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S-NITROSOTHIOL DECOMPOSITIONS 
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A thesis submitted for the degree of Doctor of Philosophy in the 
Department of Chemistry, University of Durham, September 1997. 

ABSTRACT 

A detailed study concerning the aqueous decomposition characteristics of 
S-nitrosothiols in both the presence and absence of cupric ions was undertaken. 
Spectrophotometric measurements established that the true catalytic species generating 
nitric oxide from S-nitrosothiols is Cu + , formed by the reduction of copper(II) ions 
by thiolate, which is present as an impurity in solution. Introduction of the specific 
cuprous ion chelator neocuproine inhibited reaction, with the concentration of thiol in 
situ having a significant influence on the absorbance/time traces obtained. Under 
certain conditions thiolate ions clearly promoted S-nitrosothiol decomposition, 
whereas at times an opposite effect was noted. These results have been correlated 
with the reductive ability and chelation properties towards Cu 2 + of each thiol in 
question. Structure/reactivity studies were extended further to include a range of 
S-nitrosated aromatic and heterocyclic thiols which generated the corresponding 
disulfides in distilled water yet reformed the appropriate thione at pH 7.4, along with 
nitric oxide in both media. A mechanism has been proposed which accounts for these 
observations. 

The reaction of S-nitrosothiols with cupric ions bound to biologically 
significant molecules such as amino acids, peptides and proteins was followed. 
Despite Cu2+ being chelated in this manner, S-nitrosothiol decomposition was 
apparent, albeit at a slower rate than that seen when copper(II) sulfate pentahydrate 
was utilised. Thiolate ions were capable of reducing Cu 2 + -» Cu + which was bound 
to such molecules suggesting a possible mechanism for nitric oxide formation from 
S-nitrosothiols in vivo. The blue copper protein ceruloplasmin also promoted NO 
generation under physiological conditions. A brief investigation into the direct 
reaction of thiolate ion with its corresponding S-nitrosothiol was also carried out. It 
was discovered that the major reaction product in this instance is ammonia and not 
nitric oxide, suggesting that a different copper-ion independent process is occurring 
involving direct interaction between the two species. 
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Chapter 1 

Introduction 



Chapter 1: Introduction 

1.1 Chemistry of Nitric Oxide 

1.1.1 Introduction 

In the 1960's it was claimed by Vasu1 that "from an industrial point of view, 

nitric oxide is probably the most important oxide of nitrogen". Until the beginning of 

the last decade, nitric oxide was merely considered to be a toxic molecule and a 

contributor to atmospheric pollution. 

However, more recently it has been shown that NO is involved in many 

fundamental biochemical processes, indeed in 1992 it achieved status as "Molecule of 

the Year" in the journal Science2. Its many essential biological roles include smooth 

muscle vasodilation, neurotransmission, immune regulation and inhibition of platelet 

aggregation. The last decade has seen over fifteen thousand journal articles published 

on some aspect of the physiology or biochemistry of nitric oxide. Many reviews have 

been written and recent papers by Fontecave and Pierre3 and Ainscough and Brodie4 

discuss the chemical and biological properties of NO respectively in great detail. 

1.1.2 Preparation 

Nitric oxide can be prepared in the laboratory via the reduction of nitric acid 

using copper metal as an electron donor (equation 1.1). 

8HNO3 + 3Cu »» 3Cu(N03)2 + 4H 20 + 2NO eqnl.l 

The extremely efficient commercial route to NO is by means of the catalytic oxidation 

of ammonia (equation 1.2). 

Pt-Rh catalyst 
4NH3 + 50 2 » 4NO + 6H 20 eqn 1.2 

900 C 

Aerial oxidation of the product gases leads to brown N 0 2 being formed (equation 

1.3). 



2NO + 0 2 - 2N0 2 eqnl .3 

This reaction leads to air pollution and the build up of photochemical smogs in cities 

such as Tokyo and Los Angeles. 

Aqueous dissolution of nitrogen dioxide produces nitrite and nitrate ion in a 

disproportionation reaction, as shown by equation 1.4. 

2N0 2 + H 2 0 N0 3" + N0 2" + 2H+ eqnl.4 

Ostwald was awarded the Nobel Prize in 1909 for his work in this area. Large scale 

productions of fertilisers and explosives (NH 4N0 3) were developed as a consequence. 

1.1.3 Physical Properties 

Nitric oxide is a colourless gas at room temperature, with a boiling point of 

-151°C and a melting point of -163°C5. Both the liquid and the solid are also 

colourless. Its aqueous solubility is quite low (1.8 x 10"3 mol dm - 3 at standard 

temperature and pressure) which is similar to that of both dioxygen and carbon 

monoxide. Thus, it cannot be generated in high concentrations in water. 

Nitric oxide is a neutral molecule with an unpaired n* electron, rendering it 

paramagnetic. It has a low tendency to dimerise in solution, a feature that can partly 

be explained by the delocalisation of the lone electron. About 60% of the spin density 

is located on the nitrogen atom6, with various canonical forms representing its 

structure. 

+ - + 
• N — O - — * - ' N = 0 •*—*- N = 0*-«—*• N ^ O ' 

The unpaired electron reduces the bond order to -2.5. Removal of this electron 

forms the nitrosonium ion, NO + , with the N-0 bond order now three (isoelectronic 

with nitrogen). Another explanation as to the reluctance of dimerisation is that the 

bond order would be virtually unchanged in the dimer. 
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1.1.4 Selected Chemical Properties 

The oxidation of nitric oxide to nitrogen dioxide (section 1.1.2) was first 

studied kinetically by Bodenstein7. It has become established as a classical 

termolecular gas phase reaction over a wide range of experimental conditions. 

= k[NO]2[0 2] eqnl.5 

Equation 1.5 indicates that the reaction is first order in oxygen and second order in 

nitric oxide. An unusual feature of this reaction is the observed decrease in rate 

constant with increasing temperature. One possible mechanism is detailed in equation 

1.6. 

2NO N 2 0 2

 1—*- 2N0 2 eqn 1.6 

The initial dimerisation of NO to N 2 0 2 has a negative AH° value and thus increasing 

the temperature should decrease the equilibrium constant for the first step. However, 

another equilibrium between 0 2 and NO could exist, forming the peroxynitrite radical 

(equation 1.7) which then reacts further with another NO molecule to give the 

product. 

NO 
NO + 0 2 = ^ N0 3 *2N0 2 eqn 1.7 

The third order nature of the reaction means that the rate of N 0 2 formation is only 

fast at high concentrations, and that NO exists in the gas phase in the air at 10"6 mol 

dm 3 for around a minute. 

The oxidation of NO has also been studied kinetically in aqueous solution. In 

contrast to the gaseous reaction the observed product is solely nitrite ion or nitrous 

acid, depending on the pH. Somewhat surprisingly, no N0 3 " can be detected8. The 

proposed mechanism (scheme 1.1) postulates the initial rate limiting oxidation of 

nitric oxide to N0 2 . This reacts with further NO to form the anhydride of nitrous 
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acid, N 2 0 3 . Hydrolysis of this species gives nitrous acid itself which will dissociate 

to form nitrite ion at pH > 4. 

NO + V202 »- N0 2 

N0 2 + NO N 2 0 3 

N 2 0 3 + H 2 0 2HN02 ^=±= 2N02" + 2H+ 

Scheme 1.1 

Under these conditions the usual hydrolysis product of N 0 2 is an equimolar mixture 

of nitrate and nitrite (equation 1.8), as described in section 1.1.2. 

2N0 2 + H 2 0 **N0 2

_ + M V + 2H+ eqnl.8 

Thus, the reaction of nitric oxide with N 0 2 must be much faster than the hydrolysis of 

nitrogen dioxide. However, recent work by Akiyama et aP has demonstrated the 

oxidative products of NO to be N0 2" and N0 3" in the plasma of dead rabbits. The 

rate law for reaction of NO in water is found to be the same as that for gaseous 

reaction. 

Dinitrogen trioxide, formed by the union of NO and N 0 2 (scheme 1.1), exists 

as an unstable blue liquid at -20°C. It can act as an effective nitrosating agent 

(section 1.3.3) and is responsible for some literature reports ascribing a blue colour to 

samples of nitric oxide. 

Nitric oxide is present in the stratosphere (between 10 and 50 km from the 

Earths surface). Problems may occur when ozone reacts with NO forming N 0 2 

which may combine with atomic oxygen to regenerate NO and oxygen (scheme 1.2). 

0 3 + NO o N0 2* + 0 2 

N0 2 + O ** NO + 0 2 Scheme 1.2 

0 3 + O 20 2 
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Nitric oxide is therefore acting as a catalyst increasing the rate of ozone 

decomposition in the atmosphere. 0 3 protects Earth from incoming solar radation 

with wavelength less than 300nm. There is increasing concern about NO emission 

levels from supersonic aircraft which could reduce the stratospheric ozone 

concentration. 

The initial reaction of ozone with NO can be used as an extremely sensitive 

assay for nitric oxide (detection limit S 10~9 mol dnr 3 ) 1 0 . The basis for detection is 

chemiluminescence, as some N 0 2 molecules are produced in an excited state (scheme 

1.3). When these decay to a ground state the luminescence produced is proportional 

to the concentration of N 0 2 in the excited state (and hence the concentration of nitric 

oxide). 

NO + 0 3 + N0 2 + 0 2 

Scheme 1.3 
N0 2 * *• N 0 2 + hv 

A similar reaction has been noted with halogen atoms (scheme 1.4). 

NO + X »• NOX* 

NOX* * NOX + hv Scheme 1.4 

X = CI, Br or I 

The nitrosyl halides11 formed are gaseous and are widely used as nitrosating agents in 

organic solvents (section 1.3.3). 

NO combines with superoxide anion to give peroxynitrite which is an 

important reaction in biological systems12 (equation 1.9). 

H++NO + 0 2" ONOOH ^ N 0 2 + OH eqn 1.9 
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Hydroxyl radicals (OH°) are known to be extremely destructive towards lipid 

membranes and DNA, and may act as a reagent in cellular defence mechanisms 

(section 1.2.5). 

A typical example of nitrogen becoming reduced in NO is given by the 

reaction of nitric oxide with moist iron filings (equation 1.10). 

2NO + H 2 0 + Fe *- N 2 0 + Fe(OH)2 eqnl.10 

The product nitrous oxide is relatively unreactive and was initially used by Davey as 

the first anaesthetic. It is currently more widely utilised as an aerosol propellant due 

to its good lipid solubility, which is similar to that of NO. 

Recently, a novel reaction between nitric oxide and a conjugated diene has 

been reported, which may have important physiological relevance13-14. 

Polyunsaturated molecules such as P-carotene (1.1) can react with a number of NO 

molecules to form a lesser conjugated system. 

1.1 

Precise structures of the derivatives formed have not been established, but it is 

thought that stable nitroxyl radicals (R2NO*) may be produced. Such conjugated 

dienes are widespread in vivo, especially in fatty acyl chains, where reactions with 

NO would be favoured due to its high lipid solubility. 

Nitric oxide is an extremely powerful ligand and can coordinate to many metal 

centres both free and in complex form. It may act as a one or three electron donor 

(utilising the lone pair of electrons on nitrogen) and will give a bent or linear structure 

respectively (figure 1.1). 

7 



o 
]SJ bent, 1 electron 

donor 

M 

O 

^ linear, 3 electron 
donor 

M Figure 1.1 

A synergistic mechanism allows electron density from the nitric oxide molecule to be 

donated (forming a a bond to the metal) in addition to back donation of electron 

density from metal d-orbitals to the empty n* antibonding orbital on NO 1 5 . 

Biologically relevant metal nitrosyls will be discussed later (section 1.5). 

1.2 Physiological Roles of Nitric Oxide 

1.2.1 Vasodilation 

Glyceryl trinitrate (GTN) (1.2) and other organic nitrates and nitrites such as 

amyl nitrite (1.3) have been used in medical treatments for over a century. 

H2C—ONO2 

HC—ON0 2 

H2C—ON0 2 

1.2 

The use of amyl nitrite was discovered in 186716 while the benefits of GTN 

were noted after girls who worked packing explosives during World War I had 

abnormally low blood pressure17. Such compounds relieve the symptoms of angina 

pectoris (narrowing of the arteries of the heart). However, their mode of action has 

not been clearly understood until recently, when results were published independently 

by Palmer et aln and Ignarro et al19. Until twenty years ago it was believed that the 

vasodilatory properties of GTN were due to its conversion to nitrite, which is known 

to act as a vasodilator, albeit slowly20. In 1977, Katsuki et a/21 noted that blood 

8 
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vessel enlargement occurred after metabolism to NO, and not N0 2". It took much 

painstaking work by Furchgott and Zawadzki22 relating to muscle relaxation to make 

sense of many experimental observations. They examined the effect of acetylcholine 

(1.4) on pre-contracted rings of rabbit aorta. 

[ C H 3 C O - 0 - C H 2 C H 2 - N + ( C H 3 ) 3 ] 1.4 

Unusually, the vasodilatory action of this material was not apparent during every set 

of tests. It became clear that acetylcholine was not effective i f the endothelial cells 

(lining the inside of the aorta) had been removed or accidentally damaged in some 

way. The conclusion drawn was that acetylcholine was in fact not acting directly 

upon the muscle cells but instead upon the endothelium which, in turn, produces a 

"messenger" molecule. This species then diffuses into the muscle cells, activating the 

enzyme guanylate cyclase (GC). Intracellular levels of cyclic guanosine 

monophosphate (cGMP) are subsequently increased by the transformation of 

guanosine triphosphate (GTP), inducing muscular relaxation23 (scheme 1.5). 

9 



GTP HN N 

o—P— o—P— o—P— o -CHx x> 

"N 

0 0 0 N 

HO OH 

GC 

Scheme 1.5 

HN 

H 2 N ^ N 

N 

cGMP 

0 = P O OH 
OH 

The messenger molecule produced by the endothelium became known as the 

EDRF, or "endothelium-derived relaxing factor". The chemical identity of the EDRF 

quickly became a matter of intense speculation. It was clear that the EDRF had a half 

life of only a few seconds23 under physiological conditions. In addition, its activity 

was inhibited by haemoglobin, yet prolonged by the enzyme superoxide dismutase 

(SOD). Results previously mentioned18'19 suggested that nitric oxide was the EDRF 

as they behaved identically in terms of vascular relaxation. Haemoglobin binds NO 

very strongly and hence destroys the action of the EDRF, but SOD promotes catalytic 

02~ destruction thus eliminating the reaction of nitric oxide with superoxide (equation 

1.9). Guanylate cyclase is thought to be activated by NO binding to the iron of the 

enzymic haem component24, moving it out of the plane of the porphyrin ring. This 

leads to an accumulation of cGMP and eventual muscle relaxation. 

10 



Although there is overwhelming evidence that the EDRF is nitric oxide, the 

actual identity is as yet unknown. Even though it appears to be an unstable radical, 

NO is sufficiently stable to act as a messenger molecule. It has been proposed that the 

EDRF could be a dinitrosyl iron complex, hydroxylamine, nitroxyl radical or an 

S-nitrosothiol such as S-nitrosocysteine. Feelisch et al25 have recently demonstrated 

that NO is still the most likely candidate, with the possibility existing that it is formed 

from a precursor compound before mediating its effects. 

1.2.2 Biosynthesis of NO 

Mammals are known to generate nitric oxide in vivo by utilising an enzyme 

known as nitric oxide synthase (NOS). It has been shown that the essential amino 

acid L-arginine and dioxygen are the reactive substrates26. NOS cleaves nitric oxide 

from one of the terminal guanidino groups of L-arginine, forming L-citrulline as a 

by-product. Isotopic labelling experiments27 with 1 8 0 2 have indicated that the enzyme 

incorporates molecular oxygen into both NO and L-citrulline (scheme 1.6). 

H 2 N. 

,NH 

H 2 N XOOH 

L-arginine 

HO—HN H2N. 18, 

,NH NH 

:o 

N A D P H 

"O2 

N A D P H 

H 2 N COOH 

N^hydroxy-L-arginine 

H 2 N XOOH 

L-citrulline 

Scheme 1.6 

This discovery eliminated a number of previously proposed pathways. The 

intermediate NG-hydroxy-L-arginine is a known vasodilator. The production of NO 

in this manner is very substrate specific, indeed both D-arginine and L-homoarginine 

will not effect NO formation. Compounds having a similar chemical structure to 

11 



arginine (for example, N-monomethyl-L-arginine) (1.5) are powerful inhibitors of 

NO-synthase and their usage has proved very significant as a diagnostic tool in 

investigating the biochemistry of NO. 

H s C H N ^ ^ . N H 

„NH 
1.5 

H 2 N ' TOOH 

There are two, or possibly three, distinct NOS enzymes which can effect nitric 

oxide formation. NO-synthase found in endothelial cells is known as a constitutive 

enzyme, meaning it is consistently present and will respond rapidly to activation if 

vasodilation is required. This type of NOS will only release picomoles of NO 2 8 and 

thus no cytotoxic effects are observed when guanylate cyclase is activated in muscle 

cells. The enzyme is dependent on NADPH, tetrahydrobiopterin (BH4), Ca 2 + and 

calmodulin (a calcium binding protein). Komori et at29 have recently undertaken 

work on the role of thiols in the activation of NOS. It has been found that thiols are 

required during enzymic turnover for maximum activity. They may serve as reducing 

agents for the regeneration of BH 4 from dihydrobiopterins (BH2). Another 

NO-synthase is expressed by macrophages, and will be discussed in section 1.2.5. 

1.2.3 Neurotransmission 

There is very good evidence that NO can function as a neurotransmitter in both 

the peripheral and the central nervous system. Signals are sent along nerve cells as 

electrical impulses until they reach the gaps between cells (synapses) whereupon a 

chemical messenger is released (known as a neurotransmitter). Within the central 

nervous system enhanced levels of cGMP have been noted, analogous to the 

12 



mechanism of vasodilation. The amino acids aspartate (1.6) and glutamate (1.7) are 

two of the major excitatory neurotransmitters. 

Bredt and Snyder30 demonstrated the activity of NOS in brain cells, proposing 

that nitric oxide behaves in two ways within the brain. Firstly, NO appears to be 

synthesised in the post-synaptic nerve cell from where it is released and acts 

presynaptically. This leads to an increase in the release of glutamate and, as a result, 

a stable increase in synaptic transmission31. NO has therefore been termed a 

"retrograde messenger". Secondly, in the periphery, NO is thought to act as an 

ordinary neurotransmitter32 with nerves leading to such organs as the lungs and 

stomach. Such nerves are known as non-adrenergic non-cholinergic (NANC) nerves. 

Therefore, nitric oxide may play an essential role in many fundamental nervous 

impulses throughout the body, including the generation of penile erection and the 

regulation of descending inhibition in the gastrointestinal tract. 

1.2.4 Inhibition of Platelet Aggregation 

Present in mammalian blood are many tiny cell fragments, which are much 

smaller than red blood cells, known as platelets. These cells are capable of both 

self-adhesion and attachment to the walls of blood vessels due to the production of 

prostacyclin. Further aggregation leads to clot formation which acts as a defence 

mechanism against bleeding after injury. With the discovery of the action of nitric 

oxide in vasodilation and neurotransmission came the finding that NO can inhibit the 

processes of platelet adhesion and aggregation33. Aggregation inhibition is mediated 

by the synergistic action of prostacyclin and nitric oxide although no such synergy 

appears present in initial platelet adhesion. This role of NO helps to prevent the 

COO" 

H->N 

COO 

coo- i 
coo H 2 N 

1.6 1.7 
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possible "overclotting" of platelets which i f occurred in a coronary vessel could lead 

to a heart attack. Gordge et aP4 has demonstrated the ability of S-nitrosothiols to act 

as aggregation inhibitors, presumably following the release of nitric oxide. There is 

an enzyme mechanism within the platelets themselves which acts on L-arginine to 

produce the required release of NO, which is also made available from nearby 

endothelial cells. 

1.2.5 Macrophage Cytotoxicity 

It has been shown that nitric oxide is involved in the immune response, 

particularly with respect to "non-specific" host defence, linked to macrophage 

activation. Macrophages are cells found in all tissues and, on encountering an alien 

microbe, are stimulated to engulf it and kill it (phagocytosis). Such invaders can also 

be destroyed without coming into contact with the macrophages. It is in the latter 

sense that NO can act as a cytotoxic agent. Marietta et aP5 noticed that activated 

macrophages in cultures produced nitrite and nitrate in the supernatant fluid. In 

addition, it was discovered that L-arginine was required for the killing action of the 

macrophages. These results suggest a process occurring which parallels that taking 

place in endothelial cells. 

As previously mentioned (section 1.2.2), macrophages contain NOS which is 

dissimilar to the enzyme found in the vasculature. The macrophage NOS is inducible 

(it is not always present), it has longer lasting release of NO in higher quantities 

(nanomoles) and it is Ca 2 + and calmodulin independent. There is much doubt as to 

whether nitric oxide is sufficiently cytotoxic itself to be responsible for killing foreign 

cells, even though as a free radical it may be capable of destroying the cell 

membrane. NO can combine with iron containing moieties in key enzymes of the 

respiratory cycle36, or alternatively react with superoxide to produce highly toxic 

hydroxyl radicals (section 1.1.4). The onset of infection will lead to much 

macrophage activity with the consequence that over-production of NO may occur and 

septic shock could take place, which is often fatal due to a huge fall in blood pressure. 
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Selective inducible NOS inhibitors could be used to counter this condition. It is clear 

that nitric oxide is involved in specific immunity, however its precise role has not yet 

been defined. 

1.2.6 Further New Roles of Nitric Oxide 

Recently, nitric oxide has been implicated in physiological processes where it 

forms S-nitrosothiol compounds. Firstly, the formation of S-nitrosohaemoglobin 

(Hb-SNO) has been detected37 in the human lung. Haemoglobin is composed of two 

a and two P subunits, with the latter having highly reactive -SH groups present 

(Cysp93). Transnitrosation38 was noted from S-nitrosocysteine (1.8) to haemoglobin 

with the consequence that arterial blood contained significant quantities of Hb-SNO 

(~300nM) whereas venous levels were virtually undetectable. 

.SNO 

A 
H 2 N COOH 

1.8 

Haemoglobin bound to NO appears to act as a nitric oxide donor in the circulatory 

system but the question arises as to how Hb-SNO can relax blood vessels when any 

free NO released would be scavenged instantaneously by Hb itself3 9. These studies 

certainly suggest new sensory and regulatory roles for haemoglobin and may have 

therapeutic value. 

Secondly, it has been reported40 that nitric oxide can bind to transcription 

factor proteins that turn genes on or off. During macrophage induced bacterial 

destruction, NO binds to thiol groups within the bacterium forming S-nitrosothiols 

which can change the function of the proteins that carry them. Whilst a bacterium 

tries to repair its altered proteins, the immune system can destroy it. However, 

bacteria have developed transcription factors which, when NO binds to them, switch 

on a large number of genes that make defence proteins. It is thought that the same 
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situation may exist for humans, and if so the door may be opened to new medical 

treatments for diseases linked to abnormalities in the function of nitric oxide. 

1.3 S-Nitrosation 

1.3.1 Introduction 

S-nitrosation describes the electrophilic addition of "NO + " to a sulfur atom. It 

is a reaction that has been much less studied than the analogous O-nitrosation which 

consequently has led to a smaller literature referring to S-nitroso compounds. This is 

also partially due to the greater susceptibility of the S-N bond to homolytic fission, 

making such compounds unstable. The increase in nucleophilicity encountered when 

moving from oxygen to an equivalent sulfur atom leads to a greater reactivity of 

sulfur compounds with respect to nitrosation. The current interest in nitric oxide 

donor drugs has promoted much research activity related to the mechanism of 

S-nitrosation in vivo and subsequent decomposition of the relevant species formed. 

1.3.2 Nitrous Acid HN0 2 

It is possible to add NO + to a sulfur-containing substrate in many ways, the 

most popular reagent utilised being that derived from nitrous acid. HN0 2 will be 

formed on the acidification of sodium nitrite, with solutions being used immediately 

due to the decomposition reaction (equation 1.11) occurring. 

3HN0 2 2NO + HN0 3 + H 2 0 eqn 1.11 

Nitrous acid is a weak acid (pKA value of 3.1)4 1. Its structure has been determined 

by infrared studies42 and is known to exist in both cis and trans forms, with the trans 

form prevalent in solution (figure 1.2). 
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1.3.3 Other Nitrosating Agents 

Another common reagent used to effect nitrosation is dinitrogen trioxide, 

N 2 0 3 . It is formed from high concentrations of nitrous acid due to the existence of an 

equilibrium (equation 1.12). 

2HN02 N 2 0 3 + H 2 0 eqn 1.12 

At [HNO2] = 0 . 1 mol dnr3 the blue colour of dinitrogen trioxide is detectable 

visually (section 1.1.4). Reaction of N 2 0 3 with substrates has been observed 

generally to involve rate-limiting attack of the substrate (S) by dinitrogen trioxide43 

(scheme 1.7). 

K 

2HNO2 ^=^= N 2 0 3 + H 2 0 
Scheme 1.7 

N 2 0 3 + S k » S—NO + NO2" 

Rate = k[N 20 3][S] = kK[HN0 2 f[S] eqn 1.13 

The expected rate equation thus predicts a second order dependence upon the nitrous 

acid concentration and a first order dependence upon the substrate concentration 

(equation 1.13). However, for extremely reactive substrates, or for substrates at high 

concentration, reaction of S with N 2 0 3 may become faster than the hydrolysis of 

N 2 0 3 to nitrous acid. In this instance, the rate determining step is now the formation 

of dinitrogen trioxide (equation 1.14). 

k' 
2HN02 " N 2 0 3 + H 2 0 eqn 1.14 
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The rate equation now becomes zero order in substrate yet remains second order in 

nitrous acid (equation 1.15). 

Rate = k ' [HN0 2 ] 2 eqn 1.15 

N 2 0 3 readily dissolves in a large number of organic solvents and these solutions can 

be used to nitrosate a range of nucleophilic centres. 

At higher acidities and lower nitrous acid concentration than is normally used 

for dinitrogen trioxide, other mechanisms become significant. The effective 

nitrosating agent is not now N 2 0 3 as the rate equation (1.16) indicates. The reaction 

is now first order in free hydrogen ion concentration and first order in both nitrous 

acid and substrate. 

Rate = k[HN02][H30+][S] eqn 1.16 

There has been some speculation as to the mechanistic interpretation of this rate 

equation. Two possible situations could exist which are consistent with the observed 

experimental data. Hughes et al44 initially proposed rate limiting attack on the 

substrate by the nitrous acidium ion ( H 2 N 0 2

+ ) (scheme 1.8). 

HN0 2 + H30+ = = = H 2 N0 2

+ + H 2 0 
Scheme 1.8 

H 2 N0 2

+ + S »• Product 

It is possible that the nitrosonium ion (NO +) may act as the reactive species (scheme 

1.9). 

HN0 2 + H30+ H 2 N0 2

+ + H 2 0 

H2N02+ NO+ + H 2 0 Scheme 1.9 

NO+ + S »• Product 

l s O exchange experiments45 between nitrous acid and water have shown that rate 

equation 1.17 holds, with a value for k of 230 moH dm3 s 1 at 0°C. 
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Rate = k[HN0 2][H+] eqn 1.17 

If N O + is involved (scheme 1.9) then the exchange of one O atom in nitrous acid 

occurs for each nitrosonium ion formed which is rehydrated to form H 2 N 0 2

+ . This 

process must be faster than the reaction between the substrate and nitrosating species 

to be in accordance with equation 1.16. However, for reaction of azide ion (and 

other anions) there is a limiting third order rate constant value of -2500 mol 2 dm 6 s 1 

at 0°C. Under certain experimental conditions the reaction of anion + NO+ -» 

products is faster than the formation of the nitrosonium ion, suggesting a zero order 

dependence on the anion concentration. This is at variance with equation 1.16. The 

nitrous acidium ion has never been detected spectrophotometrically but it is likely that 

it is the effective nitrosating agent in dilute aqueous acid solution. N O + has an 

extremely short lifetime (ti^ - 3 x 10 1 0 s) so rehydration will probably be very rapid, 

possibly taking place with the same water molecule that it was previously bound to, 

thus not allowing 1 8 0 exchange. 

Other oxides of nitrogen which can be employed in the formation of S-nitroso 

compounds are dinitrogen tetroxide and nitric oxide. Many of the reactions of N 2 0 4 

are best interpreted in terms of an ionic structure NO + N0 3 ~ which is thought to exist 

in sulfuric and perchloric acids. It is an effective nitrosating agent at many 

nucleophilic sites. It is likely that N 2 0 4 (or dinitrogen trioxide) is the nitrosating 

species present formed by the aerial oxidation of nitric oxide, casting doubt over the 

effectiveness of NO as a nitrosation agent in its own right. However, when oxygen is 

excluded, nitric oxide can react with thiols in basic media46. The reaction is 

dissimilar to conventional electrophilic nitrosation and is outlined in scheme 1.10. 

RSH + B" ===^ RS" + BH 

RS" + NO RS — NO" RS—N—OH 

2RS—N—OH RS—N—N—SR *RSSR + xN 20 + yN 2 + zH20 

OH OH 

Scheme 1.10 
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Reaction proceeds via the thiolate ion attacking NO, followed by protonation and 

radical coupling. The dihydroxyhydrazine product is unstable and will eliminate 

hyponitrous acid (HON=NOH) to form the corresponding disulfide. Subsequent 

decomposition of H 2 N 2 0 2 will create nitrogen and nitrous oxide as by-products. 

Further mechanistic details behind the nitrosation of thiols by nitric oxide in vitro and 

in vivo are discussed in section 1.3.4. 

Nitrosyl halides11 (scheme 1.4) can be conveniently dissolved in many organic 

solvents (for example, toluene, ether or chloroform) and used as effective nitrosating 

agents. This is advantageous for substrates which have a low water solubility, 

rendering the nitrous acid method unproductive. Such compounds are generally 

prepared by reaction of nitric oxide with the appropriate halogen (equation 1.18). 

2NO + X 2 ** 2XN0 eqnl.18 

Nitrosyl fluoride, chloride and bromide are all well-known compounds which are 

gaseous at room temperature and pressure. They are commonly utilised as nitrosating 

agents following in situ generation from halide ion and acidic nitrous acid solution. 

An equilibrium exists (equation 1.19) where the nitrosyl halide formed can react with 

any substrate present. 

, K-XNO 

HN0 2 + X - + H+ , XNO + H 2 0 eqnl.19 

Equilibrium constants have been measured for nitrosyl chloride (5.6 x 1(H mol 2 dm6) 

and nitrosyl bromide (2.2 x 10 2 mol 2 dm6) at 0°C 4 7 . The faster hydrolysis of NOC1 

leads to a larger K X N O value for NOBr. Catalytic effects are observed on adding 

halide ion to both aqueous and organic solvent nitrosations. This is because addition 

of X" makes the nitrogen of the nitrosating agent more electrophilic. Nitrosyl 

chloride is seen to be more reactive than nitrosyl bromide due to the electronegativity 

difference between chlorine and bromine. Despite this, bromide ion catalysis is 

always greater due to the difference in K X N O values being so large. Fluoride ion 
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catalysis is as yet unknown, and although iodide ion catalysis is significant, K m o has 

not been measured due to the instability with respect to iodine formation (equation 

1.20) . 

2INO *» I 2 + 2NO eqn 1.20 

Thiocyanate ion (SCN") can also act as a good catalyst. Nitrosyl thiocyanate 

exists as a red unstable species in solution at low temperature. ONSCN has been 

identified as the nitrosating agent when reactions using acidic nitrous acid solutions 

containing SCN" have been carried out. Generally, thiocyanate ion will catalyse the 

same reactions as halide ion but catalysis is invariably more pronounced in the case of 

SCN". This can be explained by the equilibrium constant (Ko N S C N ) value (equation 

1.21) of 30 mol 2 dm6 at 25°C 4 8, analogous to the situation with halide ion. 

HN0 2 + SCN" + H+ ONSCN + H 2 0 eqn 1.21 

However, nitrosyl thiocyanate is less reactive than the corresponding nitrosyl halides 

with respect to nitrosation. The general trend observed is that the greater the 

nucleophilicity of the anion (X"), the lower the reactivity of the nitrosyl compound 

(XNO). The equilibrium values of XNO formation seem to be more significant than 

the intrinsic reactivity when considering anion catalysis. 

Nitrosonium salts NO +X" can be prepared by adding dinitrogen trioxide, 

dinitrogen tetroxide or nitrosyl chloride to a strongly acidic reaction medium 

(equation 1.22). 

N 2 0 4 + H 2S0 4 -NO+HSOf + HN0 3 eqn 1.22 

Generally such compounds are crystalline, reasonably stable materials. They have to 

be used under completely anhydrous conditions due to their ready hydrolysis, forming 

nitrous acid. As expected, they are extremely effective nitrosating species and have 

been widely used in a synthetic manner. 
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1.3.4 Kinetics of Nitrosation 

The nitrosation of thiol compounds to form S-nitrosothiols is probably the best 

example of S-nitrosation, having a history dating back to 183749. Both aromatic and 

aliphatic thiols undergo facile nitrosation with the range of nitrosating agents 

previously described (section 1.3.2- 1.3.3). The reaction can be undertaken in both 

organic and aqueous solvents (equation 1.23). 

RSH + XNO *• RSNO + H + + X" eqnl.23 

Kinetics have been carried out on the nitrosation reaction and for aqueous systems, 

under pseudo-first order conditions ([RSH] > > [HN0 2]), the following rate equation 

deduced (equation 1.24). 

Rate = k3[HN02][H+][RSH] eqn 1.24 

The reaction is seen to be first order in terms of nitrous acid, thiol and acid 

concentration. Third order rate constants (k3) measured for the nitrosation of 

structurally different thiols50 are similar and are usually obtained by stopped-flow 

spectrophotometry (table 1.1). For the most reactive thiols, k 3 approaches 7000 

mol 2 dm 6 s"1, which is thought to be the diffusion controlled limit. 

22 



Table 1.1 

Substrate k 3 (mo! 2 dm 6 s-1) 

>v / C O O H 
HOOC y 

SH 
1000 

. S H 

( C H 3 C O ) H N ' X ^ C O O H 
1590 

H O O C ^ S H 2630 

It is clear that the nitrosation of these thiols is extremely favourable. The 

N-acetylated derivative of L-cysteine (table 1.1) is almost four times as reactive as 

L-cysteine which can be explained by the positive charge on sulfur developed in the 

transition state being stabilised by interaction with the oxygen atom of the N-acetyl 

group (figure 1.3). 

X R + H 

H 

Figure 1.3 

This forms a six membered ring which will be sterically favourable. The rate law is 

consistent with rate limiting attack of the nitrosonium ion or nitrous acidium ion at 

sulfur (scheme 1.11). 
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HN0 2 + H+ - H 2 N0 2

+ ^ N0+ + H 2 0 

slow 
RSH + H 2 N0 2

+ or NO+ - " R— S— NO *RSNO + H+ 

H 

Scheme 1.11 

As sulfur atoms are more nucleophilic than corresponding oxygen atoms, the 

nitrosation reaction is observed to be more rapid for thiols than alcohols. Plots of 

pseudo-first order rate constants against [RSH] do not show significant intercepts, 

suggesting that the reaction is irreversible. However, O-nitrosation has been noted to 

be significantly reversible. This can be rationalised by the fact that oxygen is much 

more basic than sulfur (ApKA~ 5) in organic molecules and thus can accept a proton 

much more readily, which is the first step in the reverse reaction. It can be seen 

therefore that the forward reaction is governed by differing nucleophilicities (S > O) 

whereas the reverse reaction is determined by the difference in basicities (O > S). 

Herves Beloso and Williams51 have shown that the kinetic method of measuring the 

reversibility of S-nitrosothiol formation is not sufficiently sensitive but that a 

colorimetric technique can be employed. Indeed, it is more appropriate to express 

equation 1.23 as a reversible process (equation 1.25). 

The equilibrium constant, K has been measured as 3 x 105 moH dm 3 using 

penicillamine as the substrate. Typical corresponding K values for alcohols are 3.5 

and 1.2 moH dm3 for CH3OH and C 2H 5OH respectively52, illustrating the vast 

difference in reversibility of alcohol and thiol nitrosation. 

The nitrosation of thiols is catalysed by halide or thiocyanate ion as predicted. 

The rate equation for thiol reaction with nitrous acid in the presence of such 

nucleophiles has been determined (equation 1.26). 

K 
RSH + XNO RSNO + H+ + X" eqn 1.25 
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Rate = k2[RSH][XNO] eqnl.26 

The familiar order of reactivity NOC1 > NOBr > ONSCN is observed. For the 

majority of thiols, the reaction is first order in [RSH] as the rate equation suggests. 

However, the reaction of mercaptoacetic acid in the presence of thiocyanate or 

bromide ion produces plots of pseudo-first order rate constants against [RSH] which 

are linear initially but eventually level off at high [RSH], suggesting a zero order 

dependence on thiol. This experimental observation can be explained in terms of the 

mechanism postulated in scheme 1.12. 

HN0 2 + H30+ = ^ = ^ H 2 N0 2

+ + H 2 0 

H 2 N0 2

+ + SCN" ONSCN + H 2 0 

Scheme 1.12 

The nitrous acidium ion is formed in the usual manner during the initial step. An 

equilibrium exists between this species, added nucleophile (SCN" in this case) and the 

corresponding nitrosyl compound. ONSCN is then capable of attacking the thiol in 

the rate determining step. The zero order dependence is rationalised by the fact that 

at higher [RSH], the rate of formation of nitrosyl thiocyanate (kj) becomes rate 

limiting and is achieved when k2[RSH] > > k . ^ ^ O ] . 

There have been several recent literature reports proposing new mechanisms 

for the nitrosation of thiol species, with a view to predicting the situation in vivo. As 

mentioned previously (scheme 1.10), nitric oxide can react with -SH groups forming 

S-nitrosothiols under alkaline conditions in the complete absence of oxygen. 

However, NO is not thought to be able to perform this reaction at physiological pH 

(7.4) unless oxygen is present. Kharitonov et al53 have demonstrated this to be the 

case, suggesting that the effective nitrosating species is N 2 0 3 , formed via the aerial 

oxidation of NO. A first order dependence on oxygen and second order dependence 

k2 

RSH RSNO + SCN" 
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on nitric oxide is observed, consistent with the rate determining formation of nitrogen 

dioxide (equation 1.27). 

2NO + 0 2

 s l o w » 2N0 2

 N ° * N 2 0 3 eqn 1.27 

Two competing reactions are thought to subsequently occur (scheme 1.13). 

N 2 0 3 + H 2 0 »• 2H+ + 2N02" 
Scheme 1.13 

N 2 0 3 + RSH *• RSNO + H+ + N0 2" 

Potentially, N 2 0 4 could be acting as the nitrosating agent in this system. As nitrite is 

the other remaining reaction product, and no nitrate detected, dinitrogen trioxide is in 

fact favoured as both reagents act as a source of NO + for electrophilic nitrosation. 

Goldstein and Czapski54 have since verified this mechanism but postulate that it is 

unlikely to occur in vivo as a biosynthetic pathway for S-nitrosothiol formation as the 

half-life of the reaction will be greater than seven minutes under physiological 

conditions. From these results it can be concluded that S-nitrosothiols cannot act as 

carrier molecules of nitric oxide as NO will react with other substrates such as 

haemoglobin39. However, a novel mechanism55 proposes direct reaction of nitric 

oxide with reduced thiol in the presence of an electron acceptor (scheme 1.14). 

RSH + NO * R — S — N —OH 

R — S — N — OH + 0 2 **RSNO + 0 2" + H+ 

0{ + NO ONOO" 

Scheme 1.14 

The overall mechanism can therefore be represented by equation 1.28. 

RSH + 2NO + 0 2 RSNO + ONOO" + H+ eqn 1.28 
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Under aerobic conditions, oxygen can act as the electron acceptor forming superoxide 

which is converted to hydrogen peroxide in the presence of superoxide dismutase. It 

has also been shown that reaction may occur under anaerobic conditions using N A D + 

as an electron acceptor. Dinitrosyl iron complexes (DNIC's) (1.9) have been 

implicated in the nitrosation of thiols under physiological conditions56. 

RS\ ^ N O * 

Fe(-l) 1.9 

' \ 
RS" NO+ 

Such species act as a source of the nitrosonium ion. It is clear that there are several 

mechanisms that exist which could account for the in vivo formation of 

S-nitrosothiols. 

1.3.5 Nitrosation of Thiocarbonyl Compounds 

Thiocarbonyl compounds (such as thioureas) are nitrosated by XNO to initially 

form the S-nitrososulfonium ion (equation 1.29). 

^ C = S + XNO *• ^ C = S+— NO + X" eqnl.29 

Such species are unstable, and generally decompose to form the corresponding 

disulfide or disulfide dication. When thiourea (H2NCSNH2) is the substrate two 

reactions can occur depending on the acidity57. At high acid concentration nitric 

oxide is released and the disulfide dication is formed (equation 1.30). 

2HN0 2 + 2H+ + 2(NH2)2CS (]m2)2CSSC(NH2)2 + 2NO + 2H 20 

eqn 1.30 
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During nitrosation a red or yellow colour is observed, characteristic of the formation 

of an S-nitroso species. At low [ H + ] , N-nitrosation is apparent with the products 

being thiocyanate ion and nitrogen (equation 1.31). 

HN0 2 + (NH2)2CS H+ + SON- + N 2 + 2H 20 eqn 1.31 

Under certain circumstances urea is the final product of the nitrosation of thiourea58. 

This is seen at higher [ H + ] and hence may occur via nucleophilic attack of water on 

the S-nitrososulfonium ion (equation 1.32). 

^ C = S + XNO ^ C = S—NO H 2 ° » ^ )C = 0 eqn 1.32 

This is an extremely useful method of converting a thiocarbonyl compound into the 

corresponding carbonyl compound. The equilibrium constant K has been calculated 

(equation 1.33) to be 5000 mol - 2 dm6 for the formation of the yellow species derived 

from nitrous acid and thiourea59. 

K + 
HN0 2 + (NH2)2CS + H+ = = = (NH2)2CSNO + H 2 0 eqn 1.33 

This relatively large value explains the marked nitrosation catalysis seen by thiourea 

which is analogous to that observed to that observed by halide ion and thiocyanate 

ion. This is to be expected when taking into account the greater nucleophilicity of 

H2NCSNH2. The rate equation (equation 1.34) is similar to that seen for the 

nitrosation of thiols. 

Rate = k 3[(NH 2) 2CS][HN0 2][H+] eqn 1.34 

For thiourea, k 3 = 6960 mol 2 dm6 s 1 at 25°C 6 0 which is considered to be that of the 

encounter controlled reaction between the thiourea molecule and the effective 

nitrosating species. 
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1.4 Properties and Reactions of S-Nitrosothiols 

1.4.1 Physical Properties 

S-nitrosothiols (or thionitrites) are of the general formula RSNO and are the 

sulfur analogues of the much more widely studied alkyl nitrites. A comprehensive 

study of the chemistry of such compounds is reviewed by Oae and Shinhama61. 

Primary and secondary nitrosothiols are orange or red in colour, whereas more 

sterically hindered tertiary nitrosothiols are green, such as S-nitroso-N-acetyl 

penicillamine (SNAP) (1.10). 

,SNO 
1.10 

Hoocr NHCOCH3 

This compound is indefinitely stable in its solid form, having a melting point of 

152-154°C and a molar extinction coefficient value at 340nm of 980 moH dm3 cm 1 . 

This is typical of most aliphatic nitrosothiols which have an ultraviolet absorption 

maxima between 330 - 350nm with a corresponding e value of the order of 103 mol 1 

dm3 cm 1 . In addition, primary and secondary compounds exhibit a characteristic 

visible absorbance at 540nm whereas tertiary nitrosothiols absorb at around 590nm, 

(e ~ 10 - 20 mol 1 dm3 cm 1), these bands leading to the compounds being coloured. 

The electronic transitions responsible for ultraviolet/visible absorption have been 

assigned by Barrett et a l 6 2 so that the absorption at 330 - 350nm is due to the n 0 -»7 i* 

transition and at 540/590nm the nN—>n* transition is observed. 

More recently the S-nitrosothiol derived from 2-acetamido-2-deoxy-l-thio-P-

D-glucopyranose 3,4,6-triacetate has been synthesised and isolated63 (1.11). 
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CH3OCOCH2 

C H 3 O C O < ^ J — SNO 1.11 

CH3OCO NHCOCH3 

1.4.2 Thermal and Photochemical Decomposition 

Almost all primary and secondary S-nitrosothiols are unstable at room 

temperature and will decompose according to equation 1.35, the same reaction also 

occurring photochemically. 

2RSNO A ° r h V » RSSR + 2NO eqn 1.35 

The thiyl radical has been detected as an intermediate in this reaction64, formed by the 

homolytic fission of the S-N bond. The nitrosation of thiols has in fact been utilised 

as a synthetic method for making symmetrical disulfides. 

1.4.3 Metal Ion Induced Decomposition 

1.4.3.1 Copper Ion Catalysis 

It has become well documented that the release of nitric oxide from 

S-nitrosothiols at pH 7.4 in aqueous buffer solutions is a copper catalysed process65. 

Essentially, the reaction occurs with the same stoichiometry as the thermal and 

photolytic decomposition reactions (equation 1.36). 

added copper(II) salts 
2RSNO RSSR + 2NO eqn 1.36 

The nitric oxide produced will become oxidised prior to hydrolysis at pH 7.4 (scheme 

1.1), forming nitrite which has been detected quantitatively65. If oxygen is excluded 

then it is possible to detect NO itself using an NO-specific electrode. Concentrated 

solutions (0.1 mol dm 3) of S-nitrosocysteine will decompose to form the 

corresponding disulfide (cystine) in > 90% yield. Non-stoichiometric quantities of 
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copper ions are required to effect reaction, indeed there is often enough present as an 

impurity in buffer or distilled water solutions. The rate law (which applies for a 

range of copper ion concentrations) is given by equation 1.37. 

Rate = k2[Cu2+][RSNO] + k[RSNO] eqn 1.37 

A first order dependence on S-nitrosothiol and Cu2+ is observed. The term k' 

represents the portion of the rate due to the presence of adventitious copper ions as 

well as the spontaneous thermal reaction. Indeed, when the non-specific metal ion 

chelator EDTA (ethylenediaminetetraacetic acid, 1.12) is added to the reaction of 

copper ions and SNAP, decomposition is completely suppressed66. 

The catalysis due to "impurity" copper ions being present is apparent when a plot of 

pseudo-first order rate constant, k ^ (defined by equation 1.38) against [Cu 2 + ] is 

constructed. A linear relationship is revealed with a small intercept, as predicted. 

^-[RSNO] = kotetRSNO] k ^ = k2[Cu2+] + k* eqn 1.38 
dt 

Therefore, the slope of such a plot is equal to k 2, the second order rate constant for 

reaction (equation 1.37). The value of k 2 depends greatly on the nature of R 6 6 (table 

HOOCH, C 
N N 

\ 

CH,COOH 
1.12 

HOOCH2C CH2COOH 

1.2). 
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Table 1.2 

Substrate k 2 (moH dm 3 s"1) 

.SNO 

H 2 N ^ C O O C 2 H 5 
270,000 

yv y C O O H 
HOOC Y 

SNO 
1100 

/ \ 
H3COCN SNO 0 

The most reactive structures are for the S-nitrosothiols derived from cysteine, 

cysteamine and penicillamine, where the added copper can be complexed with both 

the nitrogen atom of the nitroso group and the nitrogen atom of the amino group 

(figure 1.4). 

H 2 C " ^ N = 0 V " " N = 0 

H 2 C ^ C u 2 + H O O C ^ N ^ + 

H 2 H 2 

Figure 1.4 

Co-ordination can also be envisaged at the carboxylate group in compounds such as 

S-nitrosomercaptoacetic acid (figure 1.5). 
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S—N 

\ 
o 

.0 

Cu2+ Figure 1.5 

N-acetylation of the amino group (as in S-nitroso-N-acetylcysteamine, table 1.2) 

reduces the rate of reaction to a negligible level, due to the delocalisation of the lone 

pair of electrons present on nitrogen onto the carbonyl group (figure 1.6). 

If there is no such amino or alternative electron donating group present in the 

vicinity of the nitroso group the reaction is very slow (as for (CH3)3CSNO). In 

addition, the inclusion of an extra methylene group within the substrate will reduce 

the value of k 2 . This is due to the formation of a more sterically unfavourable seven 

membered ring intermediate. A pronounced "gem-dimethyl effect" is observed67 

which is well illustrated by the difference in reactivity of S-nitrosopenicillamine and 

S-nitrosocysteine (k 2 = 67,000 and 24,500 mol 1 dm3 s 1 respectively66). In the 

former compound the two ot-carbon methyl groups both generate an increase in the 

electron density around the nitrosothiol moiety and also prevent rotational isomers 

which have an unfavourable configuration for reaction. It has recently been 

demonstrated by thermogravimetric analysis that in SNAP the gem methyl groups 

have little effect on the strength of the -S-NO bond directly68. The exact mechanism 

for the reaction has not been established although the possible change in oxidation 

state of the added copper is of some interest. EPR experiments examining the Cu 2 + 

signal during the course of the reaction showed no spectral change66, suggesting that 

C u 2 + ->• Cu + reduction does not take place. 

.r\ I P 
— N — C— < 

O 

N = C — C H 3 

H H 

Figure 1.6 
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1.4.3.2 Silver and Mercury Ion Induced Reaction 

Mercuric ion also promotes the decomposition of S-nitrosothiols in aqueous 

solution (equation 1.39). 

RSNO H g ? + *• R — S — N = 0 H 2 ° » RSHg+ + H+ + HN0 2 eqn 1.39 

Hg + 

The reaction differs to that of copper ion catalysis in that stoichiometric amounts of 

H g 2 + are required (2:1 RSNO:Hg2+ in order to obtain complete nitrosothiol 

decomposition), indicating a non-catalytic reaction. Also, nitric oxide was not 

detected as a product69 using an NO-specific electrode suggesting a different reaction 

mechanism. Saville70 proposed that H g 2 + co-ordinates to the sulfur atom of the 

nitrosothiol and causes heterolytic N-S bond fission, forming RSHg+ and NO+. Use 

has been made of this reaction in the quantification of thiols70. It is found to be first 

order in both nitrosothiol and mercuric ion (equation 1.40). 

Rate = k2[Hg2+][RSNO] eqn 1.40 

In direct contrast to results obtained for Cu 2 + catalysis, k 2 values do not vary greatly 

in terms of altering the environment around the S-nitroso group. This implies that 

co-ordination of mercuric ion occurs only to the sulfur atom and not to any other 

functional group in the molecule. This is to be expected as the affinity of H g 2 + for 

thiol species is greater than for any other ligand, leading to the -SH functionality 

being termed "mercapto". The formation of such stable complexes leads to large 

values for k 2 (of the order of 103-104 moH dm3 s - 1) 6 9, generally greater than that 

noted for copper ion catalysis. 

Silver(I) also has a high affinity for -SH groups. Product analysis of the 

reaction between A g + and S-nitrosoglutathione indicated that RSAg and nitrous acid 

were formed69. The timescale of the reaction between S-nitrosothiols and silver(I) is 
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similar to that of C u 2 + . However, due to the insolubility of the product RSAg 

complexes limiting kinetic studies, a structure/reactivity analysis is difficult to 

undertake. 

1.4.3.3 Ferrous Ion Catalysis 

It has also been noted that ferrous ion (Fe 2 +) is capable of acting as a catalyst 

for the release of nitric oxide from S-nitrosothiols65. Due to the instability of ferrous 

ion with respect to aerial oxidation, any kinetic studies have to be performed under 

completely anaerobic conditions. The reaction between SNAP and Fe 2 + was 

examined and pseudo-first order rate constants varied from 1.5-9.4 x 10 3 s 1 utilising 

the same reactant concentrations for 14 separate experiments69. This irreproducibility 

of results may be partly due to the nitrogen purging method of producing an 

oxygen-free environment not being completely effective, thus allowing the oxidation 

of Fe 2 + to catalytically inactive ferric ion. An additional problem is that of copper 

catalysis interfering with the ferrous ion reaction. There is a literature report71 that 

S-nitrosoglutathione will decompose in the presence of glutathione (GSH) and added 

Fe 3 + , suggesting the possibility of reduction by thiolate to ferrous ion and subsequent 

reaction catalysis (equation 1.41). 

GS" + Fe3+ *• Fe2 + + GS' eqn 1.41 

Such a mechanism may prove to be of physiological significance in vivo. 

1.4.4 Acid Catalysed Decomposition 

As mentioned in section 1.3.4, nitrosation of thiols is essentially an 

irreversible process, which can be explained by the lower basicity of the sulfur atom 

compared with an analogous oxygen atom. However, denitrosation is observed72 at 

high acidities ( 1 - 4 mol dm 3 H 2S0 4) in the presence of added nucleophiles and a 

nitrous acid trap (such as N3") to prevent the reverse reaction. Scheme 1.15 details 

the proposed reaction mechanism. 
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K + k„ X-
RSNO + H+ •• RS—NO - RSH + XNO 

H 
k2 

XNO + HN 3 f N 2 + N 2 0 + H+ + X" 

Scheme 1.15 

The rate equation (1.42) can be described as follows. 

-d[RSNO] = ^[R^HNojfX"] - k_![RSH][XNO] 
dt 

eqn 1.42 
k2Khoki [X"] [HN3] [RSNO] 

k 2[HN 3] + MRSH] 

where h 0 represents the Hammett acidity function, which is required as a 

measurement of solvent acidity for concentrated solutions. 

kobs[RSNO], kobs is given by equation 1.43. 

eqn 1.43 

k 2[HN 3] + k.![RSH] 

At high azide concentrations, k 2[HN 3] > > k.^RSH] and therefore 

kobs = KhoktfX-] eqn 1.44 

Equation 1.44 indicates that at high [HN 3], k^,. becomes independent of azide 

concentration and a limiting value is reached which is the same when sulfamic acid is 

used as the nitrous acid trap. A plot of k^,, against nucleophile concentration is linear 

with a significant common intercept due to the solvent promoted reaction. The 

gradients give a measure of k j , the second order rate constant for nucleophilic attack 

of X", and increase in the expected order CI" < Br" < SCN". Surprisingly, thiourea 

A s -d[RSNO] 
dt 

kobs — 

36 



is found to be less reactive than thiocyanate ion even though it is a better nucleophile. 

Steric reasons have been proposed to explain this observation. 

1.4.5 Transnitrosation 

Transnitrosation describes the transfer of the NO group from an S-nitrosothiol 

(or other nitroso-containing molecule) to a suitable nucleophile. I f the nucleophile is 

thiolate ion then a new S-nitrosothiol is formed (equation 1.45). 

RSNO + R'S" .. RS" + R'SNO eqn 1.45 

The reaction occurs readily in aqueous solution at pH > 8 and has been found to be 

first order in both nitrosothiol and thiolate73 (equation 1.46). 

Rate = k2[RSNO][R'S"] eqn 1.46 

The question arises as to whether a direct reaction takes place between the 

S-nitrosothiol and thiol (or thiolate) or if prior release of nitric oxide occurs. A pH 

dependence study has shown that the reactive species is thiolate as an S-shaped curve 

of pH against pseudo-first order rate constant is obtained, when [R'SH] > > 

[RSNO]7 4. This suggests that nucleophilic attack is occurring at the nitroso-nitrogen 

atom. A mechanism where nitric oxide is released and oxidised to form an 

electrophilic nitrosating agent (such as N 2 0 3 ) can be disregarded, as the rate of NO 

release from S-nitrosothiols such as SNAP66 is an order of magnitude smaller than the 

measured rate of transnitrosation73. 

Structure-reactivity studies using the same thiolate ion (table 1.3) have 

indicated that a larger second order rate constant (k 2 in equation 1.46) is obtained on 

introducing electron withdrawing species in the nitrosothiol. 
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Table 1.3 

Substrate k 2 (mol 1 dm 3 s 1) 

SNO 95 

HO 
432 

CI ~ ( ^ ^ ~ CH 2SNO 1016 

(for reaction with the thiolate ion derived from N-acetylcysteine) 

This reinforces the mechanism of nucleophilic attack previously described. On 

repeating this work with a particular S-nitrosothiol and nine thiolate anions, little 

variation in k 2 was noted. However, the reactivity of the anions derived from 

cysteine and penicillamine are of interest (table 1.4). 
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Table 1.4 

Substrate k 2 (mol"1 dm3 s_1) 

H 2N XOOH 
445 

> 
H 2N XOOH 

23 

(for reaction with S-nitroso-2-hydroxyethanethiol) 

The decreased reactivity of the penicillamine thiolate ion is not to be expected on 

electronic grounds, so a steric effect must be significant in this case. The same trend 

has been documented by Meyer et aP5. Recent work by Zhang et aP6 has followed 

the transnitrosation reaction between various S-nitrosothiols and bovine serum 

albumin (BSA), which has a thiol group (Cys-34) present in a hydrophobic pocket, 

next to an anionic carboxylate group. Unsurprisingly, cationic nitrosothiols (1.13) are 

the most reactive (k 2 = 510 moH dm3 s1)-

H 3 N SNO 
1.13 

Disulfides were shown to be reasonably unreactive with respect to reaction with 

Cys-34. The anion derived from S-nitrosothio-2-nitrobenzoic acid (1.14) has been 

shown77 to act as an effective reagent for the nitrosation of thiol groups in human 

serum albumin (HSA) via a transnitrosation mechanism. 
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0 2 N 1 SNO 1.14 

•ooc 

1.5 Nitric Oxide Donor and Acceptor Compounds 

1.5.1 Introduction 

It is clear that nitric oxide is a molecule of profound importance in a 

physiological sense (section 1.2). Therefore, there is currently unprecedented interest 

in the design and synthesis of molecules that can deliver NO in vivo 

(nitrovasodilators). Such compounds must be of low toxicity and have controllable 

distribution characteristics throughout the body, along with harmless byproducts. 

Very many drugs are now tested for their nitrovasodilatory properties which have 

vastly differing chemical structures. However, they all seek to act in a similar 

manner by activating the enzyme guanylate cyclase and raising the levels of cyclic 

guanosine monophosphate within cells. In addition, the search is now on for 

compounds which can significantly reduce intracellular nitric oxide levels, either by 

inhibition of inducible nitric oxide synthase (section 1.2.2) or by binding of NO 

directly for the treatment of diseases such as septic shock. Future prospects appear to 

be extremely encouraging in this popular field of research, which will now be 

discussed in detail. 

1.5.2 Nitrovasodilators 

1.5.2.1 S-Nitrosothiols 

S-nitrosothiols have been implicated in the inhibition of platelet aggregation34 

and shown to promote vascular arterial smooth muscle dilation78. However, in many 

cases, the chemical properties of such compounds in vitro are not mirrored by their 

physiological behaviour in vivo. At this time it is unresolved as to whether 

S-nitrosothiols can mediate their effects via prior release of nitric oxide or whether the 
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molecule remains intact. The in vitro decomposition of these materials has been 

extensively studied (section 1.4.3 - 1.4.5) with the discovery of the copper catalysed 

reaction65 suggesting a plausible mechanism in vivo. The possibility exists that more 

stable nitrosothiols (such as GSNO) act as a "reservoir" of nitric oxide which can be 

transferred via transnitrosation to form reactive nitrosothiols (such as 

S-nitrosocysteine) which subsequently decompose, releasing NO. It may be the case 

that protein molecules (eg HSA) can store nitric oxide before transnitrosation79. 

S-nitrosothiols have the advantage of being less prone to inducing tolerance80, a 

problem associated with glyceryl trinitrate (section 1.5.2.2), with their decomposition 

products being disulfides which are non-toxic and easily excreted. Recently, Ramirez 

et aPl has synthesised a range of novel glyco-S-nitrosothiols (for example, 1.15) 

which have improved water solubility and cell penetration characteristics. 

Such materials are hoped to show improved pharmacokinetic properties when 

compared with well-known nitrovasodilators (eg SNAP). 

1.5.2.2 Organic Nitrates and Nitrites 

As mentioned in section 1.2.1, glyceryl trinitrate (GTN) and amyl nitrite have 

been used for the treatment of angina pectoris and other circulatory problems for 

many years. Despite this, a detailed understanding of how these compounds cause 

vasodilation has only relatively recently come to light. In 1973, it was discovered 

that GTN had to react with thiols in order to exhibit its nitrovasodilator 

characteristics82, even though it was not known that nitric oxide was released. 

Ignarro et a/83 subsequently demonstrated the formation of nitric oxide from GTN in 

the presence of thiol. However, it is now clear that although thiols such as cysteine 

and N-acetylcysteine will decompose organic nitrates to form NO, most will react to 

OH 
NHCOCH3 O HO H 

N 
HO OH O 

SNO 

1.15 
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form nitrite and nitrate ions84. It is believed that nucleophilic attack of thiolate ion 

takes place at the nitrogen of the organic nitrate, forming a thionitrate which 

decomposes to release NO (scheme 1.16). 

R—ON02 — » R'SN02 + ROH 
^ V ^ ^ Scheme 1.16 

NO 

Recent reports85 have suggested that thionitrates are indeed intermediates in this 

reaction. The fate of t-butyl thionitrate OBuSNO^ has been studied at pH 7.4 and the 

mechanism of decomposition outlined in scheme 1.17. 

tBuSN02 ~ • lBuS—ONO ** tBuSO + NO 

tBuSO' + tBuSN02 •> tBuS—StBu + N 0 2 

o (0 o 
tBuSO' + tBuSO- tfiuS—StBu tBuS—StBu 

II II II m 0 0 o 

Scheme 1.17 

It can be seen that t-butyl thionitrate dissociates rapidly following rearrangement to 

form nitric oxide and sulfinyl radical. The observed carbon containing products are 

(1) and (2), di-t-butyl thiosulfinate and di-t-butyl thiosulfonate respectively. Nitric 

oxide was detected using an NO-specific electrode. The absence of 'BuSStBu as a 

product eliminates the possibility of S-nitrosothiol formation and decomposition. 

Perhaps surprisingly, t-butyl thionitrate did not activate soluble guanylate cyclase, 

either in the presence or absence of added thiol. This implies that the P-carboxylate 

group of cysteinyl thionitrate and N-acetylcysteinyl thionitrate are essential for GC 

activation. The development of tolerance to GTN and other organic nitrates is a big 

problem that such compounds have as therapeutic drugs. This may be explained by 

the progressive depletion of intracellular thiol levels due to the formation of 
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thionitrates. An enzymic mechanism involving the interaction of GTN with 

glutathione-S-transferase has also been postulated which is again dependent on the 

presence of a sulfhydryl group. 

In comparison, the mechanism of nitric oxide formation from organic nitrites 

is much more established. A transnitrosation reaction86 takes place with thiols 

producing a nitrosothiol which decomposes to NO (scheme 1.18). 

RONO + R'SH *• R'SNO + ROH 

2R'SNO *• R'SSR' + 2NO 

Scheme 1.18 

As mentioned in section 1.5.2.1, the release of nitric oxide from S-nitrosothiols in 

vivo is not fully understood. RONO compounds can also react with biologically 

relevant reducing agents which are conjugation stabilised ene diols (such as catechol, 

1.16)87. 

OH 

OH 1.16 

The reaction is thought to proceed via nitrosation of the dianion derived from catechol 

and homolytic cleavage of the O-NO bond, forming nitric oxide. This may constitute 

an alternative pathway to the transnitrosation mechanism described previously for the 

in vivo formation of NO from alkyl nitrites. 

1.5.2.3 Heterocyclic Nitric Oxide Donors 

Among the more popular compounds currently being studied as potential NO 

donors are heterocycles containing a nitrogen (or other) heteroatom. Typical 

examples are given in figure 1.7. 
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N 
I 

N 0 2 

N-nitropyrazoles 

// W + 

Furoxans 

Figure 1.7 

Nitrosi mines 

N-nitropyrazoles have been analysed by Grigor'ev et a/88. These compounds have 

been found to react with cysteine to form nitrous acid which nitrosates the thiol 

producing S-nitrosocysteine. Subsequent decomposition releases nitric oxide (scheme 

1.19). 

H N 

N 

N 0 2 

+ 2RSH N. 

I 
H 

+ RSSR + HN0 2 

RSH + HN0 2 RSNO + H 2 0 

2RSNO RSSR + 2NO 

Scheme 1.19 

There is an apparent similarity between the participation of cysteine in this instance 

and in the case of GTN, which has already been discussed. Preliminary data suggests 

that the N-nitropyrazole (R = R' = CH3) will activate soluble guanylate cyclase. 

Furoxans are another type of heterocyclic compound that, in a similar manner 

to organic nitrites, will react with a thiol to form an unstable S-nitrosothiol, again 

releasing NO on decomposition89. Furoxans will however stimulate soluble guanylate 

cyclase in the absence of sulfhydryl-containing compounds. Any thiol will release 

NO from these materials via a nitrosothiol intermediate. A tentative mechanism for 

this intermediate formation is outlined in scheme 1.20. 
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Scheme 1.20 

R 

O O 

R'S" 

R'SNO 

NO 

SR' 

v-NO" 

R R 

SR' 
O 

The delocalisation of positive charge on N-2 of the furoxan ring makes nucleophilic 

attack of R'S" at C-3 likely. Subsequent ring-opening forms the nitroso derivative 

which reacts with further thiol to form an S-nitrosothiol. 

Nitrosimines are normally extremely unstable compounds90 which decompose 

to the corresponding ketones by expulsion of molecular nitrogen (scheme 1.21). 

R 
\ C = N — N = 0 

R* 

\ / ° \ X N 

R' N 

Scheme 1.21 

R 
\ C = 0 + N 2 

R' 

On substituting a heterocyclic ring (eg thiazole), much more stable species are formed 

(1.17). 

N — N = 0 

R, R' = H3C-, H-, MeOPh-

1.17 

Thiazole-2-nitrosimine (R=R'=H) is susceptible to photolytic N-NO bond cleavage91 

and will activate soluble guanylate cyclase in the presence of thiols. 
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1.5.2.4 Metal Nitrosyls 

Other compounds containing nitric oxide as a ligand have the same potential as 

more commonly known nitrovasodilators to deliver NO in vivo. These include metal 

nitrosyls, which contain one or more M-NO bonds (as described in section 1.1.4). 

Sodium nitroprusside (1.18) is such a drug which is commonly used to induce low 

blood pressure during surgery. 

Na2[Fe(CN)5NO] 1.18 

Photolysis of sodium nitroprusside leads to cleavage of the Fe-NO bond92. There is 

also a non-photochemical mechanism of nitric oxide release which is thought to 

involve thiols78. 

Other iron-nitrosyl complexes known to be capable of NO mediated 

vasodilation are Cubane and Roussin's Black Salt (RBS)93, tetranitrosyltetra-^-

sulfidotetrahedro-tetrairon and heptanitrosyl-|*3-thioxotetraferrate(l-) respectively 

(1.19). 

Fe-
ON 

/ NO 

Fe \ 
NO 

Cubane 

1 
/ 

ON 

Fe-

NO 
I 

Fe 

Vs-J 

ON 

NO 

Fe 
\ 
NO 

Roussin's Black Salt 

1.19 

RBS is made by self-assembly from sulfide, iron(II) and nitrite and converted into 

Cubane by reaction with elemental sulfur. Solutions of both compounds are intensely 

black and endothelial cell staining is observed during the measurement of rat tail 

arterial relaxation94. The surprising lipid solubility of RBS (considering its ionic 
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nature) may explain the long lasting vasodilatory effects observed in this case. 

Haemoglobin (an NO scavenger) and methylene blue (an inhibitor of soluble 

guanylate cyclase) both block the action of these compounds in vivo. Morlino et a/95 

have described nitric oxide release from metalloporphyrin-NO complexes, in 

particular nitrosylcobalt(II) tetraphenylporphinate, (TPP)-Con-NO. The NO ligand is 

released following light absorption in the molecular n system within ~ 30 

picoseconds. It is possible that such metalloporphyrins may act as storage and 

transport systems for nitric oxide. 

1.5.3 Nitric Oxide Acceptor Compounds 

Septic shock (section 1.2.5) is a disease caused by high levels of bacteria 

present in the blood circulation. This induces macrophage stimulation and an increase 

in nitric oxide concentration, leading to vasodilation. The consequence is a severe 

drop in blood pressure, and eventually vascular collapse. It is fatal in over 50% of 

cases, and thus the search is on for new drugs that can reduce NO levels. The 

traditional approach is via organic chemistry with many researchers investigating the 

use of inhibitors of inducible nitric oxide synthase96 (section 1.2.2). However, such 

compounds (eg N-monomethyl-L-arginine, 1.5) have a number of side-effects, mainly 

affecting the local blood circulation within organs, particularly the lungs. An 

alternative method is to remove nitric oxide by use of a specific, high affinity, non

toxic scavenger. Ruthenium readily forms nitrosyl complexes and indeed has a higher 

affinity for NO than any other metal97. Ru(III) will react with NO to form a very 

stable bond and the presence of other ligands conferring water solubility allows rapid 

in vivo clearance. It has been demonstrated that ruthenium(III) polyaminocarboxylate, 

K[Ru(Hedta)Cl] (1.20) is a water soluble complex which will reduce nitrite levels in a 

culture medium of macrophage cells stimulated to produce nitric oxide98. 
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Scheme 1.22 

The proposed mechanism for this reaction involves the formation of the aqua species 

[Ru(Hedta)(H20)], (scheme 1.22), followed by associative ligand substitution with 

NO to form the nitrosyl. The pendant carboxylate group may facilitate this 

substitution" since replacement by an alcohol group leads to a reduction in the 

observed activity. At pH 7.4 and 7.3°C the second order rate constant for nitric oxide 

binding is ~2 x 107 mol 1 dm3 s_1. Such complexes therefore have great potential as 

NO scavengers in nitric oxide mediated diseases. 
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Chapter 2: Mechanistic Studies of Copper Catalysed Nitric Oxide Formation 
from S-Nitrosothiols 

2.1 Introduction 

The potential importance of S-nitrosothiols as i) alternative nitric oxide 

releasing drugs, and ii) storage and transport forms of NO in vivo has already been 

discussed (section 1.5.2.1). It appears that the copper ion mediated decomposition 

pathway of these compounds is of great significance in vitro1. Askew et at1 have 

described in detail the effect of adding Cu 2 + to S-nitrosothiol solutions and proposed 

a catalytic mechanism. However, the rate law (given by rate = k 2[Cu 2 +][RSNO] + 

k'[RSNO]) only appears to apply for a specific range of C u 2 + concentrations which 

may differ from one nitrosothiol to the next. Outside this "window" of copper ion 

concentrations other kinetic patterns become dominant. At low [Cu 2 + ] distinct 

induction periods are often observed and the reaction appears autocatalytic, whereas 

on occasions a zero order dependence upon [RSNO] is noted. In addition, a wide 

range of situations occur where the kinetics are of an intermediate order. Clearly, the 

mechanism of this reaction has not yet been fully deduced and further work is 

required to explain all the experimental results collected. 

2.2 Synthesis of a Stable S-Nitrosothiol 

S-nitroso-N-acetylpenicillamine (SNAP) was prepared (equation 2.1) as 

described by Field et aP with some slight alteration. 4.78g of N-acetylpenicillamine 

was dissolved in a 1:1 mixture (300ml) of methanol and 1 mol dnr3 HC1 with 20ml of 

concentrated sulfuric acid. The reaction vessel was covered with aluminium foil to 

minimise disulfide dimer formation by photolysis and cooled to 0°C in an ice bath. A 

solution of sodium nitrite (3.45g) was added slowly over ten minutes with vigorous 

stirring. After leaving overnight, a green solid with red reflections was precipitated, 

filtered and dried thoroughly in a vacuum desiccator. 
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SH SNO 
HN02/H+ eqn 2.1 

HOOC NHCOCH3 HOOC NHCOCH3 

The yield based on weight of product = 48.2%. Elemental analysis for SNAP 

requires C = 38.14%, H = 5.45% and N = 12.71%. Obtained: C = 38.12%, 

H = 5.63% and N = 13.00%. 

Melting point = 151-152°C dec., literature1 = 153°C dec. 

*H NMR (Me2SO-d6): 5 1.86 (s, 3H), 1.93 (s, 3H), 1.95 (s, 3H), 5.15 (d, J=9Hz, 

1H), 8.51 (d, J=9Hz, 1H). SNAP prepared in this manner was used in all 

subsequent kinetic experiments, unless otherwise stated. 

2.3 Metal Ion Chelation Studies 

2.3.1 Neocuproine Chelation 

As described in section 1.4.3.1, the addition of excess EDTA over C u 2 + to the 

reaction of S-nitrosothiols with copper ions causes inhibition of substrate 

decomposition3. EDTA favourably binds doubly charged metallic ions such as 

Cu(II), Ca(II) and Fe(II)4 and is also capable of Cu + chelation. The zero order 

dependence on [nitrosothiol] (section 2.1) could be explained by rate limiting 

C u 2 + -» Cu + conversion by reduction. EPR experiments are not in favour of this 

taking place however as Cu + could not be detected during the course of reaction. The 

use of a specific copper(I) ion chelator may prove advantageous in this instance. Such 

a compound is neocuproine5 (2,9-dimethyl-l,10-phenanthroline, 2.1). 

2.1 
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This chelator was first used for the detection of copper in steel by Smith and 

McCurdy6. It has the benefit of forming an adduct, Cu(NC) 2

+, with Cu + (where NC 

represents neocuproine) which has an absorbance maximum at 453nm (b = 7950 

moH dm3 cm 1) (2.2), away from the ultraviolet S-nitrosothiol peak at 330-350nm. 

dm 
Cu 

N N 

o 

+ 

2.2 

In aqueous solution, the stability constant of structure 2.2 is 1.2 x 101 9 mol"2 

dm 6 . 7 Its specificity for Cu + can be explained in terms of the electronic 

configurations of Cu(II) (d9) and Cu(I) (d 1 0) and the resulting preferred geometries of 

these ions. Cupric complexes are usually square planar (or octahedral with 

Jahn-Teller distortions), whereas cuprous complexes are more likely to display 

tetrahedral coordination. The probable geometries exhibited in each instance are 

shown in figure 2.1. 

+ 

2+ 
N N 

Cu 
N 

a Cu 
N N c 15 

Figure 2.1 

Cu2+, square planar Cu+ tetrahedral 
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Steric hindrance is considerable in the four coordinate Cu 2 + complex due to the 

interaction of methyl groups whereas no such destabilisation is expected in the 

cuprous ion case. 

The uv/visible spectrum of 2 x 10 5 mol dm 3 Cu 2 + (added as CuS0 45H 20) 

and 4 x 10~5 mol dnr3 neocuproine hydrochloride trihydrate in 0.12 mol dm 3 

phosphate buffer (pH 7.4) was no different to the equivalent spectrum of neocuproine 

alone. This indicates the reluctance of neocuproine to chelate C u 2 + under these 

experimental conditions. On adding sodium dithionite, Na 2S 20 4 to the initial 

copper(II) containing solution an immediate pale yellow colour was noted, along with 

a new absorbance maximum at 453nm, suggesting the formation of adduct 2.2. 

Dithionite acts as a reducing agent8 (equation 2.2) in this case, forming Cu + which 

becomes trapped by neocuproine. 

S204

2- + 2Cu2+ + 40H" »• 2Cu+ + 2S03

2- + 2H 20 eqn2.2 

Having demonstrated the specificity of neocuproine towards copper(I) ions, the 

decomposition of SNAP (1 x 10 3 mol dm*3) at pH 7.4 was followed 

spectrophotometrically at 340nm by monitoring the decrease in absorbance as a 

function of time. Initially Cu 2 + (2 x 10 5 mol dnr3) alone was added and trace (a) 

(figure 2.2) obtained. Following this varying concentrations of neocuproine were 

added in the range 4 x 10'5 - 1 x 10~3 mol dnr3. Initial observations indicated that the 

addition of neocuproine slowed the denitrosation reaction until complete inhibition is 

attained at > 10"3 mol dnr3. The reduction in rate was accompanied by an increase 

in absorbance at 453nm, indicative of Cu+/neocuproine adduct formation. There 

must be a competitive complexation effect occurring between copper(I), SNAP and 

neocuproine. It is only when [neocuproine] > [SNAP] that the reaction is entirely 

prevented. 

59 



Figure 2.2 

Traces showing the decomposition of SNAP (1 x 10 3 mol dm 3 ) in the presence of 

2 x 10"5 mol dnr3 Cu 2 + and varying neocuproine concentrations 

1.00 

(h) 

to 

0 CD 

CO € 0.50 
CO ( d ) 

(a) 

0.0 300 600 
Time/s 

(a) no added neocuproine; (b) 4 x 10-5 mol dm 3 neocuproine; 

(c) 5 x 10-5 mol dm 3 neocuproine; (d) 6 x 10-5 mol dm 3 neocuproine; 

(e) 8 x 10"5 mol dm 3 neocuproine; (f) 1 x 10~4 mol dm 3 neocuproine; 

(g) 2 x 1(H mol dm - 3 neocuproine; (h) 1 x 10 3 mol dm"3 neocuproine. 

Similar experiments over a smaller range of neocuproine concentrations 

utilising a different solid sample of SNAP (with a different concentration of thiol 

impurity present) allowed quantification of this effect. Good first order exponentials 
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were obtained in each case and rate constants measured. The results are summarised 

in table 2.1 and figure 2.3. 

Table 2.1 

Kinetic data for the effect of neocuproine on the decomposition of SNAP 

(1 x lO-3 mol dnr3) in the presence of Cu 2 + (2 x 10"5 mol dnr 3) 

[neocuproine]/10-5 mol dm -3 W 1 U - 4 s-i 

1.0 214 ± 2 
2.0 83 ± 1 
2.5 43 ± 1 
3.0 26 ± 0.9 
3.5 16 ± 0.5 
4.0 12 + 0.4 
6.0 6 ± 0.08 
8.0 4 ± 0.04 
10.0 3 ± 0.03 

Figure 2.3 

Plot of k^bs against added neocuproine concentration for the reaction of SNAP 

(1 x 10 3 mol dm 3 ) in the presence of Cu 2 + (2 x 10-5 mol dnr 3) 

2.5 t 

2 . 0 -

1.0 — 

0.5— 

[Neocuproine]/10 mol dm' 
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It is clear that cuprous copper is being generated throughout the reaction, with 

the possibility arising that it may be acting as the true catalytic species. The same 

trends were observed for other nitrosothiols, namely S-nitroso-2-

(mercaptopropionyl)glycine and S-nitroso-2-N,N-dimethylaminoethanethiol. Having 

detected Cu + the use of a further metal ion chelator was employed as a mechanistic 

probe. 

2.3.2 Cuprizone Chelation 

Cuprizone (biscyclohexanoneoxalyldihydrazone, 2.3) is a specific Cu 2 + 

chelator9-™ 
O O 

- C — N — N = f 
H N — N 

2.3 

It is an extremely useful reagent under the required experimental conditions as the 

blue copper(II): cuprizone complex formed has a molar extinction coefficient of 

16,000 mol"1 dm3 cm 1 at 600nm, meaning that micromolar quantities of C u 2 + can be 

detected. The chelator is soluble in most organic solvents and forms a 2:1 

cuprizone:Cu2+ complex (2.4), but does not give a colour with any other cations or 

anions. 
OH O 

N — N = f = N — N 

N — N = N — N 

O OH 

2.4 
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The specificity of this compound towards Cu 2 + had been tested by addition of 

sodium dithionite (x 50 excess) to an aqueous solution of copper(II) sulfate 

pentahydrate and subsequent addition of cuprizone (x 4 excess)11. No blue 

colouration or absorbance at 600nm was noted, due to the lack of chelation of cuprous 

copper. When SNAP (1 x 10 3 mol dm 3 ) was allowed to decompose in the presence 

of C u 2 + (2 x 10 6 mol dm 3 ) , good first order kinetics were observed at 390nm, which 

is a more convenient wavelength at which to follow the reaction when cuprizone is 

added. Addition of this chelator (2 x 10 5 mol dm 3 ) to the same system before the 

S-nitrosothiol is introduced leads to complete inhibition of reaction (figure 2.4, trace 

(a)). When decomposition is allowed to proceed for 440 seconds and then cuprizone 

added at the same concentration as before, reaction is again halted (figure 2.4, trace 

Traces showing the decomposition at 390nm of SNAP (1 x 10"3 mol dnr 3) in the 

presence of 2 x 10 6 mol dnr3 Cu 2 + and cuprizone (2 x 10-5 mol dnr 3) 

(b)). 

Figure 2.4 

0.25 t 

8 0.15 -

0.2 -
(a) 

cuprizone added before S-nitrosothiol 

3 0.1 -
o 

0.05 --

(b) 
cuprizone added after 440 seconds 

0 
0 200 400 600 

Time (seconds) 
800 1000 
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During the acquisition of trace (b), the characteristic peak at A, m a x = 600nm is 

observed. This implies that during the decomposition of S-nitrosothiols such as 

SNAP, a redox mechanism is occurring where the interconversion of C u 2 + and Cu + 

is taking place. Both these ions have now been detected during the course of reaction. 

The question now arises as to how cuprous ion can be generated in situ, and what 

reducing agents may be present to effect reduction of Cu 2 + . 

2.4 Detection of Thiolate in S-Nitrosothiol Solutions 

In 1959, Ellman described the use of 5,5'-dithiobis(2-nitrobenzoic acid) 

(DTNB) (2.5) for quantitatively estimating free thiol groups in solution12. 

HOOC COOH 

1 -i NO, 0 2 N 

2.5 

The method outlined is based on reaction of the thiol in question with DTNB to 

produce a mixed disulfide and 2-nitro-5-mercaptobenzoate dianion (TNB2-) (equation 

2.3). 
coo-coo V -i RSH + (—S N 0 2 ) 2 

\ COO coo 

NO N0 2 RSS eqn 2.3 + 

TNB2-

Like all nitrothiophenolate dianions, TNB2~ has a deep colour (yellow in this instance) 

which can be used as a measurement of thiol concentration by noting the absorbance 

at 412nm. The molar extinction coefficient for TNB2- at this wavelength13 has to be 

recorded using authentic thiol prior to analysis. This was performed by mixing 
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5 x 10"5 mol dm-3 methanolic DTNB with 1 - 5 x 10 5 mol dm 3 N-acetylpenicillamine 

(NAP) at pH 7.4. Under these conditions a maximum absorbance at 412nm is 

attained after fifteen minutes so each solution was left for this period of time (table 

2.2). 

Table 2.2 

Measured absorbance (412nm) for the reaction of N-acetylpenicillamine with DTNB 

(5 x lO"5 mol dm 3 ) , pH 7.4 

[N-acetylpenicillamine]/1(r5 mol dnr3 Absorbance4i2nm 
1.0 0.150 
2.0 0.285 
3.0 0.412 
4.0 0.554 
5.0 0.697 

From these results, e 4i2nm
 = 13,630 ± 180 mor1 dm3 cnr 1. This is in 

excellent agreement with Ellman's original publication12 which quotes a value of 

13,600 mol 1 dm3 cm 1 . Following this, the amount of thiol precursor present in a 

solid sample of SNAP was quantified by the addition of 5 x 10 5 mol dm 3 DTNB to 

1.2 x 10 3 mol dm 3 nitrosothiol. This was repeated three more times with fresh 

SNAP solutions made up from the same solid preparation. The final absorbance at 

412nm in each case was 0.249, 0.247, 0.251 and 0.252. 1.2 x 10"3 mol dm-3 SNAP 

has a residual absorbance of 0.110 at 412nm as does DTNB (0.01) which has to be 

subtracted (table 2.3) to give the absorbance due to TNB 2 - alone. 
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Table 2.3 

Measured and corrected absorbances (412nm) for the determination of 

[N-acetylpenicillamine] in a solid SNAP sample (1.2 x 10~3 mol dnr 3) 

Measured 
absorbance 

Corrected 
absorbance [NAPJ/10-6 mol dm 3 

0.249 0.129 9.46 
0.247 0.127 9.31 
0.251 0.131 9.61 
0.252 0.132 9.68 

The average [NAP] is therefore 9.51 x 10 6 mol dnr 3 which represents 0.79% 

thiol present in the S-nitrosothiol solid sample. This experiment was conducted again 

under identical conditions using an in situ sample of SNAP which was generated as 

follows. Solid N-acetylpenicillamine and sodium nitrite were placed in a volumetric 

flask (1:1 molar ratio) and 5ml 0.4 mol dm 3 HC104 added, followed by dilution with 

distilled water to the required concentration. In comparison, 0.47% NAP was 

detected in the in situ SNAP preparation, less than was present in the solid material. 

Repetition with a similar in situ preparation of S-nitroso-2-(mercaptopropionyl)glycine 

(SMPG) afforded 0.52% contaminant 2-(mercaptopropionyl)glycine (MPG). These 

results are summarised in table 2.4. 

Table 2.4 

Thiolate levels detected by Ellman's reagent in 1.2 x 10 3 mol dnr 3 

S-nitrosothiol solutions 

S-nitrosothiol % thiolate detected 

SNAP (solid) 0.79 
SNAP (in situ) 0.47 
SMPG (in situ) 0.52 
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From these results it is clear that however the nitrosothiol is prepared there is 

always a trace amount of thiolate precursor present in solution. This suggests an 

element of reversibility when considering the mechanism of S-nitrosation. Recent 

work by Herves Beloso and Williams14 utilising Ellman's reagent (section 1.3.4) has 

demonstrated this in more detail. In the case of S-nitrosocysteine, 7.8% L-cysteine 

remains at equilibrium from a 1:1 ratio of reactants. This thiol level is reduced on 

standing, probably due to aerial oxidation and disulfide formation. As the 

[RSH]:[HNC>2] ratio is altered from 1:1 towards 1:2, the amount of thiol present at 

equilibrium is again decreased, as expected. A thorough investigation into the 

generality of this situation is currently in progress15. Gorren et al16 have reported the 

problems in synthesising stable solid S-nitrosothiols which are totally thiol-free. In 

conclusion, it appears that a reducing agent (namely thiolate) will be present in 

nitrosothiol samples i) made up in acidic solution in situ and ii) prepared by 

dissolution and dilution of solid material such as SNAP. This may have great 

significance in terms of possible mechanisms of nitrosothiol decomposition. 

2.5 Addition of Reducing Agents to S-Nitrosothiols in the Presence of C u 2 + 

2.5.1 Effect of Adding N-Acetylpenicillamine to SNAP 

Section 2.3.1 describes the detection of cuprous copper during the course of 

the decomposition of S-nitrosothiols. It remains to be established how the apparent 

reduction of copper(II) can take place. It is not thought that nitrosothiols themselves 

are capable of performing this process, but it has been determined that thiolate is 

present in micromolar quantities in various nitrosothiol samples (section 2.4). These 

anions are themselves oxidised to thiyl radicals on reduction of C u 2 + 1 7 (equation 2.4). 

RS" + Cu2 + * RS' + Cu+ eqn2.4 

There are three possibilities for the effect the thiol group may have on the 

copper ion mediated reaction: 

i) there will be no kinetically observeable effect. 
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ii) the added thiol will competitively complex Cu 2 + and/or Cu + , thus slowing the rate 

of decomposition. 

iii) the added thiol will reduce copper(II) to copper(I), presumably increasing the rate 

of reaction. 

Initially, work was undertaken with SNAP, adding the corresponding thiol 

N-acetylpenicillamine. Use of a different thiol would complicate matters due to the 

rapid transfer of the NO group from RSNO to R'SH (transnitrosation) leading to the 

formation of R'SNO as the product18. SNAP (1 x 10 3 mol dm -3) was firstly reacted 

with Cu 2 + (1 x 10 5 mol dnr3) alone at physiological pH. Then NAP was added over 

the range 1 x 10*6 - 1 x 10*3 mol dm 3 . Reactions were all kinetically first order, with 

the rate constants listed in table 2.5 and displayed more clearly in figures 2.5 and 2.6. 

Table 2.5 

Kinetic data for the decomposition of SNAP (1 x 10 3 mol dnr 3) in the presence of 

Cu 2 + (1 x lO"5 mol dm-3) and added NAP at pH 7.4 

[NAP] a d d e d/l<H mol dm-3 Wio-3 s-i 
0 4.97 ± 0.02 

1.0 5.63 ± 0.01 
2.0 6.25 ± 0.01 
3.0 8.35 ± 0.01 
4.0 10.4 ± 0.02 
5.0 11.9 ± 0.02 
6.0 12.8 ± 0.02 
7.0 14.0 ± 0.02 
8.0 15.3 ± 0.02 
9.0 16.6 ± 0.02 
10 17.4 ± 0.03 
20 21.7 ± 0.04 
30 18.7 ± 0.07 
40 14.5 ± 0.06 
50 10.9 ± 0.05 
90 6.79 ± 0.02 
200 4.14 ±0.01 
300 3.37 ± 0.01 
500 2.67 ± 0.01 
1000 2.12 ±0.01 
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Figure 2.5 

Plot of kobs against added NAP concentration (4 x 10-6 - 9 x 10 6 mol dm 3 ) for the 

reaction of SNAP (1 x 10"3 mol dnr3) in the presence of Cu 2 + (1 x 105 mol dm"3) 

W10-2 s-i 

1.8 T 

1.2 
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0 3 6 9 
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Figure 2.6 

Plot of against added NAP concentration (1 x 10"6 - 1 x 10 3 mol dm 3 ) for the 

reaction of SNAP (1 x 10 3 mol dm 3 ) in the presence of Cu 2 + (1 x 10 5 mol dm 3 ) 
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From figure 2.6 two general trends are observeable for the addition of NAP to 

SNAP. When [ C u 2 + ] a d d e d > [NAP] a d d e d (figure 2.5) the reaction is distinctly 

catalysed and a linear increase in the rate constant is apparent. At these 

concentrations NAP cannot act as a competitive chelator and is acting solely as a 

reducing agent, generating Cu + which appears to be acting as the true reaction 

catalyst. At higher [NAP] however (> 3 x 10"5 mol dm 3 ) there is a sharp decrease in 

the observed rate constant which eventually moves towards zero. This can be 

explained by the subsequent complexation of Cu 2 + and/or Cu + by NAP, which 

effectively makes these ions unavailable for catalysis. Chelation may possibly occur 

at the carboxylate group of NAP (2.6) at these high concentrations, such complexes 

have previously been structurally analysed and isolated19. 

These results indicate that a large problem exists when attempting to interpret 

literature rate constant values which have been measured relating to S-nitrosothiol 

decomposition. Arnelle and Stamler20 have reported half lives for the nitrosothiol 

derived from L-cysteine ethyl ester (2.7) as being 17 seconds, 122 minutes and 6.7 

hours as measured by three separate assays. 

This enormous discrepancy can now be seen to be in part due to the varying amount 

of thiol present in each nitrosothiol sample. Not only is the copper ion concentration 

of great significance but also [thiolate ion] 2 1 when nitric oxide release from these 

compounds is under scrutiny. 

O O 
/ - / \ Cu 2 + 

i I / \ 
O o 

2.6 

SNO 

H 2 N COOC2H5 

2.7 
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2.5.2 Effect of Adding Penicillamine to S-Nitrosopenicillamine 

The effect of NAP on the decomposition characteristics of SNAP as discussed 

in the previous section is made somewhat more straightforward to interpret by the 

inability of the thiol to complex copper(II) (except at high [NAP]). This is due to 

N-acetylation reducing electron density on the amino nitrogen atom (section 1.4.3.1), 

which is thought to initially coordinate to Cu 2 + in solution along with sulfur in 

compounds such as penicillamine (PEN) and L-cysteine (2.8). 

This species is observed with L-cysteine (R = H) above pH 8 2 2 as a yellow complex 

with A,m a x = 330nm. In comparison, penicillamine (R = CH3) is known to be an 

excellent complexing agent for Cu 2 + . It has been extensively used as such since 1956 

in the treatment of Wilson's disease23 which is caused by abnormally high levels of 

intracellular cupric ions. Penicillamine can be described as a "reductive chelant" as 

copper(I) and penicillamine disulfide are formed during the mobilization of C u 2 + . 2 4 , 2 5 

After the formation of a copper (II) dimercaptide (2.8) it is thought that a redox step 

forms Cu + via electron transfer from ligand sulfur to Cu 2 + (scheme 2.1) (where 

RS" = thiolate derived from penicillamine). 

\ / R2C CR2 

Cu2+ 

\ HC CH 
C 0° ooc 

H 2 H 2 

2.8 

Cu 2 + + 2RS" i : Cu(SR)2 

Cu(SR)2 *• CuSR + I/2RSSR Scheme 2.1 

\ 
Cu+ + RS" 
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Under experimental conditions where [PEN] > [Cu 2 + ] , the pale yellow cuprous 

complex CuSR is formed. However, when [Cu 2 + ] > [PEN] an intense violet complex 

( X m a x = 520nm, s 5 2 0 n m ~ 103 moH dm3 cm 1 ) 2 6 is observed. This can be explained 

by equation 2.5. 

Cu+ 

-S. 

2CuSR + Cu2+ *> R Cu2 + R eqn2.5 

\ , / \ / 
| H 2 

Cu+ 
2.9 

The violet species 2.9 is presumed to be a mixed valence complex whose 

visible absorbance is intensified by a charge transfer mechanism via sulfide bridges. 

The infrared spectrum of 2.9 shows the absence of a mercapto group stretching band 

near 2500 cm 1 and a band of coordinated amino group at 3400 cm - 1. This implies 

the presence of mercapto and amino group coordination in the mixed valence 

complex. Similar thiomalate:copper(I,II) species have been described in the 

literature27. It appears that the gem methyl groups exert great stability on the violet 

complex as L-cysteine will not form such a chelate. It is evident that there is an 

extremely delicate balance between the ability to chelate and the ability to reduce 

Cu 2 + where thiols are concerned, which will have a large bearing on S-nitrosothiol 

reactivity in situ. 

With these concepts in mind, it is apparent that the penicillamine/ 

S-nitrosopenicillamine system should be more complex in nature both in the presence 

and absence of added copper ions. Experiments were undertaken utilising 

S-nitrosopenicillamine (1 x 10 3 mol dnr3) generated by the in situ nitrosation of 

PEN. In each instance five nitrosothiol solutions were made up, ranging from those 

containing an excess of N0 2" to those containing an excess of PEN. Initially the 

[Cu 2 + ] introduced was 1 x 10"5 mol dnr3. A large variation in the kinetic traces was 
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apparent (recorded on a stopped-flow spectrophotometer) according to which of the 

nitrosothiol solutions was reacted with copper(II) (figure 2.7). 

Figure 2.7 

Traces showing the decomposition of S-nitrosopenicillamine (1 x 10"3 mol dnr 3) in the 

presence of 1 x 10"5 mol dnr3 Cu 2 + and excess PEN or N0 2 " 

Rel.Ab8orbanc6 

1.000 

0.800 

0.600 

0.400 

0.200 -

0.000 • Time (seconds) 

100.0 

(a) 1.6 x 10-4 mol dm'3 excess PEN; (b) 8.0 x 10"5 mol dnr 3 excess PEN; 

(c) no excess PEN or N0 2"; (d) 9.0 x 10"5 mol dnr3 excess N0 2"; 

(e) 1.8 x 10-4 mol dm 3 excess N0 2". 

All kinetic runs were performed 20 minutes after initial thiol nitrosation. 
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When there is an excess of PEN (firstly 1.6 x 1(H mol dnr 3), reaction appears 

to be taking place very slowly. An induction period is apparent which is decreased on 

reducing the excess [PEN] to 8.0 x 10*5 mol dm - 3. The presence of nitrite in a slight 

excess leads to even faster reactions where the induction period becomes less 

noticeable still, with reasonable first order kinetics being obeyed. These results, 

although seemingly unusual in character, can be explained if the complexing nature of 

PEN is taken into account. When PEN is present in excess, chelation of C u 2 + will 

take place which makes Cu + formation less possible. Eventually some copper(I) will 

be produced which will effect reaction and, as S-nitrosopenicillamine will bind Cu + 

particularly well, decomposition occurs readily. As the nitrite ion concentration is 

increased (and hence [PEN] decreased) the reaction becomes quicker due to less 

cupric ion chelation leading to more Cu 2 + being available for Cu + formation. When 

this set of experiments was repeated under identical conditions (figure 2.8) but with 

S-nitrosothiol solutions used fifteen minutes after nitrosation the same kinetic trends 

were observed. However, the reactions in figure 2.8 are slower in comparison with 

their counterparts in figure 2.7, and thus an element of time dependence (or age of 

nitrosothiol solution) becomes significant, which is discussed in more detail in section 

2.6. 
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Figure 2.8 

Traces showing the decomposition of S-nitrosopenicillamine (1 x 10 3 mol dm"3) in the 

presence of 1 x 10"5 mol dnr3 Cu 2 + and excess PEN or N02~ 

®S.Abs©rtoarie© 

0.800 

0.600 

0.400 

0.200 

0.000 Time (seconds) 
20.0 40.0 60.0 80.0 100.0 

(a) 1.6 x 10-4 mol dm 3 excess PEN; (b) 8.0 x 10 5 mol dnr 3 excess PEN; 

(c) no excess PEN or N0 2"; (d) 9.0 x 10"5 mol dm"3 excess N0 2"; 

(e) 1.8 x 10"4 mol dm"3 excess N0 2". 

All kinetic runs were performed 15 minutes after initial thiol nitrosation. 

Figure 2.9 demonstrates the effect on reaction of altering the copper(II) ion 

concentration. As [Cu 2 + ] is increased from 5 x 10"6 - 2 x 10 5 mol dnr 3 the rate of 

reaction increases with a clear depletion in the induction period. This suggests that 
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the formation of Cu + ions rather than cupric ion complexation with thiolate is 

favoured on increasing the [Cu 2 + ] . 

Figure 2.9 

Traces showing the effect of [Cu 2 + ] on the decomposition of S-nitrosopenicillamine 

(1 x 10 3 mol dnr3) in the presence of 1.8 x 1CH mol dnr 3 excess N0 2 " 

ReLAbsorbanee 

1.000 

0.900 

0.800 

0.700 

0.600 

0.500 

0.400 

0.300 

0.200 

0.100 

0.000 
8.0 16.0 24.0 

Time (seconds) 

32.0 40.0 

(a) 5 x 10-6 mol dm 3 Cu 2 + ; (b) 1 x 10 5 mol dnr3 Cu 2 + ; (c) 2 x 10 5 mol dnr 3 C u 2 + . 

All kinetic runs were performed 15 minutes after initial thiol nitrosation. 

Figure 2.10 indicates the same trend noted previously (rate of reaction 

dependent on nitrosothiol solution age) when each solution was left for 10 minutes 

after S-nitrosothiol formation instead of for 15 minutes. 
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Figure 2.10 

Traces showing the effect of [Cu 2 + ] on the decomposition of S-nitrosopenicillamine 

(1 x 10 3 mol dm -3) in the presence of 1.8 x 10"4 mol dm 3 excess N0 2 " 

RelAbsorbane® 
1.000 

0.800 -

0.600 -

0.400 -

0.200 -

0.000 Time (seconds) 
8.0 16.0 24.0 32.0 40.0 

(a) 5 x 10-6 mol dnr 3 Cu 2 + ; (b) 1 x 10-5 mol dm"3 Cu 2 + ; (c) 2 x lO'5 mol dm 3 C u 2 + . 

All kinetic runs were performed 10 minutes after initial thiol nitrosation. 

An interpretation of these results is that the dimercaptide complex (2.8) is 

formed reversibly whilst Cu + is formed in a parallel reaction of cupric copper with 

one thiolate anion (scheme 2.2). 
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Cu2+ + 2RS" Cu(SR)2 

Scheme 2.2 

Cu2+ + RS" *• Cu+ + V2RSSR 

It is clear from this scheme that the reaction profile is extremely dependent on 

[PEN], in that at high [PEN] complexation of cupric ions will be dominant and the 

rate of Cu + formation lowered, whereas at much lower [PEN] cuprous ion generation 

will be favoured and chelation of Cu 2 + less significant. Addition of neocuproine to a 

solution of C u 2 + and PEN leads to the characteristic Cu + complex being formed at 

453nm. The experimental data in this section confirms and extends previous work 

defining the role of Cu + in nitric oxide release from S-nitrosothiols but also 

implicates the corresponding thiol as an integral component of the reaction 

mechanism. 

2.5.3 Further Examples 

The S-nitrosothiol (2.10) derived from 2-N,N-dimethylaminoethanethiol 

(DMAET) was readily generated in situ and utilised in several kinetic experiments. 

DMAET is known to be an extremely good metal complexing agent2 8 , 2 9 and hence it 

may be expected that adding this thiol to a solution of corresponding S-nitrosothiol 

should produce similar results to those obtained for S-nitrosopenicillamine. Indeed, 

on introducing DMAET (1 x 10"6 - 3 x 10"6 mol dm 3) to S-nitroso-2-N,N-

dimethylaminoethanethiol (5 x 10 4 mol dm 3 ) and Cu 2 + (1 x 10 6 mol dm 3 ) , a 

progressive reduction of the apparent induction period is noted (figure 2.11). 

^ S N O 

2.10 

N 
/ \ 
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Figure 2.11 

Traces showing the reaction of S-nitroso-2-N,N-dimethylaminoethanethiol 
(5 x 10"4 mol dnr3) in the presence of 1 x 10 6 mol dnr3 C u 2 + and added DMAET 

0.4 r 

O 

CD 
0.2 

(b) 

(c) 

0.0 
1800 900 0 

Time/s 

(a) no added thiol; (b) 1 x 10 6 mol dnr3 DMAET; (c) 3 x 10 6 mol dnr 3 DMAET. 

In accordance with this, increasing the copper(II) ion concentration in the 

absence of added DMAET produced a shorter induction period due to more Cu + 

being formed. Figure 2.11 clearly shows the appearance of a zero order dependence 

upon [RSNO]. This suggests that for a more reactive S-nitrosothiol such as S-nitroso-

2-N,N-dimethylaminoethanethiol the rate of Cu 2 + —> Cu + becomes rate limiting. It 

is likely that DMAET will chelate Cu 2 + and hence produce an initial time period of 

no reaction (induction). When cuprous copper is generated (more quickly at higher 

[DMAET]) reaction can proceed as is usually observed. The reaction outlined in 

figure 2.11 was repeated under anaerobic conditions with all solutions rigorously 
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purged with nitrogen gas for thirty minutes prior to mixing, with identical results 

being afforded. This implies that any oxidation reaction (such as Cu + reforming 

C u 2 + by reaction with dissolved oxygen) is not significant under these experimental 

conditions. It has been demonstrated11 that with more slowly reacting nitrosothiols 

such as S-nitroso-N-acetylcysteine the competing oxidation of Cu + is of much greater 

importance. 

The effect of adding a different reducing agent (ascorbic acid) to the 

decomposition reaction of S-nitrosothiols was also investigated. Ascorbic acid (H 2A) 

is a reductant which will become oxidised to dehydroascorbic acid (A) in the presence 

of oxygen (equation 2.6) 3 0. 

OH OH 
O O OH OH O O O + 

OH O O HO 

H2O2 

eqn2.6 

Xu and Jordan31 have more recently postulated the following mechanism for the direct 

reaction between Cu 2 + and ascorbic acid (scheme 2.3). 

H 2A HA - + H+ 

Cu 2 + + HA - - Cu+ + HA* 
Scheme 2.3 

HA* - - A " + H+ 

Cu 2 + + A , _ »• Cu+ + A 

Copper(I) is generated initially by reduction of Cu 2 + with the semiquinone ion HA - . 

The usage of ascorbic acid as a reducing agent in this instance is advantageous as, 

unlike PEN and DMAET, there are no complications associated with the chelation of 

metal ions. Ascorbic acid was therefore added to S-nitroso-2-N,N-

dimethylaminoethanethiol (1 x l ( r 3 mol dnr3) in the presence of 1 x 10 -6 mol dm 3 
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Cu 2 + (figure 2.12). Again, the reaction becomes faster in the presence of H 2A with a 

concominant reduction in the induction period, as predicted. 

Figure 2.12 

Traces showing the reaction of S-nitroso-2-N,N-dimethylaminoethanethiol 

(1 x 10"3 mol dm -3) in the presence of 1 x 10-6 mol dm - 3 C u 2 + and ascorbic acid 
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(a) no added ascorbic acid; (b) 1 x 10"6 mol dnr3 ascorbic acid; 

(c) 5 x l O 6 mol dm 3 ascorbic acid; (d) 1 x 10"5 mol dm 3 ascorbic acid. 

A more systematic study32 has indicated that NAP and ascorbic acid possess 

approximately equal reducing capabilities as the addition of both of these compounds 

to SNAP in situ (over the same range of concentration) leads to extremely similar 

kinetic traces. Scorza et aP3 have discussed the role of ascorbate in the release of 

nitric oxide from S-nitrosoalbumin and S-nitrosoglutathione present in human plasma. 
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This reductant was able to induce NO formation from these stable nitrosothiols, as 

was L-cysteine. It is suggested that metal ion dependent reactions are improbable in 

plasma due to the lack of availability of transition metals. Therefore, the mechanism 

of ascorbate mediated S-nitrosothiol decomposition is proposed to be via direct 

reductive activation (equation 2.7). 

RSNO + HA" .. RSH + A* + *NO eqn2.7 

This reaction leads to the formation of ascorbyl radical and reduced thiol, which is at 

variance with the observed disulfide product detected in vitro. Although metal ions 

such as Cu 2 + are not "freely" present in biological systems, their availability as 

peptide and protein chelates makes copper catalysed nitric oxide release a distinct 

possibility in vivo, which will be discussed in more detail in Chapter Three. 

2.6 Time Dependent Reactions 

As mentioned in section 2.5.2, the age of the S-nitrosothiol solution used for 

reaction is of great importance when interpreting kinetic results. 

S-nitrosopenicillamine (1 x 10 3 mol dm 3 ) was generated in situ from a 1:1 ratio of 

PEN:nitrite. Cu 2 + (2 x 10"5 mol dm 3 ) in pH 7.4 buffer was introduced three minutes 

after initial thiol nitrosation and trace (a), figure 2.13 obtained. The nitrosothiol 

solution was left to stand for a further thirty-six minutes and the same kinetic run 

repeated (trace (b)). The absorbance/time plots indicate the initial observation of 

good zero order kinetics when the S-nitrosopenicillamine had just been made up, to 

reasonable first order traces as the nitrosothiol solution aged. These results make 

sense if, on standing, the thiol impurity present becomes oxidised to the disulfide. In 

effect this represents the same experiment as is described by figure 2.7, with 

decreasing PEN concentration having a significant rate enhancing effect. A possible 

interpretation is that after three minutes the concentration of thiol present is still 

relatively high leading to significant Cu 2 + chelation. There is however a small 

concentration of cuprous ions available for reaction due to reduction of C u 2 + with the 
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rate determining step being the conversion of Cu 2 + -> Cu + (and hence zero order 

kinetics). As the [PEN] is reduced a change in the rate determining step occurs as 

there is more cupric copper available for reaction, the slow step now involving RSNO 

(RSNO + Cu+-> RS" + NO + Cu 2 + ) . Work recently undertaken32 has shown 

the decrease of [PEN] in an S-nitrosopenicillamine solution as a function of time to be 

very substantial. This means that the kinetics noted now are first order in character. 

Exactly the same trend was attained for the decomposition of S-nitrosocysteine even 

though L-cysteine is a poorer chelator of Cu 2 + than is PEN. 

Figure 2.13 

Traces showing the decomposition of S-nitrosopenicillamine (1 x 10 3 mol dnr 3) in the 

presence of 2 x 10-5 mol dm - 3 Cu 2 + as a function of nitrosothiol solution age 
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(a) acquired three minutes after nitrosation; (b) acquired thirty-nine minutes after 

nitrosation. 
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2.7 Proposed Mechanism of S-Nitrosothiol Decomposition 

From the results discussed, derived from chelation studies, thiolate detection 

and the effect of reducing agents on S-nitrosothiols, it is possible to postulate a 

general mechanism which will account for all the experimental kinetic data obtained. 

Four limiting absorbance/time traces are observed under varying conditions, they are 

(a) first order reaction with no induction period, (b) first order reaction with an 

induction period, (c) zero order reaction with no induction period, and (d) zero order 

reaction with an induction period. A general scheme (2.4) describes the mechanism 

in a broad manner. 

Cu2+ + RS" : = = ^ X Cu+ + RS' 

Cu+ + RSNO Y »• Cu2+ + RS" + NO 

2RS" RSSR 

Scheme 2.4 

Following this mechanism, cupric copper is initially reduced by thiolate 

(detected using Ellman's reagent) via intermediate X (possibly RSCu+) to generate 

Cu + and thiyl radical. Cu + subsequently binds to the S-nitrosothiol forming 

intermediate Y and thus is acting as the true catalytic species. Cu 2 + is reformed as is 

RS", with nitric oxide also being released. Probable structures for intermediate Y are 

shown below (figure 2.14) with additional coordination to two water molecules in 

each case likely. 

R 

V R 
N = 0 N = 0 

Cu+ Cu+ HOOC N O H 2 

Figure 2.14 
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Two situations exist which relate to the formation of Cu + (trapped by neocuproine), 

which shall be considered in detail. 

i) Rapid formation of C u + 

If, as in most circumstances, thiolate, RSNO and Cu 2 + are present prior to 

reaction then scheme 2.4 can be represented by equations 2.8 and 2.9. 

RSNO + Cu+ ^ » RS" + NO + Cu2+ eqn2.8 

RS" + Cu2+ f a s t * V2RSSR + Cu+ eqn2.9 

A first order rate equation will ensue (equation 2.10) as cuprous copper is quickly 

generated via thiolate reduction of Cu 2 + (equation 2.9). 

-d[RSNO] = kobsfRSNO] eqn2.10 
dt 

Copper(I) rapidly becomes reformed after complexation with RSNO and subsequent 

re-reduction of Cu 2 + , so that [Cu + ] remains constant at any time during a kinetic run. 

This behaviour is exhibited by S-nitrosothiols (and corresponding thiolates) which do 

not coordinate copper ions particularly well (such as SNAP and NAP). I f however 

only RSNO and Cu 2 + are initially available and the thiolate concentration is very low, 

an induction period will exist which represents the time it takes to form Cu + after 

which decomposition may proceed. 

ii) Rate limiting formation of C u + 

In this instance, scheme 2.4 may be reduced to equations 2.11 and 2.12. 
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RS" + Cu2+ staw 
*• V2RSSR + Cu+ eqn2.11 RDS 

RSNO + Cu+ fast *- RS* + NO + Cu 2 + eqn2.12 

If thiolate, cupric ion and RSNO are all initially present then a zero order reaction 

will be observed due to rate limiting cuprous ion formation (as seen in the case of 

S-nitrosopenicillamine). However, i f only nitrosothiol and C u 2 + are available 

initially then an induction period will again be apparent before reduction of copper(II) 

takes place. The results of S-nitroso-2-N,N-dimethylaminoethanethiol decomposition 

in situ indicate this to good effect. In general terms zero order behaviour is noted 

when studying compounds which chelate copper ions rather strongly, such as 

S-nitrosopenicillamine and PEN. 

It is clear from the kinetic evidence obtained and the use of selective chelating 

agents that Cu + is in fact the effective species implicated in nitric oxide formation 

from S-nitrosothiols. The mechanism outlined in scheme 2.4 accounts for data 

collected and reported from several sources2'16,20. Details such as the decomposition 

of intermediate Y still have to be established, as does the reactivity pattern of such 

compounds in the presence of other biological forms of Cu 2 + . 

These experimental results could feasibly have important implications for the 

decomposition of S-nitrosothiols in vivo. It has been well documented (section 

1.5.2.1) that these compounds are linked to the inhibition of platelet aggregation34, 

vasodilation35 and other physiological processes. Gordge et aP6 have proposed the 

role of a copper(I) dependent enzyme in the anti-platelet action of S-nitrosoglutathione 

(GSNO) based on the specific binding of bathocuproine sulfonate (BPS) to a structure 

on the platelet surface. BPS (a specific Cu + chelator) causes a parallel reduction in 

2.8 Conclusion 
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platelet aggregation inhibition by GSNO. This suggests that GSNO generates nitric 

oxide via a mechanism involving copper(I) in the biological milieu. Ioannidis et aP1 

have noted the increased potency of SNAP under hypoxic (oxygen depleted) 

conditions in terms of cytotoxic effects towards other cells. This phenomenon has 

been attributed to the anaerobic environment maintaining the presence of more Cu + 

which acts as the active catalyst for NO formation in vivo, as there is no competing 

oxidation of Cu + —» Cu 2 + . The role of copper ions is also postulated to be of great 

significance when examining the effects of an S-nitrosothiol as a NANC 

neurotransmitter38-39. In contrast, another publication40 attributes the bronchodilatory 

effects of GSNO and other nitrosothiols to the intact parent compound, without the 

need for prior release of NO. Therefore, there is some in vivo evidence to support the 

proposed in vitro mechanism of NO production from nitrosothiols but there is also a 

degree of uncertainty as to their precise mode of action at this time. Interestingly, 

GSNO has recently been used clinically41 as a treatment of pre-eclampsia, which is a 

high blood pressure condition suffered by some pregnant women. The possibility of 

such a Cu + mediated reaction existing in vivo depends on the ability of thiolate to 

reduce copper(II) (present in a bound form with peptides and proteins) to produce a 

catalytically active species. This would provide greater mechanistic credibility than 

has been discussed thus far. 
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Chapter 3: Nitric Oxide Generation from S-Nitrosothiols using Amino Acid, 
Peptide and Protein Bound Forms of C u 2 + 

3.1 Introduction 

The most common use of copper within biological systems is as an electron 

transfer component of oxidative enzymes. An example of such a species is galactose 

oxidase, which catalyses the oxidation of primary alcohols to aldehydes in sugars1. 

Ionic copper is ideally suited to perform this task as Cu 2 + is readily reduced and 

re-oxidised. In contrast, little signalling is thought to be undertaken by copper due to 

slow exchange rates existing, this being a response to strong Cu(I) and Cu(II) ligand 

binding. Indeed, a binding constant at pH 7 of 1015 is predicted for many copper 

complexes. The adult human body contains approximately lOOmg of copper2, with 

the highest concentrations being found in the liver, brain, heart and kidneys. 

Absorption of Cu(II) initially occurs in the gastrointestinal tract from where it enters 

the plasma (which has l j ig copper per ml present). Within the plasma 93 - 95% is 

bound to the glycoprotein ceruloplasmin, which is not in equilibrium with the tiny 

amount of ionic copper available. The remaining Cu(II) is bound to albumin and is in 

rapid exchange with tissue copper. The albumin:Cu(II) complex is therefore 

considered to be the immediate transport form of copper in plasma. In addition, an 

amino acid (mainly L-histidine) bound fraction exists which is in equilibrium with 

copper bound to albumin3. The concentration of ligands (both amino acids and 

albumin) by far exceeds the plasma Cu(II) concentration. Within one hour of 

reaching the plasma, the absorbed copper is removed from the circulatory system by 

the liver where it is processed via two routes. Some, which is not reabsorbed, is 

excreted in bile into the gastrointestinal tract. Patients with Wilson's disease (section 

2.5.2) have an impaired ability of the liver to perform biliary excretion of Cu(II). 

The second metabolic pathway is copper incorporation into ceruloplasmin, which shall 

be discussed further (section 3.6.1). 

It is therefore apparent that if the copper mediated reaction outlined in Chapter 

Two is to be considered as an in vivo source of nitric oxide, it must be established 
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whether complexed forms of Cu(II) (bound to albumin, amino acids and 

ceruloplasmin) may effect S-nitrosothiol decomposition. 

3.2.1 GGH as a C u 2 + Binding Model 

As discussed in section 3.1, the polypeptide human serum albumin (HSA) is 

considered to be the major molecule responsible for reversible binding of Cu(II) 

within blood plasma. It became established almost forty years ago that HSA had one 

specific copper chelation site, which has subsequently become well-characterised4 5 - 6 

and is outlined in more detail in section 3.3.1. It became clear that the design and 

synthesis of a model molecule which could mimick the specific Cu(II) transport site of 

HSA would allow simplification of an already complex system. To this end, Lau et 

aV synthesised a tripeptide, glycylglycylhistidine (GGH) (3.1) and studied its 

interaction with Cu 2 + under physiological conditions. 

Their results indicate that one major species exists in the GGH:Cu 2 + system (3.2). 

3.2 GlycylGlycylHistidine (GGH) 
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H 2 N 
H O H 
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Cu 2 + exhibits square planar geometry with the tripeptide utilising the same 

ligand atoms for coordination as does HSA. These are the a-amino nitrogen of the 

NH 2 terminal glycine residue, two intervening deprotonated peptide nitrogens and the 

imidazole pyridine nitrogen of the L-histidine residue. The GGH:Cu 2 + formed is 

deep purple in colour and has a molar extinction coefficient (pH 8.0) of 103 mol"1 

dm3 cm*1 at A,m a x = 525nm. The dissociation constant for this complex can be 

expressed by equation 3.1. 

K D 

GGH-Cu(II) ^ - GGH + Cu(H) eqn3.1 

Equilibrium dialysis measurements utilising 6 7Cu(II) as an isotopic tracer have 

calculated K D to be 1.18 x 10 1 6 . 7 A subsequent report8 has demonstrated that at 1:1 

ligand to metal ratios the purple complex is essentially 100% abundant above pH 7. 

A small tripeptide species such as GGH may thus be able to mobilise copper in vivo 

and aid its excretion. Wilson's disease has commonly been treated with 

penicillamine, but due to its lack of specificity and tolerance induction9 in certain 

patients is not entirely satisfactory. GGH could have an important biomedical 

application in this particular field. 

3.2.2 Reaction of GGH:Cu 2 + with NAP 

Before the decomposition characteristics of S-nitrosothiols in the presence of 

GGH:Cu 2 + could be determined, it was necessary to analyse any possible reaction 

between thiolate and the tripeptide:copper(II) complex. Of specific interest is the 

formation of Cu + from this bound form of Cu 2 + by reduction. A 1 x 10 2 mol dm 3 

solution of GGH:Cu 2 + was prepared by adding an equivalent amount of copper(II) 

sulfate pentahydrate to the solid tripeptide. On dilution with pH 7.4 buffer a purple 

colouration was noted and a uv/visible spectrum of this solution recorded (X,m a x = 

525nm, e = 89 moH dm3 cm 1). Following this, NAP was added to the same 

GGH:Cu 2 + solution in the concentration range 2.5 x 10-3 - 1 x 10-2 mol dm - 3. An 
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immediate and substantial reduction in the absorbance at 525nm was observed (table 

3.1), along with a visual bleaching of the reactant solution. 

Table 3.1 

Measured absorbance (525nm) against added [N-acetylpenicillamine] for the reaction 

of GGH:Cu2 + (1 x l ( r 2 mol dm 3 ) with NAP, pH 7.4 

[N-acetylpeniciUamine]/l(r3 mol dm - 3 Absorbance525nm 

0 0.890 
2.5 0.798 
5.0 0.720 
7.5 0.621 
10 0.515 

Each spectrum obtained remained unchanged for at least two hours after mixing the 

reaction solutions. 

The largest decrease in measured absorbance is obtained when equimolar 

quantities of GGH:Cu2 + and NAP are reacted. This experiment was repeated, under 

slightly differing conditions, in the presence of neocuproine. When GGH:Cu 2 + 

(2 x 10"4 mol dm 3 ) was treated with an equivalent amount of NAP, and neocuproine 

(4 x 10~4 mol dm 3 ) added there was a steady increase in concentration of the 

characteristic Cu+-chelate with X m a x = 453nm, as observed previously (section 

2.3.1). The spectra recorded are plotted in figure 3.1. 
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Figure 3.1 

Traces showing the absorbance increase at 453nm for the reaction of equimolar 

GGH:Cu 2 + with NAP (2 x 10"4 mol dm 3 ) and added neocuproine (4 x 1(H mol dm 3 ) 

500, 

750 

OOOi 
3 0 0 . 0 4 5 0 . 0 600 .0 

Wavelength (nm.) 

Scans acquired every minute. 

Very similar results were afforded when L-cysteine and 2-(mercaptopropionyl)glycine 

were used as the thiol. 

In an attempt to quantify the Cu + formed during the course of this reaction, 

several consecutive spectra were run measuring the absorbance increase at 453nm. 

Then, on assuming the extinction coefficient of Cu(NC) 2

+ to be 7950 moH dm3 cm"1 

at this wavelength, the percentage Cu + trapped can be estimated and compared with 

the amount of cuprous ion formed by thiolate reduction of hydrated C u 2 + (table 3.2). 

96 



Table 3.2 

% Cu + chelated by neocuproine (1 x 10"3 mol dm 3) in the presence of equimolar 

thiol (2 x 10"4 mol dm 3 ) and either GGH:Cu2 + or hydrated C u 2 + 

Thiol % C u + chelated" Thiol 
Hydrated C u 2 + b GGH:Cu 2 + 

NAP 81+3 53 + 2 
L-cysteine 80 ± 3 68 ± 2 

MPG 93 + 3 60 + 2 

Percentages calculated as an average of three experiments measuring the maximum 

absorbance at 453nm. 

bHydrated Cu2+ = CuS04-5H20. 

Two features of this table are of particular note. Firstly, there is incomplete 

reduction of Cu 2 + -> Cu + by thiolate in the hydrated ion case under these 

experimental conditions, although > 80% cuprous ion was generated with each thiol. 

It remains to be seen whether quantitative reduction will occur when 

[thiol] > > [Cu 2+]. Secondly, although less Cu+ is formed than when CuS04-5H20 

is added, substantial cupric ion reduction is induced by thiolate even when Cu2+ is 

chelated to GGH. This is in keeping with results published by Uchida et al10 who 

noted that the characteristic absorbance due to GGH:Cu2 + was completely diminished 

by ascorbate, implying a one electron reduction of the complex to the colourless 

GGH:Cu+ species (equation 3.2). 

GGH-Cu(H) a s c o r b a t e » GGH-Cu(I) eqn3.2 

Similar effects have also been observed by Kimura et aln. In this instance 

Cu2+ bound to GGH becomes reduced by ascorbate and trapped by cimetidine, a 

compound in current worldwide clinical use for the treatment of peptic ulcers (scheme 

3.1). These results suggest that Cu+ can be generated from GGH:Cu2+ in the 

presence of a suitable reductant and chelated by another available molecule, which 

leads to the possibility that such complexes can initiate S-nitrosothiol decomposition. 
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3.2.3 Decomposition of SNAP in the Presence of GGH:Cu 2 + 

After ascertaining that thiolate mediated reduction of tripeptide-bound 

copper(H) ions can take place, the stability of S-nitrosothiols in the presence of 

hydrated Cu 2 + and GGH:Cu2 + was examined. SNAP (1 x 10~3 mol dm -3) was the 

first nitrosothiol to be kinetically analysed on addition of increasing amounts of 

CuSCy5H20 (1 - 5 x 10-6 mol dm 3 ) at pH 7.4. Good first order plots were obtained 

under these conditions, the appropriate rate constants being quoted in table 3.3. 

Table 3.3 

Kinetic data for the decomposition of SNAP (1 x 10 3 mol dm 3 ) in the presence of 

added copper(II) ions 

[Cu 2 +]/l<H mol dm 3 W i o - 3 s 1 

1.0 1.12 ±0.02 
2.0 2.55 ± 0.04 
3.0 4.02 ± 0.09 
4.0 5.21 ±0.09 
5.0 6.12 ±0.11 

As discussed in section 1.4.3.1, equation 1.38 predicts a linear relationship 

between the observed pseudo-first order rate constant and the [Cu 2 + ] which is 

introduced. The second order rate constant k 2 (equation 1.37) can be calculated from 
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the gradient of a plot of against [ C u 2 + ] a d d e d and is equal to 1260 ± 60 mol 1 dm3 

s 1 in this instance. This result is vastly different to the previous literature value 

reported12 of 20 ± 1 moH dm3 s 1. This is due to a different solid sample of SNAP 

being utilised with (crucially) a differing quantity of thiolate impurity present (section 

2.4). Published data relating to this reaction will therefore be extremely variable, 

making quantitative comparisons almost impossible. However, it is more realistic to 

compare rate constants collected using the same solid batch of SNAP and varying 

sources of Cu 2 + . Therefore, this work was repeated under identical conditions but 

using GGH:Cu 2 + as the form of copper(II) ions (table 3.4). 

Table 3.4 

Kinetic data for the decomposition of SNAP (1 x 10 3 mol dm 3 ) in the presence of 

added GGH:Cu2 + 

[GGH:Cu 2 +]/l(H mol dm 3 W1<H s 1 

1.0 4.59 ± 0.08 
2.0 8.50 ±0.12 
3.0 12.5 ± 0.2 
4.0 17.5 ± 0.2 
5.0 22.1 ±0 .3 

This data indicates that GGH:Cu 2 + will effect decomposition of SNAP, but not as 

effectively as hydrated Cu 2 + . Equations 1.37 and 1.38 can be adapted to describe a 

more general situation (equations 3.3 and 3.4). 

Rate = k2[copper complex][RSNO] + k*[RSNO] eqn3.3 

K>bs ~ k2[copper complex] + k eqn3.4 

As in the case of hydrated Cu 2 + , k 2 for reaction of SNAP with GGH:Cu 2 + can be 

determined as 440 ± 13 mol"1 dm3 s 1, which represents a reduction in reactivity by a 

factor of three when compared to 1260 mol"1 dm3 s 1. This is no doubt due to less 
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Cu + being available for reaction when Cu 2 + is chelated by GGH (table 3.2). Figure 

3.2 displays these results in a clearer manner. 

Figure 3.2 

Plot of against [Cu 2 + ] and [GGH.Cu 2 +] for the decomposition of SNAP 

(1 x 10-3 mol dm-3) 
kobs/10-3 s-i 

7 -r 

0 1 2 3 4 5 

[GGH:Cu 2 +] or [Cu 2 +]/10" 6 mol dm 3 

• = hydrated Cu 2 + 

• = GGH:Cu 2 + 

To test the generality of this reaction, S-nitrosocysteine (SNC) and S-nitroso-

2-(mercaptopropionyl)glycine were separately reacted with CuS04-5H20 and 

GGH:Cu 2 + with the respective second order rate constants measured as previously 

described (tables 3.5-3.8). 
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Table 3.5 

Kinetic data for the decomposition of S-nitrosocysteine (1 x 10 3 mol dm 3 ) in the 

presence of added copper(II) ions 

[Cu 2 +]/10- 6 mol dm-3 Wio-2 s-1 

0 5.55 ± 0.09 
0.25 6.99 ±0.13 
0.50 8.58 ±0.18 
1.0 11.5 ±0.2 
1.5 14.5 ± 0.2 

k 2 = 60,000 ± 500 mol 1 dm3 s 1 

Table 3.6 

Kinetic data for the decomposition of S-nitrosocysteine (1 x 10 3 mol dm 3 ) in the 

presence of added GGH:Cu 2 + 

[GGH:Cu 2 +]/l(H mol dm 3 W i o - 2 s 1 

1.0 13.3 ± 0.2 
1.5 14.0 ± 0.2 
2.0 14.5 ± 0.3 
3.0 15.5 ± 0.5 
4.0 16.9 ± 0.6 

k 2 = 11,600 + 300 mol1 dm3 s 1 

Table 3.7 

Kinetic data for the decomposition of S-nitroso-2-(mercaptopropionyl)glycine 

(1 x 10"3 mol dm 3) in the presence of added copper(II) ions 

[Cu 2 + ] / l(H mol dm 3 W1<H s"1 

0.5 4.39 ±0.13 
1.0 6.84 ±0.19 
2.0 11.2 ±0 .3 
4.0 17.5 ± 0.4 
5.0 20.9 ± 0.5 

k 2 = 360 + 16 mol"1 dm3 s 1 
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Table 3.8 

Kinetic data for the decomposition of S-nitroso-2-(mercaptopropionyl)glycine 

(1 x 10"3 mol dm 3 ) in the presence of added GGH:Cu 2 + 

[GGH:Cu 2 +]/l(H mol dm 3 

0.5 5.88 ±0.16 
1.0 7.26 ± 0.19 
3.0 11.6 ± 0.3 
4.0 12.8 ± 0.4 
5.0 14.1 ±0.5 

k 2 = 180 ± 10 mol 1 dm3 s 1 

Table 3.9 summarises all results obtained for the reaction of hydrated Cu 2 + 

and GGH:Cu 2 + with these nitrosothiols. 

Table 3.9 

Second order rate constant (k^ values for hydrated Cu 2 + and GGH:Cu 2 + induced 

S-nitrosothiol decomposition 

S-nitrosothiol k 2 (mol'1 dm3 s_1) S-nitrosothiol 
Hydrated Cu 2 + GGH:Cu 2 + 

SNAP 1260 + 60 440 ± 13 
S-nitrosocysteine 60,000 ± 500 11,600 ±300 

SMPG 360 ± 16 180 ± 10 

In each instance, GGH:Cu2 + can clearly bring about decomposition of the 

S-nitrosothiol in question but the hydrated form of copper(II) is more reactive, as is to 

be expected. There does not appear to be a direct correlation between the reduction in 

k 2 on chelation of Cu 2 + with GGH and the amount of cuprous copper trapped after 

thiolate reduction (table 3.2). This is exemplified by L-cysteine appearing to be a 

very effective reductant of bound copper(II) but S-nitrosocysteine suffering a five-fold 

decrease in reactivity on changing hydrated Cu 2 + to GGH:Cu 2 +. It would appear 

that the amount of thiolate present in each nitrosothiol sample again exerts a great 

influence on the observed reactivity of these compounds. 



In an attempt to quantify any effect altering the thiol concentration may have 

on the rate of GGH:Cu2 + mediated decomposition, NAP (5 x 10~5 - 2 x 10 4 mol 

dnr 3) was added to SNAP (1 x 10~3 mol dnr3) in the presence of 1 x 10 5 mol dm - 3 

GGH:Cu 2 +. Interestingly, increasing the NAP concentration had very little effect on 

the pseudo-first order rate constant (table 3.10). 

Table 3.10 

Kinetic data for the decomposition of SNAP (1 x 10~3 mol dm -3) in the presence of 

GGH:Cu2 + (1 x l f r 5 mol dm 3 ) and added NAP 

[N-acetylpenicillaminel/10-5 mol dm -3 Wio-3 s-1 

0 4.33 ± 0.06 
5 4.42 ± 0.07 
10 4.26 ± 0.07 
15 4.40 ± 0.08 
20 4.44 ± 0.07 

An interpretation of these results is that the maximum possible amount of Cu + 

has been released from any NAP impurity (~1 x 10 5 mol dnr 3) present in the SNAP 

solution. Thus, increasing the [NAP] will have no observeable rate enhancing effect. 

It might have been thought that introducing higher concentrations of NAP may inhibit 

reaction somewhat due to competitive chelation between the thiol and nitrosothiol for 

Cu + (section 2.5.1). This does not however appear to be the case at these NAP 

levels. 

A check was made that decomposition was caused by Cu + and not cupric ion 

and that the mechanism outlined in section 2.7 holds for GGH:Cu 2 +. Neocuproine 

was added to SNAP and tripeptide:copper(II) in an analogous fashion to that described 

by table 2.1 and figure 2.3. As predicted, increasing [neocuproine] progressively 

decreased the rate constant for the reaction, with decomposition being virtually halted 

at high neocuproine concentrations (table 3.11). The effect of this cuprous ion 

chelator on reaction of SNAP with hydrated Cu 2 + and GGH:Cu 2 + are compared in 

figure 3.3. 
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Table 3.11 

Kinetic data for the effect of neocuproine on the decomposition of SNAP 

(1 x 10-3 mol dnr 3) in the presence of GGH:Cu 2 + (2 x 10 5 mol dm 3 ) 

[neocuproine]/10"5 mol dm -3 

W I G " 4 ** 
1.0 61.4 ± 1.1 
1.4 38.1 ±0 .6 
1.6 30.6 ± 0.5 
1.8 24.6 ±0.4 
2.0 19.8 ±0 .3 
4.0 6.86 ± 0.09 
6.0 2.64 ± 0.04 

Figure 3.3 

Plot of k^,, against added neocuproine concentration for the reaction of SNAP 

(1 x IO-3 mol dm-3) in the presence of Cu 2 + or GGH:Cu 2 + (2 x 10 5 mol dm"3) 

kobs (s-1) 

0.025 T 

0.02 

0.015 

0.01 

0.005 

/10-5 mol dm 3 [neocuproine]added 

• = hydrated Cu2 

• = GGH:Cu 2 + 

104 



3.2.4 Detection of Reaction Products 

It was necessary to determine the nitrogenous product for the bound copper(II) 

induced decomposition process. The most convenient way to undertake this which 

would also allow accurate quantification was to perform a Griess reaction13. This 

method will facilitate the measurement of micromolar levels of nitrite ion in solution, 

thus proving to be a very useful assay in this instance. The reaction is outlined in 

scheme 3.2. 

HC HN0 2 + H 2 N S02NH N 

SUL 

SO2NH2 

+ S02NH2 N 2 

NNED 
N 

N 
Scheme 3.2 

HN(CH2)2NH2 

Any nitrite present will be converted into nitrous acid which in turn diazotises 

an aryl amine (sulfanilamide, SUL). An aryl coupling agent is then introduced 

(N-l-naphthylethylenediamine, NNED) which yields a purple azo dye on reaction 

with diazotised SUL. A calibration curve has to initially be constructed to calculate 

the molar extinction coefficient at 542nm (A,m a x) for the dye. The procedure outlined 

by Vogel 1 4 was followed with some slight modifications. 10ml SUL (3.4g in 100ml 

0.4 mol dm-3 HC1) was added to 14ml NNED (O.lg in 100ml 0.4 mol dm 3 HC1). A 

standard sodium nitrite solution was added such that the [N0 2"] ranged from 
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5 - 17.5 x 10"6 mol dm 3 (total solution volume = 50ml) and the absorbance measured 

at542nm (table 3.12). 

Table 3.12 

Calibration data for the detection of nitrite and calculation of s 5 4 2 n m 

[N02"]/1(H mol dm 3 Absorbance542niI1 

5.0 0.297 
7.5 0.417 
10 0.553 

12.5 0.699 
15 0.828 

17.5 0.926 

£542nm = 53,000 + 600 mol 1 dm3 cm 1 

This value can now be used to calculate nitrite levels in nitrosothiol solutions. 

A typical decomposition reaction was subsequently set up with [SNAP] = 2.5 x 10-4 

mol dm 3 , and [GGH:Cu 2 +] = 1 x 10 5 mol dm 3 , total reactant volume being 20ml. 

This mixture was thermostatted at 25°C and a 2ml aliquot removed every five minutes 

and coupled to SUL/NNED as described previously. The absorbance at 542nm was 

immediately measured and found to reach a maximum after thirty minutes of 0.952. 

Using s 5 4 2 n m = 53,000 mol 1 dm3 cm - 1 this corresponds to 1.80 x 10-5 mol dm - 3 

N0 2 " produced. The theoretical maximum amount of nitrite that could be detected is 

2.0 x lO 5 mol dnr3 so 90% N0 2 " was formed in this instance which can be assumed 

to be quantitative. 

The next stage was to follow the kinetics of nitrite formation at 542nm. This 

was performed by reacting SNAP (2.5 x 10 4 mol dm 3 ) with GGH:Cu 2 + (1 x 10 6 

mol dm 3 ) , removing a 2ml sample as before and measuring the absorbance at 542nm 

after dye formation. Results are tabulated (table 3.13) and are also shown graphically 

(figure 3.4). 
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Table 3.13 

Formation of nitrite from SNAP (2.5 x 10 4 mol dm 3 ) in the presence of GGH:Cu 2 + 

(1 x 10-6 mol dnr3) as detected by the Griess test at 542nm 

Time (seconds) Absorbance542nm 

0 0.001 
150 0.156 
300 0.272 
600 0.486 
1200 0.776 
2100 0.858 
4500 0.865 
5700 0.870 
7200 0.870 

Infinity taken to be reached after two hours 

Figure 3.4 

Absorbance/time plot (542nm) for N0 2 " formation from SNAP (2.5 x 10~4 mol dnr3) 

in the presence of GGH:Cu2 + (1 x lO"6 mol dnr 3) 

Absorbance 

0.6 

1800 3600 5400 7200 

Time (seconds) 
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It is apparent from figure 3.4 that good first order kinetics are noted when 

nitrite formation is considered. This compares favourably with previous results 

studying the hydrated copper ion reaction with SNAP12. It is probable that the initial 

reaction product is therefore nitric oxide, which becomes oxidised to N0 2 " (scheme 

1.1) in aerated solutions. 

3.3.1 HSA as a Transport Molecule for C u 2 + 

Section 3.2 describes the reaction of thiolate with GGH:Cu 2 + and subsequent 

cuprous ion promoted decomposition of S-nitrosothiols. As GGH provides a good 

model for the specific physiological copper(II) transport binding site it is reasonable to 

suggest that similar results will be obtained when using human serum albumin (HSA) 

as a chelant. HSA is a polypeptide synthesised in the liver composed of 585 amino 

acids in one single chain (with seventeen disulfide linkages), having a molecular 

weight of 66,50015. In addition to its role in transporting Cu 2 + it binds and mobilises 

other essential materials such as fatty acids, calcium, vitamins and hormones. It is 

present at a concentration of 35 - 50 grams per litre of blood plasma16. Some of its 

ligand binding sites are highly specific and saturable, while others are much less so. 

The copper(II) binding site has been identified as being particularly strong (K D in 

equation 3.1 = 6.61 x 10 1 7 ) 7 and is composed in a similar fashion to GGH (3.3). 

3.3 Human Serum Albumin (HSA) 

H 3 C O 

O / H 
N \ \ N / / Cu 2 + 

H \ N ? r _ N" 
H 2 / HC 

N 
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H CONH— 

,CH 2 

H O O C H 2 C — C 

CH 
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The principal difference between HSA and GGH is the order of amino acids 

present. Instead of GlyGlyHis making up the tripeptide component, aspartic acid, 

alanine and L-histidine (AspAlaHis) compose the -NH 2 terminus of the polypeptide. 
1 3 C and 1 H NMR studies17 have indicated that no other binding group is involved 

besides those in these first three residues, but that the P-carboxyl side chain of the 

aspartyl residue may also provide coordination (3.4). 

O 

N N 
\ Cu2+ 

\ 
N J A a 

PROTEIN CHAIN COO 

The ligand atoms are therefore the same in HSA and GGH, with the former 

binding C u 2 + slightly more strongly. Bovine serum albumin has been characterised 

in a similar way and has threonine present instead of alanine as the second amino 

acid5. HSA:Cu 2 + exhibits a similar uv/visible spectrum to that of GGH:Cu 2 + with a 

peak at X.m a x = 525nm (s = 99 mol 1 dm3 cnr 1) 4 . The effect of thiolate on this 

absorbance was examined. 

3.3.2 Reaction of HSA:Cu 2 + with NAP 

The interaction between thiolate and HSA:Cu 2 + was followed in a similar 

manner to that of the tripeptide:copper(II) complex. A 1 x 10 3 mol dm 3 solution of 

HSA in pH 7.4 buffer was made up and a uv/visible spectrum run (figure 3.5, trace 

(a)). One equivalent of Cu 2 + was added to the solution and the resulting spectrum 
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recorded (trace (b)). A "difference" spectrum was calculated (trace (c)) which related 

to the change in absorbance that was observed on adding copper(II) to HSA. 

Figure 3.5 

Uv/visible spectra of 1 x 10"3 mol dm"3 HSA and 1 x 10 3 mol dm"3 HSA:Cu 2 + 

(pH 7.4) 

300 

(b) 
150 

(a) 

c) 

0001- ' 1 1 1 ' i i i , 

4 0 0 . 0 5 5 0 . 0 700 .0 
Wavelength (nm.) 

(a) 1 x 10-3 mol dm 3 HSA; (b) 1 x 10 3 mol dm 3 HSA:Cu 2 +; 

(c) difference spectrum ((b) - (a)). 

Trace (c) has X m a x = 524nm, e = 94 mol 1 dm3 cnr1 and represents the effect 

of adding C u 2 + to HSA. NAP was then introduced (4 x 10"3 mol dnr 3) and the 

absorbance at 525nm monitored over a period of sixty minutes (table 3.14). 
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Table 3.14 

Change in absorbance (525nm) during the reaction of HSA:Cu 2 + (1 x 10 3 mol dm 3 ) 

with 4 x 10"3 mol dm 3 NAP 

Time (seconds) Absorbance525nm 

0 0.083 
300 0.055 
600 0.026 
1800 0.019 
3600 0.010 

The initial measurement (time = 0 seconds) was made immediately after NAP 

was added to HSA:Cu 2 +. A steady decrease in absorbance is apparent which is in 

contrast to the reaction of NAP with GGH:Cu2 + (section 3.3.2) where an 

instantaneous reaction is noted. This may in part be due to steric hindrance of the 

polypeptide chain (in the case of HSA) impeding the action of RS" at the amino 

terminus where C u 2 + is bound. As for GGH:Cu 2 +, this procedure was repeated in 

the presence of neocuproine under identical experimental conditions. A steady 

build-up of Cu(NC) 2

+ at 453nm was discernible, with the amount of cuprous copper 

generated from HSA:Cu 2 + on reaction with NAP and L-cysteine summarised in table 

3.15. 

Table 3.15 

% Cu + chelated by neocuproine (1 x 10-3 mol dm 3 ) in the presence of equimolar 

HSA:Cu 2 + and thiol (2 x 10 4 mol dm 3 ) 

Thiol % C u + chelated 
NAP 53 + 2 

L-cysteine 40 ± 1 

These results indicate that NAP is a better reductant than L-cysteine in forming 

Cu + from HSA:Cu 2 +, which is the opposite trend to that exhibited by GGH:Cu 2 +. It 
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is not immediately obvious as to why this should be so, but it is clear that only the 

same quantity (or less) of Cu(I) can be formed when cupric copper is chelated to HSA 

rather than to GGH. 

3.3.3 S-Nitrosothiol Decomposition in the Presence of HSA:Cu 2 + 

SNAP (1 x lO-3 mol dm 3 ) was firstly reacted with HSA:Cu 2 + (5 x 10 7 -

1 x 10"5 mol dm 3 ) (table 3.16) and the second order rate constant calculated as 

described in section 3.2.3. 

Table 3.16 

Kinetic data for the decomposition of SNAP (1 x 10-3 mol dnr 3) in the presence of 

added HSA:Cu 2 + 

rHSA:Cu2 +]/l(H mol dm 3 

0.5 1.70 ± 0.05 
1.0 2.58 ± 0.09 
3.0 4.95 ±0.11 
4.0 6.17 ±0.18 
5.0 7.12 ±0.21 
10 13.2 ±0 .3 

k 2 = 120 ± 2 mol-1 dm3 s 1 

The k 2 value obtained represents a ten-fold decrease in reactivity when 

compared to k 2 measured for hydrated Cu 2 + decomposition. NAP produced the same 

amount of cuprous ion from both GGH:Cu2+ and HSA:Cu 2 + (tables 3.2 and 3.15) 

and yet the tripeptide bound form of Cu 2 + is 3-4 times as reactive towards SNAP. 

This may be because any cuprous ions that are generated and mobilised by thiolate 

reduction may become bound to another region of the albumin molecule. Many extra 

equivalents of Cu 2 + can become bound to HSA than can be attributed to the specific 

binding site or to thiol/disulfide groups18. This would serve to reduce the effective 

[Cu + ] available to promote S-nitrosothiol decomposition and hence reduce the value 

of measured rate constants. HSA added on its own inhibited any decomposition of 

nitrosothiols, presumably due to complexation of the tiny amount of cupric ions 
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derived from the buffer, generating a [HSA:Cu 2 +] that is significantly lower than 

those used in these studies. 

The decomposition of SNAP in the presence of HSA bound to two cupric ions 

(HSA:2Cu2 +) was also examined (table 3.17). 

Table 3.17 

Kinetic data for the decomposition of SNAP (1 x 10 3 mol dnr 3) in the presence of 

added HSA:2Cu2 + 

[HSA:2Cu 2 +]/l(H mol dm 3 Wio-4 s-1 

0.5 5.11 ±0.08 
1.0 5.88 ± 0.09 
2.0 7.68 ± 0.09 
3.0 9.00 10.17 
4.0 10.4 ± 0.2 

k 2 = 150 ± 5 mol"1 dm3 s 1 

As expected, there is an increase in k 2 on going from HSA:Cu 2 + to 

HSA:2Cu 2 + as the copper ion concentration available is raised. However, the 

increase from 120 - 150 moH dm3 s-1 may not be as much as would be predicted. 

Adding an extra equivalent of cupric ion may form peptide: C u 2 + complexes which do 

not allow the ready reduction and formation of Cu+, hence the observed small change 

in reactivity. The introduction of neocuproine to the HSA:Cu 2 + and HSA:2Cu 2 + 

induced decomposition of SNAP firstly slowed and then completely inhibited reaction, 

as seen previously in section 3.2.3. As with GGH, S-nitrosocysteine and S-nitroso-2-

(mercaptopropionyl)glycine were subsequently reacted with HSA:Cu 2 + to check the 

effect of altering the nitrosothiol structure (tables 3.18 and 3.19). 

113 



Table 3.18 

Kinetic data for the decomposition of S-nitrosocysteine (1 x 10~3 mol dm -3) in the 

presence of added HSA:Cu 2 + 

[HSA:Cu2+]/l(H mol dm 3 WNH s-i 

2.0 9.50 ±0.17 
3.0 10.2 ± 0.2 
4.0 11.9 ±0.2 
5.0 13.7 ±0.3 
6.0 15.5 ± 0.3 

k 2 = 14,600 ± 900 mol 1 dm3 s 1 

Table 3.19 

Kinetic data for the decomposition of S-nitroso-2-(mercaptopropionyl)glycine 

(1 x 10"3 mol dm 3 ) in the presence of added HSA:Cu 2 + 

[HSA:Cu 2 +]/l(H mol dm 3 Wio-4 s-1 

1.0 8.32 ±0.18 
2.0 11.8 ±0.2 
3.0 14.2 ± 0.3 
4.0 16.7 ± 0.3 
5.0 18.8 ±0.4 

k 2 = 260 + 14 mol 1 dm3 s 1 

For both of these S-nitrosothiols there is a reduction in the value of k 2 when 

compared with the hydrated copper(II) ion results, but reaction still occurs. It has 

now been established that such compounds can decompose in the presence of Cu 2 + 

which is firmly chelated to peptide molecules composed of many or few amino acids. 

The question to now be addressed is whether or not amino acid bound C u 2 + can effect 

reaction, as such species make up an important transport form of copper within human 

plasma. 
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3.4 Histidine (HIS) 

3.4.1 Importance of Amino Acids as Binding Agents 

In 1950, Maley and Mellor1 9 reported stability constants (defined by equation 

3.5) of complexes formed by the interaction of copper(II) with a series of amino 

acids. 

Cu 2 + + 2A" .. K " CuA2 eqn3.5 

A" represents the ligand amino acid studied (L-histidine, glycine, alanine, valine or 

leucine). It became apparent that the former substance generated chelates that were 

significantly more stable than those of the remaining amino acids. Indeed, log K for 

the complex 2HIS:Cu2 + was measured as 18.33, some three to four orders of 

magnitude greater than for the other four ligands. This suggests that L-histidine (3.5) 

is attached to copper(II) by species different from those involved (amino and 

carboxylate groups) in the coordination of the other amino acids. 

COOH 
N 

H 2 N N 

3.5 

H 

Li et al20 subsequently proposed the predominant binding sites of L-histidine 

to be the pyridine nitrogen of the imidazole group and the amino group. A possible 

structure was described for 2HIS:Cu2 + which involved copper(II) square planar 

geometry21 and coordination via the atoms as previously discussed20 (3.6). However, 

it was noted that the analogous stability constant measured for histamine chelation to 

C u 2 + was smaller than that documented for L-histidine. The structure of histamine 

(3.7) indicates the lack of a carboxylate moiety which could chelate to the metal ion. 

This would require the formation of a tetragonal arrangement of donor groups with 

COO" functionalities above and below the plane containing nitrogen atoms and Cu 2 + . 
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The concentration of L-histidine present in human plasma ranges from 

1.1 - 2.1 mg per 100ml22. Neumann et aP investigated the effect of the twenty-three 

amino acids found in plasma on the binding of copper(II) to HSA. At least half of 

these species significantly altered Cu 2 + chelation by the polypeptide with L-histidine 

having the most marked influence. It seems likely therefore that this amino acid may 

effectively compete for the binding of copper with albumin with the following 

equilibria existing (scheme 3.3). 

HSA + Cu2 + HSA:Cu2+ 

2HIS + Cu2+ 2HIS:Cu2+ Scheme 3 .3 

HSA:Cu2+ + 2HIS = ^ ^ = HSA + 2HIS:Cu2+ 

The experimental results obtained are compatible with the third equilibrium 

expression, that is the transfer of copper(II) from HSA to HIS. Evidence for a 

ternary coordination complex between HSA, Cu 2 + and HIS has subsequently been 

presented23'24 which may play a role in the exchange of C u 2 + between a 
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macromolecule and a low molecular weight amino acid which can be transported 

across the biological membrane. Similar ternary complexes have been reported 

between 2HIS:Cu2 + and amino acids25, particularly 2-aminobutyric acid (3.8) and 

ornithine (3.9). 

COOH COOH / N / N / H 2N 
NH 2 NH 2 

3.8 3.9 

More recently, 2HIS:Cu2 + has been successfully used in the treatment of 

Menkes1 disease, otherwise known as "kinky hair syndrome"26. Patients suffer from 

an intestinal copper absorption disorder which often leads to death in early childhood 

if therapy is not commenced at birth. It is clear that an amino acid bound fraction of 

copper(II) is an important component of Cu 2 + transport within plasma, especially 

2HIS:Cu 2 + whose interaction with S-nitrosothiols was studied in detail. 

3.4.2 Reaction of 2HIS:Cu 2 + with NAP 

As for GGH and HSA, the L-histidinexopper(II) complex was prepared 

(1 x 10"2 mol dm-3) by diluting a 2:1 ratio of amino acid:CuS04-5H20 with pH 7.4 

buffer. A blue solution ensued which had a maximum absorbance at 640nm and a 

molar extinction coefficient of 79 mol 1 dm3 cm 1 at this wavelength (literature = 85 

moH dm3 cm 4 , pH 7.5)2 3. NAP was then introduced to a similar solution of 

2HIS:Cu2 + in the concentration range 2.5 x 10-3 - 1 x 10~2 mol dm 3 . Increasing 

amounts of thiolate caused an instantaneous reduction in the measured absorbance at 

640nm (table 3.20) which was attributed to disruption of the 2HIS:Cu 2 + chelate and 

generation of cuprous ion. 
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Table 3.20 

Measured absorbance (640nm) against added [N-acetylpenicillamine] for the reaction 

of 2HIS:Cu 2 + (1 x 10 2 mol dm 3 ) with NAP, pH 7.4 

[N-acetylpenicillamine]/10"3 mol dm - 3 Absorbance^,,,,, 

0 0.793 
2.0 0.759 
4.0 0.682 
6.0 0.617 
10 0.459 

Each spectrum obtained remained unchanged for at least two hours after mixing the 

reaction solutions. 

These results are analogous to those obtained for the reaction of GGH:Cu 2 + 

with NAP (section 3.2.2). A linear relationship exists between the amount of thiol 

added and the decrease in absorbance observed. The formation of C u + during this 

reaction was confirmed by the addition of neocuproine (1 x 10 3 mol dm 3 ) to 

equimolar 2HIS:Cu 2 + and NAP (2 x 10"4 mol dm 3 ) . The absorbance at 453nm 

(Cu(NC) 2

+ ) corresponded to a trapped copper(I) ion concentration of 1.44 x 10~* 

mol dm 3 , or 72%. This represents a considerable amount of cuprous ion generation 

and chelation from the reaction of NAP with 2HIS:Cu 2 + . Repetition of this 

experiment utilising L-cysteine as the reductant afforded 52% copper(I). It is 

apparent (as has been noted previously) that an amino acid bound form of C u 2 + can 

be reduced in vitro by thiolate. 

3.4.3 S-Nitrosothiol Decomposition in the Presence of 2HIS :Cu 2 + 

The reactions of SNAP, S-nitrosocysteine and S-nitroso-2-

(mercaptopropionyl)glycine with added L-histidine:copper(II) were followed 

kinetically in a similar manner to that outlined in sections 3.2.3 and 3.3.3. In each 

instance the second order rate constant was calculated (tables 3.21 - 3.23) from a 

linear plot of [2HIS:Cu 2 + ] against pseudo-first order rate constant (figure 3.6). 
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Table 3.21 

Kinetic data for the decomposition of SNAP (1 x 10 3 mol dnr 3 ) in the presence of 

added 2HIS:Cu 2 + 

[2HIS:Cu 2 + ] / l (H mol dm 3 WiO"4 s"1 

0.25 3.21 ± 0.08 
0.50 4.23 ± 0 . 1 1 
0.75 5.84 ± 0 . 1 3 
1.0 6.86 ± 0 . 1 9 
2.0 11.3 ± 0 . 3 

k-> = 460 ± 15 mol 1 dm 3 s _ 1 

Table 3.22 

Kinetic data for the decomposition of S-nitrosocysteine (1 x 10 3 mol dm - 3 ) in the 

presence of added 2HIS:Cu 2 + 

[2HIS:Cu2+]/10-7 mol dm 3 Wio-2 s 1 

1.6 8.53 ± 0.09 
3.2 9.50 ± 0 . 1 2 
4.0 9.93 ± 0 . 1 5 
8.0 14.7 ± 0.2 
16 22.7 ± 0.3 

k 2 = 58,000 ± 1000 mol 1 dm 3 s 1 

Table 3.23 

Kinetic data for the decomposition of S-nitroso-2-(mercaptopropionyl)glycine 

(1 x 10-3 mol dm 3 ) in the presence of added 2HIS:Cu 2 + 

[2HIS:Cu 2 + ] / l (H mol dm 3 

1.0 5.14 ± 0 . 1 2 
2.0 5.69 ± 0 . 1 3 
3.0 6.02 ± 0 . 1 3 

1 4.0 6.48 ± 0 . 1 6 1 
k 2 = 44 ± 2 mol 1 dm 3 s 1 
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Figure 3.6 

Plot of against [2HIS:Cu 2 + ] for the decomposition of SNAP (1 x 10"3 mol dm 3 ) 

Wio-4 s-i 
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[2HIS:Cu 2 +]/10- 7 mol dnr 

It is interesting to note that k 2 for the reaction of S-nitrosocysteine with 

2HIS:Cu 2 + is 58,000 mol"1 dm 3 s_1 whereas k 2 for the analogous reaction with 

hydrated copper(II) is 60,000 mol"1 dm 3 s 1 . This implies very similar reactivity for 

the two copper species towards this nitrosothiol. In contrast the second order rate 

constants obtained for S-nitroso-2-(mercaptopropionyl)glycine are almost an order of 

magnitude different (360 and 44 mol"1 dm 3 s 1 ) . The effect of changing the amount of 

thiolate present was followed for a 2HIS:Cu 2 + induced decomposition. NAP 

(1 x 10"5 - 1 x 10"4 mol dm 3 ) was added to SNAP (1 x 10"3 mol dm - 3 ) in the presence 

of 1 x 10"5 mol dm 3 2HIS:Cu 2 + . An increase in pseudo-first order rate constant was 

apparent on increasing the [NAP] (table 3.24). 
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Table 3.24 

Kinetic data for the decomposition of SNAP (1 x 10 3 mol dm 3 ) in the presence of 

2HIS:Cu 2 + (1 x 10-5 mol dm"3) and added NAP 

[N-acetylpeniciIlamine]/10"5 mol dm"3 Wi»-3 s-1 

0 1.63 ± 0 . 0 4 
1.0 1.76 ± 0.04 
3.0 2.14 ± 0 . 0 5 
5.0 2.51 ± 0.06 
10 3.61 ± 0 . 1 1 

This is the opposite effect to that observed when adding NAP to SNAP + 

GGH:Cu 2 + under the same conditions (table 3.10) where very little difference in k„ b s 

was noted. Increasing [NAP] probably releases more C u + for catalysis from 

2HIS:Cu 2 + , hence producing a faster rate of S-nitrosothiol decomposition. The 

thiolate concentration is clearly crucial to the form of the rate profiles recorded as is 

the concentration of the copper complex introduced. 
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3.5 Summary of "Transport C u 2 + " Results 

Table 3.25 documents all the second order rate constants obtained for the 

various sources of copper(II) used for reaction with the three S-nitrosothiols studied. 

Table 3.25 

Summary of k 2 values obtained for the reaction of SNAP, SNC and SMPG with 

hydrated C u 2 + , 2HIS:Cu 2 + , GGH:Cu 2 + and HSA:Cu 2+ 

Copper source S-nitrosothiol studied Copper source 

SNAP SNC SMPG 

Hydrated C u 2 + 1260 + 60 60,000 + 500 360 ± 16 

2HIS:Cu 2 + 460+ 15 58,000 + 1000 44 ± 2 

GGH:Cu 2 + 440 ± 13 11,600 ± 3 0 0 180 ± 10 

HSA:Cu 2 + 120 + 2 14,600 + 900 260 + 14 

Units of k 2 = mol"1 dm 3 s 1 

GGH:Cu 2 + , HSA:Cu 2 + and 2HIS:Cu 2 + can all be classed as being transport 

forms of cupric ion as the C u 2 + is in rapid exchange with tissue copper in vivo. It has 

been demonstrated that cuprous ion can be formed from each of these species by 

treatment with a reducing thiol such as NAP. Al l of the complexes studied catalysed 

the decomposition of nitrosothiols, releasing NO. In the case of SNAP, the order of 

reactivity was hydrated C u 2 + > 2HIS:Cu 2 + > GGH:Cu 2+ > HSA:Cu 2+ (table 

3.25). HSA alone inhibits reaction due to complexation of "impurity" copper, 

forming an extremely low concentration of HSA:Cu 2 + . In comparison, the reactivity 

order of these copper sources with SMPG was hydrated C u 2 + > HSA:Cu 2 + > 

GGH:Cu 2 + > 2HIS:Cu 2 + . The reaction rates measured are extremely dependent 

upon the [RS~] present in the nitrosothiol solution which wil l vary from sample to 
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sample27. As predicted, none of the bound forms of C u 2 + is as reactive as hydrated 

C u 2 + but all do display significant reactivity. However, as ~ 95% of plasma 

copper(II) is bound to ceruloplasmin and is non-exchangeable with tissue C u 2 + , the 

reactivity of this enzyme towards nitrosothiols is of great importance. 

3.6 Ceruloplasmin 

3.6.1 Properties and Physiological Roles of Ceruloplasmin 

Ceruloplasmin is an intensely blue coloured, copper-containing glycoprotein 

existing in the plasma of mammalian blood. It is termed a "blue copper oxidase" 

which denotes its involvement (along with enzymes such as laccase and ascorbic 

oxidase) with molecular oxygen in specific catalytic processes. The copper ions in 

these proteins can easily accommodate electrons from a substrate and readily transfer 

them to a molecule of 0 2 . Ceruloplasmin was first separated and isolated from 

human serum in 1948 by Holmberg and Laurell 2 8. Its level in plasma ranges between 

270 - 370 mg dnr 3 1 6 but is known to vary significantly in a number of diseases and 

disorders. It is composed of a single polypeptide chain consisting of 1065 amino 

acids2 9 and has a molecular weight of 135,000. This suggests a copper content of 

seven ions per ceruloplasmin molecule. The different types of copper ions found in 

copper proteins have been discussed in detail 3 0 but shall now be briefly described. 

Three classes of Cu are generally recognised, denoted as Type I , I I and I I I . The 

former relates to the C u 2 + ions responsible for the blue colour of these proteins, being 

characterised by an intense absorption near 600nm with a molar extinction coefficient 

very much larger than is normally observed for square planar copper(II) complexes. 

Nearly every possible permutation of ligand type and geometry has been proposed to 

explain this phenomenon. It is now generally accepted that C u 2 + adopts a tetrahedral 

geometry which involves coordination via two histidine residues and two sulfur atoms 

from cysteine and methionine residues31 (3.10). The RS(CT) -» Cu(d) charge transfer 

explains the abnormally high e value. 
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Type I I Cu ions are often referred to as "non-blue copper(II)" as they display a 

weak absorption in the visible region (e = 100 - 400 mol - 1 dm 3 c m 1 ) . An 

environment of four nitrogen atoms around the C u 2 + is thought to exist in a tetragonal 

arrangement. Type I I I refers to EPR inactive Cu which has a strong absorption 

around 310 - 350nm. Great uncertainty exists as to the nature of the oxidation state of 

copper, hence very little is known about the surrounding environment. Deinum et 

aP2 established that two Type I , one Type I I and four Type m forms of copper exist 

in the native ceruloplasmin molecule. 

Ceruloplasmin is biosynthesised in the liver, where copper incorporation into 

the apoprotein also takes place3 3. Intravenous injection of ^ C u ^ I ) labelled copper 

compounds indicate3 4 that copper undergoes a rapid transfer (ti^ = 8 - 10 minutes) 

from the blood to the liver, with radioactivity re-emerging into the blood as 

ceruloplasmin-bound C u 2 + . The apoprotein can only incorporate copper at the time 

of its synthesis, and is inactive with respect to oxidase activity. Ceruloplasmin has a 

broad specificity with the best substrates being para-diphenols and related substances, 

which become oxidised (equation 3.6). 

OH O 

+ v2o2 
+ H 2 0 eqn 3.6 

OH O 
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Indeed, all substances which can reduce C u 2 + in ceruloplasmin must also be 

substrates, unless the oxidation product inhibits the reoxidation of copper(I). A 

general mechanism (scheme 3.4) describes substrate oxidation involving two overall 

reactions35. 

ECu2+ + A H 2 - ECu+ + AH 2+ 
Scheme 3.4 

ECu+ + %0 2 + H+ * ECu 2 + + VM20 

(ECu 2 + represents the enzyme and A H 2 the substrate) 

In instances where the reduction of copper(II) is slow (such as with ascorbic 

acid) the reducing agent acts as a poor substrate36. Therefore, ceruloplasmin does not 

significantly catalyse the oxidation of H 2 A to A (section 2.5.3, scheme 2.3). Ferrous 

ion is an excellent substrate however which has led the enzyme to be termed a 

"ferroxidase". The second order rate constant for reduction of Type I C u 2 + (the 

primary electron acceptor) is about 106 mol"1 dm 3 s 1 with F e 2 + compared to about 

103 m o l 1 dm 3 s 1 with the best organic substrates37. In general, the oxidase activity 

of ceruloplasmin is much greater than that of simple Cu(II) salts and complexes, 

which also differ in that toxic H 2 0 2 is the normal product from these as compared to 

water from ceruloplasmin. Thiols such as L-cysteine38 are known to be able to 

interact with Type I C u 2 + , causing a decrease in absorbance at 610nm with 

concominant formation of copper(I). It remains to be seen whether C u + generated in 

this manner is capable of catalysing nitric oxide formation from S-nitrosothiols. 

3.6.2 Reaction of S-Nitrosocysteine with Ceruloplasmin 

Human ceruloplasmin (1ml, pH 7.0) was purchased from Sigma-Aldrich Co. 

Ltd. which had 100 - 150 |^g per ml of copper present. The precise copper ion 

concentration was subsequently calculated using the following procedure. The molar 

extinction coefficient at X m a x (610 nm) was deduced as described by Blumberg et aP* 

who measured the absorbance of a ceruloplasmin solution containing 66.5 [ig of 
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copper per ml to be 1.420 at this wavelength. The concentration can be expressed as 

1.04 x 10 3 mol dm 3 copper present, and hence e 6 1 0 n m = 1356 moH dm 3 c m 1 . 

0.25ml purchased ceruloplasmin was diluted to 5ml with pH 7.4 buffer and the 

absorbance at 610nm measured as 0.0762. This corresponds to a copper 

concentration of 5.62 x 10 5 mol dnr 3 in the protein. This concentration is lower than 

the suppliers stated value, and was confirmed when another sample of ceruloplasmin 

was analysed in a similar manner and found to have 4.31 x 10 5 mol dnr 3 copper 

present. The latter solution was used for all further kinetic experiments. 

S-nitrosocysteine was initially studied with respect to its possible interaction 

with copper ions derived from ceruloplasmin. 1 x 10 - 3 mol dnr 3 nitrosothiol 

containing 5 x 10 - 7 mol dnr 3 EDTA in order to prolong stability was added to pH 7.4 

buffer containing 0 - 3.75 x 10~7 mol dnr 3 ceruloplasmin copper bound to the 

enzyme. The absorbance change at 340nm was followed in the usual way and good 

first order kinetics observed in each instance both in the presence and absence of 

ceruloplasmin (figure 3.7). Rate constants were measured at each copper 

concentration under similar conditions (table 3.26) and the experiment repeated using 

completely fresh solutions the following day (table 3.27). 

Table 3.26 

Kinetic data for the decomposition of S-nitrosocysteine (1 x 10 3 mol dnr 3 ) in the 

absence and presence of ceruloplasmin 

[Cu^cerutoplasminl/lO 7 m o 1 dm 3 W W 3 s-i 

0 2.61 ± 0.04 
2.5 7.06 ± 0 . 1 5 
5.0 11.6 ± 0 . 2 
7.5 16.9 ± 0.3 

k 2 = 18,900 ± 560 moF dm 3 s 1 
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Table 3.27 

Kinetic data for the decomposition of S-nitrosocysteine (1 x 10 3 mol dm 3 ) in the 

absence and presence of ceruloplasmin 

[ C u 2 +

c e r u t o p b s m i J / 1 0 - 7 mol dnr3 

W i ° - 3 s"1 

0 2.91 ± 0 . 0 5 
1.25 5.38 ± 0.11 
2.5 7.34 + 0.18 
7.5 16.2 ± 0 . 3 

k 2 = 17,600 ± 260 mol 1 dm 3 s 1 

Figure 3.7 

Traces showing the decomposition of S-nitrosocysteine (1 x 10 3 mol dm 3 ) in the 

absence and presence of ceruloplasmin, pH 7.4 
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a) CO 
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0 1800 3600 
Time (sees) 

(a) no added ceruloplasmin; (b) 6.25 x 10*8 mol dnr 3 ceruloplasmin copper; 

(c) 1.25 x 10"7 mol dm 3 ceruloplasmin copper; (d) 2.5 x 10 7 mol dnr 3 ceruloplasmin 

copper; (e) 3.75 x 10~7 mol dnr 3 ceruloplasmin copper. 
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A plot of the original data (table 3.26) is shown in figure 3.8. 

Figure 3.8 

Plot of k ^ against [ C u 2 +

e e r u l o p l a s m i n ] for the decomposition of S-nitrosocysteine 

(1 x 10-3 mol dm-3) 

Wio-3 s-1 

18 x 

0 -| 1 1 1 

0 2.5 5 7.5 

[ C u 2 +

c e r u l o p l a s m i n ] / 1 0 - 7 mol dm-3 

Tables 3.26 and 3.27 demonstrate clear decomposition catalysis by 

ceruloplasmin and indicate the reproducibility of rate constants for this reaction. The 

second order values for k 2 obtained (18,900 and 17,600 mol"1 dm 3 s_1) mean that 

S-nitrosocysteine has similar reactivity with respect to ceruloplasmin as it does with 

GGH:Cu 2 + and HSA:Cu 2 + (table 3.25). When higher ceruloplasmin concentrations 

were added the observed pseudo-first order k^,, value levelled off and became 

constant. An explanation for this is that the amount of copper bound to the enzyme 

may exceed the quantity of thiolate present as an impurity under these conditions 

meaning that a rate-limiting concentration of C u + can be generated by reduction of 

copper(II). 
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The effect of adding reducing agents to the reaction of S-nitrosocysteine with 

ceruloplasmin was then investigated. L-cysteine and ascorbic acid were separately 

introduced over the same concentration range (1 x 1 0 7 - 1 x 10 4 mol dnr 3 ) and the 

pseudo-first order rate constants calculated (table 3.28). 

Table 3.28 

Kinetic data for the reaction of S-nitrosocysteine (1 x 10 - 3 mol dm 3 ) and 

ceruloplasmin (2.5 x 10"7 mol dm 3 C u 2 +

c e r u l o p l a s m i n ) with added thiol or ascorbic acid 

[thiolate] or [ascorbate]/l(r7 mol dm - 3 Wio-3 s 1 

L-cysteine ascorbic acid 
0 6.92 + 0.13 6.55 + 0.13 
1 5.95+0.13 5.27 + 0.12 
10 5.92 ± 0 . 1 1 5.50 + 0.13 

100 7.38 + 0.15 5.08 + 0.11 
1000 3.86 + 0.11 5.50 + 0.09 

This table indicates that the addition of reducing agents (potential substrates) to 

ceruloplasmin has little effect on the rate of S-nitrosocysteine decomposition. Indeed, 

high thiolate concentrations seem to slightly inhibit reaction, probably due to a degree 

of copper ion chelation. This is at variance with previous results obtained adding 

L-cysteine to the corresponding nitrosothiol and C u 2 + . 3 9 At low thiol concentrations 

(5 x 10~6 mol dm 3 - 5 x 10 - 5 mol dnr 3 ) the rate of nitrosothiol decomposition is 

increased, whereas above [L-cysteine] = 1 x 10"4 mol dnr 3 the reaction becomes 

progressively slower. Work undertaken utilising SNAP with added NAP (section 

2.5.1) demonstrates an identical trend. As the copper content of ceruloplasmin is so 

low in this instance (2.5 x 10 - 7 mol dm 3 ) and the buffer [ C u 2 + ] - 1 x 10 6 mol dnr 3 

(determined by atomic absorption spectrophotometry), it is likely that the amount of 

L-cysteine present due to the reversibility of thiol nitrosation27 is greater than the total 

amount of copper(II) ions available in the system for reduction. I f this is the case, 

increasing the thiol concentration or introducing ascorbic acid wi l l not increase the 

rate of decomposition significantly. L-cysteine is known to be a good chelator of 
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C u 2 + only above pH 8.0 4 0 hence only a small decrease in is apparent when 

1 x 1(H mol dm 3 thiol is present. 

Ceruloplasmin also catalysed nitric oxide formation from SNAP and SMPG 

but to a much lesser extent than for S-nitrosocysteine. Adding the corresponding thiol 

or ascorbic acid to each reaction again had no observeable rate enhancing effect. It 

appears as i f , under certain conditions, thiolate can reduce copper(II) chelated to 

ceruloplasmin, a theory that could be examined spectrophotometrically. 

3.6.3 Addition of L-cysteine to Ceruloplasmin 

The possible reaction betwen ceruloplasmin and L-cysteine was followed using 

[ C u 2 + 

cemiopiasmin] — 5.6 x 10~5 mol dm - 3 . A solution of protein was added to 

neocuproine (1 x l ( r 3 mol dnr 3 ) in pH 7.4 buffer and thiol (1 x 10 3 mol dnr 3 ) 

introduced. A uv/visible spectrum was immediately recorded between 350 - 700nm 

(figure 3.9, trace (a)) with a further one taken after ten minutes (trace (b)). There is 

an obvious decrease in absorbance due to Type I Cu at 610nm with a parallel increase 

at 453nm due to Cu(NC) 2

+ generation. Thus, copper(II) ions that are bound to 

ceruloplasmin and contribute to the intense blue colour can be reduced in a similar 

manner to hydrated or chelated C u 2 + . A similar effect has been described by 

Chidambaram et al41 who report a permanent reduction of Type I copper by 

L-cysteine. However, the authors proposed that superoxide ion is a reaction product 

as the enzyme superoxide dismutase (SOD) caused a large rate enhancement in thiol 

oxidation, presumably due to formation of H 2 0 2 (scheme 3.5). 

2RSH + 2 0 2 R S S R + 2 0 2 - + 2H+ 

20 2 " ' + 2H+ — — * • H 2 0 2 + 0 2 

Scheme 3.5 

The infinity absorbance at 453nm was measured as 0.305. After subtracting 

the residual ceruloplasmin absorbance (0.006) at this wavelength, the percentage C u + 
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trapped by neocuproine was calculated as 67% using e 4 5 3 n m = 7950 mol"1 dm 3 c m 1 

as before. This seems to be a significant amount of cuprous ion formation. This 

value cannot be compared with quantities of copper(I) generated from other chelated 

forms of C u 2 + as the [thiol] : [ C u 2 + ] ratio is approximately 20:1 in this case, whereas 

for the amino acid, tripeptide and polypeptide bound copper(II) reactions the 

analogous ratio was 1:1 in every instance. An important point to note is that a tightly 

bound form of C u 2 + can be reduced by thiolate. It is well documented42 that 

ceruloplasmin has a plethora of loose binding sites for divalent metal ions such as 

Co(II), Ni(II) and Zn(II) as well as for Cu(II). L-cysteine has been shown to interact 

with Type I copper, which cannot be removed by a metal chelating resin, and is an 

integral part of the protein structure. 

Figure 3.9 

Uv/visible spectra of ceruloplasmin (5.6 x 10"5 mol dm"3 C u 2 +

c e r u l o p l a s m i n ) and 

equimolar L-cysteine/neocuproine (1 x 10 3 mol dm - 3 ) 

(b 

0.25 

CD 
o 
CO 

(a 
Q0.15 

0.1 

0.05 

0 -I 1 1 1 1 1 

350 420 490 560 630 700 

Wavelength (nm) 

(a) immediate spectrum; (b) spectrum acquired after ten minutes 
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3.6.4 Effect of Peroxynitrite 

Peroxynitrite (ONOO") may be generated in the vasculature by the reaction of 

superoxide with nitric oxide (section 1.1.4, equation 1.9). A recent paper43 has 

examined the reaction between this ion and ceruloplasmin. It was found that 

incubation of ONOO" with the enzyme releases copper ions and reduces ferroxidase 

activity. A loss of absorbance at 610nm and increase at 460nm is observed, related to 

redox active copper release which is chelated by 1,10-phenanthroline. The 

decomposition products of peroxynitrite (nitrate and nitrite ions) have been shown to 

have no effect on ceruloplasmin. This interesting discovery prompted an investigation 

into the effect that ONOO - may have on S-nitrosothiol decomposition in the presence 

of this enzyme. 

Peroxynitrite was synthesised as its sodium salt by the following procedure. 

1.035g NaN0 2 in 25ml water was added to 25ml of acidified hydrogen peroxide 

(0.72 mol dirr 3 H 2 0 2 in 0.68 mol dm 3 HC1) at 0°C under vigorous agitation. 

Immediately following this, 25ml 1.25 mol dm 3 NaOH was introduced to stabilise the 

mixture. After three minutes the final solution was treated with granulated M n 0 2 (to 

destroy excess peroxide) and filtered. The resulting peroxynitrite was stored frozen at 

-10°C and its concentration determined by applying a molar extinction coefficient of 

1670 moH dm 3 cm - 1 at 302nm 4 4 against an appropriate blank of "decomposed" 

ONOO" in pH 7.4 buffer. The decomposed peroxynitrite contained nitrate, nitrite and 

chloride ions. S-nitrosocysteine (1 x 10"3 mol dm 3 ) was reacted in the presence of 

ceruloplasmin (9 x 10-7 mol dm 3 C u 2 +

c e r u l o p l a s m i l l ) and the first order rate constant 

(k^,,) measured as 1.73 ± 0.02 x 10 - 3 s 1 . Subsequently, peroxynitrite was introduced 

(1 x 10 3 mol dm - 3) and incubated for ten minutes with ceruloplasmin prior to reaction 

with S-nitrosocysteine ( k ^ = 3.46 ± 0.05 x 10 2 s 1 ) . This means that there was a 

20-fold increase in the rate of nitrosothiol decomposition when ONOO" was added. 

The decomposition products of peroxynitrite had little or no effect on the rate of NO 

formation. 
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In conclusion, it is clear that various substrates can release cuprous ions from 

ceruloplasmin in vitro which are made available for reaction with nitrosothiols. The 

biological significance of this should not be understated, as the copper catalysed 

mechanism of nitric oxide production appears to be even more feasible in vivo. 

3.7.1 Biological Relevance 

Both superoxide dismutase (SOD) and metallothionein are protein molecules 

which contain copper ions. The former catalyses the rapid two step dismutation of 

toxic superoxide radical, generating hydrogen peroxide and molecular oxygen 

(scheme 3.5), via reduction and oxidation of the active site copper. Superoxide is 

believed to react with thiol groups and tryptophan residues which could prove to be 

lethal. The structure and mechanism of this enzyme has been reported4 5 with the 

active site outlined below (3.11). 

The main feature of the metal binding region is that copper and zinc ions 

coordinate to the same imidazole ring of the histidine residue (His-61). C u 2 + is 

coordinated by four histidine residues in total and one water molecule. An important 

aspect is that the copper ion is located at the bottom of a crevice. This means that 

C u 2 + is accessible to Cl~ and Br" but not I " . 4 6 During catalysis, copper(II) becomes 

reversibly oxidised and reduced by successive encounters with 0 2 " according to 

scheme 3.6. 

3.7 Superoxide Dismutase (SOD) and Metallothionein 

Zn2+ N N 
Cu2* 3.11 

His 61 

133 



E Cu(II) + o 2 - + H+ - E—Cu(I) + 0 2 

E'—Cu(I) + O2- + H+ E—Cu(II) + H 2 0 2 

Scheme 3.6 

Human SOD has a molecular weight of 31,200 and is composed of two 

identical subunits, each containing one Cu 2 + in the oxidised form. The optical 

spectrum of the enzyme is characterised by a broad absorption band in the visible 

region between 500 and 900nm with a maximum at about 680nm which is responsible 

for the bluish-green appearance of concentrated solutions. This band, and another 

weaker one at 340nm is thought to result from copper. The addition of hydrogen 

peroxide to a solution of superoxide dismutase results in a bleaching of the 680nm 

band, which is thought to be due to the reduction of enzymic copper (eqn. 3.7). 

Ferrocyanide can also accomplish a bleaching of this band, with the production of 

ferricyanide indicating that a true reduction of the protein has taken place. 

In comparison, the function of metallothionein has been debated ever since its 

intracellular discovery. This protein contains a high amount of heavy metals which 

are bound exclusively by clusters of thiolate bonds. Mammalian metallothionein is a 

61 or 62 amino acid peptide comprising twenty cysteine residues which bind seven 

Cu(I) ions. Stability constants range from 1019 to 101 7 for copper, with 

metallothionein also capable of binding to mercury, cobalt, lead, nickel, cadmium, 

zinc, silver and gold 4 7. Therefore, a role in metal metabolism or detoxification has 

been proposed. The protein has a random structure in the absence of metal ions, and 

in certain organisms stimulation of metallothionein synthesis by copper is observed. 

These two copper containing species provide a potential opportunity for S-nitrosothiol 

decomposition to occur in vivo. The interaction (and possible catalytic effect) of 

SOD/metallothionein on S-nitrosocysteine was studied. 

2Cu2+ + H 2 0 2 2Cu+ + 2H+ + 0 2 eqn 3.7 
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3.7.2 Effect of SOD on the Stability of S-Nitrosothiols 

Superoxide dismutase extracted from bovine erythrocytes was purchased as a 

lyophilized powder from Sigma-Aldrich Co. Ltd. One mole of SOD is known to 

contain two moles of Cu 2 + , so the reaction between S-nitrosocysteine (1 x 10 3 mol 

dm 3 ) and 2 x 10 6 mol dnr3 copper(II) derived from the protein was monitored at 

340nm, and compared with an analogous reaction with hydrated cupric ion (table 

3.29). 

Table 3.29 

Kinetic data for the reaction between S-nitrosocysteine (1 x 10 3 mol dm - 3) and 

hydrated Cu 2 + or SOD ( [ C u 2 + ] h y d r a t e d / S O D = 2 x 10-<* mol dm 3 ) 

Copper source Wio-2 s-1 

pH 7.4 buffer 9.63 + 0.21 
Hydrated Cu 2 + 119 + 7 

SOD 9.74 + 0.23 

From these results it is apparent that the rate of reaction is extremely similar 

both in the presence and absence of added SOD, with decomposition induced by 

hydrated copper ions some ten times faster as expected. Therefore, this enzyme 

appears to be having very little effect on nitrosothiol stability, in direct contrast to 

ceruloplasmin (section 3.6.2). When higher enzyme concentrations were added (up to 

[SOD] = 3 x 10-5 mol dm 3 ) nitric oxide release was inhibited, presumably due to 

buffer metal ion chelation by the protein. An experiment was conducted to test 

whether cupric ions present in superoxide dismutase could be reduced by thiolate and 

trapped as Cu + . SOD (3 x 10"5 mol dnr3) was added to 1 x 10-4 mol dnr 3 L-cysteine 

in the presence of 3 x 10-4 mol dnr3 neocuproine. No characteristic absorbance 

increase at 453nm or yellow colouration was noted as was observed for other chelated 

forms of Cu 2 + , suggesting that copper(I) cannot be generated in this manner. This is 

not surprising as the cupric ions are buried within the enzyme structure and can only 

be reached by small substrates such as 02~". It may be the case that the thiolate ion is 
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too large to reach Cu 2 + and hence no cuprous ion can be generated from SOD, 

leading to no rate enhancing effect. When ascorbic acid was utilised as a possible 

reductant exactly the same results were obtained (figure 3.10). A comparison is made 

between the amount of copper(I) formed by ascorbate reacting with hydrated Cu 2 + 

and that derived from SOD. 

Figure 3.10 

Uv/visible spectra of 6 x 10 5 mol dm - 3 Cu 2 + (derived from SOD or hydrated) in the 

presence of 1 x 10A mol dnr3 ascorbic acid and 3 x 10~4 mol dm 3 neocuproine 
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0 

0> 

(a) 

550 435 320 
Wavelength (nm) 

(a) C u 2 + bound to superoxide dismutase 

(b) hydrated C u 2 + 
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Calculations indicate that 88% Cu + was chelated by neocuproine following 

ascorbate induced reduction of hydrated Cu 2 + whereas no peak at 453nm for SOD is 

indicative of no cuprous ion formation from the protein molecule. Superoxide 

dismutase can therefore be discounted as a mediator of S-nitrosothiol decomposition in 

vivo. 

3.7.3 Influence of Metallothionein 

Horse kidney metallothionein was purchased from Sigma-Aldrich Co. Ltd. and 

reacted with S-nitrosocysteine. As copper(I) ions are present within the protein 

structure it was predicted that metallothionein would catalyse nitric oxide formation 

from this compound, but surprisingly an inhibitory effect was apparent. It appears 

that the Cu + ions are unavailable to bind the nitrosothiol in order to effect reaction. 

The precise role of this protein within the human body remains a mystery. 

3.8 Conclusion 

It has clearly been demonstrated that copper(II) ions chelated to either an 

amino acid , peptide or protein molecule are available for reduction either by thiolate 

or ascorbate, forming Cu + . However, not all bound forms of copper(II) can react in 

this manner as shown by results pertaining to SOD. Copper(I) which has been 

generated in this way is readily available to bring about the decomposition of 

S-nitrosothiols forming NO and the corresponding disulfide by the same mechanism 

as that outlined in Chapter Two. The significance of these results is that it is now 

possible to postulate a pathway for the formation of nitric oxide in vivo from 

S-nitrosothiols which utilises chelated copper(II) ions. This particular mode of 

decomposition could prove to have major importance in explaining the behaviour of 

these compounds under physiological conditions. The mechanism outlined may 

account for nitric oxide generation from therapeutically administered nitrosothiols and 

could lead to the establishment of such compounds as a routinely-used treatment for 

angina and other circulatory problems. 
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Chapter 4 

Stability of Novel Aliphatic, Heterocyclic and Aromatic S-Nitrosated Thiols 



Chapter 4: Stability of Novel Aliphatic, Heterocyclic and Aromatic S-Nitrosated 
Thiols 

4.1 Introduction 

Since the current interest in S-nitrosothiols as potential nitric oxide donors 

developed in the late 1980's, many vastly different substrates have been studied and a 

general structure/reactivity relationship established1-2'3. Much activity has been 

centred around S-nitrosoglutathione (GSNO, 4.1) as the thiol precursor is the most 

abundant mercapto compound present within the human body (0.5 - lOnmol per gram 

of fresh tissue)4. 

NH 2 SNO O O 

A / HO N 
H OH N 

O H 

4.1 

In addition, many nitrosothiols based on the amino acid L-cysteine have been 

examined in vitro. There remain several thiols which however have not been studied 

whose S-nitroso derivatives may prove to have an interesting biological profile. To 

date, nitrosothiols generated from heterocyclic or aromatic starting materials are 

almost absent in the chemical literature, except for the well-characterised 

S-nitrosotriphenylmethanethiol (4.2)5 and S-nitrosothiophenol (4.3)6. 

SNO 

Ph3CSNO 

4.2 4.3 

Of particular interest are nitrosothiols with an electron donating moiety in 

close proximity to the -SNO functional group thus providing the capability of 

bidentately chelating Cu + , which appears to be a requirement for decomposition. 

Therefore, a range of thiols were nitrosated using one equivalent of acidified sodium 
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nitrite in situ. The S-nitrosated species generated were reacted with cupric ions. In 

all except one instance nitric oxide release in pH 7.4 buffer took place which was a 

copper ion catalysed process. 

4.2 Generation and Reactivity of New Aliphatic S-Nitrosothiols 

The S-nitrosothiol compounds under scrutiny were monitored by conventional 

uv/visible spectrophotometry at 340nm, close to the X m a x value for each material 

(table 4.1). 
Table 4.1 

Spectral data obtained for some aliphatic S-nitrosothiols, pH 7.4 

S-nitrosothiol e (mol"1 dm3 cm-1)* ^max W 

S-nitroso-2-N,N-dimethylaminoethanethiol 714 + 10 332, 541 

S-nitroso-2-N, N-diethylaminoethanethiol 623 + 8 332, 544 

S-nitroso-N-carbamylpenicillamine 976 ± 15 340, 588 

S-nitroso-N-carbamylcysteine 876 ± 14 337, 544 

S-nitroso-2-(mercaptopropionyl)glycine 844 ± 6 334, 546 

S-nitrosomercaptoethanesulfonic acid 920 + 10 329, 546 

*A11 e values measured at 340nm 

In each case, a decrease in absorbance at 340nm was exhibited, due to 

nitrosothiol decomposition and corresponding disulfide formation. A "window" of 

copper(II) ion concentrations existed (section 2.1), usually between 1 x 10~6 - 5 x 10~5 

mol dm 3 where good first order kinetics were obtained. Below and above this range 

traces were collected which had induction periods and were zero order in nature 
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(section 2.5.2). Interest initially was focused on the [Cu 2 + ] which allowed first order 

plots to develop. Tables 4.2-4.5 detail the kinetic data relevant to the decomposition 

of four of these nitrosothiols in the presence of cupric ion. 

Table 4.2 

Kinetic data for the decomposition of S-nitroso-N-carbamylpenicillamine 

(5 x 1(H mol dnr3) in the presence of added C u 2 + , pH 7.4 buffer 

[Cu2 +]/l(H mol dm 3 Wio-3 s-1 

3.0 3.00 ± 0.09 
4.0 3.72 ± 0.06 
5.0 4.81 ±0.09 
7.0 6.17 + 0.08 
8.0 7.12 + 0.05 
9.0 7.47 ± 0.09 
10 8.64 + 0.12 

k 2 = 780 + 30 mol 1 dm* s 1 

Percentage thiol impurity in S-nitrosothiol sample = 0.87% 

Table 4.3 

Kinetic data for the decomposition of S-nitroso-N-carbamylcysteine 

(5 x 10 4 mol dm -3) in the presence of added C u 2 + , pH 7.4 buffer 

[Cu2+]/10-5 mol dm 3 Wio-3 s"1 

1.0 9.80 + 0.3 
2.0 13.9 + 0.4 
3.0 17.2 + 0.6 
4.0 21.5 + 0.7 
5.0 25.1+0.9 

k 2 = 380 ± 10 mol 1 dm3 s 1 

Percentage thiol impurity in S-nitrosothiol sample = 0.54% 
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Table 4.4 

Kinetic data for the decomposition of S-nitroso-2-(mercaptopropionyl)glycine 

(5 x 10"4 mol dm 3 ) in the presence of added Cu 2 + , pH 7.4 buffer 

[Cu2 +]/10-5 mol dm 3 

W i O " 3 s-1 

0.5 2.36 ±0.06 
1.0 3.41 ±0.09 
2.0 6.44 ±0.17 
3.0 8.77 ±0.19 
4.0 10.1 ±0.3 
5.0 14.0 ±0.2 

k 2 = 250 ± 15 mol 1 dm3 s 1 

Table 4.5 

Kinetic data for the decomposition of S-nitroso-2-mercaptoethanesulfonic acid 

(1 x 10 3 mol dm -3) in the presence of added Cu 2 + , pH 7.4 buffer 

[Cu2 +]/10-5 mol dm 3 Wio-3 s-i 
3.0 1.89 ±0.07 
4.0 2.37 ± 0.06 
5.0 2.85 ±0.06 
6.0 3.36 ± 0.07 
7.0 3.80 ±0.08 
8.0 4.19 ± 0.09 
9.0 4.74 ±0.11 

k, = 47 ± 2 moH dm3 s 1 

The second order rate constant, k 2 was obtained from the slope of a plot of 

kjjbg against [ C u 2 + ] a d d e d (section 1.4.3.1). At copper(II) ion concentrations 

(1 x IQr4 mol dm 3 ) higher than those indicated in each table, the linear relationship 

demonstrated ceased, and very irreproducible results were apparent. Generally, an 

increase in [ C u 2 + ] a d d e d did not lead to any significant rate enhancement. A possible 

reason for this is due to complexation occurring between copper(II) and phosphate 

buffer, thus making the effective [Cu 2 + ] available for catalysis unknown. Table 4.6 

displays the k 2 values calculated for each compound. 
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Table 4.6 

Values of k 2 for the copper ion catalysed decomposition of aliphatic S-nitrosothiols, 

pH 7.4 buffer 

S-nitrosothiol Structure 
k 2 

(mol4 dm3 s_1) 

S-nitroso-N-carbamylpenicillamine 
(SNCP) 

\ / S N O 

HOOC^^NHCONH 2 

780 ± 30 

S-nitroso-N-carbamylcysteine 
(SNCC) 

^SNO 

H O O C / ^ N H C O N H 2 

380 ± 10 

S-nitroso-2-
(mercaptopropionyl)glycine (SMPG) / \ A / S N O 

HOOC N J 

250 ± 15 

S-nitrosomercaptoethanesulfonic acid 47 ± 2 

Two close derivatives of SNAP (S-nitroso-N-carbamylpenicillamine (SNCP) 

and S-nitroso-N-carbamylcysteine (SNCC)) were formed in situ from the thiol 

precursors generously donated by Glaxo-Wellcome. The first point of interest is a 

direct comparison between the k 2 values obtained for these two compounds (table 

4.6). SNCP is observed to be approximately twice as reactive as SNCC which is 

similar to the difference in reactivity between S-nitrosopenicillamine and 

S-nitrosocysteine (67,000 mol 1 dm3 s_1 and 24,700 moH dm3 s 1 respectively)1. This 

difference can be attributed to the "gem-dimethyl effect" described in section 1.4.3.1. 

Both SNCP and SNCC are much more susceptible to copper ion catalysed 

decomposition than is an in situ preparation of SNAP (the former forty times, the 

latter twenty times). Work undertaken by Hudson et aP produced second order rate 
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constants of 18 and 21 mol 1 dm3 s 1 for separate in situ samples of SNAP. An 

explanation for this greater reactivity of SNCP and SNCC concerns the postulated 

formation of a bidentate intermediate. It is likely that SNAP may react via one of two 

possible reactive intermediates shown in figure 4.1. 

If both SNCP and SNCC were to form the seven membered intermediate analogous to 

(i), it would be likely that these compounds would have a similar second order rate 

constant to SNAP. Coordination via (ii) in all three substances would instead prove 

more logical. The presence of the N-carbamyl group (-NH-CONH2) may lead to a 

greater electron density on the P-amino nitrogen atom than for the N-acetyl group in 

SNAP (-NH-COCH3) due to the availability of other electrons on the carbamyl 

nitrogen atom adjacent to the electron withdrawing carbonyl group in SNCP and 

SNCC (figure 4.2). 

N = 0 N = 0 
C u + 

Cu+ H3CCON c—0 HOOC N 
H ^ C O C H 3 

1 6* 

(ii) 

Figure 4.1 

0 5 
N-*-C — CH 

c r 
+ I 

— N = C — C H 3 

H (i) H 

— N — C — N H 2 * 

0 5 
O" #0 

+ I Ml 
— N = C — N H 2 — N — C — N H 2 

— N — C = N H 2 

H H H H 

Figure 4.2 

147 



There are two possible canonical forms which can be constructed for SNAP (i), 

whereas three are available for both SNCP and SNCC (ii) with the electron density 

reduced on the p-amino nitrogen atom in only one of them. Overall, a net higher 

electron density will exist on this atom in S-nitroso-N-carbamylpenicillamine and 

S-nitroso-N-carbamylcysteine than for SNAP, explaining these compounds increased 

reactivity. 

S-nitroso-2-(mercaptopropionyl)glycine (SMPG) is also observed to have a 

moderate reactivity (k 2 = 250 ± 15 moH dm3 s 1) under similar reaction conditions. 

Examination of the structure of this compound would suggest that bidentate 

coordination could only occur via the carbonyl oxygen lone pair of electrons, forming 

a six membered intermediate (4.4). 

y \ = o 
I 4.4 

H O O C ^ N / ^ 0 - * ' C U + 

H 

Coordination through oxygen has been previously proposed8 in 

S-nitrosomercaptoacetic acid (4.5), k 2 = 300 mol"1 dm3 s_1 but in this instance a full 

negative charge is associated with the carboxylate group, whereas only a lone pair of 

electrons is available on the carbonyl oxygen in SMPG. A reduced reactivity is 

therefore noted for this compound. 

\ 4.5 

, - , o - C u + 

The a-methyl moiety may aid reaction by helping to hold the available binding groups 

in close proximity to Cu + . A smaller second order rate constant would thus be 

expected for S-nitrosomercaptoacetylglycine. The coordination chemistry of copper(I) 

is known to be dominated9 by binding with N and S groups, due to Cu + being a soft 
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Lewis acid. It is possible (but more unlikely) that in this case coordination will occur 

through the amide nitrogen atom (4.6). 

For all of these intermediates it is possible to envisage coordination via the 

nitrosothiol sulfur atom. However, when Hg 2 + binds to RSNO in this manner 

(section 1.4.3.2), the product formed is the nitrosonium ion NO + and not nitric oxide, 

suggesting that nitrogen is the more probable coordinating atom in the case of Cu+. 

There is as yet no direct evidence for the nature of the structural intermediate. It is 

interesting to note that the second order rate constant for 

S-nitroso-2-mercaptoethanesulfonic acid is one of the smallest of all the nitrosothiols 

studied here. Only 50% of the reaction appeared to take place, however a distinct 

dependence on the copper ion concentration was apparent (figure 4.3) with good first 

order plots being obtained. 

• 

^ N = 0 
4.6 

o N \ ^ / C O O H 
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Figure 4.3 

Plot of kobs against [ C u 2 + ] for the decomposition of 
S-nitroso-2-mercaptoethanesulfonic acid (1 x 10 3 mol dm 3 ) 

Wio-3 s-i 

5 

4 

3 

2 

0 
0 3 6 9 

[Cu 2 + ] /10- 5 mol dnr 3 

It may be that the disulfide product generated wil l preferentially complex catalytic 

C u + (or C u 2 + ) 1 0 > 1 1 thus preventing complete reaction by forming a chelate as 

indicated below (4.7). 

"o 3s / / ^ S — s / / ^S03" 

\ / \ / 
Cu+ Cu+ 4.7 

/ \ / \ 
"03S\ / S ~ S \ / S ° 3 " 

Such competitive complexation between the disulfide and S-nitrosothiol for copper(I) 

could cause inhibition of RSNO decomposition in this instance. 
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S-nitroso-2-N,N-dimethylaminoethanethiol and its diethyl analogue were 

thought to be extremely unstable compounds due to an increased electron density on 

the amino nitrogen atom. However, as has been discussed in section 2.5.3, the 

corresponding thiol molecules are excellent chelators of copper ions. Subsequently, 

the expected "window" of [Cu 2 + ] producing first order kinetics could not be found, 

with clear induction periods present at all copper concentrations. It was therefore not 

possible to measure k 2 for these species under the current experimental conditions. 

4.3 Heterocyclic and Aromatic S-Nitrosated Thiols 

4.3.1 Spectral Characteristics 

Several heterocyclic and aromatic thiols were readily available for nitrosation 

in a similar manner to previously discussed aliphatic species (section 4.2). Table 4.7 

indicates that the nitroso compounds derived from 2-mercaptoimidazole, 

2-mercaptopyridine, 2-mercaptopyrimidine and 2-aminothiophenol do not necessarily 

exhibit the characteristic absorbance maximum at around 340nm. This meant that 

reaction kinetics had to be followed at a variety of wavelengths according to the 

specific compound being studied. The existence of thiol/thione tautomerism in some 

of these compounds (section 4.3.3) means that it is more relevant to term the 

nitrosated species "S-nitrosated thiols" rather than "S-nitrosothiols". 
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Table 4.7 

Spectral data obtained for some heterocyclic and aromatic S-nitrosated thiols, pH 7.4 

S-nitrosated thiol ^max W e (moH dm 3 cm*1) 

S-nitrosated 2-aminothiophenol 
265 
313 

4103 ± 60 
1940 ± 20 

S-nitrosated 2-mercaptopyridine 
341 
270 

1080 ± 30 
2110 ± 40 

S-nitrosated 2-mercaptopyrimidine 
214 
234 

8900 ± 40 
9200 + 60 

S-nitrosated 2-mercaptoimidazole 276 3870 ± 50 

S-nitrosated 1 -methyl-2-mercaptoimidazole 280 2940 ± 40 

It is now necessary to discuss the in vitro behaviour of each S-nitrosated thiol 

separately both in the presence and absence of added copper(II) ions. 

4.3.2 S-Nitrosated 2-aminothiophenol 

This compound showed no significant decomposition at pH 7.4 after twenty-

four hours even in the presence of 5 x 10"5 mol dm - 3 Cu 2 + . It is well documented1 

that bidentate coordination of the substrate to catalytic copper ions has to occur for the 

reaction to proceed (section 1.4.3.1) and that the presence of a (3-amino group 

facilitates nitric oxide generation, as in the case of S-nitroso-2-aminoethanethiol 

(S-nitrosocysteamine), figure 4.4. 
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-SNO 

-NH 2 

k 2 = 65,000 mol' 1 dm3 s"1 l ^ 3 „-i k 2 = 0 mol dm s 

Figure 4.4 

However, the lone pair of electrons present on the amino nitrogen atom of 

S-nitrosated 2-aminothiophenol will become delocalised into the aromatic r ing 1 2 

according to figure 4.5. 

f V ^ Q > S N O SNO 

Figure 4.5 

This wi l l reduce the electron density available on the nitrogen atom meaning that 

coordination is very unlikely via the P-amino moiety in this instance. It is not thought 

that Cu + is capable of forming a stable complex with the S-nitroso group alone that 

wi l l effect nitric oxide release. 

4.3.3 S-Nitrosated 2-mercaptopyridine and S-Nitrosated 2-mercaptopyrimidine 

4.3.3.1 Nitrosation of 2-mercaptopyridine 

The nitrosation of sulfur-containing compounds has been studied in great detail 

and summarised within section 1.3. To date, the kinetics of N O + attack at sulfur in 

heterocyclic and aromatic thiols have however not been measured. Such substances 

are of great mechanistic interest as it is known that thiol/thione tautomerisation exists, 

for example considering 2-mercaptopyridine (equation 4.1)-
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I 
H 

From extensive ultraviolet studies Albert and Barlin 1 3 quoted the equilibrium constant 

K to be 49,000 suggesting that the thione form is predominant in aqueous solution. 

The biologically relevant thiol ergothioneine (4.8) which has been implicated in brain 

function is also thought to reside chiefly in this state14. 

H / N ( C H 3 ) 3 

, / C H 2 ( T 
— xcoo _ 

HN NH 4.8 

Y 
S 

IN 1> 

Y 
The aqueous nitrosation of analogous thiocarbonyl compounds such as thiourea 

(4.9) leads to the formation of an S-nitrososulfonium ion 1 5 (R=S +-N=0) (section 

1.3.5). 

H 2 NCNH 2 

II 4.9 

Therefore, it may be expected that a similar intermediate species wil l be generated on 

reaction between acidified sodium nitrite and 2-mercaptopyridine (ArSH). The 

absorbance change at 415nm was followed when this thiol (3 x 10"3 mol dm - 3) was 

reacted with 1 x 10"4 mol dm - 3 nitrous acid in 0.1 mol dm - 3 perchloric acid. A 

typical kinetic trace is shown in figure 4.6. 
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Figure 4.6 

Kinetic trace showing the nitrosation of 2-mercaptopyridine (3 x 10 3 mol dm - 3) in the 

presence of 1 x K H mol dm 3 nitrous acid and 0.1 mol dnr 3 perchloric acid 

RelAbsorbance 
0.126 

0.124 

0.122 

0.120 

0.118 

0.116 

0.114 

0.112 

0.110 
Time (seconds) 0.108 • 

0.300 0.600 0.900 1.200 1.500 

The concentration of thiol was initially varied at constant acidity and a linear 

plot of [ArSH] against pseudo-first order rate constant, k , ^ constructed. After this 

the acid concentration was altered at constant [ArSH] in order to quantify any effect 

of H + . The k ^ j . values obtained are collected in table 4.8 and shown graphically in 

figure 4.7. 
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Table 4.8 

Kinetic data for the nitrosation of 2-mercaptopyridine by nitrous acid 
(1 x 10"4 mol dm 3 ) in the presence of varying [ H + ] 

[thiol]/10-3 mol dm-3 [H +]/mol dm 3 [thiol]/10-3 mol dm-3 

0.1 0.05 0.025 

3 2.65 ± 0.09a 1.87 ± 0 . 0 7 1.37 ± 0 . 0 2 

6 4.31 ±0 .12 2.68 ± 0 . 0 9 1.63 ± 0 . 0 5 

10 7.36 ±0 .21 3.98 ± 0 . 1 2 2.41 ± 0 . 0 9 

15 12.1 ± 0 . 3 6.78 ± 0.23 3 . 8 6 ± 0 . 1 1 

20 17.2 ± 0 . 4 8.66 ± 0.26 4.76 ± 0 . 1 3 

30 25.6 ± 0.5 13.8 ± 0 . 3 6.84 ± 0 . 1 8 

aMeasured pseudo-first order rate constant, k^,, (s*1) 
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Figure 4.7 

Plot of k̂ bg against [ArSH] for the nitrosation of 2-mercaptopyridine by nitrous acid 

(1 x l O 4 mol dm 3 ) in the presence of varying [ H + ] 

30 T 

20 

0 10 20 30 

[ArSH]/10-3 mol dm-3 

• = 0.1 mol dm 3 H+; • = 0.05 mol dm"3 H + ; A = 0.025 mol dm 3 H + . 

The gradient of each line produces a second order rate constant which, when 

divided by the appropriate acid concentration, allows k 3 (third order rate constant, 

equation 4.2) to be calculated. 

Rate = ^ArSH]rHNqj[H1 eqn42 

Table 4.9 indicates the k 3 values obtained at various acidities for the nitrosation of 

2-mercaptopyridine. 
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Table 4.9 

Third order rate constant (k 3) values for the reaction of 2-mercaptopyridine with 

nitrous acid (1 x 1(H mol dm 3 ) at three different acidities 

[H+]/mol dm 3 k3/moI-2 dm 6 s - 1 

0.1 8760 + 260 
0.05 9000 + 400 
0.025 8400 ± 320 

An average for k 3 taken from these results is 8720 ± 320 mol 2 dm 6 s 1 . The 

rate constant for the analogous S-nitrosation of thiourea is 6960 mol ' 2 dm 6 s 1 at 

25°C 1 5 which is taken to be that of the encounter controlled reaction between the 

reagent (NO + or H 2 N 0 2

+ ) and the thiourea molecule. It appears that the aromatically 

derived 2-mercaptopyridine when nitrosated produces an unstable 

S-nitrososulfonium ion (Ar=S +-NO) which is observeable at high concentrations as a 

transient orange colour. This species can rapidly undergo the loss of a proton which 

leads to formation of an S-nitrosothiol, Ar-S-NO (scheme 4.1). 

NO 4 

I 
H 

l S - N = 0 

fast 

Scheme 4.1 

V2 I 

^ N ^ ^ S — N O 

+ NO 
s - s ^ N / 

Scheme 4.1 also suggests that the final reaction products after Ar-S-NO 

decomposition are nitric oxide and the corresponding disulfide. Doyle et al16 and 

Blankespoor et al11 have noted that the nitrosation of l,3-dithiolan-2-thione (4.10) 
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utilising nitrosonium tetrafluoroborate produced 2,2'-dithiobis-(l,3-dithiolanium) 

ditetrafluoroborate (4.11) and nitric oxide almost exclusively. 

4.10 

This is an example of the oxidation 

dication. It has also been observed that the 

nitrosative exchange of sulfur for oxygen 

small yield. 

> S—NO 

4.12 

> < (BF 4 ) 2 

4.11 

of a thiocarbonyl compound to a stable 

intermediate structure (4.12) can undergo 

generating l,3-dithiolan-2-one (4.13) in 

> o 

4.13 

Urea has additionally been detected as a product following the nitrosation of 

thiourea1 8. Having determined the kinetics of S-nitrosation for 2-mercaptopyridine it 

is now instructive to consider how heterocyclic and aromatic S-nitrososulfonium ions 

could decompose in varying media as a function of copper ion concentration. 

4.3.3.2 Reaction in pH 7.4 Buffer 

The decomposition profiles of S-nitrosated 2-mercaptopyridine and 

2-mercaptopyrimidine were recorded at physiological pH at differing wavelengths. 

An increase in absorbance at 340nm was noted for the former compound (figure 4.8) 

when 1.25 x 10"4 mol dm - 3 S-nitrosated 2-mercaptopyridine was placed in pH 7.4 

buffer in the absence of added copper(II) ions. The reaction had reached completion 
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in ten minutes and on repetition with added C u 2 + an increase in first order rate 

constant was noticeable (table 4.10). 

Figure 4.8 

Traces showing the absorbance increase at 340nm for the decomposition of 

S-nitrosated 2-mercaptopyridine (1.25 x 10 - 4 mol dm 3 ) in pH 7.4 buffer 
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Scans acquired every thirty seconds. 
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Table 4.10 

Kinetic data for the decomposition of S-nitrosated 2-mercaptopyridine 

(2.5 x lO 4 mol dm 3 ) in the presence of added C u 2 + , pH 7.4 buffer 

[Cu2+]/l<H mol dm 3 Wio-3 s-1 

0 3.17 + 0.02 
0.1 3.39 ± 0.06 
0.5 3.88 ± 0 . 0 7 
0.9 4.08 ± 0.08 
10 4.20 + 0.13 
15 4.32 ± 0 . 1 3 
20 4.94 ± 0 . 1 2 
30 5.66 ± 0 . 1 8 

k 2 = 780 + 50 mol 1 dm 3 s * 

There is also an apparent decrease in absorbance at 240nm and an increase at 

270nm (figure 4.8) with isosbestic points at 393nm, 296nm, 286nm, 260nm and 

226nm. Aldrithiol-2™ (2,2'-dipyridyl disulfide, 4.14) was purchased from Sigma-

Aldrich Co. Ltd. and a uv/visible spectrum of this material indicated a peak at 281nm 

with no absorbance maximum at 340nm. 

N N 

4.14 

It can therefore be deduced that the disulfide has not been formed in this instance. 

Indeed, it appears as i f the thione has been regenerated as the product spectrum shows 

great coincidence with the mercapto precursor. A moderate reactivity towards C u + is 

observed (k 2 = 780 ± 50 mol"1 dm 3 s 1 ) suggesting good coordination between the 

-SNO group and ring nitrogen with copper(I) (4.15). 

S - N = 0 N 4.15 
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2-mercaptopyrimidine is also known to exist as the thione tautomer (equation 

4 .3) 1 9 in solution and was nitrosated under similar conditions using acidified sodium 

nitrite. 

SH 

N N H 

S 

eqn 4.3 

An absorbance increase at 277nm was observed with an isosbestic point at 264nm, 

reaction kinetics being followed at the former wavelength. The decomposition was 

investigated in the presence of C u 2 + ions at pH 7.4 (table 4.11). 

Table 4.11 

Kinetic data for the decomposition of S-nitrosated 2-mercaptopyrimidine 

(1.6 x 10"4 mol dm 3 ) in the presence of added C u 2 + , pH 7.4 buffer 

[Cu 2 + ]/10- 7 mol dm-3 Wio-3 s 1 

0 9.67 ± 0.22 
2.0 10.0 ± 0 . 1 
4.0 10.3 + 0.1 
8.0 11.610.3 
20 14.6 ± 0 . 6 

k 2 = 2570 ± 100 mol 1 dm 3

 s i 

A clear dependence of first order rate constant on [ C u 2 + ] is apparent. Brown and 

Heffernan 2 0 have calculated electron densities at the nitrogen atoms in pyridine and 

pyrimidine and concluded that the density present on pyridine is greater. There are 

however two such nitrogens available in 2-mercaptopyrimidine, meaning that there are 

potentially two binding sites which could provide coordination points for C u + , leading to 

a rate constant more than three times greater for nitrosated 2-mercaptopyrimidine. 
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In an attempt to deduce the reaction products at pH 7.4 the relevant disulfide 

(4.16) was synthesised according to the method of Miller et aP-1 by oxidation of the thiol 

precursor. 

Many techniques are available which will oxidise a thiol to a disulfide including treatment 

with methylene blue (4.17) 2 2, sodium chlorite 2 3 and alkaline K I / I 2

2 4 , the latter 

procedure being utilised in this instance. 

1.12g of 2-mercaptopyrimidine was dissolved in 20ml 1 mol dnr 3 NaOH and 

chilled in ice. 10ml aqueous 1 mol dm - 3 iodine solution containing 5.07g potassium 

iodide was subsequently added rapidly with constant stirring. After fifteen minutes an 

orange precipitate formed which was filtered and dried in a vacuum desiccator. The 

yield based on weight of product = 75.2%. Elemental analysis for the disulfide requires 

C = 43.24%, H = 2.70% and N = 25.22%. Obtained: C = 43.51%, H = 2.64% and 

N = 24.98%. 

Melting point = 134-135°C, literature24 = 139-140°C. 

!H NMR (Me2SO-d6): 5 7.38 (t, 2H), 8.71 (d, 4H). 

The molar extinction coefficient of 2,2'-dipyrimidyl disulfide in pH 7.4 buffer was 

measured to be 19,400 ± 180 moH dm 3 cnr 1 and 18,400 ± 140 moW dm 3 cm"1 in 0.05 

mol dm - 3 sulfuric acid, which compares well with a literature value of 19,000 mol"1 dm 3 

cm - 1 in the latter medium25. An absorbance peak is present at 236nm for the synthesised 

solid which is not observeable during reaction with C u + at pH 7.4, implying that again 

N N C 3 N N 

4.16 

+ 
C H 3 2 N 3)2 

N 

4.17 
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the disulfide is not formed under these conditions. It now became important to 

determine the nitrogenous decomposition product from these compounds having 

demonstrated the reformation of thione on reaction with copper(I). 

4.3.3.3 Use of a Nitric Oxide Electrode to Detect Reaction Products 

Detection of nitric oxide by a specific electrode designed solely for this 

purpose is the most direct method of measuring NO concentrations both in vitro and 

in vivo. Several differing types of electrode have been manufactured, which vary in 

terms of detection limits and suitability for usage in biological systems. Malinski and 

Taha 2 6 have developed a carbon fibre microelectrode that is modified with an 

electropolymerised fi lm of nickel(II) porphyrin polymer. A negatively charged layer 

of Nafion® prevents interference by both nitrite and nitrate ions, with the 

metalloporphyrin catalysing the oxidation of NO to NO + . The current that is 

generated is measured and after calibration this electrode can be employed for the in 

vivo determination of nitric oxide in single arterial endothelial cells. Between lOnM 

and 300|iM NO can be detected in this manner. The only significant drawback in this 

approach is the extensive modification procedure required, particularly i f electrode 

regeneration is desirable. To this end, Pariente et aV-1 designed a Nafion® coated 

noncrystalline platinum electrode modified with cellulose acetate, which minimises 

electrode fouling from non-specific adsorption of proteins typically found in cellular 

environments. However, this has lead to a lack of sensitivity as only micromolar 

levels of nitric oxide can be determined by this electrode. 

A commercially available NO electrode was purchased from World Precision 

Instruments. This too is based on a platinum system which features a disposable steel 

jacket and membrane across the electrode tip (making it nitrite blind), which has a 

diameter of 2mm. The manufacturers claim detection limits to be I n M to 20|xM, but 

the robust character and size prevents accurate placement in relation to individual cells 

in cellular preparations. Such an electrode has not been widely used in the analysis of 

S-nitrosothiols. S-nitrosated 2-mercaptopyridine (2 x 10"5 mol dm - 3) was reacted at 
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pH 7.4 with C u 2 + (2 x 10 - 5 mol dm - 3) in the presence of the NO electrode, after 

calibration had been performed (see Chapter Six). The reaction was slow, proceeding 

over fifteen or twenty minutes until a maximum current (reflecting nitric oxide 

generation) was reached. The amount of NO detected represented 21% of the 

quantity of nitrosothiol reacted. On repetition of this experiment twice, 22% and 

22% nitric oxide was observed in solution. When S-nitrosated 2-mercaptopyrimidine 

was used as the substrate 33% NO was generated. As the reaction took place over a 

period of several minutes, the nitric oxide formed initially would become oxidised to 

nitrite as it is virtually impossible to remove all traces of oxygen from the system, 

despite thorough purging with nitrogen gas. It is clear that NO and thione are the 

major reaction products when these aromatic S-nitrosated thiols are allowed to 

decompose under physiological conditions in the presence of copper(II). 

4.3.3.4 Reaction in Distilled Water 

S-nitrosated 2-mercaptopyridine was allowed to decompose in distilled water 

both in the absence and presence of added copper(II). A much slower reaction took 

place than that which occurred at physiological pH with an absorbance decrease at 

340nm apparent (figure 4.9). 
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Figure 4.9 

Traces showing the absorbance decrease at 340nm for the decomposition of 

S-nitrosated 2-mercaptopyridine (1 x 1(M mol dnr3) in distilled water 
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Scans acquired every ten minutes. 

The uv/visible spectrum after twenty-four hours was compared with that of 

2,2'-dipyridyl disulfide and found to be extremely similar, suggesting that the solvent 

used may determine the observed products. Cu 2 + was introduced to the nitrosated 

thione and reaction catalysis observed (table 4.12). 
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Table 4.12 

Kinetic data for the decomposition of S-nitrosated 2-mercaptopyridine 

(2.5 x 1(H mol dm 3 ) in the presence of added Cu 2 + , distilled water 

[Cu2+]/10-5 mol dm-3 
1.0 5.93+0.13 
2.0 8.06 ± 0.22 
3.0 10.9 ± 0.2 
4.0 13.2 + 0.3 
5.0 16.5 ±0 .3 

k 2 = 26 + 1 mol 1 dm3 s 1 

The catalytic influence of copper ions is not as strong as is seen at pH 7.4 but 

it would appear that a spontaneous reaction takes place which can be affected by the 

copper(II) ion concentration. This is at variance with experimental evidence collected 

for aliphatic S-nitrosothiols which show that Cu 2 + has to be available for 

decomposition to occur1. A check was made that adding 2-mercaptopyridine to 

copper(II) at pH 7.4 and in distilled water could generate cuprous ion. It was 

discovered that between 85% and 90% Cu + could be trapped by neocuproine and that 

this reduction took place instantaneously. It has been previously documented28 that 

"in general, heterocyclic thioamides reduce copper(II) salts to copper(I)". Similar 

behaviour was exhibited by S-nitrosated 2-mercaptopyrimidine (table 4.13). 
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Table 4.13 

Kinetic data for the decomposition of S-nitrosated 2-mercaptopyrimidine 

(2.5 x 10~4 mol dnr3) in the presence of added C u 2 + , distilled water 

[Cu2 +]/10-5 mol dm 3 

W i O " 3 s-1 

1.0 3.11 ±0.11 
2.0 4.07 ±0.12 
3.0 4.74 ±0.12 
4.0 5.43 ±0.14 
5.0 6.14 ±0.17 

k 2 = 75 ± 3 moW dm3 s 1 

The second order rate constant is three times as great for this species as for the 

analogous 2-mercaptopyridine derivative, which may result from the presence of two 

nitrogen atoms available to bind Cu(I). A peak at 236nm for the reaction product is 

in keeping with the formation of 2,2* dipyrimidyl disulfide under these conditions. 

4.3.4 S-Nitrosated 2-mercaptoimidazole and Related Derivatives 

4.3.4.1 Reaction in pH 7.4 Buffer 

The decomposition of S-nitrosated 2-mercaptoimidazole (2.5 x 10^ mol dm -3) 

in the presence of Cu 2 + was initially followed spectrophotometrically by measuring 

the increase in absorbance at 252nm due to product formation. The nitrosated thione 

showed a broad ultraviolet absorbance with = 276nm (e = 3870 mol*1 dm3 

cm -1) due to the overlap of heterocyclic and -SNO chromophores. On reaction with 

added copper ions (3 x IQr5 mol dm 3 ) at pH 7.4, a clearly defined isosbestic point at 

268nm appeared along with a new peak at 252nm (figure 4.10). This could be 

attributed to reformation of the parent thione during a time period of thirty minutes. 

A spectral comparison of authentic 2-mercaptoimidazole (existing as the thione)28 

with the observed reaction product showed great similarities. A clear dependence of 

reaction rate on [ C u 2 + ] a d d e d was apparent (tables 4.14 and 4.15) for both S-nitrosated 

2-mercaptoimidazole and its 1-methyl derivative. 
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Figure 4.10 

Traces showing the absorbance increase at 252nm for reaction of S-nitrosated 

2-mercaptoimidazole (2.5 x 1(H mol dnr3) in the presence of added C u 2 + 

(3 x 10-5 mol dnr3) 

(b) 

(a 

215.0 307.5 400 
Wave1ength (nm.) 

(a) initial spectrum; (b) authentic 2-mercaptoimidazole 

Scans acquired every three minutes. 
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Table 4.14 

Kinetic data for the decomposition of S-nitrosated 2-mercaptoimidazole 

(2.5 x 10-4 mol dm -3) in the presence of added C u 2 + , pH 7.4 buffer 

[Cu2 +]/10-5 mol dm 3 

0.5 4.82 + 0.11 
1.0 5.40 ±0.12 
2.0 7.80 + 0.15 
3.0 10.7 ± 0.2 
4.0 12.1 ±0.3 
5.0 14.4 ±0.4 

k 2 = 22 ± 1 mol-1 dm3 s 1 

Table 4.15 

Kinetic data for the decomposition of S-nitrosated l-methyl-2-mercaptoimidazole 

(2.5 x 10-4 mol dm 3 ) in the presence of added C u 2 + , pH 7.4 buffer 

[Cu2 +]/10-5 mol dm 3 

1.0 8.55 ± 0.24 
2.0 11.2 ±0 .3 
3.0 13.1 ±0.3 
4.0 15.0 ±0 .3 
5.0 17.5 ±0.4 
6.0 19.3 ±0.4 

k 2 = 21 ± 1 mol"1 dm3 s 1 

Nitric oxide was detected as described previously in reasonable yield (55% from 

S-nitrosated 2-mercaptoimidazole, 59% from the 1-methyl derivative). The second 

order rate constant is found to be extremely similar for both of these substrates. It may 

have been expected that the presence of an electron donating methyl group may increase 

the reactivity of the latter compound due to an increased electron density on nitrogen, 

but this may be counteracted by possible steric effects associated with a more bulky 

substituent hindering Cu + chelation. The possible reactive intermediate can be 

represented as overleaf (4.18). 

170 



R - N 4.18 

R = H,CH 3 

An extremely useful method which cleanly generates the required disulfide in 

good yield is subjecting the thiol to various kinds of radiation2 9 , 3 0. Prolonged 

exposure to ultraviolet light was employed in this instance. 1 x KH mol dm - 3 

2-mercaptoimidazole in pH 7.4 buffer was irradiated with a deuterium lamp for 48 

hours in the dark. The resulting solution had no characteristic absorbance maximum 

above 210nm and so the disulfide can therefore be discounted as being the 

denitrosation reaction product (eqn 4.4). 

HN N 

Y hv 
N H 2 0 2 HN + 

I/2O2 

Y A SH HN N 

eqn 4.4 

4.3.4.2 Reaction in Distilled Water 

The stability of both compounds in distilled water was studied both in the 

absence and presence of Cu 2 + ions. It became apparent that each nitrosated thiol 

decomposed very slowly in this medium in a reaction that formed the corresponding 

disulfide (figure 4.11) where 1.25 x 10 4 mol dnr 3 S-nitrosated 

2-mercaptoimidazole was monitored for sixty-six hours. 
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Figure 4.11 

Traces showing the absorbance decrease at 250nm for the decomposition of 

S-nitrosated 2-mercaptoimidazole (1.25 x 10 4 mol dm 3 ) in distilled water 

1.1 

0.9 

0.8 

(a) 
0.6 

(b) 

i n i , — , I 1 I 1 1 
200 220 240 260 280 300 320 340 350 

(a) scan obtained after seventy minutes; (b) scan obtained after sixty-six hours. 

Scans acquired every twenty-five minutes. 

The product spectrum is extremely reminiscent of that obtained by ultraviolet 

radiation of 2-mercaptoimidazole. As the reaction took a long time to reach 

completion it was not possible to use the nitric oxide specific electrode as a diagnostic 

tool as any NO produced would become oxidised to nitrite. The effect of adding 

copper(II) was examined at 270nm following the decrease in [S-nitrosated thiol] 

(tables 4.16 and 4.17). 
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Table 4.16 

Kinetic data for the decomposition of S-nitrosated 2-mercaptoimidazole 

(2.5 x 10-4 mol dnr3) in the presence of added C u 2 + , distilled water 

[Cu2+J/10-5 mol dm-3 

W W " 5 s"1 

0 8.57 ±0.11 
1.0 8.56 ±0.11 
2.0 8.51 ±0.11 
3.0 8.55 ±0.11 
4.0 8.53 ±0.11 
5.0 8.54 ±0.11 

k 2 = 0 mol-1 dm3 s_ 1 

Table 4.17 

Kinetic data for the decomposition of S-nitrosated l-methyl-2-mercaptoimidazole 

(2.5 x 10"4 mol dm 3 ) in the presence of added C u 2 + , distilled water 

[Cu 2 + ] / l (r 5 mol dm-3 

0 1.46 ±0.01 
1.0 1.45 ±0.01 
2.0 1.47 ±0.01 
3.0 1.45+0.01 
4.0 1.47 ±0.01 
5.0 1.42 ±0.01 

k 2 = 0 moH dm3 s_ 1 

It can be seen that Cu 2 + has no effect on the rate of decomposition of these 

nitrosothiols in distilled water, which contrasts with the behaviour noted at pH 7.4. 

The S-nitrosated adduct derived from the sulfur and nitrogen heterocycle 

2-mercaptothiazoline (4.19) also showed similar kinetics (table 4.18). 

H 
•N 

\ SNO 
4.19 
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Table 4.18 

Kinetic data for the decomposition of S-nitrosated 2-mercaptothiazoline 

(1.5 x lO - 3 mol dm 3 ) in the presence of added Cu 2 + , distilled water 

[Cu2 +]/10-5 mol dm-3 

W I G " 5 s 1 

0 7.88 ±0.06 
1.0 7.96 ± 0.04 
2.0 8.13 ±0.06 
3.0 8.78 ±0.09 
4.0 7.80 ±0.07 

k7 = 0 moH dm3 s_1 

EDTA was added to the decomposition of S-nitrosated 2-mercaptothiazoline 

(1.5 x 10"3 mol dm 3 ) to see if any reaction inhibition was discernible. Table 4.19 

indicates that any trace metal ion chelation by EDTA had no effect on the rate of 

nitrosothiol breakdown suggesting that a copper ion independent process is prevailing. 

Table 4.19 

Kinetic data for the decomposition of S-nitrosated 2-mercaptothiazoline 

(1.5 x lO 3 mol dm-3) in the presence of EDTA, distilled water 

[EDTA]/10-5 mol dm 3 Wio-5 s 1 

0 7.88 ±0.21 
1.0 8.02 ± 0.32 
3.0 8.11 ±0.31 
5.0 7.91 ± 0.27 
10 8.39 ± 0.28 

On adding a solution of 2-mercaptoimidazole to copper(II) in the presence of 

neocuproine, a peak at 453nm immediately formed when undertaken at pH 7.4 which 

indicated the almost quantitative formation of Cu + . However, on repeating this in 

distilled water, copper(I) was slowly generated over twenty minutes suggesting that 

the thione does not act as a particularly good reductant in this medium. This may 
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help to explain the lack of observed copper ion catalysis when S-nitrosated 

2-mercaptoimidazole decomposes in aqueous solution. 

4.4 Mechanism of Heterocyclic and Aromatic S-Nitrosated Decompositions 

On the basis of experimental data gathered for a number of S-nitrosated 

heterocyclic and aromatic thiols it is possible to propose the following mechanism for 

their breakdown in differing media (scheme 4.2), where Ar=S represents the relevant 

thione tautomeric form. 

Ar = S + NO+ - - Ar=S—NO >• Ar —S—NO 

Scheme 4.2 7 pH7.4 H,0 

Ar—S —S—Ar + NO Ar = S + NO 

In both solvents nitric oxide is generated along with the appropriate disulfide in 

distilled water and thione at pH 7.4. For the specific case of S-nitrosated 

2-mercaptopyridine, the situation can be expressed as described in scheme 4.3. 

+ 
S - N = 0 N S - N = 0 N 

H 

S - N = 0 N H,0 

\ / 
Cu+ Scheme 4.3 

+ NO + Cu+ 
W PH7.4 s - s - ^ N / N 

+ NO + Cu2+ 

N 

H 

4.3 
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It is likely that at physiological pH redox cycling of copper takes place as 

marked catalysis of S-nitroso decomposition occurs, reforming the thione. However, 

in distilled water it is evident that as the disulfide is observed, copper(I) may stay in 

this form once produced and enhance homolytic S-N bond cleavage. In the absence 

of copper ions spontaneous reaction takes place which is only catalysed by added 

C u 2 + for certain species. This appears to be dependent on the reductive ability of the 

thione in distilled water with respect to copper(II) -» copper(I). At present it is 

unclear as to why different mechanisms (and products) prevail under different 

conditions but it is important to re-examine the possibility of copper ion catalysis in 

the decomposition of S-nitrosated substrates such as thiourea. 

4.5 Conclusion 

This chapter has demonstrated that the copper ion catalysed decomposition 

pathway of S-nitrosothiols can be extended to nitrosated heterocyclic and aromatic 

thiols which exist predominantly in the thione form. However, it is apparent that the 

reaction medium has a great bearing on the observed products. Such 

S-nitrosated thiols have little use therapeutically as nitric oxide donor compounds but 

are mechanistically of great interest. S-nitrosothiols which have a similar structure to 

SNAP (SNCP and SNCC) show promising NO production characteristics and have 

undergone small-scale clinical testing with respect to their vasodilatory properties. A 

vast array of thiol precursors have now been nitrosated and their behaviour under 

physiological conditions studied, leading to a detailed understanding of their stability 

(or lack of). 
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Chapter 5 

Thiolate Ion Induced S-Nitrosothiol Decompositions 



Chapter 5: Thiolate Ion Induced S-Nitrosothiol Decompositions 

5.1 Introduction 

On examination of the chemical and biological literature, the role of thiols in 

the decomposition of S-nitrosothiols both in vitro and in vivo has yet to be clearly 

defined. The influence of N-acetylpenicillamine on the stability of SNAP and 

penicillamine on the reactivity of S-nitrosopenicillamine is discussed in sections 2.5.1 

and 2.5.2. It is clear from these results that a very small quantity of thiol (~1JAM) 

will have a substantial effect on the copper(I) ion catalysed denitrosation pathway1. 

Previously published research on this subject has been both contradictory and 

irreproducible. As an example, two reports2,3 claim that thiol compounds such as 

N-acetylpenicillamine will enhance the rate of S-nitrosothiol decomposition in vitro 

generating the corresponding disulfide and nitric oxide. However, Feelisch et al4 

proposed that L-cysteine will stabilise S-nitrosocysteine in solution in a concentration 

dependent manner. These inconsistencies can now be explained by considering the 

possible magnitude of chelation and reduction of Cu 2 + by thiolate, whose presence as 

a consequence of the reversibility of S-nitrosothiol formation5 is essential for reaction. 

Interestingly, very little attention has been focused on the behaviour of 

S-nitrosothiols in an environment which can be deemed analogous to that of biological 

systems. S-nitrosoglutathione (GSNO) has been detected in airway lining fluid at a 

concentration of 0.25|4.M6 and S-nitrosocysteine at 0.3^M in plasma7. As mentioned 

in section 4.1, glutathione exists at levels approaching the millimolar scale within 

mammalian cells and thus is present in at least a several hundred fold excess over any 

S-nitrosothiol present. It therefore seemed of interest to examine the stability of 

various nitrosothiols in the presence of their thiol precursors at a much higher 

concentration than has been previously considered. The well-documented 

transnitrosation reaction (section 1.4.5) will not be significant under these conditions 

as the same thiol as its nitroso derivative is utilised. Some nitrosothiols which are 
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unreactive (even at high copper(II) ion concentrations, such as S-nitrosocaptopril, 5.1) 

have been studied kinetically with a large excess of captopril present8. 

CH 3 

I 
COCHCH2SNO 

I 5.1 
/ N \ /COOH 

Complete decomposition was apparent with a direct relationship between the amount 

of thiol added and the rate of reaction. The generality of this process had to be 

determined along with a thorough product analysis which should allow a tentative 

reaction mechanism to be postulated. 

5.2 Structure/Reactivity Studies 

The decomposition of S-nitrosocysteine (RSNO, generated in situ via the 

nitrosation of L-cysteine (RSH) with an equimolar amount of acidified sodium nitrite) 

was followed spectrophotometrically at 340nm both in the presence and the absence of 

RSH at pH 7.4. Each kinetic experiment was performed with [RSH] > > [RSNO] 

(typically ten to a hundred fold excess) such that pseudo-first order conditions 

prevailed. Excellent first order traces ensued at each RSH concentration used, 

allowing to be calculated in every case. A plot of k ^ against [RSH] proved to 

be linear (figure 5.1) which showed the reaction to be first order in thiol. 
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Figure 5.1 

Plot of kobs against [L-cysteine] for the thiol induced decomposition of 

S-nitrosocysteine (1 x 10 3 mol dm 3 ) , pH 7.4 
W10" 4 s-i 

12 =r 

8 

0.025 0.05 0.075 

[L-cysteine]/mol dnr 3 

The rate equation for this reaction can be expressed below (equation 5.1). 

Rate = k2[RSNO][RSm eqn5.1 

At these concentrations [RSH] > > [RSNO] and thus the concentration of thiol can 

be assumed to remain constant throughout the reaction, hence equation 5.2 exists. 

Rate = kobsfRSNO] eqn5.2 

Therefore, k ^ is equal to k2[RSH] with the second order rate constant being 

obtained from the gradient of figure 5.1. The term representing the portion of the 
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rate due to spontaneous thermal decomposition of RSNO would be seen as a positive 

intercept on plots such as figure 5.1. Clearly this is negligibly small. This 

experiment was repeated under identical conditions except for the addition of 1 x 10"4 

mol dnr 3 EDTA to each run. The results are summarised in table 5.1. 

Table 5.1 

Kinetic data for the decomposition of S-nitrosocysteine (1 x 10-3 mol dnr 3) in the 

presence of added L-cysteine and the presence/absence of EDTA (1 x 10"4 mol dm 3 ) 

[L-cysteine]/mol dm -3 Wio-4 s-1 [L-cysteine]/mol dm -3 

EDTA no EDTA 
0.01 1.19 ±0.02 1.04 + 0.01 
0.025 2.58 ± 0.02 2.66 ± 0.02 
0.05 5.40 ± 0.05 4.97 ± 0.05 
0.075 8.27 ± 0.08 7.94 + 0.08 
0.1 11.4 ±0.1 11.0 + 0.1 

In the presence of EDTA - k 2 = (1.11 ± 0.01) x 10"2 moH dm3 s 1 

In the absence of EDTA - k 2 = (1.07 ± 0.01) x 10 2 moH dm3 s 1 

It is clear from this kinetic data that is hardly affected by the introduction 

of the metal ion chelator EDTA, suggesting that copper ion (or indeed any ionic 

species adventitiously present) does not influence the reaction profile. This means 

that a very different mechanism must account for the decomposition of nitrosothiols 

which is copper ion independent. The obtained k 2 value of 0.0111 mol"1 dm3 s 1 at 

25°C in the presence of EDTA is consistent with that recently quoted by Komiyama et 

aP (0.0310 mol - 1 dm3 s_1 at 37°C) for the same reaction. In order to check the 

generality of this reaction, several other S-nitrosothiol/thiol systems were investigated 

in a similar way (tables 5.2 - 5.8). All reactions were carried out in pH 7.4 buffer 

with the exception of S-nitrosotriphenylmethanethiol/triphenylmethanethiol which was 

performed in dimethylsulfoxide. 
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Table 5.2 

Kinetic data for the decomposition of S-nitrosoglutathione (1 x 10'3 mol dm 3 ) in the 

presence of added glutathione, pH 7.4 

[glutathione]/mol dm 3 Wio-4 s-1 

0.01 0.964 ± 0.009 
0.025 1.54 ±0.01 
0.05 2.77 ± 0.02 
0.075 4.15 + 0.04 
0.1 5.44 ± 0.05 

k 2 = (5.50 ± 0.07) x ID"3 mol 1 dm3 §-« 

Table 5.3 

Kinetic data for the decomposition of S-nitrosopenicillamine (1 x 10 3 mol dm 3 ) in 

the presence of added penicillamine, pH 7.4 

[penicillamine]/mol dm*3 W 1 0 - 3 s -1 

0.01 3.12 ±0.03 
0.025 6.72 ± 0.03 
0.05 12.9 ±0.1 
0.075 19.6 ±0.2 
0.1 26.3 ± 0.2 

k 2 = (2.62 ± 0.02) x 10 1 mol 1 dm3 s"1 

Table 5.4 

Kinetic data for the decomposition of S-nitrosocysteine ethyl ester (1 x 10-3 mol dm 3 ) 

in the presence of added cysteine ethyl ester, pH 7.4 

[cysteine ethyl ester]/mol dm-3 Wir» s-i 
0.05 6.47 ± 0.07 
0.075 8.58 ±0.09 
0.0875 9.62 ± 0.09 

0.1 10.5 ±0.1 
0.125 12.5 ±0.1 

k 2 = (8.01 ± 0.11) x 10-3 mol 1 dm3 s 1 
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Table 5.5 

Kinetic data for the decomposition of S-nitrosocaptopril (1 x 10~3 mol dm 3 ) in the 

presence of added captopril, pH 7.4 

[captopriI]/mol dm*3 

0.003 1.08 ±0.01 
0.006 2.12 ±0.03 
0.01 3.30 ± 0.03 

0.0169 5.22 ±0.06 
0.025 7.12 ±0.07 

k 2 = (2.73 ± 0.12) x 10-2 mol 1 dm3

 s i 

Table 5.6 

Kinetic data for the decomposition of S-nitrosocysteamine (1 x 10"3 mol dm 3 ) in the 

presence of added cysteamine, pH 7.4 

[cysteamine]/mol dm'3 

0.01 1.47 ±0.01 
0.025 3.29 ± 0.04 
0.05 5.85 ±0.06 
0.075 8.73 ± 0.08 
0.1 12.1 ±0.1 

k 2 = (1.19 ± 0.01) x 10-2 moH dm3 s-1 

Table 5.7 

Kinetic data for the decomposition of S-nitroso-2-N,N-diethylaminoethanethiol 

(1 x 10 -3 mol dm - 3) in the presence of added 2-N,N-diethylaminoethanethiol, pH 7.4 

[2-N,N-diethylaminoethanethiol]/mol dm-3 Wl©-4 s"1 

0.01 1.91 ±0.01 
0.025 4.85 ± 0.05 
0.05 12.1 ±0.2 
0.075 19.8 ±0.2 
0.1 27.1 ±0.4 

k 2 = (2.91 ± 0.05) x 10-2 mol 1 dm3 s 1 
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Table 5.8 

Kinetic data for the decomposition of S-nitrosotriphenylmethanethiol* 
(1 x 10'3 mol dm*3) in the presence of added triphenylmethanethiol 

[triphenylmethanethiol]/mol dm"3 WiO"5 s"1 

0.0048 5.66 ± 0.07 
0.01 8.84 + 0.09 

0.0121 10.1 ±0 .1 
0.0166 12.5+0.2 
0.0196 15.4 + 0.3 

k 2 = (6.33 ± 0.03) x 10-3 m o H dm3 s 1 

* Measured in dimethylsulfoxide. 

The structural formula of each S-nitrosothiol studied and the second order rate 

constant, k 2 calculated for the reaction with thiol is summarised in table 5.9. It is 

evident from these results that the k 2 values are all of a similar order of magnitude 

(that is, it does not appear to be easy to define a relationship between S-nitrosothiol 

structure and reactivity). This is in direct contrast to the copper(I) catalysed 

decomposition mechanism where bidentate coordination is required for effective 

reaction (table 5.10). 

The thiol induced reaction is clearly much slower than the corresponding 

cuprous ion promoted process. The tertiary compound S-nitrosopenicillamine is 

significantly more reactive than the other nitrosothiols studied (table 5.9). Such 

materials containing two a-carbon methyl groups are known to exhibit an enhanced 

reaction rate with respect to copper ion catalysed nitrosothiol decomposition (section 

1.4.3.1), due to the "gem-dimethyl effect". It may be that the increased electronic 

density upon the sulfur atom and steric considerations significantly influence the 

reactivity of such a compound. Further tertiary and secondary S-nitrosothiols need to 

be studied in the presence of their corresponding thiols to verify this theory. 
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Table 5.9 

Values of k 2 for the thiol induced decomposition of S-nitrosothiols, pH 7.4 

S-nitrosothiol/thiol Structure 
k2/10-4 

mol"1 dm3 s"1 

S-nitrosopenicillamine/penicillamine 
> 

HOOC-^ 

^SNO 

^ N H 2 

2620 ± 20 

S-nitroso-2-N,N-
diethylaminoethanethiol/ 

2-N,N-diethylaminoethanethiol 

^SNO 

r ^ 

291 ± 5 

S-nitrosocaptopril/captopril 

CH3 

1 
COCHCH2SNO 

^Ns^/COOIi 
273 ± 12 

S-nitrosocysteamine/cysteamine 

^-SNO 

^ N H 2 

119 ± 1 

S-nitrosocysteine/cysteine 
HOOC^ 

^SNO 

^ N H 2 

107 ± 1 

S-nitrosocysteine ethyl ester/ 
cysteine ethyl ester H5C2OOCX 

^ S N O 

^ N H 2 

80 ± 1 

S-nitrosotriphenylmethanethiol/ 
triphenylmethanethiol 

(measured in dimethyl sulfoxide) 

Ph3CSNO 63 ± 1 

S-nitrosoglutathione/glutathione 
NH2 O ^SNO 0 

0 H 
55 ± 1 
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Table 5.10 

k 2 values for the decomposition of S-nitrosocysteine and S-nitrosocysteine ethyl ester 

in the presence of Cu 2 + (rate = k2[Cu2 +][RSNO]) or respective thiol 

(rate = k2[RSH][RSNO]), pH 7.4 

S-nitrosothioI 
Copper ion induced 

k2/moH dm3 s~! 

Thiol induced 
k 2 / l(H mol 1 dm3 s 1 

S-nitrosocysteine 24,700" 107 

S-nitrosocysteine ethyl ester 270,000a 80 

avalues obtained by D.J. Barnett, Ph.D. thesis, University of Durham, 1994. 

5.3 Product Detection 

5.3.1 Detection of Nitrite 

Having kinetically monitored the reaction between S-nitrosothiols and an 

excess of thiol at physiological pH it became necessary to perform a thorough analysis 

of the products generated. The Griess test (section 3.2.4) provides a convenient and 

sensitive method of detecting the presence of any nitrite ions in solution. The 

required extinction coefficient at 540nm was calculated to be 46,000 ± 760 mol 1 dm3 

cm 1 and the appropriate solutions of sulfanilamide and N-l-naphthylethylenediamine 

added to the following reactions. 0.001 mol dm 3 S-nitrosocysteine was introduced to 

L-cysteine in the concentration range 0.01 - 0.1 mol dm 3 and allowed to react until 

complete nitrosothiol decomposition was observed (ten hours). After a further six 

hours 1ml of each reactant solution was analysed for the possible nitrite content in the 

usual manner by measuring the absorbance at 540nm following azo dye formation. 

The results obtained are tabulated overleaf (table 5.11). 
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Table 5.11 

Percentage N02~ detected after the reaction between S-nitrosocysteine 

(0.001 mol dm 3 ) and L-cysteine, pH 7.4 

[L-cysteine]/mol dm -3 Absorbance540nni %N0 2" 
0 0.835 91 

0.01 0.318 34 
0.025 0.121 13 
0.05 0.068 7 
0.075 0.054 6 
0.1 0.050 5 

In the absence of added L-cysteine, almost quantitative production of nitrite is 

observed, which could be predicted as the copper(I) catalysed mechanism will prevail. 

However, on introducing 0.01 mol dm 3 thiol the amount of N0 2 " detected drops to 

34% and continues to fall until only 5% can be seen at [L-cysteine] = 0 . 1 mol dm 3 . 

This is in complete contrast to the situation which exists when S-nitrosothiols react 

with copper ions10 but is in keeping with a recent report published by Singh et aln 

who noted a similar trend when studying the reaction between GSNO and glutathione 

under similar conditions. Nitrite is probably formed via the oxidation of nitric oxide 

in aerobic solutions but is certainly not the major nitrogenous product to be generated 

when [thiol]: [nitrosothiol] = 10:1 and greater. The question that has to be answered 

now relates to the nature of the other nitrogenous product(s) that are present after 

reaction completion. 

5.3.2 Detection of Ammonia 

Another observation made by Singh et aln is that ammonia can be detected as 

a product during the reaction of glutathione with GSNO. This interesting discovery 

prompted the purchase of a standard NH 3 diagnostic kit from Sigma-Aldrich Co. Ltd. 

to analyse possible ammonia levels in the S-nitrosocysteine/L-cysteine system. The 

principles behind this method are based on a kinetic technique first devised in 197412 

to determine [NH 3] in blood plasma (typically 6.5 - 35|aM). The reductive amination 
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of 2-oxoglutarate is performed using the enzyme glutamate dehydrogenase (GLDH) 

and coenzyme reduced nicotinamide adenine dinucleotide phosphate (NADPH) 

according to equation 5.3. 

GLDH 

2-oxoglutarate + NH 3 + NADPH *- glutamate + NADP 

eqn 5.3 

In the presence of an excess of NADPH and 2-oxoglutarate the reaction becomes 

pseudo-first order. This means that the rate of reaction will only be dependent on 

[NH 3] and the activity of GLDH. However, the activity of glutamate dehydrogenase 

originally present in plasma samples is small compared to the amount introduced so 

that the reaction rate is effectively only dependent on the ammonia concentration. 

The reaction is followed spectrophotometrically at 340nm by monitoring the 

absorbance due to NADPH before and after the addition of GLDH, which causes 

coenzyme oxidation proportional to the sample ammonia concentration13. For each 

reaction between L-cysteine (0.01 mol dnr3 - 0.1 mol dm - 3) and S-nitrosocysteine 

(0.001 mol dm 3 ) a blank and a test solution were set up in the following manner. To 

the blank cuvette 1.0ml ammonia assay solution (containing 2-oxoglutarate and 

NADPH) was added to 0.1ml distilled water and allowed to equilibriate for three 

minutes at 25°C. The test cuvette was similarly prepared with 0.1ml reaction 

solution. After the required time period had elapsed the absorbance of each sample at 

340nm was measured and 0.01ml GLDH introduced. The final absorbances were 

recorded after a further five minutes and ammonia concentrations calculated using 

equations 5.4-5.5. 

AA = initial absorbance (340nm) - final absorbance(340nm) eqn 5.4 

Test ammonia concentration = (AA t e s t - A A ^ ^ x 30.3 eqn 5.5 
(Hg/ml) 

The factor 30.3 can be derived as in equation 5.6. 
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1.11= volume of liquid in cuvette (ml) 

17 = RMM of ammonia 

6.22 = millimolar absorptivity of NADPH at 340nm 

0.1 = volume of sample (ml) 

Thus, it is possible to calculate the concentration of any ammonia that has been 

generated and express it as a percentage of the nitrogen that could be formed from the 

decomposition of S-nitrosocysteine (table 5.12). 

Table 5.12 

Percentage NH 3 detected after the reaction between S-nitrosocysteine 

(0.001 mol dm 3 ) and L-cysteine, pH 7.4 

[L-cysteine]/mol dm -3 
A A t e s t _ A A b l a n k %NH3 

0 0.004 0.7 
0.01 0.315 56 
0.025 0.448 80 
0.05 0.459 82 
0.075 0.467 83 
0.1 0.478 85 

The opposite effect to that seen for nitrite concentration is observed as 

increasing [L-cysteine] leads to more ammonia being detected. Table 5.13 

summarises the results obtained for N0 2 " and NH 3 analysis of the S-nitrosocysteine/ 

L-cysteine reaction which are shown graphically in figure 5.2. 

30.3 = 1.11 x!7 
6.22x0.1 

eqn 5.6 
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Table 5.13 

Variation of the nitrite and ammonia content in the reaction products for the 

L-cysteine induced decay of S-nitrosocysteine (0.001 mol dm - 3), pH 7.4 

[L-cysteine]/mol dm -3 %N0 2" %NH 3 %N detected 
0 91 0.7 92 

0.01 34 56 90 
0.025 13 80 93 
0.05 7 82 89 
0.075 6 83 89 
0.1 5 85 90 

Figure 5.2 

Plot of [thiol] against %N02~ and %NH 3 as products of the reaction between 

L-cysteine and S-nitrosocysteine, pH 7.4 

%N0 2" or %NH 3 

100 x 

75 

50 

25 

0.025 0.05 0.075 0.1 

[L-cysteine]/mol dm 3 

• = N0 2 " A = NH 3 
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Clearly around 90% of the nitrogen derived from S-nitrosocysteine can be 

accounted for by the detection of nitrite and ammonia. However, there is still a small 

percentage whose origin is unknown which has not been determined. 

5.3.3 Detection of Nitrous Oxide and Disulfide 

Nitrous oxide (N 20) has been detected under aerobic conditions when GSNO 

is reacted with glutathione11, using a GC-MS closed system. This is the only 

analytical procedure which can realistically be used to study the production of this 

gas. Between 1% and 3% N 2 0 was formed when the glutathione concentration was 

varied, despite reports that nitrous oxide is a major reaction product in the reaction of 

thiols with S-nitrosothiols14. Glutathione disulfide (GSSG) was the only product 

detected by HPLC in the GSNO/glutathione system, as measured both aerobically and 

anaerobically11. It will be necessary in the future to undertake further experimental 

product analysis in order to quantify nitrous oxide and disulfide levels for the reaction 

of S-nitrosocysteine with L-cysteine. 

5.4 Reaction under Anaerobic Conditions 

In order to probe the reaction mechanism further, experiments were performed 

in the absence of oxygen and product analysis undertaken. Anaerobic conditions were 

attained by chemical deaeration of all buffer and distilled water components by the 

following technique. To 100ml solution 2mg glucose oxidase, lmg catalase and 

0.18g glucose were introduced and left for one hour at 37°C 1 5. Nitrite and ammonia 

levels were recorded in an analogous fashion to that described previously (sections 

5.3.1 - 5.3.2) for the reaction between 0.001 mol dnr3 S-nitrosocysteine and varying 

L-cysteine concentrations (table 5.14). 
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Table 5.14 

Variation of the nitrite and ammonia content in the reaction products for the anaerobic 

L-cysteine induced decay of S-nitrosocysteine (0.001 mol dm 3 ) , pH 7.4 

[L°cysteine]/mol dm -3 %N02" %NH3 %N detected 

0 92 0 92 
0.01 26 7 33 
0.025 15 35 50 
0.05 12 49 61 
0.075 6 55 61 
0.1 7 70 77 

It can be seen that in the absence of oxygen similar trends are observed as 

aerobically in that on increasing [L-cysteine], the amount of nitrite detected decreases 

and the quantity of ammonia increases. However, a big difference is that quantitative 

nitrogenous detection could not be achieved at any thiol concentration. This suggests 

that nitrous oxide is a much more significant product anaerobically, as noted 

previously11. It would appear that N 2 0 becomes formed at the expense of ammonia, 

and that oxygen has a big influence on the ratio of the reaction products generated. 

The second order rate constant, k 2 was measured and calculated to be (1.17 ± 0.02) x 

10"2 mol 1 dm3 s 1 which is almost identical to that observed aerobically, leading to 

the conclusion that although the amount of N0 2 " and NH 3 vary according to the 

oxygen concentration, the rate of reaction does not. 

5.5 Possible Reaction Mechanism 

A thorough investigation into the potential pH dependence of this reaction has 

recently been undertaken16. Second order rate constants were calculated for the 

S-nitrosocysteine/L-cysteine system at various pH values ranging from 1.03 to 13.29. 

A significant pH dependence in k 2 was apparent with the value observed at pH 13.29 

nearly thirty times greater than that at pH 1.03. A sudden increase in the magnitude 

of k 2 is observeable above pH 8.0 which presumably can be related to a role for RS" 

194 



(in this case L-cys") as the thiol will become deprotonated. It is proposed that the 

dianion derived from L-cysteine (5.2) may effect S-nitrosocysteine decomposition). 

H 2 N - ^ COO-

Product analysis has additionally shown that a basic pH will promote nitrite 

formation, whereas an acidic pH is more favoured for ammonia production. 

Any postulated reaction mechanism has to take into account all of the 

experimental data previously described, in terms of kinetics and product formation. A 

possible outline for reaction is shown in scheme 5.1 1 1 . 

RSNO + RS" — RS—N—SR NH 3 

OH 
(1) RSH RSSR 

RSSR + N0 2" 
O, 

RSH 
RS— N — OH + RS' 

RSNO 

RSSR + N 2 0 + H 2 0 

RSSR + NO 

N0 2" 

Scheme 5.1 

The initial step observed is that of nucleophilic thiolate ion (RS") attack at the 

nitrogen atom of the S-nitroso functionality. This explains the reactivity of 

S-nitrosopenicillamine, as an enhanced electron density at the sulfur atom of this 

compound negates attack of RS" at S, yet the thiolate ion derived from penicillamine 

will react increasingly rapidly with the corresponding nitrosothiol. It would be 

expected that similar tertiary thiols will behave in an analogous fashion when reacted 

with the appropriate RSNO species. The primary reaction intermediate is therefore an 

N-hydroxysulfenamide (1) which can react with excess thiol to produce ammonia as a 
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detected material, possibly via a series of thiol conjugates11. This pathway will be 

favoured at high [RS"] and accounts for the greater yield of NH 3 noted when thiolate 

is present in a hundred-fold excess over S-nitrosothiol. Disulfide is additionally 

generated by this step. However, homolytic S-N bond fission may take place in the 

N-hydroxysulfenamide molecule which produces a thiyl (RS") and N-hydroxyl 

(RS-N*-OH) radical. Both of these species can react further in solution depending on 

the amount of oxygen available within the system. Under normal aerobic conditions a 

direct interaction between 0 2 and RS-N*-OH forms an alternative radical (scheme 

5.2) which will react with thiol to eventually produce nitrite and disulfide. 

R S - N - O H ° 2 » R S - N - O - O ' R S - N - O - O H 
I f \ I 

0 H RSH RSSR 0 H 

R S - N - O - O H RSOH + HN0 2 N0 2" 

OH 

Scheme 5.2 

In comparison, RS-N'-OH can dimerise forming a dihydroxyhydrazine (5.3) 

which is unstable and will decompose via hyponitrous acid (5.4) to eliminate nitrous 

oxide. Schultz et al11 have described the interaction between N-nitrosamines and 

L-cysteine in great detail, and have noted both N 2 0 and NH 3 as products. 

RS—N-N-SR 
I I HO—N=N—OH 

OH OH 

5.3 5.4 

It is clear therefore that when oxygen is not present (anaerobic conditions) the 

pathway forming N 2 0 will be favoured, explaining the incomplete detection of 

nitrogenous material in the absence of 0 2 . Another route must exist which will 

generate N0 2 " anaerobically. This is the reaction of thiyl radical with S-nitrosothiol 
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manufacturing the appropriate disulfide and nitric oxide which will slowly become 

oxidised to nitrite over a long period of time due to small traces of oxygen being 

present. Theoretically, if the system was completely devoid of 0 2 , NO could be 

detected as a product directly. The mechanism described by scheme 5.1 can also be 

used to interpret the observed pH results16. At low pH values where RSH is the 

predominant species, a greater proportion of the N-hydroxysulfenamide can be 

converted into NH 3 . In contrast, at alkaline pH more N-hydroxyl and thiyl radicals 

will be produced, leading to higher nitrite concentrations. Hence, a scheme has been 

formulated which will hopefully be studied in greater detail with regard to product 

analysis over the forthcoming months. 

5.6 Conclusion 

In summary, it has been established that the major product formed during the 

reaction between S-nitrosothiols and corresponding thiols is ammonia, and not nitric 

oxide as may have been expected. The mechanism is proposed to be independent of 

the transition metal ion concentration, revealing a new angle on the chemistry of 

S-nitroso species. A similar reactivity rate is exhibited by many of the compounds 

studied with a pronounced "gem-dimethyl effect" apparent concerning 

S-nitrosopenicillamine. When the in vivo concentrations of S-nitrosothiols and thiols 

are considered the reaction may have significance within biological fluids as an 

alternative decomposition pathway for RSNO species. However, it perhaps has less 

interest related to it as NO is not a major product, although small quantities are 

generated as a consequence of thiyl radicals interacting with nitrosothiols. More work 

is currently in progress within this laboratory relating to the stability of S-nitrosothiols 

in the company of various thiols. 
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Chapter 6 

Experimental Details 



Chapter 6: Experimental Details 

6.1 Experimental Techniques 

6.1.1 Ultra violet/Visible Spectrophotometry 

Al l ultraviolet/visible spectra were obtained from solutions in quartz cuvettes 

of 1cm path length at 25°C on either a Perkin-Elmer Lambda 2, Perkin-Elmer 

Lambda 12 or Shimadzu UV-2101PC spectrophotometer. The same three instruments 

were generally used to measure reaction kinetics at fixed wavelengths. For more 

rapid reactions (t^ > 2ms) a stopped-flow technique was used (section 6.1.2). 

A l l kinetic measurements were made under pseudo-first order conditions. The 

observed rate constants were calculated from the noted absorbance change as a 

function of time at a specific wavelength (usually 340nm). The absorbance/time data 

from each spectrophotometer were transferred to an Epson AX2 personal computer 

and utilised in a software program designed for rate constant calculation (Enzfitter). 

This program allowed the calculation of observed rate constants, k^,., which was 

based on the following derivation. 

For a first order kinetic process (equation 6.1), the rate of formation of B or 

the removal of A can be expressed by equation 6.2. 

A k"1*5 » B eqn6.1 

dM ^ U TAT 

"~dt~ = ~dT = eqn6.2 

Integration of equation 6.2 gives an expression for the observed first order rate 

constant, k^,, (equation 6.3). 

ln [A] 0 - ln[A] t = k ^ t eqn6.3 

(where [ A ] 0 and [ A ] t are the concentrations of species A at times t = 0 and t = t 

respectively). 
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Using the Beer-Lambert law (A = eel, where A is the absorbance, e is the molar 

extinction coefficient, c is the concentration and 1 the path length), and assuming the 

latter to be 1cm, the expression of the absorbance at t = 0 and t = t can be derived 

(equations 6.4 and 6.5). 

As [B] t = [ A ] 0 - [ A ] t , substituting for [B] t into equation 6.5 gives-

A t = e A [ A ] t + e B [ A ] 0 - 6 B [ A ] t eqn6.6 

At the end of reaction, t = a> and [B]^ = [ A ] 0 , so-

Aoo = % [ A ] 0 eqn 6.7 

Substituting into equation 6.6-

Ao = 6 A [ A ] 0 eqn 6.4 

A t = s A [ A ] t + e B [B] t eqn 6.5 

A t = S \ [A] t + A x - % [ A ] t , thus 

[ A ] t = 
(A t - AQQ) 

eqn 6.8 

Similarly, at time t = 0-

A 0 = s A [ A ] 0 eqn 6.9 

Hence, subtracting equation 6.7 from equation 6.9-

( A 0 - Ax,) = 6 A [ A ] 0 - % [ A ] 0 , and 
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[ A l l ) = T ^ f e q n 6 1 0 

Substituting equations 6.8 and 6.10 into equation 6.3 yields-

•<<*•• = T ' " W ^ T E " N 6 - 1 1 

Rearranging gives-

ln(A t - Aoo) = - ko b s t + l n ( A 0 - Aoo) eqn 6.12 

Therefore, a plot of ln(A t - A^,) against t should be linear with a slope of 

-kjjbj.. The infinity values A^,, were determined after a period of ten half lives and the 

disappearance of absorbance followed for at least two half lives. 

6.1.2 Stopped-Flow Spectrophotometry 

For the determination of rate constants of reactions too fast to measure by 

conventional machines an Applied Photophysics Stopped-Flow spectrophotometer and 

a Hi-Tech Scientific SF-3L Stopped-Flow spectrophotometer were used. The 

experimental apparatus is shown schematically in figure 6.1. A l l reactions were 

carried out under pseudo-first order conditions. The two solutions to be reacted, A 

and B, are stored in reservoirs and drawn into two identical syringes so that equal 

volumes are mixed. The syringes are simultaneously compressed (either manually or 

by using a compressed air supply) with reactant mixing taking place at point M 

extremely rapidly ( < 1ms). The mixture then flows into a thermostatted 2mm path 

length quartz cell at point O, which causes the plunger of the third syringe to hit a 

stop, with a cessation in the solution flow. The acquisition of absorbance/time data 

from the reaction is triggered by the stop being hit. The observation of reaction is 

maintained by passing a beam of monochromatic light of the appropriate wavelength 

(usually 340nm) through the cell by fibre optic cable. The light is passed through a 
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photomultiplier and the change in voltage measured due to a change in absorbance of 

the solution is recorded. Software on the computers that run the stopped-flow 

machines are capable of transforming voltage/time data into absorbance/time data and 

can also calculate the observed rate constants. 

Figure 6.1 

Schematic diagram of a stopped-flow spectrophotometer 

Reservoirs 

Drive 
Piston 

Solution A 

Solution B 

T 
Light Source 

Monochromator 

Waste Reservoir 

M = Mixing Point 
O = Observation Point 
T = Three Way Tap 

Photomultiplier 

Amplifier 

I 

Oscilloscope 

Data 
Collection 
System 

Trigger i 
Back Stop 
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6.2 pH Measurements 

All pH measurements were carried out using a Jenway 3020 digital pH meter 

which was accurate to ± 0.02 pH units. The pH meter was calibrated over the range 

pH 4.0 to 7.0 or pH 7.0 to 10.0 depending on the solution to be measured. 

6.3 Nitric Oxide Electrode Calibration 

A World Precision ISO-NO nitric oxide specific electrode was used to measure 

NO production in aqueous solution. Calibration was carried out with ascorbic acid 

(0.1 mol dm 3 ) and sodium nitrite (2.5 x 10"3 mol dm 3 ) stock solutions. As the 

diffusion of NO across the membrane is temperature dependent, all solutions were 

thermostatted at 25°C prior and during reaction. The electrode was zeroed in the 

ascorbic acid solution with only the tip (10mm) below the surface. In order to create 

an anaerobic environment, nitrogen was bubbled through the system which removed 

the majority of any oxygen present. Upon electrode stabilisation the solution was 

stirred vigorously and the appropriate nitrite solution injected. A calibration curve of 

current (nA) against concentration of NO generated (\iM) was constructed, making the 

assumption that nitric oxide was produced quantitatively. Following this, the 

S-nitrosated species under scrutiny was analysed in a similar manner. 

6.4 Reagents 

A l l reagents used for synthetic and kinetic purposes were of the highest grade 

commercially available. Generally, S-nitrosothiols were produced in situ as described 

using acidified sodium nitrite and a variety of thiols which were purchased 

commercially, except for SNAP (section 2.2) which was synthesised as a stable green 

solid and stored in a refrigerator. The potassium dihydrogenphosphate (KH 2 P0 4 , 

0.15 mol dm 3 ) and sodium chloride used to prepare pH 7.4 buffer solutions were 

purchased commercially and used as supplied. The perchloric acid solutions used for 

nitrosation were prepared by dilution of concentrated perchloric acid which had been 

standardised using standard sodium hydroxide solution and phenol red as an indicator. 
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6.5 Analysis 

Analysis of human serum albumin and buffer solutions for trace quantities of 

cupric ions were carried out on a Perkin-Elmer 5000 atomic absorption 

spectrophotometer by Miss J. Magee. Elemental analysis was performed on samples 

using a Carlo Erba elemental analyser by Mrs J. Dostal. 
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Appendix 

Research Colloquia, Seminars, Lectures and Conferences 



The Board of Studies in Chemistry requires that each postgraduate research thesis 

contains an Appendix listing-

A. A l l research colloquia, seminars and lectures arranged by the Department of 

Chemistry and by the Durham University Chemical Society during the 

period of the author's residence as a postgraduate student; 

B. A l l research conferences attended and papers presented by the author during 

the period when research for the thesis was carried out; 

C. Details of the postgraduate induction course. 
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A. Colloquia, Lectures and Seminars f rom Invited Speakers Organised by the 

Durham University Chemistry Department, 1994 -1997 

(*denotes lectures attended) 

05.10.94 Prof. N .L . Owen, Brigham Young University, Utah, USA 
Determining Molecular Structure - the INADEQUATE NMR 
way 

19.10.94 Prof. N . Bartlett, University of California, USA 
Some Aspects of Ag(II) and Ag(III) Chemistry 

02.11.94 Dr. P.G. Edwards, University of Wales, Cardiff 
The Manipulation of Electronic and Structural Diversity in 
Metal Complexes - New Ligands 

03.11.94 Prof. B. F. G. Johnson, Edinburgh University 
Arene-metal clusters 

09.11.94 Dr. G. Hogarth, University College, London 
New Vistas in Metal-imido Chemistry 

10.11.94 Dr. M . Block, Zeneca Pharmaceuticals, Macclesfield 
Large-scale Manufacture of ZD-1542, a Thromboxane 
Antagonist Synthase Inhibitor 

16.11.94 Prof. M . Page, University of Huddersfield 
Four-membered Rings and Ji-Lactamase 

23.11.94 Dr. J.M.J. Williams, University of Loughborough 
New Approaches to Asymmetric Catalysis 

07.12.94 Prof. D. Briggs, ICI and University of Durham 
Surface Mass Spectrometry 

11.01.95 Prof. P. Parsons, University of Reading 
Applications of Tandem Reactions in Organic Synthesis 

18.01.95 Dr. G. Rumbles, Imperial College, London 
Real or Imaginary Third Order Non-linear Optical Materials 

25.01.95 Dr. D.A. Roberts, Zeneca Pharmaceuticals 
The Design and Synthesis of Inhibitors of the Renin-
angiotensin System 

01.02.95 Dr. T. Cosgrove, University of Bristol 
Polymers do it at Interfaces 
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08.02.95 Dr. D. O'Hare, University of Oxford 
Synthesis and Solid-state Properties of Poly-, Oligo- and 
Multidecker Metallocenes 

22.02.95 Prof. E. Schaumann, University of Claustal, Germany 
Silicon- and Sulfur-mediated Ring-opening Reactions of 
Epoxide 

01.03.95 Dr. M . Rosseinsky, University of Oxford 
Fullerene Intercalation Chemistry 

22.03.95 Dr. M . Taylor, University of Auckland, New Zealand 
Structural Methods in Main-group Chemistry 

26.04.95 Dr. M . Schroder, University of Edinburgh 
Redox-active Macrocyclic Complexes - Rings, Stacks and 
Liquid Crystals 

04.05.95 Prof. A.J. Kresge, University of Toronto, Canada 
The Ingold Lecture - Reactive Intermediates - Carboxylic-acid 
Enols and Other Unstable Species 

11.10.95 Prof. P. Lugar, Frei University of Berlin, Germany 
Low Temperature Crystallography 

13.10.95 Prof. R. Schmultzer, University of Braunschwieg, Germany 
Calixarene-Phosphorus Chemistry - A New Dimension in 
Phosphorus Chemistry 

18.10.95 Prof. A. Alexakis, University Pierre et Marie Curie, Paris, 
France 
Synthetic and Analytical Uses of Chiral Diamines 

25.10.95 Dr. D . M . Davies, University of Northumbria 
Chemical Reactions in Organised Systems 

01.11.95 Prof. W. Motherwell, University College London 
New Reactions for Organic Synthesis 

03.11.95 Dr. B. Langlois, University Claude Bernard-Lyon, France 
Radical Anionic and Pseudo Cationic Trifluoromethylation 

08.11.95 Dr. D. Craig, Imperial College, London 
New Strategies for the Assembly of Heterocyclic Systems 

15.11.95 Dr. A. Sella, University College London 
Chemistry of Lanthanides with Polypyrazoylborate Ligands 
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17.11.95 Prof. D. Bergbreiter, Texas A & M University, USA 
Design of Smart Catalysts, Substrates and Surfaces from Simple 
Polymers 

22.11.95 Prof. I . Soutar, University of Lancaster 
A Water of Glass? Luminescence Studies of Water-soluble 
Polymers 

29.11.95 Prof. D. Tuck, University of Windsor, Ontario, Canada 
New Indium Coordination Chemistry 

08.12.95 Prof. M.T. Reetz, Max Planck Institut, Mulheim, Germany 
Perkin Group Regional Meeting 

10.01.96 Dr. B. Henderson, University of Waikato, New Zealand 
Electrospray Mass Spectrometry - A New Sporting Technique 

17.01.96 Prof. J.W. Emsley, University of Southampton 
Liquid Crystals - More than Meets the Eye 

24.01.96 Dr. A. Armstrong, University of Nottingham 
Alkene Oxidation and Natural Product Synthesis 

31.01.96 Dr. J. Penfold, Rutherford Appleton Laboratory, Didcot 
Soft Soap and Surfaces 

07.02.96 Dr. R.B. Moody, University of Exeter 
Nitrosations, Nitrations and Oxidations with Nitrous Acid 

12.02.96 Dr. P. Pringle, University of Bristol 
Catalytic Self-Replication of Phosphines on Platinum(0) 

14.02.96 Dr. J. Rohr, University of Gottingen, Germany 
Goals and Aspects of Biosynthetic Studies on Low Molecular 
Weight Natural Products 

21.02.96 Dr. C.R. Pulham, University of Edinburgh 
Heavy Metal Hydrides - an Exploration of the Chemistry of 
Stannanes and Plumbanes 

28.02.96 Prof. E.W. Randall, Queen Mary & Westfield College, London 
New Perspectives in NMR Imaging 

06.03.96 Dr. R. Whitby, University of Southampton 
New Approaches to Chiral Catalysts - Induction of Planar and 
Metal Centred Asymmetry 

07.03.96 Dr. D.S. Wright, University of Cambridge 
Synthetic Applications of M^N-p-Block Metal Reagents 
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12.03.96 Prof. V. Balzani, University of Bologna, Italy 
RSC Endowed Lecture - Supramolecular Photochemistry 

13.03.96 Prof. D. Garner, University of Manchester 
Mushrooming in Chemistry 

30.04.96 Dr. L .D . Pettit, Chairman, IUPAC Commission of Equilibrium 
Data pH-metric Studies using Very Small Quantities of 
Uncertain Purity 

09.10.96 Prof. G. Bowmaker, University of Auckland, New Zealand 
Coordination and Materials Chemistry of the Group 11 and 
Group 12 Metals - Some Recent Vibrational and Solid State 
NMR Studies 

16.10.96 Prof. Ojima, State University of New York, USA 
Silylformylation and Silylcarbocyclisations in Organic Synthesis 

22.10.96 Prof. L . Gade, University of Wiirzburg, Germany 
Organic Transformations with Early-Late Heterobimetallics -
Synergism and Selectivity 

22.10.96 Prof. B.J. Tighe, University of Aston 
Synthetic Polymers for Biomedical Application - Can We Meet 
Nature's Challenge? 

23.10.96 Prof. H . Ringsdorf, Johannes Gutenberg-Universitat, Mainz, 
Germany 
Perkin Centenary Lecture - Function Based on Organisation 

29.10.96 Prof. D .M. Knight, Department of Philosophy, University of 
Durham 
The Purpose of Experiment - A Look at Davy and Faraday 

30.10.96 Dr. P. Mountford, University of Nottingham 
Recent Developments in Group IV Imido Chemistry 

12.11.96 Prof. R.J. Young, UMIST 
New Materials - Fact or Fantasy? 

13.11.96 Dr. G. Resnati, University of Milan, Italy 
Perfluorinated Oxaziridines - Mild Yet Powerful Oxidising 
Agents 

19.11.96 Prof. R.E. Grigg, University of Leeds 
Assembly of Complex Molecules by Palladium-Catalysed 
Queueing Processes 

20.11.96 Prof. J. Earnshaw, Department of Physics, Belfast 
Surface Light Scattering - Ripples and Relaxation 
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03.12.96 Prof. D. Phillips, Imperial College, London 
A Little Light Relief 

04.12.96 Prof. K. Muller-Dethlefs, University of York 
Chemical Applications of Very High Resolution ZEKE 
Photoelectron Spectroscopy 

11.12.96 Dr. C. Richards, University of Wales, Cardiff 
Stereochemical Games with Metallocenes 

15.01.97 Dr. V.K. Aggarwal, University of Sheffield 
Sulfur Mediated Asymmetric Synthesis 

16.01.97 Dr. S. Brooker, University of Otago, New Zealand 
Macrocycles - Exciting yet Controlled Thiolate Coordination 
Chemistry 

22.01.97 Dr. N . Cooley, BP Chemicals, Sunbury 
Synthesis and Properties of Alternating Polyketones 

05.02.97 Dr. A. Haynes, University of Sheffield 
Mechanism in Homogeneous Catalytic Carbonylation 

06.02.97 Prof. B. Bartlett, University of Southampton 
Immobilisation of Enzymes in Electrochemically Polymerised 
Films 

18.02.97 Prof. Sir J. Black, Sir James Black Institute 
My Dialogues with Medicinal Chemists 

19.02.97 Prof. B. Hayden, University of Southampton 
Reaction Dynamics and Fuel Cells 

25.02.97 Prof. A.G. Sykes, University of Newcastle 
The Structure, Properties and Design of Blue Copper Proteins 

26.02.97 Dr. A. Ryan, UMIST 
Making Hairpins from Rings and Chains 

04.03.97 Prof. C.W. Rees, Imperial College, London 
Some Very Heterocyclic Chemistry 

05.03.97 Dr. J. Staunton, FRS, University of Cambridge 
Tinkering with Biosynthesis - Toward a New Generation of 
Antibiotics 

11.03.97 Dr. A .D. Taylor, Rutherford Appleton Laboratory, Didcot 
Neutron Scattering 
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19.03.97 Dr. K. Reid, University of Nottingham 
Probing Dynamical Processes with Photoelectrons 
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B. Conferences Attended 

1) 5th European Symposium on Organic Reactivity, Santiago de Compostela, 

Spain, 16-21 July 1995. 

Poster presented- "The Effect of Thiols on the Copper Catalysed Nitric Oxide 

Formation From S-Nitrosothiols". 

2) Royal Society of Chemistry 6th International Meeting on Reaction 

Mechanisms, University of Kent at Canterbury, England, 9-12 July 1996. 

Poster presented- "Copper Catalysed Nitric Oxide Formation From 

S-Nitrosothiols using Protein-Bound Cu 2 + Sources". 

3) Postgraduate Winter School on Organic Reactivity - WISOR VI , Bressanone, 

Italy, 10-17 January 1997. 

Poster presented- "The Effect of Thiols on Copper Catalysed Nitric Oxide 

Formation From S-Nitrosothiols". 

4) Royal Society of Chemistry Organic Reaction Mechanisms Group 

Annual seminars attended-

i) Merck, Sharp and Dohme, Harlow, September 1995. 

ii) Astra Charnwood, Loughborough, September 1996. 

iii) Glaxo-Wellcome, Stevenage, September 1997. 
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C. First Year Induction Course, October 1994 

The course consists of a series of one hour lectures on the services available in the 

department. 

1) Introduction, research resources and practicalities 

2) Safety matters 

3) Electrical appliances and hands-on spectroscopic services 

4) Departmental computing 

5) Chromatography and high pressure operations 

6) Elemental analysis 

7) Mass spectrometry 

8) Nuclear magnetic resonance spectroscopy 

9) Glassblowing techniques 


