 

(1 + \q\'){l-z-zr]-z - Vz-z-zi,) + 6.-|^^|^j f ̂  ((161' - \v-z?)riz-z - 26.6^.-) - Hlv)^ 

+r^-z^ \ ^ ^ ^ ^ ^ ( d ^ ^ i ' - I ' ^ ^ - n ^ . + ' ^ v z - z U . ) + m ) ^ = 0. 

Given q = C ''r V31 this condition is not too difficult to investigate. However, there is 

more to say about harmonic l i f ts of conformal immersions, in particular that such a 

l i f t is either a holomorphic curve in CP^ or has a harmonic sequence wi th a particular 

symmetry property involving the quaternion j. These cases w i l l now be studied 

separately. 

5.4. Holomorphic Li f t s 

I t is not diff icult to see that proposition 5.3 has the following corollary: 

C o r o l l a r y 5.5. / / / is conformal then f is holomorphic if and only if 

CzzVz - VzzCz = 0. 

P R O O F . First note that / is holomorphic i f fg = Xf for some complex multiple A. 

But 

f z = iqzz,qzzq) = % ^ ( 9 ? , ? j ? ) 
qz 

and qssqs G C i f and only i f {qz^qg)^^ = 0. This is the case when 

Izz-qz - r}zziz = 0. 

• 
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5.4.1. Holomorphic curves in C P ^ . Some properties of holomorphic curves in 

C P ^ w i l l now be investigated. Let tp : S C P ^ be holomorphic and write ip = [g 

w i t h g = (ZQ, Zi, Z2, Z3). Then, taking ZQ = 1, ip is holomorphic i f and only i f zi, 22 

and Z3 are meromorphic functions. 

Propos i t ion 5.6. A holomorphic curve [g] : S ^ CP^ has the following properties: 

(1) 7r[g] is conformal. 

(2) Moreover, 7r[^] is real isotropic. 

(3) The twistor lift of irlg] is [g . 

PROOF. 

(1) 7r[^] = 7r[l, ^ 1 , Z2, zs] = [1 + zij, Z2 + z^j] = [1 , g] G IHP^ so that 

Then, 

22 + Z1Z2, 23 - Z1Z2 „, 

_ 2 2 f + ^̂ 11̂ 3 + ZiZ^^ {Z2 + Z1Z3) 2 
^Z 1 I I 19 / ' I I I9\9 l " ^ ! I i + k i l ^ ( i + k i | ^ ) 2 ' ~ " ^ 

and since {zj)z = 0, this gives 

Similarly, 

" (1 +]^^|2)2((^ + l ^ i H ^ S f - (̂ 2̂ + ^123)211). 

- ^ 22g + 2i;23 + 2l23g _ ( 2 2 + 2 1 2 3 ) 2 ' 

^ ((1 + | 2 i n 2 2 , - + ( 2 3 - 2-221)2-1,) 
12^2' 

and 

" (1 + | 2 i p ) 2 ^ ^ ^ kir)^"2J + - 2 1 2 2 ) 2 1 . - ) , 

" (1 + |2i|2)2((^ + k l H ^ - - (^2 - 2123)2-1 , - ) . 

Then, by inspection, (^^z + VzVz = 0. 
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(2) Recall that / is said to be real isotropic i f and only i f spanl/^,/^^} is an 

isotropic subspace of R^, that is, i f and only i f f is conformal and ^zzCzz + 

Tlzzfjzz - 0. Here 

~ (1 _|- 1̂  p') i^^zz ~ i^izz ~ 26^12)) 

" (1 ^\z^\2^^^'^^^ + ^^^^^ ^ '^VzZlz), 

^ (1 + ^^iP)^^""^^^ ^ ^ '^VzZlz), 

^ (1 ^^^^ |2 ) (^"32f - 6"lff - 26^Iz), 

which, by inspection, give the result. 

(3) Given [g] holomorphic, rg is conformal (by (1)) and so irg l if ts to [q^, qzq] € CP 

where q = ^ -\- rjj is given by (5.6) above. Suppose [/] = [WQ, 101,102,103]. Then 

Wo = 6) 1̂ = so on. Now r]z = — 1̂6 so that lOi = 2iiOo which 

implies 

W2 = 6C + VzV = 1«0^ - -WlV = U;o(^ - 2l?/) = W0Z2-

Similarly, W3 = W0Z3, and 

3 

/ ] = [wo,Wi,W2,W3] = [wo,WoZi,WoZ2,WoZ3] = [g . 

• 

Notice that parts (1) and (2) of this proposition demonstrate another proof of the 

result due to Eells-Salamon which was formulated in terms of the frame in Chapter 

3 (see theorem 3.14). 
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5.5. H a r m o n i c Li f t s wi th j - S y m m e t r y 

Suppose now that the l i f t is harmonic but not holomorphic (the jti 7̂  0 case) and study 

the harmonic sequence of / . Since / is not a holomorphic curve, / _ i is non-zero and 

r ? ( / z ) / ) r 
i - l = f , - ^ ^ f . 

But by (5.4), 

so that / _ i = f i j f for fi G C \ { 0 } . Indeed, by the construction of the harmonic 

sequence, this has implications for the whole sequence of harmonic maps in that i t 

impHes that span{/_(p+i)} = s p a n { j / p } for all p. 

Propos i t ion 5.7. If f-i = f i j f then / - (p+i) = fJ-jfp for p > 0. 

P R O O F . Proceed by induction. Suppose = / i j / y t - i for some k > 1. Then 

construct the next element along to the left in the harmonic sequence, /_( j t+i) , by 

f . { { f - k ) z j - k ) ; 
J-{k+i) = [J-k)z J—; J-k 

J-k 

•f . -(f ^ {l^zjfk-X + l l j { f k - l ) z , M f k - \ ) .? 
= H-zjfk-1 + H]{fk-l)z —P lM]fk-l 

•f I ^ -f { j i f k - i ) z , j f k - i ) •? 
= f i z j f k - l + f^j{fk-l)z - f^zjfk-l ^ l^jfk-l-

\jk-l 

Now {ja,jb) = {—jahj)^ = —j{ab)'^j = —j{a,b)j which means 

• { i f k - l ) z , f k - l ) 
f-{k+i) = M 

Hence the result. 

j { f k - l ) z - J ~f fk-1 
1 

• 
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So i f / _ i = j i j f , the harmonic sequence of / has a type of symmetry in that i t has 
the f o r m 

• • • / i j72 ,Mi / i , / i i / , / , / i , /2 - . -

We w i l l call a sequence wi th this property a j-symmetric harmonic sequence and / a 

j-symmetric harmonic map. 

This discussion shows that proposition 5.3 has the following important corollary; 

C o r o l l a r y 5.8. A twistor lift to CP^ of a conformal immersion / : 5 —* 5"* which is 

harmonic is either a holomorphic curve or has a j-symmetric harmonic sequence. 

5.5.1. H a r m o n i c M a p s in CP^ wi th j - S y m m e t r y . Let [g] : S ^ CP^ be a 

harmonic map and wri te g = {1, Zi, Z2, Z3). Then, 

g-l = g z - 9 = ( - A , - Xzi,Z2z - XZ2, Z3z " A^g) 
m 

w i t h A = i ^ ! l L ^ . Now jg — Jg where J is the standard complex structure (4.1) and 
9 ^ 

g-i = f i j g for some G C i f and only i f 

A = /izi, ziz - Xzi = fi, 

Z2z - >^Z2 = -IJ-Z3, Z3z - XZ3 = ^ ^ 2 -

Then the j - symmet ry of g is expressed by the conditions 

Zlz I - _ N 

(5.7) 

Propos i t ion 5.9. A harmonic map [g] : S ^ CP^ with a j-symmetric harmonic 

sequence has the following properties: 

(1) TTg is conformal. 

(2) The twistor lift of 'Kg is g. 
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P R O O F . -Klg] = Tr[l,Zi,Z2,Z3] = [1 + 2 i j , 2 2 + 23J] = [ l , g ] G H P ^ so that as in (5.6), 

_ 22 + 2123 _ 23 - 2i22 
i + i 2 i r i + i 2 i r 

Then use of the equations (5.7) shows that 77,, fj^ are the same as in the 

proof of proposition 5.6 so that the conclusions arrived at in (1) and (3) apply in the 

j - symmet r ic case as well. 

• 

Note that here we do not have the result that wg is real isotropic - the conditions 

(5.7) are weaker than the holomorphicity conditions Zj- = 0 and consequently do not 

produce ^zz^zz + VzzVzz = 0. 

I t is not hard to check that a holomorphic map into CP^ is always conformal. However, 

this is not the case for j - symmetr ic harmonic maps. Let / be a j -symmetr ic harmonic 

l i f t of / . Then / is conformal i f and only i f ( / i , / _ i ) = 0 where . . . / - i , / , / i , • • • is 

the harmonic sequence of / . But (by (5.4)), / _ i = f i j f and by construction 

; f i f z j ) f 

so that 

( / i , / - i ) = { f z - ^-jj^lNf) = l ^ i L j f ) 

and / is conformal i f and only i f 

{ L j f ) = 0- (5.8) 

Let / be given by (1,21, 22, 23). Then (5.8) holds i f and only i f 

((0, 2 i ^ , 22., 23.), (-21, 1, -23, 22)) = 2 i , - 22.23 + 23.22 = 0. (5.9) 

Thus (5.9), (5.7) and the discussion in 2.3.5 give rise to the following observation: 
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Propos i t ion 5.10. If f : S ^ CP^ is the lift of a conformal immersion / : 5 ^ 5"* 

given by f = [qz-,qzq] and f is conformal and harmonic with a j-symmetric harmonic 

sequence then f is J2-holomorphic and so f is harmonic. 

5.6. More About Harmonic Sequences 

I t has been established in corollary 5.8 that a harmonic l i f t of a conformal immersion 

has a rather special harmonic sequence. This section contains two further observa­

tions, the first of which is a general remark and the second discusses the relationship 

between the harmonic sequences of the Clifford Torus and its l i f t . 

T h e o r e m 5.11. Suppose the lift f of f is harmonic and linearly full. If the harmonic 

sequence of f is 3-orthogonal then it is i-orthogonal. 

PROOF. Recall f r o m corollary 5.8 that such an / is either holomorphic or has a 

J-symmetric harmonic sequence. Suppose first that / is holomorphic. Then / is 

conformal and all the elements of the harmonic sequence are mutually orthogonal. 

So / is 4-orthogonal. On the other hand, suppose that / is a j -symmetr ic harmonic 

map. Then the harmonic sequence of / has the form 

••• , A < i / l , M ; / , / , / l , • • • 

Thus / _ i = jJ-jf, f-2 = M j / i SO that 

( / _ 2 , / I ) = ( / . J 7 I , / I ) = 0 

always. Therefore i t follows that i f ( / - i , / i ) = 0, the sequence is automatically not 

only 3-orthogonal but 4-orthogonal. 

• 
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Let us now compare the harmonic sequence of the h f t of the Clifford Torus wi th that 

of the torus itself as a surface in S^. Let 

f{x,y) = --^(cos2x,sin2a;,cos2?/,sin2?/). 
v 2 

and let ei , 6 2 , 6 3 , 64 be the standard basis on C^. Then wi th respect to the unitary 
T . ~ (ei - 2 6 2 ) . (ei + ie2) ^ ( 6 3 - ^ 6 4 ) . ( 6 3 + 2 6 4 ) , , 
basis ei = , 6 2 = , 63 = ^ , £ 4 = , / may be 

wr i t ten 

/ ( 2 , 2 ) = ^ {e'^'+'h, + e-'(^+^")e2 + e^'-'^s + e-^'-'^,) 

w here 

D = diag(z, -1,1, - 1 ) G U(4), Uo = ^ (1 ,1 ,1 ,1) . 

Then the harmonic sequence of / is given by { / p } where 

/p = D^e^-^^uo. 

Recall f r o m section 5.1.2 that 7(2,2) = [e^^ '"o], where 

D = ^ d i a g ( - ( l + i \ (1 + z ) , - ( 1 - z ) , (1 - i ) \ uo = ^ ( 1 , ,̂ ^ ) . 

I n order to see whether the maps / and / are congruent - that is, related by a 

holomorphic isometry of CP - we look at the invariants P, P and U, U. Recall that 

by the congruence theorem, a harmonic sequence is uniquely determined by 70, 71 

and {uk,o}k=i- First consider <̂  : 5 -> CP" of the fo rm <!> = [ e^^ -^u] wi th A G 

V(n + 1) a. diagonal matr ix and u G C " + ^ \ { 0 } . Then 

= [A^e^'-^u] 

and 

|,^p|2 = {A^e'^'-^u,A''e^'-^u) - | u | ^ 
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that is, \(j)p\^ is constant for all p. Thus, for the Clifford torus and its h f t , |/pp = 

uop = 1 and |/pp = \uo\'^ = 1 respectively and 

^ '^^TW' = 1 = % for all p. 
Jp\ 

Now recall that for a harmonic sequence {<f)p}, 

Then, by construction, ( /p+i , /p) = 0 and since / is conformal, ( /p+2 , /p) = 0, so that 

•"1,0 = U2fi = 0. Also, 

U3fl = ( / s , / ) = {D^UO.UQ) = 0, 

"4,0 = ( / 4 , / ) = {D'^Uo.Uo) = {uo,Uo) = 1. 

Now, 

so that 

— diag(z, 2, — i , —i) 

and = - ^ d i a g ( ( l - z), - ( 1 - z), (1 + z), - ( 1 + z)) so that 

ii3,o = ( / s , / ) = {D^uo,uo) = 0. 

Finally, 

"4,0 = ( / 4 , / ) = {D'^uo,uo) = -{uo,uo) = - 1 , 

which demonstrates that the invariants ^4,0 and ^4,0 are not the same. Thus, by the 

congruence theorem, the maps / and / are not congruent - there is no holomorphic 

isometry of CP^ which takes one into the other. 

However, / and / are related by a simple change of co-ordinate on the domain. The 

change of co-ordinate required is 

( l + l ) z I — > ^=^z 
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and this corresponds to a rotation of the domain through the angle . 
4 

5.7. Positive and Negative Li f t s 

In section 4.2 the twistor space Z{N) of a Riemannian 4-manifold N was defined to 

be the space of orthogonal complex structures on the tangent spaces of A'' compatible 

w i t h the orientation of N. For N = S^, Z{N) = CP^ and we obtain a twistor l i f t / to 

the twistor space of a map f : S ^ S'^. Now, reversing the orientation on A'̂  gives a 

second twistor space, say Z^{N), which is compatible wi th this opposite orientation 

of iV. 

When dimN = 4, the special nature of S0(4) gives a nice way to think about Z{N). 

Consider ^ ( A ^ ) , the space of 2-vectors on A^. Then ^(A^) spHts as 

A'TiN) = MT{N)®AlT{N) 

into the direct sum of the ± l -e igenspaces of the Hodge *- operator. Then Z±{N) : — 

S{AlT{N)), the unit sphere bundle of /\lT{N). Z+{N) = Z{N) as before, but 

Z-{N) corresponds to Z{N) under the other choice of orientation on A'̂ . Then we 

can define twistor l i f ts f ± : S ^ Z±{N). When N = S'^, Z±{N) are both isomorphic 

to CP^ and the l i f ts f± are the 'subsidiary Gauss l i f t s ' of Eells-Salamon [17]. 

I n this work so far, only the l i f t has been investigated, that is, by / we have really 

meant / + . But the antipodal map a : 5"* — 5 ^ reverses the orientation on S"* taking 

/ to —/ so that the l i f t / _ is just the l i f t / of the map a o / : 5 —> S"*. 

For conformal / i t is interesting to observe that the l i f t / _ to CP"̂  is closely related 

to the second row of F, the Sp(2) description of the adapted frame of / (cf. section 

4.8.2). Let f = {Xo,... , ^ 4 ) as before, set q = — . Then ao / = -(Xo,... , ^ 4 ) 
1 + Ao 

X X Q 
which corresponds to g = — — = — — ; — - = - . I f / is conformal, then 

1-Xo [l + Xo) q^ 
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a o / is conformal so that the l i f t / _ is given by 

[/-] = 

= <lzq,-qz.-

But [qzq-,~qz] = [j{qzq)[z]q,—j{qzq)[z]] so that comparing wi th corollary 4.10, the 

second row of F is a complex mult iple of 

Using (5.10) as the f o r m of [ /_] i t is a straightforward matter to compute the condition 

for / _ to be ( J i ) holomorphic. First observe that 

iqzq)[z] = i-zh + Vzj{qz) = 0 

and 

( / - ) . = ^ t e - ? . ) = A / -

for A e C i f and only i f 

{qzzqif^ = (zVzz - izzVz = 0. 

Comparing w i t h corollary 5.5 shows there is much similarity wi th the calculation in 

the / + case. In fact, the conditions for / _ to have properties such as holomorphicity, 

harmonicity and so on may be easily determined f rom those for / + by sending q^ q, 

that is, ^ I—> 1̂ , 7/ I—)- —rj. Moreover, i t is not difficult to see that theorem 5.11, 

proposition 5.7 and corollary 5.8 hold equally well for / _ as they do for / + . These 

results are summarised in theorem 5.12. 

T h e o r e m 5.12. If the twistor lift f±:S—^ CP^ of a conformal immersion / : 5 —> 

5"* is harmonic then it is either holomorphic or it is harmonic with a j-symmetric 

harmonic sequence. 

Recall that in theorem 3.14 of Chapter 3, the result of Eells-Salamon was obtained up 

to a choice of sign, at tr ibuted to the choice of orientation on 5"̂ . The use of positive 
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and negative l i f ts makes this precise as can be seen in the proof of the following 

theorem: 

T h e o r e m 5.13. f is a real isotropic immersion if and only if one of the lifts /_ 

is Ji-holomorphic. 

P R O O F . By (2) in proposition 5.6, either of f± holomorphic impHes that / = Trf± is 

real isotropic. Conversely, suppose / is real isotropic. Then /^ . /^ = 0 and fzz-fzz = 0, 

that is, in terms of the quaternionic co-ordinate g, 

6-6+ = 0 (5.11) 

6f6. -+ w - . - = 0. (5.12) 

Differentiating (5.11) w i t h respect to z gives 

izzlz + izlzz + Vzzm + rizf]zz = 0. (5.13) 

I f izzi 6z) Vzz^ Vzz are all zero then the holomorphicity conditions are t r ivial ly satisfied 

so, without loss of generahty, suppose r/^z 7̂  0. Then (5.12) imphes 

Vzz = 
T]zz 

and substituting into (5.13) gives 

- —(6.-7. - M + (66. + ^.^.z-) = 0. (5.14) 

Recall f r o m the discussion following theorem 4.11 that not all of 6) 6) Vz-, Vz can be 

zero and suppose that rjg 0. Then by (5.11), 

66 
Vz = 

Vz 

and (5.14) becomes 

- —(6.??. - CzVzz) + —{Iz-zVz - l-zV-zz) = 0, 
Vzz Vz 

i.e. 

{IzzVz - izVzz){Vzziz - Vzizz) = 0 
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izzTlz - iz-qzz = 0 ( /+ Ji-holomorphic) 

or izz-qz - izilzz - 0 ( /_ Ji-holomorphic). 

• 
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C H A P T E R 6 

T w i s t o r L i f t s f o r H"^ 

The ideas of chapter 4 w i l l now be extended to the case of immersions f : S H'^ of 

surfaces in four-dimensional hyperbolic space. The chapter begins wi th a review of 

semi-Euclidean space (section 6.1), its hyperquadrics and the semi-orthogonal groups 

(section 6.2) before progressing to a discussion of the homogeneous spaces S0(1 ,4 ) / / \ . 

As in the 5"'-case, these may be identified as flag manifolds and section 6.4 shows how 

the l i f t s of / to these spaces may be defined. 

Recall that for min imal totally isotropic immersions of surfaces into 5"* one considers 

the twistor fibration irs* : CP^ ^ 5"*. A n immersion (f) : S ^ S"^ of a, Riemann surface 

defines a l i f t i ng $ : 5" —> CP^ and (j) is minimal and totally isotropic i f and only if the 

h f t $ is holomorphic and tangential to the horizontal distribution. Furthermore there 

is an algorithm due to Bryant for constructing explicitly all 'horizontal' holomorphic 

curves. 

I t is then shown how to do the same for minimal immersions into H'^. In section 

6.5 the twistor fibration 7r//4 : Z{H'^) —> and the horizontal distribution on the 

twistor space Z[H'^) are described. Further, section 6.6 relates real isotropic minimal 

immersions into S"* w i t h those into H'^ and shows that, via a twistor transform, there 

is an analogous algorithm to that of Bryant for constructing such immersions into 
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The review material in sections 6.1, 6.2 is taken f rom O'Neill [25 . 

6.1. Semi-Euc l idean Space 

To begin wi th , some definitions; 

Defini t ion 6.1. A metric tensor g on a smooth manifold M is a symmetric non-

degenerate (0,2) tensor field on M of constant index. 

Defini t ion 6.2. A semi-Riemannian manifold is a smooth manifold M equipped with 

a metric tensor g. 

The index u of g on a semi-Riemannian manifold is called the index of M : 0 < 

jy < n = d i m M . li u = 0, M is a, Riemannian manifold and each gp is a (positive 

definite) inner product on TpM. I f = 1 and n > 2, M is a Lorentz manifold. Semi-

Riemannian manifolds are also called pseudo-Riemannian manifolds in the literature. 

I t is well-known that for each p G there is a canonical linear isomorphism f rom 

to TpR" that sends v to Vp = Yl, Vidi (in terms of natural co-ordinates). So the dot 

product on R" gives rise to a metric tensor on wi th 

{Vp,Wp) = V.W = 'Y^ViWi. 

Now, for an integer v w i t h 0 < < n , changing the first v plus signs in the above 

sum to minus signs gives another metric tensor 

i> n 
{Vp, Wp) =~Y1 + Yl ^1^3 

i=l j=u+l 

of index v. The resulting semi-Riemannian manifold is the semi-Euclidean space 

R'^'"-''. (Note that this reduces to R" i f = 0). I f n > 1, R^'" is called Minkowski 

(n -F l)-space and i f n = 3 i t is the simplest example of a relativistic spacetime. 
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6.2. Hyperquadr ics 

Now consider the semi-Euclidean space R^'^ (Minkowski 5-space) and let 

q{v) = {v, v) = -v^^ + vl + ... + vl 

be the inner product. Then Q = q~^{er'^) is a semi-Riemannian hypersurface of R^''^ 

where e = ± 1 , r > 0. These hypersurfaces are called the (central) hyperquadrics 

of E^'-*. The two famihes {e = 1} , {e = - 1 } fill all of R^'^ (except for the null-cone 

A = g~^(0)\0 and the origin). 

Defini t ion 6.3. (1) The pseudosphere of radius r > 0 in R^'"^ is the hyperquadric 

St{r) = q-\r') = {peR'''\{p,p)=r'} 

with dimension 4 and index 1. 

(2) The pseudohyperbolic space of radius r > 0 in R^''^ is the hyperquadric 

H \ r ) ^ q - \ - r ' ) ^ { p e R ' ' ' \ { p , p ) = - r ' ] 

with dimension 4 and index 0. 

The hyperquadric H'^{r) is a Riemannian manifold and consists of two connected 

components, each diffeomorphic to R'^. These components are congruent under the 

isometry ( p i , . . . jPs) —> ( - P i , • • • ,^5) of R^''^. The component through (r, 0 , . . . , 0) is 

called the upper and the one through (—r, 0 , . . . ,0) the lower embedding of hyperbolic 

4-space H^{r) in M^'-*. 

The geodesies of either of these hyperquadrics Q in R^'"^ are the curves sliced f rom Q 

by planes through the origin of R^'^ and, in general, geodesies can be either spacelike 

{{v^v) > 0), nul l {{v^v) = 0, u 7^ 0) or timehke ((v,u) < 0) vectors. However, as seen 

above, H^{r) is a special case in that = 0 and all geodesies are spacelike. In fact, 

geodesies on i f ^ ( r ) are branches of hyperbole in M^''*. 
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I t is also true that hyperquadrics have constant curvature [25]. ^ ^ ( r ) is a complete 

semi-Riemannian manifold wi th constant positive curvature K = —, while H'^ir) is 

a complete Riemannian manifold wi th constant negative curvature K = . H'^(r) 

is non-compact, but on both the hyperquadrics, all points and all directions are 

geometrically the same. 

Let us take r = 1 and write = H*{1) = { x G R '̂'* | q{x) ^ - 1 } . Then S"^ and 

H'^ are related via stereographic projection onto the disc D'^ = {q E M. \ \q\^ < 1}. 

The upper embedding of H'^ projects onto the disc through (0,0,0,0,1) G R"*'̂  via 

(q, t) 1-^ ( - , l \ . Stereographic projection of the upper hemisphere of 5^ onto the disc 

= {{q,o) e [, \q\^ < 1} is given by {q,t) 
1 + f 

, 0 . Then a point 

{q,t) G H"^ corresponds to a point (a;,s) G S'^ where 

{x,s) '2tq,t'-\qr f 2tq,l 
^ t^ + \q\' J \2t^ 

since \q\^ — = — 1 . 

Recall (section 2.1.2) the group S 0 ( l , 4 ) is defined as 

1 
(6.1) 

where /i_4 

as 

( - 1 

S 0 ( l , 4 ) = {Ae GL(5 ,R) | A'h,,A = h,,} 

. This is the group of isometrics of H'^ [26] and S0(1,4) acts 

[ x J A 

where t G R, u , u G R^, taking 

Ax + u 
-)• . 

v.x +1 
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6.3. T h e F l a g Manifolds S O ( l , 4 ) / i i : 

In a way which is entirely analogous to that discussed in Chapter 2 for SO(5), the 

homogeneous spaces 80(1 ,4) / /^ ' for subgroups K C S0(4) may be identified as dif­

ferent types of flag manifolds. Their elements are given in terms of different flags 

in R-̂ '̂  as orthogonal direct sum decompositions of oriented subspaces. In each case 

S 0 ( l , 4 ) acts on the flags and K is the stabiliser of a typical flag. 

For example, in the case of S 0 ( l , 4 ) / T ^ the elements are direct sums of oriented 

subspaces 

Ri '4 = X ® y i ® y 2 , d i m L = l , d i m K = 2(z = l , 2 ) 

where L is timelike (and the Vi are spacelike) wi th the orientation induced on R^''' 

by those on L , Vi and V2 agreeing wi th the standard one. For SO( l ,4 ) /U(2 ) the 

decompositions are of the fo rm 

Ri .4 = i , ® y , d i m ! = 1, d i m y = 4 

w i t h V having an orthogonal complex structure compatible w i th the metric and ori­

entation. Indeed, SO( l , 4 ) /U(2 ) may be identified wi th the total space of the bundle 

of orthogonal almost complex structures on H'^. Finally, for SO(5)/SO(4) the decom­

positions are of the fo rm , 

R^'^ = L®V, d i m X = l , d i m ] / = 4 

and SO( l ,4 ) /SO(4) = (cf. SO(5)/SO(4) = 5"). 

Again, i n an analogous way to the S0(5) case, the projection maps gk may also be 

understood as ' forgetful maps'. For example, i f (X, V i , V2) G S 0 ( l , 4 ) / T ^ then both Vi 

and V2 have a natural orthogonal complex structure and hence so does V = Vi@V2. 

The projection au(2) : S O ( l , 4 ) / r 2 SO( l ,4 ) /U(2) sending ( ^ , ^ 1 , ^ 2 ) to {L,V) 

'forgets' the decomposition of V. 
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Let ^ : i f ' * —> 5"* be given by the correspondence (6.1) which maps the upper embed­

ding of H"^ into the upper hemisphere of 5"* via 

'2txA''-\x?\ 
<l^{t,x) 

, t'+ x\^ J 

Then ^ is a conformal embedding of H'^ in S"* {<f) : H'^ —̂  H —>• 5"̂  is a composition of 

conformal maps). Thus there exists A : i f * R such that for all p G -ff ' ' , 

is an isomorphism w i t h 

X{py{X,Y)p = {dMX),dMy))HPh ^^Ye TpH' 

Then 

d<l>p : TpH' 

is an isometry and hence is S0(4)-invariant. 

\i(j){t,x) = (t , 5) , d<f>{a,v) = {a,v), let i^ : S 0 ( l , 4 ) ^ S0(5) be the embedding which 

takes 

t Ui a2 as a4 

X Vi V2 V3 V4 

t 1 r. O'l Y^2 Y^3 T^4 

5 jil \V2 \V3 \vy 

where A = A(t,a;). Then by the above, i^ is S0(4)-invariant. Therefore, i f K is any 

subgroup of SO(4) then there is a corresponding inclusion 

S 0 ( l , 4 ) / / ' r - ^ S 0 ( 5 ) / / ^ 

given by gK i-^- i^{g)K. In particular this gives embeddings 

S 0 ( 1 , 4 ) / r 2 ^ S0{5)/T' and S0(1 ,4) /U(2) ^ SO(5)/U(2). 

In this way, S O ( l , 4 ) / U ( 2 ) may be identified wi th the part of CP^ which hes over 

the upper hemisphere of S"*. This is referred to in the sequel as CP^, the space 

of almost complex structures on the upper embedding of I f ^ . The embeddings 

S 0 ( l , 4 ) / i C '-^ S0(5)/ / i r are part of a much wider programme described by Wolf [29 . 
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6.4. L i f t s of Immers ions f : S ^ 

A t each point p £ S, the tangent bundle to H'^ restricted to 5" (considered at the 

point p) splits as 

Tj^,^H' = T,S®N,S 

where TpS is the tangent space and A'p^ the normal space to S in H'^ and both 

and NS are (spacelike) 2-planes. Since / is normal to in R '̂'* we write 

R'''={f{p)}®TpS®NpS 

where { / } is the line in R- '̂'' determined by / . 

Now choose an oriented orthonormal basis 61,62 for TpS and 63,64 for A'pS' so that 

61, 62, 63, 64 gives the standard orientation on i f * , i.e. 

R^'^ = { / } ® span{ei, 62} ® span{63, 6 4 } . 

Thus given any / : 5 —> iJ'*, we have an adapted orthonormal frame 

i ^ = ( / | e i | e 2 | 6 3 | 6 4 ) e S 0 ( l , 4 ) 

and this frame defines a local l i f t of / to S 0 ( l , 4 ) . In general, the frame cannot be 

chosen globally since a basis has been nominated on each of the 2-planes TS and NS. 

However, the frame F is unique up to rotations in these planes, giving a global l i f t 

of / into S 0 ( l , 4 ) / r ^ . Hence, there is a naturally defined global h f t of / into each of 

the homogeneous spaces SO{l,i)/K, where K is a subgroup of S0(4). For any such 

K, the inclusion T CK induces a projection ax : S O ( l , 4 ) / r 2 ^ 80(1,4)/ /^: . Thus 

given a l i f t / : 5" ^ 8 0 ( 1 , 4 ) / T 2 ^^^^ a map / = axf : S ^ 80 (1 ,4 ) /A^ 

From the discussion above i t is now clear how the l if ts may be identified. For / : 5 —> 

S 0 ( l , 4 ) / r 2 Yia^e 

f { p ) - i { m } M S ) , N p { S ) ) 
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and the others can be immediately wri t ten down f rom this in the same way as in the 

S"* case. 

6.5. T h e Twis tor Bundle for H'^ 

As in section 4.5 consider the Hopf fibration 

T T : H ' \ { 0 } ^ eP^ 

and let be the subspace of I H F \ { 0 } given by 

Ml = {{qr,q2)eM'\\q^\^\q2\}. 

Define MPl = 7r(IH2). Then H P j is the disjoint union of two open 4-discs. Indeed, 

ident i fying HP^ w i t h as in section 4.5 so that 

r 1 (2qiq2,qiqi - q2q2\ 

V mi + m2 j 

we see that HP J is identified wi th the complement of the equatorial S"^. 

Now let El = { ( g , i ) G H ® R | gg - = - 1 } " ' ' be one (say the upper) component of 

and define T T * : Eg El by 

2qiq2,qiqi+ q2q2\ 
7r4?i5?2 = r = , 

V mr - m2 / 

(observe that ^^'^^^ ^^^}—„ ^̂ ^̂  ̂  = ~1)- This is a locally t r iv ia l fibre bundle 

w i t h fibre H. I f the components of HÎ  are denoted by H ^ , HP according as qy ^ — |g2|^ 

is > 0 or < 0 and Et are the components of E^ corresponding to t > 0 or t < 0 

then 

7r± : ^ El 

where 7r± = T T * |j]2^. 
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As in the ^^-case, there are co-ordinate neighbourhoods x±, : D{E.) —> H^, where 

D{m) = {qeM\\q\< 1} , given by 

In terms of these local co-ordinates the metric on H'^ (induced f rom the metric 

{q, OP = qq-t^ onE.®R) is given by 

and 

T^+{quq2) = qi^q2 = q for (gi,g2) e H ^ , 

7 r - (? i , 92) = = q' for (91,92) G H i . 

The differentials d7r± can be described as follows: Firstly, 

dq = qi^dq2 - qi^dqiq~^q2, 

dq' = q2^dqi - q~^dq2q2^qi 

so that 

c/7r+(pi,p2) = 9r^P2 - g r V i ? r ^ 9 2 , 

(^7r_(pi,p2) = ?2"^Pi -q2^P2q2^q\-

As before, the fibre of 7r± through (gi,g2) is given by 

ker^TTi = IHI(^i,52)-

Now consider the H-valued bilinear fo rm defined on by 

((Pi,P2), (91,92)) = 4(pi9i -P292). 

This gives a metric on defined by \[q\,q2)? = 4| |gip - |92p|- The horizontal 

subspace at (91,92) is given by the orthogonal complement of the fibre wi th respect 

to this inner product i.e. 

(e (9 i ,92) )^ = {(pi,P2) e I Pi9i -P292 = 0} . 
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I f 52 = 0 we have (H(g i , 0))^ = M(0,1), while i f ̂ 2 ^ 0 i t follows that the complement 

{n{q,^q2)r = m( ^ 
v k i n ? 2 l V 

Now let Q'^ = {{qi,q2) G | \qi\^ - |g2p = 1} and consider dTr± \Q7. I f ( p i , p 2 ) is a 

point i n ( H ( g i , 0 ) ) ^ then 

' ' ?i ^2 \ \ _ 1 . q2 1 , qi 1 

1 

dir^ A 

(6.3) 

kin92i' 
Now, 

qi 92 
9 ' C 

, 9l ^ 92 ' 
= 4|A| 2 iq^r 

4|Ap 

while 

dir^ A 9l 92 
, 9 i P ' k2p . 

9 iPk2p 

4 ki|-^|A|^|92P 

4|A|2 

\qi\W 

Hence (/7r+ maps (91,92) x (H(9 i , 92))"'" isometrically onto T^^^g^^g^^E^. 

Arguments similar to those in section 4.5 now show that 7r± may be factored via C P | 

( = /9lHI^) and that C P | is the bundle of almost complex structures on E^. 

Let us consider CP^ more carefully. Use a co-ordinate neighbourhood on CP^ derived 

f r o m that on CP^ mentioned in section 4.5 viz. 

(6,6,6) ^ [ 1 , 6 , 6 , 6 ] 

where 1 + |6P - |6I' - 16P > 0. Then p : ^ ^ CPI given by p{zo + z,j, Z2 + z^j) = 
r 1 fZl Z2 Z3\ 
2 0 , ^ 1 , ^ 2 , ^ 3 ] ^ . Now 

V Zo ZQ ZQ J 

dP(zQ,zuZ2,Z3){P0,Pl,P2,P3) = \izoPl - ZlPo,Z0P2 " ^2^0, ^OPS " Z3P0) 
ZQ 
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so that ker(i^(^,,^,,,j,^3) = C{zo, z^, Z2, z^). 

Let (€(20)^1,-^2,-23))''' be the orthogonal complement wi th respect to the C-valued 

bilinear fo rm. Then dp maps (C(zo, 21, 22, •̂ s))"'" isomorphically onto T[zo,z;^,z2,z3]CV\. 

We now give CP^ a metric by making p : Q' CP^ a Riemannian submersion. 

More precisely suppose (-20,-21,^2,^3) € so that 

ZQZO + z i z i - Z2Z2 - Z3Z2 = 1 (6.4) 

and let {po,Pi,P2,P3) £ {C(zo, Zi, Z2, Zs))^ so that 

Pozo +P1Z1- P2Z2 - P3Z3 = 0. 

Now 

(P0 ,Pl ,P2,P3)r = 4(poPo+PlPl -P2P2 -P3p3)-

Wri t ing = — , (A; = 1, 2, 3) so that 

dzk = (kdzQ + zodik (6.5) 

and wr i t ing 

ZodzQ -\- zidzi — Z2dz2 — zsdzs = 0 (6-6) 

we have f r o m (6.5) 

Zkdzk = hikZodzo - f ZQZoikd^k- (6.7) 

Thus (by (6.6) and (6.7)), 

zodzo = -z-idzi + Z2dz2 + Z3dz3 

= ( - 6 6 + 6 6 + 66)^oc^^o + 2o2o(-6c?6 + 6^^6 + 6^^6) 

so that 

zodzo{i + 6 6 - 6 6 - 6 6 ) = -zozo{^id(i - 6 f^6 - 6^^6)-

Thus using (6.4) 

^ , • ( 6 ^ ^ 6 - 6 ( ^ 6 - 6 ^ ^ 6 ) 
zoa-̂ o = (1 + 6 6 - 6 6 - 6 6 ) ' 
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Now the metric is given by 

ds^ = 4:(dzodzo + dzidz\ — dz2dz2 — dz^dzs) 

= i{dzodzoil + 6 6 - 6 6 - 6 6 ) + zoZoidCid^i - di2d(2 - c?6^^6) + 

zodzo{lidii - 6o?6 - 6c?6) + ZodzoUid^i - 6<^6 - 6<^6)} 

_ ^(1 + 6 6 - 6 6 - 66)(^6^6 - ^6^6 - ^6^6) - (6^6 - 6^6 - 6^6)^ 
( 1 + 6 6 - 6 6 - 6 6 ) ' 

This is a Kahler metric on CP^ with Kahler form 

a = -iiddiog{i + 6 6 - 6 6 - 6 6 ) -

However, it is not a metric of constant holomorphic sectional curvature. 

Let us now consider the horizontal distribution by first considering the tangents along 

the fibre and then taking the orthogonal complement with respect to the above met­

ric. As before, use local co-ordinates ( 6 )6 )6 ) ) taking Zg ^ 0. The fibre through 

1 , 6 , 6 ) 6 ] has tangent vector (1 -F 6 6 ) 6 6 - 6 , 6 6 + 6 ) and (T/I,7/2, ?73) is in the 

orthogonal complement of this with respect to the metric above if and only if 

(1 + 6 6 - 6 6 - 6 6 ) { ( i + 66)^?! - ( 6 6 - 6)^72 - ( 6 6 + 6)^73} -

{6(1 + 6 6 ) - 6 ( 6 6 - 6 ) - 6 ( 6 6 + 6 ) } { 6 ^ i - 6^2 - 6 ^ 3 } = 0 

that is, if and only if 

Vi + 6^2 - 6^3 = 0. 

Thus the co-tangent bundle along the fibres has local holomorphic section c?6+6<^6 — 

6( i6 and the horizontal bundle has local holomorphic sections (6, —1,0), (6,0,1)-

6.6. The Twister Transform 

Suppose that / : 5 —> S"* is a superminimal immersion of a Riemann surface into 

S"*. Then from / it is possible to construct a superminimal immersion (j) : S* ^ 

(where S* = S\f-\S^)) as follows: 
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Since / is real isotropic, the complex 2-dimensional subspace V of spanned by d(f>. 

d'^4> is a maximal isotropic subspace. The transform / : —> C '̂'' sending (ZQ, • • •, -24) 

to (i^o, - ^ 1 , • • •, -2^4) maps V into the isotropic subspace I{V) of C^'''. Then taking the 

real line in Ĉ '"* orthogonal to I{V) ® I{V) and intersecting with H\ gives the map 

(j) : S* H'^ mentioned above. 

Since the space of almost complex structures on 5"* (resp. H'^) is the same as the 

space of maximal isotropic subspaces of (resp. O''*), the transform should be 

explicable in terms of a map between twistor spaces. 

Recall that for holomorphic [g] = [1,(1 ,^21(3] G CP^, g is horizontal if 

dCi + 6«f6 - 6̂ 6̂ = 0. 

Multiplying ,^2, 6 by ±i changes d^i + ^2(^6 - 6<^6 into d^i - ^2C?6 + 6c^6 and the 

vanishing of this is precisely the condition for holomorphic [1 ,65656] G CP^ to be 

horizontal. Let / : CP^ CP+ be defined by 

I{[zo,Zi,Z2,Z3\) = [zo,zi;iz2,iz3 . 

Then / is holomorphic and maps horizontal subspaces of CP"̂  to horizontal subspaces 

of CP^. Thus if g is holomorphic and horizontal, so is I{[g])- So the transform gives 

a one-to-one correspondence between superminimal immersions (j) : S S'^\S^ and 

superminimal immersions ip '• S H^. 

Then, by the Weierstrass formula of Bryant it is clear how to construct holomorphic 

and horizontal curves in CP^ (and hence superminimal immersions into H'^). If 

f,g:S-^C are meromorphic functions with g non-constant then the map '^{f,g) • 

M -^C?l defined by 

* ( / , ^ ) = [ l , / - ^ / , - ^ ^ , - ^ { ! ] 

is holomorphic and horizontal. 
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CHAPTER 7 

Appendix: The Quaternions, and Sp(n) 

Recall that the quaternions are the set EI of ordered quadruples of real numbers, or 

equivalently, of ordered pairs of complex numbers 

Go + aii + a2j + ask (ao, ai, 0 2 , a^) ^ (ao + aii, a2 + a^i), G R 

with 

= p = = —1 and i j = k, jk = i, ki = j . 

Addition and multiplication of quaternions are defined by 

(a i , a2) + (/3i,/?2) = ( a i + A , « 2 + ;52) 

(ai,a2)(/5i,/52) = {a^/3r - 02^2,^1/^2 + 02/^1) a^J, € C 

Notice that the operation of multiphcation is not commutative, and so the set HI 

together with the above operations is a skew-field. 

The quaternion q = ao + ati + + ask — ( a i , 0 : 2 ) has conjugate q = ao — aii — 0 2 7 — 

ask = ( « ! , — 0 : 2 ) . As we have seen above, IK is identified with (C^)" = C?" i.e. 

{qi,...,qn) ^ {zi,Z2,. . . ,Z2n-l,Z2n) 

where qr = Z2r-i + ^ 2 r i , for r = 1,... ,n . We make HI"' into an H-module by letting 

HI act on the left. H" is a left HI-vector space, with scalar multiplication by elements 

of HI given by q{qi,... ,qn) - {qqi,..., qq-a)- Since C C H as a sub-ring (the elements 
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of the form do + aii) it follows that is also a (left) C-vector space. Moreover, for 

A e c, 

A(gi , . . . ,5„) = (Agi,. . .,Ag„) {Xzi,Xz2,...,Xz2n-l,><Z2n) 

SO that the identification of I F with the C-vector space C?" is a C-Hnear isomorphism. 

A map r : ^ HP is H-hnear if T{qv) = qT[v) for all g G M and v G HP. The set 

of invertible H-linear maps forms a group denoted by GL{n; H) and, conversely, any 

H-linear map is represented by an n x n matrix with HI coefficients (with respect to 

the standard basis (1, 0 , . . . , 0 ) , . . . , ( 0 , . . . , 0,1) of H") and GL{n; H) is precisely the 

group of all such invertible matrices. 

Since any H-linear map is C-linear, it follows that an H-linear map T can be repre­

sented by a complex 2n x 2?z matrix. Conversely, a C-linear map T is Hl-linear if and 

only if T j = jT. We recall that 

j{z2r-l + Z2rj) = -Z2r + Z2r-lj 

SO that if w G HP = then 

jv = Jv = Jv, where J = diag 

Thus the matrix A represents an H-linear map if and only if Ajv = jAv for all 

V G C^" that is, if and only if AJv = J{Av), A J - J A. Thus, in particular, 

GL{n; m) = {Ae GL{n- C)\AJ = J A). 

The condition AJ = J A may be understood as follows: Let 

A 

All ••• Am 

Anl . . . A„ 
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where each Ars is a 2 x 2 matrix. Then AJ = J A if and only if ArsJ = JArs, where 
' , I.e. 

J = 

Ars 

rs ^rs 

Then A G M2n(C) with AJ = J A corresponds to A = (pij) G M„(]HI), psr = ars + brsj. 

(Notice there is a 'transpose' effect here.) Then the actions of M2„(C) on C'" and 

M„(IHI) on W correspond via 

A 

( \ 

yZ2nJ 

^ ( g i , . . . , qn)A, where qr = Z2r-\ + 2 2 r i -

To obtain an inner product on HI", we consider the map < , >: H" x —> HI defined 

by 

< (?l , ---)?n) ,(Pl)- • • )?«) >= qipl + • • • + qnPn 

(cf Hermitian inner product on C"). This form is sesquilinear in the sense that 

< v^w > = < w,v > 

< vi-\-V2.,w > =< vi^w >-\-< V2^w > for all g G HI, 

< qv^w > — q < v^w > v,Vi,V2,io G HT 

< v,qw > =< v,w > q 

and determines a norm on W via = < v,v >. (Note that <v,v >G R, < > > 

0 with equality if and only if u = 0, and that this agrees with the usual norm on C^"). 

We define Sp(n) to be the subgroup of GL(n; M) which preserves the norm. Thus 

Sp{n) = {Ae\]{2n)\AJ = JA}. 

Finally, we note that right multiplication by elements of HI is H-hnear (with respect 
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to left multiplication by H). Thus right multiplication by a unit quaternion is an 
H-linear isometry of HP and so determines an element of Sp(n) i.e. Sp(n) acts on HP 
on the right. Since 

{zi + Z2j){a + hj) = azi - hz2 + (bzi + az2)j 

we see that right multiplication by a -f bj corresponds to 

diag 
a —0 

h a n 

G GL(n; H) 

and this element lies in Sp(n) when a 4- hj is a unit quaternion. 
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