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Cosmic Structure from Phase Transitions 

Abstract 

Motivated by recent observations suggesting that structures in the Universe 

appear to be concentrated on the walls of bubbles that surround giant voids, we 

examine the possibility that the observed structure may have resulted from a 

first order phase transition that occured after inflation and which proceeded by 

quantum tunnelling and the formation of bubbles of true vacuum. 

Since we lack a fundamental theory of particle physics that would define the 

scalar field responsible for the second phase change and predict the scale of the 

resulting structures, we instead examine two similar parametrised forms for the 

potential motivated by the standard Higgs model, and attempt to determine val

ues of the parameters that can reproduce the kind of structures that are observed 

through bubble wall collisions. The method deployed is quite general and can 

be applied to any phase transition that occured after inflation. It is found that 

although the shape of the required potential and its coupling can be determined, 

the epoch of the proposed second phase transition is in general not specified by 

the observed structures. 

The full verification or otherwise of our proposal will require not only a more 

detailed consideration of its predictions for the large scale structure of the Uni

verse and its compatibility with the cosmic microwave background radiation but 

also the embedding of our ideas in a credible theory of particle physics beyond 

the Standard Model. 
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Chapter 1 

Introduction 

Nature posseses four fundamental interactions - gravitational, electromagnetic 

and the strong and weak nuclear forces - that seem to account for all physical 

processes and structures found in the Universe. The ultimate, so far unsuccessful, 

goal of modern science is to find a unified field theory that can bring all these in

teractions into a single unified picture. Even though such a 'theory of everything' 

is still far from being constructed, during the past 50 years there have emerged 

two 'standard models' of physics that describe the macroscopic and microscopic 

properties of matter. 

The standard model of cosmology, popularly known as the Big Bang, has 

developed from Einstein's equation of General Relativity for a homogeneous and 

isotropic Universe and seems to describe succesfully its evolution for all times 

after the first hundredth of a second after its creation. In studying the bulk 

properties of the Universe it is gravity that dominates and the effects of the other 

three interactions can safely be neglected. 

When studying the properties of elementary particles, on the other hand, at 

low energies, it is gravity, the weakest of the interactions, that can be ignored. 

Field theories of the remaining interactions provide the standard model of parti

cle physics. The fact that three different couplings are needed suggests that this 
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standard model of particle physics is still incomplete and Grand Unified Theories 

(GUTS) have been developed that unify the strong with the electroweak interac

tions at an energy scale Mx fa 1014GeV. Even though there are still problems to 

be answered, most notably the 'hierarchy' problem, i.e. the difficulty in under

standing why the symmetry breaking scale of GUT theories is so vastly different 

from that of electroweak symmetry breaking, GUT theories have enabled scien

tists for the first time to speculate about the very early Universe at times of the 

order of 1 0 _ 3 5 5 or so. It has become increasingly clear that the very early Uni

verse can provide a unique laboratory for testing new ideas from particle physics. 

Attempts to unify all the known interactions, including gravity, have led to even 

more speculative ideas such as those found in sypersymmetry (SUSY) theories 

or superstrings, which takes us to the Planck energy scale and times as early as 

l ( T 4 4 s . 

Even though a satisfactory theory of everything is far from being constructed, 

the fact that we are able to discuss questions relating to the very early Universe 

is a remarkable success of modern scientific research. 

The inflationary universe scenario was first introduced in 1981 in an attempt 

to solve some of the long-standing problems of the Big Bang theory and to find 

a mechanism that can suppress the overproduction of the superheavy topological 

deflects that are predicted to arise whenever a GUT theory undergoes sponta

neous symmetry breaking (SSB). 

Inflation arises naturally from Einstein's equation since the uniform 'vacuum 

energy density' generated during the SSB of a particle physics theory is equiva

lent to an effective cosmological constant and if it becomes dominant it can cause 

the size of the Universe to increase exponentially. Unfortunately, the lack of a 

fundamental theory of particle physics leaves the nature of the scalar field that 
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causes this inflation undetermined and it has become known as the 'inflaton' field. 

Numerous attempts have been made to construct a successful inflationary model, 

but, none is particularly compelling. Despite this, the theoretical prejudice in 

favour of inflation is very strong and it is hoped that eventually the scalar field 

that drives inflation will be found to arise naturally from the fundamental theory 

of particle physics. 

Two of the other outstanding problems facing modern cosmology concern 

the nature of the dark matter and the problem of structure formation. With the 

adoption of inflationary theories which require that 0 = 1 (see, however, chapters 

2 and 4) most of the material content of the Universe must be non-baryonic in 

origin. The continuing search for viable dark matter candidates is an exciting 

example of the close interconnection between cosmology and particle physics. 

Structure formation is widely considered to have resulted from the growth of 

small density inhomogeneities in the early Universe that were ampified via the 

Jean's mechanism and collapsed to produce the structure now observed. Recent 

observations, however, suggesting that galaxies lie predominantly on the surfaces 

of bubble-like structures that surround giant voids, indicate that this may not be 

the whole story. Attempts to explain these new observations include explosive 

galaxy formation and the introduction of cosmic strings as the seeds from which 

galaxies have evolved. 

In our research we have examined a different possibility, namely that these 

structures have resulted from a first order phase transition that occured after 

inflation and which proceeded by quantum tunnelling, resulting in the nucleation 

of bubbles of true vacuum which eventually coalesced to form sheets of matter 

surrounding giant voids. To this end, we have examined two similar forms of the 

scalar field potential and tried to determine the parameters which describe them, 
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including the energy scale which fixes the epoch of the second phase transition, 

by demanding that the mass, radius and thickness of typical shells produced by 

the bubble collisions match those which we observe. 

We start in chapters 2 and 3 with reviews of the standard model of cosmology 

and inflation, followed in chapter 4 with a discussion of the formation of structure, 

of the wide variety of models which have been proposed to explain it and the 

constraints imposed on all such models from the CMBR. Then, in chapter 5, by 

following Coleman's work we will derive the standard equation for the rate of 

tunnelling of the true vacuum bubbles using the path integral formulation. In 

chapter 6 we introduce the general form of potentials that can produce a first 

order phase transition and examine how bubble collisions can give rise to shells 

of matter. At the end of this chapter we derive general equations describing 

the shell parameters, that are further developed in chapter 7 to include their 

explicit dependence on the potential parameters. The results of comparing our 

outputs with the structures actually observed are presented in chapter 7 with our 

conclusions reserved for chapter 8. 
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Chapter 2 

Standard Cosmology 

The key idea of the standard model of cosmology is that the Universe began 

with an awesome explosion popularly known as the Big Bang. The force of this 

explosion pushed the developing material content of the Universe outwards in 

all directions, the rate of expansion being gradually slowed down by the force of 

gravity. We give here a necessarily brief account of the main features of Big Bang 

cosmology and derive the standard results which we will need throughout this 

thesis. We conclude this chapter with a brief exposition of the main successes of 

the model to be followed, in the next chapter, by a discussion of its failures and 

how an attempt to solve them leads naturally to the idea of inflation. In these two 

chapters we will draw heavily from standard texts on cosmology such as those 

of Collins, Martin and Squires (1989), Kolb and Turner (1990) and Weinberg 

(1972). 

2.1 The Hot Big Bang 

The standard model of Cosmology is based on a number of assumptions, the most 

important of which are the following: 

• The fundamental laws of physics do not change with time. 
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• The effects of gravitation are correctly described by Einstein's theory of 

General Relativity. 

• The Universe on very large scales is homogeneous and isotropic. 

• The early Universe is filled with an expanding, extremely hot gas of ele

mentary particles in thermal equilibrium. 

• The geometry of space-time is described by the Robertson-Walker (RW) 

metric. 

The line element corresponding the RW metric is given by 

dr2 

ds2 = c2dt2 - R2(t) + r2(d62 + s i n 2 0# 2 ) fc = 0 , ± l (2.1) 
1 - kr2 

where R(t) is the time-dependent scale factor and r, 0, 4> are comoving polar 

coordinates, while the parameter k is introduced to represent the sign of the 

curvature. Based on these assumptions we can look for solutions to Einstein's 

equation, 

^ - \ ^ 9 ^ + 4flW = — T - T n n , ( 2 - 2 ) 

by treating all matter and radiation in the Universe as a uniform perfect fluid 

of energy density p and presure P. IZ^ and 1Z are the Ricci tensor and curva

ture scalar respectively, is the RW metric tensor and A is the cosmological 

constant. For co-moving observers the energy-momentum tensor has only 

diagonal non-vanishing elements 

Too = pc2 

Ta = PQH-I i = 1>2,3 
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and on substituting these back to Einstein's equation, together with the corre

sponding non-vanishing components of the metric tensor, we obtain 

R 4TTG / 3P \ A , , 

R = - — (" + ^ ) + 3 { 2 A ) 

• 3R i P\ „ , , 

" + T ( " - ^ ) = 0 <2'5> 
where H is the Hubble 'constant' to be defined below. We shall see shortly that 

observational bounds on the deceleration parameter require A = 0 today or, at 

least, that it be very small on the Planck scale. In the absence of A (2.3) and (2.4) 

are known as Friedman's equations. In the rest of this chapter we will assume 

that A = 0 but we will have to say more on this point when we consider inflation. 

We should, also, keep in mind that cosmological models have been proposed 

whereby as much as 80% of the critical density of the Universe is accounted for 

by a cosmological constant (Efstathiou, Sutherland and Maddox (1990)). 

The first of these equations can be seen of as a conservation of energy equation 

and can be derived from Newtonian principles with k representing the sign of the 

total energy. Equation (2.4) is a deceleration equation reflecting the fact that in 

Standard Cosmology the rate of the expansion of the Universe slows down because 

of the universal gravitational attraction between all forms of matter (we will see, 

however, that in inflationary cosmologies we can have accelerated expansion and 

it is this fact that solves most of the long-standing problems of the Big Bang). 

The last equation derives from the more compact form 

i ( , * V ) = - P > ) , (2.6) 

which is a statement of the first law of thermodynamics, namely that the rate 

of change in the energy of a system equals (the negative of) the pressure times 
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the change in volume or, dE = —PdV. Any two of Friedman's equations are 

sufficient to describe the evolution of the Universe provided that an equation of 

state P(p) for the material content of the Universe is specified. Before we go 

into this, however, we will define some quantities important for our cosmological 

considerations. 

Hubble's parameter: 

This is the 'constant' of proportionality that appears in Hubble's relation, 

R = HR, which describes the fact that galaxies are receding from each other 

with velocities proportional to their distance apart. As can be seen from (2.3) H 

is not a constant but varies slowly with time as the Universe evolves. Hubble's 

parameter is currently estimated to be 

H0 - 100h 0 kms~ l Mpc~ l , \-<hQ<\ 

where h0 is introduced to account for the observational uncertainties (hereafter 

a subscript '0' will denote the present value of any quantity unless otherwise 

specified). 

redshift: 

The redshift z of a source is defined as the ratio of the detected wavelength 

to the emitted wavelength and is related to the scale factor by 

_ AQ _ Rjtp) 
A ~~ R(t) ' 

The deceleration parameter: 

A dimensionless measurement of the expansion rate of the Universe is given 

in terms of the deceleration parameter defined by 

RR _ 47rGp 
q = ~W~ 3 # 2 ' 
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or, in terms of the curvature k by 

1 
q = 2 

kc2 

1 + R2H2 

and so q is larger or smaller than | depending on whether the curvature of 

the Universe is positive or negative. At the moment observations suggest that 

— 1 < qo < 2 so the sign of k is still unknown. Also, the cosmological constant is 

bounded by A < 3H2 ~ 1 ( T 1 2 % - 2 (Collins, Martin, Squires (1989)). 

The critical density: 

This is the energy density of a flat (k = 0, q = 1/2) Universe given by (cf. 

(2.3)) 

P c = ~ 2h0

2 x l (T 2 £ Wm- 3 . 
07T(_T 

f2 -parameter: 

The fl-parameter relates the energy density of the Universe to its critical 

energy density through the dimensionles ratio 

o kc2 

According to the value assumed by Q, (or equivalently k ov q) the Universe is 

said to be either open, or closed or flat. The three different types of universe 

are summarised in table (2.1) and in figure (2.1) we show the corresponding 

variations of the scale factor with time. Note, also, that if A / 0, low-density 

universes are spatially flat if Ao = 3(1 — Oo)i/o2 a n d can thus be compatible with 

inflation (Peebles (1984)). Hence, it has been suggested that the successes of 

the CDM model based on a spatially flat Universe with scale-invariant adiabatic 

fluctuations can be sustained even if S70 ^ 0.2 since the rest of the critical energy 

density of the Universe can be accounted for by the positive cosmological constant 

(Efstathiou, Sutherland and Maddox (1990)). 



T Y P E O F 
U N I V E R S E 

RATIO O F E N E R G Y 
D E N S I T Y TO 

C R I T I C A L DENSITY ( « ) 

SPATIAL 
G E O M E T R Y V O L U M E T E M P O R A L 

EVOLUTION 

C L O S E D > 1 
P O S I T I V E 

C U R V A T U R E 
( S P H E R I C A L ) 

FINITE EXPANDS AND 
R E C O L L A P S E S 

O P E N <1 
N E G A T I V E 

C U R V A T U R E 
( H Y P E R B O L I C ) 

INFINITE EXPANDS 
F O R E V E R 

FLAT 1 
Z E R O 

C U R V A T U R E 
( E U C L I D E A N ) 

INFINITE 
EXPANDS F O R E V E R , 

B U T EXPANSION R A T E 
A P P R O A C H E S Z E R O 

Table 2.1: The geometry of the Universe (Guth and Steinhardt (1984)). 

k=l R t ) 

1 

Figure 2.1: Variation of the scale factor with time for the three types 
of universe. 
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As we stressed before, knowing the equation of state for the material content 

of the Universe, Friedman's equations enable us to study its evolution at any 

later time. For our purposes we shall adopt (Barrow (1988)) 

P = (7 — l)pc2, 7 = constant. (2-7) 

This constant is of fundamental importance in cosmology because it not only 

specifies the equations of state for the radiation and the matter dominated epochs 

for which the values are 7 = 4/3 and 7 = 1 respectively, but, equally important, 

with 7 = 0 we have the equation of state required for inflation. 

For example, when the Universe was a fully ionised plasma of relativistic 

particles in thermal equilibrium, the so-called radiation-dominated era, then 

P=l-Prc\ Pr = GT\ (2.8) 

a — 7r 2A;jg 4/I5h 3c 5 being the radiation density constant and T being the temper

ature. Using Friedman's equations it can be shown that 

pr oc R~4 

R cc t1'2. 

On the other hand, because matter today is extremely nonrelativistic as dust or 

clumped in astronomical bodies, the equation of state for a matter-dominated 

universe can be approximated by 

P = 0 

in which case 

pm oc i T 3 

R oc t2>\ 
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Although the matter density today greatly exceeds that of radiation, 

pr ~ 4.71 x 1(T 3 4 gmjcm3(1 + zf 

pm ~ 1.88 x lQ-29noh0

2gm/cm3(l + zf 

this was not always the case. We have seen that the radiation density falls of 

more rapidly with time which suggests that at some time in the past it must have 

exceeded that of matter. Thus, there was a time teq, when R = Req and z = zeq, 

when the energy densities of matter and radiation were equal 

Pm = Pr 1 + Zeg » 4 X lO^o^O* (2.9) 

and hence 

1 + z - — = (—\ ^ 

teq » 2.5 x 10 l ofc o" 4fto~ 3 / 2sec, 

where <o is the present age of the Universe. So, from £ e 9 onwards the equation 

of state is accurately approximated by P = 0 and it describes a dust or matter-

dominated Universe. Before this there was the radiation-dominated era, from the 

moment of creation up to teq, during which time the curvature of the Universe was 

negligible. Solving the k = 0 Friedman's equations for the radiation-dominated 

Universe we obtain 

2.2 Equilibrium Thermodynamics 

Conditions in the early Universe are expected mostly to be very close to ther

modynamic equilibrium, the main reason being that at such high densities and 

temperatures the rates of interaction between particle species are fast compared 
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to the expansion rate of the Universe. The criterion to determine which particles 

remain in thermal equilibrium at a given temperature is 

r = (nav) > H ~ ^- (2.11) 

where n is the number density of particles, a is their reaction crossection and 

v their velocity. Initially, when n and v are large, particles are in equilibrium 

but, as the temperature drops, the energy of a given particle will fall below 

its production threshold, a will reduce and eventually vanish, whereupon these 

particles will drop out of equilibrium and decouple from the surrounding plasma. 

In the ideal gas approximation the total number density of particles in thermal 

equilibrium with momenta between p and p + dp is 

g* p2dp 
d H = 2 r f ( e W ± l ) < 2 - 1 2 ) 

where E = (p2c2 + m2cA)1^2 is the energy, g» is the total number of relativistic 

degrees of freedom at temperature T given by 

9* = £ 9t + l £ 5/, (2.13) 
bosons fermions 

gb and gj being the number of degrees of freedom for bosons and fermions re

spectively and where the ± sign accounts for the difference in boson and fermion 

statistics. Thus, for photons, or for any relativistic particles with kT 3> mc2 

r°° dn g* [°° p2dp 
n = 

f°° dn 9* r P'dp r 9 1 . x 

Jo d p P ~ 2 ^ k ( e ^ i l ) ' 1 j 

Similarly the energy density is 

2 f°°i?dnj 9* r Ep2dp 
p c =L E T p d p = ^ l ° ( e ^ ± i y ( 2 - 1 5 ) 

Thus, at high temperatures (kT > mc2) or, at any temperature for massless 

particles, the number density and energy density of particle species are given by 
9b 9b 
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kT less than Particles in Equilibrium 5. 
leV 7 2 

mec2 7, e+, e~ 11/2 
m^c2 7, i / e , e + , e~ 43/4 
mvc2 57/4 
Ac +7T + , 7T~, 7T° 69/4 

msc2 7, j / e , t/M, i / T , e*, / A u, u, d, d, g 205/4 
mcc2 +s, s 247/4 
mTc2 +c, c 289/4 
m^c2 + r , r 303/4 
mtc2 +b, 6 345/4 

Mwc2 +t , * 387/4 
> Mw<? W~, Z 423/4 

Table 2.2: Variation of the effective degrees of freedom with temperature (Collins, 
Martin and Squires (1989)). 

7 3 
Pf = i f t S f P - Y , n f = g ^ n 7 

where p1 and n 7 are the photon energy density and number density respectively 

given by 

p-yC2 = aT4 

2C(3)(kT\ 

(2.16) 

(2.17) 

where a = 7r 2& 4/(15c 3^ 3) is the Stefan-Boltzmann constant. Hence, the total 

energy density at high temperature is given by 

1 
(2.18) 

The value of will change as the Universe cools (see table (2.2)) and different 

species go out of equilibrium. A relation showing the variation of temperature 

with <7» and t can be derived by combining (2.10) with (2.18) viz. 

45c5fr3 ,5*3 \ i / 4 
T = 

16n3Gg* k4

t 

14 
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2.3 Successes of the Big Bang 

2.3.1 Expansion from a Hot Big Bang 

The first major success of the Big Bang model of cosmology was the discovery 

by Hubble in 1929 that galaxies are moving away from each other. The second 

piece of evidence that pointed towards a hot Big Bang came later when the 

cosmic microwave background radiation (CMBR) was first detected by Penzias 

and Wilson in 1965. The CM BR is the relic radiation from the earliest moments 

in the history of the Universe when radiation and matter were in equilibrium and 

when processes like, for example, 

where common. The ionisation potential of hydrogen is 13.6eV corresponding 

to a photon temperature Tfj = 1.6 x 105A'. As the Universe expands the pho

ton temperature drops and at temperatures well below TJJ there are few photons 

energetic enough to be reabsorbed by H atoms and so matter will become trans

parent to radiation. This decoupling occurs at ~ 3 x 103A'. After decoupling 

the temperature of the radiation continues to drop and is redshifted by the expan

sion of the Universe towards the microwave part of the spectrum. The CMBR is 

received uniformly from all directions in the sky and (apart from a small dipole 

anisotropy due to the earth's motion relative to the cosmic rest frame) has almost 

the same effective temperature, T0 « 2.735±0.06iv, to a high degree of accuracy 

(Smoot et al. (1991)). Assuming that matter has dominated the dynamics of the 

Universe since decoupling, since T ~ t~2^3, we can estimate the decoupling time 

as follows. 

7 + H <—> e + p 

0 12 5 x Wsec. t 
t 

(2.20) 

I t is apparently a coincidence that t, eq 
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2.3.2 Nucleosynthesis 

Nucleosynthesis is the study of the formation of the light elements. The main 

idea is that at high temperatures (T 10loK) nuclear particle interactions occur 

reversibly and thermal equilibrium is achieved through reactions like 

e + + e" <—• v\ + Vi 

p + e~ <—> n + ve 

n + e + <—> p + +¥e 

n < > p + e~ + T7e. 

As the temperature gradually lowers and becomes of order 10WK these inter

actions become too slow to compete with the expansion of the Universe and 

the neutrinos decouple. At temperatures T < O(1010K) equilibrium ceases and 

the n/p ratio 'freezes out' and then decreases slowly due to neutron decay until 

the onset of nucleosynthesis. At even lower temperatures electron-positron pairs 

start to annihilate and at about 109K they vanish transfering their energies to 

the photons. At this point reactions of the form 

p + n —>2 H + 7 

also occur but the vast excess of photons over nucleons ensures that the inverse 

reaction also proceeds destroying 2H almost as fast as it is produced. As the 

Universe expands further and cools fewer photons are capable of destroying deu

terium and its abundance begins to increase. Subsequently tr i t ium and helium 

begin to form through reactions such as 

p + n —• 2 H + 7 

2H + n — • 3 # + 7 
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2H + p —• 3He + f 

3H + p — • 4 # e + 7 

3He + n — • 4 # e + 7 

The fact that no stable nuclei with atomic numbers A = 5 and A = 8 exist 

ensures that there is little further nucleosynthesis (however some trace amounts 

of 7 Li and 7Be are also produced). Finally at temperatures T < 5 x lO 8 /^ 

Coulomb barriers ensure that nuclei cannot come sufficiently close together and 

nucleosynthesis is effectively terminated. 

We will not examine Big Bang Nucleosynthesis (BBN) in more detail except 

to note the factors that affect the relative abundances of the light elements (more 

complete surveys of BBN can be found in Boesgaard et al (1985), Bernstein 

et al (1989),Walker et al (1991)). The primordial abundance of helium depends 

on the n/p ratio at freeze out which is in turn determined by the competition 

between the weak interaction rate and the expansion rate. Thus (Hoyle, Tayler 

(1964)) if there exist more light particles (for example a fourth neutrino), g„ will 

be larger leading to a faster expansion and hence an earlier freeze out of the weak 

interactions leaving behind more n and hence a larger helium abundance. The 

predicted abundances of 2H, 3He and 7Li on the other hand depend only on 

the baryon to photon ratio, the larger the nucleon abundance the more rapidly 

2H and 3He are destroyed leaving behind more 4He. In figure (2.2) we show the 

predictions for the primordial abundances of the light elements which demonstrate 

that, in the context of the Big Bang, BBN requires that 

N„ = 3 ± 1 

rj = 4 - 7 x 1CT10 

in remarkable agreement with observations. 
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Figure 2.2: Predictions of the primordial abundances of the light el
ements where Yp denotes the primordial mass fraction of 4He (Kolb 
and Turner (1990)). 

In the next chapter we shall see that there are a number of unsatisfactory 

features wich indicate that the Big Bang is probably not the whole story. We 

will conclude this chapter by presenting the main events in the history of the 

Universe. 

2.4 Main Events in the History of the Universe 

The Big Bang model of cosmology seems to give a very successful description of 

the evolution of the Universe from about the first hundredth of a second after 

its creation when BBN began up to now. With the invention of the Grand Uni

fied Theories (GUTS) and supersymmetry (SUSY) that arose from attempts to 

explain the properties of elementary particles at very high energy scales cosmol-

ogists were able to explore the hypothetical history of the Universe as far back 

as 10 _ 3 55ec after the Big Bang when it had an effective temperature of about 
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10l5GeV. Our present knowledge of physics is insufficient to study the history of 

the Universe at even earlier times. Quantum gravity effects must be taken into 

account and the theory of General Relativity will have to be suplemented by a 

proper quantum theory of gravity which so far does not exist. Thus to describe 

the earliest moments in the history of the Universe, t < 10~44s, as we approach 

the initial singularity at t —> 0, we require a fundamentally different approach 

involving new ideas such as those found in superstrings perhaps. This, however, 

need only be done on scales set by the so-called 'Planck units' which define the 

energy, mass, length and time in terms of G as follows: 

As the Universe cools it is believed to have undergone a number of phase tran

sitions within the context of GUT or SUSY theories because of the spontaneous 

breakdown of the relevant symmetries at their characteristic energy scale, i.e. 

approximately 1015GeV for GUTS and anywhere between 10 1 1 and 103GeV for 

SUSY respectively. Inflation is believed to have resulted from a phase transition 

of this kind although the inflaton field that is responsible is not known. After 

that, a phase transition which breaks the electroweak symmetry of the standard 

model of particle physics is thought to have occured at about 250GeV. At ener

gies around 100 — 300MeV the quark-hadron phase transition occured, followed 

by the epoch of nucleosynthesis at around t « Is which we mentioned earlier. 

Much later, at < ?s 1011sec, matter began to dominate the dynamics of the Uni-

5 \ 1/2 ( 19 1.2 x 10LVGeV E 
G 

1/2 
he 8 2.1 x 10~°% M 
G 

1/2 
hG 35 16 x 10 m c3 

%G 
1/2 

44 5.4 x 10-^5 
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Figure 2.3: A brief history of the Universe (Collins, Marin and Squires (1989)). 

verse and formation of structure could begin. Finally, at tj, « 1013sec photons 

decoupled form the surrounding matter releasing the CM BR. We conclude this 

chapter by displaying in figure (2.3) a snapshot of the history of the Universe from 

its very infancy up to now which shows all the important stages of its evolution. 
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Chapter 3 

Inflationary Cosmology 

Even though the standard model of cosmology provides a very satisfactory frame

work for the study of the evolution of the Universe it is plagued by several prob

lems that cannot be solved unless one prescribes rather artificial initial conditions. 

In the next section we shall review some of these problems and show how attempts 

to solve them naturally lead to the idea of inflation. 

3.1 Problems of the Standard Model 

The naturalness problem: 

The only dimensionful parameter appearing in Friedmann's equation is the 

gravitational constant G which in Planck units is given by 

MP

2 

If we set h~ = c = 1 Friedmann's equation can be rewritten as 

r r 2 _ &*P k , A

 m x 

and we might argue that all the parameters in this equation should be of order 

1 in these units. This, however, would give H~L « tp 10 - 4 4sec rather than 

Hq'1 pa 10175ec as observed. It also predicts that A ss tp2 whereas we have seen 
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Figure 3.1: An illustration of the unstable nature of ft. For ft > 1 0 
diverges to infinity whereas for 17 < 1 it rapidly approaches 0. 

that the cosmological constant should be vanishingly small (< 10~122tp2) and 

there is no natural mechanism that can achieve this automatically. 

The flatness problem: 

The flatness problem is the difficulty of understanding in the context of the 

Big Bang theory why the J7-parameter is of order 1. If we neglect the cosmological 

constant we can rewrite Friedmann's equation in terms of f2 as follows 

3 k c 2 (32) 

and, taking into account the time dependence of p and R, 

ft — 1 J t radiation dominated , . 
Q \ t2lz matter dominated ^ " ' 

and so 0 = 1 represents a state of unstable equilibrium (see figure (3.1)). It 

turns out that, for f i to be of order 1 today, at the Planck time i t must have 

been 1 ± 1 0 - 6 0 . To appreciate this problem in a different way we recall that for 
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both the radiation-dominated and the matter-dominated eras the energy density 

falls off more rapidly than the curvature term which should be overwhelmingly 

dominant today if it is non-zero. 

The horizon problem: 

On very large scales the Universe appears to be homogeneous and isotropic. 

For example, the CM BR that was released about 106 years after the Big Bang 

is received uniformly from all directions in the sky and has the same effective 

temperature of about 2.7QK to about one part in 10 s. The smoothness of the 

CM BR is very puzzling if one recalls that it extends over regions that would 

seem to have been causally disconnected in the early Universe. The horizon size 

is defined to be the maximum distance a light signal could have travelled since 

the beginning of the Big Bang, 

For the CMBR, for example, that was released at td ~ 5 x 1012sec we obtain 

and the observable Universe at decoupling consisted of roughly 105 causally dis

joint regions. How is it possible that radiation emitted from different parts of the 

Universe that were not causally connected have the same temperature? 

Topological defects 

In the context of GUTs, symmetry breaking mechanisms may give rise to 

topological defects such as magnetic monopoles, cosmic strings and domain walls. 

The mechanism of formation of such defects was studied by Kibble (1976) who 

* cdt (*) = m / 
Jo 

d H R(t>) 

Thus, 
. 1 / 2 d „ ( t ) 
, 1 / 3 R(t) 

radiation dominated 
matter dominated. 

(3.4) 

1/3 

40 
dHytd) 
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argued that their production in the early Universe is unavoidable. Although a 

detailed analysis of this topic is beyond the scope of this thesis, their cosmological 

implications are profound as we will briefly discuss below. 

Magnetic monopoles are point-like defects which arise if the vacuum manifold 

contains non-contractible surfaces. The existence of monopole solutions was first 

demonstrated by t ' Hooft (1974) and Polyakov (1974) in a gauge theory possess

ing SO(3) symmetry which is broken by a Higgs triplet. Although their solution 

approaches the ground state a for r —> oo, as r —• 0 the Higgs field vanishes and 

so at that point the potential energy is a maximum. This solution, often referred 

to as the hedgehog solution, is topologically stable because there is no way to 

deform it into a configuration in which the vacuum expectation value is a every

where. By considering the magnetic field associated with this hedgehog solution 

it has been shown that it corresponds to a magnetic monopole. These point-like 

defects are called t'Hooft-Polyakov monopoles and, since it is expected that each 

causally disconnected region will have approximately one such defect associated 

with it, with a mass of order of the energy scale of the symmetry breaking, their 

contribution to the energy density of the Universe is predicted to be far greater 

than is observed. In particular, given the fact that the monopole density is un

likely to have decreased much through annihilation, monopoles produced through 

GUT symmetry breaking would have a total mass density about 109 times the 

critical density (see, for example Collins, Martin and Squires (1989)) so such a 

universe would have collapsed long ago. 

Cosmic strings, on the other hand, are one-dimensional defects which arise 

in models where the vacuum manifold contains non-contractible loops. In the 

simplest case, where (j> is a complex scalar with a 'mexican hat' potential, then 

the values of <j> which minimise the potential energy of the theory can be such 
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that <j) — crexpiO, where 0 is arbitrary. After the phase transition the Universe is 

made up of different regions where the 'direction' of <f> is chosen at random, but 

its value must match smoothly accross boundaries. Because <f> must be single-

valued the total phase change around any closed path must be zero. However, 

it is possible for paths with A9 = 2wn, n = 1,2... to exist as well. In this 

case shrinking the path would eventually lead to a point where the phase of <f> 

is undefined, that is where the vacuum expectation value of <j> must be zero and 

so the potential is at its maximum. The resulting defects resemble thin tubes 

of false vacuum along which <f> vanishes. Since these tubes or strings can have 

no ends they must be either closed loops or of infinite length. They will have a 

huge mass per unit length, \i ~ cr2, where a is the symmetry breaking scale of 

the theory (so for example, for GUTs \i ~ l03OGeV2), and it has been proposed 

that these cosmic strings could be the seeds of galaxies (see section (4.4)). 

Finally, domain walls are two-dimensional structures, generally associated 

with the breaking of a discrete symmetry whereby the field <f> can take one of 

the two ground states of the system. Since the choice of the minimum depends 

on random fluctuations, it can be expected to be different in different regions 

of space, so it is possible that neighbouring regions of space will fall into dif

ferent minima. These regions will be separated by a two-dimensional boundary 

or domain wall, a region of false vacuum where (f> = 0. It has been shown that 

the surface energy density of such structures is of order a ~ \f\ri , where A is 

the coupling constant and r) is the symmetry breaking scale of the theory, and 

thus, unless either A or r) is exceedingly small, the mass per unit area would be 

unacceptably large, destroying the homogeneity of the Universe on large scales. 

The kinematics, evolution and gravitational effects of such defects is beyond 

the scope of this thesis. This brief review has been intended to show that symme-
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t r y breaking in particle physics theories could produce various kinds of topological 

defect whose mass scale is of the order of the energy scale at which symmetry 

breaking occurs. Only cosmic strings would seem to be compatible w i th the ob

served inhomogeneity of the Universe (see section (4.4)). Monopoles or domain 

walls would destroy its large scale homogeneity and isotropy. The mechanism of 

inflat ion was developed as a means of di lut ing the overproduction of such un

wanted cosmological defects. For a detailed account of topological defects and 

their implications for Cosmology see Vilenkin and Shellard (1994), f r o m which 

this review has been drawn. 

The structure formation problem: 

The Universe on small scales is, of course, not homogeneous. I t is thought that 

structure on small scales most likely resulted f r o m the growth of small density 

perturbations but in the context of the standard model of Cosmology their origin, 

spectrum and nature is not explained. 

The idea of inflat ion as a means of solving some of the long-standing problems 

of the Big Bang of Cosmology was first introduced by Guth in 1981 who noticed 

that i f there was a period when the energy density i n the early Universe was 

dominated by the vacuum energy density so that p ~ U ^constant then the 

Universe would expand exponentially since 

3.2 Inflation 

8TTGP R 
H constant 

R 

and hence 

R~e Ht 
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Such an expansion could solve the flatness problem since the curvature te rm 

would be suppressed exponentially. The horizon problem would be solved as well 

since the observable universe could have evolved f rom just one causally connected 

region that was small enough for the observed homogeneity and isotropy to be 

achieved quite easily. Similarly the region that inflated to become our observable 

Universe could contain < 1 monopoles in accordance w i t h observations. Cos

mic strings, domain walls or other topological defects that were produced before 

inflat ion would similarly have been diluted exponentially. 

How could such an exponential expansion have taken place? Guth's answer 

was that i t could have resulted f rom a first order GUT phase transition that did 

not occur instantaneously but was preceeded by a period of supercooling. Before 

going into this, however, we shall briefly review an important result relating to 

symmetry restoration at high temperatures. 

Since <f> is a quantum field interacting w i t h itself and w i t h other fields, the 

classical potential U((f>) must be modified by radiative corrections. The corrected 

potential, called the effective potential, is evaluated by a perturbative expansion 

in powers of coupling constants and can be wr i t ten as 

where Uci(<f>) is the classical potential and Un{4>) accounts for the contribution 

of Feynman diagrams w i t h closed loops. In some models these radiative cor

rections can completely alter the character of symmetry breaking (Vilenkin and 

Shellard (1994)). A t high temperatures the calculation of higher order quan

t u m corrections to the classical potential should take into account the effect of 

all the background particle fields. The vacuum expectation value of <j> is thus 

temperature dependent. 
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For example, at high temperatures the usual Higgs potential 

[/(<!>) ^ - ^ t f + l ^ * (3.5) 

must be replaced by the temperature dependent effective potential given by (see, 

for example, Collins, Mar t in , Squires (1989)) 

U{4>,T) = - ^ 2 ( V + £ ) + + \\<fT> - ^T* (3.6) 

plus higher order terms in A. The minima of the potential are then given by 

=> 4 = 0 o r m = — ^ — • 

There is thus a critical temperature 

above which the Higgs potential is minimised at <f> — 0 and the symmetry is 

maintained. Below Tc the symmetric state becomes unstable and <f> develops a 

non-zero expectation value at 

corresponding to the true min imum of the theory, which reduces to the usual l im i t 

|</>|2 — v2 = *y for T = 0. As described above the evolution of <j> between the 

two phases is 'smooth' since \<j>\ grows continiously f rom zero as the temperature 

decreases below Tc, indicating a second-order phase transition. 

Of more interest to us wi l l be first-order phase transitions in which the evolu

tion of </> is discontinious. A graph showing the temperature-dependent effective 

potential for a first-order phase transition is shown in figure (3.2). For T ^> Tc 
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Figure 3.2: The temperature-dependent effective potential for a first-
order phase transition (Kolb and Turner (1990)). 

the potential is quadratic wi th just one min imum at </> = 0. As the temperature 

lowers a second min imum develops at (f> ^ 0 and at T = Tc there are exactly two 

degenerate minima. For temperatures below Tc the min imum at <f> ^ 0 corre

sponds to the true vacuum state while the (f> = 0 min imum corresponds to a false 

vacuum which is unstable. For T > T2 there is a barrier that separates the two 

ground states and ini t ia l ly the ^-f ield is trapped behind this barrier i n the region 

<f> ~ 0. The phase transition w i l l not occur immediately resulting in an effective 

vacuum energy density 

P v = U{cj> = 0) - U(<j> = 4 > m i n ) « ^ 

(because the rapid expansion causes rapid cooling) which is equivalent to an 

effective cosmological term 

A - 8TTGOV « ———. 
4A 
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During this t ime the potential energy of the so-called inflaton-field can, as we saw 

earlier, cause a period of exponential expansion, at the end of which the inflaton 

field wi l l overcome the barrier as a result of quantum or thermal tunnelling. 

Supposing that the phase change occured at the GUT scale Mx, 

A ~ M e L « l 0 1 8 G ' e V 2 . 

Af te r the phase transition is complete pv —• 0 and hence A —» 0, to agree w i t h 

observation, and the energy released by the decay of the ^-f ield w i l l reheat the 

Universe to T fa T c <7* - 1 / 4 and the subsequent evolution of the Universe w i l l 

resume as in the Big Bang model. 

I t was soon realised, however, that the original model of inflation was not 

completely free of problems either. The main diff icul ty concerned the termination 

of the false vacuum phase, usually referred to as the 'graceful exi t ' problem. I f 

the tunnelling rate is too small the phase transition w i l l never be completed and 

i f eventually bubbles of true vacuum coalesce a very inhomogeneous universe 

w i l l result. If , on the other hand, the tunnelling rate is too large there w i l l not 

be sufficient inflat ion to solve the problems of the Big Bang (Guth, Weinberg 

(1983)). However, even though Guth's original model had its problems the key 

features were too attractive for cosmologists to ignore. I t was realised that the 

difficulties could be solved i f the whole of the observable Universe resulted f r o m 

just one bubble, as required by new inflation (Albrecht and Steinhardt (1982), 

Linde (1982)). 

We should mention here a proposal by Hawking and Moss (1982) who argued 

that homogeneity and isotropy can be achieved through a homogeneous bubble 

solution in which tunnelling occured everywhere at the same time. 

In particular, Hawking and Moss introduced a cosmological 'no hair ' theo-
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rem according to which perturbations of the de Sitter metric are exponentially 

suppressed so that after a t ime t H~l the Universe becomes indistinguishable 

f rom a completely homogeneous and isotropic de Sitter space. Because of the 

existence of event horizons, all processes in a given domain of de Sitter space are 

independent of anything that goes on outside them. W i t h a suitable choice of 

the parameters their potential leads to the nucleation of bubble solutions in flat 

spacetime whose radius is greater than that of the de Sitter space, H - 1 . Their 

solution to the equations of motion, apart f rom the t r iv ia l <j> = 0, is <j> = <f>i, 

where <f>i is the position of the local maximum of the potential. The Universe 

continues in the de Sitter state unt i l the transition to <j> = <j>i occurs everywhere. 

Finally, because the <f> = </>i solution is unstable, the field w i l l evolve according to 

the classical equations of motion to the true min imum f r o m which i t w i l l decay 

through damped harmonic oscillations. The classical evolution of the <f> field in 

de Sitter space is equivalent to that in a closed space w i t h curvature of the order 

of the radius of the de Sitter space. Thus, by taking into account the curvature 

and finite horizon-size of the Universe, Hawking and Moss are able to achieve a 

graceful exit f r o m the exponential expansion of the Universe without introducing 

too much inhomogeneity. 

3.3 New inflation 

The main difference between new inflation and Guth's original model is that infla

t ion occurs not while the <^>-fleld is trapped in the supercooled false vacuum state 

but as i t is slowly ' rol l ing ' towards its equilibrium value so that the whole observ

able Universe results f rom a single bubble. This can be achieved by choosing the 

field that implements inflation to be the Higgs mult iplet that causes the break

down of the 5(7(5) GUT symmetry, corresponding to the Coleman-Weinberg 
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potential which, at zero temperature, is given by (Brandenberger (1985)) 

U(</>) = A<f> i
 1 

log — 
6 < 7 2 2 

+ \ ^ a 4 (3-7) 

where A = ( 5 2 6 5 / 6 4 ) a G U T 2 , OLGUT being the GC/T gauge coupling and a the GUT 

energy scale (we w i l l see, however, that this potential in not flat enough and that 

for any normal values of the coupling A a highly inhomogeneous Universe results 

(c.f. section (3.5))). The phase transition in this case procceeds via the 'slow-

ro l l ' mechanism. In this regime the Higgs fields are excited f r o m their in i t i a l zero 

value through quantum or thermal fluctuations and slowly rol l alongside the flat 

part of the potential before reaching its steep part whereupon they w i l l evolve 

rapidly and subsequently decay through coherent field oscillations. The Universe 

in this model is reheated not because of bubble wall collisions but because of the 

creation of elementary particles due to the decay of the </>-field. 

The crucial difference between the two models is that since the field is already 

emerging f rom its false vacuum state before the inflationary era began, instead of 

having many bubbles making up the observable Universe, we just have one such 

bubble and so the Universe on large scales can be homogeneous and isotropic. 

The potential is arranged so that the t ime taken for the ^-f ie ld to overcome 

any barriers (if they exist) is very much smaller than the t ime i t takes to start 

oscillating and that is the reason why the scalar potential has to be very flat near 

its origin (see figure (3.3)). Provided that the scalar potential is flat enough, the 

t ime taken for the ^-field to reach its true ground state can be long compared 

to the expansion t ime and, once T <C Tc « <r, where a is the energy scale of the 

theory, the potential energy of the </>-field becomes U(0) ~ a4 and w i l l dominate 

the energy density of the Universe since p ~ (kT)4 <C (kTc)4 = 0(a4), and thus 

cause the Universe to expand exponentially. In the next section we w i l l give a 

32 



7 = 0 
B 

v 0 

Figure 3.3: A n example for the zero temperature potential required 
for new inflat ion. 

somewhat more mathematical analysis of the subject. 

3.4 Scalar Field Dynamics 

Consider a classical scalar field <f> that possesses some potential of self-interaction 

U(<f>) w i t h Lagrangian density 

£ = - I ^ ^ - U(cf>) 

and stress-energy tensor 

Asssuming that <j> is spatially homogeneous, TM„ can 

f lu id w i t h energy density and pressure given by 

9 = \P + W ) 

P = \ i 2 - U{<t>). 
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Provided that the potential energy dominates the kinetic i t then follows that 

p + 3P = 2 <f>2 - U(<f>) <o, 

i n which case P ~ —U(<f>) ~ —p and the energy density of the Universe acts as 

an effective cosmological constant w i th A = 8TTGU(4>)- The equation describing 

the motion of 4> in the self-interacting potential is obtained using conservation of 

energy-momentum and is given by 

4> + 3H4> + r<i> + u'(<f>) = o (3.10) 

where the second term accounts for the expansion of the Universe and the T<f) 

t e rm accounts for the particle creation that results f r o m the decay T of </>-field 

to matter. The evolution of the i^-field can be divided into two qualitatively 

different regimes. 

Slow-roll: 

This period refers to the flat part of the potential (A — B in fig.(3.3)) where 

4> rolls at constant velocity and the particle creation term is suppressed. We can 

neglect <f> provided that 

4><iW4> (3.11) 

or, 

\U"{4>)\ < 9H2. (3.12) 

Dur ing this t ime the necessary condition for inflat ion to occur holds as well, 

M4>)\ > (3.13) 

and since the potential energy dominates the dynamics of our system we can 

have H2 = 8wGU((f>)/3 as required and the total number of e-folds of expansion 

in t ime At is given by 

N = e H M . 
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coherent field oscillations: 

During this regime (beyond B in fig.(3.3)) the potential steepens and <f) evolves 

rapidly on the expansion time scale 

\U"((f>)\ > 9H2. (3.14) 

Once (f> reaches the potential well i t w i l l start oscillating w i t h frequency u> = 

(U"(o~)y/2. Using (3.8) we can rewrite the equation of motion for <f> as follows 

p^ + SH^2 +T4>2 = 0. (3.15) 

As (f> is rapidly oscillating around a, <f>2 oscillates sisnusoidally and can be replaced 

by its average over a cycle, 

i<P) cycle = Hi 

and hence 

/V + 3 # ^ + I > * = 0. (3.16) 

This is the equation governing the evolution of the energy density of massive 

particles w i th decay rate T whose solution is given by 

where we have assumed that coherent field oscillations commense at t — ts, when 

(f> = (j>B and R = RB, when the vacuum energy density is a4. From this t ime un t i l 

t « T - 1 the energy density of the Universe is dominated by and since ~ R~3 

we have R ~ t 2 / 3 and so the Universe is matter-dominated. When t fa T~L the <f>-

f ield oscillates around the true min imum of its potential and decays into particles 

and the Universe is reheated un t i l l i t reaches 

1/2 

T T h ^ g ^ l 4 { v M ^ j 
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Provided that T""1 < H~x, so that the Universe reheats in less than one expansion 

t ime, all of the vacuum energy density is converted to radiation and TTh « <7* _ 1 / , V. 

To solve the flatness, horizon and monopole problems we need to ensure that 

the in i t i a l smooth domain contains an entropy at least as great as that of our 

Universe. I f we take the in i t ia l inf lat ing patch to be of size H~x ~ Mp/(cr2), 

during inflation i t w i l l exponentially grow by a factor of e^, followed by a fur ther 

increase during reheating of 

Rrh 
4 N l / 3 

4 RB \Trh 

Hence the total entropy at the end of reheating is 

Srh (3.18) H~1eNl ° 
4 l /3-i 3 

Tp 4 I 
> rh / 

where Srh ~ kTrh3 is the entropy density at the end of reheating. Thus, 

(3.19) 

and to obtain S > 108Sk we need 

w ' - ~ 6 8 4 l n ( l o ^ ) + 5 l n ( i o ^ F ) - ( 3 ' 2 0 ) 

The exponential increase of the scale factor and the huge increase in entropy 

ensures that the curvature decreases exponentially and that the whole observ

able Universe evolves f rom just one causally connected region that contains 

< 1 monopoles in accordance w i t h observations and is highly homogeneous and 

isotropic because of the high degree of uniformity wi th in the in i t i a l patch that 

evolved to become our Universe. In figure (3.4) we show a comparison of standard 

and inflationary cosmologies. 

As we have described i t so far the new inflationary scenario does not explain 

the growth of structure on small scales and of course i t s t i l l gives no explanation 
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Figure 3.4: Variation of the temperature T and the scale factor R w i t h 
t ime t i n inflationary cosmology (Collins, Mar t i n and Squires (1989)). 

for the smallness of the cosmological constant in the present era. In the next sec

t ion we w i l l examine how i t is possible to account for small scale inhomogeneities 

f rom which structure has grown. 

3.5 The Origin of Density Inhomogeneities 

So far we have assumed that <f> is spatially perfectly uniform. However, because 

of quantum fluctuations in de Sitter space such a scalar field has a spectrum of 

quantum fluctuations associated wi th i t given by (Collins, Mar t i n and Squires 

(1989)) 

(A*)2 = ^ . (3.21) 

In standard cosmology perturbations on cosmologically interesting scales would 

have started outside the horizon (Xphys > H~l) and crossed inside when their size 

became comparable to the horizon length. Microphysical processes in the early 

Universe, however, can only operate on scales < H~l and i t is very diff icul t to 
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Figure 3.5: The physical size of a length scale Xphys and the Hubble 
radius H - 1 , as a function of the scale factor R. I n standard cosmology 
all length scales begin super-horizon sized and subsequently cross back 
into the horizon at a later time. In inflationary cosmology, on the 
other hand, all scales begin sub-horizon sized, cross outside the horizon 
during inflation and finally re-enter at a later stage (Kolb and Turner 

imagine how structure could have evolved. In inflationary cosmology, on the other 

hand, a given length scale starts inside the horizon where quantum fluctuations 

in 6 can produce density perturbations (see figure (3.5)). 

As the scale crosses outside the horizon during inflat ion microphysical pro

cesses become impotent and Sp/p 'freezes out ' at a value 

There is a quanti ty ( which in the uniform Hubble constant gauge is gauge-

invariant and which at horizon crossing is given by ( = 6p/(p + P) (Bardeen, 

Steinhardt and Turner (1983)). For superhorizon modes ( remains constant and 

hence at horizon crossing we can write 

(1990)). 

86 
U U 86 

6H 

bp SU 1 dU 

(3.22) 

So 6p 

P + P P + P *2 
(3.23) 
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where t\ and t2 are the times when a given perturbation crosses out and then 

back into the horizon. A t f 2 , P + P = np, (where n = 4/3, 1 for the radiation and 

the matter dominated epochs respectively), and hence, up to a numerical factor, 

( * ) . - ( ? ) . • 
During inflat ion, however, when the perturbation crosses outside the horizon at 

t\, p + P — 4>2 <C p « <JA and so 

and hence 

^ - H 2 (3.26) 

using (3.22). Thus at t2 

(T) =T- ( 3 ' 2 7 ) 

\ p / t 2 <i> 

Since iiiT and <f> are very nearly constant during inflat ion, the amplitude of Sp/p 

is nearly scale invariant (the Harrison-Zel'dovich spectrum). 

To account successfully for galaxy formation an in i t ia l scale invariant spec

t r u m of density perturbations of magnitude 1 0 _ 5 - 1 0 - 4 is needed since perturba

tions of this size that started growing at t e q can now have reached Sp/p ~ 1. The 

prediction of a scale-invariant spectrum is an impressive feature of inflationary 

models. Somewhat less satisfactory is the achievement of the required magnitude 

of perturbations since very flat potentials are required as we w i l l now show. For 

our purposes we w i l l consider the Coleman-Weinberg potential (cf. (3.7)). The 

absence of a m 2 ^ 2 mass term ensures that the potential is very flat near the origin 

and for (f> <C cr i t can be approximated by 

UU) ~ l - A c r 4 - - \ < f > 4 
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U'{<f>) ~ - \ 4 > 

A = AA 

During the slow-roll period 

3 

1 , <t> 
1 1 1 2 

a1 

1 0 _ 1 (3.28) 

6p H3 H3 

7 ~ "was ~ W ( 9 ) 

A t the end of the slow roll period when <f> « <^B, | { /"(<£B) | ~ 9 i / 2 , and so ( f rom 

the second equation in (3.28)) 

J. 2 3 ^ <rV ~ — • 

During this t ime the number of e-folds of expansion f rom </>A_ to 4>B is 

rtB r4>B H t<t>B H 2 

N+= Hdt ~ / -jd<f>~3 ( f m m t k , d 4 > 
K J*A <f> HA {dU/d<p) 

~ H!(_L__L) 
2A \(j>A

2 <f)B

2J 

3H2 

2\<j>2 

and hence 

- - ? = T ^ T S A - T £ ~ A L / 2 J V 3 / 2 ( 3 - 3 ° ) 

/o <j) {dUld<t>) \<f>3 

and, since we need N ~ 68, to obtain Sp/p « 1 0 - 4 we must have A ~ 1 0 - 1 4 , 

which demonstrates just how flat the potential has to be. Unfortunately, is is 

diff icul t to see how such a small coupling could arise naturally f rom a particle 

physics model. 

The reason for this is that the size of the one-loop quantum corrections is 

fixed by the gauge coupling constant and that in order to have A ~ 1 0 - 1 5 (say), 

the gauge coupling would have to be a ~ 3 x 1 0 - 8 , far too small to be compatible 

w i t h any unification scheme. Such a small value of A can be achieved naturally i n 

SUSY theories but, since in this case <f> couples to ordinary matter only through 
40 



interactions of gravitational strength, its decay rate would be too small and con

sequently adequate reheating would be problematic. The other problem lies in 

the fact that i n order to solve the cosmological problems associated w i t h Big 

Bang cosmology we need iV ~ 68, which can be achieved if in i t ia l ly <j>A <C H. We 

have seen, however, that quantum fluctuations in <p are of order H and so i t is 

unlikely that the above condition wi l l be met. Furthemore, i f <j>A <C H in i t ia l ly , 

the semiclassical analysis based on (3.10) would be invalidated as i t only applies 

for 4>A~> H (Collins, Mar t in and Squires (1989)). 

To summarise then, almost all inflationary models that have been proposed 

so far can be classified in two main categories. In slow — roll models, such as new 

inflat ion examined earlier, the scalar field is misplaced f rom the true m i n i m u m of 

its potential and, provided that its kinetic energy in negligible, the evolution of 

the Universe is dominated by the potential energy of this field which is equivalent 

to an effective cosmological constant. There is a wide choice of possible inflaton 

fields that might drive inflation as is evident f rom the large number of slow-roll 

models that have been proposed. The major problem suffered in such models is 

the required fine tuning of the parameters of the potential because i t has to be 

very flat to produce enough inflation. This, in turn , leads to the second problem 

of slow-roll models, namely that flat potentials give rise to anacceptably large 

density perturbations. 

The second major category includes models such as Guth's original scenario 

where inflat ion occurs because of a first order phase transition that proceeds by 

quantum tunnelling of the </>-field to the true min imum of its potential which leads 

to the formation of bubbles of true vacuum. As mentioned before the problem 

here lies in the fact that such a phase transition produces a very inhomogeneous 

Universe which is often refered to as the 'graceful exit ' problem. 
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Recently it has been proposed that the graceful exit problem might be avoided 

by modifying Einstein's theory of gravity so that the gravitational constant G 

varies with time, as in Brans-Dicke (BD) theory of gravity (Brans and Dicke 

(1961)). Extended inflation based on BD theory was first introduced by La and 

Steinhardt in 1989 and it not only avoids the fine tuning required in slow-roll 

models but, more importantly for our own work, allows the phase transition to 

be completed through bubble nucleation proccesses and hence could have resulted 

in large scale structures via bubble wall collisions. In the next section we will 

introduce the main ideas underlying this new model, reserving a discussion of 

its implications to structure formation and to the uniformity of the CMBR to 

chapter 4. 

3.6 Extended Inflation 

In extended inflation the Universe undergoes a first order phase transition and, as 

in Guth's original model, it supercools in a false vacuum state that is separated 

from the true vacuum by an energy barrier. The key difference, however, lies 

in introducing a modified theory of gravity such as BD theory of gravity where 

Newton's gravitational constant is replaced by a time-varying scalar field $(<)• 

The effect of this, as we will see below, is to slow the exponential increase of the 

cosmic scale factor during the inflationary epoch into a power law expansion. 

In the original extended inflation model (La and Steinhardt (1989a)) the BD 

scalar was a free field. It has been argued, however, that extended inflation via 

a pure BD theory is incompatible with astrophysical constrains and furthermore 

theories with completely free scalar fields are not well motivated physically (La, 

Steinhardt and Bertschinger (1989), hereafter as (LSB)). Instead a scalar poten

tial V($) for $ is included in the BD action, chosen to have a minimum such that 
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$ —• Mpi2 where Mpi fa 10 1 9GeV is the value of the Planck mass today. Making 

the substitution $ = ((l/8b)<f>2) where <j> has dimensions of mass and b is the BD 

parameter the action can be written as (LSB) 

1 
(3.31) 

where £ = 1/86 is the non-minimal coupling coefficient and L(a) contains the 

contributions of all matter fields including the scalar a that drives inflation. 

Equations of motion for <fr and R(t) can then be derived whose solution show 

how these parameters vary during inflation and the more conventional radiation 

and matter dominated epochs. In the particular case that the potential V(<f>) is 

chosen to have a minimum at (j) = V8b<t> = \/8&Mp£, the theory is known as 

induced gravity theory. 

During the inflationary epoch the false vacuum energy density dominates the 

energy density of the Universe and pa = —p0 = pp = Mp4 where Mp defines 

the energy scale for the false vacuum energy density and the inflationary phase 

transition. Solutions to the equations of motion in this case yield 

<f>(t) = VMmPL(l + ^ \ (3.32) 

^ • ( - ¥ r - ( « r . 
where HB = \j8ir/3MF

2/mPL is the Hubble parameter at the beginning of in

flation (t = 0), mpL < MPL is the effective Planck mass at the beginning of 

inflation and where a = ^(3 + 26)(5 + 66)/12. 

For short times the BD solution approaches the Einstein-de Sitter solution in 

that <f> is nearly constant and R(t) increases exponentially. However, for times 

such that Hst/a > 1 the scale factor increases as a power-law rather than expo

nentially and this is essentially all that is required to achieve a successful graceful 
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exit (La and Steinhardt (1989a)). After the successful termination of the phase 

transition, extended inflation closely resembles old inflation in the sense that most 

of the false vacuum energy is concentrated on the bubble walls and reheating is 

achieved through bubble wall collisions. 

Just as in the case for slow-roll inflationary models it has been possible to 

derive the conditions required for a successful extended inflation model (LSB, 

Weinberg (1989)) by considering the various stages of the inflationary epoch 

and placing limits on Mp and mp^. The problems of the Big Bang model of 

Cosmology can be solved as in the more conventional models of inflation with the 

exception that, to suppress the overproduction of topological defects, the phase 

change that produces these defects must have occured before the inflationary 

phase transition. 

Contrary to the predictions of most inflationary models the spectrum of adia-

batic density perturbations in extended inflation is not in general scale invariant 

because both H and (j> vary with time 

where t corresponds to the time when a given comoving wavelength crosses out

side the horizon during the inflationary epoch. Constraints on 6p/p on scales 

comparable to the present horizon length can be obtained by considering 

the observed isotropy of the CMBR, that is 

6± 
In particular it can be shown (LSB) that 

< 10 , -4 (3.35) 

bp M M 7T 
8b \M PL l HP 

8p nr( MF\2(Mp\2l(h-ll2) 

< 10 - 4 (3.36) 

where Tp ~ 3Ar is the present temperature of the CMBR. 
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Gravitational wave perturbations, on the other hand, can produce a quadrapole 

anisotropy in the CMBR due to the Sachs-Wolfe effect and it can be shown that 

A™*n{wj [w) <2xl° (3-37) 

Given that Mp > lOOGeV to achieve baryosynthesis after reheating, the last two 

equations can be satisfied provided that b > 1.5 (LSB). 

We next consider the bubble nucleation rate. In chapter 5 we will show 

that for conventional models of inflation the critical quantity to calculate is T, 

the nucleation rate of bubbles of true vacuum per unit volume. In extended 

inflationary models, however, T has to compete with the inflationary expansion 

which is now characterised by a time-varying Hubble parameter H(i). This is 

taken into account by introducing a dimensionless parameter e (La and Steinhardt 

1989b), 

• < " s 4 ( 3 ' 3 8 ) 

During the phase transition H decreases inversely with time and e increases as 

€B[H(0)/H(t)]4, where eB is the value of e at the beginning of inflation. It can 

then be shown that 

e B > — M p 7 " ( 3 - 3 9 ) 

Finally, another constraint on extended inflationary models can be obtained from 

the observation that the overproduction of large bubbles would destroy the ob

served large-scale isotropy. By considering the fractional volume of bubbles with 

radius greater than the horizon size at decoupling, it has been shown (LSB) that 

25 + log M F (3.40) 
W5GeV 

where C ~ 4. Extended inflation based on a pure BD theory requires b > 500 

(Reasenberg et ai, (1979)). However, such a large value of b would produce too 
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many large bubbles which would destroy large scale isotropy and so extended in

flation based on a pure BD theory can be ruled out. In the case where V(<f>) ^ 0 

values f<?r b in the range 1.5 < b < 25 are allowed. Extended inflation can then 

be achieved in many different particle physics theories which makes it an attrac

tive candidate for the 'ultimate' inflationary theory. What is more, because in 

extended inflation the phase transition is completed by bubble nucleation proc-

cesses, it might be possible to account for the bubbly structure suggested in some 

recent astronomical surveys (see the next chapter) as resulting from collisions 

between true vacuum bubbles. 

To conclude, we note that inflation has been studied in many different con

texts such as in supersymmetry, supergravity, Kaluza-Klein theories or super-

strings and indeed can occur in any theory that contains a weakly-coupled scalar 

field displaced from the minimum of its potential. The vast literature on infla

tionary cosmology reflects the continuing uncertainty as to the specific form of 

the potential U(4>) that should, on the one hand, be predicted by a fundamental 

particle theory and, on the other hand, allow for the successful implementation 

of inflation and the solution of the structure formation problem (Barrow (1988)). 
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Chapter 4 

Structure Formation 

Perhaps the most important and as yet unresolved question in Cosmology con

cerns the origin and evolution of the large scale structures, such as galaxies, 

clusters and voids. In this chapter we review the observational evidence con

cerning the structure of the Universe and the dark matter problem. Then, we 

consider a popular class of structure formation models based on the concept of 

gravitational instability and finally briefly mention some alternative ideas such 

as explosive galaxy formation and cosmic strings. We conclude with a discussion 

of the inhomogeneities observed in the CMBR and the possibility that structure 

may have resulted from a phase transition. 

4.1 Observed Large Scale Structure 

On very large scales the Universe is homogeneous and isotropic. This is one of 

the major assumptions on which the Big Bang model of Cosmology is based and 

the best evidence for it comes from the isotropy of the CMBR. Observational 

evidence for the large scale homogeneity and isotropy of the Universe, other than 

that obtained from the CMBR, is quite hard to obtain as it involves analysing 

very large samples of galaxies if the results are to be reliable. However, as figures 

(4.1) and (4.2) show, we can begin to discern its smoothness on very large scales. 

47 



ISA 

0* 

f . 360 

tsos OBJECTS PLOTTED 

Figure 4.1: Distribution of distant IRAS galaxies (Strauss et al (1992)) 

On small scales, however, galaxies, clusters of galaxies and giant voids are 

quite common and one would like to know how they were formed and why they 

are so distributed in space. Recent studies of the redshifts of galaxies such as 

the C f A redshift survey extension (Geller and Huchra (1991)) has led people to 

speculate that galaxies lie predominantly on the surfaces of bubbles rather than 

along one-dimensional filaments. Some of the results of the survey are shown 

in figs.(4.3) and (4.4). Several of the voids are surrounded by thin structures 

in which the intergalaxy separation is small compared with the radius of the 

void. Typical voids have diameters of about 25Mpc, the largest being bOMpc. 

The typical thickness of the sheets of matter that surround these voids is of 

order 5Mpc and they have a typical mass of about 1 O 1 6 M 0 (Geller and Huchra 

(1991). The most pronounced structure we can see in fig.(4.4) that runs across the 

entire right ascension range is the 'Great Wall'. A recent survey (Las Campanas 

Redshift survey, Doroshkevich et al (1995)) which examines the characteristics of 

structure along a straight line gives some support to the idea that on very large 

scales the structure in the Universe is sheet-like. There is also evidence that on 

much smaller scales the structure may be filamentary but, as the authors stress, 
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Figure 4.2: Angular distribution of the ~ 31,000 brightest 6cm radio 
sources (Gregory and Condon (1991)). The hole at the centre is caused 
by the range of the radio telescope, while the ragged edge at the lower 
left-hand side and the small holes just above the central one are caused 
from the interference by the sun and by other bright sources in the 
plane of the Milky Way respectively. 

their results need to be tested with even deeper redshift surveys. 

4.2 Dark Matter 

During the past twenty years it has become increasingly clear that baryonic mat

ter can only account for a fraction of the mass in the Universe. First, the observed 

light-element abundances are close to the theoretically predicted values in the 

context of the Big Bang provided the baryonic contribution to ft is less than one. 

The second observation that led to the realisation that there is a dark matter 

problem came with the study of galaxy rotation curves which showed that most 

galaxies must be surrounded by an invisible halo of unknown composition. And 

finally, after the idea of inflation was introduced, it became clear that, since Q is 

expected to be very close to 1 if the theory is correct, at least 90% of the total 

mass in the Universe has not been detected yet and is unlikely to be baryonic 
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Figure 4.3: Observed velocity versus right ascension for the survey 
strip entered at 6 = 29.5°. The strip is 6° in declination (de Lapparent, 
Geller and Huchra (1986)). 

Figure 4.4: Projection of a three-dimensional display of four completed 
slices of the redshift survey (Geller and Huchra (1991)). 
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in origin. However, we should keep in mind that inflationary models have been 

proposed where < 1. In such models one has a two-field potential, one of which 

drives the slow-roll inflationary epoch while the other performs a phase transi

tion in which the nucleation rate varies in such a way as to give an flo = 0.2 

Universe with maximum probability. In this scenario the Universe appears to 

be composed of infinitely many superhorizon underdense bubbles which resemble 

open universes (Amendola, Baccigalupi and Occhionero (1996)). 

Non-baryonic matter can be divided into two categories, namely hot dark 

matter (HDM) and cold dark matter (CDM). HDM is the term used to describe 

light particles that decoupled from the hot plasma while they were still relativistic. 

Because they are moving very fast prior to the epoch of galaxy formation they can 

only be clustered on large scales. Thus, consider, for example, a light neutrino. 

Since neutrinos drop out of equilibrium while still relativistic, their abundance 

is roughly the same as that of photons. During e+e~ annihilation extra photons 

are produced and from conservation of entropy we obtain 

\ T j gv 11 

and, therefore, ni/_3 _3 / \ 3 _ 3 
— - % 9 i - % 9 » \ T j - 229u-

Here v and 7 refer to neutrinos and photons respectively, n and g are the number 

density and the spin degrees of freedom, and T is the temperature. Thus, 

3 
where the sum is taken over all neutrino species. Since now pc = 2x 10~29h0

2gcm~3, 

the contribution of light neutrinos to the mean density of the Universe is given 
by 
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where gv = 4 (gu = 2) for a Dirac (Majorana) fermion, which implies that closure 

density is obtained provided that 

On the other hand there could be massive CDM particles that did not drop 

out of equilibrium until they were non-relativistic and were therefore moving 

slowly at the epoch of galaxy formation and clustered on very small scales. Ex

amples of CDM candidates include WIMPS that have masses in excess of lGeV. 

For example massive neutrinos, ones for which kT <C mc2 at decoupling, would 

be in equilibrium through the weak interaction while they were non-relativistic 

and since 

their density relative to that of photons falls exponentially with the mass. The 

decoupling temperature of heavy neutrinos is of order kTd ~ m i /c 2/20 and we can 

account for the missing mass provided m„ « 2GeV. 

A similar analysis can be carried out for any other non-baryonic dark matter 

candidate and upper and lower bounds to their mass can be inferred. We will 

not go into any more detail except to note, on the one hand, the large number of 

possible candidates and the fact that most of them are hypothetical in the sense 

that they have not been directly detected and to stress, on the other hand, that 

any candidate chosen to solve the dark matter problem must be able to explain 

the structure formation problem as well. 

lOOeVh < 
50eVh 

9u 

9v 

= 2 
= 4. (4.2) 
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4.3 Models of Structure Formation 

Structure formation and the models that have been suggested to explain it is a 

huge topic that cannot be covered in any detail here. We will , therefore, only 
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briefly mention some of the main theories that have been put forward. 

4.3.1 Gravitational Instability Models 

According to this idea the range of structures we see today has resulted from 

the growth of small density fluctuations in the early Universe. The spectrum of 

primaeval density fluctuations can be described in one of two ways: 

• Gaussian fluctuations in the density where the mass spectrum is taken to 

be a power law 

^ a m~a. (4.3) 
P 

• In Fourier space, where the fluctuations are treated as a sum of plane waves 

characterised by a wavenumber k. The power spectrum of the distribution 

in this case is given by 

Pk = |4|2 oc kn. (4.4) 

The two formalisms can be related by evaluating the mean square fluctuations 

predicted by the Fourier waves, the result being dependent on a window function 

describing the region that contains the fluctuation. In the case of a spherical 

boundary of radius r it can be shown that 

^ j j ^ j « ^ / ° ° P ( k ) 4 i r k 2 d k oc r - < 3 + n ) oc m" 2 ** , 

which, comparing with (4.3), gives a = (3 + n)/6. Restrictions can be placed on 

a and n by noting that the absence of very large structures suggests a > 0. Also 

values of a > 2/3 can be shown to be incompatible with the relatively smooth 

structure of the largest elliptical galaxies, and we therefore have 

2 
0 < a < - , or - 3 < n < l . (4.5) 

o 
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Primaeval fluctuations can be either adiabatic, in which case 

V r _ 4<j>/?m 

or isothermal, which implies fluctuations in the matter density only and 

6pr = 0, 

where pm and pT are the matter and radiation densities respectively. In both 

cases there is a characteristic mass below which irregularities are damped out by 

pressure. For adiabatic perturbations the scale is set by the Silk mass, which 

is the minimum mass scale that can survive right through to decoupling, given 

that as t —• td the photon mean free path becomes larger enabling them to 

move out of overdense regions, dragging matter out as well, so damping out any 

inhomogeneities. It is estimated that, at decoupling, the Silk mass is of order 

Moi^d) ~ 1 O 1 2 M 0 . In the case of isothermal perturbations the damping scale is 

considerably smaller because of the dramatic drop in pressure once the baryons 

decouple from the photons. In this case, ~ 1 0 5 M Q , similar to the size of a 

globular cluster. 

The theory of the evolution of density inhomogeneities in an expanding Uni

verse can be divided into two qualitatively different regimes, depending on whether 

or not a given scale is outside or inside the horizon at the time. For perturbations 

that are outside the horizon microphysical processes cease to have any effect and 

ideally a general relativity approach is required. However, as we saw in chapter 

3, there is a simple gauge invariant quantity that characterises the size of a given 

perturbation once it has re-entered the horizon, ( = $p/(p + P)- The evolution 

of density perturbations is related to that of the curvature k/R2 relative to the 

energy density p0 (Kolb and Turner (1990)). To demonstrate this we start by 
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considering adiabatic perturbations about a flat FRW model, for which 

H = - T ~ -
A similar, though perturbed, region with a slightly higher density p1 will have a 

positive curvature and 

2 8xGpi k 
H = ~ J ~ ~ W 

Thus, 

& = p l ~ p 0 = k / R 2 

p0 Sir G pol 3 
and so 

D-2 
8 oc oc i? 2 - t. (4.6) 

Thus, adiabatic perturbations grow as t while outside the horizon. Isothermal 

fluctuations, however, do not grow while they are ouside the horizon. The details 

of their subsequent evolution depend on whether they cross back into the horizon 

before or after matter-radiation density equality. The end result, however, is 

the same: after horizon crossing the difference between adiabatic and isothermal 

modes becomes irrelevant. 

We now turn our attention to adiabatic perturbations that are inside the 

horizon where causal microphysical processes are important and a Newtonian 

treatment of their evolution will suffice. As we mentioned before, the evolution 

of perturbations once they have crossed back into the horizon depends on whether 

they do so in the radiation or matter dominated epoch. In a radiation dominated 

epoch the growth of perturbations is inhibited. One way of seeing this is to 

interpret the expansion of the Universe as a damping term that slows down the 

growth of perturbations. In particular, since the expansion rate of the Universe 

is faster than it would have been had there been only matter present, the growth 

of perturbations is almost nil. However, during the matter dominated epoch the 
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expansion of the Universe is only able to dampen the exponential collapse of a 

classical Jeans instability into a power law. 

More formally, the first step towards the realisation of a structure formation 

theory based on the concept of gravitational instability involves the derivation of 

equations governing the decay or growth of density perturbations. This is done 

by perturbing the Euler equations of Newtonian motion after introducing a scale 

factor to take into account the expansion of the Universe. Solutions to these 

equations show how 8 = 6p/p varies during the various stages of the evolution of 

the Universe (see, for example, Weinberg (1972), Kolb and Turner (1990), Peebles 

(1993)). The second step is to estimate the Jeans mass, that is the smallest mass 

that will collapse gravitationally. This depends on the nature of dark matter and 

on whether the Universe is matter or radiation dominated. The final step requires 

numerical simulation and it is here that model predictions are adjusted to match 

the observed distribution of matter (see, for example, Davis et al (1985), (1988), 

White et al (1983)). 

There are two basic models of structure formation depending on the shape of 

the power spectrum and on the nature of dark matter. 

• (a) Pancake models. These are based on adiabatic baryon or HDM 

models in which low-mass fluctuations are destroyed. The first structures 

to form are comparable to the size of clusters of galaxies. Smaller structures 

only emerge later as the bigger structures fragment into galaxies. However, 

numerical simulations of HDM models show that such structures take too 

long to form and that they would only acquire a small fraction of the bary-

onic matter. 
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• (b) Hierarchical clustering. This occurs in isothermal baryon or CDM 

models and the structure builds 'from the bottom up', initially on globular 

cluster scales. The problem here lies in the fact that CDM models fail 

to produce enough structure on very large scales and so are inconsistent 

with the observations which suggests that clusters of galaxies are strongly 

correlated. It seems that a biasing mechanism is needed to suppress the 

formation of galaxies in regions of lower than average density. 

The second 'problem' of CDM models, their preference for an f ) 0 = 0.2 

Universe, may perhaps be reconciled with inflation (Amendola, Baccigalupi 

and Occhionero (1996)), or there may be a residual positive cosmological 

constant which accounts for as much as 80% of the critical energy density 

of the Universe (Efstathiou, Sutherland and Madox (1990)). 

4.4 Other Models 

Though both types of model have some attractive features neither is entirely 

satisfactory, the main reason being the uncertainties in the nature of the dark 

matter. If the evidence presented earlier, that the structure in the Universe lies on 

the surfaces of bubbles, is correct it may be that other mechanisms of structure 

formation are needed, not based just on gravitational instabilities. One such 

mechanism is provided by the theory of explosive galaxy formation (Ostricker 

and Cowie (1981)). The key idea here is that at redshifts z ~ 100 massive stars 

in bound stellar systems have lifetimes which are short compared to the Hubble 

time and they will explode, releasing energy that will propagate as an adiabatic 

blast wave. The total mass swept up by the shock wave is estimated to be of 

order Ms ~ 1 0 - 2 — 10~ 3 M where M is the mass of the bound stellar system. The 

details of the structures resulting from this scenario depend on the era in which 
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i t takes place, but in general i t is predicted that unvirialised groups of galaxies 

should lie on two-dimensional surfaces and that large cavities w i l l be produced. 

However, to account for voids larger than about 2 0 / i - 1 Mpc, a large amount of 

energy input is required which would cause unacceptably large fluctuations in the 

CMBR (Peebles (1983)). 

Another model of galaxy formation is based on the idea of cosmic strings 

(cf. section (3.1)). Strings produced in an early phase transition would fo rm 

a tangled network spreading throughout the Universe. The evolution of such 

strings i n an expanding Universe would depend on their density and the length 

distr ibution of the loops, a fair ly involved topic that wi l l not be reviewed here (for 

a detailed account on cosmic strings and their impact on Cosmology see Vi lenkin 

and Shellard (1994)). I t should be noted, however, that because of the large 

mass scales associated w i t h such defects their cosmological implications would 

be significant. I t has been argued, for example, (Ostriker et al (1986)) that each 

oscillating loop of string would grow a bubble of galaxies around i t and that these 

bubbles might be comparable to the size of the voids which have been observed. 

Severe tests of such models result f r o m the anisotropics that cosmic strings 

would induce in the temperature of the C M B R and f r o m examining the observa

tional evidence for such defects due to gravitational lensing. I f inf lat ion occured 

in the early Universe, any cosmic strings which formed before inflat ion would be 

diluted away by the accelerated expansion. Thus, i t is only possible to account 

for structure formation via cosmic strings which formed after, or near the end of, 

the inflationary epoch. I t remains to be seen whether such models can be made 

realistic and whether they wi l l be able to satisfy the constraints imposed by the 

C M B R when improved measurements f rom COBE become available (Vi lenkin 

and Shellard (1994)). 
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As yet there is no 'standard model' of structure formation. The problem lies 

in developing a theory that, on the one hand, is compatible wi th the standard 

model of cosmology and inflation and, on the other hand, is able to reconcile the 

structures observed on small and medium scales wi th the large scale uni formi ty 

seen in figs. (4.1) and (4.2) and the high degree of isotropy of the CMBR. 

4.5 Inhomogeneities in the Cosmic Microwave 
Background Radiation 

Severe tests of the in i t i a l f luctuation spectrum and indeed of all structure for

mation models can be obtained f rom observations of the CMBR, since large 

scale density perturbations w i l l lead to temperature fluctuations in the CMBR 

of roughly the same magnitude (Sachs and Wolfe (1967)). Apart f rom a small 

dipole anisotropy which is attr ibuted to our motion relative to the cosmic rest 

frame, temperature fluctuations in the CMBR on large scales arise mainly f r o m 

the Sachs-Wolfe effect. They result f r o m the fact that fluctuations in the gravi

tational potential w i l l induce redshifts in the CMBR photon distr ibution which 

w i l l appear as temperature fluctuations. Observations of large scale fluctuations 

by the COBE satellite indicate that the temperature differences observed by two 

microwave antennae separated by almost any angle between 10 arcsec and 180° 

is 
A T 
— = 1.1 ± 0 . 1 x H T 5 , (4.7) 

just w i th in the range consistent wi th inflation (see, for example, Steinhardt 

(1995)). While the Sachs-Wolfe effect probes the fluctuation spectrum on large 

scales, comparable to Ho'1, we should also note that there are other effects that 

w i l l give rise to temperature fluctuations in the CMBR on small scales. Unfor

tunately they are harder to compute as these smaller angular scales correspond 
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Milestone Range of I What it testa 

1. Large scale fluctuations 2 < < < 3 0 Spectral amplitude 
2. Plateau at intermediate scales 10 < * < 100 Spectral shape/slope 
3. First Dopplcr peak 100 < ( < 300 

a. Value of I at the maximum Flatness 
1). Height Constraints on h, fie. ft A 

and reionization? 
4. Second h higher Doppler peaks 300 < t < 800 Constraints on f l f l / i 2 , 

C D M vs. MDM 
5. Damping t > 1000 Silk effect, cosmo. parameters? 

Table 4.1: Tests for inflation and dark matter models of large scale structure 
( Steinhardt (1995)), where the temperarure fluctuations have been expanded 
in spherical harmonics, — = Ylem <*&n̂ m(0» <A)5 where 0 and <f> are spherical 
angles in the sky and where a(m are the scalar and tensor mult iple components 
respectively. 

to comoving length scales that were sub-horizon sized at decoupling and so mi-

crophysical processes were important. Furthermore, re-ionisation effects reduce 

the small scale anisotropics, making them harder to study (for more details see 

Kolb and Turner (1990)). I t is hoped that a series of experiments and obser

vations during the next decade wi l l allow us to test the inflationary hypothesis 

and place new constraints on most of the cosmological parameters (Steinhardt 

(1995)). A summary of the tests proposed is shown in table (4.1). I f successful 

this programme should give overwhelming support to inflationary cosmology in 

general and severely constrain models of structure formation. 

4.6 First-Order Phase Transitions and C M B R 
Constraints 

As we have noted, recent large scale surveys (eg. de Laparent, Geller and Huchra 

(1988), Vogeley, Geller and Huchra (1991)) suggest that the large scale structure 

in the Universe may be bubble-like, concentrated around giant voids. The re

newed interest in first-order inflation models such as in extended inflat ion (see 

last chapter) has led scientists to speculate that such large scale structures might 

be the direct result of the first order phase transition in the inflationary epoch 
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causing the nucleation of bubbles of true vacuum (La (1991)). 

Even though i t is s t i l l early days as far as the detailed observation of voids is 

concerned (in most surveys the void size is comparable w i t h that of the sample 

as a whole) such a scheme for generating structure is an attractive alternative to 

C D M models which fa i l to produce enough structure on large scales. 

Extended inflat ion (hereafter EI) models succeed in achieving a graceful exit 

f r o m the false vacuum phase, allowing percolation of the bubbles of true vac

uum and their subsequent thermalisation through bubble wall collisions, without 

requiring fine tuning of the parameters involved (La and Steinhardt (1989b)). 

However, severe constraints on all such models are imposed by the distortions 

that the bubble spectrum would produce in the C M B R (Weinberg (1989), Liddle 

and Wands (1991), Turner, Weinberg and Widrow (1992)). In particular i t has 

been shown that the original E I model based on a pure B D theory w i t h no poten

t ial for $ is incompatible wi th these constraints (La, Steinhardt and Bertchinger 

(1989)). This, however, should not worry us too much because a non-zero $ 

potential is better motivated physicaly and appears naturally in many particle 

physics models. Nevertheless, since too many large bubbles could st i l l destroy 

the large-scale isotropy of the C M B R , the number of bubbles that are larger than 

the horizon size at decoupling must be constrained. 

Before we examine how first-order inflation models may be able to account 

for the bubbly structure observed on large scales, we review why Guth's original 

model failed. We have mentioned before that this is due to the fact that bubbles 

of true vacuum do not percolate, the basic reason being that the expansion of the 

background space, R ~ e H \ overwhelms the bubble growth. To quantify this, 

consider a bubble nucleated at t ime t0 w i t h zero in i t ia l radius. From the moment 

of its nucleation i t w i l l expand wi th a speed approaching the speed of light and 
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at some later t ime t > to its comoving radius wi l l be given by 

:(Mo) = f dt'R-l{t') 
J in 

-Ht0 

(4.8) 
>t0 H RQ H RQ 

where RQ is the scale factor at the beginning of the vacuum-dominated era at 

t — 0 and where the l imi t applies for t —> oo. Equation (4.8) indicates that 

bubbles nucleated earlier than t0 w i l l reach larger comoving sizes than bubbles 

nucleated later. The physical size of a bubble at t ime t is r(t,t0) = R(t)x(t,t0) 

and the physical volume occupied by i t wi l l be 

47T 
V(t,t0) = —r3(t,t0) 

47r e

3 7 ? ( < _ < o ) 

(4.9) 
3 H3 

where again the l imi t represents t —> oo. The probability that any given point re

mains in the false vacuum phase during the bubble nucleation process (beginning 

at t = 0) is given by (Guth and Weinberg (1983)) 

p( i ) = exp - J* dt0TV(t,t0) exp (4.10) 

where T is the bubble nucleation rate per unit volume per unit t ime. 

A measure of whether or not percolation w i l l occur is the fraction of physical 

space that is s t i l l in the false vacuum, given by 

f ( t ) = p ( t ) R 3 ( t ) ^ e x p 
4TT r \ T T (4.11) 

Whether f ( t ) increases or decreases w i t h t ime depends on the competition be

tween the decreasing probability of a point being in the false vacuum and the 

increasing volume of space occupied by the false vacuum (Kolb (1991)), which 

clearly depends on e = T/H4. I f e <C 1 the transition w i l l never be completed 

whereas i f e >> 1 the period of inflation w i l l be too short. Since in old inflat ion 

e is constant there is no way these two conditions can be met. The obvious way 

to solve this graceful exit problem is to make e a funct ion of t ime by making 
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either T or H, or both, time dependent. In the last chapter we saw that in the 

original E I model H is a decreasing function of t ime and so percolation is even

tual ly achieved. But unfortunately bubbles nucleated early in the inflationary 

epoch w i l l grow to unacceptably large scales and hence would distort the C M B R 

(Weinberg (1989), La, Steinhardt and Bertschinger (1989), Liddle and Wands 

(1991)). In particular we see f rom (4.11) that e must exceed 9 / 4 T T to ensure that 

the volume of physical space that s t i l l resides in the false vacuum decreases wi th 

t ime, but to prevent the overproduction of big bubbles, which would lead to large 

anisotropics i n the CMBR, e needs to be less than about 1 0 - 4 or so at the t ime 

when the bubbles were formed. 

The solution, therefore, is to construct a model that satisfies both these con

ditions. In principle this can be achieved by modifying either the particle physics 

or the gravity sector., However, i t s t i l l remains to be seen whether these require

ments can emerge naturally f rom a fundamental theory of physics (for a review 

of some of these models see Kolb (1991) and refferences therein). 

Amendola and Occhionero (1993) have run simulations to determine whether 

there is a preferred range of astrophysically interesting primordial bubbles that 

can explain the large scale structure in the Universe and concluded that the 

simplest E I models can be ruled out. In their simulations (following La (1991)) 

they approximate the number of bubbles that have radii larger than R in the 

present observable Universe, NB(R), by a power law 

\-ttJU / z 

where RM is the power law normalisation, 6 is the dimentionless coupling constant 

of the B D theory, and where 

p 

( 
R 1 

p = 3 + 4 ( 6 - - , R M < R < R M NB(R) 
R 

(4.12) 

RM = 23(f2 0 
~^2h-2MPc 
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is an expression for the physical separation between bubbles at the present t ime 

(La (1991)). The l imi t ing case ( —• 0 denotes collisionless C D M , while £ —> 1 

denotes a photon-baryon plasma. They have found that for the primordial bubble 

model to fit the observed galaxy corelation function successfully the normalisation 

of the primordial bubble spectrum has to be such that 

RM/2Sh~1Mpc = (p /10 ) - 1 - 3 , (4.13) 

and concluded that, since we know the original E I model is ruled out, i n order 

to retain a first-order phase transition that can result in a bubble-like structure, 

either the E I models have to be modified, or some mechanism to suppress very 

large bubbles has to be introduced. 

As we mentioned before the original E I model achieved percolation by chang

ing f rom Einstein gravity to BD gravity, thus making H a decreasing funct ion 

of time. I t has been noted, however, that percolation can also be achieved by 

making the tunnelling rate F increase wi th time, as i n the case w i t h two-field 

inflat ion (Adams and Freeze (1991)) in which one field tunnels f rom the false to 

the true ground state while the other slow-rolls along a suitable potential. 

Recently (Occhionero and Amendola (1994)) such a mechanism for overcom

ing the graceful exit problem while not interfering wi th the C M B R constraints has 

been proposed in which the two-field inflation is implemented through "quadratic 

gravity" i.e. a theory in which the underlying gravity is not Einsteinian but 

also carries the quadratic corrections to the Ricci curvature in the Langrangian. 

Whereas in conventional E I models the size of bubbles is far below astrophysical 

interest, provided that the phase transition is completed before the end of infla

t ion, as i t does in this model, then the bubbly structure of the Universe can be 

reproduced for reasonable values of the spectral index p without interfering w i t h 
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the C M B R constraints. 

The C M B R constraints arise mainly f rom the Sachs-Wolfe effect because an 

empty bubble of radius L at decoupling distorts the microwave temperature by 

approximately AT/T ~ L2/Ld2 where Ld is the horizon scale at decoupling. 

However this result must be corrected by a further factor of L2/Lp

2, where Lp > L 

is the scale corresponding to the size of a COBE pixel at decoupling, and by an 

extra factor 
Zdec ^ 

4 to take into account the fact that as soon as the bubbles re

enter the horizon (assuming that they do so in the matter-dominated era) their 

radius w i l l begin to grow faster than the universal expansion (Occhionero and 

Amendola (1994)). Through the Sachs-Wolfe effect the C M B R places constraints 

on both large and small bubbles. They thus determine a region of the parameters 

p and RM which not only satisfies the C M B R constraints but also (4.13) which 

fits the galaxy corelation function. The results have been further improved in 

later work (Baccigalupi, Amendola and Occhionero (1996)) and i t is found that, 

in order to achieve compatibil i ty w i th the measured galaxy spectrum and w i t h 

the C M B R constraints, the relevant parameter ranges for p and RM are roughly 
6 < p < 13, 30 /T 1 Mpc < R M < 130A - 1 Afpc . 

These results have been further explored (Amendola et al (1996)) w i t h a 

detailed evaluation of the nucleation rate T of bubbles of true vacuum (following 

the method of Coleman (1977) and Callan and Coleman (1977) which we w i l l 

discuss in the next chapter). Amendola and his coworkers have taken into account 

deviations f r o m the th in wall l imi t and calculated explicitly the prefactor of the 

exponential (see (5.46) below), and have also taken into account gravitational 

effects (G / 0) which increase the nucleation rate I \ The crucial quantity they 

evaluate is e in (4.11). They conclude that, while passing the C M B R constraints, 
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their model can st i l l give rise to sufficiently strong large scale structure. They 

are, thus, able to reconcile the inflationary two-field potential w i th observations. 

This brief review of the latest advances in first order inflat ion models which 

can explain the formation of structure through bubble collisions shows that a 

variety of hypotheses can account for the large scale structure and yet satisfy the 

constrains imposed by the C M B R . 

In our work we examine a different possibility, namely that the first order 

phase transition that leads to the formation of bubbles occurs after the phase 

transition responsible for inflation; possibly even associated wi th the phase tran

sition responsible for electroweak symmetry breaking. To this end, following the 

work of Coleman, we shall derive, in the next chapter, the nucleation rate of 

bubbles of true vacuum and attempt to obtain the parameters of the Higgs field 

potential by demanding that the size, thickness and mass of the shells of matter 

produced by bubble wall collisions should match those that are observed. (Our 

derivation would have been more accurate had we used the improved nucleation 

rate as derived in Amendola et al. (1996), but almost all of our numerical calcula

tions had been completed before we became aware of this paper. The implications 

of this new result for our work w i l l be discussed briefly in the last chapter of this 

thesis.) 

Finally, i t should be noted that constraints f rom the C M B R apply to any 

theory that produces a bubble spectrum, irrespective of whether or not they 

result f rom the primordial phase transition, and consequently we shall need to 

consider whether our model can produce sufficient large scale structure through 

bubble wall collisions without overly distorting the C M B R . 
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Chapter 5 

The Decay of the False Vacuum 

In most inflationary models the early Universe starts in a false vacuum state-

a state i n which some scalar field is displaced f rom the true m i n i m u m of its 

potential. Then the decay of the false vacuum proceeds, perhaps via quantum 

tunnelling, and bubbles of the true vacuum are formed which expand into the 

surrounding regions of false vacuum. Though homogeneity would seem to require 

that the whole of the observable Universe is in just one such bubble, i t is possible 

that subsequent phase changes at lower energy scales may have produced bubbles 

wi th in the observable Universe which can account for the observed large-scale 

structure. In order to explore this possibility, in this chapter we shall calculate 

the rate of nucleation of such bubbles for various kinds of scalar potential and 

the shape of the wavefront corresponding to the bubble surface. Following the 

work of Coleman (1977, 1985) and Branderberger (1985), we shall first examine 

tunnelling effects in quantum mechanics and then convert our results into those 

of quantum field theory. 

5.1 Tunnelling in Quantum Mechanics 

The path integral formulation in Quantum Mechanics is based on the notion of 

a propagator or transition matrix element M{xjtj\ a;,-^). The development of an 
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expression for M requires 'a summation over histories' corresponding to all the 

different ways of reaching ( x f , t j ) f r o m (x,-,i;) (see for example Ryder, 1985). I f 

ij>(xi,ti) is the wavefunction describing the state of a particle at t ime then the 

corresponding wavefunction at a later t ime can be obtained f r o m M by 

i f > ( x f , t f ) = J M ( x s t } \ x i t l ) i > { x i , t l ) d x l . (5.1) 

A critical property that w i l l prove useful i n our calculations is that i f we divide 

the t ime interval ( t i , t j ) into two, w i th an intermediate time t, the propagator M 

must satisfy 

M ( x f t f , X i t i ) = J J M { x f t f , x t ) . M ( x t ; x i t i ) d x i d x (5.2) 

In general the propagator M is given by 

M ( x f t f - X i t i ) = < X f \ T ( t f , t i ) \ x i > (5.3) 

where T ( t f , ti) is the translation operator l inking the states of a system at different 

times, 

m / ) > = T ( t f , u ) m i ) > - M ) 

Consider, for example, the theory of a particle moving in a one-dimensional 

potential U(x) characterised by a local min imum at x = 0 (see f ig . (5.1) and 

described by a Hamiltonian H given by 

H(p,x) = ^ + U(x). (5.5) 

The translation operator in this case is given by 

T ( t f , t t ) = e - i H ^ t - t i ) f h 

so that the propagator can be expressed as 

M ( x f t f ; xA) < X f l e ' ^ - ^ l x i > . (5.6) 
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tU(x) 

Figure 5.1: A typical one-dimensional potential showing the false 
ground state at x = 0 and the escape point x*. 

We are interested in the decay rate per unit t ime of the false vacuum, which 

is an unstable state. Since unstable states have complex energy, the probabil i ty 

that the system has remained in that state decreases exponentially w i t h t ime and 

the decay rate is proportional to the imaginary part of the energy of the state. 

Thus, i f a wave funct ion vp(f) has energy E0 = ReE0 - f HmE0 then its decay rate 

per unit t ime T is given by 

r = - | / m £ 0 . (5.7) 

The imaginary part of the energy of the state, is determined by the transition 

matr ix element as we w i l l now show. 

In Euclidean space ( in which we treat i6t = T as real) we expand the mat r ix 

element (5.6) i n terms of a set of energy eigenstates states \n > 

< x j \ e ~ H T / n \ x i > = J 2 e ~ E n T / % < xf\n >< n\xt > 
n 

where \xi > and \xf > are position eigenstates and the states \n > are a complete 
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set of energy eigenvalues of H w i t h energies En, given by 

H\n >= En\n > . 

I f | f t > is the lowest energy state not orthogonal to \x{ > or \xj > and has energy 

#0) then 

< x f \ e - H T ' h \ x i >T-^? e~E°T?h < xf\n X Sl\Xi > . (5.8) 

Choosing the local min imum to be at x = 0 and setting \x{ >= \xj > = 0 the 

energy of the false vacuum is then given by 

E0 = -h l i m ^ I n < 0\e~HT/n\0 > . (5.9) 
T—•oo J 

Note that (5.8) is different f rom (5.6) in the sense that the former is evaluated in 

Euclidean space whereas the latter is the corresponding expression in Minkowski 

space. To obtain results in Minkowski space we w i l l analytically continue those 

in Euclidean space by treating iT as real. 

We want to express the matrix element in (5.6) as a path integral. To proceed 

we generalise the argument given in (5.2) and divide the t ime interval {U,tj) into 

n segments (ti,t1),(t1,t2), ....{tn-i,tj) each of length St = (tj — t^/n. We can 

then write 

M = J [dx] < X f l e - ^ - t - 1 ^ \xn-i > < X n ^ l e - ' W - ^ - ^ l x n ^ > X . . . 

x ^ i l e - ' ^ - ' ^ l x , - > (5.10) 

where we have used the closure relations 

J \dxj > < d x j \ d x j = 1 

and where 
n 

[dx] = JJ dxi 

1=1 
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. For sufficiently small St, 

i H 
< x j + 1 \ e - l H ^ h \ x } > = < xj+1\l - -jj-St + 0(8t2)\Xi > 

i 
~ S(xJ+1 — Xj) — -St < Xj+i\H\xj > . (5.11) 

Using the Hamiltonian (5.5) in the second term on the RHS of (5.11) we have 

P2 

< xj+1\H\xj > = < + U{x)\xj > 

P2 

- <Xj+l\ — \Xj> + < Xj+i\U{x)\Xj> . 

Using the standard results 

< x j + 1 \ X j >= S(xJ+1 -Xi) = j ^ t p i X 3 + 1 ~ X 3 ) / h 

< r .\n > =

 1 Jpxj/n 

and the notation 
Xj+i + Xj 

Xj --

we get: 

< * » . i * i * i > = / ^ « « ' ' * - ' w ' { £ + " < * ; ) } • 

Thus (5.11) becomes: 

< x J + 1 \ e - t H ^ h \ X j > « / A e « ^ + i - ^ ) / J i _ ! ^ 

y 27rn. ft 

w / ^ ^ " ^ ^ { - T ^ * ^ } - ( 5 J 2 ) 

Expression (5.12) gives the matr ix element for a segment of one possible path. 

To account for the f u l l propagator between i , and tf we substitute (5.12) into 

(5.10) and obtain 

{ & ) h 
X e x P j ^ X j b j ( X J - X j - i ) -6tH(p,Xj)] | 
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which in the St —> 0 l im i t becomes 

M = l i m (A)...A.) [ d x ^ ' - d x ^ dpn 

x e x p { - J > V , ( X ' ^ - H(p,x,) 

s / [SMU''*^-^ 1 }' ( 5 1 3 ) 

When the Hamiltonian is of the form (5.5) the momentum space integral can 

be evaluated explicitly. Thus, for small St we have 

,2 \ i / 2 

/ dpi 
2TT% 

exp 
—i 

2mh 
Stpj + ipj(xj — £j_i) 

/ m' 
\2rihSt) e x p 

im 
2hSt 

( x j - x j ^ y 

where we have used the Gaussian integral 

y+oo r+oo 
/ d p e - a p + b p = / dp 

J—oo •/ —oo 

, - a ( p + t / 2 a ) 2 + t 2 / 4 a 

Thus, (5.13) becomes 

M = l i m f - ^ T -
n—oo \2-Klhbt 

= Nj[dx]exp^Jt'dt[jX2-U(x) 

where the normalisation constant N is given by 

) ^ / n ^ e x p ^ g ^ [ | ( [ / (* ) 

(5.14) 

N = l i m f - m x n/2 / 
- ] = l i m n m 

n/2 

n-^oo \2TrihStJ n - * 0 0 \27n7i(£/ — i , - ) / 

I f we now take = — T/2 and = +T/2 and continue into Euclidean space 

by treating iSt as real, we obtain 

< X j \ e - H T l h \ X i >= N j [ d x ] e - s ^ ' n (5.15) 
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w i t h boundary conditions 

x(-T/2) = Xi (5.16) 

x(+T/2) = x f . 

Here SE(X) is the Euclidean action along the path x(t) given by 

W = /;T'>{i™(|)2 + U « t ) ) } . (5.17) 

In the path integral approximation to quantum mechanics, in order to evaluate 

M we have to take into account an inf ini ty of possible paths that the particle can 

take, a fact best shown in the first line of equation (5.14). However, according to 

the principle of least action the path that the particle actually takes is determined 

by the extrema of SE which are given by the solutions to the Euler-Lagrange 

equations of motion. I f we choose to simplify to a particle of unit mass this 

translates into solving 

x-=U'{x) (5.18) 

subject to the boundary conditions 

x{-T/2) = xt (5.19) 

x(+T/2) = x f . 

Consider a potential like that shown in fig. (5.1) and choose X{ = Xf — 0. 

The equation of motion (5.18) is equivalent to that for a particle moving in 

an inverted potential — U(x) (see fig.(5.2)). The t r iv ia l solution in this case is 

clearly x(t) = 0 for all t. However, for theories characterised by a potential w i t h 

an unstable ground state there are non- t r iv ia l solutions of (5.18) corresponding 

to a particle which starts to roll down the slope of the potential at t ime t = — oo 

wi th zero in i t i a l kinetic energy, turning around at some time tc at x = x* and 
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t -U(x) 

Figure 5.2: The inverted potential —U(x). 

returning to rest again at x = 0 at t = +00. The t ime t c is called the center of the 

instanton. Coleman has termed this non- t r iv ia l solution 'the bounce solution'. 

We shall first calculate the functional integral (5.15) in the case of a single 

instanton and later develop our result for an n-instanton configuration. The 

standard procedure is to perform a Gaussian approximation by expanding SE 

about x and keeping only terms quadratic in the f luctuation z = x — x, 

SE(x) = J^dti^ ( ^^ ) 2 + U(x) + U'(x)z + l-U"(xy + 0 ( z 3 ) } 

w i t h boundary conditions z(±T/2) = 0. Dropping terms of 0(z3) and integrating 

by parts the action becomes 

Se{x) = CIdt {¥2+u'{"])+/-T/2
 D T Z ( - 1 + U ' { I ) ) 
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1 t T l 2 I d 2 \ 

= S e & + 2 L T / 2 d t Z [-W + U"{~X)) Z- ( 5 - 2 0 ) 

W i t h the approximation (5.20), (5.15) becomes a Gaussian integral and can be 

evaluated explicitly. We get 

N J [dx]e-s*W% = N e ' S E ^ h J[dx]ex?S^ - - L J' dtz ( - d t

2 + U"{x)) * J . 

(5.21) 

To proceed we introduce a diagonal matr ix A such that 

A = d i a g ( a i • • • a n ) 

and a vector x defined by 

x = ( x i • • • x n ) 

w i th inner product 

( x , A x ) = £ a n x n

2 . (5.22) 

Now since 

i t follows that 

j d X l . . . d x n e W ^ ± a ^ = ^ ^ (5.23) 

and (5.22) can be wri t ten as 

J dnxexp ^ - j L ( x , A x ) ) = (2Trh)n/2 (detA)-1/2 

or 

f [dx] exp ( ~ ^ ( x , A x ) ) = (detA)-l/2 (5.24) 

where we have chosen the measure to be 

[dx] = d n x ( 2 n h ) - n / 2 . 
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The above argument can be extended to the case of a single real variable z(t) for 

which 

(*,*) = Jdt[z(t)]2. 

In this case, w i th the aid of (5.24), the path integral (5.21) can be wr i t ten as 

N j[dx\e-SE(x)ln ~ Ne-SE^'n\det{-dt

2 + * / " ( * ) ) } • (5.25) 

Thus the functional integral (5.15) can be fu l l y determined provided that we 

can calculate the Euclidean action along x(t). This can be done easily by using 

conservation of energy and the expression for S given in (5.17). Along the path 

of the particle of unit mass we have 

Thus, 

dx 1 1/2 U(x) = 0 =» Mix)) E X dt 

T/2 
SE(x) l i m dtx 

T—TOO T/2 

rx* dt fdx\ 
Jo dx - \ d t ) 

= 2 I* (2U{x))1/2dx = B. (5.26) 
Jo 

Obviously the solution x is not unique since, by t ime-translation invariance, 

the center tc of the instanton can be anywhere on the t ime axis. Furthermore 

combinations of instantons wi th widely separated centers provide equally good 

solutions and should be included as well. The functional integral (5.15) should 

thus be determined by taking into account all these contributions as well. I n 

the dilute gas approximation we consider an approximate solution consisting of n 

instantons wi th widely separated centers ti > t? • • • > t n . Assuming that al l the 

instantons are independent, we calculate the contribution of this configuration to 
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R, 
R*-

- T / 2 T / 2 

R * = [ - T / 2 , T / 2 ] \ U R.-
i=l 

Figure 5.3: Division of the t ime interval for an n-instanton configuration. 

(5.15) by summing over all possible instanton centers as well as over n. We denote 

our n-instanton configuration by x, and the fluctuation about i t by z = x — x. We 

then divide the interval ( — T / 2 , T/2) as in fig.(5.3) into non-overlapping regions 

Ri on which the single instantons are concentrated. The remaining part of the 

interval corresponding to the regions where x ~ 0 is denoted by R* (see fig.5.3). 

We also denote the fluctuation field on Rt by Zi and that on R* by z*. W i t h this 

notation (5.15) becomes 

N j [dx]t -SE{x)/K j [ d z ] e - S B ^ ' h 

>N 
Ri-

-SE(s+zm)/h (5.27) 
R-

We w i l l evaluate the two terms on the RHS of (5.27) in turn . Since in the regions 

R* we are considering fluctuations about x = 0 we can approximate the integral 

by (5.25): 

N -SE(x+z')/h N^det{-dt

2 + u2) 
-1/2 

(5.28) 

where we have denoted U"(0) by a;2, UJ being the angular frequency of vibrat ion 

of the particle at the bot tom of the potential well at x = 0. The next step in 

the evaluation of the R* contribution to the path integral is the evaluation of 

the determinant in (5.28). Since our final result wi l l depend only on the ratio of 

determinants we write 

Nderl'2{D + u , 2 / ) = N'derl'2{I + c^zr 1), 
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where D = —dt

2 acts on the space of functions wi th period T. Hence its eigen

values are 

= \~T ) ' " G 

Using the standard representation of s'mirx as an infini te product, 

sin TTX 
n=l 

and setting x = ILOT/IT we can express the determinant as 

'sin iuT\ _ 1 / / 2 1 /•>, -r o „ / s in zu;i \ 

~ (2u>T)l<2e-"T'2, 

for large T . Returning to (5.28), by adjusting the normalisation factor N we have 

N 

Also, i f we define 

-SE(x+z*)/h 

R* 

1/2 
.-"272 (5.29) 

-SE(x+zi)/% = e-B'nK, 
Ri 

where B defined in (5.26) is the Euclidean action for a single instanton, then the 

first t e rm on the RHS of (5.27) becomes 

n / [<Ne 

t=i 

-SB(x+z,)/H = e ~ n B / n J { n 

(5.30) 
Ri-

where B = SE(X) is the Euclidean action for a single instanton. Integration over 

all instanton centers gives a factor 

rT/2 fh 
/ dti d t 2 . . - d t n = —. 

J-T/2 J-T/2 J-T/2 nl 

Inserting (5.29), (5.30), (5.31) into (5.27) we obtain 

N J\dx\e-s*W% ~ ( ^ ) 1 / 2 e ~ " T / 2 E ^ r e " n S / 7 l A " 

(5.31) 

(5.32) 
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Thus, f r o m (5.9) 

E0 = ^ - hKe~B'\ 

and hence, f r o m (5.7) the decay rate is given by 

T = 2(ImK)e-B/h. (5.33) 

I t is worth noting here that for the t r iv ia l solution x(t) = 0 we would have 5 = 0, 

so there would be no K term and the result would correspond to a particle moving 

in a potential w i t h a stable true ground state of energy EQ = fiu/2 as expected. 

We determine K introduced in (5.30) by demanding that we should get the 

correct answer for a one-instanton configuration, i.e. 

{ N -1/2 
det(-dt

2+u2)\ . (5.34) 
' 

As we shall shortly show K is complex because the operator — d 2 + U"(x)2 which 

arises i n (5.20) has a negative eigenvalue for which the Gaussian approximation 

used in (5.21) is invalid because the curvature of SE at x = x has the wrong sign. 

I f x(t) is any solution to the classical Euclidean equation of motion obeying the 

boundary conditions then a general funct ion obeying the boundary conditions 

can be wr i t ten as 

x(t) = x(t) + ^2 CnXn(t), (5.35) 

where the xn are a complete set of orthonormal functions vanishing at the bound

aries, i.e. such that 
[T/2 

(t) = 8mn (5.36) 
J-T/2 

and 

the measure being 

* » ( ± £ ) = o, 

[dx] = H(2TTh)-1/2dcn. 
n 
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We denote fluctuations about the single instanton by Zi(t). These Z{ are the 

eigenfunctions of the operator appearing in (5.25) w i th eigenvalues A,, i.e. 

{ - d t

2 + U"(x)] Z i { t ) = \iZi(t), i = 0 ,1 , 2 , . . . (5.37) 

In the case of the t r iv ia l solution x(t) = 0 all eigenvalues of the second variational 

derivative of SE are positive, making K real. Since SE is independent of the 

instanton centre the fluctuation, z0(t), corresponding to a shift in the instanton 

centre by t, is an eigenfunction of (5.37) w i th zero eigenvalue. But z0 has a node 

corresponding to the turning point of x and is not, therefore, the eigenfunction 

wi th lowest eigenvalue. So there must exist an eigenfunction zi{t) w i t h a negative 

eigenvalue. Thus the bounce is not a min imum of the action but a saddle point 

and the Gaussian integral diverges. We must therefore treat z0 and z\ separately, 

but can use the Gaussian approximation for the remaining fluctuations. 

For the z0 mode we have: 

= B . 1 / 2 d x 
dt 

where the normalisation comes f rom (5.36) and (5.26). Now since, f r o m (5.35), 

dx 
dx = —dt — Xodca 

dt 

we have 

So by integrating over all possible instanton centres we have already integrated 

in the z0 direction, up to a normalisation factor. Thus, in evaluating the deter

minant, the zero eigenvalue should not be included as i t corresponds to a stable 

ground state, but we should include instead a factor (B/2wh)1^2. To perform the 

rest of the integral we split [dx] into the product of one-dimensional integrals 
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Figure 5.4: Euclidean action for the one-parameter fami ly of paths. 

over a specific one-parameter family of paths and an integral over the remaining 

paths. Denoting this parameter by A, we choose the family x\ to contain the 

t r iv ia l solution x = 0 for A = 0 and the bounce solution x = x for A = 1, and 

so that the negative mode has A > 1. I f denotes the eigenfunctions of (5.37) 

wi th eigenvalues A,- and wi th A, > 1 for (i = 2 , 3 , . . . ) then the functional integral 

can be wr i t ten as 

[dx] = J dXY[J [dzi] (2irhy1/2 . 
r+oo 0 0 

dX 

t=2 • 

Using the Gaussian approximation for the [dzi], the integral over [dx] i n (5.34) 

decouples into an infini te product of one-dimensional Gaussian integrals each 

contributing a factor A , - 1 / 2 . Thus, 

[dx]e-s*Wh = f d \ e - s ^ h x n A r 1 / 2 ( 2 7 r ^ ) - 1 / 2 . 
J ' 0 0 i=2 

(5.38) 

The action SE as a function of A is sketched in fig.(5.4). To keep the integral 

over A fini te we must distort the path for positive A into the complex plane, as 

in fig.(5.5). Using the method of steepest descent 

81 



I 
Figure 5.5: Distortion of the contour into the complex A plane. 71 is 
the in i t ia l distorted contour whereas 72 is the contour for the steepest 
descent method. 

f + ° ° d X e - s ^ A = ^ d X e ~ s ^ h + f d\e-x^x-l?l%-Bl% 

J — OO J — OO *12 
1 OO 

= R + V ^ n i ^ r 1 / 2 ( 2 ^ ) 1 / 2 

z i=l 

where R is real and 72 is the contour for the steepest descent method. Thus, 

Im(J[dx]e-s*W*) = i e - B / * n | A , - | - 1 / 2 

1 r 1 ~ 1 / 2 

= ±e-B'AUee(-dt

2 + U , ' ( x j ) \ , (5.39) 

where det' indicates that in evaluating the determinant we omit any zero eigen

values that correspond to translation modes and that we take the modulus of any 

negative eigenvalues. 

Combining (5.34) and (5.39), and including the factor (B/2wh)1/2 f r o m the 

integration over z0, we obtain 

ImK = -
det ( - d t

2 +UJ2) / B V 

det' ( - d t

2 + U"(x))\ V 2 ^ 7 

and so, f rom (5.33) our final expression for the decay rate of a particle in a 

one-dimensional double well potential U(x) is (Callan and Coleman (1977)) 

(5.41) 

1/2 
B \ 1 / 2 

(5.40) 

det(-dt

2 + u2) 

det' (-dt2+ U"{x))_ 
o-B/n ( 

\2KK 
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where B is the Euclidean action defined in (5.26), u>2 = U"(0) and x is the 

solution of (5.18) w i t h boundary conditions (5.19). 

5.2 The Decay Rate in Quantum Field Theory 

Converting the results obtained in the previous section for quantum mechanics 

into those applicable in quantum field theory is fair ly straightforward. Consider, 

for example, a scalar field (f> described by the Lagrangian density 

C = ^d^(f>-U(4>\ (5-42) 

where U(<j>) is the potential energy density. Its decay rate is given by the analogue 

of (5.7) and (5.9), namely 

r = - 2 l i m i In Im\ < $s\e-HTIn\^ > } 
T - > o o 1 ^ J 

= - 2 T l i m | iv | [ t t y ] e - 5 B < W R J (5.43) 

wi i t h 

4>i and <j>f being the in i t i a l and final field configurations. The Euclidean action 

SE is given by (c.f (5.17)) 

SE{<t>) = J dAx 

wi th boundary conditions 

(5.44) 

l i m </>(T,X) = (j>-
T—»±0O 

l i m </>(r,x) = 4>-
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where r is the Euclidean t ime, <f>_ is the false min imum ground state and x is a 

point in Euclidean 3-space. 

The first of these conditions ensures that the bounce solution goes f r o m the 

false vacuum at r = — oo to false vacuum at r = +00 and corresponds to setting 

\xj >= \xi > in our treatment of quantum mechanical tunnelling. The second 

condition ensures that the solution has finite action. The Euclidean action is 

again obtained by minimising the action and is given by (c.f (5.18)) 

drfdrf = U\<f>). (5.45) 

A l l possible solutions to (5.45) contribute to the tunnelling rate and, similar 

to our treatment of tunnelling in quantum mechanics, i t is the solution w i t h least 

action that makes the largest contribution to the tunnelling rate. The calculation 

of the tunnelling rate in quantum field theory follows along the same lines as that 

for quantum mechanics i n the previous section except that the Euclidean action 

is now invariant in the four space-time directions and not just in t ime. Hence the 

factor Tn/n\ i n (5.31) translates into (TV)n/n\ and the decay rate is now given 

by (c.f. (5.33)) 

T = 2(ImK)e-B/1iV. 

Similarly we have now four factors of (Bj2-K%yl2 instead of the one in (5.40). 

Generalising the argument given in (5.22)-(5.24) to the case of a scalar field cf>(x), 

where £ is a point in four-dimensional space-time, the decay rate of the 0-field 

f r o m the false vacuum to the true vacuum state is given by (c.f. (5.41) 

1/2 

(5.46) 
det(-02 + U" (</>+)) 

V 4ir2h2 ldet'(-d2 + U"{4>)) 

where B = SE, 4> corresponds to non-trivial bounce solutions of the equation 

of motion, <f>+ is the true vacuum ground state and where the prime on det 
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indicates that the four zero eigenvalues corresponding to the freedom to translate 

the instanton centers in the four space-time directions are to be omit ted. 

In flat space the least action Euclidean solution has an 0 (4 ) symmetry and 

its action SE is lower than that for any non-0(4)-invariant solution (Coleman, 

Glaser, M a r t i n , (1978)). When this is the case <j> can be expressed in terms of a 

single variable p defined by 

P M W / 2 = O X I 2 + T 2 ) 1 / 2 ( 5 - 4 7 ) 
and the Euclidean action can be wri t ten as 

SM=*£W$(%)\u} (5.48) 

with the equation of motion transformed into 

g ^ g - ^ - O . ( , 4 9 , 

The boundary conditions for the 0(A) invariant solution are 

\rm<t>(p) = <f>_. (5.50) 

I f we now interpret p as a time variable and <f> as the position of the particle, (5.49) 

is the equation of motion for a particle moving in the inverted potential —U(</>) 

subject to a time-dependent damping force. As we w i l l now show, conservation of 

energy requires that there must be some value of <j> = <j>* for which the boundary 

conditions (5.50) are satisfied (see fig.(5.6)). Suppose that the particle starts f r o m 

rest (p = 0) w i t h zero in i t ia l kinetic energy f r o m a position <f>* w i t h (j>+ > <f>* > </>_. 

If<f>* is such that 4>* < 4>i andt/(<^>i) = £/(</>_) the particle w i l l never aquire enough 

energy to climb "up the h i l l " to <f>_ and w i l l undershoot; after some f ini te t ime 

(f> w i l l come to rest and reverse its direction. I f , on the other hand, 4>* starts 

very close to <j)+ i t w i l l remain close to <{>+ for a long t ime during which the 
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/ 
Figure 5.6: A typical potential U(<f>) w i th an unstable false vacuum 
state (j>- and a true vacuum state <j>+. The graph on the right rep
resents the inverted potential —U(<f>), showing (f>* the in i t i a l value of 

damping w i l l be negligible. When the particle finally rolls away f r o m <f>+ i t w i l l 

speed up and reach </L w i t h non-zero kinetic energy and so w i l l overshoot. By 

continuity there must, therefore, be some value <f>* between <f>+ and for which 

the boundary conditions are satisfied. 

In general a closed-form analytic solution to (5.49) cannot be found. However, 

in the ' t h in wal l ' approximation where the difference in energy between the false 

and true vacua is small compared to the height of the barrier, i t is possible to find 

an approximate solution for the Euclidean action. We start w i t h a symmetric 

potential Us (see figure (5.7)) w i th minima ± Q , +a being the true min imum and 

—o: being the false minimum, w i t h 

us{4>) = us{-<t>) 

U,'(±a) = 0 

(i2 = Us"(a) (5.51) 

and we introduce a small energy difference between the two vacua given by 

Ua = Us + ^-(<f>-a). (5.52) 
lot 

For e <C 1 the nature of the instanton for Ua is qualitatively the same as that for 

Us, since <f> stays close to (j>+ for a long t ime after which i t rolls down the valley 
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Figure 5.7: The symmetric potential Us. Also shown an impression of 
the corresponding asymmetric potential where there is a small energy 
difference between the minima. 

of the inverted potential, ending up at ^_ as t —> oo. The f r ic t ion term in (5.49) 

can, therefore, be neglected and we have 

d2ct> 

dp2 = Ua'(4>) - U.\<j>). 

whose solution <f>i(p) is given by 

r<t>\ 

Jo 

d<f> 

[2W)] 1/2 

f = -{2UM)f2 

dp 

The corresponding action is given by 

= r d<t>[2us{<j>)\"2 • 
J—a 

(5.53) 
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Thus, the approximate solution is given by 

<f> = < 

+a /> < R 
faip-R) p~R 
-a p~> R. 

(5.54) 

Hence a spherical bubble of radius R is nucleated wi th in which the field has 

transformed into the true vacuum state. Outside the bubble (p ^> R) the field is 

s t i l l in the false vacuum state and the two regions are separated by the bubble 

wall at p ~ R (see figure (5.8)). In this case the Euclidean action can be easily 

determined f r o m (5.48), i.e.: 

7 dpp3 

Jo H a -
i = ~-Tr2R*e + 2iriRiSl (5.55) 

where the first te rm comes f rom the interior of the bubble (p <C R) and the 

second term f rom the bubble wall (p ~ R), where the e-dependent terms in U are 

negligible and thus Ua « Us. To determine the bubble radius we just minimise 

the action to obtain 

R 

Substituting back into (5.55) we get, 

B = SE = 

3Si 

27ir2S1

4 

2e3 
(5.56) 

The above result is valid only for p,R ^> 1, or equivalently 

3SiU 
> 1. 

e 

As 1/p defines the scale of the thickness of the bubble wall , the above expression 

is equivalent to saying that the size of the bubbles is large compared to their 

thickness, which is the thin-wall approximation that we used in the first place. 
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a. + 0. 

- a 

Figure 5.8: Qualitative picture of a bubble of true vacuum. Inside the 
bubble a region of true vacuum ((f) — +a) is formed separated f r o m 
the false vacuum (<f> = —a) outside by the bubble wall at p « R. As 
the bubble expands (indicated by the arrows) false vacuum is being 
transformed into true vacuum. 
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5.3 Bubble Nucleation 

So far we have obtained an expression for the tunnelling rate f r o m the false to 

the true vacuum. In this section we are interested in the subsequent evolution of 

the (j> field after tunnelling which can be studied in semiclassical terms. 

In the quantum mechanical description of the decay of the false vacuum the 

particle makes a quantum jump at some time t = 0 f r o m the false vacuum min

imum of its potential at x = 0 to the escape point x = xe characterised by 

U(xe) = U(0), emerging wi th zero kinetic energy. Then for t > 0 the particle 

propagates classically. Similarly in quantum field theory, the field makes a quan

t u m jump (say at time t = 0) to a state of zero kinetic energy and potential 

energy equal to that of the false vacuum. This state is the centre of the instanton 

(f> given by 

For t > 0 the field w i l l evolve according to the classical equation of motion, which 

in Minkowski space is given by 

(f>(x0 = 0 ,x ) = ^ ( x , r = 0) 

- ^ ( x o = 0 ,x ) = ^ ( x , r = 0) = 0. (5.57) 

u'{4>). 

I n Euclidean space this translates into 

(5.58) 

which is identical to (5.45). In terms of the variable p 

2 2 I 2 

p = T + X 

this becomes 
<P<f> 3 dcj> 

dp2 p dp 
U\4>) (5.59) 
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which is exactly the same as (5.49). Since the in i t ia l conditions are also the same, 

the classical field in Euclidean space is simply the instanton solution 

</>(x, r ) = 4> [(a: 2 + r 2 ) j , x2 + r 2 > 0. 

I f we analytically continue this solution back to Minkowski space 

^ ( x , < ) = 4> [(x2 - t 2 ) \x\ > t > 0. 

I t is worth noting here that the instanton appears not only as the dominant con

t r ibut ion to the path integral calculation of the tunnelling action, but i t reappears 

as the classical field in Euclidean space after tunnelling. In other words, i t gives 

the shape of the bubble at the moment of its materialisation in Euclidean space 

as well. To obtain the equation of motion for |a;| < t we set p —+ ip and (5.59) 

becomes 

+ I f = - V ( t ) . (5.60) 
dp* p dp 

A qualitative picture of the solution in the |a;| > t regime is that the ^-f ield starts 

at |SET | = t w i th in i t i a l value <f>* and as |x | increases i t gradually approaches the 

false vacuum. On the other hand, for |x | < t (5.60) represents the equation of 

motion for a particle moving in a potential U(x) subject to a time-dependent 

damping force. Again the ^-f ie ld starts f rom rest at <j> = <f>*, but this t ime i t rolls 

down the h i l l towards the true min imum of the potential, <j>+. Once there, i t w i l l 

oscillate about <f>+ w i th the amplitude of the oscillations decreasing as energy is 

lost due to the damping term. To summarise then, we have (see fig. (5.9)) 
' 4>- | x | —> oo false vacuum 

<f>(t,x)=\ 4>* | x | = * bubble wall (5.61) 
| x | = 0 true vacuum (only for t —> oo). 

Suppose that at t = 0 a point on the bubble wall is given by | x | = r 0

2 . Then at 

t ime t i t would be at 
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Figure 5.9: Qualitative picture of the solution (5.61). Also shown, 
an impression bubble growth between U and i 2 - The bubble profile 
separates the true vacuum phase on the left of each line f r o m the 
false vacuum on the right. As the bubble expands the region of true 
vacuum increases. 

and so the wall velocity is 

<Z|x| t 
V = ——- = t ~ 1 

dt (*2 + r ( ) 2 ) l / 2 

since we expect r 0 to be a microphysical quantity. So, once formed, bubbles of 

true vacuum expand into the surrounding sea of false vacuum w i t h a speed that 

approaches the speed of light (c = 1). In the next chapter we shall examine the 

large-scale structures that would result f r o m the collision of such bubbles. 
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Chapter 6 

Production of Structure from 
Bubble Collisions 

I f we suppose that a phase transition occurs which proceeds by the quantum 

tunnelling of some scalar field <f> f r om a false vacuum state to its true vacuum 

state, the observed distribution of matter in the Universe may be the result of 

the collision of the true vacuum bubbles as they expand into the surrounding sea 

of false vacuum. 

For tunnelling to occur the potential energy of the <f>-field U(<f>) must be of 

the double well fo rm considered in the previous chapter w i t h a potential barrier 

separating the two minima. To be consistent w i th our previous discussion we 

choose the false vacuum state to be at <j> = 0, and the true vacuum state to be 

at <f> = a. The potential barrier separating the two ground states is the region 

where U(</>) > U(0). We also choose the scale of the potential such that U(a) = 0 

(see, for example, figures (6.1), (6.3)). Clearly there are many possible choices for 

the f o r m of the potential, each of which w i l l be described by various parameters. 

However, because so far there is no accepted theory that would explain and 

determine these parameters satisfactorily, we w i l l work backwards and t r y to f ix 

them by insisting that the structures formed by bubble wall collisions match those 

we observe. 

93 



Observation suggests that the structures in the Universe are bubble-like, con

sisting of voids surrounded by shells in which all the mass is concentrated. This 

suggests that we should attempt to f i t three observations; the size of the voids, 

the thickness of the shells that surround them and the mass of the shells. We 

thus study potentials that can be described by three parameters and determine 

whether these potentials can result in structures that are compatible w i t h obser

vation. Our aim is therefore to choose suitable potentials, derive expressions for 

the size, mass and thickness of a typical shell and vary the parameters of the po

tentials to obtain results in agreement w i t h the observed values. In what follows 

we w i l l see that re-parametrisation of dimensionful quantities into dimensionless 

ones greatly reduces the amount of numerical calculation needed without any loss 

of generality so this approach w i l l be used frequently. 

We w i l l first parametrise two similar forms of potential which can give rise 

to phase transitions, namely a polynomial potential and a modified Coleman-

Weinberg potential, and then we w i l l obtain a parametrisation of the decay rate 

for the <f> field into matter. 

6.1 Scalar Field Potentials 

a) T h e Po lynomia l Potential 

A suitable choice of a polynomial potential, shown in fig.(6.1), is 

UPW = ^ + Pa2) (<f>2 - a2)* (6.1) 

where <f> and a have dimensions of mass, A is the dimensionless coupling and /? 

is a constant that determines the shape of the potential. Since for (3 > 1/2 the 

potential barrier between the two minima at <f> = 0 and cf> — a disappears, while 

for /? < 0 the extrema at <f> — 0 and (f> = a become maxima, we restrict (3 to 
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Figure 6.1: The polynomial potential for (3 = 0.2,0.4 and 0.5. 

lie between 0 and 1/2. We parametrise the potential in terms of a dimensionless 

quantity defined by 

4> = 4> (6.2) 

W i t h this choice of parametrisation the polynomial potential can be re -wr i t t en 

as 

where the scaled potential is 

UP(<j>) E E Aa*UP{<f>) 

1 

(6.3) 

Up(4>) = ^(<j>2 + fi){<f>2 — l ) 2 (6.4) 

and where A = Afi. W i t h this notation the energy difference between the two 

ground states is given by 

t = UP(0) - Up(cr) = AaA (6.5) 

In fig.(6.1) the shape of the potential is shown for (3 = 0.2,0.4 and 0.5. 
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Figure 6.2: The Coleman-Weinberg potential, 

b) T h e Modif ied Coleman-Weinberg Potential 

The Coleman-Weinberg potential is obtained f r o m the standard Higgs poten

t ia l 

U(<f>) = -fi2<f>2 + \<t>\ 

by setting the Higgs mass parameter (i to zero but including the one-loop vector 

boson radiative corrections. Thus, the original Coleman-Weinberg potential (see 

fig.(6.2)) is given by 

Ucw = V { In ^7" 2) - ^} + \Ao\ (6.6) 

The true min imum of the potential is again at <j> = a and A is dimensionless. In 

the SU(5) G U T A = (5625/64)a G i /T 2 where a G U T is the G U T coupling constant. 

For OLGUT ~ 1/30, we have A K, 1 0 _ 1 . We want to modify the Coleman-Weinberg 

potential to incorporate a barrier near <f) = 0. This is achieved by adding a te rm 

proportional to (j^lncf)2. Extra terms are then added to ensure that the true 
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Figure 6.3: The modified Coleman-Weinberg potential for /9 = 0.2,0.4, and 0.5. 

min imum remains at <f> = a while Ucw{&) = 0- The result, which we refer to as 

the modified Coleman-Weinberg potential, is given by 

U c w = a U - Co2 A I In<j> 2 /a 2 - U + l-Ao4 + IaCO3*? - AC<j>\ (6.7) 

where C is dimensionless. At (f> = 0, 

1 
UCw(Q) = ACT ( - - C ) , 

which can be wr i t ten in the same compact notation as we used for the polynomial 

potential provided that we write A = (1/2 — C)A = /3A, so that 

UCW(0) = ACT4. 

I f we now substitute for C in (6.7) and scale <f> as in (6.2) we get 

UCw{<t>) = 

Ucw{4>) = 

ACT4UCW 

1 

0 
+ H \ -0) + 4>2 M 2p - {\ - /?) | - \$4 

(6.8) 
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Here /? has a similar significance to that which i t has in the polynomial potential 

and for the same reasons i t must lie wi th in 0 and 1/2. In fact the shape of Ucw 

for a given ,8 is similar to that of Up wi th the same value (see fig.(6.3)). 

We w i l l next discuss the parametrisation of the decay rate of the ^>-field to 

matter. 

6.2 Coupling of </> to Matter 

The amount of matter produced in bubble wall collisions is determined by T, the 

decay of the </>-field to matter. We w i l l parametrise F in terms of the Standard 

Model Higgs decay rate. 

I f for simplicity we assume that the Higgs particle is heavy (m# > 2mw) 

so that the decays H — • and H — • Z ° Z ° are dominant then in the 

Standard Model (see, for example, Collins, Mar t in and Squires (1989)) 

r = ( 6 - 9 » 

where the Higgs mass mjj is determined in terms of the quartic Higgs self-coupling 

A and the vacuum expectation value u, 

V2Xv, (6.10) 

and where GF is the Fermi weak coupling constant given by 

For the potentials under consideration the Higgs mass is determined by the con

dit ion 

mH = 7: T7o • I 6 - 1 1 ) 2 d<f>2 

(j> = (J 
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In the case of the polynomial potential this reduces to 

mH = 2A1'2{1 + f 3 f 2 a (6.12) 

whereas for the modified Coleman-Weinberg potential 

mH = A1/2(3 + 2 / ? ) 1 / V, (6.13) 

giving 

r P = : i A 3 / 2 ( l + /?)3/2<7 (6.14) 
47T 

Few = ^ - A 3 / 2 ( 3 + 2/?)3/2<x (6.15) 
0 / 7 T 

respectively. 

In the more general case where the coupling of the ^-f ield to matter is not 

that of the Standard Model but is instead some arbitrary coupling G, the decay 

rate is obtained by combining (6.9) and either (6.12) or (6.13) resulting in 

r - 3 0 

and 

= l ^ f ^ + ^ ( 6 ' 1 7 ) 

As w i t h the parametrisation of the potentials of the previous section, we want to 

work i n terms of a dimensionless quantity G and since G ~ 1 /a2 we set 

G = V2<72G. 

W i t h this choice of parametrisation (6.16) and (6.17) yield 

r P = ± G A 3 / 2 ( l + / ? ) 3 / V , (6.18) 

Tew = J ^ A 3 / 2 ( 3 + 2 /? ) 3 / V. (6.19) 
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In the Standard Model G = 1. 

I f , on the other hand, the Higgs particle is light so that i t decays primari ly 

into fermions then (Collins, Mar t in and Squires (1989)) 

r ( i / ^ / / > ^ ^ ^ ( i - ^ ) 3 / ! , 

where the colour factor Nc equals 3 for quarks and 1 for leptons, ?n# is defined in 

(6.11) and m / is the mass of the fermion species / . However, i t seems likely that 

the Higgs particle is heavy (m# > 2mw) so that i t decays pr imari ly into bosons 

and hence its decay width is given by (6.9), and we w i l l not consider fur ther the 

possibility that i t decays into fermions. 

The only dimensionful quantity in our parametrisation of U(<j>) and T is cr, 

the position of the global minimum, which sets the energy scale of the theory. I f 

</> is to be identified by the scalar field responsible for SSB in the Weinberg-Salam 

model we w i l l have a < ITeV but otherwise we would expect a ^> ITeV. Apart 

f r o m a there are two other parameters that describe our t r i a l potentials, namely 

A and /9, both of which are dimensionless. A plays the role of a coupling constant 

and, as we saw in section (6.1) we might expect A « 1 0 - 1 by analogy w i t h the 

Coleman-Weinberg SU(5) GUT. However, there are no essential restrictions on 

A f r o m the f o r m of the potential, though we are only able to use a perturbative 

approach i f A <C 1. The precise shape of the potential and in particular the 

height of the barrier is determined by (3 and we have seen that 0 < /? < 1/2. 

Once a and have been specified, the size of the energy difference between the 

false and true vacua is given by A. Finally, to determine the decay of the <^-field 

to matter we have introduced an extra parameter G that takes into account the 

possibility that the coupling of <f> to matter is not that of the Standard Model 

(which has G = 1). 
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6.3 Bounce Solution 

In the last chapter we derived the decay rate of the <^-field f r o m the false to the 

true vacuum state (c.f. (5.46)) 

1/2 
f?2 
° .P-S/ S 

det(-d2 + U"•(</>+)) 
(6.20) 

V 4ir2h2 [def ( - d 2 + U"(<f>)) 

where B = SE the tunnelling action , <f> corresponds to non-trivial solutions of 

the equation of motion and where the prime indicates that the 4 zero eigenvalues 

corresponding to the freedom to translate the instanton centers in the four space-

t ime directions are to be omitted. To calculate the decay rate of the ^-f ie ld we 

must therefore be able to determine the following: 

1. The bounce solution, <j> 

2. the tunnelling action between the two vacua 

3. the ratio of the functional determinants 

We w i l l next examine ways of evaluating each of the above in turn . 

As we have seen in the last chapter the bounce solution is the solution to 

the Euclidean equation of motion that is obtained by minimising the Euclidean 

action. I n the notation introduced earlier (cf. (5.47)) (p = ( | x | 2 + r 2 ) = 

( | x | 2 — t2)1^2 > 0) the bounce equation is given by 

w i t h boundary conditions 

^ '(0) = 0 (6.22) 

^(oo) = 0. (6.23) 
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In the absence of the time-dependent damping term it reduces to 

<P6 
U'U) 

dp 
(6.24) 

corresponding to the equation of motion of a particle moving in an inverted 

potential — U'(<)>). To satisfy the boundary conditions the particle must start 

the absence of the damping term the energy of the system is conserved and so 

the particle must start at <f> = <pe where U(4>e) = U(0). Conservation of energy 

implies 

which can be inverted to obtain <f>(p). 

In the presence of the damping term, however, i t is no longer possible to f ind 

an analytic solution to the equation of motion, but, as we have seen in the last 

chapter, there must always exist a solution that satisfies the boundary conditions. 

The reason is that for different starting points <f>(0), the particle w i l l either have 

too l i t t l e energy to climb the h i l l and reach <f> = 0 or, too much energy in which 

case i t w i l l reach <f>(0) w i t h non-zero kinetic energy and hence overshoot. Thus, 

by continuity, there is always a solution to the bounce equation satisfying the 

boundary conditions and such that 

Such a solution can only be found numerically. By t r ia l (and mostly by error!) 

we choose possible values of < (̂0) and for each we integrate our bounce equation 

f r o m rest at a point </>(0) such that i t w i l l end up at <f> — 0 as p oo. In 

1 dd> 
UU) - U{<f>e) 2 \dp 

Separating the variables and integrating we obtain 

dd> 4> 
p{<t>) = / 

J a 
1/2 

0e [2{UU)-U{<t>M 

(j>e < <£(0) < a. 
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subject to the in i t i a l condition that the particle starts f r o m rest. Depending on 

how close to a we have chosen our starting value the particle w i l l either overshoot 

or undershoot but somewhere in between we w i l l find the correct value of (f)(0) 

that ensures that </>(oo) = 0, and the corresponding solution <f>(p). 

There are two problems associated w i t h the numerical solution of the bounce 

equation. Firstly, as we w i l l have to start our integration at p = 0, we see 

that the damping term in (6.21) becomes undefined. This is dealt w i t h by using 

L'Hopital 's rule which reduces the damping term to 

3d<f> (P<f> 
l i m - — = 3 — . 
p—o p dp dp* 

Hence we start at p = 0 by integrating 

instead of the f u l l bounce equation, for small values of p and then switch back to 

(6.21) once p is sufficiently large. 

Secondly, for some values of the parameters of the potential the required value 

of ^(0) lies very close to 1 making an accurate computation of <j)(p) d i f f icul t . This 

is dealt w i t h by a change of variables to z = 1 — </>, and integrating z f r o m its 

in i t i a l small value to some larger value (say 10~ 2), then continuing the integration 

in terms of <f>. As we have seen in chapter 5, the solution of the bounce equation 

gives the shape of the bubble wavefront for |x | > t. To obtain the equation of 

motion for |x | < t we set p —+ ip and the bounce equation then becomes 

+ l d A = _ c ^ ) (6.25) 
dp2 p dp 

w i t h boundary conditions 
d$ 
dp 

- 0 
p=0 
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and 

4>(oo) — a. 

The (/"-field starts f rom the same (j> = cf>(0) as in the case for \x\ > t but this t ime 

i t rolls down the h i l l towards the true min imum of the potential, </>+, where i t 

oscillates un t i l all of its energy is dissipated. The f u l l wavefront is made up of 

the solutions to both (6.21) and (6.25) and is shown schematically in fig.(6.4), 

(6.5). The shape of the wavefront is relatively insensitive to the precise f o r m of 

the potential but its wid th depends on the height of the barrier, as shown in fig. 

(6.4). More often than not the starting value of the ^-f ie ld lies quite close to 1, a 

fact that makes i t hard to depict the oscillatory behaviour of the solution around 

the true min imum on the same scale as the rest of the wavefront which is why 

i t appears as a straight line in the figures. I f i t is plotted on a suitable scale the 

decaying oscillations become evident, (see fig. (6.5)). We have plotted here the 

results for the polynomial potential only since the corresponding results in the 

case of the modified Coleman-Weinberg potential are very similar. 
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Figure 6.4: The shape of the bubble wavefront for the polynomial 
potential, wi th (3 = 0.2 and j3 = 0.3. 
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Figure 6.5: A graph showing the oscillatory behaviour of the solution 
to (6.21) for the polynomial potential w i t h /? = 0.4. 
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6.4 Tunnelling Action 

The expression for the tunnelling action associated wi th the tunnelling of the 

</>-field through the potential barrier is given by (cf. (5.44)) 

= J d 4 x ±djd»<f> + u(<j>) (6.26) 

where <j> = 4>(x) minimises the action and is the solution to the equation of 

motion (6.21) w i t h boundary conditions (6.22), (6.23). For the action to be f in i te 

we rescale U(<j>) such that U(0) = 0 and U(o) = —Aa4. Since U is then negative 

one might worry about the possibility of S being negative as well. However, this 

is not the case as we w i l l now show (Coleman (1985)). I f we embed (f> into a 

one-parameter family of functions 

(f>x{x) =</> ( x / A ) 

then f r o m (6.26), 

S(<f>x) = d4x(dM iT) 2 + X4J d4xU(~4>) (6.27) 

Since <̂> is a solution of the equation of motion i t must minimise the action which 

means that S(<j>\) must have a min imum at A = 1. Thus, 

so 

J d 4 x ( d , ( t f = - 4 J d4xU'(</>), 

S E = l-j dAx{dll~(^ > 0 . 

Also, 

(PSE 

rfA2 

and so at <f> =(f), the second variational derivative of SE has at least one negative 

eigenvalue. Herein lies the second problem associated wi th the tunnelling action, 
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which is the possibility of there being more than one negative eigenvalue, a fact 

that would make our analysis in chapter 5 invalid. Fortunately this is not the 

case (Coleman (1985)). I t has been shown (Coleman, Glaser, Mar t i n (1978)) that 

the bounce solution is the absolute min imum of SE for a fixed V, V = f d4xU. 

However, there can not be two independent eigenvectors w i th negative eigenvalues 

for i f there were, we could fo rm a linear combination of these eigenvectors which 

was tangent to the surface of constant V , and the bounce would not even be a 

local min imum of SE w i th fixed V, let alone an absolute min imum. Thus there 

can only be one eigenvector w i th a negative eigenvalue and the analysis of chapter 

5 is valid. 

To conclude this section we shall examine ways of determining the tunnelling 

action. The proper way of doing this is w i th the aid of the bounce solution. As 

we have seen, the bounce solution not only determines the shape of the bubble 

wavefront but also provides the tools for calculating SE- The Euclidean action is 

given by 

1 
S (6.28) 

I f we introduce dimensionless scalar variables x and <j> such that x = VAax and 

<f> =<f) /<r, then SE becomes 

deb d4x 1 
4 1 Aa s E ox 

J d 

1 

4A 

(6.29) 

(6.30) 

Now, because the soliton of lowest action is 0(4) symmetric, we have 

~ 2 
CO dx X ax 

Hence the tunnelling action is 

SE — 
7T 
2A 

(6.31) 
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where 

dx (6.32) 

is determined numerically f rom the bounce solution which depends on the barrier 

height and hence on /?. The potentials under investigation are described by three 

parameters which at the moment are unknown. However, the scaling method de

scribed above is a powerful tool for reducing the amount of numerical calculation 

as i t enables the action to be computed in terms of just one variable /?, since A 

has been scaled outside the integral / (cf. (6.31)) and since the introduction of 

the dimensionless variables x and <f> has rendered the tunnelling action indepen

dent of a. What makes this even easier is that there is a method of obtaining 

an approximate value for the tunnelling action using the thin-wall approxima

tion which is valid provided that the size of the bubbles of true vacuum is large 

compared to their thickness (cf. section (5.2)). 

We showed in the last chapter that in the thin-wall approximation where the 

energy difference e between the false and true vacua is very much smaller than 

the height of the barrier, the tunnelling action is given by 

B = SE = 
27 7 r 2 S 1

4 

2e3 
(6.33) 

w i t h e = Aa4 and 

/ d<t>[2Us{4>)\ 1/2 s 1 

I n terms of scaled variables this becomes 

2Aa-3I l l (6.34) 

where 

| J a | = 2 / d4>[us{$)) 
1/2 
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Figure 6.6: The tunnelling action for the polynomial potential com
puted numerically (solid curve) and in the th in wall approximation, 
for 13 = 0.4. 

and so f rom (6.33) 

B = (6.35) 
A 

In the l imi t of small /?, the polynomial potential gives h = 0.25//3 1/ 2, whereas 

for the modified Coleman-Weinberg potential, Ix ~ 0.28//3 1 / 2 . The increasing 

accuracy of the th in wall approximations is illustrated in figs (6.6), (6.7), for the 

polynomial potential (for the modified Coleman-Weinberg potential the results 

are similar). Away f r o m the th in wall regime B remains independent of a and is 

st i l l proportional to If A though its dependence on f3 becomes more complicated. 
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Figure 6.7: The tunnelling action for the polynomial potential com
puted numerically (solid curve) and in the th in wall approximation 
wi th /? = 0.2. 

6.5 Functional Integral 

So far we have examined ways of determining the bounce solution that is needed 

in order to evaluate the tunnelling action and obtain the shape of the bubble 

wavefront, and we have also examined an approximate way of determining B 

without having to calculate the bounce solution. For the decay rate of the ^>-field 

to be completely defined we now need to evaluate the ratio of the functional 

determinants that appear in the expression for T/V in (6.20), namely 

1/2 

det(-d2+u2) 
D = 

det> - d 2 + U"[<t> 
(6.36) 
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where u2 = U"(Q) and <j> is the solution of (6.21) w i t h boundary conditions 

(6.22),(6.23). For both the polynomial and the Coleman-Weinberg potentials 

.2 2 ( 1 - 2 / ? ) , 2 _ , 2 Aal = u>M<r2. (6.37) 

As the evaluation of functional determinants is in general very diff icul t we w i l l 

only obtain an approximate answer for D. We denote the eigenvalues of the 

differential operator (—d2 + to2) by /t, and those of ( — d2 + U"(<f>)) by A, respec

tively. Now, since the determinant of any matr ix is equal to the product of its 

eigenvalues (see Kleinert (1990)), 

D 2 = = g (£) . (6.38, 

In evaluating the primed determinant we take the modulus of the negative eigen

value A 0 and omit the four zero eigenvalues corresponding to the freedom to 

translate the instanton centres in the four directions i n space-time (Coleman 

(1977), Callan and Coleman (1977)). The eigenvalues of the numerator are those 

of the simple harmonic oscilator (Vainstein et al (1982), Kleinert (1990)) 

2 2 
2 T n 2 Hn = - ^ 5 - +U , n = 1,2,... 

which i n the dilute gas approximation (large T , cf. chapter 5) and for small n 

can be approximated by w 2 . Thus, since we have already accounted for 5 of the 

eigenvalues i n the denominator, we approximate the five lowest eigenvalues of 

the numerator by u>2, so that the ratio of the product of the other eigenvalues 

remains dimensionless. W i t h these approximations (6.38) becomes 

, ,10 oo / „ \ , ,10 

^ - r a S ^ f c r ( 6 ' 3 9 ) 

A 0 can be found numerically by converting (—d2 + U"(<f>)) into a difference op

erator and obtaining the lowest eigenvalue of the resulting matr ix , or, perhaps 
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more easily, by a phenomenological argument showing that the lowest negative 

eigenvalue depends on the critical bubble radius. This argument w i l l be given in 

the next section. For now we w i l l assume that A 0 is known. I t is again convenient 

to use scaling arguments such as those given at the beginning of this chapter. I f 

we therefore set 

U"{<f>) = A(T2U"(4>) 

so that 

A 0 = Aa2X0, (6.40) 

by combining (6.39) wi th (6.40) we obtain 

Aa* 
D = — r r 2 F , (6.41) 

Ao 

where u>2 = Aa2£o2 and F is dimensionless. Thus the decay rate of the false 

vacuum per unit volume is given by 

- = ~^De-B>n (6.42) 

where all the symbols have their previous meanings and D is given in (6.41). 

A t this stage F is s t i l l undetermined but this is not really a problem as a rough 

estimate of its value w i l l suffice since the magnitude of the expression for the decay 

rate is dominated by the exponential. For the forms of potential we examine, 

we can approximate the regions near each min imum by a harmonic oscillator 

potential. And since, i n this case, the eigenvalues in the numerator and the 

denominator are expected to be similar i n size, we set F to unity. 

6.6 Negative Eigenvalue 

In this section we w i l l derive an approximate expression for the negative eigen

value in terms of the bubble radius (Kleinert (1990)). The decay of the false 
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vacuum proceeds by the formation of bubbles of true vacuum that expand into 

the surrounding sea of the false vacuum. Since the inside of the bubble lies in 

the true ground state, which in the case of an asymmetric potential is lower than 

the metastable state by an amount e, the volume energy of a bubble of arbitrary 

radius r , in D dimensions, is given by 

Ev = - S o ^ e , (6.43) 

where SodD/D is the bubble volume. The surface energy, on the other hand, is 

given by 

Es = (6.44) 

where A is a constant proportional to the surface tension and Es is parametrised 

wi th respect to the critical radius i?, determined by the equil ibrium between the 

gain in volume energy and the loss in surface energy. Adding (6.43) and (6.44) 

and differentiating w i t h respect to r at r = R we have 

RDSDe= ( D - 1)A, (6.45) 

and the crit ical energy is therefore given by 

E< = ̂ Duh) = v (6-46) 

Also, 
d2E 
dr2 

Ident i fying EC w i t h the classical Euclidean action SE, the above equation gives 

S2SE » - 1 - { 8 T ) 2 D S E ^ - • (6.48) 

Consider now infinitesimal fluctuations of the <^-field such that 

8<t> = SrdA. (6.49) 
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Because of the rotational symmetry of the problem we can expand 6<j) into eigen-

functions of angular momentum <f>„im such that 

H = Yl ^n/m^m, (6.50) 
nlm 

Yim being spherical harmonics. The lowest negative eigenvalue corresponds to the 

fluctuation <̂ oocb which when normalised (compare w i t h the case in one dimension 

in the last chapter where we had f rom (5.26), (5.36) xQ = B^^dx/dt), is given 

by 
dT(f> 

</>ooo = i = • (6.51) 
y / j d D x i d r f f 

The expression under the square root is just D times the action of the cri t ical 

bubble, SE- Thus the </>ooo contribution to 8<j> is 

dr(f> 
8<t> = ^ o o o ^ ^ - (6.52) 

which gives 

Substituting back into (6.48) the second variational derivative of the Euclidean 

action is given by 

S2SE = - ^ 0 0 0

2 ^ 1 , (6.54) 

where <p000 is the normalised fluctuation of the solution to the bounce equation 

and R is the crit ical bubble radius. Thus, the negative eigenvalue is given by 

Aoo = (6.55) 

I n our case where we work in four dimensions this reduces to 

Ac = (6.56) 
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where 

e 

and Si is the Euclidean action of the symmetric double well potential (cf. (6.33)-

(6.35))). Substituting for Si and e (cf. (6.6)) and using (6.56) i t follows that 

|A 0 ! = | A 0 | i c r 2 

where, for the polynomial potential and for small /?, Ao ~ 4/?/3 whereas for the 

modified Coleman-Weinberg potential Ao ~ /?. 

For large values of /?, however, the th in wall approximation breaks down and 

we are not allowed to use R = 3Si/e. In this case the critical bubble radius 

can be determined as follows. I n section 6.3 we saw how to obtain the bounce 

solution and in figs.(6.5) and (6.6) we plotted the solution against R = R/RQ, 

where R0 = ( N / X T ) - 1 is the unit of length. In this case 

| A ° ! = 2 ^ 

2R2 

= |Ao|AcT2 

where |A 0 | = 3/(2i? 2 ) and R is the parametrised (dimensionless) cri t ical bubble 

radius that can be estimated f r o m the graph itself. 

6.7 Bubble Collisions 

So far we have determined the solution of the bounce equation that gives us the 

shape of the bubble wavefront at the moment of its materialisation. We have also 

shown in the last chapter that, once formed, bubbles of true vacuum expand into 

the surrounding false vacuum w i t h a speed that approaches the speed of l ight , 

transforming i t into true vacuum. As we are expecting the distr ibution of matter 
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to have resulted f rom the coalescing of true vacuum bubbles we next examine 

how to integrate the equation of motion for two such wavefronts moving towards 

each other. 

The equation of motion for (f>, obtained as usual by the minimisation of the 

action, is 

^ o _ f ^ o + r ^ o + W ) = 0 ( 6 , 5 7 ) 

where T is the decay width of <j> into matter. In the th in wall approximation, 

where the radius of curvature of the bubbles is large compared to their w id th , the 

wavefronts depend only on x and t. Also, the th i rd term, representing the decay 

of the (f>-fie\d due to its coupling to matter, being proportional to the velocity of 

(f>, is only important when i t is rapidly oscillating about the true m i n i m u m of the 

potential. Equation (6.57) is a hyperbolic partial differential equation that needs 

to be solved numerically. 

The standard approach involves the setting up of an x,t lattice grid (see 

figure (6.8)) w i th lattice spacings 8x and St respectively and the transformation 

of (6.57) f r o m a differential to a difference equation. A t t = 0 the two wavefronts 

start by being well separated (see figure (6.9)) and we choose the point x = 0 

to be midway between the two wavefronts. The in i t ia l conditions obeyed by our 

system, 4>(x,0) and d<f>(x,t)/dt at t = 0, are determined by the solution to the 

bounce equation which we computed in section (6.3). In the 'central differences' 

method we make the following approximations 

</>(/, J + 1) - 2<j>(I, J ) 4- <j>(I, J - I ) 
<j> ~ 

<j>" ~ 

St2 

4(I + l,J)-2<f>{I,J) + <l>(I-l,J) 
Sx2 

U'(4>) ~ U'{<KI,J)) = aU'{$(I,J)) 

y 2St y ' 
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Figure 6.8: The type of lattice grid that we use in our calculation, 
where h and k are x and t lattice spacings respectively. 

where (f>(I,J) denotes the value of the </>-field at a point (I8x,J8t) on the (x,t) 

lattice and a = Aa3. 

I f our t ime step St is sufficiently small the shape of the wavefronts w i l l not 

change much in that time and hence the wavefronts at the next t ime step can 

be obtained by simply translating them. I f we now substitute (6.58) into (6.57), 

scale <f> as usual and solve for the most advanced t ime step we obtain: 

^ 7 ' J + 1 ) = i + \ m {w - - J ) + $V + h J)) (If) + J ) 

- ^ I , J - i ) - - U ' ( ^ ( I , J ) ) 6 t 2 + l-r4>(I,J-l)6t). (6.59) 
u Z J 

To simplify the above equation we again introduce dimensionless scalar variables 

and set 

]-T8t = f A 
2 
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St2 

-— = a = Acr26t2, (6.60) 
a 

where A is defined in (6.61) and takes into account the fact that the numerical 

speed of propagation of the wavefronts is not equal to the physical speed of prop

agation but depends on the choice of the lattice spacings Sx and St respectively. 

The numerical and physical speeds of propagation for the problem under investi

gation are only equal i f we choose Sx = St so that A = 1. However, the evolution 

algorithm is unstable for A > 1 so we choose A as follows: 

W i t h these choices (6.59) becomes 

fcj+l) = ^ i ^ | ( ^ ( / - l , J ) - t - ^ ( / + l , J ) ) A 2 + 2 ^ ( 7 , J ) ( l - A 2 ) 

- fi[/V(7,J)) + ( f A - l ) ^ ( / , J - l ) | . (6.62) 

Since we made the approximation that the shape of the bubble wavefront w i l l 

not change much in one t ime step, we want 8(f>(I, J + 1) <C <f>(I, J + 1), and hence 

a <C 1. Scaling arguments similar to those used before not only show that this is 

the case, but also show that a is independent of the parameters of the potentials. 

The wid th of the wavefront can be expressed either as the number of lattice 

spacings or in terms of the unit of length ( x / A c r ) - 1 . I f the wid th of the wavefront 

is / scaled units, or Wi lattice spacings, then 

/ c St 
= WiSx - Wi-

\Tko A 

6t = - ^ — . (6.63) 
V Acrwi 

Thus f r o m (6.60), 

a = Aa28t2= 
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Typical ly / ~ 1 and u>, ~ 100 and so a is naturally of order 1 0 - 4 A 2 , regardless of 

the values of A and a which at this stage are st i l l undetermined. The integration 

of (6.62) proceeds by evaluating <f>(I,J + 1) for each point in the x direction 

and then advance to the next t ime step by relabelling J ) as <j>(I, J — 1) and 

<(>(I,J + 1) as 4>(I, J). 

Because we work w i t h scaled variables our simulation gives the wid th of the 

matter distr ibution in terms of dimensionless quantities which have to be con

verted into physical units for comparison wi th observations. 

I f the wid th of the distribution determined by the simulation is wQ lattice 

spacings, then f r o m (6.63) the physical wid th of the distr ibution is 

Sri = WQSX = —7L (6.64) 

VA<rwi 

which gives the thickness of the shell at the t ime of its formation. 

To f ind the total mass of the shell at the t ime of its formation we start by 

calculating the amount of matter produced by the decay of the <^-field in an 

infinitesimal box of size 8x at t ime 8t, 

8M = Tj>26t8x3, 

and then obtain the total mass deposited in the box by the passage of the wave-

front by summing over all time: 

= ±-Ta26t2YM2- (6.65) 
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Figure 6.9: A graph showing the in i t i a l configuration of two bubble 
wavefronts facing each other at t = 0. As t ime increases the wavefronts 
move towards each other, transforming the false vacuum in between 
them into true vacuum. When they eventually collide at x = 0 all 
space has been converted to true vacuum and the decay of the <^-field 
results in a matter distr ibution similar to that shown in figure (6.10) 
below. 

We have again scaled <f> as usual and have used (6.61) in the last step. To find 

the tota l mass of a shell of radius r we sum over all x and obtain 

where ^ is calculated in our simulation and where we have again used (6.61). 

A n example showing the output of the collision simulation between two bubble 

wavefronts moving towards each other is shown in figure (6.10) for the polynomial 

Airr 
M o Sx 

A-KT1 / St 
I V V A</> 

A 3 \Sx 
x,t 

(6.66) 

I f we denote the sum over x and t by J2<t> the total mass of a shell of radius r at 

the t ime of its formation is given by 

Mo = 8 7 r I Y V ^ (6.67) 

potential. 
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Figure 6.10: The shell of matter that is created at the point of collision 
between two bubble wavefronts, as determined by the quanti ty Y^<t>-
We have allowed enough t ime to ellapse after the collision of the bubble 
profiles at x = 0 so that all space has been converted into true vacuum. 

6.8 Shell Sizes 

In the last section we saw how the solution to the equation of motion for two 

wavefronts moving towards each other gives us information about the in i t i a l (the 

seed) mass of the resulting shell of matter. We shall now determine the size of the 

bubbles when they meet and consequently the scale of the resulting structures. 

The fract ion of space occupied by bubbles increases due to the creation of new 

bubbles and the expansion of existing ones. Since shells of matter w i l l be produced 

where bubbles collide these factors work in opposite directions as far as the scale 

of the shell structures is concerned, the first to decrease i t and the second to 

increase i t . For simplicity we shall first consider the formation of shells of matter 

in non-expanding space. 

Ideally we should calculate the average size of the bubbles which are produced 
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by carrying out a numerical simulation in some volume of space by considering the 

creation of new bubbles at random time steps (remembering that new regions of 

true vacuum cannot form wi th in existing bubbles) and let these bubbles expand 

at the speed of light between t ime steps. The simulation would end when the 

volume under consideration was completely fi l led wi th bubbles and the phase 

transition complete. Unfortunately, this is quite hard but, since there is as yet 

no detailed observation of the bubble spectrum, an order of magnitude estimate 

w i l l be sufficient for our purposes. Purely f rom dimensional considerations we 

expect that a typical shell radius w i l l be 

1/4 

TV 
(6.68) 

where T/V is the bubble nucleation rate and where the constant of proportionality 

r,- is a dimensionless measure taking into account the fact that not all shells of 

matter are created w i t h exactly the same radius. Since the main contribution to 

the above expression comes f rom the exponential of the action f r o m expression 

(6.42) for T/V we can set this constant equal to unity. 

In the rest of this chapter we shall derive general expressions for the thickness, 

mass and radius of the shells of matter based on these results. 

6.9 Shell Thickness 

Deriving an expression for the thickness of a shell as a funct ion of t ime is a 

complicated matter as i t requires a knowledge of the fo rm of the gravitational 

potential $ of the seed mass which is in tu rn dependent on the shape of the shell 

at the t ime of its formation. The final thickness of the shell w i l l depend on the 

competit ion between gravity, which forces i t to collapse, and pressure resulting 

f r o m the internal motions of the constituent matter. One would expect, therefore, 
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Figure 6.11: A planar model of accretion showing two shells of matter 
separated by a distance 21. 

the thickness of a shell to increase ini t ia l ly because of the accretion of additional 

matter onto the shell, but then decrease as gravity compresses the whole shell. 

As long as there is s t i l l matter in the cavities between the shells, particles of 

matter w i l l continue to accrete on the shell walls un t i l the mass inside the cavity 

has reduced to zero. 

We w i l l make a number of simplifying assumptions, approximating the shell 

w i th a planar sheet of uniform surface density ps and investigate its effect in 

attracting matter a distance / away f rom the sheet (see fig. (6.11)). The effects 

of any internal motion of the matter already inside the shell w i l l be ignored. In 

flat space the equation of motion for a particle of matter is 

where G is Newton's gravitational constant. Our approach, therefore, is based on 

Newtonian gravity which for subhorizon scales should be a good enough approx

imation. To take into account the expansion of the Universe we introduce the 

scale factor R by wr i t ing / = xR where / is a physical distance, x is a coordinate 

distance and where, in general, R ~ t n . W i t h these substitutions the equation of 

motion for the particle becomes 

I = -2xGps 

x + 
2nx n(n — l)x 

+ t2 t 

2irGps 

t n 
(6.69) 
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and the general solution to (6.69) is made up of the complimentary function plus 

the particular integral. To find the complimentary funct ion we use x ~ ta as a 

t r ia l solution, giving 

f 1 - n 

Thus, the complimentary function is 

x = At~n + Btx~n. 

By inspection the particular integral is 

x = Ct2~n, 

where C — —irGps is found by substituting back into (6.69). Thus, i n terms of 

physical distances, 

I = XR = xtn 

= A + Bt + Ct2 

= If — 7rGps(t — t f ) 2 (6.70) 

where to obtain the last equality we have assumed that the test particle starts 

at rest a distance // away f rom the sheet at t = t f , the t ime of formation of the 

shells of matter (this is yet another simplifying assumption since there is no reason 

why particles of matter inside the shell should not have an in i t ia l velocity). I f we 

ident ify the thickness of the shell AR w i th the distance of the furthest particle 

f r o m the sheet i.e one which has started a distance R away, at the midpoint 

between the sheets, then 

AR = R - awGps{t - t f ) \ 

so today the present thickness of the shells is given by 

ARo = R o - a * G p a ( t 0 - t J ) 2 (6.71) 
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where a; is a model parameter of order unity. 

6.10 Shell Mass 

Since most of the matter inside the shell w i l l eventually accrete onto the shell, 

we take the shell mass to be the seed mass (cf. (6.67)) plus the mass of matter 

inside the shell at the time of its formation, thus 

M s h e l l = S t I V , V £ 0 + (6.72) 

where 77 is the radius of the shell at the time of its formation, ?*0 is its present 

radius and p0 is the present average density of matter in the Universe. 

6.11 Shell Radius 

As we mentioned before, our aim is to account for a bubbly structure in the 

Universe by employing a first-order phase transition which occured after inf lat ion. 

As in the case of the inflationary potentials introduced earlier in this thesis, our 

potentials are temperature-dependent and can result in a phase transition which, 

depending on the temperature T, can proceed either by thermal or by quantum 

tunnelling. Thermal tunnelling occurs at very high temperatures T Tc and 

in this case one has to use the finite temperature tunnelling rate. Quantum 

mechanical tunnelling of the kind examined in chapter 5, on the other hand, w i l l 

be appropriate i f T <C T c , however, since quantum tunnelling can be applied at 

f ini te temperatures provided that they are low enough (Linde (1990)). Supposing, 

therefore, that the phase transition occured when 

kT ~ U{0)1/4, 

in other words above T = 0 but st i l l low enough for the analysis in chapter 5 

to be valid, then the t ime t p t when the phase transition occurs is given by (cf. 
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(2.19)) 

_ ( 45c 5 f t 3 ^ 1 / 2 1 

Hence, we can use a thermal argument to calculate the epoch of the phase tran

sition but st i l l use the quantum mechanical nucleation rate discussed in chap

ter 5, provided that the phase transition occurs at a temperature T such that 

0 < T <C Tc. The typical separation of bubble centers at this t ime is (cf. (6.68)) 

(6.74) <Pt- ^ r / ^ 

To calculate the size of the shells when they are formed we must f ind the t ime 

taken for the bubbles to meet one another, allowing for the expansion of the 

Universe. The in i t ia l typical coordinate separation of bubble centers is 

assuming the phase transition occurs in the radiation-dominated era and where 

we have normalised the scale factor so that R(t0) = 1. Af te r t ime t j , the t ime 

taken for neighbouring bubbles to meet one another, the wavefronts w i l l have 

travelled a coordinate distance 

_ r*t dt _ ct^l2 r*f dt 
x = c J t p t W j ~~ mt^t) - V ^ 

and so neighbouring bubbles w i l l meet at a t ime t j given by 

2c(V) 1 / 2 

Tit. (V/2 - V 1 / 2 ) , (6-76) p t R(tPt) 

where we have assumed that t f < t e q . Using (6.75) and solving (6.76) for tf gives 
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at which t ime the size of the shells is 

r f = rPt 
Bit,) 

t 
t 

Pt 

R(tPt) 

= v 1 + 2ct. 
(6.78) 

Thus the present size, Rq, of the shells is given by 

) 
1/2 

to 

) 
2/3 

(6.79) 
eg 

where to is the present age of the Universe, and t e q is the t ime at which the 

Universe became matter-dominated. 

In the next chapter we w i l l present results on the shell radius, mass and 

thickness resulting f r o m phase transitions produced by polynomial or modified 

Coleman-Weinberg potentials and compare them w i t h the observed structure of 

the Universe. 
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Chapter 7 

Results 

In a problem such as that under investigation, one of the main difficulties in 

presenting the results is the large number of variables involved, in this case those 

describing the scalar field potential and its decay, and showing their relation to 

the properties of the shells of matter that are produced by the bubble collisions. 

We w i l l , therefore, start by explaining how the results are obtained, followed by 

a section in which we w i l l derive the explicit dependence of the shell parameters 

on those of the potential. I n the rest of this chapter we present our results, but 

our conclusions are reserved for the next chapter. 

7.1 Determining the Potential Parameters from 
Observation of the Shell Structure 

For both the polynomial and the modified Coleman-Weinberg potentials (cf. 

(6.3), (6.8)) we introduced three parameters which describe particular features of 

the potential under consideration. In particular the position of the global min i 

m u m of U(4>) is given by a and i t is this parameter that sets the energy scale for 

the SSB. The shape of the potential including the height of the barrier separating 

the false f r o m the true ground state is parametrised by j3. Finally once a is speci

fied the energy difference between the false and the true minima is determined by 
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the coupling strength A. Since the shell properties are described by three quanti

ties namely their size, mass and thickness, we might hope to determine all three 

potential parameters and hence deduce the form of the potential responsible for 

the phase transition and the epoch when the phase transition occured. However, 

because we cannot assume that the scalar field necesarily couples to matter i n 

the same way as the Standard Model Higgs field we have introduced a four th 

parameter, G (cf. (6.18), (6.19)) which also appears in the expression for the 

shell mass (cf. (6.67)). Hence, we cannot determine both A and G. In presenting 

our results, therefore, we w i l l consider two qualitatively different regimes; one in 

which we set G = 1, as in the standard model, and vary A, ft and cr, and another 

where we can vary a and G but fix A at 1 0 _ 1 as in the Coleman-Weinberg 

SU{b) GUT. 

To obtain our results we derive equations for the shell parameters in terms 

of the potential parameters and G. We could then, at least in principle, solve 

the equations and hence obtain A, (3, a and G by requiring the shell parameters 

are equal to their observed values. Alternatively we could plot the dependence 

of the shell parameters for a range of possible values of the potential parameters. 

However, as we mentioned before, there are two factors that create uncertainties 

in the values of the parameters that we should use in our fits. The first, the 

fact that the observed shell parameters depend on the Hubble parameter which 

is only known up to a factor of two. So w i t h H0 = h0x lOOkms'1 Mpc~l we have 

R ~ ho'1 

AR ~ K-1 

M ~ h0~3. 

Secondly the equations derived so far produce expressions for the average mass, 
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thickness and size of the shells. Since only a l imited number of shells have been 

observed i t is too early to say precisely what these average values should be. So 

our approach is based on order of magnitude estimates only rather than precise 

values and so we have adopted the second approach. This also gives a feeling for 

how the results vary over a range of possible values for the parameters that the 

first approach would not provide. 

We shall next derive equations for the shell parameters in terms of the poten

t ia l parameters. 

7.2 Fitting the Shell Parameters 

7.2.1 Calculating tf and r/ 

A l l the quantities that we calculate depend upon either the t ime of shell formation 

t f , or the size of the shells at formation r^, or both, and we w i l l calculate these 

separately. We begin by finding the bubble nucleation rate which f rom (6.20) is 

given by 

B 2 e - B ' h 
det(-d2 + V"(cf>+))]l/2 

det'{-d2 + V"((j>)) 

where the tunnelling action B — Se is defined in (6.31) or (6.35) depending on 

whether we use the numerical result or the th in wall approximation, <f> is the 

bounce solution of section (6.3) and <f>+ is the position of the false min imum. 

Using (6.41) for the ratio of the determinants, (7.1) can be wri t ten 

r B2 _ B A 2 t f * 4 

V 4 T T 2 
e 

A 0 

1/2 
(7.2) 

where Co is defined in (6.37) and A 0 was determined in section (6.6), and where 

we have swiched into h = c = 1 units. We w i l l f ind later on that quite large 

values of /3 are required (i.e. larger than about 0.37) and so f r o m this point we 
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w i l l abandon the th in wall approximation. As far as the negative eigenvalue is 

concerned we have A 0 = 3/(2i? 2 ) where R can be estimated f rom the graph of 

the bounce solution (cf. section (6.6)). W i t h these approximations, and wi th 

c = 1, the mean separation of nucleation sites at the end of the phase transition 

becomes (cf. (6.68)) 

1 \ 1 / 4 0 .7697e B /V 5 / 8 

rnt = G e l / " 1 . (7.3) 
r / v ) / i / 2 j ? i / 4 ( i - 2/?) 5 / 8<t 

Also, f r o m (6.73), the t ime at which the phase transition occurs is 

_ ( 45c 5 f t 3 ^ 1 / 2 1 
t p t - { l 6 ^ G g J (After4)1/2 { ] 

where / determines the bounce solution (cf. (6.31), (6.32)) and is evaluated 

numerically. I f we take g* ~ 100 at the end of the phase transition, set c = % = 1 

and G = mp[~2 i t follows that 

3.678 x 10 1 7

 T , i 

= 7 * ^ f t r ( 7 ' 5 ) 

rpt 

I f we now define Q by 

^ 2ctpt 

then f r o m (6.77) and (6.78) we have respectively 

tf — Q2tpt 

r, = QrpU 

or explicitly in terms of the potential parameters 

3.678 x 10 1 7 / 5.232 x l O - V M 1 ^ 9 ' 8 ^ 2

 l n a . 
tf — 7TT- 1 H ~ ~ rrs GeV ( ' -6) 

(Af3a4)1/2 V P l 2 R 1 l A { \ - 2 p f l * ) 

0.7697e f i/ 4/3 5/ 8 / 5.232 x l ^ 9 e B ^ A x l 2 ^ a \ ^ l n n . 
f f = — ; nz—\ 1 H ~ ~ rrs \GeV . (7.7) 

P / W ^ l - 2/3)5/8a \ W 2 R 1 l i { l - 2 p f > & ) 

We w i l l use (7.6) and (7.7) to obtain expressions for the mass, wid th and thickness 

of the shells. 
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7.2.2 Fitting the Shell Size 

The present size of a shell is given by 
1/2 / \ 2/3 

where t e q fa 10 1 2s is the t ime when the Universe became matter-dominated, 

to fa 2 x 10 1 7 * is the current age of the Universe and tf and 77 are given by (7.6) 

and (7.7) respectively. Substituting (7.6) and (7.7) and dividing by 1.5637 x 10 3 8 

to convert f rom GeV~x units into Mpc, we obtain for both the polynomial and 

the modified Coleman-Weinberg potential 

„ 4.484 x 1 0 - V / M 1 / 4 / ? 7 7 * , , 
Ro = = = r ? f — M p c , 7.8 

where B and / are defined in section (6.4) and where R is a dimensionless measure 

of the critical bubble radius (cf. section (6.6)). The fact that the present size of 

a shell is the same for both potentials reflects their similarity which is evident 

f r o m figures (6.1) and (6.3). Since (3 appears in the exponenntial of the action 

we expect the dependence of RQ on f3 to be significant. On the other hand, the 

shell radius is not dependent on cr, i.e. i t does not depend on the t ime when the 

phase transition occured. As can be seen f r o m (7.6) and (7.7), the size of the 

shells at formation and the time of shell formation are both largely independent 

of cr, except that when either A or (3 become too large but a stays relatively 

small the term in brackets becomes of order 1 and then tf oc a"2 and 77 oc c r - 1 

respectively. Even in this case, however, Ro remains independent of a and so i t 

seems that the present size of the shells is determined not by the t ime when the 

phase transition occured but by the dynamics of the Universe, their in i t i a l size 

being stretched as the Universe expands. On the other hand, the energy scale <r, 

crucially determines the mass of the shells since they are created by the decay of 

the </>-field. 
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7.2.3 Fitting the Shell Mass 

The present mass of a shell is given by 

Ms = 8 * r r , V £ + ^ 

= M 4- Mi 

where all the symbols have their previous meanings and where T is the decay 

wid th of the </>-field to matter which for the potentials under consideration is 

given by 

CW 
32TT 

GA3'2(3 + 2 /9 ) 3 /V 

respectively (see section (6.2)). The observed shell mass is of order 1 O 1 6 M 0 , 

about 90% of which is accounted for by M j . Thus, we constrain M to be of order 

1 O 1 5 M 0 . W i t h the above expressions for T, substituting for rj and dividing by 

1.116 x 10 5 7 to convert f rom GeV units to solar masses, i t follows that 

3.185 x 10- 5 7 e f i / 2 G A 3 / 2 ( l + ( i f 2 a 
MP = ^-r— -m— — X 5/4 

1 + 

7 ^ / 2 ( 1 _ 2/3) 

5.232 x 10-™eB'4A1'2P9'*<T' 
Mr? 0 (7.9) 

7 1 / 2 j R l / 4 ( l _ 2 / 3 ) 5 / 8 

for the polynomial potential, whereas for the modified Coleman-Weinberg poten

t ia l 

3.981 x 1 0 - 5 8 e s / 2 G A 3 / 2 ( 3 + 2/3) 3 / 2 £ 0 a 
MCW 7 ^ / 2 ( 1 _ 2/3) 5/4 

1 + 
5.232 x lO^eWAWp9'6* -i 2 

7 1 / 2 J R i / 4 ( i _ 2/3) 5/8 M 0 . (7.10) 
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7.2.4 Fitting the Shell Thickness 

The present thickness of the shells is, f rom (6.71), 

AR0 = R0-aTcGp,(t0-tf)2 (7.11) 

where a is a model parameter which we have set equal to unity, G is Newton's 

constant, tf is the time of shell formation, ps is the surface density of the shells 

given by 

_ M _ S T r r Y / V X ^ 

= 2 I V % 

and the decay rate V was given in the previous section for both forms of potential. 

Now, since in all probability, t j is no greater than td « 1013.sec, we approximate 

(̂ o — t f ) 2 ~ to2 and (7.11) becomes 

AR0 = Ro - 2 7 r G r < T 2 S ^ 0

2 , (7.12) 

where is defined in (6.67) and to is the present age of the Universe. Thus, for 

the polynomial potential 

AR0 = Ro - 1.2 x 10 9 G*A 3 / 2 (1 + /3)3/2a3Mpc (7.13) 

whereas for the modified Coleman-Weinberg potential 

A t f o = Ro ~ 1.5 x 10 8 (X4 3 / 2 (3 + 2/?) 3 / 2 <r 3 Mpc, (7.14) 

where al l symbols have their previous meanings and where we have converted 

f rom natural units to Mpc. I t is evident f rom the above equations that the shell 

thickness is very insensitive to A and /?, the main contribution coming f r o m the 

< T 3 term. I t seems, therefore, that G but most important ly a would have to be 
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exceedingly small to account for the observed shell thickness in this way imply ing 

a phase transition that occured extremely late. I t therefore seems unlikely that 

we can use the thickness of the shells to determine the potential parameters. 

7.3 Results 

As mentioned previously, in presenting our results we w i l l consider two possi

bilities, namely requiring G = 1 so that the couplings of the <f> f ield to matter 

are those of the standard model Higgs field, or alternatively A = 0.1 as in the 

Coleman-Weinberg SU(5) GUT. We plot the variation of the potential param

eters against the resulting shell parameters and hence obtain the allowed ranges 

for the potential parameters which agree wi th observations. Because of the num

ber of parameters involved we have been quite selective on our presentation of 

results. Since the potential parameters depend on the tunnelling action, and the 

tunnelling action depends critically on our choice of ft, we only give results for a 

l imi ted number of values of ft. I n particular we w i l l find that ft has to be larger 

than 0.38 and smaller than 0.44 (otherwise the values of A required become too 

large or too small) and so we only examine cases where the height of the barrier 

lies between these l imits . 

A first restriction on the allowed values of the potential parameters can be 

set f r o m the t ime of formation of shells of matter (cf. (7.6)). Restricting t j to 

be no later than about « 10 1 3sec, the t ime when matter begins to dominate 

and structure can begin to form, seems a reasonable l im i t as any structure that 

evolved f r o m shells of matter that where formed later than this would not have 

had t ime to evolve to the present highly condensed state. We start, therefore, in 

figures (7.1), (7.2), by plot t ing on log-log axes t j against A for different values of 

ft, for a — 250 and 1014GeV respectively, w i t h the polynomial potential. I t can 
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Figure 7.1: Variation of the t ime of shell formation tf w i t h A for 
different values of /?, wi th a = 250GeV for the polynomial potential 
(wi th tf in seconds). The lower l imi t at t p t & 10 _ l o 5ec results f r o m 
the fact that shell formation can not happen earlier than the original 
phase transition. 
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Figure 7.2: Variation of the t ime of shell formation tf w i t h A for 
different values of /3, wi th a = 1014GeV for the polynomial potential 
(wi th tf in seconds). As in figure (7.1), the graphs corresponding to 
different values of w i l l converge at a t ime t p t & 10 _ 3 55ec. 
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be seen that, to obtain tf < t j , A and ft vary inversely to each other in the sense 

that small values of A require large values of ft and vice versa. Also, for each 

value of ft we can impose constraints on the allowed values of A. For example, 

for ft = 0.38 A w i l l have to be larger than about 0.1 whereas for ft = 0.44 we only 

need A > 0.06. Our theoretical prejudice in favour of small values of A enables us 

here to impose a lower l imi t on ft, that is, for A not to exceed 0.15 we must have 

ft ~ 0.38. Also, comparing figures (7.1) wi th (7.2) we see that the huge increase 

in a has made essentially no difference to the variation of t j w i th A: i f we were 

to superimpose the two graphs the lines corresponding to the same values of ft 

would completely match except for the lower cutoff on tf which, depends on the 

value of a since i t gives the t ime of the phase transition. 

In figure (7.3) we plot the variation of tf w i t h a for different values of ft and for 

A — 0.1. I t can be seen that for smaller values o ( f t , t f is practically independent 

of a. However, as ft increases the dependence of tf on a becomes more apparent 

and, for ft = 0.44, we see a power law dependence of tf on a for small a. As 

we said before this is due to the behaviour of equation (7.6) which for certain 

values of A, ft and a can be approximated by setting the term in brackets equal 

to one. The results for the modified Coleman-Weinberg potential are very much 

the same and are shown in figures (7.4) to (7.6). 

We next plot ( in figures (7.7) and (7.8)) the shell radius against A for different 

values of ft, remembering that the shell radius is independent of a (see (7.8)). I f 

we allow RQ to vary wi th no restrictions whatsoever then, as the graphs show, 

the variation of RQ w i t h A and ft is quite dramatic owing to the fact that the 

exponential of the action that appears in (7.8) is proportional to ( A f t ) - 1 . I f , 

however, we restrict R0 to be, say, smaller than 105Mpc, which is almost certainly 

the plot of RQ against A for different ft on log-log axes consists of essentially 
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Figure 7.3: Variation of the time of shell formation tf with a for 
different values of with A = 0.1 for the polynomial potential (with 
tf in seconds), tj is independent of a except when the tunnelling 
action is too small (cf. eqn. (7.6)). 
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Figure 7.4: Variation of the time of shell formation tj with A for 
different values of /?, with a = 250(7eV for the modified Coleman-
Weinberg potential (with tj in seconds). Compare with figure (7.1). 
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Figure 7.6: Variation of the time of shell formation tf with a for 
different values of /?, with A = 0.1 for the modified Coleman-Weinberg 
potential (with tf in seconds). 
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straight lines (see figs.(7.9) and (7.10)) indicating an approximate power law 

dependence of the shell radius on A. If we insist upon values for RQ lying in a band 

extending either side of R0 — 25Mpc, to take into account the aforementioned 

uncertainties in the evaluation of the shell parameters, (cf. section (7.1)), then 

the corresponding range of allowed values of A for each value of /3 is considerably 

reduced. For the polynomial potential with (3 = 0.38 we find that 0.108 < A < 

0.112 whereas for 0 = 0.44, 0.057 < A < 0.059 is needed. These graphs show that 

the smaller the value of /? the larger A has to be if the shell radii are to be similar 

in magnitude to those observed, in accordance with our conclusions concerning 

the variation of t f . Large values of A are unacceptable, not only because they 

would be contradictory to the Weinberg-Salam standard model or GUT theories, 

but also because perturbation theory would no longer be applicable. Again we 

conclude that if the predicted shell radii are to match those observed we must have 

larger values of /3 near to 0.40 corresponding to flatter potentials with smaller 

barriers (see, for example, figs. (6.1) and (6.3)). 

Next, we plot the shell mass LogM against Logo for both forms of potential 

and for /? = 0.38 and /? = 0.44 respectively (see figs. (7.11 )-(7.14)). Different 

lines in the graphs correspond to values of A ranging from 0.05 to 0.15 (except 

those cases which give rise to a shell mass far too big to be depicted on the chosen 

scales when only smaller values of A are included). It can be seen that again the 

larger the value of /? the smaller A has to be to reproduce the observed shell 

mass. 

The same conclusions can be drawn by examining the next set of figures 

(figs. (7.15) to (7.18)) which show the variation of the shell mass with A for 

both forms of potential with a taking its limiting values. In particular, it is 

clear that 0 = 0.38 is too small, whereas with /? = 0.44 reasonable values of 
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Figure 7.7: Variation of the shell radius R0 with A for different values 
of ft for the polynomial potential (with i?0 in Mpc) 
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Figure 7.8: Variation of the shell radius Ro with A for different values 
of ft for the modified Coleman-Weinberg potential (with R0 in Mpc). 
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Figure 7.9: Variation of the shell radius Ro with A for different values 
of /3 for the polynomial potential with 0 < RQ < 105Mpc. 

4.5 

4 

3.5 

! 1 f 

i l 

i 1 i 

\ \ ' 

\ 1 '•• 
'. '« 1 ; 

\ 1 
'l \ \ 

' . I " 1 ' 1 
lOMpc 

lOOMpc 
0=0.38 
P=0.39 
0=0-40 
0=0-41 - - - " 
0=0-42 

• 0=0-43 
0=0.44 

3 \ \ \ \ \ \ 
2.5 \ 

'• ', \ 

\ 

2 
'. t * 

1.5 

1 

• \ 

\ \ \ \ \ 

\ \ 

0.5 \ \ \ 

0 1 '. 1 ''. I 1 . 1 i i 

LogA 

Figure 7.10: Variation of the shell radius R0 with A for different values 
of j3 for the modified Coleman-Weinberg potential with 0 < RQ < 
105 Mpc. 
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Figure 7.11: Variation of the shell mass M with a for A G [0.10-0.15], 
with (3 — 0.38 and G = 1 for the polynomial potential, with M in solar 
masses. 

A « 0.06 for a = 250GeV and A « 0.1 for a & !014GeV are obtained. The 

corresponding values for the modified Coleman-Weinberg potential are somewhat 

smaller (A « 0.05 and A « 0.08 respectively). 

Next we examine how the shell thickness varies for different A, 0 and a 

for both the polynomial and the modified Coleman-Weinberg potentials. As we 

mentioned before (cf. section (7.2.4)) small variations of A and f3 will not affect 

the result much because a appears in the cubic power. It turns out that there is no 

useful solution since, for any sensible value of cr, ARQ is very large, as fig. (7.19) 

shows for the polynomial potential (results for the modified Coleman-Weinberg 

potential are almost the same). 

Having obtained reasonable results for the shell radius and the shell mass, it 

is unfortunate that we have failed to do so for the shell thickness as well. The 

reason is obviously that our model in section (6.9) is too simple for the underlying 
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Figure 7.12: Variation of the shell mass M with a for A € [0.05-0.15], 
with /? = 0.44 and G = 1 for the polynomial potential, with M in solar 
masses. 
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Figure 7.13: Variation of the shell mass M with a for A € [0.10 — 
0.15], with (3 = 0.38 and G = 1 for the modified Coleman-Weinberg 
potential, with M in solar masses. 
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Figure 7.14: Variation of the shell mass M with a for A G [0.05-0.15], 
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Figure 7.15: Variation of the shell mass M with A for different values 
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Figure 7.17: Variation of the shell mass M with A for different values 
of /?, with a — 250GeV for the modified Coleman-Weinberg potential, 
with M in solar masses. 
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Figure 7.18: Variation of the shell mass M with A for different values 
of (3, with a = l§1AGeV for the modified Coleman-Weinberg potential, 
with M in solar masses. 

physics of the problem to be explored properly. Ignoring any internal motions 

within the shell, we can estimate the time it would take for the shell to collapse 

completely (i.e ARQ —> 0) as follows. From (7.11) with AR0 = 0 we obtain 

t = t f + 

where the surface density of the shell is 

I Ro 

ps ~ Ga3 

Thus, for G = 1 and R0 = 25Mpc it follows that 

t = t; + 
5 x 1014 

-sec 

with cr measured in GeV units. Since tj < t0, it follows that for any reasonable 

value of a, the shells will have completely collapsed already. This means that the 

observed thickness must be the result of the internal dynamics of the shells not 
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Figure 7.19: Variation of ARo—Ro with a for the polynomial potential, 
with G = 1 and f3 = 0.4. The observed value AR0 - RQ « 20Mpc is 
not obtained for any reasonable value of a. 

their formation and so, contrary to our hopes of determining the three potential 

parameters by fitting our computed shell parameters to observations, we are 

only able to determine two, namely the height of the barrier separating the two 

ground states and the coupling A. Finally, we show in figs. (7.20)-(7.23) the 

corresponding solutions if the coupling of the scalar field to matter G is allowed to 

vary, for both potentials, setting this time A = 0.1 as in the Coleman-Weinberg 

SU(5) GUT theory. Since the shell radius does not depend on G we only plot 

the variation of the shell mass. 
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of G, with A = 0.1 and /3 = 0.38 for the polynomial potential, where 
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Figure 7.21: Variation of the shell mass M with a for different values 
of G, with A = 0.1 and /? = 0.44 for the polynomial potential, with 
M in solar masses. 
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Figure 7.22: Variation of the shell mass M with a for different values 
of G, with A = 0.1 and ft = 0.38 for the modified Coleman-Weinberg 
potential, with M in solar masses. 
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Figure 7.23: Variation of the shell mass M with a for different values 
of G, with A — 0.1 and ft = 0.44 for the modified Coleman-Weinberg 
potential, with M in solar masses. 
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7.4 Comments 

In presenting our results we have assumed that, if the resulting parameters are 

to make physical sense, it is necessary to keep 

0 < A < 0.15 

0 < a < 1015 

G < 1 

The first of these conditions ensures that the coupling constant is small enough to 

be consistent with expectations from the Weinberg-Salam theory of electroweak 

SSB or GUT theories and is such that perturbation theory will be valid. The 

second, ensures that there is a barrier separating the false from the true ground 

state through which the decay of the 0-field can proceed by quantum tunnelling. 

As far as the third condition is concerned we could in principle have a > 1015GeV 

but then the phase transition would probably occur before the period of inflation 

and so any resulting structure would be diluted out of sight. The final condition, 

which is somewhat arbitrary, restricts the coupling of the </>-field to matter to be 

that of the Standard Model or less. 

As can be seen from the graphs, our solutions appear to be straight lines, or 

nearly so, when plotted on log-log axes. Thus, the shell parameters have (ap

proximately) a power law dependence on the potential parameters. By studying 

the results we can conclude the following: 

1. A and /? vary inversely to each other in the sense that if the shell parameters 

are to match those observed we need to combine small values of A with 

larger values of j3 and vice versa. 
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2. Because A = A/3 appears in the denominator of the expression for the 

tunnelling action, small changes in either of these parameters induce very 

large variations in the computed shell parameters (cf. (6.31) and (7.8)-

(7.10)). For example, take fig. (7.17) which shows the variation of the 

shell mass with A for different values of /3. For fixed (3 (say f3 — 0.38) a 

small change of logA from —0.9 to —1.0 will produce an increase in the 

computed shell mass of more than 22 orders of magnitude. This might give 

the impression that A has to be very accurately specified in order to get 

the shell mass near its observed value. However, the effect of letting /3 vary 

as well is to remove this illusion of accuracy (compare, for example, the 

lines corresponding to (3 = 0.38 and f3 = 0.40, which for the same change 

in logA, correspond to similar values for M). 

3. If the time of shell formation is not to be larger than the decoupling time 

we need (3 ~ 0.38 (see figs. (7.1)-(7.6)). Smaller values of (3 are excluded 

because in that case A becomes too large. 

4. The same conclusion can be derived from the graphs showing the variation 

of the shell radius and the shell mass with A (see figs. (7.9), (7.10)). 

5. Constraints on A can be obtained from the variation of the shell radius 

with A (see figs. (7.9), (7.10)) by noting that for the polynomial potential 

/? = 0.38 = • 0.108 < A < 0.112 

/? = 0.44 = » 0.057 < A < 0.059 

whereas for the modified Coleman-Weinberg potential 

/3 = 0.38 0.110 < A < 0.114 

= 0.44 = > 0.049 < A < 0.051 
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Thus, for large 0 the required value A is different for the two potentials 

even though the shape of the potentials is similar. 

6. Constraints on A can also be obtained from the variation of the shell mass 

with A, but this time the results depend on our choice of a (see figs. (7.15)-

(7.18)). For instance, for a — 250GeV and 0 = 0.44 with the polynomial 

potential, the observed value of M is obtained if 0.060 < A < 0.062, or 

with the modified Coleman-Weinberg potential if 0.052 < A < 0.054. As 

<7 increases the corresponding values of A increase as well and for a s=s 

1014GeV we need, for the polynomial potential, 0.092 < A < 0.097, or for 

the modified Coleman-Weinberg potential, 0.079 < A < 0.084. Again, we 

see that for large 0 the required value A is different for the two potentials. If 

we concentrate, however, on smaller values of 0 in particular 0 = 0.38, then 

for a = 250GeV we need 0.115 < A < 0.120 with the polynomial potential 

or, for the modified Coleman-Weinberg potential, 0.117 < A < 0.122. All 

of these values are quite acceptable but if a is increased to l014GeV, A 

becomes far too large. 

7. When (5 = 1 there is no restriction on the allowed value of a which can 

be as high or as low as we want it, so we can invoke any regime of particle 

physics that we choose to describe the second phase transition. 

8. If, however, we hold A fixed, even if we allow G to vary, we can tighten 

the range of values for 0 further. For example, it can be shown that for 

a = 250GeV only the values 0.38 < 0 < 0.40 can satisfy the shell mass 

constraint without having to resort to either very large or exceedingly small 

values of G. As a increases the required value of 0 increases as well and for 

a = 1014GeK it is found that we need 0.42 < 0 < 0.44 corresponding to a 
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Figure 7.24: The parametrised polynomial potential with (3 — 0.38. 

very small potential barrier (cf. figs.(7.20)-(7.24) where only the limiting 

cases corresponding to j3 = 0.38 and (3 = 0.44 have been plotted). 

It is notable that the values for both A and a are quite reasonable, since with 

A — O(0.1) a can take any values in the range [0 — 102OGeV]. The fact that 

we cannot pinpoint the value of a reflects the fact that our simple model for 

the shell thickness has failed (cf. section (6.9) and the end of section (7.3)) and 

thus instead of determining the three potential parameters we are only able to 

estimate two, A and /3. Hence our approach does nothing to pin down the nature 

of the particle physics theory that would determine a. 

Combining all the constraints would seem to indicate that the values A ~ 

0.11 — 0.12 and /? « 0.38 are favoured though slightly larger (smaller) values of 

j3 coupled with smaller (larger) A are still allowed in accordance with comment 

(1) above. The polynomial potential with /3 = 0.38 is shown in figure (7.24) (the 

coresponding modified Coleman-Weinberg potential is very similar). 
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Our results suggest that it may be possible to explain the bubble-like structure 

of the Universe on large scales by invoking a second phase transition, one which 

occured after inflation, and which proceeds by quantum tunnelling. Even though 

we have failed to predict the observed thickness of the shells, we have shown that 

in this model sensible solutions, giving rise to shells of matter with the observed 

mass and radius, can be found and that the scalar field coupling can be similar 

to that of the Higgs field of the Standard Model. However, the required energy 

scale of the scalar field potential is not determined. 
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Chapter 8 

Summary and Conclusions 

In the last chapter we saw how constraints on the parameters which describe the 

potential U(<f>) of a scalar field <f>, whose decay leads to the formation of bubbles 

and consequently to shells of matter, can be obtained by comparing the computed 

shell parameters with their observed values. Here we will consider further the sort 

of theory that might give rise to <j> and will also discuss the implications of our 

approach for the understanding of cosmology and structure formation. Firstly, 

however, we present a summary of the preceeding chapters. 

8.1 Summary 

We started in chapter 1 with an introduction to explain the purpose and aims 

of this work, followed in chapters 2 and 3 by a discussion of the standard Big 

Bang model of cosmology and its successes and its failures, and we saw how 

attempts to solve the latter led naturally to the idea of inflation. In particular 

we examined how the evolution of a homogeneous and isotropic Universe obeying 

the Robertson-Walker metric can be described by Friedmann's equations and 

how the universal expansion was affected by the nature of the energy content 

of the Universe and in particular whether it is radiation-dominated or matter-

dominated. The successes of the Big Bang model were discussed, followed by an 
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exposition of a number of difficulties (such as, for example, the horizon problem) 

which could be solved by the inflation of the Universe for some brief period in 

its early history during which it underwent exponential expansion. We reviewed 

a number of inflationary models and explained the main mechanisms which have 

been proposed for the generation of the primaeval density perturbations that 

led to the formation of structure. In particular we reviewed Guth's original 

inflationary model and saw how attempts to resolve the graceful exit problem led 

to the idea of slow-roll inflation. The fact that new inflation was not completely 

free of problems, as is evident from the fine tuning required to produce structure 

as we see i t , has led in a renewed interest in first order phase transition models 

such as extended inflation built on the Brans-Dicke theory of gravity. Finally, we 

saw that, although inflation in general is a very attractive mechanism for solving 

the problems of the Big Bang model, none of the specific models which have 

been proposed is completely satisfactory. This should not worry us too much 

because there is as yet no truly compelling particle physics 'theory of everything' 

to explain the origin of the scalar field 'inflaton'. 

In chapter 4 we started by examining the structure of the Universe from an 

observational point of view and saw how recent observations have led to the 

discovery that galaxies appear to be mostly situated on shell-like boundaries sur

rounding large voids which contain very few galaxies. We then briefly examined 

the dark matter problem and outlined a number of theories that have attempted 

to explain the origin of this bubble-like structure. We concluded with a discus

sion of the inhomogeneites observed in the CMBR and the possibility that this 

structure may have resulted from a first order phase transition. In particular we 

saw that CMBR constraints impose severe tests on all cosmological models and 

presented arguments suggesting that perhaps the best way to account for the 
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bubbly structure of the Universe might be to invoke a two field inflation model. 

We have proposed instead a mechanism of structure formation where the 

nucleation of bubbles results from a phase transition which occurs after the period 

of inflation. We began to explore this possibility in chapter 5 where, following 

Coleman's approach, we derived a formula for the decay rate of the bubbles. 

Then, in chapter 6 we saw how collisions between the expanding bubbles could 

have led to the creation of shells of matter which might eventually evolve into 

structures similar to those we observe today. Next we derived equations relating 

the shell parameters to those of the </>-field potential. Since we lack an underlying 

theory that would predict the potential U(</>), we instead tried to determine the 

parameters of the potentials that are required to reproduce the observed shell 

masses, thicknesses and radii. These results were presented in chapter 7. We 

now look at some of their implications. 

8.2 The Underlying Theory 

In the last chapter we found that the structure of the Universe seems to be 

consistent with our hypothesis that it has resulted from the decay of a scalar 

field <j> that has evolved to the true minimum of its potential through barrier 

penetration, with a coupling A of order 10 _ 1 , provided that the height of the 

barrier is quite small. 

We have mentioned in chapter 4 recent work (Amendola et al (1996)) in 

which the nucleation rate of the true vacuum bubbles has been explicitly calcu

lated, taking into account gravitational effects and going beyond the thin wall 

approximation, both of which increase the nucleation rate V. As a result rpt and 

consequently 77 decrease (cf. (6.74), (6.78)) leading to a reduced shell radius and 

shell mass (cf. (6.79), (6.72)). This allows for slightly smaller values of A and /3 
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than those we obtained in the previous chapter. However, since we abandoned 

the thin wall approximation anyway in favour of numerical calculations (cf. sec

tion (7.2.1)) and since we anticipate that gravitational corrections to the bubble 

nucleation rate will be significant only on energy scales comparable to the Planck 

energy, we do not expect that this improved method of calculation would change 

our results by much. 

We have also seen that, in principle, there are no restrictions on the value 

of the energy scale of this transition, a, which could be as low or as high as 

we like. This uncertainty in the value of a reflects a major problem suffered in 

many cosmological models, that we cannot be certain what regime of particle 

theory has given rise to the observed structure. It may also be partly due to the 

inadequacy of the model we have employed for studying the shell thickness. 

We have had to propose the existence of a new <j> field just for the purposes 

of creating shells of matter through bubble collisions. This is obviously unsatis

factory and if our proposal is to be credible it will be necessary for a <j> field with 

the properties given above to emerge from some more complete particle physics 

theory. For instance, since for specific values for A and /?, a « 250GeV may be 

favoured, and since for most of our results we have used Standard Model cou

plings to matter so that G = 1, it is just possible that the field responsible for 

the creation of the shells might be the Higgs field of the Weinberg-Salam the

ory. This would enable us to constrain the nature of the Higgs from cosmological 

considerations and in particular by observation of the large scale structure of 

the Universe! This is reminiscent of the bounds on the masses of the WIMPS 

derived in chapter 4 from the constraint that the energy density of the Universe 

should not be too great. 

As we saw in section (7.2) for the polynomial and the modified Coleman-
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Weinberg potentials respectively, 

or 

Setting u = 2A6GeV, as in the Standard Model, and restricting the allowed 

ranges for A and f3 as in the last chapter, we could in principle obtain constraints 

on the Higgs mass for the potentials under consideration. For example, with 

0.38 < /3 < 0.44, for the polynomial potential we obtain 

0.057 < A < 0.12 

l38GeV <mH< 205GeF, 

whereas for the modified Coleman-Weinberg potential 

0.052 < A < 0.13 

U8GeV <mH< 243GeV. 

If further observations of the shell parameters, or a more accurate determi

nation of the Hubble parameter, rule out a « 2h$GeV we shall have to look for 

some other theory containing a scalar field with a higher energy scale such as 

super symmetry (SUSY) for example. 

SUSY theories have been introduced mainly in an attempt to reconcile the 

small mass of the W boson compared with Planck's mass Mp, known as the 

hierarchy problem. They also try to address the fact that weak interactions in 

the Standard Model are not natural in the sense that the radiative corrections 

to physical quantities appear to be larger than the physical value of the quanti

ties themselves. SUSY models attempt to solve these problems by postulating 
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a fundamental symmetry between bosons and fermions such that every funda

mental particle has a supersymmetric partner that obeys the opposite statistics. 

In this way unwanted divergences are naturally canceled though the number of 

fundamental particles is doubled. It is expected that SUSY theories will be spon

taneously broken since the underlying symmetry between bosons and fermions is 

obviously now lost. The scale of SUSY breaking, Ms, has been estimated to be 

in the range \03GeV < Ms < !OnGeV. 

There are of course other theories of particle physics beyond the Standard 

Model such as composite models in which the Higgs particle is considered to be a 

composite state of 'techniquarks' bound together by some new kind of interaction, 

or superstring theories where elementary particles are no longer considered to be 

points but rather closed vibrating loops which cut out a cylindrical area as they 

move through space. 

In all these models a number of phase transitions are thought to have occured 

as the underlying symmetries of the theory are successively broken, and it is 

possible that such phase changes are of first order and procceed by quantum 

tunnelling. Without a 'Theory of Everything' uncertainty as to the exact nature 

of these phase changes is likely to remain. They could occur at any scale up to 

the Planck scale, lQl9GeV. 

If our approach is accepted, a more accurate knowledge of the shell parameters 

will help to determine the parameters of the potential including perhaps the 

epoch of the second phase transition. It could also have important implications 

as far as particle physics theories are concerned in the sense that models that fail 

to reproduce the observed structure could be ruled out. Alternatively, starting 

from a sensible particle physics theory, the graphs in the last chapter could be 

used to predict the expected scale of the resulting structure. Larger and deeper 
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astronomical surveys are clearly vital since a more accurate determination of 

the shell parameters will reduce the allowed range of the potential parameters 

and hence tighten the constraints on the scalar particle mass, for example. Of 

course an important constraint on our proposal comes from the CMBR since the 

presence of large bubbles at decoupling would destroy its homogeneity. 

If Amendola et al. are right (see section (4.6)), the only way of producing 

large scale structure through bubble wall collisions, retaining the successes of 

the original EI models, while passing the CMBR constraints, is to invoke a two-

field inflation model in which the first order phase transition which nucleates the 

true vacuum bubbles is followed by a period of slow-roll inflation. We might, 

therefore, want to modify our model by incorporating our potentials into a two-

field inflation model. Another way out might be to retain an inflationary model 

that resolves the graceful exit problem without violating the CMBR constraints, 

such as, perhaps, a classical EI model which produces a large number of very small 

bubbles which are then rapidly thermalised after inflation. A subsequent first-

order phase transition, such as the electroweak phase transition for example, could 

then be deployed to produce astrophysically interesting bubbles. The fact that 

the phase transition we are considering is late (compared to the epoch of inflation) 

and does not result in accelerated expansion means that very big bubbles such 

as those produced in the early phases of an inflationary phase transition are not 

expected to occur and thus our bubble spectrum should be compatible with the 

CMBR constraints. This, however, remains to be demonstrated in detail. A 

proper calculation of the bubble spectrum will have to be carried out and were 

it to be found that our model cannot survive a comparison with the CMBR 

constrains then a mechanism to suppress the overproduction of large bubbles 

would have to be devised, perhaps similar to Amendola's two-field inflation. 
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8.3 Conclusion 

We have found that a second phase transition that procceeds by the quantum 

tunnelling of a scalar field <j> may explain the bubble-like structure of the Universe 

on large scales. We have shown that for virtually any value of the energy scale of 

the SSB, cr, reasonable values of the couplings of O(0.1) are needed but that the 

height of the </>-field potential barrier separating the two ground states should be 

quite small. The true nature of the <^-field thus remains hidden as i t depends on 

what short of particle theory we want to use. If the Standard Model of electroweak 

interactions is invoked, we have shown how further observations of the shells of 

matter might help determine the Higgs mass from astronomical considerations, 

a fact that highlights the close interplay that now exists between cosmology and 

particle physics. 

Despite the fact that the current concensus concerning structure formation 

through a phase transition points towards a two field inflation model, we have ar

gued that because our phase transition occurs after inflation the bubble spectrum 

may still be compatible with the CMBR constraints. 

Looking to the future, the next step should be to determine the bubble spec

trum in detail and to investigate how the CMBR constrains affect the plausibility 

or otherwise of our proposal. If it is found that our bubble nucleation scheme 

interferes with the CMBR too much then a mechanism for supressing the overpro

duction of large bubbles will have to be devised. That would make an interesting 

project for the future! 
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