
Durham E-Theses

Incremental redocumentation using literate

programming

Win, Nwe Nwe

How to cite:

Win, Nwe Nwe (1998) Incremental redocumentation using literate programming, Durham theses,
Durham University. Available at Durham E-Theses Online: http://etheses.dur.ac.uk/4762/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4762/
 http://etheses.dur.ac.uk/4762/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

Incremental Redocumentation Using
Literate Programming

Swe Nwe Win

M.Sc. Thesis

Centre for Software Maintenance
Department of Computer Science

University of Durham

998

The copyright of this thesis rests
with the author. No quotation
from it should be published
without the written consent of the
author and information derived
from it should be acknowledged.

2 3 MAY 2

Abstract

The primary aim of this research is to investigate means of improving program comprehension
through redocumentation. In particular i t w i l l concentrate on using Literate Programming
as a method for program redocumentation.

Documentation is crucially important as an aid to understanding software systems. The
Incremental Redocumentation Using Literate Programming System analyses the existing
source code and merges in a range of other information, in order to create a complete
documentation package. This may include not only traditional paper documents, but also
hypertext facilities, animated specifications and output f rom other analysis tools. The status
of the documentation is impl ic i t ly elevated to that of an integral part of the system, rather
than an optional extra. Where a configuration management system is used to manage
different versions of a system, the documentation can also be brought under its control.

The literate programming paradigm provides the encouragement and capabihty to produce
high quality code and documentation simultaneously. Conceptually, literate programming
systems are document preparation systems. The primary goal of a literate program is to be
understandable to the programmers who are going to have to read i t at some later date -
often while involved in maintenance, or perhaps when trying to determine the possibihty of
reusing parts of the code for later projects.

This thesis presents a structures of C programs and literate C programs, and describes the
features of captured literate C programs. A method of the capture process and also the
functions of the redocumentation process are described. In addition, this thesis outlines how
the individual stages in the capture process and the edit process are used to redocument
a C program. The results of application of the process are highUghted by way of example
programs. The evaluation process is performed by comparing the results of an existing
literate program w i t h those resulting f rom the application of the method described within
this thesis. The results have shown that the captured redocumented literate C program is
more readable and understandable than source code only, and that i t provides a basis for
subsequent maintenance and further redocumentation.

Acknowledgements

The author would like to acknowledge the Minis t ry of Education, Myanmar, and the Brit ish
Council for the award of research studentship.

Special thanks are also due to my supervisor Mr . Malcolm Munro, Departrnent of Computer
Science, University of Durham, for all his help and guidance throughout the course of this
research, and Dr. Kyaw Thein, Rector, and all the colleagues at the Institute of Computer
Science and Technology, Myanmar, for their support and encouragement.

A t last, not the least, the author would like to thank Professor Kei th Bennett and all the
colleagues at the Centre for Software Maintenance, University of Durham, United Kingdom
for all their support, useful comments and facilities provided.

statement of Copyright

The copyright of this thesis rests w i th the author. No quotation f rom i t should be published
without prior consent and information derived f rom i t should be acknowledged.

Contents

1 Introduction 1

1.1 Research Method 3

1.2. The Criteria for Success 3

1.3 Overview of the thesis 4

2 Documentation for Software Maintenance 5

2.1 Introduction 5

2.2 Documentation 5

2.2.1 Types of Documentation 6

2.2.2 Documentation Tools 8

2.3 Literate Programming 9

2.3.1 W E B 10

2.3.2 Other Literate Programming Tools 11

2.3.3 Evaluation of Literate Programming and Related W E B Tools 11

2.3.4 More General tool support for Literate Programming 13

2.3.5 noweb 13

2.4 Redocumentation 17

2.5 Hypertext as a means of literate programming support 20

2.6 Summary 21

3 Incremental Redocumentation using Literate Programming 22

3.1 Introduction 22

i

3.2 Incremental Redocumentation 22

3.3 noweb and C 23

3.3.1 noweb structure 23

3.3.2 C layout 25

3.3.3 Literate C program 27

3.4 The Capture Process 33

3.5 The Edi t Process 35

3.5.1 The View activi ty 35

3.5.2 Change 36

3.6 Example 39

3.7 Summary 44

4 Implementation 45

4.1 Introduction 45

4.2 The literate C program generator 45

4.3 Summary ^0

5 Evaluation of the process 51

5.1 Introduct ion 51

5.2 Evaluation 51

5.2.1 Wordcount program wc.c 51

5.2.2 Lines program hnes.c 53

5.3 Summary 58

6 Conclusions 59

6.1 Introduction 59

6.2 The Achievements of the Criteria for Success 59

6.3 Future Research 61

6.3.1 Implementation of Edit process 61

n

6.3.2 Movements of the Comment hues 61

6.3.3 Grouping process 61

6.3.4 Analysis Tools for Other Programming Languages 61

6.4 Summary 61

A wc.nw 63

B wc.c 70

C wc.nw' '̂ ^

D wc.nw" '̂ ^

E lines.c

F lines.nw' 89

G lines.nw" 94

H gen-nw

m

Chapter 1

Introduction

Program comprehension is an important aspect of software maintenance being relevant across
the range of maintenance activities [42]. A large percentage of software engineering activity
is i n dealing w i t h existing software [33]. Software maintenance, reuse, reverse engineering,
and re-engineering are expensive activities. A significant part of this cost is in program
comprehension. There are many activities necessary to make the comprehension process
possible and meaningful. Documentation is crucially important as an aid to understanding
a system.

I f developers can document their reasoning for design decisions, how various parts of the
system are intended to interact, and their thoughts about future program modification, then
this too can greatly reduce the problems of program comprehension once a system enters
the maintenance phase. Even when code is designed so that changes can be carried out
efficiently, the design principles and design decisions are often not recorded in a form that
is useful to future maintainers. Documentation is the aspect of software engineering most
neglected by both academic researchers and practitioners. Their interests are short-term
interests, and their work satisfaction comes f rom developing programs.

When documentation is available, i t is usually poorly organised, incomplete and imprecise
16]. Of ten a programmer or manager decides that a particular idea is clever and write a

memo about i t while other topics, equally important, are ignored. In other situations, where
documentation is a contractual requirement, a technical writer, who does not understand
the system, is hired to write the documentation. The resulting documentation is ignored
by the maintenance programmers because i t is not accurate. Some projects keep two sets
of books: there are the official documentation, wri t ten as required for the contract, and the
real documentation [37].

Documentation that seems clear and adequate to its authors is often unclear to the pro­
grammer who must maintain the code later. Even when the information is present, the
maintenance programmer does not know where to look for i t . I t is almost as common to
find that the same topic is covered twice, but that the statements in the documentation are
inconsistent w i t h each other and the code.

Documentation is not an attractive research topic. Software documentation has always been

given low pr ior i ty status compared to other software activities [18]. In talking to people
developing commercial software we find that documentation is neglected because i t wi l l not
speed up the next release. Again, programmers and managers are so driven by the most
imminent deadline, that they cannot plan for the software old age. I f we recognise that
software aging is inevitable and expensive, that the first or next release of the program is
not the end of its development, that the long-term costs are going to exceed the short term
profi t , we w i l l start taking documentation more seriously.

A major step slowing the aging of older software, and often rejuvenating i t , is to upgrade
the quality of the documentation. Often documentation is neglected by the maintenance
programmers because of their haste to correct problems reported by customers or to introduce
features demanded by the market. When they do document their work, i t is often by means
of a memo that is not integrated into the previously existing documentation, but simply
added to i t . I f the software is really valuable, the resulting unstructured documentation can,
and should, be replaced by carefully structured documentation that has been reviewed to be
complete and correct [37].

In general, documentation is anything which provides information about the software sys­
tem. Thus i t includes the source code, Job Control Language (JCL), test suites, as well
as development documents, designs, user documentations and code analysis results. The
contents of documents may include natural language text, diagrams, mathematical expres­
sions, and maybe in the fo rm of flowing text, tables, structured diagrams etc.[49] However
understanding is achieved, comprehension of the code should be considered as only part of
the process. There must also be a mechanism whereby the information recovered is retained
for use. I f maintainers can incrementally document their understanding of a system, in such
a way that the t ime taken to understand that area of code for future modifications is vastly
reduced, the net result w i l l be realisation of significant savings in maintenance costs.

The Incremental Redocumentation Using Literate Programming System [47] analyses the
existing source code and merges in a range of other information, in order to create a complete
documentation package. This may include not only traditional paper documents, but also
hypertext facilities, animated specifications and output f rom other analysis tools. The status
of the documentation is impl ic i t ly elevated to that of an integral part of the system, rather
than an optional extra. Where a configuration management system is used to manage
different versions of a system, the documentation can also be brought under its control.

The literate programming paradigm provides the encouragement and capability to produce
high quali ty code and documentation simultaneously. Conceptually, literate programming
systems are document preparation systems. The primary goal of a literate program is to be
understandable to the programmers who are going to have to read i t at some later date -
often while involved in maintenance, or perhaps when trying to determine the possibility of
reusing parts of the code for later projects [27].

Hypertext [12] has the potential of being a useful basis for the development of a tool for
the redocumentation of existing software systems. The power of cross-referencing between
related components of documentation and between differing levels of documentation has
already been recognised as valuable in hard-copy software documentation. Hypertext as a
technology offers the capabilities of integrating these ideas into an interactive environment.

Analysis tools can be used to gain a detailed understanding of a program. The understanding
may be gained using a variety of methods. The knowledge gained is very often not recorded
for the benefit of fu ture maintenance. Hence, the gained knowledge wi l l be added to the
documentation incrementally. I n the interactive system hypertext wi l l be used to support
cross-referencing, consistency and readability of a program.

1.1 Research Method

The pr imary aim of this research is to investigate means of improving program comprehension
through redocumentation. In particular i t w i l l concentrate on using Literate Programming
as a method for program redocumentation.

Conceptually, literate programming systems are document preparation systems. The literate
programming paradigm provides the encouragement and capability to produce high quality
code and documentation simultaneously. The goal is to create literate programs which
have some facilities such as table of contents, cross-reference and indexes to help readers to
comprehend the programs quickly and thoroughly. Literate programming is concerned wi th
chunks of code.

The research method to be used w i l l first explore the Literate Programming paradigm and
ident ify how this paradigm can be applied to existing programs. Programs writ ten in the
programming language C w i l l be redocumented. The language C was chosen as there are a
large number currently being wri t ten in C and these programs are in general undocumented.
Analysis of C programs w i l l have to be carried out to identify the chunks of literate pro­
gramming. I n a C program, chunks can be for example a set of includes, defines, the global
variables or the functions.

Evaluation of the success of this research wi l l be through a comparison of redocumented C
programs w i t h those C programs wri t ten using the literate programming paradigm.

A C program is captured to a literate C program by the capture process. The captured
literate C program has cross-reference for chunks and identifiers and also printed type set
documentation by using I^TgX. But this is only a basic achievement of the system. The
stages of the incremental redocumentation process are as follows.

1.2 The Criteria for Success

The work presented in this thesis w i l l explore the redocumentation process and in particular
how i t relates to Literate Programming. The criteria for success, to be judged in the final
chapter, are as follows.

1. the provision of a description of existing documentation methods and an evaluation of
their suitabili ty;

2. an exploration of existing literate programming techniques;

3. the development of a method for redocumenting C programs to produce literate C
programs;

4. a description of the redocumentation (edit) process.

5. the development of prototype tools to create literate C programs;

6. an evaluation of the results of the apphcation of the method and tool developed based
on comparisons w i t h existing literate programs;

1.3 Overview of the thesis

The remainder of this thesis is structured in the following manner.

Chapter 2 introduces the types of documentation, literate programming and discusses why
redocumentation is needed. Hypertext and other literate programming systems using hy­
pertext are described.

Chapter 3 presents the structures of C programs and literate C programs, and the features
of captured literate C programs. The method of the capture process and also the functions
of the redocumentation process are described. The results of application of the process to
example programs are presented.

Chapter 4 outlines how the individual stages in the capture process and the edit process are
used to redocument a C program.

Chapter 5 provides the evaluation of the system. I t compares and contrasts of the literate
C program, the captured literate C program and the redocumented captured literate C
program.

Final ly Chapter 6 summarises the system of Incremental Redocumentation using Literate
Programming.

A summary is given at the end of each chapter.

Chapter 2

Documentation for Software
Maintenance

2.1 Introduction

The understanding of existing software systems and poor documentation are related problems
during software maintenance [16]. Good quality documentation can greatly aid the process of
the understanding task for software maintainers. The maintainer approaching an unfamiliar
system is typically confronted by documentation which is out of date, inconsistent, difficult
to understand, and also sometimes inaccurate [13]. Therefore the maintainers mostly rely
on the source code.

This chapter describes the types of documentation, explores literate programming, and gives
a detailed description of the literate programming tool noweb. Why redocumentation is
needed and the interactive environment for literate programming using hypertext are also
discussed.

2.2 Documentation

Software documentation is wri t ten for a number of diff'erent kinds of reader [20]. Software
engineers involved in the development and maintenance of a system require precise and de­
tailed description of its application, but there is a difference between the documentation
required by those involved in the development of the system and those involved in its main­
tenance. The former are concerned wi th the system as i t is and w i l l be, whereas the latter
are looking at the system wi th a view to exploiting new arrangements that may not have
been anticipated by the developers. Furthermore, the needs of project leaders are different
f r o m those of the software engineers and the documentation must allow for interpretations
suitable for them. Support engineers, application builders, users, etc., all require different
interpretations.

Software documentation has a significant effect on program understanding. Without accurate
documentation the only reliable source of information about a program is the source code
itself[3]. Bu t i t is diff icul t for the programmer to abstract the high level functionality of a
complex program f r o m the low level details given by the source code.

Understanding the functions and behaviour of a system f rom the code is a vi ta l part of the
maintenance programmer's task. I f all programs to be maintained were well documented
and clearly structured, the task of the maintainer would be much easier. The problem for
most maintainers is that they have to maintain ill-documented code wi th no comprehensive
structure[3]. The main problem in doing maintenance is that the maintainers cannot do
maintenance on a system which was not designed for maintenance.

Robson, Bennett, Cornelius and Munro [42] discussed the approaches to program comprehen­
sion. There are two basic approaches to program comprehension of relatively small programs.
First there is the systematic approach, where the maintainer examines the entire program
and works out the interactions between various modules. This is completed before any at­
tempt is made to modify the program. The other approach is the as-needed strategy where
the maintainer learns enough about the program to commence the modifications. W i t h the
small program used in experiments, i t is clear that the systematic approach is superior, but
for large industrial scale programs this approach is not feasible and an adapted as-needed
strategy must to be employed.

2.2.1 Types of Documentation

Younger [49] describes the Type of Documentation in 'The REDO Compendium', Reverse
Engineering for Software Maintenance.

Documentation can be described in three types:

• Development documentation

• User documentation

• Technical documentation

Development documentation

Development documentation [51] is made for special purposes, for instance

• to record design decisions,

• to review a part of the development process,

• to freeze the state of a part of the development process,

• to ver ify the completeness and consistency of the design or

6

• to validate the design.

This type of documentation is produced during a software development process. Develop­
ment documentation, which is reliable and of good quality, is valuable to the maintainer.
Given reliable documentation, its u t i l i t y is determined by traceability [8]. I t is important that
the documentation includes cross-references which allows the maintainer to trace through
f r o m the specification documents to the relevant design information and f rom here to the
effected sections of code.

User documentation

User documentation [49] includes all documentation delivered to the user as part of the sys­
tem package. I t comprises information needed to install and use the system, ideally without
invention f r o m its developers. I t is almost certain that some form of user documentation wi l l
exist, though its contents and scope may depend on the relationship between the developer
and the user.

The min imal fo rm of user documentation contains the information required to operate the
system. This should include:

• pre- and post-conditions for execution,

• descriptions of input and output data,

• descriptions of user interaction procedures,

• internal file formats,

• details of any execution options and how these are selected, and

• error conditions, error messages and recovery procedures.

These may be in the fo rm of examples, informal descriptions, formal functional specifications
or combinations of these.

When an application is developed internally by an organisation for in-house use this may
be sufficient documentation for the end user; installation and support w i l l probably be
carried out by the developers. However systems delivered to client organisations must be
accompanied by more extensive documentation which ought to include:

• Installation instructions, unless installation is carried out by the supplier. This wi l l
give instructions about how to load the system f rom the distribution media, install
the component files on the user disk store, and build the application f rom these files i f
appropriate.

• A n overview of the system, the problem i t is intended to solve, and its constraints.
This may be interpreted as a requirements specification.

7

• The hardware and software operating environment. This w i l l specify the computer
system on which the application wi l l run, its requirements for main memory and disk
storage, also any peripheral devices required and configuration instructions when al­
ternatives are possible.

User documentation is a potentially rich source of information about the application. I t
may provide information about the requirements specification for the system. I t may also
describe the input /ou tput behaviour, and w i l l almost certainly give detailed information
about user interaction and/or data file formats. However, the information could well be in
a descriptive f o r m which is insufficient to provide a complete specification of any part of the
system. Even so i t is useful to the maintainer. A t a high level, installation instructions or
script files w i l l provide an inventory of the files which makeup the application and perhaps
also the relationship between them. A t a lower level, the user interaction and input /output
format descriptions aid the maintainer in identifying the roles of various variables in the pro­
grams. Al though functional and other requirements may be described, user documentation
is unlikely to give any information about how these are refined at design and implementation
stages. However, the fact that these are stated w i l l give clues about the functional constructs
that a maintainer might look for when studying the system.

Technical documentation

Technical documentation [49] is generated f rom analysis of the application code by automatic
tools. Technical documentation is useful in maintaining at the code level, and in reverse
engineering.

Technical documentation tools typically generate low-level documentation such as identifier
cross-reference listings, call graphs, control-flow diagrams, and also more abstract informa­
t ion such as data flow diagrams and structure charts. The former is useful to maintainers
t ry ing to understand the details of the code, the later in reverse engineering: in understand­
ing the application at a more abstract level.

2.2.2 Documentation Tools

Documentation tools which require some level of user interaction can be useful not only
to generate documentation, but also because the software engineer has to think about the
system when he uses the tool. In that way the software engineer gradually gains more
understanding. Documentation especially suited to software maintenance can be generated
of documentation by reverse engineering. This can be added to the existing documentation.
The amount of documentation and the number of ways to present i t become very large.
Therefore, i t is necessary to have ways to select information and to choose the presentation
format .

The objective of a documentation system for maintenance should be to support the process
of system understanding and redocumentation. Many authors have suggested that source

code should include its own design documentation, to minimise the danger of inconsistencies
appearing during maintenance. Knuth's method of 'Literate Programming' [27], goes further,
organising an underlying file in such a way that compilable code, design document etc. can
all be generated directly f rom i t . Unfortunately, this rather complicated file has to be created
using a normal text editor, as there are no tools to support its preparation. This approach of
associating code w i t h documentation has much to offer; most of the problems are resolved i f
the concept is reinterpreted using a database and hypertext links to separate out the various
different kinds of materials.

2.3 Literate Programming

Literate programming changes the programmer's perspective f rom programming for a ma­
chine to explaining to other people (peers, students or examiners!) what the programmer
intends the machine to do. I t encompasses the idea that programming should be directed
towards the human being who reads and writes programs rather than to the computer which
executes them. The primary goal of a Hterate program is to be understandable to the pro­
grammers who are going to have to read i t at some later date - often while involved in
maintenance, or perhaps when t rying to determine the possibility of reusing parts of the
code for later projects. This section describes the concept of Literate Programming, the
W E B system and the noweb system.

Literate programming is a method that encourages the production of a program whose
pr imary purpose is to explain to a human what i t does, as well as to instruct a computer
what to do. Each program element is clearly explained, and is presented in an order that is
best for human understanding. The writer has the freedom to introduce parts of the program
as they are needed - which is not necessarily the order required for compilation.

K n u t h [27] introduced the idea of literate programming wi th the statement :

/ believe the time is ripe for significantly better documentation of programs and
that we can best achieve this by considering programs as works of literature.
Hence my title "Literate Programming". The practitioner of literate program­
ming strives for a program that is comprehensible because its concepts have been
introduced in an order that is best for human understanding, using a mixture of
formal and informal methods that nicely reinforce each other.

During the late 1980s, an attempt was made to promote literate programming wi th a special
section devoted to i t in the Communications of the A C M [15]. Four literate programs were
published [22, 24, 21, 34]. Although the Literate Programming section produced some debate,
and each of the programs was moderated and commented upon by others, the section was
closed down by van W y k [47] in 1990.

Al though literate programming is non-controversial and easily acceptable as a new idea, i t
has not been adopted into the main stream of design methods. One of the reasons for this

may be that it relies on special programming tools and Knuth's original literate programming
system WEB.

2.3.1 W E B

Knuth introduced literate programming in the form of WEB, a tool for writing literate
Pascal programs. WEB allows authors to write source code and descriptive text in a single
document. I t also gives authors the freedom to arrange the parts of a program in an order
that helps explain how the program functions, which may not necessarily be the order
required by the compiler [27]. Although it was later extended to C [31, 39], the original
system was tied to Pascal and relied on batch mode processing.

WEB itself is chiefly a combination of two other languages:

1. a document formatting language and

2. a programming language.

WEB uses TgX as the document formatting language and Pascal as the programming lan­
guage. A WEB user writes a program that serves as the source language for two different
system routines. One way of processing is called weaving the WEB; it produces a document
that describes the program clearly and that facilitates program maintenance. The other
way of processing is called tangling the WEB. It produces a machine-executable program.
The program and its documentation are both generated from the same source, so they are
consistent with each other.

A fu l l description of WEB83 appears in a Stanford report [26], which also contains the
complete WEB program for WEAVE and TANGLE. In the WEB system there is no need
to choose once and for all between top-down and bottom-up design methods because a
program is best thought of as a web instead of a tree. A hierarchical structure is present,
but the most important thing about a program is its structural relationships. With WEB a
complex piece of software consists of simple parts and simple relations between those parts.
The programmer's task is to state those parts and these relationships, in whatever order is
best for human comprehension. It is not in some rigidly determined order like top-down or
bottom-up [41].

WEB's complexities made it difficult to explore the idea of literate programming because
too much effort was required to master the tool [41]. To compound the difficulty, differ­
ent programming languages were served by different versions of WEB, each with its own
idiosyncrasies.

The classic WEB expands three kinds of macros, pretty printed code for typeset output,
evaluates some constant expressions, facilitates string support into Pascal, and implements
a simple form of version control. Versions for languages other than Pascal offer slightly
different functions and different sets of control sequences [41 .

10

WEB uses its TANGLE tool to produce source code and its WEAVE tool to produce docu­
mentation. WEB's original TANGLE removed white space and folded lines to f i l l each line
with tokens, making its output unreadable [27]. Later adaptations preserved line breaks but
removed other white space. WEB's WEAVE divided a program into numbered "sections",
and its index and cross-reference information referred to section numbers, not page num­
bers. WEB worked poorly with t^T^X. I^T^X constructs cannot be used in WEB source,
and getting WEAVE output to work in documents required tedious adjustments by
hand. WEAVE's source (written in WEB) is several thousand lines long, and the formatting
code was not isolated.

2.3.2 Other Literate Programming Tools

After Knuth's WEB literate programming was introduced, Thimbleby [45, 46] implemented
a Unix version of i t , called CWEB. CWEB is a tool to facilitate high-quality program doc­
umentation in a combination of C (the programming language) and troff (a text-formatting
language).

In 1986 a project began to investigate whether literate programming could be made more
accessible through a new tool by Bishop and Gregson [7]. During 1987 and 1988, a new,
production-quality version of the system was implemented and distributed, and at the same
time the method of literate programming was investigated with several different languages,
namely Pascal, C [46, 31], Modula-2 [43] Ada [38], LISP [38], Fortran [1], Clipper and
Assembly language [7]. Hyman [23] discussed the application of literate programming to
object-oriented C++. An awk preprocessor was developed to store documentation along
with source code. The information can be extracted just before compilation.

2.3.3 Evaluation of Literate Programming and Related W E B Tools

Instead of being structured for the ease of the compiler, a literate program is designed for
ease of reading by a human. It is (ideally) organised in patterns which improve its readability
to human eyes. The patterns should f i t the cognitive patterns which the programmer uses
when writing a new program, but more importantly, when trying to read a program written
by someone-else in the distant past.

In principle, literate programming is not language dependent. It is a system for annotating
and decomposing formulae of various kinds so that the formulae are recoverable. Means
are also provided to format the combined annotations and formulae to a high standard of
presentation and to provide derived cross-reference information.

This idea has a wide range of applications:

• for commentaries on classical literature;

• for multilingual commentaries on computer programs;

11

• for formal commentary on programs;

• for informal commentary on programs;

• for annotating a formal record of an interactive session.

According to Brown [10], Literate Programming provides important advantages over tradi­
tional programming in three different ways:

1. Literate Programming encourages organisation of code based on psychological rather
than syntactic divisions. The code can be modularised by separating a group of state­
ments which the programmer considers as a single logical unit into a named module.
This allows for conceptual abstraction of the code, presented in an order and grouping,
chosen to reduce psychological complexity. The division into WEB modules and the
presentation of the modules is independent of any syntactic considerations of the high
level programming language (HLL).

2. Literate Programming makes the program structure more easily visible. The concep­
tual abstraction mentioned above enables clarity in presenting the structure, no matter
how complex, in a single module. If a procedure has three major parts , each part can
be abstracted as a named module, and the procedure composed of those modules.

3. Literate Programming encourages an explanatory style of writing, which leads to more
careful consideration of the details of the program. In discussing this explanatory style
of writing, Knuth claims that WEB encourages the discipline of explaining and hence
clarifying one's thoughts about a module as the code is written. The practice has been
shown to be useful in reducing programming errors.

Although a pioneering system, WEB suffers from the following drawbacks:

1. A WEB program is a mixture of WEB commands, T̂ gX commands and source code.
The extra WEB and T^X commands in the source make the literate program less
readable than it should be and tend to get in the way of development.

2. Section numbering and cross-reference information only appears in the final document
and not in the source program. This means that during the development of a program
the author must either have an up to date copy of the documentation, which could be
expensive to produce or must work with the WEB source file itself, which is not nearly
as readable as the final document.

3. WEB is designed for use with literate programs as Pascal as the base language. The
modification of WEB for other languages [39, 12] reflects a complicated approach in­
volving several stages. More modern paradigms including modular programming are
not catered for.

4. WEB does not produce readable source code. Readable source code is necessary during
program development, although the programmer should be only allowed to read the
code and not modify i t . Readable code is useful as a reference point for compiler error
messages and debugging.

12

2.3.4]V[ore General tool support for Literate Programming

Given these drawbacks an obvious line of attack is to improve WEB, in particular to place it
in an interactive environment. Brown and Childs [10] presented a detailed proposal for such
a system, a Literate Programming Environment (LPE). LPE concerned the development of
an environment aimed at reducing the complexity of programming in WEB by creating a
user interface allowing the programmer to interact more intuitively with the WEB program.
A prototype language-independent interactive literate programming editor, LIPED, was de­
veloped by Bishop and Gregson in 1986 [7]. LIPED has been used for the development
of a few medium sized real-world programs in a commercial environment, and for suites of
educational software.

Bently addressed the concept of Literate Programming in three Programming Pearls columns
in Communications of the ACM [4, 5, 6]. These columns demonstrated the applicabihty
of Literate Programming to the explication and publication of programs, but ignored the
implications for Literate Programming to real-life programming problems. He identified the
activities of design, analysis and maintenance as the three aspects of a written program
which were not well served by the traditional linear source listing, the purpose of which was
to instruct the computer.

Several literate programs have been published, including

• A Small Work of Literature [28, 19

• Printing Common Words [22]

• Processing Transactions [24

• Expanding Generalised Regular expression [21

• A File Difference Program [34

However, none of these literate programs were available in machine readable form. The
emphasis of the publications seemed to be on evaluating the cleverness and correctness of
the program and its embedded documentation, to the exclusion of providing an executable
entity that could be subjected to experimentation, use or maintenance.

2.3.5 noweb

The proliferation of literate programming tools made it hard for Hterate programming to
enter the main stream, but it led to a better understanding of what such tools should
do. Ramsey [39] introduced a literate programming tool noweb, to f i l l this niche. Freely
available on the Internet since 1989, noweb striped literate programming to its essentials.
Programs were composed of named chunks of code, written in any order, with documentation
interleaved.

13

notangle

wc.nw

wc.c
cc wc.c

a.out wc.c a.out Executable

noweave

wc.tex
latex wc

wc.dvi wc.tex wc.dvi

Typeset doc.
for wc prog.

Figure 2.1: Using noweb to build code and documentation.

noweb was developed on Unix and can be ported to non-Unix platforms provided they
could simulate pipelines and support both ANSI C and either awk or Icon. For example,
Wittenberg [41] ported noweb to MS-DOS. noweb was unique among literate-programming
tools in its pipelined, extensible implementation, which made it easy for experimenters to
create new features without writing their own tools.

File structure of noweb

A noweb file is a sequence of chunks. A chunk may contain code, in which case it is named,
or documentation, in which case it is unnamed. Chunks can be sequenced in any order.
Each code chunk begins with <<chunk ncLmes>>= on a line by itself. The double-left angle
bracket must be in the first two columns. Each documentation chunk begins with a line that
starts with an @ symbol followed by a space or new line. Chunks are terminated implicitly by
the beginning of another chunk or by the end of the file. If the first line in the file does not
mark the beginning of chunk, noweb assumes it is the first line of a documentation chunk.

As Figure 2.1 shows, noweb uses its notangle and noweave tools to extract code and doc­
umentation, respectively. When notangle is given a noweb file, it writes the program on
standard output. When noweave is given a noweb file, it reads it and produces, on standard
output, lyrgX source for typeset documentation. The noweb file, wc.nw, referred to in this
figure is listed in Appendix A and will be used as an example in the discussion that follows.

Code chunks of noweb and their processing by notangle

Code chunks contain program source code and references to other code chunks. Several code
chunks may have the same name; notangle concatenate their definitions to produce a single
chunk. Code-chunk definitions are like macro definitions: notangle extracts a program by
expanding one chunk (by default the chunk named « * »). The definition of that chunk
contains references to other chunks, which are themselves expanded, and so on. notangle's

14

output is readable; it preserves white space and maintains the indentation of expanded
chunks with respect to the chunks in which they appear. When double-left and -right angle
brackets are not paired, they are treated as literals. Users can force any such brackets, even
paired brackets, to be treated as literal by using preceding ® sign. Any line beginning with 0
and a space terminates a code chunk. If such a line has the form 0 preceding chunk defines the
identifiers listed in identifiers. This notation provides a way of marking definitions manually
when no automatic marking is available.

Documentation chunks and their processing

Documentation chunks contain text that is ignored by notangle and copied verbatim to
standard output by noweave (except for quoted code). Code may be quoted within docu­
mentation chunks by placing double square brackets around it . These brackets are ignored
by notangle but are used by noweave to give the quoted code special typographic treatment.
noweave can work with Latex or it can use a plain TgX macro package supplied with noweb.
noweave can also work with HTML, the hypertext markup language for Mosaic and the
World-Wide Web. noweave adds no newline characters to its output, making it easy to find
the sources of TgX or I^TgX errors.

Index and cross-reference features

Cross-referencing of chunks and identifiers makes large program easier to understand, noweb
does not introduce numbered "sections" for cross-reference, noweb uses page numbers. If
one or more chunks appear on a page, they are distinguished by appending a letter to a
page number, noweb writes chunk-cross-reference information in a footnote font below each
code chunk, noweb also includes cross-reference information for identifiers, noweb generates
this by using the 0 source code, or by recognising definitions automatically, noweb uses a
language- independent heuristic to find identifiers uses. It can be fooled into finding false
"uses" in comments or string literals.

Compiler and debugger support

On a large project, it is essential that the compiler and other tools refer to locations in the
noweb source, even though they work with notangle's output. Giving notangle the -L option
makes it emit pragmas that inform compilers of the placement of lines in the noweb source.
It also preserves the column in which tokens appear, so that hne-and-column error messages
are accurate. If the -L option is not used, notangle respects the indentation of its input,
making its output easy to read.

15

How noweb supports formatting features

noweave depends on text formatters in two ways: in the source of noweave itself, and in the
supporting macros, noweave dependence on its formatter is small and isolated, instead of
being distributed throughout a large implementation, noweb uses 250 lines of source for T£)i
and I^TgX combined, and another 250 for H T M L . It uses about 200 lines of supporting macros
for plain TgXand another 200 lines to support I^T^X primarily because the page-based cross-
reference mechanism is complex. I^TEX support without cross-referencing requires only 34
lines of source and no supporting macros. H T M L requires no supporting macros.

Uncoupling files and programs

The mapping between noweb files and programs is many-to-many, the mapping between files
and documents is many-to-one. The source files can be combined by listing their names
on notangle's or noweave's command line, notangle can extract more than one program
from a single source file by using the -R command-fine option to identify the root chunks
of the different programs. The simplest example of one-to-many program mapping is that
of putting a C header and program in a single noweb file. The header comes from the root
chunk <header>, and the program from the default root chunk, <*>. The following Unix
commands extract files wc.h and wc.c from noweb file wc.nw.

n o t a n g l e -L wc.nw > wc.c

no t a n g l e -Rheader wc.nw I c p i f -ne wc.h

noweb's c p i f -ne wc . h compares its input to the contents of file wc.h; if they differ, the
input replaces with wc.h. This trick avoids touching the file wc.h when its contents have not
changed, and it avoids triggering unnecessary recompilations.

Because it is language-independent, noweb can combine different programming languages in
a single literate program. This ability makes it possible to explain all of a project's source
in a single document, including not just ordinary code but also things like make files, test
scripts, and test inputs. Using literate programming to describe tests as well as source code
provides a lasting, written explanation of the thinking needed to create the tests, and it does
so with little overheads. If not documented at the time, the rationale behind complex tests
can easily be lost.

Implementing noweb

noweb's implementation is also worth discussing, because noweb's extensible implementation
makes it unique among literate-programming tools, noweb tools are implemented as pipe
lines. Each pipeline begins with the noweb source file. Successive stages of the pipeline

16

implement simple transformations of the source, until the desired result emerges from the
end of the pipeline.

Users change or extend noweb not by recompiling but by inserting or removing pipeline
stages; for example, noweave switches from I^T^X to HTML by changing just the last pipeline
stage, noweb's extensibility enables its users to create new literate-programming features
without having to write their own tools.

noweb syntax is easy to read, write and edit, but it is not easily manipulated by programs.
Markup, which is the first stage in every pipeline, converts noweb source to a representation
easily manipulated by common Unix tools like sed and awk, greatly simplifying the construc­
tion of later pipeline stages. Middle stages add information to the representation, notangle's
final stage converts to code, noweave final stage converts to TgX , or HTML.

In the pipeline representation, every line begins with 0 and a keyword. Markup brackets
chunks by Obegin . . . Send, and it uses the noweb source to identify text and newlines,
definitions and uses of chunks, and quoted code,which can all appear inside chunks. It
also preserves information about file names and defined identifiers. Other index and cross-
reference information is inserted automatically by later pipeline stages.

Extending noweb

noweb lets users insert stages into the notangle and noweave pipelines, so that they can
change a tool's existing behaviour or add new features without recompiling. Even language-
dependent features like formatted output and automatic index generation have been added
to noweb without recompiling.

Stages inserted in the middle of the pipeUne both read and write noweb's pipeline repre­
sentation: they are called filters, by analogy with Unix filters, which are used in the Unix
implementation.

Literate programming will be used as a tool for program redocumentation.

2.4 Redocumentation

Large software systems require a different approach to software documentation than has
traditionally been used. In understanding large, evolving software systems, structural re­
documentation through reverse engineering plays a key role. More than 50 percent of soft­
ware evolution work is devoted to program understanding [44]. The documentation task is
also important. Yet documentation needs differ significantly for software systems of differ­
ent scales. Most software documentation is in-the-small, because it typically describes the
program at the algorithm and data-structure level. For large systems, understanding the
structural aspects of the system's architecture is more important than understanding any
single algorithm component [2].

17

Software engineers and technical managers responsible for maintaining such systems find
program understanding especially problematic [48]. The documentation that exist for these
systems usually describe isolated parts but not the overall structure. Moreover, the docu­
mentation is often scattered throughout the system and on different media. The maintenance
personnel must explore the low-level source code and piece together disparate information to
form high-level structural models. Manually creating just one such architectural document is
always difficult. Creating the necessary documents to describe the architecture from multiple
view points is often impossible. Yet this is exactly the sort of in-the-large documentation
needed to expose the structure of large software systems.

Most documentation is written during the development of the system. Therefore, it is not
sufficiently tailored to the needs of the software maintainer. Documentation is often no
longer consistent with the actual state of the program. The source code itself is often the
only reliable documentation [3].

Major problems faced when maintaining old software are described by Fletton and Munro
in [16]. They found the following:

• Much of existing software is unstructured and is written in languages that do not easily
support structured programming techniques.

• Generally maintenance programmers have not been involved in a product's develop­
ment prior to maintaining i t .

• The software documentation is often nonexistent, incomplete or out-of-date.

There are often a number of problems with the software documentation that is supphed to
maintenance teams from the development phase of a software system. Redocumentation is
the process in which new documentation is generated for an existing system either to replace
or augment any documentation which already exists. The process of documentation will
record the outputs from any reverse engineering that is performed. A detailed knowledge
may be gained using a variety of methods, for instance analysis of code using software
tools. The knowledge gained is very often not recorded for the benefit of future maintainers,
resulting in repetition of effort. Failure to record the understanding gained represents a
waste of resources that must be addressed. If such a documentation system is to achieve
acceptance amongst experienced software maintainers, i t must have a number of features as
described by Fletton and Munro [16 .

Incremental Documentation

Incremental redocumentation [17] is the recording of knowledge about the application as it is
acquired. An essential requirement is that the documentation can be built up incrementally
over a period of time without the need to worry about whether other parts of the system
are documented.

18

Casual Update

I t must be easy to update the knowledge base casually as a programmer examines source
code.

Quality Assurance

I t is common practice within the software industry to perform quality assurance checks on
changes made to the source code. Likewise, quality assurance should be performed on any
new documentation before it is incorporated permanently into the documentation base.

Team Use

Large programs often have many programmers working concurrently on maintaining the
program. Therefore the documentation tool must support the use and update of the docu^
mentation base by a team of programmers.

Configuration Management

Configuration Management must be supported to allow the documentation appropriate to a
particular version of the system to be recovered.

Integrated Source Code

The tool should allow the browsing of program source files in parallel with the browsing and
updating of the documentation knowledge base.

Integrated Automatic Documentation

The accessibility of automatic documentation can be improved by merging the reports gen­
erated by static analysis of the source code into the documentation base.

Information Hiding

I t must support information hiding to allow the documentation to be read at various levels
of abstraction from the implementation that it describes.

19

2.5 Hypertext as a means of literate programming sup­
port

Hypertext is a way of organising information, with particularly convenient means to relate
different pieces of information to each other [14]. The information to be handled by the
hypertext system is divided into nodes. Each node typically stores a page of information,
though most hypertext systems do not place any restriction on the size of its nodes. A
document can be considered as a set of nodes with links between those nodes to form a
graph. Each node contains graphical or textual information. The relationships between
different pieces of information are represented using links, which tie together two (or more)
nodes. The links are often anchored to specific points or regions within a node: this makes
it possible to relate not only nodes, but also individual words or sentences to each other.
Both nodes and links are typed to allow for different semantic interpretations of both node
contents and link-relations.

The typical way of accessing information in hypertext is through navigation. At the interface
level, each node appears in a window of its own, and anchors for the links relating the node
to others are clearly visible. By clicking a mouse (or by some other gesture) at an anchor,
the other nodes of the link relation are brought up, each in their own window: this is known
as following the link. I f the link is not anchored to the internal of a node, there is no visible
presentation of the link. Such a fink must be followed by selecting it from a menu or by
similar means. Hypertext systems commonly allow attachment of attributes to both nodes
and links. Such attributes are simply name-value bindings, and are often used to contain
author names, keywords, last update date, etc.

The actual details of how a hypertext document is browsed and the form of the links is
dependent on the actual implementation. There is an enormous variety in the hypertext
systems that have been developed to date. This is not surprising given the power and
generality of the hypertext concept. Bottaci and Steward [9] presented the usefulness of
active links by considering how they can be used to support consistency checking during
the process of writing or modifying software and its documentation. Although documenters
and novelists may share a similar objective in writing for more than one kind of reader,
the structure of the texts they produce are radically different. Documenters are not obliged
to overload a single document with the various required interpretations, which in any case
would be difficult. Typically, different documents are produced for different kinds of reader.
Documentation is structured, therefore, as a number of parallel and consistent documents.

One particular approach to maintaining consistency which is applicable in some special cases
is shared or included text. In a number of situations, there is a needed for several documents
to contain a common item of text. If a single copy of this common item is shared amongst
the several documents then any changes to the common item are automatically reflected in
the item as i t appears in the various documents. The mechanism of shared text is easily
implemented in a hypertext and works well providing all the including documents require
the same identical copy of the common item.

The structure of documentation must reflect the fact that the majority of readers will not
read it in its entirety or in a single prescribed order, instead the reader is expected to select

20

and order relevant portions of the documentation. The term "browsing" [14] is used to
describe the special style of reading appropriate to documentation. Efficient browsing is
possible only if the documentation contains adequate references.

Conklin has published an extensive survey of hypertext systems [14]. A hypertext system
for browsing and documenting software which make extensive use of references between code
and documentation is described by Fletton and Munro [16]. Hypertext has the potential of
being a useful basis for the development of a tool for the redocumentation of existing software
systems. The power of cross-referencing between related components of documentation and
between differing levels of documentation has already been recognised as valuable in hard­
copy software documentation. Hypertext as a technology offers the capabilities of integrating
these ideas into an interactive environment.

In [12] Brown describes a hypertext system to manage WEB source code. The main objective
is to provide index facilities. The WEB source code is divided into a number of nodes
corresponding to WEB paragraphs. A special node editor that is aware of the internal
structure of WEB modules is provided. To support the different types of indexing, five
different links types are supported, corresponding to different kinds of indexes.

This is a quite straight forward translation of WEB into hypertext. However, it will be
beneficial to be less stringent than WEB, allowing a single code fragment to have more than
one commentary, or allowing a commentary to comment on more than one code fragment.

Osterbye [36] describes hypertext programming as a way of doing Hterate programming that
differs from using the WEB system. There is a prototype'system based on the Hyperbase
and Smalltalk kernel used in HyperPro [35], with a simple Smalltalk based user interface.
The documentation and code are represented as hypertext. Ramsey's [41] noweb can work
with HTML, the hypertext markup language for Mosaic and the World Wide Web (WWW).
The challenge for literate programming today is getting it into use.

2.6 Summary

The objective of a documentation system for maintenance should be to support the process
of system understanding and redocumentation. Types of documentation which are useful
sources of information for maintainers have been identified. The concepts and structure of
Hterate programming are described. Hypertext can be used as a tool for interactive literate
programs. Redocumentation is needed for program comprehension.

21

Chapter 3

Incremental Redocumentation using
Literate Programming

3.1 Introduction

This chapter discusses incremental redocumentation and features of noweb and C. The syntax
of a literate C program is discussed in section 3.3.3. The capture process and the edit process
are discussed in sections 3.4 and 3.5.

3.2 Incremental Redocumentation

Many people involved in maintenance feel uncomfortable because of the workload and the
fact that maintenance becomes more difficult the longer the system exists. The structure of
programs makes them difficult to understand and to modify. To improve the maintenance
of a system is to provide methods and tools to support the comprehension of the system.
Often maintenance is difficult because i t is not clear where a modification of the code has
to be made [50]. The objective of a documentation system for maintenance should be to
support the process of system understanding and redocumentation.

Documentation is crucially important as an aid to understanding the system. The docu­
mentation which accompanies typical systems in use today is very often of poor quality and
not oriented towards the needs of maintainers who frequently do not use it at all. Thus
redocumentation is needed.

The process of redocumentation generates new documentation for an existing system, either
to replace or supplement any documentation which already exists. The process of redocu­
mentation will record the outputs from any reverse engineering which is performed - it is
concerned with making available to the maintainer the information required to understand
the system.

22

The literate programming concept is valuable, both for development and maintenance. It can
be readily supported in a more interactive environment, to take advantage of the additional
facilities which are available. Rather than weaving code and documentation in a single file, it
is possible to store the two separately but to take advantage of those linking and windowing
facilities which are available to maintain the intimate relationship between them. Literate
programming can be used with a hypertext tool. Users familiar with the literate program

. prefer to work with this tool rather than the typeset output from the literate programming.
In maintenance, the practice of 'literate maintenance', of documenting changes visibly and
clearly at the time they are made could go some way towards reducing the degradation over
time of an evolving system.

In general, the appHcation source code will remain unchanged during the reverse engineering
process. However, there are occasions when an editing facility is required, for example to
manually restructure code to facilitate its future understanding or to correct coding errors.
Moreover, it is also required for incremental redocumentation. The maintainers can add
information on the system to the literate program gradually whenever knowledge is gained,
for example by using some analysis tools.

3.3 noweb and C

The literate programming tool noweb was discussed in the previous chapter. A literate
program consists of the combined code and documentation which can be processed and
typeset to result in a high-quality presentation including a table of contents, index, cross-
referencing information and typographic treatment. A literate C program is a C program
written in noweb structure. The noweb structure, C layout and literate C program are
discussed in this section.

3.3.1 noweb structure

Here is an overview of a literate program that is written in the noweb language.

<<*»=
<< chunk name 1 >>
<< chunk name 2 >>
<< chunk name 3 >>
« chunk name 4 »
<< chunk name 5 >>

23

These are the code-chunk definitions of a literate program. Code-chunk definitions are like
macro definitions. <<*>> chunk is a root chunk, and notangle extracts the program by
expanding this chunk. The following code-chunks are also extracted by notangle in sequence
as described in the definition. The definition of these code-chunks can be written anywhere
in the program, i.e. code-chunk may appear in any order. Each code-chunk begins with
« chunk name >>= on a line by itself. Documentation-chunks are between Q and beginning
symbol of code-chunk <<. Documentation-chunks contain text that is copied verbatim to
standard output by noweave. The expansion of the above definition demonstrates how it is
possible to present chunks in any order.

<< chunk name 3 >> =

source code

documentation chunk

« chunk name 5 > > =
source code

@

documentation chunk

« chunk name 1 >>=

source code

@

documentation chunk

« chunk name 4 > > =
source code

@

documentation chunk

« chunk name 2 > > =
source code

@

Code chunks contain not only program source code but also references to other code chunks.
References to other code-chunks may be defined within a code-chunk.

<< chunk name 4 > > =
source code

{
<< chunk name 4 - 1 >>

« chunk name 4 - S » .

24

}
@

<< chunk name 4.1 >> =

source code

@

documentation chunk

« chunk name 4.2 >>=

source code

<< chunk name 4.2.1 >>

@

3.3.2 C layout

A C program is composed of one or more C source files [25]. Each source file contains some
part of the entire C program, typically a number of external functions. Source files often have
associated with them header files that provide declarations for the external functions used
in other files. One source file must contain an external function named main; by convention
this will be the program's entry point. Each source file is independently processed by a C
compiler. The preprocessor is controlled by special preprocessor command lines, which are
lines of the source file beginning with the character One of the C preprocessor commands,
#include, inserts text from another file. . The include file may be .h header file and .c C
source code file. Header files include functions, definitions, variables and type definitions.

In summary, a C program may have the following structure:

• no order

• more than one file

• separate compilation

• include may be a header(functions, definitions, variables, type definitions) and / or C
code

A literate C program is different from a C program. Generally, the system intends to be
language independent. The main idea will be suitable for any language, but here we use a
specific programming language C as an example. One of the characteristics of a literate C
program is that different parts of the program such as informal top-level descriptions hke
macros which are usually abbreviated.

In summary, a literate C program may have the following structure:

• Header Files

25

.nw

.nw

Figure 3.1: many to many

• Definitions

• Global Variables

• Functions

• Main Program

By using a notangle command, those top-level descriptions are replaced by their expanded
meanings, and a C program will be obtained. A limitation of the literate program is that
the C code is in one source code file and no separate compilation is possible. In a literate C
program header file, there are no other source code other than header.

The features of a literate C program are as follows:

• order (assumed)

• all C code in one file

• no separate compilation

• include files .h (header)

The mapping between noweb files and programs is many-to-many; the mapping between files
and documents is many-to-one. An example of many-to-many program mapping is that of
putting a C header and program in a single noweb file. The header comes from the root
chunk < < header > > , and the program from the default root chunk < < * > > . An example
of many-to-one is to create a file listing all the identifiers defined anywhere in a.nw, b.nw,
or c.nw.

First the nodefs command is used to extract definitions.

26

.nw ^.tex ^ .dvi

.nw
Figure 3.2: many to one

nodefs a.nw > a.defs

nodefs b.nw > b.defs

nodefs c.nw > c.defs

These are then sorted and piped through cpif as follows:

sort -u a.defs b.defs c.defs I c p i f a l l . d e f s

Al l the identifiers from a.nw, b.nw and c.nw are in all.defs sorted in alphabetical order.
The following command is used to create a latex file with full cross-reference information for
all identifiers.

noweave -n -indexfrom a l l . d e f s a.nw > a.tex

3.3.3 Literate C program

The syntax of a literate C program is as follows:

The root chunk

« * » =
<<Header f i l e s to include»

27

<<Definitions>>
«Global variables»
<<The function [[function name]]>>
<<The main program»

The root chunk identified by <<*»= contains code chunks and ends with @. The program
code identified by the code chunk names is assembled by noweb in the same sequence as the
code chunks are mentioned in the root chunk. In literate C program, the five high-level code
chunks can be defined,

<<Header f i l e s to include>>,
<<Definitions>>,
<<Global variables>>,
<<The function [[function name]]» and
<<The main prograjn» .

There is however, an individual function chunk for each of the functions within the program.

The "header files to include" chunk

«Header f i l e s to include»=

^include "y?/e-name"

®

or

<<Header f i l e s to include»=

#include <file-name>

The <<Header f i l e s to include>>= chunk consists of ^include ''''file-name" or ^include
<file-name> and end with (9.

The ^include preprocessor command causes the entire contents of a specified source text file
to be processed as i f those contents had appeared in place of the ^include command. The
#include command has two forms. These are

^include "'file-name" and ^^include <file-name>.

The form

28

#include "j?/e-name"

typically searches for the file first in the same 'directory' in which the file containing the #in-
clude command was found, and then perhaps in other places according to implementation-
dependent search rules. However, the form

^include <file-name>

typically does not search for the file in the same 'directory' in which the file contain­
ing the T^include command was found, but only in certain 'standard' places according to
implementation-dependent search rules. The general intent is that the "file-name" form is
used to refer to other files written by the user, whereas the <file-name > form is used to
refer to standard library files.

In principle an included file may itself contain #include commands. These #include com­
mands are defined in « H e a d e r f i l e s to include>>= chunk.

The definitions chunk

<<Definitions>>=

^define identifier sequence-of-token

0 °/odef identifier

or

<<Definitions>>=

#define identifier(identifier 1,identifiers,....) sequence-of-token

0 °/odef identifier identifierl identifiers

An identifier, also called a name in C, is a sequence of letters, digits, and underscores. An
identifier must not begin with a digit and it must not have the same spelling as a reserved
word. The ^define preprocessor command causes an identifier to become defined as a macro
to the preprocessor. A sequence of tokens, called the body of the macro, is associated with
the name. When the name of the macro is recognised in the program source text or in the
documents of certain other preprocessor commands, it is treated as a call to that macro;
the name is effectively replaced by a copy of the body. I f the macro is defined to accept
arguments, then the actual arguments following the macro name are substituted for formal
parameters in the macro body.

I f there is a single identifier in #define statement, the identifier name is defined as Q Xdef
identifier. The more complex form of macro definition declares the names of formal param­
eters within parenthesis, separated by commas. In literate C programs, these macro names
and all the argument names which defined after <9 '/,def are delimited by space, noweb gen­
erates a list of identifiers used, where they appear, and also indicates the place of definitions.

29

The global variables chunk

<<Global variables»=

type identifier

0 y.def identifier

A type is a set of values and a set of operations on those values. The C language provides a
large selection of built-in types, including integers of several kinds, floating point numbers,
pointers, enumerations, arrays, structures, unions and functions. There is also a special type,
void, which has no value; it is used to specify functions that return nothing.

In this global variables chunk, the identifiers, used as global variables are declared by its
type and identifier name. @ %def line also define the identifier used as global variable.

The function chunk

There will be one of these for each function, where [[function-name\] is to be replaced by the
actual function name.

<<The function \.[. function-name'\']»=

function-name [parameters)

parameter declarations

{
<<Variables l o c a l to \._ function-name'\'\»

<<Body of \._ function-name'\'\»

}

0 y.def function-name parameters

«Variables l o c a l to [[/unc i ion name]] >>=

type identifiers

0 "/odef identifiers

30

<<Body of function name]]>>=

program source code

In function definitions, formal parameters are declared in two parts. The names of the
parameters are listed in the function declarator. In order to supply types for the parameters,
the programmer declares each of the parameters (in any order) in the parameter declaration
section. For example, to define a function that has three parameters—an integer, a double
precision floating point number, and a pointer to an integer— the program can be written

as:

void f (x , y , z)
i n t X , *z;
double y;

{
l o c a l v a r i a b l e s declaration
body of the function

}

In literate C programs, function-name, parameters and parameter declarations are written
in the <<The function [[function name]]>>= chunk. The local variables declaration
refers to another chunk <<Variables l o c a l to [[function name]] » and the body of
the function refers to <<Body of [[function name]] » chunk.

The local variables of the function are declared in <<Variables l o c a l to LI function name
]] » = chunk. The identifiers of the local variables are defined by 0 '/.def identifiers at the
end of the chunk.

The program source code of the function is described in the <<Body of [[function name
]] >>= chunk. This chunk ends with the symbol ®.

So for example for the function f above the literate C is :

«The function [[f]]»=
void f (x , y , z)

i n t X , *z;
double y;

{
«Variables l o c a l to [[f]]»
«Body of [[f]]»

31

}
0 y.def f X y z

«Variables l o c a l to [[f]]»=
in t i , j ;
char k;

0 '/,def i j k

«Body of [[f]]»=

The main program chunk

This is similar to the function chunk described above, but the main program chunk (described
below) is distinguished because it is the entry point to the program.

<<The main program>>=

main (parameters)

parameter declarations

i
<<Variables l o c a l to [[main]]>>
«Body of [[main]]»
}

0 y.def main parameters

«Variables l o c a l to [[main]]>>=

type identifiers

0 Xdef identifiers

«Body of [[{\em main}]]»=

program source code

32

The «The main program>>= chunk is the same as the function chunk, main and parameter
declarations are defined in the <<The main program»= chunk. The local variable declara­
tions and main program source code refer to the chunks <<Variables l o c a l to [[main]]>>
and <<Body of [[main]] > > respectively. The local variables in the main program are de­
clared in <<Variables l o c a l to [[main]] » = chunk and the main program source code is
described in the <<Body of [[main]]>>= chunk.

3.4 The Capture Process

The general idea of the capture process is to generate hterate source code from actual source
code. This process is illustrated in Figure 3.3. We assumed that source code could be in any
language because noweb is a language independent tool but for this application we assume it
is in C. The capture process will convert a C program into the form described in the previous
section. Obviously no documentation can be captured from the source code, this will have to
be added later. The initial result of the capture process can then be processed by notangle
to generate a C program, and by noweave to produce essentially null documentation in
form that includes cross references of chunks and identifiers used in the program.

literate
source
code — ^ ^ P ^ ^ ^ ^) — ^ ^̂^̂^̂

code
Figure 3.3: Generate a literate source code

The literate program has its own structure as described above, so the program source code
is formed into the literate programming structure. Root chunk definition <<*>>= followed
by the sequence of chunk names is written into the output file at the beginning of the source
code. Then, the definitions of these chunk names are defined by the source code or references
of the other chunks. At the end of each code chunk the symbol 0 is written in column 1 of the
next line. It marks the end of the code chunk or start of the documentation chunk, however
there is no documentation chunk. The main program and all the functions or processes or
modules of the source code are in each named chunk. The global variables and definitions
are also defined in their named chunks.

The generated noweb file can be processed by noweb tools known as notangle and noweave
as shown in Figure 3.4.

33

notansle

noweave

^ source code

Latex

Hypertext

Figure 3.4: Using noweb to build code and documentation

notangle inputfile.nw > outputfile.c

This command extracts the source code from the noweb file (inputfile.nw) file. The source
code will be obtained in outputfile.c file which can be processed by a C language compiler.

noweave inputfile.nw > outputfile.tex

The noweave command processes the inputfilename.nw to outputfilename.tex. noweb gener­
ates cross reference information for chunks and identifiers by using the @ %def markings in
its source code.

@ %def identifiers

@ %def identifier 1 identifier2 identifiers ...

The above statement means that the preceding chunk defines the identifiers listed in iden­
tifiers. This notation provides a way of marking definitions manually when no automatic
marking is available, noweave can work with I^TgX or it can use a plain TgX macro package,
supplied with noweb. noweave can also work with HTML, the hypertext markup language
for Mosaic and the World-Wide Web. Then, noweave's final stage is converted to either
T15X, I ^ T i ^ , or HTML. In the Hypertext system, the information can be accessed through
navigation. The cross-reference chunks and identifiers are the nodes and by clicking the
mouse on these, the other nodes of the link relation will appear.

When the redocumented programs are stored in a literate source program, the code and
documentation can be extracted from the literate C program at any time. To store the
existing program in a literate programming style, we need to transform the source code
to a literate program. The documentation, produced from the literate program, is the
text in the typeset or Hypertext which are cross-referenced. It gives program readable and
basic information only. I t cannot provide the function of the chunks and other information.

34

Some of the program analysis tools in a software engineering environment provides useful
information about the source code.

The information together with the knowledge gained by a programmer in the process of
understanding the program may be stored in the literate program incrementally. The more
analysis of the source code, the more information that can be stored. The process of in­
crementally adding to the literate program form of the original program is described in the
next section.

3.5 The Edit Process

There are two activities in the Edit Process, namely View and Change. The View activity
is supported by a tool which allows users to browse the views on the screen only and the
Change activity is supported by a tool which allows the users to update the literate program.

3.5.1 The View activity

The system is provided with the following five views of the literate program:

• the literate source code,

• the list of code chunks,

• the list of identifiers used,

• the document on hypertext, and

• the program source code.

The literate source code is the generated .nw file which comprises of the code-chunk, the
documentation-chunk and the identifier-definitions. When the editor displays the chunk on
the screen, the chunk will be shown in a window. The user can move around the screen page
by page.

The next view shows the list of code chunks. From this view, the user can see the name of
code chunks and the first definition of the chunk is also shown at the end of the chunk name.
For example,

< Header files to include 2b>

show that Header files to include is the chunk name and it is defined in 2b.

The third one is the list of identifiers used, and where they appear. Underlined entries
indicate the place of definition. This index is generated automatically. For example,

line_count: 7a, 7b, 8a, 9a, 9b, 10

35

line_count is defined in chunk 7a, and used in 7b, 8a, 9a, 9b, and 10.

Another view is the document through Hypertext. The document which is redocumented
from the program source code will appear on the Hypertext. The related document of the
chunks and identifiers can be seen by clicking the mouse on their names.

The last view is the program source code presented by chunk. The user can see the program
source code chunk by chunk. At the same time the associate document will appear on the
document window.

3.5.2 Change

When some changes are needed in code-chunk the editor allows changes to the codes in
code-chunks. It also allows the additions of new chunks and deletions of existing chunks.
The associated document can be changed as new information is added. The following change
processes can be allowed by the change editor.

1. Modify (including add) documentation of an existing chunk

2. Change source code (to correct a problem or add a new feature)

3. Decomposition of chunks

4. Delete a chunk

5. Composition of chunks

These are described in more detail below.

Modify documentation of an existing chunk

The main purpose of incremental redocumentation is to add information to the existing
program as and when knowledge about the program is gained. Hence, the modification of
the document or adding new documents to the existing system is essential. The editor will
show two windows on the screen, one for literate source code and another for documentation.
The literate source code will appear on the code-chunk window by clicking the chunk name
on the list of chunks which is browsing on the small window and the associate documentation
which will appear on the documentation window. The editor is allowed to modify or add the
information on the documentation window. In this way the software engineers can improve
upon the existing information and documentation of the programs.

Change source code

When the requirement is changed or the resulting behaviour of the program is not correct,
the code needs to be changed. The required code chunk will appear on the code-chunk

36

editor

Document chunk

Code chunk

Figure 3.5: Literate program editor

window by clicking the name of code chunk from the listing as above. The system allows
the programmer to change the code in code-chunk window. The updated code-chunk is in
the nw file and the compilable source code can be extracted by notangle.

When a change to the source code has been made the programmer will be informed that
the related documentation needs to be updated. There are essentially two approaches, the
programmer is forced to make a change to the documentation, or an indication of a change
can be given. Both approaches have their advantages and disadvantages and the final decision
on which to choose will depend on the programmers and the change procedures in place in
their working environment.

Decomposition of chunks

The programmer may want to split existing chunks of program source code into smaller
chunks. The advantage of this is that smaller chunks are easier to understand and will
generally encapsulate one concept. The result from the capture process described above can
only be chunks of large granularity which are the bodies of the functions.

The breaking up of an existing chunk qsortof the program lines.nw" (Appendix G) is shown
in Figure 3.6 The code-chunk qsort can be selected by clicking the name from the list of code
chunks, ie. the first line in Figure 3.6.

The names of chunk to be decomposed are given on the screen. After giving the names, the
system automatically writes these chunk names under the existing code chunk as well as in
the list of chunks.

The decomposed code chunk can be selected by clicking the code-chunk name from the list
of chunks. Next, the code or document can be chosen for code and document windows. If
the document is chosen, the document-window will appear and the document of the chunk is
shown on the screen. I f the code is chosen, similarly the code is shown on the code-window.

37

« B o d y of [[qsort]]»=

Exchange items

Sort again

Any more (Y/N) ? D

« B o d y of [[qsort]]»=

{

«Exchange i t ems»

« S o r t aga in»

Figure 3.6: Screens before and after breaking up a chunk

The first step is to see if items need to be exchanged in the array v.

<<Exchange items»=
yC l e f t >= r i g h t)

s w a p (v , l e f t . l a s t) ;

Now sort the l e f t and ri g h t parts of the array separately

«Sort again»=
q s o r t (v , l e f t , l a s t - 1) ;
q s o r t (v , l e f t + l , r i g h t) ;

Delete a chunk

There are two kinds of deletion:

1. delete a chunk name and replace it by the associated source code

2. delete all source code associated with a chunk

38

In the above example, the <<Sort again>> chunk is to be deleted. The first process will
delete the chunk name <<Sort a g a i n » from the <<Body of [[qsort]] » = chunk and that
line is replaced by the source code which is written in the <<Sort again>>= chunk. The sec­
ond process will delete the chunk name <<Sort a g a i n » from the «Body of [[qsort]] » =
chunk and all the codes which are written in the <<Sort again>>= chunk are deleted.

Composition of chunks

Uniting chunks is the reverse form of decomposition. A chunk can be added as a part of
another chunk or as an independent chunk. When a new chunk name is introduced it is
written in the list of chunk names. There is a simple mechanism for opening a new window
to specify this new chunk. The programmer must be able to choose to enter code or text.
I f i t is a code-chunk, the name of the new chunk automatically appears in the window and
the programmer will be able to enter code into this new chunk. If it is a document-chunk,
the text can be written on the window without names. Some chunks will be added as
independent chunks, that is, they are not a part of some other chunks, but form the main
chunk for other chunks.

3.6 Example

As mentioned above the capture process generates a hterate C program from the C program
source code. A literate program wc.nw written by Ramsey [41] (Appendix A) is used as an
example of noweb program. The documents are written by the programmer, so these are
not in the fixed format. The chunks can be separated according to the programmer's style.
The literate C programs written by the different programmers from the same C program
could be different. However, the generated hterate C program has the same pattern for all
programs.

Here, we will use Ramsey's wc.nw as an example. The C source code file wc.c (Appendix
B) is processed by the noweb command notangle, from the hterate program wc.nw. Then
the literate C program wc.nw' (Appendix C) is generated from the wc.c by the capture
process. The stages of the capture process are shown in Figure 3.7.

Now we can see the diff"erence between original wc.nw and generated wc.nw'. The result
wc.nw' wil l never be exactly the same as wc.nw. wc.nw is written according to the
programmer's own idea. Header definition is defined by the programmer in wc.nw and
there is no need to write in sequence the same header as the other noweb programs. For
example, the header definition in wc.nw is described as follows.

« * » =
<<Header f i l e s to include»
«Def initions>> •
«Global variables>>

39

<<Functions>>
<<The main program>>

But in another literate program it can be defined by the programmer in another way such
as changing the sequence of order or writing in different header names. However the root
chunk <<*»= and the header definition chunks in wc.nv̂ '̂ are generated by the program, so
these have the same structure, the same chunk names in every generated hterate C program
as shown below.

« * » =
«Header f i l e s to include»
<<Definitions>>
<<Global variables>>
<<The function [[function name]]>>
«The main program»

The structure of wc.nw' is not similar to wc.nw. In wc.nw, one or more #include can write
under «Header f i l e s to i n c l u d e » = chunk heading. For example,

«Header f i l e s to include>>=
#include <stdio.h>
#include <string.h>
@

But only one #include line can appear under one «Header f i l e s to include»= chunk
heading in wc.nw'. If there is more than one #include line, «Header f i l e s to include»=
the chunk heading is needed for each ^include line.

<<Header f i l e s to include>>=
#include <stdio.h>
0
<<Header f i l e s to include»=
#include <string.h>
0

40

The definition chunk is similar to the above example, one or more # define is written in
wc.nw under <<Def in i t ions$>>= chunk.

<<Def initions»=
#define OK 0

/* status code for successful run */
#define usage_error 1

/* status code for improper syntax */
#define cannot_open_file 2

/* status code for f i l e access error */
0 y.def OK usage_error cannot_open_f i l e

In wc.nw', <<Def initions»= is needed for each # define.

<<Definitions>>=
#define OK 0

/* status code for successful run */
0 y.def OK
«Def initions»=
#define usage_error 1

/* status code f o r improper syntax */
<9 y.def usage_error
<<Definitions>>=
#define cannot_open_file 2

/* status code f o r f i l e access error */
0 y.def cannot_open_file

The variable definitions and global variables are grouped and presented under the headings
<<Def initions»= and <<Global Variables»= respectively by the programmer. The gen­
erator can not group them, then each variable is described under each heading as well as
0 y.def fine is written for each variable.

The function wc_print is described in the <<Functions»= chunk in wc.nw as follows:

«Functions»=
wc_print(which, char_count, word_count, line_count)

char *which; /* which counts to print */
long char_count, word_count, line_count;

/* given t o t a l s */

41

{
...program source code

}
0 y.def wc_print

The function chunk is separated into two parts in wc.nw'. These are:

• <<Variables l o c a l to [[w c _ p r i n t]] » ; and

• «$Body of [[wc_print]]».

Parameters are declared in the «The function C[wc_print]]>>= chunk. Local variables
are declared in <<Variables l o c a l to [[wc.print]] » = and the program source code is
written in <<$Body of [[wc_print]] ».

«The function [[wc.print]] » =
wc_print(which, char_count, word_count, line_count)

char *which; /* which counts to print */
long char_count, word_count, line_count;

/* given t o t a l s */
{
<<Variables l o c a l to [[wc_print]]»
<<Body of [[wc_print]]»
}

0 °/odef wc_print which char_count word_count line_count

<<Variables l o c a l to [[wc_print]] » =

0 y.def

«Body of [[wc_print]]»=

...program source code

The main program chunk is similar to the function chunk in wc.nw'. It also consists of two
chunks <<Variables l o c a l to main» and «Body of main» chunk.

42

3.7 Summary

This chapter has described a method for incrementally redocumenting a C program by first
capturing the source code in the form of a literate C program. Then the captured hterate
C program can be incrementally redocumented by using the edit process. These steps are
illustrated by examples.

43

Tool File Description

wc.nw

notangle

wc.c

capture

wc.nw

noweave
wc.tex

notangle
wc.c

original literate program

C program

literate C program

documentation

C program

Figure 3.7: Process Carried Out During Example

44

Chapter 4

Implementation

4.1 Introduction

A literate C program can be generated from existing C source code as mentioned in the
previous chapter. In this chapter, the implementation of a tool to support the capture
process is described C analysis tools, such as indent, ctags, cxref have been used to generate
information from the C source code to use in redocumenting the literate C program 'nw
file'. Additional C shell (gen-info), awk (gen-ctags, gen-xref), and C programs (xref-conv,
gen-nw) have been developed as part of this research. Here, details of using these tools are
described. I t was not the intention of this work to develop C analysis tools, so existing tools
have been utilised where possible.

4.2 The literate C program generator

In the following description of the literate C program generator the program wc is used as
an example. The stages of generating the literate C program from the C source code file
is shown in Figure 4.1. The commands shown in Figure 4.1 are collected together into a C
shell command file called gen-info.

The C language allows flexible free format input which could cause problems for analysis
tools. So, the generalised format is needed for those C programs. The indent tool can be
used to form the generalised indentation format of C programs. In Figure 4.1, the wc.in.c is
the output file produced by the indent from the wc.c. It reformats the C program according
to given options. The options which are specified in the gen-info script are described below.

indent $cprog $indentedcprog -bap -baac -bad -bbb -nbc -br -cdb - i 3 -dl -di3

The above options control the formatting style imposed by indent as follows:

-bap I f -bap is specified, a blank line is forced after every procedure body.

45

ctags(unix)

gen-ctags

wc.c

indent (unix)

wc.m.c

cxref(unix)

wc.cxr wc.ct

gen-xref

wc.xr

xrefconv

wc.inf

sort (unix)

wc.sin

gen-nw

wc.nw

Figure 4.1: Literate C program generator

46

-bacc If-bacc is specified, a blank line is forced around every conditional compilation block.
That is, in front of every #ifdef and after every #endif. Other blank lines surrounding
these will be swallowed.

-bad I f -bad is specified, a blank line is forced after every block of declarations.

-bbb I f -bbb is specified, a blank line is forced before every comment block.

-be I f -be is specified, then a newline is forced after each comma in a declaration.

-br Specifying -bl lines up compound statements.

-cdb Enables the placement of comment delimiters on blank lines.

-dn Controls the placement of comments which are not to the right of code. The default
- d l means that such comments are placed one indentation level to the left of the code.
Specifying -dO lines up these comments with the code.

-din Specifies the indentation, in character positions, from a declaration keyword to the
following identifier.

-in The number of spaces for one indentation level.

The indented file,w;c.m.c, is processed by two different tools, ctags and cxref. The ctags
tool makes a tags file from the specified C, Pascal, Fortran, yacc and lex sources. Normally
ctags places the tag descriptions in a file called tags; this may be overridden with the - f
option. By default, the tags file is sorted in lexicographic (ASCII) order. Files with names
ending in .c or .h are assumed to be C source files and are searched for C routine and macro
definitions.

In the literate C program generator gen-info, ctags makes a tags file wc.ct from the indented
C program source code wc.in.c file. The wc.ct file is composed of four fields separated by
white space, the object name, the line number, the file in which it is defined, and the text of
that line. The located line number of the main program and functions can be known by the
wc.ct file. This file is reformatted by the gen-ctags program, the output file wc.inf contains
T character in the first field. T indicates for main program or function. The -twx options
are used in ctags command and the functions of these options are described below.

ctags -twx $indentedcprogram I sort +2d -3 +ln -2 +0d -1 > $ c t a g s f i l e

-t Create tags for typedefs

-w Suppress warning diagnostics

-X Produce a list of object names, the line number and file name on which each is defined,
as well as the text of that line and prints this on the standard output.

47

The file produced by ctags is in alphabetical order of the function names and is sorted in
order of line number by sort command. The sorted file wc.ct shows a list of object names,
the line number, file name and text of that line in order of line number.

The resulting wc.ct is as follows:

print.count 12 wc.in.c
printf("'/.Sid", n)

wc_print
word_count,

mam

22 wc.in.c

49 wc.in.c

#define print_count(n)

wc.print(which, char_count,

main(argc, argv)

The field positions are reformed by the program gen-ctags. The first position is type, and
the program writes T in all records which indicates the main program or function. The
second position indicates the file name, and the function name or main is in third position
and the line number shows in fourth position.

The cxref tool generates the C program cross reference file wc.cxr from the wc.in.c file by
using the following command in the gen-info script.

cxref -0 $ c x r e f f i l e $indentedcprogram

where

-o file Direct output to named file.

The cxref command analyses a collection of C files and builds a cross-reference table. It
produces a listing on standard output of all symbols (auto, static, and global) in each
individual file, or, with the -c option, in combination. The table includes four fields: object
name, file name, function and line number. The line numbers appearing in the line number
field also show reference marks as appropriate. The reference marks include:

assignment
declaration
d e f i n i t i o n *

If no reference marks appear, it can be assumed as a general reference. The located line
number of all symbol definitions appear in the wc.cxr file by reference marks *.

48

The program xrefconv selects the definition lines from the wc.cxr file and the result is stored
in wc.xr file. The wc.xr file is also reformatted by the gen-xref program which adds the
character X in the first position of the output line and appends these lines to the wc.inf file.
The wc.inf file is sorted by sort command in order of line number and the result is stored
in wc.sin file.

sort - t +ld -2 +3n -4 $outfilename >$sortedinfo

The wc.sin file can be seen as follows:

X wc in c OK 2
X wc in c usage_error 4
X wc i n c cannot_open_file 6
X wc in c READ.ONLY 8
X wc i n c buf_size 10
T wc in c print_count 12
X wc i n c print_count() 12
X wc in c status 13
X wc in c prog_ncLme 16
X wc in c tot_char_count 19
X wc in c tot_line_count 19
X wc in c tot_word_count 19
T wc in c wc_print 22
X wc in c wc_print() 22
X wc in c which 23
X wc in c char_count 24
X wc in c line_count 24
X wc in c word_count 24
T wc i n c main 49
X wc in c mainO 49
X wc in c argc 50
X wc in c argv 53
X wc in c f i l e _ c o u n t 57
X wc in c which 60
X wc in c fd 63
X wc in c buffer 66
X wc in c ptr 69
X wc in c buf_end 72
X wc in c c 75
X wc in c in_word 78
X wc in c char_count 81
X wc in c line_count 81
X wc i n c word_count 81

49

The first character indicates functions as T and identifiers as X. The gen-nw program con­
structs the literate C program root chunk and header-chunks. The expansions of the chunks
are made by analysing the text from the input file wc.c which fine number is defined in
wc.sin. The output from the gen-nw program is the literate C program wc.nw'.

4.3 Summary

This chapter has shown how a literate C program can be generated from a C program by
using existing Unix tools and a simple special purpose analysis tool written in C.

For the other programming languages, the analysis tools for each programming language are
needed. The C programs in the capture process can be used not only for C programs but
also for the other languages.

50

Chapter 5

Evaluation of the process

5.1 Introduction

In Chapter 3, the structure of the literate C program, the capture process and the edit process
was discussed. The previous chapter described the implementation of the capture process
and the tools which were utilised. An evaluation of the results is made in this chapter.

5.2 Evaluation

The evaluation of the incremental redocumentation by using literate programming system is
to be carried out by comparing example programs. In particular, i t will compare Ramsey's
literate example program wc.nw with the captured and redocumented version. It will also
discuss the incremental redocumentation of the line.c program.

5.2.1 Wordcount program wc.c

The main idea of the system is to convert a C program into Literate C program by the capture
process and then the documentation will have to be added later incrementally. The structures
of the captured literate C program wc.nw' (Appendix C) and the noweb program wc.nw
(Appendix A) were described in Chapter 3. Obviously the captured literate C program
wc.nw' cannot achieve the same documentation as Ramsey's literate program wc.nw. We
are not trying to get the same result as wc.nw. wc.nw is developed in development phase
by top-down stepwise refinement method. In the top-down stepwise refinement method the
programmer should define the levels of the program and implements the smaller functions
step by step. The Header Definition is flexible and it does not need to be exactly the same
as the other literate programs.

The programmer can define the Header Definition according to their own way of thinking
and writing. One chunk name is put in the Header Definition and the implementation is

51

done later.

Ifthereismorethanone#includeline, they are grouped in a « H e a d e r f i l e s to include>>
chunk. #def ine lines are also grouped in a « D e f i n i t i o n s » chunk. The programmer can
group the global variables under the <<Global Variables>> heading.

While the program is being developed, the main program and the function can be decom­
posed into smaller chunks and the smaller chunks can be decomposed into even more smaller
chunks. There is no limitation for decomposition and i t can be described according to the
ideas of the programmer. In the literate program wc.nw <<The main program>> chunk is
decomposed into the following smaller chunks.

<<Variables l o c a l to main>>
<<Set up opt ion s e l e c t i o n »
« P r o c e s s a l l the f i l e s »
<<Print the grand t o t a l s i f there were mul t ip l e f i l e s »

The <<Process a l l the f i l e s » chunk is divided into smaller chunks.

<<If a f i l e i s g iven , t r y to open *(++argv); continue i f
successf u l »

« I n i t i a l i z e pointers and c o u n t e r s »
« S c a n f i l e »
<<Write s t a t i s t i c s f o r f i l e > >
« C l o s e f i l e »
<<Update grand t o t a l s »

These chunks can also be decomposed if the programmer wants to do so. In the wc.nw,
the programmer writes the information about the literate noweb program wc.nw before the
header definition. The information about the code chunk is described in the documentation
chunk. These documentation chunks were written in the development phase and described
what the programmer wanted to do while the program was being developed. They do not
contain information about the analysis of the program.

However, the captured literate C program has only the C code structure as a literate program.
It is developed in the maintenance phase of the software life-cycle when the program already
exists. In our example, the literate C program wc.nw' has fixed program structure because it
is generated by the capture process. The program structure of all captured programs will be
exactly the same structure except for the number of functions and the function names. The
#include lines are not grouped together under a <<Header f i l e s to include>> header,
so i t is different from the wc.nw. There is a <<Header f i l e s to i n c l u d e » header for
each #include line. The #def ine and g lobal variables are also the same as #include.
They are not grouped together under <<Def i n i t i o n s » and <<Global variables>>. For
each #def ine line, there will be a header <<Def i n i t i o n s » and for each global variable,
there will be a header « G l o b a l variables>>. So, we can say that there are no groupings of
the <<Header f i l e s to i n c l u d e » , < < D e f i n i t i o n s » , and <<Global v a r i a b l e s » . The

52

individual chunks are created for each individual line. The function chunks are defined as
«The function C[name]]>>. Two smaller chunks <<Variables l o c a l to [[ncane]]>>
and <<Body of [[najne]]>> are generated under a function chunk. The first is to define
the local variables and the latter contains the program source code of the function. These
two chunks cannot be decomposed into smaller chunks in the literate C program wc.nw
because these are automatically generated by the capture process. <<The main program>>
chunk has the same structure, two chunks <<Variables l o c a l to main>> and <<Body of
main>>. These chunks also cannot be decomposed. It has no information about the program
and there will be no documentation chunk. But from this captured literate C program we
can get the cross- reference information of code chunks and identifiers as the literate program
wc.nw. The resulting output includes cross-reference information for identifiers and list of
the code chunks.

The captured literate C program wc.nw' is then changed to redocument it as a literate C
program wc.nw" (Appendix D). The documentation for the appropriate code chunk relies
initially on the comment lines contained within the source code. If there are no comment
lines in existing source code, no documentation will appear in the preceding documentation
chunk. So, there is a question, What do we do with commentsl The answer is: first, to
tie comments to code; which means that it is to find out which comment is related to
which code. Then, the second step is to convert these comments to documentation. The
comment lines in source code are placed together in the documentation chunk by using the
E d i t process. I f we want to add more chunks, the new chunk names can be added to the
Header Definition. And also, a chunk could be delete from the Header Definition when it
needs to be deleted. Under the <<Header f i l e s to include» chunk, the #include lines
could be possibly be grouped. Similarly, the #def ine and global variables could possibly
be grouped under the <<Def initions» and <<Global Variables» chunks. The main
program and the function chunks could possibly be made smaller by further decomposition
according to program understanding. The information from program analysis tools can be
added to the documentation chunks. Then the redocumented literate C program wc.nw" is
more understandable than the captured literate C program wc.nw'. wc.nw" has not only
program source code but also partial documentation. Of course, the redocumented literate
C program wc.nw" which result is not exactly the same as Ramsey's wc.nw file, but it is
clear that the printed output document is more understandable than the C source code wc.c
file.

5.2.2 Lines program lines.c

To confirm this statement, we choose another C program lines.c (Appendix E) as an ex­
ample. The lines.c has no documentation and it has source code only. The lines.c is
captured to the literate C program lines.nw' (Appendix F). The captured literate C pro­
gram lines.nw' is redocumented and the result is in lines.nw" (Appendix G). The printed
output is generated by I^T^X and the result is shown in (Appendix H). The header definition
is shown as follows:

<*>=

53

<Headerfiles to include>
<Definitions>
<Global Variables>
<The function alloc>
<The function getline>
<The function readline>
<The function w r i t e l i n e >
<The function swap>
<The function qsort>
<The main program>

When reading this header definition, the reader can understand the structure of the program,
and the expansion of these header definitions can be seen clearly. The cross-reference infor­
mation for identifiers are given in each code chunk. It defines the variables, which variable
is used in which chunk, and also gives the information for the code chunk which is used in
which chunk. The example of the expansion of the code chunk «The function qsort» is
shown below.

6a <The function qsort 6a>=
qsort(v, l e f t , r i g h t)
char *v [] ;
i n t l e f t , r i g h t ;
{
<Variables l o c a l to qsort 6b>
<Body of qsort 6c>
}

Defines:
l e f t , used i n chunk 6c.
qsort, used i n chunk 6c and 7b.
r i g h t , used i n chunk 6c.
v, used i n chunks 5c and 6c.

This code i s used i n chunk l a .

6b <Variables l o c a l to qsort 6b>=
in t i , l a s t ;

Defines:
i , used i n chunks 3c,5e and 6c.
l a s t , used i n chunk 6c.

This code i s used i n chunk 6a.

The cross-reference for identifiers and code chunks are useful for software engineers to un­
derstand the variables and interrelation between chunks. The understanding of the variables
used is important to software engineers. Cross-referencing of chunks and identifiers makes

54

large programs easier to understand. The printed output of the sample program lines.nw'
shows fu l l cross-reference information. The page numbers are used as a cross-reference. A
list of code chunks and the Index are described at the end of the document as shown in the
(Appendix F). The first definition of the chunk is described at the end of the code chunk.
For example,

<Body of a l l o c 2e>

shows that the code chunk <<Body of alloc>> can be seen in page number 2. There
is more than one code chunk on this page and these are distinguished by a letter. The
<<Body of al loc>> chunk is described in e chunk. The Index shows a list of identifiers
used and where they appear. For example,

a l l o c b u f : Ig, 2a, 2e

shows that the identifier a l locbuf is defined in Ig and 2a and used in 2e. So it is more
understandable to the software engineers about chunks and identifiers used. There is no
documentation chunks in this example, but the software engineers can get more useful in­
formation than source code only. They can get the typeset documentation without knowing
about I^T^X . When the software engineers gain more knowledge about the program by
using analysis tools or any other way, it can be added to the documentation chunks of the
literate C program file by the edit process.

This provides incremental support for redocumentation. Here we can see the redocumented
literate C program lines.nw". As mentioned above, there is no documentation chunk in
the captured literate C program lines.nw'. First, we are looking for the comment lines
which are related to the appropriate code chunk. Then these comment lines are moved to
the documentation chunk. In lines.nw,

« D e f i n i t i o n s » =

#define MAXLINES 10 / * max #l ines to be sorted * /

is changed in lines.nw" as below.

MAXLINES i s the max #l ines to be sorted
<<Def i n i t i o n s » =
#define MAXLINES 10

The function chunk <<Body of [[qsor t]]>> is decomposed into smaller chunks. The fol­
lowing is the <<Body of [[qso r t]]>> chunk of lines.nw' program.

« B o d y of [[qsor t]] » =
i f (l e f t >= r i g h t)

55

return;
swap(v, l e f t , (l e f t + r i g h t) / 2) ;
l a s t = l e f t ;
f o r (i = l e f t + l ; i <+ r i g h t ; i++)

i f (s t r c m p (v [i] , v [l e f t]) < 0)
swap (v, ++last, i) ;

swap(v, l e f t , l a s t) ;
q sort(v, l e f t , l a s t - 1) ;
qsort(v, last+1, r i g h t) ;

The <<Body of [[qsort]]>> chunk is decomposed into

• <<Exchange items>> and

• <<Sort again>> chunks.

I t can be written in the program lines.nw" as

«Body of [[qsort]]»=

<<Exchange items>>
«Sort again»

The <<Sort again>> chunk is decomposed into more smaller chunks

• <<Sort l e f t part of the array» and

• «Sort r i g h t part of the array>> .

<<Sort again»=
fo r (i = l e f t + l ; i <+ r i g h t ; i++)

i f (s t r c m p (v [i] , v [l e f t]) < 0)
swap (v, ++last, i) ;

swap(v, l e f t , l a s t) ;

<<Sort l e f t part of the array>>
<<Sort r i g h t part of the array>>

The declaration of the «Sort l e f t part of the array» can be written in

56

<<Sort l e f t part of the array»=
qsort(v, l e f t , l a s t - 1) ;

And also the <<Sort r i g h t part of the array» can be declared as

«Sort r i g h t part of the array>>=
qsort(v, last+1, r i g h t) ;

After decomposition of the «Body of [[qsort]]» chunk can be seen as follows. The
number of chunks will be increased but the smaller chunks can be more understandable than
the large chunk.

«Body of [[qsort]]»=

«Exchange items>>
<<Sort again>>

<<Exchange items>>=
i f (l e f t >= r i g h t)

return;
swap(v, l e f t , (l e f t + r i g h t) / 2) ;
l a s t = l e f t ;
0
<<Sort again>>=
for (i = l e f t + l ; i <+ ri g h t ; i++)

i f (strcmp(v[i] , v [l e f t]) < 0)
swap (v, ++last, i) ;

swap(v, l e f t , l a s t) ;

<<Sort l e f t part of the array>>
<<Sort r i g h t part of the array>>

«Sort l e f t part of the array>>=
qsort(v, l e f t , l a s t - 1) ;
0
<<Sort r i g h t part of the array>>=
qsort(v, last+1, r i g h t) ;

57

The decomposition of the chunks has been described. If the composition of the chunks is
needed, the software engineer can do the composition of the chunks according to the program
understanding. The other information can be added. In this program, the call graph, drawn
by ccg tool, is added to the document. At last, the captured C program lines.nw and the
redocumented captured literate C program lines.nw" have the same source code but totally
different in style and documentation.

5.3 Summary

In summary, first we compare Ramsey's literate program wc.nw and our captured redoc­
umented literate C program wc.nw". The captured redocumented literate C program is
not the same as the literate program which is written by the programmer. But where no
literate form of the program has been produced during development, through the captured
redocument literate program, the software engineers get the advantages of literate program­
ming, such as storing the program source code and documentation together and also they
get the advantages of WT^ such as typeset pretty printing documents, without learning
about literate programming and the I^Tj^X tool.

The captured redocumented literate C program is more readable and understandable than
source code only, and i t provides the basis for subsequent maintenance and further redocu-
mentation.

58

Chapter 6

Conclusions

6.1 Introduction

Documentation systems for software are in the main aimed at the development phase of the
software life cycle. We have identified some desirable features of a documentation system
for software maintenance to support some of the processes involved in redocumentation and
use of documentation in maintenance, together with some potential problem areas. Program
comprehension is one of the most important activities in software maintenance and reuse.
Documentation is needed for program understanding. Some of the existing systems are
without documentation or have poor documentation.

Using the methods and tools developed here, a new documentation can be generated for an
existing system from source code. In response to a maintenance request, the existing system
may be (wholly or more probably partially) redocumented to understand the system.

6.2 The Achievements of the Criteria for Success

The criteria for the success of this thesis have been described in Chapter 1 are as follows:

1. description of documentation methods

2. exploration of literate programming

3. development of a method for redocumenting C programs and literate C programs

4. development of prototype tools to capture literate C programs

5. description of the redocumentation (edit) process

The description of documentation methods was described in Chapter 2. Some problems of
poor documentation or without documentation for an existing system have been described.

59

Types of documentation, such as development documentation, user documentation and tech­
nical documentation are useful sources for maintainers and have been discussed.

The exploration of literate programming also have been described in Chapter 2. Literate
programming is a tool for development documentation. The detail structure of a literate
programming tool noweb has been described. Where documentation does not exist, it will
be necessary to recreate it by examination of the source code. The redocumentation methods
have also been discussed.

In chapter 3, the concept of the incremental redocumentation was described. The features
of the C program and the literate program noweb were described. The difference between C
program and literate C program have been discussed. The captured literate C program is
generated by the capture process from the C source code. The development of the capture
process has been described in detail. The documentation is developed from the captured C
program by using noweb tool, noweave.

The redocumentation process of the captured literate C program is done by the edit process.
The following change processes has been done by the change editor.

1. Modify (including add) documentation of an existing chunk

2. Change source code (to correct a problem or add a new feature)

3. Decomposition of chunks

4. Delete a chunk

5. Composition of chunks

The detailed process of these have been illustrated by examples. In the example section of
the chapter has discussed the difference between Ramsey's literate program wc.nw and the
captured literate C program wc.nw'.

In Chapter 4, the implementation of the capture process and the development of prototype
tools to capture literate C programs has been described. The C analysis tools, indent, ctags,
cxref has been illustrated to generate the literate C program. The C shell, awk, and C
programs which were also developed and utilized have been described. The C analysis tools,
such as indent, ctags, cxref are used to generate information from C source code to the
literate C program 'nw file'. C shell, awk, and C programs are also used. Here, details of
using these tools are described.

The system has been evaluated from the point of view of the redocumentation in Chapter
5. The difference between an existing literate C program and the captured literate C pro­
gram has been illustrated by the word count program wc.nw and wc.nw'. The captured C
program wc.nw' is not the same as the Hterate program wc.nw but the system allows the re­
documentation process using the edit process. This capture process have been illustrated by
the redocumented captured literate C program lines.nw" (See appendix G.) The comment
lines from the source code have moved to the documentation chunks. Some include lines,
definitions, global variables have been grouped. The function chunks have been decomposed
into smaller chunks in program lines.nw".

60

6.3 Future Research

6.3.1 Implementation of Edit process

The idea of the edit process has been described in Chapter 3, 4 and 5. In this thesis, the
editor emacs has been used to illustrate the examples. The implementation of the edit
process is obviously needed. The redocumentation process needs the editor to modify the
program source code and documentations by using separate screens. The composition and
decomposition functions also need the editor.

6.3.2 Movements of the Comment lines

As illustrated in Chapter 5, the comment lines should be moved to the documentation chunks
automatically. The movements have been done manually in the examples, but it could be
done automatically by implementing a program in future. When a comment line exists, it
will be changed to the documentation line in the documentation chunk automatically.

6.3.3 Grouping process

The grouping process of the include lines, definitions and global variables could be done
automatically. The program should decide how many lines to be grouped. All the include
lines, definitions and global variables should be grouped or not, at the request of the redoc­
umentation system user.

6.3.4 Analysis Tools for Other Programming Languages

To capture the source code to the literate program the analysis tools for each programming
language are needed. Only tools for C were investigated here.

6.4 Summary

This thesis has described a method for incrementally redocumenting a C program by first
capturing the source code in the form of a literate C program. The captured literate C pro­
gram has cross-reference for chunks and identifiers and also printed type set documentation
by using l^T^X.

When software engineers read programs, they can understand the behaviour of the code
chunks by using their knowledge and experience. The gained understanding can be added
to the documentation chunks and these documents are always tied together with the code
chunks. I f the program is retrieved many times by different software engineers for the

61

purpose of maintenance or reuse, the different views of the documentation will be added
to the documentation chunk. This documentation cannot be lost and can be seen on the
computer screen or as a typeset document report or in a book form for the future. It will
reduce the time for program comprehension in the software maintenance and reuse phase of
the software life cycle.

This chapter has presented the main achievements of the research, the general conclusion
and some suggestions for future research.

62

Appendix A

wc.nw

Most l i t e r a t e C prograjns share a common structure.
I t ' s probably a good idea t o state the ove r a l l structure e x p l i c i t l y at
the outset, even though the various parts could a l l be introduced i n
chunks neimed \LA{*}\RA{}- i f we wanted to add them piecemeal.

Here, then, i s an overview of the f i l e { \ t t wc.c> that i s defined by
the { \ t t noweb} program { \ t t wc.nw}:
<<*»=
<<Header f i l e s t o include»
<<Def initions»
<<Global variables»
<<Functions>>
«The main program>>
0
We must include the standard I/O d e f i n i t i o n s , since we want to send
formatted output t o [[s t d o u t]] and [[s t d e r r]] .
<<Header f i l e s t o include»=
#include <stdio.h>

The [[s t a t u s]] variable w i l l t e l l the operating system i f the run was
successful or not, and [[prog_name]] i s used i n case there's an error
message to be pri n t e d .
«Def initions>>=
#define OK 0
/* status code f o r successful run */

#define usage_error 1
/* status code f o r improper syntax */

#define cannot_open_file 2
/* status code f o r f i l e access error */

63

0 '/def OK usage.error cannot_open_f i l e
«Global variables»=
i n t status = OK;
/* e x i t status of command, i n i t i a l l y OK */

char *prog_name;
/* who we are */

0 '/odef status prog_najne

Now we come to the general layout of the [[main]]
f u n c t i o n .
<<The main prograin>>=
main(argc, argv)

i n t argc;
/* number of arguments on UNIX command l i n e */

char **argv;
/* the arguments, an array of strings */

{
<<Variables l o c a l to [[main]]»
prog_name = argv [0] ;
<<Set up option selection>>
<<Process a l l the f iles»
<<Print the grand t o t a l s i f there were multiple f i l e s > >
e x i t (s t a t u s) ;

}
@ y.def main argc argv

I f the f i r s t argument begins with a ' { \ t t - } ' , the
user i s choosing the desired counts and specifying
the order i n which they should be displayed.
Each selection i s given by the
i n i t i a l character (l i n e s , words, or characters).
For exajnple, ' { \ t t - c l } ' would cause j u s t the
number of characters and the number of lines to
be. p r i n t e d , i n that order.

We do not process t h i s s t r i n g now; we simply remember where i t i s
I t w i l l be used to cont r o l the formatting at output time.
<<Variables l o c a l t o [[main]]>>=
i n t f i l e _ c o u n t ;
/* how many f i l e s there are */

char *which;
/* which counts to p r i n t */

@ y.def f i l e _ c o u n t which
«Set up option selection»=
which = "Iwc";
/* i f no option i s given, p r i n t 3 values */

i f (argc > 1 && * a r g v [l] == '-') {

64

which = a r g v [l] + 1;
a r g c — ;
argv++;

}
f i l e _ c o u n t = argc - 1;

Now we scan the remaining arguments and t r y to open a f i l e , i f possible.
The f i l e i s processed and i t s s t a t i s t i c s are given.
We use a [[do ... wh i l e]] loop because we should read from the standard
input i f no f i l e name i s given.
«Process a l l the f iles>>=
a r g c — ;
do {

<<If a f i l e i s given, t r y to open [[* (+ + a r g v)]] ;
[[c o n t i n u e]] i f unsuccessful>>

< < I n i t i a l i z e pointers and counters»
«Scan file»
«Write s t a t i s t i c s f o r file»
«Close file»
<<Update grand totals»
/* even i f there i s only one f i l e */

} while (—argc > 0) ;
0

Here's the code to open the f i l e . A special t r i c k allows us to handle
input from [[s t d i n]] when no name i s given.
Recall that the f i l e descriptor to [[s t d i n]] is~0; that's what we use
as the default i n i t i a l value.
<<Variables l o c a l t o [[main]]>>=
i n t f d = 0;
/* f i l e descriptor, i n i t i a l i z e d to stdin */

0 y.def f d
<<Definitions>>=
#define READ_ONLY 0
/* read access code f o r system open */

0 y.def READ.ONLY
«If a f i l e i s given, t r y to open [[*(++argv)]] ;

[[co n t i n u e]] i f unsuccessful>>=
i f (f i l e _ c o u n t > 0
&& (f d = open(*(++argv), READ_OMLY)) < 0) {

f p r i n t f (s t d e r r ,
"°/oS: cannot open f i l e '/os\n",
prog_name, *argv);

status 1= cannot_open_file;
f i l e _ c o u n t — ;
continue;

65

}
«Close file»=
c l o s e (f d) ;
0
We w i l l do some homemade bu f f e r i n g i n order to speed things up:
Characters w i l l be read i n t o the [[b u f f e r]] array before we process
them.
To do t h i s we set up appropriate pointers and counters.
«Def initions>>=
#define buf_size BUFSIZ
/* stdio.h BUFSIZ chosen f o r e f f i c i e n c y */

@ y.def buf_size
<<Variables l o c a l to [[main]]>>=
char b u f f e r [b u f _ s i z e] ;
/* we read the input i n t o t h i s array */

r e g i s t e r char * p t r ;
/* f i r s t unprocessed character i n buffer */

r e g i s t e r char *buf_end;
/* the f i r s t unused p o s i t i o n i n buffer */

r e g i s t e r i n t c;
/* current char, or # of chars j u s t read */

i n t in_word;
/* are we w i t h i n a word? */

long word_count, line_count, char_count;
/* # of words, l i n e s , and chars so f a r */

@ y.def b u f f e r p t r buf_end in_word word_count line_count char.count
«Initiali2e pointers and counters>>=
p t r = buf_end = buffer;
.line_count = word_count = char.count = 0;
in_word = 0;

The grand t o t a l s must be i n i t i a l i z e d t o zero at the beginning of the
program.
I f we made these variables l o c a l t o [[main]] , we would have to do t h i s
i n i t i a l i z a t i o n e x p l i c i t l y ; however, C's globals are automatically
zeroed. (Or rather, ' ' s t a t i c a l l y z e r o e d) (Get i t ?)
«Global variables>>=
long tot_word_count, t o t _ l i n e _ c o u n t ,

tot_char_count;
/* t o t a l number of words, l i n e s , chars */

\vskipOpt plus3in\penalty-500\vskip0pt plus-3in
The present chunk, which does the counting that i s { \ t t wc}'s {\em
raison d'\"etre}, was actua l l y one of the simplest to w r i t e .
We look at each character and change state i f i t begins or ends a word,

66

«Scan file»=
while (1) {
«Fill [[b u f f e r]] i f i t i s empty; [[break]] at end of file»
c = *ptr++;
i f (c > ' ' && c < 0177) {
/* v i s i b l e ASCII codes */
i f (!in_word) {

word_count++;
in_word = 1;

}
continue;

}
i f (c == '\n') line_count++;
else i f (c != ' ' && c != ' \ t ') continue;
in_word = 0 ;
/* c i s newline, space, or tab */

}

Buffered I/O allows us to count the number of characters almost f o r
f r e e .
«Fill [[b u f f e r]] i f i t i s empty; [[break]] at end of file»=
i f (p t r >= buf_end) {

p t r = bu f f e r ;
c = read(fd, p t r , buf_size);
i f (c <= 0) break;
char_count += c;
buf_end = buff e r + c;

}

I t ' s convenient t o output the s t a t i s t i c s by defining a new function
[[w c _ p r i n t]] ; then the same function can be used f o r the t o t a l s .
A d d i t i o n a l l y we must decide here i f we know the name of the f i l e we have
processed or i f i t was j u s t [[s t d i n]] . { \ h f u z z = l l . l p t \ p a r }
<<Write s t a t i s t i c s f o r file»=
wc_print(which, char_count, word_count,

line . c o u n t) ;
i f (f i l e _ c o u n t)

p r i n t f C ' y.s\n", *argv) ; /* not std i n */
else

p r i n t f (" \ n ") ; /* stdin */
0
«Update grand totals»=
tot _ l i n e _ c o u n t += line_count;
tot_word_count += word_count;
tot_char_count += char_count;

67

We might as w e l l improve a b i t on {\sc Unix}'s { \ t t wc} by displaying
the number of f i l e s too
<<Print the grand t o t a l s i f there were multiple files>>=
i f (f i l e . c o u n t > 1) {

wc_print(which, tot_char_count,
tot_word_count, t o t _ l i n e _ c o u n t) ;

p r i n t f C t o t a l i n y.d f i l e s \ n " , f i l e _ c o u n t) ;
}

Here now i s the function that p r i n t s the values according to the
specified options.
The c a l l i n g routine i s supposed to supply a newline.
I f an i n v a l i d option character i s found we inform the user about proper
usage of the command.
Counts are p r i n t e d i n 8 - d i g i t f i e l d s so that they w i l l l i n e up i n
columns.
«Def initions»=
#define print_count(n) p r i n t f (" X S l d " , n)
0 y.def print_count
<<Functions>>=
wc_print(which, char_count, word.count, line_count)

char *which; /* which counts to p r i n t */
long char_count, word_count, line_count;

/* given t o t a l s */
{

while (*which)
switch (*which++) {

case ' 1 ' : print_count(line_count)
break;

case 'w': print_count(word_count)
break;

case 'c': print_count(char_count)
break;

de f a u l t :
i f ((s t a t u s & usage_error) == 0) {

f p r i n t f (s t d e r r ,
"\nUsage: y,s [-Iwc] [filename . . .] \ n " ,
prog_name);

status 1= usage_error;
}

}
0 y.def wc_print
I n c i d e n t a l l y , a t e s t of t h i s program against the system { \ t t wc}

68

command on a SPARCstation showed that the ' ' o f f i c i a l " { \ t t wc} was
s l i g h t l y slower.
Furthermore, although that { \ t t wc} gave an appropriate error message
f o r the options ' { \ t t - a b c } ' , i t made no complaints about the options
' { \ t t - l a b c } ' !
Dare we suggest that the system routine might have been better i f i t s
progreutimer had used a more l i t e r a t e approach?
0
\section*-CList of code chunks}
This l i s t i s generated automatically.
The numeral i s that of the f i r s t d e f i n i t i o n of the chunk.
\nowebchunks
\begin{multicols}{2}[\section*{Index}
Here i s a l i s t of the i d e n t i f i e r s used, and where they appear.
Underlined entries indicate the place of d e f i n i t i o n .
This index i s generated automatically.]
\nowebindex
\end{multicols}

69

Appendix B

wc.c

#include <stdio.h>
#define OK 0
/* status code f o r successful run */

#define usage_error 1
/* status code f o r improper syntax */

#define cannot_open_file 2
/* status code f o r f i l e access error */

#define READ_ONLY 0
/* read access code f o r system open */

#define buf.size BUFSIZ
/* stdio.h BUFSIZ chosen f o r e f f i c i e n c y */

#define print.count (n) p r i n t f ("'/,81d", n)
i n t status = OK;
/* e x i t status of command, i n i t i a l l y OK */

char *prog_name;
/* who we are */

long tot_word_count, t o t _ l i n e _ c o u n t ,
tot_char_count;

/* t o t a l number of words, l i n e s , chars */
wc_print(which, char_count, word_count, line_count)

char *which; /* which counts to p r i n t */
long char_count, word_count, line_count;
/* given t o t a l s */

{
while (*which)

switch (*which++) {
case ' 1 ' : print_count(line_count);

break;
case 'w': print_count(word_count);

break;

70

case 'c': print_count(char_count);
break;

de f a u l t :
i f ((s tatus & usage_error) == 0) {

f p r i n t f (s t d e r r ,
"\nUsage: y.s [-Iwc] [filename . . .] \ n " ,
prog_neime) ;

status 1= usage_error;
}

}
}
main(argc, argv)

i n t argc;
/* number of arguments on UNIX command l i n e */

char **argv;
/* the arguments, an array of strings */

{
i n t f i l e _ c o u n t ;
/* how many f i l e s there are */

char *which;
/* which counts to p r i n t */

i n t f d = 0;
/* f i l e descriptor, i n i t i a l i z e d to stdin */

char b u f f e r [b u f _ s i z e] ;
/* we read the input i n t o t h i s array */

r e g i s t e r char * p t r ;
/* f i r s t unprocessed character i n buffer */

r e g i s t e r char *buf_end;
/* the f i r s t unused p o s i t i o n i n buffer */

r e g i s t e r i n t c;
/* current char, or # of chars j u s t read */

i n t in_word;
/* are we w i t h i n a word? */

long word_count, line_count, char_count;
/* # of words, l i n e s , and chars so f a r */

prog_name = argv[0];
which = "Iwc";

/* i f no option i s given, p r i n t 3 values */
i f (argc > 1 && * a r g v [l] == '-') {

which = a r g v [l] + 1;
a r g c — ;
argv++;

}
f i l e _ c o u n t = argc - 1;
a r g c — ;
do {

i f (f i l e . c o u n t > 0

71

&& (f d = open(*(++argv), READ_ONLY)) < 0) {
f p r i n t f (s t d e r r ,

"%s: cannot open f i l e %s\n",
prog_name, *argv);

status 1= cannot_open_file;
f i l e _ c o u n t — ;
continue;

}
p t r = buf_end = buffer;
line_count = word_count = char_count = 0;
in_word = 0 ;
while (1) {

i f (p t r >= buf_end) {
p t r = bu f f e r ;
c = read(fd, p t r , buf_size);
i f (c <= 0) break;
char_count += c;
buf_end = buffer + c;

}
c = *ptr++;
i f (c > ' ' && c < 0177) {

/* v i s i b l e ASCII codes */
i f (!in_word) {

word_count++;
in_word = 1;

}
continue;

}
i f (c == '\n') line_count++;
else i f (c != ' ' && c != ' \ t ') continue;
in_word = 0;

/* c i s newline, space, or tab */
}
wc_print(which, char_count, word_count,

line_count);
i f (f i l e . c o u n t)

p r i n t f (" y.s\n", *argv); /* not stdin */
else

p r i n t f (" \ n ") ; /* stdin */
cl o s e (f d) ;
t o t _ l i n e _ c o u n t += line_count;
tot_word_count += word_count;
tot_char_count += char_count;

/* even i f there i s only one f i l e */
} while (—argc > 0) ;
i f (f i l e _ c o u n t > 1) {

wc_print(which, tot_char_count,

72

tot_word_count, t o t _ l i n e _ c o u n t) ;
p r i n t f (" t o t a l i n y.d f i l e s \ n " , f i l e _ c o u n t) ;

}
e x i t (s t a t u s) ;

}

73

Appendix C

wc.nw'

The literate C program wc.nw' is captured from the C program wc.c. The result is as
follows:

<<*»=
«Header f i l e s t o include>>
«Def initions»
«Global Variables»
«The fu n c t i o n [[wc_print]]>>
«The fu n c t i o n [[wc_print]]»
<<The main prograin>>
0
<<Header f i l e s to include>>
#include <stdio.h>

<<Definitions>>=
#define OK 0
/* status code f o r successful run */
0 y,def OK
<<Def initions»=
#define usage_error 1
/* status code f o r improper syntax */
@ %def usage_error
<<Definitions>>=
#define cannot_open_file 2
/* status code f o r f i l e access error */
0 def°/o cannot_open_file
«Def initions>>=
#define READ.ONLY 0
/* read access code f o r system open */

74

0 y.def READ.ONLY
«Def initions>>=
#define buf_size BUFSIZ
/* stdio.h BUFSIZ chosen f o r e f f i c i e n c y */
@ def'/, buf.size BUFSIZ
«Functions>>=
#define print_count(n) p r i n t f (" % 8 1 d " , n)
0 '/.def print_count
i n t status = OK;
/* e x i t status of command, i n i t i a l l y OK */
char *prog_neLme;
/* who we are */
long tot_word_count, t o t _ l i n e _ c o u n t , tot_char_count;
/* t o t a l number of words, l i n e s , chars */
«The fu n c t i o n [[wc_print]]»=
wc_print(which, char_count, word_count, line_count)

char •which; /* which counts to p r i n t */
long char_count, word_count, line_count;

/* given t o t a l s •/
{
«Variables l o c a l t o [[wc_print]]»

«Body of [[wc.print]]»

}

0 '/,def wc_print which char_count word_count line_count

«Variables l o c a l t o [[wc_print]]»=

0 %def

<<Body of [[wc_print]]>>=

while (*which)
switch (*which++) {
case '1' :

print_count(line_count);
break;

print_count(word_count);
break;

print_count(char_count);

75

break;
def a u l t :

i f ((status & usage_error) == 0) {
f p r i n t f (s t d e r r ,

"\nUsage: '/.s [-Iwc] [filename . . .] \ n " ,
prog_name);

status 1= usage_error;
}

}

<<The main prograjn»=

main(argc, argv)
i n t argc;

/* number of arguments on UNIX command l i n e */
char **argv;

/* the arguments, an array of strings */
{

<<Variables l o c a l to [[main]]>>

«Body of [[main]]»

}
0 Xdef main argc argv

<<Variables l o c a l to [[main]]>>=

i n t f i l e _ c o u n t ;
/* how many f i l e s there are */
char *which;
/* which counts to p r i n t */
i n t f d = 0;
/* f i l e descriptor, i n i t i a l i z e d t o s t d i n */
char buffer [b u f . s i z e] ;
/* we read the input i n t o t h i s array */
r e g i s t e r char * p t r ;
/* f i r s t unprocessed character i n buffer */
r e g i s t e r char *buf_end;
/* the f i r s t unused po s i t i o n i n buffer */
r e g i s t e r i n t c ;
/* current char, or # of chars j u s t read */
i n t in_word;
/* are we w i t h i n a word? */

76

long word_count, line_count, char_count;
/* # of words, l i n e s , and chars so f a r */

Q '/odef f i l e _ c o u n t which f d buffer buf.size p t r buf_end c
© '/.def in.word word_count line_count char_count

«Body of [[main]]»=

prog_name = argv[0];
which = "Iwc";
/* i f no option i s given, p r i n t 3 values */
i f (argc > 1 && * a r g v [l] == '-') {

which = argvEl] + 1;
argc--;
argv++;

>
f i l e . c o u n t = argc - 1;
a r g c — ;
do {

i f (f i l e _ c o u n t > 0
&& (f d = open(*(++argv), READ.ONLY)) <.0) {

f p r i n t f (s t d e r r ,
'"/.s: cannot open f i l e °/,s\n",
prog.name, *argv);

status 1= cannot_open_file;
f i l e _ c o u n t — ;
continue;

}
p t r = buf_end = buffer;
line_count = word_count = char_count = 0;
in_word = 0;

•while (1) {
i f (p t r >= buf_end) {

p t r = buffer;
c = read(fd, p t r , buf_size);
i f (c <= 0)

break;
char_count += c;
buf_end = buffer + c;

}
c = *ptr++;
i f (c > ' ' && c < 0177) {

/* v i s i b l e ASCII codes */
i f (!in_word) {

word_count++;
in_word = 1;

}

77

continue;
>
i f (c == '\n')

line_count++;
else i f (c != ' ' && c != ' \ t ')

continue;
in_word = 0;
/* c i s newline, space, or tab */

}
wc_print(which, char_count, word_count,

line_count);
i f (f i l e _ c o u n t)

p r i n t f (" '/os\n", *argv) ; /* not stdin */
else

p r i n t f C'Xn"); /* stdin */
close(fd) ;
tot_line_count += line_count;
tot_word_count += word_count;
tot_char_count += char_count;
/* even i f there i s only one f i l e */

} while (—argc > 0) ;
i f (f i l e . c o u n t > 1) {

wc_print(which, tot_char_count,
tot_word_count, t o t _ l i n e _ c o u n t) ;

p r i n t f C t o t a l i n "/A f i l e s X n " , f i l e . c o u n t) ;
}
e x i t (s t a t u s) ;

78

Appendix D

wc.nw"

This is the documented version of the captured literate C program wc.c.

\makeatletter
\def\idxexajnple#l{\nwix@id@uses#l}
\makeatother

This program i l l u s t r a t e s the incremental redocumentation using l i t e r a t e
programming system.
The o r i g i n a l i s Ramsey's l i t e r a t e program {\bf wc.nw} which i s demonstrated
the use of {\bf noweb}, a t o o l f o r l i t e r a t e programming.
The C program {\bf wc.c} i s extracted from {\bf wc.nw} by using noweb t o o l
{\bf notangle}.
The assumption i s that the program source code {\bf wc.c} only exists f o r
redocumentation.
The C prograjn {\bf wc.c} i s captured to a l i t e r a t e C program {\bf wc.nwp}
by the capture process.
The captured l i t e r a t e C program {\bf wc.nwp} has cross-reference f o r chunks
and i d e n t i f i e r s and also printed type set documentation by using \LaTeX\.
But t h i s i s only a basic achievement of the system.
Here, t h i s i l l u s t r a t i o n shows the incremental redocumentation of the program.
How do we do that?
F i r s t , group re l a t e d includes, d e f i n i t i o n s and global variables.
Then t i e the comments to the source code.
Then t i e the comments to the source code.
Move the comment l i n e s t o the documentation chunk which exists before the code
chunk.
Now the documentation chunks exists f o r the appropriate code chunk.
But i f there i s no comment l i n e s , a related documentation
chunk f o r the code chunk cannot be created.

79

Second, use the t o o l s f o r program comprehension.
The c a l l graph t o o l , ccg i s used as an example f o r t h i s progreim.
The c a l l graph i s i n postscript form and add i t to the documentation chunk.
The software engineers can quickly understand the levels of the prograim and
the i n t e r r e l a t i o n s h i p of the functions.

S i m i l a r l y , by using various kinds of t o o l s , various kinds of information
could be possibly stored i n the documentation chunks, such as,
requirement s p e c i f i c a t i o n s , design,
data flow, c o n t r o l flow, t e s t data and t e s t i n g
methods, etc.

F i n a l l y , the f u n c t i o n a l i t y of the code chunks can be added to the documentation
chunks.
When a software engineer read the program, they can understand
the behaviour of the code chunks by using t h e i r experience.
This knowledge can be added to the documentation chunks and these documents
are always t i e d together with the code chunks.
I f the progrcim i s r e t r i e v e d many times by d i f f e r e n t software engineers
f o r the purpose of maintenance or reuse, the d i f f e r e n t views of the
documentation w i l l be added to the documentation chunk.
This documentation cannot be l o s t and can be seen on the computer screen or
as a typeset document report or a book form f o r the futur e .
I t w i l l reduce the time f o r progreun comprehension i n the software
maintenance and reuse phase of the software l i f e cycle.
This i s our main goal of incremental redocumentation using l i t e r a t e
programming.

<<*»=
«Header f i l e s to include»
«Def initions>>
«Global variables>>
«The fu n c t i o n [[w c _ p r i n t]] »
<<The main program>>
0
«Header f i l e s t o include>>=
#include <stdio.h>
0
Group re l a t e d d e f i n i t i o n l i n e s together in t o one chunk.

{\bf 0K}\ i s the status code f o r successful run.W
{\bf usage_error}\ i s the status code f o r improper syntax.
«Def initions»=
#define OK 0
#define usage_error 1
0 '/odef OK usage_error

80

{\bf cannot_open_file}\ i s the status code f o r f i l e access error.\\
{\bf READ_ONLY}\ i s the read access code f o r system open.
«Def initions>>=
#define cannot_open_file 2
#define READ.ONLY 0
@ y.def cannot_open_file READ_ONLY
{\bf b u f _ s i z e } \ i s the stdio.h BUFSIZ chosen f o r e f f i c i e n c y .
<<Def initions»=
#define buf_size BUFSIZ
® %def buf.size
<<Def initions»=
#define print_count(n) p r i n t f (" % 8 1 d " , n)
® '/odef print_count
{\bf s t a t u s } \ i s the e x i t status of command, i n i t i a l l y OK.
<<Global variables>>=
i n t status = OK;
<9 y.def status
{\bf prog_name}\ i s who we are.
<<Global variables»=
char *prog_name;
0 '/odef prog_name
{\bf tot_word_count, t o t _ l i n e _ c o u n t , tot_char_count }\ are
the t o t a l number of words, l i n e s , and chars.
«Global variables»=
long tot_word_count, t o t _ l i n e _ c o u n t ,

tot_char_count;
@ %def tot_word_count tot_line_count tot_char_count
{\bf which} i s which counts to p r i n t . \ \
{\bf char_count, word_count, line_count}\ are given t o t a l s
«The fu n c t i o n C[wc_print]] » =
wc_print(which, char.count, word_count, line_count)

char *which;
long char_count, word_count, line_count;

{
«Variables l o c a l t o [[wc_print]]»
«Body of [[wc_print]]»
}
0 y.def wc_print which char_count word_count line_count
<<Variables l o c a l to [[wc _ p r i n t]] » =

© y.def
<<Body of [[wc_print]]>>=

while (*which)
switch (*which++) {

case ' 1 ' : print_count(line_count);
break;

case 'w': print_count(word_count);

81

break;
case 'c': print_count(char_count);

break;
d e f a u l t :

i f ((s t a t u s & usage_error) == 0) {
f p r i n t f (s t d e r r ,

"\nUsage: %s [-Iwc] [filename ; . .] \ n " ,
prog.neime) ;

status 1= usage_error;
}

}
(3
{\bf argc}\ i s the number of arguments on UNIX command line.W
{\bf argv}\ i s the arguments, an array of strin g s .
«The main program»=
main(argc, argv)

i n t argc;
char **argv;

{
<<Variables l o c a l to [[main]]»
«Body of [[main]]»
}
0
-C\bf f i l e _ c o u n t } \ i s how many f i l e s there are.W
{\bf which}\ i s which counts to p r i n t .
<<Variables l o c a l t o [[main]]»=

i n t f i l e _ c o u n t ;
char *which;

® '/.def f i l e _ c o u n t which
{\bf f d } i s the f i l e descriptor, i n i t i a l i z e d to stdin.
<<Variables l o c a l to [Cmain]]>>=

i n t f d = 0;
0 '/.def f d
We read the input i n t o t h i s array {\bf b u f f e r } . \ \
{\bf p t r } \ i s the f i r s t unprocessed character i n buffer
{\bf buf_end}\ i s the f i r s t unused positi o n i n buffer
«Variables l o c a l to [[main]]»=

char b u f f e r [b u f _ s i z e] ;
r e g i s t e r char * p t r ;
r e g i s t e r char *buf_end;

@ °/,def buffer p t r buf_end
{\bf c } \ i s the current char, or no. of chars j u s t read.W
{\bf in_word}\ i s are we w i t h i n a word?
«Variables l o c a l t o [[main]]>>=

r e g i s t e r i n t c;
i n t in_word;

0 '/.def c in_word

82

{\bf word_count, line_count, char_count}\ are the
number of words, l i n e s , and chars so f a r .
<<Variables l o c a l to [[main]]»=

long word_count, line_count, char_count;
© y.def word_count line_count char_count
«Body of [[main]]»=
prog_name = argv[O];
which = "Iwc";

/* i f no option i s given, p r i n t 3 values */
i f (argc > 1 && * a r g v [l] == '-') {

which = argvCl] + 1;
a r g c — ;
argv++;

}
f i l e . c o u n t = argc - 1;
a r g c — ;
do {

i f (f i l e . c o u n t > 0
&& (f d = open(*(++argv), READ.ONLY)) < 0) {

f p r i n t f (s t d e r r ,
"%s: cannot open f i l e y.s\n",
prog.name, *argv);

status 1= cannot_open_file;
f i l e _ c o u n t — ;
continue;

}
p t r = buf_end = buffer;
line_count = word_count = char_count = 0;
in_word = 0;
while (1) {

i f (p t r >= buf.end) {
p t r = buffer;
c = read(fd, p t r , buf_size);
i f (c <= 0) break;
char_count += c;
buf.end = buffer + c;

}
c = *ptr++;
i f (c > ' ' && c < 0177) {

/* v i s i b l e ASCII codes */
i f (!in_word) {

word_count++;
in_word = 1;

}
continue;

}
i f (c == '\n') line_count++;

83

else i f (c != ' ' && c != ' \ t ') continue;
in_word = 0;

/* c i s newline, space, or tab */
}
wc_print(which, char_count, word_count,

line.count);
i f (f i l e _ c o u n t)

p r i n t f C '/.s\n", *argv); /* not s t d i n */
else

p r i n t f (" \ n ") ; /* stdin */
c l o s e (f d) ;
t o t _ l i n e _ c o u n t += line_count;
tot_word_count += word_count;
tot_char_count += char_count;

/* even i f there i s only one f i l e */
} while (—argc > 0);
i f (f i l e _ c o u n t > 1) {

wc_print(which, tot_char_count,
tot_word_count, t o t _ l i n e _ c o u n t) ;

p r i n t f (" t o t a l i n '/.d f i l e s \ n " , f i l e . c o u n t) ;
}
e x i t (s t a t u s) ;

(S
\ s e c t i o n { L i s t of code chunks}
This l i s t i s generated automatically.
The numeral i s that of the f i r s t d e f i n i t i o n of the chunk.
\nowebchunks
\section{Index}
Here i s a l i s t of the i d e n t i f i e r s used, and where they appear.
Underlined entries indicate the place of d e f i n i t i o n .
This index i s generated automatically.
\nowebindex

84

Appendix E

lines.c

Sinclude <stdio.h>
#include <string.h>
#define MAXLINES 10 /* max #lines to be sorted */
#define MAXLEN 30 /* length of input l i n e */
#define ALLOCSIZE 100 /* available space */
s t a t i c char allocbuf[ALLOCSIZE];
s t a t i c char *allocp = allocbuf;
char *lineptr[MAXLINES];
char * a l l o c (n)
i n t n;
{

i f (allocbuf + ALLOCSIZE - allocp >= n)
{
allocp += n;
ret u r n allocp - n;
}

else
r e t u r n 0;

}
i n t g e t l i n e (s, lim)
char s [] ;
i n t l i m ;
{
i n t c , i ;
i = 0;

while (— l i m > 0 && (c=getchar()) != EOF && c != '\n')
s[i++] = c;

i f (c == '\n')
s[i++] = c;

s [i] = '\0';

85

r e t u r n i ;
}
i n t r e a d l i n e s (l i n e p t r , maxlines)
char * l i n e p t r [] ;
i n t maxlines;
{
i n t l e n , n l i n e s ;
char *p, line[MAXLEN];
nlines = 0;
while ((l e n = g e t l i n e (l i n e , MAXLEN)) > 0)

{
i f (nlines >= maxlines)

r e t u r n - 1 ;
i f ((p = a l l o c (l e n)) == NULL)

re t u r n - 1 ;
l i n e [l e n - i] = '\0';
s t r c p y (p , l i n e) ;
l i n e p t r [nlines++] = p;
}

ret u r n n l i n e s ;
}
w r i t e l i n e s (l i n e p t r , nlines)
char * l i n e p t r [] ;
i n t n l i n e s ;
{
while (n l i n e s — > 0)

p r i n t f ("'/.s\n", *lineptr++) ;
}
swap(v, i , j)
char *v [] ;
i n t i , j ;
{
char *temp;
temp = v [i] ;
v [i] = v [j] ;
v [j] = temp;
}
qsort(v, l e f t , r i g h t)
char * v [] ;
i n t l e f t , r i g h t ;
{
i n t i , l a s t ;
i f (l e f t >= r i g h t)

r e t u r n ;
swap(v, l e f t , (l e f t + r i g h t) / 2) ;
l a s t = l e f t ;

86

f o r (i = l e f t + l ; i <= r i g h t ; i++)
i f (s t r c m p (v [i] , v [l e f t]) < 0)

swap (v, ++last, i) ;
swap(v, l e f t , l a s t) ;
qsort(v, l e f t , l a s t - l) ;
qsort(v, l a s t + 1 , r i g h t) ;
}
mainO
{
l a s t = l e f t ;
f o r (i = l e f t + l ; i <= r i g h t ; i++)

i f (strcmp(v[i] , v [l e f t]) < 0)
swap (v, ++last, i) ;

swap(v, l e f t , l a s t) ;
qsort(v, l e f t , l a s t - l) ;
qsort(v, l a s t + 1 , r i g h t) ;
}
mainO
{
in t n l i n e s ;
i f ((n l i n e s = r e a d l i n e s (l i n e p t r , MAXLINES)) >= 0)

{
q s o r t (l i n e p t r , 0 , n l i n e s - 1) ;
w r i t e l i n e s (l i n e p t r , n l i n e s) ;
return 0;
}

e l s e
{
p r i n t f (" e r r o r : input too big to sort\m");
return 1;
}

}
l a s t = l e f t ;
f o r (i = l e f t + l ; i <= r i g h t ; i++)

i f (strcmp(v[i] , v [l e f t]) < 0)
swap (v, ++last, i) ;

swap(v, l e f t , l a s t) ;
qsort(v, l e f t , l a s t - l) ;
qsort(v, l a s t + 1 , r i g h t) ;
}
mainO
{
in t n l i n e s ;
i f ((n l i n e s = r e a d l i n e s (l i n e p t r , MAXLINES)) >= 0)

{
q s o r t (l i n e p t r , 0 , n l i n e s - l) ;
w r i t e l i n e s (l i n e p t r , n l i n e s) ;

87

r e t u r n 0;
}

else
{
p r i n t f (" e r r o r : input too big to sort\m");
r e t u r n 1;
}

}

88

Appendix F

lines.nw'

\makeatletter
\def\idxexample#l{\nwix(9id@uses#l}
\makeatother

«*»=
<<Headerf i l e s t o include»
<<Def initions»
«Global Variables»
«The fu n c t i o n [[alloc]]»
«The fu n c t i o n [[g e t l i n e]] > >
«The fu n c t i o n [[r e a d l i n e s]] »
<<The fun c t i o n [[w r i t e l i n e s]] > >
<<The fu n c t i o n [[swap]]»
<<The fu n c t i o n [[q s o r t]] > >
«The main program»
@
<<Headerfiles to include>>=
#include <stdio.h>
0
<<Headerfiles to include>>=
#include <string.h>
0
<<Def initions»=
#define MAXLINES 10 /* max #lines to be sorted */S
(§ '/.def MAXLINES
<<Def initions»=
#define MAXLEN 30 /* length of input l i n e */
0 '/.def MAXLEN
«Def initions>>=
#define ALLOCSIZE 100 /* available space */
@ '/.def ALLOCSIZE
«Global Variables»=

89

s t a t i c char allocbuf [ALLOCSIZE];
Q %def allocbuf ALLOCSIZE
«Global Variables»=
s t a t i c char *allocp = allocbuf;
0 y.def allocp allocbuf
«Global Variables»=
char *lineptr[MAXLINES] ;
0 y,def l i n e p t r MAXLINES
«The fun c t i o n [[alloc]]»=
char * a l l o c (n)
i n t n;
{
«Variables l o c a l t o [[a l l o c]] »
«Body of [[alloc]]»
}
0 y.def a l l o c n

«Variables l o c a l t o [[alloc]]»=

0 y.def

«Body of [[a l l o c]]»=
i f (allocbuf + ALLOCSIZE - allocp >= n)
{
allocp += n;
re t u r n allocp - n;
}

else
r e t u r n 0;

0
<<The fun c t i o n [[g e t l i n e]] > > =
i n t g e t l i n e (s, lim)
char s [] ;
i n t l i m ;
{
«Variables l o c a l t o [[getline]]»
«Body of [[getline]]»
}
0 y.def g e t l i n e s l i m
<<Variables l o c a l to [[g e t l i n e]] > > =
i n t c , i ;

0 y.def c i
«Body of [[getline]]»=
i = 0;

while (--lim > 0 M (c=getchar()) != EOF && c != '\n')
s[i++] = c;

90

i f (c == '\n')
s[i++] = c;

s [i] = '\0';
ret u r n i ;
0
«The fun c t i o n [[readlines]]»=
i n t r e a d l i n e s (l i n e p t r , maxlines)
char * l i n e p t r n ;
i n t maxlines;
{
«Variables l o c a l to [[readlines]]>>
«Body of [[readlines]]»
}
0 y.def readlines l i n e p t r maxlines
«Variables l o c a l t o [[readlines]]»=
i n t l e n , n l i n e s ;
0 y.def len nlines
<<Variables l o c a l to [[readlines]]>>=
char *p, line[MAXLEN];
0 y.def p l i n e
«Body of [[readlines]]»=
nlines = 0;
while ((l e n = g e t l i n e (l i n e , MAXLEN)) > 0)

{
i f (nlines >= maxlines)

ret u r n - 1 ;
i f ((p = a l l o c (l e n)) == NULL)

retu r n - 1 ;
l i n e [l e n - l] = '\0' ;
s t r c p y (p , l i n e) ;
l i n e p t r [n l i n e s + +] = p;
}

ret u r n n l i n e s ;
0
<<The f u n c t i o n [[w r i t e l i n e s]] > > =
w r i t e l i n e s (l i n e p t r , nlines)
char * l i n e p t r [] ;
i n t n l i n e s ;
{
«Variables l o c a l t o [[w r i t e l i n e s]] > >
<<Body of [[w r i t e l i n e s]] > >
}
Q y.def w r i t e l i n e s l i n e p t r nlines
«Variables l o c a l to [[w r i t e l i n e s]] > > =

0 y.def
<<Body of [[writelines]]»=

91

while (n l i n e s — > 0)
p r i n t f ("y.s\n", * l i n e p t r + +) ;

0
«The fu n c t i o n [[swap]]»=
swap(v, i , j)
char * v [] ;
i n t i , j ;
{
<<Variables l o c a l to [[swap]]»
«Body of [[swap]]»
>
0 ydef swap v i j
«Variables l o c a l to [[swap]]»=
char *temp;
Q y.def temp
«Body of [[swap]]»=
temp = v [i]
v [i] = v [j]
v [j] = temp
0
«The fun c t i o n [[qsort]]»=
qsort(v, l e f t , r i g h t)
char *v [] ;
i n t l e f t , r i g h t ;
{
«Variables l o c a l to [[qsort]]»
«Body of [[qsort]]»
}
0 y.def qsort v l e f t r i g h t
«Variables l o c a l to [[qsort]]»=
i n t i , l a s t ;

0 y.def i l a s t
«Body of [[qsort]]»=
i f (l e f t >= r i g h t)

r e t u r n ;
swap(v, l e f t , (l e f t + r i g h t) / 2) ;
l a s t = l e f t ;
f o r (i = l e f t + l ; i <= r i g h t ; i++)

i f (s t r c m p (v [i] , v [l e f t]) < 0)
swap (v, ++last, i) ;

swap(v, l e f t , l a s t) ;
q sort(v, l e f t , l a s t - 1) ;
qsort(v, l a s t + 1 , r i g h t) ;
0
«The main program>>=
mainO
{

92

<<Variables l o c a l t o [[main]]>>
«Body of [[main]]»
}
(9 y.def main
<<Variables l o c a l t o [[main]]»=
i n t n l i n e s ;
@ y.def nlines
«Body of [[main]]»=

i f ((n l i n e s = r e a d l i n e s (l i n e p t r , MAXLINES)) >= 0)
{
q s o r t (l i n e p t r , 0 , n l i n e s - l) ;
w r i t e l i n e s (l i n e p t r , n l i n e s) ;
r e t u r n 0;
}

else
{
p r i n t f (" e r r o r : input too big to sort\m");
r e t u r n 1;
}

0
\s e c t i o n { L i s t of code chunks}
This l i s t i s generated automatically.
The numeral i s that of the f i r s t d e f i n i t i o n of the chunk.
\nowebchunks
\section{Index}
Here i s a l i s t of the i d e n t i f i e r s used, and where they appear.
Underlined entries indicate the place of d e f i n i t i o n .
This index i s generated automatically.
\nowebindex

93

Appendix G

lines.nw"

\makeatletter
\def\idxexajnple#l{\nwix@id(9uses#l}
\makeatother

«•>>=
<<Headerfiles to include>>
<<Definitions>>
«Global Variables»
«The fun c t i o n [[alloc]]»
<<The fun c t i o n [[getline]]»
«The fu n c t i o n [[readlines]]»
<<The f u n c t i o n [[writelines]]»
«The fu n c t i o n [[swap]]»
«The fu n c t i o n [[qsort]]»
«The main program>>
@
«Headerfiles to include>>=
#include <stdio.h>
0
<<Headerfiles to include>>=
#include <string.h>
(§
<<Def initions»=
#define MAXLINES 10 /* max #lines to be sorted */S
0 y,def MAXLINES
<<Def initions»=
#define MAXLEN 30 /* length of input l i n e */
0 y,def MAXLEN .
<<Definitions>>=
#define ALLOCSIZE 100 /* available space */
@ y.def ALLOCSIZE
«Global Variables»=

94

s t a t i c char allocbuf[ALLOCSIZE] ;
0 y.def allocbuf ALLOCSIZE
«Global Variables»=
s t a t i c char *allocp = allocbuf;
Q y.def allocp allocbuf
«Global Variables»=
char *1ineptr[MAXLINES];
0 y.def l i n e p t r MAXLINES
«The fu n c t i o n [[alloc]]»=
char * a l l o c (n)
i n t n;
{
«Variables l o c a l t o [[a l l o c]] »
«Body of [[a l l o c]] »
}
0 y.def a l l o c n

«Variables l o c a l t o [[a l l o c]]»=

0 y.def

«Body of [[alloc]]»=
i f (allocbuf + ALLOCSIZE - allocp >= n)
{
allocp += n;
re t u r n allocp - n;
}

else
r e t u r n 0;

0
«The fun c t i o n [[getline]]»=
i n t g e t l i n e (s, lim)
char s [] ;
i n t l i m ;
{
<<Variables l o c a l to [[getline]]»
«Body of [[getline]]»
}
@ y.def g e t l i n e s l i m
«Variables l o c a l to [[getline]]»=
i n t c , i ;

0 y.def c i
«Body of [[getline]]»=
i = 0;

while (--lim > 0 && (c=getchar()) != EOF && c != '\n')
s[i++] = c;

95

i f (c == '\n')
s[i++] = c;

s [i] = '\0';
retu r n i ;
0
«The fu n c t i o n [[readlines]]»=
i n t r e a d l i n e s (l i n e p t r , maxlines)
char * l i n e p t r [] ;
i n t maxlines;
{
«Variables l o c a l to [[readlines]]>>
«Body of [[r e a d l i n e s]] »
}
0 y.def readlines l i n e p t r maxlines
<<Variables l o c a l t o [[readlines]]>>=
i n t l e n , nl i n e s ;

@ y.def len nlines
<<Variables l o c a l to [[readlines]]»=
char *p, line[MAXLEN];
0 y.def p l i n e
«Body of [[readlines]]»=
nlines = 0 ;
while ((l e n = g e t l i n e (l i n e , MAXLEN)) > 0)

{
i f (nlines >= maxlines)

r e t u r n - 1 ;
i f ((p = a l l o c (l e n)) == NULL)

ret u r n - 1 ;
l i n e [l e n - l] = '\0';
s t r c p y (p , l i n e) ;
l i n e p t r [n l i n e s + +] = p;
}

ret u r n n l i n e s ;
@
<<The fu n c t i o n [[w r i t e l i n e s]] > > =
w r i t e l i n e s (l i n e p t r , nlines)
char * l i n e p t r [] ;
i n t n l i n e s ;
{
«Variables l o c a l t o [[writelines]]»
«Body of [[w r i t e l i n e s]] »
>
0 y.def w r i t e l i n e s l i n e p t r nlines
<<Variables l o c a l to [[w r i t e l i n e s]] > > =

0 y.def
«Body of [[writelines]]»=

96

while (n l i n e s — > 0)
p r i n t f ("y.s\n", * l i n e p t r + +) ;

0
«The fu n c t i o n [[swap]]»=
swap(v, i , j)
char *v [] ;
i n t i , j ;
{
<<Variables l o c a l to [[swap]]>>
«Body of [[swap]]»
}
0 y.def swap v i j
«Variables l o c a l to [[swap]]»=
char *temp;
0 y.def temp
«Body of [[swap]]»=
temp = v [i] ;
v [i] = v [j] ;
v [j] = temp;
(§
«The fu n c t i o n [[qsort]]»=
qsort(v, l e f t , r i g h t)
char *v [] ;
i n t l e f t , r i g h t ;
{
«Variables l o c a l t o [[q s o r t]]>>
«Body of [[qsort]] »
}
0 y.def qsort v l e f t r i g h t
«Variables l o c a l to [[qsort]]»=
i n t i , l a s t ;
0 y.def i l a s t
«Body of [[qsort]]»=
i f (l e f t >= r i g h t)

r e t u r n ;
swap(v, l e f t , (l e f t + r i g h t) / 2) ;
l a s t = l e f t ;
f o r (i = l e f t + l ; i <= r i g h t ; i++)

i f (s t r c m p (v [i] , v [l e f t]) < 0)
swap (v, ++last, i) ;

swap(v, l e f t , l a s t) ;
q sort(v, l e f t , l a s t - 1) ;
qsort(v, l a s t + 1 , r i g h t) ;

(S
«The main prograjn>>=
mainO
{

97

«Variables l o c a l t o [[main]]»
«Body of [[main]]»
>
@ y.def main
«Variables l o c a l t o [[main]]>>=
i n t n l i n e s ;
(9 y.def nlines
«Body of [[main]]»=

i f ((n l i n e s = r e a d l i n e s (l i n e p t r , MAXLINES)) >= 0)
{
q s o r t (l i n e p t r , 0 , n l i n e s - l) ;
w r i t e l i n e s d i n e p t r , n l i n e s) ;
r e t u r n 0;
}

else
{
p r i n t f (" e r r o r : input too big to sort\m");
r e t u r n 1;
}

0
\s e c t i o n { L i s t of code chunks}
This l i s t i s generated automatically.
The numeral i s that of the f i r s t d e f i n i t i o n of the chunk.
\nowebchunks
\section{Index}
Here i s a l i s t of the i d e n t i f i e r s used, and where they appear.
Underlined entries indicate the place of d e f i n i t i o n .
This index i s generated automatically.
\nowebindex

98

Appendix H

gen-nw

\makeatletter
\def\idxexample#l{\nwix(9id@uses#l}
\makeatother

«*»=
<<Headerf i l e s t o include»
<<Definitions>>
<<The fu n c t i o n [[process_file]]»
<<The fu n c t i o n [[process_file_to_end]]>>
«The main program»
0
<<Headerfiles t o include>>=
#include <stdio.h>
0
<<Headerfiles t o include»=
#include <string.h>
Q
<<Def initions»=
#define MAXSTRING 127
(§ y.def MAXSTRING
void
<<The f u n c t i o n [[p r o c e s s _ f i l e]] >>=
pr o c e s s . f i l e (o u t f d , i n f d , infilename, fromline, t o l i n e , fname, ptype)

FILE *ou t f d , * i n f d ;
char *infilenaine;
i n t *fromline;
i n t t o l i n e ;
char *fncLme;
char ptype;

{
«Variables l o c a l t o [[process_file]]»

99

«Body of [[process_file]]»
}
0 y.def pro c e s s _ f i l e outfd i n f d infilename fromline t o l i n e fname ptype

«Variables l o c a l t o [[process_file]]>>=
i n t c u r r l i n e ;

@ y.def c u r r l i n e
«Variables l o c a l t o [[process_file]]»=

i n t varlength;
0 y.def varlength
«Variables l o c a l to [[process_file]]>>=

char i n l i n e [MAXSTRING];
@ y.def i n l i n e
<<Variables l o c a l to [[process.file]]>>=

char defvar[MAXSTRING];
® y.def defvar
«Variables l o c a l t o [[process_file]]>>=

char outline[MAXSTRING];
0 y.def o u t l i n e
«Variables l o c a l t o [[process_file]]>>=

char functionheader[MAXSTRING];
@ y.def funct ionheader
<<Variables l o c a l to [[p r o c e s s . f i l e]] » =

char *functionnamestart, *tmpstr;
0 y.def functionnajnestart
«Variables l o c a l t o [[process_file]]»=

char • v a r s t a r t ;
0 y.def v a r s t a r t
<<Body of [[process_file]]»=

c u r r l i n e = *fromline;
while (c u r r l i n e != t o l i n e) {

i f (f g e t s (i n l i n e , MAXSTRING, inf d) == NULL) {
f p r i n t f (s t d e r r , "Unexpected EOF at l i n e y.d i n reading f i l e y.s from

y.d to y.d\n",
c u r r l i n e , infilename, *fromline, t o l i n e) ;

e x i t (l) ;
}
i f (strncmp(inline, "#include", 8) == 0) {

f p r i n t f (outfd, "«Headerf i l e s to include»=\n");
p r i n t f ("«Headerf i l e s to include»=\n");
f p r i n t f (outfd, "y.s", i n l i n e) ;
p r i n t f ("y.s", i n l i n e) ;
f p r i n t f (o u t f d , "@\n");
printf("@\n");

} else {
f p r i n t f (outfd, "y.s", i n l i n e) ;

}

100

}

currline++;
}
f g e t s (i n l i n e , MAXSTRING, i n f d) ;
i f (ptype == 'T') {

i f (strncmp(inline, "main", 4) == 0) {
f p r i n t f (outfd, "«The main program>>=\n");
f p r i n t f (o u t f d , "%s", i n l i n e) ;
p r i n t f ("«The main program»=\n") ;
p r i n t f (" y . s " , i n l i n e) ;

} else {
f p r i n t f (outfd, "«Functions»=\n");
f p r i n t f (outfd, "7,s" , i n l i n e) ;
p r i n t f ("«Functions»=\n") ;
p r i n t f ("y.s", i n l i n e) ;

}

f p r i n t f (o u t f d , "(§ y.y.def y,s\n", f name) ;
p r i n t f ("0 y.y.def y.s\n" , fname);
*fromline += 1;

} else {
i f (strncmp(inline, "#define", 7) == 0) {

p r i n t f ("«Definitions»=\n");
f p r i n t f (outfd, "«Def initions»=\n");
o u t l i n e [0] = 0;
p r i n t f ("y.s", i n l i n e) ;
f p r i n t f (outfd, "y.s", i n l i n e) ;
v a r s t a r t = s t r s t r (i n l i n e , " ") ;
varlength = strcspn(varstart + 1, " ") ;
(void) strncpy(defvar, v a r s t a r t , varlength + 1);
defvar[varlength + 1] = 0;
(void) s t r c a t (o u t l i n e , defvar);
p r i n t f (" 0 y.y.def y.s\n", o u t l i n e) ;
f p r i n t f (outfd, "0 y.y.def y.s\n", o u t l i n e) ;

> else {
p r i n t f ("«Global Variables»=\n");
f p r i n t f (outfd, "«Global Variables»=\n") ;
f p r i n t f (o u t f d , "Is", i n l i n e) ;
f p r i n t f (outfd, "0 y.y.def y.s\n", f name);
p r i n t f (" % s \ n " , i n l i n e) ;
p r i n t f ("0 y,y.def y.s\n" , f name) ;

}

}
•fromline = t o l i n e + 1;

101

<<The function[[process_file_to_end]]>>=
void process.file_to_end(outfd, i n f d , fname)

FILE *o u t f d , * i n f d ;
char *fname;

{
<<Variables l o c a l to [[process_file_to_end]]»
<<Body of [[process_file_to_end]]»
}
(3 y.def process_file_to_end outfd i n f d fname

«Variables l o c a l t o [[process_file_to_end]]»=
char inline[MAXSTRING];

0 y.def i n l i n e
<<Variables l o c a l t o [[process_file_to_end]]»=

char outline[MAXSTRING];
0 y.def o u t l i n e
<<Variables l o c a l t o [[process_file_to_end]]»=

char defvar[MAXSTRING];
@ y.def defvar
«Variables l o c a l to [[process_file_to_end]]»=

i n t varlength;
(9 y.def varlength
<<Variables l o c a l t o [[process.file_to_end]]»=

char * v a r s t a r t ;
0 y.def v a r s t a r t
«Body of [[process_file_to_end]]»=

while (f g e t s (i n l i n e , MAXSTRING, infd) != NULL) {
i f (strncmp(inline, "#define", 7) == 0) {

f p r i n t f (outfd, "«Def initions»=\n") ;
o u t l i n e [0] = 0;
f p r i n t f (outfd, "y.s", i n l i n e) ;
v a r s t a r t = s t r s t r (i n l i n e , " ") ;
varlength = strcspn(varstart + 1, " ") ;
(void) strncpy(defvar, v a r s t a r t , varlength + 1);
defvar[varlength + 1] = 0 ;
(void) s t r c a t (o u t l i n e , defvar);
f p r i n t f (outfd, "0 y.y.def y.s\n", o u t l i n e) ;

} else {
f p r i n t f (outfd, "y.s", i n l i n e) ;

/*
* p r i n t f ("Process f i l e to end f u n c t i o n ") ; p r i n t f ("Copying l i n e I y.s",
* i n l i n e) ;
*/
}

102

}

void
<<The main progrEim>>=
main(argc, argv)

i n t argc;
char *+argv;

{
<<Variables l o c a l to [[main]]»
«Body of [[main]]»
}
0 y.def main argc argv

<<Variables l o c a l to [[main]]»=
FILE * i n f p , *outfp;

0 y.def i n f p
<<Variables l o c a l t o [[main]]>>=

FILE •refedfp;
0 y.def refedfp
«Variables l o c a l t o [[main]]»=

char * i n f i l e , * o u t f i l e ;
0 y.def i n f i l e
<<Variables l o c a l to [[main]]>>=

char functionname[MAXSTRING], filename[MAXSTRING] ;
<§ y.def filename
<<Variables l o c a l t o [[main]]>>=

i n t linenumber, count;
0 y.def count
«Variables l o c a l t o [[main]]»=

char refed_filename[MAXSTRING] ;
® y.def refed_f ileneime
<<Variables l o c a l t o [[main]]»=

i n t refed.fileOK = 0;
0 y,def refed.fileOK
«Variables l o c a l to [[main]]>>=

i n t r efed_currentline = 1;
0 y.def refed_currentline
<<Variables l o c a l t o [[main]]»=

char c, c h s t r i n g [2] , type;
0 y.def c
<<Variables l o c a l to [[main]]»=

i n t t l i n e = 0;
(§ y.def t l i n e
«Variables l o c a l to [[([main]]»=

i n t x l i n e = 0 ;
@ y.def x l i n e

103

«Body of [[main]]»=
i f (argc != 3) {

f p r i n t f (s t d e r r , "\nUsage gen-nw i n f i l e o u t f i l e \ n ") ;
e x i t ;

}

/*
* p r i n t f ("Input f i l e name: ") ; scanf("y.s", i n f i l e) ; p r i n t f ("Output f i l e
* name: ") ; scanf("y.s", outf i l e) ;
*
*/

i n f i l e = a r g v [l] ;
o u t f i l e = argv[2];
i f ((o u t f p = f o p e n (o u t f i l e , "w")) != NULL) {

i f ((i n f p = f o p e n (i n f i l e , " r ")) != NULL) {
p r i n t f ("Information from Info f i l e 'y.s'\n\n", i n f i l e) ;
refed.filename[0] = '\0';
refed_fileOK = 0;
f p r i n t f (outfp, "«*»\n");
f p r i n t f (outfp, "«Headerf i l e s to include»\n") ;
f p r i n t f (outfp, "«Def initions»\n");
f p r i n t f (outfp, "«Global Variables»\n") ;
f p r i n t f (outfp, "«Functions»\n");
f p r i n t f (outfp, "<<The main program»\n");
f p r i n t f (outfp, "(§\n");
while (f scanf (i n f p , "y.lcy.sy.sy.d\n", &type, filename, functionname,

&linenumber) != EOF) {
p r i n t f ("Type = 'y,c'. Filename = '^s'. Function Name ='y.s',

Linenumber = y.d\n ", type, filename, functionneune, linenumber);
chstring[0] = ' ' ;
c h s t r i n g [l] = '\0' ;
i f (strcmp(filename, refed_filename) != 0) {

i f (refed_filename[0] != '\0')
process_file_to_end(outfp, refedfp, functionname);

(void) strcpy(refed_filename, filename);
i f ((r e f e d f p = fopen(refed_filename, " r ")) != NULL) {

refed.fileOK = 1;
refed_currentline = 1;

} else {
printf("Can't open input f i l e 'Xs'Xn", refed_filename);
refed_fileOK = 0 ;

}
}
i f (refed_fileOK == 1) {
/* now process the f i l e */

p r i n t f ("Reading l i n e y.d from f i l e 'y.s'\n", linenumber,
r e f ed_f ilencime);

104

i f (type == 'T') {
t l i n e = linenumber;
pro c e s s _ f i l e (o u t f p , refedfp, refed_filename,

&refed_currentline, linenumber, functionname, type);
} else {

i f (type == 'X') {
i f (linenumber != t l i n e && linenumber != x l i n e) {

process_file(outfp, refedfp, refed_filename,
&refed_currentline, linenumber, functionname, type);

x l i n e = linenumber;
} else {

i f (linenumber == t l i n e) {
t l i n e = 0;
x l i n e = linenumber;

} else {
i f (linenumber == x l i n e) {

f p r i n t f (outfp, "«Functions»\n");
f p r i n t f (outfp, "«The main program»\n") ;
f p r i n t f (outfp, "(§\n") ;
while (fscanf (i n f p , "y.lcy,sy.sy.d\n", fetype, filename, functionname,

felinenumber) != EOF) {
p r i n t f ("Type = "Lc', Filename = 'Is', Function Name ='y.s',

Linenumber = y,d\n ", type, filename, functionname, linenumber);
chstring[0] = ' ';
c h s t r i n g [l] = '\0';
i f (strcmp(filename, refed_filename) != 0) {

i f (refed_filename[0] != '\0')
process_file_to_end(outfp, refedfp, functionname);

(void) strcpy(refed_filename, filename);
i f ((r e f e d f p = fopen(refed_filename, " r ")) != NULL) {

refed_fileOK = 1;
refed_currentline = 1;

} else {
p r i n t f ("Can't open input f i l e 'y.s'\n", ref ed_f ilename);
refed_fileOK = 0;

}
}
i f (refed.fileOK == 1) {
/* now process the f i l e */

p r i n t f ("Reading l i n e y.d from f i l e 'Zs'Xn", linenumber,
refed_filename);

i f (type == 'T') {
t l i n e = linenumber;
pro c e s s _ f i l e (o u t f p , refedfp, refed_filename,

&refed_currentline, linenumber, functionname, type);
} else {

105

i f (type == ' X ') {
i f (linenumber != t l i n e && linenumber != x l i n e) {

p r o c e s s _ f i l e (o u t f p , re fedfp , refed_fi lename,
&refed_current l ine , linenumber, functionnaune, type) ;

x l i n e = linenumber;
} e l s e {

i f (linenumber == t l i n e) {
t l i n e = 0;
x l i n e = linenumber;

} e l s e {
i f (linenumber == x l i n e) {

f p r i n t f (outfp, "0 yj.def y,s\n", functionname);
p r i n t f C ® H d e f %sW, functionname);

}
}

>

}
}

}
}
process_f i le_to_end(outfp , re f ed fp , f i l ename);

} e l s e {
p r i n t f ("Can't open input f i l e ' ' / s 'Xn", i n f i l e) ;

>
} e l s e {

p r i n t f ("Can't open output f i l e ' ' / o S ' \ n " , outf i l e) ;

}

106

Bibliography

1] A v e n a r i u s , A . and O p p e r m a n , S. , A Li terate Programming System for F O R -
T R A N 8 X , ACM SIGPLAN notices, Vol. 25, No. 1, 1990 pp. 52-58

2] B e n n e t t , K . H . , L e g a c y Systems: Coping with Success, IEEE Software, 1995
pp. 19-23

3] B e n n e t t K . , Corne l ius B . , M u n r o M . and Robson D . , Software Maintenance,
in McDermid, J.A. Software Engineer's Handbook, Chp 20, Butterworth Heinemann,

1991

4] Bent ly , J . , P r o g r a m m i n g Pearls - L i terate Programming , Communication of
the ACM, Vol. 29, No. 5, 1986 pp. 364-369

5] Bent ly , J . , K n u t h , D . E . and McUroy, D . , Programming Pearls - L i terate
P r o g r a m m i n g , Communication of the ACM, Vol. 29, No. 6, 1986 pp.471-483

6] Bent ly , J . , and G r i e s D . , Programming Pearls - L i terate Programming , Com­
munication of the ACM, Vol. 30, No. 4, 1987 pp. 284-290

7] B i shop , J . M . and Gregson, K . M . , L i tera te Programming and the (L I P E D)
E n v i r o n m e n t , Journal of Structured Programming, Vol. 13, No. 1, 1992 pp. 23-34

8] Proceedings of the Workshop on P r o g r a m Comprehension, Greater U n ­
derstanding through Mainta iner D r i v e n Traceabil ity, IEEE Press, 1996 pp.
100-106

9] B o t t a c i , L . and Steward, A . , E x t e n d i n g Software into the Future , Hyperme­
dia/Hypertext and Object-oriented Databases, UNICOM, 1991 pp. 219-235

10] B r o w n , M . E . and C h i l d s , B . , A n Interactive Environment for Li terate Pro­
gramming , Journal of Structured Programming, Vol. 11, No. 1, 1990 pp. 11-25

11] B r o w n , M . E . and Cordes , D . , L i terate Programming Appl ied to Conven­
tional Software Design, Journal of Structured Programming, Vol. 11, No. 1, 1990
pp. 85-98

12] B r o w n , M . E . and Cze jdo , B . , A H y p e r t e x t for Li terate Programming , Ad­
vances in Computing and Information-ICCI '90/, 1990 pp. 85-98

[13] C h a p i n , N . , Software Maintenance: a different view, AFIPS Conference Pro­
ceedings, 54th National Computer Conference, 1985 pp. 509-513

107

[14] C o n k l i n , J . , H y p e r t e x t : A n introduction and survey, IEEE Computer, Vol. SO,
pp. 17-40

15] Denning , P. J . , Announc ing Li terate Programming , Communications of the
ACM, Vol. 30, No. 7, 1987 pp. 593

[16] F l e t t o n , N . T . and M u n r o , M . , Redocument ing Software Systems using
H y p e r t e x t Technology, Conference on Software Maintenance, IEEE, 1988 pp. 54-
59

17] F l e t t o n , N . T . , Document ing for Software Maintenance: the redocumenta-
tion of exist ing systems, MSc. Thesis, University of Durham, 1988

18] F r e e m a n , R . M . , Software Maintenance: Redocumentat ion of Ex i s t ing
C O B O L Sys tems using H y p e r t e x t Technology, MSc. Thesis, University of
Durham, 1992

19] G r i e s , D . , R e p l y to K n u t h ' s Smal l W o r k of L i terature . I n Programming
Pear l s , Communications of the ACM, Vol. 30, No. 4, 1987 pp. 286-288

[20] Gui l l emet ter , R . A . , Appl icat ion Software Documentat ion: a reader's mea­
sure, PhD Thesis, University of Houston, May, 1986

[21] H a m i l t o n , E . , L i t e r a t e P r o g r a m m i n g - E x p a n d i n g General ized Regular E x ­
pressions, Communications of the ACM, Vol. 31, No. 12, 1988 pp. 1376-1385

22] H a n s o n , D . R . , L i t era te programming - Pr int ing C o m m o n Words, Commu­
nications of the ACM, Vol. 30, No. 7, 1987 pp. 594-599

[23] H y m a n , M . S., L i tera te C++, Computer Language, Vol. 7, No. 7, 1990 pp.
67-68, 70-72, 74-77, 79

24] J a c k s o n , M . A . , L i t e r a t e P r o g r a m m i n g - Process ing Transactions, Commu­
nications of the ACM, Vol. 30, No. 12, 1987 pp. 1000-1010

25] K e r n i g h a n , B . W . and Ri tch ie D . M . , T h e C Programming Language, Prentice-

Hall, 1978

[26] K n u t h , D . E , , T h e W E B Sys tem of Structured Documentat ion, Stanford
Computer Science Report, CS 980, 1983

27] K n u t h , D . E . , L i t e r a t e P r o g r a m m i n g , The Computer Journal, Vol. 27, No. 2,
1984 pp. 97-111

28] K n u t h , D . E . , A S m a l l W o r k of L i t era ture , I n Programming Pearls , Com­
munications of the ACM, Vol. 21, No. 5, 1986 pp. 366-367

[29] K n u t h , D . E . , Mini- indexes for literate programs, Software-Concepts and Tools,
Vol. 15, No. 1, 1994 pp. 2-11

30] K o r t r i g h t , E . and Cordes , D . , Cnes t and Cscope: Tools for the literate
programming environment . Proceedings / IEEE Southeastcon '92, Vol. 2, 1992
pp. 604-609

108

[31] L e v y , S . , W E B adapted to C , another approach. Journal of TUGboat, Vol. 8,
No. 1, 1987 pp. 12-13

[32] L e v y , S. , L i t e r a t e P r o g r a m m i n g and C W E B , Computer Language, Vol. 10, No.
I , 1993 pp.67-68, 70

[33] L i e n t z , B . P . and Swanson, E . B . , Software Maintenance Management, Addi­
son Wesley, 1980

34] L indsay , D . C , L i t e r a t e P r o g r a m m i n g - A F i l e Difference Program, Commu­
nications of the ACM, VoL 32, No. 6, 1989 pp. 740-755

[35] Osterbye , K . and N o r m a r k , K . , A n interaction engine for rich hypertexts ,
ECHT'94 Proc. ACM European Conf Hypertext, 1994 pp. 167-176

[36] Osterbye , K . , L i t e r a t e Smal l ta lk Programming Us ing Hyper tex t , IEEE Trans­
action on Software Engineering, Vol. 31, No. 2, 1995 pp. 138-145

[37] P a r n a s , D . L . , Software Aging, Proceedings: 16th International Conference on
Software Engineering, 1994 pp. 279-287

38] R a m s d e l l , J . D . , S imple support for l iterate programming in L i s p , Journal of
Tex-Hax. VoL 88, No. 39, 1988

[39] R a m s e y , N . , Weav ing a Language-Independent W E B , Communications of the
ACM, Vol. 32, No. 9, 1989 pp. 1051-1055

[40] R a m s e y , N . , L i t era te -Programming Tools Need Not B e Complex , Technical
Report, Princeton University, 1992

[41] R a m s e y , N . , L i t era te P r o g r a m m i n g Simplif ied, Journal of IEEE Software, Vol.
I I , No. 5, 1994 pp. 97-105

42] Robson , D . J . , Bennet t , K . H . , Cornel ius , B . J . , and M u n r o , M . , Approaches
to P r o g r a m Comprehens ion , Journal of Systems Software, Vol. 14, 1991 pp. 79-
84

43] Sewel l , E . W . , How to M A N G L E Y o u r Software: the W E B System for
M o d u l a - 2 , Journal of TUGboat, Vol. 8, No. 2, 1987 pp.118-122

44] S tand i sh , T . a . , A n E s s a y on Software Reuse , Transactions on Software Engi­
neering, Vol. 10, No. 5, 1984 pp. 494-497

45] Th imbleby , H . W . , L i t era te P r o g r a m m i n g in C , Technical Report, University of
York, 1984

[46] Thimbleby , H . W . , Exper i ences of L i tera te Programming using C W E B , The
Computer Journal, Vol. 29, No. 3, 1986 pp. 201-211

[47] V a n W y k , C . J . , L i t era te Programming - A n Assessment, Communications of
the ACM, Vol 31, No. 7, 1990 pp. 343-344

109

48] Wong , K . , T i l l ey , S . ,Mul l er , H . and Storey, M . , S tructura l Redocumenta­
tion: A C a s e S tudy , IEEE Software, Jan, 1995 pp. 46-54

49] Younger , E . , Documentat ion , C h a p t e r 8, The REDO Compendium, 1993 pp.
111-121

[50] van Z u y l e n , H . J . , Introduct ion, The REDO Compendium, 1993 pp. 1-9

[51] van Z u y l e n , H . J . , Understanding Reverse Engineering, Chapter 6, The
REDO Compendium, 1993 pp. 81-92

110

