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Abstract of Ph.D thesis 
"Theoretical Studies of Van der Waals Clusters" 

Robert Bryan, Durham University, November 1997 

The vibrational energy levels of various rare gas trimers, Ar 3 , Ne3, He3, 

Ar2Ne and Ne2Ar, have been calculated using a coupled channel approach. We 

have compared results obtained with previous calculations. The existence of Efi-

mov states in He3 has been investigated, and no evidence of their existence has 

been found. 

The affect of the Eckart conditions on embedding axis into a rotating-vibrating 

system has been investigated for several rare gas systems. A wide range of rare 

gas trimers have been studied, Ar 3 , He2Ar, Ar2He, Ar2Ne and Ne2Ar. For each 

trimer the full range of molecular motion is investigated. 

The low energy minima for the Ar„N2 and Ne„N2 systems have been found 

using simulated annealing search, and a gradient based minimisation technique, of 

a pairwise potential energy surface. Clusters with n > 12 have been studied, and 

first solvation shells for both systems have been proposed. For each value of n, for 

n = 1 — 12, the first few low energy minima of the potential energy surface have 

been found. From these studies, we have gained a detailed understanding of the 

interplay of forces that determine the low energy structures for these systems. 

The affect of three-body interactions on the low energy minima both rare 

gas-N2 systems has been studied. In both system, rare gas-rare gas and rare gas-

N 2 threebody interactions have been taken into account. This study has shown 

that the three-body forces have a small affect on the low energy structures of each 

system. 
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Chapter 1 

Introduction 

1.1 The Study of Intermolecular Forces 

The main focus of this thesis is the determination of various properties of 

rare gas clusters. There has been a range of rare gas clusters studied, with from 

three to over fifty atoms in the cluster. In my studies I have investigated two main 

types of cluster. The first type are rare gas trimers, such as Ar 3 or Ar2Ne. The 

second type are rare gas-molecule clusters, such as A r n N 2 or Ar„HF. The way in 

which these two types of cluster were investigated is very different, and therefore 

I shall introduce them separately. Both rare gas trimers and rare gas-molecule 

clusters offer excellent prototype systems. This makes insight into these systems 

all the more valuable. 

Both types of system are of interest because they allow the investigation 

of intermolecular forces. There are many compelling reasons for studying inter

molecular forces, as they are of major importance for many processes in chemistry, 

physics and biology [1]. Intermolecular forces are responsible for the stability of 

DNA and RNA. A knowledge and understanding of intermolecular forces is also 

needed for the study of the thermodynamic properties of gases and liquids, and 

their kinetic properties (e.g. diffusion) [2, 3, 4, 5, 6, 7, 8]. 

They also play an important role in clustering and solvation processes. In

termolecular forces also play a large part in determining crystal structures (e.g. 

4 



Introduction 5 

equilibrium geometry). One of the results of a better understanding of intermolec-

ular force is the production of "point and click" type modelling packages to aid 

researchers; this type of package is especially useful for the study of biologically 

important reactions. 

1.2 Rare Gas Trimers 

Rare gas trimers exhibit wide-amplitude bending and stretching motion, and 

they are also the smallest and simplest systems capable of molecular rearrange

ments. They are easily formed in molecular beam experiments, and high resolution 

spectra of them can be obtained [9, 10, 11, 12]. This allows detailed information 

about both two-body and three-body forces to be obtained [13]. They are therefore 

good trial systems on which to test our understanding of intermolecular forces. In 

general for rare gas trimers the pattern of vibrational energy levels is of most inter

est [14, 15, 16, 17, 18, 19], although other properties such as rotational constants 

can also be calculated [20]. Calculations are commonly performed for systems in 

which the total angular momentum is zero. This is not to say the rotational-

vibrational (ro-vibrational) energy levels are not of interest, but that they are very 

expensive to calculate. The expense of such ro-vibrational calculations has meant 

that relatively few have been performed [21, 22, 23]. 

There are several methods for calculating the vibrational energy levels of 

rare gas trimers. The first and oldest uses normal co-ordinates, and relies on 

the existence of a well-defined equilibrium structure about which the molecule 

undergoes small vibrational motions [24, 25, 26, 27]. This is not a very realistic 

model for floppy molecules and the method does not work well for excited states 

of rare gas trimers. An alternative method of calculation involves treating the 

system as if it were an atom-diatom system [28, 29, 30, 31]. Again this formalism 

is not physically very realistic as rare gas trimers execute large amplitude motions. 

Another method, and the one that we use here, is based on the solution of coupled 

differential equations [32, 14, 15]. In this method all but one of the co-ordinates 
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is covered with a basis set expansion, and the remaining co-ordinate (usually a 

distance) is propagated along. This method can be applied to rare gas trimer 

using a number of different co-ordinate systems. This leads to a set of coupled 

differential equations that have to be solved. The set of coupled equations can 

be solved by several methods [32, 33, 34, 35, 36, 37]. The scattering formalism 

when used within a hyperspherical co-ordinate system [38, 39, 40] works very well, 

and can accurately predict the spectroscopic properties of the system [14, 15]. 

The main problem with this method is that it is very expensive as it requires the 

evaluation of a very large number of matrix elements, which are themselves very 

expensive. This means that it is very difficult to calculate ro-vibrational energy 

levels for rare gas trimers. 

There is however a way around this problem. It involved the use of an al

ternative method of solving the Schrodinger equation. The method known as the 

descrete variable representation (DVR) [41, 42, 43, 44], replaces the basis func

tions for each co-ordinate with a set of grid points in each co-ordinate, at which 

the matrix elements of the Hamiltonian are evaluated. This representation has the 

advantage that the potential energy matrix is diagonal while the kinetic energy 

matrix in non-diagonal. This is very useful because the potential energy matrix 

elements are far more expensive to evaluate, as they are normally numerical in na

ture, than the often analytic kinetic energy matrix elements. The DVR approach 

has the added advantage that it also reduces the size of the matrices that have 

to be held in the computer's memory. This has allowed calculations on larger 

quantum system with up six degrees of freedom [45, 46], as well as ro-vibrational 

calculations for rare gas trimers [47]. 

1.3 Other Types of Rare Gas Cluster 

Besides the two types of cluster that I have already mentioned there are 

several other types that have been studied. The first and simplest are pure rare 

gas clusters [48, 49, 50]. These can be made from a single rare gas species or from 
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a mixture of rare gas species. They are excellent microcluster systems, and have 

been widely investigated l . 

Another type of cluster that has not been mentioned so far is clusters made 

up of two or more molecules. Most of the work so far has involved clusters made 

from one molecular species, such as (HF)2 [46, 52, 53, 54, 55, 56] and (HC1)2 

[56, 57, 58]. There has also been some work on larger (HF)„ and (HCl) n clusters 

[59, 60, 61, 62, 63]. In addition to the hydrogen halide systems many other systems 

have been investigated. The most important systems are probably water clusters 

[56, 64, 65, 66, 67, 45, 68, 69, 70] and aqueous species such as C 6 H 6 — (H 2 0)„ 

[70, 71, 72, 73, 74, 75, 76, 77, 78]. An excellent review covering most types of 

cluster was published recently by Bacic and Miller [70]. 

All the clusters so far discussed are neutral, and are held together by van der 

Waals forces. There are however many studies both experimental and theoretical 

in the charged species [79, 80, 81]. There are charged analogues of all the rare gas 

cluster types so far mentioned. 

1.4 Rare Gas-Molecule Clusters 

Rare gas-molecule clusters are of interest because they allow the study of 

clustering and solvation process [82, 83, 84, 85, 86, 87, 88, 89, 59] that would be 

difficult in more every-day solvent-solute system. This is of obvious importance to 

many physical and chemical processes. 

All that has just been said about the experimental usefulness of rare gas 

trimers is also true for rare gas-molecule clusters. The only complication is that 

for clusters containing more than three or four rare gas atoms interpreting the 

spectra becomes very difficult [90, 91, 92, 93, 94]. However for small clusters 

spectroscopy can be used to determine the structures [92, 93, 94, 90, 91, 95, 96, 

97, 98, 99]. Rare gas-molecule clusters are some of the simplest prototype systems 

that have realistic features in their intermolecular interaction. The solvent-solvent 
1see references in [51] 
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and solvent-solute interactions are sufficiently varied to allow many parallels to 

more every-day chemical systems to be drawn. 

1.5 Work in This Thesis 

In chapter 2 we discuss our calculations of vibrational energy levels for 

rare gas trimers. These calculations were performed by a modified version of the 

BOUND code [100]. In this chapter we study two main types of rare gas trimer. 

The first type (A 3) has 3 identical rare gas atoms, while the second type (A 2B) is 

made from a mixture of rare gas atoms. 

In chapter 3 we investigate the Eckart conditions [24]. In particular we study 

how the Eckart conditions embed a rotating axis into a system of three particles 

executing wide amplitude motions. 

In chapters 4, 5 and 6 we will discuss our work on rare gas-molecule clusters. 

Chapters 4 and 5 contain work on the Ar„N2 and Ne„N2, while chapter 6 contains 

work on the effects of three-body forces on these two systems. 

All structural data for this project can be obtained by anonymous ftp from 

krypton.dur.ac.uk. 

It is important that we have a clear understanding of what we are going to do, 

and what information we can obtain. We will construct a potential energy surface 

that is a function of the co-ordinated of the atoms in a rare gas-molecule cluster. 

We will then use simulated annealing to search the potential energy surface. We 

want to find the global minimum and the other low-lying minima. We will then use 

a gradient technique to refine the local minima found in the simulated annealing 

search. 

It is important to note that we do not calculate the total energy of the system. 

What we calculate is the potential energy at each configuration. In the following 

discussion the term energy will refer to the potential energy of the system. 

We are interested in the lowest energy structures for each A r n N 2 system. The 

structures that we find represent the likely configurations that might be observed 

http://krypton.dur.ac.uk
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in a molecular beam cluster experiment. The experimental set up for producing 

the rare gas molecule clusters is quite simple [95]. A mixture of the two species in 

a gaseous state is expanded into a chamber at low pressure. After the two gases 

have been co-expanded into the low-pressure chamber the clusters formed in the 

expansion chambers may be studied with the usual spectroscopic techniques. 

One of the main reasons for studying rare gas-molecule clusters is that they 

provide excellent prototype systems on which to test our understanding of the role 

played by intermolecular interactions in solvation structures. It is important to 

state precisely what we mean by a solvation structure. If a substance is dissolved 

in a solvent each molecule of the solute is surrounded by a large number of solvent 

molecules. In trying to understand the physical factors that determine solvation 

structures, we concentrate on one of the solute molecules. In the present work, we 

try to find the lowest energy structures formed by the solvent„-solute system. If 

we find a structure in which the solvent completely encases the solute molecule, 

with no room for any additional solvent molecules in contact with the solute, and 

this structure is the lowest energy configuration, then we have probably found the 

solvation structure for the system that would exist in a bulk sample. 

The systems that we will study are rare gas-N2 clusters. These are obviously 

far simpler than most solvent-solute systems of real chemical interest. Nevertheless 

studying a number of different prototype systems [101, 95, 91] we will be able 

to build up a deeper understanding of the effects on solvation of the potential 

energy surface topology, and the interplay between solvent-solvent and solvent-

solute interactions. 

It is however possible to calculate the infrared red shift of a cluster, which 

is an experimentally measurable quantity [102, 103]. The red shift is the change 

in the frequency of a particular transition between the 'bare' molecule and the 

molecule when it is part of a cluster. In general terms the frequency is shifted to 

the red because the molecular interactions with the rest of the cluster reduces the 

force constant for the molecular vibration. As the number of rare gas atoms in 

a cluster increases the magnitude of the red shift generally increases, though not 
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in a uniform manner. Because the red shift depends sensitively on the interaction 

between the cage and the molecule, it is a sensitive probe of the structure of a 

system. 

Experimentally it is difficult to size-select each solventn-solute system of in

terest. For instance the experimental results on Ar n HF [90] only go up to n = 4. 

There can also be a number of different species formed (i.e. structures) in the 

experiment, which makes it more difficult to distinguish one possible structure 

from another. Therefore the observed red shift may have a value between the 

predicted values for two structures. This can however still be useful as it may 

provide an estimate of the relative populations of the different cluster species. It 

is also often possible to measure a bulk red shift for a system, where the molecule 

is completely solvated. The red shift therefore gives detailed information on the 

structures formed by each rare gas-molecule system in the experiment. This means 

that in theory an experiment could test the predictions made by a study of the 

potential energy surface. If a global minimum can be found in which the solvent 

forms a complete cage around the molecule, the structure could be used to compare 

the calculated red shift against the experimental bulk red shift. 

The problem with the above discussion is that it requires the potential energy 

function of the rare gas-molecule interaction to have a vibrational dependence built 

into it. This would allow the structures for the two potential energy surfaces to be 

found. The two potential energy surfaces would represent the cluster structures 

when the N 2 is in its v and v vibrational states. If we were to calculate the total 

energy, rather than the potential energy, the difference between global minimum 

on the two surfaces would give a transition frequency, for which we could calculate 

the red shift. If there was an experimentally determined proportionality constant 

for the red shift, such as Nesbitt measured for the Ar„C0 2 system, then it would 

be possible to use the red shift constant to estimate the red shift for each of 

the structures we find. Without the vibrational dependence though we cannot 

calculate the red shift, and we must wait for the development of more potential 

energy surface with vibrational dependence. 
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1.6 Minimisation Techniques 

Finding the minimum value of a function is a long standing problem in both 

mathematics and the physical sciences. As the number of variables in the function 

increases, it becomes increasingly hard to find the global minimum. This problem 

has historically been solved by numerical searches [104, 48, 105, 106, 107]. The 

question then becomes how to be confident that the global mimimum has been 

found. 

For a fairly simple function, one can imagine searching over a grid covering 

all the dimensions. This grid would obviously be of a finite size in each dimension. 

The finite range of the search is in general not a major problem, as the range in 

each dimension can be set to cover the active range. That is to say the range of each 

dimension in the search is large enough to cover all values of the variable which 

could contribute to a low value of the function. For example if you were looking 

for the minimum in the potential energy between two rare gas atoms, where the 

potential energy function depends only on the interparticle distance R, you would 

probably search from zero, or close to zero, to some large distance (perhaps 20 A) . 

There is no point in continuing to R = oo because the asymptotic limits of the 

function are known. 

As the number of variables increases, it becomes increasingly difficult to con

tinue with a grid strategy. This is due to increase in the size of the space that need 

to searched, and the commensurate number of grid points needed to cover that 

space. To illustrate this point consider that if we need q points in each dimension 

then as the number of atoms in a cluster (n) increases the number of grid point 

increases as q3n. This would lead to a huge number of grid points being needed 

even for a fairly small rare gas-molecular cluster. 

We need a more 'intelligent' way of searching the active space of the function 

[104]. The most obvious way of doing this is to use the properties of the function 

at a given point to determine the future direction in which to search. This is the 

principle behind gradient-based search techniques. In gradient-based techniques 

the search is started at a given point, and the direction of the first step in the 
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search is determined by the gradient at that point. When the search routine 

has completed the first step, the gradient of the function at the new position in 

parameter space is calculated. This information is then used to determine the 

direction of the next step in the search. This process is repeated until the change 

in the value of the function is smaller than a convergence parameter. Methods 

based on this principle have been very widely applied to many different problems. 

The way in which the gradient information is used is however very important. The 

simplest way of using the gradient information involves taking the path of steepest 

descent. This however is not the most efficient use of the gradient information. It 

has been found [104] that using the gradient information to generate a new search 

direction that is conjugate to the previous search direction is much more efficient. 

The main disadvantage of gradient-based techniques is that they can be 

trapped in a minimum that is not the global minimum. This problem occurs 

commonly for clusters. If an atom interacting at its pair potential equilibrium 

distance with n neighbouring atoms in a cluster is then moved so it can interact 

with n + 1 atoms at its equilibrium distance, clearly the second structure is lower 

in energy that the first. But because the atom in the first structure is in its opti

mal configuration in that particular volume of parameter space, whichever way the 

cluster is distorted to try and get to the second structure will initially lead to an 

increase in the energy. It will appear to the gradient minimisation technique that 

it has found the minimum value of the function, as all moves lead to an increase 

in the energy of the cluster. 

As the number of atoms in the cluster increases the number of dimensions in 

the parameter space will also increase. This makes it more likely that a gradient-

based technique will become trapped in a local minimum. One way around this 

problem is to start from many different points in parameter space. If the surface 

is not too complicated, then eventually the global minimum is located. If you are 

looking for the minimum energy of a cluster, you can use your intuition about 

what the low-energy structures will look like to help determine the starting po

sitions used to search the surface. So for example we know that all the atoms 
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in a low-energy structure will interact with the other atoms in the system at ap

proximately their equilibrium configuration, as defined by their pair potentials. It 

would therefore make no sense to start the search from a point in parameter space 

where two or more atoms are very close together. Equally the search should not 

be started from a point in parameter space where the atoms in the cluster are too 

widely separated. Otherwise the search will tend to find a n n - l o r n - 2 structure 

with the remaining atoms attaching to the side of the n — 1 or n — 2 structure, 

whereas the global minimum structure may be completely different. The problem 

with gradient methods is that, as the number of dimensions increases, the number 

of starting points needed to search the space increases. In addition the space be

comes more complicated, and the likelihood of being trapped in a local minimum 

increases. 

If we now turn our attention to the problem of rare gas-molecule clusters, 

the above discussion will become more physically obvious. Our function is the 

potential energy surface of a rare gas-molecule cluster, where argon or neon atoms 

cluster around an N 2 molecule. The potential energy surface is itself a summation 

over the pairwise interactions of the rare gas cluster, and the pairwise interactions 

of the rare gas atoms with the N 2 . It is therefore a function of 3n — 6 parameters 

(the bond length of N 2 is fixed) , where n is the number of atoms in the cage. 

If we consider a simple system such as A r 2 N 2 then with our knowledge of the 

potential energy function of Ar-Ar, dependent only on R, and Ar-N 2 , which has a 

'T shaped' minimum, we can guess that the global minimum will have the two Ar 

atoms interacting in a 'T shaped' configuration with the N 2 , and separated from 

each other by about their equilibrium distance. It is therefore easy to investigate 

this system using a gradient-based technique, by choosing several starting positions 

where the Ar atoms are around the middle of the N 2 . Using similar logic you could 

investigate simple Ar„N 2 systems where n = 3 to 5. Even for n = 5 however it 

would be difficult to know for certain that you have found the global minimum as 

the potential energy surface is a function of fourteen variables. The large number 

of variables means that it would be easy to miss a low energy minimum that is not 
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accessible f r o m one of the starting position used in the search. 

We are also interested in the first few minima above the global min imum. 

We are interested in these low-lying minima because they show the evolution of 

structures that for larger clusters may become the global min imum. They also help 

to i l luminate the interplay of forces in the system, such as the balance between 

the rare gas-rare gas and rare gas-molecule interactions. Understanding such con

siderations become increasingly important in larger clusters i f we are not to miss 

low energy structures. I n addition the gap between the global min imum and the 

first few low-lying minima gives an indication of the likely population distributions 

between the structures that would be found in an experiment. 

To be able to search the more complex and subtle potential energy surfaces 

of the larger clusters, we need to be able to escape local minima and continue 

the search. We need a search algorithm that is less 'greedy' in its at tempt at 

reaching the global minimum. To achieve this we use a Simulated Annealing 

algori thm [104, 108, 109]. I n a simulated annealing search, the search starts f rom 

some arbitrary point on the potential energy surface. From this point each of the 

variables is altered in tu rn by a small random amount. Af te r each alteration of a 

variable the value of the function at the new point in parameter space is calculated. 

I f the value of the funct ion has decreased then the alteration is accepted, and the 

search moves to a new point in parameter space. This is similar to the gradient 

techniques i n that i t is assumed that any alteration that reduces the value of the 

funct ion is a good step on the road to the global min imum. Wha t saves simulated 

annealing f r o m being so easily trapped in a local min imum is that, i f a random 

alteration increases the value of the function, the alteration has a chance at been 

accepted. Simulated annealing achieves this by accepting a proport ion of the 

alterations w i t h a positive A E . The probabili ty of an 'up h i l l move been accepted 

is thus given by 

P [ A E ] = 1 - e A E / k T , (1.1) 

where k is the Boltzmann constant. 

In a simulated annealing run the temperature is started at a high level and 
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then is slowly reduced, after a given number of random alterations to the vari

ables (known as steps). A typical simulated annealing run starts w i t h a simulated 

temperature of several thousand Kelvins. The temperature is reduced during the 

run to tens of Kelvins. As can be seen f rom the equation above, the probabil i ty 

of a given A E being accepted depends on the temperature. A t the beginning of 

a simulated annealing search when the temperature is high, the probabil i ty of a 

given positive A E being accepted is greater than when the temperature is lower. 

This allows the simulated annealing algorithm to escape f rom a local min imum, 

and efficiently search a greater volume of configuration space. 

A simulated annealing search therefore has a greater chance of finding the 

global min imum than a gradient search. Al though the result of a simulated an

nealing search is not completely independent of the starting position, i t does have 

a greatly reduced dependence. The final temperature of a simulated annealing run 

is finite so the system is not precisely at the minimum. We therefore refine each 

structure that the simulated annealing run finds using a gradient-based technique. 

Using simulated annealing we can quite easily find the low-lying minima of the 

potential energy surface as well as the global minimum. 

I f a simulated annealing run is started twice f rom the same starting position, 

i t is quite likely to give different results because of the random nature of the 

perturbations. This may seem to be a disadvantage to the technique but i n reality 

is one of it 's strengths: we actually run the program many times (usually 32 times) 

f rom the same starting position. In this way we can to cover the largest possible 

volume of the parameter space, for a given starting position, and therefore increase 

the likelihood of finding the global min imum and low-lying minima. 

I t can be seen that as the clusters become bigger the problem of finding 

minima become increasingly hard. The problems of finding the global min imum 

of a protein [110, 111] or a cluster [112] are 'hard' computer problems [113]. Thus 

we are l imi ted in the size of system that we can study, but w i th in this l imi ta t ion 

we can learn a lot about these complex and fascinating systems. 
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1.6.1 Genetic Algorithms 

U n t i l very recently simulated annealing was the only way in which to search very 

complicated functions. However very recently there has emerged a new algori thm. 

Interestingly this new search algorithm, called a genetic algori thm [48, 114, 51, 

115, 109], also takes its inspiration f rom nature, just as simulated annealing did . 

I n a genetic algori thm the solution to the problem, i.e. the lowest few min ima of 

a funct ion, are bred by a pseudo-natural selection process. The algori thm works 

by starting w i t h a set of parents, of fixed size m. These parents are bred together 

to produce a set of 'child ' structures. A t the end of each breeding cycle the m 

fittest structures are kept as the next generation of parents, where the fitness of 

a structure is measured by how low the energy is. This process is repeated un t i l 

the set of parents has converged to a stable population. There are several different 

methods for breeding new solutions, and for picking the new set of parents for the 

next breeding cycle. 

Al though this method is new and has only been tested on a few problems, 

i t has proved to be as effective at finding the global min imum of a complicated 

funct ion as simulated annealing. Indeed in one study of pure rare gas clusters 

i t found a new global min imum for one of the A r n systems which had not been 

found by any previous search method [114]. Not only are genetic algorithms at 

least as good as any other search technique for complicated surfaces, they are also 

significantly quicker that simulated annealing. 



Chapter 2 

The Bound States of Rare Gas Trimers 

2.1 Coupled Channel Calculations 

To calculate the properties of the van der Waals molecules i t is necessary to 

solve the Schrodinger equation for the system, 

where R is the separation of 2 particles, d represents a l l other coordinates, and 

Hmt is the Hamil tonian of the isolated particles and does not depend on R. To 

solve this equation and f ind its eigenvalues, I used a program called B O U N D [100] 

which solves the problem using the log derivative propagator method of Johnson 

[116, 33, 32, 117]. This is best understood i f the problem is considered in a more 

general way first. I t is possible to f ind eigenvalues and eigenvectors by a mat r ix 

method, in which all degrees of freedom are handled by basis sets [118, 119, 41]; 

alternatively al l the co-ordinate could be described on a grid [120]. The method 

that B O U N D uses is in-between these two extremes and is called the coupled 

channel method. I n this method [34, 35, 36, 37, 121] the R co-ordinate is handled 

by a grid, where the grid ranges f rom Rmm to Rmax w i t h a grid spacing h, and al l 

(2.1) 

The hamiltonian H is of the fo rm 

d2 h i H R 
dR? 2u 

R + Hint + V{R, 0) (2.2) 

17 
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other co-ordinates are handled by basis sets. This method has the advantage that 

i t is not necessary to use a basis set for R, which generally show poor convergence. 

The wavefunction in the coupled channel case is 

* n = R-lY,<l>MMR) (2.3) 
j 

where the functions </>j(i9) form a complete orthonormal basis set for mot ion in the 

d co-ordinates, and the factor R~l simplifies the action of the radial kinetic energy 

operator. Substituting into the Schrodinger equation gives 

dR2 Y,[Wij{R) - EM^iR), (2.4) 

where dij is the Kronecker delta and E is the energy scaled by 2[i/h and 

Wij(R) = tiWWint + V{R,d)]<t>jWV- (2-5) 

Similar equations arise for each channel and the channels are coupled by the of 

diagonal terms, ie the Wij(R) w i t h i ^ j. Equation 2.5 can be expressed in mat r ix 

fo rm 

^ = [W(R) - EnI]Vn (2.6) 

where ^(R) is a column vector of order N w i t h elements ipij(R), W(R) is an N x N 

matr ix w i t h elements Wij(R) and / is an iV x N unit matr ix . Equations 2.6 can be 

solved by approximate techniques, in which off-diagonal terms are ignored or their 

effect is added by perturbation theory [122, 123, 124, 125, 126]. However B O U N D 

does not do this, and finds exact solution wi th in the errors of t runcat ing the basis 

set. These types of calculations are called close coupled calculations. 

To solve the Schrodinger equation we must solve the set of coupled differential 

equations. There are several methods for solving such problems, which have been 

reviewed by Hutson [32] and [34]. The method used by B O U N D is that of the log 

derivative propagator. The log derivative [117, 32, 116] is defined as 

Y(R) = ̂  = nmmn w 
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where ' / ' denotes the derivative of the wavefunction. I f E is an eigenvalue of the 

coupled equations there must exist a wavefunction 

V>(#mid) = ^ + ( i?mid) = V>~(#mid) (2.8) 

for which 

[ ^ + ] ' ( i 2 m i d ) = [>P-}'(Rmid), (2-9) 

where + and — refer to the direction of propagation. The point Rmid is a point 

on the gr id in the classically allowed region (e.g. W(R) < E) where the two 

propagated wavefunctions meet. Two propagation directions are use because i t 

is more stable to propagate on of the two classically forbidden regions, at small 

and large R where W(R) > E, than to propagate f rom Rmin to Rmax [32]. From 

equations 2.8 and 2.9 we can define 

Y+(Rmid)iP(Rmid) = Y~(Rmid)^(Rmid) (2.10) 

or equivantly 

[Y+(Rmid) - Y-(Rmid)]<f(Rmid) = 0. (2.11) 

A non t r iv i a l solution to 2.11 exists only i f the determinant at Rmid is zero. There

fore i t is sufficient to propagate the log derivative matr ix and look for zeros as a 

funct ion of energy [37], instead of having to propagate tp and ip'. A better algo

r i t h m , and the one used by the current version of B O U N D , is to consider equation 

2.11 as a eigenvalue equation where ipi^^ is the eigenvector of the matching ma

t r i x | Y + — Y~ |, w i t h the eigenvalue zero. Thus B O U N D simply find the smallest 

eigenvalue at each energy, and then use the secant method to converge upon an 

energy at which i t is zero. 

B O U N D has a node count facility, to work out the quantum number of the 

vibrat ional wavefunction for each of the eigenstates i t finds. This is a very useful 

feature when you are t ry ing to find the groundstate. The node count is done by 

counting the number of poles in | Y |, which can be monitored by seeing how many 

times the Z matr ix has negative eigenvalues, for a detailed discussion see [32], in 

the range Rmin to Rm&x. 
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2.2 Hyperspherical Co-ordinates 

I n all my calculations a hyperspherical basis set [14] was used. The reason 

for using a hyperspherical basis is that although computationally expensive, they 

handle wide-amplitude motions more naturally than normal basis set expansion 

methods. This is because for wide amplitude motions the idea of motion about an 

equil ibrium geometry in not valid. A hyperspherical co-ordinate system does not 

have this problem because i t does not distinguishing between particles, they are 

just labelled by the indices i j k, as the particles have been mass normalised. This 

means that wide amplitude motions and even inversions of the molecular geometry 

can be easily handled. 

I n hyperspherical co-ordinate there are both, the internal and external co

ordinates. The internal co-ordinates consist of two angles 6 and \ a n d a distance 

p called the hyperadius. They are derived f rom the Jacobi co-ordinates [14, 38, 

39, 40, 127, 128, 129] 

n = x k - Xj 

x - M j X j + M k X k 

* = X ' ~ M, + Mt • <2'12> 
—* _ 

where the jacobi co-ordinates Ri and f j are as shown below in figure 2.1. The 

external co-ordinates are the usual Euler angles. A set of corresponding mass-

scaled Jacobi co-ordinates is defined by 

Si = nl^ (2.13) 

and 

St = diRi- (2.14) 

Where df is the dimensionless scaling factor 

Si = %MjUi>, (2.15) 

and f j , is given by 

" ~ Ml + M 1 + M k

 ( 2 - 1 6 ) 
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The interparticle distances are then given by 

M2d\ 
X3 - x 2 = dxsx 

Xi - x 3 

1 
Ji 

Xi - x 2 

1 

Si 

Si 

M2 + M3si 

Mzd\ 
M2 + M3si 

The Schrodinger equation for the system is then 

( ^ [ V | + V | J - V&, 5i) - E^j iP(Sh Si) = 0 

(2.17) 

(2.18) 

where V | + V | . is the six dimensional Laplacian. The hyperspherical co-ordinates 

a, P, 7, p, 6 and x> where a, f3, j are the Euler angles and p, 9, x are the internal 

co-ordinates, are defined impl ic i t ly in terms of the mass scaled co-ordinates. The 

Cartesian components of Si and si are 

Six — P cos 8 sin x 

Siy = p s i n f l cosx 

Six = pcosf lcosx 

siy = — p s i n f l s i n x (2.19) 

where the range of 0 and x is 

0 < 6 < TT / 4 

0 < X < 2TT. (2.20) 

This gives 

P2 = [ S i ] 2 + [si]2. (2.21) 

Using equations 2.17 to 2.21 expressions for the interparticle distances in terms of 

the hyperspherical co-ordinates can be calculated; these are used in B O U N D in 

the evaluation of the potential energy matr ix elements. 

ri 
p2d2 

[1 +cos26>cos 2x], (2.22) 
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r 2 

P2d{ 
+ 

M2 

d\ \M2 + M3 

x [1 + C O S 2 0 C O S 2 ( X + <$2)] (2.23) 

and 

r3 = 
P2d\ 

+ d\ \M2 + M3 

x [1 + cos20cos2(x - <y3)], (2.24) 

where 

sin28i 
2M1 

d ? ( M 2 + M 3 ) ' 
(2.25) 

M 

Figure 2.1: Rare gas tr imer in Jacobi co-ordinates. 
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2.3 Calculations on A 3 case Rare Gas trimers 

In the version of B O U N D we are going to use to calculate vibrational energy 

levels of rare gas trimers hyperspherical harmonics are used to fo rm a complete 

basis in 9 and x [14], and are given by 

The quantum numbers A and u describe the grand angular momentum and its 

projection onto the molecule fixed z axis of a reduced rotat ion matr ix d^v^(40) 

[130]. The coupled channel equations in hyperspherical harmonics are then solved 

by propagating the log derivative matr ix. The number of open channels i n a cal

culation, and therefore the level of convergence, is governed by A. I n the B O U N D 

program the maximum value of is set by an input parameter A m a x . 

The vibrat ional energy levels for several rare gas trimers have been calculated 

by Ernesti and Hutson (EH) [131] using a hybrid basis set method in Jacobi co

ordinates, and diagonalising the subsequent matr ix . His method is believed not 

to treat the wide-amplitude motions as well as the hyperspherical based code of 

B O U N D . Hutson and Jain [14] and Cooper et al. [15] have calculated equivalent 

energy levels for A r 3 system but using a different potential than EH, which makes 

a comparison of the two sets of results di f f icul t . The A r - A r potential [132] 2.27 

used both here and by E H is of the form 

1/2 A + 2 
(2 - < U 1 / 2 

2TT 3 

x < 
cos vx for 5 = 0 

sin vx f o r S = 1 
(2.26) 

V(r) =eV*(R) (2.27) 

where 

V* = VSCF + Vcor (2.28) 

and 

VSCF = Aexp{-a*R + PR2) 

4 
^ C o r = " Y.C23^R~[23+"]9n{pR) F(PR). (2.29) 
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The expressions for F(R) and gn{R) are 

F(R) = 1 - R 1 6 8 exp -(0.78i?) (2.30) 

and 

gn(R) = [1 - exp( -2 .1 i ? /n - 0.109.R7™172]" (2.31) 

In the case of a fair ly r igid molecule such as A r 3 our results are in quite close 

agreement w i t h those of E H (compare tables 2 .1 1 and 2.2). 

energy level A state/cm 1 E state/cm 1 

1 -254.891 -232.373 

2 -224.290 -211.826 

3 -211.950 -205.036 

4 -198.242 -195.389 

5 -185.992 -184.268 

Table 2.1: Results for A r 3 in hyperspherical basis set 

The next system that we studied was the neon trimer, which was also studied 

by Ernesti. By the standards of rare gas molecules A r 3 is a quite r igidly bound 

system. The Ne 3 system on the other hand is very floppy. This should make an 

interesting test of how well the method used by EH copes w i t h very wide amplitude 

motion. The Ne-Ne potential used both here and by E H is the H F D - B potential 

by Aziz [133], and is of the fo rm 

V(r)=eV*(x). (2.32) 

Where x is the interparticle distance divided by the equil ibrium distance. The 

expression for V* is 

V*{x) = A*exp(-a*x + (3*x2) 

- (2-33) 
3=0 X 

1With the following input parameters f? m j n = 4.0 A, Rm\a = 5.0A, i ? m a x = 6.5A, h = 0.05A, 
reduced mass = 23.0722926345, Jmax = 84 
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Energy Level Energy/cm 1 

1 -254.893 

2 -232.366 

3 -224.280 

4 -211.900 

5 -211.741 

6 -204.957 

7 -197.787 

8 -194.536 

9 -192.934 

10 -186.917 

Table 2.2: E H results for A r 3 

and where the value of the function F(x) is defined as 

F(x) = 
exp 

1 

- ( f - l ) 2 ] for x < D 

for x > D 

I n the case of Ne 3 system we did not obtain as good an agreement w i t h E H 

for the ground state as for A r 3 , and we did not agree at all about the excited state 

energy levels. The B O U N D code predicts much deeper excited states, showing 

that i t does indeed handle floppy molecules wide-amplitude motions better that 

normal basis set method (see tables 2.4 2 which shows our results for Ne 3 and 2.5 

which shows EH's results for Ne 3 ) . 

Table 2.3 3 shows the convergence for the Ne 3 system. I t is interesting to note 

that the Ne 3 system converges more quickly than the A r 3 system [15]. This is 

exactly the opposite behaviour to that of the basis set method of Ernesti, which 

2With the following input parameters Rmm = 3.0A, Rmid = 6.0A, i ? m a x = 10.0A, h = 0.035A, 

reduced mass = 11.54263773, Jmax = 66 
3With the following input parameters i ? m j n — 3.0A, i?mid = 6.0A, i?m ax = 10.OA, h = 0.035A, 

reduced mass = 11.65035108 
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requires many more basis functions to calculate the energy levels of Ne 3 that those 

of A R 3 . Even w i t h many more basis functions, however, the excited states as 

calculated by E H are not very accurate. The reason for the poor performance 

of the basis set method can be understood i f we consider how many states are 

near to the energy require to f l ip f rom a triangular geometry through a linear 

geometry to the mirror image of the starting triangle. The barrier for this mot ion 

is approximately the pair potential well depth, which for the neon tr imer is about 

29 c m - 1 . Even some of the low-lying states in table 2.4 have enough energy to f l ip . 

More important ly there are eight states wi th in 10 c m - 1 of being able to f l ip . W i t h 

such wide amplitude motions the basis set method can not cover the f u l l space 

of the problem. This means that even w i t h a 'complete' basis we could not cover 

the f u l l range of motion of the problem. In hyperspherical co-ordinates, however, 

this is not the case. Wide amplitude motions, and even inversions of a structure, 

are 'natural ly ' treated. The difference in the values of the energy levels for the 

convergence and energy level tables is due to the fact that the two calculations 

use different values for the mass of Neon. This w i l l not effect the convergence 

properties of the system. I t w i l l only effect the magnitude of the energy levels. 

^max E i / c m " 1 E s / c m " 1 Ea /cm" 1 E ^ c m " 1 E s / c m - 1 

32 -51.276 -35.685 -31.752 -29.020 -26.060 

40 -51.482 -36.292 -33.427 -30.870 -27.413 

48 -51.503 -36.413 -34.076 -31.539 -27.948 

56 -51.505 -36.433 -34.188 -31.611 -28.023 

66 -51.505 -36.437 -34.220 -31.633 -28.041 

72 -51.505 -36.437 -34.222 -31.634 -28.042 

Table 2.3: Convergence for Ne 3 in hyperspherical basis w i t h a reduced mass of 

11.650 amu 
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energy level A states/cm 1 E states/cm 1 

1 -51.360 -38.604 

2 -36.300 -34.516 

3 -34.101 -32.275 

4 -31.480 -28.464 

5 -27.857 -24.367 

6 -23.888 -23.253 

7 -22.318 -22.227 

8 -21.752 -20.090 

Table 2.4: Results for Ne 3 in hyperspherical basis set 

Energy Level Energy/cm 1 

1 -51.354 

2 -38.484 

3 -35.589 

4 -31.589 

5 -27.881 

6 -24.761 

7 -23.755 

8 -21.934 

9 -18.582 

10 -17.568 

Table 2.5: E H results for Ne 3 

2.4 Calculations on the He3 trimer 

The work on He 3 was started off by a comparison of the results for Ne 3 , where 

the hyperspherical B O U N D code had been shown to be much better at handling 

floppy molecules than a basis set method in Jacobi co-ordinates. He 3 is the most 



Investigating Rare Gas trimers 28 

weakly bound rare gas trimer, and there has been much debate as to whether 

or not the helium dimer exists [134, 135, 136]. The problem for experimentalists 

t ry ing to f ind evidence of the dimer in a molecular beam experiment, is that the 

usual means of detecting clusters is by mass spectrometry. The He 2 and He 3 

bound states are very weakly bound. He2 for example has a calculated binding 

energy of 1 x 1 0 - 3 K on a recent potential energy curve. There was therefore some 

discussion about whether the He^ signal detected experimentally was formed f r o m 

ionising the helium dimer, or by some other path. The creation of ions i n the 

mass spectrometer leads to several alternative pathways such as creation of He^ 

via collisions of He+ w i t h neutral atoms to form Re^ • A n alternative path could 

be the ionisation of a helium trimer, which then disintegrates into HeJ and He. 

These different possibilities make assignment of the spectra dif f icul t and open to 

differing interpretation. 

Al though there has been much work on He2, both in determining pair poten

tials [137, 138, 139, 140, 141] and in experimental investigation of the He 2 bound 

state [139, 142, 143]. There has however been l i t t le interest over the last ten years 

in calculation of the bound states of He 3 [144, 145, 146], as a result the vibra

t ional energy levels of the helium timer have not been calculated w i t h modern pair 

potentials. As our method of calculation suits very floppy molecules we decided 

to investigate the bound states of the helium trimer using modern pair potential. 

We wanted to know how accurate the previous calculations were, as an increase 

in the strength of the bound states of helium might be pertinent to the discus

sion of pathways to He^ in mass spectrometry experiments [134, 135, 136]. The 

previous calculations of the bound states of He 3 used different methodologies to 

B O U N D . As well as the mass spectrometry evidence, which was disputed due to 

the weakness of the helium interaction, a novel diffract ion technique was used to 

prove the existence of the helium dimer [147, 148]. In our calculations we used the 

best He-He pair potential available [137], which is a modified H F D - B potential of 

the fo rm 

V(r)=e[V:(x) + Vb*(x)], (2.34) 
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where V*(X) is an add-on-part of the potential, for a small region about the 

equil ibrium distance, and V^(X) is the standard H F D - B potential. 

Aa{sin[B(x - xx) - TT /2] + 1} xx < x < x2 

0 x < Xi or x > x2. 

Where x — r / r m , B — 2ir/(x2 — xi), and x\ , x2 and Aa are adjustable parameters. 

The second part of the potential V(r) is a HFD-B type potential of the fo rm 

Vb* = A*exp{-a*x + f3*x) - F6C6/x6 

- FsCs/x8 - F w C w / x 1 0 - F 1 2 C 1 2 / x u , (2.36) 

where 

Fn(x) 
e x P [ - ( ^ - l ) 2 ] * < 1 ( 2 3 ? ) 

1 x > 1 

W i t h the helium trimer being so floppy the propagation range had to be 

very large ( R m a x = 75A) compared to other rare gas trimers. The result of our 

calculations was that a bound state w i t h an energy of —0.12 K was found, see table 

2.6 4 below, this result was in close agreement w i t h the most recent calculation of 

Cornelius and Glockle [144]. Their value for the ground state was —0.11 K , where 

the small difference in the ground state energy was due to their use of an older 

version of the H F D - B type He-He pair potential [138]. When we re-calculated the 

bound states of the system using the older helium pair potential, as used in the 

most recent previous calculation [144], I got the same answer for the energy of the 

ground state as previously published. 

2.4.1 Efimov States 

The main difference between our results and those previously published was 

that the previous studies [144, 145, 146] of the helium tr imer found two Efimov 

states [149], and we d id not find any Efimov states. Efimov states are formed by 

4With the following input parameters Rmin = 1.0 A, i?mjd = 20.0 A Rmax = 75.0 A h = 0.75 
A reduced mass — 2.3109 arau, N° quadrature points = 128 
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Amax Energy/cm 1 Energy/K 

66 -0.07977 -0.11478 

72 -0.08211 -0.11814 

84 -0.08486 -0.12210 

90 -0.08567 -0.12327 

96 -0.08627 -0.12413 

Table 2.6: Convergence for He 3 in hyperspherical basis set 

three-body systems, interacting with a pairwise potential, and lie very close to the 

dissociation limit. They show a very sensitive dependence on the pair potential. I f 

the pair potential well depth is increased or if the equilibrium distance is increased, 

then the Efimov states will disappear. 

An Efimov state can be thought of via the following discussion. I f two parti

cles are brought together slowly they can be strongly correlated at their scattering 

length (a), which is a constant that controls the scattering cross section [150], 

which can be much larger than the range of interaction between the two particles 

( r 0 ) [151]. I f a third atom is now added. I t can feel the presence of the two par

ticles when i t gets within a of either of them, and can become highly correlated. 

This interplay of the three particles results in an effective three-body interaction, 

which is very long range in nature 5 . 

We were unsure why we did not find any Efimov states, as we would expect to 

find all bound states that exist with the BOUND code. I therefore tried increasing 

the propagation range, as i t was possible that R was not large enough to cover 

the excited states. I increased R up to 200 A and found no bound states, and for 

i ? m a x greater than 200 A the propagation of solutions became unstable and failed 

to converge on any state, including the ground state. I t was therefore decided to 

just do a node count, as this would pick up any excited states and it is much quicker 

that trying to find eigenvalues especially with large propagation ranges. This did 

5see [152] 
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not work out as expected, because the result of a node count at different values of 

Rmax was always different. The reason for this is that the BOUND program is only 

variational as long as there are enough points used in the Guassian quadrature to 

evaluate the matrix in equation 2.6, and with the very long propagation ranges 

needed for the Efimov states this is not true. This result cast doubt on our work 

on the Helium trimer, even though we were in such good agreement with previous 

work. There was a question to whether enough quadrature points had been used 

in calculations on the ground state. The solution of this problem was to alter the 

BOUND program, to allow the number of quadrature points used in the calculation 

to be varied. I therefore ran a series of calculations with differing numbers of 

quadrature points, the results of which are shown below in table 2.76. When 

Number of 

quadrature points 

Energy/10 1cm 1 

48 -0.797145571 

66 -0.797777973 

128 -0.797684658 

256 -0.797674017 

300 -0.797673474 

356 -0.797673105 

400 -0.797672942 

Table 2.7: convergence of He 3 in hyperspherical basis set 

BOUND had been altered it was found that with 256 Guassian quadrature points 

that only one node was found. With the increased number of quadrature point 

I was able to check of the number of nodes up to an Rmax of 1000A. Even with 

this enormous propagation range we only found one node. A rough calculation 

based on equation 2.38 shows that there should be an Efimov state when a is 
6The input parameters were Rmm = 1.0 A, i?m | ci = 20.0 A, Rax = 75.0 k,h = 0.75 A, reduced 

mass = 2.3109 amu, Jmax = 66 
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approximately twenty times r 0 . I t is therefore necessary to search out to at least 

this range, i f we are to find an Efimov state. For Helium this condition on the 

propagation range would mean searching out to roughly 140A. We have clearly 

exceeded this requirement for the discovery of an Efimov state. 

Further evidence that the results obtained from the BOUND code are correct, 

and that there are indeed no Efimov state in the helium trimer, was given in a 

paper published after our work was completed, by Aziz et al. [139]. In his paper 

Aziz took a large selection of helium dimer potentials from the literature, and 

calculated the dimer binding energy, the effective range ( r 0 ) and the scattering 

length (a), for each of the potentials. With the calculated scattering lengths and 

effective ranges Aziz was able to calculate NE, which is the estimated number of 

Efimov states that each potential can support. The formula for the number of 

Efimov states that each potential can support is 

NE = - In 
7T 

(2.38) a 
r0 

and comes from the original Efimov paper [149]. For an Efimov state to exist the 

value of NE has to be greater than one. Aziz shows that for all recent realistic 

potentials the value of NE is less than one. This is strong evidence that the 

helium trimer does not have an Efimov state; and that the BOUND calculations 

are correct in not finding any Efimov states. 

An interesting point to note is though is that two of the papers which found 

Efimov states [144, 145] used an earlier Aziz HFD type potential [138]. This is 

strange because according to the Aziz calculations of the value of NE an Efimov 

state should not be found. Given the accuracy of BOUND and the work by Aziz 

and the age of the two calculations it is tempting to conclude that both calculations 

have found a state that does not exist. This could be due to an approximation 

in the calculations or some other factor. We cannot be that categorical in our 

conclusions. A l l that it is possible to say is that the BOUND code was pushed as 

hard as possible with present computational capabilities and found no evidence of 

an Efimov state, and that this conclusion is supported by the new work of Aziz. 

The oldest of the papers [146] which claimed to find an Efimov state uses 
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three different potentials, all of which give a N& value greater than one. The 

potentials however are quite old and do not reproduce all the experimental data; 

and are by the standards of modern day helium dimer potentials consider to be 

poor representations of the helium-helium interactions. 

A final piece of evidence that BOUND has found all the bound states of the 

helium trimer is found in a consideration of exactly what an Efimov state is. We 

can define a modified pair potential gV(r), where at the value g = go the two 

particle just form a bound state. As g is varied, Efimov [149] showed that i f g was 

slightly less than g0 there would emerge a series of bound states of the system. The 

number of bound states of the system tends towards infinity in the limit of g —>• g0. 

As the value of g continues to increase past go, levels leave into the continuum one 

after another. The result can be restated as follows [152]. I f there is a two-body 

system that is just unbound, then the three-body system can have many Efimov 

states. In the case of the helium dimer however, for all modern potentials, the 

system has one bound state. 

2.5 Calculations on A B 2 Case Rare Gas Trimers 

All the rare gas trimers so far have been of the same A 3 type. I t is also 

possible to form mixed trimers, denoted A B 2 , such as Ar 2 Ne or Ne2Ar. Some work 

had already been done on these systems by EH [131] using a more conventional 

basis set method (see tables 2.11 and 2.9). Some A B 2 systems have also been 

observed experimentally by microwave spectroscopy [11]. The BOUND code could 

not initially do hyperspherical calculations on this type of rare gas system. We 

therefore had to alter it to allow calculations of A B 2 rare gas clusters. We were 

then able to compare the results of EH with those of BOUND. 

The equations given above to calculate the interparticle distances, which are 

then used to calculate the potential energy, are only valid for the A 3 case rare 

gas trimers. To evaluate the potential energy matrix of equation 2.6 for the A B 2 

case, we required modified equations for the interparticle distances, in terms of the 
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hyperspherical co-ordinates. 

From the equations 2.17 we know that 

—* —# 

X 3 - X 2 = diSi. (2.39) 

We therefore have only to evaluate si to obtain the expression we want. The value 

of si is 

s l — \J S\x + ^ l j / i 

which becomes 

s*i = p(cos2 9 cos2 x + sin 2 9 sin 2 x) ̂  

(2.40) 

(2.41) 

when the relevant expressions from equations 2.19 are substituted in. This expres

sion can be rearranged to give the following expression 

P Si = - p [1 + cos 29 cos 2x)}5. 
v 2 

Thus the final expression for | r\ | 2 is 

,2 P2 «2d2 

r i | = [1 + cos 20 cos 2x}-

From the equations 2.17 we know that 

1 
X\ — Xz — 

di 

- M2d\ g 

M 2 + m 3 

where the definition 

M 2 

M 2 + M 3 

^ —# 

will be used henceforth. The expression for Si is 

Sl — ^Six + Sly. 

This leads to 

Si = p(cos2 9 sin 2 x + sin 2 0 cos2 x) *, 

(2.42) 

(2.43) 

(2.44) 

(2.45) 

(2.46) 

(2.47) 
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which may be rearranged to give 

Si = -t=[1 -cos20cos2x) ] i 
v 2 

Combining the expressions for s\ and Si gives, 

S • s = p cos 9 sin 9 x p cos 9 cos x 

—psin0cos# x psin^sinx-

Substituting equations 2.42, 2.48 and 2.49 into 2.44 gives 

(2.48) 

(2.49) 

Xi — X3 

1_ 
d2 

o2 d?o2 

- cos 20 cos 2x] - 2A2^- cos 20 sin 2x 

d4o 
+ Al-^-[l + cos 20 cos 2x] (2.50) 

which simplifies to 

- 2 
Xi — X 3 

d V r 1 2 
— [1 - cos 29 cos 2x] - -pA2 cos 20 sin 2x 

+ A 2

! [ l + cos20cos2x]] (2.51) 

This expression does not look very appealing but i t is correct. Equations 2.22, 

2.23 and 2.24, which are use in the BOUND code, are correct i f the three particles 

have the same mass. When the particles do not have the same mass however 

the equations are inconsistent. In equations 2.22, 2.23 and 2.24 there are three 

quantities which depend on the mass d, A's and S's. We assumed that the 5 

functions were incorrect, but that the general form of the equations was correct, 

and tried to derive new expressions for them. This gives the following equation 

p2d2 r 1 

d? 

2 
n2 

d4 . 
x [1 + cos20cos2(x + £ 2)] 

[1 - cos 29 cos 2x] - 2A 2 cos 20 sin 2x 

,d*p 
[1 + cos 29 cos 2x] (2.52) 

This can be rearranged to 

1 
J 4 
^ + A2 cos2(x + 5 2) = -^-cos2x 

— ^ 2 sin 2x + A\ cos 2x, (2.53) 
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which can be further rearranged to 

1 
d4 

cos 282 cos 2x 

1 

1 
Id4 

sin 82 sin 2x 

d4 
+ A2

0 

-2 
cos 2x~jrA2 sin 2x-

a1 

I t can be seen that 

1 

and 

d4 

1 

+ Al COS 28o 
I 

d4" 

U 4 

Therefore 

cos 25? = 

sin252 = -p:A2. dz 

-l + d4A$ 

and 

sin 282 

1 + d4Al 

2d2A0 

(2.54) 

(2.55) 

(2.56) 

(2.57) 

(2.58) 
1 + cJMl" 

If the assumptions made above about the forms of equations 2.22, 2.23 and 

2.24 were correct then 

cos 28o + sin 28% = 1 (2.59) 

must be true. Substituting equations 2.57 and 2.58 into equation 2.59 gives 

-l + dAAV 
+ V 1 + d4A\ , 

This rearranges to 

1 + 2d4A\ + d%A\ 
(1 + d4AlY 

and hence 

(1 + dAA2

2f 

' 2<PA2 V 
l + d*A%) 

= 1, 

(1 + d*AlY 
= 1. 

(2.60) 

(2.61) 

(2.62) 
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Therefore the equations for the cos 252 and sin 252 are consistent, and our assump

tion that the error in equations 2.22, 2.23 and 2.24 was in the 5 terms was valid. 

The final expression used in all the BOUND A B 2 calculations is 

where cos 2(x + #2) is expanded in the usual manner and evaluated using equations 

2.57 and 2.58. A similar methodology produces an equivalent set of equations for 

| r 3 | 2 , with the expression 

There were two additional modifications needed to allow calculations of A B 2 

rare gas molecules. Firstly I had to alter the BOUND code to incorporate the lower 

symmetry of A B 2 . The A 3 case has 6-fold symmetry whereas in the A B 2 case has 

only 2-fold symmetry. The first effect of altering the symmetry conditions in the 

BOUND code is to include more channels for a given Jmax. The second effect is 

that the number of matrix elements to be evaluated increases, as previously only 

one sixth of the matrix elements of equation 2.6 were needed to know the rest. 

This is because the lower symmetry alters the limits on the integrals over 9 and x, 

which are used to evaluate the potential energy matrix. In the A B 2 code half of 

the matrix elements must be evaluated. This makes calculations on an A B 2 much 

more computationally expensive. 

2d? 1 
+ r 2 2 d\ Mo + M; 

x [1 + cos20cos2(x + 52)], (2.63) 

2d? 1 M 
N 2 + 2 & Mo + M: 

2 [d\ \M2 + M j 
x [ l + c o s 2 0 c o s 2 ( x - £ 3 ) ] - (2.64) 
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2.5.1 Results of calculations on Ar^Ne and Ne^Ar 

The results for the calculations of Ar 2Ne and Ne 2Ar are shown in tables 2.107 and 

2.88. The two potentials used both here and by EH were the Ne-Ne [133], and 

Ar-Ne [153] HFD-B pair potentials. A comparison of the results obtained from 

the modified BOUND code with those of Ernesti shows a similar behaviour to 

the results for the A 3 rare gas molecules. For the more rigid Ar 2 Ne system, both 

methods perform reasonably well, though the BOUND calculations are always a 

little better. This is especially true for the higher excited states. For the more 

floppy Ne 2Ar system the results obtained from BOUND are far better. This be

haviour is again due to the relative Soppiness of the two systems. The basis set 

method of EH struggles to converge on the energy levels of the more floppy Ne 2Ar. 

This is because there are not enough basis functions to effectively cover the large 

amplitude motion of the floppier system. The convergence of the two mixed rare 

gas systems is shown in tables 2.139 and 2.121 0. Again we see that BOUND has no 

problem converging on the energy levels of the floppier molecule, unlike the basis 

set method which becomes less satisfactory as the molecule becomes more floppy. 

The modified BOUND code could be used to calculate the bound states of 

any mixed rare gas trimer, such as He 2Ar or Ar 2He, but for the moment only the 

Ar 2 Ne and Ne 2Ar systems have been investigated. 

7With the following input parameters Rmisi = 3.0 A, Rmid = 6.0 A, i ? m a x = 10.0 A, h = 0.035 
A, reduced mass = 17.87574286 amu, Ar mass = 39.9623837 amu, Ne mass = 19.992435 amu, 
Jmax = 66 

8With the following input parameters Rmm = 3.0 A, Rm-,d — 6.0 A, i ? m a x = 10.0 A, h = 0.035 
A, reduced mass = 14.13479814, amu Ar mass = 39.9623837 amu, Ne mass = 19.992435 amu, 
Jmax = 66 

9With the following input perimeters Rmm — 3.0 A, Rmid = 6.0 A, J ? m a x = 10.0 A,h = 0.035 
A, reduced mass = 17.87574286 amu, Ar mass = 39.9623837 amu, Ne mass = 19.992435 amu 

1 0 With the following input parameters i?mi„ = 3.0 A, Rmid = 6.0 A, Rmax = 10.0 k,h = 0.035 
A, reduced mass = 14.13479814, amu Ar mass = 39.9623837 amu, Ne mass = 19.992435 amu, 

Jmax = 66 
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Energy Level Energy/cm 1 

1 -85.499 

2 -72.369 

3 -68.566 

4 -67.468 

5 -65.667 

6 -64.130 

7 -61.627 

8 -58.025 

9 -56.440 

10 -53.884 

Table 2.8: Results of Ne 2Ar (Ai)symmetry in hyperspherical basis set 

Energy Level Energy/cm 1 

1 -85.498 

2 -72.360 

3 -67.573 

4 -64.779 

5 -61.420 

6 -55.948 

7 -54.991 

8 -51.561 

9 -48.743 

10 -48.138 

Table 2.9: EH results for Ne 2Ar 
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Energy Level Energy/cm 1 

1 -153.341 

2 -133.597 

3 -127.562 

4 -123.562 

5 -120.263 

6 -188.991 

7 -117.248 

8 -115.290 

9 -113.427 

Table 2.10: Results of Ar 2 Ne Ai symmetry in hyperspherical basis set 

Energy Level Energy/cm 1 

1 -153.345 

2 -133.608 

3 -127.573 

4 -123.642 

5 -118.664 

6 -114.776 

7 -110.661 

8 -109.028 

9 -104.408 

10 -102.795 

Table 2.11: EH results for Ar 2 Ne 
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^max E i / cm" 1 Ea/cm- 1 

48 -85.471 -72.323 

56 -85.496 -72.363 

66 -85.499 -72.369 

Table 2.12: Convergence for Ne 2Ar in hyperspherical basis set 

^max Ex/cm- 1 Ea/cm- 1 

48 -153.090 -133.037 

66 -153.341 -133.597 

72 -153.343 -133.605 

Table 2.13: Convergence for Ar 2 Ne in hyperspherical basis set 



Chapter 3 

Investigating the Eckart Condition 

3.1 Rotational Constants 

In order to understand why we were interested in investigating the Eckart 

condition it is necessary to describe previous work carried out by Ernesti and 

Hutson [20]. High resolution spectroscopy is an important source of information 

on potential energy surfaces for van der Waals molecules [154, 155]. In the fi t t ing of 

potential energy functions both vibrational frequencies and rotational constants are 

important sets of data. I t is therefore useful to be able to calculate the rotational 

constant of a van der Waals molecule for a given potential energy function, and to 

use the calculations of the rotational constants to adjust the variable parameters of 

the potential energy function to f i t the experimental data. The rotational constants 

of a molecule may be calculated from perturbation theory using the expectation 

values of the moments of inertia. 

The rotational Hamiltonian of a rigid body can be written as 

#rot = ^2£[r\'V;, (3.i) 

where 7 _ 1 is the inverse of the inertial tensor and Jq is the component of the 

rotational angular momentum along the axis q. In the case of a vibrating molecule 

the rotational part of the ful l Hamiltonian retains the form of equation 3.1 provide 

the axes are chosen to satisfy the Eckart conditions [156, 25, 24], but the inertial 

42 



Investigating the Eckart Condition 43 

tensor / is replaced by / ' . The elements of / ' differ from / by small Coriolis terms. 

In normal co-ordinates the form of / ' is actually simpler than / . For molecules 

that undergo wide amplitude motion, such as van der Waals molecules, normal 

co-ordinates are not the most convenient co-ordinate system in which to work. As 

was mention in chapter 2 Jacobi co-ordinates, with the three co-ordinates R, r 

and 9 denning the system is a much more convenient co-ordinate system in which 

to work. Unfortunately for more general co-ordinate systems the form of i ' is no 

valid. 

In work before 1994 rotational constants for van der Waals complexes were 

often calculated by describing the complex using Jacobi co-ordinates, and calculate 

the inertial tensor I in a Cartesian axes system in which the Jacobi distance R lies 

along the z axis [13]. The rotational constants are then found by inverting the 

inertial tensor and neglecting off-diagonal element in vibrational states. This will 

be denoted method I from now on. This gives an effective rotational Hamiltonian 

^rot = BxJx + ByJy + BzJl + d x z ( J z J x + J X J Z ) , (3.2) 

where the rotation constants are expectation values of expressions involving ele

ments of the inertial tensor and the angle 9. 

Ernesti and Hutson pointed out that the method just described did not sat

isfy the Eckart conditions [24], which will be defined later, because, in the method 

I atom A is not allowed to move of the z axis. This meant that in physical terms 

the separation of vibration and rotation was not exact, and leads to a non zero in

stantaneous angular momentum about the y axis. The fact that the separation of 

rotation and vibration in the molecule is only approximate means that the degree 

of vibration in a molecule is important when calculating the rotation constants. 

If the molecule is executing small amplitude motions, that is so that each atom 

is moving by a small amount about a reference geometry, then the approximate 

nature of the separation in method I will not affect the values obtained for the 

rotational constants. I f however the atoms in the molecule are moving by a large 

amount about their equilibrium geometry then the approximate nature of method 

I may (and indeed was shown to) lead to an error in the calculated value for the ro-
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tational constants. One of the major reasons for studying van der Waals molecules 

is that they are prototype systems which undergo wide amplitude motion. The 

fact that they do undergo such large amplitude motion means that they sample 

a large proportion of the potential energy surface. Therefore when using experi

mental data to f i t a functional form of the potential energy surface any method 

of calculation used must be able to cope with the large amplitude motions of the 

system. 

Ernesti and Hutson re-derived expressions for Bx, By, Bz and dxz for a t r i -

atomic system where the A atom is not fixed to the z axis. They were able to show 

that in calculations on the Ar -C02 system the rotational constants calculated with 

the Eckart axis were significantly more accurate that those calculated by method 

I . 

3.2 Separation of Rotation and Vibrational Motion 

In general we want to set up a system that describes the motion on a molecule 

such that its motion can be split into three components. These components are 

the translation, vibration and rotation of the molecule. The most convenient co

ordinates are the three co-ordinates of the centre of mass of the molecule, the three 

Eulerian angles of a rotating system of Cartesian co-ordinates and the Cartesian 

co-ordinates of the atoms with respect to the rotating co-ordinate system. In a 

molecule with N atoms there are 3N degrees of freedom. Six conditions are needed 

to define the rotating co-ordinate system: three to locate the origin of the rotating 

system so that i t moves with the centre of mass of the molecule and three to tie 

the co-ordinate system to the molecule so that they rotate together. This (as is 

shown below) allows the vibrational and rotational motion of the molecule to be 

decoupled as far as possible. To do this we define several vectors that will be 
^ —* 

useful. They are R which is a vector between the origin and the centre of mass of 

the molecule designated O, Si which are a set of vectors that define an equilibrium 

geometry fixed to the moving axes system, Fj which are a set of vectors defining 
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the instantaneous positions of each atom and which are a set of vectors defining 

the instantaneous displacement of each atom form its equilibrium geometry. I f the 

system of axes at a given moment has an angular velocity LO, and if a vector Vj is 

defined as 

i>i = ru (3.3) 

then the velocity of the i th atom is 

R + co x n + Vi. (3.4) 

The kinetic energy of the system is therefore give by 

2T = R + Y,mi(u) x f;) • (u x f i ) + Y^Truvf ( 3 - 5 ) 
i i i 

+2R • u) x 53 miU + 2R • 53 m i V i + 2w • 53(m«^ X Vi), 
i i i 

where is the mass of the ith. atom. Because O is the centre of mass of the 

molecule at every instance 

^ m ; f i = 0, (3.6) 
i 

and it therefore follows that 1 

^ m j t > j = 0. (3.7) 
i 

As has already been stated, the above conditions are not sufficient to define the 

non-ridged rotating system. To completely define the system the following defini

tion is used 

J^m^Oi x = 0. (3.8) 

i 

If ?i in equation 3.6 is replaced by Si + di and the conditions 3.6 and 3.8 applied 

then 3.6 becomes 

2T = R m, + Y, m * ( w x • ( w x ?i) (3.9) 
i i 

+ 53 mVi + 2w • 53 midi x vi). 

1see Wilson, Decius and Cross [156] page 274 
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The first term in the above equation is the translational energy of the molecule. 

The second term is rotational energy, and the third term is the vibrational energy. 

The last term is the Coriolis coupling term, which can be neglected, or added as a 

small perturbation to the system. The second condition (3.8) can be rewritten as2 

$2m^a* x dj), (3.10) 
i 

similarly condition 1 can be redefined as 

£ m ^ = °- (3.11) 
i 

These are the Eckart conditions [24, 157, 158], and the have two main effects. 

The first is to simplify the form of the kinetic energy expression, as shown above. 

The second effect is more subtle, and is the focus our investigation. The condition 

expressed by equation 3.10 is almost equivalent to stating that there must be no 

angular momentum with respect to translating-rotating co-ordinate system. The 

reason that condition 3.10 is not the same as saying that there must be no angular 

moment is because, if we take Xi, yi and Zi to be the three components of the 

vector fi then the components of the angular momentum would be 
N 

i 
N 

N 

m. = Y , mi(.xiVi - ViXi). (3.12) 

For small displacements the co-ordinates Xi, yi and z,; can be replaced by their 

reference geometry co-ordinates a,, b{ and this leads to the following expressions 

for the angular momentum, 
N 

mx = J 2 m i ( b i Z i - CiVi) 
i 

N 

my = ^m^CiXi - diZi) 

i 
N 

mz = J2mi(aiyi - 6 ^ ) . (3.13) 

2see Wilson, Deems and Cross [156]) page 274 and 13 
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Using this notation the second Eckart condition 3.10 would be 

N 

CiAyi) = 0 

N 
^2mi(ciAxi ciiAzi) - 0 

N 
J 2 m i ( a i A y l biAxi) = 0. (3.14) 

But it should be noted that 

dAxi 

dt 
— % i it (3.15) 

and therefore equations 3.14 are equivalent to equations 3.13. 

3.3 Investigation of Eckart condition 

As has already been stated the Eckart conditions embed a set of axes into the 

rotating system. In doing so they try to set the condition that there is no angular 

momentum with respect to the rotating axis system. In physical terms this means 

that if we start with a molecule (ABC) in a 'T shaped' configuration, such that 

the dimer BC lies parallel to the x axis and the atom A lies on the z axis, then 

a vibration that moves the A atom from the z axis will cause the dimer BC to 

rotate, so as to satisfy the second Eckart condition 3.10. To be more specific i f the 

A atom moves into the positive x planes, then the dimer BC will have to rotate in 

a clockwise manor to meet the second Eckart condition. 

Our interest in the Eckart conditions however is not directly related to the 

calculation of any particular molecular property. We are interested in how the 

Eckart conditions embed the axes into the rotating molecule system. We are par

ticularly interested in the effect that the second Eckart condition 3.10 has on the 

embedding of the rotating axes when the molecule is executing large amplitude 

motions, and specifically in the limit of large amplitude motions where the molec

ular structure inverts. That is to say when the A atom passed through the middle 

of the BC dimer. 
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To be able to see what effect the Eckart conditions are having on the em

bedding of the rotating axes in the rotating system it is useful to have something 

to compare them against. We therefore need a second way of embedding the ro

tating axes. The set of conditions chosen for this purpose is that the off-diagonal 

moments of the moment of inertia tensor are zero, e.g. 

J 2 m i x i V i = ® (3.16) 
i 

^2 rriiXiZi = 0 
i 

miViZi = 0. 

i 

This will from hence forward be called the instantaneous principle inertial con

dition. This is equivalent to saying that the embedded axes will lie along the 

instantaneous principle inertial axes of the molecule. As one set of molecular 

properties that we might want to calculate is the rotational constants, and there

fore the expectation values of the moments of inertia, this set of axes is a natural 

choice against which to compare the Eckart axes. 

We wanted to know what difference the two embedding conditions make to 

the dynamics of the system. In particular we wanted to investigate the relationship 

between 7 E C (the angle at which the Eckart condition is zero), and -fxY (the angle 

of the axis at which the inertial tensor is diagonal) for a particular geometry. We 

want to know how these two quantities differ as the molecule undergoes vibrational 

motion. 

To do this we first wrote a simple program. This program receives a reference 

geometry, and two distortion vectors. The reference geometry aj is in the form of 

two interparticle distances f\ and F2, from which the third interparticle distance 

f 3 is calculated assuming the centre of mass is at the origin. Atoms one and two 

are then moved by the two distortion vectors, and the position of the third atom 

is then calculated assuming that the centre of mass is unchanged, to give the real 

geometry, and the vectors ĉ . This is shown in figure 3.1 where the un-primed 

atoms are the reference geometry, and the primed atoms are the actual geometry 

formed by distorting the reference geometry. 
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The primed atoms are then rotated in small steps, from zero degrees to 2ir, 

to give doubly primed atoms. At each step in (5 the off-diagonal elements of the 

moment of inertia tensor, and X2i ^ ( ^ i x di), which from hence forth will be called 

the cross-sum, are calculated. Figure 3.2 shows the primed atoms which are the 

distorted geometry, and the double primed atoms which are the new geometry 

formed after the distorted trimer is rotated by an angle /?. 

The program produces a plot of the value of the YLi^ii^i x di) and off-

diagonal elements of the moment of inertia tensor in the range 0 —> 2n. We 

are interested in the points at which the values of these two functions are zero, 

and forefil the two embedding conditions. These points will be called 7gC and 7 X Y . 

The results of these calculations show that 7 E C has a periodicity of n; and that 

7 X Y has a periodicity of TT/2. The two sine functions, JEC and 7 X Y , do not have the 

same phase so we now defined a new quantity 7^, which is the smallest difference 

between 7gC and 7 X Y . The value of 7 ^ will tell you about how differently the two 

co-ordinate systems will treat the same vibrational movement of a molecule. 

x 

B 

B 

/ 

Figure 3.1: Eckart plot 1 
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x 

B 

B' 

Z 

Figure 3.2: Eckart plot 2 

The first Eckart program showed the result for only one displacement of the ref

erence geometry. I t would be much more useful i f we could study a wide range 

of motion, and its affect on 7 E C and 7XY - We could of course just run the sim

ple Eckart program many times to generate the desired effect, but this would be 

very inefficient. Instead we chose to carry these calculations out in hyperspherical 

co-ordinates [38], which has the advantage that all molecular geometries can be 

sampled by scanning over only two co-ordinates. In hyperspherical co-ordinates 

there are three parameters which describe the geometry of the triatomic molecule, 

they are p, 9, x- The parameter p controls the size of the triangle formed by the 

three atoms, while the parameters 9 and x control the shape of the molecule. For 

the calculation p is not important, as the size of the trimer does not affect the 

calculations of jEG and 7X Y. The ranges of x a n d 0 in hypersphericals are :-

In the hyperspherical program the co-ordinates of the distorted structure are 

handled on grid of 101 x 101 points. At each grid point the program calculates the 

0 < X < 2?r 

0 < 9 < T T / 4 . (3.17) 
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interparticle distance use the following formulae, which were derived in chapter 2, 

l r i | 

\r2\ = 

n = 

2 

2 

[1 +cos 2$ cos 2%], 

+ 
Mo 

1 
d j ' VM 2 + M 3 

M 2 + M 3 

x [1 + cos 2$ cos(2x + 52)], 

x [1 +cos2tfcos(2x + <53)]. (3.18) 

The triangle formed by the three interparticle distances is now placed such 

that atom B is at the origin, and atom A lies on the positive x axis. The centre of 

mass (R) and the angle (a) are then calculated. The angle a is the angle between 

a line from R to the atom A, and a line running through R parallel to the x axis. 

Using R and a the molecule is then moved so that the centre of mass is at the 

origin and atom one is still on the x axis. The initial values of the cross-sum and 

zero moment condition are then calculated, and given a parity sign. A 7 E C or jxy 

value that is greater than zero is given a parity sign of 1, and value that is less 

that zero is given a parity sign of - 1 . The program now rotates the molecule by (3, 

as in the first program, and at each value of (5 the cross-sum and the off-diagonal 

elements of the moment of inertia tensor are calculated. When the parity of either 

T E C or *yxy changes a convergence routine is called, to find the exact value ofysc or 

jxy. When both 7 E C and " f x y have changed parity the program stops. We do not 

need to know the other point at which 7 E C and -yxy are zero in the range 0 —> 2n 

because we know their periodicity. We can therefore calculate the points at which 

the two functions are zero in the rest of the range; and then find which of these 

sets of points is closest to each other, and therefore the value of 7diff for that point 

on the grid. The program calculates the value and difference of 7 E c and jxy, at 

each grid point. 

3.4 Results and Conclusions 

One of the main problems encountered during this work on the Eckart con

dition is trying to understand and interpret the results of the computer program. 
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The computer program calculates the angle between the two embedded axes sys

tems, denoted 7^//. The best method of displaying the results of the program 

was found to be to draw the three atoms and then to show the two axis systems 

imposed on top of the molecular geometry. The Eckart axes are shown as a set 

of solid lines and the moment of instantaneous principle inertial axes are shown 

as a set of dashed lines. The two sets of axes have different ranges, as has been 

previously explained. The value of 7 E C can range from 0 —> 7r, whereas the value 

of 7 X Y c a n range from 0 —> -n/2. The diagrams show the molecular configuration 

and the two sets of axes at intervals in the hyperspherical angles 9 and x- The step 

sizes in the two hyperspherical angles are TY/10 and 7r/8 for x and 9 respectively, 

where the range of 9 is 0 —»• 7r/4, and that of x is 0 —> 2ir. 

Due to the symmetry of the hyperspherical co-ordinate system the positions 

of atoms for a given value of 9 and a range of x values are related to each other. 

For example for 9 = 0° and x = 7r/8 the molecular configuration is linear, with 

the A atom near to the B atom. For 9 = 0° and x = y 7 1" the molecule is again 

linear, but this time the A atom is near to the C atom. These two structures are 

related to each other by a 180° rotation about the middle to the BC bond. This is 

a specific example of a general property, that the structures found for a given value 

of 9 are symmetric about x = ^ within a rotation. The result of this symmetry 

is that we only have to study either X = 0—> TT ox x — ^ ~> 2ir. I shall only 

discuss the plots for x — n —> 27r, but have included the plots for x = 0 —>• |-7r 

for completeness. I t should be noted that due to the way the plots are drawn the 

molecule is always pointing the same way, so that related structures give the same 

picture, as well as the same result for 7^//. 

The plots have the A atom represented by a filled-in circle, with the B and 

C atoms represented as open circles. They are arranged so that each column 

represents a given value of 9, and each row represents a given value of x-

When we first started plotting the result from the hyperspherical Eckart pro

gram we found the smallest 7 d i f f for each point on a 101x101 grid. The results 

were displayed as a contour map. The contour plots showed that 7 ^ was not only 
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symmetric about x = but that in the intervals x = 0 —» 7r or 7r —> 2ir 7diff was 

symmetric about 7r/2 and |7 r respectively. However the plots on pages 57 to 66 

do not show this symmetry. The reason for this is that we store the first values 

of 7 E C and 7 x y found, and not necessarily the values of 7 E C and jxy that give the 

smallest 7d iff. Due to the periodicity of the two functions the first two values found 

may not be the two values of 7 E C and 7 x y that give the smallest 7d iff. I f there were 

not an arrow to define the orientation of the two axes then the symmetry of 7diff 

about x = I 7 1 " would be shown in the plots. Therefore to see the value of 7diff 

the two structures reflected about x = f71" m u s t both be considered. In order to 

calculate the cross sum we have to specify a reference geometry. We chose a 'T 

shaped' reference geometry, with the A atom sitting on the Z axis. This structure 

was chosen because the geometry of neutral rare gas trimers is fundamentally t r i 

angular. The choice of the reference geometry is in some sense arbitrary as any 

geometry could be chosen as the reference geometry, and the Eckart conditions 

could be implemented. However the Eckart condition assumes the displacements 

from the reference geometry are small, and therefore the more unrealistic the ref

erence geometry the poorer the results of any calculation should be. The results 

for all figures are for a reference geometry that is an equilateral triangle. I f we 

had chosen a linear reference geometry it would have altered the result of each 

individual geometry but the overall pattern of results would have been unchanged. 

One problem with only having the two hyperspherical co-ordinates to de

scribe the complete motion of the system is that some changes in co-ordinates can 

represent unphysical motions. A good example of this is shown in the first column 

of figure 3.3 where 9 = 0° and x = n ~> f71"- The A atom starts in the middle 

of the BC bond and moves towards and through the B atom, into a linear B-C-A 

configuration. 

3.4.1 Ar 3 

For a set of 9 and x values the geometry of the trimer is determined by the three 

masses, i.e. equation 3.3. Therefore if the masses of the three atoms are simply 
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scaled it will not affect the geometries that you find for system, and will not 

therefore effect the value of T E C or jxy for a given geometry. We therefore expect 

that the results for an A 3 trimer should be the same. This is indeed what we see 

for the three trimer, Ar 3 , Ne 3 and He 3, that we investigated. 

The first and most striking point to note is that when the molecular configu

ration is T shaped 7diff is zero. This is due to the fact that the reference geometry 

is also T shaped and because the zero moment of inertia condition will always 

chose to lie along a centre of symmetry. This can be seen by examining the x = n 

row of figure 3.3, where 7diff is zero for all 6 values except zero. For 6 = 0, the jxy 

is zero as i t points along a centre of symmetry, but 7 E C is now ninety degrees. 

One other feature that is quite clear from the results is that as the molecule 

geometry moves further away from that of the reference geometry 7 d i f j increases. 

This is due to the fact that the two sets of conditions have different priorities 

for embedding the rotating axes. The instantaneous principle inertial condition 

simply tries for each molecular configuration to embed the axes so that the off-

diagonal moments of inertia are zero, which can be thought of as trying to find 

the best axes to 'balance' each configuration. The Eckart condition however is 

not trying to 'balance' each new molecular configuration, but is instead trying to 

embed the axes such that with respect to some predetermined geometry there is 

no instantaneous angular momentum about The Y axis. 

As well as looking at how the two embedding systems differ, we were also 

interested in looking at the way the Eckart axes behave as the molecule undergoes 

large amplitude motions. We were particularly interested in what happens to 

the Eckart axes as the A atom moves in-between the BC dimer, to form a linear 

triatomic molecule. 

As the A atom moves in closer to the BC dimer, such as in the x = n row, the 

Eckart axes do not alter, but at linearity the Eckart axes flip by ninety degrees. 

As the A atom passes through the BC dimer and forms the inverted structure, 

the Eckart axes flip back and point along the same direction as the instantaneous 

principle inertial axes. In the case of the x — n r o w the molecular geometries 
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are symmetric, with the A atom passing through the middle of the BC dimer. 

The behaviour of the Eckart axes is however qualitatively similar for molecular 

configurations where the A atom does not pass through the middle of the BC 

dimer. The Eckart axes do flip at the linear configuration, but as can be see in 

figure 3.3 Eckart axis (7EC) a n d the instantaneous principle inertial axes ( 7XY) A R E 

non zero for the non-linear configurations. This means that the Eckart axes rotate 

more smoothly, than they did in the x — ^ r o w ) a s w e move across a given row. 

3.4.2 AB2 rare gas trimers 

As well as studying the A 3 cases we have also studied some A B 2 cases, to 

illuminate what happens when the masses of the three particles are not the same. 

We have studied the two limiting cases of a heavy BC dimer and a light A atom, 

and a light BC dimer and a heavy A atom. In this and all subsequent mixed 

trimers the reference geometry is an equilateral triangle. 

He 2Ar 

There are some similarities in the Eckart axes for He 2Ar and for Ar 3 . For 

instance the x — f r o w 1 S the same. Yet again we see that as the actual geometry 

moves further away from the reference geometry the two axis systems move further 

apart. However one of the most notable differences between the two systems is 

that 7diff for any given geometry is less than that found for the A r 3 system. 

Another point to notice, and one that has already been stated previously, is 

that the ratio of the masses affects the position of atoms for a given 9 and x- In 

the He 2Ar system this is clearly shown by the position of the A atom for the 9 = 0 

column in figure 3.7 compared to the same column in the A r 3 system shown in 

figure 3.3. This makes a direct comparison of the sets of results more difficult. I t 

is however possible to see the general trends described above showing through. 

The different trimer geometries for a given 9 and x> a n d the subtle changes 

in 7 E C a m d 7 X Y for similar structures is clearly shown by a study of the 9 = 0 

X = 1-37T structure for the He 2Ar system (figure 3.7) and the 9 = 0 x = 1-27T 



Investigating the Eckart Condition 56 

structure from the A r 3 (figure 3.3). The structures are both linear and they both 

have the A atom inside the BC dimer. The value of jxy is still zero. However the 

Eckart axes have clearly not rotated as much as in the Ar 3 system. 

Ar 2 He 

For Ar 2 He we see that the different ratio of masses means that the structures 

for a given 9 and x a r e v e i 7 different. This is shown by the 9 = 0, x — ̂  a n d 2ir 

structures which are linear CAB structures in the x axis, and not the z axis. This 

does not affect 7 x y which is still zero, but 7 E C is now 180°. In previous systems 

7 E C was 90°. This difference is explained by the fact that for symmetric linear 

molecules the Eckart condition forces the embedded axes to be at right-angles to 

the linear molecule. Therefore when the linear molecule lies along the x axis the 

Eckart axis lies along the — Z axis. 

We again see that 7diff is smaller for most configuration that i t was for the 

A r 3 system. Indeed for many of the molecular configurations i t appears that both 

sets of axes follow the heavier A r 2 dimer. This is not to surprising as dimer is 

twenty times the mass of the He atom. 

He2Ne and Ar 2 Ne systems 

The final two A 2 B systems that we studied were He2Ne and Ar 2Ne. They 

were chosen as intermediate cases to the light BC-heavy A and heavy BC-light A 

systems respectively. In both systems, see figures 3.7 and 3.12, we see that the 

extreme geometry changes for a given 9 and x found in the He 2Ar and Ar 2 He 

systems do not occur. For both of these two intermediate systems the molecular 

configuration for a given 9 and x is much more like that for the A r 3 . This similarity 

is also shown in the two embedded axis systems. 
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Chapter 4 

The Ar n N2 system 

4.1 Studying the Ar n N2 system 

This chapter deals with clusters of the type Ar„N 2 . This work follows on 

from the work by Bacic et al. [101, 159, 160, 161] on Ar„HF, and Sperhac et 

al. [95] on A r „ C 0 2 , and more recently [91] Ar„HCl. Bacic et al. used simulated 

annealing to search for the minima of a potential energy surface of A r n H F . They 

then calculated the total energy of the system by reducing the problem to five 

dimensional one, by treating the HF dimer as a quantum object interacting with 

the static potential of the rare gas cluster. By performing separate calculations of 

potential energy structures for HF v = 0 and 1, they were able to calculate the red 

shift for each system. Their results were in quite good agreement with experiment 

[159], considering the inherent approximations in the calculation. Sperhac et al 

studied ArnCC"2 by constructing potential energy surface, and then searching for 

the global minimum using a gradient based searching technique. 

The potential energy surface for Ar„N 2 used here is made by summing over 

the A r - N 2 and Ar-Ar interactions in a pairwise additive manner, 

i Atj ( f i j 
) (4-1) 

i=l i<j 

The A r - N 2 potential energy is a function of two variables, the distance R from 

the Ar atom to the centre of mass of the N 2 molecule, and the angle 6 formed 

67 
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between the N 2 bond and the vector of length R between the centre of mass of the 

N 2 and the Ar atom. The minimum of the Ar -N 2 potential is at 9 = 90°, which 

is described as a 'T shaped' configuration. The Ar-Ar potential is of a simpler 

form, and only depends on R, the distance between the two Ar atoms. We use 

simulated annealing in the present work, because for complicated N dimensional 

surfaces i t has proved to be very robust in dealing with the problem of local minima 

[162, 101, 49, 50, 109]. 

The Ar-Ar potential [163] (which is of the HFD-C form) is given by 

V{r)=eV*{x), (4.2) 

where 

V(x) = A*x1 exp(-a*x) 

- F ( x ) E % + 6 / ^ + 6 . (4.3) 

The function F(x) is defined as 

F(x) = < 
exp 

1 

for x < D 

for x > D 

where 

x r/rm (4.4) 

The A r - N 2 interaction potential is the exchange Coulomb potential [164] of 

Dham et al., which is written as, 

Emt = F'{R)E§1 + AEC. (4.5) 

Where E^l is the first-order Heitler-London interaction energy, which can be eval

uated using SCF wave functions for the isolated species and then fitted to a func

tional form. The non-first-order Coulombic interaction AEc is modelled by indi

vidually damped, overall-corrected, multipole terms in the dispersion energy for 

the dimer AB. The term AEC term is given by the expression: 

AEr = EC2n(0)R-2nf2n(R,e) 
Ln=3 

Gw(R, 0). (4.6) 
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The 0 dependent functions are denned as: 

a>„(0) = £ C ^ P 2 / ( c o s 0 ) , 
1=0 

3 n 2 n f2n(R, 0) = [1 - exp{-AnS(6)R - Bn(S(6)RY - D n (S(0)P) d }] 

and 

GW(R,6) = 1 + 41.34 exp{-O.85885(0)P}, 

where 5(0) is given by 

5(0) = 7.82/Pm(0). 

The expression for P m (0) is 
/ 71 max \ 

P m (0) = 4 1 + E a 2 lP 2 j(cos0) , 

where Rm and the a2^ are fitted parameters of the potential. 

The Heitler-London repulsion term is given by 

-R^biZ1 

i=0 
4 L = exp 

where Z is given by 

Z = (R- R0)/(R + Ro) , 

£ > 2 , P 2 , ( c o s 0 ) , 
i=0 

(4.7) 

(4.8) 

(4.9) 

(4.10) 

(4.11) 

(4.12) 

(4.13) 

where R0 = 7.45 a0. The function F(R), from equation 4.5, is replaced in the 

final version of the potential is replaced with the expression F' + A F ' , where F' 

is defined as 

F ' = F'(0) = £ c 2 , P 2 , ( c o s 0 ) , (4.14) 
1=0 

and the A F ' function is 
3 

A F ' = ^ d 2 i ( c o s 0 ) 
.1=1 

{R + Rrnid)) x exp 

The A P ' term is highly localised around R = Rm as a function of 0. 

(4.15) 
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4.2 Discussion and Results for the Ar n N2 System 

In the Ar„HF system the highly anisotropic nature of the Ar-HF potential 

energy surface [165] dominates the system [101]. The Ar-HF potential has a deep 

minimum about the linear Ar-H-F configuration with a second minimum approx

imately 100 c m - 1 above the linear Ar-H-F minimum, which has the HF rotated 

by 180°. This means that the HF molecule always tries to orientate itself so that 

the hydrogen atom is 'pointing' at as many Ar atoms as possible. 

The A r „ C 0 2 system is very different. In the A r „ C 0 2 the first 5 Ar atoms 

cluster equatorially around the carbon atom, and the next ten Ar atoms cluster 

around the two oxygen atoms. This leads to many structures with almost identical 

energies for n > 5, as the Ar atoms can add sequentially to either end of the C 0 2 

molecule. The large number of nearly equivalent structures makes finding the 

global minimum very difficult. This is not as much of a problem as i t first appears 

though because all that is physically happening is that Ar atoms are sticking to 

the two oxygen atoms, and the order in which the argon atoms stick to the existing 

cluster gives rise to clusters with slightly different energies. When the cluster has 

grown to fifteen atoms, with five around each of the three atoms in C 0 2 , the next 

two Ar atoms cap the top and bottom of the A r 1 5 C 0 2 structure to give the first 

ful l solvation shell [95]. 

The reason for our interest in the Ar„N 2 system was that i t offered an impor

tant prototype system that has not been studied. In the case of ArHF the atom-

diatom interaction has strongly anisotropic attraction, whereas that for A r C 0 2 

[166]1 has a strongly anisotropic repulsive core. The A r N 2 surface lies somewhere 

in between these two, and should therefore provide interesting insight into to the 

effects of the atom-diatom potential energy surface on the clustering around mildly 

anisotropic diatoms. The A r n N 2 system also has a weaker rare gas-molecule inter

action than the systems studied previously systems studied. I t should thus give 

a useful insight into the effects of the solvent-solvent interactions in the solvation 

process. 

1see [8] for further information on Ar-CC^ potentials 



The Ar n N2 system 71 

In all the following discussions the structures of each A r n N 2 system V n > m , 

where n is the number of Ar atoms in the cluster and m designates that i t is the 

mth minimum of the system. So V ^ i is the global minimum of the A r 4 N 2 system 

and V4 i 2 is the first low-lying minimum. One other point of notation is that we 

use the term "low-lying minima" to mean all low-energy minima other than the 

global minimum. Al l references in the following discussion to Ar„HF structures 

are taken from the Bacic [101] study of the system. 

4.2.1 Potentials 

The potential energy functions used in the next two chapters are shown below. 

Ar-Ar potential 
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6O0.0 

400.0 

2O0.0 
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Figure 4.1: Ar-Ar pair potential (in cm x ) 
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Ne-Ne potential 
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Figure 4.2: Ne-Ne pair potential (in cm *) 
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Figure 4.3: Ar -N 2 potential energy surface (in cm ) 
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Figure 4.5: Ar -C0 2 potential energy surface (in cm ) 
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ArHF Potential Energy Surface 

Figure 4.6: Ar-HF potential energy surface (in cm x ) 

4.2.2 A r 2 N 2 

For A r 2 N 2 the two Ar atoms sit equatorially around of the N 2 diatomic. This 

configuration keeps the Ar atoms in the 'T shape' position relative to the N 2 , thus 

maximising the A r - N 2 interactions, while allowing the Ar atoms to be separated 

by their equilibrium distance. 

: 
Figure 4.7: A r 2 N 2 V 2 j l structure 
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4.2.3 A r 3 N 2 

For A r 3 N 2 the lowest-energy structure is a triangle of Ar atoms, with the 

N 2 molecule lying parallel to the plane of the triangle. This behaviour is different 

to that of the A r 3 C 0 2 system, where the Ar atoms cluster equatorially around 

the carbon atom. This does not happen in A r 3 C 0 2 because the potential energy 

surface of A r - N 2 is less anisotropic than that of A r C 0 2 . 

The A r 3 N 2 structure is very similar to the V 3 ) i Ar„HF structure, except that 

the N 2 lies parallel with the argon triangle, whereas in the A r n H F system the 

HF point at the centre of the triangle. This difference is due to the difference in 

topology, i.e. the ArHF surface is more anisotropic than that of A r N 2 , of the two 

rare gas-molecule potential energy surfaces. The Ar-HF potential energy surface 

has a deep minimum about the linear Ar-H-F configuration, whereas the sole 

minimum in A r - N 2 potential energy surface is about the 'T-shaped' configuration. 

Figure 4.8: A r 3 N 2 V 3 ) i structure 

4.2.4 A r 4 N 2 

For A r 4 N 2 the V 4 ; i structure is a C 2 v envelope structure. The V 4 , 2 structure 

is a C 3 v pyramid. This is interesting because, these two structures were also found 

in the Ar 4 HF. However in Ar 4 HF the pyramid structure was found to be the 

global minimum, and the envelope structure was the first low-lying minimum. 

The difference in the relative ordering of the Ar cage structures between the two 

systems is due to the difference in the topology of the two atom-diatom potential 
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energy surfaces. In the Ar4N 2 case, the relative isotropy of the potential energy 

surface leads to a stabilisation of the envelope structure, which allows the N 2 dimer 

to interact with all the Ar atoms. 

Figure 4.9: Ar4N 2 V ^ i structure 

A 
Figure 4.10: A r 4 N 2 V 4 ) 2 structure 

4.2.5 A r 5 N 2 

As in the A r 4 N 2 system, we find many of the Ar cage structures for A r 5 N 2 

are the same as for Ar 5 HF; the relative ordering however is different. Again this 



The A r n N 2 system 77 

is due to the difference in the two atom-diatom potential energy surfaces. The 

other significant difference is that the global minimum is a completely different 

structure to those found in the Ar 5 HF system. The global minimum is a pyramid 

with four Ar atoms in the base, and the N 2 molecule lying parallel to the base 

of the pyramid. It should be noted that when we describe something as above or 

below we mean with reference to the top or bottom of the printed figure. So using 

figure 4.11 for an example, if something is described as 'above' the four atoms in 

the base of the pyramid i t appears further towards the top of the page than the 

ring of atoms; conversely if something is describe as 'below' the ring it appears 

towards the bottom of the page. The V5>2 structure is a pentagon with one of 

the vertices missing, and the fifth Ar atom sitting above the four atoms in the 

base. This Ar cage structure sits above the N 2 , with the N 2 directly below the top 

capping Ar atom. This structure allows the N 2 to interact with all five Ar atoms. 

In doing so, though, i t reduces the Ar-Ar interaction in comparison to the V^^ 

structure. The ¥ 5 , 3 structure is a V ^ i structure with a capping Ar atom, which 

forms a pyramid. The V 5 i 4 structure is a pyramid structure, with one of the faces 

of the pyramid capped. The interesting point about these low-lying minima is that 

they are the same structures found for Ar 5 HF ( ¥ 5 , 1 - 3 ) . However in Ar„N 2 system 

their positions are reversed. This shows yet again the effect the different potential 

energy surface on the clusters formed. 

Dab 
Figure 4.11: A r 5 N 2 V 5 ) i structure 
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4^, 
Figure 4.12: ArsN2 V52 structure 

Figure 4.13: Ar 5 N 2 V 5 i 3 structure 

Figure 4.14: Ar 5 N 2 V 5 i 4 structure 
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4.2.6 A r 6 N 2 

The global minimum is a bipyramidal structure, which can be seen to arise 

from capping the two top faces of the V^i envelope structure. The first-low-lying 

minimum is a capped pentagon structure, with the sixth atom capping the C^v axis 

above the ring of atoms. Interestingly the first two minima are the same as found 

in Ar 6HF. This similarity between the two systems is unusual, as the previous 

Ar„N 2 structure were usually different from those of the corresponding Ar n HF 

system. It results from the fact that the pentagon structure allows fewer Ar-Ar 

interactions, and neither dimer interacts strongly enough with the argon cage to 

overcome the inherent unfavourability of the capped pentagon structure. Bacic 

et al. only discuss these two structures for Ar 6HF, as the next lowest minimum 

is 100 c m - 1 above the global minimum. In the Ar 6 N2 system, however, there 

are several low-lying minima due to the relative isotropy of the Ar-N 2 potential 

energy surface, and the similarity in the Ar-Ar and Ar-N 2 interaction strengths. 

The V6,3 structure is a face-capped four-atom-based pyramid Vs,! structure. The 

V 6 >4 structure is a V 5 ) 2 structure with an Ar atom capping one of the top faces, and 

forming a pyramid with the three Ar atoms in the structure below it. It actually 

caps the completed 'back' side of the part completed pentagon ring, because this 

part of the ring is most ridgely bound part of the argon substructure. This means 

that the argon atoms hold each other closer to their equilibrium distance, which 

leads to the capping atom interacting slightly more strongly with the three atoms it 

interacts with. The V6,5 structure is like the V6,4 structure in that it is a derivative 

of the V 5 ) 2 structure. In this case though the capping atom sits below the V 5 ; 2 

structure and interacting with the N 2 in a 'T shaped' configuration. This forms a 

semi-circular cage structure around the nitrogen dimer. There are other structures 

based on capped versions of the V 5 ; 2 structure, but they were out side the energy 

range of interest. The V 6,6 structure is a pyramid with two faces capped to form 

pyramids themselves. 
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Figure 4.15: A r 6 N 2 V 6 , i structure 

Figure 4.16: Ar 6 N 2 V 6,2 structure 

Figure 4.17: A r 6 N 2 V 6,3 structure 
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Figure 4.18: Ar 6 N 2 V 6 ) 4 structure 

Figure 4.19: A r 6 N 2 V6,5 structure 

Figure 4.20: Ar 6 N 2 V 6,6 structure 
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4.2.7 A r 7 N 2 

The structures for ¥ 7 , 1 and V 7 i 2 are both based on the bipyramidal V 6 , i 
structure. The global minimum has the seventh Ar atom added in below the Ar 6 

structure, interacting with the N 2 in a 'T shaped' manner, and forms a second 

envelope (V^i) structure around the N 2 . The first low-lying minimum has the 

seventh Ar atom capping one of the upper face of the bipyramidal structure. As 

can be seen from table 4.1, these two structures are very close in energy with AE 

approximately 1 cm - 1 . That V 7 ) i and V 7 i 2

 a r e s o similar to each other, in terms of 

both energies and structures, means that a cluster can easily convert between the 

two structures. The next low-lying minimum V 7 i 3 is interesting, because it does not 

appear in the Ar 7HF system. The V7i3 structure is based on the four-atom-based 

pyramid, V 5 i i , structure with one of the extra Ar atoms added below the base, 

interacting with the N 2 in a 'T-shaped' manner. The remaining argon atom sits 

on the side face of the Vs,! structure, and above the argon atom that is interacting 

with the N 2 . These two capping atoms in effect forms a second slightly distorted 

V5>i structure. Yet again the relative stability of this structure in comparison to 

its Ar 7HF counterpart illustrates the dramatic effect of the different atom-diatom 

potential energy surface. The V 7 i 4 structure is the pentagonal structure of V6,2> 

with the seventh Ar atom added below the argon cage to form an envelope structure 

with three of the Ar atoms on the base of the pentagon subunit. It is interesting 

to note that the structures of this system show how finely balanced it is. There is 

a very small difference in energy between adding the last so that it interacts solely 

with the argon cage, or with both the cage and the N 2 molecule. 
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Figure 4.21: A r 7 N 2 V 2 V 7 j structure 

# 0 

Figure 4.22: A r 7 N 2 V 7^2 v 7 ) 2 structure 

Figure 4.23: Ar 7 N 2 V 7 , 3 structure 
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Figure 4.24: A r 7 N 2 V 7 ) 4 structure 

4.2.8 A r 8 N 2 

The global minimum, V 8 > i , is a new structure, that can be thought of as an 

extension of the V 5 ) 2 structures. As we shall see later, it is the first example of a 

structure that will come to dominate the high n clusters. It is the precursor to a 

series of pure Ar„ structures which we will see as the size of the clusters increases. 

It has four atoms in a part formed pentagon base, that are capped by a single Ar 

atom sitting above them on the C5v axis of the part formed pentagon. There are 

then three more Ar atoms which lie above the first capping atom, and parallel to 

the four atoms in the base. The four atoms in the base however do not form a 

square, and is best thought of as having a structure of a pentagon base with one of 

the atoms removed. This means that two of the Ar are splayed out, and thus allow 

the N 2 to get nearer the middle argon atom. In fact the distance of the middle 

argon atom to the centre of mass of the N 2 is 3.513 A, which is almost exactly the 

equilibrium distance of the Ar-N 2 potential. The structure of V 8 , i clearly indicates 

that we have a finely balanced interplay between the Ar-Ar interaction and the 

Ar-N 2 interaction. The balance between these two interactions will become more 

important in determining the ordering of structures as n increases. 

The global minimum is « 1 c m - 1 below V 8 , 2 , and 2 c m - 1 below V 8 ) 3 . 
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This is very different behaviour to that of the Ar 8HF system, or indeed any of 

the Ar„HF systems, where the gap between the global minimum and the first 

few low-lying minima was always larger. The closeness of minima in the Ar„N 2 

systems makes it harder to search the potential energy surface. As the surface 

becomes natter and more subtle, it becomes easier for a simulated annealing search 

to pass through a minimum without staying in it. This problem is overcome 

by using a large number of starting positions. The simulated annealing can be 

supplemented by carefully chosen searches of the potential energy surface using 

a gradient-based search method to make sure that certain structures that might 

be the global minimum or a low-lying minimum have not been missed by the 

simulated annealing searches. 

The first two low-lying minima have the same Ar 6 bicapped bipyramidal 

structure, with the two capping-atoms capping adjacent face on one side of the 

bipyramidal Ar 6 substructure, and are separated by AE = 0.7 cm - 1 . The differ

ence between the two structures is that in V 8 j 2 the N 2 molecule lies on a line with 

the bicapped end of the Ar 8 cluster; whereas in V 8,3 the N 2 molecule is rotated by 

about 90°. The effect of this, and the reason for the difference in the energy of the 

two structures, is that the N 2 dimer to get slightly closer to the underside of the Ar 

cluster in the V 8 i 2 structure, thus increasing the Ar-N 2 interaction slightly. This 

situation does not occur in the Ar-HF system, because of the more anisotropic 

nature of the Ar-HF interaction. The V 8 ) 4 structure is a bicapped V 6 , 2 , i.e. a bi

capped pentagon structure, where the capping atoms cap adjacent faces of the V 6 , 2 

structure. The V 8 ) 5 structure has the same Ar 6 pentagon-based pyramid structure 

as the V 8 ) 4 structure, but with the two capping atoms moved beneath the Ar 6 

structure. This structure can be thought of as the beginnings of an icosahedral 

cage. 
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Figure 4.25: A r 8 N 2 V 8 i structure 

Figure 4.26: A r 8 N 2 V 8 ) 2 structure 



Figure 4.27: A r 8 N 2 V 8 j 3 structure 

Figure 4.28: Ar 8 N 2 V 8 j 4 structure 
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Figure 4.29: Ar 8 N 2 V 8 ) 5 structure 

4.2.9 A r 9 N 2 

In the Ar„HF system, n — 9 is the point at which the lowest energy structure 

first has the HF inside a part-formed Ar icosahedral cage. In the A r n N 2 system 

however this does not happen. Yet again we find several structures that are similar 

in energy, due to the small difference between the interaction strengths of Ar-Ar 

and Ar-N 2 potentials. The global minimum is a capped version of the ArgN2 global 

minimum, with the capping Ar atom sitting above the atom which is in-between 

the two rings of atoms in the Vg,i structure. This structure shows clearly that the 

Ar-Ar interaction is coming to dominate the high n structures, because from the 

Vg,i structure it can be see that an alternative structure would have the top Ar 

atom down in the four-atom base of the V 8 ) i Ar structure. However this alternative 

structure is found to be energetically less favourable. What we are really seeing 

here is that the Ar-Ar interaction is stronger than that for Ar-N 2 except when 

9 is close to 90°, 'T shaped'. As there are only a few sites were the Ar atom is 

in a 'T shaped' configuration this means the Ar must choose between an Ar-Ar 

interaction or a non 'T shaped' Ar-N 2 interaction, and thus the Ar atom adds 
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to the Ar cage rather than sitting somewhere around the N 2 . Taking this into 

account we should expect to see the global minimum of the higher n clusters look 

more and more like the structures found for pure Ar„ cages. The first low-lying 

minimum has all three Ar atoms capping faces on one side of the V 6 , i Ar 6 subunit. 

The Vg^ structure has the same Ar structure as that of the global minimum, 

but this time the N 2 lies across the ov symmetry plane of the Ar cage instead of 

along it. This structure will be discussed in more detail later. The Vg^ structure 

is a tricapped version of the V 6 > 2 pentagon based structure with three Ar atoms 

capping adjacent faces of the pentagonal pyramid, which was previously described 

above as a possible alternative for the global minimum. The ¥ 9 , 5 structure is a 

part-formed icosahedron, which is the minimum energy structure for Ar 9HF. 

Figure 4.30: Ar g N 2 V 9 ) i structure 
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Figure 4.31: Ar 9 N 2 V 9 2 structure 

Figure 4.32: Ar 9 N 2 V 9 ) 3 structure 
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Figure 4.33: A r 9 N 2 V 9 ) 4 structure 

Figure 4.34: Ar 9 N 2 V 9 j 5 structure 
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4.2.10 A r i 0 N 2 

In the Vio,i structure the Ar cage is like that of the V 9 ) i structure with the 

tenth Ar atom adding to the upper ring of argon atoms, and the N 2 under the Ar 

cage. Again we could imagine the tenth atom moving down into the lower layer of 

Ar atoms, which lies above the N 2 , but again the Ar-Ar interaction is too strong. 

We will see later that the pentagon structure is again higher in energy. The Vio,2 

and Vio,3 structures are based on the six atom pentagonal pyramid V 6 j 2 structure. 

The Vio,2 structure has three Ar atoms capping adjacent to each other, with the 

forth Ar atom sitting above the top atom of the pentagonal pyramid. The Vio,3 
structure is simpler, with the four remaining Ar atoms capping the four adjacent 

faces of the Ar6 subunit. The Vi 0,4 structure is the part-formed icosahedral cage, 

which was the minimum energy structure for Ari 0HF. As we can see from the 

above discussions the behaviour of the Ar„N 2 system is very different from that 

of the Ar„HF system, in which for n > 9 the minimum-energy structure is a 

part-formed icosahedral cage. The reason for this difference is that the maximum 

Ar-HF interaction is approximately twice that of Ar-Ar whereas the maximum 

Ar-N 2 interaction is approximately the same as that of the Ar-Ar; if the Ar-N 2 

is not near the 'T shape' configuration the Ar-N 2 interaction is weaker than that 

of Ar-Ar. This means that in Ar„HF structures which preferentially maximises 

the Ar-HF interaction are energetically favoured, over those which preferentially 

maximise the Ar-Ar interaction. This leads to the icosahedral cage (and other 

cage) structures having the lowest energy. In the A r n N 2 system this is not true as 

there is no one interaction that is predominant. 

Interestingly, although the Ar-Ar interaction can clearly be seen as the dom

inant interaction, the structures are still not those of the equivalent pure Ar n 

system. This is an illustration that we are dealing with a very finely balanced 

system, with a potential energy surface that is much more complicated. 
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Figure 4.35: A r i 0 N 2 Vio.i structure 

Figure 4.36: A r 1 0 N 2 Vio,2 structure 



"1 
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Figure 4.37: A r i 0 N 2 V i 0 3 structure 

Figure 4.38: A r 1 0 N 2 Vi 0 ,4 structure 
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4.2.11 A r n N 2 

The global minimum structure for A r n N 2 is similar to the pure A r n mini

mum structure, with the N 2 sitting underneath the Ar cage. This structure ob

viously follows on from the V 9 ] 1 and V i 0 , i structures. The structure of the first 

low-lying minimum has the same argon cage as the global minimum, and the N 2 

still sits under the Ar cage. The difference in the two structures is due the orien

tation of the N 2 with respect to the Ar cage. In the global minimum the N 2 lies 

parallel to the ov plane of the A r n cage, and will be denoted the || structure. In 

the first low-lying minimum the N 2 lies across the av plane, and will be denoted 

the J_ structure. The difference in energy between these two configurations is due 

to the fact that the || structure allows the N 2 to interact more favourably with 

the Ar atoms in the base ring, because the N 2 can interact in a near 'T shaped' 

manner with the two Ar atoms at the open end of the lower ring. The N 2 can 

also interact more strongly with the Ar atom in-between the two Ar rings in the || 

structure that in the J_ structure, as the N 2 can get slightly nearer to the middle 

Ar atom in the || structure. This is clearly shown by the values of the A r - N 2 

interaction energy in the two structures. The Ar -N 2 interaction energy for the || 

structure is —530 c m - 1 , compared to —505 c m - 1 . This is actually larger that the 

energy difference between the two structures. The difference is made up by the 

fact that the Ar-Ar interactions for the two structures are —3175 c m - 1 for the || 

structure, and —3189 c m - 1 for the _L structure. This is very interesting, because 

i t means that in the || structure the Ar cage is distorted slightly to maximise the 

A r - N 2 interaction. This is quite unusual as distorting the cage reduces the Ar-Ar 

interaction, yet as we have already seen the Ar-Ar interaction is dominating the 

larger A r n N 2 clusters. This clearly shows that the Ar„N 2 system is a far more 

subtle system that A r n H F system. The structures are determined by a balance of 

competing forces. In the main the Ar-Ar interaction is the dominant force deter

mining the structures of the A r n N 2 system, but it is far from being a one sided 

race. 

An interesting question to ask is why we did not see the || and _L structures in 
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the A r 1 0 N 2 or A r 8 N 2 systems, which both have Ar cages which could support these 

structures. To understand why this is so we have to think about what happens 

when we find a structure. In finding a structure we search a potential energy 

surface looking for minima in the surface. When we find a well in the potential 

energy surface we find the bottom of the well and the associated structure. We 

have found two structures that are very similar to each other. This means that 

we have two wells in the local parameter space. The fact that the search routine 

becomes trapped in the _L structure well and does not escape to find the || structure 

well means that the there is no downhill path connecting the two wells. In the 

ArioN2 and A r 8 N 2 systems we appear not to have a second well in which to become 

trapped. 

This effect was studied further by starting from the V n ^ structure, and re

moving one atom in the top ring to give a A r i 0 N 2 version of the V n ) 2 structure. 

We then used a gradient-based technique to find the local minimum. We found 

that the search routine travelled in parameter space to the V i 0 j i structure. A 

similar investigation of the A r 8 N 2 system showed the same result, with the search 

returning to the Vg,i structure. This suggests that in these systems there is no 

second minimum. I t is very surprising that the A r 8 N 2 and A r 1 0 N 2 systems have 

such different behaviour to the A r 9 N 2 and A r n N 2 systems. 

The V 1 1 ) 3 structure has a V 6 ; 2 capped pentagon substructure with four Ar 

atoms capping the upper faces of the V 6 i 2 structure, and the eleventh Ar atom 

sitting above the top atom of the pentagonal pyramid. The Vn,4 structure has 

the same V 6 ) 2 substructure, but this time all the five upper faces are capped. The 

V 1 1 5 structure is that of the part-completed icosahedral cage, which was the global 

minimum for ArnHF. 
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Figure 4.39: A r n N 2 V n i structure 

Figure 4.40: A r n N 2 Vn,2 structure 
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Figure 4.41: A r n N 2 V n 3 structure 

Figure 4.42: A r u N 2 Vn,4 structure 
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Figure 4.43: A r n N 2 V u ) 5 structure 

4.2.12 A r i 2 N 2 

In the A r i 2 N 2 system, we continue to see the dominance of the Ar-Ar in

teraction over the A r - N 2 interaction. The minimum energy structure has a pure 

A r i 2 cage, with the N 2 sitting underneath the Ar structure. The next minimum 

is 250 c m - 1 above the global minimum. The reason for this is that the next few 

minima are based on the pure A r n structure, with the twelfth Ar atom capping 

the A r n structure. This leads to all the low-lying minima being energetically very 

unfavoured compared to the global minimum; additionally because the low-lying 

minima are capped pure A r n structure they are close in energy. A r u has an inver

sion centre; this means that there are 3 sites (on the top of the cage) and 4 sites 

(around the middle of the cage) that are not related by rotation to each other. This 

lead to structures that are slightly different in energy. For the three top capped 

structures the difference in the energy comes from the Ar cage, and not from the 

A r - N 2 interaction. For the four sites around the middle of the A r n structure the 

difference in energy is a mixture of the two interactions. The trend in the energies 

for the capped structures, both on the top and in the middle, can be rationalised 
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by looking at the A r n cage. The pure A r i i structure has one Ar atom missing 

from the bottom five membered ring of the pure A r i 2 structure. This leads to 

capped structures at the closed part of the ring being lower in energy because the 

Ar atoms around the closed end of the ring are more likely to be confined close to 

their equilibrium distances. In addition the A r n based structures that are capped 

on the top have a smaller A r - N 2 interaction than structures capped around the 

middle. These two trends explain the ordering of the minima found. The com

pleted icosahedral cage structure was also found, in the same energy range as the 

capped A r u structures. This again shows the difference between the Ar„N 2 system 

and the A r n H F system, in which the icosahedral cage was the global minimum. 

There is one final structure that I have not mentioned yet. This structure 

also has the pure A r n structure as its base, but with the twelfth atom below the 

A r n structure, and interacting with the N 2 near the 'T shaped' geometry, which 

is energetically most favoured. 

Figure 4.44: A r 1 2 N 2 V i 2 ) i structure 
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Figure 4.45: A r 1 2 N 2 V i 2 ) 2 structure 

Figure 4.46: A r i 2 N 2 V i 2 > 3 structure 
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Figure 4.47: A r i 2 N 2 V i 2 4 structure 

Figure 4.48: A r i 2 N 2 V i 2 > 5 structure 
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Figure 4.49: A r i 2 N 2 V i 2 ) 6 structure 

Figure 4.50: A r i 2 N 2 Vi2,7 structure 
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Figure 4.51: A r i 2 N 2 Vi 2 i g structure 

Figure 4.52: A r i 2 N 2 V i 2 ) 9 structure 
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Figure 4.53: A r i 2 N 2 Vi2,io structure 

4.2.13 A r n N 2 where n > 12 

From our studies so far we have seen that the Ar„N 2 system is much more 

subtle and open-ended than the Ar„HF system. In Ar„HF the strong Ar-HF 

interaction dominates the system. This means that Ar„HF quickly forms a first 

solvation shell, i.e. at n=12. After the first solvation shell the extra Ar atoms 

just add to the outside of the cage, and have little effect on the system other than 

to make it bigger. For example they do not much affect the red shift, which is 

a measure of the interaction of the argon cage with the HF, and for which the 

calculated value at n=12 is very close to the experimental value for the bulk red 

shift. In the Ar„N 2 system this is not the case, and we have not completed the 

first solvation shell at n=12. Indeed it does not look as i f we are even close to 

the first solvation shell, as the global minimum for A r i 2 N 2 is a pure A r 1 2 structure 

with the N 2 sitting under the Ar cage. 

The question now becomes what does the first solvation shell for the Ar„N 2 
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system look like? We cannot know for sure as we have not done any calculations 

above n=12. We can however use our understanding gained from the study of the 

Ar„N 2 system up to n=12 to take an educated guess at the probable structure of 

the first solvation shell. The first obvious possibility is a stretched version of the 

icosahedral cage, where a second ring of five Ar atoms is put in-between the two 

five-members of the twelve atom icosahedral cage. This would form a tube-like 

cage. This structure is unlikely to be the global minimum as adding the extra ring 

of the Ar atom will only force the other two rings further apart. I t would also 

make many of the A r - N 2 interactions less 'T shaped' which is also energetically 

unfavoured. 

Our calculations have shown that the icosahedral cage is not the global min

imum of the A r 1 2 N 2 system, and we have just suggested that the tube structure 

is unlikely to be a global minimum. The question now is, is there another micro 

cluster structure which might be a global minimum of its Ar„N 2 system. 

For a structure to be the global minimum it most have all the atoms inter

acting at close to their equilibrium distance. The structure will also preferentially 

maximise the dominant interaction. Given that the Ar-Ar interaction is domi

nant, and that changing the interatomic distance by more than a few tenths of 

an angstrom from the equilibrium distance is energetically unfavoured, it seems 

highly unlikely that there is a finite size micro-cluster which can maximise the 

Ar-Ar interaction, and still have room inside the argon structure for the N 2 with

out radically disturbing that structure. We therefore conclude that there is no 

finite sized micro-cluster which can enclose the N 2 molecule and is also the global 

minimum of its particular Ar„N 2 system. The global minimum for larger A r n N 2 

clusters, i.e. n > 12, are therefore expected to be similar to the pure Ar„ struc

tures, with the N 2 molecule interacting with an external face of the Ar structure. 

We have suggested that micro-cluster solvation structures are highly unlikely, 

but as yet we have not mentioned bulk phase structures. These could be calcu

lated by classical dynamics simulations using periodic boundary conditions. Such 

simulations might find structures which are stable, but do not correspond to any 
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micro-cluster structure. 

4.3 Conclusions 

When we started the investigation of the A r n N 2 system there were two pre

vious studies of similar systems. They were the Ar„HF [101] and A r n C 0 2 [91] 

systems. There was however little know about the structures of the Ar„N 2 system 

[167]. In Ar„HF the first solvation shell had been found at n=12, and a red shift 

calculated for the V i 2 > i structure. The value of the calculated red shift was in 

rough agreement with the experimental bulk red shift. This strongly suggested 

that the solvation structure found was indeed the basic solvation structure for all 

Ar„HF systems with n greater than 12, and that all the extra atoms added to 

the outside of the icosahedral argon cage. In the A r n C 0 2 system the structures 

for each value of n were not thoroughly investigated, but the salient points of the 

system behaviour were found. These were that the first five argon atoms clus

tered around the carbon atom, and that the first solvation shell was formed at 

n=17. The first solvation shell had five argon atoms around each of the atoms 

in C 0 2 , and one argon atom capping the top and bottom of this structure. The 

red shift for the solvation structure was estimated by experimentally determining 

a constant of proportionality for the red shift produced by each argon atom as 

a percentage of its interaction strength. This method also gave rough agreement 

with the experimental bulk red shift. 

We were particularly interested in comparisons between the Ar„N 2 and Ar„HF 

systems. This was because they are both diatomic molecules with argon clustering 

around them. This meant that the results from our study of the Ar„N 2 system 

would show how the balance between the rare gas-rare gas and rare gas-molecule 

interactions, as well as the topology of the potential energy surface, affects the 

structures formed. One reason for looking at these simpler rare gas-molecule sys

tems is that they provide excellent prototype systems on which to test our un

derstanding of more complex chemical events. The Ar„N 2 system was a type of 
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prototype system that had not as yet been investigated. The Ar„HF system is a 

prototype for systems where the interaction of the solvent and the solute is highly 

directional, and the strength of the solvent-solute interaction is greater than that 

of the solvent-solvent interaction. Ar„HF is a prototype for solvation of highly 

polar molecules and hydrogen-bonded solvation systems. 

In the case of the A r n C 0 2 system the Ar-C interaction energy is approx

imately 200 c m - 1 and the Ar -0 interaction energy is approximately 110 c m - 1 

[166]. This makes the A r „ C 0 2 a prototype for linear systems with several interac

tion sites of varying strengths. The Ar„N 2 system is a prototype for solvent-solute 

systems where there is a much closer balance of interactions. The more isotropic 

nature of the A r - N 2 interaction is an important feature, as many chemical inter

actions are not as anisotropic as that modelled by Ar-HF. 

4.3.1 A r 2 - 6 N 2 

The structures belonging to the small Ar„N 2 clusters are interesting because 

they show a lot of similarities between the Ar„N 2 and Ar„HF systems. In particular 

the structures formed by the Ar„ cage are similar. In the early (n = 2 — 4) part 

of this series of systems, the argon structures are exactly the same as those found 

in the equivalent Ar„HF system. The reason for this is that for a small number of 

argon atoms there are few simple configurations that allow all the atoms to interact 

with each other. I f we take three argon atoms, for example, they can either form 

a triangle or a line of atoms. The triangle structure will always be energetically 

more favoured as it allows all argon atoms to interact with each other. However, 

even though the argon substructures are the same the Ar„N 2 structures are not 

the same as their A r n H F counterparts. In the A r n N 2 system the N 2 lies flat to 

the Ar„ structure, whereas in the Ar„HF system the HF points at the face of the 

Ar„ structure. This is due to the different topologies of the two rage gas-molecule 

potential energy surfaces. 

As the value of n increases the number of different possible arrangements of 

the argon cage increases and the subtle effects of the relative magnitudes of the 
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rare gas-rare gas and rare gas-molecule interaction energies and the topology of 

the rare gas-molecule potential energy surface start to show through. 

One of the many manifestations of the difference of the two systems is that 

as n increases the energy difference between successive structures is small for the 

Ar„N 2 systems, but relatively large for the Ar„HF systems. This means that the 

number of structures that need to be described increases. In the A r 5 N 2 system 

we see another significant sign that the long-term behaviour of the two systems is 

going to diverge. The global minimum is a completely new structure. I t has four 

argon atoms forming the square base of a pyramid, with the N 2 lying flat under 

the base of the pyramid. This structure is not found in the Ar„HF system because 

the HF dimer would have to point at the centre of the base of the pyramid. This is 

energetically very unfavourable due to the highly anisotropic nature of the Ar-HF 

interaction. In the Ar„N 2 system however the opposite is true due to the more 

isotropic nature of the A r - N 2 interaction. In the Ar„HF system the V 5 ; i structure is 

a capped envelope structure. This structure has a smaller Ar-Ar interaction energy 

than the equivalent V ^ " N 2 structure. This means that the effect of the stronger 

and more anisotropic Ar-HF interaction is to force the system to maximise the 

Ar-HF interaction at the expense of the Ar-Ar interaction. 

4.3.2 A r 7 _ i 2 N 2 

In the A r 7 N 2 system we found V 7 ) 3 to be a bi-capped version of the 

structure. This structure is also not found in the A r n H F system. The two capping 

atoms form a second V 5 ; i structure. This structure is clearly a product of the more 

isotropic nature of the A r - N 2 potential energy function. Just as the Vs^ structure 

illustrated the difference between the Ar„N 2 and A r n H F systems, so does the V 7 i 3 

structure. 

From A r 7 N 2 onwards the similarities with the Ar„HF system become less ob

vious. We do find some argon cage structure in common between the two systems. 

In particular we find the icosahedral cage structure and its part-formed precur

sors. The relative stability of these structures in the two systems is however very 
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different. Whereas for n > 9 in the A r n H F system the icosahedral cage or its 

precursor is the global minimum, in the A r „ N 2 system such structures are never 

the global min imum. In some cases, most notably A r 1 2 N 2 , the icosahedral cage 

is substantially less stable than other structures. The reason for this difference in 

behaviour is that the icosahedral cage structures maximise the rare gas-molecule 

interaction at the expense of the rare gas-rare gas interactions. 

The corollary to the discussion of icosahedral cages in the previous paragraph 

is that the structures found in the A r 7 _ i 2 N 2 systems are determined more by the 

A r - A r interaction than the A r - N 2 interaction. This is indeed just what we see. The 

global min imum for the A r 7 _ i 2 N 2 systems are structures which maximise A r - A r 

interactions. There are many examples of structures that come f r o m adding an 

argon atom to a A r n _ i N 2 structure and in all cases the energetically more favoured 

structure is the one that adds the argon atom to the Ar„_^ cage, rather that adding 

i t to the cluster so that i t could interact w i t h the argon cage and the N 2 . I t is 

not just the global min imum that shows the dominance of the A r - A r interaction. 

Many of the low-lying minima clearly show the A r - A r dominance in determining 

structures. This is particularly well shown in the case of the A r i 2 N 2 system, where 

many of the low-lying minima are based on capped versions of the A r n N 2 global 

min imum structure. Other examples of the dominance of the A r - A r interaction 

are the capped ( V 6 j i ) pentagon structures that are found in the A r 7 _ u N 2 systems. 

Structures such as V 9 i i ,which has argon atoms capping the argon atoms that 

cap the V 6 , 2 pentagon structure, show quite clearly that the A r - A r interaction 

is dominant i n A r „ N 2 . In this range of A r „ N 2 structures the energy difference 

between the neighbouring structures is less than found for the A r n H F system, as 

was true for the A r 2 _ 6 N 2 structures. However in the A r 6 _ 1 2 N 2 systems the gap 

between adjacent structures is even smaller. For example i n A r 7 N 2 and A r n N 2 the 

gap can be as small as 1 c m - 1 , or less. In addition to this, the relatively isotropic 

nature of the A r - N 2 interaction leads to structures where the N 2 and a given argon 

cage can interact in more than one configuration. Again the A r 7 N 2 and A r n N 2 

systems provide good examples of such structure. 
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In the A r „ N 2 system as the number of argon atoms increases we see that the 

A r - A r interaction comes to dominate the structures of the system more and more. 

The reason for this behaviour is the fact that the A r - N 2 interaction is weaker 

than the A r - A r interaction for all but ' T shaped' interactions. The dominance 

of the A r - A r interaction means that as the number of argon atoms in the cluster 

increases the structures of the system become more like the structures found for 

the pure argon clusters. This trend leads to the V 1 2 , i and Vu,i structures, which 

are pure argon cages w i t h the N 2 s i t t ing underneath the argon cage. There is 

fur ther evidence for the dominance of the A r - A r interaction on the A r „ N 2 system 

in the A r i 2 N 2 structures. Most of the low-lying minima that are describe i n the 

text above for the A r i 2 N 2 system are based on the V n ^ structures. The last argon 

atom is added to the outside of the pure A r n structure. The fact that the low-lying 

min ima are based on pure A r n structure rather that any other type of structure 

show the basic stabili ty of the A r n structure. 

Though i t is undoubtedly true that the A r - A r interactions are dominant in 

determining the structures of the A r „ N 2 system, i t is not however true that the 

effect of the A r - N 2 interact can be ignored. The structures found are determined 

by a balance of forces. The effects of the A r - N 2 interaction are more subtle, and 

less obvious, but the evidence for their effects on determining the structures is 

clear to see. Examples of the effect of the A r - N 2 interaction are the parallel and 

perpendicular structures in the A r n N 2 structure. I n the case of the parallel struc

ture the A r - N 2 interaction is maximised at the expense of the A r - A r interaction. 

I n addition to this the very existence of the parallel and perpendicular structures 

is due to the nature of the A r - N 2 interaction. I f the rare gas-molecule interaction 

was too anisotropic the molecule would not be able to lie under the argon cage; 

on the other hand i f the rare gas-molecule interaction was too isotropic the two 

wells would not exist. This last point is illustrated in the N e „ N 2 system described 

in the next chapter. 

Another point arising f rom our work on the A r „ N 2 system is that, because 

the system is more finely balanced, the surface that has to be searched is more 
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complicated. This point is shown very clearly in the A r i 2 N 2 system, where the 

low-lying minima are capped versions of the V n . i structure. The fact that these 

structures are based on the same eleven-atom argon cage actually makes i t d i f f icul t 

to f ind al l the structure by simulated annealing. The problem is that, w i t h so many 

structures that are so close i n energy, the simulated annealing search can actually 

pass through a minimum. I n this particular case we can overcome the problem 

because we know what structures we should f ind due to the symmetry of the V n j 

structure. The point of this explanation, though, is to show that as the A r „ N 2 

system gets larger i t becomes more and more likely that a local min imum in the 

energy range of interest may be missed. As previously stated this problem can 

be overcome by starting f rom many different starting positions. This policy has 

a l imi ted life though, and as the systems we are t ry ing to search get larger the 

more likely this policy is to fa i l . I n a system where there is a single dominant 

interaction, such as in A r „ H F , i t is less likely for this problem to arise. 

n V n i l / c m " 1 V„, 2 / c m " 1 V „ , 3 / c m " 1 V „ > 4 / c m 1 V n > 5 / c m 1 V„, 6 / c m 1 

2 -304.566 

3 -603.22 

4 -912.164 -908.986 

5 -1254.057 -1225.030 -1224.067 -1222.407 

6 -1634.591 -1596.788 -1567.990 -1543.707 -1541.277 -1540.990 

7 -1956.907 -1955.688 -1924.558 -1907.191 

8 -2373.195 -2372.212 -2371.466 -2336.40 -2329.024 

9 -2788.664 -2788.261 -2754.746 -2749.368 

10 -3206.484 -3178.606 -3167.379 -3157.585 

11 -3694.282 -3675.946 -3669.557 -3606.495 

12 -4293.965 -4038.508 -4036.706 -4036.676 -4036.614 4026.721 

Table 4.1: results for A r „ N 2 



Chapter 5 

The Ne n N2 system 

5.1 Ne n N 2 

We have seen that the A r „ N 2 system w i l l not fo rm a solvated structure easily 

un t i l we reach very large values of n. This has been rationalised by considering 

the competing interactions of A r - A r and A r - N 2 . To test these arguments we now 

investigate a system where the cage interactions are weaker than those of the cage-

diatom. Since we want to stay wi th in the rare gas-N 2 type of system, the system 

that best suits our needs is the N e „ N 2 system. 

The maximum Ne-Ne interaction is only « 29 c m - 1 , whereas the maximum 

A r - A r interaction is « 99 c m - 1 . The Ne-N 2 potential energy surface is more 

isotropic than that for A r - N 2 , although i t s t i l l has a ' T shaped' min imum. The ' T 

shaped' interaction of Ne-N 2 is much stronger than the Ne-Ne interaction, w i t h a 

well depth of « 50 c m - 1 . Even when the Ne atom interacts linearly w i t h the N 2 , 

9 = 0°, the interaction strength is « 39 c m - 1 , which is greater than the maximum 

Ne-Ne interaction. This should mean that the Ne-N 2 interaction w i l l play a greater 

role in determining the structures of the N e n N 2 that the A r - N 2 interaction d id for 

A r „ N 2 . The Ne-Ne potential [133] that we used (which is of the H F D - B form) is 

V(r)=eV*{x) (5.1) 

113 
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where 

V*(x) = A* exp(-a*x + 0*x2) 

-F{x)j2c2j+,/x^+\ (5.2) 

w i t h 

F(x) = < 
exp 

1 

for x < D 

for x > D 

where 

x - r / r m 

The Ne-N 2 potential [168] is 

V(R,9) = V0(R) + V2(R)P2(cos9) + V4{R) P 4(cos 9), 

(5.3) 

(5.4) 

where the three radial components are related to the potential at the three geome

tries w i t h 9 = 0°, 45° and 90°, and are given by 

V0 = z^z[7V(R, 0°) + 56V(R, 45°) + 42V (R, 90°)], 

V2 = —[25V{R, 0°) + 20V(R, 45°) + 4bV(R, 90°)], 
1U5 

v * = T r d 3 ^ * °°) + & V ( R > 4 5 ° ) + 3 V ( R , 9 0 °) ] -
1U5 

(5.5) 

(5.6) 

(5.7) 

The three potentials V(R,0°), V(R,45°) and V{R,90°) are each generated f r o m 

a Tang-Toennies potential [169], shown below, which incorporates available dis

persion coefficients, and damps the asymptotica dispersion series using a universal 

damping funct ion. This is then added to a simple Born-Mayer repulsion term: 

V{R,9) = A(6)exp[-b{0)R] 
In 

- E i - E 
[b(9)R]k 

x [-b{0)R] 
C2n{9) 

R2n 

n>3 \ fc=0 

The angular dependence of the dispersion coefficients is defined by 

C2n(9) = C2n[l + e2

2nP2(cos9) + e$nP4(cos9) + •••}. 

(5.8) 

(5.9) 
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The isotropic C 2 n and anisotropic 0 2 r | coefficients are obtained f r o m perturbation 

theory. The C 2 n ( 0 ) coefficients for 2n > 10 are calculated f rom the recursion 

relationship, 

C 2 " ^ = ( § ^ | | ) 3 ^ n - e W . ( 5 - 1 0 ) 

5.2 Results of Simulated Annealing for Ne nN2 

5.2.1 NeiN 2 and Ne 2N 2 

Both Ne-N 2 and N e 2 N 2 have the Ne atoms placed equatorially about the N 2 

bond. This is as expected, as the min imum for the Ne-N 2 potential energy surface 

is ' T shaped'. 

Figure 5.1: N e 2 N 2 V 2 ) i structure 

5.2.2 Ne 3N 2 

The global min imum is the same as that found for A r 3 N 2 . I t has the three 

Ne atoms forming a triangle which lies parallel to the N 2 . I n V 3 > 2 though we 

see the first differences between the two rare gas systems. The first low-lying 

min imum has the three atoms lying equatotially about the centre of the N 2 . I n 

this configuration the Ne atoms all interact in a ' T shaped' manner and maximise 

the Ne-N 2 interaction, at the expense of the Ne-Ne interaction. This structure 
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is the first evidence that the Ne atoms might indeed cluster round the N 2 and 

eventually fo rm a icosahedral cage. 

Figure 5.2: N e 3 N 2 V 3 > i structure 

Figure 5.3: N e 3 N 2 V 3 ) 2 structure 

5.2.3 Ne 4N 2 

The V 4 ) i and V 4 ) 2 structures are the same as found the A r 4 N 2 system. The 

global min imum is the envelope structure, and the first low-lying min imum is the 

pyramid structure. The next low-lying min imum, V 4 ) 3 , has the four Ne atoms 
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about the middle of the N 2 bond, and is obviously a continuation of the V^^ 

structure. The four atoms do not fo rm a square about the N 2 , but instead fo rm a 

pentagon structure where the f i f t h atom is missing. This again shows that the Ne-

N 2 interaction plays a greater role in determining the structures and their relative 

ordering in the N e „ N 2 system than the A r - N 2 interaction did i n the A r „ N 2 system. 

Figure 5.4: N e 4 N 2 V 4 i l structure 

Figure 5.5: N e 4 N 2 V 4 ) 2 structure 
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Figure 5.6: N e 4 N 2 V 4 > 3 structure 

5.2.4 Ne 5N 2 

The structures found for N e 5 N 2 are the same as those found for the A r 5 N 2 

system, i.e. a pyramid w i t h four atoms in the base, a capped part-formed pentagon, 

a capped envelope and a capped V 4 ) i structure. They also have the same energetic 

ordering as for A r 5 N 2 . We do not see a pentagon structure encasing the nitrogen 

molecule, as might have been expected, because the Ne atoms would have to be 

too close to the N 2 to be at their equilibrium distance f rom one another. 

A-
Figure 5.7: N e 5 N 2 V 5 ) i structure 
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Figure 5.8: N e 5 N 2 structure 

Figure 5.9: N e 5 N 2 V 5 ) 3 structure 

Figure 5.10: N e 5 N 2 V 5 j 4 structure 
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5.2.5 Ne 6N 2 

The global min imum is a capped pentagon structure, w i t h the N 2 s i t t ing un

der the pentagon. The first low-lying min imum is a bicapped envelope structure. 

The next four structures are capped versions of the same basic capped part-formed 

pentagon V 5 i 2 structure. The capping atoms then either sit above or below the 

basic structure. In both cases the capping atom can sit at the back, or the adjacent 

side face of the basic Ne structure. The ordering of the V 6 ) 2 and V 6 ) i structures 

has swapped between the A r 6 N 2 and N e 6 N 2 systems. This is again due to greater 

dominance of the Ne-N 2 interaction, which decreases the stabil i ty of the bipyra-

midal structure. The higher-energy structures, V6,3 and Ve,4, are those where the 

Ne atom sits level w i t h the N 2 , because the Ne-N 2 interaction is stronger than the 

Ne-Ne interaction. In the V 6 ,4 structure the N 2 molecule has rotated round so that 

i t avoids interacting in a linear manner w i t h the sixth atom. I t is worth noting that 

the bi-capped pyramid V 6 > 6 structure of A r 6 N 2 is now outside the energy range of 

interest, because of the weaker rare gas-rare gas interactions. 

Figure 5.11: N e 6 N 2 V 6 ) i structure 
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Figure 5.12: N e 6 N 2 V 6 j 2 structure 

ft' 
Figure 5.13: N e 6 N 2 V 6 3 structure 

Figure 5.14: N e 6 N 2 V6,4 structure 
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4& 
Figure 5.15: N e 6 N 2 V6,5 structure 

Figure 5.16: N e 6 N 2 V 6 ,6 structure 

5.2.6 Ne 7N 2 

The V7,! and V 7 j 2 structures are capped versions of the V 6 ) 1 and V6, 2 struc

tures respectively. I n both cases the capping atom lies below the cage structure 

and interacts w i t h the N 2 . This is in marked contrast to the A r 7 N 2 system where 

both the Vjti and V 7 > 2 structures are capped bipyramidal structures. The next 

low-lying structure is something that we do not at all see i n the A r n N 2 system. I t 
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is a part-formed icosahedral cage. I t is possible to argued that the V 7 ) i structure 

could be described as a part-formed icosahedral cage. This is not untrue, but the 

V 7 3 structure has two Ne atoms lying next to the N 2 and w i t h a 6 value close to 

90°. I n this sense the V 7 i 3 structure is a cage structure, whereas the V 7 s i structure 

is a Ne cluster s i t t ing on top of the N 2 . The V 7 i 4 and V 7 ! 5 structures are based on 

the same A r 6 sub-units as V 7 ) i and V 7 i 2 , but w i t h the Ne atoms that interacted 

w i t h the N 2 now capping the basic Ne pentagon structure. These last two struc

tures are the same as the V 7 ) 2 and V 7 ) 4 structures for the A r 7 N 2 system. The fact 

that they are now less stable is due entirely to the weaker cage interactions. 

More generally i t can be seen that al l the N e 7 N 2 structures show the dom

inance of the Ne-N 2 interaction over that of the Ne-Ne interaction. One of the 

clearest examples of this may be seen by comparing the V 7 ) 3 structures of the two 

rare gas-N 2 systems. Both structures are less symmetric and less t igh t ly packed 

than their neighbouring structures ( V 7 2 and V 7 ; 4 ) . Both owe their relatively high 

stabil i ty to the dominance of one of the interactions. In the A r system the strong 

rare gas-rare gas interaction allows the A r atom to attach to the side of the square 

pyramid structure. This clearly shows that the A r - A r interaction dominates the 

large A r „ N 2 systems. In the Ne system the opposite is true, and i t is the rare 

gas-N 2 interaction that is the dominant interaction. This is maximised in the 

part-formed cage and leads to the relatively high stability of the cage structure for 

N e 7 N 2 . 
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Figure 5.17: N e 7 N 2 V 7 i structure 

Figure 5.18: N e 7 N 2 V 7 2 structure 
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Figure 5.19: N e 7 N 2 V 7 i 3 structure 

Figure 5.20: N e 7 N 2 V 7 > 4 structure 

5.2.7 Ne 8N 2 

The global min imum for N e 8 N 2 is a part-formed icosahedral cage. This is a 

fascinating reversal f r o m the A r 8 N 2 system. The N e 8 N 2 system has a part-formed 

icosahedral cage as its global min imum even earlier that the A r „ H F system. This 

structure was the V 8 , 5 structure for the A r 8 N 2 system. The first low-lying min imum 

is a part-formed pure rare gas structure, which was the global min imum for the 

A r 8 N 2 system. Again wi th these first two structures we see that the weaker Ne-Ne 

interaction produces to very different behaviour. The V 8 ) 3 structure illustrates 

this point very clearly. I t is another part-formed icosahedral structure, but this 
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time the two lowest atoms of the cage sit on either side of the N 2 instead of being 

adjacent to each other, as in the global minimum. This structure was not found at 

all in the A r 8 N 2 system, as the rare gas-N2 angle is not 90° and therefore the two Ar 

atoms prefer to sit next to each other. In the Ne„N 2 system though the relatively 

high strength of the Ne-N 2 interaction compared to the Ne-Ne interaction means 

that this structure is not only found, but is relatively stable. The V 8 ) 4 structure 

has two atoms capping adjacent sides of the V 6 i i (capped pentagon) structure. 

This was the V 8 i 4 structure in the A r 8 N 2 system, and was more stable than the 

part-formed icosahedral cage. 

Al l of the above structures have shown that the weaker Ne-Ne interaction 

leads to cages being formed around the N 2 , as the global minimum or a low-lying 

structure. I t is also becoming clear that as n increases the structure of the global 

minimum and the low-lying minima are becoming more and more dominated by 

the Ne-N 2 interaction. In the Ar„N 2 systems as n increases the structures were 

dominated by the Ar-Ar interaction. As a result of this the two systems become 

more and more dissimilar. A very good example of the divergence of the two rare 

gas systems is given by the V 8 ; 2 and V 8 ) 3 structures of A r 8 N 2 , which are both within 

2 c m - 1 of the global minimum. Yet in the Ne 8 N 2 system these two structures are 

found to be very unstable. They were only stable in the A r 8 N 2 system because of 

the dominance of the Ar-Ar interaction. 

Figure 5.21: Ne 8 N 2 V 8 ) i structure 



Figure 5.22: Ne 8 N 2 V 8 2 structure 

Figure 5.23: Ne 8 N 2 V 8 > 3 structure 
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Figure 5.24: Ne 8 N 2 V 8,4 structure 

5.2.8 Ne 9N 2 

The global minimum is the part-formed icosahedral cage, and follows from 

the V 8 , i and V 7 ) 3 structures. The first low-lying minimum has one of the three 

Ne atoms in the bottom part of icosahedral V 9 i i structure on the opposite side of 

the N 2 . We did not find the V 9 > 2 structure in our search of the A r 9 N 2 system, as 

i t maximises the rare gas-N2 interactions at the expense of the rare gas-rare gas 

interaction. The V 9 ) 3 structure has the V 6 , i , capped pentagon structure, capped 

by the remaining three Ne atoms. This is a structure we considered as a global 

minimum for the A r 9 N 2 system, but saw that the large Ar-Ar interaction did not 

favour i t . 

The remaining structures for Ne 9 N 2 are complicated. They are basically 

capped versions of the three structures so far described, where one of the Ne 

atoms is removed and used as the capping atom. There are thus many structures 

that are similar in energy and i t becomes difficult to be certain that no minima 

have been missed. We have found the basic structures of the system and all 

the complications reveal little more about the forces shaping the system. Such 
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complications occur in all systems, with six or more rare gas atoms, that I have 

studied, but in other systems the complications did not show up so early. There 

are usually four to six basic structures, which I will discuss for each system. These 

are followed by capped derivatives of the basic structures. In general I do not 

discuss the capped structures because there are many variants, so that i t is easy 

to miss a structure. The capped structures are also in general less stable that the 

none capped structures. I do however try to find most of the capped structures, 

in order to understand the system fully, and to prevent an alternative structure 

being missed. 

Figure 5.25: Ne 9 N 2 V 9 ) i structure 
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0T\ 
Figure 5.26: Ne 9 N 2 V 9 2 structure 

# 
Figure 5.27: Ne 9 N 2 V 9 ) 3 structure 
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5.2.9 Nei 0 N 2 

The global minimum for NeioN2 is a part-formed icosahedral cage following 

on from the V 8 i i and V 9 i i structures. The Vi 0 ,2 structure is a part-formed pure 

rare gas cage, with the N 2 sitting under the cage. This structure was a surprise, 

as we have not seen much evidence for this type of structure and its derivatives 

in the Ne 8 N 2 or Ne 9 N 2 systems. Its presence shows that even though the Ne-N 2 

interaction is the dominant one, there is still an determined interplay and balancing 

of the rare gas-N2 and rare gas-rare gas interactions. The Vio,3 structure has the 

V 6 ) i capped pentagon structure with three Ne atoms capping adjacent faces of the 

Ne 6 substructures; the 10th Ne atom capping sitting above the three atoms in 

the upper ring of the structure, and directly above the top atom in the pentagon 

substructure. The Vio,4 structure is like the Vio,3 structure, except that all four 

capping atoms cap the Ne6 substructure. The N e 1 0 N 2 system is much more like the 

A r 1 0 N 2 system than we would have expected from the smaller Ne„N 2 systems. In 

stark contrast to the Ne 8 N 2 and Ne 9 N 2 systems, which had both different structures 

and relative ordering of the structures to Ar„N 2 , the NeioN 2 system (except for 

Vio,i) has not only the same structures but also the same ordering of structures. 

Figure 5.28: Ne 1 0 N 2 Vio,i structure 
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0^ 
Figure 5.29: Ne i 0 N 2 V i 0 2 structure 

Figure 5.30: Ne i 0 N 2 V i 0 ) 3 structure 
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Figure 5.31: Ne i 0 N 2 Vi 0 ,4 structure 

5.2.10 N e n N 2 

The global minimum for the NenN 2 system is the pure rare gas Nei 2 struc

ture, with the N 2 sitting underneath i t . Unlike the A r n N 2 system there are not 

two versions of the pure rare gas structure, one with i t pointing along the structure 

and the other with the N 2 pointing across the structure. This means that when 

the N 2 is lying across the bottom of the neon structure in the NenN 2 system it 

can rotate to lie along the structure without having to climb out of a well. This is 

probably due to the lower anisotropy of the Ne-N 2 potential energy surface. 

This difference between the two rare gas-molecule systems may be an un-

physical artefact of the Ne-N 2 potential energy surface. The Ne-N 2 [168] potential 

energy surface is considerable older than that the A r - N 2 [164]. The Ne-N 2 po

tential energy surface did give a reasonable fi t to all the available experimental 

data, and is still used widely in calculations of various properties (such as second 

virial coefficients and total differential scattering cross sections). The A r - N 2 sur

face by contrast has recently been re-investigated. The main feature of the new 

work on the A r - N 2 interaction has been to make the potential energy surface more 
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anisotropic. This may explain why the A r n N 2 system has a second stable position 

for the N 2 underneath the rare gas cluster, while one is not found in the NenN 2 

system. 

The V n ; 2 structure is the Vio,4 structure with an extra atom above the upper 

ring of atoms, and directly above the top atom of the pentagonal pyramid. The 

V n i 3 structure is also based on the V i 0 ) 4 structure, but this time the last Ne atom 

occupies the last free capping position on the side of the pentagon substructure. 

The V n ) 4 structure is the part-formed icosahedral structure. 

The question now is why has N e n N 2 suddenly (for n > 10) started behaving 

like A r n N 2 system, and will this trend continue? I have called the V 8 , i , V 9 ) i , V i 0 , i 

and V n ^ structures icosahedral cages, which they indeed are, but they are subtly 

different from the icosahedral cages of the Ar„N 2 system. The icosahedral cages 

of the Ar„N 2 systems have the atoms in the bottom ring below the N 2 , whereas in 

the Ne„N 2 system the atoms in the bottom ring lie around the N 2 . This gives us 

our first clue as to why the Ne„N 2 system has had its apparent change of mind. 

The equilibrium distance for the Ar-Ar pair potential is 3.759 A; whereas the Ne-

Ne equilibrium is 3.091 A. The distance between the top and bottom rings in 

the two cages are 3.8518 A for the Ar cage, and 3.040-3.169 A for the Ne cage. 

Thus in both cases the atoms in the two rings are separated by approximately 

their equilibrium distance. However in the Ne cage the bottom ring has to expand 

to sit around the N 2 at the Ne-N 2 equilibrium distance. This expansion means 

that the interparticle distance, ranging from 3.25-4.38 A in the lower ring, is large 

compared with the Ne-Ne equilibrium distances. In the Ar cages the interparticle 

distance in the lower ring is approximately 4.02 A, which is relatively close to 

the equilibrium distance of Ar-Ar interaction. The extremely large interparticle 

distance in the lower ring compared to the equilibrium distance for the Ne-Ne 

cages would normally lead to a highly unfavoured ring structure, but the fact that 

all five atoms can interact in a 'T shaped' configuration with N 2 stabilises the 

structure. The fact that the Ne-Ne interaction is too short range means that even 

though the Ne-N 2 interaction is dominant, the structures that would maximise 
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that interaction, the icosahedral cage and its derivatives, can not be easily formed. 

While i t is possible to form a distorted icosahedral cage or a capped version of the 

V i 0 ) i structure neither of these structures are energetically favourable compared to 

those that which allow the rare gas-rare gas interaction to be maximised while still 

allowing the N 2 to interact with five of the Ne atoms. We therefore see the rare 

gas-rare gas interaction determining the structures n > 10 instead of the stronger 

rare gas-N2 interactions. 

Figure 5.32: Ne X iN 2 V i M structure 
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% 
Figure 5.33: NenN 2 V n 2 structure 

Figure 5.34: N e u N 2 V n ^ structure 
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Figure 5.35: N e u N 2 V n ^ structure 

5.2.11 Nei 2 N 2 

The global minimum for the Ne i 2 N 2 system is a pure rare gas cage, with 

the N 2 sitting underneath i t . This is the same as the A r i 2 N 2 global minimum, 

and is a continuation from the NenN 2 global minimum. The V i 2 ) 2 structure is a 

continuation of the V n ) 5 structure. I t is an irregular cage, with six atoms in the 

lower ring around the middle of the N 2 . We do not find a distorted icosahedral 

cage because the bottom capping atom would be too far from the Ne atoms in the 

lower ring of the icosahedral cage if it was to be at its equilibrium distance from 

the N 2 . The six atoms in the lower ring are packed closer to each other than those 

in the V n ^ structure, with interparticle distance ranging from 3.08-4.31 A. This 

however is not unfavoured in the Ne„N 2 system with its short-range rare gas-rare 

gas interactions. The V i 2 ) 3 structure is a V n ^ structure with the last Ne atom 

lying below the cage, where it interacts in an almost 'T shaped' which allows the 

Ne atom to interact favourably with the cage structure above. 

The V i 2 ) 4 structure is very interesting, and unexpected structure to find. Its 

relatively high stability is again due to the strong Ne-N 2 interaction that i t helps 
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to maximise. I t is actually the Vio,i structure, the last cage structure to be a 

global minimum, with two capping atoms. The first capping neon atom caps one 

of the top faces on the incomplete side of the cage part-formed icosahedral cage 

structure, while the second one lies directly below the first capping atom and 

interacts strongly with the N 2 . This causes the top five membered ring of the 

part-formed icosahedral cage to distort so as to maximise the Ne-N 2 interaction. 

Many capped V i 0 , i structures were found but their energies were outside our range 

of interest, and therefore I will not mention them here. There is only one version 

of the Vi 2 > 4 structure however, because it relies on the lower of the two capping 

atoms being able to interact with the N 2 . This means that the lower capping atom 

must be placed on the open side of the part-formed cage structure, and the Ne 

atom capping the top of the structure must be directly above the first capping 

atom. There are only two possible sites on the V i 0 , i structure where this is true, 

and the two are equivalent. There is therefore only one structure of interest. This 

structure very clearly illustrates how the Ne-N 2 interaction still dominates the 

system, even though the global minimum is not a cage structure. I f the two Ne 

atoms are placed on the side of the cage adjacent to each other the energy of the 

structure is 1285.129 c m - 1 which is outside of the energy range we are interested 

in. Again this show the stabilising effect of the Ne-N 2 on the V i 2 ) 4 . 

The Vi2,5 structure is like the V i 2 i 3 structure except that the 12th atom 

now interacts with the N 2 in a linear configuration, rather than in a 'T shaped' 

manner. I t is therefore energetically less stable. We then find all the capped V n ^ 

structures, where the capping atom interacts with the Nen cage rather than the 

N 2 . This makes these structures less energetically favoured than the Vi 2 > 3 and 

Vi2,5 structures, again showing the dominance of the Ne-N 2 interaction over the 

Ne-Ne interaction. As was discussed in the A r i 2 N 2 system there are seven capping 

sits for the V n ^ structure. They are very close in energy and therefore probable 

interchangeable in reality. 
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Figure 5.36: Ne i 2 N 2 V i 2 1 structure 

Figure 5.37: Ne i 2 N 2 V i 2 i 2 structure 
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Figure 5.38: Ne i 2 N 2 V i 2 ) 3 structure 

Figure 5.39: N e i 2 N 2 V i 2 ) 4 structure 
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Figure 5.40: Ne i 2 N 2 V i 2 5 structure 

5.2.12 Ne n N 2 where n > 12 

The question that we now need to ask is when does the Ne„N 2 system have a 

complete cage structure as the global minimum? At the moment we can use simu

lated annealing to search the potential energy surface for systems u p t o n = 12 — 14 

before it becomes practically impossible, because of the amount of computer time 

required. For example, a typical Ne i 2 N 2 run took approximately 600 minutes of 

CPU time on one Silicon Graphics R10000. That is for just one simulated anneal

ing run. To be confident that the complete active space of the potential energy 

surface has been covered usually requires between twenty and thirty simulated an

nealing runs for different starting positions. The number of simulated annealing 

runs increases as the number of atoms increases. Figure 5.41 shows a plot of the 

CPU time taken for each simulated annealing run against n. The graph clearly 

shows that using simulated annealing to search a surface limits the size of system 

that can be studied. The increase in the time taken each search as n increases 

makes searches of larger (n > 14) unlikely for the foreseeable future. 



The Ne n N 2 system 142 

I t is possible to reduce the scaling of the problem, using physical understand

ing of what constitutes a good structure. Starting all searches f rom physically 

reasonable places on the potential energy surface reduces the chance of being 

trapped in a local min imum. This allows the simulated annealing algori thm to 

spend most of its t ime searching the parameter space of interest, and can make 

a very significant reduction to the time need for a simulated annealing run. As 

the value of n increases i t becomes increasingly important to select the starting 

point for each simulated annealing run carefully. I t is possible save as much as 100 

to 150 minutes by choosing the starting points for the simulated annealing runs 

well. This of course biases the search, as some structures are effectively eliminated 

because the simulated annealing search simply cannot reach them. Using more 

'selective' simulated annealing searches i t may be possible in the near future to 

study some of the larger systems that are at the moment not possible. 
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Figure 5.41: Plot CPU time vs. number of Ne atoms in the cluster 

The problems above mean that i t is diff icul t to push the simulated annealing 
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technique to search for the first cage-like global minimum. A t this point we need to 

bring our understanding of the system into play. Instead of searching the potential 

energy surface for a global min imum and low-lying minima, we can use our physical 

insight to decide on the most likely first cage structure. Having done this we can 

use a gradient based minimisation technique to relax the structure to its lowest-

energy configuration. This is not a search technique, as we sample only sampling a 

few points on the potential energy surface. I t is however a way of testing ideas for 

possible structures, which can show i f we are on the right track. We can bui ld both 

a cage structure and some form of multicapped pure Nei2 structure. We can then 

relax both of them to their local minimum, and find out which of the local min ima 

is the lower in energy. I f the capped structure is the lower energy structure, we 

have a valuable answer for that value of n. I f the reverse is true and we find that 

the cage structure is the lower of the two minima, the next question is wether the 

non-cage structure is the lowest-energy such structure available. We have assumed 

that we understand the dr iving forces of the system well enough to be able to make 

'good' guess at the structures. This can be a dangerous assumption to make, as 

we have seen in the rare gas-N 2 system. For instance we did not expect to find the 

pure rare gas cluster for the global min imum of the Nex2N2 system, on the basis 

of the N e i 0 N 2 results. 

We have seen that the Ne-N 2 interaction dominates the Ne-Ne interaction, 

although the relatively short range of the Ne-Ne interaction means that we do 

not f ind the icosahedral cage structure to be the global min imum for the N e i 2 N 2 

system. Yet al l indications f rom our studies on the N e „ N 2 system lead us to expect 

a cage structure of some description to be formed as soon as is possible. Even in 

the N e i 2 N 2 the first low-lying minima is an open cage structure, thus showing the 

system prevalence for forming cage structures. 

We do not know what sort of cage system w i l l be formed for N e n N 2 . I f i t is to 

be more stable than a structure which maximises the rare gas-rare gas interactions, 

such as some fo rm of capped pure N e i 2 structure, i t must have the Ne-Ne pairs close 

to their pair potential equilibrium distance. The most obvious cage structure that 
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w i l l encase the N2 and s t i l l allow the Ne atoms to stay at their equil ibrium distance 

is a tube-like cage, which has a second capped pentagon ( V 6 ) 1 ) structure s i t t ing 

underneath the part-formed icosahedral structure. There are two candidates for 

the part-formed cage onto which we w i l l attach the capped pentagon structure. 

They are the eleven atom part-formed icosahedral cage structure, V n i 4 , and the 

twelve atom cage structure ( V i 2 i 2 ) w i t h six Ne atoms in the base. Both of these 

structures are likely candidates and so both were tested. 

We also need a likely candidate to compete w i t h the cage structures. This of 

course is very tricky, as we have already said that i t is d i f f icul t to predict how a 

system w i l l change as n increases. We have seen that in general the more symmetric 

a structure is, the more stable i t w i l l be. Although this is not always true, as was 

shown by the V124 structure, i t is a good rule of thumb. I t seems likely that the 

most stable non-cage structure for the N e i 7 _ i 8 N 2 system is likely to be based on 

the pure N e i 2 structure. The remaining atoms can then either sit around the top or 

middle of the N e i 2 structure, or sit underneath the structure and interact w i t h the 

N 2 i n a ' T shaped' manner. This is where we have to look at the systems we have 

studied and make an educated guess at the most likely structure. Through out 

our study of the N e „ N 2 system, we consistently found that the Ne-N 2 interaction 

is dominant. I t thus seems reasonable to assume that the most stable place for the 

Ne atoms to sit is underneath the pure N e i 2 structure, and around the middle of 

the N 2 bond. Again we can put the five or six atoms in the ring, and again both 

possibilities seem feasible f rom our experience so far. I n the N e i 7 N 2 system we 

can only have five Ne atoms in the lower ring, but in the Nei8N 2 system we could 

have five atoms in the ring around the N 2 and the last Ne atom capping one of 

the faces of the neon structure; alternatively we could have six atoms in the r ing 

around the middle of the N 2 molecule. Both of the these structures seem possible 

and so we tested both. 

The results are very interesting. In both Ne iyN 2 and N e i 8 N 2 the lowest energy 

structure is that of the cage. In both cases the energy difference is approximately 

60 c m - 1 . This compares w i t h an energy difference of approximately 68 c m - 1 
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in the N e i 2 N 2 , in favour of the pure rare gas structure. The fact that the cage 

structure is so much more energetically stable than the structures based on pure 

rare gas clusters is very significant. I f the energy difference had been small, i.e. 

less than 10 c m - 1 , then there would have been some doubt as to whether or not 

the cage structure was the global minimum. I t would be diff icul t to argue that 

there was l i t t l e chance of finding an alternative non-cage structure which could 

make up the energy difference. However w i t h such a large energy difference we 

th ink that i t is unlikely that there is a structure for either Nei7N 2 or NeigN 2 that 

w i l l be more stable than the cage structure. I t therefore seems likely that i n the 

N e n N 2 system the global minima for n > 17 are going to be cage structures. 

Figure 5.42: N e i 7 N 2 V ^ i structure 
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V, 

Figure 5.43: N e i 7 N 2 V i 7 2 structure 

Figure 5.44: N e 1 8 N 2 V 1 8 , i structure 
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Figure 5.45: N e i 8 N 2 V i 8 2 structure 

Figure 5.46: N e i 8 N 2 Vis,3 structure 
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5.3 Conclusions 

We started the work on N e „ N 2 in order to gain fur ther insight into the 

interplay between solvent-solvent and solvent-solute interactions, and their effect 

on the structures found. In N e „ N 2 we chose a system where the strength of the 

solvent-solvent interactions is less than that of the solvent-solute interactions, to 

allow comparisons w i t h A r n N 2 . 

The N e „ N 2 systems for n < 6 have a few new structures in them. These new 

structures all have the neon atoms clustering around the middle of the N 2 bond. 

These structures are similar to those of the early A r n C 0 2 systems [95]. These 

structures are possible because of the strong Ne-N 2 interactions. However there is 

not a five membered r ing around the middle of the N 2 because the short Ne-Ne 

interaction distance makes such a configuration energetically highly unfavourable. 

I n general there were fewer new structures found than in our study of the 

N e „ N 2 system. This was to be expected as N e „ N 2 is much closer in nature to 

A r „ N 2 than A r n N 2 is to A r „ H F . We were more interested in the subtle effect 

that changing the balance between the two types of interaction would have on 

the system. To make a direct comparison of the two sets of results more dif f icul t , 

there was the added complication that the two rare gases have different range of 

interaction. The fact that the neon-neon interaction is shorter than the argon-

argon interaction leads to a strange change in the type of structures found for the 

system as the value of n increases. This leads to a first solvation shell that we would 

not have been predicted for this system, based on our results for n < 10. This is 

a valuable lesson, as i t shows us how the range of an interaction can drastically 

alter the solvation properties. 

The effect of the range of an interaction has recently seen by Nesbitt et 

al. in the A r „ H C l system [91]. The A r n H C l however showed completely different 

behaviour to A r „ H F . Instead of having a first solvation shell at n — 12 the A r 1 2 H C l 

global min imum has the argon atoms forming a pure rare gas cluster, and the HC1 

'point ing ' at the five-atom-base of the argon cluster. This behaviour looks very 

strange at first because the A r - H F and A r - H C l potential both have deep anisotropic 
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min ima about the linear A r - H - X configuration, and as such i t would have been 

predicted that the two systems would behave in a very similar manner. Wha t 

causes the two systems to behave so differently is that the equil ibrium distance of 

the A r - H C l interaction is larger than that of A r - H F . This means that i f the HC1 is 

inside the A r cluster the A r atoms have to be further apart, which is energetically 

unfavourable. 

I f A r n N 2 can be crudely classified as a system dominated by the solvent-

solvent interactions, then N e n N 2 is one in which the opposite is true. I n the 

N e „ N 2 system the solvent-solute interaction is dominant. Even though the rare 

gas-molecule interaction is not as anisotropic as the A r - H F interaction the N e „ N 2 

system forms a part-formed icosahedral cage structure very easily. Indeed the 

system has a part-formed icosahedral cage as the global min imum earlier that the 

A r „ H F system. 

The A r „ N 2 and N e „ N 2 systems start to behave very differently for n > 7, 

as the dominance of one of the interactions starts to show through clearly in the 

structures found. I t is not just the fact that Ne7N 2 has a part-formed icosahedral 

cage that is so surprising, but that the higher n systems become so dominated by 

cage structures. The relative weakness of the Ne-Ne interaction means that even 

unsymmetric cages are favoured over more symmetric pure rare gas structures. A 

good example of the N e n N 2 system's propensity to fo rm cages is shown by the V i 2 > 4 

structure. This is a part-formed icosahedral cage, actually the V i 0 > i , structure w i t h 

one of the capping atoms interacting w i t h the N 2 in an a l m o s t ' T shaped' manner. 

This structure is only found in the N e „ N 2 system, as i t requires a relatively strong 

rare gas-molecule interaction to make the structure stable. 

The trend towards cage structures which encase the N 2 molecule makes an 

abrupt halt at n = 11. This was a most unexpected result at the t ime, although 

i t can be rationalised. The fact that the system appears to change its mind over 

the forces determining the structure of the system means that a larger cluster is 

needed to fo rm a complete cage around the N 2 . As has been discussed above we 

have been able to show that the likely global minima for the N e 1 7 N 2 and N e i 8 N 2 
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systems are cage structures, and that this follows the trends of behaviour that we 

saw in the N e „ N 2 systems before the problem of the short interaction distance 

began to effect the structures found. 

The unexpected behaviour of the N e „ N 2 system for n = 11 and 12 is an 

excellent example of the difficulties in simply following a trend in structures when 

t ry ing to find the minima of a potential energy funct ion. For each value of n 

we have a completely new potential energy hypersurface, and although there are 

similarities between the different N e „ N 2 systems, that is a l l . To be sure that the 

global min imum and the other low-lying minima have been found, i t is essential to 

search the surface thoroughly. However, this is not possible for large systems, and 

we are reduced to other method such as those described in the previous section. 

n V„,i / c m " 1 V n , 2 / c m " 1 V „ ) 3 / c m " 1 V n > 4 / c m 1 V„, 5 / c m 1 

2 -129.473 

3 -230.174 -210.203 

4 -340.806 -322.431 -291.320 

5 -446.246 -439.543 -435.015 -418.683 

6 -565.572 -558.084 -557.654 -548.175 

7 -678.896 -667.466 -6650625 -662.247 

8 -803.367 -793.986 -789.689 -785.070 -781.301 

9 -931.327 -917.775 -914.093 

10 -1056.445 -1048.088 -1042.021 -1040.873 

11 -1201.365 -1196.557 -1195.698 -1177.819 

12 -1383.888 -1319.200 -1316.749 -1312.684 -1308.113 

17 -2067.711 -2006.066 

18 -2202.828 -2146.535 -2138.977 

Table 5.1: results for N e n N 2 



Chapter 6 

Three-Body Effects in Rare Gas-Molecule 

Cluster 

6.1 Three-Body Effects 

I n this chapter we w i l l investigate the effects of three-body interactions on the 

two rare gas-molecule systems that we have studied. I n most pervious work on van 

der Waals clusters i t was assumpted that the potential energy counld be calculated 

as a sum of the pairwise interactions [101, 159, 91, 95, 14, 131, 22, 47]. There 

has been much work on the effect of three-body forces on many different systems, 

[13,170,171,131,172,173,174,175,176], but relatively l i t t l e work on their effect in 

rare gas-molecule clusters despite their importance in many physical and chemical 

processes. The lack of investigation is due to two main reasons. Firs t ly the effects 

of three-body forces are notoriously diff icul t to detect by conventional spectroscopic 

techniques, and secondly they present formidable theoretical difficulties. 

In all our studies of rare gas-molecule systems so far we have constructed the 

potential energy surface to be searched by summing the pairwise interactions. The 

potential energy surface was then searched using simulated annealing, and struc

tures were refined using a gradient-based minimisation technique. I n doing this 

we ignored any three-body interactions. These three-body interactions were not 

included, because pairwise interactions account for the major i ty of the interaction 

151 
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energy in van der Waals systems. The small but significant effect of three-body 

interactions was shown by Nesbitt [91] in his work on A r n C 0 2 . He found exper

imentally that in the case of A r 2 C 0 2 , w i th a red shift of 0.89827(27) c m - 1 , the 

three-body contribution to the red shift was 0.042 c m - 1 . While the size of the 

three-body contribution is different for each system the range is typically between 

5 and 15% for rare gas clusters. 

Not only is i t generally valid to assume pairwise addi t iv i ty when considering 

molecular clusters, i t is also a necessary simplification as the three-body potential 

is very expensive to evaluate. I t would be impossible to use simulated annealing, 

at the present time, to search a potential energy surface which included three-

body effects. This is shown quite clearly by the results of the gradient-based 

search routine on the three-body potential energy surface. Starting a gradient-

based minimisation of the N e i 7 _ i 8 N 2 structures on the three-body potential energy 

surfaces clearly shows the problems of searching such surfaces. The N e i 7 _ i 8 N 2 

systems both offer good examples of the problems encountered in searching three-

body surfaces, because the positions used at the start of the minimisat ion are not 

at or very near to a min imum. Because of this, the minimisation for the pairwise 

surface takes approximately ninety steps to find a min imum. I t therefore has to 

calculate the value of the potential energy surface a very large number of times, 

just as the simulated annealing search routine would. I n the case of the pairwise 

additive potential energy surface, the min imum was found in 10-15 minutes. For 

the three-body potential energy surface, the t ime taken to find the same min imum 

f r o m the same starting position was between 100 and 150 minutes. A similar 

scaling could reasonably be expected for a simulated annealing search. Indeed 

the scaling of the t ime taken for a three-body simulated annealing search could 

be even worse, as in simulated annealing the potential energy subroutine is call 

many more times than in a typical gradient-based minimisation routine. As a 

single simulated annealing search of a large cluster, for example A r i 2 N 2 , takes 

seven hundred minutes of CPU time, increasing the t ime by a factor of ten or 

more would make a f u l l search of the system infeasible. 
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The above discussion shows that we w i l l have to use a gradient-based search 

technique to study three-body effects in rare gas-molecule clusters. The problem 

is gradient-based search techniques are highly sensitive to the starting position of 

the search. As the potential energy surface becomes more complicated, gradient-

based search routines becomes more and more sensitive to the choice of start ing 

position. The addit ion of three-body terms to each point in configuration space 

w i l l make the potential energy surface even more complicated, both in terms of 

evaluation and of topology. The energy at any given point in parameter space for 

the pairwise surface is 

whereas the energy at any point of the three-body surface is, 

E ( x ) = 53 ^ R g - R g ^ i , x i ) + 53 Vkg-Mol(^i, x j ) 

+ 53 ^ R g - R g ( X « ' X3i X k ) + 53 ^ R g - M o l ( x » > X3-> Xk)- (6-2) 

The pairwise terms remain dominant. 

Since the three-body surface is more diff icul t to search that the two-body 

surface, the choice of starting position is even more cri t ical . The most logical 

place to start the searches of the three-body surface are the min ima of the pairwise 

potential energy surface, as the pairwise contributions are larger the the three-body 

terms. This assumes that the effect of the three-body terms on the potential does 

not move the minima too far in configuration space, and that the three-body terms 

do not fo rm barriers in configuration space that would trap the search routine and 

stop i t f r o m finding a new minimum. 

The main rare gas-rare gas three-body term and the only one that we consider 

here is the Axilrod-Teller [177] tr iple dipole dispersion interaction, which is of the 

f o r m 

A T / 3 cos dA cos 6 B cos Bc + 1 \ ,_ Q^ 
V U o * = "ABC [ { R A B R B C R C A F ) ( 6 - 3 ) 

Where 9 A, &B a n d 0C are the angles of the triangle formed by the three atoms, and 

RAB, RBC and RCA are the interparticle distance. The values of the coefficients 
VABC for various rare gas systems have been given by Kumar and Meath [178]. 
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The rare gas rare-molecule three-body potential also includes a triple-dipole 

dispersion term [179], and this is the only term considered here. The triple-dipole 

dispersion energy (DDD) for the interaction of three linear E-state molecules, A , 

B and C, is [179] 

D D D _ (1 + 3 cos 9A cos 9B cos 9c)C9(a, b, c) 

^•ab^bc^ac 
x Re[l-r(a)W(6a,<j>a,eA,9B) 

- T(b)W(9b,<j>b,9A,9B) 

- r(c)w(ec,<f>c,6A,eB) 

+ T{a,b)W(9a,(j)a,9b,<pb,9A,9B) 

+ T(a,c)W(6a,<l>a,0c,<j>c,eA,eB) 

+ T{b,c)w(eb,(f>b,ec,(i>c,eA,0B) 

+ r{a,b,c)W(0a,(l>a,eb,<t>b,9c,<l>c,0A,0B)]. (6.5) 

Where angles 9i (i = A, B, C) are as defined in equation 6.3, as are the three 

interparticle distances R A B , RBc and RCA, a n d the angles 9{ and fa (i = a,b,c) 

describe the orientation to the linear molecules. I n the case of the rare gas-molecule 

clusters of interest here we do not have three linear E-state molecules. Instead we 

have two rare gas atoms interacting w i t h linear E-state molecule. I f we arbi t rar i ly 

chose the linear E-state molecule to be the ' C molecule then al l angular terms in 

the Re[- • •] bracket of equation 6.5 that involve the ' A ' or ' B ' molecules w i l l be zero, 

as the rare gas atoms can have no angular dependency. The above considerations 

lead to the following equation for rare gas-rare gas-molecule three-body triple-

dipole dispersion energy, 

(1 + 3 cos 9A cos 9B cos 9c)Cg(a, b, c) 
DDD = 

x Re[l-r{c)W(ec,<i>c,9A,0B)], (6.6) 

where the C 9 (a , b, c) and T(c) coefficients have been calculated by McDowell et al. 

[180]. Using the shorthand ttc for 9C, 4>c, the angular part of equation 6.6 is 

w(nc,9A,9B) = [ Y i i n ^ + y/ep^ + Y^iQc) 
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g 8 + 3V6PW - -j=Pn^ + Y2°(tlc)(Q2) ], 

where l ^ m ( f 2 c ) are spherical harmonics. The Pmi m 2 

PP(cos9B)Pr(cosdA) 

terms are 

m i 7712 

(6.7) 

(6.8) 
(1 + 3 cos 8A cos 9B cos 9c)' 

where P™1{- • •) and P 2

m 2 ( - " ' ) a r e associated Legendre functions. The QK terms in 

equation 6.6 are 

2 4 2 
Q l = 7eP2°' V 6 P n + 76 P ° 2 ' 
g 2 = l -Pn+8Poo , 

0 _V6p +Ve 
6 3 

--POL 

(6.9) 

(6.10) 

(6.11) 
8 10 

7EPw ~ W 
To evaluate the three-body potential, we need to define all the three-atom 

and two atom-molecule interactions over which we want to sum. I n a rare gas cage 

must count every t r iad of rare gas atoms, which w i l l be designated ABC. I f we 

th ink about the number of possible triads that we could fo rm where A ^ B ^ C, 

i n the A r 4 N 2 cluster, the possibilities are shown in table 6.1, where the four argon 

atoms are designated 1, 2, 3 and 4. 

A B C A C 

1 2 3 3 1 2 

1 2 4 3 1 4 

1 3 2 3 2 1 

1 3 4 3 2 4 

1 4 2 3 4 1 

1 4 3 3 4 2 

2 1 3 4 1 2 

2 1 4 4 1 3 

2 3 1 4 2 1 

2 3 4 4 2 3 

2 4 1 4 3 1 

2 4 3 4 3 2 
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However as can be seen f rom table 6.1 most of the possible combinations are 

actually the same three atoms, but assigned to a different atom label (e.g. A, B 

or C). Obviously i f the three-body interaction for atoms 1, 2 and 3 is accounted 

for w i t h A = 1, B = 2 and C = 3, then we have to discount al l other ABC triads 

that contain atoms 1, 2 and 3. I f we keep only the first example of each t r iad 

found then the unique triads left f rom table 6.1 are shown in table 6.1. 

A B C 

1 2 3 

1 2 4 

1 3 4 

2 3 4 

Table 6.1: 

There is an analytical expression for the number of unique combinations of 

objects that can be fo rm fromed a group of objects. These expressions can be 

used to check that we find all possible unique combinations. For a given number 

of atoms n and w i t h r atoms in each combination, the to ta l number of possible 

unique combinations is 

n! 
£171 

T (n — r ) ! r ! 

In the case of three-body interactions, this formula simplifies to 

T ( n - 3 ) ! 3 ! " Which in tu rn simplifies to 

n • (n - 1) • (n - 2) 
Cn

r 

(6.12) 

(6.13) 

(6.14) 

This formula gives the correct number of triads, but i t does not give the actual 

triads. To f ind the triads a subroutine was wri t ten, based on the above discussion. 

To provide the rare gas triads to the rare gas three-body potential routine the 

following algori thm was implemented. The three t r iad members (A B C) were 
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generated by looping over all possibilities of atom combinations, f r o m one to the 

number of rare gas atom in the cluster. This is done by setting up three consecutive 

loops; the first loop is for A, the second for B and the th i rd for C. Af t e r the second 

loop the algori thm checks to see i f A and B are the same. I f they are the same the 

algori thm moves on to cheque the next A and B combination. I f they are not the 

same the th i rd loop is entered, and the algorithm checks to see i f the A = C or 

B = C; i f either of these conditions is true then the algori thm moves onto the next 

value of C i n the loop. I f C / A or B them we have found a possible combination 

of atoms to use as a three-body tr iad, in our calculation. We now must test to 

see i f the combination we have found is unique. The first t r iad to make i t to this 

point is by definit ion unique, and so is automatically stored. A l l subsequent triads 

are then tested, by a subroutine described below, to see whether or not they are 

unique. I f the t r iad is unique then i t is store along w i t h the others so far found, 

and used to test all subsequent triads. 

To test whether a t r iad is unique or not, a second algori thm is used. I n this 

a new t r iad (denoted Anew Bnew C n e w ) is sequentially tested against each of the 

previously stored triads. For each unique triad(denoted ABC) each member is 

tested against each member of the new tr iad, to see whether or not they are the 

same. That is to say to see whether Anew or Bnew or C n e w is the same as A, B 

or C. Every t ime this condition is true a counter, which is zeroed for each unique 

t r iad that is tested, is increased by one, and the three members of the unique t r iad 

are tested against the next member of the new tr iad. I f after all three members 

of the new t r iad have been tested the counter is equal to three the subroutine 

returns to the main program, where the new tr iad is not stored and the next 

possible combination is tried. I f however the counter is not equal to three then 

the next previously accepted t r iad is tested in the same fashion. I f at the end of 

this algori thm a count value of three has not been achieved, meaning that the new 

tr iad is not just a permutation of one of the previously stored unique triads, then 

the subroutine returns to the program and the new t r iad is stored as an accepted 

t r iad . When all possible combinations of A B C have been tr ied, and the unique 
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triads have been determined, the number of accepted triads is checked against 

the analytical expression in equation 6.14. If these two numbers agree with each 

other then the unique triads are passed to the main gradient minimisation routine, 

where they are used to calculate the three-body interaction energy of the rare gas 

cage. Algorithms for the two programs described above is given in the appendix 

of this chapter. 

To calculate the three-body interaction for the rare gas-rare gas-molecule 

interaction we have to find the rare gas-molecule triads. To do this we use the 

same method as in the calculation of the rare gas three-body interaction energy. 

There are however some slight differences. The formula (6.6) for the rare gas-

molecule three-body interaction energy is defined with the molecule as the third 

member of the three-body triad. The subroutine to form the rare gas-molecule 

triads therefore only has to loop over the A and B members of the triads. That is 

to say that it only has to find the unique combinations of the rare gas atoms that 

will interact with the nitrogen molecule. 1 

The analytical expression of the total number of triads in each rare gas„N2 

system, where one member of the triad is fixed, is given by equation 6.12 with 

r = 2, and is given by the following expression 

n' 
Q = (n-2)!2!- ( 6 - 1 5 ) 

This leads to the expression 

C? = n-^- (6.16) 
xThe method just described for the calculation of the rare gas triads can be replaced by a 

simpler method, in which the triads are created by looping over C > B > A. A similar method 
can also be used for the rare gas-molecule triads by looping over C > B, and fixing A. In the 
texted I have described the method we accually used, although in any future work the simpler 
method would, and should, be used. 
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6.2 Results 

6.2.1 A r n N 2 

The result of the reoptimisation of the two-body structures using the three-

body potential energy surface was that no qualitatively new structures were found, 

though the ordering sometimes changes. As the structures have not changed, 

I shall describe the three-body structures in terms of the two-body structures. 

To distinguish between the two potential energy surfaces, any designation of a 

structure from the three-body surface will be shown as V ^ m . So for example if it 

is stated that the V f f 2 structure is the Vi 2 ,7 structure this means that the first 

low-lying minimum of the three-body surface is the sixth low-lying minimum of the 

two-body surface. The fact that no new structures were found was not a surprise, 

as the three-body contribution to the total energy of the system is small. We 

thought that we might see some distortion of the two-body structures, which we 

do find. The distortion are however small. In the Ar„N 2 system the argon-argon 

distances increase by between 0.01 and 0.02 A, while argon-nitrogen distances 

increase by between 0.015 and 0.03 A. In the Ne„N2 system the increases in the 

two distances is smaller: the neon-neon distances increase by between 0.003 and 

0.01 A, while the neon-nitrogen distances increase by between 0.005 and 0.02 A. 

We do however see quite a lot of re-arrangement in the relative ordering of the two-

body structures. In the main this involves a pair of low-lying minima switching 

their relative positions, for example the two-body V 6 , 4 and V 6,5 structure switch 

positions in the three-body systems for both Ar and Ne. The relative ordering 

of the three-body structures compared to the two-body structures is shown in 

table 6.2. The effect of the change in ordering is most noticeable in the A r 1 2 N 2 

structures, where the ordering is completely different. The global minimum is 

unchanged, but the gap to the next low-lying minimum is significantly smaller 

than in the two-body case. The first low-lying minimum is now the icosahedral 

cage structure, which was previously the V i 2 j 7 structure. The full set of changes 

is shown in table 6.2. The reason for the icosahedral cage being so energetically 
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favoured is that it minimises the energetically unfavourable triangular three-body 

Ar-Ar interactions, which are more numerous than the Ar-N2 interactions. The 

A r 1 2 N 2 system rearrages so much because all the structures are so close in energy. 

They are mostly in fact capped Vn^ structures, where the capping atom interacts 

with one face of the structure or with the N 2 molecule. This means the subtle 

effects of the three-body forces show up more clearly in the A r i 2 N 2 system that in 

other Ar„N 2 systems. 

Another effect of including three-body terms is that the energy gap between 

consecutive structures is in general smaller. The reason for this is that the two-

body interactions and the three-body interaction tend to drive the structure in 

different ways. That is to say that the two-body interaction energies are —ve and 

three-body interaction energies are -t-ve for most molecular configurations. It is 

only the fact that the two-body forces are stronger than the three-body forces that 

stops more structures altering their relative positions. 

n V 3 B 

n,l 
V 3 B 

v n,3 
V3„B

4 
V 3 B 

v n,5 
v 3 B

f i 
T n,6 

V 3 B , 
3 V 3 , i 
4 V 4 , i V 4 ) 2 

5 V 5 , i V 5 ; 2 V 5 > 3 V5,4 

6 v 6 l l v 6 > 2 V 6 l 3 V6,5 V6,4 v 6 ) 6 

7 V 7 , i V7,2 V 7 ) 3 V 7 , 4 

8 v 8 ) 1 v 8 ) 2 V 8 > 3 V 8, 4 V 8, 5 

9 v 9 ) i v 9 > 2 V9,3 V9,5 V9,4 

10 Vio,i Vl0,2 Vio,3 Vio,4 

11 Vn,i Vn,2 Vn,3 Vn, 4 V 1 1 > 5 

12 Vi2 , l Vi2,7 Vi2,2 Vi2,4 Vi2,8 V 1 2 ,5 Vi2,6 Vi2,10 Vl2,9 Vl2,3 

Table 6.2: Ar„N2 three-body minimisation results from two-body starting positions 
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n V M (cm"1) V„,2 (cm"1) V„,3 (cm-1) VB,4 (cm"1) V n > 5 (cm"1) V„,6 (cm"1) 
3 -590.961 

4 -889.866 -885.807 

5 -1218.189 -1192.854 -1190.279 -1187.710 

6 -1581.919 -1550.193 -1521.217 -1499.403 -1499.325 -1494.231 
7 -1893.669 -1891.213 -1865.228 -1852.890 

8 -2290.375 -2288.654 -2287.911 -2258.752 -2256.917 
9 -2686.016 -2684.691 -2663.344 -2659.426 -2656.762 

10 -3083.189 -3059.755 -3050.679 -3048.917 
11 -3552.890 -3543.522 -3527.426 -3521.122 -3475.751 
12 -4104.445 -3884.746 -3874.246 -3873.468 3872.793 -3871.621 

Table 6.3: results for three-body Ar„N2 

6.2.2 Ne n N 2 

The results for the three-body Ne„N2 system are shown in table 6.4. Yet 

again we see that the energy differences between consecutive structures is less 

than in the two-body systems. We also find that not only are the structures 

from the two-body searches found, but their ordering relative to each other is the 

virtually the same (see table 6.4. There is in fact only one occasion on which 

the ordering changes. It should also be noted that the Nei 2N 2 system has the 

same ordering of structures as in the two-body case. The reason for the relatively 

small effect of the three-body forces on the Ne„N2 system is that the three-body 

interactions involving neon are so small. So for example the rare gas-rare gas three-

body interaction energy of the V f ^ i structures for the argon and neon systems are 

153.010 c m - 1 and 20.950 cm" 1 respectively. This is a factor of 7.5 difference 

between argon and neon, whereas the ratio of the two-body interactions is a little 

over 3. The ratio of the three-body rare gas-molecule interactions is about five, 

where the two-body ratio is only two. These two facts together mean that the 

three-body forces disturb the Ne„N2 system less than the Ar„N 2 system. 
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n V 3 * 
v n,l 

vg y 3 B v 3 B

4 
v n,4 

v 3 B 

T n,5 
3 V 3 , i V 3 > 2 

4 V 4 , i V4,2 V 4 , 3 

5 V 5 , i V5,2 V5,3 v 5 , 4 

6 V6,! V 6 ) 3 v 6 ) 2 v 6 , 4 V 6, 5 V 6, 6 

7 V 7 ,i v 7 ) 2 V7,3 v 7 , 4 

8 V 8 ,i V 8, 2 v 8 ) 3 v 8 ) 4 V 8, 5 

9 Vg,i V9,2 V 9 l 3 

10 Vio,i Vio,2 Vio,3 Vio,4 

11 Vn,i V 1 1 ) 2 V n > 3 Vn,4 

12 V i 2 > i Vl2,2 Vi2,3 Vi2,4 Vi2,5 

Table 6.4: Ne n N 2 three-body minimisation results from two-body starting posi

tions 

n V n > 1 (cm-1) V n , 2 (cm"1) V„,3 (cm"1) V n > 4 (cm"1) V n > 5 (cm : ) V n , 6 (cm"1) 
3 -227.602 -208.573 

4 -336.172 -318.352 -289.034 

5 -439.715 -433.099 -428.760 -412.852 

6 -556.942 -549.146 -549.139 -540.168 -536.606 -533.265 

7 -688.156 -656.511 -655.251 -651.917 
8 -790.432 -780.260 -777.317 -772.067 -768.275 

9 -915.786 -902.965 -898.224 

10 -1038.399 -1028.675 -1023.090 -1021.818 

11 -1177.621 -1173.423 -1172.429 -1157.250 

12 -1354.969 -1292.562 -1290.965 1289.592 -1282.705 

17 -2026.960 -1965.359 

18 -2159.514 -2103.169 -2095.317 

Table 6.5: results for three-body Ne„N2 
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6.3 Random Move Minimisation(RMM) 

In our studies of three-body forces so far we have always started the gradient-

based search from the starting positions found by the simulated annealing searches 

because, as stated previously, the three-body potential is very expensive to calcu

late. The main problem with this method is that it relies on the same structures 

existing for the global minimum and local minima in the two-body and three-body 

potential energy surfaces. This has however not been demonstrated. In this sec

tion we will attempt to provide some evidence that our assumptions about the 

three-body potential energy surface are valid. 

The question is how can we attempt to explore a surface that is too expensive 

to search with simulated annealing? The surface is far too complicated to be 

search completely with a gradient-based search routine, which is not too expensive 

to use. The number of starting positions that would be required for a complete 

search of the potential energy surface, with a gradient-based search technique, 

would be very large indeed, especially as the number of rare gas atoms in the 

cage increased. This brings us back to the structures found by the simulated 

annealing searches of the two-body potential energy surface, which we believe are 

good starting positions. The problem is that the gradient-based search will not 

be able to leave a potential well, if we start it in one. This is not a problem if we 

are indeed starting our searches in the global minimum or a low-lying minimum 

of the three-body potential energy surface, but we cannot know that this is true. 

There may well be a minimum near the starting position, found by the simulated 

annealing search, that is lower in energy that the starting point, or one of the 

other low-lying minima found by the simulated annealing search of the two-body 

surface. Yet because there is no downhill path connecting the two minima, the 

gradient-based search of the three-body potential energy surface will not find the 

new minimum. So how do we overcome this problem? We have to use a gradient-

based method; and we need to keep the good starting positions found be the 

simulated annealing searches. However we must find some way of not becoming 

trapped in the well around the starting position. 
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One obvious way of searching the three-body potential energy surface is to 

try to alter our simulated annealing search. If we could make the number of steps 

small enough it might be possible to do a limited simulated annealing search of the 

surface. This has some very attractive advantages. Within the limits of the number 

of steps we could take, it would allow us to explore the whole surface. The problem 

however is that, as the size of the clusters increases, the number of steps needed 

increases, and eventually simply becomes too large. As an alternative to doing 

a full simulated annealing search we could just search the local parameter space 

around the previously found minima. This would be a 'quick' simulated annealing 

search. It could be done by using the two-body minima as starting positions, 

setting the number of random steps to be very small (100-1000), and reducing 

the temperature quickly. Again this idea looks promising, as it would certainly 

allow us to escape to local parameter space. The problem with this strategy is 

that it fundamentally will not work with simulated annealing. This is because, 

unlike a gradient-based search where starting close to a minimum increases the 

likelihood of finding the minimum, a simulated annealing search may not find the 

starting minimum, even if it is the global minimum. The reason for this is that a 

simulated annealing search can take large energetically unfavoured steps while the 

simulated temperature is high. This allows it to test a large volume of parameter 

space, but if the system is annealed too quickly, the search can become stuck in an 

energetically unfavoured local minimum. This problem can be solved by making 

the number of random steps between each temperature step large. However this is 

not a practical solution for three-body potential energy surfaces. In general even 

for large searches, such as in the larger two-body clusters, it is not advisable to 

start at a structure which is likely to be a minimum. Instead it is better to start the 

search at a point in configuration space near to the structure of the minimum. We 

can therefore not use the previously found structures as starting points for quick 

simulated annealing searches, nor can we use a full simulated annealing search 

starting from near the previously found structures. 

The way in which we overcame these problems is very simple. As has already 
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been stated we have to use a gradient-based technique, because of the expense 

of evaluating the potential energy surface. We have therefore written a program 

that alters each co-ordinate of the rare gas cluster by a random amount. After 

the co-ordinates of the cluster have been altered a gradient-based search routine 

is used to find the nearest minimum from the new starting position. This search 

routine will be designated RMM. It is similar in philosophy to the quick simulated 

annealing runs that have been suggested, because both searches assume that any 

new minimum will be close to one of the two-body minima and both algorithms 

aim to use a random search of the local parameter space to find the new minimum. 

The co-ordinates from the two-body simulated annealing search are read in 

by the main program. They are then sent to a subroutine 'rand', where each of the 

3n co-ordinates is altered. In the rand subroutine for each of the 3n co-ordinates 

two random numbers (in the range 0-1) are generated. The first random number is 

multiplied by a pre-set factor (called max step) to give the magnitude of the step; 

the second random number is then used to determine the sign (i.e. +ve or -ve) of 

the step. This is done by setting a flag positive if the random number is less than 

a 0.5, or negative if it's a 0.5 or more. The sign of the move is then multiplied by 

the magnitude of the move, and added to the co-ordinate being altered. 

Depending on the size of the random steps, the cluster from the simulated 

annealing searches could be slightly distorted or completely altered. We are not 

interested in just slightly distorting the cluster, as this would almost certainly 

result in the starting structure being found again. We need to alter the starting 

cluster structure sufficiently to give the gradient-based refinement routine a chance 

of finding any low-lying minima that are close by in parameter space. The larger 

the step size the more likely it is that the refinement will not return to the original 

minimum. It is of course possible that it will simply find one of the other previously 

found minima. If however there are other low-lying minima in the three-body 

potential energy surface we might have to question our assumption about the 

three-body potential energy surface. 

The distortions to the two-body simulated annealing structures are by their 
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nature random, so that we have to do more than one search to have any confidence 

in our conclusions. The problem with repeated numbers of RMM runs is that 

because the cage is distorted to such a large extent, each refinement takes 5 to 10 

times longer than the previous three-body minimisations. This means that some 

of the searches on larger clusters take 100 to 150 minutes of CPU time2. We test 

approximately 40 minima for both rare gas-nitrogen systems. We are therefore 

limited by the number of times we can run all the clusters through the RMM 

procedure. 

There is no guarantee that we will find a new minimum from the RMM pro

cedure. It is not a cheap version of simulated annealing. More importantly we 

are still prone to all the problems associated with minimising a very complicated 

TV-dimensional function, with a gradient-based technique. The RMM technique is 

simply the most efficient, and perhaps the only, way of sampling the local config

uration space. If we are correct in our assumption that the three-body forces only 

alter the two-body structures slighty, and that therefore the same structures exist 

for the minima on both the two-body and three-body potential energy surfaces, 

then the starting positions will be the only minima in the local configuration space. 

In effect all we will have done is to start the search on the side of the potential well. 

Alternatively we may have started the search from a plateau, with a downhill path 

to the original minimum. In either case the gradient minimisation routine will 

return to the original minimum. If however the three-body forces fundamentally 

alter the topology of the local parameter space, we should expect to find that a 

significant number of the randomise and minimise searches will fail to return to 

their original minimum. 

In the searches of the three-body potential energy surface we only use the 

first few minima from each Ar„N2 systems as starting points for the gradient-based 

searches of the three-body surface. However, the effects of the three-body forces, 

are subtle and two orders of magnitude smaller than those of the two-body forces. 

They do affect the relative ordering of the low-lying minima and also bring the 

2again on one R10000 
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energy differences between the consecutive clusters down considerably. The effect 

of the three-body forces is not uniform, as the geometry of a structure controls 

the magnitude of the three-body forces. It is therefore possible that a low-lying 

minimum that was not discussed and studied could represent a structure lower 

in energy on the three-body surface than one of the two-body low-lying minima. 

This is especially true for the A r n N 2 and Ne„N2 systems, which have very closely 

space minima compared to the Ar„HF system. 

It is therefore important that we find a way of eliminating this possibility. 

We could simply test all the low-lying minima that we ignore in the search of the 

two-body potential energy surface. This is not a very attractive option, because 

there are a very large number of possible minima that would have to be tested. For 

example in the A r i 2 N 2 system the energy difference between the global minimum 

and the first low-lying minimum is approximately 200 cm - 1 . There are then ten 

low-lying minima within the next 50 c m - 1 of the V i 2 , 2 structure. Since we cannot 

test all the two-body structures, our only left option is to look for evidence of high 

energy minima becoming more energetically favoured. 

6.3.1 Energy-Limited RMM Search 

When we randomly move the cluster atoms we find that most of the changes 

of co-ordinates increase the energy. As the clusters get larger the cumulative effect 

of small increases in the energy due to each co-ordinate change can give the new 

starting position an energy of 103 to 104 cm - 1 . When this happens the search 

routine fails, either because the number of iterative steps exceeds a pre-set value 

or the search routine cannot find its way back to the region of interest. The reason 

for these large energies is that, in the random move process, two or more rare gas 

atoms are moved too close each other, or one or more rare gas atom is moved to 

close too the N 2 . When this happens the two-body energy is large and positive. 

This sort of search behaviour does not tell us anything useful about the three-body 

potential energy surface. We need to restrict the structures to the volume of local 

configuration space where low-lying minima are likely to be found, and away from 
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repulsive regions of configuration space which may be difficult to leave. To do 

this we simply added an extra condition in to the random move subroutine. The 

condition prevents any random move for making the total energy of the system 

larger than a preset value, in our case 1000 cm - 1 . 

This method of limiting the maximum energy of the cluster could also lead 

to problems. In particular there is the possibility that the alteration of one co

ordinate could lead to an increase in the energy to almost 1000 cm - 1 , and that 

all subsequent moves will be small. This particular problem seems not to be a 

practical problem however. This is because in general the moves that are accepted 

do not push the total energy of the system to 1000 c m - 1 in one go, and moves 

can also decrease the total energy of the system. We could have eliminated this 

problem by setting a maximum change to the energy for any given change in the 

co-ordinates. This method of limiting the total energy was not used because it 

would not be possible to allow a large enough change in any one co-ordinate to 

successfully sample the local configuration space, while at the same time preventing 

the total energy becoming to large. 

6.4 Results obtained from RMM for A r n N 2 

For both the argon and the neon clusters a RMM search was done with a 

small step size of 0.2 A. These tests were not to search for other nearby minima, 

unlike the RMM searches with larger maximum step sizes. The point of these 

searches was to give the two-body structures 'a bit of a jiggle' before the two-body 

structures were minimised. This would prevent the search routine from not finding 

the minimum value of each minimum due to the minimisation routine being started 

to close to the minimum. This can be thought of as a pseudo-annealing process. 

As can been seen from figures 6.6 and 6.12 these two searches confirm that we 

have indeed found the bottom of the well in all our minimisations of the two-body 

structures. 

For the Ar„N 2 system the RMM search results with a maximum step size of 



Three-Body Effects in Rare Gas-Molecule Cluster 169 

| A were slightly surprising because so many searches fail, whereas in the Ne„N2 

system the same step size was found to be much more successful. We found that 

if the step size was reduced to | A then the searches were much more successful 

at re-finding the original minimum. This is due to two factors. The first is that in 

Ar„N 2 the Ar-Ar interaction is dominant, whereas in Ne„N2 it is the Ne-N2 inter

action that dominates. The second factor is that the N 2 molecule does not move 

during the minimisation process, so that the maximum change in the rare gas-rare 

gas interaction distance is greater than that of the rare gas-molecule interaction 

distance. These two facts combined mean that the argon clusters are more likely 

to move to a region of high energy in comfiguration space, and the searches are 

therefore more likely to fail. 

Another interesting point to notice about the energy-limited searches is that 

with the largest maximum step size (max step =1.5 A) we start to see the searches 

finding other minima. These other minima are not new structures, but structure 

previously found in our searches of the two-body surface. What is happening is the 

random moving of atoms places the starting configuration for the search outside 

the valley that leads to the original minimum. The fact that the searches still 

only find previously found minima is a good indication that there are no low-lying 

minima nearby that we have missed. Indeed that we have to take such a large 

maximum step size to leave the local region of each minimum is a clear indication 

that we have the most stable structure for the three-body surface. 

One type of result that has not been mentioned so far is that the search 

sometimes finds the original starting structure, but does not find its exact energy. 

The reason for this is unclear. It is probably caused by the starting position being 

too far from the bottom of the well. This causes the search routine to minimise 

along an unusual path, so that its convergence criteria are met before it has found 

the absolute minimum. This problem is more likely to happen in searches of 

the surface where the addition of extra terms to the potential function make the 

surface more complicated. If the structure's co-ordinates were to be moved by a 

small amount and the resulting structure minimised the exact minimum energy 
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would be found. These results have been marked as having failed, but to separate 

them from the straightforward failures they are marked by a star '*' in the results 

tables. 

We sometimes find that the cluster has been so distorted that the search 

routine passes its maximum number of iterations, and the search is terminated. 

Sometimes when this happens the search is near the original starting minimum, 

on other occasions the search is nowhere near the original minimum. To reduce 

the likelihood of this type of result we doubled (500 —> 1000) the number of iter

ations allowed for each search. For searches that were near the original minima 

at five hundred iterations this was successful. For some searches however even 

1000 iterations is not enough. It is not practical to increase the maximum num

ber of interaction much beyond 1000 because of the time taken to complete each 

search, especially considering that there are 40 searches to be carried out for each 

maximum step size. 

n V„,i V„,2 V„,3 V„,4 V„,5 V„,6 

3 V 
4 V V 
5 V V V V 
6 V V V V X * V 
7 V V V V 
8 V V V V V 
9 V V V V V 
10 V V V V 
11 y/ V V V 
12 V V V V V 

Table 6.6: A r n N 2 random move results(A = 0.2 A) 
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n V«,i V„,2 V„,3 V„> 4 V„,5 V„,6 

3 V 
4 V V 
5 V V V V 
6 V V X X V V 
7 V V X * V 
8 X X * X * V V 
9 V V V V V 
10 V X V V 
11 V V V V 
12 V V V V V 

Table 6.7: A r n N 2 random move results(A = 0.5 A) 

n V»,i V„,2 V„,3 V„ ) 4 V„ ) 5 V n > 6 

3 V 
4 X V 
5 V V v 7 

6 V V X X X X 

7 V V X 

8 X X X X X X 

9 V X V X V 
10 V X X X 

11 X X V 
12 V V V y/ X X 

Table 6.8: Ar„N2 random move results(A = | A) 
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n V„,i V„,2 V„,3 V„,4 V n , 5 
V„,6 

3 V 
4 V V 
5 V V V 
6 V V v 6 , 3 V V X * 

7 V V V V 
8 V X* V X V 
9 V X X 

10 V X X X 

11 V X X X X 

12 V X V X X 

Table 6.9: Ar„N 2 random move results(A = | A ) , E m a x = 1000 c m - 1 

n V n > 1 V„,2 v„, 3 v„ ) 4 v„ ) 5 V„,6 

3 V 
4 V V 
5 V V V V 5 ) 3 

6 V V X* V X * X * 

7 V V X* V 
8 V X X V X 

9 X X V X X 

10 X X V V 
11 V v l u V V V 
12 V V V V V 

Table 6.10: Ar„N2 random move results(A = 1 A ) , E m a x = 1000 cm 1 
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n Vn,l V„, 2 V„, 3 V„, 4 V„ ) 5 
V„, 6 

3 V 
4 X * V 
5 V 5,2 V V V 
6 V 6 > 3 V V 6 l i V X V 6 ) i 

7 X V V V 
8 V X X V X 

9 X X * x/ X X 

10 X VlO,! X 

11 V V X X V 
12 V V Vi2,l Vi2,l Vi2, l 

Table 6.11: Ar„N2 random move results(A = 1.5 A ) , E m a x = 1000 cm 

6.5 Results Obtained from RMM for N e n N 2 

In the neon system, just as in the argon system, we find that some searches 

find other three-body minima in the same system. Some searches also find the 

original starting structure but do not find the exact minimum energy. 

For the Ne„N2 system the first step size tried was 0.5 A. This represents one-

sixth of the equilibrium bond distance. Therefore the total distance between any 

two atoms could alter by up to a third of the equilibrium bond distance. This is a 

very large possible change. For example if we were to take two atoms interacting 

at their equilibrium distance then they could be moved apart by 1 A in the x, y 
and z co-ordinates. This would lead to a total change in the interaction distance 

of 1.73 A. This would mean that two atoms that were previously interacting at a 

distance of 3.04 A, were now interacting at a distance of 4.77 A. Alternatively the 

two atoms could move closer together by the same amount, and then be interaction 

at a distance of 1.27 A. The difference in energy between these three distances 

is considerable. At their equilibrium distance the Ne-Ne interaction energy is 29 



Three-Body Effects in Rare Gas-Molecule Cluster 174 

cm - 1 , at 1.27 A its approximately 1000 cm - 1 , whereas at 4.77A it is approximately 

3 cm - 1 . In the gradient-based searches the N 2 is not moved, and because of this 

the maximum change in the Ne-N2 is 0.87 A . The fact that the Ne-N2 potential 

energy function depends on both R and 9 means that it is more difficult to judge 

the effects of the altering the Cartesian co-ordinates of the Ne Atoms. It is however 

clear that it will have a significant effect. 

While the non-energy-limited runs with a maximum step size of 0.5 A (table 

6.13) are very successful at re-finding the original two-body minima, they are less 

successful when the maximum step size is increased to | or 1 A (see tables 6.14 

and 6.15). In the main these searches fail because they either exceed the maximum 

number of iterations, or because they find a structure outside the energy range of 

interest. Both of these problems are caused by the fact that the starting energy of 

the search is too high, and from this high energy point the search cannot find its 

way back down to the original starting minimum. This problem will clearly get 

worse the larger the maximum step size becomes, as the random alteration to the 

co-ordinates of the rare gas atoms makes it more likely that two atoms will move 

very close to each other. 

These two unlimited energy large step size searches do however produce one 

very interesting result. They both show a new structure for the search started from 

the V6,2 two-body starting structure. The new structure is a square pyramid (V 5 >i) 

structure with the sixth neon atom lying level with the N 2 and interacting in a 

'T shaped' manner. This is a structure that was found in the two-body simulated 

annealing searches, but was not low enough in energy to be of interest. Now 

however, because the structure has relatively few rare gas-rare gas interactions, it 

is more energetically favoured. 

The fact that this is the only example of a structure which moves into the 

energy range of interest is encouraging because this was one type of behaviour of 

the three-body system about which we were concerned. If this type of behaviour 

were more common we would have expected to see more examples in the medium 

sized(n = 5 — 8) clusters. In the larger clusters the process of rearrangement would 
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probably be too complicated, and lead to a starting structure with too high an 

energy for the behaviour to have be seen. We are therefore reliant on the smaller 

clusters to show this behaviour. We can say that while it is possible for a structure 

to move into our energy range of interest, it appears not to happen very often. 

When the same step sizes are used in the energy-limited searches the results 

are much better. This is especially true for the maximum step size equals | A . 

The results for both step sizes are shown in the tables 6.16 and 6.17. 

Another result of interest produced by the energy-limited RMM searches is 

shown in table 6.18. Searches started from the two-body V 9 ) i and V 9 > 3 structures 

both found the same new structure. The new structure was however outside the 

energy range of interest. It is encouraging that the energy-limited searches found 

the new structure, as it shows that the energy limit does not prevent the RMM 

search leaving the local starting minimum. 

n V„,i V„ ) 2 V„,3 V„,4 V„,5 V„,6 

3 V V 
4 V V V 
5 V V V V 
6 V V V V V 
7 V V V V V V 
8 V V V 
9 V V V 
10 V V V V 
11 V V V 
12 V V V V V 

Table 6.12: Ne„N2 random move results(A = 0.2 A ) 
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n v„,i v „ , 2 V„> 3 V„,4 V n , 5 V„,6 

3 V V 
4 V V V 
5 V V V V 
6 V V V V X * V 
7 V V V V 
8 V V V V 
9 X V V V 
10 V V X V 
11 V V V V 
12 V V V V V 

Table 6.13: Ne n N 2 random move results(A = 0.5 A ) 

n V n i l V„,2 V„,3 V„,4 V n , 5 V„,6 

3 V 
4 X V V 
5 V X X * V 
6 X X X V X * V 
7 X X V X 

8 X X X X X * 

9 X X X 

10 X X X X 

11 V X X X 

12 X X X X X 

Table 6.14: Ne„N2 random move results(A = | A ) 
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n V„,i V„,2 V„,3 V„,4 V„,5 V„> 6 

3 V V 
4 X V V 
5 V X V V 
6 X X X V X 

7 X X V X 

8 X X X V X * 

9 X X X 

10 X X X X 

11 V X X X 

12 X X X X X 

Table 6.15: Ne„N2 random move results(A = 1 A ) 

n V»,i V„, 2 V„, 3 V„, 4 v „ , 5 V„, 6 

3 V V 
4 V V V 
5 V V X* v 5 > 2 

6 V V V V X * V 
7 V V X V 
8 V V V V V 
9 V X X 

10 X* V V V l 0 , 2 

11 V X X V 
12 X V V V V 

Table 6.16: Ne„N2 RMM results(A = | A ) : E m a x = 1000 cm" 1 
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n Vn ,l Vn,2 V„, 3 V„,4 V„ ; 5 v„, 6 

3 V V 
4 V V V 
5 V V V X * 

6 X V X V X V 
7 V V V V 
8 V V V X X * 

9 V V V V 
10 V V V V 
11 V Vn,3 V V 
12 V V V V V i 2 ) i 

Table 6.17: Ne nN 2 RMM results(A = 1 A ) : E m a x = 1000 cm" 1 

n Vn,l V„,2 v n > 3 V„, 4 V„,5 V n , 6 

3 X V 
4 V V 
5 V V B , i X* V5,3 

6 V V 6 , i X V X V 6 , i 
7 V V V V 7 , 2 

8 V V X X X * 

9 X V X 

10 X V V V 
11 X X X V 
12 V V X X* V 

Table 6.18: Ne„N2 RMM results(A = 1.5 A ) : E m a x = 1000 cm- 1 
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6.6 Conclusions 

When looking at the results from the various types of RMM searches, it is 

more useful to consider the general pattern of the results than any one set of them 

due to the random nature of the distortion of the original geometry. 

The first and most important conclusion to be drawn from the results for 

the three-body potential energy surface is that the two-body structures are in 

the low-lying minima of the three-body surface. There are a couple of structures 

which show that it is possible for new structures to be found in the three-body 

systems. These results are however the exception rather than the rule. The results 

of adding three-body forces are usually more subtle. They result in a convergence 

in the energy of structures. In some cases, such as the Vg^ and structures of 

the Ar„N 2 system, this leads to very small energy differences between consecutive 

structures. The three-body forces can also cause massive re-arrangement of a 

system if there are many two-body structures close in energy. This effect is best 

shown in the A r 1 2 N 2 system. 

One result that is immediately noticeable from looking at the results of the 

various RMM searches on both potentials is that certain structures are more robust 

to the process of the random alteration of their co-ordinates than others. In general 

the smaller the cluster the more likely it is that a RMM search will return to 

the original starting minimum. But even for large clusters there are structures 

which are more robust than others. For example in the Ne„N2 system the V i ^ i 

structure is re-found for all RMM searches except the energy limited search where 

the maximum step size is 1.5A. The V^i structure shows the opposite behaviour, 

and is only re-found for the energy limited search with a maximum step size of 

^ A 
3 A . 

Some of the minima are more likely to be found than others. In particular 

the Ar„N 2 systems V i 2 | i structure is found from four RMM of other minima in 

the energy limited search with a maximum step of 1.5A, as shown in table 6.11. 

This is probably due to the large energy difference between the global minimum 

and the other low-lying minima. It is however noteworthy that the Ne 1 2 N 2 system 
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does not show a similar behaviour to the A r i 2 N 2 system, even though it also has 

a large energy gap between the global minimum and the low-lying minima. This 

is because, for a given maximum step size, the rare gas-rare gas distances change 

more than the rare gas-molecule distance, and in the Ar„N 2 systems it is the Ar-

Ar interaction which dominates. Therefore the Ar„N2 system is more likely to 

convert from one structure to another, as the cage can be perturbed more and still 

be in an energetically favourable configuration. We did not use the RMM search 

algorithms on the V i 7 ) m and V i 8 , m structures because to search about either of 

these structures would be prohibitively expensive. This is clearly shown by the 

fact that the time taken to minimise these two structures on the three-body surface 

was of the order of 100-150 minutes. Therefore even after a small random change 

in each co-ordinate it would take a very large amount of CPU time to complete 

the minimisation. 

6.7 Appendix 

6.7.1 Argon Three-Body Triad Code 

For n argon atoms 

6.7.2 main program 

loopl A 1 -> n 

loop2 B l - > n 

If A = B goto end of B loop2 

loop3 C 1 ->• n 

IF A = C or B = C goto end of C loop3 

IF ABC is not first triad stored call cheq subroutine 

if check digit less than 3 (i.e. that the triad is a new triad) store triad 

Endloop3 

Endloop2 
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Endloopl 

6.7.3 cheq subroutine 

This routine checks to see if new triad is a permutation of a previously stored 

triad. 

Stores ABC triad as Anew B n e w C n e w 

check digit set to zero 

loopl 1 —> number of triad already accepted 

previously accepted triad temporarily as A0id B0id G0\d 

If Anew = Aold or 

A new = B0id or 

Anew — C0id 

then add one to check digit 

If Bnew = A0id o r 

Bnew - Bold Or 

Bnew — Caid 

then add one to check digit 

If Cnew A0id or 

Cnew — Bold o r 

Cnnew — Cald 

then add one to check digit 



Chapter 7 

Conclusions and Future Directions 

In this thesis two main types of rare gas clusters have been investigated. The 

first is rare gas trimers. We have calculate vibrational energy levels for several 

different species of rare gas trimer. We have also investigate the affect of the 

Eckart conditions on the embedding of rotating axes into rare gas trimers. 

Future work on the rare gas trimers could involve the further investigation 

of mixed trimers, as well as calculation of their rotational constants and possibly 

their wavefunctions. 

We have also studied the two important rare gas-molecule cluster prototypes 

Ar„N 2 and Ne„N2, which were previously unstudied, using simulated annealing. 

From our studies we have gained a greater understanding of the interplay of solvent-

solvent and solvent-solute interactions in determining the low energy structures of a 

system. We have used this understanding to predict possible solvation structures 

for both systems. We have also investigated, as fully as possible, the effects of 

three-body interactions on the low energy structures. 

The field of weakly bound clusters of atoms and molecules is still an expanding 

one. There are still many systems, such as rare gas CO or C0 2 , which have not 

been investigated thoroughly either by theory of experiment. One problem for 

the theoretical investigation of all rare gas-molecule clusters is the availability of 

suitable rare gas-molecule potentials. This is especially true for calculations of the 

red shifts of such clusters. In addition there is also a need for further development 

182 
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of minimisation techniques, to allow the investigation of larger clusters. Recent 

advances such as genetic algorithms hold considerable potential improvements in 

the size of clusters that can be studied. 

The field of weakly bound clusters has had a history of close experimental 

and theoretical collaboration and development, which will hopefully continue in 

the future. In particular experimental information on the red shift of a cluster, and 

even red shift proportionality constants will lead to a much deeper understanding 

of these systems. 
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Appendix A 

Conferences, Courses and Seminars 

Attended 

CCP6 Workshop, 'Intramolecular Dynamics in the Frequency and Time Domains'. 

Oxford University, 15th-16th December 1994. 

Molecular Collisions in the Atomsphere. University of Durham 8th-l 1thJune 1995 

Institute of Physics one day meeting on Atoms and Limits of Quantum Theory. 

14th July 1995 

Royal Society of Chemistry High Resolution Spectroscopy Group. Conference on 

High Resolution Spectroscopy (Annual meeting of the HRSG). Reading University, 

17th-19th December 1995. 

6th Annual Informal Northern Universities Meeting on Chemical Physics. New

castle Universities 4th July 1996. 

Charles Coulson Summer School in Theoretical Chemistry. Oxford University 8th-

18th September 1996. 
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Photoionisation Dynamics, Rydberg States and Large Amplitude Motion. Univer

sity of York 3rd-5th November 1996. 

The following pages contain lists of the seminars in the chemistry department 

from 1994-1997. These marked with an asterisk were attended. 

1994 - 1995 (August 1 - July 31) 

1994 

October 5 Prof. N. L. Owen, Brigham Young University, Utah, USA 

Determining Molecular Structure - the INADEQUATE NMR way 

October 19 Prof. N. Bartlett, University of California 

Some Aspects of Ag(II) and Ag(III) Chemistry 

November 2 * Dr P. G. Edwards, University of Wales, Cardiff 

The Manipulation of Electronic and Structural Diversity in Metal Complexes -

New Ligands 

November 3 Prof. B. F. G. Johnson, Edinburgh University 

Arene-metal Clusters 

November 9 Dr G. Hogarth, University College, London 

New Vistas in Metal-imido Chemistry 

November 10 Dr M. Block, Zeneca Pharmaceuticals, Macclesfield 

Large-scale Manufacture of ZD 1542, a Thromboxane Antagonist Synthase In

hibitor 

November 16 Prof. M. Page, University of Huddersfield 
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Four-membered Rings and b-Lactamase 

November 23 Dr J. M. J. Williams, University of Loughborough 

New Approaches to Asymmetric Catalysis 

December 7 Prof. D. Briggs, ICI and University of Durham 

Surface Mass Spectrometry 

1995 

January 11 Prof. P. Parsons, University of Reading 

Applications of Tandem Reactions in Organic Synthesis 

January 18 * Dr G. Rumbles, Imperial College, London 

Real or Imaginary Third Order Non-linear Optical Materials 

January 25 Dr D. A. Roberts, Zeneca Pharmaceuticals 

The Design and Synthesis of Inhibitors of the Renin-angiotensin System 

February 1 * Dr T. Cosgrove, Bristol University 

Polymers do it at Interfaces 

February 8 Dr D. O'Hare, Oxford University 

Synthesis and Solid-state Properties of Poly-, Oligo- and Multidecker Metallocenes 

February 22 Prof. E. Schaumann, University of Clausthal 

Silicon- and Sulphur-mediated Ring-opening Reactions of Epoxide 

March 1 Dr M. Rosseinsky, Oxford University 

Fullerene Intercalation Chemistry 
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March 22 Dr M. Taylor, University of Auckland, New Zealand 

Structural Methods in Main-group Chemistry 

April 26 Dr M. Schroder, University of Edinburgh 

Redox-active Macrocyclic Complexes : Rings, Stacks and Liquid Crystals 

May 4 Prof. A. J. Kresge, University of Toronto 

The Ingold Lecture Reactive Intermediates : Carboxylic-acid Enols and Other Un

stable Species 

POST GRADUATE COLLOQUIA, LECTURES AND SEMINARS FROM IN

VITED SPEAKERS 

1995 - 1996 (August 1 - July 31) 

1995 

October 11 * Prof. P. Lugar, Frei Univ Berlin, FRG 

Low Temperature Crystallography 

October 13 Prof. R. Schmutzler, Univ Braunschweig, FRG. 

Calixarene-Phosphorus Chemistry: A New Dimension in Phosphorus Chemistry 

October 18 Prof. A. Alexakis, Univ. Pierre et Marie Curie, Paris, 

Synthetic and Analytical Uses of Chiral Diamines 

October 25 Dr.D.Martin Davies, University of Northumbria 

Chemical reactions in organised systems. 

November 1 Prof. W. Motherwell, UCL London 

New Reactions for Organic Synthesis 
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November 3 Dr B. Langlois, University Claude Bernard-Lyon 

Radical Anionic and Psuedo Cationic Trifiuoromethylation 

November 8 Dr. D. Craig, Imperial College, London 

New Stategies for the Assembly of Heterocyclic Systems 

November 15 Dr Andrea Sella, UCL, London 

Chemistry of Lanthanides with Polypyrazoylborate Ligands 

November 17 Prof. David Bergbreiter, Texas A&M, USA 

Design of Smart Catalysts, Substrates and Surfaces from Simple Polymers 

November 22 Prof. I Soutar, Lancaster University 

A Water of Glass? Luminescence Studies of Water-Soluble Polymers. 

November 29 Prof. Dennis Tuck, University of Windsor, Ontario, Canada 

New Indium Coordination Chemistry 

December 8 Professor M.T. Reetz, Max Planck Institut, Mulheim 

Perkin Regional Meeting 

1996 

January 10 * Dr Bill Henderson, Waikato University, NZ 

Electrospray Mass Spectrometry - a new sporting technique 

January 17 * Prof. J. W. Emsley , Southampton University 

Liquid Crystals: More than Meets the Eye 

January 24 Dr Alan Armstrong, Nottingham Univesity 
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Alkene Oxidation and Natural Product Synthesis 

January 31 Dr J. Penfold, Rutherford Appleton Laboratory, 

Soft Soap and Surfaces 

February 7 Dr R.B. Moody, Exeter University 

Nitrosations, Nitrations and Oxidations with Nitrous Acid 

February 12 Dr Paul Pringle, University of Bristol 

Catalytic Self-Replication of Phosphines on Platinum(O) 

February 14 Dr J. Rohr, Univ Gottingen, FRG 

Goals and Aspects of Biosynthetic Studies on Low Molecular Weight Natural Prod

ucts 

February 21 Dr C R Pulham , Univ. Edinburgh 

Heavy Metal Hydrides - an exploration of the chemistry of stannanes and plumbanes 

February 28 Prof. E. W. Randall, Queen Mary & Westfield College 

New Perspectives in NMR Imaging 

March 6 Dr Richard Whitby, Univ of Southampton 

New approaches to chiral catalysts: Induction of planar and metal centred asym

metry 

March 7 Dr D.S. Wright, University of Cambridge 

Synthetic Applications of Me2N-p-Block Metal Reagents 

March 12 RSC Endowed Lecture - Prof. V. Balzani, Univ of Bologna 

Supramolecular Photochemistry 



APPENDIX A. CONFERENCES, COURSES AND SEMINARS ATTENDED201 

March 13 * Prof. Dave Garner, Manchester University 

Mushrooming in Chemistry 

April 30 Dr L.D.Pettit, Chairman, IUPAC Commission of Equilibrium Data 

pH-metric studies using very small quantities of uncertain purity 

1996 - 1997 (August 1 - July 31) 

1996 

October 9 Professor G. Bowmaker, University Aukland, NZ 

Coordination and Materials Chemistry of the Group 11 and Group 12 Metals : 

Some Recent 

Vibrational and Solid State NMR Studies 

October 14 Professor A. R. Katritzky, University of Gainesville,University of Florida, 

USA 

Recent Advances in Benzotriazole Mediated Synthetic Methodology 

October 16 Professor Ojima, Guggenheim Fellow, State University of New York at 

Stony Brook 

Silylformylation and Silylcarbocyclisations in Organic Synthesis 

October 22 Professor Lutz Gade, Univ. Wurzburg, Germany 

Organic transformations with Early-Late Heterobimetallics: Synergism and Selec

tivity 

October 22 * Professor B. J. Tighe, Department of Molecular Sciences and Chem

istry, University of Aston 

Making Polymers for Biomedical Application - can we meet Nature's Challenge? 

Joint lecture with the Institute of Materials 
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October 23 Professor H. Ringsdorf (Perkin Centenary Lecture), Johannes Gutenberg-

Universitat, Mainz, Germany 

Function Based on Organisation 

October 29 * Professor D. M. Knight, Department of Philosophy, University of 

Durham. 

The Purpose of Experiment - A Look at Davy and Faraday 

October 30 Dr Phillip Mountford, Nottingham University 

Recent Developments in Group IV Imido Chemistry 

November 6 Dr Melinda Duer, Chemistry Department, Cambridge 

Solid-state NMR Studies of Organic Solid to Liquid-crystalline Phase Transitions 

November 12 * Professor R. J. Young, Manchester Materials Centre, UMIST 

New Materials - Fact or Fantasy? 

Joint Lecture with Zeneca & RSC 

November 13 Dr G. Resnati, Milan 

Perfluorinated Oxaziridines: Mild Yet Powerful Oxidising Agents 

November 18 Professor G. A. Olah, University of Southern California, USA 

Crossing Conventional Lines in my Chemistry of the Elements 

November 19 Professor R. E. Grigg, University of Leeds 

Assembly of Complex Molecules by Palladium-Catalysed Queueing Processes 

November 20 Professor J. Earnshaw, Deptartment of Physics, Belfast 

Surface Light Scattering: Ripples and Relaxation 
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November 27 Dr Richard Templer, Imperial College, London 

Molecular Tubes and Sponges 

December 3 Professor D. Phillips, Imperial College, London 

"A Little Light Relief -

December 4 * Professor K. Muller-Dethlefs, York University 

Chemical Applications of Very High Resolution ZEKE Photoelectron Spectroscopy 

December 11 Dr Chris Richards, Cardiff University 

Sterochemical Games with Metallocenes 

1997 

January 15 Dr V. K. Aggarwal, University of Sheffield 

Sulfur Mediated Asymmetric Synthesis 

January 16 Dr Sally Brooker, University of Otago, NZ 

Macrocycles: Exciting yet Controlled Thiolate Coordination Chemistry 

January 21 Mr D. Rudge, Zeneca Pharmaceuticals 

High Speed Automation of Chemical Reactions 

January 22 Dr Neil Cooley, BP Chemicals, Sunbury 

Synthesis and Properties of Alternating Polyketones 

January 29 Dr Julian Clarke, UMIST 

What can we learn about polymers and biopolymers from computer-generated 

nanosecond movie-clips? 
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February 4 Dr A. J. Banister, University of Durham 
From Runways to Non-metallic Metals - A New Chemistry Based on Sulphur 

February 5 Dr A. Haynes, University of Sheffield 

Mechanism in Homogeneous Catalytic Carbonylation 

February 12 Dr Geert-Jan Boons, University of Birmingham 

New Developments in Carbohydrate Chemistry 

February 18 Professor Sir James Black, Foundation/King's College London 

My Dialogues with Medicinal Chemists 

February 19 Professor Brian Hayden, University of Southampton 

The Dynamics of Dissociation at Surfaces and Fuel Cell Catalysts 

February 25 Professor A. G. Sykes, University of Newcastle 

The Synthesis, Structures and Properties of Blue Copper Proteins 

February 26 Dr Tony Ryan, UMIST 

Making Hairpins from Rings and Chains 

March 4 Professor C. W. Rees, Imperial College 

Some Very Heterocyclic Chemistry 

March 5 Dr J. Staunton FRS, Cambridge University 

Tinkering with biosynthesis: towards a new generation of antibiotics 

March 11 Dr A. D. Taylor, ISIS Facility, Rutherford Appleton Laboratory 

Expanding the Frontiers of Neutron Scattering 
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March 19 * Dr Katharine Reid, University of Nottingham 
Probing Dynamical Processes with Photoelectrons 


