
Durham E-Theses

A process model of maintenance with reuse: an

investigation and an implementation abstract

Kwon, Oh Cheon

How to cite:

Kwon, Oh Cheon (1997) A process model of maintenance with reuse: an investigation and an

implementation abstract, Durham theses, Durham University. Available at Durham E-Theses Online:
http://etheses.dur.ac.uk/4724/

Use policy

The full-text may be used and/or reproduced, and given to third parties in any format or medium, without prior permission or
charge, for personal research or study, educational, or not-for-pro�t purposes provided that:

• a full bibliographic reference is made to the original source

• a link is made to the metadata record in Durham E-Theses

• the full-text is not changed in any way

The full-text must not be sold in any format or medium without the formal permission of the copyright holders.

Please consult the full Durham E-Theses policy for further details.

Academic Support O�ce, The Palatine Centre, Durham University, Stockton Road, Durham, DH1 3LE
e-mail: e-theses.admin@durham.ac.uk Tel: +44 0191 334 6107

http://etheses.dur.ac.uk

http://www.dur.ac.uk
http://etheses.dur.ac.uk/4724/
 http://etheses.dur.ac.uk/4724/
http://etheses.dur.ac.uk/policies/
http://etheses.dur.ac.uk

A Process Model of Maintenance with
Reuse:

A n Investigation and an Implementation

O h Cheon K w o n

.^h.D. Thesis

The copyright of this thesis rests
with the author. No quotation
from it should be published
without the written consent of the
author and information derived
from it should be acknowledged.

University of Durham

Department of Computer Science

22 December 1997

1-2 J 01 1998

Oh Cheon Kwon
A Process Model of Maintenance with Reuse:

An Investigation and an Implementation
Abstract

Sixty to eighty per cent of the software Hfe-cycle cost is spent on the software maintenance
phase because software maintenance is usually more difficult than original development and legacy
systems are generally large and complex. Software reuse has recently been considered as a best solu
tion to enhance the productivity of a software development team and to reduce maintenance costs.
In addition, Software Configuration Management (SCM) is a central part of software maintenance
as i t is associated with changing existing software and is a discipline for controlling these changes.
Thus, both software reuse and SCM have been proposed for making a significant improvement
in productivity, quality and cost. However, so far these two technologies have been investigated
separately. In order for software reuse and SCM to produce effects by synergy, both approaches
require to be introduced into a maintenance environment together. Since software reuse and SCM,
and software reuse and software maintenance have many similarities in their activities, these disci
plines can be integrated within a software maintenance environment. This research has therefore
developed an integrated process model for 'Maintenance with Reuse (MwR)' , that supports SCM
for a reuse library which is actively maintained for use in a software maintenance environment.

This thesis addresses an integrated process model called the MwR model and its prototype tool
TERRA (Tool for Evolution of a Reusable and Reconfigurable Assets Library) that consist of a
configuration management (CM) process, reuse process, maintenance process and administration of
a reuse library. The MwR model and TERRA provide reusers and maintainers with many activities
of these four processes such as classifying, storing, retrieving, evaluating, and propagating reusable
components, including controlling changes to both reusable components and existing systems.

The process model of an integrated approach has been developed and validated using Process
Weaver. The TERRA tool has been implemented on the W W W so that the prototype can provide
portability, traceability, integration with existing tools, and a distributed maintenance environ
ment. The TERRA prototype has been tested and evaluated through a scenario based case study.
Several scenarios based on real data have been created and used for the case study so that an or
ganisation can apply the model and tool to its maintenance environment without many problems.

The software maintenance community is facing serious problems with legacy systems, such as
a ever increasing frequency of changes and backlogs, lack of integrated tools and methods, and
lack of software maintenance support environments. The control and management of changes to
the software components in a reuse repository are crucial to successful software development and
maintenance. I f the component is being used in multiple systems effects of uncontrolled change are
more critical. However, reuse libraries and servers currently available have not been successful as
they do not support further development or maintenance of the reusable components. In addition,
most of them are not sophisticated since they have not been linked to a development/maintenance
environment.

The integrated model of MwR can overcome many problems that exist in software maintenance
and reuse through introduction of SCM functionalities into a maintenance environment. Thus, the
integration of these common activities wil l greatly contribute to enhancing the productivity and
quality of software, and wil l additionally lead to reducing the costs and backlogs of changes within
a maintenance environment.

Acknowledgements

A number of people have helped me to finish this work. Without their support, I

could not have completed this research. I would firstly like to thank my supervisors,

Dr. Cornelia Boldyreff' and Malcolm Munro, for their guidance and encouragement

over the last three years. Their comments and advice have been invaluable during

the writing of this thesis.

I am grateful to two examiners, Professor Ian Sommerville and Professor Keith

Bennett for sparing their time to review my dissertation and to make valuable com

ments and suggestions.

I would also like to thank other members of the Department of Computer Science,

especially, Steven Glover, David Nelson, Deborah Robson and Louise Hudson for

their support.

Many thanks and love go to my family, especially, my wife Eun-Hee, my daughters

Yu-Jin and Ye-Na, my parents-in-law, Rev. and Mrs. Uhm, for their huge support,

patience and encouragement throughout this research.

I acknowledge the financial support from the British Council, SERI (Systems

Engineering Research Institute) and my brothers in Korea.

m

Declaration

The material contained in this thesis has not been previously submitted for a degree

in the University of Durham or any other university.

I V

Statement of Copyright

The copyright of this thesis rests with the author. No quotation from it should be

published without his prior written consent and information derived from it should

be acknowledged.

Contents

1 Introduction 1

1.1 Overview of Software Engineering 1

1.2 Objectives of Research 4

1.3 Research Method and Criteria for Success 5

1.4 Outline of Thesis 7

2 Background of this Research 9

2.1 Software Reuse 10

2.1.1 Introduction 10

2.1.2 Evolution of Software Reuse 11

2.1.3 Reuse Process 13

2.1.4 Reusable Software Library 21

2.1.5 Software Interconnection Model and Language 22

2.1.6 Relationship between Software Reuse and Maintenance 33

2.2 Software Configuration Management (SCM) 35

VI

2.2.1 Introduction 35

2.2.2 Evolution of Software Configuration Management 36

2.2.3 Software Configuration Management Activities 40

2.2.4 SCM Models 46

2.2.5 Automation of SCM 51

2.2.6 SCM Problems within a Maintenance Environment 52

2.3 Software Maintenance 53

2.3.1 Introduction 53

2.3.2 Software Maintenance Models 54

2.3.3 A Software Maintenance Environment 58

2.4 Relationship between Reuse, SCM and Software Maintenance 60

2.5 Conclusions 62

3 Rationale for an Integrated Model 66

3.1 New Approaches to Software Engineering 67

3.2 Problems with Reuse and Maintenance 68

3.3 Similarities between Reuse and SCM and between Reuse and Main

tenance 71

3.4 Direction of Research 72

3.5 The Originality of this Work and Discussion of Similar Work 74

3.6 Summary 78

vn

4 Modelling of Maintenance with Reuse (MwR) 79

4.1 Overview of Process Modelling 80

4.2 Introduction to Process Weaver 81

4.3 Process Model of Maintenance with Reuse (MwR) 84

4.3.1 Configuration Management 88

4.3.2 Reuse Process 89

4.3.3 Maintenance Process 94

4.3.4 The Relationships between the Reuse Process and the Main

tenance Process 99

4.3.5 Review of a Product Line and Administration of a Reuse Libraryl02

4.4 Summary . 110

5 Implementation of the Model 112

5.1 Implementation of TERRA 113

5.1.1 Functions and Development of TERRA 113

5.1.2 TERRA'S Interaction with SCM, CGI and Server 114

5.2 Tools adopted for Implementation of TERRA 116

5.2.1 freeWAIS-sf-2.0.65 116

5.2.2 Revision Control System (RCS) 117

5.3 Summary 118

6 Operation of the T E R R A prototype 120

vni

6.1 Registration of Reusable Components 121

6.2 Search for Reusable Components 126

6.3 Report on the Reuse History ; 130

6.4 An Entry Form for a Change Request 131

6.5 An Entry Form for Change Approval 134

6.6 Summary 136

7 Scenario Based Case Study 138

7.1 Introduction 138

7.2 Problem Statement for the Case Study 139

7.3 Preparation for the Case Study 140

7.3.1 Data for the Case Study 140

7.3.2 Storing the V Legacy System into a RCS Repository 141

7.4 Scenarios for the Case Study 141

7.4.1 Scenario # 1: Populating a Reuse Repository 143

7.4.2 Scenario # 2: Procedure of Change Control for an Existing

System 146

7.4.3 Scenario # 3: Procedure of Combined Change Requests from

a Reusable Component and an Existing Component 150

7.4.4 Scenario # 4: Procedure of Change Control for an Existing

System 155

7.5 Review of the Case Study 161

I X

7.6 Discussion of the Case Study 163

8 Evaluation of the MwR Model and T E R R A Prototype 165

8.1 Modification of the MwR model and TERRA 165

8.2 Introduction of the MwR Model and TERRA to an Organisation . . 167

8.3 Criticism of the MwR Model and TERRA: Benefits and Limitations . 169

9 Conclusions 172

9.1 Results of this Research 173

9.2 Assessment of this Research 174

9.3 Further Work 177

10 Publications and Reports 180

A Other Fill-out Forms and Tools Used for this Research 182

A . l More Fill-out Forms and Reports Produced by TERRA 182

A.2 freeWAIS-sf-2.0.65 182

A.2.1 The Format Definition File 'v.fmt' Used for Indexing 182

A.2.2 The Format Description File 'v.dfe' Used for Indexing 186

A.2.3 The Index Files 188

A.2.4 Some Examples for Search 189

A.3 Functions of Revision Control System (RCS) 190

Bibliography 193

x

List of Figures

2.1 The EPSOM Model: a Maintenance-Specific ' V Life-cycle 56

2.2 A Software Maintenance Support Environment 59

3.1 An Idealised Maintenance Environment 69

3.2 Evaluation of Reusable Software Libraries 76

4.1 The Activity Decomposition of Maintenance with Reuse (MwR) . . . 85

4.2 The Activity Decomposition of Maintenance with Reuse (MwR) . . . 87

4.3 The Process for Understanding of the CR 90

4.4 The Process for Retrieval of Components 90

4.5 The Process for Evaluation of Components 91

4.6 The Process for Integration of Components 92

4.7 The Process for Re-insertion of Components 93

4.8 The Process for Updating of Reuse History 94

4.9 The Reuse Process Incorporating Version Control 95

4.10 The Process for Analysis of CRs 96

X I

4.11 The Process for Approval of Changes 97

4.12 The Process for Analysis of Solutions 97

4.13 The Process for Implementation of Maintenance 98

4.14 The Relationships between the Reuse Process and the Maintenance

Process 101

4.15 Relationships between Concepts Associated with a Product Line . . . 105

4.16 The Procedure for Population and Change Control of a Reuse Library 109

5.1 Home Page of TERRA 114

5.2 TERRA'S Interaction with SCM, CGI and Server 115

6.1 A Fill-out Form for Reusable Components' Registration: Part # 1 . . 122

6.2 A Fill-out Form for Reusable Components' Registration: Part #2 . . 123

6.3 A Fill-out Form for Reusable Components' Registration: Part #3 . . 124

6.4 A Message for Confirmation of Components' Registration 125

6.5 Reusable Components Retrieved by a Search Mechanism 126

6.6 A Description of a Retrieved Reusable Component: Part # 1 127

6.7 A Description of a Retrieved Reusable Component: Part #2 128

6.8 The History of Changes made to a Reusable Component 129

6.9 A Fill-out Form for a Reuse Report 131

6.10 A Fill-out Form for a Change Request 133

6.11 A Fill-out Form for Change Approval 135

xn

7.1 A Change Request, CROOl 148

7.2 A Change Request, CR002 151

7.3 A Change Request, CR003 153

7.4 A Change Request, CR004 156

7.5 Specification of the Reusable Component: SOOOl Part # 1 157

7.6 Specification of the Reusable Component: SOOOl Part #2 158

7.7 A Fill-out Form for Approval of the Change Request CR004: Part # 1 159

7.8 A Fill-out Form for Approval of the Change Request CR004: Part #2 160

7.9 A Reuse Report Part # 1 for the Reusable Component, SOOOl: vapp.cxxl61

7.10 A Reuse Report Part #2 for the Reusable Component, SOOOl: vapp.cxxl62

A . l Main Menu for Reusable Components Registration 183

A.2 A Fill-out Form for Search . . . " 184

A.3 A Fill-out Form for the Difference List of Two Revisions 185

A.4 The Difference List of Two Revisions 186

A.5 History of Reuse: Reuser's Experience Report 187

xm

Chapter 1

Introduction

1.1 Overview of Software Engineering

In the 1960s, as computer hardware was developed greatly, computer systems be

came capable of processing complex and large computer applications, leading end

users to produce high volumes of end users' requests for software systems. In order

to solve these problems, the concept of an engineering discipline has been introduced

to the field of software development.

The origin of Software Engineering goes back to the late 1960s when a conference

was held to discuss what could be termed the 'software crisis'. This software cri

sis originated from the emergence of third-generation computer hardware that was

more powerful than second-generation machines and enabled software developers

to build large software systems. The existing methods and techniques of softwcii'e

development were not good enough to produce a large software system. Software

production was facing a crisis as many large projects were overdue and over bud

get, and on top of that, software systems developed were unreliable and difficult to

maintain. Thus, to solve these problems with developing large software systems,

the software industry needed new methods and techniques. Software Engineering

is different from other engineering disciplines in that software products produced

from Software Engineering do not have any physical form. Software Engineering

like other engineering is not just concerned with producing software products but

producing products in a cost effective way [100 .

The first International Conference on Software Engineering was held in 1973,

and the IEEE Transactions on Software Engineering were firstly published in 1975.

Since these two events, many academic institutions now offer a Master of Software

Engineering degree. Bauer [5] who is one of the early leaders in the field of this new

subject, defines Software Engineering as follows:

The establishment and use of sound engineering principles (methods) in

order to obtain economically software that is reliable and works on real

machines.

Software Engineering disciplines concerned with this research are software main

tenance, software reuse, Software Configuration Management. These three fields

have long been recognised as crucial factors to be considered in order to improve

software quality and to enhance software productivity. These disciplines are all

very closely connected with the software development/maintenance environment. In

other words, in order to make these fields effective in a real environment, methods

and tools related to them must be linked to the development/maintenance environ

ment and also implemented in i t .

Software maintenance has been defined as:

The modification of a software product after delivery to correct faults,

to improve performance or other attributes, or to adapt the product to a

changed environment [60].

Informally, software maintenance contains all activities that take place after a

software product has been delivered to the end user, but a more formal definition

has recently been made by Bull and Bennett [20] as follows:

Softiuare maintenance is the set of activities, both technical and man

agerial, that ensures that software continues to meet organisational and

business objectives in a cost effective way.

The cost of maintaining a legacy system amounts up to 60-80 percent of all effort

that a software development organisation spends during the system life-cycle. As an

organisation can own more software systems over time, these systems are gradually

getting older, and every system is subject to change so much during the software

life-cycle, the cost of maintenance will be increasing greatly. The changes to an

existing system are inevitable because of the following causes:

• After delivery, a software product is subject to modification in order to improve

performance or provide new functionalities.

• After delivery, a software product is subject to modification for adapting a

system to change in the execution environment.

• After delivery, a software product is subject to modification for fixing abnormal

results or errors.

• After delivery, a software product is subject to modification for preventing

problems, for instance, improvement of software maintainability.

Most efforts in the software industry have been on software development whose

objective is to produce a product that is on time and within budget while meeting

user requirements, not a product that is reliable and maintainable. For these rea

sons, maintenance has to be dealt with, but maintenance is usually more difficult

than original development. To tackle these problems with software maintenance, we

therefore need to investigate some Software Engineering disciplines such as software

reuse and Software Configuration Management (SCM).

Software reuse has been defined as [9]:

The reapplication of a variety of kinds of knowledge about one system to

another similar system in order to reduce the effort of development and

maintenance of the other system.

BiggerstafF and Perlis [9] have made i t clear in their discussion that they do not

expect such reuse to occur incidentally- i t must be planned for and capitalised

upon. To make reuse eflfective, reuse should be supported by the 'Development

for Reuse(DfR)' process that aims at creating reusable software or re-engineering

existing software to extract reusable software f rom an existing system and the 'De

velopment with Reuse(DwR)' process whose aim is to develop a new system using

reusable components.

Software Configuration Management (SCM) has been defined as:

The discipline of 'identifying' the configuration of a system at discrete

points in time for purposes of systematically 'controlling' changes to this

configuration and 'maintaining' the integrity and traceability of this con

figuration throughout the system life cycle [8 .

SCM is responsible for coordinating and controlling software development, espe

cially, maintenance activities through the SCM principles of configuration identifi

cation, configuration control, configuration status accounting, configuration audit in

order to attain and maintain product integrity.

1.2 Objectives of Research

The research in this thesis is associated wi th an integrated approach of three research

fields: software reuse, Software Configuration Management (SCM) and software

maintenance. This approach is relatively new because although these research fields

have been recognised as important over the last decade, they have generally been

investigated separately.

Of all the known software technologies, software reuse has the best potential for

reducing software costs and enhancing the productivity of software development;

nevertheless, serious barriers must be eliminated before reuse can take its place as

a major software technology. Jones [62] raised a number of engineering problems

associated wi th reusing software as follows: creating or recognising a potentially

reusable component; cataloguing and retrieving them f rom a repository efficiently;

and finally, how to compose complex systems f rom those components and how to

control the change of reusable components. The last two problems above can be

solved through an SCM process.

Although some reuse libraries have been developed and announced, there is no

reuse library that can support a software maintenance environment and provide the

functionalities of change control and version control for reusable components wi th in

a reuse library. This research seeks to develop the Maintenance wi th Reuse (MwR)

model that supports a maintenance environment through the process of reuse, and

also controls the evolution of a reusable software library. The aim of this research is

to present solutions to tackle many problems wi th software maintenance and reuse

through the integrated model of software maintenance and reuse wi th in a Software

Configuration Management environment.

1.3 Research Method and Criteria for Success

This research w i l l implement a rapidly buil t prototype and enhance i t by solving

potential problems such as functionality, performance, ease of use, applicability and

maintainabil i ty [15]. Therefore, this research wi l l use an evolutionary approach as a

development method. Two versions of the prototype wi l l be implemented through

evolutionary development. The M w R model and prototype produced in this research

are employed and evaluated through a scenario based case study. The existing reuse

libraries w i l l be evaluated and the results f rom evaluation used for the development

of an in i t i a l prototype.

The major criteria for success depends on attaining the following expected results:

• To develop models for 'Maintenance wi th Reuse (M w R) ' that supports the

evolution of a legacy system by a reuse library. Change requests (CRs) issued

f r o m maintainers or end users can be implemented by a reuse process.

• To develop the procedure of change and version control for reusable compo

nents wi th in a reuse library. W i t h i n a maintenance environment, the process

by which a change to reusable components is issued, evaluated, approved or

rejected, scheduled and tracked, should be addressed. Modified reusable com

ponents could be entered into the library as new versions of these components,

since they might be reused. The control and notification procedures for the

revisions of a reusable component should be established. Thus, in order for

the reuse library to support a legacy system, the library can be well populated

and controlled by SCM functionalities.

• To model and implement administrative functionalities associated wi th a reusable

software library. The functionalities of the reuse library include classification,

registration and retrieval of reusable components, and notification of changes

of reusable components.

• To produce information (i.e., status accounting) related to reuse and SCM.

Each reusable component should contain some information including a clear

specification, quality and administration (i.e., a change history report, a reuse

history report, reuser's evaluation report, etc.).

• To develop a prototype that supports the 'Maintenance wi th Reuse (M w R) '

model. The prototype named T E R R A (Tool for Evolution of a Reusable and

Reconfigurable Assets Library) provides users wi th an automated tool that

supports a maintenance process, a reuse process, and an SCM process.

1.4 Outline of Thesis

This thesis is organised as follows:

Chapter 2 presents a survey of software reuse. Software Configuration Manage

ment (SCM) and software maintenance since this research is associated wi th those

three fields of software engineering.

Chapter 3 discusses the rationale of this research and includes the history of

evolution of the reuse concept, problems wi th reuse and maintenance, similarities

between reuse and SCM and between reuse and maintenance, research directions to

be tackled and the originality of this work.

Chapter 4 gives a description of the model that has been developed for this re

search, and supports three processes, i.e., the Configuration Management (CM)

process, the reuse process, and the maintenance process. In addition, the chapter

presents the relationships between the reuse process and the maintenance process,

followed by the concept of a product line and the administrative function of the

reuse library.

Chapter 5 describes TERRA's interaction wi th an SCM tool, CGI (Common

Gateway Interface) and Web server, and tools adopted for implementation of the

M w R model.

Chapter 6 depicts the procedures for operation of T E R R A , showing the fill-out

forms for registration and retrieval of reusable components, and the entry forms for

change requests and change approval, etc.

I n Chapter 7, the M w R model and its prototype called T E R R A are brought

together, by applying four scenarios to the model and tool. The data used in this

scenario based case study has been used for construction of a Graphic User Interface

(GUI) framework by the object-oriented community.

Chapter 8 evaluates the M w R model and tool using results obtained f rom the

case 'study in the previous chapter, describing modifications and customisation of

the M w R model and T E R R A .

Finally, Chapter 9 concludes the thesis by summarising the results f rom this

research work and drawing conclusions of the thesis, followed by further work to be

done.

Chapter 2

Background of this Research

This chapter examines the state of the art for three research fields, i.e., software

reuse. Software Configuration Management (SCM) and software maintenance. This

literature survey focusses on describing basic and extended concepts of each field,

their evolution, relevant activities and models, and discussing their techniques and

methods, including the identification of similarities and relationships between the

three fields.

Section 2.1 describes the evolution of reuse, a process of reuse, review of reusable

software libraries currently available, and a software interconnection model and lan

guage that can be used for the composition of reusable components, followed by

an investigation of the relationship between software reuse and maintenance. Sec

t ion 2.2 concentrates on developments, activities, models and automation of SCM,

identifying SCM related problems wi th in a software maintenance environment. Sec

t ion 2.3 reviews maintenance models and a software maintenance environment. Sec

t ion 2.4 describes relationships between reuse, SCM and software maintenance. F i

nally, Section 2.5 concludes the chapter by summarising the background research

focussed on software reuse, SCM, and maintenance, emphasising the need for an

integrated approach of these three fields.

2.1 Software Reuse

2.1.1 Introduction

The software community has placed a great deal of emphasis on productivity, short

ening lead t ime, and on product and process quality. In general, software reuse has

been defined as the use of a given piece of software in the solution of more than

one problem. Software reuse has been developed as a new paradigm in the field of

software engineering since Mcll roy proposed the idea of a software component cata

logue f r o m which software assets could be assembled in 1967 [82]. However, ad-hoc

software reuse has usually been practised by individuals and small groups in many

organisations. In recent years, i t has been realised that the genuine benefits of reuse

can only be achieved through systematic reuse, which is domain focused and sup

ported by process assessment and improvement. Since 1991, software reuse has been

investigated in large projects, such as REBOOT (REuse Based on Object-Oriented

Techniques), SER (Software Evolution and Reuse) and RECYCLE (Application

understanding and structural analysis tools) [16 .

Software reuse w i l l be one of the major sources of saving software development

cost and increasing software quality over the next 15-20 years. By reusing reusable

components that have already been developed, an organisation enhances its possi

bilities to improve both the productivity and the quality of the produced software.

We can expect the main benefits f rom reuse in terms of software quality, productiv

ity, economic return, and lead time (i.e., time-to-market). Several successful reuse

experiences have been reported in [71], [75], [81], [90].

The more times a component is reused, the more defects are detected, resulting

in higher quality. I n addition, i f the reusable components are already documented

and tested, the new product to be produced using these components requires less

work, leading to the enhancement of productivity. Reuse can also improve a prod

uct's maintainabil i ty and reliability, thereby reducing maintenance labour costs. To

10

estimate the costs and benefits of reuse, Hewlett-Packard (HP) has developed an

economic analysis method which has been applied to multiple reuse programmes in

the organisation [75]. Lead t ime is possibly the most important factor in today's

rapidly changing technological environment. The marketing lifetime of a product

is steadily decreasing, and requests for rapid changes and extensions to products

are increasing. Developing new products by combining available components, i.e.

'Development w i t h Reuse (DwR) ' , is a way to reduce time-to-market [63].

This section is organised as follows. In Section 2.1.2, the development of reuse

is summarised, ranging f r o m the in i t ia l use of algorithms, reusable code and pack

ages through REusable Object (REO) to Reusable Software Engineering (RSE).

Section 2.1.3 discusses some of the current reuse models and their activities, 'De

velopment w i t h Reuse' based on 'black box' reuse and 'white box' reuse, and the

Reuse Capabihty Model (RCM) . A reusable software library, and a software inter

connection model and system modelling language are described in Sections 2.1.4

and 2.1.5, respectively. A reuse library is required to classify, store, and retrieve

reusable components. A system modelling language is used for composing a system

f r o m reusable components. Finally, Section 2.1.6 presents the relationship between

software reuse and maintenance.

2.1.2 Evolution of Software Reuse

Reuse has existed f r o m the beginning of software development through the pub

lication of algorithms, the use of high-level programming languages, and the use

of packages. Reuse through the publication of algorithms and designs led to the

development of computing as an academic discipline. In high-level programming

languages, a set of frequently used instructions at the assembly level has been pack

aged into single constructs at the higher level, which can be used as the form of a

notation in order to build a software system. The usefulness of packages depends on

some flexibility that can be provided by simple parameterisation or the modification

11

of sources [102, 49].

I n the late 70s, Mcllroy's idea was applied in a l imited domain by Lanergan and

Poynton w i t h excellent results [72]. They identified and classified a lot of code and

standard structures that could be used in many of their applications. The ini t ia l

type of reuse described above was focussed on the reuse of code. However, i f we

only stick to the reuse of code, we can not gain all the benefits f rom reuse. Reusable

components can include requirement specifications, designs, test plans, test cases,

quality assurance checklists, or even the skills and experience of people, as well as

program code.

Freeman [42] presented a view called Reusable Software Engineering (RSE) which

underlies and motivates our interest in the reuse of all information generated in the

course of development. The reuse of program code alone has almost no value. I t

is entirely inconsistent to urge developers to put more effort into the analysis and

design activities and not attempt to reuse the information generated there. He de

scribed a 5 level hierarchy of types of information that software developers typically

need. The levels of reusable information provide a useful set of abstractions that aid

our understanding. The types of information are explained as follows. Code frag

ments like executable code are often viewed as the primary product of the program

mer and their effective reuse is one of the oldest objectives of software technology.

The level of logical structures includes modules, data collections and the relation

ships between them (calling, parameter passing, inclusion). The level of functional

architectures is related to the external design of a system. This level of information

is normally a specification of functions (eg., mathematical subroutine packages and

specific packages such as SPSS) and data objects. The level of external knowledge

consists of application-area knowledge (scientific laws, mathematical systems, and

rules of accounting) and development knowledge (life-cycle models, work-product

definitions, test plans, and quahty assurance checklists). Finally, environment-level

information, the highest level of information, consists of utilisation knowledge and

technology-transfer knowledge [42 .

12

I n the Practitioner project, Boldyreff et al. [13] stated their own particular ap

proach to software reuse: the reuse of concepts rather than code, working wi th

existing software rather than prescribing practices which wi l l lead to the develop

ment of new software which is reusable. Their work focused on extracting design

concepts f r o m existing code and was successful wi th in a l imited domain.

To encompass all of software engineering products, ideas, methods, and princi

ples and to avoid the term software component which is more specific, we call any

tangible fo rm of organisational knowledge which can be reused a REO (REusable

Object) [117 .

2.1.3 Reuse Process

I n order to make reuse viable and effective, an organisation needs to set up a process

of software reuse. Although there are many reuse models, only some of the models

are described and discussed below.

Hal l [50] proposes that the process of reuse consists of component engineering (i.e.,

reverse engineering and Design for Reuse), Design with Reuse, a component library,

and domain analysis. Domain analysis helps us identify suitable components, and

structure the component library to aid retrieval.

Hal l and Boldyreff [48] state that the reuse process consists of two quite separate

phases, i.e., a building-up activity (Design for Reuse and Reverse Engineering) where

reusable software is identified, classified and brought together into a library, and a

design activity (Design with Reuse) where reusable software is retrieved and selected

f r o m the library according to system requirements and reused in building a new

system. They also argue that for effective reuse, there is a need to integrate reuse

w i t h the tradit ional life-cycle of software development. They present one example

of the integration of reuse wi th the traditional life cycle of software development.

Hooper and Chester [57] describe the process for reusing available reusable com-

13

ponents as follows: classifying and storing components, locating components that

fit specific needs, understanding retrieved components, adapting components where

necessary, and integrating components into a system.

Basili [3] treated maintenance as reuse-oriented software development and argued

that "there are many reuse models, but the key issue is which process model is

best suited to the maintenance problem at hand". He presented three maintenance

process models: a quick-fix model, an iterative-enhancement model, and a full-reuse

model. The models are reuse-oriented because all these models reuse the old system.

The iterative-enhancement model supports reuse orientation more explicitly. The

full-reuse process model reuses the appropriate requirements, design, and code f rom

any earlier versions of the old system. Therefore, this model can be used as a reuse

model for 'black box' reuse. In addition, Basili defined a reuse process as identifying

the reusable components, understanding them, modifying them, and integrating them

into the process.

Since Basili's full-reuse model starts wi th the requirements for the new system,

reusing as much of the old system as feasible, and builds a new system using doc

uments and components f rom the old system and f rom other systems available in

the repository, the model presents reuse at higher levels of abstraction as well as the

code level.

To develop software w i t h reusable components, Hall and Boldyreff [48] identify

two types of solution: finding a single component which w i l l fu l ly meet our require

ments using the retrieval mechanisms, and finding some combinations of several

components which could satisfy the requirements.

I n summary, comparing the above reuse models, only Basili's reuse model consid

ers the perspective of maintenance in software reuse. The drawback of the model is

that i t does not identify the activities of each phase. Hooper and Chester's model

describes detailed activities of the reuse process together wi th two case studies. Hall

and Boldyreff 's model consists of identifying software for the reuse library, storing

14

and retrieving reusable software, and designing a new system wi th reusable software.

The model includes 'Design for Reuse (D f R) ' as well as 'Design wi th Reuse (DwR) ' .

The process of reuse must be integrated into the overall development life cycle and

maintenance model so that developers and maintainers can know the steps where

they incorporate reuse. In addition, the incorporation of reuse into the life-cycle

helps an organisation to accomphsh systematic reuse.

I n the next section, DwR w i l l be described in terms of 'black box' reuse and

'white box' reuse as this research is focussed on 'Development wi th Reuse', not

'Development for Reuse'. In addition, a good starting point for undertaking reuse

is to assess the matur i ty level of organisational reuse wi th respect to the Reuse

Capabili ty Model (R C M) . The result of the assessment can be used for establishing

the process of reuse applicable to each organisation. In the following section, R C M

w i l l also be described.

Development wi th Reuse (D w R)

Although the process of reuse consists of 'Development for Reuse (D f R) ' and 'De

velopment w i th Reuse (DwR) ' , this section investigates 'Development wi th Reuse

(D w R) ' because this research is concerned wi th Software Configuration Management

(SCM) for a reuse l ibrary which supports a legacy system. The definition of 'Devel

opment w i t h Reuse (DwR) ' and methods required for successful DwR are described

in this section. D w R is supported by 'black box' reuse and 'white box' reuse. Since

there exist many synonyms concerning 'black box' reuse and 'white box' reuse, all

synonyms including 'black box' reuse and 'white box' reuse are presented below.

'Design with Reuse (DwR)'h.a,s to do wi th finding the right components and

glueing them together properly, whereas 'Design for Reuse (DfR)'is responsible for

making components which are readily retrievable (ie. describable) and easily glued

together without much additional effort [15]. The term 'Design with Reuse' has the

same meaning as 'Development wi th Reuse' and the term 'Design for Reuse' is equal

15

to 'Development for Reuse'.

I n 'black box' reuse, a component is reused on an "as-it-is" basis, whereas in the

case of 'white box' reuse, i t should be modified before reuse. There is a useful dis

t inct ion to be made between 'industrial reuse' and 'research reuse'. These are 'long

term reuse' and 'short term reuse', respectively, and there is a real difference be

tween them. ' Industrial reuse' is equal to 'black box' reuse and 'research/exploratory

programming reuse' is equal to 'white box' reuse [11 .

Buckley [19] classifies reusable software into two variants. First, the software

in the library itself can be rigidly controlled, particularly as i t increases in value

(fu l ly tested, fu l l y documented). In such cases, changes are formally proposed to a

company configuration control board (CCB) and, when approved, all users (reusers)

of that software are so notified. In a second variant, reusable software f rom a

company library is provided on an "as-is" basis to any project requesting i t . This is

similar to software provided by a user group. Further modification and/or control of

such software for use in a particular project is then delegated to the specific project

using the software. I f the modifications may be of use to another project, the revised

software may also be placed in the company library.

Buckley's view is not very different in concept f rom 'white box' and 'black box'

reuse. As he viewed software reuse in terms of Software Configuration Management

(SCM) he stated that changes related to 'white box' reuse should be controlled by the

CCB. The possibility of mult iple versions in the reuse library was presented. Even i f

'black box' reuse does not need to modify code, a library maintainer may modify the

reusable component over t ime. Therefore, wi th respect to reusable software, change

needs to be controlled in two respects, i.e., 'white box' reuse and 'black box' reuse.

In addition, there exists the distinction between 'total reiise'and 'partial reuse'.

In the first case, a component is reused on an "as-it-is" basis, whereas in the second

case, i t may be subject to modifications. For this latter case. Design for Reuse (DfR)

would also encompass "Design for Modifiability" [15]. 'Total reuse' and 'partial

16

reuse' can be mapped on to 'black box' reuse and 'white box' reuse, respectively.

There might be 'gray box' [15] reuse between 'white box' reuse and 'black box'

reuse, where i t allows a few changes to reusable software components, e.g., renaming

variables and changing parameters. Thus, whatever the type of reuse is, change

control is required for changes to reusable components.

I n order to be able to develop or design software using reusable components, there

is a need to provide methods and support for the following: [11

1. a software life-cycle incorporating reuse;

2. methods for adaptation and interconnection of reusable components;

3. support for checking the correct interfaces and coherence of composite systems;

4. a reuse economic model for estimating costs and benefits of reuse;

5. an information service centre about the reusable components, i.e. resources;

6. version/change and development histories— software component log books;

7. a means of capturing development histories that can be reused;

8. a means of identifying relationships between existing components.

Of all the methods and support identified above, most of the methods i.e., 1),

2), 3), 6), 7) and 8) can be mapped on to the issues of Software Configuration

Management (SCM).

The selection of a suitable reuse method f rom the two methods (e.g. 'white box'

reuse and 'black box' reuse) for 'Development wi th Reuse' should be decided by the

Reuse Capability Model (RCM) [32] and the Software Engineering Institutes (SEI) '

CapabiUty Matu r i ty Model (C M M) [84]; the former is described in the next section.

The objective of the R C M is to assess the current level of matur i ty in software reuse

and provide suggestions for a stepwise improvement. When an organisation first

17

introduces reuse, i t has to assess its development process or maintenance process

w i t h respect to the SEI's C M M in order to build up the most apphcable reuse model.

T h e Reuse Capabi l i ty Mode l (R C M)

A reuse capability model provides users wi th a basis for understanding and improv

ing an organisation's reuse capability. Reuse capability means the range of reuse

results which an organisation can expect after reuse adoption.

Paulk, Curtis et al. [84] state that a capability model is a guide for selecting

improvement strategies by determining current capabilities and identifying the issues

most crit ical to improvement. A Reuse Capability Model (RCM) is a self-assessment

and planning guide for improving an organisation's reuse capability which adheres

to these concepts of technology adoption and improvement. Prieto-Diaz [91] argues

that the problem is not the lack of technology for reuse. The problem arises when

organisations implement a reuse programme using an independent collection of tools

and techniques, or when an organisation focusses on the technical issues of reuse

without adequately addressing the managerial issues. Blyskal and Hofkin [10] and

K o l t u n and Hudson [66] have made in i t ia l attempts at reuse matur i ty models. Since

reuse is performed in the context of a software development process, concepts f rom

the SEI's C M M [84], have also been worked into the R C M where appropriate.

I n this section, firstly, the reuse adoption process is explained in order to present

how an organisation identifies its objectives for the reuse programme, assesses the

current situation, selects' a reuse adoption strategy and implements a reuse pro

gramme. Secondly, two components of the R C M are described such as an assess

ment model and an implementation model. Finally, two possible cases for reuse

capability, i.e., a low reuse capability and a high reuse capabihty are addressed in

terms of reuse proficiency, efficiency, and effectiveness.

18

T h e R e u s e Adopt ion Process Davis' [32] reuse adoption process is based on

the implementation model defined in Prieto-Diaz [91]. The reuse adoption process

includes the following activities:

• Ini t iate Reuse Programme Development. This activity includes the iden

t if icat ion of organisation objectives and reuse opportunities.

• Def ine a Reuse Programme This includes the definition of objectives for

the reuse program, assessing the current situation wi th respect to reuse, set

t ing reuse adoption goals, identification of constraints, and identification of

alternative reuse adoption strategies.

• A n a l y s e Reuse Adoption Strategies. This includes the assessment of risks

associated w i t h each alternative strategy. The purpose of this activity is to

refine, evaluate, and select a reuse adoption strategy for implementing a reuse

programme,

• Develop a Reuse Act ion P l a n This includes the identification of the tasks,

resources, and schedule for implementing the reuse programme according to

the selected reuse adoption strategy.

• Implement and Monitor a Reuse Programme This includes monitoring

progress against the plan and making any necessary adjustments. The R C M is

used in the 'Define a Reuse Programme' activity as a means for the assessment

of the current situation and in setting reuse adoption goals.

Components of the R C M Przybylinski, Fowler et al. [92] argue that to success

f u l l y adopt a new technology, the organisation must understand its present state of

practice, be able to identify the desired state of practice, and develop a strategy that

w i l l successfully move the organisation toward the desired state. The R C M has two

components: an assessment model and an implementation model. The assessment

model consists of a set of critical success factors, defined in terms of goals, which

19

are used by an organisation to assess the present state of their reuse practice. Once

an organisation completes the assessment, i t selects the desired state and develops

a strategy, which can be a very complex task. The implementation model helps

organisations i n prioritising the critical success factors by partit ioning them into a

set of stages [32 .

R e u s e Capabi l i ty Davis defines 'reuse capability' as the range of expected re

sults i n 'reuse proficiency', 'efficiency', and 'effectiveness' that can be achieved by

an organisation's process. There are two possible cases for reuse capability: one re

sulting i n a low reuse capability, the other in a high reuse capability. The low reuse

capability case is characteristic of an ad hoc approach to reuse where the potential

opportunities are not identified. This case results in a low reuse efficiency, profi

ciency and effectiveness. The second case is characteristic of systematic reuse [118

where the organisation identifies its potential opportunities, ensures the target set of

opportunities falls w i th in the potential, and has a process which ensures the target

is met. Davis stresses that the aim of the model is to assist an organisation so that

i t can achieve the type of results of the high reuse capability case to be able to gain

more 'reuse proficiency', consistently meet reuse targets 'efficiency', and maximise

the payoff f r o m 'reuse effectiveness' [32].

I n conclusion, before an organisation applies software reuse to a software develop

ment or maintenance process, i t needs to identify the level of reuse capability. Then

an organisation can choose a suitable method f rom the two methods (e.g. 'white

box' reuse and 'black box' reuse). A n organisation that has already standardised

the process of software development and has a high reuse capability, can start wi th

'black box' reuse. On the contrary, some organisations where the degree of stan

dardisation of the software development process is st i l l low and which have a low

reuse capability, may practise 'white box' reuse first and then can introduce 'black

box' reuse when they reach the mature level of reuse capability.

20

2.1.4 Reusable Software Library

Although there have been simple collections of reusable components and small reuse

l ibrary systems over the last decade, several large reuse libraries have been produced

recently and are now available via the World Wide Web (W W W) . These libraries are

usually funded by large organisations such as DoD, NASA, ESPRIT and universities

and access is free. The libraries are described below, and a comparison of these

libraries is made in the next chapter.

A d a B a s i s AdaBasis [103] is a repository of free Ada Software that is constructed

in an easy-to-use way and allows flexible access and effective searching. The soft

ware in this repository is based mainly on the "PAL (Public Ada Library)" and is

s t i l l growing. I t is presented in a hierarchical manner and separated into different

application domains. I t also has a searching facil i ty for some domains.

E L S A ELS A (Electronic Library Services & Apphcations) [114] that has recently

been renamed "Software Market", is a NASA funded service provided by Moun-

tainNet, providing access to a large selection of high quality software examined for

integrity and compatibility. The ELSA project has focussed on introducing and

supporting common, effective approaches to designing, building, and maintaining

software systems by using existing software assets stored in a specialised library or

repository. ELSA provides a customer-driven environment employing an advanced

l ibrary management mechanism, M O R E (Multimedia Oriented Repository Environ

ment) .

A S S E T ASSET (Asset Source for Software Engineering Technology) [95] is spon

sored by the Advanced Research Projects Agency (ARPA) organised under the

STARS (http://www.stars.ballston.unisysgsg.com/index.html) programme. The AS

SET Reuse Library serves as a national resource for the advancement of software

reuse across the Department of Defence (DoD). ASSET's mission is to provide a

21

ing. I n particular, RSE (Reusable Software Engineering) requires more reliable and

reusable software components to be produced through the process of system mod

elling. I n terms of software reuse, the activity of system modeUing is associated

w i t h one of the activities of a 'Development wi th Reuse (DwR) ' process as the DwR

process includes an activi ty of building a new system using reusable components.

The Jasmine system [78] is one of the first systems to explicitly use system models

for the representation of system structure. Marzullo and Wiebe [78] proposed that

four categories of information should be included in a system model: relations be

tween system components, version information, construction rules for system build

ing, and verification rules.

There exist different approaches to system modelling. Perry [86] classifies Soft

ware Interconnection Models into three classes, i.e., the Unit/Basic Interconnection

Model, the Syntactic/Structural Interconnection Model and the Semantic Intercon

nection Model. The Basic Interconnection Model represents the relationship between

modules or files of a system. 'Make' that has been widely used on the Unix system

is an example of this model.

This section describes and compares most of the Module Interconnection Lan

guages (MILs) that are used for Syntactic Interconnection Modelling, and the Com

ponent Description Languages that support Semantic Interconnection Modelling.

Syntact i c Interconnection Mode l

This interconnection model specifies the structure of a system, not the behaviour

of a system. Module Interconnection Languages (MILs) such as MIL75, Thomas'

MIL, Cooprider's MIL, INTERCOL, SySL and PCL are examples of this type of

model. MILs are essential tools in the development of large software systems. Cur

rent software development practice follows the principle of the recursive decompo

sition of larger problems that can be grasped, understood, and handled effectively

by independent development teams. Af ter designing and coding their respective

23

subsystems successfully, teams are faced wi th more difficult issues; how to integrate

independently developed subsystems or modules into the originally planned com

plete system. MILs provide formal grammar constructs for describing the whole

structure of a system and for deciding the various module interconnection specifi

cations required for its complete integration. While the major benefits of a M I L

may seem to be during the system design phase of the software life-cycle, the actual

benefits are during system integration, evolution and maintenance. This is because

the system specification described by the M I L is a wri t ten description of the system

design which must be followed for every system version that is buil t [89 .

The modelling of software architectures using the first Module Interconnection

Language (M I L) , MIL75, was introduced in 1976 by DeRemer and Kron [33] for

'programming-in-the-large (PIL) '. Subsequently MILs have found importance in soft

ware reuse, as a means of interconnecting components. After a system structure is

specified, i t may be coded using a M I L to be checked and verified for completeness

and consistencies. M I L code should be maintained during implementation and then

used for high-level maintenance during system operation and evolution [89]. The

following paragraphs outHne the four MILs , i.e., MIL75, Thomas' M I L , Cooprider's

M I L and I N T E R C O L , and more improved Syntactic Interconnection Languages such

as SySL and PCL in chronological order.

M I L 7 5 MIL75 [33] is based on the decomposition principle fundamental to struc

tured design and represents a system in the form of an inverted tree structure.

MIL75 consists of three sets of items that are required to describe the structure of

a system:

1. Resources: Atomic elements that represent abstractions of programming con

structs wi th in a program and are available for reference to other modules (e.g.,

variables, types, arrays, functions, etc.).

24

2. Modules: Programming units made by resources and other programming con

structs that perform a specified function or task.

3. Systems: Groups of hierarchically organised modules that communicate via

resources to perform defined functions.

The main contribution of MIL75 is in providing the designer wi th some means

of finding incorrect design decisions before implementation begins. The rigidity

of MIL75 is its drawback, caused by its attachment to the inverted tree structure.

Another weakness of MIL75 is its lack of support for the 'specification of the function

of the modules' [89 .

T h o m a s ' M I L Thomas' M I L [104] was proposed to enhance flexibility of module

interconnection and to reduce constraints to a particular system structure that exist

in MIL75 . The "universe of discourse" of Thomas's M I L is names that are classified

into four classes: Resources, Modules, Nodes, and Subsystems. The definitions of

resources and modules are almost identical to the ones given in MIL75.

Nodes are descriptive units (in M I L code) that construct environments for the

modules by combining resources wi th modules. Nodes are the basic entity for

'programming-in-the-large (P IL) ' .

Subsys tems are graphs(directed) of nodes and the edges connecting them wi th one

node (the 'distinguished node') providing a characterisation of the subsystem.

The pay-off of Thomas' M I L accrues during maintenance when individual modules

can be added without requiring f u l l recompilation of the system. The drawback of

Thomas' M I L is the binding of the interconnection to the compile/hnk paradigm.

Thomas' M I L was only a discussion of a possible M I L processor and it was not

implemented. However, his work is valuable as i t provided some basic proofs on

M I L structures and proposed some ideas for future MILs [89 .

25

Coopr ider ' s M I L The objective of Cooprider's M I L [27] is to propose a system

that would bridge the gap between software design and software construction. He

developed a representation for software systems that integrates a M I L , a version

control facil i ty, and a software construction facility. This M I L provides three levels

of notation. The highest most abstract level specifies the interconnection between

subsystems or modules. The intermediate level presents instantiations of system

versions according to the structures of interconnection. The lowest most concrete

level describes operations for actual system construction.

I n comparison wi th the two previous MILs, Cooprider's M I L can be regarded

as an extended M I L that supports system construction as well as system design.

The weakness of the construction system is that the database has no information

on the various versions. Several parts of this M I L have been implemented and the

implemented components have been tested in a laboratory environment [89 .

I N T E R C O L I N T E R C O L [106] introduces a new approach to the representation

of modules in the system, since its description is a sequence of module and system

families followed by a set of compositions. A member of a module family is a version

of a module and a member of a system family is a version of a system. Tichy's work

at the software development environment level has three objectives:

1. A Module Interconnection Language for representing multiple versions and

configurations wr i t ten in several programming languages.

2. An Interface Control System that automatically checks interface consistency

between separately developed software components.

3. A Version Control System similar to the version control system of Cooprider's

M I L but w i t h the advantage that the system decides which version of which

component should be used to fo rm a particular version of a particular config

uration without relying on a detailed set of construction commands given by

the designer as in Cooprider's M I L .

26

I N T E R C O L ' s increase in the detail of the interface description is needed for more

effective type checking but i t forces the system developer into premature decisions

about module implementation. I N T E R C O L is embedded in a Software Development

Control Facility (SDCF) which is an interactive system that controls a database for

software development. The payoff of Tichy's SDCF occurs in controlling the evolu

tionary process of a software system. The approach of system design by 'evolving

prototypes' would be the ideal approach to use i n this SDCF [89].

MILs were designed to specify not the behaviour of a system but the structure

of a system. DeRemer and Kron stated that a M I L did not support functional

descriptions of software components. In terms of software reuse, this characteristic

of the M I L is a k ind of weak point since the functional description of a module is

very important for software reuse.

S y S L The SySL (System Structure Language) system [105] was used as the basis

for an Esprit research project called SESE. The aim of the project is to integrate

both process management and configuration management wi th SySL. SySL allows

developers to document the components that make up the system, record the re

lationships between the different versions of these components and automatically

generate the bui ld files necessary to create a version of the system.

SySL provides a notation for modelling all associated information about a system,

including software, hardware and documentation. Therefore, the objective of SySL

is to generalise the notation and allow the structure of all types of systems which

can be represented in a database system to be described in the language. SySL

provides the following basic features:

• SySL provides facilities for describing systems or families of systems at various

levels of detail and abstraction.

• SySL provides facilities for put t ing constraints on particular combinations of

items and i tem attributes.

27

• The language allows the description of any structured system whether i t is

hardware, software, documentation, etc.

P C L Sommerville and Dean [101] describe a configuration language called PCL

(Proteus Configuration Language) which has been designed to represent the archi

tecture of mult iple versions of evolving systems. The features of PCL include the

modelling of variability between the different versions of a system, support for object-

oriented models, support for specifying relationships between different parts of the

model, and version identification and binding through attributes. The objective of

PCL was to develop a means of representing the architecture of all the different sys

tem versions in a single model. Af ter studying several different application domains,

they identified several requirements for an ideal configuration language as follows:

1. Integrated system modelling. The language for the architectural modelling

should model all information about software, hardware and documentation

structures.

2. Multiple structural views. The language must provide different structural views

of an entity and system to be buil t such as an interface view, an entity view,

a system view and a component view.

3. Variability expression. The language must provide facilities to represent dif

ferent versions of a system and to show clearly the difference between versions.

4. Object-Oriented modelling. The language must support object-oriented mod

elling in order to develop object-oriented extensions to existing design meth

ods.

5. User tailorability. The language must be extensible so that i t can be tailored

to interface easily wi th other design methods.

Sommerville and Dean [101] compared PCL wi th other module interconnection

languages w i t h respect to the requirements described above. Their comparison shows

28

that PCL is the best Module Interconnection Language, whereas SySL is relatively

better than the other MILs , i.e., MIL75, Thomas' M I L , Cooprider's M I L , INTER

COL and N u M I L [96]. In order to model hardware, software and documentation

entities and the relationships between them at different levels of abstraction, they

established 6 basic types of entity which PCL should include: family entities, ver

sion descriptor entities, tool entities, classification definitions, relation definitions,

and attributes type definitions.

S u m m a r y To summarise, MIL75 was the first M I L and a language for PIL . I t

established the basic ideas and concepts of a M I L . Thomas developed a module in

terconnection notation and discussed a possible module interconnection processor.

Cooprider expanded the basic ideas of MIL75 to introduce a version control facil i ty

and a software control facility. Tichy developed I N T E R C O L that integrates some

of Cooprider's features wi th control of system families, and with independent com

pilat ion of modules and type checking. SySL allows developers to document and

record the components of the system and the interrelationships between them. F i

nally, PCL represents the architecture of multiple versions of evolving systems and

supports the modelling of variability between the versions of a system.

Semant ic Interconnection Model: Component Descript ion Languages

Semantic Interconnection Modelling is supported by a Component Description Lan

guage. A Component Description Language is a structured language used to capture

the essential attributes of components in a specific domain. Perry [86] classifies In-

scape [86, 87] and L I L [45] as examples of a Semantic Interconnection Model. This

model defined by Perry is closely related to two reusable component models, the 3C

model [109, 110] and the R E B O O T component model [64]. The 3C model uses a

prescriptive approach to component modelling that defines the attributes of a com

ponent that Component Description Languages for reuse should represent, whereas

the R E B O O T model describes components that have already been buil t and i t

29

can only be used i f a component fits wi th in the given framework of facets [121].

Thus, Component Description Languages implemented using the 3C model, such as

OBJ [44], L I L [45], RESOLVE [53, 52], etc. are described below.

O B J Languages Goguen [44, 46, 47] developed the OBJ series of languages that

support parameterised programming. Parameterised programming is a powerful

technique for software reuse. Modules through this technique are parameterised over

very general interfaces that describe what properties of an environment are required

for the module to work correctly. The objective of parameterised programming is

to maximise program reuse by storing programs in as general a form as possible. A

reuser can bui ld a new program module f rom an old one just by instantiating one or

more parameters. The OBJ programming language consists of three basic building

blocks: theories which declare the properties of program modules and interfaces as a

whole; views which connect theories wi th program modules; and module expressions

which are a k ind of general structured program transformation that builds new

modules by modifying and combining existing modules. OBJ is supported by a

simple logical system that is equational logic; moreover, these high level descriptions

of what a program does actually are the program that a user can execute. Therefore,

OBJ is a "logic programming language" such as Prolog and LISP [44 .

L I L Goguen [45] presents a Library Interconnection Language (LIL) that extends

theories and views introduced in OBJ and features modest use of semantics in order

to assemble large programs f rom existing entities. He states that L I L consists of a

part like Ada's specification part, plus commands for interconnecting components

to f o r m systems. L I L syntax is similar to Ada, but this can be easily changed for

use w i t h other languages. The package is a basic L I L entity and generalises Ada's

specification part in two main ways: axioms can be used for the operations the

package declares; and the package may have (zero or more) versions, which are

packages that realize the behaviour i t describes. Therefore, L I L can support both

semantic specification and version control.

30

L I L encourages the reuse of code and programming experience by binding theo

ries to software components using views, generic entities and a distinction between

vertical and horizontal sofl;ware composition [121]. Theories integrate semantic de

scriptions w i t h software components by providing axioms, either formal or informal.

Views present semantically correct bindings at software interfaces and interconnec

tions. Horizontal composition involves imposing structure at a given level of ab

straction whereas vertical composition is associated wi th moving between different

levels of abstraction [45 .

C D L CDL [43] was developed as part of the Alvey Eclipse programme [14]. CDL

supports the functionalities to describe the interfaces of a reusable component. Like

other component description languages such as OBJ and L I L , CDL belongs to an

object-structured paradigm. CDL components consist of two parts: an interface that

describes the facilities exported by the component and its relationship wi th other

components; and a body which presents the implementation of the ideas expressed in

the interface. Both the interface and body use an Ada like syntax. CDL belongs to a

language of the design level, so its specification is transformed to the implementation

level [121 .

C I D E R C IDER [122, 14] is an object oriented component description language.

The properties for the component interface of CIDER are paramount and are com

posed of the interfaces of a data type and the interfaces for operations of that data

type. The language provides,a powerful syntax. A parameterisation mechanism is

flexible as i t supports inheritance, importation and instantiation. Component in

terface descriptions can be extended through the definition of operations for those

descriptions.

L I L E A N N A L I L E A N N A (L I L Extended wi th Anna:Annotated Ada) is a lan

guage for formally specifying and generating Ada packages [111, 112]. This combines

31

the facihties of Goguen's L I L and those of A N N A [77, 76]. L I L E A N N A extends Ada

by introducing LIL's two entities: theories and views, and enhancing the Ada pack

age specification. Using semantics specified formally or informally, a L I L E A N N A

package represents a template for actual Ada package specifications. I t is used as the

common base for families of implementations and for version control. As in OBJ,

L I L programs are structured both horizontally and vertically using inheritance and

aggregation. Inheritance is used to express relationships between content and con

cept that consist of code and type information. The payoff of L I L E A N N A is the

abi l i ty to instantiate and manipulate existing packages [121]. Another benefit is its

applicability to support a "megaprogramming" software development paradigm.

R E S O L V E RESOLVE (REusable Software Language wi th Verifiability and Eff i

ciency) [53, 52] is pr imari ly a research vehicle that has allowed users to understand

better how to synthesise and formally express many important ideas about software

components. I t has been used to build software components and applications in 'real'

languages such as Ada and C-|--|-. RESOLVE has the following three meanings:

• a conceptual framework to guide thinking about a component-based approach

to system development;

• a specific langiiage to provide an easy description of components and systems

wi th in that framework; and

• a general discipline for using the language to design high-quality software

components and systems [119 .

RESOLVE uses a mathematical model based on a formal specification approach.

This language enables a designer: to model a component's types using existing

theories; to provide pre- and post-conditions for the operations of components; to

define the conventions to be used for the component's implementation; and to specify

the correspondence between the model and implementation [121]. RESOLVE can be

32

used stand-alone, and also subsequently translated into implementation languages

such as C-f-I- or Ada [98^.

Conclus ions

In conclusion, SySL is relatively better than other traditional MILs as this language

can support the modelling of software, hardware and documentation. SySL is stil l

an experimental system as i t was not applied in an industrial environment. PCL

can be considered the best Module Interconnection Language wi th respect to several

reciuireihents for an ideal configuration language as shown in Section 2.1.5. How

ever, MILs have a weak point in that they do not support a functional description

of a module, which is very important for software reuse. For this reason. Compo

nent Description Languages (e.g., OBJs, L I L and RESOLVE) are more suitable for

constructing a system using reusable components because they can support Seman

tic Interconnection Modelling which specifies both the behaviour and structure of

a system. Of Component Description Languages, RESOLVE has more strengths

than other Ada based languages such as OBJ, L I L , L I L E A N N A and CDL as i t can

be used stand-alone and subsequently translated into implementation languages like

C++ or Ada. In addition, RESOLVE is based heavily on Goguen's OBJ and L I L ,

as well as MILs .

2.1.6 Relationship between Software Reuse and Maintenance

Hall and Boldyreff [48] argue that to view maintenance as reuse is a misuse of the

te rm and that this view is unhelpful. However, they state that some of the practices

(i.e., modulari ty and consistency) and mechanisms (i.e., flexible module connection

methods and the abil i ty to regression test) necessary to support maintenance are

also necessary to support reuse.

Basili [3] treats maintenance as a reuse-oriented development process. He presents

33

three maintenance process models: the quick-fix model, the iterative-enhancement

model, and the full-reuse model. A full-reuse process model starts wi th the require

ments analysis and design of the new system and reuses the appropriate require

ments, design, and code f rom the old system. A full-reuse process model can be

related to 'black box' reuse as this model reuses specifications as well as software

code. Thus, Basili's full-reuse model is most appropriate to a maintenance model

for an organisation that has a high reuse capability in terms of reuse proficiency,

efficiency and effectiveness.

To successfully introduce reuse into the software development process, we should

integrate the reuse library into existing software tools and CASE environments [79 .

In addition, the process of reuse must be an integrated part of a maintenance envi

ronment so that reusers and maintainers can perform systematic reuse and enhance

the effectiveness of reuse. Thus, a maintenance model must incorporate the activities

of the reuse process in the stages of the maintenance model.

Software maintenance, and particularly re-engineering, are concerned wi th soft

ware reuse. The Object-Oriented Technique (OOT) that supports 'Design for Reuse

(D f R) ' can create maintainable, reusable specifications and code. Although legacy

systems were not developed using an Object-Oriented method, they might contain

potentially reusable components. Re-engineering technology enables a maintainer to

create/extract reusable assets f rom existing system components, thereby enhancing

the product ivi ty and quality of software maintenance. Maintenance and reuse are

very cooperative wi th each other as re-engineering/reverse engineering can produce

reusable components using an existing system, and reuse can support a mainte

nance process through the reuse process based on 'Design for Reuse (D f R) ' and

'Design/Development w i th Reuse (DwR) ' .

34

2.2 Software Configuration Management (SCM)

2.2.1 Introduction

Bersoff [8] argues that Software Configuration Management (SCM) is one of the

disciplines, w i t h both management and technical dimensions, employed to attain and

maintain product integrity. He identified the "supporting" disciplines and "doing"

disciplines as requisite disciplines for attaining and maintaining product integrity,

and viewed SCM as the "supporting disciphne/the product insurance disciphne"

such as Quality Assurance, Verification and Validation, and Test and Evaluation.

Babich [2] states that the technique of coordinating software development is re

quired to minimise the degree of confusion on any team project and that SCM is

the method for identifying, organising, and controlling modifications to the software

being bui l t by a programming team, in order to maximise productivity by min

imising mistakes. He presents three typical problems that serve as examples of the

need for SCM: the double maintenance problem; the shared data problem; and the

simultaneous update problem.

Buckle [18] defines SCM as a collection of techniques that improve the quality

of the software product, reduce its life-cycle costs, and improve the management

funct ion for the development process. He presents four basic concepts of SCM as

follows: identification, control, status accounting and verification. IEEE standard

729-1983 [61] defines SCM as four classic operational aspects: identification, control,

status accounting, and audit and review.

Comparing w i t h the first two views of SCM, Bersoff's view focusses on the manage

ria l aspect of SCM, whose aim is to enhance product integrity, i.e., software quality.

On the contrary, Babich's view concentrates on the technical aspect of SCM, whose

aim is to maximise team productivity through change control and version control.

SCM is a key element of the process of software maintenance as well as devel-

35

opment. SCM was not regarded as an important issue in the field of software

engineering un t i l the early 1980's, because the software community usually placed

higher emphasis on producing the product on t ime rather than on software quality.

They thought SCM was more related to managerial issues rather than technical is

sues. Thus, as SCM was considered the solution to management problems, i t was

not taken into account as a key issue by the software engineering community that

was looking for solutions focussed on technical problems.

Llowever, SCM has become a more well founded part of software engineering in

the last decade. For instance, SCM is an important component of several levels in

the software process matur i ty model [58]. In addition, SCM related standards have

been developed and improved by IEEE [61]. Commercial systems have introduced

new SCM concepts(functionahties). These new concepts that can be classified into

•standalone SCM tools, environment frameworks with SCM capabilities and CASE

tools with multi-user support, are steps beyond the in i t ia l check-out/check-in model.

In this section, firstly, the developments of SCM are described. Secondly, ma

jor activities and models of SCM are presented. Finally, automation of SCM is

addressed, followed by SCM problems wi th in a maintenance environment.

2.2.2 Evolution of Software Configuration IVIanagement

Dart [31] argues that the past and present situation concerning SCM systems should

be investigated in order to identify future SCM challenges. The past focused on in-

house SCM solutions whereas the present concentrates on any third-party SCM

solutions. The SCM future is associated wi th technological, process-oriented, pol i t i

cal, standardisation and managerial challenges. One way to address these challenges

is to define an SCM services model.

36

T h e Pas t

I n the past, along wi th a few automated facihties such as SCCS and Make, most

of the SCM sokitions involved manual procedures and policies. In general, the past

brought about a good understanding of version control, compiling code, tracking

and dealing w i t h bugs, and a realisation that simple version control was not the

complete solution to SCM needs.

T h e Present

The present is characterised by a better understanding of SCM technology, such

as the work performed by the Software Engineering Institute (SEI) at Carnegie

Mellon University and a recognition gained f rom practice and experience wi thin

the software engineering community. The SEI has identified process matur i ty levels

for an organisation and a few key practices central to carrying out SCM [84]. As

organisations begin to more formally define their process models and evaluate their

process matur i ty levels using the SEI process maturi ty levels, i t becomes clear that

SCM capabilities play a major part in attaining a higher process maturi ty level.

I n particular, after a survey of tools and environments. Dart extracted a set of 15

SCM concepts [30] that capture the essence of automated support for SCM. These

concepts are as follows: Repository, Distributed Component, Context Management,

Contract, Change Request, Life-cycle Model, Change Set, System Modelling, Subsys

tem, Object Pool, Attribution, Consistency Maintenance, Workspace, Transparent

View, and Transaction. Repository, Change Request, Change Set, System Mod

elling and Object Pool are explained in brief below as they are concerned wi th this

research.

R e p o s i t o r y captures SCM information and stores versions of files as frozen objects,

as in RCS [108].

C h a n g e Request assists in treating the process of change to configurations and

37

keeping an audit t ra i l of the changes, as in LIFESPAN [120].

C h a n g e Set addresses a logical change to a product and a means of creating any

version of a configuration that is not necessarily dependent on the latest version

of that configuration, as in A D C [1 .

S y s t e m Model l ing abstracts the notion of a configuration f rom an instance of

i t and by fu l ly describing the configuration, and assists in maintaining the

configuration's integrity, as in Jasmine [78].

O b j e c t Pool optimises the need to regenerate objects and maximises the amount

of sharing of derived objects, as in DSEE [73 .

These concepts also provide a base that enables people to discuss automated

SCM support. While many concepts are automated in SCM systems, no single

SCM system provides all the concepts to meet all kinds of users' needs [31 .

T h e F u t u r e

Technological Issues New requirements of SCM functionalities and better im

plementations of these requirements are needed for the future of SCM.

Process -Or iented Issues A n SCM process definition and automated support are

required to implement an SCM system. This issue requires a detailed definition of

SCM processes; an understanding of how much control wi l l be enforced compared to

how much guidance w i l l be given by the process manager; adequate implementations;

and monitoring of how well the process is followed and where improvements can be

made.

Manager ia l Issues To solve the SCM problems in an organisation, i t is necessary

to obtain better management support; that is, give management an understanding

38

of the complexity of the solution and hence the costs and tradeoffs. Management

must be prepared to make the "buy versus build" decision in examining possible

SCM solutions. Przybylinski et al. [92] suggests that i t is necessary to deal wi th the

technology transition issues of introducing SCM technology into an organisation,

such as convincing people to use SCM, after management evaluates SCM systems

and their capabilities as part of finding a solution.

Pol i t ica l Issues I t appears that future government contractors in the U.S. wi l l

be required to use certain SCM tools in order to make a contract. For instance, a

contractor would have to be a level 3 organisation, where that level is based on the

SEI's Capability Matur i ty Model.

Standardisat ion Issues SCM is being recognised as a key factor in environment

framework standards.

A n S C M Services Mode l

Dart [31] introduced an SCM services model as a way of starting to address some

of the above five issues for the SCM future. A n SCM services model is a conceptual

framework that builds a set of 'well-defined' services related to SCM functionali

ties. The services should be 'well-defined' so that their semantics, interfaces, and

other properties can be understood in order to be included in the framework model.

The services represent a combination of several viewpoints: end user, environment

builder and tool integrator. The end user chooses capabilities for the SCM system,

the environment builder provides tailoring features for the end user, and the tool

integrator needs to mix and match existing capabilities and devise an SCM solution

in a cost effective way.

SCM provides a good solution to the software engineering problem and i t should

not be viewed separately f rom other software engineering problems and solutions.

39

SCM capabilities are the groundwork of any software development environment.

Good SCM support makes for a good environment whereas bad SCM support makes

an environrnent unusable. A n SCM solution is a microcosm of all issues affecting an

environment, including technology transition, user requirements, roles, integration,

databases, SCM technology, process modelling, education and training of users, and

managerial and organisational decisions [31]. In this respect, SCM capabilities help

software reuse to be introduced into an organisation successfully. To be able to

implement systematic reuse, not ad-hoc reuse, an organisation should integrate soft

ware reuse w i t h a software development/maintenance environment that is supported

by SCM.

2.2.3 Software Configuration IManagement Activit ies

Bersoff [8] identified four basic activities of SCM as configuration identification, con

figuration control, configuration auditing and configuration status accounting. These

basic activities have been effectively used as a basis for extracting many functional

ities/concepts of SCM f r o m the process of software development.

Dart [30] states that SCM activities of the operational level for SCM systems

comprise manufacture, process management and team work as well as classical func

tionalities such as identification, control, status accounting, audit and review. Manu

facture manages the building of the product in a cost effective way. Process manage

ment ensures the conformity of the organisation's standards, policies and life-cycle

model. Team work controls the work and communication between multiple users on

a system. Some key operations associated wi th the above activities are described in

more detail in the sections that follow.

40

Identif icat ion

Bersoff [8, 6] defines SCM as the management discipline of identifying the proposed

or implemented configuration of a system at discrete points in t ime for purposes of

systematically controlling changes to this configuration and assuring the integrity,

accountability, visibil i ty, reproducibility, project coordination and traceability of

this configuration throughout the system life cycle. This definition shows that the

necessary first step in SCM is the identification of the software configuration at

discrete points in t ime.

I E E E standard 729-1983 [61] defines configuration identification as a scheme re

flecting the structure of the product, identifying components and their type, thereby

making them unique and accessible in some form. For instance, this addresses the

question, "What version of the file is this?"

The activi ty of identification enables the representation of a software system in a

way which explicit ly identifies the structures and components of the product, and

relationships between components. In addition, this enhances the visibil i ty of a

product and permits the software to be seen well by anyone who can access the

software, components. I t also improves traceabihty, i.e., the abihty to hnk Software

Configuration Items (SCIs) to each other. Ben-Menachem [6] presents the rules

governing the process of Software configuration identification (SCI) as follows:

1. SCI defines the 'granularity' of SCM. Granularity impHes the 'size of the grains'

to be managed using an SCM system.

2. SCI defines what needs to be seen by all those who have to ascertain the status

of the project.

3. SCI ensures that the chosen identification scheme reflects the structure of the

product, the project and the organisation.

4. The identification process should always proceed together wi th a process of

41

labelling the i tem wi th a unique label.

5. Note that the size of the 'grains' can never be consistent.

6. SCI is a critical SCM task.

Configurat ion Contro l

IEEE standard 729-1983 [61] defines configuration control as controlling the release

of a product and changes to i t throughout the life-cycle by having controls in place

that ensure consistent software via the estabhshment of the basehne of a product.

For example, this is concerned wi th the question, "What changes have been made

to the latest version of this product?"

This act ivi ty establishes the change control procedures to initiate, evaluate, ap

prove and implement changes to a baseline. Ben-Menachem [6] states that once an

i tem is tied into a baseline, changes are made only via a formalised process called

the CCB (Change Control Board). The CCB is the committee whose purpose is

the control of changes. I t always consists of at least the following: a representative

of users/client, a configuration manager, a project manager and an SQA (Software

Quali ty Assurance) manager. The roles of CCB are as follows: define the informa

t ion needs of the CCB; decide i f the change request should be implemented; monitor

the implementation of the change request; and verify the quality of new software

components produced by change requests. The first responsibility of the CCB is

analysis of incoming change requests. The CCB must analyse technically the imple-

mentabil i ty and desirability of the requested change. A disapproved change request

should be returned to the originator. Such returns wi l l be accompanied by sufficient

reasons for disapproval. In addition, the CCB is also responsible for release man

agement. The release of software and documentation should be controlled in order

to ensure that only the correct versions of all components are used.

Buckley [19] describes the configuration control process as follows: firstly, iden-

42

t i f y i n g the problem, secondly, determining the corrective action, and finally, imple

menting the change. Implementing configuration control of software requires the use

of a controlled repository, i.e., a configuration management library which controls

access and supports strict check-out and check-in procedures.

Change control documents are used to issue and record changes to baselined items

such as software and documents. The forms used for configuration control are a

Change Request(CR) Form, a Change Proposal Form/Engineering Change Proposal

(ECP), a Software Incident Report (SIR), a Change Approval Form, a Document

Tracking Form (DTP), a Software Change Notice (SCN), and a Software Patch

Form.

Status Account ing

IEEE standard 729-1983 [61] defines configuration status accounting as recording

and reporting the status of components and change requests, and collecting vi ta l

statistics about components in the product. For instance, this addresses the ques

t ion, "How many files were affected by fixing this one bug?" Thus, status accounting

aims at meeting the following questions: what happened?; when did i t happen?; why

were the changes made?; which items were affected; and who authorised and made

the changes?

W h i t g i f t [120] argues that the objective of configuration status accounting is to

enhance the visibi l i ty and traceability of Software Configuration Items (SCIs) by

recording and reporting the status of all items and change requests. Although dif

ferent people need different SCM information at different times and in different

forms, Ben-Menachem [6] presents a minimal wish list of reports as follows: trans

action log, change log, i tem 'delta' report, resource usage, stock status (i.e., status

of items), changes in progress, and deviations agreed upon.

43

Conf igurat ion Audi t s

I E E E standard 729-1983 [61] defines configuration audit as validating the complete

ness of a product and maintaining consistency between the components by ensuring

that the product is a well-defined collection of components. For example, this is

associated w i t h the question, "Are the correct versions of files used for this current

release?"

Ben-Menachem [6] states that configuration auditing is best performed by an ex

ternal auditor because a very high objectivity is required when auditing a critical

management funct ion. The more important the system is, the more this indepen

dence is crit ical . Of all SCM functions, change control always is the most important

th ing to audit.

Configuration auditing can be equally considered V & V (Verification and Valida

t ion) . Verification ensures that Software Configuration Items (SCIs) conform to the

specification of the baselines of previous phases. Validation involves checking that

SCIs specified in the baseline meets end user's requirements. Thus, an organisation

that has already performed V & V as a means of Software Quality Assurance (SQA),

can replace configuration auditing wi th the V & V activities.

The validation of maintenance includes regression testing, which ensures the ab

sence of unanticipated side-effects in other components which have not been mod

ified. I t also involves auditing whether software follows design principles, coding

standards and other quality standards [22 .

Vers ion Management

Clemn [24] describes version management as History Management that provides the

user w i t h information about the historical development of existing software compo

nents to help guide future development. History management is usually provided

in one of the following ways: internal annotations in the fo rm of comments in the

44

software component, textual log message attributes associated wi th a new version

when the version is completed, and special modification request objects associated

w i t h a new version when the version is initiated.

Version management requires efficient disk storage of the actual configuration

items, i.e., the archives. Ben-Menachem [6] classifies methods for delta storage

as forward delta and reverse delta storage. The method of forward delta storage

maintains a complete copy of the original file, as first provided to the configuration

manager. The delta information is appended to the file wi th every 'check-in' oper

ation. Every update(check-in) operation requires a creation of the latest revision in

order to generate deltas for a new revision. The major problem wi th this method is

that more revisions require more retrieval 'time. The method of reverse delta storage

stores a f u l l copy of the latest revision. The latest revision that is most often used

is always available without any creation process. As this method does not need any

computation, the process of check-in for a new revision is much faster. Thus, the

reverse delta storage method has been adopted by most tools for version control

because of its inherent efficiency.

During software development and maintenance, most of the Software Configura

t ion Items (SCIs) evolve unt i l they meet user's requirements. These changes of SCIs

create a new revision or a variant of the configuration i tem. The procedure to modify

a configuration i tem is to check out the i tem f rom the software library (repository),

change the i tem and then check the new version back into the library. Whi tg i f t [120

describes the differences between a revision, a variant and a version as follows:

R e v i s i o n A n instance of a module(item or workfile). One i tem version is a revision

of another i f i t was created by modifying the earlier version which i t supersedes.

Dur ing the maintenance phase of a project, revisions are needed to correct, perfect,

adapt and improve the software, as described in Section 2.3.1.

45

V a r i a n t A n alternate fo rm of a module. Variants allow one i tem to meet conflict

ing (i.e., different but related) requirements at the same time: temporary variants

allow parallel development and wi l l eventually be merged; permanent variants wiU

not be merged but enable the i tem to meet different functional requirements (e.g.,

various platforms, various user requirements and the particular requirements of test

ing and debugging) and w i l l therefore exist as a series of revisions.

Vers ion A n instance of a (whole) system. Both variants and revisions are called

an item version.

In general, a version is considered a general term that includes a revision and a

variant. Here we need to clarify the notions of terms such as configuration control,

change control and version control. In my view, configuration control is treated as an

equivalent term to change control. However, as configuration control focuses on an

act ivi ty that establishes the change control procedures to initiate, evaluate, approve

and implement changes to a basehne, i t is concerned wi th organisational issues

and managerial-oriented aspects. On the contrary, since version control focuses on

the evolution (i.e., revision) and revolution (i.e., variation) of configuration items

wi th in the software library(repository) over the software life-cycle, i t is associated

w i t h technological issues of SCM and belongs to a micro level of SCM activities. In

general, the activity of version control can be a subset of the configuration control

activity. Configuration control and version management activities are central for this

research work as these activities provide the reuser and maintainer wi th a means

of controlling the evolution of components wi th in the reusable software Ubrary and

existing system.

2.2.4 S C M Models

Feiler [38] classifies the SCM models into four categories based on a set of 15 con

cepts described in Section 2.2.2. The four models, the check-out/check-in model,

46

composition model, long transaction model and change set model, are described in

brief below.

T h e C h e c k - O u t / C h e c k - I n Mode l

The check-out/check^in model supports SCM functions as exemplified by Unix

SCCS [93] or RCS [108] and make [40]. The tools of this model consist of two

relatively independent tools: a repository tool and a build tool. The repository tool

stores versions of files and provides mechanisms for creating new versions. The

bui ld tool generates automatically derived files such as object and executable code,

through a description of the components that make up a system. The capabilities

of the check-out/check-in model depend upon maintaining a version history of files,

and upon controUing their concurrent modification using locking, version branching

and merging facihties as follows:

• Revision: evolution of a sequential version history.

• Version branch (variation): version sequences that have a particular version

in an existing branch as their starting point, but evolve independently.

• Merging: combination of two versions f rom different branches into a new ver

sion in one of the branches.

The latest version of a branch can be checked out for modification and the branch

is locked. Branch locking ensures that only one person at a time is in the process

of creating a new version for a specific branch. When the updated file is checked

i n , a new version is added to the branch and the branch is unlocked. SCM systems

pr imar i ly supporting this model focus on controlling the repository.

47

T h e Compos i t ion Mode l

The composition model focusses on improving creation of configurations and man

agement of their history. Developers deal w i th configurations by repeatedly com

posing a system f r o m its components and by selecting the appropriate version for

each component. A particular configuration of the composition model consists of

a system model SLiid version selection rules (configuration thread). A system model

contains all the components that make up a system. Version selection rules show

which version should be chosen for each component to make up a system configu

ration. The selection rules are applied to a system model through the process of

version selection that binds a component to a version.

These two processes of composition and selection can be graphically visualised as

an A N D / O R graph [107]. The first process is the integration of components into a

composite (an AND node). The second process is the selection of a suitable version

for each of the composite elements (an OR node). The structure of a system is

captured in a system model. The system model combines configuration support,

system bui ld tools, and language systems so that the SCM system supporting the

composition model can support management of derived objects and checking of

interfaces between components and subsystems. The composition model can be

supported by Module Interconnection Languages (MILs) described in Section 2.1.5.

Thus, the composition model that consists of a system model and version selection

rules can be equally applied to the process of software reuse.

T h e L o n g Transact ion Model

The long transaction model supports the evolution of whole systems and coordinates

the change of systems by development teams. In this model, developers primari ly

work using versions of configurations. Developers first select the version of the sys

tem configuration (i.e., configuration version), then consider the system structure.

This view of version selection is contrary to that of the composition model, where

48

the developer first decides the system structure (i.e., system model) and then selects

the versions of components to use. Once the version of the system configuration is

selected, the appropriate component versions are implic i t ly inferred f rom the con

figuration [38 .

This model consists of two concepts: a workspace, and a concurrency control

scheme. A workspace, representing the working context, provides local memory,

i.e., data storage visible only wi th in the scope of the workspace. I t provides stable

workspaces w i t h control over isolation f rom external change, scopes of visibil i ty for

changes, and coordination of concurrent change activity [39]. The long transaction

model does not directly support composition, but does support the evolution of

subsystems based on a decomposition of the system structure. After the versions

of the system configuration are verified and validated, these system configurations

can make up a system/product family that can be used as independent development

paths treated as system versions or variants.

T h e Change Set Mode l

The change set model supports management of logical changes to system configu

rations. The change set is the set of differences between two configuration versions.

This set of differences is the collection of deltas of those components that have been

modified between the two configuration versions. In this model, configurations con

sist of a basehne and a set of change sets. In other words, a configuration version

is mapped to one baseline. This view of SCM can be termed as change-oriented

SCM due to its focus on logical changes [74]. Change-oriented SCM differs f rom

the version-oriented SCM related to the other three SCM models which focus on

versioning of components and configurations.

The change set contains all changes to all files in the configuration along wi th

the reason for changes and details of who made the changes, when and why. The

change set represents a logical change to a system and a means of creating any

49

version of a configuration that is not necessarily dependent on the latest version of

that configuration [30]. The change set model supports a natural l ink to change

requests. Whi le change requests include information about a change, change sets

contain the actual modifications making up a logical change. Although change sets

are concerned wi th transactions, they do not support concurrency control. Thus, the

change set model should be complemented wi th the check-out/check-in model [38].

S u m m a r y of S C M Models

This section has focussed on a description of four models that can be observed in

commercial systems. From the four models outhned above, the check-out/check-in

model and the composition model are useful for this research work. As the check

out/check-in model provides developers wi th the capabilities to efficiently maintain

a repository through version control and concurrency control such as locking, ver

sion branching and merging, the model is appropriate for the version management

of reusable components that exist wi th in a repository. In addition, the composition

model that supports system modelling and version selection, can be used for this

research since i t helps reusers and maintainers to compose a system using reusable

components. On the contrary, the long transaction model focuses on the versions

(configurations) of whole systems, therefore, the model might be useful for vendors

that need to release many system versions or system variants for different platforms.

The change set model that controls the evolution of a system using logical changes,

supports management for the propagation of logical changes through a system fam

ily. Change sets provide the l ink to managing the change process through change

requests. There is a need for a unified SCM model that provides a framework for

all SCM models/concepts as a single SCM system may have difficulties meeting all

needs throughout the software development/maintenance process.

50

2.2.5 Automat ion of SCM

Although SCM is sometimes performed manually and sometimes automatically, both

manual and automated procedures can be useful for SCM. In the real world, these

two procedures exist side by side. However, when manual procedures are heavily

used, they can become burdensome and time-consuming. In general, whereas au

tomatic SCM is good for large projects, manual SCM is effective for small projects

and individual projects.

Babich [2] argues that "the greater the team size, the greater the possibility of

error in manual procedures, and the greater the number of procedures that must

be automated". Ben-Menachem [6] states that the techniques requiring automated

SCM are file locking, branches and merges. These can only be implemented wi th

the use of automatic SCM. He presents several problems wi th SCM that can be sup

ported by an automated SCM system as follows: lack of information about changes;

recurrence of bugs (' I fixed the bug already!'); confusions stemming f rom conflicting

changes; unauthorised access and modifications; difficulties in regenerating old ver

sions; incomplete or inaccurate system composition; and confusions resulting f rom

system building which used incorrect versions.

There has been considerable progress concerning an automated SCM system in

terms of environments (i.e., an SCM system) and tools (i.e., a stand-alone SCM

tool) . Many commercial packages for SCM have been announced and are currently

available. In order to be able to make an SCM system effective and viable wi th in a

software development/maintenance environment, an automatic SCM system should

be implemented as a unified model that can support most of the SCM concepts and

models described in Section 2.2.4.

51

2.2.6 S C M Problems within a Maintenance Environment

SCM is a crucial solution for controlling the process of changes that occur during

software development and maintenance. Whi tg i f t [120] argues that "although the

discipline of SCM is essential throughout the project life-cycle, i t is never more

important than during the maintenance phase". Software maintenance is concerned

w i t h changing an existing system and SCM provides precisely the framework that

is needed to manage such changes. SCM problems are often most acute during the

maintenance phase due to the existence of the largest number of software items to

manage. Addit ionally, software items have many versions and many relationships

exist between the items. For this reason, many of the functionalities described in

the previous sections to illustrate aspects of SCM, need to be equally apphed to the

maintenance phase of a project.

Changes to items during the maintenance phase are more difficult than those

during the development phase as a legacy system is probably maintained not by its

developers but by someone else and even by new programmers. Thus, these changes

must be carefully controlled in order to allow maintainers to work together efficiently

and easily.

The version control facil i ty of parallel development can be used for the mainte

nance phase as well as the development phase. I t is common and good practice to

divide a project team into two: a development team and a maintenance team. Once

the completed system is first released to the end user, the maintenance team takes

over responsibihty for maintaining the system. The changes implemented by the

maintenance team w i l l be merged wi th other changes which wi l l have been made

in parallel by the development team [120]. Whereas the maintenance team usu

ally deals w i t h changes relating to corrective maintenance, the development team

focusses on implementing changes associated wi th perfective maintenance, adap

tive maintenance and preventive maintenance which are described in the following

section 2.3.1. Wi thout an automated SCM system, i t is impossible to merge two

52

versions created through parallel development wi th in a maintenance environment.

Software maintenance is considered the most expensive phase since most of the

overall life-cycle cost is consumed in maintaining the system. Configuration control

and version management amongst all SCM activities play a major role in ini t iat ing,

evaluating, approving, and implementing change requests to a legacy system.

2.3 Software Maintenance

2.3.1 Introduction

I t is clear that the key factor of a cost-effective information system (IS) is software

maintenance because 60-80 percent of the total cost of the system life-cycle is spent

during maintenance. Software Maintenance has been defined as follows:

the modification of a software product after delivery to correct faults, to

improve performance or other attributes, or to adapt the product to a

modified environment [60 .

U n t i l the 1980s, most efforts in the software industry had concentrated on software

development whose objective is to produce a product that is on t ime and wi th in

budget while meeting user requirements, not necessarily a product that is reliable

and maintainable. Software maintenance has not long been regarded as a creative

act ivi ty and has not been chosen as a research topic by academia.

In recent years, maintenance has been investigated by the users of large systems in

industry as well as academic researchers. The issue of software maintenance has to

be dealt w i th , but i t is usually more difficult than original development. Therefore,

many organisations spend most of their t ime maintaining existing applications, i.e.,

legacy systems. The IEEE [59] categorised maintenance into four categories as

follows:

53

• Perfective maintenance is the modification of a software product after delivery

to enhance performance or meet new functionalities.

• Adaptive maintenance is the modification of a software product after delivery

to enable a software system to adapt to a changed or changing environment.

• Corrective maintenance is the modification of a software product after delivery

to fix discovered errors or faults.

• Preventive maintenance is the modification of a software product after delivery

to prevent problems before they occur.

Munro [83] describes the distribution of the total maintenance activity together

w i t h four types of maintenance activity. His view of the types of maintenance is

not different f r o m the IEEE's definition. In addition, he states representations to

be changed for each type of maintenance as follows: perfective maintenance requires

changes to the requirements, design and code; adaptive maintenance needs changes

to the design and code; corrective maintenance only requires changes to the code;

and finally, preventive maintenance is associated wi th changes to the design and

code. He presents the following distribution: perfective maintenance consumes 60%

of the maintenance activity; adaptive maintenance consumes 18%; and, corrective

maintenance and preventive maintenance consume 17% and 5%, respectively.

In Section 2.3.2, some software maintenance models are described. Section 2.3.3

shows a framework of a software maintenance support environment.

2.3.2 Software Maintenance Models

The tradit ional life-cycle model of a system has only considered the software main

tenance activity as a single phase at the end of the cycle. I t does not portray the

evolutionary development and decomposed maintenance process that are very useful

for most software systems [7]. In order to control software maintenance effectively,

54

i t is necessary to divide the maintenance process into separate phases as in a devel

opment process. So far, many authors have proposed models for the maintenance

process. The early models only give general guidelines whereas the latest ones define

more detailed activities of the maintenance process. Boldyreff, Burd et al. [12] give a

brief overview of some existing models such as Maintenance Assistance Capability for

Software (MACS) [34], EPSOM [51, 37], the Durham Maintenance Model [55, 54],

and REDO [115]. However, only EPSOM and the Request-driven Model are de

scribed in this section since these models are composed of well defined activities of

a maintenance process and focus on establishing the procedures of change control.

E P S O M

EPSOM [51, 37] is a generic maintenance model. The model identifies 9 activities

that fo rm a maintenance-specific ' V life-cycle. The ' V model consists of change

control (the left side: trigger, problem understanding, localisation, solution analysis,

and impact analysis), change itself (the point of the ' V model: implementation),

and testing of the result (the right side: regression testing, acceptance testing, and

re-insertion). Figure 2.1 shows the ' V model that is revised slightly after being

taken f r o m the EPSOM model [51 .

The steps of the process relating to change control are as follows [51]:

• Trigger—the maintenance process is initiated by a trigger, i.e. a program fault

report or change request.

• Problem understanding—the maintainer has to determine whether or not the

problem should be tackled.

• Localisation—the maintainer identifies precisely what has to be changed.

• Solution analysis—the solutions to implement change requests are devised.

55

Trigger Re-insertion

ProblenMJnderstanding

LocalKation Accenlance Testing

Solutios Analysis

Impact Analysis Reefession Testing

CCB (Configuration Conlrol Board);
Decision on ImplementaEion

Figure 2.1: The EPSOM Model: a Maintenance-Specific ' V Life-cycle

• Impact analysis—this aims at evaluating the consequences of the implemen

tat ion of the changes in order to reduce unforseen side effects.

Reques t -dr iven Mode l

The Request-driven Model [7] identifies the activities of software maintenance in i t i

ated by user's change requests. The model has three major processes called request

control, change control, and release control.

Reques t control deals w i th the user's change requests (CRs) in order to analyse,

categorise and prioritise the-CRs, and evaluate the impact of changes. The main

activities associated wi th this process are as follows:

1. Collection of information about a change request.

2. Establishment of mechanisms to categorise the change request as either a cor

rective, adaptive, perfective or preventive type of change.

3. Use of impact analysis to evaluate the request wi th respect to cost/benefit.

56

4. Priorit isation of the change request.

Change control is usually considered the key process in this model as i t includes

the most expensive activity, i.e., the analysis of the existing applications. The

activities of this process are as follows:

1. Selection of change requests f rom priori ty list.

2. Reproduction of the problem where appropriate.

3. Analysis of code, specifications and relevant documentation.

4. Design of the solutions for changes and construction of test cases.

5. Setting up of a quahty control procedure, including V & V , review, inspection,

etc.

Release control chooses the change requests that should be included in a new

system version and makes the necessary changes to the source code. The activities

relating to this process are:

1. Release determination.

2. Construction of a new release through editing source, archival and Software

Configuration Management (SCM), and Software Quahty Assurance (SQA).

3. Integration and regression testing.

4. Re-insertion (release).

5. Acceptance testing.

57

S u m m a r y of Maintenance Models

To conclude, the EPSOM model is a good framework for the maintenance process

as i t includes all maintenance activities associated wi th change control, change im

plementation, and testing of the result. The model forms a ' V life-cycle and the

format of the model is similar to a ' V life-cycle for software development. For this

reason, an organisation can easily introduce the model into a maintenance environ

ment. Three processes of the request-driven model, in particular, request control

and change control, are concerned wi th the configuration control activity which es

tablishes the change control procedures to initiate, evaluate, approve and implement

changes to an existing system. In addition, the Software Quality Assurance (SQA)

act ivi ty can be performed through the configuration audit of SCM, i.e.. Verifica

t ion and Validation (V & V) as described in Section 2.2.3. Thus, the EPSOM model

and request-driven model are most suitable for this research since they address the

change control procedure well.

Bennett, Munro et al. [7] stress that an important part of the maintenance organ

isation is the Change Control Board (CCB) which reviews, prioritises, and approves

change requests. As described in Section 2.2.3, changes to existing Software Config

uration Items (SCIs) are made only via a formalised process controlled by the CCB.

The CCB is the committee whose purpose is to control changes wi th in a develop

ment/maintenance environment. Thus, the introduction of SCM into a maintenance

environment or a maintenance model facilitates the successful management of the

software maintenance process.

2.3.3 A Software Maintenance Environment

As shown in Figure 2.2, Kwon and Boldyreff [67] propose a software maintenance

support environment that consists of several technologies and methods which can

solve many problems wi th in a legacy system. The software maintenance support

58

" Software Maintenance Support Environment

Operational Legacy System

Program Comprehension | Impact Analysis ; Regression
(Application Understanding!) j

Testing •

Reverse

Engiiiceri ig

Progranij

Trans-

fonnalitijn

Software Configuration Management (SCM)

Software Maintenan be Support Repository

Resini-
ciuring

|(Rc-<;ngin-
ccring)

Maintenance Standards 1 Maintenance Model I Software Quality Assurance I
; 1 Plan (S Q A P) 1

Software Reuse

Operational Legacy S ystem

Figure 2.2: A Software Maintenance Support Environment

repository is a core part of the maintenance support environment and keeps tools

associated wi th a variety of methods and technologies as well as program sources,

specifications and documents reverse engineered using those tools. The reposi

tory is managed and controlled by a Software Configuration Management System

(SCMS) whenever Software Configuration Items (SCIs) related to a legacy system

are checked-out or checked-in.

A maintenance support environment has three major parts: the implementation

part of maintenance that includes Program Comprehension, Impact Analysis and

Regression Testing; the part of Reverse Engineering that can be supported by Pro

gram Transformation and Restructuring^ and enables Design Recovery] and the part

of the Maintenance Model and Standards that support the process and guidelines of

software maintenance.

I n order to make methods and tools successful, they need to be integrated into

59

a software maintenance environment as well as into a software development envi

ronment. In particular, methods and systems that support SCM, can be a good

framework for constructing a maintenance environment.

2.4 Relationship between Reuse, S C M and Soft

ware Maintenance

There exist several similarities between reuse and SCM approaches to software engi

neering [68]. The common characteristics of the two approaches are as follows: the

identification of a component-oriented approach; the use of a library; the construc

t ion of components; a close relationship wi th development and maintenance environ

ments; interaction through Configuration Audi t ; relationship wi th standardisation;

and both recognised as part of the SEFs Capability Matur i ty Model (C M M) [85].

A controllable basic unit of these two fields is an object or a component. Infor

mation on both can be stored in a repository, is subject to retrieval and requires

change control. For instance, some information on version history and reuse history

can be kept together in an identical'component.

Although W h i t g i f t [120] states that the software library is the core part of SCM

as i t contains everything relating to SCM such as source code, user and system

documentation, test data, support software, specifications, project plans and derived

objects, reuse also requires a software library which supports 'white box' reuse and

'black box' reuse. Changes to the hbrary need to be controlled whenever they are

made over t ime.

The construction of a new system using components must be an important issue

for both reuse and SCM. A system modelling language such as a Module Intercon

nection Language (M I L) or a Component Description Language should be used to

compose a system f r o m software components.

60

Configuration Audi t of SCM helps an organisation to evaluate software compo

nents since i t ensures the completeness and correctness of a software product through

the activities of Verification and Vahdation (V k V) . 'Development/Designfor Reuse

(D f R) ' also requires the process of evaluating produced software components using

software quality metrics.

Standardisation is related to both SCM and reuse. In order to effectively create

and use reusable components effectively, an organisation is required to standardise

its development and maintenance processes including its reuse process. SCM helps

an organisation to standardise and improve these processes. In order for a soft

ware process to produce a high quality product, i t should be assessed and improved

continuously. The process assessment and improvement programme can be success

f u l only i f the processes of software development and maintenance are standardised

through the methodologies and principles of software engineering. As SCM is a good

discipline to standardise the activities of the software development and maintenance

processes, this research addresses how an SCM process can be introduced into an

integrated model of the reuse process and maintenance process.

SCM is a min imum requirement for constructing a software development environ

ment and maintenance environment as i t provides a support function as well as a

management funct ion. Similarly, reuse is also concerned wi th a development envi

ronment/maintenance environment. The process of reuse needs to be integrated into

an existing environment so that reuse can become viable, effective and systematic.

Finally, SCM is one of the key process areas at level 2 ('repeatable') of the CMM's

5 levels. Since a Reuse Capability Model (RCM) [32] is a guide to selecting improve

ment strategies by measuring current reuse capabilities and identifying the issues

most crit ical to reuse improvement, the C M M software process maturi ty model can

be applied to i t . As most of the organisations are st i l l placed on the 'initial' level of

the C M M model, they require their processes to be moved towards a higher level in

order to introduce 'systematic reuse' into a development/maintenance environment.

61

SCM is a central part of software maintenance because i t is associated wi th chang

ing the existing software and SCM is a discipline for controlling these changes. Zveg-

intsov [123] describes the role of SCM as "recording and creating linkages by which

a maintainer can monitor and control the transition f rom change requests to the

implementation and testing of the changes". He stresses the importance of SCM

wi th in a maintenance environment rather than a development environment.

Re-engineering and reverse engineering are both maintenance techniques and are

v i t a l to software reuse as they enable a maintainer to create/extract reusable as

sets f r o m existing system components. In addition, a reuse process can support

a maintenance process through 'Design/Development for Reuse (D f R) ' and 'De

sign/Development w i t h Reuse (DwR) ' . There is a very strong similarity between

software maintenance and reuse as these two processes require both SCM and pro

gram comprehension activities. Thus, the disciplines of maintenance and reuse are

very cooperative and have characteristics in common.

As described above, because there exist similarities and relationships between

reuse, SCM and software maintenance, we can solve many problems wi th reuse and

software maintenance through an integrated reuse process and maintenance process

wi th in an SCM environment.

2.5 Conclusions

The objective of software engineering is to improve the productivity of software

development and the quality of the systems produced. However, most of the to

ta l cost of the software life-cycle is spent on maintaining existing systems rather

than developing new ones. I f we want to improve software development, including

maintenance, we should review the software maintenance process and establish an

efficient procedure for a maintenance environment.

I n this chapter, background research has been discussed wi th a view to introducing

62

SCM to the reuse library wi th in a software maintenance environment in order to

manage and control changes to both reusable components and existing systems,

thereby achieving the high productivity of change implementation and producing a

high quality product. Three fields related to this research, i.e., software reuse, SCM

and software maintenance are very closely associated wi th one another as described

in Section 3.3 of Chapter 3. The integrated approach can therefore be applied for

these three disciplines of software engineering.

I f mult iple versions for each reusable component can be kept in a repository

through the process of SCM, then the possibilities of reuse can be increased greatly.

By reusing reusable component versions that have already been developed, an or

ganisation can enhance its effectiveness in improving both the productivity and the

quality of the produced software. However, i t is clear that the true benefits obtained

f r o m reuse can only be achieved through systematic reuse, not ad-hoc reuse.

Although 'black box' reuse can be considered ideal reuse, this research also sup

ports 'gray box' reuse that is an intermediate form of reuse, as well as 'black box'

reuse and 'white box' reuse. Since a reuse library is subject to change over time

a change control procedure must be established in order to manage all changes to

reusable components wi th in the reuse library.

Since both software reuse and maintenance as well as SCM require system mod

elling languages for software building. Module Interconnection Languages (MILs)

and Component Description Languages have been reviewed and compared. PCL is

considered the best configuration language in terms of several requirements. RE

SOLVE is the better Component Description Language as i t can be used stand-alone

and subsequently translated into implementation languages like C-f—|- or Ada, and

i t enhanced Goguen's OBJ and L I L , and MILs developed thus far.

I n order to implement systematic reuse successfully, an organisation should in

tegrate the process of reuse into a software maintenance environment that consists

of a number of technologies, methods and tools. Therefore, this chapter has also

63

reviewed most of the disciplines associated wi th a maintenance environment, and

proposed a framework of a software maintenance support environment that includes

a production l ibrary (repository) controlled and managed by SCM.

Since reuse should support a software development process or maintenance pro

cess, SEI's Capability Matur i ty Model can be applied to the Reuse Capability Model.

A n organisation can choose a suitable reuse method f rom the two methods (e.g.

'white box' reuse and 'black box' reuse) according to the level of reuse capabihty.

Commercial systems have introduced new SCM concepts into the classical prin

ciples of SCM (i.e., configuration identification, configuration control, configuration

auditing and configuration status accounting). These new concepts are associated

w i t h three SCM models such as the composition model, the long transaction model,

and the change set model, in addition to the in i t ia l check-out/check-in model. Of

the four SCM models, three models (i.e., the check-out/check-in model, the com

position model and the change set model) are suitable for the change control of

reusable components wi th in a software maintenance environment.

SCM functionalities are the foundation of any software development and mainte

nance environments. Good SCM capabilities help software reuse to be successfully

introduced into an organisation because SCM expedites the integration of a reuse

process into a maintenance/development environment. Configuration control and

version control activities are related to this research since these activities provide

reusers and maintainers wi th a means of controlling changes to reusable compo

nents and existing systems. Even though some SCM activities can be supported by

manual procedures, most of the activities should be automated in order to reduce

burdensome and time-consuming tasks.

This research w i l l focus mainly on a software maintenance environment rather

than a development environment. A software maintenance model needs to be com

bined and integrated wi th the model of the reuse process. The goal of this thesis is

to develop an integrated'model of the reuse process and maintenance process wi th in

64

an SCM environment, and establish the change and version control procedures in

order to manage changes to a reuse library and a legacy system.

I n the next chapter, the rationale and motivation of this research are addressed

in the order of 'new approaches to software engineering', 'problems wi th reuse and

maintenance', 'similarities between reuse and SCM and between reuse and mainte

nance', 'direction of research', and 'originality of this work and discussion of similar

work' .

65

Chapter 3

Rationale for an Integrated Model

The objective of this research is to develop an integrated model that can address

many problems wi th software maintenance and software reuse through the function

alities of Software Configuration Management (SCM). There exist some similarities

between software reuse and SCM. Reuse also has activities in common wi th software

maintenance in terms of program understanding and SCM. This chapter discusses

those similarities between these three fields that provide the rationale for this re

search.

I n Section 3.1, new approaches to software engineering are summarised. Sec

t ion 3.2 identifies some problems wi th in a reuse library and a software maintenance

environment that need to be solved to improve software productivity and software

quality. Section 3.3 describes common activities and relationships between reuse and

SCM and between reuse and maintenance. In Section 3.4, the directions of research

that should be performed in order to tackle these problems, are described. Finally,

Section 3.5 describes the necessity and value of this work, providing a discussion of

other relevant work.

66

3.1 New Approaches to Software Engineering

Majo r changes in the way large-scale software-intensive systems are being devel

oped, fielded and updated, have led to a new way of software engineering called

Component-Based Software Engineering (CBSE). The concept of designing and im

plementing software systems using a set of components has been proposed for at least

three decades. Large-scale software development is increasingly achieved through the

processes of component selection, evaluation and assembly. The components for sys

tem building are acquired f r o m external suppliers. In order to pursue a component-

based approach, many obstacles need to be overcome. Most of the problems stem

f r o m non-technical issues, but significant technical issues must also be tackled [17 .

Basili [4] presented the fundamental concepts behind software process and product

improvement using measurement and evaluation in an Experience Factory Organ

isation. He also successfully applied a concept of the Experience Factory to the

Software Engineering Laboratory (SEL) at N A S A / Goddard Space Fhght Centre.

The Experience Factory aimed at capitalisation and reuse of experience and prod

ucts f r o m the software life-cycle. I t is a logical and physical organisation whose

activities are independent f rom the ones of the development organisation. In or

der to bui ld an integrated environment for software development, the Experience

Factory consolidates activities such as packaging experience, consulting, quality as

surance, education and training, process and tool support, and measurement and

evaluation.

A software factory is defined as "an environment which allows software manufac

tur ing organisations to design, program, test, ship, install and maintain commercial

software products in a unified manner" [80]. Software reuse is a crucial part of a

software factory as the software factory is a factory system for the automatic pro

duction of software through a combination of software parts/components. There

have been a wide variety of efforts to adapt the concept of the factory to software

production by US companies such as G T E and I B M , and Japanese companies such

67

as NEC and Hitachi. By adapting existing reusable software components, the fac

tory concept was primari ly applied to producing large and well understood systems

that were not conceptually new, such as computer operating systems and telecom

munications systems [28, 23]. The software factory based on software reuse should

be supported by a number of methods and techniques related to software engineer

ing: component engineering (i.e., reverse engineering and design for reuse), domain

analysis, metrics, formal methods, project management, and software configuration

management.

A significant consideration is determining how these new approaches bring us

better facilities for carrying out maintenance and reuse.

3.2 Problems with Reuse and Maintenance

Both Software Configuration Management (SCM) and reuse have long been advo

cated as means of achieving the enhancement of software quality and productivity.

However, aside f rom a few success stories, these two approaches have not brought

a significant result for the software engineering community, since there exist techni

cal and managerial problems to be tackled in each and these approaches have been

separately introduced into each organisation.

Whi le reuse has problems associated wi th creating/recognising, cataloguing and

retrieving reusable components as well as composing complex systems f rom those

components and integrating a reuse process into any software development envi

ronment and maintenance environment, i t also has some problems related to SCM

such as how to control the change of reusable components, how to propagate the

changes of a component to the reusers of the component, and how to control different

versions.

As shown in Figure 3.1, a reuser and maintainer can use reusable components

w i t h i n a reusable software library through the three types of reuse: 'black box'

68

Configurationj

Manager
Librarian

miniS^ratmg Change/nd Ve/sion Control

eusable Components/DB

Remote Users
in Distributed
Multisite
Prnjprt';

BBR/GBR
" 2
WBR

ReuseIProdes

Change Request
(CR)

EJJ]-^>IB!I3—'-IR ii- '>lR2.ik

V 1.2.1.1
B M / G B R \ W B R WBR/

Reuse Process
Search Evaluate
Choose — • - (Adapt) Compose

MAINTA NER MAINTAINER

B
REUSER

A

By BBR

R 1.2

REUSER
B

By WBR

R2.1.I.1

REUSER
C

By GBR

R 2.1

REUSER,
r)-->

By BBR

V 1.2.1.1

By WBR

R 1.3.1.1

MAINTAINEH

By GBR

R 1.2

MAINTAINEP]

n - >

< Legend >

BBR: Black Box Reuse

GBR; Gray Box Reuse

WBR: White Box Reuse

((^^^vdoprnght DB

Figure 3.1: A n Idealised Maintenance Environment

3B

L E G A C Y

SYSTEM SYSTEM

69

reuse, 'white box' reuse and 'gray box' reuse. A broken arrow in the figure shows the

process of 'white box' reuse that requires the modification of reusable components

before reuse, whereas a black arrow represents the process of 'black box' or 'gray

box' reuse that uses reusable components on an "as-it-is" basis. A broken box shows

the process of reuse supported by these three types of reuse. SCM practices are very

useful for the control of 'white box' reuse but these can also be used for 'black box'

reuse, as the repository that supports 'black box' reuse is subject to change over

t ime. I n other words, the reuse repository continues to evolve as a legacy system

does, because the reuser and maintainer may ask a librarian or domain manager

to change reusable components by using the change requests. There is clearly a

need for 'gray box' reuse between 'white box' reuse and 'black box' reuse, where i t

allows a few changes to reusable software components, e.g., renaming variables and

changing parameters. Therefore, 'black box' reuse as well as both 'gray box' and

'white box' reuse require change control for changes to reusable components. After

the reuser and maintainer successfully perform unit testing for modified reusable

components, they need to check the components into the production library a tester

or QA person uses to carry out integration testing before release.

I f reusable components are used in several different projects and sites, the effect of

changes to reusable assets w i l l be much greater. As shown in Figure 3.1, whenever

the changes to the reusable components have been made the librarian or domain

manager should not i fy the reuser, maintainer and configuration manager as well as

remote users that reusable components have been changed. The reuse library has to

keep all the information on the change history and the reuse history acquired f rom

the reuser and maintainer.

Most efforts i n the software industry have concentrated on software development

whose objective is to produce a product that is on t ime and within budget while

meeting user requirements, not a product that is rehable and maintainable. Main

tenance is usually more difficult than original development as changes to an existing

software component may have many effects on other components and to carry out

70

an impact analysis is a diff icult task. Thus, many organisations spend most of their

t ime maintaining existing applications, i.e., legacy systems. A legacy system shown

in Figure 3.1, has many problems wi th meeting user's requirements since the backlog

of change requests (CRs) may be large. In this case, a reusable component database

can be used to implement change requests (CRs) through 'black box' reuse and

'white box' reuse.

3.3 Similarities between Reuse and SCM and be

tween Reuse and Maintenance

There exist several similarities between reuse and SCM approaches to software en

gineering [68]. As shown in Section 2.4 of Chapter 2, the common characteristics

of the two approaches are as follows: the identification of a component oriented

approach; the use of a library; the construction of components; close relationship

w i t h development and maintenance environments; interaction through Configura

t ion Audi t ; relationship wi th standardisation; and both recognised as part of the

SEI's Capability Matur i ty Model (C M M) [85 .

There is a very strong affinity of software maintenance wi th software reuse. Major

common activities relevant to both maintenance and reuse are SCM and system

understanding. I n other words, software maintenance and software reuse should be

supported by two activities of SCM and system understanding. There exist common

activities between the maintenance process and the reuse process such as "analyse

CRs", "integration" and "re-insertion" that enable us to build an integrated model

w i th in an SCM environment. SCM enables a reuser and maintainer to solve some

problems w i t h reuse and maintenance [69]. In terms of SCM, software components

w i th in both an existing system and a reuse library are subject to change over time,

so these components need to be controlled by the functionalities of SCM.

71

3.4 Direction of Research

The objective of this research is to construct an SCM procedure for a legacy system

and a reusable software library which are actively maintained for use in a software

maintenance environment. In other words, this research addresses an SCM process

that supports an existing system through the reusable component repository that

supports 'white box' reuse and/or 'black box' reuse, as well as SCM for the reuse

repository itself. A 'black box' reusable component is reused without any modifica

t ion, i.e., on an "as-it-is" basis, whereas in the case of 'white box' reuse, i t may be

modified before reuse.

This research presents the modelling work and prototype highlighting the impor

tance of taking an extended view of configuration management where a reusable

component l ibrary is used across a number of maintenance projects. Two kinds of

changes need to be recognised. One is change to the products i.e. an existing system,

and the other is change to the reusable components. The control and management

of changes to the software components in a reuse repository, are critical to software

product success. , I f the component is being used in mult iple products, the effects of

uncontrolled change are obviously more critical. The change control procedure for a

legacy system using a reuse hbrary is different f rom the traditional approach, so the

maintainer should work in collaboration wi th the reuser who is very familiar wi th

the reusable components wi th in a reusable software library.

'Development for Reuse (D f R) ' is the core part of the reuse process together

w i t h 'Development w i t h Reuse (DwR) ' ; nevertheless, this research is associated wi th

'Development w i t h Reuse (DwR) ' . The objective of DwR is to catalog and retrieve

reusable components, and develop a new system using them, whereas D f R aims

at creating reusable software or re-engineering existing software to obtain reusable

software. D w R can be supported by both 'black box' reuse and 'white box' reuse.

The main tasks of this research can be summarised as follows:

72

• Bu i ld an integrated process model of a reuse process and a maintenance process

wi th in a Software Configuration Management (SCM) Environment.

• Establish procedures of change control and version control for reusable com

ponents.

• Establish procedures of the reuse process for implementing change requests

(CRs) to an existing system.

• Produce reports related to reuse and SCM such as a change history report, a

reuse history report, a clear specification of a component, etc.

• Ident ify administrative functionalities associated wi th a reusable software l i

brary.

• Implement a prototype called T E R R A (Tool for Evolution of a Reusable and

Reconfigurable Assets library) that supports the integrated process model

named 'Maintenance wi th Reuse (M w R) ' .

V i a evolutionary development, one can make a rapid prototype and enhance i t by

redeveloping those portions where potential problems (functionality, performance,

ease of use, maintainabihty, etc) are surfacing [15]. Therefore, this research wi l l

follow an evolutionary approach as a development method.

Chapter 4 presents the M w R model that supports three processes, i.e., the Config

uration Management (CM) process, the reuse process, and the maintenance process.

Chapter 5 describes TERRA's interaction wi th an SCM tool, CGI (Common Gate

way Interface) and Web server, and tools used for implementation of the T E R R A

prototype. Chapter 6 shows the procedure for operation of T E R R A by using sev

eral fill-out forms. Chapter 7 explores the M w R model by performing a scenario

based case study. Chapter 8 describes an evaluation of the M w R model and tool

using results and feedback obtained f rom the case study in terms of their benefits

and l imitat ions, and some amendments and customisation of the model and tool.

73

Finally, Chapter 9 presents general results and contribution of this research, and

fur ther work to be done.

Process Weaver [21] has been used for building the model since ini t ia l experiences

w i t h using ER (Ent i ty Relationship) diagrams resulted in a complex model which

was diff icul t to understand and adapt. Using Process Weaver, i t is easier to draw

and understand diagrams through the process of levelling down. Process Weaver

is a tool for process modelling and process management, developed by Cap Gemini

Innovation [21]. In Section 4.3, the model developed is presented and discussed.

3.5 The Originahty of this Work and Discussion

of Similar Work

From some problems and similarities described in Section 3.2 and 3.3, we need

to solve some critical issues wi th in reuse and maintenance, including population,

retrieval, and change control of the reuse library and legacy system, through an

integrated approach i.e., an introduction of SCM with in the reuse process and main

tenance process. This research develops an integrated model of the reuse process

and the maintenance process wi th in an SCM environment. The integrated model is

called 'Maintenance wi th Reuse (M w R) ' that supports maintaining a legacy system

and an associated reuse library through functionalities of SCM.

Research into 'Development for Reuse (D f R) ' and 'Development wi th Reuse (DwR) '

have been carried out actively, but work on 'Maintenance wi th Reuse (M w R) ' has

never been done although maintenance is regarded as the most expensive phase of

the software life-cycle. The difference between DwR and M w R is as follows: DwR is

a development process supported by a reuse library whereas M w R is a maintenance

process supported by a reuse library. Both DwR and M w R require a library that

contains reusable components.

74

The M w R model consists of four major activities such as a configuration man

agement (CM) process, reuse process, maintenance process, and administration of

a reuse library. The activities of configuration management are a subsidiary func

t ional i ty that enables one to integrate a reuse process wi th a maintenance process

wi th in a software maintenance environment. The C M process can also manage the

evolution of a reuse library. Both processes of reuse and maintenance and the reuse

l ibrary should be supported by SCM in order to manage changes to components

which exist w i th in these processes.

Several commercialised reusable software libraries and simple collections of reusable

components have been announced, but most of them have not been successful as

these libraries do not support further evolution or maintenance of the reusable com

ponents. In addition, most of the reuse libraries are difficult to use because they have

not been linked to a development/maintenance environment. In recent years, sev

eral large reuse libraries that are usually sponsored by large organisations have been

produced and are now available via the World Wide Web (W W W) . The author has

investigated four reuse servers such as AdaBasis, ELSA, ASSET and EUROWARE

that have already been described in Section 2.1.4 and are now available on the

W W W . As shown in Figure 3.2, the evaluation of these reuse Hbraries has been per

formed based on several important features such as level of reuse, interoperability,

retrieval method, change control, version control, usability, functionality, reports on

change and reuse, certification of a reusable component, etc. Although the table

shows more details for evaluation of reusable software libraries, the functionalities

of Software Configuration Management (SCM) are mainly discussed below for the

purpose of this research work.

Interoperabihty which increases the availability of the asset pool, requires the

same data model, classification schemes and terminology in order to share reusable

assets between reuse servers [56]. Software Market, previously called ELSA, allows

users to interoperate wi th other reuse servers such as ASSET, CARDS (Central

Archive for Reusable Defence Software) and DSRS (Defence Software Repository

75

2
o

C/3

2L

I I"

r- 0 0 0
Cl_

0

0"

O
U

l

ivcn
ivcn

Co
s

S 03.

Figure 3.2: Evaluation of Reusable Software Libraries

76

System). I f ELSA metadata links are invoked, selections are transferred f rom the

ELSA library to a temporary directory and made available to the reusers. This t r i

lateral interoperation has not been fu l ly implemented because of some limitations,

but Software Market's MOREplus using SQLnet, has allowed the remote libraries

to maintain and present their assets in the format they have in their libraries.

Only E U R O W A R E provides the reports on reusers' evaluation and history of

reuse that might be valuable in encouraging reusers to use reusable components.

Whenever reusers finish using reusable components successfully they need to record

their views, feelings, findings and experiences about reusable components they used

to meet their requirements.

The quality of a reusable component is crucial to the success of reuse. In order to

improve the product quality and remove ' N I H (Not Invented Here)' syndrome f rom

reusers. Science Apphcations International Corporation (SAIC)/Asset Source for

Software Engineering Technology (ASSET) Company classified assets in 1 of 4 levels

ranging f r o m level 1 through 4 according to supplier's attestation, ASSET'S review

and confirmation, ASSET'S testing, and ASSET's formal evaluation, respectively.

Comparing w i t h other reuse servers, ASSET can give more confidence to reusers

who might have unwiUingness in using reusable components.

Most reuse servers do not support completely the functions needed to control the

evolution (i.e., revision and adaptation) of reusable components in a reuse reposi

tory. As an exceptional case, E U R O W A R E (Enabling Users to Reuse Over Wide

Areas) provides a reuser/user wi th the function of a change request (CR), but does

not support the process for implementation of the CR. Thus, the CR has no corre

sponding version number although each reusable component keeps only one version

number. In terms of change and version control, reusable components of ELSA

keep one version number, but ELSA does not support any other change control. In

particular, there are no reuse servers which support efficient version control wi th in

a maintenance environment. A l l reuse servers described above have nothing to do

w i t h the software development and maintenance environments [70].

77

The reason why this research considers reuse and SCM wi th in a software mainte

nance environment, not a development environment, is that 60-80 % of the software

life-cycle cost is spent on a software maintenance phase and reuse can potentially

help to reduce the cost here. In addition, SCM is a crucial part of software mainte

nance since i t is associated wi th changing existing software components. In partic

ular, SCM is a disciphne for controlling these changes.

The rationale of this research is as follows: given the high degree of commonahty

between reuse and maintenance and between reuse and SCM, and given many of

the technical problems associated wi th reuse in a maintenance environment can be

solved by applying the discipline of SCM, we have concluded that the processes of

component reuse, component maintenance and reuse library management all need

to be integrated wi th in an SCM environment to achieve effective long term support

for all of these processes [69 .

3.6 Summary

To summarise, this chapter has described new approaches to software engineering,

discussed the problems wi th reuse and maintenance that need to be solved before

reuse can effectively be introduced into a maintenance environment, and identified

the similarities between reuse and SCM and between reuse and maintenance that

enable an integrated approach of reuse and maintenance wi th in an SCM environ

ment. In addition, the chapter has shown the directions of this research, including

the objective, main tasks and method of this research work. Finally, the innovative

aspects of the M w R model to be developed have been discussed, i n comparison wi th

other reuse servers currently available on the Internet. The next chapter wi l l address

the modelling aspects of this research.

78

Chapter 4

Modelling of Maintenance with

Reuse (MwR)

Process modelling is critical to the software process assessment and improvement cy

cle as i t is composed of activities which produce a software product. In this chapter,

a process model of an integrated approach has been created using Process Weaver.

The chapter describes a process model to support the maintenance environment wi th

a reuse activity, applying Software Configuration Management (SCM) disciplines to

a l ibrary of reusable software components. The M w R model consists of three ma

jor processes—a reuse process, a maintenance process and an SCM process. Thus,

the M w R model has been produced and refined by an automated tool for process

modelling, Process Weaver that enables both consistency to be maintained between

processes and the complexity of models to be reduced.

Section 4.1 outlines the definitions of concepts related to process modelling and

describes the necessity of an automated tool for process modelling. In Section 4.2,

the structure and notations of Process Weaver that has been used for modeUing of

this research, are summarised. Finally, Section 4.3 describes the detailed activities

of the M w R (Maintenance w i t h Reuse) model that consists of a Configuration Man

agement process, a reuse process, a maintenance process, and administration of a

79

reuse library. This section also identifies the relationships between the reuse process

and maintenance process, and presents the concepts associated wi th a product line.

4.1 Overview of Process Modelling

Software process modelling is a branch of software engineering whose aim is to im

prove the process of software development in order to enhance the productivity and

quality of a software product, and to reduce the costs of software development. Dow-

son and Wileden [35] state that software process is a collection of related activities

that are seen as a coherent process and involved in the production of a software

system. They also define software process model as a purely descriptive representa

t ion of the software process. This model should represent attributes of a range of

particular software processes.

Snowdon [99] defines Process Modelling as "the production of models of software

development/maintenance processes and the use of these models in an Integrated

Project Support Environment (IPSE)". The process modelling concepts are as fol

lows:

• The production process is the set of "external" production elements such as

real world activities, artifacts, tools, agents, roles, and embedding projects. I t

is also part of the process for developing and maintaining the product to be

delivered to users.

• The meta-process is the set of "external" meta-elements that maintain and

evolve the whole process, i.e., the production process, the meta-process, and

the process support.

• The process support is the "internal" process model and the technology to

define, modify, analyse, and execute i t . The latter contains process mod

elling methods and languages, process modelling tools and process model in-

80

terpreters.

• The process model is "a description of a process expressed in a suitable process

modelling language. A model is always an abstraction or a partial description

of the reality that the model represents.

• The process modelling language (PML) is a formal notation used to describe

process models, both for the production process and meta-process.

The production process and the meta-process are entities of the external real-

world whereas the process support produces internal computer models to govern

both the production process and the meta-process [99]. The created process models

should be manipulated by a process tool that is exemphfied in Section 4.2 in order

to control and support the evolution of the real world. Manual implementation

of process models can be error prone and t ime consuming. Christie [23] argues

that software process automation by a process tool has made dramatic impacts

in improving software productivi ty and there is no reason why similar approaches

cannot be adapted to a process of software production. Software process automation

has only recently become practical as a result of the widespread use of personal

computers and workstations, and the growth of networking capability, which can lead

to powerful distributed computing and human communications. In this research.

Process Weaver [21] has been used to identify requirements for the processes, define

process models, and verify process models.

4.2 Introduction to Process Weaver

I n this research, the process model has been developed using Process Weaver [21].

Process Weaver^ consists of a Work-context Editor, a Cooperative Procedure (i.e.,

^The author would like to thank Cap Gemini Innovation for allowing me to use Process Weaver

in this research.

81

processes) Editor, a Method (i.e., activity hierarchies) Editor, and an Act iv i ty Edi

tor. The Work-context Editor is used to model the working environment of a user;

what to do and how to do i t . The Cooperative Procedure Editor models the process

part of a terminal or a refined activity in terms of sequence, synchronisation and

parallelism. The Method Editor is used to describe the way software development

has to be performed. I t breaks methods into activities. Using the Act iv i ty Edi

tor, one can specify task inputs, outputs and roles for these activities. Since the

Work-context Editor is usually related to communication between team members

and identifying specific roles relevant to carrying out the work, only the outputs

of the Cooperative Procedure Editor and the Method Editor are described in the

following section.

In order to better understand diagrams produced using the Cooperative Proce

dure Editor, 6 conditions and 7 actions that are used for editing of the cooperative

procedure model, are described below. The number of the action or condition type

is mainly matched to that of the action or condition shown in Figure 4.14 of Sec

t ion 4.3.4.

The cooperative procedure editing window of Process Weaver displays several

icons composing the palette on the left hand side of the working area. The palette is

decomposed into three regions grouped as Transitions (i.e.. Conditions, Actions) and

Places. A cooperative procedure model that uses the Petri-net based formahsm, is

represented as a set of places and transitions wi th at least one ini t ia l place. An ini t ia l

place is marked when the cooperative procedure starts. A transition is composed

of a condition part and an action part. The condition part is used to enable the

execution of the action part only i f the condition is met [21].

The editor provides six types of condition as follows:

' 1. Work-context condition is used to specify that the cooperative procedure is

waiting for an answer f rom a work-context previously sent to a user. The con

di t ion is shown in the upper part of the transition numbered 1 in Figure 4.14.

82

2. P r o c e d u r e condition is used to indicate that the cooperative procedure is

waiting for a given state reached by another cooperative procedure previously

launched. The condition is shown in the upper part of the transition numbered

2 in Figure 4.14.

3. E v e n t condition is used to describe the synchronisation between the coop

erative procedure and the external world. The condition is waiting for an

external event. The condition is shown in the upper part of the transition

numbered 3 in Figure 4.14.

4. C o S h e l l condition is used to express a logical expression. The condition is

shown in the upper part of the transition numbered 4 in Figure 4.14.

5. Col lect condition is used to show how to collect answers f rom a group of

users who previously received work-contexts. The condition is shown in the

upper part of the transition numbered 5 in Figure 4.14.

6. E m p t y is used when the transition has no condition. The condition is shown

in the upper part of the transition numbered 6 in Figure 4.14.

The editor provides seven types of action as follows:

1. E m p t y is used when the transition does not perform any action. This action

is shown in the lower part of the transition numbered 1 in Figure 4.14.

2. Procedure action is used to launch asynchronously a sub-procedure, which

becomes a child of a specific cooperative procedure at run-time. This action

is shown in the lower part of the transition numbered 2 in Figure 4.14.

3. Synchronous Procedure action is used to start synchronously a sub-procedure.

When this action is taken the execution of the current procedure is temporarily

halted un t i l the sub-procedure terminates. This action is shown in the lower

part of the transition numbered 3 in Figure 4.14.

4. E v e n t action is used to send an event. This action is not shown in Figure 4.14.

5. D i s t r ibut ing action is used to send a work-context to a group of people. This

action is shown in the lower part of the transition numbered 6 in Figure 4.14.

6. Work-context action is used to send a work-context to a person. This action

is shown in the lower part of the transition numbered 7 in Figure 4.14.

7. C o S h e l l action is used to express specific functions using the CoShell (Coop

erative Shell) language. This action is shown in the lower part of the transition

numbered 8 in Figure 4.14.

Process Weaver enables automation of the process of modelling that is difficult and

error prone. Every activity of models created using Process Weaver's Method Editor

is automatically Hnked to its procedure model developed using the Cooperative

Procedure Editor so that the models produced by the two editors (i.e., the Method

Editor and the Cooperative Procedure Editor) can be kept consistent wi th each

other.

4.3 Process Model of Maintenance with Reuse

(MwR)

Figure 4.1 shows the process model for 'Maintenance with Reuse (MwR)' decom

posed into activities using the Method Editor of Process Weaver. 'Maintenance

w i t h Reuse (M w R) ' is used instead of 'Development wi th Reuse (DwR) ' since the

activities of software reuse have been integrated wi th the activities of SCM in order

to support the process of software maintenance.

M w R includes four major activities: configuration management, reuse process,

maintenance process and administration of a reuse library [69]. The reuse and

maintenance processes are associated wi th controlling evolution of legacy systems

84

Maintenance with Reuse(MwR)

W Configuration Management

W Reuse Process

W Maintenance Process

* Administration ofa Reuse Library

W Ciiange Management

W Version Management

W Status Accounting

WUndeistandCRs

w Retrieval of Components

« Evaluation

w Re-Insertion

W Updating of Reuse History

w Analyse CRs

w Change Approval

w Analyse Solutions

W Maintenance Implementation

W Integration

w Re-Insertion

W Populating a Library

W Change Control of Components

W Notifying Changes

Figure 4.1: The Ac t iv i t y Decomposition of Maintenance wi th Reuse (MwR)

85

whereas the process for administration of a reuse hbrary is concerned wi th managing

population and evolution of the reuse library. The process of configuration manage

ment supports the other three processes as their subsidiary functionality. Figure 4.2

provides an alternative view of the activity decomposition in order to identify re

lationships between the four processes. In general, configuration management is

performed by a configuration manager, the activities of a reuse process by a reuser,

the activities of a maintenance process by a maintainer and finally, the activities of

administration by a librarian, or domain manager.

The l ibrar ian/domain manager is responsible for the acquisition of new reusable

components, and the definition, evaluation, classification, population, evolution and

deletion of reusable components. Dabrowski et al. [29] define a domain manager

as "an individual or organisation responsible for managing the definition, use, eval

uation, and evolution of assets wi th in the domain". However, since the librarian

can take over the tasks of the domain manager in the reuse process, the author has

used the terms librarian and domain manager interchangeably. The configuration

manager has responsibilities for approval of change requests, change of components,

propagation of changes and maintaining of version history for a legacy system.

The role of a reuser wi th in a maintenance environment is to reuse reusable compo

nents to maintain a legacy system, to issue change requests to reusable components,

to request new components, and to update reuse history. A maintainer is responsible

for maintaining an existing system and issuing change requests to existing compo

nents. As this research focuses on SCM for a Reusable Software Library (RSL) that

supports a software maintenance environment, the reuser in the process model could

take over the role of a maintainer. However, the organisation of software develop

ment could have both a reuser who works on developing a software system using

reusable components and a maintainer who implements change requests to an ex

isting system using reusable components. In addition, when the reuse technology is

first introduced into the organisation, both a reuser and a maintainer are necessary

in order to standardise the activities of the reuse process and to encourage a main-

86

CONFIGURATION MANAGEMENT
/ I V -

Change Management Version IVIanagement—^

~7N

Status Accounting

REUSE PROCESS MAINTENANCE PROCESS

Understand C R s ^ ^ Analyse CRs

Retrieval of Components k—^ K)̂ Change Approval

Evaluation k ^ Analyse Solutions

Maintenance Implementation

COMMON ACTIVITIES

Integration

Re-insertion k «

Updating of Reuse History

< Legend >

Major Data Flow

Minor Data Flow

Data Flow between Processes

Populating a Library ^ l ^ _ _ 4 h a n g e Control of Compon Notifying Changes

71^

ADMINISTRATION OF A REUSE LIBRARY

Figure 4.2: The Ac t iv i t y Decomposition of Maintenance wi th Reuse (MwR)

87

tainer who is not wi l l ing to reuse, to reuse reusable components for maintenance of

an existing system. Each terminal activity (e.g., version management) that com

poses a refined activi ty (e.g., configuration management) is discussed below in more

detail.

4.3.1 Configuration Management

As shown in Figure 4.1, 'configuration management' consists of activities such as

''change management, version management and status accounting\

'Change management' establishes the change control procedure to initiate, eval

uate, approve and implement changes to a baseline. In particular, this activity is

responsible for approving a change request that can be issued by a reuser, a main

tainer, and an end user.

Software components are subject to evolution after release as they need to be

corrected, adapted and enhanced, so both an existing system and a reuse library

require 'version management' for their components. These changes create new re

visions and these revisions are time-ordered. A variant is used to meet similar but

different requirements at the same time. For example, there might be two variants of

a module in order to f u l f i l slightly different requirements for two kinds of platforms.

W h i t g i f t [120] classified variations into two categories: temporary variants that are

eventually merged into the main line and permanent variants that are never merged.

The objective of 'status accounting' is to provide a maintainer/reuser wi th visi

b i l i ty by recording and reporting the status of all components and change requests.

Thus, in this research the activity of status accounting provides most information

relevant to reuse and SCM for a project manager, a configuration manager, a main

tainer, a reuser, and a l ibrarian/domain manager. Each reusable component should

include some information on specification, quality and administration. A change

history should be recorded, such as who made the changes, what changes have been

made, when the changes were made, and why the changes were made. Although

different people need different SCM information at different times and in different

forms, Ben-Menachem [6] presents a minimal wish list of reports as follows: trans

action log, change log, i tem 'delta' report, resource usage, stock status (i.e., status

of items), changes in progress, and deviations agreed upon.

4.3.2 Reuse Process

The objective of this section is to establish procedures of the reuse process for

implementing change requests (CRs) initiated f rom an existing system. Figure 4.1

shows that 'a process of reuse' is composed of understand CRs, retrieve components,

evaluate, integrate, re-insert, update reuse history.

As shown in Figure 4.3, 'the understanding of the CR' includes two processes:

' ident i fying the requirement of the CR' and 'determining which software components

should be retrieved' to meet the requirement. I f a domain analysis has already been

carried out the process of understanding can be easily performed. The domain

analysis is described in more detail in Section 4.3.5. For instance, the name of the

domain can be used effectively as a keyword for search.

'The retrieval of components' consists of 'deciding on a search method' (i.e., key

words, classification, etc.), 'retrieving components' and 'retrieving component ver

sions' as shown in Figure 4.4. A search mechanism supporting queries enables reusers

to f ind a set of components which match the identified requirements. Ideally wi th a

sufficiently well populated hbrary and appropriate search and retrieval mechanisms

in place, a large number of relevant components w i l l be found. After retrieving

reusable components, a reuser also extracts reusable component versions by using

the history of a change. The versions of these components can then be reviewed for

their suitability.

Using the reuse history and statistics, the reuser evaluates alternative versions

89

3

Figure 4.3: The Process for Understanding of the CR

Kcti-ic-val

Figure 4.4: The Process for Retrieval of Components

90

r

Goiuponc
Fa>l«l

. Figure 4.5: The Process for Evaluation of Components

of each reusable component and chooses the best version for his needs. Figure 4.5

shows that 'the evaluation of components' includes four sub-activities: understand

ing retrieved component versions, investigating alternatives to fit requirements of

reuse, selecting a suitable component version for reuse and possibly adaptation, and

adapting a chosen component where appropriate. After comparing reusable com

ponent versions, a reuser has to adopt either 'white box' reuse or 'black box' reuse

depending on the level of adaptation/modification of retrieved reusable component

versions. The reuser may modify reusable component versions i f necessary for 'white

box' reuse. Only i f the estimated effort to modify a reusable component f rom the

repository does not surpass the effort to adapt an existing legacy component, the

reuser w i l l adopt 'white box' reuse. The process of adaptation is similar to the pro

cess of maintenance as i t includes the processes of modification and testing. After

modi fy ing a reusable component, the reuser performs unit testing of the component.

As shown in Figure 4.6, 'the integration of components' consists of sub-activities

91

elect! n g S C I s

S d e c I Vers ions

Selecting Version;

I em (Integration/
Testing)

Innigration/Rcgression
~T\;stiuc Ended

esting Passed

Freezing S C I

GhEbk in Ended

Sending to Q A / T e s i e r

Testing Fiiiied

Check in New Versio

Propagate Changes

Figure 4.6: The Process for Integration of Components

such as selecting reusable components, selecting component versions, performing

integration testing and regression testing, freezing the new baseline, and propagat

ing changes. The objective of integration testing is to validate chosen and modified

reusable components in order to ensure that the reusable components work correctly

w i t h an application. The reuser integrates the chosen component versions to build

a system/subsystem using composition rules. I t is desirable for the reuse library

to support the funct ion of system building that constructs a system using reusable

components. In general, the process of system building consists of a system model

and configuration thread (version selection rules). A system model fists all the

components that make up a system. The system model describes the relationships

between the system's source and derived items as well as between the components of

a system. A configuration thread specifies which revision should be chosen for each

component to compose a specific system configuration. A Syntactic Interconnection

Language such as SySL (System Structure Language) and PCL (Proteus Config-

92

Figure 4.7: The Process for Re-insertion of Components

uration Language) may be used to construct composition rules for an integration

test. The objective of regression testing is to verify that the modification made by

'white box' reuse has not caused any side effects. The integration testing followed

by 'black box' reuse does not require any regression testing as 'black box' reuse does

not entail any modification. The regression testing should also be performed using

the results f r o m an impact analysis.

Figure 4.7 shows that 're-insertion' includes 'releasing new versions' and 'updating

the change history'. In general, the change history is automatically recorded by an

SCM tool. The process of 're-insertion' is exactly the same as that of a maintenance

process as w i l l be shown in Section 4.3.3.

I f the release of a new system is performed successfully the reuser updates files

related to reuse history. As shown in Figure 4.8, 'the updating of reuse history'

consists of 'updating reuser's evaluation file', 'updating a reuse experience file' and

'updating a statistical file'. 'The updating of reuse history' facihtates further reuse of

the reusable components. In addition, i t enhances the reusability of the component

because the accumulated experiences of reusing the component can increase users'

confidence in the components.

93

pilate
Reuse
Evalualitin Files Experience Files Statistical F i es

Updaling Updaling

•J.IC Finishcu

Updaling

Figure 4.8: The Process for Updating of Reuse History

Figure 4.9 describes a combined reuse process that contains all the reuse activi

ties and includes the concept of the component version. The process is similar to

the reuse process described above except that i t has separated 'retrieval of reusable

component versions' and 'adaptation of reusable component versions' f rom 'retrieval

of reusable components' and 'evaluation of retrieved components versions', respec

tively. The process does not include the process of 're-insertion'.

4.3.3 Maintenance Process

As shown in Figure 4.1, 'the maintenance process' consists of analyse CRs, change

approval, analyse solutions, maintenance implementation, integration and re-insertion.

Since this research focusses on a software maintenance process, i t is assumed that

the change request is produced during maintenance, not development. Therefore,

a change request can be issued by a maintainer or an end-user. As shown in Fig-

94

Identification of Reuse Needs

Reusable Components

Reusahle

Siiftware

Library

Download

Dynanuc Library

Devclopmcnl

Library

Retrieval of Reusable Components

Reusable Versions

Retrieval of Reusable Component Versions

Reuse History & Statistics
Evaluation of Retrieved Component Versions

Adaptation of Reusable Component Versions

Composition Rules

Integration of Reusable Component Versions

Reuse Information Update Reuse History

Figure 4.9: The Reuse Process Incorporating Version Control

ure 4.10, the process of 'analyse CRs' consists of 'receive CRs, analyse CRs, write

an Engineering Change Proposal (ECP), and submit an ECP to the CCB' . Every

change request is forwarded to a maintainei:, a reuser, and a configuration manager

at the same time. Af ter the maintenance team receives the CR i t should analyse

the CR in order to decide whether the CR resulted f rom incorrect operation or

misunderstanding of the system.

Figure 4.11 shows that the process of 'change approval' includes 'receive ECPs,

analyse ECPs and approve ECPs'. This process is performed by a CCB (Configura

tion/Change Control Board) whose purpose is the control of changes. To make an

efficient decision, the CCB needs to have authority and expertise. Thus, i t should

be composed of a configuration manager, a project manager, a QA manager and

representatives f r o m both a maintainer and an end-user.

As shown in Figure 4.12, the process of 'analyse solutions' consists of ' identify

95

I

Figure 4.10: The Process for Analysis of CRs

solutions, perform an impact analysis, estimate resources, and plan implementation

of changes'. I f a maintainer can have several solutions to the CR he needs to estimate

and compare the cost of implementing each solution. The results f rom the impact

analysis can be used to estimate manpower and cost.

As shown in Figure 4.13, the process of 'maintenance implementation' includes

'request components, allow check-out, check-out components, modify components,

and perform unit testing'. The subprocess of 'modify components' is similar to the

subprocess of 'adapt components' wi th in 'evaluation of components' of the 'reuse

process'. Whereas the CCB is responsible for monitoring the implementation of

the change requests (CRs) i f they are approved, a project manager is in charge of

implementing approved CRs by the due date using the resources allocated by the

CCB.

The act ivi ty of ' integration' of the maintenance process is exactly the same as

96

®
R e c e i v e E n g i n e e r i n g
C h a n g e P r o p o s a l s C E C P s)

R e c e i v i n g E C P s

— • A n a l y s e E C P s

a l u a t i n g E C P s

^ A c c e p t
H o l d C R s
C R s

^ N o t i l i c n
l a n d e d ^ ^ ^ ^ E n d - |

N o t U y O r i g i n a t o r s

Figure 4.11: The Process for Approval of Changes

Figure 4.12: The Process for Analysis of Solutions

97

Figure 4.13: The Process for Implementation of Maintenance

that of ' integration' of the reuse process except that the 'regression testing' of the

maintenance process is always required although the reuse process only needs the

'regression testing' when 'white box' reuse is applied to the process. Figure 4.6

shows that the process of 'integration' consists of 'selecting reusable components,

selecting component versions, performing integration testing and regression testing,

freezing the new baseline, and propagating changes'. I f the above two tests are

completed successfully, the new baseline is established and a configuration manager

notifies a project manager, a hbrarian/domain manager and maintainer that the

new configuration version is available.

The process of 're-insertion' consists of 'release new versions and update the

change history'. The activities of 're-insertion' are exactly the same as those of

're-insertion' wi th in the reuse process as shown in Figure 4.7.

4.3.4 The Relationsliips between tlie Reuse Process and tlie

Maintenance Process

Figure 4.14 shows the cooperative procedures of the reuse process and maintenance

process developed f r o m Figure 4.2. In order to show the integrated process of the

reuse process wi th the maintenance process, three processes of the M w R model, i.e.,

'configuration management, reuse process, and maintenance process' have been com

bined w i t h one diagram that is similar to an extended Data Flow Diagram (DFD) .

This procedure assumes that a configuration manager together wi th a maintainer is

involved i n activities for evaluating and approving of change requests. As this re

search is based on a software maintenance environment, most activities of the reuse

process have relationships wi th those of the maintenance process. For example, the

analysis of the CR wi th in a maintenance environment is associated wi th subactivi-

ties of both the maintenance process and reuse process. Therefore, change requests

are passed on to both a reuser and a maintainer for reviewing at the same time.

The maintainer shown in Figure 4.14 knows all information about an existing

system whereas the reuser- shown on the left side of the figure is an expert on the

components in a reuse library. The reuser works in collaboration wi th a domain

manager who is familiar w i t h the components wi th in a domain and who can provide

detailed information to the reuser.

As shown on the left side of Figure 4.14, after the reuser receives a change re

quest he can start w i th identifying reuse requirements. Then the reuser searches

for reusable components that match the reuse requirements and also retrieves com

ponent versions using the version history. Although the reuser may find reusable

component versions f r o m the library, he should await the answer f rom the main

tainer, where the change proposal is approved, disapproved, or held by the CCB. I f

reusable component versions are found f rom the repository and the CCB approves

the change proposal, then the next step, the evaluation of component versions wi l l be

performed, followed by activities of integration, re-insertion and recording of reuse

99

history. I f reusable component versions do not exist in a repository, then the reuser

notifies the maintainer of the fact and the process of reuse is ended. In other words,

i f there is no reusable component that can be reused or modified for 'black box'

or 'white box' reuse, then next processes, i.e., activities of modification, integration

and re-insertion must be performed by the maintenance process and the maintainer

should take over subsequent processes.

The maintainer and configuration manager analyse a change request and decide i f

i t comes f rom an incorrect operation, incorrect documentation, or incorrect software.

Then, they produce an Engineering Change Proposal (ECP) to be submitted to the

CCB (Configuration Control Board). ECPs can be classified as "emergency", "ur

gent", and "routine". The maintainer and configuration manager deal wi th change

requests in close cooperation wi th a reuser. The configuration manager is respon

sible for monitoring of processing and dealing wi th all change requests. The CCB

is responsible for approving, disapproving/rejecting, or holding a submitted change

proposal.

Although a change proposal is accepted by the CCB, a maintainer should wait

un t i l a reuser finds out whether reusable component versions related to the change

request exist or not. I f the change proposal is rejected, the CCB should not i fy

an originator and a reuser wi th an appropriate reason. I f the change proposal is

pending, the CCB should analyse i t again at a later t ime and also not i fy a reuser.

I f the CCB accepts the change proposal and reusable component versions do not

exist in the repository, the next activities of the maintenance process continue. I f

the CCB accepts i t and reusable component versions exist, the reuser continues to

perform the remainder of the activities of the reuse process, while the maintainer

stops carrying out the process of maintenance.

Where reuse is not possible, i.e, no components have been retrieved, and the CCB

has accepted the change proposal, then the maintainer analyses a report on change

approval in more detail, develops a specific solution for approved requirements, and

also identifies Software Configuration Items (SCIs) that are affected/impacted by

100

1-r-Koiu'

A-pprovinKCR

plciiiciitCR

Perforin Iiitegrntfon
Xestinc

iiiCKi-iMiie

1 cstPasscd Rc-iiiKeriing
Upa:»tin4 History

CoiinKtirntioii
IVlanngcr(:CM>
Receives
C R s

CRReceivcd

Figure 4.14: The Relationships between the Reuse Process and the Maintenance

Process

101

any changes to an existing SCI. The maintainer implements change requests ac

cording to the results of solution and impact analyses. Af ter a maintainer finishes

implementing the changes he performs regression testing preceded by integration

testing of the new components. After the regression testing is performed success

fu l l y by a maintainer, the configuration manager freezes the changed components

to set a new baseline and then lets a project manager release a new component. A

configuration manager controls and monitors the status of change requests during

the implementation of change requests.

Since there exist relationships between the reuse process and maintenance process,

the process of 'Maintenance wi th Reuse (M w R) ' can greatly support the process of

maintenance i f a systematic reuse activity is implemented wi th in a software main

tenance environment which is controlled by Software Configuration Management

(SCM).

4.3.5 Review of a Product Line and Administration of a

Reuse Library

Before populating a reuse library, a hbrarian/domain manager needs to perform

a domain analysis in order to identify product lines/families wi th in a develop

ment/maintenance organisation. Identification and introduction of product fines

are useful for classification of reusable components and building of systems using

reusable components.

Concepts R e l a t e d to a Produc t L i n e

The registration of a reusable component should be preceded by classification of the

reusable component according to concepts of a domain analysis and a product line.

Cohen, Friedman et al. [25] clarified some terms associated wi th the product line,

and improved greatly product quality and productivity by applying the concept of a

102

product line to the development and acquisition of electronics systems called C4I for

the US A i r Force. The relevant terms are discussed below. In particular, we need to

clarify the concepts of a product line and a domain as they have some commonahties

in some cases.

Component and Asset A component is an existing software or document unit

that can be used to create a software product. Cohen, Friedman et al. [25] define an

asset as "a resource or input used to build a product including architectures, tools

and COTS (commercial off-the-shelf) software". They had a broad view of an asset

encompassing architectures, tools, etc. In this thesis, the author l imits the scope of

an asset to reusable software components and reusable documents.

P r o d u c t A -product is a system delivered to a customer and is composed of a

component or an asset. Examples of a product are an inventory control system and

an air force monitoring system.

P r o d u c t L i n e and P r o d u c t F a m i l y A product line is a collection of related

systems/products that have specific features and functionalities to meet a common

set of customers' requirements whereas a product family is a set of related systems

that are buil t f r o m a common set of core assets. Products in the product family are

bui l t using these common assets and some system-unique software. Thus, a product

line is a market- or customer-driven concept, while a product family is a technology-

or implementation-dependent concept [36]. However, the two terms are usually used

synonymously. The fill-out form for registration of the prototype is using the term

of the product line.

The objective of the product line is to maximise sharing of software resources such

as software components, tools, development environments, and test capabilities. The

Organisation Domain Modelling (O D M) method [97] facilitates the understanding

of product lines. O D M formalises a domain to clarify the domain boundaries by

103

making clear assumptions about related systems in a domain. I t also clarifies the

relationships between domains. Product lines are defined through the process of

domain modeUing (e.g., O D M) that follows the steps below:

1. Categorise the legacy systems developed by an organisation (i.e., building a

descriptive model).

2. Ident ify example programs for each category.

3. Define program relationships and interconnections wi th other product lines

(i.e., building a prescriptive model for each product fine). The prescriptive

model formally defines the ideal product line and enables the organisation to

ident i fy the assets which w i l l be included in each product line.

The last step of the above process uses the results f rom all the previous steps

to produce the prescriptive model for a product line. The prescriptive model for

mally defines the ideal product line and assists the organisation in identifying and

classifying the components related to each product line.

Some examples of product lines are university information processing, traffic con

t ro l , air-borne air surveillance, air-borne ground surveillance and satellite commu

nications. To facilitate software reuse and rapid prototyping, a product line must

be represented by the generic architecture and domain that is depicted below.

D o m a i n and Arch i tec ture A domain is a specialised body of knowledge and an

area of expertise. As the domain is an intangible thing i t is unfike a product line

or product fami ly which is a specific collection of actual products. An architecture

is the core asset of a product fine. I t provides the structure for building products,

helps an asset manager to identify product line assets, and defines the means for

connecting components.

A domain analysis and architecture lay emphasis on understanding the comrfion

capabilities of software applications wi th in a product line. A domain model is the

104

Framework

Domain ^

Component(Asset) ^

^ Product Line

Product

Figure 4.15: Relationships between Concepts Associated wi th a Product Line

specification of product line assets that defines common capabilities, areas of vari

ation and reasons for those variations as they are associated wi th a set of end

users [36 .

Figure 4.15 depicts the relationships between some concepts associated wi th a

product line.

• Number 1 has an 'n to n ' relationship. A reusable component can be used to

bui ld several products. A product consists of several components.

• Number 2 shows an '1 to n ' relationship. A product line is composed of

products that are delivered to a customer. In a few cases, there might be

an 'n to n ' relationship where the development of a system can require an

integration of products across product lines, using the mult iple product lines.

• Number 3 presents an 'n to n ' relationship. A domain consists of several

product lines and a product line can be associated wi th several domains.

105

• Number 4 has an '1 to n ' relationship. A domain is composed of several assets

or components.

• Number 5 shows an '1 to n ' relationship. There exist multiple domains in a

framework and an architecture.

As shown in the figure 4.15, a product line has a strong relationship wi th a domain,

so the product fine should be preceded by a domain analysis.

A n application of the product line Although Cohen, Friedman et al. [25

propose 7 criteria as success factors for a product line, the author has addressed

a few criteria that can be applied to the development of a product using reusable

components. In order for product fines to be successful, the following organisational

criteria must be met:

• The process for developing/maintaining an appHcation using the concept of

the product line should be buil t in a development/maintenance environment.

• A l l the product fines should be defined through the process of domain mod

elling. The definition of the product line should be performed by domain

experts f rom each product line.

• Each reusable component needs to have related product lines.

• Relationships between products must be clarified. In other words, the reusable

component should be linked to relevant products or systems.

• The appropriate alignment of an organisation is essential for an effective ap

plication of product lines.

I n summary, in terms of software reuse, the product line can be defined as a col

lection of systems/products that use the common capabifities of a set of reusable

components. These common capabilities are identified and specified through the

106

process of domain analysis. The product line can be an abstraction of system ver

sions and contributes to the population of the reuse library and construction of a

new system using reusable components.

A d m i n i s t r a t i o n of a Reuse L i b r a r y

Figure 4.1 shows that 'administration of a reuse l ibrary' contains three subprocesses,

i.e., 'populating a library', 'change control of reusable components', and 'notifying

changes" whose processes have been included in Figure 4.16 that is described in this

section.

Reusable components are added to the reuse repository through , the populating

of a l ibrary by a l ibrarian/domain manager. As shown on the left and middle sides

of Figure 4.16, the population of a reuse library is performed by a librarian/domain

manager in two ways. Firstly, the librarian/domain manager can receive potential

reusable components f r o m the reuser or maintainer. Secondly, the librarian/domain

manager can also receive the requests for new components f rom the reuser, main

tainer, or supplier.

Af t e r quality standards are set up these standards should be referenced and used

whenever new components are developed or existing reusable components are main

tained. In particular, V & V (Verification and Validation) for reusable components

should be introduced to enhance reusability, adaptabihty, maintainability and porta

b i l i t y that are crucial factors for software reuse.

As shown on the left of Figure 4.16, after the librarian/domain manager receives

potential components f rom the reuser and maintainer, he evaluates these compo

nents in collaboration w i t h a QA manager. These potential reusable components

are component versions that were created as a result of 'white box' reuse. He needs

to refer to standards for software quality of his organisation when evaluating possible

reusable component versions. After that, according to an organisation's classifica

t ion scheme, the l ibrarian/domain manager classifies component versions chosen

107

as reusable components in order to register them in a reuse library. Whenever a

component version is classified and inserted, the librarian/domain manager should

not i fy the configuration manager, reusers and maintainers in order to propagate

what component version was inserted and who inserted i t .

A reuser can request potential or new components which he expects to use in the

future , and also issue change requests in order to ask for changes to existing reusable

components in a reuse library.

As presented in the middle part of Figure 4.16, after the librarian/domain manager

receives requests for new components f rom any reuser, maintainer, or supplier, he

decides whether or not requested components have potential reusability in the future.

He can accept, reject, or hold these requests for new components. Accepted new

components are purchased and inserted into the library after classifying. I f he rejects

the requests he should not i fy the requesters of new components. In addition, the

l ibrar ian/domain manager should propagate the results of decision on these requests

to the configuration manager, reusers and maintainers.

The reusable software library may also evolve over t ime regardless of the type of

reuse, i.e., 'black box' reuse, 'white box' reuse and 'gray box' reuse. As shown on

the r ight side of Figure 4.16, after the librarian/domain manager receives change

requests (CRs) for reusable components f rom the reuser and maintainer, he analyses

and approves the CRs in collaboration wi th the CCB. The CCB is in charge of decid

ing whether CRs for reusable components issued f rom the reusers and maintainers

need to be approved and implemented or not. As in CRs for an existing system,

the CRs for the reuse library can be approved, rejected or held by the CCB. When

the CRs are implemented the librarian should send the CCB, relevant project man

agers, maintainers and reusers a message saying that a new version of the reusable

component is available.

The procedure to control the CRs for reusable components is similar to the proce

dure of the CRs for a legacy system. However, there exist a few differences between

108

^ R e c e i v e

Start
• ^ L i b r a r i a n / D o m a i n Manager)

-CD-i;;)?;; I Potential
I "̂"̂ 1 C o m p o n e n t s

f rom R e u s c r s
& Mainta inors

R e c e i v e
- o - £ ^ Requests for

L i b r a r i a n
- t Z H l j ^ R e c e i v e s C R s

F o r Reusable
Components
from Reusers
& Maintainers

N e w C o m p s
from Reusers ,
Maintainers
«& Suppl iers

C o m p o n e n t s
R e c e i v e d C R R e c i e v e d Requests

c c c i v e d

A n a l y s e C R s Dec ide to
Purchase E v a l u a t e

C o m p o n e n t s

Noti tying

A n a l y ^ l n g C R
Decid ing

Holding E v a l u a t i n g

Notify
^ B ^ ^ Requesters

A p p i l p v c C R s
C l a s s i l y I

-CD-T^I^ ^ C o m p o n e n t s Reject

Purchase
A p p r o v i n g C Reiect ing/

Holding

Notityltm
Requester ; ;^ Purchas ing

Implement ing
Register
C o m p o n e n t s

mplement C R s
for Reusab le
Components

Regis ter ing

-Not i fy /propagate
Ottiers . (CIVI,
Reuser .Mainta incr ;

E n d

Figure 4.16: The Procedure for Population and Change Control of a Reuse Library

109

these two kinds of change control. The first difference is that the CCB for change

control of reusable components consists of a reuser, a librarian/domain manager, a

QA manager and a configuration manager, whereas the CCB for change control of

a legacy system includes a maintainer, a configuration manager, a project manager,

a QA manager and an end-user but not a librarian/domain manager. The second

difference is that the procedure of the change request for the reuse library does not

include the step of the "integration testing and regression testing" which is necessary

for maintaining a legacy system.

Every reuser, configuration manager and maintainer should be notified whenever

reusable components are modified and new versions are created. I f a reuser or

maintainer discovers a serious error in a reusable component he can ask a librar

ian/domain manager to delete the component. When deleting a component the

l ibrarian/domain manager should not i fy reusers, the configuration manager, and

maintainers about the deletion.

4.4 Summary

The process model of M w R (Maintenance wi th Reuse) has been produced and re

fined using Process Weaver that defines activity hierarchies and models the detailed

processes for each activity. The activities of the M w R model have been decomposed

into four sub-activities which have the models of cooperative procedures. There

are two major cooperative procedure models in the M w R model: one is used for

controlling evolution of a legacy system through a reuse library; and the other sup

ports the evolution of the reuse repository itself. The former is associated wi th the

tasks of reusers, maintainers, a configuration manager, a project manager and a

QA manager whereas the latter is concerned wi th the roles of a librarian/domain

manager, a configuration manager and a QA manager. In order to make a reuse

process effective, the reuser and maintainer need to cooperate wi th each other as

the continuity of the reuse and maintenance processes depends on whether or not

110

there are possible reusable components wi th in a reuse repository.

Although the idea of the product line originated f rom one of the SCM functionali

ties (i.e., product family)^ software reuse can benefit f rom application of the product

line to the classification and integration of reusable components. The concept of the

product line that enables the optimal sharing of software resources, fits well wi th the

Maintenance wi th Reuse (MwR) model since the product line may be regarded as

a framework of reusable system versions that could be customised for other similar

system requirements, and i t can also be effectively used for classification of reusable

components and construction of systems using reusable components.

To enhance the quality of reusable components wi th in a reuse library, a librar

ian/domain manager must control strictly the population and evolution of the library

in collaboration wi th a QA manager. Potential reusable components for inclusion

in the l ibrary can come f rom reusers, maintainers and external suppliers. Change

requests (CRs) for reusable components can be issued by reusers and maintainers.

I f the purchased new components f rom suppliers and the created new versions f rom

CRs, are registered wi th the reuse library through the process of Quality Assurance

set up by an organisation, the possibility of availability of the reuse library w i l l be

increased greatly.

In the following chapter, the implementation of the M w R model is described, in

cluding the functions and development of T E R R A , TERRA's interaction wi th SCM,

C G I and server, and the description of tools used for implementation of T E R R A .

I l l

Chapter 5

Implementation of the Model

The model described in the previous chapter has been used as the basis for an exper

imental implementation. This chapter summarises functionalities of the prototype

called TERRA (Tool for Evolution of a Reusable and Reconfigurahle Assets Library)

and shows the home page of T E R R A that provides reusers and maintainers wi th 5

functions enabling them to deal wi th changes to both a legacy system and a reuse

Hbrary. I n addition, i t addresses TERRA's interaction wi th SCM, a CGI (Common

Gateway Interface) script and a Web server, followed by descriptions of tools such

as freeWAIS-sf-2.0.65 and RCS (Revision Control System) that have been used for

implementation of T E R R A on the Unix operating system.

Although the process model of this work contains all activities to support the

reuse process, maintenance process and SCM process, all functionalities of the M w R

(Maintenance w i t h Reuse) model w i l l not be implemented. This is because the ob

jective of this research is to tackle most problems related to SCM that exists wi th in

^ a reuse process, a maintenance process, and a reuse library itself. In addition, i t

is impossible to implement the whole part of the model because of time l imita

tions. However, the comprehensive model of M w R can be effectively used for an

organisation to bui ld systematic reuse.

112

5.1 Implementation of T E R R A

5.1.1 Functions and Development of T E R R A

TERRA (Tool for Evolution of a Reusable and Reconfigurable Assets Library) is an

electronic reuse library that can be accessed through the Internet and is also a tool

to manage and control the evolution of reusable components and legacy systems

using functions of SCM. The term, ' T E R R A ' is an acronym of "Tool for Evolution

of Reusable and Reconfigurable Assets". I t has a meaning of the earth or land

i n Lat in . The word Reusable means the reusable components whereas the word

Reconfigurable describes that the asset is supported by functionalities of SCM. In

addition, the original meaning of T E R R A , earthy shows i t aims at a worldwide reuse

server. Thus, T E R R A has a impl ic i t meaning of a reuse server that can be accessed

by a number of Internet users across the world.

The T E R R A prototype for a reuse server has been developed on the W W W in

order to enable many people to access and reuse reusable components, to register

possible components and to issue a change request to improve the quality of reusable

components. The prototype can also be used to build an Intranet application for a

specific organisation as well as a general Internet application. The Intranet [65] is an

internal network where Internet protocols are used to store and access information

and an information repository are front-ended by a web browser such as Netscape

or Internet Explorer.

The T E R R A prototype developed for the World Wide Web (W W W) has many

advantages in terms of portability, traceability, integration wi th existing tools, and

a distributed development/maintenance environment.

I t supports most activities of the 'Maintenance wi th Reuse (DwR) ' process that

consist of classifying, storing, and retrieving, including controlling changes to reusable

components and a legacy system. By providing reusers and maintainers w i th more

informat ion on reuse and maintenance, T E R R A helps reusers and maintainers build

113

Nt.»tsi:<tjpc^: Tf i c i l fur Evululiun uf K L - U K i t h l e iutd Kecoiillf.'ui iO^le Afisftti lStni\ty (T E R R A)

m a EdU v iew go DooKina^s OpUoits OiracUM-y VAnOow

U a c k j r o r w a r r t j Hcwrrie j E i f i l j H q l o ? i r t j La-AKt h\iM\Kiii} O p e n . . . } P r t n t . , . { f l » d . . . } : a t f i p j

l o c a t i o n : j j i . i . i p . / / w i t f w . c . a c . u k / ^ dee S o c k / t e a r r a /

a f s riewTI Whafs COirf?! DesUnationsI Net Search I Peaplel Sartwore

University off Durham
Department off Computer Science
Centre for Sofftware Maintenance

Tool ffor Evolution off Reusable and ReconflgnraMe Assets
irary (T E R R A 1.0)

H Reusable Components Search

B Reusable Components Registration

B l A Flll-out Form ffor a Reuse Report

H I A Fill-out Form ffor a Change Request

B A Fill—out Form ffor Change ^^proval: Please Insert a
Related C R

CompntfcT S dencfe H omt PaK»

Figure 5.1: Home Page of T E R R A

or maintain a system using reusable components. As shown in Figure 5.1, the home

page of T E R R A provides users with 5 functionalities, i.e., "5earc/i for Reusable

Components, Registration of Reusable Components, A Fill-out Form for a Reuse

Report, A Fill-out Form for a Change Request, and A Fill-out Form for Change

ApprovaF. These functionalities are addressed in detail in Chapter 6.

5.1.2 T E R R A ' S Interaction with SCM, C G I and Server

As shown in Figure 5.2, the HyperText Transfer Protocol (H T T P) is used for trans

ferring H T M L forms via the Internet. In other words, H T T P is a method used to

transmit data using a hypertext format so that the encoded data can arrive safely

114

Reu.ser/Mainlainer WSTN

fofinhlml

resullJblml

ma
Rqxwilory

ConyonenLs

SCM /

ration

Manage-

mem

lfn?ScrTer

CGI SciipB

faWAIS-sf

Application

Existing CoJ^j
DonuiEiili

Figure 5.2: TERRA's Interaction wi th SCM, C G I and Server

at the Web browser. A Web server is a program that receives requests f rom a Web

browser and tries to find the file or program requested [94].

The Common Gateway Interface (CGI) is a mechanism that allows a reuser/user

to execute programs on a Web server and to receive their outputs. C G I programs

are often used to produce H T M L forms on the fly. They are also used to process

the input data that a user enters through an H T M L form.

I n this research, the Perl scripting language has been used to develop CGI appli

cations as Perl is a powerful language that makes i t easy to manipulate numbers,

text , files, directories, and computer networks. Additionally, i t is easy to develop,

modi fy and debug Perl scripts, and Perl has been ported onto many modern oper

ating systems. For this reason, Perl is especially popular wi th systems programmers

and Web developers, but i t also has a much broader user community. Perl is no

longer used just for text handling and i t has grown into a sophisticated and general

purpose programming language.

Al though Perl was in i t ia l ly designed as a glue language for the Unix system, i t

can also be run on a variety of other operating systems. Thus, Perl is one of the

115

most portable programming languages available today [116].

Af te r filling in an H T M L form, the sequential process by which a reuser/user

obtains reusable components, has the following steps: Firstly, i f a user requests

TERRA'S Web page through a Web browser, the Web server returns i t to h im.

Then, i f a user clicks a but ton after inserting input data for reusable components or

change requests into the Web page, the Web server checks i f he has permission to

run the C G I program and that the CGI program also exists. The CGI program is

executed only i f the above two conditions are met. The results/responses produced

by the C G I program are transferred to the Web browser through HTTP. Finally,

the Web browser displays the results for reusers/users. Whenever the registration

and retrieval of reusable components are performed, most activities related to SCM

control and management of the related component versions are supported by the

SCM tool shown in the broken fine box in Figure 5.2.

5.2 Tools adopted for Implementation of T E R R A

5.2.1 freeWAIS-sf-2.0.65

In order to effectively search for reusable components, the tool has adopted 'freeWAIS-

sf-2.0' [88] as a search mechanism, which is currently the most widely used.

H o w to Index U s i n g freeWAIS-sf -2 .0 .65

Whenever the reusable components have been registered wi th a reuse library, the

C G I script indexes the reusable component automatically.

1. Create a directory to keep index files.

2. Create a database file in the fo rm of program sources, text files, dvi files,

bibtex files, etc.

116

3. Create Makefile, * . fmt and *.fde.

• Makefile : A user needs to change the paths for Macros i.e., WAISINDEX,

WAISQ, WAISSEARCH and SWAIS.

• * . fmt : This file is used for format definition. The file is not necessary

i f the field option ' - t fields' is not used. To see the format definition file

' v . f m t ' that has been used for this research, refer to Appendix A.2 .1 .

• *.fde : This file is used for optional format description. The contents

of the file are the same as the fields list in a database description file,

i.e., '*.src'. The format description file 'v.fde' that has been used for this

thesis, is included in Appendix A.2.2.

Instead of using Makefile, we can also use the following commands.

• waisindex-t fields-d data-base-description-file(i.e. index file) database-file(i.e.

source file) : This command creates 9 index files and other files related to fields.

This method might be useful to index reusable codes.

• waisindex -d index-filename filename filename : This command creates 7

index files. This method seems very simple but i t does not provide an efficient

search capability as i t does not use the field option.

A l l the index files associated wi th freeWAIS-sf-2.0.65 are listed in Appendix A.2.3

5 . 2 . 2 R e v i s i o n C o n t r o l S y s t e m (R C S)

This research has used the Revision Control System (RCS) [108] as a backbone for

version control because this tool has been widely used and is available for a variety

of Unix flavours and other platforms. So far, RCS has been adopted as a base for

development of several SCM tools.

117

I t has been applied successfully to a variety of development situations that pro

duce documentation, drawings, V L S I layouts, forms letters and articles as well as

specifications, test data and source code. RCS automates the storing, retrieval, log

ging and identification of revisions, and i t also provides version selection mechanisms

for composing configurations. Comparing i t wi th other tools such as SCCS [93], RCS

has a lot of strengths: storing a variety of information, providing a version selec

t ion mechanism, managing and merging multiple lines of development, controlling

conflicts of coding and access, providing release control, simple user interface, and

merging customer's modifications into distributed versions. Detailed functions of

RCS [108] can be found in Appendix A.3.

5.3 Summary

The process model of Maintenance wi th Reuse (MwR) has been implemented on the

Wor ld Wide Web (W W W) so that the prototype can provide reusers and maintainers

w i t h a p la t form independent, distributed maintenance environment. The T E R R A

prototype has good flexibility that can be integrated wi th existing tools on a Unix

system. In particular, Perl has been used to implement CGI applications for the

prototype as i t is one of the best portable scripting languages. I f access control is

provided using a user ID and password, T E R R A can be effectively used for building

Intranet applications as well as Internet applications.

The reuser, maintainer, configuration manager, librarian, end user, etc. can be

assigned the five fill-out forms of the T E R R A home page through access control.

For instance, the reuser and maintainer can have access to the field, "Reusable

Components Search" in order to implement change requests (CRs), and the field, "A

Fil l-out Form for a Reuse Report" to record their experiences wi th reusing software

components. The librarian can access the field "Reusable Components Registration"

in order to put reusable components into a reuse repository. In addition, the fields

"A Fil l-out Form for a Change Request" and "A Fill-out Form for Change Approval"

118

can be accessed by the reuser and maintainer, and the configuration manager and

domain manager, respectively.

In the next chapter, a detailed description for the T E R R A prototype use is given,

focusing on registration of reusable components, retrieval of reusable components,

recording the history of reuse, filling out a change request (CR) form, and filling in

a change approval fo rm.

119

Chapter 6

Operation of the T E R R A

prototype

This chapter describes the procedures of operation of T E R R A (Tool for Evolution of

a Reusable and Reconfigurable Assets Library) that has been developed to support

the M w R (Maintenance wi th Reuse) Model. In order to show how to use the T E R R A

prototype in this chapter, the author wi l l not enter sample data into all fill out forms

as use of the prototype w i l l be fu l ly illustrated in the case study using real data in

Chapter 7. The order of presentation w i l l be based on the sequence of activities

shown in Figure 5.1 of Chapter 5.

In Section 6.1, the steps for registration of reusable components are described,

giving a brief description for the entry fields of the fill-out form. Section 6.2 shows

how to retrieve a reusable component using the search mechanism, and also presents

the search results format and a detailed specification of a retrieved reusable com

ponent, that contains "the history of change" and "the history of reuse" on the

bot tom of the specification both of which are very useful to reusers and maintain-

ers. I n Section 6.3, a fill-out fo rm for the reuse history is described. Section 6.4

describes the entry form used to enter change requests (CRs) which are issued in

order to maintain a legacy system and a reuse library. Finally, Section 6.5 shows a

120

fill-in fo rm that the CCB uses in order to decide i f the CRs are approved, rejected

or held.

6.1 Registration of Reusable Components

As shown in Figure A . l of Appendix A, two fill-out forms are used to insert the

two types of reusable components, i.e., software and documents. Figures 6.1, 6.2

and 6.3 show entry fields for the registration of reusable software. The identifier

of the reusable software component is numbered in the fo rm 'SOOOl' whereas the

reusable document is named in the fo rm 'ROOOl'. These identifiers are automatically

generated and displayed, and can be changed by users. Input items that must

be inserted by users are: component IDs, component name, author name, date

of creation, date of registration, maintainer's name, operating system, computer

language, component format, related domain, related methods and techniques, and

keywords.

A l ibrarian/domain manager is responsible for registering reusable components

and the sources of these components come f rom an existing system, external suppUers

or new component versions created as a result of change requests (i.e., 'white box'

reuse). The entry fields "operating system" and "computer language" are related

only to reusable software. The "component format" entry field for reusable software

has the options of source code, executable code or data file. On the contrary, the

"component format" entry field for registration of reusable documents can be chosen

f r o m plain text, postscript or H T M L . The "related domain", and "related method

and technique" entry fields have 4 choices and 33 options, respectively. To enhance

the effect of the search mechanism, keywords as well as all the fields identified as

'required', should be chosen properly and input.

Wi thou t a list of links f r o m reusable components to every product using them,

a change or a fix of a component cannot be managed or promulgated. The entry

121

RegisUation of Reusable Softwaie Components

(lit View Go Bookmarks Options Directory Vrtndow

Dackj f Home| Edit] RelQatl| load iw;«je!t| Open...| PHnt...| nntl...| !^Uip|

LocaOon: J h t t p : / / h e x h a m / c g i - b i n / d c B 3 o c k / r e g _ s o f t _ d o c . p l ? E

m&Vs Hew?I What's Cool?| Destinations! "et Search] People| Software j

[Home 1[Search][

Tool for Evolution of Reusable and
Reconfigurable Assets Library (TERRA)

Registration of Reusable Components
- Software -

Component ID (Required)

Con^onent Name (Required)

Author Name (Required)

Date of Creation (dd/mm/yy, Required)

Date of Registration (ddftnin/yy. Required)

Maintaiaei Name (Required)

Figure 6.1: A Fill-out Form for Reusable Components' Registration: Part #1

122

Netscape: Registration of RewsaWe bottwaie Loiiiponents

l-ile bdil Viuv/ do Booktnw^s Options Directory WMow Help

BackJ S'i>,rvr,ynl Homej Eclitj Reload 1 Uia«j li«<«y<»s| Open...] Print... 1 Hnd...| Htopj

Location: J h t t p s / / h e x h a m / c g i - b i n / d G a 3 o c k / r e g _ s o £ t _ d o G . p l ? E

What s Hew?I SVhafs Cool?| Destinations| Met Search| People] Software|

m
SupplieiiKcgisterer Nsiiae

Abstract/Suinmary

ConqionentSize

KBytes

Operatmg Systems (Required)

Computer Language (Required)

Component Format (Req\)ired) Please choose one of the followings

Executable Code
D

Related Domain (Required) Please choose one of the followings

T e J a c o m m H n i c a s o i a

A e i o s p a c e

Figure 6.2: A Fill-out Form for Reusable Components' Registration: Part # 2

123

File Edit View Go Bookmarki Optiont Directory Window Help

Back Home Edit Reload lO^a !K>3t|l!8 Open... Print... SSop

Location: } i t t p : / / h e x h a i n / c ^ i - b i n / d c s 3 o c k / r e g _ E o f t _ d o c . p i ? s o f t = 3 o f t - r e

WhafsHew?! What'sCool?{ DestinaliDnaI NetSearehl People! Softwarel

Related Mettiods and Tecbniques (Required) Pl«ase cttoose medKxls tod teettniiioes nblad to t
component as many as you can.

Artificial Intell^
Oamputei CSraph
Oomptasr Network
Computer Siratilauoa
Ctomput*r Supported C3ooperative Wortc (CSCW
Database
Data Enc^ryption
Data Fi l*
Data Structure

Keywords (Requiiw^

R^ted Components H E L P for Terms

Related Piodutts H E L P for Terms

Related Product Lines H E L P for Terms

Downloadat7le File(s)

To insert the reusat>le component, press tlus tnitton

Figure 6.3: A Fill-out Form for Reusable Components' Registration: Part # 3

124

Plla edit Vl«w Oo BooHmmrKm optian* Directory Winiiaw i H.l|>

Bsek I rorwar-dj Home] E«mj j ^ i ? ^ Looa <nijgĝ | Open—I Print—| find—| S<opJ

WhaTaHew? Wh«r« Cool7l D««fliudiei» | ttatSmraftJ Paa^la SmOitmrmf

I Home 1 [Re^lBtntton] [Segtrcb] [Suaafxaans 1

Tool for Evolution of Reusable and Reconflgiirable

Assets Library (TKRRA)

The Confirmation IMessage of Reglstratl<m

The Reusable Software C<»np<»iait, SOOOS s

has l>eai successfully Inserted as a file name called
sunx_S0005-txt.

[Homel (RfgbtraiUon] (Search 1 [Sumetlone 1

aomput»^ S<iien<ve Home Pejtfc
Please send any cocnnvenis and su£g«stio<is lo:
tf. g. Awew •S'<a< arc, ult
Ijasi moa^ita W~< 2 J April 1S>S>7

Figure 6.4: A Message for Confirmation of Components' Registration

fields "related products" and "related product lines" can be used to control and pro

mulgate changes to reusable components within a reuse library. A librarian/domain

manager who is responsible for managing a reusable components library, should

maintain as many potential and useful versions of components as possible.

The field "related components" is useful for impact analysis and regression testing.

Users can refer to the online help for understanding of these terms. A "downloadable

file" is an actual file name stored in a reuse repository, which can be downloaded by

a reuser after retrieval. If the user finishes inserting every mandatory field and clicks

on the 'submit button', then he will get the message for confirmation of registration

as shown in Figure 6.4. Whenever a reusable component is inserted into the reuse

repository, indexing for the search mechanism is automatically performed by using

the information in the related files that are already defined for indexing.

125

mm
^ ^ ^ ^ • ^ • • • w ^ G o B a a k m n r k s O p B a n s D I r a a l a r y

H H R q H s m a J E d i t] B a l a a d l Lr>n<l I n u ^ m t j e p a n

I M a w » | W h a r a C a e l T j D a a U n H e n a | H a l S a a r a h | P a a p l a

. I l n s i i l l x o r T h l c K t w r c J i

51 ^ fc-.T l.i-,- j ; : , v '•^ri!-:;.-. I'rf ti^^fi 'n .^ cjiLSttu^-trr puis the start no^* Q« c - f jw *ntl

! .̂̂ •̂<r'?̂ 't! l ^ I ' Y OiAt-lis. l-i.'Wtati 'lltft <[utjuctor p>g»'«c ttte gtart n o d « ATjlitumtJW of i

SQOO* tfi.ak»fil» 1 K : S Y A V O R €3raphg. Piotgjegn Mafarf i l* fear 3iog*ajeat.cc.y tatotlopth c c . t a o t ? r » a < i ^
A t J T H O R = Bot t

Ji«:»; 7 ^LAflo^'U. « ILZrv O i l i-.̂ t-î Mf. i.-',-i.ftn3j;vj* j«UBf tli*_staai fii>lti Oi\ .ypw

K f v w i i ^ J:e£x f i : f t • i t i^!\T r r .tiT'm^ITi^ rti-rfl:rwin"cT_£A.'iflM tiir yttn n ^ f t . goal lyTcl*! Jitkl'fta_

i w u a b l e r o i i L i i r u i u i m a . a - S(KXXZ/Kn012^

Figure 6.5: Reusable Components Retrieved by a Search Mechanism

6.2 Search for Reusable Components

Figure 6.5 lists the reusable components retrieved by keyword search whose field op

tion for the search was 'ci=S000r, as shown in Figure A.2 of Appendix A. Free text

can be used to search for reusable components and there are also several field options

as follows: cifidentifier of a reusable component), cn(name of a reusable component),

an(author name), os(operating system), cl(computer language), cf(component for

mat), dm(domain), mt(method and technique)., and kw(keyword).

A brief description of each component is displayed according to the format of

a headline that is defined in an index file. The format for this search is as fol

lows: ci(Component ID), cn(Component Name), an(Author Name), os(Operating

Systems), cl(Computer Language) and cf(Component-Format). The reusable com

ponents are sorted and displayed depending on the score for each component that

is assigned by a search engine. The reuser can read a brief summary of the reusable

126

SSBEBS
File

eaci

L o c a l

£itnt View Go Oookinarfcs 0[iUoii3i Directory Window

i l l ' <*f>'̂ i-'"'f J 5 i " ") ^ iii^!^lJtil!iJtfil^ O p » n . . . | f\^t..J RjTKl.. . j S U y l

f H a m « > l l S > w c a . i r S » w w > » t o . |

Tool for Evolution of Reusable and Rcconfllgurable Assets
irary (TERRA)

A Specification of a Reusable Component: SOOOl

«oaeari:^.cc:C + + S e w d \ C l w s Libraxy<AI«eaLZ<:k)-UMIX
N « M B :

Petwr M . Boutltoom
Date at Creadon:

1S/D7/96
DtMte of ResMraOon:

Miihiliiifciiiii Name:
O h Cheon Kwon

SivpHer/Res^erer's NoMie:
O h Cheon Kwon

Ahvtract:
This is a component for testjngi
Here is the 2nd line.

BM Size(KB):
337

PperetliiSSyMem:
U N I X

Figure 6.6: A Description of a Retrieved Reusable Component: Part #1

component by clicking on the H R E F links returned. He can also view the formatted

specification of the reusable component by inserting the component's identifier into

the input field on the bottom of the above figure.

Figures 6.6 and 6.7 show formatted and detailed information on a reusable com

ponent retrieved by T E R R A ' s search mechanism. The description is created from

the file information stored in a repository by a Common Gateway Interface (C G I)

script on the fly. After checking the detailed component information, the reuser

can download the latest version of the reusable asset. He can also retrieve the lat

est version through the change history that will be described in the following two

paragraphs. The description part of a reusable component is followed by some infor

mation on the "history of change", the "history of reuse", the "evaluation of reusers"

and the "tree of versions" which are very useful for reusers. If reusers are interested

in the retrieved component they may want to view this information.

127

I t Vl«iw r.o BuuKjuuj^ai opuuiis Directory v^ltdDW^

lliickl iii^-' T i j I li>mi» j Rglottdj t <t;W *iVKMl<̂ >* j op«n.. .j w n t . . . | ntKI.. . | .̂ t̂aî l

1 •>! J^Uiiri; j j . ^

plljjjgjllljPljjl̂ ^ De^ l i ^^ iHmi^ Net ^ a r c h j f g ^ g j Sof twargf

Source Code

Business Data Processing (B D P)
Related Methodb end TecMvaee:

Artificial Intelligence

Key Worda:
C * » C L A S S L I B R A R V , P R O B L E M S O L V I N O , S E A R C H A L O O R I T H M S

RDOl l : The Report on C * * S E A R C H C L A S S L I B R A R Y (A I S E A R C H)

Pro duct ttl, Pro duct tt2
ILdated Flroditct IJnes:

P L #3, P L »4
DonjndoedeUe F f l « (.) ;

Recrieve the Current Version: aosearch-cc

V i e w the History of Change
V i e w the History of Reuse
V i e w the Evaluation of Reusexs
V i e w the Tree of Versions

1 Homel I Search 1 [Suggertnn. 1

Computer Science Home FaRe
Please send any comments and suggestions to;
o.c.Awon&iiurfuxm.ac.tiA
Laa modifUcLMonMtW 291997

Figure 6.7: A Description of a Retrieved Reusable Component: Paxt # 2

The change history displays differences between revisions associated with a down

loadable file in which the reuser is interested. Figure 6.8 shows the change history

of a reusable component, 'SOOOl(aosearch.cc)', that is, a summary of changes made

between revision 1.1 and revision 1.6. The reuser needs to compare several revisions

so that he can choose a specific version that matches the requirements of a change

request (C R) for a legacy system exactly or very closely. He can also insert the

version numbers of two revisions in order to know exactly what changes have been

made in the two revisions, and to know differences between them. The entry fields

for the two version numbers can be found at the bottom of Figure 6.8. Figure A.3

in Appendix A is used for the entry of two version numbers, and Figure A.4 shows

"the difference list of two revisions" extracted using the entry of two version numbers

shown in Figure A.3.

After the reuser compares two versions of a component he needs to enter a ver

sion number to extract a specific revision of the reusable component. The activity

128

n i a EdH Vlaw Qa Baakmarka OpUaaa

Baekl r a r w a r d j HamaJ E«l t | Balaaa| Laita l r m » e » | Opan...| Prla

L B B K k a n : [l>t-t-P / / l ' i c » i h a n v / c : o l - b i n / ' c l c a J o c k / c l i a n c i > _ l l l B]3j.t>rIUEID-SQOO11,r

W h a r a H a w « | W h r f a C e B l ? | B a a U w I l a a a | Mat S a a r a h | P a a p l a | S a W w a r a j

fVKHH inrxs.Mii-rIt.oc'>: Tli«> fllstoi-y < ^ < l L i u i ^ u i,y uc>.

i * •- .'^ ' l i * .-l.A-n-.iwsellvAufKhA^.slfcA^kv-iil/;^ JAfti-r&ifecirti««Aryn i."j/ju«<dfi.ti t

tx«ad.

kx-,kr: strict
fc. l.ti:

r —f
o!]^- naiiic£

v o r d suUstitutitijf). fcv
1 revjslotis: e; jfclft.:l?A r w l f ioit3 «

nfrtot .
1st vqssitMi

I'JW'TjTj.'JlC- i r 'd^ sS. ju' lv .^ i lr,AjtvJt. stAtf R x j i . lllliekt tS 1
tl i/1 .:kAL:Jiifail lim iiuiLkwl 3

1 s
i; 1 9 9 7 X > 2 » « I S . J 5

; K M L 1 '1
lV'>;'dt:..'..tMi l«(4^ ^ - l , author d£j:Jr.-<cjE. :tiA!ts t-Ap

Figure 6.8: The History of Changes made to a Reusable Component

of evaluation by a reuser consists of understanding retrieved component versions,

investigating alternatives to meet the requirements of reuse, and selecting a better

component version for reuse. Af te r evaluating reusable component versions, a reuser

has to adopt either 'white box' reuse or 'black box' reuse depending on the level of

adaptation/modification of retrieved reusable component versions that is required.

Only i f the estimated effort required to modify a reusable component version f rom

the repository does not surpass the effort to adapt an existing legacy component,

the reuser w i l l adopt 'white box' reuse. I f the specific revision needs to be modified

for 'white box' reuse he follows a process of software maintenance. Af ter modifying

a reusable component, the reuser performs a unit test.

A better Syntactic Interconnection Language such as SySL (System Structure

Language) [105] and PCL (Proteus Configuration Language) [101] can be used to

construct composition rules for an integration test. I f the integration test is per

formed successfully the reuser updates files related to reuse experiences (e.g., a reuse

129

history file and a evaluation file).

The reuser can refer to the experience report f rom other reusers by clicking on

'View the History of Reuse'. This HREF fink shows some information on the reuse

type, the summary of modifications, the degree of modifications, the related domain,

the related product line, the related product, etc. Section 6.3 presents a fill-out form

for the entry of the reuse history. Figure A.5 in the Appendix shows one example

of a reuser's experience report. The accumulated experience report f rom reusers

encourages other potential reusers to further reuse the reusable components.

This document adopted a 'POST' operation as a request method since the form

data created using the 'POST' method wi l l have automatically expired f rom the

cache, so the reuser has to repost the fo rm data to recreate the document by pressing

the reload button. In addition, the reuser can always click on links to "the history

of change", "the history of reuse", "the evaluation of reusers", and "the tree of

versions" in order to view the current information. To allow this functionality, the

current t ime is assigned to a variable and the variable is appended to the end of an

H R E F l ink so that the HREF link can be interpreted as the different version (i.e.,

different l ink) and the Web browser can reload the file related to the HREF link.

6.3 Report on the Reuse History

A reuser's experience needs to be entered to be used as data for "the history of reuse"

shown in Figure 6.7. As shown in Figure 6.9, a fill-out fo rm consists of component

I D , component version, reuser name, date of creation, reuse type, summary of mod

ifications, amount of modification, domain, related product line, related product,

and other comments. The mandatory fields are component I D , component version,

reuser name, date of creation, reuse type, domain, related product line, and related

product. The other input fields not shown in Figure 6.9 are included in Figure 7.10

of Chapter 7.

130

N e t s c a p e : A F in -ou t F o r m t o r a Reuse R e p o r

EtM View <2o Boomniu-k* Ofitton* DWiOary Wintfttw

Back! f^o^^woifdj Ham«J Edttj ReloiKdj i.ood Ima^i;*! Oi>»w...| f>rit»t-_| Ptetf„

LoaaMon

WhtfHmwH lWNte9«!<.?A J^MP'JwWg"* I H « t « « * r o h l PMpl*r S<i«W|

A F i l l — o u t F o r m r o r a R e u s e R e p o r t

Datft o f Cremation (<lelAx\it\/yy, Required)

Figure 6.9: A Fill-out Form for a Reuse Report

The reuse type can be chosen from one of 'white box' reuse, 'black box' reuse and

'gray box' reuse. The default value of the reuse type field is 'white box' reuse. If the

reuser needs to modify a reusable component before reuse, he can reference summary

of modifications. There are 6 domains: Business Data Processing, Telecommunica

tion, Aerospace, Chemistry, Military Industry and Mechanical Engineering. After

the reuser fills out the form he submits his reuse report and gets a confirmation

message.

6.4 An Entry Form for a Change Request

A maintainer and project manager analyse a change request (CR) for a legacy sys

tem whereas a librarian/domain manager reviews a C R for a reuse library. They

decide if a C R comes from an incorrect operation, incorrect documentation, or incor-

131

rect software. Then, they produce a change proposal/Engineering Change Proposal

(ECP) according to SCM practices which w i l l be submitted to the CCB (Configura

t ion Control Board). However, this prototype excludes the entry of the ECP since a

fill-out f o r m for a CR contains some contents of the ECP. The ECP can be classified

as either emergency, urgent, or routine.

Both a configuration manager and a librarian/domain manager need to cooperate

w i t h each other when dealing wi th change requests. The configuration manager and

l ibrarian/domain manager are responsible for monitoring the implementation of all

change requests for an existing system and a reuse library, respectively. The CCB

is responsible for approving, disapproving/rejecting, or holding a submitted change

proposal.

As shown in Figure 6.10, a fill-out fo rm for a change request consists of the fields:

change request number, originator name, date of issue, type of change request,

related system, related component I D , related component version, type of main

tenance, status of change request, description of change, and reason for change.

Mandatory entry fields are change request no, originator name, date of issue, type

of change request, status of change request. The whole fill-out form for a change

request is shown in Figure 7.1 of Chapter 7.

The format of "a change request number" is Hke 'CR999' and is generated auto

matical ly in a continuous sequence. The "an originator" field must be recorded as

this person should be informed of the progress of the CR implementation. The orig

inator can be a reuser, maintainer or end-user. There are 3 types of change request:

an existing system, a reuse library and a production/static library. The T E R R A

prototype supports functionahties for SCM to control changes over a production l i

brary as well as a legacy system and a reuse library. The production/static library is

a repository where components of a system already produced are frozen and stored

before release. "A related system" in the case of change requests for reusable com

ponents should be the name of a reuse library. However, the related system in other

types of CRs can be identified and entered. I f "a related component ID and ver-

132

Flla tdit V*BW Go BookmstfKs Options Dirwctory

FmckJ f ttryt̂ aKti j l iomej Eclit| Reioaii j i.f̂ <3a i>n«A(fti»j Open... j FYlnU.. j Rnd. . . j ^jUy

Locattom Jhî -tpB //he^cham/cgi-bi.n/dos3ook/c:h3nge_^rec3. p>l

A Fill—out Form for a Change Request

Change Request No (Required^

IcRiiu

OxiginatDT Name (Required)

Dete of Issue (ddAninuVy. Required)

Type of ft Change Request (Required) Please choose one of the folio wings.

Related System (If applicable)

RelsiTed Component ID (If

Figure 6.10: A Fill-out Form for a Change Request

sion" can be identified the originator of a change request inserts them into the form.

The maintenance type can be one of the following: perfective maintenance, adaptive

maintenance, corrective maintenance, and preventive maintenance.

The default value of the maintenance type is "perfective maintenance", i.e., the

modification of a software product after delivery in order to enhance performance

or to meet new user requirements. "Adaptive maintenance" is the modification of a

software product after delivery to enable a software system to adapt to a different

environment. "Corrective maintenance" is the modification of a software product

after delivery to fix errors discovered during system operation. "Preventive mainte

nance" is the modification of a software product after delivery to prevent problems

before they occur. For example, the modification of a software product to increase

maintainabil i ty is a f o r m of "preventive maintenance".

The status of a change request can be one of issued, approved, held and rejected.

133

The originator enters a description of the change and the reason for the change

in order to describe why the change has been proposed. Af ter filHng in the other

required fields, he submits the change request. He then gets the message for con

firmation of a change request entry, which says "The Change Request CR999: has

been successfully inserted as a file name called CR999.txt".

6.5 An Entry Form for Change Approval

After the l ibrarian/domain manager receives change requests for reusable compo

nents f r o m the reuser and maintainer, he analyses and approves the change requests

in collaboration w i t h the CCB. When the change request is implemented the librar

ian/domain manager and configuration manager should send the CCB, maintainers

and reusers a message saying that a new version of the component is available.

The procedure of the change requests (CRs) for a legacy system is similar to the

procedure to control the CRs for reusable components. However, there exist a few

differences between these two kinds of change control as shown in Section 4.3.5 in

Chapter 4.

I n order to display a fill-out fo rm for change approval f rom the home page of

T E R R A , a CCB member needs to insert a related change request number. I f the

change request number is valid then a fill-out form for change approval is displayed,

which consists of three frames. As shown in Figure 6.11, every frame ini t ial ly acts

independently, depending on the user's intention. The top left frame displays some

information about the change request that has been inserted by a user. The top

right frame shows a summary of all the change requests which are stored in the

repository. I f the user clicks on a specific change request, he can view more details

about the change request f r o m the top left frame. In general, change approval is

associated wi th several change requests, so the user needs to reference some change

requests while he enters the information into the fill-out form.

134

N e t s c a p e : <^t;^,risc^^^jquo%X_si^

a o B o o k m i i r k « O p t i o n * D l r * e t o r y Wlntfttw

B a c k l rorworol H o m e } CUttj R*lo«u<j toftd lm;tg«;ie j O p B B ^ j Pr ln t -^} H B d ^ j Stot* j

tooattlon: | J i t i t p : //Hexham/os3"i -toin,/clco3oc:k,/ci:__ca_f r ame . p i

W h a r * H g w ? [Whatr« C o o l ? j D » « « n « t i o n « | M * t S « w c h | fmvplm | Sa f tw iH-« |

Gh»n.g« Recfues-c No-f:;R002
O r i g i n a t o r ' a Njame-Oli Choon Kwon
Date of I s s u o - 0 2 / 0 e / 9 7
Type of a C>io.ncf« R»<^eot»A Dyri.amic^ DeveXopi'
Related Coiapo^etrxt. ID-SO00i
Comporvortt r\akme«»C + +̂ Searcli GXass L ib r a ry (AXae

• <JR ~T^<Xz CRCO 1 „

Oate of Issue Cdd/mrruVy. R«<iuil*d>

C 9 u n ^ Xpfwoval N o (Required)

^^^^B CAOO?

Figure 6.11: A Fill-out Form for Change Approval

The fill-out fo rm for change approval consists of the fields: change approval num

ber, originator name, date of issue, related change request numbers, related legacy

system, related component I D , related component version, related product I D , re

lated product line, type of maintenance, status of change request, specification of

change, due date of change, estimated manpower to implement the change, and es

t imated cost for change. The required fields include change approval number, date

of issue, related change request numbers, related component ID and version, and

status of the change request. The other entry fields not shown in Figure 6.11 can

be found in Figure 7.8 of Chapter 7.

A "change approval number" is automatically displayed and can be updated by

a number that the user inserts. The user, who is a member of the CCB, can insert

several "related change requests" after viewing change requests using the top two

frames of Figure 6.11. Even though there exist entry fields for the related product

lines and products that have used reusable components, he can also enter the name

135

of a related legacy system that the CR came f rom. After performing an impact

analysis of the change the user enters component IDs and versions associated wi th

changes to be implemented. The user can enter one out of four types of maintenance

i f applicable.

A simple description of the change is given in the field, "specification of change".

A more detailed specification can be appended to the change approval form. The

estimated manpower and implementation cost that are calculated by a project man

ager, maintainer and domain manager who are members of the CCD, can be input

using units of man month and pound.

The status of a change request contains 4 options which are exactly the same as

the fo rm for a CR. After the CCB reviews and evaluates the contents of the change

approval fo rm, the CCB can decide whether the CR should be approved, rejected,

or held. The criteria used by the CCB when judging the CR, depend on the cost

and benefit of the change, the extent of the change, and the importance and urgency

of the change.

I f the user finishes inserting all the mandatory fields and clicks on the 'submit

but ton ' , then he w i l l get the message for confirmation of the change approval entry,

such as "The Change Approval, CA007, has been successfully inserted as a file name

called CA007.txt" .

6.6 Summary

In this chapter, the use of the T E R R A prototype that has been developed to support

the Maintenance w i t h Reuse (MwR) model, has been described using a simple de

scription for the entry fields of the fill-out forms rather than using real data. Most

of the fill-out forms for registration, retrieval, report, change request and change

approval have been described, but some of them have been included in Appendix A

to lessen the complexity of this chapter.

136

The results f r o m a t r i a l operation have been used to fix errors and to improve

the funct ional i ty of the prototype. In particular, the fill-out form for registration

of reusable components has been divided into two separate forms, i.e., software

and documentation in order to reduce overload that might result f rom accesses

of a number of users, although these two fill-out forms are similar to each other.

Whenever users submit fill-out forms to a reuse server, they receive confirmation

messages f r o m the server that the submission has been carried out successfully. In

the first prototype, the files wi th in an H T M L form that was produced on the fly by

Perl scripts, did not show current versions by user's clicking on URLs in displayed

forms even though files related to the URLs had been updated. In order to solve

this problem, a POST method has been adopted as a request method for forms,

and a variable for holding the current t ime whenever users chck on an HREF link

is appended to the l ink. In the next chapter, the case study based on 4 scenarios is

carried out using real data, and the results of the case study are discussed.

137

Chapter 7

Scenario Based Case Study

7.1 Introduction

The objective of this case study is to evaluate a M w R (Maintenance wi th Reuse)

model by using T E R R A (Tool for Evolution of a Reusable and Reconfigurable Assets

Library) , and to improve and upgrade the associated method and tool developed

during this research work. In order to demonstrate the capabilities of the T E R R A

prototype, this case study is applied to several problem areas for software reuse:

cataloguing reusable components, retrieving them f rom a repository efficiently, con

t rol l ing the changes to reusable components, propagating the changes of a compo

nent to the reusers of the component, and controlling the changes to a legacy system

through the process of reuse. The composition of a system using reusable compo

nents is one of problems wi th reuse, but i t has not been implemented in the T E R R A

prototype because of t ime limitations although the functionality is included in the

M w R model.

This case study does not address all the concerns of Software Configuration Man

agement (SCM), but concentrates on demonstrating the practical use of T E R R A

and evaluating its model. The objectives of the case study are to:

138

• Show how the T E R R A prototype developed in this research may be used in

practice. The steps to introduce the T E R R A prototype into Company X Y Z

w i l l be presented.

• Evaluate a M w R (Maintenance wi th Reuse) model. The goal of the proto

type is to support SCM functionalities for a reuse library wi th in a software

maintenance environment.

• Discuss specific aspects of the model and tool.

• Refine a reuse process and a maintenance process using results obtained f rom

this case study.

This section is organised as follows. Section 7.2 presents the Company XYZ's

problems associated wi th software reuse and maintenance based on a C-|--|- G U I

Framework called ' V that is summarised in Section 7.3.1. Section 7.4 gives detailed

descriptions of the major steps for four scenarios enacted in this case study. Finally,

Section 7.6 discusses the case study and its implications.

7.2 Problem Statement for the Case Study

Company X Y Z ^ has developed a C-|--|- G U I framework for Windows and X , which

is called V . The V framework has been customised for over 100 sites and ported to

10 platforms, so a lot of change requests have been issued and controlling of changes

to existing components has been required.

The V system consists of many components (i.e., more than 550 files), so Company

X Y Z has recognised the necessity of Software Configuration Management (SCM) in

^In reality, V was developed by Professor B. Wampler at the University of New Mexico, but

the author assumes, for the purposes of this scenario, that the development and maintenance of V

are being carried out by Company XYZ. The author would like to thank Prof. Bruce Wampler for

his cooperation in providing valuable source code and documents of the V framework.

139

order to efficiently maintain various evolutions of the legacy system. In addition,

some components, for example, the "vApp class", serve as the base classes for build

ing applications. There must be exactly one instance of an object derived f rom each

base class. Thus, the base class needs to be maintained as a reusable component.

Each instance of an object can also be registered wi th a reuse library. Although

Company X Y Z has seen software reuse as a solution to reduce cost and to increase

quality and timeliness, i t has not found a better reuse library to catalogue and re

trieve reusable components, to control the changes to reusable components, and to

manage versions created as a result of 'white box' reuse.

7.3 Preparation for the Case Study

7.3.1 Data for the Case Study

V^, which is a "Freeware Portable C-f--f G U I Framework for Windows and X " , has

been used for the case study. V is an easy-to-program and cross-platform C-f--|- G U I

Framework which provides the easiest way to write C + + Graphical User Interface

(GUI) applications which are available as commercial, shareware, or freeware. V

is available under the terms of the G N U Library General Public Licence, so i t wi l l

remain freely available to the public.

The V framework has been used during several semesters for the software engi

neering class at the University of New Mexico, and has proven to be extremely easy

to learn and use, as well as reliable for commercial software. Most standard G U I

objects are supported by V , including windows wi th menus, status bars, tool bars,

and a drawing canvas; modal and modeless dialogs wi th the most common con

trols (buttons, lists, labels, text entry, check and radio buttons, etc.); and portable

pr int ing support.

^The V framework can be found at http://www.cs.unm.edu/%7Ewampler/vgui/vgui.html

(valid on 1 August 1997).

140

The V system consists of 551 components including documentation in LaTeX

format as well as C-|--t- sources for Windows and X . A l l the components of the

V system are kept in a repository supported by Unix's Revision Control System

(RCS). The class, "vApp.cxx", has been chosen as a reusable component since the

component has been used for a base class and the size of the component is rather

big i.e., 792 LOC (Lines of Code), so the file can be classified as a component to

which many changes have occurred.

7.3.2 Storing the V Legacy System into a RCS Repository

A l l the files of the V legacy system should be stored in the production library that

can be supported by an SCM environment. Thus, the first step is to check the V

system into the RCS (Revision Control System) [108] environment. Although the

Company X Y Z has kept 5 old system versions the company has not performed any

change control and version control efficiently. The organisation has only used the

concept of a system version, not a component version. The descriptions of system

versions have been maintained in a user's manual. The records of change requests

(CRs) are manually kept unt i l the CRs are implemented by a maintainer.

7.4 Scenarios for the Case Study

The procedure of change control starts wi th the issue of a change request and ends

w i t h the implementation or rejection of the change request. There are three types

of change requests (CRs): a change request for a legacy system, a change request

for a reusable component, and a change request for a static library (i.e., production

l ibrary) . As the change control procedure of a change request for the production

l ibrary w i th in a development environment is similar to that of a change request for

a legacy system, and this research is based on a maintenance environment, the case

study w i l l only deal w i th change requests for a legacy system and a reuse library.

141

A librarian or domain manager is responsible for managing evolution of a reuse

library. Even a l ibrary that supports 'black box' reuse is subject to change over

t ime. Whenever reusable components wi th in a reuse library have changed the l i

brarian/domain manager should inform a configuration manager, a reuser and a

maintainer that the contents of the library have been updated.

A maintainer is in charge of managing changes to an existing system. The main

tainer is encouraged to use possible reusable components wi th in a reuse library in

order to implement approved change requests (CRs). To do so, the maintainer needs

to cooperate w i t h a reuser. Thus, this case study focusses on two sources of CRs, i.e.,

changes for a reuse l ibrary and an existing system. The procedure for introducing

the T E R R A prototype into Company X Y Z is described wi th in the four particular

scenarios we enacted. These scenarios w i l l form the basis for the evaluation in the

next Chapter and they are as follows.

• Scenario # 1: Populating a Reuse Repository.

This scenario shows how the librarian/domain manager registers the specifica

t ion of a reusable component w i th an RCS repository and includes the librar

ian's role in storing the file of the reusable component into an RCS repository.

• Scenario # 2: Procedure of Change Control for an Existing System.

This scenario describes the procedure to implement the CR for a legacy system,

which can be supported by the process of maintenance.

• Scenario # 3: Procedure of Combined Change Requests for a Reusable Com

ponent and an Existing Component.

This scenario shows an example of integration of two CRs that have been

issued f r o m a librarian and a maintainer, respectively.

• Scenario # 4: Procedure of Change Control for an Existing System.

This scenario presents the procedure to implement the CR for a legacy system.

The CR can be implemented by the process of reuse as the reuser can find out

the candidate reusable component f rom the reuse library.

142

7.4.1 Scenario 9̂ 1: Populating a Reuse Repository

A librarian/domain manager is responsible for registering the specifications of reusable

components w i t h a reuse repository. As shown in Figure 6.1 of Chapter 6, the spec

ification of a reusable component is stored in the form 'sum_S0001.txt' by using a

fill-out fo rm for component registration.

The l ibrarian/domain manager of Company X Y Z has decided to register a C-|--|-

class, 'vapp.cxx', and related components as he recognised that the component has

been frequently used for a base class to create the instance of an object over the

past few years.

Creating a Directory to Keep Index Files

I n order to effectively retrieve reusable components, the T E R R A prototype has

adopted 'freeWAIS-sf-2.0' [88] as a search mechanism, which is currently one of

most powerful search engines. Whenever reusable components are registered, all the

files associated wi th indexing are automatically updated.

Creating the Files Related to Indexing, 'v.fmt and v.fde'

The ' v . f m t ' file is used to define the format of indexing. For details about ' v . fmt '

see Appendix A.2. The 'v.fde' file contains an optional format description. This is a

plain text file whose contents are also added to the database description file 'v.src'.

Thus, the contents of the file 'v.fde' are the same as fields list in the file 'v.src'.

Registering the Specifications of the Reusable Component

Reusable components come f rom two sources, i.e., an existing system and an exter

nal supplier. A reuser and a maintainer can submit potential reusable components

to a l ibrarian/domain manager. The librarian/domain manager needs to evaluate

143

these components i n collaboration wi th a quality manager. Accepted reusable com

ponents should be registered wi th a reuse repository by using a fill-out form as

shown in Figure 6.1 in Chapter 6. A maintainer, "Peter Anderson", asked the l i

brarian to evaluate whether or not a component "vapp.cxx version 1.1" can become

a reusable component. The librarian/domain manager decided to accept the com

ponent as a reusable asset. As shown in Figure 4.16 of Chapter 4, the component

received f r o m a maintainer is evaluated, classified and put into a reuse library by

the l ibrarian/domain manager.

To demonstrate how the T E R R A prototype works in a maintenance environment,

several specifications of reusable components have been registered wi th a repository

for reusable components wi th in T E R R A . The reusable software and documentation

are stored in two separate dii'ectories. The evolution of these sources is controlled

by RCS. The specifications of reusable components registered in a library are as

follows:

• vapp.cxx: The "vApp" class serves as the top level class used to build an

application. There must be exactly one instance of an object derived f rom

the "vApp" class. The base class contains and hides the code for interacting

w i t h the host windowing system, and serves to simplify using the windowing

system.

• vapp.cxx related components: vapp.h, vwindow.h, vcmdwin.h, vctlclrs.h, vcolor.h,

stdio.h, stdlib.h, vrefcli4.tex, vcmdwin.cxx, vawinfo.cxx.

• vawinfo.cxx: This is a u t i l i ty class to interface views to models. This class is

intended to be used as a base class for deriving the user's own "myAppWin-

Info" class. The purpose of such a class is to serve as a controller data base

for the M V C architecture.

• vawinfo.cxx related components: vawinfo.h, string.h, vapp.cxx, vrefch4.tex.

• vcmdwin.cxx: This class shows a window wi th various command panes. The

144

"vCmdWindow" class is derived f rom the "vWindow" class. This class is

intended as a class that serves as a main control window containing various

"vPane" objects such as menu bars, canvases, and command bars.

• vcmdwin.cxx related components: vcmdwin.h, vpane.h, stdlib.h, vrefch5.tex.

• vrefch4.tex: This document covers the top level classes for building appli

cations. The classes covered in this document include "vApp" which is the

base class for applications, and "vAppWinlnfo" which is a u t i l i ty class used

to interface views to models.

• vrefch4.tex related components: vapp.cxx, vawinfo.cxx.

• vrefch5.tex: This document covers the classes used to build windows and com

mand windows. The classes covered in this document include "vCmdWindow"

which is the class used to show a window wi th various command panes, "vCom-

mandPane" which is used to define commands on a command bar, "vMenu"

which is used to define pul l down menus, "vPane" which is a base class for

various window panes, "vStatus" which is used to define label fields on a status

bar, and "vWindow" which is a class used to show a window on the display.

• vrefch5.tex related components: vcmdwin.cxx, vcmdwin.h, vapp.cxx, vcmd-

pane.cxx, vmenu.cxx, vstatusp.cxx, vwindow.cxx.

A reuser and a maintainer can also ask the librarian to purchase f rom external

suppliers some reusable components that might be reused in order to maintain an

existing system. The librarian can hold or reject their requests for new reusable com

ponents. Otherwise, he can decide to acquire the requested component. As shown

in Figure 4.16 of Chapter 4, the reusable components purchased f rom an external

supplier, are registered wi th TERRA's repository through a process of classification.

The l ibrarian/domain manager then needs to inform a reuser, a maintainer and a

configuration manager that new reusable component versions are now available.

145

Afte r the specification of the reusable component has been registered the file

associated w i t h the reusable component should also be stored into a reuse library

controlled by RCS (Revision Control System).

Indexing using freeWAIS-sf-2.0's Field Option

"waisindex" of freeWAIS-sf-2.0 generates a number of index files by using the for

mat of the files ' v . f m t ' and 'v.fde' which have already been created manually.

The command used for indexing^ is of the form "waisindex -t fields -d v ../sum-

mary/sum_S0001.txt". "waisindex" generates or modifies the following files: v.src,

v . fn , v .h l , v.doc, v.cat, v.dct, v.inv, v.stop. I f the "-t fields" option is used to index

registered files, a dictionary and an inverted file are created for each field of a format

description file 'v.fde' .

7.4.2 Scenario # 2: Procedure of Change Control for an

Existing System

This scenario presents an example where the implementation of the CR is completed

through the process of maintenance since the reuser can not find out any possibly

reusable components f r o m the reuse library.

Issue and Analyse a Change Request, and Fill out the C R Form

Although the change request for an existing system can be issued by a maintainer, a

reuser, or an end-user, this scenario supposes a maintainer, "Peter Johnson", who is

in charge of maintaining the V system, has created a change request which is shown

in Figure 7.1. A CR is identified by the next available number such as "CROOl". The

^After running this command, the librarian should change the permissions of all database files

within a directory "wsdb" to 660 in order to give a write permission for automatic indexing to an

H T T P server.

146

i n i t i a l status of a CR should be "Issued" and then changed into "Approved". The

maintainer wanted a functionali ty to specify the size of a menuless and canvasless

V application and also a functionality to support computations to be performed

continuously. The type of this CR is "perfective maintenance" whereas the change

request for "corrective maintenance" should be analysed in order to check whether

i t came f r o m a user's incorrect operation of an existing system. In principle, an

engineering change proposal (ECP) is created after analysing a CR, but this case

study excludes an ECP as the CR includes some items of the ECP.

While the CR is analysed by a maintenance team the reuser can also initiate the

first step of the reuse process, called "understand a CR". He recognised that after

understanding the CR and searching for reusable components, there was no reusable

component revision that might be used for 'white box' or 'black box' reuse in order

to meet the change request f rom the maintainer.

Evaluate a Change Request and Fill in the Change Approval Form

The CRs accepted by a maintenance team are forwarded to the Configuration/Change

Control Board (CCB). The CCB is responsible for the integrity of all software com

ponents, for evaluating/approving CRs and for monitoring the implementation of

approved CRs. As shown in Figure 6.11 in Chapter 6, one of the CCB members

fills out a change approval form by referencing the contents of the change request

f o r m that has already been filled in . The ini t ia l status of a change approval form

should be "Issued" and then changed to "Approved", "Held" or "Rejected". After

evaluating the contents of a change approval form, the CCB decided to approve

the change request, changed the status of the change approval fo rm f rom "Issued"

to "Approved", and informed the maintainer and reuser that the CR had been

approved by the CCB.

The maintainer needs to find out possible solutions to meet new requirements orig

inat ing f r o m the CR. As shown in the field "Description of Change" in Figure 6.11

147

Bookmarks Opton* Directory Window

Back Forward j Home Edit; Relasul| toad Ssa^tt Open...! Print... Find.„

He l i i

i N c w ' WhattCool?! Destinationsi NetSearcti People! Sonware]

Change Request No (Reqmied) -

Oiigmator Name (Requiied)-

CR016

Date of Issue ((HAaxa/yy, Requiied)-

Type of a Oiaivge Request (Required) Please choose one of the foUowtag?.

Related System (If applicatile)—

Related Component ID (If appliiatjle)—

Related Component Version (If applicatjle)-

Type of Maintenance (If applicatjle)— j Perfective Maintenance a

Status of a Change Request (Required)— Issued a

Description of Change

Reason for Change

e size of a menioless and canvasless V 2j

f imetion which can sttpport mx appl i ca t ion

ent; of V 3 f u n c t i o n a l i t i e s

Figure 7.1: A Change Request, CROOl

148

in Chapter 6, the maintainer described briefly which part of an existing component

should be changed. The change approval should be accompanied by a specification

of redesign used to implement the CR. The maintainer needs to know what is in

volved in making the changes. Thus, he analysed the eff'ects of the change on other

components by using an impact analysis. He should cooperate with a configuration

manager who is an expert on dependencies and relationships between components.

Even though the maintainer is involved in an impact analysis, the CCB is in charge

of performing an impact analysis to find out the components that a specific change

eff^ects. After completing the impact analysis, a project manager estimated resources

including the implementation cost to complete the change request and change ap

proval forms, "CROOl and CAOOl". The CCB needs to make clear that the change

is cost effective. In other words, the implementation of the change request must

carry benefits which outweigh the cost of implementing the CR. He also made a

plan to implement the change using allocated resources.

Even though the reuse process may continue if the reuser can find potentially

reusable components and the CR is approved by the CCB, the maintenance process

will continue in the case of this CR. The subsequent steps of the maintenance process

are as follows: maintenance implementation, revalidation (integration and regression

testing), and re-insertion. In this case study, the details of the maintenance process

after implementation are skipped although the refined activities of these processes

have been included in the MwR (Maintenance with Reuse) model.

After successful integration and regression testing for revalidation, the project

manager has allowed the maintainer to check the new version into the production

library, and notified the reuser, librarian and configuration manager that the new

component is now available. After the librarian and Quality Assurance manager

reviewed the quality of the new version of the component they decided to register

the version with a reuse library. The hbrarian stored the new version in the reuse

repository using the RCS command. Thus, the component "vapp.cxx" has two

revisions (i.e., R l . I and R 1.2) in both the reuse library and the production library.

149

Although the total numbers of revisions for these two libraries are different from

each other, the same revisions should use the same version numbers in order to have

good traceability.

7.4.3 Scenario # 3: Procedure of Combined Change Re

quests from a Reusable Component and an Existing

Component

A few months later, two change requests for a reusable component and an existing

component, 'vapp.cxx revision 1.2', have been issued by a librarian/domain manager

and a maintainer, respectively. This scenario is an example of merging two CRs,

and the implementation of the CRs follows the steps of the maintenance process as

the reuser can not locate any reusable components which might be reused for 'white

box' reuse and 'black box' reuse.

Issue and Analyse a Change Request, and Fil l out the C R Form

Firstly, the change request for a reusable component, 'vapp.cxx revision 1.2', has

been issued by a librarian/domain manager, "David Spencer". He wanted to upgrade

the reusable component in order to support a different platform (i.e., Motif) by using

"adaptive maintenance". Thus, he issued a change request(CR) to deal with this

requirement. He filled out the CR form as shown in Figure 7.2, where the CR

number was 'CR002', the component ID was 'SOOOl', the component name was 'a

base class for building V applications', and the type of maintenance was "adaptive

maintenance".

Some days later, "Ian Jones", who is one of the maintainers of the ' V system,

issued another change request, i.e., 'CR003', to provide an apphcation 'vapp.cxx'

with more functionality as shown in Figure 7.3. The related component ID, compo

nent name and type of maintenance in the CR form were 'SOOOl', 'a base class for

150

File Edit View Go Bookmarks Optiont Directory Window

HORW Reload !,?i>>3 Sm^K* Opes Pnllt.M

ocation: 1 n t t p ; / /hexham/cgi -b in /dcsSock/ cihange_req, p i

WhafoHcw?! Whiirtcool?! De»tlnation«| NetSearehl People! Soflwve

Change Request No (Reqiuied) — !CE002 CROVH

Oiigmator Name (Required)-

Date of Issue (ddtnm^. Required)—

Tj'jft of a Change Request (Reqmied) Please choose one ot the lollowmj^

An BdstiiigSjimft

\ Rsus itte Liwirv
A ProduetfcHiStlSiiI.lt»

Related System (If applicable)—

Related Ctomponent ID (If applicable)—

Related Cbmfctient Version (If applicable)

Type of Maintenance (If applicable)— Perfective Maintenance O

Status of a Change Request (Required)-

Description of Change

Approved 1-1

1 , . •• t o suppor t the p l a t f o r m of M o t i f

Reason for Oiange

plica

Figure 7.2: A Change Request, CR002

151

building V applications', and 'perfective maintenance', respectively.

Evaluate a Change Request and Fi l l in a Change Approval Form

Two CRs have been forwarded to the CCB which is responsible for approving the

change request and monitoring implementation of the CR. Eddy Davis, who is a

member of the CCB, displayed a fill-out form for change approval shown in Fig

ure 6.11 in Chapter 6 by entering the CR number, i.e., 'CR002 or CR003', which is

related to the fill-out form for change approval.

Using the fill-out form shown in Figure 6.11, the CCB entered corresponding

change request numbers and the system's name, i.e., 'CR002 and CR003, and

V , respectively. After an impact analysis, the CCB could find out which com

ponents the two CRs might affect. The CCB then filled in the field, related com

ponent ID and version as follows: 'vapp.cxx(SOOOl) R 1.2, vawinfo.cxx(S0002) R

1.1, vcmdwin.cxx(S0003) R 1.1, vrefch4.tex(R0001) R 1.2, vapp.h(S0004) R 1.2,

vwindow.h(S0005) R 1.1, vcmdwin.h(S0006) R 1.2, vctlclrs.h(S0007) R 1.1, and

vcolor.h(S0008) R 1.1'.

The reusable component, 'vapp.cxx', has been used to build systems such as

'V, X and Y' . The product lines that these systems belong to, are PL # 1 for the

' V system, and PL #3 for 'X ' and 'Y ' systems. After the CCB compared the

cost with the benefits from the implementation of the CRs, the members of the

CCB decided to approve the CRs. Additionally, the CCB decided to deal with

the above two change requests in an identical change approval form as those CRs

were associated with the same component. The librarian and Quality Assurance

manager of the CCB wanted the requirements of these CRs to be included in the

reusable component, 'vapp.cxx'. A project manager and a maintainer need to find

out solutions to change the related component against the requirements of CRs and

then to fill in the field of the specification of change. Finally, the due date of change

and estimated resources (i.e., manpower and cost) should be decided and entered.

152

atscape; A Fill-out Fdintloraj C t e

File Edit View Go Baokmarke Ofitiont Directory Winilow

Home Edit Relotui Load Sm^tx Open... Print... Find™

.ocaJian: l ^ t t p : / / h e x h a m / c g i - b l n / d c s S o c k / c h a n g e _ r o q . p l

Whatft Cool?j Deefanadionoj Net Starch 1 People] Software I
'^SSSSS" p„ 1

•

Cbmg/t Request No (Requiied) - C R 0 0 3

Origtrutor Name (Required)— pjjjjjjjjjjjjjjjjjĵ ^

D i » or Issue (ddAnm/jFy, RequtoiQ— |

TjFpe ot a Chan^ Request (Required) Please cttoose one ctf ttte foUowin^.

A Reusable Library
A EroductiOD t̂attc. f^^|||||

Related System (If applicable)— |

Related Ctomponent ID (If applicable)-

Related Cbmponeot Version (If applicable)-- |

Typeof Maintenance (If applicable)— Perfective Maintenance a

Status of a Change Request (Required)— | Approved a

Description of Chan^

a f u r i c t i o n a i i t y f o r t l i e t imer of work s l i c e ,
l a s s 'DebugState ' needs t o cover a l l cases (events) of a system.

3 Need t o add the de l e t e p r o t o c o l to an e x i s t i n g component s'vapp. oxK'

m

Reason for Change

1. To improve Jthe f u n c t i o n a l x t x e a o f a V a p p l i c a t i o i

HZJJ!

Figure 7.3: A Change Request, CR003

153

The estimated manpower depends upon the deadline when the implementation of

change requests should be completed by. In other words, an urgent change request

requires more man-months in order to finish implementing as soon as possible. After

the CCB submitted the fill-out form for change approval it received a confirmation

message: "The change approval form, CA003, has been successfully inserted as a

filenamecalledCA003.txt".

While the CCB analysed two CRs (i.e., CR002 and CR003) the reuser needed

to search the reuse library to find a potential reusable component. He realised

that there was no component to be reused to maintain the reuse library and legacy

system. After the maintainer was told about this and the CCB approved the CRs,

he started implementing the CRs under the supervision of a project manager. The

CCB had already decided to merge these two CRs into one change approval, so

the maintainer could check out any of the two components. Using the results from

an impact analysis, the maintainer finished modifying the appropriate components,

followed by revalidation, i.e., integration testing and regression testing.

After the integration testing and regression testing had been performed success

fully, the configuration manager allowed the maintainer to check the new revision

into the production library and notified a librarian that the change of a component

associated with a reusable component had been made. A project manager asked

the maintainer to release the new revision to end-users. A new revision should

not be released until it meets the quality requirements of Company XYZ. The l i

brarian/domain manager also checked the new revision into the reuse library as the

librarian and Quality Assurance manager had already agreed to register the reusable

component version with the reuse repository. He then sent reusers and maintain

ers the message indicating 'that the new revision of the reusable component is now

available from the reuse library. The new revision of the component, 'vapp.cxx', was

numbered as R 1.3.

154

7.4.4 Scenario # 4: Procedure of Change Control for an

Existing System

This scenario shows an example where the implementation of the change request for a

legacy system can be performed using reusable components as the reuser can find out

a potentially reusable component from the reuse library. Thus, the implementation

of the CR can be supported by a process of reuse.

Issue and Analyse a Change Request, and Fi l l out the C R Form

The maintainer, "Steve Smith", created a change request since the users of the V

system had reported that there are inconsistencies in the order of width and height

parameters in previous versions of V. After completing the CR, he passed a copy

of the CR onto the reuser, "Rick Smith", to let him search for potential reusable

component versions. "Steve Smith" filled out the CR form whose CR number is

'CR004', as shown in Figure 7.4. After analysing the CR, the maintenance team

decided to accept the CR and to forward it to the CCB. Thus, "Steve Smith"

changed the status of the CR from 'Issued' to 'Approved'.

Searching for Reusable Components

The reuser, "Rick Smith", reviewed the change request (CR) which has been passed

from the maintenance team in order to understand the requirements of reuse included

within the CR. After identifying keywords or names of components, he clicked on

'Reusable Components Search' of the TERRA home page and then also clicked

on 'Search by Keywords'. Using a search command with a field option such as

"ci=s0001", "Rick Smith" obtained the results of a search that output a headhne

that consisted of component identifier, component name, author name, operating

systems, computer language, and component format. As shown in Figures 7.5 and

7.6, he then retrieved a specification of the reusable component, 'SOOOl', in order

155

Fu>a„

File Edit View Go Bookmarks Optons Directory Wradew

Reload umima^Ttl Opmt^l P r i n

Location: j l i f t p - / /hexham.dur . ac .uk /cg i - i3 in /dc33ock/change_re5-p l

Vhafo Hew71 Whaf« Coel?[DecfinaBoncI HetSearch[People | Software|

Change Request No (Required) — CR004

Originator Name (Required)—feteve Smit

Date of Issue (ddAnm^, Required)— I

Type of a Chaî ge Request (Required) Please choose one of the foDowinj?.

A Rilisabk Library
A PfC<lUiauoa.<Static Library

Related S5fstem (If applicable)-

Related Component ID (If applicable)—

Related Ctomponent Version (If applicable)—

Typeof Maintenance (If applicable)— Ooaective Maintenance d

Approved a Stanis of a Change Request (Required)—

Desci^xionof Ctiange

p i p i l l i p j p i l l ,JilLi J M H i l i l M i i
j need the « r id th and h e i g h t order swapped. 2.

sHasappWin need the order o f w i d t h s

Reason fof Change

I n order t o reduce u s e r ' s r a t e of e r r o r i n u s i n g a c lass , the order o:

Figure 7.4: A Change Request, CR004

156

Otf BoiakKiaur'lis OpUon» Dlr«atin-y Window
!l!?!!!!?̂ !l?Li "l^'^fj 5""} n«fi«*"*«| (.t.od «»«*«HXJ op<*n-j-| Rriirt..,J winn

VVriMfn New?! VfhMfa Caal-7| I>tr«tlnmion« | H«1SBnr«fi| Rttttpl*] SomviMritJ

(H ^ n «] t «caty=t» I [S U M — M

I T o o l f o r E v o l u t i o n oP Reusatste a n d R e c o n f i g u r a b l e

A. SpAcUlcAtion or a Re l iab le Caomponant: SOOOl

SOOOl

vA,pp.<»ut: Ttvt. t>u» olus for t>uil<aina 'V AppUoAtioins
A.uttior r>4atm«:

D«ito or cvMtBom

£ru.ppllBr/Re|tl> Nxunw
Oh CtMon Kwoci

-rh» "v>.pp" clAxs «s ttw *c.f> l«<v«i iWAd •> iMillKl AH ^ifsUeAtleA. TXMC* maxt voueflgr
on« Instwc* of «n ot>j«c.t cl«civ«cl fxocn itm "vA-pp" clasv. Xtm bas* e tu» oontMlm j
iTLiMAOilix& with ttm tvcMit wim3owli\g «3rsTednt, AAd s«fv«« to simpUfy vwln^ tX«ft wlndcvwlxvs ayvMcn. You
usuAUy <l«xlv* * c4acs t>»x«(l "vA.pp" tlXAl wUl >«rv« «s ttv* znain aontm e«nt«r off tXt* apptiMtkan. a« ̂
as cocitaixtlns 4w winelow ot^«sct» nMcted foe ttw ux«f Intwfae*. T X M »irk^fl» m«tftnc« off tXi* aps;«lcAtlcm e
is (MfflTwd In ttM body off ttw clMiv«d. AppUtxation <>1»« ood*. Ttm "vA.pp" C J M S tus M I W A I utlUty rowttaoda <
^MMral ustfuinMC. as w«U u SWVMAI znetttod* that am nocznaUy ovwriddnn «» pmvAdn t>M oonvol Inn
fxocn. tti* appUcjitlon. to th« cocntnand windows. Tl»* dMtv*d elux wOl also usually thav* ott̂ ar rmattiodls t
to lnt«rrac« wlttL th« application.

Figure 7.5: Specification of the Reusable Component: SOOOl Part #1

to see the details of the reusable component as shown in Figure 7.6. After clicking

on 'View the History of Change' shown in Figure 7.6, "Rick Smith" reviewed the

revisions of the component to decide if the requirements of the CR can be met by

any reusable component version within the reuse library.

Evaluate and Adapt Reusable Components

After reviewing the history of the change, the reuser compared several revisions using

the difference list between different versions. The reuser, "Rick Smith", realised

that the reusable component revision 1.4 satisfied the requirements of the CR in

part, so he planned to adopt 'white box' reuse in order to implement the CR if the

C C B approved the CR. In other words, this revision had already included the CR

requirements 1 and 2, but it had not included the requirements 3, 4 and 5. In the

mean time, the CCB started reviewing the CR to make a decision whether or not

157

Figure 7.6: Specification of the Reusable Component: SOOOl Part #2

it should approve, reject, or hold the CR.

Evaluate/Approve a Change Request and Fi l l in a Change Approval Form

After the CCB received and evaluated the CR, it decided to approve the CR in paxt

since some requirements (i.e., requirements 3,4,5) are only associated with another

component. Thus, requirements 1 and 2 of the CR have only been approved by the

CCB whereas requirements 3, 4 and 5 have been held, waiting for review later. The

CCB notified the reuser that the CR had been approved. In addition, the CCB

informed the originator, "Steve Smith", that some change requirements had been

held to be dealt with later. When a member of the CCB filled out an entry form

for change approval he omitted the field 'Specification of Change' in Figure 7.8 but

filled out all the fields in Figure 7.7. The reason why he can omit the field is that the

reuser can reuse the reusable component to implement the CR. The CCB assigned

158

F l l « K d l t V l « w < l o B o t t k m m r k * 0 | i « < i n « D l r a t o t w r y W t n t t o w

B a n k) P^t^tfyfa^ H » m « | • ^ ^ ^ ^ f ^ l j i i ? !? :^J!?^! ! i !?e5»j O p « w - . . | g * r « n t — | S I t o p |

W h « d f » M o w g j W t i w r * C O O I T J P»«BII«»««» j I W) f m ^ p t m l M t ^ m r m j

O IT X Tt<a.*:.o r ' » Naww.

— --——Hj^MS

Figure 7.7: A Fill-out Form for Approval of the Change Request CR004: Part #1

lower resources to the estimated manpower and cost because the reuser notified the

CCB that 'black box' reuse was applied to implement the change request, 'CR004'.

Integration of a reusable component into an existing system

The reuser, "Rick Smith", planned to adopt 'white box' reuse at the beginning of

reviewing the CR, but he could apply 'black box' reuse to implement the CR since

the requirements(i.e., reqs. 3, 4, 5) of the CR related to 'white box' reuse, had been

held for the moment. Thus, the reusable component 'SOOOl: vapp.cxx' revision 1.4

can be perfectly applied to meet the requirements of the CR, 'CR004'. 'Black box'

reuse does not require any regression testing. After the tester(QA person) finished

successful integration testing, the reuser informed a maintainer and configuration

manager that the CR, 'CR004', had been completed. The configuration manager

allowed the maintainer to check the new revision in a production library. The project

159

B A t t H j Vo-rwartttj H(»m«J C d l t j nmiama | t̂ arf ty»tJtg»» j o p e n . . .] l=»«-lri«..̂ j f l i y l

Figure 7.8: A Fill-out Form for Approval of the Change Request CR004: Part #2

manager then asked the maintainer to release the new version, 'vapp.cxx' revision

1.4, to end-users.

Updating of Reuse History

The reuse report might bring benefits to other reusers since the information on

reuser's experience can give confidence to reusers who are reluctant to reuse a

reusable component. As shown in Figures 7.9 and 7.10, the reuse report can be

identified by the component ID and version.

If the reuser adopts 'black box' reuse, he does not need to fill in the fields 'summary

of modifications' and 'how much you have modified'. The fields 'related product

lines' and 'related products' show the family and system, respectively, for which

the reusable component has been reused. Using the field 'other comments', the

reuser also filled out reuser's experience and benefits obtained from the use of the

160

Edtt VUw Qo BoDkmstrks Options Directory Window

Back I Furwftr«l| H o m g | Edw| R e l a * d | L u f t d I ^PfJ^^ J Print... | P I B J

t.ooaXlon: j.î -'t.t.p: //www .tiiAir . ac. uk/-cice3cick./t:err a/rBUse__ri3t. - Ktml

A Fill—out Form tor a Reuse R^ort

CJocnpomfecit ID <ReqTiire«l)

Figure 7.9: A Reuse Report Part #1 for the Reusable Component, SOOOl: vapp.cxx

corresponding reusable component.

7.5 Review of the Case Study

This chapter has shown the case study based on the sample data ' V , which is a

"Freeware Portable C-|-+ GUI Framework for Windows and X". This case study

has used four scenarios which are convenient for the purpose of this discussion, to

demonstrate the use of a reuse server named T E R R A that has been implemented

using the MwR model. An evaluation will be carried out in the next chapter.

The first scenario shows registering reusable components with a reuse library. A

librarian/domain manager is in charge of evaluating, classifying, storing, changing

and notifying reusable components. He needs to cooperate with a Quality Assurance

manager when evaluating potential reusable components. The MwR model supposes

161

»«miimvh« Opnanw Dlr*»t0ry Window

"^J^-^d f,!̂ „!l:*!r.y?:i!*,'l'n̂ .*!!!!!* I JE5!ll B « I O | I > « I | imaqyy^j <>y»»-,-'J ^jPrint...| riwd-.-j st»«>y>|

WhBi 'M N s w 7 | Whwrar C n o i r f & t t « t j n M l t » n s] M«t S » a u - a h J P « « p l « J a « t t w N t r a | ^9î ^H

K«quif«d> — — Pl*as* elioo«« on* off th» foUowlivs?.

o f tJ^ia componei'jn.ti, t:Jriia rouiaar c:oia3,ct a.mpicov«

To d;ul»nit tiae reuve report, prev* till* tauttons

To reisret the form, presets; thi« buttons |R»<^^

Pl*as* s«nd any cocnnMntx and suss!**̂ ''̂ ***
«g. c k^vtun <S'au Yhtrm. *tc. M *

Figure 7.10: A Reuse Report Part #2 for the Reusable Component, SOOOl: vapp.cxx

that the candidate of reusable components can come from the reuser, maintadner,

or external supplier. In other words, the reuser can submit potential reusable com

ponents to the librarian/domain manager if he thinks reusable component versions

created as a result of 'white box' reuse could be a candidate for a particular reusable

component. The maintainer might extract some potential reusable components from

an existing system. The reuser or maintainer can also ask a librarian/domain man

ager to purchase reusable components from an external supplier.

The second scenario has been used to show how the model of the change request

(CR) for a legacy system works. The change request created by the maintainer,

that is originally issued by an end-user, can be implemented by the steps of a reuse

process or maintenance process. In this case, the CR has been implemented by

a maintenance process since the reuser came to know that there was no reusable

component that could be used in 'white box' or 'black box' reuse. Thus, the reuser

needs to closely cooperate with the maintainer in order to decide if he can continue

162

to follow the process of reuse.

The third scenario has been introduced in order to present the procedure of change

control for a reusable component. Although this scenario is associated with two

change requests which have been issued by a hbrarian and a maintainer, its aim is

to show an example of the CR for a reusable component, where there is no reusable

component version to meet the requirements of this CR. Thus, the procedure of

change control has followed the process of usual maintenance. However, as the

reusable component has been reused and modified in order to implement the CRs

for an existing system and a reuse library, this scenario can be classified as 'white

box' reuse.

The fourth scenario has been chosen to give an example of a CR that has been

issued by a maintainer and can be implemented by a reusable component version

within a reuse library. This scenario presents a process of reuse that can be fully

supported by 'black box' reuse and meet the change request created by a maintainer

in order to implement changes to an existing system.

7.6 Discussion of the Case Study

The objective of this case study is to review the 'Maintenance with Reuse (MwR)'

model and TERRA tool that support a legacy system and a reuse library through a

scenario based approach. There exists a very strong relationship between software

maintenance and software reuse in terms of Software Configuration Management

(SCM). SCM enables a reuser and maintainer to solve some problems with reuse and

maintenance. In particular, software components within an existing system and a

reuse library are subject to evolution over time, so software maintenance and reuse

require SCM. The processes of software maintenance and reuse also have similar

activities that enable us to construct an integrated model. For instance, the analysis

of a CR within a maintenance environment is associated with the subactivities of

163

both the maintenance process and reuse process. In addition, both the maintenance

process and reuse process have the same sub-activities such as "integration" and

"re-insertion".

In this research, the author developed an integrated model of the reuse process and

the maintenance process within an SCM environment. The MwR model consists of

four major activities: configuration management (CM) process, reuse process, main

tenance process and administration of a reuse library. The activities of configuration

management support auxiliary(subsidiary) functionalities that enable the integra

tion of a reuse process with a maintenance process within a software maintenance

environment. The CM process can also manage the evolution of a reuse library. The

processes of reuse and maintenance in addition to the use of a reuse library should

be supported by SCM in order to manage changes to components which exist within

these processes.

A Configuration Management (CM) process has been used for integrating the

maintenance process and, reuse process within a maintenance environment. The

CM process has enabled the reuser and maintainer to control the evolution of the

reuse library and legacy system. In addition, the functionalities of CM have provided

the reuser and maintainer with a variety of reports in order to enhance the visibility

and traceability which might be useful for implementing the CR and managing the

reuse library. The TERRA prototype has been developed on the WWW to support

the four major processes of the MwR (Maintenance with Reuse) model.

164

Chapter 8

Evaluation of the MwR Model and

T E R R A Prototype

Section 8.1 describes some amendments to the model that have been made as a

result of the case study presented in Chapter 7. Section 8.2 addresses why the M w R

model and T E R R A can make systematic reuse effective and how the model and tool

can be customised for different organisations. Section 8.3 presents some benefits

that they can bring to the software maintenance and reuse community, followed by

several shortcomings to be addressed.

8.1 Modification of the MwR model and T E R R A

I n order to enhance the applicability of T E R R A with in a real organisational envi

ronment, the author has modified the four major processes that make up the M w R

(Maintenance w i t h Reuse) model using some feedback obtained during the case

study. The maintenance process and reuse process should be a cooperative proce

dure as shown in the M w R model since there exists a strong relationship between

the two processes. The continuation of activities of the reuse process depends on

whether reusable components exist wi th in a reuse library or i f the CCB approves

165

the CR.

The functionalities of a hbrarian/domain manager consist of "populating the l i

brary", "change control of reusable components", and "notifying changes in the

l ibrary" . The sub-activity, "notifying changes in the l ibrary", has been added for

the administration of a reuse library in order to inform reusers and maintainers of

the evolution and availability of reusable components.

The author has separated a model for management of a reuse hbrary f rom an

integrated model of reuse and maintenance. This research has focused on two kinds

of procedures of Software Configuration Management (SCM): one is a procedure of

change and version control for a maintenance environment that is supported by a

reuse library, and the other is a procedure of change and version control for a reuse

library. These two procedures are shown in Figures 4.14 and 4.16 in Chapter 4,

respectively. The configuration manager is in charge of the management of evolution

of an existing system. On the contrary, the domain manager has responsibility for

managing the evolution of a reuse library. Thus, the separation of these two distinct

activities has reduced the complexity of the M w R model and also enabled the author

to successfully complete a scenario based case study.

As shown in Figure 4.14, the integrated diagram of the reuse process and main

tenance process includes the diagram associated wi th the functionality of a con

figuration manager. Af ter change requests (CRs) are passed onto the reuser, the

maintainer and the configuration manager, the configuration manager who is one of

the CCB members needs to monitor the process of implementation of CRs.

Since the process of maintenance includes the sub-activity of "re-insertion", the

process of reuse also includes the sub-activity "re-insertion", which had been in i

t ia l ly contained in the sub-activity "integration". Having the same sub-activities

of "re-insertion" in the reuse and maintenance process makes i t easy to maintain

the integrated process of reuse and maintenance. One of the sub-activities of the

maintenance process, "revalidation", has been changed to "integration" since i t is

166

exactly the same as that of the reuse process and the two processes need to maintain

consistency w i t h each other.

8.2 Introduction of the MwR Model and T E R R A

to an Organisation

Through the four scenarios of the case study, we have seen how the change requests

(CRs) have been implemented using an approach that integrates the maintenance

process and reuse process. After conducting the case study, the author has realised

that the M w R model and its prototype enable the introduction of systematic reuse

to a software maintenance environment, because the M w R model and T E R R A have

considered the aspects of the reuse process and organisation that are key factors

for successful reuse. In addition, the process of reuse has been set up within a

maintenance environment, and the roles of a librarian/domain manager, a reuser, a

maintainer, a configuration manager and a Quality Assurance manager have been

identified i n terms of the structure of an organisation.

The M w R model and the T E R R A prototype should be customised when they are

introduced into various organisations. Depending on the size of an organisation there

may or may not be a reuser. In a large organisation, there may be a reuser as well as

a maintainer, as described in the M w R model. In a small organisation, the duties of

a reuser can be taken on by a maintainer. In addition, when the reuse technology is

first introduced into the organisation, both a reuser and a maintainer are necessary in

order to standardise the activities of the reuse process and to encourage a maintainer

who is not wi l l ing to reuse, to use reusable components in the maintenance of an

existing system. A t the beginning of the introduction of reuse, a maintainer is

usually not wi l l ing to use reusable components because of ' N I H (Not Invented Here)'

syndrome.

A n organisation requires the appropriate level of change control. I f change control

167

is too restrictive then the process of maintenance might be interrupted and wi l l

last longer. I f change control is too weak then software components may lose their

vis ib i l i ty and traceability, so the quality of an existing system and a reuse library wi l l

be reduced greatly. The major factors that affect the appropriate level of change

control are the size of the project team and risks related to the change. A large

project team needs more formal procedures than a small project team because a

larger project is associated wi th a lot of components and should be divided into

several subsystems which require their own CCBs. The change control procedure

for safety critical software must be strict and formal as incorrect changes concerned

w i t h safety critical systems may result in the loss of human property and life.

The CCB has other synonyms such as review board, change control board or

quality control. In a small organisation, the role of the CCB can be taken on by a,

single person, for example, a project manager. Although the size of the CCB may

be varied i t should always comprise a configuration manager, a Quality Assurance

manager and an end user's representative.

Although there are two approaches to Software Configuration Management (SCM),

i.e., a tool based approach and a paper based approach, this research has implici t ly

assumed a tool based approach as SCM without tool support might incur many

burdens on users. Although T E R R A has been ini t ia l ly developed for use by an

Intranet, i t can also be run on the Internet by the introduction of a user-id and

password. Thus, T E R R A can be effectively introduced into an organisation that

has several geographically separate branches or offices.

I n order to be used in an Intranet across an organisation, the T E R R A tool needs

to keep version numbering between the two repositories (i.e., a reuse library and

a production library for a legacy system) consistent. In addition, the two identi

cal components which are checked into the two repositories, should be numbered

w i t h the same version number so that a configuration manager and domain man

ager/librarian can control the evolution of every component efficiently.

168

As shown in Figure 3.1, when the reuser adopts 'black box' or 'gray box' reuse the

system of version numbering follows that of the reusable component such as R 1.1, R

1.2, R 1.3, etc. On the contrary, the system of version numbering of 'white box' reuse

uses the same version numbering system as variation so that multiple copies of the

reusable component can be managed and kept consistent wi th version numbers of

'black box' and 'gray box' reuse. However, the version number of 'white box' reuse is

identified as R 1.1.1.1, R 1.1.1.2, R 1.1.1.3, etc, whereas that of variation is identified

as V 2.1.1.1, V 2.1.1.2, V 2.1.1.3, etc. For instance, in Figure 3.1, the reuser A used

a specific reusable component revision 1.2 (R 1.2) f rom the reusable component

database without any modification (i.e., 'black box' reuse), so he needed to use the

same number as the reusable component. The reuser B used a reusable component

revision 2.1 (R 2.1) after modification (i.e., 'white box' reuse), and identified the

version number of the component as R 2.1.1.1. The maintainer A retrieved and

used a reusable component variation 1.2.1.1 (V 1.2.1.1), so he used just the same

number as the version number of the reusable component.

8.3 Criticism of the MwR Model and T E R R A :

Benefits and Limitations

Since there exist several similarities between reuse and SCM and between reuse and

maintenance, an integrated approach of reuse, maintenance and SCM has been inves

tigated. Moreover, many tasks which should be carried out in order to reuse software

components for software maintenance, can be solved using SCM. The T E R R A tool

has been implemented in order to provide automated support for Software Config

uration Management (SCM) of a reuse library and a legacy system.

When performing a case study, the author has used several examples of the CR

to explain and evaluate the T E R R A prototype and M w R model. As a result of

the case study, many strengths have been observed. The T E R R A prototype is an

169

easy-to-use, ease-to-learn, platform independent, and very flexible reuse server. A l l

these strengths have resulted f rom the fact that T E R R A has been implemented on

the W W W . T E R R A has flexibility as i t can be used in both an Intranet and the

Internet.

Through the case study, the author has also found out that T E R R A has some

weaknesses, as described below:

• T E R R A does not provide formatted reports on 'the history of reuse', 'change

request (CR) ' and 'change approval (C A) ' although i t produces a formatted re

port for the description of a reusable component that is one of more important

reports to be used by reusers and maintainers.

• T E R R A does not allow users to generate all reports related to the process of

Software Configuration Management (SCM) and administration of the reuse

library. For instance, i f T E R R A can produce all reports associated wi th im

plementation of a specific change request (CR), including 'the evaluation of

reusers' and 'the tree of version', the traceability and visibil i ty of change con

t ro l w i l l be greatly improved.

• The functionalities for 'the tree of version' and 'the evaluation of reusers' have

not been implemented although these functionalities are included in the sub-

act ivi ty "status accounting" of the M w R model. 'The tree of version' shows

the evolution of a component graphically. 'The evaluation of reusers' provides

information which is valuable for the reuse metrics.

• T E R R A does not provide fill-out forms for updating of input data after the fill-

out forms have been stored in a reuse library. • Although the users can update

the related text files directly and experienced users prefer direct updating of

the files, the fill-out fo rm for updating can provide users wi th a friendly entry

f o r m that might be very helpful for most novices.

• T E R R A does not include the fill-out form for evaluation of a reusable compo-

170

nent which is registered wi th a reuse library. The evaluation of the reusable

component is performed by a QA manager, a reuser or a maintainer.

The reports and functionalities described above seem to us useful, but time con

straints made i t impossible to implement these in the T E R R A prototype. The case

study has used four scenarios which can be apphed to the implementation of various

change requirements created f rom a maintenance environment and a reuse library in

order to evaluate the M w R model and the T E R R A prototype. Although there exist

some shortcomings in T E R R A such as lack of all reports on SCM, i t is believed

that the T E R R A prototype tool w i l l become the backbone for systematic reuse,

thereby bringing a lot of benefits to an organisation, in particular, the maintenance

community and reuse community.

I n conclusion, this research, which integrates reuse w i t h maintenance wi th in an

SCM environment, presents one example of tool integration, thereby allowing users

to gain remarkable improvements in both software quality and productivity. In

addition i t helps an organisation to enhance the effectiveness of investment in the

research of software engineering through simultaneous investigation into common

activities of reuse and maintenance. This research w i l l enable the software reuse

process to work as an integral part of software engineering and likewise software

reuse and SCM to be introduced into an organisation which maintains software

systems.

171

Chapter 9

Conclusions

I n order to solve efi^ectively many problems wi th software reuse and maintenance,

these problems need to be tackled together, through an integrated approach of these

two research fields. This research has therefore developed an integrated process

model for 'Maintenance wi th Reuse (M w R) ' , that supports Software Configuration

Management (SCM) for a reuse library which is actively maintained for use in a soft

ware maintenance environment. The prototype tool of the M w R model, T E R R A

(Tool for Evolution of a Reusable and Reconfigurable Assets Library), has been im

plemented on the W W W so that the prototype can provide portability, traceability,

integration w i t h existing tools, and a distributed maintenance environment. The

T E R R A prototype has been tested and evaluated through a scenario based case

study that has used 4 different types of scenario.

The integrated model of M w R and its prototype can overcome many problems that

exist i n software maintenance and reuse through introduction of SCM functionahties

into a maintenance environment, thereby enhancing productivity and quality of

software, and also reducing the costs of implementing changes to existing systems.

This chapter reviews the results of the work that has been carried out through

this research, and evaluates generally the M w R model and the T E R R A prototype,

followed by directions for further research that can be performed based on this

172

research.

9.1 Results of this Research

Models and prototypes that support the process of'Maintenance wi th Reuse (M w R) '

have been developed. The major results of this research as described in the criteria

for success in Chapter 1 are as follows:

• To develop models for 'Maintenance with Reuse (MwR)' that supports the evo

lution of a legacy system by a reuse library. The models can support most

activities related to the reuse, maintenance, and configuration management

(CM) processes. The method of M w R integrates a reuse process wi th a main

tenance process through the introduction of Software Configuration Manage

ment (SCM) into these two processes, thereby solving many SCM related prob

lems wi th in software maintenance and reuse. This integrated model includes

cooperative activities between the reuser and the maintainer, and functions of

change and version control. Change control procedures to support the evolu

t ion of an existing system through a reuse library have been developed. These

procedures show how the change requests (CRs) initiated wi th respect to a

legacy system are analysed, approved, implemented, tested and released.

• To develop the procedure of change and version control for reusable components

within a reuse library. Although the reuse library only supports the process

of 'black box' reuse, the reusable components wi th in the reuse library are

subject to change over t ime. Thus, all change requests should be controlled,

managed and propagated through a strict change control procedure as in a

legacy system. Additionally, i f the reuse library can store multiple versions

of a reusable component through the processes of version control and quality

control, the availability of the reuse library wi l l be increased greatly.

173

• To model and implement administrative functionalities associated with a reusable

software library. The functionalities modelled include classification, regis

t ra t ion and retrieval of reusable components, and notification of changes to

reusable components.

• To produce information (i.e., status accounting) related to reuse and SCM.

Some reports that contain information on reuse and SCM, have been devel

oped. For instance, the report of change history provides reusers and main

tainers w i th information on who made the changes, what changes have been

made, when the changes were made, and why the changes were made. The

report of reuse history includes some information on the reuser's experience

w i t h reusable components, such as the type of reuse, summary of modifica

t ion, relevant product, product line and domain, and comments that might be

useful for potential reusers.

• To develop a prototype that supports the 'Maintenance with Reuse (MwR)'

model. The prototype of a reuse server called T E R R A (Tool for Evolution

of a Reusable and Reconfigurable Assets Library) has been developed on the

W W W . T E R R A provides maintainers, reusers, librarians/domain managers,

configuration managers, project managers, and quality managers wi th an au

tomated tool that supports a maintenance process, a reuse process and an

SCM process, together w i th administrative functionalities for a reuse library.

9.2 Assessment of this Research

This research has focussed on developing change control procedures for both a reuse

l ibrary and an existing system, including most of the activities for these two pro

cesses wi th in a maintenance environment. In particular, in this research the main

funct ional i ty of SCM for the existing system is to establish procedures of the reuse

process for implementing change requests (CRs) to a legacy system. The reuse

process must be integrated into a software maintenance environment so that reusers

174

and maintainers can perform systematic reuse and enhance the effectiveness of reuse.

SCM can be adopted as a min imum requirement for a maintenance environment be

cause i t provides the procedures to control and manage the evolution of a legacy

system.

As shown in Section 2.4 of Chapter 2, there exist similarities and relationships be

tween reuse, SCM and software maintenance. For these reasons, the M w R model has

been bui l t to combine the reuse process wi th the maintenance process through intro

ducing SCM functionalities into a maintenance environment. Since reuse libraries

and servers currently available do not have the flexibility to be integrated into users'

development and maintenance environments, they have not been successful so far.

T E R R A is an automated framework that supports the processes of reuse, mainte

nance and SCM, including the evolution of the reuse library. Although some reuse

servers are now available on the W W W , most of them do not completely support

the functions required to control the evolution of reusable components in a reuse

repository, and the changes of legacy systems wi th in a maintenance environment. In

particular, there are no reuse servers which support efficient version control wi th in a

maintenance environment. As the T E R R A tool has been developed on the W W W , ,

i t can provide good capabilities of usability, portability, traceabihty, integration wi th

existing tools, and construction of a distributed maintenance environment.

I n order to make a reuse programme effective and viable, organisational problems

as well as technological problems need to be solved. For instance, most models of

reuse libraries do not consider the structural aspects of an organisation that might

be needed for its apphcation. However, TERRA's model identifies the roles of a

librarian/domain manager, a configuration (component) manager, a reuser and a

maintainer. These aspects help an organisation successfully introduce the server

into its maintenance environment.

The M w R model and its prototype enable the introduction of systematic reuse

into a software maintenance environment because they have considered the aspects

175

of the reuse process and organisation that are key factors for successful reuse. This

research also helps an organisation to establish a software maintenance support envi

ronment because reuse and Software Configuration Management (SCM) are usually

considered the core parts of a maintenance environment. In particular, this re

search has proposed a framework of a software maintenance support environment

that includes a production library (repository) controlled and managed by SCM. I t

is expected that the M w R model and T E R R A can be used as the keystone which

constructs a software maintenance support environment.

The introduction of SCM functionalities into the reuse process and maintenance

process, expedites the improvement of a maintenance process through standardisa

t ion that results in the success of systematic reuse. As SCM allows an organisation to

standardise its development/maintenance process using the functionahties of SCM,

the integrated model described here enables an organisation to introduce a process

assessment and improvement programme through the establishment of the level 2

(repeatable) of SEI's Capabihty Matur i ty Model (C M M) . A Reuse Capabihty Model

(RCM) should be used as a guide to selecting improvement strategies by measuring

current reuse capabilities and identifying the issues most critical to reuse improve

ment. As most of the organisations are st i l l placed on the 'initial'level of the C M M

model, they require their processes to be moved towards a higher level.

The T E R R A tool provides various reports for the reuser, maintainer, librarian,

domain manager, configuration manager, project manager, etc. so that they can

monitor and manage the process of evolution of a legacy system and a reuse library

using the functionalities of visibi l i ty and traceability f rom the reports. These reports

include a specification of a reusable component, a change request form, a change

approval fo rm, a change history report, a reuse history report, and a difference list

of versions.

The evaluation of the M w R model and T E R R A prototype has been made through

the scenario based case study. The case study has used 4 different types of scenario

in order to evaluate how the M w R model and T E R R A deal w i th evolution of both a

176

reuse l ibrary and an existing system through change and version control procedures

for changes made to software components, and how the reuse library is maintained.

The results obtained f r o m the evaluation have been used for improvement of and

amendments to the M w R model and T E R R A prototype.

Due to t ime limitations, all activities of the reuse and SCM processes have not

been implemented although most of the activities have been included in the M w R

model. However, the model and T E R R A prototype wi l l bring many benefits to

organisations when being used on an Intranet as well as the Internet, thereby leading

to efficiency of investment in software engineering. I f the common activities of reuse,

maintenance and SCM are attacked at the same time, many problems wi th in these

three fields can be solved together, resulting in synergy. Even though return on

investment w i l l usually accrue in the long term, this integrated approach enables an

organisation to advance the break-even point.

In conclusion, even though there exist some drawbacks in the M w R model and

T E R R A , i t is believed that through the integrated approach of the reuse and main

tenance processes wi th in an SCM environment, this research wi l l play a major role

in building the backbone of a software maintenance environment that can overcome

many problems w i t h software reuse and maintenance, thereby resulting in signifi

cant enhancements of the productivity and quality of a software product including

reduction of maintenance costs.

9.3 Further Work

I n order for the work described here to be feasible and effective, some further research

needs to be done.

Firstly, both software reuse and maintenance as well as SCM require system mod

elling languages for software building. I t is difficult to build complex systems f rom

software components. To solve this problem, a better Syntactic Interconnection

177

Language such as SySL and PCL could be used for system modelling and version

selection. Alternatively, a Component Description Language (e.g., OBJs, L I L and

RESOLVE) that can support Semantic Interconnection Modelling which specifies

the behaviour of a system as well as the structure of a system, could be enhanced

and adopted.

Secondly, different data models, classification schemes and terminology of reuse

libraries result in the inabil i ty to share reusable components between reuse Hbraries.

Research into reuse library interoperability has been carried out and applications of

the effective interoperation have already been made between some reuse libraries,

but they have not been implemented completely. The T E R R A reuse library could

interoperate w i t h other reuse libraries on the W W W to enable reusers to share

reusable assets without direct access to other libraries.

Thirdly , T E R R A has only adopted keyword searching by free text or fields as a

representation method of reusable components. This is because Frakes' empirical

study [41] shows that there is no significant difference in search effectiveness be

tween the representation methods, and no method achieved a best or even adequate

rating. However, the T E R R A prototype could be redesigned to support multiple

representation methods such as attribute-value classification, enumerated classifi

cation, faceted classification since more representation methods can increase the

probabil i ty that relevant reusable components wi l l be retrieved, and different users

may have different preferences. In addition, in order to enhance the understanding

of retrieved reusable components, a tool for domain analysis could be incorporated

into the prototype.

Fourthly, this research has focussed on the process of 'Maintenance wi th Reuse

(M w R) ' that maintains a legacy system through the reuse and SCM activities, in

contrast w i t h the process of 'Development wi th Reuse (DwR) ' that develops a new

system using reusable software. Thus, in order for the above two processes to be

successful, both M w R and DwR processes require the introduction of'component en

gineering' that populates reusable components by using the 'Development for Reuse

178

(D f R) ' process that creates reusable specifications and code, and the 'reverse en

gineering' process that extracts reusable assets from existing systems. Therefore,

the M w R model and T E R R A tool should be linked wi th the methods and tools

associated w i t h ' D f R ' and 'reverse engineering'.

Finally, a good starting point for undertaking reuse is to assess the maturi ty level

of organisational reuse wi th respect to the Reuse Capability Model (RCM) [32]. The

result of the assessment w i l l be used for establishing the reuse programme applicable

to each organisation. Thus the Reuse Capability Model must be investigated in order

to improve an organisation's reuse capability. A set of R C M guidelines to introduce

SCM and' software reuse into organisations based on the SEI's C M M needs to be

developed.

179

Chapter 10

Publications and Reports

The author has published and wri t ten the following papers and reports during the

course of this research.

1. 0 . C. Kwon, C. Boldyreff and M . Munro, "Scenario Based Case Study: A

Maintenance wi th Reuse (MwR) Model and its Implementation", To be Sub

mi t ted to lEEE-TSE Special Issue on Scenario Management, IEEE Transac

tions on Software Engineering, USA, January 1998.

2. 0 . C. Kwon, C. Boldyreff and M . Munro, "Software Configuration Manage

ment for a Reusable Software Library wi th in a Software Maintenance Environ

ment", Accepted for the International Journal on Software Engineering and

Knowledge Engineering (IJSEKE), Knowledge Systems Institute (KSI) , USA,

December 1997.

3. 0 . C. Kwon, C. Boldyreff and M . Munro, "An Integrated Process Model

of Software Configuration Management for Reusable Components", In Pro

ceedings of the Ninth International Conference on Software Engineering and

Knowledge Engineering (SEKE'97), June 18-20, 1997, Madrid, SPAIN. Also

as Technical Report 11/96, Centre for Software Maintenance, Department of

Computer Science, University of Durham.

180

4. O. C. Kwon and C. BoldyrefF, "Software Technology Analysis Task for a Soft

ware Maintenance Support Environment", DiCE Project Report Sponsored by

B T , i n Collaboration wi th U M I S T and Keele University, Centre for Software

Maintenance, University of Durham, 1 A p r i l 1997.

5. 0 . C. Kwon, C. Boldyreff and M . Munro, "Integration of a Reuse Process and

a Maintenance Process wi th in a Software Configuration Management(SCM)

Environment", I n Proceedings of the 8th Annual Workshop on Software Reuse

(WISR8), Ohio State University, Columbus, Ohio, USA, 23-26 March 1997.

6. 0 . C. Kwon, "SEKE'97 Report: the Ninth International Conference on Soft

ware Engineering & Knowledge Engineering (SEKE'97)", June 17-20, 1997,

Husa Princesa Hotel, Madrid , SPAIN, In W i l l Tracz, editor, ACM SIGSOFT,

Software Engineering Note (SEN), Volume 22, Number 5, A C M Press, October

1997.

7. 0 . C. Kwon, "A Software Factory Based on Software Reuse", In Proceedings

of Software Centre 2005 Workshop, Centre for Software Maintenance, Depart

ment of Computer Science, University of Durham, 15th December 1995.

8. 0 . C. Kwon and C. Boldyreff, "WISR8 Trip Report: 8th Annual Workshop

on Software Reuse (WISR8)", 23-26 March 1997, Ohio, USA, In E. Ng, editor,

The BCS Reuse Specialist Group's Newsletter, Re-Print, Issue 34 , October

1997.

9. 0 . C. Kwon and A. Jones, " A n AppHcation of the HAZOPS Technique to a

Software Project Management Model", Technical Report, University of Teesside,

January 1995.

181

Appendix A

Other Fill-out Forms and Tools

Used for this Research

A . l More Fill-out Forms and Reports Produced

by T E R R A

Figures A . l , A.2, A.3, A.4 and A.5 are forms and reports that have not been

included in Chapter 6 and Chapter 7.

A.2 freeWAIS-sf-2.0.65

A.2.1 The Format Definition File 'v.fmt' Used for Indexing

record-sep= / \ f / # formfeed (a l i a s for \L)

layout=

headline= / ~ c i = / /"cn=/ 5 / " c i = * /

182

• CdR visw ao BaoHmnrKs option* Dlrutsry Window

" " " ^ £S£S2l5J J!!!!5?J B«lo«JI Lona Inugeii| Opwi_[f|»|in!l—] Wad—[Slop]

^^^^^^^^^^^^^^^^ • 1
tHh^iwI [SeaPdi 1 [g — » — M o w 1

Tool for Evolution of Reusable and Reconfi^urable
Assets Library (TEItRA)

PleaiM Click on the Type of Reusable Ooxnpoxvents:

1. Software

2. O]>ociixnAnlatlon

To submit your dtoioe, pres« tliis buttcm:

To reset tlie ĉ heckb<HK̂ press ttils buttcm: | Reset f

[Home] [Seaxxli] [Suggestions 3

Computer Scteriioe Home Pjajee

Ple&se send, any oonunents and suggestions to:

Lmri moOfftMi Thv M^y J, 1997

Figure A . l : Main Menu for Reusable Components Registration

headline= / ' cn=/ /' cLn=/ 30 / ' cn=*/

headline= / ' an=/ /' dc=/ 15 /-an=*/

headline= r os=/ /-cl = / 12 /-os=*/

headline= r c i = / r cf=/ 12 r c l = * /

headline= r cf=/ r dm=/ 15 r cf=*/

end=

region= /'ci=/ /'ci=*/

c i "Component-ID" TEXT BOTH

end= /"cn=/

region= /'cn=/ /~cn=*/

cn "Component-Name" TEXT BOTH

end= /"an=/

183

Nt^(i«t. L^e-: S t t u v U b y K e y v

Fi le t c l i t V l o w C-iO B o o k m a r k s Options D I r H C l o r y w i n d o w

n « c : k | r(irv<aw| i i o m B | iiin'i R«uj«iij K D U un(in»:<| O p H n . . . | P)-lnt—| nml...| NUipl

,t's C:ool?| l>e«tlnations | Wet Search | People [3oftwnnB

t Home 11 SwKKfiMira. 1

Tool for Evolution of Reusable and Reconflgurable
ts L ibrary (T E R R A)

Keyword Search

Flease typm •

Maximuin number of dtfttions: [10 CZI

This reuse server is using freeWAIS- sf-2-1 -2 as a seardi meclianism.

Compttter Science Home Page

Fle&se send any comments and suggestions to:

Laa mxtifitdUcmS Match 1997

Figure A.2: A Fill-out Form for Search

region= /"an=/ /~an=*/

an "Author-Name" SOUNDEX LOCAL TEXT BOTH

end= /"dc=/

region= /'os=/ /^os=*/

OS "Operating-Systems" TEXT BOTH

end= / " c l = /

region= / " c l = / /^cl=*/

c l "Language" TEXT BOTH

end= /^cf=/

region= /'^cf=/ /"cf=*/

184

VIBW

• . I n c) : T I . e OiiOiK«- l U s t u t y liy R C S

Gn BonkmarKs Options Otovctory W i m l a \ ^ Halp

forw,ml\ H o m » | Etatj Raloa»i| t<K>d ! .n«i ta» | Open. . . | Phn%...\ FlfMl...| JSUipJ

//h«aaihartt/c!ig±-bl.n/c3cia3,ook/cha.iage_hiB . p l ? F I I

N a y t | . W h a t ' s Coaif\ Dg»t lnat lon« | Mat 8earel i | Poople| So f tware |

<iate; IVi'/Aii/.sft? witftor rtc?^ecK. state: issp. a u r s ; +<j - 1 ^

aaite: t»7«l<<2S 19:59:48; »jith!>r: :il<̂ 3<.d<; »t«e: Bip,

<aos«arch.cc): Th« Differences List of Two Revisions

Msaic «it«ftl!«.l<ityMiiu>ii(ee.,1.3); 1 . .

Htexfte .ii«ztii!:.ttn)r oo]»m«ii£» eivd suggesmm to;.
o.B jftwg;t̂ <AjrA/wft.c3Br.wt:
!<«»»• (WaSorf 1^ ZOMrn IS»7

Figure A.3: A Fill-out Form for the Difference List of Two Revisions

c f "Component-Format" SOUNDEX LOCAL TEXT BOTH

end= /~dm=/

region= /"dm=/ /~dm=*/

dm "Domain" TEXT BOTH

end= /"mt=/

region= /"mt=/ /"mt=*/

mt "Method-Technique" TEXT BOTH

end= /"kw=/

region= /"kw=/ /^kv=*/

kw "Keyword" TEXT BOTH

end= /"rc=/

185

r i h l I t N l V l n w Call lli>4>Kin.H«!* OfitNan^ l)i
J l j u ^ ^ ^ ^ ^ ^ ^ ^ H f t l w n o J .>JjltJ H»lfi«kclj t . ' .n i f .u . i i (« iv | <a|Mtn...(F»<>^x.^.| R n t f . . . | ;:<top|

uu^ollon: j J h t 1 i ^ ^ . / / n«3Cti»m/c^j X-t>.>,r»/ <Soe. J o c k / d J. f f . p ±

I T o o l f o r K v o l u t i o n o f R e u s a b l e a n d !|

• R e c o n f i B i > K * a l » l < » A s s e t s I v i b r a i - y (X K R R A) I

:»u001 (aosecarch.cc): T h e OUtierences L i sr of Two Revtoloits <V1.4 4kl.J^

* Rcv i« iar . 1.4 1 9 9 7 « 2 / 0 O ie:45;24 dc*3ock
.-ni 1 St oMcaxtiKM l a i * * to 1 ,

xiA i997XlZJOti 18-45:24 dcaSock

" f t — IxicMtad one « p « c « hn*.

te Extjractlon of M Reusable Oomponent

jPl*«u»fc vfca-pjoJt nm*5b«r * r«wi)eM» cfwtipcin*jit ytmwftm i;o exti«<?c ^ - ^ ^

Figure A.4: The Difference List of Two Revisions

#region= /"abs=/ /~abs=*/

#abs "Abstract" stemming TEXT BOTH

#end= /-^[A-Z] [A-Z]=/

As shown in this file, the headline of the retrieved reusable component consists of

"ci(Component ID) , cn(Component Name), an(Author Name), os(Operating Sys

tems), cl(Computer Language) and cf(Component-Format)", and provides an overview

of the reusable component for potential reusers.

A.2.2 The Format Description File 'v.dfe' Used for Indexing

ci=Component-ID

cn=Component-Name

186

•/ 'WWW. d'.!-:. a.:. •.;k,''"'dcs3ock/terra/auitmary/r6userS0001.

Whal t NewTl WiBt s Ooiil7| OafttiBUani| Nat SBmhl PBopie} Sonwanif

C o m p o n e n t I D = S 0 0 0 1
- ---I-cr.er.: V c i r r i - ^ n = l , 2
^^-UipG-ierit name- C++ S e a r c h C l a s s L i b r a r y (A l s e a r c h) - U N I K
. f . i e t - r j ; a r * i - f: C Kwon
:;.•»;-(•= r;E C : e a t i . j . - = 0 4 / 0 6 / 9 7
.t •,i6<.; T y p o = ; i . r i -> BOX RSiuee
Surna-ery o f Mod.i£ic;atione=Hone
D e g r e e o f M o d i e i c a t i o n = 0

5ted P r o d u c t i : . ine=PL # 2
i - l r t t e d r r o - i - . i c : e=P #1> P #4
• C.--.;:TT-on':r B l a t e B l a h B l a h

C o m p o n e n t r D = S 0 0 0 1
Coinponpr.'- V(»rF • i o n = l . J . 1.1
C o m p o n e n t name= C H - f ' S e a r c h C l a s s L i b r a r y (A l E e a r c h) - U N I X
R e u e e r Name=Hyo S e o b K i m
D a t e o f G r e a t i o n » 2 0 / 0 . S / 9 7
• i f i i i i p T y p e = W h i c a BOX RffiUee
S u n t n a r y o f M o d i f i c a t i o n B = M o d i E i e d t h e s o r t i n g r o u t i n e t o i m p r o v e
i : e r L o r M C c .
"t-^;rot5 .-C .*•:. : : i c a t i o n = 1 0 %
L ; j : . - . ^ i : : = Q\ . i ; i . - .efC D a t a E T o c e s B i n g iBOe)
R e l a t e d P r o d
i i e l a t e d F r o J
O t h e r Comtnent

C o m p o n e n t I D = S 0 0 0 1
C o m p o n e n t V e r e a o n = 1 . 4
C o m p o n e n t name-== C++s S s a r c h C l a e e Library iAleearch)-imiX
S . euEer N a m e = R i c k J o h n s o n
D a t e o£ C r e a t i o n = l " i / 0 7 / 9 7
Rpuf:>= Typf>=Whi f (••• n ^ x R e u s e
..[iK-arY M:>di; . ^ • n t i o n e = V a r i a b l e B "K, Y", O b j e c t " S c o r e R e e u l t " a d d

, M n d i f i c a t i o n = 5 %

3 m

Figure A.5: History of Reuse: Reuser's Experience Report

187

an=Author-NcLme

o s=Operat ing-Syst ems

cl=Language

cf=Component-Format

dm=Domain

mt=Method-Technique

kw=Keyword

As described in this file, the fields used for fast and efficient search are as follows:

"ci(Component I D) , cn(Component Name), an(Author Name), os(Operating Sys

tems), cl(Computer Language), cf(Component-Format), dm(Domain), mt(Related

Method and Technique) and kw(Keyword)".

A.2.3 The Index Files

The command waisindex generates several index files using the four files below. I f

waisindex is called by 'waisindex -d test -t fields i t uses the following files:

• ' test . fmt ' : The format definition.

• 'test.fde': The optional format description. Plain text, which is added to the

database description.

• 'test.syn': The optional synonym file contains multiple lines wi th synonym

terms separated by spaces.

• 'test.stop': The optional stopword file contains words, one per line, which

should be ignored when indexing.

The following files are generated or updated by vi^aisindex:

1. 'test.src': The database description.

188

2. ' test .fn ' : The filename list. One entry for each file in the database.

3. ' test.hi ' : The headline list. One entry for each document in the database.

4. 'test.doc': Document table. One entry for each document in the database. I t

contains pointers to the filename list and the headline list.

5. 'test.cat': The catalog file. One entry for each document in the database. A

human readable combination of document table wi th headline fist and filename

list. This file may be very space consuming. We can avoid generating this file

i f we use w^aisindex w i th the '-nocat' option.

6. 'test.dct': The global dictionary. One entry for each term in the default field.

7. ' test.inv': The inverted file for the default field. For each term in the database,

there is a list of postings giving the documents and positions in the documents

where the term occurs.

8. 'test.stop': w^aisindex might add words to the stopword file, i f they occur

often and would break the index.

For each field i n the format description, a dictionary and an inverted file such as

'test_field_name.dct' and 'test_field_name.inv' are generated. This applies only to

waisindex running wi th the ' - t fields' option.

A.2.4 Some Examples for Search

• P L A I N : waissearch -d test Probabilistic Indexing

A single or double quotation mark can be used to surround the words.

• W E I G H T : waissearch -d test 'ProbabiUstic < *3 Indexing'

• B O O L E A N : waissearch -d test "au=(pennekamp or fuhr) and processing"

A single quotation mark' can be used instead of a double quotation mark.

189

• F I E L D : waissearch -d test au=Pfeifer

I f au==pfei fer is used i t does not work.

• N U M E R I C : waissearch -d test py==1995

I f py=1995 is used i t also works.

• C O M P L E X : waissearch -d test "py==1995 and (t i=(Retrieval freeWAIS) or

au=pfeifer)"

e.g. waissearch -d p ro l "ti=(software maintenance) and au=kwon"

• P A R T I A L : waissearch -d test 'Pfeif*'(or "Pfeif*")

• D A T E : waissearch -d test "eti > 19930101" (or 'eJ > 19930101')

A.3 Functions of Revision Control System (RCS)

RCS manages software libraries. I t greatly increases programmer productivity by

providing the following functions.

1. RCS stores and retrieves multiple revisions of program and other text. Thus,

one can maintain one or more releases while developing the next release, wi th a

m i n i m u m of space overhead. Changes no longer destroy the original - previous

revisions remain accessible.

• Maintains each module as a tree of revisions.

• Project libraries can be organised centrally, decentralised, or any way you

hke.

• RCS works for any type of text: programs, documentation, memos, pa

pers, graphics, V L S I layouts, fo rm letters, etc.

2. RCS maintains a complete history of changes. Thus, one can find out what

happened to a module easily and quickly, without having to compare source

listings or having to track down colleagues.

190

• RCS performs automatic record keeping.

• RCS logs all changes automatically.

• RCS guarantees project continuity.

3. RCS manages mult iple lines of development.

4. RCS can merge mult iple lines of development. Thus, when several parallel lines

of development must be consolidated into one line, the merging of changes is

automatic.

5. RCS flags coding conflicts. I f two or more lines of development modify the

same section of code, RCS can alert programmers about overlapping changes.

6. RCS resolves access conflicts. When two or more programmers wish to mod

i f y the same revision, RCS alerts the programmers and makes sure that one

modification w i l l not wipe out the other one.

7. RCS provides high-level retrieval functions. Revisions can be retrieved ac

cording to ranges of revision numbers, symbolic names, dates, authors, and

states.

8. RCS provides release and configuration control. Revisions can be marked as

released, stable, experimental, etc. Configurations of modules can be described

simply and directly.

9. RCS performs automatic identification of modules wi th name, revision num

ber, creation time, author, etc. Thus, i t is always possible to determine which

revisions of which modules make up a given configuration.

10. Provides high-level management visibility. Thus, i t is easy to track the status

of a software project.

• RCS provides a complete change history.

• RCS records who did what, when and why they did i t , and which revision

of which module was affected.

191

11. RCS is fu l l y compatible wi th existing software development tools. RCS is

unobtrusive - its interface to the file system is such that all your existing

software tools can be used as before.

12. RCS' basic user interface is extremely simple. The novice needs to learn only

two commands. Its more sophisticated features have been tuned towards ad

vanced software development environments and the experienced software pro

fessional.

13. RCS simplifies software distribution i f customers maintain sources wi th RCS.

This technique assures proper identification of versions and configurations, and

tracking of customer modifications. Customer modifications can be merged

into distributed versions locally or by the development group.

14. RCS needs l i t t l e extra space for the revisions (only the differences). I f interme

diate revisions are deleted, the corresponding differences are compressed into

the shortest possible form.

15. RCS is implemented wi th reverse deltas. This means that the latest revision,

which is the one that is accessed most often, is stored intact. A l l others are

regenerated f r o m the latest one by applying reverse deltas (backward differ

ences). This results in fast access t ime for the revision needed most often.

192

Bibliography

1] Aide-De-Camp Software Management System, Concord, M A , USA. Product

Overview, 1989.

2] W . A . Babich. Software Configuration Management : Coordination for Team

Productivity. Addison-Wesley PubHshing Company, 1986.

3] V . R. Basili . Viewing maintenance as reuse-oriented software development.

IEEE Software, pages 19-25, January 1990.

4] Victor R. Basili , Gianluigi Caldiera, and H . Dieter Rombach. Experience

Factory. I n John J. Marciniak, editor. Encyclopedia of Software Engineering,

volume 1, pages 469-476. John Wiley & Sons, 1994.

5] F. L. Bauer. Software Engineering. Information Processing 71. North Holland

Publishing Co., Amsterdam, 1972.

6] M . Ben-Menachem. Software Configuration Management Guidebook. McGraw-

H i l l Book Company, 1994.

7] K . Bennett, B . Cornelius, M . Munro, and D. Robson. Software maintenance.

I n J. A . McDermid, editor. Software Engineer's Reference Book, pages 2 0 / 1 -

20/18. Butterworth-Heinemann L td . , 1991.

8] E. H . Bersoff, V . D . Henderson, and S. G. Siegel. Software Configuration

Management: An Investment in Product Integrity. Prentice-Hall Inc., 1980.

193

9] T . J. Biggerstaff and A. J. Perils. Software Reusability, Concepts and Models,

volume I , chapter 7. A C M Press, 1989.

10] J. Blyskal and B. Hofkin . Usage scenario for the reuse library toolset. Technical

report. Software Productivity Consortium, 1990.

[11] C. Boldyreff, R. Adams, et al. Development wi th reuse. In Patrick Hall and

Liesbeth Dusink, editors. Software Reuse, pages 17-19. Springer-Verlag, 1989.

12] C. Boldyreff, E. L. Burd, and R. M . Hather. An evaluation of the state of

the art for application management. In Proceedings of the 1994 International

Conference on Software Maintenance (ICSM'1994), pages 161-169. IEEE CS

Press, September 1994.

13] C. Boldyreff, P. Elzer, P. A. V . Hall , et al. 'Practitioner: Pragmatic sup

port for the reuse of concepts in existing software. In Proceeding of Software

Engineering 1990. Cambridge University Press, 1990.

14] M Bot t and P. Wallis. Ada and software reuse. Software Engineering Journal,

3(1), 1988.

15] P. Breuer, C. Bron, et al. Design for reuse. In Patrick Hall and Liesbeth

Dusink, editors, Softiuare Reuse, pages 10-14. Springer-Verlag, 1989.

16] The Technology Broker. Reaping the benefits of software evolution and reuse

technologies, November 1995. A Two Day Course on Software Reuse, presented

by Ericsson Software Technology, F R A M E W O R K S and Q-Labs.

17] A . W. Brown, editor. Component-Based Software Engineering, chapter Pref

ace. IEEE Computer Society Press, 1996. Selected Papers f rom the Carnegie

Mellon University (CMU)/Software Engineering Institute (SEI).

18] J. K . Buckle. Software Configuration Management. Macmillan Education L td ,

1982.

194

19] F. J. Buckley. Implementing Configuration Management : Hardware, Sofiware,

and Firmware. IEEE Computer Society Press, 1993.

20] T . B u l l and K . Bennett. The work of the durham centre for software main

tenance. Technical report. Centre for Software Maintenance (CSM), De

partment of Computer Science, University of Durham, October 1994. The

First Research Centre on Software Maintenance established in A p r i l 1987,

h t tp : / /www.dur .ac .uk /CSM/ .

21] Cap Gemini Innovation. Process Weaver User's Manual, Module 1-Initiation,

and Module 3-Modelling with Process Weaver, 1994. PW2.0.

22] M . A. M . Capretz. A Software Maintenance Method Based on the Sofiware

Configuration Management Discipline. PhD thesis. University of Durham,

October 1992.

23] A. M . Christie. Sofiware Process Automation, The Technology and Its Adop

tion. Springer-Verlag, 1995.

24] G. M . Clemn. Replacing version-control wi th job-control. In Proceedings

of the 2nd International Workshop on Sofiware Configuration Management.

A C M Press, October 1989.

25] S. Cohen, S. Friedman, N . Solderitsch, et al. Product line identification for

esc-hanscom. Special Report CMU/SEI-95-SR-024, Software Engineering In

stitute, Carnegie Mellon University, 1995.

26] E U R O W A R E Consortium. Enabling users to reuse over wide ar

eas (euroware) newsletters issue 1-3, 1994-1995. URL: h t tp : / /www-

cs. open. ac. uk/euroware/euroware. h tml .

27] L. Cooprider. The Representation of Families of Sofiware Systems. PhD thesis,

Carnegie-Mellon University, A p r i l 1979.

28] M . Cusumano. Japan's Sofiware Factories. Oxford University Press, Oxford,

U K , February 1991.

195

29] C. Dabrowski and T. Kirkendall . Preliminary report on domain analysis meth

ods. Project report, Computer Systems Laboratory, NIST, December 1992.

30] S. A. Dart . Concepts in Configuration Management Systems. In Proceedings

of the 3rd International Workshop on Software Configuration Management,

pages 1-18, June 1991.

31] S. A. Dart . The past, present, and future of configuration management. Tech

nical Report CMU/SEI-92-TR-8, Software Engineering Institute, Carnegie

Mellon University, July 1992.

32] T . Davis. The reuse capability model: A basis for improving an organisa

tion's reuse capability. In Proceedings of the 2nd International Workshop on

Software Reusability: Advances in Software' Reuse, pages 126-133. IEEE CS

Press, March 1993.

33] F. DeRemer and H . Kron. Programming-in-the-large vs programming-in-the-

small. IEEE Transactions on Software Engineering, SE-2:321-327, June 1976.

34] C. Desclaux and M . Ribault. Macs: Maintenance assistance capability for

software a k.a.d.m.e. In Proceedings of International Conference on Softiuare

Maintenance, pages 2-12. IEEE CS Press, 1991.

[35] M . Dowson and J. C. Wileden. A Brief Report on the International Work

shop on the Software Process and Software Environments. ACM Software

Engineering Notes (SEN), 10:19-23, 1985.

36] S. H . Edwards and B. W. Weide. WISR8: 8th Annual Workshop on Software

Reuse—Summary and Working Group Reports. Software Engineering Notes

(SEN), 22(5), September 1997.

[37] ESF/EPSOM. Deliverable D2.1: Identification of Maintenance Activities,

March 1992. V2.0.

196

38] P. H . Feiler. Configuration management models in commercial environ

ment. Technical Report CMU/SEI-91-TR-7, Software Engineering Institute,

Carnegie Mellon University, March 1991.

39] P. H . Feiler and G. F. Downey. Transaction-oriented configuration manage

ment: A case study. Technical Report CMU/SEI-90-TR-23, Software Engi

neering Institute, Carnegie Mellon University, November 1990.

40] S. I . Feldman. Make — a program for maintaining computer programs.

Software—Practice and Experience, 9(4):255-265, A p r i l 1979.

41] W . B. Frakes and T. P. Pole. A n Empirical Study of Representation Methods

for Reusable Software Components. IEEE Transactions on Software Engi

neering, 20(8)-.617-630, August 1994.

42] P. Freeman. Reusable software engineering: Concepts and research direc

tions. I n P. Freeman, editor, Proceedings of the ITT Workshop on Reusability

in Programming, pages 129-137, Stratford, Connecticut, I T T , Newport, R I ,

September 1983. IEEE.

43] B . Gautier, M . Ratcliffe, and B. Whi t t l e . Cdl: a component description lan

guage for reuse. Technical report. University of Wales, Aberystwyth, 1992.

44] J. Goguen. Parameterized programming. IEEE Transactions on Software

Engineering, SE-10(5):528-543, September 1984.

45] J. Goguen. Reusing and interconnecting software components. IEEE Com

puter, pages 16-28, February 1986.

46] J. Goguen, K . Futatsugi, and K. Okada. Parameterized programming in obj2.

In Proceedings of the Ninth International Conference on Software Engineering,

pages 51-60, A p r i l 1987.

47] J. Goguen and T . Winkler. Introducing obj3. Technical report, SRI Interna

tional, 333 Ravenswood Ave. Menlo Park, CA 94025, 1988.

197

48] P. Hal l and C. BoldyrefF. Software reuse. In J. A. McDermid, editor, Software

Engineer's Reference Book, pages 41/3-41/12. Butterworth-Heinemann Ltd . ,

1991.

49] P. A . V . Hall . Software components reuse - getting more out of your code.

Information and Software Technology, January/February 1987.

50] P.A.V. Hal l . Software reuse, reverse engineering, and re-engineering. In P.A.V.

Hal l , editor. Software Reuse and Reverse Engineering in Practice, pages 3-31.

Chapman and Hall , 1992.

51] D-R. Harjani , J-P. Queille, et al. Maintenance in a software factory—towards

an integrated maintenance support environment. In Proceedings of the ESF

Seminar, Berl in, Germany, 1992.

52] D. Harms. The Influence of Software Reuse on Programming Language Design.

PhD thesis, Ohio State University, 1990.

53] W . Hegazy. The Requirements of Testing a Class of Reusable Software Mod

ules. PhD thesis, Ohio State University, 1989.

[54] D. Hinley. A process modelling approach to managing software process im

provement. In Proceedings of Software Quality Management. Computation

Mechanics, 1993.

55] D . Hinley and K . Bennett. Developing a model to manage the software mainte

nance process. In Proceedings of International Conference on Software Main

tenance, pages 174-182. IEEE CS Press, November 1992.

56] E. T. Hobbs. A uniform data model for reuse Hbrary interoperability. In

Proceedings of the 6th Annual Workshop on Software Reuse (WISR6), 1993.

57] James W . Hooper and Rowena 0 . Chester. Software Reuse Guidelines and

Methods. Plenum Press, 1991.

198

58] W . S. Humphrey. Characterizing the software process. IEEE Software,

5(2):73-79, March 1988.

[59] IEEE Computer Society. IEEE Standard for Software Maintenance, June

1993. IEEE Std 1219-1993.

<

60] IEEE Press. IEEE Standard Glossary of Software Engineering Terminology,

1983. A N S I / I E E E Standard 729-1983.

61] I E E E Press. IEEE Guide to Software Configuration Management, 1987.

A N S I / I E E E Standard 1042-1987.

62] C. Jones. Economics of software reuse. IEEE Computer, pages 106-107, July

1994.

63] E. Karlsson, editor. Software Reuse: A Holistic Approach. John Wiley & Sons

L t d . , 1995.

64] E. Karlsson and E. Tryggeseth. Classification of object-oriented components

for reuse. In Proceedings of TOOLS'7. Prentice-Hall, 1992.

65] A. Kirby, I . Sommerville, P. Rayson, et al. Versioning the web. In Reidar Con-

radi, editor, Supplementary Proceedings of the 7th International Workshop on

Software Configuration Management (SCM7), pages 163-173, Boston, USA,

May 1997.

66] P. Ko l tun and A. Hudson. A reuse matur i ty model. I n Proceedings of the 4th

Annual Workshop on Software Reuse. Centre for Innovative Technology, 1991.

67] 0 . C. Kwon and C. Boldyreff. Software Technology Analysis Task for a Soft

ware Maintenance Support Environment. Centre for Software Maintenance

(CSM), Departrnent of Computer Science, University of Durham, A p r i l 1997.

D iCE Project Report Sponsored by B T , in Collaboration wi th U M I S T and

Keele University.

199

[68] 0 . C. Kwon, C. Boldyreff, and M . Munro. An integrated process model of

software configuration management for reusable components. In Proceedings

of the Ninth International Conference on Software Engineering & Knowledge

Engineering (SEKE'97). Knowledge Systems Institute (KSI) , USA, June 1997.

69] 0 . C. Kwon, C. Boldyreff, and M . Munro. Integration of a reuse process

and a maintenance process wi th in a software configuration management (scm)

environment. I n Proceedings of the 8th Annual Workshop on Software Reuse

(WISR8). Ohio State University, USA, March 1997.

70] O.C. Kwon, C. Boldyreff, and M . Munro. Software configuration management

for a reusable software library wi th in a software maintenance environment.

The International Journal of Software Engineering and Knowledge Engineer

ing (IJSEKE), September 1998. To be Pubhshed in the Special Issue on

SEKE97, Knowledge Systems Institute (KSI) .

71] R. G. Lanergan and C. A. Grasso. Software engineering wi th reusable designs

and code. IEEE Transactions on Software Engineering, 10:498-501, Septem

ber 1984.

72] R. G. Lanergan and B. A. Poynton. Reusable code: The application devel

opment technique of the future. In Proceedings of the IBM SHARE/GUIDE

Software Symposium. I B M , 1979.

73] D . B. Leblang, Chase Jr., and G. D. McLean. The domain software engineering

environment for large-scale software development efforts. In Proceedings of

the IEEE Conference on Workstations, pages 266-280, San Jose, California,

November 1985. IEEE.

74] Lie, Anund, Conradi, Reidar, et al. Change oriented versioning in a software

engineering database. In Proceedings of the 2nd International Workshop on

Software Configuration Management, pages 56-65. A C M Press, 1989.

200

75] W . C. L i m . Effects of reuse on quality, productivity, and economics. IEEE

Software, 10:23-30, September 1994.

76] D. Luckham and F. Henke. A n overview of anna: A specification language for

ada. In Proceedings of IEEE CS 1984 Conference on Ada Applications and

Environments, pages 116-127. IEEE CS Press, 1984.

77] D . Luckham, F. Henke, 0 . Owe, et al. Anna: A language for annotating ada

programs. Technical report, Stanford University, July 1984.

78] K . MarzuUo and D. Wiebe. Jasmine: A software system modeUing facihty. In

P. Henderson, editor, Proceedings of the ACM Software Engineering Sympo

sium on Practical Software Development Environments, pages 121-130. A C M

Press, 1986.

79] M . Matsumoto. Automatic software reuse process in integrated case envi

ronment. lEICE Transactions on Information Systems, E75-D(5):657-673,

September 1992.

80] Y . Matsumoto. A Software Factory: A n Overall Approach to Software Produc

t ion. In Peter Freeman, editor, Tutorial: Software Reusability, pages 155-178.

IEEE Computer Society Press, 1987.

81] Y . Matsumoto, 0 . Sasaki, S. Nakajima, et al. SWB System : A Software

" Factory. In Huenke, editor, Software Engineering Environments, pages 305-

317. North-Holland, 1981.

82] M . D. Mcllroy. Mass produced software components in : Software engineering

concepts and techniques. In P. Naur, B . Randell, and J. N . Buxton, editors,

Proceedings of NATO Conference on Software Engineering, pages 88-98, New

York, 1969. PetroceUi/Charter.

83] M . Munro. Software maintenance, reuse and reverse engineering. In P.A.V.

Hal l , editor. Software Reuse and Reverse Engineering in Practice, pages 573-

584. Chapman and Hall , 1992.

201

[84] M . Paulk, B. Curtis, and M . B. Chrissis. Capability matur i ty model for

software. Technical Report CMU/SEI-91-TR-24, Carnegie Mellon Univer

sity/Software Engineering Institute (SEI), August 1991.

85] M . Paulk, C. V . Weber, B. Curtis, and M . B. Chrissis, editors. The Capability

Maturity Model: Guidelines for Improving the Software Process. Addison-

Wesley Computer and Engineering Publishing Group, 1995.

[86] D . E. Perry. Software interconnection models. In Proceedings of the 9th Inter

national Conference on Software Engineering, pages 61-71. IEEE CS Press,

1987.

87] D . E. Perry. Version control in inscape environment. In Proceedings of the 9th

International Conference on Software Engineering, pages 142-149. IEEE CS

Press, 1987.

88] U . Pfeifer. The enhanced freewais distribution. Edit ion 0.5 for freeWAIS-sf

2.0, October 1995.

89] R. Prieto-Diaz. Module interconnection languages. In Peter Freeman, editor,

TutoriahSoftware Reusability, pages 117-144. IEEE Computer Society Press,

1987.

90] R. Prieto-Diaz. Implementing faceted classification for software reuse. In

Proceedings of 12th International Conference on Software Engineering, pages

300-304. IEEE, March 1990.

91] R. Prieto-Diaz. Making software reuse work: An implementation model. Soft

ware Engineering Notes, July 1991.

92] S. M . Przybylinski, P. J. Fowler, and J. H . Maher. Software technology tran

sition. In Proceedings of the 13th International Conference on Software Engi

neering, page 105, 1991.

93] M . J. Rochkind. The Source Code Control System (SCCS). IEEE Transactions

on Software Engineering, SE-l(4):364-370, 1975.

202

94] J. Rowe. Building Internet Database Servers with CGI. New Riders Publishing,

1996.

95] SAIC/ASSET. Asset Source for Software Engineering Technology (ASSET),

1995. URL: http://source.asset.com/.

96] W . Scacchi and K . Naryanaswamy. Maintaining configurations of evolving

software systems. IEEE Transactions on Software Engineering, SE-13(3):324-

334, 1987.

97] M . Simos. Organization domain modelling (odm): Formalising the core do

main modelling life cycle. In Special Issue on the 1995 Symposium on Software

Reusability. A C M Press, August 1995.

98] M . Sitarman, L. Welch, and D. Harms. On specification of reusable software

components. International Journal of Software Engineering and Knowledge

Engineering, 3(2):207-229, 1993.

99] R. A. Snowdon and B. C. Warboys. An Introduction to Process-Centred En

vironments, chapter 1. John Wiley and Sons Inc., 1994.

100] I . Sommerville. Software Engineering. Addison-Wesley, fifth edition, 1996.

101] I . Sommerville and G. M . Dean. A configuration language for modelling evolv

ing system architectures. Software Engineering Journal (SEJ), 11(2), March

1996.

102] T. A. Standish. A n essay on software reuse. IEEE Transactions on Software

Engineering, 10(5):494-497, September 1984.

103] Stuttgart University, Germany. AdaBasis, 1995. URL:

http:/ /www.informatik.uni-stuttgart .de/ifi /ps/ada-software/ada-

software.html.

104] J. Thomas. Module Interconnection in Programming Systems Support Abstrac

tion. PhD thesis. Brown University, June 1976.

203

105] R. Thomson. Automatic System Building Using a System Structure Language.

PhD thesis. University of Strathclyde, 1988.

106] W . Tichy. Software Development Control Based on System State Descriptions.

PhD thesis, Carnegie-Mellon University, January 1980.

107] W . F. Tichy. A data model for programming support environments and its

apphcation. Automated Tools for Information Systems Design, pages 31-48,

1982.

[108] W . F. Tichy. Res—a system for version control. Software Practice and Expe

rience, 15(7):637-654, 1985.

109] W . Tracz. The three cons of software reuse. In Proceedings of 3rd International

Workshop: Methods and Tools for Reuse. Syracuse University, June 1990.

[110] W . Tracz. The impact of domain analysis on software reuse. In R. Prieto-Diaz,

S. Wolf, J. Cramer, et al., editors. Proceedings of 1st International Workshop

on Software Reusability, pages 180-186. University Dortmund, June 1991.

[I l l] W . Tracz. Formal Specification of Parameterised Programs in LILEANNA.

PhD thesis, Stanford University, 1992.

112] W . Tracz. Lileanna: A parameterised programming language. In R. Prieto-

Diaz and W . Frakes, editors. Proceedings of 2nd International Workshop on

Software Reuse (REUSE'93), pages 66-79. IEEE Computer Society Press,

March 1993.

113] W Tracz. T h i r d international conference on software reuse summary. Software

Engineering Notes, 20(2):21-25, A p r i l 1995.

114] University of Houston- Clear Lake, and MountainNet, Inc. Software Market,

1995. URL: http://rbse.mountain.net/cs/.

115] H . J. Van-Zuylen, editor. The REDO Compendium: Reverse Engineering for

Software Maintenance. Wiley, 1993.

204

116] Larry Wall , Tom Christiansen, and Randal L. Schwartz. Programming Perl.

O'Reilly & Associates, Inc., Newton, M A 02164, USA, 1996.

117] P. Walton. The management of reuse. In Patrick Hall , editor, Software Reuse

and Reverse Engineering in Practice, pages 505-520. Chapman and Hall , 1992.

118] S. Wart ik and R. Prieto-Diaz. Criteria for comparing reuse-oriented do

main analysis approaches. International Journal of Software Engineering and

Knowledge Engineering, September 1992.

119] B. W . Weide, W . F. Ogden, S. H . Zweben, et al. The resolve framework

and discipline- a research synopsis. Software Engineering Notes, 19(4):23-28,

October 1994.

120] D . W h i t g i f t . Methods and Tools for Software Configuration Management. John

Wiley & Sons L td . , 1991.

121] B. Whi t t l e . Models and languages for. component description and reuse. Soft

ware Engineering Notes, 20(2):76-89, Apr i l 1995.

[122] B . Whi t t l e and M . Ratcliffe. Software component interface description for

reuse. Software Engineering Journal, 8(6), November 1993.

123] N . Zvegintsov. Software configuration management: Control for the software

team. Software Management News, l l (3):13-24, May-June 1993.

205

