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Abstract 

Total charge exchange and excitation cross-sections are presented for collisions 

between He 2 + ions and helium atoms, the laboratory frame collision energy being 

in the range 16-800keV. Cross-sections from the helium ground state and the 

He(ls2s1S) and He(ls2s3S) metastable states are calculated. 

The calculations were performed using the semiclassical impact parameter 

model where wave-functions are expressed as an expansion of two-electron atomic 

basis states. Transfer channels included plane-wave translation factors. 

The transition He + (n = 4) —> He + (n = 3) results in the emission of visible 

light (468.5nm) which is observed in the JET fusion device. Helium beam injec­

tion into the JET device introduces some of the atoms in initially excited states. 

Even a small fraction of metastable helium effects the observed 468.5nm spectrum 

significantly because of the very large charge exchange cross-sections. Accurate 

charge exchange cross-sections to the He + (n = 4) states are required to analyse 

the spectroscopic data used in the diagnosis of the plasma. The cross-sections 

produced are therefore also presented in a form suitable for direct inclusion into 

the plasma analysis database. 

Where possible the current results are compared to previous calculations. Total 

charge exchange cross-sections from the He(ls2s1S) state are in good agreement 

with the previous one-electron calculation. Charge exchange cross-sections from 

the triplet state are found to differ with those from the singlet. 

The results are discussed in the context of their usefulness in the diagnosis of 

fusion plasmas. Suggestions for further work are made. 
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'An old rule of thumb among US fusion researchers holds 

that the funding for the field almost always parallels the 

average price of oil, delayed by about a year' [2] 
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Chapter 1 

Introduction 

1.1 Ion-Atom Collisions 

When an ion and an atom collide various processes can take place. Consider a 

system involving only one electron in which a bare projectile nucleus B Z B + is in 

collision with the target ( A Z A + + e~). What follows is an outline of the relevant 

electron processes. 

(i) B Z b + + ( A Z a + + e~) — > B Z b + + ( A Z A + + e") elastic collision 
(ii) B Z b + + ( A Z A + + e ) — > B Z B + + ( A Z A + + e )* direct excitation 
(iii) B Z B + + ( A Z A + + e ) — > ( B Z b + + e~) + A Z A + capture 
(iv) B Z b + + ( A Z a + + e ) — > B Z B + + AZa+ + e~ ionization 

Process (i) is an elastic process whereas all the others are inelastic. Inelastic 

processes involve an exchange between kinetic and internal energies. In process 

(iii) the electron may be captured into the ground or an excited state of the 

resulting ion. These capture processes are also known as charge exchange or as 

rearrangement collisions. 

If both nuclei are the same (A = B) then the system is said to be symmetric. 

In symmetric systems there are always processes which have initial and final states 

with the same internal energy. These processes are said to be resonant e.g. 

+ + H + + H(ls H Is + H (1.1) 
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In non-symmetric systems there may exist some (accidental) resonances e.g. 

When more than one electron is involved in an ion-atom collision various com­

binations of the processes outlined above can occur e.g. transfer-excitation, mul­

tiple transfer etc. 

The type and rate of occurence of these processes depends on various fac­

tors: projectile/target charge, collision energy, initial state of the electron and the 

distance of closest approach of the nuclei. The effect of the collision energy is 

discussed in section 1.1.4. 

1.1.1 Cross-Sections 

Cross-Sections are used as a measure of the likelihood of an event in atomic colli­

sions. A cross-section is defined as the number of scattering events per scatterer 

per unit flux of the incident particle per unit time. The flux of the incident parti­

cles is defined as the number of particles passing through a unit area perpendicular 

to the direction of the beam per unit time. From this definition it is clear that 

cross-sections have the dimensions of area. Equation (1.3) defines the rate Nc of 

production of C from the impact of A (with flux MA) on nB target B atoms in 

terms of the cross-section (a). 

It is possible to define a differential cross-section as the cross-section for an event 

in a particular scattering direction. The total cross-section is the differential cross-

section integrated over all scattering angles (1.4). 

He 2 + + H(ls) He+(2s) + H+ (1 2) 

Nc{s l ) =NA{S lm 2 ) x nB x a[A+B^C}(m2) (1.3) 

2 T T 
/ " Z 7 T r 

J ft J ft 
da (d,<p) sin(0)d0# (J tot 
dil o 0 

(1.4) 
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1.1.2 Classical Scattering 

For an atomic collision event to be represented adequately by a classical approx­

imation the wavelength associated with each of the particles must be suitably 

localized so that they can be treated as classical. The size of this wave-packet 

must be significantly smaller than the interaction region. I t must also be the case 

that the uncertainty in the angle of scattering is very small compared to the actual 

angle of scattering. 

Rutherford interpreted the results from experiments on the collisions of alpha-

particles with atoms using equation (1.5). He was able to conclude that atoms 

contained a very small positively charged centre: the nucleus. The effect of the 

electrons in these experiments within the atom can be neglected because their 

mass is insignificant compared to that of the positively charged nuclei and alpha-

particles. The equation given here is for the differential cross-section in the colli­

sion between any two positive charges. 

da = {ZAZBf e2 

dtl (47re0)2 4 ^ 4 s i n 4 ( | 0 ) 1 ' ' 

Here /x is the reduced mass given by equation (1.6), v is the initial velocity 

and 9 is the angle of scattering. The values ZA and ZB are the charges of the two 

particles in atomic units. Atomic units will be used throughout unless otherwise 

stated and are defined in the following section. 

MAMB n R V 

^WTWB

 ( L 6 ) 

It is a peculiar feature of the Coulomb potential that exactly the same result is ob­

tained for the differential cross-section when a full quantum mechanical treatment 

is used. 
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1.1.3 Atomic Units 

Atomic units are defined by assigning e = m = h = 1, where e is the charge of 

an electron, m is its rest-mass and h is Planck's constant divided by 2n. These 

quantities are given below in standard units, along with the atomic unit of length 

ao (the Bohr radius). 

e = 1.602 x 10" 1 9C 

m = 9.110 x 10~3 1kg 

h = 1.055 x 10~34Js 

a0 = 5.292 x 1 0 " u m 

1.1.4 Collision Energy Regimes 

The outcome of an ion-atom collision is dependent on, among other things, the 

collision energy. The collision energy may be roughly divided into three regimes. 

The types of processes expected for each regime are discussed in the following 

sections. A brief description of the methods used to model the ion-atom collisions 

is also given. 

High Energy 

In this regime the projectile velocity is much larger than the orbital velocity asso­

ciated with the active electrons (vcoa » ve). It is possible to calculate excitation 

cross-sections using the first Born approximation at these energies. The calcu­

lation of charge exchange cross-sections would require at least a second order 

approximation. Charge exchange cross-sections are usually very small at these 

energies and the the use of the Born approximation would be inaccurate. 

At high collision energy various classical models may be valid. A full classical 

model assumes that both the nuclei and electron are point particles, for example 

the classical trajectory Monte Carlo method[7]. A semiclassical model assumes 



the motion of the nuclei is classical whereas the electrons are treated quantum 

mechanically. 

Relativistic effects 

The need to include relativistic effects when describing ion-atom collisions can 

come about in two ways. If the ionic charge is large then a bound electron may 

have an associated orbital velocity near to the speed of light. Also relativistic 

kinematics must be taken into account when the velocity of the incoming projectile 

approaches the speed of light. I f an electron is attached to this projectile then i t 

must also be treated relativistically. Any wave-function representing a relativistic 

electron must satisfy the Dirac equation [6]. 

Intermediate Energy 

This is where the projectile velocity is approximately the same as the orbital 

velocity associated with the active electrons (vcou ~ ve). At these energies, direct 

and rearrangement processes usually have equal importance. The semiclassical 

close-coupling method is valid across a large range of energies but is particularly 

useful in this difficult regime. The semiclassical close-coupling method was used 

for the calculations performed for this thesis; the method will be discussed fully 

in chapter 2. 

Low Energy 

In this regime the projectile velocity is much smaller than the orbital velocity 

associated with the active electrons (vcoa <C ve). A natural way to describe such a 

system is to treat it as a molecule in which the internuclear separation is varying 

very slowly. Since the changes in electronic energy during the collision are com­

parable to the nuclear kinetic energy, the nuclear motion is effected by the motion 

of the electrons. The perturbed stationary state model[38] is used. 
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1.2 Atomic Data and Fusion 

Theoretically ca lculated cross-sections are needed in various areas of physics. They 

are used both as a check on experimentally measured values and when experiment 

is not possible. Plasma physics is perhaps the most demanding area, because of 

the numerous ion-atom and electronic processes that occur in a plasma. 

Fusion plasmas consist mainly of fully ionized atoms and electrons at very 

high temperatures. Measurements cannot be performed on such plasmas using 

material probes. The edge region of a fusion plasma is cool enough for some 

electronic bound states to exist. Spectroscopic analysis of line emissions from 

transitions between such states is possible. The characteristic linewidths and 

shifts give insight into the plasma properties. The hot central region of a fusion 

plasma is not so easily diagnosed since the degree of ionization is very high. The 

continuous spectrum of bremsstrahlung radiation yields electron properties. Ionic 

behaviour is of greater interest since it is the ions that we would like to fuse. The 

location, temperature and density of fuel and impurity ionic species is desired. 

Neutral beam injection is a method used to probe the central region of a 

plasma. The beam of neutral atoms can pass into the magnetically confined 

plasma since it is undeflected by the fields. As it enters the plasma i t loses its 

electrons through ionization or charge exchange with other ions. Electrons may be 

exchanged to excited states of plasma ions in the central region. Any subsequent 

radiative decay can be measured spectroscopically. Fusion plasma diagnostics are 

covered fully in chapter 4. 

Data are needed for all relevant atomic species in the plasma to analyse these 

spectroscopic measurements. The relevant species include mainly the light el­

ements; hydrogen, deuterium, tritium, helium, beryllium, carbon, nitrogen and 

oxygen. Deuterium and tritium are the fuels, helium is the ash impurity resulting 

from the burning of the fuels and the remainder are impurities, produced by sput-
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tering or from the incompleteness of the vacuum when the chamber is pumped 

down. 

Helium is of special interest because its presence would eventually hinder fur­

ther fusion in a running reactor; helium ash needs to be exhausted. Helium is 

injected into the JET 1 device at present. This is because tri t ium is only used 

sparingly, and fusion reactions are infrequent. The H e 2 + — He collision system 

is of particular interest. Thermalized helium nuclei are in collision with the 

atoms of the neutral beam. Charge exchange leads to population of the state 

He + (n = 4), which subsequently decays radiatively to He + (n = 3) with the emis­

sion of blue visible light (468.5nm). The helium beam consists of some atoms in 

metastable states, from which electron capture into the He + (n = 4) level is al­

most resonant[12]. Accurate theoretical cross-sections are needed if the spectrum 

around 468.5nm is to be analysed correctly. 

1.3 The H e 2 + - He Collision System 

The He 2 + - He collision system has been studied a great deal as it is the obvious 

first choice of an ion-atom collision involving two electrons. Unfortunately the 

symmetry of the system leads to complications. Folkerts et a/[ll] noted that 

one electron transfer below a laboratory frame energy of about 40keV resulted in 

either the projectile or the target ending in an excited state with approximately 

the same frequency. It was also noted that below 40keV resonant two-electron 

capture into the ground state of the projectile was the most significant process. 

The system of single and double electron transfer in this system was studied 

by Gramlich et a/[23] using Gaussian orbitals at low collision energies (8-300keV). 

More recent results from Fritsch[16] show good agreement. At collision energies 

above 400keV single and double ionization processes become more significant in 
1 Joint European Torus: The European fusion device based near Abingdon, Oxfordshire 
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this system. These have been studied using the independent, event model by 

Marshall et al[37]. 

Almost all previous He 2 + — He studies assumes the helium atom to be initially 

in the ground state. Only Fritsch[16] has addressed charge transfer from the state 

He(ls2s1S). He used a model where only one electron is assumed to be active. The 

other electron is represented by modifying the target nuclear potential. Fritsch 

showed that the charge transfer cross-sections are much larger from the initially 

excited state. At a collision energy of 40keV, the transfer cross-section is 100 times 

that from the ground state and the difference increases at lower energies. Also 

the proportion of capture into the excited He + (n = 4) states is larger because of 

the similarity in initial and final binding energies. 

In this thesis a two-electron model is used to verify the one-electron calculations 

of Fritsch for the He 2 + — He(ls2s1S) collision system. I t is also desirable to study 

charge transfer from the longer lived He(ls2s3S) state, for which there are no 

previous calculations. The results are presented and discussed in chapter 5. 
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Chapter 2 

The Semiclassical Close-Coupling 
Method 

2.1 Introduction 

The to ta l wave-function of an ion-atom collision system must be known in order to 

model all electronic processes that occur. This wave-function should be known at 

all times during the collision so that the in i t ia l , final and any possible intermediate 

states are represented. The total t ime dependent wave-function can be wr i t t en as 

an expansion (2.1) of the product of carefully chosen basis functions and the so 

called time dependent occupation amplitudes[17]. 

The choice of the basis functions ipk(r,i) is both system and collision energy 

dependent. The choice of basis w i l l be discussed in section 2.5. I f more than one 

electron is involved then the total wave-function * must represent all electrons and 

be properly symmetrized. Only one-electron systems w i l l be considered at present 

in order to keep notation to a minimum. The extensions needed for two-electron 

systems are covered in section 2.3. 

Once a suitably large basis is chosen, one requires that each of the basis func-

* = Va fe(t)V>fc(f,*) (2.1) 
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tions satisfy the time dependent Schrodinger equation wi th in the basis i.e. 

d 

\ I 
H - i 

Ui 
m) = 0 

/ 
for all k (2.2) 

Substitution of (2.1) into (2.2) yields 

N N 

for all j (2.3) 
k=l k-\ 

where Ojk are the elements of the two-dimensional overlap matr ix O and Hjk are 

the elements of the coupling matr ix H . The vector a has ak as its elements. The 

methods used for the calculation of these matr ix elements are outlined in section 

2.4. 

H jk 1>i 
d 

^k 
(2.4) 

Once the matr ix elements are known i t is simply a matter of integrating the 

occupation amplitudes wi th respect to time, f rom time t = —oo to t — +oo. 

[O-'H] a 

ak(—oo) = 6ik w i t h i the ini t ia l channel 

(2.5) 

(2.6) 

This is an in i t ia l value problem for a system of coupled first-order differential 

equations. The method used for the solution of this problem w i l l be discussed in 

section 3.4 of chapter 3. 

The cross-section for a final state / is calculated by integrating the square 

of the magnitude of the associated occupation amplitude aj evaluated at t ime 

t = +oo over the impact parameter b. 

r°° 2 

a / = / 2irb | a / (+oo) | db 
Jo 

(2.7) 

I f no further approximations are made i t can be shown that both uni tar i ty (2.8) 

and detailed balance are respected (2.9)[26]. 

| < * | * > = 0 (2.8) 
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a f ( i ; + 0 0 ) = <Zi(/; + 0 0 ) (2.9) 

Tn equation (2.9). <7.<(i; +00) denotes the amplitude observed for the occupation 

of a final state / after the collision, following in i t ia l occupation of state i. 

2.1.1 Approximations 

To demand that the associated de Broglie wavelengths of the nuclei are much 

smaller than atomic dimensions requires the collision energy to be greater than 

about l e V (2.10). When this is the case, the nuclear motion during a collision 

may be considered to be classical. 

X ~ - < a 0 

P (2.10) 

-^collision ~ I g V 

Internal energy changes due to electronic excitation or rearrangement are of the 

order of a few electron volts. I f the kinetic energy of the incoming projectile 

nucleus is significantly larger than any internal energy changes, the nuclear motion 

may be considered to be uncoupled f rom the electronic motion. This is usually 

the case when the projectile energy is greater than about lOOeV. 

I f the velocity of the projectile is large enough so that its trajectory is unde-

flected by either the electrons or the target nucleus then the impact parameter 

approximation holds [40]. A t very low energies i t may be appropriate to use curved 

trajectories[14] when the internuclear potential has a significant effect on the pro­

jectile motion. 

2.1.2 Co-ordinate Systems 

In the laboratory frame of an ion-atom collision the target nucleus is at rest while 

the projectile moves along a straight line trajectory at a speed v. I t is useful to 

employ a centre of mass co-ordinate system to describe the collision; see figure 

2.1. The projectile B is at a position R(b, t) w i th respect to the target nucleus A 

11 



and the electron is at a position f w i th respect to the origin. The parameter q 

determines the position of the origin along the internuclear axis and is denned in 

equations (2.11). 

1 - 9 v 
B <> 

(l-q)R 

O qR 

• 
qv 

v\t 

Figure 2.1: Collision co-ordinate system 

In the centre of mass co-ordinates the two nuclei move parallel to the z-axis 

in opposite directions. The projectile and target velocities are given in equations 

(2.12). The impact parameter (b) lies along the x-axis and is the distance of closest 

approach, which is reached at t ime t = 0. 

= M B 

Q MA + MB (2.11) 

0 < q < 1 

V~A = ( I - q)v 
(2.12) 

V~B = -qv 

The vectors and T~B give the position of the electron relative to each centre. 

The relationships between r~A, r~B, R, f and t are given below. 

f A = f+qR (2.13) 

fh = f - ( l - q ) R (2.14) 

R = \v\tz + bb (2.15) 
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In a homonuclear system O lies at the mid-point of A B and q = \. The space-fixed 

quantization axis lies along the z-axis as in figure 2.1. The body-fixed quantization 

axis lies along the line connecting the nuclei, in the direction of A f r om B . I f 

space-fixed co-ordinates are defined as f(x,y,z) and the body-fixed co-ordinates 

are defined as r'(x',y',z') the relationships between the two frames are given in 

equations (2.16), where (5 is the angle between the space-fixed z-axis and the 

internuclear axis. 

x' = x cos (5 + z sin (3 

y' = y (2.16) 

z' — z cos (5 — x sin ft 

2.1.3 Real Spherical Harmonics 

The use of real spherical harmonics greatly simplifies much of the algebra used in 

the calculation of matr ix elements. They are defined as follows: 

Y £ m = Nm(Yem + Y;m) (2.17) 

Where Nm is a normalization factor given by 

The use of real spherical harmonics is valid because of the choice of quantization 

axis and the symmetry of the collision system. Here the spherical harmonics are in 

the body-fixed frame. The body-fixed quantization axis lies in the collision plane, 

along the internuclear axis. The collision system is symmetric under reflection 

through this plane and rotation about the internuclear axis (or equivalently the 

quantization axis). No physics is lost by projecting spherical harmonics onto the 

real axis. The imaginary part of a spherical harmonic only distinguishes the space 

at one side of the collision plane f rom the other. 
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The real spherical harmonics can be expressed in terms of normalised associ­

ated Legendre polynomials[6]. 

Y l m = - ^ A r

m ( - l ) m P , m ( c o s ^ ) cos(/n</>) (2.19) 
v27T 

Matr ix elements evaluated in the body-fixed frame may be transformed into 

space-fixed co-ordinates. The spherical harmonics are transformed using rotat ion 

matrices[39]. These rotation matrices are calculated using the identities (2.16) 

and representations of the spherical harmonics in terms of cartesian co-ordinates, 

using: 

a z 

cos 6 — -
r 

s i n 0 s i n ^ = - (2.20) 
r 
x 

sin 6 cos ( f ) = — 
r 

2.1.4 Electronic Translation Factors 

I f an electron is transferred f rom the target nucleus onto a moving projectile the 

kinetic energy and linear momentum of the electron changes. These changes must 

appear in the wave-function i f the travelling state is to be represented properly. 

In the centre of mass co-ordinate system both nuclei are in motion and therefore 

electronic states on both nuclei must include these so called translation factors[4\. 

<f>f (r, t) = xf (rX)exp j - i q v . f - i j U + ^q 

<l>j (?r> *) = Xj(rh)exp - q)v.f- % j 

2 2 
-Q V 

dt 

(2-21) 
dt' 

The vectors v, r , f~A and r~B and parameter q were defined in section 2.1.2. The 

exponential terms in equations (2.21) are the translation factors and these modi fy 

the stationary states xf{R~A) a n c l Xj ( r f i ) centred on the target and projectile 

respectively. The motion of the nuclei relative to each other has an effect on the 

electronic wave-functions, even at infinite separation. 
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As can be seen in equations (2.22) the total energy of the travelling state is a 

sum of internal energy and kinetic energy. 

The types of functions used to represent the electrons in a collision event are 

determined by what is expected to happen. 

When the nuclear motion is slow compared to the associated speed of the 

electrons, the electrons have time to sample the potentials of both nuclei before 

a significant change in nuclear separation. Here the adiabatic approximation is 

valid. A quasi-molecule is formed and the use of molecular states to represent the 

system is appropriate. The eigenfunctions are calculated w i t h the internuclear 

separation (R) fixed. R then enters the equations as a parameter. 

I f the speed of the nuclei is greater than (or comparable to) that associated 

w i t h the electrons, the electrons do not have time to adjust adiabatically to the 

nuclear motion. In this case a better representation would be to use atomic basis 

states. The work in this thesis is concerned wi th the use of atomic basis states in 

ion-atom collision calculations. 

There are various methods for representing atomic wave-functions. 

2.2.1 Slater Basis Functions 

A general Slater function is given in equation (2.23). The constant C ensures 

radial normalization (2.24) and is given in equation (2.25). The orbi ta l exponent 

(£) is positive and k is a non-negative integer. 

d 1 A i—(pf{r,t) €r + -qzvz}d>?(r,t) 

(2.22) 
I B v 

2.2 Types of Basis Functions 

S ^ r ) = C r * e - « r (2.23) 
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/>oo 

/ SK(r)S^(r)r2dr = 1 
Jo 

C (20*+1* 

(2.24) 

(2.25) 
V ( 2 ( * + l ) ) ! 

By defining the orbital exponent as in equation (2.26), where Z is the nuclear 

charge, and imposing the conditions in equations (2.27), small sets of Slater func­

tions can be used to represent the radial part of a hydrogenic wave-function ex­

actly. 

Z 

n 
(2.26) 

(2.27) 
n = 1,2,3... 

0 < k < n - 1 

Although the Slater functions are not orthogonal i t is easy to construct an or­

thogonal set. 

2.2.2 Sturmian Basis Functions 

Gallaher and Wilets used Sturmian basis functions for their calculations of proton-

hydrogen scattering[18]. The basis states they used are given in equations (2.28) 

and (2.29). 

1 . 1 
^ i v z - i{enim + ^v2)t (2.28) 

where 

1 
(2.29) 

The Sturmian functions Sni(ri) satisfy equation (2.30). In this equation the energy 

E( is a parameter and the effective charge ane is the eigenvalue. 

1 d2 , 1(1 + 1) a n l \ 
(2.30) 
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The simplest choice for the energy parameter is Ei = — ^; the ground state of 

the target hydrogen atom. The functions i p n e m ( f ) fo rm an infinite and complete 

set. Unlike hydrogenic functions there is no continuum. Sturmian functions are 

discrete. 

2.2.3 Gaussian Basis Functions 

Gaussian functions are of the form given in equation (2.31) where a is real and 

positive; £, m and n are non-negative integers and C is a normalization constant. 

I t is possible to approximate the angular and radial part of hydrogenic wave-

functions as linear combinations of these functions. 

G(a, £, m, n; r) = Caxeymzne-ar'2 (2.31) 

Gaussian functions are useful when considering multi-centre expansions. Gaussian 

functions are also useful for many-electron systems. The product of two Gaussians 

centred on different nuclei is also a Gaussian, centred at some intermediate point. 

Boys[5] showed that this fact could be used to evaluate stationary molecular in ­

tegrals analytically. I t has also been shown[10] that this method can be extended 

to two-centre integrals w i t h plane-wave translation factors. Analyt ic evaluation 

of two-centre matr ix elements is possible when the atomic orbitals are represented 

by Gaussian functions. Mult iple numerical integrals are needed when a Slater 

basis is used. The disadvantage of Gaussians is that several functions are needed 

to represent a physical atomic state. 

2.3 Two-electron Wave-functions 

2.3.1 Introduction 

The electrons in a many electron atom are indistinguishable. As fermions the 

wave-function used to represent them must be antisymmetric w i t h respect to an 

exchange of both spatial and spin co-ordinates [6]. 
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2.3.2 Diagonalizing a Two-Electron Basis 

The two-electron wave-functions (\l/j) satisfy Schrodinger's equation (2.32) where 

the Hamiltonian is given by (2.33) and E{ are the energy levels of the two-electron 

atom. 

H * i ( n , r2) = E M f u r 2 ) (2.32) 

The two-electron wave-function may be represented by a linear combination of 

properly symmetrized pairs of wave-functions (2.34). 

N 

M r i , f 2 ) = ^Cijy>jl(fl)<j>j2(f2) ± ^ ( r ^ j M ) } (2-34) 

Although this representation is not exact i t is possible to demand that the Hami l ­

tonian is diagonal wi th in the basis i.e. 

*i{f[,r-2) | H | ^ ( r ! , r * 2 ) ) = ElSlJ (2.35) 

The hydrogenic wave-function is a product of a spherical harmonic and a radial 

expansion. The radial part of equation (2.36) is a Slater type expansion. 

N 

</>i{r) = Y l m ( f l ) ]T Qjr^expi-^r) (2.36) 

Here Q is the angular part of the spherical polar co-ordinates. When the sym­

metric spatial combination is taken in equation (2.34) the antisymmetric spin 

combination must be taken for net antisymmetry; the state represented is a sin­

glet state. A n antisymmetric spatial and symmetric spin combination results in a 

triplet state. 

The pairs of symmetrized hydrogenic wave-functions are not orthonormal. A n 

orthonormal set needs to be created before the Hamiltonian can be diagonalized on 

this basis. This orthogonalization may be performed by the method of Schmidt [9]. 
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There are two pairs of symmetrized one-electron wave-functions for both bra 

and ket in equation (2.35) but only half of the four terms are distinct (by co­

ordinate label change); see below. 

i{f[)</)i2{f2) ± <Mr2)<fc 2(r!) H ^ ( ^ O ' M ^ ) ± ( P j A ^ U f l ) 
(2.37) 

2 H j j ± 2 K j j 

where 

H i j = ^ ( r D & j ^ ) H <l>ji(fi)<!>j2(fi) 

K z j = ( < M n ) < M r 2 ) H ^ ( r D ^ C r l ) 
(2.38) 

W i t h the exception of the electron-electron repulsion term (to be discussed in the 

next section), the integrations are separable i.e. 

( f ) h ( f i ) d f [ J 4>i2 {T2)<f>j2{f2)df2 

<t>h {r~2)dr~2 J <l>i2{ri)<l>j2{fl)df[ 

H y = J <M r ~i) 2 n 

• V - z 

2 V 2 

(2.39) 

+ / K ( n ) ^ 2 ( f t ) r z ; —,4>n if\)<t>ii{f2)df[dr2 

The integrals of the type (2.40) 

- V - z-
2 r r 

( f ) j ( f ) d r (2.40) 

may be further separated into radial and angular integrals using the identity 

(2.41) 
^ 2 1 d 2 d , 1 ~9 

V = (r — ) - L 2 

r r 2 dr dr r2 

where L is the angular momentum operator associated w i t h the electron at co­

ordinate f . The position vector f is best represented in spherical polar co-ordinates 

(r, 9,4>) since the angular momentum operator has the spherical harmonics as its 

eigenfunctions. 

L V < m ( M ) = ^ + i ) 5 W M ) (2.42) 
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The angular part of the separated integral can be evaluated analytically by making 

use of the orthonormality of spherical harmonics. 

/ dct> sin(e)d9{Y;mYerm,} = 5ee,8mm, ( 2 . 4 3 ) 
Jo Jo 

The Slater-type radial integrations can also be calculated analytically by succes­

sive integration by parts. 

The Electron-Electron Repulsion Term 

Although the electron-electron repulsion matr ix element cannot be separated into 

integrals over each co-ordinate i t can be evaluated analytically. The multipole 

expansion[6] is employed for potentials of this type. 

1 ° ° r L 4TT + L 

U ^ T T = E ^ T T ^ T — T £ YtM^MYLM{<h,<h) ( 2 - 4 4 ) 
I ' 1 ' 2 1 L=0r> L I J ^ L M = - L 

Here d{ and (pi are the spherical polar angles of fl; r< is the smaller and r> the 

larger of the magnitudes of the vectors f[ and r 2 . Substitution of ( 2 . 4 4 ) into 

the last term of equation ( 2 . 3 9 ) allows the angular part of the integration to 

be separated out. For each term and for each electron the angular integral is a 

product of three spherical harmonics, one f rom the bra, one f rom the ket and one 

f rom the multipole expansion. This integration may be evaluated analytically. 

J YlimlYLMYt2m2dQ. = 

' ( 2 ^ + l ) ( 2 £ 2 + l ) ' 1 

( - 1 ) M 
4TT(2L + 1 ) 

( £ 1 ^ 0 0 | L 0 ) ( ^ i £ 2 m 1 m 2 | J L M ) 

( 2 . 4 5 ) 

The latter Clebsch-Gordan coefficient in equation ( 2 . 4 5 ) is 0 unless the follow­

ing conditions apply. These conditions l imi t the multipole expansion to a f ini te 

number of terms. 

I ^ - ^ I < L < ( 2 . 4 6 ) 

M = m1+m2 ( 2 . 4 7 ) 
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The radial integration for each term in the expansion has the form given in equa­

t ion (2.48). 

A

-oo poo (. 

0 Jo A 
The inner integration is split into 2 ranges, one for the case when T\ > r 2 and one 

for T2> T\. 

poo poo (_ 

/ / ^ f i A ( n ) / 2 ( r 2 ) r ^ r i r 2

2 d r 2 (2.48) 
Jo Jo r t + i 

Jo l ^ F i o r i / l ( r i ) r i d r i + r 2 7 ^ n f i ^ r l d n j f2(r2)rjdr2 (2.49) 

When the functions are of Slater type this results in a sum over integrals of the 

type in equation (2.50). 

poo poo k 
/ / n ^ ^ e - ^ e - ^ d r i d r a (2.50) 

Jo Jo r > + 1 

These integrals may be evaluated analytically by repeated integration by parts[30]. 

A large number of basis functions may be needed to fo rm a good representation 

of a two-electron wave-function. The diagonalization problem may be simplified 

by dividing the matr ix into several smaller matrices; one for each tota l angular 

momentum. This is permitted because the angular integrals ensure that wave-

functions wi th different total angular momentum are orthogonal. 

2.3.3 Choice of One-Electron Functions for Diagonaliza­
tion 

The choice of the basis functions used to represent a two-electron system must be 

carefully considered. In the simplest approximation a two-electron system can be 

approximated by a linear combination of two hydrogenic functions. For example, 

consider the He(ls2s 1S) state; the 'inner' electron may be considered to be in 

the H e + ( l s ) state and the 'outer' electron in a H(2s) state. The 'outer' electron 

sees only one unit of charge because in this simple approximation i t is assumed 

that the inner electron screens the nucleus w i t h 100% efficiency. I t is possible 

21 



to set up models w i t h variable screening factors. In the ground state of helium, 

He( l s l s 1 S) , i t is not quite so clear what the screening effect each electron has on 

the other since they occupy almost identical quantum states (only the electron 

spins differ) . I t is possible to calculate the ground state energy for a simple t r i a l 

funct ion analytically. 

The Ground State of Helium 

Consider a two-electron t r ia l wave-function (2.51). This function represents a 

singlet state because i t is spatially symmetric. Only the radial part of the wave-

funct ion is shown; the angular part is assumed to represent an S-state. The 

parameter c ensures normalization; the variables a and b are non-zero and positive. 

$ = c2 { e - a r i e - b r 2 + e-ar2e-bri) (2.51) 

I t can be shown that to satisfy normality c 2 is given by 

2 _ , 8(a + ft)4(a2 + 2afr + & 2 )a 3 fr 3 

° ~ V a 6 + 6a 56 + 15a 46 2 + 84a 66 3 + 15a 26 4 + 6a6 5 + 6 6 { ' ' 

Substituting for c 2 into (2.51), equations; (2.39), (2.41), (2.44) and (2.49) can be 

used to calculate the energy as follows. 

(1>\H\1>) = 
ab{a5 + 6a 4ft + 33a 36 2 + 33a 26 3 + 6afr4 + b5) 

-2(a + b) + a 6 + 6 a 5 b + 1 5 g 4 & 2 + + 1 5 a 2 6 4 + 6 a 6 5 + h% 

1 a 8 + 6a 76 + 16a 6b 2 + 26a 56 3 + 158a 4ft 4 + 26a 36 5 + 16a 26 6 + 6ab7 + b8 

+ 2 a 6 + 6a5f> + 15a 46 2 + 84a 36 3 + 15a 26 4 + 6ab5 + b& 

(2.53) 

The right hand side of equation (2.53) can be minimized w i t h respect to both a 

and b giving a = 2.1832 and b = 1.1885 (or vice versa). This yields a ground state 

energy of —2.876au which is wi th in 1% of the experimental[3] value of —2.903au. 

A similar procedure can be performed for the tr iplet ground state He(ls2s 3S) 

using the following t r ia l function. 

^ = c 2 ( e - a r i e _ 6 r 2 - e - o r 2 e _ 6 r i ) (2.54) 
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This yields a minimum energy of —2.161au wi th a = 1.969 and b — 0.321. This is 

again w i th in 1% of the experimental energy of —2.175au. 

For higher lying states i t may be sufficient to assume pairs of hydrogenic 

functions of the form H e + ( l s ) paired wi th H(ni). Better representations of the 

two-electron functions are achieved when several of such t r ia l functions are diag-

onalized. as was outlined in section 2.3.2. 

The problem wi th bases consisting of hydrogenic states of this type is that the 

continuum may not be well represented. When a general set of Slater (or other 

non-hydrogenic) functions is used to define the one-electron basis used in the d i -

agonalization of the two-electron Hamiltonian, some of the resulting eigenenergies 

lie in the continuum. These discrete pseudostates lying in the continuum may be 

used to represent ionization. 

2.4 Calculation of Matrix Elements 

2.4.1 Overview 

Overlap and coupling matr ix elements (2.4) are used to integrate the t ime depen­

dent occupation amplitudes during a collision event (see section 2.1). 

N N 

fc=l k=l 

H = 

_ I v

2 - V - ^ - ^ - Z b - Z b + 1 ( 2 - 5 6 ) 

2 r i 2 r 2 n r 2 | i 2 _ r - | | j ? _ r - | \ f [ - r 2 \ 

Consider a two-electron system where both electrons may be on the target nucleus 

or one may have been transferred to the projectile. This system is represented 

by a total of iV channels, where M are direct (both on target) and N — M are 

transfer channels. The overlap and coupling matrices can now each be divided 
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into four submatrices (2.57) 

V IN S J — \ K M J 

The overlap submatrix S is the unit matr ix I because the two-electron target 

states are pre-orthonormalised (2.58). 

S J K = (0fW T) = 8JK (where j, k < M) (2.58) 

The superscript TT indicates that both electrons are attached to the target nu­

cleus. The coupling matr ix M can also be greatly simplified (2.60), where Ej is 

the eigenenergy of the two-electron state 4>JT. 

bT

k

T) (where j , k < M) (2.59) 

ZB ZQ 

H 

TT = E j 5 3 k + U ) (2.60) 
\ R - f [ \ \ R - f 2 \ 

The matr ix elements Mjk can be calculated by breaking the problem down into 

one-electron integrals and representing the potential due to the projectile on each 

electron as a multipole expansion. 

The calculation of the elements of the matrices S, N , N , M , K and K all 

involve two-centre integrals. The spatial integrals are shown below and take place 

over both electron co-ordinates. I t is assumed that these integrals take place w i t h 

the inter-nuclear vector R fixed. Here the superscript TiP2 indicates that one 

electron is on the target while the other is on the projectile. The number labels 

w i t h these superscripts distinguish the two electrons. In order to evaluate the 

integrals a change to prolate spheroidal co-ordinates is needed; see the fol lowing 
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three sections. 

N = uv\wm us*) + (d>rr\ w(u) (2.61) 

N = < ^ f t | W V 2 ) | ^ ) + ( ^ | W t ( r l ) | 0 (2.62) 

S = <^lP2| <$P2> + {4>V2\ wHfi)w{f[) \ ^ P i ) (2.63) 

6?k> + ( < P f P 2 \ W \ f 2 ) W ( f [ ) \<gf^) (2.64) 

K = {4>T\ HW(r2) | $ * > + HW(f[) \<f>m (2.65) 

K = {<t>Y>\W\f2)H \ f k

T ) + | Wl(f[)H\4>V) (2.66) 

M = {<t>Y2\H\<t>Y2) + { ^ \ W \ f 2 ) H W ( n ) \cg^) (2.67) 

where H is given in equation (2.56) and W(r) are translation factors. 

W { f [ ) = e" i ( f f- r l ) (2.68) 

W(ra) = e - i ( ^ 2 ) (2.69) 

When both electrons are on the target they are not shown to be distinguishable. I f 

all four combinations of one-electron functions used to construct the two-electron 

state were to be wri t ten out, i t could be seen that only two terms are distinct by an 

electron label change. These distinct terms are the ones shown in equations (2.61) 

through (2.67). In these equations the co-ordinates f[ and f 2 are centred on the 

target nucleus. In the current body-fixed co-ordinate system centred on the target 

a translation factor need only be applied when an electron is on the projectile 

nucleus. W ( f i t 2 ) is the part of the translation factor which is dependent on the 

electronic co-ordinates. As the remainder of the translation factor is independent 

of the electronic co-ordinates ( i t only has time dependency) i t enters after the 

integration as a phase factor (2.70). 

T i ( t ) = e ' ( - e " H « 2 ' ) (2.70) 

Here 6j is the internal energy of the one-electron wave-function. 
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2.4.2 Charge Exchange Matrix Elements 

In a two-electron system w i t h one electron on each nucleus the total wave-function 

representing the system is made up f rom a linear combination of one-electron wave-

functions on each centre w i t h the appropriate translation factors. I t w i l l become 

apparent that the use of prolate spheroidal co-ordinates simplifies the mathematics 

of charge exchange integrals; these w i l l be introduced in the following section. 

The evaluation of the integrals needed for one-electron charge exchange matr ix 

elements w i l l follow. I t w i l l be shown that these integrals carry over directly 

for two-electron calculations w i t h only a small increase in complexity. The two-

electron repulsion integral w i l l then be evaluated. 

2.4.3 Prolate Spheroidal Co-ordinates 

Prolate Spheroidal Co-ordinates (also called confocal elliptic co-ordinates) are a 

natural choice when calculating two-centre matr ix elements. Figure 2.2 and equa­

tions (2.71) describe the co-ordinate system. The ranges for the co-ordinates are 

given in equations (2.72). 

'B i A 

B A x R R o 

y 

Figure 2.2: Prolate Spheroidal Co-ordinates 
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£ = I (?A + r B ) 

V = ^ (r.4 - r B ) (2.71) 

</> = t a n - 1 ^—^ 

The surface of constant £ is an ellipsoid wi th foci at points A and B and axis of 

revolution along the line A B . The surfaces of constant 77 are hyperboloids w i t h 

the same foci and revolution axis. 

1 < f < 0 0 

- 1 < V < + 1 (2-72) 

0 < 0 < 2ir 

The body-fixed cartesian co-ordinates (where z lies along the line A B ) are given 

by equations (2.73). The volume element in prolate spheroidal co-ordinates can 

be derived f rom these and is given in equation (2.74). 

^ = f [ ( e 2 - i ) ( i - ^ ? 2 ) ] * c o s ( ^ ) 

y = f [ ( £ 2 - l ) ( l - i 7 2 ) ] * s i n ( * ) (2-73) 

z = g ^ 

dr=^(e-r]

2)dtdrld4> (2.74) 

2.4.4 One-Electron Exchange 

McCarroll[36] considered the simple system involving only one electron and two 

protons and the following charge transfer reaction. 

H+ + H( l s ) — > H( l s ) + H + (2.75) 

Recalling f rom figure 2.1 the vector v lies along the space fixed z-axis where z 

is a cartesian co-ordinate for the electron. For the proton-hydrogen system the 
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wave-function for the electron on each centre is given respectively. 

1 1 
= <j>Ar~A) exv( — -ivz iv2t — ierf) 

2 8 
$f = <f>j{r~B) exp(-ivz - -iv2t - ie3t) 

(2.76) 

(2.77) 

The velocities of the nuclei are equal and opposite when measured f rom the centre 

of mass. The functions 0j(r^) and ^ (rg) are the stationary eigenfunctions on each 

isolated centre which satisfy. 

ZA 

2 r A 

J-vi. 
2 r B r B 

Mr A) = 0 

<f>j(.rh) = 0 

(2.78) 

(2.79) 

A t f inite separation the electron is in the field of two nuclei and its wave-function 

\I> must satisfy the time dependent Schrodinger equation (2.80). 

2 r R r A 

ZB . d 
r B dt 

* = 0 (2.80) 

Here centre of mass co-ordinates are used and V- is taken wi th R, or equivalently 

time, fixed. Also the time derivative is taken w i t h the electronic co-ordinate f 

fixed. A t this stage the total derivative w i t h respect to t ime is taken, this can be 

separated into the explicit derivative and a convective term (2.81). 

dt 
d_ 
dt 

(2.81) 

Using the vector identities (2.82) and (2.83) i t is possible to rewrite yielding 

(2.84) and (2.85). 

- 1 * 
r A = r + -R 

r B 
f - -R 

2 

(2.82) 

(2.83) 

V 5 
(2.84) 

(2.85) 
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A t r ia l wave-function representing the electron in the field of two colliding nuclei 

can be wri t ten as a linear combination of the stationary states w i t h appropriate 

translation factors and occupation amplitudes (2.86). 

(2.86) 

$ = al(t)c()l(r~A) exp (^-^ivz - ^iv2t - ted 

+ bj(t)(f>j(r~B) exp (^2^vz ~ g ^ 2 ^ ~ ^ j ^ j 

Substitution of the above into the terms of the time dependent Schrodinger equa­

t ion yields. 

di 
* a,i{t)(j)i(fA) + ^di(t)v- V ^ | - ^ ( r l ) + a ^ t ) ^ ^ ) 

-iv — ê}• 
, 1 1 2 

exp — i v z iv t — ted 
H 1 2 8 (2.87) 

+i< b j i t ^ j i f h ) - -bj(t)v- V r - | ^ { f h ) + bj(t)<l>j(fB) 

L 2 • 
— -IV — ICi exp ( -ivz — -iv t, — iejt 

ZJ O 

=(n(t) I Vr? r <f>i{fA) - iv - V r i \A</>i{fA) - ^ i ( r l ) u 2 | 

/ 1 1 . 2 . \ 
• exp — i v z — -iv t — ltd I 

V 2 8 / (2.88) 

• exp ^ 2 * V 2 ; — g^ u * — *e-?̂  

When the above terms are substituted into equation (2.80) after some arrangement 

and cancellation this yields 

0 =iai(t)4>i{r^) exp \—\ivz — \iv2t — ied 
\ 2 8 

+ibj(t)(f)j(rB) exp (-ivz iv2t — iejt 
\2 8 

H — - a i ( t ) 4 > i ( r ' A ) e x p I --ivz - -iv2t - ied 
rA \ 2 o 

(2.89) 

Z (1 1 
+^TbAt)<t>Ar~B) exp I-ivz - - J 
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Projecting out the complex conjugate of the two states $ f and $f (given in 

equations (2.76) and (2.77)) yields respectively. 

iai(t) + ibj{t)StJ exp [-i(a - £j)t] = a 2 ( t ) C h + bj(t)DtJ exp - ej)t] (2.90) 

iai(t)Sji + ibj(t) exp [-i(el - e^t] = a^Dji + bj{t)Cjj exp [-z(ej - t3)t] (2.91) 

where 

Si3- = j ^ ( ^ ) ^ ( ' - B ) e x p ^ 2 ] d r (2.92) 

5 j 2 = J c/)*(r~B)(()l(fA)exp[-ivz}dT (2.93) 

Cn = / 4>*(r-A)—MrA)dr (2.94) 

Cn = f <t>){r-h)^Hr~i)dr (2.95) 
J 'A 

D i j = / 4>*{ry)—<f)j{fh)^?[ivz]dr (2.96) 

% = f ^(r-B)—HrA)exp[-ivz}dr (2.97) 

Equations (2.90) and (2.91) are coupled first order differential equations for the 

occupation amplitudes. These occupation amplitudes can be integrated along a 

trajectory provided the matr ix elements (2.92-2.97) are known. 

2.4.5 Two-Electron Exchange Matrix Elements 

Since two-electron states are made up f rom linear combinations of one-electron 

states no further integrals are needed to evaluate similar two-electron matr ix ele­

ments. The only complication arising f rom the extension to a two-electron system 

comes f rom the electron-electron repulsion term in the collision Hamiltonian. The 

evaluation of two-electron exchange matr ix elements of the electron-electron re­

pulsion term is covered in the following section. 
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2.4.6 Electron-Electron Repulsion Exchange Integrals 

Consider the general exchange integral (2.98) where f\ and 7*2 represent the co­

ordinates of the two electrons[45]. 

r r e±iv-f[ e±iv-f$ 
Iiji'f = / Mri)-ipi'(r2)—rzi =ri—V'j^DV'i' ( ^ " 2 ) ^ 1 ^ 2 (2.98) 

J J \rl ~ 12\ 

Here the functions ip are considered to be one term in the Slater expansion of a 

one-electron wave-function centred on either nucleus. The tota l matr ix element 

w i l l be given as a sum of such integrals over each term in the Slater expansions. 

I f one or both electrons are not exchanged between the two nuclei then one or 

both exponential terms in (2.98) w i l l be absent and the mathematics is greatly 

simplified. The form of ip is as follows (when centred on nucleus A for example). 

V = Ntmrn

Ae-XrAPF (cos 0A) c o s ( m ^ ) (2.99) 

Here Nem is a normalization constant and P™ is a normalized associated Legendre 

polynomial. Considering one of the electrons the total charge distr ibution can be 

wr i t ten in prolate spheroidal co-ordinates. 

SUi(f[) = Xi(Z, v ) X j f o V) cos(m^) c o s K - ^ e ^ 1 (2.100) 

I t is possible to expand in terms of spherical harmonics. 

1 0 0 L 

% { f [ ) = Tr—i £ £ V l 3

M ± m - l ) M P ^ { r i ) cos(M^) (2.101) 
^ ^ L=0 M = 0 

I t is possible to calculate the expansion coefficients X > ^ M ± ( £ ) as follows. Consider 

the following identity. 

/ cos(M^) cos(M'<f>)d<f> = TT(1 + 6Mfi)SMiM> (2.102) 
Jo 

Mul t ip ly ing by cos(M'0), integrating over (f> and using the identity (2.102) yields 
r>27r 

% ( n ) c o s ( M » # = 

1 0 0 (2.103) 

—2 E^M , ±(o(-i)M>r fawi+^,0) 

/ 
Jo 

S ' L=0 
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From equation (2.100) 

p2it 

I fii,-(n)cos(MW<£ = 
7 0 " '2, (2-104) 

Xi(€,v)Xj(S,il) / c o s ( m ^ ) c o s ( m j 0 ) c o s ( M » e ± i i T - r l o ; 0 
Jo 

By resolving v into directions parallel and perpendicular to the internuclear axis 

and invoking the identities (2.73), v • f[ can be rewritten as 

v • f[ = rj) cos 6 — (3£rj (2.105) 

where 

<*&v) = y [(e - - V2)]1" (2.106) 

(3 = l-v2t (2.107) 

Now equation (2.104) becomes 

/>2TT 

/ % ( r ! ) c o s ( M » d 0 = Xi(Z, v)Xj(S, r ? ) e ^ l J ( M ' , m t , m 3 ) (2.108) 
Jo 

where 

/ • 2 7 T 

Xf(M\ml,mj)= / c o s ( M » c o s ( m i 0 ) c o s ( m J 0 ) e ± i Q ( ^ ) c o s W # (2.109) 
Jo 

Substituting this result into equation (2.103) yields 

0 0 

E ^ ^ l - l ) ^ ^ ' foMl + *M',0) = 

L = O (2.110) 

Mul t ip ly ing by Py'[rj], integrating over 77, invoking the associated Legendre or­

thogonality identity (2.112) and rearranging yields 

L M ± ( - 1 ) " ( 2 L + 1) (L + M ) ! 

« ( U ; ' ( 1 + ^ ) v - w ( 2 1 1 1 ) 
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+ 1 2 (V + M)\ 
(2.112) 

2(-l) M ( L - M)\ 

(2.113) | n - r2\ R S ( 2 L + 1 } £ (1 + 6 M f i ) [(L + M)\ 

• P?{U)Q?(t>)Pl?(m)Pl?to) cos {M(fa - h)} 

Here £< is the smaller and £> the larger of the co-ordinates £i and £ 2 . Qff *s 

the associated Legendre polynomial of the second k i n d [ l ] . Substituting equations 

(2.74), (2.101) and (2.113) into (2.98) results in 

Li=0 Mi 
oo L 2_ 2(2L + 1 ) ( - 1 ) M UL-M)\ 

1+SM.O [{L + M)l 
L=0 M=0 

•>M/e \ n M / 

1 + ^M,0 

Pf(U)QT (C>)P L

M (r ; i ) J Pf(77 2 )cos(M(0 1 - </>2)) 

L 2 = 0 M 2=0 

i?3 

(2.114) 

(3 - ^) 
i?3 

P ^ 2 ( r / 2 ) c o s ( M 2 0 2 ) 

• y (£i - »?2) rfCi dVi d(j)i y (£ 2 - 7 / | ) d& dr)2 dfo 

The integrals over the co-ordinates </>i and 0 2 are easiest to evaluate and are 

carried out first. 
f 2 7 r i>2n 

l / c o s ( M i ^ i ) cos(M(</»i - (f)2)) c o s ( M 2 0 2 ) # i # 2 = 
Jo ^0 

7T 2 (1 + 5 M , O ) 2 ^ M , M 1 ^ M , M 2 

The integrals over rji and ?72 can also be evaluated analytically 

(2.115) 

" 2 (L + M ) ! 
2L + 1 (L - M ) ! 

Substitution of (2.115) and (2.116) into (2.114) yields 

(2.116) 

liji'j' — 
i , 2 R " ^ A (\ + SM,«)(-l)M 

E E 4 ^ ^ (2L + 1) 
L=0 M=0 v ' 

^-M ±(6)^ ±(e 2) Jp L

M(e<)Qr(e>) #1 

(2.117) 
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Substituting the identity (2.118) 

gives 

r°° 1 1 

0 ¥ ( f ) = p M ( f ) l (0 11»\ 

T T 2 ^ ^ " ( l + 5 M i 0 ) ( - l ) ^ 
7 W - 4 E E (2L + 1) 

L = O M = 0 V ' noo 

»r ± t t . ) i '^ ± (&)p l

M (e<) / ' i

M ( f>) ( 2 - 1 1 9 > 

f " dx d£i d^2 

U> ( x 2 - l ) [ ( P f ( x ) ] 2 

One of the outer integrals needs to be split into two ranges, one where £i > £ 2 

and one where ^ < £ 2-

hvy - —r- E E 4 (2L + 1) 
L=0M=Q v 7 

{ / • O O / * ? 2 

/ r n 4 f r i W 2 (2-12°) 

noo 

^ ( 6 ) ^ / ^ 6 ) ^ ( 6 ) ^ ( 6 ) 

/* ' 

r>00 /"OO 

+ ' 

r>00 

( x 2 - l ) [ ( P f ( x ) ] 2 

Moving the x integration to be the outer integral in a two stage process 

-ft / •OO / " ? 2 roc poo poo poo 

/ ê2 / d^ dx+ d& / ^ 6 / <te 
poo poo p£2 poo poo px 

= d& dx / d^+ d& dx rift 
J\ Je2 J\ Ji Ji2 H2 (2 121) 

pOO pX p^2 pOO pX pX 

= / dx <%2 dti + / dx / d& / d^ 
Ji Ji Ji J\ Ji J& 

/

OO pX pX 

dx J d& J d 6 
results in a recombining of the two terms into one which is symmetric w i t h respect 
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to the interchange of £ 1 and £ 2: 

_ ^ 5 " (i + 5 
Mji'j' — 4 2^ 2=^ ~ 

Mfi )(-l .M roc 

L-0 M=0 
/ o r i i \ I T, . _9 i U n M / . . \ l 5 

(2.122) 

Equation (2.111) shows that the coefficients are known and involve an 

integral over both r j and ( p . The (p integral (2.109) may be evaluated analytically. 

T%{M',mi,mj)= / c o s ( M » cos(m^) cos(mj<j>)e±iacOB't'd<f> (2.123) 
Jo 

Using the cosine rule this integral may be separated. 

1, ( M ' , m i , m j ) = - „±za cos 
/>/7T 

/ cos {(M'+ nii + m,j)(f)} e 
Jo 

+ / cos{{M'+ mi-mj)(j)}e±iacos4'd(i) 
Jo 

+ / 
(2.124) 

cos {(M' — m,; + rrij)(f)} e ±ia cos 4> 64 

+ / c o s { ( M ' - m i - m J > } e ± f Q C O S ^ 
Jo 

These integrals are of a standard form[22] given as follows 
/•27T 

7o ' 
cos(n</>)e i a ; c o s <^ = 2mnJn{x) (2.125) 

where Jn(a;) is a Bessel function. The evaluation of this electron-electron repulsion 

exchange matrix element involves a triple numerical integral; the evaluation of this 

integral will be discussed in section 3.2 of chapter 3. 

The other two-electron matrix elements are much simpler because they do not 

involve the term which gives rise to the Neumann expansion. 

2.5 Choosing an atomic basis set 

For the semiclassical close-coupling method to work the correct choice of ba­

sis functions must be made. Calculation of matrix elements is time consuming, 

therefore considering which matrix elements are not needed takes first priority. 
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Transfer Channe l s I f the collision energy is high or the target charge is signifi­

cantly greater than that on the projectile, charge exchange channels may be 

negligible. I f this is the case i t may be possible to perform excitation and 

ionization calculations by only including states bound to, or in the contin­

uum of, the target. 

Ionizat ion Channe l s I t may be possible to neglect states which represent the 

continuum in low energy collisions. Ionization channels are insignificant 

compared to excitation and transfer at these energies. 

I f two (or more) electrons are present they must in general be considered to 

all be active and be indistinguishable. I t may be possible to treat such a system 

as having only one active electron. The other inner electrons are accounted for by 

using modified nuclear potentials. 

I n the close-coupling method a collision system is described at all times by a 

linear combination of all chosen basis states. A basis must be sufficiently large 

and diverse in nature to represent all physical possibilities before, during and after 

a collision event. 

The state of the system both before and after the collision is the easiest to 

picture. A t these times the nuclei are far apart and electrons are bound to one 

or the other nucleus or have been ionized. During a collision, when electrons are 

in the field of both nuclei, the state of the system is not so clear cut. A linear 

combination of f inal states may not be adequate to describe intermediate states; 

other states are needed. Basis functions used to describe the mid-collision include 

the so called united atom states: These are bound states to a hypothetical nucleus 

which is situated at the mid-point of the two real nuclei and has a charge equal to 

the sum of the two. The population of such a state after the collision represents 

ionization. 
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In a two-electron system i t is necessary to consider in i t i a l and excited states of 

the two-electron target atom. One must also consider the possibility of ionization 

and both one and two-electron charge-transfer to the projectile. The calculations 

performed for this thesis use a two-electron basis which includes two-electron 

target bound states, two-electron pseudostates in the continuum of the target and 

one-electron transfer states but excludes two-electron transfer. The adequacy of 

this basis w i l l be discussed in chapters 5 and 6. 
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Chapter 3 

Computational Method 

3.1 Parallelization 

3.1.1 Introduction 

A parallel computer program makes use of many processors simultaneously. I n an 

ideal world a parallel program making use of n processors w i l l run n-times faster 

than a program which makes use of only one processor. In general this is not the 

case for many reasons. 

1. Overheads Communication between processors takes a finite amount of 

t ime. The more frequent and complex a communication is the larger this 

overhead becomes. The speed and size of the network l inking the processors 

is also a factor to be considered. 

2. M e m o r y In shared memory devices a processor may have to wait for mem­

ory, used by another processor, to be made free. This constraint is in addi­

t ion to the usual memory limitations. 

3. D i s k Usage I f processors also share hard disk space then only one may 

write to i t or read f rom i t at a given time. 

4. Organizat ion I f the way a piece of code is parallelized is not well balanced; 

one or more processors may at times be idle, wait ing for the results of another 
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busy processor. 

Some compilers allow for non-standard extensions to Fortran 77 for paral-

lelization on specific architectures (e.g. Silicon Graphics). There are also various 

sets of l ibrary routines accessible f rom Fortran which can make use of a general 

cluster of processors, these include M P I (Message Passing Interface) and P V M 

(Parallel V i r t u a l Machine). These routines allow for communication between ex-

ecutables across an arbitrari ly large network of processors running the associated 

software. Al though this message passing protocol is not true fine-grained paral­

lelism the system works well when communication between processes is small and 

infrequent. 

Although M P I is likely to become the standard[51], the cluster of RS6000 

machines in Durham run P V M . A brief description of the capabilities of P V M 

are outlined in section 3.1.3. The following section covers some general parallel 

concepts. 

3.1.2 General Parallel Concepts 

The concepts to be discussed in this section are applicable to any parallel computer 

system. There are different ways a computational problem can be divided across 

multiple processors, the methods are classified as follows. 

Algor i thmic Dis tr ibut ion 

The Algori thmic Distr ibut ion is often also known as the Pipeline Dis t r ibut ion. 

The processors are aligned in a linear fashion and work in a similar way to a 

factory production line. This method is suitable when many different operations 

need to be performed sequentially on each element of a large set of data. The 

data moves down a 'pipeline' and is operated on in turn by different processors. 

This method has several disadvantages. When the pipeline starts up, processors 

towards the end of the pipeline are idle, wait ing for data to arrive. Likewise at the 

39 



end of the data stream, processors at the beginning have finished whereas those 

at the end are s t i l l busy. The system is only running at maximum efficiency when 

the pipeline is f u l l . The pipeline operates at the speed of the slowest process. 

A queue of data can form before the slow processor and idle processors after, 

leading to a bottleneck. Communication is continuous as each data i tem is passed 

f rom processor to processor. The pipeline distribution is useful conceptually but 

not practically. I f available i t is usually better to use an alternative method of 

parallelization. 

F a r m i n g Dis tr ibut ion 

A master process distributes data to a number of identical slave processes when 

the farming distribution method is used. The slaves run independently without 

further communication unt i l they return the finished data to a 'harvester' (or 

back to the master). This method is best implemented when a problem involves 

many similar computations which differ only by the change of a small number of 

parameters. The farming distr ibution has the advantage that i t is automatically 

'load balanced' i.e. i f one processor runs slower than the others i t w i l l not hold 

up faster processors, i t w i l l simply do less work than the others. This is only the 

case because the slave processes are not dependent on each other. 

Geometr i c D i s tr ibut ion 

The geometric distr ibution lies somewhere between the algorithmic and farming 

distributions. Processors work on different areas of a problem needing occasional 

communication wi th each other, this is akin to the way a team of humans work 

together. Careful synchronization is important for this method to be efficient. 
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3.1.3 Parallel Virtual Machine 

Parallel V i r t ua l Machine[25] (PVM) is a piece of software that allows a network of 

U N I X computers to operate as a single parallel computer (the v i r tua l machine). A 

v i r tua l machine may consist of many computers which are not necessarily on the 

same local network or of the same architecture. The user can start an application 

on any of the computers running the P V M daemon 1. A n application can, via. 

subroutine calls, spawn processes on other computers, communicate w i t h them, 

shut processes down, get the current v i r tua l machine status and also add new 

computers to the v i r tua l machine. The l ibrary of routines to do this is available 

for use w i t h both C and F O R T R A N . 

Each process running on the v i r tua l machine has a unique integer task identifier 

( T I D ) supplied by the daemon. The methods of communication are very versatile. 

Each message has a tag defined in the sending routine. Messages can be sent to 

a specific T I D or broadcast to all processes on the machine. The sending process 

takes 3 stages. A buffer is opened, into which all the data to be sent is packed, 

then the data is sent. A similar 'unpacking' stage occurs on reception of a message. 

A message can be received f rom a specific T I D , f rom any T I D , w i t h a specific tag, 

w i t h any tag, or any combination of these options. Message reception can be either 

blocking or non-blocking. A blocking receive command w i l l halt execution un t i l 

i t receives its message, a non-blocking receive command w i l l look for a message 

but i f i t is not there execution w i l l continue. Sychronization considerations are 

needed for both types of receive methods to prevent idle processors and missed 

messages. 

1 Disk And Execution MONitor: a piece of software that runs continuously and handles 
system communications. 
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3.1.4 Close-Coupling Code Parallelization 

The existing code for the calculation of charge exchange cross-sections has been 

adapted so that i t can be run in parallel. The parallel implementation was for the 

cluster of 18 x I B M RS6000 machines at Durham, running P V M . 

The calculation of matr ix elements is the most time consuming part of a cross-

section calculation. Mat r ix elements need to be calculated at different positions 

on a trajectory (z), for many impact parameters (b) and at different collision en­

ergies (E). Since the method of calculation of the matr ix elements is independent 

of b, z and E, the farming distr ibution (page 40) was chosen as the parallelization 

method. I t was possible to run calculations involving different impact parame­

ters and collision energies concurrently. This type of parallelization satisfies the 

requirements for the farming distribution; the processes run independently and 

there is l i t t l e communication. 

Interface routines were wri t ten between the existing code and the P V M library 

routines. I f the P V M library routines change or a new type of message passing 

software is to be installed, M P I for example, then only the interface routines need 

to be changed. 

The implementation was as follows: 

• A master program reads a subset of the input data; which impact parameters 

and energies are to be calculated. 

• I t then detects how many of the IBM's are currently available in the v i r tua l 

machine and starts slave processes on each of the computers. 

• When a slave starts up i t receives its identifier f rom the master and sends a 

request for work. 

• In response to each slave's request for work the master distributes values for 

the impact parameter and collision energy. 
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• Upon completion of the calculation the slaves request more work. 

• When the master has no more work to distribute, slaves requesting work are 

told to self-terminate. When all slaves have finished the master exits. 

The considerations and observations regarding the parallel implementation are 

outlined below: 

• Af te r a slave receives its task i t must read all the input data for the basis 

functions, integration points etc. A t the start all slaves would be t ry ing to do 

this at approximately the same time, causing a queue of processes wait ing 

for time to access the disk. I t was decided that this method, although 

slightly inefficient, was superior to the alternative which was to have the 

master process read all of the data and then broadcast i t to the slaves. The 

speed for each slave to read such a large amount of data f rom disk was much 

quicker than to pass i t across the network wi th P V M . 

• The matr ix elements were wri t ten to very large files. These files had to be 

wr i t ten to a disk local to the slave process to avoid excessive network usage. 

The local disks on the IBM's are relatively small and so these files had to 

be removed after each calculation. I f the matr ix elements were needed to be 

retained they were copied to a larger disk. 

• Some of the matr ix elements were independent of energy, these mat r ix ele­

ments were not deleted. The master process would distribute, where possible, 

the same impact parameters that a slave had already worked on so these 

matr ix elements need not be re-calculated. 

© I f a machine was being used by another user i t would run slower than the 

slaves w i t h sole use of a machine. The farming distr ibution copes w i t h this 

problem well. The slow process simply makes fewer requests for work, the 
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extra work being distributed evenly between faster processes, the machine 

as a whole being well balanced. 

3.2 Numerical Evaluation of Exchange Integrals 

The exchange integrals discussed in section 2.4.2 of chapter 2 cannot be evaluated 

analytically. Multi-dimensional numerical integrals need to be evaluated. The 

evaluation of the integrand is time consuming as i t is over multiple sums of terms. 

The type of integral being considered is typically of the form 

/

oo /*? r+l 

d£ J d y dr) {f(£,y,ri)} (3.1) 

The outermost integral can be diff icult to perform because of the infinite upper 

l imi t ; d i f f icul t to represent on a computer. I t is fortunate that the integrand 

decays exponentially wi th respect to f and the outer integral may be transformed 

to the following form [36]. 

/>oo 

/ g(x)e-x 

Jo 
dx (3.2) 

This integral may be evaluated efficiently using Gauss-Laguerre quadrature, by 

approximating i t to a sum[l] 

n 

I = ^ 2 UkQiXk) + Rn (3-3) 

k=l 

where Xk are the zeros of the n t h order Laguerre polynomial Ln(x) and the weights 

u>k are given by 

(n\)2xk 

(n + l)*[Ln+1(xk)Y <* = . . , , 2 (3-4) 

The remainder Rn is given by 

Rn={^L„^\x') where (0 < x' < oo) (3.5) 
(2n)! 
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The approximation of this integral to a finite sum is a very good one. The re­

mainder term rapidly becomes very small, even wi th highly oscillatory functions. 

The integration over the y co-ordinate is needed for each evaluation of the 

integrand g(x). The integrand for the outer integral is evaluated at ever increasing 

points, therefore the upper l imi t of the y integration is increasing. I t is possible 

to save the last integral and only perform the new one over the additional range 

using the identity. 

/ dy= dy + 
Ji Ji Jt.i-i 

dy (3.6) 

The new integration over the range [£ j - i ,£ j ] in equation (3.6) can be transformed 

onto the range [—1,-1-1] and then integrated using Gauss-Legendre quadrature 

(3.7). 

I h(x)dx = ^2ukh(xk) + Rn (3.7) 
J ~ l k=i 

Here xk is the fc'th zero of the n ' th order Legendre polynomial Pn(x). The weights 

uk are given by 

2 
u)k = o (3-8) 

(l-xk)*[P*n(xk)]2 

and the remainder 

^ "LI—M2n\x') where (-1 < x'<+1) (3.9) 
(2n + l ) [ ( 2 n ) ! ] 3 K ' 

The J] integration is over the range [—1, +1] and therefore is also performed using 

Gauss-Legendre quadrature. 

3.3 Matrix Element Interpolation 

The calculation of matr ix elements is the most time consuming part of the close-

coupling calculations performed for this thesis. When the matr ix elements are 

45 



integrated to calculate the occupation amplitudes the integrator needs the value 

of the matr ix elements at many points along the trajectory. A n obvious t ime 

saving method is to use interpolation of the matr ix elements. 

The matr ix elements are calculated at a number of pre-determined points and 

stored in files. When the integrator needs the value of a matr ix element at an 

intermediate point i t interpolates f rom nearby points. 

When selecting a method of interpolation i t is important to consider both 

speed and reliability. Reliable piecewise interpolations such as cubic splines are 

time consuming as matr ix inversions are needed. Polynomial interpolation can be 

unpredictable i f inappropriate points are chosen, leading to large oscillations at 

high orders. 

The method of interpolation used in the code is Chebyshev interpolation. 

3.3.1 Chebyshev Interpolation 

Chebyshev is a polynomial method of interpolation where the absolute deviation 

f rom the expected function is minimized[24]. Using a single polynomial to f i t 

the matr ix element for an entire trajectory would not work well, the trajectory 

is divided up into user-defined ranges. A n appropriate number of points are 

selected w i th in each range for the required order of Chebyshev interpolation. A 

physical requirement is that the matr ix elements and their first derivative are 

continuous w i t h respect to time. Overlapping the ranges by one point ensured 

matr ix element continuity since an interpolated function always passes through the 

fixed points. The first derivative of the matr ix elements may not be continuous at 

these endpoints but by careful choice of the ranges this discontinuity is minimized. 

The n + 1 points at which the matr ix elements are evaluated wi th in a given 

range [a, b] are scaled f rom the n + 1 points on the range [—1, +1] , given by (3.10) 

Xk — cos 
kit 
n 

(3.10) 
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where k = 0...n. From the evaluations, n + 1 coefficients are used to evaluate the 

interpolation function. These coefficients are 

2 n 

a j = -^2y{xk)cos 

and the interpolated function is given by 
n 

J2akTk(x) (3.12) 

where 

Tk{x) = cos(n arccos(x)) (3.13) 

are the Chebyshev polynomials, which may be evaluated using the following re­

currence relations. 

T0(x) = 1 

Tl(x) = x (3.14) 

Tk{x) = 2xTk_l(x) - T k . 2 ( x ) for k > 2 

3.4 Propagation of Occupation Amplitudes 
The system of coupled first order differential equations (3.15) fo rm an in i t ia l value 

problem. The occupation amplitudes can be propagated to t = +oo. 

ik = [ 0 _ 1 H ] a 
(3.15) 

ak(-oo) = 5ik 

Here [ 0 - 1 H ] is a known matr ix and i is the in i t i a l channel. Inf in i ty can be fixed 

at some large number beyond which the occupation amplitudes are assumed to 

be constant. I f there are n channels in total , the problem becomes a system of 

2n real first order coupled differential equations, since the occupation amplitudes 

are in general complex. 

Shampine and Gordon's code ' D E ' was used to solve this system[44]. This 

code uses a modified Adams Predictor-Corrector method. 
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A useful check of the progress of the integration is to check the sum of the 

occupation amplitudes (3.16). I f this deviates too far f rom unity, then a so-called 

uni tar i ty error has occured. A typical final uni tar i ty value is 1.001 ± i x 10~ 1 8 . 

n 

U = ^ 2 a l ( 3 - 1 6 ) 

During the early stages of the calculations many unacceptable uni tar i ty errors 

occured. A t one time i t was thought that the integrator was not able to cope w i t h 

the large number of potentially st iff differential equations. Another integrator, 

GEAR[31], was substituted for a time. The cause of the unitar i ty problem was 

discovered elsewhere in the code. D E and G E A R subsequently both work well 

w i th uni tar i ty errors well under 1%. These small deviations are thought to be a 

result of inaccuracies introduced by interpolation, not as a result of integration 

errors. 

3.5 The Integration of Final Occupation Ampli­
tudes 

The integration of the magnitudes of the final occupation amplitudes over impact 

parameter yields the tota l cross-section for the associated channel (equation 2.7). 

Since the impact parameters are chosen by the user they are in general unequally 

spaced. G i l l and Miller developed a useful algorithm for the integration of such 

points. 

3.5.1 The Gill-Miller Algorithm 

When integrating under a curve which is derived f rom a discrete number of points 

an interpolation method must be used. The trapezium rule is derived f rom linear 

interpolation. The Gi l l -Mil ler algorithm[21] derives itself f rom a cubic interpo­

lation. The interpolation function between two points is a cubic which passes 
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through the nearest four points. This function is evaluated efficiently using d i ­

vided differences, and can be integrated analytically over the range. 

The only restriction of this method is that the points must be chosen in such a 

way that the interpolating function is well behaved. A rough-and-ready test that 

nothing is amiss is that the condition (3.17) is obeyed at all intermediate points 

for each channel i. 

0 < la,! 2 < 1 (3.17) 
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Chapter 4 

Charge Transfer as a Fusion 
Diagnostic 

4.1 Introduction 

4.1.1 Thermonuclear Fusion 

The equivalence between mass and energy (4.1) is exploited in fission reactors. 

When heavy nuclei split into or more smaller nuclei the mass of the products is 

less than the in i t ia l mass. This mass defect has been converted into energy. 

E = mc2 (4.1) 

Safety concerns and the production of highly radioactive waste make fission reac­

tors an unpopular source of energy. The burning of fossil fuels contributes to the 

greenhouse effect and these fuels cannot meet the world's increasing demand for 

energy beyond the short term. 

In proposed fusion reactors small nuclei combine to fo rm a larger one, again 

w i t h the release of energy. As a source of energy, fusion is vi r tual ly unl imited 

because of the abundance of fuel. 

A l l energy reaching the earth f rom the sun is a product of fusion reactions 

wi th in the Sun's core. The main energy producing reactions are those in the 
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proton-proton chain [46]. 

^ J - ' H ». 2 n j _ 0 5 _ L 0 „ 

2 D + | H _ > 3 H e + 0 7 ( 4 2 ) 

^He + ^He —> 4 He + } H + j H 

These reactions (4.2) occur w i th the release of approximately 27.9MeV per 4 He 

nucleus produced. 

The quest for terrestrial fusion reactions has presented the following main 

candidates[35]. 

D + T — > 4 He + n + 17.6MeV (4.3) 

D + D — > T + p + 4.0MeV (4.4) 

—•> 3 He + n + 3.3MeV (4.5) 

D + 3 He — > 4 He + p + 18.3MeV (4.6) 

Deuterium is a naturally occuring isotope of hydrogen and can be extracted f rom 

water. T r i t i u m does not occur naturally but can be bred easily f rom natural and 

abundant l i t h ium. 

Both the D-D and D - T reactions produce neutrons. Conservation of momen­

t u m dictates that the neutron (as the lighter product) w i l l carry away most of the 

kinetic energy. The neutrality of neutrons means that they cannot be magneti­

cally confined and w i l l therefore escape and interact w i th any surrounding vessels. 

This unfortunately leads to radiation damage and activation of materials near to 

the reactor. I t is possible to make use of the neutrons by using them to breed more 

fuel. I f the immediate surrounds of the vessel are lined w i t h a l i t h ium blanket 

the reactions (4.7) and (4.8) wi l l produce more t r i t i u m fuel. The more dominant 

isotope of l i t h ium is in fact 7 L i and its reaction produces another neutron resulting 
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in the t r i t i u m breeding ratio being greater than 1. 

6 L i + n — • 4 He + T + 4.9MeV (4.7) 

7 L i + n — > 4 He + T + n - 2.5MeV (4.8) 

The products of reaction (4.6) are all charged and would therefore remain in the 

bulk of a magnetically confined plasma. The kinetic energy would be transferred 

to the electrons in coulombic collisions and then bremsstrahlung radiation emitted 

by the accelerating electrons would travel to the surrounding heat exchangers. The 

disadvantages of this reaction are as follows. 

1. Where there are D + 3 He reactions there are also D + D neutron-producing 

reactions (4.4). 

2. 3 He does not occur naturally and therefore needs to be bred (4.5). 

The deuterium-tr i t ium reaction (4.3) although neutron producing is currently 

of high interest as the main reaction in first generation fusion devices. This is 

because of its relatively high cross-section of 5 x 1 0 _ 2 8 m 2 peaking at the deuteron 

collision energy of lOOkeV. This optimal collision energy is easily obtained in 

ion beam experiments but the extremely small reaction cross-section and rapid 

beam deterioration due to coulombic collisions makes this an impractical solu­

t ion. Only a macroscopic quantity of ions w i t h the appropriate energy w i l l yield 

a large enough energy output to be of commercial use. Atoms at these high tem­

peratures are invariably ionized and therefore fusion fuel is in the plasma state. 

A n increasing fraction of confined plasma particles are accessing these energies as 

confinement techniques improve. 

4.1.2 Plasmas 

The plasma state of matter is the most common in the universe. Despite this fact 

i t is the state which is least understood and most diff icult to model. As an ionised 
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gas a plasma is an extremely good conductor. Any local net imbalance in the 

charge distr ibution sets up an electric field E. The motion of charged particles 

causes currents which produce magnetic fields B. These fields in tu rn cause ionic 

and electronic motion. The motion of a plasma is therefore very complex. The 

behaviour of fusion plasmas is especially complex, this can be seen by considering 

some aspects of plasma particle dynamics[8]. 

P l a s m a Part i c l e D y n a m i c s 

Consider an ideal cold plasma which consists of an equal number of uniformly dis­

tr ibuted positive and negative charged stationary particles. The negative particles 

are considered to be electrons. The positive particles are ions and are assumed to 

be sufficently massive to be unaffected by the motion of electrons. The displace­

ment of a number of electrons leaves behind a region which has a positive charge. 

This net charge imbalance sets up an electric field which accelerates the electrons. 

The electrons now oscillate about their in i t ia l position and w i l l do so indefinitely 

i f collisions do not occur. The frequency of this oscillatory behaviour is known as 

the e lectron p lasma frequency upe. 

x = - - E (4.9) 
m 

E = (4.10) 

where n 0 is the particle density, yielding 

UJ„e — 
1 me0 

2 \ 5 
n0e^ 2 (4.11) 

A typical fusion plasma has an electron density of the order of 1 0 2 0 m ~ 3 , this gives 

the electron plasma frequency upe = 5.6 x 1 0 n r a d s - 1 . 

Consider also the motion of an electron in a magnetic field. Here the Lorentz 

force acts on the electron. 

x = -—x x B (4.12) 
m 
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This oscillatory motion also has a characteristic frequency. The e lectron cy­

clotron frequency is thus given by 

A typical fusion plasma has a magnetic field of up to 3T, this gives the electron 

cyclotron frequency uice = 5.3 x 1 0 n r a d s - 1 . 

The similari ty in magnitude between the electron cyclotron frequency and the 

electron plasma frequency encourages the behaviour of the plasma to be chaotic 

in nature. 

Debye L e n g t h 

The Debye length is a measure of the distance at which the potential due to a 

charge is screened by its neighbours. When a test charge is inserted into a region 

of plasma, nearby charges are attracted or repelled slightly. This rearrangement 

screens the potential of the original test charge. Assuming all the ions remain 

stationary and the electrons are in thermal equilibrium adopting a Boltzmann 

distr ibution, the Debye length is given by. 

In practice the Debye length is smaller than this because the ions can move and 

increase shielding. 

Magnetohydrodynamics 

I t is possible to treat a bulk plasma as a continuous f lu id . I t is however a charged 

and conducting f lu id in the presence of both magnetic and electric fields. For a 

plasma to be modelled macroscopically i t must be collision-dominated. For this 

to be the case the M H D length scale must be large compared to the mean free 

path between collisions. A similar requirement is that a particle's dis t r ibut ion 

'ce B 
m 

(4.13) 

6nkT 
A D 2n 0e 

(4.14) 
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0 (4.16) 

function is locally Maxwellian and that the different species of particles have 

the same temperatures. The latter is the case when the M H D length scale is 

large compared to the Debye length. The mass conservation equation (4.15), 

the adiabatic equation of state (4.16), the resistive Ohm's law (4.17) and the 

momentum equation (4.18) are all fundamental to M H D theory in addition to 

Maxwell's equations (4.19)-(4.22). 

^ + V - ( H = 0 (4.15) 

dt \ P 7 , 

E + v x B = nJ (4.17) 

J x B - V p = p — (4.18) 

V-B = 0 (4.19) 

V - £ = ^ (4.20) 
d 

V x B = ^QJ + e0ii0—E (4.21) 
ot 

d -
V x E = - - B (4.22) 

dt v ' 

Here p is the density, p is the pressure, 7 is the ratio of specific heats, rj is the 

resistivity and J is the current density. The permi t t iv i ty and permeability are 

given by e0 and /io respectively and c is the speed of light. 

In theory i t is possible to solve the complete set of equations given known 

boundary conditions. In practice this proves too diff icul t and various approxima­

tions must be applied, for example, assuming quasi-neutrality, before progress can 

be made. 

4.1.3 Methods of Plasma Confinement 

A plasma needs to be confined in a way which prevents, or at least minimises, the 

plasma's contact w i t h material surfaces. Contact w i t h a material surface cools 

the plasma rapidly. Material contact may also cause sputtering which results in 
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the plasma becoming polluted. Three methods of confining plasmas are outlined 

briefly below. 

Magnet ic Conf inement I t is possible to confine a plasma using an externally 

applied magnetic field. Currents wi th in the plasma also contribute to this 

magnetic field. However, i t is not possible to confine a plasma using an 

externally applied electric field; the field is cancelled out wi th in the bulk of 

the plasma because of its very high conductivity. Typically a magnetically 

confined plasma has a density of 2 x 1 0 2 0 m ~ 3 and can be confined for a t ime 

of the order of a few tens of seconds. 

Iner t ia l Conf inement A n inertially confined plasma is one which is produced 

by high power lasers brought to a focus on a small pellet of fuel. In fusion 

experiments the pulse is high powered ( >, 1 0 1 5 W c m ~ 2 ) and typically lasts 

up to several nano-seconds, simultaneously ionising and compressing the fuel 

to a density of 1000 times the in i t ia l solid density. I t is the fuel particle's 

inertia which confines the plasma long enough for fusion to take place. 

G r a v i t a t i o n a l Confinement Stars are gravitationally confined plasmas. The 

radius (RQ) of our star is approximately 7 x 10 8 m. The nuclear core is 

the region where hydrogen is converted into helium (4.2) and extends to a 

radius of about \RQ. I n the nuclear core the plasma temperature is about 

1.5 x 10 7 K and the density is 1.6 x 10 5 kgm" 3 [32] . The min imum size and 

mass of a gravitationally confined plasma means that we are very unlikely 

to see any terrestrial devices of this type. 

4.1.4 Lawson Criterion 

For a fusion plasma to produce more energy than used in creating and sustaining 

the plasma the Lawson Criterion must be satisfied[34]. The condition at an ion 
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temperature of T{ « 20keV is 

TEm > 6 x 10 1 9 r rT 3 s (4.23) 

where is the ion density and rE is the confinement time. Lawson assumed 

that energy losses and generated power can be reapplied to the plasma w i t h an 

efficiency of \ . 

4.1.5 Ignition 

A fusion plasma ignites when external heating is no longer needed. I n a D - T 

device, alpha-particles are the product of fusion reactions. When the power of the 

retained alpha-particles balances all power losses, ignit ion occurs. The criterion 

for D-T ignit ion at an ion temperature of Tj « 20keV is given in equation (4.24). 

This estimate assumes the bulk plasma is a pure, equal mixture, of D-T . As helium 

ash is produced i t dilutes the fuel, reducing the fusion power and, unless removed, 

ult imately quenches the burning plasma. I f too much helium ash is exhausted then 

its kinetic energy is lost and ignition fails. I f not enough helium ash is exhausted, 

fuel di lut ion prevents ignit ion. 

TErii > 1.8 x 10 2 0 m- 3 s (4.24) 

4.1.6 Plasma Heating 

In order to reach ion temperatures high enough for fusion to be possible the plasma 

must be heated in some way. There are various methods for doing this. 

O h m i c Heat ing A plasma heats up when a current passes through i t ; this is 

similar to the behaviour of a metal. However, a plasma's resistivity decreases 

as its temperature increases, unlike the behaviour of metals. This leads to a 

practical upper l imi t for the ohmic heating of a plasma. When the current 

is generated by a transformer the bulk of the current occurs at the magnetic 

axis, as does the heating effect. 
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Radio -Frequency Heat ing Intense radio-frequency waves at the same or at a 

low harmonic of the cyclotron frequency of either the electrons or ions in 

the plasma are resonantly absorbed. The cyclotron frequency of a species is 

dependent on the magnetic field and the magnetic field is spatially depen­

dent. This means that i t is possible to heat the plasma in a given location. 

Typical ion-cyclotron frequencies (although mass dependent) are about 50 

MHz and electron-cyclotron frequencies are about 350 GHz 

N e u t r a l - B e a m Heat ing Neutral beams are undeviated by a magnetic field and 

can therefore penetrate into a magnetically confined plasma. In the JET 

device the beams are usually hydrogen or deutr ium and have energies of 

around lOOkeV. When the beam is inside the plasma i t rapidly undergoes 

charge exchange wi th plasma ions or is ionized by ion or electron collisions. 

The charged beam is then confined to follow the magnetic field lines. Neutral 

beam injection has the advantage that i t can be used to refuel a plasma w i t h 

deuterium. Neutral beam injection wi th a toroidal component can drive or 

contribute to the toroidal current. Since the energy of a beam affects its 

depth of penetration into the plasma i t is possible to select and adjust the 

heating location and current profile. Neutral beam injection as a diagnostic 

tool is covered in section 4.3.2. 

4.2 J E T Joint Undertaking 

4.2.1 Tokamak Architecture 

Tokamak is a Russian acronym for ' toroidal magnetic chamber'. The choice for 

a toroidal configuration (figure 4.1) can be argued as follows. In general plasma 

particles follow magnetic field lines. Better confinement is achieved when a par­

ticle can travel for a great distance along a field line before i t comes into contact 

w i t h a physical surface. Many early confinement configurations involved a cyl in-
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drical column of plasma. Problems arose at the ends of such a plasma column. 

Even complicated magnetic mirror configurations which bunched the field lines to 

encourage the particles to be reflected allowed too many particles to escape. This 

end effect is removed by bending such a column into a torus. 

W i t h only a toroidal field, particles of opposite charge would d r i f t in opposite 

vertical directions due to the variation of the magnetic field strength as a funct ion 

of R. This sets up an electric field and leads to the plasma d r i f t i ng outwards due 

to an E x B force. The poloidal field gives the particles orbits that prevent such 

an electric field being established. 

The toroidal magnetic field is generated by external field coils, in the JET 

device this can be up to 3T. The fact that there is a discrete number of field coils 

leads to slight variations in the magnetic field which can result in instablities. The 

poloidal field is generated by a plasma current flowing in the toroidal direction. 

The magnetic field is also altered by other coils which shape and position the 

plasma. 

The aspect ratio of a torus is defined as the major axis radius divided by the 

minor axis radius (R0/a). A large aspect ratio represents a th in torus w i t h a large 

hole, as the aspect ratio tends to 1 the hole closes. The aspect ratio in the JET 

device 1 is about 2.5 and varies between about 1.3 and 4 in other devices. The 

advantage of a very low aspect ratio is the high fraction of trapped electrons. This 

increases the resistance which in turn improves ohmic heating capabilities. The 

disadvantage is that there is not much room in the hole of the torus for field coils 

and cooling pipes which means that the magnetic field cannot be as large. 

A point inside a torus can be defined most naturally w i t h the co-ordinates 

given in equation (4.25) where 0 < r < a, 0 < 9 < 2ir and 0 < </> < 2TT but 

sometimes i t is useful to think in terms of the cylindrical co-ordinates given in 

xThe average minor axis radius is taken since the JET device is not circular in cross-section 
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Figure 4.1: Tokamak Geometry 

equation (4.26). Here ( f ) measures the angle around the toroidal axis, 6 is the 

angle around the poloidal axis, r is the radial distance f rom the poloidal axis, R 

is the distance f rom the central toroidal axis and z is the vertical distance f rom 

the centre of the torus. 

f = f ( r , M ) (4-25) 

r = r{R,z,<t)) (4.26) 

4.2.2 The Divertor Region 

Although in general plasma particles follow field lines there is also a d r i f t effect 

perpendicular to the field lines. When particles d r i f t outside the last closed flux 

surface (LCFS) they escape f rom the bulk of the plasma. A limiter is a solid 

surface which defines the position of the LCFS. A divertor is a region of plasma 

outside the LCFS. A separatrix exists between the closed flux surfaces and flux 

60 



surfaces which terminate in the divertor. Escaping particles are swept along the 

separatrix into the divertor. 
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Figure 4.2: The JET Pumped Divertor[50] 

The divertor region is separated f rom the bulk plasma by an X-point (a nul l 

in the magnetic field), see figure 4.2. The plasma in the divertor is typically cool 

compared to the bulk plasma and has a higher density. Particles in the divertor 

find i t hard to re-enter the bulk plasma because of the plasma flow into the d i ­

vertor. Sputtered particles and other impurites remain in the divertor, away f rom 

the hot fusion plasma. Also sputtering is reduced since i t is only plasma in the 

divertor region which comes into contact w i th a solid surface. Impurites can be 
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expelled f rom the divertor using cryo-pumps. Eventually i t is expected that the 

helium ash w i l l be exhausted f rom the reactor through the divertor region. Most 

plasma particles enter the divertor travelling along field lines close to the sepera-

t r ix . This leads to overheating and wear at particular points on the target at the 

bot tom the divertor. Sweeping of the position at which the main fieldlines come 

into contact w i t h the target reduces localized wear. This sweeping is achieved by 

varying the magnetic field slightly. The most recent divertor configuration has a 

very high X-point and an angled target. I t is expected the divertor structure used 

in the I T E R device w i l l be similar to the current one in JET. 

4.2.3 I T E R 

The International Thermonuclear Experimental Reactor ( ITER) is a collabora­

t ion between The European Community, USA, Russian Federation and Japan to 

demonstrate the technological feasibility of fusion as an energy source. Table 4.1 

shows how I T E R wi l l measure up to JET (currently the world's largest operational 

tokamak fusion reactor) 

JET I T E R 
Major Radius 3 m 7.75 m 

Plasma Current 7 M A 25 M A 
Plasma Volume 100 m 3 1900 m 3 

Table 4.1: JET - I T E R comparison 

4.3 Plasma Diagnostics 
4.3.1 Overview 

In general a particular property of a plasma cannot be measured in isolation. 

Measurable quantities are affected by more than one fundamental plasma param­

eter. Hutchinson gives useful data (see table 4.2) showing which fundamental 
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parameters can be obtained f rom particular measurements. The quality of data is 

given on a scale of 1 (most reliable) to 3 (least reliable). Brief descriptions of the 

parameters and measurements in the table are given below. Al though methods 

are applicable to general plasmas emphasis is given to the JET plasma. 

P r o p e r t y Measured 
Parameter Diagnosed 

P r o p e r t y Measured f e fi ne rii n0 Vi Te T% p E B 
Magnetic measurements 
Particle Flux 
Refractive index 
Cyclotron Radiation 
Bremsstrahlung Radiation 
Cerenkov Radiation 
Line radiation 
E M Wave Scattering 
Charge Exchange 
Nuclear Reactions 
Heavy Probe Beams 

2 1 1 1 
1 1 2 2 2 1 1 1 

1 1 
3 2 1 
2 2 2 1 
3 3 

2 2 2 1 2 1 3 
3 2 3 1 3 3 

2 1 1 
3 2 1 

2 1 3 

Table 4.2: Plasma parameter measurements[33] 

Dis tr ibut ion functions and p lasma particle flux measurements 

The electron and ion distribution functions are f e and / , respectively. These quan­

tities are the most fundamental of plasma parameters. The distr ibution funct ion 

is defined as the number of particles in an infinitesimal volume of phase space2 

at a given t ime. The spatial density n e j ( r , t ) can be obtained by integrating the 

dis tr ibut ion function over all velocities (4.27). 

ne,i(r,t) = J fe,i(r,v,t)dv (4.27) 

A knowledge of the distribution function of each particle species would give a 

complete description of the plasma. I t is very diff icul t to measure the dis tr ibut ion 

function. The only reliable measurements for distr ibution functions come f rom 

plasma particle flux measurements. These measurements use probes in contact 

2 A six-dimensional space of position and velocity 
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with the plasma. Plasma contact w i th probes is l imited to cool areas of plasmas 

where the probe w i l l survive. In the case of fusion plasmas this restricts the use of 

probes to the edges of the plasma. When interpreting data f rom a probe one must 

also consider the local effect the probe has on the plasma. I t is usual to operate 

the probe at a potential similar to that of the plasma. This is so that currents in 

the probe and charge build up on the probe are small, leading to l i t t l e effect on 

the plasma. 

Measurement of E l e c t r o n Temperature 

When an electromagnetic wave is incident on a fundamental charged particle the 

particle is accelerated. The accelerated charged particle emits electromagnetic ra­

diation in all directions. This process is known as Compton Scattering. Thompson 

Scattering is the classical l imi t of this process. Since in most plasma diagnostics 

the electromagnetic waves used to probe the plasma are visible light or of longer 

wavelength (ftio ~ l eV) a classical treatment is adequate. 

The Doppler broadening of the emitted radiation gives a measure of the elec­

t ron temperature. The diff icul ty arises in distinguishing this weak signal f rom the 

background radiation. 

Measurement of Ion Temperature 

Spectral lines characteristic to a particular species are Doppler broadened. From 

this broadening the temperature of the species can be calculated. Usually the 

Doppler broadening is more significant than Stark broadening. Assuming the ion 

distr ibution is locally Maxwellian the Doppler broadening results in a Gaussian 

line shape. The local ion temperature can be calculated f rom the wid th of the 

Gaussian. 

Ti = \ m c ^ (4.28) 
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where m is the mass of the radiating particle, A 0 is the nominal (central) wave­

length, Xd is the half wid th of the Gaussian and c is the speed of light. 

Measurement of P l a s m a Dens i ty 

The density of a given species can be estimated f rom the intensity of one of 

its characteristic emission lines. In order to calibrate such a measurement i t is 

important to know the proportion of ions in the upper level and the branching 

ratios for de-excitation. 

Neutron Diagnostics 

Since neutrons are produced in many of the fusion reactions they provide a good 

measure of the amount of fusion taking place in a reactor. The neutrality and 

penetrating power of neutrons means that neutron detectors can be outside the 

machine. 

Measurement of I m p u r i t y Content 

Impurities in a plasma are generally heavy species such as C, O, N and Fe. I m ­

purities have 2 main detrimental effects on a plasma: 

1. Impurities dilute fusion fuel. 

2. When impurities w i t h large Z values radiate they dissipate a large amount 

of energy, causing cooling of the plasma. 

A measurement of impuri ty content can be obtained f rom the intensity of a spec­

t ra l line characteristic to the impuri ty species of interest, the same way a general 

density measurement is taken. 

4.3.2 Neutral Beam Injection 

As discussed earlier, neutral-beam injection provides refuelling and an alternative 

plasma heating mechanism. As a beam passes into a plasma i t can be used as a 
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probe to diagnose various plasma parameters. An overview of this technique and 

its implementation at JET is provided by von Hellermann[29]. 

The JET device is divided up into eight segments around the torus. The 

neutral beam injectors are in octants numbered 4 and 8 which are directly opposite 

each other. Both banks of injectors inject particles in a clockwise direction (when 

viewed f rom above), the same direction as plasma rotation. Each bank of injectors 

has eight single neutral beam injectors. I n general 4 lie normal and 4 lie tangential 

to the magnetic flux surfaces although the angle of intersection varies f rom the 

edge to the centre of the plasma. Figure 4.3 shows the layout of the active charge 

exchange diagnostic during the 91/92 experiments. 
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Figure 4.3: Schematic of the JET CX Diagnostic[20] 

There are two main viewing lines: 

• A view through the top port in octant 8 intersects the neutral beams near 
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the plasma axis. This viewing line is also used to see into the divertor region 

at the bot tom of the torus. 

• The second view is almost parallel w i t h the magnetic field lines at the in ­

tersection wi th the neutral beams. This view can be varied slightly to give 

several lines of sight, able to give a radial profile f rom the plasma edge to 

the centre. These views are taken f rom an adjacent octant: f rom octant 

number 7 in the 91/92 campaign leading to blueshift and octant number 1 

in the 94/95 campaign leading to redshift of the spectral lines. 

B e a m Attenuat ion 

As a neutral beam passes into the plasma electrons are removed by charge ex­

change or ionization processes, the beam then attenuates as charged particles are 

removed f rom the beam by the magnetic field. I t is possible to measure the den­

sity of a plasma by how rapidly the neutral beam attenuates. The intensity / of 

such a beam given at a point B relative to a point A is given by 

where a(£) is the attenuation coefficient. This attenuation coefficient is a funct ion 

of all electron removing cross-sections and the densities of the particles which 

cause the removal of electrons. The evaluation of a particular species density is 

usually performed by an iterative procedure. 

A c t i v e Charge -Exchange Spectroscopy 

Passive observations of spectral lines resulting f rom charge transfer f rom in t r in ­

sic neutrals are only available at the plasma boundary. By actively introducing 

neutrals into the hot, normally fu l ly ionized, central region of the plasma in a 

controlled way, the resulting spectral line observations give a valuable insight into 

the properties of this region. In general these active measurements are a more 

1(B) = I (A) exp - [ 
_ J A 

aU)dt 
B 

(4.29) 
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reliable diagnostic because the original beam parameters are known and can be 

extrapolated deep into the plasma. 

The two-stage reaction given in equation (4.30) is used in active charge ex­

change spectroscopy. Here X° is the neutral beam atom which donates an electron 

into an excited state of a plasma ion Y. This excited atom decays radiatively. The 

wavelength is characteristic of the transition and is observed by external spec­

trometers. 

X ° + Y z + —> X + + Y ( z " 1 ) + ( n £ ) 

Y^z-1)+(n£) — • Y ( z - 1 ) + ( n Y ) + /w (4.30) 

Of special interest are the following transitions (4.31). The helium transition 

helps locate helium ash in the plasma. The latter two help monitor the presence 

of beryl l ium and carbon, the two main impurities which are sputtered f rom the 

inner l ining tiles. A l l three transitions result in the emision of visible light. 

H e + ( n = 4) — > E e + { n = 3) + [A « 468.5nm] 

B e 3 + ( n = 6) — > B e 3 + (n = 5) + [A « 465.9nm] (4.31) 

C 5 + ( n = 8) — > C 5 + { n = 7) + [A « 529.lnm] 

The observed spectrum around wavelengths of 468.5nm comes f rom several dis­

t inct H e + contributions. Here the viewing line is assumed to be towards the beams 

as in the 91/92 experimental setup. 

Contr ibut ions to the observed spec trum around 468.5nm 

Using known parameters and the expected shape of each peak i t is possible to 

resolve the observed spectra into distinct contributions and derive useful data 

f rom them. 

core contribut ion This contribution can be modelled by a Gaussian because i t 

results f rom the thermalized helium particles in the core of the plasma. The 
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peak is slightly shifted f rom the nominal wavelength because of the bulk 

rotation of the plasma around the torus. The half wid th of this peak gives 

a measure of the ion temperature, see equation (4.28). The bulk rotat ion of 

the plasma core is given in (equation 4.32). 

vrot cos(a) = -
AA 

A o 
(4.32) 

where a is the angle the viewing line makes wi th the toroidal direction and 

A A is the shift f rom the nominal wavelength A 0 . 

edge contribution This is caused by passive charge exchange w i t h neutrals at 

the edge of the plasma. I t is also approximately Gaussian and shifted due to 

rotation. This has a lesser or greater contribution depending on the direction 

of the viewing line. 

fast contribution This contribution is only present when at least one of the 

injectors is injecting helium. This peak is strongly blue shifted (or red-

shifted in the case of the 94/95 experiments). Although this peak is non-

Gaussian because the beam of helium particles is not thermalized, the energy 

distr ibution of the injected particles is known. 

plume contribution The plume effect [13] is a result of the following reactions. 

Dfceam + ^-eltasma ^ ^beam + ^plasma (4.33) 

Hefc e a T O + H e p ^ s m a > H e ^ ^ - I - H e p ( a s m a (4-34) 

Both reactions produce H e + which are capable of following magnetic field 

lines for many metres before being fu l ly ionized. In typical reactor condi­

tions the ionization t ime is about 10~5s and thermal velocities are about 

1 0 5 m s _ 1 . During this time i t is possible that the H e + ions could travel 

back in front of the viewing line and be excited, by for example electron 
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impact, and then decay radiatively. This signal is weaker for the vertical 

viewing line because its intersection wi th the signal region is smaller than 

w i t h the horizontal views. The plume signal is very diff icul t to analyse be­

cause of its non-local nature and its high dependence on the magnetic field 

configuration[19]. In the case of the second reaction (4.34) the two distinct 

contributions to the plume effect are distinguished as 'plasma plume' and 

'beam plume' depending upon where the H e + ion originated. 

The spectra taken f rom the viewing line lying normal to the magnetic surfaces 

do not have shifted Gaussians because the Doppler effect is not present. Because 

measured intensity is an accumulation f rom all emissions in the line of sight a 

deconvolution process must be used to extract the plasma data. 

Many of the neutral beam injection experiments use refuelling deuterium 

atoms. These beams are also used for diagnostic purposes, probing the central 

region of the plasma. The energy of the beam of deuterium atoms is typically 

140keV in JET. Some experiments have also been carried out using helium atom 

injection specifically for diagnostic purposes. Helium beams are used to study 

the effect and transport of helium in the plasma in preparation for fusion alpha-

particle detection in future D-T experiments. 

3 H e ° beams up to energies of 150keV were injected into the JET device in 

1991. This deposited a large number of helium atoms and subsequently nuclei in 

the centre of the plasma. The observations gave good insights into the behaviour 

of alpha particles at thermal and non-thermal energies in the plasma[27]. Ex­

periments carried out in 1994/1995 using 4 H e ° beams wi th energies of the order 

of 70keV in conjuction wi th deuterium heating/diagnostic beams in the opposite 

octant were used to study the plume effect. 

Calibration of optics takes place whenever access to the torus hall is available. 

Al though the viewports are protected by metal plates when the spectrometers are 
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idle the optics deteriorate over a period of usage. This is especially the case for 

the horizontal vacuum window which is situated close to the plasma. I t is possible 

to calibrate measurements through this window wi th measurements taken along 

the vertical viewing line since the port at the top of the device is about 2m away 

f rom the plasma. 

I t is also possible to calibrate various spectroscopic measurements wi th each 

other. The aim in the spectroscopy group at JET is to achieve 'Global Data 

Consistency'[28]. In order to do this a database of atomic, spectroscopic and 

plasma data has been set up. 

4.3.3 The ADAS Database 

ADAS stands for Atomic Data and Analysis Structure[49]. I t is both a database 

of atomic, spectroscopic and plasma data and an associated library of codes for 

the analysis of this data. ADAS is accessible interactively and allows the user to 

interrogate the database and perform calculations using a menu driven interface. 

The l ibrary of F O R T R A N routines is also available for inclusion into the users 

own codes. Both fundamental data and data derived f rom them is available in 

the ever increasing database. 

The entries in the database of interest to this thesis are those fal l ing into the 

so called A D F 0 1 category. Data in these files contain total , n and i resolved 

charge exchange cross-sections. These files must conform strict ly to the defined 

format t ing convention since these data w i l l by accessible by many routines across 

all users of the ADAS database. 

The charge exchange cross-sections are used in conjunction wi th derived data 

for the respective ion populations in the interpretation of observed spectral lines. 

The ion population of a particular species can only be derived f rom spectral ob­

servations. The analysis is inherently an iterative procedure. 
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In order to analyse the results of helium injection, all cross-sections for pro­

cesses which remove electrons f rom the injected atoms need to be known. Since 

the method of neutral beam injection introduces many helium atoms ini t ia l ly in 

metastable states, data for transitions f rom these states are also needed. The cal­

culations described in chapter 5 are given in a form suitable for inclusion into the 

ADAS database, in Appendix A, along wi th a description of the A D F 0 1 format. 

4.4 Concluding Remarks 

In order to confine a plasma magnetically at greater temperatures, higher densities 

and for longer periods requires an understanding of its macroscopic behaviour. 

This understanding currently relies on rules of thumb derived f rom experimental 

observations. Increasingly i t w i l l require a knowledge of the microscopic processes 

involved. Spectroscopy is a valuable plasma diagnostic, as i t reveals how the 

atoms are behaving under plasma conditions. A theoretical understanding of 

atomic behaviour leads to a knowledge of the plasma conditions themselves. The 

spectral lines reveal not only the conditions in the plasma but also the location of 

various atomic species. Spectroscopic measurements also have the advantage of 

not needing contact wi th the plasma and leaving i t unaffected. 

Current interest lies mainly in the location of impur i ty elements which d i ­

lute the fuel and cool the plasma, hindering reactor conditions and preventing 

break-even. A thorough understanding of both high and low confinement modes 

of operation is being sought in order to achieve the correct balance of helium re­

tention and exhaust in the quest for ignition. Divertors are used in an attempt to 

reduce impurites and keep any impurites that do persist away f rom the hot bulk 

plasma. 

Even when the current goals of energy break-even and ignit ion are achieved 

a greater understanding of all aspects w i l l be needed in order to construct an 

72 



economically viable and environmentally sound reactor. More consideration w i l l 

need to be given to the exhaust of spent fuel and impurities as a commercial 

reactor would be required to run as continuously as possible. 
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Chapter 5 

Results and Discussion 

5.1 Introduction 

Accurate charge-transfer cross-sections are needed in the analysis of spectroscopic 

data used in the diagnosis of fusion plasmas (see chapter 4). The study of helium 

and alpha-particles in a fusion plasma is important because alpha-particles are 

the product of D-T fusion reactions. T r i t i um is only used sparingly in the JET 

plasma, as a result there are not many fusion alpha-particles present. Helium 

atoms are injected as an alternative. The process of helium injection introduces 

some of the atoms in in i t ia l ly excited states. When inside the plasma, neutral he­

l ium atoms undergo charge exchange w i t h many of the species present. Al though 

cross-sections for all processes are needed, the work for this thesis was on the sym­

metric H e 2 + — He collision system. Cross-sections are presented and discussed for 

collisions where the helium atom is ini t ia l ly in the ground state (section 5.3.5) and 

when i t is in the excited metastable states He(ls2s xS) and He(ls2s 3S) (sections 

5.3.7 and 5.3.8 respectively). 

I t was important to both familiarize myself w i t h the structure and use of the 

code and also to test that i t was working properly before embarking on a new 

calculation. A small calculation for charge-transfer cross-sections in H + — He 

collisions was performed first, the results are presented in section 5.2. 
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5.2 Charge-Transfer from He(lsls 1 S) to H + 

A calculation to test both the close-coupling code and my ability to use i l was 

devised. Excitation, ionization and charge-transfer cross-sections for collisions 

between protons and helium atoms have previously been calculated wi th this code 

by Slim et a/[48]. Slim used a large basis, w i t h a total of 51 channels, including: 

pseudostates in the continuum of the target, pseudostates in the continuum of the 

projectile (capture to the continuum) and bound states on both nuclei. His results 

compared well to the experimental data of Shah et a/[43] for both ionization and 

single electron capture. The test calculation performed here used a much smaller 

basis (see Table 5.1). The number of channels used in this calculation is 14. 

The list of channels used only includes substates w i t h a non-negative projection 

quantum number m. The symmetry of the collision system makes the cross-section 

independent of the sign of m. The total cross-section into a state wi th a particular 

angular momentum is given by the sum of the cross-sections into each m-substate. 

Direct Charge-Trans fer Direc t 
target projectile 

He( ls ls 1 S) He+(ls) H( l s ) 
He(ls2s 1S) He+(ls) H(2s) 
He(ls2p 1 P) He+(ls) H(2p) 

He+(ls) H(3s) 
He+(ls) H(3p) 
He+(ls) H(3d) 

4 channels 10 channels 

Table 5.1: Basis functions 

No attempt has been made to model ionization. The inclusion of only the 

n — 2 states on the target l imits the abil i ty to model excitation. As can be 

seen from Figure 5.1 even this small basis models electron capture well. Target 

excitation is not so well reproduced, this is due to an inadequacy of the current 

basis. 
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Although not immediately obvious on the logarithmic scale, the insufficiency 

of the excitation cross-section is approximately equal to the over-estimation of the 

electron capture cross-section. The inclusion of higher excited states on the target 

and continuum pseudostates would help to modify both cross-sections accordingly. 

This is an important consideration when calculating cross-sections which differ 

by one (or several) orders of magnitude. Even i f a large cross-section is accurate to 

wi th in say 1%, a much smaller cross-section may be inaccurate by a large factor. 

—•— 2p excitation (current) \ 
—•— total transfer (current) -
—-O—- 2p excitation (Slim) 

O—• total transfer (Slim) 

100 00 

CD 

10 © O CO 
CO 

11 I I I I I 
20 40 60 80 100 

Impact Energy (keV) 

Figure 5.1: H + — He collision cross-sections. Comparison between the current 14 
channel basis and the 51 channel calculation by Slim[48] 
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5.3 Charge-Transfer in the H e 2 + - He System 

5.3.1 Introduction 

A single electron attached to a helium nucleus in the state H e + ( l s ) has a binding 

energy of 2au. The electrons in the ground state of a helium atom have a to ta l 

binding energy of approximately 2.903au. Therefore 0.903 atomic units of energy, 

or equivalently 24.6eV, are needed to remove one of the electrons f rom the ground 

state of a helium atom. The metastable states He(ls2s 1S) and He(ls2s 3S) have 

binding energies of only 2.145au and 2.175au respectively. To ionize an electron 

f rom these states needs approximately one sixth of the energy needed for ionization 

f rom the ground state. Because of the proximity of these states to the continuum 

one expects that the cross-sections for ionization and one-electron charge-transfer 

are more significant f rom this in i t ia l ly excited state. Since transitions to other 

excited states involve crossing a smaller energy gap i t is expected that excitation 

cross-sections wi l l be larger too. The energy gap between the 2S and 2P states is 

small, leading to a very large cross-section. Coupling between these states is large 

even when the projectile is some distance away. 

5.3.2 Basis Functions 

A basis set, including up to 96 functions, was used for the calculation of one-

electron charge transfer f rom the He( ls l s 1 S) , He(ls2s 1S) and He(ls2s 3S) states. 

The two-electron singlet target states[47] are listed in table 5.2, along w i t h their 

eigenenergies and, i f appropriate, the experimentally measured energy. The t r iplet 

states were generated f rom exactly the same pairs of one-electron hydrogenic func­

tions, w i t h the exception of the pair optimized for the ground state (see section 

2.3.3). The states are listed in table 5.3. The transfer channels are listed in table 

5.4. 
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State E n e r g y ( a u ) Measured (au) 
He(lsls 1S) -2.8765 -2.903 
H e f ^ s ^ ) -2.138 -2.145 
He(is2p 1P) -2.122 -2.124 
He(ls3s1S) -2.059 -2.061 
He(ls3d 1D) -2.056 -2.055 
HeJlsSp1?) -2.055 -2.055 
He(ls4s1S) -2.033 -2.033 
He(ls4f 1F) -2.031 -2.031 
He(ls4d 1D) 
He(ls4p 1P) 

-2.031 -2.031 He(ls4d 1D) 
He(ls4p 1P) -2.031 -2.031 
He(ls5g1G) -2.020 -2.020 
He(ls5f 1F) -2.020 -2.020 
He(ls5p 1P) 
He(ls5d 1D) 
He(ls5s1S) 

-2.018 -2.020 He(ls5p 1P) 
He(ls5d 1D) 
He(ls5s1S) 

-2.016 -2.020 
He(ls5p 1P) 
He(ls5d 1D) 
He(ls5s1S) -2.013 -2.021 

£p'-pseudostate -1.994 n/a 
'd'-pseudostate -1.975 n/a 
'p'-pseudostate -1.944 n/a 
's'-pseudostate -1.894 n/a 
'd'-pseudostate -1.865 n/a 
'p'-pseudostate -1.841 n/a 
'p'-pseudostate -1.632 n/a 
'd'-pseudostate -1.575 n/a 
's'-pseudostate -1.226 n/a 
'p'-pseudostate -1.198 n/a 
'd'-pseudostate -0.728 n/a 
'p'-pseudostate -0.237 n/a 

Table 5.2: The 61 singlet basis-states used for the target with energy levels and 
comparison to measured values [3] 
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State E n e r g y ( a u ) Measured(au) 
He(ls2s 3S) 
He(ls2p 3 P) 

-2.174 -2.175 He(ls2s 3S) 
He(ls2p 3 P) -2.131 -2.133 
He(Is3s 3S) -2.068 -2.069 
He(ls3p 3 P) 
He( ls3d 3 D) 
He(ls4s 3S) 
He(ls4p 3 P) 

-2.057 -2.058 He(ls3p 3 P) 
He( ls3d 3 D) 
He(ls4s 3S) 
He(ls4p 3 P) 

-2.056 -2.055 
He(ls3p 3 P) 
He( ls3d 3 D) 
He(ls4s 3S) 
He(ls4p 3 P) 

-2.036 -2.036 

He(ls3p 3 P) 
He( ls3d 3 D) 
He(ls4s 3S) 
He(ls4p 3 P) -2.032 -2.032 
He( ls4d 3 D) -2.031 -2.031 
He( l s4 f 3 F) -2.031 -2.031 
He( l s5 f 3 F) 
He(ls5g 3 G) 
He(ls5s 3S) 
He(ls5p 3 P) 
He( ls5d 3 D) 

-2.020 -2.020 He( l s5 f 3 F) 
He(ls5g 3 G) 
He(ls5s 3S) 
He(ls5p 3 P) 
He( ls5d 3 D) 

-2.020 -
He( l s5 f 3 F) 
He(ls5g 3 G) 
He(ls5s 3S) 
He(ls5p 3 P) 
He( ls5d 3 D) 

-2.019 -2.022 

He( l s5 f 3 F) 
He(ls5g 3 G) 
He(ls5s 3S) 
He(ls5p 3 P) 
He( ls5d 3 D) 

-2.019 -2.020 

He( l s5 f 3 F) 
He(ls5g 3 G) 
He(ls5s 3S) 
He(ls5p 3 P) 
He( ls5d 3 D) -2.016 -2.020 

'p'-pseudostate -1.997 n/a 
'd'-pseudostate -1.975 n/a 
'p'-pseudostate -1.949 n/a 
's'-pseudostate -1.937 n/a 
'd'-pseudostate -1.865 n/a 
'p'-pseudostate -1.852 n/a 
'p'-pseudostate -1.656 n /a 
'd'-pseudostate -1.578 n /a 
's'-pseudostate -1.445 n /a 
'p'-pseudostate -1.250 n/a 
'd'-pseudostate -0.748 n/a 
'p'-pseudostate -0.339 n/a 
's'-pseudostate +2.008 n/a 

Table 5.3: The 61 tr iplet basis-states used for the target w i t h energy levels 
comparison to measured values [3] 
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Target State Project i l e State Tota l E n e r g y (au) 
He+(ls) He+(ls) -4.000 

He+(2s) -2.500 
He+(2p) -2.500 
He+(3s) -2.222 
He+(3p) -2.222 
He+(3d) -2.222 
He + (4s) -2.125 
He+(4p) -2.125 
He+(4d) -2.125 
He+(4f) -2.125 
He+(5s) -2.080 
He+(5p) -2.080 
He+(5d) -2.080 
He+(5f) -2.080 
He+(5g) -2.080 

Table 5.4: The 35 charge-transfer basis-states 

5.3.3 Matrix Elements 

The values of matr ix elements as a function of internuclear separation, impact 

parameter and collision energy can give insight into the resulting amplitudes and 

cross-sections. 

Direc t M a t r i x E lements 

The direct overlap matr ix elements are known t r iv ia l ly to be of the form of a unit 

matr ix. The two-electron states on the target have been pre-orthonormalized. 

The coupling matr ix elements (5.1) between the singlet states He(ls2s 1 S), and 

He(ls2po 1 P) and He( l s2p i 1 P) are given as a function of z in figures 5.2 and 5.3 

for various impact parameters b. 

( l s 2 s 1 S | H | l s 2 p 0

1 P ) 
(5.1) 

There is no matr ix element dependence on collision energy because both states 

are on the same centre. Collision energy dependence enters when the matr ix 
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elements are integrated. The matr ix elements are real because real spherical 

harmonics are used for the wavefunctions and there is no translation phase factor. 

There are important qualitative differences between the two figures. The curve 

for coupling to the He( l s2p 0

1 P) state passes through the origin whereas the curve 

for coupling to the He( l s2p i 1 P) state does not. The magnitude increases as the 

impact parameter b tends to zero for coupling to the He( l s2p 0

1 P) state whereas 

coupling to the He( l s2p i 1 P) has a maximum at a non-zero value of b. This can be 

explained by considering the probability distr ibution of p-orbitals. A po-orbital's 

probabili ty distr ibution has a dumbell shape lying along the quantization axis, A 

p-ti-orbital 's probabili ty distr ibution is also dumbell shaped but lies perpendicular 

to the quantization axis. In the space-fixed co-ordinate system in which these 

matr ix elements are given the quantization axis coincides w i t h the z-axis. The 

coupling between the two states is greatest when the probabili ty distr ibution of 

the in i t ia l He(ls2s 1S) state wi th a dipole induced by the incoming projectile is 

most like the final p-state. This is the case when (b = 0) and (z ~ ± 4 a u ) for the 

He( l s2p 0

1 P) state, and when (z = 0) and (b ~ 4au) for the He( l s2p 1

1 P) state. 

The symmetry about the 2 = 0 axis means that matr ix elements need only be 

calculated for negative values of z. The matr ix elements for z > 0 are evaluated 

using a simple phase factor (5.2). This is a consequence of the symmetry of 

spherical harmonics. 

Mij{z) = ( - 1 ) ^ + K I + K I M * ( - z ) (5.2) 

The implication is that when i{ + £j + \m,i\ + \m,j\ is odd the matr ix element must 

pass through the origin, this can also be seen in figure 5.4 which shows the mat r ix 

elements for coupling between He(ls2s 1S) and the He( ls3d 1 D) states. In this case 

i t is the curve for m = 1 that passes through the origin. 
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Figure 5.4: He(ls2s 1S) - He( ls3d 1 D) Coupling Mat r ix Elements 

Transfer M a t r i x E l e m e n t s 

The transfer matr ix elements also respect the symmetry discussed in the previous 

section and therefore only need to be calculated for negative z. Figures 5.5 and 

5.6 show the real and imaginary parts (respectively) of the overlap matr ix ele­

ment between the states He(ls2s 1S) and [He+(ls) - He+(ls)] for various collision 

energies. The matr ix elements become more oscillatory wi th respect to z as the 

collision energy increases due to the increase in the exponential translation factor. 

The real and imaginary parts of the corresponding coupling matr ix elements are 

shown in figures 5.7 and 5.8, again showing an increase in oscillatory behaviour 

w i t h the collision energy. Figures 5.9 and 5.10 show the overlap and coupling ma­

t r i x elements between the states He(ls2s 1S) and [He* (Is) — He + (2p) ] and confirm 

the symmetry of the matr ix elements about z = 0 (5.2). The real part of the 2po 

and the imaginary part of the 2pi matr ix elements pass through the origin. 
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5.3.4 Convergence of Cross-Sections 

I t was important to confirm that the calculated cross-sections were stable wi th 

respect to the various approximations introduced in the many stages leading to the 

final result. The measures used to test convergence are discussed in the following 

sections. 

N u m e r i c a l Integrations for the Eva lua t ion of M a t r i x E l e m e n t s 

The mult iple integrations used to evaluate the two-centre matr ix elements require 

a numerical solution (section 3.2). The number of integrand evaluations used 

may affect the integral. A l l of the calculations performed used 12 point Gauss-

Laguerre quadrature and 16 point Gauss-Legendre quadrature. A l imi ted number 

of test calculations was performed w i t h 30 and 32 point quadrature respectively. 

The matr ix elements were found to be unaffected (to machine single precision 

accuracy). 

Point Separat ion and Interpolat ion 

Matr ix elements tend to change more rapidly wi th respect to z at small z. For this 

reason more nodes are needed at small z for a reliable interpolation. Piecewise 

Chebyshev interpolation was used (section 3.3) This method of interpolation does 

not guarantee continuity of the first derivative of the matr ix elements at the 

endpoints of each section. These discontinuities are one of the causes of uni tar i ty 

errors. I n order to keep these errors to a minimum few ranges were used and 

hence few intersections. Relatively high order (order 9) Chebyshev interpolation 

was used to ensure enough points were selected. High order Chebyshev is more 

stable than other polynomial interpolation and copes well w i th slowly varying and 

highly oscillatory functions. Extra points were used to test the reliabil i ty of point 

selection. 
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I m p a c t Parameter Selection 

The integration of final occupation amplitudes over impact parameter theoreti­

cally takes place f rom b = 0 to b — oo. By inspecting the occupation amplitudes 

for large values of impact parameter a practical upper l im i t was set (120 au), 

beyond which the contribution to the integral was assumed to be negligible. The 

reason why this upper l i m i t needs to be so large is solely due to the large coupling 

between the states He(ls2s) and He(ls2p) (section 5.3.6) The numerical integra­

t ion of the occupation amplitudes is performed using the Gi l l -Mi l le r algori thm 

(section 3.5.1). The occupation amplitudes evaluated for a finite number of cho­

sen impact parameters are interpolated using a cubic function, before integrating. 

The choice and number of impact parameters must be such that the interpolation, 

and hence the resulting cross-section is stable. Four intersecting sets of 24 impact 

parameters were used. More impact parameters were selected for smaller values 

of b since this is where the occupation amplitudes were in general more signifi­

cant in magnitude and oscillatory in behaviour. Cross-sections calculated w i t h 

each set or combinations of the sets could be compared. Figure 5.11 shows final 

cross-sections for excitation and transfer f rom the singlet metastable state. The 

labelled curves are the cross-sections evaluated by integrating over all 96 impact 

parameters, the other curves are for 24 and 72 impact parameters. This figure 

shows that the cross-sections are stable w i t h respect to the choice and number of 

impact parameters used. 

T r a j e c t o r y L e n g t h 

I n the close-coupling method occupation amplitudes are integrated f rom in i t ia l 

values at t ime t = —oo to yield final occupation amplitudes at time t = +oo. Some 

finite value of t (or equivalently z) must be chosen for the numerical integration, 

beyond which all matr ix elements are negligible and occupation amplitudes are 
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Figure 5.11: Cross-Sections for He 2 + — He(ls2s1S) collisions using 96 channels. 
Calculated using a total of 24, 72 and 96 impact parameters. 

unchanged. The final occupation amplitudes for the state He(ls2p) are the most 

significant and extend out to an impact parameter of about lOOau. Likewise 

one would expect the collision trajectory length to have an effect i f i t is shorter 

than about lOOau. Figure 5.12 shows that the final occupation amplitudes for 

the state He(ls2p 1P) are unaffected when the total trajectory length is increased 

from 240au to 340au. 

Basis Functions 

Up to 96 basis functions were used, these are listed in section 5.3.2. Convergence 

with respect to the choice of basis is system dependent and will be discussed for 

each system in sections 5.3.5, 5.3.7 and 5.3.8. 
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Figure 5.12: Weighted probabilities for the state He(ls2p1P) using different tra­
jectory lengths 

Cross-sections for excitation and one-electron charge transfer from He(lsls 1S) to 

H e 2 + were calculated. A 96 channel basis was used for this calculation, the same as 

was used for the initially excited singlet state He(ls2s1S) (see section 5.3.2). Cross-

sections for excitation to the state He(ls2s1S) and He(ls2s1P) are shown in figures 

5.13 and 5.14 respectively, on page 92. Total one-electron charge transfer cross-

sections are shown in figure 5.15. The results are compared to those of Fritsch[16] 

who also used the semiclassical close-coupling method, with two-electron basis 

states. The maximum in the total one-electron transfer cross-section at about 

150keV is observed because at this energy the projectile velocity is approximately 

the same as the velocity associated with the orbiting electrons. 

At the lowest collision energy the current excitation cross-sections are in very 

poor agreement with the data of Fritsch. The other cross-sections can only be 

5.3.5 Charge-Transfer from He(lsls 1 S) to H e 2 + 
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described to be in qualitative agreement. The differences are due to an inadequacy 

of the current basis. Fritsch included two-electron transfer channels. The most 

important of these is the resonant double-transfer channel (5.3). Cross-sections 

to this channel are extremely large, especially at low energy (see figure 5.16 on 

page 93). 

He t(lsls 1S) + HeJ+ — • He?+ + He p(lsls 1S) (5.3) 

Neglecting this significant channel in the current calculation leads to this poor 

agreement. 
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Figure 5.13: He 2 + — He(lsls 1S) collision cross-sections for exitation to the state 
He(ls2s1S), current 96 channel basis, comparison to Fritsch's 59 channel basis[16] 
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Figure 5.14: He 2 + — He(lsls 1S) collision cross-sections for excitation to the state 
He(ls2p 1P), current 96 channel basis, comparison to Fritsch's 59 channel basis[16] 
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Figure 5.15: He 2 + — He(lsls 1S) collision cross-sections for total one-electron charge 
transfer, current 96 channel basis, comparison to Fritsch's 59 channel basis[16] 
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Figure 5.16: H e 2 + — He(lsls 1S) collision cross-sections for resonant two-electron 
charge transfer[16] 
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5.3.6 Occupation Amplitudes 

The amplitudes in the plots in this section are scaled with the impart parameter 

The area under the resulting b\a\2 curve gives a true representation of the final 

cross-section. The cross-section in units of cm 2 is given as (5.4). 

cr(cm2) = ,4rea(au2) x 27r x 2.80 x 10 -17 (5.4) 

Excitation across the small energy gap from He(ls2s3S) to He(ls2p 3P) results 

in very large occupation amplitudes (figure 5.17) 
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Figure 5.17: Weighted probabilities for excitation to the state He(ls2p 3P) from 
He(ls2s3S) as a function of Impact Parameter, various Collision Energies 

At low collision energy the amplitude oscillates for small impact parameters. 

This amplitude would not oscillate in isolation, it is in this region where there are 

many competing processes (namely charge transfer) leading to this behaviour. At 

higher energies the amplitudes follow smoother curves and extend out to impact 

parameters of about lOOau. 
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The weighted probabilities for excitation to He(ls3s3S) are shown in figure 

5.18. These are significantly smaller than those for the He(ls2p3P) state. The 

oscillatory behaviour is also much more pronounced since the amplitudes for this 

channel are similar in magnitude to the transfer channels, except at higher ener­

gies. 
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Figure 5.18: Weighted probabilities for excitation to the state He(ls3s3S) from 
He(ls2s3S) as a function of Impact Parameter, various Collision Energies 

The weighted probabilities for transfer to the states He+(ls) and He+(4s) are 

shown in figures 5.19 and 5.20 respectively on page 96. These amplitudes are 

naturally oscillatory with respect to b because of the influence of the translation 

factors. The area under the final weighted probability plots for the transfer states 

is very much dependent on the collision energy. The charge exchange cross-sections 

decrease very rapidly as collision energy increases. Also the cross-section to the 

He+(4s) state is significantly larger than that to the He^(ls) state. This can be 

explained by considering the energy difference between initial and final states. 
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Figure 5.19: Weighted probabilities for transfer to He + ( ls) from He(ls2s3S) as a 
function of Impact Parameter, various Collision Energies 
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Figure 5.20: Weighted probabilities for transfer to He+(4s) from He(ls2s3S) as a 
function of Impact Parameter, various Collision Energies 
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The total binding energy of the initial He(ls2s3S) is -2.174au and that of the 

final [He+(4s) - He^(ls)] state is -2.125au. The binding energy of the [He+(ls) -

He t

+(ls)] state is -4au, considerably further away. 

5.3.7 Charge-Transfer from the Singlet-State: He(ls2s 1S) 

Fritsch performed a one-electron calculation for excitation and charge transfer 

from the state He(ls2s1S) in collision with He 2 +[16]. The calculations presented 

here also use the semiclassical close-coupling method but use full two-electron 

basis states. A total of 96 channels were used, these are listed in section 5.3.2. 

Subsets of these channels were used as a test of the adequacy of the basis. 

Figure 5.21 compares cross-sections calculated with 55 channels and 70 chan­

nels. The 55 channel basis includes bound two-electron target states (35 channels) 

and transfer states up to, and including, He + (n = 4) (20 channels). The 70 chan­

nel basis also includes transfer to He + (n = 5). Excitation cross-sections are barely 

affected but there is a slight increase in the total charge transfer cross-section. 

Figure 5.22 shows what happens to the cross-sections when the 26 pseudostates 

are also included. These affect the transfer channels and the n = 3 excitation chan­

nels. The lower lying 2p channel is barely affected. The cross-sections from the 96 

channel basis at a collision energy of 16keV are in fact spurious. The inclusion of 

the pseudostates causes serious unitarity errors at this collision energy, satisfac­

tory final occupation amplitudes were only available for a few impact parameters. 

At all other energies the unitarity errors were within 1%. 

Charge transfer specifically to the He + (n = 4) and He + (n = 5) are compared 

to the results of Fritsch in figures 5.23 and 5.24 respectively. The best agreement is 

found at intermediate energy. The differences at high energy may be accounted for 

by the fact that the cross-sections are extremely small compared to the excitation 

cross-sections. At low energy the current excitation cross-sections are significantly 
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Figure 5.21: He 2 + — He(ls2s1S) collision cross-sections for excitation and one-
electron charge transfer, comparison between 55 and 70 channel bases 
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Figure 5.22: H e 2 + — He(ls2s1S) collision cross-sections for excitation and one-
electron charge transfer, comparison between 70 and 96 channel bases 
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Figure 5.23: H e 2 + — He(ls2s1S) collision cross-sections for transfer to the states 
He +(4^). comparison to Fritsch[15] 
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Figure 5.24: He 2 + — He(ls2s1S) collision cross-sections for transfer to the states 
He + (5£), comparison to Fritsch[15] 

99 



greater than those of Fritsch. The one-electron model may be inadequate to 

describe these excitation channels. 

Figure 5.25 shows current total charge transfer, excitation and pseudostate 

cross-sections compared to Fritsch's data. In this figure the cross-sections at a 

collision energy of 16keV are for the 70 channel basis, whereas all other cross-

sections use the 96 channel basis. The pseudostate cross-section is shown to be 

small at the lowest energy, so their omission can justified. 
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Figure 5.25: He 2 + — He(ls2s1S) collision cross-sections for total transfer and ex­
citation, comparison to Fritsch[16] 

5.3.8 Charge-Transfer from the Triplet-State He(ls2s 3S) 

Calculations are presented for excitation and charge transfer from the initial state 

He(ls2s3S) in collisions with He 2 + . As with the singlet case a total of 96 basis 

states were used. Convergence with respect to the basis is shown in figures 5.26 

and 5.27. Here there are only 34 two-electron bound states on the target, which 

together with the 20 channels for transfer up to He + (n = 4) makes up the 54 state 
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Figure 5.26: H e 2 + — He(ls2s3S) collision cross-sections for excitation and one-
electron charge transfer, comparison between 54 and 69 channel bases 
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Figure 5.27: H e 2 + — He(ls2s3S) collision cross-sections for excitation and one-
electron charge transfer, comparison between 69 and 96 channel bases 



basis. The 69 channel basis also includes the He + (n = 5) transfer states. The 96 

channel basis also includes the pseudostates. Again the inclusion of pseudostates 

caused unitarity errors at a collision energy of 16keV. 

Cross-sections from the initial singlet and triplet states are compared in figure 

5.28. Al l cross-sections from the triplet state are found to be smaller than those 

from the singlet. The cross-sections for excitation are especially different, and 

increasingly so at lower collision energies. The most likely explanation for this 

is simply that the He(ls2s3S) ground state is more bound than the He(ls2s1S) 

state, indeed the energy gap for excitation to the nearest p-state is a factor of two 

larger. 
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Figure 5.28: He 2 + — He collision cross-sections for excitation and total charge 
transfer from the initial metastable state, comparison between singlet and triplet 

5.4 468.5nm Emission 

The cross-section for the emission of 468.5nm light as a result of the collisions 

between alpha particles and metastable helium atoms can be calculated from the 
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charge transfer cross-sections to the He + (n = 4) level and the branching ratios for 

subsequent decay (figure 5.29). [12] 
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Figure 5.29: Schematic of the He + energy levels, with branching ratios[12] 

The cross-sections for the 468.5nm emission are compared to those of Fritsch in 

figure 5.30 and are also shown in table 5.5. The differences between the emission 

cross-sections is a direct result of the differences in the state selective charge 

transfer cross-sections discussed in the previous two sections. 
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Collision current calculation Pritsch[16] 
energy (keV) Triplet Singlet Singlet 

16 1936 2453 3722 
40 729.1 832.5 1148 
100 44.09 80.32 45.3 
160 9.063 18.88 11.6 
400 0.365 0.218 0.655 
800 0.073 0.099 0.046 

Table 5.5: Cross-sections for charge transfer to He + (n — 4) and subsequent decay 
to He + (n = 3), comparison between triplet, singlet and the data of Fritsch[16] 
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Figure 5.30: He 2 + — He(ls2s1S) collision cross-sections for transfer to the states 
He +(4^) and subsequent decay to [n = 3], comparison to Fritsch 
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Chapter 6 

Conclusion 

Charge transfer and excitation cross-sections have been calculated for collisions 

between alpha particles and helium atoms in initially excited states. 

Atomic data of this type is needed for the analysis of spectroscopic measure­

ments used to diagnose fusion plasmas. The He 2 + — He system is especially impor­

tant. Neutral beam injection is used in the JET fusion device for both heating and 

as a probe of the hot central region of the plasma. Usually refuelling deuterium 

beams are used but occasionally helium beams are substituted. These beams place 

helium atoms, and subsequently nuclei, in the central region of the plasma, simu­

lating the conditions when alpha particles are created from the fusion of deuterium 

and tritium. As the helium atoms enter the plasma they undergo ionization and 

charge exchange by collisions with the plasma particles. Collisions also occur with 

the previously injected alpha particles, which have become thermalized. Charge 

transfer to the He + (n = 4) state leads to visible radiative decay. 

Charge transfer from the ground state of helium atoms has been well studied. 

The neutral beam in the JET device is known to contain a fraction of helium 

atoms in initially excited states. Charge transfer from the states He(ls2s1S) and 

He(ls2s3S) have not been so well studied. Fritsch[16] has addressed the singlet 

case with a one electron model. He found that cross-sections to He + (n = 4) are 

substantially larger from this state than from the ground state because of the near 
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resonance. 

The current calculations have been performed using the semiclassical close-

coupling method with two-electron atomic orbital basis functions. A total of 

96 channels were used, including; two-electron bound states of the target up to 

the level of (n = 5); single electron charge transfer to states of the projectile 

up to He + (n = 5), with the target electron remaining in the ground state; and 

continuum pseudostates centred on the target. The charge transfer states included 

electron exchange and translation factors. The inclusion of pseudostates at the 

lowest energy caused unitarity errors, which were otherwise not present. Since the 

inclusion of pseudostates to represent the continuum is only necessary at higher 

energies, they were omitted. 

The results of the calculations for the singlet metastable state have been com­

pared to the one-electron calculation of Fritsch. Although the total one-electron 

transfer cross-sections are generally in good agreement, there are differences in the 

state selective transfer. These are thought to be accountable for by considering 

the excitation cross-sections. The excitation cross-sections for the current calcu­

lation are significantly larger than those found by Fritsch, and especially so at low 

collision energy. The current excitation cross-sections are shown to be very well 

converged. Fritsch's one-electron model may not be sufficient for the calculation 

of excitation cross-sections from this state. Since calculations of this type are 

very much basis dependent, the inaccuracies of the excitation channel can also be 

reflected in the charge transfer channels. 

Charge transfer and excitation cross-sections from the initial triplet metastable 

state are systematically lower than those from the singlet state. This is because 

the triplet state is more deeply bound. Although the cross-sections from the 

triplet state are smaller than those from the singlet they may prove to be more 

important because the metastable triplet state is longer lived and will therefore 
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have an effect on the 468.5nm spectrum deeper into the plasma. 

In the current calculation there were no basis functions to represent two-

electron charge transfer, one-electron transfer with simultaneous excitation of the 

target or capture to the continuum. It would be interesting to see if the current 

calculations would be affected by the inclusion of these states. If higher transfer 

states were included the 468.5nm emission cross-section could be modified by the 

effect of electrons cascading down to the (n = 4) level from higher levels. Calcu­

lations with the current basis but with the electron exchange terms omitted may 

give some insight into the differences between the current and the one-electron 

calculations. 

Data for charge transfer from both the singlet and triplet initial states have 

been presented in a form suitable for direct inclusion into the analysis database 

at JET. 
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Appendix A 

Results in ADF01 format 

A . l ADF01 files for the ADAS Database 

ADF01 is a strict formatting convention for data files containing charge-transfer 

cross-sections for ion-atom collisions. The layout of the file can be seen in sections 

A. 1.1 and A. 1.2 where the data calculated for transfer from the singlet and triplet 

metastable states are shown respectively. 

The first line gives the colliding species and charges. Characters after a slash 

are comments and are ignored by the reading routines. The second line gives 

the number of impact energies in the next block, if this is negative the reading 

program knows there are no more blocks. The minimum and maximum levels of 

the receiving system, in this case from 1 to 5 are then given. The collision energies 

are given in keV/amu and the parameter alpha is read in. The parameter alpha is 

used to extrapolate for cross-sections to higher lying states (not given here). For 

each collision energy a grand total, a sub-total for a given n-shell and individual 

angular momentum resolved charge transfer cross-sections are given. 
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A . l . l ADF01 File for Transfer from He(ls2s 1S) 

HE+ 2 HE+ 0 (2) / receiver, donor (donor state index) (2)=He(ls2slS) 
6 / number of energies 
1 / nmin 
5 / nmax 

4.00D+00 1.00D+01 2.50D+01 4.00D+01 1.00D+02 2.00D+02 / (kev/amu) 
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx / alpha 
1.60D-14 6.20D-15 1.05D-15 2.94D-16 8.50D-18 1.88D-18 / to t a l 

/ p a r t i a l n 1 m 
1 4 38D-20 4 68D-18 2 25D-18 1 .01D-18 1 .70D-18 7 .94D-•19 
1 0 4 38D-20 4 68D-18 2 25D-18 1 01D-18 1 70D-18 7 94D- 19 
2 1 67D-16 2 61D-16 2 09D-16 1 14D-16 2 34D-18 2 60D-19 
2 0 5 63D-17 1 24D-16 5 01D-17 1 12D-17 5 79D-19 1 57D-19 
2 1 1 11D-16 1 37D-16 1 59D-16 1 03D-16 1 76D-18 1 03D-19 
3 6 25D-15 2 53D-15 4 42D-16 9 00D-17 1 32D-18 1 67D-19 
3 0 1 48D-15 4 29D-16 9 72D-17 2 74D-17 4 63D-19 1 05D-19 
3 1 2 71D-15 1 29D-15 2 00D-16 3 26D-17 4 39D-19 3 47D-20 
3 2 2 06D-15 8 15D-16 1 45D-16 3 00D-17 4 16D-19 2 69D-20 
4 4 99D-15 1 98D-15 2 00D-16 4 19D-17 8 41D-19 1 90D-19 
4 0 3 53D-16 1 56D-16 1 99D-17 2 24D-18 1 81D-19 4 99D-20 
4 1 1 26D-15 4 63D-16 5 87D-17 1 11D-17 3 07D-19 2 97D-20 
4 2 1 50D-15 8 22D-16 6 93D-17 1 48D-17 2 98D-19 4 46D-20 
4 3 1 88D-15 5 43D-16 5 23D-17 1 38D-17 5 54D-20 6 58D-20 
5 4 57D-15 1 42D-15 1 96D-16 4 66D-17 2 30D-18 4 66D-19 
5 0 2 76D-16 1 62D-16 1 46D-17 6 92D-18 5 24D-19 3 91D-20 
5 1 1 10D-15 3 83D-16 6 35D-17 1 41D-17 8 81D-19 1 26D-19 
5 2 1 04D-15 3 30D-16 5 90D-17 1 24D-17 5 56D-19 1 35D-19 
5 3 1 10D-15 2 37D-16 3 84D-17 6 43D-18 2 43D-19 1 06D-19 
5 4 1 06D-15 3 04D-16 2 00D-17 6 75D-18 9 96D-20 5 99D-20 

-1 -1 

c 
C ADF01 F i l e for transfer cross-sections to He++ from He(ls2slS). 
C Data calculated by P.Davies using the SCCC method 
C 
C Peter Davies Dec. 1997 
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A.1.2 ADF01 File for transfer from He(ls2s 3S) 

HE+ 2 HE+ 0 (3) / receiver, donor (donor state index) (3)=He(ls2s3S) 
6 / number of energies 
1 / nmin 
5 / nmax 

4 00D+00 1 00D+01 2 50D+01 4 00D+01 1 00D+02 2 00D+02 / 
xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx xxxxxxxx / 
1 38D- 14 5 62D- 15 8 48D- 16 2 30D- 16 1 80D- 17 2 42D- 18 / 

n 1 m / 
1 9 34D- 20 2 58D- 18 1 37D- 17 1 28D- 17 1 54D- 18 7 00D- 19 
1 0 9 34D- 20 2 58D- 18 1 37D- 17 1 28D- 17 1 54D- 18 7 00D- 19 
2 5 47D- 16 5 12D- 16 2 32D- 16 6 62D- 17 6 19D- 18 6 60D- 19 
2 0 9 71D- 17 6 62D- 17 6 00D- 17 1 96D- 17 2 59D- 18 3 87D- 19 
2 1 4 50D- 16 4 46D- 16 1 72D- 16 4 66D- 17 3 60D- 18 2 73D- 19 
3 6 29D- 15 2 52D- 15 2 52D- 16 4 67D- 17 3 44D- 18 3 64D- 19 
3 0 3 76D- 16 9 64D- 17 1 57D- 17 7 11D- 18 9 76D- 19 1 79D- 19 
3 1 3 19D- 15 1 38D- 15 1 54D- 16 2 64D- 17 1 98D- 18 1 49D- 19 
3 2 2 72D- 15 1 04D- 15 8 27D- 17 1 32D- 17 4 87D- 19 3 59D- 20 
4 3 57D- 15 1 58D- 15 1 55D- 16 2 76D- 17 1 27D- 18 1 89D- 19 
4 0 1 95D- 16 8 14D- 17 1 40D- 17 3 26D- 18 2 62D- 19 5 99D- 20 
4 1 9 47D- 16 5 42D- 16 8 11D- 17 1 29D- 17 6 39D- 19 5 79D- 20 
4 2 8 04D- 16 3 73D- 16 3 38D- 17 5 61D- 18 1 88D- 19 3 35D- 20 
4 3 1 62D- 15 5 80D- 16 2 65D- 17 5 78D- 18 1 82D- 19 3 75D- 20 
5 3 22D- 15 1 01D- 15 1 95D- 16 7 68D- 17 5 58D- 18 5 04D- 19 
5 0 7 52D- 17 9 19D- 17 2 69D- 17 1 01D- 17 1 14D- 18 7 43D- 20 
5 1 3 28D- 16 2 37D- 16 7 43D- 17 3 03D- 17 2 41D- 18 1 52D- 19 
5 2 5 69D- 16 1 72D- 16 4 12D- 17 1 97D- 17 1 54D- 18 1 60D- 19 
5 3 1 39D- 15 3 15D- 16 2 65D- 17 8 75D- 18 3 24D- 19 7 88D- 20 
5 4 8 55D- 16 1 94D- 16 2 62D- 17 7 90D- 18 1 63D- 19 3 92D- 20 

-1 -1 

c 
C ADF01 F i l e for transfer cross-sections to He++ from He(ls2s3S), 
C Data calculated by P.Davies using the SCCC method 
C 
C Peter Davies Dec. 1997 
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Index 

ADAS, 71 

angular momentum operator, 19 

aspect ratio, 59 

atom, 1 

atomic units, 4 

axis 

internuclear, 12 

of quantization, 13 

basis, 15, 77 

function, 9, 35 

Gaussian, 7, 17 

Slater, 15, 18 

Sturmian, 16 

binding energy, 77 

body-fixed, 13 

Born approximation, 4 

bremsstrahlung, 6, 52 

capture, 1 

charge exchange, 1, 71, 74 

spectroscopy, 67 

charge-transfer, 77 

Chebyshev interpolation, 46 

classical approximation, 3 

classical trajectory, 4 

Clebsch-Gordan coefficient, 20 

close-coupling method, 5 

co-ordinate 

centre of mass, 11 

confocal elliptic, 26 

laboratory, 11 

prolate spheroidal, 24, 26, 31 

spherical polar, 19 

collision, 1 

high energy, 4 

intermediate energy, 5 

low energy, 5 

plane, 13 

proton-helium, 75 

relativistic, 5 

continuum, 23 

Coulomb potential, 3 

cross-section, 2, 74 

convergence, 87 

Debye length, 54 
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detailed balance, 10 

deuterium, 51 

diagnostic 

density, 65 

electron temperature, 64 

impurity content, 65 

ion temperature, 64 

neutron, 65 

differential cross-section, 2 

differential equation, 47 

direct excitation, 1 

divertor, 61 

divided differences, 49 

Doppler broadening, 64 

elastic collision, 1 

electron, 1 

electron cyclotron frequency, 54 

electron plasma frequency, 53 

electron-electron repulsion, 19, 20, 31 

fission, 50 

fusion, 50 

plasma, 6 

Gauss-Laguerre quadrature, 44 

Gauss-Legendre quadrature, 45 

Gill-Miller algorithm, 48 

helium ground state, 22 

hydrogenic function, 21 

ignition, 57 

impact parameter, 10 

approximation, 11 

impurities, 6 

independent event model, 8 

interpolation, 45 

ion, 1 

distribution function, 63 

ionization, 1, 36 

ITER, 62 

JET, 58 

Laguerre polynomial, 44 

Lawson criterion, 56 

Legendre polynomial, 31, 45 

limiter, 60 

magnetohydrodynamics, 54 

matrix 

coupling, 10, 23, 82 

element, 23, 26, 42, 80 

interpolation, 45 

overlap, 10, 23 

Maxwell's equations, 55 

metastable, 7, 77, 97, 100 

Monte Carlo method, 4 

multipole expansion, 20, 24 
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Neumann expansion, 33 

neutral-beam 

attenuation, 67 

heating, 58 

injection, 6, 65 

numerical integral, 44 

occupation amplitude, 9, 47, 94 

ohmic heating, 57 

orthogonalization, 18 

parallel, 38 

particle flux, 63 

perturbed stationary state, 5 

plasma, 52 

confinement, 55 

heating, 57 

ideal, 53 

impurities, 61 

plume effect, 69 

probability distribution, 82 

projectile, 1 

proton-proton chain, 51 

pseudostates, 23 

PVM, 39 

quantization axis, 13 

radio-frequency heating, 58 

resonance, 2 

Schrodinger, 10 

semiclassical, 5 

separatrix, 61 

space-fixed, 13 

spherical harmonic, 18, 31 

real, 13 

symmetric collision system, 

target, 1 

Thompson scattering, 64 

tokamak, 58 

translation factor, 14, 25 

tritium, 51 

unitarity, 10 

error, 48 

united atom, 36 

units, 4 

wave-function, 9 

hydrogenic, 18 

two-electron, 17 
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