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Abstract

Mathematical and numerical analysis has been undertaken for a pair of coupled

Cahn-Hilliard equations with a logarithmic potential and with homogeneous Neu-

mann boundary conditions. This pair of coupled equations arises in a phase sepa-

ration model of thin film of binary liquid mixture. Global existence and uniqueness

of a weak solution to the problem is proved using Faedo-Galerkin method. Higher

regularity results of the weak solution are established under further regular require-

ments on the initial data. Further, continuous dependence on the initial data is

presented.

Numerically, semi-discrete and fully-discrete piecewise linear finite element approxi-

mations to the continuous problem are proposed for which existence, uniqueness and

various stability estimates of the approximate solutions are proved. Semi-discrete

and fully-discrete error bounds are derived where the time discretisation error is

optimal. An iterative method for solving the resulting nonlinear algebraic system is

introduced and linear stability analysis in one space dimension is studied. Finally,

numerical experiments illustrating some of the theoretical results are performed in

one and two space dimensions.
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Chapter 1

Introduction

1.1 Motivating the problem statement

Considerable attention has been paid to variants of the Cahn-Hilliard equations in

recent years. These equations have gained in importance due to its wide appli-

cation in diverse fields such as modelling alloys, glasses and polymers for instance

see [32] and [46]. The Cahn-Hilliard model was first introduced by Cahn and Hilliard,

see [29], to describe the dynamics of separation of a binary mixture into two different

phases. This classical model has been successfully applied to modeling the so-called

spinodal decomposition or phase separation phenomena and for qualitative studies

on this topic we refer to [23], [27] and [56] and the references therein.

The classical Cahn-Hilliard equation is a fourth order time dependent nonlinear

partial differential equation and has the following general form:

∂u

∂t
− ∆w = 0 in ΩT := Ω × (0, T ), T > 0, (1.1.1a)

w = −γ∆u + Ψ′(u) in ΩT , (1.1.1b)

supplemented by an appropriate initial condition

u(x, 0) = u0(x) in Ω, (1.1.2)

and boundary conditions, here we consider Neumann,

∂u

∂ν
=
∂w

∂ν
= 0 on ∂Ω × (0, T ), (1.1.3)

1



1.1. Motivating the problem statement 2

where Ω is a bounded domain in R
d, d = 1, 2, 3, with Lipschitz boundary ∂Ω and

ν is the outward unit normal to Ω. The variable u is the concentration of the

two components and w is the chemical potential which is defined as the variational

derivative of the Ginzburg-Landua free energy functional

Λ(u) :=

∫

Ω

[
γ

2
|∇u|2 + Ψ(u)]dx. (1.1.4)

Cahn and Hilliard included the gradient term, γ
2
|∇u|2, in the free energy functional

Λ in order to model the surface energy separating the phases where γ is a positive

constant relating to the surface tension..

The function Ψ in (1.1.4) represents the homogeneous potential which typically

has a symmetric double well-form. In order to simplify the mathematical work, Ψ

is often taken as a quartic polynomial in the following form

Ψ(u) = au4 − bu2 + c a, b > 0, c ∈ R. (1.1.5)

When the quenching temperature, θ, is close to a critical temperature ω, this quar-

tic polynomial potential can be understood as an approximation of the following

thermodynamic logarithmic potential, where 0 < θ < ω,

Ψ(u) =
θ

2

[

(1 + u) ln(1 + u) + (1− u) ln(1− u)
]

+
ω

2
(1− u2) − 1 ≤ u ≤ 1. (1.1.6)

The quartic Taylor polynomial of this logarithmic potential is given by

Ψ(u) ≈
θ

12
u4 −

(ω − θ)

2
u2 +

ω

2
,

which is consistent with the form (1.1.5). The logarithmic form of the potential was

suggested by Cahn and Hilliard, see [29]. We remark that Ψ in this logarithmic

form has the required double well-form with two minima at α and −α, i.e. α is the

positive root of, Ψ′(α) = 0,

ln
(1 + α

1 − α

)

=
2αω

θ
.

If we consider the case θ → 0, α tends to 1 and the logarithmic potential in this

case can be replaced by the following obstacle potential

Ψ(u) =











ω
2
(1 − u2) if |u| ≤ 1,

∞ if |u| > 1,

(1.1.7)



1.1. Motivating the problem statement 3

−α α 1−1

Figure 1.1: A homogeneous logarithmic potential

where this form of the potential was first proposed by Oono and Puri [60].

For mathematical and numerical studies on the classical Cahn-Hilliard equation

with different forms of the the free energy we refer to [26], [16], [11], [35] and the

references cited therein.

In this thesis we consider two coupled Cahn-Hilliard equations arising in the phase

separation process on a thin film of a binary liquid mixture coating a substrate,

which is wet by one component denoted by A, the other component is denoted by

B, see [17] for further details. We begin by briefly describing their model:

Find {u1(x, t), u2(x, t)} ∈ R × R such that

∂u1

∂t
− ∆w1 = 0 in ΩT , (1.1.8a)

∂u2

∂t
− ∆w2 = 0 in ΩT , (1.1.8b)

w1 =
δΛ(u1, u2)

δu1

in ΩT , (1.1.8c)

w2 =
δΛ(u1, u2)

δu2
in ΩT , (1.1.8d)



1.1. Motivating the problem statement 4

where

Λ(u1, u2) :=

∫

Ω

Ψ1(u1) +
γ1

2
|∇u1|

2 + Ψ2(u2) +
γ2

2
|∇u2|

2 +D(u1 + α1)
2(u2 + α2)

2,

(1.1.9)

with initial conditions

u1(x, 0) = u0
1(x), u2(x, 0) = u0

2(x) in Ω (1.1.10)

and boundary conditions

∂u1

∂ν
=
∂u2

∂ν
=
∂w1

∂ν
=
∂w2

∂ν
= 0 on ∂Ω × (0, T ). (1.1.11)

In the above, δΛ(u1,u2)
δui

, i = 1, 2, denotes the variational derivative of the free en-

ergy functional Λ with respect to ui. The variable u1 provides information on the

local concentration of A or B and u2 indicates the presence of a liquid or a vapor

phase. The positive constant γi, i = 1, 2, relates to the surface tension of ui and the

coupling constant D is a positive prescribed constant. αi, i = 1, 2, is the positive

constant where the minimum of a double well potential Ψi is achieved.

In the case where Ψi is a double well quartic polynomial potential, considered

in [17], [44], it can be written as

Ψi(ui) = aiu
4
i − biu

2
i + ci i = 1, 2 and ai, bi > 0, ci ∈ R. (1.1.12)

In this case the minima of Ψi are ±
√

bi

2ai
, i.e. αi =

√

bi

2ai
, where the coefficient bi is

proportional to θi − θ and θi, i = 1, 2, is the critical temperature of the A-B phase

separation and the liquid-vapor phase separation, respectively. Thus, there are two

equilibrium phases for each field corresponding to u1 = ±α1 and u2 = ±α2 denoted

by u+
1 , u

+
2 , u

−
1 and u−2 , respectively. The D-coupling term energetically inhibits the

existence of the phase denoted (u+
1 , u

+
2 ). Hence we have three phase systems: liquid

A corresponding to (u−1 , u
−
2 ) region, liquid B to (u+

1 , u
−
2 ) region and the vapor phase

to (u−1 , u
+
2 ) region.

In the case where Ψi is an obstacle double well potential and the D-term is re-

placed by a bilinear term we have the three phase systems, considered in [30].
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In the absence of the D-coupling term, i.e. D = 0, in the free energy functional, Λ,

the above model problem simply becomes two classical single Cahn-Hilliard equa-

tions, which has been studied in the mathematical literature, e.g. see [3] and [19].

Now, by considering the logarithmic potential (1.1.7) and for simplicity taking

γ := γ1 = γ2 we are led to the following problem which will be the focus of our

interest in this thesis:

(P) Find {u1(x, t), u2(x, t)} ∈ R × R such that

∂u1

∂t
− ∆w1 = 0 in ΩT , (1.1.13a)

∂u2

∂t
− ∆w2 = 0 in ΩT , (1.1.13b)

w1 = −γ∆u1 + Ψ′
1(u1) + f

(1)
D (u1, u2) in ΩT , (1.1.13c)

w2 = −γ∆u2 + Ψ′
2(u2) + f

(2)
D (u1, u2) in ΩT , (1.1.13d)

subject to the initial conditions

u1(x, 0) = u0
1(x), u2(x, 0) = u0

2(x) in Ω, (1.1.13e)

and boundary conditions

∂u1

∂ν
=
∂u2

∂ν
=
∂w1

∂ν
=
∂w2

∂ν
= 0 on ∂Ω × (0, T ), (1.1.13f)

where

Ψi(r) = ψ(r) +
θi

2
(1 − r2) i = 1, 2, −1 ≤ r ≤ 1, 0 < θ < θi, (1.1.14)

ψ(r) :=
θ

2

[

(1 + r) ln(1 + r) + (1 − r) ln(1 − r)
]

, (1.1.15)

fD(r1, r2) := D(r1 + α1)
2(r2 + α2)

2, (1.1.16)

f
(i)
D (r1, r2) :=

∂fD(r1, r2)

∂ri

= 2D(ri + αi)(rj + αj)
2 i, j = 1, 2 with i 6= j,

(1.1.17)

where, as described earlier, γ, D, θ, θi and αi are positive constants with θ < θi and

Ψ′
i(αi) = 0. Note that (i) since Ψi takes its minimum at ±αi, we have 0 < αi < 1,
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(ii) Ψi is defined at r = ±1 as Ψi(±1) = lim
r→±1

Ψi(r) = θ ln 2.

On introducing Φ ∈ C[0,∞) such that

Φ(r) :=
θ

2
r ln r, (1.1.18)

one can rewrite ψ as

ψ(r) = Φ(1 + r) + Φ(1 − r). (1.1.19)

For the purposes of analysis we define the monotone function φ : (−1, 1) −→ R to

be

φ(r) := ψ′(r) = Φ′(1 + r) − Φ′(1 − r) =
θ

2

[

ln(1 + r) − ln(1 − r)
]

. (1.1.20)

To establish a weak formulation we multiply by a test function η ∈ H1(Ω) and apply

the Green’s identity. Further, by a weak solution to the system (1.1.13a)-(1.1.17)

we mean that there exists {u1, u2, w1, w2} satisfying u1, u2 ∈ L∞(0, T ;H1(Ω)) ∩

H1(0, T ; (H1(Ω))′), w1, w2 ∈ L2(0, T ;H1(Ω)) and solving the weak formulation:

(P) Find {u1, u2, w1, w2} ∈ [H1(Ω)]4 such that for a.e. t ∈ (0, T ), for i = 1, 2

and for all η ∈ H1(Ω)

〈∂tui, η〉 + (∇wi,∇η) = 0, (1.1.21)

γ(∇ui,∇η) + (Ψ′
i(ui), η) + (f

(i)
D (u1, u2), η) = (wi, η), (1.1.22)

ui(x, 0) = u0
i , (1.1.23)

where ∂tui stands for ∂ui

∂t
.

1.2 Research objectives and outline

The thesis highlights three principle objectives: the classical analysis of the system

(1.1.13a)-(1.1.17), the numerical analysis of this system and some numerical exper-

iments and simulations. With the aid of Faedo-Galerkin method of Lions [24] and

compactness arguments we achieve the first goal. The second goal is achieved with

a finite element method where a semi-discrete and fully-discrete approximation are
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applied to the system (1.1.13a)-(1.1.17). For the final objective we use Fortran and

Matlab programming languages to implement numerical simulations in one and two

space dimensions which verify the expected theoretical and physical behaviour of

the solution.

In our work we analyse the problem (P) classically and numerically under two

set of assumptions (A1) and (A2), stated in the pages 18 and 34 respectively, on

the initial data u0
1 and u0

2. Due to the singular nature of the potential Ψi, i = 1, 2,

we study the problem (P) by introducing a regularized version, say (Pǫ), and then

taking the limit as ǫ→ 0. This approach was first used by Elliott and Luckhaus [49]

to study a single Cahn-Hilliard equation and later applied in the mathematical lit-

erature with many variants of Cahn-Hilliard equations with non-smooth free energy,

e.g. [16] and [3]. Numerically, we propose a symmetric coupled, in time, fully-discrete

finite element approximation to (P) where we prove existence of approximate solu-

tions using Schauder’s fixed point theorem. Further, we introduce a semi-discrete

approximation to (P) which will be necessary to prove an optimal error bound in

time for the proposed fully-discrete approximation. In fact, we can analyse the error

between the continuous solution and fully-discrete approximation directly but this

will not lead to an optimal error bound in time. Our approach to the numerical

analysis of the problem (P) uses the piecewise-linear finite element method. For

studies that use this approach or employ similar arguments and tools to our own,

see [7], [6], [4], [50], [10], [5], [11], [15].

We now describe briefly each chapter of the thesis:

In Chapter 2 we introduce a regularized problem to (P) and establish some necessary

results that help dealing with the terms arising from the nonlinearities involved. We

also present equivalent weak formulations to (P) and its corresponding regularized

version (Pε). Existence and uniqueness of solutions to (P) and (Pε) under set of

assumptions (A1) on the initial data is proved using Faedo-Galerkin method and

compactness arguments.
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In Chapter 3 we make further regularity requirements on the initial data, assump-

tions (A2), and on the boundary of the domain to prove more regularity for the

weak solutions obtained in the previous chapter. Then, continuous dependence on

the initial data is proved. Finally, an error bound between the solutions of (P) and

its regularized version (Pε) is given which will be required in the subsequent analysis.

In Chapter 4 we begin by presenting some tools and results about the piecewise lin-

ear finite element space. We then establish some key lemmata that will be necessary

to deal with technical problems caused by the nonlinearities (the logarithmic and

D-coupling terms) throughout the treatment of the semi-discrete and fully-discrete

problems. Then a semi-discrete finite element approximation to the continuous

problem (P) is constructed. We employ the same regularization approach used in

the continuous problem to prove existence of a solution to the semi-discrete prob-

lem where we first consider a semi-discrete regularized problem and then pass to the

limit in ε. Further, we derive some stability estimates under the assumptions (A1)

and more regular estimates under the assumptions (A2) which will be required in

the error bound analysis. We finally estimate an error bound between the solutions

of the continuous and semi-discrete problems.

In Chapter 5 we formulate a symmetric coupled, in time, fully-discrete finite el-

ement approximation to the continuous problem where we discretise in time using

backward Euler method. We study the fully-discrete problem by considering a

regularized fully-discrete problem where existence of a solution to this problem is

established using Schauder’s fixed point theorem with no restrictions on the mesh

parameter or on the time step. Uniqueness of the fully-discrete approximation is

proved under some restrictions on the time step. Furthermore, various of estimates

for the solution of the fully-discrete problem, under the assumptions (A1) and (A2),

is given which will be essential for the fully-discrete error bound analysis. Finally,

by employing the framework in Nochetto [50] we prove an optimal error bound in

time between the continuous solution and the fully-discrete approximation.
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Chapter 6 is devoted to the numerical experiments where we write some programs

and verify some theoretical and physical results. We first present a practical algo-

rithm for computing the system of algebraic equations arising from the fully-discrete

problem at each time step. We then present numerical simulations in one and two

space dimensions.



Chapter 2

Weak solutions

In Section 2.1 we mention the basic notation adopted in the thesis, regarding the

Sobolev spaces, and recall and show some auxiliary results. In Section 2.2 we in-

troduce a regularized version of the continuous problem (P). Then we rewrite the

problem (P) and its regularized version in equivalent forms. The global existence

and uniqueness of the weak solutions are discussed in Section 2.3 where the existence

proof relies on the Faedo-Galerkin method and compactness arguments.

2.1 Notation and auxiliary results

Throughout this study Ω denotes a bounded domain in R
d, d ≤ 3, with a Lipschitz

boundary ∂Ω. We use the usual Sobolev spaces Wm,p(Ω), m ∈ N, p ∈ [1,∞] with

the associated norms and semi-norms, denoted by ‖ · ‖m,p and | · |m,p respectively.

In particular, for p = 2, Wm,2(Ω) will be denoted by Hm(Ω) with norm ‖ · ‖m and

semi-norm | · |m and if m = 0, W 0,2(Ω) = L2(Ω). The L2(Ω) inner product over Ω

with norm ‖ · ‖0 = | · |0 is denoted by (·, ·).

In addition, 〈 ., . 〉 denotes the duality pairing between (H1(Ω))′ and H1(Ω) where

(H1(Ω))′ is the dual space of H1(Ω). A norm on (H1(Ω))′ is given by

‖f‖(H1(Ω))′ := sup
v 6=0

|〈f, v〉|

‖v‖1

≡ sup
‖v‖1=1

|〈f, v〉|. (2.1.1)

10
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We also introduce the function spaces depending on time and space Lp(0, T ;X)

(1 ≤ p ≤ ∞) where X is a Banach space, consisting of all functions u such that for

a.e. t ∈ (0, T ) u ∈ X and the following norm is finite

‖u‖Lp(0,T ;X) :=
(

∫ T

0

‖u(t)‖p
X dt

)
1
p if 1 ≤ p <∞,

‖u‖L∞(0,T ;X) := ess sup
t∈(0,T )

‖u(t)‖X if p = ∞.

We also define L2(ΩT ) := L2(0, T ;L2(Ω)).

We also recall the following well-known Sobolev results

H1(Ω)
c
→֒ L2(Ω) →֒ (H1(Ω))′, (2.1.2)

〈f, η〉 = (f, η) ∀f ∈ L2(Ω) and η ∈ H1(Ω). (2.1.3)

Further, the inclusions1 (2.1.2) are dense.

For later use we recall the Sobolev interpolation result, see e.g. Adams [2]: let

p ∈ [1,∞], m ≥ 1 and v ∈Wm,p(Ω). Then there are constants C and σ = d
m

(1
p
− 1

r
)

such that the inequality

|v|0,r ≤ C|v|1−σ
0,p ‖v‖σ

m,p holds for r ∈



























[p,∞] if m− d
p
> 0,

[p,∞) if m− d
p

= 0,

[p,− d
m−(d/p)

] if m− d
p
< 0.

(2.1.4)

In particular, taking m = 1 and p = 2 in (2.1.4) we have after noting |v|0 ≤ ‖v‖1

that H1(Ω) →֒ Lr(Ω), where r ∈ [2,∞] for d = 1, r ∈ [2,∞) for d = 2, and

r ∈ [2, 6] for d = 3.

It is convenient to introduce “the inverse Laplacian Green’s operator” G : F0 → V0

such that

(∇Gf,∇η) = 〈f, η〉 ∀η ∈ H1(Ω), (2.1.5)

1We use “→֒” to denote continuous injection and “
c
→֒” to denote compact injection.
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where F0 := {f ∈ (H1(Ω))′ : 〈f, 1〉 = 0} and V0 := {η ∈ H1(Ω) : (η, 1) = 0}.

The well posedness of G can be obtained from the Lax-Milgram theorem and the

following Poincaré inequality, see e.g. [43],

|η|0 ≤ Cp(|η|1 + |(η, 1)|) ∀η ∈ H1(Ω). (2.1.6)

The norm defined in (2.1.1) on (H1(Ω))′ is also a norm on F0 and for convenience

one can define an equivalent norm on F0, see the proof in Lemma 2.1.1 below, as

‖f‖−1 := |Gf |1 ≡ 〈f,Gf〉
1
2 ∀f ∈ F0. (2.1.7)

It follows from (2.1.3) and (2.1.6) for any f ∈ L2(Ω) ∩ F0 that

‖f‖2
−1 = 〈f,Gf〉 = (f,Gf) ≤ |f |0|Gf |0 ≤ Cp|f |0|Gf |1 = Cp|f |0‖f‖−1

which implies that

‖f‖−1 ≤ Cp|f |0 ∀ f ∈ L2(Ω) ∩ F0. (2.1.8)

We shall frequently need the following simple version of Young’s inequality

ab ≤ βa2 +
1

4β
b2 ∀ a, b ≥ 0, β > 0 (2.1.9)

from which we obtain after noting (2.1.5) and (2.1.7)

〈f, η〉 = (∇Gf,∇η) ≤ ‖f‖−1|η|1 ≤ β|η|21 +
1

4β
‖f‖2

−1 ∀f ∈ F0, η ∈ H1(Ω).

(2.1.10)

This result with (2.1.3) yields for future reference that

|v|20 ≤ ‖v‖−1|v|1 ≤ β|v|21 +
1

4β
‖v‖2

−1 ∀v ∈ V0. (2.1.11)

We also require a σ-version of Young’s inequality (see e.g. Malek [51], p.26)

ab ≤ σap + C(σ−1)bq, where
1

p
+

1

q
= 1, ∀a, b ≥ 0, σ, p, q > 0. (2.1.12)
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For later purpose we mention the Hölder’s inequality (see e.g. [1], p.23): For

1 ≤ p, q ≤ ∞ such that 1
p

+ 1
q

= 1, if f ∈ Lp(Ω) and g ∈ Lq(Ω), then fg ∈ L1(Ω)

and

|fg|0,1 =

∫

Ω

|fg|dx ≤
(

∫

Ω

|f |pdx
)

1
p

(

∫

Ω

|g|qdx
)

1
q

= |f |0,p |g|0,q. (2.1.13)

One can generalise this inequality by applying it for example twice to yield

|fgh|0,1 ≤ |f |0,p |g|0,q |f |0,r, where
1

p
+

1

q
+

1

r
= 1. (2.1.14)

For later reference we define the mean integral as

∫

− η :=
1

|Ω|
(η, 1) ∀ η ∈ L1(Ω). (2.1.15)

and it is easily seen that

η −

∫

− η ∈ V0 ∀ η ∈ H1(Ω). (2.1.16)

Lemma 2.1.1 The norms (2.1.1) and (2.1.7) are equivalent on F0.

Proof. Let 0 6= f ∈ F0. From (2.1.1) and (2.1.5) we have that

‖f‖(H1(Ω))′ = sup
‖v‖1=1

|〈f, v〉| = sup
‖v‖1=1

|(∇Gf,∇v)| ≤ sup
‖v‖1=1

‖f‖−1 |v|1 ≤ ‖f‖−1.

Now by taking v = Gf
‖Gf‖1

∈ H1(Ω) we deduce using (2.1.7) that

‖f‖(H1(Ω))′ ≥ |〈f, v〉| =
|〈f,Gf〉|

‖Gf‖1

=
‖f‖2

−1

‖Gf‖1

≥ C
‖f‖2

−1

|Gf |1
= C‖f‖−1,

where we have applied (2.1.6) to give ‖Gf‖2
1 = |Gf |20 + |Gf |21 ≤ (C2

p + 1)|Gf |21 and

hence ‖Gf‖1 ≤ C|Gf |1. 2

Throughout the thesis C stands for a generic bounded positive constant, not neces-

sarily the same at different occurrences, which is independent of the regularization

parameter ε , the spatial parameter h and the time step ∆t, and possibly depending

on T,Ω, u0
1, u

0
2 and δ0. Furthermore, the symbol C(β) denotes a constant depending

on the argument β such that C(β) ≤ C if β ≤ C.
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2.2 The regularization and equivalent weak for-

mulations

We adapt a regularization procedure similar to that employed in Elliott and Luck-

haus [49]. This procedure is based on introducing a twice continuously differentiable

function Φε ∈ C2(R) such that ε ∈ (0, 1) and

Φε(r) =











θ
4ε
r2 + θ

2
r ln ε− θε

4
if r ≤ ε,

Φ(r) ≡ θ
2
r ln r if r ≥ ε.

(2.2.1)

We then define ψε ∈ C2(R) to be

ψε(r) = Φε(1 + r) + Φε(1 − r) =



























Φ(1 + r) + Φε(1 − r) if r ≥ 1 − ε,

ψ(r) ≡ Φ(1 + r) + Φ(1 − r) if |r| ≤ 1 − ε,

Φε(1 + r) + Φ(1 − r) if r ≤ −1 + ε.

(2.2.2)

Thus, for i = 1, 2 we regularize the potential Ψi by introducing Ψε,i ∈ C2(R) such

that

Ψε,i(r) = ψε(r) +
θi

2
(1 − r2). (2.2.3)

We also introduce the monotone odd function φε : R → R

φε(r) := ψ′
ε(r) =



























Φ′(1 + r) − Φ′
ε(1 − r) if r ≥ 1 − ε,

ψ′(r) ≡ φ(r) ≡ Φ′(1 + r) − Φ′(1 − r) if |r| ≤ 1 − ε,

Φ′
ε(1 + r) − Φ′(1 − r) if r ≤ −1 + ε.

(2.2.4)

Below we report some properties of the above functions that we need throughout

the thesis:

For all ε ∈ (0, 1)

φε(r) ≤ φ(r) ∀ r ∈ [1−ε, 1) and φ(r) ≤ φε(r) ∀ r ∈ (−1,−1+ε]. (2.2.5)

For i = 1, 2 and for all r, s

Ψ′
ε,i(r)(s− r) = ψ′

ǫ(r)(s− r) − θir(s− r) ≤ ψε(s) − ψε(r) + θir(r − s)

= Ψε,i(s) − Ψε,i(r) +
θi

2
(s− r)2, (2.2.6)
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where we have noted the Taylor expansion, the fact that ψ′′
ε ≡ φ′

ε > 0 and the

identity

2a(a− b) = a2 − b2 + (a− b)2. (2.2.7)

For ε ≤ 1
2

and for all r, s

θ ≤ φ′
ε(r) ≤

θ

ε
, (2.2.8)

θ(s− r)2 ≤ (φε(s) − φε(r))(s− r), (2.2.9)

(φε(s) − φε(r))
2 ≤

θ

ε
(φε(s) − φε(r))(s− r). (2.2.10)

Note that (2.2.10) implies, using the monotonicity of φε, that

|φε(s) − φε(r)| ≤
θ

ε
|s− r|, (2.2.11)

which means that φε is a Lipschitz continuous with Lipschitz constant θ
ε
.

In addition, if r, s > 1 − ε or r, s < −1 + ε, then

θ

2ε
(s− r)2 ≤ (φε(s) − φε(r))(s− r). (2.2.12)

We also have for any r ∈ [a, b] ⊂ [−1 + ε, 1 − ε] that

φ′(r) = φ′
ε(r) ≤ φ′

ε(max{|a|, |b|}) = φ′(max{|a|, |b|}). (2.2.13)

−1.5 −1 −0.5 0 0.5 1 1.5
−4

−3

−2

−1

0

1

2

3

4

Figure 2.1: The monotone functions φ, denoted —, and φε with two values of ε,

denoted - - -.
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For later purpose we mention properties of the monotone functions φ−1
ε : R → R

and φ−1 : R → (−1, 1). It follows from (2.2.5) that

φ−1
ε (r) ≥ φ−1(r) ∀ r ≥ φ(1 − ε) = φε(1 − ε), (2.2.14)

φ−1(r) ≥ φ−1
ε (r) ∀ r ≤ φ(−1 + ε) = φε(−1 + ε), (2.2.15)

and from(2.2.9) we obtain for all s, r

|φ−1
ε (s) − φ−1

ε (r)| ≤ θ−1|s− r|. (2.2.16)

The next lemma shows important results about Ψε,i, φ and φε

Lemma 2.2.1

(i) ∀ ε ≤ ε0 := min{
θ

4θ1
,
θ

4θ2
}, Ψε,i(r) ≥ −

8θ2
i + θ2

16θi
=: −C0 i = 1, 2 and r ∈ R,

(2.2.17)

(ii)|φ−1
ε (r) − φ−1(r)| ≤

2ε

θ

(

[r − φ(1 − ε)]+ + [−r − φ(1 − ε)]+

)

r ∈ R, (2.2.18)

where [·]+ := max{·, 0}.

Proof. To prove (2.2.17) we note from (2.2.3) and (2.2.2) that for r ∈ [0, 1] and

i = 1, 2

Ψε,i(r) ≥ ψε(r) ≥ ψε(0) = 0 ≥ −
8θ2

i + θ2

16θi
.

Again using (2.2.3) and (2.2.2) with the aid of the Young inequality we obtain under

the stated assumption on ε that for r > 1 and i = 1, 2

Ψε,i(r) ≥
θ

4ε
(r − 1)2 −

θε

4
+
θi

2
(1 − r2) = (

θ

4ε
−
θi

2
)(r − 1)2 − θi(r − 1) −

θε

4

≥ (
θ

4ε
− θi)(r − 1)2 −

θi

2
−
θε

4
≥ −

θi

2
−
θε

4
≥ −

8θ2
i + θ2

16θi

.

Utilizing the fact that Ψε,i is even function, the desired result (2.2.17) therefore fol-

lows immediately.

We now turn to proving (2.2.18). Since φ−1
ε (r) = φ−1(r) for |r| ≤ φ(1 − ε), (2.2.18)

holds for |r| ≤ φ(1 − ε). For r > φ(1 − ε) = φε(1 − ε) we have by the monotonicity
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of φ−1
ε and φ−1 that φ−1

ε (r), φ−1(r) > 1 − ε. Hence, using (2.2.14), (2.2.12) with

r = φ−1(r) and s = φ−1
ε (r) we obtain after noting monotonicity of φε that

|φ−1
ε (r) − φ−1(r)| = φ−1

ε (r) − φ−1(r) ≤
2ε

θ
(r − φε(φ

−1(r)))

≤
2ε

θ
(r − φε(1 − ε)) =

2ε

θ
(r − φ(1 − ε)). (2.2.19)

Noting that φ−1
ε and φ−1 are odd functions we deduce from (2.2.19) that for

r < −φ(1 − ε)

|φ−1
ε (r) − φ−1(r)| ≤

2ε

θ
(−r − φ(1 − ε)). (2.2.20)

This result together with (2.2.19) gives the required inequality (2.2.18). 2

Remark. The previous lemma shows that Ψε,i is bounded below for sufficiently

small ε and it also shows that |φ−1
ε (r) − φ−1(r)| → 0 as ε→ 0.

Now we introduce a regularized version (Pε) of (P):

(Pε) Find {uε,1, uε,2, wε,1, wε,2} ∈ [H1(Ω)]4 such that for i = 1, 2 uε,i(0) = u0
i and for

a.e. t ∈ (0, T ) and all η ∈ H1(Ω)

〈∂tuε,i, η〉 + (∇wε,i,∇η) = 0, (2.2.21a)

γ(∇uε,i,∇η) + (Ψ′
ε,i(uε,i), η) + (f

(i)
D (uε,1, uε,2), η) = (wε,i, η). (2.2.21b)

For convenience we shall give an equivalent form to (Pε). Choosing η = 1 in

(2.2.21a) leads to ∂tuε,i ∈ F0 and (uε,i(t), 1) = (u0
i , 1) a.e t ∈ (0, T ), i = 1, 2.

From the definition of G, (2.1.5), and (2.2.21a) we deduce for i = 1, 2 that

(∇(G∂tuε,i + wε,i),∇η) = 0 a.e. t ∈ (0, T ) and ∀ η ∈ H1(Ω).

Hence, by taking η = G∂tuε,i + wε,i we obtain

|G∂tuε,i + wε,i −

∫

− wε,i|1 = |G∂tuε,i + wε,i|1 = 0.

Thus, with the use of the Poincaré inequality and (2.1.16) it follows that

|G∂tuε,i + wε,i −

∫

− wε,i|0 ≤ Cp|G∂tuε,i + wε,i −

∫

− wε,i|1 = 0.
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We therefore have for i = 1, 2 and a.e. t ∈ (0, T )

wε,i = −G∂tuε,i +

∫

− wε,i. (2.2.22)

In addition, from (2.2.21b) we find
∫

− wε,i =

∫

−
(

Ψ′
ε,i(uε,i) + f

(i)
D (uε,1, uε,2)

)

. (2.2.23)

Therefore, (Pε) can be restated equivalently as:

(Pε) Find {uε,1, uε,2} ∈ [H1(Ω)]2 such that uε,i(0) = u0
i , i = 1, 2, and for a.e. t ∈ (0, T )

(uε,i(t), 1) = (u0
i , 1) and

γ(∇uε,i,∇η) + (Ψ′
ε,i(uε,i), η −

∫

− η) + (f
(i)
D (uε,1, uε,2), η −

∫

− η) + (G∂tuε,i, η) = 0

(2.2.24)

for all η ∈ H1(Ω).

Similarly, one can rewrite (P) equivalently as:

(P) Find {u1, u2} ∈ [H1(Ω)]2 such that ui(0) = u0
i , i = 1, 2, and for a.e. t ∈ (0, T )

(ui(t), 1) = (u0
i , 1) and

γ(∇ui,∇η) + (Ψ′
i(ui), η −

∫

− η) + (f
(i)
D (u1, u2), η −

∫

− η) + (G∂tui, η) = 0 (2.2.25)

for all η ∈ H1(Ω).

2.3 Existence and uniqueness

In this section we prove existence and uniqueness of a solution to the continuous

problem (P) under the following assumptions on u0
1 and u0

2:

(A1) Let {u0
1, u

0
2} ∈ H1(Ω) × H1(Ω) such that max {|u0

1|0,∞, |u
0
2|0,∞} ≤ 1 and for

some given δ0 ∈ (0, 1), max {|m1| := |
∫

− u0
1|, |m2| := |

∫

− u0
2|} ≤ 1 − δ0.

We will prove the existence relying on the classical Faedo-Galerkin method of Lions

[24]. Let {zj}
∞
j=1 be an orthogonal basis for H1(Ω) and orthonormal basis for L2(Ω),

consisting of the eigenfunctions of the elliptic eigenvalue problem

−∆zj + zj = µjzj in Ω,
∂zj

∂ν
= 0 on ∂Ω. (2.3.1)
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It is well-known that (e.g. [10], [34]) z1 is constant and the sequence {µj}
∞
j=1 is

nondecreasing where µ1 = 1. We observe that the weak form of (2.3.1), using

(zi, zj) = δij , implies

(∇zi,∇zj) = (µi − 1)δij.

For k ≥ 1 we consider V k to be the finite dimensional subspace spanned by {zj}
k
j=1.

Let P kv be the projection of v ∈ L2(Ω) onto V k such that

P kv :=

k
∑

j=1

(v, zj)zj . (2.3.2)

Obviously this definition still makes sense for any v ∈ H1(Ω) ⊂ L2(Ω). From (2.3.2)

one can easily deduce the following properties of the projection P k

(P kv, χk) = (v, χk) ∀χk ∈ V k, v ∈ L2(Ω), (2.3.3a)

(∇P kv,∇χk) = (∇v,∇χk) ∀χk ∈ V k, v ∈ H1(Ω) (2.3.3b)

and it is easily seen from (2.3.3a) and (2.3.3b) that

|P kv|m ≤ |v|m, (2.3.4a)

|P kv − v|m ≤ |χk − v|m ∀χk ∈ V k, (2.3.4b)

where m = 0 if v ∈ L2(Ω) and m = 0, 1 if v ∈ H1(Ω).

Using the result (2.3.4b) together with the fact that {V k : k ≥ 1} is dense in

L2(Ω) and H1(Ω) we have that

P kv → v in L2(Ω) and H1(Ω), (2.3.5)

where “→” represents the strong convergence.

We require the following lemma to facilitate dealing with the nonlinearityD-coupling

term.
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Lemma 2.3.1 Let v ∈ V0. Then there are constants σ = d(1
2
− 1

r
) and C such that

for all β > 0

|v|20,r ≤ C‖v‖1−σ
−1 |v|1+σ

1 ≤ β|v|21 + C(β−1)‖v‖2
−1 holds for r ∈



























[2,∞] if d = 1,

[2,∞) if d = 2,

[2, 6) if d = 3.

(2.3.6)

Proof. Using Poincaré’s inequality gives ‖v‖1 ≤ C|v|1. Thus by (2.1.4) and the

first inequality in (2.1.11) we obtain

|v|20,r ≤ C
(

|v|20
)1−σ

‖v‖2σ
1 ≤ C‖v‖1−σ

−1 |v|1−σ
1 |v|2σ

1 = C‖v‖1−σ
−1 |v|1+σ

1 . (2.3.7)

Finally, the second inequality follows as a consequence of applying the Young in-

equality with p = 2
1−σ

and q = 2
1+σ

. 2

Theorem 2.3.2 Let the assumptions (A1) hold. Then for all ε ≤ ε0, (Pε) possesses

a unique solution {uε,1, uε,2, wε,1, wε,2} such that for i = 1, 2 the following estimates

hold independently of ε

‖uε,i‖L∞(0,T ;H1(Ω)) + ‖uε,i‖H1(0,T ;(H1(Ω))′) ≤ C, (2.3.8a)

‖wε,i‖L2(0,T ;H1(Ω)) ≤ C, (2.3.8b)

‖φε(uε,i)‖L2(ΩT ) ≤ C, (2.3.8c)

‖f
(i)
D (uε,1, uε,2)‖L∞(0.T ;L2(Ω)) ≤ C. (2.3.8d)

Further, the unique solution satisfies for i = 1, 2

θ−1ε‖∇φε(uε,i)‖
2
L2(ΩT ) ≤

∫ T

0

(∇uε,i,∇φε(uε,i)) dt ≤ C. (2.3.9)

Proof. For k ≥ 1 we seek the Galerkin approximations {uk
ε,1, u

k
ε,2, w

k
ε,1, w

k
ε,2} ∈

(

V k
)4

solving for i = 1, 2, t ∈ [0, T ] and for all χk ∈ V k

(∂tu
k
ε,i, χ

k) + (∇wk
ε,i,∇χ

k) = 0, (2.3.10a)

γ(∇uk
ε,i,∇χ

k) + (Ψ′
ε,i(u

k
ε,i), χ

k) + (f
(i)
D (uk

ε,1, u
k
ε,2), χ

k) = (wk
ε,i, χ

k), (2.3.10b)

uk
ε,i(0) = P ku0

i . (2.3.10c)
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The Galerkin approximations can be represented as

uk
ε,i(x, t) =

k
∑

n=1

ak
in(t)zn(x), wk

ε,i(x, t) =
k

∑

n=1

bkin(t)zn(x) i = 1, 2. (2.3.11)

We first establish the local existence of the Galerkin approximations. To this aim,

we insert (2.3.11) into (2.3.10a-b) and take χk = zj to yield a system of 2k ODEs

in ak
1j and ak

2j for j = 1, 2, . . . , k as follows

dak
1j(t)

dt
= (1 − µj)b

k
1j(t),

dak
2j(t)

dt
= (1 − µj)b

k
2j(t),

bk1j =γ(µj − 1)ak
1j(t) + (H(ak

1))j + (G1(a
k
1, a

k
2))j,

bk2j =γ(µj − 1)ak
2j(t) + (H(ak

2))j + (G2(a
k
1, a

k
2))j,

with initial conditions

ak
1j(0) = (P ku0

1, zj) = (u0
1, zj),

ak
2j(0) = (P ku0

2, zj) = (u0
2, zj),

where

ak
i =(ak

i1, a
k
i2, . . . , a

k
ik)

T , bki = (bki1, b
k
i2, . . . , b

k
ik)

T i = 1, 2,

(H(ak
i ))j =(Ψ′

ε,i(u
k
ε,i), zj), (Gi(a

k
1, a

k
2))j = (f

(i)
D (uk

ε,1, u
k
ε,2), zj) i = 1, 2.

Letting â = (ak
1, a

k
2)

T , the above system can be written as dâ
dt

= F̂ (â) where

â(0) = (ak
1(0), ak

2(0))T and F̂ is locally Lipschitz as Ψ′
ε,i and f

(i)
D are locally Lip-

schitz. Thus from standard existence theory for a system of ODEs, one concludes

that the system has a unique solution on some finite time interval (0, tk), tk > 0.

Now, we prove the global existence of the Galerkin approximations by deriving

a priori estimates bounding {uk
ε,i, w

k
ε,i}i=1,2 independently of k in various Banach

spaces.
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Testing (2.3.10a) with χk = 1 ∈ V k gives for i = 1, 2 and for all t ∈ (0, T ) that
∂uk

ε,i

∂t
∈ V0 and

(uk
ε,i(t), 1) = (uk

ε,i(0), 1) = (P ku0
i , 1) = (u0

i , 1) = mi|Ω|, (2.3.12)

where we have also noted the P k projection property (2.3.3a).

For i = 1, 2 we take χk = P k(G∂tu
k
ε,i) ∈ V k in (2.3.10a) and we use (2.3.3a-b),

the ‖ · ‖−1 definition, (2.1.7), and the G definition, (2.1.5), to result in

0 = (∂tu
k
ε,i,G∂tu

k
ε,i) + (∇wk

ε,i,∇G∂tu
k
ε,i) = ‖∂tu

k
ε,i‖

2
−1 + (wk

ε,i, ∂tu
k
ε,i). (2.3.13)

Choosing χk = ∂tu
k
ε,i in (2.3.10b) and combining the resulting equation with (2.3.13)

yields after summing over i = 1, 2 that

γ

2

d

dt

[

|uk
ε,1|

2
1 + |uk

ε,2|
2
1

]

+
[

(Ψ′
ε,1(u

k
ε,1), ∂tu

k
ε,1) + (Ψ′

ε,2(u
k
ε,2), ∂tu

k
ε,2)

]

+
[

(f
(1)
D (uk

ε,1, u
k
ε,2), ∂tu

k
ε,1) + (f

(2)
D (uk

ε,1, u
k
ε,2), ∂tu

k
ε,2)

]

+
[

‖∂tu
k
ε,1‖

2
−1 + ‖∂tu

k
ε,2‖

2
−1

]

= 0, (2.3.14)

where we have also noted (∇uk
ε,i,∇∂tu

k
ε,i) = 1

2
d
dt
|uk

ε,i|
2
1.

By noting first that for t ∈ (0, T ), f
(i)
D (uk

ε,1, u
k
ε,2) := ∂uk

ε,i
fD(uk

ε,1, u
k
ε,2),

∫ t

0

[

(f
(1)
D (uk

ε,1, u
k
ε,2), ∂su

k
ε,1) + (f

(2)
D (uk

ε,1, u
k
ε,2), ∂su

k
ε,2)

]

ds

=

∫

Ω

∫ t

0

d

ds
(fD(uk

ε,1(s), u
k
ε,2(s)))ds

= (fD(uk
ε,1(t), u

k
ε,2(t)), 1) − (fD(uk

ε,1(0), uk
ε,2(0)), 1)

and then integrating (2.3.14) over t ∈ (0, T ] we obtain

Λε(u
k
ε,1(t), u

k
ε,2(t)) +

∫ t

0

[

‖∂su
k
ε,1‖

2
−1 + ‖∂su

k
ε,2‖

2
−1

]

ds

= Λε(u
k
ε,1(0), uk

ε,2(0)) = Λε(P
ku0

1, P
ku0

2), (2.3.15)

where

Λε(u
k
ε,1, u

k
ε,2) :=

γ

2
[|uk

ε,1|
2
1 + |uk

ε,2|
2
1] + (Ψε,1(u

k
ε,1) + Ψε,2(u

k
ε,2), 1) + (fD(uk

ε,1, u
k
ε,2), 1).

(2.3.16)

Our goal now is to prove that Λε(P
ku0

1, P
ku0

2) is bounded for sufficiently large k.
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Recalling (2.3.4a), a generalised Hölder’s inequality and, by (2.1.4), H1(Ω) →֒ L4(Ω)

yields after noting the assumptions (A1)

γ

2
[|P ku0

1|
2
1 + |P ku0

2|
2
1] + (fD(P ku0

1, P
ku0

1), 1)

≤
γ

2

[

|u0
1|

2
1 + |u0

2|
2
1

]

+ 2D
∣

∣(P ku0
1 + α1)

2(P ku0
2 + α2)

2
∣

∣

0,1

=
γ

2

[

|u0
1|

2
1 + |u0

2|
2
1

]

+ 2D|P ku0
1 + α1|

2
0,4|P

ku0
2 + α2|

2
0,4

≤
γ

2

[

|u0
1|

2
1 + |u0

2|
2
1

]

+ C‖P ku0
1 + α1‖

2
1‖P

ku0
2 + α2‖

2
1

≤
γ

2

[

|u0
1|

2
1 + |u0

2|
2
1

]

+ C
(

‖u0
1‖

2
1 + 1

)(

‖u0
2‖

2
1 + 1

)

≤ C. (2.3.17)

On setting s = u0
i , r = P ku0

i , i = 1, 2, in (2.2.6) and on noting Ψ′
ε,i(r) = φε(r)−θir,

the Lipschitz continuity of φε, (2.2.11), and (2.3.4a) we have

(Ψε,i(P
ku0

i ), 1) = (Ψε,i(P
ku0

i ) − Ψε,i(u
0
i ), 1) + (Ψε,i(u

0
i ), 1)

≤ (Ψ′
ε,i(P

ku0
i ), P

ku0
i − u0

i ) +
θi

2
((P ku0

i − u0
i )

2, 1) + (Ψε,i(u
0
i ), 1)

≤
[

|φε(P
ku0

i )|0 + θi|P
ku0

i |0
]

|P ku0
i − u0

i |0 +
θi

2
|P ku0

i − u0
i |

2
0 + (Ψε,i(u

0
i ), 1)

≤
[θ

ε
+ θi

]

|u0
i |0|P

ku0
i − u0

i |0 +
θi

2
|P ku0

i − u0
i |

2
0 + (Ψε,i(u

0
i ), 1).

(2.3.18)

Thus, by the strong convergence of P ku0
i → u0

i in L2(Ω), the assumptions (A1),

(2.2.3) and the fact that ψε(r) ≤ ψε(1) ∀ r ∈ [−1, 1] it follows that

lim sup
k→∞

(Ψε,i(P
ku0

i ), 1) ≤ (Ψε,i(u
0
i ), 1) ≤ (ψε(1) +

θi

2
, 1) ≤ (θ ln 2 +

θi

2
)|Ω|. (2.3.19)

Combining (2.3.17), (2.3.19) and (2.3.15) gives thus for k sufficiently large

Λε(u
k
ε,1(t), u

k
ε,2(t))+

∫ t

0

[

‖∂su
k
ε,1‖

2
−1+‖∂su

k
ε,2‖

2
−1

]

ds = Λε(P
ku0

1, P
ku0

2) ≤ C. (2.3.20)

Recalling, by Lemma 2.2.1, that for ε ≤ ε0 Ψε,i(·), i = 1, 2, is bounded below and

that fD(r, s) ≥ 0 we obtain from (2.3.20) and (2.3.16) that for all t ∈ (0, T ]

γ

2

[

|uk
ε,1(t)|

2
1 + |uk

ε,2(t)|
2
1

]

+

∫ t

0

[

‖∂su
k
ε,1‖

2
−1 + ‖∂su

k
ε,2‖

2
−1

]

ds ≤ C. (2.3.21)

With the aid of the Poincaré inequality and (2.3.12) we find after ignoring the non-

negative integral of (2.3.21)

‖uk
ε,1(t)‖1 + ‖uk

ε,2(t)‖1 ≤ C, (2.3.22)
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which implies

‖uk
ε,1‖L∞(0,T ;H1(Ω)) + ‖uk

ε,2‖L∞(0,T ;H1(Ω)) ≤ C. (2.3.23)

This time we ignore the H1-semi norms from (2.3.21) to yield

∫ T

0

[

‖∂tu
k
ε,1‖

2
−1 + ‖∂tu

k
ε,2‖

2
−1

]

dt ≤ C. (2.3.24)

Thus we have, noting Lemma 2.1.1,

‖∂tu
k
ε,1‖L2(0,T ;(H1(Ω))′) + ‖∂tu

k
ε,2‖L2(0,T ;(H1(Ω))′) ≤ C. (2.3.25)

Since H1(Ω) →֒ (H1(Ω))′, (2.3.22) gives ‖uk
ε,i‖L∞(0,T ;(H1(Ω))′) ≤ C, i = 1, 2. We then

use this result with the fact that L∞(0, T ; (H1(Ω))′) →֒ L2(0, T ; (H1(Ω))′) to obtain

‖uk
ε,i‖L2(0,T ;(H1(Ω))′) ≤ C. (2.3.26)

Therefore, (2.3.25) and (2.3.26) imply for i = 1, 2 that

‖uk
ε,i‖H1(0,T ;(H1(Ω))′) ≤ C. (2.3.27)

From (2.3.10a), (2.1.5), (2.3.3a-b) and (2.1.7) it follows for i = 1, 2 that

|wk
ε,i|

2
1 = −(∂tu

k
ε,i, w

k
ε,i) = −(∇G∂tu

k
ε,i,∇w

k
ε,i) = −(∇P kG∂tu

k
ε,i,∇w

k
ε,i)

= (P kG∂tu
k
ε,i, ∂tu

k
ε,i) = (G∂tu

k
ε,i, ∂tu

k
ε,i) = ‖∂tu

k
ε,i‖

2
−1, (2.3.28)

and hence, owing to (2.3.24), we have

∫ T

0

|wk
ε,i −

∫

− wk
ε,i|

2
1dt =

∫ T

0

|wk
ε,i|

2
1dt =

∫ T

0

‖∂tu
k
ε,i‖

2
−1dt ≤ C. (2.3.29)

We apply the Poincaré inequality with η = wk
ε,i −

∫

− wk
ε,i ∈ V0 and use (2.3.29) to

give for i = 1, 2
∥

∥

∥
wk

ε,i −

∫

− wk
ε,i

∥

∥

∥

L2(0,T ;H1(Ω))
≤ C. (2.3.30)

To show wk
ε,i is bounded in L2(0, T ;H1(Ω)), it suffices to show that

∫

− wk
ε,i is bounded

in L2(0, T ;H1(Ω)).

By (2.3.10b) we first remark for i = 1, 2 that

∫

− wk
ε,i =

∫

−
[

Ψ′
ε,i(u

k
ε,i) + f

(i)
D (uk

ε,1, u
k
ε,2)

]

. (2.3.31)
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On setting χk = uk
ε,i −

∫

− uk
ε,i = uk

ε,i − mi, i = 1, 2, in (2.3.10b) and adding for

any β ∈ R, (Ψ′
ε,i(u

k
ε,i) + f

(i)
D (uk

ε,1, u
k
ε,2), β) to the both sides yields after rearranging

that

(Ψ′
ε,i(u

k
ε,i) + f

(i)
D (uk

ε,1, u
k
ε,2), β −mi) =

= −γ|uk
ε,i|

2
1 + (wk

ε,i, u
k
ε,i −mi) + (Ψ′

ε,i(u
k
ε,i), β − uk

ε,i) + (f
(i)
D (uk

ε,1, u
k
ε,2), β − uk

ε,i)

≤ (∇wk
ε,i,∇G(uk

ε,i −mi)) + (Ψε,i(β) − Ψε,i(u
k
ε,i), 1) +

θi

2
|β − uk

ε,i|
2
0

+ |f
(i)
D (uk

ε,1, u
k
ε,2)|0|β − uk

ε,i|0

≤ |wk
ε,i|1‖u

k
ε,i −mi‖−1 + (Ψε,i(β) − Ψε,i(u

k
ε,i), 1) +

θi + 1

2
|β − uk

ε,i|
2
0 +

1

2
|f

(i)
D (uk

ε,1, u
k
ε,2)|

2
0

≤ C|wk
ε,i|1|u

k
ε,i −mi|0 + C

[

1 + (Ψε,i(β), 1) + |β − uk
ε,i|

2
0 + |f

(i)
D (uk

ε,1, u
k
ε,2)|

2
0

]

≤ C
[

1 + |wk
ε,i|1 + (Ψε,i(β), 1) + |β − uk

ε,i|
2
0 + |f

(i)
D (uk

ε,1, u
k
ε,2)|

2
0

]

, (2.3.32)

where we have used in turn: (2.1.5) and (2.2.6) with r = uk
ε,i and s = β, followed by

(2.1.7), Young’s inequality, (2.1.8), Lemma 2.2.1(i) and the bound (2.3.22).

Using a generalised Hölder’s inequality and, by (2.1.4), H1(Ω) →֒ L6(Ω) we have for

i, j = 1, 2 with i 6= j

∣

∣f
(i)
D (r1, r2)

∣

∣

2

0
=

∣

∣2D(ri + αi)(rj + αj)
2
∣

∣

2

0
= 4D2

∣

∣(ri + αi)
2(rj + αj)

4
∣

∣

0,1

≤ 4D2|ri + αi|
2
0,6|rj + αj|

4
0,6 ≤ C‖ri + αi‖

2
1‖rj + αj‖

4
1. (2.3.33)

This result with the aid of the bound (2.3.22) we obtain for i, j = 1, 2 with i 6= j

|f
(i)
D (uk

ε,1, u
k
ε,2)|

2
0 ≤ C‖uk

ε,i + αi‖
2
1‖u

k
ε,j + αj‖

4
1 ≤ C. (2.3.34)

Choosing β = ±1 ∓ δ0
2

in (2.3.32) and noting Ψε,i(r) ≤ θ ln 2 + θi

2
∀ r ∈ [−1, 1] and

the bounds (2.3.22) and (2.3.34) leads to for i = 1, 2

(Ψ′
ε,i(u

k
ε,i) + f

(i)
D (uk

ε,1, u
k
ε,2), 1 −

δ0
2
−mi) ≤ C

[

1 + |wε,i|1
]

and

(Ψ′
ε,i(u

k
ε,i) + f

(i)
D (uk

ε,1, u
k
ε,2), 1 −

δ0
2

+mi) ≥ −C
[

1 + |wε,i|1
]

.

Dividing the above inequalities by |Ω|(1− δ0
2
−mi) and |Ω|(1− δ0

2
+mi) respectively

we obtain after recalling the assumptions (A1), particularly |mi| ≤ 1 − δ0,
∣

∣

∣

∫

−
[

Ψ′
ε,i(u

k
ε,i) + f

(i)
D (uk

ε,1, u
k
ε,2)

]

∣

∣

∣
≤ C

[

1 + |wk
ε,i|1

]

. (2.3.35)
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We square (2.3.35) and then integrate over (0, T ) and note (2.3.29) to obtain for

i = 1, 2 that

∣

∣

∣

∫

−
[

Ψ′
ε,i(u

k
ε,i) + f

(i)
D (uk

ε,1, u
k
ε,2)

]

∣

∣

∣

2

L2(0,T )
≤ C

(

T +

∫ T

0

|wε,i|
2
1dt

)

≤ C, (2.3.36)

which implies by (2.3.31) that

∥

∥

∥

∫

− wk
ε,i

∥

∥

∥

2

L2(0,T ;H1(Ω))
=

∥

∥

∥

∫

−
[

Ψ′
ε,i(u

k
ε,i) + f

(i)
D (uk

ε,1, u
k
ε,2)

]

∥

∥

∥

2

L2(0,T ;H1(Ω))

= |Ω|
∥

∥

∥

∫

−
[

Ψ′
ε,i(u

k
ε,i) + f

(i)
D (uk

ε,1, u
k
ε,2)

]

∥

∥

∥

2

L2(0,T )

≤ C. (2.3.37)

Therefore, we conclude from (2.3.30) and (2.3.37) that for i = 1, 2

‖wk
ε,i‖L2(0,T ;H1(Ω)) ≤ C. (2.3.38)

Before moving onto the passage to the limit step of the proof we recall that

L∞(0, T ;H1(Ω)) is the dual space of L1(0, T ; (H1(Ω))′), which is a separable Banach

space but not reflexive, while the Banach spaces L2(0, T ;H1(Ω)), L2(0, T ; (H1(Ω))′)

and L2(ΩT ) are reflexive. Thus, by compactness arguments (see Appendix A, Theo-

rem A.0.15 and Theorem A.0.16) and the bounds (2.3.23), (2.3.27) and (2.3.38) we

can extract subsequences, still denoted {uk
ε,i}, {w

k
ε,i}, such that for i = 1, 2 and as

k → ∞

uk
ε,i ⇀ uε,i in L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′), (2.3.39a)

uk
ε,i

∗
⇀ uε,i in L∞(0, T ;H1(Ω)), (2.3.39b)

wk
ε,i ⇀ wε,i in L2(0, T ;H1(Ω)), (2.3.39c)

where “⇀” and “
∗
⇀” denotes weak and weak-star convergence respectively.

From an application of the Lions-Aubin theorem (see appendix A, Theorem A.0.18)

with X0 = H1(Ω), X = L2(Ω), X1 = (H1(Ω))′ and p0 = p1 = 2 we can extract

subsequences, still denoted {uk
ε,i}, such that for i = 1, 2

uk
ε,i → uε,i in L2(ΩT ), (2.3.40)

where “→” denotes strong convergence.
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We now pass to the limit in the finite weak form (2.3.10a-b). For this purpose we

consider an arbitrary function ξ ∈ L2(0, T ;H1(Ω)) and set χk = P kξ in (2.3.10a-b)

to obtain after integration over (0, T )
∫ T

0

(∂tu
k
ε,i, P

kξ) + (∇wk
ε,i,∇P

kξ) dt = 0, (2.3.41a)

∫ T

0

γ(∇uk
ε,i,∇P

kξ) + (Ψ′
ε,i(u

k
ε,i), P

kξ) + (f
(i)
D (uk

ε,1, u
k
ε,2), P

kξ) dt =

∫ T

0

(wk
ε,i, P

kξ) dt.

(2.3.41b)

Since the passage to the limit for linear terms is easily shown using the convergence

properties of uk
ε,i, w

k
ε,i, i = 1, 2, and P k properties, we only show convergence of the

nonlinear terms.

Using (2.2.11) and the strong convergences (2.3.5) and (2.3.40) yields for i = 1, 2
∣

∣

∣

∫ T

0

(φε(u
k
ε,i), P

kξ) − (φε(uε,i), ξ)dt
∣

∣

∣

≤ ‖φε(u
k
ε,i)‖L2(ΩT )‖P

kξ − ξ‖L2(ΩT ) + ‖φε(u
k
ε,i) − φε(uε,i)‖L2(ΩT )‖ξ‖L2(ΩT )

≤
θ

ε
‖uk

ε,i‖L2(ΩT )‖P
kξ − ξ‖L2(ΩT ) +

θ

ε
‖uk

ε,i − uε,i‖L2(ΩT )‖ξ‖L2(ΩT ) → 0 (2.3.42)

from which we obtain, on noting that Ψ′
ε,i(r) = φε(r) − θir, for i = 1, 2

∫ T

0

(Ψ′
ε,i(u

k
ε,i), P

kξ)dt→

∫ T

0

(Ψ′
ε,i(uε,i), ξ)dt. (2.3.43)

To deal with the D-coupling term we split for i = 1, 2 as
∣

∣

∣

∫ T

0

(f
(i)
D (uk

ε,1, u
k
ε,2), P

kξ) − (f
(i)
D (uε,1, uε,2), ξ)dt

∣

∣

∣

≤

∫ T

0

∣

∣(f
(i)
D (uk

ε,1, u
k
ε,2), P

kξ − ξ)
∣

∣dt+

∫ T

0

∣

∣(f
(i)
D (uk

ε,1, u
k
ε,2) − f

(i)
D (uε,1, uε,2), ξ)

∣

∣dt

≡ T k
1 + T k

2 . (2.3.44)

From the bound (2.3.34), the strong convergence of P kξ to ξ in L2(Ω) and the

Dominated Convergence Theorem (e.g. [14], p.22) it follows that

T k
1 ≤

∫ T

0

|f
(i)
D (uk

ε,1, u
k
ε,2)|0|P

kξ−ξ|0dt ≤ C

∫ T

0

|P kξ−ξ|0dt→ 0 as k → ∞. (2.3.45)

We note that for any r1, r2, s1, s2 ∈ R and for i, j = 1, 2 with i 6= j

f
(i)
D (r1, r2) − f

(i)
D (s1, s2) = 2D

[

(ri + αi)(rj + αj)
2 − (si + αi)(sj + αj)

2
]

= 2D(rj + αj)
2(ri − si) + 2D(si + αi)(rj + sj + 2αj)(rj − sj). (2.3.46)
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Using this with ri = uk
ε,i and si = uε,i, i = 1, 2, the generalised Hölder inequality,

the continuous embedding H1(Ω) →֒ L6(Ω), the bounds (2.3.22) and (2.3.8a) and

the strong convergence (2.3.40) we obtain for i, j = 1, 2 with i 6= j that

T k
2 = 2D

∫ T

0

∣

∣

(

(uk
ε,j + αj)

2ξ, uk
ε,i − uε,i

)

+
(

(uε,i + αi)(u
k
ε,j + uε,j + 2αj)ξ, u

k
ε,j − uε,j

)
∣

∣dt

≤ 2D

∫ T

0

∣

∣(uk
ε,j + αj)

2ξ(uk
ε,i − uε,i)

∣

∣

0,1
+

∣

∣(uε,i + αi)(u
k
ε,j + uε,j + 2αj)ξ(u

k
ε,j − uε,j)

∣

∣

0,1
dt

≤ 2D

∫ T

0

|uk
ε,j + αj|

2
0,6 |ξ|0,6 |u

k
ε,i − uε,i|0 dt

+ 2D

∫ T

0

|uk
ε,i + αi|0,6 |u

k
ε,j + uε,j + 2αj |0,6 |ξ|0,6 |u

k
ε,j − uε,j|0 dt

≤ C

∫ T

0

‖uk
ε,j + αj‖

2
1 ‖ξ‖1 |u

k
ε,i − uε,i|0 dt

+ C

∫ T

0

‖uk
ε,i + αi‖1 ‖u

k
ε,j + uε,j + 2αj‖1 ‖ξ‖1 |u

k
ε,j − uε,j|0 dt

≤ C‖uk
ε,i − uε,i‖L2(ΩT )‖ξ‖L2(0,T,H1(Ω)) + C‖uk

ε,j − uε,j‖L2(ΩT )‖ξ‖L2(0,T,H1(Ω)) → 0

as k → ∞. (2.3.47)

Thus, from (2.3.44), (2.3.45) and (2.3.47) it follows that as k → ∞
∫ T

0

(f
(i)
D (uk

ε,1, u
k
ε,2), P

kξ)dt→

∫ T

0

(f
(i)
D (uε,1, uε,2), ξ)dt. (2.3.48)

We now can pass to the limit as k → ∞ in the finite weak form (2.3.41a-b) to

obtain
∫ T

0

〈∂tuε,i, ξ〉 + (∇wε,i,∇ξ) dt = 0, (2.3.49a)

∫ T

0

γ(∇uε,i,∇ξ) + (Ψ′
ε,i(uε,i), ξ) + (f

(i)
D (uε,1, uε,2), ξ) dt =

∫ T

0

(wε,i, ξ) dt. (2.3.49b)

To conclude with the required variational equations (2.2.21a-b) of (Pε) we argue

as [43] (Theorem 43.3, p. 308). Let g be the characteristic function on the arbitrary

time interval (0, t), t ≤ T and set ξ = ηg in (2.3.49a-b) where η ∈ H1(Ω) to yield
∫ t

0

[

〈∂suε,i, η〉 + (∇wε,i,∇η)
]

ds = 0, (2.3.50a)

∫ t

0

[

γ(∇uε,i,∇η) + (Ψ′
ε,i(uε,i), η) + (f

(i)
D (uε,1, uε,2), η)

]

ds =

∫ t

0

(wε,i, η)ds,

(2.3.50b)

and hence the variational equations (2.2.21a-b) of (Pε) is now a consequence of

Theorem A.0.12 (see appendix A).
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Applying Theorem A.0.19 (see appendix A) we obtain, after noting uε,i, u
k
ε,i ∈

L2(0, T ;H1(Ω)) ∩ H1(0, T ; (H1(Ω))′), that uε,i, u
k
ε,i ∈ C([0, T ];L2(Ω)). This result

together with the strong convergence of P ku0
i to u0

i in L2(Ω) and the strong conver-

gence (2.3.40) one may conclude that uε,i(0) = u0
i , i = 1, 2.

Before showing the uniqueness, we prove the remaining stability estimates. Since

uε,i ∈ L2(0, T ;H1(Ω)) and φε is Lipschitz continuous and its first derivative is

bounded, see (2.2.8), we are allowed to test (2.2.21b) with η = φε(uε,i) ∈ H1(Ω)

to yield for i = 1, 2 and a.e. t ∈ (0, T )

γ(∇uε,i,∇φε(uε,i)) + |φε(uε,i)|
2
0

= (wε,i, φε(uε,i)) + θi(uε,i, φε(uε,i)) − (f
(i)
D (uε,1, uε,2), φε(uε,i))

≤
1

2
|φε(uε,i)|

2
0 + C

[

|wε,i|
2
0 + |uε,i|

2
0 + |f

(i)
D (uε,1, uε,2)|

2
0

]

, (2.3.51)

where we have also used Young’s inequality. Note that as φ′
ε > 0, the first term of

(2.3.51) is positive.

From (2.3.33) and the bound (2.3.8a) we easily deduce for i = 1, 2 that

‖f
(i)
D (uε,1, uε,2)‖L∞(0,T,L2(Ω)) ≤ C. (2.3.52)

Thus, integrating (2.3.51) over (0, T ) and using the estimates (2.3.8a), (2.3.8b) and

(2.3.52) leads to the estimate (2.3.8c) and the second inequality in (2.3.9) while the

first one follows from the property (2.2.8) of φε.

Finally, it remains to prove the uniqueness. To this aim, assume that S = {uε,i, wε,i}i=1,2

and S∗ = {u∗ε,iw
∗
ε,i}i=1,2 are two solutions of (Pε). For i = 1, 2 define ūε,i :=

uε,i − u∗ε,i ∈ V0. Subtract (2.2.24) when S is the solution from (2.2.24) when S∗

is the solution and test the resulting variational equation with η = ūε,i to yield for

a.e t ∈ (0, T )

γ|ūε,i|
2
1 + (φε(uε,i) − φε(u

∗
ε,i), ūε,i) + (G∂tūε,i, ūε,i)

= θi|ūε,i|
2
0 − (f

(i)
D (uε,1, uε,2) − f

(i)
D (u∗ε,1, u

∗
ε,2), ūε,i). (2.3.53)

From the definition of G given by (2.1.5) we note that

d

dt
‖ūε,i‖

2
−1 =

d

dt
(∇Gūε,i,∇Gūε,i) = 2(∇G∂tūε,i,∇Gūε,i) = 2(G∂tūε,i, ūε,i), (2.3.54)



2.3. Existence and uniqueness 30

and hence, by the monotonicity of φε and (2.1.11),

γ|ūε,i|
2
1 +

1

2

d

dt
‖ūε,i‖

2
−1 ≤ θi|ūε,i|

2
0 − (f

(i)
D (uε,1, uε,2) − f

(i)
D (u∗ε,1, u

∗
ε,2), ūε,i)

≤
γ

4
|ūε,i|

2
1 + C‖ūε,i‖

2
−1 +

∣

∣

∣

(

f
(i)
D (uε,1, uε,2) − f

(i)
D (u∗ε,1, u

∗
ε,2), ūε,i

)

∣

∣

∣
.

(2.3.55)

Using (2.3.46) with ri = uε,i, si = u∗ε,i, i = 1, 2, the Young inequality and a gener-

alised Hölder’s inequality and noting, by (2.1.4), H1(Ω) →֒ L4(Ω) and the estimate

(2.3.8a) yields for i, j = 1, 2 with j 6= i and a.e. t ∈ (0, T )
∣

∣

∣

(

f
(i)
D (uε,1, uε,2) − f

(i)
D (u∗ε,1, u

∗
ε,2), ūε,i

)

∣

∣

∣

≤ 2D
∣

∣

∣

(

(uε,j + αj)
2, ū2

ε,i

)

+ 2D
(

(u∗ε,i + αi)(uε,j + u∗ε,j + 2αj), ūε,i ūε,j

)

∣

∣

∣

≤ 2D
(

(uε,j + αj)
2, ū2

ε,i

)

+ 2D
(

|u∗ε,i + αi||uε,j + u∗ε,j + 2αj|, |ūε,i||ūε,j|
)

≤ 2D
(

(uε,j + αj)
2, ū2

ε,i

)

+D
(

|u∗ε,i + αi||uε,j + u∗ε,j + 2αj|, ū
2
ε,i + ū2

ε,j

)

= 2D|(uε,j + αj)
2ū2

ε,i

∣

∣

0,1
+D

∣

∣(u∗ε,i + αi)(uε,j + u∗ε,j + 2αj)(ū
2
ε,i + ū2

ε,j)
∣

∣

0,1

≤ 2D|uε,j + αj |
2
0,4|ūε,i|

2
0,4 +D|u∗ε,i + αi|0,4|uε,j + u∗ε,j + 2αj|0,4

[

|ūε,i|
2
0,4 + |ūε,j|

2
0,4

]

≤ C‖uε,j + αj‖
2
1|ūε,i|

2
0,4 + C‖u∗ε,i + αi‖1‖uε,j + u∗ε,j + 2αj‖1

[

|ūε,i|
2
0,4 + |ūε,j|

2
0,4

]

≤ C
[

|ūε,i|
2
0,4 + |ūε,j|

2
0,4

]

≤
γ

8

[

|ūε,i|
2
1 + |ūε,j|

2
1

]

+ C
[

‖ūε,i‖
2
−1 + ‖ūε,j‖

2
−1

]

, (2.3.56)

where we also have applied Lemma 2.3.1 to obtain the last inequality.

We thus can rewrite (2.3.55) for i, j = 1, 2 with i 6= j as

γ|ūε,i|
2
1 +

1

2

d

dt
‖ūε,i‖

2
−1 ≤

3γ

8
|ūε,i|

2
1 +

γ

8
|ūε,j|

2
1 + C

[

‖ūε,i‖
2
−1 + ‖ūε,j‖

2
−1

]

. (2.3.57)

Summing this inequality over i = 1, 2 and rearranging the terms yields

γ

2

[

|ūε,1|
2
1 + |ūε,2|

2
1

]

+
1

2

d

dt

[

‖ūε,1‖
2
−1 + ‖ūε,2‖

2
−1

]

≤ C
[

‖ūε,1‖
2
−1 + ‖ūε,2‖

2
−1

]

. (2.3.58)

Applying a Gronwall lemma (see Appendix A, Theorem A.0.5) implies for a.e t ∈

(0, T ) that

γ

∫ t

0

[

|ūε,1|
2
1 + |ūε,2|

2
1

]

ds+
[

‖ūε,1(t)‖
2
−1 + ‖ūε,2(t)‖

2
−1

]

≤ eCt
[

‖ūε,1(0)‖2
−1 + ‖ūε,2(0)‖2

−1

]

= 0, (2.3.59)

from which we conclude, on noting (2.1.11), that ūε,i(t) = 0, i = 1, 2, and hence the

uniqueness result of ui. The uniqueness of wε,i follows from (2.2.22) and (2.2.23). 2
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Theorem 2.3.3 Let the assumptions (A1) hold. Then there exists a unique solu-

tion {u1, u2, w1, w2} to (P) such that

u1, u2 ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′), (2.3.60a)

w1, w2 ∈ L2(0, T ;H1(Ω)), (2.3.60b)

φ(u1), φ(u2) ∈ L2(ΩT ), (2.3.60c)

f
(1)
D (u1, u2), f

(2)
D (u1, u2) ∈ L∞(0, T ;L2(Ω)), (2.3.60d)

max{|u1|, |u2|} < 1 a.e. in ΩT . (2.3.60e)

Proof. We first observe that the bounds (2.3.8a-c) are independent of ε. Then

for i = 1, 2 from compactness arguments we can extract subsequences, still denoted

{uε,i} and {wε,i}, such that

uε,i ⇀ ui in L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′), (2.3.61a)

uε,i
∗
⇀ ui in L∞(0, T ;H1(Ω)), (2.3.61b)

wε,i ⇀ wi in L2(0, T ;H1(Ω)), (2.3.61c)

φε(uε,i) ⇀ η̇i in L2(ΩT ). (2.3.61d)

Furthermore, a similar argument to that used in Theorem 2.3.2 shows

uε,i → ui in L2(ΩT ). (2.3.62)

Now our goal is to prove that η̇i = φ(ui) for i = 1, 2. We remark that if we show

ui = φ−1(η̇i) a.e. in ΩT , then we immediately achieve our goal and we also obtain

|ui| < 1 a.e. in ΩT as φ−1(r) ∈ (−1, 1) for all r ∈ R. To see this we firstly show that

Ii(ξ) :=

∫ T

0

(ui − φ−1(ξ), η̇i − ξ)dt ≥ 0 ∀ξ ∈ L2(ΩT ). (2.3.63)

Choosing s = uε,i and r = φ−1
ε (ξ) in (2.2.9) yields for i = 1, 2 and a.e. t ∈ (0, T )

(uε,i − φ−1
ε (ξ), φε(uε,i) − ξ) ≥ θ|uε,i − φ−1

ε (ξ)|20 ≥ 0,

and hence

Iε,i(ξ) :=

∫ T

0

(uε,i − φ−1
ε (ξ), φε(uε,i) − ξ)dt ≥ 0 ∀ξ ∈ L2(ΩT ). (2.3.64)
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To show this integral is well-defined we use (2.2.16) with s = φε(uε,i) and r = ξ and

recall the estimate (2.3.8c) to yield for i = 1, 2

Iε,i(ξ) ≤

∫ T

0

|uε,i − φ−1
ε (ξ)|0|φε(uε,i) − ξ|0dt ≤ θ−1

∫ T

0

|φε(uε,i) − ξ|20dt

= θ−1‖φε(uε,i) − ξ‖L2(ΩT ) <∞.

Now, to obtain the result (2.3.63) it is sufficient to show that Iε,i → Ii as ε → 0.

From Lemma 2.2.1 we note that φ−1
ε (r) → φ−1(r) ∀ r as ε → 0 and hence with the

aid of the strong convergence (2.3.62), the bound (2.3.8c) on φε(uε,i) and the weak

convergence (2.3.61d) we obtain for any ξ ∈ L2(ΩT ) and i = 1, 2 that

|Iε,i(ξ) − Ii(ξ)| =
∣

∣

∣

∫ T

0

(uε,i − φ−1
ε (ξ), φε(uε,i) − ξ) − (ui − φ−1(ξ), η̇i − ξ)dt

∣

∣

∣

≤
∣

∣

∣

∫ T

0

(uε,i − ui, φε(uε,i) − ξ)dt
∣

∣

∣
+

∣

∣

∣

∫ T

0

(φ−1(ξ) − φ−1
ε (ξ), φε(uε,i) − ξ)dt

∣

∣

∣

+
∣

∣

∣

∫ T

0

(ui − φ−1(ξ), φε(uε,i) − η̇i)dt
∣

∣

∣

≤ ‖uε,i − ui‖L2(ΩT )‖φε(uε,i) − ξ‖L2(ΩT ) + ‖φ−1(ξ) − φ−1
ε (ξ)‖L2(ΩT )‖φε(uε,i) − ξ‖L2(ΩT )

+
∣

∣

∫ T

0

(ui − φ−1(ξ), φε(uε,i) − η̇i)dt
∣

∣ → 0 as ε→ 0. (2.3.65)

Thus, for i = 1, 2,

Ii(ξ) = lim
ε→0

Iε,i(ξ) ≥ 0 ∀ ξ ∈ L2(ΩT ),

as required.

For any β ∈ R>0 and any ξ ∈ L2(ΩT ) we substitute η̇i ± βξ ∈ L2(ΩT ) into Ii to

obtain by (2.3.63) that

∫ T

0

(ui − φ−1(η̇i + βξ),−βξ)dt ≥ 0 and

∫ T

0

(ui − φ−1(η̇i − βξ), βξ)dt ≥ 0.

Dividing the first inequality by −β and the second by β gives

∫ T

0

(ui − φ−1(η̇i + βξ), ξ)dt ≤ 0 and

∫ T

0

(ui − φ−1(η̇i − βξ), ξ)dt ≥ 0

and then taking the limit as β → 0 yields after noting the continuity of φ−1 that

∫ T

0

(ui − φ−1(η̇i), ξ)dt ≤ 0 and

∫ T

0

(ui − φ−1(η̇i), ξ)dt ≥ 0,
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which implies for i = 1, 2 that

∫ T

0

(ui − φ−1(η̇i), ξ)dt = 0 ∀ ξ ∈ L2(ΩT ). (2.3.66)

We choose ξ = ui − φ−1(η̇) ∈ L2(ΩT ) in (2.3.66) to give for i = 1, 2 that

‖ui − φ−1(η̇i)‖
2
L2(ΩT ) =

∫ T

0

|ui − φ−1(η̇i)|
2
0dt = 0,

leading to ui = φ−1(η̇i) a.e. in ΩT . Therefore, for i = 1, 2

|ui| < 1 a.e. in ΩT and η̇i = φ(ui).

Similarly to Theorem 2.3.2, we can pass to the limit in (Pε) as ε → 0 to obtain

that {u1, u2, w1, w2} solving (P). More precisely, convergence follows immediately

from the weak convergence (2.3.61a,c,d) with the exception of

∫ T

0

(f
(i)
D (uε,1, uε,2), η) dt→

∫ T

0

(f
(i)
D (u1, u2), η) dt as ε→ 0,

which is immediate on noting a similar inequality to (2.3.47) and the strong conver-

gence (2.3.62).

Finally, to prove uniqueness of a solution to (P) we argue as for (Pε) in Theo-

rem 2.3.2. 2



Chapter 3

Regularity results and Continuous

dependence

In this chapter we show how increasing the regularity of the boundary of the domain

Ω and the initial data u0
1 and u0

2 leads to more regular solution to the problem (P). In

Section 3.1 we show that the solution of the problem (P) is in higher order Sobolev

spaces under further assumptions on Ω and the initial data. In Section 3.2 we show

the continuous dependence on the initial data and finally we prove an error bound

for the regularization procedure.

3.1 Regularity results

We shall study the problem (P) under the following stronger assumptions on {u0
1, u

0
2}:

(A2) Let {u0
1, u

0
2} ∈ H2(Ω) × H2(Ω), |∆u0

1|1 + |∆u0
2|1 ≤ C,

∂u0
1

∂ν
=

∂u0
2

∂ν
= 0 on ∂Ω

and max{|u0
1|0,∞, |u

0
2|0,∞} ≤ 1 − δ0 for some given δ0 ∈ (0, 1).

We recall that if u ∈ H1(Ω) is a solution of the variational equation

(∇u,∇η) + (u, η) = (f, η) ∀η ∈ H1(Ω),

where f ∈ L2(Ω) and if Ω is convex polygonal or ∂Ω ∈ C2, then from the standard

regularity theory of elliptic problems (see Grisvard [18]) u ∈ H2(Ω) and

‖u‖2 ≤ C|f |0

34
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Hence, by the weak form of (2.3.1), we have zj ∈ H2(Ω) 1 ≤ j ≤ k, (k fixed and

finite) and thus V k ⊂ H2(Ω). For the purposes of the analysis, we need the following

lemma.

Lemma 3.1.1 If v ∈ H2(Ω) and d ≤ 3. Then there are constants σ = d(1
2
− 1

r
) and

C such that

|∇v|0,r ≤ C|v|1−σ
1 ‖v‖σ

2 ≤ C‖v‖2 holds for r ∈



























[2,∞] if d = 1,

[2,∞) if d = 2,

[2, 6] if d = 3.

(3.1.1)

Proof. An application of the Soblev interpolation result (2.1.4) with simple calcu-

lations gives

|∇v|r0,r =

∫

Ω

(

d
∑

i=1

∣

∣

∣

∂v

∂xi

∣

∣

∣

2) r
2
dx ≤ C

∫

Ω

(

d
∑

i=1

∣

∣

∣

∂v

∂xi

∣

∣

∣

r)

dx = C

d
∑

i=1

∣

∣

∣

∂v

∂xi

∣

∣

∣

r

0,r

≤ C
d

∑

i=1

∣

∣

∣

∂v

∂xi

∣

∣

∣

r(1−σ)

0

∥

∥

∥

∂v

∂xi

∥

∥

∥

rσ

1
≤ C

(

d
∑

i=1

∣

∣

∣

∂v

∂xi

∣

∣

∣

2

0

)
r
2
(1−σ)

‖v‖rσ
2 = C|v|

r(1−σ)
1 ‖v‖rσ

2 ,

and the second inequality follows directly from the embedding H2(Ω) →֒ H1(Ω). 2

Theorem 3.1.2 Let the assumptions (A1) hold. Let Ω be a convex polygonal

domain or ∂Ω ∈ C2. Then the unique solution of (P) is such that the following

additional regularity results hold

u1, u2 ∈ L2(0, T ;H2(Ω)), (3.1.2a)

f
(1)
D (u1, u2), f

(2)
D (u1, u2) ∈ L2(0, T ;H1(Ω)). (3.1.2b)

Proof. From Theorem 2.3.3 we have for i = 1, 2 and a.e. ∈ (0, T ) that ui ∈ H1(Ω)

is a solution of the elliptic variational equation

γ(∇ui,∇η) + (φ(ui) − θiui + f
(i)
D (u1, u2) − wi, η) = 0 ∀η ∈ H1(Ω).

Thus, by the standard regularity theory of elliptic problems with the aid of the

estimates obtained in Theorem 2.3.3 we have for a.e. t ∈ (0, T ) that ui ∈ H2(Ω) and

‖ui‖2 ≤ C|wi − φ(ui) + θiui − f
(i)
D (u1, u2) + ui|0.
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Therefore, by squaring this inequality and integrating over (0, T ) we obtain

‖ui‖
2
L2(0,T ;H2(Ω)) ≤ C‖wi − φ(ui) + θiui − f

(i)
D (u1, u2) + ui‖

2
L2(ΩT ) ≤ C. (3.1.3)

To obtain the estimate (3.1.2b), we first note that using the generalised Hölder

inequality, H1(Ω) →֒ L6(Ω) and Lemma 3.1.1 yields for v1, v2 ∈ H2(Ω) and for

i, j = 1, 2 with i 6= j that

|f
(i)
D (v1, v2)|

2
1 = |∇f

(i)
D (v1, v2)|

2
0 = 4D2|∇(vi + αi)(vj + αj)

2|20 =

= 4D2|(vj + αj)
2∇vi + 2(vi + αi)(vj + αj)∇vj|

2
0

≤ 8D2
∣

∣(vj + αj)
4|∇vi|

2
∣

∣

0,1
+ 32D2

∣

∣(vi + αi)
2(vj + αj)

2|∇vj|
2
∣

∣

0,1

≤ 8D2|vj + αj |
4
0,6|∇vi|

2
0,6 + 32D2|vi + αi|

2
0,6|vj + αj |

2
0,6|∇vj|

2
0,6

≤ C‖vj + αj‖
4
1‖vi‖

2
2 + C‖vi + αi‖

2
1‖vj + αj‖

2
1‖vj‖

2
2. (3.1.4)

Thus, by integration over (0, T ) and noting the estimates (2.3.60a) and (3.1.3) we

have for i, j = 1, 2 with i 6= j
∫ T

0

|f
(i)
D (u1, u2)|

2
1dt ≤ C

∫ T

0

‖ui‖
2
2dt+ C

∫ T

0

‖uj‖
2
2dt ≤ C. (3.1.5)

Hence with this estimate and (2.3.60d) we may conclude the desired result (3.1.2b) . 2

Theorem 3.1.3 Let the assumptions (A2). Let Ω be a convex polygonal domain

or ∂Ω ∈ C2. Then for all ε ≤ min{ε0,
δ0
2
} the unique solution of (Pε) is such that

for i = 1, 2 the following additional stability estimates hold independently of ε

‖∂tuε,i‖L2(0,T ;H1(Ω)) + ‖∂tuε,i‖L∞(0,T ;(H1(Ω))′) + ‖wε,i‖L∞(0,T ;H1(Ω)) ≤ C, (3.1.6a)

‖φε(uε,i)‖L∞(0,T ;L2(Ω)) + ‖uε,i‖L∞(0,T ;H2(Ω)) + ‖wε,i‖L2(0,T ;H2(Ω)) ≤ C, (3.1.6b)

‖f
(i)
D (uε,1, uε,2)‖L∞(0,T ;H1(Ω)) ≤ C and uε,i ∈ C([0, T ];H1(Ω)). (3.1.6c)

Furthermore, we have for i = 1, 2 that
∂uε,i

∂ν
= 0 a.e. on ∂Ω × (0, T ) and

θ−1ε‖∇φε(uε,i)‖L∞(0,T ;L2(Ω))) ≤ ‖(∇uε,i,∇φε(uε,i))‖L∞(0,T ) ≤ C. (3.1.7)

Proof. Differentiating the finite variational equality (2.3.10b) with respect to time

and taking χk = ∂tu
k
ε,i ∈ V k ∩ V0 yields for i = 1, 2

γ|∂tu
k
ε,i|

2
1 + (φ′

ε(u
k
ε,i)∂tu

k
ε,i, ∂tu

k
ε,i) − θi|∂tu

k
ε,i|

2
0 + (∂tf

(i)
D (uk

ε,1, u
k
ε,2), ∂tu

k
ε,i)

= (∂tw
k
ε,i, ∂tu

k
ε,i) = −(∇wk

ε,i,∇∂tw
k
ε,i) = −

1

2

d

dt
|wk

ε,i|
2
1,
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where we have also noted (2.3.10a) with χk = ∂tw
k
ε,i to obtain the second equality.

On noting that for i, j = 1, 2 with i 6= j

(∂tf
(i)
D (uk

ε,1, u
k
ε,2), ∂u

k
ε,i) = 2D((uk

ε,j + αj)
2, (∂tu

k
ε,i)

2)

+ 4D((uk
ε,i + αi)(u

k
ε,j + αj)∂tu

k
ε,j, ∂tu

k
ε,i)

≥ 4D((uk
ε,i + αi)(u

k
ε,j + αj), ∂tu

k
ε,i∂tu

k
ε,j)

and recalling, by (2.2.8) and (2.3.28), that φ′
ε(r) > 0 and |wk

ε,i|1 = ‖∂tu
k
ε,i‖−1 we

have after noting (2.1.11) for i, j = 1, 2 with i 6= j that

γ|∂tu
k
ε,i|

2
1 +

1

2

d

dt
‖∂tu

k
ε,i‖

2
−1

≤ θi|∂tu
k
ε,i|

2
0 − 4D((uk

ε,i + αi)(u
k
ε,j + αj), ∂tu

k
ε,i∂tu

k
ε,j)

≤
γ

4
|∂tu

k
ε,i|

2
1 + C‖∂tu

k
ε,i‖

2
−1 + 4D

∣

∣((uk
ε,i + αi)(u

k
ε,j + αj), ∂tu

k
ε,i∂tu

k
ε,j)

∣

∣.

(3.1.8)

From a generalised Hölder’s inequality, H1(Ω) →֒ L4(Ω), the bound (2.3.8a), a

Young’s inequality and Lemma 2.3.1 it follows for i = 1, 2 and t ∈ (0, T ) that

∣

∣((uk
ε,i + αi)(uε,j + αj), ∂tu

k
ε,i∂tu

k
ε,j)

∣

∣ ≤ |uk
ε,i + αi|0,4|u

k
ε,j + αj |0,4|∂tu

k
ε,i|0,4|∂tu

k
ε,j|0,4

≤ C‖uk
ε,i + αi‖1‖u

k
ε,j + αj‖1|∂tu

k
ε,i|0,4|∂tu

k
ε,j|0,4

≤ C|∂tu
k
ε,i|0,4|∂tu

k
ε,j|0,4 ≤ C

[

|∂tu
k
ε,i|

2
0,4 + |∂tu

k
ε,j|

2
0,4

]

≤
γ

32D

[

|∂tu
k
ε,i|

2
1 + |∂tu

k
ε,j|

2
1

]

+ C
[

‖∂tu
k
ε,i‖

2
−1 + ‖∂tu

k
ε,j‖

2
−1

]

. (3.1.9)

We insert (3.1.9) into (3.1.8) and rearrange to give for i, j = 1, 2 with i 6= j

γ|∂tu
k
ε,i|

2
1 +

1

2

d

dt
‖∂tu

k
ε,i‖

2
−1 ≤

3γ

8
|∂tu

k
ε,i|

2
1 +

γ

8
|∂tu

k
ε,j|

2
1 + C

[

‖∂tu
k
ε,i‖

2
−1 + ‖∂tu

k
ε,j‖

2
−1

]

.

(3.1.10)

Summing this differential inequality over i = 1, 2 and rearranging the terms yields

γ

2

[

|∂tu
k
ε,1|

2
1 + |∂tu

k
ε,2|

2
1

]

+
1

2

d

dt

[

‖∂tu
k
ε,1‖

2
−1 + ‖∂tu

k
ε,2‖

2
−1

]

≤ C
[

‖∂tu
k
ε,1‖

2
−1 + ‖∂tu

k
ε,2‖

2
−1

]

,

(3.1.11)

from which we infer, by application of the Gronwall lemma, for t ∈ (0, T ] that

γ

∫ t

0

[

|∂su
k
ε,1|

2
1 + |∂su

k
ε,2|

2
1

]

ds+
[

‖∂su
k
ε,1(t)‖

2
−1 + ‖∂su

k
ε,2(t)‖

2
−1

]

≤ C
[

‖∂su
k
ε,1(0)‖2

−1 + ‖∂tu
k
ε,2(0)‖2

−1

]

= C
[

|wk
ε,1(0)|21 + |wk

ε,2(0)|21
]

. (3.1.12)
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Our goal now is to bound the right hand side of (3.1.12) independently of ε and

k. To accomplish this, we integrate the first term of finite weak form (2.3.10b) by

parts and use the P k projection properties (2.3.3a-b) to obtain for all χk ∈ V k and

i = 1, 2

(wk
ε,i(0) + γ∆uk

ε,i(0) − P kφε(u
k
ε,i(0)) + θiu

k
ε,i(0) − P kf

(i)
D (uk

ε,1(0), uk
ε,2(0)), χk) = 0,

which implies

wk
ε,i(0) = −γ∆uk

ε,i(0) + P kφε(u
k
ε,i(0)) − θiu

k
ε,i(0) + P kf

(i)
D (uk

ε,1(0), uk
ε,2(0)),

and hence, recalling for i = 1, 2 that uk
ε,i(0) = P ku0

i ,

|wk
ε,i(0)|1 ≤

[

γ|∆P ku0
i |1 + θi|P

ku0
i |1

]

+ |P kφε(P
ku0

i )|1 + |P kf
(i)
D (P ku0

1, P
ku0

2)|1.

(3.1.13)

To deal with the Laplacian term we need to prove that ∆P ku0
i = P k∆u0

i . This can

be seen by the P k properties (2.3.3a-b), integration by parts, the assumptions (A2)

and (2.3.1)

(P k∆u0
i , χ

k) = (∆u0
i , χ

k) = −(∇u0
i ,∇χ

k) = −(∇P ku0
i ,∇χ

k) = (∆P ku0
i , χ

k) ∀χk ∈ V k,

we thus have, by taking χk = P k∆u0
i−∆P ku0

i ∈ V k, that P k∆u0
i = ∆P ku0

i a.e. in Ω.

With the aid of (2.3.4a) and the assumptions (A2) this result leads to

γ|∆P ku0
i |1 + θi|P

ku0
i |1 ≤ γ|P k∆u0

i |1 + θi|u
0
i |1 ≤ γ|∆u0

i |1 + θi|u
0
i |1 ≤ C. (3.1.14)

Now we treat the logarithmic term. We have

|P kφε(P
ku0

i )|1 ≤ |φε(P
ku0

i )|1 = |∇φε(P
ku0

i )|0

= |φ′
ε(P

ku0
i )∇P

ku0
i |0 ≤ |φ′

ε(P
ku0

i )|0,∞|P ku0
i |1. (3.1.15)

As P ku0
i → u0

i in L2(Ω), we have from Theorem A.0.17 (see Appendix A) P ku0
i → u0

i

(’pointwise’) a.e. in Ω and hence for i = 1, 2 and sufficiently large k

|P ku0
i − u0

i | ≤
δ0
2

a.e. in Ω.
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Since, by the assumptions (A2), |u
0
i | ≤ 1 − δ0 a.e. in Ω, it follows for sufficiently

large k and for ε ≤ δ0
2

that

|P ku0
i | ≤ |P ku0

i − u0
i | + |u0

i | ≤ 1 −
δ0
2

≤ 1 − ε a.e. in Ω.

Thus, from the property (2.2.13) of φ′
ε we find for a.e. in Ω and i = 1, 2 that

|φ′
ε(P

ku0
i )| = φ′(P ku0

i ) ≤ φ′(1 −
δ0
2

) = C(δ0) :=
θ

1 − (1 − δ0
2
)2
,

which implies that |φ′
ε(P

ku0
i )|0,∞ ≤ C and hence together with (3.1.15) we conclude,

after noting (2.3.4a) and the assumptions (A2), for sufficiently large k, ε ≤ δ0
2

and

i = 1, 2 that

|P kφε(P
ku0

i )|1 ≤ C|u0
i |1 ≤ C. (3.1.16)

Finally, to bound the D-coupling term we first note, using integration by parts and

(2.3.1), that (∇P ku0
i ,∇η) = (−∆P ku0

i , η) ∀η ∈ H1(Ω) which leads with the aid of

the standard elliptic regularity of elliptic problems to

‖P ku0
i ‖2 ≤ C| − ∆P ku0

i + P ku0
i |0 ≤ C|P k∆u0

i |0 + C|P ku0
i |0

≤ C
[

|∆u0
i |0 + |u0

i |0
]

≤ C‖u0
i‖2 i = 1, 2, (3.1.17)

where we have also noted that P k∆u0
i = ∆P ku0

i and (2.3.4a).

Hence, using (2.3.4a), (3.1.4) with vi = P k(u0
i ) and (3.1.17) and noting again (2.3.4a)

and the assumptions (A2) we obtain for i, j = 1, 2 with i 6= j

|P kf
(i)
D (P ku0

1, P
ku0

2)|1 ≤ |f
(i)
D (P ku0

1, P
ku0

2)|1

≤ C‖P ku0
j + αj‖

2
1‖P

ku0
i ‖2 + C‖P ku0

i + αi‖1‖P
ku0

j + αj‖1‖P
ku0

j‖2

≤ C‖P ku0
j + αj‖

2
1‖u

0
i ‖2 + C‖P ku0

i + αi‖1‖P
ku0

j + αj‖1‖u
0
j‖2

≤ C
(

‖u0
j‖

2
1 + 1

)

‖u0
i‖2 + C

(

‖u0
i ‖1 + 1

)(

‖u0
j‖1 + 1

)

‖u0
j‖2

≤ C. (3.1.18)

Combining (3.1.12), (3.1.13), (3.1.14), (3.1.16), and (3.1.18) yields for t ∈ (0, T ] that

γ

∫ t

0

[

|∂su
k
ε,1|

2
1 + |∂su

k
ε,2|

2
1

]

ds+
[

‖∂su
k
ε,1(t)‖

2
−1 + ‖∂su

k
ε,2(t)‖

2
−1

]

≤ C
[

|wk
ε,1(0)|21 + |wk

ε,2(0)|21
]

≤ C. (3.1.19)



3.1. Regularity results 40

Hence one finds, after ignoring the non-negative integrals, that

‖∂tu
k
ε,1‖L∞(0,T ;(H1(Ω))′) + ‖∂tu

k
ε,2‖L∞(0,T ;(H1(Ω))′) ≤ C, (3.1.20)

and with the aid of the Poincaré inequality one can also deduce, on ignoring the

dual terms, that

‖∂tu
k
ε,1‖L2(0,T ;H1(Ω)) + ‖∂tu

k
ε,2‖L2(0,T ;H1(Ω)) ≤ C. (3.1.21)

Since, by (2.3.28), |wk
ε,i|1 = ‖∂tu

k
ε,i‖−1, we have from the bound (3.1.19) for i = 1, 2

∣

∣

∣
wk

ε,i −

∫

− wk
ε,i

∣

∣

∣

1
= |wk

ε,i|1 ≤ C, (3.1.22)

so that together with the Poincaré inequality it follows for i = 1, 2 that

∥

∥

∥
wk

ε,i −

∫

− wk
ε,i

∥

∥

∥

L∞(0,T ;H1(Ω))
≤ C. (3.1.23)

From (2.3.31), (2.3.35) and (3.1.22) it follows that

∣

∣

∣

∫

− wk
ε,i

∣

∣

∣
=

∣

∣

∣

∫

−
[

Ψ′
ε,i(u

k
ε,i) + f

(i)
D (uk

ε,1, u
k
ε,2)

]

∣

∣

∣
≤ C

[

1 + |wk
ε,i|1

]

≤ C. (3.1.24)

Thus we have for i = 1, 2 that

∥

∥

∥

∫

− wk
ε,i

∥

∥

∥

L∞(0,T ;H1(Ω))
= |Ω|

1
2

∥

∥

∥

∫

− wk
ε,i

∥

∥

∥

L∞(0,T )
≤ C. (3.1.25)

Hence (3.1.23) and (3.1.25) imply for i = 1, 2 that

‖wk
ε,i‖L∞(0,T ;H1(Ω)) ≤ C (3.1.26)

Therefore, from the bounds (3.1.20), (3.1.21) and (3.1.26) the desired bounds in

(3.1.6a) follows by the usual compactness arguments.

From (2.3.51) we have for i = 1, 2 that

γ(∇uε,i,∇φε(uε,i)) +
1

2
|φε(uε,i)|

2
0 ≤ C

[

|wε,i|
2
0 + |uε,i|

2
0 + |f

(i)
D (uε,1, uε,2)|

2
0

]

. (3.1.27)

Thus, from the estimates (3.1.6a), (2.3.8a) and (2.3.8d) we obtain the desired esti-

mate (3.1.6b) on φε(uε,i) and we also have the second inequality in (3.1.7). The first

inequality follows directly from (2.2.8).
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Using the variational equality (2.2.21b) and the standard regularity theory of elliptic

problems it follows that for i = 1, 2

‖uε,i‖2 ≤ C|wε,i − φε(uε,i) + θiuε,i − f
(i)
D (uε,1, uε,2) + uε,i|0, (3.1.28)

which leads to the second estimate in (3.1.6b) on noting the third bound in (3.1.6a),

the first bound in (3.1.6b), (2.3.8a) and (2.3.8d).

We again use the standard regularity theory of elliptic problems with variational

equality (2.2.21a) to result in for i = 1, 2 that

‖wε,i‖2 ≤ C| − ∂tuε,i + wε,i|0, (3.1.29)

we thus obtain, by the first and the third bounds of (3.1.6a), the third estimate in

(3.1.6b). Applying (3.1.4) with vi = uε,i and noting the bounds (2.3.8a) and (3.1.6b)

it follows for a.e. t ∈ (0, T ) and i, j = 1, 2 with i 6= j that

|f
(i)
D (uε,1, uε,2)|1 ≤ C‖uε,j + αj‖

2
1‖uε,i‖2 + C‖uε,i + αi‖1‖uε,j + αj‖1‖uε,j‖2 ≤ C,

(3.1.30)

which together with (2.3.8d) we obtain the desired estimate (3.1.6c).

Furthermore, application of the classical result stated in Theorem A.0.20 (see ap-

pendix A) yields, after noting uε,i ∈ L∞(0, T ;H2(Ω)) →֒ L2(0, T ;H2(Ω)) and

∂tuε,i ∈ L2(0, T ;H1(Ω)) →֒ L2(ΩT ), for i = 1, 2 that uε,i ∈ C([0, T ], H1(Ω)).

Finally, to prove
∂uε,i

∂ν
= 0 we argue as in (Thomée [33], p.20). Since uε,i ∈ H2(Ω)

a.e. t ∈ (0, T ), we have on integrating the first term of (2.2.21b) in space by parts

that

(−γ∆uε,i + Ψ′
ε,i(uε,i) + f

(i)
D (uε,1, uε,2) − wε,i, η) +

∫

∂Ω

∂uε,i

∂ν
η ds = 0, ∀η ∈ H1(Ω),

(3.1.31)

which implies
∂uε,i

∂ν
= 0 a.e. on ∂Ω × (0, T ), since η is arbitrary. This completes the

proof. 2
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Corollary 3.1.4 Let the assumptions of Theorem 3.1.3 hold. Then the unique

solution of (P) is such that the following further regularity results hold

∂tu1, ∂tu2 ∈ L∞(0, T ; (H1(Ω))′) ∩ L2(0, T ;H1(Ω)), (3.1.32a)

w1, w2 ∈ L∞(0, T ;H1(Ω)) ∩ L2(0, T ;H2(Ω)), (3.1.32b)

u1, u2 ∈ L∞(0, T ;H2(Ω)) ∩ C([0, T ], H1(Ω)), (3.1.32c)

φ(u1), φ(u2) ∈ L∞(0, T ;L2(Ω)), (3.1.32d)

f
(1)
D (u1, u2), f

(2)
D (u1, u2) ∈ L∞(0, T ;H1(Ω)). (3.1.32e)

Proof. With the aid of the uniform bounds (3.1.6a-c) in ε and the compactness

arguments, one can repeat the same treatment used in Theorem 3.1.3 to obtain the

above regularity. 2

3.2 Continuous dependence and a regularization

error bound

Theorem 3.2.1 For m1, m2 ∈ (−1, 1) let

Xm1,m2 = {(v1, v2) ∈ H1(Ω) ×H1(Ω) : for i = 1, 2,
∫

− vi = mi and |vi|0,∞ ≤ 1}.

Then the mapping Xm1,m2 ∋ (u0
1, u

0
2) 7−→ (u1(t), u2(t)) ∈ Xm1,m2 is continuous with

respect to (H1(Ω))′ × (H1(Ω))′ norm.

Proof. Assume that (u1, u2) and (v1, v2) satisfy the weak form (P) with initial con-

ditions (u0
1, u

0
2), (v

0
1, v

0
2) ∈ Xm1,m2 such that (u0

1, u
0
2) 6= (v0

1, v
0
2). By arguing similarly

to the uniqueness proof of (Pε) we obtain for a.e. t ∈ (0, T ) that

‖u1(t) − v1(t)‖
2
−1 + ‖u2(t) − v2(t)‖

2
−1 ≤ ect

[

‖u0
1 − v0

1‖
2
−1 + ‖u0

2 − v0
2‖

2
−1

]

. (3.2.1)

Therefore, we have, by Lemma 2.1.1, the required continuity result. 2

We now turn to prove an error estimate between the solutions of (Pε) and (P)

where we adapt the argument in [11]. This error bound is crucial to derive our

fully-discrete error bound as will be seen in the next chapters.
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Theorem 3.2.2 Let êε,1 := u1 − uε,1 and êε,2 := u2 − uε,2. Then, we have that

‖êε,1‖
2
L2(0,T ;H1(Ω))+‖êε,2‖

2
L2(0,T ;H1(Ω))+‖êε,1‖

2
L∞(0,T ;(H1(Ω))′)+‖êε,2‖

2
L∞(0,T ;(H1(Ω))′) ≤ Cε.

(3.2.2)

Proof. We first note that êε,1, êε,2 ∈ V0 a.e. t ∈ (0, T ). We test (P), (2.2.25), and

the corresponding regularized version (Pε), (2.2.24), with η = êε,i and then subtract

to yield for a.e. t ∈ (0, T ) and i = 1, 2

γ|êε,i|
2
1+(φ(ui)−φε(uε,i), êε,i)+(f

(i)
D (u1, u2)−f

(i)
D (uε,1, uε,2), êε,i)+(G∂têε,i, êε,i) = θi|êε,i|

2
0.

(3.2.3)

We deal with the D-coupling term in the same way as for (2.3.56) to result in for

a.e. t ∈ (0, T ) with i, j = 1, 2 and i 6= j

∣

∣(f
(i)
D (u1, u2) − f

(i)
D (uε,1, uε,2), êε,i)

∣

∣ ≤
γ

8

[

|êε,i|
2
1 + |êε,j|

2
1

]

+ C
[

‖êε,i‖
2
−1 + ‖êε,j‖

2
−1

]

.

(3.2.4)

Recalling that 1
2

d
dt
‖êε,i‖

2
−1 = (G∂têε,i, êε,i) and (2.1.11) one can rewrite (3.2.3) as

γ|êε,i|
2
1 + (φ(ui) − φε(uε,i), êε,i) +

1

2

d

dt
‖êε,i‖

2
−1

≤
3γ

8
|êε,i|

2
1 +

γ

8
|êε,j|

2
1 + C

[

‖êε,i‖
2
−1 + ‖êε,j‖

2
−1

]

.

(3.2.5)

To treat the logarithmic term we define for i = 1, 2 and a.e. t ∈ (0, T )

Ω+
ε,i(t) := {x ∈ Ω : 1 − ε ≤ ui(x, t) ≤ uε,i(x, t)},

Ω−
ε,i(t) := {x ∈ Ω : uε,i(x, t) ≤ ui(x, t) ≤ −1 + ε},

Ω̂ε.i(t) := Ω+
ε,i(t) ∪ Ω−

ε,i(t).

By the monotonicity of φε and (2.2.12) it follows for i = 1, 2 and a.e. t ∈ (0, T ) that

(φ(ui) − φε(uε,i), êε,i) = (φ(ui) − φε(ui), êε,i) + (φε(ui) − φε(uε,i), êε,i)

≥ (φ(ui) − φε(ui), êε,i) + (φε(ui) − φε(uε,i), êε,i)Ω̂ε,i(t)

≥ (φ(ui) − φε(ui), êε,i) +
θ

2ε
|êε,i|

2
0,Ω̂ε,i(t)

1. (3.2.6)

1(u, v)Ω̂ε,i(t)
:=

∫

Ω̂ε,i(t)

uv dx and |u|2
0,Ω̂ε,i(t)

:= (u, u)0,Ω̂ε,i(t)
.
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Noting φε(r) = φ(r) ∀ r ∈ [−1 + ε, 1− ε], (2.2.5) and the fact that φε(r) ≥ 0 ∀ r ≥ 0

and φε(r) ≤ 0 ∀ r ≤ 0 it is a simple matter to see that (φ(ui) − φε(ui))êε,i is non-

negative in Ω \ Ω̂ε,i(t) and that φε(ui)êε,i is non positive in Ω̂ε,i(t) which implies for

i = 1, 2 and a.e. t ∈ (0, T ) that

(φ(ui) − φε(ui), êε,i) ≥ (φ(ui) − φε(ui), êε,i)Ω̂ε,i(t)
≥ (φ(ui), êε,i)Ω̂ε,i(t)

. (3.2.7)

Hence, combining (3.2.5)-(3.2.7) yields for a.e. t ∈ (0, T ) and i, j = 1, 2 with i 6= j

that

γ|êε,i|
2
1 +

θ

2ε
|êε,i|

2
0,Ω̂ε.i(t)

+
1

2

d

dt
‖êε,i‖

2
−1

≤
3γ

8
|êε,i|

2
1 +

γ

8
|êε,j|

2
1 + C

[

‖êε,i‖
2
−1 + ‖êε,j‖

2
−1

]

− (φ(ui), êε,i)Ω̂ε,i(t)

≤
3γ

8
|êε,i|

2
1 +

γ

8
|êε,j|

2
1 + C

[

‖êε,i‖
2
−1 + ‖êε,j‖

2
−1

]

+
θ

4ε
|êε,i|

2
0,Ω̂ε,i(t)

+ Cε|φ(ui)|
2
0,

(3.2.8)

where we have also used the Young inequality and | · |0,Ω̂ε.i(t)
≤ | · |0.

Summing (3.2.8) over i = 1, 2 and rearranging gives for a.e. t ∈ (0, T ) that

γ

2

[

|êε,1|
2
1 + |êε,2|

2
1

]

+
θ

4ε

[

|êε,1|
2
0,Ω̂ε.i(t)

+ |êε,2|
2
0,Ω̂ε,i(t)

]

+
1

2

d

dt

[

‖êε,1‖
2
−1 + ‖êε,2‖

2
−1

]

≤ Cε
[

|φ(u1)|
2
0 + |φ(u2)|

2
0

]

+ C
[

‖êε,1‖
2
−1 + ‖êε,2‖

2
−1

]

. (3.2.9)

Applying the Gronwall lemma and noting êε,1(0) = êε,2(0) = 0 gives for a.e. t ∈ (0, T ]

γ

∫ t

0

[

|êε,1|
2
1 + |êε,2|

2
1

]

ds+
[

‖êε,1‖
2
−1 + ‖êε,2‖

2
−1

]

≤ Cectε
[

‖φ(u1)‖
2
L2(ΩT ) + ‖φ(u2)‖

2
L2(ΩT )

]

(3.2.10)

Finally, using the Poincaré inequality and (2.3.60c) we have the desired result (3.2.2) . 2



Chapter 4

The finite element space and a

semi-discrete approximation

In this chapter we formulate a semi-discrete approximation to the solution of the

continuous problem (P) where we discretise in the spatial variable using a finite

element method.

In Section 4.1 we introduce the finite element method and some basic notation

that will be used throughout the rest of the thesis. We also define some necessary

operators and mention briefly their associated properties. In Section 4.2 we prove

some technical lemmata which are necessary for performing the analytic study. We

prove in Section 4.3 the existence and uniqueness of the proposed semi-discrete

approximation. Finally, in Section 4.4 we prove an error estimate between the

solutions of the continuous and semi-discrete problems.

4.1 Notation and preliminaries

In the remaining chapters of the thesis we shall study semi-discrete and fully-discrete

finite element approximations of the problem (P) under the following assumptions

on the mesh

(Ah) Let Ω ⊂ R
d, d ≤ 3, be a convex polygonal or polyhedral domain if d = 2

or d = 3. Let T h be a quasi-uniform partitioning of Ω into disjoint open

45
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simplices1 τ with hτ :=diam τ and h := maxτ∈T h hτ , so that Ω̄ = ∪τ∈T h τ̄ . In

addition, it is assumed that T h is a weakly acute (Barrett and Blowey [5]);

that is for (i) d = 2 the sum of the opposite angles relative to any side does not

exceed π and for (ii) d = 3 the angle between any two faces of the tetrahedron

does not exceed π
2
.

Associated with T h we define the standard finite element space consisting of the

continuous piecewise linear functions

Sh := {χ ∈ C(Ω̄) : χ|τ is linear ∀τ ∈ T h} ⊂ H1(Ω). (4.1.1)

Recalling that mi :=
∫

− u0
i it is also convenient to introduce for i = 1, 2

Sh
mi

:= {χ ∈ Sh :
∫

− χ = mi}. (4.1.2)

Let {ϕj}
J
j=1 be the standard basis functions for Sh satisfying ϕj(xi) = δij ∀ i, j =

0, 1, ...., J where {xj}
J
j=0 is the set of the nodes of T h. Let πh : C(Ω̄) −→ Sh denote

the interpolation operator defined by πh(χ(xj)) = χ(xj) ∀j = 0, 1, ..., J . In addition,

we define a discrete inner (semi-inner) product on Sh (C(Ω̄)) as

(χ, v)h =

∫

Ω

πh(χ(x) v(x)) dx ≡
J

∑

j=0

Mjj χ(xj)v(xj), (4.1.3)

where Mjj = (1, ϕj) = (ϕj, ϕj)
h > 0.

Below we mention some well-known results concerning the finite element space Sh:

By the definition of πh and (·, ·)h we can easily deduce that

(χ, v)h = (πhχ, v)h ∀χ, v ∈ C(Ω̄) and (χ, 1)h = (χ, 1) ∀χ ∈ Sh. (4.1.4)

The discrete inner product induces a norm on Sh given by

|χ|h :=
√

(χ, χ)h ∀χ ∈ Sh. (4.1.5)

It is well-known that this norm is equivalent to | · |0 (e.g. Raviart [53]) via

|χ|0 ≤ |χ|h ≤ C|χ|0 ∀χ ∈ Sh. (4.1.6)

1We recall that a simplex τ is (i) an interval if d = 1, (ii) a triangle if d = 2, (iii) a tetrahedron

if d = 3.
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We also recall the following useful result (e.g. Ciavaldini [36])

∣

∣(χ, v) − (χ, v)h
∣

∣ ≤ Chm+1 |χ|m|v|1 ∀χ, v ∈ Sh, m = 0, 1. (4.1.7)

For later purpose we introduce the following inverse inequalities which follow from

the quasi-uniform condition (see Theorem 3.2.6, in Ciarlet [22])

|χ|m,q ≤ Chd(1/q−1/p)|χ|m,p 1 ≤ p ≤ q ≤ ∞, m = 0, 1, ∀χ ∈ Sh, (4.1.8a)

|χ|1 ≤
C

h
|χ|h ∀χ ∈ Sh. (4.1.8b)

In addition, the following interpolation error estimates (Theorem 5, in Ciarlet and

Raviart [41]) holds

∣

∣(I − πh)η
∣

∣

0,1
≤ Ch2|η|2,1 ∀ η ∈W 2,1(Ω), (4.1.9a)

∣

∣(I − πh)η
∣

∣

0
+ h

∣

∣(I − πh)η
∣

∣

1
≤ Ch2|η|2 ∀ η ∈ H2(Ω). (4.1.9b)

In order to improve on the error bound between the solutions of the continuous

and semi-discrete problems in the case d = 1, 2 we need the discrete result (e.g.

Thomeé [33], p.68 )

|χ|0,∞ ≤ C
(

ln(1/h)
)d−1

‖χ‖1 ∀χ ∈ Sh, ∀h ≤ h0. (4.1.10)

Similarly to (2.1.5), the discrete Green’s operator Ĝh : F c,h
0 −→ V h

0 is defined by

(∇Ĝhf c,∇χ) = (f c, χ)h ∀χ ∈ Sh, (4.1.11)

where F c,h
0 := {f c ∈ C(Ω̄) : (f c, 1)h = 0} and V h

0 := {χ ∈ Sh : (χ, 1)h = 0}.

Observe that V h
0 ⊂ V0 ⊂ F0. In the same way as for (2.1.7) one can define

‖f c‖−h := |Ĝhf c|1 =

√

(f c, Ĝhf c)h ∀ f c ∈ F c,h
0 . (4.1.12)

From (4.1.12), the equivalent result (4.1.6) and the Poincaré inequality we have

‖f c‖2
−h = (f c, Ĝhf c)h ≤ C|f c|h|Ĝ

hf c|0 ≤ C|f c|h|Ĝ
hf c|1 = C|f c|h‖f

c‖−h,

which leads us to the discrete analogue to (2.1.10), that is,

‖f c‖−h ≤ C|f c|h ∀ f c ∈ F c,h
0 . (4.1.13)
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By (4.1.11), (4.1.12) and a Young’s inequality we have for any β > 0

(f c, χ)h = (∇Ĝhf c,∇χ) ≤ ‖f c‖−h|χ|1 ≤ β|χ|21 +
1

4β
‖f c‖2

−h ∀ f c ∈ F c,h
0 , χ ∈ Sh,

(4.1.14)

which implies, by choosing f c = χ = vh ∈ V h
0 ,

|vh|2h ≤ ‖vh‖−h|v
h|1 ≤ β|vh|21 +

1

4β
‖vh‖2

−h ∀ vh ∈ V h
0 , β > 0. (4.1.15)

Noting the first inequality in (4.1.15) and the inverse inequality (4.1.8b) we have

|vh|h ≤
C

h
‖vh‖−h ∀ vh ∈ V h

0 . (4.1.16)

For later purpose we recall the following essential results concerning the Green’s

operators G and Ĝh:

C1‖v
h‖−h ≤ ‖vh‖−1 ≤ C2‖v

h‖−h ∀ vh ∈ V h
0 ⊂ V0, (4.1.17)

|Gvh − Ĝhvh|0 ≤ Ch2‖vh‖1 ∀ vh ∈ V h
0 . (4.1.18)

(see Barrett and Blowey [19], pp.642-643).

For dealing with the initial data of the semi-discrete and fully-discrete approxi-

mations we introduce the weighted H1-projection (e.g. Barett and Blowey [15])

P h
γ : H1(Ω) → Sh defined by

γ(∇(I − P h
γ )η,∇χ) + ((I − P h

γ )η, χ) = 0 ∀χ ∈ Sh, (4.1.19)

and we also recall the discrete L2(Ω)-projection (see e.g. [6], [7]) P h : L2(Ω) → Sh

given by

(P hη, χ)h = (η, χ) ∀χ ∈ Sh. (4.1.20)

The above projections satisfy the following important results (e.g. [6], [15])

∣

∣(I − P h)η
∣

∣

m
≤ Ch1−m|η|1 m = 0, 1, ∀ η ∈ H1(Ω), (4.1.21)

∣

∣(I − P h
γ )η

∣

∣

m,p
≤ Ch2−m−d(1/2−1/p)|η|2 m = 0, 1, p ∈ [2,∞], ∀ η ∈ H2(Ω), (4.1.22)

|P hη|0,∞ ≤ |η|0,∞ ∀ η ∈ L∞(Ω). (4.1.23)

It is also easily established from (4.1.19) and a Young’s inequality that

‖P h
γ η‖1 ≤ C‖η‖1 ∀ η ∈ H1(Ω). (4.1.24)
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We remark for later use that (4.1.19) gives P h
γ η − η ∈ V0 ⊂ F0 ∀η ∈ H1(Ω) which

together with (2.1.8) and (4.1.22) lead to

‖P h
γ η − η‖2

−1 ≤ C|P h
γ η − η|20 ≤ Ch4|η|2 ∀ η ∈ H2(Ω). (4.1.25)

For future reference we define the stiffness matrix A and lumped matrix M via

Aij = (∇ϕi,∇ϕj), Mij = (ϕi, ϕj)
h. (4.1.26)

The matrix A is positive definite and the matrix M is diagonal with positive entries

(see e.g. Thomeé [33], p.239). Further, due to the fact that partitioning is weakly

acute we have (see [54], p.49)

Aij ≤ 0 ∀ i 6= j, (4.1.27)

and from the the fact that
∑J

j=0 ϕj(x) = 1 we obtain

J
∑

j=0

Aij = (∇ϕi,∇
J

∑

j=0

ϕj) = 0 0 ≤ i ≤ J. (4.1.28)

These two results are important for the first technical lemma which follows.

4.2 Some technical lemmata

In this section we prove some technical lemmata that are necessary to deal with the

nonlinearities, the logarithmic and D-coupling terms, throughout the treatment of

the semi-discrete and fully-discrete problems.

In the first two lemmata we show results regarding the monotone logarithmic func-

tion φε that will be important in deriving some stability estimates. To show the

next lemma we employ the ideas in Nochetto [54] and Garvie [40] that have been

used to prove similar results.

Lemma 4.2.1 Assume that T h is weakly acute partitioning and ε ≤ 1/2. Then

(i) |πhφε(χ)|21 ≡ |∇πhφε(χ)|20 ≤
θ

ε
(∇χ,∇πhφε(χ)) ∀χ ∈ Sh. (4.2.1)

(ii) Further, if |χ|0,∞ ≤ 1 − ε then

|∇πhφε(χ)|20 ≤ φ′(|χ|0,∞)(∇χ,∇πhφε(χ)). (4.2.2)
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Proof. Let πh(φε(χ)) =

J
∑

j=0

φε(χj)ϕj where χj = χ(xj). Since by (4.1.28) we have

Aii = −
J

∑

j=0
j 6=i

Aij it then follows from (4.1.26)

(∇πhφε(χ),∇πhφε(χ)) =
J

∑

i=0

J
∑

j=0

φε(χi)φε(χj)Aij

=

J
∑

i=0

[

J
∑

j=0
j 6=i

(

φε(χi)φε(χj)Aij

)

+ φε(χi)φε(χi)Aii

]

=
J

∑

i=0

J
∑

j=0
j 6=i

[

φε(χi)φε(χj)Aij − (φε(χi))
2Aij

]

=

J
∑

i=0

J
∑

j=0
j 6=i

Aijφε(χi)
[

φε(χj) − φε(χi)
]

. (4.2.3)

Using the fact that
J

∑

i=0

J
∑

j=0
j 6=i

(·) =
J

∑

j=0

J
∑

i=0
i6=j

(·), swapping the indices i and j and noting

that Aij = Aji we may rewrite the right hand side of (4.2.3) as

J
∑

j=0

J
∑

i=0
i6=j

Aijφε(χi)
[

φε(χj) − φε(χi)
]

=
J

∑

i=0

J
∑

j=0
j 6=i

Aijφε(χj)
[

φε(χi) − φε(χj)
]

. (4.2.4)

Thus summing (4.2.3) twice gives that

2(∇πhφε(χ),∇πhφε(χ)) =
J

∑

i=0

J
∑

j=0
j 6=i

−Aij

[

φε(χi) − φε(χj)
][

φε(χi) − φε(χj)
]

=

J
∑

i=0

J
∑

j=0
j 6=i

−Aijφ
′
ε(ξij)

[

χi − χj

][

φε(χi) − φε(χj)
]

, (4.2.5)

where ξij between χj and χi, which implies −|χ|0,∞ ≤ ξij ≤ |χ|0,∞ = max
0≤j≤J

|χj|.

Thus from (2.2.8) we have that 0 < φ′
ε(ξij) ≤

θ
ε
∀χ ∈ Sh and if |χ|0,∞ ≤ 1 − ε, we

have by (2.2.13) and (2.2.8) that φ′
ε(ξij) ≤ φ′

ε(|χ|0,∞) ≤ θ
ε
. Letting

L :=











θ
ε

if |χ|0,∞ > 1 − ε,

φ′
ε(|χ|0,∞) = φ′(|χ|0,∞) if |χ|0,∞ ≤ 1 − ε.

(4.2.6)
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We then have on noting (4.2.5), (4.1.27) and the monotonicity of φε that

2(∇πhφε(χ),∇πhφε(χ)) ≤ L
J

∑

i=0

J
∑

j=0
j 6=i

−Aij

[

χi − χj

][

φε(χi) − φε(χj)
]

= L

J
∑

i=0

J
∑

j=0

−Aij

[

χi − χj

][

φε(χi) − φε(χj)
]

= 2L

J
∑

i=0

J
∑

j=0

Aijχiφε(χj)

= 2L(∇χ,∇πhφε(χ)), (4.2.7)

as by (4.1.28)

J
∑

i=0

J
∑

j=0

(−Aij)χiφε(χi) =

J
∑

i=0

(

− χiφε(χi)

J
∑

j=0

Aij

)

= 0. 2

Lemma 4.2.2 For all χ ∈ Sh, the monotone function φε satisfies

∣

∣(I − πh)φε(χ)
∣

∣

0
≤ Ch|∇πhφε(χ)|0 (4.2.8)

Proof. We refer to Elliott [38] pp.68-69. 2

We now prove some technical results concerning the D-coupling term. These re-

sults will be necessary for: deriving stability estimates, proving uniqueness and

deriving error bounds for the semi-discrete and fully-discrete approximations.

Lemma 4.2.3 Let vh ∈ V h
0 . Then there are constants σ = d(1

2
− 1

r
) and C such

that for all β > 0

|vh|20,r ≤ C‖vh‖1−σ
−h |vh|1+σ

1 ≤ β|vh|21+C(β−1)‖vh‖2
−h holds for r ∈



























[2,∞] if d = 1,

[2,∞) if d = 2,

[2, 6) if d = 3.

(4.2.9)

Proof. The proof is a simple modification the proof of Lemma 2.3.1 where this time

we use the equivalent result (4.1.6) and note (4.1.15) instead of (2.1.11). 2

Lemma 4.2.4 For any χ, v ∈ C(Ω̄) we have

(χ, v)h ≡

∫

Ω

πh(χv)dx ≤
(

∫

Ω

πh(|χ|p)dx
)1/p(

∫

Ω

πh(|v|q)dx
)1/q

, (4.2.10)

where 1
p

+ 1
q

= 1, p, q ≥ 1.
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Proof. From the definition of (·, ·)h, (4.1.3), and the standard discrete Hölder

inequality (see Appendix A) we have

(χ, v)h ≤

J
∑

j=0

Mjj|χ(xj)||v(xj)| =

J
∑

j=0

M
1/p
jj |χ(xj)|M

1/q
jj |v(xj)|

≤
(

J
∑

j=0

Mjj |χ(xj)|
p
)1/p(

J
∑

j=0

Mjj|v(xj)|
q
)1/q

=
(

∫

Ω

πh(|χ|p)dx
)1/p(

∫

Ω

πh(|v|q)dx
)1/q

. (4.2.11)

2

Lemma 4.2.5 Let χ, v ∈ Sh. Then

∣

∣∇(I − πh)(χv2)
∣

∣

0
≤ Ch|v|1,6

[

|v|0,6|χ|1,6 + |χ|0,6|v|1,6

]

. (4.2.12)

Proof. Let τ be a fixed simplex. It follows from (4.1.9b) that

∣

∣∇(I − πh)(χv2)
∣

∣

2

0,τ
=

∣

∣(I − πh)(χv2)
∣

∣

2

1,τ
≤ Ch2

τ

d
∑

i,j=1

∫

τ

∣

∣

∣

∂2

∂xi∂xj

(χv2)
∣

∣

∣

2

dx, (4.2.13)

where | · |1,τ := | · |H1(τ). Recalling that χ and v are linear functions on τ we have

∂2

∂xi∂xj

(χv2) =
∂

∂xi

(

v2 ∂χ

∂xj

+ 2vχ
∂v

∂xj

)

= 2v
∂v

∂xi

∂χ

∂xj

+ 2χ
∂v

∂xi

∂v

∂xj

+ 2v
∂χ

∂xi

∂v

∂xj

.

Note also that
∑d

i,j=1

∫

τ

∣

∣v ∂χ
∂xi

∂v
∂xj

∣

∣

2
dx =

∑d
i,j=1

∫

τ

∣

∣v ∂χ
∂xj

∂v
∂xi

∣

∣

2
dx. Thus on inserting

these results into (4.2.13) and using a generalised Hölder’s inequality we obtain

∣

∣(I − πh)(χv2)
∣

∣

2

1,τ
≤ Ch2

τ

d
∑

i,j=1

∫

τ

|v|2
∣

∣

∣

∂v

∂xi

∣

∣

∣

2∣
∣

∣

∂χ

∂xj

∣

∣

∣

2

+ |χ|2
∣

∣

∣

∂v

∂xi

∣

∣

∣

2∣
∣

∣

∂v

∂xj

∣

∣

∣

2

dx

≤ Ch2
τ

d
∑

i,j=1

|v|20,6,τ

∣

∣

∣

∂v

∂xi

∣

∣

∣

2

0,6,τ

∣

∣

∣

∂χ

∂xj

∣

∣

∣

2

0,6,τ
+ |χ|20,6,τ

∣

∣

∣

∂v

∂xi

∣

∣

∣

2

0,6,τ

∣

∣

∣

∂v

∂xj

∣

∣

∣

2

0,6,τ

≤ Ch2
τ

[

|v|20,6,τ |v|
2
1,6,τ |χ|

2
1,6,τ + |χ|20,6,τ |v|

4
1,6,τ

]

, (4.2.14)

where in the last step we have noted that
∣

∣

∂η
∂xi

∣

∣

0,6,τ
≤ |η|1,6,τ ∀η ∈W 1,6(τ).
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We finally add all contributions from all simplices to yield that

∣

∣(I − πh)(χv2)
∣

∣

2

1
=

∑

τ∈T h

∣

∣(I − πh)(χv2)
∣

∣

2

1,τ

≤ Ch2
∑

τ∈T h

[

|v|20,6,τ |v|
2
1,6,τ |χ|

2
1,6,τ + |χ|20,6,τ |v|

4
1,6,τ

]

≤ Ch2
[(

∑

τ∈T h

|v|60,6,τ

)
1
3
(

∑

τ∈T h

|v|61,6,τ

)
1
3
(

∑

τ∈T h

|χ|60,6,τ

)
1
3

+
(

∑

τ∈T h

|χ|60,6,τ

)
1
3
(

∑

τ∈T h

|v|61,6,τ

)
2
3
]

= Ch2
[

|v|20,6|v|
2
1,6|χ|

2
1,6 + |χ|20,6|v|

4
1,6

]

, (4.2.15)

leading to (4.2.12), as required. 2

Lemma 4.2.6 Let χ, η, v ∈ Sh. Then we have

∣

∣(I − πh)(χηv2)
∣

∣

0,1
≤



























Ch2‖χ‖1‖η‖1‖v‖
2
1 if d = 1,

Ch2(1−s)‖χ‖1‖η‖1‖v‖
2
1 if d = 2, where s ∈ (0, 1],

Ch‖χ‖1‖η‖1‖v‖
2
1 if d = 3.

(4.2.16)

Proof. Using (4.1.9a) we obtain for an arbitrary simplex τ that

∣

∣(I − πh)(χηv2)
∣

∣

0,1,τ
≤ Ch2

τ

d
∑

i,j=1

∫

τ

∣

∣

∣

∂2

∂xi∂xj

(χηv2)
∣

∣

∣
dx. (4.2.17)

Since χ, η and v are linear on the simplex τ we have

∂2

∂xi∂xj
(χηv2) =

∂χ

∂xj

∂η

∂xi
v2 + 2

∂χ

∂xj
ηv

∂v

∂xi
+
∂χ

∂xi

∂η

∂xj
v2 + 2χ

∂η

∂xj
v
∂v

∂xi

+ 2
∂χ

∂xi
ηv

∂v

∂xj
+ 2χ

∂η

∂xi
v
∂v

∂xj
+ 2χη

∂v

∂xi

∂v

∂xj
.

By Hölder’s inequality we have on the simplex τ that

∫

τ

∣

∣

∣

∂χ

∂xj

∂η

∂xi

v2
∣

∣

∣
dx ≤

∣

∣

∣

∂χ

∂xj

∣

∣

∣

0,τ

∣

∣

∣

∂η

∂xi

∣

∣

∣

0,τ
|v|20,∞,τ

≤ |χ|1,τ |η|1,τ |v|
2
0,∞,τ .
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Hence, by applying the same treatment on the remaining terms we conclude from

(4.2.17) that

∣

∣(I − πh)(χηv2)
∣

∣

0,1,τ
≤ Ch2

τ

[

|χ|1,τ |η|1,τ |v|
2
0,∞,τ + |χ|1,τ |v|1,τ |η|0,∞,τ |v|0,∞,τ

+ |η|1,τ |v|1,τ |χ|0,∞,τ |v|0,∞,τ + |v|21,τ |χ|0,∞,τ |η|0,∞,τ

]

.

We now add all contributions from all simplices to obtain that

∣

∣(I − πh)(χηv2)
∣

∣

0,1
=

∑

τ∈T h

|(I − πh)(χηv2)|0,1,τ

≤ Ch2
[

|v|20,∞

∑

τ∈T h

|χ|1,τ |η|1,τ + |η|0,∞|v|0,∞

∑

τ∈T h

|χ|1,τ |v|1,τ

+ |χ|0,∞|v|0,∞

∑

τ∈T h

|η|1,τ |v|1,τ + |χ|0,∞|η|0,∞

∑

τ∈T h

|v|21,τ

]

≤ Ch2
[

|v|20,∞

(

∑

τ∈T h

|χ|21,τ

)
1
2
(

∑

τ∈T h

|η|21,τ

)
1
2

+ |η|0,∞|v|0,∞

(

∑

τ∈T h

|χ|21,τ

)
1
2
(

∑

τ∈T h

|v|21,τ

)
1
2

+ |χ|0,∞|v|0,∞

(

∑

τ∈T h

|η|21,τ

)
1
2
(

∑

τ∈T h

|v|21,τ

)
1
2

+ |χ|0,∞|η|0,∞

∑

τ∈T h

|v|21,τ

]

= Ch2
[

|v|20,∞|χ|1|η|1 + |η|0,∞|v|0,∞|χ|1|v|1

+ |χ|0,∞|v|0,∞|η|1|v|1 + |χ|0,∞|η|0,∞|v|21

]

. (4.2.18)

For d = 1 we have, by (2.1.4), H1(Ω) →֒ L∞(Ω). For d = 2 we have from the

inverse inequality (4.1.8a) and the Sobolev embedding H1(Ω) →֒ Lp(Ω) that for

any χ ∈ Sh, |χ|0,∞ ≤ Ch−2/p|χ|0,p ≤ Ch−2/p‖χ‖1 ∀ p ∈ [2,∞) which means that

|χ|0,∞ ≤ Ch−s‖χ‖1 ∀ s ∈ (0, 1]. For the case d = 3, again the inverse inequality and

H1(Ω) →֒ Lp(Ω) give for any χ ∈ Sh that |χ|0,∞ ≤ Ch−3/p|χ|0,p ≤ Ch−3/p‖χ‖1 ∀ p ∈

[2, 6] which leads, in particular, to |χ|0,∞ ≤ Ch−1/2‖χ‖1.

Then inserting the above estimates of |χ|0,∞ into (4.2.18) results in the desired

result (4.2.16). 2
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Lemma 4.2.7 Let χ ∈ Sh and r ≥ 2. Then

∣

∣(I − πh)(χr)
∣

∣

0,1
≤



























Ch2‖χ‖r
1 if d = 1,

Ch2−s(r−2)‖χ‖r
1 if d = 2, where s ∈ (0, 1],

Ch3− r
2‖χ‖r

1 if d = 3.

(4.2.19)

Proof. Simple refinement in the proof of Lemma 4.2.6 and noting that

∂2

∂xi∂xj

(χr) = r(r − 1)χr−2 ∂χ

∂xi

∂χ

∂xj

it follows from (4.1.9a) and the Hölder inequality that

∣

∣(I − πh)(χr)
∣

∣

0,1
≤ Ch2|χ|r−2

0,∞|χ|1|χ|1 ≡ Ch2|χ|r−2
0,∞|χ|21. (4.2.20)

Finally, we use the estimates of |χ|0,∞ derived in the proof of Lemma 4.2.6 to con-

clude that (4.2.19) is satisfied. 2

Lemma 4.2.8 Let χ ∈ Sh and r ≥ 2. Then we have

(χr, 1)h ≡

∫

Ω

πh(χr)dx ≤ C‖χ‖r
1 holds for r ∈











[2,∞) if d = 1, 2

[2, 6] if d = 3.

(4.2.21)

Proof. We split the integrand πh(χr) via
∫

Ω

πh(χr)dx ≤
∣

∣

∣

∫

Ω

πh(χr)dx
∣

∣

∣
≤

∣

∣

∣

∫

Ω

(I − πh)(χr)dx
∣

∣

∣
+

∣

∣

∣

∫

Ω

χrdx
∣

∣

∣

≤
∣

∣(I − πh)(χr)
∣

∣

0,1
+ |χ|r0,r. (4.2.22)

Applying Lemma 4.2.7 to (4.2.22) and using H1(Ω) →֒ Lr(Ω) for r given by (2.1.4)

it follows that

∫

Ω

πh(χr)dx ≤



























C
(

h2 + 1
)

‖χ‖r
1 if d = 1,

C
(

h2−s(r−2) + 1
)

‖χ‖r
1 if d = 2, where s ∈ (0, 1],

C
(

h3− r
2 + 1

)

‖χ‖r
1 if d = 3, r ≤ 6.

(4.2.23)

This inequality proves (4.2.21) after noting that h ≤ |Ω|. 2

We are now ready to introduce semi-discrete and fully-discrete approximations for

the solution of (P). The fully-discrete approximation will be introduced in the next

chapter but in the remaining of this chapter we will be concerned with a semi-discrete

approximation.
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4.3 A semi-discrete approximation

4.3.1 Statement of the semi-discrete problem

We consider the following semi-discrete finite element approximations to the prob-

lems (P) and (Pε) respectively:

(Ph) Find {uh
1 , u

h
2 , w

h
1 , w

h
2} ∈ Sh

m1
× Sh

m2
× Sh × Sh such that for i = 1, 2

uh
i (0) = uh,0

i and for a.e. t ∈ (0, T ) and all χ ∈ Sh

(∂tu
h
i , χ)h + (∇wh

i ,∇χ) = 0, (4.3.1a)

γ(∇uh
i ,∇χ) + (Ψ′

i(u
h
i ), χ)h + (f

(i)
D (uh

1 , u
h
2), χ)h = (wh

i , χ)h, (4.3.1b)

where uh,0
i is an appropriate approximation of u0

i in Sh
mi

. For instance, P hu0
i ∈ Sh

mi

or P h
γ u

0
i ∈ Sh

mi
, i = 1, 2.

(Ph

ε ) Find {uh
ε,1, u

h
ε,2, w

h
ε,1, w

h
ε,2} ∈ Sh

m1
× Sh

m2
× Sh × Sh such that for i = 1, 2

uh
ε,i(0) = uh,0

i and for a.e. t ∈ (0, T ) and all χ ∈ Sh

(∂tu
h
ε,i, χ)h + (∇wh

ε,i,∇χ) = 0, (4.3.2a)

γ(∇uh
ε,i,∇χ) + (Ψ′

ε,i(u
h
ε,i), χ)h + (f

(i)
D (uh

ε,1, u
h
ε,2), χ)h = (wh

ε,i, χ)h. (4.3.2b)

Similarly to the continuous problem, it will be convenient to establish equivalent

forms to (Ph) and (Ph

ε ). For this purpose we take χ = 1 in (4.3.2a) to yield for

i = 1, 2 and t ∈ (0, T ) that ∂tu
h
ε,i ∈ V h

0 and, by (4.1.4) and (4.1.19), if uh,0
i = P h

γ u
0
i

(uh
ε,i(t), 1) ≡ (uh

ε,i(t), 1)h = (uh
ε,i(0), 1)h = (uh

ε,i(0), 1) = (P h
γ u

0
i , 1) = (u0

i , 1) = mi|Ω|.

(4.3.3)

Likewise, in the case where uh,0
i = P hu0

i we have by (4.1.20) that

(uh
ε,i(t), 1) ≡ (uh

ε,i(t), 1)h = (P hu0
i , 1)h = (u0

i , 1) = mi|Ω|. (4.3.4)

Using the definition of Ĝh, (4.1.11), one can rewrite (4.3.2a) as

(∇(Ĝh∂tu
h
ε,i + wh

ε,i),∇χ) = 0 ∀χ ∈ Sh,

which gives, by choosing χ = Ĝh∂tu
h
ε,i+w

h
ε,i followed by the Poincaré inequality, that

∣

∣Ĝh∂tu
h
ε,i+(wh

ε,i−

∫

− wh
ε,i)

∣

∣

0
≤ Cp

∣

∣Ĝh∂tu
h
ε,i+(wh

ε,i−

∫

− wh
ε,i)

∣

∣

1
= Cp

∣

∣Ĝh∂tu
h
ε,i+w

h
ε,i

∣

∣

1
= 0.
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Hence, for i = 1, 2

wh
ε,i = −Ĝh∂tu

h
ε,i +

∫

− wh
ε,i, (4.3.5)

where, by (4.3.2b) and (4.1.4),
∫

− wh
ε,i =

∫

−
[

πhΨ′
ε,i(u

h
ε,i) + πhf

(i)
D (uh

ε,1, u
h
ε,2)

]

. (4.3.6)

According to above (Ph

ε ) can be rewritten equivalently as:

(Ph

ε ) Find {uh
ε,1, u

h
ε,2} ∈ Sh

m1
× Sh

m2
such that for i = 1, 2 uh

ε,i(0) = uh,0
i and for

a.e. t ∈ (0, T ) and all χ ∈ Sh

γ(∇uh
ε,i,∇χ)+(Ψ′

ε,i(u
h
ε,i), χ−

∫

− χ)h +(f
(i)
D (uh

ε,1, u
h
ε,2), χ−

∫

− χ)h +(Ĝh∂tu
h
ε,i, χ)h = 0.

(4.3.7)

In a similar treatment, one can write an equivalent form to (Ph) as:

(Ph) Find {uh
1 , u

h
2} ∈ Sh

m1
× Sh

m2
such that for i = 1, 2 uh

i (0) = uh,0
i and for

a.e. t ∈ (0, T ) and all χ ∈ Sh

γ(∇uh
i ,∇χ)+(Ψ′

i(u
h
i ), χ−

∫

− χ)h+(f
(i)
D (uh

1 , u
h
2), χ−

∫

− χ)h+(Ĝh∂tu
h
i , χ)h = 0. (4.3.8)

4.3.2 Existence and uniqueness of the approximation

This section is devoted to proof of existence and uniqueness of a solution to the pro-

posed semi-discrete problem (Ph) under the assumptions (A1) and (A2). Indeed, we

employ the same approach used in the continuous problem. We shall first consider

the semi-discrete regularized version (Ph

ε ) and then we pass to the limit as ε → 0.

Theorem 4.3.1 Let the assumptions (A1) and (Ah) hold. Let uh,0
i = P hu0

i . Then

for all ε ≤ ε0 and all h > 0, (Ph

ε ) possesses a unique solution {uh
ε,1, u

h
ε,2, w

h
ε,1, w

h
ε,2}

such that for i = 1, 2 the following stability estimates hold independently of the

parameters ε and h

‖uh
ε,i‖L∞(0,T ;H1(Ω)) + ‖uh

ε,i‖H1(0,T ;(H1(Ω))′) ≤ C, (4.3.9a)

‖wh
ε,i‖L2(0,T ;H1(Ω)) ≤ C, (4.3.9b)

‖πhφε(u
h
ε,i)‖L2(ΩT ) ≤ C, (4.3.9c)

‖πhf
(i)
D (uh

ε,1, u
h
ε,2)‖L∞(0.T ;L2(Ω)) ≤ C. (4.3.9d)
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Proof. We first represent uh
ε,i and wh

ε,i in terms of the basis functions {ϕj}
J
j=0 as

uh
ε,i(x, t) =

J
∑

j=0

aij(t)ϕj(x), wh
ε,i(x, t) =

J
∑

j=0

bij(t)ϕj(x) i = 1, 2, (4.3.10)

where aij and bij to be determined. Replacing uh
ε,i and wh

ε,i in (4.3.2a) and (4.3.2b)

by their above presentations and taking χ = ϕk, k = 0, 1, . . . , J yields after noting

(4.1.26) that for i = 1, 2

J
∑

j=0

daij

dt
Mjk +

J
∑

j=0

bij(t)Ajk = 0,

γ
J

∑

j=0

aij(t)Ajk + (Ψ′
ε,i(u

h
ε,i), ϕk)

h + (f
(i)
D (uh

ε,1, u
h
ε,2), ϕk)

h =
J

∑

j=0

bij(t)Mjk,

J
∑

j=0

aij(0)ϕj(x) = uh,0
i .

Note that the last equation implies that aik(0) = 1
Mkk

(uh,0
i , ϕk)

h for k = 0, 1, ...., J .

The above system can be written in the matrix notation as

M
dai

dt
= −Abi, (4.3.11a)

Mbi = γAai + g1(ai) + gi
2(a1, a2), (4.3.11b)

Mai(0) = a0
i , (4.3.11c)

where for i = 1, 2 and k = 0, 1, . . . , J

(

g1(ai)
)

k
= (Ψ′

ε,i(u
h
ε,i), ϕk)

h,
(

gi
2(a1, a2)

)

k
= (f

(i)
D (uh

ε,1, u
h
ε,2), ϕk)

h

(

a0
i

)

k
= (uh,0

i , ϕk)
h.

Since the lumped matrix, M , is invertible, we have for i = 1, 2 that

dai

dt
= −γM−1AM−1Aai −M−1AM−1g1(ai) −M−1AM−1gi

2(a1, a2) := Fi(a1, a2),

ai(0) = M−1a0
i .

Letting â = (a1, a2)
T , F̂ (â) = (F1(a1, a2), F2(a1, a2))

T and â0 = (M−1a0
1,M

−1a0
2)

T

we can rewrite the above system of ODEs in the form

dâ

dt
= F̂ (â),

â(0) = â0.
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Since for i = 1, 2, Ψ′
ε,i and f

(i)
D are locally Lipschitz, F̂ is locally Lipschitz and hence

the standard existence theory of a system of ODEs asserts that the above system has

a unique solution on some finite time interval (0, th), th > 0. Therefore, we have for

i = 1, 2 the local existence of uh
ε,i. By (4.3.11b) we obtain the local existence of wh

ε,i.

To obtain the global existence we derive a priori estimates bounding the semi-

discrete approximations uh
ε,i and wh

ε,i.

Taking χ = Ĝh∂tu
h
ε,i in (4.3.2a) and noting (4.1.12) and (4.1.11) yields for i = 1, 2

and t ∈ (0, T ) that

(∂tu
h
ε,i, Ĝ

h∂tu
h
ε,i)

h + (∇wh
ε,i,∇Ĝh∂tu

h
ε,i) = ‖∂tu

h
ε,i‖

2
−h + (wh

ε,i, ∂tu
h
ε,i)

h = 0. (4.3.12)

Now we test (4.3.2b) with χ = ∂tu
h
ε,i ∈ V h

0 and then we sum over i = 1, 2 to obtain,

after noting (4.3.12) and (∇uh
ε,i,∇∂tu

h
ε,i) = 1

2
d
dt
|uh

ε,i|
2
1,

γ

2

d

dt

[

|uh
ε,1|

2
1 + |uh

ε,2|
2
1

]

+
[

(Ψ′
ε,1(u

h
ε,1), ∂tu

h
ε,1)

h + (Ψ′
ε,2(u

h
ε,2), ∂tu

h
ε,2)

h
]

+
[

(f
(1)
D (uh

ε,1, u
h
ε,2), ∂tu

h
ε,1)

h + (f
(2)
D (uh

ε,1, u
h
ε,2), ∂tu

h
ε,2)

h
]

+
[

‖∂tu
h
ε,1‖

2
−h + ‖∂tu

h
ε,2‖

2
−h

]

= 0. (4.3.13)

Using the definition of (·, ·)h, (4.1.3), we have for t ∈ (0, T ] and i = 1, 2 that
∫ t

0

(Ψ′
ε,i(u

h
ε,i), ∂su

h
ε,i)

hds =

∫

Ω

πh
(

∫ t

0

Ψ′
ε,i(u

h
ε,i)∂su

h
ε,ids

)

dx

=

∫

Ω

[

πh(Ψε,i(u
h
ε,i(t))) − πh(Ψε,i(u

h
ε,i(0)))

]

dx

= (Ψε,i(u
h
ε,i(t)), 1)h − (Ψε,i(u

h
ε,i(0)), 1)h. (4.3.14)

Recalling that f
(i)
D (uh

ε,1, u
h
ε,2) := ∂uh

ε,i
fD(uh

ε,1, u
h
ε,2) and again using the definition

(4.1.3) we have for t ∈ (0, T ] and i = 1, 2 that
∫ t

0

[

(f
(1)
D (uh

ε,1, u
h
ε,2), ∂su

h
ε,1)

h + (f
(2)
D (uh

ε,1, u
h
ε,2), ∂su

h
ε,2)

h
]

ds

=

∫

Ω

πh
(

∫ t

0

[

f
(1)
D (uh

ε,1, u
h
ε,2)∂su

h
ε,1 + f

(2)
D (uh

ε,1, u
h
ε,2)∂su

h
ε,2

]

ds
)

dx

=

∫

Ω

πh
(

∫ t

0

d

ds

[

fD(uh
ε,1(s), u

h
ε,2(s))

]

ds
)

dx

=

∫

Ω

[

πh(fD(uh
ε,1(t), u

h
ε,2(t))) − πh(fD(uh

ε,1(0), uh
ε,2(0))

]

dx

=
(

fD(uh
ε,1(t), u

h
ε,2(t)), 1

)h
−

(

fD(uh
ε,1(0), uh

ε,2(0)), 1
)h
. (4.3.15)
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Hence, integrating (4.3.13) and using (4.3.14) and (4.3.15) it follows for t ∈ (0, T ]

and i = 1, 2 that

Λh
ε (u

h
ε,1(t), u

h
ε,2(t))+

∫ t

0

[

‖∂su
h
ε,1‖

2
−h + ‖∂su

h
ε,2‖

2
−h

]

ds

= Λh
ε (u

h
ε,1(0), uh

ε,2(0)) = Λh
ε (P

hu0
1, P

hu0
2), (4.3.16)

where

Λh
ε (u

h
ε,1, u

h
ε,2) :=

γ

2

[

|uh
ε,1|

2
1+|uh

ε,2|
2
1

]

+(Ψε,1(u
h
ε,1), 1)h+(Ψε,2(u

h
ε,2), 1)h+(fD(uh

ε,1, u
h
ε,2), 1)h.

(4.3.17)

Now we bound the terms of Λh
ε (P

hu0
1, P

hu0
2) in turn. From (4.1.21) and the assump-

tions (A1) we have for i = 1, 2 that

‖P hu0
i ‖1 ≤ C‖u0

i ‖1 ≤ C. (4.3.18)

We also have by (4.1.23) and the assumptions (A1) that |P hu0
i |0,∞ ≤ |u0

i |0,∞ ≤ 1.

Together with fact that ψε(r) ≤ ψε(1) ∀ r ∈ [−1, 1] this shows for i = 1, 2 that

(Ψε,i(P
hu0

i ), 1)h ≤ (ψε(1) + θi

2
, 1)h ≤ (θ ln 2 + θi

2
)|Ω|. (4.3.19)

We employ Lemma 4.2.4 and Lemma 4.2.8 to bound fD(P hu0
1, P

hu0
2) as follows

(fD(P hu0
1, P

hu0
2), 1)h = D

∫

Ω

πh
(

(P hu0
1 + α1)

2(P hu0
2 + α2)

2
)

dx

≤ D
(

∫

Ω

πh
(

(P hu0
1 + α1)

4
)

dx
)

1
2
(

∫

Ω

πh
(

(P hu0
2 + α2)

4
)

dx
)

1
2

≤ C‖P hu0
1 + α1‖

2
1‖P

hu0
2 + α2‖

2
1

≤ C
[

‖u0
1‖

2
1 + 1

][

‖u0
2‖

2
1 + 1

]

≤ C, (4.3.20)

where we have also used (4.2.21) and the assumptions (A1).

Collecting the estimates (4.3.18)-(4.3.20) together with (4.3.17) yields that

Λh
ε (P

hu0
1, P

hu0
2) ≤ C and hence (4.3.16) becomes

Λh
ε (u

h
ε,1(t), u

h
ε,2(t)) +

∫ t

0

[

‖∂su
h
ε,1‖

2
−h + ‖∂s u

h
ε,2‖

2
−h

]

ds = Λh
ε (P

hu0
1, P

hu0
2) ≤ C.

(4.3.21)
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Noting that, by Lemma 2.2.1, Ψε,i(·) ≥ −C0 and fD(·, ·) ≥ 0 it follows from (4.3.17)

and (4.3.21) that for t ∈ (0, T ]

γ

2

[

|uh
ε,1(t)|

2
1 + |uh

ε,2(t)|
2
1

]

+

∫ t

0

[

‖∂su
h
ε,1‖

2
−h + ‖∂su

h
ε,2‖

2
−h

]

ds ≤ C. (4.3.22)

Thus, using the Poincaré inequality and (4.3.3) we have from (4.3.22) that for i = 1, 2

‖uh
ε,1(t)‖1 + ‖uh

ε,2(t)‖1 ≤ C, (4.3.23)

which gives the first required estimate in (4.3.9a).

In addition, (4.3.22) with the aid of the equivalence result (4.1.17) and Lemma 2.1.1

implies for i = 1, 2 that

‖∂tu
h
ε,i‖

2
L2(0,T ;(H1(Ω))′) ≤ C

∫ T

0

‖∂tu
h
ε,i‖

2
−hdt ≤ C. (4.3.24)

From the Sobolev embedding result L∞(0, T ;H1(Ω)) →֒ L∞(0, T ; (H1(Ω))′) →֒

L2(0, T ; (H1(Ω))′) and the first estimate in (4.3.9a) we find for i = 1, 2 that

‖uh
ε,i‖L2(0,T ;(H1(Ω))′) ≤ C. (4.3.25)

We therefore obtain, by (4.3.24) and (4.3.25), the second estimate in (4.3.9a).

Now we turn to show the estimate (4.3.9b) on wh
ε,i, i = 1, 2. To see this we first

note from (4.3.5) and (4.1.12) that

|wh
ε,i|

2
1 = | − Ĝh∂tu

h
ε,i +

∫

− wh
ε,i|

2
1 = |Ĝh∂tu

h
ε,i|

2
1 = ‖∂tu

h
ε,i‖

2
−h. (4.3.26)

Hence, by (4.3.24),

∫ T

0

|wh
ε,i −

∫

− wh
ε,i|

2
1dt =

∫ T

0

|wh
ε,i|

2
1dt =

∫ T

0

‖∂tu
h
ε,i‖

2
−hdt ≤ C. (4.3.27)

Together with the Poincaré inequality this shows after noting wh
ε,i−

∫

− wh
ε,i ∈ V h

0 that

for i = 1, 2
∥

∥

∥
wh

ε,i −

∫

− wh
ε,i

∥

∥

∥

L2(0,T ;H1(Ω))
≤ C. (4.3.28)

To achieve our aim it remains now, in view of (4.3.28), to prove
∫

− wh
ε,i is bounded

in L2(0, T ;H1(Ω)).
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For this purpose we use (4.3.2b) with χ = uh
ε,i−

∫

− uh
ε,i = uh

ε,i−mi ∈ V h
0 and rearrange

the terms after adding (Ψ′
ε,i(u

h
ε,i)+f

(i)
D (uh

ε,1, u
h
ε,2), β)h to the both sides where β ∈ R.

Then noting in turn: (4.1.11), the inequality (2.2.6) with r = uh
ε,i and s = β, Young’s

inequality, (4.1.13) and, by Lemma 2.2.1, −Ψε,i(·) ≤ C0 ∀ ε ≤ ε0 we have for i = 1, 2

(Ψ′
ε,i(u

h
ε,i) + f

(i)
D (uh

ε,1, u
h
ε,2), β −mi)

h

= (wh
ε,i, u

h
ε,i −mi)

h − γ|uh
ε,i|

2
1 + (Ψ′

ε,i(u
h
ε,i), β − uh

ε,i)
h + (f

(i)
D (uh

ε,1, u
h
ε,2), β − uh

ε,i)
h

≤ (∇wh
ε,i,∇Ĝh(uh

ε,i −mi)) + (Ψε,i(β) − Ψε,i(u
h
ε,i), 1)h +

θi

2
|β − uh

ε,i|h

+ |πhf
(i)
D (uh

ε,1, u
h
ε,2)|h|β − uh

ε,i|h

≤ |wh
ε,i|1‖u

h
ε,i −mi‖−h + (Ψε,i(β) − Ψε,i(u

h
ε,i), 1)h + C|β − uh

ε,i|
2
h +

1

2
|f

(i)
D (uh

ε,1, u
h
ε,2)|h

≤ C|wh
ε,i|1|u

h
ε,i −mi|h + C

[

1 + (Ψε,i(β), 1)h + |β − uh
ε,i|

2
h + |f

(i)
D (uh

ε,1, u
h
ε,2)|

2
h

]

≤ C
[

1 + |wh
ε,i|1 + (Ψε,i(β), 1)h + |β − uh

ε,i|
2
h + |f

(i)
D (uh

ε,1, u
h
ε,2)|

2
h

]

, (4.3.29)

where in the last inequality we have noted, by the bound (4.3.23) and (4.1.6), that

|uh
ε,i −mi|h ≤ C .

Using Lemma 4.2.4, Lemma 4.2.8 and the bound (4.3.23) yields for i, j = 1, 2 with

i 6= j that

∣

∣f
(i)
D (uh

ε,1, u
h
ε,2)

∣

∣

2

h
= 4D2

∫

Ω

πh
(

(uh
ε,i + αi)

2(uh
ε,j + αj)

4
)

dx

≤ 4D2
(

∫

Ω

πh
(

(uh
ε,i + αi)

6
)

dx
)

1
3
(

∫

Ω

πh
(

(uh
ε,j + αj)

6
)

dx
)

2
3

≤ C‖uh
ε,i + αi‖

2
1‖u

h
ε,j + αj‖

4
1 ≤ C. (4.3.30)

We take β = ±1∓ δ0
2

in (4.3.29) to give, on noting Ψε,i(r) ≤ θ ln 2 + θi

2
∀ r ∈ [−1, 1],

(4.3.23), (4.1.6) and (4.3.30), that

(πhΨ′
ε,i(u

h
ε,i) + πhf

(i)
D (uh

ε,1, u
h
ε,2), 1 −

δ0
2
−mi)

= (Ψ′
ε,i(u

h
ε,i) + f

(i)
D (uh

ε,1, u
h
ε,2), 1 −

δ0
2
−mi)

h ≤ C
[

1 + |wh
ε,i|1

]

and

(πhΨ′
ε,i(u

h
ε,i) + πhf

(i)
D (uh

ε,1, u
h
ε,2), 1 −

δ0
2

+mi)

= (Ψ′
ε,i(u

h
ε,i) + f

(i)
D (uh

ε,1, u
h
ε,2), 1 −

δ0
2

+mi)
h ≥ −C

[

1 + |wh
ε,i|1

]

.
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By assumptions (A1) we have 1− δ0
2
−mi > 0. Hence, division of the first inequality

by |Ω|(1 − δ0
2
−mi) and the second one by |Ω|(1 − δ0

2
+mi) yields for i = 1, 2 that

∣

∣

∣

∫

−
[

πhΨ′
ε,i(u

h
ε,i) + πhf

(i)
D (uh

ε,1, u
h
ε,2)

]

∣

∣

∣
≤ C

[

1 + |wh
ε,i|1

]

. (4.3.31)

Squaring this inequality and integrating over (0, T ) it follows after noting (4.3.27)

that for i = 1, 2

∥

∥

∥

∫

−
[

πhΨ′
ε,i(u

h
ε,i) + πhf

(i)
D (uh

ε,1, u
h
ε,2)

]

∥

∥

∥

2

L2(0,T )
≤ C

[

T +

∫ T

0

|wh
ε,i|

2
1dt

]

≤ C. (4.3.32)

For i = 1, 2 this result together with (4.3.6) leads to

∥

∥

∥

∫

− wh
ε,i

∥

∥

∥

L2(0,T ;H1(Ω))
= |Ω|

1
2

∥

∥

∥

∫

− wh
ε,i

∥

∥

∥

L2(0,T )

= |Ω|
1
2

∥

∥

∥

∫

−
[

πhΨ′
ε,i(u

h
ε,i) + πhf

(i)
D (uh

ε,1, u
h
ε,2)

]

∥

∥

∥

L2(0,T )
≤ C.

(4.3.33)

Thus the desired estimate (4.3.9b) follows from (4.3.28) and (4.3.33). Furthermore,

using (4.3.30), the fact that |f
(i)
D (uh

ε,1, u
h
ε,2)|

2
h = |πhf

(i)
D (uh

ε,1, u
h
ε,2)|

2
h and the equiva-

lence result (4.1.6) we obtain (4.3.9d).

Testing (4.3.2b) with χ = πhφε(u
h
ε,i) ∈ Sh and noting (4.1.4) and a Young’s in-

equality we arrive at

γ(∇uh
ε,i,∇π

hφε(u
h
ε,i)) + |πhφε(u

h
ε,i)|

2
h

= (wh
ε,i, π

hφε(u
h
ε,i))

h + θi(u
h
ε,i, π

hφε(u
h
ε,i))

h − (f
(i)
D (uh

ε,1, u
h
ε,2), π

hφε(u
h
ε,i))

h

≤
1

2
|πhφε(u

h
ε,i)|

2
h + C

[

|wh
ε,i|

2
h + |uh

ε,i|
2
h + |πhf

(i)
D (uh

ε,1, u
h
ε,2)|

2
h

]

. (4.3.34)

By Lemma 4.2.1 the first term on the left hand side of (4.3.34) is non-negative.

Hence we deduce the estimate (4.3.9c) after integrating the above over (0, T ) and

noting the bounds (4.3.9a), (4.3.9b) and (4.3.9d).

To show the uniqueness we set ūh
ε,i := uh

ε,i − uh∗
ε,i where Bh = {uh

ε,i, w
h
ε,i}i=1,2 and

B∗
h = {uh∗

ε,i, w
h∗
ε,i}i=1,2 are two solutions of the problem (Ph

ε ). Taking χ = ūh
ε,i ∈ V h

0

in (4.3.7) when Bh is the solution and again taking χ = ūh
ε,i in (4.3.7) when B∗

h is
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the solution. Then we subtract the resulting equations and rearrange to have for

i = 1, 2

γ|ūh
ε,i|

2
1 + (φε(u

h
ε,i) − φε(u

h∗
ε,i), ū

h
ε,i)

h + (Ĝh∂tū
h
ε,i, ū

h
ε,i)

h

= θi|ū
h
ε,i|

2
h − (f

(i)
D (uh

ε,1, u
h
ε,2) − f

(i)
D (uh∗

ε,1, u
h∗
ε,1), ū

h
ε,i)

h. (4.3.35)

By (4.1.11) and (4.1.12) we have

d

dt
‖ūh

ε,i‖
2
−h = 2(Ĝh∂tū

h
ε,i, ū

h
ε,i)

h. (4.3.36)

On using this result, the monotonicity of φε and (4.1.15) one can rewrite (4.3.35) as

γ|ūh
ε,i|

2
1 +

1

2

d

dt
‖ūh

ε,i‖
2
−h ≤

γ

4
|ūh

ε,i|
2
1 +C‖ūh

ε,i‖
2
−h − (f

(i)
D (uh

ε,1, u
h
ε,2)− f

(i)
D (uh∗

ε,1, u
h∗
ε,1), ū

h
ε,i)

h.

(4.3.37)

Bounding the D-coupling term is more technical. To do so, we first use (2.3.46) with

ri = uh
ε,i and si = uh∗

ε,i and then apply Lemma 4.2.4 and Lemma 4.2.8 to yield after

noting the estimate (4.3.23) and a Young’s inequality that for i, j = 1, 2 with i 6= j

∣

∣(f
(i)
D (uh

ε,1, u
h
ε,2) − f

(i)
D (uh∗

ε,1, u
h∗
ε,1), ū

h
ε,i)

h
∣

∣

≤ 2D
∣

∣

(

(uh
ε,j + αj)

2, (ūh
ε,i)

2
)h∣

∣ + 2D
∣

∣

(

(uh∗
ε,i + αi)(u

h
ε,j + uh∗

ε,j + 2αj), ū
h
ε,iū

h
ε,j

)h∣
∣

≤ 2D
(

(uh
ε,j + αj)

2, (ūh
ε,i)

2
)h

+ 2D
(

|uh∗
ε,i + αi||u

h
ε,j + uh∗

ε,j + 2αj |, |ū
h
ε,i||ū

h
ε,j|

)h

≤ 2D
(

∫

Ω

πh
(

(uh
ε,j + αj)

4
)

dx
)

1
2
(

∫

Ω

πh
(

(ūh
ε,i)

4
)

dx
)

1
2

+ 2D
[(

∫

Ω

πh
(

(uh∗
ε,i + αi)

4
)

dx
)

1
4
(

∫

Ω

πh
(

(uh
ε,j + uh∗

ε,j + 2αj)
4
)

dx
)

1
4

(

∫

Ω

πh
(

(ūh
ε,i)

4
)

dx
)

1
4
(

∫

Ω

πh
(

(ūh
ε,j)

4
)

dx
)

1
4
]

≤ C‖uh
ε,j + αj‖

2
1

(

∫

Ω

πh
(

(ūh
ε,i)

4
)

dx
)

1
2

+
[

C‖uh∗
ε,i + αi‖1‖u

h
ε,j + uh∗

ε,j + 2αj‖1

(

∫

Ω

πh
(

(ūh
ε,i)

4
)

dx
)

1
4
(

∫

Ω

πh
(

(ūh
ε,j)

4
)

dx
)

1
4
]

≤ C
[(

∫

Ω

πh
(

(ūh
ε,i)

4
)

dx
)

1
2

+
(

∫

Ω

πh
(

(ūh
ε,i)

4
)

dx
)

1
4
(

∫

Ω

πh
(

(ūh
ε,j)

4
)

dx
)

1
4
]

≤ C
[(

∫

Ω

πh
(

(ūh
ε,i)

4
)

dx
)

1
2

+
(

∫

Ω

πh
(

(ūh
ε,j)

4
)

dx
)

1
2
]

≡ T1 + T2. (4.3.38)

Now we bound the right hand side of (4.3.38). For i = 1, 2 we split Ti as

Ti := C
(

∫

Ω

πh
(

(ūh
ε,i)

4
)

dx
)

1
2
≤ C

(

∣

∣

(

I − πh
)(

(ūh
ε,i)

4
)
∣

∣

0,1
+

∣

∣ūh
ε,i

∣

∣

4

0,4

)
1
2

≤ C
∣

∣

(

I − πh
)(

(ūh
ε,i)

4
)
∣

∣

1
2

0,1
+ C

∣

∣ūh
ε,i

∣

∣

2

0,4
≡ Ti,1 + Ti,2. (4.3.39)
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We bound each term on the right hand side of (4.3.39) separately. Applying

Lemma 4.2.7 with r = 4, where for d = 1 we note that h2 ≤ |Ω|h and for d = 2 we

take s = 1
2
, followed by the Poincaré inequality, the inverse inequality (4.1.8b), the

first inequality in (4.1.15) and finally the Young inequality with p = 8 and q = 8
7

we

obtain for i = 1, 2 that

Ti,1 = C
∣

∣

(

I − πh
)(

(ūh
ε,i)

4
)
∣

∣

1
2

0,1
≤ Ch

1
2‖ūh

ε,i‖
2
1

≤ Ch
1
2 |ūh

ε,i|
2
1 = Ch

1
2 |ūh

ε,i|
1
2
1 |ū

h
ε,i|

3
2
1

≤ C|ūh
ε,i|

1
2
h |ū

h
ε,i|

3
2
1 ≤ C‖ūh

ε,i‖
1
4
−h|ū

h
ε,i|

1
4
1 |ū

h
ε,i|

3
2
1

= C‖ūh
ε,i‖

1
4
−h|ū

h
ε,i|

7
4
1 ≤

γ

16
|ūh

ε,i|
2
1 + C‖ūh

ε,i‖
2
−h. (4.3.40)

By Lemma 4.2.3 we have for i = 1, 2 that

Ti,2 = C
∣

∣ūh
ε,i

∣

∣

2

0,4
≤

γ

16
|ūh

ε,i|
2
1 + C‖ūh

ε,i‖
2
−h. (4.3.41)

Combining (4.3.38)-(4.3.41) together yields for i, j = 1, 2 with i 6= j that

∣

∣(f
(i)
D (uh

ε,1, u
h
ε,2)− f

(i)
D (uh∗

ε,1, u
h∗
ε,1), ū

h
ε,i)

h
∣

∣ ≤
γ

8

[

|ūh
ε,i|

2
1 + |ūh

ε,j|
2
1

]

+C
[

‖uh
ε,i‖

2
−h + ‖ūh

ε,j‖
2
−h

]

,

(4.3.42)

and hence (4.3.37) becomes for i, j = 1, 2 with i 6= j

γ|ūh
ε,i|

2
1 +

1

2

d

dt
‖ūh

ε,i‖
2
−h ≤

3γ

8
|ūh

ε,i|
2
1 +

γ

8
|ūh

ε,j|
2
1 + C

[

‖ūh
ε,i‖

2
−h + ‖ūh

ε,i‖
2
−h

]

. (4.3.43)

We sum the above differential inequality over i = 1, 2 and simplify to have

γ

2

[

|ūh
ε,1|

2
1 + |ūh

ε,2|
2
1

]

+
1

2

d

dt

[

‖ūh
ε,1‖

2
−h + ‖ūh

ε,2‖
2
−h

]

≤ C
[

‖ūh
ε,1‖

2
−h + ‖ūh

ε,2‖
2
−h

]

. (4.3.44)

We then use the Gronwall lemma to obtain for t ∈ (0, T ] that

∫ t

0

γ
[

|ūh
ε,1|

2
1 + |ūh

ε,2|
2
1

]

ds+
[

‖ūh
ε,1(t)‖

2
−h + ‖ūh

ε,2(t)‖
2
−h

]

≤ eCt
[

‖ūh
ε,1(0)‖2

−h + ‖ūh
ε,2(0)‖2

−h

]

= 0. (4.3.45)

We therefore have, by (4.1.16), the uniqueness of uh
ε,i, i = 1, 2. The uniqueness of

wh
ε,i is achieved immediately from (4.3.5) and (4.3.6). 2
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Theorem 4.3.2 Let the assumptions of Theorem 4.3.1 hold. Then there exists a

unique solution {uh
1 , u

h
2 , w

h
1 , w

h
2} to (Ph) such that the following stability estimates

hold independently of h:

uh
1 , u

h
2 ∈ L∞(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′), (4.3.46a)

wh
1 , w

h
2 ∈ L2(0, T ;H1(Ω)), (4.3.46b)

πhφ(uh
1), π

hφ(uh
2) ∈ L2(ΩT ), (4.3.46c)

πhf
(1)
D (uh

1 , u
h
2), π

hf
(2)
D (uh

1 , u
h
2) ∈ L∞(0, T ;L2(Ω)). (4.3.46d)

Furthermore, the unique solution satisfies

max{|uh
1 |, |u

h
2|} < 1 a.e. in (0, T ). (4.3.47)

Proof. As the bounds (4.3.9a)-(4.3.9c) are independent of ε it follows that, by the

compactness arguments, there exist subsequences of uh
ε,i, w

h
ε,i , π

hφε(u
h
ε,i) such that

for i = 1, 2

uh
ε,i ⇀ uh

i in L2(0, T ;H1(Ω)) ∩H1(0, T ; (H1(Ω))′), (4.3.48a)

uh
ε,i

∗
⇀ uh

i in L∞(0, T ;H1(Ω)), (4.3.48b)

wh
ε,i ⇀ wh

i in L2(0, T ;H1(Ω)), (4.3.48c)

πhφε(u
h
ε,i) ⇀ χ̇h

i in L2(ΩT ). (4.3.48d)

In addition, in the same way as (2.3.40) in Theorem 2.3.2 one can see for i = 1, 2

uh
ε,i → uh

i in L2(ΩT ). (4.3.49)

Next we show that χ̇h
i = πhφ(uh

i ), i = 1, 2. For this purpose we first prove that

Ih
i (v) :=

∫ T

0

(uh
i − φ−1(v), χ̇h

i − v)hdt ≥ 0 ∀ v ∈ L2(0, T ;Sh). (4.3.50)

In order to obtain (4.3.50) we introduce for i = 1, 2 and any v ∈ L2(0, T ;Sh)

Ih
ε,i(v) :=

∫ T

0

(uh
ε,i − φ−1

ε (v), φε(u
h
ε,i) − v)hdt. (4.3.51)

From (2.2.9) with s = uh
ε,i(xj , t), r = φ−1

ε (v(xj, t)), j = 0, 1, ...., J it follows that

Ih
ε,i(v) =

∫ T

0

J
∑

j=0

Mjj[u
h
ε,i(xj , t) − φ−1

ε (v(xj , t))][φε(u
h
ε,i(xj , t)) − v(xj, t)]dt ≥ 0.
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This integral is well-defined and to see this we use (2.2.16) with s = φε(u
h
ε,i(xj , t))

r = v(xj, t), j = 0, 1, ...., J and note the bound (4.3.9c) to yield

Ih
ε,i(v) =

∫ T

0

J
∑

j=0

Mjj[u
h
ε,i(xj , t) − φ−1

ε (v(xj, t))][φε(u
h
ε,i(xj , t)) − v(xj , t)]dt

≤

∫ T

0

J
∑

j=0

Mjj|u
h
ε,i(xj , t) − φ−1

ε (v(xj , t))||φε(u
h
ε,i(xj , t)) − v(xj , t)|dt

≤

∫ T

0

J
∑

j=0

Mjjθ
−1|φε(u

h
ε,i(xj , t)) − v(xj, t)|

2

= θ−1

∫ T

0

∣

∣πhφε(u
h
ε,i) − v

∣

∣

2

h
= θ−1‖πhφε(u

h
ε,i) − v‖L2(0,T ;Sh) <∞.

For any v ∈ L2(0, T ;Sh) we split the difference Ih
ε,i(v) − Ih

i (v) as

∣

∣

∣
Ih
ε,i(v) − Ih

i (v)
∣

∣

∣
=

∣

∣

∣

∫ T

0

(uh
ε,i − φ−1

ε (v), φε(u
h
ε,i) − v)h − (uh

i − φ−1(v), χ̇h
i − v)hdt

∣

∣

∣

≤
∣

∣

∣

∫ T

0

(uh
ε,i − uh

i , φε(u
h
ε,i) − v)hdt

∣

∣

∣
+

∣

∣

∣

∫ T

0

(φ−1(v) − φ−1
ε (v), φε(u

h
ε,i) − v)hdt

∣

∣

∣

+
∣

∣

∣

∫ T

0

(uh
i − φ−1(v), φε(u

h
ε,i) − χ̇h

i )
hdt

∣

∣

∣

≤
[

‖uh
ε,i − uh

i ‖L2(0,T ;Sh) + ‖φ−1(v) − φ−1
ε (v)‖L2(0,T ;Sh)

]

‖φε(u
h
ε,i) − v‖L2(0,T ;Sh)

+
∣

∣

∣

∫ T

0

(uh
i − φ−1(v), πhφε(u

h
ε,i) − χ̇h

i )
hdt

∣

∣

∣
→ 0 as ε→ 0,

on noting the strong convergence (4.3.49), the convergence, using Lemma 2.2.1,

φ−1
ε (r) → φ−1(r) ∀ r and the weak convergence (4.3.48d).

Therefore, we have for i = 1, 2 and v ∈ L2(0, T ;Sh) Ih
i (v) ≥ 0 as Ih

ε,i(v) ≥ 0.

Now we compute Ih
i (χ̇h

i + βv) and Ih
i (χ̇h

i − βv) where v ∈ L2(0, T ;Sh) and β ∈ R>0

to obtain that
∫ T

0

(uh
i − φ−1(χ̇h

i + βv),−βv)hdt ≥ 0 and

∫ T

0

(uh
i − φ−1(χ̇h

i − βv), βv)hdt ≥ 0.

Thus, by division by −β and β respectively it follows that
∫ T

0

(uh
i − φ−1(χ̇h

i + βv), v)hdt ≤ 0 and

∫ T

0

(uh
i − φ−1(χ̇h

i + βv), v)hdt ≥ 0,

and hence by passage to the limit as β → 0, on noting the continuity of φ−1,

∫ T

0

(uh
i − φ−1(χ̇h

i ), v)
h =

∫ T

0

J
∑

j=0

Mjj[u
h
i − φ−1(χ̇h

i )](xj , t)v(xj , t) = 0. (4.3.52)
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Taking v = uh
i − πhφ−1(χ̇h

i ) ∈ L2(0, T ;Sh) we find for i = 1, 2 that

∫ T

0

[

uh
i − φ−1(χ̇h

i )
]2

(xj , t)dt = 0, j = 0, 1, ...., J,

from which we deduce that uh
i (xj , t) = φ−1(χ̇h

i (xj, t)) a.e. t ∈ (0, T ). Since φ−1(r) ∈

(−1, 1) for all r, we have for a.e. t ∈ (0, T ), i = 1, 2 and for j = 0, 1, ...., J that

|uh
i (xj , t)| < 1, φ(uh

i (xj , t)) = χ̇h
i (xj , t).

We therefore conclude a.e. t ∈ (0, T ) that |uh
i | < 1 and πhφ(uh

i ) = χ̇h
i , as required.

With the aid of the above convergence properties one can pass to the limit in (Ph

ε )

to obtain that {uh
1 , u

h
2 , w

h
1 , w

h
2} is a solution for (Ph), where this step is a simple

modification of the passage to the limit proof in Theorem 2.3.3. Finally, one can

prove uniqueness of a solution to (Ph) by adapting a similar argument to that used

for (Ph

ε ) in Theorem 4.3.1. 2

In Theorem 4.3.4 we prove further stability estimates of the semi-discrete approx-

imations that will be essential for the error bound analysis. For this purpose we

require the assumptions (A2) on the initial data and we also need the weighted

H1(Ω) projection P h
γ , given by (4.1.19), instead of the discrete L2(Ω) projection P h.

We remark by (4.1.23) and assumptions (A1) that P h satisfies |P hu0
i |0,∞ ≤ 1 ∀h > 0

which is a crucial property in the proof of Theorem 4.3.1 which does not hold au-

tomatically for the P h
γ projection. However, under the assumptions (A2) we will be

able to prove that P h
γ satisfies a similar result for sufficiently small h, see Lemma 4.3.3

which follows.

Lemma 4.3.3 Let the assumptions (A2) hold. Then there exists h∗ > 0 such that

for all h ≤ h∗ and for i = 1, 2

|P h
γ u

0
i |0,∞ ≤ 1 −

δ0
2
. (4.3.53)

Proof. Using (4.1.22) and recalling the assumptions (A2) we have

|P h
γ u

0
i |0,∞ ≤

∣

∣(I − P h
γ )u0

i |0,∞ + |u0
i |0,∞ ≤ Ch2− d

2 |u0
i |2 + 1 − δ0.
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We now choose h∗ small enough such that Ch
2− d

2
∗ |u0

i |2 ≤
δ0
2

for d = 1, 2, 3. Thus, we

obtain for all h ≤ h∗ the desired result (4.3.53). 2

Remark. The results of Theorem 4.3.1 and Theorem 4.3.2 can be obtained for

the choice uh,0
i = P h

γ u
0
i , i = 1, 2, under the assumptions (A2) and the restriction

stated in Lemma 4.3.3 on the spatial parameter. Indeed, the proof remains the

same with the only changes that we replace P hu0
i by P h

γ u
0
i and we use (4.1.24) and

(4.3.53) in place of (4.1.21) and (4.1.23), respectively.

Theorem 4.3.4 Let the assumptions (A2) and (Ah) hold. Let uh,0
i = P h

γ u
0
i ,

i = 1, 2. Then for all ε ≤ min{ε0,
δ0
2
} and for all h ≤ h∗ the unique solution of

(Ph

ε ) is such that the following further stability estimates hold independently of the

parameters ε and h:

‖∂tu
h
ε,i‖L2(0,T ;H1(Ω)) + ‖∂tu

h
ε,i‖L∞(0,T ;(H1(Ω))′) ≤ C, (4.3.54a)

‖wh
ε,i‖L∞(0,T ;H1(Ω)) + ‖πhφε(u

h
ε,i)‖L∞(0,T ;L2(Ω)) ≤ C. (4.3.54b)

Proof. We differentiate (4.3.2b) with respect to t and then set χ = ∂tu
h
ε,i to have

after noting (4.3.2a) with χ = ∂tw
h
ε,i that for i = 1, 2

γ|∂tu
h
ε,i|

2
1 + (φ′

ε(u
h
ε,i), (∂tu

h
ε,i)

2)h − θi|∂tu
h
ε,i|

2
h + (∂tf

(i)
D (uh

ε,1, u
h
ε,2), ∂tu

h
ε,i)

h

= (∂tw
h
ε,i, ∂tu

h
ε,i)

h = −(∇wh
ε,i,∇∂tw

h
ε,i) = −

1

2

d

dt
|wh

ε,i|
2
1.

(4.3.55)

Since φ′
ε(·) > 0, ‖∂tu

h
ε,i‖−h = |wh

ε,i|1 (by (4.3.26)) and

(∂tf
(i)
D (uh

ε,1, u
h
ε,2), ∂tu

h
ε,i)

h = 2D((uh
ε,j + αj)

2, (∂tu
h
ε,i)

2)h

+ 4D((uh
ε,i + αi)(u

h
ε,j + αj), ∂tu

h
ε,i∂tu

h
ε,j)

h

≥ 4D((uh
ε,i + αi)(u

h
ε,j + αj), ∂tu

h
ε,i∂tu

h
ε,j)

h,

we may rewrite (4.3.55), for i, j = 1, 2 with i 6= j, as

γ|∂tu
h
ε,i|

2
1 +

1

2

d

dt
‖∂tu

h
ε,i‖

2
−h ≤ θi|∂tu

h
ε,i|

2
h − 4D((uh

ε,i + αi)(u
h
ε,j + αj), ∂tu

h
ε,i∂tu

h
ε,j)

h

≤
γ

4
|∂tu

h
ε,i|

2
1 + C‖∂tu

h
ε,i‖

2
−h

+ 4D
∣

∣((uh
ε,i + αi)(uε,j + αj), ∂tu

h
ε,i∂tu

h
ε,j)

h
∣

∣, (4.3.56)
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where in the last step we have used (4.1.15).

To bound the last term in the right hand side of (4.3.56) we apply Lemma 4.2.4 and

Lemma 4.2.8, the bound (4.3.23) and a Young’s inequality to yield for i, j = 1, 2

with i 6= j that

∣

∣((uh
ε,i + αi)(u

h
ε,j + αj), ∂tu

h
ε,i∂tu

h
ε,j)

h
∣

∣

≤
[(

∫

Ω

πh
(

(uh
ε,i + αi)

4
)

dx
)

1
4
(

∫

Ω

πh
(

(uh
ε,j + αj)

4
)

dx
)

1
4
(

∫

Ω

πh
(

(∂tu
h
ε,i)

4
)

dx
)

1
4

(

∫

Ω

πh
(

(∂tu
h
ε,j)

4
)

dx
)

1
4
]

≤ C‖uh
ε,i + αi‖1‖u

h
ε,j + αj‖1

(

∫

Ω

πh
(

(∂tu
h
ε,i)

4
)

dx
)

1
4
(

∫

Ω

πh
(

(∂tu
h
ε,j)

4
)

dx
)

1
4

≤ C
[(

∫

Ω

πh
(

(∂tu
h
ε,i)

4
)

dx
)

1
2

+
(

∫

Ω

πh
(

(∂tu
h
ε,j)

4
)

dx
)

1
2
]

. (4.3.57)

Applying the same technique used in treating the right hand side of (4.3.38) of the

uniqueness proof one can obtain for i = 1, 2 that

C
(

∫

Ω

πh
(

(∂tu
h
ε,i)

4
)

dx
)

1
2
≤ C

∣

∣

(

I − πh
)(

(∂tu
h
ε,i)

4
)
∣

∣

1
2

0,1
+ C

∣

∣∂tu
h
ε,i

∣

∣

2

0,4

≤
γ

32D
|∂tu

h
ε,i|

2
1 + C‖∂tu

h
ε,i‖

2
−h. (4.3.58)

Hence, by (4.3.57) and (4.3.58), (4.3.56) becomes for i, j = 1, 2 with i 6= j

γ|∂tu
h
ε,i|

2
1 +

1

2

d

dt
‖∂tu

h
ε,i‖

2
−h ≤

3γ

8
|∂tu

h
ε,i|

2
1 +

γ

8
|∂tu

h
ε,j|

2
1 + C

[

‖∂tu
h
ε,i‖

2
−h + ‖∂tu

h
ε,j‖

2
−h

]

.

(4.3.59)

Next we sum (4.3.59) over i = 1, 2 and simplify to have

γ

2

[

|∂tu
h
ε,1|

2
1 + |∂tu

h
ε,2|

2
1

]

+
1

2

d

dt

[

‖∂tu
h
ε,1‖

2
−h + ‖∂tu

h
ε,2‖

2
−h

]

≤ C
[

‖∂tu
h
ε,1‖

2
−h + ‖∂tu

h
ε,2‖

2
−h

]

.

(4.3.60)

With the aid of the Gronwall lemma and (4.3.26) we have for t ∈ (0, T ] that

γ

∫ t

0

[

|∂su
h
ε,1|

2
1 + |∂su

h
ε,2|

2
1

]

ds+
[

‖∂tu
h
ε,1(t)‖

2
−h + ‖∂tu

h
ε,2(t)‖

2
−h

]

≤ C
[

‖∂tu
h
ε,1(0)‖2

−h + ‖∂tu
h
ε,2(0)‖2

−h

]

= C
[

|wh
ε,1(0)|21 + |wh

ε,2(0)|21
]

. (4.3.61)
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We now bound |wh
ε,i(0)|1, i = 1, 2, independently of ε and h. To this aim, we

note from the definition of P h
γ given by (4.1.19), integration by parts , owing to

assumptions (A2) and the definition (4.1.20) of P h that for any χ ∈ Sh

γ(∇uh
ε,i(0),∇χ) = γ(∇P h

γ u
0
i ,∇χ) = γ(∇u0

i ,∇χ) + ((I − P h
γ )u0

i , χ)

= ((I − P h
γ )u0

i , χ) − γ(∆u0
i , χ) =

(

P h[(I − P h
γ )u0

i − γ∆u0
i ], χ

)h

(4.3.62)

Substituting this into (4.3.2b) which makes sense with t = 0 we obtain for i = 1, 2

and any χ ∈ Sh that

(wh
ε,i(0)− P h[(I − P h

γ )u0
i − γ∆u0

i ] − φε(P
h
γ u

0
i ) + θiP

h
γ u

0
i − f

(i)
D (P h

γ u
0
1, P

h
γ u

0
2), χ)h = 0,

and hence

wh
ε,i(0) = P h[(I − P h

γ )u0
i − γ∆u0

i ] + πhφε(P
h
γ u

0
i ) − θiP

h
γ u

0
i + πhf

(i)
D (P h

γ u
0
1, P

h
γ u

0
2).

(4.3.63)

Therefore,

|wh
ε,i(0)|1 ≤

∣

∣P h[(I − P h
γ )u0

i − γ∆u0
i ] − θiP

h
γ u

0
i

∣

∣

1
+

∣

∣πhφε(P
h
γ u

0
i )

∣

∣

1

+
∣

∣πhf
(i)
D (P h

γ u
0
1, P

h
γ u

0
2)

∣

∣

1

≡ T1 + T2 + T3. (4.3.64)

Thus, it remains to find a bound independently of h and ε for all terms involving

u0
i . Owing to (4.1.21) and (4.1.24) and recalling the assumptions (A2) we have for

i = 1, 2 that

T1 ≤
∣

∣P h[(I − P h
γ )u0

i − γ∆u0
i ]
∣

∣

1
+

∣

∣θiP
h
γ u

0
i

∣

∣

1
≤ C

[
∣

∣(I − P h
γ )u0

i |1 + |∆u0
i |1 + |P h

γ u
0
i |1

]

≤ C
[

‖u0
i ‖1 + |∆u0

i |1
]

≤ C. (4.3.65)

Using Lemma 4.3.3 we have for all ε ≤ δ0
2
, h ≤ h∗ and i = 1, 2 that

|P h
γ u

0
i |0,∞ ≤ 1 −

δ0
2

≤ 1 − ε.

This result with the aid of Lemma 4.2.1 (ii), (2.2.13) and (4.1.24) gives for all ε ≤ δ0
2

and h ≤ h∗

T2 =
∣

∣πhφε(P
h
γ u

0
i )

∣

∣

1
≤ φ′(|P h

γ u
0
i |0,∞)|P h

γ u
0
i |1 ≤ Cφ′(1 −

δ0
2

)‖u0
i ‖1 ≤ C. (4.3.66)
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Bounding the third term is more technical. We first split this term via

T3 =
∣

∣πhf
(i)
D (P h

γ u
0
1, P

h
γ u

0
2)

∣

∣

1
≤

∣

∣(I − πh)f
(i)
D (P h

γ u
0
1, P

h
γ u

0
2)

∣

∣

1
+

∣

∣f
(i)
D (P h

γ u
0
1, P

h
γ u

0
2)

∣

∣

1

≡ T3,1 + T3,2. (4.3.67)

Next we employ Lemma 4.2.5 to bound T3,1. This lemma with χ = P h
γ u

0
i + αi and

v = P h
γ u

0
j + αj shows for i, j = 1, 2 with i 6= j that

T3,1 = 2D
∣

∣(I − πh)[(P h
γ u

0
i + αi)(P

h
γ u

0
j + αj)

2]
∣

∣

1

≤ Ch|P h
γ u

0
j |1,6

[

|P h
γ u

0
j + αj |0,6|P

h
γ u

0
i |1,6 + |P h

γ u
0
i + αi|0,6|P

h
γ u

0
j |1,6. (4.3.68)

From (4.1.22), the embedding H1(Ω) →֒ L6(Ω) and the assumptions (A2) it follows

for i = 1, 2 and d = 1, 2, 3 that

|P h
γ u

0
i + αi|0,6 ≤

∣

∣(I − P h
γ )u0

i

∣

∣

0,6
+ |u0

i + αi|0,6

≤ Ch2−d/3|u0
i |2 + C[‖u0

i ‖1 + 1] ≤ C[h2−d/3 + 1] ≤ C (4.3.69)

and, this time we also note |η|1,6 ≤ |∇η|0,6 and Lemma 3.1.1,

|P h
γ u

0
i |1,6 ≤

∣

∣(I − P h
γ )u0

i

∣

∣

1,6
+ |u0

i |1,6

≤ Ch1−d/3|u0
i |2 + C‖u0

i ‖2 ≤ C[h1−d/3 + 1] ≤ C. (4.3.70)

Using the second inequality of (3.1.4) with v1 = P h
γ u

0
1, v2 = P h

γ u
0
2 and noting that

|∇η|0,6 ≤ C|η|1,6 yields for i, j = 1, 2 with i 6= j that

T3,2 ≤ C
[

|P h
γ u

0
j+αj|

2
0,6|P

h
γ u

0
i |1,6+|P h

γ u
0
i +αi|0,6|P

h
γ u

0
j+αj|0,6|P

h
γ u

0
j |1,6

]

≤ C, (4.3.71)

where we have noted (4.3.69) and (4.3.70) to obtain the last inequality.

We thus have, by combining (4.3.64)-(4.3.71), for i = 1, 2, for all ε ≤ δ0
2

and for

all h ≤ h∗ that |wh
ε,i(0)|1 ≤ C. Therefore, we conclude from (4.3.61) for t ∈ (0, T ]

that

γ

∫ t

0

[

|∂su
h
ε,1|

2
1 + |∂su

h
ε,2|

2
1

]

ds+
[

‖∂tu
h
ε,1(t)‖

2
−h + ‖∂tu

h
ε,2(t)‖

2
−h

]

≤ C. (4.3.72)

In particular we have from (4.3.72) that
∫ T

0

[

|∂tu
h
ε,1|

2
1 + |∂tu

h
ε,2|

2
1

]

dt ≤ C, (4.3.73)

which together with the Poincaré inequality shows the first estimate in (4.3.54a).
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Ignoring the integral term from (4.3.72), recalling the equivalence result (4.1.17) and

owing to Lemma 2.1.1 we obtain the second estimate in (4.3.54a).

Recalling (4.3.26) and (4.3.72) results in for i = 1, 2 that

∣

∣

∣
wh

ε,i −

∫

− wh
ε,i

∣

∣

∣

1
=

∣

∣wh
ε,i

∣

∣

1
=

∥

∥∂tu
h
ε,i

∥

∥

−h
≤ C. (4.3.74)

With the aid of the Poincaré inequality we find for i = 1, 2 that

∥

∥

∥
wh

ε,i −

∫

− wh
ε,i

∥

∥

∥

L∞(0,T ;H1(Ω))
≤ C. (4.3.75)

It follows from (4.3.6), (4.3.31) and (4.3.74) that

∣

∣

∣

∫

− wh
ε,i

∣

∣

∣
=

∣

∣

∣

∫

−
[

πhΨ′
ε,i(u

h
ε,i) + πhf

(i)
D (uh

ε,1, u
h
ε,2)

]

∣

∣

∣
≤ C

[

1 + |wh
ε,i|1

]

≤ C, (4.3.76)

from which we have
∥

∥

∥

∫

− wh
ε,i

∥

∥

∥

L∞(0,T ;H1(Ω))
≤ C. (4.3.77)

Hence, the first estimate in (4.3.54b) follows directly from (4.3.75) and (4.3.77).

By (4.3.34) we have

|πhφε(u
h
ε,i)|

2
h ≤ C

[

|wh
ε,i|

2
h + |uh

ε,i|
2
h + |πhf

(i)
D (uh

ε,1, u
h
ε,2)|

2
h

]

. (4.3.78)

This result implies the second desired estimate in (4.3.54b) after noting the equiv-

alents result (4.1.6), the bounds (4.3.9a) and (4.3.9d) and the first estimate in

(4.3.54b). 2

Theorem 4.3.5 Let the assumptions of Theorem 4.3.4 hold. Then for all h ≤ h∗

the unique solution of (Ph) is such that the following additional estimates hold

independently of h:

∂tu
h
1 , ∂tu

h
2 ∈ L2(0, T ;H1(Ω)) ∩ L∞(0, T ; (H1(Ω))′), (4.3.79a)

wh
1 , w

h
2 ∈ L∞(0, T ;H1(Ω)), (4.3.79b)

πhφ(uh
1), π

hφ(uh
2) ∈ L∞(0, T ;L2(Ω)). (4.3.79c)

Proof. Since the bounds (4.3.54a-b) are independent of ε, the above results are

direct consequences of the usual compactness arguments. 2
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4.4 A semi-discrete error bound

We estimate an error bound between the continuous solution of the problem (P)

and the semi-discrete solution of (Ph). We firstly prove an error estimate between

(Ph) and its regularized version (Ph

ε ). Then we estimate an error bound between

(Ph

ε ) and (Pε). Finally, the semi-discrete error bound is achieved by combining

these error bounds with the regularization error bound of the continuous problem

(P) derived in Theorem 3.2.2.

Lemma 4.4.1 Let êh
ε,i := uh

1 − uh
ε,1, ê

h
ε,i := uh

2 − uh
ε,2. Then

‖êh
ε,1‖

2
L2(0,T ;H1(Ω))+‖êh

ε,2‖
2
L2(0,T ;H1(Ω))+‖êh

ε,1‖
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L∞(0,T ;(H1(Ω))′)+‖êh

ε,2‖
2
L∞(0,T ;(H1(Ω))′) ≤ Cε.

(4.4.1)

Proof. The proof is a discrete analogue of the proof of Theorem 3.2.2. Subtract-

ing the regularized version (4.3.7) from (4.3.8) and testing the resulting variational

equation with χ = êh
ε,i ∈ V h

0 it follows for i = 1, 2 and a.e. t ∈ (0, T ) that

γ|êh
ε,i|

2
1 + (φ(uh

i ) − φε(u
h
ε,i), ê

h
ε,i)

h + (f
(i)
D (uh
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h
2) − f

(i)
D (uh

ε,1, u
h
ε,2), ê

h
ε,i)

h

+ (Ĝh∂tê
h
ε,i, ê

h
ε,i)

h = θi|ê
h
ε,i|

2
h. (4.4.2)

The D-coupling term can be treated in the same way as for (4.3.38)-(4.3.42) in

the uniqueness proof of Theorem 4.3.1 to obtain for i, j = 1, 2 with i 6= j and

a.e. t ∈ (0, T ) that

∣

∣(f
(i)
D (uh
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2
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2
1

]

+ C
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‖êh
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2
−h + ‖êh
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2
−h

]

.

(4.4.3)

Now, we insert the above estimate of the D-coupling term into (4.4.2), note that

1
2

d
dt
‖êh

ε,i‖
2
−h = (Ĝh∂tê

h
ε,i, ê

h
ε,i)

h and use (4.1.15) to have for i, j = 1, 2 with i 6= j

γ|êh
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2
1+(φ(uh

i )−φε(u
h
ε,i), ê

h
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h+
1

2

d
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3γ

8
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2
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8
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2
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[
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2
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2
−h

]

.

(4.4.4)

For i = 1, 2 and t ∈ (0, T ) we define the following sets

Ω+,h
ε,i (t) := {j : 1 − ε ≤ uh

i (xj , t) ≤ uh
ε,i(xj , t)},

Ω−,h
ε,i (t) := {j : uε,i(xj , t) ≤ uh

i (xj , t) ≤ −1 + ε},

Ω̂h
ε,i(t) := Ω+,h

ε,i (t) ∪ Ω−,h
ε,i (t),
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and we also define for any χ, v ∈ Sh

(χ, v)h
Ω̂h

ε,i
(t)

:=
∑

j∈Ω̂h
ε,i(t)

Mjjχ(xj)v(xj),

|χ|2
h,Ω̂h

ε,i(t)
:= (χ, χ)h

Ω̂h
ε,i(t)

.

Using the monotonicity of φε and owing to (2.2.12) we find that

(φ(uh
i ) − φε(u

h
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h
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h = (φ(uh
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h
i ), ê

h
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h + (φε(u
h
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h
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h
ε,i)

h

≥ (φ(uh
i ) − φε(u

h
i ), ê

h
ε,i)

h + (φε(u
h
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h
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h
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h +
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|êh
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2
h,Ω̂h
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. (4.4.5)

Using the fact that (φ(uh
i (xj , t)) − φε(u

h
i (xj , t))ê

h
ε,i(xj , t) is non-negative for all j /∈

Ω̂h
ε,i(t) and that φε(u

h
i (xj , t))ê

h
ε,i(xj , t) is non-positive for all j ∈ Ω̂h

ε,i(t) we obtain for

i = 1, 2 and a.e t ∈ (0, T )
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i ) − φε(u

h
i ), ê
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From (4.4.4)- (4.4.6) and the Young inequality it follows after noting | · |h,Ω̂h
ε,i(t)

≤ |·|h

that for i, j = 1, 2 with i 6= j and for a.e t ∈ (0, T )
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2
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(4.4.7)

Next we sum the above differential inequality over i = 1, 2 and simplify to yield for

a.e. t ∈ (0, T )

γ

2

[

|êh
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2
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|êh
ε,1|

2
h,Ω̂h

ε,1(t)
+ |êh
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2
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.

(4.4.8)

By the Gronwall lemma, the equivalence result (4.1.6) and êh
ε,1(0) = êh

ε,2(0) = 0 we

have for a.e. t ∈ (0, T ) that

γ
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[

|êh
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2
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2
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2)‖
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]

. (4.4.9)
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With the aid of the Poincaré inequality, the equivalence (4.1.17) of ‖ ·‖−h and ‖ ·‖−1

norms, Lemma 2.1.1 and the estimate (4.3.79c) we conclude that (4.4.1) holds as

required. 2

In the next theorem we prove an error estimate between the solutions of (Ph

ε ) and

(Pε).

Theorem 4.4.2 Let the assumptions of Theorem 4.3.4 hold. Then for all h ≤ h1

and for all ε ≤ min{ε0,
δ0
2
}

‖eε,1‖
2
L2(0,T ;H1(Ω)) + ‖eε,2‖

2
L2(0,T ;H1(Ω)) + ‖eε,1‖

2
L∞(0,T ;(H1(Ω))′) + ‖eε,2‖

2
L∞(0,T ;(H1(Ω))′)

≤











C
[

h2 + ε−1h4 + ε−2h4
(

ln(1/h))2(d−1)] if d = 1, 2,

C
[

h2 + ε−1h2 + ε−2h4] if d = 3,

(4.4.10)

where eε,1 := uε,1 − uh
ε,1, eε,2 := uε,2 − uh

ε,2 and h1 :=











h∗ if d = 1, 3,

min{h∗, h0} if d = 2.

Proof. For i = 1, 2 and a.e. t ∈ (0, T ) we define2

eA
ε,i := uε,i − πhuε,i, eh

ε,i := πhuε,i − uh
ε,i. (4.4.11)

From the above definitions we observe for i = 1, 2 that

eA
ε,i + eh

ε,i = eε,i ∈ V0,

∫

− eh
ε,i = −

∫

− eA
ε,i (4.4.12)

Further, for later use one requires the following results which can be easily verified

by (4.1.9b)

|eh
ε,i|

2
0 ≤ 2|eε,i|

2
0 + Ch4|uε,i|

2
2, (4.4.13a)

|eh
ε,i|

2
1 ≤ 2|eε,i|

2
1 + Ch2|uε,i|

2
2. (4.4.13b)

2Note that πhuε,i, i = 1, 2 is well-defined since uε,i ∈ H2(Ω) for a.e. t ∈ (0, T ) (see Theo-

rem 3.1.3) and H2(Ω) →֒ C(Ω) for d ≤ 3 (see [22], p.114).
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We note also for future reference that using (4.1.3) and the fact that |η −
∫

− η|20 =

(η −
∫

− η, η) yields

(χ, eA
ε,i)

h = 0 ∀χ ∈ C(Ω̄), (4.4.14a)
∣

∣

∣

∫

− η
∣

∣

∣

0
≤ |η|0,

∣

∣

∣
η −

∫

− η
∣

∣

∣

0
≤ |η|0 ∀ η ∈ L2(Ω). (4.4.14b)

Choosing η = eh
ε,i in the continuous regularized version (Pε) given by (2.2.24), taking

χ = eh
ε,i in the corresponding semi-discrete regularized version (Ph

ε ) given by (4.3.7)

and then subtracting the resulting equations and adding the terms (φε(uε,i), e
h
ε,i −

∫

− eh
ε,i)

h and (−G∂tu
h
ε,i, e

h
ε,i) to both sides yields after rearranging for i = 1, 2 and

a.e. t ∈ (0, T )

γ(∇eε,i,∇e
h
ε,i) + (φε(uε,i) − φε(u

h
ε,i), e

h
ε,i −

∫

− eh
ε,i)

h + (G∂teε,i, e
h
ε,i)

= θi

[

(uε,i, e
h
ε,i −

∫

− eh
ε,i) − (uh

ε,i, e
h
ε,i −

∫

− eh
ε,i)

h
]

+
[

(Ĝh∂tu
h
ε,i, e

h
ε,i)

h − (G∂tu
h
ε,i, e

h
ε,i)

]

+
[

(f
(i)
D (uh

ε,1, u
h
ε,2), e

h
ε,i −

∫

− eh
ε,i)

h − (f
(i)
D (uε,1, uε,2), e

h
ε,i −

∫

− eh
ε,i)

]

+
[

(φε(uε,i), e
h
ε,i −

∫

− eh
ε,i)

h − (φε(uε,i), e
h
ε,i −

∫

− eh
ε,i)

]

. (4.4.15)

Owing to (4.4.12) and (4.4.14a), using that 1
2

d
dt
‖eε,i‖

2
−1 = (G∂teε,i, eε,i) and noting

(2.2.10) one can rewrite the left hand side of (4.4.15) as

γ(∇eε,i,∇e
h
ε,i) + (φε(uε,i) − φε(u

h
ε,i), e

h
ε,i −

∫

− eh
ε,i)

h + (G∂teε,i, e
h
ε,i)

= γ|eε,i|
2
1 − γ(∇eε,i,∇e

A
ε,i) + (φε(uε,i) − φε(u

h
ε,i), eε,i +

∫

− eA
ε,i)

h

+
1

2

d

dt
‖eε,i‖

2
−1 − (G∂teε,i, e

A
ε,i)

≥ γ|eε,i|
2
1 − γ(∇eε,i,∇e

A
ε,i) +

ε

θ
|φε(uε,i) − φε(u

h
ε,i)|

2
h

+ (φε(uε,i) − φε(u
h
ε,i),

∫

− eA
ε,i)

h +
1

2

d

dt
‖eε,i‖

2
−1 − (G∂teε,i, e

A
ε,i).

(4.4.16)



4.4. A semi-discrete error bound 78

Hence, for i = 1, 2 and a.e. t ∈ (0, T ) (4.4.15) becomes

γ|eε,i|
2
1 +

ε

θ
|φε(uε,i) − φε(u

h
ε,i)|

2
h +

1

2

d

dt
‖eε,i‖

2
−1

≤ γ(∇eε,i,∇e
A
ε,i) + (G∂teε,i, e

A
ε,i) + (φε(u

h
ε,i) − φε(uε,i),

∫

− eA
ε,i)

h

+ θi

[

(uε,i, e
h
ε,i −

∫

− eh
ε,i) − (uh

ε,i, e
h
ε,i −

∫

− eh
ε,i)

h
]

+
[

(Ĝh∂tu
h
ε,i, e

h
ε,i)

h − (G∂tu
h
ε,i, e

h
ε,i)

]

+
[

(f
(i)
D (uh

ε,1, u
h
ε,2), e

h
ε,i −

∫

− eh
ε,i)

h − (f
(i)
D (uε,1, uε,2), e

h
ε,i −

∫

− eh
ε,i)

]

+
[

(φε(uε,i), e
h
ε,i −

∫

− eh
ε,i)

h − (φε(uε,i), e
h
ε,i −

∫

− eh
ε,i)

]

=:

7
∑

k=1

Tk. (4.4.17)

We bound each term on the right hand side of (4.4.17) separately. By (4.1.9b),

a Young’s inequality and the second bound in (3.1.6b) we have for i = 1, 2 and

a.e. t ∈ (0, T ) that

T1 ≤ γ|eε,i|1|e
A
ε,i|1 ≤ Ch|eε,i|1|uε,i|2 ≤

γ

8
|eε,i|

2
1 +Ch2|uε,i|

2
2 ≤

γ

8
|eε,i|

2
1 +Ch2. (4.4.18)

From the Poincaré inequality, again (4.1.9b) and the bounds (4.3.54a) and (3.1.6a-b)

it follows, taking Lemma 2.2.1 into account, for i = 1, 2 and a.e. t ∈ (0, T ) that

T2 ≤ C|G∂teε,i|1|e
A
ε,i|0 ≤ Ch2

[

|G∂tuε,i|1 + |G∂tu
h
ε,i|1

]

|uε,i|2

= Ch2
[

‖∂tuε,i‖−1 + ‖∂tu
h
ε,i‖−1

]

|uε,i|2 ≤ Ch2. (4.4.19)

Noting again (4.1.9b), (4.4.14b) and the bound (3.1.6b) and applying a Young’s

inequality yields for i = 1, 2 and a.e. t ∈ (0, T ) that

T3 ≤ C|φε(uε,i) − φε(u
h
ε,i)|h|e

A
ε,i|0 ≤ Ch2|φε(uε,i) − φε(u

h
ε,i)|h|uε,i|2

≤
ε

2θ
|φε(uε,i) − φε(u

h
ε,i)|

2
h + Cε−1h4. (4.4.20)

To bound the fourth term we split it as

T4 = θi(eε,i, e
h
ε,i −

∫

− eh
ε,i) + θi

[

(uh
ε,i, e

h
ε,i −

∫

− eh
ε,i) − (uh

ε,i, e
h
ε,i −

∫

− eh
ε,i)

h
]

=: T4,1 + T4,2. (4.4.21)
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With the aid of (4.4.14b), a Young’s inequality, (4.4.13a), the bound (3.1.6a) and

(2.1.11) we have for i = 1, 2 and for a.e. t ∈ (0, T ) that

T4,1 ≤ θi|eε,i|0
∣

∣eh
ε,i −

∫

− eh
ε,i

∣

∣

0
≤ θi|eε,i|0|e

h
ε,i|0 ≤

θi

2
|eε,i|

2
0 +

θi

2
|eh

ε,i|
2
0

≤
3θi

2
|eε,i|

2
0 + Ch4|uε,i|

2
2 ≤

γ

16
|eε,i|

2
1 + C‖eε,i‖

2
−1 + Ch4. (4.4.22)

Using (4.1.7), a Young’s inequality, (4.4.13b) and noting the bounds (3.1.6b) and

(4.3.9a) we find for i = 1, 2 and for a.e. t ∈ (0, T ) that

T4,2 ≤ Ch2|uh
ε,i|1|e

h
ε,i −

∫

− eh
ε,i|1 ≤

γ

32
|eh

ε,i|
2
1 + Ch4|uh

ε,i|
2
1

≤
γ

16
|eε,i|

2
1 + Ch2|uε,i|

2
2 + Ch4|uh

ε,i|
2
1 ≤

γ

16
|eε,i|

2
1 + Ch2. (4.4.23)

The fifth term can be expressed, by subtracting and adding (Ĝh∂tu
h
ε,i, e

h
ε,i), as

T5 =
[

(Ĝh∂tu
h
ε,i, e

h
ε,i)

h − (Ĝh∂tu
h
ε,i, e

h
ε,i)

]

+ (Ĝh∂tu
h
ε,i − G∂tu

h
ε,i, e

h
ε,i)

=: T5,1 + T5,2. (4.4.24)

From (4.1.7), (4.1.12), a Young’s inequality, (4.4.13b), the equivalence result (4.1.17)

and the bounds (3.1.6b) and (4.3.54a) we have, taking Lemma 2.2.1 into account,

that for i = 1, 2 and for a.e. t ∈ (0, T )

T5,1 ≤ Ch2|Ĝh∂tu
h
ε,i|1|e

h
ε,i|1 = Ch2‖∂tu

h
ε,i‖−h|e

h
ε,i|1 ≤

γ

32
|eh

ε,i|
2
1 + Ch4‖∂tu

h
ε,i‖

2
−h

≤
γ

16
|eε,i|

2
1 + Ch2|uε,i|

2
2 + Ch4‖∂tu

h
ε,i‖

2
−1 ≤

γ

16
|eε,i|

2
1 + Ch2. (4.4.25)

It follows from (4.1.18), the Young inequality, (4.4.13a), (2.1.11) and the bound

(3.1.6b) that for i = 1, 2 and for a.e. t ∈ (0, T )

T5,2 ≤ |(Ĝh − G)∂tu
h
ε,i|0|e

h
ε,i|0 ≤ Ch2‖∂tu

h
ε,i‖1|e

h
ε,i|0

≤
1

2
|eh

ε,i|
2
0 + Ch4‖∂tu

h
ε,i‖

2
1 ≤ |eε,i|

2
0 + Ch4|uε,i|

2
2 + Ch4‖∂tu

h
ε,i‖

2
1

≤
γ

16
|eε,i|

2
1 + C‖eε,i‖

2
−1 + Ch4‖∂tu

h
ε,i‖

2
1 + Ch4. (4.4.26)

Bounding the sixth and seventh terms is more technical. To bound the sixth term

we first rewrite it as

T6 =
[

(f
(i)
D (uh

ε,1, u
h
ε,2), e

h
ε,i −

∫

− eh
ε,i)

h − (f
(i)
D (uh

ε,1, u
h
ε,2), e

h
ε,i −

∫

− eh
ε,i)

]

+ (f
(i)
D (uh

ε,1, u
h
ε,2) − f

(i)
D (uε,1, uε,2), e

h
ε,i −

∫

− eh
ε,i) =: T6,1 + T6,2. (4.4.27)
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We employ Lemma 4.2.6 to estimate T6,1. This lemma, where for d = 1 note

h2 ≤ |Ω|h and for d = 2 take s = 1
2
, together with the bound (4.3.9a), (4.4.14b), the

Young inequality, (4.4.13a-b), the bound (3.1.6b) and (2.1.11) shows for i = 1, 2, for

a.e. t ∈ (0, T ) and d = 1, 2, 3 that

T6,1 ≤
∣

∣(I − πh)[f
(i)
D (uh

ε,1, u
h
ε,2) e

h
ε,i −

∫

− eh
ε,i]

∣

∣

0,1

= 2D
∣

∣(I − πh)[(uh
ε,i + αi)(u

h
ε,j + αj)

2(eh
ε,i −

∫

− eh
ε,i)]

∣

∣

0,1

≤ Ch‖uh
ε,i + αi‖1 ‖u

h
ε,j + αj‖

2
1 ‖e

h
ε,i −

∫

− eh
ε,i‖1

≤ Ch‖eh
ε,i‖1 ≤

γ

64
‖eh

ε,i‖
2
1 + Ch2

≤
γ

32
|eε,i|

2
0 +

γ

32
|eε,i|

2
1 + Ch4|uε,i|

2
2 + Ch2|uε,i|

2
2 + Ch2

≤
γ

16
|eε,i|

2
1 + C‖eε,i‖

2
−1 + Ch2. (4.4.28)

Using (2.3.46) with ri = uh
ε,i and si = uε,i, a generalised Hölder’s inequality,

H1(Ω) →֒ L6(Ω) and (2.3.8a) and noting again (4.3.9a),(4.4.14b), the Young in-

equality, (4.4.13a-b), (3.1.6b) and (2.1.11) gives for i, j = 1, 2 with i 6= j and

a.e. t ∈ (0, T )

T6,2 ≤ 2D|uh
ε,j + αj |

2
0,6 |u

h
ε,i − uε,i|0

∣

∣eh
ε,i −

∫

− eh
ε,i

∣

∣

0,6

+ 2D|uε,i + αi|0,6 |u
h
ε,j + uε,j + 2αj |0,6 |u

h
ε,j − uε,j|0

∣

∣eh
ε,i −

∫

− eh
ε,i

∣

∣

0,6

≤ C
[

‖uh
ε,j + αj‖

2
1 |eε,i|0 + ‖uε,i + αi‖1 ‖u

h
ε,j + uε,j + 2αj‖1 |eε,j|0

]
∥

∥eh
ε,i −

∫

− eh
ε,i

∥

∥

1

≤ C
[

|eε,i|0 + |eε,j|0
]

‖eh
ε,i‖1 ≤

γ

64
‖eh

ε,i‖
2
1 + C

[

|eε,i|
2
0 + |eε,j|

2
0

]

≤
γ

32
|eε,i|

2
1 + Ch4|uε,i|

2
2 + Ch2|uε,i|

2
2 + C

[

|eε,i|
2
0 + |eε,j|

2
0

]

≤
γ

16
|eε,i|

2
1 +

γ

8
|eε,j|

2
1 + C

[

‖eε,i‖
2
−1 + ‖eε,j‖

2
−1

]

+ Ch2. (4.4.29)

Now we turn to estimate the seventh term. To accomplish this, we split this term

via

T7 =
[

(πhφε(uε,i), e
h
ε,i −

∫

− eh
ε,i)

h − (πhφε(uε,i), e
h
ε,i −

∫

− eh
ε,i)

]

+ (πhφε(uε,i) − φε(uε,i), e
h
ε,i −

∫

− eh
ε,i) =: T7,1 + T7,2. (4.4.30)
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Noting (4.1.7), the Young inequality and (4.4.13b) results in for i = 1, 2 and for

a.e. t ∈ (0, T ) that

T7,1 ≤ Ch2
∣

∣πhφε(uε,i)
∣

∣

1

∣

∣eh
ε,i −

∫

− eh
ε,i

∣

∣

1
≤

γ

32
|eh

ε,i|
2
1 + Ch4|πhφε(uε,i)|

2
1

≤
γ

16
|eε,i|

2
1 + Ch2|u|22 + Ch4|πhφε(uε,i)|

2
1. (4.4.31)

Next we estimate the third term on the right hand side of (4.4.31). An application of

Lemma 4.2.1 (i) with χ = πhuε,i and integration by parts yields after noting (3.1.7)

that for i = 1, 2 and for a.e. t ∈ (0, T )

ε

θ
|πhφε(uε,i)|

2
1 =

ε

θ
|∇πhφε(π

huε,i)|
2
0 ≤ (∇πhuε,i,∇π

hφε(uε,i))

= (∇uε,i,∇φε(uε,i)) − (∇uε,i,∇(I − πh)φε(uε,i))

− (∇(I − πh)uε,i,∇π
hφε(uε,i))

≤ C + (∆uε,i, (I − πh)φε(uε,i)) − (∇(I − πh)uε,i,∇π
hφε(uε,i)).

(4.4.32)

We use (2.2.11), Lemma 4.2.2, (4.1.9b), a Young’s inequality and the bound (3.1.6b)

to obtain for i = 1, 2 and for a.e. t ∈ (0, T ) that

(∆uε,i, (I − πh)φε(uε,i)) ≤ |∆uε,i|0
[

|φε(uε,i) − φε(π
huε,i)|0 + |(I − πh)φε(π

huε,i)|0
]

≤ Cε−1|uε,i|2|uε,i − πhuε,i|0 + Ch|πhφε(uε,i)|1|uε,i|2

≤ Cε−1h2|uε,i|
2
2 +

ε

4θ
|πhφε(uε,i)|

2
1

≤ Cε−1h2 +
ε

4θ
|πhφε(uε,i)|

2
1. (4.4.33)

We also have by (4.1.9b), the Young inequality and (3.1.6b) that

∣

∣(∇(I − πh)uε,i,∇π
hφε(uε,i))

∣

∣ ≤ |(I − πh)uε,i|1|π
hφε(uε,i)|1 ≤ Ch|uε,i|2|π

hφε(uε,i)|1

≤ Cε−1h2|uε,i|
2
2 +

ε

4θ
|πhφε(uε,i)|

2
1

≤ Cε−1h2 +
ε

4θ
|πhφε(uε,i)|

2
1. (4.4.34)

Thus, from (4.4.32)-(4.4.34) we conclude that

|πhφε(uε,i)|
2
1 ≤ Cε−1

[

1 + ε−1h2
]

, (4.4.35)
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and hence for i = 1, 2 and for a.e. t ∈ (0, T ) the term T7,1 can be estimated , owing

to (4.4.31) and (3.1.6b), as

T7,1 ≤
γ

16
|eε,i|

2
1 + Ch2 + C

[

ε−1h4 + ε−2h6
]

. (4.4.36)

In order to treat the term T7,2 we consider two cases. For the case d = 3 we

use (4.4.14b), a Young’s inequality, (4.4.13a), (2.1.11), bound (3.1.6b), Lipschitz

continuity (2.2.11), Lemma 4.2.2, (4.1.9b) and (4.4.35) to give for i = 1, 2 and for

a.e. t ∈ (0, T ) that

T7,2 ≤
∣

∣(I − πh)φε(uε,i)
∣

∣

0

∣

∣eh
ε,i −

∫

− eh
ε,i

∣

∣

0
≤

1

2
|eh

ε,i|
2
0 +

1

2

∣

∣(I − πh)φε(uε,i)
∣

∣

2

0

≤ |eε,i|
2
0 + Ch4|uε,i|

2
2 + |φε(uε,i) − φε(π

huε,i)|
2
0 +

∣

∣(I − πh)φε(π
huε,i)

∣

∣

2

0

≤
γ

16
|eε,i|

2
1 + C‖eε,i‖

2
−1 + Ch4 + θ2ε−2|uε,i − πhuε,i|

2
0 + Ch2|πhφε(uε,i)|

2
1

≤
γ

16
|eε,i|

2
1 + C‖eε,i‖

2
−1 + Ch4 + Cε−2h4 + Cε−1h2

[

1 + ε−1h2
]

≤
γ

16
|eε,i|

2
1 + C‖eε,i‖

2
−1 + C

[

ε−1h2 + ε−2h4
]

. (4.4.37)

Note that the above estimate of T7,2 is still valid for the case d = 1, 2. However,

when d = 1, 2 we improve this estimate of T7,2 by adapting an argument used in

Barrett and Knabner [25]. From Hölder’s inequality, (4.1.9a) and (4.1.10) it follows

for d = 1, 2, h ≤ h0 and i = 1, 2 that

T7,2 ≤
∣

∣(I − πh)[φε(uε,i)
∣

∣

0,1

∣

∣eh
ε,i −

∫

− eh
ε,i

∣

∣

0,∞

≤ Ch2
(

ln(1/h)
)d−1

|φε(uε,i)|2,1

∥

∥eh
ε,i −

∫

− eh
ε,i

∥

∥

1
. (4.4.38)

By the definitions of Φε and φε given by (2.2.1) and (2.2.4) we have that

|φε(uε,i)|2,1 ≤ |Φ′
ε(1 + uε,i)|2,1 + |Φ′

ε(1 − uε,i)|2,1. (4.4.39)

Noting Theorem A.0.14 (see Appendix A) in Gilbarg and Trudinger ( [42], pp.153-

154) we have

∂

∂xj
Φ′′

ε(1 ± uε,i) =











± Φ′′′
ε (1 ± uε,i)

∂uε,i

∂xj
if uε,i 6= ∓1 ± ε,

0 if uε,i = ∓1 ± ε.

(4.4.40)

Letting for i = 1, 2

Ω+
i := {x ∈ Ω : uε,i(x, t) = −1 + ε}, Ω−

i := {x ∈ Ω : uε,i(x, t) = 1 − ε}.



4.4. A semi-discrete error bound 83

Thus

|Φ′
ε(1 + uε,i)|2,1 =

d
∑

k,j=1

∫

Ω

∣

∣

∣

∂2

∂xj∂xk
[Φ′

ε(1 + uε,i)]
∣

∣

∣

≤

d
∑

k,j=1

∫

Ω

∣

∣

∣
Φ′′

ε(1 + uε,i)
∂2uε,i

∂xj∂xk

∣

∣

∣
+

∫

Ω

∣

∣

∣

∂

∂xj
Φ′′

ε(1 + uε,i)
∂uε,i

∂xk

∣

∣

∣
dx

=: I1 + I2. (4.4.41)

Using the fact that 0 < Φ′′
ε(r) ≤

θ
2ε

∀ r ∈ R yields for i = 1, 2 that

I1 ≤
θ

2ε

∫

Ω

d
∑

k,j=1

∣

∣

∣

∂2uε,i

∂xj∂xk

∣

∣

∣
dx =

θ

2ε
|uε,i|2,1. (4.4.42)

Since Φ′′′
ε (r) ≤ 0, ∀ r ∈ R− {ε}, we obtain after noting (4.4.40) and (3.1.7) that for

i = 1, 2

I2 =

d
∑

k,j=1

∫

Ω\Ω+
i

−Φ′′′
ε (1 + uε,i)

∣

∣

∣

∂uε,i

∂xk

∂uε,i

∂xj

∣

∣

∣
dx ≤

∫

Ω\Ω+
i

−Φ′′′
ε (1 + uε,i)|∇uε,i|

2dx

= −(∇Φ′′
ε(1 + uε,i),∇uε,i) = (Φ′′

ε(1 + uε,i),∆uε,i)

≤
θ

2ε
|∆uε,i|0,1 ≤

θ

2ε
|uε,i|2,1. (4.4.43)

We therefore conclude from (4.4.41)-(4.4.43) that

|Φ′
ε(1 + uε,i)|2,1 ≤

θ

ε
|uε,i|2,1. (4.4.44)

Similarly, one can show for i = 1, 2 that

|Φ′
ε(1 − uε,i)|2,1 ≤

θ

ε
|uε,i|2,1. (4.4.45)

Combining (4.4.38), (4.4.39), (4.4.44) and (4.4.45) and then noting (4.4.14b), the

Young inequality, (4.4.13a-b), (2.1.11) and the bound (3.1.6b) it follows for i = 1, 2

and a.e. t ∈ (0, T ) that

T7,2 ≤ Cε−1h2
(

ln(1/h)
)d−1

|uε,i|2,1

∥

∥eh
ε,i −

∫

− eh
ε,i

∥

∥

1

≤ Cε−1h2
(

ln(1/h)
)d−1

‖uε,i‖2 ‖e
h
ε,i‖1

≤
γ

64
‖eh

ε,i‖
2
1 + Cε−2h4

(

ln(1/h)
)2(d−1)

‖uε,i‖
2
2

≤
γ

32
|eε,i|

2
0 +

γ

32
|eε,i|

2
1 + Ch4|uε,i|

2
2 + Ch2|uε,i|

2
2 + Cε−2h4

(

ln(1/h)
)2(d−1)

‖uε,i‖
2
2

≤
γ

16
|eε,i|

2
1 + C‖eε,i‖

2
−1 + C

[

h2 + ε−2h4
(

ln(1/h)
)2(d−1)]

. (4.4.46)
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Therefore, from (4.4.30), (4.4.36), (4.4.37) and (4.4.46) we obtain for i = 1, 2 and

a.e. t ∈ (0, T ) that

T7 ≤
γ

8
|eε,i|

2
1 +C‖eε,i‖

2
−1 +Ch2 +











C
[

ε−1h4 + ε−2h4
(

ln(1/h)
)2(d−1)]

if d = 1, 2,

C
[

ε−1h2 + ε−2h4
]

if d = 3.

(4.4.47)

Combining (4.4.17)-(4.4.29) with (4.4.47) yields for i, j = 1, 2 with i 6= j and for

a.e. t ∈ (0, T ) that

γ|eε,i|
2
1 +

ε

2θ
|φε(uε,i) − φε(u

h
ε,i)|

2
h +

1

2

d

dt
‖eε,i‖

2
−1

≤
5γ

8
|eε,i|

2
1 +

γ

8
|eε,j|

2
1 + C

[

‖eε,i‖
2
−1 + ‖eε,j‖

2
−1

]

+ Ch4‖∂tu
h
ε,i‖

2
1

+ Ch2 +











C
[

ε−1h4 + ε−2h4
(

ln(1/h)
)2(d−1)]

if d = 1, 2,

C
[

ε−1h2 + ε−2h4
]

if d = 3.

(4.4.48)

We sum the above differential inequality over i = 1, 2 and simplify to have for

a.e. t ∈ (0, T )

γ

4

[

|eε,1|
2
1 + |eε,2|

2
1

]

+
1

2

d

dt

[

‖eε,1‖
2
−1 + ‖eε,2‖

2
−1

]

≤ C
[

‖eε,1‖
2
−1 + ‖eε,2‖

2
−1

]

+ Ch4
[

‖∂tu
h
ε,1‖

2
1 + ‖∂tu

h
ε,2‖

2
1

]

+ Ch2 +











C
[

ε−1h4 + ε−2h4
(

ln(1/h)
)2(d−1)]

if d = 1, 2,

C
[

ε−1h2 + ε−2h4
]

if d = 3.

(4.4.49)

Applying the Gronwall lemma, recalling the bound (4.3.54a) and noting (4.1.25) we

find for a.e. t ∈ (0, T ] that

γ

2

∫ t

0

[

|eε,1|
2
1 + |eε,2|

2
1

]

ds+
[

‖eε,1(t)‖
2
−1 + ‖eε,2(t)‖

2
−1

]

≤ Ch2 +











C
[

ε−1h4 + ε−2h4
(

ln(1/h)
)2(d−1)]

if d = 1, 2,

C
[

ε−1h2 + ε−2h4
]

if d = 3.

(4.4.50)

By Poincaré’s inequality we finally conclude that (4.4.10) holds as required. 2
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We are now in a position to introduce an error bound between the solutions of

the continuous problem (P) and the semi-discrete problem (Ph) which we state in

the next theorem.

Theorem 4.4.3 Let the assumptions of Theorem 4.3.5 hold. Then for all h ≤ h1

‖e1‖
2
L2(0,T ;H1(Ω)) + ‖e2‖

2
L2(0,T ;H1(Ω)) + ‖e1‖

2
L∞(0,T ;(H1(Ω))′) + ‖e2‖

2
L∞(0,T ;(H1(Ω))′)

≤











Ch
4
3

(

ln(1/h)
)

2(d−1)
3 if d = 1, 2,

Ch if d = 3.

(4.4.51)

where e1 := u1 − uh
1 and e2 := u2 − uh

2 .

Proof. Splitting the error for i = 1, 2 via

ei = ui − uh
i = (ui − uε,i) + (uε,i − uh

ε,i) + (uh
ε,i − uh

i ) = êε,i + eε,i + êh
ε,i. (4.4.52)

Therefore, combining the errors derived in Theorem 3.2.2, Lemma 4.4.1 and Theo-

rem 4.4.2 yields that

‖e1‖
2
L2(0,T ;H1(Ω))+‖e2‖

2
L2(0,T ;H1(Ω)) + ‖e1‖

2
L∞(0,T ;(H1(Ω))′) + ‖e2‖

2
L∞(0,T ;(H1(Ω))′)

≤ Cε+ Ch2 +











C
[

ε−1h4 + ε−2h4
(

ln(1/h)
)2(d−1)]

if d = 1, 2,

C
[

ε−1h2 + ε−2h4
]

if d = 3.

(4.4.53)

On choosing ε = Ch
4
3

(

ln(1/h)
)

2(d−1)
3 ≤ min{ε0,

δ0
2
} if d = 1, 2 and ε = Ch ≤

min{ε0,
δ0
2
} if d = 3 we obtain the desired result (4.4.51). 2

Remark. As a result of the semi-discrete error bound in Theorem 4.4.3, we have

convergence of the semi-discrete approximation to the solution of the continuous

problem

uh
1 , u

h
2 → u1, u2 in L2(0, T ;H1(Ω)) ∩ L∞(0, T ; (H1(Ω))′),

as h→ 0.



Chapter 5

A fully-discrete approximation

In this chapter we discretise the continuous problem (P) in space using a finite

element method and in time using a finite difference method.

In Section 5.1 we present a symmetric coupled in time fully practical finite element

approximation of (P) and we also introduce the corresponding regularized version.

In Section 5.2 we prove existence of a solution to the coupled regularized version.

We establish in Section 5.3 stability estimates for the fully-discrete approximations

and conclude the section with the uniqueness proof. We then prove further stability

estimates that will be essential for the subsequent error bound analysis. Finally, in

Section 5.4 we employ the ideas in Nochetto [50] to analyse the error bound.

5.1 Statement of the proposed coupled fully-discrete

problem

We define the time step to be ∆t := T
N

, where N is a given positive integer.

For our fully finite element approximation we discretise the nonlinearities Ψi and

f
(i)
D , i = 1, 2, at the level time t = tn := n∆t, n = 1, ...., N as functions of Un

i

and Un−1
i , where Un

i is an approximation of the continuous solution ui at the time

t = tn. This discretisation for the nonlinearities is:

86
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For i = 1, 2 we approximate the logarithmic term in (P), Ψ′
i(ui) = φ(ui) − θiui, as

φ(Un
i ) − µθiU

n
i − (1 − µ)θiU

n−1
i µ ∈ [0,

1

2
], (5.1.1)

and we approximate the D-coupling term, f
(i)
D (u1, u2) = 2D(ui + αi)(uj + αj)

2, as

D(Un
i + αi)

[

(Un
j + αj)

2 + (Un−1
j + αj)

2
]

i, j = 1, 2 with i 6= j. (5.1.2)

For notational convenience we introduce f̄
(i)
n,n−1 defined by

f̄
(i)
n,n−1 := 2D(Un

i + αi)(U
n−1
j + αj)

2 i, j = 1, 2 with i 6= j, (5.1.3)

i.e.

f̄
(1)
n,n−1 = f

(1)
D (Un

1 , U
n−1
2 ), f̄

(2)
n,n−1 = f

(2)
D (Un−1

1 , Un
2 ). (5.1.4)

From (5.1.2) and (5.1.3) one can represent the D-coupling term as

1

2

[

f
(i)
D (Un

1 , U
n
2 ) + f̄

(i)
n,n−1

]

i = 1, 2. (5.1.5)

Therefore, for given µ ∈ [0, 1
2
] and uh,0

i ∈ Sh
mi

we consider the following coupled

fully-discrete finite element approximation of (P):

(Ph,∆t

µ ) For n = 1, ...., N find {Un
1 , U

n
2 ,W

n
1 ,W

n
2 } ∈ Sh

m1
× Sh

m2
× Sh × Sh such that

U0
i = uh,0

i , i = 1, 2, and for all χ ∈ Sh

(Un
i − Un−1

i

∆t
, χ

)h

+ (∇W n
i ,∇χ) = 0, (5.1.6a)

γ(∇Un
i ,∇χ) +

(

φ(Un
i ) − µθiU

n
i − (1 − µ)θiU

n−1
i , χ

)h

+
1

2

(

f
(i)
D (Un

1 , U
n
2 ) + f̄

(i)
n,n−1, χ

)h
= (W n

i , χ)h. (5.1.6b)

The corresponding regularized version of (Ph,∆t

µ ), for given µ ∈ [0, 1
2
] and uh,0

i ∈ Sh
mi

, is

(Ph,∆t

µ,ε ) For n = 1, ...., N find {Un
ε,1, U

n
ε,2,W

n
ε,1,W

n
ε,2} ∈ Sh

m1
× Sh

m2
× Sh × Sh such

that U0
ε,i = uh,0

i , i = 1, 2, and for all χ ∈ Sh

(Un
ε,i − Un−1

ε,i

∆t
, χ

)h

+ (∇W n
ε,i,∇χ) = 0, (5.1.7a)

γ(∇Un
ε,i,∇χ) +

(

φε(U
n
ε,i) − µθiU

n
ε,i − (1 − µ)θiU

n−1
ε,i , χ

)h

+
1

2

(

f
(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1, χ

)h
= (W n

ε,i, χ)h, (5.1.7b)

where

f̄
(1)
ε,n,n−1 := f

(1)
D (Un

ε,1, U
n−1
ε,2 ), f̄

(2)
ε,n,n−1 := f

(2)
D (Un−1

ε,1 , Un
ε,2). (5.1.8)
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Similarly to the semi-discrete problems (4.3.7) and (4.3.8), using the discrete Green’s

operator Ĝh, one can restate (Ph,∆t

µ ) and (Ph,∆t

µ,ε ) equivalently as:

(Ph,∆t

µ ) For n = 1, ...., N find {Un
1 , U

n
2 } ∈ Sh

m1
× Sh

m2
such that U0

i = uh,0
i , i = 1, 2,

and for all χ ∈ Sh

γ(∇Un
i ,∇χ) +

(

φ(Un
i ) − µθiU

n
i − (1 − µ)θiU

n−1
i , χ−

∫

− χ
)h

+
1

2

(

f
(i)
D (Un

1 , U
n
2 ) + f̄

(i)
n,n−1, χ−

∫

− χ
)h

+
(

Ĝh
(Un

i − Un−1
i

∆t

)

, χ
)h

= 0,

(5.1.9)

where

W n
i = −Ĝh

(Un
i − Un−1

i

∆t

)

+

∫

− W n
i , (5.1.10)

∫

− W n
i =

∫

−
[

πhφ(Un
i ) +

1

2
(πhf

(i)
D (Un

1 , U
n
2 ) + πhf̄

(i)
n,n−1)

]

− θimi. (5.1.11)

(Ph,∆t

µ,ε ) For n = 1, ...., N find {Un
ε,1, U

n
ε,2} ∈ Sh

m1
×Sh

m2
such that U0

ε,i = uh,0
i , i = 1, 2,

and for all χ ∈ Sh

γ(∇Un
ε,i,∇χ) +

(

φε(U
n
ε,i) − µθiU

n
ε,i − (1 − µ)θiU

n−1
ε,i , χ−

∫

− χ
)h

+
1

2

(

f
(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1, χ−

∫

− χ
)h

+
(

Ĝh
(Un

ε,i − Un−1
ε,i

∆t

)

, χ
)h

= 0,

(5.1.12)

where

W n
ε,i = −Ĝh

(Un
ε,i − Un−1

ε,i

∆t

)

+

∫

− W n
ε,i, (5.1.13)

∫

− W n
ε,i =

∫

−
[

πhφε(U
n
ε,i) +

1

2
(πhf

(i)
D (Un

ε,1, U
n
ε,2) + πhf̄

(i)
ε,n,n−1)

]

− θimi. (5.1.14)

5.2 Existence of a regularized approximation

In this section we establish existence of a solution to the problem (Ph,∆t

µ,ε ) by adapting

a similar approach applied in [4] to prove existence of a finite element approximation

of a cross diffusion equation. The approach relies on constructing a contradiction

to the Schauder fixed point theorem (see Theorem A.0.4 in Appendix A).
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Theorem 5.2.1 Let the assumptions of Theorem 4.3.1 hold with uh,0
i = P hu0

i or

uh,0
i = P h

γ u
0
i , i = 1, 2. Then for all µ ∈ [0, 1

2
], for all ε ≤ ε0, for all h > 0 and for

all ∆t > 0 there exists a solution {Un
ε,1, U

n
ε,2,W

n
ε,1,W

n
ε,2} ∈ Sh

m1
× Sh

m2
× Sh × Sh to

(Ph,∆t

µ,ε ) for n = 1, ...., N.

Proof. We use an inductive proof. We have from (4.3.3) and (4.3.4) that

{U0
ε,1, U

0
ε,2} ∈ Sh

m1
× Sh

m2
for the above choices of uh,0

i . For fixed n ≥ 1 assume that

{Un−1
ε,1 , Un−1

ε,2 } ∈ Sh
m1

×Sh
m2

exists and we shall prove existence of a solution to (Ph,∆t

µ,ε )

at the next time level t = tn (the n-th step). For i = 1, 2 define Ai : Sh
m1

×Sh
m2

→ V h
0

is such that for all χ ∈ Sh

(Ai(U1, U2), χ)h = γ(∇Ui,∇χ) +
(

φε(Ui) − µθiUi − (1 − µ)θiU
n−1
ε,i , χ−

∫

− χ
)h

+
1

2

(

f
(i)
D (U1, U2) + f̄

(i)
ε,n−1, χ−

∫

− χ
)h

+
(

Ĝh
(Ui − Un−1

ε,i

∆t

)

, χ
)h

,

(5.2.1)

where

f̄
(i)
ε,n−1 = 2D(Ui + αi)(U

n−1
ε,j + αj)

2 i, j = 1, 2 with i 6= j. (5.2.2)

Ai(U1, U2) ∈ Sh is well-defined by setting χ = φj, j = 0, 1, ..., J . It can be easily

seen for i = 1, 2 that (Ai(U1, U2), 1) = 0.

Therefore, from (5.2.1) we have that (5.1.12) at the n-th step is equivalent to the

problem:

Find {Un
ε,1, U

n
ε,2} ∈ Sh

m1
× Sh

m2
such that for i = 1, 2 and for all χ ∈ Sh

(Ai(U
n
ε,1, U

n
ε,2), χ)h = 0. (5.2.3)

By a contradiction for a given R ∈ R>0 sufficiently large we prove existence of

at least one solution to (5.2.3). For this purpose, we assume that for all R ∈ R>0

there does not exist {U1, U2} ∈
[

Sh
m1

× Sh
m2

]

R
with Ai(U1, U2) = 0, where

[

Sh
m1

× Sh
m2

]

R
:= {(χ1, χ2) ∈ Sh

m1
× Sh

m2
: |χ1 − Un−1

ε,1 |2h + |χ2 − Un−1
ε,2 |2h ≤ R2}.

It can be easily seen that Ai is continuous on
[

Sh
m1

× Sh
m2

]

R
and hence one can

define a continuous function B ≡ (B1, B2) :
[

Sh
m1

× Sh
m2

]

R
→

[

Sh
m1

× Sh
m2

]

R
where

Bi(U1, U2) =
−RAi(U1, U2)

√

∑2
i=1 |Ai(U1, U2)|

2
h

+ Un−1
ε,i i = 1, 2, (5.2.4)

which is well-defined.
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Since
[

Sh
m1

× Sh
m2

]

R
is a convex and compact subset of the finite dimensional

space Sh × Sh, the Schauder fixed point theorem shows that there exists a pair

{U∗
1 , U

∗
2} ∈

[

Sh
m1

× Sh
m2

]

R
such that

Bi(U
∗
1 , U

∗
2 ) = U∗

i i = 1, 2. (5.2.5)

Hence, it follows from (5.2.4) that

|U∗
1 − Un−1

ε,1 |2h + |U∗
2 − Un−1

ε,2 |2h = R2. (5.2.6)

Recalling that Ψ′
ε,i(r) = φε(r) − θir one can write

φε(U
∗
i ) − µθiU

∗
i − (1 − µ)θiU

n−1
ε,i = Ψ′

ε,i(U
∗
i ) + (1 − µ)θi(U

∗
i − Un−1

ε,i ). (5.2.7)

Choosing χ = U∗
i − Un−1

ε,i ∈ V h
0 in (5.2.1) yields for i = 1, 2 on noting the identity

2a(a− b) = a2 − b2 + (a− b)2, (5.2.7) and (4.1.12) that

(Ai(U
∗
1 , U

∗
2 ), U∗

i − Un−1
ε,i )h =

γ

2

[

|U∗
i |

2
1 − |Un−1

ε,i |21 + |U∗
i − Un−1

ε,i |21
]

+
(

Ψ′
ε,i(U

∗
i ) + (1 − µ)θi(U

∗
i − Un−1

ε,i ), U∗
i − Un−1

ε,i

)h

+
1

2

(

f
(i)
D (U∗

1 , U
∗
2 ) + f̄

(i)
ε,n−1, U

∗
i − Un−1

ε,i

)h

+ ∆t
∥

∥

∥

U∗
i − Un−1

ε,i

∆t

∥

∥

∥

2

−h
. (5.2.8)

From (2.2.6) with r = U∗
i and s = Un−1

ε,i and Lemma 2.2.1 (i) it follows for i = 1, 2

and for all ε ≤ ε0 that

(

Ψ′
ε,i(U

∗
i ) + (1 − µ)θi(U

∗
i − Un−1

ε,i ), U∗
i − Un−1

ε,i

)h

≥ (Ψε,i(U
∗
i ) − Ψε,i(U

n−1
ε,i ), 1)h + θi(

1

2
− µ)|U∗

i − Un−1
ε,i |2h

≥ −C0|Ω| − (Ψε,i(U
n−1
ε,i ), 1)h + θi(

1

2
− µ)|U∗

i − Un−1
ε,i |2h

:= −C(Un−1
ε,i ) + θi(

1

2
− µ)|U∗

i − Un−1
ε,i |2h. (5.2.9)
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Summing (5.2.8) over i = 1, 2 and noting (5.2.9), (5.2.6), Poincaré’s inequality and

(4.1.6) gives after recalling that µ ∈ [0, 1
2
]

2
∑

i=1

(Ai(U
∗
1 , U

∗
2 ), U∗

i − Un−1
ε,i )h ≥

γ

2

2
∑

i=1

[

− |Un−1
ε,i |21 + |U∗

i − Un−1
ε,i |21

]

+
2

∑

i=1

[

− C(Un−1
ε,i ) + θi(

1

2
− µ)|U∗

i − Un−1
ε,i |2h

]

+
1

2

2
∑

i=1

(

f
(i)
D (U∗

1 , U
∗
2 ) + f̄

(i)
ε,n−1, U

∗
i − Un−1

ε,i

)h

≥
γ

2C
R2 + θ̂(

1

2
− µ)R2 − C1(U

n−1
ε,1 , Un−1

ε,2 )

+
1

2

2
∑

i=1

(

f
(i)
D (U∗

1 , U
∗
2 ) + f̄

(i)
ε,n−1, U

∗
i − Un−1

ε,i

)h
, (5.2.10)

where θ̂ := min{θ1, θ2} and C1(U
n−1
ε,1 , Un−1

ε,2 ) :=
∑2

i=1

[

C(Un−1
ε,i ) + γ

2
|Un−1

ε,i |21
]

.

The treatment of the last term is more technical and in order to simplify the calcu-

lations we introduce the following notation

ξi,∗ := U∗
i + αi, ξi,n−1 := Un−1

ε,i + αi i = 1, 2. (5.2.11)

Thus ξi,∗−ξi,n−1 = U∗
i −U

n−1
ε,i and hence we have with the aid of the Young inequality

that

1

2

2
∑

i=1

(

f
(i)
D (U∗

1 , U
∗
2 ) + f̄

(i)
ε,n−1, U

∗
i − Un−1

ε,i

)h

= D(ξ1,∗ξ
2
2,∗ + ξ1,∗ξ

2
2,n−1, ξ1,∗ − ξ1,n−1)

h +D(ξ2,∗ξ
2
1,∗ + ξ2,∗ξ

2
1,n−1, ξ2,∗ − ξ2,n−1)

h

= D
[

(ξ2
1,∗, ξ

2
2,∗)

h − (ξ1,∗ξ1,n−1, ξ
2
2,∗)

h + (ξ2
1,∗, ξ

2
2,n−1)

h − (ξ1,∗ξ1,n−1, ξ
2
2,n−1)

h
]

+D
[

(ξ2
2,∗, ξ

2
1,∗)

h − (ξ2,∗ξ2,n−1, ξ
2
1,∗)

h + (ξ2
2,∗, ξ

2
1,n−1)

h − (ξ2,∗ξ2,n−1, ξ
2
1,n−1)

h
]

≥ D
[

2(ξ2
1,∗, ξ

2
2,∗)

h + (ξ2
1,∗, ξ

2
2,n−1)

h + (ξ2
2,∗, ξ

2
1,n−1)

h −
1

2
(ξ2

1,∗ + ξ2
1,n−1, ξ

2
2,∗ + ξ2

2,n−1)
h

−
1

2
(ξ2

2,∗ + ξ2
2,n−1, ξ

2
1,∗ + ξ2

1,n−1)
h
]

= D
[

(ξ2
1,∗, ξ

2
2,∗)

h − (ξ2
1,n−1, ξ

2
2,n−1)

h
]

= D
(

(U∗
1 + α1)

2, (U∗
2 + α2)

2
)h

−D
(

(Un−1
ε,1 + α1)

2, (Un−1
ε,2 + α2)

2
)h

≥ −D
(

(Un−1
ε,1 + α1)

2, (Un−1
ε,2 + α2)

2
)h

:= −C2(U
n−1
ε,1 , Un−1

ε,2 ). (5.2.12)
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Inserting (5.2.12) into (5.2.10) yields

2
∑

i=1

(Ai(U
∗
1 , U

∗
2 ), U∗

i − Un−1
ε,i )h ≥

γ

2C
R2 + θ̂(

1

2
− µ)R2 − C1(U

n−1
ε,1 , Un−1

ε,2 )

− C2(U
n−1
ε,1 , Un−1

ε,2 ) > 0, (5.2.13)

which will be positive for R sufficiently large.

On the contrary, from (5.2.4), (5.2.5) and (5.2.6) we obtain that for all R ∈ R>0

2
∑

i=1

(Ai(U
∗
1 , U

∗
2 ), U∗

i − Un−1
ε,i )h

=

√

∑2
i=1 |Ai(U∗

1 , U
∗
2 )|2h

−R

2
∑

i=1

(

Bi(U
∗
1 , U

∗
2 ) − Un−1

ε,i , U∗
i − Un−1

ε,i )h

=

√

∑2
i=1 |Ai(U∗

1 , U
∗
2 )|2h

−R

2
∑

i=1

|U∗
i − Un−1

ε,i |2h

= −R

√

∑2
i=1 |Ai(U

∗
1 , U

∗
2 )|2h < 0. (5.2.14)

Therefore, this contradiction guarantees existence of {Un
ε,1, U

n
ε,2} ∈ Sh

m1
×Sh

m2
solving

(5.2.3) and hence (Ph,∆t

µ,ε ) at the n-th time step. Existence of W n
ε,1 and W n

ε,2 follows

directly from (5.1.13) and (5.1.14). This completes the proof. 2

Remark. We note that, in view of (5.2.13), the restriction µ ∈ [0, 1
2
] is essen-

tial for existence proof, otherwise we need to impose a restriction on the physical

parameters γ, θ1 and θ2 which is not desirable. For the case D = 0 (which is not of

interest in this thesis) the existence can be achieved for µ ∈ [0, 1] by an alternative

technique (e.g. Barrett and Blowey [12], Barrett and Blowey [5]) which can not be

applied to our coupled fully-discrete problem.

5.3 Stability estimates and uniqueness

In this section we first derive stability estimates for the regularized approximations

Un
ε,i,W

n
ε,i, i = 1, 2 which enable us to prove existence and uniqueness of a solution to

(Ph,∆t

µ ). We then establish further stability estimates under the assumptions (A2)

which will be needed in the subsequent section.
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Theorem 5.3.1 Let the assumptions of Theorem 5.2.1 hold with uh,0
i = P hu0

i .

Then for all µ ∈ [0, 1
2
], for all ε ≤ ε0, for all h > 0 and for all ∆t > 0 a solution

{Un
ε,1, U

n
ε,2,W

n
ε,1,W

n
ε,2} to the n-th step of (Ph,∆t

µ,ε ) is such that

max
n=1→N

[

‖Un
ε,1‖

2
1 + ‖Un

ε,2‖
2
1

]

+

N
∑

n=1

[

‖Un
ε,1 − Un−1

ε,1 ‖2
1 + ‖Un

ε,2 − Un−1
ε,2 ‖2

1

]

≤ C, (5.3.1a)

∆t

N
∑

n=1

[
∥

∥

∥

Un
ε,1 − Un−1

ε,1

∆t

∥

∥

∥

2

−h
+

∥

∥

∥

Un
ε,2 − Un−1

ε,2

∆t

∥

∥

∥

2

−h

]

≤ C, (5.3.1b)

∆t
N

∑

n=1

[

‖W n
ε,1‖

2
1 + ‖W n

ε,2‖
2
1

]

+ ∆t
N

∑

n=1

[

|πhφε(U
n
ε,1)|

2
0 + |πhφε(U

n
ε,2)|

2
0

]

≤ C, (5.3.1c)

max
n=1→N

[

|πhf
(1)
D (Un

ε,1, U
n
ε,2)|

2
0 + |πhf

(2)
D (Un

ε,1, U
n
ε,2)|

2
0

+ |πhf
(1)
D (Un

ε,1, U
n−1
ε,2 )|20 + |πhf

(2)
D (Un−1

ε,1 , Un
ε,2)|

2
0

]

≤ C. (5.3.1d)

Proof. Testing (5.1.7a) with χ = Ĝh(Un
ε,i − Un−1

ε,i ), i = 1, 2, we obtain on noting

(4.1.12) and (4.1.11) that

0 = ∆t
∥

∥

∥

Un
ε,i − Un−1

ε,i

∆t

∥

∥

∥

2

−h
+ (∇W n

ε,i,∇Ĝh(Un
ε,i − Un−1

ε,i ))

= ∆t
∥

∥

∥

Un
ε,i − Un−1

ε,i

∆t

∥

∥

∥

2

−h
+ (W n

ε,i, U
n
ε,i − Un−1

ε,i )h

= ∆t
∥

∥

∥

Un
ε,i − Un−1

ε,i

∆t

∥

∥

∥

2

−h
+ γ(∇Un

ε,i,∇U
n
ε,i − Un−1

ε,i ) + (Ψ′
ε,i(U

n
ε,i), U

n
ε,i − Un−1

ε,i )h

+ θi(1 − µ)|Un
ε,i − Un−1

ε,i |2h +
1

2
(f

(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1, U

n
ε,i − Un−1

ε,i )h, (5.3.2)

where we have also noted (5.1.7b) with χ = Un
ε,i − Un−1

ε,i and (5.2.7) to obtain the

last equality.

We use the identity 2a(a− b) = a2 − b2 + (a− b)2 and (2.2.6) to yield for i = 1, 2

γ

2
|Un

ε,i|
2
1 +

γ

2
|Un

ε,i − Un−1
ε,i |21 + (Ψε,i(U

n
ε,i), 1)h + θi(

1

2
− µ)|Un

ε,i − Un−1
ε,i |2h

+ ∆t
∥

∥

∥

Un
ε,i − Un−1

ε,i

∆t

∥

∥

∥

2

−h

+
1

2
(f

(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1, U

n
ε,i − Un−1

ε,i )h

≤
γ

2
|Un−1

ε,i |21 + (Ψε,i(U
n−1
ε,i ), 1)h. (5.3.3)
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By arguing as for (5.2.12) in the proof of Theorem 5.2.1 one can show that

1

2

2
∑

i=1

(f
(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1, U

n
ε,i − Un−1

ε,i )h

≥ D
(

(Un
ε,1 + α1)

2, (Un
ε,2 + α2)

2
)h

−D
(

(Un−1
ε,1 + α1)

2, (Un−1
ε,2 + α2)

2
)h

= (fD(Un
ε,1, U

n
ε,2), 1)h − (fD(Un−1

ε,1 , Un−1
ε,2 ), 1)h. (5.3.4)

Next we sum (5.3.3) over i = 1, 2 and then ∀m ≤ N we sum the resulting inequality

from n = 1 → m, note (5.3.4) and rearrange to result in

γ

2

[

|Um
ε,1|

2
1 + |Um

ε,2|
2
1

]

+
γ

2

m
∑

n=1

[

|Un
ε,1 − Un−1

ε,1 |21 + |Un
ε,2 − Un−1

ε,2 |21
]

+
[

(Ψε,1(U
m
ε,1), 1)h + (Ψε,2(U

m
ε,2), 1)h

]

+ (
1

2
− µ)

m
∑

n=1

[

θ1|U
n
ε,1 − Un−1

ε,1 |2h + θ2|U
n
ε,2 − Un−1

ε,2 |2h
]

+ ∆t
m

∑

n=1

[
∥

∥

∥

Un
ε,1 − Un−1

ε,1

∆t

∥

∥

∥

2

−h
+

∥

∥

∥

Un
ε,2 − Un−1

ε,2

∆t

∥

∥

∥

2

−h

]

+ (fD(Um
ε,1, U

m
ε,2), 1)h

≤
γ

2

[

|U0
ε,1|

2
1 + |U0

ε,2|
2
1

]

+
[

(Ψε,1(U
0
ε,1), 1)h + (Ψε,2(U

0
ε,2), 1)h

]

+ (fD(U0
ε,1, U

0
ε,2), 1)h

≤ C, (5.3.5)

where we have noted the bounds (4.3.18), (4.3.19) and (4.3.20) to obtain the last

inequality.

Recalling that µ ∈ [0, 1
2
] and fD(·, ·) ≥ 0, using Lemma 2.2.1 (i) and noting

Poincaré’s inequality we obtain from (5.3.5) the desired estimate (5.3.1a). In addi-

tion, (5.3.5) gives directly the estimate (5.3.1b).

It follows from (5.1.13) and (4.1.12) that for i = 1, 2 and n = 1 → N

|W n
ε,i|

2
1 =

∣

∣

∣
− Ĝh

(Un
ε,i − Un−1

ε,i

∆t

)

+

∫

− W n
ε,i

∣

∣

∣

2

1
=

∥

∥

∥

Un
ε,i − Un−1

ε,i

∆t

∥

∥

∥

2

−h
. (5.3.6)

This result with Poincaré’s inequality shows that for i = 1, 2

∆t
N

∑

n=1

‖W n
ε,i −

∫

− W n
ε,i‖

2
1 ≤ C∆t

N
∑

n=1

|W n
ε,i −

∫

− W n
ε,i|

2
1

= C∆t
N

∑

n=1

∥

∥

∥

Un
ε,i − Un−1

ε,i

∆t

∥

∥

∥

2

−h
≤ C, (5.3.7)

where we have also noted the estimate (5.3.1b) in the last step.
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To obtain the first estimate in (5.3.1c), it remains to show ∆t
∑N

n=1 ‖
∫

− W n
ε,i‖

2
1 is

bounded for i = 1, 2. To this aim, we note first, using Lemma 2.2.1 (i) and (5.3.5),

that

∣

∣(ψε(U
n
ε,i), 1)h

∣

∣ ≤
∣

∣(Ψε,i(U
n
ε,i), 1)h

∣

∣ +
θi

2

∣

∣(1 − (Un
ε,i)

2, 1)h
∣

∣ ≤ C. (5.3.8)

Next we choose χ = Un
ε,i −

∫

− Un
ε,i = Un

ε,i − mi in (5.1.7b) and add for any β ∈ R

the term
(

φε(U
n
ε,i) + 1

2
(f

(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1), β)h to the both sides to give after

rearranging that

(

φε(U
n
ε,i) +

1

2
(f

(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1), β −mi

)h
=

= (W n
ε,i, U

n
ε,i −mi)

h − γ|Un
ε,i|

2
1 + (µθiU

n
ε,i + (1 − µ)θiU

n−1
ε,i , Un

ε,i −mi)
h

+ (φε(U
n
ε,i), β − Un

ε,i)
h +

1

2

(

f
(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1, β − Un

ε,i

)h

≤ (∇W n
ε,i,∇Ĝh(Un

ε,i −mi)) + θi

[

|Un
ε,i|h + |Un−1

ε,i |h
]

|Un
ε,i −mi|h

+ (ψε(β), 1)h − (ψε(U
n
ε,i), 1)h +

1

2
|f

(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1|h|β − Un

ε,i|h

≤ C
[

1 + |W n
ε,i|1‖U

n
ε,i −mi‖−h + (ψε(β), 1)h

+ |f
(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1|h |β − Un

ε,i|h
]

≤ C
[

1 + |W n
ε,i|1 + (ψε(β), 1)h + |f

(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1|h |β − Un

ε,i|h
]

,

(5.3.9)

where we have also used (4.1.11), (2.2.6), (4.1.12), the bound (5.3.1a) and (5.3.8)

followed by (4.1.13) and again the bound (5.3.1a) to obtain the last inequality.

Applying Lemma 4.2.4 with p = 3 and q = 3
2

and Lemma 4.2.8 and noting the

bounds (5.3.1a) and (4.3.18) yields for i, j = 1, 2 with i 6= j and for n = 1 → N that

|f̄
(i)
ε,n,n−1|

2
h = 4D2

∫

Ω

πh
(

(Un
ε,i + αi

)2
(Un−1

ε,j + αj)
4
)

dx

≤ 4D2
(

∫

Ω

πh
(

(Un
ε,i + αi)

6
)

dx
)

1
3
(

∫

Ω

πh
(

(Un−1
ε,j + αj)

6
)

dx
)

2
3

≤ C‖Un
ε,i + αi‖

2
1‖U

n−1
ε,j − αj‖

4
1 ≤ C, (5.3.10)

and similarly one can show

|f
(i)
D (Un

ε,1, U
n
ε,2)|

2
h ≤ C‖Un

ε,i + αi‖
2
1‖U

n
ε,j − αj‖

4
1 ≤ C. (5.3.11)
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On choosing β = ±1∓ δ0
2

in (5.3.9) and noting ψε(r) ≤ θ ln 2 ∀ r ∈ [−1, 1], (5.3.10),

(5.3.11) and (5.3.1a) leads to the following inequalities

(

πhφε(U
n
ε,i) +

1

2
(πhf

(i)
D (Un

ε,1, U
n
ε,2) + πhf̄

(i)
ε,n,n−1), 1 −

δ0
2
−mi

)

=
(

φε(U
n
ε,i) +

1

2
(f

(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1), 1 −

δ0
2
−mi

)h

≤ C
[

1 + |W n
ε,i|1

]

(5.3.12)

and

(

πhφε(U
n
ε,i) +

1

2
(πhf

(i)
D (Un

ε,1, U
n
ε,2) + πhf̄

(i)
ε,n,n−1), 1 −

δ0
2

+mi

)

=
(

φε(U
n
ε,i) +

1

2
(f

(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1), 1 −

δ0
2

+mi

)h

≥ −C
[

1 + |W n
ε,i|1

]

i = 1, 2. (5.3.13)

Dividing (5.3.12) and (5.3.13) by |Ω|(1− δ0
2
−mi) and |Ω|(1− δ0

2
+mi) respectively

and noting that |mi| ≤ 1 − δ0 yields that

∣

∣

∣

∫

−
[

πhφε(U
n
ε,i) +

1

2
(πhf

(i)
D (Un

ε,1, U
n
ε,2) + πhf̄

(i)
ε,n,n−1)

]

∣

∣

∣
≤ C

[

1 + |W n
ε,i|1

]

= C
[

1 +
∥

∥

∥

Un
ε,i − Un−1

ε,i

∆t

∥

∥

∥

−h

]

,

(5.3.14)

where in the last step we have noted (5.3.6).

By squaring the above inequality and summing from n = 1 → N we have after

multiplying by ∆t and noting the bound (5.3.1b) that for i = 1, 2

∆t

N
∑

n=1

∣

∣

∣

∫

−
[

πhφε(U
n
ε,i) +

1

2
(πhf

(i)
D (Un

ε,1, U
n
ε,2) + πhf̄

(i)
ε,n,n−1)

]

∣

∣

∣

2

≤ C
[

∆tN + ∆t
N

∑

n=1

∥

∥

∥

Un
ε,i − Un−1

ε,i

∆t

∥

∥

∥

2

−h

]

≤ C, (5.3.15)

since N∆t = T .
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Thus, from (5.1.14) and (5.3.15) one finds for i = 1, 2 that

∆t
N

∑

n=1

∥

∥

∥

∫

− W n
ε,i

∥

∥

∥

2

1
= |Ω|∆t

N
∑

n=1

∣

∣

∣

∫

− W n
ε,i

∣

∣

∣

2

≤ 2|Ω|∆t

N
∑

n=1

∣

∣

∣

∫

−
[

πhφε(U
n
ε,i) +

1

2
(πhf

(i)
D (Un

ε,1, U
n
ε,2) + πhf̄

(i)
ε,n,n−1)

]

∣

∣

∣

2

+ 2|Ω|∆tNθ2
im

2
i

≤ C, (5.3.16)

and hence together with (5.3.7) this shows the first estimate in (5.3.1c), as required.

We now turn to prove the second estimate in (5.3.1c). To obtain this we test

(5.1.7b) with χ = πhφε(U
n
ε,i) and then apply a Young’s inequality to result in for

i = 1, 2 that

γ(∇Un
ε,i,∇π

hφε(U
n
ε,i)) + |πhφε(U

n
ε,i)|

2
h

= (W n
ε,i, π

hφε(U
n
ε,i))

h + θi

(

µUn
ε,i + (1 − µ)Un−1

ε,i , πhφε(U
n
ε,i)

)h

−
1

2
(f

(i)
D (Un

ε,1, U
n
ε,2) + f̄

(i)
ε,n,n−1, π

hφε(U
n
ε,i))

h

≤
1

2
|πhφε(U

n
ε,i)|

2
h + C

[

|W n
ε,i|

2
h + |Un

ε,i|
2
h + |Un−1

ε,i |2h

+ |f
(i)
D (Un

ε,1, U
n
ε,2)|

2
h + |f̄

(i)
ε,n,n−1|

2
h

]

≤
1

2
|πhφε(U

n
ε,i)|

2
h + C

[

1 + |W n
ε,i|

2
h

]

. (5.3.17)

where to obtain the last inequality we have noted (5.3.1a), (5.3.10) and (5.3.11).

Using Lemma 4.2.1 (i) we have the first term in (5.3.17) is non-negative and hence

by summing the both sides from n = 1 → N and recalling the first bound in (5.3.1c)

we conclude for i = 1, 2 that

∆t

N
∑

n=1

|πhφε(U
n
ε,i)|

2
h ≤ C

[

T + ∆t

N
∑

n=1

|W n
ε,i|

2
h

]

≤ C, (5.3.18)

which, on noting the equivalence result (4.1.6), leads to the second desired estimate

in (5.3.1c).
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Finally, noting for i = 1, 2 that |πhf
(i)
D (χ, v)|h = |f

(i)
D (χ, v)|h ∀χ, v ∈ Sh, recalling

that f̄
(1)
ε,n,n−1 = f

(1)
D (Un

ε,1, U
n−1
ε,2 ) and f̄

(2)
ε,n,n−1 = f

(2)
D (Un−1

ε,1 , Un
ε,2) and using (5.3.10),

(5.3.11) and the equivalence result (4.1.6) we obtain the desired estimate (5.3.1d),

which completes the proof. 2

Theorem 5.3.2 Let the assumptions of Theorem 5.2.1 hold with uh,0
i = P hu0

i .

Then for all µ ∈ [0, 1
2
], for all h > 0, for all ∆t > 0 and for all n = 1 → N there

exists a solution {Un
1 , U

n
2 ,W

n
1 ,W

n
2 } ∈ Sh

m1
× Sh

m2
× Sh × Sh to (Ph,∆t

µ ) such that

max
n=1→N

[

‖Un
1 ‖

2
1 + ‖Un

2 ‖
2
1

]

+

N
∑

n=1

[

‖Un
1 − Un−1

1 ‖2
1 + ‖Un

2 − Un−1
2 ‖2

1

]

≤ C, (5.3.19a)

∆t
N

∑

n=1

[
∥

∥

∥

Un
1 − Un−1

1

∆t

∥

∥

∥

2

−h
+

∥

∥

∥

Un
2 − Un−1

2

∆t

∥

∥

∥

2

−h

]

≤ C, (5.3.19b)

∆t

N
∑

n=1

[

‖W n
1 ‖

2
1 + ‖W n

2 ‖
2
1

]

+ ∆t

N
∑

n=1

[

|πhφ(Un
1 )|20 + |πhφ(Un

2 )|20
]

≤ C, (5.3.19c)

max
n=1→N

[

|πhf
(1)
D (Un

1 , U
n
2 )|20 + |πhf

(2)
D (Un

1 , U
n
2 )|20

+ |πhf
(1)
D (Un

1 , U
n−1
2 )|20 + |πhf

(2)
D (Un−1

1 , Un
2 )|20

]

≤ C, (5.3.19d)

max{|Un
1 |, |U

n
2 |} < 1 for all x ∈ Ω̄ and n = 1 → N. (5.3.19e)

Furthermore, the solution is uniquely defined for all ∆t > 0 if θ ≥ 8D + µθ∗ and

for all ∆t < 4γ
(8D+µθ∗−θ)2

if θ < 8D + µθ∗ where θ∗ = max{θ1, θ2}.

Proof. From the bounds (5.3.1a) and (5.3.1c) we have for i = 1, 2 that |Un
ε,i|h, |W

n
ε,i|h

and |πhφε(U
n
ε,i)|h are bounded independently of ε. Hence, one can extract subse-

quences, still denoted {Un
ε,i}, {W n

ε,i} and {πhφε(U
n
ε,i)}, such that for i = 1, 2 and

n = 1 → N

Un
ε,i → Un

i in Sh, (5.3.20a)

W n
ε,i → W n

i in Sh, (5.3.20b)

πhφε(U
n
ε,i) → χh,n

i in Sh. (5.3.20c)
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We now prove for i = 1, 2 and n = 1 → N that χh,n
i = πhφ(Un

i ). For i = 1, 2 and

n = 1 → N we define for any χ ∈ Sh

Ih,n
i (χ) := (Un

i − φ−1(χ), χh,n
i − χ)h, (5.3.21)

Ih,n
ε,i (χ) := (Un

ε,i − φ−1
ε (χ), φε(U

n
ε,i) − χ)h. (5.3.22)

The above quantities are well-defined as

∣

∣Ih,n
i (χ)

∣

∣ ≤ |Un
i − φ−1(χ)|h|χ

h,n
i − χ|h <∞,

∣

∣Ih,n
ε,i (χ)

∣

∣ ≤ |Un
ε,i − φ−1

ε (χ)|h|φε(U
n
ε,i) − χ|h ≤ θ−1|φε(U

n
ε,i) − χ|2h <∞,

where we have used the fact that |φ−1(·)| < 1, (2.2.16), (4.1.6) and the bounds

(5.3.1a) and (5.3.1c).

Using (2.2.9) with s = Un
ε,i(xj) and r = φ−1

ε (χ(xj)), j = 0, 1, ..., J it follows for

i = 1, 2 that

Ih,n
ε,i (χ) ≥ θ

J
∑

j=0

Mjj(U
n
ε,i(xj) − φ−1

ε (χ(xj)))
2 ≥ 0 ∀χ ∈ Sh.

From the strong convergences (5.3.20a) and (5.3.20c) and the strong convergence

φ−1
ε (r) → φ−1(r) ∀ r ∈ R (see Lemma 2.2.1 (ii)) we have

∣

∣Ih,n
ε,i (χ) − Ih,n

i (χ)
∣

∣ ≤
∣

∣(Un
ε,i − Un

i , φε(U
n
ε,i) − χ)h

∣

∣ +
∣

∣(φ−1(χ) − φ−1
ε (χ), φε(U

n
ε,i) − χ)h

∣

∣

+
∣

∣(Un
i − φ−1(χ), φε(U

n
ε,i) − χh,n

i )h
∣

∣

≤ |Un
ε,i − Un

i |h|π
hφε(U

n
ε,i) − χ|h + |φ−1(χ) − φ−1

ε (χ)|h|π
hφε(U

n
ε,i) − χ|h

+ |Un
i − φ−1(χ)|h|π

hφε(U
n
ε,i) − χh,n

i |h → 0 as ε → 0. (5.3.23)

We therefore have for i = 1, 2 and for any χ ∈ Sh that

Ih,n
i (χ) = lim

ε→0
Ih,n
ε,i (χ) ≥ 0. (5.3.24)

Now, for any β ∈ R>0 and any v ∈ Sh we take χ = χh,n
i ± βv ∈ Sh in (5.3.21) to

give, on noting (5.3.24), that for i = 1, 2 and n = 1 → N

(Un
i − φ−1(χh,n

i + βv),−βv)h ≥ 0 and (Un
i − φ−1(χh,n

i − βv), βv)h ≥ 0,

and hence, dividing by −β and β respectively,

(Un
i − φ−1(χh,n

i + βv), v)h ≤ 0 and (Un
i − φ−1(χh,n

i − βv), v)h ≥ 0,
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which leads by taking the limit as β → 0 and noting the continuity of φ−1 to

(Un
i − φ−1(χh,n

i ), v)h =

J
∑

j=0

Mjj[U
n
i (xj) − φ−1(χh,n

i (xj))]v(xj) = 0. (5.3.25)

Then, we choose v = Un
i − πhφ−1(χh,n

i ) ∈ Sh to yield for i = 1, 2 and n = 1 → N

that Un
i (xj) = φ−1(χh,n

i (xj)) j = 0, 1, ..., J . This result gives directly for i = 1, 2 that

χh,n
i = πhφ(Un

i ), as required. Further, recalling that φ−1(r) ∈ (−1, 1) we deduce for

i = 1, 2 and n = 1 → N that

Un
i (xj) = φ−1(χh,n(xj)) ∈ (−1, 1) j = 0, 1, ..., J,

which is the desired result (5.3.19e).

In order to pass to the limit in the regularized version (Ph,∆t

µ,ε ) we first note us-

ing the definition of (·, ·)h that the strong convergence (5.3.20a) means

Un
ε,i(xj) → Un

i (xj) as ε → 0, j = 0, 1, ..., J,

which implies, as ε→ 0 and for j = 0, 1, ..., J ,

f
(1)
D (Un

ε,1(xj), U
n−1
ε,2 (xj)) → f

(1)
D (Un

1 (xj), U
n−1
2 (xj)),

f
(2)
D (Un−1

ε,1 (xj), U
n
ε,2(xj)) → f

(1)
D (Un−1

1 (xj), U
n
2 (xj)),

i.e., for i = 1, 2,

πhf̄
(i)
ε,n,n−1 → πhf̄

(i)
n,n−1 in Sh, (5.3.26)

and similarly we have for i = 1, 2

πhf
(i)
D (Un

ε,1, U
n
ε,2) → πhf

(i)
D (Un

1 , U
n
2 ) in Sh. (5.3.27)

Now, from the strong convergences (5.3.20a)-(5.3.20c), (5.3.26) and (5.3.27) one can

immediately pass to the limit as ε→ 0 in the regularized version (Ph,∆t

µ,ε ) (5.1.7a-b)

to find that {Un
1 , U

n
2 ,W

n
1 ,W

n
2 } is a solution to (Ph,∆t

µ ) at the n-th step. In addition,

using the same strong convergences and the fact that all norms on a finite dimen-

sional space are equivalent one can take the limit as ε→ 0 in the estimates (5.3.1a-d)

derived in Theorem 5.3.1 to obtain the corresponding desired estimates (5.3.19a-d).
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We now finish the proof by showing the uniqueness of the fully-discrete approxi-

mation using induction under the above stated conditions on ∆t. Since we have

uniqueness at time level t = t0 = 0 one can assume uniqueness of the approxi-

mation at time level t = tn−1, n ≥ 1. Now, let Bn
h = {Un

i ,W
n
i }i=1,2 and Bn∗

h =

{Un∗
i ,W n∗

i }i=1,2 be two fully-discrete solutions to (Ph,∆t

µ ) at time level t = tn. Set-

ting χ = Ūn
i := Un

i −Un∗
i ∈ V h

0 in (5.1.9) and subtracting the approximations yields

for i = 1, 2 on noting the definition (4.1.12) of ‖ · ‖−h that

γ|Ūn
i |

2
1 + (φ(Un

i ) − φ(Un∗
i ), Ūn

i )h +
1

∆t
‖Ūn

i ‖
2
−h

= µ θi|Ū
n
i |

2
h +

1

2

(

f
(i)
D (Un∗

1 , Un∗
2 ) − f

(i)
D (Un

1 , U
n
2 ), Ūn

i

)h
+

1

2

(

f̄
(i)∗
n,n−1 − f̄

(i)
n,n−1, Ū

n
i

)h
,

(5.3.28)

where f̄
(i)∗
n,n−1 := 2D(Un∗

i + αi)(U
n−1
j + αj)

2.

Using (2.3.46) with ri = Un∗
i and si = Un

i , owing to (5.3.19e) and noting that

αi ∈ (−1, 1) it follows for i, j = 1, 2 with i 6= j that

1

2
(f

(i)
D (Un∗

1 , Un∗
2 ) − f

(i)
D (Un

1 , U
n
2 ), Ūn

i )h

= D
(

(Un∗
j + αj)

2(−Ūn
i ) + (Un

i + αi)(U
n
j + Un∗

j + 2αj)(−Ū
n
j ), Ūn

i

)h

≤
(

(Un
i + αi)(U

n
j + Un∗

j + 2αj)(−Ū
n
j ), Ūn

i

)h
≤ 8D(|Ūn

j |, |Ū
n
i |)

h.

(5.3.29)

We also have from (5.3.19e) for i, j = 1, 2 with i 6= j that

1

2
(f̄

(i)∗
n,n−1 − f̄

(i)
n,n−1, Ū

n
i )h = D

(

(Un∗
i + αi)(U

n−1
j + αj)

2 − (Un
i + αi)(U

n−1
j + αj)

2, Ūn
i

)h

= D
(

(Un−1
j + αj)

2(−Ūn
i ), Ūn

i

)h
≤ 0. (5.3.30)

Inserting (5.3.29) and (5.3.30) into (5.3.28), using the fact that

(φ(s) − φ(r))(s− r) ≥ θ(s− r)2 ∀ r, s ∈ (−1, 1)

and rearranging we obtain for i, j = 1, 2 with i 6= j that

γ|Ūn
i |

2
1 +

1

∆t
‖Ūn

i ‖
2
−h ≤ (µθi − θ)|Ūn

i |
2
h + 8D(|Ūn

j |, |Ū
n
i |)

h. (5.3.31)
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We set θ∗ := max{θ1, θ2} and then sum (5.3.31) over i = 1, 2 and use a Young’s

inequality to yield

γ
[

|Ūn
1 |

2
1 + |Ūn

2 |
2
1

]

+
1

∆t

[

‖Ūn
1 ‖

2
−h + ‖Ūn

2 ‖
2
−h

]

≤ (µθ∗ − θ)
[

|Ūn
1 |

2
h + |Ūn

2 |
2
h

]

+ 16D(|Ūn
1 |, |Ū

n
2 |)

h

≤ (8D + µθ∗ − θ)
[

|Ūn
1 |

2
h + |Ūn

2 |
2
h

]

. (5.3.32)

Clearly, if θ ≥ 8D + µθ∗ we then have for all ∆t > 0 that

‖Ūn
1 ‖

2
−h + ‖Ūn

2 ‖
2
−h ≤ 0, (5.3.33)

which implies, by (4.1.16), uniqueness of Un
i , i = 1, 2, for all ∆t > 0.

If θ < 8D+ µθ∗ we can treat the right hand side of (5.3.32) with the aid of (4.1.15)

as follows

(8D + µθ∗ − θ)
[

|Ūn
1 |

2
h + |Ūn

2 |
2
h

]

≤ γ
[

|Ūn
1 |

2
1 + |Ūn

2 |
2
1

]

+
(8D + µθ∗ − θ)2

4γ

[

‖Ūn
1 ‖

2
−h + ‖Ūn

2 ‖
2
−h

]

. (5.3.34)

Hence, by substituting (5.3.34) into (5.3.32) and simplifying we find that (5.3.33)

holds for all ∆t < 4γ
(8D+µθ∗−θ)2

. We conclude thus that Un
i , i = 1, 2, is unique. Fi-

nally, we obtain uniqueness of W n
i , i = 1, 2, by (5.1.10) and (5.1.11). 2

Remark. For the same reasons discussed earlier in the comment after the proof of

Theorem 4.3.2 we find that the results of Theorem 5.3.2 hold for the initial choice

uh,0
i = P h

γ u
0
i , i = 1, 2 (i.e. U0

i = P h
γ u

0
i ) under the assumptions (A2) and the stated

condition in Lemma 4.3.3 on the mesh parameter h. Furthermore, one advantage of

this choice is that we shall obtain stronger stability estimates than those derived in

Theorem 5.3.2 (see Theorem 5.3.3 below) which will be required to prove an optimal

error bound in time for the discretization (Ph,∆t

µ ).

For the purposes of the analysis we introduce {W 0
1 ,W

0
2 } ∈ Sh × Sh defined by

(W 0
i , χ)h = γ(∇U0

i ,∇χ)+(φ(U0
i )−θiU

0
i , χ)h+(f

(i)
D (U0

1 , U
0
2 ), χ)h i = 1, 2. (5.3.35)
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Adapting the same argument applied in derivation of (4.3.63) we have for i = 1, 2

W 0
i = P h

[

(I−P h
γ )u0

i −γ∆u
0
i

]

+πhφ(P h
γ u

0
i )−θiP

h
γ u

0
i +πhf

(i)
D (P h

γ u
0
1, P

h
γ u

0
2). (5.3.36)

Before moving onto next theorem, we state below some properties of the convex part

ψ of the potential Ψi, i = 1, 2, and φ ≡ ψ′ which will be needed for the forthcoming

analysis

(i) For any r, s ∈ (−1, 1) we have by Taylor’s theorem and the fact that φ′(r) ≥ θ > 0

φ(r)(s− r) ≤ ψ(s) − ψ(r). (5.3.37)

(ii) For any χ ∈ Sh with |χ|0,∞ < 1 we have

|∇πhφ(χ)|20 ≤ φ′(|χ|0,∞)(∇χ,∇πhφ(χ)). (5.3.38)

To see (ii) we consider an arbitrary χ ∈ Sh with |χ|0,∞ < 1. Then, we choose

ε = min{1
2
, 1 − |χ|0,∞} to obtain that |χ|0,∞ ≤ 1 − ε. Therefore, (5.3.38) is an

immediate consequence form Lemma 4.2.1 (ii) and the fact that φε(r) = φ(r) for all

|r| ≤ 1 − ε.

Theorem 5.3.3 Let the assumptions of Theorem 4.3.4 hold with uh,0
i = P h

γ u
0
i .

Then for all µ ∈ [0, 1
2
], for all h ≤ h∗, for all ∆t > 0 and for n = 1 → N a solution

{Un
1 , U

n
2 ,W

n
1 ,W

n
2 } to the n-th step of (Ph,∆t

µ ) is such that

∆t
N

∑

n=1

[
∥

∥

∥

Un
1 − Un−1

1

∆t

∥

∥

∥

2

1
+

∥

∥

∥

Un
2 − Un−1

2

∆t

∥

∥

∥

2

1

]

+
N

∑

n=1

[

|W n
1 −W n−1

1 |21 + |W n
2 −W n−1

2 |21
]

+ max
n=1→N

[
∥

∥

∥

Un
1 − Un−1

1

∆t

∥

∥

∥

2

−h
+

∥

∥

∥

Un
2 − Un−1

2

∆t

∥

∥

∥

2

−h

]

≤ C, (5.3.39a)

max
n=1→N

[

‖W n
1 ‖

2
1 + ‖W n

2 ‖
2
1

]

+ max
n=1→N

[

|πhφ(Un
1 )|20 + |πhφ(Un

2 )|20
]

≤ C. (5.3.39b)

Proof. For future reference we begin the proof with establishing a bound for |W 0
1 |1

and |W 0
2 |1. It follows from (5.3.36) that

|W 0
i |1 ≤

∣

∣P h
[

(I−P h
γ )u0

i −γ∆u
0
i

]

−θiP
h
γ u

0
i

∣

∣

1
+ |πhφ(P h

γ u
0
i )|1 + |πhf

(i)
D (P h

γ u
0
1, P

h
γ u

0
2)|1.

(5.3.40)

The first and the third terms on on the right hand side of (5.3.40) are bounded

by (4.3.65) and (4.3.67)-(4.3.71). Whereas the second term can be treated using
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(5.3.38), Lemma 4.3.3, (2.2.13) and (4.1.24) to yield for all h ≤ h∗ and for i = 1, 2

that

|πhφ(P h
γ u

0
i )|1 ≤ φ′(|P h

γ u
0
i |0,∞)|P h

γ u
0
i |1 ≤ Cφ′(1 −

δ0
2

)‖u0
i ‖1 ≤ C. (5.3.41)

Thus we conclude that

|W 0
i |1 ≤ C i = 1, 2. (5.3.42)

For fixed n ≥ 1 we subtract (5.1.6b) at the step n−1 from (5.1.6b) at the subsequent

step n and rearrange to have on noting (5.3.35) with step n = 1 that for i = 1, 2

(W n
i −W n−1

i , χ)h = γ(∇Un
i − Un−1

i ,∇χ) + (φ(Un
i ) − φ(Un−1

i ), χ)h

− µθi(U
n
i − Un−1

i , χ)h +
1

2

(

f
(i)
D (Un

1 , U
n
2 ) − f

(i)
D (Un−1

1 , Un−1
2 ), χ

)h

+











1
2

(

f̄
(i)
1,0 − f

(i)
D (U0

1 , U
0
2 ), χ

)h
n = 1,

− (1 − µ)θi(U
n−1
i − Un−2

i , χ)h + 1
2
(f̄

(i)
n,n−1 − f̄

(i)
n−1,n−2, χ)h n ≥ 2.

(5.3.43)

Testing (5.1.6a) with χ = W n
i −W n−1

i and noting the identity 2a(a− b) = a2 − b2 +

(a− b)2 yields for i = 1, 2 and n = 1 → N

(Un
i − Un−1

i

∆t
,W n

i −W n−1
i

)h

= −(∇W n
i ,∇W

n
i −W n−1

i )

= −
1

2
|W n

i |
2
1 +

1

2
|W n−1

i |21 −
1

2
|W n

i −W n−1
i |21. (5.3.44)

For convenience we continue the proof using the following notation

Zn
i :=

Un
i − Un−1

i

∆t
i = 1, 2, n = 1 → N. (5.3.45)

Now, for i = 1, 2 we take χ = Zn
i in (5.3.43) and use (5.3.44) which gives upon

rearranging for n = 1 → N that

γ∆t|Zn
i |

2
1 + (φ(Un

i ) − φ(Un−1
i ), Zn

i )h +
1

2
|W n

i |
2
1 +

1

2
|W n

i −W n−1
i |21

=
1

2
|W n−1

i |21 + µθi∆t|Z
n
i |

2
h −

1

2

(

f
(i)
D (Un

1 , U
n
2 ) − f

(i)
D (Un−1

1 , Un−1
2 ), Zn

i

)h

+











− 1
2

(

f̄
(i)
1,0 − f

(i)
D (U0

1 , U
0
2 ), Z1

i

)h
n = 1,

(1 − µ)θi∆t(Z
n−1
i , Zn

i )h − 1
2
(f̄

(i)
n,n−1 − f̄

(i)
n−1,n−2, Z

n
i )h n ≥ 2.

(5.3.46)
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Next we estimate the terms on the right hand side of (5.3.46). From (4.1.15) it

follows for i = 1, 2 and n = 1 → N that

µθi∆t|Z
n
i |

2
h ≤

γ∆t

8
|Zn

i |
2
1 + C∆t‖Zn

i ‖
2
−h. (5.3.47)

Setting ri = Un
i , si = Un−1

i , i = 1, 2, in (2.3.46), using the result (5.3.19e) and

noting |αi| < 1 we find for i, j = 1, 2 with i 6= j and n = 1 → N that

∣

∣

∣

1

2

(

f
(i)
D (Un

1 , U
n
2 ) − f

(i)
D (Un−1

1 , Un−1
2 ), Zn

i

)h
∣

∣

∣

= D
∣

∣

∣

(

(Un
j + αj)

2(Un
i − Un−1

i ) + (Un−1
i + αi)(U

n
j + Un−1

j + 2αj)(U
n
j − Un−1

j ), Zn
i

)h
∣

∣

∣

= D∆t
∣

∣

∣

(

(Un
j + αj)

2Zn
i + (Un−1

i + αi)(U
n
j + Un−1

j + 2αj)Z
n
j , Z

n
i

)h
∣

∣

∣

≤ 4D∆t|Zn
i |

2
h + 8D∆t(|Zn

j |, |Z
n
i |)

h

≤ 8D∆t|Zn
i |

2
h + 4D∆t|Zn

j |
2
h

≤
γ∆t

8

[

|Zn
i |

2
1 + |Zn

j |
2
1

]

+ C∆t
[

‖Zn
i ‖

2
−h + ‖Zn

j ‖
2
−h

]

, (5.3.48)

where we have also noted a Young’s inequality and (4.1.15).

Again (5.3.19e) and (4.1.15) show for i, j = 1, 2 with i 6= j that

1

2

∣

∣

∣

(

f̄
(i)
1,0 − f

(i)
D (U0

1 , U
0
2 ), Z1

i )
h
∣

∣

∣

= D
∣

∣

∣

(

(U1
i + αi)(U

0
j + αj)

2 − (U0
i + αi)(U

0
j + αj)

2, Z1
i

)h
∣

∣

∣

= D∆t
∣

∣

∣

(

(U0
j + αj)

2Z1
i , Z

1
i

)

∣

∣

∣

≤ 4D∆t|Z1
i |

2
h

≤
γ∆t

4
|Z1

i |
2
1 + C∆t‖Z1

i ‖
2
−h. (5.3.49)

For n ≥ 2 we have by (4.1.14) that

(1 − µ)θi∆t(Z
n−1
i , Zn

i )h ≤
γ∆t

8
|Zn

i |
2
1 + C∆t‖Zn−1

i ‖2
−h. (5.3.50)

Subtracting and adding (Un−1
i + αi)(U

n−1
j + αj)

2, i, j = 1, 2 with i 6= j, noting

(5.3.19e), recalling that |αi| < 1 and using a Young’s inequality and (4.1.15) we

have for n ≥ 2 that
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∣

∣

∣

1

2
(f̄

(i)
n,n−1 − f̄

(i)
n−1,n−2, Z

n
i )h

∣

∣

∣

= D
∣

∣

∣

(

(Un
i + αi)(U

n−1
j + αj)

2 − (Un−1
i + αi)(U

n−2
j + αj)

2, Zn
i

)h
∣

∣

∣

= D
∣

∣

∣

(

(Un−1
j + αj)

2(Un
i − Un−1

i ) + (Un−1
i + αi)(U

n−1
j + Un−2

j + 2αj)(U
n−1
j − Un−2

j ), Zn
i

)h
∣

∣

∣

= D∆t
∣

∣

∣

(

(Un−1
j + αj)

2Zn
i + (Un−1

i + αi)(U
n−1
j + Un−2

j + 2αj)Z
n−1
j , Zn

i

)h
∣

∣

∣

≤ 4D∆t|Zn
i |

2
h + 8D∆t(|Zn−1

j |, |Zn
i |)

h

≤ 8D∆t|Zn
i |

2
h + 4D∆t|Zn−1

j |2h

≤
γ∆t

8

[

|Zn
i |

2
1 + |Zn−1

j |21
]

+ C∆t
[

‖Zn
i ‖

2
−h + ‖Zn−1

j ‖2
−h

]

. (5.3.51)

Combining (5.3.47)-(5.3.51) with (5.3.46) and noting the monotonicity of φ yields

for i, j = 1, 2 with i 6= j and n = 1 → N that

γ∆t|Zn
i |

2
1 +

1

2
|W n

i |
2
1 +

1

2
|W n

i −W n−1
i |21

≤
1

2
|W n−1

i |21 +
γ∆t

2
|Zn

i |
2
1 +

γ∆t

8
|Zn

j |
2
1 + C∆t

[

‖Zn
i ‖

2
−h + ‖Zn

j ‖
2
−h

]

+











0 n = 1,

γ∆t
8
|Zn−1

j |21 + C∆t
[

‖Zn−1
i ‖2

−h + ‖Zn−1
j ‖2

−h

]

n ≥ 2.

(5.3.52)

We now aim to prove for m = 1 → N

γ∆t

4

m
∑

n=1

[

|Zn
1 |

2
1 + |Zn

2 |
2
1

]

+
1

2

[

|Wm
1 |21 + |Wm

2 |21
]

+
1

2

m
∑

n=1

[

|W n
1 −W n−1

1 |21 + |W n
2 −W n−1

2 |21
]

≤ C (5.3.53)

For n = 1 we sum (5.3.52) over i = 1, 2 and use the bounds (5.3.42) and (5.3.19b)

to result in after simplifying that

3γ∆t

8

[

|Z1
1 |

2
1 + |Z1

2 |
2
1

]

+
1

2

[

|W 1
1 |

2
1 + |W 1

2 |
2
1

]

+
1

2

[

|W 1
1 −W 0

1 |
2
1 + |W 1

2 −W 0
2 |

2
1

]

≤
1

2

[

|W 0
1 |

2
1 + |W 0

2 |
2
1

]

+ C∆t
[

‖Z1
1‖

2
−h + ‖Z1

2‖
2
−h

]

≤ C,

(5.3.54)

which is sufficient to prove (5.3.53) with m = 1.
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For n ≥ 2 we sum (5.3.52) over i = 1, 2 and simplify to obtain

3γ∆t

8

[

|Zn
1 |

2
1 + |Zn

2 |
2
1

]

+
1

2

[

|W n
1 |

2
1 + |W n

2 |
2
1

]

+
1

2

[

|W n
1 −W n−1

1 |21 + |W n
2 −W n−1

2 |21
]

≤
1

2

[

|W n−1
1 |21 + |W n−1

2 |21
]

+
γ∆t

8

[

|Zn−1
1 |21 + |Zn−1

2 |21
]

+ C∆t
[

‖Zn
1 ‖

2
−h + ‖Zn

2 ‖
2
−h + ‖Zn−1

1 ‖2
−h + ‖Zn−1

2 ‖2
−h

]

.

(5.3.55)

Noting first for all m = 2 → N and i = 1, 2 that

3γ∆t

8

m
∑

n=2

|Zn
i |

2
1 −

γ∆t

8

m
∑

n=2

|Zn−1
i |21 =

γ∆t

4

m
∑

n=2

|Zn
i |

2
1 +

γ∆t

8
|Zm

i |21 −
γ∆t

8
|Z1

i |
2
1

≥
γ∆t

4

m
∑

n=2

|Zn
i |

2
1 −

γ∆t

8
|Z1

i |
2
1, (5.3.56)

and then by summing (5.3.55) from n = 2 → m we have after rearranging for all

2 ≤ m ≤ N that

γ∆t

4

m
∑

n=2

[

|Zn
1 |

2
1 + |Zn

2 |
2
1

]

+
1

2

[

|Wm
1 |21 + |Wm

2 |21
]

+
1

2

m
∑

n=2

[

|W n
1 −W n−1

1 |21 + |W n
2 −W n−1

2 |21
]

≤
1

2

[

|W 1
1 |

2
1 + |W 1

2 |
2
1

]

+
γ∆t

8

[

|Z1
1 |

2
1 + |Z1

2 |
2
1

]

+ C∆t
m

∑

n=2

[

‖Zn
1 ‖

2
−h + ‖Zn

2 ‖
2
−h + ‖Zn−1

1 ‖2
−h + ‖Zn−1

2 ‖2
−h

]

≤C, (5.3.57)

where we have noted (5.3.54) and (5.3.19b) to obtain the last inequality.

Finally, adding (5.3.54) with m = 1 to (5.3.57) ∀m ≥ 2 yields (5.3.53) . There-

fore, the second estimate in (5.3.39a) follows immediately from (5.3.53). The first

estimate in (5.3.39a) follows also from (5.3.53) with the aid of the Poincaré inequal-

ity. In addition, (5.3.53) together with the fact that |W n
i |1 = ‖

Un
i −Un−1

i

∆t
‖−h, see

(5.3.6), shows the third estimate in (5.3.39a).
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To obtain the first estimate in (5.3.39b) we first note from Poincré’s inequality

and (5.3.53) that for i = 1, 2 and n = 1 → N

∥

∥

∥
W n

i −

∫

− W n
i

∥

∥

∥

2

1
≤ C

∣

∣

∣
W n

i −

∫

− W n
i

∣

∣

∣

2

1
= C|W n

i |
2
1 ≤ C. (5.3.58)

Repeating the same technique used in Theorem 5.3.1 for deriving the inequality

(5.3.9) where this time we use (5.3.37), the bound (5.3.19a) and that |ψ(r)| ≤ ψ(1) =

θ ln 2 ∀r ∈ [−1, 1] in place of (2.2.6), the bound (5.3.1a) and (5.3.8) respectively to

conclude for any β ∈ (−1, 1) that

(

φ(Un
i ) +

1

2
(f

(i)
D (Un

1 , U
n
2 ) + f̄

(i)
n,n−1), β −mi)

h =

≤ C
[

1 + |W n
i |1 + (ψ(β), 1)h + |f

(i)
D (Un

1 , U
n
2 ) + f̄

(i)
n,n−1|h |β − Un

i |h
]

≤ C, (5.3.59)

where to obtain the last inequality we note the equivalence result (4.1.6) and the

bounds (5.3.53), (5.3.19a) and (5.3.19d).

Thus, on choosing β = ±1 ∓ δ0
2

we conclude, similarly to (5.3.14), for i = 1, 2

and n = 1 → N that

∣

∣

∣

∫

−
[

πhφ(Un
i ) +

1

2
(πhf

(i)
D (Un

1 , U
n
2 ) + πhf̄

(i)
n,n−1)

]

∣

∣

∣
≤ C. (5.3.60)

We therefore have by (5.1.11) that for i = 1, 2 and n = 1 → N

∥

∥

∥

∫

− W n
i

∥

∥

∥

2

1
= |Ω|

∣

∣

∣

∫

− W n
i

∣

∣

∣

2

≤ 2|Ω|
∣

∣

∣

∫

−
[

πhφ(Un
i ) +

1

2
(πhf

(i)
D (Un

1 , U
n
2 ) + πhf̄

(i)
n,n−1)

]

∣

∣

∣

2

+ 2|Ω|m2
i θ

2
i ≤ C, (5.3.61)

from which together with (5.3.58) we deduce the first estimate in (5.3.39b).

Finally, for i = 1, 2 and n = 1 → N we take χ = πhφ(Un
i ) in the unregularized

version (5.1.7b) to obtain the following analogue of (5.3.17)

γ(∇Un
i ,∇π

hφ(Un
i )) + |πhφ(Un

i )|2h ≤
1

2
|πhφ(Un

i )|2h + C
[

|W n
i |

2
h + |Un

i |
2
h + |Un−1

i |2h

+ |πhf
(i)
D (Un

1 , U
n
2 )|2h + |πhf̄

(i)
n,n−1|

2
h

]

. (5.3.62)

With the aid of (5.3.38), the first bound in (5.3.39b) and the bounds (5.3.19a) and

(5.3.19d) this shows the second bound in (5.3.39b). 2
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5.4 A fully-discrete error bound

In this section we prove an error bound between the solutions of the continuous

problem (P) and the symmetric coupled fully-discrete problem (Ph,∆t

µ ). This error

bound is derived via the error bound between (Ph) and (P) derived in the previous

chapter (see Theorem 4.4.3), and an error bound between (Ph,∆t

µ ) and (Ph). In fact,

by applying the framework in Nochetto [50] for analysing the discretization error in

the backward Euler method, we shall prove an optimal error bound in time between

(Ph,∆t

µ ) and (Ph). For the error bound analysis we first consider the following

definitions:

ℓ(t) :=
tn − t

∆t
, t ∈ (tn−1, tn], n ≥ 1. (5.4.1)

For i = 1, 2 we also define

Ui(t) :=
(t− tn−1

∆t

)

Un
i +

(tn − t

∆t

)

Un−1
i

= (1 − ℓ(t))Un
i + ℓ(t)Un−1

i , t ∈ [tn−1, tn], n ≥ 1 (5.4.2)

and

U+
i (t) := Un

i , U−
i (t) := Un−1

i , t ∈ (tn−1, tn], n ≥ 1. (5.4.3)

Using the above definitions one can easily see for i = 1, 2 that

∂tUi =
U+

i − U−
i

∆t
=
Ui − U+

i

−ℓ∆t
=

Ui − U−
i

(1 − ℓ)∆t
, t ∈ (tn−1, tn), n ≥ 1. (5.4.4)

The Nochetto’s method is based on exploiting the convex part of the potential and

defining quantities satisfying some properties (see Lemma 5.4.1 below). This will

lead us to a differential error inequality (see Lemma 5.4.2 below) from which the

time discretisation error can be bounded by non-negative quantities with optimal

order as will be proved in Theorem 5.4.3.

For notational convenience we also introduce the subspace Sh
[−1,1] ⊂ Sh

Sh
[−1,1] := {χ ∈ Sh : |χ| ≤ 1}. (5.4.5)

Let J̄h : Sh
[−1,1] × Sh

[−1,1] → R be defined by

J̄h(χ1, χ2) :=
γ

2

[

|χ1|
2
1 + |χ2|

2
1

]

+ (ψ(χ1), 1)h + (ψ(χ2), 1)h. (5.4.6)
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Note for i = 1, 2 that ψ is the convex part of the free energy Ψi as ψ′′(r) > 0 for all

r ∈ (−1, 1).

We introduce for a.e. t ∈ (0, T )

R(t) :=
[(

− µθ1U
+
1 − (1 − µ)θ1U

−
1 +

1

2

(

f
(1)
D (U+

1 , U
+
2 ) + f

(1)
D (U+

1 , U
−
2 )

)

, U1 − U+
1

)h

+
(

Ĝh∂tU1, U1 − U+
1

)h]

+
[(

− µθ2U
+
2 − (1 − µ)θ2U

−
2 +

1

2

(

f
(2)
D (U+

1 , U
+
2 ) + f

(2)
D (U−

1 , U
+
2 )

)

, U2 − U+
2

)h

+
(

Ĝh∂tU2, U2 − U+
2

)h]

+
[

J̄h(U1, U2) − J̄h(U+
1 , U

+
2 )

]

. (5.4.7)

For n ≥ 1 we define

En :=
[(

µθ1U
n
1 + (1 − µ)θ1U

n−1
1 −

1

2

(

f
(1)
D (Un

1 , U
n
2 ) + f

(1)
D (Un

1 , U
n−1
2 )

)

,
Un

1 − Un−1
1

∆t

)h

−
(

Ĝh
(Un

1 − Un−1
1

∆t

)

,
Un

1 − Un−1
1

∆t

)h]

+
[(

µθ2U
n
2 + (1 − µ)θ2U

n−1
2 −

1

2

(

f
(2)
D (Un

1 , U
n
2 ) + f

(2)
D (Un−1

1 , Un
2 )

)

,
Un

2 − Un−1
2

∆t

)h

−
(

Ĝh
(Un

2 − Un−1
2

∆t

)

,
Un

2 − Un−1
2

∆t

)h]

−
1

∆t

[

J̄h(Un
1 , U

n
2 ) − J̄h(Un−1

1 , Un−1
2 )

]

. (5.4.8)

For theoretical purposes we introduce {U−1
1 , U−1

2 } ∈ Sh
m1

×Sh
m2

such that for i = 1, 2

and for all χ ∈ Sh

γ(∇U0
i ,∇χ) +

(

φ(U0
i ) − µθiU

0
i − (1 − µ)θiU

−1
i , χ−

∫

− χ
)h

+
(

f
(i)
D (U0

1 , U
0
2 ), χ−

∫

− χ
)h

+
(

Ĝh
(U0

i − U−1
i

∆t

)

, χ
)h

= 0. (5.4.9)

Now we establish existence and uniqueness of U−1
1 and U−1

2 . The existence can be

proved by considering the following minimization problem

min
{χ1,χ2}∈Sh

m1
×Sh

m2

{

Ih(χ1, χ2) :=
1

2∆t
‖χ1 − U0

1‖
2
−h +

1

2∆t
‖χ2 − U0

2‖
2
−h

+
(1 − µ)

2

[

θ1|χ1|
2
h + θ2|χ2|

2
h

]

− (g0
1, χ1)

h − (g0
2, χ2)

h
}

,

(5.4.10)
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where g0
1 and g0

2 are given such that for all χ ∈ Sh and i = 1, 2

(g0
i , χ)h = γ(∇U0

i ,∇χ) + (φ(U0
i ) − µθiU

0
i + f

(i)
D (U0

1 , U
0
2 ), χ−

∫

− χ)h. (5.4.11)

Using Young’s inequality it follows for i = 1, 2 that

Ih(χ1, χ2) ≥
(1 − µ)θ1

4
|χ1|

2
h +

(1 − µ)θ2
4

|χ2|
2
h −

1

(1 − µ)θ1
|g0

1|
2
h −

1

(1 − µ)θ2
|g0

2|
2
h.

(5.4.12)

Thus, Ih is bounded below in Sh
m1

×Sh
m2

. Let ρ = inf
Sh

m1
×Sh

m2

Ih(χ1, χ2) and {χ1,n, χ2,n}

be a minimizing sequence of Ih in Sh
m1

× Sh
m2

(i.e. lim
n→∞

Ih(χ1,n, χ2,n) = ρ). From the

estimate (5.4.12) it follows that {χ1,n} and {χ2,n} are bounded in Sh and hence we

can extract subsequences {χ1,n} and {χ2,n} such that

χ1,n → U−1
1 ∈ Sh, χ2,n → U−1

2 ∈ Sh.

Since Sh
m1

×Sh
m2

is a closed set, we have {U−1
1 , U−1

2 } ∈ Sh
m1

×Sh
m2

. By the continuity

of Ih we conclude thus that of Ih we conclude thus that

Ih(χ1,n, χ2,n) → Ih(U−1
1 , U−1

2 ) ≡ ρ.

Therefore, we have that {U−1
1 , U−1

2 } is a solution of the minimization problem

(5.4.10). Now we can easily see for i = 1, 2 that (5.4.9) is the Euler-Lagrange

equations of the minimization problem.

To prove the uniqueness, we assume thatX−1 := {U−1
1 , U−1

2 } andX−1∗ := {U−1∗
1 , U−1∗

2 }

are two solutions of (5.4.9) and define Ū−1
i := U−1

i −U−1∗
i ∈ V h

0 , i = 1, 2. By (5.4.9)

we find for i = 1, 2 and for all χ ∈ Sh that

−θi(1 − µ)(Ū−1
i , χ−

∫

− χ)h −
1

∆t

(

ĜhŪ−1
i , χ

)h
= 0. (5.4.13)

Choosing χ = Ū−1
i in (5.4.13) yields for i = 1, 2 that

θi(1 − µ)|Ū−1
i |2h +

1

∆t
‖Ū−1

i ‖2
−h = 0, (5.4.14)

which implies for i = 1, 2 that Ū−1
i ≡ 0 and therefore the uniqueness result.
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Finally, we introduce

D1 :=
[(

µθ1U
1
1 + (1 − µ)θ1U

0
1 −

1

2

(

f
(1)
D (U1

1 , U
1
2 ) + f

(1)
D (U1

1 , U
0
2 )

)

,
U1

1 − U0
1

∆t

)h

−
(

Ĝh
(U1

1 − U0
1

∆t

)

,
U1

1 − U0
1

∆t

)h]

+
[(

µθ2U
1
2 + (1 − µ)θ2U

0
2 −

1

2

(

f
(2)
D (U1

1 , U
1
2 ) + f

(2)
D (U0

1 , U
1
2 )

)

,
U1

2 − U0
2

∆t

)h

−
(

Ĝh
(U1

2 − U0
2

∆t

)

,
U1

2 − U0
2

∆t

)h]

−
[(

µθ1U
0
1 + (1 − µ)θ1U

−1
1 − f

(1)
D (U0

1 , U
0
2 ),

U1
1 − U0

1

∆t

)h

−
(

Ĝh
(U0

1 − U−1
1

∆t

)

,
U1

1 − U0
1

∆t

)h]

−
[(

µθ2U
0
2 + (1 − µ)θ2U

−1
2 − f

(2)
D (U0

1 , U
0
2 ),

U1
2 − U0

2

∆t

)h

−
(

Ĝh
(U0

2 − U−1
2

∆t

)

,
U1

2 − U0
2

∆t

)h]

, (5.4.15)

and for n ≥ 2

Dn :=
[(

µθ1U
n
1 + (1 − µ)θ1U

n−1
1 −

1

2

(

f
(1)
D (Un

1 , U
n
2 ) + f

(1)
D (Un

1 , U
n−1
2 )

)

,
Un

1 − Un−1
1

∆t

)h

−
(

Ĝh
(Un

1 − Un−1
1

∆t

)

,
Un

1 − Un−1
1

∆t

)h]

+
[(

µθ2U
n
2 + (1 − µ)θ2U

n−1
2 −

1

2

(

f
(2)
D (Un

1 , U
n
2 ) + f

(2)
D (Un−1

1 , Un
2 )

)

,
Un

2 − Un−1
2

∆t

)h

−
(

Ĝh
(Un

2 − Un−1
2

∆t

)

,
Un

2 − Un−1
2

∆t

)h]

−
[(

µθ1U
n−1
1 + (1 − µ)θ1U

n−2
1 −

1

2

(

f
(1)
D (Un−1

1 , Un−1
2 ) + f

(1)
D (Un−1

1 , Un−2
2 )

)

,
Un

1 − Un−1
1

∆t

)h

−
(

Ĝh
(Un−1

1 − Un−2
1

∆t

)

,
Un

1 − Un−1
1

∆t

)h]

−
[(

µθ2U
n−1
2 + (1 − µ)θ2U

n−2
2 −

1

2

(

f
(2)
D (Un−1

1 , Un−1
2 ) + f

(2)
D (Un−2

1 , Un−1
2 )

)

,
Un

2 − Un−1
2

∆t

)h

−
(

Ĝh
(Un−1

2 − Un−2
2

∆t

)

,
Un

2 − Un−1
2

∆t

)h]

. (5.4.16)

In the next lemma we prove some essential results concerning the quantities R, En

and Dn, defined in (5.4.7), (5.4.8) and (5.4.15-16) respectively.
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Lemma 5.4.1 Let the assumptions of Theorem 5.3.3 hold. Then, for n ≥ 1, En

and Dn satisfy that

0 ≤
γ

2

[

|Un
1 − Un−1

1 |21 + |Un
2 − Un−1

2 |21
]

≤ ∆tEn

≤ ∆tDn −
γ

2

[

|Un
1 − Un−1

1 |21 + |Un
2 − Un−1

2 |21
]

≤ ∆tDn. (5.4.17)

For t ∈ (tn−1, tn] and n = 1 → N define

E(t) := En, D(t) := Dn, (5.4.18)

then for a.e. t ∈ (0, T ) we have that

R(t) ≤ ℓ(t) ∆t E(t) ≤ ℓ(t) ∆tD(t). (5.4.19)

Furthermore, we have that

N
∑

n=1

En ≤
N

∑

n=1

Dn ≤ C. (5.4.20)

Proof. We test (5.1.9) with χ = Un
i − Un−1

i ∈ V h
0 and use the identity 2a(a− b) =

a2 − b2 + (a− b)2 to result in for i = 1, 2

γ

2
|Un

i |
2
1 −

γ

2
|Un−1

i |21 +
γ

2

[

|Un
1 − Un−1

1 |21 + (φ(Un
i ), Un

i − Un−1
i )h

+
(

− µθiU
n
i − (1 − µ)θiU

n−1
i +

1

2
(f

(i)
D (Un

1 , U
n
2 ) + f̄

(i)
n,n−1), U

n
i − Un−1

i

)h

+
(

Ĝh
(Un

i − Un−1
i

∆t

)

, Un
i − Un−1

i

)h

= 0. (5.4.21)

With the aid of (5.3.37) we obtain after rearranging for i = 1, 2 that

γ

2

[

|Un
i − Un−1

i |21 ≤
γ

2
|Un−1

i |21 −
γ

2
|Un

i |
2
1 + (ψ(Un−1

i ), 1)h − (ψ(Un
i ), 1)h

+
(

µθiU
n
i + (1 − µ)θiU

n−1
i −

1

2
(f

(i)
D (Un

1 , U
n
2 ) + f̄

(i)
n,n−1), U

n
i − Un−1

i

)h

−
(

Ĝh
(Un

i − Un−1
i

∆t

)

, Un
i − Un−1

i

)h

. (5.4.22)

Then, by summing (5.4.22) over i = 1, 2, recalling that f̄
(1)
n,n−1 = f

(1)
D (Un

1 , U
n−1
2 ) and

f̄
(2)
n,n−1 = f

(2)
D (Un−1

1 , Un
2 ) and owing to the definitions (5.4.6) and (5.4.8) of J̄h and

En we conclude for n = 1 → N that

γ

2

[

|Un
1 − Un−1

1 |21 + |Un
2 − Un−1

2 |21
]

≤ ∆tEn, (5.4.23)

which is the first inequality in (5.4.17).
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To see the second inequality in (5.4.17) we first note from (5.4.8) and (5.4.16) that

for n = 2 → N

En −Dn = −
1

∆t

[

J̄h(Un
1 , U

n
2 ) − J̄h(Un−1

1 , Un−1
2 )

]

+
(

µθ1U
n−1
1 + (1 − µ)θ1U

n−2
1 −

1

2

(

f
(1)
D (Un−1

1 , Un−1
2 ) + f

(1)
D (Un−1

1 , Un−2
2 )

)

,
Un

1 − Un−1
1

∆t

)h

+
(

µθ2U
n−1
2 + (1 − µ)θ2U

n−2
2 −

1

2

(

f
(2)
D (Un−1

1 , Un−1
2 ) + f

(2)
D (Un−2

1 , Un−1
2 )

)

,
Un

2 − Un−1
2

∆t

)h

−
(

Ĝh
(Un−1

1 − Un−2
1

∆t

)

,
Un

1 − Un−1
1

∆t

)h

−
(

Ĝh
(Un−1

2 − Un−2
2

∆t

)

,
Un

2 − Un−1
2

∆t

)h

.

(5.4.24)

On the other hand, rewriting (5.1.9) of (Ph,∆t

µ ) at time level t = tn−1 and then

taking χ = Un
i − Un−1

i ∈ V h
0 yields for i = 1, 2 and for n = 2 → N that

γ(∇Un−1
i ,∇Un

i − Un−1
i ) + (φ(Un−1

i ), Un
i − Un−1

i )h

+
(

− µθiU
n−1
i − (1 − µ)θiU

n−2
i +

1

2
(f

(i)
D (Un−1

1 , Un−1
2 ) + f̄

(i)
n−1,n−2), U

n
i − Un−1

i )h

+
(

Ĝh
(Un−1

i − Un−2
i

∆t

)

, Un
i − Un−1

i

)h

= 0. (5.4.25)

Using the identity 2a(a − b) = a2 − b2 + (a − b)2 and (5.3.37) and rearranging it

follows for i = 1, 2 and for n = 2 → N that

−
γ

2
|Un

i − Un−1
i |21 ≥

γ

2
|Un−1

i |21 −
γ

2
|Un

i |
2
1 + (ψ(Un−1

i ), 1)h − (ψ(Un
i ), 1)h

+
(

µθiU
n−1
i + (1 − µ)θiU

n−2
i −

1

2
(f

(i)
D (Un−1

1 , Un−1
2 ) + f̄

(i)
n−1,n−2), U

n
i − Un−1

i )h

−
(

Ĝh
(Un−1

i − Un−2
i

∆t

)

, Un
i − Un−1

i

)h

. (5.4.26)

Thus, by summation over i = 1, 2 we have, on noting (5.4.6) and recalling that

f̄
(1)
n−1,n−2 = f

(1)
D (Un−1

1 , Un−2
2 ) and f̄

(2)
n−1,n−2 = f

(2)
D (Un−2

1 , Un−1
2 ), that for n = 2 → N

−
γ

2

[

|Un
1 − Un−1

1 |21 + |Un
2 − Un−1

2 |21
]

≥
[

J̄h(Un−1
1 , Un−1

2 ) − J̄h(Un
1 , U

n
2 )

]

+
(

µθ1U
n−1
1 + (1 − µ)θ1U

n−2
1 −

1

2

(

f
(1)
D (Un−1

1 , Un−1
2 ) + f

(1)
D (Un−1

1 , Un−2
2 )

)

, Un
1 − Un−1

1

)h

+
(

µθ2U
n−1
2 + (1 − µ)θ2U

n−2
2 −

1

2

(

f
(2)
D (Un−1

1 , Un−1
2 ) + f

(2)
D (Un−2

1 , Un−1
2 )

)

, Un
2 − Un−1

2

)h

−
(

Ĝh
(Un−1

1 − Un−2
1

∆t

)

, Un
1 − Un−1

1

)h

−
(

Ĝh
(Un−1

2 − Un−2
2

∆t

)

, Un
2 − Un−1

2

)h

.

(5.4.27)
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Comparing the right hand side of (5.4.27) with (5.4.24) we therefore find for n =

2 → N that

−
γ

2

[

|Un
1 − Un−1

1 |21 + |Un
2 − Un−1

2 |21
]

≥ ∆t
[

En −Dn
]

. (5.4.28)

For the case n = 1, we argue as for n ≥ 2 to obtain on using (5.4.15) in place

of (5.4.16) and (5.4.9) in palace of (5.1.9) that the results (5.4.24)-(5.4.27) holds

for n = 1 with the only change that 1
2
(f

(1)
D (Un−1

1 , Un−1
2 ) + f

(1)
D (Un−1

1 , Un−2
2 )) and

1
2
(f

(2)
D (Un−1

1 , Un−1
2 )+f

(2)
D (Un−2

1 , Un−1
2 )) are replaced by f

(1)
D (U0

1 , U
0
2 ) and f

(2)
D (U0

1 , U
0
2 ),

respectively. Therefore, for n = 1 → N (5.4.28) is valid and hence we conclude that

the second inequality in (5.4.17) holds as required.

We now turn to prove (5.4.19). Noting (5.4.3) and (5.4.4) and owing to the defini-

tions (5.4.7), (5.4.18), (5.4.8) and (5.4.6) we rewrite for t ∈ (tn−1, tn) the difference

R− ℓ∆tE as

R− ℓ∆tE = J̄h(U1, U2) − J̄h(U+
1 , U

+
2 ) + ℓ

[

J̄h(Un
1 , U

n
2 ) − J̄h(Un−1

1 , Un−1
2 )

]

=
γ

2

[

|U1|
2
1 + |U2|

2
1 − |U+

1 |21 − |U+
2 |21

]

+
γ

2
ℓ
[

|Un
1 |

2
1 + |Un

2 |
2
1 − |Un−1

1 |21 − |Un−1
2 |21

]

+
[

(ψ(U1), 1)h + (ψ(U2), 1)h − (ψ(U+
1 ), 1)h − (ψ(U+

2 ), 1)h
]

+ ℓ
[

(ψ(Un
1 ), 1)h + (ψ(Un

2 ), 1)h − (ψ(Un−1
1 ), 1)h − (ψ(Un−1

2 ), 1)h
]

.

(5.4.29)

We now prove that the right hand side of (5.4.29) is non-positive. To see this, we

firstly note from (5.4.3) and (5.4.4) for i = 1, 2 and t ∈ (tn−1, tn)

γ

2

[

|Ui|
2
1 − |U+

i |21
]

+
γ

2
ℓ
[

|Un
i |

2
1 − |Un−1

i |21
]

=
γ

2

(

∇(Ui − U+
i ),∇(Ui + U+

i )
)

+
γ

2
ℓ
(

∇(Un
i − Un−1

i ),∇(Un
i + Un−1

i )
)

= −ℓ∆t
γ

2

(

∇∂tUi,∇(Ui + U+
i )

)

+ ℓ∆t
γ

2

(

∇∂tUi,∇(Un
i + Un−1

i )
)

= ℓ∆t
γ

2

(

∇∂tUi,∇(Un−1
i − Ui)

)

= −
γ

2
ℓ(1 − ℓ)(∆t)2|∂tUi|

2
1 ≤ 0, (5.4.30)

on noting 0 ≤ ℓ ≤ 1.
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From (5.4.2) and the convexity of ψ it follows for i = 1, 2 and t ∈ (tn−1, tn) that

(ψ(Ui), 1)h − (ψ(U+
i ), 1)h + ℓ

[

(ψ(Un
i ), 1)h − (ψ(Un−1

i ), 1)h
]

≤ (1 − ℓ)(ψ(Un
i ), 1)h + ℓ(ψ(Un−1

i ), 1)h − (ψ(U+
i ), 1)h

+ ℓ
[

(ψ(Un
i ), 1)h − (ψ(Un−1

i ), 1)h
]

= 0. (5.4.31)

Adding (5.4.30) to (5.4.31) and then summing over i = 1, 2 yields after substitution

into (5.4.29) that for t ∈ (tn−1, tn)

R− ℓ∆tE ≤ 0, (5.4.32)

from which we obtain the first inequality in (5.4.19). The second inequality follows

immediately from (5.4.17).

Next we show that
∑N

n=1 D
n ≤ C. To this aim, we express

∑N
n=2 D

n using (5.4.16)

as

n
∑

n=2

Dn =
N

∑

n=2

[(

µθ1(U
n
1 − Un−1

1 ) + (1 − µ)θ1(U
n−1
1 − Un−2

1 ),
Un

1 − Un−1
1

∆t

)h

+
(

µθ2(U
n
2 − Un−1

2 ) + (1 − µ)θ2(U
n−1
2 − Un−2

2 ),
Un

2 − Un−1
2

∆t

)h]

−
1

2

N
∑

n=2

[(

f
(1)
D (Un

1 , U
n
2 ) − f

(1)
D (Un−1

1 , Un−1
2 ),

Un
1 − Un−1

1

∆t

)h

+
(

f
(2)
D (Un

1 , U
n
2 ) − f

(2)
D (Un−1

1 , Un−1
2 ),

Un
2 − Un−1

2

∆t

)h]

−
1

2

N
∑

n=2

[(

f
(1)
D (Un

1 , U
n−1
2 ) − f

(1)
D (Un−1

1 , Un−2
2 ),

Un
1 − Un−1

1

∆t

)h

+
(

f
(2)
D (Un−1

1 , Un
2 ) − f

(2)
D (Un−2

1 , Un−1
2 ),

Un
2 − Un−1

2

∆t

)h]

−
N

∑

n=2

[(

Ĝh
(Un

1 − Un−1
1

∆t

)

− Ĝh
(Un−1

1 − Un−2
1

∆t

)

,
Un

1 − Un−1
1

∆t

)h

+
(

Ĝh
(Un

2 − Un−1
2

∆t

)

− Ĝh
(Un−1

2 − Un−2
2

∆t

)

,
Un

2 − Un−1
2

∆t

)h]

:= T1 + T2 + T3 + T4. (5.4.33)
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We deal with the terms on the right hand side of (5.4.33) separately. With the aid

of the Young inequality and the first bound in (5.3.39a) we find for i = 1, 2 that

N
∑

n=2

(

µθi(U
n
i − Un−1

i ) + (1 − µ)θi(U
n−1
i − Un−2

i ),
Un

i − Un−1
i

∆t

)h

≤ µθi∆t

N
∑

n=2

∣

∣

∣

Un
i − Un−1

i

∆t

∣

∣

∣

2

h
+ (1 − µ)θi∆t

N
∑

n=2

∣

∣

∣

Un−1
i − Un−2

i

∆t

∣

∣

∣

h

∣

∣

∣

Un
i − Un−1

i

∆t

∣

∣

∣

h

≤ C∆t
[

N
∑

n=2

∣

∣

∣

Un
i − Un−1

i

∆t

∣

∣

∣

2

h
+

∣

∣

∣

Un−1
i − Un−2

i

∆t

∣

∣

∣

2

h

]

≤ C, (5.4.34)

and hence by summing over i = 1, 2 we have T1 is bounded.

Using (2.3.46) with ri = Un
i and si = Un−1

i , noting the result (5.3.19e) and that

|αi| < 1, applying Young’s inequality and noting the first bound in (5.3.39a) yields

for i, j = 1, 2 with i 6= j that

1

2

N
∑

n=2

∣

∣

∣

(

f
(i)
D (Un

1 , U
n
2 ) − f

(i)
D (Un−1

1 , Un−1
2 ),

Un
i − Un−1

i

∆t

)h∣
∣

∣

≤ D
N

∑

n=2

∣

∣

∣

(

(Un
j + αj)

2(Un
i − Un−1

i ),
Un

i − Un−1
i

∆t

)h∣
∣

∣

+D

N
∑

n=2

∣

∣

∣

(

(Un−1
i + αi)(U

n
j + Un−1

j + 2αj)(U
n
j − Un−1

j ),
Un

i − Un−1
i

∆t

)h∣
∣

∣

≤ 4D∆t
N

∑

n=2

∣

∣

∣

Un
i − Un−1

i

∆t

∣

∣

∣

2

h
+ 8D∆t

N
∑

n=2

∣

∣

∣

Un
j − Un−1

j

∆t

∣

∣

∣

h

∣

∣

∣

Un
i − Un−1

i

∆t

∣

∣

∣

h

≤ 8D∆t
N

∑

n=2

∣

∣

∣

Un
i − Un−1

i

∆t

∣

∣

∣

2

h
+ 4D∆t

N
∑

n=2

∣

∣

∣

Un
j − Un−1

j

∆t

∣

∣

∣

2

h
≤ C, (5.4.35)

which implies, by summation over i = 1, 2, that T2 is bounded. Similarly, one can

show that

T3 ≤
1

2

N
∑

n=2

∣

∣

∣

(

f
(1)
D (Un

1 , U
n−1
2 ) − f

(1)
D (Un−1

1 , Un−2
2 ),

Un
1 − Un−1

1

∆t

)h∣
∣

∣

+
1

2

N
∑

n=2

∣

∣

∣

(

f
(2)
D (Un−1

1 , Un
2 ) − f

(2)
D (Un−2

1 , Un−1
2 ),

Un
2 − Un−1

2

∆t

)h∣
∣

∣

≤ 8D∆t

N
∑

n=2

∣

∣

∣

Un
1 − Un−1

1

∆t

∣

∣

∣

2

h
+ 4D∆t

N
∑

n=2

∣

∣

∣

Un−1
2 − Un−2

2

∆t

∣

∣

∣

2

h

+ 8D∆t
N

∑

n=2

∣

∣

∣

Un
2 − Un−1

2

∆t

∣

∣

∣

2

h
+ 4D∆t

N
∑

n=2

∣

∣

∣

Un−1
1 − Un−2

1

∆t

∣

∣

∣

2

h
≤ C. (5.4.36)
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From the definition (4.1.11) of Ĝh, the identity 2a(a − b) = a2 − b2 + (a − b)2 and

the third bound in (5.3.39a) it follows for i = 1, 2 that

−
N

∑

n=2

(

Ĝh
(Un

i − Un−1
i

∆t

)

− Ĝh
(Un−1

i − Un−2
i

∆t

)

,
Un

i − Un−1
i

∆t

)h

= −
N

∑

n=2

(

∇Ĝh
(Un

i − Un−1
i

∆t

)

−∇Ĝh
(Un−1

i − Un−2
i

∆t

)

,∇Ĝh
(Un

i − Un−1
i

∆t

))

=
1

2

N
∑

n=2

[

−
∣

∣

∣
Ĝh

(Un
i − Un−1

i

∆t

)
∣

∣

∣

2

1
+

∣

∣

∣
Ĝh

(Un−1
i − Un−2

i

∆t

)
∣

∣

∣

2

1

−
∣

∣

∣
Ĝh

(Un
i − 2Un−1

i + Un−2
i

∆t

)
∣

∣

∣

2

1

]

=
1

2

[

−
∣

∣

∣
Ĝh

(UN
i − UN−1

i

∆t

)
∣

∣

∣

2

1
+

∣

∣

∣
Ĝh

(U1
i − U0

i

∆t

)
∣

∣

∣

2

1

]

−
1

2

N
∑

n=2

∣

∣

∣
Ĝh

(Un
i − 2Un−1

i + Un−2
i

∆t

)
∣

∣

∣

2

1

≤
1

2

∣

∣

∣
Ĝh

(U1
i − U0

i

∆t

)
∣

∣

∣

2

1
=

1

2

∥

∥

∥

U1
i − U0

i

∆t

∥

∥

∥

2

−h
≤ C, (5.4.37)

from which we deduce by summation over i = 1, 2 that T4 is bounded.

Therefore, inserting (5.4.34)-(5.4.37) into (5.4.33) leads to

N
∑

n=2

Dn ≤ C. (5.4.38)

It remains now to show that D1 ≤ C. Choosing χ =
U1

i −U0
i

∆t
in (5.3.35), noting that

θiU
0
i = µθiU

0
i + (1 − µ)θiU

0
i and rearranging gives for i = 1, 2 that

(

(1 − µ)θiU
0
i ,
U1

i − U0
i

∆t

)h

= γ
(

∇U0
i ,∇

U1
i − U0

i

∆t

)

+
(

φ(U0
i ) − µθiU

0
i + f

(i)
D (U0

1 , U
0
2 ) −W 0

i ,
U1

i − U0
i

∆t

)h

.

(5.4.39)

Then, by taking χ =
U1

i −U0
i

∆t
in (5.4.9) and rearranging yields for i = 1, 2 that

(

− µθiU
0
i − (1 − µ)θiU

−1
i + f

(i)
D (U0

1 , U
0
2 ),

U1
i − U0

i

∆t

)h

+
(

Ĝh
(U0

i − U−1
i

∆t

)

,
U1

i − U0
i

∆t

)h

= −γ
(

∇U0
i ,∇

U1
i − U0

i

∆t

)

−
(

φ(U0
i ),

U1
i − U0

i

∆t

)h

.

(5.4.40)
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Substituting (5.4.39) and (5.4.40) into (5.4.15) and simplifying it follows that

D1 =
(

µθ1U
1
1 −

1

2

(

f
(1)
D (U1

1 , U
1
2 ) + f

(1)
D (U1

1 , U
0
2 )

)

,
U1

1 − U0
1

∆t

)h

+ γ
(

∇U0
1 ,∇

U1
1 − U0

1

∆t

)

+
(

φ(U0
1 ) − µθ1U

0
1 + f

(1)
D (U0

1 , U
0
2 ) −W 0

1 ,
U1

1 − U0
1

∆t

)h

−
(

Ĝh
(U1

1 − U0
1

∆t

)

,
U1

1 − U0
1

∆t

)h

+
(

µθ2U
1
2 −

1

2

(

f
(2)
D (U1

1 , U
1
2 ) + f

(2)
D (U0

1 , U
1
2 )

)

,
U1

1 − U0
1

∆t

)h

+ γ
(

∇U0
2 ,∇

U1
2 − U0

2

∆t

)

+
(

φ(U0
2 ) − µθ2U

0
2 + f

(2)
D (U0

1 , U
0
2 ) −W 0

2 ,
U1

2 − U0
2

∆t

)h

−
(

Ĝh
(U1

2 − U0
2

∆t

)

,
U1

2 − U0
2

∆t

)h

− γ
(

∇U0
1 ,∇

U1
1 − U0

1

∆t

)

−
(

φ(U0
1 ),

U1
1 − U0

1

∆t

)h

− γ
(

∇U0
2 ,∇

U1
2 − U0

2

∆t

)

−
(

φ(U0
2 ),

U1
2 − U0

2

∆t

)h

=
(

µθ1(U
1
1 − U0

1 ) −W 0
1 − Ĝh

(U1
1 − U0

1

∆t

)

,
U1

1 − U0
1

∆t

)h

+
(

µθ2(U
1
2 − U0

2 ) −W 0
2 − Ĝh

(U1
2 − U0

2

∆t

)

,
U1

2 − U0
2

∆t

)h

+
1

2

(

f
(1)
D (U0

1 , U
0
2 ) − f

(1)
D (U1

1 , U
1
2 ) + f

(1)
D (U0

1 , U
0
2 ) − f

(1)
D (U1

1 , U
0
2 ),

U1
1 − U0

1

∆t

)h

+
1

2

(

f
(2)
D (U0

1 , U
0
2 ) − f

(2)
D (U1

1 , U
1
2 ) + f

(2)
D (U0

1 , U
0
2 ) − f

(2)
D (U0

1 , U
1
2 ),

U1
2 − U0

2

∆t

)h

= T1 + T2 + T3 + T4. (5.4.41)

To bound the first two terms we use the first inequality in (4.1.14), (4.1.12) and the

bounds (5.3.39a) and (5.3.42) to have for i = 1, 2 that

(

µθi(U
1
i − U0

i ) −W 0
i − Ĝh

(U1
i − U0

i

∆t

)

,
U1

i − U0
i

∆t

)h

≤ µθi∆t
∣

∣

∣

U1
i − U0

i

∆t

∣

∣

∣

2

h
+ |W 0

i |1

∥

∥

∥

U1
i − U0

i

∆t

∥

∥

∥

−h
−

∥

∥

∥

U1
i − U0

i

∆t

∥

∥

∥

2

−h

≤ C, (5.4.42)

and then we sum (5.4.42) over i = 1, 2 to obtain

T1 + T2 ≤ C. (5.4.43)

Similarly to (5.4.35), noting (5.3.19e) and |U0
i | = |P h

γ u
0
i | < 1 ∀h ≤ h∗ (see Lemma 4.3.3)

we have for i, j = 1, 2 with i 6= j that

1

2

(

f
(i)
D (U0

1 , U
0
2 ) − f

(i)
D (U1

1 , U
1
2 ),

U1
i − U0

i

∆t

)h

≤ 8D∆t
∣

∣

∣

U1
i − U0

i

∆t

∣

∣

∣

2

h
+ 4D∆t

∣

∣

∣

U1
j − U0

j

∆t

∣

∣

∣

2

h

≤ C. (5.4.44)
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We also have that

1

2

(

f
(1)
D (U0

1 , U
0
2 ) − f

(1)
D (U1

1 , U
0
2 ),

U1
1 − U0

1

∆t

)h

+
1

2

(

f
(2)
D (U0

1 , U
0
2 ) − f

(2)
D (U0

1 , U
1
2 ),

U1
2 − U0

2

∆t

)h

= D
(

(U0
2 + α2)

2(U0
1 − U1

1 ),
U1

1 − U0
1

∆t

)h

+D
(

(U0
1 + α1)

2(U0
2 − U1

2 ),
U1

2 − U0
2

∆t

)h

= −D
(

(U0
2 + α2)

2,
(U1

1 − U0
1 )2

∆t

)h

−D
(

(U0
1 + α1)

2,
(U1

2 − U0
2 )2

∆t

)h

≤ 0.

(5.4.45)

Thus, summing (5.4.44) over i = 1, 2 and adding the resulting inequality to (5.4.45)

leads to

T3 + T4 ≤ C. (5.4.46)

We therefore conclude from (5.4.41), (5.4.43) and (5.4.46) that

D1 ≤ C. (5.4.47)

Finally, the first inequality in (5.4.20) follows directly from (5.4.17). 2

Lemma 5.4.2 Let the assumptions of Theorem 5.3.3 hold. Then for a.e. t ∈ (0, T )

we have

γ

2

(

|E1|
2 + |E2|

2
1 + |E+

1 |
2
1 + |E+

2 |
2
1

)

+
1

2

d

dt

[

‖E1‖
2
−h + ‖E2‖

2
−h

]

≤
(

µθ1E
+
1 + (1 − µ)θ1E

−
1 , E1

)h
+

(

µθ2E
+
2 + (1 − µ)θ2E

−
2 , E2

)h

−D
(

[(U+
2 + α2)

2 + (U−
2 + α2)

2]E+
1 + (uh

1 + α1)(U
+
2 + uh

2 + 2α2)E
+
2 , E1

)h

−D
(

[(U+
1 + α1)

2 + (U−
1 + α1)

2]E+
2 + (uh

2 + α2)(U
+
1 + uh

1 + 2α1)E
+
1 , E2

)h

−D
(

(uh
1 + α1)(U

−
2 + uh

2 + 2α2)E
−
2 , E1

)h
−D

(

(uh
2 + α2)(U

−
1 + uh

1 + 2α1)E
−
1 , E2

)h

+ R(t), (5.4.48)

where1

E
(±)
1 := uh

1 − U
(±)
1 , E

(±)
2 := uh

2 − U
(±)
2 . (5.4.49)

Proof. Using (5.4.2) and (5.4.3) one can restate the problem (Ph,∆t

µ ) as follows:

1The notation E
(±)
i and U

(±)
i means with and without the superscripts ±.
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Find{U1(t), U2(t)} ∈ H1(0, T ;Sh) × H1(0, T ;Sh) such that for i = 1, 2 U0
i = P h

γ u
0
i

and for a.e. t ∈ (0, T ) and all χ ∈ Sh

γ(∇U+
i ,∇χ) + (φ(U+

i ) − µθiU
+
i − (1 − µ)θiU

−
i , χ−

∫

− χ)h

+
1

2

(

f
(i)
D (U+

1 , U
+
2 ) + f̄

(i)
+,−, χ−

∫

− χ
)h

+ (Ĝh∂tUi, χ)h = 0, (5.4.50)

where

f̄
(1)
+,− := f

(1)
D (U+

1 , U
−
2 ), f̄

(2)
+,− := f

(2)
D (U−

1 , U
+
2 ). (5.4.51)

We test the semi-discrete problem (Ph) (4.3.8) with χ = Ei = uh
i −Ui ∈ V h

0 to result

in for i = 1, 2 and a.e. t ∈ (0, T ) that

γ|Ei|
2
1 + γ(∇Ui,∇u

h
i − Ui) + (φ(uh

i ) − θiu
h
i , u

h
i − Ui)

h

+
(

f
(i)
D (uh

1 , u
h
2), Ei

)h
+ (Ĝh∂tu

h
i , Ei)

h = 0. (5.4.52)

Noting the identity 2a(b− a) = b2 − a2 − (a− b)2 and (5.3.37) yields for i = 1, 2 and

a.e. t ∈ (0, T ) that

γ

2

[

|Ei|
2
1 + |uh

i |
2
1 − |Ui|

2
1

]

+ (ψ(uh
i ) − ψ(Ui), 1)h + (Ĝh∂tu

h
i , Ei)

h

≤ θi(u
h
i , Ei)

h −
(

f
(i)
D (uh

1 , u
h
2), Ei

)h
. (5.4.53)

On the other hand, by choosing χ = −E+
i = U+

i − uh
i ∈ V h

0 in (5.4.50) we have for

i = 1, 2 and a.e. t ∈ (0, T ) that

γ|E+
i |

2
1 + γ(∇uh

i ,∇U
+
i − uh

i ) + (φ(U+
i ), U+

i − uh
i )

h + (µθiU
+
i + (1 − µ)θiU

−
i , E

+
i )h

−
1

2

(

f
(i)
D (U+

1 , U
+
2 ) + f̄

(i)
+,−, E

+
i

)h
− (Ĝh∂tUi, E

+
i )h = 0.

(5.4.54)

Once again from the identity 2a(b − a) = b2 − a2 − (a − b)2 and (5.3.37) it follows

for i = 1, 2 and a.e. t ∈ (0, T ) that

γ

2

[

|E+
i |

2
1 + |U+

i |21 − |uh
i |

2
1

]

+ (ψ(U+
i ) − ψ(uh

i ), 1)h − (Ĝh∂tUi, E
+
i )h

≤ −(µθiU
+
i + (1 − µ)θiU

−
i , E

+
i )h +

1

2

(

f
(i)
D (U+

1 , U
+
2 ) + f̄

(i)
+,−, E

+
i

)h
.

(5.4.55)
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Adding (5.4.53) to (5.4.55) and rearranging gives for i = 1, 2 and a.e. t ∈ (0, T ) that

γ

2

[

|Ei|
2
1 + |E+

i |
2
1

]

+
γ

2

[

|U+
i |21 − |Ui|

2
1

]

+ (ψ(U+
i ) − ψ(Ui), 1)h

+
[

(Ĝh∂tu
h
i , Ei)

h − (Ĝh∂tUi, E
+
i )h

]

≤
[

(θiu
h
i , Ei)

h − (µθiU
+
i + (1 − µ)θiU

−
i , E

+
i )h

]

+
1

2

[(

f
(i)
D (U+

1 , U
+
2 ), E+

i

)h
−

(

f
(i)
D (uh

1 , u
h
2), Ei

)h]

+
1

2

[

(f̄
(i)
+,−, E

+
i )h − (f

(i)
D (uh

1 .u
h
2), Ei)

h
]

=: T1 + T2 + T3. (5.4.56)

By adding and subtracting (Ĝh∂tUi, Ei)
h, noting (4.1.12) and owing to (5.4.49) we

have for i =, 2 and a.e. t ∈ (0, T ) that

(Ĝh∂tu
h
i , Ei)

h − (Ĝh∂tUi, E
+
i )h = (Ĝh∂tEi, Ei)

h + (Ĝh∂tUi, Ei − E+
i )h

=
1

2

d

dt
‖Ei‖

2
−h + (Ĝh∂tUi, U

+
i − Ui)

h. (5.4.57)

On noting that θiu
h
i = µθiu

h
i + (1 − µ)θiu

h
i and recalling (5.4.49) we alternatively

express the term T1 for i = 1, 2 and a.e. t ∈ (0, T ) as

T1 = µθi(u
h
i − U+

i , Ei)
h + µθi(U

+
i , Ei −E+

i )h + (1 − µ)θi(u
h
i − U−

i , Ei)
h

+ (1 − µ)θi(U
−
i , Ei −E+

i )h

= (µθiE
+
i + (1 − µ)θiE

−
i , Ei)

h + (µθiU
+
i + (1 − µ)θiU

−
i , U

+
i − Ui)

h. (5.4.58)

On setting ri = U+
i and si = uh

i in (2.3.46) and noting (5.4.49) we can rewrite the

term T2 for i, j = 1, 2 with i 6= j and a.e. t ∈ (0, T ) as

T2 =
1

2

(

f
(i)
D (U+

1 , U
+
2 ) − f

(i)
D (uh

1 , u
h
2), Ei

)h
+

1

2

(

f
(i)
D (U+

1 , U
+
2 ), E+

i −Ei

)h

= D
(

(U+
j + αj)

2(−E+
i ) + (uh

i + αi)(U
+
j + uh

j + 2αj)(−E
+
j ), Ei

)h

+
1

2

(

f
(i)
D (U+

1 , U
+
2 ), Ui − U+

i

)h
. (5.4.59)
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Again with the aid of (5.4.49) the term T3 may be represented for i, j = 1, 2 with

i 6= j and a.e. t ∈ (0, T ) as

T3 =
1

2
(f̄

(i)
+,− − f

(i)
D (uh

1 , u
h
2), Ei)

h +
1

2
(f̄

(i)
+,−, E

+
i − Ei)

h

= D
(

(U+
i + αi)(U

−
j + αj)

2 − (uh
i + αi)(u

h
j + αj)

2, Ei

)h
+

1

2
(f̄

(i)
+,−, Ui − U+

i )h

= D
(

(U−
j + αj)

2(U+
i − uh

i ) + (uh
i + αi)(U

−
j + uh

j + 2αj)(U
−
j − uh

j ), Ei

)h

+
1

2
(f̄

(i)
+,−, Ui − U+

i )h

= D
(

(U−
j + αj)

2(−E+
i ) + (uh

i + αi)(U
−
j + uh

j + 2αj)(−E
−
j ), Ei

)h

+
1

2
(f̄

(i)
+,−, Ui − U+

i )h. (5.4.60)

Combining (5.4.57)-(5.4.60) with (5.4.56) and rearranging the terms we thus con-

clude for i, j = 1, 2 with i 6= j and a.e. t ∈ (0, T ) that

γ

2

[

|Ei|
2
1 + |E+

i |1
]

+
1

2

d

dt
‖Ei‖

2
−h

≤
γ

2

[

|Ui|
2
1 − |U+

i |21
]

+ (ψ(Ui), 1)h − (ψ(U+
i ), 1)h

+
(

− µθiU
+
i − (1 − µ)θiU

−
i +

1

2

(

f
(i)
D (U+

1 , U
+
2 ) + f̄

(i)
+,−

)

, Ui − U+
i

)h

+
(

Ĝh∂tUi, Ui − U+
i

)h

+
(

µθiE
+
i + (1 − µ)θiE

−
i , Ei

)h

−D
(

(U+
j + αj)

2E+
i + (uh

i + αi)(U
+
j + uh

j + 2αj)E
+
j , Ei

)h

−D
(

(U−
j + αj)

2E+
i + (uh

i + αi)(U
−
j + uh

j + 2αj)E
−
j , Ei

)h
. (5.4.61)

Finally, we sum (5.4.61) over i = 1, 2 and note the definitions (5.4.51), (5.4.6) and

(5.4.7) of f̄
(i)
+,−, J̄h and R respectively to obtain immediately the desired error in-

equality (5.4.48). 2

Remark. We observe that the right hand side the differential error inequality (5.4.48)

involves R and D-terms each of which may be non-positive. However, Lemma 5.4.1

shows that R is bounded above by ℓ∆t E which is in turn a bounded non-negative

quantity. Also, the D-terms in (5.4.48) can be bounded by non-negative quantities

|∂tU1|h and |∂tU2|h which are, in view of (5.3.39a), bounded in L2(0, T ). These key

observations will enable us to derive an optimal error bound in time between (Ph)

and (Ph,∆t

µ ) as will be seen in the next theorem.
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Theorem 5.4.3 Let the assumptions of Theorem 5.3.3 hold. Then we have

‖E+
1 ‖

2
L2(0,T ;H1(Ω)) + ‖E+

2 ‖
2
L2(0,T ;H1(Ω)) + ‖E1‖

2
L2(0,T ;H1(Ω))

+ ‖E2‖
2
L2(0,T ;H1(Ω)) + ‖E1‖

2
L∞(0,T ;(H1(Ω))′) + ‖E2‖

2
L∞(0,T ;(H1(Ω))′)

≤ CeCT (∆t)3
[

N
∑

n=1

∣

∣

∣

Un
1 − Un−1

1

∆t

∣

∣

∣

2

h
+

N
∑

n=1

∣

∣

∣

Un
2 − Un−1

2

∆t

∣

∣

∣

2

h

]

+ CeCT (∆t)2
N

∑

n=1

En

≤ C(∆t)2. (5.4.62)

Furthermore,

‖E+
1 ‖

2
L∞(0,T ;(H1(Ω))′) + ‖E+

2 ‖
2
L∞(0,T ;(H1(Ω))′) ≤ C(∆t)2. (5.4.63)

Proof. Using the definitions (5.4.49) and (5.4.4) and the fact that 0 ≤ ℓ ≤ 1 we

note for later use that for i = 1, 2 and a.e. t ∈ (0, T )

|E+
i | = |(uh

i − Ui) + (Ui − U+
i )|

= |Ei − ℓ∆t ∂tUi| ≤ |Ei| + ∆t|∂tUi|, (5.4.64a)

|E−
i | = |(uh

i − Ui) + (Ui − U−
i )|

= |Ei + (1 − ℓ)∆t∂tUi| ≤ |Ei| + ∆t|∂tUi|. (5.4.64b)

Now we estimate the terms on the right hand side of the error inequality (5.4.48)

derived in the previous Lemma 5.4.2. From (4.1.14) we have for i = 1, 2 and a.e. t ∈

(0, T ) that

µθi(E
+
i , Ei)

h ≤
γ

4
|E+

i |
2
1 + C‖Ei‖

2
−h. (5.4.65)

Noting (5.4.64b), a Young’s inequality and (4.1.15) it follows for i = 1, 2 and a.e. t ∈

(0, T ) that

(1 − µ)θi(E
−
i , Ei)

h ≤ (1 − µ)θi(|E
−
i |, |Ei|)

h

≤ (1 − µ)θi|Ei|
2
h + (1 − µ)θi∆t(|∂tUi|, |Ei|)

h

≤
3

2
(1 − µ)θi|Ei|

2
h +

(∆t)2

2
(1 − µ)θi|∂tUi|

2
h

≤
γ

16
|Ei|

2
1 + C‖Ei‖

2
−h + C(∆t)2|∂tUi|

2
h. (5.4.66)
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With the aid of the results (5.3.19e), (4.3.47) and |αi| < 1 and using (5.4.64a),

Young’s inequality and (4.1.15) we obtain for i, j = 1, 2 with i 6= j and a.e. t ∈ (0, T )

that

∣

∣

∣
−D

(

[(U+
j + αj)

2 + (U−
j + αj)

2]E+
i + (uh

i + αi)(U
+
j + uh

j + 2αj)E
+
j , Ei

)h
∣

∣

∣

≤ 8D(|E+
i | + |E+

j |, |Ei|)
h

≤ 8D(|Ei| + |Ej |, |Ei|)
h + 8D∆t(|∂tUi| + |∂tUj |, |Ei|)

h

≤ 16D|Ei|
2
h + 4D|Ej|

2
h + C(∆t)2

[

|∂tUi|
2
h + |∂tUj |

2
h

]

≤
γ

16

[

|Ei|
2
1 + |Ej |

2
1

]

+ C
[

‖Ei‖
2
−h + ‖Ej‖

2
−h

]

+ C(∆t)2
[

|∂tUi|
2
h + |∂tUj |

2
h

]

.

(5.4.67)

Similarly, we have using (5.4.64b) for i, j = 1, 2 with i 6= j and a.e. t ∈ (0, T ) that

∣

∣

∣
−D

(

(uh
i + αi)(U

−
j + uh

j + 2αj)E
−
j , Ei

)h
∣

∣

∣

≤ 8D(|E−
j |, |Ei|)

h

≤ 8D(|Ej|, |Ei|)
h + 8D∆t(|∂tUj |, |Ei|)

h

≤ 8D|Ei|
2
h + 4D|Ej|

2
h + C(∆t)2|∂tUj|

2
h

≤
γ

32

[

|Ei|
2
1 + |Ej|

2
1

]

+ C
[

‖Ei‖
2
−h + ‖Ej‖

2
−h

]

+ C(∆t)2|∂tUj |
2
h.

(5.4.68)

Thus, summing (5.4.65)-(5.4.68) over i = 1, 2 and then substituting into (5.4.48)

and noting (5.4.19) in Lemma 5.4.1 implies for a.e. t ∈ (0, T ) that

γ

4

[

|E1|
2
1 + |E2|

2
1 + |E+

1 |
2
1 + |E+

2 |
2
1

]

+
1

2

d

dt

[

‖E1‖
2
−h + ‖E2‖

2
−h

]

≤ C
[

‖E1‖
2
−h + ‖E2‖

2
−h

]

+ C(∆t)2
[

|∂tU1|
2
h + |∂tU2|

2
h

]

+ C∆t E(t).

(5.4.69)

We then apply the Gronwall lemma and note E1(0) = E2(0) = 0 and E ≥ 0 to yield

for a.e. t ∈ (0, T ] that

γ

2

∫ t

0

[

|E1|
2
1 + |E2|

2
1 + |E+

1 |
2
1 + |E+

2 |
2
1

]

ds+
[

‖E1(t)‖
2
−h + ‖E2(t)‖

2
−h

]

≤ CeCT (∆t)2

∫ T

0

[

|∂sU1|
2
h + |∂sU2|

2
h

]

ds+ CeCT ∆t

∫ T

0

E(s) ds.

(5.4.70)
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To bound the right hand side of (5.4.70) we note from (5.4.3), (5.4.4) and the first

bound in (5.3.39a) for i = 1, 2 that

∫ T

0

|∂tUi|
2
hdt =

N
∑

n=1

∫ tn

tn−1

∣

∣

∣

Un
i − Un−1

i

∆t

∣

∣

∣

2

h
= ∆t

N
∑

n=1

∣

∣

∣

Un
i − Un−1

i

∆t

∣

∣

∣

2

h
≤ C, (5.4.71)

and with the aid of (5.4.18) and the result (5.4.20) derived in Lemma 5.4.1 we have

∫ T

0

E(t) dt =

N
∑

n=1

∫ tn

tn−1

En dt = ∆t

N
∑

n=1

En ≤ C∆t. (5.4.72)

Hence (5.4.70) becomes

γ

2

∫ t

0

[

|E1|
2
1 + |E2|

2
1 + |E+

1 |
2
1 + |E+

2 |
2
1

]

ds+
[

‖E1(t)‖
2
−h + ‖E2(t)‖

2
−h

]

≤ C(∆t)3
N

∑

n=1

[
∣

∣

∣

Un
1 − Un−1

1

∆t

∣

∣

∣

2

h
+

∣

∣

∣

Un
2 − Un−1

2

∆t

∣

∣

∣

2

h

]

+ C(∆t)2
N

∑

n=1

En

≤ C(∆t)2. (5.4.73)

This result together with Poincaré’s inequality, the equivalence result (4.1.17) and

Lemma 2.1.1 leads to the desired error result (5.4.62).

By (5.4.4), the equivalence result (4.1.17), Lemma 2.1.1 and the third bound in

(5.3.39a) it follows for i = 1, 2 that

‖Ei − E+
i ‖L∞(0,T ;(H1(Ω))′) = ‖U+

i − Ui‖L∞(0,T ;(H1(Ω))′) ≤ ∆t ‖∂tUi‖L∞(0,T ;(H1(Ω))′)

≤ C∆t max
n=1→N

∥

∥

∥

Un
i − Un−1

i

∆t

∥

∥

∥

−h
≤ C∆t. (5.4.74)

Therefore, from (5.4.62) and (5.4.74) we obtain for i = 1, 2

‖E+
i ‖

2
L∞(0,T ;(H1(Ω))′) ≤ 2‖E+

i − Ei‖
2
L∞(0,T ;(H1(Ω))′) + 2‖Ei‖

2
L∞(0,T ;(H1(Ω))′)

≤ C(∆t)2, (5.4.75)

which is the required result (5.4.63). 2
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Now, we present the main numerical result in the thesis.

Theorem 5.4.4 Let the assumptions (A2) and (Ah) hold. Then for all µ ∈ [0, 1
2
],

for all h ≤ h1, for all ∆t > 0 if θ ≥ 8D + µθ∗ and for all ∆t < 4γ
(8D+µθ∗−θ)2

if

θ < 8D + µθ∗, the unique solution {Un
1 , U

n
2 } of (Ph,∆t

µ ) satisfies the error bounds

[

‖u1 − U+
1 ‖2

L2(0,T ;H1(Ω)) + ‖u2 − U+
2 ‖2

L2(0,T ;H1(Ω))

+ ‖u1 − U+
1 ‖2

L∞(0,T ;(H1(Ω))′) + ‖u2 − U+
2 ‖2

L∞(0,T ;(H1(Ω))′)

]

+
[

‖u1 − U1‖
2
L2(0,T ;H1(Ω)) + ‖u2 − U2‖

2
L2(0,T ;H1(Ω))

+ ‖u1 − U1‖
2
L∞(0,T ;(H1(Ω))′) + ‖u2 − U2‖

2
L∞(0,T ;(H1(Ω))′)

]

≤ C(∆t)2 +











Ch
4
3

(

ln(1/h)
)

2(d−1)
3 if d = 1, 2,

Ch if d = 3.

(5.4.76)

Proof. Noting for i = 1, 2 that

ui − U+
i = (ui − uh

i ) + (uh
i − U+

i ) = ei + E+
i ,

ui − Ui = (ui − uh
i ) + (uh

i − Ui) = ei + Ei,

and recalling the semi-discrete error bound in Theorem 4.4.3 and the time discreti-

sation error bound in Theorem 5.4.3 we obtain the desired result (5.4.76). 2

Remark. As a result of the fully-discrete error bound in Theorem 5.4.4, we have

the following convergence to the solution of the continuous problem

U1, U
+
1 → u1 in L2(0, T ;H1(Ω)) ∩ L∞(0, T ; (H1(Ω))′),

U2, U
+
2 → u2 in L2(0, T ;H1(Ω)) ∩ L∞(0, T ; (H1(Ω))′),

as h,∆t→ 0.



Chapter 6

Numerical experiments

In this chapter we shall perform numerical experiments in one and two dimensions

which verify the theoretical results derived before and to see the growth behaviour

of the solutions. All simulations were run by programs written in Fortran and

Matlab programming languages. In Section 6.1 we present a practical algorithm for

computing the numerical solution. In Section 6.2 we discuss computational results of

the fully-discrete error bound in one dimension. Further, a comparison between the

linear stability analysis and the numerical approximation is investigated. Finally,

two dimensional simulations are presented in Section 6.3.

6.1 Practical algorithm

In this section we present a practical algorithm for solving the nonlinear algebraic

system arising from problem (Ph,∆t

µ ) for {Un
1 , U

n
2 ,W

n
1 ,W

n
2 } at each time step. In our

algorithm we rely on the general splitting algorithm of Lions and Mercier [47], which

has been used to solve other variants of Cahn-Hilliard equations e.g. [16] and [13].

For given λ > 0 and n fixed we define {Rn
1 , R

n
2} ∈ Sh × Sh such that for all χ ∈ Sh

(Rn
i , χ)h = (Un

i + λφ(Un
i ), χ)h. (6.1.1)

128
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We also define {Y n
1 , Y

n
2 } ∈ Sh × Sh such that all χ ∈ Sh

(Y n
1 , χ)h =

λ

2
(f

(1)
D (Un

1 , U
n
2 ) + f

(1)
D (Un

1 , U
n−1
2 ), χ)h, (6.1.2a)

(Y n
2 , χ)h =

λ

2
(f

(2)
D (Un

1 , U
n
2 ) + f

(2)
D (Un−1

1 , Un
2 ), χ)h. (6.1.2b)

Multiplying the equation (5.1.6b) of (Ph,∆t

µ ) by λ > 0, adding and subtracting

(Un
i , χ)h to the left hand side and noting (6.1.1), (6.1.2a-b) and (5.1.4), it follows that

{Un
1 , U

n
2 ,W

n
1 ,W

n
2 } satisfy for i = 1, 2 and for all χ ∈ Sh

(Rn
i − Un

i , χ)h = −λ
[

γ(∇Un
i ,∇χ) − (µθiU

n
i + (1 − µ)θiU

n−1
i +W n

i , χ)h
]

− (Y n
i , χ)h,

(6.1.3)

We also introduce {Xn
1 , X

n
2 } ∈ Sh × Sh such that for all χ ∈ Sh and for i = 1, 2

(Xn
i − Un

i , χ)h = λ
[

γ(∇Un
i ,∇χ) − (µθiU

n
i + (1 − µ)θiU

n−1
i +W n

i , χ)h
]

+ (Y n
i , χ)h.

(6.1.4)

From (6.1.3) and (6.1.4) we note for i = 1, 2 thatXn
i = 2Un

i −R
n
i . Now, we introduce

our iterative procedure relying on the above splitting of (Ph,∆t

µ ).

For fixed n ≥ 1 set Un,0
1 = Un−1

1 ∈ Sh
m1

and Un,0
2 = Un−1

2 ∈ Sh
m2

.

For p ≥ 0 we define {Y n,p
1 , Y n,p

2 } ∈ Sh × Sh such that for all χ ∈ Sh

(Y n,p
1 , χ)h =

λ

2
(f

(1)
D (Un,p−1

1 , Un,p−1
2 ) + f

(1)
D (Un,p−1

1 , Un−1
2 ), χ)h, (6.1.5a)

(Y n,p
2 χ)h =

λ

2
(f

(2)
D (Un,p−1

1 , Un,p−1
2 ) + f

(2)
D (Un−1

1 , Un,p−1
2 ), χ)h, (6.1.5b)

where Un,−1
1 := Un,0

1 and Un,−1
2 := Un,0

2 and then we define {Rn,p
1 , Rn,p

2 } ∈ Sh × Sh

such that for all χ ∈ Sh

(Rn,p
i −Un,p

i , χ)h = −λ
[

γ(∇Un,p
i ,∇χ)−(µθiU

n,p
i +(1−µ)θiU

n−1
i +W n,p

i , χ)h
]

−(Y n,p
i , χ)h,

(6.1.6)

where {W n,0
1 ,W n,0

2 } is arbitrary in Sh × Sh.

Next, we find {U
n,p+ 1

2
1 , U

n,p+ 1
2

2 } ∈ Sh × Sh such that for all χ ∈ Sh and for i = 1, 2

(Rn,p
i , χ)h = (U

n,p+ 1
2

i + λφ(U
n,p+ 1

2
i ), χ)h (6.1.7)
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and we find {Un,p+1
1 , Un,p+1

2 ,W n,p+1
1 ,W n,p+1

2 } ∈ Sh
m1

× Sh
m2

× Sh × Sh such that for

all χ ∈ Sh and for i = 1, 2

(Un,p+1
i − Un−1

i

∆t
, χ

)h

+
(

∇W n,p+1
i , χ

)h
= 0, (6.1.8a)

(Un,p+1
i , χ)h + λ

[

γ(∇Un,p+1
i ,∇χ) − (µθiU

n,p+1
i +W n,p+1

i , χ)h
]

= (Xn,p+1
i + λ(1 − µ)θiU

n−1
i − Y n,p+1

i , χ)h,

(6.1.8b)

where Xn,p+1
i := 2U

n,p+ 1
2

i − Rn,p
i , i = 1, 2. Note that from (6.1.6) and (6.1.8b) one

can easily see that Xn,p+1
i = 2Un,p+1

i − Rn,p+1
i , i = 1, 2, for p ≥ 0.

Existence and uniqueness of {U
n,p+ 1

2
1 , U

n,p+ 1
2

2 } solving (6.1.7) follows from setting

χ = ϕj, j = 0, 1, ..., J and noting the monotonicity of φ. Now, we prove existence

and uniqueness of a solution to (6.1.8a-b). To do so, we first rewrite (6.1.8a-b),

similarly to (5.1.9)-(5.1.11), in the following equivalent form

Find {Un,p+1
1 , Un,p+1

2 } ∈ Sh
m1

× Sh
m2

such that for all χ ∈ Sh and for i = 1, 2

(

Un,p+1
i , χ−

∫

− χ
)h

+ λ
[

γ(∇Un,p+1
i ,∇χ) −

(

µθiU
n,p+1
i − Ĝh

(Un,p+1
i − Un−1

i

∆t

)

, χ−

∫

− χ
)h]

=
(

Xn,p+1
i + λ(1 − µ)θiU

n−1
i − Y n,p+1

i , χ−

∫

− χ
)h
, (6.1.9)

where

W n,p+1
i = −Ĝh

(Un,p+1
i − Un−1

i

∆t

)

+

∫

− W n,p+1
i , (6.1.10a)

∫

− W n,p+1
i = λ−1

∫

−
[

−Xn,p+1
i + Y n,p+1

i

]

+ λ−1mi − θimi. (6.1.10b)

To prove existence of a solution to (6.1.9) we consider the following minimization

problem

min
{χ1,χ2}∈Sh

m1
×Sh

m2

{

Ih(χ1, χ2) := (1 − λµθ1)|χ1|
2
h + (1 − λµθ2)|χ2|

2
h + λγ

[

|χ1|
2
1 + |χ2|

2
1

]

+
λ

∆t

[

‖χ1 − Un−1
1 ‖2

−h + ‖χ2 − Un−1
2 ‖2

−h

]

− 2
[

(Ln,p+1
1 , χ1)

h + (Ln,p+1
2 , χ2)

h
]

, (6.1.11)
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where, for i = 1, 2,

Ln,p+1
i := Xn,p+1

i + λ(1 − µ)θiU
n−1
i − Y n,p+1

i . (6.1.12)

Setting θ∗ := max{θ1, θ2} we have

Ih(χ1, χ2) ≥ (1 − λµ θ∗)
[

|χ1|
2
h + |χ2|

2
h

]

+ λγ
[

|χ1|
2
1 + |χ2|

2
1

]

+
λ

∆t

[

‖χ1 − Un−1
1 ‖2

−h + ‖χ2 − Un−1
2 ‖2

−h

]

− 2
[

(Ln,p+1
1 , χ1)

h + (Ln,p+1
2 , χ2)

h
]

.

(6.1.13)

Now if 1 − λµθ∗ ≥ 0, it then follows from Poncaré’s and Young’s inequalities that

Ih(χ1, χ2) ≥ (1 − λµθ∗ + C)
[

|χ1|
2
h + |χ2|

2
h

]

− λγ
[

m2
1|Ω|

2 +m2
2|Ω|

2
]

− 2
[

(Ln,p+1
1 , χ1)

h + (Ln,p+1
2 , χ2)

h
]

≥
(1 − λµθ∗ + C)

2

[

|χ1|
2
h + |χ2|

2
h

]

− C
[

1 + |Ln,p+1
1 |2h + |Ln,p+1

2 |2h
]

.

(6.1.14)

If 1 − λµθ∗ < 0 we first note from (4.1.14) that

|χi|
2
h = (χi − Un−1

i , χi)
h + (Un−1

i , χi)
h

≤
λ

∆t(λµθ∗ − 1)
‖χi − Un−1

i ‖2
−h +

∆t(λµθ∗ − 1)

4λ
|χi|

2
1 + (Un−1

i , χi)
h i = 1, 2,

which leads together with (6.1.13) to

Ih(χ1, χ2) ≥
(

λγ −
∆t(1 − λµθ∗)

2

4λ

)[

|χ1|
2
1 + |χ2|

2
1

]

− (2Ln,p+1
1 − (1 − λµθ∗)U

n−1
1 , χ1)

h

− (2Ln,p+1
2 − (1 − λµθ∗)U

n−1
2 , χ2)

h
]

.

Thus, for ∆t < 4γλ2

(1−λµθ∗)2
we have, similarly to (6.1.14), by Poincaré’s and Young’s

inequalities that

Ih(χ1, χ2) ≥
1

2

(

λγ −
∆t(1 − λµθ∗)

2

4λ

)

C
[

|χ1|
2
h + |χ2|

2
h

]

− C
[

1 + |2Ln,p+1
1 − (1 − λµθ∗)U

n−1
1 |2h + |2Ln,p+1

2 − (1 − λµθ∗)U
n−1
2 |2h

]

.

(6.1.15)

Therefore, from (6.1.14) and (6.1.15) one can conclude that there exist

{Un,p+1
1 , Un,p+1

2 } ∈ Sh
m1

× Sh
m2

solving the above minimization problem. Now we
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can easily see for i = 1, 2 that (6.1.9) is the Euler-Lagrange equations of the mini-

mization problem.

It remains to show the uniqueness result which can be easily established and for

completeness we provide the proof. To this aim, let Bn,p+1 := {Un,p+1
1 , Un,p+1

2 } and

B∗
n,p+1 := {Un,p+1,∗

1 , Un,p+1,∗
2 } be two solutions to (6.1.9). Substituting χ in (6.1.9)

by Ūn,p+1
i := Un,p+1

i − Un,p+1,∗
i ∈ V h

0 and then subtracting yields for i = 1, 2 that

λ γ|Ūn,p+1
i |21 +

λ

∆t
‖Ūi

n,p+1
‖2
−h = −(1 − λµ θi)|Ū

n,p+1
i |2h. (6.1.16)

If 1 − λµ θi ≥ 0, then the uniqueness result follows immediately from Poincaré’s

inequality . Whereas if 1 − λµ θi < 0 we apply (4.1.15) to the right hand side of

(6.1.16) to give for i = 1, 2 that

λ γ|Ūn,p+1
i |21 +

λ

∆t
‖Ūi

n,p+1
‖2
−h ≤

∆t (λµ θi − 1)2

4λ
|Ūn,p+1

i |21 +
λ

∆t
‖Ūi

n,p+1
‖2
−h (6.1.17)

and hence we obtain the uniqueness result by Poincaré’s inequality for all

∆t < 4λ2 γ
(λ µ θi−1)2

. Finally, existence and uniqueness of W n,p+1
1 and W n,p+1

2 follows

directly from (6.1.10a -b). Therefore, the iterative approach (6.1.5a-b)-(6.1.8a-b) is

well-defined for any λ > 0, for any µ ∈ [0, 1
2
] and for ∆t sufficiently small. In fact

we were unable to prove the convergence of this iterative procedure, however, we

observed good convergence properties in practice. For each n ≥ 1 we adopted the

stopping criteria

max{|Un,p
1 − Un,p−1

1 |0,∞, |U
n,p
2 − Un,p−1

2 |0,∞} ≤ tol.

From the above iteration procedure we observe that at each iteration p we need to

solve (i) (6.1.7) for {U
n,p+ 1

2
1 , U

n,p+ 1
2

2 } and (ii) (6.1.9) for {Un,p+1
1 , Un,p+1

2 }.

For (i) we set χ = ϕj, j = 0 → J and then we solve the resulting equations at

each node xj for {U
n,p+ 1

2
1 (xj), U

n,p+ 1
2

2 (xj)} using Newton’s method. For (ii) we first

represent Un,p+1
i , Un−1

i and Ln,p+1
i , i = 1, 2 in terms of the basis functions {ϕj}

J
j=0

as

Un,p+1
i =

J
∑

j=0

Un,p+1
i,j ϕj, Un−1

i =

J
∑

j=0

Un−1
i,j ϕj , Ln,p+1

i =

J
∑

j=0

Ln,p+1
i,j ϕj . (6.1.18)
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Using the matrices defined by (4.1.26) we can write (4.1.11) for any v ∈ V h
0 in the

matrix form as: Find Ĝh(v) ∈ R
J+1 such that

AĜh(v) = Mv, (6.1.19)

where (Ĝh(v))j = Ĝhv(xj) and (v)j = v(xj), j = 0 → J.

Hence, we have

M−1A Ĝh(v) = v. (6.1.20)

Now, by inserting (6.1.18) into (6.1.9), setting χ = ϕk, noting (6.1.12) and (6.1.20)

and multiplying by M−1AM−1 we can restate (6.1.9) in the vector from as:

Find {Un,p+1
1 , Un,p+1

2 } ∈ R
J+1 × R

J+1 such that for i = 1, 2

RUn,p+1
i + λ

(

γR2Un,p+1
i − µθiRU

n,p+1
i +

1

∆t
(Un,p+1

i −Un−1
i )

)

= RLn,p+1
i , (6.1.21)

where R := M−1A. Such linear systems can be solved using a discrete cosine

transform when we have a uniform partitioning T h, see e.g. [9] where the same

approach was considered for similar system.

6.2 One-dimensional simulations

6.2.1 Verification of the fully-discrete error bound

In this section we present numerical evidence in one space dimension for the fully-

discrete error bound (5.4.76) derived in Theorem 5.4.4. As no exact solution to the

continuous problem (P) is known, we made a comparison between the computed

solution of (Ph,∆t

µ ) on a fine mesh and small time step with some computed on a

sequence of coarse meshes or larger time steps.

Let {ûn
1 , û

n
2} be the computed solutions of (Ph,∆t

µ ) at the level time n on the uniform

fine mesh with space step hf and the small time step ∆tf = T/Nf , and {Un
1 , U

n
2 }

be the solution at the level time n on a coarse uniform mesh with space step h or
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larger time step ∆t = T/N . Now, we define for i = 1, 2

û+
i (t) := ûn

i , t ∈ (tn−1, tn], tn = n∆tf , 1 ≤ n ≤ Nf , (6.2.1a)

U+
i (t) := Un

i , t ∈ (tn−1, tn], tn = n∆t, 1 ≤ n ≤ N. (6.2.1b)

Treating û+
i as the exact solution it follows from (5.4.76) that for d = 1

‖û+
1 − U+

1 ‖2
L2(0,T ;H1(Ω)) + ‖û+

2 − U+
2 ‖2

L2(0,T ;H1(Ω)) ≤ C[h4/3 + (∆t)2]. (6.2.2)

In order to calculate exactly the left hand side of error bound (6.2.2) we shall choose

h to be a multiple of hf and ∆t to be a multiple of ∆tf . In other words, the above

parameters are subject to the following relations

h = pshf , ∆t = pt∆tf , (6.2.3)

for some ps, pt ∈ N.

We then evaluate the error via the quantities

ρ1(h,∆t) := ‖û+
1 − U+

1 ‖2
L2(0,T ;H1(Ω)) = ∆tf

Nf
∑

n=1

|ûn
1 − Um

1 |20 + |ûn
1 − Um

1 |21, (6.2.4)

ρ2(h,∆t) := ‖û+
2 − U+

2 ‖2
L2(0,T ;H1(Ω)) = ∆tf

Nf
∑

n=1

|ûn
2 − Um

2 |20 + |ûn
2 − Um

2 |21, (6.2.5)

ρ(h,∆t) := ρ1(h,∆t) + ρ2(h,∆t), (6.2.6)

where

m =
⌈ n

pt

⌉

,

and for any x ∈ R, ⌈x⌉ is the smallest integer greater than or equal to x.

In addition, the H1-norm in space involved in (6.2.4) and (6.2.5) can be computed

exactly, since for any χhf ∈ Shf and vh ∈ Sh

|χhf − vh|21 = hf

Jf−1
∑

j=0

( 1

hf
(χ

hf

j+1 − χ
hf

j ) −
1

h
(vh

ℓ+1 − vh
ℓ )

)2

, (6.2.7)

|χhf − vh|20 = hf

Jf−1
∑

j=0

Fj, (6.2.8)
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where, on noting that {x̂j}
Jf

j=0 and {xℓ}
J
ℓ=0 are the set of nodes of Shf and Sh

respectively, χ
hf

j ≡ χhf (x̂j), v
h
ℓ ≡ vh(xℓ),

ℓ =
⌈j + 1

ps

⌉

− 1,

and Fj is defined according to the value of ωj := 1
hf

(χ
hf

j+1 − χ
hf

j ) − 1
h
(vh

ℓ+1 − vh
ℓ ) by

Fj =







































(

1
hf

(χ
hf

j x̂j+1 − χ
hf

j+1x̂j) −
1
h
(vh

ℓ xℓ+1 − vh
ℓ+1xℓ)

)2

if ωj = 0,

1
3ωj

(

(

χ
hf

j+1 −
1
h
(vh

ℓ+1(x̂j+1 − xℓ) − vh
ℓ (x̂j+1 − xℓ+1))

)3

−
(

χ
hf

j − 1
h
(vh

ℓ+1(x̂j − xℓ) − vh
ℓ (x̂j − xℓ+1)

)3
)

if ωj 6= 0.

(6.2.9)

To verify the error bound (6.2.2) we used the following data in the experiments: Ω =

(0, 1), γ = 0.005, D = 0.2, µ = 0.5, θ1 = θ2 = 1, θ = 0.25, T = 0.5, tol = 10−7

and λ = 0.1. We computed ûn
1 and ûn

2 on uniform fine mesh with fixed space step

hf = 2−11 and fixed small time step ∆tf = 1
3(214)

. While Un
1 and Un

2 were computed

on uniform coarse meshes with h = 2−p where (p = 5, 6, 7, 8, 9) or on larger time

steps ∆t = 1
3(2q)

where (q = 8, 9, 10, 11, 12). The initial data u0
1 and u0

2 were taken

to be the clamped cubic splines generated by the values

{−0.4 0.5 0.88 − 0.4 − 0.3} and {−0.2 0.7 − 0.5 − 0.3 − 0.7}

at the points i/4, i = 0, 1, 2, 3, 4 and we set û0
i = U0

i = P h
γ u

0
i , i = 1, 2. Note that

this choice of initial data satisfies the assumptions (A2), stated in page 34, rigorously.

Using (6.2.4)-(6.2.6) we computed the following ratios

Rh :=
ρ(h,∆t) − ρ(h/2,∆t)

ρ(h/2,∆t) − ρ(h/4,∆t)
, R∆t :=

ρ(h,∆t) − ρ(h,∆t/2)

ρ(h,∆t/2) − ρ(h,∆t/4)
(6.2.10)

and the results are displayed in Table 6.1 and Table 6.2.

Assuming that we can write the quantity ρ(h,∆t) in the form

ash
ks + at(∆t)

kt , as, at, ks, kt ∈ R
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and inserting this form into (6.2.10) yields after simplifying that Rh = 2ks and

R∆t = 2kt . The results shown in Table 6.1 and Table 6.2 indicate that the rates

of convergence in space and in time are both 4, i.e. ks = kt = 2. In comparison

with the rates of convergence proved in Theorem 5.4.4 (that are, 22 = 4 in time

and 24/3 ≈ 2.52 in space), this is consistent with the theoretical result in time but

it is practically better in space. Therefore, one concludes that it may be possible to

prove an optimal error bound in space for (Ph,∆t

µ ); that is, C[h4/3 + (∆t)2] in the

error bound (5.4.76) is replaced by C[h2 + (∆t)2]. On the other hand, our choice of

initial data may be flawed in some way.

We performed several experiments with other parameter values which led to similar

results. In Figure 6.1 we plot the evolution of the finite element approximations

with the above initial data (the cubic splines) at different times where the graph at

time T = 0.5 represents the stationary solutions1. We also found that the numerical

approximations, U1 and U2, are strictly between −1 and 1 which is consistent with

our theoretical result. In fact, this result has been observed with all of experiments

in this chapter. In addition, for any choice µ ∈ [0, 1/2] we have noticed that the

stationary solution is the same.

1By a stationary solution we mean that the numerical solution does not change from one time

level to the next.
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h ρ1(h,∆t) ρ2(h,∆t) ρ(h,∆t) Rh

1/32 0.232647985 0.223472506 0.456120491 4.06

1/64 0.0573374517 0.0552525558 0.112590007 4.02

1/128 0.014204694 0.0136775514 0.0278822444 4.03

1/256 0.00347895757 0.00334953098 0.00682848832

1/512 0.000816646731 0.000786298187 0.00160294492

Table 6.1: Verification of the error bound in Theorem 5.4.4: ûn
1 and ûn

2 were com-

puted with hf = 1/211 and ∆tf = 1/3(2)14, and Un
1 and Un

2 were computed with

successive h = 1/2p, p = 5, 6, 7, 8, 9 and fixed ∆t = 49152.

∆t ρ1(h,∆t) ρ2(h,∆t) ρ(h,∆t) R∆t

1/768 0.00187837437 0.00300267292 0.00488104718 3.69

1/1536 0.000500014808 0.000793130719 0.00129314547 3.93

1/3072 0.000124316095 0.000195824061 0.000320140156 4.22

1/6144 2.83569134E-005 4.43079516E-005 7.2664865E-005

1/12288 5.51559924E-006 8.52606081E-006 1.40416596E-005

Table 6.2: Verification of the error bound in Theorem 5.4.4: ûn
1 and ûn

2 were com-

puted with hf = 1/211 and ∆tf = 1/3(2)14, and Un
1 and Un

2 were computed with

fixed h = 1/2048 and successive ∆t = 1/3(2)q, q = 8, 9, 10, 11, 12.
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Figure 6.1: Numerical solutions U1, denoted —, and U2, denoted - - -, with cubic

splines initial data at times (a) t = 0 (b) t = 0.0125 (c) t = 0.05 (d) t = 0.5.
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6.2.2 A comparison between the linearised solution and the

numerical approximation

In this subsection we compare the numerical approximation of (Ph,∆t

µ ) with the

solution of the corresponding linearised problem. We have analysed the linearised

problem of (P) and found that a necessary condition to have growth in at least one

of the linearised solutions u1 or u2 is that λ−(m1, m2) + γπ2 < 0, where

λ−(m1, m2) =
(

a+ c−
√

(a− c)2 + 4b2
)

/2, a =
θ

1 −m2
1

− θ1 + 2D(m2 + α2)
2,

b = 4D(m1 + α1)(m2 + α2), c =
θ

1 −m2
2

− θ2 + 2D(m1 + α1)
2. (6.2.11)

Furthermore, for the case θ1 = θ2 and m1 = m2 we found that the linearised solution

may be written in the form

u1(x, t) = m1 +
1

2

∞
∑

k=1

[

exp(d1,kt)(Q
0
1,k +Q0

2,k) + exp(d2,kt)(Q
0
1,k −Q0

2,k)
]

cos(kπx),

u2(x, t) = m2 +
1

2

∞
∑

k=1

[

exp(d1,kt)(Q
0
1,k +Q0

2,k) − exp(d2,kt)(Q
0
1,k −Q0

2,k)
]

cos(kπx),

Q0
i,k =

∫ 1

0

u0
i (x) cos(kπx) dx, di,k = (kπ)2(−γ(kπ)2 − (a+ (−1)i+1b)).

(6.2.12)

A comparison with an exact solution

We consider the linearised problem of (P) with the following initial conditions

u0
i (x) = ξi(cos(πx) − cos(3πx)) i = 1, 2,

where ξ1 and ξ2 are small.

Thus we have for i = 1, 2 that

Q0
i,k =



























ξi if k = 1,

−ξi if k = 3,

0 otherwise.
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Since m1 = m2 = 0 for the above initial data, we conclude from (6.2.12) that the

linearised solutions for the case θ1 = θ2 are

u1(x, t) =
1

2
(ξ1 + ξ2)

[

exp(d1,1t) cos(πx) − exp(d1,3t) cos(3πx)
]

+
1

2
(ξ1 − ξ2)

[

exp(d2,1t) cos(πx) − exp(d2,3t) cos(3πx)
]

,

u2(x, t) =
1

2
(ξ1 + ξ2)

[

exp(d1,1t) cos(πx) − exp(d1,3t) cos(3πx)
]

−
1

2
(ξ1 − ξ2)

[

exp(d2,1) cos(πx) − exp(d2,3t) cos(3πx)
]

,

We ran four simulations to compare the numerical approximations with the above

exact linearised solutions. In each simulation, we take, unless otherwise stated,

h = 0.01, ∆t = h/40, γ = 0.005, θ1 = θ2 = 1, D = 0.5 and µ = 0.5. We kept the

parameters of the iterative algorithm as taken in Section 2.1.1.

In the first experiment we chose ξ1 = 0.0001, ξ2 = 0.0002 and θ = 0.8. We found

that the linearised solutions u1 and u2 grow as time increases. The numerical ap-

proximations U1 and U2 are consistent with this behaviour, where they evolve in

time until the stationary solutions are achieved. Similar results were obtained in

the second experiment where the data used was the same as before except θ = 0.5.

The results of the first two experiments in the early stages of the evolution can be

seen in Figure 6.2 and Figure 6.3.

In the third experiment we let ξ1 = 0.001, ξ2 = 0.002 and θ = 0.98. Similarly

to the first two experiments the growth behavior occurred in the linearised and nu-

merical solutions as displayed in Figure 6.4. We repeated the third experiment with

the same data except D = 0.2. This time we found, on the contrary, the linearised

solutions decreases to zero as time increases and the numerical solutions behaved in

the same manner, see Figure 6.5. In all experiments we found that the behaviour

of the numerical approximations, U1 and U2, are in agreement with the linearised

solutions, u1 and u2, behaviour. In addition, we noticed that the solutions evolves

significantly faster when θ is far from θ1 and θ2.
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(a) u1 and U1. (b) u2 and U2.

Figure 6.2: A comparison of the linearised solution ui, denoted —, and numerical

approximation Ui, denoted - -, in time where (a) plots of u1 and U1, (b) plots of u2

and U2. The parameters values used are: θ = 0.8, θ1 = θ2 = 1, D = 0.5, ξ1 = 0.0001,

ξ2 = 0.0002.
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Figure 6.3: A comparison of the linearised solution ui, denoted —, and numerical

approximation Ui, denoted - -, in time where (a) plots of u1 and U1, (b) plots of u2

and U2. The parameters values used are: θ = 0.5, θ1 = θ2 = 1, D = 0.5, ξ1 = 0.0001,

ξ2 = 0.0002.
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(a) u1 and U1. (b) u2 and U2.

Figure 6.4: A comparison of the linearised solution ui, denoted —, and numerical

approximation Ui, denoted - -, where (a) plots of u1 and U1, (b) plots of u2 and

U2. The parameters values used are: θ = 0.98, θ1 = θ2 = 1, D = 0.5, ξ1 = 0.001,

ξ2 = 0.002.
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(a) u1 and U1. (b) u2 and U2.

Figure 6.5: A comparison of the linearised solution ui, denoted —, and numerical

approximation Ui, denoted - -, in time where (a) plots of u1 and U1, (b) plots of u2

and U2. The parameters values used are: θ = 0.98, θ1 = θ2 = 1, D = 0.2, ξ1 = 0.001,

ξ2 = 0.002.
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A comparison with no exact solution

In all simulations of this section we take the initial data to be random perturbations

of mean values m1 and m2 with fluctuation no larger than 0.05 at equally spaced

points. Our aim is to investigate growth behaviour of the numerical solutions of

(Ph,∆t

µ ) under the condition λ−(m1, m2) + γπ2 < 0, see (6.2.11). We shall test this

condition with the numerical approximations of (Ph,∆t

µ ) where we expect that if this

condition holds, then growth at least one of the approximations occurs. To this aim,

we consider some examples with different values of the parameters θ, θ1, θ2, D and

γ involved in the explicit formula of λ−(m1, m2)+γπ2. In each example we first find

the growth region by solving the equation λ−(m1, m2)+γπ2 = 0 for m1 and m2 and

then we perform several simulations with different initial data inside and outside

the growth region to see the behaviour of the numerical solutions. In all simulations

we take h = 0.01, µ = 0.5, λ = 0.1 and tol = 10−7.

In the first example we take θ1 = θ2 = 1.0, θ = 0.2, D = 0.5 and γ = 0.005.

The growth region of this case is plotted in Figure 6.6(a). In this example we ran

four simulations with time step ∆t = h/40. As expected, for the initial data inside

the growth region at least one of the numerical solutions grows until the stationary

solutions are attained (see Figure 6.7 - Figure 6.9) while for the initial data outside

the growth region we found that the numerical solutions are stable about m1 and

m2 as shown in Figure 6.10.

In Figure 6.6 (b)-(d) we consider other examples of the growth region defined by

different values of the parameters θ, θ1, θ2, D and γ. In these examples we per-

formed several simulations with different values of m1 and m2 inside and outside the

corresponding growth region. The results were similar to the first example where

we found that the results are consistent with the growth regions. Figure 6.11 - Fig-

ure 6.13 show results for the growth region depicted in Figure 6.6 (b) where in this

case we use the same parameters in the first example except D = 0.4 and θ = 0.6.

In Figure 6.14 - Figure 6.16 we test the growth region generated by γ = 0.002,

θ1 = 1.0, θ2 = 2.0, θ = 0.8 and D = 0.5, depicted in Figure 6.6 (c), with ∆t = h2.
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Finally, the growth region of the parameter values γ = 0.0005, θ1 = θ2 = 1.0, θ =

0.95 and D = 0.6, plotted in Figure 6.6 (d), was tested in Figure 6.17 and Figure

6.18 with ∆t = h2.
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Figure 6.6: Growth region in which λ−(m1, m2) + γπ2 < 0 where the parameter

values are: (a) γ = 0.005, θ1 = θ2 = 1, θ = 0.2, D = 0.5,

(b) γ = 0.005, θ1 = θ2 = 1, θ = 0.6, D = 0.4,

(c) γ = 0.002, θ1 = 1, θ2 = 2, θ = 0.8, D = 0.5,

(d) γ = 0.0005, θ1 = θ2 = 1, θ = 0.95, D = 0.6.
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(a) Numerical approximation of u1 (b) Numerical approximation of u2

Figure 6.7: Numerical approximation of (u1, u2) at various times with (m1, m2) =

(0, 0) and parameter values: γ = 0.005, θ1 = θ2 = 1, θ = 0.2 and D = 0.5.
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Figure 6.8: Numerical approximation of (u1, u2) at various times with (m1, m2) =

(−0.25,−0.75) and parameter values: γ = 0.005, θ1 = θ2 = 1, θ = 0.2 and D = 0.5.
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Figure 6.9: Numerical approximation of (u1, u2) at various times with (m1, m2) =

(0.5,−0.5) and parameter values: γ = 0.005, θ1 = θ2 = 1, θ = 0.2 and D = 0.5.



6.2. One-dimensional simulations 148

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 
t=0.00
t=0.25
t=0.5
t=2.50
t=5.00

0 0.2 0.4 0.6 0.8 1

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

 

 

t=0.00
t=0.25
t=0.5
t=2.50
t=5.00

(a) Numerical approximation of u1 (b) Numerical approximation of u2

Figure 6.10: Numerical approximation of (u1, u2) at various times with (m1, m2) =

(−0.8, 0.95) and parameter values: γ = 0.005, θ1 = θ2 = 1, θ = 0.2 and D = 0.5.
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Figure 6.11: Numerical approximation of (u1, u2) at various times with (m1, m2) =

(−0.45, 0.15) and parameter values: γ = 0.005, θ1 = θ2 = 1, θ = 0.6 and D = 0.4.

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

 

 

t=0.00
t=1.20
t=2.40
t=2.80
t=4.00

0 0.2 0.4 0.6 0.8 1

−1

−0.5

0

0.5

1

 

 
t=0.00
t=1.20
t=2.40
t=2.80
t=4.00

(a) Numerical approximation of u1 (b) Numerical approximation of u2

Figure 6.12: Numerical approximation of (u1, u2) at various times with (m1, m2) =

(−0.25,−0.9) and parameter values: γ = 0.005, θ1 = θ2 = 1, θ = 0.6 and D = 0.4.
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Figure 6.13: Numerical approximation of (u1, u2) at various times with (m1, m2) =

(−0.8,−0.8) and parameter values: γ = 0.005, θ1 = θ2 = 1, θ = 0.6 and D = 0.4.
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Figure 6.14: Numerical approximation of (u1, u2) at various times with (m1, m2) =

(0.1,−0.5) and parameter values: γ = 0.002, θ1 = 1, θ2 = 2, θ = 0.8 and D = 0.5.
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Figure 6.15: Numerical approximation of (u1, u2) at various times with (m1, m2) =

(−0.3, 0.3) and parameter values: γ = 0.002, θ1 = 1, θ2 = 2, θ = 0.8 and D = 0.5.
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Figure 6.16: Numerical approximation of (u1, u2) at various times with (m1, m2) =

(0.5,−0.8) and parameter values: γ = 0.002, θ1 = 1, θ2 = 2, θ = 0.8 and D = 0.5.
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Figure 6.17: Numerical approximation of (u1, u2) at various times with (m1, m2) =

(−0.2, 0) and parameter values: γ = 0.0005, θ1 = θ2 = 1, θ = 0.95 and D = 0.6.
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Figure 6.18: Numerical approximation of (u1, u2) at various times with (m1, m2) =

(0.2, 0.8) and parameter values: γ = 0.0005, θ1 = θ2 = 1, θ = 0.95 and D = 0.6.
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6.3 Two-dimensional simulations

We take the computational domain to be a square uniform mesh Ω = (0, 1)× (0, 1)

with space step h = 1/J in both x and y directions where J + 1 is the number of

the nodes in each direction. Then, we apply a right-angled triangulation on Ω in

which each subsquare is bisected by its north-east diagonal (see Figure 6.19).

As explained earlier the D-coupling term involved in the free energy functional

Λ(u1, u2) given by (1.1.9) prevents appearance of region denoted by (u+
1 , u

+
2 ) in which

the numerical solution of (u1, u2) is close to the value (α1, α2). Thus, the regions

likely to appear are only (u−1 , u
−
2 ), (u+

1 , u
−
2 ) and (u−1 , u

+
2 ) in which

the approximation of (u1, u2) takes approximately the values (−α1,−α2), (α1,−α2)

and (−α1, α2) respectively. In order to be in touch with the above classification of

the regions we represent the numerical approximations U1 and U2 graphically on

the mesh Ω by employing the RGB colour. We introduce an invertible map that

takes the average values of U1 and U2 on each subsquare of the mesh Ω into the

RGB colour. Let s1 and s2 be the average values on the subsquare with vertices

(xi, yj) = (ih, jh), (xi, yj+1), (xi+1, yj) and (xi+1, yj+1). We then define the RGB

colour mapping as

(t1, t2, t3) =
(1

2
(1 +

s1

α1
),

1

2
(1 +

s2

α2
),

1

4
(−

s1

α1
−
s2

α2
+
s1

α1

s2

α2
+ 1)

)

.

Note that t3 = −t1 − t2 + t1 t2 +1. For −α1 ≤ s1 ≤ α1 and −α2 ≤ s2 ≤ α2 this map-

ping has the property that if (s1, s2) are equal to the values (−α1,−α2), (α1,−α2),

(−α1, α2) and (α1, α2), we then obtain the colours: pure blue, pure red, pure green

and pure yellow respectively. The colour key of the rates −1 ≤ s1/α1 ≤ 1 and

−1 ≤ s2/α2 ≤ 1 is depicted in Figure 6.20. We shall see that when D > 0 the pure

yellow colour, which corresponds the region denoted by (u+
1 , u

+
2 ), does not appear

in the experiments and there are only at most three pure colours.
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Figure 6.19: Right-angled uniform mesh for two dimensional simulations.

Figure 6.20: The colour key of the rates s1/α1 and s2/α2 where the x-axis and y-axis

represent −1 ≤ s1/α1 ≤ 1 and −1 ≤ s2/α2 ≤ 1 respectively.



6.3. Two-dimensional simulations 153

In the two dimensional experiments we consider two types of initial condition. We

first use a two-dimensional version of the initial condition taken in [17] which is

defined as follows

(u0
1, u

0
2) =



























(−α1,−α2) if 0 ≤ x ≤ 1, 0 ≤ y ≤ 1
16
,

(mx,−α2) if 0 ≤ x ≤ 1, 1
16
< y ≤ 3

4
,

(−α1, α2) if 0 ≤ x ≤ 1, 3
4
< y ≤ 1,

where mx is a small random perturbation of the state mx.

For this initial condition we ran two simulations with h = 1/J = 1/64, ∆t = 0.0002,

µ = 0.5, γ = 0.001, D = 0.25, λ = 0.1 and tol = 10−7. Note that in each figure

of this section we arrange the pictures in a format matrix of three rows and two

columns with time increasing to the right in rows, then downwards. In the first ex-

periment we take mx = −0.25 and set θ = 0.4 and θ1 = θ2 = 1.0, which implies that

α1 = α2 = 0.986 to three decimal places. The evolution of the numerical solution

(see Figure 6.21) shows that there are only three regions with pure colours: blue,

red and green. We observe that throughout the green region is virtually unchanged

while below the evolution is from a mixture of lamella and blobs in the early stages

which quickly changes into a blob only mixture where upon additional development

takes place finally resulting in a quarter red in the lower left hand portion.

In the second experiment all the data remained the same as in the first experi-

ment except we took θ = 0.3, θ1 = 1.0 and θ2 = 1.5, that is α1 = 0.999 and

α2 = 0.997 to three decimal places. In Figure 6.22 we plot pictures of the evolution

of the numerical solution at different times where the last picture represents the

stationary solution which has a similar structure to that obtained in the first ex-

periment. However, the main differences are that the strip form of the green region

is interfered with before returning to its original form and the lamellar region is

kept for larger time. These differences can be explained as we have taken uneven

potentials, i.e. θ1 6= θ2, and θ is smaller.



6.3. Two-dimensional simulations 154

Figure 6.21: The structure of the numerical approximation at times t = 0.2,

t = 0.3, t = 0.6, t = 0.8, t = 4.0, t = 12.0 where mx = −0.25, γ = 0.001,

θ1 = θ2 = 1.0, θ = 0.4 and D = 0.25.
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Figure 6.22: The structure of the numerical approximation at times t = 0.2, t = 0.3,

t = 1.7, t = 2.8, t = 3.6, t = 12.0 where mx = −0.25, γ = 0.001, θ1 = 1.0,

θ2 = 1.5, θ = 0.3 and D = 0.25.
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Now, we take the initial data (U0
1 , U

0
2 ) to be random perturbations of the uniform

state (m1, m2) with fluctuation no larger than 0.05. In each simulation with this

type of initial data we set γ = 0.005, D = 0.4, h = 1/64 and ∆t = 0.0004. The

parameters: µ, λ and tol are kept as for the previous simulations. For this type of

initial data we performed four simulations with different values of the parameters θ,

θ1, θ2, m1 and m2.

In the third and fourth experiments of this section we used the data θ1 = θ2 = 1.0,

θ = 0.2, that is α1 = α2 ≈ 0.999, and (m1, m2) are (0, 0) and (−0.25,−0.75). For

the third experiment we found that there are only two pure colours (red and green)

where in the early stages of the evolution we noticed a lamellar structure of green

and red regions which develop in time to form finally two strip regions as displayed

in Figure 6.24. While in the fourth experiment depicted in Figure 6.25 we found that

there are three pure colours (red, green and blue) and the structure of the numerical

solution is completely different, i.e. not lamella. Circular green and red regions were

observed in the early stages which evolve quickly in time into a single central green

circle and fewer circular red domains. After more time of the evolution, finally, green

and red quarter circles were constructed in the lower left and upper right corners of

the domain Ω, representing the stationary structure of the numerical approximation.

For the fifth and sixth experiments we choose the following parameter values: θ1 =

θ2 = 1.0, θ = 0.6, i.e. α1 = α2 ≈ 0.907, and (m1, m2) = (−0.45, 0.15) for the fifth

experiment, and θ1 = 1.0, θ2 = 2.0, θ = 0.8, i.e. α1 ≈ 0.710 and α2 ≈ 0.907, and

(m1, m2) = (0.1,−0.5) for the sixth experiment. Figure 6.26 and Figure 6.27 show

the structure of the numerical solutions of these experiments at different times. The

pictures in each figure again consist of three colours and the last picture in each

figure represents the numerical stationary solutions. What is of interest in these two

simulations is that the transition between the green and red regions is always wetted

by a blue layer which is thin in the early stages and thickens as time increases. The

presence of the blue layers can be understood as the energy required to travel directly

between the green and red regions is much greater than that required to travel via
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the blue region. That is ignoring interfacial terms in the potential the geodesic which

travels from the minimum (−α1, α2) of F (u1, u2) := Ψ1(u1)+Ψ2(u2)+ fD(u1, u2) to

(α1,−α2) stays away from the centre and travels via (−α1,−α2), see Figure 6.23.

It is interesting to see the structure of the numerical solutions when D = 0. In

the seventh and eighth experiments we repeated the second and fifth experiments

with D = 0 and kept the remaining parameter values the same as before. We found

that the structure of the numerical solutions is different to that with D > 0. In par-

ticular, with D = 0 the structure admits a pure yellow colour in its time evolution,

compare Figures 6.22, 6.28 and Figures 6.26, 6.29. Therefore, we conclude that in

the absence of the D-coupling term, the region denoted by (u+
1 , u

+
2 ) (the pure yellow

region) may occur.
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Figure 6.23: The plot of F (u1, u2) with θ = 0.6, θ1 = θ2 = 1.0 and D = 0.4.
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Figure 6.24: The structure of the numerical approximation at times t = 0.02,

t = 0.06, t = 0.32, t = 0.64, t = 1.4, t = 12.0 with (m1, m2) = (0, 0) and pa-

rameter values: γ = 0.005, θ1 = θ2 = 1, θ = 0.2 and D = 0.4.
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Figure 6.25: The structure of the numerical approximation at times t = 0.06,

t = 0.32, t = 0.64, t = 1.28, t = 1.7, t = 12.0 with (m1, m2) = (−0.25,−0.75)

and parameter values: γ = 0.005, θ1 = θ2 = 1, θ = 0.2 and D = 0.4.
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Figure 6.26: The structure of the numerical approximation at times t = 0.1, t = 0.4,

t = 0.7, t = 1.2, t = 2.4, t = 12.0 with (m1, m2) = (−0.45, 0.15) and parameter

values: γ = 0.005, θ1 = θ2 = 1, θ = 0.6 and D = 0.4.
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Figure 6.27: The structure of the numerical approximation at times t = 0.06,

t = 0.2, t = 0.5, t = 1.1, t = 3.2, t = 12.0 with (m1, m2) = (0.1,−0.5) and

parameter values: γ = 0.005, θ1 = 1.0, θ2 = 2.0, θ = 0.8 and D = 0.4.
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Figure 6.28: The structure of the numerical approximation at times t = 0.2, t = 0.3,

t = 1.7, t = 2.8, t = 3.6, t = 12.0 where mx = −0.25, γ = 0.001, θ1 = 1.0,

θ2 = 1.5, θ = 0.3 and D = 0.
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Figure 6.29: The structure of the numerical approximation at times t = 0.1, t = 1.2,

t = 2.8, t = 4.4, t = 5.2, t = 12.0 with (m1, m2) = (−0.45, 0.15) and parameter

values: γ = 0.005, θ1 = θ2 = 1, θ = 0.6 and D = 0.



Chapter 7

Conclusions

In this thesis we studied two coupled Cahn-Hilliard equations with a logarith-

mic potential and zero Neumann boundary conditions in d ≤ 3 space dimensions.

Under some assumptions (A1) on the initial data we proved existence, uniqueness

and some stability estimates of the weak solution. This was achieved by considering

first a smooth replacement of the logarithmic potential to have the regularized prob-

lem (Pε) of the continuous problem (P). With the aid of Faedo-Galerkin method

and compactness arguments we established existence and uniqueness of a solution

to (Pε) and then by passing to the limit in ε we obtained existence of a solution of

(P).

Chapter 3 dealt with higher regularity results of the weak solutions of the problems

(P) and (Pε). With the aid of the standard regularity theory of elliptic problems

and by imposing further assumptions on the boundary of the domain and the initial

data we proved that the weak solutions are in higher order Sobolev spaces. We

also proved the continuous dependence of the weak solution on the initial data with

respect (H1(Ω))′ × (H1(Ω))′. Finally, we estimated the difference between the solu-

tions of the problems (P) and (Pε).

The finite element space used in the numerical study and some associated tools

and results were given in the beginning of Chapter 4. Then, some key techni-

cal lemmata concerning the nonlinearities are proved. The semi-discrete problem
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(Ph) of (P) and its regularized version (Ph

ε ) were suggested. The existence, unique-

ness, stability estimates under the assumptions (A1) and additional necessary stabil-

ity estimates under the assumptions (A2) of the semi-discrete approximations were

proved. The error bound between the solutions of the continuous problem (P) and

the semi-discrete problem (Ph) is investigated. This error bound was derived via the

error bound between (P) and (Pε), the error bound between (Pε) and (Ph

ε ) and the

error bound between (Ph

ε ) and (Ph). The advantage of analysing the semi-discrete

problems is that we could apply the framework in Nochetto [50] to prove an optimal

error bound in time between the fully-discrete and semi-discrete approximations.

In Chapter 5 we proposed a symmetric coupled, in time, fully-discrete approxi-

mation (Ph,∆t

µ ), µ ∈ [0, 1
2
], of (P) by discretising the semi-discrete problem (Ph)

in time using the backward Euler method. The corresponding regularized problem

(Ph,∆t

µ,ε ) was also introduced for which we proved existence and stability estimates of

a solution using the Schauder fixed point theorem. The existence, uniqueness, sta-

bility estimates under the assumptions (A1) of the solution of (Ph,∆t

µ ) were proved.

Further, essential stability estimates for the solution of (Ph,∆t

µ ) were deduced under

the assumptions (A2). The error bound between the solutions of the continuous

problem (P) and fully-discrete problem (Ph,∆t

µ ) is proved, which is optimal in ∆t.

We obtained this error bound by combining the error bound between the solutions

of (P) and (Ph) and the optimal error bound in time between the solutions of (Ph)

and (Ph,∆t

µ ).

A practical algorithm for computing the numerical solutions was given at the begin-

ning of Chapter 6. We then performed numerical experiments in one space dimen-

sion demonstrating the fully-discrete error bound and the growth behaviour of the

numerical approximation. Furthermore, simulations in two space dimensions were

performed.
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There are still mathematical and numerical work to be done in the future. By

considering the system (1.1.13a)-(1.1.17) with a diffusional mobility M(ui) depend-

ing on ui, i = 1, 2 we will be led to the following coupled system

∂u1

∂t
= ∇.(M(u1)∇w1),

∂u2

∂t
= ∇.(M(u2)∇w2),

where w1, w2 and the nonlinearities involved are defined as before in (1.1.13c)-

(1.1.17). This type of dependent mobility was suggested by Cahn and Hilliard [23].

It would be possible to mimic our study to analyse the above system with possibly

some restrictions on M(ui) or with a specific reasonable example of M(ui) such as

M(ui) = 1 − u2
i . Analysing the above system is recommended for future work.

Numerical results in Chapter 6 indicated that the rate of convergence of the fully-

discrete approximations in one space dimension is O(h + ∆t) while what we were

able to prove theoretically is O(h2/3 + ∆t). One question is “Can we find an ex-

ample satisfying our theoretical error bound?”. We leave this point and additional

numerical experiments in higher space dimensions for future work.

Many studies of other variants of Cahn-Hilliard equations are concerned with the

asymptotic behaviour of the solution as γ → 0+, for instance Modica [56] . So, it

might be possible to study the system in this thesis and we also leave this work for

future study.
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Appendix A

Definitions and Auxiliary Results

Definition A.0.1 (Convex functional, Johnson [45], p.249)

LetX be a normed space and letK be a convex subset ofX. A functional F : K → R

is said to be convex if for all x, y ∈ K and λ ∈ [0, 1], we have

F (λx+ (1 − λ)y) ≤ λF (x) + (1 − λ)F (y).

Theorem A.0.2 (Green’s formula, Rodrigues [28], p.76)

Let Ω ⊂ R
n be a bounded Lipschitz domain with outward unit normal ν. If u ∈

H2(Ω) and v ∈ H1(Ω), then

∫

Ω

∇u∇v dx =

∫

∂Ω

∂u

∂ν
v ds−

∫

Ω

v∆u dx. (A.0.1)

Theorem A.0.3 (Lax-Milgram, [21], p.83)

Let V be a Hilbert space. Let a be a bounded bilinear form on V ×V and let f ∈ V ′

(i.e. f is a bounded linear functional on V ). If a is a coercive, i.e.,

∃α > 0, ∀u ∈ V, a(u, v) ≥ α‖u‖2
V .

Then, there exists a unique u ∈ V such that

a(u, v) = f(v) ≡ 〈f, v〉V,V ′ ∀ v ∈ V.

In addition,

‖u‖V ≤
1

α
‖f‖V ′.
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Theorem A.0.4 (Schauder’s Theorem, Baiocchi, p.215)

Let X be a normed space and let K be a non-empty convex compact set of X.

If f : K → K is a continuous function then f has at least one fixed point, i.e.

∃x0 ∈ K : f(x0) = x0.

Theorem A.0.5 (Gronwall lemma in differential form, see Proposition 2.2 in [52])

Let E ∈ W 1,1(0, t) and P, Q, R ∈ L1(0, t), where all functions are non-negative.

Then
dE

dt
+ P (t) ≤ R(t)E(t) +Q(t) a.e. in [0, t]

implies

E(t) +

∫ t

0

P (s) ds ≤ e
∫ t

0 R(s)dsE(0) + e
∫ t

0 R(s)ds

∫ t

0

Q(s) ds.

Theorem A.0.6 (Some results of Sobolev spaces)

Let m be a positive integer. The Sobolev spaces Wm,p(Ω), equipped with appropri-

ate norms, satisfy

(i) For 1 ≤ p ≤ ∞, Wm,p(Ω) is a Banach space .(Adams [1], p.45)

(ii) For 1 ≤ p <∞, Wm,p(Ω) is separable.(Adams [1], p.47)

(iii) For 1 < p <∞, Wm,p(Ω) is reflexive.(Adams [1], p.47)

(iv) Ifm,n ∈ N∪{0}, k ≤ m and 1 ≤ p ≤ q ≤ ∞, thenWm,q(Ω) →֒ W k,p(Ω).(Berner

[61], p.30)

Theorem A.0.7 (Some results of time-dependent spaces)

Let X and Y be Banach spaces. The time-dependent spaces Lp(0, T ;X), associated

with the norms introduced In Chapter 2, satisfy the following

(i) For 1 ≤ p ≤ ∞, Lp(0, T ;X) is a Banach space.

(ii) For 1 ≤ p <∞, Lp(0, T ;X) is separable if and only if X is separable.

(iii) For 1 < p <∞, Lp(0, T ;X) is reflexive if and only if X is reflexive.

(iv) IfX is a reflexive or separable Banach space and 1 ≤ p <∞ then [Lp(0, T ;X)]′ ∼=

Lq(0, T ;X ′) where 1/p+ 1/q = 1 (the symbol “∼=” means isometrically isomorphic.

(v) If 1 ≤ p ≤ q ≤ ∞. Then the continuous injection X →֒ Y implies Lq(0, T ;X) →֒

Lp(0, T ;Y ). These results are collected in [40] from Kufner [39], pp.113-118 and

Zenisek [43], p.40.
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Definition A.0.8 (strong convergence)

Le V be a normed vector space. Then xn ∈ V converges strongly to x ∈ V , written

xn → x, if and only if

‖xn − x‖V → 0.

Definition A.0.9 (Weak convergence)

Let X be a Banach space. Then xn ∈ X converges weakly to x ∈ X, written

xn ⇀ x, if and only if

〈f, xn〉 → 〈f, x〉 ∀ f ∈ X ′,

where we use use 〈·, ·〉 to denote the duality pairing between X and X ′.

Definition A.0.10 (Weak-star convergence)

Let X be a Banach space. Then fn ∈ X ′ converges weakly-star to f ∈ X ′, written

fn
∗
⇀ f, if and only if

〈fn, x〉 → 〈f, x〉 ∀x ∈ X.

Theorem A.0.11 (Some results of weak and weak-star convergence)

Let X be Banach space and X ′ its dual. Then

(i) xn → x in X implies xn ⇀ x in X.(Robinson [14], p.102)

(ii) xn ⇀ x in X implies ‖x‖X is bounded and ‖x‖X ≤ lim inf ‖xn‖X . (Rodrigues,

[28], p.55)

(iii)fn
∗
⇀ f in X ′ implies ‖f‖X′ is bounded and ‖f‖X′ ≤ lim inf ‖fn‖X′. (Rodrigues,

[28], p.56)

(iv) Weak (weak-star) convergence has a unique limit. (Robinson [14], p.104).

Theorem A.0.12 (Zenisek [43], p.8)

Let the function f have a finite Lebesgue integral over (a, b). Then the derivative

of the indefinite Lebesgue integral

F (x) =

∫ x

a

f(t) dt

satisfies the relation F ′(x) = f(x), a.e. x ∈ (a, b).
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Theorem A.0.13 (Kufner [39], p.116)

LetX be a Banach space and let f ∈ L∞(0, T ;X). Then there exists a set A ⊂ (0, T )

of measure zero such that

‖f‖L∞(0,T ;X) = sup
t∈(0,T )−A

‖f‖X.

Theorem A.0.14 (Gilbarg [42], pp.153-154)

Let f be a piecewise smooth function on R (i.e. it is continuous and has piecewise

continuous first derivative) with f ′ ∈ L∞(R). Then if u ∈ W 1,p(Ω), 1 ≤ p < ∞,we

have f ◦ u ∈ W 1,p(Ω). Furthermore, letting L denote the set of corner points of f ,

we have

D(f ◦ u) =











f ′(u)Du if u /∈ L,

0 if u ∈ L.

Theorem A.0.15 (Weak sequential compactness, Dautary [59], p.289)

Let X be a reflexive Banach space and let {xn} be a bounded sequence in X. Then

xn has a subsequence which converges weakly in X.

Theorem A.0.16 (Weak-star sequential compactness, Dautary [59], p.291)

Let X be a separable Banach space and let {fn} be a bounded sequence in X ′. Then

fn has a subsequence which converges weakly star in X ′.

Theorem A.0.17 (Robinson [14], p.27, Rodrigues [28], p.59)

If fn → f in Lp(Ω), 1 ≤ p < ∞, then there exists a subsequence, still denoted fn,

such that

fn(x) → f(x) a.e. x ∈ Ω.

Theorem A.0.18 (Lions-Aubin Theorem, Temam [48], p.271)

Let X0, X , X1 be three Banach spaces such that

X0
c
→֒ X →֒ X1,

where X0 and X1 are reflexive. Let T be finite and 1 < p0, p1 <∞, then the space

W =
{

v : v ∈ Lp0(0, T ;X0),
dv

dt
∈ Lp1(0, T ;X1)

}
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with the norm

‖v‖W := ‖v‖Lp0(0,T ;X0) + ‖v‖Lp1 (0,T ;X1),

is a Banach space and the injection W into Lp0(0, T ;X) is compact.

Theorem A.0.19 (Temam [55], p.69)

Let V, H, V ′ be three Hilbert spaces, each space included and dense in the following

one, V ′ being the dual of V . If u ∈ L2(0, T ;V ) and u′ ≡ du
dt

∈ L2(0, T ;V ′), then

u ∈ C([0, T ];H) a.e and the following holds in the scalar distribution sense on (0, T )

d

dt
|u|2 = 2〈u′, u〉.

Theorem A.0.20 (see Robinson [14], p193)

If u ∈ L2(0, T ;H2(Ω)) and du
dt

∈ L2(ΩT ), then u ∈ C([0, T ];H1(Ω)).

Theorem A.0.21 (Some useful inequalities)

(i) For arbitrary a, b ≥ 0 and p > 0

2−[p−1]−(ap + bp) ≤ (a+ b)p ≤ 2[p−1]+(ap + bp),

where [r]+ = max{r, 0}, [r]− = max{−r, 0}. (Rodrigues [28], p.54)

(ii) For finite sums or infinite sums (discrete Hölder’s inequality)

∑

|akbk| ≤
(

∑

|ak|
p
)1/p(∑

|ak|
p
)1/q

,

where 1/p+ 1/q = 1. (Adams [1], p. 23)
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Programs

In the appendix we include some programs we wrote to perform the numerical
experiments in the thesis. The first program computes the numerical solutions Un

1

and Un
2 with cubic splines initial data and calculates the error (6.3.2) with a fixed

space step and successive refinement of the time step.

Program errodp

implicit none

integer nmax

PARAMETER (nmax=5620)

double precision u1(0:nmax),u_n1(0:nmax),ukph1(0:nmax),

. u10(0:nmax),u2(0:nmax),u_n2(0:nmax),ukph2(0:nmax),u20(0:nmax),

. ru1(0:nmax), eig(0:nmax),uk1(0:nmax),cu1(0:nmax),ru2(0:nmax),

. uk2(0:nmax),yu2(0:nmax),cu2(0:nmax), xu1(0:nmax),xu2(0:nmax),

. yu1(0:nmax),cxu2(0:nmax),unm1(0:nmax),unm2(0:nmax),cxu1(0:nmax),

. wsave(0:3*nmax),w1(0:nmax),w2(0:nmax), b1(0:nmax),b2(0:nmax),

. c1(0:nmax),c2(0:nmax),lh1(0:nmax),lh2(0:nmax),uc1(0:nmax),

. u_nc1(0:nmax),ukphc1(0:nmax),uc2(0:nmax),u_nc2(0:nmax),

. ukphc2(0:nmax),ruc1(0:nmax),eigc(0:nmax),ukc1(0:nmax),

. ruc2(0:nmax),ukc2(0:nmax),yuc2(0:nmax), xuc1(0:nmax),

. xuc2(0:nmax),yuc1(0:nmax),unmc1(0:nmax),unmc2(0:nmax),

. cxuc1(0:nmax), za(0:nmax),zb(0:nmax),zc(0:nmax),zd(0:nmax),

. cuc1(0:nmax),cuc2(0:nmax),cxuc2(0:nmax),bc1(0:nmax),bc2(0:nmax),

. cc1(0:nmax),cc2(0:nmax),lhc1(0:nmax),lhc2(0:nmax),va(0:nmax),

. vb(0:nmax), vc(0:nmax),vd(0:nmax),lambda,

. hc2,tempc,ra1,ra2,a,c,xmin,len,tau,t,h, h2,pi,gamma,diff,mu,

. theta,theta1,D,r,s,m1,m2,theta2,temp,ermu1,ermu2,alpha1,alpha2,

. sumu1,sumu2,sumu10,sumu20,time,tol,x,tauc, ras1,ras2, hc

double precision A1(24576,2049),A2(24576,2049),AC1(3072,2049),

. AC2(3072,2049)

integer i,m,n,loopy,loop,k5,nc,step,j,p0,p,q,val,pc,mc,l,f,

. nloops,nloops_tot,imax,imaxc,s0,int0

178
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character*30 datafile1,datafile2

character*1 number1

character*2 number2,lettert,letterw,lettertc,letterwc

character*3 number3

character*4 number4

lettert=’h1’

letterw=’h2’

lettertc=’l1’

letterwc=’l2’

C

C READING THE INTIAL DATA

open(1,status=’old’,file=’temp120.dat’)

read(1,*) gamma

read(1,*) D

read(1,*) lambda

read(1,*) tol

close(1)

C Reading the corfficients of the cubic splines generated by MATLAB

open(2,status=’old’,file=’coefe55a.dat’)

do 2020 i=0,3

read(2,*) zd(i),zc(i),zb(i),za(i)

2020 continue

close(2)

open(9,status=’old’,file=’coefe52a.dat’)

do 20208 i=0,3

read(9,*) vd(i),vc(i),vb(i),va(i)

20208 continue

close(9)

theta=0.25D0

theta1=1.0D0

theta2=1.0D0

C

C This step is to find the positive roots alpha1 and alpha2

call ROOT_PROG(theta,theta1,r)

call ROOT_PROG(theta,theta2,s)

alpha1=r

alpha2=s

print*,’alpha1=’,alpha1

print*,’alpha2=’,alpha2

C THE SPACE STEP OF THE FINE MECH

pi=3.14159265358979323846

h=1.0/2048.0

n=2048

p0=512

C
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C We intialize our problem

sumu10=0.0D0

sumu20=0.0D0

C calculating P_gamma-H^1 projection of u_1^0 and u_2^0 using

C discrete cosine transformation

int0=0

65 int0=int0+1

C Computing bi(j)=(u_i^0,phi_j),i=1,2,j=0,...,n

b1(0)=(za(0)*h**2/2+zb(0)*h**3/6+zc(0)*h**4/12+zd(0)*h**5/20)

. *2.0/h**2

C

b1(n)=(za(3)*h**2/2+zb(3)*((0.25)**2/2*h-(0.25)**3/6)

. +zc(3)*((0.25)**3/3*h-(0.25)**4/12)

. +zd(3)*((0.25)**4/4*h-(0.25)**5/20)

. +zb(3)*(real(n-1)*h-0.75)**3/6

. +zc(3)*(real(n-1)*h-0.75)**4/12

. +zd(3)*(real(n-1)*h-0.75)**5/20)*2.0/h**2

C

s0=0

do 122 j=0,3

do 123 i=s0*p0+1,(s0+1)*p0

b1(i)=(za(j)*h**2-2.0*zb(j)*(real(i)*h-real(j)*0.25)**3/6

. -2.0*zc(j)*(real(i)*h-real(j)*0.25)**4/12

. -2.0*zd(j)*(real(i)*h-real(j)*0.25)**5/20

. +(zb(j)*(real(i-1)*h-real(j)*0.25)**3/6

. +zc(j)*(real(i-1)*h-real(j)*0.25)**4/12

. +zd(j)*(real(i-1)*h-real(j)*0.25)**5/20)

. +(zb(j)*(real(i+1)*h-real(j)*0.25)**3/6

. +zc(j)*(real(i+1)*h-real(j)*0.25)**4/12

. +zd(j)*(real(i+1)*h-real(j)*0.25)**5/20))*1.0/h**2

123 continue

s0=s0+1

122 continue

C

do 124 i=1,3

b1(i*p0)=(za(i-1)*h**2/2

. +zb(i-1)*((real(i*p0)*h-real(i-1)*0.25)**2/2*h

. -(real(i*p0)*h-real(i-1)*0.25)**3/6)

. +zc(i-1)*((real(i*p0)*h-real(i-1)*0.25)**3/3*h

. -(real(i*p0)*h-real(i-1)*0.25)**4/12)

. +zd(i-1)*((real(i*p0)*h-real(i-1)*0.25)**4/4*h

. -(real(i*p0)*h-real(i-1)*0.25)**5/20)

. +zb(i-1)*(real(i*p0-1)*h-real(i-1)*0.25)**3/6

. +zc(i-1)*(real(i*p0-1)*h-real(i-1)*0.25)**4/12

. +zd(i-1)*(real(i*p0-1)*h-real(i-1)*0.25)**5/20
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. +za(i)*h**2/2

. +zb(i)*((real(i*p0)*h-real(i)*0.25)**2/2*(-h)

. -(real(i*p0)*h-real(i)*0.25)**3/6)

. +zc(i)*((real(i*p0)*h-real(i)*0.25)**3/3*(-h)

. -(real(i*p0)*h-real(i)*0.25)**4/12)

. +zd(i)*((real(i*p0)*h-real(i)*0.25)**4/4*(-h)

. -(real(i*p0)*h-real(i)*0.25)**5/20)

. +zb(i)*(real(i*p0+1)*h-real(i)*0.25)**3/6

. +zc(i)*(real(i*p0+1)*h-real(i)*0.25)**4/12

. +zd(i)*(real(i*p0+1)*h-real(i)*0.25)**5/20)*1.0/h**2

124 continue

C

C Computing ci(j)=(grad u_i^0, grad phi_j),i=1,2,j=0,...,n

c1(0)=(-zb(0)*h-zc(0)*h**2-zd(0)*h**3)*2.0/h**2

C

c1(n)=(zb(3)+zc(3)*(0.25)**2+zd(3)*(0.25)**3

. -(zb(3)*real(n-1)*h+zc(3)*(real(n-1)*h-0.75)**2

. +zd(3)*(real(n-1)*h-0.75)**3))*2.0/h**2

C

s0=0

do 125 j=0,3

do 126 i=s0*p0+1,(s0+1)*p0

c1(i)=(2.0*(zb(j)*real(i)*h+zc(j)*(real(i)*h-real(j)*0.25)**2

. +zd(j)*(real(i)*h-real(j)*0.25)**3)

. -(zb(j)*real(i-1)*h+zc(j)*(real(i-1)*h-real(j)*0.25)**2

. +zd(j)*(real(i-1)*h-real(j)*0.25)**3)

. -(zb(j)*real(i+1)*h+zc(j)*(real(i+1)*h-real(j)*0.25)**2

. +zd(j)*(real(i+1)*h-real(j)*0.25)**3))*1.0/h**2

126 continue

s0=s0+1

125 continue

C

do 127 i=1,3

c1(i*p0)=(zb(i-1)*real(i*p0)*h

. +zc(i-1)*(real(i*p0)*h-real(i-1)*0.25)**2

. +zd(i-1)*(real(i*p0)*h-real(i-1)*0.25)**3

. -(zb(i-1)*real(i*p0-1)*h

. +zc(i-1)*(real(i*p0-1)*h-real(i-1)*0.25)**2

. +zd(i-1)*(real(i*p0-1)*h-real(i-1)*0.25)**3)

. +zb(i)*real(i*p0)*h+zc(i)*(real(i*p0)*h-real(i)*0.25)**2

. +zd(i)*(real(i*p0)*h-real(i)*0.25)**3

. -(zb(i)*real(i*p0+1)*h+zc(i)*(real(i*p0+1)*h-real(i)*0.25)**2

. +zd(i)*(real(i*p0+1)*h-real(i)*0.25)**3))*1.0/h**2

127 continue

C
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if (int0.eq.1) then

do 104 i=0,n

lh1(i)=b1(i)+gamma*c1(i)

104 continue

else

do 11 i=0,n

lh2(i)=b1(i)+gamma*c1(i)

11 continue

end if

C

do 13013 i=0,3

za(i)=va(i)

zb(i)=vb(i)

zc(i)=vc(i)

zd(i)=vd(i)

13013 continue

if (int0.eq.1) then

go to 65

end if

C

C Using NAG routines to compute the corresponding coefficients of

C the values of lh1 and lh2 at the nodes

CALL DCOSTI(n+1,wsave)

print *, ’Hi’;

CALL C06HBF(n,lh1,wsave)

CALL C06HBF(n,lh2,wsave)

h2=h**(2.0D0)

C The eigenvalues of the matrix R in one dimension

eig(0)=0.0

do 150 i=1,n

eig(i)=(2.0D0-2.0D0*dcos(pi*real(i)/real(n)))/h2

150 continue

C Computing Fourier coefficents of u10 and u20

do 16 i=0,n

u10(i)=lh1(i)/(gamma*eig(i)+1.0D0)

u20(i)=lh2(i)/(gamma*eig(i)+1.0D0)

16 continue

C Computing u10 and u20 at the nodes by NAG subroutines

CALL C06HBF(n,u10,wsave)

CALL C06HBF(n,u20,wsave)

open(3,status=’old’,file=’g2.dat’)

do 15 i=0,n

write(3,*) real(i)*h, u10(i),u20(i)

15 continue

close(3)
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do 2 i=0,n

u1(i)=u10(i)

u_n1(i)=u1(i)

unm1(i)=u1(i)

ru1(i)=u1(i)

uk1(i)=u1(i)

sumu10=u1(i)+sumu10

u2(i)=u20(i)

u_n2(i)=u2(i)

unm2(i)=u2(i)

ru2(i)=u2(i)

uk2(i)=u2(i)

sumu20=u2(i)+sumu20

2 continue

C C The next step is to check the mean value of the intial data

sumu10=(sumu10-(u1(0)+u1(n))*0.5)*h

sumu20=(sumu20-(u2(0)+u2(n))*0.5)*h

print*,’mean value u1^0=’,sumu10

print*,’mean value u2^0=’,sumu20

C

CALL C06HBF(n,u_n1,wsave)

CALL C06HBF(n,u_n2,wsave)

3 print*,’number of prints’

read*,k5

a=-1.0

c=5.0D-8

xmin=a+c

tau=1.0/49152.0

m=24576

if (mod(m,k5).ne.0) go to 3

print *,’tau=’,tau

time = 0.0D0

step=0

C Calcalating U1^{n,k+1} and U1^{n,k+1} at the level time n

do 51 loopy=1,k5

do 52 loop=1,m/k5

nloops=0

55 nloops=nloops+1

C The next step is to find U1^{n,k+0.5} and U2^{n,k+0.5} at the nodes.We

C also calculate X_i{n,k+1},y_i{n,k+1),i=1,2

do 113 i=0,n

CALL LOG_PROJ(ru1(i),u1(i),ermu1,lambda,xmin,theta)

CALL LOG_PROJ(ru2(i),u2(i),ermu2,lambda,xmin,theta)
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ukph1(i)=ermu1

ukph2(i)=ermu2

C

xu1(i)=2.0*ukph1(i)-ru1(i)

xu2(i)=2.0*ukph2(i)-ru2(i)

yu1(i)=(uk1(i)+alpha1)*((uk2(i)+alpha2)**2 +

. (unm2(i)+alpha2)**2)

yu2(i)=(uk2(i)+alpha2)*((uk1(i)+alpha1)**2 +

. (unm1(i)+alpha1)**2)

113 continue

C

do 114 i=0,n

cxu1(i)=xu1(i)

cxu2(i)=xu2(i)

114 continue

C

CALL C06HBF(n,cxu1,wsave)

CALL C06HBF(n,cxu2,wsave)

CALL C06HBF(n,yu1,wsave)

CALL C06HBF(n,yu2,wsave)

C Now we calculate U1^{n,k+1} and U1^{n,k+1} at the nodes where we first

C calculate the corresponding Fourier constants and then we use the DCT

C to obtain the values at the nodes

mu=0.5D0

do 80 i=0,n

temp=eig(i)*tau

u1(i)=(lambda*(1.0+theta1*temp*(1-mu))*u_n1(i)

. +(cxu1(i)-D*lambda*yu1(i))*temp)

. /(lambda+temp+lambda*gamma*eig(i)*temp-lambda*mu*theta1*temp)

cu1(i)=u1(i)

if (i.ne.0) then

w1(i)=(-(u1(i)-u_n1(i)))/temp

endif

C

u2(i)=(lambda*(1.0+theta2*temp*(1-mu))*u_n2(i)

. +(cxu2(i)-D*lambda*yu2(i))*temp)

. /(lambda+temp+lambda*gamma*eig(i)*temp-lambda*mu*theta2*temp)

cu2(i)=u2(i)

if (i.ne.0) then

w2(i)=(-(u2(i)-u_n2(i)))/temp

endif

80 continue

C

CALL C06HBF(n,u1,wsave)

CALL C06HBF(n,u2,wsave)
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C Computing the difference |U_i^{n,k+1}-U_i^{n,k}|,i=1,2

diff=0.0D0

do 83 i=0,n

if (max(abs(u1(i)-uk1(i)),abs(u2(i)-uk2(i))).gt.diff) then

diff=max(abs(u1(i)-uk1(i)),abs(u2(i)-uk2(i)),diff)

imax=i

endif

uk1(i)=u1(i)

uk2(i)=u2(i)

83 continue

C

do 34 i=0,n

ru1(i)=2.0*u1(i)-xu1(i)

ru2(i)=2.0*u2(i)-xu2(i)

34 continue

if (mod(nloops,100).eq.0) print *,loopy, loop, nloops, imax,diff

C If our stopping criterion holds, we then move onto the next level

C time. Otherwise, we go to the next iteration.

if (diff.lt.tol) then

goto 56

end if

C

go to 55

C

C We update the time

56 time=time+tau

step=step+1

C

C Storing the solutions at time level n in n-th row of the matrices

do 909 j=0,n

A1(step,j+1)= u1(j)

A2(step,j+1)= u2(j)

909 continue

C

C We intialize the next time level and check that the mean-values

C are conserved

sumu1=0.0D0

sumu2=0.0D0

do 811 i=0,n

u_n1(i)=cu1(i)

u_n2(i)=cu2(i)

unm1(i)=u1(i)

unm2(i)=u2(i)

sumu1=sumu1+u1(i)
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sumu2=sumu2+u2(i)

811 continue

C

sumu1=(sumu1-(u1(0)+u1(n))*0.5)*h-sumu10

sumu2=(sumu2-(u2(0)+u2(n))*0.5)*h-sumu20

print *,loopy, loop, nloops,sumu1,sumu2

nloops_tot=nloops_tot+nloops

52 continue

C

C printing results

if (loopy.le.9) then

write(number1,901) loopy

datafile1 =lettert//number1//’.dat’

datafile2 =letterw//number1//’.dat’

else

if (loopy.le.99) then

write(number2,902) loopy

datafile1 =lettert//number2//’.dat’

datafile2 =letterw//number2//’.dat’

else

if (loopy.le.999) then

write(number3,903) loopy

datafile1 =lettert//number3//’.dat’

datafile2 =letterw//number3//’.dat’

else

write(number4,904) loopy

datafile1 =lettert//number4//’.dat’

datafile2 =letterw//number4//’.dat’

end if

end if

endif

C Write to a data file

open(1,status=’new’,file=datafile1)

open(2,status=’new’,file=datafile2)

do 120 i=0,n

x=real(i)*h

write(1,*) sngl(x),sngl(u1(i))

write(2,*) sngl(x),sngl(u2(i))

120 continue

close(2)

close(1)

51 continue

C

print *, nloops_tot
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CCCC Now we compute the solutions uc1,uc2 on a coarse mesh CCCCCCCCCCCCC

CCCC or on a larger time step CCCCCCCCCCCCC

hc=1.0/2048.0

nc=2048

pc=512

C since the space step is fixed, we do not need to recompute P_gamma^hc

sumu10=0.0D0

sumu20=0.0D0

do 62 i=0,nc

uc1(i)=u10(i)

u_nc1(i)=uc1(i)

unmc1(i)=uc1(i)

ruc1(i)=uc1(i)

ukc1(i)=uc1(i)

sumu10=uc1(i)+sumu10

uc2(i)=u20(i)

u_nc2(i)=uc2(i)

unmc2(i)=uc2(i)

ruc2(i)=uc2(i)

ukc2(i)=uc2(i)

sumu20=uc2(i)+sumu20

62 continue

sumu10=(sumu10-(uc1(0)+uc1(nc))*0.5)*hc

sumu20=(sumu20-(uc2(0)+uc2(nc))*0.5)*hc

C The next step is to check the mean value of the intial data

print*,’mean value uc1^0=’,sumu10

print*,’mean value uc2^0=’,sumu20

CALL C06HBF(nc,u_nc1,wsave)

CALL C06HBF(nc,u_nc2,wsave)

C Calcalating UC1^{n,k+1} and UC1^{n,k+1} at the level time n

tauc=1.0/12288.0

mc=6144

if (mod(m,mc).ne.0)

. print*,’fine time step is not a multiple of the large time step’

step=0

time=0.0D0

do 651 loopy=1,k5

do 652 loop=1,mc/k5

nloops=0

655 nloops=nloops+1

C The next step is to find UC1^{n,k+0.5} and UC2^{n,k+0.5} at the nodes
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do 6113 i=0,nc

CALL LOG_PROJ(ruc1(i),uc1(i),ermu1,lambda,xmin,theta)

CALL LOG_PROJ(ruc2(i),uc2(i),ermu2,lambda,xmin,theta)

ukphc1(i)=ermu1

ukphc2(i)=ermu2

C

xuc1(i)=2.0*ukphc1(i)-ruc1(i)

xuc2(i)=2.0*ukphc2(i)-ruc2(i)

yuc1(i)=(ukc1(i)+alpha1)*((ukc2(i)+alpha2)**2 +

. (unmc2(i)+alpha2)**2)

yuc2(i)=(ukc2(i)+alpha2)*((ukc1(i)+alpha1)**2 +

. (unmc1(i)+alpha1)**2)

6113 continue

C

do 6114 i=0,nc

cxuc1(i)=xuc1(i)

cxuc2(i)=xuc2(i)

6114 continue

C

CALL C06HBF(nc,cxuc1,wsave)

CALL C06HBF(nc,cxuc2,wsave)

CALL C06HBF(nc,yuc1,wsave)

CALL C06HBF(nc,yuc2,wsave)

C Now we calculate UC1^{n,k+1} and UC2^{n,k+1} at the nodes.

do 680 i=0,nc

tempc=eig(i)*tauc

uc1(i)=(lambda*(1.0+theta1*tempc*mu)*u_nc1(i)

. +(cxuc1(i)-D*lambda*yuc1(i))*tempc)

. /(lambda+tempc+lambda*gamma*eig(i)*tempc-lambda*mu*theta1*tempc)

cuc1(i)=uc1(i)

CC

uc2(i)=(lambda*(1.0+theta2*tempc*mu)*u_nc2(i)

. +(cxuc2(i)-D*lambda*yuc2(i))*tempc)

. /(lambda+tempc+lambda*gamma*eig(i)*tempc-lambda*mu*theta2*tempc)

cuc2(i)=uc2(i)

680 continue

C

CALL C06HBF(nc,uc1,wsave)

CALL C06HBF(nc,uc2,wsave)

diff=0.0D0

do 683 i=0,nc

if (max(abs(uc1(i)-ukc1(i)),abs(uc2(i)-ukc2(i))).gt.diff) then

diff=max(abs(uc1(i)-ukc1(i)),abs(uc2(i)-ukc2(i)),diff)

imax=i
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endif

ukc1(i)=uc1(i)

ukc2(i)=uc2(i)

683 continue

C

do 634 i=0,nc

ruc1(i)=2.0*uc1(i)-xuc1(i)

ruc2(i)=2.0*uc2(i)-xuc2(i)

634 continue

if (mod(nloops,100).eq.0) print *,loopy, loop, nloops, diff

if (diff.lt.tol) then

goto 656

end if

C

go to 655

C

C we update the time

656 time=time+tauc

C

step=step+1

do 9009 j=1,nc+1

AC1(step,j)=uc1(j-1)

AC2(step,j)=uc2(j-1)

9009 continue

sumu1=0.0D0

sumu2=0.0D0

do 6811 i=0,nc

u_nc1(i)=cuc1(i)

u_nc2(i)=cuc2(i)

unmc1(i)=uc1(i)

unmc2(i)=uc2(i)

sumu1=sumu1+uc1(i)

sumu2=sumu2+uc2(i)

6811 continue

C

sumu1=(sumu1-(uc1(0)+uc1(nc))*0.5)*hc-sumu10

sumu2=(sumu2-(uc2(0)+uc2(nc))*0.5)*hc-sumu20

print *,loopy, loop, nloops

nloops_tot=nloops_tot+nloops

652 continue

C

C printing the solutions on the coarse mesh or on the larger time step at

C some time levels
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if (loopy.le.9) then

write(number1,901) loopy

datafile1 =lettertc//number1//’.dat’

datafile2 =letterwc//number1//’.dat’

else

if (loopy.le.99) then

write(number2,902) loopy

datafile1 =lettertc//number2//’.dat’

datafile2 =letterwc//number2//’.dat’

else

if (loopy.le.999) then

write(number3,903) loopy

datafile1 =lettertc//number3//’.dat’

datafile2 =letterwc//number3//’.dat’

else

write(number4,904) loopy

datafile1 =lettertc//number4//’.dat’

datafile2 =letterwc//number4//’.dat’

end if

end if

endif

C Writing to a data file

open(3,status=’new’,file=datafile1)

open(4,status=’new’,file=datafile2)

do 6120 i=0,nc

x=real(i)*hc

write(3,*) sngl(x),sngl(uc1(i))

write(4,*) sngl(x),sngl(uc2(i))

6120 continue

close(4)

close(3)

651 continue

C

print *, nloops_tot

901 format(i1)

902 format(i2)

903 format(i3)

904 format(i4)

C

C Calculating the error with fixed space step and successive

C refinement of tau

ra1=0.0D0

ra2=0.0D0

C Since tauc=p*tau and T=0.5, mc=p*m.h=1/n=hc=1/nc.
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p=4

f=0

do 1003 i=1,mc

do 2003 l=f*p+1,(f+1)*p

do 2002 j=1,n

ra1=ra1+tau*h/3.0*((A1(l,j+1)-AC1(i,j+1))**2+

. (A1(l,j+1)-AC1(i,j+1))*(A1(l,j)-AC1(i,j))+

. (A1(l,j)-AC1(i,j))**2)

. +tau/h*((A1(l,j+1)-AC1(i,j+1))-(A1(l,j)-AC1(i,j)))**2

C

ra2=ra2+tau*h/3.0*((A2(l,j+1)-AC2(i,j+1))**2+

. (A2(l,j+1)-AC2(i,j+1))*(A2(l,j)-AC2(i,j))+

. (A2(l,j)-AC2(i,j))**2)

. +tau/h*((A2(l,j+1)-AC2(i,j+1))-(A2(l,j)-AC2(i,j)))**2

2002 continue

2003 continue

f=f+1

1003 continue

C

open(7,status=’old’,file=’4stepstime.dat’)

write(7,*)’The H^1 error is’

write(7,*)’tau=’,tau,’tauc=’,tauc,’p=’,p

write(7,*)’ra1=’,sngl(ra1),’______’,’ra2=’,sngl(ra2)

write(7,*)’Total=’,sngl(ra1+ra2)

stop

end program errodp

C

SUBROUTINE ROOT_PROG(theta,thetac,x2)

double precision theta,thetac,x0,x1,x2,f0,f1,f2

integer itest,stest

x0=0.999999999999999D0

x1=0.000000000000001D0

itest=0

5 itest=itest+1

f0=0.5*theta*log((1+x0)/(1-x0))-thetac*x0

f1=0.5*theta*log((1+x1)/(1-x1))-thetac*x1

if(f0*f1.gt.0)then

x0=(x0+1)/2

x1=x1/2

go to 5

end if

stest=0

10 stest=stest+1

if(abs(x0-x1).gt.0.1D-9)then

x2=(x0+x1)/2
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f2=0.5*theta*log((1+x2)/(1-x2))-thetac*x2

f0=0.5*theta*log((1+x0)/(1-x0))-thetac*x0

if(f0*f2.lt.0)then

x1=x2

go to 10

else

x0=x2

go to 10

end if

end if

x2=(x0+x1)/2

end

C

C

SUBROUTINE LOG_PROJ(b,x0,xo,lambda,xmin,theta)

double precision theta,lambda,b,nu,f0,s,xo,x0,xmin

nu=lambda*theta*0.5

xo=x0

xo=dmax1(xmin,dmin1(xo,-xmin))

C tolerance = 5D-08

C |b|<=1.0

C theta = 0.2, lambda = 0.1, 1.17504384986494, 0.96086005180472

C theta=0.25, lambda=0.1, 1.218804824831179, 0.953324218882453

C theta = 0.5, lambda= 0.1, 1.437609699662358,0.920413662859303

C theta = 0.8, lambda = 0.1, 1.700175549459774,0.887280434883490

if (abs(b).le.1.0) then

s = 2.0

do while (abs(s-xo).gt.1.0D-07)

s = xo

xo = xo-(xo+nu*log((1+xo)/(1-xo))-b)

. /(1-xo*xo+2.0*nu)*(1-xo*xo)

xo=dmax1(xmin,dmin1(xo,-xmin))

end do

else

if (abs(b).gt.1.218804824831179) then

if (b.gt.0) then

xo=-xmin

else

xo=xmin

endif

else

if (b.gt.0) then

xo=0.953324218882453

x1=-xmin
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else

x1=-0.953324218882453

xo=xmin

end if

f0=xo+nu*log((1+xo)/(1-xo))-b

f1=x1+nu*log((1+x1)/(1-x1))-b

do while (abs(xo-x1).gt.1.0D-07)

x2=(xo+x1)*0.5

f2=x2+nu*log((1+x2)/(1-x2))-b

if (f0*f2.lt.0) then

x1=x2

f1=f2

else

xo=x2

f0=f2

end if

end do

xo = x2

end if

end if

end

To compute the error (6.3.2) with fixed time step and successive refinement of the

space step, one can modify the above program as follows. Since in this case the space step

is not fixed, we need to compute again the H1-projection of the initial data but this time

with the coarse mesh parameter. We also replace the part devoted to the computation of

the error with a fixed space step by the following:

ras1=0.0D0

ras2=0.0D0

C hc=1/nc=p*h=p*1/n,i.e. n=p*nc

p=n/nc

C Here we compute H^1 semi-norm of the error

f=0

do 4001 j=1,nc

do 4007 l=f*p+1,(f+1)*P

do 4008 i=1,m

ras1=ras1+tau*h*((A1(i,l)*(-1.0/h)+A1(i,l+1)*(1.0/h))

. -(AC1(i,j)*(-1.0/hc)+AC1(i,j+1)*(1.0/hc)))**2

C

ras2=ras2+tau*h*((A2(i,l)*(-1.0/h)+A2(i,l+1)*(1.0/h))

. -(AC2(i,j)*(-1.0/hc)+AC2(i,j+1)*(1.0/hc)))**2

4008 continue

4007 continue

f=f+1
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4001 continue

C Here we compute the L^2 norm of the error

ra1=0.0D0

ra2=0.0D0

f=0

do 5007 j=1,nc

do 5008 l=f*p+1,(f+1)*P

do 5006 i=1,m

if(1/h*(-A1(i,l)+A1(i,l+1))-1/hc*(-AC1(i,j)+AC1(i,j+1)).eq.0.0D0)

. then

ra1=ra1+tau*h*((A1(i,l)*real(l+1)-A1(i,l+1)*real(l))

. -(AC1(i,j)*real(j+1)-AC1(i,j+1)*real(j)))**2

else

ra1=ra1+

. tau*1/(1/h*(-A1(i,l)+A1(i,l+1))-1/hc*(-AC1(i,j)+AC1(i,j+1)))

. *((A1(i,l+1)-(AC1(i,j)*(-1/hc)*(real(l+1)*h-real(j+1)*hc)

. +AC1(i,j+1)*(1/hc)*(real(l+1)*h-real(j)*hc)))**3

. -(A1(i,l)-(AC1(i,j)*(-1.0/hc)*(real(l)*h-real(j+1)*hc)

. +AC1(i,j+1)*(1.0/hc)*(real(l)*h-real(j)*hc)))**3)

. *(1.0/3.0)

end if

CCC

if(1/h*(-A2(i,l)+A2(i,l+1))-1/hc*(-AC2(i,j)+AC2(i,j+1)).eq.0.0D0)

. then

ra2=ra2+tau*h*((A2(i,l)*real(l+1)-A2(i,l+1)*real(l))

. -(AC2(i,j)*real(j+1)-AC2(i,j+1)*real(j)))**2

else

ra2=ra2+

. tau*1/(1/h*(-A2(i,l)+A2(i,l+1))-1/hc*(-AC2(i,j)+AC2(i,j+1)))

. *((A2(i,l+1)-(AC2(i,j)*(-1/hc)*(real(l+1)*h-real(j+1)*hc)

. +AC2(i,j+1)*(1/hc)*(real(l+1)*h-real(j)*hc)))**3

. -(A2(i,l)-(AC2(i,j)*(-1.0/hc)*(real(l)*h-real(j+1)*hc)

. +AC2(i,j+1)*(1.0/hc)*(real(l)*h-real(j)*hc)))**3)

. *(1.0/3.0)

end if

5006 continue

5008 continue

f=f+1

5007 continue

C

C Printing rsults

open(7,status=’old’,file=’4coarsesteps.dat’)

write(7,*)’The H1 norm of the error with coarse mesh is’

write(7,*)’ras1+ra1=’,sngl(ra1+ras1),’ras2+ra2=’,sngl(ra2+ras2)
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write(7,*)’TOTAL NORM=’,sngl(ra1+ras1+ra2+ras2)

close(7)

The next program is for the two-dimensional simulations

PROGRAM tdp

implicit none

integer nmax

PARAMETER (nmax=260)

double precision u1(0:nmax**2),u_n1(0:nmax**2),ukph1(0:nmax**2),

. u2(0:nmax**2),u_n2(0:nmax**2),ukph2(0:nmax**2),ru1(0:nmax**2),

. eig(0:nmax),uk1(0:nmax**2), ru2(0:nmax**2),uk2(0:nmax**2),

. cu2(0:nmax**2),temp,tol,unm1(0:nmax**2),unm2(0:nmax**2),

. yu1(0:nmax**2),yu2(0:nmax**2),w1(0:nmax**2),w2(0:nmax**2),

. wsave(0:3*nmax),xu1(0:nmax**2),xu2(0:nmax**2),cxu1(0:nmax**2),

. cxu2(0:nmax**2),ccu1(0:nmax**2),ccu2(0:nmax**2),lambda,

. len,tau,t,h,h2,pi,gamma,diff,mu,theta,alpha1,alpha2,

. a,c,xmin,time,theta1,theta2,ermu1,ermu2,r,s,

. y,m1,m2,D,x

integer i,j,m,n,loopy,loop,k5,nloops,nloops_tot,imax,np1,ntop,ij

character*30 datafile1,datafile2

character*1 number1

character*2 number2,lettert,letterw

character*3 number3

character*4 number4

lettert=’h1’

letterw=’h2’

pi=3.14159265358979323846

C

open(1,status=’old’,file=’temp2.dat’)

read(1,*) len

read(1,*) n

read(1,*) t

read(1,*) m

read(1,*) gamma,D

read(1,*) lambda

read(1,*) tol

read(1,*) m1

read(1,*) m2

close(1)

C

np1 = n+1

ntop = n*n+2*n

theta=0.3D0

theta1=1.0D0

theta2=1.5D0
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call ROOT_PROG(theta,theta1,r)

call ROOT_PROG(theta,theta2,s)

alpha1=r

alpha2=s

print*,’alpha1=’,alpha1

print*,’alpha2=’,alpha2

C

C Rading the random perturbations of the state (m_1, m_2). Here we

C consider the first type of the intial condition. The second type

C can be covered immediately on stting (alpha_1,alpha_2)=(m_1,m_2).

open(1,status=’old’,file=’t02.dat’)

do 4 i=0,n

do 5 j=0,n

ij=i+np1*j

read(1,*) u1(ij), u2(ij)

5 continue

4 continue

close(1)

C

do 14 i=0,n

if(i.le.4) then

do 15 j=0,n

ij=i+np1*j

u1(ij)=-alpha1

u2(ij)=-alpha2

15 continue

else

if(i.le.48)then

do 16 j=0,n

ij=i+np1*j

u1(ij)=u2(ij)-0.25

u2(ij)=-alpha2

16 continue

else

do 17 j=0,n

ij=i+np1*j

u1(ij)=-alpha1

u2(ij)=alpha2

17 continue

end if

end if

14 continue

do 18 i=0,n

do 19 j=0,n

ij=i+np1*j
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u_n1(ij)=u1(ij)

u_n2(ij)=u2(ij)

unm1(ij)=u1(ij)

unm2(ij)=u2(ij)

ru1(ij)=u1(ij)

ru2(ij)=u2(ij)

uk1(ij)=u1(ij)

uk2(ij)=u2(ij)

19 continue

18 continue

open(1,status=’old’,file=’int.dat’)

do 3 i=0,n

do 6 j=0,n

ij=i+np1*j

write(1,*) u1(ij),u2(ij)

6 continue

3 continue

close(1)

C

h=real(len)/real(n)

C

13 print *,’number of prints is a rational number’

read*, k5

if (mod(m,k5).ne.0) go to 13

tau=t/real(m)

print *,tau

a=-1.0D0

c=5.0D-8

xmin=a+c

h2=h**(2.0D0)

C these NAG routines calculate the Cosine Transform

CALL DCOSTI(n+1,wsave)

CALL C06HBF(n,u_n1,wsave)

CALL C06HBF(n,u_n2,wsave)

C We shall use the following 1-D eigenvalues to compute 2-D

C eigenvalue as will be seen below

eig(0)=0.0D0

do 50 i=1,n

eig(i)=(2.0D0-2.0D0*dcos(pi*real(i)/real(n)))/h2

50 continue

time = 0.0D0

C

do 51 loopy=1,k5

do 52 loop=1,m/k5



Appendix B. Programs 198

nloops=0

55 nloops=nloops+1

do 113 i=0,ntop

CALL LOG_PROJ(ru1(i),u1(i),ermu1,lambda,xmin,theta)

CALL LOG_PROJ(ru2(i),u2(i),ermu2,lambda,xmin,theta)

ukph1(i)=ermu1

ukph2(i)=ermu2

xu1(i)=2.0*ukph1(i)-ru1(i)

xu2(i)=2.0*ukph2(i)-ru2(i)

yu1(i)=(uk1(i)+alpha1)*((uk2(i)+alpha2)**2 +

. (unm2(i)+alpha2)**2)

yu2(i)=(uk2(i)+alpha2)*((uk1(i)+alpha1)**2 +

. (unm1(i)+alpha1)**2)

113 continue

C

do 114 i=0,ntop

cxu1(i)=xu1(i)

cxu2(i)=xu2(i)

114 continue

C

CALL C06HBF(n,cxu1,wsave)

CALL C06HBF(n,cxu2,wsave)

CALL C06HBF(n,yu1,wsave)

CALL C06HBF(n,yu2,wsave)

C Computing U_i^{n,k+1},i=1,2 at the nodes (ih,jh)

mu=0.5D0

do 980 i=0,n

do 990 j=0,n

ij=i+np1*j

temp=(eig(i)+eig(j))*tau

u1(ij)=(lambda*(1.0+theta1*(1-mu)*temp)*u_n1(ij)

. +(cxu1(ij)-D*lambda*yu1(ij))*temp)

. /(lambda+temp+lambda*gamma*(eig(i)+eig(j))*temp

. -lambda*mu*theta1*temp)

ccu1(ij)=u1(ij)

if (i.ne.0) then

w1(ij)=(-(u1(ij)-u_n1(ij)))/temp

endif

C

u2(ij)=(lambda*(1.0+theta2*(1-mu)*temp)*u_n2(ij)

. +(cxu2(ij)-D*lambda*yu2(ij))*temp)

. /(lambda+temp+lambda*gamma*(eig(i)+eig(j))*temp

. -lambda*mu*theta2*temp)
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ccu2(ij)=u2(ij)

if (i.ne.0) then

w2(ij)=(-(u2(ij)-u_n2(ij)))/temp

endif

990 continue

980 continue

C

CALL C06HBF(n,u1,wsave)

CALL C06HBF(n,u2,wsave)

C

diff=0.0D0

do 83 i=0,ntop

if (max(abs(u1(i)-uk1(i)),abs(u2(i)-uk2(i))).gt.diff) then

diff=max(abs(u1(i)-uk1(i)),abs(u2(i)-uk2(i)),diff)

imax=i

endif

uk1(i)=u1(i)

uk2(i)=u2(i)

83 continue

do 34 i=0,ntop

ru1(i)=2.0*u1(i)-xu1(i)

ru2(i)=2.0*u2(i)-xu2(i)

34 continue

if (mod(nloops,100).eq.0) print *,loopy, loop, nloops, diff,imax

if (diff.lt.tol) then

goto 56

end if

C

go to 55

C we update the old time and intialize the next time level

56 time=time+tau

do 811 i=0,ntop

u_n1(i) = ccu1(i)

u_n2(i) = ccu2(i)

unm1(i) = u1(i)

unm2(i) = u2(i)

811 continue

C

print *,loopy, loop, nloops

nloops_tot=nloops_tot+nloops

52 continue

C printing results of U_1(ih,jh),U_2(ih,jh) at some time levels
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if (loopy.le.9) then

write(number1,901) loopy

datafile1 =lettert//number1//’.dat’

datafile2 =letterw//number1//’.dat’

else

if (loopy.le.99) then

write(number2,902) loopy

datafile1 =lettert//number2//’.dat’

datafile2 =letterw//number2//’.dat’

else

if (loopy.le.999) then

write(number3,903) loopy

datafile1 =lettert//number3//’.dat’

datafile2 =letterw//number3//’.dat’

else

write(number4,904) loopy

datafile1 =lettert//number4//’.dat’

datafile2 =letterw//number4//’.dat’

end if

end if

endif

open(1,status=’new’,file=datafile1)

C open(2,status=’new’,file=datafile2)

do 1124 i=0,n

do 1125 j=0,n

x=real(i)*h

y=real(j)*h

ij=i+np1*j

write(1,*) sngl(u1(ij)),sngl(u2(ij))

C write(2,*) sngl(x),sngl(y),sngl(u1(ij)),sngl(u2(ij))

1125 continue

1124 continue

C close(2)

close(1)

51 continue

print *, nloops_tot

901 format(i1)

902 format(i2)

903 format(i3)

904 format(i4)

stop

end program tdp
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The following program is to generate the solution in RGB structure

PROGRAM colour_picture

implicit none

integer nmax

PARAMETER (nmax=260)

doubleprecision u1(0:nmax,0:nmax),s1,t1,t3,u2(0:nmax,0:nmax),

. s2,t2,alpha1,alpha2

character*10 datafile1(1:12)

integer n,i,j,k

C

n=64

alpha1=0.72

alpha2=0.986

C

C m_1=-0.25, m_2=0.5

datafile1(3) =’l15.dat’

datafile1(6) =’l110.dat’

datafile1(2) =’l125.dat’

datafile1(5) =’l155.dat’

datafile1(1) =’l1160.dat’

datafile1(4) =’l1600.dat’

C

write(99,’(A)’) ’%!’

write(99,’(A)’) ’%%BoundingBox: 57 60 503 694’

write(99,’(A)’) ’newpath’

write(99,’(A)’) ’/square’

write(99,’(A)’) ’{newpath’

write(99,’(A)’) ’0 0 moveto’

write(99,’(A)’) ’8 0 lineto’

write(99,’(A)’) ’8 8 lineto’

write(99,’(A)’) ’0 8 lineto’

write(99,’(A)’) ’closepath’

write(99,’(A)’) ’fill}def’

write(99,900) 0.4,0.4,’scale’

write(99,901) 150.0,150.0,’translate’

C

do 119 k=1,6

open(1,status=’old’,file=datafile1(k))

do 120 i=0,n

do 121 j=0,n

read(1,*) u1(i,j), u2(i,j)

121 continue

120 continue

close(1)

C
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do 130 i=0,n-1

do 131 j=0,n-1

s1=(u1(i,j)+u1(i+1,j)+u1(i+1,j+1)+u1(i,j+1))*0.25

s2=(u2(i,j)+u2(i+1,j)+u2(i+1,j+1)+u2(i,j+1))*0.25

t1=0.5*(1.0+s1/alpha1)

t2=0.5*(1.0+s2/alpha2)

t3=-t1-t2+t1*t2+1

write(99,903) t1,t2,t3,’setrgbcolor’,’square’,8,0,’translate’

131 continue

C

if (i.ne.(n-1))

. write(99,901) -511.925,8.0,’translate’

130 continue

C

if (mod(k,3).ne.0) then

write(99,901) -511.925,30.0,’translate’

else

write(99,901) 90.0,-1570.0,’translate’

end if

119 continue

write(99,’(A)’) ’showpage’

C

900 format(F4.1,1X,F3.1,1X,A5)

901 format(F10.3,1X,F9.3,1X,A9)

902 format(F5.2,1X,F5.2,1X,F5.2,1X,A11,1X,I3,1X,I1,1X,A5,1X,A6)

903 format(F5.2,1X,F5.2,1X,F5.2,1X,A11,1X,A6,1X,I1,1X,I1,1X,A9)

stop

end


