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Abstract 

We investigate the possibility of identifying ln ( l /x ) dynamics from studies of the 

final state in electron - proton deep inelastic scattering (DIS) in the small x region of 

the HERA collider at DESY. Motivated by recent observations at HERA we consider 

again the measurement of DIS events containing an identified forward jet as proposed by 

Mueller. We find that the shape of the x distribution of the data is described well by a 

prediction based on ln ( l / x ) dynamics. 

Since forward jets are difficult to identify and measure accurately in the experiments 

we suggest the study of deep inelastic events containing an energetic isolated photon. We 

quantify the enhancement arising from the leading ln(I/a;) gluon emissions with a view 

to using such events to identify the underlying dynamics in the small x regime at HERA. 

To overcome the small event rate of jet + 7 we propose that the forward jet may 

alternatively be identified through a single energetic decay product, the 7r°. We investigate 

the feasibility of utilizing these deep inelastic + forward 7r° events as an indicator of the 

small X dynamics. Motivated by this study the H I collaboration recently performed a 

DIS + 7 r ° measurement. Therefore we update our BFKL prediction imposing the H I cuts 

in the calculation. We fix the normalisation by comparing with HERA data for DIS + 

jet. 

Finally we study the transverse momentum (pr) spectrum of charged particles pro

duced in DIS at small Bjorken x in the central region between the current jet and the 

proton remnants. Again we normalize the BFKL prediction by comparing with the H I 

DIS + jet data. We calculate the spectrum at large px with the BFKL ln(l/a;) resurrmia-

tion included and then repeat the calculation with it omitted. We find that data favour 

the former. 
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Chapter 1 

The structure of the proton 

1.1 From atoms to quarks 

For the last one hundred years great effort has been devoted to the investigation of the 

structure of matter ^. Already in the nineteenth century molecules were found to be made 

up from atoms. That these atoms themselves have substructure became apparent soon 

after with the first step being provided by the discovery of the electron in 1897. A few 

years later Rutherford and collaborators performed their famous experiments in which 

they let a particles scatter off gold foil. That the a particles were reflected at much 

larger angles than one would expect if atoms were the basic constituents of matter led 

him to propose that the atoms themselves were built up from even smaller constituents 

in 1911. It seemed an atom contains a massive nucleus and large regions of empty space. 

This discovery triggered a lot of theoretical and experimental work. On the theoretical 

side models for the atom were developed and non-relativistic quantum mechanics was 

formulated. The new theory turned out to be quite successful as it indeed allowed for 

a description of previously unexplained experimental data concerning the spectra of hy

drogen, the inelastic scattering of electrons off atoms and x-ray scattering. However, the 

non-relativistic quantum mechanics predictions were based on the assumption that the 

nucleus is pointlike. That this is not the case was indicated by the discovery of the neutron 

^We can only provide a short overview here. More detailed reviews may be found in [1] and [2]. 
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in 1932 combined with the results of the SLAC experiments in which now higher energy 
electron beams where elastically scattered off atoms. The nucleus was then thought of as 
made up from nucleons, i.e. from protons and neutrons that had to be held together by a 
new force which unlike the electromagnetic force also acts on electrically neutral objects 
and which extends over the dimensions of the nucleon. This new force was named the 
strong force because it had to be strong enough to overcome the Coulomb repulsion be
tween protons and to hold the nucleons together within the small volume of the nucleus. 
Later, with the discovery of more and more new particles, a classification for strongly 
interacting particles was introduced. These so-called hadrons were divided according to 
their spin into baryon which are fermions and mesons which are bosons. In 1964 Gell-
Mann [3] and Zweig [4] both proposed that hadrons may still not be the fundamental 
objects, but rather the fundamental building blocks are spin-| particles with fractional 
charges which they called quarks. In their theory baryons are composed from three quarks 
and mesons from a quark (q) and an antiquark (q). The quarks are characterized by their 
flavour which can assume six different values, up (u), down (d), charm(c), strange ( 5 ) , top 
(i) and bottom (6). So a proton, for example, has the quark content uud and a /C"*" meson 
us. This quark model allowed an explanation of the properties of hadrons, however, since 
there was no experimental evidence for the existence of quarks, it was generally simply 
regarded as a helpful mathematical framework. That hadrons indeed have substructure 
was only revealed in the experiments at the Stanford electron linear accelerator (SLAC) 
which were started in 1968. With the help of a high energy electron beam pointlike con
stituents were found in the proton which were named partons. Soon after it became clear 
that these partons were nothing else but the quarks of Gell-Mann and Zweig. 

Our modern day understanding of the structure of hadrons evolved out of the need 

to find explanations for some problems which the quark model left unsolved. Firstly, 

it was not clear why only the combinations qqq and qq occured and not, for example, 

qq. Secondly, no free quarks had been observed. A third problem arose when the A"*""̂  

resonance was discovered which has spin | and quark content uuu. The three u quarks 

can be in a state where their spins are parallel, but this state then violates the exclusion 

principle. A solution to this problem is the introduction of a new quantum number. 



Chapter 1. The structure of the proton 3 

colour. If colour assumes three different values - blue, green and red, say - the A++ can 
be antisymmetric in its colour wavefunction and therefore obeys the exclusion principle. 
The proposal of colour has a second advantage: it in fact leads to the solution of the 
other two problems which we mentioned above if one also postulates that hadrons are 
colour singlets (or colourless) under the non-Abelian SU(3) colour symmetry group. As 
a consequence of the introduction of colour a new gauge theory was developed, namely 
Quantum Chromodynamics (QCD). 

QCD describes the interaction between quarks and gluons. The gluons are massless 

bosons whose role is similar to the role of the photon in Quantum Electrodynamics (QED). 

However, unlike the photon in QED, gluons carry colour charge themselves which allows 

them to interact amongst each other rather than only with quarks. QCD is a non-Abelian 

theory. As a direct consequence of the self-coupling of gluons in QCD colour charges are 

"antiscreened" in contrary to the charge screening of the electric charge in QED. This 

means that as the distance between two quarks or gluons increases the colour force between 

them also increases. So it follows naturally that they are confined inside the hadron and 

that the observation of free quarks is not possible. If, on the other hand, the distance 

between two field quanta is decreased the colour force decreases which implies that at very 

short distances the quarks inside a hadron behave as quasi-free particles. This property 

is called asymptotic freedom and forms the basis of perturbative QCD calculations. QCD 

has already proved very successful in describing many hadronic phenomena. However, 

as we wil l discuss in this thesis, the DESY electron - proton collider HERA offers us 

the opportunity to probe QCD in a new, previously unexplored kinematic regime. In 

particular we will study the QCD prediction for the quark and gluon content of the 

proton in the so-called "small x" region. 

1.2 Deep inelastic scattering 

Above we saw that with the increasing energy of the probe successive layers of substructure 

inside matter could be revealed. So to investigate the structure of the proton obviously a 

very energetic probe is needed. The best conditions for probing the proton are provided 
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X 

Figure 1.1: Inelastic electron - proton scattering in the one photon exchange approximation. 

by deep inelastic lepton - proton scattering ^ which we will now discuss. For simpHcity 

we wil l concentrate on the deep inelastic scattering of an electron (or positron) off the 

proton, that is the process ep eX. Here X represents all fragments of the proton which 

occur in the final state. The process is shown diagrammatically in Fig. 1.1. The proton p 

can be at rest as in the fixed target experiments or in motion as in collider experiments. 

The four momenta of the proton, the incoming electron and the scattered electron are 

p, pe and Pg, respectively. We neglect the electron mass. The incoming electron emits a 

virtual photon of four momentum q which probes the proton. We define the virtuality 

of the photon by 

Q' ^ -q' ^ -{Pe - P'.y (1.1) 

where then (^^ > 0. At large Q'^ the probe could also he a Z boson. However, we will 

assume here that ^ M | - which is the case for the processes under consideration 

in this thesis - and neglect the contribution from Z exchange. The higher Q'^ the more 

substructure the photon can resolve in the proton and eventually the partonic constituents 

of the proton will become "visible". In fact, the expression "deep" in deep inelastic 

scattering (DIS) means that > Mp where Mp is the mass of the proton. The scattering 

is called "inelastic" when the invariant mass of the hadrons in the final state W'^ = 

{p + qY > M2. 

What is the energy loss u of the electron when it emits the photon? To calculate u we 

^Reviews of deep inelastic lepton - proton scattering can for example be found in refs. [1, 2, 5 - 8]. 
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consider the scattering in the proton rest frame which is equal to the laboratory frame for 
f ixed target experiments. In this frame the incoming and outgoing electron have energy 
Ee and E'^, respectively, and therefore v = E^ — E'^. The photon, the proton and the 
hadronic final state have the four momenta 

q = {v,q). P = {Mp,o), px = {Mp + v,q) (1.2) 

in the proton rest frame. I n the case of elastic scattering the mass on-shell condition for 

the intact proton is then given by 

p\ = { M p ^ v f - q ' = Ml. (1.3) 

Using = — we find 

2Mp 

and the frame invariant definition 

" = & (1-4) 

The scattering can be described completely in terms of the variables Q'^ and v. 

As we shall see i t is, however, convenient to introduce the dimensionless variable 

Bjorken x, which is defined as 

Evaluating the denominator using (1.2) we find 

We w i l l give an interpretation of x below. Another independent dimensionless variable 

describing the process is 

y ^ ^ . (1.8) 
P-Pe 

Evaluating this expression in the proton rest frame we find y = p/Eg which shows that 

y corresponds to the fractional energy loss of the electron in this frame. Both x and y 

are l imi ted to the interval [0,1]. That a; < 1 can be seen in the following way. Baryon 
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number conservation implies that the invariant mass of the final state hadrons is at least 
as large as the proton mass. Therefore 

W' = {p + qy>Ml. (1.9) 

which after substituting the expressions for the momenta given in (1.2) yields 

2Mpu > Q^. (1.10) 

Note that 2Mpi/ = Q^, i.e. x = I, corresponds to elastic scattering. 

1.2.1 Description of the cross section 

We w i l l focus now on the simplest cross section which can be measured in an experiment, 

the so-called "inclusive" cross section, in which only the outgoing electron is observed in 

the final state. The inclusive cross section is the sum of the cross sections for all possible 

hadronic final states. I n Fig. 1.1 the sum of all hadronic final states was represented by 

X. We consider the case where the electron is unpolarized. Investigating the structure 

of the S-matrix element for the process depicted in Fig. 1.1 one finds that the inclusive 

cross section can be wri t ten as the product of a lepton tensor and a hadron tensor 

[5], 

da^L^^Wr (1.11) 

The lepton tensor L ^ j , describes the emission of the vir tual photon by the electron, i.e. 

the top part of the diagram in Fig. 1.1. I t can be calculated in quantum electrodynamics 

w i t h the help of the Feynman rules. We obtain 

spins 

= 2 [pe,pL + P'e.Pe, ' QM ' Pe)] • (1-12) 

The hadron tensor W^^ contains all information concerning the interaction of the vir tual 

photon w i t h the proton, i.e. the lower part of the diagram in Fig. 1.1. We have [5 

X E {p{p)\nm{px)){x{px)\rmp{p)) 
spins' 
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where the sum runs over the final spins and where J'^ is the electromagnetic current. 
Since we sum over all final states and since we consider only unpolarized protons, W^" 
can only depend on the four momenta p and q. We write down the most general tensor 
f o r m for which can be formed f rom the two four momenta [6, 7]: 

W-'^ = -W,g^^ + + ^^q^^q'^ + ^^{p^q^ + q^^). (1.14) 

Here we omit ted a term depending on the antisymmetric tensor ê p̂.̂  which does not 

contribute here because the electromagnetic current on which W^" depends does not 

violate parity. We can simplify (1.14) by noting that is a hermitian operator and by 

requiring conservation of the electromagnetic current, that is ^^J ' ' = 0. Proceeding in 

this way we find that only two of the four terms in (1.14) are independent. We then have 

W\ and W2 are unknown scalar functions which depend on the two independent Lorentz 

invariants that we can fo rm f rom p and q. Often used are Q'^ and or we could also 

take and x which was defined in (1.6). The functions W\ and W2 parametrize our 

ignorance about the structure of the proton. They can be measured in deep inelastic 

scattering experiments and, in principle, can be calculated f r o m QCD. I f we substitute 

(1.15) and (1-12) into the expression (1.11) for the unpolarized cross section and include 

the flux factor and the phase space factor for the outgoing electron, we find [6 

da a 2 
W,M)cos'^-f + 2W,{v,q')sm'^-f (1.16) 

dE'^d9, 4E2 sin''(^ee/2) 

in the proton rest frame. Here E'^ is the energy of the scattered electron and O^e its 

angle w i t h respect to the direction of the incoming electron. Recall that we neglected the 

electron mass. 
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1.3 The naive quark parton model 

We now extend our study of deep inelastic scattering concentrating on a particular model, 

the so-called parton model [9]. The parton model is based on the assumption that a fast 

moving proton appears as a collection of partons which travel in approximately the same 

direction. These partons share the proton's three momentum. I f the wavelength of a 

v i r tua l photon probe is short enough, i.e. Q'^ large, i t sees the proton as consisting of non-

interacting quarks and is being absorbed by a single quark which appears to be pointlike. 

The interaction of the photon wi th the proton can then be expressed as the sum of the 

incoherent scatterings off all charged partons wi th in the proton. This is called the impulse 

approximation. In the parton model we can represent deep inelastic ep scattering by the 

diagram shown in Fig. 1.2 where we indicated that the vir tual photon scatters off a single 

quark inside the proton. 

Figure 1.2: Deep inelastic ep scattering in the parton model. 

Despite its introduction prior to the arrival of quantum chromodynamics, the parton 

model is s t i l l of importance today. In this section we w i l l introduce some observables 

which are used to describe the structure of the proton wi th in the framework of the parton 

model. We w i l l extend these ideas in the following section where we w i l l include QCD 

corrections. 
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1.3.1 Bjorken scaling 

We already mentioned that as Q'^ increases the photon probe sees a parton inside the 

proton as pointlike. The inelastic electron - proton scattering can then be interpreted as 

the elastic scattering of an electron off a quark. I f the parton appears as pointlike there is 

no dimensionful scale describing the scattering. This implies that the functions Wi and 

W2 which we introduced in (1.15) must be dimensionless. They can therefore not depend 

on u and separately but only on the ratio of these two variables. In 1969 Bjorken [10] 

showed that i n the l im i t 

g 2 ^ o o , u^oo (1.17) 

w i t h X = Q"^/2Mpv fixed, W i and W2 become functions of the dimensionless variable x 

and do not depend on Q'^. This property is called Bjorken scaling. In the l imi t (1.17) we 

have 

MpW,(i^,Q')^F,{x) (1.18) 

i^W2{iy,Q')F,{x). (1.19) 

So i f the functions Fi and F2 are measured in an experiment they should not vary wi th 

Q"^. We w i l l see i f this is the case in Section 1.4. 

1.3.2 Interpretation of x 

Deep inelastic scattering in the parton model is often studied in the so-called infinite 

momentum frame in which the proton is travelling very fast. We can choose the direction 

of motion of the proton as the z-axis. Then the four momentum of the proton p^ ~ 

(p, 0, 0,p) w i t h p ^ Mp. Since the proton moves very fast its constituents have to travel 

in approximately the same direction for the proton to remain whole. This implies that 

the transverse components of the struck parton's momentum can be neglected, and its 

momentum can therefore be wri t ten as 

K = ep^ (1-20) 
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Since the parton model assumes that the parton stays close to its mass shell both before 
and after the interaction we have the following mass shell constraint for the scattered 
parton: 

ml=p'^'^{Cp + qy:^2p-q^-Q\ (1.21) 

Here we neglected the proton mass since p > Mp due to our choice of frame. For 

Q"^ ̂  rrig, the mass of the parton, we then find 

e = = X . (1.22) 2p • q 

We see that the kinematic variable x which we introduced earlier in the parton model can 

be interpreted as the fraction of the proton's momentum which is carried by the struck 

quark in the infini te momentum frame. 

1.3.3 Parton distributions 

Now we know that i f the momentum p of the proton is large compared to the masses of 

the particles involved in the scattering the fraction of the proton's momentum which the 

struck quark carries is equal to x. But what is the probability that a quark has a certain 

momentum fraction? We define the parton distribution / , ( x ) as the probabihty of finding 

a parton i i n the proton w i t h a fraction x of its momentum. That is fi{x)dx is the number 

of partons of type i which have a momentum between xp and (x + dx)p. We w i l l use the 

following notation: we wri te the u-quark distribution 

f u i x ) = u{x) (1.23) 

and analogously for all other quark and antiquark flavours and the gluon. 

In the original quark model of Gell-Mann and Zweig the quark content of the proton 

is uud. These three quarks are referred to as valence quarks. They carry the quantum 

numbers of the proton. However, we have to also allow these valence quarks to radiate 

gluons. V i a the pair creation mechanism the gluons can then produce additional quark-

antiquark pairs which are called sea quarks. Therefore the probabiHty of finding for 
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example a u-quark inside the proton is given by the sum of the probabihties of finding a 
valence quark uy and a sea quark us. In our notation 

u{x) = uv{x) + us{x) (1-24) 

and for a u-quark 

u{x) = us{x). (1.25) 

When the proton is probed at a scale Q the sea quarks of all flavours wi th m , < Q can 

be found. 

The parton model does not predict the magnitude of the parton distributions, they 

have to be obtained f r o m experiment. Nevertheless there are some straightforward con

straints. 

S u m rules 

We have already mentioned that the quantum numbers of the proton, that is charge, 

baryon number and strangeness, are carried by the valence quarks. The correct quantum 

numbers are obtained for two valence u-quarks and one valence c?-quark inside the proton, 

and therefore we have 

r dx [u{x) - u{x)] = [^dxuv{x) = 2 (1.26) 
Jo Jo 

[ dx[d{x)-d{x)] = [ dxdv{x) = 1 (1.27) 
Jo Jo 

[ dx [s{x) - s{x)] = 0. (1.28) 
Jo 

Furthermore, the momenta of all partons inside the proton must add up to the momentum 

p of the proton, i.e. 

J2j^dxxpMx)^p, (1.29) 

which implies that 

J2 f ' d x x f i i x ) ^ ! . (1.30) 

These sum rules already provide us w i t h some constraints on the parton distributions but 

so far we have not fixed their shape in x. 
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Behav iour in the l imits a; —> 1 and x 0 

Addi t ional information on the parton distributions can be obtained by studying their 

behaviour as x ^ 0 or 1. We start by considering the l imi t x —> 1. In this case we can 

predict the x dependence of the parton distributions by applying spectator counting rules 

11]. The idea is to count the number of partons which do not take part in the interaction, 

the so-called spectators. I f x 1 for one parton then this parton must carry almost all 

of the proton's momentum while the spectators share the remaining fraction. So clearly 

the parton distr ibution has to vanish as x 1. Also hard gluon exchanges between the 

valence quarks are necessary to transfer most of the proton's momentum to one parton. 

The spectator counting rules predict that the distribution for parton i behaves as [7] 

/ , ( x ) ~ (1 - x ) ^ - - ^ (1.31) 

as X 1. Here Ug is the min imum number of spectators present in the proton. Let 

us for example consider the distribution of a valence quark in the proton. Then Us — 2 

since there are at least two spectators, namely the other two valence quarks. This is 

shown symbolically in Fig. 1.3(a) where the parton whose distribution we are studying is 

marked by an arrow. There we also indicated the hard gluon exchanges. Figs. 1.3(b) and 

(c) indicate for the gluon and the sea quark distributions. In summary the counting 

rules predict 

qv{x) ~ ( 1 - x ) ' 

Qs{x) ~ ( 1 - x ) ' (1.32) 

9{x) ~ ( 1 - x ) ' 

as X —> 1. 

The behaviour in the l imi t x —> 0, on the other hand, is given by Regge theory, a 

theory which allowed for the description of the scattering of strongly interacting particles 

before the advent of QCD. Regge theory predicts that the total cross section of an elastic 

scattering process behaves as 

atot ~ s"^'^-' (1.33) 
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(a) 113 = 2 (b) n, = 3 (c) = 4 

Figure 1.3: The minimum number of spectators, n^, for (a) a valence quark, (b) a gluon, and (c) a sea 
quark. The parton under consideration is marked by an arrow. 

at high energies where s is the centre-of-mass energy squared. Here a(0) is the intercept of 

a Regge trajectory which is an approximately linear function in the Mandelstam variable 

i , the (negative of the) four momentum transfer squared, that is 

a{t) ~ a(0) - I - at. (1.34) 

A Regge trajectory relates the mass m of a particle wi th its spin J. For t > 0 particles w i th 

similar quantum numbers lie on (approximately exchange degenerate) Regge trajectories 

w i t h 

a ( m ' ) = J (1.35) 

at integer values of J. More detail can for example be found in refs. [12, 13]. Of importance 

here is that Regge theory also predicts the x dependence of the parton distributions as 

x —> 0 in terms of trajectories. We have [7]: 

qv{x) ~ 

qs{x) ~ a;-"^(°) (1.36) 

g{x) ~ x-^^^" ' 

as 2; 0 where aji is the so-called leading meson trajectory wi th intercept Q ' R ( O ) ~ | 

and a p is the soft Pomeron trajectory wi th Q;F (0 ) ~ 1. 

Together w i t h the sum rules the constraints (1.32) and (1.36) in the hmits x 0 and 

1 can be used to develop physically reasonable parametrisations for parton distributions 

which only depend on x. 
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1.3.4 Structure functions 

Once we know the parton distributions we can obtain the cross section for deep inelastic 

ep scattering in the parton model. In this model we can express the cross section for 

this process as the incoherent sum of the cross sections for all possible electron - parton 

scatterings weighted by the probability that a parton carrying a fraction ^ of the proton's 

momentum is struck inside the proton. Choosing x and Q'^ as the two independent 

variables we have the differential cross section 

where the sum runs over all quark and antiquark flavours. We indicate by a hat the vari

ables for the partonic eq subprocess. The cross section for eq scattering can be calculated 

and one finds [6, 7 

dt P \ . 

w i t h eg the charge of quark q in units of the electron charge e. We evaluate the invariants 

for the partonic subprocess neglecting masses in the following way: 

^ = {Pq+ Pef = [xp + Pef ^ 2xp • Pe ~ X S 

i={p.-p'gf = -Q'c^-xys (1.39) 

u — —s — t — —x(l — y)s. 

Here we used the centre-of-mass energy squared s = [p-^-p^Y ~ 2p-pe which we substituted 

in (1.8) to obtain 

, . ^ = « ! . (1.40) 
s xs 

Uti l iz ing expressions (1.39) we can simplify (1.38) to give 

da^q 2-Ka^el 
iQ^ Q> Ll + a-Wl- (1.41) 

Since as we showed above x = we can introduce a (^-function ^(x — i^) in (1.41) and take 

the differential i n x. Then we substitute the resulting expression into (1.37) leading to 

3 ^ = ! ^ i : i ' < ^ ^ / , ( f l » j | [ i + ( i - . ) 1 * ( - « (1.42) 
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for the ep cross section. 

On the other hand we can also derive an expression for the cross section d^a/dxdQ^ 

f r o m L^i, and W^" given in (1.12) and (1.15), respectively. Instead of Wi and W2 i t is 

convenient to introduce the structure functions Fi and F2, given by 

Fi = MpWi (1.43) 

F, = P-IW2. (1.44) 
Mp 

Substituting into (1.15) we obtain [6, 7 

'y'xF,{x) + {l-y)F2ix)] (1.45) 
dxdQ^ xQ^ 

for s S> Mp. Simply rewrit ing the equation we find 

Now, however, we notice that we have derived two expressions for the cross section for 

deep inelastic ep scattering, (1-42) and (1.46). We compare the coefficients of [1 -|- (1 — yY 

and y'^ i n the two equations and obtain the structure functions in the parton model: 

F2{x) = E e H ( ^ ) (1-47) 

= ^ M . (1.48) 

Equation (1.48) is known as the Callan-Gross relation and is a property of the sp in - | 

nature of the quarks. Note that Fi and F2 only depend on x, not on (J^; we say that 

they show Bjorken scaling. Although the first measurements at SLAG [14] confirmed this 

and led to the parton model, subsequent more precise measurements [15, 16] showed that 

Bjorken scaling is violated. In the following section we w i l l see why this is the case. 
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1.4 The QCD-improved parton model 

Above we found that in the naive quark parton model the structure functions are indepen

dent of Q^. Let us now imagine we probe the proton wi th a photon whose vir tual i ty 

is even higher. As Q'^ increases the photon not only resolves the valence quarks but also 

gluons and sea quarks. This means that an increasing number of partons is sharing the 

proton's momentum. Therefore, the higher Q'^ the more likely i t is to find partons wi th 

small momentum fraction x and the less likely i t is to discover partons w i t h high x. This 

implies that the parton distributions, and therefore the structure function F2, rise w i th 

at small x and fa l l w i t h Q'^ at high x. In perturbative QCD we can calculate these 

(a) (b) (c) 

(d) (e) (f) 

>= 
Figure 1.4: The 0{as) contributions to deep inelastic ep scattering from (a) - (c) virtual gluons, (d) 
(e) real gluons, and (f) a gluon inside the proton. 

scaling violations i f is large enough for the strong coupling constant as to be small. 

Then the parton model diagram Fig. 1.2 corresponds to the leading order expression and 

we have to include the 0{as) contributions. The processes contributing to deep inelastic 

ep scattering at 0{as) are shown diagrammatically in Fig. 1.4. Diagrams (a) - (c) repre

sent the v i r tua l gluon contributions whereas diagrams (d) and (e) show contributions due 
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Figure 1.5: A higher twist contribution to deep inelastic ep scattering. 

to the emission of real gluons. Note that at 0{as) the vir tual photon can interact w i th a 

gluon in the proton via a quark - antiquark pair (7^ fusion), see Fig. 1.4(f). Actually at 

this order the struck quark could also interact wi th a quark in the final state as is shown 

in Fig. 1.5. These final state interactions are referred to as higher twist contributions and 

are suppressed by a factor ~ l / Q ^ compared to the diagrams in Fig. 1.4 [8]. Therefore the 

parton model assumption that the timescale on which the interaction of the photon wi th 

a parton occurs is a lot shorter than the interaction time for partons inside the proton is 

s t i l l true here i f is large. Hence we can work in the framework of the QCD-improved 

parton model. 

1.4.1 Q C D description of scaling violations 

Above we explained that QCD predicts that Bjorken scaling is violated and that the 

structure function F2 depends on Q'^. As we shall now see, QCD does not tell us the 

absolute value of F2 for a given Q^, rather i t describes how F2 varies w i th Q'^ f r om a given 

input . 

I n the previous section we found that in the quark parton model F2 is given by (1.47) 

which we can rewrite in the fo rm 

X g " 

The effect of including the 0{as) contributions due to emission of real gluons (Figs. 1.4(d) 
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and (e)) can be calculated in perturbative QCD wi th the result [2 

^ , -̂ 0 { ' [ V 27r V r / J 

Here Pgg is a so-called splitting function which can be calculated using perturbative QCD. 

We w i l l explain its meaning below. The ln{Q'^/p'^) arises f rom the integration over the 

transverse momentum squared k j of the emitted gluon. We have 

I T = In - J (1.51) 

where we introduced an arbitrary lower Umit p'^ to avoid integrating over the singularity 

aX kx = 0 which corresponds to the gluon being emitted coUinearly to the parent quark. 

So (1.50) contains an arbitrary parameter and a potentially singular term ln((5^//^^). 

However, we are able to restore the perturbative expansion by factoring the in i t ia l state 

singularities into redefined parton distributions at some mass scale (which depends 

on the factorisation scheme used). This procedure introduces the dependence into the 

parton distributions which now have the fo rm 

9 ( x , g ^ ) = qix) + ^ f^-iq{tQ')Pgg('-] J 9 1 ) . (1.52) 

F2/X then has the same fo rm as (1.49) but w i th q{^) q{^,Q^)- The running parton 

densities q[x, Q^) are finite because F2 is an observable. They have the important property 

of universality which we w i l l now briefly explain. The factorisation theorem tells us that a 

hadronic cross section can be wri t ten as the product of the parton density which contains 

all information on the soft process and the partonic cross section a, which describes the 

hard scattering [17]. We have 

i 

where / , is the density of parton fi = qi or g. The hard scattering term CT,- can be 

calculated f r o m perturbative QCD. I t depends on the partonic process under consideration 

but is independent of the hadron which contains the interacting parton. The parton 

densities on the other hand are universal. This means that they are independent of the 

partonic process. They only depend on the parent hadron, so for example the u quark 
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density inside the pion differs f rom that in the proton. Therefore the same parton densities 
can be used both in hadron - hadron and in hadron - lepton interactions. 

How do the parton densities vary wi th I f we differentiate (1.52) we find 

aq{x,Q') as /•• di , ( x \ 

This is a DGLAP equation (Dokshitzer-Gribov-Lipatov-Altarelli-Parisi) [18, 19]. I t tells 

us how a parton distribution evolves wi th Q'^ once we know its x dependence at some scale 

QQ. ( In the following we set = I GeV^.) These "starting distributions" q{x, Ql) are 

not given by perturbative QCD and at present have to be determined f rom experiment. 

Let us now return to the split t ing function Pqq. A n interpretation of P,, can be found 

by defining the funct ion 

P , ^ , ( 2 , Q^) = 8{l-z) + ^ Pqg{z) I n f + higher orders. (1.55) 
Zn \p^J 

Pg^q{z,Q'^) describes the probability density of finding a quark inside the parent quark 

which carries away a fraction z of its momentum. For example in (1.50) a quark wi th a 

fract ion ^ of the proton's momentum emitted a gluon reducing the quark's momentum 

fract ion to x, so that z — x/^, see Fig. 1.6. We have already mentioned that Pgg can be 

calculated in perturbative QCD. To lowest order one finds [7] 

4 1 - I - 2 ^ 

= 3 (1-56) 

which is obviously singular for z = 1. This singularity is canceled i f we include the vir tual 

contributions to F2/X shown in Figs. 1.4. P,, is then modified to [7 

P,,iz) = l ^ ^ ^ + 2S{l-z) (1.57) 

where we used the "-|- prescription" defined by 

(1.58) 

Jo (1 - 2 ) + Jo \ - z 

w i t h (1 — z)+ = 1 — z for 2 < 1. We have now regularized final and ini t ia l state singularities 

i n F2IX. The remaining ultraviolet divergencies are swept into the running of the coupling 

as. 
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Pq = —^ ^ Pq = ZPq = W 

Figure 1.6: A quark of momentum pg = ^p emits a gluon and remains with momentum p'^ = xp where 
p is the momentum of the proton. Then the final quark carries a fraction z = x/$, of the parent quark's 
momentum. 

D G L A P equations 

We st i l l have to add the contribution to F2/X f rom the photon - gluon fusion process 

displayed in Fig. 1.4(f) which has the fo rm [6 

F t j x ^ Q ^ ) Mi^,.as p ( x \ (Q^\ 

where Pgg is defined in analogy to P,,, that is Pgg{z) is a measure for the probability that 

a gluon annihilates into a qq pair where the quark carries a fraction z of its momentum. 

Including this contribution in (1.54) leads to the complete D G L A P equation for the quark 

density [6]: 

for all quark flavours / separately. Similarly one can derive the D G L A P evolution equation 

for the gluon density which is given by [6 

dg(x,Q') as d^ 
d\nQ^ g / ; f { i : , .K . « v „ ( f ) H - . « . a v „ ( f ) ) . (1.61) 

The structure functions Pgg, Pgg and Pgg have interpretations analogous to Pgg and can 

also be calculated in perturbative QCD. The leading order expressions are for example 

given in refs. [6, 7], and next-to-leading in refs. [17, 20]. 

So in summary we found that in perturbative QCD the evolution of the quark and 

gluon densities is described by the D G L A P equations (1.60) and (1.61). The starting 

distributions for the evolution at a low scale Ql have to be determined f rom experiment 

assuming an input fo rm in x which obeys the sum rules and the l imi t ing behaviour which 
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we discussed above. This procedure is followed in the so-called global analyses; for some 

recent sets see [21 - 23]. Alternatively one may generate the parton distributions dynam

ically starting f rom an input fo rm for the valence quarks and a valence-hke input for the 

sea quarks and gluons, as was done in [24]. 

This concludes the basic introduction into deep inelastic ep scattering. In the next 

chapter we w i l l return to the D G L A P equations and discuss in which region in (x, Q^) they 

are valid. Then we w i l l investigate alternative evolution equations which are appropriate 

in different regions. 



Chapter 2 

Resumming leading logarithms 
evolution equations 

I n this chapter we are concerned wi th large logarithms in the perturbative expansion 

which can occur when x is small or/and when Q'^ is large. These large logarithms need 

to be resummed to ensure convergence. In principle, all a " ln"( l /a ; ) ln^((5^/(5o) should 

be summed, however as we w i l l see in practice only the leading and sometimes the next-

to-leading terms either in ln( l /a ; ) or \n(Q^/Ql) or ln(l/x)\n{Q^/Ql) in the perturbative 

expansion are included. The resummation leads to an evolution equation which describes 

how the gluon density evolves either wi th decreasing x or w i th increasing scale (de

pending on which terms are summed). In the following we w i l l give an overview over 

various evolution equations. 

2.1 A second look at D G L A P evolution 

I n the previous chapter we explained that the D G L A P equations describe the evolution 

of the parton densities w i th for given starting distributions at a lower scale Q^. Our 

aim is now to show that the leading order DGLAP equations resum the leading terms in 

\n{QyQl). (We again set Ql = 1 GeV\) 

Let us for simplicity focus on the non-singlet distribution gjvs = q — q and keep the 

22 
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coupling Q!5 fixed. Imagine now that a quark of momentum emits a gluon and remains 
w i t h momentum xp, so that the final quark carries a fraction z = a;/if of the parent quarks 
momentum. Then we can rewrite the corresponding D G L A P equation in the following 
way [7]: 

= ^ t dz 6{x - ^z) P{z) q^s{L Q')- (2.1) 
Zn Jo Jo 

As a next step we take moments w i th the n-th moment being defined by 

MniQ')^ / -x"q{x,Q'). (2.2) 
Jo X 

Then we find that the evolution equation of the 7i-th moment is given by 

dMn{x,Q^) _ as f^dz fn^ 
d\nQ^ - ^ J o - ' ^^'^ Jo '"'^^'^ ^ 

= ^ An M4Q'). (2.3) 

We see that taking moments has the advantage that the D G L A P equation factorizes 

into a te rm independent of Q'^ (the first integral, A„) and a term containing all the 

dependence (the second integral, M„((5^)). Now we can simply solve this differential 

equation to obtain 

M „ ( g 2 ) = C „ e x p [ 7 „ ( a s ) l n g 2 ] (2.4) 

where the anomalous dimension fnic^s) = asAn/2Tr and C„ is a coefficient. Rewriting 

this equation as a power series expansion we have 

Mn{Q') = C - n X : ^ [7n(as) In . (2.5) 

I t can be shown [18] that i n an axial gauge where the gluon only has two polarisations (and 

therefore no unphysical polarisation) each term C „ ^ ( 7 „ In Q^)'^ corresponds to a ladder 

diagram w i t h r rungs. A n example of such a ladder diagram is given in Fig. 2.1(b). The 

ladder arises f r o m the chain of emissions in Fig. 2.1(a) through application of the optical 

theorem. We assume here that the parent quark is emitted coUinearly wi th the proton, 

so that is only carries longitudinal momentum {(p). The \nQ^ dependence (including the 
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X, Ayr 

r-l> l^r-l)T 
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rungr 
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wcrcnrcff-ffl 
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-(Tcnrcrff-ff-cnn 

/ 

(a) (b) 

Figure 2.1: Diagrammatic representation of probing the proton at large x with a photon of large 
virtuality Q"^. Squaring the amplitude shown in (a) produces the ladder diagram in (b). The DGLAP 
equations sums the leading terms in In which are generated by ladder diagrams of this form with the 
transverse momenta (^.t) strongly ordered and the longitudinal momenta {xip) ordered. 

factorial) of the term which a ladder diagram wi th r rungs generates is due to the r nested 

integrations over the r transverse momenta, 

d>'lT dBrr r^^T dk^. 2J' I 2.1 UAz-î ji 
i i-2 ' 

i n the region where they are strongly ordered, i.e. 

The r integrations 

Jx X^-i ZTT \Xr-l J Jx2 Xi ZTT \ X i / Jxi Z T T \ t, / 

yield the C„7^ for ordered longitudinal momentum fractions 

X < Xr-l < • • • < X2 < Xi < ^. 

(2.6) 

(2.7) 

(2.8) 

(2.9) 

So in summary the D G L A P equation resums the o;5(lnQ^)'' contributions. I t corre

sponds to the sum of ladder diagrams wi th up to r rungs where the transverse momenta 
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(squared) are strongly ordered and the longitudinal momentum fractions are ordered. I t 
is valid when 0:5 In ~ 1, i.e. when is large, and when x is large. A t present the 
D G L A P equation is known up to next-to-leading order. The next-to-leading order terms 
in In (5^ are obtained when the strong ordering (2.7) in the transverse momenta along 
the ladder is relaxed and two adjacent transverse momenta are approximately equal, i.e. 
when kfj^ ~ ^{i+i)T- Then we lose a InQ'^. 

2.2 The double leading logarithm approximation 

As we go to smaller values of x the D G L A P equation loses its validity. The reason is 

that for small x large logarithms in 1/x can occur in the perturbative expansion which 

now have to be resummed. For large Q'^ this is achieved by the double leading logarithm 

approximation ( D L L A ) which resums the terms that contain the leading ln( l /a ;) and the 

leading InQ'^ simultaneously. The D L L A is therefore vahd when a s l n ( l / x ) I n ~ 1 

but a 5 l n ( l / a ; ) and aslnQ'^ separately are small. Since we w i l l not use the D L L A in the 

remainder of this thesis we w i l l here just briefly discuss its form. 

I n the small x region the gluon is the dominant parton because the valence quark 

distributions have to vanish as x —> 0. I t can then be shown [25] that in an axial gauge 

the double leading logarithms are generated by ladder diagrams wi th only gluon rungs, 

see Fig. 2.2. In the D L L A l imi t of the D G L A P equation the transverse momenta are st i l l 

strongly ordered, i.e. they obey (2.7), but in addition the longitudinal momenta also f u l f i l 

strong ordering: 

a; < a;,_a <C ••• < 0:2 < x i < ^. (2.10) 

Let us see what this implies for the gluon distribution. For small x we can approximate 

the D G L A P equation (1.61) for the gluon density by 

^^(^^^') - ^ r ^ , u o ' ) p ( - ] (211) 

For simplicity let us assume that the coupling as is fixed. A further simplication is 
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^I'l^lT^ rungl l§ 

Figure 2.2: Ladder diagram with r gluon rungs. The double leading logarithms are generated by 
diagrams of this form where both the longitudinal (xip) and the transverse momenta (kix) are strongly 
ordered. 

possible since as a; —> 0 also z = x/^ ^ 0 which implies that the splitting function 

(2.12) 
. ( 1 - . ) 

where Nf is the number of quark flavours. Substituting this into (2.11) we f ind the gluon 

density to be 

when one gluon is emitted. Now for a diagram wi th r rungs as shown in Fig. 2.2 we have 

r nested transverse momentum integrations 

3a^ rQ'dk^ 3as_ /"^^It ^ 3as f'^'^T dkfr ^2 14) 

which produce a contribution ^(3a;s/7r)''(ln Q^)''. The leading logarithms in 1/x come 

f r o m the r integrations over the longitudinal momentum fractions 

/ • ^ - / " ^ / ' f f j ( f ) (2.15) 
Jx Jx2 Xi Jx\ 

yielding ^( ln(l /a;)) ' 'Go where we assumed that ig{i,Ql) ^ Go as ^ -> 0 wi th Go a 

constant. Therefore the gluon distribution can be wri t ten as the sum [7 

x<,(x,e^) = G „ E ( i ) ' ( ^ l n Q M n ( i ) ) ' . (2.16) 
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Final ly we utilize the modified Bessel function [25 

/o = E ^ (2.17) 

where for large y 7o ~ exp(y)/^/2'!ry. We set |?/^ — ^^\n{l/x)\n{Q'^) and find 

xg{x,Q') ~ G ' o e x p | 2 ( ^ l n i l n g 2 y | . (2.18) 

for the behaviour of the gluon distribution at small x in the D L L A . Recall that the 

D L L A is appropriate when as l n ( l / x ) In ~ 1 but a s l n ( l / x ) and a s l n Q ^ are small 

individually. The D L L A corresponds to the sum of gluon dominated ladder diagrams 

w i t h both the transverse and the longitudinal momenta strongly ordered. 

2.3 B F K L evolution 

A t the DESY ep collider HERA we are able to probe the proton in the small x region at 

moderate values of Q\ Typically at HERA x/Q^ > 10"^ GeV-^, so for ^ 5 GeV^ we 

can reach values of x which are smaller than 10~^. There as ln( l /a ; ) can be large which 

means that now the leading terms in l n ( l / x ) in the perturbative expansion need to be 

resummed. For very small x these contributions wi l l be more important than the leading 

logarithms in and we should therefore leave the Q'^ dependence unchanged rather than 

performing a resummation. We now relax the strong ordering (2.7) and integrate over 

the whole kr phase space. 

We can easily get an idea of how the resummation of the leading l n ( l / x ) terms affects 

the gluon density i n the proton. In the D L L A we obtained the leading InQ"^ f rom the 

r nested integrations (2.14) over the transverse momenta of the gluons along the chain. 

The leading l n ( l / x ) arose f rom the integrations (2.15) over the longitudinal momentum 

fractions. I f we now relax the strong ordering of the gluon transverse momenta we find 

the following behaviour of the gluon distribution: 
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exp 
-A 

A l n ( i 
X 

~ x-^ (2.19) 

where c is a constant and A = (3as/7r)c. We wi l l see in the following that the resummation 

of the leading l n ( l / x ) contributions indeed yields a behaviour of the gluon distribution of 

this fo rm. 

2.3.1 The leading order B F K L equation 

The resummation of the leading l n ( l / x ) contributions can be performed in a more rigorous 

manner i n QCD. Since we have to include the f u l l Q'^ dependence i t is necessary to work 

w i t h the unintegrated glnon distribution / ( x , k j ) which is related to the conventional scale 

dependent gluon density in the following way: 

- f / ( x , 4 ) . (2.20) 

Bal i t sk i j , Fadin, Kuraev and Lipatov ( B F K L ) [26] found that summing the leading l n ( l / x ) 

contributions leads to an evolution equation for the unintegrated gluon distribution in 

terms of l n ( l / x ) of the fo rm 

d f j x , kl) _ 3as ,2 / - dk'^ j f { x , k ' ^ ) - f { x , k l ) f{x,kl) \ 

d H l / x ) - TT Jo k'S \ \k'^-k'^\ ^ [ik'^^ + k^^]'^!' ^ ^ ^ 
the so-called BFKL equation. We may write the equation in the symbolic fo rm 

= K®f (2.22) 

where K is the BFKL kernel. A f u l l derivation of the B F K L equation is beyond the 

scope of this thesis. We w i l l therefore instead give a simple explanation of its origin and 

outline which contributions are included in the B F K L kernel. Af ter demonstrating how 

the equation can be solved analytically we w i l l discuss its main properties. 
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T 

Figure 2.3: Diagrammatic representation of gluon exchange in the <-channel. 
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Figure 2.4: The diagrams corresponding to (a) - (e) the emission of real and (f) - (i) virtual gluons. 

T h e B F K L kernel 

To see how the structure of the B F K L kernel arises and which contributions i t includes 

i t is easiest to consider the scattering of two quarks wi th the exchange of a gluon in the 

^-channel {qq qq). This process is shown diagrammatically in Fig. 2.3. The exchanged 

gluon is i n a colour octet state (although the B F K L equation actually describes the 

exchange of a colour singlet, see below). The diagram in Fig. 2.3 only gives the leading 

order contribution and we therefore have to include higher order QCD corrections. The 

diagrams corresponding to real gluon emissions are displayed in Figs. 2.4(a) - (e). I t can 

be shown that the sum of these diagrams can be represented by the effective diagram 

shown in Fig. 2.5. The square of the corresponding B F K L vertex factor is given by 

T^kr,k'^) = a s ^ (2.23) 
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1 " ! 

Figure 2.5: The B F K L vertex F which corresponds to the sum of the real gluon emissions shown in 
Figs. 2.4(a) - (e). 

(see for example [7]) where we introduced 

as ^ ^ . (2.24) 
TT 

Although the contributions depicted in Figs. 2.4(a) - (e) are gauge dependent when consid

ered individually, i t can be proven that the resulting effective vertex is gauge independent 

13]. The v i r tua l gluon emissions, which due to interference wi th the t-channel diagram 

in Fig. 2.3 produce corrections at the same order as the above real emissions, are depicted 

in Figs. 2.4 ( f ) - ( i ) . The effect of these vir tual corrections is to "reggeize" the gluon 

exchange [26, 27] in Fig. 2.3 which means that the behaviour of a ^-channel gluon wi th 

transverse momentum k j is changed f rom 

Here ag is the gluon Regge trajectory and s is the centre-of-mass energy squared of the 

external particles, i.e. the incoming quarks in this case. 

I n the calculation of the contributions in Fig. 2.4 to leading logarithmic accuracy 

the so-called eikonal approximation [13] was used which allowed a simplification of the 

expressions for the amplitudes. Since this approximation is not only valid for sp in - | quarks 

but for particles of any spin we can replace the quark lines in Fig. 2.4 by gluons. We then 

have the diagram depicted in Fig. 2.6(a) instead of Fig. 2.5. I t can be shown [27] that in 

the regime where the longitudinal momenta of the exchange gluons are strongly ordered 

adding more and more gluons results in additional factors of effective vertices F. Therefore 

the colour octet amplitude for two quarks scattering into two quark and r gluons in the 

leading ln ( l / a ; ) approximation may be constructed as a generalisation of the amphtude 

for qq qq, as is represented diagrammatically in Fig. 2.6(b). Again the inclusion of 
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^ jr<r<r(r<p 

p • a 

^ jr<r<r<r<p 

(a) (b) 

Figure 2.6: (a) The effective vertex as shown in Fig. 2.5 but with the external quark lines replaced by 
gluons. (b) The colour octet amplitude for qq^ qq-\-r gluons in the leading ln(l/a;) approximation built 
up from effective vertices and reggeized gluons in the ^-channel. 

the v i r tua l correction leads to a reggeisation of the i-channel gluons. Furthermore i t can 

be shown [13] that the emission of quark-antiquark pairs in the chain is suppressed wi th 

respect to gluon emission and is therefore neglected in the leading l n ( l / x ) approximation. 

So far we considered the exchange of a gluon in a colour octet state. The B F K L 

equation however describes the exchange of a colourless object which is often referred to 

as the QCD or BFKL pomeron. Therefore the (squared) amplitude for this colour singlet 

exchange can be derived in analogy to the calculation of the colour octet ampHtude 

which we explained above but replacing the octet colour factors by the singlet ones. The 

B F K L kernel includes the contributions f rom real gluon emission as well as the vir tual 

corrections. I n the B F K L equation (2.21) the real gluon contributions correspond to 

terms proportional to / ( x , k!^) whereas the vir tual corrections lead to terms proportional 

to / ( x , fcj.). The apparent singularity in (2.21) at k'^ — k j cancels in the sum of the real 

and v i r tua l gluon contributions [28]. 

L a d d e r s tructure of the B F K L equation 

Like the D L L A the B F K L equation corresponds to a sum of ladder diagrams wi th gluon 

rungs only, see Fig. 2.7. However these B F K L ladders are only effective ladder diagrams 
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Figure 2.7: The effective gluon ladder diagram for the unintegrated gluon density f{x, in the leading 
ln(l/a;) approximation. 

w i t h B F K L vertices. They contain all the real and vir tual giuon contributions discussed 

above. As for the D L L A the longitudinal momentum fractions along the ladder are 

strongly ordered, i.e. 

x i > X2 > • • • > a;, > (2.26) 

which leads to the leading ln( l /3 ; ) terms. The transverse momenta, on the other hand, 

are now unordered. The B F K L equation (2.21) arises f rom a recursion relation which 

allows us to calculate the unintegrated gluon density /^(a;, A;^) corresponding to a gluon 

ladder w i t h r rungs f rom the gluon density fr-i{x,kj) which can be represented by an 

r — 1 rung ladder diagram. This recursion relation has the form [7 

/ , ( X , 4) ^ f ' ^ I dkl^ K{kT, KT) fr-liXr, K^) (2.27) 
Jx Xr J 

which we symbolically write as 

/ , = A ® / , _ i . (2.28) 

Since / corresponds to the sum of ladder diagrams, 

f = f : f r , (2.29) 
r=0 

we then f i nd 
CO oo oo 

f - fo = E f r ^Ei^® fr-l) = ^ ® E f r = ^® f - (2-30) 
r= l r=l r=0 



Chapter 2. Resumming leading logarithms — evolution equations 33 

This yields the B F K L equation in integral form: 

f ( x , k ^ ) = fo{x,kl) + / — dklK{kT,k'T)f{x\k'^) (2.31) 
J X X J 

where /o is the so-called driving term which is related to / via the boundary condition 

that at the starting point XQ of the evolution 

/ ( x = xo,4) = foixoXr)- (2.32) 

From the recursion relation (2.27) we also see that the B F K L equation can be expressed 

in the difi"erential fo rm 

- x | ^ = j dk'^ K{kT, k'j,) f i x , k'^) (2.33) 

which is equivalent to (2.21). 

So in summary the B F K L equation describes the sum of ladder diagrams wi th reggeized 

gluons i n the t-channel and conventional gluons as rungs. The vertices are the effective 

B F K L vertices F (see (2.23)) containing the various contributions shown in Fig. 2.5. As 

already mentioned the exchanged colourless object is generally called the B F K L pomeron. 

A cross check 

Above we explained that the D L L A corresponds to the sum of gluon ladder diagrams 

where the transverse momenta of the gluons are strongly ordered. For the B F K L equation 

we relaxed this strong ordering. So i f we introduce strong ordering of the transverse 

momenta i n the B F K L equation we should obtain the D L L A . We can easily see that this 

is the case since strong ordering impHes that fey A;̂  and therefore the B F K L kernel 

j^strong order^ng ^f^^ ̂  ^/^^ = ^ 0(4 - k'-^). (2.34) 

Substituting this expression for the kernel into the recursion relation (2.27) we obtain 

A(x,fe^) = as / ' ^ / ' ^ ^ / , _ , ( . ^ , f e 2 ^ ) 

^ as- I n f i ) - J % ] / ._ i (x ,4) . (2.35) 
r Vxy r J 
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Therefore the unintegrated gluon distribution 

= E^(^'4) ^ k l n ( - ) l n ( 4 ) l ' (2.36) 

which on uti l izing the modified Bessel function (2.17) yields 

f{x,kl) ~ exp<2 (2.37) 

Finally applying the relation (2.20) between the conventional and the unintegrated gluon 

density we reproduce the D L L A (2.18) as anticipated. 

2.3.2 Analytic solution of the leading order B F K L equation 

The leading order B F K L equation (2.21) is wri t ten for fixed coupling constant 015. We 

w i l l see later that one may introduce by hand the running of the coupling to include 

some of the next-to-leading order corrections. The B F K L equation then has to be solved 

numerically. The original equation wi th fixed coupling can, however, be solved analytically 

as we demonstrate i n Appendix A. Here we only sununarize the main steps and results 

so that we are able to discuss the properties of the solution of the B F K L equation in the 

following subsection. 

When we analyzed the structure of the D G L A P equation in Section 2.1 we took the 

moments which caused the D G L A P equation to factorize. We were then able to solve the 

equation. Here we proceed in a similar way: we calculate the Mel l in transform of / which 

has the f o r m 

f{x,u) = / dklikl)-^-' f{x,kl). (2.38) 
Jo 

As a consequence of this the B F K L equation (2.21) factorizes and we have 

where K is the Mel l in transform of the B F K L kernel K. In Appendix B we obtain 

k{u) = as [2*(1) - ^{u) - * ( 1 - u)]. (2.40) 
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where ^ is defined in terms of the F function, ^'(z) = r'{z)/T{z). The Mell in transformed 

B F K L equation (2.39) can easily be solved wi th the result 

/ X \ 
f{x,uj) - /(xo,a;) — 

Vxo/ 
(2.41) 

where f{xo,uj) is the MeUin transform of the input distribution fo{x,kj<). The solution 

of the B F K L equation (2.21) is obtained by performing the inverse Mell in transform 

\ rc+ico rc+too 
f i x , 4 ) = — / dw{k'^rf{x,uj) 

(2.42) 

which yields 

"̂̂ 0̂  [27r ( A " l n ( f ) + A ) ^ 

where for simplicity we defined 

exp 
In^ ^ 

2\"\n{^)+2A 
(2.43) 

In k\. 
l_dl ^ lyj 

(2.44) 

The exponent A is the maximum eigenvalue of the Mell in transformed B F K L kernel K 

which determines the x behaviour of the B F K L solution / . I t is given by 

A = ^ 4 1 n 2 
TT 

and its second derivative 

A" = ^ 2 8 C ( 3 ) 
TT 

(2.45) 

(2.46) 

where ( (3) = 1.202. We w i l l discuss the main features of / and the importance of the 

magnitude of A in the following subsection. 
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2.3.3 Properties of the leading order B F K L equation 

Having obtained the solution (2.43) of the leading order B F K L equation we w i l l now 

investigate its properties. We start by considering the x dependence of / . 

x~-^ behaviour 

From (2.43) we see that the solution / behaves as x~^ modulated by the logarithmic factor 

^JX"ln{xo/x) + A. Here A is the maximum eigenvalue of the (Mell in transform of the) 

B F K L kernel as given in (2.45) and A" its second derivative, see (2.46). Since A ~ 0.5, the 

solution of the B F K L equation shows a steep rise wi th decreasing x. In fact, i t is this steep 

increase as x —> 0 which is generally used to identify B F K L dynamics and we w i l l follow 

this approach later in this thesis when we are searching for B F K L signatures at HERA. 

Due to the factorisation theorem which allows us to calculate observables like for example 

the structure funct ion F2 as the convolution of the unintegrated gluon density / and a 

so-called impact factor the x~^ behaviour feeds through into measureable quantities. 

Intercept of the B F K L pomeron trajectory 

The largeness of A also has the following consequences. Above we mentioned that the 

colourless B F K L ladder is often referred to as the B F K L pomeron. The B F K L pomeron 

appears i n hard QCD interactions and its Regge trajectory has the intercept ap(0) = 

1 -t- A ~ 1.5. Firstly, this is much larger than the intercept of the so-called soft pomeron 

trajectory, cxp'^^{0) — 1.08, which was obtained by Donnachie and Landshoff [29] through 

fits to hadronic and photoproduction {Q'^ ~ 0) total cross section data and extraction 

of the dependence on the centre-of-mass energy. Secondly, f rom (1.33) we see that the 

magnitude of the B F K L pomeron intercept leads to a behaviour of the total cross section 

<T,ot ~ 5 " ^ ' ^ ' - s'2 (2.47) 

at high energies. So <Jtot grows wi th energy which means i t wi l l violate the Froissart bound 

which tells us that cross sections cannot increase faster than In'^ 5 w i th increasing s (see 
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for example [13]). We w i l l return to this problem in Section 2.4. 

{kj')^ behaviour and diffusion in Inkj 

From (2.43) we can also extract the A;j dependence of the unintegrated gluon distribution 

as predicted by leading order B F K L dynamics. We see that for increasing fcj / rises wi th 

^ mult ipl ied by an exponential function. 

Let us investigate the remaining dependence more closely. I t is helpful to recall the 

general f o r m of a Gaussian distribution in terms of some variable ( . We have 

l ( ^ - a ) ^ -
QiO = exp 2 (72 

(2.48) 

where a is the maximum of the distribution and a determines its width . A comparison wi th 

(2.43) then shows that f{x, fcy)/-^^ has the shape of a Gaussian in In Aiy wi th maximum 

at I n ^ y and a wid th given by yJX"\n{xo/x) + A. Therefore the B F K L evolution of an 

unintegrated gluon density f{x, kj') f rom x — Xoto smaller values of x is accompanied by a 

diflPusion in In kj-. The in i t ia l w id th of the Gaussian at XQ is determined by f{xo, /cy) (which 

is not necessarily a perfect Gaussian), the longer the evolution the more the distribution 

broadens. This is for example shown schematically in Fig. 1 of ref. [30]. The diffusion in 

In k^ is a consequence of the relaxation of the strong ordering of the transverse momenta 

which leads to a random walk in fc^. I t has the side-effect that i t may cause a penetration of 

the infrared region invalidating the perturbative treatment. We w i l l discuss this problem 

in Section 3.1 and explain how i t can be avoided. 

To summarize, B F K L dynamics predict an a;"'̂  behaviour of the unintegrated gluon 

density / as we already anticipated in the introduction to Section 2.3. / rises wi th \Jk^ as 

kj^ increases. The growth is modulated by a Gaussian diffusion factor wi th leads to 

a broadening of the distribution which accompanies the B F K L evolution of / to smaller 

values of x. These are the signatures we w i l l be searching for when trying to identify 

B F K L dynamics in deep inelastic ep scattering in the small x region at HERA in the 

following chapters. 
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2.3.4 Next-to-leading order corrections to the B F K L equation 

Above we discussed the B F K L equation in leading order which resums the leading loga

ri thms in ln(l/x). In the remainder of this thesis we w i l l show predictions for observables 

which are based on this leading order equation. However, since meanwhile next-to-leading 

corrections have been calculated we w i l l now briefly explain why the next-to-leading order 

contributions are important, which corrections have to be computed and how they affect 

the leading eigenvalue A of the B F K L kernel. Then we w i l l outline how we can proceed as 

long as the next-to-leading corrections are not available in a fo rm which is straightforward 

to utilize i n phenomenological applications. 

T h e need for the next-to-leading order corrections 

There are four main reasons for why i t is necessary to know the next-to-leading order 

corrections to the B F K L equation (2.21). Firstly, as we pointed out, the leading order 

equation was wr i t ten for fixed QCD coupling constant. Since the transverse momenta 

of the gluons along the B F K L ladder may be of the same order one might think that i t 

is appropriate to freeze the coupling at a typical transverse momentum of these gluons. 

However, due to the diffusion in In kj' a broader range of transverse momenta can occur 

along the ladder which implies that the coupling should really be evaluated at the true 

transverse momenta of the ^-channel gluons. Secondly, the leading order B F K L equation 

does not include energy and longitudinal momentum conservation. Although the terms 

which violate energy-momentum conservation are formally subleading they can neverthe

less be of importance when making B F K L based predictions. Thirdly, in the leading order 

B F K L formalism jets are only determined in leading order and therefore have no non-

t r i v i a l substructure [31]. Finally, because the next-to-leading order corrections suppress 

the strong rise of the unintegrated gluon distributions towards small x there is hope that 

they allow for a smoother transition between the medium Q'^ behaviour as predicted by 

B F K L dynamics and the low physics and also between the small and large x behaviour. 
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Calcu la t ion of the next-to-leading order corrections 

Next-to-leading order corrections to the B F K L equation can be obtained in two different 

ways ^. The first approach is motivated by the violation of unitari ty of the total cross 

section (2.47) due to the magnitude of the maximum eigenvalue of the leading order 

B F K L kernel Xio = A = In 2 which we discussed in Section 2.3.3. Its aim is to restore 

uni tar i ty in the B F K L formalism. This approach was followed by Bartels, Lipatov and 

Wiisthoff and by Gribov, Levin and Ryskin whose work we w i l l discuss in Section 2.4. I t 

results i n a subset of next-to-leading order correction. 

The second procedure is to calculate a//next-to-leading logarithmic (NLL) corrections. 

I t firstly requires the computation of the real N L L corrections induced by the relaxation 

of the strong ordering (2.26) of the longitudinal momentum fractions of the gluons along 

the B F K L ladder. Secondly, the vir tual N L L contributions have to be obtained. The 

real corrections include the vertices corresponding to the emission of two particles w i th 

comparable longitudinal momentum fractions, i.e. g*g —>• gg or qq, g*q —»• gq, and g*g* -* 

gg or qq^ and in addition the one-loop corrections to the B F K L vertex. The vir tual 

contributions correspond to the N L L corrections to the gluon reggeisation which arise 

f r o m the N L L corrections to the Pomeron trajectory. The N L L corrections have been 

computed by Fadin, Lipatov and collaborators, Camici and Ciafaloni, and Del Duca. 

However, at present they are not available in a form which can easily be implemented in 

phenomenological analyses. Nevertheless, i t is already evident that the next-to-leading 

order corrections have a large effect. As was found by Ciafaloni and Camici [33] the 

max imum eigenvalue of the B F K L kernel in next-to-leading (NLO) order is (for three 

colours) given by 

A;vLO - XLO (l - 3.4 ^ - 0.15 ^ ) (2.49) 

where A^o = as4:ln2. We see that the inclusion of the N L L corrections leads to a large 

negative shift of the B F K L eigenvalue. Since i t is A which determines the small x be

haviour this suggests that the N L L contributions should be included in phenomenological 

applications of the B F K L equation. Note also that XNLO depends on N f , the number of 

^Reviews of the next-to-leading logarithmic corrections to the B F K L equation can for example be 
found in [13, 31, 32]. 
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flavours, whereas the leading order result was flavour independent. 

Inc lus ion of some next-to-leading corrections in the calculation 

As long as the next-to-leading order corrections to the B F K L equation are not available in 

a f o r m which can easily be implemented in Monte Carlo computations we may proceed in 

the following way. We allow the coupling 0:5 to run in the leading order B F K L equation 

which amounts to including some of the next-to-leading order contributions. The B F K L 

equation (2.21) then becomes 

d H i j x ) - TT k k'^ \ \k'^-kl\ ^ [^k'^ + k'^\h]- ^'-'"^ 

Here we introduced a lower cutoff kl on the transverse momentum integration which pre

vents the diffusion into the infrared region where the coupling constant is large. Imposing 

the cutoff has the effect of discretizing the eigenvalue spectrum of the (Mell in transform 

of the) B F K L kernel K{u)). The maximum eigenvalue becomes dependent on kl and its 

magnitude decreases v/i th increasing k^ [30]. Therefore the strong x~^ growth as a: ^ 0 is 

somewhat suppressed. The B F K L equation including running coupling has to be solved 

numerically introducing also an upper cutoff on the transverse momentum integration. In 

the calculation of the B F K L based predictions shown in the following chapters we indeed 

proceeded in this way (see also Section 3.2.3). 

Solving the B F K L equation numerically has the additional advantage that i t is then 

possible to require energy-momentum conservation "by hand" in the Monte Carlo pro

gram. The role of energy conservation in the B F K L equation was studied in [34]. There 

i t was demanded that for a i-channel gluon in the B F K L ladder carrying four momentum 

k and a v i r tua l photon probe w i t h four momentum q the centre-of-mass energy for the 

corresponding subprocess i = (A; -|- 5)^ > 0 which resulted in an upper Hmit on the square 

of the transverse momentum fc^ of the gluon. The main effect of this constraint is a sup

pression of the B F K L prediction for the gluon density in the small x region. Here we wi l l 

restrict ourselves to requiring that the final state partons which fragment into hadrons 

that are measured in the experiment obey energy momentum conservation. 
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, 2 

F i g u r e 2.8: Fragment of (the left half of) a B F K L ladder diagram, x and x/z are the fractions of the 
proton's longitudinal momentum carried by the gluons. The transverse momenta of the gluons along the 
ladder and of the emitted gluon are denoted by k^, k'rp and qr, respectively. 

Higher order corrections can also be included by noting that the virtualities of the 

exchanged gluons along the B F K L ladder should arise dominantly f rom the transverse 

components of their momenta rather than f rom the longitudinal ones, otherwise we lose 

a l n ( l / x ) . So for a gluon of transverse momentum k'j. as shown in Fig. 2.8 we have 

k'\^ ~ k'^. This leads to the so-called kinematic constraint [35 

kl > zql (2.51) 

where the variables are defined in Fig. 2.8. The introduction of this kinematic constaint 

in the leading order B F K L equation preserves its scale invariance i f the coupling as is 

kept fixed. In this case the equation can be solved analytically and the exponent A 

calculated to all orders, as was done in ref. [36]. There i t was found that the imposition 

of the kinematic constraint causes a considerable suppression of the maximum eigenvalue 

A. I n fact, i t turned out that i t is not sufficient to only include next-to-leading order 

corrections to A but that higher order effects are of importance, see Fig. 2 in ref. [36]. In 

the calculations presented in this thesis we did not utilize the kinematic constraint. 

A t the t ime when the results shown in the following chapters were obtained the f u l l 

next-to-leading order corrections to the B F K L equation were not available. Therefore all 

calculations were based on leading order B F K L dynamics where the B F K L equation was 

solved numerically allowing the coupling to run. 

Recall that the B F K L formalism is appropriate in the small x region for moderate 

values of Q^. The leading order B F K L equation resums the leading logarithms in l n ( l / x ) 

and corresponds to the infinite sum of gluon ladder diagrams where the longitudinal 
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momenta of the gluons are strongly ordered and the transverse momenta are comparable 
in size. The ladder diagrams consist of reggeized gluons in the t channel and conventional 
gluons as rungs which are connected by effective B F K L vertices. Leading order B F K L 
dynamics predict a characteristic x~^ behaviour of the unintegrated gluon distribution. 
For increasing kj< f rises w i th ^Jk^ modulo a Gaussian diffusion factor which causes a 
broadening of the distribution that accompanies the B F K L evolution of / to smaller values 
of x. As we w i l l see in the remaining chapters these signatures can be used to identify 
B F K L dynamics at colliders. 

2.4 Part on screening and the G L R equation 

Of course, the x~^ growth of the gluon distribution wi th decreasing x cannot go on 

indefinitely, otherwise unitary would be violated. Eventually the density of the gluons 

inside the proton becomes so large that they cannot be treated as free partons any longer. 

They begin to interact and screen each other which causes shadowing effects As a 

consequence of the shadowing the gluon distribution does not rise forever but rather 

reaches a saturation l im i t given by [27 

xgsat{x,Q') = - ^ ^ R W (2.52) 

where C is a constant and Rp is the radius of the proton which is probed at scale Q^. 

Here is was assumed that the gluons are spread uniformly inside the proton. On the other 

hand i t has been proposed [38, 39] that the gluons may be concentrated in small areas 

inside the proton, so-called hot-spots. The saturation l imi t is then described by (2.52) 

but w i t h Rp replaced by the radius Rhs of the hot-spot. 

Gribov, Levin and Ryskin (GLR) obtained the correction to the B F K L equation (2.21) 

due to shadowing effects by considering recombination diagrams as the one shown in 

Fig. 2.9. The box in the diagram represents all possible QCD diagrams which couple four 

gluons to two. The two ladders in the lower half of the diagram couple to the proton. 

The effect of such recombination diagrams is to introduce an additional non-linear term 

*An introduction to shadowing effects can for example be found in ref. [37]. 
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13 

F i g u r e 2.9: The basic gluon recombination diagram which contributes to the G L R equation. The box 
represents all possible couplings of two gluon ladders to one. 

into the B F K L equation which then becomes [27 

d f j x , kl) ^ ^ . 81a|(fc^) , , 

This evolution equation is generally called the GLR equation. Here i? is a radius deter

mined by the way in which the gluon ladders couple to the proton; depending on the model 

R = Rp or Rhs- The GLR equation is based on some assumptions concerning the fo rm of 

the three-ladder vertex and the coupHng of n ladders to the proton. In the derivation i t 

was also presumed that there are no correlations between two recombining gluon ladders. 

This is actually not quite true and therefore the GLR equation as i t stands may not be 

valid ^. I n this thesis we w i l l rely on the results of the numerical studies presented in [41]. 

There i t was found that i n the {x,Q^) region accessible at HERA shadowing effects are 

small unless the gluons inside the proton are concentrated in hot-spots. We wi l l therefore 

neglect shadowing in the remaining chapters. 

2.5 Summary 

I n this chapter we explained the need for the resummation of large logarithms which 

can occur i n the perturbative expansion. We started by discussing the D G L A P equation 

which resums the asln{Q'^y contributions and is vahd when is large and x is not 

^An overview of this problem is given in ref. [40]. 
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small. I t corresponds to the sum of ladder diagrams wi th up to r rungs where the trans

verse momenta are strongly ordered and the longitudinal momenta are ordered. Next we 

considered the case where Q!5ln(l/a;) and as\n{Q'^/Ql) are both small individually but 

asln.{l/x)\n{Q^/Ql) is large. Then the double leading logarithm approximation should 

be used which resums the leading terms in ln(l /a;) \n{Q'^/Ql) and corresponds to the sum 

of gluon ladder diagrams w i t h strongly ordered transverse and longitudinal momenta. In 

Section 2.3 we studied the B F K L equation which is appropriate in the small x region for 

moderate values of Q'^. We saw that i t resums the leading terms in l n ( l / x ) and that i t 

corresponds to the infini te sum of B F K L ladder diagrams wi th reggeized gluons in the 

^-channel which are joint to conventional gluons as rungs by effective vertices. Finally we 

briefly discussed the recombination effects which are incorporated in the GLR equation. 

in 1 t 

I 

I 

DGLAP 

InQ^ 

F i g u r e 2.10: The regions of vahdity [40] in the ( s , Q ^ ) plane of the various evolution equations. The 
gluon content of the proton as seen by the virtual photon probe is symbolized by dots. The dotted line 
represents the critical line below which perturbative Q C D is applicable. 

The regions of validity of the B F K L , the D G L A P and the GLR equation and of the 

D L L A are depicted in Fig. 2.10 where we also indicated the critical line below which 

perturbative QCD is applicable. The following chapters are devoted to investigating i f 

the B F K L or the D G L A P equation is appropriate in the HERA small x region. 



Chapter 3 

Deep inelastic events containing an 
identified forward jet 

In this chapter we motivate the study of the deep inelastic final state and in particular the 

deep inelastic -|- forward jet process. We introduce the QCD formalism for the calculation 

of the cross section for this reaction and discuss which cuts have to be imposed. This 

in t u rn w i l l enable us to obtain the cross sections for the DIS -t- forward 7 and the 

DIS + forward 7r° processes which are the main topics presented in Chapters 4 and 5, 

respectively. Then, i n Chapter 6, we w i l l return to the DIS + jet process. There we w i l l 

calculate the cross section imposing the cuts which were used by the H I collaboration in 

the measurement and normalize to their data. W i t h this normalisation we are able to 

make predictions to compare wi th the very recent data on DIS -|- T T ' ' and single particle 

transverse momentum spectra in Chapters 7 and 8. 

3.1 The DIS + forward jet measurement - Mueller's 
proposal 

The behaviour of the proton structure function F2{x, Q'^) at small x reflects the behaviour 

of the gluon distribution, since the gluon is by far the dominant parton in this regime. 

Perturbative QCD does not predict the absolute value of the parton distributions, but 

rather determines how they evolve as a function of the kinematic variables f rom a given 

45 
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input . As explained in the previous chapter the evolution of an input gluon distribution 
can be described in two different l imits ^ of QCD leading to the following two evolution 
equations: 

• A Dokshitzer-Gribov-Lipatov-Altarelli-Parisi (DGLAP) equation [18, 19] which re

sums the as\n^{Q^/Ql) contributions and is vahd as long as x is not too small. 

These leading In contributions come f rom the configurations in which the trans

verse momenta kr of the gluons along the chain are strongly ordered (see Fig. 2.1). 

• The Balitskij-Fadin-Kuraev-Lipatov (BFKL) equation [26] which should be appro

priate as we go to small x since i t resums the leading order ag ln"( l /a ; ) terms. Here 

the longitudinal momenta of the gluons along the ladder are strongly ordered (see 

Fig. 2.7). 

The solution of the B F K L equation leads to a singular x~'^ small a; behaviour of the 

unitegrated gluon distribution, where A = (3Q:5/7r)4ln2 for fixed as and A ~ 0.5 i f 

a reasonable prescription for the running of as and for the treatment of the infrared 

region is assumed [30, 41]. The behaviour of the B F K L gluon feeds through, via the 

fcx-factorisation theorem [42], into the small x behaviour of the structure function F2. 

Therefore i t should in principle be possible to identify B F K L resummation effects via a 

measurement of F2 at H E R A . I t turns out, however, that although the data do show a 

steep rise w i t h decreasing x a distinction between the two limits of evolution is not feasible. 

I n fact, the rise in the latest precise H I and ZEUS measurements [16] can be well described 

by next-to-leading order D G L A P evolution down to ~ 2 GeV^ and x ~ 10~^. A major 

part of the problem in identifying the underlying small x dynamics is due to the parametric 

freedom that we have in specifying the in i t ia l parton distributions. For instance for a 

non-singular gluon input we can increase the steepness of F2 w i th decreasing x by simply 

reducing Ql and increasing the D G L A P evolution length, \n{Q'^/Ql). Alternatively, we 

could use (as i n the global parton analyses [22, 23]) a singular input form xg{x, Ql) ~ x''^, 

w i t h A chosen to fit the data. Also subleading l n ( l / x ) corrections w i l l reduce the x~^ 

B F K L growth, see Section 2.3.4. In addition there are non-perturbative ambiguities in 

®0f course in practice we need to sum all ln"( l / i ; ) ln ' ' (Q^/Q^) contributions. 
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X , K 

F i g u r e 3.1: Diagrammatic representation of a deep inelastic event containing an identified jet carrying 
a fraction xj of the proton's momentum and transverse momentum kjr- The jet arises from a parton a 
which can either be a quark (as shown) or a gluon. 

the B F K L description of F2 arising f rom a diffusion in In k^ into the infrared region which 

accompanies the evolution of the input gluon distribution f{x, k^) to smaller values of 

X. This leads to a significant contribution f rom the infrared region which is beyond the 

scope of perturbative QCD and has to be included phenomenologically. Because of these 

problems i t is diff icult to isolate ln( l /a ;) effects f rom measurements of F2. We have to 

consider less inclusive quantities. 

I n 1991 Mueller [39] proposed an experiment which focusses on the small-a; behaviour of 

QCD and does not depend on unknown input x distributions. His idea was to investigate 

deep-inelastic {x,Q'^) events which contain an identified energetic forward jet (xj ,A; |y) 

where Xj >• x and k^j- ~ Q^. The process is illustrated in Fig. 3.1 where the jet arises f rom 

a parton a which is shown as a quark but could also be a gluon. We select events where 
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the jet's transverse momentum satisfies k^j^ ~ Q'^ so that D G L A P evolution is neutrahzed 
and we can search for B F K L resummation effects. also has to be sufficiently large 
so as to suppress diffusion into the infrared region when we solve the B F K L equation at 
decreasing values of x / x j . The jet's longitudinal momentum xjp is chosen to be as large 
as is experimentally feasible (while x is as small as possible) so that we are able to probe 
the region of small x / x j , typically xj > 0.05. In this case the transverse momenta at the 
gluon - parton a vertex are to a good approximation strongly ordered which means that 
the exchanged gluon and the jet have basically the same transverse momentum, as shown 
in Fig. 3.1. So why is the DIS -|- jet measurement so special? 

T h e requirement k'jj. ~ Q'^ 

As we have already mentioned above, the transverse momentum of the identified jet 

is required to satisfy k j j ~ Q'^. Since the evolution length for D G L A P evolution is 

proportional to as l n ( (5^ /k jx ) - , this implies that we can safely neglect the eflFects of D G L A P 

evolution and focus on B F K L effects. 

The choice A;|j ~ Q'^ also has a second advantage. As described in the previous 

chapter, B F K L evolution is accompanied by a diffusion in In k^- along the gluon ladder. 

When we use the B F K L equation to evolve to smaller x values this can, in principle, lead 

to a penetration of the infrared region where perturbative QCD is not applicable. This 

is the case in the calculation of the structure function F2 as is shown schematically in 

Fig. 3.2(a). Here B F K L evolution was started at XQ f rom an input gluon centred about 

transverse momentum squared The transverse momentum squared at the end of 

the evolution, at x, is that of the quark-loop, kl^^, which is of the order of Q'^. We see 

that clearly a diffusion into the non-perturbative region (which is represented by a shaded 

area in Fig. 3.2) is possible. On the other hand, i f , as for the DIS - I - jet process, we 

require k j r p ~ where is not too small, there is s t i l l a random walk in In A;̂  but w i th 

the additional constraint that we have to reach a fixed value. Then the penetration of 

the non-perturbative region is suppressed. This is depicted in Fig. 3.2(b) which is often 

refered to as "Bartels' cigar" [43]. 
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(a) 

i?box«Q' 

^ Inx 

(b) 

^ Inx 

F i g u r e 3.2: The diffusion in Inkj, which accompanies B F K L evolution to smaller values of x (a) in the 
calculation of the structure function F2 and (b) for the D I S -l- jet process. The shaded area corresponds 
to the non-perturbative region. 

T h e requirement Xj ^ x 

We select events where the additional jet carries a fraction Xj of the proton's longitudinal 

momentum which is large while x is small. Since then x/xj is small i t should be possible 

to ident i fy the x~^ behaviour, or to be precise the {x/xj)~^ behaviour as x / x j —> 0. This 

can be seen by looking at the differential structure function for the DIS -|- jet process in 

terms of the jet variables. We anticipate that according to B F K L dynamics the differential 

structure function has the leading small x / x j behaviour [39, 44 - 48 

X j kjrp 
dxjdk'jj. 

ois{k]j) (3.1) 

where, assuming ^-channel pole dominance, the sum over the parton distributions is given 

by [39, 44, 47 - 48] 

j:fa{x,,k^T) = ^ + + (3-2) 
a y q 

w i t h the sum running over the quark flavours. The crucial point is that the parton 

distributions (g, q and q) are to be evaluated at (xj, k^j.) where they are well-known f rom 

the global parton analyses. Therefore the observation of DIS -|- jet events offers the 

opportuni ty to expose BFKL- type small x dynamics free f rom the ambiguities associated 
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w i t h the choice of the non-perturbative parton input. In other words we are studying small 
x dynamics by deep inelastic scattering off a known parton, rather than off the proton. 
As a matter of fact, the small x/xj behaviour of the differential structure function (3.1) 
is directly linked w i t h the high-energy behaviour of the vir tual photon - parton a cross 
section. To see this we express the centre-of-mass energy squared s^a for this partonic 
subprocess as 

s^a ~ 2A;„ • 9 ~ 2xjp • q. (3.3) 

Here we noted that the four-momentum of the exchanged parton a in Fig. 3.1 is ka ~ Xjp 

due to the strong ordering of the longitudinal momenta which holds at the gluon - a 

vertex, since Xj is 0 (1 ) . Using (1.7) we find 

^ (?) ^̂-̂̂  
Thus in the DIS -|- jet measurement the QCD small x behaviour is associated w i t h the 

high-energy behaviour of a partonic cross section. 

I n this chapter we w i l l first concentrate on the formalism for deep inelastic scattering 

containing a forward jet . That is we w i l l show how the cross section for this measurement 

can be calculated f r o m B F K L dynamics. We wi l l find that the cross section is given by 

differential structure functions which indeed depend on x/xj in the way we anticipated 

in (3.1). In particular we w i l l review the approximate analytic solution of the B F K L 

equation for fixed coupling and then proceed to a more realistic numerical solution which 

allows the introduction of a running couphng. In the second part of the chapter we w i l l 

study the kinematics for deep inelastic scattering in general and the DIS -|- jet process 

in particular. We w i l l be investigating the limitations due to the detector architecture at 

H E R A and also the cuts necessary to select DIS -|- jet events so that an identification of 

the underlying dynamics is possible. 
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3.2 The cross section for deep inelastic -|- jet events 

In this section we w i l l calculate the cross section for the process in which deep inelastic 

scattering is accompanied by a single identified energetic jet in the final state, i.e. 

7* + p ^ j e t { x j , k ] T ) + X . (3.5) 

The variables of the process are shown in Fig. 3.1. As introduced in Chapter 1 the 

dimensionless variables x and y are given by a; = Q^/2p • q and y = p- q/pe • p where p, p^ 

and q denote the four momenta of the proton, the incident electron and the vi r tual photon 

respectively, and = —q^. Recall that the variables Xj and kji are the longitudinal 

momentum fract ion and transverse momentum carried by the jet . The DIS -|- jet cross 

section which we now have to compute can be represented by the diagram displayed in 

Fig. 3.3. We can express the corresponding differential cross section in terms of two 

differential structure functions in the following way [47, 49]: 

daj 

dxdQ' 
J d x . J dk' 

dF. 4r dFr 
(3.6) 

dxjdk]j, 2 dxjdk]rp_ 

I f we assume that the longitudinal momenta at the gluon - parton a vertex are strongly 

ordered so that the longitudinal momentum fraction of the struck parton is to a good 

approximation equal to Xj of the outgoing jet, then the differential structure functions 

have the leading small x / x j fo rm [39, 44, 47 - 48 

d'Fi _Sas{k]T) 
^i[-k',T.Q' (3.7) 

' dx,dk]j ' 

for i = T,L. The transverse (T) and longitudinal (L) structure functions are related to 

Fi and F2 which we introduced in Chapter 1 in the following way: 

FT 

FL 

2xFi 

F2-2xF^. 

(3.8) 

(3.9) 

The factor kj^ in (3.7) arises f rom the gluon propagators. The proton - parton a subpro

cess is described by the term Xj J2a fa ( x j , k ] j j where the sum over the parton distributions 
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F i g u r e 3.3: Diagrammatic representation of the cross section for deep inelastic scattering with an 
identified forward jet. Here the jet is represented by a quark line but it could also be a gluon. 

p 
n 
1 1 

F i g u r e 3.4: The leading ln(x/a;j) approximation of the functions $ i occurring in (3.7) and in the D I S 
+ jet cross section diagram (Fig. 3.3). 
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is given by (3.2). Recall that these parton distributions are to be evaluated at 

and that we choose Xj to be as large as is experimentally feasible. This means that we 

only need the parton distributions where they are well-known f rom the global analyses, 

so there are no ambiguities arising f rom a non-perturbative input. 

Let us for the moment omit the subscript j on kjx and define 

(3.10) 

which is small since Xj is chosen to lie in the large-a; region. The functions $ , ( 2 , kj^, Q^) 

i n (3.7) describe the gluon ladder which couples to the incoming vir tual photon. To 

be precise, the factors ^ijkj. can be identified wi th the vir tual gluon structure functions 

integrated over the longitudinal momentum of the gluon. In the leading In z approximation 

the $ i can be represented by sums of ladder diagrams as shown in Fig. 3.4 and are obtained 

by solving the B F K L equations [26 

ri dz' dk!? 
71 Jz Z JO KT 

H^',k'lQ') - H^',kl,Q') ^U^',kl,Q') 
(3.11) 

for i = r , L. Here the inhomogeneous or driving terms $-^^ describe the vir tual photon -

v i r tua l gluon fusion process. They correspond to the sum of the quark box and "crossed" 

box contributions shown in Fig. 3.5. For simplicity we w i l l in the future just refer to the 

sum of the two diagrams as the "quark box". 

\ / 
+ 

Figure 3.5: The quark box and "crossed" box contributions to the virtual 7 - virtual gluon fusion 
process. 
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Since the B F K L equations (3.11) for the ^i{z,k^,Q'^) are based on a leading l n ( l / 2 ) 
summation, they are not expected to be applicable in the large-z region. On the other 
hand, i n this region the driving terms ^ f ' \ z , kj^, Q'^) should be a reasonable approximation 
to the kj^ Q^) for the following reason: In the large-z region the standard D G L A P 
QCD evolution should be applicable, but because we choose events wi th k^ ~ Q'^ the 
evolution length [~ as\.n.{Q'^/kj^)] is very small and effects of the evolution can therefore 
be neglected. This implies that we can restrict our study of the B F K L equations (3.11) 
to the small-z region, z < ZQ, by imposing the boundary condition [48 

$ , ( z o , 4 , Q ' ) ^ $ ^ ( ^ 0 , 4 , ^ ' ) = $ ! ° ^ ( 4 , Q ' ) - (3.12) 

3.2.1 Calculation of the quark box diagram 

As explained in refs. [41, 45] the can be evaluated by expanding the four momenta 

in terms of the basic light-like four momenta p and q' = q + xp. For example, the quark 

momentum K in the box (see Fig. 3.1) has the Sudakov decomposition 

K = ap — /3q' + K j . (3.13) 

Carrying out the integration over the box diagrams, subject to the quark mass-shell 

constraints, then yields [41, 45, 50 

J I l _ { [ ; , a _ , ) 3 ] ( 4 _ M ^ ) 

(3.14) 

^^L\kl,Q') = 2 ^ el ^Q^ [ J d - ^ K r ^ l - ^ f - . (3.15) 

where m , is the quark mass and the denominators Di are of the form 

D, ^ 4 + ^ ( l - ^ ) g 2 - f m j 

(3.16) 



Chapter 3. Deep inelastic events containing an identified forward jet 55 

Our aim is now to do the twofold d^Kx integration. Let us first concentrate on the 
longitudinal contribution (3.15). The integration over the first term in the bracket can 
be done easily whereas in the second term we have to eliminate the angular dependence. 
The first step is to rewrite 

where A is the Feynman parameter and 

= A 4 + (1 - \){KT - k j f + /9(1 - ^) Q' + ml (3.18) 

Since we want to only be left w i th terms quadratic in K J (or rather KJ) we next substitute 

KT = K'T + {1- \)kT (3.19) 

and obtain 

D ^ 4 + A ( l - \ ) k ^ + /3{1 -I3)Q^ + m\. (3.20) 

Now, because we are integrating over all phase space, we have 

/•°° d^KT /•! [°° d K j 

Jo " ""Jo Jo [4 + A ( l -X)k^ + /3(1 - /?) g2 + m2]2 

Treating the transverse contribution (3.15) in a similar way we then obtain 

1 1 M + 2ml 
J{1 - ^)Q^ + ml A ( l - X)kl + ^ ( 1 - ^)Q^ + ml)\ 

(3.22) 

g ^ n Jo Jo 

{/3{l-/3)Q^ + ml~ X{l-X)k'x + H l - W + ml}- ^^"^^^ 
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3.2.2 Analytic form of the solution $ of the B F K L equation 
for fixed Q;^ 

In practice we solve the B F K L equation (3.11) for $ numerically, which allows the use of 

running 0:5 and the inclusion of a charm quark mass. However, i t is informative to first 

recall the analytic solution which can be obtained i f 0:5 is fixed and we assume that the 

quarks are massless. I t is useful to define the functions 

VP, ^ ^ (3.24) 

which, as we mentioned before, can be identified wi th the vir tual gluon structure functions 

integrated over the longitudinal momentum of the gluon. Analogously 

- f . (3.25) 

Then the first step for the analytic solution of the B F K L equation is to rewrite the driving 

terms (3.22) and (3.23) for m , = 0 in the form 

We see that, for fixed as and = 0, the functions (pf'^ are functions of a single dimen-

sionless variable r — j k j . We may therefore represent the driving terms y^i^\Q^/k^) 

i n terms of their Mel l in transforms < ,̂-°^(7) 

^\"\r) = ^ f ' ^ ^ ^ d^^f\^)r'^ (3.28) 

where i = L,T and r = Q^k^. The functions can be obtained f rom the inverse 

relation to (3.28), 

<ff = r drr-'-'ipfir). (3.29) 
Jo 
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Substituting for i p f ' \ r ) the expressions given in (3.26) and (3.27) and performing the r 

integration we find 

as 
' 4sin7r7 

r d \ [ X { l - X ) ] - ' ' [A2 + ( 1 - A ) ' 
Jo ^ J 

Jo J 

= E 

sm7r7 

2as 

(3.30) 

sm7r7 
rdXiXil-Xf-'^ [A2 + ( I _ A ) ' 

Jo 

['d/3[Hl-^W [ ^ ' + ( 1 - ^ ) ' 
Jo ^ 

el 4 ^ J 5 ( - 7 + 2, - 7 + 2) B{j + 1 ,7 + 1)- (3.31) 
g sm 7r7 

The Mel l in transform is useful since i t diagonalizes the B F K L equations (3.11). In other 

words we can write the differential form of the equations as 

a i n ( l / . ) = ^ ( - ^ ^ ^ ' ^ ^ ^ 

where ^(7) is the Mel l in transform of the B F K L kernel, 

Kh) = ^ [ 2 * ( l ) - * ( 7 ) - * ( l - 7 ) ] , 

TT 

see (2.40), w i t h ^(7) = r '(7)/r(7). The solutions of (3.32) are of the form 

r 

(3.32) 

^iil) = <^r(7) exp ( / ? (7 ) ln -
\ Z/ 

Performing the inverse Mel l in transform we find 

^^iz,kl,Q') = ^ ^ 7 ( ^ ) ' e x p ( ^ ( 7 ) l n i ) # ( 7 ) . 

(3.33) 

(3.34) 

These are the solutions of the B F K L equations (3.11) for fixed coupling 0:5 and assuming 

massless quarks. In the ^ —> 0 l imi t the formulae reduce to the conventional z~^ B F K L 

behaviour 

ipi{z,kT,Q Z ^2) — — ^— 
V % y (^K"{l)lnl/z) 

(3.35) 
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where K"{^) = ^^28({3). For simplicity we have omitted the Gaussian diffusion factor 

i n ln{kj./Q^). I f we evaluate the various functions at 7 = | we obtain 

ipT{z,k'T,Q') 
512 y21C(3)/2 ^ln{l/z) 

1 + 0 
1 

where A = ^ ( | ) = ^ 4:ln2, see (2.45). 

. l n ( l / ^ ) , 

(3.36) 

3.2.3 Numerical evaluation of $ for running 0:5 

Above we showed how the B F K L equations for the functions {i — T, L) can be solved 

analytically for fixed coupUng. This technique only gives a rough estimate of the value of 

the ^i{z, k^, Q^) for the following two reasons. First the integration over k j in the B F K L 

equations (3.11) starts f r o m 0 which implies that the gluons emitted along the chain in 

Fig. 3.1 can have a very small transverse momentum. However, for perturbation theory to 

be applicable they should satisfy A;̂  > A^. Second the analytic solution is only possible 

for fixed coupHng. Therefore, in practice, we evaluate the B F K L equations numerically 

imposing a lower l im i t cut-off kl on the transverse momentum integration and lett ing the 

coupling 0:5 run. To introduce the kj. dependence of as in (3.11) we follow the prescription 

of ref. [48]. That is we ensure that i f we assumed strong ordering k j <C Q^-, we would 

recover the correct evolution equations in the double leading logarithm approximation 

w i t h running coupling. This means we have to solve the B F K L equations for 

^as{kl) 
Hiiz,k'T,Q') 

TT 
H^,k'T,Qn- (3.37) 

Actually, we solve the diflFerential fo rm of the equations 

dH,{z,eT,Q') ^ 3as{kl) 

d\ogil/z) 
JC'j< 

ro= dk'^ 

H,iz,k'lQ')-Hiiz,k'x,Q') , Hiiz,klQ') 
+ ̂ /ik^l~4_ 

subject to the boundary conditions 

H,iz = zo,kl,Q') = H\'\kl,Q\ 

(3.38) 

(3.39) 
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w i t h the functions H-^^ defined by an expression analogous to (3.37). For reasons given 
later, we choose ZQ ~ 0.1 and the cut-off k^ = 1 GeV^. For any small z the solutions 
Hi{z,kj:,Q^) therefore only depend on the behaviour of Hi in the interval {z,zo). We 
find that the slope X = ap — I and the overall normalization of the solution of the B F K L 
equation w i t h running coupling as are in general smaller than those obtained wi th fixed 
coupling as{Q^), see for example Fig. 6 in [48]. 

3.2.4 Predictions for the differential structure function 

Now we are in a position to predict the behaviour of the differential structure function, 

dF2/dxjdkj'j', for deep inelastic events containing an identified forward jet as a function of 

Xj and X for fixed values of kj^j^ and Q^. Note that F2 is given by F2 = FT + F^. Since we 

are searching for a signature of B F K L effects, we first evaluate (3.7) using the functions 

$ i obtained f r o m the B F K L equations (3.11). Next we neglect B F K L evolution in the 

calculation which can easily be done by substituting for the the quark box contributions 

only. The results are shown in Fig. 3.6 as a function of xj for different values of x. 

The solid curves are the B F K L predictions for the differential structure function, whereas 

the dashed curves were obtained substituting = $|°^ in (3.7), that is the difference 

between the solid and the dashed curves is the "Lipatov effect" which is due to the B F K L 

resummation of the as\n{xj/x) terms. Particularly for small x and large Xj {xj ~ 0.1) 

this difference is dramatic. Let us emphasize again here that Xj/x in fact has to be large 

for our B F K L formalism to be valid and that the results displayed in Fig. 3.6 are therefore 

only expected to be reliable for Xj > 0.05. Note also that i f we compare the sohd curves 

for a fixed value of Xj, we see the rapid increase of the differential structure function wi th 

decreasing z which is characteristic for B F K L dynamics. Let us for example consider the 

B F K L based results for Xj = 0.1. We find that i f x decreases f rom x = 10"^ to a; = 10~^ 

the differential structure function rises by approximately a factor of 10, which is what we 

expect for an {x/xj)~'^ behaviour wi th A ~ 0.5. 

I t is tempting to conclude that the measurement of deep inelastic events wi th an 

identified jet can reveal the singular B F K L behaviour f rom observing either the shape or 
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10 
(a)k?r = Q̂  = 5GeV^ 

x= 10 

X = 10 

^ 10 
•.̂  -1 

: n))kt.= 10GeV\Q =5GeV 

F i g u r e 3.6: T h e F2 differential structure function, (3.7), for deep-inelastic (x .Q^) events accompanied 
by an identified forward jet (sj ,^;?^) as a function of xj for different values of a;, a; = 10"^, 10~^ and 
10"^, and for = 5 GeV^. The continuous curves correspond to inputting into (3.7) the solution $2 of 
the B F K L equation (3.11), whereas the dashed curve is calculated using for $2 simply the driving term 

of (3.22) and (3.23). Plots (a) and (b) correspond to jets with fc?^ = 5 and 10 GeV^ respectively. 
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the magnitude of the differential structure function dF2/dxjdk^j. However, i t turns out 
that the shape in x or xj is a more reliable discriminator than the magnitude because the 
normalisation of the B F K L predictions is subject to uncertainties. These uncertainties are 
mainly due to the choice of the cutoffs on the transverse momentum integrations, e.g. the 
cutoff k^ i n the B F K L equations (3.38). Analogously, we could have introduced a cutoff 
on the KT integrations in expressions (3.14) and (3.15) for the quark box contributions. 
The effect of these cutoffs on the differential structure function is shown in Figs. 8 and 9 
of ref. [48 . 

3.3 Cuts for the DIS + jet process 

Obtaining the differential structure functions f rom B F K L dynamics in the way we ex

plained above and substituting them into (3.6) yields the differential cross section for the 

DIS 4- jet process. When we do the Xj and k^^ integrations in (3.6) and when we integrate 

over X and Q'^ to obtain the total cross section we have to impose various cuts due to 

technical hmitations of the detectors at HERA and because of the way in which we select 

DIS + jet events. In the following we w i l l discuss what cuts we have to use and why. 

3.3.1 The H E R A electron acceptance region 

We w i l l now study the accessible region in x and for deep inelastic scattering e'^p 

e^X at H E R A . The kinematic variables are defined in Fig. 3.7. A t HERA the nominal 

electron energy = 30 GeV and the proton energy Ep = 820 GeV resulting in a centre-

of-mass energy y/s = yJiE^Ep ~ 300 GeV. In the previous sections we already used the 

variables x, y and Q'^. As a reminder x - Q^/2p • q, y = p • q/Pe • P and Q'^ = -(^ = xys 

where p, p^ and q are the four momenta pf the proton, the incoming electron (or positron) 

and the v i r tua l photon respectively. We can express Q'^ and y in terms of the energies 

of the incoming and outgoing electron (or positron) and the angle 9'^^ of the scattered 

electron w i t h respect to the proton beam direction in the HERA laboratory frame [51]: 

Q' = iEXcos'^-f (3.40) 
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F i g u r e 3.7: Kinematics of a deep inelastic event. 

We w i l l be using these relations to find expressions for the limits on the (a;,Q^) range 

accessible at HERA. 

The most severe l imi ta t ion on the accessible kinematic region at HERA is due to 

particle losses in the beam pipe. For the outgoing electron to be detectable we have to 

require that i t is scattered by an angle 

8° < 6'^^ < 172°. (3.42) 

For fixed values of 6'^^, we can calculate the resulting l imi t on the {x, Q'^) plane f rom 

which follows f r o m (3.40) and (3.41). Fig. 3.8 shows the relevant part of the lower bound

ary for < 172° obtained in this way. 

Another problem is that the quahty of the measurement becomes poor for high y 

for the following two reasons. First, at high y there are backgrounds due to electrons 

originating i n charm decays wi th small energies and 7r7 overlap f rom photoproduction 
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' =172° 

F i g u r e 3.8: The acceptance region in the (x, Q^) plane for deep inelastic events defined by 8° < O'^p < 
172° and 0.1 < y < 0.9. 

events [51]. These electrons can easily be mistaken for deep inelastic electrons. Second, 

radiative corrections are expected to be large for high y which means that the momentum 

of the incoming electron is smaller than the beam value. We therefore impose an upper 

l i m i t on the accessible y range, 

y < 0.9. (3.44) 

We w i l l also have to introduce a lower cut on y due to errors occurring in the reconstruction 

of X and Q^. From (3.40) and (3.41) we find that the resolutions for these variables are 

of the f o r m 

A O ^ AE' (9' \ 
(3.45) 

A x 
X 

l A ^ : , 1 
y Ei 

i - y - 1 t a n U A^lp . (3.46) 
y b m \ e ' j 2 ) 

Both X and should be determined wi th a reasonable resolution for the measurement to 

be reliable. However, f r o m (3.46) we see that i f only information on the scattered electron 

is used, the low y region has to be excluded because the x resolution is singular for ?/ —> 0. 
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A reasonable cut is 

y > 0.1. (3.47) 

Using 

y = (3-48) 
xs 

the l imits on y can be easily converted into boundaries on the {x,Q'^) range which are 

shown in Fig. 3.8. The H E R A electron acceptance region is obtained by combining the 

cuts on y and 6'^^. 

So far we have not considered any cuts on the energy E'^ of the scattered electron. 

We have to, however, take into account that the calorimeter resolution degrades for small 

values of E[. Therefore we impose the constraint 

> 5 GeV. (3.49) 

To calculate E'^ we use the equality 

= ( l - y + ^ ) (3.50) 

which easily follows f r o m (3.40) and (3.41). Since the resolution of the hadronic calorime

ter also becomes poor for small jet energies we would in principle have to introduce a 

similar cut on the energy of the additional jet in a DIS -|- jet event. But this w i l l not 

be necessary because, as we w i l l see in the following subsection, we require this jet to be 

energetic for a difi'erent reason. 

3.3.2 DIS + jet event kinematics 

Fig. 3.9 displays the kinematics of a DIS -h jet event. To be able to identify B F K L 

dynamics w i t h the DIS -|- jet measurement we have to select events where the transverse 

momentum of the extra jet ~ Q'^ so that D G L A P evolution along the gluon ladder is 

suppressed and take sufficiently large so that the diffusion in In k\ does not lead to a 

penetration of the infrared region. We therefore require 

< k^T < 2(5'- (3.51) 
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F i g u r e 3.9: Kinematics of the DIS + jet process. 

From the theoretical point of view we want Xj to be large so that we only need to input 

the parton distributions where they are well-known f rom the global analyses. Large Xj 

also means that x / x j is small allowing us to study the { x / x j ) ~ ^ behaviour as x / x j —> 0. 

However, as we w i l l see now, large Xj means that for fixed the jet is emitted at a small 

angle 6jp w i t h respect to the proton beam direction in the HERA laboratory frame. 

I t is convenient to translate the variables Xj, k'^j, which are given in the vir tual photon 

- proton centre-of-mass frame, into the HERA variables ^jp, Ej for fixed x,Q^. As a first 

step we express the four momentum pj of the jet in terms of the light-like four momenta 

p and q' = q + xp. We then have 

2̂ 
PJ = x p + -^q + kjT 

%c s 
(3.52) 

where s' — 2p • q and find the following relations [52]: 

2p-Pj = — = 2 E j E p { l - c o s e j p ) 
Xj 

2q • Pj = Xjs' - —k]j = 2Ej{Ee - K + E). 

(3.53) 

(3.54) 

I f we now wri te the four momentum of the outgoing lepton (in our case an electron or 

positron) as 

P'e = {K.<,y'.,^'e) (3-55) 
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F i g u r e 3.10: The relation between the jet kinematic variables for DIS -|- jet events with a; = 6 x lO"'' 
and = 20 GeV^ for various choices of the angle BQ. In the H E R A (30 x 820 G e V ) laboratory frame the 
jet angle 9jp to the proton direction is not uniquely specified by {x,Q^;xj,kjrp). Varying the remaining 
azimuthal angle transforms the lines of constant 6jp into narrow bands in the xj, k'jj. plane. Here we 
averaged over the azimuthal degree of freedom. The plot is insensitive to variations of x, over their 
relevant intervals. The continuous lines are the upper boundary on the allowed kinematic region for 
different choices of 9o- The dotted lines represent the lower boundary for the choices xj > 0.1 and 
xj > 0.05. 

then we have [53] 

E Eg cos 6jp — sin 9jp cos — y'^ sin 6jp sin (f)jp — z'^ cos 6 'IP- (3.56) 

The azimuthal angle (f)jp of the jet is not uniquely specified by {x,Q'^\Xj,k'jx)- We w i l l 

therefore average over all possible azimuthal angles. Using (3.53) and (3.54) we can derive 

a relationship between the jet momenta and the jet angle Ojp, 

kjxiE^-El + E) 

Epil-cosOjp) 
+ xk (3.57) 

Fig. 3.10 shows the dependence of Xj on kjj, for fixed values of Ojp. As anticipated, we 

see that for fixed kjj- large xj jets are only emitted at small angles Ojp (which is why the 

additional jet is often referred to as the "forward je t " ) . In order to avoid that the jet 
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is lost i n the proton beam pipe or that i t mingles wi th the proton remnants we have to 
impose a cut Ojp > 6Q. Then the solid lines in Fig. 3.10 represent the upper boundary on 
the allowed kinematic region for different choices of ^Q. For the jet to be measurable in 
the H E R A detectors we require 

e^p > ^0 = 5°. (3.58) 

A t the same t ime we need Xj to be as large as possible. From Fig. 3.10 we see that for a 

given Ojp we can reach larger values of Xj by observing jets w i th larger fcjy but then the 

event rate is depleted. I f we were to take Xj > 0.1 as would be theoretically favourable we 

would only be left w i t h a very small allowed kinematic region at large k'jj. We therefore 

impose the cut 

X, > 0.05. (3.59) 

The corresponding lower boundary on the allowed kinematic region is shown as the lower 

dotted line i n Fig. 3.10. 

Lastly, we impose the theoretical cut 

X 
z = — <0.1 (3.60) 

XA 

SO that z is small and the B F K L formalism is appropriate for the calculation of the DIS 

+ jet cross section. 

3.4 Summary and outlook 

We studied deep inelastic events containing an identified energetic jet in the final state as 

a way of exposing B F K L dynamics at HERA. As we saw this measurement has several 

advantages. Since we choose events where the transverse momentum of the jet satisfies 

kjrp ~ Q^, conventional D G L A P evolution along the gludn chain is neutralized. This 

allows us to search for B F K L effects. Another consequence of the requirement k'jj ~ 

is that for not too small values of we avoid a penetration of the infrared region which 

can originate f r o m the diffusion in In kj which accompanies B F K L evolution to smaller 

values of x / x j . To study the {x/xj)~^ behaviour as x / x j ^ 0 we of course concentrate on 
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the region where x is as small as experimentally feasible while demanding that Xj is large, 
typically Xj > 0.05. This on the other hand means that when we calculate the differential 
structure functions f rom (3.7) we only have to input parton distributions at values of Xj 
where they are well-known f rom the global analyses. So effectively we are studying deep 
inelastic scattering off a known parton rather than off the proton. 

Af t e r explaining the idea behind the DIS + forward jet measurement we outlined the 

calculation of the cross section for this process f rom B F K L dynamics. We also discussed 

the experimental cuts due to the detector geometry and the event selection. As we saw, 

the most severe restriction comes f rom the cut on the angle between the jet and the 

proton, Ojp > 5°, which is necessary in order to avoid the jet being lost i n the beam pipe 

or mingling w i t h the proton remnants. From Fig. 3.10 i t became obvious that i f the jet 

carries a large fraction Xj of the proton's longitudinal momentum i t is emitted at small 

angles Ojp w i t h respect to the proton beam in the HERA frame. For a given Ojp larger 

values of Xj can be reached by observing jets wi th larger kj^ but at a depleted event rate. 

So f r o m the theoretical point of view the deep inelastic -|- jet measurement is an excel

lent way of studying B F K L dynamics. Unfortunately i t turns out that in the experiment 

i t is very diff icult to identify a jet which is, as we found, very close to the proton remnant 

and to accurately determine its kinematic variables. Nevertheless there are encouraging 

results [54 - 57] as we w i l l see in Chapter 6. 



Chapter 4 

Deep inelastic events containing a 
forward photon as a probe of small 
X dynamics 

4.1 An alternative to the DIS + forward jet mea
surement 

In Chapter 3 we introduced the idea of studying deep inelastic events which contain an 

identified forward jet as a way of identifying the underlying dynamics in small x deep 

inelastic scattering at HERA. The process is illustrated again in Fig. 4.1(a). We pointed 

out the advantages of this process f rom the theoretical point of view. However, we also 

found that the clean identification and kinematic measurement of the forward jet poses a 

severe experimental challenge, particularly for jets at the smaller values of kjj- where the 

DIS + jet events are more numerous. 

Because of the experimental difficulties w i th the DIS + forward jet process we now 

want to find out i f there is a measurement which f rom the theoretical point of view is 

equally suitable for investigating the underlying dynamics at HERA but experimentally 

less problematic. Therefore, in this chapter we wi l l study a related, but alternative process, 

namely deep-inelastic events containing an identified forward photon, see Fig. 4.1(b). As 

a probe of small x dynamics, the process DIS + 7 has both advantages and disadvantages 

69 
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(a)DIS+jet (b) DIS + Y 

ssosos 

Figure 4.1: Diagrammatic representation of (a) a deep-inelastic + forward jet event, and (b) a deep-
inelastic (a;, Q^) + forward identified photon (a; ,̂fe^T) event. 

r w w w > -

Figure 4.2: The Feynman diagrams describing the gq jq subprocess embodied in the DIS + j 
diagram shown in Fig. 4.1(b). 
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as compared to DIS + jet. A major advantage is that the measurement of a photon should 
be cleaner than that of a jet , and less ambiguous, particularly at the lower values of kx-
Moreover since the q or ^ jet (denoted x'^ in Fig. 4.1(b)) is not identified we can enlarge 
the data sample by including events i n which its constituents mingle wi th the proton 
remnants. On the other hand we expect the DIS + 7 rate to be suppressed by a factor 
of order a/2Tr relative to DIS + jet , though this is offset since the photon is easier to 
measure than the jet and the recoiling quark jet is not identified. A second disadvantage 
is that we require isolation of the photon so as to avoid events where i t arises f rom the 
decay of a parent 7r° as we w i l l see later. 

Let us now first introduce the QCD formalism for the DIS + photon process. After 

that we w i l l discuss the cuts for the DIS + 7 event selection and then proceed to give 

some predictions for the cross section. 

4.2 Basic Q C D formula for the DIS + photon pro
cess 

We now study prompt photon production in deep-inelastic scattering at small x. That is 

the process 

"7" + p ^ l { x , M + X, (4.1) 

sketched in Fig. 4.1(b), in which the photon which carries a fraction x^ of the proton's 

longitudinal momentum and transverse momentum k^x is identified in the final state. We 

select deep inelastic events wi th small x and large x^. These events offer an opportunity 

to ident i fy the effects of the B F K L resummation of the asln(xg/x) contributions, which 

arise f r o m the sum over the real and vi r tual gluon emissions, such as the one depicted in 

Fig . 4.1(b). I n analogy to the DIS + jet process, the advantage of process (4.1) is that the 

outgoing photon acts as a trigger to select events in which the deep inelastic scattering 

occurs off a quark in a kinematic region where its distribution, q{xq, is known. 
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4.2.1 Calculation of the matrix element for the subprocess 

Let us first concentrate on the subprocess q{kq) + 9*{kg) 9(̂ g) + 7(^7) (a-nd also 

qg* —> ^7) which is described by the two Feynman diagrams shown in Fig. 4.2. When 

calculating the matr ix element squared for this process we have to take into account that 

the incoming gluon is v i r tua l . To ensure that we get the correct polarisation for the vir tual 

gluon we assume that i t couples to a scalar particle. The Feynman rules then imply that 

we have to contract the matr ix element for the process q{kg) + g{kg) 9(̂ g) + 7(^7) w i t h 

the four momentum r of the scalar particle. Next we keep the leading term in the high 

energy l imi t , that is the term proportional to (kg + r ) ^ . The coefficient corresponds to 

the mat r ix element for our subprocess. Proceeding in this way we find the spin averaged 

mat r ix element squared 

, ^ MSli & ! l ± i i ^ (4.2) 
' ' 27r 27r s{-u) ^ ' 

where the invariants s and ii are 

s = {k, + k ' ) \ u = [kg - k^)\ (4.3) 

and the variable is given by 

Xg 
(4.4) 

The fractional momenta a;,- are defined by the Sudakov decomposition of the particle 

4-momenta 

ki = Xip' + A ? ' + fc.T (4.5) 

for i = 7 or the outgoing quark q'. A t high energies p' and q' are to a good approxi

mation the light-like 4-momenta associated wi th the incoming proton and vir tual photon 

respectively, 

p' = p - ^ q , q' = q + xp, (4.6) 

where Mp is the mass of the proton. We fix the normalisation of the matrix element 

squared (4.2) by comparing w i t h Altarelli-Parisi evolution and find 

| , , p . 2 C . ( . ) 2 f l ) f M + i l p Z l (4.7) 
27r 27r •s(-ii) 
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where the colour factor C2{F) = 4/3. Note that is singular for s —> 0. We w i l l deal 

w i t h this problem later. 

4.2.2 The differential structure function for the DIS + 7 pro^ 
cess 

Having calculated the matr ix element M for the q{kq) + g{kg) —> q{k'^)-\-'^{k^) subprocess 

we can now wri te down an expression for the differential structure function for deep 

inelastic scattering accompanied by a forward photon: 

(4.8) 

for i = T,L. The variables are indicated in Fig. 4.1(b). We wi l l specify the region of 

integration in (4.8) later. Recall that the matrix element squared is given by (4.7). 

The fractional momenta were defined in (4.5) and in (4.4), in general 

z^ = - . (4.9) 
Xg 

The factors and z'^ i n (4.8) arise f rom requiring that the final state particles, i.e. the 

photon and the quark q' are on their mass shell. Note that the quark and antiquark 

distributions in (4.8) are to be evaluated at which is large because we select events 

w i t h large x^. This means that, as for the DIS + jet measurement, we only have to input 

parton distributions where they are well-known. 

The functions ^i{z,k^,Q'^) [i = T,L) in (4.8) describe the gluon ladder which cou

ples to the incoming v i r tua l photon. They are the same functions which we already 

introduced in Section 3.2 for the DIS -\- forward jet process. Recall that they correspond 

to the sum of ladder diagrams shown in Fig. 3.4. The $j- can be obtained by solving the 

B F K L equations (3.11). Again we impose the boundary condition that at some starting 

value z — z^y^e only have the quark box (and "crossed box") and no gluon radiation. 

Then we apply the B F K L equations (3.11) to evolve down to smaller values of z. We use 

the functions $-"^ as given in (3.22) and (3.23) assuming three flavours of massless quarks, 

that is we set = 0. As for the DIS + jet process we follow the procedure outlined in 
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Section 3.2.3, that is we solve the B F K L equations (3.38) numerically for the functions 
Hi defined in (3.37) subject to the boundary condition (3.39) and allowing the couphng 
as to run. Here we set the cut-off k^ = 1 GeV^ in (3.38). The "starting point" of B F K L 
evolution ZQ = 0.1 in (3.39) and correspondingly we require 

- < 0.1 (4.10) 
Xg 

i n the Xq integration in (4.8). Of course, the integration is also subject to the kinematic 

constraint Xg > x^. 

We are now in a position to calculate the differential structure function dF2/dxydk^j 

f r o m (4.8) where F2 = -Fj + FL- Our aim is to find a signature of the B F K L resummation 

of the leading ln(a;,/a;) terms. Therefore we do the following: we compute the differential 

structure funct ion first using $2 = $T + $L obtained f rom solving the B F K L equations 

(3.11). Then we repeat the calculation using for $2 just the driving (quark box) term 

$2̂ ^̂  which means we neglect B F K L evolution. Therefore, the difference between the two 

calculations is a measure of the effect of the B F K L resummation of soft gluon emissions. 

Let us for the moment regulate the matrix element squared by simply requiring that 

5 > 1 GeV^. Furthermore, the lower l imi t on the k^rp integration in (4.8) is k^j^ > 1 GeV^. 

The result for the F2 differential structure function is shown in Fig. 4.3 as a function of x^ 

for three different values of x. We see that the difference between the B F K L and quark 

box results is dramatic once x is sufficiently small (2; < 10""^) and provided x^ ~ 0.1. 

Indeed we require x/x^ to be small for the formalism to be valid. Fig. 4.3 also shows the 

strong increase of dF2ldx^dk'^r^ w i t h decreasing x for fixed x^ which we expect f rom B F K L 

dynamics. I n fact, as we already explained for the DIS -|- jet process in Section 3.2.4, i t 

is this shape in x which we should study as a signature of B F K L effects. The shape of 

dFi/dx-fdk^j' is the more reliable discriminator of the underlying dynamics at small x than 

the magnitude, since the normaHzation of the QCD predictions is subject to uncertainties 

arising mainly f r o m the regions of low transverse momenta (see also ref. [48]). 

Fig. 4.3 for the differential structure function for DIS -|- 7 events should be compared 

w i t h Fig. 3.6 for DIS + jet events. We see that the differential structure function and 

therefore also the cross section is about a factor of 1000 lower for the photon process, as 
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10 
(a)k5r = Q' = 5GeV' 

x = 10"' 

(b)k' =10GeV\Q' = 5GeV 

x=10 

Figure 4.3: The F2 differential structure function, (4.8), for deep-inelastic (x.Q^) events accompanied 
by a measured forward photon (xj,k^j,) as a function of for different values of a;, a; = 10" ,̂ 10~^ and 
10~^, and for = 5 GeV^. The continuous curves correspond to inputting into (4.8) the solution $2 of 
the B F K L equation (3.11), whereas the dashed curve is calculated using for $2 simply the driving term 

of (3.22) and (3.23). Here Î Wp is regulated by requiring s > 1 GeV^. Plots (a) and (b) correspond 
to photons with fc^y = 5 and 10 GeV^ respectively. 
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could be anticipated f rom the presence of the extra a/2ir couphng of the photon. Note also 
that the DIS + 7 differential structure function calculated using $2 = 2̂°̂  is independent 
of X (un t i l we reach the kinematic l imi t -̂y = 1), and its shape in x^ reflects the quark and 
antiquark distributions in the proton after integration over Xg. In contrast, for DIS + jet 
the Xj shape of the box contribution is dominated by the gluon distribution X j g { x j , A;|y), 
that is the gluon is sampled "locally". 

I n the next section we w i l l impose reasonable experimental cuts on the outgoing pho

ton, and then we w i l l quantify the event rate which may be observed at HERA. 

4.3 Cuts to select the DIS + forward photon events 

When calculating the cross section for the DIS + forward photon process which we expect 

at H E R A we have to impose several cuts. First of all there are the cuts defining the HERA 

electron acceptance region which we have already introduced and explained in detail in 

Section 3.3.1. As for the DIS + jet measurement we w i l l be using 

0.1 < ?/ < 0.9 

8° < e'^^ < 172° (4.11) 

> 5 GeV 

where y is the rapidity and E'^ the energy of the outgoing electron (or positron). 6'^^ is 

the angle of this electron w i t h respect to the proton direction in the HERA laboratory 

frame where we take the energies of the incoming electron and the proton to be Eg = 30 

GeV and Ep = 820 GeV respectively. In addition to the HERA requirements (4.11) on 

the outgoing electron there are cuts specific to the DIS -|- 7 measurement as we w i l l see 

in the following. The variables which we w i l l be using are defined in Fig. 4.4. 
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Figure 4.4: Kinematics of the deep inelastic -|- forward photon process. 

4.3.1 The isolation cut 

We are interested in semi-inclusive deep inelastic events in which only the photon is 

measured in the final state, besides the scattered electron. On the other hand the integrals 

defining the differential structure functions, (4.8), contain a potential singularity at s = 

0 which has to be regularized by a suitably chosen cut-off. In the calculation of the 

differential structure function shown in Fig. 4.3 we simply required i > 1 GeV^. However, 

a straightforward l imi ta t ion of the region of integration to J > SQ, where 5o is some 

arbi t rar i ly chosen value, does not allow for making a direct comparison of (4.8) w i th 

experiment. The reason for that is that s is only determined i f the recoil quark jet q' is 

detected as well as the photon, whereas the idea behind the DIS -\- photon measurement 

was that the quark jet does not have to be identified. 

There is a straightforward solution of this problem. I f we express the four-momenta 

of the recoil quark jet and the photon in the HERA laboratory frame by 

p' = {E'p'X P7 = (^7,^7) (4.12) 



Chapter 4. Deep inelastic events containing a forward photon 78 

respectively, we can rewrite s in the following way: 

= 2{E,E'^-p^p'^). (4.13) 

Since the photon and the jet are on-shell we have 

s = 2E^E'g (l-cose^g.) (4.14) 

where d^gi is the angle between the photon and the quark jet in the HERA laboratory 

frame, see Fig. 4.4. So i f we were to impose a cut on 0~fqi we would automatically regularize 

the singularity for i = 0. Now we have to require isolation of the outgoing photon anyway 

to distinguish i t f r o m background photons which arise f rom the decay of 7r°'s (7r° —> 77) 

produced either f r o m the proton remnants or the outgoing quark jet q'. Suppose we 

impose an isolation angle ^0 (where ^0 is chosen to be around, say, 3°-10°) defining a cone 

around the photon, then at the parton level we have 

e^g, > 00 (4.15) 

and hence a corresponding lower hmi t on s f rom (4.14). 

4.3.2 The hemisphere cut 

A second requirement is that our photon should be emitted in the proton hemisphere in 

the v i r tua l photon - proton centre-of-mass frame to avoid contamination f rom photons 

radiated f r o m the quark-antiquark pair which forms the quark box (and fragments into 

the current jet shown in Fig. 4.4). Thus we require 

x^ > (4.16) 

Since the four-momentum of the photon defined in (4.5) satisfies the on-mass-shell 

condition = 0 we have 
7 

" X, 
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giving 

x^ > . f k ^ . (4.18) 

The hemisphere cut, when combined wi th the kinematic constraint Xg > x^, imposes an 

impl ic i t lower l imi t of the Xg integration in (4.8) 

^/XP^T/Q^. (4.19) 

We see that this l im i t is generally stronger than our B F K L requirement (4.10) that Xg > 

lOx. 

4.3.3 The beam pipe cut 

Final ly there is the practical l imi ta t ion that photons can only be measured i f they are 

emitted at sufficiently large angles to the proton beam direction in the HERA laboratory 

frame, say 

> 00- (4.20) 

(For the definition of O^p see Fig. 4.4.) This cut is analogous to the beam pipe cut for 

the DIS + forward jet process which we introduced in Section 3.3.2. I t ensures that the 

photon does not mingle w i t h the proton remnants and that i t is not lost in the proton 

beam pipe. Of course, also depends on the detector architecture at HERA. 

I n Section 3.3.2 we derived a relation between the jet kinematic variables for the forward 

jet , eq. (3.57). I f we proceed in the same way, replacing the jet variables by the photon 

variables, we obtain a relation between the kinematic variables of the photon, 

x' ^ — (4.21) 
E p { l - COS6-yp) 

where the energies are defined in Fig. 4.4 and 

E = Be cos 6^p — sin O^p cos (f>^p — y[ sin O^p sin 4>^p — z'^ cos O^p (4.22) 

in analogy to (3.56). We can now use (4.21) to compute the upper boundary of the allowed 

regions in the kinematic variables [x^, k'^j.) for various choices of ^o- The azimuthal angle 
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Figure 4.5: The curves give the wpper boundary of the allowed regions of the photon kinematic variables 
(xy,^j,) for deep-inelastic -|- photon events with a; = 6 x 10~^ and = 20 GeV^ for various choices of 
the acceptance angle of (4.20). The photon angle d-yp to the proton direction in the HERA (30 x 820 
GeV) laboratory frame is not uniquely specified by {x,Q^;x.y,k^^). Varying the remaining azimuthal 
angle transforms the lines of constant Oyp into narrow bands in the Xj, k^j< plane. The continuous lines 
that are shown are obtained by averaging over the azimuthal degree of freedom. The lines are insensitive 
to reasonable variations of x and Q .̂ Also shown (by a dashed line) is the lower boundary given by the 
hemisphere cut (4.18) for a: = 6 x 10"^ and = 20 GeV^ 

(j)-yp in (4.22) is not fixed by [x,Q^;Xy,k^rp) which means we have to average over all 

possible azimuthal angles. The result is displayed in Fig. 4.5 for x = 6 x 10"^ and 

= 20GeV^. Actual ly the boundaries are insensitive to reasonable variations of x and 

Q^. From Fig. 4.5 i t becomes clear that large x^ photons are only emitted at small 

angles O^p between the photon and the proton. For a given 6^p we can reach larger x^ by 

observing photons w i t h large k^j-, but then the event rate is depleted. We also indicate in 

Fig . 4.5 the "forward hemisphere" lower boundary, (4.18), for x = 6 x 10"^ and Q"^ = 20 

GeV^. 
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4.4 Predictions for DIS + photon production 

We w i l l now present numerical predictions for the cross section for the production of an 

energetic photon in deep inelastic ep scattering at HERA taking into account the various 

cuts discussed in the previous section. The relevant cross section is given by the formula 

da Aira^ dF2 , dF: 
( l - 2 / ) 3 r - J l 2 - + TT dxydk^j. 2 dx^dkj^j 

(4.23) 
dx^dk^j'dxdQ^ xQ'^ 

where y = jxs w i t h s the centre of mass energy squared. For dF2,T/dx-ydk^^ we 

substitute the differential structure functions (4.8) using the relation F2 — FT + -Pi,. 

4.4.1 Dependence of the DIS + photon cross section on the 
cuts 

I n Section 4.3 we discussed several cuts which have to be imposed in the calculation of 

the DIS -|- photon cross section. Now i t is time to decide on reasonable values for these 

cuts. 

To obtain the total cross section in some bin in x and Q'^ we have to integrate the 

differential cross section (4.8) over x^, k^rp, x and Q^. The limits on the x and 

integrations of course depend on the given bin subject to the requirements (4.11) on 

the outgoing electron. The "forward hemisphere" boundary acts as a lower l imi t on the 

x^ integration which we w i l l f rom now on always impose. As we w i l l see we have to 

also introduce a min imum transverse momentum squared k'^^ of the photon in the k^j 

integration. 

L i m i t i n g the integrations in this way we can investigate the dependence of the total 

cross section for DIS - f photon events on the angle ^0 which defines the isolation cone 

around the forward photon, see eq. (4.15). In Fig. 4.6(a) we show the effect of varying 

^0 on the total cross section in the (x, Q'^) bin defined by 6 x 10~^ < x < 8 x 10~^ and 

20 < < 30 GeV^. Here we required that k^^, > 5 GeV^ and that the photon is emitted 

at an angle 9^p > 5° w i t h respect to the proton beam direction. As in Fig. 4.3 we display 

the results when including B F K L evolution in the calculation and when using only the 
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Figure 4.6: The dependence of the D I S -I- j cross section integrated over the photon variables to variation 
of (a) the angle 9o defining the isolation cone around the photon (O^j > 9o) and (b) the threshold for 
photon detection (fc^^ > A; \̂). The results are for the x, bin defined by 6 x 10~* < a; < 8 x 10""* and 
20 < Q2 < 30 GeV^ We impose the hemisphere cut (4.19) and take OQ - 5° in (4.20) . (The lack of 
smoothness of the curves simply reflects the errors on the six-fold numerical integration). 

driving te rm We see that in both cases the dependence on the isolation cone angle 

is relatively weak. This is of advantage because i t means that we can choose a reasonably 

large without losing many events. Let us next fix = 3° and study the dependence 

of the cross section on k^f^ in the same kinematic region. While acting as a lower l imi t on 

the k'^x integration of (4.23), k^j^ is also important physically because i t is the minimum 

transverse momentum squared which allows the identification of the forward photon in 

the H E R A detectors. Fig. 4.6(b) shows the variation of the DIS + photon cross section 

w i t h k'^f^ again when including B F K L resummation in the calculation and when neglecting 

i t ("box only") . We notice that i t would be useful i f photons wi th very small k'^x could be 

identified in the experiment. For the predictions which w i l l be given in the next subsection 

we w i l l choose k'^x > ^ GeV^. 

I n Table 4.1 we show the effect on the DIS -|- 7 cross section in the 6 x 10"'' < x < 

8 X 10"^ and 20 < < 30 GeV^ bin of varying ^0 (the minimum angle to the proton 

beam) and ^0 (the half-angle of the isolation cone). The remaining cuts are the same as 

for Fig. 4.6(a). We see that the event rate is less sensitive to the cone angle ^0 than to 
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Table 4.1: The DIS -f 7 cross section in the bin 6_x 10"* < a; < 8 x 10"*, 20 < < 30 GeV^ as 
calculated for Fig. 4.6(a), but for different choices of 0̂ and ô-

^0 00 A C T (fb) 
5° 3° 46.2 
r 3° 29.1 
JO 5° 26.2 

the min imum angle ^0 to the beam. For the predictions shown in the following section 

we w i l l use ^0 = 3° and ^0 = 5°. 

4.4.2 The DIS + photon cross section 

Having discussed in detail the cuts on the DIS -|- 7 events we can now proceed to presenting 

some predictions for the cross section for these events. Let us summarise which cuts we 

imposed in the cross section calculation: 

• the electron acceptance region specified in (4.11) 

• the hemisphere cut (4.18) 

• Oyj "> 6Q = 3° 

• e^p >'BQ = 5° 

• k^T > = 5 GeV2. 

In Fig. 4.7 we show the integrated cross section for prompt forward photon production as 

a funct ion of x for three different Q"^ bins: 20-30, 30-40 and 40-50 GeV^ respectively. We 

compare the predictions for the case where the B F K L small x resummation is incorporated 

w i t h those where the gluon radiation is neglected. The x dependence of the cross section 

is driven by the small z behaviour of the $ i . The results show a strong enhanced increase 

w i t h decreasing x which is characteristic of the effect of soft gluon resummation. A t 

X w 10"^ the cross section is about a factor of 3.5 larger than that in which the B F K L 
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Figure 4.7: The cross section, (cr) in pb, for deep inelastic -|- photon events integrated over = 2x10"'', 
AQ^ = 10 GeV^ bins which are accessible at HERA, and integrated over the region d^p > 5°, k^j< > 5 
GeV^, but subject to (4.19) and an isolation cut of = 3°. The x dependence is shown for three different 
AQ^ bins, namely (20,30), (30,40) and (40,50) GeV^ The (a) values are plotted at the central x value in 
each Ax bin and joined by straight lines. The continuous curves show (cr) calculated with $j determined 
from the B F K L equation, whereas the dashed curves are obtained just from the driving terms i.e. 
from the quark box. For clarity a vertical line links the pair of curves belonging to the same AQ^ bin. 

effects are neglected. Since the impact factors, are independent of a;, the weak x 

dependence in the latter case arises mainly f rom acceptance. Let us emphasize here that 

i t is i n fact the shape in x of the cross section which we should focus on when searching 

for B F K L effects. As we explained in Section 3.2.4 the x-dependence is less affected by 

the lower l im i t cutoffs on the transverse momentum integrations than the normalisation. 

Finally, i n Fig. 4.8, we show the cross section in the various deep inelastic {x,Q'^) bins. 

The values are shown in f b and so would correspond to the number of events for an 

eventual integrated luminosity of 1 fb~^. 

The DIS + 7 cross sections presented in Figs. 4.7 and 4.8 may be compared directly 

w i t h the values for the DIS + jet process shown in Fig. 4 of ref. [47] and Fig. 8 of ref. [49] 

respectively. We see that there is a suppression of about a factor of 400 in going f rom the 

DIS + jet to the DIS + 7 process. Of course the ratio depends on the precise cuts that 
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Figure 4.8: The cross section (cr) in fb for deep inelastic + photon events in various (Ax, A(3 )̂ bins 
which are accessible at HERA, and integrated over the region Q^p > 5 ° , > 5 GeV^, but subject 
to (4.19) and an isolation cut of = 3°. The number in brackets is the cross section calculated with 
just the quark box approximation ($,• = The difference between the two numbers is therefore 
the enhancement due to the B F K L soft gluon resummation. The solid curves represent the electron 
acceptance region defined by (4.11). 

are imposed in each case, see for example Table 4.1. 

4.5 Discussion 

As explained in Chapter 3 the DIS + jet process is, in principle, an ideal way to probe 
small X dynamics, provided sufficiently forv?ard jets can be measured. In practice to 
separate cleanly such forward jets from the proton remnants is a formidable challenge. 
In this chapter we studied the analogous DIS + 7 process which has the advantage that 
forward photons can be more reliably measured than forward jets, but for which the event 
rate is considerably suppressed. In Section 4.4.2 we quantified the suppression. There we 
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predicted the DIS + 7 cross section using BFKL dynamics and found a characteristic rise 
with decreasing x, which becomes steeper the more forward the detected photons are. 

Our study should be regarded as an exploratory investigation of the potential useful
ness of the process. The DIS + 7 rates which we presented in Figs. 4.7 and 4.8 correspond 
to photons produced (i) at more than 5° to the proton beam direction {6yp > 60 = 5°) in 
the HERA frame, (ii) in the centre of an isolation cone of half-angle 3° {9^g' > 60 = 3°) in 
the HERA frame, (iii) in the proton hemisphere in the 7*p centre-of-mass frame (to avoid 
contamination with photons radiated from the quark box), and (iv) with k?^x > ^ GeV .̂ 
Our work is at the parton level and so in practice the isolation criteria will need further 
study. In particular simulations of the fragmentation of the outgoing {q') jet should be 
performed so as to be able to choose the optimum isolation criteria for the photon. Recall 
that isolation is required to suppress background photons from 7r° decays. Since the DIS 
-I- forward cross section will in any case be quite small, in the following chapter we study 
another alternative to the original DIS + forward jet measurement. 



Chapter 5 

Forward t t ^ trigger of the deep 
inelastic + jet probe of B F K L 
dynamics 

In this chapter we investigate the feasibility of using the DIS + 7r° process to identify the 
underlying dynamics in the HERA small x region. After calculating the DIS -|- jet cross 
section in Chapter 6 we will then, in Chapter 7, return to the DIS -\- 7r° process. There we 
will explain how the normalisation of the BFKL functions can be fixed by comparing 
with the HI DIS -1- jet data. Then we will calculate the DIS -|- 7r° cross section imposing 
the cuts that were used by the HI collaboration in a very recent forward ;r° measurement 
which was motivated by the study presented in this chapter and compare with their data. 

5.1 Proposal of the DIS + forward TT^ measurement 

In Chapter 3 we studied deep inelastic (x, Q'^) events containing an identified forward jet 
(xj , k'jj^) as a probe of the small x behaviour of QCD, see Fig. 5.1(a). We pointed out that 
the observation of DIS + jet events offers the opportunity to expose BFKL-type small 
X dynamics free from the ambiguities associated with the choice of the non-perturbative 
parton input. Experimentally, however, the clean identification and kinematic measure
ment of a forward jet proves to be difficult since we require it to be as close to the proton 

87 
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(a) DIS + jet (b) DIS + tt"̂  
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3/ ̂  Ki 

o 
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o o o 

Figure 5.1: Diagrammatic representation of (a) a deep inelastic -I- forward jet event, and (b) a deep 
inelastic (a;, Q^) -I- identified forward n° (x„,k^T) event. 

remnants as possible, that is Xj as large as possible. 

Here we will use the improved knowledge of the fragmentation functions to propose 
that the forward jet is identified through the measurement of a single energetic decay 
product. As it turns out the 7r° is the hadron which can be identified in the most forward 
direction in the detectors at HERA. We use the BFKL formalism to predict the DIS -|-
forward 7r° rate. The rate will, of course, be suppressed in comparison with the DIS -f 
forward jet rate and it is an experimental issue to see if the advantages of single particle 
detection as compared to identification of the (parent) jet can compensate for the loss of 
signal. (See, however, the updated discussion in Chapter 7.) 

Before displaying the formalism for the calculation of the DIS -|- IT° cross section in 

Section 5.3 we will, in the following section, outline the fragmentation functions approach 
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to hadronisation. Then in Section 5.4 we introduce the experimental cuts which we 
impose and give our numerical predictions for the DIS + 7r° process in Section 5.5. The 
final section of the chapter contains a discussion. 

5.2 Fragmentation functions 

So far, in this thesis we have only presented calculations which were on the parton level. 
In the DIS + 7r° measurement, however, we are triggering on a hadron, the 7r°, in the 
final state. Therefore, we need a formalism for describing how partons turn into hadrons. 
However, when we try to establish a QCD description of the hadronisation process we 
encounter the following problem: Whereas the partons produced in the scattering process 
are emitted at short distances, hadronisation takes place at larger distances. This means 
that the coupling 0:5 may be large and perturbation theory not applicable. The solution 
is provided by the factorization theorem which enables us to express cross sections as 
products of factors which each involve phenomena appearing at different energy scales. In 
particular we can write the cross section for a hadronic collision with inclusive production 
of one hadron as the convolution of the partonic hard cross section and the distribution 
and fragmentation functions which represent the parton density inside the hadrons and 
the hadron density inside the partons respectively. The fragmentation functions contain 
all the information on the hadronisation process. In this section we will discuss the simple 
parton model description of these functions and then include scaling violations. We will 
also outline how the fragmentation functions can be modelled phenomenologically and 
obtained from fits to experimental data. 

5.2.1 Parton Model 

Let us consider the process AB hX which is depicted in Fig. 5.2. h is a hadron with 
large transverse momentum |py| and X represents all other particles in the final state. 
The incoming hadrons A and B contain amongst others the partons a and b respectively. 
These partons scatter and produce the partons c and d which carry a large transverse 
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Figure 5.2: The hadronic scattering process AB hX at large PT in terms of the underlying partonic 
process ah —>• cd, the structure functions and /g , and the fragmentation function [58]. 

momentum qj. Due to the confinement mechanism hadron h is then produced from 

parton c. 

Now we try to estimate the cross section for the inclusive process AB —> hX. We 
define x^ as the fraction of the momentum of hadron A which parton a carries, 

Xn. = 
qa_ 

PA 
(5.1) 

with 0 < < 1. For simplicity we neglect any components of the momentum of a that 
are transverse to the z-axis which we choose to lie in the beam direction. We also assume 
that the masses of the hadrons and partons are small compared to the momenta we are 
dealing with, which allows us to write 

(5.2) 

and 
q^^ c iqa,OAqa) = x „ ( p „ 0 , 0 , p j . (5.3) 

Next we introduce the variable which is the fraction of the momentum of parton c 

which hadron h acquires, 
= ^ , (5.4) 
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where 0 < Zh < 1. Then the invariant tior the partonic subprocess ab cd is 

i = - € ) ' ^ -29a •qc = - 2 ^ P A - P h (5.5) 

If we know the differential cross sections, da/dt, for all the parton subprocesses, we can 
calculate the parton model cross section for AB —> hX from [58 

Eh^iAB^hX) = ^ R dxa R dxj, flixa) fU^b) 
d^Ph abed 

x — '^-^{ab^cd)D]{z^). (5.6) 
TTZ/j dt 

Here the parton distributions give the probability for finding a parton a inside hadron 
A which carries a fraction Xa of its momentum. The functions are the so-called 
fragmentation functions which represent the probabihty that a hadron h with momentum 
fraction z^ is found in the debris of the outgoing parton c. We assume that the hadron h is 
produced coUinearly with c. In addition, we take the fragmentation to only be dependent 
on Zh and not on the nature of the initial state. This then allows us to determine the 
fragmentation functions from one process and use them in the calculation of the cross 
section of another. 

Sum rules 

The form of the fragmentation functions is partially determined by sum rules. To see this 
let us consider a process where the outgoing partons c and d in Fig. 5.2 are a quark and 
an antiquark (or vise versa). We notice that, first of all, the energy of all the hadrons 
which are fragments of a given quark must equal the initial energy of that quark, i.e. 

^ fdzzD\{z) = 1. (5.7) 
h •'^ 

Secondly, charge conservation requires that 

X:e, fdz[D'^{z)-D'^{z)] = e„ (5.8) 

and finally probability conservation implies that the average multiplicity of hadrons of 

type h is given by 

{nh) = E r d'D'i') (5-9) 
g,q •''mi,. 
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Figure 5.3: The minimum number of spectators, n,, for fragmentation into a meson M for three 
different cases: fragmention of a quark or antiquark which (a) is and (b) is not a constituent of M, and 
(c) fragmentation of a gluon [58]. 

where Zmin is the lowest possible value of z for a hadron of mass m/j. 

Limiting behaviour as z ^ 0 or 1 

The fragmentation functions are not only constrained by sum rules but also by the be

haviour we expect in the limits z ^ 0 and 1. As z approaches 1 the hadron carries almost 

all of the parent parton's momentum. This means that any other partons which are left 

behind in the hadronisation can only have negligible momentum. In this case dimensional 

counting implies that [58 

D ; ( Z ) ~ ( l - z ) 2 " - i (510) 

for z ^ 1. Here is the minimum number of spectator partons present during the 

hadronisation process. In Fig. 5.3 we show schematically the fragmentation of a parton 

into a meson M and the corresponding value of n^. So, for example, for the fragmentation 

of a gluon into a meson M we would expect that 

D ^ { z ) ^ { l - z r (5.11) 

in the limit z ^ I. Regge theory, on the other hand, provides a constraint on the frag

mentation functions as z —>• 0. In this case the nearly massless hadrons carry essentially 

none of the parton's momentum. Therefore, in analogy to what we saw for the small-a; 

behaviour of the parton distributions in Chapter 1, Regge theory leads us to expect that 

D^iz) ~ Z-' (5.12) 
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in the limit z ^ 0. Expectations (5.10) and (5.12) suggest a parametrisation of the 
fragmentation functions of the form 

D^iz) = Ni Z-'{I - zY^'-' (5.13) 

where the normalisation Â '̂' is constained by the sum rules (5.7) and (5.8) which we 
discussed above. As we will see, parametrisations of a similar form are indeed used for 
the determination of fragmentation functions from experimental data. 

5.2.2 Scaling violations 

The parton model predicts a scale-independent behaviour of the fragmentation functions. 
However, as we also saw for the parton distributions in Section 1.4 this scaling is violated 
when we include QCD corrections. In the framework of the QCD-improved parton model 
the fragmentation functions not only depend on z but also on some scale fi'^, i.e. D{z) 
D{z,/j,'^). Imagine this scale is increased from /ẑ  to //̂  -|- dfx'^. Then the resulting change 
in the fragmentation function £)f is entirely due to the spHtting of a parton of type i 
in this scale interval. Therefore, the evolution of the fragmentation functions with /ẑ  is 
described by DGLAP equations [18, 19], 

J ^ ^ i ( ^ y ) = "^EriPdy,''s)D^(ly), (5.14) 

where the indices i and j run over all active quark and antiquark flavours and the gluon. 
These evolution equations look like the DGLAP equations for the parton distributions, 
c.f. (1.60) and (1.61), but with the splitting functions P,, instead of P,j. The reason is 
that Dj represents the fragmentation of the final parton, whereas f j is the distribution of 
the initial parton. Note also that in fragmentation the branching is timehke rather than 
spacelike as in deep inelastic scattering. Only the lowest order functions Pji\y) in the 
perturbative expansion 

PAy.c^s) - Pi?iy) + ^PiPiy) + ... (5.i5) 

are the same in both cases, see Chapter 1. A summary of the functions PjPiy) can be 

found in ref. [17]. 
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How do the scahng violations enter the calculation of the cross section for the process 
AB —>• hX which we above discussed in the parton model? Recall that in case of the 
parton distributions it was possible to sum, factor off and absorb the coUinear singularities 
into universal running parton distributions. Similarly, here the factorisation approach 
enables us to absorb the coUinear singularities into the fragmentation functions. Therefore 
we can, to leading order, include the scale dependence in the cross section formula (5.6) 
for the scattering AB hX in a straightforward way. We replace the parton model 
parton distributions and fragmentation functions by the fx'^ dependent ones and write 

E,^iAB-^hX) = I'dxat dx,rA{x,,pi'')fs{x,,y') 
d Ph abed 

1 ^{ab^cd)D^{z,,fi'). (5.16) 
TTZh dt 

To obtain the cross section da/di for the partonic subprocess ab cd we still only have to 

compute the Born diagrams but replacing as by Q!s(/î ). Later we will use an expression 

which has the general form of (5.16) to calculate the cross section for DIS -|- 7r° production 

from the DIS -t- jet cross section. 

5.2.3 Determination of fragmentation functions from experi
ment 

The DGLAP evolution equations only describe the scale dependence of the fragmenta
tion functions. It is not possible to calculate the 2-dependence from perturbative QCD. 
Therefore the fragmentation functions have to be obtained from experiment. The stan
dard procedure is to parametrize the z-dependence of the fragmentation functions as 

Diz,^^l) = Nz-il-zf (5.17) 

at some low scale fi^. (Note that this form is similar to our parton model parametrisation 

(5.13).) The next step is to use the DGLAP equations (5.14) to evolve these "starting" 

2-distributions to scale The parameters a, ^ and N are fixed by demanding that the 

evolved distributions describe the data at scale fi^. It is therefore necessary to solve the 

system of integro-difFerential equations given by the DGLAP equations (5.14). This can 
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be done by appljdng the Mellin transform technique [20] which renders the convolutions 
to products. As a check, one can see if the fragmentation functions obtained in this way 
fulfil the sum rules (5.7), (5.8) and (5.9) (with D{z) replaced by D{z, pL^)) for an arbitrary 
scale. 

Fragmentation functions Df(z,/i^) are mainly obtained from data on the inclusive 
production of a hadron h in e+e" annihilation, i.e. from the process 

e + e - ( 7 , Z) ^ + X (5.18) 

Here z is defined as the energy fraction of the outgoing hadron h, 

2EH (5.19) 

where ^/J is the centre-of-mass energy of the collision. Determining the fragmentation 
functions from e+e" scattering has the advantage that additional uncertainties due to the 
parton distributions which are also derived from fits to data are avoided. In the frame
work of the QCD-improved parton model which we discussed above the z-dependence 
of the cross section of the process e'^e~ —> h -\- X emerges from the z-dependence of 
the cross section of the partonic subprocess e+e~ i X through convolution with 
the fragmentation functions D^{z^y?'). Therefore the fitting parameters in (5.17) can 
be fixed by requiring that after evolution the D^(z,fi'^) give a differential cross section 
d(T{e'^e~ —> i + X)/dz which agrees with the data. The more recent sets of fragmenta
tion functions were determined in next-to-leading order analyses of real and Monte Carlo 
simulated data. Fragmentation functions for neutral and charged pions were for example 
derived in refs. [59] and [60, 61], respectively. An overview of various sets can be found 
in [62]. 

The fragmentation functions determined from data on e+e" annihilations provide an 
opportunity for non-trivial tests of the factorisation theorem. If factorisation holds then 
these fragmentation functions are universal and can be applied in the computation of 
cross sections for other processes. The results can then be compared with experiment. 
In this thesis we rely on the validity of the factorisation theorem: we will use the set of 
leading order fragmentation functions for charged pions given in [61] to calculate the cross 
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section for the DIS -|- 7r° process. We choose this particular set because in their analysis 
the authors treated the light, s, c and b quarks independently for the first time. 

5.2.4 Relation between fragmentation functions for charged 
and neutral pions 

The set of fragmentation functions provided in ref. [61] is vahd for charged pions. In this 
chapter, however, we will be dealing with the fragmentation of a parton jet into a 7r°. We 
therefore note that SU(2) symmetry impHes that 

Df{z,l^') = I [Df{z,(.') + Dr{z,^.') (5.20) 

for all partons i = q,q,g. To see this we express the fragmentation functions in terms of 
contributions corresponding to the possible values of the total isospin / . In our notation 
7j- is the isospin and m, the third component of the isospin for i = q,Tr .̂ Since a quark or 
antiquark has isospin 7, = 1/2 and a pion 1-^ = 1 the total isospin can assume the values 
7=1 /2 , 3/2. Then we have 

(5.21) 
1=1 

where M = m^ + m, is the third component of the total isospin. The {I^IqmT,mq\lT,IqlM) 
are the so-called Clebsch-Gordon coefficients which can be found in [63]. Let us now con
sider the fragmentation of a u-quark into a 7r°, 7r+ or TT" . The corresponding fragmentation 
functions can be written as 

2 2 2/ ^ \ 2 2 
l i n y 

2 2 2 / 

= 1 
1 4 2 2 2/ \ 2 2 

l i ^ i (5.22) 

1 1 3\ ' 
1 ) + ( 1 - 1 -

2 2 2/ \ 2 2 

1 . 1 
2 2 2 / 

'''Actually we consider TT rather than TT here. The reason is that we square the amplitude for the 
fragmentation process qTT-\-X and cross the 7r-meson line onto the quark side. Then we apply isospin 
conservation to the two-body process TT-f g —> 
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Substituting the numbers for the Clebsch-Gordon coefficients we obtain 

= ( ^ - ^ D\ + D'^ = ID'^ + (5.23) 

u 

Addition yields 

3 3 
Dl' + = ID'^ + ^D'^ = 2D:\ (5.24) 

If we take into account that 

Dl' = Df- (5.25) 

£>r = Df 

we find that a relation analogous to (5.24) also holds for c?-quarks. Treating the remaining 
quarks similarly shows that (5.20) is valid. Of course, (5.20) is trivially true for gluons. 

5.3 Q C D formalism for the DIS + forward 7r° pro
cess 

In the previous section we outlined the fragmentation functions approach to the descrip
tion of the fragmentation of a jet into a hadron. Now we will use this formalism to obtain 
the cross section for the DIS -|- forward 7r° process from the DIS -f jet cross section. 

5.3.1 The DIS + forward jet cross section - a reminder 

First we recall the derivation of the cross section for the deep inelastic -f- jet process 

depicted in Fig. 5.1(a), which also shows the variables used. The differential cross section 

daj/dxdQ'^ is given by (3.6) where we substitute the differential structure functions (3.7). 
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When calculating these differential structure functions we have to evaluate the parton 
distributions at {xj, kjj') as we did for the DIS -|- jet process. Since we require the forward 
7r° to carry a large fraction of the proton's longitudinal momentum (a;̂  > 0.05) and since 
Xj > x^, Xj is also large. Therefore we again only have to supply the parton distributions 
where they are well-known, i.e. we avoid the uncertainties arising from the freedom to 
choose the input parton distributions. In fact, since only the 7r° has to be measured in 
the final state we can include events where part of the jet is lost in the beam pipe. This 
allows us to reach higher values of Xj than for the DIS -f- jet process as can be seen from 
Fig. 3.10. On the other hand, for a fixed value of x higher Xj means smaller z = x/xj and 
therefore a longer lever for the BFKL evolution. As explained in Chapter 3 we impose 
the boundary condition that at some starting value ZQ of z we only have the "quark box" 
(see Fig. 3.5) and no gluon radiation. To be precise we utilize expressions (3.22) and 
(3.23) assuming three flavours of massless quarks (m, = 0). Then we use the BFKL 
equations (3.11) to evolve to smaller values of z. In this way we obtain the functions $ 
which we have to substitute in the differential structure functions (3.7). Recall that the 
$i describe the virtual 7 - virtual gluon fusion process including the ladder formed from 
the gluon chain of Fig. 5.1(a). In practice we follow the approach outhned in Section 3.2.3 
and solve the BFKL equations (3.38) numerically for the functions Hi defined in (3.37) 
where we allow the coupling as to run. For the lower limit on the transverse momentum 
integration in (3.38) we choose k^ = 1 GeV .̂ We impose the boundary conditions (3.39) 
with ZQ = 0.1. 

5.3.2 The DIS + forward TT̂  cross section 

Next let us consider the process where the forward jet fragments into 7r°'s as shown 
schematically in Fig. 5.1(b). We are looking at the case where the 7r° is collinear with 
the parent quark jet. This means that if the 7r° carries a fraction a;̂  of the proton's 
longitudinal momentum, then it carries a fraction z = x^/xj (0 < 2 < 1) of the parent 
jet's longitudinal momentum and its transverse momentum = zkjj. In order to 
calculate the cross section for DIS -f- 7r° production we have to convolute the DIS + jet 
cross section with the 7r° fragmentation functions which we discussed in Section 5.2. We 
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obtain 

d(r^ f ... f J1.2 \ dag 

X 8 {XTJ — zxj) S {kTjj — zkjj) (5.26) 

where the sum over q runs over all quark and antiquark flavours. The partonic differential 
cross sections can be obtained from (3.6) and (3.7) by substituting for the sum over 
the parton distributions /„ either the gluon distribution g or the quark or antiquark 
distribution |? or respectively. In analogy to choosing = 0.1 in (3.39) we impose the 
constraint x/x^ < 0.1, i.e. xjxj < 0.1 since < Xj, on the Xj integration here. Recall 
that the functions Dg° {z, k^rp) and Dg°{z, k^j,) in (5.26) give the probabihty that a gluon 
or quark jet fragments into a 7r° carrying a fraction z of the parent jet's momentum. We 
choose the fragmentation scale //̂  = fc^y here but we will also try varying it later. Because 
of relation (5.20) which followed from SU(2) symmetry, eq. (5.26) describes the average 
of the cross sections for 7r+ and TT" production. 

5.4 Cuts for the DIS + TT^ process 

We use (5.26) to calculate the event rate for deep inelastic scattering in which, in addition 
to the scattered electron, the 7r° is measured in the final state. Of course, to obtain the 
total cross section we will have to introduce hmits on the x^ and k^^x integrations which 
we will specify later. As for the DIS -|- forward photon measurement we require the 
outgoing lepton to lie in the kinematic region defined by (4.11). Here we take the energies 
of the colliding particles to be Eg = 27.6 GeV and Ep = 820 GeV. Let us now investigate 
what other cuts we have to impose. For a definition of the variables which we will use see 
Fig. 5.4. 
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Figure 5.4: Kinematics of the deep inelastic -|- forward TT" process. 

5.4.1 The hemisphere cut 

To ensure that the 7r° is really a fragment of the forward jet (and does not come from the 
quark-antiquark pair which form the quark box) we require the 7r° to be emitted in the 
forward hemisphere in the virtual photon - proton centre-of-mass frame. If we express 
the pion four momentum in terms of Sudakov variables 

k^ = x^p -h + KT (5.27) 

then the forward hemisphere requirement is 

X. > ^ . (5.28) 

Since the outgoing pion satisfies the on-mass-shell condition = w 0 we have 

Then (5.28) gives 

Xj > XTT > 

We thus have an implicit lower limit on the Xj integration in (5.26), which is generally 

stronger than the condition Xj > lOx imposed on the solution of the BFKL equation. 
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F i g u r e 5.5: The relation between the 7r° kinematic variables for DIS + 7r° events with a; = 6 x lO""* and 
g2 = 20 GeV2 for various choices of the angle in (5.31). In the H E R A (27.6 x 820 G e V ) laboratory 
frame the pion angle ,̂rp to the proton direction is not uniquely specified by (a;, Q ^ ; a ; , r , V a r y i n g 
the remaining azimuthal angle transforms the lines of constant 6^p into narrow bands in the k^, klj, 
plane. Here we averaged over the azimuthal degree of freedom. The plot is insensitive to variations of x, 

over their relevant intervals. The continuous lines are the upper boundary on the allowed kinematic 
region for different choices of • The dashed line represents the lower boundary given by the hemisphere 
cut, (5.28), for a; = 6 X I Q - * and = 20 GeV^. 

5.4.2 The beam pipe cut 

Another problem to be taken into account is that at HERA pions can only be detected 

if they are emitted at a large enough angle to the proton beam. This also ensures that 

there is no contamination f rom pions produced in the proton remnant. We require 

7̂rp > ^0 (5.31) 

This cut is analogous to the beam pipe cut we imposed for the forward photon, c.f. 

Section 4.3.3. Proceeding in the same way as for the forward photon we can derive a 

relation between and k^j^ analogous to (4.21). In Fig. 5.5 we show this relation between 

the pion kinematic variables for different choices of the min imum angle defined in the 
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H E R A frame. We f ind that pions wi th large longitudinal momentum fraction x^, are only 
emit ted at small angles ^^p. To reach larger a:̂  for a given we can measure pions wi th 
larger k^rp but at a depleted event rate. In the same figure we also plot the boundary given 
by the hemisphere cut, (5.28), for x = 6 x 10"^ and Q'^ = 20 GeV^, which acts as a lower 
l i m i t on the allowed kinematic region. We w i l l use = 5° for the main presentation of 
our results (although later we compare the predictions wi th those obtained wi th = 7°). 

5.5 Predictions for the DIS + TT^ cross section 

Now we are i n the position to give numerical predictions for the cross section for DIS + 

7r° production using (5.26) and implementing the cuts that we discussed above. Let us 

just summarize the cuts and l imits we impose in the cross section calculation: 

• the electron acceptance region given in (4.11) 

• the hemisphere cut (5.28) 

• > 00 = 5 ° 

• 3 < A:̂ T < 10 GeV 

• x^> 0.05. 

Recall that i t follows f r o m (5.20) that the cross section for 7r° production equals the 

average of the cross sections for TT"*" and T T " production. Therefore the results we wi l l 

show in the following multiplied by a factor of 2 w i l l be vaHd for charged pion production. 

Throughout the analysis we assumed three flavours of massless quarks. 

I n Fig. 5.6 we plot the x dependence of the DIS + 7r° cross section integrated over 

bins of size A x = 2.10"^ and AQ^ = 10 GeV^ for three different bins, namely 20-30, 

30-40, 40-50 GeV^. Here we imposed the cuts Hsted above and used the fragmentation 

functions [61] at scale //^ = k^j^. We compare the results obtained when B F K L small x 

resummation is included w i t h the case when gluon radiation is neglected ($,• = m 
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F i g u r e 5.6: The cross section, (cr) in pb, for deep inelastic + 7r° events integrated over bins of size 
Aa; = 2 X 10"'*, A Q ^ = 10 GeV^ which are accessible at H E R A for TT^'S with transverse momentum 
3 < k-^T < 10 G e V where the constaints > 0.05, O-^p > 5°, and the hemisphere cut, (5.28), were 
imposed. The fragmentation functions were evaluated at scale ^ ^ j , . The (cr) values are plotted at the 
central x value in each Aa; bin and joined by straight lines. The a; dependence is plotted for three different 
AQ^ bins, namely (20,30), (30,40) and (40,50) G e V ^ The continuous curves show (a) calculated with 

obtained from the B F K L equation. The corresponding {(T) values calculated neglecting soft gluon 
resummation and just using the quark box approximation $ j = are plotted as dashed curves. For 
clarity a dotted vertical line joins each pair of curves belonging to the same AQ^ bin. 

(3.7)). In the first case the strong x dependence of the cross section is driven by the small 

z behaviour of the and therefore there is a strong enhanced increase wi th decreasing 

X. For example, i f we compare the cross section for a; « 5 x 10"'' in the two cases, we find 

that the results are about a factor 7 larger when B K F L evolution is included than when i t 

is neglected. This enhancement is the signature of B F K L soft gluon resummation. In fact 

the B F K L behaviour should be identified via the shape in x rather than the value of the 

cross section, since the latter is subject to normalisation uncertainties (see Section 3.2.4 

and ref. [48]). I n Fig. 5.7 we show the cross section (in f b ) , for the same cuts as in Fig. 5.6, 

in various bins i n x and Q'^ which are accessible at HERA. We find that the cross section 

drops off very rapidly w i t h which means that we can reach the highest values for the 

bins w i t h 10 < Q'^ < 20 GeV^ and x very small. 
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F i g u r e 5.7: The cross section, (cr) in fb, for deep inelastic -f- 7r° events in various ( A z , A Q ^ ) bins which 
are accessible at H E R A , and integrated over the region 3 < k-„T < 10 G e V , d^p > 5°, x„ > 0.05, and 
subject to the hemisphere cut, (5.28). The fragmentation functions were evaluated at scale fi"^ = k^j^. 
T h e values in brackets are the cross sections obtained when using only the quark box approximation 
$ i = Therefore the difference between the two numbers shown in one bin is the enhancement due 
to B F K L soft gluon resummation. Recall that (5.20) implies that the results shown for the D I S -|- 7r° 
cross section here equal the average of the cross sections for t"*" and v~ production. The curves are the 
boundaries of the acceptance regions at H E R A given by 8° < 0'^^ < 172° and Q.l <y < 0.9. 

5.5.1 Dependence of the DIS + 7r° cross section on the k^, in
tegration region and on the fragmentation scale 

Of course, the DIS + T° cross section depends on the values chosen for the cuts. In Table 

5.1 we show the effect of changing the limits on the k^^T integration. A l l other cuts are 

the same as for Fig. 5.7. Since the cross section decreases wi th increasing k^^j i t is more 

sensitive to the lower l imi t on the k-^j integration than to the upper l imi t . 

The DIS -|- 7r° cross section does not only depend on the cuts but also on the frag

mentation scale used in the calculation. To obtain the results shown in Figs. 5.6 and 
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T a b l e 5.1: The D I S + 7r° cross section in the bin IQ-^ < a: < 1.2 x 1 0 - ^ 20 < < 30 GeV^ 
as calculated in F ig . 5.7, but for different choices of the limits of the integration over the transverse 
momentum of the 7r°. 

KT,min [GeV] KT,max [GeV] a[ph] 

3 8 0.23 
3 10 0.26 
5 10 0.18 

T a b l e 5.2: The D I S + 7r° cross section in the bin l O ' ^ < a; < 1.2 x 10"^, 20 < < 30 GeV^ calculated 
imposing the same cuts as for Fig . 5.7, but evaluating the fragmentation functions at the three different 
scales \k1j,, k^^ and 2klrp. 

fragmentation scale <7[pb] 
0.31 
0.26 
0.23 

5.7 we used the pion fragmentation functions at scale //^ = A;^^. In Table 5.2 we show 

the cross section for the deep inelastic + 7r° process in the bin 10~^ < a; < 1.2 x 10""^, 

20 < Q"^ < 30 GeV^ calculated imposing the same constraints and including B F K L soft 

gluon resummation but evaluating the pion fragmentation functions at the scales ^k^xi 

klx and 2^^^. The values demonstrate the scale ambiguity in the prediction of the cross 

section. 

5.5.2 Background from photons which are fragments of the 
forward jet 

Since 7r°'s are measured through their decay into two photons (7r° 77) there is a 

background f r o m events in which the parent jet fragments into a photon which is emitted 

collinearly, see Fig. 5.8. 

The fragmentation of a parton jet into a photon can be treated analogously to the 

fragmentation into a hadron. Again we define a fragmentation function Di{z,fi'^) which 
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F i g u r e 5.8: Diagrammatic representation of the background to deep-inelastic -\- forward TT" events arising 
from photons which are fragments of the forward jet. 

gives the probabili ty that a parton i (i — q.,q.,g) fragments into a photon which carries a 

fract ion z of its momentum. As before, fi'^ is the fragmentation scale. The / i ^ evolution 

of the fragmentation functions Dj is described by D G L A P equations similar to (5.14). In 

analogy to (5.26) the cross section for the background f rom photons which are fragments 

of the forward jet is given by 

dx-ydk^T 

d(Ta 
-D1 [ZX,T) 

q \ d x j d k j j 

X 6 {x^ — z x j ) 6 {kyT — zkjx) (5.32) 

where we assumed coUinear fragmentation. We estimated this background using the 

fragmentation functions of Owens [64] and found that i t is 1-2 % of the cross section for 

7r° production. 
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Considering the smallness of the background f rom photons which are fragments of 
the forward jet , a comment on the errors on the calculation of the cross section for pion 
production is due here. From the numerical point of view there is an error f rom the Monte-
Carlo integration used to evaluate (5.26) which is of the order of 5 %. To our knowledge 
the errors on the pion fragmentation functions are of the order of a few percent for quarks 
and 30 - 40 % for gluons [65]. Since the dominant contribution to the cross section for 
pion production comes f rom the fragmentation of gluons we expect these errors on the 
fragmentation functions to result in an error of at most 25 % on the cross section. The 
parametrisations of the fragmentation functions describe the D G L A P evolution correctly 
up to 10 % [61]. We found that our results are more sensitive to the normahsation of the 
fragmentation functions than to their shape. 

5.5.3 Comparison with the DIS + forward jet measurement 

Final ly let us compare our predictions for DIS + forward 7r° production as shown 

in Fig. 5.7, w i t h the corresponding cross sections for the DIS + forward jet events, the 

process originally proposed by Mueller [39] as the probe of small x dynamics which we 

discussed in Chapter 3. In order to quantify the suppression due to the fragmentation 

of the jet into the 7r° we integrate the DIS + jet differential structure functions given in 

(3.7) over the same domains of xj and that we used for a;̂  and klrp for the DIS + 7r° 

predictions. To be precise we integrate over the region 3 < kjT < 10 GeV and Ojp > 5° 

w i t h a hemisphere cut for the jet in analogy to (5.28), that is Xj > I3j. The upper and 

lower numbers in Fig. 5.9 compare the DIS + 7r° wi th the DIS + jet cross section in the 

various bins of x and Q^. We see that the fragmentation of the forward jet into a n° 

meson costs a factor of about 40 in the suppression in event rate. Whether this loss of 

event rate is compensated by the advantage of identifying a forward ir° as compared to 

a jet (adjacent to the proton remnants) is an experimental question. Table 5.3 offers a 

guide to the possible gain using the 7r° signal. For instance, i f we were able to identify ir° 

mesons down to 5° i n angle and 5 GeV in kr w i th the same accuracy as jets down to 7° in 

angle and 7 GeV in kr then we would gain back a factor of 4. Moreover, i f we were to add 

in the DIS + forward T T ^ signal then we gain an extra factor of 3. Table 5.3 also shows 
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F i g u r e 5.9: The upper and lower numbers are respectively the DIS -|- TT" and D I S -|- jet cross sections 
(in pb) in various bins of x and Q^. For the pion the cuts are those given in Fig . 5.7, and exactly the 
same cuts are used for the forward jet. 

T a b l e 5.3: The D I S -|- TT" and D I S -t- jet cross sections in the bin 10"^ < a; < 1.2 x 10"^, 20 < < 30 
GeV^ as calculated for Fig . 5.9, but integrated over domains with different choices of the minimum angle 
9o between the proton and the TT" or the jet, and of the minimum transverse momentum kT^min of the 
TT" or the jet. 

kT,min [GeV] ^ 0 a„o [pb] (Tj [pb] 
3 5° 0.26 10.3 

3.5 5° 0.26 10.3 
5 5° 0.18 8.0 
7 5° 0.07 3.7 

3.5 7° 0.08 3.4 
5 7° 0.08 3.4 
7 7° 0.04 2.0 
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that i n the H E R A regime, where we need to take Xj sufficiently large (say Xj > 0.05) to 
make x/xj small, the low kx events are kinematically forbidden by the cuts. For example, 
for ^ 0 = 7° we find that kr > 5.0 GeV, while for 6*0 = 5° we have kr > 3.6 GeV. 

5.6 Discussion 

I n principle, the DIS + jet measurement should be an excellent way of identifying the 

B F K L soft gluon resummation effects at HERA as we saw in Chapter 3. I t turns out, 

however, that i t is experimentally quite difficult to measure a forward jet so close to the 

proton remnants. We therefore suggested studying the fragmentation of this forward jet 

into a single energetic decay product, the 7r°. This should be easier to measure. (The 

DIS + 7r° signal can, of course, be supplemented by also observing jet fragmentation into 

TT^ mesons). We found that when we include B F K L dynamics in the calculation of the 

cross section i t leads to the characteristic steep rise wi th decreasing x. The disadvantage 

of using the DIS + TT process is that the event rate is lower than for DIS + forward jet. 

We quantified the suppression which arises f rom this jet —> TT fragmentation. I t is an 

experimental question as to whether the loss of event rate can be compensated by the 

more forward domain accessible for TT detection and the more accurate measurement of 

the kinematic variables possible for pions as opposed to jets. We presented sample results 

for different acceptance cuts to help provide an answer. In fact, our choice of cuts was 

rather conservative. In Chapter 7 we w i l l return to the DIS + forward 7r° measurement 

and update our prediction for the cross section imposing more realistic cuts which give 

an enhanced event rate. 

Since TT^'S are measured via the two photon decay, there is a background to the deep-

inelastic + 7r° measurement f rom events in which the parent jet fragments into a photon 

which is being emitted collinearly to the jet. We found that this background is about 1-2 

%. We conclude that deep-inelastic -|- pion events should be a good way of probing small 

X dynamics at H E R A . 



Chapter 6 

Deep inelastic + jet — comparison 
with the data 

6.1 Motivation 

In Chapter 3 we proposed the study of deep inelastic events which contain an identified 

forward jet as a way of investigating the underlying dynamics at small x at HERA. The 

process is shown is Fig. 3.1 where we defined the variables we use. We explained that 

we select events where the forward jet carries a fraction Xj of the proton's longitudinal 

momentum which is large. Since we focus on the small-a; region x/xj is then small and 

we can investigate the [x/xj)~^ behaviour. Large Xj also has the advantage that we only 

have to evaluate the parton densities in a region where the uncertainties are very small. 

I n addition we require the transverse momentum of the jet to obey kjj. ~ Q'^. This 

implies that D G L A P evolution is neutralized and the diffusion into the infrared region is 

avoided. We saw how the cross section for DIS -|- jet events can be calculated f rom B F K L 

dynamics and what k ind of cuts have to be imposed. In Section 3.4 we concluded that 

f r o m the point of view of a theorist the DIS -|- jet process provides an excellent, clear way 

of studying B F K L dynamics at HERA. However, as we pointed out, the measurement of 

the forward jet is not easy since a jet wi th large Xj is emitted very close to the proton 

beam and can mix w i t h the proton remnants. Nevertheless, experimental studies have 

been undertaken by the H I collaboration [54, 55]. The ZEUS collaboration is currently 
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also investigating DIS -|- jet events and first results have been presented recently [56]. In 
this chapter we w i l l concentrate on a study by H I [55]. The cuts which this collaboration 
applied i n the measurement differ shghtly f rom the ones described in Section 3.3. We w i l l 
now calculate the DIS -|- jet cross section imposing the same cuts which w i l l allow us to 
compare our B F K L prediction wi th their data. 

The outline of the chapter is as follows: first we w i l l briefly explain how we calculate 

the deep inelastic - f forward jet cross section and then we w i l l Hst the requirements of 

the H I collaboration on the forward jet and on the outgoing lepton. In the final part of 

the section we w i l l comment on the uncertainties accompaning the B F K L prediction of 

the forward jet rate. In Section 6.3 we w i l l show some results for the DIS + jet cross 

section when including B F K L evolution in the calculation. Finally we w i l l present our 

conclusions. 

6.2 Description of the DIS + forward jet data 

I n the following we w i l l summarize the formahsm used to calculate the cross section for 

deep inelastic events containing an identified jet and hst the cuts imposed by the H I 

collaboration i n the experiment. Then we w i l l explain how we proceed to describe the H I 

data. 

6.2.1 Calculation of the DIS + jet cross section 

We calculate the DIS -|- jet cross section applying again the formalism displayed in Sec

t ion 3.2. That is we use expression (3.6) for the DIS -|- jet cross section where we substitute 

the differential structure functions (3.7). As before we obtain the functions by numer

ically solving the B F K L equations allowing the coupling as to run. However, we now 

explicit ly include the mc / 0 charm contribution. To be precise we solve the B F K L equa

t ion (3.11) rewrit ten in terms of the modified function Hi = (3a5(A;j)/7r)$,(2, A; ,̂ Q^) 

following the prescription that was outlined in Section 3.2.3. This choice of scale for as is 

consistent w i t h the double logarithm l imi t and wi th the NLO ln( l /2 ; ) analysis of ref. [33]. 
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We determine the functions $, for z < Zohy solving the B F K L equation as described 
in Section 3.2.3 starting f rom the boundary condition (3.12), 

where ^\°\kj, Q"^) are the contributions of the quark box (and crossed box) given in (3.22) 

and (3.23). We take u,d^s to be massless (m„ = = = 0) and the charm quark to 

have mass = 1.4 GeV in the summation over the quarks. Our choice for ZQ and the 

cut-off kl in (3.38) w i l l be specified later. 

6.2.2 Cuts imposed by the HI collaboration 

The H I collaboration collected the data for the forward jet analysis under consideration 

during the 1994 running period in which 27.5 GeV positrons were collided wi th 820 GeV 

protons. The data sample evaluated corresponds to an integrated luminosity of 2.8 pb~^. 

The following cuts were introduced: H I require the outgoing lepton to lie in the domain 

j / > 0 . 1 

160° < 0'^^ < 173° (6.1) 

> 11 GeV. 

in the H E R A frame. The variables were defined in Fig. 3.7. In Fig. 6.1 we show the 

l imi ts on the accessible (x, Q'^) range at HERA defined by the constaints on y and 6'^^,. 

This figure can be compared wi th Fig. 3.8 in which we plotted the "electron" acceptance 

region corresponding to the cuts on y and 9'^^ specified in (4.11) which we apphed in the 

computation of the DIS -|- 7 and the DIS -|- 7r° cross sections. We see that the H I choice 

is far more restrictive. 

Let us now consider the l imits on the forward jet variables defined in Fig. 3.9. In the 

H I analysis the transverse momentum of the jet is required to f u l f i l < < '^Q^-

Furthermore, the forward jet is constrained to the region 
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F i g u r e 6.1: The acceptance region in the {x,Q'^) plane for deep inelastic events defined by 160° < 6'gp < 
173° and 0.1 < J/ < 1 in the H E R A (27.5 x 820 G e V ) laboratory frame. 

7° < Ojp < 20° 

Ej > 28.7 G e V 

kjT > 3.5 GeV. 

(6.2) 

N o t e t h a t Ej > 28.7 G e V corresponds t o Xj > 0.035. Clearly, w i t h except ion of the upper 

l i m i t on Ojp, these cuts are weaker t h a n the ones we suggested i n Section 3.3.2. Th i s is a 

consequence of the d i f f i c u l t y of the f o r w a r d j e t measurement. Jets can on ly be measured 

us ing the H I detector i f t he i r angle w i t h respect t o the p r o t o n beam d i rec t ion Ojp > 1° 

i n t h e H E R A f r a m e . As we can see f r o m F i g . 3.10 th is impl ies t h a t i t is on ly possible 

t o reach values of Xj < 0 .1 . T h e lower H m i t Xj > 0.035 on the other hand is smaller 

t h a n t heo re t i c a l l y favourab le because i t does not al low fo r a ve ry long B F K L evo lu t ion 

i n x / x j . I t is , however, necessary f r o m the exper imenta l p o i n t of v iew i n order to have 

a large enough ra te f o r t he D I S -|- j e t events. T h e add i t i ona l requi rement Ojp < 20° was 

i n t r o d u c e d t o avoid t h a t the f o r w a r d j e t mingles w i t h the current j e t . To be able t o 

compare w i t h t he H I da ta we w i l l impose a l l the cuts l i s ted above i n the ca lcu la t ion of 
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the DIS -|- forward jet cross section. 

6.2.3 Normalisation of the B F K L prediction 

As we explained in Section 3.2.4 the B F K L prediction for the DIS -|- jet cross section 

is subject to uncertainties which arise f rom the freedom to choose the cutoffs on the 

transverse momentum integrations. In ref. [48] i t was found that the shape in x and Xj 

of the differential structure function dF2/dxjdkj-j' - and therefore the cross section - is 

much less affected by these uncertainties than the normalisation. We w i l l now test i f we 

can describe the H I data wi th the values for the cutoffs which we used in the calculation 

of the DIS -1- 7 and DIS + TT" cross sections. There we set the lower l imi t = k^ = 1 

GeV^ in the B F K L equation (3.38). For practical reasons we also tacitly introduced an 

upper l im i t k^^^ = 10^ GeV^ rather than integrating up to co. 

So far we have not pointed out that we also have the freedom to choose another 

parameter, namely the "starting point" ZQ of B F K L evolution. Recall that we solve the 

B F K L equation for z = x/xj subject to the boundary condition that a,t z — ZQ we only 

have the quark box (and crossed box) contributions and no gluon radiation, ZQ should be 

small enough for the B F K L equation to be valid. For previous predictions [47, 49] of the 

DIS -|- jet cross section ZQ = 0.1 was used. Here we wi l l vary ZQ and see i f we can correctly 

describe the normalisation of the H I data. 

6.3 Predictions for the cross section for DIS + jet 
events 

We now calculate the cross section for deep inelastic events containing an identified for

ward jet imposing the cuts used in the H I measurement and solving the B F K L equations 

for the Hi (or $,) w i t h the l imits k^i^ = 1 GeV^ and k^^^ = 10"^ GeY\ A charm quark 

mass of 1.4 GeV is assumed here but we w i l l also examine the dependence of the rate 

on the choice of m.^ later. The MRS(R2) [21] set of parton distributions is utilized to 

obtain fa i n (3.7). The cross section should, however, not depend on which set is used 



Chapter 6. Deep inelastic -j- jet — comparison with the data 115 

a. 

250 

200 

150 

100 

50 

0.05 

I • ' • ' I 

4 H I data (Warsaw) 

zo = 0.15 

Zo = 0.12 

Zo = 0.10 

L I 

I I I I I I 

0.1 0.15 0.2 

X 

025 03 0.35 
xlO " 

F i g u r e 6.2: The deep inelastic -|- forward jet cross section in pb integrated over bins of size 5 x 10"^ 
in a; compared to the H I data presented at the Warsaw conference [55]. As in the H I measurement the 
forward jet was required to fulfil 7° < Oj < 20° , Ej > 28.7 GeV, and kjT > 3.5 GeV. The electron 
acceptance region is Hmited by 160° < 9',p < 173°, E'^ > 11 GeV, and y > 0.1 in the H E R A frame. The 
solid, dashed and dotted lines represent the predictions for the cross section obtained for ZQ = 0.15, 0.12 
and 0.10 respectively. 

because the parton distributions are to be evaluated at Xj which is large. We integrate 

the cross section over bins of size 5 x 10"'' in x and over the corresponding Q'^ range 

bounded by the acceptance cuts (6.1). Fig. 6.2 shows the effect on the DIS -|- jet cross 

section of varying ZQ. The forward jet data [55] presented by the H I collaboration at 

the Warsaw conference in 1996 are also displayed. A dotted line represents the result for 

ZQ = 0.1 which especially in the smaller x bins is somewhat low compared to the data. 

Increasing ZQ gives the dashed and sohd curves which correspond to ZQ = 0.12 and 0.15 

respectively. We find that for ZQ = 0.15 the B F K L prediction is in good agreement w i th 

the H I data. Therefore in the remaining part of this chapter and in the following chapters 

we w i l l always solve the B F K L equation wi th the boundary condition (3.12) imposed at 

zo = 0.15. 
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F i g u r e 6.3: The deep inelastic + forward jet cross section in pb integrated over bins of size 1.5 x 10"^ 
in X compared to the H I data. Here ZQ = 0.15 and the cuts are the same as for Fig . 6.2 with exception 
of the minimum transverse momentum of the jet. The sohd Unes correspond to (a) kjx > 3.5 G e V , (b) 
kjT > 5 G e V and (c) kjr > 6 G e V . 

6.3.1 Comparison with the data for different cuts on kjT 

The H I data shown in Fig. 6.2 was obtained requiring the forward jet to have a transverse 

momentum kjx > 3.5 GeV. The collaboration also performed analyses for higher values 

of the lower l imits kjT,min on kjx- Therefore we can investigate i f the B F K L prediction 

for ZQ = 0.15 as displayed in Fig. 6.2 but for different choices of ^jT.min describes the 

corresponding data equally well. In Fig. 6.3 we plot the DIS -|- forward jet cross section 

in bins of size 1.5 x 10"^ in x where we imposed the same cuts as in the calculation 

for Fig. 6.2 but varied the mimimum transverse momentum kjT of the jet. The B F K L 

prediction for the cross section obtained wi th ZQ = 0.15 is compared wi th the H I data 

for (a) kjT > 3.5 GeV (as in Fig. 6.2), (b) kjT > 5 GeV and (c) kjT > 6 GeV. We see 
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that for the higher values of % x , m m the B F K L result somewhat overestimates the data. 
This may indicate that kjT,min = 3.5 GeV is in fact a bi t too low and sti l l allows for 
non-perturbative effects. 

6.3.2 Dependence on the cuts on the transverse momentum 
integration in the B F K L equation 

As explained above the normalisation of the B F K L prediction for the DIS + jet cross 

section depends on the cutoffs which we impose on the k"^ integration in the B F K L 

equations (3.38). Let us consider the upper l imi t first. In principle we should integrate 

up to CO. To be able to do the integration numerically, however, we introduce an upper 

l i m i t k^a^. Of course we would like the value which we choose for Ar̂ ^x to be large enough 

that the result for the functions Hi - and therefore the DIS + jet cross section - is not 

affected. I n the calculation of the B F K L prediction shown in Fig. 6.2 we used k^^^^ — 10^. 

Now we re-do the computation of the DIS + jet rate wi th ZQ = 0.15 and for the same 

cuts but for different values of k^^^. In Fig. 6.4(a) we plot the resulting cross section in 

the b in defined by 5 x 10"'' < a; < IQ-^ versus k^^^. We find that the cutoff = lO'' 

is indeed large enough to have no influence on the magnitude of the DIS + forward jet 

cross section. The effect of varying the lower Hmit k^^-^ on the rate in the same x bin is 

shown in Fig. 6.4(b) where we set A;^^^ = 10^. We see that, as expected, the dependence 

on the lower Hmit on the k''^ integration in the B F K L equations (3.38) is stronger than 

on the upper l i m i t . 

6.3.3 Effect on the DIS + jet cross section of varying the charm 
quark mass 

I n the 1996 Review of Particle Physics [63] i t is stated that the charm quark has a mass 

rric between 1.0 GeV and 1.6 GeV. So far in the calculation of the cross section for deep 

inelastic events containing an identified forward jet we assumed that rUc — 1.4 GeV. In 

this section we w i l l investigate the effect on the cross section of varying the charm quark 

mass wi th in the interval quoted by the Particle Data Group. We once again compute 



Chapter 6. Deep inelastic + jet — comparison with the data 118 

P" 240 

170E-
160 E-

m a x 

O. 240 

170E-
160 t 

0.6 0.7 0.8 0.9 1 

Figure 6.4: The dependence of the deep inelastic + forward jet cross section in pb in the bin 5 x 10"^ < 
X < 10~^ on (a) the upper limit k^ax (b) the lower limit k^i„ on the transverse momentum integration 
in the B F K L equations. The cuts are the same as for Fig. 6.2 and zq = 0.15. 

Figure 6.5: Dependence of the deep inelastic + forward jet cross section in pb in the bin 5 x 10 < 
X < 10~^ on the charm quark mass m .̂ The cuts are the same as for Fig. 6.2 and ZQ — 0.15. 
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the DIS + jet rate for ZQ = 0.15 subject to the same cuts as for Fig. 6.2 but for various 
choices of rric. Fig. 6.5 displays the resulting rate in the bin 5 x 10~^ < a; < 10~^. We 
find that using a different charm mass (in the interval 1.0 < mc < 1.6) in the calculation 
would change the B F K L prediction given in Fig. 6.2 by maximally 5 %. Also shown is 
the value of the DIS + jet rate when setting = 0. In this case, since the individual 
quarks contribute to the quark box expressions (3.22) and (3.23) weighted by their charge 
squared e ,̂ 40 % of the cross section is due to charm quarks in the box. This impUes that 
the hght quark contribution to the rate is about 139 pb. Therefore, for mc = 1.4 GeV 
approximately 30 % of the DIS + jet cross section in the given bin is due to charm quarks 
i n the quark box. 

6.4 Summary and conclusion 

I n this chapter we studied deep inelastic events containing an identified forward jet as a 

way of identifying the underlying dynamics at HERA and pointed out the advantages of 

this process. We calculated the DIS + jet cross section imposing the cuts which the H I 

collaboration applied in the measurement and compared wi th their data. We found that 

the B F K L prediction describes the a;-dependence of the data well. On the other hand, as 

was shown in ref. [66], D G L A P based Monte Carlo event generators clearly underestimate 

the data. So does the result of a calculation in which B F K L evolution is neglected (Born 

level prediction) [57]. When comparing wi th the DIS + jet data we have to bare in mind 

that the experimentalists measure a hadron jet whereas the B F K L based prediction which 

we presented is on the parton level. However, since hadronisation effects are expected to 

be small [66], we th ink i t is fair to conclude that the data support the validity of B F K L 

dynamics i n the small-x region at HERA. 

I n the remaining part of Section 6.3 we investigated the dependence of the DIS + 

forward jet cross section on various parameters. We found that for higher values of the 

m i n i m u m allowed transverse momentum kjT,min the B F K L prediction overestimates the 

data i n the smallest x bin. We interpreted this as a sign that %T ,mm = 3.5 GeV is too 

low as a cut and that a higher value should be chosen. Of course, this would reduce the 
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rate and therefore the statistics. Next we studied the dependence of the DIS + jet cross 
section on the cutoffs on the transverse momentum integration in the B F K L equation. We 
verified that the cross section is indeed not affected by the upper Hmit cutoff k^^^^ = 10^ 
GeV^. As was shown in ref. [48] varying the lower l imi t k^ in (3.38) mainly changes 
the normaHsation of the B F K L prediction. FinaUy we calculated the DIS + jet rate for 
different values of the charm quark mass and found that the dependence on trie is relatively 
weak. 

I n summary we conclude that the data presented by the H I collaboration show signs of 

B F K L soft gluon resummation. We suggest that further studies are undertaken imposing 

a higher cut on the transverse momentum of the forward jet. Of course, i t would also be 

useful i f jets could be detected at smaller values of the angle Ojj, of the jet wi th respect to 

the proton direction since this would allow for higher values of xj and therefore a longer 

B F K L evolution. 



Chapter 7 

A n update of the DIS + TT^ 
prediction 

7.1 Motivation 

In Chapter 5 we proposed a modification of the deep inelastic + forward jet measurement. 

There we suggested that the forward jet is identified through the measurement of a single 

energetic decay product. We pointed out that the 7r° is most suitable since i t is the 

hadron which can be detected in the most forward direction in the detectors at HERA. 

The advantage of the DIS + 7r° measurement compared to the DIS + jet process is that 

7r°'s are easier to measure than a jet close to the proton remnant. On the other hand, of 

course, we expect the event rate to be suppressed due to the fragmentation. In Chapter 5 

we computed the DIS + 7r° cross section by convoluting the parton-level DIS + jet cross 

section as obtained f r o m B F K L dynamics wi th the fragmentation functions. We found 

that we lose about a factor 40 in going f rom the DIS + jet process to DIS + 7r° for the 

selection cuts which we suggested. However, we also mentioned that our choice of cuts 

may be too conservative [67]. Therefore, in this chapter bur aim is to investigate how 

a relaxation of the cuts would affect the DIS + 7r° cross section. In particular, we w i l l 

predict the rate expected for the requirements which are currently being imposed by the 

H I collaboration in a first DIS + 7r° measurement. We w i l l also discuss i f their choice 

of cuts is theoretically favourable. In Section 7.4 we w i l l then show a comparison of the 
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B F K L prediction w i t h the first preliminary data on forward 7r° production very recently 
presented by the H I collaboration [68 . 

I n addition to imposing less strict cuts we also improve our calculation of the DIS + 

7r° cross section. As we w i l l see we can take advantage of the H I DIS + jet data [55] and 

use them to fix the normalisation of the B F K L prediction. Whereas in Chapter 5 we only 

included three active flavours in the computation of the rate we w i l l here explicitly allow 

for charm quarks in the quark box. 

The outline of the chapter is as follows. First we w i l l explain how we calculate the DIS 

+ 7r° cross section focussing in particular on the normaHsation of the prediction. Then 

we w i l l summarize the cuts which we impose in the calculation and which are being used 

by the H I collaboration in the measurement. In Section 7.3 we w i l l show predictions for 

the new set of cuts and compare wi th the corresponding results obtained when neglecting 

B F K L evolution. Af te r that we w i l l comment on whether these cuts are acceptable f rom 

a theorist's point of view and also compare wi th the cross section for the original DIS 

+ forward jet process. Then, in Section 7.4, we w i l l show a comparison of the B F K L 

prediction for forward 7r° production wi th the preliminary H I data. In the final section 

we w i l l give our conclusions. 

7.2 Calculation of the DIS + 7r° cross section 

We compute the DIS + 7r° differential cross section f rom (5.26) as described in Section 5.3.2 

using the next-to-leading order fragmentation functions given in ref. [61]. To obtain the 

partonic differential cross sections dai/dxjdkjj. {i - q,q,g) we proceed as explained for 

the deep inelastic -|- jet process in Section 6.2.1 aUowing for charm quarks in the quark 

box. We assume a charm quark mass = 1.4 GeV and utilize the MRS(R2) [21] set of 

parton distributions. 
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7.2.1 Normalizing the solution $ of the B F K L equation 

The calculation of the DIS + 7r° cross section presented in this chapter differs f rom the 

one in Chapter 5 in the following key point. In Section 6.2.3 we pointed out that the 

normalisation of the DIS + jet cross section is subject to uncertainties arising mainly 

f r o m the cutoffs which have to be imposed on the transverse momentum integrations 

when obtaining the functions {i = T, L) f r om the B F K L equations. We also noted that 

the rate somewhat depends on the value which is chosen for the "starting point" zo of 

the B F K L evolution. Recall that we solve the B F K L equations subject to the boundary 

condition that for z — ZQ the $ i are given by the quark box contributions. When we 

calculated the DIS + 7r° cross section in Chapter 5 we used zo — 0.1 and chose the cutoff 

kQ = 1 GeV^ in the B F K L equations (3.38). In this chapter, however, we w i l l make use 

of the availability of the DIS + forward jet data to fix the normalisation of the B F K L 

functions The idea is that we vary 2o, and in principle also fcg, unt i l we find values 

which allow a description of the H I DIS + jet data [55]. Then we use the $, obtained 

w i t h this choice of parameters to calculate the DIS + 7r° cross section. This should enable 

us to make an absolute B F K L prediction for the first time. 

Let us return to Section 6.3. There we fixed = = I GeV^ and varied Zq, see 

Fig. 6.2. We found that the B F K L prediction for ZQ = 0.15 is in good agreement w i th 

the data. In Fig. 7.1 we show again the DIS + jet cross section in pb integrated over 

bins of size 5 x 10"^ in x as obtained f rom B F K L dynamics starting the evolution at 

zo = 0.15. The same cuts where imposed as for Fig. 6.2, i.e. the ones appHed by the H I 

collaboration, (6.1) and (6.2). We w i l l use the functions $ i which led to this prediction 

in the calculation of the DIS + 7r° cross section. 

7.2.2 Cuts imposed in the calculation of the cross section 

Very recently the H I collaboration has performed the first deep inelastic + forward w° 

measurement [68]. Therefore, in our calculation of the cross section we w i l l impose the 
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Figure 7.1: The deep inelastic -|- forward jet cross section in pb integrated over bins of size 5 x 10"^ 
in X compared to the HI data [55]. The cuts for the forward jet are as imposed in the HI measurement, 
that is 7° < 6j < 20°, Ej > 28.7 GeV, and kjr > 3.5 GeV. The electron acceptance region is defined by 
160° < < 173°, E', > 11 GeV, and y > 0.1 in the HERA frame. 

cuts which have been applied in the experiment. H I require the outgoing lepton to obey 

y > 0.1 

156° < d'^j, < 173° 

E:>12 GeV. 

(7.1) 

in the H E R A (27.5 x 820 GeV) laboratory frame. The accessible (x, Q^) range at HERA 

which corresponds to the cuts on y and 6'^^ is depicted in Fig. 7.2. This electron acceptance 

region can be compared wi th Fig. 3.8 in which we showed the {x, Q^) range resulting f r o m 

the cuts which we imposed in the computation of the DIS -|- ir° rate in Chapter 5. The 

stronger l i m i t on the energy E'^ of the outgoing electron, that is Eg > 12 GeV rather than 

E'g > 5 GeV, has the effect of reducing the small x and high reach. 

The kinematics of the DIS + 7r° process where displayed in Fig. 5.4. H I select events 
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Figure 7.2: The acceptance region for the outgoing lepton defined by 0.1 < y < 1 and 156° < < 173° 
in the H E R A (27.5 x 820 GeV) laboratory frame. 

in which the T T ^ fulf i ls the requirements 

k^T > 1 GeV 

5° < < 25° 

> 8 GeV. 

(7.2) 

(7.3) 

(7.4) 

I t should be noted here that the cut on the energy of the 7r° corresponds approximately 

to x„ > 0.0098 whereas in Chapter 5 we required > 0.05. H I also presented data for 

> 0.012, 0.015 and 0.017. The lower l imi t cut on the angle of the 7r° wi th respect 

to the proton direction in the HERA frame is the beam pipe cut which we introduced in 

Section 5.4.2 in order to make the detection of the 7r°'s at HERA possible. In Chapter 5 

we d id not specify an explicit upper l imi t on ^^p, however, as explained in Section 5.4.1, 

we demanded that the 7r° is emitted in the proton hemisphere in the vir tual photon -

proton centre-of-mass frame. Looking at Fig. 5.5 we see that the hemisphere cut (5.28) 

corresponds approximately to 6^j, < 13° and therefore is more restrictive than the H I 

angular cut. On the other hand, the H I collaboration relaxes the cut on the transverse 
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momentum k^^j of the jet compared to our requirement A;̂ ^ > 3 GeV in Chapter 5. Since 
the set of fragmentation functions [61] which we utiHze in the computation of the DIS -|-
7r° cross section is only valid for scales greater than 2 GeV^ most of the predictions shown 
i n the remainder of this chapter were obtained for 

J ; ^ T > 1 . 5 G e V (7.5) 

rather than 1 GeV (c.f. (7.2)) ^. In Fig. 7.3 we show the accessible (a;^, klr^) range which 

corresponds to the cuts listed in (7.3) - (7.5). The upper l imi t on and the lower 

l i m i t on E^, act as lower boundaries, whereas the lower Hmit on describes the upper 

boundary. We already mentioned that the new set of cuts, (7.2) - (7.4), is less restrictive 

than the requirements we used in Chapter 5. From the experimental point of view this 

has the advantage that the rate is increased. Whether the H I choice for the forward 7r° 

selection cuts is theoretically acceptable wi l l be discussed later in this chapter. 

As we explained in Section 5.3.2 we also impose the theoretical cut 

x^ > lOx. (7.6) 

in addition to the requirements listed above. This cut insures that z = x/xj < 0.1 since 

Xj > Xtj. Recall that we require z < 0.1 for the B F K L formalism to be valid for the 

calculation of the DIS -|- forward jet cross section. 

7.3 New predictions for the DIS + 7r° cross section 

I n this section our aim is to make absolute predictions for the DIS -|- 7r° cross section 

imposing the cuts given in (7.1) and (7.3) - (7.6) in the calculation. To obtain the rate we 

proceed as explained in Section 7.2. In particular we fix the normaHsation of the B F K L 

functions by requiring that the DIS -|- jet cross section computed wi th these $, agrees 

*We here rely on the validity of the coUinear fragmentation approach for these small transverse mo
menta. This approach is based on the assumption that the intrinsic transverse momentum, i.e. the 
transverse momentum of the pion in a frame in which the fragmenting parton moves along the z direc
tion, is very small. It is given by soft physics and its square is of the order of ~ 0.1 GeV^ which is 
still rather small compared to our smallest scale 1 GeV^. 



10 

10 

10 
•3 

of the DIS + 7r° prediction 

; k̂ .p = 1.5GeV 

= 8 GeV 

127 

0 10 20 30 40 50 60 70 80 90 100 
k ^ ( G e V ^ 

Figure 7.3: The accessible {x„,klj,) region defined by the cuts given in (7.3) - (7.5). The curves 
corresponding to ^̂ p — Oo = 25° (solid line) and E„ = 8 GeV (dashed line) represent the lower boundaries, 
whereas the solid curve for = 5° describes the upper boundary. Also shown, as a dotted line, is the 
boundary defined by k„T > 1-5 GeV. Note that the solid lines were calculated as for Fig. 5.5. 

w i t h the H I data. This allows us to make an absolute prediction for the DIS + 7r° cross 

section. 

7.3.1 Comparison of the DIS + 7r° cross sections obtained in
cluding and neglecting B F K L evolution 

As i n Chapter 5 we compare two types of predictions for the cross section for deep inelastic 

events containing an identified TT"^. First we calculate this cross section including B F K L 

soft gluon resummation where we follow the procedure described above, then we neglect 

B F K L evolution and set $ i = In Fig. 7.4 we show the x dependence of the DIS + 

7r° rate integrated over bins of size Ax = 2 x 10~^, AQ^ = 10 GeV^ which are accessible 

at H E R A . The 7r° was required to f u l f i l the constraints listed in (7.3) - (7.6), and the 

fragmentation functions were evaluated at scale / i ^ = Solid lines represent the pre

dictions for the cross section obtained when including B F K L evolution in the computation 
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Figure 7.4: The cross section (in pb) for DIS -I- tt° events integrated over bins of size Ax = 2 x 10~^, 
A Q 2 = 10 GeV^ which are accessible at H E R A . The cuts listed in (7 .1 ) and (7 .3) - (7 .6) were imposed 
in the calculation and the fragmentation functions were evaluated at scale //^ = fc^y. The x dependence 
is plotted in the AQ^ bins (20,30) , (30,40) and (40,50) GeV^ using the values of (a) at the central x 
values in each Ax bin and joining them by straight Hues. The solid curves show (cr) computed using 
$ obtained from the B F K L equation whereas for the dashed curves B F K L soft gluon resummation was 
neglected and the quark box approximation $i = utilized. Curves corresponding to the same A Q ^ 
bin are joined by a dotted vertical line. 

for three different AQ^ bins (20-30, 30-40 and 40-50 GeV^). The corresponding results for 

= are displayed as dashed Hues. As we also saw in Fig. 5.6 B F K L resummation 

leads to a strong enhanced increase of the DIS + w'^ cross section. There we pointed out 

that i t is this shape in x which should be used to identify B F K L effects. Here we fixed 

the normaHsation of the B F K L functions $ i - and therefore the normaHsation of the DIS 

+ 7r° cross section - by comparing wi th the H I DIS + forward jet data. This should allow 

us to not only focus on the x dependence but also on the absolute value of the rate. In 

Fig. 7.5 we show the DIS -|- 7r° cross section (cr) in pb calculated as for Fig. 7.4 in bins 

in x and Q"^ which are accessible at HERA when requiring the outgoing electron to lie in 

the region defined by (7.1). The numbers in the top row in each bin give (a) calculated 

allowing for B F K L evolution, the numbers in brackets, on the other hand, were obtained 

neglecting B F K L resummation. This means that the difference between the two values in 
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Figure 7.5: The DIS + 7r° cross section (cr) in pb in bins in x and which are accessible at HERA. 
As for Fig. 7.4 the outgoing lepton was required to fulfil (7.1) and the 7r° (7.3) - (7.6). Again the 
fragmentation functions were evaluated at scale /i^ = kl^,. The values in brackets correspond to ((t) 
computed using the quark box approximation = ^•''^ Shown as continuous lines are the boundaries 
on the acceptance region at HERA defined by 156° < 9'^^ < 173° and y > 0.1. 

one bin is a measure for the B F K L effect. Recall that because of equality (5.20) for the 

pion fragmentation functions the values given for the DIS + TT" cross section correspond 

to the average of the cross sections for TT "*" and TT " production. 

7.3.2 A comment on the new cuts 

As anticipated we w i l l study the effect of the new cuts (7.3) - (7.5) on the DIS + 7r° 

cross section and investigate whether they are desirable f rom the theoretical point of view. 

Again we require that > 1-5 GeV rather than 1 GeV to ensure that the fragmentation 

functions are applicable. 
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Figure 7.6: The DIS -|- 7r° cross section in the bins 20 < < 30 GeV^ and (a) 6 x 10"^ < a; < 8 x 10"* 
and (b) 1.8 x 10~^ < x < 2 x 10~^. The fragmentation scale and cuts are as for Fig. 7.4 but we vary the 
lower limit A:,rT mm on the transverse momentum of the TT" . 

The cut on the transverse momentum of the ir'^ 

The results for the DIS -|- 7r° cross section which we presented in Figs. 7.4 and 7.5 were 

obtained requiring the transverse momentum of the 7r° to obey k^^x > 1-5 GeV whereas 

in Chapter 5 we demanded k^^x > 3 GeV. In Fig. 7.6 we show the effect on the DIS + 

7r° cross section of varying the min imum allowed transverse momentum A;^T,min. We plot 

the A;^r,min dependence of the cross section in bins wi th 20 < < 30 GeV^ and (a) 

6 X 10-'^ < a; < 8 X 10"'' and (b) 1.8 x 10"^ < a; < 2 x 10"^ Comparing the values for 

^TrT.min = 1-5 GeV and k^T,min = 3 GeV we see that relaxing the cut on k^j increases 

the rate by about a factor 3.5 in the lower x bin and a factor 2.6 in the higher x bin. 

So we see that lowering A;^T,mm is certainly advantageous f rom the experimental point of 

view. However, as becomes evident f rom Fig. 7.7, i t has the side effect that the ratio of 

the cross sections obtained including and neglecting B F K L evolution becomes somewhat 

smaller, i n other words, the B F K L effect is less visible. More important, there is a caveat 

f r o m the theoretical point of view. Recall that as we explained one of the ideas behind 

the DIS -|- forward jet measurement is that jets are selected whose transverse momentum 

squared ~ Q^. This impHes that D G L A P evolution is neutraHzed. We imposed this 

constraint by requiring that < k]j < 2Q^. For the DIS + 7r° process we cannot 
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Figure 7.7: The ratio of the DIS + T T " cross section calculated as for Fig. 7.6 and the cross section 
obtained when using the quark box approximation # = The results are shown for the bins defined 
by 20 < < 30 GeV^ and (a) 6 x 10"^ < x < 8 x 10"^ and (b) 1.8 x lO'^ < a; < 2 x IQ-^. 

introduce an explicit cut on because the forward jet is not identified. There is only 

an impl ic i t cut due to the kinematic constraint k j j > fc^j. However, we st i l l need the 

transverse momentum of the jet squared kjj, ~ Q'^ to safely neglect D G L A P evolution. 

Let us check what the lowest value of is on average. We have (kjT) = ^7rT/(-2^7r) where 

the average fraction of the parton jet's transverse and longitudinal momentum which the 

emitted 7r° carries (z^) ~ 0 .4 . (For clarity we here use z^ instead of z as in Chapter 5 . ) 

This means that for A ; ^ T > 3 GeV we have on average > 56 GeV^ which is of the right 

order for all values which we considered in Fig. 7.5. I f we take k^x > 1-5 GeV then 

kjrp > 1 4 GeV^ on average which is somewhat low for the higher Q"^ bins. Note that here 

i n principle kjj, can be as small as 2 .25 GeV^. This value of k]x may even be too small for 

perturbation theory to be applicable. Therefore a higher luminosity would be desirable 

which would allow for a higher cut on ^ , r T to be imposed while the DIS + 7r° rate would 

s t i l l be large enough for reasonable statistics. 

The cut on the longitudinal momentum fraction of the w° 

Having investigated the new cut on the transverse momentum of the 7r° we now turn 

to studying the effect of relaxing the cut on its longitudinal momentum fraction x^. In 
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Figure 7.8: The DIS + 7r° cross section the bins 20 < < 30 GeV^ and (a) 6 x 10"^ < a; < 8 x 10"^ 
and (b) 1.8 x 10~^ < x < 2 x 10" .̂ We use the same fragmentation scale and cuts as for Fig. 7.4 but we 
vary the lower limit x^,mtn on the longitudinal momentum fraction of the T T " . 

analogy to Fig. 7.6 we show in Fig. 7.8 the dependence of the DIS + TT" cross section 

on the min imum allowed value x^^mtn oi x^. We plot the cross section integrated over 

the bins defined by 20 < < 30 GeV^ and (a) 6 x 10"^ < x < 8 x 10"^ and (b) 

1.8 X 10~^ < a; < 2 X 10~^ calculated as for Fig. 7.4 but vary a;^,,ji,„. Recall that in 

Chapter 5 we required > 0.05. I f we instead demand x„ > 0.01 (corresponding 

approximately to E^, > S GeV) then we gain a factor of 31 in the rate in the lower x bin. 

For the higher x bin displayed in Fig. 7.8(b) lowering a;^_min beyond 0.018 does not lead 

to an additional increase of the cross section due to the requirement (7.6). Therefore in 

this b in changing x ^ , m i „ f r om 0.05 to approximately 0.01 only yields a factor of 15 in the 

rate. Nevertheless the increase of the cross section caused by the relaxation of the cut 

on Xt^ is considerable in both bins. On the other hand, smaller x.^ means that Xj can be 

smaller due to the kinematic constraint Xj > Xt^. This, however, impHes that x j x j is larger 

and therefore the evolution length for B F K L evolution is shorter. As a consequence the 

ratio between the results for the cross section obtained including and neglecting B F K L 

evolution i n the calculation becomes smaller as x^^min is lowered. From Fig. 7.9 we see 

that i n the bin l imited by 6 x 10"^ < a; < 8 x 10~^ the ratio of the two cross sections 

drops by a factor of 2 when x^^mm — O-Ol rather than 0.05 is used. In the higher x bin 

where the lowest a;,r,min which can be reached is 0.018 the cross section ratio is reduced 
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Figure 7.9: The ratio of the DIS + 7r° cross section calculated as for Fig. 7.8 and the cross section 
obtained when neglecting BFKL evolution ($ = $(°)). Again the results are shown for the bins defined 
by 20 < g2 < 30 GeV^ and (a) 6 x lO"* < a; < 8 x 10"̂  and (b) 1.8 x lO'^ < a; < 2 x 10"^ 

by a factor 1.6. Comparing these factors w i th the factors 31 and 15 which we gained in 

the DIS + 7r° cross section in the lower and higher x bins, respectively, we notice that the 

reduced evolution length has a rather small effect. The strong increase of the rate towards 

lower XT^^rnin IS mainly due to the smaller values of = ^Tr/^j which can be reached since 

the fragmentation functions fa l l rapidly wi th increasing 2^. The behaviour of the pion 

fragmentation functions which we used in the calculation of the DIS + 7r° cross section 

can for example be seen in Fig. 1(a) in ref. [61 . 

7.3.3 Comparison with the DIS + forward jet rate 

I n the previous subsection we saw by how much the DIS + 7r° cross section is increased 

when the cuts on the pion momenta are relaxed. Let us now investigate how the results 

for the DIS + 7r° cross section obtained for the new set of cuts given in (7.1) and (7.3) 

- (7.5) compare w i t h the cross section for the DIS + forward jet process. Recall that 

we proposed the DIS + 7r° measurement as an alternative to DIS + jet because 7r°'s are 

easier to ident i fy i n an experiment. In fact, i n the DIS + 7r° measurement events can 

be included where Xj is very large and the parent jet is lost in the proton beam pipe. 

I n Chapter 5 we pointed out that 7r° production is suppressed by the fragmentation and 
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Figure 7.10: The upper and lower numbers correspond to the DIS + ir° and the DIS + jet cross sections 
in pb, respectively. The results are shown in bins in x and which are accessible at HERA. The DIS + 
T T " cross section was calculated as for Fig. 7.5 and the DIS + jet cross section was obtained as for Fig. 7.1 
but subject to the same electron acceptance region as the 7r° which is given in (7.1). 

that i t is an experimental issue whether the loss in signal can be compensated by the 

advantages of the new measurement. 

To be able to compare the cross sections for the DIS + 7r° and the DIS + jet process 

we proceed in the following way. We calculate the DIS + 7r° rate as for Fig. 7.5 that is 

subject to the cuts on the outgoing lepton and the T T " given in (7.1) and (7.3) - (7.6), 

respectively. Next we compute the DIS + jet rate as explained in Chapter 6. To be 

precise, we use the B F K L functions which were normalized by comparing wi th the H I 

forward jet data. We impose the cuts given in (6.2) and require < k'jj- < 2Q'^ where 

kjT is the transverse momentum of the forward jet . The calculation only differs f rom the 

one presented in Chapter 6 in one point, namely the electron acceptance region. Rather 

than ut i l iz ing (6.1) we here demand that the outgoing electron fulfi ls the cuts listed i n 

(7.1) so that we can compare the cross sections for the two processes in the same bins. 
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This does not affect the cross section in the bins in the centre of the accessible {x,Q'^) 
region at HERA. The resulting values for the DIS + jet cross section in pb are displayed 
as the numbers i n the bot tom rows in the bins in Fig. 7.10. The numbers shown in the top 
rows give the corresponding values for the DIS + 7r° cross section in pb. We see that for 
the new cuts (7.3) - (7.5) on the 7r° in the smaller x bins the DIS + 7r° cross section is now 
higher than the DIS + jet cross section. In the higher x bins the DIS + jet cross section 
is larger. For example for the bin defined by 6 x 10~^ < a; < 8 x 10~^ and 20 < < 30 
GeV^ the ratio of the DIS + 7r° and the DIS + jet cross section is about 1.7, whereas 
in the b in w i t h 1.8 x 10~^ < a; < 2 x 10~^ and the same Q'^ range this ratio is 0.6. As 
was explained above and shown in Fig. 7.8 the smaller x the smaller x^^mm can be in the 
DIS + 7r° measurement due to the requirement (7.6). Smaller however, implies 

that smaller values of z^^ can be reached and therefore higher values of the fragmentation 

functions. That the two cross sections are comparable indicates that for the cuts given in 

(7.3) - (7.5) the DIS + 7r° cross section is large enough to be measured at HERA. 

7.4 Comparison with the H I data 

The first DIS + 7r° measurement has in fact just been performed by the H I collaboration 

[68]. I n their analysis the scattered lepton was required to f u l f i l (7.1) and the 7r° the 

cuts given in (7.2) - (7.4). H I present the data in the form {dn-^ldx)IN where n is the 

mul t ip l ic i ty and N the total number of 7r°'s i n the x interval under consideration. This x 

spectrum can be calculated f rom 

J_ dn^ _ J _ da^ 

N dx atot dx 

where da-^/dx is obtained as explained in Section 7.2, but keeping the differential in x. 

I n particular we again fix the normalisation of the B F K L prediction by demanding that 

the functions $ i utilized i n the calculation allow for a description of the H I DIS + jet 

data. The total differential cross section atot is computed f rom the structure functions F2 

and FL given by the MRS(R2) [21] set of parton distributions. We utilize (1.45) where we 

include the Q'^ dependence of F2^L and integrate over x and Q'^. Since in the experiment 
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Figure 7.12: As Fig. 7.12, but for x^ > 0.017. 
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data is collected in bins in x we in practice use 

1 driT, 1 
(7.8) 

N dx (Ttot A x 

instead of (7.7) where Aa; is the wid th of the x bin. The corresponding range is 

determined by the electron acceptance region (7.1). 

In Fig. 7.11 we show a comparison of the H I DIS + 7r° data wi th the B F K L prediction 

obtained f r o m (7.8). In addition to the cuts given in (7.1) - (7.4), the 7r° was here required 

to obey > 0.015. The x range which determines N and atot is 0.0002 < x < 0.00236. In 

the B F K L calculation the fragmentation functions were evaluated at scale //^ = {2kjTY. 

Note that the B F K L prediction does not extend over the whole x range of the data to 

avoid a violation of the theoretical cut (7.6) which ensures that the B F K L formalism is 

applicable. A comparison between the B F K L prediction and the H I data is also shown in 

Fig. 7.12 where now > 0.017. For both cuts on a;̂  the B F K L prediction overestimates 

the data. This may be due to the very low l imits on and UT^T- I d Section 7.3.2 we 

explained that already > 1-5 GeV is rather low for our B F K L formalism to be valid. 

Of course, the situation is even worse for k-^j > 1 GeV where we may indeed be entering 

the non-perturbative region. As we also pointed out in Section 7.3.2 for small x^ small 

values of may be reached where the fragmentation functions assume very high values 

so that the B F K L prediction is very sensitive to the lower l imi t on a;̂ . So higher Hmits 

on XTT and k^^ would be desirable f rom the theoretical point of view. However, to ensure 

that the statistics in the measurement are reasonable a compromise between theory and 

experiment has to be found. Work on this subject is st i l l in progress. 

7.5 Summary and conclusions 

I n this chapter we returned to the DIS + 7r° measurement and, in response to the experi

mental observations ^, we updated the predictions we gave in Chapter 5. In Section 7.2.1 

we explained how the DIS + 7r° cross section can be normalized by comparing wi th the 

H I DIS + jet data. This allowed us to give an absolute prediction for the DIS + 7r° cross 

^The measurements were motivated by our earlier calculations. 
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section rather than focussing only on its x dependence. In the calculation we imposed 
the cuts which have been used in a measurement by the H I collaboration (although in 
most calculations we required k^^T > 1-5 GeV rather than 1 GeV). We obtained the DIS + 
7r° rate including and neglecting B F K L evolution in the computation and saw the strong 
enhanced increase due to B F K L soft gluon resummation. Next we studied the effect on 
the cross section of varying the cuts on the longitudinal and transverse momentum of the 
7r°. We found that the requirement k^j > KT,min = 1-5 GeV is somewhat too low for the 
B F K L formalism to be applicable. Also we saw that the DIS + 7r° rate is very sensitive to 
the choice of We pointed out that lowering this value below lOx does not lead to 

an additional increase of the rate. Lowering has the side effect that the ratio of the 

cross sections calculated f rom B F K L dynamics and using the quark box approximation 

is smaller which means that the B F K L effect is less clearly visible. In Section 7.3.3 we 

compared the prediction for the DIS + 7r° cross section w i t h the DIS + jet cross section. 

We computed the DIS + jet rate subject to the cuts imposed in the H I forward jet anal

ysis but for the same electron acceptance region as in the DIS + 7r° measurement. We 

found that for the new cuts on the 7r° the cross sections for the two measurements are 

comparable. Finally we showed a comparison of the prediction for the 7r° spectrum in x 

as obtained f r o m B F K L dynamics wi th the preliminary H I data. I t turned out that the 

B F K L prediction overestimates the data. The reason could be that the cuts on the pion 

momenta are too low. This can lead to the fragmentation functions being evaluated at 

very small values of z.^ where they are not well determined. The fragmentation functions 

are also being used at very low scales where the perturbative approach may not be valid. 

So concerning the cuts a compromise between theoretical and experimental requirements 

w i l l have to be found. 

We conclude that i f the cuts on the 7r° which we suggested in Chapter 5 are relaxed 

the DIS + 7r° cross section is large enough to be measured. However, care should be taken 

not to choose too small values for the cuts on the transverse and longitudinal momentum 

of the 7r°. This is necessary to ensure that B F K L dynamics are indeed applicable and 

for B F K L effects to become apparent. A higher luminosity would allow for stronger cuts 

while keeping the DIS + 7r° rate large enough for reasonable statistics in the experiment. 



Chapter 7. An update of the DIS + 7r° prediction 139 

Now that the DIS + 7r° rate can be measured at HERA this process should allow for 
a clearer identification of the underlying dynamics than the DIS + jet process for the 
following reasons. Firstly, experimentally 7r°'s are easier to identify than a jet close to the 
proton remnant, and secondly in DIS + 7r° both theory and experiment obtain the cross 
section on the hadron level so that no simulations of hadronisation effects are necessary, 
although of course we now have to rely on the validity of the fragmentation functions. 



Chapter 8 

Single particle spectra in deep 
inelastic scattering as a probe of 
small X dynamics 

8.1 Focussing on the diffusion in lnfc| accompanying 
B F K L evolution 

In the previous chapters we tried to identify ln( l /a ;) effects by focusing on the x~^ be

haviour predicted by B F K L dynamics. We for example proceeded in this way when 

studying the DIS -|- jet process depicted in Fig. 8.1(a). However, besides the x~^ growth 

as X decreases along the B F K L ladder, a second characteristic feature is the diffusion in 

In kj, where kx are the transverse momenta of the gluons emitted along the chain. One 

way the diffusion manifests itself is in an enhancement of the transverse energy (Ex) flow 

in the central region between the current jet and the proton remnants [69], see Fig. 8.1(b). 

I n principle the diffusion can enhance f rom both the "upper" and "lower" B F K L gluon 

ladders, which are denoted by $ and / in Fig. 8.1(b). However, the x reach at HERA 

is insufficient to fu l l y develop the In kj- diffusion in both ladders simultaneously. Never

theless, the effect is quite appreciable giving at the parton level an energy flow Ej <2 

GeV/un i t of rapidity. However the clean parton level prediction can in practice be masked 

or mimicked by the effects of hadronisation. Thus, although the prediction for ET is in 

140 
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(a) DIS + jet (b) E t flow (c) Single particle spectrum 

Figure 8.1: Diagrammatic representation of (a) the deep inelastic + forward jet, (b) the ET flow, and 
(c) the single particle spectrum measurement. 

agreement w i t h observations [54] we cannot definitely conclude that i t is due to l n ( l / x ) 

resummations. 

A n interesting way to overcome this ambiguity is to consider the emission of single 

particles at relatively large transverse momentum pr in the central region away f rom 

the current jet and the proton remnants [70]. The process is shown diagrammatically in 

Fig. 8.1(c). The single particle spectrum at sufficiently large values of should be much 

more immune f rom hadronisation and more directly reflect the In k^ diffusion f rom the 

B F K L ladders. Basically the idea is that i f D G L A P evolution is taking place the emission 

of a charged particle w i th high transverse momentum is suppressed by the fragmentation. 

I f on the other hand B F K L gluon radiation is occuring then due to the random walk in 

transverse momentum along the ladder the production of a high-py particle is possible. 

Our aim in this chapter is to investigate whether B F K L effects can indeed be identified 

by studying single particle transverse momentum spectra at HERA. 

We start w i t h a discussion of the formalism for single particle production. In particular 
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we explain how we flx the normalisation of the B F K L prediction. Then we wi l l proceed 
to describing how the cross section for charged particle production is calculated and how 
the PT spectrum can be obtained f rom i t . We w i l l show predictions for the single particle 
spectra i n bins in x and Q'^ and compare wi th data collected by the H I collaboration. 
I n Section 8.4 we discuss the px spectrum in a chosen bin in more detail and investigate 
the effect of changing the pseudorapidity interval in which the measurement is performed. 
The final section of this chapter contains our conclusions. 

8.2 Formalism for charged particle production 

To be able to make predictions for the single particle transverse momentum spectra we 

first have to calculate the cross section for the production of a charged particle in the 

central region. The process is depicted in Fig. 8.1(c). 

8.2.1 Normalisation of the prediction 

As we pointed out in Section 3.2.4 the normahsation of B F K L predictions is subject to 

uncertainties. In fact, even the shape is dependent on subleading ln( l /a ;) corrections. 

However, to be able to compare the B F K L result for the single particle spectrum wi th the 

experimental data we have to be able to make an absolute prediction. In Chapter 7 we 

were able to show an absolute prediction for the DIS - f 7r° cross section by normahzing 

the solution $ of the B F K L equation. This was done by requiring that the DIS -|- jet cross 

section as obtained f r o m B F K L dynamics agrees wi th the H I data. Here we can proceed 

in the same way since both the deep inelastic -|- jet and the charged particle production 

cross section depend on the same functions as is shown symbolically i n Fig. 8.1. To be 

precise, as outined in Section 7.2.1, we fix the "starting point" ZQ of the B F K L evolution 

by requiring that the DIS -|- jet cross section obtained wi th the resulting functions 

describes the data. In Section 7.2.1 we found that the H I data can be described best 

using the calculated w i t h ZQ — 0.15 and the infrared cutoff in the B F K L equations 

^min = 1 GeV^. We assumed a charm quark mass rUc = 1.4 GeV^. In the following we 
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w i l l see how the single particle spectrum can be computed utilizing these 

8.2.2 The cross section for charged particle production 

We first use Fig. 8.1(c) to obtain the differential cross section for the production of a 

hadron of transverse momentum PT and longitudinal momentum fraction x^,. Then, in 

the following section, w i l l we calculate the charged particle spectra relevant to the recent 

observations at H E R A [71]. 

The cross section for single particle production is obtained by convoluting the inclusive 

cross section for the production of a single parton wi th the parton fragmentation function. 

That is we proceed analogously to how we calculated the DIS + 7r° rate f rom the DIS 

+ jet rate i n Chapter 5. The differential cross section for the inclusive production of a 

single parton of longitudinal momentum fraction xj and transverse momentum kjT has 

the generic fo rm of (3.6). We have 

daj Ana^ 
dxj dk]j dx dQ^ xQ^ 

, dF, 1 2 dFT 
(8.1) 

Now for small x, and in the central region away f rom the current jet and the proton 

remnants, we expect gluonic partons to dominate where the gluons are radiated wi th in 

the B F K L ladder. The differential structure functions occurring in (8.1) are then given 

by 

dFi f d^kp f d^ky ^ —ov'-j/ '"p "f f £ k p f 
J T^kt J 

a s m K k 
' dx, dk] J TTk^ J k^ 

x f{x„ kl) A:̂ , Q'] 8\k, - k p - ky) (8.2) 

w i t h i = T,L and where for simphcity we omitted the subscript T f rom the gluon trans

verse momenta, kjx, k^j and k^j, see Fig. 8.2. As before ois = 3as/ir. The expression 

in square brackets i n (8.2) arises f rom the (square of the) B F K L vertex for real gluon 

emission, c.f. (2.23). Recall that above we fixed the normalisation of the B F K L functions 

$ i by comparing w i t h the DIS + jet data. The function / in (8.2) is the unintegrated 
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Figure 8.2: Diagrammatic representation of the cross section for emission of ahigh transverse momentum 
PT particle. 

gluon distr ibution in the proton which satisfies the B F K L equation 

— z 
d f { z , P ) _ 

dz 
- a rdk'^ f { z , k ' ' ) - f { z , P ) , f i z , P ) 

k'^ - k^ + y/4WTk^ 
(8.3) 

I n practice we evolve (8.3) down in z f r o m the boundary condition 

f{zo.e) = f^''{zo,e) = 
d {zo,k') 

(8.4) 
dln{kyk^) 

where here z = Yo w i t h ZQ = 10"^, and where g^^ is the conventional gluon distribution 

obtained f r o m a global set of partons. As before we allow the coupling to run, that is 

we take as{P) in (8.3). Moreover, we impose an infrared cut-off k^ — iGeV^. That is 

we require the arguments of / to satisfy P^k'"^ > k^. Similarly, the integrations in (8.2) 

are restricted to the regions k'^, k'^ > k^. We can include the contribution AF,- f rom the 

region k^ < k^ by assuming the strong ordering approximation, Aip <C A;̂  ~ at the 

gluon vertex. This contribution to (8.2) then becomes 
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3 

= «5(fcI)^^%^$,f- ,A;^g^) . (8.5) 
\ X j ) 

Most of the time, however, for the calculation relevant to the HERA data, the variable Xj 

is not small enough for the B F K L equation to be applicable for the function / . In these 

cases, that is when Xj > ZQ, we therefore again assume strong ordering fcp >C A;̂  ~ In 

addition we include the contributions f rom quark and antiquark jets which we expect to 

contribute for the larger Xj values. We then obtain 

where the parton distributions are to be evaluated at ( x j , k f ) . 

The differential cross section for single particle (K) production is obtained by con

volut ing the jet cross section w i t h the fragmentation functions D for the parton —> h 

transition 

dxhdp^dxdQ"^ Jxh 
= j dz J dxj J dk^ 6{xh-zXj)6{pT - z k j ) 

D'A^.I^') + (8.7) dx,dk]dxdQ^ 

9 1 
DHZ U^) + u'') 

dx,dk]dxdQ^ dxjdk]dxdQ^^ 

where ag and <7, are the contributions to the cross section aj for gluon and quark and 

antiquark jets, respectively. The fragmentation scale //^ is of the order of k j , and we 

w i l l test the effect of varying i t on the cross section later. The cross section for charged 

particle production is obtained by summing over all possible charged hadrons h. 

8.3 Predictions for the single particle pT spectra 

I n the following we w i l l explain how the single particle spectrum can be calculated f rom the 

cross section for cha,rged particle production which we obtained above. Af ter discussing 
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the cuts imposed in the calculation we w i l l be in the position to show our prediction for 
the PT spectra and compare wi th the data. 

8.3.1 Calculation of the single particle spectrum 

The data for the single (charged) particle px spectra are presented in the fo rm {dn/dpx)/N 

where n is the mul t ipHdty and A'̂  the total number of charged particles in a given x, Q"^ 

bin [71]. To calculate this px spectrum we evaluate 

1 dn _ dah \ / datot 

N dpx VV ^PT dx dQ^) I dx dQ^ • ^ ' 

where dah/dpxdxdQ^ is obtained f rom (8.7) by integrating over Xh- We take the central 

values of X, i n the bin. The integration l imits are fixed by the Umits on the pseudora

p id i ty interval under consideration. To be precise we use 

= (8.9) 

where r) is the pseudorapidity of the charged particle, rj = - l n t a n ( ^ / 2 ) w i th 9 the angle 

w i t h respect to the vi r tual photon direction. Finally we calculate the total differential 

cross section da-fot/dxdQ'^ in (8.8) f rom the structure functions F2 and FL given by the 

MRS(R2) [21] set of parton distributions. 

As explained in the previous section, our aim is to make an absolute BFKL-based 

prediction to compare w i t h the px spectra observed by the H I collaboration. We fix 

the parameters occurring in the calculation of the B F K L functions by requiring the 

prediction for the DIS - f jet cross section to give the correct normahsation of the H I 

forward jet measurements. The next step is to use the functions obtained in this way 

in the computation of the differential structure functions f rom (8.2), (8.5) and (8.6). In 

this way we are able to calculate a normalized px spectrum f rom (8.8). 

Neglecting B F K L evolution 

The B F K L prediction for the single particle spectra may be compared wi th the result 

which would be obtained i f the B F K L gluon radiation is neglected. That is in (8.2), (8.5) 
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and (8.6) we replace the functions $ i which describe the solution of the B F K L equation 
w i t h the boundary condition given by the quark box wi th the quark box only. I n 
addition we now also assume strong ordering for xj < IQ and carry out the k"^ integration in 
(8.2). This amounts to assuming that in a fixed-order treatment the dominant subprocess 
is 7^ —> qqg. In our calculation the K integration is infrared finite since we allow for the 
v i r tua l i ty of both the gluon and the photon. 

8.3.2 Comparison with the HI data 

We are now in the position to give a B F K L prediction for the single particle spectra 

which can be compared wi th the H I data. In their measurement [71] the H I collaboration 

collected data i n nine different kinematic bins in two pseudorapidity intervals. We w i l l 

focus on the three smallest x bins where B F K L effects should become visible. Also we w i l l 

only show results for the lower pseudorapidity interval, 0.5 < ?/ < 1.5, where we expect no 

contamination due to the fragmentation of the current jet which has not been included in 

the calculation. We subtract 10% off the total cross section Utot to account for diffractive 

events w i t h large rapidity gaps which have been excluded f rom the measurement. Finally, 

in the sum over the charged hadrons h in (8.8) we include T T * and K^, and we use the 

next-to-leading order fragmentation functions by Binnewies et al. [61]. 

Electron acceptance region 

I n the calculation of the spectra we use = 27.5 GeV and E^ = 820 GeV and impose 

the cuts which where used in the H I measurement. That is we require the outgoing 

electron to lie in the region 

y > 0.05 

157° < 0'^^ < 173° (8.10) 

E'^ > 12 GeV 

in the H E R A laboratory frame. The cuts on y and 9'^^ define a region in (x, Q^) which is 

shown in Fig. 8.3. 
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Figure 8.3: The acceptance region for the scattered electron specified by 0.05 < y < 1 and 157° < 6'^^ < 
173° in the HERA laboratory frame. 

Results 

We now show the predictions for the single particle spectra obtained as described above 

and test i f they agree w i t h the H I data. In Fig. 8.4 we plot predictions for the charged 

particle px spectrum in kinematic bin 1 of the H I analysis wi th central values x = 1.6 x 

10"'* and = 7 GeV^. We compare the results when B F K L small x resuiiunation is 

included in the calculation w i t h the case when gluon radiation is neglected in the way 

described above. I n both cases we demonstrate the effect of changing the fragmentation 

scale f r o m = k'j to fx^ = (2fcj)^. We see that the B F K L prediction gives a good 

description of both the shape and the normalisation ^° of the H i data. On the other hand, 

when the B F K L effects are neglected the predictions lie considerably below the data. We 

are particularly interested in the shape of the spectrum in px- Recall that the idea behind 

the measurement of the px spectra is that in D G L A P evolution the transverse momenta 

•'"Even though we have normalised $ to the DIS 4-jet data, there still remains some residual uncertainty 
in the overall normalisation associated with the choice of infrared cut-ofF used in the ky integration in 
(8.2). Our results are shown for the natural choice fc^Q = 1 GeV^. 
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Figure 8.4: The transverse momentum spectrum of charged particles (tt"*", t t " , / ^ ~ ) in the pseudo-
rapidity interval 0.5 < ?? < 1.5 in the virtual photon-proton centre-of-mass frame. The results are shown 
for kinematic bin 1 with the central values a; = 1.6 x 10~^ and = 7 GeV^. The continuous and the 
dashed curve show the spectra obtained with $ j and / calculated from the BFKL equation. They only 
differ in the choice of fragmentation scale: for the continuous curve the fragmentation functions were 
evaluated at scale = (2^j)^ and for the dashed curve at scale fi^ = k j . When BFKL radiation is 

neglected in the calculation of the px spectra, i.e. when the quark box approximation = is used 
and strong ordering at the gluon vertex is assumed, then the dash-dotted and dotted curves are obtained. 
The fragmentation functions were evaluated at scales = {2kj) and kj respectively. The data points 
shown are from the H I measurement of the charged particle spectra [71]. 

are strongly ordered along the gluon chain which means that a gluon jet in the central 

region should have comparably small transverse momentum. In this case the emission 

of a high-pT particle is suppressed by the fragmentation functions. B F K L evolution on 

the other hand is accompanied by a random walk in the transverse momentum of the 

gluons along the chain. This implies that high-px gluon jets can be emitted leading to a 

t a i l i n the spectrum at larger pj. Looking at Fig. 8.4 we indeed see that the spectrum 

decreases more rapidly w i t h px when B K F L evolution is neglected than when the B F K L 

resummation is included. For example for pj = 1.5 GeV the two predictions differ by 
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Figure 8.5: As Fig. 8.4, but for kinematic bin 2, x = 2.9 x 10~^ and - 9 GeV 
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Figure 8.6: As Fig. 8.4, but for kinematic bin 3, a; = 3.7 x 10"^ and - 13 QeV^. 
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a factor 3.6, whereas for p-r — Q GeV this factor is almost 10. This is a reflection of 
the diffusion i n lnA;|. along the B F K L ladder. From Fig. 8.4 we also notice that the 
effect of varying the fragmentation scale by a reasonable factor is small compared to the 
difference between the BFKL-based predictions and the ones where B F K L resununation 
was neglected. 

The same general behaviour as in Fig. 8.4 is seen in Figs. 8.5 and 8.6 where we show 

the comparison for kinematic bins 2 and 3, w i th central values a; = 2.9 X 10 -^ = 9 

GeV^ and x = 3.7 x 10"^, Q"^ = 13 GeV^ respectively. We find that in all three small 

X bins of the H I analysis the data strongly support the inclusion of B F K L resummation 

in the calculation of the px spectra. Reasonable variations .of the fragmentation scale do 

not allow for a description of the data when B F K L effects are neglected. 

8.4 A closer look at the single particle pT spectra 

Having shown predictions for the single particle spectra our aim is now to investigate the 

px spectrum in a particular bin in more detail. 

8.4.1 Contributions to the spectrum from the three different 
regions 

Above, i n Section 8.2.2, we explained how we calculate the differential structure functions 

dFi/dxjdkj {i = T,L). Expression (8.2) for the differential structure functions is only 

applicable i n the region where Xj < zo and > k^. In this case there are two B F K L 

ladders as shown in Fig. 8.1(c), to be precise we obtained $ and / by solving B F K L 

equations. Next we considered the region where Xj < ZQ but now k'^ < k^. Here we 

assumed that the transverse momenta of the gluons at the triple gluon vertex are strongly 

ordered, that is Ar̂  <C A;̂  ~ k'j. This allowed us to perform the k^ integration leaving us 

w i t h one B F K L ladder, only. The resulting contribution to the differential structure 

functions is given by (8.5). Finally we pointed out that most of the t ime Xj > JQ. In this 

case we again use the strong ordering approximation and evaluate the k^ integral. Then 
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Figure 8.7: Contributions to the single particle spectrum in kinematic bin 1 with the central values 
a; = 1.6 X lO""* and = 7 GeV^. Shown as a solid line is the total spectrum calculated as for Fig. 8.4 
including B F K L resummation in the calculation and evaluating the fragmentation functions at scale 
/ i ^ = {2kj)-^. Dash-dotted and dotted lines represent the contributions from the regions Xj > 10~^ and 
Xj < 10~^, kp <l GeV^, respectively. In these cases only one BFKL ladder, is included. Two BFKL 
ladders, $ and / , contribute to the differential structure functions - and therefore the pr spectrum - in 
the region xj < 10~^, > 1 GeV^, as is displayed as a dashed line. 

we are left w i t h the B F K L ladder starting f rom the quark box ($ ) only, and the Fi are 

described by (8.6). Here we also included the contributions f rom quark and antiquark 

jets. Note that expression (8.6) for the differential structure functions is the same as for 

the deep inelastic -|- jet process depicted in Fig. 8.1(a), c.f. eqn. (3.7). 

I n Fig. 8.7 we show the contributions of the three different regions which we just 

discussed to the single particle spectrum in kinematic bin 1 wi th x — 1.6 x 10"'* and 

= 7 GeV^. As before we used zo = 10"^ and = 1 GeV^. The total spectrum 

which is represented by a soHd line is calculated as for Fig. 8.4 including B F K L evolution 

and choosing the fragmentation scale //^ = (2^;^)^. From Fig. 8.7 we see that the main 

contribution to the spectrum shown as a dash-dotted line comes f rom the region where 

Xj > Zo = 10~^. Recall that i n this case we only have B F K L evolution starting f rom the 
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Figure 8.8: The relation between the jet kinematic variables for fixed values of the pseudorapidity T] 
in the virtual photon - proton centre-of-mass frame. The results are shown for kinematic bin 1 with 
X = 1.6 X 10-4 and = 7 GeV\ 

quark box. Represented by a dashed fine is the contribution to the px spectrum f rom 

the region where Xj < ZQ and k^ > k^ = I GeV^. Here two B F K L ladders, $ and / , are 

included in the calculation. We see that this region is only important for the small values 

of px- The contribution f r o m the th i rd region, Xj < ZQ and fcp < ^q, is always small. In 

the following we w i l l present a brief explanation for why the main part of the px spectrum 

in the region 0.5 < 77 < 1.5 comes f rom the region Xj > 10"^. 

8.4.2 The pseudorapidity interval 

The results for the charged particle px spectra shown above where obtained in the pseu

dorapidity interval 0.5 < 77 < 1.5 in the vir tual photon - proton centre-of-mass frame. In 

analogy to (8.9) we can find an expression for the longitudinal momentum fraction Xj of 

the jet i n terms of its transverse momentum kj and the pseudorapidity rj. We have 

— k-e"" (8.11) 
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Figure 8.9: The average value of the fraction z of the parton jet's momentum which the emitted hadron 
carries away versus the transverse momentum PT of the hadron. 

In a given (x, Q'^) bin we are then able to compute the relation between the jet kinematic 

variables for fixed rj. In Fig. 8.8 we show this relation for different values of TJ. The lines 

corresponding to T) = 0.5 and 77 = 1.5 represent the boundaries on the accessible {xj, kj) 

region in the calculation of the spectra presented above. 

I n Fig. 8.9 we plot the average value of z versus px- Recall that z is the fraction of 

the parton jet's momentum which the emitted hadron h carries away, z = Xh/xj = pr/kj 

assuming coUinear fragmentation. We see that for the intermediate values of p j , p j ~ 3 

GeV, the hadron's transverse momentum is on average p j ~ kj/2. This means that, for 

example, a hadron w i t h p r = 3 GeV originates f rom a parton wi th kj ~ 6 GeV. Returning 

to Fig. 8.8 we f ind that already for this comparably small value of py, Xj > 10"^ most of 

the t ime. 

As we saw, the main contribution to the single particle spectrum in the pseudorapidity 

interval 0.5 < 77 < 1.5 is due to events where the parton jet has a longitudinal momentum 

fract ion Xj > 10"^. This implies that most of the t ime only one B F K L ladder is involved 

in the calculation of the cross section. In this case B F K L evolution starts f r o m the quark 
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Figure 8.10: The transverse momentum spectrum of charged particles (7r+, t t " , / C " ) in the pseu
dorapidity interval —0.5 < r; < 0.5 in the virtual photon-proton centre-of-mass frame, otherwise as for 
Fig. 8.4. 

box w i t h the solution of the B F K L equation given by $. We notice that this means 

that we could consider a pseudorapidity interval which is closer to the proton direction, 

namely —0.5 < rj < 0.5. The boundaries on the accessible {xj, kj) range which correspond 

to these l imits on r] are shown in Fig. 8.8. We see that here values of Xj < 10~^ can only 

be reached for the smallest values of px- Focussing on the region —0.5 < 77 < 0.5 has the 

advantage that a longer B F K L evolution starting f rom the quark box is possible making 

the difference between the BFKL-based prediction and the approximate fixed order result 

more clearly visible. One the other hand we do not lose much by allowing for less B F K L 

evolution f r o m the proton end because, as we pointed out above, already for 0.5 < 77 < 1.5 

the contribution f r o m the region where two B F K L ladders are involved in the calculation 

is small for the higher values of px- In Fig. 8.10 we plot the single particle spectrum 

computed as for Fig. 8.4 but in the new pseudorapidity interval, —0.5 < rj < 0.5. As 

before we compare the B F K L prediction wi th the case where B F K L radiation is neglected 

and t r y varying the fragmentation scale. We see that now for px = 6 GeV the difference 
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between the B F K L curve for one fragmentation scale and the corresponding "no B F K L " 
curve is about a factor of 15. So B F K L effects indeed become more apparent in this 
T^-range. 

8.5 Conclusion 

I n Chapter 6 we studied the DIS -|- forward jet process including massive charm in the 

quark box and solving the B F K L equation numerically for running coupling. We found 

that B F K L dynamics describe the shape of the x distribution of the HERA data well. Here 

we used these data to f ix the normahsation of the solution of the B F K L equation wi th the 

boundary condition given by the quark box. This enabled us to give an absolute prediction 

for charged particle transverse momentum spectra at small x. We calculated the spectrum 

for large values of px first including B F K L small x resummation in the calculation and 

second neglecting gluon radiation. I t turned out that the B F K L prediction shows excellent 

agreement w i t h the H I data both in shape and normalisation, whereas the approximate 

fixed order result underestimates the data and decreases too rapidly wi th py. We therefore 

conclude that we found evidence for the existence of ln(l /a;) effects and for the diffusion 

i n In kj. which accompanies B F K L evolution. Despite these encouraging results i t would, 

however, s t i l l be useful to compare the B F K L prediction for the p r spectrum wi th the 

result of the complete fixed order calculation. Experimental data for higher values of p r 

would allow an even clearer distinction between the different predictions. B F K L effects 

would also become more apparent in the pseudorapidity interval —0.5 < 77 < 0.5 which 

corresponds to higher values of Xj and therefore to a longer B F K L evolution starting f rom 

the quark box. Of course higher Xj also means less B F K L evolution f rom the proton end. 

This is, however, not a disadvantage, since already for the pseudorapidity interval which 

we considered the main contribution to the spectrum comes f rom the region Xj > ZQ. We 

conclude that more experimental data especially for higher values of py would be useful. 

Nevertheless, as can be seen f rom Figs. 8.4 - 8.6, the existing spectra already show the 

presence of B F K L effects at small x at HERA. 



Chapter 9 

Summary and conclusions 

I n this thesis we addressed the problem of whether ln( l /a ;) effects are observable in the 

small X region accessible in the present experiments at the DESY electron - proton collider 

H E R A . We explained that the D G L A P equation resums the ln^{Q'^/Ql) terms in the 

perturbative expansion whereas the B F K L equation resums the ln"( l /a ; ) contributions. 

Whi le i t is clear that the D G L A P equation is valid i f x is large and that the B F K L equation 

is appropriate when x is small, i t is not obvious which of the two evolution equations gives 

the predominant behaviour of the gluon distribution in the HERA small x regime. I f the 

gluon has the characteristic B F K L x~^ shape in x then the structure function F2 w i l l show 

the same behaviour due to the fcj-factorisation theorem. So one might think that i t is 

possible to identify the underlying dynamics by measuring F2. I t turns out, however, that 

as we outlined in Section 3.1 both D G L A P and leading order B F K L dynamics allow for 

a description of the H I and ZEUS data. In addition the leading order B F K L prediction 

for F2 is subject to uncertainties due to the diffusion in \nk^ which accompanies the 

B F K L evolution of an input gluon distribution to smaller values of x. This diffusion can 

lead to a penetration of the infrared region where perturbative QCD ceases to be valid. 

Also subleading corrections to the B F K L equation wi l l suppress the strong x~^ rise. I t is 

therefore necessary to consider less inclusive quantities and to expose the deep inelastic 

final state Various final state measurements have been suggested in the past [74]. In 

^^In addition to investigating the deep inelastic final state i t has also been suggested to study In(l/a;) 
effects in hadron collisions [72] and e+e~ [73] scattering. 
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*• a 

(a) DIS + jet (b)DIS + Y (c)DIS + 7i" (d) Single particle spectrum 

Figure 9.1: Diagrammatic representation of (a) the deep inelastic -|- forward jet, (b) the DIS - f forward 
7, (c) the DIS -F forward 7r°, and (d) the single particle spectrum measurement. 

this thesis we studied again the original deep inelastic -f- forward jet process as proposed 

by Mueller and introduced two extensions of this idea, namely DIS -}- forward photon 

and DIS -|- forward 7r° events. In addition to these two projects we also studied whether 

single particle transverse momentum spectra can be used to identify l n ( l / x ) dynamics. 

A diagrammatic representation of the four processes is given in Fig. 9.1. 

As we explained in Chapter 3 the D I S + forward jet measurement which is shown 

diagrammatically in Fig. 9.1(a) is very suitable for identifying B F K L dynamics at HERA 

f r o m the theoretical point of view. I t has various advantages: Firstly, since the transverse 

momentum of the jet is required to f u l f i l ~ Q'^ where Q'^ is not too small, D G L A P 

evolution along the gluon chain is neutralized and a penetration of the infrared region due 

to the diffusion in In k^ is avoided. Secondy, because the longitudinal momentum fraction 

Xj of the jet is chosen to be large while x is small, the {xjxjY^ behaviour as x f x j —> 0 can 

be studied. Furthermore input parton distributions are only needed at values of Xj where 

they are well-known f r o m the global analyses. On the other hand, experimentally the 

DIS + jet measurement proves very difficult since jets w i th large longitudinal momentum 

Xjp are emitted close to the proton direction and therefore are hard to identify and to 

measure accurately. Nevertheless, experimental results have been obtained by the H I and 

ZEUS collaborations. I n Chapter 6 we compared the H I DIS -|- jet data wi th predictions 
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obtained including and neglecting B F K L dynamics in the calculation. We found that only 
the B F K L based prediction yields a good description of the data and therefore concluded 
that the H I data show signs of B F K L soft gluon resummation. As a check i t wi l l be useful 
to compare also w i t h the ZEUS results which are for slightly different cuts and which have 
very recently been shown in preliminary form. On the experimental side data for a higher 
cut on the transverse momentum of the jet and smaller angles of the jet w i th respect to 
the proton direction would of course be helpful. Nevertheless the results already look very 
promising for studying l n ( l / x ) resummation effects. 

Since the DIS -|- jet measurement is experimentally diff icult , in Chapter 4 we pro

posed an alternative process, namely deep inelastic events containing an identified 

forward photon, see Fig. 9.1(b). This process has the advantage that the measurement 

of a photon is cleaner than that of a jet , and less ambiguous, particularly at the lower 

values of kx- Furthermore since the quark or antiquark jet is not identified events can be 

included in the data sample in which its constituents mingle wi th the proton remnants. 

On the other hand the DIS -|- 7 cross section is suppressed relative to DIS -f- jet due 

to the additional electromagnetic couphng and because isolation of the photon has to be 

required to ensure that i t does not origin in the decay of a 7r° in the jet. Our study showed 

that for the set of cuts which we imposed we lose about a factor 400 in going f rom the 

DIS - I - jet to the DIS + 7 measurement. A t present HERA luminosities the DIS -t- 7 rate 

is too small to be measured. I f luminosities of the order of 1 fb~^ could be reached the 

DIS -|- 7 process should allow an identification of the underlying dynamics. 

Despite the fact that the DIS -|- 7 rate turned out to be quite small, nevertheless 

i t prompted another and more promising possibility. To be specific, in Chapter 5 we 

proposed another final state measurement which is a modification of the original DIS - f 

jet process. We suggested that the forward jet is identified through the measurement of 

a single energetic decay product, the 7r° as shown in Fig. 9.1(c). Just like the DIS -|- 7 

process, D I S + forward 7r° has the advantage that a 7r° is easier to identify than a 

jet but i t should have a much higher rate. In Chapter 5 we performed an exploratory 

study of this process investigating whether i t could be used to identify l n ( l / x ) dynamics 

at H E R A . Our results prompted the H I collaboration to look at this process and indeed 
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prehminary data have just become available. As a consequence, in Chapter 7 we updated 
our ir° prediction taking advantage of the new H I DIS -|- jet data. Note that the functions 
$ i which describe the gluon ladder coupling to the vir tual photon are the same for the DIS 
-|- 7r° process as for DIS -|- jet , as is indicated by shaded blobs in Fig. 9.1. Therefore we 
fixed the normalisation of the B F K L prediction for DIS - f 7r° by adjusting the parameters 
determining the $ i so that the resulting DIS + jet cross section agreed wi th the H I 
data. We found that the DIS -|- 7r° rate for the H I experimental cuts is of the same 
order as the DIS -t- jet rate and therefore measureable at HERA. The B F K L based 7r° 
prediction somewhat overestimates the preliminary H I data. This may be due to the low 
experimental cuts on the 7r° momenta as a consequence of which we may be evaluating 
the fragmentation functions in regions where they are not vahd. Work on the comparison 
between the B F K L prediction and the H I data is st i l l in progress. Now that the DIS 
-|- 7r° rate is measureable at HERA this process should be better suited to identify the 
underlying dynamics than the original DIS -|- jet process since i t is a lot cleaner. 

I n the measurements discussed above we tried to identify ln( l /a ; ) dynamics focussing 

on the B F K L x~^ behaviour of the observables. On the other hand we could also search 

for effects which are due to the diffusion in In kj^ along the B F K L ladder. The study of 

single particle transverse momentum spectra (see Fig. 9.1(d)) is based on the idea 

that due to this diffusion particles w i t h high transverse momentum can be emitted in the 

central region between the current jet and the proton remnant. In D G L A P dynamics 

the transverse momenta of the gluons are strongly ordered and therefore the emission of 

a high transverse momentum particle is suppressed by the fragmentation functions. In 

comparison w i t h the Ej flow measurement the single particle spectrum at sufficiently 

large values of px has the advantage that i t is less affected by hadronisation effects and 

should reflect the diffusion along the B F K L ladders more obviously. In Chapter 8 we 

calculated the single particle spectrum fixing the normalisation of the B F K L prediction 

in the same way as for the DIS + n° process. We then compared the B F K L prediction 

w i t h the data published by the H I collaboration in the beginning of this year and found 

excellent agreement in both the shape and the normalisation. We therefore concluded 

that we discovered signatures of ln( l /a ; ) resummation and the diffusion in In k^ along the 
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B F K L ladders. Clearly data for higher values of px would be useful. 

The studies presented in this thesis were based on leading order B F K L dynamics. 

Therefore, i n principle, next-to-leading order corrections should be included in the cal

culations. These important effects are somewhat neutralized in the results which we 

presented in Chapters 7 and 8 since there we normahze the B F K L function $ to the 

available DIS -|- jet data. Indeed the predictions for the DIS -|- jet cross section and the 

single particle spectra show excellent agreement wi th the data. This means that we found 

signs for B F K L resummation effects and the diffusion in I n ^ ^ which accompanies the 

evolution to small x. Research on the deep inelastic final state wi l l remain a hot topic 

and should allow for a clear identification of the underlying dynamics at HERA as both 

the theory and experiment develop and improve. 



Appendix A 

Analytic solution of the B F K L 
equation for fixed coupling 

The leading order B F K L equation was wri t ten for fixed coupling constant. In this case i t 

is possible to solve the equation analytically as we w i l l demonstrate in this appendix 

We start by calculating the Mel l in transform of / which is given by 

f{x,u) = / dklikl)-^-'f{x,kl). ( A . l ) 

We w i l l see that this has the advantage that the B F K L equation (2.21) factorizes. Ap : 

plying the Mel l in transform technique we find 

dHiix) - Jo ^ ^ ^^ d H i / x ) 
fOO 

= J dkl (4)—1 

A kl if{x,k'S)-f{x,P^) f{x,kl) \ 

Jo ""'^ k'S \ \k'^-Px\ W4 + ki^} 

= as / dA;̂  (A ;^)-"-i J , (A.2) 
Jo 

say. Substituting u = k'^/kj, then yields 

1 lf{x,uk'^)~f{x,Px) , fix,ex) \ 
duk'r-{'' + klu-kl\ [ik^U^ + k^]2 

^^A brief outline of this calculation is also given in ref. [7]. 
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where f{x, kj.u)/f(x, k j ) = u'^. This can easily be shown by expressing / ( x , k\) in terms 
of the derivative 5/(a;, / j | .) /(9fcj and obtaining the analogous equation for f{x,ukj'). We 
now have 

X = /(a;, 4) (A.4) 

where K is the Mel l in transform of the B F K L kernel K, 

K{uj) = as — \ -. - — - r \ . A.5 
Jo u [ \ u - l \ [4̂ 2̂ + 1 ]? ] 

Substituting I into (A.2) we find the B F K L equation for / , 

which factorizes as anticipated. The next step is to evaluate the integral over u in (A.5) . 

We perform this calculation of K{u>) in Appendix B wi th the result 

^ ( c j ) = a 5 [ 2 * ( l ) - * ( a ; ) - * ( l - a ; ) ] (A.7) 

where ^{u) = T'{U>)/T{LO). N O W we are in the position to solve the B F K L equation (A.6) . 

The solution has the fo rm 

f{x,u) = f{xo,i^) exp 
\ X J 

= fixo^u) ( - ) (A.8) 

w i t h f{xo,uj) some input distribution. Having solved the B F K L equation for f{x,uj) our 

aim is to use our knowledge of / to derive an expression for the solution f{x, kj.) of the 

original B F K L equation (2.21). We therefore perform the inverse Mell in transform 

1 rc+ioo 

ITTI Jc-ioo 

1 rc+ioo ^ / r \ -^('^) 
= — / dc.{klrf{xo,u.) - . (A.9) 

To fur ther s implify this equation we have to evaluate f{xo,to) and the exponent K{uj) 

i n t u rn . I t is convenient to start w i t h the former by Taylor expanding about the point 
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ui = 1/2 which yields 

Next we substitute 

and define 

\D.k\ - — 

which w i l l prove useful later. Then we find 

f{xo,u) ~ / ( x o , ^ ) 

A = 
1 d?f 

—2 1 
1 — ivlnkrr — -I'^A 

(A.IO) 

( A . l l ) 

(A.12) 

(A.13) 

which we consider as our final result for f{xo^u>). We also rewrite {k^Y util izing the 

substitution ( A . l l ) and obtain 

{klY = ( j t 2 ) ? + - = (ib2)i- exp(zj/lnA:2). (A.14) 

Now we t u r n to the MeUin transform K{UJ) of the B F K L kernel. Substitution ( A . l l ) and 

Taylor expansion about u — 1/2 yield 

'IN dk{l) ^ ( , , ) 2 d^K{D 

Choosing A = K{^) as an eigenvalue of K and keeping only real terms 

II,.2 
A 

A V 

(A.15) 

(A.16) 

On the other hand we also have expression (A.7) for K where we can perform the same 

substitution ( A . l l ) . We then Taylor expand the ^' functions about 1/2 and again only 

keep the real contributions which gives 

as 2 * ( l ) - 2 ^ ( i ) + . ^ * " ( i (A.17) 

On ut i l iz ing * ( 1 ) = —JE, the Euler-Mascheroni constant, and * ( | ) = —JE - 21n2 and 

equating w i t h (A.16) we find 

A'V2 
A as 4 l n 2 + / . 2 ^ " f i ' ) 

\2J 
(A.18) 
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Since the eigenvalue 

A = i f ( - ) = as 2 * ( l ) - 2 ^ -

3a,c 

TT 
4ln2 (A.19) 

its second derivative 

A" = - ^ 2 $ " Q ) . (A.20) 

We can try to further simplify this expression by taking into account the integral form of 

t h e f u n c t i o n [75], 
[•CO p - ' 

Jo i 0 - i - IE- (A.21) 

We calculate the second derivative of * and substitute x = -t/2 which yields 

- = - 8 / (̂ o; . 
V2y Jo e 2 ^ - l 

If we now note that the ( function has the integral representation 

C(^) = TTT. 7TF77T ^x-(2^ - l)r(2) 7o - 1 

for > 1 which when evaluated at 2 = 3 results in 

4 r°° , x^e^ 
ax 

1 

we finally find 

-14C(3). 

(A.22) 

(A.23) 

(A.24) 

(A.25) 

Therefore the second derivative of the eigenvalue of the Mellin transformed BFKL kernel 

(A.26) A" = ^ 2 8 C ( 3 ) 

where C(3) = 1.202. We can now return to the expression (A.9) for the solution / of the 

BFKL equation in terms of / and substitute (A.13) for f{xo,u)), (A.14) for (^y)'^ and 

(A. 16) for K{uj) which yields 

I j-c+icc f J 1 \ 

f{x,kl) = 2̂  y_. dw \^{kl)^ exp{iv\nkl) f\xQ,-j 

1 — iv\n k 
^2 v^A 

\Xo, 
(A.27) 
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The final step is to notice that the integrand has a saddle point at a; = | + with u = 0 

and to perform the saddle point integration. We again substitute u = \-\-iv leading to 

1 — iv\ak\. 
u'^A 

Rewriting this expression using exp(—x) ~ 1 — a; + x/2 yields 

A / ( x o , | ) {kl)h 
f{x,kl) 

X 

XQ 

X exp 

27r £ dv 

1 i.2 ^ 2 ^ " , ( X \ 2 V'A 

2 Va;o/ 

which can be evaluated taking into account that the integral 

/

CO /-oo 
dv exp{—av^ + ihv) = j dv exp 

-oo J—oo 
-a\v + 2a exp '4a 

'4a 

Then setting 

a = 

6 = 

y \ f x \ A 
— In — + -

Vxo; 2 

(A.28) 

(A.29) 

(A.30) 

(A.31) 

(A.32) 

we finally find that f ( x , kj^) is given by (2.43). 



Appendix B 

Calculation of the Mellin transform 
of the B F K L kernel 

In this appendix we give a derivation of equation (2.40) for the MeUin transformed BFKL 

kernel Our aim is to evaluate the singular integral (A.5) which we obtained in Ap

pendix A, 
r>/ X _ rdu 1 1 

It proves useful to isolate the singularities at u = 0,1 by splitting the kernel into two 

parts, 

= — ( ^ 1 + ^ 2 ) , (B.l) 
TT 

where 

Ji u u — 1 

K2i'^) — hm 
yi du u'^ yi du 1 

Jo (1 - u ) i - * ~ Jo (1 -uy-
du 1 

(B.3) 
V 4 t i 2 + 

e and 5 regulate any divergence of the integrals as u —> 0,1. The plan is now to evaluate 

each integral separately. Let us start with Ki which is somewhat easier. As a first step 

^^This derivation is briefly outlined in ref. [76]. 
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1 

we substitute v = 1/u leading to 

fl y-'^ _ 
K^iu) = - dv 

Jo V — 1 

It is possible to express this in terms of the $ function which is defined as [77] 

* = r'(^) 
- I 

1 , t'-' - 1 
dt - IE 

(B.4) 

(B.5) 
V{z) Jo ' t - 1 

where 7 ;̂ is the Euler-Mascheroni constant, 7 ;̂ = —^(1)- Setting z — 1 = —OJ we obtain 

(B.6) Ki{u) = * ( l - w ) - * ( l ) . 

K2{io) can be evaluated in terms of /? functions utilizing [75 

^{x,y) = f dit^-\i-t)y-' 
Jo 

poo 
^ix,y) = 2 dt 

Jo 

In this way we find 

i2x-l 

x+y 

Koiuj) ' l im 
e 1 

.2'2 2. 
which we rewrite using the definition of the /3 function, 

_ r(:.)r(y) _ T{x + l)r(y) 
^^""'^^ ~ r{x + y) - xT{x + y) ' 

We then see the pole structure of K2 in e and 6 explicitely: 

K2((^) — l im 
r ( f + i ) r ( | - f ) 1 r(^ +1) r(a; + e) i 

r ( l ) e nu + e + 6) 6 

r ( l + e) r ( l + <̂) {e + 6) 
T{l + e + 6) eS 

(B.7) 

(B.8) 

(B.9) 

(B.IO) 

(B.ll) 

say. Now we have to take the Hmits e, ^ —> 0"*". We begin with the limit in e considering 

all three terms in (B.ll) separately. Using the Taylor expansion 

r(^ + e) = T{z) + er'(z) + 0{^) (B.12) 
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on taking the limit e —> 0"*" the second term simply gives 

(B.13) 
5̂ 0+ s r(cj + s ) 

Proceeding analogously for the first and third term in ( B . l l ) utilizing 2~^ ~ 1 — eln2 and 

r ( l + e) ~ 1 — 7£;e and noting that 

r( l + e + .5)]-̂  ~ [r{l + 6)]-^[l-e^{l + 6) (B.14) 

we obtain 

K2a{^) + k2c{uj) = lim^ - ^ [1 - eIn 2] 
2 V2 

- [1 - -iEA [1 - e*(l + .5)] 1 + (B.15) 

to 0{e). Now we take the hmit in e and keep only the finite part which leads to 

^2a (w) + ^2c(u^) = l im 
4-*0+ 

l im 
5-0+ 

. l n 2 - f - i l l ^ + , . + ^ ( l + . ) - i 

- ^ ( l ) + ^ ( l + < ^ ) - i (B.16) 

where we replaced ^^(1/2) by —-^E — 2 In 2. The final step is to evaluate the limit ^ ^ O"*" 

in (B.13) and (B.16) in a similar way as we just described for e again only retaining the 

finite part. The result is 

k2{uj) = ^ ( l ) - * ( a ; ) (B.17) 

which on combining with Ki{uj) as given in (B.6) yields (2.40). 
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